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Preface to the
~ English Edition

Addressing the English-speaking readers of this book, I
should state who I imagine those readers are. The preface
to the first German edition was written for students in a
different academic system, and the description I gave there
doesn't apply directly. Should we, in this global age, have
more compatibility in academic education? There is a de-
bate going on now in Germany about whether we should
introduce the bachelor’s degree, or “Bakkalaureus” as some
would call it, so that our system can be more easily com-
pared with those abroad. Difficult questions! But it has been
observed that whatever the academic system, students of
the same age have about the same level of knowledge and
sophistication. Therefore I can simply say that this is a book
for twenty-year-old students.

This book is about manifolds, differential forms, the Car-
tan derivative, de Rham cohomology, and the general ver-
sion of Stoke’s theorem. This theory contains classical vec-
tor analysis, with its gradient, curl, and divergence operators
and the integral theorems of Gauss and Stokes, as a special
case. But since the student may not immediately recognize
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this fact, some care is given to the translation between these
two mathematical languages.

Speaking of translation, I would like to acknowledge the
excellent work of Leslie Kay in translating the German text
into English. We have exchanged detailed e-mail messages
throughout the translation process, discussing mathematics
and subtleties of language. While I was using the opportunity
of this English edition to eliminate all the typos and mistakes
I knew of in the present German edition, Dr. Kay initiated
many additional improvements. I wish to thank her for all
the care she has devoted to the book.

Langquaid, Germany Klaus Janich
October 2000



~ Preface to the
- First German

 Edition

An elegant author says in two lines what takes another a
full page. But if a reader has to mull over those two lines
for an hour, while he could have read and understood the
page in five minutes, then—for this particular reader—it was
probably not the right kind of elegance. It all depends on who
the readers are.

Here I am writing for university students in their sec-
ond year, who know nothing yet about manifolds and such
things, but can feel quite satisfied if they have a good over-
all understanding of the differential and integral calculus of
one and several variables. I ask other possible readers to be
patient from time to time. Of course, I too would like to com-
bine both kinds of elegance, but when that doesn’t work I
don't hesitate to throw line-saving elegance overboard and
stick to time-saving elegance. At least that’s my intention!

Introductory textbooks are usually meant “to be used in
conjunction with lectures, but even this purpose is better
served by a book that can be understood on its own. I have
made an effort to organize the book so that you can work
through it on a desert island, assuming you take your lec-

Vil



viii

Preface to the First German Edition

ture notes from your first two semesters along and—in case
those lectures didn’t include topology—a few notes on basic
topological concepts.

Since discussion partners are sometimes hard to find
on desert islands, I have included tests, which I would like
to comment on now. Some people disapprove of multiple-
choice tests on principle because they think putting check
marks in boxes is primitive and unworthy of a mathemati-
cian. It's hard to argue with that! Actually, some of my test
questions are so utterly and obviously simple that they’ll give
you—a healthy little scare when you find you can't answer
them after all. But many of them are hard, and resisting
the specious arguments of the wrong answers takes some
firmness. The tests should be taken seriously as a training
partner for the reader who is alone with the book. By the
way, there is at least one right answer in each set of three,
but there may be several.

Now I won't describe the book any further—it's in front
of you, after all—but will turn instead to the pleasant duty of
looking back when the work is done and gratefully acknowl-
edging the many kinds of help I received.

Martina Hertl turned the manuscript into TgX, and
Michael Prechtel was always there with his advice and sup-
port as a TgX wizard. 1 received useful macros from Martin
Lercher as well as from the publisher, and I was one of the
first to use diagram.tex, developed by Bernhard Rauscher, for
the diagrams. My students Robert Bieber, Margarita Kraus,
Martin Lercher, and Robert Mandl expertly proofread the
next to the last version of the book. I am very grateful for all
their help.

Regensburg, Germany Klaus Jéanich
June 1992
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Differentiable

Manifolds

CHAPTER

1.1 The Concept of a Manifold

The only background we need is a little topology—Chapter
I of [J:Tbp] is enough, at least for now—and differential cal-
culus of several variables.

Definition. Let X be a topological space. An n-dimensional

chart on X is a homeomorphism h : U — U’ from an
open subset U C X, the chart domain, onto an open subset
U cR"

If every point in X belongs to some chart domain of X, the
space X is called locally Euclidean: a nice property, which
of course not every topological space has.

It is often useful to include the name of the chart domain
in the notation for the chart and speak of the chart (U, h),
and we do so now.

Definition. If (U, h) and (V, k) are two n-dimensional charts
on X, then the homeomorphism k o (h~!'|h(U N V)) from
h(U N V) to k(U N V) is called the change-of-charts map,
or transition map, from h to k. If it is not only a homeomor-

K. Janich, Vector Analysis

© Springer Science+Business Media New York 2001
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hl;
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Figure 1.1. A chart

Figure 1.2. Transition
map
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Figure 1.3. Proof of dif-
ferentiability for the tran-
sition map from h to k
by means of an auxiliary
chart (W, @) in %

phism but a diffeomorphism, we say that the two charts are
differentiably related.

By differentiable, in the sense of analysis in R”, we always
mean of class C*®: having continuous partial derivatives of
all orders. In particular, a homeomorphism f between open
sets in R” is a diffeomorphism if and only if both f and f ~!
are C* functions.

Definition. A set of n-dimensional charts on X whose chart
domains cover all of X is an n-dimensional atlas on X. The
atlas is differentiable if all its charts are differentiably re-
lated, and two differentiable atlases 2 and B are equivalent
if AU B is also differentiable.

This brings us almost to the concept of a differentiable
manifold. Now we have to choose between two commonly
used definitions. A differentiable structure on X is regarded
sometimes as an equivalence class of differentiable atlases
and sometimes as a maximal differentiable atlas. We first
clarify in what sense the two mean the same thing.

For an n-dimensional differentiable atlas A, let [%] de-
note its equivalence class and D(2) the set of all the charts
(U, h) on X that are differentiably related to all the charts
in A. There is a differentiable transition map between any
two eélements of D(), as can be checked using A-charts.
(This is the same argument we would have to make in ver-
ifying that “equivalence” really does define an equivalence
relation on the set of atlases.) The set of charts D(%) is thus
an n-dimensional differentiable atlas and in fact obviously a
maximal one: every chart we could have added without de-
stroying differentiability is already there anyway. But D(%),
clearly the only maximal n-dimensional differentiable atlas
that contains 2, carries exactly the same information as the
equivalence class [2], because [2] is just the set of all the
subatlases of D(2) and D(2) is the union of all the atlases in
[2(]. Which to take as the structure defined by 2 is therefore
a question of taste, and I for one prefer the maximal atlas,
since that is at least still an atlas:



§1.2 Differentiable Maps

Definition. An n-dimensional differentiable structure on
a topological space X is a maximal n-dimensional differen-
tiable atlas.

You probably expect a differentiable manifold to be de-
fined as a topological space equipped with a differentiable
structure, and this is essentially what is done, but two addi-
tional topological demands are made on the space. The first
is that M must be Hausdorff, and the second that M must be
second countable; that is, there must exist a countable basis
for the topology (see, for example, [J:Tbp], p. 12 and p. 85).

Definition. An n-dimensional differentiable manifold is
a pair (M, D) consisting of a Hausdorff space M that satis-
fies the second axiom of countability and an n-dimensional
differentiable structure D on M.

We usually suppress the structure in the notation and
write M for a manifold, just as we write G rather than (G, )
for a group.

We fix a convention for the empty topological space with
the empty structure by letting it be a manifold of any di-
mension, even negative. But any nonempty manifold has a
well-defined dimension n = dimM > 0.

Since we haven't defined non-differentiable manifolds
and will have no need to consider them, we don’t have to
tack on the adjective “differentiable” every time. We also
agree that, without an explicit statement to the contrary, a
chart (U, h) on the manifold M always means a chart in the
differentiable structure.

1.2 Differentiable Maps

Now we turn our attention to maps. Let M be a manifold, X
some space, and f : M — X a map whose behavior we want
to study near a point p € M. Then we can choose a chart
around p, i.e. a chart (U, h) for M with p € U, and use it to
“pull the map f down’ That is, we consider f oh™! : U’ — X.
Whatever properties and data f o k™! has locally at h(p),
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we say that f has them at p velative to the chart (U, h). If
such a property or datum of the “downstairs map” is actually
independent of the choice of chart around p, so that f has the
property relative to every chart around p, we just say that f
has this property at p. For example:

Definition. A function f : M — R is differentiable (i.e. C*)
at p € M if for some (hence every!) chart (U, h) around p,
the downstairs function f o h™! is differentiable in a neigh-
borhood of h(p).

The local C* property at p is independent of the choice
of chart because the downstairs functions relative to the
charts (U, h) and (V, k) differ only by precomposition with a
diffeomorphism, namely the transition map w. We proceed
similarly when the target space is a manifold, but then we
always start by assuming that f is continuous, since this
makes possible a suitable choice of chart:

Note. If f : M — N is a continuous map between manifolds,
p € M, and (V, k) is a chart around f (p), then there is always
a chart (U, h) around p with f (U) C V.

In this case too, we say that f has a local property at p
relative to the charts (V, k) and (U, h) if the map ko f o hl
U’ — V' “pulled down” by the charts (another downstairs
map) has the property at h(p).

Figure 1.6. Using charts to pull down a continuous map between
manifolds

Since this is a map between open sets in Euclidean spaces,
we are in the familiar setting of differential calculus of sev-
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eral variables. As before, the charts need not be given explic-
itly if the property is independent of the choice of charts.
We say instead that f has the property at p relative to some
(hence every) choice of charts or just relative to charts, or, still
more concisely, that f has this property at p. In particular:

Definition. A continuous map f : M — N between mani-
folds is called differentiable at p € M if it is differentiable at
p relative to charts, and differentiable if it is differentiable
at every p € M. If f is bijective and both f and f~! are
differentiable, f is said to be a diffeomorphism.

1.3 The Rank

The Jacobian matrix of the downstairs map is not indepen-
dent of the choice of charts; after all, it transforms according
to the chain rule under changes of charts. But the rank of the
Jacobian matrix stays the same since the transition maps are
diffeomorphisms, and we can make the following definition.

N
by I PN
el — a0

Figure 1.7. Why f has the same rank at p relative to (h1, k1) and to
(h2, k2)

Definition and Remark. If f : M — N is differentiable
at p, the rank of the Jacobian matrix relative to charts is
called the rank of f at p and denoted by rk,f. Note that if
f : M — N is a diffeomorphism, the Jacobian matrix must
be a square matrix of full rank. In particular, we see that
diffeomorphic manifolds must have the same dimension.

As you know from the differential calculus of several vari-
ables, the rank governs basic properties of the local behavior
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of differentiable maps. The relevant theorems of differen-
tial calculus carry over directly to maps between manifolds
because we can apply them to the downstairs maps. In this
setting, the inverse function theorem reads:

Inverse Function Theorem. If f : M — N is a differentiable
map between two manifolds of the same dimension nand p € M
is a point with Tk, f = n, then f is a local diffeomorphism at p.

Many fundamental local results in differential calculus fol-
low as corollaries of the inverse function theorem. The (ap-
parently more general) regular point theorem is one exam-
ple.

Regular Point Theorem. If f : M — N is a differentiable
map between two manifolds and p € M is a vegular point of f
(thatis, 1k, f = dim N), then f islocally at p (relative to suitable
charts) the canonical projection.

Spelled out in detail, this means that there are charts
(U, h) around p and (V, k) about f(p) such that f(U) C V
and the downstairs map ko f o h™! : U’ — V' is given (for
instance) by

(X1, .00y Xgy Xgqh s - e s Xsqn) F—> (X541, -5 Xs4n)s

where s + n and n denote the dimensions of M and N.

Another consequence of the inverse function theorem is
the even more general rank theorem; see, for example, [BJ],
p- 45:

Rank Theorem. If the differentiable map f : M — N has
constant rank r in a neighborhood of p € M, then locally at p
(relative to suitable charts) it is of the form
R" x R®* — R” x R",
(x, y) /> (x, 0),

where r + s and r + n are the dimensions of M and N.
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1.4 Submanifolds

The regular point theorem makes an important statement
about the preimage f~!(g) of a point q € N, provided that
the elements p € f~!(q) are all regular. Such points q are
called regular values.

Terminology. If f : M — N is a differentiable map, then
the points p € M that are not regular are called critical,
or singular, points of f, their images under f critical, or
singular, values of f, and all the remaining points of N
regular values of f .

critical point

N

¢ \ critical value

4 / regular value

Figure 1.8. Regular and critical points and values

Observe that this fixes the convention of calling a point
q € N a regular value if f ~!(q) is empty, although such a q
isn't even a “value” of f.

If M and N are manifolds with dimM = n+sanddim N =
n, and if q € N is a regular value of a differentiable map
f : M — N, then around every point p in the preimage
My := f ~1(g) there is a chart (U, h) on M with the property

h(U N Mp) = R° N h(U),

where, as usual, we think of R® C R*t" as R® x {0} C R® x R".
This is true because there is no problem in requiring that
the chart (V, k) given by the regular point theorem satisfy
k(g) = 0, and the corresponding (U, h) then does what we
want.
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Thus the entire subset My of M, relative to suitable charts,
lies in M as R® does in R**", and is therefore called an s-
dimensional submanifold of M. More precisely:

Definition. Let M be an n-dimensional manifold. A subspace
My C M is a k-dimensional submanifold if around every
point of My there is a chart (U, h) on M with h(U N Mp) =
R* N h(U). Such a chart will be called a submanifold chart
or, informally, a flattener for My in M. The number n — k is
the codimension of My in M.

M

— h(U)

Rf N h(U)

Figure 1.9. Flattener

Of course, My isn't called a submanifold for nothing: The
set g of charts (U N My, h|U N M) we get from the flatten-
ers is obviously a k-dimensional differentiable atlas on My;
it generates a differentiable structure D(2lp) =: D|M,. Since
the properties of being second countable and Hausdorff are
inherited by subspaces, (Mo, D|M)) is a k-dimensional differ-
entiable manifold, and this is how we’ll think of My from now
on. In the two extreme cases k = 0 and k = n, the submani-
fold condition reduces to a purely topological constraint: the
zero-dimensional submanifolds of M are exactly the discrete
subsets of M, and the zero-codimensional submanifolds of
M are its open subsets.
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What we said about the preimage of a regular value can
now be put concisely as follows:

Regular Value Theorem. If q € N is a regular value of a
differentiable map f : M — N, then its preimage f ~1(q9) C M
is a submanifold whose codimension is equal to the dimension
of N.

1.5 Examples of Manifolds

Do manifolds really exist? Strictly speaking, apart from the
every-dimensional empty manifold, I haven't yet given a sin-
gle example.

To give manifolds straight from the definition, without
resorting to any other tools, requires describing a second-
countable Hausdorff space M and a differentiable structure
D on M. Of course, only one (preferably small) differentiable
atlas 2 on M need be given explicitly in order to define D as
the maximal atlas D(21) containing 1. The easiest manifold
to obtain in this way is the local model for all n-dimensional
manifolds, R", which we naturally take to be the manifold

(R*, D({1dg-})).

And this is the only manifold I'll give straight from the def-
inition! In real life, you hardly ever come across manifolds
this way. Let me explain this by a comparison from calculus.

A real function of a real variable is called continuous at
xp if for every ¢ > 0 there is a § > 0 such that, etc. From
this, it is easy to see that constant functions are continuous
(6 arbitrary) and the identity function is continuous (for
example, é := ¢). But if you have to justify why the function

definedby f (x) := arctan(x++/x* 4 e<°sh*) or something like
it, is continuous, do you start with an arbitrary ¢ > 0 and
look for a § > 0 such that ... ? No. Instead, from the theory
you recall that there are processes that produce continuous
functions—for instance, sums, products, quotients, uniformly
convergent series, composition, and inverses (on intervals of
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monotonicity) of continuous functions are continuous—and
you immediately see that the function above comes from
applying such processes to the constant function and the
identity function.

Instead of explicitly setting out the defining properties
and characteristics of mathematical objects, one can often
get by with recalling where they come from and how they are
formed. There are processes that produce manifolds, and the
regular value theorem, for instance, is a wellspring. The map
f R 5 Rgiven by f(x) := lx|I? has rank 1 everywhere
except at x = 0. In particular, 1 € R is a regular value, and its
preimage f ~1(1), the n-sphere S" := {x € R"™"! : ||x|| = 1}, is
therefore an n-dimensional submanifold of R"*!. The map
fRRSR x> x% +x% - x%, is also singular only at x = 0;
hence every ¢ # 0 in R is a regular value of f, and the
hyperboloid f ! (c) is a two-dimensional submanifold of R3
(a “surface in space”).

hyperboloid of
one sheet

f_l(c),c >0

critical cone f~1(0)
point /f‘l(c),c <0

hyperboloid of
two sheets

Figure 1.10. Hyperboloids as submanifolds, according to the
regular value theorem

I would also like to mention a third application of
the regular value theorem, this one a bit more interest-
ing. This time the two manifolds M and N will be finite-
dimensional vector spaces. To be precise, let n > 1; let
M:=MmnxnR)= R"Z, the space of real n x n-matrices; and
let N := S(n x n, R) = R2""*D) the subspace of symmetric
matrices. If A € M(n x n, R), we denote its transpose by ‘A.
Let I be the n x n identity matrix. Recall that a matrix A is
called orthogonal if A-A =1.
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Lemma. The identity matrix I is a regular value of the map

f MnxnR) — SnxnR),
A — U.A
Hence the orthogonal group
O(m) := f~1(D)

isa %n(n — 1)-dimensional submanifold of M(n x n, R).
PROOF. We must show that f is regular at A € O(n). Rather
than finding its rank by explicitly computing a %n(n+ 1) x n?
Jacobian matrix, we recall the relationship between the Ja-

cobian matrix and the directional derivative in differential
calculus: In general,

] = d[ A
f(P)'U—EOf(P v).

Thus it suffices to prove that for every A € O(n) and every
B € S(n x n, R), there is a matrix X € M(n x n, R) such that

d t,
—| A4+ 21X) - 2X) = B,
—| @+ @+
i.e. Jf(A)X = B. This will show that the Jacobian matrix of f

. . . — 1
relative to linear charts is a surjective map R™ — Rzn+1),
hence that f is of full rank %n(n + 1) at A. So all we have to
do is find, for every symmetric matrix B, a matrix X with

. A+'A.-X=B.

Since B is symmetric and X - A = '(*A - X), it suffices to find
X such that

1
“-X = 1B.

But we can do this not just for orthogonal A but for any
invertible A, by setting X := %'A“IB. a

11
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Observe that this also proves that the special orthogonal
group
SO(n) := {A € O(n)|det A = +1}

isa %n(n — 1)-dimensional submanifold of M(n x n, R), since
SO(n) is open in O(n). Applying the regular value theorem in
a completely similar way shows that other “matrix groups,’
such as U(n) or SU(n), are submanifolds of vector spaces of
matrices.

In linear algebra, one studies linear systems of equations
A -x = b. The solution set of such a system is nothing but
the preimage A~!(b) of the value b under the linear map A.
Now the preimages f ~!(q) of differentiable maps are just
the solution sets of nonlinear systems of equations and are
submanifolds when g is regular, so one can do analysis on
them. This is one reason for studying manifolds.

1.6 Sums, Products, and Quotients of
Manifolds

In this section we discuss three more processes that yield
manifolds, namely taking sums, products, and quotients. The
most primitive of these is summation, the simple juxtaposi-
tion of manifolds by disjoint union.

M+N
SN

L Lk
] ]

Figure 1.11. Charts for the summands are also charts for the sum;
the atlas 2 + B is differentiable because no new transition maps
have been added.
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Note. If M and N are n-dimensional manifolds, then, in a canon-
ical way, so is their sum, or disjoint union, M + N.

If A and B are atlases on M and N, respectively, their
disjoint union AU B =: A+B is obviously an atlason M+N,
and if we wanted to state the note above a bit more formally
we would have to give the differentiable structure on M + N
as D(Dq +Dy), where D; and D, are the structures on M and
N, respectively. Then D(D() + D(B)) = D(A + B) might
also be worth mentioning.

Of course, we can deal similarly with several or even
countably many summands M;, i = 1,2,... and take their
sum, or disjoint union,

(o9}
I_[Mi,
i=1
but this won't work for uncountably many summands be-

cause the second axiom of countability still has to be satis-
fied.

We often have to take the product of two manifolds. Topo-
logically, of course, this just means taking the Cartesian
product, and the differentiable structure is obtained from
the products of charts on the factors.

Note. The product M x N of a k-dimensional manifold with
an n-dimensional manifold is canonically a (k 4+ n)-dimensional
manifold.

We may safely permit ourselves the notation
AXx B :={(UxV, hxk): (Uh e (V,k) € B}
for the product atlas because the product of the charts,
UxV

Elhxk

U xV ¢ kaR"=Rk+",

open

13
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contains the same information as the pair (h, k) unless one of
the two charts is empty. In this notation, the differentiable
structure on M x N intended in the note is of course D :=
D(D; x D;), where D; = D) and D, = D(B) are the
structures on M and N, respectively, and it is easy to see
that then we also have D = D x ‘B).

Perhaps the simplest nontrivial example of a product
manifold is the torus T? := S! x S!, which we often use as an
illustration. If we think of RZas C, then §! = {z € C : |z| = 1},
so we could find S! x ! in C?. But since this is hard to draw,
we substitute a submanifold of R® diffeomorphic to S! x S!.

corresponds corresponds
to{l}xS1 to S x {1}

Figure 1.12. A torus represented in R3

The subject of quotient manifolds is more subtle, and for
now we can only take a first step in that direction.

Let X be a topological space and ~ an equivalence rela-
tion on X, and let X/~ denote the set of equivalence classes.
If

X

ln
X/~
is the canonical projection that assigns to every x € X its
equivalence class, then U C X/~ is called open in the quo-
tient topology if 71 (U) is open in X, and X/ ~, endowed
with the quotient topology, is called the quotient space of X
under ~.
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So much for recalling a topological notion (see, for exam-
ple, Chapter III of [J:Tbp], pp. 31-33 in particular). Now, if
M is a manifold and ~ an equivalence relation on it, then
M/ ~ is—a long way from being a manifold, and often not
even a Hausdorff space. We consider here what is in some
sense the simplest case in which M/~ is a manifold.

Lemma. Let M be an n-dimensional manifold, t : M — M
a fixed-point-free involution (i.e. a differentiable map with
Tot = Idy and t(x) # x for all x € M), and M/t the quo-
tient space of M under the equivalence relation x ~ t(x). Then
M/t is also an n-dimensional manifold in a canonical way: its
differentiable structure is the only one for which

M
ln
M/t
is a local diffeomorphism everywhere.

PROOF. Of course there can be at most one such structure,
for the identity on M/t with respect to two such structures
would be a local diffeomorphism, hence in fact a diffeomor-
phism (see Exercise 1.2):

M

(M/th 1 M/7)2
To prove that M/t is a Hausdorff space, we consider two
points 7 (p) # nm(q) € M/t. Since M is a Hausdorff space,
we can choose open neighborhoods U and V of p and g,
respectively, so small that UNV = @ and U N (V) = 2.
Then 7(U) and 7(V) are separating neighborhoods of 7 (p)
and 7 (q).

15
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16
U
t(U)
\"\(ﬂlU)_l
hJ <>
x(U) C M/t
/i

Figure 1.13. Charts on the
quotient manifold M/t

Moreover, if {Uj}ieN is a countable basis for M, then
{m(Uj}ien is a countable basis for N. We have not yet used
the fact that t is fixed-point free. We use it now in defining a
subset U of M to be small if UNt(U) = @ and convincing our-
selves that M is “locally small”; that is, every neighborhood
of a point contains a small neighborhood. If U C M is a small

open set, then 7|U : U — n(U) is a homeomorphism, so
every small chart (U, h) on M defines a chart («(U), h) on
M/z.

The small charts form an atlas 2 on M, and

A= {(r(U), h) : (U, h) eAN)

is an atlas on M/t. The corresponding differentiable struc-
ture D(A) has the desired property. a

Example. The quotient manifold
RP" := §"/—1d

of the n-sphere under the antipodal involution x + —x is
n-dimensional real projective space.

Perhaps I should say that this is real projective space
as a differential-topological object. From the algebraic view-
point, resorting to the sphere to define projective space is
misleading. If V is any vector space over an arbitrary field
K, the corresponding projective space KP(V) can be defined
as the set of one-dimensional subspaces of V. In particu-
lar, KP" := KP(K"*!) can be defined without any need for
a norm on V or K", But for K = R it is obvious that
RP(R"*1) = §”/—1d, and the quotient map S” — RP" is very
useful for looking at RP” differential-topologically.

It is also easy to give an atlas for RP" directly: if the points
of projective space are described in “homogeneous coordi-
nates”by [xg : ... : x,] € RP" for (x, ..., x,) € R"1\{0}, then
an atlas with # + 1 charts is defined by U; := {[x] : x; # 0}
and hi[x] := (xo/%i, ..., s ..., xn/xi)) fori=0,...,n.
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1.7 Will Submanifolds of Euclidean
Spaces Do?

I would like to end this chapter by pointing out a particular
aspect of taking quotients.

If we start with R" and its open submanifolds as the sim-
plest examples and create new manifolds by taking regular
preimages, sums, and products, we always get submanifolds
of Euclidean spaces back again. Nothing completely new
happens until we take quotients. Then, for instance, we get
a “surface” RP? = §2/~ that no longer lies in the space R3.
This, much more than, say, the sphere §2, which we can also
picture as a geometric locus in R3, makes it obvious that we
need a mathematical formulation of the notion of an “intrin-
sic surface” (more generally, what we need is precisely the
notion of a manifold).

This is a fine observation as far as it goes, but I don’t want
to conceal that there is a classical theorem in differential
topology, the Whitney embedding theorem, that seems to point
in the opposite direction. A map f : M — N is called an

embedding if f (M) C N is a submanifold and f : M S f (M)
is a diffeomorphism. Now, the Whitney embedding theorem
(see, for instance, [BJ], p. 71) says that every n-dimensional
manifold can be embedded in R***! and even that there
exists an embedding with closed image. Thus every manifold
is diffeomorphic to a closed submanifold of some RN Do we still
really need “abstract” manifolds?

Well, the embeddability of manifolds in RY is one of
several interesting properties of these objects, and is some-
times useful in proofs and constructions. But, as you know,
the mere existence of a thing doesn’'t mean that the thing
is within easy reach or given canonically. So we shouldn't
expect manifolds, as we encounter them in nature—as quo-
tient manifolds, for instance—to be carrying an embedding
into some RY in their luggage. If, in the deceptive hope
of convenience, we restricted our further development of

17
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differential-topological ideas to submanifolds of RV, then in
every application to a “natural manifold” we would have to
start by embedding it (which can be quite tedious in con-
crete cases), then keep the dependence of the concepts and
constructions on the choice of the embedding under control
(for there is usually no canonical embedding), and at the
end we wouldn't even be rewarded for all our efforts, since
submanifolds of R” are by no means easier to handle. After
all, how they lie in R” has to be described somehow by equa-
tions and conditions, and in the coordinates of the ambient
space the formulas—those for integration on manifolds, for
instance—actually become messier instead of simpler.

This is why, in the next chapter, we painstakingly develop
the key idea of the tangent space for arbitrary manifolds that
don't necessarily lie in any RN.

1.8 Test

(1) Is every n-dimensional chart simultaneously an m-
dimensional chart for all m > n?

O Yes.

O This is a matter of opinion, and depends on
whether or not you want to distinguish between
R™ and R" x {0} ¢ R™ in this context.

O No, because U’ isn'topen in R™ if U # #andm > n.

(2) Does the differentiable structure D on an n-dimensional
manifold (M, D) consist exactly of all the diffeomor-
phisms between open subsets U of M and open subsets
U’ of R"?

0O Yes.

O No, because the charts don't have to be diffeomor-
phisms (just homeomorphisms).

O No, because in general there are many more such
diffeomorphisms than elements of D.
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(3) Does every (nonempty) n-dimensional manifold have
a chart whose image U’ is all of R"?

O Yes, because by restricting an arbitrary chart you
can at least make its image an open ball, and ev-
eryone knows that an open ball is diffeomorphic
to R™.

O No. M := [3" = {x : ||x]| <1} ¢ R"is a counterex-
ample, because everyone knows that a subset of
an open ball is not homeomorphic to all of R”, let
alone diffeomorphic.

O No. It follows from the Heine-Borel theorem that
this fails for compact manifolds (§", for example).

(4) Does there exist a nonconstant differentiable function
on any (nonempty) n-dimensional manifold, n > 1?

O Yes, for example the component functions of any
chart.

O No. There is no nonconstant differentiable func-
tion S! — R, for instance (although there are non-
constant differentiable maps R — S!), because R
isn't “closed.”

O Yes. Choose a chart h: U — U’ and a nonconstant
differentiable function ¢ : U’ — R with compact
support, and set f (x) = ¢(h(x)) for x € U and zero
otherwise.

(5) Canthere exist a differentiable map f : S - R*, n > 1,
that is regular everywhere?

O No, because then f (§") would be open in R” by the
inverse function theorem. But f (§") is compact.

0O No, because every differentiable map S* — R" is
singular at both poles.

O No for n = 1, because then the extrema are singu-
lar. But for n > 2 the projection §” ¢ R**! — R” on

19
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the first n coordinates, for instance, has the desired
property.

(6) Which of the following three sketches could, in the eyes
of a sympathetic reader, represent a two-dimensional
submanifold of R3?

v 0 &

O acone O union oftwo O a Mdbius strip
coordinate planes

Figure 1.14.

(7) Figure 1.15 shows a map (x, y, z) — (x, y) from a two-
dimensional submanifold M C R3 to the plane. What
ranks occur? M

O Only rank 2.
O Only ranks 1 and 2. .
0O All three ranks 0, 1, and 2. Figure 1.15.

(8) Is there a surjective map f : R? — S! x §! that is regular
everywhere?

O No. Since S! x §! is compact and R? is not, the
inverse function theorem gives a contradiction.

O Yes. An example is f (x, y) := (e, e7).

O Yes, because for connected two-dimensional M
there’s always such a map f : R> — M. (Picture a
long wide brushstroke.)

(9) The following sketches show maps from a closed rect-
angle to R3. Which of them could define an embedding
of the interior of the rectangle?
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0 The ends O An end meets O Self-intersection
meet. the interior.
Figure 1.16.

(10) Must the quotient M/~ of a manifold be Hausdorftf if
every equivalence class consists of exactly two points?

O Yes. In fact, this holds whenever the equivalence
classes are finite.

O Yes, and it's crucial here that no 1-point class is
allowed. Otherwise, in {0, 1} x R identify (0, x) and
(1, x) for each x # 0; then (0, 0) and (1, 0) can't be
separated.

O No. For example, let M = §! ¢ C. Set 1 ~ i and
—1 ~ —i, and set z ~ Z otherwise.

1.9 Exercises

EXERCISE 1.1. Prove that every manifold has a countable atlas.

EXERCISE 1.2. Let Dy and D, be differentiable structures on
the same second-countable Hausdorff space M. Prove that
the identity on M is a diffeomorphism between D; and D, if
and only if D; = D,.

EXERCISE 1.3. State more precisely and prove: Every n-
dimensional real vector space is an n-dimensional differ-
entiable manifold in a canonical way.

EXERCISE 1.4. Let M be a differentiable manifold, dimM > 1,
and let p € M. Prove that M \ {p} is not compact.

21
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EXERCISE 1.5. Prove that S" x S¥ is diffeomorphic to a subman-
ifold of R"t**1  (Hint: First show that " x R and R"t1 \ {0}
are diffeomorphic.)

EXERCISE 1.6. Let M be an n-dimensional manifold and let X
and Y be two disjoint closed k-dimensional submanifolds of
M. Show that X U Y is also a submanifold of M. Why can'’t
you just omit the hypothesis that X and Y are closed?

EXERCISE 1.7. Let Q : R” — R be a nondegenerate quadratic
form on R". Show that the group

O(Q) :={AeGL(n,R) : Qo A=Q}
is a submanifold (of what dimension?) of GL(n, R).

EXERCISE 1.8. Show that every manifold is the sum of its path
components.

1.10 Hints for the Exercises

For EXERCISE 1.1. At least the topology of M has a countable
basis (2))ieN. Is every §2; contained in a chart domain for
some chart (U;, h;) of the differentiable structure D? If so,
would {(U;, k;) : i € N} be an atlas? This takes some thought.
The answer to the first question, for instance, is no in gen-
eral. Q; may be too “big” What can be done if it is?

For EXERCISE 1.2. This is an exercise in the definitions. No
ideas are needed here. You “only” have to prove both direc-
tions = and <= directly from the definitions.

FOR EXERCISE 1.3. Maybe you have no idea where to start with
“state more precisely” and are muttering that I should have
formulated the problem more precisely. The convenient phrase
“in a canonical way” says something meaningful only if it's
clear what way we're really talking about. An n-dimensional
real vector space is, in any case, not an n-dimensional man-
ifold according to the strict wording of the definition. That
much is clear. The exercise must be about endowing V in
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some obvious way with a topology (how?) and a differen-
tiable structure (how?) that turn V into a manifold. Of course,
I could give these data precisely and just leave you to prove
that the properties required by the definition of a manifold
are satisfied. But this would take away most of the content of
the exercise. The point is to practice giving a precise mean-
ing to the expression “in a canonical way” by yourself. Math-
ematics just can’t be done without it.

FOR EXERCISE 1.4. You can certainly give reasons why the ball
minus the origin, D" \ {0}, is not compact: the Heine-Borel
theorem tells us so, for instance, or we can see immediately
that the open cover by the sets Uy := {x : |x| > 1/k} has
no finite subcover, or you might refer to the fact that the
sequence (1/k)k=; 2... has no subsequence that converges in
D"\ {0}.

Can this situation be used somehow for the exercise, by
means of a chart around p? Well, yes, somehow. But be care-
ful: the assertion becomes false if we don't require M to be
Hausdorff. So the Hausdorff property has to play a role in
the proof!

FOR EXERCISE 1.5. Inherently, $"x S ¢ R"+! x Rk+! = Rr+k+2.
one dimension too many. As an intermediate step, it might
be a good idea to show that §" x R = R"*! \ {0}. This sug-
gests polar or spherical coordinates. But wouldn't this lead
to S" x Ry = R"*1\ {0}, thus giving the factor R, :={r e R:
r > 0} instead of R? And what use would §” x R = R"+1 \ {0}
be for the exercise itself?

FOR EXERCISE 1.6. The first part is a straightforward exercise
in the definitions. For the additional question, you have to
find a starting point by getting an intuitive idea of what's go-
ing on. With a bit of thought, you can find a counterexample
even for M = R and k = 0. Well, that does it! Of course, it
would be even better to prove that there are counterexam-
ples for every n-dimensional M # 0 and 0 <k <n —1.

23
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Figure 1.18.

Figure 1.19.

Figures 1.18 and 1.19 should give you some idea how to
proceed. The main problem, of course, is then the proof that
a given subset of M really isn't a submanifold.

FOR EXERCISE 1.7. Matrix groups such as O(Q) are important
examples of Lie groups. For

2 2 2 2

on R*, for instance, O(Q) is the Lorentz group. You probably
know from linear algebra (see Section 11.5 in [J:LiA], for
example) that given a quadratic form Q on R” there is a well-
defined symmetric n x n matrix C such that Q(x) = x- C - x.
That Q is nondegenerate means that C has rank n. If C is, in
this sense, the matrix of the quadratic form Q, what is the
matrix of Q o A? Now try to use the regular value theorem,
as we did earlier (in Section 1.5) for O(n).

FOR EXERCISE 1.8. If two points a, b € M are called equivalent,
a ~ b, when they can be joined by a continuous path « :
[0, 1] = M, then the equivalence classes are called the path
components of M. These path components are open (why?),
and there can be only countably many (why?). Let there
be k € N U {00} of them, and let’s think of them as being
numbered, or “counted,” M, ..., Mg or (Mj)ieN (if k = 00).
You should now show that the canonical bijection

k
[[Mi = M
i=1
(which bijection?) is a diffeomorphism. As far as content is
concerned, this is a routine verification, but carrying it out
will test whether your intuitive ideas about the sum can be
replaced by watertight arguments.



The Tangent
-~ Space

CHAPTER

2.1 Tangent Spaces in Euclidean Space

One of the basic ideas of differential calculus is to approx-
imate differentiable maps by linear maps so as to reduce
analytic (hard) problems to linear-algebraic (easy) problems
whenever possible. Recall that locally at x, the linear approxi-
mation ofa map f : R” — Rk is the differential df, : R" — R¥
of f at x. The differential is characterized by f(x + v) =
f(x) +df.- v+ o), where lim,_, ¢ ¢@)/|v|| = 0, and given
by the Jacobian matrix. But how can a differentiable map
f : M — N between manifolds be characterized locally at
p € M by a linear map?

Of course, we can always consider the differential
d(k o f o h™1), of the downstairs map. But this differen-
tial really does depend on the choice of charts—after all, it
approximates ko f o h™!, not f itself. If we want to define a
differential for f that is independent of charts, we have some
preliminary work to do: we have to begin by approximating
the manifolds M and N locally at p and f (p) “linearly, in
other words by vector spaces. Only then can we define the

K. Janich, Vector Analysis
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TpM

Figure 2.1. The tangent
space TyM

differential as a linear map

between these so-called tangent spaces. The purpose of the
present chapter is to introduce these tangent spaces.

To orient ourselves, we first consider the submanifolds
of Euclidean space RN. Here we have an obvious way of
defining the tangent space—by analogy with the classical
tangent plane to a surface in space:

Lemma and Definition. If M C RY is an n-dimensional
submanifold, p € M, and (U, h) is a chart on RN around p that
flattens M, then the vector subspace of RN defined by

T5™M := (dhp) ™ (R" x {0})

is independent of the choice of charts. It is called the (submani-
fold) tangent space of M at the point p.

sub
U M

M

h, | “flattener” around p
RN-n

R" = R" x {0}

Figure 2.2. The tangent space to a submanifold of R¥

PROOF. The transition map w between two flatteners (U, h)
and (V, h) around p has to take k(U N V) N (R” x {0}) onto
BU N V) N (R" x {0}), so its differential at h(p) maps
R” x {0} onto R" x {0}. The assertion follows because
(dhp)~1 = (dhp)~! o (dwh(p))~!. Hence TS*PM is well defined.

0
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Figure 2.3. The transition map between two flatteners

It may not be completely unnecessary to point out that
T;UbM C RN is therefore really a subspace of RY, and in par-
ticular contains the zero vector 0 € RN It's only by drawing
pictures that we tend to shift it, by translation to p, to the
place where our geometric intuition wants to see it. But we
mustn't forget that its vector space structure is then the one
that has the zero vector at the point p. This shouldn’t lead to
misunderstandings, though, any more than “attaching” the
velocity vector a(t) of a plane curve to the appropriate point

alt).

The special case M C RN will serve as our model for
the general case. Of course, it does give the impression at
first that the ambient RY is what really makes the construc-
tion of the tangent space possible! Where else could the
tangent spaces live? Nor is extending the definition to ar-
bitrary, “abstract, manifolds a trivial exercise. It involves a
certain grandiose way of creating new mathematical objects
for which earlier mathematics was, so to speak, too timid.

2.2 Three Versions of the Concept of a
Tangent Space

There are three apparently quite different but essentially
equivalent definitions of the concept of a tangent vector,

Figure 2.4.
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sub
TP M

\M

Figure 2.5. For every
tangent vector v € T;“bM
to a submanifold M ¢ RN
we can find a curve « in
M with «(0) = p and
a(0) =v.

which I call (a) the geometric, (b) the algebraic, and (c) the
“physical” definitions. We use all three. The order is irrele-
vant, and we begin with (a).

We start with the intuitive idea of a tangent vector v to
a submanifold of RN and ask ourselves how we can char-
acterize it without using the ambient space, so as to get a
generalizable version of the definition. Well, isn’t any such
v the velocity vector of a curve « that lies entirely in M,
and doesn't such an « contain enough information about v?
Actually, too much. Which curves «, 8 describe the same
v? How can we express the equality «(0) = ,B(O) without
using the ambient space RN? Through charts, for instance:
&(0) = B(0) € RV is equivalent to (hoa) (0) = (hoB)(0) € R,
where (U, h) is a chart on M (!) around p. This is enough mo-
tivation for the following definition:

Definition (a). Let M be an n-dimensional manifold, p € M.
Let K,(M) denote the set of differentiable curves in M that
pass through p at t = 0; more precisely,

Kp(M) = (o (—£,8) <> M : & > 0 and a(0) = p}.

Two such curves «, B € K,(M) will be called tangentially
equivalent, a ~ B, if

(hoa)'(0) = (ho B)(0) e R
for some (hence any) chart (U, h) around p. We call the equiv-

alence classes [a] € K,(M)/ ~ the (geometrically defined)
tangent vectors of M at p, and

TS M == Kp(M)/ ~
the (geometrically defined) tangent space to M at p.

In preparation for version (b) of the definition, we first
introduce the following terminology:

Definition. Let two real-valued functions, each defined and
differentiable in some neighborhood of a point p of M, be
called equivalent if they agree in a neighborhood of p. The
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equivalence classes are called the germs of differentiable
functions on M at p, and the set of these germs is denoted
by £,(M).

Figure 2.6. For f ~ g, f and g need not agree throughout their
common domain of definition: a small neighborhood of p suffices.

For convenience, we do not distinguish in our notation
between a function f : U — R at p and the germ f €
&p(M) it represents, and hope no misunderstandings arise.
A function f defined at p does contain more information
than its germ [f] at p, but the germ is good enough for all
those operations where we have to know a function only in
some neighborhood of p, however small.

It is clear that germs at p can be added and multiplied.
More precisely:

Note. The set £,(M) of germs of differentiable functions on
M at p is canonically not only a real vector space but also a
ring compatible with this vector space structure, and thus a real
algebra.

Now, the starting point for what we call the “algebraic”
version of the concept of tangent vectors is the fact that at a
given point p € R", a vector v € RN can also be characterized
by its directional derivative operator V, at p. To determine
V,f forv e Tf,“bM, all we have to know about f near p is
its values on the submanifold M, since V,f := (f o «a)*(0) for
every curve a with ¢(0) = p and @(0) = v, and we can choose
a to lie in M. This leads us to a characterization of v that is

29
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independent of the ambient space RN and can therefore be
generalized.

Definition (b). Let M be an n-dimensional manifold, p € M.
By an (algebraically defined) tangent vector to M at p, we
mean a derivation of the ring £,(M) of germs, that is, a linear
map

v:€ —R
that satisfies the product rule

v(f -g)=v(f)-gp+f(p)-v(g)

for all f, g € £,(M). We call the vector space of these deriva-
tions the (algebraically defined) tangent space to M at p

and denote it by T;lg(M).

Now for version (c). In the physics literature, calcula-
tions are generally carried out in coordinates, and usually
in a calculus (called the Ricci calculus in differential geom-
etry) in which the position of the indices (superscripts or
subscripts) is significant. What we call a tangent vector is
called a contravariant vector in the Ricci calculus. Briefly,
this is an n-tuple, denoted by (v!,...,v") or occasionally
@°, v1, v2, %), and abbreviated v#, that “transforms’ (as we
are told) according to the rule

i x|
axV¥
Here, as always in the Ricci calculus, we follow the “sum-
mation convention” and, within a term, sum over any index
that appears as both superscript and subscript. So we sum
here over v.
What does all this mean? In our language, the following:

Definition (c). Let M be an n-dimensional manifold, p € M.
Let Dp(M) := {(U,h) € D : p € U} denote the set of charts
around p. By a (“physically” defined) tangent vector v to M
at p, we mean a map

v:Dp(M) - R"
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with the property that for any two charts the associated vec-
tors in R” are mapped to each other by the differential of the
transition map; that is,

v(V, k) =d(ko h™ )y - v(U, )

for all (U, h), (V,k) € Dp(M). We call the vector space of
these maps v the (physically defined) tangent space to M

at p and denote it by TghysM .

%,

h=& 2/ \ k=G, ... . %)
@', ....v"
/ ~1 ~n
T (7NN 49 |
77 — L

Figure 2.7. Interpreting the transformation law 7# = 3;‘: v¥ for
“contravariant vectors”: ";f: Hp) is the Jacobian matrix of the
transition map ¥* = ¥*(x!,... ,x"), u=1,...,n.

By the way, I don’t mean to make fun of the Ricci
calculus. It's a very elegant calculus that guides the user
through explicit computations—virtually a machine-readable
calculus—and is constantly used in the physics literature
because there is still no better practical calculus for vector
and tensor analysis. But these advantages, which you'll learn
to value more highly on closer acquaintance, come at the
cost of some disadvantages. The elegance of a system of no-
tation is usually based on the suppression of “unimportant”
data, and different things.are important for the efficient
manipulation of formulas than for the logical explanation
of fundamental geometric concepts. So, for now, we have
to denote a “contravariant vector” not by a graceful and
economical v# but with the unwieldy precision of

v:Dp(M) - R", (U, h)— v(U,h).
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This is not intended as a recommendation for improvement
of the physicists’ everyday practice.

2.3 Equivalence of the Three Versions

We now want to convince ourselves that the three versions
of the concept of a tangent space are essentially the same.
The following lemma should not be seen as punishment
for our having willfully defined the same thing three times
over, but as a whole system of indispensable lemmas about
the tangent space, which are most clearly summarized in
this form.

Lemma. The canonical maps

geom
TP

M
y N

TR M

T35M
() P
described more fully below are mutually compatible bijections;
that is, the composition of any two is the inverse of the third.

PRECISE STATEMENT AND PROOF. We first give the three maps.

(1) Geometric —> algebraic. If [«a ] is a geometrically
defined tangent vector to M at p, then the map

f — (fox)(0)

is a derivation and therefore an algebraically defined tangent
vector. Of course, this takes a few little proofs. That the map
is independent of the choice of representative function for
the germ is clear and has been legitimately anticipated in
our notation. To check that (f o «)'(0) is independent of the
choice of representative a € K,(M), we use a chart (U, h)
around p. Without loss of generality, we may assume that
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f : U = R represents the germ and that « and B have the
same sufficiently small domain of definition (—e¢, €). Then
(hoa)'(0) = (h o B)'(0) by hypothesis; hence

(foh lohoa)(0)=(f oh™ ' ohopB)(0)

by the chain rule.

U
(—¢,¢€) iﬁ_; __f_. R

~
N
N
S
a

7

Figure 2.8. By the chain rule, tangentially equivalent curves define
the same derivation f +— (f o)’ (0).

Finally, the product rule for functions (—¢,¢) — R im-
plies that the map £,(M) — R, f +— (f o a)’(0), which we
now know is well defined for a given [« ], is really a deriva-
tion.

(2) Algebraic — physical. If v : £,(M) — R is a
derivation, then the map

D,(M) — R,
U ) — @), ..., vh)

is a physically defined tangent vector. If (U, h) and (V, k) are
charts around p and w := koh~! on h(UNV) is the transition
map, then we have to show that

7, Ow;

1

() v(ki) = ]; o, (0D v ).
Now, this is the only place in our study of the relationships
among the three definitions of the tangent space where we
really need a little trick.
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y N\
2(®d = [ o

Figure 2.9. Transition
map on an open ball Q
around 0

All we know about v is that it is a derivation. We should
therefore try to arrive somehow at a representation of the
form

n
ki = Zgij - hj,
j=1

so that we can also take advantage of the product rule. This
works, with the following lemma.

AUXILIARY LEMMA. Let 2 C R" be an open set that is star-shaped
with respect to the origin (an open ball around 0, for instance, or
R" itself). If f : Q — Ris a differentiable (i.e. C*°) function with
f(0) = 0, then there exist differentiable functions f; : Q@ — R
with

fE =) _x-fi(.
j=1

PROOF OF THE AUXILIARY LEMMA. Since
1 1

44 o

=| = ctxgdt = | D xj—(tx, . )t

f) o (. txn)dt / 2. i (tx) tx)dt
0 0 /=

we need only set

1
fi(x) = / —(?-f—(txl, ..., txy)dt. O

0x;
o j

APPLICATION OF THE AUXILIARY LEMMA. Without loss of gen-
erality, we may assume that h(p) = k(p) = 0 and h(U) is
an open ball around 0 so small that U is contained in V.
Then according to our lemma the n component functions
Wi, ..., wy of the transition map have the form

n
wi = ijwij ),
—

j
and since k = w o h it follows that
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n

ki=Y (wijoh)-hj,
j=1
as we hoped. If we now apply the derivation v to k, then
n n
v(ki) =Y _(wj o h)(p) - v(hj) = Y w;j(0) - v(hj)
j=1 j=1

w;

because h(p) = 0. But w;;(0) is just 3,

fied ().

(0), and we have veri-

(3) Physical —> geometric. If v : D, — R" is a physi-
cally defined tangent vector and (U, h) a chart around p, and if
a : (—&, &) = U is defined for sufficiently small ¢ > 0 by

a(t) := h~ Y (h(p) + tv(U, h)),

then [a] € TS"°™M is independent of the choice of chart. More
precisely, let B be the corresponding curve in terms of (V, k)
and w the transition map. If we use k to test the tangen-
tial equivalence of o and B, then (ko «)'(0) = (ko B)(0) is
equivalent to dwyp) (v(U, b)) = v(V, k). But this is just the
transformation law for the physically defined tangent vector
v, by definition.

We have now explicitly given the three maps described

as canonical in the lemma, and we denote them by &, &5,
and @3.

T}g)eom M

phys lg
Ty, M T,°M

)

It remains to show that any circuit around the diagram yields
the identity, or more precisely that

: 5
A L

(—&,€) —> /

Figure 2.10. Defining the
map TE™°M — T8°™M
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b30dbyod; = IdTgeomM’
d)z o q)] o (I)g = IdTghyqu
PiodPz0P; = IdelgM.

A geometric tangent vector [«], for instance, first becomes
the derivation f +— (f o«)’(0), and this becomes the physi-
cal vector v(U, h) = (hoa)'(0) we finally use to construct the
curve B(t) := h™1(h(p) + t(hoa)'(0)) that represents the geo-
metric tangent vector ®30®P,0P[]. Isit true that [8] = [«]?
Yes, because it is clear that (ho 8)'(0) is just (h o ) (0). The
other two formulas can be verified similarly, and with this
assurance we end the proof of the lemma. a

2.4 Definition of the Tangent Space

Now that it’s clear in what way Tf,eomM , T;lgM , and Tghy M
are actually the same object, how shall we define the tangent
space in general? Should I just say, “Let’s call it ToM"? A mys-
terious archetype, of which the three real versions are only
fleeting likenesses? Preferably not. Or shall we somehow
identify the three versions into a single T,M by taking equiv-
alence classes? A bit better, maybe, but what's the point?
Aren't three versions enough? Do we really have to come up
with a fourth?

The actual (and sensible) practice is to use all three ver-
sions simultaneously and indiscriminately but omit their la-
bels, with the tacit understanding that exactly which version
is being used at the time is either obvious or unimportant.
But to help you answer the legitimate question “What is a
tangent vector?” without being forced into lengthy expla-
nations to yourself or anyone else, we proceed a bit more
formally and make the following definition.

Definition. Let M be an n-dimensional manifold, p € M.
The vector space

TyM = Ty*M
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will be called the tangent space to M at p, and its elements
tangent vectors. We agree, though, that whenever necessary
we will also consider a derivation v € T,M as a geometrically
or physically defined tangent vector, as in Section 2.3, and
denote it by the same symbol if there is no risk of confusion.

Note. If M is an n-dimensional manifold, then the canonical
bijection T;IgM = TEhySM is linear, and for a fixed chart, the

map v — v(U, h) defines an isomorphism TghySM = R". Hence
the tangent spaces to M are also n-dimensional.

2.5 The Differential

I described the introduction of the tangent space as a pre-
liminary to defining the differential, the local linear approxi-
mation of a differentiable map between manifolds. Now the
preliminary work is finished and we turn to the differential.
Although I have no intention of presenting all future def-
initions regarding tangent spaces in triplicate, it should be
done one more time. Let f : M — N be a differentiable map,
p € M. Let'’s consider in turn the geometric, algebraic, and
physical versions of how f canonically induces a linear map
between the tangent spaces at p and f (p).

On geometric tangent vectors, f acts by curve transport:

(—e,€) ._‘3_., ‘ _f_, ‘

Figure 2.11. The curve @ € K,(M) is “transported” by f to the
curve f oa € Krpy(N).

You can easily check that the map

. geom geom
deeomf,  THEO"M  —  TEOTN,

[¢] +— [foda]
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is well defined.
What about algebraic tangent vectors? Precomposing by
f assigns germs at p to germs at f (p)

S, . R
7w U

Figure 2.12. The germ of g o f |f ~1(U) at p is assigned to the germ
ofp: U — R at f(p).

and thus defines an algebra homomorphism
f* 35f(p)(N) — (M),

¢ —> gof.
Precomposing by f* turns a derivation at p into a derivation
at f (p): the map

1 1
dalgfp:T;gM — T;(gP)N

v —> vof*

is well defined and obviously linear. Therefore d?!8f p acts as
a derivation on germs ¢ at f (p) by ¢ — v(p o f).

Finally, to describe the linear map

dPvef,  TEYOM —s TPUSN

canonically induced by f between the “physically” defined
tangent spaces, we must exhibit each

@PYf,@)(V, k) € RN,

To do this we choose a chart (U, h) around p with f(U) C V
and set

@PYSf,))(V, k) i=d(k o f o ™ pp(U, h),
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which just means that dPhYsf p is given, in terms of charts,
by the Jacobian matrix of the downstairs map. You can use
the chain rule to check that this is well defined.

hl ik

—_—
kofoh_1

ft
"axv"

— v

Figure 2.13. The differential in the Ricci calculus: the contravariant

af -
vector v¥ goes to afT Y.

Lemma and Definition. Let f : M — N be a differentiable
map between manifolds, p € M. The three maps

dgeomfp . T%eomM — TgeomN

fip %
1 . Ig Ig
dilsf, : TEM — T;EN,
sty - THM —  TPOSN

induced by f through curve transport, homomorphism of alge-
bras of germs, and (in terms of charts) the Jacobian matrix are
compatible with the canonical bijections between the geometric,
algebraic, and physical tangent spaces, respectively. Hence they
all define the same linear map

dfp . TPM e Tf(P)N,
which we call the differential of f at the point p.

Since the proof consists of arguments that are familiar
by now, I won't write it out. But this doesn’t mean that the
statement is obvious. It takes some experience to believe the
lemma from conviction rather than just on authority, and if
we were the first ones to be interested in it we would have
to look it over pretty carefully to see if the devil’s hiding
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somewhere in the details. What is clear in all three versions
is the functorial property of the differential, which we record
as the most important property so far of the newly defined
concept.

Note. The differential of the identity is the identity,
dldp = ldr,M,
and the chain rule holds; that is,
d(g o f)p =dgsp o dfp

for the composition M —f> M; £ M3 of differentiable maps.

This temporarily concludes our introduction to the basic
concepts of differential topology; we consider differential
forms in the next chapter. But in the next three sections of
the present chapter, we still have to discuss a few questions
of notation.

2.6 The Tangent Spaces to a Vector Space

Every n-dimensional real vector space V is canonically an n-
dimensional manifold; its topology and differentiable struc-
ture are characterized by the requirement that the isomor-
phisms V = R"” must also be diffeomorphisms. Of course, the
motive we gave for introducing tangent spaces is not valid in
this special case: a linear space doesn't have to be approxi-
mated linearly. So we can hardly be surprised that for every
p € V there is a canonical isomorphism

VST,V

The tangent vector this assigns to a vector v € V is given
geometrically, for example, by the curve

t— p+tu,

and hence algebraically by the derivation

d
Q> = O(p(p + tv).
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If we consider the elements v € V as tangent vectors in
this way, then the differential at p of a differentiable map
f : V. — W between finite-dimensional real vector spaces
becomes a linear map

dfpy: V— W,

and this is how we usually write it, in particular for V = R",
W = R*. The notation T,R" will be used only when clar-
ity demands it. So the differential, viewed as a linear map
dfp : R" — R, is just given by the Jacobian matrix Jr (p).

Of course, we often refer implicitly to T,R" and T,V,
since the special cases M = R" and M = V are also present in
any discussion of T,M for arbitrary M. We have no intention
of dismissing the tangent spaces of a vector space.

2.7 Velocity Vectors of Curves

For each value of the parameter t € (4, b), a differentiable
curve « : (a,b) — M has a velocity vector, which we de-
note by a(t) € TqryM. To be precise, a(t) is represented
geometrically by A — «(t + 1), algebraically by the deriva-
tion ¢ — (¢ o @)’(t), and as a physical tangent vector (in
local coordinates) by (U, h) — (h o a)"(t). The notation &(t)
actually comes from curves in R", where of course it stands
for

&(t) = (a1 (8), ..., ay(t)) e R™.

But no notational clashes occur because the isomorphism
R" = Ty)R" takes this ordinary a(t) € R"” to our newly
defined a(t) € TonR".

SE®
y |
interval (a, b) M

Figure 2.14. The concept of the velocity vector a(t) € To(nyM
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Observe that instead of [« ] € TgeomM we may (and will)
write @(0), and that the description of the differential by
means of curve transport gives

dfay(@(t)) = (f ca)'(1),

where « denotesacurvein M and f : M — N adifferentiable
map.

2.8 Another Look at the Ricci Calculus

A chart (U, h) introduces coordinates on the chart domain
U. These are just the component functions hy, ..., h, of the
chart map h = (hy,..., h,). Each individual coordinate is
thus a real function h; : U — R, and a point p € U has coor-
dinates (h1(p), ..., hx(p)). For each p € U the chart also dis-
tinguishes a basis of T,M, namely the one that corresponds
to the canonical basis (e, ..., e;,) of R” under the map

TghysM _5_) R",
v — v(U,h).

I would like to introduce notation for this basis and, in doing
so, pick up where I left off in Section 2.2 and say a bit more
about the Ricci calculus.

Its unmatched elegance for computations with geometric
objects in local coordinates has already been praised. With
a minimum of arbitrary notation (admittedly with a lot of
indices), it describes all the local objects and procedures of
vector and tensor analysis in such a way that one can in-
sert numbers at any time and start computing. Moreover,
the notation always automatically indicates behavior un-
der transformations—for the expert, the geometric nature
of things. The calculus thinks for the user. But if we want
to enjoy these benefits, we have to put up with some un-
pleasantness. Let's start with the rather harmless rituals for
entering this temple.

We set down the notation U for the chart domain at the
entrance. It's obvious, says the Ricci calculus, that a coor-
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dinate system has a certain domain of validity, so let's not
waste letters. Next we are asked to raise the indices of the
coordinates, to write them as

h=(h, ..., ™.

We do it none too willingly because superscripts usually
denote exponents, but this goes best with the index conven-
tions of the calculus, where superscripts can’t be avoided
anyway. So we do it. But now the letter h is also discarded as
arbitrary and uninformative. The coordinates will be written

1 n
X oo, X,

so they can be immediately recognized as coordinates. If we
ever have to deal with another coordinate system, we can
mark its coordinates somehow to distinguish them, say by
writing them as

~1 -
X ,...,x,

and if a second manifold enters the picture, then coordinates

1 k

YooY,
etc., will also be allowed. But the first choice of names for
coordinates is still x!,...,x". In this interpretation—if we

also secretly use the forbidden letters U and h to make things
clear—the coordinates become functions x* : U — R, so
that h = (x!, ..., x") holds. This clash is not unintended by
the calculus, just as when, in older textbooks on differential
calculus, a real function is written as

y =yX),
which has the advantage (and disadvantage) that then the
function doesn’t need (or have) a name of its own. But in
any case this is a double meaning of x* as both a function
on U C M and a coordinate of R", and we have to keep it in
mind, especially because we now fix the following notation.

Notation. Let p € U, where (U, h) is a chart with coordinates
xl, . ..,x" ie. h = (x},...,x"). Then the uth vector of the
basis of T,M given by the coordinates will be denoted by

n
U x R

1h=(x1,...,x")

[ Jver

Figure 2.15. The coor-
dinates x* in the Ricci
calculus
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UcM

Figure 2.17. The vector
field 9, on U

0
-a—J—d—L'GTpM

and abbreviated 9, € TpM.

xV-curve through pon U C M

Q>

##— x*-curve through pon U C M

k| 11
| x#-curve through h(p) in R"

]

Figure 2.16. Coordinate basis (31, ... , 3,) of TyM

To prevent misunderstandings: d,,, as a physical tangent vec-
tor in TEhySM , just assigns the uth unit vector e, € R" to our
chart (U, h); as a geometric tangent vector 3, € Ty "M, it is
represented by means of the curve t h=1(h(p)+ tey) (9, is

the velocity vector of the uth coordinate curve); and finally,
as a derivation, d,, acts by

3(p o b1
o — 22N G0y,

dxH

and thus as the uth partial derivative of the downstairs func-
tion. And this is just what the Ricci notation d,¢, despite its
superb terseness, suggests unambiguously. What possible
meaning could applying 9/9x* to a function ¢ defined on a
manifold have, other than first expressing the function in the
coordinates x!, ..., x", i.e. taking ¢ o h™!, then differentiating
with respect to the uth coordinate?

You may object that the notation contains no information
about p. How can you tell 3, € TyM from 3, € T,M? Well, if
we wanted to indicate which tangent space we were in at the
moment, we would have to resort to an additional label, say
dulp- But this is hardly ever necessary.We often have no fixed
p in mind at all, but rather the assignment to every p € U of
its 3, € TpM, and for this vector field on U the notation 9, or
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a/0x* fits perfectly. The tangent vector
vHo, = V1o + - 4+ 0",

corresponds to the “contravariant vector” written in the Ricci
calculus as v*, and the context will have to tell whether a
fixed p € U is being considered and v#9, € TyM is meant,
or, as occurs more often, the ¢!, ..., v" are real functions on
U, and v*9, denotes a vector field on U.

2.9 Test
(1) For the two “poles” p := (0,0,1) and q := (0,0, —1) of
the 2-sphere $? ¢ R3, it is obvious that
TSS? = T3"Ps? = R? x {0} C R,

Is it also true that Tlg,eoms2 = Tgeomsz, and similarly for
“alg” and “phys"?

O Yes, because canonically T;“bM = T8, etc.

O No. For all three versions, T,MNT,M = @if p # gq.

O Yes for TPhYS no for the other two versions, because
in those cases T,M N T;M = {0} if p # q.

(2) Do two functions f and g defined at 0 in R" define
the same germ in &(R") if they have the same partial
derivatives of every degree at 0?

O No. (Hint: e~1/%"))

O Yes, by Taylor’s formula for functions of several
variables.

O Yes. Otherwise we would get a contradiction to the
mean value theorem.

(3) Let My C M be a submanifold, p € My, and letv € T,M
be a derivation such that yf = 0 for all f € £,(M) that
vanish on M. Then
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0 veTpMy CTM.
O v=0.
O veTpM\ T,Mp.
(4) For differentiable maps f between manifolds, we have
O rkdf, = 1k ,f , always.
O rkdf, > rk,f, and > can occur.
O rkdf, <1k,f, and < can occur.
(5) Let f : M — N be constant. Then df , =

O f(p). O 0. O IdTpM-

(6) Let f : V — W be a linear map between finite-
dimensional real vector spaces V and W. Then df , =

o f. O 0. o f-f(.

(7) Let V be a finite-dimensional real vector space and let
f :V — V be a translation. Then df, =

o f. g o. O Idy.

(8) Let M be a differentiable manifold and let X, Y, and
Z be finite-dimensional vector spaces. Also let (-, ) :
X x Y — Z denote some bilinear operation. Then for
differentiable maps f : M — Xand g : M — Y we have,
at every point p € M,

O d(f,g) = (df,g) + (f, dg).
O d{f, g) = (df. g) — (f, dg).
O d(f, g) = (df, dg).

(9) Let a differentiable map f : M — N be described in
local coordinates x” for N and x* for M by

fo = xv(xl, v ,x"),

in the sense of the Ricci calculus. Then the matrix of
the differential is given by
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O 9ux". O 8#xv. O dyxt.

(10) Under what additional hypothesesonamapf : M — N
can arbitrary vector fields be transported canonically
from one manifold to another by the differentials df,
or their inverses?

O It's always possible from M to N, but it's possible in
the opposite direction only if f is a covering map.

O Even from M to N, it’s possible only if f is a diffeo-
morphism.

O It's possible in both directions as long as f is an
embedding.

2.10 Exercises

EXERCISE 2.1. Let M be an n-dimensional manifold, p € M.
Show that the composition of the canonical maps

TIM — TO™°M — TS™M — T5M

is the identity on T;‘gM :

EXERCISE 2.2. Let f : M — N be a differentiable map, p € M.
Prove that the diagram

Tgeom M deeomf P Tgeom N
p f

l l

g d%ef, Ig
Tp°M > TrpN

is commutative.

EXERCISE 2.3. Let f : M — R be a differentiable function,
p € M. Taking the gradient relative to charts gives a map

D,(M) — R7,
(U,h) +—  grad,,(f oh™1).
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Call it grad,f . Is it an element of T‘;hySM?

EXERCISE 2.4. Let My C M be a submanifold, p € My. Canoni-
cally, namely through the differential of the inclusion My —
M, we regard T,My as a subspace of T,M. Show that if My is
the preimage of a regular value of amap f : M — N, then

TyMo = ker df.

2.11 Hints for the Exercises

FOR EXERCISE 2.1. Although the three maps are canonical and
therefore independent of charts, a chart (U, h) does come
up as a tool in describing TghysM — T5°°™M. So the proof
should start like this: Let (U, h) be a chart around p and

let v e Tf,lgM be a derivation. Then the derivation v/ :=
d, (P3(d,(v))) is given by /¢ = ... —and the first part of
the exercise will just consist in computing this from the
definitions of the ®;, which you know.

For the second part, the proof that v'¢ = v¢, you might
start by justifying why you may assume without loss of gen-
erality that ¢(p) = 0 and h(p) = 0 (note that v(const) = 0 for
any derivation). Then apply the auxiliary lemma from the
proof in Section 2.3.

FOR EXERCISE 2.2. All you have to do is compare the fates of
a geometric tangent vector (‘Let [a] € T%eomM ... ") along
the two paths to the lower right-hand corner. This is easier
than Exercise 2.1.

FOR EXERCISE 2.3. It's certainly true that grad,f is sometimes
a vector, for instance when f = 0. In general? Proof or coun-
terexample? But who can doubt that the gradient is a tangent
vector? Or is it?

For EXERCISE 2.4. In proving that two vector spaces are equal,
if you have some prior knowledge of the dimensions you can
often get by with proving just one of the two inclusions.



Differential
- Forms

CHAPTER

3.1 Alternating k-Forms

Differential forms live on manifolds, and in preparation for
the definition we need some linear algebra in a real vector
space that we will later specialize to T,M.

Definition. Let V be a real vector space. An alternating
k-form w on V is a map

w:Vx--.xV—R
N e’
k
that is multilinear (i.e. linear in each of the k variables)
and has the additional property that w(vy,...,vx) = 0 if
v1, ...,V € V are linearly dependent.

Notation. The vector space of alternating k-forms on V will
be denoted by Alt‘V.

Clearly it is a real vector space in a canonical way. Strictly
speaking, the wording of the definition assumes that k > 1,
but we can extend it appropriately to k = 0.

Convention. Alt°V := R.

K. Janich, Vector Analysis
© Springer Science+Business Media New York 2001
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Thus the alternating O-forms are the real numbers.
Alt'V = Hom(V,R) =: V* is the usual dual space of V.
For k = 1 the “alternating” property is trivial since linearity
gives it immediately: w(0) = 0. But for k > 2, to be alter-
nating means something special, and a few criteria will be
useful.

Lemma. For multilinear maps w : V. x --- x V. — W, the
following conditions are equivalent:

(1) o is alternating; that is, w(v1,...,vx) = 0 if vy, ..., v are
linearly dependent.

(2) w1, ...,v) = 0if any two of the v; are equal, that is, if
there are indices i, j with i # j and v; = v;.

(3) Interchanging two of the variables switches the sign:
@i, ..., ) = —0W1, ..., Vj, ..., Vi ..., V) fori < j.
(4) If t : {1,...,k} = (1,..., k} is a permutation, then
wVr(1), -+ -» V) = SgN(T)w(V1, ..., k).

PrOOF. The implications (1) = (2) < (3) < (4) are trivial. (2)
= (1) is also immediate: if v1, ..., v are linearly dependent,
then one of the vectors is a linear combination of the others,
so w(vy, ..., vx) becomes a sum whose k — 1 summands all
vanish because of (2). For (2) = (3), observe that (2) implies
not only that

o, ..., Vi+Vj,...,Vi+Vj,..., ) =0

but also that, of the four summands linearity gives on the
left-hand side, only two remain. This gives

a)(vl,...,v,-,...,v]-,...,vk)+w(v1,...,vj,‘.‘,vi,...,vk)=O
and hence (3). o

A linear map f : V — W induces a linear map AltFf -
AltfW — Alt‘V in the “opposite direction”; thus Altk is a
contravariant functor (see, for example, [J: Top], pp. 69 and
66) from the category of real vector spaces and linear maps
to itself. We now state this in detail.
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w lives here

Figure 3.1. Defining Alt‘f

Definition and Note. If f : V — W is linear, then the linear
map

AlFf - AltfW — AltfY
is defined by ((Alt*f) (@)1, ..., ) == o(f@1), ..., f @)

and by the convention Alt’f = Idg. We have 1d — 1d and the
contravariant chain rule:

AltFldy = 1d 4y  and

Altf(g o f) = AltFf o Altkg

for linear maps V N wix

A great many functors are used in mathematics, and in
case of doubt applying the notation for each functor (here
Alt%) to the corresponding morphisms makes things nice
and clear. But not all cases are doubtful, and in practice one
makes do, for hundreds of functors, with two ways of writing
the morphisms corresponding to a given f, namely f, in the
covariant and f* in the contravariant case. This is not only
convenient but also informative, so when there is no risk of
confusion we adopt this convention here.

Notation and terminology. Instead of Alt‘f we just write
f*, and call f*w the k-form induced by f from w.

3.2 The Components of an Alternating
k-Form

We must also know how to compute with alternating k-forms
in terms of a basis, since later we will sometimes have to
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consider differential forms on manifolds in local coordinates.
If a basis of V is chosen, then an alternating k-form, like any
multilinear form, can be characterized by the numbers it
assigns to (k-tuples of) basis vectors.

Terminology. If (e, ..., e,) is a basis of V and w an alternat-
ing k-form on V, then the numbers

Auyopg = @0(Cuys -y €,

for 1 < u; < n, are called the components of w with respect
to the basis.

Because w is alternating, the components are of course
“skew symmetric” in their indices; that is,
A yettegy = ST Ap; gy

Hence it suffices to know ay,, ,, for u; < --- < ui. But there
are no further relations among the components: the a,, . 4,
can be prescribed arbitrarily for u; < --- < ux. The next
lemma makes this precise.

Lemma. If (ey, ..., e,) is a basis of V, then the map
Aty — R,
w > ((euy, s e )< <px
is an isomorphism.

PROOF. The map is clearly linear. Because w is multilinear,
we always have

M1 Mk — 12 W o 4
w (Z Vyeurs - Zv(k)e#k> = Z V) V@ @urs - - ey)-
K1 H By bk

If w(ey,, .., ey) =0for u; <--- < py, then the same holds
for all other w1, ..., uk since w is alternating. Hence the map
AltFV — R® is injective.

But the map is also surjective. To show this, let

e RK

(all-l---#k)u1<---<uk
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be arbitrarily prescribed. For arbitrary indices, we define

0 if two of the indices agree,

a
Hrk sgn(T)ay, 1)..urqy OtheTwise,

where each 7 : {1,...,k} = {(1,..., k} is the permutation that

orders the indices by magnitude: u.1) < -+ < k). Then
the desired alternating k-form is given by

o, ..., V) = Z U(l) . (k)aln Mk
where of course v(].), R 1./?]-) denote the components of v; €
V with respect to (e, ..., €n). 0

Corollary. If dim V = n, then dim Alt'V = (}).

For k = 0 this agrees with the convention Alt°V := R,
and for k = 1 it is the well-known fact that dim V* = dim V.
But the dimension of Alt""1V is also n, so the alternating
(n — 1)-forms, the 1-forms, and the elements (“vectors”) of
V itself are all represented in computations in coordinates
by n-tuples of real numbers. Despite this, they should not
be confused with each other, because each of the n-tuples
behaves differently in passing from one basis to another.
Vectors, 1-forms, and alternating (n — 1)-forms are just not
canonically the same, and when you use isomorphisms

V VAT,

which because of the equality of dimensions is of course
possible and sometimes useful, you have to keep in mind
that such isomorphisms are not given canonically but rather
chosen. (An isomorphism ¢ : V = V* corresponds to the
choice of a nondegenerate bilinear form g on V x V, namely
p(v)(w) = B(v,w); an isomorphism V = Alt""!V corre-
sponds to the choice of abasis element in Alt"V. See Exercise
3.1)
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3.3 Alternating n-Forms and the
Determinant

Of particular interest for integration theory on manifolds are
the alternating n-forms, where n = dim V. What we know
about them so far is that dim Alt"V = 1. We can also write
this as follows:

Corollary. If (e, ..., e,) is a basis of V and a € R, then there
is exactly one alternating n-form w on V such that
w(ey, ..., ey) = a.
When (ey, ..., ¢,) is the standard basis of R" and a = 1,

this is the determinant det : M(n x n,R) — R, viewed as a
multilinear form on the column vectors, as you know from
linear algebra. The determinant is the only map from the
space of n x n matrices over K into K that is multilinear and
alternating on the columns and assigns the value 1 € K to the
identity matrix. For arbitrary endomorphisms f : V — V|,
we have the following result.

Lemma. If V is an n-dimensional real vector space and f :
V — Vis linear, then Alt"f : Alt"V — Alt"V is multiplication
by det f € R.

PrOOF. Note that since Alt"V = 1 the statement could also
serve as a coordinate-free definition of detf. But we al-
ready know det f according to the usual definition det f :=
det(¢p™! o f o) for some (hence every) ¢ : R" = V:

f

V — V

;T«z ;Tw
R —24, R
Thus det f = detA, and the lemma has content and needs a
proof.
The following diagram is commutative by the chain rule

for the functor Alt™:
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1 n
Aty & Ay
Alt"(plg Alt"wlé
AlRr AA AR
Therefore Alt"f and Alt"A are given by multiplication by
one and the same real number. To determine it we apply
Alt"A to the element det € Alt"R", and for the canonical
basis (e, ..., e,) of R” we obtain
((Alt"A)(det)) (e, ..., e,) = det(Aey, ..., Aey)
=detA
=det A - det(ey, ..., en).

Thus det A = det f is the desired factor. |

Finally, let me point out explicitly that n+1 vectors in an
n-dimensional vector space V are always linearly dependent.
Hence any alternating k-form on V must vanish for k > n,
and this is confirmed by the dimension formula Alt*V = (}).
Note. Alt‘V = 0 for k > dim V.
3.4 Differential Forms
Now let's climb from the flatlands of linear algebra to the
rolling hills of manifolds!
Definition. A differential form of degree k, or simply a k- M

form, on a manifold M is a correspondence w that assigns
to every p € M an alternating k-form w, € AltkTpM on the
tangent space at p.

A differential form assigns an w, to each p € M, and w,
in turn assigns a number to each k-tuple of vectors in T,M.
That's a lot of assigning! To aid our intuition, let’s think of the
many w,'s not as busily assigning but as quietly sitting there
waiting. Only when called on by vectors will they respond
with a number.

Lo

TpM : wp lives here

Figure 3.2. A k-form w
on M: the assignment
pr> wp € AltkTpM.
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U

Wiy
% o o

h| 4

-1
w1 © B

Figure 3.3. Component
functions live “upstairs.”

We denote the component functions of a k-form w on M
relative to a chart (U, h) by

Opyopy = 00uy, .., 0, U— R,

and of course we call a k-form continuous, differentiable,
etc. if its component functions relative to the charts of some
(hence every) atlas in the differentiable structure on M are
continuous, differentiable, etc.

Keep firmly in mind that according to our interpretation
(given in detail in Section 2.8) of 9, = 9/0x* as the canonical
basis vector fields of the chart, the component functions
Wy, .., are really defined “upstairs” on U C M. Of course, we
can also use h to “pull them down,” but then they become
@uy..py © Kl

Two more remarks on terminology. First, the word “alter-
nating” has somehow worn off in differential calculus, and
one speaks simply of differential forms or k-forms w on M.
But the individual w, : TyM x --- x T,M — R are always un-
derstood to be alternating, and of course the definition above
says so. Second, for the present we don’t want to restrict
our attention exclusively to differentiable k-forms because we
begin by dealing only with the integration of k-forms on k-
dimensional manifolds, and in this situation differentiability
would be an unnecessarily strong demand to make on w. So
for the time being we have to add the word “differentiable”
whenever we mean it. Later, though, the differentiable dif-
ferential forms will again be the central objects of interest,
and we introduce the usual notation now.

Notation. The vector space of differentiable k-forms on M is
denoted by QM.

Since Alt’T,M = R, we have Q°M = C*®(M), the ring of
differentiable functions on M, or at any rate this is how we
intend the differentiability of 0-forms to be understood. A
O0-form w : M — R is just its own (and its only) component
function; it has k = 0 indices, so none at all.
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A differentiable map f : M — N canonically induces a
linear map from QXN to Q¥M, which we write, again using
the standard notation, as

f*: QN - Q*M.

To be precise, f*w is defined for w € QKN and vy, ..., % €
T,M by

F*@)p@1. ... i) = wpp(dfpvrs ., df pri)

—in what other obvious way could w € QN respond through
f to vectors vy, ...,vx € TpM? The correspondence f* =:
Qkf . QKN — QKM is thus given “pointwise” (i.e. for each
p € M) by Alt*(df).

But since the differential and Alt* are both functorial
(“Id + Id and the chain rule”), we also have the following
result.

Note. Q¥ canonically gives a contravariant functor from the
differential category to the linear category. In other words, if f* :
QKN — QKM denotes the linear map induced by a differentiable
function f : M — N, then (Idy)* = Idgk, and (g o f)* =
f* o g*

3.5 One-Forms

The differentiable 1-forms, the w € Q! M, are also called Pfaf-
fian forms. The differentials of differentiable functions are
a particular kind of Pfaffian forms (“exact Pfaffian forms").

Definition. Let f : M — R be a differentiable function.
Then the differentiable 1-form df € Q'M given by p
df € Alt! T,M is called the differential of f .

The differential df, at the single point p € M would
actually be a linear map df, : T,M — Ty »R, but of course
we are referring to the canonical isomorphism R = Ty ;)R
(see Section 2.6) and thinking of df , as an element of the dual
space T;M of TpM. In this sense,we also have df ,(v) = v(f)
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TpM

@gf

@ 2
&,

Figure 3.4. (dx!, ..., dx")

is dual to (9y,...
everywhere on U.

» On)

for v € T,M, because for instance df ,(@(0)) = (f o)"(0) € R
(see Section 2.7). So in local coordinates, i.e. relative to a
chart (U, h), the n component functions of df are just

df Op) =0uf, wu=1,...,n

Exercise 2.3 already dealt with the fact that the n-tuple
(31f, ..., 8nf) does not define a tangent vector D,M — R".
Now we see what is, from our present viewpoint, the “true”
meaning of partial derivatives with respect to coordinates:
They are the components of the differential df , which thus
assumes the role of the gradient on manifolds.

In particular, for a chart h = (x!,...,x") on U, we can
take the differentials dx* € Q! U of the coordinate functions x*
themselves. Their components dx*(d,), v=1,...,n, are

1 ifu=v,

dx*(3,) = 9,x" = 8H =
> (0) v Y {O if uw #v.

Lemma. At each point p € U, the basis of T;M dual to
31, ..., 0,) is (dx},,...,dx;',), where dx', ..., dx" € QU are
the differentials of the coordinate functions x* : U — R of a
chart.

Corollary. If (U, h) is a chart on M, where h = (x},...,x™),
and w is a 1-form, then

w|U = Z wydxt .
u=1

Here w,, : U — R are the component functions wy, = w(dy). In
particular, for differentiable functions we have

n af
df = Zl a?dx”
‘L:

on the chart domain U.

PROOF. We test equality at each point p € U by inserting the
basis vectors 3, v = 1, ..., n, on both sides: wp(3,) = wy(p)
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by the definition of w,, and
n n
> wu(p)dxy () = Y wu (P8t = wy(p).
v=1 pu=1
Hence the two 1-forms are equal on U. O

* This local description of 1-forms as w = Y/ _; w,dx*,
and in particular of differentials as df = ZZ:] uf - dxH,
is the key to computing with these forms in coordinates. It
is used quite often for local concepts and proofs. But such
a description is possible for more than just 1-forms. Once
the exterior product or wedge product has been introduced, a
k-form will be expressible relative to a chart as

— K A L. Kk
w= E Wy g dxH A A dx
< <Mk

in terms of component functions and differentials of the
coordinates, and local computations with k-forms will reduce
to computations with familiar functions.

3.6 Test

(1) Let f;, g : V — R be linear maps. Then the map
Vx-..-xV— Rgivenby (v1,...,v)
O i) fiw) +a1@1) - ... - gvp)
O fiw) + -+ fiv) + a1 (1) + -+ + gwi)
O (i) + g1 @) - ... (frwi) + @)
is multilinear.

(2) Let f : Vx.-- x V — R be a multilinear map. Which
of the following conditions are sufficient for f to be
alternating?

O f(vi,...,vx) = 0assoon as v; = vy for some i.

O There existsan e : S, — {—1, +1}, not the constant
+1,suchthat f (vr1), ..., Vo) = () f (1, ..., k).

Of@,...,v) =0forallveV.
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(3) Let Altf(V, W) denote the vector space of alternating
k-linear maps from V x --- x Vto W. IfdimV = n and
dim W = m, then dim Alt"(V, W) =

a ™M). 0 m+(})- O m(}).

(4) Does the cross product of vectors in R3 define an ele-
ment of the space Alt?(R3, R3)?

O Yes, because the cross product is bilinear and skew
symmetric.

O No, because the cross product is skew symmetric
but not alternating.

O No, because the cross product is linear, not bilinear.

(5) Let V be an n-dimensional vector space, k > 0, w an al-
ternating k-formon V,andv; = ij:l a;jv;. For what val-
ues of kdo we have w(@, ..., V) =deta-w(v, ..., v)?

O only for k = n.
O onlyfork=1and k= n.
O for all k.

(6) Let M be a nonempty manifold with dimM = n > 0
and 0 < k < n. Then dim QM =

O oo 0 G O k(k—1)/2.

(7) Let f : M — S! C C be a differentiable function. We
can always write f = ¢, but in general the function
@ will not be continuous, let alone differentiable. Lo-
cally, however, 6 is well defined as a differentiable real-
valued function up to addition of an integer multiple
of 2. Hence sin@, cos8 € Q°M and df € QM are
well defined. Moreover, as a complex-valued function,
f also has a complex-valued differential df € Q!(M, C).
We have

O df = e,
O df = —sinfdb +icosb db.
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O df = if do.

(8) Let M £ P and 1 < k < n = dimM. Can there exist a
map f : M — M with the property that f*w = —w for
all v € QkM?

O Yes, for instance with M = R”, f(x) := —x, and k
odd.

O Yes, for instance with M = §" f the antipodal
map, and k arbitrary.

O No, never.

(9) Let = : R?\ {0} — S! be radial projection and n a 1-
form on S'. We consider the tangent vector v := () €

R? = TP(R2 \ {0}) at the point p € R?\ {0}, and similarly
w = ((r)) € R? = T,,(R?\ {0)) at the point rp for r > 0.
Which of the following is true?
a m*n(w) = 7¥n().
O m*n(w) = rr*n).
Q rr*nw) = 7*n@).
(10) Now let 7 be the radial projection of R3\ {0} onto $? and

¢ : 8% < R3\ {0} the inclusion map. Let n € Q3(R3\ {0}))
and w € Q%52. Then

O #a**n=n. O n**n=0. 0 *7*w = w.

3.7 Exercises
EXERCISE 3.1. Let V be an n-dimensional vector space and let
w € Alt"V be nonzero. Show that the map

V — Alt™1lv,
vV — Ul w,

where (v w)(vy,...,Up-1) = w(V,v1,...,Us_1), i5 an iso-
morphism.
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EXERCISE 3.2. Let (e, ..., e,) be an orthonormal basis in the
Euclidean vector space (V,(-,-)), and let w be the alter-
nating n-form on V with w(ej,...,e;) = 1. Compute the
“density” |w(v,...,v,)| from the “first fundamental form”
(guv)u,v=l,...,n, where Suv = (Uu: vy).

EXERCISE 3.3. Determine the transformation formula for -
forms in the Ricci calculus. More precisely, for charts (U, h)
and (U, h), write the coordinates as

h=(!,...,x") and
F:(xT,...,xﬁ),

and write the component functions of w € Q*M with re-
spect to the coordinates accordingly. How can the wg, ..z, be
computed from the w4, ?

EXERCISE 3.4. If V' C R? is the closed ray with initial point
0 and angle « to the positive x-axis, the angle function

¢ RE\ VI — (@ — 27, @)

of the polar coordinates is a well-defined differentiable func-
tion. Let its differential be denoted by w, := dg,. Then
any two differentials w, and wg agree on R? \ (VF U VE )
(why?), so the w,'s unambiguously define a Pfaffian form
w € QI(R?\ {0}). This is a popular model for certain phe-
nomena. Prove that there is no differentiable function f :
R2\ {0} — R such that w = df .

3.8 Hints for the Exercises

FOR EXERCISE 3.1. I suggest reading and saying the expression
v 1w as “vin o because this will remind us of the meaning
of the symbol _:v_w=w(,...). Since V and Alt""'V are
often identified—not to say confused—it's useful to clarify
in your own mind what role is played by the choice of an
n-form w. Incidentally, even for a given w the map can't
quite be called canonical, because v could equally well be
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inserted as the last variable in @ and this would change the
sign of the map by (—1)"~!. But from now on we'll stick with
the definition given in this exercise. Considered technically,
the exercise is straightforward, and 1 don't know what other
hints I could give.

For EXERCISE 3.2. The formula you are asked to find and
prove here plays an important role in integration in local
coordinates on “Riemannian” manifolds, in particular on
submanifolds of R". Instead of a fixed vector space V, one
then deals with tangent spaces to a chart domain, and the
vi,...,U, are the 0y, ..., 0.

In principle, these functions g,, : U — R are easy to
compute. But to integrate in this situation, one needs the
function |w(d1,...,9,)| : U — R,. (Of course, part of the
solution to Exercise 3.2 is that |w| is independent of the
choice of orthonormal basis, but this is also easy to show
directly: isometric transformations take orthonormal bases
to orthonormal bases and always have determinant 1 ... .)

This is the deeper meaning of the problem! Superficially,
it's a useful exercise in working with n-forms; matrices, scalar
products, how n-forms behave under a change of coordi-
nates, etc. A practical hint: First figure out the relationship
between the matrix G := (g,) and the matrix A = (a,,) that
describes the expansion of the v, in terms of the orthonor-
mal basis ey, ..., ey, i.e. the one satisfying v, =: Y |_; au.e,.

FOR EXERCISE 3.3. As you see, the intersection of two chart do-
mains is already denoted here without loss of generality by
U; otherwise we would have had to consider UNV. I probably
don’t have to argue that the question about the transforma-
tion formula for the components of a k-form is meaningful
and legitimate. But in addition to this useful information, the
exercise also gives you the opportunity to learn some really
elegant notation from the Ricci calculus’s bag of tricks. You
just have to be able to read it! You can see, of course, that
the notation wy,, ., ‘= @(@y,, ..., d,) for the components of
a k-form says nothing about the coordinates being used—in
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complete accord with the Ricci philosophy that the coordi-
nates themselves aren’t given individual names. And how
awkward any other approach would be! But now, what if a
second coordinate system has to be considered? Answer: Put
bars over--the indices! This doesn't just create new names
for indices (as it would be read without a more detailed
explanation), it also means that the quantities with barred
indices refer to the second coordinate system. Just try using
this notation. It works great!

For EXERCISE 3.4. You also know the “argument” function
Po :Rz\Vj — (a — 21, o)

from complex function theory; for « = =z, for instance, it’s
the imaginary part of the principal branch of the logarithm.
Not directly, but in spirit, our exercise is related to the fact
that although d(Inz)/dz = 1/z is defined on all of C \ {0}, it
has no antiderivative there.

The problem isn’t hard. What could be said about f — ¢x
(for example) if there did exist such an f? And would that
be possible?

Thus a Pfaffian form can be locally a differential every-
where without having to be one globally. This is a mathemat-
ically important phenomenon (“de Rham cohomology”), and
the example given in the exercise may be the simplest one
there is: no wonder it's used so often. You should know it. In
physics, it plays a role in interpreting the Aharonov-Bohm
effect.
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CHAPTER

4.1 Introduction

As you know, the direction of integration matters when you
integrate a function of a real variable:

b a
/f(x)dx:—/f(x)dx.
a b

The dx senses, so to speak, when the direction of integra-
tion is reversed: the differences Ax;y = xx,1 — x¢ in the Rie-
mann sums Y f (xx) Ax; are positive or negative according
to whether the partition points are increasing or decreasing.
The same thing happens with line integrals

ff(x, y,z)dx + g(x, y,z)dy + h(x, y, z) dz,
Y

where y is a curve in R3, and with contour integrals fy f(2)dz
in complex function theory. They are invariant under all
reparametrizations of the curve that do not change the di-
rection in which the curve is traced. But if the curve is traced
backwards, the sign of the integral is reversed.

K. Janich, Vector Analysis
© Springer Science+Business Media New York 2001
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[

ol ¢

Figure 4.1. The two
orientations of a two-
dimensional real vector
space

Figure 4.2. On the “trans-
parent” two-dimensional
clock, is it 9:00 or 3:00?

I don’t mean to say that this response to a change of direc-
tion is necessarily a property of every meaningful version
of integration. For example, the arc length fy ds of a curve
should be independent of the direction in which the curve
is traced, and in fact the so-called line element

ds = \/dxz + dy? + dz2

(not a 1-form!) doesn't sense a reversal of direction. But we
usually deal with integrals that are sensitive to direction,
and for the setup of vector analysis it is necessary, for this
and other reasons, to generalize the concept of a directed
interval to that of an oriented manifold. As a preliminary step
we need the linear-algebraic version, namely the concept of
an oriented n-dimensional real vector space.

In order to get a first intuitive idea of orientation, we
consider the dimensions n = 1, 2, and 3, which are directly
accessible to our intuition. To “orient” a one-dimensional
vector space means to choose a direction in the space, and it
is intuitively clear that this is possible in exactly two different
ways. To orient a two-dimensional real vector space V, we
must define one of the two senses of rotation in V to be posi-
tive. Of course, as long as an exact mathematical definition
isn’t required, everyone has a perfectly good intuitive idea
what a “sense of rotation” is, and a fair number of people
will at least have heard that the “mathematically positive”
sense of rotation is counterclockwise. So it may not be com-
pletely unnecessary to point out that in a two-dimensional
vector space V there is no well-defined “clockwise sense”
The mathematically positive sense of rotation can't be spec-
ified unless V already is oriented.

Finally, in a three-dimensional real vector space, the pur-
pose of an orientation is to distinguish a “screw sense,” or to
determine what “right-handedness” should mean. This ex-
pression refers to the familiar right-hand rule, which says that
a basis (v, v2, v3) is called “right-handed” if the three vectors
in this order correspond to the directions of the thumb, index
finger, and middle finger of a right hand. It takes a certain
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effort to free oneself from the illusion that the right-hand
rule actually orients all three-dimensional vector spaces. But
once we start to think about it, we soon realize that we can
intuitively compare the position of three vectors in a three-
dimensional vector space V with our right hand only after
mapping V onto the real physical space that surrounds us,
and whether (v1, v3, v3) turns out to be right-handed or left-
handed depends on how we do that: in a mirror, a right hand
looks like a left.

4.2 The Two Orientations of an
n-Dimensional Real Vector Space

But how can orientation be understood precisely as a math-
ematical concept? There are several equivalent possibilities.
Our approach is based on taking as definition a version that
can't immediately be pictured but is easy to work with. First
we assume that dimV > 0.

Definition. Two bases (vq, ..., v,) and (wy, ..., w,) of a real
vector space V are said to have the same orientation, written

(Ul,..-,Un)~(W1,--.,Wn),

if one basis is mapped to the other by a transformation with
positive determinant, that is, if det f > 0 holds for the auto-
morphism f : V — V with f (v;) = w;.

Note and Definition. The property of having the same ori-

entation is clearly an equivalence relation on the set B(V) of .

bases of V, and it has exactly two equivalence classes. These
equivalence classes are called the two orientations of V: An
oriented vector space is a pair (V, 0) consisting of a finite-
dimensional real vector space V and one of its two orienta-
tions.

Up to now we have assumed that V is positive-dimen-
sional. If we were to take the definition literally for zero-
dimensional spaces, they would be canonically oriented,
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since {0} has only the empty basis and hence only one
equivalence class of bases with the same orientation. But
introducing another “orientation” for the zero-dimensional
spaces, opposite to this canonical one, turns out to be a use-
ful convention.

Convention. Let the numbers +1 be the two orientations
of a zero-dimensional real vector space.

Associated with the notion of orientation are some almost
self-explanatory terminology and notation. For example, if
(V, 0) is a (positive-dimensional) oriented vector space, the
bases (vy, ..., v,) € © are called positively oriented and the
others negatively oriented. Of course, the usual orientation
of R” means the one in which the canonical basis (e, . . ., e;)
is positively oriented.

The orientation, like other additional structures, is usu-
ally suppressed in the notation. An isomorphism f : V=W
between positive-dimensional oriented vector spaces is
called orientation-preserving if it takes some (hence ev-
ery) positively oriented basis of V to a positively oriented
basis of W. In the zero-dimensional case, we naturally call
the (unique) map orientation-preserving only if the two
orientations are the same (both +1 or both —1).

The following topological characterization of the orienta-
tions of a real vector space is noteworthy and often useful.

Lemma. If V is an n-dimensional real vector space, n > 1,
then the two orientations of V are the two path components of
B(V) CV x.--xV, the space of bases of V.

PROOF. Suppose that two bases By = (v1,...,v,) and By =
(w1, ..., wy) have different orientations but can be joined by
a continuous path t — B; in B(V). We denote by f; : V — V
the isomorphism that takes By to B;. Then the continuous
function t + det f; is positive (namely 1) at the left endpoint
t = 0 of the interval and, by hypothesis, negative at the
right endpoint. By the intermediate value theorem it must
therefore have a zero, which contradicts the hypothesis that
all the f; are isomorphisms.
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Thus bases with different orientations at least lie in differ-
ent path components of 8(V). It remains to show that bases
By and B; with the same orientation can always be connected
by a path in B(V). We may assume without loss of generality
that V = R" and B; is the standard basis (e, ..., e,). We now
apply the Gram-Schmidt orthonormalization process to By.
This takes By to an orthonormal basis in 2n—1 steps: normal-
ize a vector/take the next vector orthogonal (to the vectors
already constructed)/normalize/take the next one orthogo-
nal/normalize/etc. So far this is just a jump from one basis
to another, but simply connecting each pair of way stations
by a straight line gives us a continuous zigzag path in B(V)
from By to an orthonormal basis.

AeGLY(n, R)

The Gram-Schmidt

orthonormalization
SO(m) process
rotation
SO(n ~ 1)

Figure 4.3. Proving the path-connectedness of an orientation

We are left with the problem of how to get from this basis
to the standard one along a path in B(V). But we can do
this along a path that even stays in the space of orthonormal
bases. First, by a rotation, we get to an orthonormal basis
with first vector e;. From there, by a rotation in ell, we reach
an orthonormal basis whose first two vectors are e; and e,

etc. After n — 1 steps our continuous path has brought us

to an orthonormal basis (ej, ..., e,—1, wy), and if there are
any difficulties at all they should occur now, because in the
one-dimensional space {ey, ..., e,_;}* there is no room left

to rotate. But now there is no need to rotate, since all three
bases have the same orientation:

(elv""en) ~ (U11-~-7Un) ~ (ely---sen—lvwn)s
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the first two by hypothesis and the last because of the path
we constructed. So of the two remaining possibilities w, =
+e,, only w, = e, is possible, and the proof is done. O

4.3 Oriented Manifolds

We orient a manifold by orienting each of its tangent
spaces—not in just any way, but in such a way that these
orientations get along with each other and don't suddenly
“switch” What does this mean? To formulate it precisely, we
introduce the following terminology.

Definition. Let M be an n-dimensional manifold. A family
{0p}pem of orientations 0, of its tangent spaces is called
locally coherent if around every point of M there is an
orientation-preserving chart, i.e. a chart (U, h) with the
property that for every u € U the differential

dh, : T,M — R"
takes the orientation 0, to the usual orientation of R".

The simple phrase “locally constant relative to charts”
would also have been a reasonable description of this local
coherence. In any case, we can now formulate our definition.

Definition. An orientation of a manifold M is a locally co-
herent family {0,}pem of orientations of its tangent spaces.
An oriented manifold is a pair (M, 0) consisting of a mani-
fold M and an orientation o of M.

Of course, only for special reasons do we actually denote
an oriented manifold by (M, 0) rather than simply M.

Definition. A diffeomorphism f : M =, M between ori-
ented manifolds is called orientation-preserving (vesp.
orientation-reversing) if for every p € M the differen-

tial df, : TM > Tf(p)IVI is orientation-preserving (resp.
orientation-reversing).
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The usual orientation of R” as a vector space makes it into
an oriented manifold because canonically R" = T,R". It is
clear that all open (hence full-dimensional) submanifolds of
an oriented manifold are also automatically oriented, and
in this sense the charts we called “orientation-preserving”
at the beginning of this section really are the orientation-

preserving charts h : U S U’ in the sense of the last defini-
tion. We make one more observation.

Note. A chart is orientation-preserving if and only if the basis
(31, ...,0n) is positively oriented at every point of the chart
domain.

The best training in visualizing the orientation of mani-
folds is given by the two-dimensional manifolds, the surfaces.
In intuitive terms, an orientation provides every point of the
surface with a sense of rotation, which just indicates which
bases for the tangent spaces are positively oriented.

But our intuition about surfaces also immediately reveals
a phenomenon that is not immediately obvious in the tech-
nical sense, namely the existence of nonorientable mani-
folds. (See Figure 4.4.) Local coherence, which forbids sud-
den switches in orientation, is precisely what “obviously”
gives contradictory orientation data at the initial point, after
a single circuit of the core circle of the Mobius strip. Actually
carrying out this argument would of course require that we
first define the Mobius strip, not just sketch it, then apply
Exercise 4.4, which says that a continuous frame field keeps
its orientation along a curve in an oriented manifold.

4.4 Construction of Orientations

It is both intuitively and technically clear that for every
orientation of a vector space or a manifold there is also an
opposite orientation. We introduce notation for it.

Continuation without
switching leads to. ..

...an unavoidable clash.

Figure 4.4. The Mdbius
strip, a nonorientable
two-dimensional mani-
fold
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Note and Notation. If 0 is an orientation of a vector space,
let —o denote the other of the two orientations. If © =
{0p}pem is an orientation of a manifold M, then so is

=0 = {~0p}pem

(the opposite orientation of M). If the orientation is sup-
pressed in the notation, so that M denotes an oriented man-
ifold, we write —M for the oppositely oriented manifold.

It is also clear that the sum M; + M; of two oriented
n-dimensional manifolds is canonically oriented, simply by
{0p}peM+M,- If both summands are nonempty, such a sum
thus has at least four different orientations, which in the no-
tation just introduced give rise to the four oriented manifolds
+M; £ M;.

The product M; x M, of two oriented manifolds, like their
sum, is canonically oriented, but you have to be careful in
taking quotients; see Exercise 8.4. Submanifolds of oriented
manifolds may not be orientable, as the Mébius strip in R3
makes clear. But we do have the following result.

Lemma. Let ¢ be a regular value of a differentiable map f :
M — N. If M is orientable, then so is the submanifold My =
fleoycMm

PROOF. Let orientations for the manifold M and the vector
space T;N be chosen. As we know (see Exercise 2.4), T,Mo
is the kernel of

dfp : TyM — T:N.

We therefore consider the following linear-algebraic situa-
tion: let

0—>V0—1)V1£)V2—->0

be a “short exact sequence” of linear maps of finite-dimen-
sional real vector spaces. In other words, ¢ is injective, 7 is
surjective, and ker r = im¢, as in the case

d
0 — TyMo <> TM 25 TN = 0.
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Let orientations for Vy, Vi, V3 be called compatible if the fol-

lowing holds: If v1, ..., vx is a positively oriented basis of Vj
and t(v1), ..., t(vy) is extended to a positively oriented basis
of V| by adjoining wy, ..., wy_, then m(w1), ..., m(w,—x) is a

positively oriented basis of V;. In this sense, for the orien-
tations of any two of the spaces Vy, Vp, V; there is exactly
one compatible orientation of the third. You can easily con-
vince yourself of this linear-algebraic fact by recalling that
for square matrices A and B, every block matrix of the form

("5)

has determinant detA - det B. Now if we orient each T,Mp
compatibly with the orientations of TpM and TN, we obtain
a locally coherent family of orientations, hence an orienta-
tion of Mp. 0

Manifolds can also be oriented by using atlases. To do
this, we make a definition.

Definition. An atlas 2 of a differentiable manifold is called
an orienting atlas if all its transition maps w are orientation-
preserving, that is, if their Jacobians det ], (x) are positive
everywhere.

If M is already oriented, the orientation-preserving charts
obviously form a maximal orienting atlas. There is a con-
verse.

Note. If  is an orienting atlas of a differentiable manifold M,
then there is exactly one orientation of M relative to which all
the charts in A are orientation-preserving.

In view of this, we could just as well have defined an
orientation as a maximal orienting atlas, and this version of
the definition is often preferred because it makes no use of
tangent spaces.
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4.5 Test
(1) Letn>1.Whendo (vy,...,v,) and (—vy, ..., —v,) have
the same orientation?
0O Always.
0O For even n.

O Never.

(2) How many path components does the orthogonal group
O(n) have for n > 3?

O One, and this can be shown by using rotations as
in the proof of the lemma in Section 4.2.

O Two, namely SO(n) and O(n) \ SO(n).
0O One if n is odd, two if n is even.

(3) Let dimV = n and 0 < k < n. The map Alt{(~Idy) :
Alt*V — AltfV induced by —1dy : V — V is orientation-
reversing if and only if the following number is odd:

0 k o (3 a k(})-
(4) For diffeomorphisms f : M 5 N between oriented

manifolds, the set of x in M for which df; preserves
orientation is

O open in M, but in general not closed in M.
O closed in M, but in general not open in M.

O open and closed in M.

(5) Let M be an oriented manifold. Is a diffeomorphism f :
M — M that is not orientation-preserving necessarily
orientation-reversing?

O Yes, because this is already true for isomorphisms
between oriented vector spaces.

O Yes if M is connected, but otherwise not in general.
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O No, not even for connected M in general, because
df , can reverse orientation for some p and preserve
it for others.

(6) Let M and N be oriented manifolds with dimensions
n and k, respectively. Then interchanging the vari-
ables defines an orientation-preserving diffeomorphism
between N x M and

O M x N.
O (-1)"*M x N.
O (-=1)"**M x N.

(7) Can a product M x N of two connected nonempty
nonorientable manifolds be orientable?

O Yes. For example, M x M is always orientable.

0 A product M x N of nonempty manifolds is ori-
entable if and only if one of the factors is orientable.

O A product M x N of nonempty manifolds is ori-
entable if and only if both the factors are orientable.

(8) Let M — M be a covering of n-dimensional manifolds.
(This notion hasn’t been explained, but it comes up
again in Exercise 5.4 and a reference is given there. So
you may either ignore this question for now or look
ahead at the reference.)

O If Mis orientable, then so is M, but the converse is
not necessarily true.

O If M is orientable, then so is 1\7, but the converse is
not necessarily true.

O The covering manifold M is orientable if and only
if the base manifold M is orientable.

(9) Is every codimension-one submanifold My of an ori-
entable manifold M orientable?

O Yes, because then Mj is the preimage of a regular
value of a function f : M — R.
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O Yes, because submanifolds of orientable manifolds
are always orientable.

O No. The real projective plane RP?, as a submanifold
of real projective space RP?, is a counterexample.

(10) Let My C M be a submanifold of codimension > 2 and
let M \ My be oriented. Is M necessarily orientable?

O Yes. The charts (U, h) on M that are orientation-

preserving on U \ My form an orienting atlas on
M.

O No. A counterexample is {p} C RP2.
O No. A counterexample is RP? ¢ RP*.

4.6 Exercises

EXERCISE 4.1. Let V be a real vector space with dimension
n>1, and let (v1,...,Vn-1,Vy) and (vy, ..., Up_1, V,) be two
bases that differ only in their last vector. For 0 <t < 1, we
now set v}, := (1 — t)v, + tv),. Show that (v, ...,v,-1, 7)) isa
basis for every t € [0, 1] if and only if (v1, ..., vy—1,v,) and
(v1, ..., Un—1, V,) have the same orientation.

EXERCISE 4.2. Show that a connected manifold has at most
two orientations.

EXERCISE 4.3. Let M be a nonorientable n-dimensional man-
ifold and let w € Q2"M. Show that w, = 0 for some p € M.

EXERCISE 4.4. Let y : [0, 1] — M be a continuous curve in an
oriented n-dimensional manifold and let

v:[0,11 > | BT,M)
peEM

be a continuous frame field along y, that is, a continuous
(relative to charts) correspondence that assigns a basis v(t) =
1(®), ..., vn(®) of T,yM to each t € [0,1] . Show that if
v(0) is positively oriented, so is each v(t) for t > 0. As an
application of this lemma, prove that the projective plane
RP? is not orientable.
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4.7 Hints for the Exercises

FOR EXERCISE 4.1. It would be a good idea to consider the

determinant of the endomorphism that takes (v1,...,v,) to
(v1, ..., vp-1, V). Of course, this endomorphism can be writ-
ten (for instance) as a matrix with respect to (v1, ..., vy).

For EXERCISE 4.2. The standard connectedness argument
should be applied here. If this is unfamiliar to you, may I
recommend [J:Top.], the bottom of p. 14 and the top of p. 15?
You should also observe that a transition map is orientation-
preserving if and only if its Jacobian is positive.

FOR EXERCISE 4.3. As we know (see Section 3.3), an automor-
phism f, : T,M - T,M acts on wp by multiplication by its
determinant, so w, responds with values of the same sign
to two bases of T,M if and only if the bases have the same
orientation. So how could you try to use an w € Q"M with
wp # 0 for all p € M (hypothesis for an indirect proof) to ori-
ent M, contradicting the hypothesis of nonorientability? It's
pretty easy to come up with this. The work of formulating
it precisely lies in proving that the family of orientations of
the tangent spaces defined in this way is locally coherent.

FOR EXERCISE 4.4.

vn(1)

Figure 4.5.

The proof of the lemma about the continuous frame field
along y is, after Exercises 4.2 and 4.3, the third variation on
the theme “the orientation can’t suddenly switch” The real
problem is the application to the orientability of the pro-
jective plane. Problems are often more transparent, in fact
not infrequently easier to solve, if one generalizes them a
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bit. Here, for instance, it’s useful to consider in what circum-
stances a quotient M/t of a (path-connected) manifold under
a fixed-point-free involution may be orientable and when it
may not. (See Section 1.6.) All that remains to be proved in
the concrete example is that the antipodal involution on §?
is orientation-reversing. What about other dimensions?
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Manifolds

CHAPTER

5.1 What Are the Right Integrands?

Integration over n-dimensional manifolds reduces through
charts to integration in R”. The objects integrated on ori-
ented manifolds are n-forms, for the following reason. For
an ordinary function f : M — R, the contribution of a chart
domain U to the integral would clearly depend on the choice
of chart h. But for an n-form, the integral of its component
function pulled down by an orientation-preserving chart is
independent of the coordinates, as we see from the change-
of-variables formula for multiple integrals in R". This is the
main content of Chapter 5. Section 5.4 contains the technical
details and Section 5.3 a summary of necessary background.
In the first two sections we give an intuitive view of integra-
tion on manifolds.

Densities are natural candidates for the role of the inte-
grand. Imagine a substance finely distributed throughout the
manifold. Integrating the density of the distribution ought
to give the total mass of the substance. What kind of mathe-
matical object describes the density?

K. Janich, Vector Analysis

© Springer Science+Business Media New York 2001

Figure 5.1. The integral of
the downstairs function
over the image of the
chart domain obviously
depends on the choice of
chart.
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V)

0 vl

Figure 5.2. Span

To approach this question we consider its infinitesimal,
or linear-algebraic, version. Let V be an n-dimensional vector
space (later T,M), with a substance uniformly distributed
throughout it. If we were dealing with R”, we could describe
the density by the number measuring the amount of the
substance in the unit cube [0, 1]”. But in T,M or V, instead
of a distinguished unit cube we have only »#-spans with equal
rights.

Definition. Let v1, ..., vy be elements of an n-dimensional
real vector space V. Then

k
span(vy, ..., V) 1= [Z)\.,‘vi :0< A < 1}
=1
is called the parallelepiped spanned by wv,..., v, their
k-span, or just their span. The word “span” is generally used
for the set of linear combinations of v; with unrestricted ;.
In that sense the v; span an entire subspace of V. But we
will use “span” as a noun only to mean a parallelepiped, and
in context our usage should cause no confusion.

Without choosing a basis, we can describe the density,
for example, by the map p : V x --- x V — R that measures
the amount of the substance contained in.the span of any
n vectors. What maps can arise in this way? In the attempt
to formulate the notion of density mathematically, positive
homogeneity and shear invariance are surely not too much to
require.

Definition. Let V be an n-dimensional real vector space.
We callamap p : V" = Vx ... x V - R a density
on V if it is positive-homogeneous and shear invariant,
ie if (1) pvr,..., AV, ..., vp) = |Alp(v1,...,vs) and (2)
pW1, ..., Vic1, Vi + Vj, Vit1, ..., Un) = PpV1,...,VUn) for all
vi,....vn €V, AR andi #j.
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Figure 5.3a. Positive homogeneity =~ Figure 5.3b. Shear invariance

So far, such a density on V looks almost the same as an
alternating n-form on V. The only difference is that transpos-
ing two vectors has no effect on the density (which depends
only on the span) but reverses the sign of an n-form. The
next lemma makes this more precise.

Lemma. Let V be an n-dimensional vector space. If we choose
an orientation o for V and change everymap p : Vx---xV — R
to po by defining

—p(1, ... ) if(v1,...,Vn) is negatively oriented,

po = _
o1, ...,v,) otherwise,

then p is a density if and only if po is an alternating n-form.

PROOF. “«=" is trivial. To prove “= let p be a density. Then
(1) and (2) give

3) pvr, ..., vi+ w,...,vp) = p(v1,...,v,) if wis a lin-
ear combination of the variables vy, ..., vi—1, Vit1, .- . » Un,
and

(4) p is invariant under transposition of any two variables,
hence under any permutation of the variables.

It also follows from (3) and (1) that p vanishes whenever
V1, ..., Uy are linearly dependent.

Now let (ej, ..., e,) be a positively oriented basis of V
and let o € Alt"V be the well-defined alternating n-form
satisfying

w(ey,...,ey) = p(er,...,en).

We show by induction on k that

WW1s ooy Vky €ty -5 €n) = POV, -« oy Uky €kgls - - -5 €n)
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fork =0, ..., n Forthe induction step from k to k+1, assume
without loss of generality that (vy, ..., Uky1, €42y .- - €n) iS
linearly independent. We may assume by (3) thatvy, ..., vk
are in the linear hull Vi) of ey, ..., 41 and by (4) that
Vk+1 ¢ Vi. Using (3) again, we see that vy, ..., v are ele-
ments of Vi, and hence by dimension count that they span
Vk. Another application of (3) therefore allows us to assume
without loss of generality that vy = Aexy1. In view of (1),
this completes the induction step. a

Thus the space of densities on V, which we may as well
call Dens(V), is, like Alt"V, a one-dimensional vector space.
But there is no canonical isomorphism Dens(V) = Alt"(V)
until one of the two orientations of V has been chosen.

We now make a definition analogous to that of n-forms
on manifolds.

Definition. A density on an n-dimensional manifold is a
correspondence p that assigns to every p € M a density

pp € Dens(Tp,M)
in the tangent space at p.

A density p on M is of course called continuous, differen-
tiable, and so on if it is continuous or differentiable relative
to charts, that is, if each p(d, ..., d,) has the property. Be-
cause of its close affinity to "M, we could denote the space
of differentiable densities on M by Q4¢nsM. -

On oriented manifolds there is only a formal distinction
between densities and n-forms, and the lemma above gives
us a canonical bijection between Q4¢"SM and Q"M. But pass-
ing to the opposite orientation reverses the sign of this bijec-
tion, so there seems to be an essential difference between
densities and n-forms on nonorientable manifolds—and in-
deed there is.

Thus densities look like obvious integrands. Although n-
forms do the same thing on oriented manifolds—and now
we can see that this is why n-forms have something to do
with integration—densities lead to a well-defined notion of
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integrals on nonorientable manifolds as well. But forms are
preferred despite this, largely because they are also avail-
able as k-forms for k < n. Stokes’s theorem, for instance,
is a theorem about (n — 1)-forms. Although k-densities can
also be defined suitably so as to give integral theorems on
nonorientable manifolds, the concept of forms would still be
needed for the definition. (In a different language, let L - M
denote the line bundle over the orientation double covering
whose sections are what the physicists call pseudoscalars.
Then densities are L-valued n-forms, and more generally k-
densities would have to be interpreted as L-valued k-forms.)

5.2 The Idea behind the Integration
Process

Although we could pursue the following reflections just as
well for a density on an unoriented manifold, we stick to
forms in view of what we intend to do later. So let M be an
oriented n-dimensional manifold and w a form on M. Each
wp € Alt"T,M responds to oriented spans in TyM, and we
now try to understand whether and to what extent w gives us
a “response” |, @ to the whole manifold. To do this, we con-

sider an orientation-preserving chart h: U — U’ C R" on
M and, in the image U’ of the chart domain U, a rectangular
parallelepiped, or box, B’ = [a!, b'] x - - x [a", b"]) C U’. Sub-
dividing the intervals [a’, b'] determines a fine grid of many
subboxes whose union is the large box B'. We call the preim-
ages under the chart h the cells of the grid. To fix notation,
we write o, for the cell with the “lower left vertex” p; this is
the preimage of the subbox

n

[ 1%}, =, + Axi)

=1

of the grid covering B/, where x},, cees x;’, denote the coordi-
nates of the lattice point p € B. Of course it should be true
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Figure 5.4. “Cells”
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SPCTPM

Figure 5.5. Approximat-
ing cells by tangential
spans

that

o 5]

B pelattice op

so next we try to understand whether and how w responds
to the individual cells.

If we want to follow the usual procedure of infinitesimal
calculus, we should approximate the little cells linearly. We
can do this by comparing each o, with the tangential span
sp in T,M obtained as the preimage under dh, (the linear
approximation of the chart) of the subbox corresponding
to o,. Since the unit vectors of R” just correspond under
the differential of the chart to the coordinate basis vectors
d1,...,3, of the tangent space, the Ax), - 3, are the edge
vectors of the span. Thus

sp = span(Ax, - 3, ..., Ax} - 3).

Now the alternating n-form w, on T,M gives us a well-
defined response

wp(AX, - 31, ...y AXp - 30) = wp(B1, ..., Bp) Ay - ... - DX,
and of course it seems natural to think of
Z @p(d1, ..., In)Axy - ... - AX)
pelattice

as an approximating sum for f; w and to think of the integral
as the limit of such sums as the grid covering B becomes
finer and finer. Our statement at the beginning of this chap-
ter about the reduction of integration over n-dimensional
manifolds to integration in R” translates into the formula

fw: ‘/(wlmnoh‘l)dxl ... dx",
BI

B

which we can now understand geometrically.
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Thus small cells are approximated by oriented tangential
spans, and of course w has a response ready for them—
to a first approximation,  responds to the oriented cells
themselves. If we imagine the whole manifold as divided into
small cells, then the integral is the sum of the responses to
the cells, and we can trust that the result will be independent
of the choice of charts used in the process because of our
interpretation of the n-form as a density.

This picture of n-forms and the integral f,, @ will turn
out to be useful, especially for an intuitive understanding
of the Cartan, or exterior, derivative and Stokes's theorem
that f,,dw = f;,, ». But this doesn’t mean that approximat-
ing cells by spans is technically the best path to follow for
the actual introduction of the integral. In fact, we assume
that integration theory in R” is known and exploit it for in-
tegration on manifolds, rather than developing integration
on manifolds analogously from scratch. The results we need
from integration theory are listed in the next section.

5.3 Lebesgue Background Package

For the first time in quite a while, I'm putting additional
demands on your background knowledge—this time by as-
suming some familiarity with the Lebesgue integral in R".
But I'm packaging the following background for you so I can
say what [ mean a bit more precisely.

The Lebesgue-measurable subsets of R" form a o-
algebra 9 on which the Lebesgue measure 1 : M — [0, o0]
is defined, thus turning R” into a measure space (R", M, w).
As in any measure space, the functions R" — R that are in-
tegrable with respect to u then form a vector space £} (R”, u)
on which the integral is given as a linear map, which we
denote simply by

LYR", p) — R,
f +— f f (x)dx.
RYX
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The map
‘C'l (Rn’ H’) - R+’

fo— /If(x)ldx —y
Rﬂ

is a seminorm on £!, and [f|; = 0 if and only if f vanishes
almost everywhere, i.e. except on a set of measure zero.
Taking the quotient of £1(R", 1) by the vector subspace of
functions that vanish almost everywhere gives a normed
vector space, which we denote by L} (R", ), whose elements
are the equivalence classes of integral functions under the
relation of being equal almost everywhere.

Of course, much could be said about the properties of this
Lebesgue integral: little lemmas and big theorems. I want at
least to remind you of three wonderful convergence theo-
rems, which incidentally hold for the Lebesgue integral on
arbitrary measure spaces. These are the norm convergence
theorem, the monotone convergence theorem, and the dom-
inated convergence theorem (also called the Lebesgue con-
vergence theorvem).

These three convergence theorems all deal with when
a sequence of integrable functions converges to an inte-
grable function and when a limit and an integral can be
interchanged. By the norm convergence theorem, I mean the
statement that L' (R”, 1) is complete and hence a Banach
space. The second theorem says that boundedness of the
sequence of integrals fp. fxdx under monotone pointwise
convergence fi /' f implies the desired convergence state-
ment. The third theorem guarantees that under arbitrary
pointwise convergence f; — f, the existence of a dominat-
ing function g € £! (one for which |fi(x)| < g(x) for all k and
x) implies that f € £! and [ f dx = lim [ fidx.

In addition to these three general convergence theorems,
I want to remind you of two important theorems that per-
tain to R” in particular, namely Fubini’s theorem and the
change-of-variables formula. As you know, Fubini’s theo-
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rem reduces integration on R” inductively to integration on
R (“iterated integrals”). I won't write down the exact wording
of the theorem now. But the change-of-variables formula is
crucial to integration on manifolds and should be cited in
complete detail. First some terminology and notation.

Our discussion up to now has been about integrals on all
of R". But this includes the case of a subset & C R” as region
of integration, in the following way: If Q is contained in the
domain of definition of f, we define fq : R — R by

f (%) for x € Q,
0 otherwise,

falx) = {

no matter whether or how f was previously defined outside
Q. If fq is in LY(R", u), we say that f is integrable on Q
(keep in mind that this is with respect to Lebesgue measure

Un), and we write
/f(x)dx = /fg(x)dx.
Q Rn

Theorem (Change-of-variables formula). Let Q@ C R" be
open and f : Q — R integrable on Q; let Q C R" be an-

other open subset and ¢ : a3 0 a C! diffeomorphism. Then
f o -|det],| is also integrable on Q and

/fdx = /(f o @) - |det J,|dx,
Q Q

where J, : Q — M(n x n, R) denotes the Jacobian matrix of ¢.

The diffeomorphism ¢ : Q — Q canbe viewed as a sort of
“reparametrization” We shouldn't expect f and f o ¢ to have
the same integral; on the contrary, we need a correction fac-
tor. And we shouldn’t be surprised that this factor is exactly
the absolute value of the Jacobian: after all, the Jacobian
matrix is the linear approximation of the diffeomorphism
@, so in passing from small boxes in Q to their images in
Q, the volume is approximated by multiplication by |det J,|.
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A careful proof takes some effort, as you probably remem-
ber. One thing that comes out of it is that diffeomorphisms
between open sets in R”, and transition maps in particular,
take measurable sets to measurable sets and sets of measure
zero to sets of measure zero. This is about to be useful.

foo f

Q Q

Figure 5.6. The change-of-variables formula

That'’s it for our Lebesgue package. If all its contents seem
familiar to you, you're certainly well prepared for what fol-
lows. But I won't try to conceal that for the main goals of this
course, Stokes’s theorem and its consequences, you could get
by with less integration theory: just the integral, Fubini’s the-
orem, and the change-of-variables formula for C* functions
with compact support on R" and the half-space. If you want
to take this path, all you have to do now is work through Sec-
tions 9.5 and 9.6 instead of 5.4—don’t worry, these sections
are set up for this and expect a visit from Section 5.3—and
you’ll know enough about the notion of integrals on mani-
folds.

5.4 Definition of Integration on
Manifolds
Definition. A subset A of an n-dimensional manifold is

called measurable (resp. a set of measure zero) if it has
this property relative to charts, that is, if for some (hence
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every) covering of A by charts (U, h) on M, each k(U N A) is
Lebesgue-measurable (resp. a set of measure zero) in R”.

Thus the o-algebra of Lebesgue-measurable sets is also
well defined on a manifold, and its sets of measure zero are
canonically recognizable. But note that of course we have no
canonical measure on this o-algebra.

Now let w be an n-form on an oriented n-dimensional
manifold M. To define [ m @ we will decompose M into count-
ably many small pieces, on each of which we can integrate
by using a chart. These small pieces need not be coordinate
cells, which would lead to major technical difficulties on
the overlaps of adjacent charts. Instead, the good properties
of the Lebesgue integral allow us great freedom in how we
decompose M.

Terminology. For the following discussion, a subset A C M
will be called small if it is contained in a chart domain.

Note. Any manifold can be decomposed into countably many
pairwise disjoint small measurable subsets. For instance, if A =
{(U;, b)) : i € N} is a countable atlas on M, then

Ay = Uy,

i
Aiv1 == Uin \ UAk fori>1
k=1

gives such a partition M = | Ji2, A;.

Of course, we intend to set [, := )2 [, w. Aswe have
to integrate on small pieces by means of charts, it is already
intuitively clear that the change-of-variables formula for the
Lebesgue integral is what makes this technically feasible.

Theorem and Definition (Integration on manifolds).
An n-form w on an oriented n-dimensional manifold M is called
integrable if for some (hence every) decomposition (A;)ieN of M
into countably many small measurable subsets and some (hence
every) sequence (U, h;)ien of orientation-preserving charts with
A; C U;, the following holds: For every i € N, the downstairs
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component function
ai:=w@®,...,9,) ok 1 hi(U) - R
of w relative to (U;, h-) is Lebesgue-integrable on hi(A;), and

/ lai(x)|dx < 0.
h,(A)
The value
Z / a;(x)dx —/w,
h(A) M

which is independent of the decomposition and the charts, is
called the integral of w over M.

PROOF OF THE ASSERTIONS. Let (A;);>1 and (Bj);j>1 be de-
compositions of M into measurable sets and let (U, h;) and
(Vj, kj) be orientation-preserving charts with A; C U; and
Bj C Vj. Let w be an n-form with downstairs component
functions a; (relative to (Uj, h;)) and b; (relative to (V}, k;))
such that w satisfies the conditions in terms of the A;’s and
hi's: each a; is integrable on h;(A;) and Y 0o, N (AD lajldx < oo.
We must show that each b; is integrable on k;(B;), that
Z]—l fk (3)) |bjldx < 0o, and that

Z / a,(x)dx— /bj(x)dx.

hx(A ) k (Bj)

Recall that a Lebesgue-integrable function on R” is also
integrable on every measurable subset of R". In particular,
a; is integrable on h;(A; N B;), and it follows from Lebesgue's
convergence theorem that

00

f a,~dx=Z f a; dx,

hi(A) =1 4inB))

and similarly for |a;| in place of a;. Now, to pass from a; on
hi(AiNB;) to bj on k;(AiNB;), we apply the change-of-variables
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formula cited in such detail in Section 5.3. That is, we set

Q= h(U; N V]),
) a;(x) for x € hi(A; N B;j),
f) = 0 otherwise,

Q= ki(U;NV;), and finally
¢ =h;o kj"1 [kj(U;iN'V;), the transition map.

AiﬂBj

S+ | L
Q

Figure 5.7.
For each p € U;NV;, consider the three differentials
T,M

(dkj)p (dhi)p

Rﬂ

R” T, 0 (P)

From the alternating n-form w, on T,M, the (inverses of
the) differentials of the two charts induce two alternating
n-forms on R", one of which takes the value b;(k;(p)) on the
canonical basis, and the other the value a;(h;(p)). But the
endomorphism J,(k;(p)) acts on Alt"R" by multiplication by
the determinant, as we know from the lemma in Section 3.3,
so we have

b;(kj(p)) = ai(h;i(p)) - det],(k;(p)),
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or

b; = (a; o @) - |det J,l,

throughout kj(U,- N V;). We can take the absolute value be-
cause ¢ preserves orientation and therefore has positive Ja-
cobian. This also implies trivially that

(bj)k}'(A,'ﬂBj) = ((ai)h,'(A,ﬂBj) o (p) : ’detltpla

and similarly for |a;| and |b;| in place of a; and b;. So by
the change-of-variables formula the function b; is Lebesgue-
integrable on k;(A; N B;) and

/ b; dx = / a; dx,
ki (AinB;) hi(AiNB;)
and similarly for |a;| and |b;| in place of a; and b;. It follows

that

o0

> / |b;ldx < oco.

M=l aing;)

In particular, |b;| and b; are integrable even on k;(B;) by the
convergence theorems. We have

_ .
[ =y [ bax
k; (B;) =1 ki A4inB))

and similarly for |bj|. Hence Z;’il fkj (3)) |bjldx < oo, by
the equation relating b; and a4; that comes directly from the
change-of-variables formula. It follows that

o0 o0
Z f bjdx=Z f a; dx,
7=k (B)) = hdan

as was to be proved. O
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5.5 Some Properties of the Integral

How can you tell whether an n-form is integrable? We will
usually be dealing with n-forms whose support, the closed
set

suppw = {peM:wp, #0} C M,

is compact. If M itself is compact, for example, then of course
all n-forms have compact support.

Lemma. An n-form w with compact support on an n-dimensional
oriented manifold M is integrable if and only if it is locally in-
tegrable, that is, if around any point there is a chart (U, h) such
that the downstairs component function

w(d,...,9)oh7 i (U) — R
is Lebesgue-integrable on h(U) C R".

PROOF. If (U}, h))ieN is a countable atlas of such charts, then
finitely many of them, say the first r, cover the support of
w.Set Ay :=U; and Ajy) = Uiy \LJ;(=l Ag. Then w|A; = 0 for
alli>r, so

i / |a,~|dx=zr: / Ja;l dx < o0. O

=1 hi(Ai) =1y
Continuous n-forms are locally integrable, of course, and
if w is locally integrable and A C M is measurable, then the

form wy defined by

p—> { wp, pEA, .

0 otherwise
is also locally integrable. Thus the lemma already gives us a
number of examples of integrable forms. In particular, on a
compact oriented n-dimensional manifold M all continuous
n-forms are integrable. A fortiori, so are all differentiable
n-forms and hence all w € Q"M.
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As we expect from the discussion in Section 5.1 and can
now easily read off from the definition, reversing the orien-
tation changes the sign of the integral:

Note. fw:—/w.

-M M

What is the change-of-variables formula for integrals on
manifolds? Instead of a diffeomorphism ¢ : @ — Q between
two open subsets of R”, we now consider an orientation-

preserving diffeomorphism ¢ : M —> M. If, for the integra-
tion on M, we use a decomposition M = UA; and charts
(U;, h;) around the A;'s, then for M we can use the cor-
responding data under ¢, namely the decomposition M =
Up~1(A;) and the charts (¢~ 1(U;), h; o ¢l ~1(U;)). Then the
n-forms w on M and ¢*w on M have exactly the same down-
stairs component functions, and the nice and important nat-
urality property of the integral follows.

Note (“Change-of-variables formula” for integration on

manifolds). If ¢ : M <> Mis an orientation-preserving dif-
feomorphism between orviented n-dimensional manifolds, then
an n-form w on M is integrable if and only if ¢*w is integrable

on M, and we have
/w = /(p*w.
M M

Of course, this was also to be expected from the intuitive
discussion of the integral in Section 5.2, since the induced
form ¢*w, by definition, responds to a cell (span) as w does
to the image cell.

Finally, as far as integrability and the integral on subsets
A of M are concerned, we follow the spirit of the convention
we established for the Lebesgue integral when we recalled
the change-of-variables formula in Section 5.3. We define
Jyw = [y wa, where w, agrees with w on A and is set equal
to zero outside A. The change-of-variables formula now takes
the following form.
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Corollary. If ¢ : M — M is an orientation-preserving diffeo-
morphism and A C M, then w is integrable on ¢(A) if and only
if p*w is integrable on A, and we have

[oum [

A e(A)

One last general remark. We used charts here to reduce
integration on manifolds to integration on R”, so we had
to assume only the latter as known. But whoever knows
the Lebesgue integral for arbitrary measure spaces holds a
master key that gives direct access to the general properties
of the integral on manifolds—the convergence theorems, for
instance.

What I mean is this. On any oriented manifold one can
construct a volume form, a nowhere-vanishing n-form wy €
Q"M that gives a positive response to positively oriented
bases. This is quite easy by means of a partition of unity,
which we will encounter as a tool in connection with Stokes's
theorem. Let wy be any such volume form. Then through

u(X) = /wM
X

it defines a measure u on the o-algebra M of Lebesgue-
measurable subsets of the manifold M and turns M into a
measure space. A function f : M — R is integrable on this
measure space if and only if the n-form fwys is integrable,

and then we have
f fdu= / f om.
M M

But since dim Alt"T,M = 1, every n-form on M is fwy for
some f, so integrating n-forms on oriented manifolds can
also be viewed as integrating functions on a measure space.
A volume form is not, however, given canonically.
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5.6 Test

(1) The span of the three unit vectors in R3 is a
O tetrahedron. O triangle. O cube.

(2) IfA: R" — R" is a linear map, then the n-dimensional
volume of A([0, 1]1") is

O [lA]l.
O |detA].
O lagr - ...  aunl.

(3) If p is a density and w is an alternating n-form on an
n-dimensional vector space V, then

O —|p| is an alternating n-form.
O —|w]| is a density.
0 |w|is adensity.

(4) A set X C R” has measure zero if and only if for every
¢ there is a sequence of cubes W;, with total volume
Y %2, Vol(W)) < g, such that

0O XcC U?_‘;l Wi.
O XcnE,w.
O X C W; for sufficiently large i.

(5) Inthe plane R?, let R denote the rectangle (1, 2) x (0, %)
and K the quarter-annulus in the first quadrant with
radii 1 and 2. Then the change from polar to Cartesian
coordinates, (r, ) — (x,y), given by x = rcos¢ and
y = rsing, defines a diffeomorphism & from

O K to itself. O KtoR O RtoK.
(6) For @ as in (5), the Jacobian Jo(r, ¢) is

O rsinZ2e. O r a-—r.



§5.6 Test

)

(8)

You will occasionally come across the notational cus-
tom of denoting a certain function in the most disparate
coordinate systems over and over again by f, as though
the convention

fOh X)) = fOq, o Xn), o, X (X1, Ly X))
f(x, ..., %)

had been accepted. Very confusing! But with a little
effort you can figure out what it means. Imagine that
f actually lives, independently of coordinates, on U
(for instance, on a region U of real physical space),
that f(x],...,x),) means the value of the function at
the point that has coordinates (x, ..., x,) with respect
to the primed coordinate system, and so on. Then f oh™!,
fol™! etc., are always just written f, suppressing the
names h, ¥, ... of the charts.

We don't really want to adopt this notation, but we
do want to be able to read it if necessary, and in this
sense the question now asks: How does the change-of-
variables formula for integrals read between Cartesian
and polar coordinates if the convention above is ap-
plied?

O [f f & ydxdy = [f f(r, @)rdrdgp.
O ff & vx2+ yzdxdy = [[ f(r,p)drde.
O ff f(x, y)dxdy = fff(r, )dr de.

In the local coordinates of a chart (U, k), the integral of
an n-form w over the chart domain is

/w: /f(x)dx,

U h(U)

where f : h(U) — R can be given by
O f(x) = wh ().
O f&!,...,x") =, (Ricci calculus).
O foh=w(,...,d).
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(9) If two charts (U, h) and (U, /) differ only in the sign of
their first coordinate and if a and a’ are the downstairs
component functions of an n-form w given on U, then

/adx:—/a’dx.

hU) W(U)
Why?
O Because

1

a(x', ..., x" =d(=x', %%, ..., x")

in the coordinates of R", and the Jacobian of the
transition map is —1.

O Because a(x!,...,x") = —d'(—x!,x2,...,x"), and
the absolute value of the Jacobian of the transi-
tion map is 1.

O Because a(x!,...,x") = —d'(x!,x%,...,x"), and the
transition map is orthogonal.

(10) For orientation-reversing diffeomorphisms ¢ : M — N,
we have

O wa+f(p(M)go*a)=O.
O fop*w+f(p(M)w=0.
O fyo+ [-ipan 9 e =0.

5.7 Exercises

EXERCISE 5.1. Give an n-form o on R" such that [, o = u(A)
for every A C R" with Lebesgue measure p(A) < 00.

EXERCISE 5.2. Let w be an integrable n-form on the oriented n-
dimensional manifold M. Show that, just as for integration in
R", the following holds: If an n-form n agrees with w almost
everywhere on M, then 7 is also integrable, and /; MO = f M-

EXERCISE 5.3. Let M be an oriented n-dimensional manifold.
As an analogue to | - |; on £}(R", u), how would a seminorm
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|-|; have to be defined on the vector space £! (M) of integrable
n-forms on M? For each w € L!(M), define an n-form |w|
such that |w|; = | u l@| determines a seminorm that is zero
exactly on the forms that vanish almost everywhere.

EXERCISE 5.4. Let ¥ : M — M be an m-sheeted covering
of the connected n-dimensional oriented manifold M. Let
the covering manifold M be oriented in such a way that
7 is orientation-preserving everywhere. Show that if w is
integrable on M, then n*w is integrable on M and [t =

5.8 Hints for the Exercises

FoRr EXERCISE 5.1. For the solution of this exercise, all you
have to know about Lebesgue measure is that

w(A) =/1dx
A

for Lebesgue-measurable A C R" with finite measure. Of
course, this is assumed to be known and need not be proved
here. The exercise isn’t hard and is just intended to make
you read through the definition of the integral of an n-form
again.

FOR EXERCISE 5.2. The point of this exercise is the same. It's
just that you can't get by here, as you could in Exercise 5.1,
with a single chart on M.

For EXERCISE 5.3. Warning: Here |w|, does not mean the
absolute value |wp| of wp : TyM x --- x TpM — R. That
wouldn't be an alternating n-form on T,M. For every p € M,
though, you should set |w|, := *w, with the right choice
of sign; the only question is how the sign depends on p.
Of course, you should prove that |w| really is integrable for
w € L1(M)and that |-|; := fM |-| is a seminorm on £} (M) with
the stated property. What this means here is a reduction to
the corresponding properties of the Lebesgue integral on R".
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Q

JJIU

+ h, a chart

Figure 5.8. The differen-
tiable structure on M

For EXERCISE 5.4. You'll know enough about the notion of
coverings for this exercise if you read pp. 126-131 in [J:Top]
and notice in addition that in the case of a covering r : M —
M of a manifold M, the covering space M is also a manifold
in a canonical way. In fact, its differentiable structure is the
only one for which r is a local diffeomorphism everywhere.
How will the decomposition

&

0
i 1

-0

m
=1 =

of M into measurable subsets have to be chosen so that the
integrability of 7*w and the formula [ 7*w = m f;, » follow
easily? It's intuitively clear!



Manifolds-with-
- Boundary

CHAPTER

6.1 Introduction

The classical version of Stokes’s theorem deals with the con-
nection between “surface integrals” and “line integrals” A
three-dimensional version, called Gauss's integral theorem,
makes a statement about the relationship between “volume
integrals” and surface integrals.

M, here D?

oriented surface M C R®

oriented boundary curve aM boundary surface dM = 52
Figure 6.1: In the original Figure 6.2: In Gauss's
version f,,curl? - dS = integral theorem

Jap U - d5 of Stokes's Jy?-ds= [ dividv,
theorem, the integration the integration is “over
is over a surface and its a closed surface and the
boundary curve. volume it encloses”

K. Janich, Vector Analysis

© Springer Science+Business Media New York 2001
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Here, of course, we would like to treat both cases simul-
taneously, and even for this an n-dimensional version of the
theorem would be worthwhile. Nor do we want to restrict
ourselves to submanifolds of R3 or R¥. In order to formulate
Stokes's theorem in its full generality, we need the notion
of manifolds-with-boundary, to which the present chapter is
devoted.

6.2 Differentiability in the Half-Space

The local model for manifolds-with-boundary is the closed
half-space, just as R" is the local model for manifolds. To turn
this notion into a precise definition, we must first explain
what differentiability means in the case of the half-space.

Which half-space we use is unimportant, but in view of
a certain orientation convention that will come up later, we
choose the left half-space.

Notation and Terminology. For n > 1 we let R” denote the
half-space {x € R" : x! <0} and dR" := {x e R" : x! =0} =
{0} x R"! its boundary. If U C R" is open in the subspace
topology of R” C R" (for short: open in R". or an open subset
of R™), then U := UN AR is called the boundary of U and
the elements p € AU the boundary points of U.

Of course, the boundary aU of U may be empty, and this
obviously happens when U C R” is open not only in RZ but
also in R”.

{0} x R—1 dRL
U QU U
x! X1
Figure 6.3a. 0U # @ Figure 6.3b. U =0

In topology, what is meant by a boundary point of a subset
A of a topological space X is an element x € X that is neither
an interior nor an exterior point of X. But we should avoid
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this terminology for a while, because it clashes with the
notion of boundary introduced above for an open subset U
of R" . Observe that in general dU does not coincide with the
topological boundary of U, no matter whether U is regarded
as a subset of R” or of R"™.

Definition. Let U be open in R". Amap f : U — Rk is
called differentiable at the point p € U if it can be extended
to a map that is differentiable in a neighborhood of p in R”;
that is, if there exist an open neighborhood Up of pin R"
and a iifferentiable map g : L7P — R¥ such that fIlUN Up =
glunu,.

For p € U\ aU this is nothing new, and f is simply differ-
entiable, i.e. differentiable everywhere, if it is differentiable
in U\ dU in the usual sense and differentiable for p € aU in
the sense above. Of course, by a diffeomorphism between
open subsets of R” we mean a bijection that is differentiable
in both directions. Such diffeomorphisms will be the transi-
tion maps of the as yet undefined manifolds-with-boundary.
The following two lemmas clarify their boundary behavior.

6.3 The Boundary Behavior of
Diffeomorphisms

Lemma 1. If f : U S Visa diffeomorphism between open
subsets of R", then f(0U) = dV. Hence

flaU : 89U => 3V
is a diffeomorphism between open subsets of R"1.

PROOF. Let p € U and let g : U, — R" be a local differ-
entiable extension of f. Suppose f(p) were not a boundary
point of V. Then by the continuity of f ~! it would have a
neighborhood V, in V, open in R, such that f ~1(V,) C U,.
But g o (f 7!|V,) is the identity on V,, and g and f 7|V, are
differentiable in the usual sense. Hence f ! has full rank n

Figure 6.4. Differentiabil-
ity at boundary points

Figure 6.5. Assumption
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Figure 6.6. Local ex-
tension is not uniquely
determined, but the du f |
are.

at f (p), so by the inverse function theorem it is a local dif-
feomorphism in the usual sense. In particular, f ! (Vp)cU
is a neighborhood of p in R”, contradicting p € dU. This
shows that f(0U) C 9V. But f is a diffeomorphism, and a
similar argument applied to f ~! shows that f ~1(3V) C aU.
Therefore f (aU) = aV. O

Of course, the local differentiable extension of a map
f : U — RF around a boundary point p is not uniquely
determined, but all the partial derivatives 9,f of f at the
point p (and in particular the Jacobian J¢(p)) are.

Lemma 2. If f : U i Visa diffeomorphism between open
subsets of R" and if p € dU, then the well-defined differential
df,  R" = R"

maps the subspace {0} x R"~! and each half-space R into itself;
that is, the Jacobian matrix is of the form

o f! 0
a1 f?

: Jf 110y xr-1(P)
onf"

where 8 f! > 0.

PROOF. Since f(3U) = 8V, we have f!|oU = 0, so &f! =0
fork=2,...,n Since V lies in R” , we have f! < 0on U and
thus
1 _ £l
fi(p+te)—f(p) >0
t

fort < 0. Hence 8, f! > 0, and in fact 3, f ! > 0 because Jf(p)
has full rank. . O
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6.4 The Concept of
Manifolds-with-Boundary

Now we turn from future changes of charts to manifolds-
with-boundary themselves. The only formal difference from
ordinary manifolds (“without boundary”) is that now we also
admit open subsets of R” as images under charts.

Let X be a topological space. A homeomorphism h from
an open subset U of X onto an open subset U’ of R” or
R" will be called an n-dimensional chart-with-boundary
for X. The notions of n-dimensional atlas-with-boundary,
differentiable n-dimensional atlas-with-boundary, and n-
dimensional differentiable structure-with-boundary (max-
imal atlas) are to be understood accordingly.

Definition. Let n > 1. An n-dimensional manifold-with-
boundary is a pair (M, D), usually abbreviated M, consist-
ing of a second-countable Hausdorff space M and an n-
dimensional differentiable structure-with-boundary D for M.
We call maps between manifolds-with-boundary differen-
tiable if they are differentiable relative to charts.

Transition maps must take boundary points to boundary
points, as we saw in Lemma 1. This justifies the next defini-
tion.

Definition. Let M be a manifold-with-boundary. A point
p € M is called a boundary point of M if it is mapped by
some (hence every) chart (U, h) around p to a boundary
point h(p) of h(U) C R”. The set dM of boundary points is
called the boundary of the manifold-with-boundary M.

Note. If M is an n-dimensional manifold-with-boundary, the
restrictions

KU N M : UN M —> 3(h(U)) C {0} x R"! = R—1

of the charts on M provide its boundary aM with an (n — 1)-
dimensional ordinary differentiable atlas and thus turn M into
an ordinary (n — 1)-dimensional manifold (without boundary).

D
=

Figure 6.7. If p is abound-
ary point in terms of A,
it is also a boundary
point in terms of k: the
boundary of M is well
defined.
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This manifold is what is always meant later on when the
boundary oM of a manifold-with-boundary is mentioned. We
also say that M is bounded by dM or that dM bounds M. If
f : M — N is a differentiable map between manifolds-with-
boundary, then of course f|dM : M — N is also differen-
tiable. Our next observation follows from Lemma 1.

Note. If f : M S Nisa diffeomorphism between manifolds-

with-boundary, then f (dM) = dN and f|dM : 9M —> 3N isa
diffeomorphism.

For n > 1, any ordinary n-dimensional manifold M
will be considered in the obvious way as a manifold-with-
boundary with dM = @. By a zero-dimensional manifold-
with-boundary we mean just an ordinary zero-dimensional
manifold. Thus the boundary of a zero-dimensional manifold-
with-boundary is empty—as a (—1)-dimensional manifold

should be.

6.5 Submanifolds

We won't write out in detail all that can immediately be
generalized from ordinary manifolds to manifolds-with-
boundary. If that were necessary, we would have been
better off basing everything from the beginning on the
more general concept! There are things, however, whose
generalization to manifolds-with-boundary involves certain
decisions or conventions, or that for some other reason is
not completely self-explanatory, and a few matters of this
kind will be discussed in this and the following sections.

Definition. Let M be an n-dimensional manifold-with-
boundary and let 1 < k < n. A subset My of M is called
a k-dimensional submanifold-with-boundary if around any
p € My there exists a chart-with-boundary (U, h) on M such
that

WU N M) = (R* x {0}) N h(U).



6.6. Construction

This is not the only plausible way to interpret the notion
of submanifolds for manifolds-with-boundary. In choosing
this version, we make two decisions. First, we do not require
that dMy C dM. But second, if a point p € My lies in the
boundary of M, then it is also a boundary point of My, and
Mp is “transversal” to dM there, in the sense that relative to
charts, My and dM must abut at p as do R* and (0} x R*1;

M Rk r{o} x R}

9) - £

n\ RE (0} xR™™!
-
(]

Figure 6.8. The two admissible possibilities for the position of dMo
relative to oM

In particular, dM itself is not a submanifold of M unless
it is empty, nor do we allow nonempty subsets of dM as
submanifolds of M. To extend these decisions to k = 0, we
require zero-dimensional submanifolds of M not to intersect
the boundary. So a zero-dimensional submanifold My of M
will just be a zero-dimensional submanifold My of M \ dM in
the ordinary sense.

Just as submanifolds of ordinary manifolds are them-
selves manifolds, k-dimensional submanifolds-with-boundary
are k-dimensional manifolds-with-boundary in a canonical
way. The restrictions of the flatteners (U, h) to each U N Mg
form a k-dimensional differentiable atlas on M.

6.6 Construction of
Manifolds-with-Boundary

As examples of constructions of ordinary manifolds, we in-
troduced sums, products, certain quotients, and the preim-
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R! xR! c R?

Figure 6.9. Edges can
occur in the product.

{b} x §!

{a} x §!

Figure 6.10. [a, b} x D?
with its “edges”

Figure 6.11. A smoothing
map

ages of regular values. The disjoint sum M; + M, of two
n-dimensional manifolds-with-boundary is itself an n-dimen-
sional manifold-with-boundary, in a canonical way. There
is a slight technical difficulty in taking products: although
RF x R" = R canonically, R x R” is not a half-space
but a quadrant in R¥™". For example, taking the product
[a, b] x D? of a closed interval and a closed disk gives a three-
dimensional solid cylinder with two “edges” in its boundary,
namely {a} x S! and {b} x S!. More generally, M x N is intu-
itively something like a manifold that has boundary

IMxN)y=0MxNUM x aN

and an “edge” (or “corner”) along dM x dN. Why one wants
to consider such products in the first place determines
whether one “smooths” the edges and turns them into gen-
uine manifolds-with-boundary by using a homeomorphism
R! x Rl — RZ? that fails to be a local diffeomorphism
only at 0, or leaves them as they are and develops a theory
of “manifolds-with-edges” (or “manifolds-with-corners”). We
take neither of these paths here, but only point out that
when at least one of the two factors has no boundary, the
product is again a manifold-with-boundary in a canonical
way.

The quotient M/t of an n-dimensional manifold-with-
boundary M under a fixed-point-free involution t is canoni-
cally an n-dimensional manifold-with-boundary, by the same
argument that was given in Section 1.6 for ordinary mani-
folds. Here d(M/1) = (AM) /.

Just as for ordinary manifolds, the regular value theorem
is an important source of concrete examples of manifolds-
with-boundary.

Lemma. If M is an n-dimensional manifold without boundary
and ¢ € R is a regular value of a C* function f : M — R, then
My == {p € M : f(p) < c} is an n-dimensional submanifold-
with-boundary of M.
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Figure 6.12. The preimage f ~1((—o0, c]) =: My at a regular value
c. Here f 71 (c) = aMp.

6.7 Tangent Spaces to the Boundary

What about the tangent spaces T,M for boundary points
p € dM? Are they well defined at all? And if so, might it be
better to use tangent half-spaces instead?

Remark and Convention. The tangent space for manifolds-
with-boundary and at boundary points p € dM is also well
defined by

TpM = To8M = TS,

canon P

as in Chapter 2, and relative to a chart (U, h) the coordinate
basis vectors (91, ..., 3,) of T,M are defined for every p € U.
Thus we use the whole vector space TyM as the tangent
space at boundary points as well, but the two half-spaces

TaM = (dhy) ™' (RY)
are well defined independently of the chart.

Note and Terminology. Let p be a boundary point of M.
Then it is clear that canonically T,0M C TpM and

+ M =
TIMN T, M = TpdM.
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TpdM—Y 2]
[P %
oM

Figure 6.13. The half-
spaces T;EM for pe oM

Figure 6.14. The orienta-
tion convention

The elements of T, M \ T,oM are called inward-pointing
tangent vectors and those of T;’M \ TpdM outward-pointing
tangent vectors. A vector v € T,M points inward (resp. out-
ward) if and only if its first component v! is negative (resp.
positive) relative to some (hence every) chart.

6.8 The Orientation Convention

Orientation and orienting atlas are defined for manifolds-
with-boundary exactly as for ordinary manifolds. It is easy to
see that the boundary of an oriented manifold M is orientable
in any case, but this does not mean that dM is already canon-
ically oriented. For that, we need a convention.

Orientation convention. If M is an oriented n-dimensional
manifold-with-boundary and p € M, thenabasiswy, ..., w,—1
of TpaM is said to be positively oriented (or, inthe case n = 1,
to have orientation +1) if and only if for some (hence ev-
ery) outward-pointing vector v the basis (v, wi, ..., w,—1) of
TpM is positively oriented. From now on, let the boundary
oM of an oriented manifold always be provided with this
orientation.

Thus, if we use the right-hand rule to orient a three-
dimensional submanifold-with-boundary, say aball or a solid
torus, of the real physical space that surrounds us, then when
viewed from the outside the bounding surface has the coun-
terclockwise orientation.

.
O

Ly

=

Figure 6.15. The orientation convention and the right-hand rule
for objects in physical space
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Since we have tangent spaces available for manifolds-
with-boundary (and, on chart domains, coordinate vector
fields 9y, ..., 3, as well), it is clear what is meant by k-forms
w on a manifold-with-boundary, when such forms are con-
tinuous or differentiable, what the vector space QM of dif-
ferentiable k-forms on M is, and, finally, when an n-form o
on an n-dimensional manifold-with-boundary is integrable
and what the integral f,; @ means. All this brings us another
step closer to Stokes's theorem.

6.9 Test

(1) Which of the the following are open in the topology of
the half-space R” = {x e R" : x! < 0}?
O X:={xeR":|x|| <1andx! <0}.
OX:={xeR":|x| <1andx! <0}
O X:={xeR":|x|| <1andx! <0}

(2) Let U be the part of the open square (—1,1) x (=1,1)
that lies in the left half-plane R?. Thus

U={(x,y)e]R2:—1 <x<0and —1 <y <1}
Let A denote the right side of U, and B the union of the
other three sides. More precisely,

A= {0} x (-1,1),

B:={-1} x [-1,1]U[-1,0] x {£1}.

As a subset of the topological space R?, U also has a
topological boundary, namely the set UR-’; of points of

R?2 that are neither interior nor exterior points of U.
Similarly, we can consider Ug:. This question focuses
on the differences, such as they are, among 90U, URz,

and Ugz. Which of the following is true?
0O 8U=AUB, Ug =AUB, U =AUB.
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O 8U=A, Uz =AUB, Ug2=AUB.
O U =A, UR2_=B, UR2=AUB.

(3) Let M denote a manifold-with-boundary. Can M \ M
be compact if OM # @?

O No, because then M \ dM would also be closed, so
dM would be open in M.

O Yes. This happens if and only if M is compact.

O Yes. By the Heine-Borel theorem this holds, for ex-
ample, for all closed bounded submanifolds-with-
boundary of R".

(4) Can a zero-dimensional submanifold My of a manifold-
with-boundary M “touch” the boundary (Mo NaM # @)?

O No, because My consists of isolated points in
M\ oM.

O Yes. Let M :=Rl and My :={1/n:n=1,2,...}.

O No, because zero-dimensional submanifolds are

automatically closed. Hence MyNaM = MyNaM =
? by definition.

(5) Let M be a manifold-with-boundary and p € M. Is M\{p}
a submanifold-with-boundary of M, with (M \ {p}) =
aM \ {p}?

O Yes. Every open subset X of M is a submanifold-
with-boundary, with 3X = X N oM.

O No. M\ {p} is a submanifold-with-boundary, but
a(M \ {p})) = dM whenever dimM > 0 because
then M \ {p} is dense in M.

O Yes. The charts (U, h) on M with p ¢ U form an
atlas on M \ {p}.

(6) Which of the following implications about connected-
ness are valid for manifolds-with-boundary M ?
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O M is connected <= M \ oM is connected.
O M is connected = oM is connected.
O 9M is connected = M is connected.

(7) This question deals with cutting a manifold along a
codimension-1 submanifold. Let M be an n-dimensional
manifold without boundary, and let Mg := f ~'(c) # @
be the preimage of a regular value ¢ of a differentiable
function f. Then M is the union of the n-dimensional
submanifolds-with-boundary A := f~1([c,00)) and
B := f~l((—o00,c]), whose intersection is their com-
mon boundary Mjp. You may visualize, for instance,
that cutting along My would split M into the disjoint
union of A and B.

Now don't assume that a function f is given, but
just a codimension-one closed nonempty submanifold
(without boundary) My C M. What happens if we “cut”
M along My? To pose the question more precisely: Is M
the union of two submanifolds-with-boundary A and B,
with A = B = AN B = M,? We would then say that M
splits when cut along My. When does this happen?

O Not always. Let a circle be cut “along” a point, say,
or a torus along a meridian.

O But there is always an open neighborhood X of My
in M that splits when cut along My. X need only be
chosen to fit closely enough around Mj.

O This isn’t true, either. Let a Mobius strip be cut
alongits “core” (midline), for instance, or RP? along
RP!: then no X splits.

(8) Let M be a manifold without boundary and let X C M
be open. Is the closure X C M a submanifold-with-

boundary?
ONo.M=R3 X={(xy2:x>+y*+22>0}isa
counterexample.

ONoM=R3 X={(x7y.2:x2+y*-22>1}isa
counterexample.
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ONo M = R3, X = {(x,y,2) : x2+y2 > zz} is a
counterexample.

(9) Is OM always a set of measure zero in M?

O Yes, because {0} x R""! is a set of measure zero for
Lebesgue measure on R” .

O No. For example, the surface of the ball has mea-
sure 4mr? % 0.

O No, only when dM = @.

(10) Let M be an oriented manifold withoutboundary. M; :=
{1} x M and My := {0} x M are called the top and bot-
tom, respectively, of the cylinder [0, 1] x M over M. Let
them both be oriented as copies of M, in other words so
that the canonical maps M; = M = Mj are orientation-
preserving. Now let the interval [0, 1] be oriented as
usual. Then our orientation convention induces the fol-
lowing orientation on the boundary:

0O a([0, 1] x M) = My + M;.
0O a9([0, 1] x M) = My — M;.
a a([0,1] x M) = M; — Mp.

6.10 Exercises

EXERCISE 6.1. Let M be a manifold-with-boundary. Show that
oM is closed in M.

EXERCISE 6.2. Let f : M — R be a differentiable function
that is regular everywhere on the compact manifold-with-
boundary M. Show that f assumes its extrema on the bound-
ary.

EXERCISE 6.3. Compact manifolds without boundary are
called closed, and two closed manifolds My and M, are called
bordant if Mg + M, is (diffeomorphic to) the boundary of a
compact manifold-with-boundary. Prove that if M is closed
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and a, b are regular values of f : M — R, then f ~'(a) and
f~1(b) are bordant.

EXERCISE 6.4. Prove that every closed manifold M on which
there exists a fixed-point-free differentiable involution t is
“null-bordant”; that is, it bounds a compact manifold.

6.11 Hints for the Exercises

FoOr EXERCISE 6.1. This is intuitively clear: every point in
M \ dM has a neighborhood that does not meet the bound-
ary. For the proof, you just need to make proper use of the
relative topology of the half-space R”.

FOR EXERCISE 6.2. Incidentally, a regular function might not
have an extremum on M \ dM for a noncompact manifold,
either, because it might not have any extrema at all. But, as
you know, a continuous function on a compact topological
space always has a maximum and a minimum. The exercise
is so simple that no suitable hint occurs to me. Perhaps I
should remind you that f : M — R is regular if and only if
df p # 0 for all p.

FORrR EXERCISE 6.3. The exercise is intended to make you use
the lemma about f ~! ((—o0, c]) that was stated (with nothing
but an allusion to the regular value theorem) at the end of
Section 6.6.

FOR EXERCISE 6.4. This exercise is a bit harder than the other
three. The not so obvious idea is (more or less) to connect
each x and t(x) by a line segment, so as to construct a com-
pact manifold W with W = M. But how can this be carried
out technically? One can, for instance, start with the man-
ifold (without boundary) M x R and then take a quotient
(also without boundary) (M x R)/ ~ under a suitable free
involution, as described in Section 1.6. This can be done in
such a way that the desired W appears as a submanifold-
with-boundary f ~!((—o00, ¢]) in the quotient.

~—>

@

oM

Figure 6.16.

(M

T(x)

Figure 6.17.
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~ The Intuitive
 Meaning of

onsvren | Stokes's Theorem

7.1 Comparison of the Responses to Cells
and Spans

The actual definition of the Cartan (or exterior) derivative
d: Q"M — Q1M will be postponed until the next chap-
ter, and the proof of Stokes’s theorem that [, dw = [,
until the chapter after that. In the present chapter I'll try to
sketch how one could intuitively come up with the idea of
the exterior derivative and conjecture Stokes’s theorem.

We imagined a piece U of an oriented manifold as de-
composed into small cells and the integral [, as the
sum of the responses of the n-form w to the cells, with
each cell o, approximated by the tangential span s, =
span(Ax1 di. ..., Ax"9,). We can now look back at how the
integral was formally introduced in Chapter 5 and estimate
how well 3_ , wp(sp) approximates [y w. If a = w)_no0 h1is
the downstairs component function, then the actual contri-

K. Janich, Vector Analysis
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Figure 7.1.
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P@SP
o

14

box Bp with / /
edge lengths

Ax!,

Figure 7.2. The box corre-
sponds to the cell under
h and to the span under
dh,.

Figure 7.3. Cells o), with
edge lengths Ax* getting
smaller and smaller

bution of the cell to the integral is

/w: /a(x)dx,
% Bp

while its approximation

wpsp) = [ ath(pds
Bp
is the integral of the constant value a(h(p)) = w,(d1, ..., dn)
and therefore equals w,(d1, ..., 3,)Ax! - ... - Ax". So if w is
a continuous n-form, for instance, then the absolute value of
the error can be at most ¢, - Vol(B,), where ¢, denotes the
variation of a on the box Bp; more precisely,
Ep 1= Sup la(x) — a(h(p))|.
x€B P

Hence the absolute value of the total error over the whole
region U is less than or equal to max, e, - Vol(h(U)), and
max, &, becomes arbitrarily small for continuous w when
the grid is fine enough.

For continuous w, this reasoning also shows how we can
recover the alternating n-form w, € Alt"T,M from the inte-
grals fap w. For fixed orientation-preserving charts h, if we

consider the edge lengths Ax!,..., Ax" of the cell at p as
variables, then
1
wp(al, ceey n) = llmom/w.
9

This formula makes precise the statement that w, is the
infinitesimal version at p of the integral of w.

7.2 The Net Flux of an n-Form through
an n-Cell

Stokes’s theorem makes a statement about (n — 1)-forms
w € "M on an oriented n-dimensional manifold. By its
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very nature, such a form responds to oriented tangential
(n — 1)-spans. But it also responds to oriented (n — 1)-cells:
approximately, through an approximating span; precisely,
through integration over the cell as an (n — 1)-dimensional
manifold.

“Flux densities,” which are described by 2-forms in three-
dimensional space, give an intuitive picture of (n — 1)-forms
on oriented n-dimensional manifolds. The response of a
flux density w to an oriented 2-cell shows how much “flows
through” the cell per unit time. The orientation lets us
give opposite signs to the two possible directions of passage
through the cell. It is a useful exercise to work out intuitively
why such a flux density for infinitesimal cells is multilinear
and alternating.

An edge as a sum: A degenerate cell:
AT \\ /\l‘
iz

The flux adds up. Zero flux.
Figure 7.5. Flux densities are multilinear and alternating.

This intuitive picture suggests an interesting possibility
for letting an (n — 1)-form act on n-cells and then infinites-
imally on n-spans. The “boundary” 9o, of an n-cell o, con-
sists of 2n boundary cells of dimension (n — 1), a “front” and
a ‘back” for each coordinate. We orient these 2n sides ac-
cording to the same convention we used for the boundary
of a manifold: The outward-pointing normal followed by the
orientation of the boundary cell gives the orientation of o.
Now we can add the 2n responses that w gives to the oriented
boundary cells and thus define how w should act on oriented

n-cells, namely by
o —> / .
do

119
i
T
Figure 7.4.
ith back c{
ith front
xi-curve

Figure 7.6. The 2n ori-

ented boundary cells of
an n-cell in an oriented
n-dimensional manifold
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To make the notation unambiguous, we now write down
explicitly the convention we have already used implicitly.

Notation. Let w be a k-form on an n-dimensional manifold M
and let My C M be an oriented k-dimensional submanifold
or, in the case k = n — 1, the boundary dM of M, provided
with an orientation. If ¢ : My — M denotes inclusion and
t*w the induced k-form on My, we write

/L*w = /w.
Mo Mo

The suppression of ¢* is justified, first because
(L*a))lp(l/], sy Uk) = wP(U], LR ] Uk),

and second because there is no risk of confusion with the
notation fMOa) = [y oM, of Section 5.3: for k < n, a k-form
can't be integrated over M anyway, so f M @M, would make
no sense, and for k = n it's really the same thing.

So much for notation. The intuitive meaning of f, o is
the net flux through the n-cell ¢! What we measure with
f35 @ is what flows out of the n-cell o per unit time, since
the orientation of do given here assigns incoming flow a
negative value and outgoing flow a positive value. Thus the
excess [, w can be called the source strength of o.

Stokes’s theorem is ultimately based on this idea of bal-
ancing the incoming and outgoing flows. When we resume
our discussion from Section 5.1 about the relative merits of
densities and forms, we have to note that a treatment of the
net flux using densities would in any case require a notion of
“(n — 1)-densities” that would take into account the orienta-
tion of the cells of 3o, for without some distinction between
incoming and outgoing flow there can be no net flow. The
k-forms are already set up for this.
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7.3 Source Strength and the Cartan
Derivative

Now, is this source strength of an (n — 1)-form w, viewed as a
correspondence o — [, w, really the action of a differential
form of degree n? In other words, for every (n — 1)-form w is
there an n-form n such that f n = f; o for oriented n-cells?
If so, then, as we saw earlier, this “source density” n would
at least have to satisfy

1
d,...,0) = lim —— ,
n(o ) A:lcr—goAxl-...-Ax"/w
do

and this already reveals one way of trying to answer the
question: Check whether this limit exists and, if it does,
whether 7 is independent of the choice of chart. Then prove
that [ n = [, o for the n so defined. Actually, we have no
intention of taking this approach because we'll reach our
goal in a more elegant, though more formal, way. But if
we imagine ourselves in a fictitious pioneer period of the
Cartan calculus, this path is definitely the right one, and it
leads to the insight that for every w € Q" M there is in fact
exactly one n-form that responds to oriented n-cells as w
itself responds to their boundaries. This n-form is called the
Cartan derivative of w and is denoted by dw.

Incidentally, if we consider the contribution of the ith
pair of sides to the limit

1
dw(0:,...,0,) = lim ———— ,
@ (@ n) Air—I}oAxl-...-Ax"/w
do

we not only obtain the formula

n

. .0 -
do@, ..., 8) = 3 (=)' o=@, ... T B)

=1

for the Cartan derivative in coordinates, we also understand
the intuitive meaning of its individual summands.
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o}

o2
Figure 7.7.
M
0155
)i
oM

Figure 7.8. [ dw = f;
for cells (definition of

d), so [ do = [ o
(Stokes’s theorem).

7.4 Stokes’s Theorem

The property of dw of responding to an individual cell as w
does to its boundary carries over to collections of cells. If we
consider two adjacent cells o1 and o2, then in the sum

/ dw=/w+/w,
do 307

o1Uo?

the contributions of the common sides cancel because their
induced orientations from the two cells are opposite. It is
also intuitively clear that the interior wall plays no role in
the net flux of w through o7 U 03.

If we now think of a compact oriented manifold-with-
boundary as a single collection of cells, we see that the con-
tributions of the interior sides of the cells all cancel in the
sum

and only the integrals over the sides that form the boundary

oM are left, so that
fdw: /w.
M aM

This is Stokes’s theorem.

As we said earlier, this is not how we'll actually prove
Stokes’s theorem. Decomposing the whole manifold into a
grid of cells in a rigorous way would be a technically de-
manding project, to say nothing of its being impossible in
general unless one also allowed certain “singular cells,” such
as occur, for instance, in angular coordinates on $2 at the
poles.

Although the idea of decomposition into cells does not
lead to an elegant proof, it describes the geometric content of
the theorem extremely well—in fact, it reduces the theorem
at the intuitive level to a truism.
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7.5 The de Rham Complex

The definition of the Cartan derivative dw through the action
of w on the boundary is not limited to (n — 1)-forms. For any
differential k-form w € Q*M, with k arbitrary, there is exactly
one (k+1)-form dw € Q1M that responds to oriented (k+1)-
cells as w does to their oriented boundaries. This yields a
whole sequence

0> 0M-Lam-4H ... Loty oMo
of linear maps.

The Cartan derivative d : Q°M — QM on zero-forms (C*
functions on M) is simply the differential: For an oriented
1-cell o as in Figure 7.9, q and p are positively and negatively
oriented, respectively, by the orientation convention. Thus
[, dw = w(g) — w(p) for w € Q°M, and there is no clash
between our previous notation df € Q! for the differential
of a function and our notation d for the Cartan derivative.

The sequence of Cartan derivatives is what in homo-
logical algebra is called a complex; that is, d o d = 0. More
precisely, if w € Q1M and o is an oriented (k + 1)-cell,

then .
/ddw:/dw: /w,
o do

ddo

where the integral over ddo just denotes the sum of the
integrals over the sides of the sides of o. But in this sum
the integral is taken twice, with opposite orientations, over
each edge. Hence f,, o = 0. Or: If we dare to think of the
(k + 1)-cell o, despite its edges and corners, as a manifold-
with-boundary (as we may, if all we want to do is integrate
over it), then as a manifold without boundary do has empty
boundary 3dc = @, and applying Stokes’s theorem twice
gives [ ddw = [, dw = [,w = 0 since an integral over the
empty manifold is of course zero. In any case, we understand
the property dd = 0 as a consequence of the geometric fact

Figure 7.9.

Qﬂ side 13 of o
D

side t
! “edge” of o

Figure 7.10. The response
f, ddw of ddw to a (k+ 1)-
cell is zero.
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“d0 = 0" The complex
0 d. ol d d  ~n-1 d  on
0-QM —>QM— ... - Q"' M— Q'M—->0

is called the de Rham complex of M.

7.6 Simplicial Complexes

The de Rham complex canonically defines a contravariant
functor from the differentiable category to the category of
(cochain) complexes and represents an important interface
between analysis and algebraic topology.

Of course, to explain this in the technically correct sense
would first require an introduction to algebraic topology and
would therefore go beyond the scope of the present book.
But I'll try to give you an intuitive idea. To do this, I have
to start by telling you about a completely different kind of
complex.

“Complex” is a general word for something assembled
from individual building blocks. It has lost this naive mean-
ing in the expression de Rham complex, but retains it in the
phrase simplicial complex. Imagine that you were allowed
to assemble arbitrary things from (closed) tetrahedra, trian-
gles, line segments, and points in R3 as three-, two-, one-,
and zero-dimensional building blocks (“simplices”), where
you had to follow only two rules of play:

(1) You may use only finitely many building blocks at a
time.

(2) Adjacent building blocks must be mutually compatible.
More precisely: the intersection of any two building
blocks must be either empty or a common subsimplex.

The subsimplices of a tetrahedron, for example, are its ver-
tices, edges, and faces. The rules are similar in R”, where
analogous building blocks up to dimension n are possible
and permitted. The things you can assemble by following
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these rules are called finite simplicial complexes. With some
precautions (“locally finite” instead of “finite” in the first rule
of play), infinitely many building blocks can also be allowed.

If you're not deliberately looking for counterexamples,
you can imagine a simplicial building-block model for any
geometric object you encounter in R": the ball, the cone, and
the torus; any kind of manifold or non-manifold —usually not
quite genuine, because they’ll have corners and edges, but
still homeomorphic to the object and hence faithfully describ-
ing its topological properties.

To get our hands on such topological properties of the
original, we now consider simplicial chains in the model.
Anyone can picture a “chain” of finitely many oriented edges
of building blocks that runs from one vertex of the simpli-
cial complex to another, whose “boundary” thus consists of
the (positively oriented) terminal point and the (negatively
oriented) initial point. If the initial point coincides with the
terminal point, the chain is a “cycle” Obvious terminology!

But if we want to make the union of" chains into the
operation of an abelian group—and not just stay in one
dimension—we are automatically led to the following gen-
eralization of the concept of chains.

Definition. The k-dimensional simplicial chains of a sim-
plicial complex X are described by formal linear combina-
tions

A1oy + -+ A0

(where the coefficients A; are integers) of oriented k-dimen-
sional (sub-) building blocks of the simplicial complex and
added accordingly, with the provision that a k-simplex o goes
to —o under a change of orientation.

The k-dimensional chains of X thus form an abelian group
Sk(X); each individual oriented k-simplex o has a (k—1)-chain
do asboundary (with the same orientation convention as for
manifolds-with-boundary), and this also defines a boundary
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chain dc € Si_;(X) for each k-chain ¢ € S (X). A chain ¢ with
dc = 0 is called a cycle, and the sequence

0= S,(X) = S, (X) =2 - = 5,00 =5 So(X) — 0

of boundary operators is called the simplicial chain complex
of X.

The boundary of the boundary chain of a k-simplex is
clearly zero since, just as for a cell, the contribution of each
side cancels with the oppositely oriented contributions of
the adjacent sides. Hence d o d = 0 for chains as well. In
words: All boundaries are cycles.

But not all cycles are boundaries. A meridian cycle on
a simplicial torus, for instance, doesn’t look as though it
could be the boundary of a 2-chain. And it is precisely these
nonbounding cycles that seem to say something about the
topological structure of the simplicial complex and hence
also about the structure of the geometric object that really
interests us, for which the simplicial complex is only the
building-block model. But how can we get hold of this infor-
mation mathematically?

If we want to suppress the uninteresting boundaries
in calculations, we have to compute with cycles “modulo
boundaries”; that is, we define cycles as equivalent, or ho-
mologous, if they differ only by a boundary. The equivalence
classes, or homology classes, of k-cycles are then the elements
of the kth homology group of X, the quotient of the group of
cycles by the group of boundaries.

Definition. If X is a simplicial complex, the abelian group
ker(d : Se(X) = Si_1 (X))

im(d : Sk+1(X) = Sk(X))

is called the kth simplicial homology group of X.

Hi (X, Z) =

If X is a finite simplicial complex, for instance, then by
construction Hy(X, Z) is a finitely generated abelian group,
which in principle can be computed by elementary means.
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But does it really tell us anything about the original geomet-
ric object, or is it influenced by the uninteresting details of
how we constructed the building-block model?

If it told us nothing, we would probably not be discussing
this hundred-or-so-year-old invention today. A method
called simplicial approximation can be used to show not
only that homeomorphic simplicial complexes have isomor-
phic homology groups, but even that simplicial homology
canonically defines a functor from the category of “triangu-
lable” topological spaces (those that are homeomorphic to a
simplicial complex) and continuous maps to the category of
abelian groups (which are graded by the index k).

With this, homology theory was established.

7.7 The de Rham Theorem

The success of homology theory was striking. Famous old
theorems shrank to little lemmas, and masses of unsus-
pected new results were proved. Applying the homology
functor gave, so to speak, an X-ray look inside apparently
impenetrable geometric problems.

You can imagine that these advances were accompanied
by improvements in the methods. What crystallized out of
this as the essential rule for success was to assign chain
complexes

d d d d
r = G (X) — G(X) — G (X) — -

to geometric objects X in a natural, functorial way. These
chain complexes are sequences of homomorphisms between
algebraic objects—abelian groups for instance, or vector
spaces or modules over rings—that satisfy the condition
d o d = 0 and whose kth homology

ker(d : Ci(X) = Cr_1(X))
im(d : Ckp1(X) = Ci(X))

H(C(X), d) =

127
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can therefore be studied. It became clear, for example, that
simplicial homology is independent of the triangulation. So
shouldn't it be possible to define it directly, without resorting
to a building-block model, and then define it in complete
generality for arbitrary topological spaces? Singular homology
was discovered as a solution to this problem and has turned
out to be pivotal.

A singular k-simplex of a topological space is just a con-
tinuous map o : Ay — X from the k-dimensional standard
simplex to X—when k = 1 this is a continuous path in X—
and the k-chains of this theory are formal linear combina-
tions with integer coefficients of singular k-simplices. The
resulting singular homology groups Hy(X, Z) can no longer be
computed directly from the definitions, but the developing
homology theory had already left naive computational meth-
ods behind in any case and replaced them by more elegant
axiomatic methods.

Of special significance in discovering new homology the-
ories was the application of algebraic functors to chain com-
plexes associated with tried and true theories. More infor-
mation lies dormant in a chain complex than is extracted
by homology. So one can hope to find something new by
subjecting the chain complex to an algebraic manipulation
before taking the homology quotients kerd/imd, as long as
this manipulation preserves the property d od = 0. For ex-
ample, one can take an abelian group G and tensor all the
“chain groups” Cx(X) with it. In the case of singular homol-
ogy, this leads to singular homology with coefficients in G,
whose groups are denoted by Hi(X, G).

A polished algebraic theory of chain complexes eventu-
ally became such a compelling technical necessity for ho-
mology theory, which was growing into an industry, that
an independent new subdiscipline, homological algebra, was
generated in its wake.

Of course, one of the algebraic functors that could be
tested on existing chain complexes and actually were used
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early on is the Hom-functor Hom(—, G). Since it is con-
travariant, it turns a chain complex into what is called a
cochain complex, whose grading now ascends. For instance, it
turns the singular chain complex into the cochain complex
with coefficients in G,

& Hom(Cruy (X), G) <— Hom(Ci(X), G) <— ---

The homology groups of this complex are logically called sin-
gular cohomology groups with coefficients in G and written
H*X, G).

It was not immediately evident what a significant exten-
sion of homology theory had been stumbled upon. In fact, it
was realized only gradually that for singular cohomology—in
contrast to homology!—with coefficients in a commutative
ring R, there is a product

—:H(X,R) x H*(X,R) — H"(X,R),

the cup product, which turns the cohomology groups into a
cohomology ring. This has far-reaching consequences.

As you can see, the de Rham complex is also a cochain
complex and defines a cohomology theory for the category
of manifolds. The cohomology groups H SRM of this de Rham
cohomology are real vector spaces, and with the wedge prod-
uct they form a cohomology ring. This is outwardly quite
similar to singular cohomology with coefficients in R! But
the origin of de Rham cohomology makes it seem exotic
among the other homology theories, which can’t deny their
descent from simplicial homology. Its boundary homomor-
phism, the Cartan derivative, is a differential operator!

Georges de Rham was the first to discover the nature
of this exotic cohomology theory. It is the real singular co-
homology of manifolds, and the wedge product is the cup
product.

Stokes’s theorem makes the connection. More precisely,
one can integrate a k-form w on M over a (differentiable)
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singular k-simplex o in M by setting

/w :=/o*a).
o Ak

Thus . w is also defined for (differentiable) singular k-
chains, and applying Stokes'’s theorem to Aj (the vertices
and edges cause no real difficulties) gives [ dn = [, n. So
we have linear maps

HK,M — Hom(H{™ (M, Z), R) «— H*(M, R),

the first just through integration over singular cycles and the
second directly from the definition of singular cohomology.
Both are isomorphisms: Methods of ordinary homology the-
ory show this for the second map, but the statement that the
integration map is an isomorphism is the crux of de Rham'’s
theorem and not easy to prove.

De Rham's theorem turned out to be a momentous dis-
covery. It brought to light the deep connections between
analysis, the powerful, well-established discipline, and alge-
braic topology, the successful newcomer—connections that
play a major role in present-day mathematics. I'm think-
ing of the Atiyah-Singer index theorem, for example, and its
ramifications, which extend even into theoretical physics.

In a more elementary way, the de Rham complex is an ev-
eryday presence in classical vector analysis—wherever the
three familiar differential operators gradient, curl, and diver-
gence appear in the three-dimensional physical space M. As
we have yet to see in detail (in Chapter 10), they correspond
exactly to the three Cartan derivatives:

0— QM -4 oM -4 @2M -5 @M - 0.

grad curl div
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This is why, for instance, the divergence of a curl and the
curl of a gradient are always zero, and why statements about
the de Rham complex always also have, in passing, a direct
interpretation in classical vector analysis.

The present chapter, exactly in the middle of the book,
is intended to convey something different from what can be
asked about in tests and exercises. Perhaps with a deeper
understanding of our subject, we now return to its technical
details.

131



The Wedge

Product and the
~ Definition of the
~ Cartan Derivative

CHAPTER

8.1 The Wedge Product of Alternating
Forms

To define the Cartan derivative we use a tool from multilin-
ear algebra, the exterior, or “wedge product of alternating
multilinear forms.

Definition. Let V be a real vector space and let w € Alt"V

and n € Alt'V. Then the alternating (r + s)-form w A n €
Alt'+V defined by

WOANWY,s ooy Upgs) ==
1
T} ; SENT - WWr(1)ys -+ -» V() * NWr(r+1)s + - s Vr(r+s))
TESr+s

is called the exterior, or wedge, product of w and n.

Each summand is already multilinear in the variables
v1,...,U,4s. The way the big alternating sum—as I'll call
it because of sgn r—is constructed guarantees that w A n is
alternating. But many of the summands are repeated: each
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of the r!s! permutations that produce the same partition
(L..o,r+st={r(D), ..., t(MH}U{r(r + 1), ..., T(r + 5)}

into one subset of r elements and another of s elements also
yields the same summands, precisely because w and n are
assumed to be alternating. Hence (w An)(vy, ..., Ur4s) is also
given by the well-defined sum

Z sgnt - wWr(1)s -+ -» Vr(r) * NWr(r41)s -+ Vr(rs))
[tleZs

over the (’f’)-element set Z, ; of these partitions.

Lemma. The wedge product A has the following properties:

(1) For every real vector space V, the wedge product turns
the direct sum @jio, Alt*V into a graded anticommutative
algebra with identity. More precisely, the following hold for
everyr,s, t > 0:

(i) The wedge product A : AIt'V x AtV — ALt"TV
s bilinear.
(i) The wedge product is associative, i.e., (W AN) AL =
wA(MAL) forw € Alt"V, n € AIt'V, and ¢ € AIt'V.
(iii) The wedge product A is anticommutative; that is,
nAnw=(-1)"*wAnforowe Alt"V andn € Alt°V.
(iv) The O-form 1 € Alt°V = R satisfies 1 A w = w for
allw € Alt'V.

(2) The wedge product is “natural’ In other words, it is com-
patible with linear maps: f*o A f*n = f*(w A n) for every
linearmap f *W — Vandallw € Alt"V, n € AIt°V.

SKETCH OF THE PROOF. Properties (i), (iv), and (2) fol-
low trivially from the defining formula. Anticommutativ-
ity (iii) is also immediate. To verify associativity, think
of w A n(vy,...,Urys) as the sum over the partitions of
{1, ..., r + s} into one subset of r elements and another of s
elements, as explained above. Then we see that (w A1) AL
and w A (n A L), applied to (v1, ..., Vr+s4++), are one and the
same sum over the set Z,;; of partitions of {1, ...,r + s+ ¢}
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into one subset of r elements, a second of s elements, and a
third of t elements:

(@ANANLWL, oy Urgsgr) 1=
1
ris!t! Z ST - W(Wr())s - s Ve(n)
TESr 4541
U(Ur(r+]), Ceey Ur(r+s)) . {(Ur(r+s+l)v Ceey VT(H—S-H))- O

Now we can state another, shorter, version of the lemma:
The wedge product turns @i Alt* into a contravariant functor
from the category of real vector spaces and linear maps to the
category of real graded anticommutative algebras with identity
and their homomorphisms.

8.2 A Characterization of the Wedge
Product

The wedge product is not yet characterized by these prop-
erties. For instance, if we chose real numbers f (n) # 0 for
n > 0, requiring only that f(0) = 1, then conditions (1) and
(2) would still hold for the wedge product A defined by

- fOf )
WA = oo

But according to our definition, the wedge product also sat-
isfies the following normalization condition.

wAn forwe Alt'V, ne Alt°V.

Note. Let ey,...,e denote the canonical basis of R* and
81, ..., 8% the corresponding dual basis of R = Alt'R¥. Then
3) S'A...A8%e,...,e0) =1 forallk>1. O

Theorem. Only A satisfies (1), (2), and (3).

PROOF. More precisely, the theorem says that if a binary
operation A : Alt"V x Alt'V — Alt"t*V satisfies conditions
(1)-(3) above for all V, r, 5, then it coincides with the wedge
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product given explicitly in Section 8.1. Let A be an arbitrary
such binary operation. Then the following also holds:

(4) Let e, ...,e, be a basis of a real vector space V and
81, ...,8" the dual basis, and let 1 < v; < --- < v < n.
Then
sgnrt if T exists,
SEUA L ASM (e, e) =1 B f @ en
0 otherwise,
where t denotes the permutation sending vy, ..., vgto 11, . . . , .

To prove (4), let V denote the k-dimensional subspace of
V spanned by e,,, ..., e, and ¢ : Vo < V the inclusion map.
Then naturality (2) implies that

SHUA L A BHR (e, .. ey) = LA L AT R ey, L ).

If (uy, ..., ux) is not a permutation of v; < --- < v, then
either u; = u;, for some i # j, in which case é#' A §#/ = 0 by
anticommutativity (1) (iii), or there exists an i with u; # v;
for all j. But then we have (*§#' = 0. On the other hand, if
(41, ..., ux) does come from a permutation of (v, ..., vg),
then u; = V(i) and

SMUA L A =sgnT 8T AL ALRS

by anticommutativity. Now (4) follows from the normaliza-
tion condition (3) and naturality applied to Vy = R, What
we have shown so far is that (1)-(3) = (4).

With regard to our goal of proving the theorem, we have
in particular the partial result that §#! A ... A §# is indepen-
dent of the choice of the operation A satisfying (1)-(3). But to
show this for arbitrary products w Ay, we have to write w and
n as linear combinations of such products of 1-forms. More
precisely, we claim that (1)-(3) imply one more condition.

(5) Let wy,..p, = w(ey,,-..,eu) be the components of the
form @ € Alt*V with respect to a basis ey, ..., e, of V, and
again let 81, . .., 8" denote the dual basis. Then

— H1 Mk
w = E YNNI LA NVANY JaL B
M1 <ee<phi
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To prove (5) we need only check that for v; < --- < vy both
sides give the same result on (e,,, ..., ey). But this follows
directly from (4), and the proof of (5) is done.

Because of (5) and (4), we know now that for every finite-
dimensional V the product w A n € Alt"**V is given by the
operation defined explicitly in Section 8.1. But this suffices
for the proof of the theorem, since naturality (2) implies that

@ADL, ..., Vrps) = oAW1, ..., Vrgs)

for arbitrary V, where ¢ : Vy < V denotes the inclusion of
the finite-dimensional vector space Vjy into V. This proves
the theorem. a

Note the following consequence of (5), which we state
explicitly.

Corollary. If (ey, ..., e,) is a basis of V and (8}, ..., 8") the
dual basis, then (8#' A ... A 8K, <...cp, 1S a basis ofAlth.

8.3 The Defining Theorem for the Cartan
Derivative

This is enough for the time being about the wedge product as
a concept from multilinear algebra. We now want to exploit
it for analysis on manifolds. In what follows, manifolds may
be manifolds-with-boundary if nothing is said otherwise.

Definition. Let M be a differentiable manifold. The wedge
product

AQMxQPM — QPM,
(w,n) — wAn

of differential forms on M is defined pointwise in a natural
way, by setting (w A n)p := wp A 1, for every p € M.

Observe that the wedge product with a 0-form (that is,
with a function) is simply the ordinary product: f Anp = fn
for f € Q%(M) by properties (1)(i),(iv), p. 134.
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Note (see Section 8.1). The wedge product turns Q* :=
Do Qk into a contravariant functor from the category of man-
ifolds and differentiable maps to the category of real graded
anticommutative algebras with identity.

Now let (U, h) be a chart. Recall (see the lemma in Section
3.5) that at every point of U the 1-forms dx!, ..., dx" are the
dual basis to the basis 9y, . . ., 9, of the tangent space. But all -
forms arise from linear combinations of the wedge products
of the dual basis elements (see (5) in Section 8.2), and this
yields the following corollary.

U: The vector fields
dy, the 1-forms dx*,
and the component
functions wy, ...,
live here.

hl

Figure 8.1. A reminder

Corollary. If w € QKM and (U, h) is a chart, then
w|U = Z Oy XN A dxtE
p1<-e<pk
where wy, .., = @@, ..., d,) 1 U— R are the component
functions of w with respect to (U, h).

Defining theorem (Cartan derivative). If M is a manifold,
then there is exactly one way to introduce a sequence of linear
maps
or 4 ola 94, o2 4
0> QM — QM — QM — --.
so that the following three conditions are satisfied:

(a) Differential condition: For f € Q°M, df has its usual
meaning as the differential of f .

(b) Complex property: dod = 0.
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(c) Product rule: d(wAn) = dwAn+(=1) wAdn forw € QM.

We call dw the exterior, or Cartan, derivative of the differen-
tial form w, and the entire sequence the de Rham complex
of M.

The proof of the theorem is carried out in two steps, to
which the next two sections are devoted.

8.4 Proof for a Chart Domain

Throughout the proof we will use the notation dy for the
Cartan derivative to be constructed and reserve d for the
ordinary differential of functions. We begin by proving the
theorem just for a chart domain rather than for M. There is
an obvious starting point: If (U, h) is a chart, then as we saw
earlier, any w € QXU can be written as

— K1 Kk
w= E Wy dXFY A A X
B1<e<pk

Using the wedge product, we can thus express w in terms
of functions and differentials, and these concepts are exactly
what conditions. (a)-(c) are about. We take the formula

(%) dyw = Z dwy, .y, NdxH A LA dxPE

My < <Hk

as an established fact for the proof of uniqueness, and as a
definition for the proof of existence. More precisely: If the
dy have properties (a), (b), and (c) for M := U, then formula
(¥) obviously follows for all @ € QKU, and this proves the
uniqueness statement for the case M = U. For the proof of
existence, we now use (x) as our definition. The maps

0> QU Y Qlu ...

defined in this way are clearly linear, and the differential
condition (a) is satisfied. The complex property and the prod-
uct rule still have to be verified. We begin with the product
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rule. Without loss of generality, let
w=fdd"' A AdxP" and p=gdx" A... Adx™.
Then, by the definition (%),
duywAan) =d(fg) ndx*' A...Adi Adx AL A dx™.
It follows from the usual product rule d(fg) = df -g+f -dg for

functions and the anticommutativity of the wedge product
that

du(w A1)
= (df AdxPP A ANdPTY A (gdxP A LA dxs)
+ (=) (fdx*t AL oAdXFY A (dg AdxY AL A dXY)

= (dyw) A+ (=1) w Adyn,
as was to be proved.

Now for the complex property. We have to show that
dydyw = 0 for all w € Q*U. By the defining formula (x), dyw
is a sum of wedge products of differentials, so by the product
rule, which has already been proved, it suffices to consider
the case k = 0. But for a function f € Q°U we have

n
dydyf = dydf =dy) _d,f - dx*
pn=1

=Y _d@uf) Adx*
pn=1

n
= > 3udf -dx’ Adxt =0,
u,v=1
because 9,3, f is symmetric in u and v and dx” Adx* is skew-
symmetric. Thus we have also proved the complex property
for dy, and this completes the proof of the theorem for the
special case M = U.

8.5 Proof for the Whole Manifold

We now turn to the general case. For the proof of existence,
we will try to define dy locally by means of charts. For
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w € Q"M, we set
(de)p = (dUw)p

for a chart (U, h) around p, where dyw of course means
dy(w|U). This is clearly independent of the choice of chart,
since

dyw|lUNV =dynyve =dyvolUNV

follows immediately from the defining formula (x) for the
Cartan derivative in chart domains. The dp; defined in this
way obviously has the property dyowlU = dyw, so it really
does define linear maps

0— QM M Qip 2 ...

that satisfy the differential condition, the complex property,
and the product rule. This completes the proof of existence.
For the proof of uniqueness, we must now show con-
versely that if dy is a Cartan derivative for all of M, i.e. if it
satisfies conditions (a)-(c), then (dyw), = (dyw),. Now,

w|U = Z Wy A A LA dxtE

M1 <- <phg

But we cannot make direct use of this equation to evaluate
dmw. By hypothesis, dy acts only on differential forms that
are defined everywhere on M, and the functions w,, ,, and
the 1-forms dx* are just defined in U. So we resort to a trick.
In h(U) we choose three concentric open balls about h(p),
with radii 0 < &1 < &, < &3. Let their preimages under h be
U; C U; C Usz. Now we choose a C* function 7 : U3 — [0, 1]
with 7|U; = 1 and t|Us \ U; = 0, a “mesa function,” so to
speak, with a plateau over U; and a slope in U; \ U;. To do
this, all we need is a C* auxiliary function A : Ry — [0, 1]
as in Figure 8.3, with which we then define 7(q) := A(J|Jh(9)|))
for g € Uz C U. The purpose of this device 7 is to extend the
functions wy, .., and x!, ..., x" differentiably from U; to all

Figure 8.2. Preparation
for the mesa function

X

€1 €2 &3

A

Figure 8.3. Auxiliary
function for the mesa
function
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of M. We do this simply by defining

a (q) s T(q)wul...uk(Q) for qe U3,
S I for g e M\ Us,
C) for g € Us,
gh(q =] TO@ 9€ Y3
0 forqg e M\ Us.

For the k-form @ € QKM given by

o = Z am._,ukd&““ /\.../\dé-'u"‘,

1< <pg
axioms (a)-(c) actually do imply that

dpo = Z day, .y NAEPT A LA dEK

B < <pi

because the a's and the &'s are now differentiable on all of
M. In particular, as the defining formula (%) for U shows,

(dMCNU)p = (dUCT))p,

and the right-hand side is equal to (dyw), because w and @
agree on the neighborhood U; C U of p. The only thing left
to prove is that

(@) p = (Amw)p.

In much the same way as we chose the mesa function t
earlier, we now choose a C*® function o0 : M — [0, 1] with
oM\ U; =1ando(p) =0. Then

w—w=0-(0—w),
and it follows from (a) - (c) for dp that
Ay (@ — w) = do A (® — w) + ody(6 — ).

Both the summands vanish at p because @ — w and o are
zero there. Hence dy (@ — w), = 0, as was to be shown. O
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8.6 The Naturality of the Cartan
Derivative

The Cartan derivative is now at our disposal. The general
properties (a)-(c) enabled us to characterize it, and the local
formula

dw|U = Z Awpyy oy N AP A LA dxHE

H1<--<pg

we obtained along the way gives us concrete instructions for
computing dw in the coordinates of a chart (U, h). There was
no need to include the naturality of the Cartan derivative
among the characterizing conditions; it now follows auto-
matically.

Lemma. The Cartan derivative is compatible with differentiable
maps. In other words, if f : M — N is a differentiable map,
then '

f*dw = d(f *w)

for all differential forms w on N.

PROOF. For O-forms w € QON (differentiable functions w :
N — R), the statement f*dw = d(f *w) is just another way
of writing the chain rule since f*w := wo f and (f *dw), :=
dwy pyodfp. For differential forms of higher degree, we know
in advance from the formula above for computing dw|U that
the Cartan derivative is compatible with inclusions of open
sets, so we may assume without loss of generality that there
is a chart (U, h) on N whose chart domain is all of N. We
then have

w = Z Opy @ AL A dxP* and
M1 <--<Hk
dw = Z dwy, .y NdxXPT A A dXPE,
1< <pk
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Applying f* gives
fro= Y frou.u-frd AL A frdx and

1 <o <pi
f*dw = Z frdwy, o A frae*t AL A frdxE
1 <--<pig
Now, before applying d to the first of these two equations
so as to compare df *w with f*dw, we want to convince our-
selves that

d(f*dx"' A ... A frdxtr) = 0.

But this follows by induction and the product rule from the
known equality

frdxt = d(f*x)

for the 0-form x*i on N. Hence d(f *dx*') = 0 because dd = 0.
Thus applying d to f *w gives only

df*w =Y df *wpu, A frAX A LA X

by the product rule. Since d and f* commute when applied
to the O-form wy, .., it follows that df *o = f *dw.

8.7 The de Rham Complex

The naturality of d also means that every differentiable map
f : M — N induces a chain map between the de Rham
complexes of N and M. In other words, the diagram

0 — QON——d—-) QIN—d——> QN —— .

| | |

0 —> QM — QM —— Q*M —— -
d
commutes. The de Rham complex canonically defines a con-
travariant functor from the differentiable category to the cat-
egory of complexes and their chain maps, as announced in
Section 7.5.
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Of course, the de Rham complex of an n-dimensional
manifold M is interesting only up to degree n since QKM = 0
for k > n. For this reason, the finite sequence

0— QM -4 oM -4 . Loy 4 o 4 o

is also often called the de Rham complex of M. But the
naturality of d refers to more than maps between manifolds
of the same dimension, so it is formally more convenient
to extend the de Rham complex on the right with zeros. If
dimN =: k < n, then the naturality of d makes a further
nontrivial statement about k-forms on M: All the k-forms
coming from N have Cartan derivative zero, or are said to be
“cocycles”:

QN —— 0

r| l

QM —4 s QM
Corollary. If M is an n-dimensional manifold-with-boundary
and f : M — 9M is any differentiable map, then

df *w =0
forallw € Q" 19M.

8.8 Test

(1) Let (e1, ..., en) be a basis of V and (81, ..., 8" its dual
basis. Then the following family of wedge products is a
basis of Alt?V:

D (8“ N 6V);L,v=l,...,ﬂ'
] (6” /\6”);1,511-
O (b* 8”)p<v-

(2) Let V be an n-dimensional vector space. Which of the
following conditions on k, with 0 < k < n, is equivalent
tow A w =0 for all w € AltFV?
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O 0<k
0O 2k > n.
O kis odd or 2k > n.
(3) Let V be as above and 0 < r < n. Without further
conditions on r, does n — ... A 5 give an isomorphism
A"V > Hom(Alt'V, Alt"V)?

0 Yes. The spaces have the same dimension and the
homomorphism is clearly injective.

O No. For example, the homomorphism is not injective
for odd r and n = 2r because n A n = 0.

O Only if r and n — r are both even.

(4) In local coordinates (x, y) on a two-dimensional mani-
fold,

O dx Ady(dy,0x) = 1.
O dx Ady(d,,3x) =0.
O dx Ady (3, 8x) = —1.

(5) In local coordinates (t,x, y,z) on a four-dimensional
manifold,

O dt Adx(3,,8,) =1.
O dt A dx(3y, 3;) = 0.
D dt Adx(3,,3;) = —1.

(6) Let w € Q'M, n € °M, and ¢ € Q'M. Then the signs in
the formula

dwAnAng)=FdoAn At TondnALToAanpAd
are, in order,

a +1, +1, +1.

g (=D, (1), (=D

O +1, (=17, (=1
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(7) For the coordinate functions x and y on R?, we have
O d(xdy + ydx) = 0.
O d(xdx+ ydy) =0.
O d(xydx + yxdy) = 0.

(8) Let f : M — N be a differentiable map between mani-
folds. Is the composition of the three homomorphisms

o-IN 4 o N L oM 4 ortip

necessarily zero?

O Yes, because of the naturality of the Cartan deriva-
tive.

O No. Taking M = N = R?, f(x,y) := (y,%), and w =
xy € QON gives a counterexample: dw = (dx)y —
xdy = ydx — xdy, so f*dw = xdy — ydx and hence
df*do =dx ANdy —dy Adx =2dx Ady # 0.

O No. If we take N = M = R, for instance, and set
w = f, we get df *df = ||df ||*. This doesn’t vanish in
general.

(9) Let r and ¢ denote the usual polar coordinates in the
plane. Then rdr Adp =

O dx Ady.
O dy Adx.

O V/x2+y2dxAdy.

(10) On a manifold M, one can also consider complex-
valued differential forms w € Q"(M, C), extend the wedge
product of real forms to a complex-bilinear operation
on complex-valued forms, and (by splitting into real
and imaginary parts) define the Cartan derivative for
complex-valued forms as well. Which of the following is
trueon M :=C?

O dzAdz=dxAdy.
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O dzAdz=2dxAdy.
0 dzAdz = —2idx Ady.

8.9 Exercises

EXERCISE 8.1. Let V be an n-dimensional real vector space.

Show that the alternating k-linear map V* x --- x V* -5

Alt*V defined by (¢!,...,¢") > ¢! A ... A ¢F is universal
in the following sense: For every alternating k-linear map
a: V¥ x ... x V* > W there is exactly one linear map

f:AltfV > Wwitha = f ou

EXERCISE 8.2. Consider the usual coordinate functions x, y,
and z on R3. Give a 2-form w € Q%R3 such that

dw =dx Ady A dz.
Does w = dn for some n € Q!R3?

EXERCISE 8.3. Let M be an n-dimensional manifold and let
w € Q" M. Show that in local coordinates

EXERCISE 8.4. Let w := dx! A...Adx" € Q"R" and let v = v"3,
be a vector field on R”. Determine  := v w € Q" 'R" and
dn € Q"R". Also give an explicit vector field v such that, on
§"1 5 induces the canonical volume form of S"~!.

8.10 Hints for the Exercises

ForR EXERCISE 8.1. For this purely linear-algebraic exercise,
you have to recall the linear-algebraic fact that given a basis
a,...,am of a vector space A and elements by, ..., b, of a
vector space B, there is exactly one linear map f : A —» B
such that f(a)) =b;fori=1,...,m.
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FOR EXERCISE 8.2. Here the coordinates x, y, z define a chart
(U, h) with U = M = R3, so the local defining formula for
the Cartan derivative (emphasized again at the beginning of
Section 8.6) holds immediately for w|U = w itself. It's just
that x!, x?, x> are renamed x, y, z.

For EXERCISE 8.3. This is another direct application of the
local formula for the Cartan derivative (see Section 8.6).

FOR EXERCISE 8.4. We were introduced to the notation v _ w
for ‘v in w” in Exercise 3.1—there in the linear-algebraic sit-
uation v € V, w € Alt"V, here to be applied analogously to
a vector field v on M and a form w € Q"M. The “canonical
volume form” wgi-1 € Q"7 18" ! is the (n — 1)-form that re-
sponds with +1 to every positively oriented orthonormal ba-
sis (v, ...,vUn—1) Of TPS"". “Positively oriented” means that
we think of $"~! as 3D", with the induced orientation. (Note:
If (V, (-,-)) is an oriented n-dimensional Euclidean vector
space and (vy, ..., v,), (v, ..., v,) are positively oriented or-
thonormal bases, then the automorphism f : V — V with
v; — v, has determinant +1. Hence wg:-1 is well defined;
see Exercise 3.2.)

Here's the real hint for Exercise 8.4: R" also has a canon-
ical volume form, namely

w=dx! A... Adx".

How does dx! A ... A dx" respond to (v, ..., Vs—1), and what
does this have to do with v _ w?

vo

k Un—1

Figure 8.4.
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Stokes's Theorem

CHAPTER

9.1 The Theorem

Now we finally come to the theorem so much of our discus-
sion has been about.

Stokes’s Theorem. Let M be an onented n-dimensional
manifold-with-boundary and o € Q" 'M an (n — 1)form
with compact support. Then

M/dw:/w.

oM

Before we begin the proof, we recall two conventions that
were used implicitly in formulating the theorem. First, 0M is
oriented according to the orientation convention established
in Section 6.8: the outward normal followed by the orienta-
tion of the boundary gives the orientation of M Second,
fop@ = [y t*®, where ¢ : 3M — M is the inclusion map
(see Section 7.2 for this notation). We carry out the proof in
three steps of increasing generality:

K. Janich, Vector Analysis

© Springer Science+Business Media New York 2001
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1. The case M = R".

2. The case where there exists a chart (U, h) with
suppw C U.

3. The general case.

The first step takes some computation but no ideas; a
completely straightforward application of the definitions
serves our purpose. The other two are more abstract. The
third and last step introduces partitions of unity, a tool that
is often useful elsewhere in passing from local to global
situations.

9.2 Proof for the Half-Space

Let M = R" . In the canonical coordinates,
w= Z wln_ﬁ._‘ndxl A A dX,

or, if we use the abbreviation f,, := w;..5..» for the compo-
nent functions,

n
C¢)=Zf#dx1 A AdXT,
u=1

where the notation @ again means that the index u or the
corresponding factor dx* is to be omitted.

The two integrands do € Q"R" and *w € Q" 'R""!
can be computed from this formula and the definitions as
follows:

n
do =Y dfy ndxs' AL B AdX"
p=1
n n
=Z(Zavf,,dx“) AdxY L A dX"
o

=1 \v=l

= Z(‘—l)“—laufu . dxl VANPEAN dxn.
n=1
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If we also denote the canonical coordinates of {0} x R"~! C
R" by x2,...,x", then
n
Fo = Zt*fu-t*dxl Ao .o AdXT
u=1
=*f1 -dx® AL Adx" € QUIRMTL

since the inclusion ¢ : {0} x R"™! «— R" obviously induces
the functions 0, x2, ..., x" on {0} x R"~! from the coordinate
functions x!, ..., x" on R". Hence

*dx! =0 and
*dxt = dx* for u > 2.

So much for the integrands dw on R” and t*w on dR”.. We
now turn to the integral itself. The canonical coordinates on
R”" define an orientation-preserving chart, of course, and ac-
cording to the orientation convention so do the coordinates
x%,...,x" of 3R™. Hence, by the definition of the integral
(integration of the “downstairs component function”),

do =Y /(_1)“-la#f#dx1 ...dx" and
R" p=1 R"

/w=ffl(ovxzv---sxn)dxz...dx"
aR" R—1

as ordinary multiple integrals of differentiable integrands
with compact support. By Fubini's theorem, we may in-
tegrate with respect to the individual variables in any or-
der. Thus in the uth summand of f,,do we may integrate
first with respect to the uth variable. Since the support
{x € R : wx # 0} of w is bounded, so is the support of f,
and we obtain

0

x1=0
/ 31f1dx1 = [fl]xl=—oo = f] (0, xz, e ,x")

—00

{0} x R*1
supp w

Figure 9.1. Stokes's theo-
rem in the case M = R"
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Figure 9.2. Stokes'’s
theorem in the case
suppw C U

for u =1 but
oo
xH=+00
f Aufudxt = [f#] =0
xH =—00
—0Q

for the other u’s. Hence

/dw: / fl(O,xz,...,x")dxz...dx"=/a)
M Rn-1

for our first case M := R” .

9.3 Proof for a Chart Domain

Let (U, h) be a chart on M with suppw C U. Our definition
of manifolds-with-boundary allows the two possibilities that
h(U) is open in R” or in R". Without loss of generality we
may assume the former here, since by the compactness of
supp w we could always achieve it if necessary by translating
and shrinking the chart domain. We may further assume
that h : U — U’ preserves orientation and hence, by the
orientation convention, that so does h|3U : U — 3U’. But

then
fdw:/dw: / hdey = f d(h *w),

M U h(U) h(U)

by the change-of-variables formula for integration on mani-
folds (see Section 5.5) and the naturality of the Cartan deriva-
tive. We now extend h™*w to a form o' € Q" 'R" by set-
ting it equal to zero outside h(U), which is possible because
supp h~*w = h(supp w) is compact. Then

/d(h_l*w)zfdw' = /w': f 1w,
Case 1

h(U) R? aR" h(aU)
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But the change-of-variables formula for h|dU : 93U — aU’

gives
f h‘“‘w:/w:/w,

h(dU) aU oM

and this completes the second step.

9.4 The General Case

Everything so far has been routine, but now we need a trick.

The support may no longer fit inside a chart domain, and

decomposing M or supp w by brute force into small measur-

able pieces would lead to discontinuous integrands in R” to

which the Cartan derivative could not be applied at all. If

only we could write w as a sum w = w) + - - - + w, of differen-

tiable (n — 1)-forms w; € Q""'M, each of which had compact

support supp w; that fit inside a chart domain U;! By Section  Figure 9.3. Stokes's theo-
9.3, this would certainly complete the proof. rem in the general case

And this is exactly what we'll manage to do now. First,
around each p € supp w we choose an orientation-preserving
chart (Up, hp) and a C* function A, : M — [0, 1] such that
Ap(p) > 0 and the support of A, is compact and contained hp(Up) c RZ
in U,. That's no problem: we need only lift a suitable “bump
function” B, with compact support in h(U,) up to U, by
setting A,(q) := B,(h(q)) for q € U, and 0 otherwise. Then
{A;l (0, 11} pesuppw is a family of open sets whose union con-
tains supp w, and since supp w is compact there are finitely
many pi, ..., pr such that Figure 9.4. B, for p € M

,
suppw C UA;I(O, 1] = X.
i=1

i=

On the open set X C M we now define r differentiable func-
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tions 79, ..., 7, by
;. X —— [0, 1],
Api (%)
x> .
Ap ) +---+ Ap,(x)
Then obviously

,
Yt =1 forallxeX,
=1
which is why {t;}i=1.....r is also called a “partition of unity”
on X. Multiplication by @ now gives us our corresponding
“partition of w” More precisely, we define w; € Q"' M by

ti(pwp, forpeX,

w;P = .
0 otherwise.

Since supp w is compact, so is supp (7;-w|X) C supp w; hence
wj is differentiable not only on X but on all of M, and it follows
from suppw C X and )_t; =1 on X that

w=w;+ -+ w.

Finally, the supports of the individual summands fit as de-

sired inside a chart domain, because wj, # 0 implies that

7i(p) # 0 and hence that A,,(p) # 0, so suppw; C supp A, C

U,. m)
p

9.5 Partitions of Unity

Stokes's theorem has now been proved. Partitions of unity
are a very useful tool in other contexts as well (see, for
example, [J:Top], Chapter VIII, §4). In particular, they give
us what was promised at the end of Section 5.3, a way to
define integration on manifolds without forcibly splitting
the manifold into little pieces.

Definition. Let M be a manifold and & an open cover of
M (by the chart domains of an atlas, for instance). By a
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differentiable partition of unity subordinate to the cover ,
we mean a family {tq}aca of C* functions 7, : M — [0, 1]
with the following three properties:

(1) The family {zq}qea is locally finite, in the sense that for
every p € M there is an open neighborhood V,, such that
7,|Vp = 0 for all but finitely many «a € A.

(2) Y yeaTa(p) =1forall pe M.

(3) For every «, supp 1y is contained in some set in the open
cover L.

Lemma. Every open cover of a manifold M has a subordinate
partition of unity.

PROOF. If M is compact we can proceed as in the proof of
Stokes’s theorem. First, for every p € M we choose a bump
function A, : M — [0, 1] with support in one of the sets of
the open cover and A,(p) > 0. We then find py, ..., pr with
Ul_1A5 (0, 1] = M and set 7 := Ap,/ i) Ap. Of course, no
problems arise with local finiteness or adding up the bump
functions because there are only finitely many functions.

If M is not compact, we use a compact exhaustion. This
is a sequence

KickK,c---CcM

of compact sets with K; C 12 i+1 and UX, K; = M. Compact ex-
haustions are usually easy to find in concrete cases. One way
to give a general existence proof is as follows: Let {O;}ieN be
a countable basis for the topology of M, and without loss of
generality let the closures O; all be compact. (If they are not
already compact, just omit all the O; with noncompact clo-
sure from the basis; the rest still form a basis.) Now, defining
a sequence recursively by

n; nit1
K; = UOkC UOk, wherel =n; <ny < ---,
k=1 k=1

gives our compact exhaustion.
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G5

Ki+

Ki\ Ki—

Figure 9.5. The strips

Ki\ Ié,-_1 are “taken care
of"by Al, ...

i
LA

The partition of unity is obtained in the now-familiar
way. For each i, finitely many differentiable (bump) func-
tions A’l, cos A : M — [0, 1] are chosen such that

‘i+"'+)‘i,~>0

for all x in the (compact!) set K;\ I% i—1 but the individual sup-
ports are small enough that each fits inside both an element
of Ul and the (open!) set I%,;H \ Ki—>. Then the entire family
{A;}ieNylf j<r; is clearly locally finite, the function

is C® and positive everywhere on M, and setting r = A’ /A
gives the desired partition of unity {t JieN,1<j<ri-

Incidentally, any partition of unity {tq}eca On a mani-
fold M, not just the one we constructed in the proof of the
lemma, has the property that 7, is the zero function for all
but countably (or finitely) many a's. This follows from local
finiteness because manifolds satisfy the second countability
axiom. So without loss of generality a partition of unity can
always be thought of as {7;}icn, and on compact manifolds as

{ri}i=1,...,r'

9.6 Integration via Partitions of Unity

Let M be an oriented n-dimensional manifold, and let {z;}ien
be a partition of unity with each supp 7; contained in the
chart domain U; of an orientation-preserving chart (U;, h;).
Then any n-form « can be written as a locally finite sum
o =Y %, wi, where

w; =T -W.

Let «; : hj(U;) — R denote the downstairs component func-
tion

a; = w].p0 h,-—1
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in terms of (U, ;). Then the following holds.

Note. In this situation, w is integrable if and only if each a; is
integrable on hi(U;) and

Z / la;| dx < oo.

h (U

o0
fw = a; dx.
—

1

M hi(Ui)

Then

Of course, this is a “note” only if integration on manifolds
has already been introduced in some other way. Otherwise
this formula is used as the definition of [, w, and its indepen-
dence of the choice of charts and of the partition of unity
need only be proved as a lemma.

How far this concept of integration on manifolds extends
depends on which concept of the integral in R” is used. The
Lebesgue integral would give us back the concept we defined
in Section 5.4. For many purposes, however, one can get
by with much less: without loss of generality, the supports J h(U) c R
supp 7; of the partition of unity can always be assumed to \ L~ open
be compact. Then for continuous w, for instance, and all the
more for the w € Q"M that we always consider in the Cartan | suppa;
calculus and Stokes's theorem, each summand fh(U’_) a;dx is %
just an ordinary iterated integral B_|

ﬁn ﬂl
f...ff(xl,...,x")dxl...dx"

ap a)

Figure 9.6. [,y aidx is
over a box in R" (even if h(U;) itself is unbounded). The an integral of a continu-
integrand is continuous (differentiable if w € Q"M), and this  ous integrand over a box
situation is controlled by even the most elementary notion Bin R".

of integral. If in addition, as usually happens, the support of

w is assumed to be compact, then there are at most finitely

many such summands, and integration on manifolds is—

may one say?—quite simple. One may.
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9.7 Test

(1) The component function of the n-form
At Adxt AL A dx"

on R" with respect to the coordinates x!,...,x" is the
constant function

al. 0O (=1)~. O (—=1)41,

(2)Letpuy < -+ < prandw :=dx*"1 A, . Adx* € QT(RT). For
the inclusion ¢ : {0} x R"~! < R" under what hypotheses
is it true that *w = 0?

O When one of the u; equals 1.
O When none of the u; equals 1.

0O Never.

(3) For the special case M = RL, Stokes’s theorem reduces
to the statement that if f : R_ — R is a C* function with
compact support, then f_ooo f'(x)dx =

a o. O £ (0). O — £(0).

(4) It is clear that the hypothesis in Stokes’s theorem that
w have compact support cannot just be omitted even in
the case M = R", because then the integrals may not
exist. But does the theorem remain true if instead of the
compactness of the support we require the existence of
the integrals on both sides?

O Yes, because the harmless behavior of w and dw at
infinity is an adequate substitute for compactness of
the support.

O Yes, because this hypothesis is actually equivalent to
compactness of the support.

O No, as you can see by looking at the case n = 1.
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(5) On the question of whether compact subsets can be
contained in chart domains: Consider

X:=8'x {1}u{1} x S! c ! x S
Is X contained in a chart on the torus?

O No, because even S! x {1} by itself doesn't fit inside
a chart domain.

O No, although S' x {1} and {1} x S! individually fit
inside chart domains. Think about the intersections

of their images under a single chart that contains all
of X!

O Yes, because the punctured torus S' x S!\ {p} is al-

ready diffeomorphic to an open subset of R?.

(6) Suppose that you are given the C* function f : R - R
defined by f (x) := e~ V/% forx > 0 and f (x) := 0 forx < 0
and asked to construct a small bump function about the
origin in R”, that is, a C* function B : R" — R, with
support the closed ball about 0 of radius ¢ > 0. Which of
the following definitions yields the desired function?

0 Bx) := f (e — |IxID.
O B(x) == f(e* — |Ix]|%).
0 B(x) = f (x> — &%).

(7) Let U C M be an open subset of a manifold, a chart
domain for instance. Let the functions r : M — R and
f : U — R be differentiable (i.e. C*), and let t vanish
outside U. Is the function F defined by

T(x)f (x) forx e U,

F(x) =
0 forxe M\ U
differentiable on all of M?
O Yes, always.

O Yes if f is bounded. Otherwise, not in general.
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0O Boundedness is enough to make F continuous, but
not differentiable.

(8) For a partition of unity {7, }aea On a compact manifold M,
why are there always only finitely many « with t, % 0?

O Because finitely many of the open subsets
{x € M :1,(x) # 0}

are already enough to cover M.

O Because finitely many of the sets V, that exist by the
requirement of local finiteness are already enough
to cover M.

O Because—itisn't true at all: The supports supp 7, can
“keep getting smaller” even on compact manifolds,
so there is room for infinitely many in a locally finite
way.

(9) On an n-dimensional manifold (without boundary) M,
let w be an (n — 1)-form with compact support and f an
arbitrary differentiable function. It follows from Stokes's
theorem that

Dfodw———-O.
O fyfdow= [, df ho.
D fyfdo=—[,df ro.

(10) Let {t4}aca and {oa}rea be two partitions of unity on
M. Is the family {7403} (e,2)eaxA also a partition of unity?

O Yes, always.

O Only if one of the two is finite (that is, if its functions
vanish identically for all but finitely many indices).

O Only if both are finite.



§9.9 Hints for the Exercises

163

9.8 Exercises

EXERCISE 9.1. Let M be an oriented compact n-dimensional
manifold and (U, h) a “box-shaped” chart, i.e. one with

h(U) = (al7 bl) X e X (ans bn) C Rn,

and let w € Q"M be an n-form whose compact support is con-
tained in U. Show directly, without using Stokes's theorem,
that f,,dw = 0.

EXERCISE 9.2. Let M be an oriented compact n-dimensional
manifold and f : M — N a differentiable map to an (n — 1)-
dimensional manifold N. Also let n € Q"7 !N and w := f*1.
Show that f,,, @ = 0.

"EXERCISE 9.3. Prove that on any n-dimensional orientable
manifold M there is an n-form w € Q"M with w, # 0 for all
pPEM.

EXERCISE 9.4. Let M be an n-dimensional manifold-with-
boundary and n € Q" 18M. Show that there is an (n — 1)-
form w € Q""!'M with *w = n, where ¢ : dM — M denotes
the inclusion map.

9.9 Hints for the Exercises

FoR EXERCISE 9.1. This exercise is closely related to the first
step in the proof of Stokes’s theorem, and its only point is to
give you a better understanding of that step.

FOrR EXERCISE 9.2. Some exercises are so fragile that if you
just touch them they disintegrate. So I'll keep my hands off
this one and tell you instead about a nice application.

Can an oriented manifold M be retracted differentiably
onto its boundary? In other words, can you find a differen-
tiable map p : M — M such that the composition

M <> M5 oM

Figure 9.7.

oM
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'p(x)

Figure 9.8.

is the identity? Always? Sometimes? Never? Certainly not
always: a retraction p : [0,1] — {0, 1} would be a continu-
ous function with p(0) = 0 and p(1) = 1 that assumed no
intermediate value. But in higher dimensions?

It hardly seems likely: the manifold will probably tear if
it's retracted by force onto its boundary. Or is there a twist
that could make this work after all? Perhaps in still higher
dimensions?

Exercise 9.2 shows that it never works. To see this, choose
any n € Q" 1(dM) with [,,,n # 0. This is always possible.
We just have to choose a little bump function A > 0 with
nonempty support in a chart domain U of dM and set

| Mpydxt AL Adx! in U,
L otherwise.

Now, if p : M — 0M were a differentiable retraction, so that
p ot = Idyp, then Exercise 9.2 would give the contradiction

fp*n:=/t*p*n=/n=0-

aM aM aM

Thus we have shown:

Theorem. No compact orientable manifold can be retracted
differentiably onto its boundary.

Corollary. Every differentiable map f : D" — D" has a fixed
point, because otherwise there would exist a differentiable retrac-
tion p : D" — aD".

The theorem and its corollary can actually be general-
ized to continuous maps through an additional argument
(approximation of continuous maps by differentiable maps),
and then the corollary is called the Brouwer fixed-point the-
orem.

For EXERCISE 9.3. Up to now, we have used partitions of unity
only to “partition” a differential form. But they are used far
more often when individual pieces are given locally but don't
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fit together, to weld them into a smooth global object. The
procedure is described in detail in Chapter VIII, §4 of [J:Top].
You don'’t have to study the details—skimming that section
will give you the idea of the procedure in our Exercise 9.3.

after

Figure 9.9.

FOR EXERCISE 9.4. Partitions of unity are an extremely con-
venient tool for constructing forms and functions. Here, too,
you just have to solve the problem locally and then refer to
partitions of unity in one or two cleverly worded lines.
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10 Classical Vector
~ Analysis

CHAPTER

10.1 Introduction

In hindsight, it is easy to say that classical nineteenth-
century vector analysis is about the Cartan derivative and
Stokes'’s theorem, though in a notation in which these objects
are unrecognizable at first sight.

If we go from analysis on manifolds toward classical anal-
ysis, we can see from a distance that there we'll be dealing
only with submanifolds of R3 or, at worst, R". So? Our ideas
can even be applied to arbitrary manifolds.

As we get closer, we also see that the integrands are usu-
ally defined not just on M but on a whole open neighborhood
X of M, on X = R3 or X = R3\ {0}, for instance, or something
similar. So what? Surely our analysis on M can take care of
any n € Q*X; we just apply ¢« : M — X and consider the
restriction t*n € QFM.

This is true in principle, but forms on open subsets X of
R3 should not immediately be dismissed. For one thing, if we
now enter classical vector analysis, we have to recognize the
forms n on X as the real objects of interest. They describe
physical “fields” of various kinds, while the submanifolds

K. Janich, Vector Analysis

© Springer Science+Business Media New York 2001
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M C X are only called in as auxiliaries, to “test” an n € QX
in some sense—to analyze it. Think of a flux density n € 22X
on a region X in space, for instance, whose net flux an
through various surfaces M is to be considered.

But there are also technical advantages to computing with
forms n on X once they're already given there, even if we
could actually get by with the partial information *n. On X
we have the canonical coordinates x!, x2, x> of R3, so we can
use the dx* to represent the differential forms globally. Since
the wedge product and the Cartan derivative are compatible
with maps, in particular with inclusion (*w A t*n = *(w A7)
and di*n = (*dpn), it makes no difference whether we com-
pute before or after applying *, and doing the computation
first is often easier.

The reason classical vector analysis is completely unrec-
ognizable at first sight as a domain of application of the Car-
tan calculus is the complete absence of differential forms.
The concept isn’t mentioned at all! The theory deals instead
with vector fields on X—hence the name—and with the gra-
dient, curl, and divergence operators. Only the fact that the
integration is over volumes, surfaces, and curves indicates
that there is, after all, a connection with analysis on mani-
folds.

This connection is made through the bases for the fields
and forms in terms of the coordinates x!, x?, x>. To be pre-
cise, 1-forms and 2-forms are described with respect to the
bases by three component functions, as are vector fields, and
3-forms by one. The next section contains the details of this
translation of forms into the language of classical vector anal-
ysis.

10.2 The Translation Isomorphisms
For an open subset X of R3, let V(X) denote the vector space

of differentiable vector fields and C*®(X) that of differen-
tiable functions on X.
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We denote the component functions of a vector field a €
V(X) by a;, az, a3, with subscripts, in deliberate contrast to
the Ricci calculus. Otherwise a clash with the Ricci calculus
would just occur somewhere else! This is an indication that
describing 1-forms and 2-forms by vector fields is not in fact
compatible with all changes of coordinates. But as long as
we continue to use the canonical coordinates of R3, we may
think of a vector field a as simply a triple @ = (a, a3, a3) of
functions.

In order to give transparent formulas for the translation
isomorphisms, we introduce the following notation.

Definition. Let X C R3 be open. The R3-valued (“vector-
valued”) 1-form and 2-form

dx! _ dx® A dx3
ds = | dx?* | € QY(X,R% and dS := | dx® ndx! | € Q%(X, R®)
dx3 dx! A dx?

are called the vectorial line element and the vectorial area
element, respectively, and the ordinary real-valued 3-form

AV = dx! Adx® Adxd e Q%X
is called the volume element of X.

Convention. The usual translation isomorphisms are given

by
VX) = Q'X, am a.-d&s,
VX)) —=> Q2X, b~ b-dS,
C®X) = Q3X, c> cdV.

Here the dot denotes the standard scalar product on R3.
But if we write a, b as rows and 43, dS as columns, the dot
can also be read as the symbol for the matrix product.

The dictionary for translating classical vector analysis
into the Cartan calculus, and vice versa, starts with this con-
vention. As you can see, the translation from right to left

169
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dSx(0, w)y =0 x w

Figure 10.1. The cross
product: a reminder

viwd — 83wl
pxwi=| 3wl ~vlwd
viw? — 2wl

is unambiguous, but whether a vector field has to be inter-
preted as a 1-form or a 2-form can't be inferred from the
dictionary alone. Just as in foreign languages, it depends on
the context.

Incidentally, the terms line element, area element, and vol-
ume element become plausible once we understand the geo-
metric meaning of these forms.

Note. At every point x € X,
&, :R3 — R® s the identity,
dSy :R¥xR3 — R®  isthe cross product,
AV, ' R¥ExR3x R} — R3 is the determinant.

By linearity, these assertions need be proved only for the
canonical basis vectors, for which they are obvious (consider
dS.(¢1, ;) = &; and look at cyclic permutations, as for the
cross product). So let’s go straight to the interpretation. The
determinant gives the elementary-geometric volume of a
positively oriented 3-span. The response of the cross product
to an oriented 2-span is the normal vector whose length is
the elementary-geometric area of the span (there are two
such vectors) and whose direction is the one that, followed
by the orientation of the span, gives the spatial orientation.
The identity needs no explanation. If you imagine that forms
respond to small (“infinitesimal”) cells, you can see that the
names make sense.

10.3 Gradient, Curl, and Divergence

Now let’s use this dictionary to translate the Cartan deriva-
tive into the language of vector analysis. As always, X C R®
denotes an open subset. For f € C*(X), we have
of 1,3 2 O 3
df = 5—;—dx + 5;2—dx + ‘a—x—de
af d
(L2

ax1l’ 8x2’ 9x3
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and for vector fields 4, be VX) the Cartan derivatives of the
1-form @ - d5 and the 2-form b - dS are

d(a - —dZa“ x“-—ZB a,dx" A dxt

(82a3 - 83a2)dx A dx® + cyclic permutations
= (dpa3 — B34y, d3a1 — D1a3, 14z — Bpa1) - dS

and

d(b - dS) = db; A dx? A dx3 + cyclic permutations

ob
= a—ldx A dx? A dx® + cyclic permutations
X

b ob; b3
= (P2 L 0By
(8x1 + dx2 + 9x3

This is where we encounter the three classical operators
of vector analysis, for which we fix our notation.

Definition. For X C R3 open, we define the gradient, curl,
and divergence

grad : C*(X) — VX),
curl: VX) — VX),
div: VX)) — C*X),

of of 3f
af=(2L 2
grad f (axl’ 0x2’ 8x3>

- <3a3 da; 0a; Odaz Oday Bal)
curla:= ,

divhi= ot + —= + —.

The computations above for the translation of the Cartan
derivative have given us the following result.
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Note. For X C R open, df = grad f - d5, d(a- ds) = curla- ds
and d(b - dS) = (divb)dV. Hence the diagram

’

0— % s ax—4,2x %, 93x — 0
00— C*®°(X) VX) VX) C®(X)——0
grad curl div

1S commutative.

Corollary. curl grad f = 0anddiv curla = 0 for all functions f
and all vector fields a.

We pause at this stage of the translation to note how
Stokes’s theorem looks as a theorem about vector fields or
functions on X. The corollary of Stokes’s theorem that re-
sults for dim M = 3 is called Gauss's integral theorem or the
divergence theorem.

Gauss’s Integral Theorem. Let X C R? be open and let b be
a differentiable vector field on X. Then

fdivEdV= / 5. d3

M3 aM3
for all compact three-dimensional submanifolds-with-boundary
M3} CX

Observe that three-dimensional submanifolds are canon-
ically oriented by R3. In the two-dimensional case we have
the classical Stokes’s theorem, for which the more general
theorem is named.

Stokes’s Integral Theorem. Let X C R3 be open and let a be
a differentiable vector field on X. Then

/curlb’~d§= f a-ds

M2 aMm?

for all oriented compact two-dimensional submanifolds-with-
boundary (“surfaces”) M? C X.
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For completeness, we also mention the one-dimensional
case, although it has no name of its own.

If X C R3is open and f : X — R is a differentiable function,
then

/gradf -ds = f(q) - f(p)
Ml

for all oriented compact one-dimensional submanifolds M! C X
from p to q.

10.4 Line and Area Elements

In the integral notation of classical vector analysis, the non-
vectorial line element ds and the nonvectorial area element
dS play a central role. So we introduce these two “elements”
next, and to make them easier to understand we start with
an interpretation too closely tied to differential calculus to
be really authentic.

Definition. If M C R" is an oriented k-dimensional subman-
ifold, the k-form wpy € QM that responds with +1 to every
positively oriented orthonormal basis of a tangent space T,M
is called the canonical volume form of M. We call the canon-
ical volume form the line element when k = 1 and the area
element when k = 2, and denote it by ds and dS, respectively.

The intuitive meaning of the canonical volume form is
clear, and we have already encountered it in the exercises
(see Exercises 3.2 and 8.4). Its response to a positively ori-
ented k-span is the elementary-geometric k-dimensional vol-
ume of the span. If we denote the k-dimensional volume of
a set A C M by Voli(A), then

Vol (A) = /a)M
A

whenever the integral exists—think of this equation as a def-
inition if you have no other definition of the k-dimensional

9
—1 M1

p

Figure 10.2.
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volume in R” available, and as a lemma otherwise. In par-
ticular, fA ds is the arc length of A for k = 1, and fA dS is the
area of A for k = 2. When k = 3 we can also write dV for
the canonical volume element, and for M3 C R? this agrees
with our earlier definition dV = dx! A dx? A dx3.

But how are ds and dS related to the vectorial line and area
elements 45 € Q!(X, R3) and dS € Q2(X, R3) that appear in
our dictionary (Section 10.2) and in the integral theorems?
It is clear from the geometric meaning of ds and ds (see the
note in Section 10.2) that in the two-dimensional case the
responses of 1*dS and dS to an oriented tangential 2-span
have the same magnitude, and similarly for (*ds and ds in the
one-dimensional case. But while ds and dS respond with real
numbers, d5 and dS respond with vectors; in fact, ds acts as the
identity and gives a tangent vector, and dS acts as the cross
product and gives a normal vector. In order to express this
precisely and with the right sign, we introduce the following
notation.

Notation. Let M C R" be an oriented k-dimensional sub-
manifold, k=1ork=n-—1.

@ Ifk=1,let T : M — R" denote the positively oriented
unit tangent field.

(b)Ifk=n—1,1et N: M — R" denote the orienting unit
normal field; that is, N(x) L TM, IN@)| =1, and N(x)
followed by a positively oriented basis of TxM gives a
positively oriented basis of R”.

T(x)

o=

Figure 10.3. Unit tangent vector and unit normal vector in the
dimension-1 and codimension-1 cases, respectively
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Lemma. Let X C R3 be open and let « : Mk — RS, for k = 1,
2, be the inclusion of an oriented k-dimensional submanifold.
Then

cd5 = Tds € QUMY R3) and (*dS = NdS e Q*(M?, R).

Proor. If k = 1, then d"(f’) T and ds(f') =1 at every point,
so the first equation holds. If k = 2 and a positively oriented
orthonormal basis (¥, w) of TyM? is given, then N(x) extends
this basis to a positively oriented orthonormal ba31s (N U, w)
of R3. Moreover, dS(@, w) = 1, so NdS@,w) = N =9 x w =
dS(v, w). O

10.5 The Classical Integral Theorems

The nonvectorial line and area elements place the classical
notation of the integral theorems at our disposal. We can
now write the integral of a 1-form a - ds over an oriented
one-dimensional submanifold as

fa.dzzja.frds,
M]

M!

where of course - T : M! — R means the function on M
given by x > a(x) - T(x) (soa- T really means (d|M!) - T’) In-
tuitively, this notation describes what happens to the vector
field under integration, since a(x) - T(x) =: dian(x) is the tan-
gential component of the vector d(x) at the point x € M!, and
the contribution to the integral of a little piece of M! near x
is thus approximately the product aian(x) As of this tangential
component and the arc length As of the little piece.
The two-dimensional case is similar:

/5-d§=/5-ﬁd§,
M? M?
where b(x) N(x) = : bpor(x) is now the normal component of

b at the point x of the surface M?2. If b gives the strength and
direction of a flux, for example, then b, dS responds to a cell

Figure 10.4. Part of the
flux through the cell o
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N
&

~

M2

Figure 10.5. T and N for
Stokes’s theorem

in M? with the rate of flow across M2. In particular, we now
obtain the two integral theorems of Gauss and Stokes (see
Section 10.3) in what may be their most common version.

Gauss’s Integral Theorem. If X C R3 is open and bisa
differentiable vector field on X, then

/divEdv = / b-Nds

M3 M3
for all compact three-dimensional submanifolds-with-boundary
M}cCX

Here M3 is thought of as canonically oriented by R3, so
by the orientation convention N means the outward unit
normal vector field on dM.

Stokes’s Integral Theorem. If X C R® is open and a is a
differentiable vector field on X, then

[curlii-ﬁdS: f a-Tds
M? aM?
for all oriented compact surfaces-with-boundary M 2c X

~ As an application of Gauss’s integral theorem we con-
sider the special case b = grad f, where we have to take
the volume integral of div grad f . Written in the coordinates
x, y,z of R3, divgrad is the familiar Laplace operator, or
Laplacian, A:
) 3%f ¥ f  ¥%f
af = 52 T dy? T3z

In this context the notation V (“nabla”) tends to be used for

the gradient:
af o
Vf = %,l—,—f—. .
dx Jdy 0z

Throughout what follows, let f and g be differentiable func-
tions on an open set X C R3 and let M3 C X be a com-
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pact three-dimensional submanifold-with-boundary, as in
Gauss's integral theorem. Setting b = Vf gives an imme-
diate corollary.

Corollary 1.

/ AfdV = f Vf - NdS.
M3 aMm3
Since Vf - N is the directional derivative of f in the di-

rection of the outward normal (Nf if vectors are viewed as
derivations), it is also written

- )
Vf-N::—L
on

(the “normal derivative of f"), and Gauss's theorem for
grad f takes the following form:

/Ade: / z—ids.

M3 aMm3

Corollary 2.

A bit more generally, we now set b= gVf.The ordinary
product rule gives

div(gVf) = Vg Vf + gAf,
and hence the following result.
Corollary 3 (Green’s first identity).
/(vg Vf +gAf)dV = f gVf -Nds.
M3 aM3

Since the scalar product Vg - Vf is symmetric in f and
g, this gives another identity.
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Corollary 4 (Green’s second identity).

J/ (f Ag — gAf) AV = / (fVg — gVf) Nds
M3 M3

- / (fz—i -—g—g—f’;) ds.

M3

10.6 The Mean-Value Property of
Harmonic Functions

Of course, such an enumeration of special cases is a rather
dry affair unless something more is done with them. In
physics these formulas come alive! We can’t go into this,
but we will derive another nice mathematical result from
Gauss's theorem (or rather from its Corollary 1 in Section
10.5).

Definition. Let X C R3 be open. A differentiable function
f : X — R is called harmonic if Af = 0.

Theorem (Mean value property of harmonic func-
tions). Let f : X — R be harmonic and let K be a closed ball
lying entirely in X, with vadius r, center p, and boundary S.

Then
B fsfds 1 .
=" = [ £
S

that is, the value of the function at the center is the mean value
of the function on the surface of the ball.

PROOF. Without loss of generality, let p = 0. When (x!, x2, x3)
occurs as a tangent vector, we write X = (x!, x2, x3) for con-
sistency with the vector-analytic formulas. We should actu-
ally distinguish between x = (x!, x2, x%) as a point in M = R3
and ¥ = (x!, x%, x%) as a vector in T,R® = R>, but we haven't
inserted the distinction between R” and its tangent spaces
into our notation anywhere else.



10.6. The Mean-Value Property

For every t € [0, 1], the function f; defined by f;(%) :=
f (tx) is also harmonic on some domain containing K and
has the same value at p as f. Since the constant function fy
obviously has the property 4nr?f (p) = Js fodS, it suffices to
show that the integral

It = -/ftdS
S

isindependent of ¢, i.e. that ‘%I, = 0. Since %f(ta'é) = Vf(tx)-x
and Vf,(X) = tVf (tx), we have
iI, = }t-/Vf, -xdS fort> 0.

dt
S

But on the boundary S of the ball of radius r, the outward
normal is N = X/r; hence, by Corollary 1 of Section 10.5,

d r - r

S K
and is therefore zero because f; is a harmonic function. O

Corollary (Maximum principle for harmonic func-
tions). If X C R is open and connected, and if the harmonic
function f : X — R has an extremum, then f is constant.

PROOF. Without loss of generality, let f(x) < f(xo) =: yo
for all x € X. The set f ~!(y) is closed in X because f is
continuous. But it is also open by the mean value property:
Let p € f~1(y). Then f must be constant and equal to y,
on the boundary S of any ball about p that lies completely
in X; otherwise continuity would give f;fdS < f(p) [5dS.
Thus the nonempty set f ~1(y) is open and closed in the
connected subspace X C R3, so f () = X. O

Corollary (Uniqueness for the Dirichlet boundary
value problem). Let M C R® be a compact three-dimensional
submanifold-with-boundary and let f, g : M — R be continuous
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functions that are harmonic on M\ M. If f and g agree on the
boundary, i.e. if f|OM = g|OM, then f = g everywhere on M.

PrOOF. Without loss of generality, let M be nonempty and
connected. As a continuous function on a compact set, f —g
must take on extrema. That is, there are xg, x; € M with

fxo) — g(x0) < f(x) —g(x) < f(x1) - g(x1)

for all x € M. But either f — g is already constant (in fact
zero since f |dM = g|oM and M # @), or xy and x; must lie
in 0M, by the maximum principle applied to the harmonic
function f —g. Thus, again using f |dM = g|dM, we find that
0<f(x)—gx) <Oforallx e M. a

Our discussion of classical vector analysis has been re-
stricted to the case n = 3. Some things are special to this
dimension—the Cartan derivative (curl) changing 1-forms
into (n — 1)-forms, for instance—but others carry over to
arbitrary n. In particular, on an open subset X C R", 1-
forms and n-forms are both translated into vector fields,
and O-forms and (n — 1)-forms into functions; the Cartan
derivatives d : 29X — Q!X and d : Q"'X — Q"X become
the n-dimensional divergence and gradient, respectively;
and the general Stokes’s theorem gives the n-dimensional
Gauss's theorem. This in turn implies the same Green's
identities and the same theorems on harmonic functions as
in the three-dimensional case.

10.7 The Area Element in the
Coordinates of the Surface

After these examples of applications, we return to practical
matters of vector analysis. How can we compute with line
and area elements in local coordinates on the curve or the
surface?

The integral of a k-form over the domain of an orientation-
preserving chart on a k-dimensional manifold is simply the
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ordinary multiple integral of the downstairs component
function, as we know from Chapter 5. How does this look
concretely for the forms a - ds and b - dS of vector analysis?
First, we should note as a peculiarity of the vector-analytic
situation that the symbols x!, x*, x> are used for the co-
ordinates of R3, so we have to choose others for the local
coordinates of a surface M2 C R3, say (u!, u?) or (u, v).

x! ) lh:(u,v)

c R2: (4, v)-plane

Figure 10.6. Notation for the coordinates

It is also more convenient in vector analysis to introduce
coordinates on the surface “from below”; this means consid-
ering ¢ := h~! instead of h. Since M? C R3, ¢ is given by
its three component functions x = x(u,v),i=1,2,3, ab-
breviated x = x(u, v), on an open region (often denoted by
G C R?) of the (u, v)-plane or half-plane. The canonical basis

Figure 10.7. Local coordinates on a surface M? ¢ R3
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Figure 10.8. The orient-
ing normal of the surface

vectors of the chart, which we have written 9/0u, 3/dv as el-
ements of T,M C R3, are then 0%/0u and 3%/9dv as vectors in
R3. Our next result comes from the definition and descrip-
tion of the area elements dS and dS (see Sections 10.2 and
10.4).

Corollary 1. Let M?> C R3 be an oriented surface in space
and G an open region in R? or R%. On G, let the inverse of an
orientation-preserving chart (U, h) be given by X = x(u, v). Then
at every point p = x(u, v) € U we have

-(d 0 9x  0x
as|{ —, — | = — x —,
du Jdv ou oJv

d a
S ol
192 x &
0 0 ax 0x
as| —, —} = |— x —|.
Ju dv ou ov

Here again, the ambiguity of the notation u, v turns out
to be useful. On the one hand, we can think of u, v as the
coordinate functions on U ¢ M?, 8/8u and 8/dv as vector
fields on U, and du, dv € Q'U. With this interpretation,

a 9% o%
dS|U = (2 % Z) du A dv e QXU RY)
ou Jv
or
9% o%
aS;U = |22 x ZVaundve QU
ou Jv

is the surface element as a 2-form on U. On the other hand,
we can read u, v as the coordinates in G, and then

X 0x
—_— x —
du aJv

on G is exactly the downstairs component function of dS. In
particular, this gives the following corollary.
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Corollary 2. If, in addition to the hypotheses of Corollary 1,
¥ : M? — R is a function, then

fw%—/ ¥ G, 1)
whenever this double integral exists.

In vector analysis, the definition of the “surface inte-
gral” is usually based on this formula in coordinates, so it
is important to observe that the same formula also holds
for an orientation-reversing chart or a reorientation of U. Al-
though a change of orientation reverses the sign of the inte-
gral when the integrand stays the same, our integrand doesn'’t
stay the same at all—the area element dS changes sign under
a change of orientation.

dudvy

What we find for the line elements ds and ds is similar.

Note. Let M! C R3 be an oriented curve (one-dimensional sub-
manifold) in space, and on an interval I C R let the inverse
of an orientation-preserving chart (U, h) be given by t > x(t).
Then d3(3/3t) = X(t), T = %(t)/I%(®), and ds(3/3t) = x|l
at every point p = x(t) € U.

Hence
LU =%dt € QU(U,R% or ds|U = ||3|dt € QU
is the line element as a 1-form on U. In particular,
ds = /31 ()2 4+ x2()2 + 23(1)2 dt

at any point X(¢), and we have an analogue of Corollary 2 for
the line integral.

Corollary 3. Since the line element ds changes sign under any
change of orientation of U,

/wa=fwwmﬁmwt
U 1

for any orientation of U.

183



184

Chapter 10 Classical Vector Analysis

Don’t begrudge learning a third version of the classical
Stokes's theorem, in addition to those in Sections 10.3 and
10.5. There's something special about this one. For this ver-
sion, we let G denote a bounded region of the (u, v)-plane
with smooth boundary, in our language a compact two-
dimensional submanifold-with-boundary of R?. The bound-
ary of G consists of one or several, say r, closed curves,
which are oriented according to the orientation convention.
Let them be parametrized consistently with the orientation
convention by simple closed curves

yi t g, Bi} = G, t (wi(H),vi(®)), i=1,...,

=

Corollary 4. If X C R3 is open and @ is a differentiable vector
field on X, then for any differentiable map X = X(u, v) from G to
X we have

/ (curl a(x(u, v))) - (?—3£ x 95) dudy

du dv
G

Bi
=> f A0, vi(0) - L0, v ().
=) dt

The promised special feature of this version of the the-
orem is that the map G — X, far from having to be an
embedding (a diffeomorphism onto a submanifold M C X),
may be any differentiable map ¢ : G — X, even one that car-
ries G into X crumpled up, singular, and self-intersecting! No
new theorem in need of proof is hiding behind this, just the
application of the general Stokes’s theorem to G instead of
to some M C X. More precisely, if we set w := - ds € Q'X,
then the formula of Corollary 4 just says that f,d(¢*w) =

Jac ™o
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10.8 The Area Element of the Graph of a
Function of Two Variables
The special case where U is the graph of a differentiable

function z = z(x, y) is of particular interest. Then u := x|U
and v := y|U are the coordinates of the canonical chart h.

The inverse chart or “parametric representation” G L Uis 2 y
then given by x = x, y = y, and z = z(x, y), so the tangential U
basis vectors are
1 G
oy @ x
— = 0 and — = 1 s
ox gf 24 gf Figure 10.9. Basis for
the tangent space to
and the magnitude of their cross product is the graph

dp 3¢ az\? [d8z\?
—x—l=,/1+(— —=).
el () (3)

Corollary. For a function ¢ : U — R on the graph

U:={(x,y,2(x, ) : (x,y) € G}

of a differentiable function z = z(x, y) on an open subset G of
R? or R?, the equation

2 2
/1,[/ dS = f/ Y(x, y, z(x, y))\/l + (i?—z-) + (-3—2) dxdy
J g ox ay

holds and is independent of orientation, whenever the double
integral exists. In particular, the surface area of U is

2 2
Vol (U) = j/ \/l + (g—z) + (%) dxdy.
G
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10.9 The Concept of the Integral in
Classical Vector Analysis

At the very end of this chapter we return yet again to the
question of how, for its part, classical vector analysis really
interprets integration on manifolds—essentially the surface
integral—when it makes no use of differential forms. I con-
ceded earlier that our interpretation of the line and area el-
ements ds and dS as the canonical volume forms of oriented
curves and surfaces is not quite authentic. What should the
authentic interpretation be?

The genuine unadulterated area element dS of classical
vector analysis is defined for every surface in space (analo-
gously for every k-dimensional submanifold M* of R™), and
has absolutely nothing to do with orientation or orientabil-
ity. But to each p € M it assigns, not an alternating 2-form,
but a density

(see Section 5.1); to be precise, dS, just responds to a pair
(v, w) of tangent vectors at the point p with the elementary-
geometric area of the parallelogram they span, so

ds, @, w) = |7 x #|

for M2 c R3. If M is actually oriented, then the volume form
wy is related to the area element dS by

dS@, w) = lom(v, w)l.

If we now imagine, as in Section 5.2, that dS responds
in approximately this way to small cells, then for a function
f : M — R on an arbitrary surface (not necessarily oriented
or even orientable), the intuitive meaning of

A[fds
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is clear. A formal definition is based on the local formula

Uffd8=lff(?c(u,v))-

(See Corollary 2 in Section 10.7.) If the Lebesgue integral
for R? is available, the general definition of integrability and
the integral f,, fdS can be applied as in Section 5.4 by de-
composing M into small measurable sets, with the additional
convenience of not having to worry about whether the charts
used are orientation-preserving. Incidentally,

dudv.

x_.

dx 3%
0 ov

A}——)/dSé[O,oo]
A

then gives a measure s on the o-algebra of measurable sub-
sets of M (see Section 5.5), and [}, ...dS is just the Lebesgue
integral on this measure space.

If one doesn't want to resort to the Lebesgue integral,
partitions of unity (as in Section 9.6) offer an elegant way
to base the definition of the surface integral on any notion,
however modest, of the multiple integral (here, the double
integral). If M is oriented, then f, f dS according to this def-
inition agrees with f,, f wa according to the old definition.

This idea of the area element as given by the ordinary
unoriented surface area is certainly the more obvious and
the more elementary. It has the advantage of being directly
applicable in the nonorientable case as well without addi-
tional arguments. But it has the drawback of densities: the
integrands f dS are not differential forms and therefore can-
not be inserted casually into the Cartan calculus. Orienta-
tion (crucial for the integral theorems) then appears in the
form of the orienting normal field N. This way of encoding
the orientation hardly looks promising for generalization to
arbitrary manifolds—even to, say, surfaces M? ¢ R%. But
whatever you may think of the differences between the old
area element dS and the volume form wy € Q*M, 1 hope at
least to have made these differences completely clear.
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Yet even this description of the classical vector-analytic
notion of the surface integral has been spruced up. The text-
books, still used to some extent today, that present classical
vector analysis classically use neither the Lebesgue integral
nor partitions of unity. The reader is led toward the defini-
tion of the surface integral in two stages: first, a plausibility
argument showing that

!f ds=fG[f6c<u,u»

is the right formula locally, and second, instructions to cut
the surface into appropriate “pieces,” to each of which the
formula can be applied. In view of the available notion of the
double integral, this involves certain ad hoc conditions on
the piecewise smoothness of the boundaries of these pieces
of surface. Asking for clean definitions and proofs is not
allowed. Even the question “What is a surface, anyway?”
rarely gets a proper answer. The area element is given in
the classical notation as

0x
x_—_

ax
— dud
™ udv

v

0xX 0%
_...X—-—

ds =
S ou dv

dudv,

and all the reader learns about its status as a mathemat-
ical object is that it’s an “expression,” a “symbol” But this
information, at best acceptable if a bit bald, is immediately
superseded. This symbol is now converted to other coordi-
nates, brought into a different form—an equality sign be-
tween “symbols” that look completely unalike? The putative
proofs that the surface can be cut up and that the integral is
well defined are just sketches of proofs, in fact sketches that,
if actually carried out, would produce monstrosities.
Conceptually and technically, classical vector analysis
is not only much narrower, but even within this narrower
realm much clumsier, than analysis on manifolds. Anyone
who uses it only for integration over the surface of a sphere
or a cylinder and whose scientific interest is directed toward
something completely different, namely the physical content
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of the equations, can of course be served quite well by a
plausible, computable formula. But if, as a mathematician,
you would like to understand the structure of vector analysis,
then you should not expect much from those textbooks that,
though rooted in the nineteenth century, are still going their
stately way through this one.

10.10 Test

(1) To which vector field ¥ = (v, vz, v3) in R3 does the
2-form xdz A dy correspond?

Dv=(—x0,0). O0v=(0,x —x). 0Ov=(0,~—x,x).

(2) As usual, let 7 : R3\ {0} — R denote distance from the
origin. To which 1-form o € Q! (R3\{0}) does the outward
radial unit vector field correspond?

dr dr
0O w=dr Dw=—. Ow=—.
r r
(3) It is always true that
O gradcurl = 0. Ocurlgrad =0. Odivgrad =0.

(4) In Stokes’s integral theorem for a vector field 7, what
should replace the dots in [y, ...dS = [,,, U - Tds?

O curl? x N. O curl? - N. O |jcurl 7.

(5) The notation V x v of classical vector analysis, read
sympathetically, can no doubt mean only

O curldivo. O grad divy. O curlv.

(6) According to Gauss's integral theorem, for every differ-
entiable function f : D> - R we have

O [ Af dV = [, f dS.
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O [ Af dV = [, L as.

(7) Let f : X — R be constant on the boundary dM of the
three-dimensional submanifold M C X. What does this
mean for the normal derivative?

D-ai-=0, D%=Vf Diz
on on an

(8) Let X C R® be open and f : X — R differentiable.
Clearly, the formula ft;‘ f'iy@®)y(®dt = f(q9)—f (p) holds
for any curve y : [ty, 1] — X from p to q. But in what
sense is this a special case of Stokes’s theorem [, ,dw =

faMw?Set
OM:=Xandw:=f.
OM:=[ty,]and w := y*f.
OM:=[t,hlandw:=f.

VLI

(9) In terms of the coordinate x, what is the line element ds
of the graph {(x, /%) : x > 0}?

D‘/l+-—1—dx. a 1+—1—dx. O v x2 + xdx.
4x - 2/x
(10) What is the area element dS € Q25? of the 2-sphere
with the usual orientation, expressed in terms of the ge-
ographic angular coordinates (eastern) longitude A and
(northern) latitude B?

O sin BdBAdA. O cos BdAAdB. O sin BdAAdB.



§10.11 Exercises

10.11 Exercises

EXERCISE 10.1. Let X C R® be open. Let V(X) = Q!X = Q%X
and Q°X = Q3X be the isomorphisms established by the
basis vector fields and basis forms

31, 32, 33 for V(X),
dx!, dx?, dx* for Q!X,
dx® Adx3, dx3 Adx!, dxd Adx? for Q%X

and dx! Adx? Adx® for Q3X.

If 1-forms and 2-forms are described in this way by vector
fields and 3-forms by functions, what happens to the exterior
product?

EXERCISE 10.2. Let X C R3 be open. For differentiable func-
tions f and vector fields v and w on X, find vector-analytic
product formulas for

(a) curl(fv) =?
(b) div(f D) =?
() div(v x w) =?
by translating them into the calculus of differential forms.

EXERCISE 10.3. Let M C R? be a compact two-dimensional
submanifold-with-boundary.

(a) Prove Green's theorem:
ag of
d dy = = —-—=)d .
/f *redy /(3x ay) il
M M
(b) What is the geometric meaning of the integrals [,, xdy

and [,y dx?

EXERCISE 10.4. Recall that fj; dV = 1 [, dS. Find and prove
a generalization of this formula for D" and $"~1, n > 1.
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EXERCISE 10.5. Let M C R3 be a compact three-dimensional
submanifold-with-boundary and let py, . .., p, € M\dM. Find

X — Pk
Ix— Pkl3

10.12 Hints for the Exercises

FoRr EXERCISE 10.1. In Section 10.3 we “translated” the Cartan
derivative into classical vector analysis. You should do that
here for the wedge product; that is, convert the three maps

QX x QX — Q2%X,
QX x Q2X — Q3X,
QX x QX x QX — X
defined by the wedge product into corresponding relations

among vector fields. For the first line, for example, find the
map that makes the following diagram commutative:

QX x QX — Q%X

VX) x VX)) — VX)

Of course, you can calculate this completely formally, but
you should also do the best you can to see what the answer
means.

FOR EXERCISE 10.2. This extends Exercise 10.1 and uses its
results. In (a), for instance, we have to consider the diagram

QX x QX —2 Qlx —45 Q2x

curl

C®X) x VX) — VX)) — V(X)
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where the vertical arrows represent the usual translation
isomorphisms. On the top line we know what's going on:
in the calculus of differential forms one product formula
suffices, and for w € Q"X it always reads d(w An) =dw An+
(—1)'wAdn.

For EXERCISE 10.3. Here f and g are to be viewed as, say,
differentiable in an open neighborhood X of M in R?. Of
course, the exercise is in some way an application of Stokes’s
theorem, and we do have an integral of the form f,, w on
the left-hand side of (a). But notice that we don't have [, dw
on the right-hand side: dxdy is not a typo for dx A dy! One
of the things this exercise requires is that you refer to the
definition of the integral of a 2-form in this special situation.
In both parts of the exercise you also have to pay attention
to the sign!

FOR EXERCISE 10.4. What vector field b should you choose
on a neighborhood of D? so that the formula in the exercise
becomes exactly the statement [ divb = [, b - NdS of
Gauss’s integral theorem? Once you've found this I;, even
the generalization is completely obvious.

For EXERCISE 10.5. The physicists among you will recognize
the integrand: x/r3 is the negative of the gradient of the
harmonic function 1/r. Anyone learning this here for the
first time should do the calculation once. This makes the
exercise an application of the formula

/Ade: f Vf - dS

M3 aM3
(Corollary 1 of Section 10.5). But not a direct application,
because our integrand has isolated singularities! The best

thing is to surround them with small balls, as is done for the
residue theorem in complex function theory.
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11 De Rham
~ Cohomology

CHAPTER

11.1 Definition of the de Rham Functor

We turn now from classical vector analysis to a completely
different aspect of the calculus of differential forms. Con-
sider the de Rham complex
0— M -5 olm 4 ...
of a manifold M. The property d o d = 0 means that
im(d : Q1M — Q*M) C ker(d : @*M — QM)

for every k, so we can take the quotient of these two vector
spaces.

Definition. If M is a manifold, the quotient vector space
B 1-<er(d : QM > QFHIM)
im(d : Q1M — QkM)

is called the kth de Rham cohomology group of M. The
Cartan derivative d is also called the coboundary operator;
the differential forms in the image of some d are called

K. Janich, Vector Analysis
© Springer Science+Business Media New York 2001
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coboundaries, and those in the kernel cocycles. If n € QkMm
is a k-dimensional cocycle, its coset

(7] :=n+dQ*'Me H'M
is called the cohomology class of 1.

The terms boundaries, cycles, and homology class come
from homology theory, where a “chain” ¢ has a “boundary” dc
and is called a “cycle” if this boundary vanishes. Two cycles
are called homologous if they differ only by a boundary. All
this was already discussed in Sections 7.6 and 7.7.

In terms of geometric meaning, taking boundaries in ho-
mology theory corresponds to taking boundaries of compact
manifolds-with-boundary. Since the Cartan derivative is dual
to taking boundaries, in the sense that the effect of do is just
the effect of o on the boundary (as described in detail in
Section 7.3), the terminology “coboundary operator” for d
becomes understandable.

Lemma and Definition. The wedge product and the functorial
properties of the de Rham complex turn

(0,0}
H%:@y#
k=0

canonically into a contravariant functor from the differentiable
category to the category of anticommutative graded algebras and
their homomorphisms. This functor H* is called simply the de
Rham cohomology.

ProOF. We first show that the wedge product H'M x H°M AN
H™M is well defined by

(w] A 7] := [w A7)

Clearly w A 1 is a cocycle whenever w and n are: if dw = 0
anddn = 0, then d(wAn) = dwAn+(—1) wAdny = 0. Without
loss of generality, we need only check whether

[(w + da) An) = [w A 1],
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so that da A 7 is a coboundary. But
d(a A1) =da/\n+(——l)'_la/\dn=da/\n

because dn = 0. Hence the wedge product of a coboundary
with a cocycle is always a coboundary, so the wedge product
is also well defined for cohomology classes.

Furthermore, if f : M — N is a differentiable map, then
the naturality of d (see Section 8.6) immediately implies that

f*:HN — H'M,
M — [f*n]

is well defined. The algebraic and functorial properties now
carry over from Q* (see Section 8.7) to H*. O

11.2 A Few Properties

What can we say offhand about the computation of de Rham
cohomology? First, a completely trivial observation:

Note. If M is an n-dimensional manifold and k > n, then QKM =
0 and hence H*M = 0.

Of course, we also know the 0-cocycles, the functions
f € Q°M with df = 0. These are the locally constant real
functions, and the only coboundary among them is the zero
function:

Note. H°M is the vector space of locally constant functions. In
particular, if M is connected, then H'M = R canonically.

In addition, Stokes'’s theorem gives us a statement about
the other end of the de Rham sequence.

Corollary of Stokes’s Theorem. If M is an orientable closed
(i.e. compact and without boundary) n-dimensional manifold,
then H*M # 0.

PROOF. Orient M and choose n € Q"M with [, n # 0
(using a chart and a bump function, for instance). Since
Q"M = 0, any n-form, and 7 in particular, is a cocycle. But
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n is not a coboundary dw. If it were, the hypothesis 0M = @
would imply f,,n = [,,dw = f;,,@ = 0 by Stokes’s theorem.
Hence [n] # 0 is in H"M. O

Finally, if we look at the morphisms, then in addition to
the functorial property of f* = H*f : H'N — H*M we can
note the following:

Note. If f : M — N is constant, then H*f = 0 for all k > 0. If
M and N are connected, then H°f : R — R is the identity for

every f.

So much for the meager results of direct inspection. In
the next two sections, we establish an important nontrivial
property: the homotopy invariance of de Rham cohomology.

Definition. Let M and N be differentiable manifolds. Two
differentiable maps f,g : M — N are called differentiably
homotopic if there is a differentiable homotopy h between
them, that is, a differentiable map

h:[0,11xM— N
such that h(0, x) = f (x) and h(1, x) = g(x) for all x € M.

Since M and N (as always) may have boundary, we note
explicitly that we will call a map ¢ : U — R" defined in an
open subset U of [0, 1] x R” differentiable if every u € U has
an open neighborhood V, in R**! to which ¢|U NV, can be
extended differentiably.

Theorem (Homotopy invariance of de Rham cohomol-
ogy). IfM, N are manifolds and f, g : M — N are differentiably
homotopic maps, then

* = ¢* : H'N — H*M forall k
g

Anything else I would really like to say now about the
concept of homotopy in general, and the significance of ho-
motopy invariance for functors from the geometric to the al-
gebraic category in particular, can be found in [J:Top], Chap-
ter V.
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11.3 Homotopy Invariance:
Looking for the Idea of the Proof

I would like to show you not only how the proof looks but
also how to find it. Let w be a k-dimensional cocycle on N.
We have to show that

[f*w] = [g*w] € H'M,

or, in words, that the two cocycles f *w and g*w differ only by
a coboundary da. So what we're looking for is an a € Q1M
with

gfw - f*o = da.

So much for the problem. Now we inspect our tools. The
only hypothesis is the existence of a differentiable homotopy
between f and g, i.e. a differentiable map h from the cylinder
[0,1] x M over M to N that coincides with f on the bottom

{0} x M and with g on the top {1} x M. Stated a bit more
formally, what we have is

hot0=f,
houy =g,

where ; : M — [0, 1] x M denotes the inclusion at height ¢
defined by «,(x) := (¢, x).

[0,1]xM
¢ '\/}1
73 —_—
> 3
- w lives here
{t} xM

Figure 11.1. The homotopy h between hoig = f andhot; =g

Then the induced cocycle h*w also coincides with f*w on
the bottom and with g*w on the top, or more precisely:
wh*w = f*o,

kLK %k
gh*e = g*w.
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{1} xt

[0,1]x T
0} xt

Figure 11.2. The prism
over the k-cell T

top sides

<

bottom  [0,1] x 3t

Figure 11.3. 9([0, 1] x 1) =
{1} xtU{0} xTU[0, 1] x dt

Now that we've done everything obvious, we have to in-
terrupt our confident transcription of the proof for a moment
so we can look for an idea for constructing «.

The cocycle h*w on [0, 1] x M does at least establish some
kind of link between f*w and g*w. The vague idea of some-
how using h*w to define the desired o € Q*~1M is probably
obvious enough. Where else could we start? So we have to
take a closer look at the relationship of h*w to f*w and g*w.
Let t be an oriented k-cell in M; then [0,1] x T C [0,1] x M
is the cylinder or prism over t. Like any cocycle, h*@ must
respond with zero to the oriented boundary of [0, 1] x t:

o= f dh*w =0
3([0,1]x 1) [0,1]xT

because dh*w = 0. But the boundary consists of the top,
bottom, and sides, and the top and bottom have opposite
orientations. Now h is given on the top by g and on the
bottom by f, so

feurframs [ v

[0,1]x0d7

Of course, we could also figure out the sign by examining
the orientations more carefully (the sign is positive), but
that would be pedantic at this point. All that really matters
is finding a (k — 1)-form « € Q"M whose coboundary deo
responds to t as h*w does to [0, 1] x dt. But since, in any
case, da responds to T as « does to 37, we want

o= / o
o [0,1]x0

for every oriented (k — 1)-cell ¢ in M. In words: « should
respond to o as h*w does to the prism over o. So if we just
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upgrade this from a requirement on « to the definition of a,
we'll be done with the proof—at least intuitively.

But how can we make a precise definition out of the
intuitive idea of a “prism operator”

P: Q(0,1] x M) — QF 1M,

where we think of Pn as given by the effect of n on prisms?
Well, the integral f[m]xo n is defined as an ordinary multiple
integral of the downstairs component function, and integrat-
ing with respect to the variable t gives

[ aef (J o

[0,1]x0
by Fubini. So all we have to do is set

1

Pn(vy, ..., v41) = /U(atvul,---,vk—l)dt
0

and we can be sure, on the basis of our reasoning, that one
of the two k-forms

o = +Ph*w

solves our problem.

11.4 Carrying Out the Proof

Now that we've found the idea, it will be easiest to carry
out the proof just by verifying the desired property do =
g*w — f*w, which in this case reads

dPh*w = fh*w — (jh*w.
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If we consider an arbitrary 5 instead of the special h*w, the
geometric meaning of the operators d and P tells us that Pdn
will respond to an oriented k-cell T in M as n does to the
boundary of the prism over t; since this boundary consists
of bottom, top, and sides, we can thus expect (perhaps up to

sign)
Pdn = (in — gn) — dPn.
Notation. We denote by v_ n the (k — 1)-form n(v, ...) that
results from inserting a vector v in the first slot of a k-form
n.
Assertion. For the prism operator
P: k(0,11 x M) — QM,

1
N — f (@ = mt,
0

we have Pdn = «fn — jn — dPn.
PROOF OF THE ASSERTION. The assertion is linear in n and
local with respect to M, so it suffices to consider the two
cases

8] n=adx"' A...ANdx* and

(2)  n=bdt Adx* A ... AdxHe
in local coordinates on M.
CASE (1): Here Pn = 0 since 3, 1 n = 0, so certainly dPn = 0.
Moreover,

n
da .
dn = adt A dx? /\.../\dx“"—i-zg%dx’/\dx“l Ao Adxtr
i=1 x

and hence
1

Pdn = /c’zdt dx*t A LA dxE

0
= (a(1, ) — a(0, ) dxM' A ... A dxHk

=n —n. @)
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CASE (2). Now (§n = (jn = 0 because (3 dt = 0 for any fixed
tg. So we must show that Pdn = —dPn. Since

n
dn = ;%dx‘ Adt AdxMY A LA dxtEe
1=

it follows that

1
0

dt | dx' Adx™ A LA ditr,

Q.)
G“

z_

On the other hand,

R
= (/ bdt) dxPY A LA dxHReT
0

and hence

1
z ab ;
dPn=>" / P dd AdxM AL AdXM-L (2) O

i=1

The assertion has been proved. Now if w is a k-cocycle
on N and n := h*w the induced cocycle on [0, 1] x M, then
dn = 0, so Pdn = 0 and we obtain

o - ffo = w - h*o = in — 4n = dPn.
We have proved the following result.

Lemma. If w is a cocycle and h a homotopy between f and g,
then the cocycles g*w and f*w differ only by the coboundary
d(Ph*w).

This completes the proof of the theorem on the homotopy
invariance of de Rham cohomology.
11.5 The Poincaré Lemma

Now we reap a series of corollaries of homotopy invariance.
The homotopies are always understood to be differentiable.

203



204

Chapter 11 De Rham Cohomology

In fact, differentiable maps that are continuously homotopic
are always differentiably homotopic, as a suitable approx-
imation theorem shows. Since the homotopy class of any
continuous map f : M — N must also contain differentiable
representatives, de Rham cohomology is well defined and
homotopy invariant even for the category of differentiable
manifolds and continuous maps. But we won't go into this
here.

Our first results follow from the fact that for k > 0, a
k-form induced by a constant map must be zero (see Section
8.3).

Corollary 1. If f : M — N is null-homotopic (i.e. homotopic
to a constant map), then f* : HKN — H*M is the zero map for
allk>1.

Corollary 2. If M is contractible (ie. if Idyy : M — M is
null-homotopic) then H'M = 0 for all k > 1.

PROOF. Id}; : H*M — H*M is the identity by the functorial
property, but also zero by Corollary 1. O

Corollary 3. On a contractible manifold, every positive-
dimensional cocycle is a coboundary; in other words, if w €
Q*M, k > 0, and dw = 0, then there exists a € QKM with
do = w. '

Corollary 4 (Poincaré lemma). For an arbitrary manifold
M, any positive-dimensional cocycle is locally a coboundary;
that is, every point has an open neighborhood U in which, for
every w € QKM with k > 0 and dw = 0, there exists a € Qk-1u
with da = w|U.

Any contractible open neighborhood U of p (any open
“chart ball,” for instance) will obviously work.

Another special case of Corollary 3 is also often called
the Poincaré lemma, so we state it explicitly.

Corollary 5. If X C R" is open and star-shaped, then every
positive-dimensional cocycle on X is a coboundary.

This case also serves a special interest, for the following
reason. Suppose we are explicitly given a “contraction” of a
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manifold M, a differentiable map
h:[0,1]xM — M with
hg = constant and
hy = Idy.

Then, by the lemma stated at the end of the proof of homo-
topy invariance, we also have an explicit integral formula
that tells us, for any cocycle w on M, how to find a form
a with da = w. Imitating the term “antiderivative” used for
functions, we might call « an “antiderivative form”:

dow = 0 = d(Ph*w) = w,

so ¢ = Ph*w is an antiderivative of w. Now, a domain X C R”

that is star-shaped with respect to xp € X has the simplest

possible contraction, namely the straight-line contraction
h(t, x) == xg + t(x — xp).

Thus we can also write down a completely explicit an-
tiderivative for a cocycle w € Q*X. Without loss of generality,
let xo = 0, so h(t, x) = tx and

w= Z Wpq o dXPT A A dXPE,
By <<y
Then
W oy, (t, X) = oy, ., (),
h*xH = txH,
h*dxt* = dh*x* = x*dt + tdx*

at each point (¢,x) € [0,1] x X. But dt(3;) = 1 and dx*(3,) = 0
on{0,1} x X, so0 9, 1 h*w =

k
Z Z:(—l)"ltk—la)m,__M,((tzc)x“"dx“1 AT A difE
M1 <-<prg i=1

and since Ph*w was defined as fol d: 2 h*w (see Section 11.4),
we have the following result.
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Corollary 6 (“Antiderivative formula for forms”). Let
X C R” be open and star-shaped with respect to xg = 0, and let
w € Q%X be a cocycle (i.e. dw = 0). Then setting o =

k
Z Z(_l)i—l(fol tk‘la)u1 ,,,#k(tx)dl‘)x"fdx“‘ AT AdxHE

My <e-<pg i=1
gives do = w.

Of course, we could check directly and mechanically
that da = w. This would give a simple, elegant, and com-
pletely incomprehensible proof of the Poincaré lemma for
star-shaped domains.

In Section 10.3 we saw how the three Cartan derivatives
of the de Rham complex of an open subset of R? correspond
to the operators gradient, curl, and divergence. So translat-
ing the Poincaré lemma into classical vector analysis gives
another corollary.

Corollary 7. If X ¢ R? is open and contractible (star-shaped,
for instance), then the following exist on X:

(1) for every vector field a with curla = 0, a function f with
grad f = g;

(2) for every vector field b with divb = 0, a vector field a with
curla = b;

(3) for every function ¢, a vector field b with divb = c.

11.6 The Hairy Ball Theorem

“You can’t comb the hair on a two-sphere.” This vivid mnemonic
has been adopted for the theorem that there is no nonvan-
ishing vector field on an even-dimensional sphere.

It's hard to see at first what the problem has to do with
the calculus of differential forms. Do we have to interpret
the vector field as an (n — 1)-form or something? Not at
all—in fact, differential forms have absolutely nothing to do
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with it. The proof is a sample of homological arguments, and
analogues work for other homology or cohomology theories.

Let M be an oriented closed n-dimensional manifold. The
linear map

HM — R, [w]— fw,
M

is well defined by Stokes’s theorem since f,,da = f,a = 0.
In view of the homotopy invariance of f* : H"N — H"M,
the composition of f* with f}, is clearly homotopy invariant.

Corollary. If M is an n-dimensional closed oriented manifold,
then for all f : M — N the composition defined by

N L arm M R

is homotopy invariant.

We are about to derive the “hairy ball theorem” from this
corollary, applied to M = N = §?, and therefore point out
that the corollary also follows easily from Stokes’s theorem:
Let h be a homotopy between f and g. Then

/g*w—/f*w: / o= / dh*w = 0,
M M

3([0,11xM) ([0,1]x M)
since dw = 0 and hence dh*w = h*dw = 0. Still, as a corollary
of the homotopy invariance of de Rham cohomology the

statement is logically in the right place. But now for the
application.

Theorem. Every differentiable vector field on an even-dimen-
sional sphere has at least one zero.

PROOF. Let v be a nowhere-vanishing vector field on $”, with
n arbitrary for now. For any x € §" we can think of v(x) as a
pointer toward the antipodal point —x € §", and intuitively
we see at once that the antipodal involution t : §" — S
x +— —x, is homotopic to the identity. To check this formally,
set

v(x)
vl

h(t,x) ;= cosmtx+ sinmt

Figure 11.4. The vector
v(x) as a pointer
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The homotopy invariance of the integral (a consequence of
Stokes’s theorem, as described above) implies that

/t*a):/w
Sﬂ Sﬂ

for all w € Q"S". (The homotopy invariance of de Rham
cohomology even gives t*[w] = [w].) On the other hand, we

know that
/f*w::i:/w

sn sn

~

for every diffeomorphism f : S" = §", where the sign de-
pends on whether f preserves or reverses orientation (see
Section 5.5); this is just the statement of the change-of-
variables formula for integrals of differential forms. But the
antipodal map t : S" — S" reverses orientation if and only if
n is even. This can be seen, for example, as follows: For every
x € S", the differential of the diffeomorphism —Id : D"*! —
D™ takes the outward normal N(x) at x to N(—x) at —x (the
differential is —Idgs+1 everywhere), so the diffeomorphism
reverses the orientation of the boundary exactly when it re-
verses the overall orientation of D"*!, and it obviously does
the latter if and only if » is even. Thus

[ro=-[o

s N

for all w when n is even, and since there exist n-forms w with
fsn @ # 0 this contradicts homotopy invariance. Hence there
can be no such vector field v for even n. ]

This beautiful geometric theorem, provable in a number
of ways, is not only interesting in itself but also a point of
departure and a joint special case for various further de-
velopments (global properties of vector fields on manifolds,
more generally of sections of vector bundles, Euler charac-
teristic, characteristic classes, .. .).
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11.7 Test

(1) The cohomology class [n] C Q*M of a cocycle n of degree

kis
0{n+ow:weQ*M, do = 0}.
O {n+dw: we Q1M).
0O {n+ w: dw =dn}.

(2) What is meant by anticommutativity of the graded algebra
H*M is the following property of the wedge product: for
all [w] € H'M and [n] € H*M,

O [w]A ] = -] Alw].
O [w] Alnl = (=D""*[n] A [w].
O [wIAn] = (D7 A [w].
(3) H*M = 0 if and only if
O for every w € QKM there exists n € Q¥~1M such that
dn = w.

O for every w € QXM with dw = 0 there exists n €
Q*~1M such that dn = w.

O for every w € QKM of the form w = dn we have
dw = 0.

(4) The polar coordinates (r,¢) on M := R?\ {0} give a
well-defined 1-form dg. This 1-form is

O a cocycle, because dd = 0 is a local property.
O a coboundary, because ¢ € QM.

O not a cocycle, and certainly not a coboundary, be-
cause ¢ can't be defined on all of R? \ {0} without a
“jump.”

(5) In connection with the prism operator, we had to con-
sider 9; 1 w. Now let x, y, and z denote the coordinates in
R3. Then
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O 0xo (dx Ady +dy Adz) = dy.
O 0x (dx Ady +dy Adz) = —dy.
O 0xa (dxAdy +dy Adz) =dy Adz.

(6) Which of the following is true for the cylinder M :=
S' xR?

0O H2M = 0 because the fact that M is two-dimensional
implies that d : QM — Q3M is zero.

0O H?M = 0 because M is the product of two one-
dimensional manifolds.

O H?M = 0 because the projection

SIxR — S!'xR,
(z,x) —> (2,0)

is homotopic to the identity and H2S! = 0.

7) Let the maps f, g : M — N be homotopic. Is it true that
ps /.8
f*w = g*w for all cocycles w € QFKN?

O Yes, f* = g* by the homotopy invariance theorem.
O No, because if f *w = g*w for all cocycles, then f = g.

O No. On a contractible manifold, for example, the
identity is homotopic to a constant map.

(8) Let p and q denote the north and south poles of the
n-sphere S”, n > 1. Then

O S"\ {p} is contractible because it is diffeomorphic to
R".

0O S" is not contractible because H"(S") # 0.

O S"\ {p, q} is not contractible because the identity on
$"~1 can be factored over $"~! \ {p, g}:

s — "\ {p.q} — §"7,
so H"™1(S"\ (p. q)) # 0.
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(9) That every vector field with zero divergence on the open
set X C R3 is the curl of a vector field on X is equivalent
to

O X is connected (Poincaré lemma).
O H'X = 0 (cocycles are coboundaries).

O H2?X = 0 (cocycles are coboundaries).

(10) Does an analogue of the hairy ball theorem hold for
the even-dimensional real projective spaces RP?

O Yes, since $* — RP?f is a covering, and any vector
field on RP? can be lifted to S%.

O No. For example, in homogeneous coordinates on
the projective plane RP?, a nowhere-vanishing vec-
tor field is well defined by

[x) @ x2 @ x3] > (x1, x2, x3) /I x|l

O No. There are vector fields on S2* that have zeros but
do not vanish at a pair of antipodal points {£x}.

11.8 Exercises

EXERCISE 11.1. Prove that H(§%) = 0.

EXERCISE 11.2. Prove directly from the definition that [w] —
Jq @ defines an isomorphism H!(S!) = R, and go on to show
that dim H'(S' x §!) > 2.

EXERCISE 11.3. Amap f : M — N is called a homotopy
equivalence if it has a homotopy inverse, i.e.amapg: N —
M such that f og and go f are homotopic to the identity maps
of N and M, respectively. The manifolds or spaces M and N
are then called homotopy equivalent. Show that R3\ {0} and
$2 are homotopy equivalent but $2 and S! x S! are not.

211



212

Chapter 11 De Rham Cohomology

11.9 Hints for the Exercises

FOR EXERCISE 11.1. For every closed 1-form (that is, every
w € Q!(5%) with do = 0) you have to find a function f with
df = w. To do this, choose a point g € §2, say the south pole,

and define
f(x) :=/w=:/w,
12 q

where y denotes a path from q to x.

Don't think that I've already given away the solution: the
real work is just starting! Why is this f even well defined?
And why is df = ? The local solutions of the equation
df = w given by the Poincaré lemma are a great help in
thinking about these questions.

That H (M) = 0 for any simply connected manifold can
be proved in exactly the same way. But when M = $? life can
be made a bit easier, for instance by applying the Poincaré
lemma to the contractible subdomains §?\ {q} and $?\ {p} of
$? and comparing the two functions to each other.

FoR EXERCISE 11.2. For the second part of the exercise you
just need to use the functorial property of H!. For exam-
ple, consider the four maps given by projection onto and
inclusion of the factors

st=stxstas,
and apply the functor H! to them.

FOR EXERCISE 11.3. At first, when you're just getting to know
the definitions, it's easier to answer yes than no to such topo-
logical existence questions—after all, if the thing in question
exists you have some chance of finding and exhibiting it.
But when that doesn’t work, how can you be sure that it just
can't be done? Later, though, the tables are turned, because
you learn about functors that often yield nonexistence state-
ments for free, while explicit constructions usually come at
some cost in effort.
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But in the first part of the present exercise, this cost in ef-
fort is modest, and a functor you can use for the second part
is practically still on the table from the other two exercises.
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12.1 Semi-Riemannian Manifolds

For a fuller development of the calculus of differential forms,
we now proceed to Riemannian manifolds. Here we will
encounter the star operator, the Laplace-de Rham operator,
the Hodge decomposition, and Poincaré duality. We begin by
considering the somewhat more general semi-Riemannian
manifolds.

Before introducing Riemannian and semi-Riemannian
manifolds, I would like to remind you of a few linear-
algebraic concepts and facts: A symmetric bilinear form
(-, -) on an n-dimensional real vector space V is called non-
degenerate if

V — V*
v +— (v,)

is an isomorphism, and this occurs if and only if the n x n
matrix G given by

8uv ‘= (U/_u vy)

K. Janich, Vector Analysis

© Springer Science+Business Media New York 2001
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has full rank for some (hence any) basis (vy,...,v,) of V. A
basis can be chosen in such a way that G has the form

(+1 ) \

+1

t 7

\ -1

The number s of —1's on the diagonal is independent
of the choice of such a basis (Sylvester's law of inertia),
and is called the index of the symmetric bilinear form. The
quadratic form g : V — R corresponding to (-, -) is defined
by

Y

q() := (v, v),

and we can recover (-, -) from q through the identity

1
(v,w) = E(q(v +w) — q(@) — g(w)).

The pair (V,q) or (V,{(-,-)) is called a nondegenerate
quadratic space of index s, and a Euclidean space in the
positive definite case s = 0.

Definition. By a semi-Riemannian manifold of index s,
we mean a pair (M, (-, -)) consisting of a manifold M and a
family
(s =A{( ')p}peM

of symmetric bilinear forms (-, -), of index s on T,M that is
differentiable in the following obvious sense: for the charts
(U, h) of some (hence every) atlas on M, the functions g, :
U — R defined by p +— (3, d,), are differentiable. In the

positive definite case s = 0, we call (M, (-, -)) a Riemannian
manifold.

The family (-,:) is called the Riemannian or semi-
Riemannian metric of (M, (-, -)). We retain the “p” in the
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notation (-, -), only when clarity seems to demand it, and
otherwise write (v, w), =: (v, w) forv,w € T,M.

Submanifolds of R" are Riemannian manifolds in a
canonical way. But an arbitrary manifold, with charts
(Ux, hy), can also be provided with a Riemannian metric
(-,-) by choosing a partition of unity {ra}rea such that
supp 7. C U, and setting

(. whp =Y a(p) (v, whi,

AEA

where (v, w), denotes the Riemannian metric transferred
from U, C R" to U, by dh,. Observe, though, that the same
procedure fails in general if we try to apply it to construct a
semi-Riemannian metric of index 0 < s < n. We could start
with the semi-Riemannian metric

n—s

n
(%, Pnmss = Y Kyt — N 'y
pu=1

v=n—s+1

on R" and write down a formula analogous to the one above
for (-,-) on M. But since the property of being nondegen-
erate and of index s, in contrast to positive definiteness, is
not convex (see, for instance, [J:Top], p. 120), it does not
carry over in general from (-, -); to the convex combination
Y2 t(p)(-, -)a. On the even-dimensional spheres S", for ex-
ample, there is no semi-Riemannian metric of index 1 (or
n — 1), as can be shown using the hairy ball theorem and a
covering argument ([J: Top], pp. 152-153).

Semi-Riemannian n-dimensional manifolds (n > 2) of in-
dex 1 or n — 1 are called Lorentz manifolds. Changing the
sign of the metric interchanges these indices. We follow the
convention of taking the index of Lorentz manifolds to be
n — 1. Real space-time, via a metric (-, -) given physically,
is a four-dimensional Lorentz manifold. This circumstance
was historical and is still a principal motive for extending
Riemannian geometry to semi-Riemannian manifolds. In
the general theory of relativity, the differential geometry
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of Lorentz manifolds plays an important role both concep-

tually and technically, and in particle physics the Lorentz

metric, through the theory of special relativity, is ubiquitous.
Our first goal will be to define the star operator

QM > Q" kM

for an oriented n-dimensional semi-Riemannian manifold
M. This is done for each individual p by means of a star
operator

x 1 AT, M > AT, M,

so we set manifolds aside for the time being and return yet
again to linear algebra.

12.2 The Scalar Product of Alternating
k-Forms

We begin with a linear-algebraic observation about finite-
dimensional real vector spaces that involves no additional
structures such as orientation or metric: (Alt‘V)* and
Alt*(V*) are canonically the same. The following lemma
makes this more precise.

Lemma. If we interpret each linear form
¢ € Hom(Alt*V, R) = (AltFV)*

on Alt*V as an alternating k-form (denoted by $) on V* by setting

fﬁ(al,...,ak) = (ol AL AR

for any o, ..., a* € V* we obtain an equivalence of the two
functors (Alt*—)* and Alt*(—*) from the category of finite-
dimensional real vector spaces and linear maps to itself. In

other words, for every linear map f : V — W between finite-
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dimensional real vector spaces, the following diagram is com-
mutative:

AlFVY* —Z5 Altk(V*)

(Altk f)*l lAIt"(f *)

(Alttwy* —=— Altk(W*)

PROOF. The spaces (Alt)V)* and AltX(V*) have the same di-
mension. Moreover, if p(a! A... /\ak) =0forallel,..., ok e
V* then ¢ = 0 € (Alt*V)*. So the canonical map is injective
and hence an isomorphism. Its compatibility with f follows

from the naturality of the wedge product. a

Now let a nondegenerate symmetric bilinear form (-, -)
be given on V. This is also called a (not necessarily positive
definite) scalar product. We adopt the following suggestive
notation from [AM].

Notation. If (-,:) is a nondegenerate bilinear form on a
finite-dimensional real vector space V, we denote the iso-
morphism between V and V* given by v — (v,-) and its
inverse by

b
vV & v~
i
Instead of b(v) we sometimes write ®v or v*, whichever is
most convenient, and similarly for §.

The meaning of the notation can be inferred from the
symbols § and b in music, which, as you know, are read
“sharp” and “flat” The linear form « is “sharpened” to the
vector "o by .

By the lemma above, an isomorphism V = V* also in-
duces an isomorphism Alt‘V & (Alt*V)* and thus a bilinear
form on Alt*V, or more precisely:

Defining Lemma (Scalar product on the space of
forms). If (V, (-, -)) is an n-dimensional nondegenerate quad-
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ratic space, then on AIt*V there is a canonical bilinear form
(-, -) that is also symmetric and nondegenerate, namely the one
given by

AltFV)* —Z 5 Altkyx =, Altkv,
canon Altkp

PROOF. Let w,n € Alt*V and let ¢, ¢ € (AltFV)* be their
preimages under the map above. All we have to prove is the
symmetry condition

(w,n) == @) = ¥(w) = (n, w).
If we trace how w results from

Y r— g — w,

we find that
wWi, ..., o) =¢Cv1, ..., v =Coi A ... AW,
and similarly for n and ¥. Now let (e, . . ., e,) be an orthonor-

mal basis, abbreviated o.n. basis, of the quadratic space V;
that is, (ey,e)) = £8,,. We write (e,,ey) =: g, = %1. Let
(8, ...,8"™) be the corresponding dual basis of V*. Observe
that

D, ©
e, =¢£,0
for every u (no summation), since
Yeu(en) 1= (eu, &) = 48y = £u8"(e)

for every v.
Without loss of generality, we now set

w = 8" A ... A SHK,
n=206"1TA...\N8%.

Then
(@, 1) = @@ A ... AS%)
=Ey ... e pCey A...Aey)
=8U1 I 'gvkw(ev], ...,e‘,k)

=€y oy SHT AL AR ey, -, ey
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Hence (w,n) = &, - ... - eysgnr if the uy,..., ux are dis-
tinct and come from vy, ..., v, through a permutation t of
the indices 1, ..., k; otherwise (w, n) is zero. In particular,
(w,n) = (n, w). o

This proof also gives us a formula for computing the
scalar product on AltkV.

Lemma (Orthonormal basis in the space of forms).
If (e1,...,ey) is an o.n. basis of the quadratic space V and
(8%, ..., 8") denotes the dual basis, then

B" A AR Y iy
is an o.n. basis of AtV and
(MY AL AR SN L AR =gy -l ey,

where ¢, := (e,, €,).

12.3 The Star Operator

Now we add an orientation to our data. To begin with, we
have a canonical “volume form” wy € Alt"V.

Defining Lemma (Volume form). Let V be an n-dimensional
oriented nondegenerate quadratic space. The alternating n-form
wy € Alt"V that assigns the value +1 to some (hence every)
positively oriented o.n. basis is called the volume form of V.

PROOF OF THE ASSERTION (“hence every”). Let (e, ..., €],) be
a second positively oriented o.n. basis and let f : V — V be
the linear transformation with f(e,) = e;L. Then

w(el,...,e) =f*we,...,e) =detf

by the lemma in Section 3.3. So we must show that det f =
+1. If A is the matrix of f with respect to (e, ..., e,), then
e; = )_ajie; and hence (¢, ¢;) = Y3 ajian(ej, ¢), or in ma-
trix notation

G="A-G-A.
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Since |det G| = |det G'| = 1 (o.n. property of the bases), this
implies first that |det A| = 1 and then, since f is orientation-
preserving, that det f = detA = +1. O

Incidentally, if the second basis is not necessarily or-
thonormal but just positively oriented, the same calculation
shows that

det f = /|detG|.

Writing this in a frequently used notation gives the following
result.

Lemma (Volume form formula). Let V be an oriented n-
dimensional nondegenerate quadratic space, (V1, ..., Un) G pPOs-
itively oriented basis, and (81, ..., 8") the dual basis. Then the
volume form is

wy =./Igl8 A AS",

where g is the determinant of the n X n matrix given by
Suv = (Uu, vy).
Now we define the star operator.

Defining Lemma (Star operator). If V is an oriented n-
dimensional nondegenerate quadratic space and wy € Alt"V
its canonical volume form, then for every k there is exactly one
linear map

*: AltFV — Alt"FV
(the star operator) such that
nA*E = (n, {)ov
foralln, ¢ € AltFV,

PROOF. We prove uniqueness first. Let (81, ..., §") be the dual
of a positively oriented basis and let A; < --- < A; and
U1 < -+ < ug be ordered indices. By the lemma on o.n.
bases in the space of forms (Section 12.2), the requirement
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also implies that

SMUA LA S A KM AL LA M)
Epy * - Eg @V ifui=A;fori=1,...,k
0 otherwise.

But this means that the sum on the right-hand side of the
equation

* AL A = Yy, S AL A

V] <o <Vp_k

can have only one nonzero component, which must corre-
spond to the complementary multi-index

V] < o < Vp_ge
More precisely,
*(BHIA LAY =gy gy sgnT 8V AL A BYK,

where v; < --- < v,k is complementary to u; < --- < ug
and where T denotes the permutation that takes (1, ..., n) to
(L1 oy Mk» V1, - -, Vy—k). In particular, * is uniquely deter-
mined by this necessary condition.

Conversely, given a fixed positively oriented o.n. basis,
we use this formula to define . Then the requirement that
nAx¢ = (n, {)wy is satisfied if n, ¢ are basis elements of
Alt*V, and this suffices since the requirement is bilinear.
This proves the existence of the star operator. a

The formula above also holds without the conditions
M1 < -+ < pgand vy < --- < v, because sgnt captures
the sign changes caused by permuting the indices. We state
this more formally as follows.

Note 1. For any positively oriented o.n. basis and any permu-
tation t,

*@T DAL AST®) =gy gy ysgnT 8TETD AL AT,

This also implies that, up to sign, *n responds to vec-
tors that form part of an orthonormal basis as n does to the
complementary or remaining vectors:
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Note 2. If (e, ..., ey) is a positively oriented o.n. basis, then

*n(e,(kH), ey e,(,,)) =€r) - Er(l)SGNT - n(e,(l), ey el—(k))

for every n € AWtV and every permutation t. In particular,
*x1 = wy and xwy = (—1)indexVy

Hence the composition
Alt'V 55 AlRY 5 ALty

is the identity, up to sign, and since the index of V counts
the number of times —~1 occurs as a factor in ¢; - ... - g,, this
sign is given by the following formula:

Note 3. ** = (—1)kn—R+indexVyq .

We began by setting n A x¢ = (n, {)wy as the characteriz-
ing property of the star operator. Now that we know the sign
of #x, we can read off more information from this definition.

Note 4. n A ¢ = (=1)kn—R+index Vi, wry iy for all n € AltFV
and all { € Alt" V.

Our next result follows from Note 4 and the definition of *.
Note 5. (xn, %¢) = (=1)84eXV iy Y for all n and ¢ in AItFV.

Finally, we also mention that the star operator, as follows
directly from its definition, changes sign under a change of
orientation because the canonical volume form changes sign
while the scalar product remains unchanged.

Now we turn from the star operator on a single vector
space to manifolds and their tangent spaces. Let M be an »n-
dimensional oriented semi-Riemannian manifold. For each
individual tangent space T,M and each k, the three defining
lemmas in Sections 12.2 and 12.3 give a scalar product (-, -),
on AltkTpM , a canonical volume form wr,m € Alt"TpM, and
a star operator

* 1 AFT,M —> Alt"*T, M,

which all depend differentiably on p.
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Definition. Let M be an n-dimensional oriented semi-
Riemannian manifold. Then the canonical volume form
wpm € Q"M, the scalar product

(-, ) : Q"M x QM — Cc® M)
of k-forms, and the star operator
*: QM — Q" FM

are defined in the obvious way via the corresponding objects
on the tangent spaces.

12.4 The Coderivative

The star operator translates the de Rham complex, in which
the degrees of the differential forms increase, into an equiv-
alent complex in which they decrease:

0— QM -4 oM -4 Loy oMo

N SRR}

0— QM — Q"M — ... — QM — QM —0

The Cartan derivative d goes to *d*~!, and up to sign this
is the coderivative §. But the sign is subject to nonuniform
conventions; we fix one as follows.

Definition. The coderivative
§: Q" kM — k1M

on an n-dimensional semi-Riemannian manifold M is de-
fined by

§:=(—Dfxdx1.

The coderivative is obviously independent of the orien-
tation of M. The meaning of the sign becomes clear when
we consider the formal adjoint, or dual, operator d’ of d with
respect to the scalar product. What this means is the follow-
ing: Taking the pointwise scalar product of k-forms n, £ on a
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manifold M defines a function (n, {) € C*°(M), and integrat-
ing over M by means of the volume form gives us a number,
which we denote by (1, ¢)) € R to make the distinction clear.
We make this more precise.

Notation. For k-forms 7, ¢ € 2¥M whose supports have com-
pact intersection, we set

(.60 = [ (. chang = [nnse

M M

The differential operator &' dual to d : Q*M — Q1M
should satisfy

(dn, &) = (n, d'¢))

for all n € QKM and ¢ € Q¥M with compact support in
M \ 3M. In particular, it should be an operator from Q1M
to Q¥M. By the product rule,

din A*8) =dn Axl + (=DrnAdx¢.

Since we know the sign of *x by Note 3 in 12.3, we can easily
convert d  { to & * (xdx~1)¢. Hence
d * [ = (__1)(n—k)k+indexM * *d * ¢
— (__1)(n~k)k+indexM % %d * *——1 Z
= (=1)—RkHE—k=D+1) 4 4 g 41 ¢
= (=1)" 1k (kdx"1)¢ = (=1)F % 8¢

for ¢ € QFIM. Our choice of sign for & thus gives the fol-
lowing product rule.

Lemma. For all n € QXM and ¢ € Q<1 M,
d(n A*L) =dn AxL +n A *8¢.
If the intersection of the supports of n and ¢ is also com-

pact in M \ 3M, then f,, d(n A x¢) = 0 by Stokes's theorem,
and we have the following corollary.
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Corollary (Duality formula for the coderivative).

for n € QkM, ¢ € Q1M whose supports have compact inter-
sectionin M \ oM.

Thus each —§ is dual to d by our sign convention for the
coderivative. The opposite convention, which makes § and
d dual to each other, is also used (see, for instance, [W]).

Up to this point we have denoted all the operators in the
de Rham complex by the same symbol d. Now we want to
include the index k in the notation.

Notation. When necessary, the Cartan derivative and
coderivative will be denoted by the more precise symbols dj
and 6, as follows:

QkM Qk+1M
*l; *l;
Qn—kM (‘1),(5"5 Qn——k—lM

Thus (—1)k8y is conjugate to dy by means of %, and by the
duality formula above, —§ is dual to (or the formal adjoint
of) dy—k—1. The double meaning of the coderivative as (up
to sign) both conjugate and adjoint to the Cartan derivative
establishes a relationship between dy and d,_x_1, which we
will now examine more closely.

12.5 Harmonic Forms and the Hodge
Theorem

In what follows, let M be an n-dimensional oriented compact

Riemannian manifold without boundary. The scalar product

(-, ) is defined on all of Q*M by compactness, and because
dM = @ the duality formula

{dn, ) +{n,8¢) =0
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for the coderivative holds for all n € QKM and ¢ € QM.
Finally, since the scalar product on M is now assumed to be
positive definite, the scalar products (-, -) on the individual
spaces Alt"TpM and (-, -)) on Q¥M are also positive definite,
and this turns the Q*M into Euclidean vector spaces.

We now consider a portion of the sequences of the Cartan
derivatives and coderivatives:

d d
Q1M 2:5"— QM ? QM.

or more precisely

dy—y di
Qk—lM T—) QkM -8——) Qk+1M.
n—k n—k—1

In the Euclidean space (@M, (-, -)), the operators are ad-
joints of each other. So it is trivial that

kerdy = (im&,—k—1)>
and
kerd,_x = (imdg_1)™ .

The first equation holds because dn = 0 <= ((dn, {)) = 0 for
all¢ < ((,8¢) = Oforall¢ <= 75 € (imé)+, and similarly
for ker .

For vector subspaces Vy C V of finite-dimensional Eu-
clidean spaces V, we always have V = V; @ V. So if we
were permitted to think of Q*M as finite-dimensional, we
could conclude that

QM = kerd @ im 8 = ker§ ® imd.

The conclusion is actually true, but although this decom-
position of Q¥M seems to be within easy reach, the proof
requires methods from the theory of elliptic differential op-
erators and is beyond the scope of this course. See Chapter
6 of [W], for example.

Theorem (here without proof). If M is an oriented n-
dimensional closed Riemannian manifold, then

Q*M = kerd; @ im8,_y_; = kerd,_x ® imdi_;
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as an orthogonal direct sum with respect to the scalar product
on Q*M defined by

(. 2) :=/nA*c.

M

This theorem, which looks a bit technical at first, lies at
the heart of Hodge theory for the de Rham complex. Our
first corollary is the following.

Corollary. For M as above,

kerdy = imdi_1 @ (Kerd; Nkerd,_i),
kerd,—x = imé,_x_1 ® (kerdi Nkerd,_¢).
The k-forms 1 € Q*M making their appearance here—those

for which dn = 0 and 8n = 0-—Dbelong to the kernel of the
Laplace-de Rham, or Laplace-Beltrami, operator

A =ds +8d : QFM — QM.

The k-forms satisfying An = 0 are called harmonic forms.
For oriented closed Riemannian manifolds, the duality for-
mula for the coderivative (see Section 12.4) implies that

{(An, n) = —{(8n, én) — {dn, dn))

for all n € kM, so if An =0, then 8n = 0 and dn =0 by the
positive definiteness of the scalar products (-, -)) on QF1M
and Q1M.

Notation. For an oriented closed Riemannian manifold M,
let

HM :={ne Q"M :6n=0anddn =0} = {n e Q"M : Ay =0}
denote the vector space of harmonic k-forms on M.

Thus the first formula in our last corollary reads kerdy =
imd,_; @ H*M, and since the kth de Rham cohomology of
M was defined as H*M := kerdy/imd,_,, we obtain the fol-
lowing as a corollary.
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Hodge Theorem. Every de Rham cohomology class of an
oriented closed Riemannian manifold is represented by a well-
defined harmonic form. More precisely: The canonical map

H* — HMM,
n +— [n]
is an isomorphism for every k.
But it follows from

kerdy =imdi_, & H*M,
QKM =kerd, & im 8,—x_;

that
QM = imdi_ ® im8,—x—1 ® HM.
This gives the following result.

Hodge Decomposition Theorem. If M is an oriented closed
Riemannian manifold, then

QM = dQF M @ sQK M @ HM

as an orthogonal direct sum with respect to the scalar product
given by

(n.¢) =an*c.

M

12.6 Poincaré Duality

From the definition of the coderivative as “star-conjugate” to
the Cartan derivative up to sign, it follows thatd*xn =0 &
dn =0and § *n = 0 & dn = 0. So the star operator gives an
isomorphism

* : HKM N H kM,

and hence, by the Hodge theorem, an isomorphism H*M =
H""kM. This is called Poincaré duality.
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Theorem (Poincaré duality for de Rham cohomology).
If M is an oriented closed n-dimensional Riemannian manifold,
then the star operator on harmonic forms defines an isomor-
phism H*M = H"*M:

HM —= HM

* J.E = lPoincaré

HrkM —=— H" kM

Incidentally, Poincaré duality says something interesting
even for k = 0. For connected manifolds, as we recall (Sec-
tion 11.2), H°M = R canonically; so for orientable closed
connected n-dimensional manifolds we also have H"M = R,
and the choice of an orientation determines an isomor-
phism:

Corollary (of Poincaré duality). If M is an oriented n-
dimensional closed connected manifold, then the canonical
homomorphism

H'M — R,
[w] +— f w
M

given by integration is an isomorphism.

Because of this, one might think that the nth de Rham
cohomology for these manifolds would be as uninteresting
as the zeroth. But one would be mistaken, because H”, in
contrast to H?, acts nontrivially on maps.

Definition. If f : M — N 1s a differentiable map between
oriented n-dimensional closed connected manifolds, then
the well-defined number deg(f) given by

[ rro=dees) [o
M N
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i.e. by the commutativity of

H"MJM—> R

~

] Qe

H'N —— R,
In

is called the mapping degree (or just the degree) of f .

Of course, the degree of a constant map is zero (if n > 0).
The same is true for any map that is not surjective, because
then we can find an w with [, w 0 and suppw C N\ f (M),
so f*w = 0. The degree of an orientation-preserving (resp.
orientation-reversing) diffeomorphism is 41 (resp. —1); see
Section 5.5. The mapping degree is always an integer (Exer-
cise 5.4), from which we might deduce its homotopy invari-
ance if we didn't know it already because of the homotopy
invariance of de Rham cohomology (Section 11.2).

We could also interpret the corollary above as a “converse
of Stokes’s theorem” for oriented closed manifolds: If f,, w =
0, then {w] = 0 € H"M and hence w = da.

12.7 Test

(1) Let V be a finite-dimensional real vector space, and let
(-,-) denote a nondegenerate symmetric bilinear form
given on V and also transferred canonically to V*. Then,
for ¢ € V* and v € V, we always have

0 (*o,v) + (p.’v) = 0.
O (*e, v) ="v(yp).
0 (p,%v) = ().

(2) Let V be a four-dimensional nondegenerate quadratic
space of index 3. Then Alt?V is a six-dimensional nonde-
generate quadratic space of index

0O 3. 0 o. O 6.
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(3) Let (M, {-, -)) be an oriented semi-Riemannian manifold
with volume form wys € Q"M. How does multiplication
of the metric by a positive function A : M — R* affect
the volume form?

O wm,a(,)) = oM.
O om i,y = A2opm.
O o i, = Aoy.

(4) Let V be a 2k-dimensional nondegenerate quadratic
space and assume that k + index M is even, so that the
star operator on the forms of middle degree defines an
involution AIt'V — Alt‘V: that is, xx = Id. Then the
vector space Alt*V is the direct sum of the subspaces of
“self-dual” (*w = w) and “anti-self-dual” (xw = —w) alter-
nating k-forms. Let s and a denote their dimensions. Are
these dimensions independent of the index of the space
v?

O Yes. The dimensions are alwaysa = s = %(Zkk).

O Yes, because the dimensions are justa = 0 or s = 0,
depending on whether k is even or odd.

O No, because s = 0 in the negative definite case
(indexV = 2k) but a = 0 in the positive definite
case.

(5) What does the star operator do on an oriented semi-
Riemannian manifold with the canonical volume form
wp € Q"M and the constant 0-form 1 € Q°M?

O swpm =1 and *1 = wpy.
0 xwp = (_1)indexM1 and *1 = wy.
O *wy = 1 and #1 = (=1)indexM,

(6) The statement that —§ is formally adjoint to the Cartan
derivative d means that

O fydn A%t + [iynA*8; =0
o fMdn/\*§+an/\6*§=O
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O fyydnA*t + [y dnAxl =0

for forms of appropriate degree whose supports have
compact intersection.

(7) A k-form n on an oriented closed Riemannian manifold
is harmonic if and only if

O n and *n are both cocycles.

O there exist w € QKM and ¢ € QM with do =
n =6¢.

0O dn=0andén=0.

(8) Let M be an oriented closed Riemannian manifold. It
follows from the Hodge theorem that

O every coboundary is harmonic.
O in every cohomology class there is a harmonic form.
0O every harmonic coboundary is zero.

(9) The star operator gives the Poincaré isomorphism

H*M 5 H"*M, and the star operator depends on the
metric.- Does the Poincaré isomorphism depend on the
metric?

O Yes, and this already shows up in *1 = wpy.

O No. After cohomology classes are formed, no depen-
dence on the metric is left.

O No, because the action of the star operator on cocycles
is independent of the metric.

(10) Does there exist a map f : $> — S! x S! of degree 1?

O No, because every f : $2 — S! x S! factors over R?
and is therefore null homotopic: deg(f) = 0.

O Yes. Map the closed upper hemisphere $2 diffeomor-
phically (relative to a chart (U, h) on st x 8!y onto
h—1(D?) and extend this map arbitrarily to all of $2.
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O Yes. In constructing such a map, take advantage
of the fact that both the 2-sphere and the torus
can arise from the square by identifying boundary
points. Then the identity on the square induces a
map of degree 1.

12.8 Exercises

EXERCISE 12.1. Let M be an oriented Riemannian manifold of
dimension divisible by four, so that the star operator in the
middle dimension is an involution * : QM — Q2KM; that is,
*x = Id. In this case, a 2k-form w is called self-dual if ¥» = w
and anti-self-dual if *wo = —w. Prove that every harmonic
2k-form is, in a unique way, the sum of a self-dual and an
anti-self-dual harmonic form.

EXERCISE 12.2. Again let M be an oriented Riemannian mani-
fold, this time compact and without boundary. Consider the
Laplace-de Rham operator A : QXM — Q*M on k-forms. We
deviate from the sign convention of linear algebra in calling
X an eigenvalue of A if there exists a nonzero form w € Q*M
such that Aw + Aw = 0. To start with, this definition makes
sense only for real A, but since we can consider complex-
valued k-forms w + in and apply A to real and imaginary
parts, we may also ask about complex eigenvalues.

Prove that all the eigenvalues are real and greater than
or equal to zero.

EXERCISE 12.3. Let f : M — N be a differentiable map be-
tween connected, oriented, compact n-dimensional mani-
folds without boundary, and let g € N be a regular value of
f . Prove that

deg(f)= Y e&(p),
pef~a)

where &(p) = %1 according to whether df, : T,M — Tf(,)N
is orientation-preserving or orientation-reversing.
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EXERCISE 12.4. Let 7 : M — M be an r-sheeted cover (see,
for instance, [J:Top ], p. 130) of an n-dimensional manifold
M. Then

(mw)g = Y ((drp) ),
pef )

defines a homomorphism , : QXM — QFM, which induces
a homomorphism =, : H*M — H*M. Show that 7, o 7* :
H*M — H*M is r times the identity, and conclude that the
nth de Rham cohomology group vanishes for nonorientable
compact connected n-dimensional manifolds.

12.9 Hints for the Exercises

FOR EXERCISE 12.1. Every 2k-form is, in a unique way, the
sum of a self-dual and an anti-self-dual form; this follows
quite easily from *x = Id and the linearity of the star opera-
tor, without looking further. But to show that for a harmonic
form each of these two summands is itself harmonic, you
have to take another look at the definition of the coderiva-
tive , which, along with learning what's going on, is the goal
of this simple exercise.

FOR EXERCISE 12.2. As we saw in Section 12.5, (-, -)) turns
M, under the given hypotheses, into a genuine Euclidean
space, and in solving this problem you'll feel once again that
you've been carried back to elementary linear algebra.

FOR EXERCISE 12.3. By the definition of the mapping degree
in Section 12.6, it suffices to find some n-form that is tailored
to the measure, has nonvanishing integral, and satisfies

ff*w: Z e(p)fw.
M pef~1(@ N

The support of such an w will be set inside a sufficiently
small neighborhood of q.
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Every map has regular values, by the way; this follows
from Sard's theorem (see, for instance, [BJ], Chapter 6). So
when you prove the assertion of the exercise you'll prove
simultaneously that the mapping degree defined by H"f is
integer-valued. If you don’t want to use Sard’s theorem, you
can stick to the homotopy invariance of H"f, because it's
quite easy to deform f homotopically in such a way that
regular values occur.

FOrR EXERCISE 12.4. The first part of the exercise (dealing
with 7, o 7*) can be done straight from the definitions and
would have fit well into Chapter 11. But Exercise 12.3 comes
into play in the second part. Now you should consider the
orientation double covering 7 : M-—>M , in which, as the
name suggests, each n~1(x) consists of the two orientations
of TxM. This M is canonically oriented. Since M is com-
pact, so is M; since M is assumed to be nonorientable, M
is connected. What is the mapping degree of the canonical
sheet-interchanging involution f : M — M, and what does
it have to do with #* and 7,?
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13 Calculations in
- Coordinates

CHAPTER

13.1 The Star Operator and the
Coderivative in Three-Dimensional
Euclidean Space

In this last chapter we examine how to calculate with the
star operator and coderivative in local coordinates on semi-
Riemannian manifolds. But first we pick up where we left
off in Chapter 10 and consider the simple but important
example M = R3 with the usual coordinates x!, x?, x3, the
usual orientation, and the usual scalar product (denoted by
the multiplication symbol -). The index is zero and k(3 — k)
is always even, so by Note 3 in Section 12.3 the star operator
is an involution: *x = Id. Note 1 in the same section gives
the following:

Note. For M = R3 as above, x1 = dx! A dx? A dx® € Q3M.
We also have xdx! = dx* A dx3 and its cyclic permutations

K. Janich, Vector Analysis
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xdx? = dx3 A dx! and xdx® = dx! A dx®. In the notation of
line, area, and volume elements as defined in Section 10.2, these
equations become

¥1 =dV (and hence xdV = 1),
*d5 = dS (and hence %dS = d5).

The sign of the coderivative § = =+ * d*~! given in its
definition in Section 12.4 is exactly the one that makes

d d d

0 Q'M Q'M Q*M Q*M 0
*l; *l_l_' *lz *lz-
0 QM Q’M Q'M QM —— 0
8 -6 é

commutative. The translation of the Cartan derivative into
grad, div, and curl (see Section 10.3) gives us another formu-
lation of the commutativity of the diagram.

Note.
8(@-ds) = xd(d-dS) = xdivadV = diva,
6(5-d§) = —*d(g-d's’) = —scurld-dS = —curlb-ds,
8(cdV) = xdc = xgradc - d5 = gradc - dS.

Note. In terms of the translation isomorphisms of Section 10.2,

this says that for any open subset X of R3, the following diagram
is commutative:

0—— Q53X Q%X QlX QX ——0
0 —— C*®(X) V(X) V(X) C®X)——0
grad —curl div

In the classical notation and written on one line, the
sequences for the Cartan derivative (above) and coderivative
read as follows:
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grad curl le

C°°(X) V(X) V(X) C°°(X)

Setting Ax := dé + dd gives our next result.

Corollary. For an open subset X of R3, the Laplace-de Rham
operator in the classical notation is given as follows:

(i) For O-forms and 3-forms,
Ax = divgrad : C®(X) — C*(X).
(ii) For 1-forms and 2-forms,

Ax = grad div — curl curl : V(X) — V(X).

Note that

2

3
divgrad = ;W =A

is the classical Laplacian. So the sign convention for the
coderivative that we fixed in the definition in Section 12.4,
the one that makes é the formal adjoint of —d, is consistent—
at least in this respect—with the usual notation.

13.2 Forms and Dual Forms on Manifolds
without a Metric

The language of computation in coordinates is the Ricci
calculus, which will be discussed in detail in the present
chapter. We last dealt with the Ricci calculus in Section 2.8,
and encountered some of its principles there in the exam-
ple of tangent vectors and vector fields. Vector fields and
1-forms are in a certain sense dual to each other, and we
have meanwhile generalized the 1-forms or Pfaffian forms
to k-forms. For a systematic description of the Ricci calculus
in the framework of the Cartan calculus, it is convenient to

241



242

Chapter 13 Calculations in Coordinates

generalize vector fields to “dual k-forms” in a similar way.
This has nothing to do yet with orientation and metric, so
we just consider an n-dimensional manifold M and a chart
(U, h) on it.

Vector fields, 1-forms, and k-forms on U can then be writ-
ten uniquely as

n
v = E v*a,,
pu=1

n
w = Z wydx*,
1

#:
_ “ Kk
w = E Oy A AN dXEE
1< <fhg

respectively, where the components v#, w,,, and w, . ,, are
real functions on U.

A k-form w on M assigns to every p € M an alternating
k-form w, € Altk T,M. For the definition of dual k-forms, T,M
is simply replaced by the dual space TI";M .

Definition. A dual k-form on a manifold M is an assignment
to every p € M of an alternating k-form w, € Altk T;M on the
dual space T;M = Hom(TpM, R) of the tangent space. The
vector space of differentiable (relative to charts) dual k-forms
on M will be denoted by ;M.

For finite-dimensional vector spaces V, we have V** = V
canonically, so AltlT;M = TpM. Thus the dual 1-forms
are the same as vector fields, and by analogy with v =
> =0 V"3, we write the dual k-forms in local coordinates
as follows.

Note and Notation. If (U, h) is a chart, then every dual k-form
w on U can be written uniquely as

— TSR
W= E w Oy Avoo Ay,
My < <phg
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13.3 Three Principles of the Ricci
Calculus on Manifolds without
a Metric

We now use these objects—k-forms and dual k-forms, and
1-forms and vector fields in particular—to illustrate three
general principles of the Ricci calculus:

(1) the description of objects by their components;

(2) the position of indices according to behavior under
transformations;

(3) the summation convention.

For (1). Recall that what is meant by a contravariant vec-
tor v# in the Ricci calculus is the vector field v = )_v#d,.
Similarly, a covariant vector a,, is to be understood as the 1-
form ) a,dx*. We extend these notions further by defining
a skew-symmetric, or alternating, covariant tensor wy, . .,
of degree (or rank) k as the k-form

H1 1k
E Opq o dXEY A A dXPE,
M1 < <p

and an alternating contravariant tensor wH1-#k of degree
(or rank) k as the dual k-form

H1ept
Z w "Opuy Ao A Oy,
1< <pik

So, for example, if you encounter a covariant skew-symmetric
field tensor F,, of rank two in the physics literature, then as
a mathematical reader you should realize that this means the
2form ), _, Fuvdx* A dx”, because you won't be reminded
of it.

Finally, we mustn't forget that in the notation and lan-
guage of the Ricci calculus, no distinction is made between
a geometric object w and its restriction w|U to a chart do-
main, so the component symbol takes on the additional job
of denoting the entire object whenever necessary.
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For (2). Whether the coordinate index of a component func-
tion is written as a superscript or a subscript is not left to
chance in the Ricci calculus, but is determined by the be-
havior of the components under a change of charts. As in
Exercise 3.3 (see the hint for this exercise on p. 63), let’s
denote the new coordinates by x1, ..., x"—defined without
loss of generality on the same chart domain (suppressed in
the notation anyway) as x!, ..., x"—and, savoring the dou-
ble meaning of the x!, ..., x" as functions on U € M and as
coordinates in R", let's write the transition map as

x! =x1(x1,...,x")

and its Jacobian matrix as

()
dxH mou=l,...,n

Always keeping in mind that an x with a barred index means
something completely different from an x with an unbarred
index, we see from the chain rule that the following relations
hold.

Note. Under a change of coordinates,

Corollary. Under a change of coordinates, the component func-
tions of k-forms and dual k-forms transform as follows:

n 8x”" axu'k
H1--Hk z : 9xF Pk Hy--- Uk
Koo =1
_ _ n 3 Tk
whi-Hk — E dx LR 0x wHl-Hk
axH1 oxHk

Koy k=1



13.3. Three Principles of the Ricci Calculus

Because we are actually summing over all multi-indices
(¢1, - .-, ng) here, not just the ordered ones, let me remind
you that the component functions wy,..,, and wtl#k are
defined for all multi-indices, even though (because of the
alternating property) the components with ordered indices
Uy < -+- < ug already contain all the information.

Thus in each transformation formula the summation in-
dices on the right-hand side are in opposite positions, and
the free indices are in the same position on the right-hand
side as on the left-hand side.

For (3). In the Ricci calculus, sums in which the index of
summation appears twice, once as a subscript and once as
a superscript (with the understanding that a superscript in
the denominator acts as a subscript) occur often enough to
have led to the adoption of the Einstein summation conven-
tion, according to which one still thinks of the summation
symbol but no longer writes it down. When the summation
convention is applied, terms such as
dxt 9x¥

u n
vH*e,, a,dx and ———=A,,
” H ’ x% gxv

are automatically read as

n n I_La
l;uﬂau, ;audx“, and ZZ iuaiv wv

v=1 u=

if nothing is explicitly said otherwise. For example, we are
explicitly told to deal differently with

1 Mk
E Wpy o XA A X

K1 < <pg

But if we wanted to, we could also use the summation con-
vention to write this representation of a k-form in local co-
ordinates without the summation sign, namely as

1
M1 —
E Oy, G AL A X = yf"m.--ukd"m Ao AdxPE,

By <-e<phg ’ Y : 3
summation convention
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13.4 Tensor Fields

The discussion in the preceding section also applies to the
still more general tensors of covariant degree v and con-
travariant degree s of the Ricci calculus, which have not yet
been introduced. The component functions of these ten-
sors have r subscripts and s superscripts, and the order-
ing of these indices also matters if no symmetry require-
ments are imposed. As an example, consider the type of
tensor in which the r subscripts come first. The component
functions—and in the Ricci calculus the whole tensor as
well—are then written, for instance, as

V]...Vs
AP”I---/‘-! ! .
From this position of the indices, the expert in the Ricci
calculus concludes that under a change of coordinates the
tensor transforms as

A V1.0, 9! axHr axvl 8XUSA V]...Vs
Ry, = Ell Fya et Ey AR et YD U1 fhy .
all v
all u

This simultaneously defines what such a tensor of covariant
degree r and contravariant degree s “is” in the Ricci calculus,
in case anyone should ask. In fact, we can safely settle for
this definition; we already saw in Chapter 1 how to make
it precise for r = 0 and s = 1 (“physically defined” tangent
vectors and vector fields).

Whoever is still unsatisfied can get a conceptually better
answer from multilinear algebra to the question “What is a
tensor?” The coordinate-independent object A of which the
App.u, V" are only the component functions is

A= ZAm...;L,U]'"vsdxm R - Rdxt ® 3\)1 R 3u,,
all v
all u

which assigns to every p an element

AP)eT M@ - T MRIT,M® - Q@ TpM.
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If the ordering of the r superscripts and s subscripts is
changed, then the ordering of the factors in the tensor
product changes accordingly.

But what does the mysterious symbol ® mean? It would
be nice if all mathematics students learned this in second-
semester linear algebra. Well, you’ll learn it someday, and
then you'll see the tensors of the Ricci calculus with different
eyes ....

But I won’t make it quite so easy for myself. I'm going
to give you a short minicourse, a microcourse, on the ten-
sor product. Pay attention, it’s starting: The first thing you
have to know about the tensor product of two (and similarly
of several) vector spaces V and W is that it's really a pair
(V. ® W, t) consisting of a vector space V ® W and an oper-
ationt : V. x W — V ® W, with the operation denoted by
(v, w) = v®w. Thus one can also take tensor products of in-
dividual vectors, and these tensor products are elements of
the tensor product of the spaces. Be careful, though: in gen-
eral, the tensor product of the spaces is not the set of tensor
products of their elements; the operation is not surjective. So
it’s not as you might think, that if you just understand v @ w
you'll automatically know V ® W. In fact you can't actually
understand either v ® w or V @ W by itself; you really have
to look at the pair (V@ W, t). -

So after all that can we just write down the map ¢ :
V x W — V® W? We could. The question is whether you’'d
get much out of it. At the moment, I'd rather start by telling
you something more important: The operation t is univer-
sally bilinear in the sense that first, of course it's bilinear
itself, as any decent product ought to be, and second, every
bilinear map on V x W arises in exactly one way from post-
composition with a linear map on V @ W; more precisely,
for every bilinear map f : V x W — X there is exactly one
linearmap ¢ : V® W — X such that f =g ot.

Admittedly, whether there exists a pair (VQW, t) with this
marvelous universal property is something I haven't proved
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yet, but you can already see that there can be essentially at
most one. For if (V®W,T) is another pair, we can play the
universal property of f off against ¢, and vice versa, to obtain
linear maps V @ W = V®W that are compatible with ¢ and
t and are inverses of each other. This is also the reason it
isn’t so important how a universal (V ® W, t) is constructed
as long as such a construction is possible at all.

And it is possible. Here's how to see it: any arbitrary
set A generates the real vector space F(A) of formal linear
combinations c1a + - - - + cxax, whose elements are actually
the maps ¢ : A — R that send all but finitely many a € A
to zero, but which are written, for practical reasons, as sums
3" c(a)a as above. Through a +— la we also have a canonical
map A — F(A), and this map V x W — F(V x W) is precisely
the one we now consider for the special case A ==V x W.
It has a universal property, but not the right one yet; it isn’t
even bilinear. So now we touch it up in a completely routine
way. That is, we consider all the elements in F(V x W) that
have one of the two forms

(a) (avy1 + cuz, w) — c1(1, w) — c2(v2, W)
(b) (v, aawy + caw2) — 1 (v, wy) — c2(v, wz)

- —these are the elements whose nonvanishing is an obstruc-

tion to bilinearity—and take the quotient of F(V x W) by the
subspace Fy C F(V x W) they generate. Then the quotient
V® W = F(V x W)/Fy and the canonical map

t:VxW-— F(VxW)— FV x W)/F

together form a universal bilinear pair for V and W, as de-
sired.

But you need this construction only if you're stopped by
the police and have to justify your use of the tensor product.
For your daily work, you're better off deriving what you want
to know about the tensor product directly from the universal

property.
End of the microcourse! You'll have to admit that it was
quick enough to read through. Granted, you don’t have a
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firm seat in the tensor saddle yet. That would take a whole
swarm of trivial but not superfluous lemmas, for which un-
fortunately there’s no room in my book.

Since the alternating forms are multilinear, of course they
have something to do with the tensor product. I'll mention
only that canonically

k *
AT, M C T, M® --- ® ToM,
k

so every k-form w is also a covariant tensor of degree k in
this general sense, where, reassuringly, the component func-
tions are the same in both interpretations. From the skew
symmetry in the indices, it actually follows that

©1 Bk — 1 Bk
Z Opq AL AdxHE = Z Oy 4 Q- - - @dx
1 <—<pi all

according to our normalization of the wedge product (see the
theorem in Section 8.2). So in passing to the more general
concept of tensors in the Ricci calculus, you don’t have to
learn any new conventions for the old familiar k-forms.

13.5 Raising and Lowering Indices in the
Ricci Calculus

These three notational conventions of the Ricci calculus—
(1) description by components, (2) position of the indices,
and (3) the summation convention—refer to calculating in
coordinates on an n-dimensional manifold M without addi-
tional structure. But if a semi-Riemannian metric (-, ) is
given on M, a fourth convention is added—one that deals
with the celebrated “raising and lowering” of indices. We be-
gin by considering the procedure completely formally, and
only afterwards do we ask about its mathematical content.

249



250

Chapter 13 Calculations in Coordinates

Notation (Raising and lowering indices in the Ricci
calculus). Let (M, (-, -)) be a semi-Riemannian manifold.
In local coordinates, we write g,y := (9, d,) as usual and
let (g#¥) denote the inverse of the matrix (g,,). Now let A
be a tensor of covariant degree r and contravariant degree
s, written in the Ricci calculus with r + s indices. Without
loss of generality, let one index be v and none be u. Then,
according to whether v is a subscript or a superscript, we
write

A...“’...;:g“"’A...v... or A"';l,"':=guvA"'v"',

where the summation convention is to be applied. There
is no change in either the position of or the notation for
the remaining indices, of whose presence you should be
reminded by the dots.

So if a contravariant vector v* is given, for instance, the
notation v, is no longer free. By this convention, it now
means g,,v". Here are some more examples, just to get you
used to the formal procedure:

AH = g#VAv’
F,= g Fun = guF,
FH*Y — gukgvxFAK,
M1 Hk — g#lvl L g“kukwul...vk-

Of course, you may already guess that the result of rais-
ing and lowering indices is another tensor—that, under a
change of coordinates, the newly created indexed quanti-
ties transform correctly according to the (new) position of
the indices. Otherwise the Ricci calculus would hardly have
settled on this convention. To check this, observe first that
guw = (8, 8y) transforms correctly as a covariant tensor of
degree two, by the note in Section 13.3. For every p € M,
(-,)p is a bilinear form on T,M and thus an element of
(TyM ® TM)* = T;;M ® T;M ; the g,, are the component
functions of this “fundamental tensor” (as it is called in the
Ricci calculus) of the semi-Riemannian manifold. Hence g#*
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also transforms as a contravariant tensor. The assertion fol-
lows by direct substitution and calculation, using the fact
that the Jacobian matrices of the two transition maps (from
the old coordinates to the new and back) are inverses of each
other in a natural way.

The processes of raising and lowering a given index are
themselves inverses of each other, since

1 forA =v,

uv _ Au =
Brug £ 8uv 0 otherwise

by definition. Because the matrices are symmetric, it also
follows that

g = g"g" g,
so the notation (g"”) for the inverse matrix of (g,,) is consis-
tent with the convention: raising the two indices really does
turn g, into gk,

In general, indices should not be stacked on top of each
other because we want the overall order of the indices to
stay recognizable. But as long as no indices are raised or
lowered, no misunderstandings occur within the Ricci cal-
culus if the separate orderings of the upper and lower indices
are known. If A, is symmetric in u and v, for instance, then
of course A," = AV, for the component functions, so in
computations we just write A} .

13.6 The Invariant Meaning of Raising
and Lowering Indices

Now, how can raising and lowering indices be understood
conceptually and in a coordinate-free way? To answer this
question, we consider for each p € M the isomorphism

T,M —> TiM,
v o— (v,-)
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between the tangent and cotangent spaces, which is deter-
mined by the semi-Riemannian metric and for which we
introduced the notation

b
T,M =2 T;M

in Section 12.2. How does this look in local coordinates? As
we know, for any 1-form w = w,dx* the vth component
function is given by w, = @ (3,). This gives us an answer in
the special case w =3, = (3, -):

Note. We have
P8 = (B, By)dx® = guudx’,
and hence also

HaxH = ghv3,.

Corollary. Converting contravariant to covariant vectors and
vice versa by lowering and raising indices, respectively, in the
Ricci calculus corresponds to the isomorphism b : TyM — TyM
and its inverse §f given by the semi-Riemannian metric. More
precisely,
P(WHdy,) = vudx*,
”(a”dx“) =akd,.

Similarly, we have the more general observation: Apply-
ing b or f to the ith factor of a tensor product of degree (r +s),
with r factors in T;M and s factors in T,M (ina specific order-
ing), is described in the Ricci calculus by lowering or raising,

respectively, the ith of the r + s tensor indices. For example,
under

T,M ® TiM ® T,M
Elb®ld®ld
TSM @ T;M ® TyM

the tensor A*, ¥ of covariant degree one and contravariant
degree two goes to the tensor A,," of covariant degree two
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and contravariant degree one (in the sense of convention (1)
of the Ricci calculus, of course—it would be meaningless to
assign, say, the component A1, to the individual component
Al1 2). This is true because b®1d®1d sends A*, V9, @dx* ®3,
to A*, ¥ (°9,) ® dx* ® 3,, which is

AAM vg)\adxo ® dx* ® 8v = Ao'y,vdxa ® dx* R Bu

by the corollary above.

Raising all the indices of a k-form produces a dual k-
form, and vice versa. These procedures are also given in a
coordinate-free way through f and b as

AltFT,M
AltkaAlt"u
AIFTIM.
In other words, the diagram
AT,M —— TIM® - ® TaM
lAltkn lmm@u
ATIM —— TM @ --- ® T,M

commutes.

13.7 Scalar Products of Tensors in the
Ricci Calculus

The notation for raising and lowering indices is very conve-
nient for computations with the various scalar products we
have to consider. Of course, for tangent vectors themselves,
the following holds because (3, d,) =: guy.

Note. For vector fields v and w, we have
(v, w) = guov*w’ =y, wh

in local coordinates.
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According to the definition, the isomorphism b transfers
the scalar product of T,M to T;M (special case of the defining
lemma for the scalar product in the space of forms; see
Section 12.2). This gives the following.

Note. For 1-forms a and 8, we have

(o, B) = a;t,B# = gﬂvau,‘gv
in local coordinates. In particular, (dx*, dx") = gh”

Although we called the scalar product on Altf T,M canon-
ical in the definition, we don’t want to forget that the wedge
product was part of that definition, and the normalization of
the wedge product in the literature is not completely uni-
form. For this reason, we always have to be careful about
checking even plausible scalar product formulas for k-forms.

Lemma. For k-forms n, ¢ € Q%M on a semi-Riemannian man-
ifold, we have

1
(m, &) = z: n#l--#kguln#k = Enm...uk;“l"'m‘
MRl <- <[k .
in local coordinates.

PROOF. First, the definition of the scalar product in Section
12.2 implies that

(0, %0, Ao APB) = 1By s Bug) = My

But lowering indices, as we explained earlier, has the same
effect as applying b. So we can write ¢ as

— 1Mk b b
=) ¢* By A ... APBy,,
K<<k

and the assertion follows. 0

With a clear conscience, we can describe the scalar prod-
uct on the tensor product V ® W of two quadratic spaces
(V, (-, )v) and (W, (-, -)w) as given canonically. It is the bilin-
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ear form on V ® W that satisfies
vew, v @w) = (v,v)v(w,)w,

and similarly for tensor products with several factors. In
particular, at every point p of a semi-Riemannian manifold
M, there is a scalar product for tensors of covariant degree r
and contravariant degree s. For the type of tensor in which
all r covariant factors appear first, for example, we have

(A, B) = Ay, BRIHT, L,

in local coordinates. Thus interpreting k-forms as covariant
tensors of degree k through AltkTpM CTM®---®T,M
leads to another scalar product:

(1, &)scalar product of k-forms = 7("‘ n, ¢ )scalar product of tensors-

Well, you can't have everything! We'll continue to use the
scalar product on k-forms anyway.

13.8 The Wedge Product and the Star
Operator in the Ricci Calculus

Now let M be an oriented n-dimensional semi-Riemannian
manifold. How do the star operator and coderivative look
in the Ricci calculus? Since n A *¢ = (n, {)wpm, wWe begin
by examining the wedge product and the volume form. For
we QM and n € Q°M, we have

WA = Z Opy oy Mg, XA AP ANAXTY AL A X
B << phr
V] <o <V
in local coordinates. From this we can read off a formula for
the components (WAN) uy..u,ps) H1 < -+ < Urys, of the wedge
product. In order to write it down we interpret a partition
of the set {1,...,r + s} into one subset of r elements and
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another of s elements as a permutation of {1,...,r + s}, as
follows:

Notation. Let Z,; :=
(teSs:t(Q) <---<1(r) and t(r+1) <--- <t(r+s)}

This has the advantage of letting us avoid a detailed descrip-
tion of what is now sgn 7, the sign corresponding to a choice
(1) <--- < 7(r) of r elements of {1, ..., r + s}. We have the
following concise formula.

Note.

(@A My s = § : SENT * Wurqryeethe(r) Mo (r41) B (r4s)*
T€2,

Thus the sum has (") summands; if r = s = 1, for
instance, it has two. The formula for the components of the
wedge product of two 1-forms « and B reads

(@A Buv =auBy —ayByu.

Next we recall the volume form wys, for which we com-
puted the following formula in Section 12.3.

Note. In orientation-preserving local coordinates, the volume
form is given by

wm = VIgldxt A ... Adx".

Hence its component function is given by w)..» = /|g|, where
g = det(guv).

It follows from n A x¢ = (n, ¢)wp that, for all n, ¢ € QFM,
Z sgnrt - nrl...rk(*g)rkﬂ...r,, = Z nul...ukcﬂlmuk |g|

T€Zk n—k U1 <...<phg

Corollary (Star operator in the Ricci calculus). For ¢ €
Q*M,

(*C)Tk+l~--fn = Sgnr . /lglgfl‘..‘tk

in orientation-preserving local coordinates.
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Of course, this is proved first for r € Zi ,—, by an appro-
priate choice of n. But then clearly it also holds for arbitrary
T €S,

13.9 The Divergence and the Laplacian
in the Ricci Calculus

We know from the definition (see the local formula in Section
8.6) how to compute the Cartan derivative in local coordi-
nates. This gives the following formula for the components.

Note (Cartan derivative in the Ricci calculus).

k+1
(Aw)yy..ppyy = Z(—l)l—la#iwﬂl---ﬁin-#kﬂ'

i=1
If we combine this formula and those from Section 13.8
into a general expression for the coderivative in arbitrary
coordinates, we get something of a monstrosity, which we
hesitate to write down without a special reason. Instead, we
take a closer look at the special case k = 1.

In this case, the coderivative is defined as

§=(=D"Txd«"1: QM — Q'M.

Since #x = (—1)kn—k+indexMyq . aswe established in Note
3 in Section 12.3, we also have

§ = (—1)mdexMy gy

But for a 1-form « € Q!M, the formulas above for x and d
give

dx)1.n=_ du(/Iglat).
n=1

Now it seems like time to apply the *-formula (the corol-
lary at the end of the preceding section) again, but this is
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a bit awkward, and we prefer to observe that we have now
computed

dxa = Z 3./ 1glatydxt A ... A dx"
pu=1
l n
= —= 3 (Vglat)
\/Igl,; WV em

and already know xwp = (—1)"9X*M] from Note 2 in Section
12.3. It follows that

*d*a — (__l)indexM

1 n
— Y 3,(/1gle™).

'gl u=1
Using the summation convention, we state this as a corol-
lary.
Corollary. The coderivative § : Q'M — QM is described in
local coordinates by

1
Sa = —=3,(/Igla¥).

Vgl

The function é« is also called the divergence of the vec-
tor field «#d,. For functions (0-forms), the Laplacian A :
Q°M — Q°M is defined by A = &d, or in local coordinates

1
Af = ——=3,(/Igl9"f).
V18l
If we expand the Ricci shorthand into an ordinary formula,
continuing to write g for det(gy,,) and (g#") for the inverse
of (guv), we obtain another corollary.

Corollary. The Laplacian A := 8d : Q°M — QM for func-
tions on a semi-Riemannian manifold M is given in local coor-
dinates by

n

1 3 o a
Af = 75 Zlm(\/lﬂg“ /)
u,v=
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To illustrate this, we apply the formula to the sphere M :=
$? ¢ R3, with spherical coordinates ¢ and ¢. The coordinates
are obviously orthogonal: g12 = 0, hence g?! = 0 as well. The
terms g and gy, are the squares of the velocities of the ¢
and ¢ coordinate curves, respectively, so g1; = sin? ¢ and
g22 = 1. Thus g =sin? ¢, g'! = 1/(sin?¥), and g?2 = 1.

Corollary. In spherical coordinates ¢ and ¥, the Laplacian Ag:
for functions on $? is

A 1@ + 9 (sin® 9 )
= —(S1 —).
$* = Sin?9 8g? | sind 89 X

13.10 Concluding Remarks

Every book, or at least every volume, must come to an end,
and the author takes his leave of the present work by an-
swering a question quite a few readers may have asked
themselves already. Why, a reader may ask, does an au-
thor who—as he always says himself—values concepts and
intuition so highly give so much space to a mere system of
notation like the Ricci calculus?

Well, what made me do it is that the conventions of the
Ricci calculus are used in the physics literature. 1 would be
delighted if an occasional physicist reader were to find my
explanations useful. But the explanations are really written
for mathematicians. A physics student, I imagine, gets a feel
for the calculus by working through concrete problems, and
in any case his interest lies in the physical rather than the
mathematical content of his formulas. But a mathematician
just interested in the abstract geometric aspects of a physi-
cal theory, who looks at the physics literature more or less
from the outside, as a foreigner, is in a completely different
situation.

Whether the physicists’ use of the calculus is a math-
ematical anachronism or the best solution of their nota-

P-curve

Figure 13.1. Spherical
coordinates ¢, ¥ on S2:
x = sintcosg, y =
sin ¥ sing, and z = cos ¥.
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tional problems is still, I think, unsettled, but in any case
we couldn’t read many of the formulas at all without know-
ing the conventions, and often it's only from the calculus
(whose geometric background we know, after all) that we
get a hint as to what kind of mathematical objects are really
being discussed.

I don't want to reveal here the whole panorama of dif-
ficulties awaiting a mathematician who reads physics texts,
but I do have to explain something so you won’t curse me un-
fairly when you still can’t read every index-studded formula
straight off the page.

Namely, you have to be prepared to encounter a great
many other kinds of indices besides the actual Ricci indices
that refer to space-time coordinates. This comes from the
physicists’ tendency to choose bases in all vector spaces and,
in doing so, introduce indices to which Ricci-like conven-
tions are applied more or less consistently. A major source
of such indices is the Lie groups that occur, together with
their Lie algebras and the representations of the algebras,
in elementary particle physics. Lie groups usually appear
at the outset as matrix groups, and their Lie algebras as al-
gebras of matrices (with indices). A basis is chosen in the
Lie algebra (this gives one index) and the Lie bracket is de-
scribed accordingly by structure constants (this gives three
indices). A representation assigns matrices to the basis ele-
ments, and the matrices have indices referring to the basis
of the representation space. Not to mention indices that dis-
tinguish among different representations and indices that
distinguish among types of particles.

Perhaps in some far-off time this baroque splendor of
indices will be discarded, but if we want to listen to the
physicists in our time—and they have fascinating things to
say—then we have to accept their current language, and a
little Ricci calculus is part of that.
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13.11 Test

(1) The star operator * : 2¥X — Q3%X for open X c R3 with
the usual metric and orientation, viewed in terms of the
“translation isomorphisms” as a map C*(X) - C®(X)
fork=0,3orasamapVX) > V(X) fork=1,2, is

O the identity on C*°(X) or V(X) for k=0, 1, 2, 3.

O Id on C°(X) for k = 0 and on V(X) for k = 2, but —1d
on C®(X) for k = 3 and on V(X) for k = 1.

0O Id on C*®(X) for k = 0 and k = 3, but —Id on V(X) for
k=1andk= 2.

(2) Let M be a manifold, without a metric. Let a linear map
T,M — T,M be described in the Ricci calculus by the
matrix ai (or more precisely by v” + al/v¥) and the dual
map T3M — TpM by b}/ (or w, +> biw, in the sense of
the Ricci conventions). Then

Db =af. Db=a,. 0Ob=@)"

(3) Let M be as above, and let matrices al,, b}, and ¢} (to
be read in the Ricci calculus) describe endomorphisms
@, ¥, and ¢ o ¢ of either TpM, the first case, or _T;M , the
second case. Then

O ¢’ = b{a} in the first case, and ¢} = bla} in the
second.

O ¢f = bld} in the first case, and ¢! = bi'd} in the
second.

O ¢} = b}'al in both cases.

(4) Does the Kronecker symbol 8, describe a tensor in the
Ricci calculus on TyM?

O Yes, the identity on TpM.

O No. To describe the identity, it would have to be
written as §,,.
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O No. §,, doesn't have the right behavior under trans-
formations.

(5) According to the formula

(a)/\n)llvl-nll'r-H = E : Sgn(r)wut(l)"'#t(r)nut(r+1)"‘“t(r+s)
T€2, ¢

from Section 13.8, the wedge product of a 2-form w with
a 1-form 5 in the Ricci calculus is (w A 9y =

O wyuny + opyny — wanp.
O wauny + wualiy + @puia.
O wxpy — 0auny + @pula — @pay + Wuanly — @i
(6) Now let M be a semi-Riemannian manifold. The isomor-
phisms
b:TM —> T5M and §:T:M —> T,M

given canonically by the metric are written in the Ricci
calculus as

O g*Y and g,., respectively.
O g.v and gH”, respectively.
0 g, for both.

(7) What is g,,?

0 g = gug™.

1 foru=v
O ¢V =68Y = !
8u = %u { 0  otherwise.

O g! = (3. 3y).

(8) Let M = R* as an oriented Lorentz manifold whose

Lorentz metric with respect to the coordinates x%, x!, x?, x3

is given by
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+1

(g;w) =

Then, by the general formula

(*C)TIH-]--J'n = Sgn‘[ . /Igl é—f]...Tk,

specialized to the action of the star operator on 2-forms
F € @M,

O (%xF)o1 = F® = Fy3. In particular, *(dx?> A dx3) =

dx® A dx!.

O (xF)gy = F?® = Fp3. In particular, x(dx® A dx!) =
dx? A dx3.

O (#F)3 = F%' = —Fy;. In particular, *(dx® A dx!) =
—dx? A dx3.

9) The divergence ——=2a,(/]g]v*) of a vector field v¥, in
( \/|g—| "

the same coordinates on Minkowski space, is equal to
O 99v° + 910! + 9,02 + 9305,
0 8p2° — 310! — 3,07 — 8302,
O —38o0° + 8101 + 8,02 + 9303,

(10) Minkowski space again! If we denote the coordinates
above by t, x, y, and z, then applying the Laplacian

1
——=0u(y/1g13*)
Vgl
to a function f : M — R gives
92
a 3,2f+Wf+ f+azzf'
0 &f - 5f - f Lf.

3t2f+Wf+ f+322f

263



264

Chapter 13 Calculations in Coordinates

13.12 Exercises

EXERCISE 13.1. Let X be an open subset of R® and set M :=
R x X c R?*. Intuitively, we picture X as a domain in space
and the coordinate t of the factor R as time. In this exercise
and the ones that follow, we want to assimilate the Car-
tan calculus for the space-time M into our intuition, which
separates space and time. Before you can start calculating,
though, we have to set things up.

We denote the space of time-dependent k-forms on X by

Qk X or, a bit more concisely, by Qf‘d'X C QFM. To be

time-dep.
precise,

A X={we@M:8_w=0).

If we write k-forms on M in the coordinates x° := ¢ and
%}, x%, x3 of R* as
W= Z Wy XA LA dxt
B < <phk
and sort the summands according to whether u; = 0 or

not, we see that every k-form on the space-time M can be
represented uniquely as w = dt A n+ ¢, where n € Qf&lx

and ¢ € Qi‘ 4 X, and in what follows we will always refer to
this isomorphism

k-1 k = k
QLI XD X — Q'M,

(2) —> dtAn+¢

in order to bring the space-time forms closer to our intuti-
tion.

Three operators act on time-dependent forms on the spa-
tial domain X: the spatial Cartan derivative

dy 1 QF, X — QFlx,

the spatial star operator (with respect to the usual metric on
R?)
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x 0 2K X - Q3RX,
and the partial derivative with respect to time
3 : kX - @F x.

Exercise 13.1 asks you to express the four-dimensional Car-
tan derivative dy : QKM — Q1M and the star operator

*u o QM = Q4 M,

which refers to the usual orientation and the Lorentz metric
on R4, in terms of dx, *x, and &;.

EXERCISE 13.2. Now we can go a step further and also inter-
pret the time-dependent forms on X with the usual trans-
lation isomorphisms as time-dependent functions or vector
fields on X. From the de Rham complex of M, we then obtain
a diagram

0 0
| !

M ——» %X

4 |

QM —= CRX@®VeaX
i |

M —= Vg X®Vea X
dv v

QM — ViaX®C3X
dv ~

QM —=5  Cc2X
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What happens to the Cartan derivative and the star operator
on M when we do this?

EXERCISE 13.3. The formula

[was= [[ ey zwm i+ G2+ @2 acdy
U G

for a differentiable function z = z(x, y) of two variables was
given in Section 10.8. Prove the obvious generalization to
the case of a function f = f(x!,..., x") of n variables.

EXERCISE 13.4. Prove the formula
d(X 2 wy) = ([divX)woy

for the divergence (defined in Section 13.9) of a vector field
on an oriented semi-Riemannian manifold.

13.13 Hints for the Exercises

For EXERCISE 13.1. You should find that the following dia-
grams are commutative:

QkM Qk+1M

' 1

k=1 k k k+1
Qg XOLX —— QX0 Q X

—dx o
dx

and
QkM M QM
Q- lx @ ok X Q3 kx @ i x

*x
( (—=1)*1xx )
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FoR EXERCISE 13.2. In the classical electrodynamics of the
vacuum, the units can be chosen so that only three time-
dependent vector fields and one time-dependent function
on X C R3 need be considered, namely

the electric field strength E,
the magnetic induction B,
the current density J, and
the charge density p,

and so that Maxwell’s equations read

curlE:—ﬁ,
divB=0,
curl B = —-I::“'-}—f,
diVE: p.

If (}E) is translated into a 2-form F € Q?(RxX), the Faraday

tensor, and (‘p—f) into a 3-form j € Q3(RxX), the four-current
density, then Maxwell’s equations become

dF = 0,
dxF = j,

and the equation dj = 0 that follows from d + F = j becomes
the continuity equation div] + p = 0.

It isn't by chance that Maxwell’s equations become so
simple in the Cartan calculus of Minkowski space R*, but to
go into more detail I would have to give more background
than opportunity permits.

FOR EXERCISE 13.3. According to the formula for the volume
form in Section 13.8, solving this problem is mainly a ques-
tion of finding the determinant of the symmetric matrix with
components

Suv = 6‘“, + aﬂf . avf
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But this is the product of the eigenvalues, counting multi-
plicities. As a self-adjoint operator on R", the matrix is easy
to understand: it’s the sum of the identity and an operator of
rank one, and the eigenvalues are visible to the naked eye.

FOR EXERCISE 13.4. The coordinate formula in Section 13.9
already showed that the only influence of the metric on
taking the divergence of a vector field comes in through
the volume form. The assertion of Exercise 13.4 offers a
coordinate-free interpretation of this situation.
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X X X x | x X
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Problem 2
x | x
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1 4 6 10 11 12 13
x | x X X | %
Problem 4
X X X
X X X
2 3 4 5 10 11 12 13
X X X X
Problem 5
X X X
X x | x X
1 4 5 10 11 12 13
X X X X
Problem 6
X X X X
X X
1 2 3 4 10 11 12 13
x X X
Problem 7 -
x X
X X X x X
1 2 3 4 5 6 10 11 12 13
X X
Problem 8
X x | X X
X x X X
2 4 5 10 11 12 13
X X X X x | x
Problem 9
X X
X X
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Problem 10

1
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X
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[, 2
@(0), 42
adjoint, 225
almost everywhere, 86
alternating k-form, 49
alternating tensor, 243
AltkV, 49
Altkf 50
anti-self-dual, 233
anticommutative, 134
antiderivative
form, 205
formula for forms, 206
area element, 173, 185
vectorial, 169
atlas, 2

b (“flat"), 219

bordant, 114

boundary, boundary points
of R", 102

boundary, boundary points
of M, 105

Brouwer fixed-point
theorem, 164

bump function, 155

C®, 2
C*(X), 168
canonical volume form, 173
Cartan derivative, 133
in Minkowski space, 266
in the Ricci calculus, 257
cell, 83
chain map, 144
chain rule, 40
change-of-charts map, 1
change-of-variables formula,
86
on manifolds, 94
chart, 1
around a point, 3
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on a manifold, 3
chart domain, 1
chart-with-boundary, 105
closed manifold, 197
coboundary, 196
operator, 195
cocycle, 196
coderivative, 225
codimension, 8
cohomology class, 196
compact exhaustion, 157
components
8uv of the first
fundamental form, 62
of a tensor in the Ricci
calculus, 246
of an alternating k-form,
52
continuity equation, 267
contractible, 204
contravariant
functor, 50
vector, 30
coordinates, 42
countability axiom, 3
countable basis, 3
covering, 100
critical
point, 7
value, 7
cross product, 170
curl, 171
curve transport, 37

DMy, 8
DAL, 2
d, 139
dy, 227
8, 225

8k, 227
dgeomfp’ 38
d%ef, 38
dphysf p, 38
i 177
3y € TpM, 44
aM, 105
ds, 173,182, 185
ds, 169
ds, 173, 182, 183
ds, 169
dv, 169
dx*, 58
de Rham
cohomology, 196
group, 195
complex, 139
degree
of a differential form, 55
of a map, 232
Dens(V), 82
density, 80, 82
derivation, 30
diffeomorphism, 2
differentiability
in R", 2
in the half-space R”, 103
differentiable
k-form, 56
atlas, 2
function, 2
manifold, 3
map, 5
structure, 3
differential df ,
of f : R" » Rk, 25
off:M— N, 39
of f: V> W, 41
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differential form, 55
differential of a function as a
1-form, 57
dimension, 1
directional derivative
operator V,, 29
Dirichlet boundary value
problem, 179
div, divergence, 171
in the Ricci calculus, 258
divergence theorem, 172
downstairs map, 4
dual '
k-form, 242
operator, 225
space, 50
duality formula, 227

Ep(M), 29
edge, 108
eigenvalue of A, 235
embedding, 17
equivalent atlases, 2
Euclidean space
RN, 17, 26
general, 216
exhaustion, 157
exterior derivative, 133
in coordinates, 144
exterior product, 133

f*and f4, 51

Faraday tensor, 267

fixed-point theorem, 164

fixed-point-free involution,
15

flattener, 8

flux density, 119

k-form, 51

time-dependent, 264
formal adjoint, 225
four-current density, 267
functor, 50

g = det(guy), 222

Gauss's integral theorem,
172, 176

germ, 29

grad, gradient, 171

Green's identities, 177

H*, H*, 195, 196
H*M, 229
harmonic
differential form, 229
function, 178
Hodge
decomposition theorem,
230
theorem, 230
homogeneous coordinates,
16
homotopic, homotopy, 198
homotopy equivalence, 212
homotopy invariance
of de Rham cohomology,
198
of the integral, 207
hyperboloid, 10

21 (“4n"), 61, 62, 202
index, 216

induced k-form, 51
integrable n-form, 89
integral of an n-form, 90
involution, 15

Jacobian matrix J r(p), 5
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KP”, 16
KP(V), 16

LY(R", u), 86
LYR", ), 85
Laplace operator or
Laplacian A, 176
Laplace-de Rham or
Laplace-Beltrami
operator, 229
in R3, 241
Laplacian A
in spherical coordinates,
259
in the Ricci calculus, 258
Lebesgue
convergence theorem, 86
integrable, 85, 87
measurable in R", 85
measurable in M, 88
measure, 85, 99
line element, 173
vectorial, 169
locally
coherent, 70
Euclidean, 1
integrable, 93
Lorentz group, 24

M x N, 13

M/t, 15

M(n x n,R), 10

M+N, 13

Mobius strip, 71

manifold, 3
closed, 197
empty, 3
Lorentz, 217
Riemannian, 216

semi-Riemannian, 216
vector space as, 21
manifold-with-boundary,
105
mapping degree, 232
maximum principle, 179
Maxwell’s equations, 267
mean value property, 178
measure space, 85
mesa function, 141
metric, 216
multilinear map, 49

N, 174
nabla, V, 176
naturality
of the Cartan derivative,
143
of the wedge product, 134
negatively oriented basis, 68
net flux, 120
nondegenerate quadratic
form, 22, 215
norm convergence theorem,
86
normal derivative %’%, 177
n-sphere S”, 10
null-bordant, 115
null-homotopic, 204

O(n), 11
0(Q), 22
QkM, 56
QF, X, 264
Q*, 138
orientation
have the same, 67
of a manifold, 70
of a vector space, 67, 68
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opposite, 72

usual, 68
orientation convention, 110
orientation-preserving

chart, 70

diffeomorphism, 70

isomorphism, 68
orientation-reversing, 70
oriented

manifold, 70

vector space, 67
orienting

atlas, 73

normal N , 187

unit normal field N, 174
orthogonal group, 11
orthonormalization process,

69

partition of unity, 157
path components, 24
Pfaffian forms, 57
Poincaré

duality, 230

isomorphism

H*M = H""kM, 230

lemma, 204
positive-homogeneous, 80
positively oriented basis, 68
prism, 200

operator, 201, 202
product

atlas, 13

of manifolds, 13, 72
property relative to charts, 4
pseudoscalar, 83

quadratic
form, 22, 216

space, 216
quotient
manifold, 15
space, 14
topology, 14

tkp, 5
R", 102
RP", 16
raising and lowering indices,
250, 252
rank of a differentiable map,
5
rank theorem, 6
real projective space, 16
regular
point, 6
value, 7
retract, 163
Ricci calculus, 30, 42, 241ff
Riemannian manifold, 216
right-hand rule, 66

f (“sharp”), 219
sp, 84
op, 83
o-algebra, 89
S(n x n,R), 10
SO(n), 12
SU(n), 12
scalar product, 219
of k-forms, 225
of tensors, 253
second axiom of
countability, 3
self-dual, 233
semi-Riemannian manifold,
216
sense of rotation, 66
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set of measure zero
in R”, 86, 88
in a manifold, 88
shear invariant, 80
singular
point, 7
value, 7
small subset, 89
source strength, 120
space of forms, 219
span, 80
special orthogonal group, 12
sphere, 10
spherical coordinates, 259
star operator *, 218, 225
in R3, 240
in Minkowski space, 266
in the Ricci calculus, 256
star-shaped, 204
Stokes's integral theorem,
172, 176
submanifold, 8
chart, 8
submanifold-with-boundary,
106
sum (of manifolds), 13, 72
summation convention, 245
support, 93
surface, 71
in space, 10

T, 174

‘A 10
T;“bM, 26
Tf;e"’“M, 28
T, $(M), 30
TE™*M, 31
Ty M, 109

tangent space
“physically” defined, 38
algebraically defined, 30
geometrically defined, 28
to a manifold, 37
to a submanifold of RV, 26
tangent vector, 37
inward-pointing, 110
outward-pointing, 110
tangentially equivalent, 28
tensor, 243, 246
field, 247
product ®, 247
theorem
Brouwer fixed-point, 164
divergence, 172
dominated convergence,
86
Fubini’s, 86
Gauss's integral, 172, 176
hairy ball, 206, 207
Heine-Borel, 19
Hodge, 230
Hodge decomposition, 230
inverse function, 6
Lebesgue convergence, 86
monotone convergence,
86
norm convergence, 86
regular point, 6
regular value, 7
Stokes's, 151
intuitive, 122
Whitney embedding, 17
time-dependent k-form on
space-time, 264
torus, 14
transition map, 1
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translation isomorphisms,
169

Un), 12
unit
normal field N, 174
tangent field T, 174
universally bilinear, 247

V(X), 168
vector
contravariant, 30
vector field, 45
vectorial
area element, 169
line element, 169
velocity vector, 41

volume element, 169
volume form, 173
formula, 222, 256
on a quadratic space, 221
on a semi-Riemannian
manifold, 225

wedge product
in the Ricci calculus, 256
of alternating multilinear
forms, 133
of differential forms, 137
Whitney, 17

X/~ 14

2, 134, 256
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