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Preface

Although the calculus of variations has ancient origins in questions of Ar-
istotle and Zenodoros, its mathematical principles first emerged in the post-
calculus investigations of Newton, the Bernoullis, Euler, and Lagrange. Its
results now supply fundamental tools of exploration to both mathematicians
and those in the applied sciences. (Indeed, the macroscopic statements ob-
tained through variational principles may provide the only valid mathemati-
cal formulations of many physical laws.) Because of its classical origins,
variational calculus retains the spirit of natural philosophy common to most
mathematical investigations prior to this century. The original applications,
including the Bernoulli problem of finding the brachistochrone, require opti-
mizing (maximizing or minimizing) the mass, force, time, or energy of some
physical system under various constraints. The solutions to these problems
satisfy related differential equations discovered by Euler and Lagrange, and
the variational principles of mechanics (especially that of Hamilton from the
last century) show the importance of also considering solutions that just
provide stationary behavior for some measure of performance of the system.
However, many recent applications do involve optimization, in particular,
those concerned with problems in optimal control.

Optimal control is the rapidly expanding field developed during the last
half-century to analyze optimal behavior of a constrained process that
evolves in time according to prescribed laws. Its applications now embrace a
variety of new disciplines, including economics and production planning.’ In

! Even the perennial question of how a falling cat rights itself in midair can be cast as a control
problem in geometric robotics! See Dynamics and Control of Mechanical Systems: The Falling
Cat and Related Problems, by Michael Enos, Ed. American Mathematical Society, 1993.

vii



viil Preface

this text we will view optimal control as a special form of variational calculus,
although with proper interpretation, these distinctions can be reversed.

In either field, most initial work consisted of finding (necessary) conditions
that characterize an optimal solution tacitly assumed to exist. These condi-
tions were not easy to justify mathematically, and the subsequent theories
that gave (sufficient) conditions guaranteeing that a candidate solution does
optimize were usually substantially harder to implement. (Conditions that
ensure existence of an optimizing solution were—and are—far more difficult
to investigate, and they cannot be considered at the introductory level of this
text. See [Ce].) Now, in any of these directions, the statements of most later
theoretical results incorporate some form of convexity in the defining func-
tions (at times in a disguised form). Of course, convexity was to be expected
in view of its importance in characterizing extrema of functions in ordinary
calculus, and it is natural to employ this central theme as the basis for an
introductory treatment.

The present book is both a refinement and an extension of the author’s
earlier text, Variational Calculus with Elementary Convexity (Springer-Verlag,
1983) and its supplement, Optimal Control with Elementary Convexity (1986).
It is addressed to the same audience of junior to first-year graduate students
in the sciences who have some background in multidimensional calculus and
differential equations. The goal remains to solve problems completely (and
exactly) whenever possible at the mathematical level required to formulate
them. To help achieve this, the book incorporates a sliding scale-of-difficulty
that allows its user to become gradually more sophisticated, both technically
and theoretically. The few starred (*) sections, examples, and problems out-
side this scheme can usually be overlooked or treated lightly on first reading.

For our purposes, a convex function is a differentiable real-valued func-
tion whose graph lies above its tangent planes. In application, it may be
enough that a function of several variables have this behavior only in some
of the variables, and such “elementary” convexity can often be inferred
through pattern recognition. Moreover, with proper formulation, many more
problems possess this convexity than is popularly supposed. In fact, using
only standard calculus results, we can solve most of the problems that moti-
vated development of the variational calculus, as well as many problems of
interest in optimal control.

The paradigm for our treatment is as follows: Elementary convexity sug-
gests simple sufficiency conditions that can often lead to direct solution, and
they in turn inform the search for necessary conditions that hold whether or
not such convexity is present. For problems that can be formulated on a fixed
interval (or set) this statement remains valid even when fixed-endpoint condi-
tions are relaxed, or certain constraints (isoperimetric or Lagrangian) are
imposed. Moreover, sufficiency arguments involving elementary convexity
are so natural that even multidimensional generalizations readily suggest
themselves.
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In Part I, we provide the standard results of variational calculus in the
context of linear function spaces, together with those in Chapter 3 that use
elementary convexity to establish sufficiency. In Part II, we extend this devel-
opment into more sophisticated areas, including Weierstrass—Hilbert field
theory of sufficiency (Chapter 9). We also give an introduction to Hamil-
tonian mechanics and use it in §8.8 to motivate a different means for recog-
nizing convexity, that leads to new elementary solutions of some classical
problems (including that of the brachistochrone). Throughout these parts, we
derive and solve many optimization problems of physical significance in-
cluding some involving optimal controls. But we postpone our discussion of
control theory until Part III, where we use elementary convexity to suggest
sufficiency of the Pontjragin principle before establishing its necessity in the
concluding chapter.

Most of this material has been class-tested, and in particular, that of Part
I has been used at Syracuse University over 15 years as the text for one
semester of a year-sequence course in applied mathematics. Chapter 8 (on
Hamiltonian mechanics) can be examined independently of adjacent chap-
ters, but Chapter 7 is prerequisite to any other subsequent chapters. On the
other hand, those wishing primarily an introduction to optimal control could
omit both Chapters 8 and 9. The book is essentially self-contained and
includes in Chapter 0 a review of optimization in Euclidean space. It does not
employ the Lebesque integral, but in the Appendix we develop some neces-
sary results about analysis in Euclidean space and families of solutions to
systems of differential equations.
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CHAPTER 0
Review of Optimization in R?

This chapter presents a brief summary of the standard terminology and basic
results related to characterizing the maximal and minimal values of a real
valued function f defined on a set D in Euclidean space. With the possible
exception of the remarks concerning convexity ((0.8) and (0.9)), this material
is covered in texts on multidimensional calculus; the notation is explained at
the end of §1.5.

Ford=1,2, 3, ..., let R? denote d-dimensional real Euclidean space
where a typical point or vector X = (x;, X,,..., X4) has the length |X| =
(34, Ix;/*)"* which is positive unless X = 0 = (0,0, 0, ..., 0). (We identify
R! with R.)

On RY with Y = (y,, y,, ..., y4), we have the vector space operations of
componentwise addition

def

X +Y=(x;+ Yy, X2+ Yas-oos Xa + Ya)s
and scalar multiplication:
aXdéf(axl,axz,...,ax,,), VaeR.
We may also express | X| = (X - X)'2, utilizing the scalar or dot product
X v¥ i X;¥ js
=
which is subject to the Cauchy inequality
(X Y)| < [X]|Y] (1)
The Cauchy inequality (1) is used to prove the so-called triangle inequality
X + Y| <|X|+]Y], (2a)
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an alternate form of which is

[1X] =Y <|X = Y], (2b)
where aot

X—-Y=X+(—-1)Y; (ProblemO0.1).
|X — Y| defines the Euclidean distance between X and Y.

When X, € RY, then for finite § > 0, the “sphere”

S;(Xo)E {X e RY: X — X,| < 8}

is called an (open) neighborhood of X, and X, is said to be an interior point
of each set D which contains this neighborhood for some 6 > 0. D is open
when it consists entirely of interior points. An open set D is a domain when
each pair of its points may be connected by a (polygonal) curve which lies
entirely in D. Each open sphere is a domain, as is each open “box”

B={XeR':a,<x;<b,j=1,2,...,d},

but the union of disjoint open sets is not a domain, although it remains open.

A point not in the interior of a set S, and not interior to its complement,
R? ~ 8, is called a boundary point of S. The set of such points, denoted 48,
is called the boundary of S. For example, if S = {(X € R*:|X| < 1}, then
0S=B={XeR*:|X|=1};also B = B. A set S = R?is said to be bounded
iff it is a subset of some sphere.

We suppose that we are given a real valued function f defined on a set
D < R? for which we wish to find extremal values. That is, we wish to find
points in D (called extremal points) at which f assumes maximum or mini-
mum values. With such optimization problems we should note the following
facts:

(0.0) f need not have extremal values on D.

For example, when D = R?, then the function f(X) = x, is unbounded in
both directions on D. Moreover, on the open interval D = (—1, 1) = R, this
same function, although bounded, takes on values as near —1 or 1 as we
please but does not assume the values +1 on D. On the closed interval,
D =[—1,1], this function does assume both maximum and minimum
values, but the function

1
f(X)=_9 xl 560,
X1

f0)=0,

is again unbounded.

(0.1) f may assume only one extremal value on D.
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For example, on D = (—1, 1] the function f(X) = x, assumes a maximum
value (+ 1), but not a minimum value, while on (—1, 1) the function f(X) =
x? assumes a minimum value (0) but not a maximum value.

(0.2) f may assume an extremal value at more than one point.

On D =[—1,1], f(X) = x? assumes a maximum value (1) at x, = +1,
while on D = R?, f(X) = x? assumes its minimum value (0) at every point
located on the x, axis.

The only reasonable conditions which guarantee the existence of extremal
values are contained in the following theorem whose proof is deferred.
(See Proposition 5.3.)

(0.3) Theorem. If D = R? is compact and f: D — R is continuous, then f as-
sumes both maximum and minimum values on D.

In RY, a compact set is a bounded set which is closed in that it contains
each of its boundary points. In particular, each “box” of the form

B={XeR':aq<x;<b,j=1,2,...,d}

] = 7] =P
for given real numbers a; <b;, j=1, 2, ..., d is compact. However, the
interval (— 1, + 1) is not compact. (See §A.0.)
f: D — Ris continuous at X, € D iff for each ¢ > 0,3 > 0, such that when
X eDand | X — X,| <9, then | f(X) — f(X,)] < & and f is continuous on D

iff it is continuous at each point X, € D.
The previous examples show that neither compactness nor continuity can
alone assure the existence of extremal values.

(0.4) The maximum value of f is the minimum value of — f and vice versa.

Thus it suffices to characterize the minimum points, those X, € D for which
fX)=f(X,), VXeD. )

As we have seen, such points may be present even on a noncompact set.
(0.5) When D contains a neighborhood of X, an extremal point of f, in which

[ has continuous partial derivatives f. = 0f/0x;, j=1,2, ..., d, then for each
vector U € R? of unit length, the (two-sided) directional derivative:

def [f(Xo + ¢eU) —f(Xo):l _ g

Ouf (Xo) = lim
I Je

£—-0

(Xo + €U)

£=0
=0.

[The bracketed quotient reverses sign as the sign of ¢ is changed. The exis-
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tence and continuity of the partial derivatives ensures the existence of the
limit which must therefore be zero.]

Introducing the gradient vector Vf o (fey> fry> - s fxp), WE may also ex-
press Jyf(Xo) = Vf(X,)- U, and conclude that at such an interior extremal
point X,

Vi(Xo) = C. )

(0.6) The points X, at which (4) holds, called stationary points (or critical
points) of f, need not give either a maximum or a minimum value of f.

For example, on D = [ —1, 1], the function f(X) = x} has x, = 0 as its
only stationary point, but its maximum and minimum values occur at the
end points 1 and — 1, respectively.

On D = R?, the function f(X) = x% — x? has X,, = (0, 0) as its only critical
point; at X,, f has maximal behavior in one direction (x, = 0) and minimal
behavior in another direction (x, = 0).

In such cases, X, is said to be a saddle point of f.

(0.7) A stationary point X, may be (only) a local extremal point for f;i.e., one
for which f(X) > f(X,) (or f(X) < f(X,)) for all X € D which are in some
neighborhood of X,,.

For example, the polynomial f(X) = x} — 3x, has on D = [ -3, 3], sta-
tionary points at x; = —1, 1; the first is (only) a local maximum point while
the second is (only) a local minimum point for f. (See Figure 0.1.)

(0.8) When f is a convex function on D then it assumes a minimum value at

each stationary point in D.

X9 4‘

+3 x

Figure 0.1
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For our purposes, f will be said to be convex on D when it has continuous
partial derivatives in D and satisfies the inequality

f(X) = f(Xo) + Vf(Xo) (X — Xo), VX,X,€eD. ®)

A convex function need not have a stationary point, but obviously when
X, is a stationary point of the convex function f; then by (4) Vf(X,) = 0, so
that f(X) > f(X,); i.e., (3) holds.

Observe that we can also express (5) by requiring that at each X € D

fX+V)>fX)+Vf(X)'V, VVeR! forwhich X +VeD. (6)

For example, in D = R?, the function f(x,, x,) = x? + x%, with gradient
Vf(X) = (2x,, 2x,), satisfies for each V = (v, v,) the inequality

X+ V)= (xy + v,)* 4 (x5 + 05)* = x2 + x2 + 2x,0, + 2x,0, + 02 + v2
=f(X)+ Vf(X) V +|V|?
> f(X)+ V(X)) V

and so it is convex. At its only stationary point X, = (), it assumes its
minimum value. [Indeed, trivially, f(X) = x? + x2 > 0 = f(0).]

Moreover, with this example, there is only one minimum point. This
property is characteristic of strictly convex functions.

(0.9) When f is strictly convex on D; i.e., when (5) holds at each X, € D with
equality iff X = X,, then f can have at most one stationary point, and hence, at
most one interior minimum point, in D.

[When X, is a stationary point of a strictly convex function f, then f(X) >
f(Xo), VX €D ~ {X,}. Thus f cannot assume its minimum value f(X,) at
any other point.]

The function of the previous example is strictly convex on each set D =
R2. For other examples of convex functions and alternate characterizations
of convexity, see Problem 0.5, et seq.

(0.10) f is differentiable at X, if for all X in a neighborhood of X,,,

J(X) = f(Xo) + Vf(Xo) (X — Xo) + | X — Xo[3(X — Xo), ()
where 3(X — X,) is a real valued function (defined for X # X, by (7)) with zero
limit as X — X,. Then the graph of f (in R*Y) has at the point (X, f(X,)) a

tangent hyperplane, namely, the graph of the affine function
def

T(X) = f(Xo) + Vf(Xo) (X — Xo).

[For d = 1, this is just the line tangent to the curve representing the graph
of fin R for d = 2, it is the plane tangent to the surface representing the
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graph of f in R3; for the general case, (7) may be used as a definition for
tangency. ]

We can give the stationarity requirement Vf(X,) = O the geometric inter-
pretation that the graph of f at X, has at the point (X,, f(X,)) € R**! a
“horizontal” tangent hyperplane; i.e., a d-dimensional subset parallel to R
(See §5.6.) Thus for d = 2, a marble “balanced” at (X, f(X,)) should not roll
but remain “stationary.” By (5), we see that a convex differentiable function
is one whose graph lies “above” its tangent hyperplanes.

NoT1E: The existence of the partial derivatives of f in a neighborhood of X,
together with their continuity at X, (as in (0.5)) are sufficient to guarantee
that (7) holds. (See A.7 and [Ed].)

(0.11) The classification of a stationary point X, as a local maximum point,
local minimum point, or saddle point may be possible when f has higher-order
nonvanishing derivatives at X,,.

We first observe that vanishing higher-order derivatives provide no infor-
mation. On D = R}, foreachn = 1, 2, 3, ... the functions

f(X) = (x)™, g, (X) = (x,)?*1

each have n derivatives which vanish at their common stationary point
X, = 0, where f, has a minimum value while g, has neither a (local) maxi-
mum nor a (local) minimum value.

In R, it is well known that if at a stationary point, X,, f"(X,) >0
(f"(Xo) < 0) then f' is strictly increasing (decreasing) at X, so that X, is a
strict local minimum (maximum) point for f. The generalization to a higher-
dimensional space, where in addition, the possibility of X, as saddle point
must be permitted, can best be approached through the second directional
derivative.

(0.12) Theorem. Let f: D — R have continuous second-order partial derivatives

_ 9

 0x;0x;

f.;cixj = (fx,-)xj l,] = 1, 2, ceey d.

If X, is a stationary point of f in D, and for each U = (uy, u,, ..., u;) € R%:

2
def a

R0 E 5 f X +0U)|  =qU)>0,  when|U|=1, ()
£=0
where
def d
q(U) = i Zl fxixj(XO)uiuj’
i,j=

then X, is a strict local minimum point for f.

[Indeed, for each unit vector U, as & takes on real values in a one-.
dimensional neighborhood of 0, f(¢) E f(X, + ¢U) takes on all the values of
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f in a neighborhood of X, in the (two-sided) direction of U. Now f "0) =
(0f/0€) (X + €U)|,—o = Oso that f has a stationary value at 0 and the require-
ment of the hypothesis is simply that f”(0) > 0. Thus f has at X, strict local
minimal behavior in the (two-sided) direction U. This extends via a compact-
ness argument to establish that X, is a (strict) local minimum point for f
[Ed].]

If 82f(X,) has unlike s1gn for two directions, U, then f has saddle point
behavior at X|.

(0.13) Remarks. If V = cU € R?, then q(V) = ¢*q(U). Hence (8) holds iff the
quadratic form q(V) > 0,V Ve R4 V # (.

When (8) holds, the (symmetric) Hessian matrix fyx(X,) whose elements
are the second partial derivatives f, . (Xo) =f.x,(Xo), i, j=1,2, ..., d
" (arranged in natural order), is said to be positive definite. Conditions which
characterize the positive definiteness of such matrices are known. (See Prob-
lem 0.10.) For the present, we observe that when (8) holds, the matrix fxy(X,)
is invertible. [If [ fyx]1V = O for some Ve R’ then by the laws of matrix
multiplication,

d d d
q(V) Z XX v;v; = Z <Z fxl-xjvj) v; = O’
i,j=1 i=1 \j=1
which by (8) is possible at X, only if V' = ¢. This condition furnishes the
desired invertibility.] When g(V) > 0, V V € R?, the matrix fy5(X,) is said to
be positive semidefinite.

(0.14) Unless D is open, i.e., has only interior points, then it is also necessary to
consider the extremal values of f on 0D, the boundary of D.

For example, although on R? the function f(X) = x3 — x? has its only
stationary point at X, = (), X, is a saddle point, and so the maximum and
minimum values on say D = {X € R?:|X| < 2} can be found only along the
boundary where | X| = 2. In general for this set D, we would have to consider
the problem of optimizing f subject to the constraint g(X ) IX |2 = 4.

To find the stationary points of f when so constrained to the level sets of
one (or more) functions such as g, we can employ the method of Lagrangian
multipliers. Since this method will be fully treated in a more abstract setting
(§5.7) we shall defer its further discussion. (See also [Ed].)

PROBLEMS

0.1. (a) Establish the Cauchy inequality (1). (Hint: If Y = @) the inequality obviously
holds; assume Y # 0), set u = (X - Y)/| Y|?, and consider | X — uY|2)
(b) What can you deduce about the relationship between X and Y if equality
holds in (1)?



0.2.

0.3.

0.4.

0.5.

0.6.

0.7*.

0. Review of Optimization in R?

(c) Use the Cauchy inequality (1) to prove the triangle inequality (2a).
(d) Conclude that the reverse triangle inequality (2b) holds.

(a) Derive the inequality
IX[|Y|-X-Y<|X-Y]? for X, YeR%

(Hint: Show that | X||Y| < $(|X|*> + |Y|?) and add £|X — Y|? to the right
side of this last inequality.)
(b) Use the result of part (a) to verify that

i_l< \/5 |

X1 1Yl ™ Jix|

for X, YERL, X #0,Y # 0.

X -vY|

Find the maximum and minimum values (and the points at which they occur)
for
fX) = x} — x;x, + %3
on
D={XeR:|x]<2,j=12}

Find the maximum and minimum values (and the points at which they occur)
for

fX)=x} —2x,x, + 1
on

D={XeR*:|X| <1}

Which of the following functions are convex on D = R?? Which are strictly
convex?

@) f(X)=xi—x3. ) fX)=xi + x,.

(b) f(X)=x; — x,. ® f(X)=xi.

© fX)=x]+ x5 —2x,. (h) f(X) = sin(x, + x;).

(@) f(X) = e* + x3. A f(X)=x]—2x;%, + x3.

€) f(X)=xx,. (j) f[X)=ax; +bx, +c, a,b,ceR.

(a) Prove that the sum of two [strictly] convex functions on D < R? s [strictly]
convex on D.

(b) Is the sum of a convex function and a strictly convex function strictly
convex?

(c) Let f be strictly convex and ¢ > 0. Show that cf is strictly convex.
(d) Give an example to show that the product of two convex functions need not
be convex.

Suppose that f: R? — R is differentiable. Show that f is convex on R iff for each
X, X, e R?,

SeX + (1 - )X,) <tf(X) + (1 — 1) f(Xo), Vi, O<t<l
(Hint: To prove the “if” statement, use equation (7) to express
X + (1 = 1)X,) = f(Xo) + tVf(Xo) (X — Xo) + 1| X — Xo|3(tX — tXo),

divide both sides of the resulting inequality by t, and let t approach zero.
For the “only if” part, set Y =tX + (1 — t)X,, 0 <t < 1, and establish the
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0.8%*.

0.9*.

0.10.

0.11.

inequalities
f(Xo) = f(Y) + Vf(Y) (X, — Y),

)
t

fX) = f(Y) - V(Y) (X0 — V).

Then, combine these last two inequalities to get the result.)

Assume that f: R? - R has continuous second-order partial derivatives. Show
that f is convex on R? iff for each X, € R%, the matrix of second partial deriva-
tives, fyx(Xo), is positive semidefinite, i.e.,

d
Z fxixj(XO)uiuj > 0, YVUe Rd.

i,j=1

(Hint: Use Taylor’s theorem for f{(f) & f(Xo +tU)where U = X — X,,te R)

Let D = R? and
2x,1%
fX)=4X1+X;
0, X =0

(a) Verify that the partial derivatives df/dx, and df/dx, both exist at X = ().
(b) Show that f is not continuous at X = 0!

Let f: R — R have continuous second-order partial derivatives and let U =
(uy, u,) be a unit vector. '
(a) Verify that at X:
OLf(X,) = Au? + 2Bu,u, + Cu2,
where
A= fxlxl(X0)7 B = fxlxz(XO)’ C= j;:zxz(XO)'

(b) If X, is a stationary point of f, with both AC — B>>0 and 4 >0,
conclude that X, is a strict local minimum point for f. (Hint: let 4, = cos 6,
u, = sin 6.)

(c) Write the conditions of (b) in terms of subdeterminants of the 2 x 2 matrix
fxx» and conjecture a form for a corresponding set of conditions for the
general d x d matrix.

Is f(X) = | X| [strictly] convex on R? ~ {0}?






PART ONE

BASIC THEORY

Groningen,
January 1, 1697

AN ANNOUNCEMENT

“I, Johann Bernoulli, greet the most clever mathematicians in the world. Noth-
ing is more attractive to intelligent people than an honest, challenging problem
whose possible solution will bestow fame and remain as a lasting monument.
Following the example set by Pascal, Fermat, etc., I hope to earn the gratitude
of the entire scientific community by placing before the finest mathematicians
of our time a problem which will test their methods and the strength of their
intellect. If someone communicates to me the solution of the proposed problem,
I shall then publicly declare him worthy of praise.”

11






CHAPTER 1
Standard Optimization Problems

“Which method is best?” is a question of perennial validity, and through the
centuries we have required for it answers of increasing sophistication. When
“best” can be assessed numerically, then this assessment may be regarded as
a real valued function of the method under consideration which is to be
optimized—either maximized or minimized. We are interested not only in
the optimum values which can be achieved, but also in the method (or
methods) which can produce these values.

When the questions arise from classical science, then it is usually one
of the fundamental quantities—Ilength, area, volume, time, work or energy
which is to be optimized over an appropriate domain of functions describing
the particular class of method, process, or configuration so measured. Mod-
ern interests have added to this list cost, efficiency, ..., etc.

In this chapter, we shall examine several such problems—chiefly those of
classical origin which have been influential in the development of a theory to
furnish answers to the above questions. Although we can deal effectively with
only two of these in this introductory chapter, the rest will serve in formu-
lating the general class of problems to be considered in this text (§1.5).

§1.1. Geodesic Problems

Whether as a result of inherent laziness, or out of respect for efficiency, we
apparently have long wished to know which of the many paths connecting
two fixed points 4 and B is the shortest—i.e., has the least length. Although
in R? a straight line provides the shortest distance between two points (for
reasons substantiated below), in general it may not be reasonable (or possi-

13



14 1. Standard Optimization Problems

ble) to take this route because of natural obstacles, and then it is necessary to
consider the more complicated problem of finding the geodesic curves (i.e.,
those of least length) among those constrained to a given “hyper” surface. In
particular, we might wish to characterize in R*, the geodesics on the surface
of a sphere, on a cylinder, or on a cone.

(a) Geodesics in R?

A curve in R joining points 4 and B may be considered as the range of a
vector valued function Y(£) = (y,(t), y,(t), ..., y4(t)), t € [0, 1], with compo-
nents that are continuous on [0, 1], such that Y(0) = 4 and Y(1) = B. (When
d = 2 or 3, we may think of Y(t) as the position at “time” ¢, and see that the
componentwise continuity reflects our desire that the curve not have jumps.)
In particular, Y,(¢) o (1 —t)A + tB,t € [0, 1] defines one such curve, namely,
the straight line segment determined by 4 and B (Figure 1.0).

With such generality, the curve may be nonrectifiable; i.e., it need not have
finite length. However, if we require more smoothness; if, for example, we
require that the component functions have continuous derivatives in (0, 1),
then we may think of Y'(t) = (y1(¢), y5(¢), ..., yi(t)) as representing the veloc-
ity at time ¢t with the associated speed | Y'(t)|; hence the length of the curve
should be the distance travelled during this motion,

1
L= f |Y'(@)] de,
0
(considered as a possibly improper Riemann integral). For finiteness of L, we
must require that each component of Y'(¢) be integrable, and this is most
easily obtained by requiring that each component is continuously differ-
entiable on [0, 1]. Thus we are led to consider the purely mathematical
problem of minimizing this length function L(Y) over all vector valued func-

tions Y which meet the above conditions, as in Figure 1.0.

Ya A

Y1

Figure 1.0
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Since Y,(t) is surely admissible, with the derivative Y;(¢) = B — A4, we
know that if a curve of minimal length L, exists, then

1
Lmin S f IYO,(t)ldt = |B - Ala
4]
the Euclidean distance between A and B.

To verify the natural conjecture, that L,
lish the inequality that for any admissible Y,

= |B — A|, we need only estab-

1
[B— Al < L(Y) = f [Y'(1)] dt,
(0]
which is trivial when 4 = B; when A # B, this is most conveniently done as
follows: Observe that from the fundamental theorem of calculus (A.8),
1

B—-A=Y(1)—-Y(0)= f Y'(¢) dt;

0
(. y,(1) — y,0) = [Ayi0)dt,j = 1,2,..., d). Thus

|IB— A?=(B— A)-(B— A) = (B—A)-fl Y'(t) dt
0

= fl [B—A4)Y'(t)]dt < fl |B — A||Y'(¢)] dt,
0 0
or

1
|B— AI*><|B— Alf |Y'(8)] dt,
0

and for A # B, the desired inequality follows upon division by |B — A|. The
reader should verify each step in this chain. In obtaining the inequality
between the integrals, we utilized at each ¢ € (0, 1), the Cauchy inequality in
the form

[(B—A4)Y'(®]<IB-AlY®

and this pointwise inequality in turn implies that of the corresponding inte-
grals. [See A.10.]
Can a nonstraight curve also be of minimal length? (See Problem 6.39.)

(b) Geodesics on a Sphere

For airlines facing fuel shortages, it is essential to know the shortest route
linking a pair of cities. Insofar as the earth can be regarded as a sphere, we
see that we require knowledge of the geodesics on the surface of a sphere
(albeit one which is large enough to be “above” the highest mountain range).

Each point Y = (y;, y,, y3) € R® on the surface of a sphere of radius R
centered at @ (except the north and south poles) is specified through its
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Figure 1.1

spherical coordinates R, ¢, and 0 as follows:
Y = (R cos 6 sin ¢, R sin 0 sin ¢, R cos ¢), (1)

for unique ¢ € (0, 7) and 6 € [0, 2x). Moreover, given distinct points A and B
on this surface, we suppose, as we may, that the axes are chosen so that
A is at the north pole (¢ = 0), while B # A4 has the spherical coordinates
(R, 0, ¢,), for ¢, > 0. (See Figure 1.1.)

Then a curve joining A to B on the surface of this sphere is determined
through (1) by the pair of continuous functions (8(t), ¢(t)), t € [0, 1], with say
¢(0)=0; 8(1) =0, ¢(1) = ¢,. (Note: To remain continuous # and ¢ may
have to exceed their ranges of [0, 27) and [0, 7), respectively. Also the choice
0(1) = 0 is made for convenience.) By the same considerations as in the
previous case we should require the continuous differentiability of 8 and ¢ on
[0, 1]. Then the resulting curve defined by

Y (t) = R(cos 0(t) sin ¢(t), sin 6(t) sin @(t), cos ¢(t)), t e [0, 1],
[which has at each ¢ € (0, 1) the derivative
Y'(t) = R[ —sin O(sin ¢)0’ + cos 6(cos @)@’ cos O(sin ¢)0’
+ sin 6(cos @)¢’, —(sin @)¢’1(1)],
has the length

L(Y) = jl |Y'(¢)] dt = R Jl \/sinz o0 (1) + @'()* dt
0 0

1

>
0

>R Jl @'(t) dt = Ro(t)
0

thus L(Y) > R, by our requirements on ¢. (See Problem 1.7.)
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[Moreover, according to A.10, equality in the above occurs iff
(sin? ¢)8’? = 0 and ¢’ > 0: or for ¢ € (0, 7), when 6’ = 0 so that § = const. =
0(1) = 0; this corresponds to the smaller great circle arc joining A4 to B.] Thus
we confirm the result known from antiquity that the shortest route joining
two points on a spherical surface is precisely along the (shorter) great circle
joining these points. Aircraft pilots are well advised to fly such routes, even
though they may have to travel over polar regions in doing so.

(c) Other Geodesic Problems

As the last example shows, to characterize the geodesics of a specific hyper-
surface in RY it may be possible to utilize the properties of special coordi-
nates associated with that surface. For example, in R3, we may use cylindrical
coordinates to search for geodesics on a cylinder, on a cone, and on a general
surface of revolution; some of the resulting problems will be examined in the
next chapter. Curiously, the original mathematical interest in finding the
geodesics on a general surface of revolution (as expressed by Jakob Bernoulli
in 1697) arose because of the then recent discovery that our planet is not
perfectly spherical.

The consideration of geodesics on a general surface S in R? was begun by
Johann Bernoulli (1698) and his pupil Euler (c. 1728), continued by Lagrange
(1760) and treated rather decisively by Gauss (1827). When the surface can be
described by S = {Y € R*: g(Y) = 0} for some function g, we are required to
minimize a length integral of the form L(Y) = [§|Y’(t)| dt as above, but
now subject to the Lagrangian constraint g(Y(t)) = 0. This problem forms a
branch of differential geometry, and it will be considered again in §6.7.

§1.2. Time-of-Transit Problems

If we travel at constant speed, then the geodesic routes determined in the last
section will also provide the least time of transit between given points A, B.
However, if we cannot travel with constant speed—and, in particular, if the
speed depends upon the path taken, then the problems of least distance and
least time in transit must be considered separately. In this section we shall
examine several such problems, including that of the brachistochrone (from
the Greek fpayioroc = “shortest,” ypovoc = “time”) which has been very
significant in the emergence of the calculus of variations.

(a) The Brachistochrone

In falling under the action of gravity an object accelerates quite rapidly. Thus
it was natural for Galileo to wonder (c. 1637) whether a wire bent in the shape
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%y

|

(s y1)

Yy

Figure 1.2

of the circular arc shown in Figure 1.2 might not offer a faster time of transit
to a bead sliding down it under the action of gravity than would a straight
wire joining the same two points.

In 1696, Johann Bernoulli challenged mathematicians to find the bra-
chistochrone, that is, the planar curve which would provide the least time of
transit. His own solution was derived from an optical analogy, [see Problem
1.17; and solutions were provided by his brother Jakob, by Newton, by Euler,
and by Leibniz. Although all of these reached the same conclusion—that the
brachistochrone is not the circular arc, but a cycloid—none of their solutions
is entirely satisfactory; however, that of Jakob Bernoulli admitted refinement
and far-reaching generalization: the variational calculus.

If we use the coordinate system shown in Figure 1.2, in which the initial
point A is the origin and the positive y axis is taken as vertically downward,
then a typical curve which might represent the brachistochrone joining 4 to
alower point B = (x,, y,) where x, and y, are positive, can be represented as
the graph of a continuous function y = y(x), x € [0, x,] with y(0) = 0 and
y(x,) = y,. (Here we are abandoning the parametric form of representing
curves used in the previous section in favor of one less general but more
convenient. Although it is reasonable that the class of curves needed should
be so representable (Why?), the reader should consider whether something
essential is lost with this restriction.)

Assuming sufficient differentiability, this curve has length | and the time
required to travel along it is given through pure kinematic considerations as

1
T=T() = j s
oV
where v = ds/dt is the speed of travel at a distance s along the curve.

Now from calculus, for each x € [0, x,], s = s(x) = [§/1 + y'(£)* d¢ is
the arc length corresponding to the horizontal position x, and we may regard
v = v(x) as the associated speed. Thus with these substitutions,

T=T() = fXI 4\,1-{-)1’(302 dx

0 v(x)
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Figure 1.3

To express v in terms of y we resort to Newton’s laws of dynamics.
Assuming that the gravitational acceleration, g, is constant during the fall,
and neglecting the effects of other forces (including that of friction), the
acceleration of a bead (of unit mass) along the wire at time ¢t is

U =g cosa also y =vcosa,

where a is the angle between the tangent line to the curve and the y axis at
this point (Figure 1.3). (We use the Newtonian notation of a dot to signify a
derivative with respect to time.)

Thus vd = gy, or upon integrating with respect to time,

v? = 2gy + const.

But at A, v = y = 0, so that in general,

v=./2g9y or v(x) = /2gy(x).

1+ y'(x)2>”2

1
T“T(”=¢z“gL< e

and we have the problem of minimizing T over all functions y = y(x) which
validate the above analysis. However, we may consider also the mathemati-
cal problem of minimizing the integral

X3 1+yl(x)2)1/2
L ( e ) @

over all functions y continuous on [0, x, ] for which y(0) = 0, y(x,) = y,, and
the integral is defined. This last condition requires that y have a derivative
integrable on [0, x, ] and that y be >0 with

Thus finally,

@

J‘x1 (y(x)) "2 dx < +o0.

In any case, there is no obvious answer although we may verify Galileo’s
conjecture that a circular arc is superior to the straight line. (See Problem 1.2.)
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&)
Figure 1.4

Alternate forms of this problem soon suggested themselves. For example,
in 1697, Jakob Bernoulli challenged mathematicians to find the brachisto-
chrone among those curves representing travel over a fixed horizontal dis-
tance x,, but for which the y, coordinate may vary, as in Figure 1.4(a). Later,
mathematicians investigated the problem of finding the brachistochrone
joining fixed curves as in Figure 1.4(b).

Newton also considered the problem of finding the brachistochrone asso-
ciated with tunnels through the earth connecting fixed points. Again, the least
time is given not by the straight line, but by another type of cycloid [Sm].

It required nearly two more centuries to obtain, for these problems, the
mathematical solutions to be presented in this book. See §3.4, §6.2, §8.8, and
§9.2. At each stage of development, however, the brachistochrone remained a
testing ground for the state of the art.

(b) Steering and Control Problems

Closely related to the problem of the brachistochrone, is that from this
century concerning the best course to steer when navigating through a cur-
rent of varying speed. For example, which path joining fixed points 4 and B
on opposite banks of a river with varying current will provide minimum
transit time for a boat which travels with constant speed w with respect to the
water? As in Figure 1.5, we suppose the river banks parallel and utilize the
coordinate system shown, in which the y axis represents one bank and the
line x = x, the other. We also assume that w = 1 and that the river current r
is directed downstream and admits the prescription r = r(x), continuous on
[0, x,]. Then the time of transit of a boat travelling between the origin 4 and
the downstream point B = (x,, y,) along a smooth path which is the graph
of a function y = y(x) on [0, x, ] is given (after some work left to Problem 1.3)

by
T(y) = Jol [a(x) /1 + (@y)*(x) — («?ry") (x)] dx, ©)
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where a(x) = (1 — r*(x))"Y2. (In order that the crossing be possible we must
have 0 < r(x) < 1.) (Why?) We are required to minimize this rather compli-
cated integral over all those functions y which are continuously differentiable
on [0, x,], and satisfy y(0) =0, y(x;) = y;. The methods of Chapter 3 will
provide access to a solution. (See Problem 3.20.)

We may also consider the more natural problems in which the river banks
are represented by curves, and permit the crossing points to vary. Finally, we
can also permit the current to vary with y as well as x. In fact, in 1931,
Zermelo investigated the two-dimensional version of this problem which
could be equally significant to the piloting of a submarine or a light aircraft
[C]. And when we ask how to operate our craft so that it travels along an
optimal path, we enter the realm of optimal control problems, first consid-
ered by Minorsky around 1920.

(Problems 1.1-1.3, 1.8)

§1.3. Isoperimetric Problems

One of the most ancient optimization problems of which we have record is
that of finding the maximal area which can be enclosed by a curve of fixed
perimeter. According to Virgil, this problem was already of importance to
Dido of Carthage (c. 850 B.c.) and she supposedly obtained a solution on
heuristic grounds. (See Problem 1.5.) The Greek geometer Zenodoros appar-
ently knew that the circle provided a greater area than polygons having this
same perimeter, and a few centuries later Pappus (c. A.D. 390) concluded that
the circle was maximal among isoperimetric curves.

There is a simple physical analogy which supports this conjecture: Sup-
pose that a cylinder with thin inextensible impervious, but completely flexi-
ble walls is deformed so that its constant cross-sectional shape is that of the
area to be maximized. Then a section of it is placed with walls vertical on a
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Figure 1.6

smooth horizontal surface and filled with water as in Figure 1.6. Under the
action of gravity, the water will seek its lowest level and if we assume none
lost by leakage at the base, then this will be accomplished by a movement of
the walls of the cylinder until the effects of hydrostatic pressure are equalized.
Since this pressure is exerted uniformly at each depth, the final configuration
must have constant curvature, ie., it is that of a right circular cylinder.
However, the configuration which provides least depth must clearly be that
having maximal cross-sectional area. Thus the circle encloses a greater area
than any noncircular isoperimetric curve.

One mathematical formulation of this problem is as follows: We suppose
that a smooth simple closed curve of length [ is represented parametrically by
Y(t) = (x(t), (1)), t € [0, 1], with Y(0) = Y(1) for closure (Figure 1.7).

Then according to Green’s theorem [Ed], the area of the domain D
bounded by the curve is

A(Y)=J] dxdy=f x dy,
D oD

where 0D denotes the boundary of D assumed positively oriented by the
parametrization through Y. Utilizing this parametrization we have

1
A(Y) = J x(t)y' (1) dt; @

0

we must maximize A(Y) over all functions Y(t) having continuously differ-

¥4 Y()

Figure 1.7




§1.3. Isoperimetric Problems 23

entiable components on [0, 1], which meet the closure conditions Y(0) =
Y(1), and for which the resulting curve satisfies the isoperimetric condition

1

L(Y) = J [Y'(t) dt =1 5)
0

for a given L.

We shall return to the solution of this problem in §6.7.

Remark. This problem has received much attention and there have been
other less restrictive formulations. In particular, the German geometer Jakob
Steiner (c. 1840) devised several techniques to attack it [P]. One well-known
analytical solution utilizes properties of Fourier series, (see Problem 1.6.),
but in §8.8, we will present a recently discovered solution that seems more
natural.

A modern version which combines features of the isoperimetric and steer-
ing problems from the previous section is due to Chaplygin (1938). It consists
of describing the closed path which an airplane say, on reconnaisance, should
fly with constant airspeed in the presence of a wind, in order to enclose the
maximum area. When the wind speed is zero, then this problem is equivalent
to the classical isoperimetric problem (Problem 1.4).

Zenodoros considered also the higher-dimensional analogue of maximiz-
ing the volume of a solid having fixed surface area (Problem 1.9).

A different isoperimetric problem (often attributed to Euler)! consists of
finding the shape which a thin inextensible long cable or chain of weight/unit
length W, and given length L, will assume under its own weight when sup-
ported freely from end points separated a fixed horizontal distance H. As we
shall show in §3.5, this requires the minimization of the center-of-mass inte-
gral F(y) =W f & y(s) ds over all functions y > 0 continuously differentiable in
[0, L], with y(0) = y(L) = 0, which satisfy the “isoperimetric” condition

L
G(y)sL J1—y'(s)*ds=H. (6)

In general, the term “isoperimetric” is assigned to any optimization prob-
lem in which the class of competing functions is subject to integral or global
constraints of the form (5) or (6). The resulting isoperimetric problems admit
simple abstract formulation (§5.7) in contrast to Lagrangian problems (such
as those for geodesics on a general surface) in which intrinsic constraining
conditions must be satisfied (§6.7).

(Problems 1.4—1.6)

! This problem was first proposed by Galileo (who believed that a parabolic shape would be
optimal) and it was then attacked mathematically by the Bernoullis in 1701. (See Goldstine.)
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§1.4. Surface Area Problems

A higher-dimensional analogue of the geodesic problem discussed in §1.1,
might be formulated as follows:

Find the surface of minimum area that spans fixed closed curves in R3.

(a) Minimal Surface of Revolution

For example, when the curves consist of a pair of “concentric” parallel circles
such as those shown in Figure 1.8, then we could ask for the surface of
revolution which “joins” them and has minimum area—or, equivalently, we
would wish to find the shape of its boundary curve. The problem in this form
was first attacked by Euler (c. 1744) who employed his recently developed
theory of the calculus of variations in its solution.

If we utilize the coordinate system shown, then we would be led by ele-
mentary calculus to minimize the surface area function

b b
S(y)=2=n J y(x) ds(x) = 2=n j Y/ 1 + y'(x)* dx )
among all functions y which are nonnegative, continuously differentiable on
[a, b], and, for which

y@=a;  and y(b)=b;.

Here, a, and b, denote the given radii of the bounding circles, one of which
may degenerate to a point. (However, see Problem 1.7.)

When a; and b, are comparable to b — a as in Figure 1.8, it is reasonable
to expect a minimizing y to be of this form. However, when b — a greatly
exceeds a, and b,, as in Figure 1.9, then it is seen that the surface area can be

Figure 1.8
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);*k

b—a

Figure 1.9

made as close as we please to the area of the bounding disks—and that these
probably represent the “least” area—but the associated “boundary” curve is
not of the form admitted.

We have two alternatives: First, we can simply predict that in this case the
problem as posed has no solution and attempt to substantiate this. Or, we
can seek a reformulation of the problem in which such cornered curves
remain admissible. We shall adopt the second alternative when we return to
this problem in §7.5. For the present, we note that a framework large enough
to include this alternative must accomodate an accurate description of cor-
nered curves.

(b) Minimal Area Problem

Suppose that the competing surfaces can be represented as the graphs of
smooth functions u = u(x, y) defined on a common planar domain D, as in
Figure 1.10. Then the associated surface area is given by calculus as

S(u)=f 1+ u2 + u? dA,
D

where dA denotes the two-dimensional element of integration over D; the
boundary of D is denoted by dD, and in this text, we suppose it to be so
well-behaved that Riemann integration of continuous functions can be de-
fined over D or D and over 0D [Ed].

We would then seek the minimum for S(u) over all functions u which are
continuous on D = D u 8D, continuously differentiable inside D, and have
given continuous boundary values u|;, = 7, say. We shall obtain some par-
tial results for this problem, which need not have a solution, in §3.4(e), under
the assumption that D is a Green’s domain (one whose boundary smoothness
admits use of Green’s theorem [F1].)
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Figure 1.10

(c) Plateau’s Problem

A new impetus was given to this class of problems in 1873 when the Belgian
mathematical physicist Joseph Plateau noticed that wires bent in the shape
of the bounding curves could be made to support a thin film of glycerine
which in order to minimize the surface tension should assume the shape
associated with the minimal area. These “soap film” experiments have been
continued until this day; they show that for some configurations, more than
one type of solution is possible, and in some cases the solutions can be
observed to change form as the relative geometry is altered. For example,
from our discussion of the minimal surface of revolution, we would expect
that a soap film joining a pair of circular rings that is initially cylindrical in
shape might transform into a pair of disks as the distance between the rings
is increased.

The mathematics supporting a general theory for such surfaces is outside
the scope of the present text. (See, for example, [Os].)

(Problems 1.7-1.9)

§1.5. Summary: Plan of the Text

These problems exhibit common ingredients. Each requires the optimization
of a real valued function F defined on a certain domain 2 of functions Y,
usually by means of an integral of the form

b

F(Y) f Sx, Y(x), Y'(x)) dx, ®)
a

for some given real valued function f. Here Y is a real [or possibly a vector]

valued function [each component of ] which is continuous on [a, b] with a

continuous derivative in (a, b); and 2, in general, consists of those functions
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of this class which meet certain specified boundary conditions at a and/or b.
However, as in the case of the brachistochrone, it may be necessary to impose
further restrictions such as requiring that ¥ = y > 0 on [a, b]. In addition,
there may be constraints of the isoperimetric form in which

G(Y)= f b g(x, Y(x), Y'(x)) dx = I; )

a

or of the Lagrangian form in which
glx, Y(x), Y'(x)) =0, x€(ab), (10)

for given functions g and constants .

We may also find it necessary to enlarge the domain 2 to include func-
tions with corner points; i.c., discontinuous derivatives, and to permit more
freedom of the boundary points such as that required to treat the brachisto-
chrone joining fixed curves.

Finally, we should also consider the obvious extensions to integrals in-
volving higher derivatives of the functions and to functions of more than one
variable.

In the generality considered it is seen that the theory should be applicable
to any problem of finding the “best” process which meets the following
criteria:

(1) The processes can be described by a suitable class of functions.

(2) The value of each process can be measured by a weighted averaging
usually represented through an integral involving the function and one or
more of its derivatives.

Thus, for example, it should be applicable to problems of minimizing the
strain energy stored in a deformed elastic body such as a bent beam. And it
should also provide some insight as to how an economic process should
be operated over a fixed period of time in order to minimize the cost of
operation—or maximize the return on investment.

A complete solution to any of these problems requires characterizing
those functions in the domain which could produce the extremal values of
interest (either F,,, or F,; ) and proving that these are indeed the extremal
values sought. In this chapter we have obtained a satisfactory solution to
only one of our problems—that of finding the geodesics on a sphere (§1.1(b)).
There, a proper (and natural) selection of the domain 2 led directly to the
inequality

L (curve) > L (shorter great circle joining same points),

with equality iff the curve is the great circle. Moreover, it was not necessary
to “know” or guess the answer beforehand as we did when proving that the
geodesics in R? are the straight lines.

The general theory known as the calculus of variations has been de-
veloped over the last three centuries to handle such problems. It arose out of
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efforts to duplicate, insofar as possible, the analysis of optimization of ordi-
nary functions defined on a set in R? (a review of which is given in Chapter 0).

From the theoretical calculus of variations we learn that functions which
could provide the extremal values sought must satisfy the differential equa-
tions of Euler-Lagrange determined by the integrand f (and g, if constraints
of the form (9) or (10) are present). On the other hand, solution to these
equations need not be possible within the required class (2), and even when
possible, need not furnish the extremal values sought.

In RY the minimization of convex functions is simple to analyze, and in
Chapter 3 we shall see that suitable convexity of F again provides access
to the solution of some of these problems—even when isoperimetric or
Lagrangian constraints are present.

However, this convexity is best formulated in terms of the directional
derivatives of F (its Gateaux variations), in the setting of a linear space
(Chapter 2).

After the brief technical Chapter 4, we return to this space in Chapter 5,
supply it with a norm and obtain conditions (again expressed through
GAteaux variations) which are necessarily satisfied, if a function is minimized
or maximized locally on a subset of this normed linear space. In this setting
we shall also develop the method of Lagrangian multipliers to treat optimiza-
tion with constraints of the isoperimetric type (9).

In Chapter 6, we apply the results of Chapter S to functions F defined
by integrals such as (8) to obtain the classical theory of Euler (1742) and
Lagrange (1755). The effects of constraints of various types are also consid-
ered. Extensions to integrals involving higher-ordered derivatives or vector
valued functions, and to multidimensional integrals will also be given. How-
ever, we reserve the generalization to piecewise C' (cornered) extremals for
presentation in Chapter 7, where it will also be shown that the existence of a
minimizing function demands some convexity from the integrand f (§7.6).

In Chapter 9, we demonstrate that, conversely, such partial convexity of
the integrand ensures that some solutions obtained previously do minimize
their integral functions, provided that a suitable family of these solutions is
available. These sufficiency arguments, which here incorporate earlier results
from Legendre and Jacobi, are now known as field theory and are due largely
to Weierstrass (c. 1879) and Hilbert (1900). (The so-called direct methods,
also initiated by Hilbert, but developed by Tonelli and his successors from
1915, wherein existence of a minimizing function is established through a
priori estimates, are considered to lie outside the scope of this text. See [G-F],
[Ak])

However, one of the most satisfying uses of the Euler-Lagrange theory has
come from another direction, namely, the recognition that differential equa-
tions which describe a physical process might be regarded as the Euler-
Lagrange equations for a variational problem. This generated the variational
principles of mechanics culminating in the Hamilton (c. 1835)-Jacobi (c. 1840)
theory, which has survived the transition from classical physics to quantum
mechanics, and which properly interpreted, is still regarded as the correct
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theoretical foundation for the laws that govern the operation of our universe.
We shall examine this aspect of the subject in Chapter 8 (which is essentially
independent of Chapters 7 and 9).

In the concluding part (Part III), we turn to problems of optimal control
where the vector-state Y of a system at time ¢ is governed by a dynamical
system of differential equations of the vector form

Y'(t)=G( Y(2), U@1)

dependent upon a vector “control” function U (t). The task is to determine a
“path” Y, and a control U, that optimizes some performance assessment

integral of the form
b

F,U)= J F(t, Y(t), U(t)) dt
a

perhaps subject to certain endpoint or other constraints, and control restric-

tions. (For example, an engine throttle can open only so far.)

In Chapter 10 we use partial convexity of some associated integrals to
suggest a governing principle (due to Pontjragin, c. 1960) guaranteeing opti-
mality of the choices that it dictates. Then in Chapter 11, we will learn that
these Pontjragin conditions are necessary for the optimal choices, whether or
not such convexity is present. Finally we use the principle to obtain necessary
conditions when other types of Lagrangian or isoperimetric constants are
present.

To establish the above assertions, we shall use several results from ad-
vanced calculus and the theory of differential equations, proofs for most of
which will be found in the Appendix.

Notation: Uses and Abuses

In this book, we use the following abbreviations which are now standard in
mathematical literature:

€ for “is an element of” or “is in” or “in”;
| for “there exists”;

v for “for each” or “for every”;

iff for “if and only if”;

C? for “continuously differentiable”;

C? for “twice continuously differentiable”;
ct for “n times continuously differentiable”;
R? for “d-dimensional Euclidean space”;

O for “end of proof™;

x 7 a for “x approaches a from below”;

x N a for “x approaches a from above”;

def « tT)

= for “defined as”;

to designate material of more than average difficulty.
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In addition, we shall need notation which is not standard in order to
handle effectively composite functions such as

fx, y(x), y'(x))  (or f(x, Y(x), Y'(x)))
and their derivatives.
First, we write f = f(x, y, z) for which the partial derivatives are as usual
denoted
fx(x’ y’ z)’ ,f;l(x’ y’ Z), fz(xn y’ Z), fxx(xa y’ z)’ f;cy(x’ y’ Z)’ fxz(x9 y’ Z)’ teto etc'

Then we evaluate at (x, y(x), y'(x)), and denote the respective results by

STy, LyX)], £Lyx)], LIy fx[y(X)], £ [Y(X)], fiz[¥(K)], ..., ete.

However, for a given function y = y(x), in Chapter 6 we further condense
the notation to

J(x) = fIy(x)] = f(x, y(x), y'(x)),
fox) = £ly(x)] = felx, y(x), y'(x)), -
[(x) = £,[y(x)] = fy(x, y(x), y'(x))
Jy(¥) = £L[y(x)] = fox, y(x), y'(x)),
Sy (X) = f[y(¥)]; ..., ete,,

where use of the subscript (y’) is consistent with regarding f(x, y, z) as
f(x, y,¥'), an approach taken by some authors.

Vectors will always be indicated by capital letters. For vector valued
functions Y = Y(x), the corresponding abbreviations when f = f(x, Y, Z), are
as follows:

f(x) =LY ()] = f(x, Y(x), Y'(x)),
J(¥) = [Y(X)] = fulx, Y(x), Y'(x)),
fr(%) =£IY(X)] = fr(x, Y(x), Y'(x)),
Jr(¥) = fzLY(x)] = fz(x, Y(x), Y'(x)).

where fy(x, Y, Z) is the vector with jth component 1,,(x, Y, Z); and again use
of the subscript (Y’) is consistent with regarding f(x, Y, Z) as f(x, Y, Y').
Observe that with this notation, the chain rule takes the following forms

d
2/ YOI =LLYOT + ALY)] Y'(x) + [ Y ()] Y'(0)

or
d
20 =10 + fr(x) Y'(x) + fr(x) Y7(x),

assuming sufficient differentiability. (In the later chapters, we will utilize a
notation for the matrices of the second partial derivatives (and similar expres-
sions) which is consistent with that above. It will be explained as it is required.)
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Finally, because of frequency of occurrence, we simplify (y’(x))* to y'(x)?,

and make corresponding reductions for (y”(x))?, (¥'(x))3, ..., etc., while
(y(x))? is given either of the forms y?(x) or y(x)?, as desired.

PROBLEMS

1.1.

1.2.

The Brachistochrone. (The following optical analogy was used by Johann
Bernoulli, in 1696, to solve the brachistochrone problem.) In a nonuniform me-
dium, the speed of light is not constant, but varies inversely with the index of
refraction. According to Fermat’s principle of geometric optics, a light ray travel-
ling between two points in such a medium follows the “quickest” path joining the
points. Bernoulli thus concluded that finding the brachistochrone is equivalent to
finding the path of a light ray in a planar medium whose index of refraction is
inversely proportional to \/;

The optics problem can be solved by using Snell’s law which states that at
each point along the path of a light ray, the sine of the angle which the path
makes with the y-axis is inversely proportional to the index of refraction (and
hence proportional to the speed). Therefore, the brachistochrone should satisfy

csina = ﬁ, (11)

where c is a constant and « is as shown in Figure 1.3.
(a) Assuming that the brachistochrone joining (0, 0) to (x,, y,) can be repre-
sented as the graph of a smooth function y = y(x), use (11) to prove that

¢ =yx)[1 + y'(%)?], 0<x<x;.

(b) Show that the cycloid given parametrically by

02
x(6) = 7(9 — sin ),
0<6<0,,
cZ
y(0) =~ (1 — cos ),

satisfies the differential equation found in part (a) and has (0, 0) as one end

point. (It will be shown in §3.4 that ¢ and 60, can always be chosen to make

(x4, y1) the other end point, and that the resulting curve is expressible in the

form y = y(x).)

(Although this does not constitute a mathematically rigorous solution to the
problem, it illustrates an important parallel between geometric optics and parti-
cle mechanics which led to the works of Hamilton.)

A Brachistochrone. (See §1.2(a).) Let x; =y, = 1.

(a) Use equation (2) to compute T(y) for the straight line path y = x.

(b) Use equation (2) and the trigonometric substitution 1 — x = cos 6 to show
that for the circular arc y = /1 — (x — 1),

T(y) = (2g) J% (sin 0)772 do.
1]
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1.3.

1.4.

LS.

1. Standard Optimization Problems

() Use a table of definite integrals to conclude that the circular arc in part (b)
provides a smaller transit time than the line segment in part (a).

(d) Use the inequality sin 8 < 6, 8 > 0, to obtain a lower estimate for the transit
time of the circular arc of (b);

(e)* Find similar (but more precise) upper estimates which lead to the same
conclusion as in (c) without obtaining a numerical value for the integral in

(b).

Transit Time of a Boat. (See §1.2(b).) Use the following steps to derive equation

Q)

(a) Show that the x- and y-components of the velocity of the boat are given
respectively by cos o and r + sin o, where o is the steering angle of the boat
relative to the x-axis shown in Figure 1.5.

(b) Prove that the crossing time is given by

X1
T=f sec o dx, >X;.

0

(c) Show that y’ =rseco + /sec’ o — 1.

(d) Conclude that

T(y) = Lxx [e()/1 + (0y")*(x) — (@*ry')(x)] dx,

where a(x) = (1 — r2(x)) Y2

Chaplygin’s Problem. A small airplane in level flight with constant unit airspeed
flies along a simple smooth closed loop in one hour in the presence of a wind with
constant direction and speed w < 1. Suppose that its ground position at time ¢ is
given by Y(t) = (x(t), y(t)) where the wind is in the direction of the positive x-axis.

(a) Argue that (x'(t) — w)®> + y'(t)* = 1, t€[0, 1], while A(Y)= [§x(2)y’'(t) dt
represents the area enclosed by the flight path.

(b) Formulate the problem of finding the flight path(s) maximizing the area
enclosed. (We return to this formulation in Problem 9.19.)

(c) When w = 0, show why a solution of the problem in (b) would solve the
classical isoperimetric problem of §1.3.

(d) As formulated in (b) Chaplygin’s problem is not isoperimetric. (Why not?)
Recast it as an isoperimetric problem in terms of o(t), the steering angle at
time ¢ between the wind direction and the longitudinal axis of the plane.
(Hint: Take Y(0) = Y(1) = O and conclude that x(t) = wt + {§ cos o(7) dr,
while y(t) = [§ sin o(z) dr).

Queen Dido’s Conjecture. According to Virgil, Dido (of Carthage), when told
that her province would consist only of as much land as could be enclosed by the
hide of a bull, tore the hide into thin strips and used them to form a long rope of
length [ with ends anchored to the “straight” Mediterranean coast as shown in
Figure 1.11. The rope itself was arranged in a semicircle which she believed would
result in the maximum “enclosed” province. And thus was Carthage founded—in
mythology.
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1.6.

Dido’s —t
Solution —», ~~ L — N

Figure 1.11

For simplicity, suppose that I = x; then use the arc length s as the parameter.
(a) Show that the conjectured inequality for the vector valued function Y =
(x, y) with y(0) = y(n) = 0, is

A(Y) = —'[ y(s)x'(s) ds < T <E>J~ [x'(s)* + y'(s)*] ds.
0 2 \2/Jo
Hint: Use Green’s theorem.

(b) Prove that the inequality in (a) is satisfied if [§[y'(s)*> — y*(s)]ds > 0, when
y(0) = y(n) =0, and y is continuously differentiable on [0, #]. (We shall
establish this inequality in §9.1.)

(c) Show that equality in (a) and (b) would imply that x'(s) = — y(s).

(d) Verify that equality will hold in (a) and (b) for the trigonometric functions
x(s) = cos s, y(s) = sin s, defining the semicircle.

() How is Dido’s problem related to that considered in §1.3? Could a solution
to one of these problems yield a solution to the other?

The Isoperimetric Inequality. (See §1.3 and §9.5.)
To derive a formulation analogous to that in the preceding problem, use the
arc length parametrization of a closed curve of length | = 27.
(a) Show that for Y = (x, y) so parametrized, with say Y(0) = Y(2xn) = O, the
isoperimetric inequality A(Y) < =, would follow from Wirtinger’s inequality:

J " [y'(s)* — y(5)>]1 ds > 0, when y(0) = y(2n) =0, and Jmt y(s)ds = 0,
4] 4]

where y is continuously differentiable on [0, 27z]. Hint: What is the geomet-
rical significance (for the curve) of the last integral requirement?

(b) Prove that equality throughout in (a) would require that x'(s) = — y(s), with
x(0) = x(2n) = 0.

(c) Verify that the trigonometric functions x(s) = cos s — 1, y(s) = sin s meet all
of the requirements in (a), (b), and give equality throughout. What curve do
they parametrize?
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1.7.

1.8.

1. Standard Optimization Problems

(d) Show that the integral inequality in (a) is violated for the function y,(s) =
sin s/2. Is [3% y,(s) ds = 0?

Degenerate Minimal Surface of Revolution. (See §1.4(a).)

When one of the end circles degenerates to a point, then we can suppose that
a typical curve to be rotated is the graph of a continuously differentiable function
y = y(x),0 < x < b, with 0 = y(0) < y(x); y(b) = b; > 0. Prove that the resulting
surface area S(y) = 2= [§ y(x)y/1 + y'(x)* dx > nb}. Give an interpretation of

this inequality. Hint: \/1 + ¢2 > c.

A Seismic Wave Problem.

Suppose that a seismic disturbance or wave travels with a speed which
is a linear function of its depth # below the earth’s surface (assumed flat)
along a subterranean path which minimizes its time of transit between fixed
points.

Assume that a typical (planar) path joining the points is the graph of a
continuously differentiable function y(x) = 5(x) + 0, a < x < b, where ¢ is a posi-
tive absolute constant, and 7 is the positive local depth of the path, as shown in
Figure 1.12(a); y(a) = a, and y(b) = b,.

%y
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1.9.

Earth’s Surface|
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Figure 1.12

(a) Show that the time of transit along this path is for some positive constant p,
given by T(y)=p[5(/1 + y'(x)*/y(x)) dx. For further analysis of this
problem, see Problem 8.29 and §9.3.)

(b) When the x- and y-axes are interchanged, if this path can be described as the
graph of a function y = y(x) as in Figure 1.12(b), show that the time of
transit integral is for a < h given by T(y) = p [2(\/1 + y'(x)*/x) dx. This for-
mulation is examined further in Problem 3.23.

The Zenodoros Problem.
(a) Show that the problem of finding the solid of revolution of maximal volume
enclosed by a surface of fixed total area 2nT leads to the consideration of
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maximizing V(y) = [ y* dx where y >0, with y(0) = y(b) =0, subject to
the isoperimetric constraint

2nT = S(y) = 2= fb y(x) ds(x) = 2n Jb y(x)/1 + y'(x)? dx,
0 0

where b > 0 must also be varied. (Why?)
(b)* Use Euler’s substitution t = [y ds, so that 0 < ¢ < T, to reduce this to the
non-isoperimetric problem of maximizing

T T
Ww=nf ﬁmxmm=nf.m)1—wyﬂoa

0 0

where y = y(t) is continuously differentiable on [0, T], and 0 < y(z), with

¥(0) = (T) =0.
The analysis is continued in Problems 6.43, 8.27 and 9.12.



CHAPTER 2
Linear Spaces and Gateaux Variations

Each problem considered previously reduces to that of optimizing (usually
minimizing) a real valued function J defined on a subset & of a linear space
%. In the present chapter we shall view problems in this context and intro-
duce the associated directional derivatives (GAteaux variations) of the func-
tions which will be required for what follows. We begin with a catalogue of
standard linear spaces presupposing some familiarity with vector space oper-
ations, with continuity, and with differentiability in R

§2.1. Real Linear Spaces

All functions considered in this text are assumed to be real valued or real
vector valued. The principal requirement of a real linear (or vector) space of
functions is that it contain the sums and (real) scalar multiples of those
functions. We remark without proof that the collection of real valued func-
tions f, g, on a (nonempty) set S forms a real linear space (or vector space)
with respect to the operations of pointwise addition:

(f+9x)=fx)+g(x), VxeS§
and scalar multiplication:
(cf)(x) = cf(X), VxeS, ceR. ([N].

Similarly, for each d = 1, 2, ... the collection of all d-dimensional real vector
valued functions on this set S forms a linear space with respect to the follow-
ing operations of componentwise addition and scalar multiplication: if F =
(f1s f2s .-, fa) and G = (g4, ..., g4), where f; and g; are real valued functions

36
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on Sforj=1,2,...,d so that F(x) = (f;(x), f2(x), ..., fi(x)), and G(x) =
(gl(x)’ g2(x)’ cets gd(x))’ v X € S: then

(F + G)(x) = F(x) + G(x)
= (f100) + g1 (%), 2(0) + g2 (X -, fulX) + ga(x))

(€F)(x) = cF(x) E (cf,(x), cfo(x), ..., fu(x)), VxeS.

1t follows that each subspace of these spaces, i.e., each subset which is closed
under the defining operations of addition and scalar multiplication, is itself a
real linear space.

In particular, if continuity is definable on S, then C(S) (= C°(S)), the set of
continuous real valued functions on S, will be a real linear space since the
sum of continuous functions, or the multiple of a continuous function by a
real constant, is again a continuous function. Similarly, for each open subset
D of Euclidean space and each m = 1, 2, ..., C™(D), the set of functions on D
having continuous partial derivatives of order <m, is a real linear space,
since the laws of differentiation guarantee that the sum or scalar multiple of
such functions will be another. In addition, if D is bounded with boundary
oD, and D = D U 0D, then C™(D), the subset of C™(D) n C(D) consisting of
those functions whose partial derivatives of order <m each admit continuous
extension to D, is a real linear space.

For example, when a, b € R, then (a, b) = [a, b], is a closed and bounded
interval. A function y, which is continuous on [a, b], is in C*[a, b]! if it is
continuously differentiable in (a, b) and its derivative y’ has finite limiting
values from the right at a (denoted y’(a+)) and from the left at b (denoted
y'(b—)). When no confusion can arise we shall use the simpler notations y’(a)
and y'(b), respectively, for these values, with a similar convention for higher
derivatives at a, b, when present. Observe that y,(x) = x¥2 does define a
function in C*[0, 1] while y,(x) = x*? does not.

Finally, for d = 1, 2, ..., [C(S)]% [C™(D)]% and [C™D)]% the sets of
d-dimensional vector valued functions whose components are in C(S), C"(D),
and C™(D), respectively, also form real linear spaces.

We know that subsets & of these spaces provide natural domains for
optimization of the real valued functions in Chapter 1. However, these sub-
sets do not in general constitute linear spaces themselves. For example,

2 ={yeC[a,b]:y(@ =0, y(b) = 1}

is not a linear space since if ye 2 then 2y ¢ 2. (2y(b) =2(1)=2#1))
However,

and

%, = {y € Cla, b]: y(a) = y(b) = 0}

is a linear space. (Why?)
In the sequel we shall assume the presence of a real linear space % consist-

! We abbreviate C((a, b)) by C(a, b), C*([a, b]) by C'[a, b], etc.
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ing of points (or vectors), y, in which are defined the operations of (vector)
addition and (real) scalar multiplication obeying the usual commutative,
associative, and distributive laws. In particular, there is a unique vector @
such that cO =0y = O,V y € %, c € R; we also adopt the standard abbrevia-
tions that ly=yand —1ly=—y,Vye%.

§2.2. Functions from Linear Spaces

Although we may wish to optimize a real valued function J over a subset 2
of a linear space %, it is frequently the case that the natural domain 2* of J
is larger than 2, and may be % itself.

Example 1.
b
J(y) = J [sin® x + y2(x)] dx

a

is defined on all of % = C[a, b], since each continuous function y € % results
in a continuous integrand, sin® x + y*(x), whose integral is finite.

Example 2.
b
J(y) = f p(¥)y/1 + y'(x)* dx, with p e C[a, b],

is defined for each y € # = C![a, b] since the assumption that y has a deriva-
tive on (a, b), which has a continuous extension to [a, b], again results in a
continuous integrand.

(Actually, J remains defined on %, when p is (Riemann) integrable over

[a, b])

Example 3. The brachistochrone function of §1.2(a),

T(y) = \/1 +y (x)2
f )

is not defined on % = C'[0, x, ] because of the presence of the term /y(x) in
the denominator of the integrand. It is defined on the subset

9* = {y e C[0,x,]:y(x) =0,V x (0, x,), and J (y(x)) Y2 dx < +oo},
0
which is not a linear space. (Why not?)

Example 4. When f e C([a, b] x R2), then

b
F(y)= f Jx, y(x), y'(x)) dx
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is defined on % = C*[a, b], since for each y € %, the composite function

SIyX)] = f(x, y(x), y'(x)) € C[a, b].

However; if fe C([a, b] x D) where D is a domain in R?, then F is defined
only on a subset of

2* = {ye C'[a, b]: (y(x), y'(x)) € D,V x € [a, b]}.
Example 5. For each d =1, 2, ..., the evaluation function L(Y) = Y(a) is
defined on & = (C[a, b])". It is even linear in that
L(cY + &¥)=cL(Y) + éL(Y), Ve ieRandY, Ye®.

Also linear are
a+b
2

L(Y)= Y’( ) on (C'[a, b])%

and ,
L(y) = J 3xy(x) dx on C[a, b].

a

However, most functions of interest to us in this text are (highly) nonlinear.

Example 6. If J and J are real valued functions defined on a subset 2* of any
linear space %, then for ¢, ¢ e R

eJ,cJ +&J,JJ, e, sin J,
are also defined on 2*; but 1/J, \/.7, tan J, need not be defined. Thus
b
S Jy) = J 1+ y'(x)? dx + 2y(a)
is defined on C![a, b], but

1 .
Ji(y) = J7@1S not.

Example 7. If D is a sufficiently nice bounded domain in R2, then as in §1.4(b),
S(u)=f 1+ u?+uldA
D

is defined V u € C1(D).
(Problems 2.1-2.3)

§2.3. Fundamentals of Optimization

When J is a real valued function defined on a subset 2 of a linear space %, as
in the previous section, there may be interest in the extremal values of J
which would occur at those points y, € & for which either

J()=J(), VyeZ
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or
JW<J(o), Vyeg

and in finding these points if they exist.

Since the latter points are those for which —J(y) > —J(y,), Vye g, it
will suffice to characterize the former—those minimum points y, which
produce minimal values of J on 2. We say that a point y, € 2 minimizes
J on 9 uniquely when it is the only such point in &, or equivalently, when
J(y) = J(¥o), V y € @ with equality iff y = y,.

For example, J(y) = [62(x) dx = 0 = J(yo), if yo(x) = 0, so that y, mini-
mizes J on 2 = C[0, 1]. Moreover, it does so uniquely, because J(y) =0
implies that p(x) = y?(x) =0 (see Lemma A.9 in the Appendix) so that
y=0=y,.

In this section and in the next chapter, we will be concerned only with such
global minimum points; (the consideration of local minimum points is re-
served until Chapter 5, et seq.). We will also consider these minimal points in
problems involving isoperimetric or Lagrangian constraints.

First, let’s make a restatement utilizing the linearity of #.

(2.1) Lemma. y, € 2 minimizes J on & [uniquely] iff

J(yo+v) =J(y) 20, Vyo+veg
[with equality iff v = 0].1
ProoF. For each ye &, set v =y — y,, so that y =y, + v, and y = y, iff
v=0. O
Example 1. To minimize J(y) = {5 y'(x)* dx on

2 ={yeC'la,bl:y(a) =0, y(b) = 1}, (1)

we observe that obviously J(y) > 0, and by inspection, J(y,) =0 if y; =0,
but y; = const. is not in Z.

However, if we reformulate the problem as suggested by the lemma, then
for yo € 2, and y, + v € 4, we should examine

b
J(yo +v) = J(yo) = J [(ro(x) + v'(x))* — yo(x)*] dx

= fb v'(x)? dx + 2 Jb yo(x)v'(x) dx

a a

>2 J ’ yo(x)v'(x) dx. (Why?)

a

Now yo(a) = (yo + v)(a) = yo(a) + v(a) so that v(a) = 0, and similarly, v(b) =

! This is to be considered as two assertions; the first is made by deleting the bracketed expres-
sions throughout, while the second requires their presence.
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0. By inspection, y, = const., makes
b b

b
J Yo(x)v'(x) dx = const. J v'(x) dx = const. v(x)| =0, V such v,

a a a

so that we have the inequality J(y, + v) — J(yo) = 0. Moreover, yy(x) =
(x —a)/(b—a) is in 2 and has y,(x) = const. Hence, by the lemma, y,
minimizes J on Z. It also does so uniquely, for equality demands that
[2v'(x)* dx = 0, which by A.9 requires that v'(x)*> = 0, or that v(x) = const. =
v(a) = 0:ie.,v =0

Next, we make a simple observation that permits us to ignore inessential
constants.

(2.2) Proposition. y, minimizes J on 9 [uniquely] iff for constants c, and
¢ # 0, yo minimizes c*J + ¢, on 2 [uniquely].

Proor. If y € 9, then
(T + o) (3) = (D) + ¢ = 2T (9o) + o = (2] + ) (Yo,
iff yo minimizes J on & [with equality iff y = yo]. u

Thus from Example 1, we may also say that y,(x) =(x — a)/(b — a)
minimizes

b b

y'(x)? dx + 3 J sin® x dx

a

J()ZE3 '[b (y'(x)* + sin® x) dx = 3 J

a

= 3J(y) + ¢y, on 2 of (1) uniquely.

Constraints

If we seek to minimize J on &, when it is further restricted to a level set of one
or more similar functions G, then as was known to Lagrange and Euler, it
may suffice to minimize an augmented function without constraints.

(2.3) Proposition. If functions J and Gy, G,, ..., Gy are defined on 9, and for
some constants Ay, ..., Ay, yo minimizes J =J + A, G, + 2,G, + - + AyGy
onyg [uniquely‘], then y, minimizes J on 2 [uniquely] when further restricted
to the set Gyodé {ye2:Gi(y) = G(y),j=1,2,..., N}.

Proor. For each y € 2:
~ N ~ N
J=JO) + Zi 4Gi(y) = J(yo) = J(yo) + Zl 4;Gi(yo);
j= j=

but when y € Gy, then J(y) > J(y,), since the terms involving the G; will have
the same values on each side of the inequality. Uniqueness is clearly preserved
if present. O
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Remark. The hope is that the 4; can be found so that in addition Gj(y,) =
l; for prescribed values I;, j = 1, 2, ..., N. Reinforcement for this possibility
will be given in the discussion of the method of Lagrangian multipliers (§5.7).
Actually, y, minimizes J automatically on a much larger set.

(2.4) Corollary. y, of Proposition 2.3 minimizes J on £ [uniquely] when
restricted to the set
Gy ={ye 2:4G()) < 4G(o)ji=12,..., N}.

Proor. For y € 9, the previous inequality gives us
N
J(Y) —JI(yo) 2 21 [4Gj(yo) — 4G;(»)]1 =0, ifyeGy.
I=

If J(y) = J(yo) under these conditions, then 4;Gy(yo) = 4G{(y),j = 1,2,..., N
(Why?), so that J(y) = J(y,). [With uniqueness, it follows that y = y,.] [

These results illustrate an important principle: The solution to one minimi-
zation problem may also provide a solution for other problems.

The above abstract formulation is suitable for attacking problems
involving isoperimetric constraints such as the following:

Application: Rotating Fluid Column

A circular column of water of radius [ is rotated about its vertical axis at
constant angular velocity, , inside a smooth-walled cylinder as shown in
Figure 2.1. Then the (upper) free surface assumes a shape which preserves the
volume of the fluid and minimizes the potential energy—given within an

Figure 2.1
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inessential additive constant ¢, by

J(y)=pn L [9y*(x) — 0*x*y(x)]x dx, )]
on
2 = {C[0,1]: y(x) > 0}.

Here, p is the mass density of the water, and g the standard gravitational
constant, while y(x) is the height of the liquid at a radial distance x from the
center. To obtain (2) we regard the column as if it were static and maintained
in the shape shown in Figure 2.1, by the interaction of the downward gravita-
tional force and the radially directed centrifugal force on each of its particles.
(We are invoking Bernoulli’s principle for stable equilibrium which is dis-
cussed in §8.9.)
The volume of the (static) column is given by

G(y)=2=n Jl xy(x) dx, 3)
0

and hence, according to Proposition 2.3, we should consider minimizing
J(y) = J(y) + AG(y), on 2. Then by Lemma 2.1, suppressing the subscript 0,
we should examine J(y + v) — J(y). Upon replacing A by p4/2 and sim-
plifying, we obtain the inequality

rl

Jy+v)=J) =mp | {gl(y + v)*(x) — y* ()] + (2 — @®x*)v(x)} x dx
JO

rl

=mp | {gv*(®) + [29y(®) + (A — @’x*)Jv(x)}x dx
0

1

>np | [299(x) + (A — 0*x?)]v(x)x dx,
0

and this last integral vanishes VY y + v € &, when the bracketed term =0; i.e.,
when
w*x? -2

2 @

y(x) = yo(x) =
Moreover, equality is possible only when (f, v?(x)x dx = 0, which implies by
A9, that v = (), so that y, minimizes J on @ uniquely. It follows from
Proposition 2.3, that the free surface will be the paraboloid of revolution
defined by (4).
Now, by (3),

n (! nlz[ w?1? /1]
G =—| (w*x?— Dxdx -2,
(¥o) gL( ) P 4 5

and A may be selected to make G(y,) match the given fluid volume.
Observe that the minimizing shape will depend on w as we would expect
(and is of constant height when w = 0) but it is independent of the density p,
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and thus would be the same for another (perfect) fluid. (The actual minimal
value of J(=J(y,)), although calculable, is of little interest.)

The approach taken here extends also to problems involving Lagrangian
constraints on suitable function spaces. To exemplify this, we recall the nota-
tion from §1.5, that when f = f(x, y, z) € C([a, b] x R?) and ye C'[a, b],

then fLy(x)1= f(x, y(x), ' (x)).

(2.5) Proposition. Suppose f = f(x, y, z) and g = g(x, y, z) are continuous on
La, b] x R? and there is a function A € C[a, b], for whlch Yo minimizes F(y) =

2 fTy(x)1 dx on @ < C* [a, b] [uniquely] where f< £+ 2g. Then y, mini-
mizes F(y) = [% f[y(x)] dx on @ [uniquely] under the (inequality) constraint

AX)g[y(x)] < A(X)glyo(x)],  Vxe[a, bl ®)
Proor. If y € Z, then

b b

Ax)gLy(x)] dx = F(yo) = F(yo) + f AX)gLyo(x)] dx

a a

F(y)=F(y)+J

so that ,
F(y) = F(yo) = J A(x)(glyo(x)] — gly(x)]) dx

>0 when (5) holds.

Moreover, if F(y) = F(yo,) under conditions (5), then j”/l(x)(g[yo(x)] -
gly(x)])dx =0, and F (y) = F(y,) [which with uniqueness is possible iff

Y = Yol O

Unfortunately, this result, although suggestive, cannot be implemented
readily, since it does not provide a method for determining a suitable A.
However, we may be able to use a known solution to another problem.

From the analysis used in the previous application, we may claim that
Yo(x) = x2 — 1 minimizes F(y) = {5 [y2(x) + (2 — 2x?)y(x)]x dx uniquely on
2 = C[0, b] (Problem 2.12).

Setting A(x) = x in Proposition 2.5, it follows that y, also minimizes
F(y) = [32xy(x) dx on 2 uniquely under the Lagrangian constraint:

gly(x)1= Y (x) — 2xy(0) = glyo(x)] = 1 — x*,
and since A(x)=x>0 on [0,b], also under the inequality constraint
ghy)I<1—x*

In this section, we have shown that direct inequalities may be of use in
finding the minima for some functions. All of the functions analyzed here
were actually convex, and the convexity methods developed in the next
chapter will provide a more systematic means of obtaining such inequalities
for a large and useful class of functions. We shall also return to the basic
approach adopted here in the analysis of sufficient conditions for a minimum
in Chapter 9.
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§2.4. The Gateaux Variations

A decisive role in the optimization of a real valued function on a subset of R?
is played by its partial derivatives—or more generally by its directional
derivatives—if they exist (§0.5). When J is a real valued function on a subset
of a linear space %, then it is not evident how to define its partial derivatives
(unless % can be assigned a distinguished coordinate system). However, a
definition for its directional derivatives is furnished by a straightforward
generalization of that in R%:

(2.6) Definition. For y, v e %:

ef 5. J + &v) — J
oJ(y; v) “ lim _(y ») (y)’
£=0 €
assuming that this limit exists, is called the Gdteaux variation of J at y in the
direction v.

Observe that both y and the direction v are fixed while the limit as ¢ - 0
is taken in 2.6. The existence of the limit presupposes that:

(i) J(y)is defined; 6)
(i) J(y + ev) is defined for all sufficiently small ¢; and then

SIi ) = Sy + )| Y
08 =0
if this “ordinary” derivative with respect to the real variable ¢ exists at ¢ = 0.

The Giteaux variation of J at y depends only on the local behavior of J
near y; however, this variation need not exist in any direction v # ¢, or it may
exist in some directions and not in others.

As is to be expected from (7), the GAteaux variation is a linear operation
on the functions J; ie., if at some y, €%, functions J and J each have
Gaiteaux variations in the same direction v, then for constants ¢, e R,
8(cJ + &1)(yo; v) exists and equals ¢8J(yo; v) + €6J(yo; v). This is a direct
consequence of (7) and the linearity of the ordinary derivative. We also see
that §J(y; ®) =0, Vy at which J(y) is defined, and that when ceR,
0J (y; cv) = cdJ (y; v) provided that the variation on the right exists (Problem
2.4).

In particular, for c = —1:

0J(y; —v) = —dJ(y;0) = d(=)(y; v),
whenever any of these variations exists.
Example 1. If J = fe C'(R?) and Y, V € % = R?, then
5f(; V) = lim /T T V) =S (1)

£—0 &
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is just the directional derivative of f when V is a unit vector (§0.5). Thus we
have that
of(Y; V) =Vf(Y)V,

and this holds for all Ve %. (Why?)

Example 2. If % = C[a, b], then as in §2.2, Example 1,

J(y) = ‘r [sin® x + y*(x)] dx

is defined V y € %. Thus for fixed y,ve ¥ and ¢ # 0; y + ev € #¥ (since ¥ is a
linear space) so that

b
J(y + ev) = J [sin® x + (y + ev)?(x)] dx is defined.

a

After successive cancellations we obtain the ratio

Jy+en)—J(p) _1[*
g e,

Y

[y + e0)*(x) — y*(x)] dx

b

™ | -

[ () + 2ey(x)o(x) + e20*(x) — y*(x)] dx

Ja
(b b

=2 yx)v(x)dx + ¢ j v?(x) dx.

Ja

a

Each of the integrals in this last expression is a constant (Why?), and the limit
as ¢ — 0 exists. Hence from Definition 2.6, we conclude that

oJ(y;v) =2 ‘r y(x)v(x) dx, Vyved.

a

Alternatively, using (7), we could form:

J(y + &) = ‘r [sin® x + (y + ev)?(x)] dx

b b

y(x)v(x) dx + &2 j v?(x) dx,

a

= fb [sin3 x + yz(x)] dt + ZSJ‘

compute for fixed y, v, the derivative

b b

y(x)v(x) dx + 2 j v2(x) dx,

a

0
%J(y +ev) =2 L

and evaluate at ¢ = 0 to get
b

0J(y;v) =2 j y(x)v(x) dx (®)

a

as above.
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In general, it is easier technically to use the second method for comput-
ing oJ in concrete cases simply because we are more familiar with the tech-
niques for differentiating standard real valued functions. However, the second
method as carried out here requires that (0/0e)J(y + ev) exist for small ¢ # 0,
and that it be continuous at ¢ = 0. By contrast, the first requires only the
existence of this derivative at ¢ = 0.

Example 3. When p € C[a, b], the function

b
ﬂw=qu)1+V@Vh

a

is defined V y € % = C'[a, b]. (Example 2 of §2.2.)
Hence, using the second method, we form for fixed y, v € %,

b
J(y + ev) = J p(x)/1 + (y + ev) (x)* dx,

compute its derivative by differentiating under the integral sign (as in A.13)

to get
b
2J(y + ev) = j i[p(x)./l + (y + ev) (x)*] dx
de . 08

_ [P + &) (x)0'(x)
a /14y + ev)(x)?

(which is justified by the continuity of this last integrand on [a, b] x R), and
evaluate at ¢ = 0 to obtain

bmwyuwuux
o STy

Example 4. When fe C([a, b] x R?), the function

oJ(y;0) = ©

b b V
F(y) = j S, y(x), y'(x)) dx = J fly(x)] dx,

is defined whenever y € % = C![a, b]. (Example 4 of §2.2.) However to com-
pute dF(y; v) by differentiating

b b
Hy+sw=J~fudy+mM@Ay+squdx=J,ﬂw+wwuﬂdm
with respect to ¢ under the integral sign, we obviously should require that the
function f(x, y, z) have partial derivatives f,, f, € C([a, b] x R?). Then from

the chain rule, for fixed x, y, z, v, w:

0
%f(x,y +ev,z + ew) = fi(x, y + &v, 2 + ew)v + f(x, y + ev, z + ew)w.
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With this preparation we have by A.13 that
b

0 0
5 PO+ @)= | ST+ )] dx

J
b

= | 576030 + 09, () + e0'(9) dx

b

= | (KLU + e)®)]o(x) + L1y + &) (x)]v'(x)) dx,

Y

(since the last integrand is continuous on [a, b] x R), so that when ¢ = 0, we
see that F(y) = jz f(x, y(x), y'(x)) dx has the variation

b
OF(y;v) = f LA, y(x), y'(¥))v(x) + f(x, y(x), y' (x))'(x)] dx

b
= f KLy Io(x) + £Ly(x)]v'(x))dx  fory,ve C'[a,b]. (10)
We shall return to the analysis of this function in Chapters 3 and 6.

Example 5. The function

b
J(y) = j sin y(x) dx + y*(b),

a

for which

b
J(y + ev) = J sin(y(x) + ev(x)) dx + (y + ev)*(b),

a

is defined on % = C[a, b] and has at each y € % and in each direction v € %
the Giteaux variation

b
oJ(y;v) = j [cos y(x)]v(x) dx + 2y(b)v(b).
Example 6*. For % = C[0, n], the function

Jm=ﬂ T~y dx

is not defined on %, but it is defined on

2 ={yeC[0,n]:|ylym <1},
where

Iylly = max |y(x)],
xe[0,n]

so that, for example, y,(x) = sin x, x € [0, n] is a function in &, but y,(x) = x
is not.
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Moreover, for a given y € 2, only those directions v could be considered
for which y + ev € 2 for sufficiently small &: i.e., for which |y(x) + ev(x)| < 1
for such e. The function y(x) =1 is in &, but its only possible direction is
v = 0; the function y,(x) = sin x has (at most) as its possible directions, those
v for which v(n/2) = 0. On the other hand, for y(x) = {sin x and a given
v e C[0, n], then |v(x)| < ||v]lpr = M;, say, and so |ev(x)| < + when e < 1/2M,;
thus y + ev € 2 when ¢ < 1/2M,.

To proceed, we assume that for some y e &, ve %, we know that y +
ev € 9, and consider for small ¢ # 0 the formally obtained derivative

%J(y + &) = % r V1= + ev)*(x) dx
0
= IR%JI — (¥ + ev)*(x) dx
0

"+ en)(x)ux)

= — dx,
0 /1 —(y+ ev)?(x)

which for ¢ = 0 should give the value

g

y(x)v(x)

—d s
o 1y

provided that this process is valid. Now from A.13, it is valid if the integrand
_ [y(x) + ev(x)]v(x)

S €)= J1 = (y + ev)?(x)

is continuous on [0, ] x [ —egg, &9] for some g, > 0 and this requires that
lyllye < 1. However, if | y|,; < 1, then foreach ve %, ||y + ev|,, < 1 for all ¢
sufficiently small, by the argument above.

Thus we can at least say that when ||y|,, < 1, 8J(y; v) exists V v € % and is
given above. At other y e @ it is more difficult to consider the Giteaux
variation.

oJ(y;v) = —

Example 7. The area function

A(Y) = jl x(t)y'(r) dt
0

of §1.3 is defined V Y = (x, y) e ¥ = (C*[0, 1])2. Since for V = (u, v) € ¥,
1

AY + eV) = j (x(t) + eu(®))(y'(t) + ev'(r)) dt,
0

it follows that
1

SA(Y; V) = j [Oe(®) + eu(®))v'(t) + (y'(t) + ev'(t))u(r)] dt

0 e=0

= j [x(®)v'(®) + y' (@)u(r)] dt. (n
0
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Example 8. More generally, if f = f(x, Y, Z) € C!([a, b] x R?%), then

F(Y) = j J(x, Y(x), Y'(x)) dx = f JTY(x)] dx

a a

is defined for all vector valued functions Ye % = (C'[a, b])%, d = 2,3,...).
Its Gateaux variation at V € % is given by

OF(Y; V) = J HIYX)] V) + fLY(X)] V() dx, (12)

where fy[ Y(x)] is the vector valued function with components

def

LIYEE £, 06 YO, YR, j=12.0d;
while f,[Y(x)] is that with components

def

LIY®I= 1Y), Y(X), j=12..4d

(See Problem 2.6.) This result together with the notation used to express it
should be compared with the one-dimensional case of Example 4.

Example 9. The surface area function of §2.2, Example 7,

S(u)=j J1+ul+ulda
D

is defined V u € % = C*(D), and

U,y + U0,
p/1+u2+ul
exists V u, v € %, since the denominator can never vanish. (See Problem 2.7.)

(Problems 2.4-2.13)

oS(u; v) = dA (13)

PROBLEMS

2.1. Give an example of a nonconstant function in each of the following sets and
determine whether the set is a subspace of & = C![a, b].
(a) C[a, b].
(b) 2 ={ye¥:ya)=0}.
© 2=1{ye®:y(@=0yb)=1}.
(d) C?[a, b].
€ 2={ye?:y@=y@}
0 (C'[a,b])*
(8 2={ye¥:{oy(x)dx =0}
(h) 2={ye?:y(x)=yx),xe(a b}
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2.2

23.

24.

2.5.

2.6.

27.

Which of the following functions are defined on: (a) C'[a, b]? (b) C[a, b]?

b . b yl(x) ]
L(y) = J; (sin® x)y(x) dx; J(y) = . m dx;
b dx b
F(y) = J‘ ———=t+y@; Gy= J. log y(x) dx.
a /1 —y(x)? a

For each of the following functions give a subset 2 of % (possibly % itself) on

which the function is defined and determine whether or not your 2 is a subspace

of %:

(@) F(Y)=[21Y'(x)ldx, & =(C'[a,b])"

(d) G(y) = [5/1 + xy*(x)dx, ¥ = C[a,b].

() H(y) = [alog y'(x)dx, ¥ =C'[a, b].

(d) Jw) = [p/u? —u? dA; ¥ = C'(D), where D is a nice bounded domain of
RZ

© KO) =21 + 'Ry dx, ¥ = C[a, b].

Let J and J be real valued functions defined on a subset of a linear space %, and
suppose that for some y, ve ¥, 8J(y; v) and 8J(y; v) exist. If ¢ € R, establish
existence and equality as required for the following assertions:

(a) d(c)(y; v) = 8J(y; cv) = cdJ (y; v).

(b) 6(J + N)(y; v) = 6J(y; ) + 3J(y; v).

Assuming the existence of the variations involved,

(c) is 8J(cy; v) = cdJ(y; v)?

(d) is 8J(y + 7; v) = 8J(y; v) + 8J(F; v)?

Let % = C'[a, b] and find 8J(y; v) for y, v € ¥, when
@ J(y) = y@>.

(b) J(») = [a[y(x)* + xy'(x)*] dx.

(©) J(») = [5/2 + x* —sin y'(x) dx.

@) J(y) = [a[e¥y(x) — 3y"(x)*] dx + 2y'(a)*.

©) J() = fa[x*y(x)* + e @] dx.

() J(y) = sin y’(a) + cos y(b).

® JO) = (Ja[2y'(x) + x*y(x)] dx)(fa[1 + y'(x)]* dx).
(h) J(y) = [ay(x) dx/fa[1 + y'(x)*] dx.

In Example 8 of §2.4, verify equation (12) by formal differentiation under the
integral sign.

Let % = C(D) where D is a bounded domain in the x—y plane with a nice
boundary.
(a) For J(u) = % [p(u? + u?) dA, show that

0J(u; v) = ‘[ (uev, +uyv,)dA, Yuved.
D

(b) For S(u) = [p+/1 + uZ + u} dA, verify that

U Uy + Uy,

——=——=2_dA,
py/1+ul+ul

oS(u; v) = Yuved.
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2.8.

2.9.

2.10.

2.11.

2.12.

2.13.

2. Linear Spaces and Giteaux Variations

Let % = (C'[a, b))% Y = (y1, ¥2), V = (v4, v,), and find 8J(Y; V) for Y, Ve ¥
when

(@) J(Y) = Y(a) Y(b).

) J») ={, [h(x)z + y3(x)*] dx.

© J(Y) = [a[e’™ — x?y(x)y5(x)] dx.

(@) J(y) = [ [sin® y (x) + xy2(x) + Y1 (x)y2(x)*] dx.

Let % = C*[a, b] and F(y) = [} f(x, y(x), y'(x), y"(x)) dx = [; f[y(x)] dx, where
f=f(,y,zr)in C([a,b] x R?)is given. For v, y € %, prove that

b
OF(y;v) = f (LIy)Io(x) + £Ly(x)]v'(x) + £Ly(x)]v"(x)) dx.

Assume that 8J(y; v) and 6 (y; v) both exist for y, v € .
(a) Verify the product formula

SN (3 v) = 8J(y; )T (¥) + J(»)ST(y; v).
(b) Establish the quotient rule
I\, T3)8J(y;v) — (38T (y; 1)
6 ~ (,V, D) - ~ 2 B
J(y)

provided that J(y) # 0.
(c) Supposing that h e C*(R), show that

O(h())(y; v) = K'J ()8 (y; v).
If L is a linear function on % (as in Example 5 of §2.2) prove that
OL(y;v) = L(v),V y,ve%.
(a) For p, e ¥ = C[O, b], with p > 0, find a function y, which minimizes

F(y) = L [p)y*(x) + (x)y(x)]dx  on2 =42

(b) Show that y, is unique.
(c) What can you conclude if p < 0?

Show that for the arc length function L(Y) = {§|Y’(t)| dt of §1.1, formal differen-
tiation produces

OL(Y: V) = J IY’(t)I V'tyd, ¥Ved=(C0,1]),

ifYeP*={Ye%:|Y'|+0}.Is 2* a subspace of %?



CHAPTER 3
- Minimization of Convex Functions

By utilizing the Giteaux variations from the preceding chapter, it is straight-
forward to characterize convexity for a function J on a subset 2 of a linear
space %, such that a convex function is automatically minimized by a y € 2
at which its GAteaux variations vanish." Moreover, in the presence of strict
convexity, there can be at most one such y. A large and useful class of
functions is shown to be convex. In particular, in §3.2, the role of [strongly]
convex integrands f in producing [strictly] convex integral functions F is
examined, and a supply of such f is made accessible through the techniques
and examples of §3.3. Moreover, the Gateaux variations of integral functions
will, in general, vanish at each solution y of an associated differential equa-
tion (of Euler—Lagrange).

The resulting theory extends to problems involving convex constraining
functions (§3.5), and it is used in several applications of interest including a
version of the brachistochrone (§3.4), and the hanging cable (or catenary)
problem of Euler. Additional applications will be found in the problem set
together with extensions of this theory to other types of integral functions.

In this chapter only those conditions sufficient for a minimum are consid-
ered, and it is shown that in the presence of strict convexity they can supply
a complete and satisfactory solution to the problems of interest. In particular,
we may be able to ignore the difficult question of a priori existence of a
minimum by simply exhibiting the (unique) function which minimizes. Actu-
ally, the direct approach developed here within the framework of convexity
extends in principle to other problems (§3.6).

! The definitions of functional convexity employed in this book incorporate, for convenience,
some presupposed differentiability of the functions. For a convex set 2, less restrictive formula-
tions are available, but they are more difficult to utilize. (See Problem 0.7, [F1], and [E-T].)

53
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§3.1. Convex Functions

When f € C(R?) then for Y = (x, y, 2), V = (u, v, w) € R, we have
of(Y; V)= Vf(Y)-V; (asin§2.4, Example 1);
moreover, f is defined to be convex (§0.8) provided that V Y, V e R3:
JY + V)= f(Y) 2 Vf(Y) V = of(Y; V), ¢Y)

and strictly convex when equality holds at Y iff V = © (§0.9). We also observe
that minimization of a convex function f may be particularly easy to estab-
lish, in that a point Y at which Vf(Y) = 0 clearly minimizes f. (1) suggests the
following:

(3.1) Definition. A real valued function J defined on a set £ in a linear space
% is said to be [strictly] convex on & provided that when yand y + ve @
then 6J(y; v) is defined and J(y + v) — J(y) = 6J(y; v) [with equality iff
v = 0]

2 itself may be nonconvex. (See 3.15)

Although “most” functions are not convex, a surprisingly large number of
those of interest to us are convex—even strictly convex—as the applications
will show. The following observation will prove valuable:

(3.2) Proposition. If~J and J are convex functions on a set 9 then for each
ceR, c2J and J + J are also convex. Moreover, the latter functions will be
strictly convex with J (for ¢ # 0).

PROOF. ’
€@+ DNy +0)— (2T + D) =AU +v) — JB) + T +0v) — T()
> c28J(y;v) + 6J(y; v) = 0(c2J + N(y;v), ify,y+veP (by3.1).

_ This establishes the convexity of J + J (when ¢? = 1) and of ¢2J (when
J = 0). Moreover, when J is strictly convex and ¢ # 0, then there must be
strict inequality except for the trivial case of v = €. d

(3.3) Propeosition. If J is [strictly] convex on & then each y, € @ for which
0J(yo;v) =0,V yo + v € D minimizes J on 2 [uniquely].

Proor. If y € @, then withv = y — y,
J(y) — I (yo) = J(yo + v) — J(¥o)
> 0J(yo; v) =0, (by 3.1 and hypotheses)
[with equality iff v = 0O].

! Recall the footnote on page 40.
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Hence J(y) = J(y,) [with equality iff y =y,] and this is the desired
. conclusion. g

Example 1.
b
J(y) = J (sin® x 4 y2(x)) dx

a

for which
b

oJ(y;v) =2 f y(x)v(x) dx, Vy,ve® = Cl[a, b] (§2.4, Example 2),

a

is strictly convex on % since

b
Jy+ov)—-JOy) = J ((y + v*(x) — y*(x)) dx

=2 fb y(x)o(x) dx + Jb v?*(x) dx

a a

>2 J b y(x)v(x) dx = 6J(y; v),

with equality iff’ {%v?(x) dx = 0 which by A.9 is possible for the continuous
function v? iff v?(x) = 0; i.e., v = O. Thus, by Proposition 3.3, each y e %

which makes
b

0J(y;v) =2 J y(x)v(x) dx =0,

a

V v € %, minimizes J on % uniquely. Clearly, y = ¢ accomplishes this and
hence it is the unique minimizing function.
On the other hand, to minimize J on

2 ={ye Cla,bl: y(a) = ay, y(b) = b, },

we would again try to have 6J(y; v) = 0, but now only for those y, y + v € 2,
i.e.,, only for those v € 9, where

9y = {ve Cla, b]: v(a) = v(b) = 0}. (Why?)
Again y = 0 would make 6J(y; v) = 0 but now it is not in 2 (unless a, =
b, =0).
Example 2.

b
F(y) = f y'(x)? dx

for which
b

OF(y;v) =2 J y'(x)v’'(x) dx, Vy,ve® = C'[a,b],

a

is also convex on % (Why?), but now the equality F(y + v) — F(y) = 6F(y; v)
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is possible iff {%v'(x)* dx = 0 and this occurs whenever v(x) = const. Thus F
is not strictly convex on %. However, F is strictly convex on

92 = {y e C'[a, b]: y(a) = ay, y(b) = b, },
since now y, y + v € 2 = v € 9, where
9, = {ve C'[a, b]: v(a) = v(b) = 0},

and hence equality for v in &, is possible iff v(x) = const. = v(a) = 0. Thus
each y € 2 which makes 6F(y; v) = 2 [%)'(x)v'(x) dx = 0,V v € 2, minimizes
F on 2 uniquely. By inspection, y’ = const. will accomplish this since

jb (const.) v(x) dx = (const.) Jb v'(x) dx

= const. [v(b) — v(@)] = 0, Vove 9,.

The linear function yy(x)=[(b; — a,)/(b —a)]l(x —a)+ a, € 2 and has
yo = const. Hence it minimizes F on 2 uniquely.
Example 3. A linear function L on % is convex, since by Problem 2.11,

L(y +v) — L(y) = L(t) = 0L(y;v), Vyved,
but it is not strictly convex. (Why?)
Example 4. The evaluation function from ExaIPple 5 of §2.4, J(y) = y*(b),
which for y, v € % = C[a, b] has the variation 6J(y; v) = 2y(b)v(b), is convex

since - -
J(y +0) = J(¥) = (y + v)*(b) — y*(b) = 2y(b)v(b) + v*(b)

> 6J(y; v);

but not strictly convex since equality occurs when v(b) = 0. Clearly J(y) =0,
but J assumes its minimum value of 0 whenever y(b) = 0.

§3.2. Convex Integral Functions

If f = f(x, y, z) and its partial derivatives f,, f, are defined and continuous on
[a, b] x R2, then as in Example 4 of §2.4, we know that the integral function

b b
F(y) = J J(x, y(x), y'(x)) dx = f SIy(x)] dx,

has V y, v e C![a, b], the variation

b
oF (y;v) = J (Hly(x)]o(x) + £Ly(x)]v'(x)) dx, @
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where from §1.5 we recall the generic abbreviation

YT E £(x, y(x), y' (X)), @)
so that

L] = f(x, y(x), y'(x)) and  f[y(x)] = f.(x, y(x), y'(x)).
Hence, convexity of F requires that V y, y + v € C'[a, b]

F(y +v) — F(y) = 0F(y; v),
or that

b b
f (fIy() + v(x)] = fLy(x)]) dx = f (LLye)Jv(x) + fLy(x)]0'(x)) dx.

Now this would follow from the corresponding pointwise inequality
between the integrands in the last expression; i.e., if for each x € (a, b):

Sy +v(x)] = fIyx)] = £,Ly()Jo(x) + f,Ly(x)]v'(x), Q)

or from (3), if
Jxy+vz+w) — fx, 9,2 > f,(x, 5, 2)v + [.(x, y, 2w,
V(x,2,(xy+0vz+we(b) x R%, (5
where we have incorporated the abbreviations:
y = y(x), v=uv(x) and z=y'(x), w = v'(x).

Inequality (5) simply states that f = f(x, y, z) is convex when x is held
fixed. [See (6) of §0.8.] This restricted or partial convexity essential to our
development is expressed and extended in the following which uses for illus-
tration a function defined on a subset of R3:

(3.4) Definition. f(x, y, z) is said to be [strongly] convex on S < R3if f =
f(x, y, z) and its partial derivatives f, and f, are defined and continuous on
this set and there they satisfy the inequality:

f(xs y+vz+ W) - f(xa Y, Z) > fy(xa Y, Z)U + f;.(x9 Y, Z)W5
V(x,y,2z)and (x,y + v,z + W)€ S, (6)
[with equality at (x, y, z) only if v = O.or-w = 0].

Observe that the underlined variable(s) (if any) are held fixed in the inequal-
ity while partial derivatives of f are required only for the remaining variables
(v and z). Clearly, if f itself is convex on R as in §0.8 then f(x, y, z) will be
convex as above. Moreover, if as in §0.9, f is strictly convex, then f(x, y, z)
will be strongly convex. However, in general, strong convexity is weaker than
strict convexity. (Why?) Also, f(y, z) is [strongly] convex on D = R? precisely
when f(x, y, z) = f(y, z) is [strongly] convex on [a, b] x D.
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For instance, we will see in the next section that f(y,z) =z> + 4y is
strongly convex on R? (even though it is not strictly convex). Therefore
f(x, y, z) = z2 + 4y is strongly convex on [a, b] x R? for any interval [a, b].

The significance of strong convexity is seen in the following:

(3.5) Theorem. Let D be a domain in R? and for given a,, by, set
9 = {ye C'[a, b]: y(a) = a, y(b) = by; (y(x), y'(x)) € D}.
If f(x, y, z) is [strongly] convex on [a, b] x D, then

b
F(y) = f f(x, y(x), y'(x)) dx

is [strictly] convex on 9. Hence each y € 2 for which

L0091 = D]
X

on (a, b), minimizes F on 9 [uniquely].
PrOOF. When y, y + v € 9, then inequality (6) shows that at each x € (a, b),
fIyx) + v(x)] = fLy(x)] = f,[y(x)]o(x) + f.Ly(x)]v"(x), (7

[with equality only if v(x) = 0 or v'(x) = 0 so that v(x)v'(x) = 0]. Integrating
(7) gives

b b
f (FIy() + v(x)] = fLy(x)]) dx = f LIy o) + £Ly()1v' (%)) dx,

or with (2) and (3):
F(y +v) — F(y) = 6F(y; v),

so that F is convex.

Moreover, in the presence of (7), equality between the integrals
representating these last functions is possible only when equality holds
everywhere in (7) (A.10). [But if f(x, y, z) is strongly convex, this in turn is
possible only if the product v(x)v’(x) = 3(v?(x)) = 0; then v?(x) = const. =
v?(a) = 0 when both y and y + v € 9. Thus v = 0 so that F is strictly convex
on 2.]

Finally from (2), each y for which

d
L1 =£1yx)] on(ab) @

makes
b

OF(y; v) =f

a

d b
2 Ly)]ux)) dx = £.Ly(o)]v(x)

=0 wheny,y+ve2. (Why?) 3
Thus by Proposition 3.3, y minimizes F on & [uniquely]. d



§3.2. Convex Integral Functions 59

Neither of the convexity implications stated in this theorem is reversible.
(See Problem 3.16.)

Example 1. To minimize

F(y) = L (y2(x) + 4y(x) dx

on
P = {yeC'(0,11:y(0) = 0, (1) = 1}

we recall that f(x, y, z) = z2 + 4y is strongly convex on [0, 1] x R2. Hence
according to Theorem 3.5, F is minimized uniquely on 2 by a solution y, of
the equation

LID0I= 4] 0<x<D,

which for this f is just
d
—[2y'(x)] =4 or y"'=2.
dx

Upon integrating twice we obtain the general solution
y(x) = x? + cx + ¢q

for constants c, ¢, to be found if possible so that y € 2. We require y(0) =
¢o = 0 and (then) y(1) = 1 + ¢ = 1, or ¢ = 0. Consequently yo(x) = x> mini-
mizes F on & and it is the only function which does so!

(3.6) Remarks. The differential equation (8) whose solutions in 2 minimize
our convex F is known as the Euler—Lagrange equation. It is a fundamental
tool of the variational calculus and we will examine it thoroughly in Chapter
6. For the present, note that if f € C?([a, b] x D), then we may use the chain
rule (formally) on the left side of (8) and seek a minimizing y € 2 N C?[a, b]
which satisfies the second-order differential equation

Lex[y)1 + £, [y0)1y' (%) + fLy()1y"(x) = £,[y(x)], O

(with the obvious abbreviations). Although there are standard existence theo-
rems which provide conditions for a solution y to (9) in a neighborhood of
x = a which satisfies y(a) = a,, these theorems do not gurantee that such
solutions can be extended to [a, b], or that when extendable they can meet
the second end point condition y(b) = b;. (In Problem 3.20, we have an
example for which even the simpler equation f,(x, y'(x)) = const. cannot be
satisfied in 2.) Thus we do not have a proof for the existence of a function
which minimizes F on 2, and indeed as we shall see, such functions need not
exist. Our condition (8) is at best sufficient, and we must consider each
application independently.

There is some simplification when y is not present explicitly, i.e., when
f = f(x, z) alone (or f = f(z)). Then f, = 0, and for an interval I, the appro-
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priate requirement for the [strong] convexity of f(x, z) on [a, b] x I is that
for each x € [a, b]: '

Jxz+w) = f(x,2) 2 f.(x, 2w, Vzz+wel
[with equality at z iff w = 0]. (10

If, in addition, f, =0, then f = f(z) alone which is [strictly] convex on I
precisely when f(x, z) = f(z) is [strongly] convex on [a, b] x I. (Why?)
With these reductions, the next results should be apparent.

(3.7) Theorem. Let I be an interval and set

9 = {yeC'[a,b]: y(a) = ay, y(b) = by; y'(x) € I}.

Then, if f(x,z) is [strongly] convex on [a,b] x I, each y€ 2 which
makes f,(x, y'(x)) = const. on (a, b) minimizes F(y) = [%f(x, y'(x)) dx on @
[uniquely].

Proor. This follows immediately from (10) upon setting f, = 0 in the state-
ment and proof of the previous theorem. O
(3.8) Corollary. If f = f(z) is [strictly] convex on I and

m=[(by —a,)/(b—a)]€el,
then yo(x) = m(x — a) + a, minimizes F(y) = j b f(y'(x)) dx on @ [uniquely].

Proor. If yo(x) = m € I, then y, € 2 (Why?) and f,(y4(x)) = f,(m) is constant
on (a, b). Hence Theorem 3.7 is applicable. O

There are similar simplifications when f = f(x, y), but the associated
integrands occur less frequently in application. (See Problem 3.18.)

Free End-Point Problems

When we examine the proof of Theorem 3.5 we see that the end-point

specification was used only to conclude that the constant v?(x) = 0 and that-

f.Ly(x)]v(x)|t = 0. Hence these end-point conditions on y may be relaxed, if
suitable compensation is made in f,[ y(x)].

(3.9) Proposition. Let D be a domain in R? and suppose that f(x,y, z) is
[strongly] convex on [a, b] x D. Then each solution y, € 2 = {y € C'[a, b]:
(y(x), y'(x)) e D} of the differential equatiion (d/dx)f,[y(x)] = f,[y(x)]

minimizes

b
F(y) = f SIy(x)] dx:

!
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(i) on 2° = {y € 2: y(a) = yo(a)}, if ;[ yo(b)] = O [uniquely];
@) on 2, if f,lyo@]=1f,[yo(b)]=0, [uniquely within an additive
constant].!

(As we shall see in §6.4, these “natural” boundary conditions on f,[ y,(x)]
are also necessary for the minimization.)

PrOOF. Only the last assertion in (ii) requires further comment. If f(x, y, z) is
strongly convex on [a, b] x D, and y, € 2 is a solution of the given differen-
tial equation, then when y, + v € 2 we have from (8') that

F(yo + v) — F(yo) = 0F(yo; v) = f.[yo(x)1v(x)]z = O,

with equality only if v?(x) = const. (= 2v%(x)v’(x) = v(x)(v?(x)) = 0) so that
v'(x) = 0 and v(x) = const. on [a, b]. Thus

F(yo + v) = F(yo) = yo + v = yo + const. 0

Extension of the results of this section to convex functions defined by
improper Riemann integrals is treated in Problem 3.21*.

Example 2. Let’s return to the problem in Example 1, where we found that
yo(x) = x* minimizes. It happens that f,[yo(x)] = 2y4(x) = 4x vanishes at
x = 0 and so from Proposition 3.9 we see that y, also minimizes F uniquely
on the larger set

2, ={yeC'[0,12: y(1) = 1}.

Similarly, we can show that y,(x) = x> — 2x minimizes F on 2' = {ye
C'[0,1]: y(0) =0} uniquely. However, our method cannot produce a
function of the form y,(x) = x® + ¢x + ¢, that minimizes F on the still larger
set 9, = C*[0, 1], since in this case, f,[y,(x)] = 2y5(x) = 2(2x + ¢) cannot
be zero at both end-points. In view of Remarks (3.6) we should not be
surprised that we did not get everything we might wish. We were lucky to get
what we did so easily.

§3.3. [Strongly] Convex Functions

In order to apply the results of the previous section, we require a supply of
functions which are [strongly] convex. In this section techniques for rec-
ognizing such convexity will be developed.

We begin with the simpler case f = f(x, z), where as we have seen, the
defining inequality for [strong] convexity of f(x, z) on [a, b] x I is (10). Now
(10)is in turn guaranteed by a simple condition on f,, which should recall the

! The choice of constants may be limited. See Problem 3.9.
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criterion from elementary calculus for the convexity of a function defined in
an interval 1.

(3.10) Proposition. If f = f(x, z) and f,, are continuous on [a, b] x I and for
each x € [a, b], f,,(x, z) > 0 (except possibly at a finite set of z values) then
f(x, z) is strongly convex on [a, b] x I.

Proor. For fixed x € [a, b], let g(z) = f(x, z) so that g"(z) = f,,(x,z) >0on [
(with a possible finite set of exceptiional values). Then integrating by parts
gives for distinct z, { € I:

¢ :
g() —g(2) = f g'®dt=({—2)9g'(2) + f € —1g"(®) dt > (- 2)g'(2),

since the last integral is strictly positive by the hypothesis and A.9, indepen-
dently of whether z < { or { < z. (Why?)

Thus with w={ — z, recalling the definition of g, we conclude that
flx, z +w) — f(x, z) > f,(x, z)w, when w # 0, and this establishes the strong
convexity of f(x, z). O

Remark. If at some x€[a,b], f,,(x,2)=0 on [z,,z,] =1 then f,(x,z)
increases with z, but not strictly, so that f(x, z) is only convex on [a, b] X I.

Example 1. f(x, z) = sin® x + z? is strongly convex on R x R since
Jr(x,2) =2>0.
Example 2. f(x, z) = e*(sin® x + z2) is also strongly convex on R x R since
f.2(x, 2) = 2¢* > 0.

(In fact the product of a [strongly] convex function by a positive continuous
function p = p(x) is again [strongly] convex. See Problem 3.3.)

Example 3. For r # 0, f(x, z) = \/r* + z? is strongly convex on R x R, since

VzeR: ;
f;.(xo Z) = ——, SO that
Jr? + 22
1 72 r?

0.

X, z) = — = >
Y~ e L

Example 4. If 0 < pe C[a, b], and r #0, f(x, z) = p(x)/r* + z% is also
strongly convex on [a, b] x R. (See Example 2 above.)

Example 5. f(z) = —.,/1 — z?% is strongly convex on I = (—1, 1), since

fle)= - sothatforzel,
J1—2z?
1 z? 1
fzz(Z) = \/1 — Zz + (1 _ 22)3/2 = (1 — 22)3/2 > 0.
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Example 6. f(x,z) = x> + e*z is (only) convex on R x R since f,, = 0.
Indeed:
fx, z + w) — f(x, z) = e*w = f(x, Z)w,

and equality holds V w € R.

Example 7. f(x, z) = x? + (sin x)z2 with f,,(x, z) = 2(sin x), becomes convex
only when sin x > 0; e.g., on [0, ] x R; and is strongly convex only when
sin x > 0, e.g.,, on (0, 7) x R.

Example 8. Finally, f(x, z) = x> — z? is never convex, since for w # 0,
fx, z +w) = f(x, 2) — fulx, 2w = —(z + W)® + 2% + 2zw
= —w?2<0.

(However, —f(x, z) = —x? + z?% is again strongly convex on R x R.)

Of course, the conclusions just obtained are unchanged if z is replaced by
y in each occurrence.

When all variables are present in the function f(x, y, z), there are no
simplifications such as those just considered. (There is again a second deriva-
tive condition which guarantees [strict] convexity, but it is awkward to
apply. See Problem 3.5.)

The following general observations (whose proofs are left to Problems 3.2
and 3.3) will be of value:

(3.11) Fact 1. The sum of a [strongly] convex function and one (or more)
convex functions is again [strongly] convex.

Fact 2. The product of a [strongly] convex function f(x, y, z) by a
continuous function [p(x) > 0] p(x) > 0 is again [strongly] convex on
the same set.

Fact 3. f(x, y, z) = a(x) + B(x)y + y(x)z is (only) convex for any con-
tinuous functions a, f, y.

Fact 4. Each [strongly] convex function f(x,z) (or f(x,y)) is also
[strongly] convex when considered as a function f(x, y, z) on an appro-
priate set.

Example 9. f(x, y, z) = —2(sin x)y + z* is the sum of the strongly convex
function z2 (Fact 4) with the convex function —2(sin x)y (Fact 3), and hence
it is strongly convex on R x R? (Fact 1).

Similarly, g(x, y, z) = —2(sin x)y + z2 + x%./1 + y?, is the sum of the
strongly convex function f(x, y, z) with the convex function x2,/1 + y* (Fact
2) and so it too is strongly convex on R x R2.
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Example 10. f(y, z) = \/1 + y* + z% with

£ 2) = Y :

———— and f,(y,2) = —F———
J1+yr+ 22 V1+yr+ 22

is more difficult to examine. For its convexity, we require that

yu + zw

J1+y*+ 2%

JI+@+0?+E+w? -1+ +22> (11)

or upon introducing the three-dimensional vectors

A=(l,y,z) and B=(lL,y+uv,z+w),
that
(yo +zw) _ |A]* + (yo + zw)
|A| |A]

|B| > |4] +

_l+y(y+v)+zz+w) A'B
|| |A]°

where the dot denotes the scalar product of the vectors.

Since A-B = |A||B| cos(4, B) < |A||B| with equality iff A and B are
codirected, it is seen that (11) does hold with equality iff (1, y, z) and (1, y + v,

z + w) are codirected, ie., iff v =w=0. Thus, f(y,2) = /1 + y* + 2% is

strongly convex on R?; in fact, it is strictly convex on R2.

Example 11. If 0 < p € C[a, b], then

f(x, 9, 2) = p(x)/1 + y* + 2°

is strongly convex on [a, b] x R? (Fact 2 and Example 10.)

Example 12. When b # 0, then f(y, z) = \/y? + b?z? has derivatives
y b2z

,Z) = —————— and f(y,2) = ——--—oo,

Mea= g 4 A= s

which are discontinuous at the origin. However, on the restricted set R? ~
{(0, 0)} this function is again convex but not strongly convex. (See Problem
3.24)

Example 13. When o # 0, f(y, z) = (z + ay)? is only convex in R? since (5)
holds, but with equality when (w + av)? = 0. (See Problem 3.16b.)

(Problems 3.1-3.19)
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§3.4. Applications

In this section we show that convexity is present in problems from several
diverse fields—at least after suitable formulation—and use previous results
to characterize their solutions. Applications, presented in order of increasing
difficulty—and/or sophistication, are given which characterize geodesics on
a cylinder, a version of the brachistochrone, Newton’s profile of minimum
drag, an optimal plan of production, and a form of the minimal surface.
Other applications in which convexity can be used with profit will be found
in Problems 3.20 et seq.

(a) Geodesics on a Cylinder

To find the geodesics on the surface of a right circular cylinder of radius 1
unit, we employ, naturally enough, the cylindrical coordinates (0, z) shown in
Figure 3.1 to denote a typical point. It is obvious that the geodesic joining
points P, = (6, z,), P, = (0,, z,) is simply the vertical segment connecting
them. Thus it remains to consider the case where P, = (,, z,) with 0, # 6;;
a little thought shows that by relabeling if necessary, we can suppose that
0 <6, — 0, <m, and consider those curves which admit representation as
the graph of a function z € 2 = {z e C' [0y, 0,]: 2(0) = z;,j = 1, 2}.
The spatial coordinates of such a curve are

(x(0), y(0), z(0)) = (cos 0, sin 0, z(0)),

P,

\\w, 2(9))

P
—/
T

R
-z ~N

Figure 3.1
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so that when z € 9, the resulting curve has the length

L@) = rz JXOF + (07 + 20 do = f )
0, 01

With an obvious change in variables, this integrand corresponds to the
function of §3.3, Example 3, which is strongly convex. Thus by Corollary 3.8,
we conclude that

(3.12) Among curves which admit representation as the graph of a function
z € 9, the minimum length is given uniquely for that represented by the function

21— 2y

zo(@) =z, + m(@ — 6,) form = ,
6, — 6,

which describes the circular helix joining the points.

(If the cylinder were “unrolled,” this would correspond to the straight line
joining the points.) Plants take helical paths when climbing around cylindri-
cal supporting stakes toward the sun [Li].

(b) A Brachistochrone

For our next application, we return to the brachistochrone of §1.2(a). As
formulated there, the function T(y) is not of the form covered by Theorem
3.5. (Why not?) However, if we interchange the roles of x and y and consider
those curves which admit representation as the graph of a function ye 9 =
{ye C'[0,x,]: y(0) =0, y(x,) = y;} (with x; and y, both positive) as in
Figure 3.2, then in the new coordinates, the same analysis as before gives for
each such curve the transit time

Xy 1 ’ 2
T() = f /+2+x(")dx,

which has the strongly convex integrand function of §3.3, Example 4, with

.
d

(x, ¥(x))

X3 (x1, y1)

Figure 3.2
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r =1 and p(x) = (2gx)"' on (0, x, ]. Now p(x) is positive and integrable on
[0, x,] and although it is not continuous (at 0), Theorem 3.7 remains valid.
(See Problem 3.21.)

Thus we know that among such curves, the minimum transit time would
be given uniquely by each y € 2 which makes

y'(x)
NENIEE T,

Squaring both sides gives the equation

1
— for some constant c.
c

y®? _x 2 ©
T+ 02~ e so 1+ y'(x) =2
and
X
V(x) = 4,/1+y(x 20 (12)
Thus y'(0) =

If we introduce the new independent variable 6 through the relation
x(0) = (c%/2)(1 — cos 0) = c? sin?(H/2), then = 0 when x = 0, and for 0 < =,
0 increases with x. Also, ¢2 — x(0) = (c?/2)(1 + cos 6). By the chain rule

dy N
0= "(x)x'(0) = y'(x) (5 sin 9>,

and from equation (12) we get

dy ¢* /1 —cosf c?
—=_— [————sinf=—(1 — 0).
g 2 1+cos(9Sln 2( cos 6)
Hence y(0) = (c?/2)(6 — sin 0) + c,, and the requirement y(0) = 0 shows that
Cl = 0.
Upon replacing the unspecified constant ¢ by ﬁc, we see that the mini-
mum transit time would be given parametrically by a curve of the form

{x(()) = c%(1 — cos 0),
(0) = ¢2(0 — sin 6),

provided that ¢* and 0, can be found to make x(6,) = x,, y(6;) = y,. The
curve described by these equations is the cycloid with cusp at (0, 0) which
would be traced by a point on the circumference of a disk of radius c? as it
rolls along the y axis from “below” as shown in Figure 3.3.

For 6 > 0, the ratio y(6)/x(6) = (0 — sin 6)/(1 — cos 0) has the limiting
value +oo as 01 2xn, and by L’Hopital’s rule it has the limiting value of 0 as
0] 0. Its derivative is

(1 —cos 0)> —sin 6(6 —sin ) _ 2(1 — cos ) — O sin 0
(1 — cos 6)? B (1 — cos ) ’

0<60<0, (13)
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-~ ~ - ~ }77

/ / \
\ ) | )

\ @500\ _
AN / -
- e ~__ = -
(x15 y1)
xy
Figure 3.3

which utilizing the half-angle formulae may be rewritten as

cos 6/2 0 0
sin® 02 <ta"§ - §> 6 # )

and thus is positive for 0 < 8 < 2. (Why?) y(0)/x() is positive, increases
strictly from 0 to 4o as 6 increases from 0 to 27, and hence from continuity
(through the intermediate value theorem of §A.1), assumes each positive
value precisely once. In particular, there is a unique 6, € (0, 27) for which
y(0,)/x(0,) = y,/x;, and for this 6,, choosing c? = x, /(1 — cos 0,) will guar-
antee the existence of a (unique) cycloid joining (0, 0) to (x;, y;).

Unfortunately, as Figure 3.3 shows, the associated curve can be repre-
sented in the form y = y(x) only when 6, < =, i.e, when y,/x; < /2. More-
over, the associated function y € C'[0, x,] only when y, /x, < m/2, since the
tangent line to the cycloid must be horizontal at the lowest point on the arch.
Nevertheless, we do have a nontrivial result:

(3.13) When y,/x, < m/2, among all curves representable as the graph of a
function y e C'[0, x,] which join (0,0) to (x,,y;), the cycloid provides
uniquely the least time of descent.

Thus we confirm Galileo’s belief that the brachistochrone is not the
straight line and support the classical assertion by Newton and the Bernoullis
that it must always be a cycloid.

It is not too difficult to extend our analysis to the case y,/x; = m/2
(see Problem 3.22*), and it may seem physically implausible to consider
curves which fall below their final point or those which have horizontal
sections (i.e., those which cannot be expressed in the form y = y(x)) as
candidates for the brachistochrone. However, it is true that the brachisto-
chrone is always the cycloid, but a proof for the general case will be deferred
until §8.8.
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(c) A Profile of Minimum Drag

One of the first problems to be attacked by a variational approach was that
propounded by Newton in his Principia (1686) of finding the profile of [the
shoulder of ] a projectile of revolution which would offer minimum resistance
(or drag) when moved in the direction of its axis at a constant speed w, in
water. (We can suppose that w, = 1.)*

We adopt the coordinates and geometry shown in Figure 3.4, and postulate
with Newton that the resisting pressure at a surface point on the shoulder is
proportional to the square of the normal component of its velocity. A shoul-
der is obtained by rotating a meridional curve of length [ defined by y = y(x)
about the y-axis as shown. At a point on the shoulder, let  denote the angle
between the normal to this curve and the positive y-axis. Then we wish to
minimize

1
cos? /(a)2nx(c) cos Y(o) do.

(0]
Since cos ¥(g) = x'(g) while 1+ y'(x)* = sec? Y(s), we evidently wish to
minimize
1
F(y) = f x(1 4 y'(x)*)™" dx,

on
2 ={ye C'[a,1]: y(@) = h, y(1) = 0, y(x) = 0},

where we suppose that the positive constants a < 1 and h are given; (@ = 0 is
excluded for reasons which will emerge). Now, if

—2zx
1+ 2%

fle )=, then fi(x2) =

Figure 3.4

! See the article “On Newton’s Problem of Minimal Resistance,” by G. Butazzo and B. Kawohl,
in The Mathematical Intelligencer, pp. 7-12, Vol. 15, No. 4, 1993. Springer-Verlag, New York.
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and for x > 0:
2x(3z2 — 1)

1
fzz(xa Z) - (1 + 22)3 ﬁ.
On physical grounds we expect y’ <0 (Why?),! and, by Proposition 3.10,
f(x, z) is strongly convex on [a, 1] x (—o0, — l/ﬁ]. Hence from Theorem
3.7, we know that if

Vo€ P ={ye2:y(x) < —1/\/3,xe[a, 11}

ey — 2y ()
YOy oy

say, for a positive constant c, then it minimizes F on £’ uniquely. Upon
squaring and rewriting, we find that for each x € [a, 1], u 4 y’? should be
a solution to the quartic equation u* = ¢®>x*(u — ) withu > 1 + (1/\ﬁ)2 =
4/3. From Figure 3.5, we see graphically that this equation has a unique root
u = u(s) > 4/3 when s = cx > 4%/3%? = s,, say, and that u(s) increases to infin-
ity with s. (u(s) can be determined explicitly by the methods of Cardano-—
Ferrari, but the result is not simple.> Newton’s own parametric approach is

>0, when |z| >

makes

= const. = %, (14)

g2
SO

Figure 3.5

! See Problem 3.41.
2 When s > s, = 42/3%2 then

JA+B—4

NG
and 4 = (n + )3 + (n — r)'3, with

s\* s2 01
n=<§> and r=s> FramEl

u(s) = , where B =s2//24,
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taken up in Problem 3.40.) Then, from (14), we get
y'(x) = —u?(cx)/cx, and (since y(1) = 0),
1,2 c .2
) =J wied) gy 1 f O g ex > 5ol (14)

X Cé c cx s

provided that c¢ > so/a can be found to make y(a) = h. Now u?(s)/s =
J/u(s) — 1 increases with s, and for fixed x, the first integral in (14’) increases
continuously to infinity as ¢ » +oo. Since our restricted minimum-drag
problem has at most one solution for given a, it is simpler to choose values of
¢ > ¢y = So/a and then use (14’) to determine associated values of y(x) and
h&s y(a) by numerical integration. Each value for h exceeding that when
¢ = ¢q is achievable. A few of these minimal profiles are presented in Figure
3.6.

Each nontrivial solution thus obtained provides the profile of minimum
drag at least among those in %', and this could be used in designing a
torpedo or some other missile moving in a medium under Newton’s re-
sistance law." We cannot claim that our restricted minimum drag profiles
remain optimal within a larger class, where, for example, profiles with zero
slopes are permitted. See Problems 7.27 and 9.27, and [P] for a more
thorough discussion.

Minimum drag Jos8
a= % profiles ’
40.6
a=1
10.4
2
a=3
’ 402
1 1 1 1 1 I
04 05 06 07 08 09

Figure 3.6

! Newton himself believed that his results might be applicable in the design of a ship’s hull.
However, his resistance law is more appropriate to missiles traveling hypersonically in the thin
air of our upper atmosphere. See [Fu].
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(d) An Economics Problem

All of the classical optimization problems arose in the development of
geometry or physics and are usually concerned with optimizing one of the
fundamental quantities, length, time, or energy under various conditions. For
a change of interest, let’s consider a more contemporary problem of produc-
tion planning (whose statement is taken from [Sm]).

From previous data a manufacturing company with “continuous” inven-
tory has decided that with an initial inventory #(0) = .#, and a projected
sales rate S = S(t) over a time interval [0, T], the best production rate at time
t is given by a function & = 2(t). Assuming that loss during storage occurs
at a rate which is a fixed proportion, a, of the associated inventory .#(¢) at
time t (perhaps through spoilage), and the rest is sold at the projected rate
S(¢), then we should have at time ¢, the simple differential relation

2) = P(t) — S(t) — a5 (D)

(15)
(or 2(t) = F'(t) + o) + S(1)).

Now suppose that it wishes to maintain the same sales rate S(t) over a
period [0, T] but its actual initial inventory I(0) = I, # .%,. Then from the
assumed continuity, each projected production rate function P = P(t) results
in an inventory I(t) at time ¢t which differs from #(t) (at least in a neighbor-
hood of 0). With the same percentage loss, we would have as above,

P@t)=1I'(t) + al(t) + S(). (15)

As a consequence, the company will experience additional operating costs
(perhaps due to handling and storage problems); these costs might be esti-
mated by a function such as

C= L (B — #)*(1) + (P — 2)*(1)] dt, (16)

which takes into account the deviations in both inventory I and associated
production rate P from their “ideal” counterparts. (f is a constant which
adjusts proportions.) This is rather a crude measure of cost, but it possesses
analytical advantages.

Moreover, if we introduce the inventory deviation function y =1 — .4,
then we see from (15) and (15') that the associated production deviation is
given by

P—2=I'-J"+al—-SF)=y + ay. (16)

Therefore the cost may be regarded as

Cy) = J [B%y* + (v + ay)*1(0) dt 17
0

which is to be minimized over 27 = {y e C'[0, T]: y(0) = ao = I, — S}
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Now f(t, y, 2) = B*y* + (z + ay)? is strongly convex on [0, T] x R? since
the second term is (only) convex. (Recall Example 13 in §3.3.) Here
1, =2[B%y + a(z + ay)] and f, = 2(z + ay). Therefore, by Proposition 3.9(i),
C is minimized uniquely by a y € 27 for which

LIV(T)] =2(y" + ay)(T) = 0 (18)

that satisfies the Euler—Lagrange equation
d
pARARE U 20 + Py +ay' 1), O0<t<T  (18)

From (16') we see that condition (18) simply requires that P(T) = Z(T). Is
this reasonable? Why?
If we differentiate in (18’) and cancel the ay’ terms from each side, then the
equation reduces to
y'=(*+ )y =7y, say, (19)
when we substitute
92 =0a? + B (19"
The general solution of the differential equation (19) is
Vo) = cie” + ce7™, with  yg(t) = y(cie” — ce7"), (20)

and we must try to find the constants ¢, and c, so that y,(t) satisfies the
boundary conditions. We require that

Y0(0) =ao =c¢; + ¢,
and
0= yo(T) + ayo(T)

=c(y + x)e’T + cy(—y + e 7,
or that
0=rc,(y + 0)e?T —c,(y — a).

From this last equation, the ratio
+ c
WP T 2 @n
Y- €1

is specified, and for this p the choices ¢; = ay/(1 + p), ¢, = agp/(1 + p) will
satisfy both conditions. This gives the desired conclusion:

(3.14) Among all inventory functions I € C'[0, T] with o, B, and 1(0) = I,
prescribed, that given by
o — £) -
I(t) = 2(t) + ———(e”" + pe™™), 22
O =20+ T (e” + pe™™) (22)
with p, y determined by (21) and (19'), respectively, will provide uniquely the
minimum cost of operation as assessed by (16). The associated optimal produc-
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tion rate is
Po(t) = 2(t) + (1 + p) (Lo — Fo) (v + @) [e” — e7?T7"] (23)

Moreover, in this case the minimum cost can easily be computed. Indeed
from (17)

T
C(yo) = f [B?y5 + (o + ayo)* dt
0
and we recall that y, satisfies (18) and (18’). We see that the integrand is just
[yo(yo + ayo)] (t), and since y,(0) = a,, we conclude that

C(yo) = [Vo(yo + ayo)1l§ = —aad — aoyo(0),

where y4(0) = I'(0) — #’(0) can be obtained by differentiating (22).
Finally recalling that a, = I, — %, we find that

Can = €)= 1o — | "0V |, 4

and this expression shows the effects of various choices of «, 8, T, and .#(0) on
the minimum cost of operation. Observe that it is independent of the sign of
the initial inventory deviation.

(e) Minimal Area Problem

Our final example extends the methods of this chapter to a problem in higher
dimensions, namely, that of Plateau. In the simplified version formulated in
§1.4(b), given a bounded domain D of R, and a prescribed smooth boundary
function y, we seek a function u € C*(D) which has these boundary values and
minimizes the surface area function

S(u)=ff 1+ uk+uldxdy.
D

Introducing 2 = {ue C'(D) with ul;, =7} and Z, = {ve CY(D) with
v|sp = 0}, we see that this is equivalent to finding a u € 2 for which
Su+v)—Su =0, VoveD,.

Now, the three-dimensional vector inequality used in establishing the

strong convexity of f(y, z) = </1 + y* + z? (see Example 10 of §3.3), shows
that at each point in D:

U, + uyv,

J1+u2+u?

with equality iff v, = v, = 0. Hence, from the assumed continuity:

U+ e+ 0 + (y+0,) — /1 +u2+u2 >

U U, + Uy,

V1+ui+ul

Su+v)— Su) =30S(u; v) = ff dx dy
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(as in §2.4, Example 9) with equality iff v = 0 (since v, = v, = 0 in the domain
D = v = const. = v|;p, =0). Thus S is strictly convex on &, and again we
would seek u e 2 for which 6S(u; v) vanishes, Vv e &,. Such a u would
provide the unique minimizing function for S on 2. It would, of course,
suffice if we could find a u which is even smoother; in particular, if we could
find a u € 2 N C%(D) which has these properties.

For u € 2 n C?(D), both

def u def u
U= x and WE Y

1+ +u? J1+u2+u?

are in C!(D) so that the integrand of &S(u;v) may be rewritten as
Uv, + Wo, = (Uv), + (Wv), — (U, + W,)v. Now, if we assume that Green’s
theorem holds for the domain D ([FI]), then

” [(Uv); + (W),] dx dy = J [(Uv) dy — (Wv) dx],
D oD

and for v € 9,, the line integral vanishes. Thus for v € 9,

oS(u; v) = —ff (U, + W))v dx dy, (25)

and by Proposition 3.3 it is obvious that a minimum area would be given
uniquely by each ue 2 n C*D) which satisfies the partial differential
equation

U+ W,=0 inD;

or upon substitution and simplification, which satisfies the second-order
partial differential equation

(1 + u})ug, — 2uuu,, + (1 + ul)u,, = 0. (26)

Equation (26) is called the minimal surface equation and it has been studied
extensively. Our uniqueness argument shows that this equation cannot have
more than one solution u in &, but the existence of a solution depends
upon a geometric condition on D:

(3.15) A domain D is said to be convex when it contains the line segment
joining each pair of its points.

A disk is convex while an annulus is not. If the domain D is not convex, it
is known that (26) does not always have a solution in the required set
9 n C?*(D), and we can draw no additional conclusions from the analysis
given here. However, it is also known that if D is convex, then (26) has a
solution in 2 n C?(D) for arbitrary smooth 7, which thus describes uniquely
the minimal surface; i.e., the surface of minimal area spanning the contour
described by the graph of the boundary function y, among all C! surfaces
([Os]). (Actually it does so among all piecewise C* surfaces, those described
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by the graph of a piecewise C* function #, which admit internal “roof-shaped”
sections. With appropriate definitions, the methods of Chapter 7 can be
extended to establish this fact.)

(Problems 3.20-3.26, 3.37)

§3.5. Minimization with Convex Constraints

Convexity may also be of advantage in establishing the minima of functions
J that are constrained to the level sets of other functions G (as in the isoperi-
metric problem). In the formulation suggested by Proposition 2.3, the next
result is apparent.

(3.16) Theorem. If D is a domain in R?, such that for some constants A
i=12, ..., N, f(x,y,2) and A;g;(x, y, z) are convex on [a,b] x D [and at
least one of these functions is strongly convex on this set], let

N N
=

Then each solution y, of the differential equation

d ~ ~

SRDWI= D@1 on(ab)
minimizes

b
F(y) = J Sly(x)]dx

[uniquely] on

2 = {y e C'[a, b]: y(a) = yo(a), y(b) = yo(b); (y(x), y'(x)) € D}

under the constraining relations

b
G(»= f gly®1dx=G(y), Jj=12...,N.

a

PROOF. By construction (and 3.11(1)) f(x,y,z) is [strongly] convex on
[a, b] x D, so that by Theorem 3.5, y, minimizes

F(y) = J SIy(x)]dx = F(y) + 21 4Gi(y)
a J=
[uniquely] on 2. Now apply Proposition 2.3. O

(3.17) Remark. Theorem 3.16 offers a valid approach to minimization in the
presence of given isoperimetric constraints as we shall show by example.
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However, if we introduce functions 4; = 4,(x) in its hypotheses, then as in 2.5

Fly) = FO) + z f 3,(0g,Ly(x)] dx,

and we conclude that each solution y, € Z of the differential equation for
the new f minimizes F on 2 [uniquely] under the pointwise constraining
relations

g][y(x)] = g,[)’o(x)]a .] = 17 29 LR} N:

of Lagrangian form.

Although, in general not even one such g;[ yo(x)] may be specifiable a
priori (Why?), the vector-valued version does permit minimization with given
Lagrangian constraints. (See Problem 3.35 et seq.)

Corresponding applications involving inequality constraints are consid-
ered in Problem 3.31 and in §7.4.

Example 1. To minimize

F(y) = fo (y'(x))* dx
on
2 ={yeC'[0,1]: y(0) = 0, y(1) = 0},

when restricted to the set

1
{y e C'[0,11: G = f Y0 dx = 1},
0
we observe that f(x, y, z) = z2 is strongly convex, while g(x, y, z) = y is (only)
convex, on R x R2 Hence, we set f(x, y, z) = z2 + Ay and try to find A for
which Ag(x, y, z) remains convex while the differential equation

091 = Ay
X

has a solution y, € & for which G(y,) = 1. Now since g is linear in y (and 2),
Ag(x, y, z) = Ay is convex for each real . Upon substitution for f, the differen-
tial equation becomes

d / _ ” _ j’
E;(Zy (x))=4 or y (x)—i,

which has the general solution
2

Ax
y(x)=cix+c, + 4
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The boundary conditions y(0) = 0 = ¢, and y(1) = 0 = ¢, + 4/4 give
—2
Yo(x) = —4—x(1 — x), whichisin 2.

Theorem 3.16 assures us that y,(x) = (—4/4)x(1 — x) minimizes F on 9—
even uniquely—under the constraint G(y) = G(y,). It remains to show that
we can choose 4 so that G(y,) = 1 (while Ag(x, y, z) remains convex).
Thus we want
—i (! —Af1 1 —A
G(yo) =1 ——4—L x(1 —x)dx—-4—(§‘§>—2—4
or
A= —24,

and since —24g(x, y, z) = — 24y remains convex, we have found the unique
solution to our problem.

(3.18) Remark. In this example we can find 4 to force y, into any level set
of G we wish, since Ag(x, y, z) = Ay is always convex for each value of 1. This
is not the case in general and our approach will work only for a restricted
class of level sets of G. (See Problem 3.29.)

The Hanging Cable

Example 2 (The catenary problem). Let’s determine the shape which a long
inextensible cable (or chain) will assume under its own weight when sus-
pended freely from its end points at equal heights as shown in Figure 3.7.
We utilize the coordinate system shown, and invoke Bernoulli’s principle
that the shape assumed will minimize the potential energy of the system.
(See §8.3.)

We suppose the cable to be of length L and weight per unit length W, and
that the supports are separated a distance H < L. Then utilizing the arclength
s along the cable as the independent variable, a shape is specified by a function
ye¥ = C'[0, L] with y(0) = y(L) = 0, which has associated with it the po-
tential energy given within an additive reference constant by the center-of-

yA H
A x
\(s’ y(s)
N
2 - - 7z, 2

Figure 3.7




§3.5. Minimization with Convex Constraints 79

mass integral
L
F(y)= Wf y(s) ds.
(o]

However, in order to span the supports, the function y must satisfy the
constraining relation

L L
G(y) = f 1—y'(s)* ds = J dx(s) = H,
. 0 0

where x(s) denotes the horizontal displacement of the point at a distance s
along the cable, since then as elementary geometry shows, x'(s)> 4+ y'(s)?> = 1.
Clearly |y’(s)] < 1 and if |y’(s,)| = 1, then the cable would have a cusp at s,
since x’(s;) = 0.

Now f(s, y,z) = Wy is (only) convex on [0, L] x R* while g(s, y, z) =
—/1 — 2% is by §3.3, Example 5, strongly convex on [0, L] x R x (—1, 1).
Thus by 3.11(1), the modified function f(s,y,z)= Wy — A1 —2z* is
strongly convex when A > 0. Hence by 3.16, for 4 > 0 we should seek a
solution y for the differential equation

061 = f1O1 on(,L)

that is in
2 ={yeC'[0,L]: y(0) = y(L) =0, |y'(s)| < 1,V s€ (0, L)}.

Upon substitution, the differential equation becomes

g(ﬂﬂﬂ>=w
ds\ /1 — y'(s)
4y'(s)
V1="26)
where we have replaced the unspecified constant 4 by WA and introduced a
new constant c.

We know that each y € 2 which satisfies this equation for 4 > 0 must be
the unique shape sought. Hence we can make further simplifying assumptions
about y if they do not preclude solution. We could, for example, suppose
y' = const., but it is seen that this could not solve (27). And we can suppose
that y is symmetric about L/2, which accords with our physical intuition
about the shape assumed by the cable. If we set [ = L/2 it follows that
y'(I) = 0, so that from (27), ¢ = —1I; also, we need only determine y on [0, /],
where we would expect that y’ < 0.

Thus from (27) we should have that

—?
VOP = oo onl01)

or

=s+c 27
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and so, with y(0) = 0, that
s t—=1 ¢
= ————t _dt= /124 (- 1)?
Ye) J‘o 224 (t—1)>? ( ) 0

Ys) = /A2 + (=P — /2 + 1> on[0,1]. (28)

Now we can obviously suppose that 4 > 0; however, we must satisfy the
constraining relation

L
f 1 —y'(s)*ds = H;
0
or with our symmetry assumption, we require that
1
H
1—y'(s)?ds=—.
[y s
Upon substitution from (28), this becomes
(I —s)? H

1
(- S=Jo /12+(1—s)2ds=7
With the hyperbolic substitution (I — s) = A sinh 6, we can evaluate the inte-

gral and find that
wH H (I
h(x) = AL sinh <E

Now, h(x) % (sinh o)/ is continuous and positive on (0, ) and has by
L’Hoépital’s rule as « ~ 0 and « # oo, the same limits as does cosh a viz.,
1 and oo, respectively. Thus by the intermediate value theorem (§A.1), h
assumes each value on (1, c0) at least once on (0, c0). Hence 3 « € (0, o0)
for which h(x) = L/H and for this «, A =I/sinh a will provide the y(s)
sought.

The resulting curve is defined parametrically on [0, /] by

Y) =R+ (1 —s? — 22+ 1
x(s) = L 1—y'(02dt = g — Jsinh™! <L}S>

which corresponds to the well-known catenary (Problem 3.30(a)).

(29)

(3.19) Among all curves of length L joining the supports, the catenary of (29)
will have (uniquely) the minimum potential energy and should thus represent
the shape actually assumed by the cable.

Remark. This problem is usually formulated with x as the independent
variable. However, this results in an energy function which is not convex
(Problem 3.30(b)).
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Optimal Performance

Example 3. (A simple optimal control problem). A rocket of mass m is to be
accelerated vertically upward from rest at the earth’s surface (assumed sta-
tionary) to a height A in time T, by the thrust (mu) of its engine. If we
suppose h is so small that both m and g, the gravitational acceleration,
remain constant during flight, then we wish to control the thrust to minimize
the fuel consumption as measured by, say,

F(u) = f ! u3(t) dt, (30)
o]

for a given flight time T.

Although T will be permitted to vary later, consider first the problem in
which T is fixed. We invoke Newton’s second law of motion to infer that at
time ¢, the rocket at height y = y(t) should experience the net acceleration

y=u—g, (31
and impose the initial and terminal conditions
y0)=y0)=0 and y(T)=h

Since y(0) = 0, then y(T) = [ y(¢) dt, so that upon subsequently integrating
by parts we obtain

()= —(T - 1)y()

T T
+ J (T — t)y(¢) dt.
0 0

h_._

ﬁ.

J,

T

~

Figure 3.8
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From (31) and the remaining boundary conditions, we see that

h=yT)= J‘ (T — tyu(t) dt — g_;*Z
Hence
T gTZ
G(u)défj (T — tyu(t)dt = h + =k sy, (32)
0

and we are to minimize F on
={ueC[0,T],u >0}

subject to the isoperimetric constraint (32).

According to Theorem 3.16, we introduce a constant A and observe that
the modified integrand

ft,u,z) = u> + AT — t)u

will be strongly convex for all A, since the second term is linear in wu.
Moreover, f, = 0. Thus, a u, e @ which satisfies the equation filu@®)] =
0 = 2u(t) + A(T — t) and meets the constraint (32) will suffice. (See Problem
3.18))

We require uy(t) = —(4/2)(T — t), where A < 0 is to be found to have

=JT(T—t)uo(t)dt= —ﬁJT(T—t)zdt= —Hj,
2 ), 6

0

or
6k
e
so that
3k(T — 1)
N="_3—.
uolt) = =3 (33)

Observe that from (30) and (32) it follows that

9k? T 2
F(uo)=f ud(t) dt = 76 J (T—1)?dt = 37{‘3
0

3(2h + gT?)? h* gh g¢*T
= \ptrta)

we may now use simple calculus to minimize this expression with respect
to T and thus obtain an optimal flight time T;, = (6h/g)*>.

(3.20) Remark. We know that (33) provides the unique solution to our prob-
lem. However, observe that from (32), the corresponding maximum thrust is

3k 3h
uy(0) = <T2> + 1.5¢;



§3.6. Summary: Minimizing Procedures 83

when T= T, as above, uy(0) = 2g which might not be achievable. A more
realistic problem could require 0 < u < f(<2g). This is a Lagrangian in-
equality which can also be treated by means of a multiplier function as
in Proposition 2.5. The resulting solution admits operating at maximal thrust
() until a switching time 7 at which reduction can occur. The details are
reserved until Problem 7.23, and a simpler convex problem with Lagrangian
inequalities is examined in §7.4. Extensions of this approach are feasible
(Problems 3.38 and 3.39) even to problems with discontinuous controls as
will be shown in Chapter 10.

(Problems 3.27-3.32)

§3.6. Summary: Minimizing Procedures

In this chapter we have used elementary concepts of convexity to supply the
framework for making an educated guess about the solution of a minimiza-
tion problem. In the presence of strict convexity, a guessed solution is the
unique solution. However, with each specific problem, it is not essential to
establish convexity according to predetermined definitions. Inspection of the
results and applications in this chapter suggests the following procedures:

I. To minimize F on & < % (a linear space):

First. Show that when y, y + v € &, then F(y + v) — F(y) = I(y; v) where
I(y; v) is some new expression which admits further analysis.

Second. If possible, characterize those v which permit the equality
F(y + v) — F(y) = I(y; v). (Ideally, equality at y =v = 0.)

Third. Note the restrictions on v which occur when y, y + v e 2, and
transform I(y; v) so that conditions (on y) under which it vanishes for all such
v can be discerned.

Fourth. Show that there is a y = y, € 2 which meets these conditions.

If it exists, this y, will be a solution (and it may be the solution) to the
problem. O

Remarks. To obtain the basic inequality, elementary facts such as (y” + v”)2
—(¥")* 2 2y"v” may suffice. It is not essential to recognize I(y; v) as
0F (y; v)—or indeed, even to consider this variation.

In transforming I(y; v), we may make further simplifying assumptions
about y (which do not exclude y from 2). In particular, we may assume that
y has as many derivatives as required to integrate an expression such as
j b y"(x)v"(x) dx by parts as often as desired. “Natural” boundary conditions
for a solution y may arise in this process.
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Finally, although we may not be able to guarantee a unique solution
Yo to the problem, it may be possible to use information obtained in the
second step to characterize the class of solutions; e.g., y, + const.

II. To minimize F on 2 =< % in the presence of further constraints
involving functions G;,j = 1,2,..., n:

First. Use the device of Lagrangian multipliers 4; to suggest an augmented
function F whose minimization on & could solve the constrained problem.
(See 2.3, 2.5, 3.17 and Problem 3.35.)

Second. Find a y, € 2 which minimizes F on 2 (possibly under a sign
restriction on each 4;).

Third. Determine the 4; so that y, meets the given constraints.

Fourth. Examine the signs of the 4; (if necessary) to see that the restrictions
in the second step have been met.

If all of these conditions are satisfied then y, is a solution to the con-
strained problem (and it may be the solution). O

II1. If a usable basic inequality cannot be obtained for F (or for F), it may
be possible to reformulate the problem—or consider a restricted version
of the problem—(perhaps expressed in other coordinates) in terms of new
functions which admit the analysis of I or II. Also, the solution of one
minimization problem usually solves some associated problems involving
constraints. O

Success in implementing these programs requires a combination of skill,
perseverance, and luck. However, they seem to provide the only possibility of
obtaining a solution by methods which can be considered elementary, and
successful implementation is possible as the examples and problems of this
chapter demonstrate. Alternatives to these procedures require a considerably
more sophisticated theoretical framework and are at least as difficult to
utilize. (See Chapter 9 and [Ak].)

(Problems 3.33-3.37)

PROBLEMS

3.1.  For which of the following functions f, is f(x, y, z) convex on [a, b] x R*?
For which will f(x, y, z) be strongly convex on this set?

(a) f(x’ Vs Z)=X+y—2, [a9 b] = [05 1]
b))  fx, y,2) = x>+ y? + 223, [a, b] = [0, 1].
© [ y,2) =1+ 2% + x*y%, [a, b] = [0, 1].

@ Sy, 2) = (xsinx)[y* + 2%], la, b] = [—m/2, n/2].
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€ fx,y,2)= —x*+e*y + 22 [a,b]=[-1,1].
) f(x,y,2) = yz® + cos x, [a, b] = [0, 1].

(8 f(x,y,2) =e’sec’ x —z, [a, b] = [0, n/4].
(h)  f(x,y,2)= —x?y + 2%, [a,b]=[-1,1]
D  fxy,2)=—xy*+ 2% [a,b]=[-1,1]
() fx,y,2) = e*y* — xy + 227, [a, b1 = [0, 1].

K)* f(x,y,2z) =(1 +sin x)y* + (1 + cos x)z2, [a,b] =[-8, 8].
N f(x,y,2) = x*(cy + z)*, ¢ = const. [a,b]=[-1,1]

(m)* f(x,y, z) = 2z* + z|z|. Hint: Consider graph.

32.  Let f(x, ¥, z) and g(x, y, z) be convex on S = R3:

(a) Prove that f(x, y, z) + g(x, , z) is also convex on S.

(b) Give simple examples of other algebraic combinations of such functions,
i.e., the difference, product, and quotient, which are not convex.

(c) If0 < p = p(x) is continuous, then prove that when defined p(x)f(x, y, z) is
convex.

(d) Can the sum in (a) be strongly convex on S when each of its terms is only
convex? Justify your conclusion.

3.3.  Let f(x, y, z) be strongly convex on S = [a, b] x R?, g(x, y, z) be convex on §,

and a, 8,y € C[a, b].

(a) Prove that f(x, y, z) + g(x, y, z) is strongly convex on S.

(b) If 0 < p € C[a, b], show that p(x)f(x, y, z) is strongly convex on S.

(c) Verify that I(x, y, z) = a(x) + B(x)y + y(x)z is (only) convex on S.

(d) If ge C*(R) and g”(z) > 0, for z € R, conclude that f(x, z) = g((sin x)z)
is strongly convex on (0,7) x R. Hint: Proposition 3.10. (This result
generalizes.)

3.4*.  Show thatif f, f,, and f, are continuous on [a, b] x R? then f(x, y, z) is convex
on [a, b] x R%iff
S, tyy + (1 — 9y, tzy + (1 — t)z,) < tf(x, ¥4, 21) + (1 — Of(x, 2, 23)
Vxelab], te(01) y;,zeR, j=12.
(Hint: See Problem 0.7.)
3.5*. (a) Show thatif f, f,,, f,., and f,, are continuous on [a, b] x R?, then f(x, y, z)
is convex on [a, b] x R? iff the matrix of second derivatives Ty f":l is

foz Sz

positive semidefinite on [a, b] x R?, i.e.,

w [gz 2::' (:) >0, Vxel[a bl yzuveR

(Hint: See Problem 0.8.) (Note: This condition is equivalent to requiring
that f,, >0, f,, > 0,and A = f,  f,, — (f,,)* = 0.
(b) Use this approach on Problems 3.1(k) and (1).

3.6-3.15. In these problems, verify that the integrand function is strongly convex (on
the appropriate set) and find the unique minimizing function for F
(a) on2. (b) on2,. (c) on2,.
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3.6.

3.7.

3.8.

39.

3.10.

311

3.12.

3.13.

3.14.

3.15.

3.16.

3.17.

3. Minimization of Convex Functions

F(y) = [1x7'y'(x)* dx, 2, ={yeC'[1,2]: y(2) = 3},
2 ={yeC'[1,2]: y(1) = 0,y(2) = 3}. 2,=C'[1,2].

F(y) = [5[2e*y(x) + y'(x)*] dx,

2 ={ye C'[0,1]: y(0) = 0, y(1) = 1}. 2, = {ye C'[0, 1]: y(0) = 0}.
F(y) = [1°/x/1 + y'(x)? dx, 2, = {ye C'[5,10]: y(10) = 6},
2 ={yeC'[510]: y(5) =4,y(10) = 6}. 9, = C'[5, 10].

F(y) = [1[2y(x)* + x?y'(x)*] dx, 2, ={C'[1,2}:y(1) = 1},

2 ={yeC'[1,2]:y(1) = 1,y(2) = 5}. 2, = C'[1,2].

(Hint: The differential equation has two linearly independent solutions of the
form x?,pe R.)

F(y) = [§°[(y'(x) — cos x)* + 4y(x)] dx,

2 = {y € C'[0, n/6]: y(0) = 0, y(n/6) = 3}.
2, = {y e C*[0, n/6]: y(n/6) = 5}.

F(y) = [1x7'{/1 + y'(x) dx,

2 ={yeC'[L,2}:y() = /8,y = /5}.
2, = {ye C'[1,2]: y(1) = \/8}.

F(y) = [2, "™ dx,

D= {yeC'[-1,2]: y(—1)=2,y(2) = 11}.
F(y) = [? [y + /1 + y'(x)?] dx,

2 ={yeC'[0,31: y0) = -1, y3) = —/3/2}.
2, = {ye C'[0,3]: y(0) = —1}.

F(y) = [§*y'(x)* sec® x dx,

9 = {y e C'[0, n/4]: y(0) = 0, y(n/4) = 1}.
2, = {y € C*[0, n/4]: y(n/4) = 1}.

F(y) =} [y'(®)* — 4y(x)] dx,

9 = {yeC'[1,8]: y(1) = 2, y(8) = —37/4}.
2, ={yeC'[1,8]: y(1) = 2}.

(a) Demonstrate that the function F(y) = {§ y*(x)y’(x) dx is convex on
2 ={yeC'[0,1]: y(0) = 0, y(1) = 1},

although the integrand function f(x, y, z) = y*z is not convex on [0, 1] x
R2.
(b)* Prove that the function f(x, y, z) = (z + 3y)? is (only) convex on [a, b] x
R?, but F(y) = [2(y'(x) + 3y(x))* dx is strictly convex on
2 ={yeC'[a,b]: y(a) = a,, y(b) = b, }.
What happens if 3 is replaced by a number a?
(a) Show that f(x,y,z) =xz + y is convex, but not strongly convex on
[1,2] x R2
(b) Can you find more than one function which minimizes

2
F(y) = L [xy'(x) + y(x)] dx

on
2 ={yeC'[1,2]:y(1) = 1,y(2) = 2}
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3.18.

3.19.

3.20*,

Suppose that f(x, y) is [strongly] convex on [a, b] x R and set

F(y) = J Sf(x, y(x)) dx.

(a) Show that each y € 2 = C[a, b] which satisfies
L%, y(x)) =0,  Vxel[ab]

minimizes F [uniquely] on 2.
(b) Show that each y € 2* = {u € C[a, b]: [2u(x) dx = 0} which satisfies

fy(x, y(x)) = const., V x € [a, b]

minimizes F [uniquely] on 2*.
(c) Let f(x,y) = y* — g(x)y, where g € C[a, b] is a given function. Find the
unique minimizing function for F on 2 and on 2*.

(a) When b; > 0, explain why the restricted surface-area-of-revolution func-

tion (see §1.4(a))
S(y) = ZnJ x /1 + y'(x)* dx

is minimized on 9 = {y € C'[1, b]: y(1) = 0, y(b) = b, } uniquely by a y,

that makes
! 1
_M = const. = —
V1+yx)? ¢
say, on (1, b).

(b)* Show that cy,(x) = cosh™(cx) — cosh™ ¢ provided that ¢ > 1 can be
found to make yo(b) = b,. Graph y, and discuss how to guarantee that ¢
exists.

Minimum Transit Time of a Boat. (See §1.2(b) and Problem 1.3.) Let

T(y) = f a0 /1 1 @) — (oPry')] dx,
0

where r is a given continuous function, 0 <r(x) <1 on [0, x,], a(x) =
(1 —r(x)*)"*2, and

2 ={yeC'[0,x,1: y(0) = 0, y(x;) = y;} Wwithx; >0,y; >0.
(a) Prove that the integrand function

[, 2) = a(x)y/1 + (2(x)2)* — 2(x)*r(x)z

is strongly convex on [a, b] x R.

(b) Show that each y € @ which makes (a3y")(x)[1 + (ay’)*(x)]™?2 — (&?r)(x)
constant on (a, b) minimizes T uniquely on 2.

(c) Verify that y(x) = [§(r + ca”3)[(1 — cr)*> — ¢*]7"*(t) dt will serve pro-
vided that the constant ¢ can be chosen properly.

(d) Show that the boundary value y, = [§'r(x) dx is always achievable with
a proper choice of ¢, and find the minimizing function in this case.

(e) 'What happens if 7(x) = r = constant?

(f)* For the linear profile r(x) = (1 — 3x)/2, 0 < x < x; = &, show that the
admissible choices of ¢ are restricted to —% < ¢ < %, and for this range of
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¢ the integral defining y(x) in part (c) is bounded. (This demonstrates that
we cannot always choose ¢ to meet the boundary conditions. Explain why
physically.)

Verify that Theorem 3.7 remains valid for integrands of the form f(x, z) =
p(x)\/1 + 2%, where p is continuous on (g, b], p(x) > 0, and [%p(x) dx <
00. (For example, p(x) = x 2 on (0, 1].)

(b)* More generally, suppose that f(x, y, z) is [strongly] convex on (g, b) x

©*

R?, and y,e C[a,b] is a C! solution of the differential equation

(d/dx)f[y(x)] = f,[y(x)] on (a, b).
Show that if [«, ] < (a, b) and v € C'(a, b) then

8 s s
j STo + 1)(x)] dx > j STy dx + v(x)f[yo(x)]| -

Thus when max|f,[yo(x)]| < M < +o0, conclude that y, minimizes
F(y) = [ f[y(x)] dx [uniquely] on 2* = & = C[a, b] n C(a, b), where

2* ={ye¥: y(@) = yo(a), y(b) = y (b);
F(y) exists as an improper Riemann integral}.

(This extension of Theorem 3.5 to improper integral functions F also
permits consideration of functions y, whose derivative “blows up” at the
end points.)

Make similar extensions of Theorem 3.7 and 3.9.

(d)* Suppose f,[yo(x)] is bounded near x = a, but only (b — x)f,[yo(x)] is

bounded near x = b. Show that we can reach the same conclusion as in
part (b) on @' = {y € 9*: y'(x) - by as x ~ b}. Hint: Use the mean value
theorem on v near b.

A Brachistochrone. (See §3.4(b).)

@

(b)

©*

Show that the time of transit along the cycloid joining the origin
to the end point (x,,y,) for y,/x, <m/2 is given by T,
(x1/29)[0,/sin(6,/2)] where 6, is the parameter angle of the end point.
Hint: Use equations (12), (13).

For the case x, =y, =1, compute 6; and T;,. Compare with the
answers obtained for the straight line and the quarter circle in Problem
1.2

Use the results of Problem 3.21 to extend the analysis in §3.4(b) to the
case when y, /x; = n/2.

(d)** Can you use the methods of this chapter to establish the minimality of

AS
(@)

(b)

©

the cycloid when y,/x, > 7/2 for some class of curves?

eismic Wave Problem. (See Problem 1.8(b) and Figure 1.12(b).)

Show that the integrand function f(x, z) = /1 + z?/x is strongly convex
on[a, b] x R whena > 0.

Conclude that each y € 9 = {y € C'[a, b]: y(a) = 0, y(b) = b, > 0} which
satisfies for some positive constant r, the equation y'//1 + y'(x)*> = x/r on
(a, b) will minimize the time-of-travel integral T(y) = p [5[\/1 + y'(x)?/x] dx
on 2 uniquely.

Show that the associated path is along a circular arc of radius r with center
on the y axis.
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(d) Use the parametrization x = r sin 0 to evaluate the time-of-travel integral
T(y) = p [5ds/x along this path, in terms of o, and B, the initial and final
values of §, when 0 < o < f# < 7/2, as in Figure 1.12(b).

(This last result affords an experimental determination of the unknown
physical constants ¢ and p, by measuring the actual time of travel required for
seismic waves from explosions on the earth’s surface to reach a point in a
mineshaft some distance away. Thus far, however, we must demand that the
resulting geometry be compatible with our assumption that 0 < a < 8 < 7/2.)

3.24*, Geodesics on a Cone: I.
Each point on the surface S of a right circular cone of apex angle 2a has the
cartesian coordinates (x, y, z) = (r cos 0, r sin 0, ar), where a = cot o, and r, 0
are the polar coordinates shown in Figure 3.9.

zA
AN
P, |®Y
\&
() P2
z
< - y
@\
0
X
Figure 3.9

(a) If a curve on S can be represented by r = r(f), with r e # = C*[6,, 6],
show that its arc length is L(r) = jgf r(0)? + b*r'(0)* dO, where b* =
1+ a

(b) Consider the convexity of f(y, z) = \/y* + b?z?%, and explain why it would
be appropriate to consider minimizing L on

D*={red:r@)=r,j=12r06)>+r6)?*>0}.
(c)* Show that a function r € 2*, which for R = b log r satisfies the equation
d bR'(0) 1
In = on (0 ) 0 )9
6 /1 +ROF /1+R(©O) v

should minimize L on 2*.
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(d) Make the substitution R’(6) = tan ¢(6) in (c), and conclude that the
resulting equation is satisfied when ¢'(6) = 1/b = sin a, or when

r(0) = c, sec(b™*0 + ¢)
for constants ¢, ¢;.
() Suppose that §, =0,and 0 < f o b~'0, < n. Prove that an r € 2* of the
form in (d) can be found if ¢, = r, cos ¢, where

_cos B —(ry/r2)
tanc=——7———
sin
and argue that this is possible.

(f)* Show that even though f(y, z) is not strongly convex, L is strictly convex
on 9*, so that the minimizing function found in (e) is unique. Hint: Prove
thatifr,r + v e 9*,then L(r + v) — L(r) = dL(r; v) with equality iff vr' =
v'r, or v = const. r.

(g) Conclude that when r; = r,, the circular arc r(f) = const. is not the geode-
sic as might have been conjectured.

Geodesics on a Cone: I1.

Consider the right circular cone shown in Figure 3.9. To find geodesic
curves of the form 0 = 0(r) joining points (r, 6,) and (r,, 8,), we assume with-
out loss of generality thatr, >r, > 0,0, =0,and0< 6, <.

(h) Suppose that § € C[r,, r,], derive the length function L(6). Is it convex?

(i) When 6, # 0, prove that L(6) is minimized uniquely on

9 ={0€ C'[ry,r,]:600) =0, 6(r;) = 6,},

by 6 = bsec™!(r/c) — b sec™(r,/c), provided that the constant ¢ can be
chosen to make 6(r,) = 0,.
(j) What happens when 6, = 0?

Beam Deflection. When a cantilevered beam of length L is subjected to a
distributed load (force per unit length) p(x) as shown in Figure 3.10(a), it will
deflect to a new position which can be described by a function y € C*[0, L].
According to the theory of linear elasticity, the potential energy is approxi-
mated by

L
Uy) = L Guy" () — p(0)y(x)] dx,

where u is a positive constant (called the flexural rigidity) determined by the
beam cross section and material, and the shape assumed by the deflected beam
will minimize U on

2 = {yeC’[0, L]: y(0) = y'(0) = 0}.

Figure 3.10
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(@)

(b)

©

(@)

(©
()

(2)
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Prove that each y € 2 n C*[0, L] which satisfies the differential equation
uy™(x) = p(x) and the “natural” boundary conditions y”(L) = 0, y"(L) = 0
is the unique minimizing function for U on 2. (The physical meaning of the
natural boundary conditions is that both the bending moment and shear
force are zero at the free end of the beam.) Hint: Show that U is strictly
convex on 2 and integrate the y”v” term of dU(y; v) by parts twice.

Solve the differential equation from part (a) when p(x) = w = const.,
selecting the constants of integration so that the solution is in £ and
satisfies the given natural boundary conditions. (This would be the case for
deflection of a beam under its own weight.) What is the maximum deflec-
tion and where does it occur?

If at x = L, the beam is pinned and has a concentrated moment M applied
as shown in Figure 3.10(b), the potential energy is approximated by

L
U*(y) = J [Guy" (x)* — p(x)y(x)] dx + My'(L),
0

and the shape assumed by the deflected beam will minimize U* on
2* = {ye C*[0, L]: y(0) = y'(0) = y(L) = 0}.

Find a differential equation and a natural boundary conditon at x = L
which are sufficient to determine the unique minimizing function for U*
on Z*.

Solve the differential equation obtained in part (c) when p(x) = 0, choosing
the constants of integration so that the solution is in 2* What is the
maximum deflection and where does it occur?

Define [strong] convexity for the function f(x, y, z, r) on say [a, b] x R3.
Use your definition in (e) to conclude that the integrands of U and of U*
are strongly convex.

Use your definition in (e) to characterize the [strict] convexity of the
integral function of Problem 2.9 on 2 = {ye #: y(a) = a,, y(b) = b, }.
Hint: If [v(x)v'(x)]v"(x) = 0 on (a, b), then v"(x) = 0.

Dirichlet’s Integral. Let

J(w) =%f (w2 +u?)dA
D

and

D = {ue C'(D) ulsp =7},

where D is a Green’s domain the x, y plane and y is a given smooth function
on dD.

(@)
(b)

Show that each u € @ which satisfies Laplace’s equation, u,, + u,, = 0, in
D is the unique minimizing function for J on 2.
Find the minimizing function for J on 2 when D is the annulus

{(x,yr 1L <x?+y* <4}
and y is given by
_ o, onx? 4y =1,
y_{an, onx? +y* =4,

(Hint: Look for a solution to Laplace’s equation of the form u(x, y) =
#(x? + y?) and find an ordinary differential equation satisfied by i.)
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3.29.
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(c)* Define [strong] convexity for a function f(X, y, Z) on D x R**!, where D
is a Green’s domain in RY and show that when d = 2, the integrand
function in (a) is strongly convex on D x R>. (See §6.9.)

(d)* Find an analogue of Theorem 3.5 for the integral function

F(u)=J JX, u(X), Vu(X)) dX=J SuX)] dx
D D

on _
9 = {ue C'D): ulsp =17}

Hint: Use the divergence theorem of vector calculus.
Find the unique minimizing function for
1
Hw=JXKwM

0
on

2 = {y e C'[0, 1]: y(0) = y(1) = 0},
when restricted to the set where

awﬁjlﬂnﬂu=L
0

Show that yo(x) = —1 + /2 — (x — 1)? is the unique minimizing function for

1
F(y) = j 1+ y'(x)? dx
0
on
2 ={yeC'[0,1]: (0) = 0, y(1) = /2 — 1},
when constrained to the set where

1
def _r_1
aw—LJuux—4 7

Is there a value of 4 which permits Theorem 3.16 to be used to minimize

F(y) = J y'(x)* dx
0
on
2 = {y e C'[0, n]: y(0) = y(rn) = 0},
when further constrained to the set where
f y2(x)dx = 1?
0]

Catenary Problem. (See §3.5, Example 2.)
(a) Verify equation (29) and eliminate the parameter s to obtain the equation

y=Acosh<x—;—h>—,//12+12,

for 0 < x <2h = H. (This is a more common representation for the
catenary joining the given points.)
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(b) Formulate the problem using x as the independent variable and conclude
that this results in an energy function U which is not convex on
9 = {y e C'[0, H]: y(0) = y(H) = 0}. (Hint: Use v = —y to show that
U(y + v) — U(y) is not always greater than or equal to dU(y; v) when y,
y+ve2)

(c)* Use the arc length s, as a parameter to reformulate the problem of finding
the minimal surface of revolution (as in §1.4(a)) among all curves of fixed
length L joining the required points. (Takea =0and a, =1 < b,.)

(d) Conclude that the problem in (c) is identical to that of a hanging cable for
an appropriate W, and hence there can be at most one minimizing surface.
(See §3.5.)

Determine the (unique) function y € C[0, T] which maximizes

T
U(y) = J e P log(l + y(t)) dt

0

subject to the constraint L(y) = [§ e ™ y(f) dt < I, where «, B, and [ are positive
constants. Hint: Problem 3.18, with 2.4, 3.17. (This may be given the interpre-
tation of finding that consumption rate function y which maximizes a measure
of utility (or satisfaction) U subject to a savings-investment constraint L(y) < L.
See [Sm], p. 80. y is positive when [ is sufficiently large relative to o, §, and T)

Dido’s Problem.
Convexity may be used to provide partial substantiation of Dido’s conjec-
ture from Problem 1.5, in the reformulation suggested by Figure 3.11.
Verify her conjecture to the following extent:
(a) If b > l/m, prove that the function representing a circular arc (uniquely)
maximizes

b
A(y)EJ y(x) dx
on _b
2 = {yeC'[—b, b]; y(b) = y(—b) = 0},

when further constrained to the [ level set of L(y) = [%, /1 + y'(x)? dx.
(b) Ifb = l/m, show that the function representing the semicircle accomplishes
the same purpose for a suitably chosen 2* (see Problem 3.21).

.

Figure 3.11
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3.35.

3.36.
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(c)* In parts (a) and (b), compute the maximal area as a function of 8, the angle
subtended by the arc; show that this function increases with # on (0, z].

(d) Why does this not answer the problem completely? Can you extend the
analysis to do so?

Let I be an interval in R and D be a domain of R?% For xe R, and Y =
P15 -ves Vi) Z = (24, ..., 2;) € R? a function f(x, Y, Z) is said to be [strongly]
convexon I x Dif f, fy = (f,,, ..., f,,) and fz = (f,, ..., f,,) are defined and
continuous on this set! and satisfy the inequality

S Y+ V,Z+ W)= fx, ¥, Z)= fy(x, Y, Z) V + fo(x, Y, Z)- W,
Vix, ,2),(x, Y+ V,Z+ W)el x D

[with equality at (x, Y, Z) only if V = O or W = 0O].
(a) Show that if f(x, Y, Z) is [strongly] convex on [a, b] x R??, then

b b
F(Y)= J SIY(x)] dx =f S, Y(x), Y'(x)) dx

is [strictly] convex on
9 ={Ye(C'[a,b])*": Y(a) = A4, Y(b) = B},

where 4, B € R? are given.

(b) If f(x, Y, Z) is strongly convex on [a, b] x R2¢, then prove that each Y € @
which satisfies the vector differential equation (d/dx)f;[Y(x)] = fy[Y(x)]
(ies (/dx)f,[Y(x)] = f,[YX)], j=1L1 2, ..., d) on (a b) is the unique
minimizing function for F on 2.

Use the results in Problem 3.33 to formulate and prove analogous vector
valued versions of: (a) Theorem 3.7, (b) Corollary 3.8, and (c) Proposition 3.9
in §3.2.

(a) Formulate and prove a vector valued version of Theorem 3.16 in §3.5.

(b) Modify Theorem 3.16 to cover the case of a single Lagrangian constraint,
and prove your version. Hint: Proposition 2.5 with 3.17.

(c) Formulate a vector valued version of the modified problem in (b) that
covers both isoperimetric and Lagrangian constraints.

(a) Show that y,(x) = sinh x = (e* — e~)/2 minimizes [} (y,(x)* + y}(x)?) dx

uniquely for y, € C*[0, 1] when y,(0) = 0, y,(1) = sinh 1.
(b) Apply 3.16 as extended above to the problem of minimizing

1
F(Y) = J [yi(x)? + y3(x)*] dx
0
on

9 ={Y = (y1, y2) € (C'[0, 1])*: Y(0) = (0, 1), Y(1) = (sinh 1, cosh 1)}

def

under the constraint: g[ Y(x)] = y5(x) — y,(x) = 0 on (0, 1).
(c) Compare (a) and (b) to make the “correct’ choice for A. Can you find a
means of choosing this 4 without using the result of (a)?

! That is, their components are continuous on this set.
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3.37.

3.38%

3.39.

3.40*.

Minimal Area with Free Boundary. (See §3.4(e) and §6.9.)
(a) When u e C1(D) and v e C'(D), verify that formally

(Vu-N)v do

/1 +u§+uf’
where N is the outward normal to dD and do is the element of arc length
along dD. Hint: Green’s theorem in its divergence form.

(b) Conclude that if U, + W, =0 in D and Vu-N =0 on a subarc K < oD,
then u provides uniquely the minimal surface area among those competing
functions which agree with it on K, that part of the boundary complemen-
tary to K.

oS(u;v) = —f Uy + W)vdA +
D

An Optimal Control Problem with Damping.

If the motion of the rocket discussed in Example 3 of §3.5 is opposed by its
speed through the atmosphere, then the equation of motion becomes approxi-
mately

y=u—g —ay, foraconstanta > 0.

(a) Rewrite the last equation as (d/dt)(e™y) = e™(u — g) and integrate it as in
the text under the same conditions to obtain the new isoperimetric condi-
tion

Gw= JT (1 — e T ) (u(t) — g) dt = ah.
0

(b) Show that the function uy(t) = Ao(1 — e *™™") will minimize F(u)=
K u2(t) on C[0, T] uniquely, subject to the constraint in (a) for an appro-
priate choice of 4.

(c) Fora =1, find 1, and determine F(u,).

A heavy rocket-propelled sled is accelerated from rest over a straight horizon-
tal track of length [ under velocity-proportional air resistance as in the previ-
ous problem.
(a) To optimize the fuel consumption over time T show that we might con-
sider minimizing
T
F(v) = J (® + ov)* dt

0
on

2 = {ve C'[0, T]: v(0) = 0}

under the isoperimetric condition G(u)d=°f§§ v(t) dt = I, where o(t) is the
velocity at time t and « is a positive constant.

(b) Find a minimizing velocity function v,. Is it unique? Hint: f(y,z) =
(z + ay)? is convex! (Why?)

(c) When o = 1 and | = h, compare F(v,) with F(u,) in part (c) of the previous
problem under zero gravity conditions. Should they be the same? Explain.

(Newton’s parametrization.) In (14), let t = —y’ so that
1+1¢3)? 1
c>c=(—t—)=;+2t+t3 =cx(t) say,forc > 0.

(a) Show that fort > 1/\/5, dx/dt > 0, so that t can be used as an independent
variable when t > 1/\/3.



96

341

3. Minimization of Convex Functions

(b) Conclude that

dy 1
—=--2t—3
Cdt t

so that if we replace ¢ by 4/c, we get the parametric equations

c(l +1t2)? c 3t 7
= = =—1 — 2 = 7 t>1
x 2 P y 3 ogt—t 4+4 + 4 (_/\/3),

where at t = 1: x = ¢ and y = y,. Plot some points on this curve when
¢ =y, = 4 using a graphing calculator, if necessary, and compare with the
curves graphed in Figure 3.6.

(c) In general, we need to choose ¢ and y, to force our curve to pass through
given points. For simplicity, suppose that at t =1, x=c=a <1 and
y =y, = h. (This choice is further motivated in Problem 7.27). Then to
have y = 0 when x = 1, prove that there is a unique 7 > 1 at which

1 T2 2
w1y =1=20FT)
4 T
and

HIOS TET* + T? —log T — /(1 + T?)? = h.

Hint: Show that for T > 1, H'(T) > 0 and that H assumes each positive
value. (Recall the argument in §3.4(b).)

(Newton’s minimum drag problem.) If we permit a = 0 in the problem of
§3.4(c), then we wish to minimize the drag integral

Fly) = J" x dx
Y Ty ey
on
2* = {y e C'[0, 1]: y(0) = h, y(1) = 0, y'(x) < O},

and we are now seeking the profile of minimum drag for an entire body of

revolution, not just a shoulder.

(a) Show that if we remove the last restriction from 2* and admit zig-zag
profiles y with large slopes, then we could obtain arbitrarily small values
for F(y)!

(b) When h =1, compare the drag values of the profiles for a cone C, a
hemisphere H, and a truncated cone T in which y(x) = h when x < 4.

(c) When h =2, compare the drag values of the profiles for a cone C, a
paraboloid of revolution P, and a truncated cone T in which y(x) = h when
x <%

(d) When h = 4, repeat part (c) and conjecture about the superiority of trun-
cated cones or other flattened objects. In particular, using m = h/(1 — a)
can you find the “best” truncated cone T for given h?

(e) Show that with initial flattening permitted, we would need to minimize the
Bolza-type function G(y, @) = a%/2 + F(y) on 2 x [0, 1], where F and 2
are as in §3.4(c), and we require y’ < 0. Can our previous results from
convexity be used in attacking this problem? How?



CHAPTER 4

The Lemmas of Lagrange and
du Bois-Reymond

In most of the examples in Chapter 3, we examined a real-valued function F
defined on a domain of functions 2. We obtained for F an integral condition
in the form I(y; v) = 0, V v in an auxiliary domain %,, which is sufficient to
guarantee that each y € 2 that satisfies it must minimize F on 2.

By inspection (after reformulation if necessary) we were able to guess a
restricted class of y which could meet this condition and, in most cases, find
a particular y € 2 which would do so. This, of course, leaves open the possi-
bility that other minimizing functions might exist. In the presence of strict
convexity, we have seen that this cannot occur (Proposition 3.3). Without
strict convexity, we may have an alternative possibility. (See Problem 3.17.)
To explore this fully we should determine conditions necessary for a minimiz-
ing y and this will be carried out in the next chapter.

However, there are already related necessary conditions of both mathe-
matical interest and importance which we can consider here. For instance, in
several examples we observed that the choice h(x) = const. would make
5 h(x)v'(x) dx = 0, whenever v(a) = v(b) = 0. Thus the constancy of h is suffi-
cient to guarantee the vanishing of all such integrals. But is it necessary? i.e.,
will the vanishing of these integrals guarantee the constancy of h? YES.

(4.1) Lemma (du Bois-Reymond). If h € C[a, b] and [%h(x)v'(x) dx = 0,
YveP,={ve C'[a,b]: v(a) = v(b) = 0},
then h = const. on [a, b].

PrOOF. For a constant ¢, the function

v(x) ¥ J ) (h(t) — ¢) dt

97
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is in C'[a, b] (by A.8, the fundamental theorem of calculus) with derivative
v'(x) = h(x) — c on (a, b), and it satisfies the condition v(a) = 0. It will be in
9, if in addition v(b) = 0; i.e., if

b 1 b
j(h(t)——c)dt=0 or c=b__—af h(t) dt.

Thus for this ¢ and v, we have from the hypothesis that

a

0< jb (h(x) — ¢)* dx = jb (h(x) — )v'(x) dx

b
=0.

a

= jb h(x)v'(x) dx — cv(x)

a

Hence, from A9 it follows that on [a, b], the continuous integrand
(h(x) — ¢)* = 0 or h(x) = ¢ = const. as asserted. 4

The next result should be compared with Theorem 3.5.

(4.2) Proposition. If g, h € C[a, b] and [} [g(x)v(x) + h(x)v'(x)] dx = 0,
Yve,={ve C'[a, b]: v(a) = v(b) = 0},

thenhe C'[a,b] and h' = g.

Proor. Let G(x) = jf,‘g(t) dt for x € [a, b]. Then G € C![a, b] and G’ = g by

A.8. Hence integrating the first term of the integral by parts gives

fb [g(x)v(x) + h(x)v'(x)] dx = r [A(x) — G(x)]v'(x) dx + G(x)v(x) b,
so that

jb [h(x) — G(x)]v'(x) dx = 0, VY ve D,

and by the preceding lemma 4.1,

h(x) — G(x) = const. = ¢, say, on [a, b].
But then
h=G+ceC'ab] and h' =G =g as asserted. O

Setting h = 0 in this proposition gives the

(4.3) Corollary. If g € C[a, b] and [%g(x)v(x) dx = 0.
Vve P, = {ve C'[a, b]: v(a) = v(b) = 0},
then g = 0 on [a, b]. |

This result admits generalization:
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(4.4) Lemma (Lagrange). If g € C[a, b] and for somem =0, 1,2, ...

J‘b g(x)v(x) dx =0,

Y Voe, = {veC™a bl W@ = W) =0,k =0,1,2,..., m},
then g = 0 on [a, b]. (Here C°[a, b] = C[a, b].)

ProOF. Suppose g(c) > 0 for some c € (a, b). Then from the hypothesized
continuity of g, ¢ is contained in an interval [o, f] S (a, b) in which
lg(x) — g(c)| < g(c)/2 or g(x) = g(c)/2 > 0. On the other hand, the function

U(x)déf {[(x —)(f— )" xe[a Bl
0, x ¢ [a, ],

is in C™(R) (Why?), and nonnegative. It follows that on [qa, b] the product
gv is continuous, nonnegative, and not identically zero. Thus from A.9,
0< j b g(x)v(x) dx, contradicting the hypothesis.

Similarly, the supposition that g(c) < 0 or —g(c) > 0 leads to a contradic-
tion and we conclude that g(c) = 0, V ¢ € (a, b). But since g is continuous, it
must also vanish at the end points of the interval; i.c, g =0 on [a, b]. O

Lemma 4.1 of du Bois-Reymond also generalizes but with more difficulty:
(4.5) Proposition. If h € C[a, b] and for somem = 1,2, ...

b
j h(x)v™(x)dx =0, VveD,,

a
where

Do = {ve C"[a, b]: v¥(a) = v®¥(Bb)=0,k=0,1,2,...,m — 1},
then on [a, b], h is a polynomial of degree < m.

PrOOF*. By a translation we may assume that a = 0. The function

x ty tm—1
H(x) défj dt, J dtz...J h(t) dt, )
0 0 0

is in C™[0, b] with derivative
H™(x) = h(x),

as is shown by repeated application of the fundamental theorem of calculus.
Moreover, H(0) = H'(0) = --- = H™ V(0) = 0, since each successive differen-
tiation eliminates one integral.

Similarly, if ¢ is a polynomial of degree less than m, then P(x) défx"'q(x)
vanishes at x = 0, together with P9(x) for j <m, while p(x)™ P™(x) is
another polynomial of degree less than m.

Let

v(x) = H(x) — P(x) @
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so that
v™(x) = h(x) — p(x).

We must next show that with the proper choice of ¢ we can make
v®b)=0fork=0,1,2,...,m — 1, and this is possible. (See Problem 4.6*.)
Assuming that this choice has been made, the resulting v € &, and it follows
from repeated partial integrations that

Jb p(x)v™(x) dx = —J'b p'(x)v™ V(x) dx

0 0

= (=1 va p™(x)v(x) dx = 0,

0

since the boundary terms vanish. Thus, finally, from the hypothesis and
construction:

0< r (h(x) = p(x))* dx = r (h(x) — p(x))v™(x) dx
0 0

= fb h(x)v"™(x) dx = 0,

0

so that h(x) = p(x) on [0, b]. O
It is straightforward to obtain the vector valued analogue of 4.2:
(4.6) Proposition. If d = 2, 3, ... and for G, H € (C[a, b])%,
fb [Gx) V(x)+ H(x) V'(x)] dx =0,

VVeDy={VeW: V= Vb =0}

where % = (C'[a, b])*, then He % and H' = G (i.e, hj(x) = g;(x),j = 1,2, ...,
d).

Proor. If we restrict attention to those V = (1,0,0,0,...,0) e %, then the
integral condition resuces to
b
f [g:(x)v(x) + A (x)v'(x)]dx =0, VwveC'[a b] withwv(a)=v(b)=0.
Hence from 4.2, it follows that
h,eC'[a,b] and h}=g,.

We can obviously apply the same technique to each component and con-
clude thathj =g;,j=1,2,..., m. O
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(4.7) Corollary. When H € (C[a, b])* and

b
f H(x) V'(x)dx = 0, VVe,

a

as above, then H(x) = const. = C € R

Proor. Set G = 0 in the proposition. O

A multidimensional version of Lemma 4.4 is presented in Problem 4.5.

PROBLEMS

4.1. Carry out the steps in the proof of Proposition 4.2 in the special case that
g(x) = sin x.

42. IfheC[a, b] and

Jb h(x)u(x) dx = 0, Yue 9, = {u € C[a, b]: Jb u(x) dx = 0},

show that h(x) = const. on [a, b]. Hint: Consider v(x) = [} u(z) dt.
4.3. (a) Suppose that he C![a, b] and

Jb h(x)v'(x)dx =0, VveP,={veC'la,b]
C b@ = v'(a) = v(b) = v'(B) = O}.

Use integration by parts and the proof of Lemma 4.4 to conclude that
h = const. on [a, b]. (Do not use Lemma 4.1.)
(b) If g € C[a, b] and

Jb [g(x)v(x) + h(x)v'(x)] dx =0, VveD,,

conclude that b’ = g on [a, b], without invoking 4.2.
4.4. Formulate and prove a vector valued analogue of the result in Problem 4.2.

4.5. (a) Prove the following multidimensional version of Corollary 4.3 for a
bounded domain D of R%: If ue C(D) and [puvdX =0,Vve D= {ve
CY(D): v|5p = 0}, then u = 0 in D. (Existence of the integrals with respect to
dX, the d-dimensional element of volume, is to be assumed.) Hint: For each
closed box B={XeD: a;<x;<b; j=1, 2, ..., d}, consider functions
v(X) = vy (x;)v5(x3)... v4(x,), where each v; is a function of the type used in
the proof of Lemma 4.4 (for m = 0).

(b) Formulate and prove a corresponding extension of Lagrange’s Lemma, 4.4.

4.6*. In proving Proposition 4.5 we needed to show that there is a polynomial g of
degree less than m such that P(x) = x™q(x) has at b # 0, prescribed derivatives
PY®b) =p, k=0,1,2,....(Indeed, we want p, = H®(b) in (2).)
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(a) Letq, =q™(b),k=0,1,2,...,m — 1. By repeated differentiation show that
Po = b"qo,
p, =b™q, + mb™ 'qq,
P2 = b"qy + 2mb™ 7 q; + m(m — 1)b™ % q,
etc.,

and that conversely these equations can be solved uniquely for the g,. Thus
the g, are known implicitly (and recursively).
(b) With the values of g, from part (a), show that
m—1 g
40 =Y (e — by
=0 k!
is a polynomial for which ¢®(b) = q,, k =0, 1, ....
() Conclude that P(x) = x™q(x) will meet the required conditions.

4.7. Carry out the steps of the proof of Proposition 4.5 when m = 2.



CHAPTER 5
Local Extrema in Normed Linear Spaces

In RY it is possible to give conditions which are necessary in order that a
function f have a local extremal value on a subset D, expressed in terms
of the vanishing of its gradient Vf (§0.5). In this chapter, we shall obtain
analogous variational conditions which are necessary to characterize local
extremal values of a function J on a subset & of a linear space % supplied
with a norm which assigns a “length” to each y € %.

In §5.1 we characterize norms and in the next two sections use them
to forge the analytical tools of convergence, compactness, and continuity,
presuming that the reader is familiar with these concepts in R After some
obvious terminology concerning (local) extremal points (§5.4) we come to
the heart of the chapter: the observation that at such a point, the Giteaux
variation of a function must vanish in each admissible direction (§5.5). In
the next section, the norm is used to extend the development of differentia-
tion from the Géteaux variations of Chapter 2 to that of the derivative in the
sense of Fréchet. In the concluding section, we introduce the method of
Lagrangian multipliers to characterize the local extremal points of one func-
tion when it is restricted (constrained) to the level sets of others.

§5.1. Norms for Linear Spaces

Analysis in R? is described most easily through inequalities between the
lengths of its vectors. Similarly, in the real linear space %, we shall assume
that we can assign to each y € % a nonnegative number, denoted |/ y|, which

103



104 5. Local Extrema in Normed Linear Spaces

exhibits the following properties:

vyl =0, Vye% withequality iff y = 0, (1a)

leyl = lellyll,  VceR, yed; (1b)

Iy + 3l <lyll+ 131, VYyjed (1c)

Thus ||-|| is simply a real valued function on % which by (1a) is positive

definite, by (1b) is positive homogeneous, and by (lc) satisfies the triangle
inequality. Each function with these properties is called a norm for %. There
may be more than one norm for a linear space, although in a specific exam-
ple, one may be more natural or more useful than another. Every norm also
satisfies the so-called reverse triangle inequality

Hyl =157l <1y =3, Vyjed. (1d)
(Problem 5.1.)

Example 1. For % = R? with y = (y,, y,, ..., ys), the choice |y|| = |y| =
(4., y?)"? defines a norm, called the Euclidean norm, but the verification of
the triangle inequality (1c) is not trivial (Problem 5.2).
The choice |y||; = ‘}=1| y;| also defines a norm and now all of the
properties are easily verified. In particular, for (1c):
d d

ly + 3, = 21 ly; + 75l < 21 (il + 130,
Jj= J=

or

d d
Iy + 3l < Zl ly;| + Zl 1751 =1yl + 15l
i= j=

Still another norm is the maximum norm | y|l,, = max;-, ,, . 4ly;l. However,
the simpler choice, ||y|| = |y, | does not yield a norm for R? if d > 2 because it
is not positive definite. Indeed, the nonzero vector (0, 1, 1, ..., 1) would have
a zero “norm” with this assignment.

Example 2. For % = C[a, b], it is useful to think of the values y(x) as the
“components” of the “vector” y € #. Then the choice ||y, = max|y(x)| =
max, .45 | y(x)| determines a norm, the so-called maximum norm. That it is
even defined and finite is not obvious and it requires the knowledge that:

(i) y € Cla, bl =1yl € C[a, b];
(i) [a, b]is compact;
(iii) a continuous function (|y|) on a compact interval ([a, b]) assumes a
maximum value (|| y|| )

(i) is a consequence of the (reverse) triangle inequality in R', while (ii) is
established in §A.0; (iii) will be established in Proposition 5.3.
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Accepting its definition, it is straightforward to verify that || - ||, is
(a) positive definite: Since 0 < |y(x)| < ||y, then
Iylm =0=]y(x)[ =0 or y(x)=0, Vxelab]
ie,y =0
(b) positive homogeneous:
eyl = max[cy(x)| = max |c||y(x)| = |c| max[y(x)| = |¢] |yl u3

and
(c) satisfies the triangle inequality:

(v + D) = 1y(x) + X <y + [5()]
< IYlly + [19lls:  x€[ab];

thus ||y + jlly = max|(y + X)) < |yl + 7]
Another choice of norm for C[a, b] is [ly|; = [5|y(x)| dx. (See Problem
5.3.) Observe that ||y||; < (b — a)||y| s Are there other norms for this space?

Example 3. For % = C![a, b], analogous norms are defined by

I¥llye = max (ly(x)] + [y'(x)])

xela,b]

and

b
Iyl = j Iy + [y'(x)]) dx.
To establish the triangle inequality for | - || s, observe that for x € [a, b]:

v+ I+ 1+ I <y + 5]+ [y R+ 15 ()]
=y + 1y D) + (17C)] + 17 ()0
< [yl + 115l ar-

Now maximizing over x yields the inequality

1y + §la = max{ly + D) + (v + G} < Iyllae + 151a

as desired.

Observe that for x € [a, b]: |y(X)| < |yllp- Thus ||yl =0=y =0; ie,
Il Il ¢ 1s positive definite, asis || - ||, since || y[; < (b — a) | y] »- Can you devise
corresponding norms for C2[a, b]? For C"[a, b]?

(5.0) Remark. Since for each m =2, 3, ..., C"[a, b] < C![a, b] = C[a, b],
then each norm for C[a, b] from the previous example will serve also as a
norm for C![a, b] (or for C™[a, b]). However, these norms do not take
cognizance of the differential properties of the functions and supply control
only over their continuity.
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Example 4. If || is a norm for the linear space #, then ||y| + |t| is @ norm
for the linear space % x R consisting of the pairs (y, ) with componentwise
addition and scalar multiplication. (See Problem 5.8.)

Example 5. % = C(a, b] is a linear space which has no obvious choice for
a norm. Now, max | y(x)| can easily be infinite as can [} |y(x)| dx; the function
y(x) = 1/(x — a), x #a is in % and realizes both of these possibilities. In
fact, this space cannot be normed usefully.

Example 6. % = (C[a, b])", the space of d-dimensional vector functions with
components in C[a, b], is a linear space with a norm for Y = (y,, y2, ..., Ja)

(i'e" Y(X) = (yl(x)9 y2(X), RS yd(x))’ X € [a9 b]), given by
[ Yll5 = max|Y(x)],

or by
d
1Yl = 21 max|y;(x)],
f=
or by
d b
1Yl = Zl lyj(x)] dx,
J= a
or by

b/ 4 12 b
1Yl = J (; yf(X)) dx = J [Y(x)| dx

a

The verification is left to Problem 5.6

Example 7. % = (C![a, b])%, the space of d-dimensional vector functions with
components in C*[a, b], is a linear space with a norm

1Y [l = max(|Y(x)] + | Y'(x))),
or

Y| = ; max(|y;(x) + [y;(x)]),

Can you think of other norms for this space?

As these examples show, the discovery of a suitable norm for a given
linear space is not immediate, is seldom trivial, and may not be possible.
Fortunately, the spaces of interest to us in this text do have standard norms,
and these have been given in the examples above.

(Problems 5.1-5.8)

§5.2. Normed Linear Spaces: Convergence
and Compactness
When a norm |- | for a real linear space % has been assigned, it is straight-

forward to define an associated (topological) structure on % which will permit
analysis in the normed linear space (%, |- |).
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First, we define the “distance” between vectors y and j by |y — j||. The
triangle inequality shows that for any three vectors x, y, ze %: |x — z|| <
lx — yll + ||y — z|| and this has the familiar geometrical interpretation.

Next, we introduce the concept of convergence by declaring that if y, €
% n=1, 2, ..., then the sequence {y,}¥ has the limit y, €% (denoted
lim, o, Y, = Yo, OF y, = yo as n— o) iff |y, — Yol >0 as n— co. A given
sequence need not have a limit, but if it does its limit is unique.

[Indeed, were y, and j, both limits of the same sequence { y,} from %, then
by the triangle inequality for each n,0 < ||y, — Joll < 1y — Vull + ¥ — Foll-
The right side can be made as small as we wish by choosing » sufficiently
large; thus [y, — Jol = 0; but by the positive definiteness of the norm, this
means that y, — , = O or y, = j,.]

Alternatively, we can introduce the (open) spherical d-neighborhood of y,,
for each § > 0 defined by S;(y,) = {y € #: ||y — yo| < 6} and note that for a
sequence {y,}: lim,_ . y, = y, iff the y, are eventually in each S;(y,); i.e., for
each 6 > 0, 3 N; such that n > N;=y, € S;(y,)

Using these concepts, we can identify the compact subsets of # as those
sets K with the property that each sequence {y,} from K contains a conver-
gent subsequence {y, } with limit y, € K; ie., for integers n; <n, <--- <
n <ty <o, limyLg Y, = o € K. (Equivalently, K has the property that
each covering of K by a collection of open spheres can be accomplished by
using only a finite number of these spheres. See [F1].)

For % = C[a, b], with the maximum norm (Example 2 of §5.1), the
J-sphere of a function y, € # is the set of functions y whose graphs are
uniformly within 6 of the graph of y,. (See Figure 5.1.) The associated conver-
gence of a sequence is accordingly referred to as uniform convergence.

Now although C[a, b] is a linear space,

2 ={yeCla,b]: y(a) =0, y(b) = 1}

is not, since the sum of two of its functions cannot satisfy the boundary

y
<—y0+6
— Yo
~— Yo — 0
o b x

Figure 5.1
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Figure 5.2

condition at b. 2 is simply a subset of # = C[a, b], and as such automati-
cally inherits the norm-distance properties from %. Notice also that with the
maximum norm, 2 does not contain a full J-neighborhood of any of its
elements. (See Figure 5.2.) 9 is not compact, for reasons that are deferred
until the discussion of continuity in the next section.

For % = R? with the standard Euclidean norm (Example 1 of §5.1), the
S-spheres are the open d-dimensional spheres which in R*® are ordinary
spheres, in R?, disks, and in R!, open intervals. With the maximum norm
[ylpm = max;—; 5 4|y;l, the J-spheres are d-dimensional “cubes.” With
either norm, the convergence of a sequence of vectors from R? has the
same geometrical interpretation, and the compact subsets are precisely those
which are bounded (contained inside some 5-sphere) and closed (contain the
limits of each of their convergent sequences). In particular, each “box” of the
form B={yeR%q;<y;<b;j=1,2,...,d} is compact (§A.0).

(Problems 5.9-5.12)

§5.3. Continuity

If 2 is a subset of %, then we can consider it as the domain of various kinds
of functions. For example, a #-valued function #: 2 — % could be defined
by requiring #(y) =0, YV ye 2. For our purposes, the most important
functions are those which are real valued, i.e., those of the form J: 2 — R, of
which we have already encountered many examples in the previous chapters.

When % is supplied with a norm |- ||, we simply adopt the standard ¢ —
definition for the continuity of a real valued function. (See §0.3.)

(5.1) Definition. In a normed linear space (%, |-|), if 2 < %, a function
J: 9 — R is said to be continuous at y, € 9 iff for each ¢ > 0,3 a 6 > 0 such
that

Iy —J(o)l <&, VyeZ with|ly — yol <.
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We observe that the definition of continuity of J at y, is a mathematical
statement of the intuitive requirement that the smallness of ||y — y,| control
that of [J(y) — J(yo)l.

Equivalently, J is continuous at y, € & iff for each sequence {y,} from
2, lim,_ 4 y, = yo =lim,_ J(y,) = J(¥o)- The proof of this fact is left to
Problem 5.13.

We also say that J is continuous on 2 iff J is continuous at each point
Yo € 2. Observe that if J: % — R is continuous, and 2 < %, then the restric-
tion J| 4 2 — R is also continuous with respect to the same norm.

Example 1. In any normed linear space (%, | -|)), the norm function J(y) =
|yl is always continuous on % and hence on any subset & of #. Indeed, from
the reverse triangle inequality (1d), [J(y) — J(yo)l = [yl — llyoll | < lly — yol,
and hence making |y — y,| small (< &) makes |J(y) — J(y,)| at least as
small. (In fact, | - || is uniformly continuous on %. See Lemma 5.2 below.)

Example 2. For % = C[a, b] with the maximum norm | - ||, of §5.1 Example
2, the function

J(y) = fb [sin® x + y*(x)] dx

is defined for each y € #. To establish its continuity at y, we must estimate

[J() — I (o)l =

b
f [y(x)* — yo(x)*] dx
< f V(X — yo(0?] dx

= f [y(x) = yo(X)| | ¥(x) + yo(x)| dx

b

<[y —=Yolmlly + yO”Mf dx,

a

or
M) = J@o)l < (b —a)lly + yolmly — yollu-

Now, if [y —yoly <1, then |[yllyy <1+ [yolsr (Why?) and so
1y + Yollm < Iyllar + [yollar <1+ 2| yollayr- Thus when [y — yollp < 1:

[J(¥) = J(yo)l < (b —a)(1 + 2[[yolla) |y — yollm
=Aoly — yolum>

say, for the constant Ay = (b — a)(1 + 2||yo|l m)-

This last estimate shows that for each & > 0, we can make |[J(y) — J(y,)| < &
provided that we take |y — yoll < oy min(1, ¢/4,). Hence J is continuous
at each y, € %, and so J is continuous on %.
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Example 3. With a given a € C[a, b], the function of §2.2, Example 2; viz.,

J(y) = [ba(x)\/1 + y'(x)* dx is defined V y € % = C'[a, b]. Direct examina-
tion of its continuity with respect to the maximum norm | ||, is facilitated
by the following uniform estimate for f(z) = \/1 + z*:

@) = fo)l <1z —2ol,  2z,z0€R

[This is an immediate consequence of the mean value theorem and the fact
that

i <1, zeR.]

|f'(@)] = ﬁ =

Thus for y, y, € % we have V x € [a, b] the uniform estimate

f(Y'(x) = foCNI < 1y'(x) — yo ()| < 1y — yollar-
Hence

() = J(¥o) Sj [ S (y'(x)) = f(yo(x))] dx

b
<y —yolm J la(x)| dx = Ay — yolla
say, and the (uniform) continuity of J on # should now be evident.

To obtain uniform estimates of the type used in this last example, we shall
make frequent appeal to the following technical

(5.2) Lemma. If K is a compact set in a normed linear space (%, || ||), then a
continuous function F: K — R is uniformly continuous on K; i.e., given ¢ > 0,
36 >0suchthaty,je Kand ||y — j| <d=|F(y) — F())| <.

Proor. We shall establish the contrapositive implication. Suppose the
lemma does not hold. Then, for some ¢, > 0, and each n = 1, 2, ..., 3 points
Vs V€ K with ||y, — 7| < 1/n for which |F(y,) — F(J,)| = &,. However,
since K is compact, there is a subsequence y, — y, € K as j —» o0, and since for
eachj=1,2,...:

~ ~ 1
”ynj - yO“ < ”ynj - yO” + ”ynj - ynj” < ”ynj - yO” + ;7
]

it follows that I, = Yo asj— co. But, V

0 < &9 <[F(yn) = F(Fu)l < [F(yn) — F(yo)l + |F(5,) — F(¥o)l,

and hence F cannot be continuous at y, since continuity would demand that
both terms on the right — 0 as j — co. Thus we have shown that if F is not
uniformly continuous on K, then there is at least one point y, at which it is
not continuous. 0
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Example 4. When fe C([a, b] x R?), the function

F(y) = f SIy(x)] dx = f S, y(x), y'(x)) dx

is defined Vy e #% = C![a, b]. To establish its continuity with respect to
the maximum norm | -|,, of Example 3 in §5.1, we can use Lemma 5.2 as
follows:

f is uniformly continuous on each compact box [a, b] x [ —c, c]*> when
¢ > 0. Thus for a fixed y, € %, when y € S;(y,) we have V x € [a, b] that both

YL Y G < Iy + [y O < 1yl <1+ [[yollme = co, 52y

Then with ¢ = ¢, it follows from the aforementioned uniform continuity
that given ¢ > 0,3 a 6 € (0, 1) such that |y — yolly < d(< 1) =

ISIyx)] = fLyo(¥)]l = 11 (%, y(x), y' (X)) — f(x, yo(x), yo(X)) <&,

V x € [a, b].
This uniform estimate gives

[F(y) = F(yo)l < f IS Iy(x)] = f[yo(x)]] dx < e(b — a),

when
ly — yoll <6 <1,

and the continuity of F at the arbitrary point y, € % is established. Observe
that é depends on ¢, (and so on y,) and will in general decrease as ¢,
increases.

Example 5. For % = C[a, b] with the maximum norm ||y, = max|y(x)| of
§5.1, Example 2, the evaluation function L(y) = y(a) is defined V y € % and L
is even linear in that for y, j € % and c, ¢ € R, we have

L(cy + ¢y) = cL(y) + ¢L()),

(since (cy + &¥)(a) = cy(a) + ¢j(a)). Observe that L(0) = 0.
L is also continuous: For a linear function L it suffices to establish conti-
nuity at @ since
L(y) = L(yo) = L(y — Yo),

so that |L(y) — L(y,)| is controllably smallas v =y — yo— O iff L(v) >0 =
L(0) as v —» 0. Here, clearly |L(v)| = |v(a)| < ||v] s, so that v - O = L(v) - 0.

However, if instead we use the integral norm |y||; = f’; |y(x)| dx on this
same space, as in §5.1, Example 2, then this same function L(y) = y(a) remains
linear, but it is not continuous anywhere. From our observation, it suffices
to eliminate continuity at ¢/, and for this it suffices to exhibit a sequence
y. € Cla, b] for which |y,ll; =0 as n— oo, but L(y,) = y,(a@) > 1. The
functions y,(x) shown in Figure 5.3 have this property, since geometrically
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forn> (b —a)™,

1 1 1
[ally = (5)(”(;) = ﬂ—ﬂ) asn— oo,

while y,(a) = 1,V n.

We are of course interested in characterizing the maximum and minimum
values of such real valued functions J and the points at which they occur.
Unfortunately, as the simple example y(x) = x, xe(—1,1) = R, shows, a
continuous function on a subset of a linear space may have neither a maxi-
mum value nor a minimum value on this set—unless the set is compact.

(5.3) Proposition. A continuous real valued function J on a compact subset K
of a normed linear space (%, || - ||) assumes both maximum and minimum values
at points in K. In particular, these values are finite.

Proor. To establish that J assumes a maximum value, observe that we
can at least find a sequence {y,} from K for which the corresponding se-
quence {J(y,)} of real numbers increases to this “maximum” (which may
be infinite). However, since K is compact, we can extract from this sequence
a convergent subsequence {y, } with limit y, in K. From the continuity of
J it follows that J(y,) = lim;., J(y, ). But J(y, ) must have the same limit as
the original sequence J(y,). (Why?) Hence this common limit is J(y,), i.., the
maximum value is assumed. The proof for the assumption of the minimum
value is similar. O

A consequence already utilized in §5.1, Example 2, is that every real valued
continuous function on the compact interval [a,b] is bounded and it assumes
a maximum value.

However, as attractive as this solution to the problem of establishing
the existence of maxima and minima may appear, it will be of little help
to us because most of the sets of interest to us are too “large” to be compact.

One application of the proposition will be in forestalling attempts to estab-
lish compactness!
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YA

Figure 5.4

For example, C[0, 1] is not compact with the maximum norm since the
continuous function J(y) = y(1) is unbounded on C[0, 1]. To see this, we
consider the functions y,(x) = nx, x € [0, 1] for which J(y,) = n - +o0.

More generally, in a nontrivial normed linear space (%, || ||), % itself is
never compact (Problem 5.17). In particular, there is no clever assignment
of a norm to C[a, b] that makes this space compact.

Similarly, 2 = {y € C'[a, b]: y(a) = 0, y(b) = 1}, which is one of the sets
of concern in Chapter 2, is not compact with respect to the maximum norm
|- 3 or the integral norm |||, of §5.1, Example 3. For as we have seen in
Example 1, the norm function J(y) = |y| is always continuous on % and
hence on any subset 2 of #. But Jy,(y) = ||ylls is unbounded on the set 2
above, as is shown by the sequence of parabolic functions sketched in Figure
5.4, which have maximum values as large as desired while remaining in 2.
Clearly ||y|l, = max|y(x)| and so J,(y) will be unbounded on this sequence.
It is also plausible graphically that the integral norm function J;(y) = ||y|;
(= f 31y(x)| dx) is unbounded on this sequence, since the area under the curve
can be made as large as we wish. In particular, the apparently reasonable
problem of finding the maximum of the function J(y) = f L1y(x)| dx on 2 has
no solution. (In fact, the problem of minimizing J on £ has no solution. See
Problem 5.19.)

Thus, the results of Chapter 3 in which we actually obtained minimum
values for rather complicated functions on sets such as 2 become even more
remarkable. (As we saw, an underlying convexity was responsible for our
success in these cases.)

We shall proceed with the theoretically unattractive task of seeking max-
ima and minima of functions which need not have them, as the above exam-
ple shows. Note that to maximize J it suffices to minimize —J, and when the
underlying set & is not compact it is probably of little value to establish the
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continuity of a function J which we wish to minimize on 2. (However,
continuity of related functions will be required in §5.6 and §5.7.)

Thus in general, neither continuity nor compactness alone can provide
us with useful information. As suggested by the analogous situation in R?,
we must consider necessary conditions expressed in terms of an appropri-
ately defined concept of differentiation. We introduce first some obvious
terminology.

(Problems 5.13-5.19)

§5.4. (Local) Extremal Points

When % is a linear space and J is a real valued function on 2 < %, then a
point y, € 2 at which J assumes its maximum value or its minimum value
is called an extremal point for J on &. This assignment is global in nature
and may be made without consideration of a norm. However, the presence
of a norm permits an analogous description of the local behavior of J at a

point y,:

(5.4) Definition. In a normed linear space (%, |- ||) a point y, € 2 < % is said
to be a local extremal point for J on 2 if for some r > 0, y, is an extremal
point for J on Z,(y,), where 2,(y,) = {y € 2: |y — yol <r};ie., either

J) <J(yo), YyeD(yy) (yois alocal maximum point for J on 9), or
JY)=J(yo), VyeD.(yy) (yoisalocal minimum point for J on 9).

Of course, each extremal point is automatically a local extremal point
whatever norm is used. However, y, may be a local extremal point with
respect to one norm but not with respect to another. (See Problem 5.20)

Now, the Giteaux variations of Chapter 2 may also be formed without
consideration of a norm and when nonvanishing, they preclude local extremal
behavior with respect to any norm.

Suppose, for example, that at a point y,, the function J has a positive
variation 0J(y,; v) in the direction v € %. From Definition 2.6, it follows
that V ¢ sufficiently small, the ratio [J(y, + ev) — J(yo)]/¢ is also positive,
so that J(y, + ev) — J(y,) has the sign of &. Hence,

0J(yo;0) > 0=J(yo — &v) < J(y0) < J(yo + &v), Vsmalle >0, (2)

and we say that at y,, J increases strictly in the direction v (and decreases
strictly in the opposite direction —v). When 6J(yo; v) < 0, then 6J(yo; —v) >0
(Why?) so that the preceding inequalities and assertions are reversed. In
either case, since as ¢ N 0, [|(yo + &v) — yol = €||v] ™ 0, the points y, + ev
in (2) are eventually in each norm neighbourhood of y,. Thus local extremal
behavior of J at y, is not possible in the direction v.
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The function J of §2.4, Example 2, has at y,(x) = x2, the variation
b

0J(yo; v) =2 f Yo(x)v(x) dx, Vve® = Cla, b],
which is clearly nonvanishing in the direction v(x) = e*. Thus, in this direc-
tion, J cannot exhibit local extremal behavior at y,, and as a consequence, y,
cannot be a local extremal point for J on % regardless of the norm employed
for %.

§5.5. Necessary Conditions: Admissible Direction

In minimizing a real valued function J over 2 = %, where (%, ||-||) is a
normed linear space, it is natural to consider for each y € & those directions
v € % in which the restricted function J|, admits variation at y; i.e., we wish
to distinguish those directions v € % for which:

i) y + ev e 2, V sufficiently small ¢; and
(i) oJ(y; v) exists.

Such directions will be termed admissible at y for 2, or Z-admissible at y (for
J). Observe that if v is Z-admissible at y, then so is each scalar multiple cv for
c € R; O is always admissible.

To see their significance, suppose that y, is a (local) minimum point for
J on 9. Then J cannot decrease strictly in any direction v admissible at y,
for 2, and hence from (2) (et seq.) dJ(yo; v) = 0 in such distinguished direc-
tions. The same result is obtained when y, is a (local) maximum point on 2.
Thus we have established the following:

(5.5) Proposition. In a normed linear space (%, |- |), if yo € @ = % is a (local)
extremal point for a real valued function J on 9, then

0J(yo; v) = 0, Y directions v which are 2-admissible at y,,. |

Our hope is that there will be “enough” admissible directions so that
the condition 8J(y,; v) = 0 can determine y,. Observe, though, that with
this condition alone we cannot distinguish between a local maximum and
a local minimum point—or between a local minimum point and a global
minimum point. Moreover, as in R%, we must admit the possibility of station-
ary points (such as saddle points) which satisfy this condition but may be
neither local maximum points nor local minimum points.

Clearly then, in many senses this condition is necessary but not sufficient
for, say, a (local) minimum point. However, its analysis forms a large part
of the classical calculus of variations. We shall give a geometrical interpreta-



116 5. Local Extrema in Normed Linear Spaces

tion for it in the next section and return to its classical treatment in the
next chapter.

(Note that Proposition 5.5 admits a local extremal point y, € 2 which has
no nonzero 9-admissible directions, and such points must also be considered
as candidates for local extrema.)

Example 1. To characterize local extrema for the function (of §2.4, Example 2)

J(y) = Jw [sin® x + y(x)?] dx

on the domain
2 = {y e C[a, b]: y(a) = a, y(b) = b, },
(where aq, b, € R are given), we know that 6J(y; v) is defined V y, v € C[a, b].

However, the only Z-admissible directions at y € & are those for which
y + ev € 2 for sufficiently small ¢ # 0. Thus we require that

a, = (y + ev)(a) = y(a) + ev(a) = a, + ev(a),
b, = (y + ev)(b) = y(b) + ev(b) = by + ev(b),
so that v(a) = v(b) = 0. Hence v is Z-admissible at y € D iff
ve D, = {ve C[a, b]: v(a) = v(b) = 0}.
Here the class 2, is not y-dependent, and by Proposition 5.5 the condition

necessary for a (local) extremal point y, € 2 is that
b
0J(yo; v) =2 f Yo(x)v(x) dx =0, VveD,.
This condition is surely fulfilled when y, = 0, but this function is not in &
(unless a; = b; = 0). And as Lemma 4.4 of Lagrange shows there is no other
possibility; i.e., when a; # 0 or b, # 0 there are “too many” admissible direc-
tions to permit any function y, € 2 to satisfy all of the conditions 6J(y,; v) =
0 necessary for a (local) extremum. Thus no such local extremum exists.
If on the other hand, we attempt to minimize J over
1

D* = {y e C[0, 17: f xy(x)*? dx = 1},

0

then it is difficult to characterize the 2*-admissible directions. (This problem
will be considered again in Example 1 of §5.7.)

Example 2*. Let’s characterize local minima for the function J of §2.4,

Example 3,
b
J(y) = f a(x)y/1 + y'(x)* dx,
for a given o € C[a, b], on the domain

2 = {yeC'[a, bl y(@) = ay, y(b) = by },
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with given a,, b; € R. We again know that 6J(y; v) is defined V y, ve & =
C'[a, b], and as in the previous example conclude that v is Z-admissible
(at y) iff

ve D, = {ve C'[a, b]: v(a) = v(b) = 0}.

Hence from Proposition 5.5, the necessary condition that ye 2 be a
(local) extremum is that

LAy )

e STy eE

Thus from Lemma 4.1 of du Bois-Reymond, we know that this necessary
condition is satisfied only by a y € 2 for which the continuous function

oJ(y;v) = 0, VYveD,.

M = ¢ = const., 3)
V1I+y?
or after obvious algebra, for which
2
72 ¢
= . 4
yi= iz Q)

We shall suppose that a does not vanish identically on any subinterval
of [a, b]. (See Problem 5.21.) If & vanishes at a single point, then from (3),
¢ =0 and so y = const. which would require y(a) = a, = y(b) = b,. Thus
unless a; = b,, solution to (3) is possible only when a?(x) > ¢ > 0, and
for a continuous o this requires that either a(x) > |c|>0 on [a, b] or
a(x) < —|c| <0 on [a, b]. It suffices to consider the first alternative where
o > 0 since the second is reduced to this case with the replacement of J by
—J. Now, when o > 0 on [a, b], the integrand function is strongly convex
(§3.3, Example 4) and we know from Theorem 3.7 that each y € 2 which
satisfies (3) must supply uniquely the minimum value for J on 2. We see
that (3) is both necessary and sufficient for a minimum,; that there can be
at most one such minimum point; and that there are no other (local) extremal
points for J on 2. However, as yet, we have no assurance that thereisa y € 9
which satisfies (3).

Supposing that a; < by, and that a(x) > oy, > 0 on [a, b], we require from
(4) that

y'(x) = [(@(x)/c)* — 1172,

or upon incorporating the requirement y(a) = a,, that

y(x) =a; + jx [(@(t)/c)* — 1772 dt, x €[a, b].

It remains to show that c € (0, ay) can be chosen to satisfy the other
boundary condition y(b) = b,; i.e., to make

hie) = f b [(a(x)/c)® — 1772 dx = b, — aj. (5)
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When a(x) = const. = &, on [a, b], then h(c) = [(xo/c)®> — 1172(b — a), is
continuous and strictly increasing on (0, ;) with the limiting values 0
(= lim,y h(c)) and +oo (= lim 4, h(c)). Hence in this case, there is precisely
one ¢ for which (5) is satisfied and precisely one y € 2 which satisfies (3).

When « is not constant, it is more difficult to analyze h(c). (See Problem
5.32*) However, it is important to realize that there may be no solution.
For example, when a = 1, b = 2, and a(x) = x on [1, 2], then we may take
oy = 1, and for c € (0, 1):

2 2
ac(zx)—1=j—2—12x2—1;

hic) = j ’ (“1(2") - 1>_l/2 dx < j 12 (x2 — 1)1 dx
2

- /3

1
Thus when b, — a; > /3, there is no y € 2 which satisfies the necessary
condition 8J(y, v) = 0, V @-admissible directions v € 9,; in this case, there
are no local extremal points for J on 2.

hence

2
< f (x2 = 1) Pxdx = (x> — 1)1?
1

Example 3. For % = R? with the standard Euclidean norm |-|, and
9 ={yed: |yl=1},

there are no Z-admissible directions v # @ at any y € @ for any function
J, because if ye @ and O # ve %, then y + ev ¢ & except at most for one
value of ¢, as the simple geometry of Figure 5.5(a) shows.

On the other hand, at each point in the square 9, = {y € ¥: ||y, = 1}
of Figure 5.5(b) there is always one possible nonzero 2-admissible direction,
except at the corner points where again there are none.

(@ (b
Figure 5.5
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Example 4*. The brachistochrone function of §1.2(a), viz.,

T(y) = Wi y 0
\/— NATE)

is not defined V y e # = C'[0, x,] because of the denominator ,/y(x). It is
defined on

X1

D* = {y €%:y>0and J y(x) 12 dx < +oo},

0
which contains, for example, all of those functions y € % for which y(x) >
m > 0on [0, x,].

However, the only functions which could be considered as solutions for
the brachistochrone problem are those which satisfy the boundary condi-
tions y(0) = 0 and y(x,) = y, for some given y, > 0. Among such functions
y(x) = ax?* for a > 0, on [0, x, ] is not in 2 = {y € 2*: y(0) = 0, y(x,) = y},
since

J aPx!dx = +oo.
0
And even for one such as y(x) = x*?, which is in 2, it may be that only a
restricted class of directions v € % can be Z-admissible at y, since in order
for T(y + ev) to be defined we must have y + ev > 0 for small ¢ both positive
and negative. For example, v(x) = sin(nx/x, ) (Which does meet the boundary
conditions required to be Z-admissible) is not an admissible direction for this
y since for each & > 0, x¥? — gsin(nmx/x,) is negative when x is sufficiently
near (but not equal to) 0. (Why?) Consideration of admissible directions is
essential to this problem and cannot be avoided.

If ye 9, then each ve % with v(0) = v(x,) =0 and |v(x)| < y(x), Vx €
[0, x,] is a possible 2-admissible direction at y (as is, of course, any scalar
multiple of such a direction). Indeed for such v and |e| < %:

y(x) + ev(x) = y(x) — [e] [v(x)] = y(x) — $y(x) = 3¥(x) = 0
and

f l (y + ev) 2(x) dx < ﬁf l y(x)712 dx < +c0.
0 0

Finally, formally differentiating T(y + &v) with respect to ¢ under the integral
sign as in §2.4, Example 4, with

1 1+ 22
f(xayaz)=‘*_"' )
/29 y
so that
-1 1+z
x) y’z
Sl )= N
and

z
fz(x’ Y, Z)=\/E\/;\/1 +227
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we have
1 x1 1.1+ y'(x)? y'(%) , ]
0T(y; v) = —— — + dx,
iv) \/Eé j 0 [ 2y v y(x)/1+ yl(x)zv ¥ );6)

which is finite in general only if [ y(x)~*? dx is finite.
Thus we see that if

2, ={ye¥:y(0)=0, y(x;) = y;, y(x) = 0 on [0, x, ],

X1

and J y(x)™¥ dx < +o0},
0

then for each y € 9,, 6T (y; v) is defined by (6) V directions ve % at y for

which v(0) = v(x;) = 0 and |v(x)| < y(x) (or scalar multiples of these direc-

tions). We shall return to this problem in §6.2(c), Example 4.

In summary, as these examples show, there may be “too many” nontrivial
admissible directions v to allow any y, € 2 to fulfill the necessary condition
0J(yo; v) = 0; or there may be just enough to permit this condition to deter-
mine y,, or there may be many, but not readily usable—or there may be
just one—or even none. Nevertheless, when present, they provide the most
obvious approach to attacking problems in optimization, and should always
be considered before investigating alternatives such as the method of
Lagrangian multipliers to be introduced in §5.7. Finally, as with the
brachistochrone function of Example 4* they may be essential to the
problem.

(Problems 5.21-5.32)

§5.6*. Affine Approximation: The Fréchet Derivative

As we have seen, the Giteaux variation in a normed linear space is analogous
to the directional derivative in R% In particular, without further information,
we cannot expect to use these variations to provide a good approximation
to a function which has them—except, of course. in each separate direction.
For this purpose in R? we required that the function satisfy the stronger
requirement of differentiability (§0.10), and we shall simply lift the definition
employed there, together with the associated terminology, to our normed
linear space (%, |- ||).

In R? with the Euclidean norm ||, a real valued function f is said to be
differentiable at y, € R? provided that it is defined in a sphere S(y,) and there

J) = fo) + Uy — yo) + |y — ¥ol3(y — ¥o),

where 3(y — y,) is a function with zero limit as y — y, — @, and [ is the
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continuous linear function defined on R? by I(v) = Vf(y,) v. See Problem
5.15.

Now, for (%, |-||) a linear function L: % — R need not be continuous
(§5.3, Example 5), and we must require this continuity. Accordingly we make
the following:

(5.6) Definition. In a normed linear space (%, ||-||), a real valued function
J is said to be differentiable (in the sense of Fréchet) at y, € % provided
that J is defined in a sphere S(y,) and there exists a continuous linear
function L: % — R for which

J(y) = J(yo) + Ly — yo) + 1y — ¥oll3(y — ¥o), (M

where 3(y — y,) is a real valued function (defined when y — y, # @ by this
equation) which has zero limit as y — yo > @ or as ||y — yo| = 0.

(5.7) Proposition. If J is (Fréchet) differentiable at y,, then J has the Gdteaux
variation 8J(y,; v) = L(v) in each direction v € ¥.

PrOOF. For v € # and ¢ # 0 sufficiently small, set y = y, + ev in (7). Then
J(yo + &v) — J(yo) = L(ev) + llev] 3(ev).

Thus using the assumed linearity of L and the homogeneous property of

the norm (1b) we have that

J(yo + &v) — J(yo) le|
€

= L)+ " [vll3(ev).

Now ase— 0, ev = y — y, = O and hence 3(ev) — 0, while |¢|/e = + 1. Thus
J(yo + &v) — J(¥o) _
€

0J(yo; v) = lim L(v)
£20

as asserted. O
It follows that the linear function L of the definition is uniquely deter-

mined. It is denoted J'(y,) and called the Fréchet derivative of J at y,,.
Observe that differentiability implies continuity as we should wish:

(5.8) Proposition. In a normed linear space (%, |- |) if a real valued function
J is differentiable at y, € %, then it is continuous at y.
Proor. From Definition 5.6,

I7(y) = J(yo)l < IL(y — yo)l + Iy — yol 13(y — yo)l-

Now as y — y,, from the linearity and continuity of L,

[L(y — yo)| = |L(y) — L(yo)| = 0;
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also ||y — yoll = 0, and 3(y — yo) — O from its definition. Thus as y — y,,

IJ(y) = J(yo)| = O,

and this establishes the continuity. O

As in R? the converses of these propositions need not hold. Continuous
functions are seldom differentiable. Moreover, if J admits the Giteaux varia-
tion 6J(yy; v) in each direction v € %, the resulting function of v may be
neither linear nor continuous—and even these properties may not suffice
for differentiability. Some additional conditions are required.

Proposition 5.7 provides the key for establishing the differentiability of
a suitably defined function J at a point y, in a normed linear space (%, || ||).

First: Check that 6J(y,; v) exists, V v € %.
Next: Prove that L(v) % 6J( Yo; V) is linear and continuous in v.

Last: Show that for y # y,,

-J —0J(yos ¥y —
3y — yo) & J( (yo) (Y03 ¥ — ¥o) 50 as|y— yoll »0.
1y = yoll

This program may either be applied directly to a specific function (Exam-
ple 3 below and Problem 5.22), or it may be used to suggest alternate condi-
tions which would imply differentiability as in the following:

(5.9) Theorem. In a normed linear space (%, |- |), if a real valued function J
has at each y € S,(y,) Gdteaux variations J(y; v),V ve % and

(@) 8J(yo; v) is linear and continuous in v,
(b) as y—>yo, |6J(y;u) — 8J(yo, u)| >0 uniformly for ueB={ue%:
lull =1}

then J is differentiable at y,,.

Proor*. From condition (a) we may express 6J(yq; u) = L(u) for a linear
function L: % — R. Each y € S,(yo) ~ {yo} may be expressed (uniquely) as
y=yo+tufort=|y— yoll <randueB.(Why?)

Moreover, for each fixed ue B, f(t)% J(y, + tu) is differentiable on

(—r,r)since att, e (—r,r), withe =t —t, # 0 and y, = yo + t,u, we have

Yo +tu =y, + eu,
so that
JO = 1) _ Iy +ew) — J(y,)
t—t, €
Thus f'(t,) = 0J(yy; w).
Also as t N\ O, f(t) = J(yo + tu) = J(¥) = J(yo). (Why?) Hence we have by

—d0J(y;u), ast—ot,.
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the law of the mean (§A.1):
J(y) = J(yo) = J(yo + tw) — J(yo) = f(t) — f(0)
= f'(t,;)t, for somet, €(—t,t),
= dJ(y,; u)t asabove.
Observe also that |y, — yoll = |t < |t| = |y — yo!- Hence
J() = J(yo) = L(y = yo) = J(3) — J(yo) — tL(u)
= [0J(y1; w) — 0J (yo; w)]t,
so that y - y, =y, — y, and
J(y) = J(¥o) — L(y — o)
Iy — yol
if we utilize the uniformity expressed in (b) to make the last assertion. Thus

aef J(y) = J(yo) — L(y — Yo)

= |0J(y1; u) — 8J(yo; )| =0,

3(y — ¥o) s Y # Yo

° 1y = oll °
has the requisite zero limiting value to satisfy Definition 5.6 for the differ-
entiability of J at y,. |

Remark. This theorem is the most usable for our purposes. Other sufficient
conditions are known, but all involve some additional uniformity such as
that in condition (b). Without this uniformity, it is only possible to character-
ize the behavior as y = y, + tu — y, for fixed u. On the other hand, part of
condition (a) is superfluous. The linearity of dJ(y,; v) is a consequence of
condition (b). See [V].

Conditions (a) and (b) also imply a weak continuity of éJ at y, in the
sense of the following:

(5.10) Definition. In a normed linear space (%, || - ||), the Giteaux variations
0J(y;v) of a real valued function J are said to be weakly continuous at
Yo €% provided that for each ve #: dJ(y;v) > 6J(yo;v) as y — y,. [See
Problem 5.34.]

Example 1. The function of §5.3, Example 2, viz.,

J(y) = Jb [sin® x + y(x)*] dx,

is defined if y € 2 = C[a, b]; using the maximum norm ||-|[,, of §5.1, Exam-
ple 2, we know that J is continuous at each y, € %. Moreover, from (8) in §2.4

we know that V y, v € %,
b

0J(y;v) =2 f y(x)o(x) dx

a

and the linearity in v is apparent (Why?) Thus to establish the continuity
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in v of 6J(y,; v) it suffices to establish continuity at v = @ [§5.3, Example 5].
But since dJ(y,; 0) = 0,

[6J(yo; V) — 8J(yo; O)| = 13 (yo; V)]

2 jb Yo(x)v(x) dx

b
< 2J |yo(x)Io(x)] dx

< 2|[Yollmllvlln(b — @), (Why?),

and for fixed y, € % this last term —» 0 as v — (0. Thus J as above satisfies
condition (a) of Theorem 5.9.

For condition (b) we suppose u € % with |u|,, = 1, and estimate similarly
to obtain

10 (y; u) — 0J (yo; w)| = 2 (%) = yo(x)Ju(x) dx

<2y — yollmlluel pe(b — @)
=2y — yolmlb — a). ®

We observe that the last term — 0 as y — y, and is independent of u. Hence
the left side of (8) — 0 uniformly in u when |u||,, = 1 as required.
It follows that J is differentiable at each y, € #.

Example 2. Similarly, the function J of §5.3, Example 3, viz.,

J(y) = r a(x)/1 + y'(x)* dx,

for given o € C[a, b], is defined if y e % = C![a, b], and it is continuous in
the maximum norm | - |,, [§5.1, Example 3]. We also know from Example
20f§5.5thatV y,ve%:

T T

a /1 +y(x)2

again the linearity in v is evident, and it will lead to continuity at v = 0
essentially as in the previous example. Indeed:

JECIACIEC
a J1+ (l)(X)z

~]~|c>c(x)||1)(x)| dx, <smce

[6J(yo; V)| <

|z
J1+ 22

<1, VzeR)

< ”(XHMJ lo(x)] dx

< Aol say.
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To establish condition (b) (of 5.9) we observe that f(z) = z/\/1 + 2% is
uniformly continuous on R since |f'(z)] = (1 +2z%)"*? <1, VzeR and so
(by the law of the mean) | f(z) — f(zo)| < |z — 2o}, V 2, zo € R. Now we make
the following estimate at y, € %-

10 (y; u) — 0J (yo; )| < j [ L' (x) = f(yo(X)I ' (x)] dx

b
< [lullx f () 1y"(x) = yo(X)| dx < A[lullp7,

when ||y — yollayr < 7. Thus, if [lully = 1,
[6J(y; u) — 0 (yo; W) <&,

when |y — yollp <7 = €/A4, and since ¢ can be made as small as we please
condition (b) is satisfied; the differentiability at an arbitrary y, € % follows
from Theorem 5.9.

Example 3. The length function of §1.1(a), viz.,

1
L(Y) =J |Y'(t)| dt forYe® = (C'[0, 1])*

0
has at each Y € 2* = {Y e #: | Y'(t)| # 0}, the Giteaux variations
LY@
o 1Y'(I

which are linear and continuous in ¥ by standard estimates.
L is differentiable at each Y, € 2* in the maximum norm | Y|,,, since

0 <|L(Y) — L(Y,) — 6L(Yy; Y — Yp)
1 Y' ,
f [IYI—IYOI—“T,I (Y — Yo)](t)dt

j LY Y| — Y- Y51(9)
1Y5(0)l

SL(Y; V) =

-V'(t) dt, YVVed,

y

Y — Y2
sj Y Yol
o 1%

<A|Y - Yolle |Y0(t)|

=(1Y — Yolla) (Aol Y — Yoll5), say,
so that

‘L(Y) — L(Yy) — 0L(Yp; Y — Xp)
1Y — Yollar

SAolY — Yl >0 asY- X,
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Here, we have utilized the vector inequality
|A||B| — A-B <|A— B|* for 4, BeR?,

which is a consequence of the fact that 2|4||B| < |A4|*> + |B|%.

Remarkably, it is still more difficult to establish the weak continuity of
OL(Y; V) at Y, € 2* which depends upon the previous inequality in another
form. (See Problem 5.35.)

(5.11) Proposition. When [ = f(x, y, z), f,, and f, € C([a, b] x R?), then

b
F(y) = j S, y(x), y'(x)) dx

is differentiable and has weakly continuous variations at each y €% =
C![a, b] in the maximum norm | y|| .

Proor. By (10) of §2.4, the Gateaux variations

b
OF(y;v) = j (LIy)Jvx) + £Lyx)]v'(x)) dx

are obviously linear in v and continuous at each y, (Problem 5.36). To show
that they satisfy condition (b) at y,, note that

|0F (y; v) — OF (yo; v)| < f ALy = fLLye()]l o(x)] dx

b
+ j [Ly(¥)] = foLyo(x)]1 ' (x)] dx

by standard estimates.
Now

HLy] = £Lye(¥)] = f,0x, y(x), y'(x)) — £,(%, yo(x), yo(x)),

and since f; is uniformly continuous on each box [a, b] x [—¢, ¢]* (Lemma
5.2), it follows that | f,(x, y, z) — f,(X, Yo, Zo)| < & if Y], |yol, |2, |2o] < c and
[y — Yol + [z — zo| <r =r(e).

Thus for the given y, € #, we can choose ¢ so large that ||y — yol <
L=y, |yoX)l, 1y (X)], 1y6(x)| < ¢,V x € [a, b], and hence for a given ¢ > 0,
conclude that 3 r > 0 such that

1y = Yollm <r <1=1£,lyx)] — f,[yox)]l <& Vxela bl
Similarly, for perhaps a smaller r, we can have that
|Ly()] — f.Lye(¥)]l
=[x, y(x), y' (X)) = folx, yo(x), yo(x))| <&, Vxe€[a, b].
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Thus
[0F(y;v) — 6F (yo; v)| < & J (lo)] + [v'(x)]) dx

=¢V, say,when [y — yolly <r <1,
[<ed—a) when |v],, <1];
since ¢ is arbitrary, it follows that
SF(y;v) > 8F(yy; V) asy—y,. [uniformly when [v], < 17,

and this establishes both the weak continuity and condition (b). Differenti-
ability follows from Theorem 5.9.

(When f = f(x, y) alone, the variations are weakly continuous in the
stronger maximum norm [ y|l,; = max|y(x)| of Remark 5.0.) (See Problem
5.24) O

Tangency

By 5.6 and 5.7, a function J which is differentiable at a point y, in a normed
linear space (%, | - ||), with Frechét derivative J'(y,), admits a good approxi-
mation near y, by the affine function

T(y) = J(¥o) + J'(yo)(y — ¥o); ©)

which is defined V y € 4. The approximation is “good” in the sense that for y
near y, and y # y,,

J(y) — T(y)
ly — yoll

As in Euclidean space (§0.10) the graph of T (a “hyperplane” in # x R)
may be said to be tangent to that of J at the point (yq, J(¥o)) = (Yo, T(¥o))-
Moreover, comparison with Definition 3.1, shows that a convex differ-
entiable function is one whose graph lies “above” each of these tangent
hyperplanes in % x R.

=3(y —yo) =0 asy—y,.

However, there is also an intrinsic sense in which T can provide tangency
for J at y, in % itself: namely, between the respective level sets of these
functions.

Now the level set of T through y,,

T, {ye@: T() = T(o)} = {y € #: ' (5o) (v — yo) = 0},

is by definition a hyperplane, and if we introduce the corresponding level
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set of J through y,, viz.,

Jyo =1y e@:J(y)=J(yo)},
we see thatfor ye J, , y # yo,

. Y=Y \_TO)-J» _
J(y")(ny—yon)‘ y—yoll ~ 3T o)

so that if a sequence y, € J,, (y, # ¥o) n = 1, 2, ..., provides unit directions
T, = (Vo — Yo)/(Iyn — Yol) with a limit direction, t, as y, — y,, it follows from
the assumed continuity of J'(y,) that

J'(yo)r = lim J'(yo)t, = lim 3(y, — yo) = 0.
By (9), T(yo + 1) = J(yo) = T(y,), and so any possible limit direction T must
furnish a point y, + 7 in the hyperplane T, . Conversely, each t such that
Yo + 1 € T, will make J'(y,) = 0. (Why?) Accordingly we make the following

(5.12) Definition. In a normed linear space (%, || - ||), if a real valued function
J is differentiable at y, € %, then we introduce

T(y) = J(¥o) + J' (¥o)(¥y — Yo),

and say that the level set T, is tangent to the level set J, at y,. Moreover,
each nonzero direction T € % for which dJ(yy; 1) = J'(yg)t = 0 is called a
tangential direction to J, at y,.!

When # = R? has the standard Euclidean norm, then a function J differ-
entiable at Y, has the Giteaux variation

0J(Yy; V) =VJ(Yy) W, VVeR3.
In this case, the linear function
L(z) = J'(Yo)r = VJ(Y,) 7,

and the tangent directions 7 are precisely those which are orthogonal to
the gradient vector VJ(Y,). If VJ(Y,) # O, then it is perpendicular to the
plane Ty, through Y, determined by these tangent vectors, and hence VJ(Y,)
is normal to the level surface Jy, through this point. Thus our definition
of tangency admits this well-known interpretation in R>.

(Problems 5.33-5.36)

! Although this definition provides suggestive terminology, it avoids the deeper question of
whether each such tangential direction 7 is geometrically tangent in that it is the limit of a
sequence {1, }, of the type described above. This does hold under more stringent requirements on
J. See §A.7 and Liusternik’s Theorem in [I-T]. -
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§5.7. Extrema with Constraints: Lagrangian
Multipliers

In §5.5, we saw that in finding (local) extrema of a real valued function J
on a subset 2 in a normed linear space (%, |- ||), there may be enough
Z-admissible directions for J at a typical point y, € £ to provide a usable
characterization of possible local extremal points. However, we also saw
that even in R2, a domain as simple as a circle has no nontrivial admissible
directions for any function J.

Observe that this domain is itself a level set of another function. For
example, the unit circle {y € R?: |y| = 1} is the one-level set of the function
G(y) = |y| which is differentiable at each point of that level set. In this section
we shall develop the method of Lagrangian multipliers for characterizing the
local extrema of a function J in a normed linear space when restricted to one
or more level sets of other such functions. In this context, the level sets
involved are called constraints, and the equations defining the sets are re-
ferred to as constraining relations.

We have already encountered many examples of constraining relations
in the previous sections. For instance, a set of the form

2 ={yeCla,bl: y(a) = a,, y(b) = b, }
is the intersection of the a,-level set of the function G,(y) = y(a) with that
of the b,-level set of the function G,(y) = y(b). The set

9 = {y e C[a, b]: jb y(x)dx = 1}

is the one-level set of the function G(y) = j',’; y(x) dx. In fact, many sets &
considered previously can be described in terms of level sets of appropriately
defined functions.

To motivate the ensuing development, we consider first the problem of
characterizing a (local) extremal point y, of a real valued function J in a
normed linear space (%, | - ||) when constrained to a level set of a real valued
function G. Thus we should have that when y is sufficiently near y, and
G(y) = G(y,), either J(y) = J(y,), V such y, or J(y) < J(y,), V such y.

This possibility is eliminated if there exists a direction v and scalars 7,
re R, as small as we wish, such that upon setting y = y, + #v and y =
yo + rv, we have -

J(y) <J(yo) < J(3) while G(y) = G(yo) = G(). (10)

However, it is more useful to consider a pair of directions v, w for which
3 pairs of scalars (7, 5) and (r, s) as small as we please such that these same
requirements (10) hold for
o + TV + 5w,

y=y
Yy =Yo + v+ sw.
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Figure 5.6

We shall now assume that both J and G are defined in a neighborhood of
¥o, and consider for fixed directions v, w the auxiliary functions

p=F,8)=J(yo + rv+ sw),
g =9(r,s) = G(yo + rv + sw),

which are defined in some two-dimensional neighborhood of the origin in
R2. (Why?) The pair of these functions F maps this neighborhood into a
(p, o) set in R? which contains the point

(o 30) = (#(0, 0), (0, 0)) = (J(¥o): G(¥0))-

If it also contains a full neighborhood of (py, 0y), then there are preimage
points (7, 5) and (r, s) and associated y, y for which the conditions (10) are
met. This is readily seen in Figure 5.6.

Finally, to have (7, 5), (r, s) as near (0, 0) as we please we would require
that each small neighborhood of (0, 0) map onto a set which contains a full
neighborhood of (p,, 6,). All of this is assured if the mapping F = (¢, 9)
has an inverse defined in a neighborhood of (p,, 6,) Which is continuous at
(P> G0)-*

The simplest conditions which provide this continuous local inverse are
well known, and form the content of the inverse function theorem which
we state without proof. (See [Ed].)

(5.13) Theorem. For X,e R? and © >0, if a vector valued function F:
S.(Xo) = R? has continuous first partial derivatives in each component with
nonvanishing Jacobian determinant at X,, then F provides a continuously
invertible mapping between a neighborhood of X, and a region containing a
full neighborhood of F(X,). O

! A weaker open mapping result which suffices is established in §A.4.
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For F =(f}, f5, ..., f;) we require in this theorem that the matrix with
(continuous) elements 0f;/0x;, i, j=1, 2, ..., d, arranged in natural order,
have a nonzero determinant when evaluated at X,. If F defines a linear
transformation of R? into itself, then this becomes the familiar condition
for invertibility of the matrix representing the transformation.

Now, with y = y, + rv + sw, the partial derivative

0 1
L, s) = EJ(yO + rv + sw) = lim E[J(yo + (r+ v+ sw)—J(y)]
=0
— lim M = 8J(y; v,
=0

by Definition 2.6 provided that this variation exists. Similarly,
A, 9)=0J(y,w)  G(r,9) =0G(y;0);  %(r, ) = 6G(y; w),

provided that these variations exist.
Evaluating at (r, s) = (0, 0) where y = y,, gives us the following:

(5.14) Proposition. In a normed linear space (%, || ||), if real valued functions
J and G are defined in a neighborhood of y, and have there in any pair
of (fixed) directions v, w, Gdteaux variations which are continuous in this
neighborhood and satisfy the Jacobian condition

0J(yo; V) 6J(yo; W) 20
6G(yo; v) 56()’0;“’) ’

then J cannot have a local extremal point at y, (even) when constrained to G,
the level set of G through y,,.

0?

Remark. The hypotheses of Proposition 5.14 also imply that G cannot have
a local extremal point at y, (even) when constrained to J, , the level set of
J through y,.

Proor. Since the nonvanishing determinant of the hypothesis is precisely the
Jacobian determinant 0( ¢, %)/0(r, s) evaluated at r = s = 0, we can apply the
inverse function theorem (5.13) to the vector valued function F = (%, 9)
provided that it has continuous partial derivatives in a neighborhood of
X, =(0,0).

It suffices to establish the continuity of, say,

F(r, 8) = 0J(yo + rv + sw; v),

for fixed v, w, in a neighborhood of (0, 0).

But if r,, s, are such that y, = y, + riv + s;w is in S,(y,), the neighbor-
hood given by the hypothesis, then y = y, + rv + sw is within any given t, of
yo if [r—rl, |s = sy <7y /L2(0ll + [wl)] since [ly — yll < |r —ril o] +
[s — s¢| [w]; (Why?) And by the continuity of J(y; v) at y, we know that
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given ¢; > 0,3 7; > 0 such that |5J(y; v) — 6J(y,; v)| < & when ||y — y4|| <
5. tl

With this preparation, it is easy to give conditions necessary for a local
extremal point in the presence of a constraint. We first recall Definition 5.10:

Definition. In a normed linear space (%, || - ||) the Gateaux variations 6J(y; v)
of a real valued function J are said to be weakly continuous at y, € % pro-
vided that for each v € #: 6J(y; v) = 6J(yo; V) @S y = Y-

(5.15) Theorem (Lagrange). In a normed linear space (%, ||-|)), if real valued
functions J and G are defined in a neighborhood of y,, a local extremal point
for J constrained to G, , and have there weakly continuous Gateaux variations,
then either

(@) 6G(yp; W)=0,Ywe%,;or
(b) there exists a constant A € R such that 8J(yo; v) = A6G(yg; v), Vv € #.

Proor. If (a) does not hold, then 3 we # for which 6G(yy; w) # 0. With
this w and any v € %, by Proposition 5.14 we must have that the determinant

0J(yosv)  J(yosw)| _
0G(yo;0) 0G(yo; W)

Hence with 1% 0J (yo; W)/0G(yg; w), it follows that 5J (Yo; v) = A0G(yo; v),
V v e % as was to be proven. tl

The parameter 1 which appears in the conclusion of the theorem is called
a Lagrangian multiplier, and in application the theorem is usually referred
to as the Method of Lagrangian Multipliers. 1t is easier to apply the method
than it is to understand it! However, the following geometrical interpretation
provides some insight.

Utilizing the terminology of directional derivatives appropriate to R,
the Lagrange condition 6J(y; v) = A0G(y,; v) says simply that the direc-
tional derivatives of J are proportional to those of G at y,. If we suppose that
J and G are differentiable at y, as in the last section, then in the directions 1
tangent to the level set G, at y,, we know that 6G(y,; 1) =0

Hence 6J(y,; 7) = 0 in these tangential directions, and this is what we
should expect for the constrained extremum point. Moreover, unless 4 = 0
(in which case 6J(yg; *) =0), 8J(yo; v) is zero only in those directions of
tangency, ie., the level set J, of J (unconstrained to G, ) through y, has
precisely the same directions of tangency and nontangency as does G
Thus in general, Lagrange’s condition means that the level sets of J and
G through y, share the same tangent hyperplane at y,, or meet tangentially
at y, as illustrated for R® in Figure 5.7.

Recalling the linearity of the Géteaux variation established in §2.4
and replacing 4 by —1 we can also write condition (b) in the form
o(J + AG)(yo; -) = 0, which suggests consideration of the augmented func-
tion J + AG without constraints, as in §2.3.
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Figure 5.7

Example 1. We return now to the second problem of §5.5, Example 1, that of
minimizing

J(y) = fl [sin® x + y(x)*] dx
0

over 1
9 = {y e¥ = C[O0, 1]:f x[y(x)]*? dx = 1},
0

or that of minimizing J subject to the constraining relation

1

G(y) = J x[y(x)]** dx = 1.
0

We know from §2.4, Example 2, that 6J(y; v) exists for all y, ve % and is

given by

1
oJ(y;v)=2 f y(x)v(x) dx.
0
Similarly, simple computation shows that dG(y; v) exists for y, ve % and

is given by
1

4
3G(y;v) =3 f x[y()1"o(x) dx.
0
In the maximum norm, both dJ(y; v) and dG(y; v) are weakly continuous
by Proposition 5.11. Thus by Theorem 5.15, a point y, € % which minimizes
J IGyO must satisfy either ‘

(@) 0G(yo; w) = 5[4 xy0(x)"®w(x) dx =0, Vw e %, [and this condition can-
not hold since by Lemma 4.4 it would imply that xy,(x)® = 0 or y,(x) =
0 on [0, 1], while y, = @ is not in 27; or
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(b) 3 2 € R such that

1

[2y0(x) + glxyo(x)m] v(x)dx=0, VYved.
(11)

By Lemma 4.4, condition (11) implies that 2y,(x) + $4xyo(x)*® =0 on
[0, 1], and so by continuity either y, =0 (which we reject as before)
or yo(x) = +£(—%4ix)¥*. The constant —4 >0 must be chosen to make
[ xyo(x)** =1 which requires the value A = —3. Thus the only possible
minimizing (or maximizing) functions for J|g, are yo(x) = +£(2x)*2. (J — 3G
is not convex (Why?) and we cannot use Theorem 3.16 to further characterize
Yo-)

0(J + AG)(yo; v) = f

0

It is straightforward, albeit rather technical, to extend the method of
Lagrangian multipliers so that it is applicable to a problem involving any
finite number of constraints.

(5.16) Theorem. In a normed linear space (%, |- ||), let real valued functions J,
G,, G,, ..., Gy be defined in a neighborhood of y,, a local extremal point for J
constrained to G, Cye®:G(y) = Glyo) i=1, 2, ..., N}, and have there
weakly continuous Gdteaux variations.

Then either:

0G1(yo; v1) 0G1(yo;v3) - 0G1(yo; vy)
@) 5G2(Jfo§ v1) 6Gy(yo;v2) 5Gz()fo; Ux) =0,
O0Gy(¥o; V1) OGy(¥o;v2) = 6Gy(yo; vy)
Vvye?j=1,2,...,N;
or
(b) there exist constants A; e R,i=1,2,..., N for which

N
0J(yo;v) = Z 4:0G(yo; v), Vved.
i=1
Proor. If condition (a) does not hold for one set of directions v,, v,, ...,
vy €%, suppose I one direction ve ¥ for which the (N + 1) x (N + 1)
determinant

0J(yosv)  0J(yosv1) - 0J(yo; vw)
i —
0G;(yo; v) : (12)
. | 0Gi(yo; 1))
’ | ij=1,2,...,N
0Gn(yo; v) |
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(having the determinant of condition (a) in its lower right corner) is non-
vanishing. Then the inverse function theorem in R¥*! can be used as before
to find (N + 1)-tuples of scalars (7, 5;, 35, ..., 5y) and (t, 81, S5, ..., Sy) @s near
©,0, ..., 0) as we wish for which the points

N
?=y()+iv+ Z §jvj,
Jj=1

N
y=Yyotrv+ Z SiUj,
J A

satisfy the conditions
J(Y) <JI(yo) < I(D)s

Gi(y) = Gi(yo) = Gi(¥); i=12,...,N.

We thereby exclude a local extremum for J constrained to G, , contradicting
the hypothesis.

Thus for the specific set of directions vy, v,, ..., vy the determinant (12)
must vanish for each v € %, and if we expand it by minors of the first column,
we have upon dividing by the cofactor of dJ(yq; v) (see [N]) an equation
equivalent to condition (b), viz.,

and

N
0J(yo; v) — z 2:0Gi(yo; v) = 0, Vved
i=1

where foreachi= 1, 2, ..., N, the constant

__ cofactor of 0G;(yo; V)
cofactor of 8J(yq; v)’

i

is defined since the denominator is precisely the nonvanishing determinant

0G{(yo; 1))
i,j=1,2,...,N|.

O

(3.6) Remarks. Condition (a) holds if the constraining relations are locally
linearly dependent in that there exist constants u;, i = 1, 2, ..., N not all zero,
for which ¥, u;Gi(y) =0, V y near y,. Indeed, from the linearity of the
Géteaux variation (see §2.4) it would follow that Y ¥, u;6G(yo; v) = 0 for
each direction v € #. Thus for each set of directions vy, v,, ..., vy € %, the
rows of the determinant of condition (a) are linearly dependent and so it must
vanish.

Conversely, if condition (a) is satisfied for any set of directions vy, v,, ...,
vy € %, then in general the rows (and columns) of the determinant are linearly
dependent. Indeed, upon expanding it by the minors of the first column as in
proof of Theorem 5.16, we would have that ) L, 4;6G,(y,; v;) must always
vanish forj = 1,2,..., N, since this represents the expansion of a determinant
having two identical columns. Thus the rows of the determinant are linearly
dependent (unless y; = 0fori=1,2,..., N).
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Similarly, Lagrange’s condition (b) implies that the variations 6J(y,; v),
0G,(¥o; V), - .., 0Gy(yo; v) are linearly dependent for each v € %. Utilizing the
geometric language of R?, we see that when all functions J, G;,i=1,2,..., N
are differentiable at y, as in §5.6 and t € % is a direction simultaneously
tangent to each level set G;, i = 1,2,..., N, then it must also be tangential to
J,» the level set of J unconstrained by the G; at y,, and thus 6J(y,; t) = 0 for
all such directions as we should expect.

However, when N > 1, it is possible that dJ(y,; v) = 0 for directions v
which are not tangential to any of the level sets G;, at y,. Thus we cannot
assert that Lagrange’s condition implies common tangency of the level sets at
Yo, as was the case for N = 1.

Observe that upon replacement of 4; by —4, condition (b) can also be
restated in the form 8(J + . ¥, 4,G,)(yo; -) = 0 which suggests consideration
of the augmented function J + Y I, 4,G; without constraints, again as in
§2.3.

(5.17) Remark. If y, € 2 < %, and the Z-admissible directions for J at y,
form a linear subspace %, = % (so that v, w e %, =rv + swe %, V scalars
r, s € R), then it is seen that all arguments used in proving Theorem 5.16
remain valid when the weak continuity and directions v, v;,j=1,2,..., N
are restricted to %,. Hence the conclusions of the theorem hold for these
restricted directions and provide the conditions characterizing y, as a local
extremal point of J|, when further constrained to G, . This observation will
lead to a more efficient but admittedly hybrid approach to certain problems
involving multiple constraints:

Those constraints on J which determine a domain 9 having a linear subspace
%, of D-admissible directions usable in the sense of §5.5, may be taken into
account simply by restricting the supply of directions used when applying the
method of Lagrangian multipliers to the remaining constraint(s).

Example 2*. To find the possible (local) extremal points for

0
F(y) = J 1 y'(x)? dx,

on
@=@e@=cw—LmWen=aﬂm=§

under the constraining relation

awgfo (13)

4
xy'(x)dx = ———,
. 15

we may either characterize 2 by means of the two additional constraining
relations G,(y) & y(—1) =0, G,(») & y(0) = % and apply Theorem 5.16 with
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N = 3; or, we may utilize Remark 5.17, since clearly the Z-admissible
directions for F at any point y € & are precisely those in

¥y = {ve C'[—1,0]: v(—1) = v(0) = O},

which forms a subspace of %.
We now invoke Theorem 5.16 for these restricted directions. Here

0

OF(y;v) = J 3y'(x)*v'(x) dx,

-1

0
0G(y; v) =f xv'(x) dx,
-1
and these variations are weakly continuous everywhere by Proposition 5.11.
Thus at a local extremal point, y, either:

(@) 6G(y;v) = [°; xv'(x) dx = 0,V v € ¥, [which would imply by Lemma 4.1
that the continuous function h(x) = x is constant on [ —1, 0] and this is
false]; or

(b) 3 Asuch that 6(F + AG)(y; v) = {2, [3y'(x)* + Ax]v'(x) dx =0,V v € %,

Again by Lemma 4.1, we conclude that 3y’(x)? + Ax is constant on
[—1, 0], or, upon replacing 2 by —34, we have for an appropriate ¢ that
y'(x)? = ¢ + Ax (> 0 on (—1, 0)). Thus on (— 1, 0), either y'(x) = —/c + ix
which cannot satisfy (13) (Why?); or!

y'(x) =+/c + ix. (14)

Similarly, the possibility that 4 = 0 in (14) requires that y'(x) = \ﬁ, and to
satisfy (13) we must take \ﬁ = £, but then y(x) = £&x + const. cannot be in
2. (Why?).

When 4 # 0, integration of (14) gives for some constant ¢, :

2
y(x) = ﬁ(c + Ax)* + ¢4, (15)
where o = 3. Now
2 2 2
) J’(O)=§$C1=§—§I,
while )
yW(—1)=0=¢, = —3—/1(6 — A (16)

Upon subtracting and simplifying, we obtain

A=c*—(c— A" 17)

!y’ cannot change sign at a point x, € (—1, 0) since y'(x,)? = ¢ + Ax, cannot be zero.
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Next, to satisfy the constraining relation (13) we require that

4 0
—1—5=G(y)=J x/c+ ix dx
1

0 0
- f (c + Ax)*? dx]
-1 Ja

- %[(c S e e 1)5/2)],

2 a
= ﬂ[x(c + Ax)

or

A% = 252(6 — A+ M — (c — AL (18)

We need to solve the nonlinear system, (17) and (18), forc >0 and A < ¢
with 4 # 0. By inspection, A = ¢ = 1 constitutes one such solution, and hence
from (15), (16):

yo(x) = 2(x + 1)*? provides a possible local extremal
point in 2 under (13).

[In fact, there is no other admissible solution to this system.! To establish
this, we use (17) to replace (c — 4)* in (18). We get

54
12 = ?(l — )+t + (¢ — (A — %),

or
($)4A? = 3)Ac* — ic, and since 4 # 0:

4 =3c*—2¢, sothatwith a =3,
c—A=3(—c*)=3c(l - /o) =0. (19)

Thus 0 <c <1; but ¢ =1 in (19) leads to the case 4 = ¢ =1 already
considered, while ¢ =0, gives 4 = ¢ =0 = y’(x) which violates the con-
straining relation (13).

Upon substitution of (19) into (17), we obtain for 0 < ¢ < 1:

3¢* —2c=c* — (B (1 — /o or 2c(/c—1)= =Bl — /o)

and with « = 3:
2=3"/c(l — /)2,

so that
4 =27¢(1 — /e),
or finally
c— 35 =c¥.

! This also follows from convexity. See Problem 5.41e).
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With ./c = t, this last equation becomes > — t2 4+ 5 = 0 which factors
into (t — 2)%(t + §) = 0. The only feasible solution is \/E =t=3%orc=%
But then from (19), 4 = 3(3) — (8) = 0, a possibility already excluded.]

We conclude that yo(x) = 3(x + 1)*? is the only possible local extremal
point for our problem, but we still do not know if it is a local extremal point.
However, now convexity can be used to show that y, cannot be a local
maximum point with respect to the maximum norm | - |,, of §5.1, Example
3. (See Problem 5.41%.)

The foregoing analysis involves technical complications which, unfortu-
nately, typify the difficulties encountered when applying the method of
Lagrangian multipliers. However, had we attempted a solution using the
additional constraining functions, G, and G,, we would have been burdened
at the outset with two more unknowns, namely the Lagrangian multipliers
A1, 4, associated with these functions.

(Problems 5.37-5.41)

PROBLEMS

5.1. Reverse Triangle Inequality. Show that if (%, |- ||) is a normed linear space,
then

Hyll =7l <My =751, Vyje%
5.2. Let % = R? with the Euclidean norm

d 1/2
Hy||=<_Zly,-2> , fory=(y1,¥2 -5 ya)
F=

(a) Cauchy Inequality. Verify that

<|Iyli-igl, vy, yed.

d
2 Vil
=1

(Hint: See Problem 0.1.)
(b) Use the result of part (a) to establish the triangle inequality (1c).
(c) Show also for this norm that

Iy + 312+ lly = 712 =20IyI> + 171%),  Vy,jeRL

Parts (a) and (c) do not hold for all norms on #.
(d) Verify that ||y||, = max;_; , .|yl is a norm for R% which does not have
the properties in (a) and (c) above when d > 2.

53. Let%® = Cl[a, b].
(a) Verify that |ly||; = [2|y(x)| dx defines a norm for #.
(b) Does |||l = |f}y(x) dx| define a norm for #?

5.4.  Show that |y|| = max, ., |y’ (x)| defines a norm for the linear space %, =
{y € C'[a, b]: [5y(x)dx = 0}, but does not define a norm for # = C![aq, b].
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5.5.

5.6.

5.7.

5.8.

59.

5.10.

5.11.

5.12.

5.13.

5.14.

5.15.

5. Local Extrema in Normed Linear Spaces

(a) Verify that |ly| = |y(a)| + max ., 5|y’ (x)] defines a norm for % =
C'[a, b].
(b) Show that max, 5|y < (1 + b —a)ly|,V y € #. Hint:

x

y(x) = y(a) + f y'() dt.
(a) Verify that each of the functions, || Y|, and || Y|, given in §5.1, Example 6,
gives a norm for & = (C[a, b])".
(b) Show that the remaining functions in the example also give norms for %.

Suppose that both ||- ||; and |- ||, are norms for the linear space %.
(a) Show that |y{ = lyll; + [y, defines a norm on #.
(b) Does |yl = llyll;- Iyl also define a norm for %?

(a) Verify the assertion of §5.1, Example 4.
(b) When (%, |- |;) are each normed linear spaces for j = 1, 2, find a corre-
sponding norm for the linear space #; x %,.

With @ = C[0, 1] and {3,} = {(x/2},
(a) Show that y, » @ as n — o0, using |[yll; = [§|y(x)| dx.
(b) Show also that y, = ¢ as n — o, using ||y, = max, (o, 1;|y(X)I-

Let % = C[0,1] and {y,} = {x"} ie, y,(x) =x"n=1,2,....

(a) Establish that y, - ¢ as n —» oo, using |- |;, but

(b) y. -+ O using | -|,, where |||, and |- ||,; are as in Problem 5.9.

(Note: This shows that a sequence from % may converge to y, € % with respect
to one norm, but not with respect to another.)

Let (%, ||-|) be a normed linear space, and {y,}, {J,} be sequences from %.
Show that if y, -y, and j,— J, as n— oo, then (y, + J,) = (yo + Jo) as
n— co.

Suppose that (%, | - ||) is a normed linear space, and let {y, } be a sequence from
.

(a) Show that if y, — yo as n — oo, then ||y, = [|yoll as n — oo.

(b) Give an example to illustrate that the converse of (a) is false.

Use Definition 5.1 to prove that in a normed linear space (%, || - ||), a real valued
function J is continuous at y, € % iff for each sequence {y,} from %,

lim y, = yo = lim J(y,) = J(yo).
Let % = C[a, b] and use Definition 5.1 to establish that J(y) = [5(sin x)y(x) dx
is continuous on % using:
(a) Hy“M = maxxe[a,b] |Y(x)|
(b) Iyl = f2ly()l dx.
Make a similar analysis for F(y) = L’: sin(y(x)) dx. Hint: Use a mean value
inequality.

Let (%, || - ||) be a normed linear space and L be a real valued linear function on
% (ie., L(cy + ¢J) = cL(y) + ¢L(§), Vy, e % and V ¢, ¢ € R). Prove that L
is continuous on % iff there exists a constant 4 such that |L(y)| < A|yll,
Vyed%.
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5.16.

5.17.

5.18.

5.19.

5.20%*,

5.21.

5.22.

5.23.

Suppose that ||+ ||, and || ||, are both norms for the linear space % and there is

a constant A such that ||y, < A|y|l,,Vye%.

(a) Show that if y, —» y, as n — oo using |- | ,, then also y, — y, using || ||;.

(b) Prove that if a real valued function J on # is continuous with respect to
Il 1|1, then it is also continuous with respect to ||| ,.

Let (%, ||- ||) be a normed linear space.

(a) Show that if K is a compact subset of %, then K is bounded, i.e., there is a
constant k such that ||ly|| <k,VyeK.

(b) Conclude that if % # {0}, then % itself cannot be compact.

Let % = C[a, b] and K = {y € ¥: [} y(x) dx = 1}. Is K compact if we use:

© Iyl = Jaly(ol dx?

(@) Y]y = Max, cfo YOI

Let (%, |- ||) be a normed linear space and J, G, be real valued functions on %
which are continuous at y, € %. Prove that for ¢ € R, the following functions
are also continuous at y,:

(a) cJ; (b) J + G; (c) JG.

Hint for JG: ab — agby = (@ — ao)(b — by) + (a — ag)by + ag(b — by).

Verify that J(y) = {§|y(x)| dx does not achieve a minimum value on
2 ={yeC[0, 1]: y(0) = 0, y(1) = 1},

although J is bounded below (i.e., J(y) > 0) on 2. Does Proposition 5.3 cover
this?

Let & = C[0, 1] and J(y) = 2y(0)* — 3y(0)%.

(a) Prove that yy(x) = 1 is a local minimum point for J on % using ||yl =
max, o, 1;|y(x)l. (Hint: Show that y € S;(yo) = J(y) > —1 = J(y,). Con-
sider minimizing the cubic polynomial p(t) = 2t> — 3t2 on R.)

(b) Prove that y,(x) =1 is not a local minimum point for J on % using
Iylly = f(l, |y(x)| dx. (Hint: Consider the continuous function

) —1+2x/e, 0<x<eg,
X) =
Ye 1, e<x<1,

for each fixed ¢ > 0 and show that ||y, — y,|; can be made as small as we
please by choosing ¢ small, while J(y,) = —5 < J(y0), V ¢ > 0.)

For Example 2 of §5.5, discuss what happens if o vanishes identically on a
subinterval of [a, b].

Let% = C[a, b],J(y) = [5[sin® x + y(x)*] dx,and @ = {y e ¥: [ y(x) dx = 1}.
(a) What are the 9-admissible directions for J?

(b) Find all possible (local) extremal points for J on 9. (See Problem 4.2.)
(c)* Provedirectly that J is differentiable at each y, € %. (See §5.6, Example 3.)

Let# = C'[a, b], 2 = {y € #: y(a) = ay, y(b) = b, }, and J () = [5 f(x, y'()) dx,

where f(x, z) and f,(x, z) are continuous on [a, b] x R.

(a) What are the 2-admissible directions for J?

(b) Show that if y is a (local) extremal point for J on 9, then f,(x) &
f.(x, y'(x)) = const. on [a, b].
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5.24.

5. Local Extrema in Normed Linear Spaces

Let @ = Cla,bl, 2 = {y € ¥: y(a) = a;, y(b) = b }, and J(y) = [} f(x, y(x)) dx,

where f(x, y) and f,(x, y) are continuous on [a, b] x R.

(a) What are the P-admissible directions for J on £?

(b) Show that if y e @ is a (local) extremal point for J on 2, then f(x) E
f;(x, y(x)) =0 on [a, b].

(c)* Prove that the variations 8J(y; v) are weakly continuous in the maximum
norm. Hint: See the proof of Proposition 5.11.

(d) Conclude thatifa € C[a, b], and J(y) & [ba(x)e’™ dx, then J cannot have
a (local) extremum on & for any values of a;, by, unless a = 0.

In Problems 5.25-5.31 find all possible (local) extremal points for J (a) on 2;
(b) on ;.

5.25.

5.26.

5.27.

5.28.

5.29.

5.30.

5.31.

5.32%

5.33.

J(y) =y' (0> = y' (0
@) 2 = C[0, 1].
(b) 2, = {ye C'[0, 1]: y'(0) = y(1) = 0}.

J(y) =[5 cos y(x) dx,
(@) 2 = C[0, 1].
(b) 2, = {y e C[0,1]: y(0) = y(1) = =}.

J(y) = [1x71y'(x)* dx,
2 ={yeC'[1,2]:y(1) =1, y(2) = 8}.

J() = [o [y + 2xy(x)] dx,
2 = {yeC[0,1]: y(0) = 0, y(1) = —1}.

J(y) = [§° (sec® x)y'(x)* dx,
2 = {ye C'[0,1]: y(0) = 1, y(n/6) = 3}.

J(») =[5 [y(x)® + e*y(x)] dx,
@) 2 = C[o, 1].
(b) 2, = {ye C[0,1]: y(0) = y(1) = 0}.

J(y) = [T [xy'(x) — e’ @] dx,
2={yeC[1,2]:y(1) = —1L,y(2) =2(In 2 — 1)}.

In Example 2 of §5.5, let « € C[a, b] with & > ay > 0 on [a, b].

(a) Show that there exists a d, > 0 such that if 0 < b; — a, < J,, then there is
precisely one ¢ € (0, a,) for which (5) is satisfied (and hence precisely one
y € 2 which satisfies (3)).

(b) What happens if a, = b,?

Suppose that (%, |- ||) is a normed linear space for which L: % — R is continu-

ous and linear (i.e., L(cy + &J) = cL(y) + ¢L(J), V y, J € %, and ¢, ¢ € R). Show

that L is Fréchet differentiable at each y, € %:

(a) by using Definition 5.6; and

(b) by using Theorem 5.9.

(c) If L# 0, prove that 3 v, € # with L(v;) = 1, and thus L(t) = 0 when t =
y — L(y)v,,if ye %.

(d) In Definition 5.12, take L = J'(y,) and conclude that “most” directions are
tangential.
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5.34. If (%, | -|) is a normed linear space and J: % — R has at each y € # Giteaux
variations which satisfy conditions (a) and (b) of Theorem 5.9, verify that
d8J(y; v) is weakly continuous at y,. Hint: Each v € # may be expressed as
v = |lv]lvy, with [lo, |} = 1.

5.35*%. In Example 3 of §5.6*, use the vector inequality of Problem 0.2, viz.,

A B 2
’h__ f |A — B|, O +# A, B, eR",
|41 |B|

<_NZ
NAEIRY:

to establish the weak continuity of L(Y,; V) at each Y, € %.

5.36. Establish the linearity and continuity in v of the Gateaux variations 6F(y; v)
utilized in the first part of the proof of Proposition 5.11.

In Problems 5.37-5.39, use the method of Lagrangian multipliers to determine all
possible (local) extremal points for J on 2.

537, J(y) = [§x*y(x) dx,
2 ={yeC[0,1]: [§y(x)* dx = 1}.
5.38%. J(y) = [5y(x)? dx,
2 ={yeC[0,1]: [ y(x) dx = }, [§ xy(x) dx = }}.
539. J(y) = [y (x0)* dx,
2 = {ye C'[0,1]: y(0) = —5/4, y(1) = 5, {5 xy"(x) dx = 5}.

5.40*. Suppose f = f(x, y, z) and its partial derivatives f, and f, are continuous
only on (a, b] x D where D is a domain in R2 The improper integral F(y) =
{2 f(x, y(x), y'(x)) dx may still be finite for some functions y. For given values
a, by, let
9* = {y e C[a, b]: y(@) = a, y(b) = b, with y’ € C(a, b] and F(y) finite.}
(a) Show that if y € 2*, then each v in
2% = {ve C'[a, b]: v(b) = 0 and v(x) = 0 in a neighborhood of a}

is 2*-admissible at y and
b
0F(y; vo) = f [ (x)vo(x) + f(x)vo(x)] dx

when vy € 9§ and vy(x) = 0 on [a, x4 ]. (See §1.5 for the notation.) This relax-
ation of conditions near an end point will be required for a careful analysis of
the brachistochrone where

1+ 2%

V' 29y
(See Example 4* in §5.5, and Problems 6.14*, 6.15*,
(b) Formulate and prove a vector valued analogue of this result.

fx, 3, 2) =

541*. (a) For Example 2 of §5.7, prove that for 1 e R, the function f(x, z) = 2> +
Axz is strongly convex on [ —1, 0] x [0, c0).
(b) Conclude that when y € 2 and y’(x) > 0 on [ —1, 0] then for an appropri-
ate 4, F(y) > F(y,), when yo(x) = 2(x + 1)*? and y # y,.
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5.42.

5.43.

5. Local Extrema in Normed Linear Spaces

(c) Draw a sketch to show that in each |- ||,, neighborhood of y,,3ye 2
with F(y) > F(yo) and G(y) = [, xy(x) dx = G(yo)-

(d) Can convexity be used to prove that y, is a local minimum point for this
problem? Explain.

(¢) Use part (b) to conclude that system (17), (18) has at most one solution 4, ¢
for which Ax 4+ ¢ > 0 on [—1, 0]. Hint: Each solution pair (4, ¢) gives a
Yo € D* = {y € 2: y' > 0} that minimizes F = F — 34G on 2* uniquely!

(f)* Redo the problem of this Example when — 3 replaces —+% in (13).

When D is a bounded domain in R? (for d > 2) with a smooth boundary,
verify formally, that |ully = maxy 5(|u(X)| + [Vu(X)|) defines a norm for
% = C*(D). (D is compact.) See §6.9.

Find all possible functions that maximize J(y) = y*(1) on 2 = {y € C'[0, 1]:
y(0) = 0} under the constraint G(y)‘gjé y'(x)? dx = 1.



CHAPTER 6
The Euler—Lagrange Equations

Jakob Bernoulli’s solution of 1696 to his brother Johann’s problem of the
brachistochrone (§1.2) marked the introduction of variational considerations.
However, it was not until the work of Euler (c. 1742) and Lagrange (1755)
that the systematic theory now known as the calculus of variations emerged.
Initially, it was restricted to finding conditions which were necessary in order
that an integral function

b b
F(y) = f S, y(x), y'(x) dx = f SIy(x)] dx

should have a (local) extremum on a set
2 < {yeC'[a,b]: y(a) = a;; y(b) = b, }.

For specified a,, b, this is a fixed end point problem. However, it was already
of interest to Jakob Bernoulli to seek (local) extrema for a larger set

2" < {ye C'[a, b]: y(@) = a,},

in describing a modified brachistochrone for which it is desired to descend
over a given horizontal distance (b — a) in minimum time, without specifying
the vertical distance to be covered (Figure 6.1(a)). This type of problem is said
to have one free end point.

There are also problems with two free end points where local extrema on
arbitrary subsets of C![a, b] are desired.

A related problem with variable end point conditions is that of character-
izing the brachistochrone joining fixed curves called transversals (Figure
6.1(b)) which would require minimizing the integral with variable limits,

F(y; x1, %;) = f " fe (), /() dx = f " Iy dx

145
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Yo 2
—_— y e ) — 0
ye D or 2, T )
X (x4, &2 X
/ T2(x, ) =0
"(b’ bl) ‘
)(xl’ YZ)
vy yy
(a) (b)
Figure 6.1

over a set
9. < {y eC! [x1, x,]: Tj(xja J’(xj)) =0j=1, 2}:

where [x;, x,] = R, and the 1; are given functions.

All of these problems admit a common variational approach: If y, e
C![a, b] is, say, a (local) minimizing function for one of these problems, then
with appropriate selection of a,, b, and &, we may suppose that y, € &, and,
as required, that 2 < 2°, or 9 < 2,. (This possibility is illustrated in Figure
6.1.) In each case, y, is a (local) minimizing function for F on &, the fixed end
point problem considered initially. Consequently, from Proposition 5.5,

0F(yo;0) =0, Vveg,={veC'[a b]: v(a) = v(b) =0},
which are 9-admissible for F at y,.

When f is sufficiently differentiable, there are enough such directions to
infer that on (g, b), y, is a solution of the first and second equations of
Euler-Lagrange. These equations, whose C! solutions are by definition sta-
tionary functions for f, are the subject of the initial sections of this chapter.
The additional freedom of working in 2° or in 2, permits variation in other
“directions” specifically related to the end point freedom, and this will give
rise to the corresponding natural boundary conditions of §6.4 which the
extremal function should satisfy. Problems involving isoperimetric con-
straints are considered in §6.5 through the device of Lagrangian multipliers
and this approach is extended to cover Lagrangian constraints of a simple
form.

In the concluding sections, we examine various extensions of these meth-
ods: first, to integrals involving derivatives higher than the first (§6.6), next, to
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integrals involving C' vector valued functions (§6.7), and finally (in §6.9)
to integrals over higher-dimensional space. Invariance of stationarity with
respect to change in coordinates is examined in §6.8.

Many of these results were obtained first by Lagrange (1738—1813) who
began his investigations in the subject at age sixteen!; however, his successors
have added mathematical rigor to the original discoveries.

In this chapter, only those conditions necessary for a local extremum are
considered, and although the methods developed are applied to significant
problems of classical interest (including that of the brachistochrone), the final
disposition of such problems must await the discussion of sufficiency in
Chapter 9. It should be noted, however, that the initial investigators in these
fields, often regarded a function which satisfied the necessary conditions as
the extremal function sought, and the practice continues today in elementary
treatments of the subject.

Throughout this chapter, we shall supply the space C![a, b] with the
maximum norm || y|,, = max([y(x)| + [y'(x)]) of §5.1, Example 3, and its
vector valued counterpart (C![a, b])* with the corresponding norm

1Y |3 = max(|Y(x)| + [Y'(x)]).

Other norms will be introduced as needed. However, for many of our consid-
erations the particular norm in use is not significant.

§6.1. The First Equation: Stationary Functions

For simplicity, suppose initially that the function f = f{(x, y, z), together with
its derivatives f, and f,, is continuous on [a, b] x R2.
Then for each y e % = C'[a, b]:

b b
F(y)= f S, y(x), y'(x)) dx = J SIy()] dx

is defined. From Example 4 of §2.4, F has in each direction v the Giteaux
variation

b
0F(y;v) = J LX) + £, (x)v'(x)] dx, 1)
where for the given y € %, we use the compressed notation from §1.5:
L4001 and (9% LIy @

(6.1) Proposition. If ye % makes dF(y;v) =0, Vv in 9, = {ve¥:v(a) =
v(b) = 0}, then f,. is C*, and

di 1) = £,(x), x € (a, b), (3
x

! The same age at which Euler obtained his master’s degree!
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so that
b
OF(y;v) =f,(X)v(x)| , Vved. (3)

ProOF. The first assertions are a restatement of Proposition 4.2 for the con-
tinuous functions g(x) = f,(x) and h(x) = f,.(x). But then (3) permits the
integrand of (1) to be recognized as (d/dx) [ f,.(x)v(x)] and thus integrated
to produce (3'). O

(3) is the first differential equation of Euler (who obtained it heuristically
in 1736 by varying the vertices of an imagined polygonal solution curve) and
Lagrange (who obtained it in 1755 (incorrectly) by integrating the second
term of (1) by parts. Why would this not be permissible?) The correct deriva-
tion as above was given (in 1879) by P. du Bois-Reymond. As we have seen,
(3) must be satisfied along each curve which could provide a local extremal
for F on 2 (or on 2° or 2,) as in the introduction. Moreover, (3) is precisely
the equation (8) already obtained in §3.2.

(6.2) Definition. Each C! function y which satisfies the differential equation
(3) (i.e., for which (d/dx)f,(x, y(x), y'(x)) = f,(x, y(x), y'(x))) on some interval
will be called a stationary function for f (of x, y, y').

(An old and rather entrenched tradition calls such functions extremal
functions or simply extremals, although they may provide neither a local
maximum nor a local minimum for the problem.) Observe that we do not
require that a stationary function satisfy any particular boundary conditions,
although in each problem, we might be interested only in those which meet
given boundary conditions.

Now, as in §5.5, certain functions f with their derivatives f, and f, are
defined only for a restricted class of functions y, (e.g., y > 0) so that variation
of F at y can be performed only for a reduced class of v (e.g., those for which
[v(x)] < |y(x)]). As the preceding discussion shows, when y is stationary and
meets the restrictions, then 0F(y; v) = 0,V v € &, for which the variation at y
is defined. However, there may also be nonstationary functions # which make
O0F(n; v) = 0 for the reduced class of v, and these may provide the true
extremals. (See Problem 6.13.)

(Problem 6.1)

§6.2. Special Cases of the First Equation

Although every C* function y is stationary for f(x, y, z) = z or yz, in general,
it is difficult to find any solutions for the first equation (3). However, when
one or more of the variables of f is not present explicitly, then we can at least
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obtain a first integral of the differential equation. We shall analyze three such
cases in this section.

() When f = f(2)

Then f, =0 so that (3) becomes (d/dx)f,(x) =0 or f,(x) = const. Thus
f.(¥'(x)) = const. and the stationary functions y have derivatives y’ which lie
in the level sets of f.. In particular, the linear functions, for which y’ = const.,
must be stationary.

Example 1. In characterizing the geodesics on a right circular cylinder of unit
radius, we were led in §3.4(a) to minimize

0
L(y) = L 1+ [y'(6)1* do
on

2 ={yeC'[0,0,]: y(0) = ys; ¥(6,) = y,}.

z
f=f@=J1+2 f@)=——uy
J1+z
hence, a necessary condition that a given y € 2 minimize L on 2 is that y be
stationary, or that

Here

!

y
/1 + y12

so that y’ = const. In this case, the only stationary functions are the linear
functions y(6) = ¢,0 + ¢, corresponding to the circular helices on the cylin-
der. (From this analysis alone, however, we cannot say that a helix provides
the minimum sought. We would need, in addition, an argument such as that
used in §3.4(a).)

=const. or (y')? = const,

(b) When f = f(x, z)
Then again f,(x, z) = 0 so that the stationarity condition (3) is
f.(x, y'(x)) = const.

Example 2. To characterize those smooth geodesics on a sphere of radius R
which can be parametrized by functions 8 = y(¢) (see §1.1(b)), we should
examine

L(y = R f ST+ () sin o) do
on
2" = {ye C'[0, ¢, 1: y(p,) = 0}.
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Here
f=flg,2) = R/1 + 2*sin? g,
so that
Rzsin? ¢
J1+22sin? ¢

Thus the stationary functions y are those for which

fAe. 2) =

Ry'(¢) sin’ ¢
J1+ (@) sin? @
i.e., the stationary functions in 2! are those for which y’(¢) = 0 which corre-

spond to the great circles. Again, the fact that such a function minimizes L
requires separate analysis, as in §1.1(b).

=const. =0 (at ¢ = 0);

(c) When f=f(y, z)

Then with the abbreviation f(x) = f(y(x), y'(x)) it follows from the chain rule
that when y is C%

& 10 = £ 000,y ) = £ ) + ')
X dx

Upon substitution and cancellation we see that

LU0~ Y0091 = 109~ Y W)~ ¥ £
X X X

=~y [%fym —f»(x)]’

and when y is stationary, the right side vanishes by (3). Thus on each interval
of stationarity of y:

J(x) = y'(x)f,(x) = const. @

Conversely, if (4) holds on an interval in which y’ does not vanish, then y
is stationary. (Why?) In this case stationarity is characterized by (4) which is
a first integral of (3)." The additional smoothness requirement that y be C>
can be removed if y is assumed to be a local extremal function. See the next
section.

Example 3. For the function f(y, z) = y?(1 — z)? where f,(y, z) = 2y*(z — 1),
the (C?) stationary functions y = y(x) satisfy (4). Thus on each interval, for
some constant ¢

VA -y -yRy; (' -Dl=c

! However, this integral is usually nonlinear in y’ while the original Euler—Lagrange equation is
sometimes linear.
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so that upon simplification,
A=y =c or yy?=)"—c
With the substitution u = y? (so that u’ = 2yy’), we obtain the new equation
u'? = 4(u — ¢) which has by inspection, the singular solution #y(x) = c. For
u > ¢, we get (\/u — ¢) = +1 and hence, the general solution
Y0 = u(x) = (x +¢1)* +c ©)

The constants ¢ and ¢; may be found so that y meets given boundary
conditions. For example, the conditions y(—1) =0 and y(1) = 1 produce
constants ¢ = —(3)? and ¢, = %; but the resulting function, viz,

Vo) =/ (x +? - (3P =/ (x + D(x—1)

is defined only for x > %, or x < —1, and is C? only for x >4 or x < —1.
(Why?) Moreover, the singular solution j,(x) = \/E, cannot satisfy these
boundary conditions. For this f, there are no stationary functions in

2={yeC’[-1,1]: y(-=1) =0, y(1) = 1}.
On the other hand, y, is stationary for f on [1, 2] and

Yo 2y = {ye C'[1,2]: y(1) = 1, y(2) = 3//2}.
We shall return to this problem in §7.3, Example 2.

Example 4*. For the brachistochrone problem as formulated in §5.5, Exam-

ple 4, we must minimize
J1+y (x)2
T(y)= J
V29 N
on

9 = {0 <yeC'[0,x,]: y(0) = 0, y(x;) = yy; Lxl () dx < +00}-

B V147
=12 —\/;

Here

(within a constant factor) and
z

(3, 2) = W
The (C?) stationary functions y = y(x) satisfy (4) so that
()
S\t
1

\/; /1 +y/2

= const.,
or

1
= const. = —, say;
c
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squaring gives y(1 + y'?) = c2, or

y oo
gy =t ©

With the introduction of the dependent variable § = 6(x) such that

2
y=rc? sin2§=%(1 —cos f), for0<0<2n,
then

0 0 6
2—y= c? c0525 and y' = c? SinECOS 50’

By substituting these expressions into equation (6) we obtain

2

Integrating gives (c2/2)(6 — sin 8) = x — c,, for a constant c,. Replacing c2/2
by c2, we get the parametric equations

x = c*( —sin ) + ¢4,
y = c*(1 — cos 0),

2 '20 ’ C2 ’
c“{sin“- |0 =1 or 7(1—0050)(9:1.

0<6<0, (6)

and we see that the only stationary functions are those which determine
cycloids. In order that y € 4, we need y(0) = x(0) = 0, which implies that
¢; = 0. From the corresponding analysis performed in §3.4(b), we know that
unique constants ¢ and 6; < 2n can be found to make the resulting cycloid
with cusp at the origin pass through the given point (x,, y,). Since x'(#) =
c?(1 —cos ) > 0 on (0, 2m) it is seen that the x equation can be solved
(implicitly) for 8 = 6(x), with as many derivatives as desired. The composite
y(x) = y(6(x)) is C? (at least) on (0, 27), and except at the bottom of the
cycloidal arch, y’(x) # 0. Thus from (4), this y(x) is a stationary function for
the problem. However, at the origin y’(6(0)) = + oo, so that this function is
not in 9. Although it may represent the brachistochrone sought, we do not
yet have it within the framework of the analysis employed.

There is also a more subtle point to consider before regarding this station-
ary function as a candidate for representing the brachistochrone; it arises
from the proof of Lemma 4.1 as follows:

Our analysis that a minimizing function for T on 2 must be a stationary
function, utilized the fact that 6T (y; v) = O for a particular v € 2,. However,
as we know from the discussion in §5.5, Example 4, at a given y € &, the only
v € 9, which are definitely 2-admissible for variation are those for which
[v(x)| < y(x)on [0, x, ] (or their scalar multiples). Unless the particular v used
to establish stationarity meets this condition, the analysis is not conclusive,
and the true brachistochrone in this class may be provided by a nonstation-
ary function.
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0 Xy

xy

(x1, ¥1)

Yy

Figure 6.2

Finally, in deciding to consider only a special class of curves, i.e., those
with graphs representable by functions of the form y = y(x) or x = x(y), we
have excluded a general curve of the form shown in Figure 6.2 which might
be the “true” mathematical brachistochrone.

We shall return to this elusive problem, which so far remains just outside
the methods being used to analyze it, in §6.4, in §8.8, and in Chapter 9.
(See, however, Problem 6.15* for a reformulation which circumvents some of
the above difficulties.)

(Problems 6.2-6.16)

§6.3. The Second Equation

When f = f(x, y,z)is C' and y is a C* solution of the first equation (3) on
[a, b], then integration gives

X

fy(x) = f £,(t) dt + const. ™)

a

When y is C2, then with the abbreviations

=1, y(x), y'(x) and  fi() = fily(d)],
we have

d

S0 =109 + £,Y' () + £,y (). (Why?)

d
=£:69 + (S by O)
Thus
L0~y @101 = 9,

or

Jx) =y () fy(x) = Jx f(t) dt + ¢, for a constant c,.
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YA "4
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/) / :
L / | >
a a B b x, &
Figure 6.3

This equation resembles (7), the integral form of the first, and, moreover, it
does not exhibit explicitly the C? requirement on y used in its derivation.
Hence we can hope to obtain it directly. This is indeed possible (for extremal
functions) but it is surprisingly complicated to do so in view of the simplicity
of the underlying strategy: viz., to conduct the original variational operations
in terms of coordinate axes which are skewed slightly with respect to the
original x, y axes as in Figure 6.3.

Let

b
F(y) = J fx, y(x), y'(x)) dx
and
2 = {yeC'[a,b]: y(@) = a;, y(b) = b;}

(6.3) Proposition. If f e C'([a, b] x R?) and y, € D is a local extremal func-
tion for F on 9@, then on [a, b], y, satisfies the second Euler—Lagrange equation

f&x) =y )y (x) = f f@)dt + ¢ ©®)
for some constant c,.
Proor*. For the hypothesized y,, 3 ¢ > 0 so small that the affine transformation
x =&+ an,
y=n
permits the associated extremal curve to be represented as the graph of a
function o€ 2 = {ne C'[a, B]: n(®) = a;, n(B) = b, and 1 + cn'(¢) > 0}.
Here, o = a — ca, and f = b — cb;. 5
A “nearby” curve represented by n € & should also admit the representa-

tion y € 2.! Thus if y = y(x) corresponds to # = #(¢), we should have that
(&) = y(£ + cn(&)) so that by the chain rule, #'(¢) = y'(€ + en(&))(1 + en’'(€))

! Since 1 + cn’(¢) > 0, we can take y(x) = n(¢) for the unique ¢ such that & + cy(¢) = x.
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and the derivatives are related through the equations
e 1
L+ cen'(6) 1+ cn'(€)

Under the substitution x = & + cn(£), the integral for F(y) transforms as
follows: (Problem 6.35(a))

y'(x) = 1 —cy'(x). ©®

b B . -
F(y)= J fx, y(x), y'(x)) dx = j f&n(&),n'(8)) dE = F(n), say,
where

f&n C)“é‘f(é +en )(1 + cl). (10)

1+4+¢
Since y, is by assumption locally extremal for F on 9, it follows that n, is
locally extremal for F on 2. Hence 5, will be a solution to the first equation
for f in the integral form of (7):

~ é ~
1€ n(&), n'(2)) =j Jolt (@), n'(x)) de + ¢4, (11)
for some constant c;.
But from (10):
&m0 =1 <é+ cn, n,lf C)U +cl)e +f<£+cn, e - C)U +cl),
while
f&n )= Cf<£ +on g f C) + 1 (é +oen C>(1 + )7

Using (9) to return to the original variables, (11) becomes (Problem 6.35(b))
of (x, y(x), y'(x)) + f2(x, y(x), y'(x)) (1 — ¢y’ (x))
- J fult, Y0, y'(0) e + rfy(t, Y0, y'©) dt + ¢y,

or with the usual abbreviations,

c[f(x) Y — f "0 dt] - —[fy,(x) - jxfy(r) dt — cl]. ar)

Finally, upon substituting (7) and subsequently dividing by ¢, we obtain (8) as
desired. |

Observe that when f = f(y, z) alone as in case (c) discussed in the last
section, then a local extremal function y € &, must also satisfy the equation
(d/dx)(f(x) — y'(x)f,(x)) = O without additional smoothness assumptions.
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Remark. When y is only stationary, this proof does not yield the second
equation unless y is C2. (See Problem 6.35(c), (d).) However, if f, is C! then y
is C? when f,, is nonvanishing. (Theorem 7.14)

§6.4. Variable End Point Problems: Natural
Boundary Conditions

To find conditions necessary to minimize

b
F(y)= J S, y(x), y'(x)) dx

(locally) on
2° = {y € C'[a, b]: y(b) = b, },

where the value of y at a is unspecified, we know that at a local extremal
point y € 2%, we should have

SF(y;v)=0, VwveCl[a b]

which are 2°-admissible at y (Proposition 5.5).

When f, f,, and f, are continuous on [a, b] x R?, then also each
ve 9§ ={ve C'lab]:v(b) = 0} (29, = {v e C'[a, b]: v(a) = v(b) = 0})
is @-admissible; but by Proposition 6.1, F(y; v) =0, Y v € @, implies that
y is stationary on (a, b), and from (3'),

b
0 =0F(y; v) = f,x)v(x)| = —f,(a)v(a), Y ve ;.
Since v(x) = b — x gives a v € 9§ for which v(a) # 0, y must be a stationary
function that satisfies the following “natural” boundary condition at the free
end:

fy@=0  (or f,[y(@] = 0). (122)

Similarly, if y minimizes F on 9° = {y e C'[a, b]: y(a) = a,} (locally)
then y must be a stationary function which satisfies the natural boundary
condition

fy)=0  (or f,[y(b)] = 0). (12b)

Finally, if y minimizes F on % = C![a, b] (locally) then 86F(y;v) =0,
Vve¥ =2 9§ 2 9,. Thus y must be a stationary function which satisfies the
natural boundary conditions (12a) and, from symmetry, (12b)). (All of these
conditions were utilized in Proposition 3.9.)

Application: Jakob Bernoulli’s Brachistochrone

In 1696, Jakob Bernoulli publicly challenged his younger brother Johann to
find the solutions to several problems in optimization including that of the
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brachistochrone which covered a given horizontal distance, x,; (thereby initi-
ating a long, bitter, and pointless rivalry between two representatives of the
best minds of their era). Since the time-of-descent function is the same as in

§1.2 and §6.2(c); viz.,
J1+ y (x)2
T(y) =
V29 NATE)

we should attempt to minimize T on

9, = {0 <yeC0,x,]: y(0) = 0, j ()2 dx < +oo}.
0

From our general analysis, we know that a minimizing function y € &,
should be a stationary function which satisfies in addition the natural bound-
ary condition (12b)

y'(xy)

V)T +y' )

As in §6.2(c), Example 4, y must represent a cycloid which satisfies the
natural boundary condition y’(x,) = 0. Since this requirement can be met
only at the lowest point on the cycloidal arch, which correspondsto 8 = 0, =
7, it follows from equations (6') that we require y(x,) = (2/m)x,, and this will
be obtained (uniquely) for the cycloid represented by (6') with ¢? = x, /n. We
still have the difficulty that y’(0) = + co. Moreover, from this analysis alone,
we cannot conclude (nor could either of the Bernoullis)! that this cycloid
does in fact provide the brachistochrone sought. We know simply that it is
the only curve which supports the variational requirements for a minimum.
[See, however, the relevant comments in §6.2(c).] But, this cycloid meets the
condition that x,/y,; < /2, and so from the analysis in §3.4(b) we can safely
say that it provides (uniquely) the least time of descent among all curves
joining the origin to (x,, y,) which can also be represented as the graph of
a function in C'[0, y,]. In particular, it cannot give a (local) maximum value
for T.

0=fyx)) =

Transversal Conditions*

To obtain the natural boundary conditions associated with more general end
point constraints provided by transversals such as that illustrated in Figure
6.4, it is more convenient to use Lagrangian multipliers. Here we suppose the
integral

J(y, 1) = f fx, y(x), y'(x)) dx = f SIy(x)] dx (13)
is to be minimized over
9. ={yeC'[a,t]: y(a) = a;; t(t, y(t)) = O}.

! But see Carathéodory’s article in the historical references.
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Figure 6.4

Assume that f and the constraining function t are C! on domains large
enough to admit all functions of interest and that Vt # 0. If y € C![a, t]
minimizes J, then varying y by functions v in 9, = {ve C'[a, t]: v(a) =
v(t) = 0} shows as usual that y is a stationary function and thus is a solution
of (3), the Euler-Lagrange equation (d/dx)f, (x) = f,(x) on(a, t).

For the proper natural boundary condition at the right end, we must
admit more general variations. To provide a convenient framework, we sup-
pose that the functions y are defined by extension on a fixed large interval
[a, b], and introduce the linear space

% = C'[a,b] x R,

with the norm ||(y, £)|| = ||y|l» + |2]. (See Problem 5.8.)

A general variation for J in this space in the “direction” (v, £) is obtained
by differentiating J(y + ev, t + &£) with respect to ¢ and setting ¢ = 0. By
Leibniz’ rule (A.14), we get that with the usual abbreviations:

0J(y, t; v, &) = f( + f ((X)o(x) + £, (x)v' (x)) dx,

and for a stationary function y, the integrand is the derivative of f.(x)v(x)
so that

0J(y, t; v, &) = () + £, (x)v(x) (14)

t
-
The right end point constraint may be expressed as the zero level set of the
function

G(y, 1) = (¢, y(©) = [y¥(®)],

so that upon differentiating (¢ + €&, (y + ev)(t + &£)) with respect to ¢ and
evaluating at ¢ = 0, we obtain

0G(y, t; v, &) = T.[y(®)]E + 7, [y (D¢ + v(2)). (14)
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(It may be shown that variations (14) and (14’) are weakly continuous.) Now,
let y be a local extremum point for J of (13). According to Theorem 5.15,
unless 6G(y, t; -, ) = 0 (which would require the vanishing of both 7,[y(t)]
and 7,[ y(¢)]; Why?), then 3 4 € R such that

8(J + AG)(y, t;- ) = 0.

Hence restricting attention to those v € 9, as before which vanish at g and ¢,
we have from (14) and (14’) that

{f(t) + Az [y(®)] + 7,[y®O1y'®)} ¢ =0, V & sufficiently small.
Similarly, if we consider variations (v, 0) for which & = v(a) = 0, then
{£,(t) + At [y(®)]}v(t) = O, V v(t) sufficiently small.

Dividing these last equations by {, v(¢), respectively, and eliminating 4 be-
tween them shows that a local extremal point y for J on 9, is a stationary
function on (a, t) which meets the transversal condition

fOr,LyO1 = f£0{.[y®O] + 7,[y®1y' O} (15)

(15) is the desired natural boundary condition. Note that when t(x, y) =
b — x so that 7, = 0, then (15) reduces to f,.(b) = 0 as obtained earlier.

Similarly, when t(x, y) = y — b, for given b,, the terminal value ¢ of x is
unspecified, and at (¢, b;) an optimal solution should meet the transversal
condition:

fO =y 00 =0 (15)

In economics, this would be called a free-horizon problem. If the terminal
value b, is also unspecified, then in addition to (15), an optimal solution must
meet the free-end condition f,(t) = 0, at its terminal point (z, y(t)). Why?

If both end points lie on curves of this type, as in Figure 6.1(b), then a local
extremal function will be stationary on an interval for which it satisfies (15)
at the right endpoint and the corresponding condition at the left.

Some other types of constraints amenable to the use of Lagrangian multi-
pliers will be treated in §6.7 in connection with vector valued extremals.

Example 1. If the brachistochrone joining the origin to a “lower” curve which
is the zero level set of the function 7 as in Figure 6.5, can be represented as the
graph of a function y € C'[0, ¢] for some ¢ > 0, then we should expect that y
is stationary for the time-of-descent function f(y,z) =./1 + zz/ﬁ (as in
§6.2(c)) and satisfies the obvious boundary condition y(0) = 0 together with
the natural boundary condition (15).

According to the analysis in §6.2(c), y must represent a cycloid joining the
origin to a point (¢, y), at which

1+ y()? _ y'(®) /
o 7,[y(H] = N 5Ly + 7, [y(O1y'@),
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wx,y)=0

yv @, )

Figure 6.5

or, after obvious algebra, at which

7,[y(®] = ©.[y®1y'®.

Thus, the point(s) (¢, y) are those which permit a cycloid joining (them) to
the origin to meet the © curve orthogonally. There may be only one such
point, or there may be many. (See Problem 6.21.) Observe that this result
generalizes that obtained for Jakob Bernoulli’s brachistochrone from this
section in which we found that the cycloid in question should at (¢, y) have a
horizontal tangent (y’(t) = 0).

(Problems 6.17-6.22)

§6.5. Integral Constraints: Lagrangian Multipliers

As we observed in the preceding section, end point constraints do not affect
the stationarity of the possible extremal functions for integrals such as

b b
F(y) =J S, y(x), y'(x) dx, = J STy(¥)] dx

but do control the boundary conditions which the extremal function should
satisfy.

However, frequently present are other constraints which operate over the
entire interval [a, b]. When each of these can also be expressed in integral
form say by requiring that a function

b

b
G(y) = f g(x, y(x), y'(x)) dx = J gly(x)] dx,

a a
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assume a prescribed value, then we can employ the method of Lagrangian
multipliers (cf. §5.7) since, in general, the linearity and weak continuity of the
variations 6F and G is assured by Proposition 5.11.

(6.4) Theorem. Suppose that f = f(x, y,z) and g; = g;(x, y,2),i=1,2,..., N,
together with their y and z partial derivatives, are continuous on [a, b] x R2.
Let y, be a local extremal function for

b
F(y)= f SIy(x)] dx
on
2 = {ye C'[a,b]: y(@) = ay; y®) = b, },
when further constrained to the set

a

Gy, = {y € C'[a, b]: Gi(y)d-i-fr gi[y(x)]dx = G(yo)i=1,2,..., N},

Then either:

(a) the N x N determinant

0G,(yos Uj)
ij=1,...,N
whenever v;€ 9, = {ve C'[a, b]: v(@) =v(b) =0},j=1,2,...,N;
or

=0,

(b) 34eR,i=1,2,..., N that make y, stationary for the modified function
f=f+Y1 Agsie., y is a solution of the equation

d ~ ~
ix Sy (x) = f,(x) on (a, b).

ProoF. As noted, the hypotheses on f and the g; assure that the variations
O0F(y; v), 6G,(y; v) are linear in v and weakly continuous for all v in the
subspace 9,. Hence from Theorem 5.16 (and subsequent remarks), either
co~ndition (@) holds, Vv;eD, or 3/,eR, i=1, 2, ..., N, for which
O0F(yg; v) =0,V ve P,, where

n b -
F(y)=F(y + Z 4Gy(y) = f fly(x)] dx,

with. f defined as in condition (b). Hence by Proposition 6.1, y, is stationary
for f. O

(6.5) Remark. As in the general theory, the hope is that the Lagrangian
multipliers 4; can be determined so that the stationary function y, € & will
provide prescribed values for G;(y,),i=1,2,..., N.

(6.6) Remark. Ifin the theorem, & is replaced by 2° = {y € C'[q, b]: y(a) = a, }
(as in §6.4) then 9, is replaced by the subspace 2§ = {v € C'[a, b]: v(a) = 0}
and it is seen that in addition to condition (b), y, must also satisfy the natural
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boundary condition fyl(b) = 0. Similarly, if & is replaced by % = C [a, b],
then y, must in addition satisfy f,.(a) = f,.(b) = 0. Finally, if y, is required to
meet boundary conditions such as y(a) = ay, (¢, y(¢)) = 0 for some function
7, at t € [a, b], where V1 # ¢, and

F(y, 1) = f J(x, y(x), y'(x)) dx,

as in §6.4, and where
t

Gy, 1) = f gi(x, y(x), y'(x)) dx

a

is prescribed at y, fori = 1,2,..., N, then, in general, y, will be stationary for
f on (a, t) and satisfy the transversal condition

for,yo1=£0{ O]+ ,[yoly o} (16)
(Problems 6.23-6.24)

§6.6. Integrals Involving Higher Derivatives

It is straightforward to obtain results analogous to those in the preceding
sections of this chapter that characterize the local extremals for the function

def

b b
F(y)= j S y(x), y'(x), y'(x)) dx = j JTy(x)] dx

for given fe C!([a, b] x R?) on domains & < C?[a, b] defined by pre-
scribing (possibly) y(a), y’(a), y(b), or y'(b). Indeed, if y, v € C*[a, b], then

def

0
OF(y; v) = %J(y + &v)

B
e=0

or from A.13
b
OF (y;v) = j (f;(x)o(x) + £ (x)0"(x) + f,-(x)v" (x)) dx, (17)

(see Problem 2.9); where f,..(x) = f,(x, y(x), y'(x), y"(x)), when f = f(x, y, z,7),
with corresponding extensions for f,(x) and f.(x).
For definiteness, suppose that

2 = {y e C*[a, b]: y(a) = ay, y(b) = by, y'(a) = a}},
where a,, b, and aj are given real numbers, and let
Dy = {ve C*[a, b]: v(a) = v(b) = v'(a) = 0}.

Then if y € 2 is locally extremal for F on &, from Proposition 5.5 it follows
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that 6F(y; v) = 0,V v € Z,. Introducing the C! functions

40 = J T f0de
and (18)

b
h(x) = J LA (0 — g(®)] dt,

we have upon integrating (17) by parts twice in succession that for v € 9:

b b
OF (y;v) = j L (x) = g())v'(x) + £, (x)v" (x)] dx + g(x)v(x)

b b
= J [h(x) + f,(x)]v"(x) dx — h(x)v'(x)| .

Here, the definition of h assures its vanishing at x = b, and hence the van-
ishing of the boundary term h(x)v'(x)[% for v € 9,. However since v € P, =
v(a) = v(b) = 0, the definition of g is less critical and g(x) j f,(t) dt + const.
would also suffice. In any case, as a necessary condition that y be locally
extremal, we have that

OF(y; v) = fb [A(x) + f,-(x)Jv"(x) dx = 0, Vve Dy, (19)

and hence by Proposition 4.5, that for some constants ¢ and ¢ :

h(x) + f,(x) =c;x + ¢, (20)
or by (18),
b

Syrx) = —f Lf(®) —g®)]dt +c;x +c, V x € [a,b].

X

Thus for x € (a, b) : f,(x) € C* and

di Sy x) = f () = gx) + e
X

similarly, the combination (d/dx)f, (x) — f,(x) is C' and
d| d
dx [dxfy"(X) - fy'(X)] = —f,(x). 1)

(6.7) Definition. (21) is the appropriate Euler—Lagrange equation for a C?!
function f (of x, y, y’ and y”). Those C? functions y which satisfy (21) on some
interval will be termed stationary functions for f.

As might be expected in this case, the additional freedom in the derivative
y'(b) gives rise to a corresponding natural boundary condition as in §6.4. To
discover it we use the Euler—Lagrange equation (21) to replace f,(x) in (17)
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and then integrate by parts to get

OF(y; v) = |:<fy,(x) - d‘ify,,(x)) v(x):|
br/d

+ f |:<—fy,,(x)> v'(x) + fyn(x)v”(x):l dx
« L\dx

5F (3 v) = [(fy,(x) - d‘ifyn(x)> v(x)]

In our case, when v € 9, the first term on the right in (21') vanishes and the
second reduces to f,.(b)v'(b). Hence from (19), we see that the appropriate
natural boundary condition is

fy(6) = 0; (or f(b, y(b), y'(b), y" (b)) = 0). 22

Other boundary conditions are considered in Problems 6.25-6.28, together
with the derivation of the Euler—Lagrange equation for functions f involving
derivatives higher than the second. A corresponding “second” equation is
obtained in Problem 6.34.

b
a

so that
@)

b
a

b
+ [ (xv'(x)]

Application: Buckling of a Column under Compressive Loading

It is a fact of experience that work is required to bend a long straight
thin elastic rod of uniform cross section and material, and that more work
is required to bend it further (although not necessarily in proportion). As
a result of experiments, Daniel Bernoulli (the son of Johann) concluded
(c. 1738) that the work required per unit length is proportional to the square
of the resulting mean curvature k of that length.! Hence the work required to
bend an entire rod of initial length [ into a form whose center line is described
by a function y(x), 0 < x < [, as in Figure 6.6(a), is given by

1
Wy = u f k?(x) ds(x),
0
where the constant u is determined by the material and the cross-sectional
shape.? Also,
s(x) d;fj 1+y'@®?d, 0<x<],
0

is the arc length of the center line between 0 and x, while k(x), the local
curvature at x, is from calculus, given by k(x) = [y”"(x)|//(1 + y'(x)*)*?, for

! See [Ra], page 256, for a simple explanation.

2 u = EI/2, where E is Young’s modulus between stress and strain for the bar, and I is the
moment of inertia of the cross-section.
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Figure 6.6

each x at which y” is defined. This work may also be regarded as the potential
energy of strain stored in the rod as it is bent from an initial unstressed
configuration (supposed straight). Bernoulli conjectured that when the rod is
bent by external forces, it will assume a shape which minimizes the potential
energy. We have already utilized this principle in the analysis of the catenary
problem of §3.5, and what we have thus far would suffice to describe a
situation in which other types of strain energy (work) can be considered
negligible. (See Problem 6.29.)

However, if the bending of a column is produced through buckling under
a longitudinal compressive force of magnitude P applied to the end as in
Figure 6.6(b), then work is also done in compressing the bar. If we regard the
bent bar as an elastic spring of the “new” length

fl ds(x) = fl 1+ y'(x)? dx,
0 0

then the compressive strain energy in the absence of bending may be deter-
mined from the work done by P in restoring the bar to its original length [;

viz., from
1
W, = P(f 1+ y'(x)?dx — l).
0

Disregarding further interaction effects, the total potential energy of the
buckled column is Wy — W, where the negative sign accounts for the fact
that upon buckling, the strain energy of compression is released to be trans-
formed (partially) into that of bending, (For a more rigorous derivation
which permits direct interaction, see [Se], while Euler’s original solution of
1744 is discussed in [Fu].)
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If the bar is clamped at its lower end as in Figure 6.6(b), then y(0) =
y'(0) = 0, while if we suppose that the upper end remains essentially fixed so
that y(l) = 0, we would wish to minimize the potential energy

14 yn( )2 -
UU»sﬁiyai;%yﬁy—m«ﬁ+yuf—1ﬂdx @3)
on

2 = {y e C*[0,1]: y(0) = y(I) = y'(0) = 0},
This is the situation discussed in the text (with 9, = 2) for the function:

7‘2

fx,y,2,1) = #m — P((1 +2%)2 - 1). 24
Since f, = 0, it follows from (21) that a stationary function, y, for f, makes
f,+(x) continuously differentiable and satisfies the equation

d - /
2 Sy = f(x) = const. = &, say, (24)

or with (24), it makes y”/(1 + y'%)*? (and hence y") continuously differentiable,
and

! !

y” ' ”\2 y y -
U 5 p =C.
(”a+y%”>+ ROy Py
After differentiating and simplifying, we find that
y/// + y/ P 5y112
(1 + y12)5/2 2 1 + y;2 u (1 + y12)3

The natural boundary condition (22) associated with the unspecified slope
at x = | is (from (24)) given by

2uy"(t) - _
A +y e -
Thus it would be necessary to solve the third-order nonlinear differential

equation (25) on (0, I) where c is to be determined, if possible, to satisfy the
boundary conditions,

} =S¢ say. (25
2p

or y"(l)=0. (26)

y0) =y'0) =y =y"()=0. 27)

To carry this out is a highly nontrivial task and requires numerical approxi-
mation methods. (However, one more integration is possible. See Problem
6.34)

To simplify the analysis, we shall make the assumption that buckling
occurs with a beam geometry for which |y”| is small, in particular, one for
which max |y”| < 1.! Then for y'(0) = 0, it follows that max |y’| € 1 also
(Why?) and (25) may be approximated by the following linear equation with

! 1t is sufficient to assume that |y’| < 1. See Problem 6.34.
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constant coefficients:

4

y” + 0’y =c, where w? = P/2u, (28)

subject to the homogeneous boundary conditions (27). Integrating and using
the conditions y(I) = y”(I) = 0 gives the second-order equation

V" + w?y = c(x — 1), (29)
whose general solution is known; (see, for example, [B—diP]). It is given by
y(x) = A cos wx + Bsin wx + Cx + D, (30)

for constants A4, B, C, and D to be found to satisfy (29) and the remaining
boundary conditions, y(0) = y’(0) = 0.
From these last two conditions, we must have

0=A4+D or A=-D,
and
0=Bw+C or B=-Clo.

Differentiating (30) twice gives
y"(x) + @*y(x) = o(Cx + D),
and the right side agrees with that of (29) if and only if
Cw?*=c and Dw?= —cl

Thus the solution is given by a constant multiple (c) of
(x) ! COS WX ! sin wx + ! x—=10 (31
= — —_—— —{X — ,
y o2 o3 o2

where it remains to select w? = P/2u to make y(l)=0; ie, to make
wl cos wl — sin wl = 0, or
ol = tan wl. 32)

Now (32) has an infinite set of solutions w,! € (nm, (n + 1/2)n),n=1,2,...,as
is evident graphically from Figure 6.7. The least of these, w, [, determines the
load at which buckling “first” occurs; viz.,

u(3m\?

With w = w,, (31) defines a sequence of stationary mode functions, y, in &,
each of which satisfies the natural boundary condition (26) under the addi-
tional linearizing assumption that

max |y”| <€ 1.
From (31), with o = w, (so that w,l > n=), it follows that

ya(o)l* = 12[

sin w,x

2
—cos w,x | (=1% when w,x = nn).
w,l
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Figure 6.7

Thus the smallness of y” for the actual deflection curve y(x) = cy,(x) is
possible iff c itself is small, which means that the maximum deflection must
itself be small. Such linear analysis is usually termed small deflection theory,
and the approximations are often made in (23), the integral expression de-
fining U itself. (However, if the estimate max |y’|> < 1 is used there uncriti-
cally, the term involving P disappears. See Problem 6.30.)

Our linearization has resulted in another difficulty: Since each multiple of
y; (or y,) is another stationary function which meets the required boundary
conditions, it is not evident in what sense the potential energy U could be
minimized by such functions. What must be realized is that once buckling
has occurred with the critical load P; in the mode described by y,, then
further bending can occur in this mode without additional load until the
nonlinear effects excluded by our analysis become prominent. In particular,
the assumptions of small deflection theory may be violated, even though they
are valid at the instant when buckling first occurs.

Another anomaly requires explanation; namely, whether buckling can
occur only at the critical loads P, = 2uw?. If, for example, the column is
encased in a more rigid structure before loading, loaded by P without
buckling, and then uncased, it is in unstable equilibrium at the critical loads
P, and buckling in the associated mode y, can be induced, with the buckled
bar in static equilibrium. However, with the load P,, say, the column cannot
buckle in a mode y, for n > 2, since more energy would be required than can
be sustained by P,. On the other hand, with this loading (or by any P > P,)
buckling in the mode y; could not retain the static equilibrium of the bar (at
least as described by small deflection theory). Thus with moderate loading P,
buckling may be prevented by supporting the bar only at the points of maxi-
mum deflection of the lower mode shapes.

(Problems 6.25-6.34)
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§6.7. Vector Valued Stationary Functions

If we wish to examine whether the curve shown in Figure 6.2 could represent
the (mathematical) brachistochrone, or seek geodesics on a general surface as
in §1.1(c), then we must utilize integrals depending upon vector valued func-
tions. Fortunately, it is straightforward to generalize the analysis in the
preceding sections of this chapter to obtain necessary conditions which char-
acterize a vector valued extremal function in any finite number (d) of dimen-
sions. We recall from §5.1, Example 7, that for the linear space

Y =(C'[a, b]y
of elements

Y= (yl’ Vas -“,yd),
having derivatives

Y, =(y1’y£,""yl;)’
a suitable norm is given by
1Y = max(1Y(x)| + |Y'(x)])

Thus when fe C'([a, b] x R?9), to characterize a function Y, € % which
provides a local extremum for the function

def

b b
F(Y)= j S, Y(x), Y'(x)) dx = f JTY(x)] dx

on
9 ={Ye(C'[a,b])": Y(a) = 4; Y(b) = B},

where A, B € R? are prescribed, we should introduce vector directions in
Do = {V e(C'[a, b])*: V(@) = V(b) = 0},

consider F(Y, + ¢V) for V € , and sufficiently small ¢ € R, and require that
OF(Yy; V) =0,V VeZ,.
As in Example 8 of §2.4,
def a

SF(Y; V)E = F(Y +¢V)
£=0
or

OF(Y; V)= f LA V(x) + fy(x) V' (x)] dx (33)

by Leibniz’ rule for differentiating under the integral (A.14), where, as ex-
plained in §1.5, fy(x) is the vector valued function with components 5, (x)
LIY®L)= 1 2, ..., d; and fy.(x) is the vector valued funct1on w1th compo-
nents fzj(x) fz [Y(x)] j=1,2, ..., d. (Here we regard f f(x Y,Z)=
S V15 Varoevs Vas Z1s 2oy oo Z4)-) The dot denotes the ordinary scalar prod-
uct in R?, and is used for convenience in notation.
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Now, by assumption, both f,(x) and fy.(x) have continuous components;
hence from (33),if 6F (Yy; V) = 0,V V € 9,, then Proposition 4.6 is applicable
and by generalization we obtain the following result:

(6.8) Theorem. If f = f(x, Y, Z) e C*([a, b] x D) for a domain D of R** and
Y, € % = (C*[a, b])? is a (local) extremal function for

b
F(Y) = j fTY(x)] dx

on
2 ={Ye¥:Y(a) = Yo(a); Y(b) = Y,(b); (Y(x), Y'(x)) € D},

then on (a, b), Y, satisfies the equation(s)

d d
2 = Fr(%); |:0r 0 =500,0=12 ., d:|- (34)

ProOF*. When D = R4, the result is an immediate consequence of the pre-
ceding arguments, which also apply to a general subset D if all directions
VeD,=1{Ve¥:V(a)= V(b) = 0} are -admissible at Y,. (Why?) But this
is true for each (open) domain D, by an appeal to the compactness of [a, b],
which we shall only outline: For each x € [a, b], the point (Y,(x), Y5(x)) is the
center of a spherical neighborhood < D, of positive maximal radius r(x) < 1.
Moreover, the continuity of both Y, and Y; on [g, b] will guarantee that
r € C[a, b]; it follows from Proposition 5.3 that r assumes a minimum value at
some x, so that r(x) > r(xy) = ro > 0. Thus, when ¢ < ry, and V € 2, with
VI <1 then Y, + ¢V € &, and we conclude that all such V together with
their scalar multiples are 2-admissible at Y. O

(6.9) Definition. Equations (34) constitute the vector valued Euler—Lagrange
equations; their C! solutions, Y, are called the stationary functions for f
(of x, ¥, Y').

In general, Y is stationary for f on (a, b) iff F(Y; V) =0,V V € 9,, where

F is the associated integral function of Theorem 6.8. Indeed, such stationarity
permits the use of (34) in (33) to obtain

b

OF(Y; V) =fy(x) V(x)| =0, if V(a)=V(b)=0,

while the converse assertion was established in proving Theorem 6.8.

(Problem 6.40)

There is also an analogous second equation for local extremal Y (cf. §6.3);
viz.,

J&x) = Y'(¥) fy(x) = jx L@®dt+c,  xe(ab) (33)
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where f(x) = f[Y(x)] and f.(x) = f,[ Y(x)]. However here, the second equa-
tion is scalar and cannot characterize stationarity of Y as in the one-dimen-
sional case (Problem 6.36).

As in §6.4, if, say, y;(b) is left unspecified for some value of j =1, 2, ..., d,
there results the associated natural boundary condition f,.(b) = 0. (See Prob-
lem 6.37.)

To consider more general boundary conditions and/or constraints of the
form G(Y) = const., we may employ the method of Lagrangian multipliers
developed in §5.7. From Theorem 5.15 and Remark 5.17, in general with a
single constraint, we should expect to characterize each local extremal func-
tion Y, of F|, when further constrained to Gy, the level set of G through Y,
by a 4 € R for which

S(F+AG) (Y, V) =0, V¥ Ve,

(since in this case 9, = %, is a subspace).
In particular, if the constraining function G is itself defined by an integral
in the form

G(Y) = f b g(x, Y(x), Y'(x)) dx,

then Y, will be stationary for the modified function f + ig, and so should
satisfy the corresponding Euler—Lagrange equation(s):

d
U+ 79 (x) = (f + dgh(9) (36)

and an analogous second equation (35). Multiple constraining functions de-
fined by integrals are amenable to a similar extension of Theorem 5.16 (and
Remark 5.17).

In applications, another symbol (usually “t”’) may be used to represent the
independent variable in the above formulas thereby freeing x to represent
one component of the vector valued Y. For example, in problems involving
planar curves, the use of Y = (x, y) is both more suggestive and less cumber-
some than Y = (y,, y,).

Application 1: The Isoperimetric Problem

For the original isoperimetric problem as formulated in §1.3, we are led to
consider the area function of Example 7 of §2.4

AY)E J 1 x(t)y'(t) dt

0
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which by an easy extension of Proposition 5.11, has the weakly continuous
variations in the direction V = (u, v) given by

1

SA(Y; V) = J [x()'(t) + y' ()u(t)] dt.

0

We wish to maximize 4 on
9 ={Ye% =(C'[0,1])*: Y(0) = Y(1)},

subject to the isoperimetric condition

1
L(Y) = J |Y'(¢)| dt =1 (given).
0

Without loss of generality we can suppose that the domain D whose area
is to be maximized has the origin @ in its boundary, and require that the
curves represented by Y originate and end there, so that Y(0) = Y(1) = 0; we
may also take 2, = 2 = %,. [ Note, however, that we have not excluded the
possibility that the origin is a corner point for the curve.]

Formally (from Example 8 of §2.4),

R
SLY: V) = J Y0

so that in order to apply Proposition 5.5, we must further restrict attention to

2*={Ye2:|Y'| #0o0n[0,1]}.

V'(t) dt,

Curves defined by Y € 2* are said to be smooth, and a typical curve in Z* is
sketched in Figure 6.8.

OL(Y; V) is also weakly continuous on 2*. (This is not immediate: see

Problem 5.35.)
(‘ Y1) = (x(1), ¥(1))

0=Y0) = Y(l) ~———
Figure 6.8
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Now, if for some Y € 2%, 0L(Y; V) =0,V V € &, then from Corollary 4.7
it would follow that the unit vector Y'/|Y'| = const. so that Y’ has a constant
direction, but such functions are not in 2*. (The function Y(t) = (0, 0) is in 2
but it is not in Z*.)

Hence from Theorem 5.15 and Remark 5.17, if Y, € 2* maximizes 4
(locally) on 2* when restricted to the [ level set of L, then 3 4 € R such that
0(A+ AL)(Y,; V) =0,V Ve Q,; Y, is stationary for the function xy’ + A|Y’|
and satisfies the associated Euler—Lagrange equation(s) (34):!

d(ix’' d Ay’

— =)=y d — —1=0.

dt(l Y’I> v dt(" " |Y'|>
Thus y — (Ax'/|Y’|) = ¢, and x + (4y'/|Y’|) = ¢,, for constants ¢, and c,.
Hence ¢,y’ + ¢;x" = yy’ + xx’, or upon integrating:

x? + y? — 2¢,x — 2¢,y = const. = 0,

when evaluated at t = 0; this gives (x — ¢;)?> + (y — ¢,)* = ¢? + ¢2 and the
curve represented by Y, is seen to lie on a circle through the origin. However,
closure requires that the circle be traversed completely at least once, while
maximility in A for the given length [ of traversal, could be associated only
with a single traversal. On geometric grounds, ¢ + ¢2 = [2/4n? (Figure 6.8).

A could not not have a minimum value on 2* (or on 2). (See Problem
6.38.) Thus we support but still have not proven Pappus’ conjecture that the
maximal curve is the circle. (See §8.8 and §9.5.) Observe that the circle does
not exhibit a corner point at the origin.

(Problems 6.36—6.39)

Lagrangian Constraints*
The method of Lagrangian multipliers may also be adapted to the case of
constraints of the form

glYx)] =g(x, Y(x), Y'(x)) =0, Vxel[ab]

where g € C!(D) for a suitable domain D of R2¢*!, We shall consider only the
simple case of a single constraint g(Y(x)) =0, V x € [a, b] which is required
for the discussion of Hamiltonian mechanics in §8.6. The general case will be
treated in §11.3.

(6.10) Theorem (Lagrange). For f=f(x, Y, Z) and f, € C'([a, b] x R24),
j=1,2,...,d, suppose Y, is C* and it minimizes

F(Y) = J bf (x, Y(x), Y'(x)) dx

! For this problem the second equation (35) is satisfied trivially.
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locally on
9 = {Ye® = (C'[a, b)": Y(a) = Yo(a), Y(b) = Yo(b)},
when subject to the constraint
g(Y(x)) =0, Vxel[ab]
where g = g(Y) is a C? function for which
Va(Yo(x)) # 0 (d>1).
Then 3 A € C[a, b] such that Y, is stationary for the modified function f + 1g.

Remark. If g, (Y,(x)) # O for some j, then by relabelling, if necessary, we can
arrange that Y= (s Y). The method of proof involves the local elimination
of this distinguished variable, and to simplify the presentation, we assume
initially that g has a form which readily permits this.

PrOOF*. Suppose that g(Y) =y — y(Y) for some C? function . Then
g¥)=0iff y= x//(l_/) and, in particular, yo(x) = y(Y,(x)) if we represent
Yo() = (vo(x), Fol(x). o

Introduce Z = {Y € C'([a, b])*"': Y(a) = Yy(a); Y(b) = Yo(b)} and ob-
serve that for each Ye %, we may define y(x)=y(Y(x)), to obtain

=W(Y),Y)e 2 since y(a) =y (Y(a)) = ¥(Yo(@) = yo(a) (and similarly
y(b) = y,(b)). Moreover, by construction, g(Y(x)) = y(x) — ¢(Y(x)) = 0; i.e.,
these Y automatically satisfy the constraining equation. We also have
y'(x) = V(Y (x))- Y'(x) expressed in terms of the gradient of v.

For Y € &, we may consider the unconstrained function
def

b
FO F(F), T) = j 7007 dx,

where
def

fx, Y, 2)= f(x; y, Y; z, Z), with y = y(Y) and z = Vy(Y)- Z.

From the chain rule, it follows that in abbreviated form:

=1 + fz,

fr = f,V¥ + fy + f.H,

where H(Y 72)= (W(Y) Z)z.
Now Y, minimizes F (locally) on £ (Why?), and hence as in 6.8, it is a
solution of the first equation in the form

while

def

& BT = T
X

Upon substitution of the preceding equations and subsequent simplifica-
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tion it can be seen that Y, = (y(Y,), ¥;) is a solution of the equation

% LA, (VY (T() + fr ()]

— d —
=LV (Y ) + f5 () + £y () 7 Vi (Y (x)). (37)
(In obtaining the last term, we have utilized the identities
0 - — d — d _
E(Wj (Y(x) Y'(x)) = ,;2 Yo, (Y(X)y; () = 7 ¥, (Y(x)),
fori=2,3,...,d, which hold since y is C2.)

By hypothesis, f,[ Yy(x)] is C'. (Why?) Hence when Y = Y,, each term in
the bracketed expression of (37) is C* so that Y, also satisfies the equation

00 =559 = =| 19500 [V T
X X

Finally, since g,- = 0 and gy = 0, while g5 = —g,Vy; (here, g, = 1), then for
each 1 e C[a, b],

d d
U T AP0 — (f+ Ag9)700) = o fr () — fr() — A(x)g7(x)

d _
= _[E £ (%) — £,(x) — A(x)gy(x)] Vi (Y(x)).

@37)
Now, since g, # 0 (here, g, = 1), for x € [a, b], we may define
i(x) — (d/dx).fy'(x) _f;,(x) , (37//)
gy(x) Y(x)=Yo(x)

and see that this A in C[a, b] forces the vanishing of the bracketed terms on
the right side of the last equation which in turn makes the left side vanish as
well. Upon combining these assertions we have for this A that Y; is a solution
of the equations

&7+ 19009 = (7 + 12000
X

and so it is stationary for the modified function f + Ag under the simplifying
assumption g(Y) = y — y(Y).

In any case, the hypotheses require the nonvanishing of some gyj(Yo(é))
for each ¢ € [a, b]. Thus by implicit function theory ([Ed]), for each such ¢
there is a locally determined C? function y for which g(Y) =0iff y=y; =
Y(Y) for all those Y near Yy(¢) in R% Differentiating the resulting local
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- - (b, B)
(& YY) Y(©)
—_ *__

0 AT |

Figure 6.9

identity g(¥/(Y), Y) = 0 shows that gz(y/(Y), Y) = —g,(y(Y), Y)Vy(Y), or in
abbreviated form: gy = —g,Vy.

We now consider those Y € 2 near Y, which differ from Y, only in a small
interval [a, B] containing &, and suppose that y(x) = (Y (x)) is defined in
[« B]. Then we can set y(x) = yo(x) outside [, ] to obtaina Y = (y, Y) e @
as before. See Figure 6.9. (4 = Yy(a) and B = Y,(b).)

For such Y, with f defined as above, we have

8 b _
J JIY(x)] dx — J fTYo(x)1dx = F(Y) — F(Y,);

thus {# f[Y(x)] dx is minimized (locally) at Yol . Each such Y yields a
V =Y —Y,, vanishing at o and B together with its derivative, V', which is
admissible for variation (on [a, 8]). [ Yo(x)] is C* (Why?), so that on (a, f),
Y, is stationary for f. (See Problem 4.3.)

Each step of the preceding argument is now usable and in particular, we
can again use the 4 as given by equation (37”) to make Yyl 5, stationary for
S+ Ag on (a, B). But, the point ¢ determining [a, 8] is arbitrary, and from
(37') we see that A(¢) is given by (37") independently of which y = y; we take
as long as g, [Y5(£)] # 0. Thus 1 is a well-defined function in C[a, b] and ¥,
is stationary for f + Ag on (a, b). O

(6.11) Remark. It is straightforward to extend this method of proof to N < d
constraining functions g;, j = 1, 2, ..., N of the same form, provided that a
suitable N x N Jacobian determinant of the constraining functions is non-
vanishing along the stationary trajectory. The conclusion is that there exist
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N functions 4; € C[a, b] such that Yj is stationary for the modified function
N
S+ 21 Aig;-
f=

When N = d, then Y, will in general be the only function satisfying the
constraining equations.

Application 2: Geodesics on a Surface

In R3, the surface of an ellipsoid is one of many that can readily be described
as the zero-level set of a smooth function g. If we assume that there is a
geodesic curve (Y,) joining points 4 and B on this surface, and that along this
curve Vg # (), then we may use the previous theorem to characterize this
geodesic when both Y, and g are C.

As in §1.1, suppose that a general curve joining A and B is the range of
Ye (C'[a, b])>. Its length is, of course,

L(Y) = fb 1Y'(0)] dt,

a

and by assumption, Y, minimizes L among such curves which lie on the
surface, i.e., for which g(Y(t)) =0, t € [a, b].

It follows that 3 1 € C[a, b] for which Y, is stationary for f + 1g where
f(t, Y, Z) = |Z|; thus from (34):

d
g L+ 29 (01 = (f + Ag)y(0),

or, since fy = gy = 0,

d
S Ur(®) = Ggn) 0,

g(Y)=0

possible geodesics

Figure 6.10
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or, after substitution,

(X 0) = 20va(ra)

ar\[y ") = AV
Along Y, we may use the arc length s as the parameter. Then | Y5(s)| = 1, and
for a new 4, the above equation becomes

Y5'(s) = A5)Vg(Yo(s)),

which shows that in general the principal normal to a geodesic on a surface is
in the direction of the (nonvanishing) gradient and so is normal to the surface
at each point.

Observe that we have not established the existence of geodesics for a
general surface, but we have obtained valuable insight as to the manner in
which such geodesics should lie on the surface. (See Figure 6.10.)

§6.8*. Invariance of Stationarity

For certain physical applications, and especially for Hamilton’s principle
(Chapter 8), it is important to know that the property of being a stationary
function does not change with the coordinate system used to describe it. As
indicated in Problem 6.35*, this need not be the case if the function is only C*.
However, when the function is C2, so that both the first and second equations
are satisfied (§6.7), then invariance can be established under the following
general transformation:

We suppose that a portion of R?*! containing the graph of a function
Y € (C'[a, b])* is mapped into R**! under the invertible transformation

E=0(x,Y), x=o¢@&H),
H=%(xY), Y=Y(¢H),

which carries the graph of Y onto the graph of H € (C![a, #])¢ as shown in
Figure 6.11. The functions ¢, ¥ and @, ¥ are to be C2. We further suppose
that, o(&, H(&)) increases strictly from a to b with a positive derivative, and,
conversely, that @(x, Y(x)) increases strictly from o to f5, say.

All of these conditions are realized in the case of the simple skew transfor-
mation considered in §6.3 and the proof of the next theorem is accomplished
by an appropriate extension of the formula obtained in Problem 6.35(d). The
reader should examine this formula and consider the simpler transformation
at each step of the following argument, which is straightforward but compli-
cated by the generality.

Since the point (x, Y(x)) is transformed by (38) into (£, H(¢)) we must have
Y (& H(¢)) = Y(p(& H(E))), so that upon differentiation,

(¥ + PuH')(E) = Y (x)u(?), (39)

(38)
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Ya A

EHE)

Y1

Figure 6.11

where
u(¢) = d%(/)(f, H(¢)) = (¢ + @z H')(§) > 0, (39)

in view of our assumptions.
Thus we have the following correspondence between triples:

(¥ + ‘I‘HH’)(C)>
u(&)

(Py is the Jacobian matrix having elements dy;/dn;, i,j = 1,2, ..., d, arranged
in natural order with its rows indexed by i).

Now, when fe C!([a,b] x R®), then under the transformation x =
o(&, H(&)), [so that (formally) dx = u(¢) dé], we have

(x, Y(x), Y'(x)) = <(P(f, H(¢)), ¥(&, H(Z)), ;o (40

b B - -
F(Y)= J SIY(x)] dx = J STH()] d¢ = F(H),
say, if we define ’ )

f¢, H,2) =f<<p(é, H), ¥(¢&, H), , (41

‘P),‘(é, H) + ‘PH(éa H)Z>u
u

where the function
u=u( H,Z) = ¢, H) + ¢u({, H)- Z, 42)
is that used to produce (39').
The desired invariance of stationarity is expressed in the
(6.12) Theorem. If Y € (C*[a, b])? and 6F(Y; V) =0,V V in
Dy = {Ve(C'[a,b]): V(a)=V(b) = 0},

then under the transformation (38), H is C* and SFH; Y)=0, VY in
Do = {Y €(C'[o, B1)*: Y(2) = Y(B) = 0}.

L a 3 B ¢
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Remarks. Each V € 9, provides Y € 9, defined by
Y(&) = V(e(S, H(E)). (43)

Now, the graphs of ¥V and Y need not correspond under (38), and may lie
outside the domain(s) of the transformation; however, we shall prove that for
this Y:

SF(H; X) = 6F(Y; ¥uV) + 6, F(Y; gy V), (44)
where

b
0, F(Y; w) defj LGwx) + (f = Y7 fy)()w'(x)] dx. (45)

Here, 6,F(Y;w) = (f — Y- fy)(x)w(x)|%, since this Y is C? and stationary
from the hypothesis so that it satisfies the second equation, (35), viz.,

(@/dx)(f = Y fy)(x) = fulx).!

In (44), ¢y and W must be understood as being retransformed into func-
tions of x; i.e., @ is actually @u(@(x, Y(x)), P(x, Y(x))), and ¥y is actually
Pu(@(x, Y(x)), P(x, Y(x))).

Then W4V is a vector function in &, as is easily verified by matrix
multiplication, and the first term of (44) vanishes by hypothesis. Similarly,

w(x)d=°f(qu- V)(x) vanishes at a and b since V € 9,; thus by (45) et seq.
the second term vanishes as well, and we see that for this particular Y:
SF(H; Y) =

Conversely, each Ye P, arises from that Ve P, given by V(x)=
Y(&(x, Y(x)). (Why?) Hence we conclude that SFH; Y)=0,V Y€ D,.

def

To avoid complications, we shall carry out the derivation of (44) only in
the case d = 1, being careful to preserve the order which would be essential
for the corresponding matrices of the higher-dimensional version. Thus
H Z Y, ¥, Y, Z, V reduce to #, {, v, ¥, y, z, v, respectively. (However,
see Chapter 9 where analogous vector valued computations are carried out.)

Proor*. From (43), v(¢) = v(@(&, n(&)) so that v/ (&) = v'(x)u(&). Then

~ LN ~
OF(n; v) =J (L€ 1v(©) + £[n(1v' () d&, (46)

but from (41) and the chain rule with the usual abbreviations,

LT = f)uy + £,00Wqu + £ Wrgy + Yy
- f;r’(x) |:‘//§ l/I" :| Uy, + fx(x)(pr]ua

1 5, represents the effect in the x-direction of a variation y defined in a different coordinate
system. We utilized this effect to derive the second equation in §6.3.
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and
LN = £090, + (60 — () [@] -

(since from (42), u,(&, n, {) = @,(&, n)). The bracketed term in each case is seen
to be simply y’(x) by equation (39), and hence, under the transformation
x = (& n(&)), dx = u(&) d¢, the integrals in (46), may be recognized as aris-
ing from the integrals:

[ {0t + .0 v+ (Y P Yo s

b
+ f {fx(x)qn,,v(x) + (= fyy)) [qo.,v’(X) + %”u(x)]} dx,

where we have restored v(&) to v(x) and so v'(&) to v’ (x)u(&).
To complete the proof, it is necessary only to observe that by the chain
rule (formally)
d 1 d

dx  u(¢)d¢
so that
d 1 d _ (&)

1 4 .
o= u—@d—iq)ﬂ = m—)(%, + Q') = @) by (42);

and similarly,

4 W, = 14 W, = Ven + Y’

dx " u()de™" u(¢)
Then we recognize each bracketed term in the last integrals as the derivative
of a product, and we obtain 6F(n; v) = 6F(y; ¥,v) + 6,F(y; @,v) in view of
(45).

Observe that under the transformation (38) both Y and H are assumed to

be C!, and from (39) and (40) it would follow that

L d 1 d (¥t V)
“u@dE T uGE  we)

is defined and continuous when H is C2. By the corresponding argument we
could conclude that conversely when Y is C2, then H is C? also. O

Y'(x)

§6.9. Multidimensional Integrals

As we have seen in §1.4(c) and §3.4(e), it is frequently required to optimize
functions F defined by an integral over a domain D of R? where d > 1. When
the structure of D and its boundary 0D are sufficiently regular, it is straight-
forward to obtain formal analogues for most of the one-dimensional results
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obtained hitherto in this chapter. (Without this regularity, however, far more
sophisticated tools are required to handle the delicate questions concerning
behavior at the boundary. See [G-T1].)

A typical point in R? will be denoted by X = (x,, x,, ..., x;) in Cartesian
coordinates, and the d-dimensional element of integration by dX. D is
assumed to be a bounded Green’s domain in R*—i.e., one for which the
boundary dD consists of (d — 1)-dimensional surfaces on which integration is
possible such that Green’s theorem holds in the divergence form

J (V-U)dX = f (U-N)do, VY Ue(CHD)\" 47)
D oD

Here C!(D) denotes the set of real valued functions u € C(D) which in D
have first partial derivatives admitting continuous extensions to D; U =
(uy, uy, ..., uy) is a d-tuple of such functions with the divergence

d
VU % )y

N is the outward pointing unit normal vector on dD (which is defined except
at a set negligible with respect to the surface integration), and do denotes the
element of integration on 0D (Figure 6.12(a)). (See [Ed].)

For example, in R3, all of the above hold when D is the interior of a
rectangular box with faces parallel to the coordinate planes (Figure 6.12(b)).
Then dX = dx, dx, dx; and the integration over D can be expressed through
iterated integrals. 0D consists of the six faces of the box which meet only at
the edges. Finally on each face, do = dx, dx,, or dx, dx;, or dx, dx; so that
the surface integrals can also be expressed through iterated integrals, and

X2

(a) X (b)

X1

Figure 6.12
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Green’s theorem can be verified by partial integrations. However, all of
the above also hold when D is the interior of an ellipsoid in R3, but in this
case, it is difficult to express dX, N and do in forms convenient enough to
verify Green’s theorem easily. A typical u e C*(D) has in D, the gradient
vu¥ (Uy,s U,y - - . Uy,), and hence

l[ull e = max (lu + Vu])(X)
will supply a norm for this space. (See Problem 5.42.)

Given fe C}(D x R x R?) and y € C(0D), we shall be interested in finding
conditions necessary that u € C*(D) be a local extremal function for

F(u) = f X, u(X), Vu(X)) dX = j STu(X)] dX
D D

on
def

2= {ue C'(D): ulop = 7}
We introduce the admissible directions (§5.5)
Do = {ve CY(D): v|3p = 0},
and observe that if u is a local extremal point for F on &, then

=0, VDE@O.

e=0

OF (u; v) =%F(u+ &)

The differentiability assumptions on f permit this variation to be calculated
by Leibniz’ formula as follows:

OF (u; v) = f [L(X)o(X) + fru(X)- Vo(X)] dX, (48)

where f,(X) = f,(X, u(X), Vu(X)) and fy,(X) is the vector-valued function
with components

£2,X) = £,(X, u(X), Vu(X)), j=12,...,4d;
(where f=f(X,u, Z) = f(X, u, 2y, 25, ..., 24).

Next, we suppose that fe C2(D x R x R?), and that u € 2 n C*(D) (as in
§3.4(e)) so that we can integrate the second term of (48) by parts using Green’s
theorem (47), for U(X) = v(X)fy.(X), as follows:

L [fou(X) Vo(X)] dX = J;) V- (0(X) fou(X)) dX — L LX)V fou(X)] dX

= LD v(X)fou(X) N(X) do — f v(X)V- fru(X) dX

= —J v(X)(V- (X)) dX, VoveD,, 49)
D

since the boundary integrand vanishes when v € 9.
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Thus, finally, if u € 2 N C?(D), then V v € 9,

OF (u; v) = L [£(X) = V- feu(X)]u(X) dX. (50)

In particular, if u in @2 N C%(D) is a local extremal for F on 2 then the integral
in (50) vanishes V v € 9, and we wish to conclude from this that the brack-
eted term in the integral vanishes identically in D. This can be accomplished
by a natural extension of the proof of Lemma 4.4 of Lagrange. (See Problem
4.5.) Thus, finally, we obtain the desired analogue of the fundamental result
of Euler-Lagrange.

(6.13) Theorem. Let D be a Green’s domain of R? and suppose that functions
feC*D x R x RY) and y € C(0D) are given. Then in order that u, € C*(D) be
a (local) extremal for

Fu) = J f(X, u(X), Vu(X)) dX = f flu(X)]dX
D D

on _
@ = {ue C'(D): ulsp = 7}

it is necessary that u, be stationary for f in D; i.e., that u, satisfy the equation

V- fuu(X) = fu(X), VXeD. (51)
O

Application: Minimal Area Problem

For the minimal area problem of Plateau discussed in §1.4(c) and §3.4(e), we
take d = 2. Then f(X, u, Z) = (1 + z} + z2)*? has continuous derivatives of
all orders; f, = O and f, = z{(1 + 2} + 23)™",j = 1, 2. Denoting X by (x, y),
so that Vu = (u,, u,), the Euler-Lagrange equation (51) for this problem is

Vu
CEREIIED ©?

which agrees with Equation 26 of §3.4. Thus in order that u, € C(D) have a
graph with a local extremal surface area among all such functions with the
same continuous boundary values, it is necessary and sufficient that u, satisfy
the minimal surface equation ((26) of §3.4) or its equivalent. As we have noted
in §3.4(e), this equation has a solution with arbitrarily prescribed continuous
boundary values iff the domain D is convex [Os].

Multidimensional problems arise naturally when Hamilton’s principle is
applied to obtain the equations governing the motions of elastic bodies. We
shall reserve further discussion until §8.9.

(Problem 6.41)
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Natural Boundary Conditions

Multidimensional problems permit considerable flexibility in the specifica-
tion of the boundary conditions, and boundary point freedom from specifi-
cation gives rise to natural boundary conditions which a local extremal
function must satisfy.

(6.14) Corollary. If as in Theorem 6.13, u, € C*(D) is a local extremal function
for F on - _
9 = {ue C*(D): u(X) = y(X), X eK},

where K is a compact subset of 0D, then

(@) in D, uq satisfies (51),
(ii) at each boundary point X, ¢ K having a neighborhood of 0D in which N is
continuous: fg,(Xo)  N(X,) = 0.

PrOOF*. Each v e %, = {ve C'(D): v(X) = 0, X € K} is -admissible (Why?),
and since 9, 2 %,, we conclude as before that u, satisfies (51).

Then, when v € @0, it follows from (48) using Green’s theorem as in (49),
that for u = u,:

0 =0F(u;v) = L [£UX) = (V- fo)(X) Jv(X) dX
+ LD v(X) (fyu(X)- N(X)) do

= L v(X) fe(X) N(X) do,
since (i) holds and v vanishes on K. (K = D ~ K.)

Now, each X, ¢ K is a positive distance from the compact set K. [ Other-
wise we could find a sequence of points in K with limit point X, ¢ K (see
§5.2).] Thus we can construct functions v € C*(D), which are positive at X,
and vanish outside neighborhoods of X, so small that v € &,. By hypothesis
Jvu(X) is continuous at X,; hence if also N is continuous at X,,, we can use a
version of the standard local arguments to conclude that f,(X,)  N(X,) = 0.
(See Problem 4.5.) O

Consider the surface area function of the previous example when the
boundary values are specified only on a compact subarc K of the boundary.
Then a minimizing function u should satisfy the minimal surface equation
(52) in the domain D and have the prescribed values on K; however, on K, we
expect in general that

Vu-N

e N =0:
(1 +uZ +u))'”? 0 or Vu '
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ie., that the derivative of u in the direction normal to the boundary curve
should vanish. Conversely, we may use convexity as in §3.4(e), to show that
such u will in fact minimize the surface area function uniquely under these
conditions (Problem 3.37).

PROBLEMS

6.1.  Give the first Euler—Lagrange equation for f when:
(@) flx,y,2) =sinz.
(b) flx, y, 2) = x*2>.
© flx,p,2)=/14+2%x,(x #0).
@) f(x, y,2)=y* — 2%
(e) flx,y,2)=2xy — y* + 3z)%.

6.2.  Find the stationary functions for f which belong to 2 if:

(@) f(x,y,z) =sin z, and

2 ={yeC'[0,1]: y(0) = =5, y(1) = 2}.
(b) f(x,y,2) /1 + z%/x, and

2 = {ye C'[0,3]: y(0) = 0; y(3) = 3}.
© flx,y,2)=y*—z*and

2 = {ye C'[0,n/2]: y(0) = 0, y(n/2) = 1}.
(d) f(x,y,z2)=y* — 22 and

9 = {y € C'[0, n]: y(0) = y(m) = O}
(€) fx,y,2) = 2xy — y* + 3zy?, and

2 ={yeC'[0,1]: y(0) = 0, y(1) = 1}.

) fr2)=1+2%/y,y>0

2 = {yeC'[0,2]: y(0) = y(2) = 1, y(x) > O}.
In Problems 6.3—6.12 find the possible local extremal functions for F on 2.
63  F(y)=[5[y(x)* - y'(x)*] dx, and
2 = {ye C'[0,]: y(0) = y(n) = 0}.
64. F(y)={3xy'(x)* dx, and
2={yeC'[1,2]: y(1) =5 y(2) = 2}.

6.5. F(y)=[?y'(x)*/x* dx, and
2={yeC'[1,2:y(1) =1,y2) = T}.

6.6. F(y)=[i2/1+ y'(x)*/x dx, and
2 ={yeC'[41]: y(}) = —/3/2, (1) = 0}.

6.7.  F(y) =[5 [y(x)* + 3x*y'(x)] dx, and
(@ 2 ={yeC'[0,1]: y(0) =0, y(1) = 1}.
(b) 2 ={yeC'[0,1]: y(0) = 0, y(1) = 2}.

6.8.  F(y)=[o[1+ y(x)*]/y'(x)* dx, and
9 = {y e C'[0, 1]: y(0) = 0, y(1) = sinh 1; with y'(x) # 0 on (0, 1)}.

6.9.  F(y) =[5 [2xy(x) — y'(x)* + 3y'(x)y(x)*] dx, and
2={yeC'[0,11:y(0) =0, y(1) = —1}.
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6.10.

6.11.

6.12.

6.13.

6.14*.

6.15*.

6.16*.

F(y) = [§[2xy(x)* + e* sin y(x) + 3x?y(x)?y'(x) + y'(x)e™ cos y(x)] dx, and
(@ 2 ={yeC'[0,1]: y(0) =0, y(1) = 1}.
() 2 = {yeC'[0, 11: (0) = =, y(1) = /8}.

F(y) = [5[4y'()* + 2y(x)y'(x) — y(x)*] dx, and
2 = {ye C'[0, n]: y(0) = 2; y(n) = 0}.

F(y) = [§['(x)* — 6x%y(x)] dx, and
7 ={yeC'[0,11:y0) =3, y(1) = 3}

Let F(y) = [§/y(x) — x dx and

2 ={yeC[0,1]: y(0) =0, y(1) = 1, y(x) = x on [0, 1]}.

(a) Show that there are no stationary functions for f(x, y, z) = /y — x.

(b) Show directly that y,(x) = x minimizes F on 2.

(c) Verify that 6F(y,; v) = O for all v which are Z-admissible for the function
Yo(x) = x. (Are there any ?)

(d) What does this example demonstrate?

With the same definitions as in Problem 5.40*, duplicate the analysis in §6.1 to
prove that if 6F(y;v) =0, Yve 2§ then f,.(x) + g(x) = ¢, on (a, b], where
g(x) = [% f,(t) dt when x € (a, b]. Conclude that y is stationary for f on (a, b].
(Hint: On each interval [x,, b], apply the result of Problem 4.3.)

For the brachistochrone problem in Example 4* of §6.2, use Problem 6.14* to
show that the first equation (d/dx)f,(x) = f,(x) can be integrated as it stands
upon multiplication by

y'(x)

NN

Conclude that with an appropriate 2*, the only possible minimizing function
for T on 2* is that representing the cycloid given parametrically by equation
(6). Why is this an improvement?

fy(x) =

Minimal Surface of Revolution. To find a smooth planar curve represented by
y € C*[0, b], joining points (0, 1) and (b, b,) with b, > 0, which when rotated
about the x-axis will have the smallest possible surface area of revolution, we
should minimize the surface area integral

b
S(y) = 27zf y(x)/1 + y'(x)* dx
0

on
2 = {ye C'[0,b]: y(0) = 1, y(b) = by; y(x) > 0}

Prove that if such a curve exists, it must be of the form

y(x) = ¢, cosh |:(x _ CZ)],

€y

where ¢, and c, are constants. (Note: Depending on the location of the points,
there may be one, two, or no curves of this type which meet the given boundary
conditions. This problem will be dealt with again in Chapters 7 and 9.)
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In Problems 6.17-6.20, find all possible (local) extremal functions for F on 2.

6.17. F(y) = [§*[y(x)* — y'(x)*] dx:
(a) 2 = {ye C'[0, n/2]: y(0) = 0}.
(b) @ = {ye C'[0, n/2]: (0) = 1}.

6.18. F(y) =[5 [(y'(x) — x)* + 2xy(x)] dx
2= {yeC'[0, 1]: y(0) = 1}.

6.19. F(y) = [§ cos y'(x) dx
@ = {ye C'[0, 1]: y(0) = 0}.

6.20. F(y) =[5 [xy(x) — y'(x)*] dx:
(@) @ = {ye C'[0,1]: y(0) = 1}.
(b) 2 = {yeC'[0, 1]: y(1) = 1}.

6.21. Consider the problem of finding a smooth curve of the form y(x) which will
provide the shortest distance from the origin to the parabola given by
y=x*—1.

(a) What are the stationary functions for this problem?

(b) Show that there are precisely two points (t, y) and (z, §) on the parabola
which satisfy the transversal condition (15).

(c) Find the associated curves which represent the possible extremals.

(d) Use a direct argument to show that a minimum is actually achieved for
each of the curves found in part (c).

(e) What happens if the parabola is replaced by the circle x2 + y? = 1?

6.22. Brachistochrone. (See §6.4, Example 1.) A brachistochrone joining the origin to
the straight line y = 1 — x is sought. Show that there is precisely one point
(t, y) on the line which satisfies the transversal condition (15) and find the
associated cycloid which might be the brachistochrone in question.

6.23. (a) Use the method of Lagrangian multipliers to find all possible (local)
extremal functions for
1
F(y)= '[ y(x)* dx

0
on

2 = {ye C'[0,1]: y(0) = y(1) = O},

when further constrained to {y e C'[0, 1]: {§ y'(x)* dx = 1}.
(b) Can the convexity methods of Chapter 3 be used to conclude that a mini-
mum is achieved in part (a)? Explain.

6.24. (a) Use the method of Lagrangian multipliers to find all possible (local)
extremal functions for

F(y)= J‘ [2(sin x)y(x) + y'(x)*] dx
0
on
2 = {y e C'[0,n]: y(0) = y(n) = 0}

when further constrained to {y € C'[0, n]: [§ y(x) dx = 1}.
(b) Can the convexity methods of Chapter 3 be used to conclude that a mini-
mum is achieved in part (a)?
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6.25.

6.26.

6.27.

6.28%*.

Let fe C'([a, b] x R3). Show that the natural boundary conditions asso-
ciated with minimizing

b
F(y) = J Sl y(x), y'(x), y"(x)) dx

locally on:
(i) 2 = {ye C*[a,b]: y(a) = ay, y(b) = b, } are f,.(a) = f,.(b) = 0.

(i) 2 = {y e C*[a, b]: y(a) = a, y'(a) = a'} are f,.(b) = 0 and

dify"(x) = 1,0).
X b

x=

Let f e CY([a, b] x R3). Find the natural boundary conditions associated with
minimizing

b
F(y)= f Sx, y(x), y'(x), y"(x)) dx
on each of the following sets:

) 2={yeC*abl:y(@=a,y(b)=0>b'}.
(i) 2 = {ye C*[a,b]: y(@) = a,,y'(b) = b'}.

Let fe C!([a, b] x R*):
(a) Show that an Euler—Lagrange equation for a function which minimizes

b
F(y) = J f0x, y(x), y'(x), y"(x), "' (x)) dx

on
2 ={yeCa,bl:y(a)=ay,y'(@=a,y"(@=a’,

' y(b) = by, y'(b) = b', y"(b) = b"},
is
d az a?
f(x) = Zi;fy(x) + ny(x) - ch:"fy(x) =0,
where we employ the usual abbreviations, and assume sufficient

differentiability.
(b)* Without the additional differentiability, what form will this equation take?

Let fe C*([a, b] x R"™). Show that an Euler-Lagrange equation for a func-
tion which minimizes

b
F(y)= J f(x, y(x), y'(x), y"(x), ..., y*(x)) dx
locally on
2 = {yeC'a, b]: y(@) = a,, Y@ = @, ..., y* (@) = aV,

‘ y(b) = by, y'(b) =b', ..., y" D(b) = b"V}
1S

d d? dn

B = ) + 2 Sy () = 4 (1P fulx) = O,

where we employ the usual abbreviations, and assume sufficient differentiability.
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YA

Figure 6.13

6.29. A thin elastic rod of initial length I clamped at one end and pinned at the other
is deflected as shown in Figure 6.13 from its straight unstressed state. If the
center line of the rod is described by a smooth function y(x), 0 < x < ], then the
associated potential energy is given by

1 y/r(x)Z "
o [+ y (P17

where u is a constant. The physically imposed boundary conditions are y(0) =

y'(0) =0, and y(l) = [;.

(a) Assuming that the shape of the rod minimizes the potential energy, find a
third-order differential equation satisfied by y(x).

(b) What is the natural boundary condition at x = [?

(c) Find a suitable linearized version of the differential equation from part (a)
by supposing that both |y’(x)| and |y”(x)| are very small on [0, I].

(d) Solve the linear equation found in part (c), choosing the constants to
satisfy the boundary conditions.

Uy)=u

6.30. Buckling of a Column. (See §6.6.) In small deflection theory, approximations
are often made in the potential energy, rather than in the differential equation.
(a) Show that the approximation of (23) by

1

000 = || w0~ Fv7 |
leads to the same linear differential equation (28).

(b)* Explain how the approximation in part (a) was obtained. Hint: Consider
the effect of the complementary factor (/1 + (y')> + 1).

(c) Use (29) to determine the buckling loads when the end at x = 0 is pinned
so that y”(0) = 0 instead of y'(0) = 0.

In Problems 6.31-6.33, find all possible (local) extremal functions for F on 9.

631 F(y) = [52[y"(x)* — y(x)*] dx,
2 = {ye C*[0,7/2]: y(0) = 1, y'(0) = y(n/2) = 0, y'(n/2) = —1}.

6.32. F(y)= [5[y"(x)* = y'(x)*] dx,
2 ={ye C*[0,]: y(0) = 0, y'(0) = 2, y(m) = =, y'(n) = O}.
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6.33. F(y) = [} [x’y"(x)* — 12xy(x)] dx,
2={yeC[1,2:y) =3y (1)=3,yQ) =% +In2,y'(2) = 3}.

6.34. (a) Let fe C'([a, b] x R®). Show thatif y € C*[a, b] is a solution of the Euler
—Lagrange equation (21), then y must also satisfy a second equation

d x
) —y'(x) [j;"(x) - d_xf;!”(x):l — V' (XS %) = J o) dt + ¢,

for some constant ¢, where we employ the usual abbreviations.

(b) Use this to obtain a second-order equation replacing (25) and show that
assuming |y’| < 1 in this equation gives us an integral of (28). Hint: see
Problem 6.30(b).

6.35*%. The Second Equation (Proposition 6.3).

(a) Verify the transformation of the integral F(y) into F(n) under the substitu-
tion x = & + cn(&), where f is defined by (10).

(b) Verify the retransformation of (11) into (11’), supposing that y, is an
extremal point for F on 2.

(c) With ye 2 ne$ and c as above, take v in 9, = {ve C'[a, b]: v(a) =
v(b) =0}, and define v by v(&) =uv(¢+ cn(é)), so that v'(§) =
v'(x)(1 + cn'(&)). Show that v e Gy = {v e C'[a, B]: v(w) = v(B) = O}.

(d)* Prove that for this v, v,

~ ﬂ ~ ~
OF(n; v) = f (LIn(©)Iv(E) + £ In(E)Iv'(S)) d&

= O6F(y; v) + 6, F(y; cv),
where

b
8,F(y; ) =J [)0(x) + (f = y'f,) (v’ ()] dx.

a

(e)* Use the formula in (d) to discuss the invariance of C! stationarity of y
under this skew transformation.

6.36. The Second Equation for Vector Valued Functions. Assume that

feCY([a, b] x R?9)
ford > 1.
(a) Derive the second equation (35) satisfied by a function Y € (C?[a, b])*
which is stationary for f.
(b)* Obtain the second equation when Y € # = (C![a, b])? supplies a local
extremal point for

b
F(Y)=J S(Y(x)] dx

on
9={Ye%¥: Y(a) = A; Y(b) = B}.

Hint: Use the skew transformation

{§=x+cn,

Hev forH = (n, 12,13, .-., 1), and asmall ¢

to duplicate the proof of Proposition 6.3.
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6.37.

6.38.

6.39.

6.40.

6.41.

6.42.

6. The Euler—Lagrange Equations

Let f € C*([a, b] x R??). Show that the natural boundary condition associated
with minimizing

F(Y)= be(x, Y(x), Y'(x)) dx

locally on
2, ={YeC([a,b]): Y@ =4, y(b)=b;,i=2,3,...,d}
(where y, (b) remains unspecified), is f};(b) = 0.

Isoperimetric Problem. (See §6.7.) Show that A cannot achieve a (positive)
minimum value on 2 or 2*. [Reason geometrically.]

Prove that in R?, a geodesic curve which can be parametrized by Y e (C'[0, 1])
with Y'(t) # 0, is a straight line segment. Hint: See §1.1(a), and recall that the
unit vector Y'/|Y'| is tangent to the curve.

For each of the following functions f defined on a subset of R24*!, write the
differential equations whose solutions Y will be stationary for f. Also, give an
example of an integral function F on a set &, which could have such Y as local
extrema.

(@ f(x,Y,Z2)=x*+|Y|> +3z,,(d = 2).

(b) fx, Y, Z2) =x|Z|,(d > 2).

© f(x, Y, Z)=y,|Z] —(sin z)y,, (d = 3).

@ f(x, ¥, 2) =1Z)/\/y;, @ =2).

(Do not attempt to solve the differential equations.)

In (a)—(c), find a partial differential equation which is satisfied by u e 2 n
C?(D), if u is a (local) extremal function for F on 2 = {u € C(D): ul;p = v},
where D is a Green’s domain in the x—y plane and y is a given continuous
function on dD. (Do not attempt to solve the equation.)

@) F) = [p[302 + u]) — (x> + y*)ul dA.

(b) Fu) = [p[3(us + u}) + 5u] dA.

(© F(u) = [plud—u}+u*]dA.

(a) Show that a function which maximizes

1
F(y) = J V)1 = y'(s) ds
0
on
2* = {y e C'[0,1]: y(0) = y(I) = 0; y(s) = 0},

must satisfy the equation y/./1 — y'?> = r = const.
(b) Solve the equation in (a) for y’ and make the substitution y(s) = r sin 6(s)

to conclude that 0'(s) = 1/r, or 6(s) = s/r + c.

(c) Show that also y € 2*, when y(s) = r sin(s/r), where r = I/n. Use x(s) =
[§+/1 — ¥'(1)* dt to eliminate the parameter s and conclude that a max-
imizing function must describe a semicircle of radius r.
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6.43.

6.44.

The Zenodoros Problem (in its nonisoperimetric formulation from Problem
1.9(b)).
(a) Show that a function y, which maximizes

F(y)= L YOI — (yy)®*)]* dt
on

2* = {ye C'[0, T1: y(0) = y(T) = 0; y(t) > 0, |yy'l(t) < 1}

must satisfy the equation \/(1 — (yy’)?)/y — const. = ¢ > 0.
(b) Conclude that when y,(0) = 0, then y,(t) = /2t — c?t?, so that when

Yo € D%, yo(t) = /2t(1 — tT™Y).

Over some future time interval [0, T], a strip-mining company intends to
remove all of the iron ore from a region that contains an estimated Q tons. As
it is extracted, they will sell it for processing at a net price per ton of p(y, y') =
P — oy — By’ for positive constants P, o, and f, where y(z) is the total tonnage
sold by time t. (This pricing model allows the cost of mining to increase with
the extent of the mined region and speed of production).

(a) If the company wishes to control its rate of production y’(t), to maximize

its total profit as represented by

T

F(y) = L p(y, y')y" dt, when y(0) =0, and y(T) = @,
how might it proceed? (T is unspecified, but we need y > 0.

(b) If future money is discounted continuously at a constant rate r, then we
can assess the present value of profits from this mining operation by
introducing a factor of e™" in the integrand of (a). How will this affect
optimal mine operation?






PART TWO

ADVANCED TOPICS

Paris, 1900

AN ADDRESS

“As long as a branch of science offers an abundance of problems, so long is it
alive: a lack of problems foreshadows extinction or the cessation of independent
development. Moreover, a mathematical problem should be difficult in order to
entice us, yet not completely inaccessible, lest it mock our efforts. The mathema-
ticians of past centuries ... knew the value of difficult problems. I remind you
only of the ‘problem of the [ path] of quickest descent,” proposed by Johann
Bernoulli. The calculus of variations owes its origin to this and to similar
problems. ... it often happens also that the same special problem finds applica-
tion in the most unlike branches of mathematical knowledge. So, for example,
the problem of the shortest line plays a chief and historically important part in
the foundations of geometry, in the theory of lines and surfaces, in mechanics,
and in the calculus of variations. ... And it seems to me that the numerous and
surprising analogies and that apparently preestablished harmony which the
mathematician so often perceives in the questions, methods and ideas of the
various branches of his science, have their origin in [the] ever-recurring inter-
play between thought and experience....”

“It is an error to believe that rigor in the proof is the enemy of simplicity.
The very effort for rigor forces us to discover simpler methods of proof.... But
the most striking example of my statement is the calculus of variations. The
treatment of the first and second variations of definite integrals required in
part extremely complicated calculations, and the process applied by the old
mathematicians had not the needful rigor. Weierstrass showed us the way to a
new and sure foundation. By the examples of the single and double integral I
will show briefly, at the close of my lecture, how this way leads at once to a
surprising simplification. ...”

195
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“Mathematical science is in my opinion an indivisible whole, an organism
whose vitality is conditioned upon the connection of its parts. The organic unity
of mathematics is inherent in the nature of this science, for mathematics is the
foundation of all exact knowledge of natural phenomena. That it may com-
pletely fulfill this high destiny, may the new century bring it gifted prophets and
many zealous and enthusiastic disciples!”

Davip HILBERT
At the Second International Congress
of Mathematicians'

! These are fragments of the celebrated lecture in which Hilbert set forth 22 additional problems
which have challenged mathematicians of all disciplines in this century. The translation of the
complete text from which they were compiled will be found in Vol. 8 of the Bulletin of the A.M.S.
(1902) pp. 437445, 478, 479.



CHAPTER 7
Piecewise C! Extremal Functions

In many problems examined thus far we have required continuous differ-
entiability of the function y (or Y) defining the classes for optimization.
Already with the example of the minimal surface of revolution from §1.4(a)
we have argued that for some configurations, the minimizing curve (if it
exists) should exhibit “corners,” and it is natural to wonder whether cornered
curves § and Y such as those shown in Figure 7.1 might not give improved
results for other problems. Such curves are represented readily by functions
which are piecewise continuously differentiable, or piecewise C*.

In the present chapter we shall extend our previous investigation to in-
clude this class of functions as possible extremals.! In §7.2, we show that it is
only necessary to consider such extremals when C! extremals cannot be
found, and in §7.3 and §7.5 prove that in general such extremals are station-
ary functions in intervals excluding their corner points, at each of which they
must meet the transitional conditions of Weierstrass—Erdmann. The tech-
niques are illustrated by application to a Sturm-Liouville problem where
consideration of piecewise C* extremals provides valuable information. In
§7.4, we use [strong] convexity (as in §3.2) to guarantee minimality for the
local extremals of the associated integral functions and to study problems in
which interval constraints preclude simple stationarity. (Although it is possi-
ble to introduce piecewise C* functions for k =1, 2, ... even in a multi-
dimensional setting—and obtain corresponding extensions to other results
from Chapter 6, we shall not do so here. See [Mo].)

The above material is necessarily more technical but not appreciably more
sophisticated than that which it generalizes. However, the results presented

! An older literature refers to these as “discontinuous” extremals. Extremals which exhibit actual
discontinuities have been investigated by Krotov. See [Pe].
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Figure 7.1

in the remainder of this chapter, namely, Hilbert’s differentiability criterion
(in §7.5) and the Weierstrass-Legendre conditions necessary for a minimum
(in §7.6) are based on somewhat more difficult concepts. This concluding
material should be regarded chiefly as a prelude to Chapter 9.

§7.1. Piecewise C! Functions

(7.1) Definition. A function § € C[a, b] is piecewise C* (denoted § € C'[a, b])
provided that there is a finite (irreducible) partition a =cy <¢; <:'- <
cy+1 = b such that ) may be regarded as a function in C![c,, ¢, ] for each
k=0,1,2,..., N. When present, the interior points c, for k =1,2,..., N are
called corner points of .

When there are no corner points, § = y € C'[a, b]. Moreover, if ye
C'[a, b], then |y| € C'[a, b] when y changes sign only finitely often.

Observe that §’ is defined and continuous on [a, b] except at a corner point
¢ where it has distinct limiting values §'(c +). We shall use §'(c) to denote both
values when the distinction is not essential. Discontinuities such as these of y’
are said to be simple, and functions such as ' are said to be piecewise
continuous on [a, b], or to belong to C[a, b]. Figure 7.2 illustrates the effect
of the discontinuities of §’ in producing “corners” on the graph of §. Without
these corner points,  might resemble the C' function, y, whose graph is
presented for comparison.

A form of the fundamental theorem of calculus remains valid for C!
functions.

(7.2) Lemma. If 9 € C'[a, b], then p(x) = P(a) + [Z9'@) dr.
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a~— \}Cl CkL/ '/—ICN b x¢

Figure 7.2

PrOOF. When x € [¢y, ¢4 ], then

P(x) = 9(a@) = 9(x) — 9(ci) + ,Zo [9(cj+1) — 9(cy)]

c

"y de = f "y de. 0

j

- ry'(t) dt + j;zl

(Conversely, if h is piecewise continuous on [a, b], then p(x) & jj,‘ ﬁ(t) dt

provides a § € C[a, b], with §" = h. See A.8 et seq.)

(7.3) Proposition. Let € C'[a, b]:

(i) If [59'(x)* dx = 0, then " = 0 on [a, b];
(i) If 9’ = O where defined, then y = const. on [a, b].

PROOF. (i) Observe first that ($’)? is nonnegative and piecewise continuous so
that the integral is defined and it may be represented as the finite sum
Y Ao [ 9'(x)? dx. This sum vanishes iff each of its terms does, and then the
continuous function §'(x)> = 0 on (¢, ¢x41) (from A.9), so that its continuous
extension vanishes on [¢, ¢4y ], fork =0,1,2,..., N.
(i) This assertion is an immediate consequence of the preceding lemma.
O

(a) Smoothing

As Figure 7.2 illustrates, each piecewise C* function is “almost” C*; it is only
necessary to round out the corners to produce the graph of a function y such
as that shown. The next construction accomplishes this analytically and
provides control over the approximation.
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(7.4) Smoothing Lemma. For each $ € C'[a, b]and 6 > 0,3 y € C'[a, b] such
that y =9 except in a S-neighborhood of each corner point of § where
max |y’(x)| < 4 max |9'(x)]. Thus max |y(x) — P(x)| < A6 for a constant A
determined by 9.

Proor. Since § has at most a finite number, N, of corner points, it suffices
to explain its modification in the given d-neighborhood of a typical corner
point c¢. We suppose that § is so small that this neighborhood excludes a
o-neighborhood of other corner points and the end points g, b. In this neigh-
borhood we replace the discontinuous function §’ by a continuous triangular
function, such as that shown in Figure 7.3, which is determined by its “height”
h at ¢ and the values y'(c + J).

For any choice(s) of & at the corner point(s), the resulting function denoted
y' is continuous by construction so that the function y defined by

y(x) = P(a) + f ) y'(t)dt isin C'[a, b]

a

and its derivative is the function y’ just constructed. It remains to select the
value(s) of h to effect the required estimates, and this choice is most readily
understood when J has only the single corner point ¢. Then, clearly, when
x<c—0:y'(x)=9'(x) so that y(x)= P(a) + jj,‘y’(t) dt = P(x); to have
y(x) = 9(x), for x > ¢ + 4, it is only necessary to make

c+d ~ def ct+o
J y'(t)dt = A; < f 9'(t) dt. (Why?)
c—d c—9d

Now, by elementary geometry, the signed area A; corresponding to the inte-
gral on the left is given by

As=hdé+ g[j)’(c — &)+ 9'(c + 9)],

and for the given 6, 4; = A, provided that
A; 9c—8)+9(c+9)

h=

5 2
v —
/ T
g\
\\(Qh) ,\\
Q\
a c—o ¢ c+9 b x

Figure 7.3
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Thus with M’ = max|y’|, it follows that

c+o

|4 < J |9'(0)] dt < 26M,
c—d

so that |h| <3M' and |y'(x)| <M + |h|<4M' on [c—J,c+ ], as is

evident from the figure.

A similar choice for h = h, is possible at each successive corner point ¢,
k=1,2,..., Nso that by construction and obvious estimates:

y(x) = I < Iy(t) y@lde < Iy(t) y'(@) de

a

N c+o R
Z 1y'(t) — 9'()| dt < 26(5M')N = A8,
k=1 J¢,—o

where A = 10M'N is determined by . 0

We require also (C'[a, b]), the d-dimensional vector valued analogue
of C‘[a b], consisting of those functions Y e (C[a, b])" with components
9 € C'[a,b],j=1,2, ..., d The corner points of such ¥ are by definition
those of any one of its components 9;.! The above lemma can be applied to
each component of a given Y and shows that ¥ can be approximated by a
Y € (C'[a, b])? which agrees with it except in prescribed neighborhoods of its
corner points.

In each case, these sets of piecewise C' functions form linear spaces of
which the subsets of C! functions are subspaces. Indeed, it is obvious that the
constant multiple of one of these functions is another of the same kind, and
the sum of two such functions will exhibit the necessary piecewise continuous
differentiability with respect to a suitable partition of the underlying interval
[a, b]. Moreover, the dot product Y- V of two such functions will be in
C'[a, b]. (Why?)

(b) Norms for C!

Since Cl[a, b] = C [a b], it is evident that | j)| ‘ max [9(x)| is a norm for
C'[a, b] and || j)II max(l P(x)] + |9'(x)]) can be shown to be another [ Prob-
lem 7.1]. Although the first does not supply control over the differentiability
properties of the functions , it is valuable when approximating § by y as in
Lemma 7.4.

Another choice for a norm permitting two functions which agree except in
small neighborhoods of their corner points to be “close” in norm, is the

! When d > 1, the curve represented parametrically by a ¥ with a simultaneous corner point in
all of its components need not exhibit a corner. See Problem 7.13.
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integral

b
9l = j (1901 + 19" (x)]) dx.

_Similarly, we shall supply (Cl[a,Ab] )* with the norms 171< max | (%)),
I 7)) < max(| ()| + |¥'(x))), and | V], = (17 ()| + |7/ (x)]) dx.

The maximum norms, || and |- |, are called the strong and the weak
norms, respectively, and the functions which are locally extremal with respect
to the first [second] of these are said to be strong [weak] extremal functions.*
Since there are many more functions in a strong norm neighborhood of a
function than in a weak norm neighborhood [Why?], it is more difficult for
a function to be a strong extremal than it is to be a weak extremal (locally).
This classification of extremals was introduced by Kneser, a student of

Weierstrass, in 1900; it is now a fundamental part of the theory ([K]).

The above norms are not independent, and they satisfy inequalities such
as the following:

(75) @ A< 190, <G - )19,
®) AV <71, <6 - a7,

~ d ~
© Y] < ; 19511, where Y = (91, ..., D).

(Problems 7.1-7.2)

b—a

here A = ———;

§7.2. Integral Functions on C*

When f = f(x, Y, Z) is continuous on [a, b] x R**, and Ye @ = (C'[a, b]),
then f[Y(x)] = f(x, Y(x), Y'(x)) is piecewise continuous on [a, b] and has in
general (simple) discontinuities at the corner points of Y. Thus

b

b
F(Y) = J fx, Y(x), Y'(x) dx = J SIY(x)] dx
is defined and finite, since a partition of [a, b] reduces this integral to a finite
sum of integrals considered previously. Now in general F is not continuous
on % with respect to the strong norm | | orthe | ||; norm. (F is continuous
with respect to the weak norm | ||. See Problem 7.3*) However, % =
(C'[a, b])* = %, and the values of F on # can be approximated by those of F
on % as shown in the next

(7.6) Proposition. If fe C([a, b] x R*), then for each Ye® and ¢>0,
da Y, e ¥, with|Y — Y] <e, for which |F(Y) — F(Y)| <e.

! Some authors reverse these designations for the norms, although there is uniform agreement
about that for the extremals.
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ProOF. We use the Smoothing Lemma 7.4, to replace each component J;
of Y by a C! function y; which agrees with it except in nonoverlapping
J-neighborhoods of each corner point where

lyi (o)l < 4 max [9;(x)] < 41

yx) = 9)1 < 49,

so that [y;()] < | 5] + 48 Thus ¥ x: [,(l, [y}l 19,60, 195G < m; =
4(A 6 + [19ll). The resulting function Y = (y1, y,, ..., y)) €% and it agrees
with Y except in d-neighborhoods of each of its corner points cok=12,...,N,
where the previous estimates hold. Denoting max;_; , ,m; by m, we con-
clude from Proposition 5.3 that | f| is bounded on the compact box [a, b] x
[—m, m]*, by , say, and f[Y(x)] = f[Y(x)] except when |x — ¢,| < 6 for
some corner point ¢, k =1,2,..., N. Hence

and

|F(Y) — F(Y)| =

N cpt+o N
2. J (fIY()] = fLIY(x)]) dx

= cx—0
< 26N max(|f[Y(x)]| + [f[Y(x)]]) < 4N7d.

Also |V — Y1 <Y 19—yl <Y, 4,0 = A5, say, by 7.5(c) and the
above estimate. The proposition follows for Y, = Y when ¢ is sufficiently
small, O

It is straightforward to show that in the case of the geodesic problems for

¢ and for the sphere, the arguments used in §1(a), (b) remain unchanged
when the functions Y are replaced by their piecewise C! counterparts Y. Thus
we can assert that the geodesics in these cases remain the same, namely, the
straight lines and the great circles, respectively.

There is in fact a general principle evidenced by these examples which may
eliminate the search for piecewise C* extremals.

(7.7) Theorem. If € C([a, b] x R?*?) and Y, is a [local] extremal point for F
on2 ={Ye¥:Y(a)= A, Y(b) = B}, then Y, is also a [local] extremal point
for Fon 9 = {Ye®: Y(a) = A, Y(b) = B} [with respect to the same |- | or
- norm].

ProoF. The first result is a direct consequence of the preceding proposition.
Indeed, if Y, € 2 supplies, say, a minimum for F on & in the strong neighbor-
hood §;(Y,) = {Ye#:|Y — Y,] <}, and | Y — Y] < 4, then with ¥, as in
the proposition, the triangle inequality shows that
F(¥)= F(Y,) — |[F(Y) - F(Y,)|
>F(Y,)—e=>F(Yy) — ¢

when ¢ is so small that Y, € S;(Y,) (and this can be achieved; see Problem
7.20(a)). Thus as ¢ v 0, we conclude that F(Y) > F(Y,).
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The case where Y, is a weak local minimum point is left to Problem 7.20(c).

d

(7.8) Remark. The previous characterizations of local C! extremals given in
Chapter 5 were with respect to an unspecified norm, but as there observed,
weak local extremals Y, need not be strong local extremals; see Bolza’s exam-
ple in §7.6. However, in case Y, is a global extremal for F on 2, then the norm
considerations are immaterial and we can assert that Y, is also a global
extremal for F on 2. In particular all of the minima obtained for the convex
problems of Chapter 3 also minimize in the corresponding classes of piece-
wise C! functions.

(Problem 7.3)

§7.3. Extremals in C![a, b]:
The Weierstrass—Erdmann Corner Conditions

Theorem 7.7 does not preclude a function F from being extremized by a ¥,
which is only piecewise C'. For example, the function (of §6.2, Example 3)
f(y,2) = y*(1 — z)’ gives

1
F(9) = f . P = 9'(x))* dx,

and F has a minimum value, 0, on

2={9eC'[-1L1L9(~1)=0,9(1) =1},
which is attained (uniquely) by the function

0, —-1<xx<0,
x, 0<x<1,

Po(x) = {

with a corner point at 0. [To establish the uniqueness, observe that if F()) =
0 for a § € &, then the associated nonnegative integrand must vanish on
[—1, 1] except possibly at the corner points of §. Thus, at each such x, either
9(x) =0 or p'(x) = 1. Now $(1) = 1, and in the largest subinterval (g, 1] in
which §(x) > 0 we must have that y’(x) = 1 and §(x) = x. This interval must
continue until a = 0; $(0) = 0, and the only function in C'[—1, 0] which
vanishes at —1 and 0 and increases at each nonzero value is §(x) = 0.] On
the other hand, by 7.6 we know that F(J,) can be approximated as closely as
we wish by values F(y) for

ye2 ={yeC'[-1;1]: y(—=1)=0,y(1) = 1}.

Thus F cannot be minimized in %, and this explains our previous lack of
success in §6.2, Example 3.
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When we seek conditions which are necessary in order that a function
Yo € C'[a, b] should be a local extremal, we may assume at first, that it is a
weak local extremal, i.e., that it is extremal with respect to some weak neigh-
borhood of the form S,(9,) = {§ € C'[a, b]: || — Po|l <r}. In fact, each
local extremal with respect to the strong | -] (or the |- ||;) norm is automati-
cally a weak local extremal. (Why?)

Observe that P € S,(9o) iff 9= 9o + eb for v e C'[a, b], and a sufficiently
small ¢. In characterizing (weak) local extremals for the function

b b
F(§) = f x99, 9'(x)) dx = f fT9(x)] dx
on ~ ‘ .
2 ={9eC'a,b]: 9(@) = ay, Jb) = b, },

where f = f(x, y, z) and its partials f,, f, are continuous on [a, b] x R?, we
duplicate the analysis of §6.1, and will only sketch the results.

For e & and 6 € P, = {t € C'[a, b]: 6(a) = d(b) = 0}, we form

b
F(p + eb) = J fIP(x) + eb(x)] dx;

then, taking into account the corner points of both j and , we represent it as
a finite sum of integrals with continuous integrands, and differentiate each
under the integral sign (A.13) to get upon reassembly that

b
%F (9 +eb) = f LAHLO + ef)(x)10(x) + £.L(P + e0)(x) ]2 (x)] dx.

Hence, in the limit as ¢ — 0, we obtain

b
SF(9; ) = f (f,(0)0(x) + £, ()9’ (x)) dx, 6
where ‘

L0 Z £,(x, 9(x), 9'(0) = £,[I)],
£y ) = flx, 9(x), §(x) = £L9(0)]

are again piecewise continuous on [a, b] with at most (simple) discontinuities

at the corner points of . Thus g(x) defj fy(t) dt, determines a function in
C'[a, b], and upon integrating by parts, we have as before that

and

SF(9; ) = f [f,(x) — 9(x)18'(x) dx.

In order that § be a local extremal function for F on &, it must make
OF(9;0) =0,V 0 € 9,, and, in particular, for that ¢ defined by

5(x) = f Tl — 800) — co) de,
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which is in &, for an appropriately chosen constant c,. As in the proof of
Lemma 4.1 of du Bois-Reymond, we have that [%#'(x)* dx = 0, which gives
¢ = 0 (Proposition 7.3(1)). Thus

fol) = j "0 dt + o ®

is continuous, and in addition,

d A . 2 ’
ix Sy (x) exists = f,(x), 2
except at each corner point ¢ of y where from the aforementioned continuity:

frle=) = flc+). 3)

(3) is the first of the Weierstrass— Erdmann conditions which must prevail at
each corner point of a piecewise C! local extremal function. On each interval
that excludes corner points, the local extremal function $ must be C! and
stationary for f in the sense of the previous chapter.

(7.9) Remark. Actually, the integral equation (2) could be used to character-
ize stationarity for F on &, and many of the subsequent properties obtained
in this chapter for extremal functions J are also true for this larger class. See,
in particular, Theorem 7.12 and its proof. For example, each solution ¥ of (2)
satisfies (3) at a corner point, and therefore (see Problem 7.25(a))

At a corner point ¢ of a solution  of (2), the double derivative
1.:(c, 9(c), 2), if defined, must vanish for some value of z.

[This is a simple consequence of the law of the mean (A.3) applied to the
function g(z) = f,(c, y(c), z), which by (3) has equal values at the distinct points
z = 9'(c+) and so must have a vanishing derivative g'(z) = f,,(c, §(c), z) at an
intermediate point.]

Similarly, when f € C*([a, b] x R?) we may duplicate from §6.3, the deri-
vation of the second Euler—Lagrange equation in integral form, to conclude
that a local extremal § for F on & must satisfy

[ = Y (0)fyx) = f f0) dt + const, @)
where X aA
J(x) =f19(x)], and fi(x) = fL[$(x)].
Thus (d/dx)(f — j)’fy,)(x) exists = f,(x), V x € (a, b) except at each corner
point ¢ of § at which holds the second Weierstrass—Erdmann condition:
(f =97 e=) = (f = 9F)e+). @)
If we use (3), and let w = $'(c—), z = P'(c+), we can restate (4') as follows,

fle, 9(e), w) = f(c, 9(c), 2) — fale, 9(c), )W — 2) = O; #")
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and since w # z, we see that neither f(c, y(c)," (nor —f(c, y(c),*) can be
strictly convex. (Recall Definition 3.4). This fact can sometimes be used to
locate or even preclude corner points.

For example, the function f(x, y, z) = (x* + VOV + 22 is strictly convex
(in z) except when x2 + y? = 0. Therefore an associated local extremal
cannot have a corner point except possibly where ¢ = (c) = 0. The function
f(y, z2) = (1 + y*)z* cannot have local extremals with corner points, i.c., each
local extremal is C?, because (1 + y?)z* s strictly convex in z. In this case, the

test of Remark 7.9 fails since f,,(y, 0) = 0. On the other hand, by the same

test, when f(y, z) = e?,/1 + z* every solution of (2) is C*, whether or not it
gives a local extremal. (Recall Example 3 of §3.3)

With a generalization similar to that used to obtain Theorem 6.8, we get
the following:

(7.10) Theorem. For a domain D of R?, suppose that
f=1(x,2) e C'([a,b] x D),

and Y e ¥ = Ct [a, b] provides a (weak) local extremal value for

b
F(§) = f f9()] dx
on
9 ={9e¥: 9(a) = a,, H(b) = by; (J(x), §'(x)) € D}.

Then except at its corner points, § is C* and satisfies the first and second
Euler—Lagrange equations (2') and (4). At each corner point c:

(i) fy;(c—)f fy(c+); and )
@ (f =9 e—-) = (f = 9 e +)
(i) +f(c, 9(c), z) cannot be strictly convex in z.

PROOF. See 7.13 in §7.5. O

The Weierstrass—Erdmann conditions (i) and (ii) show that the disconti-
nuities of §” which are permitted at corner points of a local extremal ), are
limited to those which preserve the continuity of both fy and ( f — j)’f;,).
Observe that by (4), when f, = 0, then the latter term is constant.

Example 1. A piecewise C! extremal, §, for the brachistochrone problem of
§6.2(c), where

1+ 22 z
s Vs =—F d z\As Vs =

should be a stationary function (and hence represent a cycloid) on each
interval excluding corner points, at each of which we require the continu-
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ity of

A P A A 1

= and f—9f, =—F—Fr,
5 SIS +97 S =95 IS+ 97
while the latter function is in fact constant since f, = 0. Thus we require the
continuity of §, so that even on mathematical grounds this problem can have
only C! extremal functions. (An exception occurs at x = 0 where $(0) = 0
and §'(0) = + co. There, an extreme form of a corner is permitted at the cusp
of the cylcoid.)

Example 2. For the function F which introduces this section, where

fx,p,2)=y*(1 — 2% and f,(x,y,2)=2y*(z — 1).

a piecewise C! extremal function y must be stationary in intervals excluding
corner points at which both
fy==2°1—9) and f—9f, =9(1-9?)

are continuous, while the latter is constant over the interval. Since § is contin-
uous, from the first condition it follows that §’ is also continuous except
perhaps at a point ¢ where (c) = 0, and these are the only possible corner
points. Thus unless y vanishes at some point in an interval [a, b], it is not a
local extremal; (moreover, as we have seen in §6.2, Example 3, there need not
be any local extremals in C*[a, b] which satisfy certain boundary conditions).

However, if § vanishes at a single point in [a, b], then from the second
condition, $?(1 — $"2) =0 so that at each x € [a, b]: either §(x) =0, or
P'(x)=1orp(x)=—1.

Unless y = 0, the subintervals in which § vanishes identically can only
terminate at corner points beyond which J is linear with the slope 1 or the
slope — 1. Thus the most general piecewise C! (local) extremal function which
vanishes at some point on an interval [a, b] is one which vanishes on a single
subinterval (which may reduce to a point), beyond which it rises or falls with
unit slope. We have already encountered one function of this type on the

<
interval [—1, 1], viz,, §4(x) = {2’ i ; g

) =

. Others are shown in Figure 74.

Observe that there cannot be more than one such function having given
boundary values at a, b, but there are none with |$(a)| (or |p(b)|) > b — a.

.

—

=¥

S

'\/ ‘,\\31\/

Figure 7.4
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— 5o

-

-~ (x,y) =0

®y

Figure 7.5

Natural boundary conditions corresponding to the various free end point
constraints considered in §6.4 remain the same; viz., (12a), (12b), and (15),
respectively, where, of course, f(.) replaces f;, in each instance.

To see this most easily when, say, freedom is permitted only at the right
end point, as in Figure 7.5, suppose that §, € C![a, b] provides a local
extremal for F, and let ¢ be the right-most corner point of §,. Then restricting
comparison to those competing y which also have their last corner point at ¢
and satisfy $(c) = Po(c), it is seen that the corresponding directions ¢ must
utilize the end-point freedom exactly as in §6.4. Thus the resulting natural
boundary conditions are the same.

(7.11) Remark. In order to apply the method of Lagrangian multipliers of
§5.7 to piecewise C' extremals with constraints, it is, in general, necessary to
use the weak norm || || in order to have the requisite weak continuity of the
variations 0F(; 0) = [2[£,(x)0(x) + £, (x)#'(x)] dx. Again, our initial obser-
vation that each local extremal of interest is necessarily a weak local extremal
makes this permissible, and results in the now expected generalization of §6.5;
viz., the existence of Lagrangian multipliers determining a modified function
with respect to which an extremal function is stationary in intervals exclud-
ing corner points; at each corner point it satisfies the Weierstrass—Erdmann
conditions for the modified function.

Application: A Sturm—Liouville Problem

Give11 functions p, g, 7€ C[a, b], with 7>0 on [a, b], suppose that
9o € C*[a, b] minimizes

def

b
F() = f [1(0)9'(x)* + q(x)9(x)*] dx ®)
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on the subspace

@y = {y e C'[a, b]: $(a) = §'(b) = 0},

under the isoperimetric constraint

b
G(H= f (99200 dx = 1.
Then, 6G(9o; Po) = 2 |5 p(x)$5(x) dx # 0 and the first alternative of Theo-
rem 5.15 is excluded. Thus witll Remark 5.17, 3 a constant (here denoted —7)
such that 6F(9,; 0) =0,V 6 € %, where F = F — AG.
Introducing

fx, 3, 2) = ©0)2% + [q(0) — Ap(0)1)%,

it follows from Theorem 7.10 that at a possible corner point c, f;[yo(x)] =
27(x)Po(x) is continuous. But since 7 is continuous and positive at c, this
implies that J7, itself is continuous. Thus §, = y, € C'[a, b] is stationary for
f on (a, b), and so y, is a solution of the homogeneous linear differential
equation

d
WX =g - pyx),  xe(ab), &)
which satisfies homogeneous boundary conditions (such as) y(a) = y'(b) = 0.

This type of problem was studied extensively by Sturm and Liouville
(c. 1835). It always has the solution y = @. Each A for which it has a nontrivial
C? solution is called an eigenvalue (or characteristic value) of the problem,
and each associated solution y # O is called an eigenfunction. Clearly, for
each constant ¢ # 0, cy is another eigenfunction for the same eigenvalue, and
if G(y) > 0, then ¢ may be chosen (within a sign) to make G(cy) = 1. From
uniqueness of solution of (5’), y and y’ cannot vanish simultaneously. See
Problem 7.21.

In particular, if our supposed minimizing function y, # O, then it is an
eigenfunction for the above Sturm—Liouville problem and the Lagrangian
multiplier 4 is the associated eigenvalue. Now y, changes sign at most finitely
often on [a, b] (§A1) so that |y,| € %,. Since |y, |?(x) = y2(x), while |y, |'(x)? =
(¥6)*(x), it follows that F(|yo|) = F(yo) and G(|yel) = G(y,). Thus |y,| is also
a minimizing function, but then, |y,| € C*[a, b] by the argument used before,
and hence |y,| is another eigenfunction for the same value A.

From this fact we can conclude that a minimizing eigenfunction y, enjoys
a special distinction: If x € (a, b) then yo(x) # 0. [For if y,(x) = 0, then also
yo(x) = 0, since otherwise |y,| would have a corner point at x. But this is not
possible.

Conversely, by using an ingenious computation from Picard (1896), we
can prove that an eigenfunction y, which is nonvanishing on (a, b) does mini-
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mize F under the given conditions (Problem 7.19). The physical origin of the
Sturm-Liouville problem and the significance of this fact will be discussed in
§8.9.

(Problems 7.4-7.9)

§7.4. Minimization Through Convexity

When the function f(x, y, z) is convex on say [a, b] x R? as in §3.3 then in
general, each local extremum becomes a global minimum, so that the distinc-
tion between weak and strong local extrema is superfluous. For it follows
that

F(9) = J SI9(x)]dx
is convex on N ‘
={9eC'[a, b]: 9(a) = ay; (b) = b, }

for given a,, b, € R, since from 3.4 and (1),

F() +0) — F(§) — 0F(y; 0)
b
= J {f D) + 6(x)] — fI9C)] — (fLP(x)]0(x) +fz[j>(X)]0'(X))} dx

>0, Vyed and deP,={0eC'la b]l:d(a)=0(b)=0}. (6)

Moreover, when f(x, y, z) is strongly convex, then F is strictly convex on 9.
[Indeed, then equality in (6) is possible only if #(x) or #'(x) = 0, V x except
at the corner points of 9, &. This is seen by representing the integral in (6)
as a finite sum of integrals with continuous nonnegative integrands to each
of which may be applied the earlier argument from §3.2. Hence 6%(x) is con-
tinuous and piecewise constant on [a, b]. It follows that #%(x) = const. =
0%(a) =0,V b€ Dy.]
By an analogous argument we may extend Theorem 3.5 as follows:

(7.12) Theorem. If f(x, y, z) is [strongly] convex on [a, b] x D for a domain
D < R%thena

ye P ={9eC'la,bl: 9(a) = ay, H(b) = by; (J(x)§'(x)) € D},

which is stationary for f in intervals excluding corner points,* at each of which
it satisfies condition 7.10(i), minimizes F on £ [uniquely].

Proor. Since the hypotheses on f imply that F is [strictly] convex on &, we
need only verify that 6F(); #) = 0,V ¢ for which  + & € 2. The hypotheses on
y assure that f is in & = C'[a, b] with the derivative f (Why?) Thus for

! Corner points cannot occur when f(x, ), 2) is strongly convex by 7.10(iii).
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each € @, the product f, 5 is also in & and by (1), and 7.2,

SF(; 0) = f [£,()0(x) + f,(x)0'(x)] dx

- f L 1/, (09007 dx

. dx

b
=0,
a

= fy(x)(x)
since f(a) = 6(b) = 0, when y + D € Do. O

There is a corresponding version of Proposition 3.9. (Problem 7.12).

Internal Constraints

Convexity may play an important role in problems involving internal point
constraints such as that of the following.

Example 1. To find the possible local extremal functions for:

2
F(9) = L P'(x)* dx
on

9 ={pe¥ = C'0,2]: 9(0) = $(2) = 1; y(1) = 0},

which has the internal constraint (1) = 0, we recall from §3.3, Example 1,
that f(z) = 2?2 is strictly convex on R.
Moreover, when y € & then ) + b€ D iff b€ Dy = {0e:0(0)=0(2) =0
#(1) = 0} and then by the usual argument
2

F(y +0) — F(§) = 6F(9;0) = J 2§ (x)0'(x) dx,

0
(with equality only if 6 = (). But clearly

, ¢y, onf[0,1),
Pe=4"
¢, on(l,2],
gives .
SF(P;0) = 2¢,0(x) |8 + 2¢,0(x)2 =0, Ve,
Thus we conclude from the strict convexity of F on &, that the piecewise

linear function ), € & given by
1—x, 0<x<1,
X — 13 1 <x< 2’

Jolx) = {

is the only local extremal function for F on &, and it minimizes F on 9
uniquely, by 7.12.
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Observe that §, is clearly in C! but it does not satisfy the Weierstrass—
Erdmann condition of equation (3) at its corner point x = 1. This is because
the corner point in question is forced on the extremal function at the outset,
while the analysis leading to equation (3) permitted the function to seek its
own “natural” corner point(s).

The foregoing analysis extends in principle to any finite number of internal
point constraints, and to other functions f (Problems 7.17, 7.18).

For some problems involving inequality constraints of the type considered
in §2.3, the extremal function may be forced to satisfy a condition precluding
its stationarity along an entire subinterval.

We suppose that f(x, y, z) is [strongly] convex as before, and that we wish
to minimize

b
F(y) = f JI9(x)] dx

on
9 = {9eC'[a b]: Pa) = a;, H(b) = b, },

subject to the inequality constraint
gly(x)1 <0, xe(ab),

where g(x, y) is also convex.

As suggested by Proposition 2.5 and Remark 3.17, we introduce an un-
specified but nonnegative 1 € C[a, b], and consider instead the problem of
minimizing

F(p) = J (fT9()] + A(x)g[9(x)]) dx on J.

Specifically, we seek J, € & which accomplishes this for a 4 > 0 with
Ax)g[Po(x)] =0 on(a, b).

Then it would follow from Proposition 2.5 and the [strong] convexity of

f(:&, ¥, 2) =f(:’£a ¥y, 2) + i(ﬁ)g(ﬁ’ )

that y, minimizes F [uniquely] on 2 under the given inequality constraint.

Thus we desire that in intervals excluding a corner point, J, should satisfy
the equation of stationarity for f; viz.,

d
2 DT =490 = Ax)g,[9(0], ™
where 4 > 0 is required to make

A(x)g[9o(x)] = 0. ()

In particular, in those intervals where g[ 9(x)] # 0, A must vanish and J, is
stationary for f. However, we now permit intervals with g[y,(x)] = 0 and
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(b, by)

Figure 7.6

4 # 0, where , is not stationary for f. Moreover, since f, = f,, o has only
those corner points permitted by f (Theorem 7.10).
To fix ideas let’s consider the following obstacle problem:

Example 2. Minimize the strictly convex distance function

F(y) = Jb 1+ 9'(x)* dx

on & as above under the constraint $(x) < x2. Then, as is evident graphically
from Figure 7.6, for some locations of the end points we must permit
a portion of the minimizing curve to lie along the parabola defined by
g(x, y) = y — x*> = 0. Clearly g(x, y) is convex (as is —g(x, y)), but the sign of

A is still important. Here f(x, y, z) = /1 + z* and f(x,y,2) = /1 + z* +
AX)(y — x?).

For this (nonstationary) part of the curve, y(x) = x?, and since g, = 1
while f, = 0, we use (7), the resulting stationarity equation for f, to define

d y'(x) d 2x
l = ——m—se = — —_— 0‘
N yx)? dx ( /1+ 4x2> 8

For the remaining parts, which will be segments (Why?), we have 4 = 0.! By
taking these segments to be tangential to the parabola at their points of
contact, the resulting function y, will in fact be C'. The foregoing analysis

! The resulting A is only piecewise continuous, but since f, = f,, the usual convexity arguments
remain valid. See Problem 7.26.
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guarantees that it is the unique minimizing function for the problem. (Alterna-
tively, we may argue that since f,, = f,, > 0, §, cannot have corner points by
Theorem 7.10(iii).)

We have just shown how to prove that the natural conjecture for the curve
of least length joining fixed points in the presence of a parabolic barrier is
the correct one. The reader will find it instructive to analyze this geodesic
problem with barriers of other shapes where more than one subarc may be
required to lie along the barrier curve. It is more difficult to obtain necessary
conditions for problems of this type, and in particular to investigate the
behavior at the points of contact. See Problem 7.22 and the discussions in
[Pe] and [Sm].

(Problems 7.23, 7.24)

§7.5. Piecewise C! Vector-Valued Extremals

When f = f(x, Y, Z) € C*([a, b] x R?9) the function

F(Y)= f SIY(x)] dx = f S, Y(x), ¥'(x)) dx

is defined V Y e @ = (C'[a, b]), the linear space of piecewise C' vector-
valued functions ¥ = (P15 P2s - - -5 Pg) With the weak norm || Y| of §7.1(b).

As in §6.7 we may analyze each component of a weak local extremal
function, Y, for F on

9 ={Ye®:Y(a)= 4, Y(b) = B},

and conclude that at each corner point ¢ of the component $; we must have
the (first) Weierstrass—Erdmann condition

file=) = f,lc+),

where, of course,
fv_’,(x) = fz_,[?(x)]a .] = 13 23 [ERE) d.
Thus at a corner point ¢, with the obvious notation:
Jrle=) = frle+). ®

In each subinterval excluding the corner points of a given component ;,
Y satisfies the jth stationarity condition

d
dx

so that in the subintervals excluding its corner points, ¥ is C! and stationary

f ) = £, (0) = £, [Y(%)],
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and satisfies the Euler—Lagrange equation

L Je) = fro. ®)

Observe that (8) and (8') may be replaced by the equivalent vector valued
integral equation:

fr(x) = f fr(®) dt + C,, ©)
for some constant vector C,.

When fe C*([a, b] x R??) there is a corresponding version of the second
Euler—Lagrange equation (§6.7) which now takes the form

fx) = Y () fy(x) = f ) f.(t) dt + const,, (10)
where ‘

() = f(x, Y(x), ¥'(x) = f[Y(x)]
[0 = fulx, (%), Y'(x) = fo[ Y (%)]

are well-defined when x is not a corner point of Y. The continuity in (10) may
be used to conclude that at a corner point ¢, a (local) extremal Y satisfies the
second Weierstrass—Erdmann condition:

=Y f)e=)=(f = V" fy)c+). (11)

In each interval excluding corner points, the integrand in (10) is continu-
ous so that Y satisfies the second equation:

and

d , = A
([ Y f) ) = £, (12)
Again with an obvious generalization there follows the

(7.13) Theorem. For a domain D of R*, let f = f(x, Y, Z) € C'([a, b] x D),
and suppose that Y provides a local extremal value for

b
F(Y)= f fIY(x)] dx

on
9 = {Y e(C'[a, b])*: Y(a) = A, Y(b) = B; (Y(x), Y'(x)) € D}.

Then except at its corner points, Y is C' and satisfies the first and second
Euler—Lagrange equations, (8') and (12). At each corner point, ¢, Y meets the
Weierstrass— Erdmann conditions:
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O frle—) =frlc+)and
() (f = Y fy)e=) == Y fp)c+)
(i) +f(c, Y(c), Z) cannot be strictly convex in Z.

Observe that when c is a corner point for only one component ¥;, then as
before we may infer from (i) that if defined, each f; , (c, Y(c), 2) must vanish,
for some Z € R (ii) reduces to requiring the contlnulty of only (f — Vi fy)
at ¢; and (iii) becomes a statement of nonconvex1ty in z; only. Finally, when
f. =0, then (10) shows that ( f Y fy ) is constant.

PROOF. When Y, = ¥, the radius function r(x) used in proving Theorem 6.8 is
piecewise continuous and so it again has a positive minimum value on [a, b]
guaranteeing a sufficient supply of £-admissible directions at Y,. For (iii) see
Problem 7.25. O

It is straightforward to extend to vector-valued piecewise C' extremals the
method of Lagrangian multipliers (cf. Remark 7.11) and the use of convexity
in minimization problems (§7.4). (Problem 7.10.)

Application: Minimal Surface of Revolution

In 1744, Euler published a solution to the following problem: Given positive
numbers a, and b,, find the planar curve joining points (@, a,) and (b, b;)
which when revolved about the x axis will have the minimum surface area.
(See §1.4(a).)

We suppose as we may that a =0, a; = 1 and that b, > 1, so that the
configuration is as shown in Figure 7.7(a).

Then, supposing that a meridianal curve admits parametric representation
by a function Y = (x, y) € (C'[0, 1])?, the resulting surface area is (from
elementary calculus) given by

2n fi y(t) ds(t) = 2n fl y(@)|Y'(2)| dt.
0 0

(©)

Figure 7.7
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However, as we have seen with similar integrals, the minimizing curve (if it
exists) may well have corners, and indeed, it is almost intuitively clear that
when b > b,, the minimum area arises from the limit of curves such as shown
in Figure 7.7(b) and thus should be given by the degenerate three segment
curve of Figure 7.7(c).

Hence, ignoring the constant 27, we are led to formulate the problem as
follows: Given positive numbers b, and b, > 1, minimize

F(Y)= f Y0170 de

0o

9E(Y = (%) e(CI[0, 17)%: ¥(0) = (0, 1), ¥(1) = (b, by); with
|[Y|#0 and $>0,o0n[0,1]}.

Here f(t, Y, Z) = y(z2 + z2)'2, so that if Y& & minimizes F (locally) on &, we
should expect that except at corner points it satisfies the Euler—Lagrange

equation(s) (9); viz.,
d jv%’] d [ j)jz’] o
—|—=1=0; —| = |=1Y], 13
dx[| Y| de] |Y'| ! (13)

and at a corner point, ¢, each bracketed term in these equations is continu-
ous. (However, see Problem 7.14(a).)
It follows that the first term
ps
5z = const. = ¢, say throughout [0, 1].
Thus, if § or £’ vanishes at any point in [0, 1], then ¢, = 0 so that either § or
%’ must vanish at each noncorner point.

A little experimentation shows that the only curve of this type repre-
sentable by functions in & is that consisting of three segments, shown in
Figure 7.7(c), for which the surface area is seen to degenerate to that of the
two end disks of Figure 7.8(a). This solution is attributed to its discoverer

o>
=Y

(b)

Figure 7.8
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B. C. W. Goldschmidt (1831). When b is much larger than b, (>1), we have
already shown intuitively why it should supply the minimum sought.

However, when b is much smaller than 1 (<b,), then the Goldschmidt
solution should not provide the minimum area, since then the area of the two
end disks will exceed that of the lateral area of the frustrum of the cone
having them as bases (Figure 7.8(b).) Thus we must consider the remaining
possibility: that ¢, # 0.

When ¢, # 0, then neither § nor £’ can vanish anywhere, and by (13) the
unit vector Y'/| Y'| is continuous at each corner point. But this means that the
direction of Y’ is continuous, so that Y represents a curve without corners. We
shall assume that ¥ = Y = (x, y) € (C1[0, 1])>. (However, see Problem 7.14).

Upon multiplying the resulting second equation (13)

(d/dt)Lyy'/1 Y]] =1Y|

by its bracketed term, it may be integrated to give (yy'/|Y'|)?> = y* + ¢, for a
constant c,, which together with (yx’/|Y’|)?> = c3, shows that ¢; = —c2 and

\2 2
AN ,
<x—> - 1. (13

Since x’(t) is continuous and nonvanishing, it must be positive in order to
have x(0) = 0 and x(1) = [§x'(¢) dt = b > 0. It follows that x(t) has an in-
verse in C'[0, b], and we can suppose the curve to be parametrized with
respect to the variable x = x(z).

For this parameter, x’ = 1, and the resulting differential equation for

y = y(x) is with ¢ = ¢,
2
v = (") - (149

(which may be recognized as the second Euler—Lagrange equation of the
function f(x, y, z) = y/1 + z? for the nonparametric minimal surface of rev-
olution problem. See Problem 6.16.)

Since y?(x) > c?, it is convenient to make the hyperbolic substitution:
y(x) = c(cosh n(x)), so that y'(x) = ¢ sinh #(x)n’(x), and the differential equa-
tion for # is

c*(sinh? n)(n’)*> = cosh? 4 — 1 = sinh? 7,
or
cn?=1, forn#0.

Thus 7(x) = ¢™*x + u, so that the solution of (14) is

y(x) = ¢ cosh(c™x + p), (14)
for some constants ¢ # 0 and u to be determined. The boundary conditions
for y = y(x) are:
(i) y(0) = 1; and
(i) y(b) = b;.
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To satisfy (i) we must have ¢ cosh u = 1, so that

__cosh(x cosh u + p)

y&x) cosh u

As defined, y(x) is positive on [0, b]. We wish to choose y, if possible to
satisfy (ii), i.e., to have

_ . cosh(bcosh u + p)
yb)=b = cosh 1 .

(15)

However, since cosh t > |t|, V t € R, in order that (15) be solvable, it is neces-
sary to have

hu—
_ (beoshpu+p) _ beoshp Iu|=b_< |l

b
! cosh u - cosh u cosh p

>, or by>b—1.

Hence when b, < b — 1, there are no C* local extremal functions, and the
only possible minimizing functions for F on 2 are those which describe the
Goldschmidt curve.

It is more delicate to find conditions on b, b, which permit solutions of (15)
and hence local extremals other than the Goldschmidt curve. Sets of usable
values surely exist. For example, given b > 0, the choice u = 0 will satisfy (15)
when b, & cosh b. For these values, the curve defined by

y(x) = cosh x, 0<x<hb,

. x(t) = bt,
(or parametrically by {y (f) = cosh b,
shown in Figure 9.10 will provide a possible local minimal surface area.
More general conditions are known, and some permit two distinct solu-
tions of (15), and two possible minimizing catenaries such as those shown in
Figure 9.10. (See Problem 7.15.) We reserve discussion of actual minimality
of these curves until §9.6. (See [BI1].)

(Problems 7.13-7.15)

0<t< 1> representing the catenary
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