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Preface to the 
English Edition 

Addressing the English-speaking readers of this book, I 
should state who I imagine those readers are. The preface 
to the first German edition was written for students in a 
different academic system, and the description I gave there 
doesn't apply directly. Should we, in this global age, have 
more compatibility in academic education? There is a de­
bate going on now in Germany about whether we should 
introduce the bachelor's degree, or "Bakkalaureus" as some 
would call it, so that our system can be more easily com­
pared with those abroad. Difficult questions! But it has been 
observed that whatever the academic system, students of 
the same age have about the same level of knowledge and 
sophistication. Therefore I can simply say that this is a book 
for twenty-year-old students. 

This book is about manifolds, differential forms, the Car­
tan derivative, de Rham cohomology, and the general ver­
sion of Stoke's theorem. This theory contains classical vec­
tor analysis, with its gradient, curl, and divergence operators 
and the integral theorems of Gauss and Stokes, as a special 
case. But since the student may not immediately recognize 

v 



VI Preface to the English Edition -----------------------------=---------------------------------

this fact, some care is given to the translation between these 
two mathematical languages. 

Speaking of translation, I would like to acknowledge the 
excellent work of Leslie Kay in translating the German text 
into English. We have exchanged detailed e-mail messages 
throughout the translation process, discussing mathematics 
and subtleties oflanguage. While I was using the opportunity 
of this English edition to eliminate all the typos and mistakes 
I knew of in the present German edition, Dr. Kay initiated 
many additional improvements. I wish to thank her for all 
the care she has devoted to the book. 

Langquaid, Germany 
October 2000 

Klaus Janich 



Preface to the 
First German 
Edition 

An elegant author says in two lines what takes another a 
full page. But if a reader has to mull over those two lines 
for an hour, while he could have read and understood the 
page in five minutes, then-for this particular reader-it was 
probably not the right kind of elegance. It all depends on who 
the readers are. 

Here I am writing for university students in their sec­
ond year, who know nothing yet about manifolds and such 
things, but can feel quite satisfied if they have a good over­
all understanding of the differential and integral calculus of 
one and several variables. I ask other possible readers to be 
patient from time to time. Of course, I too would like to com­
bine both kinds of elegance, but when that doesn't work I 
don't hesitate to throw line-saving elegance overboard and 
stick to time-saving elegance. At least that's my intention! 

Introductory textbooks are usually meant lito be used in 
conjunction with lectures:' ·but even this purpose is better 
served by a book that can be understood on its own. I have 
made an effort to organize the book so that you can work 
through it on a desert island, assuming you take your lec-

vii 
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ture notes from your first two semesters along and-in case 
those lectures didn't include topology-a few notes on basic 
topological concepts. 

Since discussion partners are sometimes hard to find 
on desert islands, I have included tests, which I would like 
to comment on now. Some people disapprove of multiple­
choice tests on principle because they think putting check 
marks in boxes is primitive and unworthy of a mathemati­
cian. It's hard to argue with that! Actually, some of my test 
questions are so utterly and obviously simple that they'll give 
you-a healthy little scare when you find you can't answer 
them after all. But many of them are hard, and resisting 
the specious arguments of the wrong answers takes some 
firmness. The tests should be taken seriously as a training 
partner for the reader who is alone with the book. By the 
way, there is at least one right answer in each set of three, 
but there may be several. 

Now I won't describe the book any further-it's in front 
of you, after all-but will turn instead to the pleasant duty of 
looking back when the work is done and gratefully acknowl­
edging the many kinds of help I received. 

Martina Hertl turned the manuscript into TEX, and 
Michael Prechtel was always there with his advice and sup­
port as a TEX wizard. I received useful macros from Martin 
Lercher as well as from the publisher, and I was one of the 
first to use diagram.tex, developed by Bernhard Rauscher, for 
the diagrams. My students Robert Bieber, Margarita Kraus, 
Martin Lercher, and Robert Mandl expertly proofread the 
next to the last version of the book. I am very grateful for all 
their help. 

Regensburg, Germany 
June 1992 

Klaus Janich 
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Differentiable 
Manifolds 

CHAPTER 

1.1 The Concept of a Manifold 

The only background we need is a little topology-Chapter 
I of [J:Thp] is enough, at least for now-and differential cal­
culus of several variables. 

Definition. Let X be a topological space. An n-dimensional 

chart on X is a homeomorphism h : U ~ U' from an 
open subset U C X, the chart domain, onto an open subset 
U' C ]Rn. 

If every point in X belongs to some chart domain of X, the 
space X is called locally Euclidean: a nice property, which 
of course not every topological space has. 

It is often useful to include the name of the chart domain 
in the notation for the chart and speak of the chart (U, h), 
and we do so now. 

Definition. If (U, h) and (V, k) are two n-dimensional charts 
on X, then the homeomorphism k 0 (h-1Ih(U n V» from 
h(U n V) to k(U n V) is called the change-oJ-charts map, 
or transition map, from h to k. If it is not only a homeomor-

r-z.u c X '--....,j open 

Figure 1.1. A chart 

Figure l.2. 1tansition 
map 

1 
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© Springer Science+Business Media New York 2001



2 I. Manifolds ----------------------------------------------------------

phism but a diffeomorphism, we say that the two charts are 
differentiably related. 

By differentiable, in the sense of analysis in lR.n , we always 
mean of class CCX>: having continuous partial derivatives of 
all orders. In particular, a homeomorphism f between open 
sets in lR.n is a diffeomorphism if and only if both [ and [-I 
are Coo functions. 

Definition. A set of n-dimensional charts on X whose chart 
domains cover all of X is an n-dimensional atlas on X. The 
atlas is differentiable if all its charts are differentiably re­
lated, and two differentiable atlases Qt and ~ are equivalent 
if Qt U ~ is also differentiable. 

This brings us almost to the concept of a differentiable 
manifold. Now we have to choose between two commonly 
used definitions. A differentiable structure on X is regarded 
sometimes as an equivalence class of differentiable atlases 
and sometimes as a maximal differentiable atlas. We first 
clarify in what sense the two mean the same thing. 

For an n-dimensional differentiable atlas Qt, let [Qt] de­
note its equivalence class and V(Qt) the set of all the charts 
(U, h) on X that are differentiably related to all the charts 
in Qt. There is a differentiable transition map between any 
two elements of V(Qt), as can be checked using Qt-charts. 

U (This is the same argument we would have to make in ver-!ii!J ifying that "equivalence" really does define an equivalence 
w V relation on the set of atlases.) The set of charts V(Qt) is thus 

an n-dimensional differentiable atlas and in fact obviously a 
~ k maximal one: every chart we could have added without de­

coo WZiTl stroying differentiability is already there anyway. But V(Qt) , 
~ EJ clearly the only maximal n-dimensional differentiable atlas 

that contains Qt, carries exactly the same information as the 

Figure 1.3. Proof of dif­
ferentiability for the tran­
sition map from h to k 
by means of an auxiliary 
chart (W, qJ) in Q{ 

equivalence class [Qt], because [Qt] is just the set of all the 
subatlases of V(Qt) and V(Qt) is the union of all the atlases in 
[Qt]. Which to take as the structure defined by Qt is therefore 
a question of taste, and I for one prefer the maximal atlas, 
since that is at least still an atlas: 
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Definition. An n-dimensional differentiable structure on 
a topological space X is a maximal n-dimensional differen­
tiable atlas. 

You probably expect a differentiable manifold to be de­
fined as a topological space equipped with a differentiable 
structure, and this is essentially what is done, but two addi­
tional topological demands are made on the space. The first 
is that M must be Hausdorff, and the second that M must be 
second countable; that is, there must exist a countable basis 
for the topology (see, for example, [J:Thp], p. 12 and p. 85). 

Definition. An n-dimensional differentiable manifold is 
a pair (M, TJ) consisting of a Hausdorff space M that satis­
fies the second axiom of countability and an n-dimensional 
differentiable structure TJ on M. 

We usually suppress the structure in the notation and 
write M for a manifold, just as we write G rather than (G, ) 
for a group. 

We fix a convention for the empty topological space with 
the empty structure by letting it be a manifold of any di­
mension, even negative. But any nonempty manifold has a 
well-defined dimension n = dimM ~ O. 

Since we haven't defined non-differentiable manifolds 
and will have no need to consider them, we don't have to 
tack on the adjective "differentiable" every time. We also 
agree that, without an explicit statement to the contrary, a 
chart (U, h) on the manifold M always means a chart in the 
differentiable structure. 

1.2 Differentiable Maps 

Now we turn our attention to maps. Let M be a manifold, X 
some space, and f : M -* X a map whose behavior we want 
to study near a point p E M. Then we can choose a chart 
around p, i.e. a chart (U, h) for M with P E U, and use it to 
"pull the map f down." That is, we consider f oh-1 : U' -* X. 
Whatever properties and data f 0 h-1 has locally at h(p), 
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Figure 1.4. The down­
stairs map f 0 h- 1 

Ci)-;R 
hi \k //f ok-1 

[iW~~ 

Figure 1.5. f 0 h- 1 and 
(j 0 k- 1) 0 W agree on 
h(U n V) 

we say that f has them at p relative to the chart (U, h). If 
such a property or datum of the "downstairs map" is actually 
independent of the choice of chart around p, so that f has the 
property relative to every chart around p, we just say that f 
has this property at p. For example: 

Definition. A function f : M ---* lR is differentiable (i.e. COO) 
at p E M if for some (hence every!) chart (U, h) around p, 
the downstairs function f 0 h- l is differentiable in a neigh­
borhood of h(p). 

The local Coo property at p is independent of the choice 
of chart because the downstairs functions relative to the 
charts (U, h) and (V, k) differ only by precomposition with a 
diffeomorphism, namely the transition map w. We proceed 
similarly when the target space is a manifold, but then we 
always start by assuming that f is continuous, since this 
makes possible a suitable choice of chart: 

Note. If f : M ---* N is a continuous map between manifolds, 
p E M, and (V, k) is a chart around f (p), then there is always 
a chart (U, h) around p with f (U) c V. 

In this case too, we say that f has a local property at p 
relative to the charts (V, k) and (U, h) if the map k 010 h- l : 

U' ---* V' "pulled down" by the charts (another downstairs 
map) has the property at h(p). 

Figure 1.6. Using charts to pull down a continuous map between 
manifolds 

Since this is a map between open sets in Euclidean spaces, 
we are in the familiar setting of differential calculus of sev-
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eral variables. As before, the charts need not be given explic­
itly if the property is independent of the choice of charts. 
We say instead that I has the property at p relative to some 
(hence every) choice of charts or just relative to charts, or, still 
more concisely, that I has this property at p. In particular: 

Definition. A continuous map I : M -+ N between mani­
folds is called differentiable at p E M if it is differentiable at 
p relative to charts, and differentiable if it is differentiable 
at every p E M. If I is bijective and both I and 1-1 are 
differentiable, I is said to be a diffeomorphism. 

1.3 The Rank 

The Jacobian matrix of the downstairs map is not indepen­
dent of the choice of charts; after all, it transforms according 
to the chain rule under changes of charts. But the rank of the 
Jacobian matrix stays the same since the transition maps are 
diffeomorphisms, and we can make the following definition. 

Figure 1.7. Why f has the same rank at p relative to (hI, kI ) and to 
(hz, kz) 

Definition and Remark. If I : M -+ N is differentiable 
at p, the rank of the Jacobian matrix relative to charts is 
called the rank of I at p a~d denoted l;>y rkpl. Note that if 
I : M -+ N is a diffeomorphism, the Jacobian matrix must 
be a square matrix of full rank. In particular, we see that 
diffeomorphic manifolds must have the same dimension. 

As you know from the differential calculus of several vari­
ables, the rank governs basic properties of the local behavior 
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of differentiable maps. The relevant theorems of differen­
tial calculus carryover directly to maps between manifolds 
because we can apply them to the downstairs maps. In this 
setting, the inverse function theorem reads: 

Inverse Function Theorem. Iff: M --+ N is a differentiable 
map between two manifolds of the same dimension nand p E M 
is a point with rkpf = n, then f is a local diffeomorphism at p. 

Many fundamental local results in differential calculus fol­
low as corollaries of the inverse function theorem. The (ap­
parently more general) regular point theorem is one exam­
ple. 

Regular Point Theorem. If f : M --+ N is a differentiable 
map between two manifolds and p E M is a regular point of f 
(that is, rkpf = dim N), then f is locally at p (relative to suitable 
charts) the canonical projection 

Spelled out in detail, this means that there are charts 
(U, h) around p and (V, k) about f (p) such that f (U) C V 
and the downstairs map k 0 f 0 h- l : U' --+ Viis given (for 
instance) by 

where 5 + nand n denote the dimensions of M and N. 
Another consequence of the inverse function theorem is 

the even more general rank theorem; see, for example, [BJ], 
p.45: 

Rank Theorem. If the differentiable map f : M --+ N has 
constant rank r in a neighborhood of p E M, then locally at p 
(relative to suitable charts) it is of the form 

]Rr x]RS ~ ]Rr x ]RM, 

(x, y) ~ (X, 0), 

where r + 5 and r + n are the dimensions of M and N. 
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1.4 Submanifolds 

The regular point theorem makes an important statement 
about the pre image 1-1 (q) of a point q E N, provided that 
the elements pEl -1 (q) are all regular. Such points q are 
called regular values. 

Thrminology. If I : M ~ N is a differentiable map, then 
the points P E M that are not regular are called critical, 
or singular, points of I, their images under I critical, or 
singular, values of I, and all the remaining points of N 
regular values of I . 

critical point 

M 

c critical value 
f ---"regular 

---- points regular value 

Figure 1.B. Regular and critical points and values 

Observe that this fixes the convention of calling a point 
q E N a regular value if 1-1(q) is empty, although such a q 
isn't even a "value" of I . 

If M and N are manifolds with dimM = n+s and dimN = 
n, and if q E N is a regular value of a differentiable map 
I : M ~ N, then around every point p in the preimage 
Mo := 1-1 (q) there is a chart (U, h) on M with the property 

h(U n Mo) = IRs n h(U), 

where, as usual, we think of IRs C IRs+n as IRs x to} c IRs x IRn. 
This is true because there is no problem in requiring that 
the chart (V, k) given by the regular point theorem satisfy 
k(q) = 0, and the corresponding (U, h) then does what we 
want. 
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Thus the entire subset Mo of M, relative to suitable charts, 
lies in M as JR$ does in ]Rs+n, and is therefore called an s­
dimensional subman.ifold of M. More precisely: 

Definition. Let M be an n-dimensional manifold. A subspace 
Mo C M is a k-dimensional submanifold if around every 
point of Mo there is a chart (U, h) on M with h(U n Mo) = 
]Rk n h(U). Such a chart will be called a submanifold chart 
or, informally, a flattener for Mo in M. The number n - k is 
the codimension of Mo in M. 

Mo 

Figure 1.9. Flattener 

Of course, Mo isn't called a submanifold for nothing: The 
set Ql.o of charts (U n Mo, hlU n Mo) we get from the flatten­
ers is obviously a k-dimensional differentiable atlas on Mo; 
it generates a differentiable structure D(Ql.o) =: VIMo. Since 
the properties of being second countable and Hausdorff are 
inherited by subspaces, (Mo, DIMo) is a k-dimensional differ­
entiable manifold, and this is how we'll think of Mo from now 
on. In the two extreme cases k = 0 and k = n, the submani­
fold condition reduces to a purely topological constraint: the 
zero-dimensional submanifolds of M are exactly the discrete 
subsets of M, and the zero-codimensional submanifolds of 
M are its open subsets. 
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What we said about the pre image of a regular value can 
now be put concisely as follows: 

Regular Value Theorem. If q E N is a regular value of a 
differentiable map I : M -+ N, then its preimage 1-1 (q) c M 
is a submanilold whose codimension is equal to the dimension 
ofN. 

1.5 Examples of Manifolds 

Do manifolds really exist? Strictly speaking, apart from the 
every-dimensional empty manifold, I haven't yet given a sin­
gle example. 

To give manifolds straight from the definition, without 
resorting to any other tools, requires describing a second­
countable Hausdorff space M and a differentiable structure 
Don M. Of course, only one (preferably small) differentiable 
atlas Qt. on M need be given explicitly in order to define D as 
the maximal atlas D(Qt.) containing Qt.. The easiest manifold 
to obtain in this way is the local model for all n-dimensional 
manifolds, jR", which we naturally take to be the manifold 

And this is the only manifold I'll give straight from the def­
inition! In real life, you hardly ever come across manifolds 
this way. Let me explain this by a comparison from calculus. 

A real function of a real variable is called continuous at 
Xo if for every e > 0 there is a 8 > 0 such that, etc. From 
this, it is easy to see that constant functions are continuous 
(8 arbitrary) and the identity function is continuous (for 
example, 8 := e). But if you have to justify why the function 

defined by I (x) := arctan(x+Jx4 + ecoshx), or something like 
it, is continuous, do you start with an arbitrary e > 0 and 
look for a 8 > 0 such that ... ? No. Instead, from the theory 
you recall that there are processes that produce continuous 
functions-for instance, sums, products, quotients, uniformly 
convergent series, composition, and inverses (on intervals of 
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monotonicity) of continuous functions are continuous-and 
you immediately see that the function above comes from 
applying such processes to the constant function and the 
identity function. 

Instead of explicitly setting out the defining properties 
and characteristics of mathematical objects, one can often 
get by with recalling where they come from and how they are 
formed. There are processes that produce manifolds, and the 
regular value theorem, for instance, is a wellspring. The map 
f : lRn+1 ~ lR given by f (x) := IIxll2 has rank 1 everywhere 
except at x = O. In particular, 1 E lR is a regular value, and its 
pre image f-10), the n-sphere sn := {x E lRn+1 : IIxli = I}, is 
therefore an n-dimensional submanifold of lRn+ 1• The map 
/ : lR3 ~ lR, x ~ Xf + ~ - ~, is also singular only at x = 0; 
hence every c =1= 0 in lR is a regular value of /, and the 
hyperboloid /-l(c) is a two-dimensional submanifold oflR3 

(a "surface in space"). 

point 

~:;;;:::====::::::=::::" hyperboloid of 
one sheet 

j-l(c), c > 0 
cone [-1(0) 

f-1(c), c < 0 

hyperboloid of 
two sheets 

Figure 1.10. Hyperboloids as submanifolds, according to the 
regular value theorem 

I would also like to mention a third application of 
the regular value theorem, this one a bit more interest­
ing. This time the two manifolds M and N will be finite­
dimensional vector spaces. Th be precise, let n ~ 1; let 
M := M(n x n, lR) ~ lRn2 , the space of real n x n-matrices; and 
let N := S(n x n, lR) ~ lRtn(n+l), the subspace of symmetric 
matrices. If A E M(n x n, lR), we denote its transpose by t.1. 
Let I be the n x n identity matrix. Recall that a matrix A is 
caned orthogonal if t.1 . A = I. 
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Lemma. The identity matrix I is a regular value of the map 

f : M(n x n, 1R) ---+ Sen x n, 1R), 
A ~ ~·A. 

Hence the orthogonal group 

O(n) := f-1(1) 

is a ~n(n - I)-dimensional submanifold of M(n x n, 1R). 

PROOF. We must show that f is regular at A E O(n). Rather 
than finding its rank by explicitly computing a ~n(n+ 1) x n2 

Jacobian matrix, we recall the relationship between the Ja­
cobian matrix and the directional derivative in differential 
calculus: In general, 

lj(p). v = ~ lof(p + AU). 

Thus it suffices to prove that for every A E O(n) and every 
BE Sen x n, 1R), there is a matrix X E M(n x n, 1R) such that 

~ 10 teA + AX)· (A + AX) = B, 

i.e.lj(A)X = B. This will show that the Jacobian matrix of f 
relative to linear charts is a surjective map jRn2 ~ IRl n(n+1), 

hence that f is of full rank ~n(n + 1) at A. So all we have to 
do is find, for every symmetric matrix B, a matrix X with 

X ·A+tA·X = B. 

Since B is symmetric and tx . A = t (t A . X), it suffices to find 
X such that 

~·X = ~B. 

But we can do this not just for orthogonal A but for any 
invertible A, by setting X := ~~ -1 B. 0 
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Observe that this also proves that the special orthogonal 
group 

SO(n) := {A E O(n)ldetA = +I} 

is a !n(n -I)-dimensional submanifold of M(n x n, lR), since 
SO(n) is open in O(n). Applying the regular value theorem in 
a completely similar way shows that other "matrix groups," 
such as U(n) or SU(n), are submanifolds of vector spaces of 
matrices. 

In linear algebra, one studies linear systems of equations 
A . x = b. The solution set of such a system is nothing but 
the preimage A-I (b) of the value b under the linear mapA. 
Now the preimages f-I(q) of differentiable maps are just 
the solution sets of nonlinear systems of equations and are 
submanifolds when q is regular, so one can do analysis on 
them. This is one reason for studying manifolds. 

1.6 Sums, Products, and Quotients of 
Manifolds 

In this section we discuss three more processes that yield 
manifolds, namely taking sums, products, and quotients. The 
most primitive of these is summation, the simple juxtaposi­
tion of manifolds by disjoint union. 

M+N 

cM~ 
Lh P 

D 0 
Figure 1.11. Charts for the summands are also charts for the sum; 
the atlas 2l + IB is differentiable because no new transition maps 
have been added. 



1.6. Sums, Products, and nuotients 13 
----------------~~~~~--~~~~----------------

Note. If M and N are n-dimensional manifolds, then, in a canon­
ical way, so is their sum, or disjoint union, M + N. 

If QI. and ~ are atlases on M and N, respectively, their 
disjoint union QtU ~ =: QI.+~ is obviously an atlas onM +N, 
and if we wanted to state the note above a bit more formally 
we would have to give the differentiable structure on M + N 
as V(VI + Vz), where VI and V 2 are the structures on M and 
N, respectively. Then V(V(Qt) + V(~)) = V(Qt + ~) might 
also be worth mentioning. 

Of course, we can deal similarly with several or even 
countably many summands Mj, i = 1, 2, . .. and take their 
sum, or disjoint union, 

CXl 

UMj, 
j=l 

but this won't work for uncountably many summands be­
cause the second axiom of countability still has to be satis­
fied. 

We often have to take the product of two manifolds. Topo­
logically, of course, this just means taking the Cartesian 
product, and the differentiable structure is obtained from 
the products of charts on the factors. 

Note. The product M x N of a k-dimensional manifold with 
an n-dimensional manifold is canonically a (k+ n)-dimensional 
manifold. 

We may safely permit ourselves the notation 

Qt x ~ := {(U x V, h x k) : (U, h) E Qt, (V, k) E ~} 

for the product atlas because the product of the charts, 

UxV 

~lhxk 
U' x V' C ]Rk x ]Rn = ]Rk+n, 

open 
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contains the same information as the pair (h, k) unless one of 
the two charts is empty. In this notation, the differentiable 
structure on M x N intended in the note is of course V := 
V(V1 x V 2 ), where VI = V(2t) and V 2 = V(~) are the 
structures on M and N, respectively, and it is easy to see 
that then we also have V = V(2t x ~). 

Perhaps the simplest nontrivial example of a product 
manifold is the torus T2 := SI x SI, which we often use as an 
illustration. Ifwe think oflR2 as «:, then SI = {z E «: : /z/ = I}, 
so we could find SI x SI in «:2. But since this is hard to draw, 
we substitute a submanifold oflR3 diffeomorphic to SI x SI . 

./"; 
./" . 

corresponds 
to{l}xSI 

corresponds 
tOS1X{l) 

Figure 1.12. A torus represented in ]R3 

The subject of quotient manifolds is more subtle, and for 
now we can only take a first step in that direction. 

Let X be a topological space and ...... an equivalence rela­
tion on X, and let XI ---- denote the set of equivalence classes. 
If 

X 

l1T 

XI'" 
is the canonical projection that assigns to every x E X its 
equivalence class, then U C XI---- is called open in the quo­
tient topology if :n-- l (U) is open in X, and Xl ...... , endowed 
with the quotient topology, is caned the quotient space of X 
under "'. 
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So much for recalling a topological notion (see, for exam­
ple, Chapter III of [J:Thp], pp. 31-33 in particular). Now, if 
M is a manifold and "-' an equivalence relation on it, then 
MI ...... is-a long way from being a manifold, and often not 
even a Hausdorff space. We consider here what is in some 
sense the simplest case in which MI ...... is a manifold. 

Lemma. Let M be an n-dimensional manifold, r : M -+ M 
a fixed-point-free involution (i.e. a differentiable map with 
r 0 r = IdM and r(x) i= x for all x EM), and M/r the quo­
tient space of M under the equivalence relation x'"" r(x). Then 
M/r is also an n-dimensional manifold in a canonical way: its 
differentiable structure is the only one for which 

M 

M/r 

is a local diffeomorphism everywhere. 

PROOF. Of course there can be at most one such structure, 
for the identity on M/r with respect to two such structures 
would be a local diffeomorphism, hence in fact a diffeomor­
phism (see Exercise 1.2): 

M 

(Mjrh 
Id 

(Mjrh 

To prove that M/r is a Hausdorff space, we consider two 
points JT(p) i= JT(q) E Mjr. Since M is a Hausdorff space, 
we can choose open neighborhoods U and V of p and q, 
respectively, so small that un V = 0 and un r(V) = 0. 
Then JT(U) and JT(V) are separating neighborhoods of JT(p) 
and JT(q). 
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Q u Moreover, if {UdieN is a countable basis for M, then 
.(U) {1l'(Ui) liEN is a countable basis for N. We have not yet used 

-1 the fact that t" is fixed-point free. We use it now in defining a 
\111"1u) subset U of M to be small if unt"(U) = 12' and convincing our-

1 /\\~ selves that M is "locally small"; that is, every neighborhood 
h ~ 1I"(U) C MI. of a point contains a small neighborhood. If U C M is a small 

/h open set, then 1l'IU : U ~ 1l'(U) is a homeomorphism, so 

D every small chart (U, h) on M defines a chart (1l'(U) , h) on 
MIt"· 

The small charts form an atlas 2! on M, and 

Figure 1.13. Charts on the 
quotient manifold MIT 

2i := {(1l'(U), h) : (U, h) E 2t} 

is an at!§ls on MIt". The corresponding differentiable struc­
ture V(2!) has the desired property. 0 

Example. The quotient manifold 

lRlPn := Sn 1- Id 

of the n-sphere under the antipodal involution x ~ -x is 
n-dimensional real projective space. 

Perhaps I should say that this is real projective space 
as a differential-topological object. From the algebraic view­
point, resorting to the sphere to define projective" space is 
misleading. If V is any vector space over an arbitrary field 
OC, the corresponding projective space OClP(V) can be defined 
as the set of one-dimensional subspaces of V. In particu­
lar, lKlPn := OClP(OCn+1) can be defined without any need for 
a norm on V or OCn+1 . But for OC = lR it is obvious that 
lRlP(lRn+ 1) = sn I - Id, and the quotient map sn ---+ IRlPn is very 
useful for looking at IRlPn differential-topologically. 

It is also easy to give an atlas for lRlPn directly: if the points 
of projective space are described in "homogeneous coordi­
nates" by [xo : ... : xnl E lRlPn for (xo, ... ,xn) E lRn+1 \ {OJ I then 
an atlas with n + 1 charts is defined by Ui := ([xl : Xi -# O) 
and hi[X] := (xolxj, ... ,7, ... ,xnlxj) for i = 0, ... , n. 
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1.7 Will Submanifolds of Euclidean 
Spaces Do? 

I would like to end this chapter by pointing out a particular 
aspect of taking quotients. 

If we start with jRn and its open submanifolds as the sim­
plest examples and create new manifolds by taking regular 
preimages, sums, and products, we always get submanifolds 
of Euclidean spaces back again. Nothing completely new 
happens until we take quotients. Then, for instance, we get 
a "surface" jRp2 = S2/ '" that no longer lies in the space jR3. 

This, much more than, say, the sphere S2, which we can also 
picture as a geometric locus in jR3, makes it obvious that we 
need a mathematical formulation of the notion of an "intrin­
sic surface" (more generally, what we need is precisely the 
notion of a manifold). 

This is a fine observation as far as it goes, but I don't want 
to conceal that there is a classical theorem in differential 
topology, the Whitney embedding theorem, that seems to point 
in the opposite direction. A map f : M --* N is called an 

embedding if f (M) c N is a submanifold and f : M ~ f (M) 
is a diffeomorphism. Now, the Whitney embedding theorem 
(see, for instance, [BJ], p. 71) says that every n-dimensional 
manifold can be embedded in jRZ,l+l, and even that there 
exists an embedding with closed image. Thus every manifold 
is diffeomorphic to a closed submanifold of some jRN! Do we still 
really need "abstract" manifolds? 

Well, the embeddability of manifolds in jRN is one of 
several interesting properties of these objects, and is some­
times useful in proofs and constructions. But, as you know, 
the mere existence of a thing doesn't mean that the thing 
is within easy reach or given canonically. So we shouldn't 
expect manifolds, as we encounter them in nature-as quo­
tient manifolds, for instance-to be carrying an embedding 
into some jRN in their luggage. If, in the deceptive hope 
of convenience, we restricted our further development of 
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differential-topological ideas to submanifolds of}RN, then in 
every application to a "natural manifold" we would have to 
start by embedding it (which can be quite tedious in con­
crete cases), then keep the dependence of the concepts and 
constructions on the choice of the embedding under control 
(for there is usually no canonical embedding), and at the 
end we wouldn't even be rewarded for all our efforts, since 
submanifolds of]Rn are by no means easier to handle. After 
all, how they lie in ]Rn has to be described somehow by equa­
tions and conditions, and in the coordinates of the ambient 
space the formulas-those for integration on manifolds, for 
instance-actually become messier instead of simpler. 

This is why, in the next chapter, we painstakingly develop 
the key idea of the tangent space for arbitrary manifolds that 
don't necessarily lie in any ]RN. 

1.8 'lest 

(1) Is every n-dimensional chart simultaneously an m­
dimensional chart for all m 2: n? 

DYes. 

o This is a. matter of opmlOn, and depends on 
whether or not you want to distinguish between 
]Rn and ]Rn x {OJ C ]Rm in this context. 

o No, because U' isn't open in]Rm if U =1= 0 and m > n. 

(2) Does the differentiable structure Von an n-dimensional 
manifold (M, V) consist exactly of all the diffeomor­
phisms between open subsets U of M and open subsets 
U'of}Rn? 

DYes. 

o No, because the charts don't have to be diffeomor­
phisms (just homeomorphisms). 

o No, because in general there are many more such 
diffeomorphisms than elements of V. 
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(3) Does every (nonempty) n-dimensional manifold have 
a chart whose image U' is all of ]Rn? 

0 Yes, because by restricting an arbitrary chart you 
can at least make its image an open ball, and ev-
eryone knows that an open ball is diffeomorphic 
to ]Rn. 

a 

0 No. M := Dn := {x : IIxll < I} C ]Rn is a counterex-
ample, because everyone knows that a subset of 
an open ball is not homeomorphic to all of JRn, let 
alone diffeomorphic. 

0 No. It follows from the Heine-Borel theorem that 
this fails for compact manifolds (sn, for example). 

(4) Does there exist a non constant differentiable function 
on any (nonempty) n-dimensional manifold, n ~ I? 

0 Yes, for example the component functions of any 
chart. 

0 No. There is no nonconstant differentiable func-
tion S1 ~ JR, for instance (although there are non-
constant differentiable maps JR ~ S1), because ]R 
isn't "closed." 

0 Yes. Choose a chart h : U ~ U' and a nonconstant 
differentiable function cp : U' ~ JR with compact 
support, and set f (x) = cp(h(x» for x E U and zero 
otherwise. 

(5) Can there exist a differentiable map f : Sn ~ JRn, n ~ I, 
that is regular everywhere? 

0 No, because then f (sn) would be open in JRn by the 
inverse function theorem. But f (sn) is compact. 

0 No, because every differentiable map sn ~ JRn is 
singular at both poles. 

0 No for n = I, because then the extrema are singu-
lar. But for n ~ 2 the projection sn C ]Rn+l ~ JRn on 
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the first n coordinates, for instance, has the desired 
property. 

(6) Which of the following three sketches could, in the eyes 
of a sympathetic reader, represent a two-dimensional 
submanifold of]R3? 

o a cone o union of two 0 a Mobius strip 
coordinate planes 

Figure 1.14. 

(7) Figure 1.15 shows a map (x, y, z) 1-+ (x, y) from a two­
dimensional submanifold M C ]R3 to the plane. What 
ranks occur? 

o Only rank 2. 

o Only ranks 1 and 2. 

o All three ranks 0, 1, and 2. Figure 1.15. 

(8) Is there a surjective map f : ]R2 ~ Sl X Sl that is regular 
everywhere? 

o No. Since Sl x Sl is compact and ]R2 is not, the 
inverse function theorem gives a contradiction. 

o Yes. An example is f(x, y) := (e ix , eiy ). 

o Yes, because for connected two-dimensional M 
there's always such a map f : ]R2 ~ M. (Picture a 
long wide brushstroke.) 

(9) The following sketches show maps from a closed rect­
angle to ]R3. Which of them could define an embedding 
of the interior of the rectangle? 
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o The ends 
meet. 

o An end meets 
the interior. 

Figure 1.16. 

o Self-intersection 

(10) Must the quotient Mj'" of a manifold be Hausdorff if 
every equivalence class consists of exactly two points? 

o Yes. In fact, this holds whenever the equivalence 
classes are finite. 

o Yes, and it's crucial here that no I-point class is 
allowed. Otherwise, in {O, I} x lR identify (0, x) and 
(l, x) for each x =1= 0; then (0,0) and (l, 0) can't be 
separated. 

o No. For example, let M = SI C <C. Set 1 '" i and 
-1 '" -i, and set z '" z otherwise. 

1.9 Exercises 

EXERCISE 1.1. Prove that every manifold has a countable atlas. 

EXERCISE 1.2. Let VI and V 2 be differentiable structures on 
the same second-countable Hausdorff space M. Prove that 
the identity on M is a diffeomorphism between VI and V 2 if 
and only if VI = V2. 

EXERCISE 1.3. State more precisely and prove: Every n­

dimensional real vector space is an n-dimensional differ­
entiable manifold in a canonical way. 

EXERCISE 1.4. Let M be a differentiable manifold, dim M 2: 1, 
and let p E M. Prove that M \ {p} is not compact. 
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EXERCISE 1.5. Prove that sn x Sk is diffeomorphic to a subman­
ifold of IRn+k+l. (Hint: First show that sn x IR and IRn+1 \ {OJ 
are diffeomorphic.) 

EXERCISE 1.6. Let M be an n-dimensional manifold and let X 
and Y be two disjoint closed k-dimensional submanifolds of 
M. Show that X U Y is also a submanifold of M. Why can't 
you just omit the hypothesis that X and Yare closed? 

EXERCISE 1.7. Let Q : IRn ~ IR be a nondegenerate quadratic 
form on IRn. Show that the group 

O(Q):= {A E GL(n,lR) : QoA = Q} 

is a submanifold (of what dimension?) of GL(n, 1R). 

EXERCISE 1.8. Show that every manifold is the sum of its path 
components. 

1.10 Hints for the Exercises 

FOR EXERCISE 1.1. At least the topology of M has a countable 
basis (~·UiEN. Is every Qi contained in a chart domain for 
some chart (Ui, hi) of the differentiable structure V? If so, 
would {(Ui, hi) : i E N} be an atlas? This takes some thought. 
The answer to the first question, for instance, is no in gen­
eral. Qi may be too "big." What can be done if it is? 

FOR EXERCISE 1.2. This is an exercise in the definitions. No 
ideas are needed here. You "only" have to prove both direc­
tions ==* and {::= directly from the definitions. 

FOR EXERCISE 1.3. Maybe you have no idea where to start with 
"state more precisely" and are muttering that I should have 
formulated the problem more precisely. The convenient phrase 
"in a canonical way" says something meaningful only if it's 
clear what way we're really talking about. An n-dimensional 
real vector space is, in any case, not an n-dimensional man­
ifold according to the strict wording of the definition. That 
much is clear. The exercise must be about endowing V in 
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some obvious way with a topology (how?) and a differen­
tiable structure (how?) that turn V into a manifold. Of course, 
I could give these data precisely and just leave you to prove 
that the properties required by the definition of a manifold 
are satisfied. But this would take away most of the content of 
the exercise. The point is to practice giving a precise mean­
ing to the expression "in a canonical way" by yourself. Math­
ematics just can't be done without it. 

FOR EXERCISE 1.4. You can certainly give reasons why the ball 
minus the origin, D" \ {O}, is not compact: the Heine-Borel 
theorem tells us so, for instance, or we can see immediately 
that the open cover by the sets Uk := {x : Ixl > 1/ k} has 
no finite subcover, or you might refer to the fact that the 
sequence (1/ kh=l,Z, ... has no subsequence that converges in 
D" \ {O}. 

Can this situation be used somehow for the exercise, by 
means of a chart around p? Wen, yes, somehow. But be care­
ful: the assertion becomes false if we don't require M to be 
Hausdorff. So the Hausdorff property has to playa role in 
the proof] 

FOR EXERCISE 1.5. Inherently, S"xSk C lR"+l xlRk+1 = lR"+k+Z, 
one dimension too many. As an intermediate step, it might 
be a good idea to show that S" x lR ~ lR"+l \ to}. This sug­
gests polar or spherical coordinates. But wouldn't this lead 
to 5" x lR+ ~ lR"+l \ to}, thus giving the factor lR+ := {r E lR : 
r > O} instead oflR? And what use would 5" x lR ~ lR"+l \ to} 
be for the exercise itself? 

FOR EXERCISE 1.6. The first part is a straightforward exercise 
in the definitions. For the additional question, you have to 
find a starting point by getting an intuitive idea of what's go­
ing on. With a bit of thought, you can find a counterexample 
even for M = Itt and k = O. Well, that does it! Of course, it 
would be even better to prove that there are counterexam­
ples for every n-dimensional M =I- 0 and 0 ::s: k ::s: n - 1. 

rx 

Figure 1.17. 
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Figure 1.18. 

Figure 1.19. 

Figures 1.18 and 1.19 should give you some idea how to 
proceed. The main problem, of course, is then the proof that 
a given subset of M really isn't a submanifold. 

FOR EXERCISE 1.7. Matrix groups such as O(Q) are important 
examples of Lie groups. For 

Q( ) 2 2 2 2 
x = Xo - Xl - x2 - x3 

on ]R4, for instance, O(Q) is the Lorentz group. You probably 
know from linear algebra (see Section 11.5 in [J :LiA], for 
example) that given a quadratic form Q on]Rn there is a well­
defined symmetric n x n matrix C such that Q(x) = x· c· x. 
That Q is nondegenerate means that C has rank n. If C is, in 
this sense, the matrix of the quadratic form Q, what is the 
matrix of Q 0 A? Now try to use the regular value theorem, 
as we did earlier (in Section 1.5) for O(n). 

FOR EXERCISE 1.8. If two points a, b E M are called equivalent, 
a '" b, when they can be joined by a continuous path a : 

[0, 1] ~ M, then the equivalence classes are called the path 
components of M. These path components are open (why?), 
and there can be only countably many (why?). Let there 
be kEN u {oo} of them, and let's think of them as being 
numbered, or "counted," M l , ... ,Mk or (Mi)iEN (if k = 00). 

You should now show that the canonical bijection 

k ~ 

UMi~M 
;=1 

(which bijection?) is a diffeomorphism. As far as content is 
concerned, this is a routine verification, but carrying it out 
will test whether your intuitive ideas about the sum can be 
replaced by watertight arguments. 



CHAPTER 

The Thngent 
Space 

2.1 Thngent Spaces in Euclidean Space 

One of the basic ideas of differential calculus is to approx­
imate differentiable maps by linear maps so as to reduce 
analytic (hard) problems to linear-algebraic "(easy) problems 
whenever possible. Recall that locally at x, the linear approxi­
mation of a map f : jR" ~ jRk is the differential dfx : jR" ~ jRk 

of f at x. The differential is characterized by f (x + v) = 
f (x) + dfx . v + cp(v), where limv-4o cp(v)/lIvll = 0, and given 
by the Jacobian matrix. But how can a differentiable map 
f : M ~ N between· manifolds be characterized locally at 
P E M by a linear map? 

Of course, we can always consider the differential 
d(k 0 f 0 h-1)x of the downstairs map. But this differen­
tial really does depend on the choice of charts-after all, it 
approximates k 0 f 0 h-1, not f itself. Ifwe want to define a 
differential for f that is independent of charts, we have some 
preliminary work to do: we have to begin by approximating 
the manifolds M and N locally at p and f (p) "linearly," in 
other words by vector spaces. Only then can we define the 

25 
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M 

Figure 2.1. The tangent 
space TpM 

differential as a linear map 

dfp: TpM -+ Tf(p)N 

between these so-caned tangent spaces. The purpose of the 
present chapter is to introduce these tangent spaces. 

1b orient ourselves, we first consider the submanifolds 
of Euclidean space ]RN. Here we have an obvious way of 
defining the tangent space-by analogy with the classical 
tangent plane to a surface in space: 

Lemma and Definition. If M C ]RN is an n-dimensional 
submanifold, p E M, and (U, h) is a chart on]RN around p that 
flattens M, then the vector subspace of]RN defined by 

T;UbM:= (dhp)-I(]Rn X {O}) 

is independent of the choice of charts. It is called the (submani­
fold) tangent space of M at the point p. 

~ubM p 

M 

h, 1 "flattener" around p 

RN-nl ~ 
~lRn = IRn x {OJ 

Figure 2.2. The tangent space to a submanifold ofl[~N 

PROOF. The transition map w between two flatteners (U, h) 
and (V, h) around p has to take h(U n V) n (]Rn x {O}) onto 
h(U n V) n (]Rn x {O}), so its differential at h(p) maps 
]Rn x to} onto ]Rn x to}. The assertion follows because 
(dhp)-l = (dhp)-l 0 (dWh(P»-I. Hence ~ubM is well defined. 

o 
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Figure 2.3 . The transition map between two flatteners 

It may not be completely unnecessary to point out that 
T~ub M C JRN is therefore really a subspace of JRN, and in par-

ticular contains the zero vector 0 E JRN. It's only by drawing 
pictures that we tend to shift it, by translation to p, to the 
place where our geometric intuition wants to see it. But we 
mustn't forget that its vector space structure is then the one 
that has the zero vector at the point p. This shouldn't lead to 
misunderstandings, though, any more than "attaching" the 
velocity vector a(t) of a plane curve to the appropriate point 
a(t). 

The special case M C JRN will serve as our model for 
the general case. Of course, it does give the impression at 
first that the ambient JR.N is what really makes the construc­
tion of the tangent space possible! Where else could the 
tangent spaces live? Nor is extending the definition to ar­
bitrary, "abstract," manifolds a trivial exercise. It involves a 
certain grandiose way of creating new mathematical objects 
for which earlier mathematics was, so to speak, too timid. 

2.2 Three Versions of the Concept of a 
Thngent Space 

There are three apparently quite different but essentially 
equivalent definitions of the concept of a tangent vector, 

o 

Figure 2.4. 
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TsubM p 

Figure 2.5. For every 
tangent vector v E r;ub M 
to a submanifold M C ]RN 

we can find a curve a in 
M with (X(O) = P and 
&(0) = v. 

which I call (a) the geometric, (b) the algebraic, and (c) the 
"physical" definitions. We use all three. The order is irrele­
vant, and we begin with (a). 

We start with the intuitive idea of a tangent vector v to 
a submanifold of]RN and ask ourselves how we can char­
acterize it without using the ambient space, so as to get a 
generalizable version of the definition. Well, isn't any such 
v the velocity vector of a curve a that lies entirely in M, 
and doesn't such an a contain enough information about v? 
Actually, too much. Which curves a, fJ describe the same 
v? How can we express the equality £l(O) = /3(0) without 
using the ambient space ]RN? Through charts, for instance: 
£l(O) = /3(0) E ]RN is equivalent to (hoa)"(O) = (hofJ)"(O) E ]Rn, 
where (U, h) is a chart on M (!) around p. This is enough mo­
tivation for the following definition: 

Definition (a). LetMbe an n-dimensional manifold, p E M. 
Let Kp(M) denote the set of differentiable curves in M that 
pass through p at t = 0; more precisely, 

COO 
Kp(M) = {a : (-8,8) ----+ M : 8 > a and a(O) = pl. 

'TWo such curves a, f3 E /(p(M) will be called tangentially 
equivalent, a '" fJ, if 

(h 0 ar(O) = (h 0 fJr(O) E ]Rn 

for some (hence any) chart (U, h) around p. We call the equiv­
alence classes [a] E /(p(M)/ '" the (geometrically defined) 
tangent vectors of M at p, and 

T~eomM:= Kp(M)/"-' 

the (geometrically defined) tangent space to Mat p. 

In preparation for version (b) of the definition, we first 
introduce the following terminology: 

Definition. Let two real-valued functions, each defined and 
differentiable in some neighborhood of a point p of M, be 
called equivalent if they agree in a neighborhood of p. The 



2.2. Three Versions 29 ------------------------------------------------

equivalence classes are called the germs of differentiable 
functions on M at P, and the set of these germs is denoted 
by Ep(M). 

domain of domain of 
definition of g definition of f 

domain where f = g 

Figure 2.6. For f "-' g, f and g need not agree throughout their 
common domain of definition: a small neighborhood of p suffices. 

For convenience, we do not distinguish in our notation 
between a function f : U ---+ ]R at p and the germ f E 

Ep(M) it represents, and hope no misunderstandings arise. 
A function f defined at p does contain more information 
than its germ [fJ at p, but the germ is good enough for all 
those operations where we have to know a function only in 
some neighborhood of p, however small. 

It is clear that germs at p can be added and multiplied. 
More preCisely: 

Note. The set Ep(M) of germs of differentiable functions on 
M at p is canonically not only a real vector space but also a 
ring compatible with this vector space structure, and thus a real 
algebra. 

Now, the starting point for what we call the "algebraic" 
version of the concept of tangent vectors is the fact that at a 
given point P E ]Rn, a vector v E ]RN can also be characterized 
by its directional derivative operator 'V v at p. 1b determine 
'Vvf for v E T~ubM, all we have to know about f near p is 
its values on the submanifold M, since 'Vvf := (f 0 anO) for 
every curve a with a(O) = p and a(O) = v, and we can choose 
a to lie in M. This leads us to a characterization of v that is 
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independent of the ambient space ]RN and can therefore be 
generalized. 

Definition (b). Let M be an n-dimensional manifold, p EM. 
By an (algebraically defined) tangent vector to M at p, we 
mean a derivation of the ringcp(M) of germs, that is, a linear 
map 

v: cp ~ R. 

that satisfies the product rule 

v(I . g) = v(f) . g(p) + I(p) . v(g) 

for all I, g E cp(M). We can the vector space of these deriva­
tions the (algebraically defined) tangent space to M at p 
and denote it by r;,lg(M). 

Now for version (c). In the physics literature, calcula­
tions are generally carried out in coordinates, and usually 
in a calculus (caned the Ricci calculus in differential geom­
etry) in which the position of the indices (superscripts or 
subscripts) is significant. What we call a tangent vector is 
caned a contravariant vector in the Ricci calculus. Briefly, 
this is an n-tuple, denoted by (v1 , •.. , vn ) or occasionally 
(vo , vI, v2 , v3 ), and. abbreviated vfl-, that "transforms" (as we 
are told) according to the rule 

"l-fl-
-fl- uX v 
V =-v. 

oxv 

Here, as always in the Ricci calculus, we follow the ·sum­
mation convention" and, within a term, sum over any index 
that appears as both superscript and subscript. So we sum 
here over v. 

What does an this mean? In our language, the following: 

Definition (e). LetMbe an n-dimensional manifold, p EM. 
Let Vp(M) := {(U, h) E V : p E U} denote the set of charts 
around p. By a (Hphysically" defined) tangent vector v to M 
at p, we mean a map 
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with the property that for any two charts the associated vec­
tors in ]RM are mapped to each other by the differential of the 
transition map; that is, 

v(V, k) = d(k 0 h-1 h(p) . v(U, h) 

for all (U, h), (V, k) E 'Dp(M). We call the vector space of 
these maps v the (physically defined) tangent space to M 

at p and denote it by T~hYSM. 

h = (xl, ... ,XM) I \ k = (xl, ... ,XM) 

[cJ(V l , ... ,VM) 
-1 -M 

---+ ~(V' ... ,v ) 

Figure 2.7. Interpreting the transformation law vI-' = ~~ v" for 

"contravariant vectors": ~;~ Ih(p) is the Jacobian matrix of the 

transition map xl-' = xl-'(x1 , ••• ,xM ), J1- = 1, ... ,n. 

By the way, I don't mean to make fun of the Ricci 
calculus. It's a very elegant calculus that guides the user 
through explicit computations-virtually a machine-readable 
calculus-and is constantly used in the physics literature 
because there is still no better practical ca1culus for vector 
and tensor analysis. But these advantages, which you'll learn 
to value more highly on closer acquaintance, come at the 
cost of some disadvantages. The elegance of a system of no­
tation is usually based on the suppression of "unimportant" 
data, and different things. are important for the efficient 
manipulation of formulas than for the logical explanation 
of fundamental geometric concepts. So, for now, we have 
to denote a "contravariant vector" not by a graceful and 
economical Vii but with the unwieldy precision of 

v: 'Dp(M) ~ ]RM, (U, h) 1-+ v(U, h). 
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This is not intended as a recommendation for improvement 
of the physicists' everyday practice. 

2.3 Equivalence of the Three Versions 

We now want to convince ourselves that the three versions 
of the concept of a tangent space are essentially the same. 
The following lemma should not be seen as punishment 
for our having willfully defined the same thing three times 
over, but as a whole system of indispensable lemmas about 
the tangent space, which are most clearly summarized in 
this form. 

Lemma. The canonical maps 

TgeomM 
p 

TPhYSM 
p (2) 

r:1gM 
p 

described more fully below are mutually compatible bijections; 
that is, the composition of any two is the inverse of the third. 

PRECISE STATEMENT AND PROOF. We first give the three maps. 

(1) Geometric ----..;> algebraic. If [ a J is a geometrically 
defined tangent vector to M at p, then the map 

£p(M) ---+ R 
f t---+ (f 0 a)"{O) 

is a derivation and therefore an algebraically defined tangent 
vector. Of course, this takes a few little proofs. That the map 
is independent of the choice of representative function for 
the germ is clear and has been legitimately anticipated in 
our notation. To check that (f 0 a)" (0) is independent of the 
choice of representative a E Kp(M), we use a chart (U, h) 
around p. Without loss of generality, we may assume that 
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f : U -'; JR represents the germ and that a and {3 have the 
same sufficiently small domain of definition (-E, E). Then 
(h 0 a)" (0) = (h 0 (3r(O) by hypothesis; hence 

(f 0 h-1 0 h 0 anO) = (f 0 h-1 0 h 0 (3r(O) 

by the chain rule. 

u 

(-E,E) 
a , f3 

~ 
f lR - --

, , , ," , , hHh-1 
, . 

, , , 
' .. . . , 

[ZJ 
Figure 2.8. By the chain rule, tangentially equivalent curves define 
the same derivation f ~ (f 0 anO). 

Finally, the product rule for functions (-E, E) -'; JR im­
plies that the map Ep(M) -'; JR, f ~ (f 0 ar(O), which we 
now know is well defined for a given [a], is really a deriva­
tion. 

(2) Algebraic --> physical. If v : EpCM) -'; JR is a 
derivation, then the map 

Vp(M) ~ JRn, 
(U, h) 1----+ (v(h l ), .•. , vChn» 

is a physically defined tangent vector. If (U, h) and (V, k) are 
charts around p and w := koh- l on h(Un V) is the transition 
map, then we have to show that 

n ow-
v(kj) = L -'(h(p». v(hj)' 

j=l OXj 

Now, this is the only place in our study of the relationships 
among the three definitions of the tangent space where we 
really need a little trick. 
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Figure 2.9. 'Transition 
map on an open ball n 
around 0 

All we know about v is that it is a derivation. We should 
therefore try to arrive somehow at a representation of the 
form 

n 

kj = Lgjj . hj, 
j=l 

so that we can also take advantage of the product rule. This 
works, with the following lemma. 

AUXILIARY LEMMA. Let Q C ~n be an open set that is star-shaped 
with respect to the origin (an open ball around 0, for instance, or 
lRn itself). Iff: Q ~ lR is a differentiable (i.e. COO) function with 
f (0) = 0, then there exist differentiable functions h : Q ~ 1R 
with 

n 

f(x) = LXj . fj(x). 
j=I 

PROOF OF THE AUXILIARY LEMMA. Since 
1 I 

f d f n af f (x) = - f (tXI, ... , tXn)dt = LXj -(tXI, ... , tXn)dt, 
dt '-1 aXj o 0 J-

we need only set 

1 

fj (x) := f af (tXI, ... , tXn)dt. ax, 
o J 

o 

ApPLICATION OF THE AUXILIARY LEMMA. Without loss of gen­
erality, we may assume that h(p) = k(p) = 0 and h(U) is 
an open ball around 0 so small that U is contained in V. 
Then according to our lemma the n component functions 
WI, •.. , Wn of the transition map have the form 

n 

Wj = L XjWij (x), 
j=I 

and since k = W 0 h it follows that 
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n 

ki = L(Wij 0 h)· hj' 
j=l 

as we hoped. If we now apply the derivation v to k, then 
n n 

V(ki) = L(Wij 0 h)(p) . v(hj) = L wij(O) . v(hj) 
j=l j=l 

because h(p) = O. But wij (0) is just ~;i (0), and we have veri-
1 

fied(*). 

(3) Physical --;:.. geometric. If v : V p 4- ]R.n is a physi­
cally defined tangent vector and (U, h) a chart around p, and if 
a : (-e, e) 4- U is defined for sufficiently small e > 0 by 

a(t) := h-1 (h(p) + tv(U, h», 

then [a] E T~eom M is independent of the choice of chart. More 
precisely, let fJ be the corresponding curve in terms of (V, k) 

and W the transition map. If we use k to test the tangen­
tial equivalence of a and fJ, then (k 0 a)"(O) = (k 0 fJ)"(O) is 
equivalent to dWh(p) (v(U, h» = v(V, k). But this is just the 
transformation law for the physically defined tangent vector 
v, by definition. 

We have now explicitly given the three maps described 
as canonical in the lemma, and we denote them by <1>1, <1>2, 
and <1>3. 

TPhYSM 
p 

TgeomM 
p 

y:lgM 
p 

It remains to show that any circuit around the diagram yields 
the identity, or more precisely that 

(-e, e) -- [ZJ 
Figure 2.10. Defining the 

TPhysM TgeomM map p ~ p 
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<P3 0 <Pz 0 <PI = IdTgeomM' 
p 

<Pz 0 <PI 0 <P3 IdTPhYSM' 
p 

<PI 0 <P3 0 <PZ = Idr: lg M. 
p 

A geometric tangent vector (aJ, for instance, first becomes 
the derivation f J--+ (f 0 a)"(O) , and this becomes the physi­
cal vector v(U, h) = (h oa)"(O) we finally use to construct the 
curve {3(t) := h-I (h(p) + t(h 0 a)' (0» that represents the geo­
metric tangent vector <P3o<Pzo<Pda]. Is it true that (13] = [a]? 
Yes, because it is clear that (h 0 {3)"(0) is just (h 0 a)'(O). The 
other two formulas can be verified similarly, and with this 
assurance we end the proof of the lemma. 0 

2.4 Definition of the Thngent Space 

Now that it's clear in what way T~eom M, T;lg M, and T~hYS M 
are actually the same object, how shall we define the tangent 
space in general? Should I just say, "Let's call it TpM"? A mys­
terious archetype, of which the three real versions are only 
fleeting likenesses? Preferably not. Or shall we somehow 
identify the three versions into a single TpM by taking equiv­
alence classes? A bit better, maybe, but what's the point? 
Aren't three versions enough? Do we really have to come up 
with a fourth? 

The actual C and sensible) practice is to use all three ver­
sions simultaneously and indiscriminately but omit their la­
bels, with the tacit understanding that exactly which version 
is being used at the time is either obvious or unimportant. 
But to help you answer the legitimate question "What is a 
tangent vector?" without being forced into lengthy expla­
nations to yourself or anyone else, we proceed a bit more 
formally and make the following definition. 

Definition. Let M be an n-dimensional manifold, p E M. 
The vector space 
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will be called the tangent space to M at p, and its elements 
tangent vectors. We agree, though, that whenever necessary 
we will also consider a derivation vET pM as a geometrically 
or physically defined tangent vector, as in Section 2.3, and 
denote it by the same symbol if there is no risk of confusion. 

Note. If M is an n-dimensional manifold, then the canonical 
bijection ~lg M ~ T~hys M is linear, and for a fixed chart, the 

map v 1---+ v(U, h) defines an isomorphism T~hysM ~ ]Rn. Hence 
the tangent spaces to M are also n-dimensional. 

2.5 The Differential 

I described the introduction of the tangent space as a pre­
liminary to defining the differential, the local linear approxi­
mation of a differentiable map between manifolds. Now the 
preliminary work is finished and we turn to the differential. 
Although I have no intention of presenting all future def­
initions regarding tangent spaces in triplicate, it should be 
done one more time. Let f : M ---+ Nbe a differentiable map, 
P E M. Let's consider in turn the geometric, algebraic, and 
physical versions of how f canonically induces a linear map 
between the tangent spaces at p and f (p). 

On geometric tangent vectors, f acts by curve transport: 

(-e, e) a -- f 
---+ 

Figure 2.11. The curve ex E iCp(M) is "transported" by f to the 
curve f 0 ex E iCf(p)(N). 

You can easily check that the map 

dgeomfp : T~eomM ---+ TJ~;~N, 

[a] ~ [foal 
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is well defined. 
What about algebraic tangent vectors? Pre composing by 

f assigns germs at p to germs at f (p) 

rp -

Figure 2.12. The germ ofrp 0 flf-l(U) at p is assigned to the germ 
of cp : U ~ lR at f (p). 

and thus defines an algebra homomorphism 

f* : &f(p)(N) ---+ Ep (M) , 

ep 1---+ epof. 

Pre composing by f* turns a derivation at p into a derivation 
at f (p): the map 

da1gfp: r;lgM ---+ T;t(~)N 

v 1---+ v 0 f* 

is well defined and obviously linear. Therefore d alg f p acts as 
a derivation on germs ep at f (p) by ep 1-+ v(ep 0 n· 

Finally, to describe the linear map 

d phys f p : T~hYS M ---+ Tj~J>s N 

canonically induced by f between the "physically" defined 
tangent spaces, we must exhibit each 

(dphYSfp(v»(V, k) E ~dimN. 

Th do this we choose a chart (U, h) around p with f (U) c V 

and set 
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which just means that d phys I p is given, in terms of charts, 
by the Jacobian matrix of the downstairs map. You can use 
the chain rule to check that this is well defined. 

~ f (i~ --
h~ !k 

Gvv 
afJ1. v 

k;;y-;h-l @axvv 

Figure 2.13. The differential in the Ricci calculus: the contravariant 
~ vector VV goes to ox" . vV. 

Lemma and Definition. Let I : M -10 N be a differentiable 
map between manifolds, P E M. The three maps 

dgeomlp: TromM 

J:1gM p 

geom 
Tf(p) N, 

,..alg 
1 f(p)N, 

dphYSlp TPhYSM ~ TPhYSN 
p f(p) 

induced by I through curve transport, homomorphism of alge­
bras of germs, and (in terms of charts) the Jacobian matrix are 
compatible with the canonical bijections between the geometric, 
algebraic, and physical tangent spaces, respectively. Hence they 
all define the same linear map 

dip: TpM ~ Tf(p)N, 

which we call the differential off at the point p. 

Since the proof consists of arguments that are familiar 
by now, I won't write it out. But this doesn't mean that the 
statement is obvious. It takes some experience to believe the 
lemma from conviction rather than just on authority, and if 
we were the first ones to be interested in it we would have 
to look it over pretty carefully to see if the devil's hiding 
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somewhere in the details. What is clear in all three versions 
is the functorial property of the differential, which we record 
as the most important property so far of the newly defined 
concept. 

Note. The differential of the identity is the identity, 

dIdp = IdTpM, 

and the chain rule holds; that is, 

d(g 0 f)p = dgf(p) 0 dfp 

for the composition Ml ~ Mz ~ M3 of differentiable maps. 

This temporarily concludes our introduction to the basic 
concepts of differential topology; we consider differential 
forms in the next chapter. But in the next three sections of 
the present chapter, we still have to discuss a few questions 
of notation. 

2.6 The Thngent Spaces to a Vector Space 

Every n-dimensional real vector space V is canonically an n­
dimensional manifold; its topology and differentiable struc­
ture are characterized by the requirement that the isomor­
phisms V ~ IRn must also be diffeomorphisms. Of course, the 
motive we gave for introducing tangent spaces is not valid in 
this special case: a linear space doesn't have to be approxi­
mated linearly. So we can hardly be surprised that for every 
P E V there is a canonical isomorphism 

V~ TpV. 

The tangent vector this assigns to a vector v E V is given 
geometrically, for example, by the curve 

t ~ P + tv, 

and hence algebraically by the derivation 

({J ~ ~I ({J(p + tv). 
dt 0 
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If we consider the elements v E V as tangent vectors in 
this way, then the differential at p of a differentiable map 
f : V -+ W between finite-dimensional real vector spaces 
becomes a linear map 

dfp: V~ W, 

and this is how we usually write it, in particular for V = ]Rn, 

W = ]Rk. The notation Tp]Rn will be used only when clar­
ity demands it. So the differential, viewed as a linear map 
dfp : ]Rn -+ ]Rk, is just given by the Jacobian matrix It (p). 

Of course, we often refer implicitly to Tp]Rn and Tp V, 
since the special cases M = ]Rn and M = V are also present in 
any discussion of TpM for arbitrary M. We have no intention 
of dismissing the tangent spaces of a vector space. 

2.7 Velocity Vectors of Curves 

For each value of the parameter t E (a, b), a differentiable 
curve a : (a, b) -+ M has a velocity vector, which we de­
note by aCt) E Ta(t)M. To be precise, aCt) is represented 
geometrically by A ~ a(t + A), algebraically by the deriva­
tion cp ~ (cp 0 a)'(t), and as a physical tangent vector (in 
local coordinates) by (U, h) ~ (h 0 a)"(t). The notation aCt) 
actually comes from curves in ]Rn, where of course it stands 
for 

aCt) = (al (t), ... ,an(t)) E ]Rn. 

But no notational clashes occur because the isomorphism 
]Rn ~ Ta(t)]Rn takes this ordinary aCt) E ]Rn to our newly 
defined aCt) E Ta(t)]Rn. 

~
'(t) 

t a 
--...... ,- a(t) 

interval (a. b) M 

Figure 2.14. The concept of the velocity vector aCt) E Ta(t)M 
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Observe that instead of [ ex] E T~eom M we may (and will) 
write a(O), and that the description of the differential by 
means of curve transport gives 

dfa(t)(a(t» = (f 0 ex)"(t), 

where ex denotes a curve in M and f : M -+ N a differentiable 
map. 

2.8 Another Look at the Ricci Calculus 

A chart (U, h) introduces coordinates on the chart domain 
U. These are just the component functions hI, ... , hn of the 
chart map h = (hI, ... , hn ). Each individual coordinate is 
thus a real function hi : U -+ R, and a point P E U has coor­
dinates (hI (p), ... , hn (p». For each p E U the chart also dis­
tinguishes a basis of TpM, namely the one that corresponds 
to the canonical basis (eI, ... , en) of Rn under the map 

T~hysM ~ Rn , 

v t---+ v(U, h). 

I would like to introduce notation for this basis and, in doing 
so, pick up where I left off in Section 2.2 and say a bit more 
about the Ricci calCulus. 

Its unmatched elegance for computations with geometric 
objects in local coordinates has already been praised. With 
a minimum of arbitrary notation (admittedly with a lot of 
indices), it describes all the local objects and procedures of 
vector and tensor analysis in such a way that one can in­
sert numbers at any time and start computing. Moreover, 
the notation always automatically indicates behavior un­
der transformations-for the expert, the geometric nature 
of things. The calculus thinks for the user. But if we want 
to enjoy these benefits, we have to put up with some un­
pleasantness. Let's start with the rather harmless rituals for 
entering this temple. 

We set down the notation U for the chart domain at the 
entrance. It's obvious, says the Ricci calculus, that a coor-
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dinate system has a certain domain of validity, so let's not 
waste letters. Next we are asked to raise the indices of the 
coordinates, to write them as 

h = (hI, ... , hn). 

We do it none too willingly because superscripts usually 
denote exponents, but this goes best with the index conven­
tions of the calculus, where superscripts can't be avoided 
anyway. So we do it. But now the letter h is also discarded as 
arbitrary and uninformative. The coordinates will be written 

1 n 
X , •• • ,x , 

so they canbe immediately recognized as coordinates. Jfwe 
ever have to deal with another coordinate system, we can 
mark its coordinates somehow to distinguish them, say by 
writing them as 

-1 ~ x, ... ,x , 

and if a second manifold enters the picture, then coordinates 
1 k Y , ... ,y, 

etc., will also be allowed. But the first choice of names for 
coordinates is still xl, ... , xn. In this interpretation-if we 
also secretly use the forbidden letters U and h to make things 
clear-the coordinates become functions xJi. : U ~ JR, so 
that h = (xl, ... , x") holds. This clash is not unintended by 
the calculus, just as when, in older textbooks on differential 
calculus, a real function is written as 

y = y(x), 

which has the advantage (and disadvantage) that then the 
function doesn't need (or have) a name of its own. But in 
any case this is a double meaning of xf1- as both a function 
on U C M and a coordinate of]Rn, and we have to keep it in 
mind, especially because we now fix the following notation. 

Notation. Let P E U, where (U, h) is a chart with coordinates 
xl, ... , xn, i.e. h = (xl, ... , xn). Then the J-Lth vector of the 
basis of TpM given by the coordinates will be denoted by 

uv L. ~ 
! h = (xl, ... , xn) 

D-UIC~II 

Figure 2.15. The coor­
dinates xil- in the Ricci 
calculus 



44 ________________ ~c=ha~p~te=r~2~~Th~e~1a==n~ge=n=t~S~pa==c~e ________________________ __ 

Figure 2.17. The vector 

field aIL on U 

a 
-;- E TpM 
aXIL 

and abbreviated aIL E TpM. 

~-curve through p on U eM 

~ xlL-curve through p on U C M 

hI f h-1 

BxIL-curve through h(p) in Rn 

Figure 2.16. Coordinate basis (aI, ... , an) of TpM 

Th prevent misunderstandings: aIL' as a physical tangent vec­
tor in T~hYSM, just assigns the J.Lth unit vector eJl E IRn to our 
chart (U, h); as a geometric tangent vector aIL E T~eomM, it is 
represented by means of the curve t 1-+ h-1 (h(p) + teJl) (aJl is 
the velocity vector of the J.Lth coordinate curve); and finally, 
as a derivation, aJ1. acts by 

t:p(M) ---+ JR, 

a( h-l ) 
cP J---+ CPa:J1. (h(p», 

and thus as the J.Lth partial derivative of the downstairs func­
tion. And this is just what the Ricci notation aJlcp, despite its 
superb terseness, suggests unambiguously: What possible 
meaning could applying a/axJl to a function cP defined on a 
manifold have, other than first expressing the function in the 
coordinates xl, ... , xn, i.e. taking cP 0 h-1 , then differentiating 
with respect to the J.Lth coordinate? 

You may object that the notation contains no information 
about p. How can you tell aJl E TpM from aIL E TqM? Well, if 
we wanted to indicate which tangent space we were in at the 
moment, we would have to resort to an additional label, say 
aJllp. But this is hardly ever necessary.We often have no fixed 
p in mind at all, but rather the assignment to every p E U of 
its aJl E TpM, and for this vector field on U the notation aJl or 
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a/axil- fits perfectly. The tangent vector 

vll-all-:= vIal + ... + vnan 

corresponds to the "contravariant vector" written in the Ricci 
calculus as vll-, and the context will have to tell whether a 
fixed P E U is being considered and vll-all- E TpM is meant, 
or, as occurs more often, the vI, ... , vn are real functions on 
U, and vll-aJ.l denotes a vector field nn U. 

2.9 Thst 

(1) For the two "poles" p := (0, 0, 1) and q := (0, 0, -1) of 
the 2-sphere S2 C ]R3, it is obvious that 

T~ubS2 = T:ub S2 = ]R2 X {OJ C ]R3. 

Is it also true that T~eomS2 = T:eomS2, and similarly for 
"alg" and "phys"? 

o Yes, because canonically T~ub M ~ T~eom, etc. 

o No. For all three versions, TpM n TqM = 0 if P i= q. 

o Yes for TPhys, no for the other two versions, because 
in those cases TpM n TqM = (OJ if P i= q. 

(2) Do two functions f and g defined at 0 in ]Rn define 
the same germ in £o(]Rn) if they have the same partial 
derivatives of every degree at O? 

o No. (Hint: e- I / X2 .) 

o Yes, by Thylor's formula for functions of several 
variables. 

o Yes. Otherwise we would get a contradiction to the 
mean value theorem. 

(3) Let Mo eM be a submanifold, P E Mo, and let v E TpM 
be a derivation such that vf = 0 for all f E £p(M) that 
vanish on Mo. Then 
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o v E TpMo C TpM. 

o V= o. 

o VET pM \ T pMO. 

(4) For differentiable maps I between manifolds, we have 

o rkdlp = rkpl, always. 

o rk dip 2: rk pi, and> can occur. 

o rkdlp:::: rkpl, and < can occur. 

(5) Let I : M -+ N be constant. Then dip = 

o I (p). o o. 

(6) Let I : V -+ W be a linear map between finite­
dimensional real vector spaces V and W. Then dip = 

o I. o o. o I-/(p). 

(7) Let V be a finite-dimensional real vector space and let 
I :. V -+ V be a translation. Then dip = 

o I. o o. o Idv. 

(8) Let M be a differentiable manifold and let X, Y, and 
Z be finite-dimensional vector spaces. Also let (., .) : 
X x Y -+ Z denote some bilinear operation. Then for 
differentiable maps I : M -+ X and g : M -+ Y we have, 
at every point p E M, 

o d(/, g) = (dl, g) + (I, dg). 

o d(/, g) = (dj, g) - (j, dg). 

o d(j, g) = (dj, dg). 

(9) Let a differentiable map I : M -+ N be described in 
local coordinates XV for Nand xJ.L for M by 

V V( 1 ") X =X x, ... ,x, 

in the sense of the Ricci calculus. Then the matrix of 
the differential is given by 
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o oJ.txv . 0 oJ.txv. 0 ChxJ.t. 

(10) Under what additional hypotheses on a map f : M ~ N 
can arbitrary vector fields be transported canonically 
from one manifold to another by the differentials df p 

or their inverses? 

o It's always possible from M to N, but it's possible in 
the opposite direction only if f is a covering map. 

o Even from M to N, it's possible only if f is a diffeo­
morphism. 

o It's possible in both directions as long as f is an 
embedding. 

2.10 Exercises 

EXERCISE 2.1. Let M be an n-dimensional manifold, p e M. 
Show that the composition of the canonical maps 

"tf,lg M ~ T~hYS M ~ T~eom M ~ r;,lg M 

is the identity on r;,lgM. 

EXERCISE 2.2. Let f : M ~ Nbe a differentiable map, p eM. 
Prove that the diagram 

dgeomjp 
TgeomM p --~) 

1 

is commutative. 

..,geomN 
Ij(p) 

1 

EXERCISE 2.3. Let f : M ~ R. be a differentiable function, 
p eM. Thking the gradient relative to charts gives a map 

Vp(M) ~ R.n, 

(U, h) ~ gradh(p)(/ 0 h-1). 
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Call it gradpf. Is it an element of T~hYS M? 

EXERCISE 2.4. Let Mo C M be a submanifold, P E Mo. Canoni­
cally, namely through the differential of the inclusion Mo "'--+ 

M, we regard TpMo as a subspace of TpM. Show that if Mo is 
the pre image of a regular value of a map f : M ~ N, then 

TpMo = kerdfp· 

2.11 Hints for the Exercises 

FOR EXERCISE 2.1. Although the three maps are canonical and 
therefore independent of charts, a chart (U, h) does come 
up as a tool in describing T~hYs M ~ T~eom M. So the proof 
should start like this: Let (U, h) be a chart around p and 
let v E r;IgM be a derivation. Then the derivation v' := 
<l>1(<l>3(<l>2(V») is given by v'cp = ... -and the first part of 
the exercise will just consist in computing this from the 
definitions of the <l>i' which you know. 

For the second part, the proof that v' cp = vcp, you might 
start by justifying why you may assume without loss of gen­
erality that ((J(p) = 0 and h(p) = 0 (note that v(const) = 0 for 
any derivation). Then apply the auxiliary lemma from the 
proof in Section 2.3. 

FOR EXERCISE 2.2. All you have to do is compare the fates of 
a geometric tangent vector ("Let [ex] E T~eom M ... ") along 
the two paths to the lower right-hand corner. This is easier 
than Exercise 2.1. 

FOR EXERCISE 2.3. It's certainly true that gradpf is sometimes 
a vector, for instance when f == O. In general? Proof or coun­
terexample? But who can doubt that the gradient is a tangent 
vector? Or is it? 

FOR EXERCISE 2.4. In proving that two vector spaces are equal, 
if you have some prior knowledge of the dimensions you can 
often get by with proving just one of the two inclusions. 



CHAPTER 

Differential 
Forms 

3.1 Alternating k-Forms 

Differential forms live on manifolds, and in preparation for 
the definition we need some linear algebra in a real vector 
space that we will later specialize to TpM. 

Definition. Let V be a real vector space. An alternating 
k-form w on V is a map 

w:Vx···xV---*lR 
'-v-' 

k 

that is multilinear (i.e. linear in each of the k variables) 
and has the additional property that W(Vl, ... , Vk) = 0 if 
VI, ... , Vk E V are linearly dependent. 

Notation. The vector space of alternating k-forms on V will 
be denoted by Altk V. 

Clearly it is a real vector space in a canonical way. Strictly 
speaking, the wording of the definition assumes that k ~ I, 
but we can extend it appropriately to k = o. 

Convention. Alt°V:= R 

49 
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Thus the alternating O-forms are the real numbers. 
Altl V = Hom(V, lR) =: V* is the usual dual space of V. 
For k = 1 the "alternating" property is trivial since linearity 
gives it immediately: w(O) = O. But for k 2:: 2, to be alter­
nating means something special, and a few criteria will be 
useful. 

Lemma. For multilinear maps W : V x ... x V ~ W, the 
following conditions are equivalent: 

(1) W is alternating; that is, W (VI, ... ,Vk) = 0 if VI, ... , Vk are 
linearly dependent. 

(2) W (VI, ... ,Vk) = 0 if any two of the Vi are equal, that is, if 
there are indices i, j with i i= j and Vi = vj-

(3) Interchanging two of the variables switches the sign: 

W(VI,"" Vk) = -W(VI, ... , Vj,"" Vi, ... , Vk) for i < j. 

(4) If. : {I, ... , k} ~ {l, ... , k} is a permutation, then 

w(vr(l),"" Vr(k») = sgn(.)w(vI, .. ·, Vk). 

PROOF. The implications (1) =} (2) {:: (3) {:} (4) are trivial. (2) 
=} (1) is also immediate: if VI, ... , Vk are linearly dependent, 
then one of the vectors is a linear combination of the others, 
so W(VI,"" Vk) becomes a sum whose k - 1 summands all 
vanish because of (2). For (2) =} (3), observe that (2) implies 
not only that 

W(VI,"" Vi + Vj,"" Vi + Vj,"" Vk) = 0 

but also that, of the four summands linearity gives on the 
left-hand side, only two remain. This gives 

W(V}, ... , Vi, ... , Vj,"" Vk)+W(V}"", Vj,"" Vi, ... , Vk) = 0 

and hence (3). o 

A linear map f : V ~ W induces a linear map Altk f : 
AltkW ~ AltkV in the "opposite direction"; thus Altk is a 
contravariant functor (see, for example, [J: Thp], pp. 69 and 
66) from the category of real vector spaces and linear maps 
to itself. We now state this in detail. 
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Figure 3.1. Defining Altkf 

Definition and Note. If 1 : V --+ W is linear; then the linear 
map 

Altkl : AltkW ~ AltkV 

is defined by «Altkf)(w»(Vl, ... , Vk) := W(/(Vl),··· ,f(Vk» 
and by the convention Alto 1 = IdjR. We have Id H- Id and the 
contravariant chain rule: 

Altkldv = IdAltkv and 

Altk (g 0 f) = Altk 1 0 Altk g 

for linear maps V L W ~ X. 

A great many functors are used in mathematics, and in 
case of doubt applying the notation for each functor (here 
Altk) to the corresponding morphisms makes things nice 
and clear. But not all cases are doubtful, and in practice one 
makes do, for hundreds offunctors, with two ways of writing 
the morphisms corresponding to a given 1 I namely 1* in the 
covariant and 1* in the contravariant case. This is not only 
convenient but also informative, so when there is no risk of 
confusion we adopt this convention here. 

Notation and terminology. Instead of Altk 1 we just write 
1*, and call I*w the k-form induced by 1 from w. 

3.2 The Components of an Alternating 
k-Form 

We must also know how to compute with alternating k-forms 
in terms of a basis, since later we will sometimes have to 
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consider differential forms on manifolds in local coordinates. 
If a basis of V is chosen, then an alternating k-form, like any 
multilinear form, can be characterized by the numbers it 
assigns to (k-tuples of) basis vectors. 

Thrminology. If (el' ... , en) is a basis of V and w an alternat­
ing k-form on V, then the numbers 

aJL1 .. ·JLk := w(eJL1 , ... , eJLk ), 

for 1 s: J.ii s: n, are called the components of w with respect 
to the basis. 

Because w is alternating, the components are of course 
"skew symmetric" in their indices; that is, 

aJLr (1) ... JLr(k) = sgn(r)aIl1 ... /Lk· 

Hence it suffices to know aIl1 ... JLk for ILl < ... < ILk. But there 
are no further relations among the components: the aIl1 ... llk 
can be prescribed arbitrarily for ILl < ... < ILk. The next 
lemma makes this precise. 

Lemma. If (el, . , . , en) is a basis of V, then the map 

AltkV ---+ jRG), 

W 1--+ (w (ell I ' ... ,ellk ))111 <"'<JLk 

is an isomorphism. 

PROOF. The map is clearly linear. Because w is multilinear, 
we always have 

w (L vrl\ ell I ' ... , L vrk;eJLk ) = L v~\ ... ,.v~k;w(elll' ... , ellk )· 
111 11k 1l1, .. ·.llk 

If w(eIl1 , .,. , ellk ) = 0 for ILl < ... < ILk. then the same holds 
for all other ILl, ... , ILk since w is alternating. Hence the map 
AltkV ~ jRG) is injective. 

But the map is also surjective. To show this, let 

(a) E JRCD 1l1 .. ·JLk 111 <"'<JLk 
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be arbitrarily prescribed. For arbitrary indices, we define 

aJ-iI··.J-ik := I 0 

sgn( r )aJ-ir(l)"'J-ir(k) 

if two of the indices agree, 

otherwise, 

where each r : {1, ... , k} -+ {l, ... , k} is the permutation that 
orders the indices by magnitude: jL,(l) < ... < jL,(k). Then 
the desired alternating k-form is given by 

W(Vl,"" Vk):= L V1JI) .•..• Vrk~aJ-iI ... J-ik' 

/·LJ, ···,J-ik 

where of course v~j)' ... ,v(j) denote the components of Vj E 

V with respect to (el, ... ,en), 0 

Corollary. If dim V = n, then dim AltkV = G). 
For k = 0 this agrees with the convention Alto V := JR, 

and for k = 1 it is the well-known fact that dim V* = dim V. 
But the dimension of Altn- l V is also n, so the alternating 
(n - l)-forms, the l-forms, and the elements ("vectors") of 
V itself are all represented in computations in coordinates 
by n-tuples of real numbers. Despite this, they should not 
be confused with each other, because each of the n-tuples 
behaves differently in passing from one basis to another. 
Vectors, l-forms, and alternating (n - I)-forms are just not 
canonically the same, and when you use isomorphisms 

V ~ V* ~ Altn- 1 V, 

which because of the equality of dimensions is of course 
possible and sometimes useful, you have to keep in mind 
that such isomorphisms are not given canonically but rather 
chosen. (An isomorphism cp : V ~ V* corresponds to the 
choice of a nondegenerate bilinear form {3 on V x V, namely 
cp(v)(w) = {3(v, w); an isomorphism V ~ Altn- l V corre­
sponds to the choice of a basis element in AltnV. See Exercise 
3.1.) 



54 Chapter 3 Differential Forms 
--------------~~---------------------------------

3.3 Alternating n-Forms and the 
Determinant 

Of particular interest for integration theory on manifolds are 
the alternating n-forms, where n = dim V. What we know 
about them so far is that dim AltnV = 1. We can also write 
this as follows: 

Corollary. If (el, ... , en) is a basis of V and a E JR, then there 
is exactly one alternating n-form w on V such that 

w(el,"" en) = a. 

When (el, ... , en) is the standard basis of JRn and a = I, 
this is the determinant det : M(n x n, JR) ~ JR, viewed as a 
multilinear form on the column vectors, as you know from 
linear algebra. The determinant is the only map from the 
space of n x n matrices over IK into IK that is multilinear and 
alternating on the columns and assigns the value 1 E IK. to the 
identity matrix. For arbitrary endomorphisms f : V ~ V, 
we have the following result. 

Lemma. If V is an n-dimensional real vector space and f : 
V ~ V is linear; then Altn! : Altn V ~ Altn V is multiplication 
by det! E JR. 

PROOF. Note that since AltnV = 1 the statement could also 
serve as a coordinate-free definition of det!. But we al­
ready know det! according to the usual definition det! .­
det(<p-l o! 0 <p) for some (hence every) <p : JRn ~ V: 

V~ V 

JRn ~ JRn 

Thus det! = detA, and the lemma has content and needs a 
proof. 

The following diagram is commutative by the chain rule 
for the functor Altn: 
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AltnV ~ AltnV 

Altnq; 1;: Altnq; 1 ;: 
Altn~n ~ Altn~n 

Therefore Altn f and AltnA are given by multiplication by 
one and the same real number. To determine it we apply 
Altn A to the element det E Altn~n, and for the canonical 
basis (el' ... , en) of ~n we obtain 

«AltnA)(det»(el,"" en) = det(Ael,.·' ,Aen) 
= detA 
= detA . det(el, ... , en). 

Thus detA = detf is the desired factor. o 

Finally, let me point out explicitly that n + 1 vectors in an 
n-dimensional vector space V are always linearly dependent. 
Hence any alternating k-form on V must vanish for k > n, 
and this is confirmed by the dimension formula AltkV = G). 

Note. AltkV = 0 for k > dim V. 

3.4 Differential Forms 

Now let's climb from the flatlands of linear algebra to the 
rolling hills of manifolds! 

Definition. A differential form of degree k, or simply a k­
form, on a manifold M is a correspondence w that assigns 
to every p E M an alternating k-form wp E AltkTpM on the 
tangent space at p. 

A differential form assigns an wp to each p EM, and wp 
in turn assigns a number to each k-tuple of vectors in TpM. 
That's a lot of assigning! To aid our intuition, let's think of the 
many wp's not as busily assigning but as quietly sitting there 
waiting. Only when called on by vectors will they respond 
with a number. 

T pM : lJ)p lives here 

Figure 3.2. A k-form w 
on M: the assignment 
p ~ wp E AltkTpM. 
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R 

D 
Figure 3.3. Component 
functions live "upstairs!' 

We denote the component functions of a k-form W on M 
relative to a chart (U, h) by 

WJ.LI ... J.Lk := W(dJ.Ll' ••• , dJ.Lk) : U ~ lit 

and of course we call a k-form continuous, differcntiablc, 
etc. if its component functions relative to the charts of some 
(hence every) atlas in the differentiable structure on Mare 
continuous, differentiable, etc. 

Keep firmly in mind that according to our interpretation 
(given in detail in Section 2.8) of dJ.L = djdXJ.L as the canonical 
basis vector fields of the chart, the component functions 
wJ.Lj ... J.Lk are really defined "upstairs" on U C M. Of course, we 
can also use h to "pull them down," but then they become 

h- 1 
WJ.LI ... J.Lk 0 . 

Two more remarks on terminology. First, the word "alter­
nating" has somehow worn off in differential calculus, and 
one speaks simply of differential forms or k-forms W on M. 
But the individual wp : TpM x ... x TpM ~ JR. are always un­
derstood to be alternating, and of course the definition above 
says so. Second, for the present we don't want to restrict 
our attention exclusively to differentiable k-forms because we 
begin by dealing only with the integration of k-forms on k­
dimensional manifolds, and in this situation differentiability 
would be an unnecessarily strong demand to make on w. So 
for the time being we have to add the word "differentiable" 
whenever we mean it. Later, though, the differentiable dif­
ferential forms will again be the central objects of interest, 
and we introduce the usual notation now. 

Notation. The vector space of differentiable k-forms on M is 
denoted by nkM. 

Since AltOTpM = JR., we have nOM = COO (M) , the ring of 
differentiable functions on M, or at any rate this is how we 
intend the differentiability of O-forms to be understood. A 
O-form W : M ~ JR. is just its own (and its only) component 
function; it has k = 0 indices, so none at alL 
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A differentiable map f : M ---+ N canonically induces a 
linear map from nkN to nkM, which we write, again using 
the standard notation, as 

f* : nkN ---+ nkM. 

'Tb be precise, f*w is defined for W E nkN and VI, ... ,Vk E 

TpMby 

(f*W)p(VI,"" Vk) := Wf(p)(dfpVI , ... , dhVk) 

- in what other obvious way could W E Ok N respond through 
f to vectors VI,.'" Vk E TpM? The correspondence f* =: 

nkf : nkN ---+ nkM is thus given "pointwise" (i.e. for each 
P EM) by Altk(dfp)· 

But since the differential and Altk are both functorial 
("Id H- Id and the chain rule"), we also have the following 
result. 

Note. Ok canonically gives a contravariant functor from the 
differential category to the linear category. In other words, if f * : 
nk N ---+ nk M denotes the linear map induced by a differentiable 
function f : M ---+ N, then (IdM)* = IdnkM and (g 0 f)* = 
f* 0 g* 

3.5 One-Forms 

The differentiable I-forms, the W E nl M, are also called Pfaf­
fran forms. The differentials of differentiable functions are 
a particular kind of Pfaffian forms ("exact Pfaffian forms"). 

Definition. Let f : M ---+ IR be a differentiable function. 
Then the differentiable I-form df E nIM given by p H­

dfp E Altl TpM is caned the differential of f. 

The differential df p at the single point p E M would 
actually be a linear map dfp : TpM ---+ Tf(p)IR, but of course 
we are referring to the canonical isomorphism IR ~ Tf(p)IR 
(see Section 2.6) and thinking of df p as an element of the dual 
space r;M of TpM. In this sense,we also have dfp(v) = v(f) 
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Figure 3.4. (dx} , ... ,dxn } 

is dual to (O}, ... ,on) 

everywhere on U. 

for v e TpM, because for instance dfp(a(O)) = (f oar(O) e R 
(see Section 2.7). So in local coordinates, i.e. relative to a 
chart (U, h), the n component functions of df are just 

df(alJ.) = alJ.f, f..t = 1, ... , n. 

Exercise 2.3 already dealt with the fact that the n-tuple 
(ad, ... , an/) does not define a tangent vector 'DpM -4 Rn. 
Now we see what is, from our present viewpoint, the "true" 
meaning of partial derivatives with respect to coordinates: 
They are the components of the differential df, which thus 
assumes the role of the gradient on manifolds. 

In particular, for a chart h = (xl, ... , xn) on U, we can 
take the differentials dxlJ. e Q1 U of the coordinate functions xlJ. 
themselves. Their components dxlJ.(ov), v = 1, ... , n, are 

dxlJ.(a ) = a xlJ. = {,IJ. := 11 if f..t = v, 
v v v O'f..J. 1 f..t r v. 

Lemma. At each point p e U, the basis of r;M dual to 

((h, ... ,an) is (dx~, ... ,dxp)' where dx1 , ••• ,dxn e Q1 U are 
the differentials of the coordinate functions xlJ. : U -4 R of a 
chart. 

Corollary. If (U, h) is a chart on M, where h = (xl, ... , xn), 

and w is a I-form, then 
n 

wlU= LwlJ.dxlJ.. 
1J.=1 

Here wlJ. : U -4 lR are the component functions wlJ. := w(alJ.)' In 
particular, for differentiable functions we have 

n af 
df = "-dxlJ. 

L.J axlJ. 
1J.=1 

on the chart domain U. 

PROOF. We test equality at each point p e U by inserting the 
basis vectors av, v = 1, ... , n, on both sides: wp(av) = wv(p) 
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by the definition of c.vv, and 
n n 

L c.vJ1.(p)d~(ov) = L c.vJ1.(p)8~ = wv(p). 
v=1 J1.=1 

Hence the two I-forms are equal on U. o 

This local description of I-forms as w = L~=1 wJ1.dxJ1., 
and in particular of differentials as dl = L~=1 0J1.1 . dx J1., 
is the key to computing with these forms in coordinates. It 
is used quite often for local concepts and proofs. But such 
a description is possible for more than just I-forms. Once 
the exterior product or wedge product has been introduced, a 
k-form will be expressible relative to a chart as 

W= 

in terms of component functions and differentials of the 
coordinates, and local computations with k-forms will reduce 
to computations with familiar functions. 

3.6 Thst 

(1) Let Ii, gi : V -+ lR be linear maps. Then the map 
V x ... x V ~ lR given by (VI, ... , Vk) 1--+ 

o II (vd ..... !k(Vk) + il (VI) ..... gk(Vk) 

o II (vd + ... + Ik(Vk) + gl (VI) + ... + gk(Vk) 

o (II (VI) + gl (vd) ..... (fdVk) + gk(Vk)) 

is multilinear. 

(2) Let I : V x . " x V -+ IR be a multilinear map. Which 
of the following conditions are sufficient for I to be 
alternating? 

o I (VI, ... , Vk) = 0 as soon as Vi = Vi+l for some i. 

o There exists an e : Sn -+ {-I, + I}, not the constant 
+1, such that I (V'['(l) , ... , V'['(k» = e(r:)/(VI, ... , Vk). 

o I (v, ... , v) = 0 for all V E V. 
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(3) Let Altk(V, W) denote the vector space of alternating 
k-linear maps from V x ... x V to W. If dim V = nand 
dim W = m, then dim Altk(V, W) = 

o m+G). o mG). 

(4) Does the cross product of vectors in JR3 define an ele­
ment of the space Alt2(JR3, JR3)? 

o Yes, because the cross product is bilinear and skew 
symmetric. 

o No, because the cross product is skew symmetric 
but not alternating. 

o No, because the cross product is linear, not bilinear. 

(5) Let V be an n-dimensional vector space, k > 0, wan al­
ternating k-form on V, and Vi = r:J=1 aijVj. For what val­
ues of k do we have W(V1, ... , Vk) = det a· W(V1, ... , Vk)? 

o only for k = n. 

o only for k = 1 and k = n. 

o for all k. 

(6) Let M be a nonempty manifold with dimM = n > 0 
and 0:::: k:::: n. Then dim QkM = 

o 00. o G). o k(k - 1)/2. 

(7) Let f : M -+ 51 C C be a differentiable function. We 
can always write f = eie , but in general the function 
() will not be continuous, let alone differentiable. Lo­
cally, however, () is well defined as a differentiable real­
valued function up to addition of an integer multiple 
of 2rr. Hence sin (), cos () E n.o M and de E Q 1 Mare 
well defined. Moreover, as a complex-valued function, 
f also has a complex-valued differential df E Q1 (M, C). 

We have 

o df = eide . 

o df = - sin e de + i cos e de. 
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o df = ifde. 

(8) Let M =1= 0 and 1 .:::: k .:::: n = dimM. Can there exist a 
map f : M -+ M with the property that f*w = -w for 
all w E QkM? 

o Yes, for instance with M = R n , f (x) := -x, and k 
odd. 

o Yes, for instance with M .- 5n , f the antipodal 
map, and k arbitrary. 

o No, never. 

(9) Let JT : R2 \ to} -+ 51 be radial projection and ry a 1-
form on 51. We consider the tangent vector v := (~) E 

R2 ~ Tp(R2 \ {O}) at the point p E R2 \ to}, and similarly 
w := C) E R2 ;::: Trp(R2 \ {a}) at the point rp for r > o. 
Which of the following is true? 

o JT*ry(w) = JT*ry(v). 

o JT*ry(w) = rJT*ry(v). 

o rJT*ry(w) = JT*ry(v). 

(10) Now let JT be the radial projection ofR3 \ {a} onto 52 and 
l : 52 ~ R3 \ {a} the inclusion map. Let ry E Q3(R3 \ {a}) 
and wE Q252. Then 

o JT*l*ry = ry. o JT*l*ry = O. o l*JT*W = w. 

3.7 Exercises 

EXERCISE 3.1. Let V be an n-dimensional vector space and let 
W E Altn V be nonzero. Show that the map 

V ---+ Altn- 1 V, 
v ~ V....JW, 

where (v....J W)(V1, ... , Vn-1) .- w(v, vI, ... , vn-d, is an iso­
morphism. 
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EXERCISE 3.2. Let (el, ... , en) be an orthonormal basis in the 
Euclidean vector space (V, (', .), and let W be the alter­
nating n-form on V with w(el, ... ,en) = 1. Compute the 
"density" IW(Vl,"" vn)1 from the "first fundamental form" 
(g,.ll)/-L,v=l, ... ,n, where g/-LV := (v/-L' V v). 

EXERCISE 3.3. Determine the transformation formula for k­
forms in the Ricci calculus. More precisely, for charts (U, h) 
and (U, h), write the coordinates as 

h = (xl, ... , xn) and 

- T -h = (x , ... ,xn), 

and write the component functions of W E Qk M with re­
spect to the coordinates accordingly. How can the W'Ji] ... "jIk be 
computed from the w/-L] ... /-Lk? 

EXERCISE 3.4. If V: c JR.2 is the closed ray with initial point 
o and angle ot to the positive x-axis, the angle function 

({la : JR.2 \ V: --+ (ot - 2.rr, ot) 

of the polar coordinates is a well-defined differentiable func­
tion. Let its differential be denoted by Wa := dCPa. Then 
any two differentials Wa and wf3 agree on JR.2 \ (V: u vt) 
(why?), so the wa's unambiguously define a Pfaffian form 
W E Q 1 (JR.2 \ {O}). This is a popular model for certain phe­
nomena. Prove that there is no differentiable function f 
JR.2 \ {O} ~ JR. such that W = df. 

3.8 Hints for the Exercises 

FOR EXERCISE 3.1. I suggest reading and saying the expression 
V...-J W as /Iv in w," because this will remind us of the meaning 
of the symbol ...-J : V...-J W = w(v, ... ). Since V and Altn - l V are 
often identified-not to say confused-it's useful to clarify 
in your own mind what role is played by the choice of an 
n-form w. Incidentally, even for a given W the map can't 
quite be called canonical, because v could equally well be 
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inserted as the last variable in wand this would change the 
sign of the map by (-1 )n-1 . But from now on we'll stick with 
the definition given in this exercise. Considered technically, 
the exercise is straightforward, and I don't know what other 
hints I could give. 

FOR EXERCISE 3.2. The formula you are asked to find and 
prove here plays an important role in integration in local 
coordinates on "Riemannian" manifolds, in particular on 
submanifolds of Rn. Instead of a fixed vector space V, one 
then deals with tangent spaces to a chart domain, and the 
VI,"" Vn are the 01, ... , an. 

In principle, these functions gJ1.v : U ~ R are easy to 
compute. But to integrate in this situation, one needs the 
function Iw(al , ... , an)1 : U ~ R+. (Of course, part of the 
solution to Exercise 3.2 is that Iwl is independent of the 
choice of orthonormal basis, but this is also easy to show 
directly: isometric transformations take orthonormal bases 
to orthonormal bases and always have determinant ±1 .... ) 

This is the deeper meaning of the problem! Superficially, 
it's a useful exercise in working with n-forms; matrices, scalar 
products, how n-forms behave under a change of coordi­
nates, etc. A practical hint: First figure out the relationship 
between. the matrix G:= (gJ1.v) and the matrix A = (aJ1.v) that 
describes the expansion of the vJ1. in terms of the orthonor­
mal basis el, ... ,en, i.e. the one satisfying vJ1. =: L~=l aJ1.Vev. 

FOR EXERCISE 3.3. As you see, the intersection of two chart do­
mains is already denoted here without loss of generality by 
U; otherwise we would have had to consider unv. I probably 
don't have to argue that the question about the transforma­
tion formula for the components of a k-form is meaningful 
and legitimate. But in addition to this useful information, the 
exercise also gives you the opportunity to learn some really 
elegant notation from the Ricci calculus's bag of tricks. You 
just have to be able to read it! You can see, of course, that 
the notation WJ1.1 ... J1.k := w(aJ1.1 ' ... , aJ1.k) for the components of 
a k-form says nothing about the coordinates being used-in 

Figure 3.5. "Components 
of the first fundamental 
form" 
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complete accord with the Ricci philosophy that the coordi­
nates themselves aren't given individual names. And how 
awkward any other approach would be! But now, what if a 
second coordinate system has to be considered? Answer: Put 
bars over-the indices! This doesn't just create new names 
for indices (as it would be read without a more detailed 
explanation), it also means that the quantities with barred 
indices refer to the second coordinate system. Just try using 
this notation. It works great! 

FOR EXERCISE 3.4. You also know the "argument" function 

CPa : ]R2 \ V: -+ (a - 2rr, a) 

from complex function theory; for a = rr, for instance, it's 
the imaginary part of the principal branch of the logarithm. 
Not directly, but in spirit, our exercise is related to the fact 
that although d(1nz)jdz = ljz is defined on all ofC \ {O}, it 
has no antiderivative there. 

The problem isn't hard. What could be said about f - CPrr 
(for example) if there did exist such an f? And would that 
be possible? 

Thus a Pfaffian form can be locally a differential every­
where without having to be one globally. This is a mathemat­
ically important phenomenon ("de Rham cohomology"), and 
the example given in the exercise may be the simplest one 
there is: no wonder it's used so often. You should know it. In 
physics, it plays a role in interpreting the Aharonov-Bohm 
effect. 



CHAPTER 

4.1 Introduction 

The Concept of 
Orientation 

As you know, the direction of integration matters when you 
integrate a function of a real variable: 

b a 

f f (x) dx = - f f (x) dx. 

a b 

The dx senses, so to speak, when the direction of integra­
tion is reversed: the differences LiXk = Xk+l - Xk in the Rie­
mann sums L f (Xk)Lixk are positive or negative according 
to whether the partition points are increasing or decreasing. 
The same thing happens with line integrals 

f f (x, y, z) dx + g(x, y, z) dy + hex, y, z) dz, 

y 

where y is a curve in ]R3, and with contour integrals fy f (z) dz 

in complex function theory. They are invariant under all 
reparametrizations of the curve that do not change the di­
rection in which the curve is traced. But if the curve is traced 
backwards, the sign of the integral is reversed. 

65 
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Figure 4.1. The two 
orientations of a two­
dimensional real vector 
space 

Figure 4.2. On the "trans­
parent" two-dimensional 
clock, is it 9:00 or 3:00? 

I don't mean to say that this response to a change of direc­
tion is necessarily a property of every meaningful version 
of integration. For example, the arc length Iy ds of a curve 
should be independent of the direction in which the curve 
is traced, and in fact the so-called line element 

ds = Jdx2 + dy2 + dz2 

(not a 1-form!) doesn't sense a reversal of direction. But we 
usually deal with integrals that are sensitive to direction, 
and for the setup of vector analysis it is necessary, for this 
and other reasons, to generalize the concept of a directed 
interval to that of an oriented manifold. As a preliminary step 
we need the linear-algebraic version, namely the concept of 
an oriented n-dimensional real vector space. 

In order to get a first intuitive idea of orientation, we 
consider the dimensions n = 1,2, and 3, which are directly 
accessible to our intuition. To "orient" a one-dimensional 
vector space means to choose a direction in the space, and it 
is intuitively clear that this is possible in exactly two different 
ways. To orient a two-dimensional real vector space V, we 
must define one of the two senses of rotation in V to be posi­
tive. Of course, as long as an exact mathematical definition 
isn't required, everyone has a perfectly good intuitive idea 
what a "sense of rotation" is, and a fair number of people 
will at least have heard that the "mathematically positive" 
sense of rotation is counterclockwise. So it may not be com­
pletely unnecessary to point out that in a two-dimensional 
vector space V there is no well-defined "clockwise sense." 
The mathematically positive sense of rotation can't be spec­
ified unless V already is oriented. 

Finally, in a three-dimensional real vector space, the pur­
pose of an orientation is to distinguish a "screw sense," or to 
determine what "right-handedness" should mean. This ex­
pression refers to the familiar right-hand rule, which says that 
a basis (VI, V2, V3) is called "right-handed" if the three vectors 
in this order correspond to the directions of the thumb, index 
finger, and middle finger of a right hand. It takes a certain 
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effort to free oneself from the illusion that the right-hand 
rule actually orients all three-dimensional vector spaces. But 
once we start to think about it, we soon realize that we can 
intuitively compare the position of three vectors in a three­
dimensional vector space V with our right hand only after 
mapping V onto the real physical space that surrounds us, 
and whether (VI, vz, V3) turns out to be right-handed or left­
handed depends on how we do that: in a mirror, a right hand 
looks like a left. 

4.2 The Two Orientations of an 
n-Ditnensional Real Vector Space 

But how can orientation be understood precisely as a math­
ematical concept? There are several equivalent possibilities. 
Our approach is based on taking as definition a version that 
can't immediately be pictured but is easy to work with. First 
we assume that dim V > O. 

Definition. Tho bases (VI, ... ,vn ) and (WI, ... , wn ) of a real 
vector space V are said to have the same orientation, written 

if one basis is mapped to the other by a transformation with 
positive determinant, that is, if det f > 0 holds for the auto­
morphism f : V ~ V with f (Vi) = wi· 

Note and Definition. The property of having the same ori­
entation is clearly an equivalence relation on the set ~(V) of 
bases of V, and it has exactly two equivalence classes. These 
equivalence classes are called the two orientations of V: An 
oriented vector space is a pair (V, 0) consisting of a finite­
dimensional real vector space V and one of its two orienta­
tions. 

Up to now we have assumed that V is positive-dimen­
sional. If we were to take the definition literally for zero­
dimensional spaces, they would be canonically oriented, 
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since {OJ has only the empty basis and hence only one 
equivalence class of bases with the same orientation. But 
introducing another "orientation" for the zero-dimensional 
spaces, opposite to this canonical one, turns out to be a use­
ful convention. 

Convention. Let the numbers ±1 be the two orientations 
of a zero-dimensional real vector space. 

Associated with the notion of orientation are some almost 
self-explanatory terminology and notation. For example, if 
(V, 0) is a (positive-dimensional) oriented vector space, the 
bases (VI, ... , Vn ) E 0 are called positively oriented and the 
others negatively oriented. Of course, the usual orientation 
ofl[~n means the one in which the canonical basis (eI, ... , en) 

is positively oriented. 
The orientation, like other additional structures, is usu­

ally suppressed in the notation. An isomorphism i : V ;:: W 
between positive-dimensional oriented vector spaces is 
called orientation-preserving if it takes some (hence ev­
ery) positively oriented basis of V to a positively oriented 
basis of W. In the zero-dimensional case, we naturally call 
the (unique) map orientation-preserving only if the two 
orientations are the same (both + 1 or both -1). 

The following topological characterization of the orienta­
tions of a real vector space is noteworthy and often useful. 

Lemma. If V is an n-dimensional real vector space, n 2: 1, 
then the two orientations of V are the two path components of 
Q3(V) C V x ... X V, the space of bases ofV. 

PROOF. Suppose that two bases Bo = (VI, ... , v n ) and BI = 
(WI, ... , wn ) have different orientations but can be joined by 
a continuous path t ~ Bt in Q3(V). We denote by it : V ~ V 
the isomorphism that takes Bo to Bt . Then the continuous 
function t ~ det It is positive (namely 1) at the left endpoint 
t = 0 of the interval and, by hypothesis, negative at the 
right endpoint. By the intermediate value theorem it must 
therefore have a zero, which contradicts the hypothesis that 
all the It are isomorphisms. 
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Thus bases with different orientations at least lie in differ­
ent path components of 123 (V). It remains to show that bases 
Bo and Bl with the same orientation can always be connected 
by a path in ~(V). We may assume without loss of generality 
that V = ]Rn and Bl is the standard basis (el, ... , en). We now 
apply the Gram-Schmidt orthonormalization process to Bo. 
This takes Bo to an orthonormal basis in 2n -1 steps: normal­
ize a vector/take the next vector orthogonal (to the vectors 
already constructed)lnormalize/take the next one orthogo­
nal/normalize/ etc. So far this is just a jump from one basis 
to another, but simply connecting each pair of way stations 
by a straight line gives us a continuous zigzag path in Il3(V) 
from Bo to an orthonormal basis. 

50(n - 1) 

The Gram-Schmidt 
orthonormalization 

process 

Figure 4.3. Proving the path-connectedness of an orientation 

We are left with the problem of how to get from this basis 
to the standard one along a path in ~(V). But we can do 
this along a path that even stays in the space of orthonormal 
bases. First, by a rotation, we get to an orthonormal basis 
with first vector el. From there, by a rotation in ef, we reach 
an orthonormal basis whose first two vectors are el and e2, 

etc. After n - 1 steps our continuous path has brought us 
to an orthonormal basis (el, ... , en-I, wn), and if there are 
any difficulties at all they should occur now, because in the 
one-dimensional space {el, ... , en_l}.L there is no room left 
to rotate. But now there is no need to rotate, since all three 
bases have the same orientation: 
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the first two by hypothesis and the last because of the path 
we constructed. So of the two remaining possibilities Wn = 
±en, only Wn = en is possible, and the proof is done. 0 

4.3 Oriented Manifolds 

We orient a manifold by orienting each of its tangent 
spaces-not in just any way, but in such a way that these 
orientations get along with each other and don't suddenly 
"switch." What does this mean? Th formulate it precisely, we 
introduce the following terminology. 

Definition. Let M be an n-dimensional manifold. A family 
{Op}peM of orientations op of its tangent spaces is called 
locally coherent if around every point of M there is an 
orientation-preserving chart, i.e. a chart (U, h) with the 
property that for every U E U the differential 

~ 

dhu : TuM ~ ]Rn 

takes the orientation Ou to the usual orientation of Rn. 

The simple phrase "locally constant relative to charts" 
would also' have been a reasonable description of this local 
coherence. In any case, we can now formulate our definition. 

Definition. An orientation of a manifold M is a locally co­
herent family {Op}pEM of orientations of its tangent spaces. 
An oriented manifold is a pair (M, 0) consisting of a mani­
fold M and an orientation 0 of M. 

Of course, only for special reasons do we actually denote 
an oriented manifold by (M, 0) rather than simply M. 

Definition. A diffeomorphism f : M ~ M between ori­
ented manifolds is called orientation-preserving (resp. 
orientation-reversing) if for every p E M the differen-

tial dfp : TpM ~ Tf(p)M is orientation-preserving Crespo 
orientation-reversing). 
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The usual orientation of~n as a vector space makes it into 
an oriented manifold because canonically ~n ~ Tp~n. It is 
clear that all open (hence full-dimensional) submanifolds of 
an oriented manifold are also automatically oriented, and 
in this sense the charts we called "orientation-preserving" 
at the beginning of this section really are the orientation-

...... 
preserving charts h : U ~ U' in the sense of the last defini-
tion. We make one more observation. 

Note. A chart is orientation-preserving if and only if the basis 
(01, ... ,an) is positively oriented at every point of the chart 
domain. 

The best training in visualizing the orientation of mani­
folds is given by the two-dimensional manifolds, the surfaces. 
In intuitive terms, an orientation provides every point of the 
surface with a sense of rotation, which just indicates which 
bases for the tangent spaces are positively oriented. 

But our intuition about surfaces also immediately reveals 
a phenomenon that is not immediately obvious in the tech­
nical sense, namely the existence of nonorientable mani­
folds. (See Figure 4.4.) Local coherence, which forbids sud­
den switches in orientation, is precisely what "obviously" 
gives contradictory orientation data at the initial point, after 
a single circuit of the core circle of the Mobius strip. Actually 
carrying out this argument would of course require that we 
first define the Mobius strip, not just sketch it, then apply 
Exercise 4.4, which says that a continuous frame field keeps 
its orientation along a curve in an oriented manifold. 

4.4 Construction of Orientations 

It is both intuitively and technically clear that for every 
orientation of a vector space or a manifold there is also an 
opposite orientation. We introduce notation for it. 

Continuation without 
switching leads to ... 

~ 
~ 

... an unavoidable clash. 

Figure 4.4. The Mobius 
strip, a nonorientable 
two-dimensional mani­
fold 
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Note and Notation. If 0 is an orientation of a vector space, 
let -0 denote the other of the two orientations. If 0 = 
{o p} pEM is an orientation of a manifold M, then so is 

-0 = {-Op}pEM 

(the opposite orientation of M). If the orientation is sup­
pressed in the notation, so that M denotes an oriented man­
ifold, we write -M for the oppositely oriented manifold. 

It is also clear that the sum Ml + M2 of two oriented 
n-dimensional manifolds is canonically oriented, simply by 
(Op}pEM1+M2' Ifboth summands are nonempty, such a sum 
thus has at least four different orientations, which in the no­
tationjust introduced give rise to the four oriented manifolds 
±MI ±M2. 

The product MI XM2 of two oriented manifolds, like their 
sum, is canonically oriented, but you have to be careful in 
taking quotients; see Exercise 8.4. Submanifolds of oriented 
manifolds may not be orientable, as the Mobius strip in ~3 
makes clear. But we do have the following result. 

Lemma. Let c be a regular value of a differentiable map f : 
M ~ N. If M is orientable, then so is the submanifold Mo := 
f-I(c) eM. 

PROOF. Let orientations for the manifold M and the vector 
space TeN be chosen. As we know (see Exercise 2.4), TpMo 
is the kernel of 

dfp : TpM ~ TeN. 

We therefore consider the following linear-algebraic situa­
tion: let 

t 7r o ~ Vo ~ VI ~ V2 ~ 0 

be a "short exact sequence" of linear maps of finite-dimen­
sional real vector spaces. In other words, L is injective, rr is 
surjective, and ker rr = im t, as in the case 

dfp 
o ~ TpMo '-+ TpM ~ TeN ~ O. 
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Let orientations for Vo, VI, V2 be called compatible if the fol­
lowing holds: If VI, ... , Vk is a positively oriented basis of Vo 
and t(VI), ... , t(Vk) is extended to a positively oriented basis 
of VI by adjoining WI, ... , Wn-k, then 1T(WI), ... , 1T(Wn-k) is a 
positively oriented basis of V2. In this sense, for the orien­
tations of any two of the spaces Vo, VI, V2 there is exactly 
one compatible orientation of the third. You can easily con­
vince yourself of this linear-algebraic fact by recalling that 
for square matrices A and B, every block matrix of the form 

has determinant detA . detB. Now if we orient each TpMo 
compatibly with the orientations of TpM and TeN, we obtain 
a locally coherent family of orientations, hence an orienta­
tion of Mo. 0 

Manifolds can also be oriented by using atlases. To do 
this, we make a definition. 

Definition. An atlas Ql of a differentiable manifold is called 
an orienting atlas if all its transition maps ware orientation­
preserving, that is, if their Jacobians det/w(x) are positive 
everywhere. 

If M is already oriented, the orientation-preserving charts 
obviously form a maximal orienting atlas. There is a con­
verse. 

Note. If Ql is an orienting atlas of a differentiable manifold M, 
then there is exactly one orientation of M relative to which all 
the charts in Ql are orientation-preserving. 

In view of this, we could just as well have defined an 
orientation as a maximal orienting atlas, and this version of 
the definition is often preferred because it makes no use of 
tangent spaces. 
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4.5 'Thst 

(1) Let n 2: 1. When do (VI, ... , vn ) and (-VI, ... , -vn ) have 
the same orientation? 

o Always. 

o For even n. 

o Never. 

(2) How many path components does the orthogonal group 
O(n) have for n 2: 3? 

o One, and this can be shown by using rotations as 
in the proof of the lemma in Section 4.2. 

o TWo, namely SO(n) and O(n) \ SO(n). 

o One if n is odd, two if n is even. 

(3) Let dim V = nand 0 :::: k :::: n. The map Altk(-Idv) 
AltkV ~ AltkVinduced by -Idv : V ~ Vis orientation­
reversing if and only if the following number is odd: 

o k. o G). o kG). 

(4) For diffeomorphisms f : M ~ N between oriented 
manifolds, the set of x in M for which dfx preserves 
orientation is 

o open in M, but in general not closed in M. 

o closed in M, but in general not open in M. 

o open and closed in M. 

(5) Let M be an oriented manifold. Is a diffeomorphism f : 
M ~ M that is not orientation-preserving necessarily 
orientation-reversing? 

o Yes, because this is already true for isomorphisms 
between oriented vector spaces. 

o Yes if M is connected, but otherwise not in general. 
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D No, not even for connected M in general, because 
df p can reverse orientation for some p and preserve 
it for others. 

(6) Let M and N be oriented manifolds with dimensions 
nand k, respectively. Then interchanging the vari­
ables defines an orientation-preserving diffeomorphism 
between N x M and 

D MxN. 

D (-l)n.kM x N. 

D (-l)n+kMxN. 

(7) Can a product M x N of two connected nonempty 
nonorientable manifolds be orientable? 

D Yes. For example, M x M is always orientable. 

D A product M x N of nonempty manifolds is ori­
entable if and only if one of the factors is orientable. 

D A product M x N of nonempty manifolds is ori­
entable if and only ifboth the factor.s are orientable. 

(8) Let M -+ M be a covering of n-dimensional manifolds. 
(This notion hasn't been explained, but it comes up 
again in Exercise 5.4 and a reference is given there. So 
you may either ignore this question for now or look 
ahead at the reference.) 

D If M is orientable, then so is M, but the converse is 
not necessarily true. 

D If M is orientable, then so is M, but the converse is 
not necessarily true. 

D The covering manifold M is orientable if and only 
if the base manifold M is orientable. 

(9) Is every codimension-one submanifold Mo of an ori­
entable manifold M orientable? 

D Yes, because then Mo is the pre image of a regular 
value of a function f : M -+ R 
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o Yes, because submanifolds of orientable manifolds 
are always orientable. 

o No. The real projective plane JRIP2, as a submanifold 
of real projective space lRJlD3, is a counterexample. 

(10) Let Mo C M be a submanifold of codimension ::: 2 and 
let M \ Mo be oriented. Is M necessarily orientable? 

o Yes. The charts (U, h) on M that are orientation­
preserving on U \ Mo form an orienting atlas on 
M. 

o No. A counterexample is {pI C JRIP2. 

o No. A counterexample is RJPl2 C JRJP>4. 

4.6 Exercises 

EXERCISE 4.1. Let V be a real vector space with dimension 
n ::: I, and let (VI, ... , Vn-I, v n) and (VI, ... , Vn-I, v~) be two 
bases that differ only in their last vector. For 0 :::: t :::: I, we 
now set v~ := (1 - t)vn + tv~. Show that (VI, .•. , Vn-I, v~) is a 
basis for every t E [0,1] if and only if (VI, ... , Vn-I, vn) and 
(VI, ... , Vn-}, v~) have the same orientation. 

EXERCISE 4.2. Show that a connected manifold has at most 
two orientations. 

EXERCISE 4.3. Let M be a nonorientable n-dimensional man­
ifold and let wE nnM. Show that wp = 0 for some p E M. 

EXERCISE 4.4. Let y : [0, 1] -+ M be a continuous curve in an 
oriented n-dimensional manifold and let 

v: [0,1] -+ U ~(TpM) 
peM 

be a continuous frame field along y, that is, a continuous 
(relative to charts) correspondence that assigns a basis vet) = 
(VI (t), ... , Vn(t» of Ty(t)M to each t E [0,1] . Show that if 
v(O) is positively oriented, so is each vet) for t > O. As an 
application of this lemma, prove that the projective plane 
JRJP>2 is not orientable. 
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4.7 Hints for the Exercises 

FOR EXERCISE 4.1. It would be a good idea to consider the 
determinant of the endomorphism that takes (VI, ... , V n) to 
(VI, ... , Vn-I, v~). Of course, this endomorphism can be writ­
ten (for instance) as a matrix with respect to (VI, ... , vn ). 

FOR EXERCISE 4.2. The standard connectedness argument 
should be applied here. If this is unfamiliar to you, may I 
recommend [J:Tbp.], the bottom ofp. 14 and the top ofp. IS? 
You should also observe that a transition map is orientation­
preserving if and only if its Jacobian is positive. 

FOR EXERCISE 4.3. As we know (see Section 3.3), an automor­

phism /p : TpM ~ TpM acts on wp by multiplication by its 
determinant, so wp responds with values of the same sign 
to two bases of TpM if and only if the bases have the same 
orientation. So how could you try to use an w E Qn M with 
wp =1= 0 for all P E M (hypothesis for an indirect proof) to ori­
ent M, contradicting the hypothesis of nonorientability? It's 
pretty easy to come up with this. The work of formulating 
it precisely lies in proving that the family of orientations of 
the tangent spaces defined in this way is locally coherent. 

FOR EXERCISE 4.4. 

vnCl) 

vnCt) 

y 

Figure 4.5. 

The proof of the lemma about the continuous frame field 
along y is, after Exercises 4.2 and 4.3, the third variation on 
the theme lithe orientation can't suddenly switch:' The real 
problem is the application to the orientability of the pro­
jective plane. Problems are often more transparent, in fact 
not infrequently easier to solve, if one generalizes them a 
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bit. Here, for instance, it's useful to consider in what circum­
stances a quotient M / r of a (path-connected) manifold under 
a fixed-point-free involution may be orientable and when it 
may not. (See Section 1.6.) All that remains to be proved in 
the concrete example is that the antipodal involution on 52 
is orientation-reversing. What about other dimensions? 



Integration on 
Manifolds 

CHAPTER 

5.1 What Are the Right Integrands? 

Integration over n-dimensional manifolds reduces through 
charts to integration in JR". The objects integrated on ori­
ented manifolds are n-forms, for the following reason. For 
an ordinary function f : M -+ JR, the contribution of a chart 
domain U to the integral would clearly depend on the choice 
of chart h. But for an n-form, the integral of its component 
function pulled down by an orientation-preserving chart is 
independent of the coordinates, as we see from the change­
of-variables formula for multiple integrals in JR". This is the 
main content of Chapter 5. Section 5.4 contains the technical 
details and Section 5.3 a summary of necessary background. 
In the first two sections we give an intuitive view of integra­
tion on manifolds. 

Densities are natural candidates for the role of the inte­
grand. Imagine a substance finely distributed throughout the 
manifold. Integrating the density of the distribution ought 
to give the total mass of the substance. What kind of mathe­
matical object describes the density? 

~ 
/o},-l 'il \k /ok- 1 

h(~~ k(~V 
Figure 5.1. The integral of 
the downstairs function 
over the image of the 
chart domain obviously 
depends on the choice of 
chart. 
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t:JV2 ! 
/ ! 

Vk - ----------\ 

o VI 

Figure 5.2_ Span 

To approach this question we consider its infinitesimal, 
or linear-algebraic, version_ Let V be an n-dimensional vector 
space (later TpM), with a substance uniformly distributed 
throughout it. Ifwe were dealing with JR.n , we could describe 
the density by the number measuring the amount of the 
substance in the unit cube [0, l]n. But in TpM or V, instead 
of a distinguished unit cube we have only n-spans with equal 
rights. 

Definition. Let VI, ... , Vk be elements of an n-dimensional 
real vector space V. Then 

span(vl,··., vd := ItAiVi : 0 ~ Ai ~ 1) 
1=1 

is called the parallelepiped spanned by VI, .. " vk. their 
k-span, or just their span. The word "span" is generally used 
for the set of linear combinations of Vi with unrestricted Ai. 
In that sense the Vi span an entire subspace of V. But we 
will use "span" as a noun only to mean a parallelepiped, and 
in context our usage should cause no confusion. 

Without choosing a basis, we can describe the density, 
for example, by the map p : V x ... x V ~ JR. that measures 
the amount of the substance contained in the span of any 
n vectors. What maps can arise in this way? In the attempt 
to formulate the notion of density mathematically, positive 
homogeneity and shear invariance are surely not too much to 
require. 

Definition. Let V be an n-dimensional real vector space. 
We call a map p : vn = V X ... x V ~ JR. a density 
on V if it is positive-homogeneous and shear invariant, 
i.e. if (1) P(Vl,.··, AVi, ... , Vn) = J) .. lp(VI,.··, vn) and (2) 
P(VI, ... ,Vi-I,Vj +Vj,Vj+I, ... ,Vn) = p(VI, ... ,Vn) for all 
VI, ... , Vn E V, A E JR., and i f= j. 
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t!!-'At/i---; 

Vj ./ 
.- ----------\ 

o 

Figure 5.3a_ Positive homogeneity Figure 5_3b_ Shear invariance 

So far, such a density on V looks almost the same as an 
alternating n-form on V_ The only difference is that transpos­
ing two vectors has no effect on the density (which depends 
only on the span) but reverses the sign of an n-form. The 
next lemma makes this more precise. 

Lemma. Let V be an n-dimensional vector space. If we choose 
an orientation 0 for V and change every map P : V x -. -x V --+ ~ 
to Po by defining 

Po := 1-P(VI • ...• Vn) if (VI •...• Vn) is negatively oriented. 

P(VI • ...• vn) otherwise. 

then p is a density if and only if Po is an alternating n-form. 

PROOF. "<=" is trivial. Th prove "=*:' let P be a density. Then 
(1) and (2) give 

(3) P(VI •...• Vi + w •...• Vn) = P(Vl •...• Vn) if W is a lin­
ear combination of the variables VI. - ..• Vi-I. Vi+I • .. _ • V n , 

and 

(4) P is invariant under transposition of any two variables, 
hence under any permutation of the variables. 

It also follows from (3) and (1) that P vanishes whenever 
VI •.. - • Vn are linearly dependent_ 

Now let (el. _ ..• en) be a positively oriented basis of V 
and let W E AltnV be the· well-defined alternating n-form 
satisfying 

w(el •...• en) = p(el • .. - • en). 

We show by induction on k that 
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for k = 0, ... , n. For the induction step from k to k+ I, assume 
without loss of generality that (VI, ... , Vk+I, ek+2, .. ·, en) is 
linearly independent. We may assume by (3) that VI, ... , Vk+ I 

are in the linear hull Vk+I of eI, ... , ek+I and by (4) that 
Vk+I ¢. Vk· Using (3) again, we see that VI, ... ,Vk are ele­
ments of Vk, and hence by dimension count that they span 
Vk. Another application of (3) therefore allows us to assume 
without l~ss of generality that Vk+ I = Aek+ I. In view of (1 ), 
this completes the induction step. 0 

Thus the space of densities on V, which we may as well 
call Dens(V), is, like AltnV, a one-dimensional vector space. 
But there is no canonical isomorphism Dens(V) '" Altn(v) 
until one of the two orientations of V has been chosen. 

We now make a definition analogous to that of n-forms 
on manifolds. 

Definition. A density on an n-dimensional manifold is a 
correspondence p that assigns to every p E M a density 

Pp E Dens(TpM) 

in the tangent space at p. 

A density p on M is of course called continuous, differen­
tiable, and so on if it is continuous or differentiable relative 
to charts, that is, if each p(aI , ... , an) has the property. Be­
cause of its close affinity to QnM, we could denote the space 
of differentiable densities on M by QdensM .. 

On oriented manifolds there is only a formal distinction 
between densities and n-forms, and the lemma above gives 
us a canonical bijection between Qdens M and on M. But pass­
ing to the opposite orientation reverses the sign of this bijec­
tion, so there seems to be an essential difference between 
densities and n-forms on nonorientable manifolds-and in­
deed there is. 

Thus densities look like obvious integrands. Although n­
forms do the same thing on oriented manifolds-and now 
we can see that this is why n-forms have something to do 
with integration-densities lead to a well-defined notion of 
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integrals on nonorientable manifolds as well. But forms are 
preferred despite this, largely because they are also avail­
able as k-forms for k < n. Stokes's theorem, for instance, 
is a theorem about (n - l)-forms. Although k-densities can 
also be defined suitably so as to give integral theorems on 
nonorientable manifolds, the concept of forms would still be 
needed for the definition. (In a different language, let L -+ M 
denote the line bundle over the orientation double covering 
whose sections are what the physicists call pseudoscalars. 
Then densities are L-valued n-forms, and more generally k­
densities would have to be interpreted as L-valued k-forms.) 

5.2 The Idea behind the Integration 
Process 

Although we could pursue the following reflections just as 
well for a density on an unoriented manifold, we stick to 
forms in view of what we intend to do later. So let M be an 
oriented n-dimensional manifold and w a form on M. Each 
wp E Alt"TpM responds to oriented spans in TpM, and we 
now try to understand whether and to what extent w gives us 
a "response" iM w to the whole manifold. Th do this, we con-

sider an orientation-preserving chart h : U ~ U' c JR." on 
M and, in the image U' of the chart domain U, a rectangular 
parallelepiped, or box, B' = [aI, b1] X ... x [a", b"] c U'. Sub­
dividing the intervals [ai, bi ] determines a fine grid of many 
subboxes whose union is the large box B'. We call the preim­
ages under the chart h the cells of the grid. To fix notation, 
we write (J' p for the cell with the "lower left vertex" p; this is 
the preimage of the subbox 

" n [x~, x~ + ~x~] 
i=l 

of the grid covering B', where x~, ... ,x; denote the coordi­
nates of the lattice point p E B. Of course it should be true 

B' C u' c]R" 

Figure 5.4. "Cells" 
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Figure 5.5. Approximat­
ing cells by tangential 
spans 

that 

so next we try to understand whether and how cv responds 
to the individual cells. 

If we want to follow the usual procedure of infinitesimal 
calculus, we should approximate the little cells linearly. We 
can do this by comparing each ()" p with the tangential span 
sp in TpM obtained as the preimage under dhp (the linear 
approximation of the chart) of the subbox corresponding 
to ()" p. Since the unit vectors of ]Rn just correspond under 
the differential of the chart to the coordinate basis vectors 
al, ... ,an of the tangent space, the ~~ . aIL are the edge 
vectors of the span. Thus 

sp = span(~x~. aI, ... , ~x; . an). 

Now the alternating n-form cvp on TpM gives us a well­
defined response 

cvp(~x~ . at. ... , ~x; . an) = cvp(ch, ... , an)~x~ ..... ~x;, 

and of course it seems natural to think of 

L cvp(a}, .. . , an)~x~ ..... ~x; 
pelattice 

as an approximating sum for fB cv and to think of the integral 
as the limit of such sums as the grid covering B becomes 
finer and finer. Our statement at the beginning of this chap­
ter about the reduction of integration over n-dimensional 
manifolds to integration in ]Rn translates into the formula 

f cv = f (CVl... n 0 h-l)dxl ... dxn, 

B B' 

which we can now understand geometrically. 
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Thus small cells are approximated by oriented tangential 
spans, and of course w has a response ready for them­
to a first approximation, w responds to the oriented cells 
themselves. Ifwe imagine the whole manifold as divided into 
small cells, then the integral is the sum of the responses to 
the cells, and we can trust that the result will be independent 
of the choice of charts used in the process because of our 
interpretation of the n-form as a density. 

This picture of n-forms and the integral f M w will turn 
out to be useful, especially for an intuitive understanding 
of the Cartan, or exterior, derivative and Stokes's theorem 
that fMdw = faMw. But this doesn't mean that approximat­
ing cells by spans is technically the best path to follow for 
the actual introduction of the integral. In fact, we assume 
that integration theory in lR" is known and exploit it for in­
tegration on manifolds, rather than developing integration 
on manifolds analogously from scratch. The results we need 
from integration theory are listed in the next section. 

5.3 Lebesgue Background Package 

For the first time in quite a while, .I'm putting additional 
demands on your background knowledge-this time by as­
suming some familiarity with the Lebesgue integral in lR". 
But I'm packaging the following background for you so I can 
say what I mean a bit more preCisely. 

The Lebesgue-measurable subsets of lR" form a (7"­

algebra 9Jt on which the Lebesgue measure J-t : 9Jt -+ [0, 00] 
is defined, thus turning lR" into a measure space (lR", 9Jt, J-t). 
As in any measure space, the functions lR" -+ lR that are in­
tegrable with respect to J-t then form a vector space £1 (lR", J-t) 
on which the integral is given as a linear map, which we 
denote simply by 

£1 (lR", J-t) -+ R 

f f(x)dx. 
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The map 

.e1 (JR", f.L) ~ JR+, 

f ~ f If (x)ldx =: If II 
lRn 

is a seminorm on .e1 , and If II = 0 if and only if f vanishes 
almost everywhere, i.e. except on a set of measure zero. 
Thking the quotient of .e1 (JR", f.L) by the vector subspace of 
functions that vanish almost everywhere gives a normed 
vector space, which we denote by L 1 (JR", JL), whose elements 
are the equivalence classes of integral functions under the 
relation of being equal almost everywhere. 

Of course, much could be said about the properties of this 
Lebesgue integral: little lemmas and big theorems. I want at 
least to remind you of three wonderful convergence theo­
rems, which incidentally hold for the Lebesgue integral on 
arbitrary measure spaces. These are the norm convergence 
theorem, the monotone convergence theorem, and the dom­
inated convergence theorem (also called the Lebesgue con­
vergence theorem). 

These three convergence theorems all deal with when 
a sequence of integrable functions converges to an inte­
grable function and when a limit and an integral can be 
interchanged. By the norm convergence theorem, I mean the 
statement that L1 (JR", JL) is complete and hence a Banach 
space. The second theorem says that boundedness of the 
sequence of integrals flRn /kdx under monotone pointwise 
convergence fk ,/ f implies the desired convergence state­
ment. The third theorem guarantees that under arbitrary 
pointwise convergence /k ~ f) the existence of a dominat­
ing function g E .e1 (one for which Ifk(x) I ::::: g(x) for all k and 
x) implies that f E .e1 and f f dx = lim f fkdx. 

In addition to these three general convergence theorems, 
I want to remind you of two important theorems that per­
tain to JR" in particular, namely Fubini's theorem and the 
change-of-variables formula. As you know, Fubini's theo-
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rem reduces integration on lRn inductively to integration on 
lR ("iterated integrals"). I won't write down the exact wording 
of the theorem now. But the change-of-variables formula is 
crucial to integration on manifolds and should be cited in 
complete detail. First some terminology and notation. 

Our discussion up to now has been about integrals on all 
of lRn. But this includes the case of a subset n c lRn as region 
of integration, in the following way: If n is contained in the 
domain of definition of f, we define fn : lRn -+ lR by 

in(x) = { ~(X) for x En, 
otherwise, 

no matter whether or how f was previously defined outside 
n. If fn is in £1 (lRn, 11), we say that f is integrable on n 
(keep in mind that this is with respect to Lebesgue measure 
I1n), and we write 

f f (x)dx:= f fn(x)dx. 

n R" 

Theorem (Change-of-variables formula). Let n c lRn be 
open and f : n -+ lR integrable on n; let Q c lRn be an-

other open subset and rp : Q ~ n a C1 diffeomorphism. Then 
f 0 rp . Idet J<p I is also integrable on Q and 

f f dx = f (f 0 rp) ·ldetJ<pldx, 

Q n 
where J<p : Q -+ M(n x n, lR) denotes the Jacobian matrix of rp. 

The diffeomorphism rp : Q -+ n can be viewed as a sort of 
"reparametrization." We shouldn't expect f and f 0 rp to have 
the same integral; on the contrary, we need a correction fac­
tor. And we shouldn't be surprised that this factor is exactly 
the absolute value of the Jacobian: after all, the Jacobian 
matrix is the linear approximation of the diffeomorphism 
rp, so in passing from small boxes in Q to their images in 
n, the volume is approximated by multiplication by IdetJ<pI. 
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A careful proof takes. some effort, as you probably remem­
ber. One thing that comes out of it is that diffeomorphisms 
between open sets in IRH , and transition maps in particular, 
take measurable sets to measurable sets and sets of measure 
zero to sets of measure zero. This is about to be useful. 

Figure 5.6. The change-of-variables formula 

That's it for our Lebesgue package. If all its contents seem 
familiar to you, you're certainly well prepared for what fol­
lows. But I won't try to conceal that for the main goals of this 
course, Stokes's theorem and its consequences, you could get 
by with less integration theory: just the integral, Fubini's the­
orem, and the change-of-variables formula for Coo functions 
with compact support on IRH and the half-space. If you want 
to take this path, all you have to do now is work through Sec­
tions 9.S and 9.6 instead of S.4-don't worry, these sections 
are set up for this and expect a visit from Section S.3-and 
you'll know enough about the notion of integrals on mani­
folds. 

5.4 Definition of Integration on 
Manifolds 

Definition. A subset A of an n-dimensional manifold is 
called measurable Crespo a set of measure zero) if it has 
this property relative to charts, that is, if for some (hence 
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every) covering of A by charts (U, h) on M, each h(U n A) is 
Lebesgue-measurable Crespo a set of measure zero) in jRn. 

Thus the a-algebra of Lebesgue-measurable sets is also 
well defined on a manifold, and its sets of measure zero are 
canonically recognizable. But note that of course we have no 
canonical measure on this a-algebra. 

Now let W be an n-form on an oriented n-dimensional 
manifold M. 10 define f M W we will decompose Minto count­
ably many small pieces, on each of which we can integrate 
by using a chart. These small pieces need not be coordinate 
cells, which would lead to major technical difficulties on 
the overlaps of adjacent charts. Instead, the good properties 
of the Lebesgue integral allow us great freedom in how we 
decompose M. 

Thrminology. For the follOWing discussion, a subset A C M 
will be called small if it is contained in a chart domain. 

Note. Any manifold can be decomposed into countably many 
pairwise disjoint small measurable subsets. For instance, if2l = 
{(Ui, hi) : i E N} is a countable atlas on M, then 

Al := UJ, 
i 

Ai+I := Ui+I \ UAk for i ~ 1 
k=I 

gives such a partition M = U~I Ai. 

Of course, we intend to set fMw := L:~I fAjw.Aswehave 
to integrate on small pieces by means of charts, it is already 
intuitively clear that the change-of-variables formula for the 
Lebesgue integral is what makes this technically feasible. 

Theorem and Definition (Integration on manifolds). 
An n-form W on an oriented n-dimensional manifold M is called 
integrable if for some (hence every) decomposition (Aj)jeN of M 
into countably many small measurable subsets and some (hence 
every) sequence (Uj, hj)jeN of orientation-preserving charts with 
Ai C Uj, the following holds: For every i E N, the downstairs 
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component fUnction 

aj := W(dl, ... , dn ) 0 hil : hj(Uj) -+ lR 

of W relative to (Uj, hj) is Lebesgue-integrable on hj(Aj), and 

t f lai(x) Idx < 00. 

I-I hj(Aj) 

The value 

t f ai(x)dx:= f w, 
1-1 hj(Aj) M 

which is independent of the decomposition and the charts, is 
called the integrtil of waver M. 

PROOF OF THE ASSERTIONS. Let (Ai) i::: 1 and (Bj)j:::l be de­
compositions of M into measurable sets and let (Uj, hi) and 
(Vj' kj) be orientation-preserving charts with Ai C Uj and 
Bj C Vj. Let W be an n-form with downstairs component 
functions aj (relative to (Ui, hj») and hj (relative to (Vj, kj») 

such that w satisfies the conditions in terms of the Ai's and 
hi's: each ai is integrable on hj(Aj) and L~l fhj(Aj) laildx < 00. 

We must show that each hj is integrable on kjCBj), that 
L~1 fkj(Bj) Ibjldx < 00, and that 

f f aj(x)dx = f f hj(x)dx. 
1-1 J-l 
- hj(Aj) - kj (Bj) 

Recall that a Lebesgue-integrable function on lRn is also 
integrable on every measurable subset of lRn. In particular, 
aj is integrable on hjCAi n Bj), and it follows from Lebesgue's 
convergence theorem that 

f ajdx= t f ajdx, 

hj(Aj) } - hj(AjnBj) 

and similarly for lad in place of ai. Now, to pass from aj on 
hjCAjnBj) to hj on kjCAjnBj), we apply the change-of-variables 
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formula cited in such detail in Section 5.3. That is, we set 

n := hj(Uj n Vj), 

{ 
aj(x) for x E hj(Aj n Bj), 

f(x) := . o otherwIse, 
n := kj (Uj n Vj), and finally 

cp := hj 0 kt Ikj (Uj n Vj), the transition map. 

Figure 5.7. 

For each P E Vj n Vj, consider the three differentials 

TpM 

/~ 
]Rn 

From the alternating n-form wp on TpM, the (inverses of 
the) differentials of the two charts induce two alternating 
n-forms on ]Rn, one of which takes the value bj(kj(p» on the 
canonical basis, and the other the value aj(hj(p»). But the 
endomorphism Jrp(kj (p» acts on Altn]Rn by multiplication by 
the determinant, as we know from the lemma in Section 3.3, 
so we have 
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or 

bj = (ai 0 f{J) . Idet lq:> I. 

throughout kj(Ui n Vj). We can take the absolute value be­
cause <p preserves orientation and therefore has positive Ja­
cobian. This also implies trivially that 

(bjhj(AinBj) = (aihi(AinBj) 0 f{J) . Idetlq:> I, 

and similarly for lail and Ibj I in place of ai and bj. So by 
the change-of-variables formula the function bj is Lebesgue­
integrable on kj (Ai n Bj) and 

f bj dx = f ai dx, 

and similarly for lail and Ibj I in place of ai and bj . It follows 
that 

f f Ibjldx < 00. 

i,j=l kj(AinBj} 

In particular, Ib j I and bj are integrable even on k j (Bj) by the 
convergence theorems. We have 

and similarly for Ibjl· Hence L~l fkj(Bj) Ibjldx < 00, by 
the equation relating bj and ai that comes directly from the 
change-of-variables formula. It follows that 

f f bjdx= f f aidx, 
; =1 1=1 

kj (Bj) hi(Ai) 

as was to be proved. o 
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5.5 Some Properties of the Integral 

How can you tell whether an n-form is integrable? We will 
usually be dealing with n-forms whose support, the closed 
set 

supp w := {p EM: wp =1= O} C M, 

is compact. If M itself is compact, for example, then of course 
all n-forms have compact support. 

Lemma. An n-form w with compact support on an n-dimensional 
oriented manifold M is integrable if and only if it is locally in­
tegrable; that is, if around any point there is a chart (U, h) such 
that the downstairs component function 

Weal, ... , an) 0 h- l : h(U) ~ ffi. 

is Lebesgue-integrable on h(U) C ffi.n 

PROOF. If (Ui, hi)iEN is a countable atlas of such charts, then 
finitely many of them, say the first r, cover the support of 
w. Set Al := U1 and Ai+1 = Ui+1 \ U~=l Ak. Then wlAi :i:: 0 for 
all i > r, so 

~ f lai1dx=t f la;ldx<oo. 
hj(Aj) hj(Aj) 

o 

Continuous n-forms are locally integrable, of course, and 
if w is locally integrable and A C M is measurable, then the 
form WA defined by 

1 Wp, 
p f---'; 

o 
pEA, 

otherwise 

is also locally integrable. TJ:1us the lemma already gives us a 
number of examples of integrable forms. In particular, on a 
compact oriented n-dimensional manifold M all continuous 
n-forms are integrable. A fortiori, so are all differentiable 
n-forms and hence all w E Qn M. 
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As we expect from the discussion in Section 5.1 and can 
now easily read off from the definition, reversing the orien­
tation changes the sign of the integral: 

Note. f w = - f w. 

-M M 

What is the change-of-variables formula for integrals on 
manifolds? Instead of a diffeomorphism <p : Q -+ Q between 
two open subsets of ]Rn, we now consider an orientation-

preserving diffeomorphism cp : M ~ M. If, for the integra­
tion on M, we use a decomposition M = UAj and charts 
(Uj. hi) around the A/s, then for M we can use the cor­
responding data under cp, namely the decomposition M = 
Ucp-l(Ai) and the charts (cp-l(Uj), hi 0 cp!cp-l(Ui). Then the 
n-forms w on M and cp*w on M have exactly the same down­
stairs component functions, and the nice and important nat­
urality property of the integral follows. 

Note C·Change-of-variables formula" for integration on 

manifolds). If cp : M ~ M is an orientation-preserving dif­
feomorphism between oriented n-dimensional manifolds, then 
an n-form w on M is integrable if and only if cp*w is integrable 
on M, and we have 

f w = f cp*w. 

M M 

Of course, this was also to be expected from the intuitive 
discussion of the integral in Section 5.2, since the induced 
form cp*w, by definition, responds to a cell (span) as w does 
to the image cell. 

Finally, as far as integrability and the integral on subsets 
A of M are concerned, we fonow the spirit of the convention 
we established for the Lebesgue integral when we recalled 
the change-of-variables formula in Section 5.3. We define 
fA w := fM WA, where WA agrees with w on A and is set equal 
to zero outside A. The change-of-variables formula now takes 
the following form. 
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Corollary. If cp : M -+ M is an orientation-preserving diffeo­
morphism and A C M, then W is integrable on cp(A) if and only 
if cp*w is integrable on A, and we have 

!cp*W=! w. 
A cp(A) 

One last general remark. We used charts here to reduce 
integration on manifolds to integration on JR.n , so we had 
to assume only the latter as known. But whoever knows 
the Lebesgue integral for arbitrary measure spaces holds a 
master key that gives direct access to the general properties 
of the integral on manifolds-the convergence theorems, for 
instance. 

What I mean is this. On any oriented manifold one can 
construct a volume form, a nowhere-vanishing n-form WM E 

nn M that gives a positive response to positively oriented 
bases. This is quite easy by means of a partition of unity, 
which we will encounter as a tool in connection with Stokes's 
theorem. Let WM be any such volume form. Then through 

t--t(X):= ! WM 

X 

it defines a measure t--t on the a-algebra 9J1 of Lebesgue­
measurable subsets of the manifold M and turns M into a 
measure space. A function f : M -+ JR. is integrable on this 
measure space if and only if the n-form f WM is integrable, 
and then we have 

! fdt--t=! fWM. 
M M 

But since dimAltnTpM = I, every n-form on M is f WM for 
some f, so integrating n-forms on oriented manifolds can 
also be viewed as integrating functions on a measure space. 
A volume form is not, however, given canonically. 
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5.6 Thst 

(1) The span of the three unit vectors in 1R3 is a 

D tetrahedron. D triangle. D cube. 

(2) If A : IRn ~ IRn is a linear map, then the n-dimensional 
volume of A([O, l]n) is 

D IIAII. 

D IdetAI. 

D lall ..... annl. 

(3) If p is a density and w is an alternating n-form on an 
n-dimensional vector space V, then 

D -Ipl is an alternating n-form. 

D -Iwl is a density. 

D Iwl is a density. 

(4) A set X C IRn has measure zero if and only if for every 
E there is a sequence of cubes Wi, with total volume 
L~l VOl(Wi) ::: E, such that 

D X c U~l Wi· 

D X C n~l Wi. 

D X C Wi for sufficiently large i. 

(5) In the plane 1R2 , let R denote the rectangle (1, 2) x (0, ~) 
and K the quarter-annulus in the first quadrant with 
radii 1 and 2. Then the change from polar to Cartesian 
coordinates, (r, cp) t-+ (x, y), given by x = r cos cp and 
y = r sin cp, defines a diffeomorphism <I> from 

D K to itself. D K to R. D R to K. 

(6) For <I> as in (5), the Jacobian lep(r, cp) is 

D r sin 2cp. D r. D -r. 
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(7) You will occasionally come across the notational cus­
tom of denoting a certain function in the most disparate 
coordinate systems over and over again by f, as though 
the convention 

f(x;, ... ,x'n) = f(X; (Xl,··. ,xn), .. · ,x'n(XI, ... ,Xn)) , 
~: f (Xl, ... , xn) 

had been accepted. Very confusing! But with a little 
effort you can figure out what it means. Imagine that 
f actually lives, independently of coordinates, on U 
(for instance, on a region U of real physical space), 
that f (x;, ... ,x'n) means the value of the function at 
the point that has coordinates (x;, ... ,x'n) with respect 
to the primed coordinate system, and so on. Then f 0 h- l , 

f 0 h,-I, etc., are always just written f, suppressing the 
names h, h', ... of the charts. 

We don't really want to adopt this notation, but we 
do want to be able to read it if necessary, and in this 
sense the question now asks: How does the change-of­
variables formula for integrals read between Cartesian 
and polar coordinates if the convention above is ap­
plied? 

o ff f(x, y)dxdy = ff f(r, q;)rdrdq;. 

o ff f(x, y)Jx2 + y 2dxdy = ff f(r, cp)drdcp. 

o ff f(x, y)dxdy = ff f(r, q;)drdq;. 

(8) In the local coordinates of a chart (U, h), the integral of 
an n-form w over the chart domain is 

f w = f f(x)dx, 

U h(U) 

where f : h(U) ~ lR can be given by 

o f(x) = w(h-l(x)). 

o f (xl, ... ,xn) = Wl...n (Ricci calculus). 

o f 0 h = w (aI, ... , an). 
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(9) If two charts (U, h) and (U, h') differ only in the sign of 
their first coordinate and if a and a' are the downstairs 
component functions of an n-form w given on U, then 

f a dx = - f a'dx. 

h(U) h'(U) 

Why? 

o Because 

( In) '( 1 2 n) a x , ... , x = a -x ,x , ... , x 

in the coordinates of lRn, and the Jacobian of the 
transition map is -1. 

O B ( In) _ '( 1 2 n) d ecause a x , ... , x - -a -x ,x , ... ,x , an 
the absolute value of the Jacobian of the transi-
tion map is 1. 

o Because a(x1 , ... ,xn) = -a' (xl, x2 , •.• , xn), and the 
transition map is orthogonal. 

(10) For orientation-reversing diffeomorphisms cp : M ~ N, 
we have 

o fM w + frp(M) cp*w = o. 

o fM cp*w + frp(M) w = O. 

o fM w + frp-l(N) cp*w = O. 

5.7 Exercises 

EXERCISE 5.1. Give an n-form w on lRn such that fA W = /-L(A) 
for every A C ]Rn with Lebesgue measure /-L(A) < 00. 

EXERCISE 5.2. Let w be an integrable n-form on the oriented n­
dimensional manifold M. Show that, just as for integration in 
lRn, the following holds: If an n-form 11 agrees with w almost 
everywhere on M, then 11 is also integrable, and fM w = fM TJ· 

EXERCISE 5.3. Let M be an oriented n-dimensional manifold. 
As an analogue to I· II on .c1(lRn , /-L), how would a seminorm 
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1·11 have to be defined on the vector space £ 1 (M) of integrable 
n-forms on M? For each W E £1 (M), define an n-form Iwi 
such that Iwil := fM Iwl determines a seminorm that is zero 
exactly on the forms that vanish almost everywhere. 

EXERCISE 5.4. Let 7r : if -+ M be an m-sheeted covering 
of the connected n-dimensional oriented manifold M. Let 
the covering manifold if be oriented in such a way that 
7r is orientation-preserving everywhere. Show that if w is 
integrable on M, then 7r*w is integrable on if and fM 7r*w = 
mfM w. 

5.8 Hints for the Exercises 

FOR EXERCISE 5.1. For the solution of this exercise, all you 
have to know about Lebesgue measure is that 

Jl(A) = f 1 dx 

A 

for Lebesgue-measurable A C ]R" with finite measure. Of 
course, this is assumed to be known and need not be proved 
here. The exercise isn't hard and is just intended to make 
you read through the definition of the integral of an n-form 
again. 

FOR EXERCISE 5.2. The point of this exercise is the same. It's 
just that you can't get by here, as you could in Exercise 5.1, 
with a single chart on M. 

FOR EXERCISE 5.3. Warning: Here Iwlp does not mean the 
absolute value IWpl of wp : rpM x '" x rpM -+ R That 
wouldn't be an alternating n-form on rpM. For every p E M, 
though, you should set Iwlp := ±wp with the right choice 
of sign; the only question is how the sign depends on p. 
Of course, you should prove that Iwl really is integrable for 
w E £1 (M) and that I· II := f M 1·1 is a seminorm on £1 (M) with 
the stated property. What this means here is a reduction to 
the corresponding properties of the Lebesgue integral on ]R". 
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~D 
PI" u 

<> • h, a chart 

D 
Figure 5.8. The differen­
tiable structure on M 

FOR EXERCISE 5.4. You'll know enough about the notion of 
coverings for this exercise if you read pp. 126-131 in [J:7bp] 
and notice in addition that in the case of a covering n : M ~ 
M of a manifold M, the covering space M is also a manifold 
in a canonical way. In fact, its differentiable structure is the 
only one for which n is a local diffeomorphism everywhere. 
How will the decomposition 

00 m 

M=UUXj 
i=l j=l 

of M into measurable subsets have to be chosen so that the 
integrability ofn*w and the formula 1M n*w = m 1M w follow 
easily? It's intuitively clear! 



CHAPTER 

6.1 Introduction 

Manifolds-with­
Boundary 

The classical version of Stokes's theorem deals with the con­
nection between "surface integrals" and "line integrals." A 
three-dimensional version, called Gauss's integral theorem, 
makes a statement about the relationship between "volume 
integrals" and surface integrals. 

oriented surface M C 1R3 

o 
oriented boundary curve aM 

Figure 6.1: In the original 
version J M curl Ii . is = 
JaM Ii . as of Stokes's 
theorem, the integration 
is over a surface and its 
boundary curve. 

M, here Ji3 

Q 
boundary surface aM = S2 

Figure 6.2: In Gauss's 
integral theorem 

JM Ii· is = JM divlidV, 
the integration is "over 
a closed surface and the 
volume it encloses!' 

101 

K. Jänich, Vector Analysis
© Springer Science+Business Media New York 2001



1 02 Chapter 6 Manifolds-with-Boundary 
--------------~--------------~----------------

Here, of course, we would like to treat both cases simul­
taneously, and even for this an n-dimensional version of the 
theorem would be worthwhile. Nor do we want to restrict 
ourselves to submanifolds ofl~3 or jRN. In order to formulate 
Stokes's theorem in its full generality, we need the notion 
of manifolds-with-boundary, to which the present chapter is 
devoted. 

6.2 Differentiability in the Half-Space 

The local model for manifolds-with-boundary is the closed 
half-space, just as ~n is the local model for manifolds. To turn 
this notion into a precise definition, we must first explain 
what differentiability means in the case of the half-space. 

Which half-space we use is unimportant, but in view of 
a certain orientation convention that will come up later, we 
choose the left half-space. 

Notation and Thrminology. For n 2: 1 we let ~~ denote the 
half-space {x E R,n : xl :::: O} and a~~ := {x E jRn : xl = O} = 
to} x jRn-1 its boundary. If U C jR~ is open in the subspace 
topology of ~~ c ~n (for short: open in ~~ or an open subset 
ofjR~), then au := U n alR~ is called the boundary of U and 
the elements pEa U the boundary points of U. 

Of course, the boundary a U of U may be empty, and this 
obviously happens when U C ~~ is open not only in jR~ but 
also in IRn. 

{O} x jRn-l 

uAau 
~xl 

Figure 6.3a. au ¥= 0 Figure 6.3b. au = 0 

In topology, what is meant by a boundary paint of a subset 
A of a topological space X is an element x E X that is neither 
an interior nor an exterior point of X. But we should avoid 
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this terminology for a while, because it clashes with the 
notion of boundary introduced above for an open subset V 
of IR~. Observe that in general a V does not coincide with the 
topological boundary of V, no matter whether V is regarded 
as a subset of IR~ or of IRn. 

Definition. Let V be open in JR~. A map f : V ~ JRk is 
called differentiable at the point P E V if it can be extended 
to a map that is differentiable in a neighborhood of pin IRn; 
that is, if there exist an open neighborhood Up of p in IRn 

and a differentiable map g : Up ~ IRk such that f I V n Up = 
glV n Up. 

For p E V \ a V this is nothing new, and f is simply differ­
entiable, i.e. differentiable everywhere, if it is differentiable 
in V \ a V in the usual sense and differentiable for pEa V in 
the sense above. Of course, by a diffeomorphism between 
open subsets ofJR~ we mean a bijection that is differentiable 
in both directions. Such diffeomorphisms will be the transi­
tion maps of the as yet undefined manifolds-with-boundary. 
The following two lemmas clarify their boundary behavior. 

6.3 The Boundary Behavior of 
Diffeomorphisms 

Lemma 1. If f : V ~ V is a diffeomorphism between open 
subsets ofJR~, then f(aV) = avo Hence 

flav: av ~ av 

is a diffeomorphism between open subsets ofIRn-l. 

PROOF. Let pEa V and let g : Up ~ JRn be a local differ­
entiable extension of f. Suppose f (p) were not a boundary 
point of V. Then by the continuity of f- 1 it would have a 
neighborhood Vp in V, open in IRn, such that f-l(Vp) CUp. 
But go (f-lWp) is the identity on Vp , and g and f- 1Wp are 
differentiable in the usual sense. Hence f- 1 has full rank n 

Figure 6.4. Differentiabil­
ity at boundary points 

Figure 6.5. Assumption 



104 ________________ ~C=ha~p~t~e~r~6~M~a~n=w~o=ld=s~-w~iili~-B~o=u=n=da~ry~ __________________ __ 

Figure 6.6. Local ex­
tension is not uniquely 
determined, butthe oaflp 
are. 

at f (p), so by the inverse function theorem it is a local dif­
feomorphism in the usual sense. In particular, f- I (Vp) C U 
is a neighborhood of p in JR.n, contradicting p E au. This 
shows that f(aU) c avo But f is a diffeomorphism, and a 
similar argument applied to f- I shows that f-I(aV) c au. 
Therefore f(aU) = avo 0 

Of course, the local differentiable extension of a map 
f : U -+ JR.k around a boundary point p is not uniquely 
determined, but all the partial derivatives oaf of f at the 
point p (and in particular the Jacobian It (p») are. 

Lemma 2. If f : U ~ V is a diffeomorphism between open 
subsets ofJR.~ and if p E au, then the well-defined differential 

dip : JR.n ~ JR.n 

maps the subspace {O} x JR.n-I and each half-space JR.l into itself; 
that is, the Jacobian matrix is of the form 

ad l 0 

ad2 

ltIIO}xRn-l (p) 

ad n 

where ad l > O. 

PROOF. Since f(aU) = av, we have fllaU == 0, so ad l = 0 
for k = 2, ... , n. Since V lies in JR.~, we have fl ~ 0 on U and 
thus 

fl (p + ted - fl (p) 
=--.....::....-----'----=- > 0 

t -

for t < O. Hence ad l 2: 0, and in fact ad l > 0 because It(p) 
has full rank. 0 
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6.4 The Concept of 
Manifolds-with-Boundary 

Now we turn from future changes of charts to manifolds­
with-boundary themselves. The only formal difference from 
ordinary manifolds ("without boundary") is that now we also 
admit open subsets of ~~ as images under charts. 

Let X be a topological space. A homeomorphism h from 
an open subset U of X onto an open subset U' of ~~ or 
~n will be called an n-dimensional chart-with-boundary 
for X. The notions of n-dimensional atlas-with-boundary, 
differentiable n-dimensional atlas-with-boundary, and n­
dimensional differentiable structure-with-boundary (max­
imal atlas) are to be understood accordingly. 

Definition. Let n ~ 1. An n-dimensional manifold-with­
boundary is a pair (M, V), usually abbreviated M, consist­
ing of a second-countable Hausdorff space M and an n­

dimensional differentiable structure-with-boundary V for M. 
We call maps between manifolds-with-boundary differen­
tiable if they are differentiable relative to charts. 

Transition maps must take boundary points to boundary 
points, as we saw in Lemma 1. This justifies the next defini­
tion. 

Definition. Let M be a manifold-with-boundary. A point 
p E M is called a boundary point of M if it is mapped by 
some (hence every) chart (U, h) around p to a boundary 
point h(p) of h( U) c ~~. The set aM of boundary points is 
called the boundary of the manifold-with-boundary M. 

Note. If M is an n-dimensional manifold-with-boundary, the 
restrictions 

hlU n aM: un aM ~ a(h(U)) c {OJ X ~n-l ~ jRn-l 

of the charts on M provide its boundary aM with an (n - 1)­
dimensional ordinary differentiable atlas and thus tum aM into 
an ordinary (n - I)-dimensIonal manifold (Without boundary). 

_--~M 

Figure 6.7. If P is a bound­
ary point in terms of h, 
it is also a boundary 
point in terms of k: the 
boundary of M is well 
defined. 
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This manifold is what is always meant later on when the 
boundary aM of a manifold-with-boundary is mentioned. We 
also say that M is bounded by aM or that aM bounds M. If 
f : M ~ N is a differentiable map between manifolds-with­
boundary, then of course flaM: aM ~ N is also differen­
tiable. Our next observation follows from Lemma 1. 

Note. If f : M ~ N is a diffeomorphism between manifolds­

with-boundary, then f (aM) = aN and flaM: aM ~ aN is a 
diffeomorphism. 

For n :::: 1, any ordinary n-dimensional manifold M 
will be considered in the obvious way as a manifold-with­
boundary with aM = 0. By a zero-dimensional manifold­
with-boundary we mean just an ordinary zero-dimensional 
manifold. Thus the boundary of a zero-dimensional manifold­
with-boundary is empty -as a (-I)-dimensional manifold 
should be. 

6.S Submanifolds 

We won't write out in detail all that can immediately be 
generalized from ordinary manifolds to manifolds-with­
boundary. If that were necessary, we would have been 
better off basing everything from the beginning on the 
more general concept! There are things, however, whose 
generalization to manifolds-with-boundary involves certain 
decisions or conventions, or that for some other reason is 
not completely self-explanatory, and a few matters of this 
kind will be discussed in this and the following sections. 

Definition. Let M be an n-dimensional manifold-with­
boundary and let 1 :::: k :::: n. A subset Mo of M is called 
a k-dimensional submanifold-with-boundary if around any 
P E Mo there exists a chart-with-boundary (U, h) on M such 
that 

h(U n Mo) = (lR~ x {O}) n h(U). 
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This is not the only plausible way to interpret the notion 
of submanifolds for manifolds-with-boundary. In choosing 
this version, we make two decisions. First, we do not require 
that aMo c aM. But second, if a point P E Mo lies in the 
boundary of M, then it is also a boundary point of Mo, and 
Mo is "transversal" to aM there, in the sense that relative to 
charts, Mo and aM must abut at p as do ~~ and to} x ~n-l: 

M _ R'LfflO) x R"-l 

Figure 6.8. The two admissible possibilities for the position of aMo 
relative to aM 

In particular, aM itself is not a submanifold of M unless 
it is empty, nor do we allow non empty subsets of aM as 
submanifolds of M. To extend these decisions to k = 0, we 
require zero-dimensional submanifolds of M not to intersect 
the boundary. So a zero-dimensional submanifold Mo of M 
will just be a zero-dimensional submanifold Mo of M \ aM in 
the ordinary sense. 

Just as submanifolds of ordinary manifolds are them­
selves manifolds, k-dimensional submanifolds-with-boundary 
are k-dimensional manifolds-with-boundary in a canonical 
way. The restrictions of the flatteners (U, h) to each un Mo 
form a k-dimensional differentiable atlas on M. 

6.6 Construction of 
Manifolds-with-Boundary 

As examples of constructions of ordinary manifolds, we in­
troduced sums, products, certain quotients, and the preim-
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Figure 6.9. Edges can 
occur in the product. 

{h} x S1 _--....L 

,-------
~, 

{a} x S1 

Figure 6.10. [a, b] x D2 

with its "edges" 

Figure 6.11. A smoothing 
map 

ages of regular values. The disjoint sum Ml + M2 of two 
n-dimensional manifolds-with-boundary is itself an n-dimen­
sional manifold-with-boundary, in a canonical way. There 
is a slight technical difficulty in taking products: although 
jRk x jRn = jRk+n canonically, jR~ x jR~ is not a half-space 
but a quadrant in jRk+n. For example, taking the product 
[a, b] x D2 of a closed interval and a closed disk gives a three­
dimensional solid cylinder with two "edges" in its boundary, 
namely {al x 51 and {b} x 51. More generally, M x N is intu­
itively something like a manifold that has boundary 

a(M x N) = aM x N U M x aN 

and an "edge" (or "corner") along aM x aN. Why one wants 
to consider such products in the first place determines 
whether one "smooths" the edges and turns them into gen­
uine manifolds-with-boundary by using a homeomorphism 
jR~ x jR~ ~ lR:' that fails to be a local diffeomorphism 
only at 0, or leaves them as they are and develops a theory 
of "manifolds-with-edges" (or "manifolds-with-corners"). We 
take neither of these paths here, but only point out that 
when at least one of the two factors has no boundary, the 
product is again a manifold-with-boundary in a canonical 
way. 

The quotient M/r of an n-dimensional manifold-with­
boundary M under a fixed-point-free involution r is canoni­
cally an n-dimensional manifold-with-boundary, by the same 
argument that was given in Section 1.6 for ordinary mani­
folds. Here a(M/r) = (aM)/r. 

Just as for ordinary manifolds, the regular value theorem 
is an important source of concrete examples of manifolds­
with-boundary. 

Lemma. If M is an n-dimensional manifold without boundary 
and C E lR is a regular value of a coo function f : M ~ lR, then 
Mo := {p EM: f(p) ::: c} is an n-dimensional submanifold­
with-boundary of M. 
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M R 

f c 

Figure 6.12. The pre image [-1 «-00, e)) =: Mo at a regular value 
e. Here [-l(e) = aMo. 

6.7 Thngent Spaces to the Boundary 

What about the tangent spaces TpM for boundary points 
P E aM? Are they well defined at all? And if so, might it be 
better to use tangent half-spaces instead? 

Remark and Convention. The tangent space for manifolds­
with-boundary and at boundary points P E aM is also well 
defined by 

T M:= r.,lgM ~ TPhysM, 
p p canon p 

as in Chapter 2, and relative to a chart (V, h) the coordinate 
basis vectors (a1, ... , an) of TpM are defined for every P E V. 
Thus we use the whole vector space TpM as the tangent 
space at boundary points as well, but the two half-spaces 

T;M:= (dhp)-1(lR~) 

are well defin~d independently of the chart. 

Note and Thrminology. Let p be a boundary point of M. 
Then it is clear that canonically TpaM C TpM and 

rtMn rpM = TpaM. 
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aM 

Figure 6.13. The half­
spaces T; M for pEa M 

Figure 6.14. The orienta­
tion convention 

The elements of T; M \ TpaM are called inward-pointing 
tangent vectors and those of r: M \ TpaM outward-pointing 
tangent vectors. A vector v E TpM points inward (resp. out­
ward) if and only if its first component vI is negative (resp. 
positive) relative to some (hence every) chart. 

6.8 The Orientation Convention 

Orientation and orienting atlas are defined for manifolds­
with-boundary exactly as for ordinary manifolds. It is easy to 
see that the boundary of an oriented manifold M is orientable 
in any case, but this does not mean that aM is already canon­
ically oriented. For that, we need a convention. 

Orientation convention. If M is an oriented n-dimensional 
manifold-with-boundary and P E M, then a basis WI, ... ,Wn-I 

ofTpaMissaid to be positively oriented (or, in the case n = I, 
to have orientation + 1) if and only if for some (hence ev­
ery) outward-pointing vector v the basis (v, WI, ... , Wn-I) of 
TpM is positively oriented. From now on, let the boundary 
aM of an oriented manifold always be provided with this 
orientation. 

Thus, if we use the right-hand rule to orient a three­
dimensional submanifold-with-boundary, say a ball or a solid 
torus, of the real physical space that surrounds us, then when 
viewed from the outside the bounding surface has the coun­
terclockwise orientation. 

Figure 6.15. The orientation convention and the right-hand rule 
for objects in physical space 
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Since we have tangent spaces available for manifolds­
with-boundary (and, on chart domains, coordinate vector 
fields aI, ... , an as well), it is clear what is meant by k-forms 
w on a manifold-with-boundary, when such forms are con­
tinuous or differentiable, what the vector space QkM of dif­
ferentiable k-forms on M is, and, finally, when an n-form w 
on an n-dimensional manifold-with-boundary is integrable 
and what the integral JM w means. All this brings us another 
step closer to Stokes's theorem. 

6.9 'lest 

(1) Which of the the following are open in the topology of 
the half-space lR~ = {x E lRn : xl ::::: OJ? 

D X := {x E lRn : Ilxll < 1 and xl < OJ. 

D X:= {x E lRn : IIxll < 1 and xl ::::: OJ. 

D X := {x E lRn : IIxll ::::: 1 and xl ::::: OJ. 

(2) Let V be the part of the open square (-1,1) x (-1, 1) 
that lies in the left half-plane lR:'. Thus 

V = {(x, y) E lR2 : -1 < x::::: 0 and - 1 < Y < l}. 

Let A denote the right side of V, and B the union of the 
other three sides. More precisely, 

A := {OJ x (-1, I), 

B:= {-I} x [-1,1] U [-1, 0] x {±1}. 

As a subset of the topological space lR:', V also has a 
topological boundary, namely the set UlR,~ of points of 

lR:' that are neither interior nor exterior points of u. 
Similarly, we can consider UlR,2. This question focuses 
on the differences, such as they are, among au, UlR,~, 

and UlR,2. Which of the following is true? 

D aV=AUB, 
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o au = A, UjR:' = A U B, UjR2 = A U B. 

o au = A, UjR:' = B, UjR2 = A U B. 

(3) Let M denote a manifold-with-boundary. Can M \ aM 
be compact if aM i= 0? 

o No, because then M \ aM would also be closed, so 
aM would be open in M. 

o Yes. This happens if and only if M is compact. 

o Yes. By the Heine-Borel theorem this holds, for ex­
ample, for all closed bounded submanifolds-with­
boundary of lR". 

(4) Can a zero-dimensional submanifold Mo of a manifold­
with-boundary M "touch" the boundary (Mo n aM i= 0)? 

o No, because Mo consists of isolated points in 
M\aM. 

o Yes. Let M:= lR~ and Mo := {lIn: n = 1,2, ... }. 

o No, because zero-dimensional submanifolds are 
automatically closed. Hence MonaM = MonaM = 
o by definition. 

(5) LetMbe a manifold-with-boundary and p E M. IsM\{p} 
a submanifold-with-boundary of M, with a(M \ {p}) = 
aM \ {p}? 

o Yes. Every open subset X of M is a submanifold­
with-boundary, with ax = X n aM. 

o No. M \ {p} is a submanifold-with-boundary, but 
a(M \ {p}) = aM whenever dimM > 0 because 
then M \ {p} is dense in M. 

o Yes. The charts (U, h) on M with p ~ U form an 
atlas on M \ {pl. 

(6) Which of the following implications about connected­
ness are valid for manifolds-with-boundary M ? 
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o M is connected {:::::::} M \ aM is connected. 

o M is connected:=} aM is connected. 
o aM is connected:=} M is connected. 

(7) This question deals with cutting a manifold along a 
codimension-l submanifold. Let M be an n-dimensional 
manifold without boundary, and let Mo := 1-1 (c) ::f= 0 
be the preimage of a regular value c of a differentiable 
function I. Then M is the union of the n-dimensional 
submanifolds-with-boundary A := I-I([c,oo» and 
B := 1-1«-00, cD, whose intersection is their com­
mon boundary Mo. You may visualize, for instance, 
that cutting along Mo would split M into the disjoint 
union of A and B. 

Now don't assume that a function I is given, but 
just a codimension-one closed nonempty submanifold 
(without boundary) Mo C M. What happens if we "cut" 
M along Mo? To pose the question more precisely: Is M 
the union of two submanifolds-with-boundary A and B, 
with aA = aB = An B = Mo? We would then say that M 
splits when cut along Mo. When does this happen? 

o Not always. Let a circle be cut "along" a point, say, 
or a torus along a meridian. 

o But there is always an open neighborhood X of Mo 
in M that splits when cut along Mo. X need only be 
chosen to fit-closely enough around Mo. 

o This isn't true, either. Let a Mobius strip be cut 
along its "core" (midline), for instance, or IruP2 along 
IruP1: then no X splits. 

(8) Let M be a manifold without boundary and let X C M 
be open. Is the closure X C M a submanifold-with­
boundary? 

o No. M = ]R3, X = {(x, y, z) : x2 + y2 + z2 > O} is a 
counterexample. 

o No. M = ]R3, X = {(x, y, z) : x2 + y2 - z2 > I} is a 
counterexample. 
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D No. M = 1R3 , X = {(x,y,z) : x2 + y2 > z2} is a 
counterexample. 

(9) Is aM always a set of measure zero in M? 

D Yes, because {OJ x IRn - 1 is a set of measure zero for 
Lebesgue measure on 1R~. 

D No. For example, the surface of the ball has mea­
sure 4Jl"r2 =F 0. 

D No, only when aM = 0. 

(10) LetMbe an oriented manifold without boundary. MI := 
{1} x M and Mo := {OJ x M are called the top and bot­
tom, respectively, of the cylinder [0,1] x Mover M. Let 
them both be oriented as copies of M, in other words so 
that the canonical maps MI ~ M ~ Mo are orientation­
preserving. Now let the interval [0, 1] be oriented as 
usual. Then our orientation convention induces the fol­
lowing orientation on the boundary: 

D a([O, 1] x M) = Mo + MI. 

D a([O, 1] x M) = Mo - MI. 

D a([O, 1] x M) = MI - Mo. 

6.10 Exercises 

EXERCISE 6.1. Let M be a manifold-with-boundary. Show that 
aM is closed in M. 

EXERCISE 6.2. Let f : M ~ IR be a differentiable function 
that is regular everywhere on the compact manifold-with­
boundary M. Show that f assumes its extrema on the bound­
ary. 

EXERCISE 6.3. Compact manifolds without boundary are 
called closed, and two closed manifolds Mo and MI are called 
bordant if Mo + MI is (diffeomorphic to) the boundary of a 
compact manifold-with-boundary. Prove that if M is closed 
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and a, b are regular values of f : M ~ lR, then f-l(a) and 
f-l(b) are bordant. 

EXERCISE 6.4. Prove that every closed manifold M on which 
there exists a fixed-point-free differentiable involution r is 
"null-bordant"; that is, it bounds a compact manifold. 

6 .11 Hints for the Exercises 

FOR EXERCISE 6.1. This is intuitively clear: every point in 
M \ aM has a neighborhood that does not meet the bound­
ary. For the proof, you just need to make proper use of the 
relative topology of the half-space lR~. 

FOR EXERCISE 6.2. Incidentally, a regular function might not 
have an extremum on M \ aM for a noncompact manifold, 
either, because it might not have any extrema at all. But, as 
you know, a continuous function on a compact topological 
space always has a maximum and a minimum. The exercise 
is so simple that no suitable hint occurs to me. Perhaps I 
should remind you that f : M ~ lR is regular if and only if 
dfp i= 0 for all p. 

FOR EXERCISE 6.3. The exercise is intended to make you use 
the lemma about i-I « -00, c]) that was stated (with nothing 
but an allusion to the regular value theorem) at the end of 
Section 6.6. 

FOR EXERCISE 6.4. This exercise is a bit harder than the other 
three. The not so obvious idea is (more or less) to connect 
each x and r (x) by a line segment, so as to construct a com­
pact manifold W with a W = M. But how can this be carried 
out technically? One can, for instance, start with the man­
ifold (without boundary) M x lR and then take a quotient 
(also without boundary) (M x JR.) / "'-' under a suitable free 
involution, as described in Section 1.6. This can be done in 
such a way that the desired W appears as a submanifold­
with-boundary f- 1«-00, cD in the quotient. 

M 

aM 

Figure 6.16. 

r(x) 

Figure 6.17. 



CHAPTER 

The Intuitive 
Meaning of 
Stokes's Theorem 

7.1 Comparison of the Responses to Cells 
and Spans 

The actual definition of the Cartan (or exterior) derivative 
d : QkM ---+ nk+l M will be postponed until the next chap­
ter, and the proof of Stokes's theorem that J M dw = JaM w 
until the chapter after that. In the present chapter I'll try to 
sketch how one could intuitively come up with the idea of 
the exterior derivative and conjecture Stokes's theorem. 

We imagined a piece U of an oriented manifold as de­
composed into small cells and the integral J u w as the 
sum of the responses of the n-form w to the cells, with 
each cell up approximated by the tangential span sp = 
span(~xl a1 • •.• , ~xnan). We can now look back at how the 
integral was formally introduced in Chapter 5 and estimate 
how well Lp wp(sp) approximates Ju w. If a = Wl...n 0 h-1 is 
the downstairs component function, then the actual contri-

Figure 7.1. 
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p~'p 
Gp 

hlGp 1 ~ 
boxBpwith _ 
edge lengths 
~xl, ... ,~xn 

Figure 7.2. The box corre­
sponds to the cell under 
h and to the span under 
dh p. 

p 

Figure 7.3. Cells C1p with 
edge lengths I:!..xIL getting 
smaller and smaller 

bution of the cell to the integral is 

f w = f a(x)dx, 

Up Bp 

while its approximation 

wp(sp) = f a(h(p»dx 

Bp 

is the integral of the constant value a(h(p)) = wp( al , ... , an) 
and therefore equals wpUh, ... , an)~xl ..... ~xn. So if w is 
a continuous n-form, for instance, then the absolute value of 
the error can be at most Ep . Vol(Bp), where Ep denotes the 
variation of a on the box Bp; more precisely, 

Ep := sup la(x) - a(h(p»I. 
xEBp 

Hence the absolute value of the total error over the whole 
region U is less than or equal to maxp Ep . Vol(h(U», and 
maxp Ep becomes arbitrarily small for continuous w when 
the grid is fine enough. 

For continuous w, this reasoning also shows how we can 
recover the alternating n-form wp E AltnTpM from the inte­
grals r w. For fixed orientation-preserving charts h, if we lap 

consider the edge lengths ~xl, ... , ~xn of the cell at p as 
variables, then 

Wp(al,"" an) = lim 1 1 fw. 
t.x~O ~x ..... ~xn 

This formula makes precise the statement that wp is the 
infinitesimal version at p of the integral of w. 

7.2 The Net Flux of an n-Form through 
an n-Cell 

Stokes's theorem makes a statement about (n - I)-forms 
w E nn-l M on an oriented n-dimensional manifold. By its 
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very nature, such a form responds to oriented tangential 
(n - I)-spans. But it also responds to oriented (n - I)-cells: 
approximately, through an approximating span; precisely, 
through integration over the cell as an (n - I)-dimensional 
manifold. 

"Flux densities," which are described by 2-forms in three­
dimensional space, give an intuitive picture of (n - 1 )-forms 
on oriented n-dimensional manifolds. The response of a 
flux density (j) to an oriented 2-cell shows how much "flows 
through" the cell per unit time. The orientation lets us 
give opposite signs to the two possible directions of passage 
through the cell. It is a useful exercise to work out intuitively 
why such a flux density for infinitesimal cells is multilinear 
and alternating. 

An edge as a sum: A degenerate cell: 

~ \rtr 
The flux adds up. Zero flux. 

Figure 7.5. Flux densities are multilinear and alternating. 

This intuitive picture suggests an interesting possibility 
for letting an (n - I)-form act on n-cells and then infinites­
imally on n-spans. The "boundary" aO' p of an n-cell 0' p con­
sists of 2n boundary cells of dimension (n - 1), a "front" and 
a "back" for each coordinate. We orient these 2n sides ac­
cording to the same convention we used for the boundary 
of a manifold: The outward-pointing normal followed by the 
orientation of the boundary cell gives the orientation of 0' . 

Now we can add the 2n responses that (j) gives to the oriented 
boundary cells and thus define how (j) should act on oriented 
n-cells, namely by 

0' 1----+ f w. 

(10' 

P~ 
Figure 7.4. 

ithback~ 
~, 'thfront 

x'-curve 

Figure 7.6. The 2n ori­
ented boundary cells of 
an n-cell in an oriented 
n-dimensional manifold 
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To make the notation unambiguous, we now write down 
explicitly the convention we have already used implicitly. 

Notation. Let W be a k-form on an n-dimensional manifold M 
and let Mo C M be an oriented k-dimensional submanifold 
or, in the case k = n - I, the boundary aM of M, provided 
with an orientation. If L : Mo "--+ M denotes inclusion and 
l*W the induced k-form on Mo, we write 

f l*W=: f w. 

Mo Mo 

The suppression of L* is justified, first because 

(L*w)lp(Vl,"" Vk) = wp(Vlt ... , Vk), 

and second because there is no risk of confusion with the 
notation fMo W := fM WMo of Section 5.3: for k < n, a k-form 
can't be integrated over M anyway, so fMwMo would make 
no sense, and for k = n it's really the same thing. 

So much for notation. The intuitive meaning of faa W is 
the net flux through the n-cell a! What we measure with 
faa W is what flows out of the n-cell a per unit time, since 
the orientation of oa given here assigns incoming flow a 
negative value and outgoing flow a positive value. Thus the 
excess faa W can be called the source strength of a . 

Stokes's theorem is ultimately based on this idea of bal­
ancing the incoming and outgoing flows. When we resume 
our discussion from Section 5.1 about the relative merits of 
densities and forms, we have to note that a treatment of the 
net flux using densities would in any case require a notion of 
"(n - I)-densities" that would take into account the orienta­
tion of the cells of aa, for without some distinction between 
incoming and outgoing flow there can be no net flow. The 
k-forms are already set up for this. 
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7.3 Source Strength and the Cartan 
Derivative 

Now, is this source strength of an (n - 1 )-form w, viewed as a 
correspondence u -+ fou w, really the action of a differential 
form of degree n? In other words, for every (n -I)-form w is 
there an n-form TJ such that fu TJ = fou w for oriented n-cells? 
If so, then, as we saw earlier, this "source density" TJ would 
at least have to satisfy 

. 1 f TJ(ih, ••• , an) = 11m 1 ti w, 
6x_O tix ..... xn 

au 
and this already reveals one way of trying to answer the 
question: Check whether this limit exists and, if it does, 
whether 11 is independent of the choice of chart. Then prove 
that fu TJ = fou w for the 11 so defined. Actually, we have no 
intention of taking this approach because we'll reach our 
goal in a more elegant, though more formal, way. But if 
we imagine ourselves in a fictitious pioneer period of the 
Cartan calculus, this path is definitely the right one, and it 
leads to the insight that for every w E nn-I M there is in fact 
exactly one n-form that responds to oriented n-cells as w 
itselfresponds to their boundaries. This n-form is called the 
Carlan derivative of wand is denoted by dw. 

Incidentally, if we consider the contribution of the ith 
pair of sides to the limit 

dw(aI , ... , an) = lim 1 1 fw, 
6x_O tix ..... tixn 

au 
we not only obtain the formula 

d ( ':I '\ ~ i-I a ..-. w OJ, ••• , un) = L..,(-l) -.w(aI , ... , t, ... , an) 
i=I ax' 

for the Cartan derivative in coordinates, we also understand 
the intuitive meaning of its individual summands. 
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Figure 7.7. 

Figure 7.8. fa dw = faa w 
for cens (definition of 
d), so fMdw = faMw 
(Stokes's theorem). 

7.4 Stokes's Theorem 

The property of dw of responding to an individual cell as w 
does to its boundary carries over to collections of cells. If we 
consider two adjacent cells 0"1 and 0"2, then in the sum 

the contributions of the common sides cancel because their 
induced orientations from the two cells are opposite. It is 
also intuitively clear that the interior wall plays no role in 
the net flux of w through 0"1 U 0"2. 

If we now think of a compact oriented manifold-with­
boundary as a single collection of cells, we see that the con­
tributions of the interior sides of the cells all cancel in the 
sum 

fdw=LfdW=Lfw 
M P ap P Jap 

and only the integrals over the sides that form the boundary 
aM are left, so that 

f dw= f W. 
M aM 

This is Stokes's theorem. 

As we said earlier, this is not how we'll actually prove 
Stokes's theorem. Decomposing the whole manifold into a 
grid of cells in a rigorous way would be a technically de­
manding project, to say nothing of its being impossible in 
general unless one also allowed certain "singular cells," such 
as occur, for instance, in angular coordinates on 52 at the 
poles. 

Although the idea of decomposition into cells does not 
lead to an elegant proof, it describes the geometric content of 
the theorem extremely well-in fact, it reduces the theorem 
at the intuitive level to a truism. 
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7.5 The de Rham Complex 

The definition of the Cartan derivative dw through the action 
of won the boundary is not limited to (n -I)-forms. For any 
differential k-form wE nkM, with k arbitrary, there is exactly 
one (k+ I)-form dw E nk+1 M that responds to oriented (k+ I)­
cells as w does to their oriented boundaries. This yields a 
whole sequence 

0-+ nOM ~ n1M ~ '" ~ nn-1M ~ nnM -+ 0 

of linear maps. 

The Cartan derivative d : nOM -+ 0.1 M on zero-forms (COO 
functions on M) is simply the differential: For an oriented 
I-cell 0- as in Figure 7.9, q and p are positively and negatively 
oriented, respectively, by the orientation convention. Thus 
fu dw = w(q) - w(p) for w E nOM, and there is no clash 
between our previous notation df E 0.1 for the differential 
of a function and our notation d for the Cartan derivative. 

The sequence of Cartan derivatives is what in homo­
logical algebra is called a complex; that is, dod = O. More 
precisely, if w E nk- 1 M and 0- is an oriented (k + I)-cell, 
then 

where the integral over aao- just denotes the sum of the 
integrals over the sides of the sides of 0-. But in this sum 
the integral is taken twice, with opposite orientations, over 
each edge. Hence faau w = O. Or: If we dare to think of the 
(k + I)-cell 0-, despite its edges and corners, as a manifold­
with-boundary (as we may, if all we want to do is integrate 
over it), then as a manifold without boundary ao- has empty 
boundary aao- = 0, and applying Stokes's thebrem twice 
gives fu ddw = fau dw = f0 w = 0 since an integral over the 
empty manifold is of course zero. In any case, we understand 
the property dd = 0 as a consequence of the geometric fact 

+ 

-~q 
p 

Figure 7.9. 

~ side"ofo Side~ 
"edge" of (f 

Figure 7.10. The response 
fu ddw of ddw to a (k + 1)­
cell is zero. 
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/lao = 0:' The complex 

0-,;. nOM ~ nlM ~ ... ~ nn-1M ~ nnM -,;. 0 

is called the de Rham complex of M. 

7.6 Simplicial Complexes 

The de Rham complex canonically defines a contravariant 
functor from the differentiable category to the category of 
(cochain) complexes and represents an important interface 
between analysis and algebraic topology. 

Of course, to explain this in the technically correct sense 
would first require an introduction to algebraic topology and 
would therefore go beyond the scope of the present book. 
But I'll try to give you an intuitive idea. To do this, I have 
to start by telling you about a completely different kind of 
complex. 

"Complex" is a general word for something assembled 
from individual building blocks. It has lost this naive mean­
ing in the expression de Rham complex, but retains it in the 
phrase simplicial complex. Imagine that you were allowed 
to assemble arbitrary things from (closed) tetrahedra, trian­
gles, line segments, and points in ]R3 as three-, two-, one-, 
and zero-dimensional building blocks ("Simplices"), where 
you had to follow only two rules of play: 

(1) You may use only finitely many building blocks at a 
time. 

(2) Adjacent building blocks must be mutually compatible. 
More precisely: the intersection of any two building 
blocks must be either empty or a common subsimplex. 

The subsimplices of a tetrahedron, for example, are its ver­
tices, edges, and faces. The rules are similar in ]Rn, where 
analogous building blocks up to dimension n are possible 
and permitted. The things you can assemble by following 
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these rules are called finite simplicial complexes. With some 
precautions ("locally finite" instead of "finite" in the first rule 
of play), infinitely many building blocks can also be allowed. 

If you're not deliberately looking for counterexamples, 
you can imagine a simplicial building-block model for any 
geometric object you encounter in ]R": the ball, the cone, and 
the torus; any kind of manifold or non-manifold-usually not 
quite genuine, because they'll have corners and edges, but 
still homeomorphic to the object and hence faithfully describ­
ing its topological properties. 

1b get our hands on such topological properties of the 
original, we now consider Simplicial chains in the model. 
Anyone can picture a "chain" of finitely many oriented edges 
of building blocks that runs from one vertex of the simpli­
cial complex to another, whose "boundary" thus consists of 
the (positively oriented) terminal point and the (negatively 
oriented) initial point. If the initial point coincides with the 
terminal point, the chain is a "cycle." Obvious terminology! 

But if we want to make the union of chains into the 
operation of an abelian group-and not just stay in one 
dimension - we are automatically led to the following gen­
eralizati9n of the concept of chains. 

Definition. The k-dimensional simplicial chains of a sim­
plicial complex X are. described by formal linear combina­
tions 

A1 CTI + ... + ArCTr 

(where the coefficients Aj are integers) of oriented k-dimen­
sional (sub-) building blocks of the simplicial complex and 
added accordingly, with the provision that a k-simplex CT goes 
to -CT under a change of orientation. 

The k-dimensional chains of X thus form an abelian group 
Sk(X); each individual oriented k-simplex CT has a (k-l )-chain 
dCT as boundary (with the same orientation convention as for 
manifolds-with-boundary), and this also defines a boundary 
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chain de E Sk-l (X) for each k-chain e E Sk(X). A chain e with 
de = 0 is called a cycle, and the sequence 

d d d d o ~ Sn(X) ~ Sn-l(X) ~ ... ~ Sl(X) ~ So(X) ~ 0 

of boundary operators is called the simplicial chain complex 
ofX. 

The boundary of the boundary chain of a k-simplex is 
clearly zero since, just as for a cell, the contribution of each 
side cancels with the oppositely oriented contributions of 
the adjacent sides. Hence dod = 0 for chains as well. In 
words: All boundaries are cycles. 

But not all cycles are boundaries. A meridian cycle on 
a simplicial torus, for instance, doesn't look as though it 
could be the boundary of a 2-chain. And it is precisely these 
nonbounding cycles that seem to say something about the 
topological structure of the simplicial complex and hence 
also about the structure of the geometric object that really 
interests us, for which the simplicial complex is only the 
building-block mode1. But how can we get hold of this infor­
mation mathematically? 

If we want to suppress the uninteresting boundaries 
in cal<:;ulations, we have to compute with cycles "modulo 
boundaries"; that is, we define cycles as equivalent, or ho­
mologous, if they differ only by a boundary. The equivalence 
classes, or homology classes, of k-cycles are then the elements 
of the kth homology group of X, the quotient of the group of 
cycles by the group of boundaries. 

Definition. If X is a simpliCial complex, the abelian group 

'7J ker(d : Sk(X) ~ Sk-l (X)) 
Hk{X, IU) := --------­

im(d: Sk+l (X) ~ Sk(X)) 

is called the kth simplicial homology group of X. 

If X is a finite simplicial complex, for instance, then by 
construction Hk(X, Z) is a finitely generated abelian group, 
which in prinCiple can be computed by elementary means. 
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But does it really tell us anything about the original geomet­
ric object, or is it influenced by the uninteresting details of 
how we constructed the building-block model? 

If it told us nothing, we would probably not be discussing 
this hundred-or-so-year-old invention today. A method 
called simplicial approximation can be used to show not 
only that homeomorphic simplicial complexes have isomor­
phic homology groups, but even that simplicial homology 
canonically defines a functor from the category of "triangu­
lable" topological spaces (those that are homeomorphic to a 
simplicial complex) and continuous maps to the category of 
abelian groups (which are graded by the index k). 

With this, homology theory was established. 

7.7 The de Rham Theorem 

The success of homology theory was striking. Famous old 
theorems shrank to little lemmas, and masses of unsus­
pected new results were proved. Applying the homology 
functor gave, so to speak, an X-ray look inside apparently 
impenetrable geometric problems. 

You can imagine that these advances were accompanied 
by improvements in the methods. What crystallized out of 
this as the essential rule for success was to assign chain 
complexes 

to geometric objects X in a natural, functorial way. These 
chain complexes are sequences of homomorphisms between 
algebraic objects-abelian groups for instance, or vector 
spaces or modules over rings-that satisfy the condition 
dod = 0 and whose kth homology 

Hk(C(X), d) := ker(d : Ck(X) ~ Ck-l (X» 
im(d: Ck+l (X) ~ Ck(X» 
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can therefore be studied. It became clear, for example, that 
simplicial homology is independent of the triangulation. So 
shouldn't it be possible to define it directly, without resorting 
to a building-block model, and then define it in complete 
generality for arbitrary topological spaces? Singular homology 
was discovered as a solution to this problem and has turned 
out to be pivotal. 

A singular k-simplex of a topological space is just a con­
tinuous map u : Ilk -+ X from the k-dimensional standard 
simplex to X-when k = 1 this is a continuous path in X­
and the k-chains of this theory are formal linear combina­
tions with integer coefficients of singular k-simplices. The 
resulting singular homology groups Hk(X, Z) can no longer be 
computed directly from the definitions, but the developing 
homology theory had already left naive computational meth­
ods behind in any case and replaced them by more elegant 
axiomatic methods. 

Of special significance in discovering new homology the­
ories was the application of algebraic functors to chain com­
plexes associated with tried and true theories. More infor­
mation lies dormant in a chain complex than is extracted 
by homology. So one can hope to find something .new by 
subjecting the chain complex to an algebraic manipulation 
before taking the homology quotients ker djim d, as long as 
this manipulation preserves the property dod = o. For ex­
ample, one can take an abelian group G and tensor all the 
"chain groups" Ck(X) with it. In the case of singular homol­
ogy, this leads to singular homology with coeffiCients in G, 
whose groups are denoted by Hk(X, G). 

A polished algebraic theory of chain complexes eventu­
ally became such a compelling technical necessity for ho­
mology theory, which was growing into an industry, that 
an independent new subdiscipline, homological algebra, was 
generated in its wake. 

Of course, one of the algebraic functors that could be 
tested on existing chain complexes and actually were used 
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early on is the Hom-functor Hom(-, G). Since it is con­
travariant, it turns a chain complex into what is called a 
cochain complex, whose grading now ascends. For instance, it 
turns the singular chain complex into the cochain complex 
with coefficients in G, 

() (, (, 
... +- Hom(Ck+l (X), G) +- Hom(Ck(X), G) +- .... 

The homology groups of this complex are logically called sin­
gular cohomology groups with coefficients in G and written 
Hk(X, G). 

It was not immediately evident what a significant exten­
sion of homology theory had been stumbled upon. In fact, it 
was realized only gradually that for singular cohomology - in 
contrast to homology!-with coefficients in a commutative 
ring R, there is a product 

'-": Hr(X, R) x HS(X, R) --+ Hr+s(X, R), 

the cup product, which turns the cohomology groups into a 
cohomology ring. This has far-reaching consequences. 

As you can see, the de Rham complex is also a cochain 
complex and defines a cohomology theory for the category 
of manifolds. The cohomology groups H~RM of this de Rham 
cohomology are real vector spaces, and with the wedge prod­
uct they form a cohomology ring. This is outwardly quite 
similar to singular cohomology with coefficients in lR! But 
the origin of de Rham cohomology makes it seem exotic 
among the other homology theories, which can't deny their 
descent from simplicial homology. Its boundary homomor­
phism, the Cartan derivative, is a differential operator! 

Georges de Rham was the first to discover the nature 
of this exotic cohomology theory. It is the real singular co­
homology of manifolds, and the wedge product is the cup 
product. 

Stokes's theorem makes the connection. More precisely, 
one can integrate a k-form w on M over a (differentiable) 
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singular k-simplex (J' in M by setting 

Thus fc ()) is also defined for (differentiable) singular k­
chains, and applying Stokes's theorem to D.k (the vertices 
and edges cause no real difficulties) gives fc dTJ = Ide TJ. So 
we have linear maps 

H~RM ~ Hom(Hfifib(M, Z), lR) ~ Hk(M, lR), 

the first just through integration over singular cycles and the 
second directly from the definition of singular cohomology. 
Both are isomorphisms: Methods of ordinary homology the­
ory show this for the second map, but the statement that the 
integration map is an isomorphism is the crux of de Rham's 
theorem and not easy to prove. 

De Rham's theorem turned out to be a momentous dis­
covery. It brought to light the deep connections between 
analysis, the powerful, well-established discipline, and alge­
braic topology, the successful newcomer-connections that 
playa major role in present-day mathematics. I'm think­
ing of the Atiyah-5inger index theorem, for .example, and its 
ramifications, which extend even into theoretical physics. 

In a more elementary way, the de Rham complex is an ev­
eryday presence in classical vector analysis-wherever the 
three familiar differential operators gradient, curl, and diver­
gence appear in the three-dimensional physical space M. As 
we have yet to see in detail (in Chapter 10), they correspond 
exactly to the three Cartan derivatives: 

o~ rtM~ QIM ~ Q2M~ Q3M~ o. 
grad curl div 
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This is why, for instance, the divergence of a curl and the 
curl of a gradient are always zero, and why statements about 
the de Rham complex always also have, in passing, a direct 
interpretation in classical vector analysis. 

The present chapter, exactly in the middle of the book, 
is intended to convey something different from what can be 
asked about in tests and exercises. Perhaps with a deeper 
understanding of our subject, we now return to its technical 
details. 



CHAPTER 

The Wedge 
Product and the 
Definition of the 
Cartan Derivative 

8.1 The Wedge Product of Alternating 
Forms 

To define the Cartan derivative we use a tool from multilin­
ear algebra, the exterior, or «wedge," product of alternating 
multilinear forms. 

Definition. Let V be a real vector space and let w E AW V 
and TJ E AltsV. Then the alternating (r + 5)-form W /\ TJ E 
Altr+s V defined by 

1 
- "" sgn'l" w(vr(l), ... , Vr(r» . TJ(vr(r+l), ... , Vr(r+s» 
r!5! L-

rESr+s 

is called the exterior, or wedge, product of wand TJ. 

Each summand is already multilinear in the variables 
VI, ... , vr+s. The way the big alternating sum-as I'll call 
it because of sgn 'l'-is constructed guarantees that w /\ 11 is 
alternating. But many of the summands are repeated: each 
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of the r!s! permutations that produce the same partition 

{I, ... , r + s} = {r(1), ... , r(r)} U {r(r + 1), ... , r(r + s)} 

into one subset of r elements and another of 5 elements also 
yields the same summands, precisely because wand TJ are 
assumed to be alternating. Hence (w /\ TJ)(VI, ... , Vr+S) is also 
given by the well-defined sum 

L sgn r . w(vr(l), ... , Vr(r» . TJ(Vr(r+I), ... , Vr(r+s» 
[r ] EZr,s 

over the C~S)-element set Zr,s of these partitions. 

Lemma. The wedge product /\ has the following properties: 

(1) For every real vector space V, the wedge product turns 
the direct sum EB~o AltkV into a graded anticommutative 
algebra with identity. More precisely, the follOwing hold for 
every r, 5, t ~ 0: 

(i) The wedge product /\ : AltrV x AWV ~ Altr+sV 
is bilinear. 

(ii) The wedge product is associative, i.e., (w /\ TJ) /\ l,- = 
w/\(TJ/\Oforw E AltrV, 1] E AleV, and~ E AleV. 

(iii) The wedge product /\ is anticommutative; that is, 
TJ /\w = (-l)r-5w /\ TJ forw E AWV and TJ E AWV. 

(iv) The O-form 1 E Alt°V = ~ satisfies 1 /\ w = w for 
all wE AleV. 

(2) The wedge product is Nnatural." In other words, it is com­
patible with linear maps: f*w /\ I*TJ = I*(w /\ 1]) for every 
linear map 1 : W ~ V and all w E AltrV, 1] E AltSV. 

SKETCH OF THE PROOF. Properties (i), (iv), and (2) fol­
low trivially from the defining formula. Anticommutativ­
ity (iii) is also immediate. Th verify associativity, think 
of w /\ 1] (VI , ... ,Vr+s) as the sum over the partitions of 
{I, ... , r + s} into one subset of r elements and another of 5 

elements, as explained above. Then we see that (w /\ TJ) /\ l,­
and w /\ (1] /\ 0 I applied to (VI, ... , Vr+s+t) I are one and the 
same sum over the set Zr.s.t of partitions of {I, .. , , r + 5 + t} 
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into one subset of r elements, a second of 5 elements, and a 
third of t elements: 

1 
'" sgn T . w(vr (1), ... , vr(r»' 

r!5!t! ~ 
rES,+s+r 

T}(Vr(r+l) , ... , vr(r+s» . S-(Vr (r+s+1), ... , vr(r+s+t). o 

Now we can state another, shorter, version of the lemma: 
The wedge product turns EB~o Altk into a contravariant functor 
from the category of real vector spaces and linear maps to the 
category of real graded anticommutative algebras with identity 
and their homomorphisms. 

8.2 A Characterization of the Wedge 
Product 

The wedge product is not yet characterized by these prop­
erties. For instance, if we chose real numbers f (n) =1= 0 for 
n :=:: 0, requiring only that f (0) = I, then conditions (1) and 
(2) would still hold for the wedge product A defined by 

- f (r)f (5) 
WI\YJ := W 1\ YJ for wE AltrV, YJ E AleV. 

[(r+5) 

But according to our definition, the wedge product also sat­
isfies the following normalization condition. 

Note. Let el, ... , ek denote the canonical basis of]Rk and 
01, ... , ok the corresponding dual basis of]Rh = Alt1]Rk. Then 
(3) Oll\ ... l\ ok(el, ... ,ek)=1 forallk:=::l. 0 

Theorem. Only 1\ satisfies (1), (2), and (3). 

PROOF. More precisely, the theorem says that if a binary 
operation 1\ : AltrV x AltSV -+ Alt'+sV satisfies conditions 
(1 )-(3) above for all V, r, 5, then it coincides with the wedge 
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product given explicitly in Section 8.1. Let 1\ be an arbitrary 
such binary operation. Then the following also holds: 

(4) Let el, •.. ,en be a basis of a real vector space V and 
8 1, ••. ,8n the dual basis, and let 1 < VI < ... < Vk < n. 

Then 

~Ill ~Ilk 1 sgn r u 1\ . .. 1\ u (eVI ' •.. , eVk ) = 0 
if r exists, 

othenuise, 

where r denotes the pennutation sending VI, ... , vk to f.J..l, ... , f.J..k· 

To prove (4), let Vo denote the k-dimensional subspace of 
V spanned by evl , ... , eVk and £ : Vo "---+ V the inclusion map. 
Then naturality (2) implies that 

8 111 1\ ... 1\ 8 Ilk (evl , ••. , eVk ) = £*8 1l1 1\ ... 1\ £*8 Ilk (evl , ... , eVk )' 

If (f.J..l, ..• ,IJ-k) is not a permutation of VI < ... < Vk, then 
either f.J..i = f.J.. j, for some i f= j, in which case 8 1li 1\ 8 1l j = 0 by 
anticommutativity (1) (iii), or there exists an i with f.J..i f= Vj 

for all j. But then we have £*8 Ili = O. On the other hand, if 
(f.J..l, .•• ,f.J..k) does come from a permutation of (VI, ... , Vk), 

then IJ-i = V,(i) and 

£*8 1l1 1\ ... 1\ £*8 Ilk = sgn r . £*8 vI 1\ ... 1\ £*8 Vk 

by anticommutativity. Now (4) follows from the normaliza­
tion condition (3) and naturality applied to Vo ~ ]Rk. What 
we have shown so far is that (1 )-(3) =} (4). 

With regard to our goal of proving the theorem, we have 
in particular the partial result that 8 111 1\ ... 1\ 8 1lk is indepen­
dent of the choice of the operation 1\ satisfying (1 )-(3). But to 
show this for arbitrary products w 1\ 1], we have to write wand 
1] as linear combinations of such products of I-forms. More 
precisely, we claim that (1 )-(3) imply one more condition. 

(5) Let w IlI ... llk := w(elll , ... , ellk ) be the components of the 
fonn w E Altk V with respect to a basis el, ... ,en of V, and 
again let 81, ... , 8n denote the dual basis. Then 

w = L wIlI ... llk81l1 1\ ... 1\ 81lk . 

III <"'<Ilk 
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Th prove (5) we need only check that for VI < ... < Vk both 
sides give the same result on (eV1 ' ••• ,eVk ). But this follows 
directly from (4), and the proof of (5) is done. 

Because of (5) and (4), we know now that for every finite­
dimensional V the product w /\ 11 e AW+s V is given by the 
operation defined explicitly in Section 8.1. But this suffices 
for the proof of the theorem, since naturality (2) implies that 

(w /\ I1)(Vl, ... , vr+s) = (t*w /\ t*I1)(Vl, ... , vr+s) 

for arbitrary V, where t : Vo "-+ V denotes the inclusion of 
the finite-dimensional vector space Vo into V. This proves 
the theorem. 0 

Note the following consequence of (5), which we state 
explicitly. 

Corollary. If (e}, ... ,en) is a basis of V and (lSI, ... ,lSn) the 
dual basis, then (ISILI /\ ... /\ ISlLk)ILI < •.. <lLk is a basis of AltkV. 

8.3 The Defining Theorem for the Cartan 
Derivative 

This is enough for the time being about the wedge product as 
a concept from multilinear algebra. We now want to exploit 
it for analysis on manifolds. In what follows, manifolds may 
be manifolds-with-boundary if nothing is said otherwise. 

Definition. Let M be a differentiable manifold. The wedge 
product 

(W,I1) 1----+ w /\ 11 

of differential forms on M is defined pointwise in a natural 
way, by setting (w /\ l1)p := wp /\ I1p for every p e M. 

Observe that the wedge product with a O-form (that is, 
with a function) is simply the ordinary product: f /\ 11 = f 11 
for f e QO (M) by properties (1 )(i), (iv) , p. 134. 
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Note (see Section 8.1). The wedge product turns Q* := 

E9~0 Qk into a contravariant functor from the category of man­
ifolds and differentiable maps to the category of real graded 
anticommutative algebras with identity. 

Now let (U, h) be a chart. Recall (see the lemma in Section 
3.5) that at every point of U the I-forms dx1 , • " , dxn are the 
dual basis to the basis 01, ... , On of the tangent space. But all k­
forms arise from linear combinations of the wedge products 
of the dual basis elements (see (5) in Section 8.2), and this 
yields the following corollary. 

U: The vector fields 

~ 
dJ1., the I-forms dx J1., 

~ <. <'<. and the component 
<.( functionswJ1.) ... J1.k 

h i live here. 

D 
Figure 8.1. A reminder 

Corollary. If W E QkM and (U, h) is a chart, then 

wlU = L wIlI ... llkdxILI 1\ ... 1\ dxILk, 
III <"'<Ilk 

where wIlI ... llk := w(oILI' ... ,ollk) : U -+ IR are the component 
functions of W with respect to (U, h). 

Defining theorem (Cartan derivative). If M is a manifold, 
then there is exactly one way to introduce a sequence of linear 
maps 

0-+ QOM~ Q1M~ Q2M~ ... 

so that the following three conditions are satisfied: 

(a) Differential condition: For f E QO M, df has its usual 
meaning as the differential of f . 

(b) Complex property: dod = O. 
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(c) Product rule: d(w/\T/) = dW/\T/+(-lY w/\dT/ forw E nrM. 

We call dw the exterior, or Canan, derivative of the differen­
tial form w, and the entire sequence the de Rham complex 
ofM. 

The proof of the theorem is carried out in two steps, to 
which the next two sections are devoted. 

8.4 Proof for a Chart Domain 

Throughout the proof we will use the notation dM for the 
Cartan derivative to be constructed and reserve d for the 
ordinary differential of functions. We begin by proving the 
theorem just for a chart domain rather than for M. There is 
an obvious starting point: If (U, h) is a chart, then as we saw 
earlier, any WE nku can be written as 

W = L WILI ... lLkdxlLl /\ '" /\ d#k. 
ILl <"'<ILk 

Using the wedge product, we can thus express W in terms 
of functions and differentials, and these concepts are exactly 
what conditions. (a)-(c) are about. We take the formula 

(*) duw = L dWILJ ... ILk /\ d#l /\ ... /\ dxlLk 

ILl <···<ILk 

as an established fact for the proof of uniqueness, and as a 
definition for the proof of existence. More precisely: If the 
du have properties (a), (b), and (c) for M := U, then formula 
(*) obviously follows for all W E nku, and this proves the 
uniqueness statement for the case M = U. For the proof of 
eXistence, we now use (*) as our definition. The maps 

O nOu du n1U du -+ u ---+ ~" ---+ '" 

defined in this way are clearly linear, and the differential 
condition (a) is satisfied. The complex property and the prod­
uct rule still have to be verified. We begin with the product 
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rule. Without loss of generality, let 

w = ! dxIL1 /\ ... /\ dxILr and 1] = g dxV1 /\ ... /\ dxvs . 

Then, by the definition (*), 

du(w /\ 1]) = d(! g) /\ dxIL1 /\ ... /\ dxILr /\ dxV1 /\ ... /\ dxvs . 

It follows from the usual product rule d(f g) = d! 'g+! ·dg for 
functions and the anticommutativity of the wedge product 
that 

du(w /\ 71) 

= (d! /\ dXi11 /\ ... /\ dxILr ) /\ (gdxV1 /\ ... /\ dxVs ) 

+ (-IY(! dxIL1 /\ ... /\ dxi1r ) /\ (dg /\ dxV1 /\ ... /\ dxVs ) 

= (duw) /\ 1] + (-IYw /\ dU1], 

as was to be proved. 
Now for the complex property. We have to show that 

duduw = 0 for all wE QkU. By the defining formula (*), duw 
is a sum of wedge products of differentials, so by the product 
rule, which has already been proved, it suffices to consider 
the case k = O. But for a function! E QO U we have 

n 

dudu f = dudf = du L oJLf . dxIL 
IL=l 

n 

= L d(a lL /) /\ dxIL 
IL=l 

n 

= L 0ILav/· dxV /\ dXIL = 0, 
IL,v=l 

because avaIL! is symmetric in JL and v and dxv /\dxIL is skew­
symmetric. Thus we have also proved the complex property 
for du, and this completes the proof of the theorem for the 
special case M = U. 

8.5 Proof for the Whole Manifold 

We now turn to the general case. For the proof of existence, 
we will try to define dM locally by means of charts. For 
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for a chart (U, h) around p, where duw of course means 
du(wl U). This is clearly independent of the choice of chart, 
since 

duwlU n V = dunvw = dvwlU n V 

follows immediately from the defining formula (*) for the 
Cartan derivative in chart domains. The dM defined in this 
way obviously has the property dMwl U = duw, so it really 
does define linear maps 

that satisfy the differential condition, the complex property, 
and the product rule. This completes the proof of existence. 

For the proof of uniqueness, we must now show con­
versely that if dM is a Cartan derivative for all of M, i.e. if it 
satisfies conditions (a)-(c), then (dMw)p = (duw)p. Now, 

wlU = L W/-L1 ... /-Lkdx/-L1 /\ ... /\ dX/-Lk. 
/-L1 <"'</-Lk 

But we cannot make direct use of this equation to evaluate 
dMw. By hypothesis, dM acts only on differential forms that 
are defined everywhere on M, and the functions W/-L1 ... /-Lk and 
the I-forms dX/-Li are just defined in U. So we resort to a trick. 
In h(U) we choose three concentric open balls about h(p), 
with radii ° < £1 < £2 < £3. Let their pre images under h be 
U1 C U2 C U3· Now we choose a Coo function r : U3 -+ [0,1] 
with rlUl == 1 and rlU3 \ U2 == 0, a "mesa function;' so to 
speak, with a plateau over U1 and a slope in U2 \ U1 . To do 
this, all we need is a Coo auxiliary function)... : lR+ -+ [0, 1) 
as in Figure 8.3, with which we then define r(q) := )...(IIh(q) II) 
for q E U3 C U. The purpose of this device r is to extend the 
functions W/-L1 ... /-Lk and xl , ... ,xn differentiably from Ul to all 

Figure 8.2. Preparation 
for the mesa function 

Figure 8.3. Auxiliary 
function for the mesa 
function 
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of M. We do this simply by defining 

() { 
r(q)wJ1.I ... J1.k(q) 

aJ1.1.·.J1.k q:= 0 

t;"(q):= { ~(q)x"(q) 

For the k-form W E ~iM given by 

for q E U3, 

for q E M \ U3, 

for q E U3, 

forqEM\U3. 

w := L aJ1.1 ... J1.kd~J1.1 1\ ... 1\ d~J1.k, 
J1.1<···<J1.k 

axioms (a)-(c) actually do imply that 

dMW := L daJ1.1 ... J1.k 1\ d~J1.1 1\ ... 1\ d~J1.k 
J1.1 <···<J1.k 

because the a's and the ~'s are now differentiable on all of 
M. In particular, as the defining formula (*) for U shows, 

and the right-hand side is equal to (duw)p because wand W 
agree on the neighborhood U1 C U of p. The only thing left 
to prove is that 

In much the same way as we chose the mesa function r 
earlier, we now choose a Coo function a : M --* [0, 1] with 
aiM \ U1 == 1 and a(p) = O. Then 

w-w=a·(w-w), 

and it follows from (a) - (c) for dM that 

dM(W - w) = da 1\ (w - w) + adM(w - w). 

Both the summands vanish at p because w - wand a are 
zero there. Hence dM(W - w)p = 0, as was to be shown. 0 
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8.6 The Naturality of the Cartan 
Derivative 

The Cartan derivative is now at our disposal. The general 
properties (a)-(c) enabled us to characterize it, and the local 
formula 

dwlU = L dWJLI ... JLk A dxJl l A ... A dXJLk 
JLI <"'<JLk 

we obtained along the way gives us concrete instructions for 
computing dw in the coordinates of a chart (U, h). There was 
no need to include the naturality of the Cartan derivative 
among the characterizing conditions; it now follows auto­
matically. 

Lemma. The Canan derivative is compatible with differentiable 
maps. In other words, if f : M ~ N is a differentiable map, 
then 

f*dw = d(f*w) 

for all differential forms w on N. 

PROOF. For O-forms w E QO N C differentiable functions w 
N ~ lR), the statement f*dw = d(f*w) is just another way 
of writing the chain rule since f*w := w 0 f and (f*dw)p := 
dWf(p)odfp. For differential forms of higher degree, we know 
in advance from the formula above for computing dwlU that 
the Cartan derivative is compatible with inclusions of open 
sets, so we may assume without loss of generality that there 
is a chart (U, h) on N whose chart domain is all of N. We 
then have 

W = L WJLI ... JLkdxJLI A ... A dxJLk and 
JLI <"'<JLk 

dw = L dWJLI ... JLk A dxJlI A ... A dxJlk • 

JLI <"'<JLk 
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Applying f* gives 

f*w = L f*WiLl ... iLk · f*dxiLl 1\ ... /\ f*dxiLk and 
iLl <"'<iLk 

f*dw = L f*dWiLl ... iLk /\ f*dxiLl 1\ ... 1\ f*dxiLk . 
iLl <"'<iLk 

Now, before applying d to the first of these two equations 
so as to compare df*w with f*dw, we want to convince our­
selves that 

d(f*dxiLl 1\ ... /\ f*dxiLk) = O. 

But this follows by induction and the product rule from the 
known equality 

f*dxiLi = d(f*xiLi) 

for the O-form XiLi on N. Hence d(f*dxiLi) = 0 because dd = O. 
Thus applying d to f*w gives only 

df*w = L df*w/LJ ... /lk 1\ f*dxiLl 1\ ... 1\ f*dxl-l k 

by the product rule. Since d and f* commute when applied 
to the O-form wiLl ... /lk , it follows that df*w = f*dw. 

8.7 The de Rham Complex 

The naturality of d also means that every differentiable map 
f : M -+ N induces a chain map between the de Rham 
complexes of Nand M. In other words, the diagram 

o ---+ nON 

1*1 
o ---+ nOM ---+ 

d 

d 
---+ 

nlM ---+ n2M ---+ .,. 
d 

commutes. The de Rham complex canonically defines a con­
travariant functor from the differentiable category to the cat­
egory of complexes and their chain maps, as announced in 
Section 7.5. 
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Of course, the de Rham complex of an n-dimensional 
manifold M is interesting only up to degree n since Qk M = 0 
for k > n. For this reason, the finite sequence 

o~ QOM ~ QIM ~ ... ~ Qn-1M~ QnM~ 0 

is also often caned the de Rham complex of M. But the 
naturality of d refers to more than maps between manifolds 
of the same dimension, so it is formally more convenient 
to extend the de Rham complex on the right with zeros. If 
dim N =: k < n, then the naturality of d makes a further 
nontrivial statement about k-forms on M: All the k-forms 
coming from N have Cartan derivative zero, or are said to be 
"cocycles": 

QkN ~ 0 

1*1 1 
QkM 

d Qk+1M ~ 

Corollary. If M is an n-dimensional manifold-with-boundary 
and f : M -+ aM is any differentiable map, then 

df*w = 0 

for all wE QII-l aM. 

8.8 Thst 

(l) Let (el, ... , ell) be a basis of V and (81, ••• ,811 ) its dual 
basis. Then the following family of wedge products is a 
basis of A1t2 V: 

o (8 11 /\ 811 )Il,v=I, ... ,II' 

o (8 11 /\ 811 )119' 

o (8 11 /\ 811 )Il<v, 

(2) Let V be an n-dimensional vector space. Which of the 
following conditions on k, with 0 .::::: k .::::: n, is equivalent 
to w /\ W = 0 for all WE AltkV? 
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o 0 < k. 

o 2k> n. 

o k is odd or 2k > n. 

(3) Let V be as above and 0 :::: r :::: n. Without further 
conditions on r, does." 1-* ..• /\ ." give an isomorphism 

Altn-rV ~ Hom(AleV, AltnV)? 

o Yes. The spaces have the same dimension and the 
homomorphism is clearly injective. 

o No. For example, the homomorphism is not injective 
for odd rand n = 2r because." /\ ." = O. 

o Only if rand n - r are both even. 

(4) In local coordinates (x, y) on a two-dimensional mani-
fold, 

o dx /\ dy (ay , ax) = l. 
o dx /\ dy (ay , ax) = o. 

o dx /\ dy (ay , ax) = -l. 
(5) In local coordinates (t, x, y, z) on a four-dimensional 

manifold, 

o dt /\ dx (ay , az ) = l. 

o dt /\ dx (ay , az ) = o. 
o dt /\ dx(ay , az ) =-l. 

(6) Let wE Q,rM, ." E Q,5M, and ~ E Q,tM. Then the signs in 
the formula 

d(w /\ ." /\ 0 = ±dw /\ ." /\ ( ± w /\ d." /\ ( ± w /\ ." /\ d( 

are, in order, 

o +1, +1, +l. 

o (-I)', (-Ir, (-1)t. 

o +1, (_I)r, (_1)r+5. 



__________________________________ ~~.8 __ Th __ M ______________ 147 

(7) For the coordinate functions x and yon JR2, we have 

o d(xdy + ydx) = o. 
o d(xdx+ydy) =0. 

o d(xydx + yxdy) = O. 

(8) Let f : M ~ N be a differentiable map between mani­
folds. Is the composition of the three homomorphisms 

nr-IN ~ nrN L nrM ~ nr+1M 

necessarily zero? 

o Yes, because of the naturality of the Cartan deriva­
tive. 

o No. Thking M = N = JR2, f(x, y) := (y, x), and w = 
xy E nON gives a counterexample: dw = (dx)y­
xdy = ydx - xdy, so f*dw = xdy - ydx and hence 
df*dw = dx /\ dy - dy /\ dx = 2dx /\ dy =1= o. 

o No. If we take N = M = JR, for instance, and set 
w = f, we get df*df = IIdf 112. This doesn't vanish in 
general. 

(9) Let rand f{) denote the usual polar coordinates in the 
plane. Then r dr /\ df{) = 

o dx /\ dy. 

o dy /\ dx. 

o y'x2 + y 2 dx/\ dy. 

(10) On a manifold M, one can also consider complex­
valued differential forms wE Qr(M, C), extend the wedge 
product of real forms to a complex-bilinear operation 
on complex-valued forms, and (by splitting into real 
and imaginary parts) define the Cartan derivative for 
complex-valued forms as well. Which of the following is 
true on M := C? 

o dz /\ dZ = dx /\ dy. 
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o dz/\az=2dx/\dy. 

o dz /\ az = -2idx /\ dy. 

8.9 Exercises 

EXERCISE 8.1. Let V be an n-dimensional real vector space. 
Show that the alternating k-linear map V* x ... x V* ~ 
AltkV defined by (fPI, ... ,(l) ~ fPI /\ ... /\ fPk is universal 
in the following sense: For every alternating k-linear map 
ex : V* x ... x V* -+ W there is exactly one linear map 
I : AltkV -+ W with ex = lou. 

EXERCISE 8.2. Consider the usual coordinate functions x, y, 
and z on JR3. Give a 2-form W E Q2JR3 such that 

dw = dx /\ dy /\ dz. 

Does w = d1] for some TJ E QIJR3? 

EXERCISE 8.3. Let M be an n-dimensional manifold and let 
wE Qn-I M. Show that in local coordinates 

n 

dW(al,"" an) = L(-1)J.t-1 aJ.tWl...!1 ... n' 
J.t=1 

EXERCISE 8.4. Let w := dxl/\ ... /\dxn E QnJRn and let v = vJ.taJ.t 
be a vector field on JRn. Determine 1] := V-l wE Qn-IJRn and 
dTJ E QnJRn. Also give an explicit vector field v such that, on 
sn-l, TJ induces the canonical volume form of sn-l. 

8.10 Hints for the Exercises 

FOR EXERCISE 8.1. For this purely linear-algebraic exercise, 
you have to recall the linear-algebraic fact that given a basis 
aI, ... ,am of a vector space A and elements bl, ... , bm of a 
vector space B, there is exactly one linear map I : A -+ B 
such that I (aD = bi for i = 1, ... , m. 
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FOR EXERCISE 8.2. Here the coordinates x, y, z define a chart 
(U, h) with U = M = jR3, so the local defining formula for 
the Cartan derivative (emphasized again at the beginning of 
Section 8.6) holds immediately for wlU = w itself. It's just 
that xl, x2, x3 are renamed x, y, z. 

FOR EXERCISE 8.3. This is another direct application of the 
local formula for the Cartan derivative (see Section 8.6). 

FOR EXERCISE 8.4. We were introduced to the notation V...J W 

for "v in w" in Exercise 3.I-there in the linear-algebraic sit­
uation v E V, w E AltnV, here to be applied analogously to 
a vector field v on M and a form w E nnM. The "canonical 
volume form" Wsn-l E nn-1sn-l is the (n - I)-form that re­
sponds with + 1 to every positively oriented orthonormal ba­
sis (VI, ... , Vn-l) of Tpsn-l. "Positively oriented" means that 
we think of sn-l as aDn, with the induced orientation. (Note: 
If (V, (. , .) is an oriented n-dimensional Euclidean vector 
space and (VI, ... , Vn), (v~, ... , V~) are positively oriented or­
thonormal bases, then the automorphism f : V -+ V with 
Vi 1---+ vi has determinant +1. Hence WS"-l is well defined; 
see Exercise 3.2.) 

Here's the real hint for Exercise 8.4: jRn also has a canon­
ical volume form, namely 

W = dx1 1\ ... 1\ dxn. 

How does dxI 1\ ... 1\ dxn respond to (va, ... , vn-d, and what 
does this have to do with V...J W? 

va 
~vn-l 

~ 
Figure 8.4. 



Stokes's Theorem 
CHAPTER 

9.1 The Theorem 

Now we finally come to the theorem so much of our discus­
sion has been about. 

Stokes's Theorem. Let M be an onented n-dimensional 
manifold-with-boundary and W E gn-l M an (n - I)-form 
with compact support. Then 

f dw= f w. 
M aM 

Before we begin the proof, we recall two conventions that 
were used implicitly in formulating the theorem. First, aM is 
oriented according to the orientation convention established 
in Section 6.8: the outward normal followed by the orienta­
tion of the boundary gives the orientation of M Second, 
JaM w := JaM L*W, where L : aM ~ M is the inclusion map 
(see Section 7.2 for this notation). We carry out the proof in 
three steps of increasing generality: 
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1. The case M = R~. 
2. The case where there exists a chart (U, h) with 

suppWCU. 

3. The general case. 

The first step takes some computation but no ideas; a 
completely straightforward application of the definitions 
serves our purpose. The other two are more abstract. The 
third and last step introduces partitions of unity, a tool that 
is often useful elsewhere in passing from local to global 
situations. 

9.2 Proof for the Half-Space 

Let M = R~. In the canonical coordinates, 

n 

W = L wl ... /i ... ndx1 /\ ... fi· .. /\ dxn, 
JL=l 

or, if we use the abbreviation f JL := W1.../i ... n for the compo­
nent functions, 

n 

W = L fJLdx1 /\ ... fi .. · /\ dxn, 
JL=l 

where the notation fi again means that the index J1 or the 
corresponding factor dxJL is to be omitted. 

The two integrands dw E QnR~ and l*W E Qn-l Rn- 1 

can be computed from this formula and the definitions as 
follows: 

n 

dw = L df JL /\ dx1 /\ ... fi ... /\ dxn 
JL=l 

= t (t avfJLdxV) /\ dx1 ... fi·· . /\ dxn 
JL=l v=l 

n 

= L(-1)JL-1aJLfJL. dx1 /\ ... /\ dxn. 
JL=l 
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Ifwe also denote the canonical coordinates of to} x lRn- 1 C 
R,n by x2, •.• , xn, then 

n 

L*W = L L* fp. . L*dx1 /\ ••• ;;: ••• /\ dxn 
1L=1 

= L* h . dx2 /\ ••• /\ dxn E nn-l R,n-l, 

since the inclusion L : to} x R,n-l ~ lRn obviously induces 
the functions 0, x2 , .•• , xn on to} x lRn - 1 from the coordinate 
functions xl, ... , Xn on lRn. Hence 

L*dxl = 0 and 

L*dxlL = dxlL for p, 2: 2. 

So much for the integrands dw on lR~ and L*W on oR,~. We 
now turn to the integral itself. The canonical coordinates on 
lR~ define an orientation-preserving chart, of course, and ac­
cording to the orientation convention so do the coordinates 
x2 , ••• , xn of olR~. Hence, by the definition of the integral 
(integration of the "downstairs component function"), 

f w = f h (0, x2 , ••• , xn)dx2 ••• dxn 

alR~ IRn- 1 

as ordinary multiple integrals of differentiable integrands 
with compact support. By Fubini's theorem, we may in­
tegrate with respect to the individual variables in any or­
der. Thus in the p,th summand of 1M dw we may integrate 
first with respect to the p,th variable. Since the support 
{x E lR~ : Wx =1= O} of w is bounded, so is the support of f, 
and we obtain 

jo 1 []Xl =0 2 n 
Olhdx = h = h (0, x , ... , x ) Xl =-00 

-00 

to} x Rn- 1 

SUP~ 

~xl 

Figure 9.1. Stokes's theo­
rem in the case M = R~ 
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M 

Figure 9.2. Stokes's 
theorem in the case 
suppw C U 

for j1- = 1 but 

00 

J [ ]~=+oo 
aJ.LfJ.LdxJ.L = fJ.L x/J.=-oo == ° 

-00 

for the other j1-'s. Hence 

J dw = J II (0, x2, ... , xn)dx2 ... dxn = J w 

M Rn-I aM 

for our first case M := ]R~. 

9.3 Proof for a Chart Domain 

Let (U, h) be a chart on M with supp w c U. Our definition 
of manifolds-with-boundary allows the two possibilities that 
h(U) is open in ]R~ or in ]Rn. Without loss of generality we 
may assume the former here, since by the compactness of 
supp w we could always achieve it if necessary by translating 
and shrinking the chart domain. We may further assume 
that h : U ~ U' preserves orientation and hence, by the 
orientation convention, that so does hlaU : au ~ au'. But 
then 

J dw = f dw = f h-hdw = f d(h-hw), 

M U h(U) h(U) 

by the change-of-variables formula for integration on mani­
folds (see Section 5.5) and the naturality of the Cartan deriva­
tive. We now extend h-hw to a form w' E nn-l]R~ by set­
ting it equal to zero outside h(U), which is possible because 
SUpph-hw = h(suppw) is compact. Then 
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But the change-of-variables formula for hlau au ~ au' 
gives 

and this completes the second step. 

9.4 The General Case 

Everything so far has been routine, but now we need a trick. 
The support may no longer fit inside a chart domain, and 
decomposing M or supp W by brute force into small measUT­
able pieces would lead to discontinuous integrands in lR~ to 
which the Cartan derivative could not be applied at all. If 
only we could write W as a sum W = WI + ... + Wr of differen­
tiable (n -I)-forms Wi E nn-1M, each of which had compact 
support supp Wi that fit inside a chart domain Ui! By Section 
9.3, this would certainly complete the proof. 

And this is exactly what we'll manage to do now. First, 
around each P E supp W we choose an orientation-preserving 
chart (Up, hp) and a COO function Ap : M ~ [0, 1] such that 
ApCp) > 0 and the support of Ap is compact and contained 
in Up. That's no problem: we need only lift a suitable "bump 
function" f3p with compact support in hCUp) up to Up by 
setting ApCq) := f3pCh(q» for q E Up and 0 otherwise. Then 
{AP-lCO, I)}pEsuppw is a family of open sets whose union con­
tains supp w, and since supp W is compact there are finitely 
many PI, ... , pr such that 

r 

supp we U A;/ (0,1] =: X. 
i=l 

On the open set X C M we now define r differentiable func-

aM 

Figure 9.3. Stokes's theo­
rem in the general case 

Figure 9.4. f3p for P E aM 
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tions 'l't. ... , 'l'r by 

'l"j: X --~) [0,1] 

Then obviously 

, 

APi (X) 
x I-+- ----~-------

ApI (X) + ... + Apr (X) 

r 

L'l'i(X) = 1 for all x E X, 
. i=1 

which is why {'l'i}i=I, ... ,r is also called a Upartition of unity" 
on X. Multiplication by W now gives us our corresponding 
"partition of w.n More precisely, we define Wi E nn-l M by 

W;p := { ~(P)"" for P EX, 

otherwise. 

Since supp W is compact, so is supp ('l'j . wIX) c supp Wi hence 
Wi is differentiable not only on Xbut on all of M, and it follows 
from supp W C X and L 'l'j == 1 on X that 

W = WI + ... + W r• 

Finally, the supports of the individual summands fit as de­
sired inside a chart domain, because Wip i:- 0 implies that 
'l"j(p) i= 0 and hence that Api(P) i= 0, so SUpPWj C SUPPAPi C 
Up. 0 

9.5 Partitions of Unity 

Stokes's theorem has now been proved. Partitions of unity 
are a very useful tool in other contexts as well (see, for 
example, [J:1bPl, Chapter VIII, §4). In particular, they give 
us what was promised at the end of Section 5.3, a way to 
define integration on manifolds without forcibly splitting 
the manifold into little pieces. 

Definition. Let M be a manifold and U an open cover of 
M (by the chart domains of an atlas, for instance). By a 
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differentiable partition of unity subordinate to the cover 11, 
we mean a family {Ta }aeA of Coo functions Ta : M ~ [0, 1] 
with the following three properties: 

(1) The family {Ta }aeA is locally finite, in the sense that for 
every P E M there is an open neighborhood V p such that 
Tp/Vp = ° for all but finitely many ex. EA. 

(2) LaeA Ta(p) = 1 for all P E M. 

(3) For every ex., supp Ta is contained in some set in the open 
cover 11. 

Lemma. Every open cover of a manifold M has a subordinate 
partition of unity. 

PROOF. If M is compact we can proceed as in the proof of 
Stokes's theorem. First, for every P E M we choose a bump 
function Ap : M ~ [0,1] with support in one of the sets of 
the open cover and Ap(p) > O. We then find Pl •...• Pr with 
Ui=l Ap/ (0, 1] = M and set Tk := Apk/ Li=l Apj. Of course, no 
problems arise with local finiteness or adding up the bump 
functions because there are only finitely many functions. 

If M is not compact, we use a compact exhaustion. This 
is a sequence 

KI C K2 c··· eM 
o 

of compact sets withKi C Ki+l and U~lKi = M. Compact ex-
haustions are usually easy to find in concrete cases. One way 
to give a general existence proof is as follows: Let {Oi}jeN be 
a countable basis for the topology of M, and without loss of 
generality let the closures OJ all be compact. (If they are not 
already compact, just omit all the OJ with noncompact clo­
sure from the basis; the rest still form a basis.) Now, defining 
a sequence recursively by 

nj ni+1 

Kj := U Ok C U Ob where 1 = nl < n2 < ...• 
k=l k=l 

gives our compact exhaustion. 
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o 

Kj \ Kj-l 

Figure 9.5. The strips 
o 

Kj \ Kj-l are "taken care 
or' by)..L ...• A~j' 

The partition of unity is obtained in the now-familiar 
way. For each i, finitely many differentiable (bump) func­
tions Ai, ... , A~i : M -+ [0, 1] are chosen such that 

A~ + ... + A~j > 0 
o 

for all x in the (compact!) set Ki \ Ki-l but the individual sup-
ports are small enough that each fits inside both an element 
of 11 and the (open!) set 1(i+1 \ Ki-2. Then the entire family 
{A~}iEN.1~j~ri is clearly locally finite, the function 

00 rj 

A:= LI>~ 
i=1 j=1 

is Coo and positive everywhere on M, and setting r! := Ai';A . }} 

gives the desired partition of unity {r]liEN.1 ~j ~ri' 0 

Incidentally, any partition of unity {ralaEA on a mani­
fold M, not just the one we constructed in the proof of the 
lemma, has the property that ra is the zero function for all 
but courttably (or finitely) many a's. This follows from local 
finiteness because manifolds satisfy the second countability 
axiom. So without loss of generality a partition of unity can 
always be thought of as {ri}iEN, and on compact manifolds as 
{ri}i=1 ..... r. 

9.6 Integration via Partitions of Unity 

Let M be an oriented n-dimensional manifold, and let {ri}iEN 
be a partition of unity with each supp rj contained in the 
chart domain Vj of an orientation-preserving chart (Vi, hi). 
Then any n-form W can be written as a locally finite sum 
W = 2::1 Wi, where 

Wi := ri . w. 

Let ai : hi(Vi) -+ 1R denote the downstairs component func­
tion 

h- 1 
ai := W1...n 0 i 
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in terms of (Ui. hi). Then the following holds. 

Note. In this situation, w is integrable if and only if each ai is 
integrable on hi(Ui) and 

Then 

t f lail dx < 00. 

1-1 hj(Uj) 

Of course, this is a "note" only if integration on manifolds 
has already been introduced in some other way. Otherwise 
this formula is used as the definition of 1M w, and its indepen­
dence of the choice of charts and of the partition of unity 
need only be proved as a lemma. 

How far this concept of integration on manifolds extends 
depends on which concept of the integral in ]Rn is used. The 
Lebesgue integral would give us back the concept we defined 
in Section 5.4. For many purposes, however, one can get 
by with much less: without loss of generality, the supports 
supp Ti of the partition of unity can always be assumed to 
be compact. Then for continuous w, for instance, and all the 
more for the W E nn M that we always consider in the Cartan 
calculus and Stokes's theorem, each summand Ih(Uj) aidx is 
just an ordinary iterated integral B 

f3n f3! f ... f f (Xl, .... xn) dx1 .•. dxn 

over a box in ]Rn (even if h(Ui) itself is unbounded). The 
integrand is continuous (differentiable if wE nnM), and this 
situation is controlled by even the most elementary notion 
of integral. If in addition, as usually happens, the support of 
W is assumed to be compact, then there are at most finitely 
many such summands, and integration on manifolds is­
may one say?-quite simple. One may. 

hi(Ui) c 1R~ 
open 

suppai 

Figure 9.6. fh;(U;) ai dx is 
an integral of a continu­
ous integrand over a box 
Bin ]Rn. 
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9.7 Thst 

(1) The component function of the n-form 

d l1- dl -.. d n x A x A ..• fJ.- .•• A x 

on lRn with respect to the coordinates xl, ... , xn is the 
constant function 

o 1. o (-1)11-. 

(2) Let fJ.-I < ... < fJ.-r and w := dXI1-IA . . . Adxl1-r E !:Y (lR~). For 
theinclusiont: {O}xlRn- 1 '-+ lRn, under what hypotheses 
is it true that I*W = O? 

o When one of the fJ.-i equals 1. 

o When none of the fJ.-i equals 1. 

o Never. 

(3) For the special case M = lR~, Stokes's theorem reduces 
to the statement that if / : lR_ ~ lR is a Coo function with 

compact support, then J~oo f' (x)dx = 

o o. 0/(0). o - /(0). 

(4) It is clear that the hypothesis in Stokes's theorem that 
W have compact support cannot just be omitted even in 
the case M = IR.~, because then the integrals may not 
exist. But does the theorem remain true if instead of the 
compactness of the support we require the existence of 
the integrals on both sides? 

o Yes, because the harmless behavior of wand dw at 
infinity is an adequate substitute for compactness of 
the support. 

o Yes, because this hypothesis is actually equivalent to 
compactness of the support. 

o No, as you can see by looking at the case n = 1. 
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(5) On the question of whether compact subsets can be 
contained in chart domains: Consider 

X := 51 x {l} U {l} X 51 C 51 X 51. 

Is X contained in a chart on the torus? 

o No, because even 51 x {Il by itself doesn't fit inside 
a chart domain. 

o No, although 51 x {Il and {Il x 51 individually fit 
inside chart domains. Think about the intersections 
of their images under a single chart that contains all 
of X! 

o Yes, because the punctured torus 51 x 51 \ {pl is al­
ready diffeomorphic to an open subset of lR2. 

(6) Suppose that you are given the Coo function f : R -+ R 
defined by f (x) := e- l / xl for x > 0 and f (x) := 0 for x ~ 0 
and asked to construct a small bump function about the 
origin in Rn, that is, a Coo function f3 : lRn -+ lR+ with 
support the closed ball about 0 of radius & > O. Which of 
the following definitions yields the desired function? 

o f3(x) := f (& - IIxll)· 

o f3(x) := f (&2 - IIxIl2). 
o {3(x) := f (lIxll 2 - &2). 

(7) Let U C M be an open subset of a manifold, a chart 
domain for instance. Let the functions t" : M -+ Rand 
f : U -+ R be differentiable (Le. COO), and let t" vanish 
outside U. Is the function F defined by 

F(x) := { ~(X)f (x) 

differentiable on all of M? 

o Yes, always. 

for x E U, 

for x E M\ U 

o Yes if f is bounded. Otherwise, not in general. 
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o Boundedness is enough to make F continuous, but 
not differentiable. 

(8) For a partition of unity {Ta }aEA on a compact manifold M, 
why are there always only finitely many a with Ta ¢: O? 

o Because finitely many of the open subsets 

{x EM: Ta(X) ::j:. O} 

are already enough to cover M. 

o Because finitely many of the sets V p that exist by the 
requirement of local finiteness are already enough 
to cover M. 

o Because-it isn't true at all: The supports supp Ta can 
"keep getting smaller" even on compact manifolds, 
so there is room for infinitely many in a locally finite 
way. 

(9) On an n-dimensional manifold (without boundary) M, 
let w be an (n - 1)-form with compact support and f an 
arbitrary differentiable function. It follows from Stokes's 
theorem that 

o fMfdw=O. 

o f M f dw = f M df 1\ W. 

o fMfdw = - fMdf I\w. 

(10) Let {ra}aEA and {O";,.hEA be two partitions of unity on 
M. Is the family {Tao";,.} (a,;")EA x A also a partition of unity? 

o Yes, always. 

o Only if one of the two is finite (that is, if its functions 
vanish identically for all but finitely many indices). 

o Only ifboth are finite. 
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9.8 Exercises 

EXERCISE 9.1. Let M be an oriented compact n-dimensional 
manifold and (U, h) a "box-shaped" chart, i.e. one with 

and let W E nn M be an n-form whose compact support is con­
tained in U. Show direct1y, without using Stokes's theorem, 
that JM dw = O. 

EXERCISE 9.2. Let M be an oriented compact n-dimensional 
manifold and f : M --+ N a differentiable map to an (n - 1)­
dimensional manifold N. Also let TJ E nn-l Nand w := f*TJ. 

Show that JaM w = O. 

EXERCISE 9.3. Prove that on any n-dimensional orientable 
manifold M there is an n-form w E nn M with wp =1= 0 for all 
pEM. 

EXERCISE 9.4. Let M be an n-dimensional manifold-with­
boundary and TJ E nn-laM. Show that there is an (n - 1)­
form w E nn-l M with l*W = 1], where 1 : aM ~ M denotes 
the inclusion map. 

9.9 Hints for the Exercises 

FOR EXERCISE 9.1. This exercise is closely related to the first 
step in the proof of Stokes's theorem, and its only point is to 
give you a better understanding of that step. 

FOR EXERCISE 9.2. Some exercises are so fragile that if you 
just touch them they disintegrate. So I'll keep my hands off 
this one and tell you instead about a nice application. 

Can an oriented manifold M be retracted differentiably 
onto its boundary? In other words, can you find a differen­
tiable map p : M --+ aM such that the composition 

L P 
aM~ M --+ aM 

M 

Figure 9.7. 
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~ 
~(X) 

Figure 9.8. 

is the identity? Always? Sometimes? Never? Certainly not 
always: a retraction P : [0, 1] -+ {O, 1} would be a continu­
ous function with p(O) = 0 and p(1) = 1 that assumed no 
intermediate value. But in higher dimensions? 

It hardly seems likely: the manifold will probably tear if 
it's retracted by force onto its boundary. Or is there a twist 
that could make this work after all? Perhaps in still higher 
dimensions? 

Exercise 9.2 shows that it never works. To see this, choose 
any TJ E n"-l (aM) with JaM TJ ¥= O. This is always possible. 
We just have to choose a little bump function A 2: 0 with 
nonempty support in a chart domain U of aM and set 

I A(p)dxl 1\ .. . 1\ dx"-l in U, 

TJp ;= 0 otherwise. 

Now, if p : M -+ aM were a differentiable retraction, so that 
pOL = IdaM, then Exercise 9.2 would give the contradiction 

f P*TJ:= f l*P*TJ = f TJ = O. 

aM aM aM 

Thus we have shown: 

Theorem. No compact orientable manifold can be retracted 
differentiably onto its boundary. 

Corollary. Every differentiable map f : D" -+ D" has a fixed 
point, because othenvise there would exist a differentiable retrac­
tion P : D" -+ aD". 

The theorem and its corollary can actually be general­
ized to continuous maps through an additional argument 
(approximation of continuous maps by differentiable maps), 
and then the corollary is called the Brouwer fixed-point the­
orem. 

FOR EXERCISE 9.3. Up to now, we have used partitions of unity 
only to "partition" a differential form. But they are used far 
more often when individual pieces are given locally but don't 
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fit together, to weld them into a smooth global object. The 
procedure is described in detail in Chapter VIII, §4 of[J:Thp). 
You don't have to study the details-skimming that section 
will give you the idea of the procedure in our Exercise 9.3. 

Figure 9.9. 

FOR EXERCISE 9.4. Partitions of unity are an extremely con­
venient tool for constructing forms and functions. Here, too, 
you just have to solve the problem locally and then refer to 
partitions of unity in one or two cleverly worded lines. 



CHAPTER 

10.1 Introduction 

Classical Vector 
Analysis 

In hindsight, it is easy to say that classical nineteenth­
century vector analysis is about the Cartan derivative and 
Stokes's theorem, though in a notation in which these objects 
are unrecognizable at first sight. 

Ifwe go from analysis on manifolds toward classical anal­
ysis, we can see from a distance that there we'll be dealing 
only with submanifolds of jR3 or, at worst, jRn. So? Our ideas 
can even be applied to arbitrary manifolds. 

As we get closer, we also see that the integrands are usu­
ally defined not just on M but on a whole open neighborhood 
X of M, on X = jR3 or X = jR3 \ to}, for instance, or something 
similar. So what? Surely our analysis on M can take care of 
any 17 E nkx; we just apply L : M '--+ X and consider the 
restriction L*17 E nkM. 

This is true in principle, but forms on open subsets X of 
jR3 should not immediately be dismissed. For one thing, if we 
now enter classical vector analysis, we have to recognize the 
forms 17 on X as the real objects of interest. They describe 
physical "fields" of various kinds, while the submanifolds 

167 
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M C X are only called in as auxiliaries, to "test" an 1] E QkX 

in some sense-to analyze it. Think of a flux density 1] E Q2 X 
on a region X in space, for instance, whose net flux 1M 1] 

through various surfaces M is to be considered. 

But there are also technical advantages to computing with 
forms 1] on X once they're already given there, even if we 
could actually get by with the partial information L * TJ. On X 
we have the canonical coordinates xl, x 2, x3 ofIR3, so we can 
use the dxlL to represent the differential forms globally. Since 
the wedge product and the Cartan derivative are compatible 
with maps, in particular with inclusion (l*W 1\ £*1] = L*(W 1\ 1]) 

and dt*1] = L*dT)), it makes no difference whether we com­
pute before or after applying L*, and doing the computation 
first is often easier. 

The reason classical vector analysis is completely unrec­
ognizable at first sight as a domain of application of the Car­
tan calculus is the complete absence of differential forms. 
The concept isn't mentioned at all! The theory deals instead 
with vector fields on X-hence the name-and with the gra­
dient, curl, and divergence operators. Only the fact that the 
integration is over volumes, surfaces, and curves indicates 
that there is, after a11, a connection with analysis on mani­
folds. 

This connection is made through the bases for the fields 
and forms in terms of the coordinates xl, x 2, x3. To be pre­
cise, I-forms and 2-forms are described with respect to the 
bases by three component functions, as are vector fields, and 
3-forms by one. The next section contains the details of this 
translation of forms into the language of classical vector anal­
ysis. 

10.2 The 1i:'anslation Isomorphisms 

For an open subset X ofIR3, let V(X) denote the vector space 
of differentiable vector fields and COO(X) that of differen­
tiable functions on X. 
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We denote the component functions of a vector field a E 

V(X) by aI, a2, a3, with subscripts, in deliberate contrast to 
the Ricci calculus. Otherwise a clash with the Ricci calculus 
would just occur somewhere else! This is an indication that 
describing I-forms and 2-forms by vector fields is not in fact 
compatible with all changes of coordinates. But as long as 
we continue to use the canonical coordinates of JR.3, we may 
think of a vector field a as simply a triple a = (aI, a2, a3) of 
functions. 

In order to give transparent formulas for the translation 
isomorphisms, we introduce the following notation. 

Definition. Let X C JR.3 be open. The JR.3-valued ("vector­
valued") I-form and 2-form 

as := (~:~) E QI (X, JR.3) and is := (~:~ ~ ~::) E Q2(X, JR3) 
dx3 dxl /\ dx2 

are called the vectorial line element and the vectorial area 
element, respectively, and the ordinary real-valued 3-form 

dV := dx1 /\ dx2 /\ dx3 E Q3X 

is called the volume element of X. 

Convention. The usual translation isomorphisms are given 
by 

V(X) - QIX, a 1-+ a· as, -----+ 

V (X) - Q2X, b 1-+ b. dS, -----+ 

coo (X) -----+ Q3X, C 1-+ C dV. 

Here the dot denotes the standard scalar product on JR.3. 

But if we write a, b as rows and as, dS as columns, the dot 
can also be read as the symbol for the matrix product. 

The dictionary for translating classical vector analysis 
into the Cartan calculus, and vice versa, starts with this con­
vention. As you can see, the translation from right to left 
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Figure 10.1. The cross 
product: a reminder 

is unambiguous, but whether a vector field has to be inter­
preted as a I-form or a 2-form can't be inferred from the 
dictionary alone. Just as in foreign languages, it depends on 
the context. 

Incidentally, the terms line element, area element, and vol­
ume element become plausible once we understand the geo­
metric meaning of these forms. 

Note. At every point x E X, 

dSx :]R3 ~ ]R3 

isx : ]R3 x]R3 ~ ]R3 

dVx : ]R3 x ]R3 x]R3 ~ ]R3 

is the identity, 

is the cross product, 

is the determinant. 

By linearity, these assertions need be proved only for the 
canonical basis vectors, for which they are obvious (consider 
dSx(el, ez) = e3 and look at cyclic permutations, as for the 
cross product). So let's go straight to the interpretation. The 
determinant gives the elementary-geometric volume of a 
positively oriented 3-span. The response of the cross product 
to an oriented 2-span is the normal vector whose length is 
the elementary-geometric area of the span (there are two 
such vectors) and whose direction is the one that, followed 
by the orientation of the span, gives the spatial orientation. 
The identity needs no explanation. If you imagine that forms 
respond to small ("infinitesimal") cells, you can see that the 
names make sense. 

10.3 Gradient, Curl, and Divergence 

Now let's use this dictionary to translate the Cartan deriva­
tive into the language of vector analysis. As always, X C ]R3 

denotes an open subset. For f E Coo (X), we have 

df = of dx l + of dxZ + of dx3 
ax} OxZ ox3 

- (!L !L !L).dS 
- ax}' OxZ' ox3 ' 
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and for vector fields ii, b e V(X) the Cartan derivatives of the 
1-form ii . as and the 2-form b . dS are 

d(ii . cIS) = d L alLdxlL = L ovalLdxv /\ dxlL 

and 

IL IL. v 

= (Oza3 - o3az)dxZ /\ d~ + cyclic permutations 

= (aZa3 - a3aZ, a3a} - a}a3, a}aZ - azad . dS 

d(b . dS) = db} /\ dxz /\ d~ + cyclic permutations 

= ab~ dx} /\ dxz /\ axJ + cyclic permutations 
ax 

( ab} abz ab3) d = -1 + -z + __ ~ v. 
ax ax aX" 

This is where we encounter the three classical operators 
of vector analysis, for which we fix our notation. 

Definition. For Xc ]R3 open, we define the gradient, curl, 
and divergence 

by 

grad : Coo (X) -+ V (X), 
curl: V(X) -+ V (X) , 
div: V(X) -+ Coo(X), 

The computations above for the translation of the Cartan 
derivative have given us the following result. 
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Note. For X e ]R3 open, df = grad f . as, d(a . d'S) = curl a . dS, 
and d(b . dS) = (div b)dV. Hence the diagram 

o~ nOx ~nlX~Q2X~ Q3X ~O 

=T 
o ~ COO(X) ~ V(X) ~ V(X) ~ COO(X) ~ 0 

grad curl div 

is commutative. 

Corollary. curl grad f = 0 and div curl a = 0 for all functions f 
and all vector fields a. 

We pause at this stage of the translation to note how 
Stokes's theorem looks as a theorem about vector fields or 
functions on X. The corollary of Stokes's theorem that re­
sults for dimM = 3 is called Gauss's integral theorem or the 
divergence theorem. 

Gauss's Integral Theorem. Let X C 1R3 be open and let b be 
a differentiable vector field on X. Then 

f div b dV = f b. dS 
M3 aM3 

for all compact three-dimensional submanifolds-with-boundary 
M3 eX. 

Observe that three-dimensional submanifolds are canon­
ically oriented by 1R3 . In the two-dimensional case we have 
the classical Stokes's theorem, for which the more general 
theorem is named. 

Stokes's Integral Theorem. Let X e 1R3 be open and let a be 
a differentiable vector field on X. Then 

f curl a . dS = fa. as 
M2 aM2 

for all oriented compact two-dimensional submanifolds-with­
boundary tsurfaces,,) M2 e x. 
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For completeness, we also mention the one-dimensional 
case, although it has no name of its own. 

If X C lR3 is open and! : X -+ lR is a differentiable function, 
then 

f grad! . as = !(q) - !(p) 

Ml 

for all oriented compact one-dimensional submanifolds Ml eX 
from p to q. 

10.4 Line and Area Elements 

In the integral notation of classical vector analysis, the non­
vectorial line element ds and the nonvectorial area element 
dS playa central role. So we introduce these two "elements" 
next, and to make them easier to understand we start with 
an interpretation too closely tied to differential calculus to 
be really authentic. 

Definition. If M c lRn is an oriented k-dimensional subman­
ifold, the k-form WM E QkM that responds with +1 to every 
positively oriented orthonormal basis of a tangent space T pM 
is called the canonical volume form of M. We call the canon­
ical volume form the line element when k = 1 and the area 
element when k = 2, and denote it by ds and dS, respectively. 

The intuitive meaning of the canonical volume form is 
clear, and we have already encountered it in the exercises 
(see Exercises 3.2 and 8.4). Its response to a positively ori­
ented k-span is the elementary-geometric k-dimensional vol­
ume of the span. If we denote the k-dimensional volume of 
a set A C M by VOlk(A), then 

VOlk(A) = f wM 

A 

whenever the integral exists-think of this equation as a def­
inition if you have no other definition of the k-dimensional 

+1 

-1~q 
P 

Figure 10.2. 
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volume in lRn available, and as a lemma otherwise. In par­
ticular, fA ds is the arc length of A for k = I, and fA dS is the 
area of A for k = 2. When k = 3 we can also write dV for 
the canonical volume element, and for M3 C JR.3 this agrees 
with our earlier definition dV = dxl /\ dx2 /\ dx3 . 

But how are ds and dS related to the vectonalline and area 
elements as E nl eX. JR.3) and is E n2(x. JR.3) that appear in 
our dictionary (Section 10.2) and in the integral theorems? 
It is clear from the geometric meaning of as and is (see the 
note in Section 10.2) that in the two-dimensional case the 
responses of l*dS and dS to an oriented tangential 2-span 
have the same magnitude, and similarly for l*as and ds in the 
one-dimensional case. But while ds and dS respond with real 
numbers, as and dS respond with vectors; in fact, as acts as the 
identity and gives a tangent vector, and dS acts as the cross 
product and gives a normal vector. In order to express this 
precisely and with the right sign, we introduce the following 
notation. 

Notation. Let M c lRn be an oriented k-dimensional sub­
manifold, k = 1 or k = n - l. 

(a) If k = I, let T : M ~ lRn denote the positively oriented 
unit tangent field. 

(b) If k = n - I, let N : M ~ JR.n denote the orienting unit 
normal field; that is, N(x) 1.. TxM, IIN(x)1I = I, and N(x) 
followed by a positively oriented basis of TxM gives a 
positively oriented basis of JR.n . 

Figure 10.3. Unit tangent vector and unit normal vector in the 
dimension-1 and codimension-l cases, respectively 
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Lemma. Let X C JR,3 be open and let l : Mk ~ 1R3, for k = I, 
2, be the inclusion of an oriented k-dimensional submanifold. 
Then 

l*£ = Tds E Ql(Ml, JR,3) and l*is = NdS E Q2(M2, JR,3). 

PROOF. If k = I, then £(1') = T and ds(n = 1 at every point, 
so the first equation holds. If k = 2 and a positively oriented 
orthonormal basis (ii, w) of TxM2 is given, then N(x) extends 
this basis to a positively oriented orthonormal basis (N, ii, w) 
of JR,3. Moreover, dS(ii, w) = I, so NdS(ii, w) = N = ii x w = 
dS(ii, w). 0 

10.5 The Classical Integral Theorems 

The nonvectorialline and area elements place the classical 
notation of the integral theorems at our disposal. We can 
now write the integral of a I-form a· £ over an oriented 
one-dimensional submanifold as 

fa. £ = fa. T ds, 

Ml Ml 

where of course, a . T : Ml ~ JR, means the function on Ml 
given by x H- a(x) . T(x) (so a . T really means (aIMl) . i). In­
tuitively, this notation describes what happens to the vector 
field under integration, since a(x) . T(x) =: atan(x) is the tan­
gential component of the vector a(x) at the point x E MI, and 
the contribution to the integral of a little piece of MI near x 
is thus approximately the product atan(x)6s of this tangential 
component and the arc length 65 of the little piece. 

The two-dimensional case is similar: 

f b. is = f b . N dS, 
M2 M2 

where b(x) . N(x) =: bnor(x) is now the normal component of 
b at the point x of the surface M2. If b gives the strength and 
direction of a flux, for example, then bnordS responds to a cell 

N 

~M 
Figure 10.4. Part of the 
flux through the cell u 
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Figure 10.5. T and N for 
Stokes's theorem 

in M2 with the rate of flow across M2. In particular, we now 
obtain the two integral theorems of Gauss and Stokes (see 
Section 10.3) in what may be their most common version. 

Gauss's Integral Theorem. If X e R3 is open and b is a 
differentiable vector field on X, then 

f div b dV = f b. N dS 

M3 aM3 

for all compact three-dimensional submanifolds-with-boundary 
M3 eX. 

Here M3 is thought of as canonically oriented by 1R3, so 
by the orientation convention N means the outward unit 
normal vector field on aM. 

Stokes's Integral Theorem. If X e 1R3 is open and a is a 
differentiable vector field on X, then 

f curl a . N dS = J a ° T ds 

MZ aMZ 

for all oriented compact surfaces-with-boundary M2 e X. 

As an application of Gauss's integral theorem we con­
sider the special case b = grad f, where we have to take 
the volume integral of div grad f ° Written in the coordinates 
x, y, Z of 1R3 , div grad is the familiar Laplace operator, or 
Laplacian, A: 

a2f a2f a2f 
AI := ax2 + ay2 + az2' 

In this context the notation V ("nabla") tends to be used for 
the gradient: 

f 0- (af af af) 
V .- ax' ay' dZ ° 

Throughout what follows, let f and g be differentiable func­
tions on an open set X e 1R3 and let M3 e X be a com-
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pact three-dimensional submanifold-with-boundary, as in 
Gauss's integral theorem. Setting b = V I gives an imme­
diate corollary. 

Corollary 1. 

f t::.ldV= f VI . NdS. 

M3 8M3 

Since V I . N is the directional derivative of I in the di­
rection of the outward normal (N I if vectors are viewed as 
derivations), it is also written 

... 01 
VI ·N=:­an 

(the "normal derivative of I "), and Gauss's theorem for 
grad I takes the following form: 

Corollary 2. 

f t::.ldV = f in dS . 
M3 8M3 

... 
A bit more generally, we now set b = gV f . The ordinary 

product rule gives 

div(gVf) = Vg. VI + gt::.l, 

and hence the following result. 

Corollary 3 (Green's first identity). 

f (Vg. VI +gt::.f)dV = f gVI ·NdS. 

M3 8M3 

Since the scalar product V g . V I is symmetric in I and 
g I this gives another identity. 
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Corollary 4 (Green's second identity). 

!(!t::.g-gt::.f)dV - ! (jVg-gVf).NdS 

M' _ 7 (f !! -g a:,,) dS 

8M3 

10.6 The Mean-Value Property of 
Harmonic Functions 

Of course, such an enumeration of special cases is a rather 
dry affair unless something more is done with them. In 
physics these formulas come alive! We can't go into this, 
but we will derive another nice mathematical result from 
Gauss's theorem (or rather from its Corollary 1 in Section 
10.5). 

Definition. Let X C lR.3 be open. A differentiable function 
f : X --+ lR. is called harmonic if t::.f == o. 
Theorem (Mean value property of harmonic func­
tions). Let f : X --+ lR. be harmonic and let K be a closed ball 
lying entirely in X, with radius r, center p, and boundary S. 
Then 

Isf dS 1! 
f (p) = Is dS = 4rrr2 ! dS; 

s 

that is, the value of the function at the center is the mean value 
of the function on the surface of the ball. 

PROOF. Without loss of generality, let p = O. When (xl, x 2, x 3) 

occurs as a tangent vector, we write x := (xl, x 2, x3) for con­
sistency with the vector-analytic formulas. We should actu­
ally distinguish between x = (xl, x2, x3) as a point in M = lR.3 

and x = (xl, x2, x3) as a vector in TqlR.3 ~ lR.3 , but we haven't 
inserted the distinction between lR.n and its tangent spaces 
into our notation anywhere else. 
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For every t E [0, I], the function ft defined by ftex) := 
f (tx) is also harmonic on some domain containing K and 
has the same value at p as f. Since the constant function fo 
obviously has the property 41rr2 f (p) = Is fodS, it suffices to 
show that the integral 

is independent oft, i.e. that #tIt == O. Since #tf(tx) = Vf(tx).x 
and Vft(x) = tVf(tx), we have 

~ It = ~ f V ft . x dS for t > O. 
dt t 

s 

But on the boundary S of the ball of radius r, the outward 
normal is N = xlr; hence, by Corollary 1 of Section 10.5, 

d rf - rf - It = - V ft . N dS = - !:::J.ft dV, 
dt t t 

S K 

and is therefore zero because ft is a harmonic function. 0 

Corollary (Maximum principle for harmonic func­
tions). If Xc ]R3 is open and connected, and if the harmonic 
function f : X ~ lR has an extremum, then f is constant. 

PROOF. Without loss of generality, let f (x) :::: f (xo) =: Yo 
for all x E X. The set f- I (Yo) is closed in X because f is 
continuous. But it is also open by the mean value property: 
Let p E f-I(yo). Then f must be constant and equal to Yo 
on the boundary S of any ball about p that lies completely 
in X; otherwise continuity would give Is f dS < f (p) Is dS. 
Thus the nonempty set f-I(yo) is open and closed in the 
connected subspace X C lR3 , so f-I(yo) = X. 0 

Corollary (Uniqueness for the Dirichlet boundary 
value problem). Let Me lR3 be a compact three-dimensional 
submanifold-with-boundary and let f, g : M ~ lR be continuous 
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functions that are harmonic on M \ aM. Iff and g agree on the 
boundary, i.e. if flaM = glaM, then f = g everywhere on M. 

PROOF. Without loss of generality, let M be nonempty and 
connected. As a continuous function on a compact set, f - g 
must take on extrema. That is, there are Xo, Xl EM with 

f (xo) - g(xo) ::: f (x) - g(x) ::: f (Xl) - g(XI) 

for all X E M. But either f - g is already constant (in fact 
zero since flaM= glaM and aM =1= 0), or Xo and Xl must lie 
in aM, by the maximum principle applied to the harmonic 
function f - g. Thus, again using f 10M = gloM, we find that 
a::: f(x) - g(x) ::: a for all X E M. 0 

Our discussion of classical vector analysis has been re­
stricted to the case n = 3. Some things are special to this 
dimension-the Cartan derivative (curl) changing I-forms 
into (n - I)-forms, for instance-but others carryover to 
arbitrary n. In particular, on an open subset X C ~n, 1-
forms and n-forms are both translated into vector fields, 
and a-forms and (n - I)-forms into functions; the Cartan 
derivatives d : QOX --+ QI X and d : Qn-l X --+ Qnx become 
the n-dimensional divergence and gradient, respectively; 
and the general Stokes's theorem gives the n-dimensional 
Gauss's theorem. This in turn implies the same Green's 
identities and the same theorems on harmonic functions as 
in the three-dimensional case. 

10.7 The Area Element in the 
Coordinates of the Surface 

After these examples of applications, we return to practical 
matters of vector analysis. How can we compute with line 
and area elements in local coordinates on the curve or the 
surface? 

The integral of a k-form over the domain of an orientation­
preserving chart on a k-dimensional manifold is simply the 
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ordinary multiple integral of the downstairs component 
function, as we know from Chapter 5. How does this look 
concretely for the forms ii . as and b . dS of vector analysis? 
First, we should note as a peculiarity of the vector-analytic 
situation that the symbols xl, x2, x3 are used for the co­
ordinates of]R3, so we have to choose others for the local 
coordinates of a surface M2 C ]R3, say (u l , u2) or (u, v). 

Figure 10.6. Notation for the coordinates 

It is also more convenient in vector analysis to introduce 
coordinates on the surface "from below"; this means consid­
ering f{J := h- l instead of h. Since M2 C JR3, f{J is given by 
its three component functions xi = xi(u, v), i = 1,2,3, ab­
breviated x = x(u, v), on an open region (often denoted by 
G C ]R2) of the (u, v)-plane or half-plane. The canonical basis 

Figure 10.7. Local coordinates on a surface M2 C R3 
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~ nxn 
N= IHI 

Figure 10.8. The orient­
ing normal of the surface 

vectors of the chart, which we have written a/au, a/av as el­
ements of TpM c lR.3 , are then ax/au and ax/av as vectors in 
lR.3 . Our next result comes from the definition and descrip­
tion of the area elements is and dS (see Sections 10.2 and 
10.4). 

Corollary 1. Let M2 C lR.3 be an oriented surface in space 
and G an open region in lR.2 or lR.~. On G, let the inverse of an 
orientation"preserving chart (U, h) be given by x = x(u, v). Then 
at every point p = x(u, v) E U we have 

is (!... !...) = ax x ax 
au' av au av' 

ax x ax 
N= il~ il~, 

II ilx x ilxll 
illl ilv 

dS -- -- - -- x --( a a) II ax ax II au' av - au av' 

Here again, the ambiguity of the notation u, v turns out 
to be useful. On the one hand, we can think of u, v as the 
coordinate functions on U C M2, a/au and a/av as vector 
fields on U, and du, dv E [21 U. With this interpretation, 

dSIU = -- x -- du 1\ dv E [22(U, lR. ) ~ (ax ax) 3 

au av 
or 

dSI U = II !~ x !~ II du 1\ dv E [22 U 

is the surface element as a 2-form on U. On the other hand, 
we can read u, v as the coordinates in G, and then 

II !~ x !~ II 
on G is exactly the downstairs component function of dS. In 
particular, this gives the following corollary. 
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Corollary 2. If, in addition to the hypotheses of Corollary 1, 
1/1 : M2 -+ JR is a function, then 

f 1/1 dS = f f 1/I(x(u, v» II :~ x :~ II du dv 
U G 

whenever this double integral exists. 

In vector analysis, the definition of the "surface inte­
gral" is usually based on this formula in coordinates, so it 
is important to observe that the same formula also holds 
for an orientation-reversing chart or a reorientation of U. Al­
though a change of orientation reverses the sign of the inte­
gral when the integrand stays the same, our integrand doesn't 
stay the same at all-the area element dS changes sign under 
a change of orientation. 

What we find for the line elements as and ds is similar. 

Note. Let Ml C JR3 be an oriented curve (one-dimensional sub­
manifold) in space, and on an interval I C JR let the inverse 
of an orientation-preserving chart (U, h) be given by t f-+ x(t). 

Then as(3/3t) = i(t), T = i(t)/lIi(t)IL and ds(3/3t) = lIi(t)II 
at every point p = x(t) E U. 

Hence 

as IU = idt E Ql (U, JR3) or dslU = lIill dt E Ql U 

is the line element as a I-form on U. In particular, 

ds = Jx1(t)2 +x2(t)2 +x3 (t)2dt 

at any point x(t), and we have an analogue of Corollary 2 for 
the line integral. 

Corollary 3. Since the line element ds changes sign under any 
change of orientation of U, 

f 1/1 ds = f 1/I(x(t»lli(t)1I dt 

U I 

for any orientation of U. 
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Don't begrudge learning a third version of the classical 
Stokes's theorem, in addition to those in Sections 10.3 and 
10.5. There's something special about this one. For this ver­
sion, we let G denote a bounded region of the (u, v)-plane 
with smooth boundary, in our language a compact two­
dimensional submanifold-with-boundary of R2. The bound­
ary of G consists of one or several, say r, closed curves, 
which are oriented according to the orientation convention. 
Let them be parametrized consistently with the orientation 
convention by simple closed curves 

Yj : [aj, .8il -+ aG, t ~ (Uj(t), Vj(t», i = 1, ... , r. 

Corollary 4. If X C R3 is open and a is a differentiable vector 
field on X, then for any differentiable map x = x(u, v) from G to 
X we have 

If ...... (ax aX)d (curl a(x(u, v»)· au x av u dv 

G 

Pi 

~f"'''' d... d = ~ a(x(uj(t), Vj(t» . ;rx(Uj(t), Vj(t» t. 
~1 t 

ai 

The promised special feature of this version of the the­
orem is that the map G -+ X, far from having to be an 
embedding (a diffeomorphism onto a submanifold Me X), 
may be any differentiable map ({J : G -+ X, even one that car­
ries G into X crumpled up, singular, and self-intersecting! No 
new theorem in need of proof is hiding behind this, just the 
application of the general Stokes's theorem to G instead of 
to some M C X. More precisely, if we set It) := a· as E Ql X, 
then the formula of Corollary 4 just says that fG d«({J*w) = 

faG ({J*W. 
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10.8 The Area Element of the Graph of a 
Function of Two Variables 

The special case where V is the graph of a differentiable 
function z = z(x, y) is of particular interest. Then u := xiV 
and v := ylV are the coordinates of the canonical chart h. 

The inverse chart or "parametric representation" G ~ V is 
then given by x = x, y = y, and z = z(x, y), so the tangential 
basis vectors are 

o (1) ~- 0 
ox ~~ 

and ocp = ( ~ ), 
oy oz 

or 

and the magnitude of their cross product is 

II :: x :; 1/ = ( OZ)2 (OZ)2 1+ - + -
ox ox 

Corollary. For a function 1/1 : V -+ lR on the graph 

V := {(x, y, z(x, y)) : (x, y) E G} 

of a differentiable function z = z(x, y) on an open subset G of 
]R2 or lR.~, the equation 

I 1/IdS= II 1/I(x,y, z(x, y)) 1+(:~)2 + (:;)2 dxdy 
U G 

holds and is independent of orientation, whenever the double 
integral exists. In particular, the surface area of U is 

Vo12 (V) = II 
G 

( az)2 (az)2 
1 + ax + oy dxdy. 

Figure 10.9. Basis for 
the tangent space to 
the graph 
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10.9 The Concept of the Integral in 
Classical Vector Analysis 

At the very end of this chapter we return yet again to the 
question of how, for its part, classical vector analysis really 
interprets integration on manifolds-essentially the surface 
integral-when it makes no use of differential forms. I con­
ceded earlier that our interpretation of the line and area el­
ements ds and dS as the canonical volume forms of oriented 
curves and surfaces is not quite authentic. What should the 
authentic interpretation be? 

The genuine unadulterated area element dS of classical 
vector analysis is defined for every surface in space (analo­
gously for every k-dimensional submanifold Mk of lRn), and 
has absolutely nothing to do with orientation or orientabil­
ity. But to each P EMit assigns, not an alternating 2-form, 
but a density 

(see Section 5.1); to be precise, dSp just responds to a pair 
(ii, w) of tangent vectors at the point p with the elementary­
geometric area of the parallelogram they span, so 

dSp(ii, w) = llii x wll 

for M2 C lR3 . If M is actually oriented, then the volume form 
WM is related to the area element dS by 

dS(ii, w) = IWM(V, w)l. 

If we now imagine, as in Section 5.2, that dS responds 
in approximately this way to small cells, then for a function 
I : M --+ lR on an arbitrary surface (not necessarily oriented 
or even orientable), the intuitive meaning of 

f IdS 
M 
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is clear. A formal definition is based on the local formula 

I f dS = II f(x(u, v)) ·11 :: x :~II dudv. 
U G 

(See Corollary 2 in Section 10.7.) If the Lebesgue integral 
for ]R2 is available, the general definition of integrability and 
the integral 1M f dS can be applied as in Section 5.4 by de­
composing M into small measurable sets, with the additional 
convenience of not having to worry about whether the charts 
used are orientation-preserving. Incidentally, 

A ~ f dS E [0,00] 

A 

then gives a measure J-LM on the a-algebra of measurable sub­
sets of M (see Section 5.5), and 1M'" dS is just the Lebesgue 
integral on this measure space. 

If one doesn't want to resort to the Lebesgue integral, 
partitions of unity (as in Section 9.6) offer an elegant way 
to base the definition of the surface integral on any notion, 
however modest, of the multiple integral (here, the double 
integral). If M is oriented, then 1M f dS according to this def­
inition agrees with 1M f WM according to the old definition. 

This idea of the area element as given by the ordinary 
unoriented surface area is certainly the more obvious and 
the more elementary. It has the advantage of being directly 
applicable in the nonorientable case as well, without addi­
tional arguments. But it has the drawback of densities: the 
integrands f dS are not differential forms and therefore can­
not be inserted casually into the Cartan calculus. Orienta­
tion (crucial for the integral theorems) then appears in the 
form of the orienting normal field N. This way of encoding 
the orientation hardly looks promising for generalization to 
arbitrary manifolds-even to, say, surfaces M2 C ]R4. But 
whatever you may think of the differences between the old 
area element dS and the volume form WM E Q2M, I hope at 
least to have made these differences completely clear. 
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Yet even this description of the classical vector-analytic 
notion of the surface integral has been spruced up. The text­
books, still used to some extent today, that present classical 
vector analysis classically use neither the Lebesgue integral 
nor partitions of unity. The reader is led toward the defini­
tion of the surface integral in two stages: first, a plausibility 
argument showing that 

I f dS = II f(x(u, V))" :: x ::" dudv 
U G 

is the right formula locally, and second, instructions to cut 
the surface into appropriate ·pieces," to each of which the 
formula can be applied. In view of the available notion of the 
double integral, this involves certain ad hoc conditions on 
the piecewise smoothness of the boundaries of these pieces 
of surface. Asking for clean definitions and proofs is not 
allowed. Even the question "What is a surface, anyway?" 
rarely gets a proper answer. The area element is given in 
the classical notation as 

dS = II :: x :: II dudv, 

and all the reader learns about its status as a mathemat­
ical object is that it's an "expression," a "symbol." But this 
information, at best acceptable if a bit bald, is immediately 
superseded. This symbol is now converted to other coordi­
nates, brought into a different form-an equality sign be­
tween "symbols" that look completely unalike? The putative 
proofs that the surface can be cut up and that the integral is 
well defined are just sketches of proofs, in fact sketches that, 
if actually carried out, would produce monstrosities. 

Conceptually and technically, classical vector analysis 
is not only much narrower, but even within this narrower 
realm much clumsier, than analysis on manifolds. Anyone 
who uses it only for integration over the surface of a sphere 
or a cylinder and whose scientific interest is directed toward 
something completely different, namely the physical content 
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of the equations, can of course be served quite well by a 
plausible, computable formula. But if, as a mathematician, 
you would like to understand the structure of vector analysis, 
then you should not expect much from those textbooks that, 
though rooted in the nineteenth century, are still going their 
stately way through this one. 

10.10 'lest 

(1) Th which vector field v - (VI, V2, V3) in lR3 does the 
2-form xdz 1\ dy correspond? 

o V = (-x, 0, 0). 0 v = (0, x, -x). 0 V = (0, -x, x). 

(2) As usual, let r : lR3 \ {OJ -+ lR denote distance from the 
origin. To which I-form W E nI (lR3 \ (O}) does the outward 
radial unit vector field correspond? 

o w = dr. 
dr 

Dw=-. 
r 

(3) It is always true that 

dr 
DW=z· 

r 

o grad curl = O. 0 curl grad = O. 0 div grad = O. 

(4) In Stokes's integral theorem for a vector field v, what 
should replace the dots in fM2 ... dS = foM2 v· Tds? 

o curl v x N. o curl v· N. o II curl vII. 

(5) The notation V x v of classical vector analysis, read 
sympathetically, can no doubt mean only 

o curl div ii. o grad div ii. o curl ii. 

(6) According to Gauss's integral theorem, for every differ­
entiable function f : D3 -+ lR we have 

o f[)3 b.f dV = fS2 f dS. 
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o f])3 Llf dV = 1S2 t dS. 

o fD3 Llf dV = 1S2 Vf dS. 

(7) Let f : X -+ R be constant on the boundary aM of the 
three-dimensional submanifold M C X. What does this 
mean for the normal derivative? 

o af = o. 0 af = Vf. 0 af = ±IIVfll. 
an an an 

(8) Let X C R3 be open and f : X -+ R differentiable. 
Clearly, the formula h~J f'(y(t»y(t)dt = f (q)-f (p) holds 
for any curve y : [to, t}] -+ X from p to q. But in what 
sense is this a special case of Stokes's theorem f M dw = 
faMw? Set 

o M := X and w := f. 
o M:= [to, tIl and w:= y*f. 

o M := [to, tIl and w := f. 

(9) In terms of the coordinate x, what is the line element ds 
of the graph {(x, v'X) : x > o}? 

o )1 + 1 dx. 
4x 0)1+ 2~dX. o Jx2 +xdx. 

(10) What is the area element dS E n2 S2 of the 2-sphere 
with the usual orientation, expressed in terms of the ge­
ographic angular coordinates (eastern) longitude).. and 
(northern) latitude {3? 

o sin {3 d{3 1\ d)... o cos{3 d)..l\d{3. o sin{3 d)..l\d{3. 
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10.11 Exercises 

EXERCISE 10.1. Let Xc ]R3 be open. Let V(X) ~ QIX ~ Q2X 
and QO X ~ Q3 X be the isomorphisms established by the 
basis vector fields and basis forms 

aI, a2, a3 for V(X), 

dx1 , d:i2, d:x!3 for Ql X, 

dx2 1\ d:x!3, dx3 1\ dxl, dxl 1\ d:i2 for Q2 X, 

and dxl 1\ dx2 1\ dx3 for Q 3X. 

If I-forms and 2-forms are described in this way by vector 
fields and 3-forms by functions, what happens to the exterior 
product? 

EXERCISE 10.2. Let X C ]R3 be open. For differentiable func­
tions f and vector fields v and w on X, find vector-analytic 
product formulas for 

(a) curl(fii) =? 

(b) div(fii) =? 

(c) div(v x w) =? 

by translating them into the calculus of differential forms. 

EXERCISE 10.3. Let M C ]R2 be a compact two-dimensional 
submanifold-with-boundary. 

(a) Prove Green's theorem: 

f f dx+gdy = f (!! - :)dxdY. 
aM M 

(b) What is the geometric meaning of the integrals JaM x dy 
and JaMYdx? 

EXERCISE lOA. Recall that J1)3 dV = ~ J52 dS. Find and prove 
a generalization of this formula for Dn and sn-l, n 2: 1. 
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EXERCISE 10.5. Let Me ]R3 be a compact three-dimensional 
submanifold-with-boundary and let h, ... , Pn E M\aM. Find 

10.12 Hints for the Exercises 

FOR EXERCISE 10.1. In Section 10.3 we "translated" the Cartan 
derivative into classical vector analysis. You should do that 
here for the wedge product; that is, convert the three maps 

QIX X QIX ~ Q 2X, 

QIX X Q2X ~ Q 3X, 

QIX X QIX X QIX ~ Q 3X 

defined by the wedge product into corresponding relations 
among vector fields. For the first line, for example, find the 
map that makes the following diagram commutative: 

T~ T~ 
V(X) x V(X) ~ V(X) 

Of course, you can calculate this completely formally, but 
you should also do the best you can to see what the answer 
means. 

FOR EXERCISE 10.2. This extends Exercise 10.1 and uses its 
results. In (a), for instance, we have to consider the diagram 

/\ QIX 
d 

~ ~ 

T~ T~ T~ 
V (X) 

curl 
~ ~ V (X) 
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where the vertical arrows represent the usual translation 
isomorphisms. On the top line we know what's going on: 
in the calculus of differential forms one product formula 
suffices, and for w E ~YX it always reads d(w 1\ '7) = dw 1\ '7 + 
(-l)'w 1\ d'7. 

FOR EXERCISE 10.3. Here! and g are to be viewed as, say, 
differentiable in an open neighborhood X of M in ]R2. Of 
course, the exercise is in some wayan application of Stokes's 
theorem, and we do have an integral of the form JiJM w on 
the left-hand side of Ca). But notice that we don't have JM dw 
on the right-hand side: dx dy is not a typo for dx 1\ dy! One 
of the things this exercise requires is that you refer to the 
definition of the integral of a 2-form in this special situation. 
In both parts of the exercise you also have to pay attention 
to the sign! -FOR EXERCISE 10.4. What vector field b should you choose 
on a neighborhood of D3 so that the formula in the exercise 
becomes exactly the statement J [j3 div b = JiJ[j3 b . N dS of 

Gauss's integral theorem? Once you've found this b, even 
the generalization is completely obvious. 

FOR EXERCISE 10.5. The physicists among you will recognize 
the integrand: x/r3 is the negative of the gradient of the 
harmonic function 1/ r. Anyone learning this here for the 
first time should do the calculation once. This makes the 
exercise an application of the formula 

f fl.! dV = f V! . dS 

M3 iJM3 

(Corollary 1 of Section 10.5). But not a direct application, 
because our integrand ha~ isolated singularities! The best 
thing is to surround them with small balls, as is done for the 
residue theorem in complex function theory. 



CHAPTER 

DeRham 
Cohomology 

11.1 Definition of the de Rham Functor 

We turn now from classical vector analysis to a completely 
different aspect of the calculus of differential forms. Con­
sider the de Rham complex 

0-+ QOM -.:!..". QIM -.:!..". ... 

of a manifold M. The property dod = 0 means that 

im(d: Qk-1M -+ QkM) C ker(d: QkM -+ Qk+lM) 

for every k, so we can take the quotient of these two vector 
spaces. 

Definition. If M is a manifold, the quotient vector space 

HkM := ker(d : QkM -+ Qk+l M) 
im(d: Qk-1M -+ QkM) 

is called the kth de Rham cohomology group of M. The 
Cartan derivative d is also called the coboundary operator; 
the differential forms in the image of some d are called 
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coboundaries, and those in the kernel cocycles. If TJ E Qk M 
is a k-dimensional cocycle, its coset 

[TJ]:= TJ + dQk-1M E HkM 

is called the cohomology class of TJ. 

The terms boundaries, cycles, and homology class come 
from homology theory, where a "chain" e has a "boundary" de 
and is called a "cycle" if this boundary vanishes. Two cycles 
are called homologous if they differ only by a boundary. All 
this was already discussed in Sections 7.6 and 7.7. 

In terms of geometric meaning, taking boundaries in ho­
mology theory corresponds to taking boundaries of compact 
manifolds-with-boundary. Since the Cartan derivative is dual 
to taking boundaries, in the sense that the effect of da is just 
the effect of a on the boundary (as described in detail in 
Section 7.3), the terminology "coboundary operator" for d 
becomes understandable. 

Lemma and Definition. The wedge product and the functorial 
properties of the de Rham complex turn 

00 

H* :=E9Hk 
k=O 

canonically into a contravariant functor from the differentiable 
category to the category of anticommutative graded algebras and 
their homomorphisms. This functor H* is called simply the de 
Rham cohomology. 

/\ 
PROOF. We first show that the wedge product H r M x HS M ---+ 

H r+s M is well defined by 

[w] !\ [11] := [W!\ TJ]· 

Clearly w !\ 11 is a cocycle whenever wand 11 are: if dw = 0 
anddl1 = 0, thend(w!\l1) = dW!\I1+(-lYw!\dl1 = o. Without 
loss of generality, we need only check whether 

[(w + da) !\ 11] = [W!\ 11], 
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so that da /\ 11 is a coboundary. But 

d(a /\ 1]) = da /\ 1] + (-lr-1a /\ d1] = da /\ 1] 

because dl1 = O. Hence the wedge product of a coboundary 
with a cocycle is always a coboundary, so the wedge product 
is also well defined for cohomology classes. 

Furthermore, if f : M -+ N is a differentiable map, then 
the naturality of d (see Section 8.6) immediately implies that 

f* : HkN --+ HkM, 

[11] ~ [f*l1] 

is well defined. The algebraic and functorial properties now 
carry over from Q* (see Section 8.7) to H*. 0 

11.2 A Few Properties 

What can we say offhand about the computation of de Rham 
cohomology? First, a completely trivial observation: 

Note. IfM is an n-dimensional manifold and k > n, then QkM = 
o and hence Hk M = O. 

Of course, we also know the O-cocycles, the functions 
f E nOM with df = O. These are the locally constant real 
functions, and the only coboundary among them is the zero 
function: 

Note. HOM is the vector space of locally constant functions. In 
particular; if M is connected, then HOM = lR canonically. 

In addition, Stokes's theorem gives us a statement about 
the other end of the de Rham sequence. 

Corollary of Stokes's Theorem. If M is an orientable closed 
(i. e. compact and without boundary) n-dimensional manifold, 
then HnM;:/; O. 

PROOF. Orient M and choose 11 E nn M with J M 11 ;:/; 0 
(using a chart and a bump function, for instance). Since 
Qn+l M = 0, any n-form, and 11 in particular, is a cocycle. But 
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17 is not a coboundary dw. If it were, the hypothesis aM = 0 
would imply J M 11 = J M dw = JaM w = ° by Stokes's theorem. 
Hence [11] =1= ° is in H"M. 0 

Finally, if we look at the morphisms, then in addition to 
the functorial property of f * = Hk f : Hk N ~ Hk M we can 
note the following: 

Note. If f : M ~ N is constant, then Hkf = ° for all k > 0. If 
M and N are connected, then HO f : lR -+ lR is the identity for 
every f. 

So much for the meager results of direct inspection. In 
the next two sections, we establish an important nontrivial 
property: the homotopy invariance of de Rham cohomology. 

Definition. Let M and N be differentiable manifolds. 'TWo 
differentiable maps f, g : M -+ N are called differentiably 
homotopic if there is a differentiable homotopy h between 
them, that is, a differentiable map 

h : [0, 1] x M ---+ N 

such that h(O, x) = f (x) and h(1, x) = g(x) for all x E M. 

Since M and N (as always) may have boundary, we note 
explicitly that we will call a map fP : U -+ lR" defined in an 
open subset U of [0,1] x lR~ differentiable if every U E U has 
an open neighborhood Vu in lR"+l to which fPlU n Vu can be 
extended differentiably. 

Theorem (Homotopy invariance of de Rham cohomol­
ogy). IfM, N are manifolds and f, g : M -+ N are differentiably 
homotopic maps, then 

f* = g* : HkN ---+ HkM for all k. 

Anything else I would really like to say now about the 
concept of homotopy in general, and the significance of ho­
motopy invariance for functors from the geometric to the al­
gebraic category in particular, can be found in [J:Thp], Chap­
ter V. 
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11.3 Homotopy Invariance: 
Looking for the Idea of the Proof 

I would like to show you not only how the proof looks but 
also how to find it. Let w be a k-dimensional cocycle on N. 
We have to show that 

[f*w] = [g*w] E HkM, 

or, in words, that the two cocyc1es f*w and g*w differ only by 
a coboundary da. So what we're looking for is an a E nk- 1 M 
with 

g*w - f*w = da. 

So much for the problem. Now we inspect our tools. The 
only hypothesis is the existence of a differentiable homotopy 
between f and g, i.e. a differentiable map h from the cylinder 
[0, 1] x Mover M to N that coincides with f on the bottom 
to} x M and with g on the top {1} x M. Stated a bit more 
formally, what we have is 

h 0 LO = f, 
hOLl =g, 

where Lt : M ~ [0, 1] x M denotes the inclusion at height t 
defined by Lt(X) := (t, x). 

~
[O'l] xM N 

M h r-<.. 
C::> ~ .---. - ~ 

w lives here 
It} x M 

Figure 11 .1. The homotopy h between h 0 LO = f and h 0 Lj = g 

Then the induced cocyc1e h*w also coincides with f*w on 
the bottom and with g* w on the top, or more precisely: 

Loh*w = f*w, 

L!h*w = g*w. 
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Figure 11.2. The prism 
over the k-cell r 

top sides 

0 LJ) </ 
bottom [0, 1] x or 

Figure 11.3. 0([0, 1] x r) = 
{l} x rU{O} x rU[O, 1] x or 

Now that we've done everything obvious, we have to in­
terrupt our confident transcription of the proof for a moment 
so we can look for an idea for constructing a. 

The cocycle h*w on [0,1] x M does at least establish some 
kind of link between f*w and g*w. The vague idea of some­
how using h*w to define the desired a E Qk-l M is probably 
obvious enough. Where else could we start? So we have to 
take a closer look at the relationship of h*w to f*w and g*w. 
Let r be an oriented k-cell in M; then [0, 1] x r C [0, 1] x M 
is the cylinder or prism over r. Like any cocycle, h*w must 
respond with zero to the oriented boundary of [0, 1] x r: 

J h* w = J dh* w = ° 
iJ([O,ljxT) [O,ljxT 

because dh*w = 0. But the boundary consists of the top, 
bottom, and sides, and the top and bottom have opposite 
orientations. Now h is given on the top by g and on the 
bottom by f, so 

J g*w - J f*w = ± J h*w. 

[O,ljxih 

Of course, we could also figure out the sign by examining 
the orientations more carefully (the sign is positive), but 
that would be pedantic at this point. All that really matters 
is nnding a (k - I)-form a E Qk-1M whose coboundary da 
responds to r as h*w does to [0, 1] x ar. But since, in any 
case, da responds to r as a does to ar, we want 

J a = J h*w 
CT [O,l]xCT 

for every oriented (k - I)-cell (J" in M. In words: a should 
respond to (J" as h*w does to the prism over (J". So if we just 
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upgrade this from a requirement on ex to the definition of ex, 
we'll be done with the proof-at least intuitively. 

But how can we make a precise definition out of the 
intuitive idea of a "prism operator" 

P: nk([O, 1] x M) ~ nk- I M, 

where we think of PT} as given by the effect of T} on prisms? 
Wen, the integral J[O,I]XO" T} is defined as an ordinary multiple 
integral of the downstairs component function, and integrat­
ing with respect to the variable t gives 

f T} = f (i q(8" ... )dt) 
[O,I]xa a 0 

by Fubini. So all we have to do is set 

1 

PT}(VI, ~ .. , vk-d := f T}(at , VI, .•. , Vk-l)dt 

° 
and we can be sure, on the basis of our reasoning, that one 
of the two k-forms 

ex := ±Ph*w 

solves our problem. 

11.4 Carrying Out the Proof 

Now that we've found the idea, it will be easiest to carry 
out the proof just by verifying the desired property dex = 
g*w - f*w, which in this case reads 

dPh*w = l!h*w - l~h*w. 
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If we consider an arbitrary 71 instead of the special h*w, the 
geometric meaning of the operators d and P tells us that Pd71 
will respond to an oriented k-cell • in M as 71 does to the 
boundary of the prism over !'; since this boundary consists 
of bottom, top, and sides, we can thus expect (perhaps up to 
sign) 

Pd71 = (Li71 - L~71) - dP71· 

Notation. We denote by v -.J 71 the (k - 1 )-form 71 (v, ... ) that 
results from inserting a vector v in the first slot of a k-form 

71· 

Assertion. For the prism operator 

P: S-i([O, 1] x M) ~ Ok-1M, 

we have Pd71 = Li71 - L~71 - dP71· 
PROOF OF THE ASSERTION. The assertion is linear in 71 and 
local with respect to M, so it suffices to consider the two 
cases 

(1 ) 71 = a dxl-Lj A ... A dXJ.i-k and 
(2) 71 = b dt A dXJ.i-l A ... /\ d XJ.i-k-l 

in local coordinates on M. 

CASE (1): Here P71 = ° since at....J 71 = 0, so certainly dP71 = 0. 
Moreover, 

d . d d J.i-l d J.i-k + ~ oa did J.i-1 A A d'··Uk 71=a tA x A ... A x ~-. x A x n ..• n ~. , 

i=l oxl 

and hence 

Pd~ = (i ad') ,w.' 1\ ••• I\,w.' 

= (a (1 , .) - a(O, .» d XJ.i-l A .,. A dXJ.i-k 

(1) 0 
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CASE (2). Now lo17 = li17 = 0 because l~odt = 0 for any fixed 
to. So we must show that Pd17 = -dP17. Since 

n ab . 
d17 = L -.dx' 1\ dt 1\ dXiJ.I 1\ ..• 1\ dXiJ.k-I, 

i=l ax' 
it follows that 

Pd17 = - t (jl a~dt) dxi 1\ dXiJ.I A ... A dXiJ.k-l • 
. 1 ax 
1= 0 

On the other hand, 

Pq ~ (J bd}X"' A ... A dx"H, 

and hence 

dP17 = t (jl a~ dt) dxi A dXiJ.I 1\ •.. 1\ dXiJ.k-l. 
. 1 ax 
1= 0 

(2) 0 

The assertion has been proved. Now if w is a k-cocyc1e 
on Nand 17 := h*w the induced cocyc1e on [0, 1] x M, then 
d17 = 0, so Pd17 = 0 and we obtain 

* f* *h* *h* * * dP g w - w = II W - to W = tl17 - to17 = 17. 

We have proved the following result. 

Lemma. If w is a cocycle and h a homotopy between f and g, 
then the cocycles g* wand f * w differ only by the coboundary 
d(Ph*w). 

This completes the proof of the theorem on the homotopy 
invariance of de Rham cohomology. 

11.5 The Poincare Lemma 

Now we reap a series of corollaries of homotopy invariance. 
The homotopies are always understood to be differentiable. 
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In fact, differentiable maps that are continuously homotopic 
are always differentiably homotopic, as a suitable approx­
imation theorem shows. Since the homotopy class of any 
continuous map f : M ~ N must also contain differentiable 
representatives, de Rham cohomology is well defined and 
homotopy invariant even for the category of differentiable 
manifolds and continuous maps. But we won't go into this 
here. 

Our first results follow from the fact that for k > 0, a 
k-form induced by a constant map must be zero (see Section 
8.3). 

Corollary 1. Iff: M ~ N is null-homotopic (i.e. homotopic 
to a constant map), then f* : HkN ~ HkM is the zero map for 
all k ? 1. 

Corollary 2. If M is contractible (i.e. if IdM : M ~ M is 
null-homotopic) then HkM = 0 for all k ? l. 

PROOF. IdM : HkM ~ HkM is the identity by the functorial 
property, but also zero by Coronary 1. D 

Corollary 3. On a contractible manifold, every positive­
dimensional cocyde is a coboundary; in other words, if w E 

QkM, k > 0, and dw = 0, then there exists ex E Qk-l M with 
dex=w. 

Corollary 4 (Poincare lemma). For an arbitrary manifold 
M, any positive-dimensional cocyde is locally a coboundary; 
that is, every point has an open neighborhood U in which, for 
every wE QkM with k > 0 and dw = 0, there exists ex E Qk-l U 
with dex = wi U. 

Any contractible open neighborhood U of p (any open 
/lchart ball," for instance) will obviously work. 

Another special case of Corollary 3 is also often called 
the Poincare lemma, so we state it explicitly. 

Corollary 5. If X C ]Rn is open and star-shaped, then every 
positive-dimensional cocyde on X is a coboundary. 

This case also serves a special interest, for the following 
reason. Suppose we are explicitly given a "contraction" of a 
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manifold M, a differentiable map 

h: [0,1] x M ---+ M with 

ho = constant and 

hI = IdM · 

Then, by the lemma stated at the end of the proof of homo­
topy invariance, we also have an explicit integral formula 
that tells us, for any co cycle w on M, how to find a form 
ex with dex = w. Imitating the term "antiderivative" used for 
functions, we might call ex an "antiderivative form": 

dw = ° ==} d(Ph*w) = w, 

so ex = Ph*w is an antiderivative of w. Now, a domain Xc ]R" 

that is star-shaped with respect to Xo E X has the simplest 
possible contraction, namely the straight-line contraction 

h(t, x) := Xo + t(x - xo). 

Thus we can also write down a completely explicit an­
tiderivative for a cocyc1e w E nkx. Without loss of generality, 
let Xo = 0, so h(t, x) = tx and 

Then 

w = L wJ.l-J ... J.l-kdxl.q 1\ ... 1\ dXJ.l-k. 
J.l-J<···<J.l-k 

h*WJ.l-J ... J.l-k(t, x) = WJ.l-J ... J.l-k(tX), 

h*xJ.l- = txJ.l-, 

h*dxJ.l- = dh*xJ.l- = xJ.l-dt + tdxJ.l-

at each point (t, x) E [0,1] x X. But dt(Ot) = 1 and dxJ.l-(Ot) = ° 
on [0, 1] x X, so Ot..J h*w = 

k 

L L(-l)i-1 tk- 1 wJ.l-J ... J.l-k (tx)xJ.l-idxJ.l- J 1\ .. . 7 ... 1\ dXJ.l-k, 
J.l-J <"·<J.l-k i=1 

and since Ph*w was defined as fol 0t..J h*w (see Section 11.4), 
we have the following result. 
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Corollary 6 ("Antiderivative formula for forms"). Let 
Xc Rn be open and star-shaped with respect to Xo = 0, and let 
W E QkX be a cocycle (i.e. dw = 0). Then setting a := 

k 
~ ~( l)i-1(r1 k-1 ( )d~ ILid ILl -- d ILk L- ~ - Jo t wlLl ... lLk tx tJx x /\ ... z •.. /\ X 

ILl <···<lLk .=1 

gives da = w. 

Of course, we could check directly and mechanically 
that da = w. This would give a simple, elegant, and com­
pletely incomprehensible proof of the Poincare lemma for 
star-shaped domains. 

In Section 10.3 we saw how the three Cartan derivatives 
of the de Rham complex of an open subset of R3 correspond 
to the operators gradient, curl, and divergence. So translat­
ing the Poincare lemma into classical vector analysis gives 
another corollary. 

Corollary 7. If X C 1R3 is open and contractible (star-shaped, 
for instance), then the following exist on X: 

(1) for every vector field a with curl a = 0, a function f with 
gradf = a; 

(2) for every vector field b with div b = 0, a vector field a with 
-+ -+ 

curl a = b; 
-+ -

(3) for every function c, a vector field b with div b = c. 

11.6 The Hairy Ball Theorem 

"You can't comb the hair on a two-sphere." This vivid mnemonic 
has been adopted for the theorem that there is no nonvan­
ishing vector field on an even-dimensional sphere. 

It's hard to see at first what the problem has to do with 
the calculus of differential forms. Do we have to interpret 
the vector field as an (n - I)-form or something? Not at 
all-in fact, differential forms have absolutely nothing to do 
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with it. The proof is a sample of homological arguments, and 
analogues work for other homology or cohomology theories. 

Let M be an oriented closed n-dimensional manifold. The 
linear map 

H"M -+ JR., [w] ~ f w, 

M 

is well defined by Stokes's theorem since f M dO! = f0 O! = O. 
In view of the homotopy invariance of f* : H"N ~ H"M, 
the composition of f * with f M is clearly homotopy invariant. 

Corollary. If M is an n-dimensional closed oriented manifold, 
then for all f : M ~ N the composition defined by 

H"NLH"M~1R 
is homotopy invariant. 

We are about to derive the "hairy ball theorem" from this 
corollary, applied to M = N = S2, and therefore point out 
that the corollary also follows easily from Stokes's theorem: 
Let h be a homotopy between f and g. Then 

f g*w- f f*w = f h*w = f dh*w = 0, 

M M iJ([O,l)xM) ([O,l)xM) 

since dw = 0 and hence dh*w = h*dw = O. Still, as a corollary 
of the homotopy invariance of de Rham cohomology the 
statement is logically in the right place. But now for the 
application. 

Theorem. Every differentiable vector field on an even-dimen­
sional sphere has at least one zero. 

PROOF. Let v be a nowhere-vanishing vector field on S", with 
n arbitrary for now. For any XES" we can think of v(x) as a 
pointer toward the antipodal point -x E S", and intuitively 
we see at once that the antipodal involution r : S" ~ S", 
X 1-+ -x, is homotopic to the identity. Th check this formally, 
set 

v(x) 
h(t, x) := cos rrt x + sin rrt---. 

IIv(x) II 
Figure 11.4. The vector 
v(x) as a pointer 
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The homotopy invariance of the integral (a consequence of 
Stokes's theorem, as described above) implies that 

for all w E Qn Sn. (The homotopy invariance of de Rham 
cohomology even gives r*[w] = [w].) On the other hand, we 
know that 

for every diffeomorphism f : sn ~ sn, where the sign de­
pends on whether f preserves or reverses orientation (see 
Section 5.5); this is just the statement of the change-of­
variables formula for integrals of differential forms. But the 
antipodal map r : sn ---+ sn reverses orientation if and oniy if 
n is even. This can be seen, for example, as follows: For every 
x E sn, the differential of the diffeomorphism - Id : Dn+ 1 ---+ 
Dn+1 takes the outward normal N(x) at x to N( -x) at -x (the 
differential is -IdjRn+1 everywhere), so the diffeomorphism 
reverses the orientation of the boundary exactly when it re­
verses the overall orientation of D n+1 , and it obviously does 
the latter if and only if n is even. Thus 

for all w when n is even, and since there exist n-forms w with 
fsn w =1= 0 this contradicts homotopy invariance. Hence there 
can be no such vector field v for even n. 0 

This beautiful geometric theorem, provable in a number 
of ways, is not only interesting in itself but also a point of 
departure and a joint special case for various further de­
velopments (global properties of vector fields on manifolds, 
more generally of sections of vector bundles, Euler charac­
teristic, characteristic classes, ... ). 
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11.7 Thst 

(1) The cohomology class [11] c QkM of a cocycle 11 of degree 
k is 

D {11 + w : w E QkM, dw = OJ. 

D {11 + dw : w E Qk-1M}. 

D {11+w:dw=d11}. 

(2) What is meant by anticommutativity of the graded algebra 
H* M is the following property of the wedge product: for 
all [w] E HrM and [11] E HSM, 

D [w] A [11] = -[11] A [w]. 

D [w] A [11] = (-l)r+s[11] A [w]. 

D [w] A [11] = (-l)rs[11] A [w]. 

(3) HkM = 0 if and only if 

D for every w E Qk M there exists 11 E Qk-l M such that 
d11 = w. 

D for every w E Qk M with dw = 0 there exists 11 E 

Qk-l M such that d11 = w. 

D for every w E Qk M of the form w = d11 we have 
dw=O. 

(4) The polar coordinates (r, qJ) on M := R2 \ {OJ give a 
wen-defined I-form dqJ. This I-form is 

D a cocycle, because dd = 0 is a local property. 

D a coboundary, because qJ E 0.0 M. 

D not a cocycle, and certainly not a coboundary, be­
cause qJ can't be defined on all of R2 \ {OJ without a 
"jump." 

(5) In connection with the prism operator, we had to con­
sider at..J w. Now let X, Y I and z denote the coordinates in 
R3. Then 
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D ax-.J (dx /\ dy + dy /\ dz) = dy. 

D ax-.J (dx /\ dy + dy /\ dz) = -dy. 

D ax -.J (dx /\ dy + dy /\ dz) = dy /\ dz. 

(6) Which of the following is true for the cylinder M := 
51 x IR.? 

D H2 M = 0 because the fact that M is two-dimensional 
implies that d : Q2 M ~ Q3 M is zero. 

D H2 M = 0 because M is the product of two one­
dimensional manifolds. 

D H2 M = 0 because the projection 

51 x IR. ~ 51 X IR., 
(z, x) J---* (z, 0) 

is homotopic to the identity and H 251 = o. 

(7) Let the maps f, g : M ~ N be homotopic. Is it true that 
f*w = g*w for all cocycles wE QkN? 

DYes, f* = g* by the homotopy invariance theorem. 

D No, because if f*w = g*w for all cocycles, then f = g. 

D No. On a contractible manifold, for example, the 
identity is homotopic to a constant map. 

(8) Let p and q denote the north and south poles of the 
n-sphere 5", n > 1. Then 

D 5" \ {p} is contractible because it is diffeomorphic to 
IR." . 

D S" is not contractible because H"(5") =1= o. 
D S" \ {p, q} is not contractible because the identity on 

S"-l can be factored over 5n- 1 \ {p, q}: 

5"-1 ~ 5" \ {p, q} ~ 5"-1, 

so H"-l (S" \ (p, q}) =1= o. 
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(9) That every vector field with zero divergence on the open 
set X C JR3 is the curl of a vector field on X is equivalent 
to 

o X is connected (Poincare lemma). 

o HIX = 0 (co cycles are coboundaries). 

o H2X = 0 (cocycles are coboundaries). 

(10) Does an analogue of the hairy ball theorem hold for 
the even-dimensional real projective spaces lRJP2k? 

o Yes, since 52k ~ JRJID2k is a covering, and any vector 
field on JRJID2k can be lifted to 52k . 

o No. For example, in homogeneous coordinates on 
the projective plane JRJID2, a nowhere-vanishing vec­
tor field is well defined by 

o No. There are vector fields on 52k that have zeros but 
do not vanish at a pair of antipodal points {±x}. 

11.8 Exercises 

EXERCISE 11.1. Prove that HI (52) = O. 

EXERCISE 11.2. Prove directly from the definition that [ev] ~ 
lSI w defines an isomorphism HI (51) ~ JR, and go on to show 
that dimHl(51 x 51) ::: 2. 

EXERCISE 11.3. A map f : M ~ N is called a homotopy 
equivalence if it has a homotopy inverse, i.e. a map g : N ~ 
M such that fog and go f are homotopic to the identity maps 
of Nand M, respectively. The manifolds or spaces M and N 
are then called homotopy equivalent. Show that JR3 \ {OJ and 
52 are homotopy equivalent but 52 and 51 x 51 are not. 
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11.9 Hints for the Exercises 

FOR EXERCISE 11.1. For every closed I-form (that is, every 
w E QI (52) with dw = 0) you have to find a function f with 
df = w. Th do this, choose a point q E 52, say the south pole, 
and define 

x 

f (x) := f w =: f w, 
y q 

where y denotes a path from q to x. 
Don't think that I've already given away the solution: the 

real work is just starting! Why is this f even well defined? 
And why is df = w? The local solutions of the equation 
df = w given by the Poincare lemma are a great help in 
thinking about these questions. 

That HI (M) = 0 for any simply connected manifold can 
be proved in exactly the same way. But when M = S2life can 
be made a bit easier, for instance by applying the Poincare 
lemma to the contractible subdomains 52 \ {q} and 52 \ {p} of 
S2 and comparing the two functions to each other. 

FOR EXERCISE 11.2. For the second part of the exercise you 
just need to use the functorial property of HI. For exam­
ple, consider the four maps given by projection onto and 
inclusion of the factors 

and apply the functor HI to them. 

FOR EXERCISE 11.3. At first, when you're just getting to know 
the definitions, it's easier to answer yes than no to such topo­
logical existence questions-after all, if the thing in question 
exists you have some chance of finding and exhibiting it. 
But when that doesn't work, how can you be sure that it just 
can't be done? Later, though, the tables are turned, because 
you learn about functors that often yield nonexistence state­
ments for free, while explicit constructions usually come at 
some cost in effort. 
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But in the first part of the present exercise, this cost in ef­
fort is modest, and a functor you can use for the second part 
is practically still on the table from the other two exercises. 



CHAPTER 

Differential 
Forms on 
Riemannian 
Manifolds 

12.1 Semi-Riemannian Manifolds 

For a fuller development of the calculus of differential forms, 
we now proceed to Riemannian manifolds. Here we will 
encounter the star operator, the Laplace-de Rham operator, 
the Hodge decomposition, and Poincare duality. We begin by 
considering the somewhat more general semi-Riemannian 
manifolds. 

Before introducing Riemannian and semi-Riemannian 
manifolds, I would like to remind you of a few linear­
algebraic concepts and facts: A symmetric bilinear form 
(. , .) on an n-dimensional real vector space V is called non· 
degenerate if 

V --+ V* , 
v ~ (v,·) 

is an isomorphism, and this occurs if and only if the n x n 
matrix G given by 
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has full rank for some (hence any) basis (VI, ... , vn ) of V. A 
basis can be chosen in such a way that G has the form 

+1 

+1 
-1 

-1 

The number 5 of -l's on the diagonal is independent 
of the choice of such a basis (Sylvester's law of inertia), 
and is called the index of the symmetric bilinear form. The 
quadratic form q : V -+ lR corresponding to (., .) is defined 
by 

q(v) := (v, v), 

and we can recover (. , .) from q through the identity 

1 
(v, w) = z(q(v + w) - q(v) - q(w». 

The pair (V, q) or (V, (., .) is called a nondegenerate 
quadratic space of index 5, and a Euclidean space in the 
positive definite case 5 = o. 

Definition. By a semi-Riemannian manifold of index 5, 

we mean a pair (M, (. , .) consisting of a manifold M and a 
family 

(. , .) = {(., .) p } pEM 

of symmetric bilinear forms (. , .) p of index 5 on T pM that is 
differentiable in the following obvious sense: for the charts 
(U, h) of some (hence every) atlas on M, the functions gllv : 

U -+ lR defined by p ~ (011' ov) p are differentiable. In the 
positive definite case 5 = 0, we call (M, (., .) a Riemannian 
manifold. 

The family (.,.) is called the Riemannian or semi­
Riemannian metric of (M, (., .). We retain the lip" in the 
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notation (', .) p only when clarity seems to demand it, and 
otherwise write (v, w) p =: (v, w) for v, WE TpM. 

Submanifolds of ]Rn are Riemannian manifolds in a 
canonical way. But an arbitrary manifold, with charts 
(VA' hA), can also be provided with a Riemannian metric 
(.,.) by choosing a partition of unity {rAhEA such that 
supp r A C VA and setting 

(v, W) p := L rA(p) (v, w);.., 
AEA 

where (v, W);.. denotes the Riemannian metric transferred 
from V~ C ]Rn to VA by dhA. Observe, though, that the same 
procedure fails in general if we try to apply it to construct a 
semi-Riemannian metric of index 0 < 5 < n. We could start 
with the semi-Riemannian metric 

n-s n 

(x, Y)n-s,s := L xJLyJL - L xVyV 
/L=l v=n-s+l 

on ]Rn and write down a formula analogous to the one above 
for (', .) on M. But since the property of being nondegen­
erate and of index 5, in contrast to positive definiteness, is 
not convex (see, for instance, [J:Thp], p. 120), it does not 
carryover in general from (. , .) A to the convex combination 
LA TA(p)(', .);... On the even-dimensional spheres sn, for ex­
ample, there is no semi-Riemannian metric of index 1 (or 
n - 1), as can be shown using the hairy ball theorem and a 
covering argument ([J: Thp], pp. 152-153). 

Semi-Riemannian n-dimensional manifolds (n :::: 2) of in­
dex 1 or n - 1 are called Lorentz manifolds. Changing the 
sign of the metric interchanges these indices. We follow the 
convention of taking the index of Lorentz manifolds to be 
n - 1. Real space-time, via a metric (', .) given physically, 
is a four-dimensional Lorentz manifold. This circumstance 
was historical and is still a principal motive for extending 
Riemannian geometry to semi-Riemannian manifolds. In 
the general theory of relativity, the differential geometry 
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of Lorentz manifolds plays an important role both concep­
tually and technically, and in particle physics the Lorentz 
metric, through the theory of special relativity, is ubiquitous. 

Our first goal will be to define the star operator 

for an oriented n-dimensional semi-Riemannian manifold 
M. This is done for each individual p by means of a star 
operator 

so we set manifolds aside for the time being and return yet 
again to linear algebra. 

12.2 The Scalar Product of Alternating 
k-Forms 

We begin with a linear-algebraic observation about finite­
dimensional real vector spaces that involves no additional 
structures such as" orientation or metric: (AltkV)* and 
Altk(V*) are canonically the same. The following lemma 
makes this more precise. 

Lemma. If we interpret each linear form 

on AltkV as an alternating k-form (denoted by (f) on V* by setting 

~( 1 k) . (1 k) cp ex , ... , ex .= cp ex /\ ... /\ ex 

for any ex!, ... , exk E V*, we obtain an equivalence of the two 
functors (Altk - ) * and Altk ( - *) from the category of finite­
dimensional real vector spaces and linear maps to itself In 
other words, for every linear map f : V ~ W between finite-
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dimensional real vector spaces, the following diagram is com­
mutative: 

(AltkV)* 

(Altkf)*l 

(AltkW)* 

Altk(V*) 

1 Altk(f*) 

Altk(W*) 

PROOF. The spaces (AltkV)* and Altk(V*) have the same di­
mension. Moreover, if cp (ex 1 /\ ... /\ exk ) = 0 for all ex 1 , ... , exk E 

V*, then cp = 0 E (AltkV)*. So the canonical map is injective 
and hence an isomorphism. Its compatibility with f follows 
from the naturality of the wedge product. D 

Now let a nondegenerate symmetric bilinear form (., .) 
be given on V. This is also called a (not necessarily positive 
definite) scalar product. We adopt the following suggestive 
notation from [AM]. 

Notation. If (., .) is a nondegenerate bilinear form on a 
finite-dimensional real vector space V, we denote the iso­
morphism between V and V* given by v t--+ (v,·) and its 
inverse by 

b 
V () V*. 

n 
Instead of b(v) we sometimes write bv or vb, whichever is 
most convenient, and similarly for U. 

The meaning of the notation can be inferred from the 
symbols U and b in music, which, as you know, are read 
"sharp" and "flat." The linear form ex is "sharpened" to the 
vector nex by U. 

By the lemma above, an isomorphism V ~ V* also in­
duces an isomorphism AltkV ~ (AltkV)* and thus a bilinear 
form on AltkV, or more precisely: 

Defining Lemma (Scalar product on the space of 
forms). If (V, (., .) is an n-dimensional nondegenerate quad-
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ratic space, then on AltkV there is a canonical bilinear form 
(. , .) that is also symmetric and nondegenerate, namely the one 
given by 

(AltkV)* ~ AltkV* ~ AltkV. 
canon Altk" 

PROOF. Let w, TJ e AltkV and let cp, 1/1 e (AltkV)* be their 
preimages under the map above. All we have to prove is the 
symmetry condition 

(w, TJ) := cp(TJ) = 1/I(w) =: (TJ, w). 

If we trace how w results from 

we find that 

W(V1, ... , Vk) = iP("V1, ... , "Vk) = CP("V1 A ... A "Vk), 

and similarly for TJ and 1/1. Now let (e1, ... , en) be an orthonor­
mal basis, abbreviated o.n. basis, of the quadratic space V; 
that is, (ep.. ev) = ±Op.v. We write (elt , elt) =: €It = ±l. Let 
(0 1, '" , on) be the corresponding dual basis of V*. Observe 
that 

for every f.L (no summation), since 

"elt(ev) := (elt , ev) = €1t0ItV = Elt0lt(ev) 

for every v. 
Without loss of generality, we now set 

Then 

w = Oltl A ... A Oltk, 
TJ = OVI A ... AOVk. 

(w, TJ) = cp(OVI A ... A OVk) 

= EVI ..•.. EVkCP("eV1 A ... A beVk ) 
= EVI •.... EVkw(eVI , ...• eVk ) 
= EVI ..••. EVk01t1 A •.. A oltk(eVJ ' ... , eVk )' 
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Hence (lV, 1/) = £Vl •••.. £vksgn T if the ILl, ... ,ILk are dis­
tinct and come from VI, ... , Vk through a permutation T of 
the indices 1, ... ,k; otherwise (lV, 'fI) is zero. In particular, 
(lV, 1/) = ('fI, lV). 0 

This proof also gives us a formula for computing the 
scalar product on AltkV. 

Lemma (Orthonormal basis in the space of forms). 
If (el, ... ,en) is an o. n. basis of the quadratic space V and 
(<5 1 , ... , <5 n ) denotes the dual basis, then 

(<5 Jl1 1\ ... 1\ <5 Jlk )Jll < ... <Jlk 

is an o. n. basis of AltkV and 

(<5 Jl1 1\ ... 1\ <5Jlk, <5 Jl1 1\ ... 1\ <5Jlk) = £Jll •••.• £Jlk' 

where £Jl := (elk' elk)· 

12.3 The Star Operator 

Now we add an orientation to our data. Th begin with, we 
have a canonical "volume form" lVv E Altnv. 

Defining Lemma· (Volume form). Let V be an n-dimensional 
oriented nondegenerate quadratic space. The alternating n-fonn 
lVv E Altn V that assigns the value + 1 to some (hence every) 
positively oriented o. n. basis is called the volume form of V. 

PROOF OF THE ASSERTION ("he1)ce every"). Let (e~, ... , e~) be 
a second positively oriented o.n. basis and let f : V ~ V be 
the linear transformation with f (eJl) = e~. Then 

lV(ei,···, e~) = f*lV(el, ... , en) = detf 

by the lemma in Section 3.3. So we must show that det f = 
+ 1. If A is the matrix of f with respect to (el' ... , en), then 
ei = 'Lajiej and hence (ei, eA) = 'L'Lajia/dej, e/), or in ma­
trix notation 

G' = ~. G·A. 



222 12. Riemannian Manifolds ----------------------------------------------

Since IdetGI = IdetG'1 = 1 (o.n. property of the bases), this 
implies first that IdetAI = 1 and then, since f is orientation­
preserving, that detf = detA = +1. 0 

Incidentally, if the second basis is not necessarily or­
thonormal but just positively oriented, the same calculation 
shows that 

detf = JldetG'l. 

Writing this in a frequently used notation gives the following 
result. 

Lemma (Volume form formula). Let V be an oriented n­
dimensional nondegenerate quadratic space, (VI, ... , Vn) a pos­
itively oriented basis, and (15 1, •.• ,an) the dual basis. Then the 
volume form is 

where g is the determinant of the n x n matrix given by 

gJlV := (vJl ' vv). 

Now we define the star operator. 

Defining Lemma (Star operator). If V is an oriented n­
dimensional nondegenerate quadratic space and wv E Altn V 
its canonical volume form, then for every k there is exactly one 
linear map 

(the star operator) such that 

T] A *~ = (T]. {}wv 

for allT]. ~ E AltkV. 

PROOF. We prove uniqueness first. Let (15 1, ••.• 8n) be the dual 
of a positively oriented basis and let Al < .. , < Ak and 
J.t1 < ... < J.tk be ordered indices. By the lemma on o.n. 
bases in the space of forms (Section 12.2), the requirement 
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also implies that 

8AJ 1\ ... 1\ 8 Ak 1\ *(8JlJ 1\ ... 1\ 8Jlk) 

= 1 E:OJl1 ••••• E:JlkWv if f..Lj = Aj for i = 1, ... , k, 

otherwise. 

But this means that the sum on the right-hand side of the 
equation 

VI <···<Vn-k 

can have only one nonzero component, which must corre­
spond to the complementary multi-index 

VI < ... < Vn-k. 

More precisely, 

*(8Jl1 1\ .•. 1\ 8Jlk) = E:JlI ••••• E:Jlksgn • ·8vI 1\ .•. 1\ 8 Vn- k, 

where VI < ... < Vn-k is complementary to f..LI < ... < f..Lk 

and where. denotes the permutation that takes (1, ... , n) to 
(f..LI, ••• , f..Lh VI, ••• , Vn-k)· In particular, * is uniquely deter­
mined by this necessary condition. 

Conversely, given a fixed positively oriented o.n. basis, 
we use this formula to define *. Then the requirement that 
17 1\ *~ = (17, ~}wv is satisfied if 17, ~ are basis elements of 
AltkV, and this suffices since the requirement is bilinear. 
This proves the existence of the star operator. 0 

The formula above also holds without the conditions 
f..LI < ... < f..Lk and VI < ... < Vn-k because sgn. captures 
the sign changes caused by permuting the indices. We state 
this more formally as follows. 

Note 1. For any positively oriented o.n. basis and any permu­
tation ., 

*(8r(1) 1\ •.• /\ 8r (k» = E:r(l) ..... E:r(k)sgn •. 8r(k+I) 1\ ... 1\ 8r (n). 

This also implies that, up to sign, *17 responds to vec­
tors that form part of an orthonormal basis as 17 does to the 
complementary or remaining vectors: 
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Note 2. If (el, ... , en) is a positively oriented o. n. basis, then 

*17(er(k+l), ... ,er(n)) = cr(l) ... , . Cr(k)sgn T . 17 (er(l), ... , er(k)) 

for every 17 E AltkV and every permutation T. In particular, 
*1 = Wv and *wv = (_l)indexVl. 

Hence the composition 

AltkV ~ Altn-kV ~ AltkV 

is the identity, up to sign, and since the index of V counts 
the number of times -1 occurs as a factor in Cl ..... Cn, this 
sign is given by the following formula: 

Note 3. ** = (-l)k(n-k)+indexVIdAltkV' 

We began by setting 17 /\ *( = (17, ()wv as the characteriz­
ing property of the star operator. Now that we know the sign 
of **, we can read off more information from this definition. 

Note 4. 17 /\ ( = (_l)k(n-k)+index v (17, *()WV for all 17 E AltkV 
and all ( E Altn-kV. 

Our next result follows from Note 4 and the definition of *. 

Note 5. (*17, *() = (_l)indexV(17, () for all 17 and (in AltkV. 

Finally, we also mention that the star operator, as follows 
directly from its definition, changes sign under a change of 
orientation because the canonical volume form changes sign 
while the scalar product remains unchanged. 

Now we turn from the star operator on a single vector 
space to manifolds and their tangent spaces. Let M be an n­

dimensional oriented semi-Riemannian manifold. For each 
individual tangent space Y pM and each k, the three defining 
lemmas in Sections 12.2 and 12.3 give a scalar product (. , .) p 

on AltkYpM, a canonical volume form WTpM E AltnYpM, and 
a star operator 

* : AltkYpM --+ Altn-kYpM, 

which all depend differentiably on p. 
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Definition. Let M be an n-dimensional oriented semi­
Riemannian manifold. Then the canonical volume form 
WM E QnM, the scalar product 

(.,.) : QkM x QkM ~ COO(M) 

of k-forms, and the star operator 

*: QkM ~ Qn-kM 

are defined in the obvious way via the corresponding objects 
on the tangent spaces. 

12.4 The Coderivative 

The star operator translates the de Rham complex, in which 
the degrees of the differential forms increase, into an equiv­
alent complex in which they decrease: 

O~QnM~Qn-1M~··· ~ Q1M ~QoM~O 

The Cartan derivative d goes to * d *-1, and up to sign this 
is the coderivative 8. But the sign is subject to nonuniform 
conventions; we fix one as follows. 

Definition. The coderivative 

8: Qn-kM ~ Qn-k-1M 

on an n-dimensional semi-Riemannian manifold M is de­
fined by 

The co derivative is obviously independent of the orien­
tation of M. The meaning of the sign becomes clear when 
we consider the formal adjoint, or dual, operator dt of d with 
respect to the scalar product. What this means is the follow­
ing: Thking the pointwise scalar product of k-forms 11, l; on a 
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manifold M defines a function (1],~) E COO(M), and integrat­
ing over M by means of the volume form gives us a number, 
which we denote by ((1], ~)) E 1R to make the distinction clear. 
We make this more precise. 

Notation. For k-forms 1], ~ E Qk M whose supports have com­
pact intersection, we set 

((1]. ~)) := f (1], ~)WM = f 1] /\ *~. 
M M 

The differential operator d' dual to d : QkM ~ Qk+l M 
should satisfy 

((d11, ~)) = ((1], d'~)) 

for all 11 E QkM and ~ E Qk+1 M with compact support in 
M \ aM. In particular, it should be an operator from Qk+1 M 
to QkM. By the product rule, 

d(1] /\ *~) = d11/\ *~ + (-l)k1] /\ d *~. 

Since we know the sign of ** by Note 3 in 12.3, we can easily 
convert d * ~ to ± * (*d*-l){. Hence 

d * ~ = (_l)(n-k)k+indexM * *d * { 
= (_l)(n-k)k+indexM * *d * * *-1 { 
= (_1)(n-k)k+(n-k-1)(k+1) * *d *-1 ~ 

= (_l)n-1 * (*d*-lg = (_l)k * c5~ 
for ~ E Qk+1 M. Our choice of sign for l) thus gives the fol­
lowing product rule. 

Lemma. For all 1] E Qk M and ~ E Qk+ 1 M, 

d(11/\ *{) = d1] /\ *~ + 1] /\ *c5~. 

If the intersection of the supports of 11 and ~ is also com­
pact in M \ aM, then J M d(1] /\ *{) = 0 by Stokes's theorem, 
and we have the follOWing corollary. 
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Corollary (Duality formula for the coderivative). 

«dry,{» + «ry,a{» = 0 

for ry E Q,kM, { E Q,k+l M whose supports have compact inter­
section in M \ aM. 

Thus each -8 is dual to d by our sign convention for the 
coderivative. The opposite convention, which makes 8 and 
d dual to each other, is also used (see, for instance, [W]). 

Up to this point we have denoted all the operators in the 
de Rham complex by the same symbol d. Now we want to 
include the index k in the notation. 

Notation. When necessary, the Cartan derivative and 
coderivative will be denoted by the more precise symbols dk 
and 8k, as follows: 

QkM dk Q,k+lM ---+ 

*l~ *l~ 
Q,n-kM (-l) kc5k Q,n-k-1M ) 

Thus (-l)kak is conjugate to dk by means of*, and by the 
duality formula above, -ak is dual to (or the formal adjoint 
of) dn-k-l' The double meaning of the coderivative as (up 
to sign) both conjugate and adjoint to the Cartan derivative 
establishes a relationship between dk and dn-k-l, which we 
will now examine more closely. 

12.5 Harmonic Forms and the Hodge 
Theorem 

In what follows, let M be an n-dimensional oriented compact 
Riemannian manifold without boundary. The scalar product 
((. , .)) is defined on all of Qk M by compactness, and because 
aM = 0 the duality formula 

((dry, {)) + ((ry, a{)) = 0 



228 12. Riemannian Manifolds 
------------~------~~~---------------------

for the coderivative holds for all T} E g,kM and t; E g,k+l M. 

Finally, since the scalar product on M is now assumed to be 
positive definite, the scalar products (. , .) on the individual 
spaces AltkTpM and ((., .)) on nkM are also positive definite, 
and this turns the g,kM into Euclidean vector spaces. 

We now consider a portion of the sequences ofthe Cartan 
derivatives and coderivatives: 

d d 
nk-1M () nkM () nk+lM, 

8 8 

or more precisely 

In the Euclidean space (nkM, ((', .))), the operators are ad­
joints of each other. So it is trivial that 

kerdk = (imon_k_l).L 

and 

kerOn_k = (imdk_d.L. 

The first equation holds because dT} = 0 {=:::} «dT}, t;)) = 0 for 
all t; -<==> {{T}, ot;)) = 0 for alIt; {::::} T} E (im 0)1-, and similarly 
for kero. 

For vector subspaces Vo C V of finite-dimensional Eu­
clidean spaces V, we always have V = Vo EEl V t. So if we 
were permitted to think of nk M as finite-dimensional, we 
could conclude that 

nkM = kerd EEl imo = kero EEl imd. 

The conclusion is actually true, but although this decom­
position of g,k M seems to be within easy reach, the proof 
requires methods from the theory of elliptic differential op­
erators and is beyond the scope of this course. See Chapter 
6 of [W], for example. 

Theorem (here without proof). If M is an oriented n­
dimensional closed Riemannian manifold, then 

g,k M = ker dk EEl im On-k-l = ker On-k EEl im dk-l 
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as an orthogonal direct sum with respect to the scalar product 
on nkM defined by 

((T/,~)):= J T//\*~. 
M 

This theorem, which looks a bit technical at first, lies at 
the heart of Hodge theory for the de Rham complex. Our 
first corollary is the following. 

Corollary. For M as above, 

ker dk = im dk-l E9 (ker dk n ker ~n-k), 

ker ~n-k = im ~n-k-l EEl (ker dk n ker ~n-k). 

The k-forms T/ E nkM making their appearance here-those 
for which dT/ = 0 and ~T/ = O-belong to the kernel of the 
Laplace-de Room, or Laplace-Beltrami, operator 

D. := d~ + ~d: nkM -+ nkM. 

The k-forms satisfying D.T/ = 0 are called harmonic forms. 
For oriented closed Riemannian manifolds, the duality for­
mula for the co derivative (see Section 12.4) implies that 

((D.T/. T/)) = -((~T/, ~T/)) - ((dT/. dT/)) 

for allT/ E nkM, so if D.T/ = 0, then ~T/ = 0 and dT/ = 0 by the 
positive definiteness of the scalar products (( .•. )) on nk- l M 
and nk+IM. 

Notation. For an oriented closed Riemannian manifold M, 
let 

1-{kM := {T/ E nkM : ~T/ = 0 anddT/ = O} = {T/ E nkM : D.T/ = O} 

denote the vector space of harmonic k-forms on M. 

Thus the first formula in our last corollary reads ker dk = 
imdk-l E91ikM, and since the kth de Rham cohomology of 
M was defined as HkM := kerdk/imdk_l, we obtain the fol­
lowing as a corollary. 
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Hodge Theorem. Every de Rham cohomology class of an 
oriented closed Riemannian manifold is represented by a well­
defined harmonic form. More precisely: The canonical map 

'Hk ~ HkM, 
TJ ..-.. [TJ] 

is an isomorphism for every k. 

But it follows from 

that 

kerdk=imdk_l $'HkM, 

QkM = kerdk $ imdn-k-l 

QkM = imdk-l $ imon-k-l $ 'HkM. 

This gives the following result. 

Hodge Decomposition Theorem. If M is an oriented closed 
Riemannian manifold, then 

QkM = dQk-l M $ dQk+l M $ 'HkM 

as an orthogonal direct sum with respect to the scalar product 
given by 

{{TJ,{}} = f TJI\*{· 

M 

12.6 Poincare Duality 

From the definition of the co derivative as "star-conjugateH to 
the Cartan derivative up to sign, it follows that d * TJ = 0 {:} 
dTJ = 0 and d * TJ = 0 {:} dTJ = O. So the star operator gives an 
isomorphism 

* : 'Hk M ~ 'Hn-kM, 

and hence, by the Hodge theorem, an isomorphism HkM ~ 
Hn-kM. This is called Poincare duality. 
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Theorem (Poincare duality for de Rham cohomology). 
If M is an oriented closed n-dimensional Riemannian manifold, 
then the star operator on harmonic forms defines an isomor­
phism Hk M ~ Hn-kM: 

}{kM - HkM ----+ 

*l~ ~ lpoincare 

}{n-kM - Hn-kM ----+ 

Incidentally, Poincare duality says something interesting 
even for k = O. For connected manifolds, as we recall (Sec­
tion 11.2), HOM = lR canonically; so for orientable closed 
connected n-dimensional manifolds we also have H n M ~ lR, 
and the choice of an orientation determines an isomor­
phism: 

Corollary (of Poincare duality). If M is an oriented n­
dimensional closed connected manifold, then the canonical 
homomorphism 

given by integration is an isomorphism. 

Because of this, one might think that the nth de Rham 
cohomology for these manifolds would be as uninteresting 
as the zeroth. But one would be mistaken, because H n , in 
contrast to HO, acts non trivially on maps. 

Definition. If f : M --* N 1S a differentiable map between 
oriented n-dimensional closed connected manifolds, then 
the well-defined number deg(f) given by 

f f*w = deg(f) f w, 

M N 
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i.e. by the commutativity of 

HnM ~ JR 

H" f T T deg(f) 

H n N ----+ JR, 
IN 

is called the mapping degree (or just the degree) of f. 

Of course, the degree of a constant map is zero (if n > 0). 
The same is true for any map that is not surjective, because 
then we can find an w with IN w i= 0 and supp weN \ f (M), 
so f*w = o. The degree of an orientation-preserving (resp. 
orientation-reversing) diffeomorphism is +1 (resp. -1); see 
Section 5.5. The mapping degree is always an integer (Exer­
cise 5.4), from which we might deduce its homotopy invari­
ance if we didn't know it already because of the homotopy 
invariance of de Rham cohomology (Section 11.2). 

We could also interpret the corollary above as a "converse 
of Stokes's theorem" for oriented closed manifolds: If 1M w = 
0, then [w] = 0 E HnM and hence w = da. 

12.7 Thst 

(1) Let V be a finite-dimensional real vector space, and let 
(. , .) denote a nondegenerate symmetric bilinear form 
given on V and also transferred canonically to V*. Then, 
for <p E V* and v E V, we always have 

o (U<p, v) + (<p, DV) = O. 

o (U<p, v) = DV(U<p). 

o (<p, DV) = <p(v). 

(2) Let V be a four-dimensional nondegenerate quadratic 
space of index 3. Then Alt2V is a six-dimensional nonde­
generate quadratic space of index 

03. 0 O. 06. 
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(3) Let (M, (', .)) be an oriented semi-Riemannian manifold 
with volume form WM E Q"M. How does multiplication 
of the metric by a positive function A : M -+ lR+ affect 
the volume form? 

o W(M.A(.,.)) = WM· 

o W(M,A("')) = A~WM. 
o W(M,A("')) = A"WM· 

(4) Let V be a 2k-dimensional nondegenerate quadratic 
space and assume that k + indexM is even, so that the 
star operator on the forms of middle degree defines an 
involution AltkV -+ AltkV; that is, ** = Id. Then the 
vector space AltkV is the direct sum of the subspaces of 
"self-dual" C*w = w) and "anti-self-dual" (*w = -w) alter­
nating k-forms. Let 5 and a denote their dimensions. Are 
these dimensions independent of the index of the space 
V? 

o Yes. The dimensions are always a = 5 = ~ ekk). 
o Yes, because the dimensions are just a = 0 or 5 = 0, 

depending on whether k is even or odd. 

o No, because 5 = 0 in the negative definite case 
(index V = 2k) but a = 0 in the positive definite 
case. 

(5) What does the star operator do on an oriented semi­
Riemannian manifold with the canonical volume form 
WM E Q" M and the constant O-form 1 E QO M? 

o *WM = 1 and * 1 = WM. 

o *wM = (_1)indexM1 and *1 = WM. 

o *WM = 1 and *1 = (_l)indexMwM . 

(6) The statement that -0 is formally adjoint to the Cartan 
derivative d means that 

o 1M dry 1\ *~ + 1M ry 1\ *o~ = 0 

o 1M dry 1\ *~ + 1M ry 1\ 0 * ~ = 0 
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o fMd17/\ *1; + fM 017/\ *1; = 0 

for forms of appropriate degree whose supports have 
compact intersection. 

(7) A k-form 17 on an oriented closed Riemannian manifold 
is harmonic if and only if 

o 17 and *17 are both cocycles. 

o there exist W E Qk-1 M and I; E Qk+ 1 M with dw = 

17 = 01;. 

o d17 = 0 and 017 = o. 

(8) Let M be an oriented closed Riemannian manifold. It 
follows from the Hodge theorem that 

o every coboundary is harmonic. 

o in every cohomology class there is a harmonic form. 

o every harmonic coboundary is zero. 

(9) The star operator gives the Poincare isomorphism 

HkM ~ Hn-kM, and the star operator depends on the 
metric.· Does the Poincare isomorphism depend on the 
metric? 

o Yes, and this already shows up in *1 = WM. 

o No. After cohomology classes are formed, no depen­
dence on the metric is left. 

o No, because the action of the star operator on cocycles 
is independent of the metric. 

(10) Does there exist a map f : 52 -+ 51 X 51 of degree I? 

o No, because every f : 52 -+ 51 X 51 factors over ]R2 
and is therefore null homotopic: deg(f) = o. 

o Yes. Map the closed upper hemisphere 5~ diffeomor­
phically (relative to a chart (U, h) on 51 x 51) onto 
h-1 (D2) and extend this map arbitrarily to all of 52. 
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o Yes. In constructing such a map, take advantage 
of the fact that both the 2-sphere and the torus 
can arise from the square by identifying boundary 
points. Then the identity on the square induces a 
map of degree 1. 

12.8 Exercises 

EXERCISE 12.1. Let M be an oriented Riemannian manifold of 
dimension divisible by four, so that the star operator in the 
middle dimension is an involution * : Q2kM -+ Q 2kM; that is, 
** = Id. In this case, a 2k-form w is called self·dual if *w = w 
and anti·self·dual if *w = -w. Prove that every harmonic 
2k-form is, in a unique way, the sum of a self-dual and an 
anti-self-dual harmonic form. 

EXERCISE 12.2. Again let M be an oriented Riemannian mani­
fold, this time compact and without boundary. Consider the 
Laplace-de Rham operator /). : QkM -+ QkM on k-forms. We 
deviate from the sign convention of linear algebra in calling 
A an eigenvalue of /). if there exists a nonzero form w E Qk M 
such that /).w + AW =. o. To start with, this definition makes 
sense only for real A, but since we can consider complex­
valued k-forms w + iT} and apply /). to real and imaginary 
parts, we may also ask about complex eigenvalues. 

Prove that all the eigenvalues are real and greater than 
or equal to zero. 

EXERCISE 12.3. Let f : M -+ N be a differentiable map be­
tween connected, oriented, compact n-dimensional mani­
folds without boundary, and let q E N be a regular value of 
f. Prove that 

deg(f) = L £(p), 
pEf-l(q) 

where s(p) = ±1 according to whether dfp : TpM -+ Tf(p)N 

is orientation-preserving or orientation-reversing. 
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EXERCISE 12.4. Let 7f : jJ ~ M be an r-sheeted cover (see, 
for instance, [J:Thp], p. 130) of an n-dimensional manifold 
M. Then 

(7f*W)q:= L «d7fp)-l)*wp 
pef-I(q) 

defines a homomorphism 7f* : nkjJ ~ nkM, which induces 
a homomorphism 7f* : HkM ~ HkM. Show that 7f* 07f* : 

HkM ~ HkM is r times the identity, and conclude that the 
nth de Rham cohomology group vanishes for nonorientable 
compact connected n-dimensional manifolds. 

12.9 Hints for the Exercises 

FOR EXERCISE 12.1. Every 2k-form is, in a unique way, the 
sum of a self-dual and an anti-self-dual form; this follows 
quite easily from ** = Id and the linearity of the star opera­
tor, without looking further. But to show that for a harmonic 
form each of these two summands is itself harmonic, you 
have to take another look at the definition of the coderiva­
tive 8, which, along with learning what's going on, is the goal 
of this simple exercise. 

FOR EXERCISE 12.2. As we saw in Section 12.5, «', .)) turns 
nkM, under the given hypotheses, into a genuine Euclidean 
space, and in solving this problem you'll feel once again that 
you've been carried back to elementary linear algebra. 

FOR EXERCISE 12.3. By the definition of the mapping degree 
in Section 12.6, it suffices to find some n-form that is tailored 
to the measure, has nonvanishing integral, and satisfies 

f f*w= L s(p) f w. 
M pef-I(q) N 

The support of such an w will be set inside a sufficiently 
small neighborhood of q. 
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Every map has regular values, by the way; this follows 
from Sardis theorem (see, for instance, [BJ], Chapter 6). So 
when you prove the assertion of the exercise you'll prove 
simultaneously that the mapping degree defined by H n f is 
integer-valued. If you don't want to use Sard's theorem, you 
can stick to the homotopy invariance of H n f, because it's 
quite easy to deform f homotopically in such a way that 
regular values occur. 

FOR EXERCISE 12.4. The first part of the exercise (dealing 
with 1l'* 0 1l'*) can be done straight from the definitions and 
would have fit well into Chapter 11. But Exercise 12.3 comes 
into play in the second part. Now you should consider the 
orientation double covering 1l' : M -+ M, in which, as the 
name suggests, each 1l'-1 (x) consists of the two orientations 
of TxM. This M is canonically oriented. Since M is com­
pact, so is M; since M is assumed to be nonorientable, M 
is connected. What is the mapping degree of the canonical 
sheet-interchanging involution f : M -+ M, and what does 
it have to do with 1l'* and 1l'*? 



CHAPTER 

Calculations in 
Coordinates 

13.1 The Star Operator and the 
Co derivative in Three-Dimensional 
Euclidean Space 

In this last chapter we examine how to calculate with the 
star operator and coderivative in local coordinates on semi­
Riemannian manifolds. But first we pick up where we left 
off in Chapter 10 and consider the simple but important 
example M = ]R3 with the usual coordinates xl, x2 , x3, the 
usual orientation, and the usual scalar product (denoted by 
the multiplication symbol·). The index is zero and k(3 - k) 
is always even, so by Note 3 in Section 12.3 the star operator 
is an involution: ** = Id. Note 1 in the same section gives 
the following: 

Note. For M = lR3 as above, *1 = dxl /\ dx2 /\ dx3 E Q3M. 
We also have *dxl = dx2 /\ d,(3 and its cyclic permutations 
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*dx2 = dx3 1\ dxl and *dx3 = dxl 1\ dx2 . In the notation of 
line, area, and volume elements as defined in Section 10.2, these 
equations become 

*1 = dV (and hence *dV = 1), 

*as = dS (and hence *dS = tiS). 

The sign of the coderivative 0 = ± * d*-l given in its 
definition in Section 12.4 is exactly the one that makes 

o ~ nOM ~ nlM ~ n2M ~ n 3M ~ 0 

o ~ n 3M ~ n2M ~ nIM ~ nOM ~ 0 
8 -8 8 

commutative. The translation of the Cartan derivative into 
grad, div, and curl (see Section 10.3) gives us another formu­
lation of the commutativity of the diagram. 

Note. 

o(ti· tiS) = *d(a· dS) = *divadV = diva, 

0(& . dS) = - * d(f, . tiS) = - * curl b . dS = -curl b . as, 
o(e dV) = * de = * grade . as = grade· dS. 

Note. In terms of the translation isomorphisms of Section 10.2, 
this says that for any open subset X oflR3, the following diagram 
is commutative: 

o ~ COO(X) ~ V(X) ~ V(X) ~ COO(X) ~ 0 
grad -curl div 

In the classical notation and written on one line, the 
sequences for the Cartan derivative (above) and coderivative 
read as follows: 
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o ( ) COO (X) 
grad 
( ) V (X) 
div 

curl 
( ) V(X) 

-curl 

div 
( ) 

grad 

Setting !1x := do + od gives our next result. 

COO (X) ( ) 0 

Corollary. For an open subset X of ~3, the Laplace-de Rham 
operator in the classical notation is given as follows: 

(i) For O-forms and 3-forms, 

!1x = divgrad: coo(X) ~ cOO(X). 

(ii) For I-forms and 2-forms, 

!1x = graddiv - curl curl: V(X) ~ V(X). 

Note that 

3 02 

div grad = '"' --. =!1 ~oxl2 
1=1 

is the classical Laplacian. So the sign convention for the 
coderivative that we fixed in the definition in Section 12.4, 
the one that makes 0 the formal adjoint of -d, is consistent­
at least in this respect-with the usual notation. 

13.2 Forms and Dual Forms on Manifolds 
without a Metric 

The language of computation in coordinates is the Ricci 
calculus, which will be discussed in detail in the present 
chapter. We last dealt with the Ricci calculus in Section 2.8, 
and encountered some of its principles there in the exam­
ple of tangent vectors and vector fields. Vector fields and 
I-forms are in a certain sense dual to each other, and we 
have meanwhile generalized the I-forms or Pfaffian forms 
to k-forms. For a systematic description of the Ricci calculus 
in the framework of the Cartan calculus, it is convenient to 
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generalize vector fields to "dual k-forms" in a similar way. 
This has nothing to do yet with orientation and metric, so 
we just consider an n-dimensional manifold M and a chart 
(U, h) on it. 

Vector fields, I-forms, and k-forms on U can then be writ­
ten uniquely as 

n 

V = LvJ.taJ.t, 

J.t=l 
n 

W = L wJ.tdxJ.t , 

J.t=l 

W = L WJ.tI ... J.tkdxttl /\ •.. /\ dXJ.tk, 

J.t1<···<J.tk 

respectively, where the components vJ.t, wJ.t' and WJ.tI ... J.tk are 
real functions on U. 

A k-form W on M assigns to every p E M an alternating 
k-form wp E AltkTpM. For the definition of dual k-forms, TpM 
is simply replaced by the dual space T;M. 

Definition. A dual k-form on a manifold M is an assignment 
to every p E M of an alternating k-form wp E· AltkT;M on the 
dual space r;M = Hom(TpM, JR) of the tangent space. The 
vector space of differentiable (relative to charts) dual k-forms 
on M will be denoted by QkM. 

For finite-dimensional vector spaces V, we have V** =V 
canonically, so Altlr;M = TpM. Thus the dual I-forms 
are the same as vector fields, and by analogy with v = 
L::=o VlLolL , we write the dual k-forms in local coordinates 
as follows. 

Note and Notation. If(U, h) is a chart, then every dual k-form 
w on U can be written uniquely as 

W = L wJ.tI ... J.tkalLl /\ .• , /\ a ILk · 

ILl <···<J.tk 
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13.3 Three Principles of the Ricci 
Calculus on Manifolds without 
a Metric 

We now use these objects-k-forms and dual k-forms, and 
I-forms and vector fields in particular-to illustrate three 
general principles of the Ricci calculus: 

(1) the description of objects by their components; 

(2) the position of indices according to behavior under 
transformations; 

(3) the summation convention. 

For (1). Recall that what is meant by a contravariant vec­
tor v ll in the Ricci calculus is the vector field v = L vllaw 
Similarly, a covariant vector all is to be understood as the 1-
form L alldxll . We extend these notions further by defining 
a skew-symmetric, or alternating, covariant tensor w lll ... llk 

of degree (or rank) k as the k-form 

L wlll ... llndxlll /\ ... /\ dxllk, 

III <"'<Ilk 

and an alternating contravariant tensor WIlI .. ·llk of degree 
(or rank) k as the dual k-form 

W lll ... llna /\ /\ a 
III •.• Ilk' 

So, for example, if you encounter a covariant skew-symmetric 
field tensor Pllv ofrank two in the physics literature, then as 
a mathematical reader you should realize that this means the 
2-form Lt-t<v Pllvdxll /\ dxv , because you won't be reminded 
of it. 

Finally, we mustn't forget that in the notation and lan­
guage of the Ricci calculus, no distinction is made between 
a geometric object wand its restriction wlU to a chart do­
main, so the component symbol takes on the additional job 
of denoting the entire object whenever necessary. 
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For (2). Whether the coordinate index of a component func­
tion is written as a superscript or a subscript is not left to 
chance in the Ricci calculus, but is determined by the be­
havior of the components under a change of charts. As in 
Exercise 3.3 (see the hint for this exercise on p. 63), let's 
denote the new coordinates by xl, ... , xII-defined without 
loss of generality on the same chart domain (suppressed in 
the notatiqn anyway) as xl, ... , xn-and, savoring the dou­
ble meaning of the xl , ... , xn as functions on U C M and as 
coordinates in ]Rn, let's write the transition map as 

I _ l( I n) X -x x, ... ,x 

II _ II( 1 n) X -x x, ... ,x 

and its Jacobian matrix as 

(:::) ~.~=l, ...• n 

Always keeping in mind that an x with a barred index means 
something completely different from an x with an unbarred 
index, we see from the chain rule that the following relations 
hold. 

Note. Under a change of coordinates, 

_ n axii 
dx~ = '"' -dx~ 

~ax~ 
~=l 

Corollary. Under a change of coordinates, the component func­
tions of k-forms and dual k-forms transform as follows: 

n ax~1 ax~k 
WT; - - '"' -. .-(J) ~I"'~k - ~ aX~1 ... ax~k ~I .. ·~k 

~I'''',~k=l 
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Because we are actually summing over an multi-indices 
(l-il, ... , I-ik) here, not just the ordered ones, let me remind 
you that the component functions w/LI ... M and W/LI···/Lk are 
defined for all multi-indices, even though (because of the 
alternating property) the components with ordered indices 
I-il < ... < I-ik already contain all the information. 

Thus in each transformation formula the summation in­
dices on the right-hand side are in opposite positions, and 
the free indices are in the same position on the right-hand 
side as on the left-hand side. 

For (3). In the Ricci calculus, sums in which the index of 
summation appears twice, once as a subscript and once as 
a superscript (with the understanding that a superscript in 
the denominator acts as a subscript) occur often enough to 
have led to the adoption of the Einstein summation conven­
tion, according to which one still thinks of the summation 
symbol but no longer writes it down. When the summation 
convention is applied, terms such as 

and 

are automatically read as 

and 

axIL axv 

-=--=A/Lv 
axIL axv 

if nothing is explicitly said otherwise. For example, we are 
explicitly told to deal differently with 

L W/LI ... /Lk dxJLI /\ ... /\ dXJLk. 

/LI <···</Lk 

But if we wanted to, we could also use the summation con­
vention to write this representation of a k-form in local co­
ordinates without the summation sign, namely as 

L WJLI ... JLkdxJLI /\ .. . /\dXJLk = ~! ~/LI ... /LkdxJLl v/\··· /\ dxJLk,. 

/Ll <···</Lk 
summation convention 
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13.4 Thnsor Fields 

The discussion in the preceding section also applies to the 
still more general tensors of covariant degree r and con­
travariant degree s of the Ricci calculus, which have not yet 
been introduced. The component functions of these ten­
sors have r subscripts and 5 superscripts, and the order­
ing of these indices also matters if no symmetry require­
ments are imposed. As an example, consider the type of 
tensor in which the r subscripts come first. The component 
functions-and in the Ricci calculus the whole tensor as 
well-are then written, for instance, as 

A VI···Vs 
/-ll···/-lr . 

From this position of the indices, the expert in the Ricci 
calculus concludes that under a change of coordinates the 
tensor transforms as 

_ _ (Jx/-ll dX/-l r dXVI dXvs 
A- - VI···V r = "'"' --. . --. --. . ---A VI···Vs 

/-ll···/-lr . ~ dXJiI ... dXJir dXVI ... dXv, /-ll···/-lr . 
all v 
all /-l 

This simultaneously defines what such a tensor of covariant 
degree r and contravariant degree 5 "is" in the Ricci calculus, 
in case anyone should ask. In fact, we can safely settle for 
this definition; we already saw in Chapter 1 how to make 
it precise for r = 0 and 5 = 1 ("physically defined" tangent 
vectors and vector fields). 

Whoever is still unsatisfied can get a conceptually better 
answer from multilinear algebra to the question "What is a 
tensor?" The coordinate-independent object A of which the 
A/-lI ... /-l/I ... Vs are only the component functions is 

A = L A/-ll ... /-l/l",vsdx/-l l ® ... ® dx/-l r ® d VI ® ... ® d vs ' 

all v 
all /-l 

which assigns to every p an element 
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If the ordering of the r superscripts and 5 subscripts is 
changed, then the ordering of the factors in the tensor 
product changes accordingly. 

But what does the mysterious symbol ® mean? It would 
be nice if all mathematics students learned this in second­
semester linear algebra. Well, you'll learn it someday, and 
then you'll see the tensors of the Ricci calculus with different 
eyes .... 

But I won't make it quite so easy for myself. I'm going 
to give you a short minicourse, a microcourse, on the ten­
sor product. Pay attention, it's starting: The first thing you 
have to know about the tensor product of two (and similarly 
of several) vector spaces V and W is that it's really a pair 
(V ® W, t) consisting of a vector space V ® Wand an oper­
ation t : V x W ~ V ® W, with the operation denoted by 
(v, w) ~ v®w. Thus one can also take tensor products of in­
dividual vectors, and these tensor products are elements of 
the tensor product of the spaces. Be careful, though: in gen­
eral, the tensor product of the spaces is not the set of tensor 
products of their elements; the operation is not surjective. So 
it's not as you might think, that if you just understand v ® w 
you'll automatically know V ® W. In fact you can't actually 
understand either v ® w or V ® W by itself; you really have 
to look at the pair (V ® W, t). 

So after all that can we just write down the map t : 

V x W ~ V ® W? We could. The question is whether you'd 
get much out of it. At the moment, I'd rather start by telling 
you something more important: The operation t is univer­
sally bilinear in the sense that first, of course it's bilinear 
itself, as any decent product ought to be, and second, every 
bilinear map on V x W arises in exactly one way from post­
composition with a linear map on V ® W; more precisely, 
for every bilinear map f : V x W ~ X there is exactly one 
linear map ({J : V ® W ~ X such that f = ({J 0 t. 

Admittedly, whether there exists a pair (V ® W, t) with this 
marvelous universal property is something I haven't proved 
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yet, but you can already see that there can be essentially at 
most one. For if (V® W, t) is another pair, we can play the 
universal property oft off against t, and vice versa, to obtain 
linear maps V ® W +=t V® W that are compatible with t and 
t and are inverses of each other. This is also the reason it 
isn't so important how a universal (V ® W, t) is constructed 
as long as such a construction is possible at all. 

And it is possible. Here's how to see it: any arbitrary 
set A generates the real vector space F(A) of formal linear 
combinations C} a} + ... + Ckak, whose elements are actually 
the maps C : A -T lR that send all but finitely many a E A 
to zero, but which are written, for practical reasons, as sums 
L c(a)a as above. Through a t-+ la we also have a canonical 
map A -T F(A), and this map V x W -T F(V x W) is precisely 
the one we now consider for the special case A := V x W. 
It has a universal property, but not the right one yet; it isn't 
even bilinear. So now we touch it up in a completely routine 
way. That is, we consider all the elements in F(V x W) that 
have one of the two forms 

(a) (CIVI + CZVz, w) - CI (VI, w) - cz(vz, w) 

(b) (v, CI WI + QW2) - cl (v, w}) - C2(V, W2) 

-these are the elements whose nonvanishing is an obstruc­
tion to bilinearity-and take the quotient of F(V x W) by the 
subspace Fo C F(V x W) they generate. Then the quotient 
V ® W := F(V x W)/Fo and the canonical map 

t: V x W -T F(V x W) -T F(V x W)/Fo 

together form a universal bilinear pair for V and W, as de­
sired. 

But you need this construction only if you're stopped by 
the police and have to justify your use of the tensor product. 
For your daily work, you're better off deriving what you want 
to know about the tensor product directly from the universal 
property. 

End of the microcourse! You'll have to admit that it was 
quick enough to read through. Granted, you don't have a 
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firm seat in the tensor saddle yet. That would take a whole 
swarm of trivial but not superfluous lemmas, for which un­
fortunately there's no room in my book. 

Since the alternating forms are multilinear, of course they 
have something to do with the tensor product. 1'11 mention 
only that canonical1y 

AltkT pM C ,J7,M ® ... ® J7,~, . 
k 

so every k-form w is also a covariant tensor of degree k in 
this general sense, where, reassuringly, the component func­
tions are the same in both interpretations. From the skew 
symmetry in the indices, it actual1y fol1ows that 

L wILI ... ILkdxILI /\ ••• /\ dxILk = L wILI ... ILkdxILl ® ... ® dxILk 

ILl <···<ILk all IL 

according to our normalization of the wedge product (see the 
theorem in Section 8.2). So in passing to the more general 
concept of tensors in the Ricci calculus, you don't have to 
learn any new conventions for the old familiar k-forms. 

13.5 Raising and Lowering Indices in the 
Ricci Calculus 

These three notational conventions of the Ricci calculus­
(l) description by components, (2) position of the indices, 
and (3) the summation convention-refer to calculating in 
coordinates on an n-dimensional manifold M without addi­
tional structure. But if a semi-Riemannian metric (.,.) is 
given on M, a fourth convention is added-one that deals 
with the celebrated "raising and lowering" of indices. We be­
gin by considering the procedure completely formal1y, and 
only afterwards do we ask about its mathematical content. 



250 _________________ c~h=a~p~t~er~1~3~C~a~lc~u=1=at=io=n=s~in~C=oo=rd~in=a=t=e~s __________________ _ 

Notation (Raising and lowering indices in the Ricci 
calculus). Let (M, (-, .) be a semi-Riemannian manifold. 
In local coordinates, we write g/-Lv := (a/-L' av ) as usual and 
let (g/-L V) denote the inverse of the matrix (g/-Lv). Now let A 
be a tensor of covariant degree r and contravariant degree 
5, written in the Ricci calculus with r + 5 indices. Without 
loss of generality, let one index be v and none be J.L. Then, 
according to whether v is a subscript or a superscript, we 
write 

A···/-L···:=g/-LVA··· v ··· or A···/-L···:=g/-LvA··· v ... , 

where the summation convention is to be applied. There 
is no change in either the position of or the notation for 
the remaining indices, of whose presence you should be 
reminded by the dots. 

So if a contravariant vector v/-L is given, for instance, the 
notation v/-L is no longer free. By this convention, it now 
means g/-LVvv. Here are some more examples, just to get you 
used to the formal procedure: 

AI! = gl!VAv, 

F~ = gVAFI!A = gI!AFAV, 

Fl!v = gI!AgVKFAK' 

Wl!l.··l!k = gI!l VI •...• gl!kVkWVI ... Vk. 

Of course, you may already guess that the result of rais­
ing and lowering indices is another tensor-that, under a 
change of coordinates, the newly created indexed quanti­
ties transform correctly according to the (new) position of 
the indices. Otherwise the Ricci calculus would hardly have 
settled on this convention. Th check this, observe first that 
gl!v = (a/-L' av) transforms correctly as a covariant tensor of 
degree two, by the note in Section 13.3. For every p E M, 
(. , .) p is a bilinear form on T pM and thus an element of 
(TpM ® TpM)* = T;M ® T;M; the gl!v are the component 
functions of this "fundamental tensor" (as it is called in the 
Ricci calculus) of the semi-Riemannian manifold. Hence gl!V 
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also transforms as a contravariant tensor. The assertion fol­
lows by direct substitution and calculation, using the fact 
that the Jacobian matrices of the two transition maps (from 
the old coordinates to the new and back) are inverses of each 
other in a natural way. 

The processes of raising and lowering a given index are 
themselves inverses of each other, since 

for A = v, 

otherwise 

by definition. Because the matrices are symmetric, it also 
follows that 

so the notation (g/J. V ) for the inverse matrix of (g/J.v) is consis­
tent with the convention: raising the two indices really does 
turn g/J.v into g/J. v. 

In general, indices should not be stacked on top of each 
other because we want the overall order of the indices to 
stay recognizable. But as long as no indices are raised or 
lowered, no misunderstandings occur within the Ricci cal­
culus if the separate orderings of the upper and lower indices 
are known. If A/J.v is symmetric in f.L and v, for instance, then 
of course A/J. v = A v /J. for the component functions, so in 
computations we just- write A~. 

13.6 The Invariant Meaning of Raising 
and Lowering Indices 

Now, how can raising and lowering indices be understood 
conceptually and in a coordinate-free way? To answer this 
question, we consider for each P E M the isomorphism 
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between the tangent and cotangent spaces, which is deter­
mined by the semi-Riemannian metric and for which we 
introduced the notation 

r;M 

in Section 12.2. How does this look in local coordinates? As 
we know, for any I-form w = wl1-dxl1- the vth component 
function is given by Wv = w(ov). This gives us an answer in 
the special case w = b011- := (0I1-' .): 

Note. We have 

and hence also 

Coronary. Converting contravariant to covariant vectors and 
vice versa by lowering and raising indices, respectively, in the 
Ricci calculus corresponds to the isomorphism D : T pM -+ r;M 
and its inverse tt given by the semi-Riemannian metric. More 
precisely, 

b(VI1- 0I1-) = vl1-dxl1-, 

tt(al1-dxl1-) = al1-0w 

Similarly, we have the more general observation: Apply­
ing D or tt to the ith factor of a tensor product of degree (r + s), 
with r factors in r;M and s factors in TpM (in a specific order­
ing), is described in the Ricci calculus by lowering or raising, 
respectively, the ith of the r + s tensor indices. For example, 
under 

TpM ® r;M ® TpM 

== lb®Id®Id 

r;M ® T;M ® TpM 

the tensor A~·11- v of covariant degree one and contravariant 
degree two goes to the tensor AAI1- v of covariant degree two 
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and contravariant degree one (in the sense of convention (1) 
of the Ricci calculus, of course-it would be meaningless to 
assign, say, the component All 2 to the individual component 
All 2). Thisistruebecauseb®Id®IdsendsAA"L v8>.®dxJL®8v 
to A\.l V(b8>.) ® dxJL ® 8v, which is 

A>' /J. v g>.udxu ® dx/J. ® 8v = Au /J. v dxu ® dx/J. ® 8v 

by the corollary above. 
Raising all the indices of a k-form produces a dual k­

form, and vice versa. These procedures are also given in a 
coordinate-free way through U and b as 

AltkTpM 

Altkp T 1 Alrctt 

AltkT;M. 

In other words, the diagram 

commutes. 

AltkTpM ~ 

1 AltkU 

AltkT*M ~ p 

T!M®···®T*M p p 

lu® ... ®u 

TpM®···®TpM 

13.7 Scalar Products of Thnsors in the 
Ricci Calculus 

The notation for raising and lowering indices is very conve­
nient for computations with the various scalar products we 
have to consider. Of course, for tangent vectors themselves, 
the following holds because (8/J.' 8v) =: g/J.v' 

Note. For vector fields v and w, we have 

(v, w) = g/J.vvJLWV = vJLwJ.I­

in local coordinates. 
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According to the definition, the isomorphism D transfers 
the scalar product of T pM to r;M (special case of the defining 
lemma for the scalar product in the space of forms; see 
Section 12.2). This gives the following. 

Note. For I-forms a and fJ, we have 

in local coordinates. In particular; (dxJ.l., dxV) = gJ.l.V 

Although we called the scalar product on AltkTpM canon­
ical in the definition, we don't want to forget that the wedge 
product was part of that definition, and the normalization of 
the wedge product in the literature is not completely uni­
form. For this reason, we always have to be careful about 
checking even plausible scalar product formulas for k-forms. 

Lemma. For k-forms TJ, { E QkM on a semi-Riemannian man­
ifold, we have 

( 11, r) = '"' 11 rJ.l.l···J.l.k - ~ rJ.l.l···J.l.k 
'1 '> L..J 'lJ.l.l···J.l.k'> - k! TJJ.l.l···J.l.k'> 

J.l.l <···<J.l.k 

in local coordinates. 

PROOF. First, the definition of the scalar product in Section 
12.2 implies that 

(TJ, b dJ.l.l /\ ••. /\ b dJ.l.k) = TJ(dJ.l.l ' ••• , dJ.l.k) =: TJJ.l.l ... J.l.k' 

But lowering indices, as we explained earlier, has the same 
effect as applying D. So we can write { as 

{= rJ.l.l ... J.l.k b'l /\ /\ b'l 
'> 0J.l.l··· °J.l.k' 

and the assertion follows. o 

With a clear conscience, we can describe the scalar prod­
uct on the tensor product V ® W of two quadratic spaces 
(V, (. , .) v) and (W, (. , .) w) as given canonically. It is the bilin-
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ear form on V ® W that satisfies 

(v ® W, Vi ® Wi) = (v, v'}v (w, w'}w, 

and similarly for tensor products with several factors. In 
particular, at every point p of a semi-Riemannian manifold 
M, there is a scalar product for tensors of covariant degree r 
and contravariant degree s. For the type of tensor in which 
all r covariant factors appear first, for example, we have 

(A B) - A VI···V, BJ1.1 ... J1.r 
, - J1.1 ... J1.r VI .. ·V, 

in local coordinates. Thus interpreting k-forms as covariant 
tensors of degree k through AltkTpM C T;M ® ... ® T;M 
leads to another scalar product: 

1 
(T/, l;) scalar product of k-forms = k! (T/, l;) scalar product of tensors· 

Well, you can't have everything! We'll continue to use the 
scalar product on k-forms anyway. 

13.8 The Wepge Product and the Star 
Operator in the Ricci Calculus 

Now let M be an oriented n-dimensional semi-Riemannian 
manifold. How do the star operator and coderivative look 
in the Ricci calculus? Since T/ /\ *l; = (T/, l;}wM, we begin 
by examining the wedge product and the volume form. For 
W E ~YM and T/ E n,sM, we have 

W/\ T/ = L wJ1.I ... J1.rT/VI ... v,dxJ1.1 /\ .• • /\dxJ1.r /\dxVI /\ .• • /\dxv, 
J1.1 <"·<J1.r 
VI < .. ·<v, 

in local coordinates. From this we can read off a formula for 
the components (w/\T/)J1.I ... J1.r+,' I-q < '" < ILr+s, of the wedge 
product. In order to write it down we interpret a partition 
of the set {I, ... , r + s} into one subset of r elements and 



256 Chapter 13 Calculations in Coordinates 
------------~--------------------------------

another of 5 elements as a permutation of {I, ... , r + s}, as 
follows: 

Notation. Let Zr,s := 

{T E Sr+s : rO) < ... < T(r) and r(r+ 1) < ... < r(r+5)}. 

This has the advantage ofletting us avoid a detailed descrip­
tion of what is now sgn r, the sign corresponding to a choice 
r(1) < ... < r(r) of r elements of {I, ... , r + 5}. We have the 
following concise formula. 

Note. 

(W 1\ 17)/-Ll ... /-Lr+5 = L sgn r . w/-LT(1) ... /-LT(r)17/-LT(r+l) ... /-LT(r+5)· 

rEZr ,5 

Thus the sum has (;S) summands; if r = 5 = 1, for 
instance, it has two. The formula for the components of the 
wedge product of two ] -forms ex and {3 reads 

(ex 1\ {3)p.v = exp.{3v - exv{3w 

Next we recall the volume form WM, for which we com­
puted the following formula in Section 12.3. 

Note. In orientation-preserving local coordinates, the volume 
form is given by 

WM = Jiii dxl 1\ ... 1\ dxn. 

Hence its component function is given by Wl...n = jiil, where 
g := det(g/-Lv), 

It follows from T/ 1\ *s = (17, S)WM that, for all TI, S E QkM, 

L sgn T . T/r1 ... rk(*Ork+1 ... rn = L 
rEZk,n-k P.1 < .. ·<P.k 

Corollary (Star operator in the Ricci calculus). For S E 

QkM , 

(*Ork+l ... rn = sgn r . Jigk r1 ... rk 

in orientation-preserving local coordinates. 
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Of course, this is proved first for t' E Zk,n-k. by an appro­
priate choice of rJ. But then clearly it also holds for arbitrary 
t' E Sn. 

13.9 The Divergence and the Laplacian 
in the Ricci Calculus 

We know from the definition (see the local formula in Section 
8.6) how to compute the Cartan derivative in local coordi­
nates. This gives the following formula for the components. 

Note (Cartan derivative in the Ricci calculus). 

k+1 

(dW)Jl.l ... Jl.k+l = L(_l)i-1dJl.jWJl.l ... /li ... Jl.k+l· 
i=l 

If we combine this formula and those from Section 13.8 
into a general expression for the coderivative in arbitrary 
coordinates, we get something of a monstrosity, which we 
hesitate to write down without a special reason. Instead, we 
take a closer look at the special case k = 1. 

In this case, the co derivative is defined as 

8 = (_I)n-1 *d*-l : n1M ~ nOM. 

Since ** = (_I)k(n-k)+indexMIdnkM, as we established in Note 
3 in Section 12.3, we also have 

8 = (_I)indexM * d *. 

But for a I-form a E n1 M, the formulas above for * and d 
give 

n 

(d * ah ... n = L dJl.(JjgT aJl.). 
Jl.=1 

Now it seems like time to apply the *-formula (the corol­
lary at the end of the preceding section) again, but this is 
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a bit awkward, and we prefer to observe that we have now 
computed 

and already know *WM = (_1)indexM1 from Note 2 in Section 
12.3. It follows that 

Using the summation convention, we state this as a corol­
lary. 

Corollary. The coderivative ~ : 0 1 M .-+- 0° M is described in 
local coordinates by 

The function 8a is also called the divergence of the vec­
tor field a/La,..". For functions CO-forms), the Laplacian f). 

0° M .-+- 0° M is defined by f). = ~d, or in local coordinates 

f).f = ~a/L(Jfifa/L f)· 
y-Igl 

If we expand the Ricci shorthand into an ordinary formula, 
continuing to write g for det(g/Lv) and (g/L V ) for the inverse 
of (g/Lv), we obtain another corollary. 

Corollary. The Laplacian f). := ~d : 0° M .-+- 0° M for func­
tions on a semi-Riemannian manifold M is given in local coor­
dinates by 

f 1 ~ a fI::i /LV a f 
f). = IFi ~ axIL (y- Iglg axV ). 

y- Igl /L,v=1 
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1b illustrate this, we apply the formula to the sphere M := 
S2 C ]R3, with spherical coordinates qJ and tJ. The coordinates 
are obviously orthogonal: g12 = 0, hence g21 = 0 as well. The 
terms gIl and g22 are the squares of the velocities of the qJ 
and tJ coordinate curves, respectively, so gll = sin2 tJ and 
g22 = 1. Thus g = sin2 tJ, gIl = 1/(sin2 tJ), and g22 = 1. 

Corollary. In spherical coordinates qJ and tJ, the Laplacian l1S2 

for functions on S2 is 

1 82 18 8 
l1S2 = --- + -----(sin tJ-). 

sin2 tJ 8qJ2 sin tJ 8tJ 8tJ 

13.10 Concluding Remarks 

Every book, or at least every volume, must come to an end, 
and the author takes his leave of the present work by an­
swering a question quite a few readers may have asked 
themselves already. Why, a reader may ask, does an au­
thor who-as he always says himself-values concepts and 
intuition so highly give so much space to a mere system of 
notation like the Ricci calculus? 

Well, what made me do it is that the conventions of the 
Ricci calculus are used in the physics literature. I would be 
delighted if an occasional physicist reader were to find my 
explanations useful. But the explanations are really written 
for mathematicians. A physics student, I imagine, gets a feel 
for the calculus by working through concrete problems, and 
in any case his interest lies in the physical rather than the 
mathematical content of his formulas. But a mathematician 
just interested in the abstract geometric aspects of a physi­
cal theory, who looks at the physics literature more or less 
from the outside, as a foreigner, is in a completely different 
situation. 

Whether the physicists' use of the calculus is a math­
ematical anachronism or the best solution of their nota-

z 

x U-curve 

Figure 13.1. Spherical 
coordinates fIJ, {} on 52: 

x = sin {} cOSfIJ, y = 
sin {} sin fIJ, and z = cos {}. 
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tional problems is still, I think, unsettled, but in any case 
we couldn't read many of the formulas at all without know­
ing the conventions, and often it's only from the calculus 
(whose geometric background we know, after all) that we 
get a hint as to what kind of mathematical objects are really 
being discussed. 

I don't want to reveal here the whole panorama of dif­
ficulties awaiting a mathematician who reads physics texts, 
but I do have to explain something so you won't curse me un­
fairly when you still can't read every index-studded formula 
straight off the page. 

Namely, you have to be prepared to encounter a great 
many other kinds of indices besides the actual Ricci indices 
that refer to space-time coordinates. This comes from the 
physicists' tendency to choose bases in all vector spaces and, 
in doing so, introduce indices to which Ricci-like conven­
tions are applied more or less consistently. A major source 
of such indices is the Lie groups that occur, together with 
their Lie algebras and the representations of the algebras, 
in elementary particle physics. Lie groups usually appear 
at the outset as matrix groups, and their Lie algebras as al­
gebras of matrices (with indices). A basis is chosen in the 
Lie algebra (this gives one index) and the Lie bracket is de­
scribed accordingly by structure constants (this gives three 
indices). A representation assigns matrices to the basis ele­
ments, and the matrices have indices referring to the basis 
of the representation space. Not to mention indices that dis­
tinguish among different representations and indices that 
distinguish among types of particles. 

Perhaps in some far-off time this baroque splendor of 
indices will be discarded, but if we want to listen to the 
physicists in our time-and they have fascinating things to 
say-then we have to accept their current language, and a 
little Ricci calculus is part of that. 
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13.11 'lest 

(1) The star operator * : nk X -+ n3 - k X for open X C ]R3 with 
the usual metric and orientation, viewed in terms of the 
"translation isomorphisms" as a map COO(X) -+ COO(X) 
for k = 0,3 or as a map VeX) -+ VeX) for k = 1,2, is 

o the identity on COO(X) or VeX) for k = 0, 1,2,3. 

o Id on COO(X) for k = 0 and on VeX) for k = 2, but -Id 
on COO(X) for k = 3 and on VeX) for k = l. 

o Id on COO(X) for k = 0 and k = 3, but -Id on VeX) for 
k = 1 and k = 2. 

(2) Let M be a manifold, without a metric. Let a linear map 
TpM -+ TpM be described in the Ricci calculus by the 
matrix a~ (or more precisely by vV 1-* a~vV) and the dual 
map T;M -+ T;M by b~ (or wJ.L 1-* b~wJJ, in the sense of 
the Ricci conventions). Then 

o b~ = a~. o bJ.L = aV v JJ,. 

(3) Let M be as above, and let matrices a~, b~, and c~ (to 
be read in the Ricci calculus) de$cribe endomorphisms 
fIJ, VF, and VF 0 fIJ of either TpM, the first case, or r;M, the 
second case. Then 

o c!: = bi a~ in the first case, and c!: = b~ai in the 
second. 

o c~ = ~ai in the first case, and c!: = bi a~ in the 
second. 

o c!: = bi a~ in both cases. 

(4) Does the Kronecker symbol oJ.LV describe a tensor in the 
Ricci calculus on TpM? 

o Yes, the identity on TpM. 

o No. 1b describe the identity, it would have to be 
written as o~. 
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o No. 8/-Lv doesn't have the right behavior under trans­
formations. 

(5) According to the formula 

(W /\ T/)/-LI ... /-Lr+, = L sgn(r)w/-LT(1) ... /-LT(r)T//-LT(r+I) ... /-LT(r+,) 
TEZr., 

from Section 13.8, the wedge product of a 2-form W with 
a I-form T/ in the Ricci calculus is (w /\ T/h/-Lv = 

o w)../-LT/v + w/-LvT/).. - w)..vT/w 

o w)../-LT/v + wv)..T//-L + w/-LvT/)..· 

o w)../-LT/v - w)..vT//-L + w/-LvT/).. - w/-L)..T/v + wv)..T//-L - WV/-LYJ)..· 

(6) Now let M be a semi-Riemannian manifold. The isomor­
phisms 

given canonically by the metric are written in the Ricci 
calculus as 

o g/-LV and g/-Lv, respectively. 

o g/-LV and g/-Lv, respectively. 

o g~ for both. 

(7) What is g~? 

o gV _ g g)..v /-L- /-L).. • 

o gV = 8v = { 1 
/-L /-L 0 

o g~ = (o/-L' ov). 

for J-t = v, 

otherwise. 

(8) Let M = ]R4, as an oriented Lorentz manifold whose 
Lorentz metric with respect to the coordinates xO • xl • x 2• x 3 

is given by 
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( 
+1 

(g/-Lv) = 
-1 

-1 

Then, by the general formula 

(*nTk+l ... Tn = sgn r . JjgT ~Tl ... Tk, 

specialized to the action of the star operator on 2-forms 
P E Q2M, 

o (*P)Ol = p23 _ P23. In particular, *(dx2 /\ dx3) = 
dxo /\ dxl. 

o (*P)Ol = p 23 = P23. In particular, *(dxo /\ dxl ) _ 
dx2 /\ dx3. 

o (*P)z3 = pOl _ -POI. In particular, *(dxo /\ dxl ) = 
-dx2 /\ dx3. 

(9) The divergence b 0/-L (.jfgT v/-L) of a vector field v/-L, in 
",Igl 

the same coordinates on Minkowski spaee, is equal to 

o oovo + 01 vI + 02 v2 + 03 v3 . 

o oovo - 01 vI - 02v2 - 03v3 . 

o -oovo + al vI + a2V 2 + a3v3 . 

(10) Minkowski space again! If we denote the coordinates 
above by t, X, y, and z, then applying the Laplacian 

1 
.jfgT 0/-L (jig! o/-L) 

to a function f : M --+ lR gives 
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13.12 Exercises 

EXERCISE 13.1. Let X be an open subset of]R3 and set M := 
]R x X C ]R4. Intuitively, we picture X as a domain in space 
and the coordinate t of the factor ]R as time. In this exercise 
and the ones that follow, we want to assimilate the Car­
tan calculus for the space-time M into our intuition, which 
separates space and time. Before you can start calculating, 
though, we have to set things up. 

We denote. the space of time-dependent k-forms on X by 
Qkt · -d X or, a bit more concisely, by Qkt d Xc QkM. To be Ime ep. . . 
precise, 

Q~.d.X:= {w E QkM: Ot...J W = OJ. 

If we write k-forms on M in the coordinates xO := t and 
xl, xl, ~ of]R4 as 

W = L WJ.l.l ... J.l.kdxJ.l.l /\ ••• /\ dXJ.l.k 

J.l.l<"·<J.l.k 

and sort the summands according to whether i-LI = 0 or 
not, we see that every k-form on the space-time M can be 
represented uniquely as w = dt /\ 17 + l; I where TJ E Q~.d.l X 
and l; E Q~.d.X, and in what follows we will always refer to 
this isomorphism 

Qk-IX E9 Qk X 
t.d. t.d. 

dt /\ 17 + l; 

in order to bring the space-time forms closer to our intuti­
tion. 

Three operators act on time-dependent forms on the spa­
tial domain X: the spatial Cartan derivative 

dx : Q~.d.X ~ Q~.1:X, 
the spatial star operator (with respect to the usual metric on 
JR3) 
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*x: Q~d.X ~ Q:.d.kX, 

and the partial derivative with respect to time 

at : Q~.d.X ~ Q~.d.X. 
Exercise 13.1 asks you to express the four-dimensional Car­
tan derivative dM : QkM ---+ Qk+l M and the star operator 

*M: QkM ~ Q4-kM , 

which refers to the usual orientation and the Lorentz metric 
on ]R4, in terms of dx, *x, and at. 
EXERCISE 13.2. Now we can go a step further and also inter­
pret the time-dependent forms on X with the usual trans­
lation isomorphisms as time-dependent functions or vector 
fields on X. From the de Rham complex of M, we then obtain 
a diagram 

0 0 

1 1 
QOM ~ c~.x 

dl 1 
QIM ~ c~.x €a Vt.d.X 

dl 1 
Q2M -

Vt.d. X €a Vt.d.X ~ 

dl 1 
Q 3M ~ Vt.d.X €a c~.x 

dl 1 
Q4M - c~.x ~ 

1 1 
0 0 
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What happens to the Cartan derivative and the star operator 
on M when we do this? 

EXERCISE 13.3. The formula 

I ljf dS = II ljf(x, y, z(x, y»J1 + (g!)2 + (g;)2 dxdy 

U G 

for a differentiable function z = z(x, y) of two variables was 
given in Section 10.8. Prove the obvious generalization to 
the case of a function f = f (xl, ... , xn) of n variables. 

EXERCISE 13.4. Prove the formula 

for the divergence (defined in Section 13.9) of a vector field 
on an oriented semi-Riemannian manifold. 

13.13 Hints for the Exercises 

FOR EXERCISE 13.1. You should find that the following dia­
grams are commutative: 

d 

~T 
nk-1x EB nk X 

t.d. t.d 

and 

*M 

~T 
n~.dl X EI7 n~.dx 
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FOR EXERCISE 13.2. In the classical electrodynamics of the 
vacuum, the units can be chosen so that only three time­
dependent vector fields and one time-dependent function 
on X C JR3 need be considered, namely 

the electric field strength £, 

the magnetic induction R, 
the current density 1, and 

the charge density p, 

and so that Maxwell's equations read 

curlE =-B, 
div R = 0, 

curIR = -E + j, 
div£=p. 

If ("iE) is translated into a 2-form F E Q2(JRxX), the Faraday 

tensor, and (-;7) into a 3-form j E Q3 (JR xX), the four-current 

density, then Maxwell's equations become 

and the equation dj = 0 that follows from d * F = j becomes 
the continuity equation div j + P = o. 

It isn't by chance that Maxwell's equations become so 
simple in the Cartan calculus of Minkowski space JR4, but to 
go into more detail I would have to give more background 
than opportunity permits. 

FOR EXERCISE 13.3. According to the formula for the volume 
form in Section 13.8, solving this problem is mainly a ques­
tion of finding the determinant of the symmetric matrix with 
components 
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But this is the product of the eigenvalues, counting multi­
plicities. As a self-adjoint operator on ~n, the matrix is easy 
to understand: it's the sum of the identity and an operator of 
rank one, and the eigenvalues are visible to the naked eye. 

FOR EXERCISE 13.4. The coordinate formula in Section 13.9 
already showed that the only influence of the metric on 
taking the divergence of a vector field comes in through 
the volume form. The assertion of Exercise 13.4 offers a 
coordinate-free interpretation of this situation. 
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coo (X), 168 

canonical volume form, 173 
Cartan derivative, 133 

in Minkowski space, 266 
in the Ricci calculus, 257 

cell, 83 
chain map, 144 
chain rule, 40 
change-of-charts map, 1 
change-of-variables formula, 

86 
on manifolds, 94 

chart, 1 
around a point, 3 

275 



276 ______________ ~I~n=d=ex~ ____________________________________ ___ 

on a manifold, 3 
chart domain, 1 
chart-with-boundary, 105 
closed manifold, 197 
coboundary, 196 

operator, 195 
cocycle, 196 
coderivative, 225 
codimension, 8 
cohomology class, 196 
compact exhaustion, 157 
components 

g/LV of the first 
fundamental form, 62 

of a tensor in the Ricci 
calculus, 246 

of an alternating k-form, 
52 

continuity equation, 267 
contractible, 204 
contravariant 

functor, 50 
vector, 30 

coordinates, 42 
countability axiom, 3 
countable basis, 3 
covering, 100 
critical 

point, 7 
value, 7 

cross product, 170 
curl, 171 
curve transport, 37 

'OI Mo,8 
'0(21.), 2 
d, 139 

db 227 
0, 225 

15k. 227 

d geom fp,38 

d alg! 38 p, 

d phys!p, 38 
~ 177 an' 
aIL E TpM, 44 
aM, 105 

dS, 173, 182, 185 
dS, 169 

ds, 173,182,183 
as, 169 

dV,169 

dx/L, 58 

de Rham 
cohomology, 196 

group, 195 
complex, 139 

degree 
of a differential form, 55 
ofa map, 232 

Dens(V), 82 

density, 80, 82 
derivation, 30 
diffeomorphism, 2 
differentiability 

in]R", 2 
in the half-space R::', 103 

differentiable 
k-form, 56 
atlas, 2 
function, 2 
manifold,3 
map, 5 
structure, 3 

differential d! p 

of! : Rn -+ ]Rk, 25 

of! : M -+ N, 39 
of! : V -+ W, 41 
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differential form, 55 
differential of a function as a 

I-form, 57 
dimension, 1 
directional derivative 

operator '\Tv, 29 
Dirichlet boundary value 

problem, 179 
div, divergence, 171 

in the Ricci calculus, 258 
divergence theorem, 172 
downstairs map, 4 
dual 

k-form, 242 
operator, 225 
space, 50 

duality formula, 227 

ep(M),29 
edge, 108 
eigenvalue of 11, 235 
embedding, 17 
equivalent atlases, 2 
Euclidean space 

RN , 17, 26 
general, 216 

exhaustion, 157 
exterior derivative, 133 

in coordinates, 144 
exterior product, 133 

f* and!*, 51 
Faraday tensor, 267 
fixed-point theorem, 164 
fixed-point-free involution, 

15 
flattener, 8 
flux density, 119 
k-form,51 

time-dependent, 264 
formal adjoint, 225 
four-current density, 267 
functor, 50 

g := det(g/Lv), 222 
Gauss's integral theorem, 

172,176 
germ, 29 
grad, gradient, 171 
Green's identities, 177 

Hk, H*, 195, 196 
1ikM,229 
harmonic 

differential form, 229 
function, 178 

Hodge 
decomposition theorem, 

230 
theorem, 230 

homogeneous coordinates, 
16 

homotopic, homotopy, 198 
homotopy equivalence, 212 
homotopy invariance 

of de Rham cohomology, 
198 

of the integral, 207 
hyperboloid, 10 

....J ("in"), 61, 62, 202 
index, 216 
induced k-form, 51 
integrable n-form, 89 
integral of an n-form, 90 
involution, 15 

Jacobian matrix lr (p), 5 
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OClP'", 16 
OClP'(V) , 16 

L1(JRn ,/L),86 
C1 (JRn , /L), 85 

Laplace operator or 
Laplacian D., 176 

Laplace-de Rham or 
Laplace-Beltrami 
operator, 229 

in JR3, 241 
Laplacian D. 

in spherical coordinates, 
259 

in the Ricci calculus, 258 
Lebesgue 

convergence theorem, 86 
integrable, 85, 87 
measurable in JRn , 85 
measurable in M, 88 
measure, 85, 99 

Hne element, 173 
vectorial, 169 

locally 
coherent, 70 
Euclidean, 1 
integrable, 93 

Lorentz group, 24 

M X N, 13 
MIT, 15 
M(n x n,R), 10 

M+N,13 
Mobius strip, 71 
manifold,3 

closed,197 
empty, 3 
Lorentz, 217 
Riemannian, 216 

semi-Riemannian, 216 
vector space as, 21 

manifold-with-boundary, 
105 

mapping degree, 232 
maximum principle, 179 
Maxwell's equations, 267 
mean value property, 178 
measure space, 85 
mesa function, 141 
metric, 216 
multilinear map, 49 

N,174 
nabla, V, 176 
naturality 

of the Cartan derivative, 
143 

of the wedge product, 134 
negatively oriented basis, 68 
net flux, 120 
nondegenerate quadratic 

form, 22, 215 
norm convergence theorem, 

86 
normal derivative ~, 177 
n-sphere sn, 10 
null-bordant, 115 
null-homotopic, 204 

D(n), 11 
O(Q),22 

nkM,56 

n~.d.x, 264 
n*,138 
orientation 

have the same, 67 
of a manifold, 70 
of a vector space, 67, 68 



Index 279 -------------------------------------------------

opposite, 72 
usual,68 

orientation convention, llO 
orientation-preserving 

chart, 70 
diffeomorphism, 70 
isomorphism, 68 

orientation-reversing, 70 
oriented 

manifold, 70 
vector space, 67 

orienting 
atlas, 73 
normal N, 187 
unit normal field N, 174 

orthogonal group, 11 
orthonormalization process, 

69 

partition of unity, 157 
path components, 24 
Pfaffian forms, 57 
Poincare 

duality, 230 
isomorphism 

Hk M ~ Hn- k M, 230 
lemma, 204 

positive-homogeneous, 80 
positively oriented basis, 68 
prism, 200 

operator, 201, 202 
product 

atlas, 13 
of manifolds, 13, 72 

property relative to charts, 4 
pseudoscalar, 83 

quadratic 
form, 22, 216 

space, 216 
quotient 

manifold, 15 
space, 14 
topology, 14 

rkp, 5 
lR~, 102 
lRlIlm, 16 

raising and lowering indices, 
250, 252 

rank of a differentiable map, 
5 

rank theorem, 6 
real projective space, 16 
regular 

point, 6 
value, 7 

retract, 163 
Ricci calculus, 30, 42, 24lff 
Riemannian manifold, 216 
right-hand rule, 66 

U ("sharp"), 219 
sp,84 

ap, 83 
a-algebra, 89 
S(n x n, lR), 10 
SO(n),12 
SU(n), 12 
scalar product, 219 

of k-forms, 225 
of tensors, 253 

second axiom of 
countability, 3 

self-dual, 233 
semi-Riemannian manifold, 

216 
sense of rotation, 66 
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set of measure zero 
in ]Rn, 86, 88 
in a manifold, 88 

shear invariant, 80 
singular 

point, 7 
value, 7 

small subset, 89 
source strength, 120 
space offorms, 219 
span, 80 
special orthogonal group, 12 
sphere, 10 
spherical coordinates, 259 
star operator *, 218, 225 

in ]R3, 240 

in Minkowski space, 266 
in the Ricci calculus, 256 

star-shaped, 204 
Stokes's integral theorem, 

172, 176 
submanifold, 8 

chart, 8 

submanifold-with-boundary, 
106 

sum (of manifolds), 13,72 
summation convention, 245 
support, 93 
surface, 71 

in space, 10 

T, 174 
tA,lO 
ysubM 26 P , 
TgeoffiM 28 

P , 

r;lg(M), 30 

TPhysM 31 p , 

T;M,109 

tangent space 
"physically" defined, 38 
algebraically defined, 30 
geometrically defined, 28 
to a manifold, 37 
to a submanifold of]RN, 26 

tangent vector, 37 

inward-pointing, 11 0 
outward-pointing, 110 

tangentially equivalent, 28 
tensor, 243, 246 

field, 247 
product 0, 247 

theorem 
Brouwer fixed-point, 164 
divergence, 172 
dominated convergence, 

86 
Fubini's, 86 
Gauss's integral, 172, 176 
hairy ball, 206, 207 
Heine-Borel, 19 
Hodge, 230 
Hodge decomposition, 230 
inverse function, 6 
Lebesgue convergence, 86 
monotone convergence, 

86 
norm convergence, 86 
regular point, 6 
regular value, 7 
Stokes's, 151 

intuitive, 122 
Whitney embedding, 17 

time-dependent k-form on 
space-time, 264 

torus, 14 
transition map, 1 
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translation isomorphisms, 
169 

U(n), 12 

unit 
normal field N, 174 
tangent field 1", 174 

universally bilinear, 247 

V(X), 168 
vector 

contravariant, 30 
vector field, 45 
vectorial 

area element, 169 
line element, 169 

velocity vector, 41 

volume element, 169 
volume form, 173 

formula, 222, 256 
on a quadratic space, 221 
on a semi-Riemannian 

manifold, 225 

wedge product 
in the Ricci calculus, 256 
of alternating multilinear 

forms, 133 
of differential forms, 137 

Whitney, 17 

XI"',14 

Zr,s, 134, 256 
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