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To my mother and my late father
who taught me how to count



Preface

What should every aspiring mathematician know? The answer for
most of the 20th century has been: calculus. For 2000 years before
that, the answer was Euclid. It now seems a good time to raise the
question again, because the old answers are no longer convincing.
Mathematics today is much more than Euclid, but it is also much
more than calculus; and the calculus now taught is, sadly, much
less than it used to be. Little by little, calculus has been deprived of
the algebra, geometry, and logic it needs to sustain it, until many
institutions have had to put it on high-tech life-support systems. A
subject struggling to survive is hardly a good introduction to the
vigor of real mathematics.

But if it were only a matter of putting the guts back into calculus
it would not be necessary to write a new book. It would be enough to
recommend, for example, Spivak’s Calculus, or Hardy’s Pure Mathe-
matics. In the current situation, we need to revive not only calculus,
but also algebra, geometry, and the whole idea that mathematics is a
rigorous, cumulative discipline in which each mathematician stands
on the shoulders of giants.

The best way to teach real mathematics, I believe, is to start
deeper down, with the elementary ideas of number and space. Ev-
eryone concedes that these are fundamental, but they have been

vii
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scandalously neglected, perhaps in the naive belief that anyone
learning calculus has outgrown them. In fact, arithmetic, algebra,
and geometry can never be outgrown, and the most rewarding
path to higher mathematics sustains their development alongside
the “advanced” branches such as calculus. Also, by maintaining ties
between these disciplines, it is possible to present a more unified
view of mathematics, yet at the same time to include more spice
and variety.

The aim of this book, then, is to give a broad view of arithmetic,
geometry, and algebra at the level of calculus, without being a cal-
culus book (or a “precalculus” book). Its roots are in arithmetic and
geometry, the two opposite poles of mathematics, and the source of
historic conceptual conflict. The resolution of this conflict, and its
role in the development of mathematics, is one of the main stories
in the book. The key is algebra, which brings arithmetic and geom-
etry together and allows them to flourish and branch out in new
directions. To keep the story as simple as possible, 1 link everything
to the algebraic themes of linear and quadratic equations.

The restriction to low-degree equations is not as dreadful as high
school algebra might suggest. Even linear equations are interesting
when only integer solutions are sought, and they neatly motivate a
whole introductory course in number theory, from the Euclidean al-
gorithm to unique prime factorization. Quadratic equations are even
more interesting from the integer point of view, with Pythagorean
triples and Pell’s equation leading deep into algebra, geometry, and
analysis. From the point of view of geometry, quadratic equations
represent the conic sections—a fascinating topic in itself—and the
areas bounded by these curves define the circular, logarithmic, and
hyperbolic functions. In this way we are led to the subject matter
of a first calculus course, but with less machinery and more time to
probe fundamental questions such as the nature of numbers, curves,
and area. It is worth mentioning that we also cover the main ideas of
Euclid—geometry, arithmetic, and the theory of real numbers—but
with 2000 years of extra insights added.

In fact, this book could be described as a deeper look at ordi-
nary things. Most of mathematics is about numbers, curves, and
functions, and the links between these concepts can be suggested
by a thorough study of simple examples, such as the circle and the
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square. I hope to show that mathematics, like the world, fits William
Blake's description:

To see a World in a Grain of Sand,

And a Heaven in a Wild Flower,

Hold Infinity in the palm of your hand
And Eternity in an hour.

Because it is virtually impossible to learn mathematics by mere read-
ing, this book includes many exercises and every encouragement to
do them. There is a set of exercises at the end of each section, so
new ideas can be instantly tested, clarified, and reinforced. The ex-
ercises are often variations or generalizations of the results in the
main text; in some cases I think they are even more interesting!
In particular, they include simplified arrangements of many classic
proofs by great mathematicians, from Euclid to Hilbert. Each set
of exercises is accompanied by a commentary to make its purpose
and significance clear. I hope this will be useful, particularly when
several exercises have to be linked together to produce a big result.

Who is this book for? Because it presupposes only high school
algebra, it can in principle be read by any well-prepared student
entering university. It complements the usual courses, hence it can
be offered as a “hard option” to students who are not sufficiently
extended by the standard material at that level. On the other hand,
it has so little in common with the calculus and linear algebra that
dominates the standard curriculum that it may well be a revela-
tion even to senior undergraduates. Many students now graduate
in mathematics without having done a course in number theory,
geometry, or foundations—for example, without having seen the
fundamental theorem of arithmetic, non-Euclidean geometry, or the
definition of real numbers. For such students, this book could serve
as a capstone course in the senior year, presenting a unified ap-
proach to mathematics and proving many of the classic results that
are normally only mentioned.

It could also be used in conventional courses. Chapters 1, 4, 6, 7,
and parts of 8 and 9 contain most of the standard material for a first
number theory course. Chapters 2, 3, 5, and 8 could serve as a first
course in geometry. But naturally it would be best if the two courses
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were coordinated—perhaps run in parallel —to take advantage of the
links between them. The whole is greater than the sum of its parts.

A glance at the table of contents and the index will reveal that this
book contains a lot of material, some of it quite hard. This is because
I want to provide many interesting paths to follow, for students of
all levels. However, it is not necessary to follow each path to its end.
The harder sections and exercises are marked with stars, and they
can be omitted without losing access to most of the material that
follows. There are also informal discussions at the ends of chapters,
intended to help readers see the big picture even while some of
the details remain confused. Each discussion deals with a few main
themes, placing them in historical and mathematical perspective,
linking them to other parts of the book, and sometimes extending
their development and suggesting further reading.

The book grew out of a talk I gave at Oberwolfach in November
1995, following a suggestion of Urs Kirchgraber. Several parts of it
have been used in courses at Monash, from first year to fourth year,
and the book in its entirety has benefited from the comments of
Mark Aarons, Benno Artmann, Tristan Needham, and Aldo Taranto.
To them, and as usual to my wife Elaine, I offer my sincere thanks.

Clayton, Victoria, Australia John Stillwell
February 1997
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Arithmetic

CHAPTER

1.1 The Natural Numbers

The beauty and fascination of numbers can be summed up by one
simple fact: anyone can count 1, 2, 3, 4, ..., but no one knows all the
implications of this simple process. Let me elaborate. We all real-
ize that the sequence 1, 2,3,4,... continues 5,6,7,8,..., and that
we can continue indefinitely adding 1. The objects produced by the
counting process are what mathematicians call the natural numbers.
Thus if we want to say what it is that 1, 2, 3,17, 643, 100097801, and
4514517888888856 have in common, in short, what a natural num-
ber is, we can only say that each is produced by the counting process.
This is slightly troubling when you think about it: the simplest, and
most finite, mathematical objects are defined by an infinite process.
However, the concept of natural number is inseparable from the con-
cept of infinity, so we must learn to live with it and, if possible, use
it to our advantage.

In fact, one of the most powerful methods in mathematics draws
its strength from the infinite counting process. This is mathematical
induction, which we usually just call induction for short. It may be
tormulated in several ways, each basically a restatement of the fact
that any natural number can be reached by counting.

J. Stillwell, Numbers and Geometry
© Springer-Verlag New York, Inc. 1998
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The first form of induction we consider (and apparently the first
actually used) expresses the fact that from each natural number we
can “count down” to 1, by finitely often subtracting 1. It follows that
an infinite descending sequence of natural numbers is impossible.
And nonexistence of natural numbers with certain properties often
follows by hypothetical construction of an infinite descending se-
quence. This form of induction is called infinite descent,! or simply
descent. Possibly the oldest example is the following, which goes
back to around 500 B.C. To abbreviate the proof and show its simple
logical structure, we use the symbol = for “hence” or “implies”

The proof shows that no natural number square is twice another,
but the result is better known as the “irrationality of +/2."

Irrationality of /2 There are no natural numbers m and n such that
m? = 2n°.
Proof The hypothetical equation m? = 2n? leads to a similar
equation, but with smaller numbers, as follows:
m? = 2n* = m? even
= meven, say, m = 2m;
= 4am? = m* = 2n®
= n’ even
= n even, say, n = 2n,;
ém%:Zn%andm>m1 >0
= m; = 2n3 and m > m, > my > 0, similarly,
and so on. Thus we get an infinite descending sequence, m > m; >

my > ---, which is impossible. Hence there are no natural numbers
m and n such that m? = 2n?. O

As most readers will know, /2 is defined as the number x such
that 2 = x*. The proof shows that +/2 is not a ratio m/n of natural
numbers m, n, as this would imply 2 = m?/n? and hence m? = 2n?.
This is why /2 is called irrational; it simply means “not a ratio” As
is typical when we wish to prove a negative statement, we argue by

"The unsettling experience of infinite descent has been used as the basis of a
horror story by Marghanita Laski, called The Tower.
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contradiction: the existence of a ratio m/n = /2 is shown to imply
an impossibility.

But if /2 is not a ratio, what is it? Does it even exist? These
questions have had an enormous influence on the development of
mathematics, and their answers fill a large part of this book. For the
moment, it is enough to say that, whatever the whole story of /2
may be, its irrationality is a fact about natural numbers.

Exercises

A problem at least as old as the meaning of /2, though less subtle, also
leads to an interesting descent argument. Again, this is a case where a
question about fractions reduces to a question about natural numbers.
About 4000 years ago, the Egyptians invented a curious arithmetic of
fractions that depended on expressing each fraction between 0 and 1 as a
sum of distinct unit fractions, that is, fractions of the form % For example,
£ is the sum of the unit fractions § and &. Such sums are called Egyptian
fractions. As another example, an Egyptian fraction for % is % + ]1—0

49

1.1.1. Express z, 35,

and 3 as Egyptian fractions.

1.1.2. Find two different Egyptian fractions for %

We do not know the Egyptian methods for finding such sums. They seem
to involve many special tricks for avoiding unnecessarily large denomina-
tors, and it is difficult to capture them all in a rule that works in all cases.
A more systematic approach was developed in the book Liber Abacci,
written in 1202 by Leonardo of Pisa, better known as Fibonacci.

The method of the Liber Abacci also includes several tricks, but one
of them can be used on its own to express any fraction between 0 and 1
as an Egyptian fraction. The trick is to repeatedly remove the largest unit
fraction. Thus if% is a (nonunit) fraction between 0 and 1, in lowest terms,
let L be the largest unit fraction less than £, and form the new fraction

b
a a1

¥ — b n’
1.1.3. Assuming g— is in lowest terms, show that 0 < &’ < a.

1.1.4. Hence conclude, by descent, that finitely many such removals split
# into distinct unit fractions.
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1.1.5. Use repeated removal of the largest unit fraction to show

6_1+ +1
19 4 304"

It is worth mentioning that Fibonacci obtained the simpler decomposition
£ =14+ L+ L. After removal of the largest unit fraction, ;, he was
left with % Rather than repeat the process of removing the largest unit
fraction, he took advantage of the fact that 76 has the divisor 4 to split %
into 7 + 7% = 15 + 7%-

It is also worth mentioning that there are still some unsolved prob-
lems with Egyptian fractions. For example, it is not known whether each
fraction of the form 2 is the sum of three or fewer unit fractions. (For

more information on problems with Egyptian fractions, see Guy (1994).)

1.2 Division, Divisors, and Primes

So far we have taken addition, multiplication, and fractions more
or less for granted, and we shall continue to do so until a deeper
investigation is called for (Section 1.9*). However, we cannot take
division for granted, because it cannot always be done in the natural
numbers. As you learned in primary school, 3 into 7 “won't go,” so
we are forced to consider the more complicated concept of division
with remainder. The exact relation between 3 and 7 is that

7=2x3+1,

which we express by saying that 2 is the quotient when 7 is divided
by 3, and 1 is the remainder. Only when there is no remainder, as
when 3 divides 6, is true division possible in the natural numbers.

If a and b are any natural numbers, we say that b divides a if there
is a natural number g such that

a = qgb.

In this case, we also say that a is divisible by b, or that b is a divisor
of a, or that a is a multiple of b.

If b does not divide a then a # b, 2b, 3b, . . ., hence if we descend
through the numbers a,a — b, a — 2b,a — 3b, ... we eventually reach



1.2 Division, Divisors, and Primes 5

(because we cannot descend indefinitely), a natural number r =
a — gb smaller than b. We then have the result

a=qgb+vr, withr <b.

The natural number g is called the quotient on division of a by b,
and r is called the remainder. The fact that a can be expressed as
a multiple of b plus a remainder smaller than b is often called the
division algorithm, though we prefer to use that name for the process
of division (namely, repeated subtraction of b until the remainder is
smaller than b), and call the fact the division property.

The relation of division with remainder includes true division,
of course, when we allow r = 0. In fact, some people include 0
among the natural numbers, but it is helpful to distinguish it as a
new number: the first of several extensions of the number concept.?
The fractions, for example, are an extension of the natural numbers
because the natural numbers n are just the special fractions 7. At this
point you may wonder why we do not move to fractions immediately
and make division easier. After all,

7
7=—=x23,

3
50 3 does divide 7 in the world of fractions. The reason is that fractions
do not overcome the difficulty of division, they only conceal it. The
problem comes back when we have to decide when a fraction is in
lowest terms. We know g is not in lowest terms, for example, because
we know that 3 divides 6 in the natural numbers.

This example helps to clarify what is “natural” about the natu-
ral numbers. Apart from being the medium for counting, they are
also the natural setting for division, divisors, and factorization —the
process of writing numbers as products. When a natural number is
written as a product, say,

a=mny---nNg,

*The only disadvantage in taking 0 to be new is that there is then no name for
the enlarged set “natural numbers together with 0” This is only a temporary
inconvenience; we soon need further extensions of the natural numbers, which
do have names.
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the divisors ; of a are called factors. The simplest numbers, from the
standpoint of factorization, are the primes —the natural numbers p
divisible only by 1 and p. They may be regarded as “atoms” because
they cannot be split into smaller factors. Factors of 1 are redundant,
so 1 is not classed as a prime. The first few prime numbers are

2,3,5,7,11,13,17,19, 23,29, 31, 37, 41, 43, 47, 53,59, 61, .. . .

Exercises

In the proof that /2 is irrational (Section 1.1), we used the fact that m? is
even if and only if m is even, or in other words that 2 divides m? if and
only if 2 divides m. This is easily checked, but it is worth spelling out,
because algebra is involved, and the idea of “algebraic factorization” has
many other applications.
2 divides m = m = 2l for some |
= m’ = (2)? =202P)
= 2 divides m*.
2 does not divide m = m = 21+ 1 for some [
Sm=QI+1)2=4P +4+1=20QF+2D)+1

= 2 does not divide m*.
This idea has a generalization to multiples of 3.

1.2.1. Show that m? is a multiple of 3 only if m is a multiple of 3. Hence
prove that there are no natural numbers m and n such that m? =
3n?.

This proves the irrationality of +/3; there are other ways to prove it,
some of which are more general and apply to /5, /6, ... as well. We shall
see them in Section 1.6. Another important algebraic factorization is the
following.

1.2.2. Check thatx" —1=(x — D" +x" %+ +x+1).
This enables us to find divisors of certain large numbers.

1.2.3. Deduce from Exercise 1.2.2 that, if m = np, then 2™ — 1 is divisible
by 27 — 1.
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1.2.4. Conclude that 2” — 1 is prime only if p is prime.

Primes of the form 27 — 1 are known as Mersenne primes after Marin
Mersenne (1588-1648), who first drew attention to them. About 35
Mersenne primes have been found, but it is not known whether there
are infinitely many.

1.2.5. Check that 2” —1 is prime when p = 2, 3,5, 7, but not when p = 11.

1.2.6.* By similarly factorizing x" 4+ 1 when »n is odd, deduce that 2™ + 1
is prime only if m has no odd divisors, that is, only if m is a power
of 2.

1.2.7. Check that 22" +1 is prime for h = 0,1, 2, 3, 4, but that 641 divides
22 41,

Primes of the form 22" + 1 are called Fermat primes, after Pierre de
Fermat. Apart from those with h = 0,1, 2, 3, 4, no other Fermat primes
are known.

1.3 The Mysterious Sequence of Primes

It is relatively easy to continue the list of primes, especially with the
help of a computer, but one never gets a clear picture of where it is
going. Somehow, the two simplest aspects of the natural numbers—
their ability to be ordered and their ability to be factored—interact
in an incredibly complex way. Listing the primes in increasing or-
der produces no apparent pattern; one cannot even be sure the list
continues indefinitely. On the other hand, the concept of prime is
surely simple, so maybe we can prove that there are infinitely many
primes, without knowing their pattern.

This is in fact what Euclid did, more than 2000 years ago. You
can read his simple proof in Proposition 20, Book IX of the Elements,
which is available in English in the excellent edition of Heath (1925).
Here is a slightly modernized version.

Euclid’s Theorem There are infinitely many primes.

Proof First we need to see that any natural number » has a prime
divisor.
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Take any divisor d of n. If d is prime, we have found a prime
divisor. If not, d has a smaller divisor e # 1. This divisor e of d is
also a divisor of n, because n = dg and d = er for some natural
numbers g and r, and therefore n = erq. If e is not prime, we repeat
the argument, finding a smaller divisor f # 1. Because we cannot
descend indefinitely, we eventually find a prime divisor of n.

Now we use a prime divisor to extend any given list of primes.
Given primes p1,pz, - - . , Pk, consider the number

n=ppz---px+1

This number is not divisible by any of the given primes py, p2, ... , Px,
because they all leave remainder 1. But we have just seen that n has
some prime divisor p. Thus, if p1,p2, ..., px are any given primes,
we can find a prime p # p1,pz, - - , Pk- O

This proof is one of the most admired in mathematics, and one’s
admiration for it only increases the more one knows about primes.
Euclid, like us, did not know any pattern in the sequence of primes,
so he devised a proof that did not need to know. If he and later
mathematicians had waited for someone to find a pattern, we still
would not know the first thing about primes.

Exercises

Euclid’s proof is the simplest way to see that infinitely many primes exist,
though not the most practical way to find them. Still, it is fun to produce
new primes by multiplying known primes together and adding 1. Starting
with the single prime p; = 2, for example, we get n = 2+ 1 = 3, which
is a second prime p,. Then py, p, give n = 2 x 3+ 1 =7, which is a third
prime ps; p1, p2, P3 give n =2 x 3 x 7+ 1 = 43, and so on.

1.3.1. Continue this process, and find the first stage where n =
p1p2ps - - - px + 1 is not itself a prime.

If you take the least prime divisor of n at each stage, you should be able
to continue long enough to find an n in this sequence whose least prime
divisor is 5. With some computer help, you might be able to continue
long enough to reach an n whose least prime divisor is 11. (Tt is preceded
by some huge prime values of »n.) It is not known whether each prime is
eventually produced by this process.
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Apart from the number 2, all prime numbers are odd, and odd num-
bers are of two types: those of the form 4n + 1 and those of the form
4n + 3. It turns out to be helpful to split the odd primes in this way as
well, because the two types of odd prime often behave differently. For a
start, we can extend Euclid’s idea to prove that there are infinitely many
primes of the form 4n + 3.

1.3.2. Show that the product of 4a + 1 and 4b + 1 is a number of the form
n+1.

1.3.3. Deduce from Exercise 1.3.2 that any number of the form 4m + 3
has a prime factor of the form 4n + 3.

1.3.4. Show that p;,p, ... ,px do not divide 2p1p; - - - px + 1.

1.3.5. Show, however, that if p1,p,, ..., px are all odd primes then some
prime of the form 4n + 3 divides 2p1p; - - - px + 1. Deduce that there
are infinitely many primes of the form 4n + 3.

It is also true that there are infinitely many primes of the form 4n+1,
but this is harder to prove. The best possible result in this direction was
proved by Peter Lejeune Dirichlet (1837). He showed that any sequence
of the form an + b, where a and b are natural numbers with no common
divisor, contains infinitely many primes. For example, Dirichlet’s theorem
says there are infinitely many primes of the form 6n + 1 and of the form
6n + 5, but there are none of the form 6n + 3 (because 3 divides any
number of the form 6n+ 3). In general, if a and b have a common divisor,
there are no primes of the form an + b.

The form an + b is called a linear form, so Dirichlet's theorem settles
the question of how many primes there are in a given linear form. Virtu-
ally nothing is known about primes in higher-degree forms. For example,
we do not know whether there are infinitely many primes of the form
n?+1.

1.4 Integers and Rationals

Everyone will agree that the natural numbers 1, 2,3,4, ... deserve
the name “natural” but mathematicians feel they are not natural
enough. 1,2,3,4,... are fine for counting, but not for arithmetic,

because they do not permit unlimited subtraction. We cannot take
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7 from 3, for example. To make this possible, we extend the set N
of natural numbers to the set Z of integers® by adjoining 0 and the
negative integers —1,—2, —3, —4,.... The negative integers can be
viewed as the result of subtracting 1, 2, 3,4, ... respectively from 0,
but it is simpler to regard attachment of the negative sign as the
basic operation, and to define subtraction by a — b = a + (=b).

The natural numbers now start a new life as the positive integers.
Each positive integer a has an additive inverse —a, and the additive
inverse of —a is defined to be a. If we also define —0 = 0, then it
follows that in all cases —(—a) = a.

The integers are a more natural home for arithmetic because they
permit addition, subtraction, and multiplication without restriction.
However, questions arise about the meaning of these operations on
the newly introduced numbers. What is (—1) — (—4) for example, or
(—1) x (—=1)? The best way to answer these questions is by “keeping
things natural” We ask ourselves how +, —, and x behave on N and
insist that they behave the same on Z.

First, we can summarize how + and — behave by the following
rules, which hold for all positive integers a, b and c:

a+b+c)=(@+b)+c (associative law)

a+b=b+a (commutative law)

a+(—a)=0 (additive inverse property)

a+0=a (identity property of 0)

These are nothing but the rules we use unconsciously when doing

addition and subtraction on positive integers. We have to become

conscious of them now, to see what they imply for integers in
general.

It follows, for example, that we have unigueness of additive inverse:

—a is the only integer b such that a+b = 0. This is what we normally
call “solving for b but with more awareness of the individual steps:

a+b=0=(—a)+(a+b)y=—a adding —a to both sides
= ((—a)+a)+b=—-a by the associative law
= (a+(—a)+b=—a by the commutative law

3The letter Z is the initial of the German word “Zahlen” meaning “numbers.”
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=0+b=—-a by the additive inverse property
=b=—a by the identity property of 0.

There is a similar set of rules describing the behavior of x:

ax(bxc)=(@xb) xc (associative law)
axb=bxa (commutative law)
axl=a (identity property of 1)
ax0=0 (property of 0)

and finally, a rule for the interaction of + and x:
ax(b+c)y=axb+axc (distributive law)
From these we deduce that a x (—1) = —a for any integer a because

atax(—1)=ax1l+ax(-1) by the identity property of 1
=ax(1+(-1)) by the distributive law
=ax0 by the additive inverse property
=0 by the property of 0

= ax(-1)=-a by the uniqueness of additive inverse.

It follows in particular that (—1) x (—1) =1, because —(—1) = 1.

We extend the set Z of integers to the set Q of rational numbers,*
or simply rationals, by adjoining a multiplicative inverse a~! of each
nonzero integer a. The multiplicative inverse of a~! is defined to be
a, and these inverses have the following property:

axa =1 (multiplicative inverse property)

These properties of () are what we use unconsciously in doing or-
dinary arithmetic with 4+, —, x, and . The quotient a +~ b or a/b
is the same as a x b~'. As mentioned earlier, questions about the
arithmetic of Q are really equivalent to questions about Z, or even
N, but the extra properties of (} sometimes make life easier. This is
particularly the case in geometry, where the rational numbers pave
the way for interpreting points as numbers.

*The symbol Q stands for “quotients” We do not use the initial letter of “rational”
because the same letter is later needed for the real numbers.
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Exercises

The rules governing the behavior of 4+, —, and x are called the ring
properties of Z, and in general any set with functions + and x satisfying
these rules is called a ring. As we have already said, the ring properties
of Z are so familiar that we normally use them unconsciously. Becoming
conscious of them helps us to understand arithmetic, not only in Z, but
also in any other system that satisfies the same rules. We call such a
system a comwmutative ring with unit, the “unit” in this case being the
number 1. Later we shall find it helpful to use many other rings, even to
study 7 itself.

The following exercises help to explain why the ring properties are
fundamental to arithmetic, by showing how they determine the values
of expressions written using natural numbers, +, —, and %, and some
standard algebraic identities.

1.4.1. Show, using the properties of + and —, that (—1) — (—4) = 3.

1.4.2. More generally, show that (—a) — (—b) = b — a.

1.4.3. Now, using properties of x and the distributive law, show
(—a)(—=b) = ab.

1.4.4. Also use the ring properties to prove that
(a+b)? =a+2ab+b? and (a=b)a+b) =a* -1
where, as usual, xy stands for x x y.

Incidentally, there is a good mathematical reason for abbreviating
x X y to xy. The distributive law is better written as

a(b+c) =ab+ ac,

because the products on the right-hand side have precedence over the
sum—they have to be evaluated first.

A ring with the multiplicative inverse property, such as Q, is called
a field. In fact, the way we extended Z to Q is an instance of a common
construction with rings, called “forming the field of fractions” For any a
and b # 0 we form the fraction a/b = ab™!, and we add and multiply
fractions according to the rules you learned around fifth grade:
_ad+bc ac ac

¢ and ——==—
d  bd bd bd

24
b
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These rules also arise from the principle of “keeping things natural”—
they are needed to make + and x behave the same for fractions as they
do for natural numbers.

1.5 Linear Equations

The humble linear equation ax + by = ¢ takes on a new interest
when we seek integer solutions x and y for given integers a, b, and c.
It can very easily fail to have an integer solution, so the problem is
first to decide whether there is an integer solution, and if so, how to
find it.

Take the example 15x + 12y = 4. For any integers x and y, 3
divides 15x + 12y, because 3 divides 15 and 12. But 3 does not divide
4, hence there is no integer solution of 15x + 12y = 4. In general,
we can see that ax + by = ¢ has no integer solution if a and b have a
divisor that does not divide c.

But what if the divisors of a and b divide c¢? It is not at all clear
there are integers x and y with ax+ by = ¢, though they seem to exist
in every case we try. For example, if we consider 17x + 12y = 1, the
only divisors of both 17 and 12 are £1, which certainly divide the
right-hand side. And with some difficulty (say, by searching down
lists of the multiples of 17 and 12) we indeed find a solution, x = 5
andy = —7.

This presumably depends on some connection between divisors
of a and b and numbers of the form ax 4+ by. We can already see
part of it: Any divisor of a and b is also a divisor of ax + by, for any
integers x and y. The less obvious part comes from thinking about
the greatest common divisor of a and b, which we call gcd(a, b), and
seeing that it has the form ax + by.

There is a famous algorithm for finding gcd(a, b), for natural
numbers a and b. It is called the Euclidean algorithm, and it was
described by Euclid as “repeatedly subtracting the smaller number
from the larger” To be precise, we produce pairs of natural numbers
(a1, b)), (az, by), (as, b3), ... as follows. The first pair (a, by) is (a, b)
itself, and each new pair (a,y1, biy1) comes from (a;, b;) by
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a1 = max(a;, b;) — min(a;, b;) (taking the smaller
from the larger),

b;11 = min(a;, b;) (and keeping the smaller),

until ax = by, in which case the algorithm halts. Then gcd(a, b) =
ax = bk.

It is clear that the algorithm does reach a pair of equal numbers
ar and by, because the natural numbers a;, ay, as, . .. cannot decrease
indefinitely. But why does it produce the gcd?

Correctness of the Euclidean algorithm All pairs produced by
the Euclidean algorithm have the same common divisors, hence ay =
bx = gcd(a, b).

Proof Each divisor of a; and b; is also a divisor of a1 (because
any divisor of two numbers also divides their difference) and of b4 .
Conversely, any divisor of a;;, and b, also divides a; and b;, because
any divisor of two numbers also divides their sum. Thus each pair
(ait1, biy1) has the same divisors as all previous pairs, and hence the
same gcd. But then

ged(a, b) = ged(ay, by) = ged(az, by) = - - - = ged(ax, by) = ax = by,
because ar = by. O

Not only does the Euclidean algorithm give gcd(a, b), it gives it
in the form ax + by.

Linear representation of the gcd  All the numbers ai, b; produced
by the Euclidean algorithm arve of the form ax + by, for some integers x
and y, hence this is also the form of gcd(a, b) itself.

Proof The first pair a, b are certainly each of the required form.
This is also true of all subsequent numbers a;;1, bi+1, because each
is either a previous number or the difference of two of them. In
particular, gcd(a, b) = ar = ax + by for some integers x and y. a

We illustrate the Euclidean algorithm on a = 17 and b = 12 in
the first two columns of the following table. The third column keeps
track of what happens to a and b, eventually giving x and y with
17x+ 12y = ged(17,12) = 1.
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(a1, 1) = (17,12) = (a, b)
(az,b2) = (5,12) = (a — b, D)
(a3,b3) = (7,5) =B —(a—b),a—Dh)

=2b—a,a—Db)
(as,by) = (2,5) =(2b—a)—(a—Db),a—Db)
= B8b—2a,a—Db)

(as,bs) = (3,2) = ((a—Db)— (3b— 2a),3b — 2a)
= (3a — 4b, 3b — 2a)

(as,bs) = (1,2) = ((3a — 4b) — (3b — 2a), 3b — 2a)
— (5a — 7b, 3b — 24)

The last line shows the gcd, 1, expressed as 5a — 7b. Thus we have
the solution x = 5, y = =7 to 17x + 12y = 1, just as we found by
trial before. The Euclidean algorithm does not have any computa-
tional advantage in a small example such as this, but it does in large
examples. If a and b are integers with many digits, the Euclidean
algorithm can be completed in roughly as many steps as there are
digits (see the exercises), whereas listing the multiples of a and b
takes an exponentially larger number of steps.

In addition to being computationally powerful, the Euclidean
algorithm gives us remarkable theoretical insight. For a start, we
have confirmed our guess about integer solutions ax + by = c.

Test for integer solvability of ax+by = ¢ The equation ax+by = c
has an integer solution if and only if gcd(a, b) divides c.

Proof We have already seen that if gcd(a, b) does not divide ¢, then
the equation ax + by = ¢ has no integer solution.

Conversely, if gcd(a, b) divides ¢, suppose ¢ = gcd(a, b) x d. We
now know that there are integers ¥’ and y' such that gcd(a, b) =
ax' + by'. Therefore, ¢ = (a¥' + by')d = a(x¥'d) + b(y'd), and hence we
have the solution x = ¥'d, y = y'd of ax + by = c. O

Exercises

In practice, we usually speed up the Euclidean algorithm by dividing
the larger number by the smaller and keeping the remainder, instead
of subtracting the smaller number from the larger. (Halting then occurs
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when the remainder is 0.) Because division of a by b is really subtraction
of b from a until the difference is less than b, the division form of the
algorithm produces the same result—it simply skips any steps where the
same number is subtracted more than once. This saves many steps when
a is much larger than b.

1.5.1. Show that the remainder, when a is divided by a smaller number
b, is less than a/2.

1.5.2. Deduce from Exercise 1.5.1 that the number of steps to find
gcd(a, b), by the division form of the Euclidean algorithm, is at
most twice the number of binary digits in a.

An interesting showcase for the Euclidean algorithm is the Fibonacci
sequence, 0,1,1,2,3,5,8,13,21,34,55,..., in which each number is the
sum of the previous two.

1.5.3. Use the Euclidean algorithm to verify that gcd(55, 34) = 1.

We use the notation F), for the nth term of the Fibonacci sequence,
starting with F; = 0. The whole sequence can then be defined by the
equations

Fo=0, =1 Fop1=Fy+Fn.

1.5.4. Show that one step of the Euclidean algorithm on the pair
(Fyy2, Fyy1) produces the pair (F,41, F,), hence

1 = ged(F, F1) = ged(Fs, Fy) = ged(Fy, F3) = -+ - .

y

You probably also noticed that “division of F,;; by F,.41” is really sub-
traction, so in the case of consecutive Fibonacci numbers, the subtraction
form of the Euclidean algorithm cannot be sped up. In fact, the Euclidean
algorithm performs at its slowest on consecutive Fibonacci numbers,
though it would take us too far afield to explain what this means. The
full story may be found in Shallit (1994).

Because gcd(F,+1, F) = 1 by Exercise 1.5.4, it follows by the corollary
to the correctness of the Euclidean algorithm that there are integers x and
y such that Fy 1 x + Fpy = 1.

1.5.5. Find integers x; and y; such that Fyx; + Fjy; = 1, and integers x;
and Y2 such that F3X2 + Fzyz =1.

1.5.6. Show that F,, . ;F;, — Fy+1Fyu+1 = —Fpt1 Fy1 + Fy.F,, and hence that

1= —FzFO +F1F1 = F3F1 —FzFZ = —F4F2 +F3F3 = .
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It is worth mentioning that when Euclid proved that there are infinitely
many primes, he did not argue exactly as we did in Section 1.3. Instead of
using division with remainder to prove that each prime pj fails to divide
mp1 - pr+1, he used the obvious fact that gcd(pi1py - - - px+1, p1p1 - - px) =
1.

1.5.7. Why is this obvious? Use the similar fact gcd(p\p;---px —
1,pip1---px) = 1 to give another proof that there are infinitely
many primes.

1.6 Unique Prime Factorization

The discovery that the greatest common divisor of a and b is of the
form ax + by, for some integers x and y, has important repercussions
for prime divisors.

Prime divisor property If a prime p divides the product of integers
a and b, then p divides either a or b.

Proof Suppose that p divides ab and p does not divide a. Then we
have to show that p divides b. Because p does not divide a, and p is
prime, 1 is the only divisor of p that divides a. We therefore have

1 =gcd(a,p) = ax + py for some integers x and y.
It follows, multiplying both sides by b, that
b = abx + pby.

But p divides each term on the right-hand side of this equation—it
divides ab by assumption and pby obviously—hence p dividesb. O

This important property was known to Euclid, as were many of
its important consequences, which we shall see later. However, he
did not state the following consequence, which today is considered
the definitive statement about prime divisors.

Unique prime factorization Each natural number is expressible
in only one way as a product of primes, apart from the order of fuctors.
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Proof By repeatedly finding prime divisors (Section 1.3), we can
factorize any natural number into primes. Now suppose, contrary
to the theorem, that there is a natural number with two different
prime factorizations:

Pip2ps3 - Ps = Q19293 - - - G-

We may assume that any factor common to both sides has already
been canceled, hence no factor on the left is on the right.

But p; divides the left-hand side, and therefore it divides the
right, which is a product of q; and ¢,gs - - - q:. Thus it follows from
the prime divisor property that p; divides g, (in which case p; = ¢y,
because ¢ is prime) or else p; divides g.qgs - - - g;. In the latter case
we similarly find either p; = g, or p; divides gs - - - g;. Continuing in
this way, we eventually find that

pir=¢q Or pr,=(; Or or py = G-

But this contradicts our assumption that p; is not a prime on the
right side. Thus there is no natural number with two different prime
factorizations. a

A variation on the preceding proof, which some people prefer,
starts with p1paps - - ps = q1G293 - - - g but does not assume that the
factorizations are different. One again finds p; =g orp, =gz or - - -
or p1 = q;, but now this simply means that there is a common factor
p1 on both sides. Cancel it, and repeat until no primes remain, at
which stage it is clear that the original factorizations were the same.

Exercises

Unique prime factorization is a powerful way to prove results like the
irrationality of /2, which we first did in Section 1.1 using properties
of even and odd numbers, that is, by using special properties of the
number 2. We saw that to extend the method to +/3 requires a new (and
longer) argument about the number 3, and presumably it gets worse
for /5, +/6, and so on. With unique prime factorization, the argument
depends only on the presence of primes, not which particular ones they
are.
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For example, to prove irrationality of v/2, we observe -hat the equation
m* = 2n*

contradicts unique prime factorization. Why? The prime 2 necessarily oc-
curs an even number of times in the prime factorization of the left-hand
side, namely, twice the number of times it occurs in m. But it occurs an
odd number of times on the right-hand side: the visible occurrence, plus
twice the number of times it occurs in n.

Exactly the same argument applies to the equation m? = 3n?, but with
the prime 3 in place of the prime 2, and hence proves the irrationality
of /3. Likewise for the equation m? = 5n?, and the irrationality of +/5.
The irrationality of /6 is a little different, of course, because 6 is not a
prime. But in this case it still works to consider the prime factors in the
hypothetical equation m? = 6n?.

1.6.1. Prove the irrationality of /6, that is, the impossibility of m? = 6n.

The irrationality of many other numbers can be proved by the same
idea—showing that a hypothetical equation has some prime occurring to
different exponents on the left- and right-hand sides.

1.6.2. Prove the irrationality of v/2, that is, the impossibility of m* = 2n3.
1.6.3. Prove the irrationality of log,, 2, that is, the impossibility of 2 =
lom/n.

In the Disquisitiones Arithmeticae (arithmetical investigations) of Carl
Friedrich Gauss (1801) there is an interesting direct proof of the prime
divisor property, by descent.

1.6.4. First show that a prime p cannot divide a product of smaller num-
bers. Suppose that p divides a1b;, where a;,b; < p, and deduce
that p also divides a1b;, where

b, = remainder when p is divided by by,

which gives an infinite descent.

1.6.5. Use Exercise 1.6.4 to deduce the prime divisor property, by showing
that if p divides ab, and p divides neither a nor b, then p divides an
arby withaq, by < p.

Gauss remarked that the prime divisor property was already proved
by Euclid,



20 1. Arithmetic

however we did not wish to omit it, because many modern au-
thors have offered up feeble arguments in place of proof or have
neglected the theorem completely. (Gauss (1801), article 14)

1.7 Prime Factorization and Divisors

Unique prime factorization is called the fundamental theorem of arith-
metic, and was first stated by Gauss (1801). Gauss also pointed out
how unique prime factorization allows us to describe all the divisors
of a given natural number.

For example, because 30 = 2 x 3 x 5, the numbers 1,2, 3,5,2 x 3,
2 x 5,3 x5, and 2 x 3 x 5 are all divisors of 30. Conversely, any
natural number divisor a of 30 satisfies

2x3x5=uab

for some natural number b. By uniqueness, the prime factorization
of abis also 2 x 3 x 5, and a is part of it, hence a is one of the numbers
listed.

In general, if

€162 €)

n=pipy P,
where py,p2,...,pr are the distinct prime divisors of n, and
€1, €, ..., e are their exponents, then the natural number divisors

of n are numbers of the form

n=pl'py--py,
where 0 < d; <e;,0 <dy <ey,...,0 <d; < e This is because the
prime factorization of a divisor is (by uniqueness) part of the prime
factorization of n.

It may be that general statements about prime factorization and
divisors were not made by Euclid because he lacked a notation for
exponents. The same goes for the following description of greatest
common divisors and least common multiples, which first appear
in Gauss (1801), although they were probably known much earlier.
They follow immediately from the description of divisors in terms
of prime factors. The idea of finding the gcd(m, n) by collecting all
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the common prime factors m and n is certainly an obvious one,
sometimes taught in primary school, because it works well for small
numbers.

ged(pd pi - - _pzk’pqxpgz . p;\l\) — pinin(fmﬂ)p;nin(@,)‘i) . .plrcnin(ek,fk).
The least common multiple of m and n is abbreviated lem(m, n), and
we have

lem(p® ps - - _pzk’p);ip);z . .p;k) — pllmx(el b3 )p;naX(ezfﬁ . _p;nax(ek,ﬁ).
Putting these two formulas together, we get the elegant formula
gcd(m, n)lem(m, n) = mn,

which apparently was not noticed by Euclid. This formula shows,
incidentally, how to compute lem(in, n) without prime factorizations
of m and n: compute gcd(m, n) by the Euclidean algorithm, then
divide it into mn.

The climax of Euclid’'s number theory occurs at the end of Book
IX of the Elements, where he proves a famous theorem about perfect
numbers. A natural number n is called perfect if it is the sum of
its proper divisors, that is, the natural number divisors apart from
itself. The Greeks thought of the proper divisors as the “parts” of a
number, hence a perfect number was the “sum of its parts” Only a
few examples were then known, the smallest being 6 = 142+ 3 and
the next being 28 = 1+2+44+7+14. Euclid found a general formula
that includes these and all other known examples by finding all the
divisors of numbers of the form 2"~!p, where p is prime.

Euclid’s theorem on perfect numbers Ifp is a prime of the form
2" — 1, then the number 2"~ 'p is perfect.

Proof By the preceding remarks, the proper divisors of 2" !p are
Y g P p
1,2,2%,...,2" p,2p, 2%p, ..., 2" 2.

To find the sum of these we need to know that 14242244271 =
2" — 1. This can be done by the formula for the sum of a geometric
series o1, more naively, by adding 1 to the left-hand side and “folding
it up” to 2" as follows:

1+142+22 4234 ... 42!
:2+2+22+23+.'.+2VL*1
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:22+22+23+“.+2n~1
:23_}_23+_..+2n~1

— 2)’1—1 + 2}’1—1
= 2n

But now 2" —1 = p, so when we add this to the other proper divisors
the sum continues to fold up:

p+p+2p+2°p+2°p+-- 4+ 2"
=20+ 2p+2"p+2%p+---+2" %
=22p+22p+23p+--~+2n_2p
=23p+23p+~--+2”*2p

— Zn—zp + Zn—Zp
= 2"'p,

which is the number we started with. a

Exercises

Euclid’s theorem shifts the focus of attention from perfect numbers
to primes of the form 2" — 1. These are called Mersenne primes (as
mentioned in connection with Exercise 1.2.4) because Mersenne rec-
ognized that they are prime only for prime n, and boldly conjectured that
n=2,3,57,13,17,19,31,67,127,257 give primes and n = 89, 107 do not.
His conjectures were far from correct but were nevertheless important
because they inspired Fermat to devise methods for finding factors of
numbers of the form 2" — 1. Fermat’s ideas turned out to be useful far
outside this special problem, as we shall sec in Chapter 6.

Although Euclid did not explicitly state unique prime factorization,
there is evidence that the Greeks were aware of it and even of its implica-
tions for the description of divisors. Plato pointed out, in his Laws around
360 BC, that 5040 is a convenient number because it is divisible by all num-
bers from 1 to 10. He also mentioned that it has 59 divisors altogether.



1.8 Induction 23

The number of divisors is correct (if 5040 itself is omitted) and would be
very hard to check except by using the fact that 5040 = 2% x 32 x 5 x 7.

1.7.1. Use the prime factorization of 5040 to show thatithas5x3x2x2 =
60 natural number divisors (including itself).

1.7.2. Show that n = p{'p3 ---p* has (e1 + 1)(e; + 1) - - (ex + 1) natural
number divisors.

Before leaving the subject of perfect numbers, it is worth mentioning
that Leonhard Euler proved a converse of Euclid's theorem: every even
perfect number is of the form 2" 'p, where p = 2" — 1 is prime. An elegant
proof of Euler’s theorem, due to Leonard Eugene Dickson (1874-1934),
goes as follows.

1.7.3. For any natural number N = 2""!g, where g is odd, let ¥ be the
sum of all natural number divisors of g. Show that the sum of all
proper divisors of N is (2" — 1) — N.

1.7.4. Deduce from Exercise 1.7.3 that, if N is perfect, then 2N = 2"g =
(2" —=1)X and hence T =g+ q/(2" — 1).

1.7.5. Deduce from Exercise 1.7.4 that 2"—1 divides g, thatgand q/(2""—1)
are the only divisors of g, and hence that g is a prime withg = 2"-1.

It remains an open problem whether there are any odd perfect
numbers.

1.8 Induction

We began this book by claiming that arithmetic rests on the counting
process and that proofs in arithmetic draw their strength from the
logical essence of counting, mathematical induction. We gave one
version of induction, called descent, and a few examples, and then
said no more about it. So you may wonder whether induction is
actually as important as we claimed. It is. Induction has been quietly
intervening at crucial moments ever since we first mentioned it.
Look again over the previous sections, and you will see that
descent was used to prove the following fundamental results:

e The division “algorithm” (or property) (Section 1.2).

e Existence of a prime divisor (Section 1.3).
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e 'Termination of the Euclidean algorithm (Section 1.5).
e Unique prime factorization (Section 1.6).

It is also needed for Exercise 1.1.4 on Egyptian fractions, and
Exercise 1.5.4 on gcd(Fy4q, Fy).

In addition to descent, which says that any descending sequence
of natural numbers has a least member, we have used a form of in-
duction that could be called ascent: if a sequence of natural numbers
includes 1, and includes i 4+ 1 when it includes i, then the sequence
includes all natural numbers. This principle is immediate from the
definition of the natural numbers by counting.

Ascent is normally used to prove a statement about n, S(n) say,
by proving that the sequence of numbers n for which S(n) holds
includes all natural numbers. One has to prove

1. S(n) istrue forn =1
(the so-called base step) and

2. S(n) is true forn =i+ 1 when it is true forn =1
(the so-called induction step).

Then it follows by ascent that S(n) is true for all natural numbers n.
This form of induction was used in two crucial results.

e Correctness of the Euclidean algorithm (Section 1.5). To do this,
we proved the statement S,,: ged(ay, by) = gcd(a, b). It is true for
n =1, because (a1, b;) = (a, b); and it is true for n = i + 1 when
it is true for n =1, because ged(a;, b)) = ged(air1, biv1).

e gcd(a, b) = ax + by for some integers x and y (Section 1.5). We
actually proved the statement that a, and b, are of this form:
proving it true for n = 1, because a; = a and b; = b; then
proving it true for n = 1 + 1 when it is true for n = i, because
differences of numbers of the form ax + by are still of this form.

Exercises
The ascent form of induction is often used to prove equations involving
asum ofnterms, suchas S(n) : 1+2+---+n= w

1.8.1. For this particular equation S(n), check the base step S(1). Then add
(i+1) to both sides of 8(i) to prove the induction step S(i1) = S(i+1).
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1.8.2. Similarly use induction to prove that

LN S U i il )
N 6
and

nn+1)

2
> ) =142+ +n?

134_23_’_'“_‘_”3:(
On the other hand, a frequent complaint about such proofs is that one has
to guess the right-hand side correctly before it is possible to get started.
One would prefer a method that discovers the right-hand side, as well as
proves it. For example, one can discover the form of 1 + 2+ -+ 4+ n by
writing it a second time, in reverse:

1424+ (n—1)+n
n+m—1)++2+1.

It is then clear, by adding the two rows, that there is a sum of n+ 1 in
each of the n columns, hence

20424+ ---+n) =nn+1),

and therefore

nn+1)

—

The latter kind of proof is often called noninductive, but what has really
happened is that induction has been redeployed to prove that each col-
umn has sum »n + 1. This is so easy that the base step and induction step
need not be spelled out.

1424 ---4+n=

1.8.3. Use induction directly to prove the formula for the geometric
series:

1— Vn+l

147472474 = 1
—r

)

and describe a proof that leads to the discovery of this formula.

According to Hasse (1928), Zermelo found an interesting inductive
proof of unique prime factorization along the following lines. Assuming
there is a natural number with two different prime factorizations, there
is a least such number n, by descent. It follows that n has two prime
factorizations with no common prime factor, otherwise we could cancel
to get a smaller number with two prime factorizations Next ...
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1.8.4. Suppose that p is a prime in the first factorization of n and ¢ is
a prime in the second. Show that pg does not divide n, other-
wise there would be a smaller number with two different prime
factorizations.

We now let p < g be any two primes dividing the hypothetical
least n with two prime factorizations. The following exercises derive a
contradiction by showing that pq does divide n.

1.8.5. ;—j — ’7; = I:—;(q —p) is a natural number. (Why?) Deduce that %(q -p)
is a natural number < n, hence with unique prime factorization,
and that p divides ;—;(q —-p).

1.8.6. But p does not divide g — p. (Why not?) Deduce from the unique
prime factorization of Z—;(q — p) that p divides g, and hence that pg

divides n, as required.

1.9* Foundations

The aim of mathematics is to prove things, which is hard, so mathe-
maticians continually search for clearer and more powerful methods
of proof. From time to time, this leads to criticism of existing meth-
ods as being unclear, or too complicated, or too narrow. Attempts
are then made to find methods to replace them, which may lead to
some parts of mathematics being rebuilt on different foundations.
Historically, most of the rebuilding has been in the foundations of
geometry and calculus, which we'll look at later, but in the 19th and
20th centuries it went as far as the foundations of arithmetic. The
new foundations of arithmetic did not make the old ones obsolete,
because in practice one gets along fine using induction and ring
properties of Z. But they were a revelation all the same, because
they showed why induction is crucial to arithmetic: the ring prop-
erties can be derived from it. Thus arithmetic is entirely about the
implications of the counting process!

This surprising discovery, which had been missed by all math-
ematicians from Euclid to Gauss, is due mainly to Hermann
Grassmann (1861) and Richard Dedekind (1888).

Grassmann made the breakthrough by noticing that induction
can be used not only as a method of proof, but as a method of defi-
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nition. To define a function f on the natural numbers by induction,
one writes down a value of f(1), and a definition of f(i4+1) in terms of
f(i). Tt then follows by induction that f{(n) is defined for any natural
number n. One function can be regarded as given along with the
natural numbers themselves—the successor function f(n) = n + 1.
All other standard functions, as Grassmann and Dedekind found,
can be defined by induction.

In particular, Grassmann found that + and x can be defined by
induction, as follows. The defining equations for + are

m+1l=m+1 for all m @)
m+(i+1)=m+1i)+1 for all m, 1. (i+1)

These equations are not as empty as they look! Equation (1) defines
m + n for n = 1 (and all natural numbers m) as the successor of m.
Equation (i+1) defines m+ (1 + 1) as the successor of m+i (again for
all natural numbers m). Thus the set of n for which m + n is defined
includes 1, and it includes i + 1 when it includes i, hence it includes
all natural numbers, by induction.

Once + is defined, x is defined inductively by the equations

mxl=m for all m 1)

mx(@+1l)=mxi+m for all m, i, i+1)

because the value of m x (i 4+ 1) is defined in terms m x i and the
previously defined function +.

The advantage of defining + and x this way is that their prop-
erties can also be proved by induction. With suitable definitions of
0 and the negative integers, similar to those in Section 1.3, Grass-
mann found inductive proofs of all the ring properties of Z (see the
exercises). Thus induction is a complete foundation for arithmetic.

Richard Dedekind (1888) asked himself the question: what are
the properties of the successor function that allow it to serve as a
basis for the rest of arithmetic? He found the answer to this question
in terms of sets—a radical idea at the time, but one that has since
been accepted as the most reasonable way to provide a foundation
for all of mathematics.

The essential properties of the successor function are very
simple.
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1. It is defined on an infinite set (namely, the set of natural
numbers).

2. It is one-to-one (that is, unequal numbers have unequal
SUCCESSOTS).

3. Itis not onto the whole set (in particular, 1 is not a successor).

Dedekind realized that any function f with these properties gives rise
to a set that “behaves like” the natural numbers. If a is an element
that is not a value of f, then a, f(a), f(f(a)), ... behave like 1,2, 3, .. ..
Thus the abstract structure of the natural numbers is completely
described by an infinite set and a function that is one-to-one but not
onto.

However, it is a deep philosophical question whether infinite sets
can actually be proved to exist. Dedekind gave an answer that is very
interesting, although it lies outside mathematics. He said that such
a set is the set of possible ideas, because for every idea I there is
another idea f{I) = the idea of I, which is distinct from I. Indeed the
“idea of” function f behaves like a successor function on the set of
ideas.

Mathematicians have not accepted Dedekind’s set of ideas as a
genuine set, and the existence of infinite sets is taken as an axiom,
so we will not attempt to prove it. However, the statement of this
axiom of infinity (as it is called) is remarkably similar to Dedekind’s
description of the set of ideas. For each set X we define a “successor”
of X by taking X as a member of a new set {X} (rather like forming
the “idea of X"). The actual successor of X is taken to be X U {X}, the
set whose members are the members of X and X itself, for technical
reasons. Then the axiom of infinity says that there is a set 2 rather
like the set of ideas: 2 is not empty (in fact, take the empty set to be
one of its members), and along with each X in €, the successor of X
is also in €.

Thus when we pursue the natural numbers into the depths of set
theory, what we find is nothing but the empty set and its successors.
But this is all we need! John von Neumann (1923) suggested that
this is the best way to define the natural numbers, or rather, the
natural numbers together with zero, because the empty set is surely
the best possible set to represent zero. Here is what the first few
numbers look like, according to his definition.
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) (the empty set)

Il

ll

0,1}

{
{0} (the set whose only member is 0)
{
{0,1,2}

0
1
2
3

In other words, 0 is the empty set, and each natural number is
the set of its predecessors. You must admit that this definition can
hardly be beaten for economy, because everything is built out of
“nothing” —the empty set. It is also quite natural and elegant, because
the ordering of natural numbers is captured by membership, the
basic concept of set theory: m < n < m is a member of n. Last
but not least, von Neumann's definition is a very snappy answer if
anyone ever forces you to give a definition of the natural numbers!

Exercises

You may have noticed that the second equation in the definition of +,
namely,

m+G+)=m+1)+1,

is a special case of the associative law for +. In fact, this was precisely
Grassmann’s starting point in his inductive proof of the ring properties
of Z. The associative law for + (in N) may be formulated as a statement
about n by letting S; (n) be the statement:

I+m+n)=0d+m)+n for all natural numbers I and m.

1.9.1. Show that §,(1) is true by definition of +.
1.9.2. Prove 8;(i) = S;(i + 1) with the help of $;(1).

Grassmann’s next goal was to use associativity of 4 to prove commu-
tativity of + in N, again inductively. However, it is not even clear that

1+ n = n+1, so the latter statement, call it S;(n), must be proved first.
S:Q)is14+1=1+41, so S,(1) is true!

1.9.3. Prove 8,(1) = S,(i + 1) using associativity of +.
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Finally, we can let S3(n) be the full commutativity statement for N:
m+n=n+m for all natural numbers m.

S3(1) is 1 +n = n+ 1, which has just been proved, so it remains to do the
following.

1.9.4. Prove S;(i) = S3(1 + 1) using associativity of + and S3(1).

Now let us switch to Dedekind’s work. When we said that
a, fla), f(f(@)), ... “behave like” 1,2,3..., you may have wanted to ask:
what is the exact meaning of the three dots? This is a fair question,
because f could be defined beyond where we intend the sequence
a, fla), f(fla)), ... to go. Here is an example.

1.9.5. Let Sbe the union of N with the set Z+1/2 = {m+1/2 : m € 7},
and let f(x) = x + 1. Now show

(a) fis defined for all members of S, is one-to-one, but not onto S.

(b) S does not behave like N, because infinite descent is possible
in S.

In this example, a = 1, and the intended meaning of {a, f(a), f(fla)), ...}
is the set N. But how do we capture the meaning of “...” in other cases
without using expressions like “obtainable in a finite number of steps’
which assume what we are trying to define? Dedekind also had an answer
to this question. He said that {a, f{a), f(f(a)), ...} consists of the elements
that belong to all sets that include a, and that include f(x) when they
include x.

1.9.6. Ponder Dedekind'’s definition, and show that it also enables us to
define N from the set € asserted to exist by the axiom of infinity.

1.10 Discussion

The Euclidean Algorithm

The Euclidean algorithm is a splendid example of the universality
of mathematics. It seems to have been discovered in three different
cultures and for several different mathematical purposes. In ancient
Greece it was crucial in Euclid’s theory of divisibility and primes, as
we have seen, and it was also important in the study of irrational
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numbers (see Section 8.6*). Euclid’s proof of the prime divisor prop-
erty was actually more complicated than the one given in Section
1.6, because he apparently did not know that gcd(a, b) = ma + nb
for integers m and n.

This linear representation of the gcd was discovered in India
and China, perhaps first by Aryabhata and Bhaskara I around 500
AD. The Indian mathematicians were interested in integer solutions
of equations ax + by = ¢, and this depends on finding gcd(a, b) in
the form ma + nb, as we saw in Section 1.5. Such problems also
arose in Chinese mathematics, particularly in the so-called “Chinese
remainder” problems we shall study in Section 6.6.

The algorithm became familiar in Europe by the 16th century,
but for another 200 years it was considered just a useful tool rather
than a revealing property of numbers. Gauss avoided use or men-
tion of the Euclidean algorithm in his Disquisitiones Arithmeticae. He
avoided using it for the fundamental theorem of arithmetic by giving
a direct proof, by descent, of the prime divisor property (the one cov-
ered in Exercises 1.6.4 and 1.6.5). He did not even mention it when
discussing the gcd and lem, giving instead the rules for computing
them from prime factorizations, and saying only that

we know from elementary considerations how to solve these
problems when the resolution of the numbers A, B, C, etc.
into factors are not given (Disquisitiones, article 18).

And he hid its role in the solution of ax + by = 1 (article 28) by
referring only to the so-called “continued fraction” method, which is
equivalent.

Dirichlet simplified, and in some ways extended, the Disqui-
sitiones in his Vorlesungen iiber Zahlentheorie (lectures on number
theory) of 1867. One of his reforms was reinstatement of the Eu-
clidean algorithm. He used it to derive the fundamental theorem
and related results much as we have in this chapter, and went so far
as to say:

It is now clear that the whole structure rests on a single foun-
dation, namely the algorithm for finding the greatest common
divisor of two numbers. All the subsequent theorems, even
when they depend on the later concepts of relative and abso-
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lute prime numbers, are still only simple consequences of the
result of this initial investigation ... (Dirichlet (1867), §16).

One of the reasons Dirichlet was enthusiastic about the Euclidean
algorithm was that it could be used in other situations, a fact that also
converted Gauss in the end. In 1831, Gauss found it useful to intro-
duce what are now called Gaussian integers —numbers of the form
a+b+/—1, which we shall study in Chapter 7—and found that the key
to their arithmetic was the applicability of the Euclidean algorithm.
Perhaps it was with this generalization in mind that Dirichlet based
his number theory on the Euclidean algorithm from the beginning,
because the passage quoted above continues:

. so one is entitled to make the following claim: any anal-
ogous theory, for which there is a similar algorithm for
the greatest common divisor, must also have consequences
analogous to those in our theory.

Induction

The ascent form of induction is now considered indispensible in all
fields of mathematics that use natural numbers, so one would expect
to find it in the earliest mathematical works. Surprisingly, it does not
seem to be there. The first clear statement of the “base step, induc-
tion step” format first appeared in 1654. How did mathematicians
manage for so long without this essential tool?

The answer, I believe, is that until recently mathematicians pre-
ferred descent to the “base step, induction step” form of induction
we called ascent in Section 1.8. Descent is not only simpler than as-
cent because no “base step” is involved; it also seems to occur more
naturally at the lower levels of mathematics.

Examples of descent date from ancient times, at least as tar back
as Euclid’s Elements, around 300 BC, and conceivably in proofs that
V2 is irrational. Euclid uses descent in Proposition 31 of Book VII
of the Elements, to prove that any composite number A has a prime
divisor or, as he puts it, that A is “measured” by some prime. He
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argues that A has some divisor B, because A is composite. If B is
prime we are done; if not, B has a divisor C, and so on. He then
claims

Thus, if the investigation be continued in this way, some
prime number will be found which will measure the number
before it, which will also measure A.

And his punchline is an appeal to descent:

For, if it is not found, an infinite series of numbers will mea-
sure the number A, each of which is less than the other:
which is impossible in numbers.

Euclid also assumes termination of the Euclidean algorithm with-
out comment throughout the Elements. It is obvious, of course, but
hardly more obvious than the existence of a prime divisor. Evidently
Euclid was only fleetingly aware of the importance of induction;
nevertheless it is to his credit that he noticed it at least once.

Most mathematicians failed to notice descent until around 1640,
when Fermat began to announce spectacular new results in number
theory and claim they were due to a “method of infinite descent”
His most famous proof, and in fact the only one he disclosed, shows
that there are no natural numbers a, b, and ¢ such that a* + b* = ¢*.
He assumed, on the contrary, that there is a solution a = x;, b = y,
¢ = z;, and showed how to descend to a smaller solution a = x»,
b = y,, ¢ = z;. By descending indefinitely in this way, one obtains
a contradiction that proves the desired result “by infinite descent”
The details may be seen in Section 4.7*.

This proot made mathematicians conscious of descent for the
first time and hinted at its power. At the same time, unfortunately,
the simple logical principle of descent was buried under the techni-
cal problem of finding the descent step. Mathematicians continued
to use descent until the late 19th century without realizing that
an important principle was involved. The Gauss (1801) proof of
the prime divisor property (Exercises 1.6.4 and 1.6.5) is a simpler
example.

Ascent was likewise used for a long time without the importance
of the induction step being noticed. Mathematicians naturally tried
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to make proofs as simple as possible, so ascent proofs were organized
to make the induction step trivial, and hence not worth mentioning.
A brilliant example is Euclid’s summation of the geometric series
(Elements, Book IX, Proposition 35). It was also easier to discover
results in these circumstances. And as long as it was possible to play
down the induction step, it was possible to overlook the underlying
principle of induction.

The induction step ultimately came to light not in number theory
but in combinatorics, where complicated inductions perhaps arise
more naturally. The first really precise formulation of induction is
by Blaise Pascal (1654), who clearly used the “base step, induction
step” format to prove the basic properties of Pascal’s triangle.

Understanding did not advance much between 1654 and 1861.
Ascending and descending forms of induction were both occasion-
ally used, but without recognition of their importance, or even their
equivalence. Certainly, one would not think the time was ripe for a
high school teacher to write a textbook using mathematical induc-
tion as the sole basis of arithmetic! Enter Hermann Grassmann. His
Lehrbuch der Arithmetik fiir hohere Lehranstalten (textbook of arith-
metic for higher instruction) contains the fundamental idea that
everyone else had missed: the whole of arithmetic follows from the
process of succession. As we explained in Section 1.9* he did this by
using induction to define + and x from the successor function, and
hence prove the ring properties of 7.

But, sadly, Grassmann was a generation ahead of his time. His
work fell into obscurity so fast that even like-minded mathemati-
cians of the 1880s and 1890s were unaware of it. Dedekind (1888)
rediscovered the inductive definitions of + and x in terms of the
successor function and decided to dig deeper, to explain the nature
of succession itself. As we asked before Exercise 1.9.5: in the expres-
sion 1,2,3,..., what does ... mean? It is not enough to say “the
remaining values of the successor function fin) = n 4 1 because
f(n) is also defined on the numbers n = m + 1/2 for integers m, and
we do not intend these values to be included among the successors
of 1. The crux of the problem of defining succession is to exclude
such “alien intruders,” as Dedekind called them.
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As indicated in Section 1.9*, Dedekind’s solution makes crucial
use of set theory. His discoveries were in fact very influential in
the development of logic and set theory in the 20th century. Also,
his (and Grassmann’s) method of definition by induction led to the
theory of recursive functions, and ultimately to computer program-
ming and computer science. This is a surprising twist to a basically
philosophical investigation, but mathematics often seems to find its
way into the real world, without being asked.
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CHAPTER

2.1 Geometric Intuition

Geometry is in many ways opposite or complementary to arithmetic.
Arithmetic is discrete, static, computational, and logical; geometry is
continuous, fluid, dynamic, and visual. The fundamental geometric
quantities (length, area, and volume) are familiar to everyone but
hard to define. And some “obvious” geometric facts are not even
provable; they can be taken as axioms, but so can their opposites.
In geometry, intuition runs ahead of logic. Our imagination leads us
to conclusions via steps that “look right” but may not have a purely
logical basis. A good example is the Pythagorean theorem, that the
square on the hypotenuse of a right-angled triangle equals (in area)
the sum of the squares on the other two sides. This theorem has been
known since ancient times; was probably first noticed by someone
playing with squares and triangles, perhaps as in Figure 2.1.

The picture on the left shows a big square, minus four copies
of the triangle, equal in area to the squares on the two sides. The
second picture shows that the big square minus four copies of the
triangle also equals the square on the hypotenuse. Q.E.D.

This is a wonderful discovery (and it gets better, as we shall
see later), but what is it really about? In the physical world, exact
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FIGURE 2.1 A proof of the Pythagorean theorem.

triangles and squares do not exist, so the theorem has to be about
some kind of ideal or abstract objects. And yet, we are surely using
our experience with actual triangles and squares to draw conclusions
about the abstract ones.

Thus the gift of geometric intuition is both a blessing and a curse.
It gives us amazingly direct access to mathematical results; yet we
cannot be satisfied with the results seen by our intuition until they
have been validated by logic. The validation can be very hard work,
and it would be disappointing if its only outcome was confirmation
of results we already believe. A method of validating intuition is
worthwhile only if it takes us further than intuition alone.

The most conservative solution to the problem of validating intu-
ition is the so-called synthetic geometry. In this system, all theorems
are derived by pure logic from a (rather long) list of visually plau-
sible axioms about points, lines, circles, planes,and so on. Thus we
can be sure that all theorems proved in synthetic geometry will be
intuitively acceptable. This was the approach initiated in Book I of
Euclid’s Elements and perfected in David Hilbert's Foundations of Ge-
ometry (1899). Its advantages are that it is self-contained (no concepts
from outside geometry) and close to intuition (the steps in a proof
may imitate the way we “see” a theorem). However, it fails to explain
the mysterious similarity between geometry and arithmetic; the fact
that geometric quantities, like numbers, can be added, subtracted,
and (in the case of lengths) even multiplied. It looks like geometry
and arithmetic share a common ground, and mathematics should
explain why.

The search for a common ground of arithmetic and geometry
led to the so-called analytic geometry, initiated in René Descartes’
Geometry (1637) and also perfected by Hilbert. It is more efficient
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as a way of making geometry rigorous, and history has shown it
to be more fruitful than synthetic geometry in its consequences. It
enriches both arithmetic and geometry with new concepts, and in
fact with the whole new mathematical world of algebra and calculus.
As we shall see in later chapters, the new world is not separate from
the old, but it increases our understanding of it. Algebra not only
throws new light on geometry, it also enables us to solve problems
about the natural numbers that were previously beyond reach.

Analytic geometry will be developed in the next chapter. In the
meantime, we will use intuition freely to gain a bird’s eye view of
the landmark results and concepts in geometry, to see how far arith-
metic concepts apply to geometric quantities, and to see why the
number concept needs to be extended to build a common foundation
for arithmetic and geometry.

Exercises

The Pythagorean theorem has been discovered many times, in different
cultures, and proved in many different ways. The very immediate proof
indicated in Figure 2.1 was given by Bhaskara II in 12th century India.
Another way the theorem may have been discovered was suggested by
Magnus (1974), p. 159. It comes from thinking about the tiled floor shown
in Figure 2.2.

FIGURE 2.2 Pythagorean theorem in a tiled floor.
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FIGURE 2.3 Rectangle in a circle.

2.1.1. Explain how Figure 2.2 is related to the Pythagorean theorem. (The
dotted squares are not the tiles; they are a hint.)

The converse Pythagorean theorem is also important: if a, b, and ¢
are lengths such that a® + b* = ¢? then the triangle with sides a, b, and ¢ is
right-angled (with the right angle formed by the sides a and b).

2.1.2. Deduce the converse Pythagorean theorem from the Pythagorean
theorem itself.

2.1.3. Deduce the Pythagorean theorem from its converse.

Another very old theorem is that any right-angled triangle fits in a
semicircle, with the hypotenuse as diameter. According to legend, syn-
thetic geometry began with a proof of this theorem by Thales in the
6th century B.C.

2.1.4. Why might Figure 2.3 lead you to believe that any right-angled
triangle fits in a semicircle?

2.2 Constructions

The aim of Euclid’s geometry is to study the properties of the sim-
plest curves, the straight line, and the circle. These are drawn by the
simplest drawing instruments, the ruler and the compass; hence
much of the Elements consists of so-called ruler and compass con-
structions. In fact, two of Euclid’s axioms state that the following
constructions are possible.

e To draw a straight line from any point to any other point.

e To draw a circle with any center and radius.
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FIGURE 2.4 Constructing an
equilateral triangle.

His axioms do not state the existence of anything else, so all other
figures are shown to exist by actually constructing them. Certain
points, lines, and circlesbeing given, new ones are constructed using
ruler and compass. This creates new points, from which new lines
and circles are constructed, and so on, until the required figure is
obtained.

Euclid’s first proposition is that it is possible to construct an
equilateral triangle with a given side AB, and his first figure shows
how it is done (Figure 2.4). Namely, draw the circle with center A
and radius AB, then the circle with center B and radius BA, and
connect A and B by straight lines to one intersection, C, of these
circles.

Several other important constructions come from this.

1. Bisecting an angle.
Drawing a circle with center at the apex O of the angle marks
off equal sides OA and OB (Figure 2.5). Then if we construct an
equilateral triangle ABC, the line OC will bisect the angle AOB.

2. Bisecting a line segment.
Given the line segment AB, construct the equilateral triangle
ABC. Then the bisector of the angle ACB also bisects AB.

bisector

FIGURE 2.5 Bisecting
an angle.
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FIGURE 2.6
[A Replicating an angle.

3. Constructing the perpendicular to a line through a point O
not on it.
Draw a circle with center O, large enough to cut the line at points
A and B. Then the bisector of angle AOB will be the required
perpendicular.

As one notices from these constructions, the compass gives an easy
way to replicate a given line segment. It is also possible to replicate
a given angle. For example, one can draw a circle with unit radius
centered on the apex O of the angle, then use the line AB between
its intersections as a second radius to find points A’, B’ so that angle
B'O'A’ = angle BOA, with O’ a given point on the given line (Figure
2.6). Euclid uses angle replication to construct a parallel to a given
line through a given point. He chooses a point O at random on the
line, joins it to the given point O, then replicates the angle O'OX as
angle OO'X’ (Figure 2.7).

The construction of parallels is needed to divide a line segment
AB into n equal parts, for any natural number n. (The special case

O/

X/

FIGURE 2.7 Constructing a parallel.
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A B

FIGURE 2.8 Cutting a line segment into equal parts.

n = 2, or bisection, is not typical, because it does not require par-
allels.) Along any line through A (other than AB) mark n equally

spaced points Py, P, ..., P, by repeatedly replicating an arbitrary
line segment AP,. Then join P, to B, and draw parallels to P,B
through Py, P,, ..., P,—1 (Figure 2.8). These parallels cut AB into n

equal parts.

Exercises

Most of the following problems are variations on the theme of finding the
perpendicular bisector of a line segment.

2.2.1. Describe the construction of the perpendicular to a line through a
given point on the line.

2.2.2. Given a circle, but not its center, give a construction to find the
center.

2.2.3. The perpendicular bisectors of the sides of a triangle meet at a
single point. What property of the perpendicular bisector makes
this obvious?

2.2.4. Use Exercise 2.2.3 to find a circle passing through the vertices of
any triangle.

2.2.5. Describe the construction of a square and a regular hexagon.

The Greeks also found a construction of the regular pentagon, but
no essentially new constructions were found until Gauss in 1796 found
how to construct the regular 17-gon. This led to an algebraic theory of
constructibility that explained why no constructions had been found for
the regular 7-gon, 11-gon, and others. The astonishing result of Gauss's
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theory (completed by Pierre Wantzel in 1837) is that the regular n-gon is
constructible if and only if n is the product of a power of 2 by distinct
Fermat primes. (Recall that these were defined in Exercise 1.2.7.)

2.2.6. If gcd(m, n) = 1 and the regular m-gon and n-gon are constructible,
show that the regular mn-gon is also constructible.

2.3 Parallels and Angles

The crucial assumption in Euclid's geometry—the one that makes
the geometry “Euclidean”—is the parallel axiom. It can be stated in
many different ways, the most concise of which is probably the one
given by Playfair in 1795.

Parallel axiom. If £ is a line and P is a point not on L, then
there is exactly one line through P that does not meet L.

The single line through P that does not meet £ is called the parallel to
L through P. Euclid’s statement is more complicated, and it involves
the concept of angle, which is not mentioned in the Playfair version.
This would ordinarily be regarded as inelegant mathematics, but
in this case it is more informative, and it points us toward some
important consequences of the parallel axiom.

That, if a straight line falling on two straight lines make the
interior angles on the same side less than two right angles,
the two straight lines, if produced indefinitely, meet on that
side on which are the angles less than the two right angles.
[From the edition of Euclid’s Elements by Heath (1925), p. 202]

Figure 2.9 shows the situation described by Euclid, which is what
happens with nonparallel lines. If the angles o and 8 have a sum
less than two right angles, then £ meets M on the side where « and
B are. To see why Euclid’s statement is equivalent to Playfair’s, one
only needs to know that angles « and B sum to two right angles if
they can be moved so that together they form a straight line (Figure
2.10). The same figure shows that the vertically opposite angles, both
marked «, are equal, because each of them plus g equals two right
angles.
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FIGURE 2.9 Nonparallel lines.

FIGURE 2.10 Vertically opposite angles.

Euclid’s statement of the parallel axiom tells us that a line M
can fail to meet line £ only when the two interior angles o and B
sum to two right angles. This follows from the facts about angles just
mentioned. If o + B is greater than two right angles, then the interior
angles on the other side of the transverse line N will sum to less
than two right angles, and hence M will meet £ on the other side. If
o + B equals two right angles, the interior angles on the other side of
the transverse line N are also @ and 8, hence also of sum equal to
two right angles. In this case it follows by symmetry that £ and M
meet on both sides or neither side. The possibility of two meetings
is ruled out by another axiom, that there is only one straight line
through any two points. Hence there is exactly one line M through
P that does not meet L: the line for which « + 8 equals two right
angles (Figure 2.11). The most important property of angles that
follows from the parallel axiom is that the angle sum of a triangle
is two right angles. The proof is based on Figure 2.12, which shows
an arbitrary triangle with a parallel to one side drawn through the
opposite vertex. The angles of the triangle recur as shown and hence
sum to a straight line.

It follows, by pasting triangles together, that the angle sum of
any quadrilateral is four right angles. In particular, in a quadrilat-
eral with equal angles, each angle is a right angle. This means that
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FIGURE 2.11 Parallel lines and related angles.

FIGURE 2.12 Angle sum of a triangle.

rectangles and squares of any size exist. Of course, this is what we
always thought, but we can now see that it follows from a small
number of more basic statements about straight lines, among them
the crucial parallel axiom. As we shall see in Section 2.5, the exis-
tence of rectangles is the key to the intuitive concept of area and to
finding a common ground for geometry and arithmetic.

Exercises

The crucial role of the parallel axiom can be seen from the number
of important statements that are equivalent to it, and hence cannot be
proved without it. Not only are the Playfair and Euclid versions equivalent
to each other (Exercise 2.3.1 completes the proof of this), they are also
equivalent to the statement about the angle sum of a triangle (Exercise
2.3.2).

2.3.1. Deduce Euclid’s version of the parallel axiom from Playfair’s.

2.3.2. Deduce Euclid’s version of the parallel axiom from the statement
that the angle sum of a triangle is two right angles.
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2.3.3. Assuming that any polygon can be cut into triangles, show that
the angle sum of any n-gon is (n — 2)7r, where m denotes two right
angles.

2.3.4. Deduce from Exercise 2.3.3 that the only ways to tile the plane
with copies of a single regular n-gon (that is, an n-gon with equal
sides and equal angles) are by equilateral triangles, squares, and
regular hexagons.

2.3.5. Show that the plane can be tiled with copies of any single triangle.

2.4 Angles and Circles

One of the first theorems in Euclid’s Elements says that the base
angles of an isosceles (‘equal sides’) triangle are equal. The most elegant
proof of this theorem was found by another Greek mathematician,
Pappus, around 300 A.D. It goes like this. Suppose ABC is a triangle
with AB = BC (Figure 2.13). Because AB = BC, this triangle can be
turned over and placed so that BC replaces AB, and AB replaces BC.
In other words, the triangle exactly fills the space it filled in its old
position. In particular, the base angle BAC fills the space previously
filled by angle BCA, so these two angles are equal.

Triangles that occupy the same space were called congruent by
Euclid. He used the idea of moving one triangle to coincide with
another to prove the two triangles congruent when they agree in
certain angles and sides. The preceding argument uses “side-angle-
side” agreement: if two triangles agree in two sides and the included
angle, then one can be moved to coincide with the other. Congru-

B

A C

FIGURE 2.13 An isosceles triangle.
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ence also occurs in the angle-side-angle and side-side-side cases.
Later mathematicians felt that the idea of motion did not belong in
synthetic geometry, and instead stated the congruence of triangles
with side-angle-side, angle-side-angle, or side-side-side agreement as
axioms. This was done in Hilbert's Foundations of Geometry (1899),
for example. The idea of motion came back in Felix Klein's definition
of geometry, which we shall discuss in Chapter 3.

Whichever approach is adopted, the theorem on the base angles
of an isosceles triangle is the key to many other results. Perhaps
the most important is the theorem relating angles in a circle: an arc
of a circle subtends twice the angle at the center as it does at the cir-
cumference. Figure 2.14 shows the situation in question—the arc AB
and the angles AOB and APB it subtends at the center and circum-
ference, respectively—together with a construction line PQ, which
gives away the plot.

Because the lines OA and OP are radii of the circle, they are
equal. Therefore, triangle POA is isosceles, with equal base angles «
as shown. The external angle QOA is therefore 2a because it, like the
interior angles «, forms a sum of two right angles with the interior
angle AOP. Similarly, the triangle POB has equal angles 8 as shown
and an exterior angle 28. Thus the angle 2(« + B) at the center is
twice the angle o + B at the circumference.

FIGURE 2.14 Angles
subtended by an arc.
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In the special case where the arc AB is half the circumference
so that the angle at the center is straight, we find that the angle at
the circumference is a right angle. This should remind you of the
theorem of Thales mentioned in the exercises for Section 2.1.

Exercises

We originally stated the theorem of Thales by saying that any right-angled
triangle fits in a semicircle. The special case of the theorem about angles
in a circle says, rather, that any triangle in a semicircle is right-angled.
The two theorems are actually converses of each other. However, they
are both true, and the relationship between them can be traced back to
converse theorems about isosceles triangles.

2.4.1. Prove that a triangle with two equal angles is isosceles.
2.4.2. What form of congruence axiom is involved in Exercise 2.4.1?
From Exercise 2.4.1, which is the converse theorem about isosceles

triangles, we deduce the converse Thales’ theorem. It is based on Figure
2.15.

2.4.3. If triangle PAB has a right angle at P and PO is drawn to make the
equal angles marked «, show that this also results in equal angles
marked S.

2.4.4. Deduce from Exercise 2.4.3 that each right-angled triangle fits in a
semicircle.

The fact the angle at the circumference is half the angle at the center
implies that the angle at the circumference is constant. This means that

A P
a o

B

p
B

FIGURE 2.15 A right-angled triangle.
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)

FIGURE 2.16 Apparent size of a chord of a
circle.

the chord AB looks the same size, viewed from any point on the circle
(Figure 2.16).

Now suppose that we vary the circle through A and B, and consider
the effect on the apparent size of AB (a problem of practical importance
if, say, you are trying to score a goal between goalposts A and B).

2.4.5. Show that the maximum apparent size of AB, viewed from a line
CD, occurs at the point where CD is tangential to a circle through
A and B.

2.5 Length and Area

Arithmetic and geometry come together in the idea of measurement,
first for lengths, but more interestingly for areas. In fact, the very
word “‘geometry” comes from the Greek for “land measurement”
To measure lengths, we choose a fixed line segment as the unit of
length and attempt to express other lengths as multiples of it. By
joining copies of the unit end to end we can obtain any natural
number multiple of the unit, and by dividing these into equal parts,
we also obtain any rational multiple of the unit. For most practical
purposes, this is sufficient, because rational multiples of the unit
can be as small as we please. However, we know from Section 1.1
that /2 is not rational, and mathematicians would like to be able to
speak of a length +/2, even though the similar length 1.414 might be
near enough for surveying or carpentry.

The fundamental problem in measurement is to find enough
numbers to represent all possible lengths. This problem is more
difficult than it looks, and we shall postpone it until the next chapter.
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For the time being we shall just assume that every length is a number.
The Greeks did not believe such an assumption was necessary, but
this caused difficulties with their theory of area, as we shall see now
and in the next section.

Just as length is measured by counting unit lengths, area is mea-
sured by counting unit squares, that is, squares whose sides are of
unit length. For example, a rectangle of height 3 and width 5 can be
cut into 3 x 5 = 15 unit squares, as Figure 2.17 clearly shows; hence
it has area 15.

How convenient that we call it a 3 x 5 rectangle! Multiplication
is the natural symbol to describe rectangles, because it gives the
number of unit squares in them. And not only when the sides are
integer multiples of the unit. A rectangle of height 3/2 and width
5/2 can similarly be cut into 15 squares of side 1/2, each of which
has area 1/4 (because four of them make a unit square). Hence the
area of the 3/2 x 5/2 rectangle is 3/2 x 5/2 = 15/4.

The same idea, cutting into little fractional squares, shows that
the area of an r x s rectangle is rs for any rational multiples r and s
of the unit. But what about, say, a square with side +/2? Is its area
V2 x A2 =27 Well, the area of an r x ¥ square should be close to the
area of a /2 x /2 square when r is a rational number close to V2.
If s0, 2 is the area of the +/2 x /2 square, because 2 is the number
approached by the values r? as r approaches /2.

For the Greeks, the area of the +/2 x 4/2 square was not a prob-
lem, because they defined +/2 to be the side of a square of area 2. The
price they paid for this was having to develop a separate arithmetic
of lengths and areas, since they did not regard /2 as a number. If
one wants all lengths to be numbers, defining the area of a rectan-
gle is the same as defining the product of irrational lengths, and it
can only be done by comparing the rectangle with arbitrarily close
rational rectangles. Once the area of a rectangle is known to be

FIGURE 2.17 A 3 x 5 rectangle.
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FIGURE 2.18 Area of a parallelogram.

height x width, however, there is a simple way to find the area of
other polygons: by cutting and pasting.

For example, the standard proof that the area of a triangle is
%base xheight is achieved by cutting and pasting. We first argue that
the area of the triangle is half the area of the parallelogram obtained
by pasting two copies of the triangle together, then that

area of parallelogram = base x height

by cutting a triangle off one end of the parallelogram and past-
ing it on to the other to make a rectangle with the same base and
height (Figure 2.18). After this, the area of any other polygon follows,
because any polygon can be cut into triangles.

Exercises

It is not quite obvious that any polygon can be cut into triangles, so we
should check that this is true, because it is the only way we know to
define the area of a polygon.

2.5.1. A polygon Il is convex if the line segment connecting any two
points of IT is contained in IT. Show that a convex polygon with n
sides can be cut into » triangles.

Thus it now suffices to prove that any polygon can be cut into a finite
number of convex polygons. This can be done in two easy steps.

2.5.2. Show that any finite set of lines divides the plane into convex
polygons.

2.5.3. Deduce from Exercise 2.5.2 that any polygon is cut into convex
pieces by the lines that extend its own edges.
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2.6 The Pythagorean Theorem

Having seen the main ideas of Greek geometry, it is worth looking
again at the Pythagorean theorem, to see where it fits into the big
picture. Logically, it comes after the basic theory of area, and in fact
Euclid uses the fact that a triangle has half the area of a parallelogram
with the same base and height. His proof goes as follows (referring
to Figure 2.19).

square ABFG on one side of the triangle
= 2 x triangle CFB
(same base and height),
= 2 X triangle ABD
(because the triangles are congruent by agreement
of side-angle-side),
= rectangle BMLD
(same base and height).

D L E

FIGURE 2.19 Areas related to the right-angled triangle.
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Similarly, square ACKH on the other side of the triangle equals
rectangle MCEL, so the squares on the two sides sum to the square
on the hypotenuse. O

As mentioned in Section 2.1, the Pythagorean theorem was dis-
covered in several different cultures, and in fact some of them
discovered it long before the time of Pythagoras. However, Pythago-
ras and his followers (the Pythagoreans) deserve special mention
because they also discovered that /2 is irrational. According to leg-
end, this discovery caused great dismay because it conflicted with
the Pythagorean philosophy that “all is number” The Pythagoreans
initially believed that all things, including lengths, could be mea-
sured by natural numbers or their ratios. Yet they could not deny
that the diagonal of the unit square was a length, and according to
the Pythagorean theorem its square was equal to 2, hence the side
and diagonal of the square were not natural number multiples of a
common unit.

The first fruits of the conflict were bitter, to our taste, but they
had a huge influence on the development of mathematics.

e Separation of arithmetic and geometry.
e Development of a separate arithmetic of lengths and areas.

e Preference for the latter “geometric” arithmetic, and the
development of a corresponding “geometric algebra”
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