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Preface

There are a great deal of books on introductory analysis in print today,
many written by mathematicians of the first rank. The publication of
another such book therefore warrants a defense. I have taught analysis for
many years and have used a variety of texts during this time. These books
were of excellent quality mathematically but did not satisfy the needs of the
students I was teaching. They were written for mathematicians but not for
those who were first aspiring to attain that status. The desire to fill this gap
gave rise to the writing of this book.

This book is intended to serve as a text for an introductory course in
analysis. Its readers will most likely be mathematics, science, or engineering
majors undertaking the last quarter of their undergraduate education. The
aim of a first course in analysis is to provide the student with a sound
foundation for analysis, to familiarize him with the kind of careful thinking
used in advanced mathematics, and to provide him with tools for further
work in it. The typical student we are dealing with has completed a
three-semester calculus course and possibly an introductory course in
differential equations. He may even have been exposed to a semester or two
of modern algebra. All this time his training has most likely been intuitive
with heuristics taking the place of proof. This may have been appropriate
for that stage of his development. However, once he enters the analysis
course he is subject to an abrupt change in the point of view and finds that
much more is demanded of him in the way of rigorous and sound
deductive thinking. In writing the book we have this student in mind. It is
intended to ease him into his next, more mature stage of mathematical
development.

Throughout the text we adhere to the spirit of careful reasoning and rigor
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that the course demands. We deal with the problem of student adjustment
to the stricter standards of rigor demanded by slowing down the pace at
which topics are covered and by providing much more detail in the proofs
than is customary in most texts. Secondly, although the book contains its
share of abstract and general results, it concentrates on the specific and
concrete by applying these theorems to gain information about some of the
important functions of analysis. Students are often presented and even have
proved for them theorems of great theoretical significance without being
given the opportunity of seeing them “in action” and applied in a non-
trivial way. In our opinion, good pedagogy in mathematics should give
substance to abstract and general results by demonstrating their power.

This book is concerned with real-valued functions of one real variable.
There is a chapter on complex numbers, but these play a secondary role in
the development of the material, since they are used mainly as computa-
tional aids to obtain results about trigonometric sums.

For pedagogical reasons we avoid “slick” proofs and sacrifice brevity for
straightforwardness.

The material is developed deductively from axioms for the real numbers.
The book is self-contained except for some theorems in finite sets (stated
without proof in Chapter II) and the last theorem in Chapter XIV. In the
main, any geometry that is included is there for purposes of visualization
and illustration and is not part of the development. Very little is required
from the reader in the way of background. However, we hope that he has
the desire and ability to follow a deductive argument and is not afraid of
elementary algebraic manipulation. In short, we would like the reader to
possess some “mathematical maturity.” The book’s aim is to obtain all its
results as logical consequences of the fifteen axioms for the real numbers
listed in Chapter I.

The material is presented sequentially in “theorem-proof-theorem” fash-
ion and is interspersed with definitions, examples, remarks, and problems.
Even if the reader does not solve all the problems, we expect him to read
each one and to understand the result contained in it. In many cases the
results cited in the problems are used as proofs of later theorems and
constitute part of the development. When the reader is asked, in a problem,
to prove a result which is used later, this usually involves paralleling work
already done in the text.

Chapters are denoted by Roman numerals and are separated into sec-
tions. Results are referred to by labeling them with the chapter, section, and
the order in which they appear in the section. For example, Theorem X.6.2
refers to the second theorem of section 2 in Chapter X. When referring to a
result in the same chapter, the Roman numeral indicating the chapter is
omitted. Thus, in Chapter X, Theorem X.6.2 is referred to as Theorem 6.2.

We also mention a notational matter. The open interval with left end-
point a and right endpoint b is written in the book as (a;b) using a
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semi-colon between a and b, rather than as (a,b). The latter symbol is
reserved for the ordered pair consisting of ¢ and b and we wish to avoid
confusion.

I owe a special debt of gratitude to my friend and former colleague
Professor Abe Shenitzer of York University in Ontario, Canada, for pa-
tiently reading through the manuscript and editing it for readability.

My son Joseph also deserves special thanks for reading most of the
material, pointing out errors where he saw them, and making some valuable
suggestions.

Thanks are due to Professors Eugene Levine and Ida Sussman, col-
leagues of mine at Adelphi University, and Professor Gerson Sparer of
Pratt Institute, for reading different versions of the manuscript.

Ms. Maie Croner typed almost all of the manuscript. Her skill and
accuracy made the task of readying it for publication almost easy.

I am grateful to the staff at Springer-Verlag for their conscientious and
careful production of the book.

To my wife Sylvia I give thanks for her patience through all the years the
book was in preparation. P z5unn

Adelphi University E. F.
Garden City, L. I, N. Y.
November, 1982



CHAPTER I
Preliminaries

1. Sets

We think of a set as a collection of objects viewed as a single entity. This
description should not be regarded as a definition of a set since in it “set” is
given in terms of “collection” and the latter is, in turn, in need of
definition. Let us rather consider the opening sentence merely as a guide
for our intuition about sets.

The objects a set consists of are called its members or its elements. When
S is a set and x is one of its members we write x € S, and read this as
“x belongs to §” or as “x is a member of S” or as “x is an element of S.”
When x € S is false, we write x & S.

To define a set whose members can all be exhibited we list the members
and then put braces around the list. For example,

M = {Peano, Dedekind, Cantor, Weierstrass }

is a set of mathematicians. We have Cantor € M, but Dickens & M.

When a set theory is applied to a particular discipline in mathematics,
the elements of a set come from some fixed set called the domain of
discourse, say U. In plane geometry, for example, the domain of discourse is
the set of points in some plane. In analysis, the domain of discourse may be
R, the set of real numbers, or C, the set of complex numbers.

As an intuitive crutch, it may help to picture the domain of discourse U
as a rectangle in the plane of the page and a set S in this domain as a set of
points bounded by some simple closed curve in this rectangle (Fig. 1.1).
The figure suggests that x € S, but y & S.

A singleton is a set consisting of exactly one member as in 4 = {b}. We
have

x € {b} ifandonlyif x=0>5. (1.1)
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Figure 1.1

We distinguish between the set {5} and its member b. Thus, we write
b+#{b} for each b. (1.2)

For example, 2 is a number, but {2} is a certain set of numbers.

S = {a,b)} is a set whose members are a and b. We refer to it as the
unordered pair consisting of a and b.

Unfortunately, the sets usually dealt with in mathematics are such that
their members cannot all be exhibited. Therefore, we describe sets by
means of a property common to all their members. Let P(x) read “x has
property P.” The set B of elements having property P is written

B={x|P(x)). (1.3)
This is read as “B is the set of all x such that x has property P.” For
example, the set R of real numbers will be written

R = {x|x is a real number}. (1.4)

Here, P(x) is the sentence “x is a real number.” If U is the domain of
discourse, the set of members of U having property P is often written

B={x€ U|P(x)}. (1.5)

This is read as “the set of all x belonging to U such that x has property P.”

A set A is called a subset of a set B and we write A C B, if and only if

each element of 4 is an element of B, i.e., if and only if x € A implies
x € B. We visualize this in Fig. 1.2. Each part of this figure suggests that

@

(a) (b)
Figure 1.2

U U
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(@) (b) ©
Figure 1.3

each element of 4 is an element of B; in (a) there are supposed to be
elements of B not in A, where as in (b) every element of B is also an
element of A. Thus, A C B holds also when 4 and B have the same
members. If 4 C B is false, we write A ¢ B.

A ¢ B is equivalent to “there exists x € 4 such that x & B.” (1.6)

Each of the diagrams in Fig. 1.3 portrays the situation 4 ¢ B.
Sets A and B are called equal and we write 4 = B, if and only if both

ACB and BCA

hold. Thus, A = B, if and only if A and B have the same members.
When A4 and B are sets such that 4 C B but 4 # B, we call 4 a proper
subset of B and write

ACB.

This means that every element of 4 is an element of B, but there exists an
Xx € B such that x & A.

One should distinguish carefully between the notions “€” and “C.”
Thus, x € A means that x is an element of 4, while 4 C B means that
x € A implies x € B. The distinction is perhaps more noticeable when we
deny these relations. For example, x & 4 means x is not a member of 4,
whereas 4 ¢ B means that there exists x € 4 such that x & B. The distinc-
tion is important. The two relations have different properties. Thus, if
A C Band B C C, then 4 C C (cf. Prob. 1.3). Because of this C is called a
transitive relation. On the other hand, the relation “ €& is not transitive. For
consider

X=1, A={1}, and B={{1}}.

Here B is a singleton set whose member is A = {1} (nothing prevents us
from having sets whose members are sets). We have X € 4 and 4 € B, but
X € B is false since this would imply X = {1} or 1 = {1} and this is false
(cf. (1.2)).

When x €4 and 4 C B, we write x €A C B. This clearly implies
x € B. Similarly, when 4 C B and B C C, we write A C B C C.

A set having no members is said to be empty. Such a set is also called a
null set. Sometimes, in the course of a mathematical discussion, a set is



4 I. Preliminaries

defined by some property. When no elements exist which have this prop-
erty we call the set empty. An empty set is written @. We prove that for any
set A we have

gcA. (1.7)
Were this false, i.e., @ € A4, there would exist x € @ such that x & A. This is
impossible since no x € @ exists.
Pros. 1.1. Prove: {a,b} = {a,b,a}.
Pros. 1.2. Prove: If 4 is a set, then 4 C A and 4 = 4.
Pros. 1.3. Prove: f AC B C C,thenA4 C C.

Pros. 1.4. Prove: If A and B are sets, then A = B implies B = 4.

Pros.. 1.5. When 4, B, and C are sets such that 4 = B and B = C, we write
A= B=C.Prove: A =B = C implies 4 = C.

ProB. 1.6. Prove: f ACBCCorACBCC,thend CC.
Pros. 1.7. Prove: If A C @ for some set 4, then 4 = @ (cf. (1.7)).

Remark 1.1. Examine the sets 4 = {a,b} and B = {b,c}, where a, b, and ¢
are distinct. Clearly 4 ¢ B and B ¢ A4 hold. Thus, not all sets are related by
the subset relation.

2. The Set R of Real Numbers

We shall treat the real numbers axiomatically and list 15 axioms for them.
In this section we cite only 14 of the 15 axioms. The fifteenth axiom will be
called the completeness axiom and will be stated in Section 8.

The set R of real numbers is postulated to have the properties:

(I) (Axiom 0,). There are at least two real numbers.

(II) (Axiom 0,). There is a relation called less than, written as <,
between real numbers such that if x and y are real numbers, then
exactly one of the following alternatives holds: Either (1) x = y or
@) x<yor@B)y<x;

Pros. 2.1. Prove: If x is a real number, then x < x is false.
[We need not postulate the existence of a greater than relation between

real numbers since this relation can be defined in terms of the “less than”
relation.]
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Def. 2.1. We define x > y to mean y < x, reading this as “x is greater than
y.” We can now reformulate Axiom 0, as

Iy (Axiom 03). If x and y are real numbers, then exactly one of the
following alternatives holds: Either (1) x =y or (2) x <y or (3)
x> y.

Def. 2.2. When x < y or x = y, we write x < y.

Pros. 2.2. Prove: If x and y are real numbers such that x < y and x > y,
then x = y.

(IIT) (Axiom 03). If x, y and z are real numbers such that x < y and
y <z, then x < z.

Def. 2.3. When x < y and y < z both hold, we write x < y < z. Thus, by
Axiom 05, x < y < z implies x < z.

Pros. 2.3. Prove: (a) Either of x <y <z or x < y <z imply x < z; (b)
x < y < z implies x < z.

[We now introduce postulates for addition and multiplication. The
lowercase Latin letters x, y, z appearing in the axioms below will
represent real numbers.]

(IV) (Axiom A,) (Closure for Addition). If x and y are real numbers,
there is a unique real number x + y called the sum of x and y.
(V) (Axiom A,) (Associativity for Addition)

(x+y)+tz=x+(y+2); (2.1)
(VD) (Axiom A;) (Commutativity for Addition)
x+y=y+x; (2.2)
[The next axiom relates addition to the “less than” relation in R.]

(VII) (Axiom 0,). x < y implies x + z < y + z.

ProB. 2.4. Prove: x <y and u < v imply x + u <y + v.

(VIII) (Axiom S). If x and y are real numbers, there is a real ¢ such that
yt+tc=x;

(IX) (Axiom M,) (Closure for Multiplication). If x and y are real num-
bers, there is a real number xy (also written as x - y) called the
product of x and y;

(X) (Axiom M,) (Associativity for Multiplication)

(xp)z = x(pz). (2.3)
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(XI) (Axiom M;) (Commutativity for Multiplication)

Xy = yx. (24)
(XII) (Axiom D) (Distributive Law)
x(y+z)=xy+ xz. (2.5)

[The next axiom relates multiplication to the “less than” relation in
R.]

(XIII) (Axiom 05). x < y and u < v imply xu + yv > xv + yu.
(XIV) (Axiom Q). If x and y are real numbers, where z + y # z holds for
some real z, then there exists a real number ¢ such that yg = x.

Thus far, 14 axioms were cited. As mentioned earlier, the fifteenth and
last one will be stated in Section 8.

The axioms indicate that addition and multiplication are binary opera-
tions, that is, we add and multiply two numbers at a time. We define
x + y + z and xyz by means of

x+y+z=(x+y)+z and xyz=(xp)z. (2.6)
Axioms A, and M, respectively imply that
x+y+z=x+(y+z) and xyz=x(yz). (2.7

Having defined x + y + z and xyz, we define x + y + z + u and xyzu as
x+y+z+tu=(x+y+z)+uy,

2.8
xyzu = (xyz)u. (2:)

Pros. 2.5. Prove: If x, y, z and u are real numbers, then
@x+y+z+tu=(x+y)+(z+u)y=x+(y+z+u)and
(b) xyzu = (xy)(zu) = x(yzu).

ProB. 2.6. Prove: (a) x + z < y + z implies x < y

(b) x + z = y + z implies x = y. The result in part (b) is called the cancella-
tion law for addition.

Pros. 2.7. Prove: The ¢ such that y + ¢ = x, of Axiom S, is unique.

Theorem 2.1. There exists a real number z such that x + z = x holds for all
x €R. This z is the only real number with this property.

PROOF. Let b be some real number. By Axiom S, there exists a real z such
that b + z = b. We prove that x + z = x for all x ER. From b + z = b, we
obtain for x €R,

(b+z)+x=b+x andhence, b+ (z+x)=b+x. (29)
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In the second equality, we “cancel” the b on both sides to obtain z + x
= x. This proves the existence of z. Next we prove its uniqueness.

Assume that there also exists a z” € R such that x + z’ = x for all x €R.
It follows that z + z’ = z. Similarly, in view of the property of z, z’ + z
= z’. By Axiom A; we have z + z' =z’ + z and we conclude that z’ = z.
This completes the proof.

Def. 2.4. The z in R such that x + z = x for all x € R is called zero and is
written as 0. Thus
x+0=x=0+x forall x €R. (2.10)

Theorem 2.2. If x €R, then x0 = 0.

Proor. For any y in R
xy+x0=x(y+0)=xy=xy+0,

so that xy + x0 = xy + 0. “Cancelling” xy we obtain x0 = 0 as claimed.

Given x € R, there exists (Axiom S) a real y such that x + y = 0. y is the
only real number with this property (why?).

Def. 2.5. For each x €R, the unique y such that x + y =0 is called the
negative (or additive inverse) of x and is written as — x. Accordingly, we

have
x+(—x)=0  foreach x€R. (2.11)

Pros. 2.8. Prove: —0=0.

ProB. 2.9. Prove: —(—x) = x for each x € R.

Def. 2.6. Define x — y as the ¢ such that y + ¢ = x and call it x minus y.
Pros. 2.10. Prove: (a) y+(x —y)=xand (b) x —y = x + (—y).

Pros. 2.11. Prove: —(x —y)=y — x.

ProB. 2.12. Prove: z + y # z if and only if y 5 0.

Def. 2.7. A real p such that p > 0 is called positive. A real n such that n <0
is called negative.

Pros. 2.13. Prove: If x >0 and y > 0, then x + y > 0.

Pros. 2.14. Prove: If x > y, then (a) z > 0 implies xz > yz and (b) z <0
implies xz < yz. (Hint: use Axiom 0s)
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ProB. 2.15. Prove: z+#+0 and xz = yz imply x = y. This is called the
cancellation law for multiplication of real numbers.

Using Prob. 2.12 we reformulate Axiom Q as:

Axiom Q'. If x and y are real numbers and y # 0, then there is a real g such
that yq = x.

PrOB. 2.16. Prove: If y # 0, then the ¢ of Axiom Q' is unique.

Theorem 2.3. There exists a real number e+ 0 such that xe = x for all
x €ER, and e is the only such number.

ProoF. Because of Axiom 0,, there exists a real number a such that a # 0.
By Axiom Q’ there exists a real number e such that ae = a. We prove that
xe = x for all x ER. If x ER, then (ae)x = ax. This implies that a(ex)
= ax. Since a # 0, we can “cancel” the a to obtain ex = x, i.e., xe = x.

We prove that e#0. Were e =0, we would have for each x ER,
x = xe = x0=0. Thus, 0 would be the only real number, contradicting
Axiom 0,. Hence e # 0. We leave the proof of the last statement of the
theorem to the reader (Prob. 2.17).

Pros. 2.17. Complete the proof of Theorem 2.3 by proving that e is the
only real number such that xe = x holds for all x €R.

Def. 2.8. The e € R such that xe = x for all x € R is called one and written
as 1. Thus we have

xl=x forall x eR. (2.12)
Pros. 2.18. Prove: (a) (—1)x = —x for all x ER and (b) (—1)(—1)=1.
ProB. 2.19. Prove: (a) (— x)y = —(xy) = x(—y) and (b) (= x)(—y) = xp.
PRrOB. 2.20. Prove: z(x — y) = zx — zy.
ProB. 2.21. Prove: —x —y = —(x + y).
ProB. 2.22. Prove: xy = 0 if and only if x =0 or y = 0.

Remark 2.1. The “or” in Prob. 2.22, as in all of mathematics, is used in the
sense of and/or.

ProB. 2.23. Prove: xy # 0 if and only if x # 0 and y # 0.



2. The Set R of Real Numbers

Def. 2.9. If x and y are real numbers, where y # 0, then the real ¢ such that
yq = x (Axiom Q' and Prob. 2.16) is called x over y or x divided by y and is
written as x/y.* If x # 0, then 1/x is called the reciprocal or the multiplica-
tive inverse of x and is also written as x ~!, so that 1 /x = x ~' when x # 0.

PrOB. 2.24. Prove: If y #0, then (a) y(x/y)=x, (b) yy ' =1=yp(1/p),

and (©) ()" = .

Pros. 2.25. Prove:

ProB.

Pros.

ProB.

ProB.

ProB.

ProOB.

ProOB.

2.26.

2.27.

2.28.

2.29.

2.30.

2.31.

2.32.

Prove:

Prove:

Prove:

Prove:

Prove:

Prove:

Prove:

If y %0, then xy ' = x(1/y) = x/y.

(@ x/1=x,()0/x=0if x #0.

If x #0, then x/x = 1.

If b0 and ¢ # 0, then
a _a

bc b’

If b # 0 and d # 0, then

If 50 and d # 0, then

a,c<_

b d bd

If b#0and d+#0, th

if and only if ad = bc.

Pros. 2.33. Prove:

ad+bc.

if b#0.

Remark 2.2 (Do not divide by 0). We defined x/y for y # 0 as the g such
that yg = x. If y =0 and x # 0, then no such ¢ exists since its existence
would imply 0 = 0g = x which contradicts x # 0. If y = 0 = x, then the ¢
such that yg = x, i.e., such that Og = 0, is not unique (explain). In the last
case, ¢ exists but is not unique. In any case, we do not divide by 0.

* This is written as a built-up fraction; however, because of its position in the text, the solidus

notation is used.
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3. Some Inequalities

Pros. 3.1. Prove: (a) x >0, y > 0 imply xy > 0, (b) x > 0 and y < 0 imply
xy <0, and (c) x <0 and y <0 imply xy > 0.

Pros. 3.2. Prove: 1 > 0.
Pros. 3.3. Prove: x < y implies —y < — x.
PrOB. 3.4. Prove: (a) If p > 0, then x + p > x and if n < 0, then x + n < x.

Pros. 3.5. Prove: (a) x > 0 if and only if —x < 0 and (b) x < 0 if and only
if —x>0.

ProB. 3.6. Define 2=1+1,3=2+1,4=3+1. Prove: —2< —-1<0
<1<2andthat2+2=4.

PrOB. 3.7. Define x> =x-x, x>=x- x - x. Prove: If x €R, then x>0
and if x # 0, then x2 > 0.

ProB. 3.8. Prove: (a) If 0 < x and 0 < y, then x* < y?if and only if x < y;
(b) x> < y* if and only if x < y.

ProB. 3.9. Prove: (a) If x > 0, then x ' > 0 and (b) if x < 0, then x ~! < 0.
ProB. 3.10. Prove: If x < y, and xy >0, then 1/y < 1/x.

ProB. 3.11. Prove: x <y implies x < (x + y)/2 < y. Thus, there exists a
real number between any two real numbers.

ProB. 3.12. Prove: If x <y + € for all € >0, then x < y. In particular,
prove: If x < e for all € > 0, then x < 0.

Pros. 3.13. Let a >0 be given. Prove: If x < y + € for all ¢ such that
0<e<a,then x < y.

ProB. 3.14. Prove: If x < y + € for all € > 0, then x < y.

ProB. 3.15. Prove: (a) If x > 1, then x> x and (b) if 0 < x < 1, then
x?< x.

Miscellaneous Problems

ProB. 3.16. Note that (ax + b)(cx + d) = acx® + (ad + bc)x + bd and

4a’x? + 4abx + 4ac = 2ax + b)* + 4ac — b>. Prove: If a > 0, then ax? +
bx + ¢ > 0 for all x €R if and only if 4ac — b*> > 0.
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Pros. 3.17. Prove: (a) x > 0 implies x + 1/x > 2 and x < 0 implies x +
1/x < =2.
Pros. 3.18. Prove: If x and y are real numbers, then

x2+y2
3 .

Xy <

Pros. 3.19. Prove: If x €R, then x — x> < 1/4.

ProB. 3.20. Prove x >0, y >0 and x + y =1 imply (1 + 1/x)(1+1/y)
>9.

ProB. 3.21. Prove xy + yz + zx < x> + y*+ z% for x, y, and z in R.

ProB. 3.22. Verify (x +y + z)(x? +y2 + 22— Xy —yz —zx) = x3 +y3 +
23— 3xyz and prove: If x > 0, y > 0, z > 0, then xyz < (x* + y° + 2°) /3.

ProB. 3.23. Prove: x >0, y >0, z>0, and x+y+z=1 imply 1/x +
1/y+1/z>09.

4. Interval Sets, Unions, Intersections,
and Differences of Sets

[The set of real numbers may be visualized by “spreading them out” on a
line / in a manner familiar to the reader from his earlier mathematical
education (see Fig. 4.1).

1 1 1 1 1 L 1
-2 -1 0 1 2 3 -

Figure 4.1

Certain subsets of R, called intervals, will play an important role in our
later work. Let @ and b be real numbers such that a < b, then by the open
interval with left endpoint a and right endpoint b, written here as (a; b),* we
mean the set

(a;b)= {x ER|a < x < b). (4.1)

a b
ettt

Figure 4.2

* Many texts use (a,b) to denote the open interval just introduced. This, however, could be
confused with the ordered pair (a, b).
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Along with (a;b) there are three other types of intervals with the same
endpoints. These are written respectively as [a, b], (a, b], and [a, b) and are
defined as

[a.b]={x ER|a < x < b}, 42)
(a,b] = (x ER|a < x < b}, 4.3)
[a,6)= {x ER|a < x < b}. (4.4)

a b a b a b
Figure 4.3 Figure 4.4 Figure 4.5
The interval [a, b] in (4.2) is called a closed interval. The last two types of
intervals may be called half open, or half-closed. The interval sets defined
thus far are called finite intervals. There are also five types of infinite
intervals, written respectively as (a; + ), [a, + ), (— o0; a), (— o0, a], and
(—00; + 00), where a is a real number, and defined as

(a; +0)={x ER|x > a)}, (4.5)
[a,+oo)={x€R|x>a}, (4.6)
(—o03a)={x ER|x < a}, (4.7
(—o,a] = {xER|x < a}, (4.8)
(—o0; +00)=R (see Fig. 4.1). 4.9
a a
Figure 4.6 Figure 4.7
a a
Figure 4.8 Figure 4.9

Unions of Sets

Sets may be combined in certain ways to yield other sets. If 4 and B are
sets, then by the union of A and B we mean the set A U B, where

AUB={(x|xEAorxEB}. (4.10)
Thus, A U B is the set of elements x such that x is in at least one of A or B

(see Fig. 4.10). In the figure, 4 is shaded with horizontal lines and B with
vertical ones. A U B is the set of points having one or the other shading.
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,-—T"!T. '

Figure 4.10

For example, if a € R, then
(—,a]=(—o0;a)U {a)}.
If a R and b €R, where a < b, then
[a,b] = (a;b) U {a,b}.

ProB. 4.1. Prove: If a and b are real numbers such that a < b, then
(—o0;b)U (a; +0)=R.

ProB. 4.2. Prove: If 4 and B are sets, then 4 C AU Band B C AU B.

ProB. 4.3. Prove: If A and B are sets, then 4 U B = B if and only if 4 C B.
Also prove A U@ =4 and A U A4 = 4.

If S is a class of sets, then its union is defined as the set of all x such that
x € S holds for some S € S. We write the union of § as

Us oras |J S (4.11)
ses
In symbols,
US = {x|x € Sforsome S €8§}. (4.12)

For the special case where S = {4, B}, where 4 and B are sets, we have
Us=U{4,B}={x|x € SforsomeS € {4,B})
={x|xEAorx€B)

=AUB.
If § = {4,B,C}, where A4, B, and C are sets, we write |JS = |J{4, B,
C} as AU B U C. For example, we write the set R of reals as
R=R,U{0OJUR_, (4.13)
where R, and R_ are respectively the sets of positive and negative real
numbers.

ProB. 4.4. Prove: (a) f A C S and B C S,then 4 U B C S.
(b) More generally prove: If S C T for all S €S, then S C T.
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Intersections of Sets

By the intersection A N B of sets A and B we mean the set
ANB={x|xEAandx € B}. (4.14)
Thus, A N B is the set of all elements x such that x is in both 4 and B (see

Fig. 4.11). In the figure, 4 N B is the set of elements having both horizontal
and vertical shading. For example, if a < b, then

(a;b)=(—o0;b)N (a; +0) = (a; + ) N (—x;b)
and if a > b, then
(a; +0)N(—o0;b)=0@.
When 4 N B =@, we say that 4 and B are disjoint sets.

Pros. 4.5. Prove: If 4 and B are sets, then A N B C A4 and A N B C B.

ProB. 4.6. Prove: A C B if and only if A N B= A. Also prove A NG =0
and AN A=A4A.

If S is a class of sets, then its intersection is defined as the set of all x
such that x € S for each § € §. We write the intersection of § as

(S oras (S (4.15)
ses
In symbols,
(1$={x|S €5 impliesx € S }. (4.16)

ProB. 4.7. Let S be a class of sets: Prove: If § €5, then NS C S.

For the special class & = {4, B}, where 4 and B are sets, we have
NS=(\{4,B}={(x|S € (A4,B)impliesx € S}
={x|xEAandx € B)

=A N B.
—
A p B
Tk
ANnB

Figure 4.11
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If § ={4,B,C}, where 4, B, and C are sets, we write (S = ({4, B,
ClasANBNC.

Pros. 4.8. Prove: (a) If S C A4 and S C B, then S C A4 N B. (b) More
generally, prove: If T C S, for all S €S, where S is a class of sets, then
T cNs.

When § is a class of sets, we say that S is a pairwise disjoint class when
SeS, TES,and S* Timply SN T=0@.
It is clear that we have for sets 4, B, and C

AUBUC=(AUB)UC=A4U(BUC) (4.17)

and
ANBNC=(ANB)NC=4N(BNC). (4.18)

Pros. 4.9. Prove: If A, B, and C are sets, then (4 U B)UC=(A4 U C)U
(BUC)and(ANB)NC=ANC)N(B NC).

Pros. 4.10. Prove: If 4, B, and C are sets, then A N (B U C)=(4 N B)U
ANC)andAU(BNC)=(4AUB)N(AUC).

Difference and Complements

If A and B are sets, then by 4 — B we mean the set of all elements of 4
which are not in B (see Fig. 4.12).

A-B={x|x€Aandx¢&B}. (4.19)

Note, A —BCAand (4 —B)N B=0@.

When S C U, then U — S is called the complement of S with respect to U
and is written as Cy(S). When all the sets under discussion are subsets of
some domain of discourse U, then we write C,(S) simply as C(S) and call
it the complement of S.

Figure 4.12
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ProB. 4.11. Prove: If A C U and B C U, where U is the domain of
discourse, then 4 — B=A — AB = A N C(B).

ProB. 4.12. Assume A C U and B C U. Prove:

(@) C(A)UA=U  C(B)UB=U.
(b) C(A)NA=0, C(B)NB=0.
(c) C(4 U B) = C(4) N C(B).

(d) C(4 N B)= C(4) U C(B).

(e) C(C(A)) = A.

ProB. 4.13. Prove: If 4, B, and C are sets such that 4 U B= C and
ANB=@, thenA=C—Band B=C — A.

5. The Non-negative Integers

We defined2=1+1,3=2+ 1; 4 =3 + 1. We wish to single out the set of
real numbers arrived at by continuing this procedure. To this end we
introduce the notion of an inductive set of reals

Def. 5.1. A set I C R is called an inductive set of reals if and only if (1) 0 € /
and (ii) x € I implies x + 1 € I for each x €R.

It is clear that the set R itself is inductive.

ProB. 5.1. Prove that the following sets of real numbers are all inductive:
(@) [0, + ), (b) [— 1, + ), (c) {0} U1, + ), (d) {0,1} U [2, + c0).

By Prob. 5.1 we see that there are many inductive sets of real numbers.
Let § be the class of all inductive sets of reals. We define Z as the set of all
real numbers which belong to a/l the inductive sets of real numbers. Thus

Zy=(\9= (x ER|I €9 implies x € I }. (5.1

Theorem 5.1. The set 7, defined in (5.1) is an inductive set of reals.

PrOOF. Assume I € 9, so that I is an inductive set of reals. Then 0 € I.
Thus, I €% implies that 0 € I and hence (i) 0 € Z,. We prove that (ii)
x € Z, implies x + 1 € Z,. Let x € Z,. Assume that I €9 so that / is an
inductive set of reals. Since Z,= (N9 C I (Prob. 4.7), it follows that x € I
and hence that x + 1 € 1. Thus, I €9 implies x + 1 €1 and we have
x + 1€ N9 =Z,. This proves: x € Z, implies x + 1 € Z,. By Def. 5.1, Z, is
an inductive set of real numbers.
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Corollary 1. Z, is the “smallest” inductive set of reals in the sense that 7, C I
holds for all inductive sets 1.

ProoFr. Exercise.
Corollary 2. If S is an inductive set of reals such that S C Z, then S = Z,.

PrOOF. Since S is an inductive set of reals, we have by Corollary 1, Z, C S.
But S C Z, holds by hypothesis. We conclude that S = Z,. This completes
the proof.

Note that n € Z, implies n + 1 € Z, since Z, is an inductive set of reals.
Accordingly, since 0 € Z,, we have 1=0+1€Z7),, 2=1+1€Z,, and
3=2+ 1€ Z,. Corollary 2 of Theorem 5.1 states that the only inductive
subset of Z, is Z, itself. It is easy to see that Corollary 2 of Theorem 5.1
may be reformulated as

Corollary 3 (of Theorem 5.1). If S CZ,, where (i) 0E S and (ii)) n€ S
implies n+ 1€ S, then S = 1,

Theorem 5.2. If n € Z,, then n > 0.

ProOOF. The set [0, + o0) is an inductive set of reals (Prob. 5.1). Hence
Z, C [0, + o0) (Corollary 1 of Theorem 5.1). Consequently, if n € Z,,, then
n € [0, + 00) and hence n > 0.

Remark 5.1. According to the last theorem, a nonzero element of Z, is
positive.

Def. 5.2. We call 0 an integer. Moreover, each nonzero element of Z, will be
called a positive integer. Elements of Z, will be called nonnegative integers.
The set Z, = Z,— {0} is the set of positive integers. Since 1 € Z;, and
1 > 0, we see that 1 is a positive integer.

Theorem 5.3. If n is a positive integer, then n > 1.

ProoOF. The set 4 = {0} U[l, + o) is an inductive set of real numbers
(Prob. 5.1(c)). Hence, Z, C A. If n is a positive integer, then n €Z,C A4
= {0} U[l, + ). Hence n € {0} U [1, + o0). Since n > 0, n €[1, + o0). But
then n > 1. This completes the proof.

We now formulate the principle of mathematical induction. First, we
define the notion of a statement about nonnegative integers. This is a
sentence P(n) containing n which becomes a true or false statement when n
is replaced by some specific nonnegative integer. For example, n =0 is a
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statement about nonnegative integers since it is true when # is replaced by 0
and false if » is replaced by a positive integer.

Theorem 5.4 (Principle of Mathematical Induction). If P(n) is a statement
about non-negative integers such that: (i) P(0) is true and (ii) P(k) implies
P(k + 1) for each k € 7, then P(n) is true for all n € 7.

PrOOF. Let
S = {n €Zy| P(n)is true}.

Using the hypothesis on P(n), it is easy to prove that S is an inductive set
of reals. Also S C Z,. By Corollary 2 of Theorem 5.1, S = Z,. Therefore,
n € Z, implies that n € S and hence that P(n) is true.

Another principle of mathematical induction is based on

Theorem 5.5. If S CZ, , where (i) 1 € S and (ii) k € S implies k+ 1€ S
foreachk €, ,then S=17, .

PrROOF. Let T= {0} U S. We have T C Z,,. (i) It is clear that 0 € T holds.
Next assume that n € T, so that n =0 or n € S. Either of these implies that
n+1€T. For, if n=0, then n+1=0+1=1€ S and if n € S, then
n+ 1€ S C T and hence n+ 1 € T. This proves: (ii) n € T implies n + 1
€ T. We conclude that T = Z,. Thus, {0} U S={0}UZ, . Since 0& S
and 0 & Z, , it follows that S = Z_ (explain).

Corresponding to this theorem we state a principle of induction:

Theorem 5.6. If P(n) is a statement about positive integers* such that (i) P(1)
is true and (ii) P(k) implies P(k + 1) for each positive integer k, then P(n) is
true for all positive integers n.

ProoF. Exercise.
We illustrate the use of the last theorem by proving
Theorem 5.7. If m and n are positive integers, then so is m + n.

PRrROOF. m + 1 is a positive integer for all positive integers m (why?). Assume
that for some positive integer n, m + n is a positive integer for all positive
integers m. Hence (m + n) + 1 is a positive integer for all positive integers
m and since m + (n + 1) = (m + n) + 1, so is m + (n + 1). By the principle
of mathematical induction stated in Theorem 5.6, for each positive integer

* The reader should explain what is meant by “a statement P(n) about positive integers” using
as a guide our definition of a “statement about negative integers” in the paragraph following
Theorem 5.3 and its proof.
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n, m + n is a positive integer for all positive integers m. Hence, if m and n
are positive integers, so is m + n.

ProB. 5.2. Prove: If m and n are positive integers, so is their product mn.

Theorem 5.8. If m is a positive integer such that m > 1, then m—1 is a
positive integer.

Proor. Suppose, for the sake of obtaining a contradiction, that there exists
some positive integer m > 1, such that m — 1 is not a positive integer. Let S
be the set defined as

S=(n€l, |n#*mj.

Then S CZ, . By the hypothesis on m, m > 1 holds, so 1 € S. Second,
assume n € S, sothatn €Z,_ and n # m. Since m — 1 & Z by our present
assumption on m, it follows that n # m — 1 for our n. This implies that
n+1%#m. Since n+1€Z, we obtain n+ 1€ S. S is thus a set of
positive integers satisfying the hypothesis of Theorem 5.5, and we conclude
that S = Z, . But this is impossible since m & S and m € Z, . We must
therefore conclude that if m€Z, , where m > 1, thenm—-1€ 7, .

ProB. 5.3. Prove: If m and n are positive integers such that m > n, then
m — n is a positive integer (Hint: use Theorem 5.8 and induction on n).

Theorem 5.9. If n is a non-negative integer, then no non-negative integer m
exists such that n <m < n+ 1.

Proor. If m were a non-negative integer such that n<m<n+1, we
would conclude that 0 < m — n < 1. If n is a positive integer, then by Prob.
5.3, under the conditions on m and n, so is m — n. This implies m — n > 1
(see Theorem 5.3)—a contradiction. If n=0, then 0 < m<O0+1=1,
where m is a positive integer, which is impossible, again by Theorem 5.3. In
either case, n < m < n+ 1 cannot hold when m and n are non-negative
integers.

Corollary. If m and n are non-negative integers such that m > n, then
m>n+1.

Proor. If m < n+ 1, it would follow from the hypothesis that n < m
< n + 1. This would contradict Theorem 5.9. Hence m > n + 1 as claimed.

We state another important theorem about elements of Z,. It is referred
to as the well-ordered property of the non-negative integers.

Theorem 5.10. Every nonempty set of nonnegative integers has a least
member.
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ProOF. The proof we give is indirect. Suppose a set S C Z,, exists which has
no least number. Let

T={n€ly|n<kholdsforallk € §}.

Since T C Z,, we know that k > 0 holds for all k € Z,,. If 0 € S holds, then
0 would be the least member of S. This would contradict our assumption
on S. Hence, 0 & S, so that k£ > 0 holds for all kK € S. This implies that
0 € T. Now assume that n € T so that n < k holds for all kK € S. Since n
and k are non-negative integers, n + 1 < k for all Kk € S (corollary of
Theorem 5.9). If n + 1 € S holds, it would be the least member of S, and
this would contradict the assumption on S. We conclude thatn + 1 & S, so
that n + 1 < k holds for all k € S. This implies n+ 1€ T. Thus, n€ T
implies n + 1 € T. All this implies that 7= Z,. In turn, this implies that
S =@. For, if there exists a k, € S, it would follow that k, € Z, which
implies k, € T. But then k, < k,, which is impossible. Hence, S = J. We
have proved: If a subset S of Z; has no least number, then it is empty. This
implies that a nonempty subset of Z, must have a least member.

ProB. 5.4. Prove: Every nonempty set of positive integers has a least
number. (Thus, there is a well-orderedness principle for the positive integers
also.)

Certain subsets of Z, are important for applications.

Def. 5.3. If n € Z,,, we define w, to be the set
w, = (k€L k <nj.
Each w, is called an initial segment of Z,,.
For example, wy, =9, w, = {0}, w, = {0,1}.

Pros. 5.5. Prove: If n is a nonnegative integer, then w,,, = w, U {n}.

When n is a positive integer, we often write w, as
w,={0,1,...,n—1} or w,={0,...,n—1}. (5-2)

Def. 5.4. An initial segment of 7, is defined as follows: Let n be some
positive integer, then (n) is the set

(n)y={k€E€L, |k<n), (5.3)

(n) is called an initial segment of positive integers.

Clearly,
=1} @={L2} @)={L23}

ProB. 5.6. Prove: If n is a positive integer, then (n + 1) = (n) U {n + 1}.
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If n is some positive integer, we often write (n) as
(n)={12,...,n} or (n)={1,...,n}. (54)

It is clear that if n = 0, then (n) = (0) =
It is now possible to formulate another principle of induction which we
refer to as complete induction (Theorem 5.12).

Theorem 5.11. If S C Z,, where w, C S implies n € S, then S = Z,,.

ProoF. We have @ C S. This implies wy C S. By hypothesis, 0 € S. Con-
sider the complement C(S)=Z,— S relative to Z,. Suppose that C(S)
# Q. Since C(S) C Z,,, we know then that C(S) has a least member, n, say.
By our first observation, this implies that n, 7 0. (Recall that 0 € S. Since
ny & S, ny# 0). This implies that n, > 0. Thus, Wy ZS. (If w,, C S, the
hypothesis implies that n, € S, contradicting n, € C(S).) Therefore, there
exists a k € w, such that k & S. This shows that there exists k < n, such
that k€ C (S) In turn, this contradicts the definition of n, as the least
member of C(S). We conclude that C(S)=@. But then S =127, as
claimed.

Theorem 5.12. If P(n) is a statement about nonnegative integers such that
P(0) is true, and for each n € 1, the truth of P(k) for k € Z, and k < n
implies the truth of P(n), then P(n) is true for all n € Z,,.

Proor. Exercise.

6. The Integers

Def. 6.1. A real number m is called a negative integer if and only if its
negative — m is a positive integer. Note, since m = —(—m), m is a negative
integer if and only if it is the negative of a positive integer. The set of
negative integers will be written as Z_ . The set Z where Z = Z,U Z_ will
be called the set of integers and each of its members an integer.

Thus, —1, —2, and —3 are negative integers since they are negatives of
positive integers. We have

1=7,U7_=7,U{0}UZ_. (6.1)
ProB. 6.1. Prove: If n is an integer, then so is —n.
ProB. 6.2. If n is an integer, then so are n + 1 and n — 1.

We now state an induction principle for integers (Theorem 6.2).
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Theorem 6.1. If S C Z, where (i) 0 € S and (i) n € S implies n + 1 € S and
—neES, then S=17.

Proor. We first prove Z, C S. Let S, be the set
So={n€S|n>0)}.

Clearly, S, C S and S, C Z,. From the properties of S and from the fact
that S, C S, it is easy to prove that 0 € S, and that n € S, implies
n+ 1€ S, (do this). Using Corollary 3 of Theorem 5.1, we conclude that
So = Z,. It now follows that Z,= S, C S, and hence that Z,C S.

Now we prove Z_ C S. Assume n € Z_. This implies that —n € Z,
CZ,C S and hence that —n € S. By the hypothesis on S this yields
n=—(—n)€ S. Thus n€Z_ implies n € S so that Z_ C S. This, the
result obtained in the first paragraph, and properties of sets imply that

Z=7Z,UZ_CS.
Thus, Z C S. But S C Z by hypothesis. Hence, S = Z.

Theorem 6.2. If P(n) is a statement about integers such that (i) P(0) is true
and (i) P(n) implies P(—n) and P(n + 1), then P(n) is true for all inte-
gers n.

Proor. Exercise.
We use Theorem 6.2 to prove:
Theorem 6.3. If m and n are integers, so is m + n.

Proor. We use the induction principle of the last theorem and perform
induction on n. The theorem holds for » = 0 and for all integers m. Assume
the theorem holds for some integer n — so that m + n is an integer for all
integers m. Therefore (m + n) + 1 is an integer for all integers m and since
m+ (n+1)=(m+ n)+ 1 that m + (n + 1) is an integer for all integers m.
Using the n of the last sentence and the induction hypothesis, we see that
n— m=n+ (—m) is an integer for all integers m (explain). We can now
claim that m + (—n) = —(n — m) is an integer for all integers m. We have
proved that if m + n is an integer for all integers m, then m + (n + 1) and
m + (— n) are integers for all integers m. By the principle of induction for
integers, we conclude that for each n, m + n is an integer for all integers m.
This proves the theorem.

ProB. 6.3. Prove: If m and n are integers, then so is m — n.
PRrOB. 6.4. Prove: If m and n are integers, so is their product mn.

ProB. 6.5. Prove: If n is an integer, then no integer m exists such that
n<m<n+1.
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ProB. 6.6. Prove: If m and n are integers such that m > n, then m > n + 1.

ProB. 6.7. Prove: If S CZ_ where (i) —1 € S and (ii)) » € S implies
n—1€S,thenS=7_.

Using the result cited in this problem we obtain still another principle of
induction for the integers (Theorem 6.5).

Theorem 6.4. If S C Z, where (i) 0 € S and (ii) n € S impliesn + 1 € S and
n—1€ S8, then S=Z.

Proor. Exercise.

Theorem 6.5. If P(n) is a statement about integers such that (i) P(0) is true
and (ii) P(n) implies P(n + 1) and P(n — 1) for each n € Z, then P(n) is true
for all n € 1.

Proor. Exercise.

7. The Rational Numbers

Def. 7.1. A rational number r is one that can be written
p
r=+, 7.1
q (7.1)
where p and g are integers such that g 0.

The set of rational numbers will be written as Q. We write Q,, Q, , and
Q_ respectively for the sets of nonnegative, positive, and negative rationals.

Remark 7.1. Since each integer n can be written as n/1 and is therefore of
the form (7.1), we see that each integer is a rational number. The converse
of the last statement is false. For example, 1 is not an integer (why?) but is
a rational number and we see that not every rational number is an integer.
Thus, Z C Q, the inclusion being proper.

Pros. 7.1. Prove: If r and s are rational numbers, then so are r + s, r — s,
and rs. Moreover, if s # 0, then prove r/s is rational.

ProB. 7.2. Prove: Between any two rational numbers there exists another
rational number (see Prob. 3.11).

Remark 7.2. If in our first 14 axioms we replace the reals by the rationals
and the set R by the set Q, the axioms will hold (the reader can check this).
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As a matter of fact, any set ¥ in which a “less than” relation is defined and
for which there are two operations called “addition” and “multiplication”
such that all the 14 axioms hold with the real numbers replaced by
elements of § and the set R replaced by & is called an ordered field.
Accordingly, Q@ and R are both examples of ordered fields. All the work
done so far was based on the first 14 axioms characterizing an ordered
field. Consequently, these results hold in any ordered field. In the next
section we state the Axiom of Completeness. This fifteenth axiom for the
real numbers will be seen not to hold for the ordered field of rational
numbers.

8. Boundedness: The Axiom of Completeness

Def. 8.1. A set S CR is called bounded from above if some real number u
exists such that

x €S implies x < u. (8.1

The number u is called an upper bound for S. Similarly, S C R is said to be
bounded from below if some real number / exists such that

x €S implies x > [ (8.2)

The number / being called a lower bound for S. Finally, a set S CR is
called bounded if and only if there exist real / and u such that

x €S implies /< x < u. (8.3)

For example, if a €R, then the intervals (—o0;a) and (—o0,a] are
bounded from above, but not from below. In both cases a is an upper
bound and any real number greater than a is also an upper bound for the
set. Similarly, the intervals (a; + 00) and [a, + o) are each bounded from
below but not from above. In both cases, a is a lower bound and any real
number less than a is also a lower bound for the set. The finite intervals
(a; b), [a,b], and [a, b), where a and b are real numbers, are all examples of
bounded sets of reals. We say of a finite interval that it is bounded and of
an infinite interval that it is unbounded.

Def. 8.2. If S CR and S has a greatest member M, then M is called the
maximum of S. On the other hand, if S has a least member m, then m is
called the minimum of S. When M is the maximum of S, we write

M =maxS or M = maxux. (8.4)
xES

Similarly, if m is the minimum of S, we write

m=minS or m=minx. (8.5)
xES
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For example, for a € R, we have a max(— o0; a]. Note that the set (00; a)
has no maximum (prove this). As another example, consider the set {a,b},
where a and b are real numbers and a < b. We have, max{a,b} = b and
min{a,b} = a.

The notions of least upper bound and greatest lower bound are very
important and we introduce them now.

Def. 8.3. If S CR, then a real number p is called the least upper bound or
supremum of S if and only if (a) u is an upper bound for S and (b) no upper
bound for S is less than p. Similarly, a real number A is called the greatest
lower bound or the infimum of S CR if and only if (c) A is a lower bound
for S and (d) no lower bound for S is greater than A.

Remark 8.1. Note that an upper bound p of a set S CR is a least upper
bound or supremum of S, when p < u for each upper bound u of S.
Similarly, a lower bound A of a set S CR is a greatest lower bound or
infimum of S when A > / for each lower bound / of S.

Theorem 8.1. A set of real numbers has at most one supremum and at most
one infimum.

PRrROOF. Assume that S C R. Suppose p and p’ are each suprema of S. Thus,
@ is an upper bound for S and p is the supremum of S. It follows from this
that u < p’. Using the same reasoning we arrive at p’ < u. We therefore
conclude that p = p’. The proof for the infimum is similar.

Notation. If p is the supremum of S, we write

p=supS or p=supkx, (8.6)

xES

and if A is the infimum of S, we write

A=infS or A= inf x. (8.7)

xES

Remark 8.2. As an example we consider the infinite interval I = (— c0; a).
We prove a = sup(— 00;a). Clearly, a is an upper bound for I. Let u be
some upper bound for I. Suppose that ¥ < a. Since a real number x,, exists
such that u < x5 < a, an xy € I exists with x, > u. This contradicts the
assumption that u is an upper bound for /. Hence, a < u holds for each
upper bound of I. This completes the proof. Note that a & I = (— c0; a), s0
a cannot be the maximum of 7. This shows that the supremum of a set,
when it exists, is not necessarily its maximum.

Pros. 8.1. Prove: If a €R, then a = inf(a; + o).
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Pros. 8.2. Prove: If M = max S for S CR, then M =sup S. Similarly, if
m = min S, then m = inf S. (Note that the converses of these statements do
not hold in view of Remark 8.2.)

ProB. 8.3. (a) Let p =sup S, where S CR and € > 0. Prove: There exists
Xo € S such that p — e < xy < p. (b) Let A =infS and € > 0. Prove there
exists y, € S such that A < y, <A+ e

ProB. 8.4. Assume that § C R. Prove: (a) S is not bounded from above if
and only if for each real B there exists an x, € S such that x, > B. (b) S is
not bounded from below if and only if for each real B there exists a y, € S
such that y, < B.

ProB. 8.5. Let a €R. Prove: Neither of [a, + o) or (a; + o) is bounded
from above and that neither of (—o0;a) or (—o0,a] is bounded from
below.

We now state the fifteenth axiom for the real number system.

(XV) (Axiom C) (The Completeness Axiom). Every nonempty set of real
numbers which is bounded from above has a real supremum.

Theorem 8.2. Every nonempty set of real numbers which is bounded from
below has a real infimum.

PrOOF. Let S be a nonempty set of real numbers which is bounded from
below. Therefore, a real number exists which is a lower bound for S. Let B
be the set of all lower bounds of S. We have that B 5= @. Since S # @, there
exists x, € S, and it follows that b € B implies b < x,. Thus, x, is an upper
bound for the set B and B is bounded from above. By Axiom C there exists
a real number A such that A = sup B. We prove next that A = inf S.

Assume that x* € S exists such that x* < A. This implies that x* is not
an upper bound for B and that there exists a b* € B such that b* > x*.
This is impossible because x* € § and b* € B implies b* < x*. Thus,
x € S implies that x > A and we see that A is a lower bound for S. Assume
I is some lower bound for S. This implies that / € B and, hence, that / < A
since A = sup B. This completes the proof that A = inf S.

9. Archimedean Property

Theorem 9.1 (Archimedean Property for R). If a and b are real numbers
such that a >0 and b >0, then there exists a positive integer such that
na > b.
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Proor. Let 9 be the set
oM = {na|n is a positive integer} = {a,2a,3a, ... }.

Clearly, 9 # @. If na < b holds for all positive integers n, then 9N is
bounded from above by b, and, since it is not empty it has a supremum, p
say (Axiom C). Since p is necessarily an upper bound for 9, na < p for all
positive integers n. But n + 1 is a positive integer whenever n is, so that
(n + 1)a < p holds for all positive integers n. This implies

na< p—a for all positive integers n

so that u — a is an upper bound for 9. Accordingly, p — @ > p. But this is
impossible, because a > 0 implies that p — a < p. Thus, b is not an upper
bound for 9 and there exists a positive integer n such that na > b, as
claimed.

Corollary 1. If € > 0, there exists a positive integer n such that 1 /n<e

PROOF. Since € > 0 and 1 > 0, there exists by the last theorem, a positive
integer n such-that ne > 1. The conclusion follows from this.

Corollary 2. If x is a real number, there exists a positive integer n such that
n>x.

Proor. If x < 0, there is nothing to prove, since then x < 0 < 1. Suppose
that x > 0. Since 1 > 0, the last theorem implies the existence of a positive
integer n such thatn=n-1> x.

Theorem 9.2. If x is a real number, there exists a unique integer n such that
n<x<n+l

Proor. By Corollary 2 of Theorem 9.1 there exists an integer m such that
x < m. It is also easy to see that there exists an integer p such that p < x.
Indeed, there exists an integer k such that —x < k. Hence —k < x. But
then p = —k is a required integer. Thus, p < x < m, where p and m are
integers. Since m — p is a positive integer, it follows that p < x < p + (m —
p)- Let S be the set such that

S={l€L, |x<p+1}.

Clearly S # @ since m —p € S. Thus, S is a nonempty set of positive
integers. As such, S has a least member, n, say. If n,=1, we have
p<x<p+1,sopis the integer n in the conclusion of the theorem. If
ny > 1, then ny — 1 is a positive integer. Since ny — 1 < ny, the fact that n is
the least member of S implies that p + ny— 1 < x <p + n,. Putting n
=p+ny,—1,weobtainn+1=p+ nyand n < x < n+ 1. Here, too, n is
an integer. This proves the existence of n.
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We prove that the integer n such that n < x < n + 1 is unique. Assume
that n; < x <n,+ 1 for some integer n,. If n, # n, we have n, < n or
n < n;. In the first case, n; <n < x < n; + 1. But then n, <n < n; +1,
where n and n, are integers. This is impossible (Prob. 6.5). Thus, n; < n is
false. A similar argument shows that n < n, is false. Thus, n, # n is false
and we have n; = n. This completes the proof.

Def. 9.1. If x €R, then the unique integer n such that n < x <n+1is
called the greatest integer < x. It is written as [x]. Thus,

[x] <x<[x]+1 foreach x €R [CA)Y)
and
0< x—[x] <1 foreach x €R. 9:2)

For example, [n] = n if and only if n is an integer. We have [5/3] =1,
[-7/2]1=—-4,[1/3]=0.

ProB. 9.1. Prove: If x is a real number, then [x + 1] =[x] + 1.

ProB. 9.2. Prove: If x is a real number, there exists a unique integer n such
thatn — 1< x < n.

10. Euclid’s Theorem and Some of Its Consequences

Theorem 10.1 (Euclid’s Theorem). If a and b are integers and b > 0, there
exist unique integers q and r such that

a=bg+r, where 0 < r<b. (10.1)

PRrOOF. Let g = [a/b], the greatest integer < a/b. Then

q=[%]<%<[%]+l=q+l.

Hence,
bg<a<bqg+b.

This implies that 0 < @ — bg < b. Put r = a — ¢b. It is clear that g and r
are integers such that a = bg + r, where 0 < r < b.

We prove the uniqueness of the g and r in (10.1). Assume that a = bg, +
r;, where ¢, and r| are integers and 0 < r; < b. The equality

bg,+ri=bg+r
holds. This implies
b(gi=q)=r—r. (102)
Since 0 <r<band —b< —r; <0, we have —b < r— r, < b. This and
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(10.2) imply
—b<b(g—q)<bh.

In turn, this implies —1 < g — ¢, < . Since ¢ — ¢, is integer, it follows that
g — q, = 0. Thus, ¢ = ¢q,. This and (10.2) yield r = r;, which completes the
proof.

Pros. 10.1. Prove: If a and b are integers and b % 0 (here b could be
negative), there exist integers ¢ and r such that a = bg + r, where 0 < r
<b,ifb>0,and0< r< —b,if b <0.*

Def. 10.1. If @ and b are integers, b # 0, then the integers ¢ and r of Prob.
10.1 are called respectively the quotient and remainder upon dividing a by b.

Def. 10.2. If a and b are integers and an integer ¢ exists such that a = bgq,
then we say that a is a multiple of b, or that a is divisible by b, or that b
divides a, or that b is a factor of a and we write b|a. When b | a is false, we
write bfa. We will never write b|a or bya when b and a are not integers.
Note that if b # 0 and b divides a, then the remainder upon dividing a by b
is zero.

We have, for example, 18 = (—5)(—3) + 3. The quotient and remainder
upon dividing 18 by —5 are —3 and 3 respectively. Also, since 6 =2 - 3, we
have 2|6 and also 3 6.

Remark 10.1. When x # 0, x /0 does not exist. Since 0/0 is not unique, we
do not divide 0 by 0. Nevertheless, 0|0 in the sense of Def. 10.2; indeed,
0 =0 m for any integer m.

ProB. 10.2. Prove: If n is an integer, then n|0 and 0}n when n # 0.
Pros. 10.3. Prove: (a) (—1)|n, (b) 1|n, (c) n|n if n is an integer.
Pros. 10.4. Prove: a|b and b|c imply a|c.

Pros. 10.5. Prove: If b # 0, then b}a if and only if the remainder upon
dividing a by b is positive.

Def. 10.3. An integer which is divisible by 2 is called even. Otherwise, we
say it is odd. Thus, n is even if and only if there exists an integer m such
that n = 2m.

*In terms of the notion of absolute value, which will be introduced in the last section, the
condition 0< r< b, if b>0, and 0< r< —b, if b <0, can be formulated at once as:
0 < r < |b|. Here |b| is read as the absolute value of b. It is defined as
b = { b, if >0
—b, if b<O.
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ProB. 10.6. Prove: An integer n is odd if and only if an integer m exists
such that n =2m + 1.

Pros. 10.7. Prove: If n is an integer, then

if n is even

n
|2
[2]- n>litnisodd

Pros. 10.8. Prove: If b|a, where 5 >0 and a > 0, then 0 < b < a.

Pros. 10.9. Prove: If a and b are nonnegative integers and both a|b and
b|a hold, then a = b.

Pros. 10.10. Prove: If d| 1, where d is a positive integer, then d = 1.

The GCD of Integers a and b

Def. 104. If a, b, and m are integers and m |a and m | b, then m is called a
common divisor of a and b. By the greatest common divisor or GCD of a and
b we mean the nonnegative integer d such that

dla and d|b (10.3a)
and
m|a and m|b imply m|d. (10.3b)

In other words, the GCD of integers a and b is the nonnegative divisor of
a and b divisible by all the common divisors of a and b. The GCD of
integers a and b is written as (a,b). We call integers a and b relatively
prime, and say that each is prime to the other if and only if (a,b) = 1.

Pros. 10.11. Prove: (a,b) = 1 if and only if the only common divisors of a
and b are 1 and — 1.

Pros. 10.12. Let a be a nonnegative integer. Prove: (a,0) = a.
Pros. 10.13. Prove: If b| a, where b > 0, then (a,b) = b.

Theorem 10.2. If a and b are integers, then there exist integers x, and y, such
that

axy + by, = (a,b). (10.4)

Proor. If a =0 = b, then (a,b) =0 and there is nothing to prove for then
any integers x and y will satisfy (10.4). Consider the case where one of a or
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b is not 0. Suppose for definiteness that a # 0. Let S be the set
S={ax+by>0|xEZandy € Z}. (10.5)

If x=1and y=0, we have ax + by =a. If x= —1 and y =0, we have

ax + by = —a. Since a # 0, one of a or —a is positive and is in S. Hence

S # @. Therefore, S is a nonempty set of positive integers. As such S has a
least member, d say. d > 0 and integers x, and y, exist such that

axy + by, = d. (10.6)
Now, integers ¢ and r exist such that
a=dq+r, (10.7)
where 0 < r < d. Substitute from (10.6) into (10.7) for d to obtain
a=(axy+ byy)q +r,
so that
a(l = xoq) + b(—yoq) = r- (10.8)

Suppose that » > 0. Then 0 < r < d. In view of (10.8) we could claim that
there is in S a positive integer less than its least member 4. This is
impossible. Hence, we must conclude r =0. Using (10.7), we see that
a = dq, and, hence, that d|a. Similar reasoning establishes d| b. Thus, d is
a common divisor of a and b.

Next assume that d’ is a common divisor of a and b so that integers m
and n exist such that a = d’m and b = d’n. Substituting these expressions
into (10.6) we see that

d'(mx, + ny,) = d.

This implies that d’|d. Thus, d is a positive common divisor of a and b
which is divisible by every common divisor of a and b. By Def. 10.4, we see
that d = (a, b). This and (10.6) establish (10.4).

Corollary 1. If a and b are integers, not both 0, then (a,b) exists and is the
minimum of the set S defined in (10.5).

Proor. Obvious from the proof of the theorem above.

Corollary 2. If a and b are integers, then (a,b) = 1 if and only if integers x,
and y, exist such that

axy+ by, =1.
Proor. Exercise.

Theorem 10.3. If a, b and m are integers, then (a,m) = 1 = (b, m) if and only
if (ab,m) = 1.
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Proor. If (ab,m) = 1, then, by the last corollary, integers x, and y, exist
such that

(ab)x, + my, = 1. (10.9)
Writing x, = bx, we have from (10.9)
ax,+ my, =1,

where x, and y, are integers. By the last corollary, we have (a,m)=1. A
similar argument shows that (b, m) = 1.

Conversely, assume (a, m) = 1 = (b, m). There then exist integers x and y
such that

ax + my=1.
Multiply both sides by b and obtain
abx + bmy = b. (10.10)
There exist integers k and / such that
ab = (ab,m)k and m = (ab,m)l. (10.11)
Substituting these expressions in (10.10) we obtain
(ab,m)(kx + bly) = b.
This implies that (ab,m)|b. Since (ab,m)|m also holds, we find that
(ab,m) is a nonnegative common divisor of b and m. Accordingly, (ab, m)

| (b, m). Since (b,m) =1, this implies that (ab,m) =1 and this completes
the proof.

Theorem 104. If a, b, and m are integers such that (a,m)=1 and m|ab,
then m|b.

Proor. There exist integers x and y such that
ax + my = 1.
Multiply both sides here by b to obtain
abx + bmy = b. (10.12)

Since m | ab, there exists an integer k such that ab = km. Substituting in
(10.12) we obtain

m(kx + by) = b.
This implies that m | b.

ProB. 10.14. If a and b are nonzero integers such that a = (a,b)k and
b = (a,b)!l, then (k,/) = 1.

Pros. 10.15. Prove: If q, b, ¢, and d are integers such that (a,b) = 1 = (¢,d)
and ad = bc, where b >0 and d >0, thena=c and b =d.
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Def. 10.5. An integer p > 1 is called a prime if and only if its only factors
are 1, —1, p, and —p. An integer m > 1 which is not a prime is called
composite.

For example, 2, 3, 5, 7, 11, 13, 17, 19, 23, and 29 are primes. Note: Since
6=3-2and 91 =7-13, 6 and 91 are composite.

Remark 10.2. An integer m > 1 is composite if and only if integers a and b
exist such that @ > 1 and b > 1 and m = ab.

Pros. 10.16. Prove: If a prime p does not divide an integer a, then
(a,p)=1.

Pros. 10.17. Prove: If @ and b are integers and p is a prime such that p | ab,
then either p|a or p|b.

Def. 10.6. We say that the nonzero rational number

P

9q

where p and q are integers and g # 0 is written in lowest terms if and only if
qg>0and (p,q)=1.

r=

Theorem 10.5. Each nonzero rational number can be written in lowest terms
in a unique way.

PRrOOF. Let r be a nonzero rational number, then integers p, and ¢, exist
such that

"y
A
where g # 0. Multiplying p, and ¢, by —1 if necessary, we can write
r= 2
q

where p and g are integers and g > 0. We have p = (p,q)a and ¢ = (p,q)b,
where a and b are integers and b > 0. By Prob. 10.14 we know that
(a,b) = 1. Hence,

r=L£=2"""_=-2 10.13
9 (p9b b (10:13)
where (a,b) = 1. Thus, r can be written in lowest terms.

We prove the uniqueness of the representation, in lowest terms, of r.
Assume

e
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where ¢/d is in lowest terms. It follows from this and (10.13) that

a and hence ad = bc. (10.14)

a_c¢c
b d
Here (¢,d)=1=(a,b) and b >0, d > 0. Since ad = bc, it follows that
(Prob. 10.15) @ = ¢ and b = d. This completes the proof.

11. Irrational Numbers

Lemma 11.1. Let k be a positive integer. If there is a rational number r such
that

rr=k, (1LT)

then r is an integer.

PRrROOF. Let r be a rational number satisfying (11.1). Clearly, r 7 0. Write

P
r=2 11.2
J (11.2)

where p/q is in lowest terms. Thus, p and ¢ are integers, ¢ >0, and
(p,q) = 1. There exist, therefore, integers x, and y, such that

Since
2
( .1_’) ==k,
q
we have
p2 = qu. (11.4)

Since (px, + qp)* = 1, (11.3) implies that

Px5 + 2pqxoyo + g5 = 1.
Using (11.4), we obtain

q*kxg + 2pgxoyo + g5 =1
so that

9(gkx5 +2pxoyo + 95) = 1.
This implies that ¢| 1. Since g > 0, it follows that g = 1. But then

————— p»  p aninteger.

This completes the proof.
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Theorem 11.1. If k is a positive integer which is not the square of an integer,
then no rational number r exists such that r* = k.

ProoF. If a rational number r exists such that ?> = k, then, by the lemma, r

is an integer. This implies k is the square of an integer and contradicts the

hypothesis. We conclude then that no rational number r can exist such that
2

re=k.

Corollary (Pythagoras). No rational number r exists such that r*> = 2.

Proor. We prove that 2 is not the square of an integer. Suppose p is an
integer such that p2 = 2. There is no loss of generality if we assume that
p > 0. It is clear that p > 1. This implies that p > 2, so that p> >4 > 2.
Thus, p2 =2 1s false and we have a contradiction. Hence, 2 is not the
square of an integer. By the theorem, no rational number r can exist such
that r2 = 2.

Theorem 11.2. If y € R where y > 0, there exists exactly one real, positive
number x such that x> = y.

PrOOF. Let S be the set
S={x€R|x>0and x*><y]}.

Let

= —-—'y
Xo ST
We have

0<xyo<1 and 0<x,<y (why?).

These imply x§ < x, < y. This proves x, € S, so that S % @.

We prove that S is bounded from above by y + 1. Indeed, let x > y + 1,
so that x*> (y+ 1)>=»>+2y+1>y. Then, x>0 and x*>>y and
x & S. We conclude that x € S implies x < y + 1. Therefore S is a
nonempty set of real numbers bounded from above. By Axiom C, S has a
real supremum, p say. We have p = sup S.

Since x, € S and x, >0 and p is an upper bound for S, we know that
0< xy< m sothat p>0.Lete ER, where 0 < e < 1. We have p < p + €.
Therefore pu + € is a positive real number not-in S (otherwise p + € < p and
€ < 0). But then (p + €)* > y and, therefore, p® + 2pe + €2 > y. This im-
plies that

eRr+1)>eRp+e)>y—p?
and that

2
a5
2“+1<e forall 0<e<].
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By Prob. 3.13 this implies

L”z <0
2p + 1
and hence that y < p’.
Next take 0 < € < p, so that 0 < p — € < p. Since p = sup S, this implies
that there exists x, € S such that 0 < p — € < x,. It follows that (p — €)?
< x3 < y. We obtain p? — 2eu + €* < y, and hence that

p.z—_y<€(2,u.—€)=€(p,+y,-—e)<2€p,.
Thus,

2_
%{L_y <e  foreachesuchthat 0<e<p.

Applying Prob. 3.13 once more we obtain from this that

#2 - <0
2p
so that p?> < y. Thus p? < y and y < p? and, therefore, p> = y. We now
know that there exists a positive real number p such that p? = y.

We prove the uniqueness of the positive p such that y>=y. If z is a
positive number such that z? = y, then we prove p = z. If p # z, we would
have 0 < p < z or 0 < z < p. In the first case, we have y = p> < z% and in
the second, z2 < p? = y. In either case we obtain the contradiction z% + y.
Hence p = z.

Pros. 11.1. Prove: If y > 0, there exists exactly one negative real number x
such that x? = y.

Remark 11.1. By Theorem 11.2 and the result cited in the last problem we
find that for each positive real number y there exist exactly two real
numbers whose square is y, one being positive and the other negative. As a
matter of fact, if x >0 where x> =y, then —x <0 and (—x)*= x? = y.

Def. 11.1. If y > 0, then any real x such that x> = y is called a square root

of y. The x >0 such that x*> =y is called the positive square root and is
written as x =y . The negative square root of y is —y. We also define

Vo =o0.
ProB. 11.2. Prove: If y, > 0 and y, > 0, then Vy, y, =y \Vy,.

Def. 11.2. A real number which is not rational is called irrational.
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Remark 11.2. By the corollary of Theorem 11.1, we know that V2 is not
rational. By Theorem 11.2 we see that it is real. Thus, irrational numbers

exist. V2 is an example of one.

ProB. 11.3. Prove: If r is rational and c is irrational, then (a) r + ¢ and
r — ¢ are irrational; (b) if in addition r# 0, then rc, ¢/r, and r/c are
irrational.

ProB. 11.4. Prove: Y3 and 3 + V5 are irrational.

Theorem 11.3. Between any two distinct real numbers, there exists a rational
number.

PrROOF. Assume x < y for real numbers x and y. Then y — x > 0. By
Corollary 1 of Theorem 9.1, there exists a positive integer g such that

0<$<y—x, (11.5)

so that gx < gx + 1 < gy. There exists an integer p such that p < gx +1
< p + 1. The second inequality implies that gx < p. This, p < gx + 1, and
the inequalities following (11.5) imply that

gx<p<gx+1<gp.
It follows that gx < p < gy, and, hence, that

P
x <= <y
q Y
We see that p/q is a rational number between x and y.

Theorem 11.4. Between any two real numbers there exists an irrational
number.

PROOF. Assume x < y for some real numbers x and y. We have V2 x <2 y.
There exists a rational number r such that 2x<r <2 y, which implies
that
x<-L < ».
V2

If r #0, then r/ V2 is an irrational number between x and y. If r =0, we
have x <0< y and \/2_ x<0 <\/2_ y. There exists a rational number s such
that 0 < s <\/5y. We now have V2 x < s <\/fy, where s is rational and
s > 0. But then

x<- <y, srationaland s>0.

2

Hence s/y2 is an irrational number between x and y.
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12. The Noncompleteness of the Rational
Number System

We first ask the reader to solve:

Pros. 12.1. Prove: If S C T CR, where S # @, then (a) if T is bounded
from above, then supS < supT; (b) If T is bounded from below, then
inf T < inf S; (c) if T is bounded, then inf 7 < inf S < sup S < sup 7.

Theorem 12.1. There exist nonempty sets of rationals which are bounded from
above but have no rational supremum.

ProOOF. Let
T={x€Q|x>0andx*<2)}

(Recall, Q is the set of rational numbers.) We have T C Q and T # @ since
1€ T. T is bounded from above by 2. In fact, if x is a rational number
such that x > 2, then x?>> 2, and hence x & 7. We conclude: If x € T,
then x < 2 so that T is bounded from above. By Axiom C, T has a real
supremum. Let p = sup 7. Let

S={(xeR|x>0,x><2). (12.1)

We proved earlier (see proof of Theorem 11.2) that supS =y2. Since
T C S CR, we obtain (Prob. 12.1)

sup7 < supS =y2 and hence supT <2 .

Now supT >0 since 1 € T implies 0 <1 < sup 7. Suppose that sup T
<\/5 . Then there exists a rational number r such that sup T < r <\/5 . But
supT < r implies r & T and since r >0, r2>2. On the other hand,
0 < r <y2. This implies 7> <2 and we obtain a contradiction. Hence,
supT=\/§ . The set T therefore has an irrational supremum and not a
rational one. This completes the proof.

Remark 12.1. Theorem 12.1 demonstrates by example that the system @ of
rationals does not enjoy the completeness property. Since the real numbers
have the completeness property, they form a complete ordered field (cf.
Remark 7.2). The rational numbers constitute an ordered field which is not
complete.

Remark 12.2. In later chapters we will encounter the notion of Cauchy
completeness. “Completeness” in the sense of Axiom C will be referred to as
order-completeness. Thus, we say that the real numbers constitute an
ordered field which is order-complete.
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13. Absolute Value

Def. 13.1. We define the absolute value of x € R, written as | x|, as follows:

X if x>0
- > 13.1
&l {—x if x<0. (13.1)

For example, |3| =3, 0/ =0, and | = 3| = —(-3)=3.

Pros. 13.1. Prove: (a) |x| > 0; (b) |x| = 0 if and only if x = 0. Note: x = |x|
if and only if x > 0 and x = —|x| holds if and only if x < 0.

Pros. 13.2. Prove: (a) —|x| < x < |x| and (b) —|x| < —x < |x|.
Pros. 13.3. Prove: | — x| = |x|.

Pros. 13.4. Prove: If € > 0, then |x — a| =€ if and only if x =a + € or
X=a-—e

Theorem 13.1. If € > 0, then |x| < € if and only if —e < x < e.

PrOOF. Assume that —e¢ < x < e. If 0 < x, we have 0 < x < ¢, s0 |x| < €.
If x <0, then from the hypothesis we have —e < x <0, and therefore
0< —x < e so that again |x| <e. In either case, —e < x < e implies
|x|] < e

Conversely, assume that |x| < e. Consider the cases (1) x > 0 and (2)
x < 0. In case (1), we have 0 < x < € so that —e < 0 < x < € and therefore
—e< x<e In case (2), x= —|x| so we have from |x| < e that —e <
—|x|=x <0< e and again —e < x < e Thus, |x| <e implies —e < x
< €. This completes the proof.

Remark 13.1. It is clear from this theorem and Prob. 13.4 that if € > 0, then
|x| < e if and only if —e < x < e.

Theorem 13.2. If x and y are real numbers, then
|x + y| < |x|+ |yl (13.2)

ProoF. We have (Prob. 13.2)
—|x|<x<|x|] and —|y|< y<]|y|
Adding, we obtain
—(xl+ Iy = =Ix =yl <x+y <|x[+ ]yl
Hence,
=(IxI+1yD) < x4y <|x[+]yl (13.3)
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Let € = |x| + | y| so that € > 0. In view of (13.3)
|x + yl < e=|x| +|y].
This proves (13.2).

ProB. 13.5. Prove: |x — y| < |x| + | y|.

ProB. 13.6. Prove: ||x| - |y|| < |x — y| (Hint: note that x = y + (x — ), so
that |x| < |y| + |x — ), etc.)

ProB. 13.7. Prove: |xy| = |x||y|.
PRrOB. 13.8. Prove: |x|> = x? and Yx? = |x|.

Pros. 13.9. Prove: If y # 0, then

ProB. 13.10. Prove that |x + y| = |x| + | y| if and only if xy > 0, and that
|x + y| <|x| +|y| if and only if xy <O.

< %

Pros. 13.11. Prove:

ol x Il
I+[x+yl 14+|x] 14|y

Pros. 13.12. Prove

VX2 +y? < x|+ |yl
Pros. 13.13. Prove: V|x + y| <\/|—x_| +\/M-

Remark 13.2. When dealing with the real numbers, it is often helpful to
adopt a geometric point of view. This is why we sometimes refer to the
elements of R as points.

Def. 13.2. By the Euclidean distance between real numbers x and y we
mean d(x, y), where

d(x,y)=|x—y| (13.4)

For example, d(3, —5) = |3 — (—5)| = 8. The Euclidean distance between
a point x ER and 0 is

d(x,0)=|x — 0] = |x|. (13.5)
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Pros. 13.14. Prove: If x, y, and z are real numbers, then

(1) d(x, ) >0,
(2) d(x, y) =0, if and only if x = y,

(3) d(x, y)=d(y,x),
(4) (triangle inequality) d(x,z) < d(x, y) + d(y, z).

Pros. 13.15. Prove: If x, y, and z are real numbers, then
ld(x, y) = d(x,2)| < d(y,2).

Def. 13.3. By the length of a finite interval (a;b), we mean b — a. By the
midpoint of this interval we mean the point m € (a; b) such that

d(m,a) = d(m,b). (13.6)

Sometimes we refer to the midpoint of (a; b) as its center.

ProB. 13.16. Prove: If m is the midpoint of the interval (a;b), then
m=(a+ b)/2.

It is interesting to observe that max{a,b} and min{a,b}, where a and b
are real numbers can be expressed by using |a — b| (see Prob. 13.17 below).

Pros. 13.17. Prove: If a and b are real numbers, then
a+b+|a—b|

a+b—|a—b|
3 _—.

2

max{a,b} = and min{a,b} =

Def. 13.4. By the positive part of the real number x, we mean x*, where
x* = max{0,x}. The negative part x~ of x is defined as x~ = min{0, x}.

Pros. 13.18. Prove:
x*+x " =x and x*—x"=|x|

Pros. 13.19. Prove:
max{—a, —b} = —min{a,b} and min{—a, —b} = —max{a,b}.

Pros. 13.20. Prove: (a) If a < b, then
—max{|al,|b|} < a < b < max{|al,|b|}.

(b) A set S CR is bounded if and only if there exists an M > 0 such that
|x| < M holds for all x € S.



CHAPTER II
Functions

1. Cartesian Product

If {a,b} and {c,d} are given sets, then {a,b} = {c,d} implies a = ¢ or
a=d and b = c or b =d. This was why we referred to {a,b} (cf. Section
I.1) as the unordered pair consisting of a and b. By the ordered pair* (a,b)
of elements a and b, we mean the set {a,b} together with the ordering of its
members in which a is first and b second. We call a the first component or
coordinate of (a,b) and b its second.

For ordered pairs, we have

(a,b)=(c,d) ifandonlyif a=c and b=d. (L.1)

If A and B are sets, then the Cartesian Product A X B of A and B (in that
order) is the set.

AXB={(x,y)|xEAandy€B}. (1.2)
For example, let 4 = {0,1} and B = {2,3,4}, then
A X B ={(0,2),(0,3),(0,4),(1,2),(1,3),(1,4))
and
B X A ={(2,0),(2,1),(3,0),(3,1),(4,0),(4,1)).
In A X B, we may have 4 = B. The Cartesian product 4 X 4 is the set
A><A={(x,y)|x€AandyEA}. (1.3)
For example, let 4 = {0, 1}, we have
A X A ={(0,0),(0,1),(1,0),(1,1)}.

* The ordered pair (a,b) can be defined in set theoretic terms by means of (a,b) = {{a},

{a,b}).
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(x,y)

=
®y

Figure 1.1

The Cartesian product R X R is the set
RXR={(x, y)[x XRandy XR}. (1.4)

We visualize R X R as the set of points in a plane (Fig. 1.1) provided with a
rectangular coordinate system, familiar to the reader from his earlier
mathematics education.

Pros. 1.1. Prove: If A and B are sets, then 4 X B+ @ if and only if 4 # @
and B # Q.

Pros. 1.2. Prove: If 4, B, C, and D are sets such that 4 C C and B C D,
then 4 X B C C X D.

Pros. 1.3. Prove: If A X B# @, then 4 X B C C X D implies 4 C C and
B CD.

2. Functions

One of the most important ideas in mathematics is that of a function.
Intuitively, a function or a mapping from a set X to a set Y is a correspon-
dence which assigns to each x € X exactly one y € Y. The set X is called
the domain of f and Y its codomain. This is pictured in Fig. 2.1. The figure is
meant to suggest that it is possible for a function to assign distinct x’s to the
same y. This definition of a function is “intuitive” because it defines
“function” in terms of “correspondence”—a term which is itself in need of
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|
)

Figure 2.1

definition. It is customary today to define functions in terms of sets. We
begin by defining “correspondence.”

Def. 2.1. A correspondence y between a set X and a set Y is a subset of
XX Y. If (x,y) €y, we say that y corresponds to x under y or that y
assigns y to x. A correspondence is also called a relation.

Having defined “correspondence,” “assigns to,” and “corresponds to,”
we proceed to define function.

Def. 2.2. A function or mapping with domain X and range in Y is a
correspondence between sets X and Y which assigns to each x € X exactly
one y € Y. The unique y assigned to x is called the image of x under f and
is written as

y = f(x). (2.1)

We write 9D(f) for the domain of f, so that D(f) = X. The set of all the
images of the x’s in X is called the range of f and we write it as R( f). When
fis a function with domain X and range in Y we write

f:X>Y 2.2)

and also say that f maps X into Y. Y is called the codomain of f. To indicate
that x is mapped into y = f(x) we also write

x - f(x). (2-3)

Thus, if f: X—> Y, we have f C X X Y, f being a certain kind of corre-

spondence between X and Y and, therefore, a subset of X X Y. Since f

assigns to each x € X a y € Y, we have (x, y) € f, or (x, f(x)) € f. What
makes a correspondence a function is the property:

(x»y)Ef and (x,y)Ef imply y=)" foreach x € X = (f).
(24)
This states that f assigns exactly one y to each x € ().



2. Functions 45

Let (x, y) € f and (x', y) € f, where f is a function. Then
y=f(x) and y = f(x). (25)

If x=x’, x’ can be replaced by x to yield (x, y’) € f, so that y = y".
Therefore,

fx) =y =y=f(x).
Thus, if the correspondence f is a function, then
= x' implies f(x)=f(x")  for x in 9D(f). (2-6)
A function will also be referred to as a single-valued correspondence.

By the definition of the range A.(f) of a function, we have: y € () if
and only if some x € X exists such that y = f(x). Therefore,

§(f)= (¥ € Y|y = f(x) for some x € 9 f))
= (f(x)|x €A(/)). @7

Clearly, we always have

a(f)c Y. (28)

When X is a set, then a subset of X X X is called a correspondence
between X and itself or a correspondence on X. If f is a function f: X > X
whose domain and codomain are equal, then we say that f is a function or
mapping from X into itself. We also say that f is a function on X, or a
mapping on X. A function on X is also called a transformation of X.

A function having R as its codomain is called a real-valued function.
When the domain of fis in R we say that f is a function of a real variable.
When both the domain and the range of f are in R, we call f a real-valued
function of a real variable (see Fig. 2.2). In this volume we deal with
real-valued functions of a real variable.

A(f) /

Figure 2.2
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(UBY)

=y

=Y

(0’ - 1)

(@) (b)
Figure 2.3

EXAMPLE 2.1 (The Absolute Value Function). This is the function f:R—>R,
defined as f(x) = |x| for each x €R (see Fig. 2.3(a)). We write it as Abs.
Thus, Absx = |x| for each x €R.

EXAMPLE 2.2 (The Signum Function). The function g :R—R defined as:

1 if x>0
g(x)=40 if x=0
-1 if x<O0

is called the signum function. We write it as sig. Thus, sigx =1 if x >0,
sig0 =0, sigx = — 1 if x < 0. Note, |x| = xsigx for each x ER.

ProB. 2.1. Let f: X > Y and g: X —> Y be functions with the same domain
and codomain. Prove: f= g if and only if f(x) = g(x) for each x € X.

ExampLE 2.3 (The Empty Correspondence). We prove that the only func-
tion f: @— Y, where Y is some set, is f = @. Since @ C @ X Y, we know that
@ is a correspondence between @ and Y. Since @ X Y = @ (Prob. 1.1) if fis
any correspondence at all between @ and Y, we have f=@. Is this
correspondence a function? Suppose it is not. There would then exist an
x € @ such that no unique y with (x, y) € @ exists. This is impossible, since
no x € @ exists. Hence @: 09— Y is a function.

ProB. 2.2. Prove: If X # @, then no function f: X > @ exists. Thus, if fis a
function defined on the nonempty set, its range is never empty.

Remark 2.1. We shall not deal with functions having empty domains unless
we explicitly say so.

ExAMPLE 2.4 (A Constant Function). f: X > Y defined as f(x) = b for all
x € X and a fixed b € Y is called a constant function with value b.
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ExampLE 2.5 (The Identity Function). Let f: X - X be defined as follows:
f(x) = x for all x € X. We call f the identity function on X, writing it as I, .
Thus, I, (x) = x for all x € X.

Image of a Set Under Mapping. Restrictions and Extensions

Given a function f: X > Y and a set 4 C X, we define the image f(A4) of 4
as the set of images of the x’s in 4. Thus,

f(4)={f(x)|x € 4}. (29)
For example,
U S) = f(O(f))- (2.10)
Again let f: X > Y and 4 C X. Consider the correspondence
g={(x,y)Eflx€ A4} (2.11)
This correspondence is a function g: 4 —> Y (explain) such that
g(x) = f(x) forall x € 4. (2.12)

If A C X, then we call g the restriction of f to A and write g = f|,. f is
called an extension of g.

ProB. 2.3. Let g = f|, be the restriction of f to 4 C X. It is clear that g is
uniquely determined by f. Show that the extension of g = f|, to X is not
unique.

ProB. 2.4. Prove: If f: X—> Y is a function and 4 C B C X, then f(A4)
C f(B).

3. Sequences of Elements of a Set

By an infinite sequence of elements of a set S # @ we mean a function
f:Z,— S from the positive integers into S. If f(n) = a, we write f(n) = a,,
calling a, the nth term or nth coordinate of the sequence. f itself is written as
f=AKa)nez, orasf=<a,),,,. The set Z, is called the index set and the n
in a,, is called the index or subscript of a,. Usually, when Z , is understood,
we write the sequence simply as {a, ). Sometimes we write out the terms as
in

(d,,>=<a|,az,a3,...>. (3.1)
By the range of {a,) we mean the range f(Z, ). We have
fZ,)={a,|neL,}. (32)
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For example, let {a,> be a constant sequence in that a, = c for all
n€Z, .We then have f(Z, )= {c} and

{a,y={c,c,¢y...). (3.3)

By a real sequence we mean a sequence {a,» such that a, €R for each
nelr,

Sometimes Z, is used as an index set. In this case a function f:Z,—> S is
also called an infinite sequence of elements of S and we write f=<a,),c2,
or

a)n50=1Ca9,a1,85, ... ). (3:4)

This does not overly abuse terminology since <{a,y can be reindexed by
thinking of it as the sequence {(b,),,, where b, = a,_, forn € Z, . In fact,
let n, be some fixed integer and H,, be the set

H, ={n€Z|n> ngy). (3.5)

n

A function f: H, — S is also called an infinite sequence of elements of §
and we write f=<a,),, and

f= <an>n>n0 = <an0’an0+l ’an0+2’ ce > (36)
for the sequence. Here, too, we can reindex and view {a,»,,, as {b,),>1
where b, = a,,, _, so that b, = a, , b, = ,,+1,b3 Apsrs e oo -

We sometimes define sequences by induction as in Examples 3.1 and 3.2
below.

ExaMpLE 3.1 (Exponents Which Are Nonnegative Integers). Let x be some
real number. We define the sequence (x"),-, as follows: (i) x°%=1 and (ii)

if x” is defined for some nonnegative integer n, define x"*'= x"x. For
1 _ L0+1 _ 0, _ —_ v 2 __ I+ D . 3 2+1
example, x' = x =xx=1lx=x; x°=Xx =xXx=XxXx; X=X

= x%x = (xx)x = xxx.

ProB. 3.1. Prove: If x ER, y €R, and m, n are nonnegative integers, then

(a) x"x" = x"'+’I
(b) (x")" = x"
© 1"=1,

@) xy" = (xp)",
(e) if y #0, then x"/y" = (x/y)".

ProB. 3.2. Prove: If a > 1.5, then for each positive integer n, a” > n.

PRrOB. 3.3. Prove: (a) If x > 1, then x"*' > x" > x for each positive integer
n; (b)if 0 < x < 1, then x"*' < x" < x for each positive integer n.

ExXAMPLE 3.2. Here we extend the definition of x” to the case where n is a
negative integer and x # 0. If x ER, x # 0 and n is a negative integer, we
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define x” as
xm=(x"H"" (3.7)

This equality holds even if n is a nonnegative integer. Indeed, it holds
trivially if n =0. Now suppose n is a positive integer, so that —n is a
negative integer. If x # 0, then

(x—l)(—n)= ((x_l)—l)(—(—n))___ ((x_l —l)"= o

In Prob. 3.6 below we ask the reader to establish the laws of exponents
for integer exponents. In Prob. 3.1 the reader was asked to establish these
laws for exponents which were nonnegative integers. The lemmas and
problems which follow will serve to facilitate the task.

Example 3.2 implies
Lemma 3.1. If x # 0, then (3.7) holds for any integer n.

ProB. 3.4. Prove: If x ER and x # 0, then, for » an integer,

x "= (x_l)n. (3-8)

Lemma 3.2. If x €ER, x # 0, then
x"T i =x"x" for any integer n. 3.9
Proor. Using induction on #n, (3.9) can easily be proven for n € Z,. We
therefore assume that n is a negative integer and obtain:
xm = (e ) Tx (3.10)

Here — n is a positive integer. By the laws of exponents for positive integers
(Prob. 3.1) it follows from (3.10) that

T ) = (7Y

By Lemma 3.1, we have

(=m+1) _ (=(n=1)

=(x"" (3-11a)

(x_l)( (n— l)) Xl
This, (3.11a), and (3.10) establish (3.9) for n a negative integer. Thus, the

conclusion holds also for the case where n is a negative integer and the
proof is complete.

PrOB. 3.5. Prove: If x R, x # 0, and n € Z, then x"*' = x"x.

Theorem 3.1. If x # 0 and y # 0, then x"y" = (xy)" for each integer n.
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Proor. We use induction on n and the induction principle for integers
(Theorem 1.5.5). First note: (xp)°=1-1= x%° Next assume x"y" holds
for some integer n. We have

()" = ()" () = (xy") () = (xx)(py) = x" "
and, similarly, that

n+1

1,n—1

(xy)n—l= X"~ 'y
By the second principle of induction for integers (Theorem 6.5), we con-
clude that x"y” = (xy)" holds for any integer n.

Corollary 1. If n is an integer and x €ER, x 5+ 0, then
(x) = (x Y = xn (3.11b)

Proor. The second equality here follows from Prob. 3.4. We prove the first
equality in (3.11b). We have
1=1"= (xx”l)n= x"(x_l)".

This implies that (x ~')" is the reciprocal of x", and hence (x")~! = (x~')".

Pros. 3.6. Prove: If x €R, x # 0 and m, n are integers, then

(a) xmxn — xm+n,
(b) (x™)" = x™,

(© x™/x"=xm""

Finite Sequences of Elements of a Set

Here the sets (n) = {1,2, ..., n} of Def. 1.5.4 play a role. Recall that these
are e imitial segments of the set Z, of positive integers.

By a finite sequence of n terms of a set S, where n is a positive integer, we
mean a function f:(n)—> S. Here, too, just as in the case of an infinite
sequence, if f(k) = x, then we write x = x,. We write f as

f= <xk>1<k<n =Xy, Xp, ey X (3.12)

We call x, the kth term, x| the first term, and x, the last term of the finite
sequence (X;)|cx<n-

A finite sequence of n terms is also called an ordered n-tuple. By
properties of functions (Prob. 2.1), we have for the ordered n-tuples
Xiy ooy X,and Yy, .o, p,,

Xy ooy X ={ Y1 -5y, ifand only if x, =y, forall k € (n)
(3.13)
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Sum and Product of Functions

If f and g are real-valued functions with a domain 9, their sum f+ g is
defined by means of

(f+ 8)(x)=f(x)+ g(x) for x€9D. (3.14)
Similarly, their product fg is defined by means of
(fg) =f(x)g(x) for x€9. (3.15)

If ¢ is some constant, the function cf, called a real multiple of f is defined
by means of

(cf)(x)=cf(x) for x€ED. (3.16)
The function (— 1)f is usually written as — f, so that we have
(=D =(-Df(x)=—f(x)=(=f)(x) for xED.

That is, we have (— 1)f = — f. The function f — g is defined as f — g = (f +
(—g)). Clearly, if x € 9, then

(f=8)(x¥) = (f+(=&)(x) =f(x) + (—8(x) =f(x) — g(x).- (3.17)

4. General Sums and Products

If a,, a,, . .. are real numbers, we define the general sum >} _,a, induc-
tively as follows:
0
> a4 =0,
k=1
n+1 (41)

n
zak=(2ak)+a”+, foreach nez,.
k=1 k=1

S —1ay is called a sum of n terms.

We have
1 0
zak—(Zak)+al—O+a,—al,
k=1 k=1
2 1
Eak=(zak)+02=al+a2’
k=1 k=1

2
Sa=>aq+a=(a+a)+a;=a +a+a;.

=1
If n is a positive integer, then we write > _ @, =a,+a,+ --- + a, or

k}_:lak= a+ - +a,. (42)
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Ifa,=xforall k e(n)={1,...,n}, we write

n n
> a,= > x  for each nonnegative integer n. (4.3)
k=1 k=1

ProB. 4.1. Prove: If x €R, then foralln €7

n
> x=nx.
k=1

ProB. 4.2. Prove: If a and b, . . ., b, are real numbers, then
n n
> (ab)=a > b.
k=1 k=1
Pros. 4.3. Prove: If s, t, x|, ..., x,; ¥, . . ., y, are real numbers, then

n n n
2 (xty)=sD x+tt y.
k=1 =l k=1

ProB. 4.4. Note, if n is a positive integer and a and b are real numbers, then
a"t' = b"*'=a"(a—b)+ b(a" - b").

Prove: If n is a positive integer and a and b are real numbers, then
n—1
(a) a"—b"=(a—-b)> a"" '’
i=0
=(a- b)(a’“l +a"" %+ - +ab" %+ b,

n—1
(b) a"—l=(@a-1)Xa" ""i=@-1)a"""+a" i+ - +a+]l).
i=0

PrOB. 4.5. Prove: (a) f 0 < a< b, thenforneZ,,a” <b"; (b) if a < b,
then a*"*! < b*>"*! for n € Z,,.

ProOB. 4.6. Prove: If n is a positive integer, then

() 1+2+...+n=§n:k=”(”2+1)’
k=1
% n(n+1)2n+1)
(b) 12+22+---+n2=k§=:1k2_—_ A ,
(©) 13+23+~-.+n3=é|k3="2("T+1)2,
(d  1*+20+ - +"4=é,k4= n(n+1)@2n +31())(3n2+3n_ h
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ProB. 4.7. Prove: If n is a positive integer, then

n(n+ 1)(n+2)

3

n(n+ 1)(n+2)(n+3)
7] .

(a) 1:242-3+.--+n(n+1)=

() 1:2:34+2-3:44+ - ---+n(n+1)(n+2)=

Pros. 4.8. Prove: If x is not a negative integer and n is a positive integer,
then

i 1 — n
S (x+Hk)(x+k+1) (x+D)(x+n+1)’

ProB. 4.9. By an arithmetic progression of real numbers we mean a finite
sequence {a,a+d,...,a+ (n— 1)d) of n terms, where n is a positive
integer. a is called the first term and a + (n — 1)d = [ the last term of the
progression. By the sum S, of the progression, we mean

S,=a+(a+d)+---+a+(n—1d= i(a+(k~l)d).
x=1

Prove:
n(a+1)
nT 2

ProB. 4.10. By a geometric progression of real numbers, we mean a finite

sequence {a,ar,ar®, ..., ar"~'>, where a and r are real numbers and 7 is a

positive integer. By the sum o, of the geometric progression, we mean
n
o,= ar* '=at+ar+ - +ar"l.
k=1

Note, if » = 1, then
n

n n
Zar"_'= > a(])k“= Sa=na=a+a+ - +a
k=1 1 k=1 s

(n terms)

Prove: If r + 1, then

Skt r'—1
0,= > ar =a——7 -
k=1

In analogy with the general sum >} _,a,, we have the general product
IT%<1a., where a,,a,, . . . are real numbers. We define it inductively:

0

H a. =1,
k=1
n+1

Hak=(Hak)a,,,rl foreach nez,.
k=1 k=1

We call []%-a, the product of n terms.

4.4
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For example,

k= k=1
2 1
Hak= a |G, = a,a,,
k=1 k=1
3 2
H 4G = ( H a|as = (a,a;)a; = a,a,a;.
k=1 k=1
When n is a positive integer, then we write
n n
[la=aa,...a, or [[a=aq,...a,.
k=1 k=1

If a, = x for all k € (n), then we write

Pros. 4.11. Prove: If x is a real number, then
H x=x".
k=1

If n is a nonnegative integer, then we define

Hk=n!.
k=1

Thus,
0
0l'= Hk= 1,
k=1
1
1= Hk= 1,
k=1
2
2= Hk=1 2,
k=1
3
3= Hk=l-2~3,
k=1

and so on. Note that

n+1

(n+1)!= Hk=( fIk)(n+1)=n!(n+1)
k=1 k=1

for each n € Z,,.

II. Functions

(4.5)

(4.6)

4.7

(4.8)
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ProB. 4.12. By the product P, of the geometric progression {a,ar,

n

.,ar"~ 1 (cf. Prob. 4.10), we mean:
P,=[lar* '=a(ar)...ar"™' for nez, .
k=1

Prove:
P} =(al)" for nez,,

where a and / are respectively the first and last terms of the geometric
progression.

ProB. 4.13. Prove: If a,, . . ., a, are nonzero real numbers, then
a—-1 a,—1 a — 1
LR RO PR R S [ S
a, a,a, aa, . ..a, aa,...a,
Pros. 4.14. Prove: For all positive integers n, if one of a,, . . ., a, is 0, then
n
H ak= O
k=1

5. Bernoulli’s and Related Inequalities
The inequalities below will play a very important role in our work.

Theorem S5.1. If h €R, h > — 1, h # 0 and n is a positive integer, n > 2, then
1+ nh(1+ h)""'>(1+ h)"> 1+ nh. (5.1

ProoF. We first prove that, (1 + A)" > 1 + nh for n > 2. We use induction
on n for n > 2. Since h? > 0, then for n =2

(1+hYP’=1+2h+h>>1+2h.

This proves that (1 + A)*> > 1+ 2h. Assume that for some integer n > 2,
(1+ A)" > 1+ nh. Multiply both sides by 1+ A. Since 1+ h >0 and
nh* > 2h* > 0, it follows that

(1+n)"™'>A+nh)(1+h)y=1+(n+1)h+nk>>1+ (n+ )
Invoking the principle of induction, we see that (1 + 4)" > 1 + nh for all
integers n > 2.

We now prove 1+ nh(1 + h)"~' > (1 + h)" for all integers n > 2. We
have

(1+ h)?=1+2h+h> < 1+2h+2h=1+2h(1 + h)
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so that
1+ 2h(1+ h)>(1+ h)% (52)

Now assume that 1 + nk(1 + h)"~' > (1 + k)" holds for some integer n > 2
under the stated conditions on 4. Multiply both sides by 1 + 2 > 0. Then

1+ h+nh(1+h)">1+h)"" (5.3)

If A>0, then (1 + A)" > 1, and therefore A(1+ h)" > h. If —1 < h <0,
then (1 + A)" < 1, and, since A < 0, we again have A(1 + h)" > h. In either
case, if A > —1 and h # 0, then A(1 + A)" > h. This implies 1 + A(1 + h)"
> 1+ h. Adding nh(1 + k)" to both sides yields

1+ (n+ 1)h(1+ h)"> 1+ h+nh(1+ h)".
This and (5.3) imply
1+ (n+ Dh(1+ h)">(1+ h)"+ (5:4)
Using induction on 7 for n > 2, we conclude that 1 + nh(1 + A)""' > (1 +
h)" for all integers n > 2, and the proof is complete.
Remark 5.1. The inequality
(1+ h)">1+ nh, (5.5)

where A > —1, h+#0, and » is an integer n > 2 is known as the strict
Bernoulli inequality. When we omit the condition 4 # 0 and merely require
h > —1, we obtain

(1+ h)"> 1+ nh, (5.6)
where A > —1 and n is a positive integer. This is known as Bernoulli’s
inequality .

Note that we also have

1+ nh(1+ h)""'>(1+ h)", (5.7)
where A > —1 and n is a positive integer.
Remark 5.2. When in (5.1) we write x = 1 + A, so that A = x — 1, we have
an alternate form of that inequality,
n(x—Hx""'>x"=1>n(x—1), (5.8)
where x >0, x # 1 and » is an integer n > 2. The weaker form of (5.8) is
n(x—1)x""'>x"—1>n(x—1), (5.9)

where x > 0 and » is a positive integer.

Pros. 5.1. Prove: If n is a positive integer, then

(1+%)">2.
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PrOB. 5.2. Prove: If n is a positive integer, then

_1y o1
( n)<2'
ProB. 5.3. Prove: If n is a positive integer, then
o YT s L gy (14 ) L)’
- >1- +—) > ).
@(1- i) e () ()

ProB. 5.4. Prove: If n is a positive integer, then

!
L onl o1
1 n
n! n -1

6. Factorials

Def. 6.1. If x €ER and r is a nonnegative integer, then by a factorial of

degree r, we mean:
,

(x),= [ (x=k+1). (6.1)
k=1
It follows that
(=TT (x—k+1)=1
k=1 (6.2)

(x)r=ﬁ(x—k+1)=x(x—1)...(x—r+1) if r>1.
k=1

For example, (x),=x, (x),=x(x—1), and (x);= x(x — 1)(x — 2).
Note that if x = n, where n is a nonnegative integer, then there are two
cases: (1) 0<n<r or (2) 0<r<n. In case (1) we have r > 1 and

n€w ={0,1,...,r—1}. Thus, a j€{0,1,...,r— 1} exists such that
n=j, and we know that one of the n, n—1,...,n—r+1 is zero.
Consequently
(m),=I[(n—-k+1)=0 if 0<n<r (6.3)
k=1
In case (2)
(n),=(n)y=1 if r=0. (6.4)

Continuing with case (2) we consider 1 < r < n and obtain
(m,=Il(r—k+)y=n(n—-1)...(n—r+1) if I<r<n
k=1
(6.5)
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Note:

n

(m),=[[(n—k+1)=nr-1)...2-1
k=1

We multiply both sides in (6.5) by (n — r)!. Then

(m),(n=r!=nn-1)...(n—r+1)(n—r)=n!.

Hence,
n!

(n—r)!

In summary: If n € Z, and r € Z,, then

(n),=

=

if n is an integer and 0 < r < n.

0, if 0<n<r
(n),= n! . <r<
=) if 0<r<n
Pros. 6.1. Prove: If x R and r €Z ., then
(X + l)r= (x)r+ r(x)r—l :
We now define:
Def. 6.2. If x €R and r € Z, then
(5)- 5k
r r!
This definition yields
X (x)o 1
(0)‘ or 1!
and
x(x—1)...(x—r+1
(x)_( ). ( ) if r>1
r r!
For example,
x\y_ (X)) x\_ (%), x(x—1
(1)‘ r oo (2)‘ 20 - T a2

(3)= @ o XG D)

II. Functions

(6.6)

(6.7)

(6.8)

(6.9)

(6.10)

(6.11)
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Other examples are:

(—1)= (=D _ (D= D1=2)(=1=-3)(-1-4) 4
5 51 51 st

and

(})- 2406731,

ProB. 6.2. Prove: If x eR and r €Z, , then

Crh=)+(20)
(See Prob. 6.1.)

Pros. 6.3. Prove: If n € Z,, then
@ H=0,iff0<n<r
® O=m/r(n=—nr),if0<r<n

ProB. 6.4. Prove: If n € Z,, r € Z,, then (7) is a nonnegative integer.

Pros. 6.5. Prove: If n € Z,, then
(")=( n ) for rez,.

r n—r

ProB. 6.6 (Binomial Theorem). Prove: If x and y are real numbers and
n € Z,, then

(x +y)n= ,;::O(Z)xn—kyk

(Hint: use induction on n and Prob. 6.2 with x = n).

Prog. 6.7. Prove: If n € Z,, then

@ 2= 3 (¢} ® 0= 3 (=1 (y)

ProB. 6.8. Prove: If x|, . . ., x,,, are real numbers, then
n

(@) kzl(xk+l_xk)=xn+l_xl’

(b) (k+ D! —k!'=k- k! for ke€Z,,

(€ (n+1)!=1=1-1142-214---+n-n for nel, .
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Pros. 6.9. Prove: If n € Z , , then

a S k(") =n2nt,

) 2 (k)

(b) S kz(”) =n(n+12""2  if n>2
& \k

ProB. 6.10. Prove: If n € Z,, n > 2, then

More generally, prove:
(b) If 1 < j < n, where j and n are integers, then

B ve(p)=o

and

(©) él(_l)kk"(Z):(“)"”’

ProB. 6.11. Prove: If n and k are nonnegative integers, then
2(0)-(30)

Pros. 6.12. Prove: If k € Z,, then

(@) (Z)=c8

i 1 [Tf-2(2i = 3)

= (-

II. Functions

1:3-5...(2k=3)

®) (;2() =D 2k! 2k!

ProB. 6.13. Prove: If n € Z, and « €R, then

a(a+1) afa+1)y...(a+n—-1)
—r toot !
_(a+l)(a+2)...(a+n)

n!

I+a+

>

ie.,

];::O(a+lr(z—l)=(a-rll-n)'
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Pros. 6.14. Prove: If a €ER and k € Z, then

(Z) = e Et)

7. Onto Functions. nth Root of a Positive
Real Number

If f: X > Y is a function that maps the nonempty set X into the set Y, then

Mf)CY. 7.1

Def. 7.1. If the range of the function f: X > Y above is 7, i.e., if

Uf) =7,
then we say that f maps X onto Y and call f an onto function. Onto
functions are also called surjective functions. When ®( f) C Y, we say that f
maps X into but not onto Y.

For example, the function f:R—>R defined as f(x) = x? for all x ER
does not map R onto R since f(x) > 0 for each x € R here. The range of this
f is a subset of [0, + 00). When we change the codomain (Def. 2.1) to
[0, + o0), the resulting function is an onto function. This follows from the
fact that if y €[0, + c0), then there exists an x €R such that x2= y
(Theorem 1.11.2) so that [0, + 00) C R(f). Since R(f) C [0, + o) it follows
that R(f) = [0, + c0). The function defined here will usually be written as
f=On

Investigating the ontoness of a function f: X —> Y amounts to asking
whether for each y € Y there exists some x € X such that f(x) = y. This is
an existence question. The answer can be provided in two ways. One way is
to produce the x in question by “solving” for it. Another way is to prove
that it must exist without necessarily exhibiting it.

Pros. 7.1. Prove: If a and b are real numbers and a # 0, then the function
f:R—>R given by f(x) = ax + b for each x €R is an onto function.

We now ask whether the function f:R—>R, given by f(x) = x", x €R,
and n a positive integer, is an onto function. We shall usually write this
function as ( )". It is clear that for n = 1, ( )" is onto since it is the identity
function Iy on R (Example 2.5), i.e., (x)' = x for each x € R. We consider
( )" for integral values of n, n > 2. If n is even, then x" > 0 for all x and
the range of ( )" is a subset of [0, c0). Therefore, it does not map R onto R.
Below, we prove that ( )" for n > 2 maps (0; o) onto itself.
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Theorem 7.1. If y is a positive real number and n an integer such that n > 2,
there exists exactly one positive real number x such that x" = y.

ProOOF. In many respects the proof is similar to the proof of Theorem
I.11.2. Construct the set

S={x€ER|x>0and x" <yj}. (72)
Let
D 4
xo_l__-—i-_y' (73)

As in the proof of Theorem I.11.2, it is easy to see that 0 < x, <1 and
0 < xy<y. Since 0 < x,< 1, we have xg§ < xo <y from which we con-
clude that x, € S, so that S # @.

We prove that S is bounded from above. Take x > 1+ y. We have
x> 1+ y>0. In view of Bernoulli’s inequality,

x">(1+p)">1+ny>np>2y>y.

This implies that x & S. Hence, x € S implies x < 1+ y. Thus, § is
bounded from above by 1 + y.

Since S is a nonempty set of real numbers which is bounded from above,
it has a real supremum. Let p. = sup S. Since the x, defined in (7.3) is in S,
0< xy< p

We prove that y < p”. Take € ER such that 0 <e < 1. Then 0 < p
< p + €. This implies that p + € & S, and, since p + € > 0, it follows that
(p+ €)" > y, and that

(p+e)'=p">y—p" (74)
Since €/p > 0, Theorem 5.1 implies that

"(i)(l+i)n_l>(' + i”)— L.

Multiply both sides here by p”. Then
ne(p+€)" '>(p+e€)"—p"
This and (7.4) imply that
ne(p+1)""">ne(p+e€)" ">y —pn
It follows that

e>—2"F __ forall 0<e<1.
n(p+1)""

By Prob. 1.3.13, we conclude from this that
_YTE <o
n(p+1)""!

so that y — " <0, and y < p"
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We now prove that u” < y. Consider a real € such that 0 < e < p. We
have 0 < p — € < p. Therefore, there exists a z € S such that p —e < z
< p. This yields

(p—¢)'<z"<y,
so that (p — €)" < y. Therefore,
(h—e)'—p"<y—p" (75)
Now, 0 < ¢/p < 1. Hence, by Theorem 5.1,

~ni<(l—i)"— 1.

Multiply both sides here by p”. In view of (7.5),
—nep" ' <(p—€)"—pt<y-—p"
This implies that

E "V ¢ forallesuch that 0<e<p.

n—1

np
By Prob. 1.3.13, we conclude that
S AP
npln—l

so that p” — y < 0 or p” < y. This and the already established inequality
y < p"yield p" = y. Thus, p is an x > 0 such that x" = y.

Finally, we prove that at most one x >0 exists such that x" = y.
Suppose, that x, also has the properties: x; >0 and x{ = y. This implies
that x" = x{. If x # x,, we would have either 0 < x; < x or 0 < x < x,.
The first of these inequalities implies that x|’ < x” and the second implies
that x” < x7'. In either case, x # x implies x" # x{'. This would contradict
x" = x{'. We must conclude that x; = x. This completes the proof.

ProB. 7.2. Prove: If n is an odd positive integer and y is a real number, then
there exists exactly one real number x such that x"” = y. Accordingly, the
function ( )":R— R where n is an odd positive integer maps R onto R.

Def. 7.2. If y €R, y > 0 and n is a positive integer, then a real x such that
x" =y is called an nth root of y. The unique positive u such that u” = y is
written as u = '(/; Since x" =0 if and only if x =0, we define 0 = "0 .
When n = 1, we write y ={y for y €R. We always write {y instead of
2\/;. When n is an odd positive integer and y €R (note that y can be
negative), then the unique x such that x” = y is written as x =’(/; .

ProB. 7.3. Let n be a positive integer. Prove: (a) If y > 0, then ('5/; ) =y;
(b) if x > 0, then ¥x" = x.
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PROB. 7.4. Prove: If n is an even positive integer and y > 0, then Yy is the
only negative real number x such that x” = y. In this case, there are exactly
two real nth roots of y each being the negative of the other.

ProB. 7.5. Let n be a positive integer and y,, y,, . . ., y,, be m nonnegative

numbers. Prove: (@) Yy, Yy, - - Vm =¥y ps-- pm- (B (Vy, )"
=V

8. Polynomials. Certain Irrational Numbers

Def. 8.1. A polynomial on R is a function f: R— R defined by means of
f(x)=apx"+ax"""+--- +a,_x+a, foreach x€R, (8.1)

where n is a nonnegative integer and ag, 4, . . . , a, are real numbers. The
latter are called the coefficients of the polynomial and is g, called its leading
coefficient. If ay, # 0, then f is said to be of degree n. Clearly, a polynomial
of degree 0 is a nonzero constant @, on R. The polynomial g such that
g(x)=0 for all x €R is called the zero polynomial. It is assigned no
degree. The equation

apx"+ax"" '+ .- +a,_,x+a,=0, (8.2)

is called a polynomial equation and an r satisfying it is called a root of the
equation or a zero of the polynomial in (8.1). By a rational root of the
equation we mean a root which is rational. Similarly, a real root is defined
as a root which is real.

Before proving the next theorem, we cite a lemma.

Lemma 8.1. If a and m are integers such that (a,m) = 1, then (a",m) =1 for
each positive integer n.

ProOOF. This is a corollary of Theorem 1.10.3 and we leave its proof to the
reader as an exercise.

Theorem 8.1. The polynomial equation (8.2) is of degree n > 1 and has integer
coefficients. If r = p/q, where p and q are relatively prime integers, is a
rational root of the equation, then p|a, and q|a,.

PROOF. Substitute x = p/g in the equation and multiply both sides of the
equation by ¢”. Then

agp"+ap" g+ - +a,_pg" ' +a,q"=0 (8.3)
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or

P(ap™ '+ ap" g+ - +a, q" )= —a,q". (84)
The second factor on the left is an integer, so this implies that p|(—a,q").
Since (p,q) = 1, it follows (by Lemma 8.1) that (p,q"). By Theorem 1.10.4,
rla,.
It also follows from (8.3) that
—agp" = q(a,p"‘1 +---+a, "%+ a,,q""). (8.5)

Reasoning as we did immediately above, we see that g|a,. The proof is
now complete.

Corollary. If, in the equation of the theorem, ay= 1, then a rational root of
the equation is necessarily an integer.

Proor. Exercise.

Pros. 8.1. Prove: (a) If k and n are positive integers and a rational number
r exists such that »” = k, then r is an integer; (b) if £ is not the nth power of
an integer, then "k is irrational.

Theorem 8.2. If n is an integer such that n > 2, then '1/; is irrational.

PROOF. Suppose n is rational. Let r="%n, so that r"=n. By Prob.
8.1(a), r = p where p is an integer. Now p = r ="Yn is a positive integer, so
that p > 1 and p" = n. Clearly, p # 1, so p > 2. This implies (Prob. 3.2) that
p" > n, contradicting p” = n. Hence " is rational.

PrOB. 8.2. Prove V2 +3 and 2 + 32 are irrational.

9. One-to-One Functions. Monotonic Functions

Def. 9.1. A function f: X — Y is called one-to-one or injective, when it maps
distinct elements of X into distinct elements of Y. In more detail: f is
one-to-one if and only if x, € X, x, € X, and x, # x, imply f(x,) # f(x,).

Remark 9.1. Often one proves that f is one-to-one by proving that f(x)
= f(x,) implies x, = x,. Questions concerning the one-to-oneness of a
function are actually uniqueness questions, whereas questions concerning
the ontoness of functions are existence questions (see the paragraph preced-
ing Prob. 7.1).
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ExaMPLE 9.1. The function ( )?:R—[0, + ) is not one-to-one since (— 1)?
= 12. However, the restriction of ( )? to [0, + c0) is one-to-one (Theorem
7.1).

ExampLE 9.2. The identity function /,: X—> X on a nonempty set X
(Example 2.5) is obviously one-to-one (explain).

Remark 9.2. We saw (Prob. 2.4) that f: X—>Y and 4 C B C X imply
f(A4) C f(B). It is possible to have A C B C X and f(A4) = f(B). This occurs
for the function ( )*:R—R. It maps both 4 =[0, + c0) and B =R onto
[0, + ), in spite of the fact that 4 C B. However, if f: X > Y is one-to-
one, then A C B implies f(4) C f(B). We prove this. Assume 4 C B C X,
so that there exists b € B such that b & 4. We know that f(4) C f(B).
Assume that f(A4) = f(B). Since b € B, f(b) € f(B) = f(A) so that f(b)
€ f(A). This implies that a € 4 exists such that f(b) = f(a). Since f is
one-to-one, we obtain b = a € A. This contradicts b & 4. We conclude
f(4) # f(B). Hence, f(A4) C f(B), as claimed.

An important class of functions is the class of monotonic functions.

Def. 9.2. Let f: X > R be a real-valued function of a real variable, so that
not only is its range f(X) a subset of R, but also X C R. We call such an f
monotonically increasing if and only if

X €X, x,€X, and x,<x, imply f(x,)< f(x;). (9.1)
Similarly f is called monotonically decreasing if and only if
X €X, x,€X, and x,;<x, imply f(x))> f(x;). (92)

f is called strictly monotonically increasing if

X, €EX, x,€X, and x,< x, (9.3)
implies
f(x1) < f(x2) (9-4a)
and strictly monotonically decreasing if (9.3) implies
J(x1) > f(x2)- (9-4b)

A function which is monotonically increasing or monotonically decreasing
is called monotonic. We write f1 when f is increasing monotonically and f|
when f is monotonically decreasing. We say that f has any of the above
properties on a set 4 when its restriction f|, to 4 has that property.

ExaMPLE 9.3. If n is an even positive integer, the function ( )":[0, + o0]
—[0, + o0) is strictly monotonically increasing (Prob. 4.5(a)), but ( )":R
—[0, + o0) is neither monotonically increasing nor monotonically decreas-
ing (explain). (See Fig. 9.1(a).)
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ExaMpPLE 9.4. If n is an odd positive integer, then ( )":R—>R is strictly
monotonically increasing (Prob. 4.5(b)). Note, this function is also an onto
function (Prob. 7.2) (see Fig. 9.1(b)).

Pros. 9.1. Prove: x; < x, in R implies [x,] < [x,]. Thus, prove that the
greatest integer function [ ] is monotonically increasing (Fig. 9.2). Note, [ ]
is not strictly monotonically increasing (explain).

The result in the next problem gives a relation between strict monotonic-
ity and one-to-oneness for real-valued functions of a real variable.

ProB. 9.2. Prove: A real-valued function of a real variable which is strictly
monotonic is necessarily a one-to-one function.
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Figure 9.2
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ExaMPLE 9.5. The converse of the result in the last problem does not hold.
For, let D = {x €R|x # 0} = (— 00;0) U (0; + o0). The function f: D> R
defined as f(x) = x~! for x # 0 is one-to-one but not monotonic (prove
this).

Monotonic Real Sequences

An infinite real sequence <a,> is a real-value function of a real variable.
This justifies the use of the terminology of Def. 9.2 for real sequences.

ProB. 9.3. Let <a,> be a real sequence. Prove that {a, ) if and only if
a,< a,, foreachn €Z, and that {a,)| if and only if a, > a,,, for each
nelr, .

PrOB. 9.4. Let (), be a sequence of positive integers which is strictly
monotonically increasing. Prove: n, > k holds for all k € Z, .

10. Composites of Functions. One-to-One
Correspondences. Inverses of Functions.

We first define the composite of correspondences y and §.

Def. 10.1. Let y be a correspondence between sets B and C. The composite
of § and vy (in that order), written as & o y is defined as the correspondence
n between 4 and C such that (a,c) € § o y = if and only if some b € B
exists such that (a,b) € y and (b,¢) € 8. In symbols

§oy={(a,c)EAXC|(ab) € y and (b,c) € & for some b € B}.
(10.1)

We now define the composite f o g of functions f and g.

Def. 10.2. Let g: 4> B and f: B— C be functions, then their composite
h=fo g is defined as the composite of f and g in the sense of the last
definition.

Theorem 10.1(a). If g: A—> B and f: B—>C, then fo g is a function with
domain A and codomain C and

(feg)x)=f(g(x)) foreach xE€E A. (10.2)

PROOF. Let x € A. There exists a unique y € B such that (x, y) € g. There
exists a unique z € C such that (y,z) € f. Thus, for each x € A, there exists
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a unique z € C such that (x,z) € fo g. Therefore, fo g is a function with
domain 4 and codomain C and (fe g)(x)=z. But y = g(x) and z = f(y)
= f(g(x)). Hence

(fo2)(x)=f(g(x)) foreach x € 4. (10.3)

Pros. 10.1(a). Let g: 4 > B and f: B—> C be functions. Prove: (a) If f and
g is one-to-one, so is f ° g; (b) if f and g are onto functions, so is f o g.

Def. 10.3. If a function f: X — Y is both one-to-one and onto, we call it a
one-to-one correspondence between X and Y. A one-to-one correspondence
is also called a bijection.

ExaMpLE 10.1. The identity function I, on a set X is a one-to-one
correspondence between two copies of X.

ExampLE 10.2. The function ( )" :[0, + 00)—[0, + o0), where n is a positive
integer is a one-to-one correspondence between two copies of [0, + o0).
When 7 is an odd positive integer, then the function ( )":R—>R is a
one-to-one correspondence between two copies of R.

ExaMPLE 10.3. Let a and b be real numbers such that a < b. Define
f:10,1]>R by means of

f(ty=a+1t(b—a) foreach r€[0,1]. (10.4)
Sincea<a+t(b—a)<bforeachr€[0,1,a< f(1)<bfor0< <1
Thus, f([0,1]) C[a,b], and we see that f maps [0, 1] into [a,b]. Now take
z €[a,b), so that a < z < b. This implies that 0 < z — @ < b — a and hence
that

<=4 ¢
Ob—al

Thus, (z — a)/(b — a) is an element of [0, 1]. We have

(5=a)=atp=qb-a==

Each z in [a,b] is the image of the element (z — a)/(b — a) in [0, 1] and is
therefore in the range of f. Hence, f([0, 1]) = [a,b]. f is also a one-to-one
function. Consequently, f is a one-to-one correspondence between the
interval [0, 1] and the interval [a, b] where a < b.

Inverse of a Function

We define the inverse of a correspondence and then the inverse of a
function.

Def. 10.4(a). If y is a correspondence between X and Y, then its inverse y!

is defined as that correspondence between Y and X which assigns x € X to
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y € Y if and only if y assigns y to x. In symbols,
v = {0 ) v} (105)

When we apply this definition to the special correspondences we call
functions we find that a function f always has an inverse correspondence,
but this correspondence is not always a function. Take, for example, a
function f which is not one-to-one. There exist distinct x, and x, in X such
that y = f(x,) = f(x,). Thus, (x,, y) € f and (x,, y) € f. By the definition of
the correspondence f ™',

(y,x)€f™" and (y,x)Ef),

where x| # x,. Thus, different x’s are assigned to the same y, and, in this
case, the correspondence f ' is not a function.

Another difficulty arises when a function g: X — Y is not onto Y. In this
case, there exists some y; € Y such that (x, y,) & f for each x € X. But
then g~' assigns no x € X to y,. Here, g~' is a function with domain
differing from Y. In the theorem below we consider the inverse f~' of a
one-to-one correspondence.

Theorem 10.1(b). If f is a one-to-one correspondence between X and Y, then
the inverse correspondence ™" is a function with domain Y and range X.

PRrROOF. Let y € Y. Since f is one-to-one and maps X onfto Y, there exists
exactly one x € X such that (x, y) € f. By the definition of f~', (y,x)
€ f~'. Thus, f~' assigns to each y € Y exactly one x € X, and is a
function f~': ¥ — X with domain Y and codomain X. But each x € X has
a y corresponding to it under f, so that (x,y)€f and (y,x)Ef "
Accordingly, x is the image of this y under f~'. Thus, each x € X is the
image, under f ™', of a y € Y. This proves that f ' maps Y onto X. Thus,
the range of f~' is X. This completes the proof.

Def. 10.4(b). Let f: X > Y be a one-to-one correspondence between X and
Y. By the previous theorem, the correspondence f ' is a function. We call
it the inverse of f, or the function inverse to f.

Remark 10.1. When f: X > Y is a one-to-one correspondence between X
and Y, then

f7'(y)=x ifandonlyif y=f(x), where x€X. (10.6)
It follows that
f(f_l(y)) = f(x) =y and hence f(f"(y)) =y foreach yeY.

(10.7)
Also,

@) =) =x (10.8)
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so that f ~'(f(x)) = x for each x € X. Using the notation of composition of
functions, we can express (10.7) and (10.8) as

fef'=1, (10.92)
flef=1I,. (10.9b)

Pros. 10.1(b). Prove: If f: X—> Y and g: Y - X are functions such that

feg=1Iy and gof=1I,
then f is a one-to-one correspondence between X and Y and f~' = g. (Note
that g is also a one-to-one correspondence and g~ ' = f. Thus, f and g are
each other’s inverses.) Here, f is the inverse of its inverse. To avoid
confusion, we call f the direct function.

1

Apropos the remark in the last problem, we now consider f~' as the

direct function. We have
f7={O T )y e = 2(f7)- (10.10)

Here, y is a “dummy” variable, and, therefore,

= (= 7)) X €R(S))
= {(x,y)|y=f_1(x), where x € @(f)}
= {(x, »)|f(y) = x, where x € }(f)}.

Thus, we see that to graph f~' we interchange x and y in y = f(x). The

result is x = f(y). This amounts to reflecting the graph of y = f(x) in the
line y = x (see Fig. 10.1).

Remark 10.2. Having defined the inverse of a one-to-one correspondence,
we proceed to define the inverse of a one-to-one function. Here, we drop

0 = (7', ) = (y,f(y))/( y=x
\ 7/
oS
yA X
/7 N
7 \\\ 5
4
. )(< =060 =Y
I”
4
’ -
x

Figure 10.1
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the assumption that the function is onto. We note that any function maps
its domain onto its range and is, therefore, always a correspondence
between its domain and its range. Accordingly, if f is one-to-one, the
function f: X > ®(f) is a one-to-one correspondence between X and R( f).
The latter function has an inverse f ~': R.(f) > X. It is this function that we
call the inverse of the one-to-one function f: X —> Y. For each y € (f),
f~!(y) is the unique x € X such that y = f(x). We have D(f~") = R(f)
and K(f ") = D(f). Also

f'(f(x))=x  foreach x € 9(f) (10.11)

and

f(f7'(»))=yp foreach yeR(f). (10.12)

ExampLE 10.4. If n is a positive integer, then the function ( )":[0, + )
—>[0, + 00) is a one-to-one correspondence two copies of [0, + c0). For each
y €10, + 00), '%/—)_1 is the unique x such that y = x". The inverse of our
function is the nth root function, which we write as "6 . We have

(’\'/;)"=y for each y €[0, +0) (10.13)
and
" = x for each x €[0, +c0). (10.14)

Thus, ( )" and 7/ are each other’s inverses. When we wish to treat 3/ as
the direct function we interchange x and y and write y =%x for each
x € [0, + o0).

Equipotent Sets

Def. 10.5. We call sets X and Y equipotent if and only if there exists a
one-to-one correspondence f: X — Y between X and Y. When the sets X
and Y are equipotent, we write

X=~7Y. (10.15)

The diagram in Fig. 10.2 suggests that the circles C and C’ are equipo-
tent, and so are the segments AB and A'B’.

In Example 10.3 we saw that there exists a one-to-one correspondence
between the closed intervals [0, 1] and [a, b] (Where a < b). Thus, we have:
if a < b for real numbers a and b, then [0, 1]~[aq, b].

Pros. 10.2. Prove: 3 ~@.
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Pros. 10.3. Prove: If X, Y, and Z are sets, then

(a) X~ X,
(b) X ~ Y implies ¥ ~ X,
(c) X~Yand Y~Z imply X~ Z.

ProB. 10.4. Prove: If n is a nonnegative integer, then w,=(n) (cf. Defs.
1.5.3 and 1.5.4).

Pros. 10.5. Prove: Z , ~7,. (This means that Z, is equipotent with one of
its proper subsets!)

Remark 10.3(a). We do our counting by tacitly using the notion of equipo-
tent sets. The set Z, and its initial segments w, (Def. 1.5.3) are taken as
standard sets.

Def. 10.6. We call a set S finite if and only if S~«w, for some n € Z,,.
Otherwise we call it infinite.

When we “count” the elements of a finite set S, we are really defining a
one-to-one correspondence between S and the set (n) = {1,2,...,n} for
some positive integer n. Since (n) >~ w, for each n, we have S ~(n) if and
only if S ~w,.

Remark 10.3(b). We state some properties of finite sets:

(1) Each subset of a finite set is finite.

(2) No finite set is equipotent with any of its proper subsets.

(3) If m and n are nonnegative integers such that m < n, then w,, and w,
are not equipotent and neither are (m) and (n).

(4) If S is a finite set then the n € Z; such that S ~ w, is unique. This 7 is
also called the number of elements of S and we write it as N(S).

(5) If A and B are finite sets, so are A N B and A — B.

(6) If A C B where B is finite, then N(4) < N(B).
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(7) (a) Each finite set of real numbers is bounded. (b) A nonempty finite
set of real numbers has a maximum and a minimum.

(8) A nonempty set of nonnegative integers which is bounded has a
maximum. (This is a consequence of Theorem 1.5.10.)

(9) (The pigeon-hole principle). If A and B are finite sets such that
N(A) < N(B), then a function with domain B and range in 4 is not
one-to-one.

Def. 10.7. A set S, such that S ~ 7, is called denumerable. Such a set is said
to have cardinal 8. (Here, &, read as Aleph, is the first letter of the Hebrew
alphabet. &, is read as Aleph-null.)

Remark 10.4. A denumerable set is necessarily infinite. If S is a denumera-
ble set, so that § =~ 7, there exists a one-to-one correspondence f: S — Z,,.
Let f(n) = a, for each n € Z,. The set S — {a,} = B is equipotent with Z , .
Since Z, ~17,, we have B~17, and Z,~ S, so that B~ S. Thus, S is
equipotent with one of its proper subsets, B. As such, it cannot be finite
(property (2) of finite sets). Hence, S is infinite.

Def. 10.8. A set which is either finite or denumerable is called a countable
set. A denumerable set is also called a countably infinite set.

Theorem 10.2. Every infinite set of nonnegative integers is denumerable.

PROOF. Let S be an infinite set of nonnegative integers. Clearly, S has a
least member. Let x,= minS. We have {x,} C S. Since S is infinite,
S # {xq}, s0 § — {x,} # @. Again, since the last set is a nonempty set of
nonnegative integers, it has a last member. Let x, = min(S — {x,}).
Clearly, x, < x, (explain). We have {x,,x,} C S, and, since S is infinite,
{x0,x,} C S and S — {x(,x,} # @. We proceed inductively. Suppose that
for some positive integer n, we have {xy,x,,...,x,} CS, where x,
=min(S — {xg, ..., x,_,}) and xy < x; < - -+ < x,. Since S is infinite,
we know that S — {xg,x, ...,x,} # @. The last is a nonempty set of non-
negative integers and has a least member. Let x,,, = min(S — {x,,
Xy, . ..5X,}). It is clear that x,,, > x,. This proves the existence of a
sequence <x,) of distinct nonnegative integers which is strictly monotoni-
cally increasing. By Prob. 9.4 we know that x, > »n holds for each positive
integer n. Since x is also a nonnegative integer, it follows that x, > 0. Thus,
x, > n for all nonnegative integers n. Let g: Z,— S be the function defined
as g(n) = x, for each n € Z,. g is a one-to-one function (show this). We
prove that g maps Z, onto S.

{x9,X}, . ..»x,} CS§ for each positive integer n. Assume that x € S.
Suppose x € S — {xy,x,, . . ., x,} for each positive integer n. Since x,,, , is
the least member of S — {xg,x,,..., x,} it would follow that x > x,,,

> n + 1 > n for each nonnegative integer n. This is impossible since x itself
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is necessarily a nonnegative integer. Therefore, x € {x4,x,, ..., x,} for
some nonnegative integer n. Thus, a nonnegative integer k exists such that
k < n and x = x, = g(k). This implies that x is in the range of g. Thus,
each x € § is in the range of g and g is an onto mapping. Since g is also
one-to-one, it is a one-to-one correspondence between Z; and S, so that
Zy~ S. This proves that S is denumerable, as claimed.

ProB. 10.6. Prove: Every infinite subset of a denumerable set is denumera-
ble.

Pros. 10.7. Prove: Every subset of a denumerable set is countable.

Pros. 10.8. Prove: The union of two sets, one of which is countable and the
other denumerable, is denumerable.

Pros. 10.9. Prove: The union of two countable sets is countable.

Theorem 10.3. Every infinite set contains a denumerable subset.

PRrROOF.* Let S be an infinite set. Since S #% @, it contains some element.
Write this element as a,. We have {a,} C S. Since S is infinite, we know
that S # {a,} and hence that S — {a,} # @. The last set contains some
element. Write this element as a,. We have a, € S — {a,}, so that a; # a,
and {ay,a,} C S. We continue this procedure inductively. If, for some
positive integer n, {ay,qa,, ..., a,} C S, where a; # a; for i # j, we know,
since S is infinite, that so is S — {ay,a,,...,a,}. Thus, S — {a,,
a,...,a,} #@ and contains some element. Write this element as a,. .
We have a,,, € S — {agy,a,, ..., a,} so that a,,, # a, for all integers k
such that 0 < k < n. This shows the existence of a sequence {a, ) of distinct
elements of S. Let g:Z,—> S be defined as g(n) = q, for all n € Z,. g is
one-to-one (why?) and maps Z, onto its range g(Z,) = {ay,a,, . . . } which
is the range of the sequence of {a,). Therefore, Z, and g(Z,) are equipotent.
Accordingly, g(Z,) is a denumerable subset of S.

11. Rational Exponents
The following theorem will be useful in the sequel.

Theorem 11.1. A real-valued function f of a real variable which is strictly
monotonic has a strictly monotonic inverse f~'. If f is strictly monotonically
increasing, so is f ~'. If f is strictly monotonically decreasing, so is f~".

* This proof uses the Axiom of Choice. It would carry us too far afield to discuss this axiom
here. The interested reader could consult P. Halmos, Naive Set Theory.
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Proor. We prove the theorem for the monotonically increasing case leaving
the proof of the decreasing case to the reader (Prob. 11.1). Let f: X >R,
where X C R, be strictly monotonically increasing. This implies that f is
one-to-one (Prob. 9.2). Using Remark 10.2, we define the inverse f ' of f as
follows: If y € R(f), then f~'(p) is the x such that y = f(x). Take y, < y,
in ®(f). There exist x; and x, in X such that y, = f(x,) and y, = f(x,), so
that x, = f~!(y,) and x, = f ~'(y,). We prove x, < x,. Suppose that there
exist x, and x, in X such that x;, > x,. Since f7, it follows that y, = f(x)
> f(x,) = y,. This contradicts y, < y,. We see that x; < x, or f~'(y))
< f~!(y,) for any y, and y, in R(f), with y, < y,. Therefore, f ' is strictly
monotonically increasing.

ProB. 11.1. Complete the proof of the last theorem by proving that a
function which is strictly mone::onically decreasing has a strictly monotoni-
cally decreasing inverse.

ProB. 11.2. Prove: For each positive integer n the function Vi [0, 4+ o0)
—[0, + o0) is strictly monotonically increasing.

ProB. 11.3. Let n be an odd positive integer. Prove: the function ¥ : R
— R is strictly monotonically increasing.

Def. 11.1. Let r = m/n, where m and n are integers and n > 0. Define:

(@) x" = x"/" = ("fx )" for x > 0.
(b) 0" = 0 for r > 0.
(c) x"= x"/"for x <0 and odd n as in (a).

Remark 11.1. If, in the above definition, n = 1, then xm/V = (l\/;)”‘ = x" If
m/n is an integer k so that m = nk, we have for x > 0

n n k
X ki = ()" = (1)) = - (L
Also, if n is a positive integer and x > 0, then

x‘/"=(%?)'='{/§. (11.2)

Remark 11.2. From Def. 11.1 parts (a) and (c), we obtain
0
X=x""'=(Wx)=1 if x#0.

This leaves 0° undefined. We do not know how this should be defined. If
we wish to preserve x%=1, then we must define 0° = 1. However, if we
wish to preserve 0" = 0, for r > 0, then we must define 0° = 0. We continue
the usage 0° = 1 adopted in Example 3.1.



11. Rational Exponents 77

Note that if x <0, then we do not define x™/", where m and n are
integers and n is even.

ProB. 11.4. Prove: If m and n are integers, n >0, then {p™ = (’\'/1_) )i
whenever both sides are defined.

Pros. 11.5. Prove: (a) If x > 0 and r is rational, then x” > 0; (b) if m and n
are integers, where n is odd and positive, and x < 0, then x™" >0 if mis
even, and x”/" < 0 if m is odd.

Pros. 11.6. Prove: If x > 0, and m, n, p, and q are integers such that n > 0,
g>0and m/n=p/q, then
x™m/" = xP/4,

Pros. 11.7. Prove: If x > 0 and r and s are rational numbers, then

(@) xx*=x"*" and (b)(x")'=x".

Pros. 11.8. Prove: If x > 0 and r is rational, then
-r_ 1

X =—.
x’

ProB. 11.9. Assume that x > 1 and ¢ is rational. Prove that x* > 1 if ¢ > 0,
and x' < 1if £ <0.

Theorem 11.2. If a > 0, then the function f, : Q> R, defined as
fo(ry=a"  foreach reQ. (11.3)

(recall, Q is the set of rational numbers) is strictly monotonically increasing if
a > 1 and strictly monotonically decreasing if 0 < a < 1.

Proor. Consider first the case a > 1. Assume that r; < r, for some rational
numbers r; and r,. We have r, — r; > 0. By Prob. 11.9,
a”" "> 1.
Multiplying both sides by a” gives
a?=qg"t(2=r) S gn,
Thus, r, < r, implies that a”' < a".
If 0<a<1, then a~! > 1. Hence, if r, and r, are rationals such that
r, < r,, then
—1\"2 —I\
(@) >(@") -
This implies that

B )
a a’
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that is, a” > a™. Thus, r, < r, implies a” < a” for r, and r, in Q. This
completes the proof.

Pros. 11.10. Prove: If r is rational, then

(a) r>0and 0 < x; < x, imply xi < x5,
(b) r <0 and 0 < x; < x, imply x{ > x;.

Pros. 11.11. Prove: If a > 0, b > 0, and » is a positive integer, then
—1
a—b= (al/n _ bl/n)nz ak/nbl—(k+l)/n.

Special cases of this are (a) a—b=(Ja —Vb )Va +Vb) and (b)
a—b=QRa —3B)a* +Ya 3 +b?).

12. Some Inequalities

Pros. 12.1. Prove: If x > 0 and y > 0, then
\/E X +_y

In this problem (x + y)/2 is called the arithmetic mean of x and y and
Vxy their geometric mean. The result in Prob. 12.1 is that the geometric
mean of nonnegative real numbers does not exceed their arithmetic mean.
The harmonic mean of two positive real numbers is defined as the reciprocal
of the arithmetic mean of their reciprocals. If H(x, y) is the harmonic mean
of the positive numbers x and y, then

_ 1 _ 2
HeN =101 “x+y

(12.1)

Pros. 12.2. Prove: If x > 0 and y > 0, then

xy <‘/x—

x+y

Pros. 12.3. Prove: If x, y, and z are nonnegative real numbers, then
+y+
Sayz < 222 T2
3
Generalizing the terminology following Prob. 12.1, we see that the
geometric mean of three nonnegative real numbers does not exceed their
arithmetic mean.
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Pros. 12.4. Prove: If x >0, y >0, and z > 0, then

3xyz 3
Yty tax V07

ProB. 12.5. Prove: If x > 0 and y > 0, then

xl/2+y1/22x+y
< < .
BT 5

The inequalities given in Theorem 12.1 below will be useful in our later
work. Before proving this theorem we cite a lemma.

Lemma 12.1.* If p and q are integers such thatp > q > 1, and x > 0, x # 1,
then
xP—1 xi-1
P q

PROOF. Case 1. p > 1 = q. By Remark 5.2, if p is an integer p > 2 > 1 =g,
then

1 _x-1

P — — u —_ ___X
x?P—=1>p(x—1) sothat 7 >x-1 I 7

Case 2. p > q > 1. Note that
P =) —p(xf = =g =D = (p = q)(x* = 1) (122)
Since p — ¢ > 0 and ¢ — 1 > 0 it follows that g > 2. Hence, by Remarks 5.1
and 5.2, we obtain

xPT1—1>(p—¢q)(x—1) and x7—-1<gx? '(x—1).

Using these inequalities on the right-hand side of (12.2) gives us for that
side

I =D = (PP - >gxi(p—g)(x— 1)
—(P—qgx?'(x - 1)
=q(p— (x—D(x?—x77"
=4(p = q)(x = x>0,
This and (12.2) imply that
g(" =)= p(xP = 1)>0
and the desired conclusion follows in this case also.

* Chrystal, Algebra, Vol. 2, pp. 42-43, Dover, New York.
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Theorem 12.1.* If r is rational," x > 0, and x # 1, then

(@) r>1orr <0 imply

r(x—1)<x"—1<rmx""Y(x—1). (12.3)
(b) 0 < r < 1 implies
r(x—1H>x"-1> rx’_[(x - 1. (12.4)

ProoF. We consider three cases: (1) r > 1,(2)0<r<1,0or (3) r <0.
Case 1. r>1, where r=p/q, and p and ¢ are integers such that
p > q > 1. It follows that

x>0 and xY9#1. (12.5)
Apply Lemma 12.1 and obtain:

(G0 BN G0 Nl WY
> = .
P q q
Putting r = p/q, we can write this inequality as
x"=1>r(x—1). (12.6)

This proves the leftmost inequality in (a) for r > 1.
Now note that x ! >0 and x ~' + 1. Replace x in (12.6) by x ~'. Then

(x_‘)r— 1>r(x""'=1)

which can be written as x " — 1 > rx ~'(1 — x). Multiply both sides of the
latter inequality by x". Since x” > 0, this yields

1—x">rx"" (1= x). (12.7)
Hence,
x"=1<rx""Yx—1.

This (12.7) and (12.6) complete the proof of part (a) for the case (1).
Case 2. 0 < r< 1. Then r~! > 1, and we can use the result in case (1)
with »~ ! instead of r. Replace r with »~! in (12.6). Then

xN=1>L -y,
This yields
x"=1<r(x-1) if 0<r<lI. (12.8)
Now use this inequality with x ~! replacing x to obtain
(N =1<r(x"' = 1)=m"'(1-x).

* Chrystal, Algebra, Vol. 2, pp. 43-44, Dover, New York.

T The theorem holds also if r is real (see Theorem V.7.1).
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Multiply both sides here by x” and obtain

1-x"< rx’“l(l - Xx).
But then x” — 1 > rx"~!(x — 1) for 0 < r < 1. This and (12.8) complete the
proof in case (2).

Case 3. r < 0. This implies that 1 — r > 1. We use the right-hand inequal-
ity in (12.3) with 1 — r in place of r and obtain

X'l =x T (x =) =1 =r)(x'"""=x7").
Now add x =" — x'~" to both sides. Then
xTT=1< —r(x"TT=x7).
Multiply both sides by x". Then
l—x"<—=r(x—1).
But then
x"=1>r(x—1), (12.9)

where r < 0. Finally replace x by x~! to find, as in case (1), that the
rightmost inequality in (a) holds also for r < 0. The proof is now complete.

ProB. 12.6. Prove: If a and b are distinct positive real numbers and* r is a
rational number, then
(@) r> 1 or r <0 each imply
rb""Ya—-b)y<a"—b"<ra""'(a—b)
and
(b) 0 < r <1 implies
rb""Ya—-b)>a"—b">ra""'(a—-b).

ProB. 12.7. Prove: If a and b are distinct negative real numbers and
r = m/n, where m and n are nonzero integers and » is odd, then one of the
inequalities in Prob. 12.6 holds: (1) if m is even then (a) holds if r < 0 or
r> 1and (b) holds if 0 < r < 1; (2) if m is odd, then (a) holds if 0 < r < 1,
while (b) holds if r <0 or r > 1.

Theorem 12.2 (Young’s Inequality). If a and b are positive real numbers' and
r and s are rational numbers such that r + s = 1, then

(a) 0< r <1 implies
a’b’* < ra+ sb (12.10)

* The statement also holds if 7 is real (see Prob. V.7.1).

tThe theorem also holds if r and s are real.
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and
(b) r <O0orr>1imply

a’b® > ra + sb. (12.11)

The equality in each of (a) and (b) holds if and only ifa=b. If 0 < r <1,
then the hypothesis can be extended to a > 0 and b > 0.

Proor. Use Prob. 12.6 and the leftmost inequalities in parts (a) and (b)
there and add 4" to both sides to obtain
b Ya—-b)y+b"<a” if (@ r>1 or r<0 (12.12)
and
rb"'(a—b)+b’>a’ if (b) 0<r<l1. (12.13)

Now multiply each of these relations by 4° and note that s+ r—1=0.
Then

r(a—b)+ b<a'b’ if r>1 or r<o0 (12.14)
and
r(a—b)+ b>a'b’ if (a) 0<r<l1. (12.15)
Since r + s = 1, we see that
ra+ sb < a'b’ if (@) r>0 or r<o0 (12.16)
and
ra + sb > a'b’ if (b) 0<r<l1. (12.17)

Note that a # b, a > 0, and b > 0 imply the strict inequalities in (12.10)
and (12.11). Consequently, the equality in (12.10) and (12.11) implies that
a = b. Conversely, if a = b, it is easily seen that equality holds in each of
(12.10) and (12.11). The last statement in this theorem is obvious.

Theorem 12.3* (Generalization of Part (a) of Theorem 12.2). If x, ..., x

n

are nonnegative real numbers and a,,a,, . . . , a, are positive rationals® such
that
n
> ay=1, (12.18)
k=1
then
X2 oxmr < ogx toayx,+ 0+ a,x,. (12.19)
The equality in (12.19) holds if and only if x, = x,= - -+ = x,,.

* Beckenbach and Bellman, Inequalities. “Ergebnisse der Mathematik und Ihrer Grenz gebiete
Neue Folge,” Band 30, Springer-Verlag, New York, 1965.

T The theorem holds if «, . . ., «, are all real.
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ProoF. We use induction on »n for n > 2. By Part (a) of Theorem 12.2, the
theorem holds for n =2. Assume it holds for some integer n > 2. Take

distinct positive rational numbers «a, . . ., a,,a,,, such that
a,to,+ - +a,+a,,,=1 (12.20)
Then
a a o
L+ —2 4. =1 (12.21)
l_an+l 1—‘an+1 1_an+l

The numbers
) 5] a,

(12.22)

bl LR ]
A L T 1=,

are n positive rational numbers satisfying (12.21). By the induction hypoth-

esis, we, therefore, have for nonnegative real x,, . . ., x,
xe/-auya/(-an) | ye/O-an ¢ %y %2 4
R
1- Qyt 1 1 - Q4
a’l
+ —"—x,, (12.23)

1- Q4 "
where the equality holds if and only if x; = - - - = x,. Next let
a= xi—‘u/(l-a,.n)xgz/(l—d,,ﬂ) . ’x:"/(l—am) and b=x,,,, (1224)

a and b are nonnegative real numbers, a,,,; + (1 — a,, ;) =1,and 0 < o, ,
< 1. By Young’s inequality we obtain

a' " < (1= a4 )a+ a, 4 b, (12.25)
This and (12.24) imply that
xfxs2 oo xmxin < (1 — a4 )a + a, b, (12.26)

But the left-hand side of (12.23) is equal to a (see (12.24)), so (12.23) may
be written

ax;+ -0+ ax, 1227
h 1- Q11 ( ) )

This and the fact that b = x,,,, imply that

(I—a )ata, b<ax + - +a,x,+a,%X,.
This inequality and (12.26) yield

xfxs2 o ooxt < ogxyFoapXx,t o+ o, 1 X, - (12.28)
It is clear that if x,=x,= -+ =x,,,, then the equality holds here.
Conversely, suppose that two of x, ..., x,,x,,, differ. If the two that

differ are among x,, . . ., X, then, by the induction hypothesis, (12.23) is a
strict inequality. Hence (12.28) is a strict inequality. On the other hand, if
x, = +-+ =x,, but x, # x,,,, then (12.24) implies

=x, and b#a.
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This time (12.25) is a strict inequality. This implies that (12.28) is strict.
Therefore, if x, = -+ =x,=x,,, is false, then the strict inequality in
(12.28) holds. Hence, if equality holds in (12.28), then x;, = --- = x,
= x,, . Invoking induction, we find that the theorem holds for all n.

Corollary (The Geometric-Arithmetic Inequality). Let n be some positive

integer. If x\,x,, . . ., x,, are nonnegative real numbers then
X+ -+ x
1 1
(X1 %3 ... %) /ng —n—" . (12.29)
PrOOF. In the theorem, let a; = a, = - - - = a, = 1/n, so that
xfxge .. xt=xl/mxMm L X = (x5 ... x,,)'/"
and
alxl+a2x2+ “ .. +ax =lxl+lx2+ e +lx =u
"hop n n" n

The conclusion is an immediate consequence of the theorem.

Theorem 12.4. Suppose r is rational, rP#r,ands=r /(r — 1), so that

1, 1_
S+o=1 (12.30)

Let A and B be positive real numbers. Then

(@) r > 1 implies

ap<4 L B (12.31)
r N
and
(b) r <1 implies
4B >4 B (12.32)
r N

Equality holds in (12.31) and (12.32) if and only if
B=A"" (12.33)

which is equivalent to A = B*~'. If r > 0, the hypothesis may be extended to
A>0,B2>0.

PROOF. Let a= A" and b= B°, so that 4 =a'/" and B=5b""If r > 1,
then 0 < 1/r < 1. By Theorem 12.2 and (12.30) we obtain
s r s
If r < 1, since r># r, we have r # 0. Therefore, 0 < r < 1 or r < 0. This
implies 1/r > 1 or 1/r <0. This time Theorem 12.2 yields:

AB=a"b"s 3 gy Lp=A4" L B (12.35)
r N r N

aB=a"p' <lay (12.34)
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Equality holds in (12.34) and (12.35) if and only if a = b; that is, if and
only if A”= B*, or A'/*= B'/", Since (1/r) + (1/s) = 1, this implies that

A=A]/rAl/s=A1/rB|/r=(AB)I/’ or A" = AB
and
(AB)/*= A'/*B\/*= B'/*B/"= B or AB= B".

These yield B= A""' and 4 = B*~! as necessary and sufficient conditions
for the equality to hold in (12.31) and (12.32).

Theorem 12.5 (Holder’s Inequality). If r is rational* and a,, ..., a,,
by, ..., b, are real and nonnegative and r* # r and s = r /(r — 1), so that
1,1
. + . 1, (12.36)

then (a) r > 1 implies
n n 1/r/ n 1/s
> ab;< ( > a,.’) ( > bf) (12.37)
i=1 i=1 i

and (b) r < 1 implies

n n 1/r n 1/s
> ab;> ( > a,.’) ( > bf) . (12.38)
i=1 i=1 i=1

Equality will hold in (12.37) and (12.38) if and only if
there exists a real A > 0 such that a = Ab; for each i (12.39)

or
there exists a real 1 > 0 such that b’ = na; . (12.40)

Proor. We prove (a) using Theorem 12.4, part (a). The proof of (b) uses
part (b) of Theorem 12.4 and we leave it to the reader (Prob. 12.8). We
begin by assuming that » > 1. If

n M
>a/=0 or > b’=0, (12.41)
i=1 i=1
then either a; = 0 for all i or b, = 0 for all i and we have equality in (12.37).
We, therefore, assume that

n n
Sa’>0 and 3 b7>0. (12.42)
i= i=1
Let u =(37_,a/)"/" and v = (27_,b)"/*. Using (12.31) we obtain
. b, r b’
ﬂ~—'<la—',+l—'—x foreachiwith 1<i<n. (12.43)
u v ru s

* The theorem also holds if  is real.
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Sum over i. Then

1S 1 204 1
1 b.< = 1
uv E,”’b' rw s

This implies
n n 1/s n 1/r
> a;b;< uv = ( > a,-’) ( > b,.s)
i=1 i=1 i=1
Thus, if » > 1, then (12.37) holds.
We examine the conditions under which the equality in (12.37) holds.

Suppose that a A > 0 exists such that g/ = Ab/ for all i. This implies that
a; = A'/"bs/" for each i. Hence,

> ab=> AN/b b= A" BN/ (12.44)
i=1 i=1 i—1
But (12.36) implies » + s = rs. It follows from this and (12.44) that
> ab=\""3b;. (12.45)
i=1 i=1
Also,
n 1/r; n 1/s n 1/r; n 1/s n 1/r+1/s
(5 (300 (8] (89 " 2)
i=1 i=1 i=1 i=1 i=1
= (}\'/’Z b,-’). (12.46)
i=1

Comparing the right-hand side with (12.41), we arrive at

n n 1/r n 1/s
2 ab= ( > a,-’) ( > bf) : (12.47)
i=1 i=1 i=1

which is the equality in (12.37). Conversely, assume that we have equality
in (12.37), so that (12.47) holds.

If u"=3%"7_1a"=0 or v°=3>7_,b°=0, then either g, =0 for all i or
b, =0 for all i and
either ¢/ = 05/ for all i or b = Oa, for all i. (12.48)
If u >0 and v > 0, we divide both sides of (12.47) by uv and obtain
b

Z(a;)(g)ﬂ (12.49)

i=1

Suppose a k exists such that

- F—. (12.50)
Write
A== and B =2 foralli (12.51)
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Note that for the k for which (12.50) holds, we have
Al # B andhence A, B{™' or, equivalently, B, #4;"',
so that by Theorem 12.4, part (a),

A, | B;
AkBk < T + ‘S— .
But then
n nA " Bf
> AB< S S (12.52)
i<
Since
n " a’ n n_ bs
Sa=Z=% oy aa SE=20010 (25

i=1

(12.52) implies that

n 1 l 3
EIA,.B,.< cto =1L

This contradicts (12.49). (In view of (12.51), (12.49) states >,7_ 4B, = 1.)
Thus, if (12.47) holds, then we must have (see (12.50))

a’ s
— = — and therefore a/ =Ab7  foralli,
u” v

where A = u”/v°®. Note that necessarily A > 0. This proves (12.39).
ProB. 12.8. Complete the proof of the last theorem by proving part (b).

Theorem 12.6. (Cauchy—Schwarz Inequality). If a, ..., a,;b, ..., b, are
all real numbers (not necessarily nonnegative), then

<( é a,?-)l/z( é b,?)l/z. (12.54)

i=1 i=1

n

> a;b;

i=1

Here the equality holds if and only if either there exists a real t such that
b, = ta; for all i or there exists a real s such that a; = sb; for all i.

Proor. Use Hoélder’s inequality with r = s = 2 and obtain

n n 12, n 172
<Slalibl<( Slaf) (S )

i=1 i=1

i=1

n

2 a;b;
1

i=

Thus, (12.50) holds.
Now examine the conditions for the equality in (12.54) to hold. If either a
real ¢ exists such that b, = ta; for all i or there exists a real s such that
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a; = sb; for all i, then easy calculations prove that the equality holds in
(12.54).
Conversely, suppose the equality in (12.54) holds, so that

é ab|= ( 2 a,?")]/z( En] b,?)l/z. (12.55)

i=1 i=1 i=1

If 3"_,a?=0or 3"_,b? =0, then, as shown earlier, we have b, = 0q; for
all i or a; = 0b, for all i. If 3"_,a? > 0 and 3"7_,b? > 0, put

_ 2i-14:b;

=2

i

n
i=14

We have:

> (b — ta)’= 3 (b} = 2ta,b, + 1’a})
i=1 i—1

=D b}-2t> ab+ 12> a?

i=1 i=1 i=1

_ i b= 2 (Si-ab)’ + (Si-ab) & 22

i=1 i (Sha?)’ =1 i
_ “ _ (2?=laibi)2
i=1 2?=1‘112
In view of (12.55), the expression on the right-hand side is equal to 0. This

implies that 3"_ (b, — ta,)*> = 0. In turn, this implies b, — ta, = 0 for all i
and, hence, b; = tq; for all i.

Theorem 12.7 (Minkowski’s Inequality). If a,, ..., a,; by, ..., b, are non-
negative real numbers and r is a rational number,* then

(@) r > 1 implies

( 2 (@ + bx-)')l/r< (2 al’)l/’+ (é}l b,-’)]/r (12.56)

i=1 =

and
(b) r < 1 implies

( En: (a; + b,-)')l/r> (ﬁ] a,-’)‘/’+ (ﬁ] b,.’)l/r‘ (12.57)

n=1

(If r <0, we assume in the hypothesis that a; >0 and b; > 0 for all i.) The
equality holds in each of (12.56) and (12.57) if and only if (1) there exists a

* The theorem also holds if r is real.
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u > 0 such that b, = ua; for all i or (2) there exists a v > 0 such that a; = vb,
for all i.

Proor. We prove (a) and leave the proof of (b) to the reader (Prob. 12.9).
Assume r > 1 and define

__r
s= L (12.8)
which implies 1/s=1—1/ror 1/r+1/s = 1. Note that
—-1==r
r—1==L. (12.59)

For each i, we have
(a; + b) = (a; + b)(a; + b) "= (a,+ b))(a; + b)"*
= a,(a; + b)"*+ b,(a; + b)"". (12.60)

Using Hoélder’s Inequality, we have

n 1/r/ n s 1/s
gla,-(a,-+bi)’/’<( > ,-’) ( l((ai+b,-)’/s))

i=

i
Q

= ( i a;)l/r( §nj (a;+ b,.)’)]/s. (12.61)

Similarly,

n

iél bl bi)’/’g (iél b,.’)l/r( O bi)r)l/s. (12:62)

i=1

Summing in (12.60) and using (12.61) and (12.62), we obtain

PICEDE ((21 a,-')l/r +2 b,.r)”')(él(a, " bi)’)l/s. (1263)

If ("_(a; + b))"/* =0, then a, + b, = 0 for all i so that a, = 0 = b, for all
i. In this case the equality in (12.56) holds trivially. If (37_,(a; + b,)")"/*
> 0, we divide both sides in (12.63) by (3"_,(a; + b,)")'/* and obtain

(é:](a,» + b,-)’)l_l/s< (é)l a,-’)l/r+ (élbi,)‘/" (1264

Since 1 — 1/s =1/r, (12.56) follows.

We now investigate the conditions under which we have equality in
(12.56). If a u > 0 exists such that b, = ua for all i or a v > 0 exists such
that a; = vb; for all i, then easy calculations show that we have equality in
(12.56). Conversely, assume

( S (4 + bi)')l/r= (E a.-’)l/r+ (élb,")l/r. (12.65)

i=1 =1
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Examine inequalities (12.61) and (12.62). They are consequences of Hold-
er’s Inequality for » > 1 and necessarily hold. If the strict inequality in one
of (12.61) or (12.62) holds, then the strict inequality in (12.63) would hold.
Thus, (12.65) would be false. Consequently, (12.61) and (12.62) are equali-
ties. That is,

é}l a;(a; + b))/ = (é} a,.’)l/r(é] (a;+ bi)’)l/s (12.66)

and

§n)1 bi(a; + b)) = (é}l b,.')l/r( 2 (a; + b,.)’)l/s. (12.67)

/ i=1

=

Apply the condition for the equality in the Holder inequality to (12.66). It
follows that: either a A > 0 exists such that

af =N(a,+b)/*) =Na, +b)  foralli, (12.68)
or a u > 0 exists such that
(a;+ b) = pa/  foralli. (12.69)

If (12.68) holds and A = 0, then @, = O for all i and hence a;, = 0b; for all i. If
A > 0, then (12.68) yields

a;=\""(a;+b) andhence (A~'"—1)a,=b,.
Thus b, = va; for all i and some ». A similar conclusion is arrived at if
(12.69) holds. This completes the proof of part (a).
Pros. 12.9. Complete the proof of Theorem 12.7 by proving part (b).

Pros. 12.10. Prove: If a}, ..., a,;b,, ..., b, are real numbers (not neces-
sarily nonnegative), then

n 1/2 n 172 n 1/2
( 2 (a; + bi)z) < ( Z aiz) + ( 2 biz) >
i=1 i=1 i=1

where the equality holds if and only if either a real u exists such that
b; = ua; for all i or a real v exists such that a, = vb, for all i.

Pros. 12.11. Prove: If a,, . . ., a, are positive real numbers, then
n n
(Eak)( > L) > n’.
k=1 k=1 %

Pros. 12.12. Prove: If a, . . ., a, are nonnegative real numbers and m,, M,
are defined as

m,,=min{al,...,a,,}, M, = max{a,, ..., a,},
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then
at+a,+ - +a
m, <(aay...a,)"/"< 122 - < M,.
Pros. 12.13. Prove: Let a,,...,a,;b,, ..., b, be positive real numbers.
Put
[ a a,,} {a, a,,}
m =min{ —,..., — r, M =max{ —,..., — }.
§ {bl bn " bl bn
Then
a,t+a,+---+a a,a,...a
(1 m, <12 <M, and (2) m!< 2t M

by+by+---+b, “bb,...b "

n

(In (1), a, . . ., a, need not be positive.)

The results cited in the next two problems are useful in the theory of
infinite products.

Pros. 12.14.* If a,,a,, . . ., a, are nonnegative, then

n
[Ma+a)>1+a,+a,+ - +a
k=1

n .

ProB. 12.15." Prove: If 0 < a; < 1 for 1 < i < n, then

(a) ﬁ(l—ak)>l—§n:ak,
L &
® 10 -a) <oy
© - a) <
(d) kI:II(Ha"KTle if élak< 1.

ProB. 12.16. Prove:

*T. J. 1. Bromwich, Infinite Series, Macmillan, New York, 1942.
 Loc. cit.



CHAPTER III
Real Sequences and Their Limits

1. Partially and Linearly Ordered Sets

The subset relation C between sets has the following properties:

(a) If 4 is a set, then 4 C 4.
(b) If A and B are sets such that 4 C B and B C 4, then 4 = B.
(c) If A, B, and C are sets such that 4 C B and B C C, then 4 C C.

Note that sets 4 and B may exist which are not related by C. Thus, it may
happen that 4 ¢ B and B € A4; Fig. 1.1 makes this clear.

Def. 1.1. If S is a nonempty set of elements and < a relation between the
elements of S such that if a, b, and ¢ are in S, then

(@) a<a,
(b) a< band b < aimply a = b,
(c)a<band b < cimplyac<ec.

We call the system consisting of S together with the relation < a partially
ordered system. Such a system will often be written (S, <). Usually, we call
the system a partially ordered set and abbreviate by referring to it as a POS.
The relation < is called an ordering of S. When the relation < on S has
the additional property

(d) Ifae Sandb e S,thena< borb<a,

we call the POS a linearly ordered set and the ordering <, a linear ordering
of S. In a linearly ordered set any two elements are related by the ordering.
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Figure 1.1

Remark 1.1. If (S, <) is a POS, we define a > b to mean b < a. It is easy to
see that the relation > is also an ordering of S. The resulting POS (S, >) is
called the dual of the original system.

Remark 1.2. The real number system with the relation < as defined in Def.
1.2.2, which we write as (R, <), is a linearly ordered system. The relation >
on R is the dual of <. We call the ordering < the natural ordering of R.
The system (Q, <) consisting of the set @ of rationals together with the
natural ordering < of Q is also a linearly ordered system.

Def. 1.2. In a partially ordered system (S, <) define a < b to mean a < b
but a # b.
It is easy to see that a < a is false, and that a < b < ¢ implies a < c.

2. The Extended Real Number System R*

We extend the real number system as follows: If S is a set of real numbers
which is not bounded from above, we write

supS = +o00 or supx= +o0. (2.1)
XEs

Similarly, if S is not bounded from below, we write

infS=—00 or iInfx= —o0. (22)
xXES

This introduces two symbols, —oo and + oo, called respectively minus
infinity and plus infinity. The set

R*={-0} URU {+o} (2.3)
is called the set of extended real numbers and each of its members is called
an extended real number. We order R* as follows: (a) —o0 < + o0, (b) if

x ER, then — o0 < x < + 0, (¢) if x and y are real numbers, they have the
same order in R* as in R.



94 III. Real Sequences and Their Limits

The advantage gained by introducing R* is that each of the subsets of the
latter is bounded from above and from below and thus is bounded.
Moreover, if S C R*, S, then

z€ S implies infS<z<supS.

Basically, we are interested in sets of real numbers and R* is introduced
as an aid in the study of these.

Terminology. Although each set in R* is bounded, a set of real numbers
which is not bounded from above in R will still be called not bounded from
above. Similarly, a set of real numbers not bounded from below in R will
still be called not bounded from below (even though it is bounded from
below, in R*). In the same spirit we say that a set of real numbers which is
bounded from above or from below or simply bounded, when it is so as a
subset of R.

Functions Whose Ranges Are in Linearly Ordered Sets

Let S be a nonempty linearly ordered set. If f: X — S, where X # @, then
we say that f is bounded from above or that f is bounded from below, or
simply bounded, if and only if its range is so. An upper bound, or for that
matter a lower bound of f, is defined as an upper, or respectively a lower
bound of the range R(f) of f. Similarly, the supremum of f is defined as the
supremum of K(f) and the infimum of f as the infimum of R(f). If
p = sup f, then we write

p=sup f= sup f(x), (2.4)

xEX
and if A = inf f, then we write

A= iI,\l’ff= xigfxf(x). (2.5)

If S is also order-complete (every nonempty subset of S which is bounded
from above has a supremum in §), then, since X # @, }(f) # @, we have:
If f is bounded from above, then sup f exists and is in S and if fis bounded
from below, then inf f exists and is in S. If f: X > S has u € S as an upper
bound, then

x €X implies f(x) < u, (2.6)
and, dually, if f: X > S has / as a lower bound, then
x €X implies f(x) > L (2.7)

Remark 2.1. Since sequences (Section II.3) of elements of a set are func-
tions, the terminology just adopted for functions whose ranges are subsets
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of a linearly ordered set S is applicable to sequences of elements of S. We
can, therefore, speak of sequences of elements of S which are bounded
from above or from below and of the suprema or infima of such sequences
when they exist. Hence, if {a,) is a sequence of elements of a linearly
ordered set S, we write

supa, or infa,

n>1 n>1
for the supremum or the infimum of {a,> when these exist. These are of
course respectively the supremum or infimum of the range of (a,).

It should also be clear that just as we spoke of monotonically increasing
or monotonically decreasing sequences in R (see end of Section 11.9), so too
we can speak of monotonically increasing or monotonically decreasing
sequences of elements of a linearly ordered set S. The result cited in Prob.
I1.9.3 carries over to sequences of elements of a linearly ordered set S.

ProB. 2.1. Let f: X—> S be a function whose codomain S is linearly
ordered. Prove: (a) p = sup f if and only if (1) f(x) < p for all x € X and
(2) if u < p for some u € S, then there exists x, € X such that u < f(x,)
< p. (b) A=inf fif and only if (1) f(x) > A for all x € X and (2) if / > A
for some / € S, then there exists an x; € X such that / > f(x) > A.

Remark 2.2. When applied to a sequence {x,» of elements of a linearly
ordered set S the result in the last problem becomes: (a) p = sup x,, if and
only if (1) x, < p for al n€Z, and (2) if u < p for some u € S, there
exists an nj such that u < x, < p; (b) A = infx, if and only if (1) x, > A for
allneZ, and (2) if / > A for some / € S, then there exists an n, such that
I>x, >\

ProB. 2.2. Let {a,) be a sequence of elements of a linearly ordered set S.
Prove: (a) If {a,)?, then {a,) is bounded if and only if it is bounded from
above; (b) <a,»| if and only if it is bounded from below.

Pros. 2.3. Let f: X >R be a real-valued function: Prove: f is bounded if
and only if | f(x)| < M for some real M > 0 (Prob. 1.13.20).

Def. 2.1 (Subsequence of a Sequence). Let {(x,) be a sequence of elements

of a set Y and {(m),-, be a strictly monotonic increasing sequence of

positive integers. Then the sequence (b;).;, where b, = x, for all k

‘€1, ,is called a subsequence of (x,». This subsequence is written as {x,, ).
Thus if {x,) is a sequence, then the sequence

<xnk> = <xnI 2 Xp, s Xpys o p2

where n; <n,<ny;< ..., is a subsequence of {x,>. As an example,
consider {x,» =(1,2,1,2,... >, where x, =1 if nis odd, and x, =2 if n is



96 III. Real Sequences and Their Limits

even. Letting n, = 2k for each k €Z, , we obtain {n,)={2,4,6,...).
Here, (n,) is a strictly monotonic increasing sequence of positive integers.
The sequence (x,,» =<2,2,2, ... ) is a subsequence of <1,2,1,2, ... >.

Remark 2.3. If {(x,) is a sequence of elements of a linearly ordered set S
and p =supx,, where p € S, then it may happen that there exists a
subsequence (x, > of {(x,> which does not have p as its supremum. For
example, let (x,>=<1,2,1,2,...> Then {(xy_ =L 11,...), 2
=supx,, and 1 =supx,,_,. For certain classes of sequences of elements
of a linearly ordered set it is true that if p =supx,, then p = sup, x,
holds for all subsequences {x, » of {x,). Below we prove that this is the
case for monotonic sequences.

Theorem 2.1. If {x,> is a monotonic increasing sequence of elements of a
linearly ordered set S and p =sup,, x,, where u € S, then for each subse-

quence {x, » of {x,) we have p = sup;,x, .

PrOOF. Since each term of (x,) is a term of (x,», (1) x, < p for all
keZ, . (2) Assume u < p for some u € S. This implies that  is not an
upper bound of {x,) and hence that there exists a k, such thatu < x, < p.
Since {n;) is a strictly monotonic increasing sequence of positive integers,
we know (Prob. 11.9.4) that n, > k. Since {x,)1, by hypothesis, it follows

U< X, <X, <P so that u<x, < p

By Remark 2.2, we have p = sup, ,x,, .

ProB. 2.4. Prove: If (x,) is a monotonic decreasing sequence of elements
of a linearly ordered set S and A = inf,,x,, where A € S, then for each
subsequence (x, » of {x,» we have A = inf,,x, .

ProB. 2.5. Let (x,> be a monotonic increasing sequence of a linearly
ordered set S and p. = sup, ,x,. Then we know x, < p for all n. Prove: If
{x,) is strictly monotonically increasing, then x, < u for all n. Dually, let
{x,> be a strictly monotonically decreasing sequence of elements of a
linearly ordered set S and A = inf x,,. Prove that x, > A for all n.

Remark 2.4. If S is a linearly ordered set where S # @, then the range of a
sequence of elements of S is not empty. If, in addition, S is order-complete
(every nonempty subset of S which is bounded from above has a su-
premum in S), then, if {x,) is bounded from above, it has a supremum in
S. The dual of this is easily formulated and holds also.

Remark 2.5. The sets R and R* are linearly ordered, so all the theorems
proved about linearly ordered sets hold in R and in R*.
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3. Limit Superior and Limit Inferior of
Real Sequences

Since every sequence {x,» of elements of R* is bounded in the sense that
-0 <Xx,< +© 3.1

holds for all n, we see that each real sequence {x,> (x, € R for each n) has
an infimum and supremum in R*. We have for the kth term x;, of (x,)

—oo < inf x,< x, <supx,< + 0. (3.2)
n>1 n>1

If our sequence is bounded from above, then it has a real supremum and
we have
—o00 < x; <supx,< + 0. (3.3)
n>1
If it is bounded from below, then
—oo<inflx,,< X, < + 0. (3-4)
n>
If the sequence is either not bounded from above or not bounded from
below, then in the respective cases

supx,= +o0 and inf x,= —c0. (3.5)
n>1 n>1

As an example, consider the sequence {x,», where x, = n for all n, so
that (x,> = (1,2,3, ... ). Clearly, here

inf x,=1 and supx,= +oo0.
n>1 n>1

Notation. We adopt the following notation: Given a sequence <{x,» of real
numbers, we write for each j €7,
A;=infx, and Zj =supx,. (3.6)
nzj n>j
For the ranges of {x,),; and {x,»,5 ., We have
{Xn}nsje1 ©{Xu}ns; foreach jE€Z, . (3.7)

These imply (cf. Prob. 1.12.1; the result cited in that problem is extendable
to R*) that

inf x,< inf x,< sup x,<supx, foreach jE€Z,,

n>j n>j+1 n>j+1 n>j

or, in terms of the notation just adopted, that

4j<4j+l<Aj+l<Ij foreach jE€Z, . (3-8)

These inequalities show that the sequences <4-">j>l and (z@)j% are respec-
tively monotonically increasing and monotonically decreasing sequences
of R*.
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We next observe that
A4;< A, for any positive integers j and k. (3.9)
To see this, first take j < k. Since {(4x)?, we have
A; <A< A4,. (3.10)

On the other hand, if j > k, then since <Zk>¢, we have

In either case, (3.9) holds.
In terms of the notation just adopted

A <A;< A, <A,.

Here 4, =inf,, x, and A4, = sup,-X,. We shall drop n > 1 in both of
these equalities when there is no danger of confusion and write infx,
instead of inf, . ,x, and sup x, instead of sup, x,. Hence

infx, <A4,;< A, <supx, ifjand k are positive integers. (3.1 1)

Def. 3.1. If {x,) is a sequence of real numbers and for each k, 4« and A,
are defined as in (3.6), then we call inf A, the limit superior of {x,) and
sup A« the limit inferior of {x,) and write

nlupw infx,=sup 4, = sup( inf x,,),

k>1\n>k (3.12)
"Llrllw supx, =infA, = kn;f1 (igrl)cx,,)

for the limit inferior and limit superior of {x,>. We also use the notation

lim x,= lim infx, and /lim x,= lim supx,. (3.13)
n— + oo n—+ o0 n—>+ o0 n—>+ o0

Sometimes, when there is no danger of confusion, we omit n— + c0.

Theorem 3.1. If {x,) is a real sequence, then limits superior and inferior of
the sequence are unique extended real numbers and we have the result: If j
and k are positive integers, then

Aj<n_l%wxn<n_])1§1wx”< A (3.14)

PrOOF. For each k, inf, ., x, is a unique extended real number. (That it is
an extended real number follows from the properties of R* = { —o0} UR U
{+o0}.) Since each sequence of elements of a linearly ordered set has at
most one infimum, we conclude that there exists exactly one extended real
number Ak that is the infimum of {x,},.,.) Consider next the sequence
{Ax>. This is a sequence of extended real numbers and as such its
supremum (which is lim x,) is a uniquely determined extended real number.
Similar reasoning shows that lim x, is a unique extended real number.
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Next we prove that the inequalities (3.14) hold. The leftmost inequality is
a consequence of lim x, = sup Ax, while the rightmost one is a consequence
of lim x, = inf 4,. It remains to prove that the middle inequality in (3.14)
holds. In view of (3.9), each 4; is a lower bound (in R*) of the sequence
{4,>. Hence

A;<infd,=Tim x, foreachj.
Here lim x,, is an upper bound (in R*) of the sequence {4,>. Hence,
lim x, = sup 4;<1lim x,

so that lim x, <lim x,. This completes the proof.

Theorem 3.2. If {x,) is a real sequence, then
lim x, = + 00 if (x,) is not bounded from above (3.15)

and
lim x, = — o0 if (x,) is not bounded from below. (3.16)

We prove the first part and leave the proof of the second part to the reader
(Prob. 3.1).

PROOF. Assume that there exists a positive integer k such that 4, < + .
Since x,, € R for each m, it follows that
-0 < x,, <supx,= A, < +00 if m>k.
n>k
Therefore, A, €R. If k=1, then we have x, < A, for all n and, hence,
{x,» is bounded from above. Let £ > 1. Put

B =max{x,, ..., xk,Zk}.

{(xy,...,X.,A,) is a finite set of real numbers and, hence, has a maximum
B (Remark I1.10.3(b)(7)). We have x, < B for all n (why?). Thus {(x,) is
bounded from above also in the case k> 1. It follows that if (x,) is
not bounded from above, then A, = + oo for all k and so lim x, = inf 4,
= + 0.

Pros. 3.1. Complete the proof of Theorem 3.2 by proving that: If the real
sequence {x,) is not bounded from below, then lim x, = — co.

Pros. 3.2. Let (x,) be a sequence of real numbers. Prove: (a) If for some
positive integer j, 4, = + oo, then 4, = + oo for all k and (x,) is not
bounded from above; (b) if for some positive integer j, 4; = — oo, then
Ax = — oo for all £ and (x,) is not bounded from below.

ProB. 3.3. Let {x,) be a real sequence. Prove: (a) limx, = + oo if and only
if {(x,» is not bounded from above, and (b) limx, = — oo if and only if
{x,> is not bounded from below. (See Theorem 3.2 for the “if” part.)
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ExampLE 3.1. Let (x,) be defined by means of: x, = — n for each positive
integer n. Thus, {(x,>=<{~—1,-2,-3,...>. If n > k, then we have —n
—k, so that

A, = supx, —maxx = —k.
n>k >k
If B € R, we know that a positive integer k’ exists such that — B < k’. This
implies that

lim x, = inf4, < 4, = — k' < B.

Thus limx, < B  for all real B. The only element of R* having this property
is —oo. Hence, limx, = — o0.

EXAMPLE 3.2. Let {x,> be given by x, = (—1)"*'n for each positive integer
n. We have

Gy ={(=1)""n),s =<1, -2,3,—4,...)
and
oo—Zl—supx,,, —o00 =A,=infx,
o =A4,=supx,, —o0 = A4, = inf x,
n>2 n>2

Thus A, = + oo for all k and Ax = — oo for each k. It follows that

lim x, = inf4, = + o0, lim x, = sup 4,= —o0.

4. Limits of Real Sequences

Def. 4.1. We shall say that a real sequence has a limit in the extended sense
if and only if

n_l)_ir+r_loo X,= n_l)lmwx 4.1)

When this equality holds and there is no danger of confusion, then we
often, simply say that {x,)> has a limit. The L in R* such that
L =limx, =lim x,, is called the /imit of x,, and we write

L= hm X, (4.2)

n—>+ oo
Other notations used when <{x,» has a limit are
x,~>L as n—>+oo and X, L. (4.3)

When the limit of {x,) is a real number, we say that it converges or that it is
convergent. In this case we also say that {x,) has a finite limit. A sequence
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which does not converge is said to diverge or to be divergent. When (x,»
has a limit in the extended sense but diverges, then we say that it has an
infinite limit and also that it diverges to that limit.

Remark 4.1. If a real sequence does not converge, then there are three
possibilities: (a) limx, <limx,, (b) limx,= —o0, or (c) limx, = + c0.
Thus, a divergent sequence may not have a limit at all or have an infinite
limit.

ExaMPLE 4.1. In Example 3.1, we saw that lim, ,, (—n)= — 0. Since
(Theorem 3.1)

nlj—gl—w(_n) <"I’i—§_l°°(—n),

it follows that lim(—n) < —oc0. Hence, lim(—n)= —co and lim(—n)
=lim(—n). Thus, lim,_, (—n) exists and lim,_,,  (—»7)=lim,>5+0 =
—00.

ExampLE 4.2. Let x, = (—1)"*! for each n€Z, , so that {x,> =1, —1,
1, ... ). Clearly, for each k,

A= inf (-1)""'= -1 and A4, =sup(—1)"*'=1.

n>k n>k
Hence,
m (=1 and T (1

This implies that our sequence diverges. Since —1 < (—1)"*! < 1 for each
n, we know that the sequence is bounded. This furnishes us with an
example of a bounded sequence which diverges.

PROB. 4.1. What are lim,—+ (1 + (= 1)"*') and lim,,_, , (1 + (= 1)"*")?

Theorem 4.1. If a real sequence has a limit, then this limit is a unique
extended real number.

ProoF. The theorem follows directly from the definition of limit and
Theorem 3.1.

Theorem 4.2. If {x, is a real sequence, then

(@) —oo <limx, < + o0 if and only if {x,> is bounded from above.
(b) — oo <limx, < + o0 if and only if {x,) is bounded from below.

ProOF. The leftmost inequality in (a) and the rightmost inequality in (b)
always hold for a real sequence. By Prob. 3.3, the rightmost inequality in
(a) holds if and only if {x,) is bounded from above and the leftmost
inequality in (b) holds if and only if {x,) is bounded from below.
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Theorem 4.3. If a real sequence converges, then it is bounded.

PrOOF. This is an immediate consequence of Theorem 4.2 and the defini-
tion of a convergent sequence. In fact, the limit and hence the limits
inferior and superior of a convergent sequence, are in R and are therefore
neither + o0 nor — co.

Remark 4.2. In view of Example 4.2, the converse of Theorem 4.3 does not
hold. The sequence {x,> = {(—1)"*"> is bounded but does not converge.

Pros. 4.2. Prove: A sequence {x,) of real numbers is bounded if and only
if there exists an M > 0 such that |x,| < M holds for all n € Z_ (Hint: see
Prob. 1.13.20). Using this criterion for the boundedness of a real sequence
we see that (x,> = {(—1)"*") is bounded. In fact, |x,| = |(=1)"*|=1<1
holds foralln e Z, .

Theorem 4.4. (a) A monotonic sequence of real numbers has a limit (possibly
an infinite one). (b) A bounded monotonic sequence converges. (c) If {x, is
monotonically increasing, then

lim x,=supx
n>+o00 " PXp,

while if {x, is monotonically decreasing, then

lim x, =infx .
n— o0 n n

Proor. We prove the theorem for the monotonically increasing case,
leaving the decreasing case to the reader (Prob. 4.3). Let (x,> be a
monotonically increasing sequence of real numbers. Let u =supx,. For
each positive integer k, {x,),-, is a subsequence of {x,) (explain). By
Theorem 2.1,
p=supx,= A, for each k.

n>k
This implies that

n_l)ir_{lw x,=infA, = p. (44
(The sequence {4, k) k>11s a constant sequence, i.e., p = A, for all k. Hence,
its range is the singleton set { u}. But then, inf4, =inf{ u} = p.) Now
n > k implies that x, > x, and x, is an element of the range of {x,),-,.
This implies

X, =min{x,},5; = inka,,=4k foreach kezZ, . (4.5)
n>
It follows that

lim x,=sup A,= supx,=supx, = u. (4.6)
n—>+ oo k>1
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This result and (4.4) imply that lim,_, , _x, exists and is an element of R*,
and

limx, = p=supx,. 4.7

If, in addition, {x,) is bounded from above, then it has a real supremum,
i.e., the p here is real. By (4.7), (x,> converges.

ProB. 4.3. Complete the proof of the last theorem by proving the results
stated there for the case of a monotonically decreasing sequence.

Corollary (of Theorem 4.4). If {x,» is a monotonic sequence of real numbers
which is not bounded, then

limx, = +00 or limx,= —o0

according as to whether {x,) is increasing or decreasing.

PrOOF. In the increasing case, if {x,) is not bounded, then it is not
bounded from above (Prob. 2.2). But then (Theorem 3.2) lim x, = + o0. By
Theorem 4.4,

limx, = lim x, = + c0.

The proof for the case where {x,) is decreasing is similar (with the
appropriate modifications of course).

ProB. 4.4. Prove: (a) If {x,>T and there exists M € R* such that x, < M
for all n, then limx, < M; (b) if {x,)|, and there exists an m € R* such
that x, > m for all n, then limx, > m.

Pros. 4.5. Prove: (a) If {x,>1, then for each x,, x, < limx,. If, moreover,
{x, 1 strictly, then x, < limx, for each k. (b) If {(x,>|, then we have for
each term x;, x; > limx,. If moreover {x,»| strictly, then x, > limx,,.

Pros. 4.6(a). Prove: If (x,) is a constant sequence, i.e., if x, = ¢ for all n
for some ¢ €R, then {x,) converges and ¢ = x,—> c.
n

Remark 4.3. The notions of limit superior can be extended to any linearly
ordered set, in particular in R*. Consequently, if {x,) is a real sequence,
then its associated sequence (4« ) is a monotonically increasing sequence of
extended real numbers, while the sequence (A4, is a monotonically de-
creasing set of extended real numbers. Therefore,

lim A,=sup A, and limA4, =inf4,.

k—>+ o0
Hence,
li = A= lim A,= 1l inf 4.8
n—%ooxn SUP £k k—)lr-}r-loo =k k—:liloo(nlgkx") ( )
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and

im x,=infd, = lim A4,= lim (supxk).
n—>+ 0o k- + o0 k>+00 \, 5k

EXAMPLE 4.3. We examine {x, ), where x, = n ¥ foreachn €7, and k is a
fixed positive integer. Since

1

1
—_— = foreach neZ
(n+ 1)" n* *

we see that (x,) is strictly monotonically decreasing and bounded from
below by 0. Therefore, it converges (Theorem 4.4) and

lim x,= lim — = inf — >0.
n—>+ o +

Given € > 0, there exists a positive integer n, such that n; ' < ¢, so
ngk<ng'<e.

Thus, no € >0 is a lower bound for (x,>. Accordingly infn =% >0 is
impossible and we conclude that inf n =% = 0. Therefore,

lim n %= inf n = %*=0. (4.9)

n—>+ o n>1

ProB. 4.6(b). Prove:
lim (1—%)=1= lim (1+1).

n—+ o0 n—>+ oo n

Theorem 4.5. If {x,, ) is a subsequence of the real sequence {x,) (here {x,) is
not necessarily monotonic), then
lim x,< lim x, < lim x, < lim x,. (4.10)
nS+ oo x>+ ¥ ko>+w ¥ no>+ow

It follows that if lim x,, exists, then

lim x,= lim x, . (4.11)
n—+o0 k—>+o0 ¥

This last result states that if {x,) has a limit, then all its subsequences have
the same limit.

PrOOF. Since (x, > is a subsequence of {x,», we have n, > k. For the
respective ranges

{x,,j}j>k C{xX.}nsk for each k. (4.12)
(Here we reindexed {x,, > to avoid confusion.) Put

B, = , B,= inf x 4.13
SR A *13)
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and

A,=supx,, A;=infx,. (4.14)
n>k n>k
By properties of infima and suprema of sets, we obtain from (4.12), (4.13),
and (4.14),

Ar<By<sup B;= lim x, (4.15)
k—>+ o0
and
A, > B, >infB, = Tim x, . 4.16
¢> B > int 5 = Tm x, (@16
By (4.15) we obtain
lim x,=sup 4,< lim x, (4.17)
n—>+ o0 kS>+o

and by (4.16) we obtain

lim x,=inf4, > Tim x, . (4.18)
n—+o0 k>+o00 *
Since we also have
lim x, < lim Xy s (4.19)

k>+ow « koo

we see that inequalities (4.10) follow from ((4.19)), (4.17), and (4.18).

Finally, if {x,> has a limit, then lim x, =1im x, = lim x,. This and (4.10)
imply that equality holds in (4.19) and that (4.11) holds. The proof is now
complete.

Theorem 4.6. If {x,»> and {y,) are real sequences such that x, < y, for all
n€Z,, then

lim x, <lim y, (4.20a)
and
lim x, <lim y,. (4.20b)

Proor. We prove (b) and leave the proof of (a) to the reader (Prob. 4.7).
Put

A, =supx; and B, = sup Y for each positive integer k.
Jj>k >k

We have

Xn

<y,<supy=B, for n>k
j>k

Thus, for each k, B, is an upper bound for the sequence {Xp)n>k and,
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therefore,
A, =supx,< B, for each k.
n>k
This implies that
Tim x, < inf4, < A, < B,  for each k.

Thus, lim x,, is a lower bound for the sequence <§k>. This implies that

lim x, < inf B, = lim y, ;
this proves (4.20b).

ProB. 4.7. Complete the proof of Theorem 4.6 by proving (4.20a).

Corollary 1 (of Theorem 4.6). If {x,» and y,) are real sequences such that
x, < y, for all n and if lim x,, and lim y, exist, then limx, < lim y,.

Proor. This is an immediate consequence of the definition of limit and the
theorem.

Corollary 2 (of Theorem 4.6). If b € R* and {x,,) is a real sequence such that
x, < b holds for all n, then limx, < b. If x, > b for all n, then lim x,, > b.

ProoOF. If b = * o0, then b = + 00 in the first case and b = — o0 in the
second and the conclusions are obvious. Assume b € R and let {y,) be the
constant sequence where y, = b for all n. Since lim,_,,  y, = lim b
= b, the theorem yields, in the first case,

n—+ oo

fim x, <Tim y, =lim y,=b
and in the second,
lim x, > lim y, =1lim y, = b.

Remark 4.4. In Theorem 4.6, the strict inequality x, < y, for all n does not
warrant the strict lim x, <lim y, or limx, <lim y, in the conclusion. For
example, let x, = 1/(n+ 1) and y, = 1/n for all n. Since {x,) is a subse-
quence of {y,» here, we have

lim —— =limx, =lim L =1lim L = 0.
n+1

This observation is also relevant to Corollary 2 above. We have 0 < 1/n for
alln €Z, , and yet lim(1/n) =lim(1/n) = lim(1/n) = 0.

Corollary 3 (of Theorem 4.6). Let {x,», {y,», and {z,) be real sequences
such that x, < z, < y,. Then

(a) L =limx, =lim y, implies L =limz, and
(b) L=limx, =lim y, implies L =limz,.

Proor. Exercise.
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Corollary 4 (of Theorem 4.6). If {x,>, {y,), and <z, are real sequences such
that x, < z, < y, and L =limx, = lim y,, then L =limz,.

Proor. Exercise.

Remark 4.5. This last corollary is known as the Sandwich Theorem.

ExaMPLE 4.4. We prove that
lim —L =1, (421)

n—>+ oo '1 + l/n

This follows from the fact that

1 1

1</1+= <1+ =, foreach nez,
n n
so that
_1 __1 _ n 1
! n<1 n+1 n+l</1+'l"/_n<1
and hence
1-c—L_ <1 foreach nez,. (4.22)

v+ 1/n

Since (Prob. 4.6) lim,_,, (1 —1/n)=1, we obtain from (4.22) and the
sandwich theorem that (4.21) holds.

ProB. 4.8. Prove: (a) limyl+1/n =1, (b) lim,,, Y1+ 1/n =1. (¢)
Prove: lim, ,, ,(1/y/1+(1/n%))=1.

ProOB. 4.9. Prove

n

. 1
a) lim =0;
( ) n >+ 00 k§=:1 n2 + k

(b) lim é-‘—=1.

n—>+ook=1 /n2+ k

5. The Real Number e

We shall use Theorem 4.4 to prove that the sequence <{x,,,

n

x,,=(1 + 1) foreach nez, 5.1

is convergent.
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Prob. I1.5.3(b) implies that the sequence (5.1) is strictly monotonic
increasing. Next we prove that it is bounded. By the Binomial Theorem

=<1+%>"=§0<z><%>"a>"-k

=1+
3 n n(n—l) (n—k+1)
- g‘ k! n*
1+ S L) 1=2).. (1= k=1
k§=: k! ( n)(l n) (1 n ) (52)
Since for 1 < k< n, k €Z, , we have
-1 o1 k=1) ¢
(= )=5) (-5 ) <
it follows that
L\ 1=2)...(1-k=1) L
F(l n)(l n) (1 n )<k!' (5-3)
This and (5.2) imply
—(1+ 1Y S L
x, (1+n)<1+k§1k!. (5.4)
The reader could prove that
FI!_< n if kez,
This and (5.4) imply
< <
x, <1+ — <1+ . 5.5
k§=:1 k! k§=:1 2k-1 (>)

But

n 1 3
kgl 2k—l

From this and (5. 5) it follows

=3 foreach nez, . (5.6)

Thus, {x,) is bounded from above by 3. This together with the fact that
{x,y is monotonic increasing implies, by Theorem 4.4, that {x,) converges.
We define

n

e= lim (1+%). (5.7)

n—+
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This definition and Theorem 4.4 imply that
e=sup(l+%) . (5-8)

n>1
Since 3 is an upper bound of (x,), it follows that

(1+%)<e<3 foreach nezZ, .
Since {x,,) is strictly increasing, this result and the result cited in Prob. 2.5
imply that

(l+;11—)<e<3 foreach nezZ, . (5.9)

Hence
2<e<3. (5.10)

Pros. 5.1. Prove: n € Z, and n > 3, then
n"t>(n+ 1)

ProB. 5.2. (a) Prove: If n is a positive integer, then
1 n+2 1
(1+n(n+2)) >+l

(b) Let (y,> be the sequence defined by y,=(1+1/ n)"*! for each
n€Z, . Prove: {y,» is strictly monotonically decreasing. (c) Prove <{y,>
converges.

PrOB. 5.3. Prove: The sequence {z,», where z, = (1 —1/n)" forn€Z_ , is
strictly monotonically increasing.

ProB. 5.4. Prove: (a)

n—>+ oo n

e< lim (1+ l)"“.

(Actually, this inequality can be replaced by an equality, but we cannot
prove this yet.) (See Prob. 8.9.) (b) e < (1+ 1/n)"*' foreachnez, .

Remark 5.1. From Prob. 5.4 and formula (5.9), we have

1 k 1 k+1
(HE) <e<(l+z) foreach kez,.  (5.11)
This implies first of all, using £k =5 on the right, that e < (1 + %)6 =
2.985984 < 3. Thus, (5.10) may be strengthened to

2<e<3. (5.12)
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Wenowuse k € {1,2,...,n—1},n>1, and obtain

2=(1+%)1<e<(1+—i—)2=22,

(1 +%)2<e<(1+%)3,

(1 5tg) <e<(ir )
_— e<f{l+ ——).
n—1 n—1

Multiplying these together gives us

2 n—1 3 n
N MY I B S —
2 (n—1)"" 2 (n—1)
This implies, after cancellation that

1.1, ! 1.1 . _n

1 n-1 1 1 i 1
23 as1¢ <33 a-p o>
and therefore that
n"_l n—1 n" n_" n—1 n"+]
=) <e < 1! or that P <e < P

We conclude from the second set of inequalities above that
e(n"e” ") < n!<(en)(n"e™") for n>1. (5-13)

6. Criteria for Numbers To Be Limits Superior
or Inferior of Real Sequences

Theorem 6.1. Let L =limx,,. The following results hold:

(@) If L < + oo, then for each B such that L < B there exists a positive
integer N such that n > N implies x, < B,

(b) If L € R*, L < + oo and if for each real B such that L < B, there exists
a positive integer N such that n > N implies x,, < B, then L < L;

(c) If —o0 < L and L is an extended real number such that — oo < L, then
L < L holds if and only if for each real B with B < L, we have that
X, > B holds for infinitely many n’s.

PROOF. Proof of (a). Assume L < + o0 and L < B. Then
inf4, = L < B.

It follows that B is not a lower bound for the sequence (4,). Hence, a
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positive integer N exists such that 4y < B and we have: If n > N, then
X, < sup x;= Ay < B.
j>N
This proves (a).

Proof of (b). Assume L € R*, L < + oo and that for each real B with
L < B there exists a positive integer N such that n > N implies x, < B.
Such a B is then an upper bound for the sequence {x,>,, 5. Hence

L=infA4, < Ay = sup x,< B,
n>N
so that L < B. Thus, L < B implies L < B. We conclude from this that
L < L (otherwise L < L, and there exists a real B such that L < B < L,
contradicting what was just proved).

Proof of (c). This is in “if and only if” form. First assume —oo < L,

- < L.If L<L,let B<L for areal B. Then

B<L<L<infd, <A, foreach k€Z,,
so that
B< A,=supx, foreach k€Z, .
n>k

Therefore, for each k € Z, there exists an n > k such that B < x,. This
implies that the set

Iy={(n€l,|x,>B) (6.1)
is an unbounded set of positive integers and as such is infinite. Thus,
x, > B holds for infinitely many n’s for each B < L. Conversely, assume
that for each real B < L, the set I is an infinite set. It follows that I is an

unbounded set of positive integers. Thus for each real B < L and given
k € Z, there exists a positive integer n > k such that x,, > B. For such an n

B<x,<supx,=A, foreachk.
n>k

Since B < A, for each k,
B < inf4, =Tim x, = L.
Thus, B < L implies B < L. This implies that L < L. (Otherwise L < L

and a B exists such that L < B< L. This contradicts: B < L implies
B < L.) This completes the proof.

Corresponding to Theorem 6.1, there is a dual theorem for lim x,,.

Theorem 6.2. Let L =lim x,,. The following results hold:

(@) If —oo <L, then for each real B such that B <L, there is a positive
integer N such that n > N implies x, > B;
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(b) If L € R*, — 0 < L and if for each real B such that B < L, there exists
a positive integer N such that n > N implies x, > B, then L > L;

(¢) If L< + o0 and L is an extended real number such that L < + oo, then
L >L holds if and only if for each real B with B > L, x, < B holds for
infinitely many n’s.

ProB. 6.1. Prove Theorem 6.2.

Theorem 6.3(a). If x, is a real sequence, then

(a) limx, = + o0 if and only if limx, = + oo,
(b) limx, = + oo if and only if for each real B there exists a positive integer
N such that n > N implies x, > B.

PrOOF. Let P, Q, and R be the statements:

P: limx, = + o0

Q: limx, = + o0

R: For each real B there exists a positive integer N such that n > N implies
x, > B.

It is easy to see that P implies Q. We prove that Q implies R. Let Q hold
for a sequence <{x,)> of real numbers. Let B be some real number. Then
B < + 0 =limx,. By Theorem 6.2(a) there exists a positive integer such
that n > N implies x, > B. Thus, Q implies R. Next we prove that R
implies P. Suppose R holds for a real sequence {x,». Let L be an extended
real number with — oo < L, and B be a real number such that B < L.
Since R holds for {x,», there exists a positive integer N such that n > N
implies x, > B. By Theorem 6.2(b), L > L. This holds for each L € R* with
—o0 < L, and so it holds for L = +o00, that is, L > + c0. But then
L=+ . Since L >L, we have L = + o0 =L. Hence, lim x, =lim x, for
{x,», limx, exists, and lim x, =lim x, = + co. This proves that R implies P.
Thus, P implies Q, Q implies R, and R implies P. Since P implies Q and Q
implies P, P holds if and only if Q holds. Similarly P holds, if and only if R
holds. This completes the proof.

Theorem 6.3(b). If {x,> is a real sequence, then

(a) limx, = — oo if and only if limx, = — oo,
(b) limx, = — oo if and only if for each real B there exists a positive integer
N such that n > N implies x, < B.

Pros. 6.2. Prove Theorem 6.3.

ProB. 6.3. Prove: If {(x,) is a real sequence, then

(a) limx, = + oo if and only if there exists a real N (not necessarily a
positive integer) such that n > N implies x, < B;
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(b) limx, = — oo if and only if for each real B, there exists a real N (not
necessarily an integer) such that n > N implies x, < B.

The result cited in this last problem constitutes a practical way of
showing that X,—> + 00 or x, > — 00.

ExaMPLE 6.1. We prove: If a €ER, a > 1, then lim,_,, a" = + . Now
a>1.Puth=a— 1. Then a =1+ h, where 2 > 0. By Bernoulli’s inequal-
ity, we obtain

a"=(1+h)">1+nh>nh foreach nez, . (6.2)
Given a real B, take N such that N > B/handn> N,n€Z, . We have

a">nh>Nh>%h=B for n>N, nei, .

By Prob. 6.3(a), lim,_, , ,a" = + oo.
EXAMPLE 6.2. We prove lim,_,, . (n* — n + 1) = + c0. We first analyze the

problem. We must prove: For each real B, there exists an N € R such that
n>N,n€1Z,,implies that n? — n + 1 > B.

Proor. Given B €R, take N > max{l,B—1} and n€Z,, n> N. We
then have n > 1 and n > B — 1. Since n > 1 and n is a positive integer, we
have n > 2. This implies that

n’>2n=n+n>B—-1+n.
Hence,

n —n+1>B8B for n€eZ,, n>N >max{1,B—1).
PRrOB. 6.4. Prove: n?/(n + - + co.

PROB. 6.5. Prove: yn > + 00 as n—> + .

ProB. 6.6. Prove: (a) If n is a positive integer and 4 > 0, then (1 + h)"
> 1+ nh + n((n — 1)/2!)h?; (b) use the result in part (a) to prove: If a > 1,
then

. a’
lim =— = +o0.
n—>+o0 n

ExampPLE 6.3. We prove lim,,_, , An! = +o0. By Prob. I1.5.4, we have

1 n!

al S wn
so that n" < (n!)* and Yn < Yn! < 40 for n €7, . Since yn = + o as
n— + oo (Prob. 6.5), we have

+o0= lim yn= lim yan < lim Yn!.
n—>+ o0

n—>+ oo n—>+ oo
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This implies that lim /n! = + o0, and hence, by Theorem 6.3(a), that
lim, ,,  Yn! = + 0.

Theorem 6.4. If (x,> is a real sequence and L =1imx,, where L €R, then

(a) for each real € >0 there exists a positive integer N such that n > N
implies x, < L+e;

(b) if L is a real number such that for each real € > 0, there exists a positive
integer N such that n > N implies x, < L + €, then L < L;

(c) if L is a real number, then L < L holds if and only if for each € >0,
L — € < x, holds for infinitely many n’s.

ProoF. This theorem is merely a reformulation of Theorem 6.1 for the case
where L € R.

We prove (a). Given € >0, L < L +¢. Put B= L +¢, and hence L < B.
By Theorem 6.1, (a) there exists a positive integer N such that n > N
implies x, < B = L +¢. This proves (a).

We now prove (b). Let L be a real number such that for each € ER,
€ > 0, there exists a positive integer N such that n > N implies x, < L + e.
Take any real B such that L < B. Pute = B — L, so that B = L + ¢, where
€ > 0. By the present assumption, there exists a positive integer N such that
n > N implies x, < L + ¢ = B. Thus, for each real B with L < B there
exists a positive integer such that n > N implies x, < B. By Theorem 6.1,
part (b), this implies that L < L. This proves (b).

We prove (c) in a similar manner. Each real B such that B < L may be
written as B= L — ¢, where e = L — B > 0. Hence, for each real ¢ > 0,
L — € < x, holds for infinitely many n’s, if and only if x, > B holds for
infinitely many n’s for each real B such that B < L. By Theorem 6.1, part
(c), we have: L < L holds if and only if, for each real € >0, L — € < x,
holds for infinitely many n’s. This completes the proof.

A dual statement holds for L =lim x,,.

Theorem 6.5. If {x,> is a real sequence and L =limx,, L €ER, then the
following results hold:

(a) for each real € >0, there exists a positive integer N such that n > N
implies L — e < x,,;

(b) if L is a real number, and if for each real € > 0 there exists a positive
integer N such that n > N implies L — € < x,, then L <L;

(c) if L is a real number, then L >L if and only if for each real € >0,
x, < L + € for infinitely many n’s.

ProB. 6.7. Prove Theorem 6.5.

Pros. 6.8. Prove:
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(1) The sentence: there exists a positive integer N such that n > N implies
x, < L +e¢, in parts (a) and (b) of Theorem 6.4, can be replaced by the
sentence: there exists a real number N such that n > N implies x,
< L+e.

(2) The sentence: there exists a positive integer N such that n > N implies
L — €< x,, in parts (a) and (b) of Theorem 6.5, can be replaced by the
sentence: there exists a real n such that n > N implies L —e < x,,.

The following theorem is important in the evaluation of limits of se-
quences.

Theorem 6.6. If {x, is a real sequence, then {x,) is convergent and has the
real number L as its limit if and only if for each real € > 0, there exists a
positive integer N such that

n> N implies |x,— L|<e. (6.3)

PRrOOF. Let L be a real number such that for each real € > 0 there exists a
positive integer N such that (6.3) holds. Consequently,

n> N implies L—e<x,<L+e (6.4)

We prove that this implies that {x,) is bounded. Take € = 1, then there
exists a positive integer N, such that

n> N, implies L—-1<x,<L+1. (6.5)

If N, =1, then (6.5) holds for all n. It is clear that in this case {x,) is
bounded. If N| > 1, let

M=max{xl, cees Xy Lt l} and m=min{x1, N Y l},

so that

m<x, <M forall nez, .

Thus, {x,» is bounded in this case also. Since {x,) is bounded, we have
(Theorem 4.2)

— o0 <lim x, <Tim x, < + 0. (6.6)
Put
L=1limx, and L=1limx,. (6.7)
Then (6.6) becomes
-0 <L<L< +oo. (6.8)

From (6.4) we conclude that for each € > 0 there exists a positive integer N
such that

n> N implies x, <L +e. 6.9)
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By Theorem 6.4, part (b), L < L. Similar reasoning tells us that for each
€ > 0 there exists a positive integer N, such that

n> N, implies L—e<x,. (6.10)
Using part (b) of Theorem 6.5 we conclude that L <L. Therefore,
L < L<L, and hence L <L. Since L < L is always true, it follows that

L= L= L.We have: (x,> converges with limit L.
Conversely, let {x,> converge and let L = lim x,,. This implies that

L=limx,=lmx,, LER. (6.11)

By part (a) of Theorem 6.5 there exists a positive integer N, such that

n> N, implies L—e=L—-e<x,. (6.12)
By part (a) of Theorem 6.4 there exists a positive integer N, such that

n> N, implies x,<L+e=L+e. (6.13)
Let N=max{N,,N,} and take n€Z,, n> N, so that n > N, and n
> N,. By (6.12) and (6.13) we have

L—e<x,<L+e or |x,—L|<e
if n > N. This completés the proof.

ProB. 6.9. Prove: If {(x,) is a real sequence, then it converges to L = lim x,,
if and only if for each € > 0 there exists a real N such that n > N implies
|x, — L| <e.

Remark 6.1. The result cited in Prob. 6.9 is the one most convenient to use
in proving that a real number L is the limit of a real sequence. As a matter
of fact, the usual treatment of limits begins with the result in Prob. 6.9 as a
definition of the limit L of a real sequence <x,,).

EXAMPLE 6.4. We prove: If |a| < 1, then lim,_,, a” =0. This is trivially
true when a = 0 (why?). Assume a # 0, so that 0 < |a| < 1, and hence

151 or Lo1>0.
|al |al

Analysis. We wish to prove that for each € > 0, there exists an N such that
n> N implies |a"—0|=]a"|<e. (6.14)
Write h=1/|a| — 1, so that 1/|a| =1+ h, where A > 0. By Bernoulli’s

inequality,
1 1

la" ||

,,=(|—“I|)=(1+h)">1+nh>nh (6.14')
for each positive integer n. This implies that

la™| < nlh for each positive integer n. (6.15)
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Proor. Given € > 0, take

N>J and n>N, nel’Z, .

For such n, n > 1/¢h, so that

n n 1 11
la —0|=|a|<ﬁ=;z<(ﬁh)—=€
Using Prob. 6.9 we obtain lim,_,, ,a" = 0.

ProB. 6.10. Prove: If |a| < 1, then (see Prob. 6.6) lim,,_, , ,na" = 0.
ProB. 6.11. Prove: 1/yn -0 as n—> + .

ExaMmpLE 6.5. To evaluate
n*+n+1
n>+w dp2 —p4 1’
we note that
nen+l _1+1/n+1/n
2 —n+1 2-1/n+1/n*’

Later theorems about sums, differences, products, and quotients of limits
will enable us to prove that the right-hand side has a limit equal to 1 as
n— + 00. Meanwhile, our intuition tells us the same thing. Indeed, if “n is
large,” then 1/n and 1/n* “become small” so the quotient on the right gets
close to 1 as “n gets large.” We guess that

n+n+1 _1
n>tw dpl —p41 27

To prove that our guess is right we prove that given € > 0 there exists an N
such that if n > N, then

n+n+1

1
-3 |<e 6.16a
2P —n+1 2 ‘ ) ( )
that is,
Sntl o (6.16b)
22n"—n+1)

We first take n > 2, so that n*> > 2n. Adding n?> — n + 1 to both sides gives
us

2n —n+1>n*+n+1>n%
Hence,

o<—L1 <Ll it n>2
2 —n+1 n
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This implies that

3n+1 3n+1_3, 1
0< < =+ = 6.17
2 —n+1 n? n n7‘ ©17)
But since n is a positive integer, n > 1 and n? r 1/n? < 1/n. This and
(6.30) imply that
o< 3n+l 3.1 _3.1_4
2n*—n+1 n 2 n n n
This proves: If n > 2, then
2
n“+n+1 _1|_ 3n+1 <2 (6.18)

2P —n+1 2| 22n*-n+1) n

This “analysis” indicates that the second inequality in (6.16) holds if
2/n < e. We, therefore, take for given € >0, n > N > max(2,2/¢), so that
n>2 and n > 2/e. This and (6.18) yield

2
wtntl Ll 3n+l o 2_ly €r ¢ i g
22 —n+1 2| 22n°-n+1) n n 2

We conclude
lim Atn+l _1
n=>+ow 2p? _ p 4] 2°

Pros. 6.12. Prove:

(a) im(yn +1 —yn)=0,
(b) lim((n + 1) — n%) = + 0,

(©) lim, ol (f + 1 =)= 4

Pros. 6.13. Prove:

lim = =0
n->+o00 n
(Hint: see Prob. I1.5.4).
EXAMPLE 6.6. We prove
Jim A = 1. (6.19)

Note that if n> 1, then n —1>0. Put h,="%n — 1. Then h, >0 if

n>1.Since In =1+ h,, where h, > 0 for n > 1, we find, using Prob. 6.6,
part (a) that

n=(+h)>1+nh,+

n(n—=1) , n(n— 1) s
> h; > 3 h,
when n > 1. This implies that

2

0<n—1=h, <y —=—
n—1

if n>1.
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Given € > 0, take
n>1+

|’%/Z—1|=’%/Z—1<\/L < e
n—1

For such n

This proves (6.19).

7. Algebra of Limits: Sums and
Differences of Sequences

To give our theorems generality, it is useful to define algebraic operations
in R*. We do this first for addition and subtraction. (Multiplication and
division in R* are defined in Defs. 7.3 and 7.4.)

Def. 7.1. Let x and y be in R*. If (1) x ER, y €R, then x *+ y retain the
value they have in R. If one of x or y is in R* but not in R, then we define:

x+(+0)=(+00)+x=+c0 for x€ER* and —-oco<x. (7.1)
x+(—0)=(—®0)+x=—00 for x€R* and x< +o0. (7.2a)
—(+®)=—0 and —(—o)= +oo. (7.2b)

If x €R*, and y € R* and x + (—y) is defined as in (7.1) or in (7.2), then

x—y=x+(—)y). (7.3)
According to this definition,
(+0)+ (+00)=+o00,
(—0)+(—0)=—o0, 0+ oc0=*00
(+0) = (= 0) = +o0, and 0— (+00)= Foo. (7.4)
(—) = (+0) = — o0,

Note, however, that (+00) + (— ), (+00) — (+ ), (— ) — (—o00) are
not defined.

Remark 7.1. There is no closure in R* for addition and subtraction. As
remarked above, there exist x and y in R* for which x * y are not defined.
We also note that not every element x of R* has an additive inverse. Since
(+ )+ y =+ for all y € R* such that y # —co and (+00) + (— ) is
not defined, no y € R* exists such that (+ o)+ y =0, and + oo has no
additive inverse. Similarly — oo has no additive inverse.



120 III. Real Sequences and Their Limits

The systems R and R* differ from each other with respect to their order
properties. For, assume x < y for some x and y in R*. Normally, if we add
z to both sides of x < y then we obtain x + z < y + z. But if z = * o0, then
one of x + z or y + z may not be defined. Hence, we qualify and state:

(@ If —o<x<yandz€R, then x+z<y+ z and if z= + o0, then
X+z=y+z=+00;

(b) if x<y<+o0 and z ER, then x+ z<y+ z and if z= — o0, then
xX+z=y+z=—o00.

Thus, in case (a), if z € R*, z > — o0, then the most that can be concluded
isx+z< y+zandin case (b), if zER* z< +o0, thenx +z< y+ 2.
However, from

—o<x<u and —owo<y<ouo,
we can still conclude the strict
x+y<u+o.
To see this, note that — o0 < y < v implies y €R. Since —oo < x < u, it
follows that —oo < x + y < u + y. Since u may be + co, we obtain from

—oo <y <wv that u+ y < u+ v. This implies that x + y < u + v. Simi-
larly, we note that

x<u<+ow and y<ov<+o

imply
x+y<u+o

Def. 7.2(a). The absolute value |x|, of x € R*, we define as

|x|={x if 0<x<+o
—-Xx if —o0o<x<0.

ProB. 7.1. Prove: (a) x € R* implies 0 < |x| < + 00, (b) | — x| = |x]|, (c)
| — x| < x <|x]and —|x| < —x < |x]|.

ProB. 7.2. Assume that x € R* and 0 < 4 € R*. Prove: (a) —4 < x < 4 if
and only if |x| < 4; (b) |x| =4, if and only if x =4 or x = —4; (¢) if
0< 4 €R*, then —A4 < x < A4 if and only if |x| < 4.

ProB. 7.3. Prove: if x € R* and y € R* and x + y is defined, then |x + y|
< |x| +|y|. (Note, |x| + | y| is always defined for x and y in R*.)

Def. 7.2(b). If {x,> and (y,) are real sequences, (a) define their sum
(x> +<{y,> as the sequence {c,), where ¢, = x, + y, for all n. Thus,
Xy + Py =<x, + y,». (b) If c ER, define ¢(y,) as the sequence (z,,
where z, = ¢y, for all n, so that ¢{y,) = {cy,). In particular, we have:
(= Dy =<{=y,». We write (—1){y,> as —{y,). (c) The difference
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{(x,> = {yy of the above sequence is defined as {(x,> — {y,» =<{x,»
+ (=< yw), so that <x,> = {y,» = {Xy = Y-

Theorem 7.1. If {x,> and {y,) are sequences of real numbers, then

(a) n@w (%, +yn) < 11m x,+ "J}mw A

and

(b) lim (x,+y, > lim x,+ lim y,,
n—>+ o n—>+ oo n—+ oo

provided that the sums on the right in (a) and (b) are defined.

PrOOF. We prove (a) and leave the proof of (b) to the reader (Prob. 7.4).
First consider the case where one of L =limx,, M =lim y, is + o0 and the
other is not — 0. Then L + M = + o0 and we have

fim(x, +y,) < +o0o=L+M=Tm x, + Iim y,. (7.5a)

Now suppose one of L or M is —oo and the other is not +oo. For
definiteness, let L= —o0 and M < + 0. Let B be some real number.
There exists some B, such that M < B, < + c0. By Theorem 6.1, part (a),
there exists a positive integer N, such that

n > N, implies y, < B,. (7.5b)

Since limx, = L = — o0, limx,, = — oo, this implies (Theorem (6.3(a)) that a
positive integer N, exists such that

n> N, implies x,< B -— B,. (7.6)

Let n > max{N,,N,}. Then n > N, and n > N,, and (7.5b) and (7.6) imply
that
x,+y,<B for n> N. (7.7a)

Thus, for each real B, there exists a positive integer N such that n > N
implies that x, + y, < B. But then (Theorem 6.3(b)) lim(x, + y,) = — o0.
Since here L + M = — oo, it follows that in this case,

lim (x, + y,) =lim(x, + y,) = —o0 = L+M

and (a) holds with equality.

The remaining case where L + M is defined is: —o0o < L < + o0 and
—00 < M < +00. We consider this case now: Given € >0, we have
L<L+¢/2 and M < M +¢/2. By Theorem 6.4(a), there exist positive
integers N, and N, such that

xn<L_+% if n>N and y,,<M+§ if n>N,. (7.7b)

Put N = max{N,,N,} and take n > N. Then n> N, and n > N,, and
(7.7b) yields

x,+y,<L+M+e if n>N. (7.8)
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Thus, for each € > 0 there exists a positive integer N such that (7.8) holds.
By Theorem 6.4(b), we conclude that

H(x"+yn)<f+ﬁ=mxn+myn.

This completes the proof of part (a).
Pros. 7.4. Complete the proof of the last theorem by proving part (b) there.

Remark 7.2. We use notation adopted in the proof of Theorem 7.1. Let
L= —0c0 and M < + o0. Theorem 6.3(b) implies that limx, =limx, = L
= — oo and that
L+M=(-0)+ M= —o.
Thus (Theorem 7.1),
m(xn +y,) < —co.

This implies that lir.x, + y,) = —o0. In this case the inequality in Theo-
rem 7.1, part (a) becomes an equality. We may therefore state: If limx,
= — o0 and {y,) is bounded from above, then lim x,, and lim(x, + y,) each
exist and

lim(x, + y,) = — o0 =limx, + lim y,. (7.9)
Similarly, with respect to part (b) of Theorem 7.1, we state: If limx, = + o

and {y,» is bounded from below, then limx, and lim(x, + y,) each exist
and we have the equality

lim(x, + y,) =limx, + lim y, = + 0. (7.10)

Corollary (of Theorem 7.1). If limx,, and lim y, each exist and their sum is
defined in R*, then lim(x, + y,) exists and

lim(x, + y,) =limx, + lim y, . (7.11)
ProoF. Exercise.

Def. 7.3 (Multiplication in R*). Let x and y be in R*. If x R, y €R, then
xy retains the value it has in R. If x € R*, x > 0, define
xX(+0)=(+00)= + o0,
(+0) = (+) o)
X(—00)=(—00)= —o00.
If x € R*, x <0, define
X(+00)=(+00)x= —o00,

x(—o0)=(—00)x = +0c0. (7.13)

We do not define 0( £ o).
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Def. 7.4 (Division in R*). Let x and y be in R*. If x ER and y € R, where
y # 0, then x/y retains the value it has in R. If x € R, then we define

(1.14)

+ o0
If x €R, x # 0, define
+

0 = 1(xo) (1.15)

We do not define x/y if y = 0 or if |x| = | y| = + 0.

Remark 7.3. As was the case for addition in R*, there is no closure for
multiplication in R* since 0(* o) are not defined. Also, + oo and — co do
not have multiplicative inverses (explain) even though they are nonzero
elements of R*.

We add some remarks about the preservation of order under multiplica-
tion in R*. Assume z >0 and x < y. If one of x or y is equal to 0 and
z = + o0, then one of xz or yz is not defined, so they are not comparable.
However, if x < y, neither x nor y is equal to 0, and z > 0, then we can
conclude that xz < yz, but cannot infer that the inequality here is necessar-
ily strict. In fact x <y <0 implies that x(+00) = — o0 = y(+ o) and
0 < x <y implies that x(+o0)= + o0 = y(+0o0). On the other hand,
x <0 < y implies that x(+ 0) = —o00 < + 0 = y(+ ).

Note also that in R* we still have: (a) x >0, y >0 imply xy >0, (b)
x>0,y <0imply xy <0, and (c) x <0 and y <0 imply xy > 0.

We also have: If x € R*, y € R*, and xy is defined, then |xy| = |x|| y|. If
x/y is defined, we have |x/y| = |x|/|y|.

Theorem 7.2. If {x,> is a real sequence, then (a) 0 <c < + oo implies
llm(cx )=climx, and lim(cx,)= climx, and (b) —oc0 < c <0 implies
lim(cx,) = climx, and lim(cx,) = climx,. For the case ¢ =0, we have
lim(cx,) = ¢ llmx if im x,, is a real number, and lim(cx,) = clim x,, if lim x,
is a real number.

PrOOF. Suppose 0< ¢ < +o0. If L=Ilimx,= +oc0, then (x,> is not
bounded from above. It follows that {cx,> is not bounded from above
(why?). Therefore,

lim cx, = + 00 = ¢(+ ) = cL = ¢ lim x,,

in this case. If L < + -0, then (x,,) is bounded from above. Hence, {cx,) is
(why?) and we have lim(cx,) < + o0. Take a real B such that lim(cx,) < B.
There exists a positive integer N, such that

n > N, implies cx,< B, sothat x, <g .
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This implies that

L=Tm x, =infd, < 4y, <€, sothat cL < B.
Thus,
cL< B for all real B such that lim (cx,) < B. (7.16)

This implies that

clim x,=cL llm(cx ). (7.17)
Now put

D, = surl)((cx,,) foreach keZ,

n>

Foreach kE€Z,,
x, < Ay for n>k andhence cx, < c4, for n> k.

It follows that
lim (cx,) < D, < cd,  foreachk.
Accordingly,

% m (cx,) < A, foreach keZ,
This implies that
% m (cx,) < lim x, = inf 4,
and finally that
H(cx,,) <climx,. (7.18)

This and (7.17) prove that lim(cx,) = climx, for the case when limx, <
+ oo also. L
We now prove: If —oo < ¢ <0, then lim(cx,) = climx,. First assume

limx, = + 00, so that climx, = c(+ )= —o0. Clearly, {x,> is not
bounded from above, so {(cx, > is not bounded from below and we have
lim(cx,) = —o0 = climx,. Now suppose limx, < + o0, so that <{x,) is

bounded from above and {cx,) is bounded from below. Let
L=1limx, and L*=lim(cx,).

We have L < + o0, L* > —o0. Let B be a real number such that L* > B.
By Theorem 6.2, part (a) there exists a positive integer N such that

n > N implies cx,> B.
This implies that

if n>N, then x,,<£c’-.
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Thus, Ay < B/c and, therefore,

lim x, =inf4, < 4y <

o |

This implies that
cL =clim x, > B.

We have proved: for each real B such that B <L* B < cL. This proves
(explain)

L* < cL. (7.19)
Now, for each k € Z put

D= inf (cx,).
We have
x, < A, and hence cx,> cA, for n> k.
The last inequalities imply that
cA, <D, < lim(cx,) for each k&
and, therefore, that
A4, > % lim(cx,) for each k.

This implies that
L*,

o |—

L=Tm x, =inf 4, > % lim(cx,) =
from which it follows that
cL < L*.
This and (7.19) yield
lim(cx,) = L*=cL =clim x,,

also when limx, < + co.
To complete the proof, we note that if — oo < ¢ <0, then applying what
we just proved

lim x, = lim( £ (ex,)) = ¢ Tim (ex,),
so that
E(cx,,)=cli_mx,, if —o0<c<0.

This completes the proof of part (b).
We now complete the proof of part (a). Let 0 < ¢ < + co. By what was
just proved, we know that

lim (—cx,) = —c lim x, (7.20)
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and that
lim (- cx,) = — lim(ex,). (7.21)
The second conclusion in (a) now follows by equating the two right-hand

sides in (7.20) and (7.21). The last part of the theorem is obvious. The proof
is now complete.

ProB. 7.5(a). Prove: If ¢ €R and limx, exists, then lim,_ , (cx,)
= climx,.

Remark 7.4. Note that special cases of Theorem 7.2 are lim(—x,)
= —limx, and lim(— x,) = —limx,,.

PrOB. 7.5(b). Prove: (a) lim(x, — y,) <limx, —lim y, and (b) lim(x, - y,)
>lim x,, —lim y, when the differences on the right are defined.

Pros. 7.6. Prove: If limx, and lim y, exist, then lim(x, — y,) = limx, —
lim y,, provided the difference on the right is defined.

ExaMpPLE 7.1. We point out that if limx, = + oo, lim y, = —co, then

lim(x, + y,) can be any value in R*. Thus,

(@) If a€eR and we write x,=n+a, y,= —n for each n €R, then
lim(x, + y,) = lima = a. (Here limx, = + o0 and lim y, = — .)

(b) Let x,=vyn+1, y,= —yn for each n€Z,. Then limx, = + 0,
lim y, = —o0 and lim(x, + y,) =lim,,, (yn +1 —Vn)=0 (Prob.
6.12, part (a)).

(c) Let x,=n? and y,= —n. Then limx, =limn’>= + o0, lim y, =
lim(— n) = — o0, and lim(x, + y,) = lim(n* — n) = + cc.

(d) Let x,=n and y,= —n’. Then limx, =lim(n) = + o0, lim y, =
lim(— n)> = — o0, and lim(x, + y,) = lim(n — n?) = — co.

Theorem 7.3. If lim x,, exists, then lim|x,| = |lim x,,|.

Proor. The proof for the case limx, = L € R follows readily from
x| = ILI| < |x, = L]

as the reader can check.
Let limx, = + o0. Since x, < |x,| for all n, it is clear that lim|x,| = + co.
Let limx, = — c0. Since —x, < |x,| for all n and lim(—x,) = + o0, then
it follows that lim|x,| = + 00 =| — 0| = |lim x,,.

Remark 7.5. There are some important observations to be made concerning
the relation between lim x,, and lim|x,|. First, we note that lim|x,| may exist
but limx, may not. This is evident from the sequence {x,), where x, =
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(=1)"*! for each n. Clearly, |x,| =1 for all n so lim|x,| =1 in this case.
However, note that (x,) itself diverges here.

We also observe that even if (x,> has a limit, it may happen that
lim|x,| = | 4| but that lim x, # 4. In fact,

1im|l - 1|= 1=|1| and 1im(l— )= -1
n n

An important special case is cited in Prob. 7.7 below.
Pros. 7.7. Prove: limx, = 0, if and only if lim|x,| = 0.

ProB. 7.8. Prove: If (x,) is a real sequence, then —lim|x,| <limx, <
lim x, <lim|x,|.

8. Algebra of Limits: Products and Quotients of
Sequences

Def. 8.1. By the product {x,>{y,» of real sequences {x,> and (y,>, we
mean the sequence {p,», where p, = x,y, for all n. Thus, {(x,>{p,»

= <xn y n>‘
Theorem 8.1. If {x,> and {y,) are real sequences, where limx, =0, and

{y,y is bounded, then lim(x,, y,) = 0.

PROOF. Since { y,» is bounded, there exists a real M > 0 such that | y,| < M
holds for all n. Let € > 0. Since lim x,, = 0, there exists a positive integer N
such that

> . . = _ -e_— .
n> N implies |x,|=|x,—0|< i
Therefore,

|xn.yn_0|=|xn.yn|=|xn“.ynl<'1_54_M= for n> N.

It follows that limx, y, = 0.

Pros. 8.1. Let (x,) be a real sequence such that x, > 0 for all » and A, =0
for some positive integer k. (Here, as usual, 4, = sup,;X,.) Prove: limx,
= 0 and for any real sequence { y,»> we have limx, y, = 0.

Theorem 8.2. If {x,> is a real sequence such that lim x,, > 0, then there exists
a positive integer N such that n > N implies x, > 0.
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ProOF. There exists a B such that lim x, > B > 0. By Theorem 6.2, part (c),
there exists a positive integer N such that n > N implies x, > B > 0.

Theorem 8.3. If {x,> and {y,) are real sequences such that limx, = + o0
and lim y, > 0, then lim(x, y,) = + .

ProoOF. There exists an L such that lim y, > L > 0. By the hypothesis and
Theorem 6.2, there exists a positive integer N, such that

n > N, implies y,> L >0. 8.1
Let B be some real number. Since limx, = + oo, there exists a positive
integer N, such that
> 1+ |B|
" L
Let N =max{N,N,} and n> N. Then n> N, and n > N,. Since (8.1)
and (8.2) hold for such n, it follows that

l+|B|

if n>N,. (82)

X, Vo> L———=1+|B|>|B|> B if n>N.

Thus, for each real B there exists a positive integer N such that n > N
implies x,, y, > B. This yields limx, y, = + co.

Pros. 8.2. Prove: (a) limx, = —co and lim y, >0 imply limx, y, = — o0;
(b) limx, = + oo, lim y, <0 1mp1y limx, y, = —o0; (¢) limx, = — oo and
lim y, < 0 imply limx, y, =

Theorem 8.4. If {x,) and { y,) are real sequences such that x, > 0 for
all n, then

(a) lim(x, y,) < limx,lim y,, and
(b) lim(x, y,) > limx,lim y,,

provided that the products on the right in (a) and (b) are defined.

Proor. We first prove (a). The hypothesis implies that limx, > 0, lim Vu

> 0, and lim(x, y,) > 0. The product lim x,, lim y, is defined if one of lim x,
or lim y, is not 0 and the other is not + oo. Consider first the case where
one of limx, or lim y, is + oo and the other is > 0, so that lim x, lim y,
= + c0. We then have

E(x,,y,,)< +oo=mx,,li—my,,,

so the theorem holds in this case. .
Next consider the case 0 < limx, < + 00, 0 < lim y, < + c0. Put

Zk =supx,, Ek =sup y,, 5,( = sup (x, y,)

n>k n>k n>k
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for each k €Z, . If j and k are positive integers, then
0< x, < A4, for n>k and O<y,,<§j for n>j. (8.3)

If a positive integer k, exists such that 4, x, = 0, then by Prob. 8.1, we have

limx, = 0 =lim(x, y,), so that we obtain limx, lim y, =limx, im y, =0
= lim(x, y,) =lim(x, Ya)- Thus, (a) holds with equality. Similarly (a) holds
if B = 0 for some positive integer j,. We therefore assume that 4, > 0 and
Bj > 0 for any positive integers j and k. Suppose j > k. Take n > j so that
n > k. It follows from (8.3) that

0<x,y, < B if n>j
But then
lim (%, y,) = inf G, < C_’j =supx, y,< A_kl_i;.
n>j
Hence :
lim(x,y,) < 4,B; for j>k
It follows that

é En—(x,,y,,) < EJ for j> k. (8.4
Ay

Now (B, is a monotonic decreasing sequence of elements of R*. Hence,
we have (Prob. 2.4),

Tm y, =inf B, =

, 1>/1fkl7! for each k.

1
J
This and (8.4) imply
1 lim(x,y,) <lim y, foreachk. (8.5)
Ay
Assume that lim y, = 0. Since y, > 0 for all n, it follows that lim y, = 0.
Also lim x, < + oo here. It follows that (x,» is a bounded sequence and
therefore that lim(x, y,) = 0 (Theorem 8.1). This implies that (a) holds. If
lim y, > 0, then (8.5) yields

lim (x, y,
——(—y—) A, for each k.
Iim y,
But then
Tim (x _ —
————(———yl)- <lim x, =infA4, .
Tim ()

Thus, the conclusion in (a) holds in this case also. This completes the proof
of (a).
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We prove (b). As before limx, > 0, lim y, > 0, and limx, y, > 0. We
consider several cases. If limx, = + 00 and lim y, > 0, then (b) holds with
equality (Theorem 8.3). The same is true if limx, > 0 and lim y, = +c0. It
is left to consider the case 0 <limx, < + 0, 0 <lim y, < +oco. If limx, =0
or lim y, =0, we have limx, lim y, =0 <limx, y, and (a) holds in this
case.

It remains to consider the case 0 <limx, < + o0 and 0 <lim y, < + o0.
Put

Ay=infx,,  B,=inf y,, = inf f .
A= inf x, By= inf y, Cr=infx, y, or each k

We have: 0 <Ak, 0 <Bk, 0 <Cx for each k. If Ax =0 for all k&, we would
have lim x,, = sup A« = 0, contradicting lim x,, > 0. Hence, a positive integer
k, exists such that 44, > 0. Similarly, there exists a positive integer j, such
that B; > 0. We write / = max{k,, j,} and take j > k > /. Since {dx>1
and (Bx»1,

4,

Also,
Hence,
This implies that

Therefore,
for j>k>1 (8.6)

Since {4;)1 we have (Theorem 2.1)

lim x, =sup 4;=sup 4; for k> 1L

j>k
Because of (8.6), this implies
lim( x,
lim x, < (%, )n) for k>1
B,
and hence that
lim(x, y,
£k<————_.( nJn) for k>1
lim x,
By reasoning as before, we conclude that
Lim(x, y,)

li = B,= B, < :
lm 7, = s Bx= 339 B4 < =

Thus, (b) follows in this last case also. This completes the proof.
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Products of Sequences Which Have Limits

Lemma 8.1. If {x,) is a real sequence and a positive integer N exists such
that lim, _, , X, n_1 = L ER¥, then limx, = L.

ProoOF. We prove the lemma for the case L € R and ask the reader to prove
it for L = = oo (Prob. 8.3). Given € > 0, there exists a positive integer N,
such that
k> N, implies |x,,n_;— L|<e. (8.7)
We take n > N + N, — 1, so that n = k + N — 1, where kK > N,. By (8.7),
|x,—L|<e for n>N+N, -1

Thus, limx, = L when L €R.
Pros. 8.3. Prove Lemma 8.1 for the cases L = + co.

Theorem 8.5. If lim x,, and lim y, each exist, then lim(x, y,) exists and
lim(x, y,) = limx, lim y, (8.8)
provided that the product on the right is defined in R*.

ProoFr. If limx, = 0 and lim y, € R, the conclusion follows from Theorem
8.1. This is also the case if limx, €R and lim y, = 0. Suppose limx, = X
>0 and lim y, = Y > 0. By Theorem 8.2, there exist positive integers N,
and N, such that

n > N, implies x, > 0 and n > N, implies y, > 0. (8.9)
Put N = max{N,,N,}. Then
x,>0 and »,>0 if n> N. (8.10)

Consider the respective subsequences {u,» and <{v;»y of {x,> and {y,),
where

u=x.,y_1 and v, =y, n_, foreach positive integer k.
We have 4, > 0 and v, > 0 for each k, and also
k_leoo(xk+N_,)=X and k_l)ir+nw(yk+N_l)= Y. (8.11)

By Theorem 8.4, we know that

lim < Tim u limv,= XY 8.12
k—)lToo (ukvk) k—:l-}-lw Y I:T Ok ( )
and
lim (%) > limu, limo, = XY. (8.13)
k—>+ o

It follows that
Iim (u,0,) < XY < lim(u,v;)
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and hence that (explain)
XY = lim (u,0,) = lim (u, 1) = lim(u, v;). (8.14)
By Lemma 8.1, we conclude from this that

. _1)11}_100 (X)) = k-le-Poo (40) = XY =limx, lim y,

in the case under consideration.
If X<0and Y<O0,then —X >0and —Y >0, so

lim(x, y,) = lim(— X,)(—y,) = im(— x,)lim( ) =(—X)(—Y)=XY.
If X >0and Y <0, then
lim(x,(~y,)) = limx, lim(-,) = X(= Y) = = (X¥)
SO
lim(x, y,) = = lim(x,(~,)) = X.

The proof is now complete.

Quotients of Real Sequences

Lemma 8.2. If {x,) is a real sequence such that x,+0 for all n and
lim x, # 0, then

limdl = 1 (8.15)

PROOF. Let limx, = + oo and let € > 0 be given. There exists a positive
integer N such that

n> N implies x, >% > 0.

This implies that

Hence
l—0’= Lol e it axn
x'l xn n
But then
limLl=0=_L - _1 (8.16)
X, + o0 limx,
Similarly, if limx, = — o, then for a given € > 0 there exists a positive

integer N such that

x,,<—%<0 if n>N.
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This implies that

|x,,|=—x,,>% if n>N.
Hence
i—0{=i= L ce it n>N
X, Xo | 1%l

Again we conclude that

_1——= 1
—oo limx, ’

limL =0=
X

We now consider the case where limx, exists, is finite, and # 0. Put
L=limx,. We have L # 0 and L € R. There exists a positive integer N,
such that

L .
|x,,—L|<—|2—| if n>N,,

)
|L|—|x,,|<|2£| if n>N,
and hence
L .
Ix |>|| ie., x|<% if n>N,. (8.17)

Let € > 0 be given. There exists a positive integer N, such that

ILI2

Ix,— Ll <Zle if n>N,. (8.18)

Put N = max{N,,N,} and take n > N, so that n > N, and n > N,. This
implies that

11| _|x—L 2 2 (L2 .
—_— = —_—_—— = —_ = = = > .
Y L x| < e |x, — L| <L2( 3 e) € if n>N
We conclude that
11
lim X =7

This completes the proof.

Theorem 8.6. If limx, = X and lim y, =Y # 0, where y,” ' #0 for all n,
then

AP, T Hmy, Y 19

provided X and Y are not infinite together.
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PRrOOF. Since Y # 0, 1/Y % * oo (explain). By properties of real numbers
and Def. 7.4,

X _ (_1_)

Y Y )
The hypothesis can be phrased as follows: Either X is not infinite or

1/Y #0, so that X(1/Y) is defined. Applying Theorem 8.5 and Lemma
8.2, we obtain

im 2 =1 1oy im-L =x(L)=
hm——hm(x,, )-—hmx,,llm X(Y)

In In Yn

— 1 _ s
(a) li =~ Tim X, if limx,>0
and
1 1 e T
b —_ = — .
(b) lim %, Tim x, if limx,>0
ProoF. We begin by proving that
fim L < it limx, > 0. (8.20)

x, limx,

The hypothesis implies that 0 < lim x, < limx,. If lim x, = + o0, (x,> has a
limit and limx, = + c0. By Lemma 8.2, {1/x,) has a limit and
TmLt=fimt=-_1 —_1
X, X limx, limx,

in this case. Thus, the equality in (8.20) holds here. Next assume 0 < lim x,,
< + 0. Put

A,= inf x, and B, =sup 1 for each k.
n>k n>k Xn

Since 0 <limx, < + o0 and x, > 0 for all n, it follows that 0 <4x < +
for each k. As a matter of fact, 0 <lim x, implies that a positive integer k,
exists such that 4, > 0. Therefore

0 <Ak <A4r< x, if n>k>k,

so that
1 1 1 .
LIPS SRS > k> k,.
Xn Ak A_kl i l
This implies that
3 1 1 .
B, = — < — f k>k,. 8.21
T A ‘ 2D
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The sequences {B,)> and {1/A4x) are monotonic decreasing and, therefore,
have limits. Since

lim B,= lim (sup L)= lim

1
k—>+ o k>+00\ 5k X, n>+o X,

and

lim4, = lim (inf x,,)= lim x,,
k—>+o0w \n>k

we obtain from (8.21) and Lemma 8.2

7 1 — . 1 1 1
1 — =1limB, < — = = .
m Xn B k_lir'*r'lw Ak 1imk—)+oo£4.k li_mxn
Thus, (8.20) holds in this case also.
We now prove that under the hypothesis,
lim L > 1 if Tim x, > 0. (8.22)
X,  lim x,
Put
A, =supx, and B,= inf — for each k.
n>k n> n
We have
0< x, < A4, for n>k
and hence
o<t <l it n>k
A, *n
This implies that
0<-L <inf ( 1 ) - B, foreachk. (8.23)
Ak n>k\ X,

The sequences {1/4,> and {Bx) are monotonic increasing and therefore
have limits. Also

lim 4,= lim (supx,,)=li_mx,,>0

k—>+ o0 k>+00\ sk

and
lim B,=lim{ inf L)= lLm L.
k—+ o0 n>k X, n>+o0 X,

It therefore follows from this, (8.23), and Lemma 8.2 that

l_ _tim-L <lim B,=lim

1
llmAk Ak Xn ’
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i.e., that

1 <lim
lim x,

1
x,
This proves (8.22). .
We prove (b). Assume limx, > 0 so that (8.22) holds. If lim(1/x,) =0,
we obtain from limx, > 0 and (8.22) that 1/limx, = 0 so that (b) holds in

this case. If lim(1/x,) >0, we apply (8.20) to the sequence {1/x,> to
obtain

This implies that lim(1/x,) < + c0. Thus, 0 <lim(1/x,) < + oo. Therefore,
0 <limx, < + o0 and

lim 1l < 1
X,  lim x,

This and (8.22) imply that the equality in (8.22) holds and prove (b) in this
case (lim(1/x,) > 0) also.

We now prove (a). Begin with limx, > 0. If limx, = + c0, we obtain
from (8.20) that lim(1/x,) = 0. Thus, both sides of (a) are equal to 0 in this
case and (a) holds. If lim x, < + oo, we have 0 <lim(1/x,) < + c0. We can
now apply (b) to the sequence {1/x,> to obtain

_ 1

limx, = —1 sothat Tim L —
X,  lim x,

" T (/%)

Hence, (a) holds in this case also. This completes the proof.

Theorem 8.8. If 0 < x, and 0 < y,, then: (a) If 0 < lim y, and lim x,, lim y,
are not both equal to + co together, then

__x, Tmx,
lim — < — . (8.24)
Yo lim y,
(b) If 0 < lim y, and lim x,,, im y, are both not equal to + oo together, then
x, _ limx,
h_m - £ T
Vn lim y,

ProoF. Exercise.

Remark 8.1. The theorems on limits superior and inferior and limits of sums
and products of real sequences can be extended to the cases of sums and
products of finitely many sequences by induction on the number n of
sequences. Thus, if (x,>, <{x,), ..., {x,,> are finitely many sequences
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where m is some positive integer, then

n—léToo (an tXp oot x"'") <n—1>ir-ir-1c>o)‘:"l+n—l>ir-+l-1<:ox"z-*- o lr}T Xnm
(8.25)
and
lim (x, +x,+ - +x,,)> lim x,+ lim x,+ --- +limx,,
n—>+ o0 n—>+ oo n—>+ oo
(8.26)

provided that the sums on the right exist in R*. Therefore, if {x,,>, {x,,),
... ,<{x,,» are m sequences which have limits, then

n_l)lI_Pw X+ X+ +x,)= n_13r+rlooxn,+ n_l)lrﬂwxn2+ -+ +limx,,
(8.27)
if the sum on the right is defined in R*, and
n_l)irpoo (X1 Xpg -+« X)) = n_l)irlloo x"ln—l>iI-Poo X, ... limx,  (8.28)

if the product on the right exists in R*. We also have: If x,, > 0, x,, >
0,...,x,, >0 for all n, then

i X5...%x,)< lim x, lim x,... lim x 8.29
n—1>n+noo (x"l n2 "'") St M S e M2 n—l>u-Poo nm ( )
and
lim (x,X,;...X,,) > lim x, lim x,... lim x, (8.30a)
n—>+ o0 n—>+ oo n—>+ o0 n—>+ oo

provided that the products on the right exist in R*.
We use these results to evaluate lim x,,, where

_2nP—-3n+1
x, ==—.
3n’+4
We have
- 2 lim(2-3/n+1/n?
limox, = lim 223/ +2/n? _ im@2=3/n+ 1/m)
3+4/n? lim(3+4/n2)
2-3(lim(1/n))> 2-30)+0* ,
3+4(lim(1/m))>  3+407 37
Remark 8.2. We observe that the equalities
. . . . X, limx,
lim(x, y,) =limx, lim y, and llm}: = Tmy, (8.30b)

break down when the operations on the right are not defined in R*. Here
the limit on the left can be any value. For example, let a €R and
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x, =an"?,y, = n®for all n. We have x, >0 and y, > + 0 as n—> + o0, but
X, Y, = a—>a as n— + 0. On the other hand, if x, = n~' and y, = n? for
all n, we still have x, >0 and y,> +c0 as n—> + o0 and x, y, = n—> +©
as n— + oo. Similar examples illustrate the same point with respect to the
second equality in (8.30b). Thus, if x, = an for each n and y, = n for each n
and a > 0, we have x, > + o and y,—> + o as n—> + o0 but x,/y, > a as
n—> + oo. Similarly, if x, = n? and V= n> for each n, we have X, > + 00,
y,—~ +o and x,/y,—>0 as n—> + co. On the other hand, writing x, = n?,
¥, = n* for each n, we have x, > + o0, y,—> + 00 and x,/y, > + .

EXAMPLE 8.1. We prove: If p >0, then lim,_,, , p'/" = 1. This is obvious if
p = 1. Hence, assume first that p > 1. We have 1 < p'/". This and Theorem
IL.12.1 yield

0<p/—1<dp-n

where p — 1 > 0. It is clear from this that lim,HHopl/" =1 (explain). If
0 < p <1, then we have 1/p > 1. By the result just proved, we have

1/n
lim —L_ = lim (i) =1

n—>+ oo pl/" n>+o\ p
Thus,
. 1 1 1
lim p'/"= = =1 =
>+ : 1/n : 1/n 1
e A (eT i ()

if 0 < p < 1. Hence, for all p >0, lim,,_,, . p'/" = 1.

Pros. 8.4. Evaluate
2

. 3n° —4n+1 . 2n* —n . 3—n
(a) nlllllw 4n*—3n+2° (b) nLu-Poo 3nt 4+ n?’ (©) nlnlloo n+1°

ProB. 8.5. Prove: If p > 0, then lim 110" = 1,

na>+oop

ProB. 8.6. Let (x,) be defined as follows: x, =y2 and x,,,=v2+ x,

for each positive integer n. For example, x, =2+ x, =12+ V2,
xX3=y2+x, = \/2 +12+12 . Prove: {(x,) converges and lim x, = 2.

Pros. 8.7. Let {(x,) be defined as follows: x, =y2 and x,,,=v2x, for

each positive integer n. For example, x, =2x, = \/2\/2_ ,

X3=12x, = \/2\/2\/5 . Prove: (x,) converges and lim x,, = 2.
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ProB. 8.8. Let a >0 be given. Define (x,) as follows: x; >0, x,,,
=1(x, +a/x,). Prove: lim, ,, . x, =Va.

PrOB. 8.9 (See Probs. 5.2(b), 5.3, and 5.4). Prove: lim,_,, (1 + 1/n)"*!
=e.

Pros. 8.10. Prove: lim,_,, (1 —1/n)"=1/e.

Pros. 8.11. Define sequences {x,» and (y,» as follows: (1) 0 < x; < y,
and (2) x,,, =Vx, y, and y,,, = (x, + »,)/2 for each n. Prove: (x,» and
{y,» converge to the same limit L. (Gauss called this L the arithmetic-
geometric mean of x, and y,.)

Pros. 8.12.* Define the sequences (x,» and < y,»> as follows: (1) 0 < x,
< yyand 2) x, 4 = 2%, 9,/(X, + y,), Yui1 = (x, + ,)/2 for each n (Note:
X, 4+ is the harmonic mean and y,,, is the arithmetic mean of x, and y,

(Prob. I1.12.1). Prove: {x,> and (y,» each converge to vx; y, (Hint: note
Xp41Vns1 = X, y, for each n).

Pros. 8.13. Given a ER, a > 1, and some positive integer k. Prove: (1)
lim, ,, (a"*/n)= + o0 and (2) lim,_, , (a”/n*) = + 0.

Pros. 8.14. Prove: If 0 < p <1 and k is some positive integer, then (1)
lim,_, , (np™*) =0 and (2) lim,_, , (n*p") = 0.

ProB. 8.15. Give some examples showing that lim(x, + y,) may exist, but
limx, and lim y, need not exist.

Pros. 8.16. Give some examples showing that lim x,, y, may exist, but lim x,
and lim y, need not exist.

PLoB. 8.17. Evaluate lim (n+ 1)/,

n—+ o0

9. L’Hopital’s Theorem for Real Sequences

Theorem 9.1. If {a,) is a real sequence and {b,) is a real sequence such that

b,.,> b, >0 for all n and limb, = + oo, then
a,.,—a

1- n+1 no_ . . .

,m b, —b, L implies lim

oL 9.1
5 - L 0.1)

*T. J. 1. Bromwich: Introduction to the Theory of Infinite Series, Macmillan, 1942, p. 23,
Prob. 9.
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ProoF. First suppose that L = + oo. Because of (9.1), if a real B is given,
then there exists a positive integer N such that
a,+— 4,
bn+l - bn

For each positive integer k define

>2|B|+1 if n>N. (9-2)

9y e e 0y

. [ Avs+1— Ay ANy — ANy An+k — AN+ k-1
my , = min 5 ~3.°% > b —a | (9-3)
N+1 N On+2 N+1 n+k — AN+ k-1

This and (9.2) yield

1+2|B| < my, for each k. (94
By Prob. I1.12.13, part (1),
m (avs1—ay) t(avsr—ani)+ - (v — Avir—1)
mk (bys1—by)+ (bpsa—by)+ -+ + (bysk — byik-y)
ay+k — AN
— 9.5
bN+k - bN ( )

(Note: this is where the condition b, , > b, is used). Thus,

N+k — AN

1+2/B| <3 for each k. (9.6)

N+k by
Now consider the sequence {u; ), where
aAnik — AN _ 1 Ay k — AN
by — by 1= bN/bN+k (

Since limb, = + o0, lim,_, , . (b,/by ) = 0. Therefore, a positive integer
N, exists such that

u, = ) for each k. (9.7)

bN+k

by 1 . by 1
bN+k <§‘ , L&, 1 >5
This, (9.7), and (9.6) yield
1+2|B| <2k "IN

by ik

0<

- for k> N,. (9.8)
by .tk

Hence

2ay 2ay i

+1+2|B|< for k> N,.

bN+k bN+k

Taking lim of both sides and using the fact that on the left-hand side the
limit exists and is equal to 1 + 2| B|, we find that

2
1+2|B|= lim (b“”

k>+oo\ Oy 4k

a
+1+2|B|)<2 lim 2%
k—>+00 YN+k
From this it follows that
a
2|B| <1+2|B| <2 lim ***
by sk
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so that

ay +k
+ for each real B.

B < |B|< lim
k—>+ o0 bN+k

This implies that

ANk _ +oo

+00 = lim and, hence, that lim
k>+o Dk k>+o0 by

By Lemma 8.1 we obtain
lim In - + o0.
n—+ oo bn
This proves the theorem for the case L = + co. We leave the proof for the
case L = — oo to the reader (Prob. 9.1).
We now consider the case L € R. By the hypothesis in (9.1), for each
€ > 0 there exists a positive integer N such that

L-S<ot 1 Z% 4 € for n>N 9.9
E an—_b' 5 or n2z . ()

n

We now define my , as in (9.3) and M, as

Ay — Ay Anyy — Anyg aAn+k — AN+ k-1 }
PECIEE I

bN+l _bN ,bN+2_bN+l ’ bN+k_bN+k—l

My, = max[
for each k and obtain by (7.9) and Prob. 12.13
(av+r1—ay) H(avs2—ane) + - 0 F (@nax — Anii-1)

(bN+l - bN) + (bN+2 - bN+l) +--- + (bN+k - bN+k—l)

so that

L- % < M <L+ % for each positive integer k. (9.10)
N+k — UN

This is equivalent to

b a —a b
(1= e (- 5) < 25 < (1 52 (1 + 5)

for each k. This can be written as

by \e _an+x ( ay — Lb by
—|1- =< -L-|————|<|[1- <.
( by sk ) 2 by by sk ) ( by sk ) 2

Using properties of absolute value, we obtain from this

_|ay - Lby < aN+k_L_(aN—LbN)
| s “Byer

a
N+k
—-L

bN+k bN+k

bN € €
(i) <
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for each k. This yields
ay — Lby

bN+k

for each k. (9-11)

ay + €
—Li<++
s 1<

Taking Iim on both sides and noting that the limit of the right-hand side
exists and is equal to €/2, we arrive at

ay +k

Tim —Li<f<e
k—+ o0 N +k 2
Thus,
a PR a
0< lim |2 _1|< Tm ”*"—LJ<< forall € > 0.
k>+o0| ON+k k>+oo | by

This implies (explain) that

a a
"tk _[1=0, and, hence, that lim —*X=1_.

lim
k—>+ o0 bn+k

k—>+ o0

bn+k

Applying Lemma 8.1 we obtain the desired conclusion for the case L € R.
ProB. 9.1. Prove Theorem 9.1 for the case L = — o0.

ExampPLE 9.1. We prove that if lima, = L € R*, then
. a+ - +a,
lim —
n—+ oo n
(This result is due to Cauchy.) Let S,=>%_,a,=a,+ --- +a, and
, = n for each positive integer n. We have S,,, — S, = a, for each n and
hence

=L (9.12)

Spe1— S,
lim 2* " = lim a,,,= L.
n—>+ oo bn+1—bn n>+o0w "
By Theorem 9.1,
a+---+a S,
lim ———"= lim =L
n—>+ oo n n>+o0 n

ProB. 9.2. Prove:
lim 1+1/24+---+1/n

n—>+ oo n

=0.

10. Criteria for the Convergence of Real Sequences

In this section we present two criteria for the convergence of sequences of
real numbers. It is important to know whether or not a sequence converges
even if we do not know its limit. We encountered such a criterion for
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bounded monotonic sequences and proved that such sequences converge.
We now state such criteria for general real sequences.

Theorem 10.1. If {x,> is a real bounded sequence and we put, as usual

A, =supx,, Ay= inf x,  for each k,
n>k n>k

then {x,) converges if and only if for each € > 0, there exists a positive integer
N such that

Ay —Ay<e (10.1)

PRrOOF. Let L =lim x, and L =lim x,. Since {x,) is bounded, we know that
—oo <infx,=A4,< A4, =supx, < +
and, hence, that
—00 <A, <L<L<A,<+o  foreachk. (10.2)
This implies that
0<L-L< Zk—ik for each k. (10.3)

Now assume that for each € > 0 there exists a positive integer N such that
(10.1) holds. By (10.4) this implies

0<KL-L<e foreach €>0. (10.4)

0 (explain) and, hence, that L = L. But

It follows from this that L — L = =
L=L=L and also that —o0o <L=L < + 0.

then {(x,> has the limit
Hence, {x,) converges.

Conversely, assume that (x,> converges so that —co0 <L = L < + c0.
Let L=L= L. Then {x,> is necessarily bounded now. Given € > 0, we
have

L—§<L=L and Z=L<L+%.

There exists positive integers N, and N, such that

€ T €
L—5<4N, and AN2<L+5.

Put N =max{N,,N,}. This implies that N > N, and N > N, so that
An, <An and 4y < Ay, and, therefore,

L—§<4N,<4N<ZN<XNZ<L+§.

Hence,

Ay —An<e
This completes the proof.
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Def. 10.1. A real sequence <{x,) is called a Cauchy sequence if and only if
for each € > 0 there exists an N € R such that

if m>N and n>N, then |x,— x,|<e (10.5)

For example, the sequence {x,> where x, = n~' for each positive integer
n, is a Cauchy sequence since

‘_l__l|<i+.1__
m n m n
Let € > 0 be given. Take N =2/e. If m > N and n > N, we have

llgl.;.l
m

m n

n 2 2

The main theorem on Cauchy sequences will be Theorem 10.2 below.
Before stating and proving this theorem we ask the reader to do Probs.
10.1-10.4 below. These are problems concerning equivalent formulations of
the notion of a Cauchy Sequence.

Pros. 10.1. Prove: {x,) is a Cauchy sequence if and only if for each € > 0
there exists an N € R such that if m > n > N, then |x,, — x,| < e.

Pros. 10.2. Prove: {x,) is a Cauchy sequence if and only if for each € > 0
there exists a positive integer N such that if m > N and n > N, then
[x,, — x,| <e.

Pros. 10.3. Prove: {x,) is a Cauchy sequence if and only if for each € >0
there exists a positive integer N such that if m > n > N, then |x,, — x,| < €.

Pros. 10.4. Prove: {x,) is a Cauchy sequence if and only if for each € >0
there exists a positive integer N such that if » is an integer such that n > N
and p is any positive integer, then |x,,, — x,| <e.

Theorem 10.2. A sequence of real numbers converges if and only if it is a
Cauchy sequence.

PrOOF. Let {x,> be a real sequence which converges. There exists a real
number L such that lim x, = L. Given € > 0, there exists an N such that if
n> N, then |x, — L| <e/2. If m is a positive integer such that m > N,
then |x,, — L| < €/2. Hence, if m > N and n > N, then

P = %l = % = L= (%, = L)| < |x,, = LI +]x, — L|<S + S =«
This proves: If (x,> converges, then it is a Cauchy sequence.

Conversely, assume {x,» is a Cauchy sequence. Given € > 0, there exists
a positive N (Prob. 10.2) such that

—§<xm—x,,<§ if m>N and n> N.
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It follows that

xN——§—<x,,<xN+§ if n>N.
This implies that
xN—§<4N<A‘N<xN+§ (10.6)

so that — oo <Ay < Ay < + 0. This, in turn, implies that (x, is bounded
(why?). Inequality (10.6) also yields

ZN—AN<%<€'

Hence, by Theorem 10.1, {x,) converges. This completes the proof.

Def. 10.2. An ordered field (Remark 1.7.2) ¥ in which every Cauchy
sequence converges to an element of  is said to be Cauchy-complete.

Remark 10.1. According to the above terminology, Theorem 10.2 states that
the real numbers constitute a Cauchy-complete ordered field. This result
may be formulated as follows: Every order-complete (cf. Remarks 1.12.2)
ordered field is Cauchy-complete.

The rational numbers form an ordered field which is not order-complete
(Remark 1.12.1 and Theorem I.12.1). It is not difficult to prove that the
rational numbers are not Cauchy-complete. Consider the sequence {x,,
X5, . . . » in which

x, =1, x,,+1=%(xn+x%)
for each positive integer n. This sequence is a sequence of rational numbers
(explain) and moreover it converges to the limit y2 (Prob. 8.8). It, there-
fore, is an example of a Cauchy sequence (because it converges) of rational
elements of Q which does not converge to an element of Q.

Def. 10.3. An ordered field ¥ is called an Archimedean-ordered field if it has
the Archimedean property (Theorem 1.9.1), that is, if a and b are elements
of & such that @ > 0 and b > 0, then there exists a positive integer n such
that na > b.

The system R of real numbers is Archimedean-ordered (Theorem 1.9.1).
In the next problem we ask the reader to prove that the system Q of
rational numbers is Archimedean-ordered.

Pros. 10.5. First prove: If i and j are positive integers, then there exists a
positive integer n such that ni > j, then prove: If r and s are positive
rational numbers, there exists a positive integer n such that nr > s.
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In Theorem 10.3 below we prove that an Archimedean-ordered field
which is Cauchy-complete is also order-complete. We state some lemmas
first.

Lemma 10.1. If § is an Archimedean-ordered field and QL is a nonempty
subset of & which is bounded from above, there exists a unique integer n in &
such that n + 1 is an upper bound for QU but n is not.

ProoF. By hypothesis U C ¥ is bounded from above so that ¥ contains an
upper bound b of Q. Since ¥ is Archimedean-ordered, there exists an
integer N in ¥ such that b < N (see the proof of Corollary 2 of Theorem
1.9.1.) Thus, N is an integral upper bound of Q. Let S be the set of all
integral upper bounds of Q. Since N € S, it follows that S # @. Also, there
exists x, € . Clearly, x, is a lower bound for S. Since [x(] < x,, the
integer [x,] is a lower bound for S. S is now seen to be a nonempty set of
integers which is bounded from below. As such S has a least number, m,
say. Thus, mg is an integer and is an upper bound for U but m;, — 1 is not
an upper bound for . Writing n = my, — 1, we have: the integer n + 1
= m, is an upper bound for U, but n = m, — 1 is not. We leave the proof
of the uniqueness of n to the reader.

The next lemma is stated in terms of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Lemma 10.2. If 5 is an Archimedean-ordered field and 9L is a nonempty set
of elements of § which is bounded from above, there exists an integer N, an
infinite sequence {d,) of digits such that d, # 0 for infinitely many n’s and
such that the sequences {r,» and {q,, defined by means of

r,=N+ > dl10°% and q,=r,+107" (10.7)
k=1

for each nonnegative integer n, have the property: for each n, g, is an upper
bound for U but r, is not.

PrOOF. By Lemma 10.1, there exists an integer N in & such that N + 1 is an
upper bound for A but N is not. Write 7= N and go=r,+1=N+1.
We prove there exists a digit 4, such that

ry= N + d,107 " is not an upper bound for A, but g, = r; + 10~ ' is.

(10.8)
Take all digits d such that

N+ (d+1)107"  isan upper bound for . (10.9)

d =9 is such a digit. Let d, be the least digit 4 for which (10.9) holds. We
have 0 < d; <9 and 1 < d,+ 1< 10. Here d, + 1 is the least integer d + 1
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with 1 < d+ 1< 10 for which (10.9) holds. Since d, < d, + 1, it follows
that r, = N + d,10™" is not an upper bound for A and that g, = r, + 10!
= N+ (d, + 1)107" is. Thus, d, is a digit for which (10.8) holds. Using
n = 11n (10.7), we see r, = r, is not an upper bound for U but g, = ¢, is.

We proceed inductively and assume that for some positive integer n there
exist digits d,,d,, . . ., d, such that for r, and g, as defined in (10.7); , is
not an upper bound for AU and g, is. Now take all the digits d such that

r,+(d+ 1)10""1 is an upper bound for . (10.10)

Note that d =9 is such a digit. Let d,,, be the least digit 4 for which
(10.10) holds. Then we have 0< d,,,; <9, and 1<d,,; +1 < 10. Here
d,.,+ 1 is the least integer d + 1 with 1 < d + 1 < 10 for which (10.10)
holds. Define 7, , and ¢, as

Fhp =1, + dn+110_"~I

and
Gua1 =ty + (d, )+ 1)10777 L

Since d,,,<d,,,+ 1, r,,, is not an upper bound for U and g, is. By
the principle of mathematical induction, there exists a sequence of digits
{d,» and sequences {r,» and {g,) defined as in (10.7), such that for each n,
r, is not an upper bound for U and g, is, as claimed.

We prove next that d, = 0 for infinitely many »’s. In order to obtain a
contradiction, suppose that there exists positive integer j such that if n > j,
then d,=0. We have: n > j implies r, = r;, and g, =r; + 10™". Here, if
n2j,

r, = r; is not an upper bound for @ but g, = r, + 107" is. (10.11)

Take € > 0. There exists a positive integer n’ such that 1 /n’ < € so that

10-7-1=_L <i, <e
10" ~n
Let M = max{n’, j} so that M is an integer such that M > n’ and M > j
and, therefore,

10°M<107" <e
and
rj+10_M<rj+e. (10.12)

Here, because of (10.11), the left-hand side is an upper bound for A, so the
right-hand side is. Assume x € L, so that x < r+e Since this is true for
all € >0, x < r;. Thus, r; is an upper bound for . But this contradicts the
fact that r; is not an upper bound for U (cf. (10.11)). We, therefore,
conclude that for each positive integer j there exists an integer n > j such
that d, > 0. Accordingly, infinitely many d,’s are positive and, hence, # 0.
This completes the proof.
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Remark 10.2. We observe that if j is a nonnegative integer and n is an

integer such that n>j and d,,,,d,,,, ..., d, are digits where 4, >0,
then
d d. d
1 G+1 G+2 . n 1
T < YIRS + TG <—le . (10.13)

The inequality on the left is obvious. To establish the right-hand inequality
note that 0 < d, <9 forj+1< k< nso

d; d
AL ST NP T
10/+! + 10" < 10/+! + + 10"
=_9 1. 1
10/+! (H ot 10"—1'-‘)

9 [(1-1/10"
TR 1-5

L(l _ 1 )
10/ 10
<L

10/

Pros. 10.6. Prove that the sequence {r,> of Lemma 10.2 is monotonic
increasing, and that the sequence <g,) there is monotonic decreasing.

Theorem 10.3. An Archimedean-ordered field § that is Cauchy-complete is
also order-complete.

PROOF. Assume that 9 is a nonempty subset of ¥ which is bounded from
above. By Lemma 10.2, there exists an integer N and a sequence {d,> of
digits such that d, # 0 for infinitely many »’s, and such that the sequences
(r,> and {gq,» defined for each n by the equations

n
ro=N+ 3 d10
k=1

and
g, =r,+107"
have the property
r, is not an upper bound for A but g,, is.
Take € > 0. There exists a positive integer M such that 10™* < e. For
integers m and n such that m > n > M, we have
dys1 o+ &

. Im 1 1
107 +1 10™

<107 <o

|rm - rnl =

<e  (10.14)
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This implies that {r,> is a Cauchy sequence of elements of ¥. Since ¥ is
Cauchy-complete by hypothesis, there exists L € § such that limr, = L.
Since {r, is monotonic increasing, we know r, < L for all n (why?), so that
L is an upper bound for <{r,). If M is a real number such that M < L, then
M=L—(L—- M), where L— M >0, so an integer n, exists s such that
|r,— L|<L—M for n> ny and, hence, M —L<r,— L<L—- M for
n > ny. This implies that M < r, for n > n, and, hence, that M is not an
upper bound for {r,>. Thus, any upper bound M for <{r,) is > L.
Accordingly,

supr, = L =limr,.

We prove that sup AU = L. Assume x € Q. The properties of the se-
quence {g,» imply that

x<g,=r,+107"  foreachn. (10.15)

Since limg, =lim(r, + 107") = limr, +lim 107" =L + 0= L, it follows
from (10.15) that x < L. This proves that L is an upper bound for the set
QL. Now take B € ¥ such that B < L and put e = L — B, so that e > 0 and
B = L — €. Since L = supr,, there exists an integer n, such that B= L — ¢
<r, . Butr, is not an upper bound for U. Since B < r, , it follows that B
is not an upper bound for . Thus, no B € ¥ such that B < L is an upper
bound for . Since L is an upper bound for A, we conclude that
L = supQ. Thus, each nonempty subset U of ¥ which is bounded from
above has a supremum in %. ¥ is therefore order-complete, as claimed.

Theorem 10.4. Corresponding to each real number x, there exists a unique
integer N and a unique sequence {d,) of digits such that d, 0 for infinitely
many n’s and such that for the sequence {r,, where

r,=N+ > d10™%  for each n, (10.16)
K=1

we have

Ty

<x<r,+107"  for each n. (10.17)

ProoF. Apply Lemma 10.2 to the set U = (— 0o, x]. This is a nonempty set
of real numbers which is bounded from above by x. There exists an integer
N and a sequence {(d,)y of digits such that the sequence <r,) defined in
(10.16) and the sequence <q,), where g, =r, + 107" for each n have the
property that for each n, r, is not an upper bound for @ but g, is. Since
x = sup A, this implies that (10.17) holds.

We prove the uniqueness of N and the {d,). Let N’ be an integer and
{d)y be a sequence of digits such that for the sequence (r,», where
r=N"+3"_,d/107% we have

rn<x<r+107" for each n.



150 ITI. Real Sequences and Their Limits

If N>N’, then N> N'+1. Since r,>N > N+ 1> x, we obtain a
contradiction to r, < x. N’ > N is also impossible. Hence, N = N’. Sup-
pose d, # d, holds for some n. Let j be the least positive integer such that
d;# d;. Assume d; < d/ so that d,+ 1 < d/. For k <, we have d, = d;.
Hence,

j j=1 d’
r=N+ 2 d107*F= N + 2 4107 F+ ij

4+1)

k
>N+ delo 5
=N+ zdlo kg L
10,
_
BRARTY

Thus, r> g which is impossible (explain). Therefore, we have N = N’ and
d, = d, for all n so that r, = r, for all n.

Remark 10.3. Let x € R. The sequence {r,> of the last theorem, where
r,=N+3"_,d,10"% for each n such that d, # 0 for infinitely many n’s
and

r,<x<r,+107"

n

has the property

[x —r,] < ILO" for each n.

Hence, limr, = x.



CHAPTER IV
Infinite Series of Real Numbers

1. Infinite Series of Real Numbers. Convergence
and Divergence

The sums
n n
Eak=a1+...+an, Zak=a0+...+a"’
k=1 k=0

where n is some positive integer, were defined in Chapter II. They are
examples of finite sums. Now we define the “sum” of the infinite series

o0 [c)
>Sa,=a+ay+ -+ or > a=ay+a+ .
k=0

n=1

Def. 1.1. If <{a,) is a real sequence, then the sequence (S, ), where for each
n,
S,=a;+ -+ +a,,

is called the infinite series of terms of the sequence {a,). The nth term of
the sequence ¢S, is called the nth partial sum of the series. The series {S,)
is written 3%_,a, and a, is called the nth term of this series.

According to this definition, 3 %_,a, is merely a notation for the se-
quence <S,» of partial sums S,, where

1 2
Si=>a=a, S=2a=a+a,,
k=1 k=1

3
Sy= > a,=a,+a,+a;, etc.
k=1
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The partial sums are defined inductively from the sequence {a,) of terms
of 3 ,_,a, by means of

S =aq
Sn+l = Sn+ ap 41

for each n.

If N is some positive integer, then > 7_ ya, is the infinite series of terms
Of <an>n>N = <aN9aN+], o e >.

Def. 1.2. The series >, 7_a, is said to converge if and only if the sequence
(S, of its partial sums converges. Otherwise it is said to diverge. If

n
S= lim S,= lim > q,
k=1

n—>+ o n—>+ o

then S is called the sum of the series. We also write

Thus, when > °_ 4, converges, the symbol > %_,a, has two meanings: In

Def. 1.1 it denotes the sequence <S,) of partial sums, and in another sense,
Def. 1.2, it denotes the sum S of the series. We hope that the sense in which
>%_.a, will be used will be clear from the context.

According to Def. 1.2, the series has sum S € R if and only if for each
€ > 0 there exists an N such that n > N implies

IS =S, <e (1.1)

Using the Cauchy criterion for the convergence of {S,)>, we see that
>%_.a, converges if and only if for each € > 0 there exists an N such that if
n> m > N, then

m

Eak

k=m+1

=la,.,+ - +al|=|S,—S,|<e (1.2)

This is equivalent to saying that > a, converges if and only if for each € > 0
there exists an N such that if » > N, then

@i+ o a | =8, — Sl <e for all positive integers p.

(1.3)

We refer to (1.2), or its equivalent form (1.3), as the Cauchy criterion for the
convergence of series.

If n is a nonnegative integer, then > %_, , ,a, is the series whose terms are
those of the sequence {@;); .. Writing S, ,, for the nth partial sum of
this series, we have

+p

m
Sym= > a  where m>n. (1.4)

k=n+1
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If the above series converges, then we write its sum as R,, so that

m
R" = mb)llloo S"’m= mEIEoo k=§+ lak ' (15)

We call R, the remainder after n terms of 33_,a,.

ProB. 1.1. Prove: (a) If X¥_,a, converges, then for each n, 3¢, a4,
converges; (b) if for some n, 37, 14, converges, then so does > %¥_,a,. Also
prove: >¥_a,=S=S,+ R, for each n and R,—>0 as n—> + o0 in this
case.

ExampLE 1.1 (The Telescoping Series). The series
1 _ 1 1 .
2 amin T2Vt

n=1

[oe]

converges and its sum is 1. We prove this. First note that if k is a positive
integer, then

1 _1__1
k(k+1) k k+1°

The nth partial sum for this series is S,, where

n

= 1 _ 1__1 _,__1 n
S"‘,glk(kﬂ) ,Elk e ety i
Hence,

S= lim S,= lim —2—=1.
n>+4+0 " no>+on+1

ProB. 1.2. Prove: If x is not a nonnegative integer, then

0

,Z:l (x+n)(J:+n+1) - l-il-x'
ProB. 1.3. Prove:
® 2 G
(®) ,2'1 n(n+ 1)(n1+ )(n+3) % '

We now present a necessary, but not sufficient, condition for the conver-
gence of an infinite series.

Theorem 1.1. If 3 a, converges, then a,—0.
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ProoF. If n is a positive integer, then
S,=S,_,+a, and S,—S,_,=a,.

If S is the sum of the series, then S = lim S, where for each n, S, is the nth
partial sum of the series. It follows (explain) that S =lim S,_,, so

0=S-S= lim S,— lim S, ,= lim (S,-S,_,)= lim a,.
n—>+ o0 n—+ o0 n—>+ o n—>+ o

This proves the theorem.

We shall see later (Example 1.3) that the converse of the above theorem
is false. We apply this theorem in the next example to prove the divergence
of certain series.

ExampPLE 1.2 (The Geometric Series). The series

Sx"=l+x+x+--- (1.6)
n=0
is called the geometric series. We prove that it converges for |x| < 1 and
diverges for |x| > 1. First note that if x # 1, then

— 2 . n __ 1 — x"+l = 1 N X
S,=1+x+x"+ +x" = T = 1% (1.7)
If |x| < 1, then lim,_, , . x" = 0. Hence
limS=lim( I _n x )= L
n>+0 " no+0o\ 1 —x 1—x 1—x
It follows that
Thxtxis =it [x]<1. (1.8)
However, if |x| > 1, then lim,_, , ,x" # 0. Therefore, by Theorem 1.1 3 x”"

>1
diverges for |x| > 1.
ExampLE 1.3 (The Converse of Theorem 1.1 Is False). Here, we give an
example of a series for which a,—>0 as n—> + oo holds but such that >a,

diverges. The series

s 1_ 1+l 4
2
is called the harmonic series. We have a, = 1/n—0 as n—> + c0o. We prove,
however, that this series diverges. Let ( H,) be the sequence of partial sums
of the harmonic series (1.9). Then

+ - (1.9)

S -
S |-

ciely o ylogl
H,=1+3+ + o Ek‘ (1.10)

Note that
H =1, H,=1
Hy=H,=1+1+1+1>1+1
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We claim that, quite generally,

H,,>1+ % for each nonnegative integer n. (1.11)

We prove this by induction on n. Inequality (1.11) holds for n = 0, 1, and 2.
Let (1.11) hold for some nonnegative integer n. Now

2n+l
Hyn=Hyu+ S . (1.12)
k=21 K
In the second sum on the right
% > 2n1+1 for all integers k such that 2"+ 1 < k <2"*!=2"+42"
This implies that
2+t 1 a2 o 27 42 I -1
e 1 an+l 1= 1(2)—_'
k=i+1 kT 2 2 T 2 2
This, (1.12), and the induction hypothesis yield
2n+| l 1
Hyor= Hy + >1+24+ =142+
2 2 k=§+| 22 2

By the principle of mathematical induction it follows that (1.11) holds. It is
clear from (1.12) that lim,_,,  H, = + co. Thus, the subsequence {H,.)
diverges. This implies that (H,> diverges. But then the harmonic series
diverges, even though lima, = lim(1/n) = 0.

Remark 1.1. The sum and difference of > a, and b, are defined respec-
tively as

2 (an + bn) and z (an - bn)

We also define 3)(ca,) as the series whose nth term for each n is ca,, where
¢ is some constant.

ProB. 1.4. Prove: If Ya, and b, converge, then so do >(a, + b,),
S(a, — b,) and 3(ca,) and we have (a) >(a,+ b,)=Xa,+>b,, (b)
>(a, = b)) =2a, — b, (c) X(ca,) = cXa,.

2. Alternating Series
Def. 2.1. An alternating series is a series of the form

(o o]
S (-)'*a,=a,—ay+az—ag+ -, (2.1
n=1
where (1) a, > 0 for all n, (2) <a,) is strictly decreasing, and (3) a, >0 as
n— + .
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For example, the series

z( n+|1 =1-

n=1

T (2.2)

I

N —
W=

is an alternating series.

Theorem 2.1. Each alternating series X %_,(— 1)"*'a, converges. Moreover, if
S is its sum, we have for each partial sum S,,,

|S - Snl < a,,+1 . (2.3)

Proor. We first prove that the subsequence {S,,> of even-indexed partial
sums of the sequence {S,) is strictly monotonic increasing. Note that
S,=a,—a,>0and S, = S, + (a; — a,) > S,. More generally, since a,,,
> ay, .5, We have

Sokr2= S+ (@1 — App2) > So for each k. (24)

Since a,, > a,,, , the subsequence {S,,_,> of odd-indexed partial sums is
strictly monotonic decreasing, as we see from

S2k+l = SZk—l - (azk - 02k+ I) < SZk—l fOl‘ eaCh k. (2.5)
It also follows from
Sok = Son_1— Ay < Sy for each k (2.6)

that S,, < S,,_, for each k.

We prove that each even-indexed partial sum is less than every odd-
indexed partial sum. If m < n, since {S,, is increasing and (2.6) holds, we
obtain

Som <85, < 85,1
If m > n, we obtain from (2.6) and the fact that {S,, _,> is decreasing that
Som < Som_1< 85,1
Thus, we have

Som < Sy, for any positive integers m and n. 2.7

It follows that each S,,_, is an upper bound for {S,,>. Hence, putting
S =supS,,, we have

S, <8<, for m and n.

Since <S,,» is strictly increasing and {S,,_,) is strictly decreasing, this
inequality can be strengthened to read

Som < S <S8, for m and n, (2-8)

It follows from (2.8) that for each m
Som < S < 8s41 (2.9a)
Som < S< Syt (2.9b)
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The first of these inequalities yields
0<S—S2m<S2m+l_S2m=02m+l (210)

and the second yields
— @y =Sy — Som-1 < S—=8,,_,<0. (2.11)
We use absolute values in (2.10) and (2.11) and obtain for each m
IS — S, < @iy and |S—8,, | <ay,.
Together these imply
S-S, <a,. for any positive integer n,

which proves (2.3). Since lima, ., =0, (2.3) yields lim S, = S and that the
alternating series we began with converges.

According to this theorem, the series (2.2), which is alternating, con-
verges. On the other hand, the series whose terms are the absolute values of
the terms of the series (2.2) is the harmonic series and so diverges. Contrast
this behavior with that of the series

< wet 1 _q_ 1,1 _ 1
El(_l) F_1—5+§3_§+”" (2.12)
This series converges (why?). The series
S IR R I I
.Z:l T I+ 3+ 5 + X + , (2.13)

whose terms are the absolute values of the previous series, also converges
(why?). Series that behave like the series (2.12) are called absolutely converg-

ing.

Def. 2.2. Given Sa,. If X|a,| converges, we call Ya, an absolutely
converging series. If Sa, converges and 3|a,| diverges, then we say that
Sa, is conditionally convergent.

According to this definition, the series (2.12) converges absolutely and
the series (2.2) is conditionally convergent.

Theorem 2.2. An absolutely converging series converges.

PrOOF. Assume that 3a, converges absolutely so that 3)|a,| converges. Let
{S,> be the partial sum sequence of > a, and (T, the sequence of partial
sums of 3|a,|. We know that (T,> is a Cauchy sequence. We shall prove
that ¢S, is a Cauchy sequence. Let € > 0 be given. There exists an N such
that if m > n > N, then

m

> lal=I|T,-T,|<e (2.14)

k=n+1
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By the properties of absolute value, we have

m m
1S, = S, =| D a|< > lal=IT,-T,|<e for m>n>N.
k=n+1 k=n+1

Thus, (S, is a Cauchy sequence and is, therefore, convergent. This implies
that > a, converges.

ProB. 2.1. Prove: If 3% (—1)"*a, is alternating, then for each n,
0<an_ Ayt Gy — A

3. Series Whose Terms Are Nonnegative

Theorem 3.1. If Y7°_,a, is a series such that a, >0 for all n, then it
converges if and only if the sequence (S, of its partial sums is bounded from
above.

ProOF. Assume that Y a, converges, so {S,> converges and, therefore, is
bounded.

Conversely, assume that (S,) is bounded. Since a, > 0 for all n, it
follows that

Sn+l S +an+I>Sn

sothat S, ., > S, for each n. Thus, (S, is monotonic increasing. Since it is
also bounded, it converges.

Remark 3.1. Suppose that > a, has nonnegative terms and its sequence of
partial sums is not bounded. Since the partial sum sequence is monotonic
increasing,

[oe]

Z]an=n_l)1r+an = +00. (3.1)

If the above Y a, converges, then

0<>a,< +oo. (32)

Pros. 3.1. Prove: If 3 a, has nonnegative terms and some M € R exists
such that S, < M for all the partial sums S,, then S < M for its sum S.
Note that S, < S for each n. Also prove: If a, > 0 holds for infinitely many
n’s, then S, < S holds for each n.

ExampLE 3.1. If {d,) is an infinite sequence of digits and N is an integer,
then the series

i d d
N+ > d,l10 "= N+ﬁ+—2+--- (3.3)

n=1
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has the sequence <r,», where

d, d
k . _n
r,=N+ Zdlo —N+10 + 157 foreachn (3.4)
as its sequence of partial sums. As is customary we write
dd,...d,=73 d]107% (3.5)
k=1
so thatr,= N +.d, . . . d, for each n.) Then
9 9
<r, < 99. = =
N<r,<N+99..9=N+ 5+ +15
- 9 | S
=N+ 10(1+10+ +1W‘J
_ 9 (1—-1/10"
‘N+0(1—Vm)
_ _ 1
=N+1 STd <N+ 1
Hence
N<r,<N+1 for each n. (3.6)

This tells us that the sequence of partial sums of the infinite series (3.3) is
bounded. Since its terms are nonnegative, Theorem (3.1) implies that it
converges. Writing S for the sums of the series, we have

S=N+ z d,107". 3.7

n=1
By Prob. 3.1 and by (3.6) we have N<r, < S< N+ 1. Hence N< §
< N+1. Whend > 0 for somej > 0, thenN<N+ rj.Hence,N< r; < S

< N + 1. But then
N<S<N+1
holds when not all the terms of {(d,> are equal to 0. We write

S=N+.dd,... (3.8)

for the sum of the series (3.7), and call N +.d,d, . .., an infinite decimal.
When infinitely many of the digits d, are not equal to 0, we call the infinite
decimal nonterminating. Numbers of the form (3.5) are called terminating
decimals. When the decimal in (3.8) is nonterminating, we call it a non-
terminating decimal representation of S. We refer tor, = N +.d, ... d,, the
nth truncation of the infinite decimal and (r,> as the sequence of its
truncations.

By Theorem I11.10.4, to each real number x there corresponds a unique
integer N and a unique sequence {(d,» of digits d, such that d, 0 for
infinitely many n’s and such that the sequence (r,», where r, =N +
.d, . ..d, for each n, has the property

r,<x<r,+107" for each n. 3.9)
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As observed in Remark I11.10.2, this implies x = limz, and we have
x=N+.dd,.... (3.10)

Using the terminology just introduced, we state this result as follows: Each
real number x has a unique non-terminating decimal representation.

Pros. 3.2. Prove: (a) N+.99... = N + 1. In the decimal on the left the
decimal point is followed by 9’s only, so that d, =9 for all n. More
generally, (b)

all nines
——— .
N+.0...09...=N+.0...0l=N+107. (3.11)
—— ~————
J zeros Jj—1zeros
ProB. 3.3. Prove: The terminating decimal x =N +.d, ...d;, where
d; > 0, has the nonterminating decimal representation
all nines
—_—
x=N+d,...d=N+.d ... (-1)99.... (3.12)
J places

Thus, we see that although each real number has a unique nonterminating
decimal representation, some also have a terminating one.

Remark 3.2. Let x = N +.dd, ..., where the decimal on the right is
nonterminating. Let (r,> be the sequence of its truncations and {g,) the
sequence defined as ¢, = r, + 107" for each n. For r,, | and ¢,,, we have
Fos1 =", +d, ;107" " and ¢,,,=r,,, + 107"~ ". The sequence {r,» is
monotonic increasing. Since it converges,

x =limr, =supr,. (3.13)
Notice that (g, is monotonic decreasing. In fact, for each n,
Gua1=Toe1 + 107" =71, +(d, ., + 110!
<r,+(10)107" " '=gq,.
Consequently g, < g, for each n. Clearly,
x = limr, = lim(r, + 107") = limg, = infg, . (3.14)

ExaMPLE 3.2. Consider the series

2 T 3 , (3.15)
where p is rational and p > 1. We limit ourselves to rational p > 1 because,
thus far, powers with real exponents have not been defined. Once these are
defined (see Section 10) it will be seen that the results proved here also hold
for real p > 1. We consider the subsequence {S,.-1) of the sequence (S,

i #=]+L+l+...
n=1
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of partial sums of our series
Sy, =8=1
1 2

S22_I=S3——1+?+—<1+7—1+2 (r=h,

More generally, if n > 2 and p > 0, we prove using induction on n that

(3.16)

n—1
Sy <1+ 3 2Pk
k=1

=14+2"D 4 ... 2 (p-DHr=1) (3'17)

We saw in (3.16) that (3.17) holds for n = 2. Assume that (3.17) holds for

some integer n > 2. We have
2+~

1
Spi_y = Sp_, + kzzn 75 (3.18)

In the sum on the right, k > 2". Since p > 0, this implies that k? > (2")”
= 27", Therefore k™7 < 277", Now
2n+l 1 2n+l 1 2n+l_|

S kPSS 2m=2 3 1=t - 1 - (20— 1)

k=2n k=2n k=2n
=27p2" =2 (p=Dn
This and (3.18) yield
Syt < Syu_ +27(P7 D1, (3.19)

This and the induction hypothesis (3.17) imply that

n—1
Syei_ <14 S 27(=Dky 3=(p=n
k=1

n
=1+ > 27Dk (3:20)
k=1
for p >0 and n > 2. In view of the induction assumption, (3.17) holds for
each n > 2 and p > 0. Now note that, for p >0,

n—1

1+ 27 Dk 427D 4 .o +(2—<p—|>)<n-l>

k=1
_1—2-(bn
- (321)
Using the assumption p > 1, we have 277~ < 1. Hence (3.21) yields
n—1 -1
—(p-Dk 1 27 . >
1+k§12 <1_2(,, 5= ooy if p>1, n>2.

This and (3.17) imply that

Sy ,<—-2‘—1 if p>1, n>2. (3.22)

27
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Using (3.16) and noting that the number on the right is greater than 1, we
conclude that (3.22) also holds for p > 1 and n a positive integer. Now
2" > n holds for each positive integer n. Therefore, we have 2" > n + 1 and
2" — 1 > n for n a positive integer. Accordingly, we have

20!
2P -]
This proves that the partial sums of our series are bounded. By Theorem
3.1, we see that the series (3.15) converges for p > 1. Note that if p = 1, the
series diverges with sum S = + co.

We write

S, < Sy_; < if p>1 andna positive integer. (3.23)

> 1

S(py=2> -5 if p>1L (3.24)

P
n=1"

The function { just defined is called the Riemann zeta function. It plays an
important role in the study of prime numbers.

4. Comparison Tests for Series Having
Nonnegative Terms

Theorem 4.1. If > a, and >b, are series for which there exists a positive
integer N such that O < a, < b, holds for n > N, then the convergence of b,
implies the convergence of Y a,, and the divergence of Y a, implies the
divergence of 3b,.

PROOF. Assume b, converges. This implies that >>°_ b, converges. Let
T, be the sum of the last series and 7}, be its nth partial sum. Let S, be
the nth partial sum of > %°_ ya,. Since 0 < a, < b, for n > N, it is clear that

Sya < Ty, <Ty for n> N.

Thus, the sequence {Sy >,y of > _ya, is bounded from above by T .
Hence, Y " ya, converges. This implies that > 5_,a, does.

Next assume > a, diverges, so that > %_,a, does. Since the terms of the
latter are nonnegative, we know that the sequence (S ,» of its partial sums
is not bounded from above. Writing T, again for the nth partial sum of
> _nb,, we see that

Snvn < Ty, for n> N.

This implies that (T} ,> is not bounded. Accordingly, > %_ v b, diverges. It
follows that > *b, also does.

Pros. 4.1. Prove: If p < 1, then 3 %°_,1/n? diverges.

Pros. 4.2. Prove: If Ya, and Y b, are infinite series of real numbers and
there exist M and N where M >0 and N is a positive integer such that
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0 < a, < Mb, for n > N, then the convergence of > b, implies that of > a,
and the divergence of 3 a, implies that of >b,.

Def. 4.1. If (a,> and <b,) are real sequences for which there exists an
M >0 and a positive integer N such that

la,| < Mb, for n> N, 4.1
then we write
a,= O(b,), n— + oo (4.2)
and read this as: a, is big O of b, as n—> + o0.
EXAMPLE 4.1. The reader can show that
L <2 it n>2 (43)

nt—1 n?

Therefore we can write

1 =O(—13) n—> + co.

S

ExaMpLE 4.2. If a sequence {a,) is bounded, then
a, = 0(1), n— + 0.
Indeed, there exists an M > 0 such that |a,| < M =M -1 for n > 1. Let

{b,> be the constant sequence b, = 1 for all n. Then |a,| < Mb, = M - 1 for
n> 1

ProB. 4.3. Let (b,) be a sequence of positive numbers. Prove: If lim, _, , .,
(a,/b,) =0, then a, = O(b,), n—> + .

Def. 4.2. If (a,> and (b, are real sequences such that b, > 0 for all » and
lim,_, ., .(a,/b,) =0, then we write

a,=o(b,) as n—>+oo (4.4)
reading this as: a,, is little o of b, as n—> + 0.

Remark 4.1. By Prob. 4.3 we have: If a, = 0(b,) as n—> + o0, then a,
= O(b,) as n—> + oo. The converse does not hold (give an example).

Pros. 4.4. Prove: If a, = O(b,) as n—> + o0, and b, = O(c,) as n—> + o0,
then a, = O(c,) as n—> + o0.

Def. 43.If a, = O(b,) as n—> + o0 and b, = O(a,) as n—> + oo, we say that
a, and b, are of the same order of magnitude as n— + oo and write a,<b, as
n—> +oo. This occurs if and only if there exist M, >0, M, >0, and a
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positive integer N such that

0<M < <M, for m>N. (4.5)

Def. 4.4 (Asymptotic Equivalence). If lim,_,, .(a,/b,) = 1, we say that a,
and b, are asymptotically equivalent as n— + oo and write

a,~b, as n—> +oo. (4.6)

ExampLE 4.3. Since lim,,, ((n+ 1)/n)=1, we write n+ l~n as
n—> +o0.

Using the “big O” notation we can extend the result in Prob. 4.2
somewhat.

Theorem 4.2. If (b,) is a real sequence for which there exists a positive
integer N such that b, > 0 for all n > N and a, = O(b,) as n—> + o, then
the convergence of 3b, implies that of Sa, and the divergence of 3|a,|
implies that of 3b,,.

PrROOF. By the hypothesis on (b,), there exists a real M > 0 and a positive
integer N, such that

la,| < Mb, for n> N,. (4.7

Assume that b, converges. By the Cauchy criterion for the convergence
of series (Section 1), we have: for each € > 0, there exists an N, such that

|bn+,+bn+2+---+bm|<ﬁ if m>n>N,. (4.8)

Put N3 =max{N,N,,N,}. From the hypothesis on {b,>, (4.7) and (4.8), it
follows that if m > n > N, then

Ian+l| + Ian+2| I |am| < M(bn+l + bn+2+ B bm) <e

By the Cauchy criterion for the convergence of series, 3}|a,| converges.
Therefore 3 a, converges.

Next assume that 3|a,| diverges. Using (4.7) we see that 3b, diverges
(Prob. 4.2).

Theorem 43. If 3 a, and 3b, are series with a nonnegative term, where
b, > 0 for all n and
. a, ——a,

n n

< + 00,
then Y a, and 3b, converge together or diverge together.

Proor. Put
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so that
0<L< L< +0o0 and, hence, 0<% <L< E<%E
There exist positive integers N, and N, such that
L _a,
0<7<_b: for n>N| (49)
and
a, 3 —
_b:<5L for n > NZ- (410)

We put N = max{N,,N,} and obtain from (4.9) and (4.10)
0<iLb,<a,<(3L)b for n> N.

n

The conclusion follows readily from this.

Corollary . If > a, and b, have nonnegative terms where b, > 0 for all n and

a
0<limb—"<+oo,

n

then Y,a, and b, converge together or diverge together.
Proor. Exercise.

Pros. 4.5 Prove: If b, > 0 for all n and 3 a, has nonnegative terms, then
(@) 0<lim(a,/b,) < + oo implies that a, = O(b,) as n—> + oo and (b)
0 < lim(a,/b,) < + oo implies that b, = O(a,) as n—> +o0. In each case
draw the appropriate conclusions about the relation between the conver-
gence or divergence of Y a, and that of 3b,,.

Remark 4.2. If b, > 0 and a, > O for all n and

m(%)= + 00 (4.11a)
or
.. a,
lim % =0, (4.11b)

n

then, in the first case, a, = O(b,) as n—> + oo is false, and in the second
case, b, = O(a,) as n—> + o is false. To see this, assume that a, = O(b,) as
n—> + 00, so that there exist a positive integer N and a real M > 0 such that
0<a,< Mb,, or a,/b, <M for n> N. This implies (explain) that
lim(a,/b,) < + c0. We must therefore conclude, under the hypothesis, that
lim(a,/b,) = + o implies that a, = O(b,), n—> + 0, is false.

Similarly, if b, = O(a,), n—> + oo, there exists a positive integer N, and a
real M, >0 such that a,/b, > M, >0 for n> M, (explain) so that
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lim(a,/b,) > 0 (why?). It follows from the hypothesis that lim(a,/b,) =0
implies that b, = O(a,), n—> + 0, is false.

Lemma 4.1. If > a, and > b, have positive terms and there exists a positive
integer N such that

forall n> N, (4.12)

then a, = O(b,) as n—> + oo. Therefore, the convergence of > b, implies that
of Y a,, and the divergence of Y a, implies that of 3b,.

ProoOF. From (4.12) we obtain
ay 41 a
— <= f > N.
b, 7% or n>N
This implies that the sequence <{a,/b,>, y is monotonic decreasing. Since
its terms are positive, it is also bounded from below. Accordingly, it
converges. This implies that the sequence {a,/b,> converges (explain). We
have

n

0 <lim 2" = Tim 2 =lim 2% < +
\1_m_b——1mb——lmb— 0.

n n

By Prob. 4.5(a), a, = O(b,) as n—> + 0. In view of Prob. 4.2, we conclude
that the convergence of > b, implies that of > a, and the divergence of Y a,
implies that of 35b,.

n

ProB. 4.6. Test the following series for convergence or divergence.
@) Sy 1/(n* = n+1),

) >%_,1/¥2n—1,

(©) X2 1/yn* —n+1,

(d) S n 10/,

5. Ratio and Root Tests

Theorem 5.1 (Ratio Test). If Y a, is a series whose terms are all positive, then

(@) m 2 =<1

a,

implies that >, a, converges, and

. an+l _
(b) Lim F L>1
implies that ¥ a, diverges. If L <1 < L, then the series may be convergent or
divergent.
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PrROOF. Assume (a) holds, so that L < 1. There exists a real g such that
L<g<1. Write e=qg— L, so that >0 and g = L +e. There exists a
positive integer N such that

Ay 41

\%

0<=<L+e=g<1 for n>N. (5.1)

Since 0 < ¢ < 1, the geometric series >;,_,q" converges. Write b, = ¢".
From (5.1) we obtain

a, 41 b,

0< <g= for n> N.

n

This implies (Lemma 4.1) that a, = O(¢") as n—> + o0, and since b,
= > ¢" converges, > a, converges.

Next assume L > 1. Then a real g exists such that 1 <g <L. Put
€ =L — g so that e > 0 and ¢ = L — €. There exists a positive integer N such
that

I<g=L-e<— ikl if n>N.
This implies a, < a,,, if n > N so that 0 < ay < g, for n > N. It follows
that lima, # 0 (explain) and, hence, that Ya, diverges.
We prove that the cases L < 1 < L fail to distinguish between convergent
and divergent series. Take a, = n~ ' for all positive integers n. We have
(n+ 1)_'

TS -5 n _ n_ _ =~—an+l
lim a, = lim n! 11—m(n+1) llmn+1 I'=lim a,

and Sa,=Sn"" diverges. Next take b, = n~? for all positive integers n.
Here, too, it is clear that

S
+

in et < O (i 1= T
n n

and b, = S\n~? converges.

Corollary (Modified Ratio Test). If > a, is a series whose terms are positive,
then

(a) lim 24 = L < 1 implies that > a, converges
and
(b) lim %ﬂ = L>1 implies that 3 a, diverges.

The case lim(a,,/a,) =1 fails to distinguish between convergent and diver-
gent series.

Proor. Exercise.
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ExaMPLE 5.1. For each x € R, consider the series

o]

xn_ 3
EOW_H- +7+3'+”" (5.2)

If x = 0, this series converges trivially. If x % 0, we apply the ratio test to
the series

S | x"
n§0| = (5.3)
We have
— /Dy . 1
n—1>1r-+r-1<>o [x"/n!l -nl)+w n+1 _lenl}IEw n+1 =0<1.

This implies that (5.3) converges for x # 0. We conclude that (5.2) con-
verges absolutely for all x € R and, therefore, converges for all x € R. The
series (5.2) is called the exponential series. We put:

expx = > ;—: for x €R. (54)
n=0 "*

Pros. 5.1. Prove: If x €R, then lim,_,, (x"/n!)=0.

Pros. 5.2. Prove: Each of the series

~

x n 2n+1 3 5

=

(a) 2N Gy T Tyt ot
x2 4 6
(b) 2(_)(2,,)': _2_!+z_!_%+'

converges absolutely for each x € R.

ProB. 5.3. Prove: The series

d Pyt x” x2 x> X
D e S T i T

n=1

converges for —1 < x <1 and diverges for |x| > 1. Note also that the
convergence is absolute for —1 < x < 1 and not for x = 1.

ProB. 5.4. Prove: If b > 0, then the series
a— (a — b)(a —2b) o
x+ 450 3l e

converges absolutely for |x| < b~ ' (Whittaker and Watson).

ProB. 5.5. Test the series >%°_,n!/n" for convergence.
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Theorem 5.2 (Root Test). If > a, is a series whose terms are nonnegative,
then

(a) Tim%a, < 1 implies that 3 a, converges and
(b) im%a, > 1 implies that Sb, diverges.

The case lim a, =1 fails to distinguish between convergent and divergent
series.

PROOF. Assume that lim ¥a, < 1, so that a ¢ exists such that lim%a, < ¢
< 1. This implies that there is an integer N such that

"a,<q if n>N,

ie.,
0<a,<q" if n>N.
In turn this implies that a, = O(q") as n—> + 0. Since 0 < ¢ <1, 3¢"
converges. The relation between g, and ¢" implies that > a, converges.
Now assume lim%a, > 1. This implies that
Ya, > 1 for infinitely many n’s

We conclude that lima, # 0, and hence that > a, diverges.

We consider the case lim ¥/a, = 1. Consider the series (1) 37~ and (2)
Sn 2 For each of these we have lim %a, = 1. Series (1) diverges and series
(2) converges.

Corollary (Modified Root Test). If > a, has nonnegative terms, then

(a) lim%a, < 1 implies that ) a, converges
and
(b) lim¥a, > 1 implies that ) a, diverges.

The case lim%a, = 1 fails to distinguish between convergence and divergence.
n gu g 14

Proor. Exercise.

EXAMPLE 5.2. We apply the root test to the series
[o<]

D (1 + 1 )"x" (5.5)

n=1 n
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and test for absolute convergence using the modified ratio test. We have

lim l(l L)
n—>+ oo n
Hence, if |x| < 1, then the series (5.5) converges absolutely. If |x| > 1, then
(1+l)x"= e %f |x| =1
o0 n + if |x|> 1.

Therefore, if |x| > 1, we have lima, % 0. We conclude that (5.5) diverges
for |x| > 1

=|x| lim (1 + l) =|x|.
n—>+ o0 n

lim |a,|= lim
n—>+ o0 n—+

The next theorem relates the ratio and root tests.

Theorem 5.3. If > a, has positive terms, then

<Tim Ya, <Tim 21 (5.6)
a

PROOEF. Put

a
Ly=lim =" and L,=lim%a, . (5.7)
We have 0 <L;.If L, =0, then L; =0 <L, so that L; <L,. If 0 <L,, there
exists a g such that 0 < g <L,. This implies that a positive integer N exists
such that

a
0<g<-—"*  for n>N. (5.8)
This implies
a
0< g< 2L 0< ayg <ay,,
ay
a
0< g< 2 so that 0<ayg*<ay,,
an+1
0<q<—”' 0<ayg" <ay,m
AN+ m—1

for each positive integer m. Put n = N + m so that m = n — N. Then

0<ayqg" "<a, if n>N.

0<'\/a—';', q<”\/a for n> N.
q

This implies that
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Taking lim of both sides we obtain

g lm /2 < lim ¥a, =L,. (5.9)
n—+ oo qN n—>+ oo "

lim '\/ lim '\/i% =1,
n>+ o0 n—+ o0 q

we obtain from this and (5.9) that, 0 < g <L,. This proves: g <L; implies
g <L and, hence, that L) <L, in this case (0 <L) also.
Now let

Since here

- — ——a

L,=Tim%a, and L, =Tm a—“ : (5-10)
Thus far, 0 <L; <L; < Ez If L, = +o0, since L, < +c0 = L,, we have
L, < L, in this case. If L; < + oo, there exists a real ¢ such that L, < q.
Accordmgly, there is a positive integer N, such that

0< "+‘<q if n>N,. (5.11)

n

It follows from this that

a
0< Z;:] <q 0<ay . <qay,
1
aN|+2 . 2
0<aN+l <gq, that is, 0<ay,;<gay,
1
an, +m
0<m<q 0<aNl+m<q’"aN|
e

for each positive integer m. Putting n = N, + m, so that m=n — N,, we
have

0<a,<q" Ma, if n>N. (5.12)

Reasoning as we did before, we see from this that
TmYa, =L, <q

Thus, L, < ¢ implies L, < ¢ and we conclude that L, < L,. This yields
finally that L, <L, < L, < L, and completes the proof.
Remark 5.1. It follows from Theorem 5.3 that the root test is “at least as
powerful” as the ratio test. Inequalities (5.6) inform us that whenever the
ratio test detects convergence or divergence so does the root test (explain).
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To see that the root test is “more powerful” than the ratio test, we present
in Example 5.3 below a series for which the ratio test fails to detect
convergence but for which the root test does detect convergence.

ExAMPLE 5.3.* Consider the series

1 1 1 1 1 1
=t ot —F—F+ —F
2Tyt 3ttty
Here
a = [2—<"+'>/2 if n is odd
" 3-n/2 if n is even,
SO
a, = {3—("“)/2 if n is odd
n+ .
2-(*+2/2  if pis even.
Hence
3—(n+l)/2 . .
a,, m lfn 1S Odd
a | r-(+2))2 o
" 23—_"/—2—— if n is even.

Consider the subsequences

()" Ak Ay 41
<_2_> and <g> of <n+ _
Ay —1 Ak a,

We have (Theorem 111.4.5)

. a ) a ) k
lim —*! < lim k= lim (;) =0
n>+o 4, k>+o Gk—1  ko>+o\3
and
e a 1 T a . k
im —* < lim 2* = lim l(2) =+
n—>+o0 q, k—>+o00 Ay k>4 \ 2\ 2

so that lim(a, . ,/a,) =0 < 1< + 00 =lim(a,,,/a,). The ratio test fails to
detect convergence or divergence. We apply the root test. We have

r{/a___(2~<n+1)/2)‘/"=2—|/2.2—1/2"<2—‘/2 if nis odd
and
r‘r/a_”=(3—"/2)l/”=3‘l/2<2_1/2 if n is even.
Thus,
Aa, <2712 for all n.

* John Randolph, Basic and Abstract Analysis, Academic Press, New York, p. 144.
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This implies that im%¥a, <27 '/?2 < 1. But then Theorem 5.2 yields conver-
gence of the series.

ProB. 5.6. Prove: 33%_(1—=1/(n+ 1))” converges.

Pros. 5.7. Prove:

(Hint: cf. Prob. 5.5).

6. Kummer’s and Raabe’s Tests

If Y a, has positive terms, then the ratio test fails to detect convergence in
the cases lim(a, , ,/a,) < | <lim(a,,,/a,). The tests which follow can then
be applied.

Theorem 6.1 (Kummer’s Test). If > a, has positive terms and (a) there exists
(1) a real ¢ >0, (2) a sequence {b,y whose terms are positive, and (3) a
positive integer N such that
a
" b,

n
41

—b,,,>c for n>N, (6.1)

then X a, converges. (b) If there exists a sequence {b,) whose terms are
positive such that 3b,” ' diverges and such that for some positive integer N,

b= b, <0 for n> N, (6.2)

n
ay 41

then Y a, diverges.

ProOF. We prove (a) first. By (6.1),

ayby —ayyibyyy > cayy,y
ay41by 4 —ayiobyyy > cayy
Ay am-1ONem—1 — Ot mDNm = CayN L, for each positive integer m.
Adding, we obtain
ayby > ayby — ay by > c(@yiiOniat - F Ay ).
Hence
Ay Fay,+ - +ay,,, < %a,\,b,,, for each positive integer m.

We add S, =a, + - - - + a, to both sides to obtain

Snam < Sy + 1 ayby for each positive integer m.
c
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This implies that the sequence {S,> of partial sums of the series > a, is
bounded. Since the terms of Ya, are positive, this implies that Ya,
converges.

We now prove (b). From (6.2) we obtain

aN,bN, —aNl+Ile+1 <0
Ay, 1by, 1 —ay 42by 42 <0
ayn +m—1On 4 m-1 ~ AN 4 mbNem <O for each positive integer m.

Adding, we have
ayby, = an s+ mbn,+m <O for each positive integer m.
Put p = ay by and n= N, + m. Then

a,,>bﬁ>0 for n> N,.

Thus,
i<la,, for n>N,.
by P
Therefore b, ' = O(a,) as n— + 0. Since b, ' diverges, this implies that

> a, also diverges.

ExaMPLE 6.1. Consider the series

) )3
%‘3_(2_;_ . 63)
Let us apply the modified ratio test. We have
(Qn+2)1y
27+5((n + e (2n+ %
a, (@n)’ B (2n+2)’

26”( n! )6

p 4

(6.4)

and, therefore,
a
lim 21 = 1.
n
Thus, the ratio test fails to detect convergence. Let us apply Kummer’s test.

We choose the sequence (b,>, where b, = n for each positive integer n.
Using (6.4), we have

3
n n —(n+1)=n(§":i%) —(n+1)

Ap 1

2
4n® +2n — 1 >4" (n+tl)y |

= Qn+ 1Y~ @n+2) 2 (n+1)P
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Since

1 _n _1 1 1.1
2 (m+1y? 2 (1+1/n? 2 22 8

we have

a, 1
j— — > .
nanH (n+1)>8 for n>1

By Kummer’s test, the series (6.4) converges.

ExaMPLE 6.2. Consider the series
® 1-3...2n-1)
2-4...2n

(6.5)

n=1
and test it for convergence. We use the modified ratio test first. We have

a1 =2n+1_)1

a T as n— +oo. (6.6)

Hence, the ratio test fails. We now use Kummer’s test. We take b, = n for
each positive integer n and obtain

bnaa"l—b"+|=naa"l—(n+l)

n+ n+
_ 2n+2)\ _ __ ntl
—n(2n+1) (n+h=-SEL <0 (67

for n > 1. Since 3b, ! diverges, we see from (6.7) and Theorem 6.1, part (b)
that > b, diverges.

Theorem 6.2 (Raabe’s Test). Let > a, have positive terms. If

(2) timn( 2= 1) = L>1,
Api1

then Y a, converges. If

(b) mn( s —1)=L<1,
(e

then > a, diverges.

PrOOF. Assume that (a) holds. There exists a real g such that L > ¢ > 1.
Therefore, there exists a positive integer N such that

n( n —1)>q>1 for n> N.
an+1

This implies that

. —(n+1)>g—-1>0 for n>N.

n+1
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Since the sequence {b,>, where b, = n for all n, satisfies the hypothesis of
part (a) of Theorem 6.1, > a, converges.

Now assume (b) so that a real g exists such that 0 < L< g < 1. There-
fore, a positive integer N, exists such that

n( & —1)<q for n> N,.
a, 4
This implies that

a
n—— —(n+1)<g—-1<0 for n>N,.
Ap s

This time {b,», where b, = n for each n, satisfies the hypothesis of part (b)
of Theorem 6.1 since b, '=n"" diverges. We conclude that Xa,
diverges.

Corollary (Modified Raabe’s Test). If > a, has positive terms, then

(a) lim (n( o l)) =L > 1 implies that ), a, converges

n—+o0 an+ 1
and
(b) lim(n( aa,, - 1)) =L <1 implies > a, diverges.
n+1

Proor. Exercise.

Remark 6.1. Examining the proof of the last theorem, we see that Raabe’s
test is really a corollary of Kummer’s test with the “testing” sequence {b,),
where b, =n for all n. We shall have occasion to use other testing
sequences after we study the natural logarithm.

ProB. 6.1. We saw that the ratio test fails to detect convergence or
divergence for the series Sn~2 Apply Raabe’s test and show that it
“works” for that series.

7. The Product of Infinite Series

In what follows, it will be convenient to use indices in our series whose
ranges are the nonnegative integers. Let

A=>a, and B= > b, (7.1
n=0 n=0

be convergent series. We wish to obtain a series whose partial sums tend to
their product 4B. We first perform some “formal” calculations. The
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product 4 B should be given by

(5 3

+ e (7.2)
We form the series > 5>_,c,, where
CO = aobo,
c,=ayb, + ab,,
c] = aob‘ + a‘bo + a,b (7-3)
2= 4Dy 10 T @30,

The ¢’s here are obtained by summing the terms marked by the lines in
(7.2) and are then summed.

Def. 7.1. If > a, and X b, are infinite series, then their product, sometimes
called their Cauchy product, is defined as > 5_c,, where for each n,

n
¢, = > ab,_y=ab,+ab,_,+ - +a,b, (74)
k=0

(if each of the indices in the two series to be multiplied ranges over the
positive integers, then we define > 5_ ¢, by putting

n
=D @b, _=ab,+ab,_+ - +a,b, (7.5)
k=1
for each positive integer n.) Note that

= > ab,_,= > a,_ b,  foreachn. (7.6)
k=0 k=0

Theorem 7.1 (Mertens’s Theorem). Let Y a, and 3 b, converge and let > a,
converge absolutely. If A = ¥%°_a, and B = >5_ob,, then

n=0

E_)Oc,,= AB, (1.7)

where >, _ocC, is the Cauchy product of > a, and >b,.

ProOF.* Write the respective nth partial sums of Y a,, 3 b,, and S¢, as
n n n
A,= > a, B,=>b, and T,= > ¢. (7.8)
k=0 k=0 k=0

*W. Rudin, Principles of Mathematical Analysis, Second Edition, McGraw-Hill, New York,
p. 65.
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We know that

lim4, =A4, limB,=B, and limA4,B,= AB. 7.9)
We wish to prove that limI'), = AB. Now
A,B,=ay,B,+aB,+ --- +a,B, (7.10)
and
I=cotc,+ - +g,
= agby + (aph, + a\by) + - - - + (apgh, + - - - + a,b)
=ayB,+ a;B,_,+ -+ +a,B,, (7.11)
so that
A,B,—T,=a,(B,— B,_))+ayB,— B, )+ - +a,(B,— By).
(7.12)

Since 3 a, converges absolutely, the partial sums of >|a,| are bounded and
an M > 0 exists such that

lay| + lay + - - +a,| <lag| +]a)| +|a + - - +]a,| < M
foreach n. (7.13)

Since {B,) converges, it is a Cauchy sequence. Let € > 0 be given. There
exists a nonnegative integer N such that

|Bm—B,,|<2LM for n>m> N. (7.14)

Using n > m > N, we have from (7.12),
A,B,-T,=a(B,—B,_ )+ -+ +a,_,(B,—B,)
+ayy1_m(By— Bp_1)+ -+ +a,(B,— By). (7.15)

Therefore, fixing m = N and taking n > N = m, we obtain for the sum of
the first n — m terms in (7.15) the inequality

|‘11(Bn -B,_)+ - +a,_y(B,— By )| <(la1| + -+ |an—N|)ﬁ

<M= =E£,
M2M 2
This and (7.15) imply
|Aan - rn| <% + |an+1—N(Bn - BN*I) + -0+ an(Bn - B0)|
for n>N. (7.16)

Since N is fixed, there are N terms in the sum on the right inside the
absolute value signs, regardless of n > N. Since Y a, converges

lim a = lim aq =-.-= lim a,=0.
no+oo MTI=NT S n+2=N n—>+o00 I

Because B, — B as n— + oo, we have for the second term on the right-hand
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side of (7.16)
lim |a,,,_ny(B,— By_)+ -+ +a,(B,— By)|=0.

n—+ o0

Accordingly (7.16) yields
n§w|Aan_ T,| < % <e foreach €>0.
This implies
lim(4,B, - T,) =lim(4,B,—T,)=0
and, therefore, that
lim _(4,B,-T,)=0.
This, because of (7.9), implies
imT, = lim[ 4,B, — (4,B,—T,)] =lim4,B, — lim(4,B, — T,)
= AB — 0= AB,
completing the proof.

ExaMpPLE 7.1. We apply the last theorem to prove that the function
exp : R—> R defined in Example 5.1 satisfies

exp x exp y = exp(x + y) for x€R and y€R. 7.17)
By the definition of exp x given in Example 5.1,
* n

expx = > % for x €R. (7.18)
n=0 "**

The series on the right converges absolutely for each x € R. By the last
theorem,

(s 2)s 2)-3
wrens=( 25 2 )= 2 0

where using a, = x"/n! and b, = y"/n! for each n, we have

n n xk yn-—k
Q,— alm_ = o A A
k§=:0 Kok kgo k! (n—k)!

_ 1 2 n! n—ky k

n! 2o
= % (y+x)"
(This follows from the Binomial Theorem.) Substitution in (7.19) yields
2 (x+y)

expxexp y = », =exp(x + ) foreach x €R. (7.20)

!
n=0 n:
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Theorem 7.2. In addition to satisfying equality (7.17), the function exp : R —>R
of Example 5.1 and the last example also has the following properties:

(a) exp0 =1,

(b) expx >0 for all x ER,

(c) exp(—x) = 1/exp(x) for each x ER,

(d) 1+ x<expx <1+ xexpx for x €R,

(e) expx>1,ifx>0and 0 <expx <1ifx<0,
) expl =e,

(8) x > y implies expx > exp y.

Proor. By the definition of exp0 and Example 5.1, (a) holds trivially. We
prove (c). Apply (a) and (7.17) to obtain

1 =exp0 = exp(x + (— x)) = exp x exp( — x). (7.21)
This proves that exp x # 0 for x € R and (c) follows. To prove (b), note that
expx=exp(%+%)=(exp%)2>0 for x eR.

The strict inequality on the right follows from exp x % 0 for x € R.
The proof of (d) is somewhat lengthy. For x € R,

from which we obtain

©
(expx) — 1= xngl xn! : . (7.22)
For each positive integer n,
1.1
n! =~ (n—1)!
which implies
x;‘l;l<(nx_:_l'v for x>0, n>1.
This implies that
® X1 x X1 x2
ngl — <n§=:|(n_l)!=1+x+j+-~-=expx for x> 0.
(7.23)
Because of (7.22) the inequality (7.23) yields
(expx) — 1 < xexpx, if x>0. (7.24)

Now, x > 0 implies that
x? x?
epr=l+x+§'—+~- >1+x+7>l+x.

This and (7.24) yield
1+ x<expx <1+ xexpx, if x>0. (7.25)
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Next take x < 0 so that —x > 0. From (7.25) we obtain
1 —x <exp(—x) <1-— xexp(—x) if x<O0. (7.26)
After multiplying through by exp x, this implies that
(1 - x)expx <1<expx—x
and, after some elementary manipulations, that
I+ x <expx <1+ xexpx if x<O0. (7.27)

Thus far, we proved that (d) holds for x # 0. If x =0, it is obvious that
the equality in (d) holds. This completes the proof of (d).

To prove (e), we use (7.25) from which it follows that if x >0, then
expx > 1. This implies that if x < 0, then

expx = N — <1 since —x>0.

exp(— x)
This completes the proof of (e). (g) is an immediate consequence of (e),
since

e* ™ >1 if x>y

Multiplying both sides by e’ > 0, we obtain (g).
We prove (f). Recall from Section II1.5 that

n

e= lim (1+%) (1.28)

n—>+ oo

and by the inequality III.(5.4) that
(1 + = ) 1+ 2 L if n is a positive integer. (7.29)

This implies

1+ 1) <1+
(1+3)

1 -1
n 7(—=27c—!=expl,

k=0

||M8

ie.,
(1+1/ n) <expl for each positive integer n.

Taking the limit on the left as n > + o0, we obtain

e= lim (1+%) <expl, (1.30)

n—>+ o

so that e < exp 1 holds.
We return to equality II1.(5.2) and observe that if m > n for the positive
integers m and n, then
(=50
! m

(1+l) =1+
m

b
]
x|
—_
|
3|
N—
—_
[
RYISI NN
N—
—_~
[
R“
3!
N—

S~~—
—_——~
|
w‘
o
—_

\Y%
+

M= TMs
x|~
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and, since II1.(5.9) holds,

> L(_ L), (j-k=1)
e>l+k§1 5 (1 m) (1 - ) if m>n. (731)
Here we fix n and note that the second sum on the right-hand side of this
inequality consists of n terms each of which is a product of at most n
factors. We take limits as m = + o0 in (7.31) and obtain
n n

e>1+ k§=:1 % = k§=:() % if n is a positive integer.

Here we take the limit on the right as > + oo to obtain

0
e>2%=expl.

This and the already proved inequality e < exp 1 give us (f). With this, the
proof of the theorem is complete.

ProB. 7.1. Prove: If r is rational, then expr = e¢” (Hint: first prove this for
the case where r is a nonnegative integer, then for the case where r is an
integer, etc.).

Pros. 7.2. Prove: If |x| < 1, then
0
+ Dx"
(1 - X) n§=:o )
Observe that the series on the right converges for |x| < 1 and diverges for

|x] > 1

ProB. 7.3. Prove: S%_(—1)"(n + 1)”'/2 converges and that the Cauchy
product of the series with itself diverges. Reconcile this with Theorem 7.1.

8. The Sine and Cosine Functions

Def. 8.1. We define the sine and cosine functions by means of the following
infinite series:

® 2n+] 3 5 7

: = — X X
Slnx—z(—)m—x—§+§— + -

S

foreach x€R. (8.1)

2 4 6

0 n 2n
cosx="§0(—l) (;n)' = 1—7+—'—a+ (8:2)
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Note that these series converge absolutely for each x € R (Prob. 5.2). We
must prove, of course, that the sine and cosine functions given by this
definition possess all the properties of their intuitive namesakes. This will
be done, in piecemeal fashion, in various parts of the book. But in this
development, information about these functions is limited to the definitions
above and their consequences.

Pros. 8.1. Prove: (a) sin0 =0, (b) cos0 = 1, (c) sin(— x) = —sinx, and (d)
cos(— x) = cosx for x €R.

Theorem 8.1. If x and y are real numbers, then

(a) sin(x + y) = sinx cos y + cosxsin y
and
(b) cos(x + y) = cosxcos y — sinxsin y.

ProoF. By Prob. 8.1, parts (a) and (b), the theorem holds if x =0 or y = 0.
We, therefore, assume that x # 0 and y # 0. It follows that

= kgo(— l)k@Txile , (83)

where x = 0. By the ratio test we see that this series converges absolutely.
By Theorem 7.1, we obtain

YR L VA R R

where for each n

ol C O
&= 2 aem O Ry

2k 2n—2k

_ xy
(=1’ 2 o @k + 1) (2n = 2K)!

x2ky2n+1 (2k+1)

=Y 2  @kF ) (2n+ =2k + )

Multiplying and dividing by (2n + 1)! and then multiplying by x, we obtain

(_ 1)” n (Zn + 1)'
XC,, (2n + 1)| 2 (Zk + 1) (2n +1- (2k + 1))'

K2k 124 1—(2k+1)

which can be written

(_1) S (2n+ 1 2k+1,2n+1—(2k+1)
xC, = (2n+l)'k0(2k+l)x 7 ' (®.3)
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In turn, this may be written

_ (- 2! 2n+ 1) i 2n+1-i
=TTy ,.=20 ( i )xy ' (8:6)
i odd

Now we multiply both sides of (8.4) by x and obtain

e 2]
sinxcos y = >, xC,. (8.7)
n=0
We interchange x and y in the above to obtain
o0
cosxsin y= > yD,, (8.8)
n=0

where each yD, is obtained from the corresponding xC, in (8.5) by
interchanging x and y. Hence,

(-1 . (2n+ 1)y2k+l 2n+1—(2k+1)

D =_——~ "’
IO T an+ 1 E\ k1)
(=n" 2n+ 1) 2n-2k 2k+1
" . 8.9
T@nE) S 0(2k+1)x Y (89)
Now we put j=n—k so that k=n—j and 2k+1=2n+1-2; and
note that for k € {0,...,n},j € {0, ..., n}. Then (8.9) becomes
(-n" & 2n+1 2 2n+1-2
PP = GaF Iy & (2n+l—2j)xy ‘ (8.10)
We observe that
2n+1 _(2n+1
2n+1-2j 2j
and substitute this in (8.10). It follows that
+(— 1) 2n + 1 2j i
2j,2n+ 1 =2
b, = (2n+1)'2( ) 4 '
The last expression may be rewritten
('—l)" ! 2n+ 1\ i 2n+1-i
YPn = Ty ,;,( i )xy ' &1h

i even

Adding (8.7) and (8.8) yields

[e <]
sinx cos y + cosxsin y = >, (xC, + yD,), (8.12)
n=0



8. The Sine and Cosine Functions 185

where for each n

xC, + yD,
(_1) ! 2n+1 2n+1—i ! 2n+1 2n+1—i
e 2( i ) +2( )y
zodd i even

- (_l) 2"+l(2n+l) 2n+1— 1
an g 2\ )Y

By the binomial theorem we see that

(_ "’ 21

Substituting this in (8.12) and using Def. 8.1 we obtain
= ( B )" 2n+1
sinx cos y + cosxsin y = 2 (—2—’1—4_—1)7(x + )
=sin(x + y). (8.14)

We prove (b) next. Calculations similar to the previous one yield

cosxcosy:kgo( 1)k EZk))' 2( 1)k E;k))’ goE"’ (8.15)

where for each n

(— 1) 2k, 2n—2k
Ey= T 2 (2k)x 22k (8.16)
Note that £, =1 and that (8.15) may be written

0
cosxcosy=1+ > E,. (8.17)
n=1
Let x # 0 and y # 0. Using the series (8.3), we obtain from Theorem 7.1 the
relation

L Sm)’ 2 " (2§< +)l)' 2 = (2§cy+)1)'

X

M8|

cy (8.18)

n

I

0

n

where for each n

Cr = (=D - (2n+2) 2k 20+ 1= (2k+1)

an+r2) &l +1)* 7
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Multiplying both sides by xy, we obtain

xyC/ = (=D z (2n+2)x2k+1 2n+2-(2k+1)

an+ 2 &\ +1)t 7

Put m = n + 1. This m is a positive integer and

P G~ -
9= gy 2, adh YT @)

Because of this, (8.18) yields

—sinxsiny = >, (—xpC,_)). (8.20)
m=1
Replacing m in (8.19) by n yields
(=",
—xyC" = ( n ) 2h+1) 20— (2k+1) 821
VG = T 2l (8:21)
Adding (8.17) and (8.20) yields
cosxcos y —sinxsin y =1+ > (E, — xyC,_)), (822)
n=1
where for éach positive integer n
p (=" & 2n\ 2k 2n—2k
En xnd—l - (271)' k§0(2k)x Y
’ 2n ) 2k+1,2n—(2k+1)
+ . 8.23
kgo(Zk + 1 x Y ( )
Reasoning as we did in the first part of the proof, we see that
” o __ (—])" 2 2n i2n—i_ ( )
E, = 9Cly = 3 (2= gy (824
Now using (8.22) and Def. 8.1, we obtain

cosxcos y —sinxsin y =1+ 2 ((; ))' (x +y)*"

2 ((;n))‘ (x + y)*"=cos(x + y).

The proof is now complete.

Pros. 8.2. Prove: If x €R and y €R, then

(a) sin(x — y) =sinxcos y — cosxsin y,
(b) cos(x — y) = cosxcos y + sinxsin y,

(c) sin’x + cos’x = 1.
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Pros. 8.3. Prove: If x €R, then |cosx| < 1 and |sinx| < 1

Pros. 8.4. Prove: If x €R, then (a) sin2x = 2sinxcosx, and (b) cos2x
= cos’x — sin’x = 2cos’x — 1 = 1 — 2sin’, and (c) sin* = (1 — cos2x)/2
and cos®x = (1 + cos2x)/2.

We proceed to obtain information about the sine and cosine functions
from their definitions as infinite series.

Theorem 8.2. (a) If 0< x <1, then sinx >0 and if —1< x <0, then
sinx < 0. (b) If 0< |x| <1, then [sinx — x| < |x|*/6. (c) If x ER, then
|sin x| < |x| and we have: If 0 < |x| < 1, then 0 < (sinx)/x < 1.

PrROOF. We begin with the series

2 (-1 (2n+ Nk (8.25)
where x # 0. Multiply both sides by —1 and obtain
_ sinx _ CnHl x> _nHlx"
2( D (2n +1)'— l+§,( D (2n+1)"
Hence,
Gl
_ Slnx = 2](_ ) +lm . (8.26)

We prove: If 0 < |x| < 1, then the infinite series on the right of (8.26) is
alternating. We begin by assuming 0 < |x| < 1 so that 0 < x? < 1. There-
fore,

1 n . . .. .
0<(x3)"" < (x?) if 0<|x| <1 andnisa positive integer.
This implies

x2n+2 x2n x2n

SQnE S S+ )

if 0<|x| <1 andnisa positive integer.

This proves that if 0 <|x| < 1, then the series in (8.26) is of the form

©_(=1"*'a,, where 0< a,,, < a, for each positive integer n. More-
over, as the reader can show by means of the ratio test, the above-
mentioned series is absolutely convergent. This implies that

0 S

AP Trr Ty PO
This completes the proof that the series on the right of (8.26) is alternating.
In the proof of Theorem 2.1 on alternating series we saw that the partial
sums {S,) of the alternating series were such that §, < § < §,, where § is
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the sum of the series. Accordingly, we have for the series on the right of
(8.26) that

2 4 : 2
Sz=%—x—<1—512x<sl=x— for 0<|x|<1. (827)

24 6
Since 0 < x?/4 < 1/4 and 1 — x*/4 > 3/4 for 0 < |x| < 1, it follows that
x> x® _ xS x2 x2 .3 x* _1
=T — = - | > .= = £ =
$2=% "2 6(1 4) ¢ g nd 0<% <g
if 0<|x|<1.
Therefore, by (8.27),
2 .
0<X <cp-8nx ol oy jf ocx <1
8 x 6
This implies that
0<1—Si%<1 if 0<|x| <L (8.28)

From this we conclude: (a) sinx >0if 0< x <1 and sinx <0 if —1< x
< 0. This proves (a). Returning to (8.27), we see that

- 2
'1 — S i<% if 0<|x|<1 (8.29)
so that
. |x[® .
|sinx — x| < == if 0<|x|<L

This proves (b).
To prove (c), we first use (8.28) to obtain

0<SIX 1 it o< <. (8.30)

From this we conclude that 0 < [sinx/x| < 1 and, therefore, that [sin x|
< |x|if 0 < |x| < 1. If |x| > 1, we have from Prob. 8.3 that [sinx| < 1 < |x|.
Thus, |sinx| < |x| for 0 < |x|. Since sin0 = 0 (Prob. 8.1), we obtain [sin x|
< |x| for x € R. This proves (c) since we have already proved (8.30).

Pros. 8.5. Prove: cosx > 0 if |x| < 1.
The remaining trigonometric functions are defined as follows:

Def. 8.2. The tangent and secant are defined as:

(a) tanx = sinx/cosx and
(b) secx =1/cosx if cosx # 0,

and the cosecant and cotangent as

(c) cscx =1/sinx and
(d) cotx = cosx/sinx if sinx # 0.
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Pros. 8.6. Prove:

(a) 1+ tan’x = sec’x if cosx # 0,

(b) cot>x + 1 = csc?x if sinx # 0,

(c) tan(x + y) = ((tanx + tan y)/(1 — tanx tan y)) if cos(x + y)# 0, and
cosxcos y # 0,

(d) cot(x + y) = ((cotx cot y — 1)/(cotx + cot y)) if sin(x + y) # 0,

(e) tan(2x) = ((2tanx)/(1 — tan%x)) if cos2x # 0, and cos x # 0,

(f) cot(2x) = ((cot’x — 1)/(2cotx)) if sin2x # 0.

9. Rearrangements of Infinite Series and
Absolute Convergence

We return to the discussion of absolute and conditional convergence.
As we saw,

+1-1, .1

converges conditionally. The sum is positive (why?). Let S be the sum of
the series in (9.1). Then

1 1 1 1 +
4 6 8 10
0<is= 1 —d HL otk ke
Adding, we have
0<3S=1+1-3+1+1-2+1+ L1+
This series has the same terms as the first one, but its terms are rearranged.
Thus, rearranging the terms of a converging series may change its sum. We
prove that this cannot occur with absolutely converging series (Theorem
9.1). We first make precise the notion of a rearrangement of a series
(Def. 9.1).

Intuitively, a rearrangement of a series > a, is a series > b, such that each
term of the first one occurs exactly once in the second and vice versa.

Def.9.1. Let f: Z, > 7, be a one-to-one correspondence on Z, and <a,) a
sequence. If (b,) is a sequence such that b, = ag,,, foreachn €Z , we call
it a rearrangement of {a,». The infinite series >b, is called a rearrangement
of the infinite series >a, when (b,> is a rearrangement of <{a,». The
function f is called the rearrangement function.

For example, the nth term of the infinite series (9.1) is (—1)"*'(1/n).
Define f: Z, > 7, as follows: ForkeZ, :

(1) If n = 3k — 2, define f(n) = f(3k — 2) = 4k — 3,

() If n = 3k, define f(n) = f(3k) = 2k,
() If n =3k — 1, define f(n) = f3k — 1) = 4k — 1.
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The sequence { f(n)) of positive integers is
{f(n))=<1,3,2,5,7,4,9,11,6, - - - ).

Hence,
<bn>=<af(n)>=<ls%’_%’%,%,_%,%,ﬁ’_%,~~->
and
0 0
S b= D= = d bt da b
n=1 n=1

Remark 9.1. Note that if the sequence (b,) = gy, is a rearrangement of
{a,, then the sequence <{a,» = {(b;-1,,» is a rearrangement of {b,).

Lemma 9.1. If the sequence <{b,) is a rearrangement of the sequence {a,y, k
is some positive integer, and f is the rearrangement function, then there exists
a positive integer j such that

{ay,ay ..., 4} C{by,by...,b,) for n>j.

’ n

PrOOF. Let n be an integer such that n > Jj> where
j=max( {70, f7@) L 7))
We have:
f7'y<j  for 1<i<k.
Hence,

(7', fTM R Sy S, ).

Since
@ =bry, G=bpigy s Ge=bpgy
it follows that
{ar,ay - a )y = {bry  bp-1ays -+ o5 b1y )
C{by,by...,b} C{by,by...,b,)
forn > j.

Theorem 9.1. If 3 a, converges absolutely, then all its rearrangements con-
verge to its sum.

ProOF. Let > a, converge absolutely and S = 3a,. Let 3b, be some
rearrangement of > a,. This implies (Def. 9.1) that the sequence (b, is a
rearrangement of the sequence {(ag,». By Lemma 9.1, if k is a positive
integer, then there exists a positive N such that

{ay,...,a} C{by,...,b,} for n> N. 9-2)

Now take € > 0. The series 3|a,| converges by hypothesis. By the Cauchy
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criterion for series, there exists an N’ such that
J
> lal<s if j>k>N 9:3)
i=k+1 2
The sequence (S, of partial sums of 3 a, satisfies

J J
1S,=8Sd=| 2 al< X lal<3. (94)
i=k+1 i=k+1
This implies that
Y P —S|<£ ‘. .
|S — S j_l)lr:lwij S, > for k>N (9-5)

Retain k > N’. We know that a positive integer N exists such that (9.2)
holds. Let <S,) be the sequence of partial sums of the rearrangement > b,
of Sa, and consider

S, — S for k>N’ and n> N.
Note that S, =3"_,b, and S, = 3*_,a,. Since n > N, (9.2) holds. If any
terms remain at all in S, — S, after cancelling, they are a’s whose indices
are greater than k. Since k > N’, the sum of the absolute values of these

terms is < a sum of the form 3 _, ,,|a,|. This because of (9.3) is < €/2.
By (9.4) this implies

|s,;—sk|<§ if n>N and k>N’

This and (9.5) yield

|s,;—S|<|S;—Sk|+lsk—sl<§+§=e for n> N.

But then lim S, = S. It follows that 35, converges to the sum S of >a,.
This completes the proof.

We recall that for x € R, we define x* and x~ as

x* =max{0,x} and x~ =min{0,x}. (9.6)
By Prob. 1.13.17,
x+=x+|x| and x_=x—|x| for xR
2 2
and, therefore,
xT+x " =x and x*—-x"=|x| for xeR. 9.7)

Theorem 9.2. A real series > a, converges absolutely if and only if each of
>a, and Fa, converges. Moreover, if the latter two series converge, then

2 a"= 2 a'l+ + 2 a’l_ (9.8a)

and

Sla=Sar—>a, . (9-8b)
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PROOF. Assume that > a,” and Ya, converge. Then

za: - zan_ = Z(a: —a,)= 2 |a,|-
But then 3|a,| converges and, therefore, 3a, converges absolutely. We
also have in this case that

Daf+>a =>(a +a7)=a,.
This proves (9.8).
Conversely, if > a, converges absolutely, >|a,| converges. From

2> =>(a,+|a,))=Da,+ > la,l
and
22‘1':_ = Z(an - |an|) = Ean_ 2 |an|’

it follows that 3 a," and Y a, converge. This completes the proof.

Theorem 9.3. If > a, converges conditionally, then X a," diverges to + co and
>a, diverges to — .

Proor. By hypothesis, Y a, converges but >|a,| diverges. Taking partial
sums, we have:

él at = % él (@ + la]) = %(é. ak) + %(é] |ak|) (9.9)
and
él a =5 él (@ — lal) = %(él ak) - %(é] Iakl). (9.10)

Since 3|a,| has positive terms and diverges, it diverges to + co. Thus (9.9)
and (9.10) imply that
1

(o o] o0 l
>Saf=sS+0=+0w and > a ==
k=1 2 k=1 2

S —o00= —o00.

Pros. 9.1. Prove: (a) If Sa, is a real series which is conditionally conver-
gent, then it has infinitely many positive terms and infinitely many negative
terms. (b) If 3 p, is the series whose terms are the positive terms of S a, (in
the order they appear in this sum) and 3¢, is the series whose terms are the
negative terms of Ya, (in the order they appear in this sum), then 3 p,
diverges to + oo and > ¢, diverges to — co.

Riemann proved the following remarkable theorem on conditionally
converging series.

Theorem 94. If Y a, is a real conditionally converging series, then for any
real number [, there exists a rearrangement >.b, of > a, such that b, = 1.
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Proor. Let 3 p, and 3¢, be respectively the series of positive and negative
terms of > a, where the terms of each are in the order in which they appear
in Ya,. By Prob. 9.1 we have

2 pa= (9.11a)
and

>t,= —oo. (9.11b)

Let / be a given real number. There exists a positive integer m such that
Sk=1Pc > . Let g(1) be the least such m. Then 1 < g(1). Since >t, =
— 00, there exists a positive integer m such that

m &)
> 4<I=2 P
k=g()+1 k=1
Let g(2) be the least such m. Then
&) &)
2t 2 4<l, (9.12)
k=1 k=g(l)+1
where g(1) < g(1) + 1 < g(2). If g(1) + 1 = g(2), this implies
&)
kzl Pt oy < L. (9-13)
If g(2) > g(1) + 1, (9.12) implies, by the definition of g(2), that
&) 8 &) g2)—1
2 at 2 w<I<Ep+ > 4. (9-14)
k=1 k=g()+1 k=1 k=g()+1

Using the convention for sums according to which

J
> x=0 if;is a nonnegative integer,

k=j+1
we can say that (9.14) includes the case g(2) = g(1) + 1. The first g(2)
terms of Ya, have now been given the arrangement p,, ..., p,,
Lty +15 -« + » Lyay- We write T, for the ith partial sum of the rearrangement.
We have
i &)
T,= lek if 1<i<g(l) and Tg(l)=k21pk’
k= =
T,=T,,,+ 2 4 if g(l)+1<i< g(2) sothat (9.15)
k=g()+1
&)
Ty =T+ 2 k-
k=g()+1

In terms of the T’s, (9.14) can be written

Tyay <1< Ty (9.16)
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Since T3y — Ty2) = — ly(2)» this implies that
0<l= Tz <~y = tya)|
and hence that
17— Tg(2)| |1 (2)| (9'17)
From the definition of g(1), it follows that
Tyry > 1. (9.18)

We continue with the rearrangement and define g(3) as the least positive
integer m such that

I— Ty < E Pk

k=g2)+1
and obtain g(l) <g2)<g®
83
T, + 2 < I< Ty, + > for g(2) <i<g(@).
k=gR)+1 k=g)+1

(9.19)

Now the first g(3) terms of the arrangement are p,, ... s Pecry o, (1) + 1
c o osly2)s Pe2y+1> - - - » Pg(3y - The corresponding partial terms 7; are given
by (9.15) and

T, =T, + 2 o if g(2)<i< g(3), so that

k=g)+1
9.20
&) ( )
Ty =Tey+ 2 P
k=g2)+1
This yields
T2y < T; < I < Ty, for g(2) <i<g(3) (9.21)
and, in particular, that
Ty2y < Ty3y- < I < Ty - (9.22)
This and (9.16) also imply Ty, < T, <1< Ty, _, for g(2) <i<g(3).

Accordingly, see (9.17), the partial sums T}, g(2) < i < g(3), satisfy
=TI <|l= Ty  <ltyn|  for g2)<i<g(3) (923)

and
1= Ty | < Ty = Toy—1 = Pesy = | Py | (9:24)
Continuing, we define g(4) as the least positive integer m such that
m
Tyn+ > %<l (9.25)

k=g3)+1
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We have g(1) < g(2) < g(3) < g(4), the rearranged terms after the g(3)th
being fyzy 415 -+« 5 Lycay - The corresponding partial sums 7; are

i

T,=T,s+ 2> 4 for g3)<i< g(4), sothat

k=g@)+]1
9.26
84) ( )
Ty =Ty ¥ 2 k-
k=g3)+1
This yields
T4y <I< T, < Ty, for g(3)<i<g(4), (9.27)
and, in particular,
Tyay <I< Tgay—1 < Ty - (9-28)

This and (9.22) also imply T3,y << T; < Ty for g3) < i< g4).
Accordingly, see (9.24), the partial sums 7}, where g(3) < i < g(4), satisfy
the relations

[l =T| <|I— Tyl <|pys|  for g(3)<i<g(¥) (929)
and
]l g(4)| < g(4) -1 Tg(4) g(4) |tg(4)| (9'30)

Proceeding inductively in this manner, we obtain a rearranged series with
partial sums 7, which satisfy the relations

|1 = T| < |ty if g(ny<i<g(n+1) ifniseven (9.31)
and
|1 = T| <|pym if g(ny<i<g(n+1) ifnisodd. (9.32)

Here g(n) < g(n + 1) for all n.

Since our original series converges conditionally (by hypothesis), it fol-
lows that p,(,, >0 and £,,, >0 as n—> + 0. From the inequalities (9.31)
and (9.32) we see that the rearrangement > b, of 3 a, is such that for its
partial sum sequence ¢ T,) we have T, >/ as n—> + oo. This completes the
proof.

Corollary. If all the rearrangements of a converging real series converge 1o its
sum, then the series converges absolutely.

PrOOF. Let Sa, be a converging series with sum S such that all its
rearrangements also converge and have sum S. If Ya, did not converge
absolutely, then by Theorem 9.4, there would be two rearrangements of the
series converging to different sums; this contradicts the assumption on
Sa,. Therefore, > a, converges absolutely.



196 IV. Infinite Series of Real Numbers

10. Real Exponents

Before beginning the next chapter it will be convenient to define real
exponents, that is, to deal with p*, where p > 0 and x is any real number.
Our approach is to use the nonterminating decimal representation of x (cf.
Example 3.1, Theorem II1.10.4 and Remark 3.2).
Let
x=N+.dd,... and y=M+.56,... (10.1)

be nonterminating decimals. We have x = limr, and y = lims,, where, for
each n, r, and s, are the respective n truncations of the decimals of x and y
in (10.1). By theorems on limits we have

x + y=Ilimr, +lims, = lim(7, + s,). (10.2)

The sum x +y is a real number and has a nonterminating decimal
representation
x+y=P+.A4,..., (10.3)

where P is an integer and A, is a digit for each k. Let (z,)> be the sequence
of truncations of this nonterminating decimal representation of x + y, so
that

z,=P+.AA,... A, for each n.
Note that in general r, + s, # z,. For example, consider 2= 1.99 ... and
1=.99....Let
r,=1+.99...9 and 5,=.99...9 for each n
n nines n nines

be the respective nth truncations of the nonterminating decimal representa-
tions of 2 and 1. We have

00 =1 and s,= ,

O TiL T

so that
n—1 nines
—————
r,+s5,=3-2(100")=2+.99...98,
whereas the nonterminating decimal representation of 2+ 1 =3 is

2+1=3=2+99....
The nth truncation of this representation is
10" -1 1
z,=24+.99...9=2+ T =3—W
and we see that here r, + s, # z, for any positive integer n. It is clear,
however, that lim(r, + s,) = limz, since the limit of each side of the
equality is x + y. In general, we have

x+y=lim(r, +s)=N+M+ lim > (d+38)107% (104)
n— °°k=l
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We can now define p*, where p >0 and x € R. We first treat the case
p>1. Let x=N+ .dd, ..., where the decimal on the right is non-
terminating, and let {r,) be the sequence of its truncations. We have

N<r,<N+1 for all positive integers n; (10.5)
p~, p™ pV*" are defined for rational exponents; and
pY < pn< pV*'  foreachn. (10.6)

It follows that the sequence {p'") is bounded from above. Since it is also
monotonically increasing (recall that p > 1 and the sequence <r,,) is increas-
ing), this sequence converges. If 0 < p <1, then the sequence {p") is
monotonic decreasing and

p¥ti<pm<p"  foreachn. (10.7)

It follows that here too { p™) converges. We now define:

Def. 10.1. If p >0 and x are real numbers, then we define the function
E,:R—>R as
Ep(x) = n_l)ier p (10.8)

where for each positive integer n, r, is the nth truncation of the non-
terminating decimal representation of x. We also define

Ef(x)=0 if x>0 (10.9)

Remark 10.1. It follows from the remarks preceding this definition that the
limit in (10.8) exists in R. Therefore, E,(x) is defined for each x €R. As an
example, we prove: If p > 0, then E,(0) = 1. By Def. 10.1, we must use the
nonterminating decimal representation of 0. This is,

0=—1+99.... (10.10)

The nth truncation of the decimal on the right is

- 100 =1 0-a
=149 .9=-1+ g 107", (10.11)
n nines

Hence (Prob. I11.8.5),
E0)= lim p~""= lim (p~")" =1

n—>+ o n—+

Pros. 10.1. Prove: E (x) =1 for each x € R.
Pros. 10.2. Prove: If p > 0, then E (1) = p.

Pros. 10.3. Prove: If p > 0, then E,(x) > 0 for x € R (Hint: note (10.6) and
(10.7)).
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Pros. 10.4. Prove: If p > 0 and ¢ > 0, then E,(x)E (x) = E, ().
PrOB. 10.5. Prove: If p > 0, then E,-(x) = E,(x)~".

Theorem 10.1. If p, x and y are real numbers and p > 0, then
E,(X)E,(y) = E,(x +y). (10.12)

PrROOF. Let x=N +.did,... and y = M +.§,8, ... be the nonterminat-
ing decimal representation of x and y and {r,», {s,), their respective
sequences of truncations. Since (p”) and (p*) converge (see remarks
preceding Def. 10.1), the definition of E,(x) and E,(y) implies that

lim p"** =lim p"p* = lim p"lim p* = E,(x)E,(y).-  (10.13)
It remains to prove that

lim p™* = E (x + y). (10.14)

However, since the sequence {z,) of truncations of the nonterminating
decimal representation of x + y, in general, differs from the sequence
{r, +s,> (see remarks in the opening paragraph), (10.14) is not obvious.
We note that since r, < x, s, < y, we have r, + 5, < x + y for all n. Since
x + y =limz, = supz,, it follows that

r,+ s, <supz, for all n. (10.15)
Consequently, to each n there corresponds an m such that
r,+s,<z,<supz,=x+ y. (10.16)
For p > 1, this implies that
prtn<p?< E/(x+y)  foreachn. (10.17)

Thus, for p > 1, the sequence ( p"** is bounded from above. Since it is
also monotonic increasing (explain), it converges. From (10.13) and (10.17)
we obtain

E,(X)E,(y) =lim p™** < E (x + y) for p>1. (10.18)
Now, for each n,
z, <x + y=1lim(r, + s5,) = sup(r, + s,). (10.19)
Hence, for each n, there exists an m such that
z, <r,+s,.
It follows that if p > 1, then
pr<p™tom=pmp< E(x)E,(y)  foreachn.
This implies that for p > 1,
E,(x +y)=lim p* < E,(x)E,(y). (10.20)

This and (10.18) imply (10.12) for the case p > 1. If p =1, then (10.12)
holds trivially (Prob. 10.3).
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As for the case 0 < p < 1, we note that here p_1 > 1. Hence, by what
was already proved

Ep—l(x)Ep—l(y) = Ep-u(x +y) if 0 < P <1 (1021)
By Prob. 10.5, this yields
E N (0)E ' (y)=E '(x+))

and, therefore, taking reciprocals, we find that (10.12) holds in this case
also. This completes the proof.

ProB. 10.6. Prove: If p > 0, then E,(— x) = E,(x)™' = E,-«(x).
Pros. 10.7. Prove: If p > 1, then E,(x — y) = E,(x)/ E,().

Pros. 10.8. Prove: If p > 1, then (a) x > 0 implies E,(x)>1 and (b) x <0
implies 0 < E,(x) < L.

Pros. 10.9. Prove: If 0 < p <1, then (a) x > 0 implies that 0 < E,(x)<1
and (b) x <0 implies that E,(x) > 1.

Pros. 10.10. Prove: (a) If p > 1, then the function E, is strictly monotoni-
cally increasing; (b) if 0 <p <1, then the function E, is strictly mono-
tonically decreasing.

Pros. 10.11. Prove: If p > 0 and r is rational, then for each x € R, we have
E,(rx) = (E (x))'. In particular, prove: If r is rational and p >0, then
E »(r)=p" (Hlnt first carry out the proof for the case where r is a
nonnegatlve integer, then for the case when r is an integer, etc.).

Remark 10.2. We noted in the last problem that if p > 0 and r is rational,
then E,(r)=p". Thus, if r = m/n, where m and n are integers and n > 0,
then E »(r) = E,(m /n)= (\/_ ). Now let r have the nonterminating deci-
mal representatlon r=N+.dd,... and let {(s,> be the sequence of
truncations of the decimal representation of r. From E,(r) = p” and Def.
10.1 it follows that

p™/"=p"= lim p* (10.22)

k—+ o0
If x is irrational, we define p* = E,(x). Thus, for x irrational, our interpre-
tation of p* is

p*= lim p"=E/(x), (10.23)

n—>+ oo

where r, is the nth truncation of the nonterminating decimal representation
of x. By Theorem 10.1, we have

pp’ =p** for p>0 (10.24)

for real x and y.
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Remark 10.3. We list all the results obtained thus far for the function E
and express them in terms of the notation E,(x)=p*. We have: If p >0
and x = N +.d\d, . . ., where the decimal on the right is nonterminating
and r,= N +.d\d, . . . d, is, for each n, the truncation of this decimal, then

@) p*=1lm,,, ,p™

(b) p°=1,p'=p,

() 0*=0if x >0,

(d) p>0and g >0imply (pg)* = pg",

© (p Y =1/p*=p7,

® p*/p"=p""

(® p>1 andx>0implyp"> I;p>1and x <0imply 0 <p* <1,

(h)0<p<land x>0 imply 0<p*<1; 0<p<1 and x <0 imply
pr>1

(1) The result in Prob. 10.10 can be expressed as: p > 1 and x, < x, imply
0<p<p™ 0<p<I1andx, < x,imply p*' > p*2> 0.

() If ris rational, then p™ = (p*)". (In the next theorem this is extended to
the case where r is any real number.)

Pros. 10.12. Prove: If p >0, ¢ > 0, then for x ER, p*/q* = (p/q)".
Pros. 10.13. Prove: If 0 < x; < x, and y > 0, then x{ < x3.

Theorem 10.2. If p, x and y are real numbers and p > 0, then
Py =p" (10.25)

PrOOF. The conclusion is obvious if x = 0 or y = 0. Suppose that x = 0 and
y # 0. We first consider the case (a) p > 1, x >0. Let y=N+.dd, ...,
where the decimal on the right is nonterminating and let <{r,> be its
sequence of truncations. By Remark II1.10.2

r,<y<r,+107" for each n
and, hence,
xr, < xy < xr, + x107".
It follows that
(p,\')’n=pxr,, <pxy < pxr,,+x10 _erPXIO "
=(P)"(p)"°". (10.26)

We have

Lm (p*)"=(p*Y (10.27)

and

lim (p*)"(p™)"* "= (p*Y1=(p)" (10.28)

n—>+ o0
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These two limit relations together with (10.26) and the sandwich theorem
imply that

pxy= lim (pX)rn= (pX),V

n—>+ oo

in case (a). In case (b) p > 1, x <0, we have —x > 0. From what was
proved in case (a), we obtain

(p~*Y=p"
which implies (1/p*y = 1/p*, and, hence,
1 _ 1
Py PY
Thus, (10.25) holds for case (b) also. We leave the remaining cases (c)
0<p<1,x>0,0<p<1, x <0 for the reader to prove.

Remark 10.4. The series

0

(=3 L, p>1 (10.29)

n=1
(Example 3.2) was seen to converge for p > 1 and p rational. The reader
can now use the properties of real exponents to demonstrate the conver-
gence of this series for the case p > 1, where p is real.



CHAPTER V
Limit of Functions

1. Convex Set of Real Numbers

In Chapter III we dealt with limits of real sequences. These are real-valued
functions whose domains are essentially Z, or Z,. In this chapter we treat
limits of real-valued functions of a real variable whose domains are not
necessarily confined to Z, or Z,. Of special interest are functions whose
domains are intervals.

Pros. 1.1. Prove: The function f:R—> R, where

f(x)=ﬁ)—c—| for xeR

is a one-to-one correspondence between R and the open interval (—1; 1)
whose inverse is g, where

g0 =12 for |yl<1, yewr

Iyl
Accordingly, R and the open interval (—1; 1) are equipotent (Def. I1.10.5).

Pros. 1.2. Prove: If a, b, ¢, d are real numbers such that a < b and ¢ < d,
then the function f: (a; b)) >R, where f is defined as
fxy=c+ 2=
is a one-to-one correspondence between the intervals (a; b) and (c; d). Its
inverse is g:(c;d)—> (a; b), where
b— .
g(y)=a+d_i(y—c) for y€(c;d).

Consequently the intervals (a; b) and (c; d) are equipotent.

(CJ (x—a) for x € (a;b),
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ProB. 1.3. Prove: If a €R, b €R (a < b), then the set R of real numbers
and the interval (a; b) are equipotent.

Intervals of real numbers can be characterized as convex sets of real
numbers.

Def. 1.1. A subset S CR is called convex if and only if x, € S, x, € S,
x,; < x, imply [x,,x,] C S.

ProB. 1.4. Prove: If S is a family of convex subsets of R, then its
intersection (]S is convex.

Pros. 1.5. Prove: If I is an interval in R, then 7 is convex.

ProB. 1.6. Prove: (a) The empty set and any singleton set in R are convex
sets; (b) if S is a convex subset of R containing at least two members, then
S is an interval.

ProB. 1.7. Prove: If a and b are real numbers such that a < b, then
Xx € (a; b) if and only if there exists exactly one ¢ such that 0 < ¢z < 1 and
x=(1—1t)a+ 1b.

2. Some Real-Valued Functions of a Real Variable

In Chapter II we already defined some real-valued functions of a real
variable. The notion of a polynomial on R was defined in Def. I1.8.1.

ExaMPLE 2.1 (Rational Functions). A rational function on R is a function R
defined by the following means. Let P and Q be polynomials and Q not the
zero polynomial,

R(x)= ﬁ—l for x €R suchthat Q(x)+#0. 2.1

2(x)

ProB. 2.1. Prove: (a) Every polynomial is a rational function, (b) the
rational function R, where

R(x)= for xeR, x#0

1
x
is not polynomial.

EXAMPLE 2.2. If p > 0, the function E,:R—>R defined in Def. IV.10.1 is a
useful function. In Remark IV.10.2 we introduced the notation

P’ =E,(x) for x €ER. (2.2)



204 V. Limit of Functions

Of special importance is E,, which we often write simply as E. Thus,
E(x)=e" for x eR. (2.3)
By Prob. IV.7.1, we have:
expr=e’" = E(r) for rational r, (2.4)

where expx is defined in Example IV.5.1. Note, since e > 2, we have
e*>1forx>0,and that 0 < e* <1 for x > 0.

ExampLE 2.3 (Hyperbolic Sine and Cosine). The hyperbolic sine and cosine
functions, abbreviated respectively as sinh and cosh, are defined as

sinhx = fi—_ig , coshx = ex+—2e_x for xeR. (2.5)
Clearly,
sinh0=0 and cosh0O=1. (2.6)

ProB. 2.2. Prove: If x €R, then coshx > 1.
Pros. 2.3. Prove: (a) sinh(— x) = —sinh x, (b) cosh(— x) = cosh x.
ProB. 2.4. Prove: If x > 0, then sinhx > 0 and if x < 0, then sinhx < 0.

Pros. 2.5. Prove: If x €R, y €R, then

(a) cosh(x + y) = cosh x cosh y + sinh x sinh y,
(b) sinh(x + y) = sinh x cosh y + cosh x sinh y,
(c) cosh?x — sinh% = 1.

ProB. 2.6. Prove: If n is an integer, then

(cosh + sinh x)"= cosh nx + sinh nx for x €R.

Pros. 2.7. Prove: If x €R, then

(a) sinh2x = 2sinh x cosh x,
(b) cosh2x = cosh?x + sinh?x = 2cosh?x — 1 = 1 + 2sinh’x,
(¢) sinh?(x/2) = (coshx — 1)/2 and cosh®x = (coshx + 1)/2.

ProB. 2.8. We define hyperbolic tangent, hyperbolic cosecant, and hyperbolic
cotangent, written respectively as tanh x, csch, coth, by means of

(a) tanhx = z—io% , x€ER, (b) cschx = sinlhx if x#0.
(2.7
() sechx=—L_ xeR (¢ cothx=SERX i xxp

(2.8)
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Prove: (a) 1 — tanh?x = sech?x. (b) coth’x — 1 = csch’x for x € R. (c) tanh 0
=0,sech0=1.

PrOB. 2.9. Prove: (a) —1 < tanhx < 1. (b) If x > 0, then cothx > 1 and if
x <0, then cothx < —1. (c) 0 <sechx < 1.

ProB. 2.10. Prove: The hyperbolic sine function is strictly monotonic
increasing.

Pros. 2.11. Prove: The hyperbolic cosine function is strictly monotonic
increasing on [0, + o0) and strictly decreasing on (— o0, 0].

Def. 2.1. A function f:R—R is called an even function if and only if
f(—=x) = f(x) forall x €R. (2.9)
A function f is called an odd function if and only if
f(—x)=—f(x) forall x €R. (2.10)

Thus, the hyperbolic cosine function and the cosine function are exam-
ples of even functions, whereas the hyperbolic sine function and the sine
function are examples of odd functions.

ProB. 2.12. Prove: The hyperbolic tangent and cotangent are odd func-
tions.

Remark 2.1. Let f:R—>R be a real-valued function of a real variable. The

function g defined as

J(x) + f(—x)
2

g(x)= foreach x€R

is even, and the function A defined as

x)—f(—x
h(x) = M—) foreach x €R
is odd, as can be checked. Since f(x) = g(x) + h(x) for each x ER we see
that any real-valued function of a real variable can be written as the sum of

an even and an odd function.

Pros. 2.13. Prove: (a) The product of two even functions is even; (b) the
product of two functions one of which is even and the other is odd is an
odd function; (c) the product of two odd functions is an even function.

ExampLE 2.4 (Distance to the Nearest Integer). We define
{x>* = the distance of x €R to the integer nearest x. (2.11)
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In the literature this is sometimes written as {x}. Since the latter notation
conflicts with the notation {x} = singleton set whose only member is x, we
prefer to use the notation in (2.11). We have, [x] < x <[x] + 1, where [x] is
the greatest integer < x, and that the respective distances of x from the
integers [x] and [x] + 1 are x — [x] and [x] + 1 — x. We have

(x>*=min{x —[x], [x] +1—x} foreach x€R. (2.12)
We recall (Prob. 1.13.17) that

min{a,b} = i+—b_2l"—_—l-’—| for a€R, bER. (2.13)
This implies that in terms of the greatest integer function, we have (explain)
O*=3—-|3-x+[x]| for xER (2.14)

Pros. 2.14. Prove: ([x]+i>* =1 forx €R.
PRrOB. 2.15. Prove: {x + 1>* = (x)>* for x €R.
ProB. 2.16. Prove: 0 < {x)* <1 for x €R.

For the graph of the nearest integer function see Fig. 2.1. It is an
example of a periodic function.

Def. 2.2. A function f:R—>R is called periodic if there exists a real number
a # 0 such that
f(x + a) = f(x) foreach x €R. (2.15)

The number a is called a period of the function. The least positive period is
called the fundamental period or the period of the function.

Note that a constant function has any nonzero number as a period.
Pros. 2.17. Prove: If f:R—>R is periodic and a is some period of f, then
any nonzero integral multiple na of a is also a period of f. Thus, a periodic

function always has some positive number as a period.

Hr

&b

mL

Figure 2.1
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Pros. 2.18. Prove: (a) The period of the function { >* is 1. (b) Also prove
that it is an even function.

3. Neighborhood of a Point. Accumulation Point
of a Set

We wish to extend the notion of limit to functions whose domains are
subsets of R. Before doing this it will be convenient to introduce the notion
of a neighborhood of a point of R or of a point of R*.

Def. 3.1. Let a €R. By an e-neighborhood of a, we mean the set N(a,¢)
defined as

N(a,e)= (x ER| |x — a| < e}, (3.1

where € is some positive real number. By a deleted e-neighborhood of a we
mean the set N*(a,€), where

N*(a,e) = {x ER|0 < |x — a| < €}. (32)

We never use the notation N(a,€) or N*(a,¢€) unless € > 0.

It is clear that

N(a,e) =(a— € a+e). 3.3)
N*(a,e) = N(a,€) — {a}. 34
N*(a,e) = (a— € a)VU (a;a + ¢). 3.5)

Pros. 3.1. Prove: If a and b are real numbers such that a < b, then (see
Fig. 3.1).

N(a;b,b;a)=(a;b). (3.6)

ProB. 3.2. Prove: If a € R and € > 0, then the set S, where

S={ain_}_le|nel+}, 3.7)

is a subset of N*(a,¢€). Thus, N(a,¢) is not empty and, as a matter of fact,
contains infinitely many points.

(a + b)2

Figure 3.1
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Theorem 3.1. If x, €R and N(xy,¢,), N(xy,¢€,) are e-neighborhoods of x,,
then there exists an e-neighborhood N(x,€) of x, such that

N(xg,€) T N(xg,€)N N(xg,6). (3.8)

ProoF. By hypothesis, €, >0 and €, > 0 and each is in R. Let
€ =min{e¢,¢,}.
We have 0 < € < ¢, and 0 < € < ¢,. Use this €. Assume x € N(xj,€). We
obtain
|x — xol <e<e and |x— x| <e<e,.
This implies that x € N(x,,€,) N N(x,,€,). This proves (3.8).

It is also useful to consider neighborhoods of + co.

Def. 3.2. By a neighborhood of + co, written N(+ o0), we mean a subset of
R* of the form

N(+w)={x€ER*|x> B}, (3.9)

where B is some real number. Similarly, a neighborhood of — oo, written as
N(— ), is a subset of R* of the form

N(—o)={x€ER*|x < B}, (3.10)
where B is some real number. Clearly,

N(+o)={+00} U(B;+x) (3.11)
and

N(-o0)={—00} U(—00;B), (3.12)

where B € R. Deleted neighborhoods of = oo, written as N*(* ), are
defined respectively as

N*(+w0)={xER|x> B} =(B; +x) (3.13)
and

N*(—o0)={x ER|x < B} = (—o0; B), (3.14)
where B € R. These are subsets of R.

Def. 3.3. If x, € R, then by an e-neighborhood of x, from the right, written as
N, (xq,€), we mean a set of the form

N, (xg,€)=[X0,xo+ €)= {x ER|xp< x < xp+¢€}. (3.15)

Dually, by an e-neighborhood of x, from the left, written as N _ (x,,€), we
mean the set

N_(x0,€)=(x0—e,x0]={x€R|x0—e<x<x0}. (3.16)
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These are called one-sided neighborhoods. Corresponding to them we have
deleted one-sided neighborhoods N* (x,,€) and N* (x,,¢€), where

N% (X0,€) = (Xp;Xo+ €)= {x ER|xo < x < x¢ + €} (3.17)
and
N (x0€) = (X9 — € X0) = {x ER| x5 — € < x < xp}. (3.18)

Remark 3.1. A neighborhood of + oo can be viewed as a neighborhood of
+ oo from the left and a neighborhood of — e as a neighborhood from the
right of — oo, respectively.

Pros. 3.3. Prove: If L € R* and N}¥(L) and N3(L) are deleted neighbor-
hoods of L from the same side, then there exists a deleted neighborhood
N*(L) of L, from that side, such that

N*(L) C N(L) N N¥(L).

We will need the notion of an accumulation point of a set S CR.

Def. 3.4. An accumulation point, in R, of S CR is a point x, € R such that
each deleted e-neighborhood N*(x,,€) of x, contains points of S; that is,
such that N*(xy,e)N S# @ for all e >0. When there is no danger of
confusion, an accumulation point x, €ER of § CR will be referred to
simply as an accumulation point of S.

ExampLE 3.1. Let
A={1,3,5,... )= {%’nisapositiveinteger}.

The point 0 is an accumulation point of A. For, given N*(0,€), where € > 0,
there exists an integer m such that 0 < 1/m < € and hence 1/m € N*(0,¢).
Since 1/m € A4 also, it follows that

N*(0,e)N A +0Q
for every € > 0. Note that 0 & 4.

Remark 3.2. The set of all accumulation points of a set S C R is called its
derived set and is written as S’.

ProB. 34. Let S={n+ 1/m|n and m are integers and m > 0}. What is
the derived set S’ of $? Does S’ C S hold?

Pros. 3.5. Let a €R and b €R. (a) Prove (a;b) =[a,b], (b) [a, + )
= [a, + o).
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Remark 3.3. There exist subsets of R having no accumulation points. For
example, let x, € R, then 4 = {x,} has no accumulation points (explain).

PRroB. 3.6. Prove: The set Z of integers has no accumulation points.

Remark 3.4 (Extended Accumulation Points). When a set S CR is not
bounded from above, then for each B € R, there exists x, € S such that
x, > B. In terms of neighborhoods of + oo, this states that each deleted
neighborhood of + oo contains points of S. In this sense, although + o is
not an element of R, it may be viewed as an accumulation point of S. We
speak of + co as an extended accumulation point of S. Similarly, if S C R is
not bounded from below, — o0 may be thought of as an accumulation point
of S and is referred to as an extended accumulation point of S. Thus, + oo
are called extended accumulation points of a set S, under appropriate
conditions on S. When no reference is made at all as to whether the
accumulation point we are dealing with is an extended one or not, we will
mean an accumulation point in R referring to it as a real or finite
accumulation point.

Remark 3.5 (Real, One-Sided Accumulation Points). If S C R, then x, €R
is an accumulation point (in R) of S from the right if and only if each
deleted e-neighborhood (x; xy + €) of x, from the right contains points of
S. Dually, x, € S is called an accumulation point of S from the left, if and
only if each deleted e-neighborhood (x, — €, x,) of x, from the left contains
points of S. Such accumulation points are called one-sided accumulation
points.

For the bounded open interval (a; b), a is an accumulation point of (a; b)
from the right and b is an accumulation point of (a; b) from the left.

Clearly, a one-sided accumulation point of a set is also an accumulation
point of the set, but the converse does not hold.

Theorem 3.2. If S C R, then xy, € R is an accumulation point of S if and only
if each e-neighborhood N(x,,¢€) of x, contains infinitely many points of S.

PROOF. Assume that each N(x,,¢€) of x, contains infinitely many points of
S. Let N*(xq,€¢’) be some deleted e-neighborhood of x,. Now {x,} U
N*(xo,€) = N(xy,€) is an e-neighborhood of x, and contains infinitely
many points of S. This implies that N*(x,,€’) = N(xq,€’) — {x,} contains
points of S. Thus, each deleted e-neighborhood N*(x,, €') contains points of
S. Therefore x, is an accumulation point of S.

Conversely, suppose x, is an accumulation point of S. Suppose that there
exists some N(xy,¢,) of x, exists containing at most finitely many points of
S. Since x, is an accumulation point of S, N*(x,,€,) contains some points
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of S. Since
N*(xo,e,) C N(xp,€),

we see that N*(x,,€,) contains at most finitely many such points. Take the
set N*(xy,€;) N S. This set is not empty and consists of points x,, . . ., x;,
where k is some positive integer. Consider the real numbers

d, =[x, — x|, dy=[x;— xq, - . ., d =[x, — X

Each d, is a positive real number and the set {d,, ..., d,} is a nonempty
set of positive real numbers. Let

€ =min{d,, ..., d, }.

We have € > 0. Now, consider N*(x,,€’). If x € N*(x,,€’), then
0<|x—xo| <€ < d =|x;— x| for jE€(1,2,...,k)}.
Thus, x differs from x, . .., x, and is not in N*(x,,€’) N S. This implies
N*(xp,€)N S=¢

and, hence, that the deleted e-neighborhood N*(x,,€’) contains no points of
S. This contradicts the assumption that x, is an accumulation point of S.
Hence, we must conclude that each e-neighborhood N(x,,€) of S contains
infinitely many points of S. This completes the proof.

Theorem 3.3. If S CR, then x, is an accumulation point of S if and only if
there exists a sequence {x,) of distinct points of S such that lim,_,, x,
= XO.

PrOOF. Suppose first that there exists a sequence {x,» of distinct points of
S such that lim x, = x,. Let N(x,,€) be some e-neighborhood of x,. There
exists an N such that if n > N, then |x, — x| < e. For at least one n > N,
n, say, we have x, € S and x, # x, (otherwise x, = x, holds for all n > N
and the points of {x,) are not distinct). This implies that x, € N*(x,,€) N
S. Thus, for each € > 0, we have N*(xy,€) N S # @. It follows that x, is an
accumulation point of S.

Conversely, let x, be an accumulation point of S. There exists x; € S
such that x; € N*(x,,1). Take €, =1. N(xy,4) contains infinitely many
points of S. Hence, there exists x, € § such that x,# x,, x, # x; and
X, € N(xp,4). We have x, € N*(xp,3) and x, 7 x;. We continue this
procedure inductively. If for some positive integer n there exist distinct
Xy ..., X, in S such that x; € N*(x,1/j) for jE€{1,...,n}, then take
€,.1=1/(n+1) and N(x,,1/(n+ 1)). There exists a point x,,, € S dif-
fering from xg,x,, ..., x, such that x,,, € N(xy,1/(n + 1)) (why?). We
see that x,,; € N*(xy, 1/(n + 1)) and that it differs from x,, . .., x,. The
sequence {x, constructed in this manner consists of distinct elements of S.
Since |x, — x| < 1/n for each n, it follows that lim x,, = x,. This completes
the proof.
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Pros. 3.7. Prove: If x, €ER, then there exists a sequence 7, of rational
numbers such that r,—> x, as n— + 0o and there is a sequence {c,) of
irrational numbers such that ¢, > x, as n > + o0.

ProB. 3.8. Prove: f SC T CR, then S'C T".

ProB.. 3.9. Suppose S CR. Prove: (a) + oo is an extended accumulation
point of S if and only if there exists a sequence {x,» of distinct points of S
such that lim x, = + oo. (b) State and prove an analogous criterion for — co
to be an extended accumulation point of S.

4. Limits of Functions

We recall that a sequence {x,» of real numbers converges with L = lim x,, if
and only if for each € >0, there exists an N such that if » > N, then
|x, — L| < e. We formulate this in terms of the notion of neighborhood.

A sequence {x, is a function whose domain is Z . Let f be the function
such that f(n) = x, for each n € Z, . We have Z, = (f). Since Z, is not
bounded from above, we can think of + oo as an (extended) accumulation
point of Z, = D(f). The condition n > N becomes n € (N; + ) N D(f),
and the condition |x, — L| < € becomes f(n) = x, € N(L,¢), the last being
an e-neighborhood of L. Thus, we have the formulation: {x,) converges
with L = lim x,, if and only if for each e-neighborhood N(L,¢) of L, there
exists a deleted e-neighborhood N*(+ o0) = (N; + o0) of + oo such that

n€ N*(+o0)NAD(f)=(N;+0)NZ,,
implies that
f(n)=x, € N(L,¢).
Finally, this can be formulated as follows: L = lim,_, , x, if and only if

for each given e-neighborhood N(L,¢€) of L there exists a deleted neighbor-
hood N*(+ ) of + oo such that

f(N*(+0) N Z,)C N(L,e).
Below, in Def. 4.1, we extend the definition of limit to functions that do

not necessarily have Z, as their domain of definition. This is general
enough to accommodate the cases where the limit is + co.

Def. 4.1. Let f be a real-valued function of a real variable and a € R*. We
say that f approaches L € R* as x approaches a or that f has limit L as x
approaches a and write

tim,f() = L (1)
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if and only if: (1) @ is an accumulation point of 9D(f) (possibly in the
extended sense) and (2) for each given neighborhood N(L) of L there exists
a deleted neighborhood N§{(a) of a such that

J(Nt(a) N 9O(f)) € N(L). (42)
Sometimes we also write f(x)—> L as x —>a for lim_, f(x)= L. If L €R,
then we say that f has a finite limit as x approaches a.

In this definition we use deleted neighborhoods of a to ensure the
independence of the limit of f as x = a from the value that f has at a (if it is
defined there at all).

Remark 4.1. In Def. 4.1, there are three possibilities for a: a ER, a = + o0,
or a = — oo. Similarly, there are three possibilities for L. Hence, there are
altogether nine cases for the pair (a,L). We detail some of these cases
below and leave the others for the reader.

Def. 4.2(a). Case of Def. 4.1 where a €R, L €R. In this case f(x)—> L as
x — a means: For each e-neighborhood N(L,¢€) of L, there exists a deleted
8-neighborhood N*(a,8) of a such that if x € N*(a,d) N D(f), then f(x)
€ N(L,¢). We translate this from the neighborhood terminology into the
“language” of inequalities below:

Let a €R, L €R. We write lim,_, ,f(x) = L (where a €R, L €R) if and
only if for each € > 0, there exists a § > 0 such that

x€D(f) and 0<|x—a|<8 (4.3)
imply
|f(x)— L|<e 4.4)
See Fig. 4.1.
yA
L+e
f&x) J;
Given N(L) /T :
L V!
L-e i
R
b
o
a-46 a x (;+6 ;

there exists N*(a)

Figure 4.1
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ExAMPLE 4.1. We prove:
lim (2)c2 - x)=15. (4.5)

x—3
Here, f(x)=2x>—x and we take D(f)=R. It is clear that 3 is an
accumulation point of R = 9( f). We do an analysis first. We wish to prove
that if € > 0 is given, then there exists a § > 0 such that if 0 < |x — 3| < §,
then

|f(x) — 15| = [2x* — x = 15| = |(2x + 5)(x = 3)| = [2x + 5||x — 3| < e.
(4.6)

Given € > 0, we first take §, = 1 and x such that 0 < |x — 3| < 8, =1, so
that x #3 and —1 <x—-3<1or

x#3 and 2<x <4 4.7
These imply that x # 3 and
9<2x+5<13. (4.8)
Hence, by (4.6)
| f(x) = 15| = |2x + 5||x — 3| < 13|x — 3|. (4.9)

From this we see that if we take x such that 0 < |x — 3| < €/13, then (4.6)
will hold. Our analysis leads to the choice of a § such that 0 < § < min{l,
€/13}. We prove that such a § “works.” For x such that 0 < |x —3| < §
< min{1,€¢/13}, we have 0 < |x — 3| < 1 and 0 < |x — 3| < ¢/13. For such
x, (4.8) holds and, hence, (4.9) holds. Therefore
- - £ )=
|f(x) = 15| < 13]x = 3| < 13( 5 ) 6,
so that (4.6) holds. This proves (4.5).

ExXAMPLE 4.2. We prove: If a, 7 0 and n is a positive integer, then
lim(apx" +ax""'+ -+ +a, x+a,)=a,. (4.10)
x—0

We define P:R>R as P(x)=aypx"+a;x" '+ -+ +a,_x+a, for

x € R. The idea is to prove that lim,_,,P(x) = a,. We must prove: If e >0
is given, then there exists a § > 0 such that if 0 < |x| = |x — 0| <, then

lagx" + a;x" "'+ -+ +a,_ x| =|P(x)—a,| <e (4.11)
Let € > 0 be given. If n =1, then P(x) = ayx + a,, so (4.11) becomes
|P(x) — a)| = |agx| = |ay||x| < e. (4.12)
We take 0 < |x| < €/|ay| and obtain
|P(x) = a)] = |ag||x| <ao| ;=7 = €.
|ag|
As a matter of fact, this will hold for 0 < |x| < §, where 0 < & < €/|qy|.
Thus, (4.10) holds if n = 1. If n > 2, we first take x such that 0 < |x| < 1.
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For such x we have |x|" <|x|""' < - -+ <|x|. Thus, 0 < |x| <1 implies
that

|P(x) = a,| =lagx" + - -+ + a, x| <|agl|x[" + - - - +a,[|x]

<(lagl + - - - +1a,])lx]. (4.13)

Since a, # 0, we know that |ay| + - - - + |a,| > 0. We take & such that
0<6<min{1, ¢ } 414
[ad + - 1, (5

and 0 < |x| < 8. For such x,

0<|x| <1 (4.15a)
0<|x| < € . 4.15b
S o+ Tl (3150)

This and (4.13) imply that
|[P(x)— a,| <(lag| + - - - +a,])|x| <e
We conclude that (4.10) holds also for n > 2 also.

Remark 4.2. As a special case of the result proved in the last example, we
have: If n is a positive integer, then lim,_,x"” = 0. This could also be
proved by noting that if « > 0, then

lin%)x"‘ =0. (4.16)
(Recall that f, where f(x)=x* and a« €R is defined for x >0.) Here
D(f) = (0; + 00). Given € >0, we take & such that 0 < § < ¢'/* and x
€ (0; + ) = D(f) such that 0 <|x| <8 and obtain 0 < x < § < €'/*.
This implies 0 < x* < (¢'/*)* = € and, hence, that
|f(x)=0|=|x*—0=x*<e for x€(0;+00) and 0<|x| <.

Therefore, (4.16) follows.

ProB. 4.1. Let ¢ be some real number and S some subset of R having a as
an accumulation point (possibly an extended one). Let I be the identity
function on S. Prove: lim,_, I4(x) = c.

Before proceeding further, we prove a theorem which can reduce some of
the work involved in proving lim, ,,f(x) = L when this is the case.

Theorem 4.1. Let f and g have a common domain D and let a € R* be an
accumulation point of D. If for some real number L there exists a deleted
neighborhood N¥(a) of a exists such that

|f(x)— L|<|g(x)| forall x€&€ Nf(a)n D (4.17)
and g(x)—>0 as x> a, then
lim f(x)= L. (4.18)

x—a
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PROOF. Assume € > 0. Since g(x)—>0 as x—>a, there exists a deleted
neighborhood N3(a) of a such that if x € N¥(a) N D, then

lg(0)|=1g(x) = 0| <e (4.19)
There is a deleted neighborhood N*(a) of a such that N*(a) C N¥(a) N
N3(a). This implies N*(a) C N¥(a) and N*(a) C N3¥(a). Therefore, if x
€ N*(a) N D, then both (4.17) and (4.19) hold so that

|f(x) = LI < [g(x)| < e
This proves (4.18).

We illustrate the use of Theorem 4.1 by evaluating some special limits
involving the sine and cosine functions.

Theorem 4.2. The following limit statements hold:

(a) lim,_,sinx =0

(b) lim,_,((sinx)/x) =1,

(c) lim,_,,cosx =1,

(d) lim, (1 — cosx)/x) = 0.

PrROOF. We use Theorem IV.8.2. By part (c) of that theorem, we have
|sinx — O] = |sin x| < |x| forall x €R. (4.20)
We apply Theorem 4.1 with f(x)=sinx, g(x) = x for all x €R, with

a= L =0. Since lim, ,;g(x) =lim, ,;x =0 (Remark 4.2 and (4.16)), we
obtain (by Theorem 4.1)

limsinx=0.
x—0

This proves (a). To prove (b), we use Theorem 1V.8.2, part (b) according to
which we have

, |xP°
|s1nx—x|<T for 0<|x|<1.
This implies that
. 2
I sinx _ 1'<% if 0<|x| <. (4.21)

The reader can prove: lim,_,x?/6 = 0. We can then apply Theorem 4.1
with

: 2
f(x)=—512x, g(x)=i‘6—, a=0,L=1

and obtain from (4.21)

lim SIBX — |
x->0 X
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This proves (b). To prove (c), we use the equality —cosx = 2sin’(x/2)
which holds for all x € R (Prob. 1V.8.4). We have
2 2
|cosx—1|=2su12§<2)‘T=X7 for x eR. (4.22)
After proving that lim,_,,x2/2 =0, we can use Theorem 4.1 to prove
lim,_,,cos x = 1. This proves (c).
By (4.22) we have

X X 2

Since lim, _,o|x|/2 = 0, this implies by Theorem 4.1 again that

——1‘“’”—0=‘—-—1"‘5"5x‘<|i| for x#0.  (423)

lim L=cosx _ o
x—0

This proves (d).
PrOB. 4.2. Prove: lim,_,,(2x* — x) = 1.

Def. 4.2(b). (Detailing Def. 4.1 for the case: a = + 00, L € R.) Here
lim f(x)=L, LEeR (4.24)

x—>+ 00
means: (1) The domain of f is not bounded from above (+ o0 is an

(extended) accumulation point of 9D (f)) and (2) for each € > 0, there exists
a real number X such that if

x €9(f) and x> X, (4.25)
then
lf(x)— L|<e (4.26)
(See Fig. 4.2.)
yA
L+ er—
Given ¢ L+—
o -
L—¢
X X ;'

there exists an X
Figure 4.2
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ExAMPLE 4.3. We prove that lim,_,, ,(2x> — 1)/(3x? — x) = 2. Although
nothing is said here about 9( f), we adhere to customary usage and assume
that the domain of f is such that the operations involved in its definition
yield a real-valued function of f. Accordingly,

Df)y={x€ER|x#0and x #1} =R - {0,{}.

This case is similar to that of limits of sequences except that here the
domain contains real numbers that are not positive integers. In the case of
sequences, the variable n is “discrete.” Using Def. 4.2(b), we first make an
analysis.

We must prove that if € >0 is given, there exists an X such that if
x €9(f) and x > X then

TORE

2x2—1 _2|_| _2x-3
3x2—x 3 3(3x2—x)

Let € > 0 be given. We first take X, =1 and x > 1 = X. We then obtain
x € D(f) and x> > x > 1. Adding 2x? to both sides of x> > x, we have

3x2>2x% + x,

so that

3x2— x>2x?>0.
This implies that if x > 1 = X, then
2x =3 _2x[+3 _2x+3 _ 1 1 1,1

2
x)— =2 |= < —t+t—=<—+ .
’f() 3‘ 33x2— x| 3(2x?) 6x>  3x  2x? 3x  2x

In short, if x > 1 = X, we have

2|1 5
’f(x) 2 l< TR it (4.27)
Here the right-hand side will be less than € when x > 5/6e. We, therefore,
take x > X > max{1,5/(6¢)}. For such x we have x € (f) and that both
x > 1, x > 5/6¢€ hold. It follows that

_ 2|5 _5.1_5 6¢e_
’f(") 3|<6x 6 x 65 ¢
But then
1 =2
Hm f(x) =3

Pros. 4.3. Prove:

(@) lim,,, ([x]/x) =1,

(b) lim,, , ((sinx)/x) =0,

(c) lim,_, , ((cosx)/x) =0,

(d) lim,_,, (Bx*=1)/(x*+ x+ 1)) =3.
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YA

Given B '
f(x)
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a—96 ax a+d
N e’

there exists a &
Figure 4.3

Def. 4.2(c). (Details of Def. 4.1 for the case a ER, L = +00.) lim,_,,f(x)
= + o0, where a € R. This means: (1) a is an accumulation point of 9 ( f)
and (2) for each real B, there exists a § > 0 such that if x € D(f) and
0 < |x — a| < &, then f(x) > B (see Fig. 4.3).

ExAMPLE 4.4. Let a € R. We prove

lim

x—a |x—-a| =

+o0. (4.28)

Here 9(f)={x €ER|x# a} =R - {a}. Clearly, a is an accumulation
point of D(f) (explain). We prove that if B is given, then there exists a
8 > 0 such that if 0 < |x — a| < § and x € D(f), then

1

—a —f>5

Given B, it suffices to take § such that

1
1+ |B|

and 0 < |x — a| < 4. This implies x € (f) and

0<d<

f(x)=|—x—é7|>% >1+|B|>|B|> B.
(4.28) now follows (explain).

Def. 4.2(d). (Details of Def. 4.1 for the case a= —oc0 and L = —o00.)
lim,_,_ f(x) = — oo means: (1) D(f) is not bounded from below (— oo is
an (extended) accumulation point of D( f)) and (2) if B is given, there exists
an X such that if

x€9(f) and x<X
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/

/|

®y

(6 76 f&)
Figure 4.4
then
f(x) < B.
(See Fig. 4.4.)
ProB. 4.4. Prove: lim x3= —o0.

X—> — 00

Pros. 4.5. Give a detailed definition, in terms of inequalities, of lim,_, ,f(x)
= —o00, a € R, thus detailing Def. 4.1 for the case a ER, L = — o0.

ProB. 4.6. Carry out the instructions in Prob. 4.5 for

(@) limx—>+oof(x) = + o0,
M) lim,_, , , f(x) = — o0,
(¢) lim,,__f(x)=LER,
(d) lim,_, _ f(x) = + 0.

Pros. 4.7. Prove:

(@) lim,_,, x*= + o,
(b) lim,_,, x>= + o,
(c) lim,,__ x>= + 0.
Pros. 4.8. Prove: If n is a positive integer, then lim,_, ,  x" = + o0.

Pros. 4.9. Prove: If n is an even positive integer, then lim,_, _ x" = + o0.

Pros. 4.10. Prove: If n is an odd positive integer, then lim,_, _

0
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PrOB. 4.11. Prove: If lim_, f(x) = + oo, then lim,_,,(— f(x)) = — oo and if
llmx—)af(x) = — 00, then llmx_)a(—f(x)) = 4+ 00.

PRrOB. 4.12. Assume a € R. Prove: lim,_,,(—|x — a|™") = — 0.

We wish to give examples where lim,_,,f(x) does not exist. The next
theorem is useful in this connection.

Theorem 4.3. Let a € R* and L € R* and a be a possibly extended accumula-
tion point of D(f), then lim,_,,f(a) = L if and only if for each sequence {x,)
of elements of D(f) such that x,+# a for all n and lim,_, , . x, = a, we have
1imn—>+ oof(xn) = L

Proor. First assume lim_,,f(x) = L, so that a is an accumulation point of
D(f). Let {x,> be a sequence of elements of 9 ( f) such that x, # a for all n
and lim, ,, . x, = a. (Such a sequence exists by Theorem 3.3 and Prob.
3.9.) Let N(L) be some neighborhood of L. Since lim,_,,f(x) = L, there
exists a deleted neighborhood N*(a) of a such that

J(N*(a) N D(f)) € N(L). (4.29)

Since lim,_, , X, = a, there exists an N such thatif n > N, then x, € N(a).
Since x,, # a for all n, we have x, € N*(a) for n > N. Since x, € D(f) for
all n, it follows that

x, € N*(a) N 9(f) (4.30)
for n > N. By (4.29) this implies that

In=f(x,) EN(L)
for n > N. Thus, corresponding to each neighborhood N(L) of L, there

exists an N such that if n> N, then f(x,) € N(L). This implies that
lim,_,, , f(x,) = L.

Now assume that lim,_, f(x) = L is false. This implies that some neigh-
borhood N(L) of L exists such that for each deleted neighborhood N*(a)
of a we have

f(N*(a) N D(f)) & N(L). (4.31)
Thus, for each N*(a) there exists an x such that
x € N*(a) and x€9(f) but f(x)& N(L). (4.32)
Let
S = {x €9(f)|f(x) & N(L))- (433)

Clearly, S C 9(f). Let N*(a) be any deleted neighborhood of a. By (4.32)
and (4.33), N*(a) contains points of S. Hence a is an accumulation point of
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S. Hence, there exists a sequence <{x,,» of elements of S such that x, # a for
all n and lim,_,, . x, = a (Theorem 3.3 and Prob. 3.9). For this sequence
we have

x, €D(f) and f(x,)& N(L) for all n. (4.34)

This implies that lim, _, , . f(x,) = L is false (otherwise some N would exist
that if n > N, then x, € D(f) and f(x,) € N(L), contradicting (4.34)). We,
therefore, conclude that if for each sequence (x,) of elements of D ( f) such
that x, # a for all n and lim,_,,x, = a we have lim,_, f(x,) = L, then

lim,_,,f(x) = L. This completes the proof.

ExaMPLE 4.5. Let (x>* be the distance from x to the integer nearest x for
x €R. We prove that lim,_, , {(x) does not exist. Construct the sequences
{(x,» and {x,», where

x,=n and x,=n+1 for each n.
. . _ . ,
Clearly, lim,,,_ x,=Ilim,,, n=+4+0c0 and lim,,,6 x,=
lim, ,, (n+1)= +00. However,

(xp¥=<(n)*=0 and <{(x)*=<{(n+ 1N =1
for each n. It follows that

lim {(x,>*=0 and n_l)irp(ﬁ(x,’,}*=%. (4.35)

n—>+ o0

By Theorem 4.3, lim, _, , {x>* does not exist. If it did exist and had value
L, then for each sequence {z,» such that limz, = + o we would have
lim{z,>* = L. This is not compatible with (4.35).

EXAMPLE 4.6. We show that the condition x, # a for all n in Theorem 4.3 is
needed. Let f be defined as

(1 if x#0
J(x) {2 if x=0

(see Fig. 4.5). One sees easily that here lim,_,, f(x) = 1. Take the sequence

y

©0,2)
(UR))

XV

Figure 4.5
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{x,», where x, = 0 for all n. Clearly, lim, ,, .x, =0, x, ER = D(f) for all
n. Since

J(x))=f(0)=2
for all n, we have

lim_f(x,) = lim 2=2%1= lim f(x).

n—>+ oo

Theorem 4.4. Let a € R*. If lim,_, f(x), exists, then it is unique.

PROOF. Assume:
ll_rgf(x) =L and ll—%f(x) =L"

Suppose L and L’ are in R. Take any € > 0. There exist deleted neighbor-
hoods Nf(a) and N3(a) of a such that

[f(x)=LI<5  for x&Ni(a)Na(f)
and
[f(x)= L <5 for x€&N$(a)na(f).

There exists a deleted neighborhood N*(a) of a such that N*(a) C N¥(a) N
N3(a). We have

N*(a) N (f) € (Nt(a) N Ni(a)) N D(f)
= (Nt(a) N 2(f)) N (N3(a) N D(Sf))-

Let x € N*(a) N D(f). We have x € Nf(a) N D(f) and x € N3(a) N D(f),
so that | f(x) — L| < €/2 and | f(x) — L'| < €/2. Hence,

L= L <L = fo)l + L= f(0)] <+ 5 =

Thus, |L’ — L| < € for all € > 0. This implies that |[L’ — L| < 0 which yields
L=1L".

Now assume that one of L or L’ is = oo and the other is not. Say,
L = 4+ o0 and L’ % + 0. Suppose, first that L’ = — co. There exist deleted
neighborhoods N}(a) and N3(a) of a such that f(x) >0 for x € Nf(a) N
D(f) and f(x) <0 for x € N3(a) N D(f). There exists a deleted neighbor-
hood N*(a) of a such that N*(a) C Nf(a) N Ny(a). Let x € N*(a) N D(f),
so that x € N¥(a) N D(f) and x € N¥(a) N D(f). This implies that f(x)
>0 and f(x) <O which is impossible. Thus, L’ —oco. Now assume
L’ € R. This time there exists a deleted neighborhood N¥(a) of a such that
L' — 1< f(x)< L+ 1 for x € N¥(a) N D(f) and a deleted neighborhood
Nj}(a) of a such that for x € Ny(a) N D(f), f(x) > L'+ 1 (by hypothesis
L = + o0). As before, there exists a deleted neighborhood N¥(a) of a such
that N¥(a) C N¥(a) N N}(a). Let x € N¥(a) N D(f), so that x € N¥(a) N
D(f) and x € N¥(a) N D(f). This implies f(x) < L'+ 1 and f(x) > L'+ 1
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which is also impossible. Thus, L’ € R is also impossible. Since L’ € R*, we
remain with the alternative L’ = + oo = L. Similarly, if L = — o0, we can
prove L’ = —oco = L. This completes the proof.

5. One-Sided Limits

Def. 5.1. Let f be a real-valued function of a real variable. Let a ER,
L € R*. We say that f approaches L as x approaches a from the left, or that f
has limit L as x approaches a from the left, and write:

lim f(x)=L or f(x)»>L as x—a-— (3.1

x—>a—

if and only if: (1) a is an accumulation point from the left of D (f) and (2)
for each neighborhood N(L) of L, there exists a deleted neighborhood
(a — §8;a) of a from the left such that

f((a = 8:a) ND((f)) € N(L). (52)

Similarly, we say that f approaches L as x approaches a from the right or that
f has limit L as x approaches from the right and write

lim f(x)=L or f(x)»>L as x—a+ (5.3)

x—>a+

if and only if (1) @ is an accumulation point from the right of (f) and (2)
for each neighborhood N(L) of L there exists a deleted neighborhood
(a;a + &) of a from the right such that

f((@;a+8) N (f)) C N(L). (5:4)
(Note that in our definition, a € R. The cases a = + co were considered in
the last section.)

An alternate notation for one-sided limits is f(a — ) for lim
fla+) for lim,_,,, f(x).

One-sided limits are related to the limits discussed in Section 4 by means
of Theorem 5.1 below. Before stating this theorem we point out that by a
two-sided accumulation point of a set S C R, we mean one which is an
accumulation point of S both from the right and from the left.

f(x) and

x—>a—

Theorem 5.1. If f is a real-valued function of a real variable and a ER is a
two-sided accumulation point of D(f) and L € R*, then

lim f(x) = L (5:5)
if and only if both one-sided limits f(a — ) and f(a +) exist and
flat)=L=f(a—). (5.6)

PROOF. Let a be a two-sided accumulation point of 9 ( f) and suppose that
f(x)—> L as x—> a. a is an accumulation point of 9 (f) from the right and
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from the left. Let N(L) be some neighborhood of L so that a deleted
d-neighborhood N*(a,8) = (a — 8;a) U (a;a + 8) of a exists such that

S(N*(a,8) N () C N(L). (57)
By properties of functions defined on sets, we obtain for the left-hand side
of (5.7)

J(N*(a,8) N D(f)) = f((a = 8;a) N D(f)) U f((asa + &) N D(f)).

This and (5.7) imply

f((a = 8:a) CA(f)) € N(L), (5.82)
and

f((a;a+8)CD(f)) € N(L). (5-8b)

Thus, for each N(L), (a — 8;a) is a neighborhood of a from the left such
that (5.8a) holds and (a;a + &) is a &-neighborhood from the right such
that (5.8b) holds. Therefore,

fa—)=L and f(a+)=L. 59
This proves (5.6).

Conversely, assume (5.6) holds. We know that a is an accumulation point
of 9(f) from the right and from the left. Let N(L) be some neighborhood
of L. Because of (5.9), there exists a deleted §-neighborhood (a — 8,; a) of a
from the left and a deleted §-neighborhood (a;a + §,) of a from the right
such that

f((a=8,;a)ND(f)) CN(L) and f((a;a+8;) ND(f)) C N(L).

(5-10)

By properties of sets of functions defined on sets, we obtain from (5.10)
that

f(a=8,5a) N () U f((asa+ ) N D(f)) C N(L),

and

f([(a—8,;a) U (a;a+8,)] ND(f)) C N(L). (5.11)
Put § = min{$,,8,}. Then 0 < § < §, and 0 < § < §,. From this it is easily
seen that

N*(a;8)C(a—98,;a)U(a;a+9,).
This and (5.11) imply
S(N*(a,8) N 9(f)) € N(L). (5.12)

We proved that for each neighborhood N(L) of L, there exists a deleted

d-neighborhood of a such that (5.12) holds. We, therefore, conclude that
lim,_,,f(x) = L. This completes the proof.

Remark 5.1. It follows from Theorem 5.1 that if a is a two-sided accumula-
tion point of 9 (f), then lim,_,,f(x) does not exist if and only if either (1)
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one of f(a—) or f(a +) does not exist or (2) each of f(a —) and f(a +)
exists but f(a — ) # f(a +).

ExAMPLE 5.1. We consider the signum function. Recall that

' 1 if x>0
sigx =, 0 if x=0
-1 if x<O0.
We prove: limsig, ,o_x = —1 and lim,_,,, sigx = 1 from which it will be

seen that lim,_ sigx does not exist.
Given € > 0, take 8 such that 0 < § < 1 and — 8 < x < 0. For such x,
lsigx —(=1)|=|(-H+1|=0<e
This implies sigx > — 1 as x >0 —. Similarly, if € > 0 is given, take § such
that 0 < § < 1 and 0 < x < 6. For such x,
Isigx —1|=]1-1=0<e

and conclude sigx —>1 as x>0 +.

EXAMPLE 5.2. We prove:
lim l=+oo and lim l=—oo
x>0+ X x—>0— X

(see Fig. 5.1.) Here f(x) = 1/x for x # 0, so D(f) = {x ER|x # 0}. Given
B, take x such that 0 < x < §, where

1
— .
0<0< 1373
This implies

><=>1+|B|>|B|> B.

-
o=

A

Figure 5.1
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Hence, for each neighborhood (B; + o] of + o0 in R*, we have a deleted
neighborhood (0;8) = (0;0 + &) of 0 from the right such that if x € (0;
8) N D(f) =(0;98), then f(x) € (B; +o0]. Hence, 1/x—> +00 as x—>0%.
Next, given B, take x such that —§ =0 — § < x < 0, where

0<d<

1+ |B|°
Then
_ 1
0<—x< TF1BT 8]
This implies that
1

- X

>1+|B|>|B|> —-B
and, hence, that

%<B for xE€(—8;0)ND(f)=(-8;0).
We conclude from this lim,_,,_ (1/x) = — c0.

Remark 5.2. A one-sided limit of a function f of a real variable can be
viewed as an ordinary limit of the restriction of f to the set (— c0;a) N D(f)
for the case x > a —, and to the set (a; + 00) N D([) for the case x >a +.
Because of this, many theorems true for lim, _,,f(x) are also true for f(a +)
and f(a —).

ExAMPLE 5.3. We give an example where neither one-sided limit exists. Let

g(x)=<l>"= for x#0.

X

(See, e.g., Fig. 5.2, where ( y)* is the distance from y to the integer nearest
».) We prove lim, _,,, g(x) does not exist. Let (x,» and (x> be sequences

yl\
S AR I 2 =

Figure 5.2
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defined as

2
2n+1

Then x, > 0 and x;, > 0 for all n, and

for each positive integer n.

n

x =1 and x, =
n

lim x,=0= lim x,.
n—>+ oo n—>+ oo

But g(x,)=g(1/n)={n)*=0 and g(x,)=g2/2n+1))=
{n+1>* =1 for each n. Hence,

lim, g(x) =0 and  lim_g(x)=1.

By Theorem 5.3 applied to the restriction of g to the interval (0; + 00) it
follows that lim,_,,, g(x) does not exist. It is also easy to prove that
g(0 —) does not exist either.

6. Theorems on Limits of Functions

Theorem 6.1. Let a ER* and L €R. If lim,_, ,f(x) = L, then some deleted
neighborhood N*(a) of a exists such that f is bounded on the set N*(a) N

D(S)-

PrOOF. Let € = 1. Since f(x)—> L as x —> a, there exists a deleted neighbor-
hood N*(a) of a such that

f(N*(@) N D(f)) C N(L,1)=(L—1;L +1).

This implies that if x € N*(a) N D(f), then L — 1 < f(x) < L + 1 and the
conclusion follows.

Theorem 6.2. Let a € R* and L > 0. If f(x)—> L as x > a, then there exists a
deleted neighborhood N*(a) of a such that f(x)> 0 for all x € N*(a) N
D(f); on the other hand, if L <O, then there exists a deleted neighborhood
N¥(a) of a such that f(x) <O for all x € Nf(a) N D(f).

ProOF. We prove the first part and ask the reader to prove the second
(Prob. 6.1). Suppose L € R* and L > 0. If L = + o0, take B =0. There
exists a deleted neighborhood N*(a) of a such that if x € N*(a) N D(f),
then f(x) > B = 0. Thus, the conclusion of the first part holds in this case.
If 0 < L < + o0, take e = L /2. There exists a deleted neighborhood N*(a)
of a such that if x € N*(a) N D(f), then

L

> -

This implies that if x € N*(a) N D(f), then f(x) > L/2 > 0. We see that
the conclusion of the first part holds also for 0 < L < + .

|f(X)—L|<% and hence “é"<f(X)—L<
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ProB. 6.1. Complete the proof of Theorem 6.2 by proving the second part
of that theorem.

Remark 6.1. Actually, we proved more than was stated in Theorem 6.2. We
proved that if f(x) > L € R, where L > 0, then some deleted neighborhood
N*(a) exists such that f is “bounded away from 0” on N*(a) N D(f) in the
sense that f(x) > L/2 >0 for x € N*(a) N D(f). If L = + oo, then using
B =1, we find that some deleted neighborhood N*(a) of a exists such that
f(x) > B =1 for x € N*(a) N D(f). Thus, in this case too there is a deleted
N*(a) of a such that f is “bounded away from 0” on N*(a) N D(f).

Theorem 6.3. If f and g are real-valued functions of a real variable having a
common domain 9 and
lim f(x)=L,  lim g(x)= M,

then
lim (f(x) + g(x)) =L+ M =lim f(x) + lim g(x),

x—a

if L+ M is defined in R*.

PrOOF. Let (x,> be a sequence of elements of ¢ such that x, # a for all n
and lim,_,,  x, = a (such a sequence exists since a is an accumulation
point of ). It follows (Theorem 4.3 and Prob. 3.9) that

lim f(x,)=L and "_1)1r+nw g(x,)=M.

n—>+ o
This implies that
lim (f(x,)+g(x,)=L+M 6.1)

n—>+ oo
whenever L + M is defined in R*. Since (6.1) holds for all sequences (x,)
of elements of 9 such that x,+# a for all » and limx, = a, we have
(Theorem 4.3) lim, _,,(f(x) + g(x)) = L + M wherever L + M is defined in
R*.

x—a

Theorem 6.4. If f and g are real-valued functions of a real variable having a
common domain 9, where f(x)—>0 as x —> a and some deleted neighborhood
N*(a) of a exists such that g is bounded on N*(a) N D, then

lim f(x)g(x) = 0. (62)

Proor. Although this theorem could be proved by using sequences as in the
proof of Theorem 6.3, we proceed differently. Since g is bounded on
N*(a) N D(f), there exists an M >0 such that |g(x)|< M for x
€ N*(a) N D(f). Let € >0 be given. Since lim,_, ,f(x) = 0, there exists a
deleted neighborhood N¥(a) of a such that

[f(x)| < fl— for x € N}(a) N A(f). (6.3)
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Also, there exists a deleted neighborhood N3(a) of a such that N¥(a)
C Nf(a) N N*(a). Hence,

N3(a) N D(f) € N(a) N N*(a) N D(f)
C (Nf(a) N D(f)) N (N*(a) N D(f))- (64)
Assume that x € N¥(a) N D(f). From (6.4) we have x € Nf(a) N D(f) and

x € N*(a) N 9D(f). This implies that | g(x)| < M and that (6.3) holds for all
x € N3(a) N D(f). Hence, for such x,

1/(x)g(x) = 01 = | f(x) g(x)| = | f(x)ll g(x) <57 M =€
This yields lim _, ,f(x)g(x) = 0 and completes the proof.
Theorem 6.5. Let c ER and L €R*. If f(x)> L as x—> a, where cL is
defined, then
lgl%z(cf(x)) = cL = clim f(x).

Proor. Exercise.

Theorem 6.6. Let a, L, and M be extended real numbers such that LM is
defined in R*. If f and g are real-valued functions of a real variable having a
common domain %) and

lim f(x)= L, lim g(x)= M,

then
lim f(x)g(x)= LM = lim f(x)ll_l)l}z g(x).

x—a x—>a

ProoF. Exercise.

Pros. 6.2. Prove: If f, ..., f, are m functions with common domain )
and
li_r)r}lf,(x)=L,. foreach i€ (1,...,m},
then
(a) )l(il)l}z(fl(x)+'-~+fm(x))=Ll+---+Lm
and
(b) ll_l)l}l(fl(x) v fu(X)=LiL, ... L,

provided that the right-hand sides in (a) and (b) are defined in R*.

ProB. 6.3. Let P be a polynomial function in R and x, € R. Prove that
lim P(x)= P(x).

X—>Xq
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Theorem 6.7. Let a, L, and M be extended real numbers, M # 0. If f and g
are real-valued functions of a real variable with a common domain 9,
g(x) # 0 for x €D and f(x)—> L, g(x)> M as x> a, then

fxy p Imf(x)

lim
x—a g(x) M ll_l’)l}] g(x)

provided that L/ M is defined in R*.
Proor. Exercise.

ProB. 6.4. Prove: If f(x)—> L as x—>a, where a and L are in R, then
| f(x)|—>|L]| as x > a.

ExaMPLE 6.1. We prove that if L €R and L # 0, then the converse of the
result in Prob. 6.4 is false. Define f as

f(x) = { ~ L if xisrational
L if x is irrational.
We have | f(x)| =|L| for all x €R. Hence, if a €R, then |f(x)|>|L| as
x = a. On the other hand, there exist sequences <r,» and {c,» such that r,
is rational and ¢, is irrational for each n and r,—>a, ¢c,~>a as n—> +o0. It

follows that
im  f(r,) =L, lim f(c,)= —L.

n—>+ o

Since L #0, this implies that lim,_,, . f(r,) # lim,_,, . f(c,), so that
lim,_,,f(x) does not exist.

PrOB. 6.5. Prove: f(x)—0 as x = a if and only if | f(x)| >0 as x > a.

ProB. 6.6. Prove: If f(x) < L for all x € D(f) and lim,_,,f(x) exists, then
lim,_, f(x) < L.

ProB. 6.7. Prove: If f(x) < g(x) for all x € and % is a common domain
of f and g, where both f and g have limits as x—>a, then lim__,,f(x)
< limg, g (x).

Pros.. 6.8 (Sandwich Theorem for Functions). Prove: If f, g, and h are
functions having a common domain 9 and f(x) < h(g) < g(x) for all
x €9 and lim,_, f(x) =lim_,,g(x) = L, then lim,_, h(x) = L.

Pros. 6.9. Prove: If a € R, where a # 0, then

(a) lim,_((sinax)/x) = a,
(b) lim,_o((1 — cosx)/x?) =1.
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7. Some Special Limits

We first extend the validity of the inequalities in Theorem I1.12.1. Accord-
ing to this theorem we have: If x > 0, x # 1, and r is rational, where r <0
or r > 1, then

r(x—1)<x"—1<rx""(x—1). (7.1
Let y be a real number such that y <0 or y > 1. Write y as a nonterminat-
ing decimal
y=N+.dd,.... (7.2)
Now y = supr,, where r, is the sequence of truncations of N +.d\d, . . .,
ie.,

r,=N+0d,...d, for all positive integers n. (7.3)
By the definition of x”, we have (Def. IV.10.1, and Remark IV.10.2)
xr=E/(y)= xlérllwx'". (74
By theorems on limits of sequences this implies that
nl)irlloox’"'l=n_ljll1wx_'x’"=x"nljrllwx’"=x“'xy=xy"' if x>0.

(1.5)

Since y < 0 or y > 1, we have, for the nth truncation r, of y, r, < y <0 or
1 < r, < y. Using (7.1), this implies that

r(x =1 <x"—=1<rx""(x-1).

Taking limits as n— + 0o and using theorems on limits of sequences, we
obtain

yx—1)<x’=1< yx? " I(x—1). (7.6)

Note, this holds trivially if x =1 or y = 0. Thus, (7.6) holds for y <0 or
y =1 and x > 0. At this stage we do not establish the strictness of the
inequality in (7.6) for

y<0 or y>1 and x>0,x+#1.
Reasoning as above and using the inequality

r(x=1)>x"—1>rx""!(x=1) if r is rationaland 0 < r < 1, (7.7)

we can prove: If x >0and 0 < y < 1 where y €R, then
yx—1)>x"—1>x""Y(x-1). (7.8)

At this point we do not establish the strict inequality for 0 < y <1 and

x > 0, x # 1. Summarizing we obtain the following theorem:

Theorem 7.1. If x and y are real numbers, x > 0, then

(a) y(x—1)<xy~1<yx"’_'(x—l)ify<00ry>land
®) yx—D>x"—12yx’""if0< y< 1.
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Pros. 7.1. Prove: If a, b, and y are real numbers, where a and b are both
positive, then

(@) yp»"a—-b)y<a’—b"< ya’ '(a—b)if y<Oory>1and
(b) ya’~a—b)< a’—b"< yb’"Ya—b)if 0< y < 1. (See Prob.
I1.12.6)
Theorem 7.2. If x, and y are in R and x, > 0, then
lim x”= x{. (7.9)

X—>Xq

PrOOF. x” is defined for x >0 and y €R. First take y > 1, x > 0, x, > 0.
By Prob. 7.1, part (a),

yxg 7 (x = x0) < x¥ — x§ < yx? TN (x = xp). (7.10)
Next take x such that x5 < x < xo+ 1. Since y > 1,
0< Xy~ ' <x? 7 < (xo+ 1YL
This and (7.10) imply that
0 < yxg~'(x = xg) < x¥ = x§ < yx?7(x = x0) < y(x+ 1Y 7 '(x = xp).
Hence, we have
0< x¥—x§ < y(xo+ 1Y 7 !(x = xp)
for y>1 and x,<x<xy+1.
This yields
lim x”= x§ for y>1. (7.11)

x> x¢
If 0 < x < x,, we use Prob. 7.1, part (a) again and obtain
yx? 7 (xo— x) < x§ = x¥ < yxd T (xo— x)
for y>1 and 0<x < x,.
This implies that
0<x§—x" < yx{ Nxo—x) if y>1, 0<x<xg.
We conclude from this that

lim x’=x{ for y>1 (7.12)

X—>Xg—

This and (7.11) yield the conclusion for y > 1.
If y <0, we have 1 — y > 1. Using what was just proved, we have
lim x' V= x}7.
X—>Xg
This implies that

lim x 7= lim x ~'(x' ) = lim x ' lim x' 7= x5 'x{ 7 = x5
XX XX X—Xg X—Xg
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From this it follows that

lim x’= lim -1 = L=,
X—>Xg x>xg x 7 xo)’

Thus, the conclusion also holds if y < 0.
If 0 <y <1, then 1 + y > 1. By what has already been proved,

lim x"*'= x}*”.
X Xg

This yields

lim x’= lim x '(x'*) = x; %} * = x} for 0<y<I1.
XX XX ( ) 0 o 0 Y

This completes the proof.

Pros. 7.2. Prove: If y €R, then

ny
lim (1+ 1) _—

n—>+ o n

Theorem 7.3. If z ER, then
l+z<e’ <1+ ze’. (7.13)

Proor. The conclusion is trivially true if z = 0. Assume z # 0, taking z < 0
first. Using Theorem 7.1, part (a), with x =1+ 1/n, y = nz, n a positive
integer, we have
nz nz—1
=nz(l+l—1)<(l+l) —l<nz(l+l) (l+l—1)
n n n
so that
nz nz—1
z<(1+l) —1<z(1+l) , (7.14)
n n
where z < 0 and n is a positive integer. Fix z and let n > + c0. By theorems
on limits of sequences and Prob. 7.2,
z< e’ —1<ze’, (7.15)

where z < 0. Now assume that z > 0, so that —z < 0. By (7.15),

z Z

—z<e ?—1< —ze % and ,hence, ze < 1—e"?<z.

Multiplying the second set of inequalities by e’ we obtain
z<e’—1< ze? if z>0.
This proves that (7.15) holds if z > 0. The proof is now complete.

Corollary 1. The following hold:

(a) lim,_pe* =1,
(b) lim,_o((e* = 1)/x)=1.
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ProOF. We prove (a) first. Assume that x < 0. By the theorem,
0< —xe*<1—e*< —x=|x|,

so that
0<1—e*<|x| if x<O.

This implies

lim e*=1.
x—0—

Now assume that x > 0 and use the theorem to obtain
0<x<e*—1<xe*
from which we have, using e*e ™* = 1, that
O<xe *<l—e "< x=|x| for x>0.

It follows from this that

lim e *=1
x>0+
and, hence,
lim e*= lim — =1.
x>0+ x—0+ €

This and (7.13) prove (a).
We prove (b). By the theorem,

l<u<e" for x>0,

=

lim €=L-1= fim &=1
x—>0+ X x—0— X
This proves (b).
ProB. 7.3. Prove:
(@) e*<1/(1—x)forx<1,
(b) lim,_,, .e* = + o0,
(¢) lim,,__e*=0.
Pros. 7.4. Prove:
(a) lim,_,, ,coshx = + 00 = lim,_, _ coshx,
(b) lim,_, , . sinhx = +o00 and lim, ,_ _sinhx = —c0.
Pros. 7.5. Prove:
(a) lim,_,,  tanhx =1 and lim,_, _ jtanhx = —1,

(b) lim,_, , . sechx = 0= lim sech x.

X—> — 00

235
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ProB. 7.6. Prove:

(a) lim,_,,, cschx = + 00 and lim,_,;,_cschx = — o0,
() lim, , , ,cschx =0=1lim,_,__cschx,

(c) lim,_,,, cothx = + 00 and lim,_,;,_ cothx = — o0,
(d) lim,_,, ,cothx =1 and lim,_, _ cothx = —1.

Pros. 7.7. Evaluate:

@) lim, . ,(1/(1+ e'/)),
(b) lim, o, (1/(1 + ¢'/%)) and lim, o (1/(1 + ¢'/%).

Corollary 2 (of Theorem 7.3).

x X

(@) lim,_,, e*=e™,
(b) lim, . (¥ — €*)/(x — xp)) = €™
ProOF. Using Theorem 7.3, we have

lim e*= lim e*%e* o= ¢¥0 |im e* o= ¢e¥0. ] = g%
x—>Xg x> Xq xX—>Xq

which proves (a), and

. xX—Xxqo __ . xX—Xxq __
lim e 0=l oxofim €021 e = g%

xOXg X — Xg = XX X = Xq XX X — X

which proves (b).

8. P(x) as x > = o0, Where P Is a Polynomial on R

Theorem 8.1. Let P:R—>R be a polynomial of degree n > 1,

P(x)=a0x"+a|x""+ c++a,_x+a,, (8.1)
where ay > 0. Then
XLqurlooP(x) = + 0. (8.2)
ProoOF. Given a real B, let
M = max{|a)|,|a,|, ..., |a,_|,|a, — B|} (8.3)
and
x>1+M. (8.4)
o

Assume that x > X, so that x > 1 and x — 1 > 0. This implies that

x>1+M and 1>—M__ 59
a, ag(x — 1)

(8.5)



8. P(x) as x> * oo, Where P Is a Polynomial on R 237

Since x" > x" — 1> 0, it follows that

x”>ML——1.
a, x—1
Hence,
apx">M(x""'+ -+ x+1)
=Mx""'+ .-+ Mx+ M
>lay|x" '+ -+ +a,_|x +|a, — B|
=|ax"" '+ .-+ +a,_x+a,— B|
>—(ax""'+---+a,_x+a,— B).
But then
P(x)=apx"+ax"'+ .-+ +a, x+a,>B

for x > X > 1+ M/a,. The conclusion follows readily from this.

Pros. 8.1. If ¢, < 0 and n is a positive integer, then

1 n "_l . .. = -
X_l)nllw (apx" +aix"" "+ +a,_x+a, 0.
Pros. 8.2. Prove: Let n be a positive integer and a,, a,, ..., a, be n + 1
real numbers with a, # 0. Put
M = max{|a,, ..., |a,|}.
Then for x > 1+ M/|a,| we have apx"+ - -+ +a,_ x+a,>0 or
apx"+ -+ +a,_;x + a, <0 according to whether a, > 0 or g, <0.

Pros. 8.3. Prove: If a, > 0 and n is a positive integer, then
1 n n— l .« e == —
x_l}ryw (apx" +ax""" + +a, 1 x+a,)=+c or 00,

according to whether n is even or n is odd.

ProB. 8.4. Prove: (a) If n is a nonnegative integer and at least one of the
n+ 1 real numbers agy,a,, ..., a, is not zero, then there exists a real
number x such that

apx"+ax""'+---+a,_ x+a,#0.
(b) If n is a nonnegative integer and ay,a,, . . ., a, are n + 1 real numbers
such that

ax"+ax""'+---+a,_x+a,=0

forall x R, thengy=a,=--- =a,=0.
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Pros. 8.5. Prove: If m and n are integers such that 0 < m < n and

apx"+ax"" '+ .- +a,_x+a,
=bx"+bx" "'+ --- +b, x+b,
for all x €R, then
ag=a,=---=a,_, =0 and a, , = b,
QG _mye1=by...,a,=b,.

9. Two Theorems on Limits of Functions. Cauchy
Criterion for Functions

The theorem which follows is very useful. A special case of it is Theorem
43.

Theorem 9.1. Let a, b, and L be in R*. If f and g are real-valued functions of
a real variable and R.(g) C D(f), then

lim g(¢) = b, lirr},f(x) =L, and g(t)y#b  forall teE(f).
t—a Xx—>

9.1
Then

lim f( g(1)) = L. 92)

Proor. Let N(L) be a neighborhood of L. Since f(x)—> L as x —> b, there
exists a deleted neighborhood N*(b) of b such that if x € N*(b) N D(f),
then f(x) € N(L). Since g(¢t)—> b as t—> a, there exists a deleted neighbor-
hood N*(a) of a such that if 1 € N*(a) N D(g), then g(r) € N(b). But
g(1) # b for all t € D(f). This implies that for € N*(a) N D(g), we have
g(1) € N*(b). Since g(t) € D(f) for all 1 € D(g), we see that 1 € N*(a) N
D (g) implies g(¢) € N*(b) N D(f) and, therefore, that f(g(¢)) € N(L). In
turn, this implies that (9.2) holds. The proof is now complete.

Theorem 9.2 (Cauchy Criterion for Limits of Functions). Let a € R* and
L eR. If a is an accumulation point of D(f), then

lim f(x) = L

if and only if for each € > 0 there exists a deleted neighborhood N*(a) of a
such that if x' and x" are in N*(a) N D(f), then

1f(x) = f(x") < e 3)
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PRrOOF. Assume first f(x)—> L € R as x > a € R*. Let € > 0 be given. There
exists, therefore, a deleted neighborhood N*(a) of a such that

if x € N*(a) N D(f), then | f(x) — L| <§ . (9:4)
Let x” € N*(a) N D(f) and x” € N*(a) N D(f). We have
()= LI<E and [f(x") - L] <5
But then
() = fE S 1) = LI+ [ f(x") = L < + £ =«

Conversely, assume that for each € > 0 there exists a deleted neighbor-
hood N*(a) of a such that if x" and x” are in N*(a) N D(f) then (9.3)
holds. Since a is an accumulation point of 9(f), there exists a sequence
{x,) of elements of D(f) such that x, # a for all n and limx, = a. We
prove that the sequence { f(x,)) is a Cauchy sequence. Let € > 0 be given,
so that there exists a deleted neighborhood N*(a) of a such that if x’ and
x” are in N*(a) N D( f), then (9.3) holds. Since lim x, = a, there exists an N
such that if n> N, then x, € N*(a). Take n> N and m > N. Then
x, € N*(a) N D(f) and x,, € N*(a) N D(f). Hence,

|f(%0) = f(xm)| < e

Thus, {f(x,)) is a Cauchy sequence of real numbers. As such it converges
to some real limit L. We prove that lim,_,,f(x) = L. Let € > 0 be given.
There exists a deleted neighborhood N§¥(a) such that if x’ and x” are in
N¥(a) N D(f), then

) = fI <5
Take x € N¥(a) N D(f). Now an N, exists such that if » > N,, then
x, € Nf(a) N D(f). We have
1£0) = f(x) < £ 95)
for x € Nf(a) N D(f) and n > N,. Since f(x,)—> L as n—> + o0, we have
lim, ,, ,, | f(x) = f(x,)| = | f(x) — L|. This and (9.5) imply
|f(x) = L| < % <e for x & N¥(a)Nna(f). (9-6)

We conclude from this that lim,_, ,f(x) = L. The proof is now complete.



CHAPTER VI
Continuous Functions

1. Definitions

The notion of lim, ,,f(x) was defined without reference to the value of f at
a. Here we are interested in the value of f at a and its relation to the limit of
f as x approaches a when this limit exists.

We recall that lim,_,,f(x) = L, where a and L are real numbers, means
that, first of all, a is an accumulation point of 9 ( f), and, second, that for
each e-neighborhood N(L,e€) of L, there exists a deleted §-neighborhood
N*(a,8) of a such that if x € N*(a) N D(f), then f(x) € N(L,¢). This can
be phrased more intuitively as: f(x) is as close to L as we like provided that
x is taken sufficiently close to a. Continuity of f at a can be phrased as: (1)
f is defined at @ and (2) any change in the value of f at a can be brought
about by a sufficiently small change in the value of a. We state this with
more precision in the following definition.

Def. 1.1. If f is a real-valued function of a real variable and x, € R, then f is
called continuous at x if and only if: (1) f is defined at x, and (2) for each
e-neighborhood N( f(x,),€) of f(x,), there exists a §-neighborhood N(x,, §)
of x, such that

F(N(x0,8) N (f)) € N(f(%o)€). (L1)
This can also be written:
X € N(x0,8) N D(f) implies f(x) € N(f(xo);€) (1.2)

or as
|x — x| <8 and x€D(f) (1.3)
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imply that
/(%) = f(xo)l < e (14)

We therefore rephrase Def. 1.1 as:

Def. 1.1'. f is continuous at x, if and only if: (1) x, € D(f) and (2) for each
€ > 0, there exists a § > 0 such that if

|x — x| <8 and x € 9(f),
then

/() = f(xo)| < e

If x, is not only in 9 ( f) but also an accumulation point of D( f), then we
may use limits to define continuity at x,.

Def. 1.1”. If f is a real-valued function of a real variable and x, € R is an
accumulation point of 9(f), then f is continuous at x, if and only if: (1)
X0 €ED(f) and (2)

lim f(x) = f(xo)- (1.5)

XX

Remark 1.1. By an isolated point of a set S we mean a point of S which is
not an accumulation point of S. Def. 1.1” cannot be used to define
continuity of f at an isolated point x, of 9D(f) since, in this case,
lim,_,, f(x) does not exist. We prove in Example 1.1 below that if x, is an
isolated point of 9 ( f), then f is continuous at x,.

Pros. 1.1. Prove: If § C R, then x, is an isolated point of S if and only if
there is a deleted §-neighborhood N*(x,,8) of x, such that N*(x,,8) N S
= @. Accordingly, x, is an isolated point of S if and only if there exists a
8-neighborhood N(x,,8) of x, such that N(xy,8) N S = {x,}.

ExXAMPLE 1.1. We prove that if x; is an isolated point of 9D (f), where fis a
real-valued function of a real variable, then f is continuous at x,. Thus, let
X, be an isolated point of 9(f). Then f is defined at x, and there is a
d-neighborhood N(x(,8) of x, such that N(x,,8) N D(f) = {x,}. Given
€ > 0, assume that x € D(f) and |x — x,| < 8. This implies that x € N(x,,
8) N D(f) and, hence, that x = x,. Hence, | f(x) — f(xo)| = | f(x0) — f(x0)|
= 0 < e. According to Def. 1.1’, f is continuous at x,,.

Remark 1.2. Note that in defining continuity at x,, we used -
neighborhoods and not deleted §-neighborhoods as in the definition of

lim, ,, f(x)= L.
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Def. 1.2. A function is called continuous if and only if it is continuous at
each point of its domain. A function is called continuous on a set 4 if and
only if it is continuous at each point of 4.

For example, each polynomial function P on R is continuous since for
each x, € R=9D(P) we have (Prob. V.6.3) lim,_,, P(x) = P(x,). Here the
limit definition of continuity can be used, since each point of R = D(f) is
an accumulation point of 9 (f) (explain).

ExampLE 1.2. The function E :R— R, where E(x) = e* for each x ER, is
continuous since e* —> e** as x > 0 (see Corollary 2 of Theorem V.7.3).

ExaMPLE 1.3. The function f: (0; + o) —> R, defined as f(x) = x* for x > 0,
where y is some fixed real number is a continuous function. Its domain is
(0; + ). Each point of (0; + o) is an accumulation point of (0; + c0)
(prove this). Using limits, we have (Theorem V.7.2) lim,_,, x” = xg for
x> 0.

ExampLE 1.4. The sine function is a continuous function. We have
x+ x X — X /Xt x X — X
0 4 0 ) i ( 0 0 )

sinx — sinx, = sin(

2 2 2 2
_ X+ x5 . X— X
= 2cos 5 sin—
Since |cos(x + x4)/2)| < 1, it follows that
xX—x
|sin x — sinxy| < 2|sin 3 2. (1.6)
But
in X %0 |x — x|
|sin 3 S5
so that
|sin x — sin x| < |x — x| for x€R, x,ER. (1.7)

From this it is clear that sinx —sinx, as x = x, and, hence, that sine is
continuous for each x, € R = (sine).

ProB. 1.2. Prove: The cosine function is continuous.

ProB. 1.3. Prove: The absolute value function is continuous.

PrOB. 1.4. Prove: (a) If x > 0, then |yx —vx,| <y|x = xo| ; (b) the func-
tion g: [0, + c0) >R, defined as: g(x) =yx for x €[0, + o), is a continu-
ous function.

The following theorem should be compared with Theorem V.4.3. It gives
a criterion for continuity at a point in terms of sequences.
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Theorem 1.1. f is continuous at x, if and only if for each sequence {x,» of
points of D(f) such that x,—> x, as n—> + oo, we have f(x,)—> f(x,) as
n—> +oo.

ProOF. Suppose that f is continuous at x,. Let {x,> be a sequence of
elements of 9 ( f) such that x, > x, as n —> + oco. (Such sequences exist. For
example, x, = x, for all n is such a sequence.) Let N(f(x,),€) be a given
e-neighborhood of f(x;). By the continuity of f at x,, there exists a
d-neighborhood N(x,,8) of x, such that

J(N(x0,8) N D(f)) C N(f(x0)¢€)- (1.8)
But since x, —> x, as n—> + oo, there exists an N such that if » > N, then
X, € N(x4,8), and since x, € D(f) for all n, we have: If n > N, then
X, € N(x4,8) N D(f). By (1.8) this implies that

f(x,) € N(f(x0)€) for n>N.
Thus, for each € > 0, there exists an N such that

1 f(x,) = f(x0)] <€ for n> N.

But then f(x,)— f(x,) as n—> + .

Conversely, assume that for each sequence (x,» of elements of D(f)
such that x, > x, as n—> + o0, we have f(x,) > f(x,) as n > + 0. If x; is an
isolated point of 9D (f), then f is continuous at x,. If x, is an accumulation
point of D(f), let (x,> be a sequence of elements of D( f) such that x, #* x,
for all n and x,—> x, as n—> +oo0. By the present hypothesis we have
f(x,)—> f(x,) as n—> +oo. By Theorem V.4.3 we have f(x)— f(x,) as
X —> Xy, so that f is continuous at x, in this case also. This completes the
proof.

The next theorem should be compared to Theorem V.9.1.

Theorem 1.2. If g is a function such that R.(g) C D(f), where f is continuous
at xo and lim,_,, g(f) = x, for some t, € R*, then lim,_,, f(g(?)) = f(xo).

Proor. Exercise.

Theorem 1.3. (A Continuous Function of a Continuous Function is Contin-
uous.) Let g be continuous at ty ER, and g(ty) = x,. Let f be continuous at
xo, and let R.(g) C D(f). Then the composite function f o g is continuous at

tO.
Proor. Exercise.

Remark 1.3. The criterion for continuity at a point in terms of sequences
converging to the point given in Theorem 1.1 is called sequential continuity.
Thus, Theorem 1.1 states that a function is continuous at a point if and
only if it is sequentially continuous at the point. Theorem 1.1 is often used
to demonstrate the lack of continuity at a point. We demonstrate this in the
next example.
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ExAMPLE 1.5. Consider the function D : R— R defined as:

/1 if x is rational

D(x) {0 if x isirrational. (1-9)
This function is called Dirichlet’s function. This function is defined for all
x € R but is continuous at no x € R. We prove this.

Let r, be rational. Take a sequence {c,» of irrational numbers such that
¢,~>ry as n—> +oo. (By Prob. V.3.7 such sequences exist.) We have
D(c,) =0 for all n, so that lim,_,, D(c,) =0. Since D(ry) =1, we have
lim,_, ,  D(c,) # D(ry) even though lim,_, , ¢, = r,. By Theorem 1.1, D is
not continuous at r,. Now let ¢, be irrational and take a sequence <{r,> of
rational numbers such that r,—>c¢, and n—> + 0. (By Prob. V.3.7 such
sequences exist.) We have D(r,) =1 for all n, so that lim,,, D(r,)=1.
Here, too, r,—> ¢y, as n—> + o0 and lim,_,, D(r,) # D(cy) = 0. By Theo-
rem 1.1, D is not continuous at ¢,. Thus, D is not continuous at any real
number.

We now apply Theorem 1.1 to prove an important identity. We recall
that the function exp: R— R was defined in Example IV.5.1 as
o0 n
expx = > X for x €R. (1.10)
n=0 1
In Prob. IV.7.1 it was noted that
expr=-e’ if ris rational. (1.11)

In the next theorem we prove that this equality holds for a// r € R.

Theorem 14. If x ER, then

©
)
n=0

n

| =

o =expx =e”. (1.12)
PrOOF. We already proved that the function E: R— R defined as

E(x)=e" for xE€R (1.13)

is continuous (see Example 1.2). We now prove that the function exp is a
continuous. Observe that the function exp satisfies the following:

I+ x<expx <1+ xexpx for x eR. (1.14)

(See Theorem IV.7.2, part (d).) Now turn to Corollary 1 of Theorem V.7.3.

There we proved that lim,_,,e* = 1. Examining the proof we find that all
we used there was the inequality

1+z<e?< 1+ ze? for zeR (1.15)

of Theorem V.7.3, and the fact that e’e = 1. Since the function exp
satisfies (1.14) which is similar to (1.15), and since exp also has the
property: expzexp(—z) =1 (see Theorem IV.7.2, part (c)), it is a simple
matter to imitate the proof of Corollary 1 of Theorem V.7.3 and to prove
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that
lin})expx= 1. (1.16)
We now note that exp also satisfies
€xp x exp y = exp(x + y). (1.17)
(See formula (7.17) of Example IV.7.1.) This implies that
lim expx= lim (expx,exp(x — Xg)) = exp x, lim exp(x — x)
xX—>Xg X=X X—>X0
=expxy- 1
= exp X, .
But then

xll)nioexpx= exp X . (1.18)

This proves that the function exp is continuous at each x €R and,
therefore, that it is continuous.

Next we take any x €R and a sequence (r,) of rational numbers such
that r, > x as n—> + 00. We have (1.11)

expr,=e' for each n.
This and the continuity of £ and exp imply that
— : = : e X
expx = n—!)lr-lpoo (exP r") n—lsglooe €
so that
expx =e” foreach x €R,

and the proof is complete.

Pros. 1.5. The principle used in proving Theorem 1.4 is far-reaching. It can
be stated as follows: Two functions continuous in R which have the same
values for the rational numbers are identical. Prove the last statement.

Pros. 1.6. Prove:

(a) If x > 0 and »n is a nonnegative integer, then
x X_n xn+|
€ >n! +(n+1)!'
(b) limx—>+oo(ex/xn) = + 0.
(c) If a €R, then lim,_,, (e*x %)= +o00.

Pros. 1.7. Prove:
® 2n 2 4

coshx=S X _=1+% 42X 4...,
= (2n)! 2! 4!
o 2n+1 3 5
sinhx=2 —x————=x+'_x_+£.+..._

= 2n+ ) 3T
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The Dirichlet function (Example 1.5) though defined for all of R is
continuous for no x € R. There are functions defined for all R which are
continuous at one point only.

Pros. 1.8. Prove: f, where

2 .
x)=1x for x rational
J(x) { 0 x=0,

is continuous at x = 0 only.

Pros. 1.9.

g(x) = {x if x is rational
1—-x if x is irrational,

is continuous at x = § only.

Pros. 1.10. Let f: [0, 1]aR be defined as

1, if x=1,
% , if 0< x <1, where x is rational
f(x)= x =p/q, p and q being
relatively prime positive
integers,
L1, if x=0.

The figure (Fig. 1.1) is a poor attempt at portraying the graph of this
function. Prove: If x, €[0,1], then lim,,, f(x)=0. Conclude that f is
continuous at x, if x, is irrational and discontinuous if x is rational.

yl
[} .
[ ]
) L]
[ ] ]

[ ] [ ] [ ] [ ]
——1—00—90 0909000060 — >
1112 1 32 34
3135253451

Figure 1.1
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2. One-Sided Continuity. Points of Discontinuity.
Just as there are one-sided limits, we can speak of one-sided continuity.

Def. 2.1 (One-Sided Continuity). A real-valued function of a real variable is
called continuous from the left at x; if and only if: (1) x, € D(f) and (2)
for each e-neighborhood N(f(xy),€) of f(x,), there exists a §-neighborhood
N_(x9,08) = (xq — 8, x] of x, from the left such that

f((x0 = 8,%0] N D(f)) € N(f(x0)e). (2.1)

Similarly, f is called continuous from the right at x, if and only if: (1)
xo € D(f) and (2) for each e-neighborhood N( f(x,),€) of f(x,), there exists
a 8-neighborhood N, (x(,8) =[x, xo + ) of x, from the right such that

f(x0,%0+ 8) N D(f)) € N(f(x0,€))- (2:2)

In terms of inequalities this is equivalent to:

Def. 2.1'. f is continuous from the left at x, if and only if: (1) x, € D(f)
and (2) for each € > 0 there exists a 8§ > 0 such that if x, — § < x < x, and
x € (f), then | f(x) — f(xo)| < e. Similarly, f is continuous from the right
at x, if and only if: (1) x, € D(f) and (2) for each € > 0 there existsa § >0
such that if x, < x < x4+ & and x € D(f), then | f(x) — f(x,)| < €.

Remark 2.1. If x, € 9( f) but x, is not an accumulation point of 9D (f) from
one side, then f is continuous from that side at x,. (See Example 1.1 where
continuity of f at an isolated point of D(f) is discussed.)

If x, is an accumulation point of ( f) from one side, then the continuity
of f from that side can be defined in terms of the limit of f as x approaches
x, from that side.

Def. 2.3”. If x, is an accumulation point of ) (f) from the left, then f is
continuous from the left at x, if and only if: (1) x, € D(f) and (2)
f(xo =) = f(xo). Similarly, if x, is an accumulation point of D ( f) from the
right, then f is continuous from the right at x, if and only if: (1) xy € D(f)
and (2) f(xo +) = f(xo)

ProB. 2.1. Prove: f is continuous at x, if and only if f is continuous from
the right and from the left at x,.

Remark 2.2. A function f is continuous from the left at x, if and only if its
restriction to (—00; xo] N D(f) is continuous at x,. Similarly, f is continu-
ous from the right at x, if and only if its restriction to [x,, + 00) N D(f) is
continuous at x,. (See Remark V.5.2.)
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ExaMmpLE 2.1. We prove that the greatest integer function is continuous
from the right but that it is not continuous from the left at each integer.

Assume x, € R. Given € >0, take 8 such that 0 <& <1+ [xo] — x,.
(Note that [xy] < xo <[x,]+ 1, so that 1+ [x¢] — x> 0.) Therefore, if
X < x < xo+ 8, then xy < x <[x] + 1 and

[x0] < %< x <[x] +1
from which it follows that [x] = [x,] for such x. Hence,
[[x]=[Xo]l=1[*0] —[X]|=0<¢ for x,< x <xy+ 6,
and
lim [x]=[x] (2.3)

x—>xp+
On the other hand, if x, is an integer, then x, = [x,]. Take §; such that
0< 8, <1 and x such that x, — 8, < x < x,. For such x we have [xg] — 1
= xo— 1 < x < xo=[xg], and therefore [x] = [x,] — 1 = xy — 1, so that

x_l)ig;_ [x]=xo— 1<xo=[%p], if xgisan integer.

ProB. 2.2. Prove: If x is not an integer, then lim,_,, _ [x] = [x].

A point x, € R at which a function f is discontinuous is called a point of
discontinuity of the function. According to the last example and the prob-
lem following it we may state: The greatest integer function is continuous
for each noninteger x, and its points of discontinuity are the integers.

Let x, be an accumulation point of D(f). If lim,_,, f(x) exists and is
finite but either f is not defined at x, or lim,_,, f(x) # f(xo), we call x, a
removable discontinuity of f. This is to suggest that the discontinuity “can be
removed” by redefining f appropriately at x,. That is, a new function g can
be defined where

_ f(x) for x+# x, ”
8() =1 jim f(x)  for x=x,. (24)
X—>Xq
This g is such that
lim g(x)= lim f(x) = g(xo), (25)

and is, therefore, continuous at x,.
ExampLE 2.2. The function f, where
_x’—4
f(x)—x_2 for x+#2,

has a discontinuity at x = 2 since it is not defined there. This discontinuity
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is removable since

11mf(x)—)l(1in 2 =)l(i‘)mz(x+2)=4

X —

(see Fig. 2.1).

Pros. 2.3. Consider the function f, where

Sinx lf x7,:0
f(x)={ x
2 if x=0.

(a) Show that f has a removable discontinuity at x = 0.
(b) Redefine f so that it is continuous at 0.

If x, is a two-sided accumulation point of D(f) but at least one
one-sided limit as x = x,, is infinite, we say that f has an infinite discontinu-
ity at x,.

ExAMPLE 2.3. Let f be defined as:

1 .
f(x)={x it x#0
1 i x=0,

This function has an infinite discontinuity at x = 0. (See Fig. 2.2.) No
matter how we define f at 0, the discontinuity there will persist (explain).

It may happen that x, is a two-sided accumulation point of 9(f) but
lim,_,, f(x) does not exist, even in the extended sense. One way in which
this can occur is if both one-sided limits exist and are finite but f(xo—)
# f(xo +). Here lim,, f(x) does not exist and f is discontinuous at x,.
This type of dlSCOl’ltll’lUlty is called a jump discontinuity and f(xo+)—
f(xq—) is called the value of the jump.
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ExampLE 2.4. The signum function (cf. Example 11.2.2 and Example V.5.1)
has a jump discontinuity at x = 0, and the value of the jump is sig(l + ) —
sig(l =)=1—-(=1)=2.

If x, is a two-sided accumulation point of 9D (f) and at least one of the
one-sided limits of f as x —> x, does not exist, even in the extended case,
then x, is yet another type of discontinuity of f.

ExAMPLE 2.5. Consider the function g, where

LV i x=0
= if x
g(x)= {< x >
0 if x=0.
(Recall {z)* is the distance from z to the integer nearest z. It is shown in
Example V.5.3 that neither of the limits g(0—)=<0—>* g(0+)=
<0 + >* exist. Hence, x = 0 here is a discontinuity of g of the last type.

ProB. 2.4. Prove that lim,_,o(x{1/x)>*)=0.

3. Theorems on Local Continuity

The theorems which follow are similar to the ones in Section V.6 on limits.
They concern themselves with the properties of functions which are contin-
uous at a point x,. We refer to such properties as local properties of
continuous functions. On the other hand, properties of functions which are
continuous on certain types of sets are called global properties, or proper-
ties in the large, of continuous functions.
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Theorem 3.1. If f is continuous at x, there exists a §-neighborhood N(x,8)
of xq such that f is bounded on N(xy,8) N D(f).

ProB. 3.1. Prove Theorem 3.1. (See the proof of Theorem V.6.1.)

Theorem 3.2. Let f be continuous at x,. If (a) f(xy) > 0, then there exists a
8-neighborhood N(x,,8) of x, such that f(x) > 0 for x € N(x,,8) N D(f). If
(b) f(xo) <O, then there exists a §-neighborhood N(x,8) of x, such that
f(x) <0 for x € N(xy,8) N D(f).

ProB. 3.2. Prove Theorem 3.2. (See the proof of Theorem V.6.2.)

Theorem 3.3. If f and g are functions having a common domain ) and each is
continuous at x,, then so are their sum f+ g and product fg.

Pros. 3.3. Prove Theorem 3.3.

ProB. 3.4. Prove: If f is continuous at x, and ¢ is some constant, then cf is
continuous at x,.

Pros. 3.5. Let f, . . ., f, be n functions with a common domain 9. If all
the f; are continuous at x,, prove that (a) f,+ --- + f, and (b) f, f, . . . f,
are continuous at x,.

Def. 3.1. If f and g are functions with a common domain 9, and g is not
identically 0 on 9, then we define f/g to be the function Q, where
Q(x)= i(—ﬂ for x €9 suchthat g(x)#0.
8(x)

ExampLE 3.1. Since a rational function in R is a quotient P/ Q, where P
and Q are polynomials and Q is not the zero polynomial, we know that the
rational function R, where

P(x)
Q(x)
has a nonempty domain of definition (Prob. V.8.4). Polynomials are contin-
uous functions. Hence, if x, €R is such that Q(x,)# 0, some é-
neighborhood N(x,, 8) of x, exists such that Q(x) # 0 for x € N(x,,8) N R
= N(xy,0) (Theorem 3.2). Thus, there exists an open interval (x, — 8; x, +
8) such that Q(x) # 0 for x € (x, — 8; x, + 8). This implies that x, is an
accumulation point of 9 (R) (explain) and

. . P(x) lim,_,, P(x) _ P(xo)
A e N TE Bl ey

R(x)= for x such that Q(x)#0,

= R(xo)-
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This tells us that a rational function on R is continuous since it is
continuous for each x, in its domain. (This is a special case of Theorem 3.4
below.) Note that each point of the domain of a rational function is one of
its accumulation points.

Theorem 3.4. If f and g are functions having a common domain ), where
each is continuous at x, and g(x,) # 0, then f/ g is continuous at x,.

Pros. 3.6. Prove Theorem 3.4.

ProB. 3.7. Prove that the hyperbolic functions are continuous.

4. The Intermediate-Value Theorem

Here we encounter our first global property of continuous functions. It is a
property of functions continuous on intervals.

Lemma 4.1. If f is a real-valued function of a real variable which is continuous
on an interval I, and if for some a and b in I we have f(a) <0 < f(b) or
f(b) <0 < f(a), then there exists a ¢ between a and b such that f(c) = 0.

Proor. For the sake of definiteness let a < b and f(a) < 0 < f(b). Since I is
an interval, it is a convex set of real numbers. Hence [a,b] C I, and f is
continuous on [a, b]. We restrict f to the interval [a, b]. Since f(a) < 0, there
exists a §, > 0 such that f(x) <O for x € [a,a + §,) N [a,b] (Theorem 3.2),
and since f(b) >0, it follows that a < a + §, < b. Similarly, again by
Theorem 3.2, there exists a §, > 0 such that for x € (b — §,,b] N [a,b] we
have f(x)>0 and a<b—6,<b. Clearly, a+ §, < b —§, (otherwise
a<b-98,<a+ 8 <bandforb—§,<x<a+ § we would have f(x)
> 0 and f(x) < 0—an impossibility). Define the set S as

S={x€lab]|f(x)>0}. (4.1

Since S C|[a,b], it is bounded from below, and since f(b) >0, S+ @.
Hence, S has a real infimum. Let ¢ =infS. Now (b — §,,b] C S, and,
therefore, ¢ =infS < inf(b — §,,b] (Prob. 1.12.1). Since inf(b — é,,b]
=b—4,, we have ¢ < b —§, <b. But x €[a,a + §,) implies that f(x)
< 0. In turn, this implies that a + §, is a lower bound for S (explain), and
a+ 06, <c. Thus,a<a+ 8, <c<b-4§,<b, and, therefore, a < ¢ < b.
Now observe that if a < x < ¢, then x & S. Since such an x is in [a, b], it
follows that f(x) < 0. In short, a < x < ¢ implies that f(x) <O0.

If f(c) > 0, then, because of the continuity of f at ¢, we know (Theorem
3.2) that there is an e-neighborhood (¢ — €; ¢ + €) of ¢ such that x € (¢ — ¢;
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¢+ ¢€)N[a,b] implies f(x) > 0. Accordingly, if x €[a,b] and ¢ — e < x
< ¢, we have f(x) > 0. By the last sentence of the last paragraph that is
impossible. Hence, f(c) < 0. If f(c) <0, then there is an ¢;-neighborhood
(c — €;¢c + ¢€) of c such that x € (c — €;¢ + €) N [a; b] implies f(x) <O.
This and the last sentence of the last paragraph imply that if x € [a, b] and
a < x < c+ e, then f(x) < 0. Hence, x € S implies x > ¢ + ¢,. But then
¢ + ¢, is a lower bound for S. This is impossible, for ¢ + ¢, > ¢, and, by
definition, ¢ is the greatest lower bound for S. Hence, f(c) > 0. Since we
already showed that f(c) < 0 holds, we must have f(c) = 0. This completes
the proof.

Theorem 4.1 (The Intermediate-Value Theorem). If f is continuous on an
interval I and f(a) # f(b) holds for some a and b in I, then for each y between
f(a) and f(b), there exists a ¢ between a and b such that f(c) = y.

Proor. We have

f(a) <y <f(b) or f(a)>y> f(b). (42)
Define g on I as follows:
g(x)=f(x)—y for x€L (4.3)
This function g is continuous on 7, and, because of (4.2), we have
g(a) <0< g(b) or g(a)>0>g(b). (4.4)

Thus, g satisfies the hypothesis of Lemma 4.1. But then there exists a ¢
between a and b such that g(c) = 0. This implies that

fe)y—»=0

i.e., f(¢) = y, where c is between a and b. The proof is now complete.
This theorem is often phrased as follows.

Intermediate-Value Theorem. A real-valued function of a real variable which
is continuous on an interval assumes every value between any two of its values.

Remark 4.1. The ¢ of Theorem 4.1 is by no means unique. Theorem 4.1
merely asserts its existence.

When a real-valued function assumes every value between any two of its
values we say that it has the intermediate-value property. Functions which
are continuous on intervals have the intermediate-value property, but the
converse is false. There exist functions defined on intervals having the
intermediate-value property which are not continuous. We present an
example.
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ExampLE 4.1. Let f: [— 1, 1] >R be defined as:
f(x)=1-x if 0<x<l1

=—-1-x if —-1<x<0
(see Fig. 4.1). This function is defined on the interval [—1,1] has the

intermediate-value property there but is not continuous (see Remark 4.3
and Probs. 4.6 and 4.7).

PrOB. 4.1. Prove: A real-valued function has the intermediate-value prop-
erty if and only if its range is a convex set (Def. V.1.1). Since a nonempty
convex set of real numbers is either a point or an interval (Prob. V.1.6, part
(b)), this result states that a real-valued function with nonempty domain
has the intermediate-value property if and only if its range is either a point
or an interval.

Remark 4.2. Because of the result stated in the last problem, alternate
formulations of the intermediate-value theorem (Theorem 4.1) are: (a) a
real-valued function of a real variable that is continuous on an interval I
has a convex range f(I); (b) if a real-valued function of a real variable is
continuous on an interval /, then its range f(/) is either a point or an
interval.

ProB. 4.2. Prove: If P is a polynomial function in R of odd degree, then it
has a real zero, i.e., a real r exists such that P(r) =0.

ExAMPLE 4.2. Although we have already accumulated much information
about the sine and cosine functions, we have no information about the
zeros of these functions. We use the intermediate-value theorem to prove
that the cosine function has real zeros.
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We recall that if |x| < 1, then cosx > 0 (Prob. IV.8.5). Thus, cos1 > 0.
We prove that cos2 < 0. By definition,

_ 22 2% 28
cos2—2(~1) (2n)'_ _ﬁ+ﬁ_5+
A
Therefore,
4 6
1+cos2_%—§,+ (4.6)

We now prove that the series on the right is alternating. We write it in the
form 3%_,(—1)"*'a,, where
22n+2 £ h . X 47

a,= m or each positive integer n. (4.7)
We have: (1) a, > 0 for each n and (2) a,—>0 as n—> + . The last holds
because the series (4.5), and, therefore, the series (4.6), is converging. To
complete the proof that the series in (4.6) is alternating we show that (3)
a,., < a, for each n. Note that
22n+4 22n+2 2

Qn+al/ Gnv ) - mEpEaid - G

A4 _

a,

0<

The inequality on the right is a consequence of

20”2 +Tn+6>2 for n> 1.

Thus, (3) 0 < a,,, < a, for each n and the series in (4.6) is alternating. By
Prob. IV.2.1,

0<ay—as;+a,—as+ -

Hence,
4
a—a,+a;—ay+ - <a|=%|-=%.
This and (4.6) yield
1+cos2 <2,
from which it follows that
cos2< — 1. (4.8

Thus, cos2 < 0 < cos 1. Since cosine is continuous on R, the intermediate-
value theorem tells that there exists a real ¢ such that 1 < ¢ <2 and
cosc =0.

We now prove that the ¢ such that 1 < ¢ <2 and cosc =0 is unique.
Since sin’ + cos’c = 1, sin% =1 and, hence, sinc = +1. We prove that
sinc = 1. We do this by first proving that if 0 < x <6, then sinx > 0. We
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use the definition of sin x and obtain, after reindexing,

2n—l
sinx = 2 ( "+l (2]1—-—1_)—' . (49)
We put
x2n~1
a, = (2n—_1)! for n>1 (4.10)
so that
sinx = E (-1)""'a (4.11)

We take x such that 0 < x <y6 and note that (1) a, > 0 for all n and (2)
lim,_, , .a, = 0 (for (4.11) converges). We also have

a, . _ x2n+l x2n 1 _ x2 6 <

a4, @n+1) / Qn=T) ~ @m@n+1) ~@m@n+1) <!
Here the last inequality follows from (2n)(2n + 1) > 6 for n > 1. Thus, (3)
a,,, < a, for all n. We proved that if 0 < x </6, then the series (4.9) is
alternating. Therefore,

0<

n

0<a —ay+a;—a,+ --- =sinx for 0< x<y6. (4.12)

Since 1 < ¢ <2 <6, it follows that sinc > 0. This and sinc = + 1 yield
sinc = 1. As a by-product we have

sinx >0 if 0<x<e. (4.13)
Also
sin(c — x) = sinccosx — coscsinx = COs X,
ie.,
sin(c — x) = cosx forall xeR. (4.14)

Now, if 0 < x < ¢, then 0 < ¢ — x < c. It follows from this and (4.13) that
sin(¢c — x) > 0 and, hence, from (4. 14) that cosx >0 for 0 < x < c.
Finally, we show the uniqueness of ¢ such that 1 < ¢ <2 and cosc = 0.
To this end we take x such that ¢ < x < 2¢ so that 0 < x — ¢ < ¢. By
(4.14), for such x, —cosx = —sin(c — x) = sin(x — ¢) > 0. Thus,
cosx <0 if ¢<x<2c (4.15)

But ¢ <2 < 2¢. It follows that if ¢ < x < 2, then cosx < 0. Since we also
proved cosx >0 for 0 < x < ¢, we have cosx #0 for0< x <corc< x
< 2. We conclude that the ¢ such that 1 < ¢ <2 and cosc = 0 is unique.
This ¢ is the least positive x such that cosx = 0.

Def. 4.1. We define 7 = 2¢, where 1 < ¢ <2 and cosc = 0. Accordingly,
cos(m/2)=0and 2 < 7 < 4.
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We summarize our results in:

Theorem 4.2. The following hold:

(a) 2< 7 <4 and cos(n/2)=0.

(b) « is the only real number such that (a) holds.
(c) sin(w/2)=1.

(d) If 0 < x < /2, then sinx > 0.

(e) If 0 < x < m/2, then cosx > 0.

(f) If x €R, then sin(w /2 — x) = cos x.

(8) If /2 < x < m, then cosx < 0.

(h) 7 /2 is the least positive x such that cosx = 0.

ProB. 4.3. Prove: (a) sin(—«/2)= —1 and cos(—7/2)=0. (b) If |x|
< @ /2, then cosx >0. (c) If x €R, then cos(w/2 — x) =sinx. (d) If
7/2 < x < m, then sinx > 0. This, together with part (d) of Theorem 4.2,
yields: If 0 < x < o, then sinx > 0. (e) If —# < x <0, then sinx < 0.

ProB. 4.4. Prove: (a) sin(*7) =0 and cos(xa) = — 1. (b) sin(37/2) = — 1
and cos(*37/2) = 0. (c) cos27 = 1 and sin27 = 0. (d) cos(x + 27) = cos x
and sin(x + 27) =sinx for x €R, (e) sin(x £ 7) = —sinx and cos(x * 7)
= —cosx for x €R.

PROB. 4.5. Prove:

(a) sin(w/4)=1/y2 = cosm /4,
(b) cos(m/3) =4 = sin(7/6),

(c) cos(m/6) =13 /2 =sin(m/3),
(d) cos(7/12) = (6 +2)/4=\2+3 /2,

() sin(n/12)= (/6 —\2)/4=v2-13 /2,
(f) tan(w/12)=2—13.

Remark 4.3. In connection with the intermediate value theorem, we intro-
duce the following definition: A function will be said to have the strong
intermediate value property on an interval I if it has the intermediate value
property on every closed, bounded subinterval of I. For example, a
function continuous on an interval I has the strong intermediate value
property on I (why?). On the other hand, the function defined in Example
4.1, cited as an example of a function having the intermediate value
property which is not continuous, does not have the strong intermediate
value property (show this).

PROB. 4.6. (a) Let f be a function which has the strong intermediate value
property on the interval (a,b]. Prove: If f is also strictly monotonically
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increasing on (a; b), then f is strictly monotonically increasing on (a, b]. (b)
More generally, let f be a function having the strong intermediate value
property on an interval / which includes one of its endpoints, say c. Prove:
If f is also strictly monotonic on the interval J = I — {c}, then f is strictly
monotonic on 1.

Pros. 4.7. Let f have the strong intermediate value property on an interval

I. Prove: If f is also monotonic in the interior (the set of all interior points)
of I, then f is continuous and monotonic on /.

5. The Natural Logarithm: Logs to Any Base

Let E: R— be the function defined as E(x) = e* for x € R. We prove:
Theorem 5.1. The range of E is (0; + ).

ProOF. We know that E(x) = e* > 0 so that R(E) C (0; + c0). We wish to

prove that this subset relation can be reversed: that is, that (0; + c0)
C R(E). Assume y € (0; + o) so that y > 0. By Theorem V.7.3,

e >21+y>y>0 (5.1
and
ers>1+Ls1lsy (52)
Yy
Taking reciprocals, we have
e (/M <y, (5.3)
Thus, there exist real numbers b = y and a = —1/y such that
e’ <y<e’ (54)

Since FE is continuous, (5.4) and the intermediate-value theorem imply that
there is an x between a and b such that E(x)=e”* = y, and hence that
y € Q(FE). This proves that (0; + c0) C R(E). This and the first sentence of
the proof yield R (E) = (0; + ), as claimed.

Since e > 1, part (i) of Remark IV.10.3 shows that the function £: R—> R
such that E(x) = e* for x €R is strictly monotonically increasing. There-
fore, E has a strictly monotonic increasing inverse E ~' defined on its range
R (E) = (0; + c0), whose range is R, the domain of E (Theorem II.11.1).

Def. 5.1. The inverse of the function E is called the natural logarithm
function. If x > 0, then the unique y such that E(y) = e’ = x is called the
natural logarithm of x and is written

y=Inx. (5.5)
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Theorem 5.2. The domain of the natural logarithm function is (0; + 00) and
its range is R. We have

enx = x if x>0 (5-6)
and

Ine’ =y if yeR. (5.7)

In is also a strictly monotonic increasing function.

ProoF. The first statement is a consequence of the definition of the natural
logarithm as the inverse of E. By properties of the inverse we have

e"*=E(E"'(x))=x for x€(0; +00)=R(E)=D(In)
and
Ine’=E " '(E(y))=y for yeR=99E)=RIn).

This proves (5.6) and (5.7). The function In is strictly monotonically
increasing since it is the inverse of the strictly increasing function E.

Theorem 5.3. We have: (a) In1=0, (b) Ine=1, and (c) Inx <O for
0<x<landInx >0 for x > 1.

PrOOF. In 1 = 0 follows from e® = 1 and the definition of In. Since e' = e,
Ine =1 for the same reason. In view of the strictly increasing character of
In,

0<x <1 impliesthat Inx <Inl1=0
and

x > 1 implies that Inx >In1=0.

Theorem 54. If a > 0 and b > 0, then

(a) In(ab) =Ina + Inb,

(b) In(1/a) = —Ina,

(¢) In(a/b)=1na — Inb,
(d) Inag®* = alna for « €R.

ProoOF. We prove (a). Let u =1Ina and v = Inb. Then
e“=a and e’=0b
and, hence,
ab = e'e’ = e"*".
By the definition of In(ab), this implies that
In(ab) =u+ v=Ina +1nb.

This proves (a). We prove (d) next. Since a > 0, we have
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Hence, for a €R,
ealna = (eln a)a= a‘.
Taking the natural logarithm of the left- and right-hand sides, we obtain

alna

alna =Ine =Ina®.
This proves (d). We leave the proofs of (b) and (c) to the reader (Prob. 5.1).

ProB. 5.1. Complete the proof of the last theorem by proving parts (b) and
(©).

Theorem 5.5. We have

(a) xLiIPoo Inx=+o
and

b i = — 0.
® i nx= o

PrOOF. Take B €R and X > e”. Note that e? > 0. If x > X, then x > e?%.
Since In is strictly increasing, this implies that

Inx >1Ine? = B.
Thus, for each B, there exists an X such that if x > X, then Inx > B. This
proves (a).

We prove (b). Given B, we have e? > 0. Take 8 such that 0 < § < e?
and 0< x < 8. We have 0< x < e® and, therefore, Inx <Ilne? < B.
Thus, for each B €R, there exists a § > 0 such that if 0 < x < §, then
Inx < B. This proves (b).

Remark 5.1. It is important to note that if p > 0, then
px = (eln p)x= exln ’, (58)

ProB. 5.2. Prove:

(a) If p>1, then lim,_,, ,p* =+ and lim,_,_p* =0;
(b) If 0<p<1, then lim,_,,  p*=0 and lim,,_ p = +o (see Re-
mark 5.1).

Pros. 5.3. Let p > 0 and E,: R—>R be the function E,(x) = p* for x € R.
Prove: E, is continuous. Note that E, is strictly monotonically increasing if
p > 1 and strictly monotonically decreasing if 0 < p < 1.

ProB. 5.4. Prove: E,: R—>R, where p >0, p# 1 has the range (0; + o0),
and has an inverse £ ~! that is strictly monotonically increasing for p > 1
and strictly monotonically decreasing for 0 < p < 1.
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Def. 5.2. If p > 0, p # 1, then the inverse Ep‘l of E, is called the logarithm
to the base p. If x > 0, then y such that

pP=x (5.9
is called the logarithm to the base p of x and is written
y =log,x. (5.10)
We have, as a special case,
log,x =Inx for x>0. (5.11)

Thus, the natural logarithm of x > 0 is the logarithm to base e of x.
Pros. 5.5. Prove: If p >0, p # 1, then the domain of logp is (0; + o0) and
its range is R. Also,

ploer = x if x>0
and

logpp)’ =y if yeR.

ProB. 5.6. Prove: If p >0, p # 1, then (a) log,1 = 0 and (b) log,p=1.

Pros. 5.7. Prove: If p >0, p # 1, then

= Inx
log,x = In p for x>0

and (log,e)(In p) = 1.

Pros. 5.8. Prove: If p > 1, then logp is strictly increasing and

(a) 0 < x < 1 implies logpx <0,

(b) x > 1 implies log,x > 0.

Pros. 5.9. Prove: If 0 < p < 1, then logp is strictly decreasing and
(a) 0 < x <1 implies logpx >0,

(b) x > 1 implies log,x <0.

Pros. 5.10. Prove: If p > 0, p # 1, then @ > 0 and b > 0 imply

(a) log,(ab) = log,a + log b,
(b) log,(1/a)= —log,a,

(c) log,(a/b) = log,a — log,b,
(d) log,a® = alog,a if « €R.

Pros. 5.11. Prove: If p > 1, then

(a) x_l)il?w log,x= +0
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and

(b) xl_i)r& log,x= —co.

Pros. 5.12. Prove: If 0 < p < 1, then

(a) x_l)irpw log,x= —o0
and
(b) Xl_i)r& logpx= + 00.

Theorem 5.6. If h > — 1, then

A <in(1+ k) < b (5.12)
Proor. By Theorem V.7.3,,
l+z<e? <1+ ze? for zeR. (5.13)
Since A > —1 by hypothesis, we have A+ 1 > 0. Let z = In(1 + k) so that
e‘=1+h,
and, therefore,
h=e’—1.

Now use (5.13) in the form z < e — 1 < ze? to obtain
ln(1+h)=z<e2—1=h<zez=(ln(1+h))(1+h),
i.e.,
In(1 + h) < h <(1+ h)In(l + h) for Ah> —1. (5.14)

If A > 0, then In(1 + A) > 0, so (5.14) yields

h

Taking reciprocals, we obtain

1 <1n(1+h)<l f 3
1+h\ A S or >0,

from which (5.12) follows after multiplying by 4. This establishes (5.12) for
h>0.If —1<h<0,then0< 1+ A< 1andIn(l + k) < 0. Multiplication
by 1/In(1 + h) reverses the inequalities (in (5.14)) and we obtain

1> h
In(1 + h)

>1+h>0 for —-1<h<O.

Taking reciprocals, we obtain
In(1 + A
1< ( ) <1

S 7 \l+h for —1<h<0O.
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Inequality (5.12) now follows after we multiply the last inequalities by A
(h < 0). Thus, (5.12) holds for —1 < h <0 also. If » =0, the conclusion
holds trivially.

Pros. 5.13. Prove:

li =

(a) hl})r})ln(l + h) =0,
b " In(1 + h) :
®) fim ——— = 1.

PRrOB. 5.14. Prove: lim,_ (1 + h)'/* = e.

Theorem 5.7. If x + 0, then

@) mln(1+%)=o,
®) a1+ %) =%
Let x > 0. If h > — x, then

(©) ’lli_r)r(l)ln(x + h)=Inx,
@ }111_% In(x + :)—lnx _ %

Proor. If x >0, take h > —x and obtain h/x > —1. If x <0, take
h < — x and obtain again A/x > — 1. By Theorem 5.6, if #/x > —1, then

h_ _h/x hy<h
2 1+h/x\ln(l+x)\x. (5.15)
Here A/x > —1; if x>0 and h> —x, or x <0 and h < —x. Letting
h— 0, we obtain (a).

If A > 0, we obtain from (5.15)

1 1 Ay _1 o heo _
x+h<zln(l+;)<; it 2> -1, (5.16)
from which it follows that
lim %ln(l + %) -1 (5.17)
-0+
If h < 0, then multiplication by 1/h reverses the inequalities (5.15), so
1 1 h 1 h
> - =)>= => -1 .18
— hln(l+x)>x for 2> -1 (5.18)
It follows that
im 1 Ry 1
Jim - 1n(1 +4 ) ~. (5.19)

Equations (5.17) and (5.19) yield (b) if x # 0.
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If x >0, then 2 > — x implies x + & > 0, and we may write
ln(l + ﬁ) =In(x + h) — Inx.
X
So (5.15) can be written

h
X+ h

This implies (c). Part (d) follows from (b) when x > 0 and 2 > — x for then
(b) can be written

<ln(x+h)—1nx<%.

In(x + h) — Inx 1
h—0 h ; ’

Remark 5.2. It follows from part (c) of the last theorem that In is a
continuous function.

ProB. 5.15. Prove: If x €R, then

(a) lim (1 + hx)'/ "= e
and

. x\'_ o«
® Jm (1 F) = e

ProB. 5.16. Prove: If x > 1, then
0 <Inx <2(Jx - 1).

Pros. 5.17. Prove: lim, ,, . (Inx/x) = 0 (Hint: use Prob. 5.16).

ProB. 5.18. Assume a > 0. Prove:

(a) x_l)ir+n°0x°‘= + o0,
(b) lim 10x% _o

x>+ x°©

©) lim X o

x>+ x%

Pros. 5.19. Prove:

(a) lim, 4, (xlnx) =0,
(b) If « >0, then lim,_,;, x*Inx = 0.

ProB. 5.20. Let <b,» be a sequence of real numbers such that b, > b €R as
n—> + . Prove:

(a) nln(1 + b,/n)—>b as n—> + o,
(b) 1+ b,/n)"—>e® as n—> + o0,
() 1 =b,/n)*>e b asn—> +co.
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Remark 5.3. It follows from Prob. 5.20 that if {b,) is a sequence of real
numbers such that b, > b € R, then for any positive integer k we have

k
tim () A P (*)
n>+ow \k n n k! )

We prove this. Note that

HEOIEH
nn—1)...(n—k+ l)bk(l—b”/n)"
k!n* " (1=b,/n)*

_ b,f‘ b,\"
=%(1_%)(1_%)...(1_kn1)(1_b"/n)k(1-7).

Hence,
G -5) —al-%) ew

n—k

where

Ck,,,=%(1—%)(1—%)...(1— k;l)(l—b""/n)k' (5.20)

Since k is fixed, we obtain

k
Ck,,,—>7b(—' as n—> +oo. (5:21)

This and Prob. 5.20, part (c), together with (5.19"), yield (*).
The limit in (5.18) is useful in the theory of probability.
Pros. 5.21. Prove: If b > 0 and k is a positive integer and
P = % b¥e~"  for each positive integer k,

then (1) 0 < p, <1 for each k and (2) > ¥_op = 1.

Pros. 5.22. Prove: If {a,) is a real sequence such that

(a) a,>0 forall n
and
(b) a,—~>a as n—> +oo, where a >0,

then lim,_,, (a,a, . . . a,)"/" = a (Hint: use the properties of natural loga-
rithms and Example I11.9.1).
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Pros. 5.23. In Prob. IV.5.7 we asked the reader to prove

nfol
lim Vn!

n—>+ o n

Q |—

As a hint we suggested that the reader use Prob. IV.5.5. This limit may also
be evaluated by using the result cited in Prob. 5.22 above. Thus, we ask the
reader to prove that

lir_P n
n—>+0 n ]
Yn!

by constructing the sequence {P,», where

=e

P, = (1 + % ) for each positive integer n,
by observing that

n

n+1" n
PP,...P =(——)-=”—(1+%) for each n,

n

n! n!

and by using Prob. 5.22. It is also useful to examine Example I11.6.3.

ProB. 5.24*. Prove: If a > 0, x > 0, then

a a
ex>(x_e)’ e"‘g(i)
a ex

and

Inx <& x4, —Inx <
e

6. Bolzano—Weierstrass Theorem and Some
Consequences

Def. 6.1. If (x,) is a real sequence, then ¢ € R is called a cluster point of the
sequence if and only if there exists a subsequence (x, ) of {x,) which
converges to c.

EXAMPLE 6.1. Let x, =(—1)""' for each positive integer n. We have
(x,y=<1,—1,1,—1,...). The subsequence {x,,_,>=<1,1,1,...) of
odd-indexed terms converges to 1, while the subsequence (x,, > ={— 1, —
I, —1,...) of even-indexed terms converges to — 1. Therefore, 1 and —1
are cluster points of the sequence.

*D. S. Mitrinovic, Analytic Inequalities, Springer-Verlag, New York, 1970, p. 266.
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ExXAMPLE 6.2. Let x, = n~ ' if n is an odd positive integer and x, =1 —n"!

if n is an even positive integer. We have
—_ 1 1 3 1 5
<xn>—<l,§,§,z,§,g ...>.
Since {x,,_;>=<1,4,1,...), we have x,,_,—>0, as k— + 00, and since
(X =<3,3,2,...), we have x5, —> 1, as k—> + 0. Here 0 and 1 are

cluster points of the sequence.
There exist real sequences having no cluster points.

ExaMpPLE 6.3. Let x, = n for each positive integer so that {x,> = (1,2,
3,...)>. Here, no subsequence is bounded. Therefore, no subsequence
converges. The sequence has no cluster points.

Remark 6.1. If a sequence (x,> converges and has limit L, then every
subsequence converges to L. This makes L the only cluster point of the
sequence.

Theorem 6.1. Every bounded (infinite) sequence of real numbers has a real
cluster point.
PrOOF. Let {(x,» be a bounded sequence of real numbers. This implies that
— o0 <lim x, <lim x, < + co0.
Let
L =Tm x, (6.1)

and € = 1. By Theorem I11.6.4, part (c),

L—1<x, forinfinitely many n’s. (6.2)

By part (a) of the theorem just mentioned, there exists a positive integer N
such that

x,<L+1 for n>N. (6.3)

The set of n’s for which (6.2) holds is an infinite set of positive integers and,
thus, is not bounded. Hence, there exists a positive integer n; such that
n >N and L —1<x, . It follows that

L-1<x,<L+1 where n >N. (6.4)
Now, a positive integer N, exists such that
x, <L+ 1 for n> N,. (6.4)
Let N; = max{n,,N,} and Ny = N; + 1. Again, since

L-1<x, for infinitely many n’s, (6.5)
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there exists among these n’s one greater than N;, n, say, and we have
L-1i<x,<L+} where n <n,. (6.6)

This procedure can be continued inductively to obtain a subsequence {x,, >
of {x,» such that

L- % <x, <L+ % for each positive integer k. (6.7)
It is clear that x, = L as k—> + 0. Thus, L is a cluster point of {x,>. We
ask the reader to prove that L =lim x,, is also a cluster point of {x,) (Prob.

6.1).

Pros. 6.1. Prove: If {(x,> is a bounded infinite sequence of real numbers,
then L =limx, is a cluster point of {x,).

ProB. 6.2. Prove: If {x,) is a bounded infinite sequence of real numbers,
then L =limx, and L =lim x,, are respectively the greatest and least cluster
points of {x,).

Remark 6.2. We call Theorem 6.1 the Bolzano—Weierstrass Theorem for
sequences. The theorem which follows will be referred to as the Bolzano—
Weierstrass Theorem for sets.

Theorem 6.2 (Bolzano—Weierstrass Theorem for Sets). Every bounded infi-
nite set of real numbers has at least one accumulation point.

PROOF. Let S be a bounded infinite set of real numbers. We know that an
infinite set contains a denumerable subset (Theorem I1.10.3). Let 4 C S,
where A4 is denumerable. Then there is a one-to-one correspondence f
between Z, and A. Let x, = f(n) for each n € Z, . This gives us an infinite
sequence {x,» of distinct elements of S. Since S is bounded, so is {x,>. By
the Bolzano—Weierstrass Theorem for sequences, the sequence {x,) has a
cluster point c. There exists a subsequence {x, ) of {x,) such that x, —>¢
as k— + . The terms of this subsequence are all distinct (how do we
know this?). Since there is a sequence of distinct elements of S converging
to ¢, ¢ is an accumuation point of S (Theorem V.3.3).

It is often useful to know whether or not an accumulation point of a set
is also a member of the set. Sets containing a// their accumulation points
constitute an important class.

Def. 6.2. A set S CR is called closed (in R) if and only if it contains all its
accumulation points. Using the notation S’ for the derived set of S (see
Remark V.3.2), the definition may be phrased as: S is closed in R if and
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only if S’ C S. Since all our sets will be in R, we shall usually refer to a set
simply as being closed or not closed without adding “in R.”

ExAMPLE 6.4. A bounded closed interval [a,b] is a closed set. Let x, be an
accumulation point of [a,b]. We prove that x, < b. Suppose that x, > b.
Consider the neighborhood N(xy,x,— b) of x,. Assume that x € N(x,,
xo— b) so that |x — xo| < xo— b and, hence, b — x, < x — x, < xo — b.
The last inequalities imply that b — x, < x — x, and, hence, that x > b.
This proves: If x, > b, then the neighborhood N(x,,x, — b) and, therefore,
the deleted neighborhood N*(x,,x, — b), of x, contains no points of [a, b].
It follows that if x, > b, then x, is not an accumulation point of [a,b].
Hence, if x, is an accumulation point of [a,b], then x, < b. A similar
indirect proof shows that if x, is an accumulation point of [a,b], then
a < x, (carry out this proof). It follows that if x, is an accumulation point
of [a,b], then x, € [a,b]. Since the bounded closed interval [a, b] contains
all its accumulation points, it is a closed set.

ExAMPLE 6.5. The bounded interval [a, b) is not a closed set since b is an
accumulation point of [a, b) which is not in [a, ).

ProB. 6.3. Prove: [a, + o0) and (— 0, a], where a € R, are closed sets.

Remark 6.3. Clearly, R is closed. The empty set @ is also closed. For
otherwise it would contain a point that is not an accumulation point of @.
This is impossible, for @ has no elements. If S’ = @, then S is closed, since
then S'=0 C S, so that S’ C S. All finite subsets of R are closed since
their derived sets are empty (prove this).

Theorem 6.3. A set S CR is closed if and only if each converging sequence
(x,y of elements of S converges to a point of S.

PrOOF. Let S be a subset of R having the property that each converging
sequence {x,> of elements of S converges to a point of S. We prove that §
is closed. Let x, be an accumulation point of S. There exists a sequence
{x,y of distinct points of S which converges to x, (Theorem V.3.3.). By the
assumption on S, x, € S. This proves that S’ C S and, hence, that S is
closed.

Conversely, let S be a set that is closed in R. Let {x,> be a sequence of
points of S which converges to some point c. Suppose ¢ is not in S. By the
present assumption on S, ¢ is not an accumulation point of S and some
deleted e-neighborhood N*{c,€) exists containing no points of S. Since
c & S to begin with, this implies that N(c,e) N S = @. In turn, this implies
that x, & N(c,¢) for all n. Thus, |x, — ¢| > € > 0 for all n and limx, # c.
This contradicts the assumption on the sequence {x,». We must, therefore,
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conclude that ¢ € S. This proves that each converging sequence of ele-
ments of S converges to an element of S. This completes the proof.

Of special importance are sets which are bounded and closed.

Theorem 6.4. A nonempty set of real numbers which is closed and bounded
from above has a maximum.

PrOOF. Let S CR be nonempty, bounded from above and closed. This
implies that S has a real supremum. Let u = sup S. Let n be some positive
integer so that p — n~' < u. Corresponding to n, there is an x, € S such
that p — n~' < x, < p. This implies that

p=limx,.

Thus, (x,> is a sequence of elements of S which converges to u. Since S is
closed, we know (Theorem 6.3) that p € S. Accordingly, p is the maximum
of S (explain).

ProB. 6.4. Prove: A nonempty set of real numbers that is closed and
bounded from below has a minimum.

Remark 6.4. Combining the results of Theorem 6.4 and Prob. 6.4, we have:

Theorem 6.4'. A nonempty set of real numbers that is closed and bounded has
a maximum and a minimum.

7. Open Sets in R

Along with closed set in R we consider sets which are open in R. Before
defining the notion of an open set we introduce the notion of an interior
point of a set S CR.

Def. 7.1. If S CR, then x, € S is called an interior point of S if and only if
there is an e-neighborhood N(x,,€) of x, such that N(x,,€) C S.

ExaMPLE 7.1. A point of an interval I which is not an endpoint of I is an
interior point of I (see Fig. 7.1). Although this seems intuitively clear, we
prove it for the case of an interval I = [a, + o), where a ER. Let x, be a
point of I which differs from a. We have x, > a so that x, — a > 0. Take
the neighborhood N(x,,x,— a) of x,. We prove that N(xq,x,— a) C I.
Let x € N(xg,x,— a) so that |x — xo| < xo— a and, therefore, a — x,
< x — Xy < xo — a. This implies that x > a. But then x € I = [a, + ). We
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It (v 1
-\ \ ' Y 1
a xo—¢& Xo+¢€ b

Figure 7.1

proved that x € N(x(, x, — a) implies x € I. This proves that N(x,, x, — a)
Cclr

ProB. 7.1. Let I = (— o0; b) where b € R. Prove: If x, € I and x, # b, then
X, is an interior point of /.

Pros. 7.2. Let I = [a, b]. Prove: If a < x, < b, then x, is an interior point of
I

ProB. 7.3. Prove: No endpoint of an interval is an interior point of an
interval.

ProB. 7.4. Prove: If x, is an interior point of an interval /, then it is an
accumulation point of 7 (Hint: see Prob. V.3.2).

Pros. 7.5. Prove: No finite subset of R has interior points.

ProB. 7.6. Prove: The set Q of rational numbers has no interior points.

Def. 7.2. A set S CR is called open if and only if each of its points is an
interior point of S, that is, if and only if for each x, € S there exists some
e-neighborhood N(x,,€) of x, such that N(x,,€) C S.

Pros.. 7.7. Prove: An open interval is an open set.

Remark 7.1. The set of real numbers is open. The empty set is open (why?).
ExaMpLE 7.2. The bounded closed interval I = (a,b] is not open. Indeed,
b € I and b is not an interior point of I, that is, no e-neighborhood N(b,¢€)
of b is contained in /. It is important to note that (a, b] is not closed either.
Thus, there exist sets that are neither open nor closed.

The next theorem relates open sets to closed ones.

Theorem 7.1. A set G CR is open if and only if its complement R — G is
closed. A set F C R is closed if and only if its complement R — F is open.

PrOOF. We prove the first statement. Assume that G C R is open. We prove
that its complement R — G is closed. Let x, be an accumulation point of
R — G. If x, was in G, there would exist an e-neighborhood N(x,,¢€) of x,
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such that N(x,,e) C G. Since N*(xqy,€) C N(xq,€), the deleted e-
neighborhood N*(xg,€) is in G and contains no points of R — G. This
implies that x, is not an accumulation point of R — G and contradicts the
assumption on x,. We conclude that x, €R — G. Thus, R — G contains all
its accumulation points and is, therefore, closed.

Conversely, assume that the complement R — G of G is closed. Then
R — G contains all its accumulation points. Let x, € G so that x, is not in
R — G. Accordingly, there exists a deleted e-neighborhood N*(x,,¢€) of x,
which contains no point of R — G and, consequently, is a subset of G. For
this e-neighborhood we have N(xy,€) = {x,} U N*(xy,€) C G. This means
that if x, € G, then x, is an interior point of G. Thus, each point of G is an
interior point of G and G is open.

We ask the reader to prove the second statement (Prob. 7.8).

Pros. 7.8. Complete the proof of the last theorem by proving: A set F is
closed if and only if its complement is open.

Theorem 7.2. The intersection of two open sets is open.

Proor. Let G, and G, be open sets. Consider their intersection G; N G,.
Let x, € G, N G,, so that xy € G, and x, € G,. This implies that there
exist e-neighborhoods N(x,,€,) and N(xy,¢,) of x, such that

N(x9,€,)C G, and N(xy,6)C G,.

But there exists an e-neighborhood N(x,,€) of x, such that N(x,,¢€)
C N(xg,€,) N N(x4,€,) (Theorem V.3.1). Hence,

N(x,€) C N(xq,€) N N(x9,€)C G, NG,.

Thus, each point x, of G, N G, is an interior point of G, N G,, and
G, N G, is open.

ProB. 7.9. Prove: If F, and F, are closed sets, then their union is closed.
Theorem 7.3. The intersection of any family of closed sets is closed.

PRrOOF. Let § be a family of closed sets. We will prove that (¥ is closed.
Let x, be an accumulation point of (¥. That is, let

Xo € (N9)". 7.1
Let F € §. By properties of intersections this implies that
NF CF. (72)
But S C T C R implies S’ C T’ (Prob. V.3.8) and, hence, by (7.2),
(N9 CF'CF. (1.3)

Here F’ C F holds because each F € F is closed. In view of (7.3) we see
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that (N J)’ is a subset of every F € %. Hence,
(N9 <NS.

This proves that (¥ is closed.
ProB. 7.10. Prove: The union of any family of open sets is open.

Pros. 7.11. Prove: If f is a function which is continuous on R and ¢ €R,
then the sets

A={x€ER|f(x)>c}, B={xER|f(x)<c}, E={xER|f(x)=c}
are all closed and the sets
F={x€eR|f(x)>c}, G={xER|x<c}

are open.

8. Functions Continuous on Bounded Closed Sets
Pros. 8.1. Prove: A bounded closed interval [a, b] is a bounded closed set.
Theorem 8.1. A function continuous on a bounded closed set is bounded.

PROOF. Let f be continuous on the bounded closed set S. Suppose f is not
bounded. This implies that corresponding to each positive integer n, there
exists an x, € S such that

| f(xa)| > n. (8.1)

This gives us a sequence (x,» of elements of S for which (8.1) holds. Since
S is bounded, <{x,) is a bounded sequence of elements of S. As such, it has
a cluster point c. There exists a subsequence (x,, ) of (x,) such that x, > ¢
as k— + 0. Using (8.1), we obtain

|f(x,)| > n >k  for each positive integer k. (8-2)

This means that the sequence { f(x,, ) is not bounded. Since S is a closed
set and {x,, ) is a sequence of elements of S converging to ¢, we have c € §.
This implies that f is continuous at ¢ and, therefore, sequentially continuous
at c. It follows that f(x,)— f(c) as k— +co0. Thus, {f(x,)) converges.
Consequently, it is a bounded sequence. This contradicts our previous
conclusion, i.e., that { f(x,)) is not bounded. Therefore, we conclude that f
is bounded.

PrOB. 8.2. The function f defined as

f(x)={}l? if 0<x<l
I x=0
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is defined on the bounded closed set [0, 1] and is not bounded. Reconcile
this with Theorem 8.1.

Pros. 8.3. The function f, where

f)=—=

1—x2

for —1<x<1,

is continuous on the bounded set (—1; 1) but is not bounded. Reconcile
this with Theorem 8.1.

Theorem 8.2. A function which is continuous on a bounded closed set has a
range which is bounded and closed.

PROOF. Let f be continuous on the bounded closed set S. By Theorem 8.1
we know that f and, hence, its range R.(f), is bounded. We prove that R( f)
is a closed set. Let { y,> be a sequence of elements of ®( f) such thaty, >y
as n—> + 0. For each n there exists an x, € S such that y, = f(x,). The
sequence {x, > is a sequence of elements of S. Since S is bounded, the same
is true of (x,>. Hence, {x,> has a cluster point ¢ and there exists a
subsequence {x, » of {x,) which converges to c. Since S is closed, we have
¢ € S. fis continuous at ¢ and f(x, ) f(c) as k> + co. But then y, = f(c)
as k— +oc0. Since y, >y as n—> + oo the subsequence (y, ) of {y,) also
converges to y. This yields y = f(c) and, hence, y € R(f). We proved: If
{y,> is a sequence of elements of R(f) converging to y, then y € R(f).
This implies that R(f) is closed (Theorem 6.3). Thus, R(f) is closed and
bounded, as claimed.

Corollary 1. A real-valued function of a real variable which is continuous on a
nonempty bounded closed set has a maximum and a minimum.

PrOOF. Let f be a function continuous on the bounded, nonempty, closed
set S. By the hypothesis on f and by Theorem 8.2, the range R.(f) of f is
nonempty closed and bounded. This implies (Theorem 6.4") that R(f) has a
maximum and a minimum. The maximum and minimum of R (f) are the
maximum and minimum of f.

Corollary 2. The range of a real-valued function of a real variable that is
continuous on a bounded closed interval [a,b] and not constant there is the
bounded closed interval [ f(x,), f(x,)], where f(x,) and f(x,) are respectively
the minimum and maximum of f.

Proor. By Corollary 1 above, f has a minimum f(x,),x, € [a,b] and a
maximum f(x,), x; € [a, b]. Thus,

f(xo) < f(x) < f(x,)  forall x€[a,b]. (8.3)
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If f(xo) = f(x,), then f(x) = f(x,) for all x € [a,b], that is, f is constant on
[a, b]. But this is precluded by the hypothesis, so that f(x,) < f(x,). By (8.3)
we have R(f) C[f(xy), f(x;)]. By the intermediate-value property (recall
that f is continuous on the bounded interval [a, b], and so has the interme-
diate-value property there), we have [f(x,), f(x;)] C R(f). We conclude

that R(f) = [ f(xo), f(x))].

ProB. 8.4. Let f be given by means of f(x)=1/(1 + x?) for x €R. This
function is continuous on the closed set R but its range (0, 1] (prove this is
the range) is not closed. Reconcile this with Theorem 8.2.

ProB. 8.5. Let f be defined as f(x) = x for —1 < x < 1. This f is continuous
on the bounded interval (—1;1) but has neither a maximum nor a
minimum there. Reconcile this with Corollary 1 above.

Pros. 8.6. Define f as
~[x if —-1<x<I1
i={5 i s

Here f is defined on the bounded closed interval [— 1, 1] but it has neither a
maximum nor a minimum there. Reconcile this with Corollary 1 above.

9. Monotonic Functions. Inverses of Functions
We first prove a lemma.

Lemma 9.1. If I is an interval and a,b are accumulation points of I (possibly
extended ones) such that a < b, then (a;b) C I.

Proor. We first consider the case where a and b are real. Assume that
xE(a;b)sothata< x < b,b— x>0, x—a>0. Since b — a >0, there

exist positive integers n, and n, such that
b-a_y_4 and 2=¢
ny ny

<b-— x.

Hence,

a+b=e xcp-_b=a, (9.1)
n o)

Since a and b are accumulation points of 7, there exist points x, and x, of I
such that x, € N*(a,(b — a)/n,) and x, € N*(b,(b — a)/n,) and, there-
fore,

x,<a+b_a and b—-b_a<x2.
n )
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These and (9.1) imply that x, < x < x,. Since I is a convex set, it follows
that x € [x,,x,] C I and so x € I. Thus, (a;b) C I in this case.

Next we consider the case a = — o0, b €R. Assume that x € (a;b) =
(—o00;b) so that — oo < x < b. The deleted neighborhood (— o0; x) of — 00
contains a point of /. Hence, there is x, € I such that x; < x. Let n; be a
positive integer such that n; > 1. Then

b—x

0<—=<b—x (9-2a)
ns

and, therefore,

b—x
ns

x<b- (9-2b)

Now the deleted neighborhood N*(b,(b — x)/n;) contains a point x, of I.
This point is such that

_b—x
b m < Xx,. (9-3)
This and (9.2b) imply that x < x,. Thus, there exist x, and x, in / such that
x, < x < x,. In view of the convexity of I, we see that x € I. This proves
that (—oo; b) C I. We ask the reader to prove the theorem for the remain-
ing cases (Prob. 9.1).

Pros. 9.1. Complete the proof of Lemma 9.1 by proving it for the cases
a€R, b=+wanda= —o00,b= +00.

Theorem 9.1. If f is monotonically increasing on the interval I and a,b are
accumulation points of 1 (possibly extended ones) such that a < b, then
fla+) and f(b—) exist in R* and f(a+)< f(b—). (1) If b€ I, then
fb—=)< f(b).2)If b & I, then f(b —) ER or f(b — )= + o0 according to
whether f is bounded from above or not. (3) If a € I, then f(a) < f(a +). (4)
If a1, then fla+)ER or f(a+)= —oo according to whether f is
bounded from below or not.

Proor. By Lemma 9.1, we have (a; b) C I. Clearly, a is an accumulation
point of / from the right, while b is an accumulation point from the left
(these are possibly extended). First assume that f is bounded from above on
I. Since (a; b) C I, this implies that f is bounded from above on (a;b) so
that f has a real supremum there. Write
L= sup f(x). 94)
a<x<b
Given € > 0, we have L — € < L, and there exists an x, such that a < x,
< b and

L—e<f(x)< L. (9.5)
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If x, <x<b, we have a < x < b and f(x,;) < f(x) < L. This and (9.5)
imply that

L-e<f(x)<L for x;<x<b.
Hence: If € > 0 is given, there exists an x; € [ such that
|f(x)—LI<e if x;<x<b.
Whether b = + 00 or b €R, this implies that
f(b=)=lim f(x)=LER (9:6)

(explain). In case (1), where b € I, we have f(x) < f(b) for a < x < b.
Therefore f(b) is an upper bound for f((a; b)). This implies that f(b —)= L
< f(b). This proves (1). In case (2), if f is bounded from above, then (9.6)
holds and so f(b —) €ER. On the other hand, if, in case (2), f is not
bounded from above, given B there exists an x’ in I such that f(x’) > B.
Here x’ < b since b is a right endpoint (possibly extended) of I. Since f is
monotonically increasing, it follows that if x’ < x < b, then f(x) > f(x)
> B. We conclude that

f(b =)= lim f(x)= +oo. ©7)

This proves the second part of case (2). Thus, cases (1) and (2) are
dispensed with.

To deal with cases (3) and (4), we assume first that f is bounded from
below on 1. Since (a; b) C 1, this implies that f is bounded from below on
(a; b) so that f has a real infimum there. We put

I= inf f(x). (9-8)

a<x<b

Given € >0, we note that / </+ e and that an x, exists such that
a<x,<band

I< f(xy))<l+e 9-9)
If a<x<x, we have a < x < b and /< f(x) < f(x,). These and (9.9)
imply that
I< f(x)<l+e for a<x<x,.
Hence: If € > 0 is given, there exists an x, € I such that
lf(x)—1|<e if a<x<x,.
We conclude that
fla+)= lim f(x)=I€R. (9.10)

The reader can now complete the proofs of cases (3) and (4). These proofs
are analogous to those of cases (1) and (2).
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It remains to prove that f(a +) < f(b —). This is trivially true if f(a +)
= —o0 or f(b —)= + 0. The cases f(a + ) ER, f(b — ) ER are treated by
comparing (9.4) and (9.8). These imply / < L and, therefore, f(a +) =1
< L=f(b-).

Pros. 9.2. State and prove the dual of Theorem 9.1 for the case where f is
monotonically decreasing on an interval I and a, b are extended accumula-
tion points of I such that a < b.

Corollary (of Theorem 9.1). If f is monotonically increasing on an interval I
and x, is an interior point of I, then f(x,— ) and f(xy,+) are finite and

J(xo =) < flxg) < flxo+).

PRrOOF. Since x is assumed to be an interior point of I, there exist x, and x,
in I such that x; < xy < x,. Since, in this case, x, is a two-sided accumula-
tion point of I, Theorem 9.1 implies that f(x,—) < f(x,) and f(xy)
< f(xo+). This completes the proof.

Inverses of Functions
Theorem II.11.1 states that a strictly monotonic real-valued function of a
real variable has a strictly monotonic inverse f~'. Here we examine the
effect of requiring that a strictly monotonic function is also continuous.
ExampLE 9.1. Consider f, where

x+1 if x<—1,

f(x)=40 if x=0,
x—1 if x>1.

(see Fig. 9.1). The domain of fis D(f) = (—o0; 1) U {0} U (1; + 00). Since

A

(—1,0)

(1,0 x

Figure 9.1
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©, 1)

(Oa - l)

Figure 9.2

0 is an isolated point of (f), f is continuous at 0. f is also continuous also
at x € D(f), x #0. (Prove this.) Thus, f is a continuous function. The
range of fis R. Accordingly, f has an inverse f ~' defined as:

ffloy=y-1 if y<0,
=0 if y=0,
=y+1 if y>0

(see Fig. 9.2).

We note that f~' is discontinuous, since it is not continuous at y =0
(prove this). Thus, we can see that a function may be discontinuous but its
inverse may be continuous (f~' is discontinuous but its inverse f is
continuous).

Theorem 9.2.* If f is strictly monotonic on an interval I, then it has an inverse
f~"on f(I) which is strictly monotonic and continuous.

ProoOF. We prove the theorem for the case where f is increasing. The proof
for the decreasing case is similar.

Assume that f is strictly monotonically increasing on the interval I.
Therefore, f has an inverse f~' defined on R(f)= f(I). Let y, € f(I).
There exists x, € I such that y, = f(x,) and x, = f~'(y,). Since x, € I and
I is an interval, x, is either (1) an interior point or (2) a left endpoint of I,
or (3) a right endpoint of 1.

We examine case (1), where x, is an interior point of /. In this case, x, is
a two-sided accumulation point of I. Given € > 0, there exist x; and x, in I
such that x5 — € < x; < X< x, < Xo+ €. Put y, = f(x,) and y, = f(x,).

*Burril-Knudsen. Real Variables, Holt, Rhinehart, Winston, New York, p. 225.
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We have
1= f(x1) <f(x0) = yo < f(x2) = »2 (6-11)

so that y, < yo < y,. Therefore, y, — y, >0, y, — yo > 0. Put §, = yy — y,
and 8, =y, — yo. Then y, = y,— 6, and y, =y, + 8,, where §, >0 and
8, > 0. Also put § = min{§,,8,} so that § >0 and

N=Yo— 8 < pp—8<pg<yo+d< yo+8,=y,. (9-12)
Take y € N(yy,6) and y € f(I). There exists x € I such that y = f(x),
x=f_'(y), and
N<p—8<y<y,+8< y,.

Accordingly, if € > 0 is given, we have

xo—e<x,=fly)<fT'O)<STN)=x<xp+ €
and, therefore,

f7 O = 'Ol = 17" (y) = x| < e
for y € N(yy,8) and y € f(I). (9.13)

It follows that f ' is continuous at y, in case (1). We leave the proofs that
f~!is continuous at y, in cases (2) and (3) to the reader (Prob. 9.3). Thus,
f ~!is continuous at each y, € f(I) and is, therefore, continuous on f([).

ProB. 9.3. Complete the proof of Theorem 9.2 by proving that the f ' there
is continuous at y,, where x, = f~'(y,) is either (2) a left endpoint of I or
(3) a right endpoint of 1.

Theorem 9.3. If f is strictly monotonic and continuous on an interval I, then
f(I) is an interval, f ~" exists and is strictly monotonic and continuous on f(I).

Proor. The continuity of f on an interval I implies that its range f([) is
either a point or an interval (Remark 4.2). However, since f is strictly
monotonic on the interval I, f(I) cannot be a point (explain). The existence,
strict monotonicity, and continuity of the inverse is a consequence of
Theorem 9.2.

ExaMPLE 9.2. In Theorem 5.7 we saw that the natural logarithm is continu-
ous (see Remark 5.2). Theorem 9.3 furnishes us with another proof of its
continuity. The function In is defined as the inverse of the function E,
where E(x) = e* for all x € R. The latter is strictly monotonically increas-
ing on the interval R = (— 00; + 00) and continuous there, so Theorem 9.3
guarantees the continuity and the strict monotonically increasing character
of In, the inverse of E on its range R(E) = (0; + o).

Pros. 9.4. Prove: If f is one-to-one and continuous on an interval 7, then it
is strictly monotonic on 1.
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10. Inverses of the Hyperbolic Functions

We apply the results of Section 9 to the hyperbolic functions to obtain their
inverses.

Inverse Hyperbolic Sine

The domain of sinh is R. It is strictly monotonically increasing (Prob.
V.2.10). By Prob. V.7.4 we also know that

x_l)irllw (sinhx) = —c0 and X_l)irlloo (sinhx) = + o0. (10.1)

By Prob. 3.8, sinh is continuous. This, (10.1), and the intermediate-value
theorem imply that the range R (sinh) of the hyperbolic sine is R. Theorem
9.4 implies that sinh has a strictly monotonically increasing and continuous
inverse defined on ®(sinh). This inverse is written as sinh~' or as Arcsinh,
and we call it the inverse hyperbolic sine or arc hyperbolic sine. Given x € R
there exists a unique y € R such that

x=sinhy and y=sinh™'x. (10.2)

We can obtain an explicit expression for sinh~'x in terms of functions
defined earlier. Thus, if x is given, then the y such that

e/ —eV _e¥—1
2 2e”

x =sinh y = (10.3)

satisfies
e¥ —2xe’ —1=0 or (e’)z— 2xe’ —1=0.
This implies that

[1+2
e)’=2x—i-gii4—=xt\u2+l. (10.4)

Now e’ > 0 and

x—yx>+1<0 and x+Vx*+1>0 for xeR (10.5)

(prove 10.5). Hence, y in (10.4) must satisfy

e’ =x+yl+ x? for x €R.

This implies that

y=In(x+y1+x*) for x€R. (10.6)

Pros. 10.1. Verify by direct substitution that

sinh(ln(x +V1 + x? )) =x for x €R.
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From the above it follows (explain) that

sinh™'x = ln(x +y1+ xz) for x €R. (10.7)

Inverse Hyperbolic Cosine

Since cosh(— x) = cosh x for x € R, the hyperbolic cosine function is not
one-to-one, so we define a principal inverse hyperbolic cosine.

The hyperbolic cosine is strictly monotonically increasing on [0, + o0)
{(Prob. V.2.11) and is continuous (Prob. 3.8). We also note that cosh0 = 1,
and

lim coshx= + 0.
x—>+ o0

With the aid of the intermediate-value theorem we infer that cosh maps
[0, + ) onto [1, + o0). We restrict the hyperbolic cosine to [0, + o0) and
conclude, using Thecrem 9.3, that this restriction has a unique continuous
and strictly monotonically increasing inverse defined on [1, + 00). We call
the inverse of this restriction the principal inverse hyperbolic cosine or the
principal arc hyperbolic cosine, and write it as cosh ™' or as Arccosh. Thus, if
x > 1, then cosh ™ 'x is defined as the unique y > 0 such that

e’ +e’

2 =cosh y = x,

which implies that

e¥ —2xe’ +1=0.
This yields

e’ =x=xx*-1 for x> 1. (10.8)

Since y > 0, we know that e’ > 1. However, for x > 1 we have
Vx—1—-yx+1<0 and Vx—1+yx+1>0. (10.9)

We multiply each of the above inequalities by yx —1 and obtain

x—1—yx>—=1 <0and x — 1 +yx2—1 >0, so that, if x > 1, then
x—yx2—-1<1 (10.10a)

x+x*—1>1 (10.10b)

Since y > 0, it follows that the x and y in (10.8) satisfy

e’ =x+yx1—1, (10.11)

where y > 0 and x > 1. Hence, y = In(x +yx? — 1), that is,

and

= Arccoshx = cosh ™ 'x =In(x +Vx2—1), 10.12
y )

where x > 1.
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Pros. 10.2. Recall the definition of sech by means of
1
cosh x

in Prob. V.2.8. Prove that sech is strictly decreasing on [0, + o0). Prove:
sech maps [0, + o0) onto (0, 1]. Define the principal inverse hyperbolic secant
as the inverse of the restriction of sech to [0, + c0) and write it as Arcsech

or as sech ™. Prove: If 0 < x < 1, then
1+ — x2 )
—

sechx = for xR

Arcsech x = sech ™ 'x = cosh™! % = ln(

Pros. 10.3. In Prob. V.2.8 the hyperbolic tangent was defined as

sinh x

cosh x for x €R.

tanhx =

Prove: tanh is strictly monotonically increasing and continuous and that its
range is (— 1; 1). Define the inverse hyperbolic tangent or the arc hyperbolic
tangent as the inverse of tanh. Prove: If —1 < x <1, then

1,1+

n

Arctanh x = tanh~'x =
2 1—x

ProB. 10.4. Recall the definitions of the hyperbolic contangent and the
hyperbolic cosecant:

and cschx = —
inh x sinh x

cosh x

cothx = S for x#0.

Prove that these are one-to-one functions. Using the obvious notation,
prove that

coth~'x = Lipx+1

>IN for |x|>1

and

csch”'x=sinh"%=ln(%+|—)lc|\/1+x2) for x #0.

11. Uniform Continuity

When we test a function for continuity on a set 4 C D( f) we check to see if
it is continuous for each x, € A. Thus, given € >0, we look for a § >0
such that if |x — xo| < 8§ and x € D(f), then | f(x) — f(x()| < €. The 8 is not
unique, for once one is found, any smaller one will do. The § also depends
on € and will, in general, depend on x,. For example, let f be given by

f(x)= % for x>0.
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Here 9(f) = (0; + o0). We prove that f is continuous at x, > 0. Suppose
€ > 0 is given. We wish to find a § > 0 such that if |[x — x| < § and x > 0,
then

1_1

< €.

We first take x such that |x — x,| < x,/2 so that

Xo Xo
§x0=x0—7<x<x0+7.
Note that x > x,/2 > 0 holds for such x and, hence, that
o<l

In short, if |x — xo| < x,/2, then x > 0 and
1 1

_ |x-x0|_|x—x0|

< % |x — x|
X0

- || o h XXo

Here the right-hand side—and therefore also the left-hand side—will be less
than € if |x — xo| < (x3/2)e. We, therefore, take 6 such that

2
0<d< min[ % ,%c}
and x such that x >0 and |x — x,| < 8. This will imply that

2

X X
22 and |x - x| <7°e,

2

and it will follow that for such x

|x—x0| <

1

2
X
1_1|.2
X X

20 e=¢
x2 2

Hence, f is continuous at each x, € D(f).
However, for the same € >0, the closer x, is to 0, the smaller the
corresponding & (see Fig. 11.1).
It is not always the case that § depends on x,. For example, let f be given
by
f(x)=2x+3 foreach x €R.

If x, €R and € > 0 are given, then taking x such that |x — x,| < &, where §
is such that 0 < 8 < €/2, yields

| f(x) = f(x0)l = [2x + 3 — (2x¢ + 3)| = 2|x — x| < 2% =e.
Here, for a given € > 0, § does not depend on x,. (See Fig. 11.1(b).)

These distinctions are expressed by means of the notion of uniform
continuity.



11. Uniform Continuity 285

yA yA

]

2¢ 2x° +3t------

i
|
'
'
'
|
'
|
!
]
|
'
|
1
1
|
|
'
]
'
1

— e,
' ]
P
)
! |
' '
'
! '
v
'
1
'
1
[
1
1
[

Xy Xg — 01X Xy + 0,
N’ —_——

20, 24,

\J

xo—é);oxo+6

() (b)
Figure 11.1

Def. 11.1. f is said to be uniformly continuous on a set A if and only if (1)
A C D(f) and (2) for each € >0 there exists a § > 0 such that if x, € 4
and x, € 4 and |x, — x,| < 8, then | f(x,) — f(x,)| < €. (Here § depends on
¢ only.) If f is uniformly continuous on @ (f), then we say that f is uniformly
continuous.

ProB. 11.1. Prove: If f is uniformly continuous on a set A, then it is
continuous on 4.

ExampLE 11.1. The sine function is uniformly continuous. Here A4
= 9(sine) = R. By Example 1.4, we have: If x, and x, are in R, then

|sinx, — sinx,| < |x; — x,|.
Hence, if € >0 is given, we take § such that 0 < & < e to obtain: If
|x, — x,| < &, then
[sinx, —sinx,| < |x; — x| < d < e

Pros. 11.2. Prove: The cosine function is uniformly continuous.

Pros. 11.3. Prove: If 4 =[1, + ), then the f such that f(x)=1/x for
x € A is uniformly continuous on 4.

Pros. 11.4. Prove: If 4 = [0, 1] and f is given by f(x) = x? for x € A, then f
is uniformly continuous on 4. (In Example 11.2 we see that if f is given by
f(x) = x* and we take 4 = D(f) =R, then f is not uniformly continuous.)

Pros. 11.5. Prove: If g is given by Vx for x €0, + o), then g is uniformly
continuous (cf. Prob. 1.4).
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The next theorem gives a sequential criterion for uniform continuity.
This will enable us, at least in some cases, to determine when a function is
not uniformly continuous.

Theorem 11.1. f is uniformly continuous on A C D(f) if and only if for any
two sequences {x,y and {x, ) of A such that x, — x, >0 as n—> +co we
have f(x;) — f(x,)—>0as n—> + 0.

PROOF. Assume that f is uniformly continuous on 4 C 9 (f). Let {x;)» and
{x,;> be sequences of elements of 4 such that x;, — x, >0 as n—> + 0. In
view of the uniform continuity of f on A, given € > 0, there exists a § > 0
such that

[f(x)) = f(xy)| < € for x;and x,in 4 and |x; — x,| < §. (11.1)
Since x, — x,, —>0 as n—> + oo, there exists an N such that
|x, — x| <& for x,,x/inAandn> N.
Because of (11.1), this implies that
|f(x2) = f(xD)l<e if n>N,

and we conclude that f(x;) — f(x,)—>0 as n—> + .

Now assume that f is not uniformly continuous on A4 C D(f). By Def.
11.2, this implies that some € > 0 exists such that for each § > 0 there exist
x" and x” in 4 such that

[x" = x"| <8 and |[f(x')—f(x")|>e€e>0. (11.2)
It follows that, corresponding to each positive integer n, there exist x, and
x,, in A such that

1

|x, — x| < P and |f(x,) — f(x,)| > €>0. (11.3)

Thus, (x,> and {x, > are sequences of elements of 4 such that x, — x, >0
as n—> + oo, but f(x;) — f(x,)—>0 as n—> + oo is false. We conclude that if
for any sequences <{x,» and <{x,) of 4 such that x, — x, >0 we have
f(x;) — f(x,))—0, then f is necessarily uniformly continuous on 4.

ExAMPLE 11.2. We prove that f, where f(x) = x? for x €R is not uniformly

continuous. Let x, =y + 1 and x” = +yn for each positive integer n. We
have

x,—x/ =yn+1—yn= 0

S SN
n+1+Vn

as n—> + 00 and
|f(x0) = fxeDl =1x7 = x| =|n+1=n|=1

for all n so that f(x,) — f(x;)+0 as n—> + . By Theorem 11.1, f is not
uniformly continuous on R = 9 ( f).
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Pros. 11.6. Use Theorem 11.1 to prove that f, where f(x) = 1/x for x >0,
is not uniformly continuous (Hint: consider the sequences (x;» and {x,’ >,

where

=1 and x, = 1 for each n).
n n+1

’
n

X,

We show that there are several respects in which uniformly continuous
functions are “better behaved” than continuous functions that are not
uniformly continuous. We first show that there exists a function continuous
on a set 4 which maps some Cauchy sequence of elements of 4 into a
sequence which is not a Cauchy sequence.

ExampLE 11.3. Let f: (0,1]> R be defined as
=1
fxy=~  for x€(0, 1].

The sequence {x,» given by x, = 1/n for each positive integer n converges
to 0, and so is a Cauchy sequence of elements of (0, 1]. On the other hand,
in spite of the continuity of f, the sequence < f(x,)>,
f(x,) = xi =n for each positive integer n,
is not bounded and diverges to + o0, and so is not a Cauchy sequence.
A uniformly continuous function on a set 4 never behaves in this way.
Specifically,

Theorem 11.2. If f is uniformly continuous on a set A C D(f) and {x,) is a
Cauchy sequence of elements of f, then the sequence {f(x,)) of images of
{x,y is a Cauchy sequence.

ProoOF. Let (x,> be a Cauchy sequence of elements of 4 and {f(x,))> the
sequence of images of (x,>. Let ¢ >0 be given. Since f is uniformly
continuous on A, there exists a § > 0 such that if x; and x, are in 4 and
|x, — x,| <8, then |f(x,) — f(x,)| < e. There exists an N such that if
m> N and n> N, then |x,, — x,| < 8. Hence, |f(x,)— f(x,)| < € from
m > N and n > N. Clearly, { f(x,)) is a Cauchy sequence.

Remark 11.1. The function f of the last example maps the bounded set (0, 1]
onto the unbounded set [1, + o) even though it is continuous. This cannot
occur when a function is uniformly continuous. In fact,

Theorem 11.3. If f is uniformly continuous on a bounded set A, then f is
bounded on A.

PROOF. Suppose that f is not bounded on 4. This implies that correspond-
ing to each positive integer n there exists an x, € 4 such that

| f(x,)] > n. (11.4)
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Since A4 is bounded and x, € 4 for all n, the sequence {x, > is bounded. By
the Bolzano—Weierstrass Theorem for sequences, {x,> has a cluster point ¢
and there exists a subsequence {x, ) of {x,) such that x, —>cask—> +oo.
This implies that {x,, > is a Cauchy sequence of elements of 4. By Theorem
11.2 it follows that < f(x,)) is a Cauchy sequence. As such, < f(x,)) is a
bounded sequence. But this is impossible. In fact, since (see (11.3))

|f(xa ) > 1 > k for each positive integer k,

{f(x,,)> is not bounded. Because of this contradiction we conclude that f is
bounded on 4.

Theorem 11.4. If f is uniformly continuous on a bounded interval of the form
(a; b, then f(a + ) exists and is finite.

ProOF. Given € > 0, there exists a § > 0 such that if x; and x, are in (a, b]
and

|x, = x,| <8, (11.5)
then

|f(x)) = f(x2)| < e. (11.6)
Using the above §, we take x’ € N*(a,8/2) N (a,b] and x” € N*(a,§/2) N
(a,b]. For such x’ and x”, we have x’ € (a,b], x” € (a,b] and

r_ W ’_ " __ § Q =
|x" = x"| <|x'—a|+|x a|<2+2 0

so that (11.5) and, therefore, also (11.6), hold with x, = x’, x, = x”. Thus,
given € > 0, we have that x’ € N*(a,8/2) N (a,b] and x” € N*(a,8/2) N
(a,b] imply that | f(x") — f(x”)| < €. By the Cauchy criterion for functions,

lim f(x)=L forsome L eR.

x—a

Since for all x € (a;b] we have x > q, this limit is one from the right as
x> a and we have f(a +)= L €R, as claimed.

Pros. 11.7. Let f be uniformly continuous on a bounded interval of the
form [a, b). Prove: f(b —) exists and is finite.

Theorem 11.5. If f is continuous on a bounded closed set, then f is uniformly
continuous there.

PROOF. Let F be a bounded closed subset of R and suppose f is continuous
on F but not uniformly continuous there. The last implies that an € > 0
exists such that for each § > 0, there exist x, and x, in F such that

X1 = xo| <& but [f(x,) = f(x)| > €>0.

This implies that corresponding to each positive integer n, there exist x, and
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x,, such that
1

|x, — x| < - but |f(x;) — f(x,)| > €>0. (11.7)

Thus, {x,,» is a sequence of elements of the bounded set F and is, therefore,
a bounded sequence. As such, {x,» has a cluster point ¢ and a subsequence

(x> of {x,) exists such that x, = ¢ as k— + 00. Since F is closed, c € F.
We obtain

’ ” 1 1
|x,,k—x,,k <n—k <E (118)

and

|f(%) = f(xm)l > €>0 (11.9)
for each positive integer k. By (11.7), we have lim,_, , ,(x, — x,/) =0 and,
therefore,

. ” : " __ ’ ’
kllr-lr-loo xn"' - kllToo (xnk xn" + xn"

- )+
=0+¢
=c
so that x, >c ask—> +o0.Sincec € F, fis continuous at c. Since x, — ¢,
x, —>c as k> + oo, it follows that
I J(8) =00 = iS5

These yield lim,_,, (f(x,;) — f(x,))=0. This is impossible by (11.9).
Hence, f is necessarily uniformly continuous on F.

Corollary. A function which is continuous on a bounded closed interval is
uniformly continuous there.

Proor. Exercise.

Pros. 11.8. Prove: Each polynomial function on R is uniformly continuous
on a bounded closed interval.

ProB. 11.9. Prove: f, where f(x)=ya®>+ x* for all x €R, a # 0, is uni-
formly continuous.



CHAPTER VII
Derivatives

1. The Derivative of a Function
Limits often arise from considering the derivative of a function at a point.

Def. 1.1. If f is a real-valued function of a real variable and a is an interior
point of D (f), then f is said to be differentiable at a if and only if
i 1) ~ /(@)
im —————

x—>a X —a

(L1

exists and is finite. When f is differentiable at a, the limit in (1.1) is called
the derivative of f at a and will be written as f’(a) or (Df)(a). Thus,

(Df)(a) = f(a) = lim L) L@

x—a X —a

(12)

[We pause in our development to remind the reader that derivatives can
be used to define the tangent line to the graph of a function. The slope of a
line T (see Fig. 1.1) joining (a, f(a)) and (x, f(x)), x # a, is

f(x) — f(a)
x—a
If f is differentiable at a, then
@)= i T I@

x—a xXxX—a

We define the tangent line T to the graph of f at (a, f(a)) as the line
through (a, f(a)) having the slope f’(a). The equation of the line T is

y =f(a)+ f'(a)(x — a), x €R.] (1.3)
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y A T

T

(éﬂx»
} fx) = f(a)
(a, f(a))
xX—a
/
a x T x
Figure 1.1

Def. 1.2. The derivative of f or its derived function is the function f’ whose
domain D(f’) is the set

D(f) = {x €D(f)|fis differentiable at x}

and whose value at x is f'(x). We will also write the derivative of f as Df.
Other notations for the derivative of a function will also be used.

Other Notation for Derivatives

The following is a slight variant of (1.2). Put x — a = A, then x = a + h and

farh—j@ (1)

The traditional notation introduced by Leibniz uses the notation y for
the function f and dy/dx for its derivative. In this notation one often writes
x + Ax for a value different from x. Ax is called the increment or the
change in x. The increment in y induced by the increment Ax in x is defined
as

f'(a) = lim

h—0

Ay = f(x + Ax) — f(x). (1.4)
dy/dx is given by

Y i A gy JEHED TS

dx  Ax—>0 AX  Ax—0 Ax

(1.5)

where Ax # 0.
Some books use

af ) , @
p for f* and ' for el
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In the Leibniz notation the derivative of the function y at a is written as

dy dy
(a)x=a Oras E x=a.

A convenient notation we shall often use for the derivative of f at x is

af(x)
= (%) (16)
ExaMmpPLE 1.1. From Corollary 1 of Theorem V.7.3 we know that
h
lim & =1 1.
hl—% h
It follows that if x € R, then
de* _ . e th—eX . cef—1_ i e'—1_ xi_ x
il fue =efim T =etl=e
so that
de* —_ X
yak for x eR. (1.7)
ExaMPLE 1.2. We prove that
dsin x
T cosx for xeR. (1.8)
By Theorem V.4.2,
lim 0% =1 and lim S2h=1_
h—0 h—>0 h
If h # 0, then
sin(x + h) —sinx _ sinxcosh + cosxsinh — sinx
h h
= sinx( _cosl;l— 1 ) + cosx——Sizh .
This implies that
dsinx _ . SIM(X+A)—sinx o cosh— 1] sin
dx 10 h B '111_1;1'(1)(81[1)( h *+cosx h )
= (sinx)0 + (cos x)(1)
= COS X,
which proves (1.8).
Pros. 1.1. Prove that
d(cos x) .
= —sinx.

dx
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ProB. 1.2. (a) Let ¢ be the constant function whose value is ¢ for all x € R.
Prove:
de _
dx 0.
(b) Let f be the identity function in R, i.e., f(x) = x for x €R. Prove:
d(x)/dx =1 for x €R.

In what follows it will be convenient to use the notion of a one-sided
interior point of a subset of R.

Def. 1.3. If x, € S CR, then we call x,, an interior point of S from the right
when some e-neighborhood N, (xg,€) =[xy, X, + €) of x, from the right is
contained in S. Dually, x, € S C R will be called an interior point of S from
the left when some e-neighborhood N _ (x,,€) = (x, — €,x,] of x, from the
left is contained in S.

For example, let [a,b] be some bounded closed interval. The point a is a
left endpoint of [a, b] and is an interior point of [a, b] from the right. Also, b
is an interior point of [a,b] from the left. Certainly, an interior point of a
set S is an interior point of S from the right and from the left. However, an
interior point of a set from one side need not be an interior point of the set.

We now define one-sided derivatives at a point in the obvious way.

Def. 1.4. Let f be a real-valued function of a real variable and a an interior
point of 9(f) from the right. If

Gt (C))
m —
x—a+ xX—a

(1.9)

exists and is finite, then we say that f is differentiable at a from the right, call
the limit the derivative of f at a from the right, and write

, . f(x) = f(a)
Je(a)= lim —F——. (1.10)
Similarly, if a is an interior part of () from the left and
x) — f(a
x—>a— xXxX—a

exists and is finite, then we say that f is differentiable at a from the left, call
this limit the derivative of f at a from the left, and write

@)= tim 1O I@

- X —a

(1.12)

Pros. 1.3. Prove: If f is a real-valued function of a real variable and a is an
interior point of 9(f), then (1) f is differentiable at a if and only if both
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fi(a) and fp(a) exist, are finite, and equal, that is, f;(a) = fy(a); (2)
f(a) = f;'(a) = fz(a) if and only if f; (a) = fz(a).

ExaMpLE 1.3. We prove: If a« €R, then, for x > 0,

dx*“ — a—1
e = ax. (1.13)

We use Prob. V.7.1. By part (a) of that problem we have: If a < Qora > 1,
and x >0, x + & > 0, then

ax® h=ax*"N(x+h—x)<(x+h)"—x*<a(x+h)*(x+h-x)
= a(x + h)*"'h.
This means that if x >0, x + 24 >0, a <0 or a > 1, then
ax* ' <(x+h)*—x* < a(x+h)*"'h (1.14)
It follows that

x+ h)* 7 — x©
a—l<( )

ax 7 Sa(x+h)*"' if h>0,
(1.15)
| (x+h)* T —x° 1 .
ax®" " > 5 > a(x + h)* if —x<h<O0.

Since, for x > 0, (x + h)*~'—> x*~ " as h—>0 (Theorem V.7.2), the first row
of inequalities in (1.15) yields
(x+h)* = x° .

lim = ax for x>0, a<0 or a>1,
h—0+ h

and the second row of inequalities yields

) (x+h)“_1—x"‘ .
hll%l A =ax*” for x>0, a<0 or a>1.
50—

Since the last two one-sided limits are equal, (1.13) holds for a <0 or
a > 1. To complete the proof of (1.13) for 0 < a < 1, all we need do is use
part (b) of Prob. V.7.1 and reason as we did here (with appropriate
modifications, of course).

ExAMPLE 1.4. Suppose a > 1 and
x if x>0
= 1.16
) {0 if x=0. (116)
Here f is defined on [0, + 00) and 0 is an interior point of [0, + o) from the
right. From the definition of f(0) it follows that if x > 0, then
f(x) = f(9)

= = (1.17)
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yA
(x, x%) a>1
- ¢ b
Figure 1.2
Since a — 1 > 0, this implies that
, . f()-fO) el
O = lm =g = lim ") =0.

Since 0 is a left endpoint of the interval [0, + 00) on which f is defined, we
say that f is differentiable at 0 and has the derivative f'(0) = f;(0) = O there
(see Def. 1.5 below) even though it is just a one-sided derivative. We
conclude that if a > 1, then

a—1 :
"(x) = | ax f x>0
S [0 if x=0
(see Fig. 1.2). Thus, for a > 1, formula (1.13) retains its validity when
x=0.

Pros. 1.4. Prove: If 0 < a <1 and f is defined as
_ [ x* if x>0
fo= {5 32 0,

then f is not differentiable at O (see Fig. 1.3).

yA

(x, x¥) O<ax<l1

=

Figure 1.3
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ProB. 1.5 (An Application of Formula (1.13)). Prove: (a) If « €R, then

. (n+ D =n"
lim ————— =a
n—>+ o0 na"‘l
and (b) use (a) and Theorem III.9.1 to prove that if « > 1, then
a—1 a—1 a—1
lim 1 + 2 +a---+n =_1_.
n—>+ oo n a

ProB. 1.6. Let a« = m/n, where m and n are integers and n is odd. Prove:
(@) If 0 < n < m, then formula (1.15) remains valid for all x € R; (b) If
m < n, then formula (1.15) holds for all x €R, x # 0.

The notion of differentiability was defined at a point. We also speak of
differentiability on a set.

Def. 1.5. When a function is differentiable at each point of its domain, then
we say that it is differentiable. When the function is differentiable at each
point of a set 4, then we say that it is differentiable on A. If I is an interval
of the form (— 00, 4] or [a, b] or [a, + o0), where a and b are in R, then we
say that f is differentiable on I if and only if it is differentiable at each
interior point of I and differentiable from the appropriate side of an
endpoint of 1. The derivative of f at an endpoint of I is defined to be the
appropriate one-sided derivative of f at that endpoint if the latter exists. For
example, f is said to be differentiable on the bounded closed interval [a, b]
if and only if it is differentiable at each interior point of [a,b] and
differentiable at a from the right and at b from the left.

There exist functions defined on intervals which are differentiable at one
point only (Prob. 1.7).

Pros. 1.7. Let f be defined as

f(x) = [ x* if xisrational
0 if x isirrational.
Prove that f is differentiable at x = 0 only.

2. Continuity and Differentiability. Extended
Differentiability

Theorem 2.1. If f is differentiable at a point, then it is continuous there.

PrOOF. Let f be differentiable at a. Then a is an interior point of 9(f) and
there exists an e-neighborhood (a —€;a + €) such that (a — e€;a + €)
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C D(f). Assume that x € (a — €;a + €) and x #* a. Then

f =g+ T2 ()
and
11m f(x) = 11m (f( )+ M( a))
=f(@)+f(a)-0
=f(a).

This establishes the conclusion.
The next example shows that the converse of Theorem 2.1 is false.
ExaMmpLE 2.1. The absolute value function is continuous on R and, in

particular, at x = 0. However, it is not differentiable at x = 0. In fact, let
g(x) = |x| for x €R. Then

8(x) ~ £(0) e
N - et et e
and
o= G ED T8O L —x
@)=y — % "Mt

Since gz (0) = 1 and g; (0) = — 1, g is not differentiable at 0 even though it
is continuous there. Later we shall give an example of a function which is
continuous for all real x but is differentiable nowhere.
We note, however, that g is differentiable at x # 0. We first prove this for
x > 0, i.e., we prove that for x >0
g(x + h) — g(x)

g(x) = lim ; =1 (*)

Given € > 0, take A such that 0 < |h| < x so that —x <h<x and h#0
for such A. Since A + x > 0,

Lad LI -|EHh=x - 1j=0<e foro<hl<x.
This proves (*). We now prove: If x <0, then
g(x + h) —g(x)

g(x)=lim - = -1 (**)

Given € >0, take h such that 0 <|h| < —x, so that x < h < —x and
h # 0. We have x + & <0 and, therefore,

Jx + | — ||
BB (-

=|L—hhi‘_x+1=|_1.;.1|=0<e

for 0<|h| < —x.
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This proves (* *). Thus, the absolute value function is differentiable for all
x #0.

Def. 2.1. When x is an interior point of 9( f) and
N RN ()
im ——————

=40 Or —oo,
h—0 h

then we will write, respectively, f'(x) = + 0 or f'(x) = — 0. We say that f
is differentiable at x in the extended sense if and only if: either (a) f is
differentiable at x (in the sense of Def. 1.1) or (b) f is continuous at x and
f(x)= 4+ or f(x)= —occ. Similarly, if x is an interior point of D(f)
from one side, we call f differentiable at x in the extended sense, from that
side, if and only if (c) f is differentiable from that side at x, or (d) f is
continuous at x from that side and the derivative from that side at x is + co
or — co.

ExaMPLE 2.2. It can happen that f'(a)= + o or f'(a)= —c0 and f is
discontinuous at a. For example, let f be the signum function. We have

1 if x>0
f(x)=sigxy 0 if x=0
-1 if x<0.
Therefore,
o sig(h) — sig(0) o —1 _
O =l = = T
and
R sig(h) —sig(0) |
Ja(0) = lim ————— = lim 4 = +co.

Thus, f'(0) = fz(0) = f;(0) = + 0. However, we do not call the signum
function differentiable in the extended sense at O since it is not continuous
there. (See Fig. 2.1.)

ExaMPLE 2.3. Let m and n be odd integers such that 0 < m < n. Let f be
given by f(x) = x™/" for x €R. f is continuous for all x €R. At x =0, we
have

= lim 1 _ + c0.
x—0 x("—m)/"

m/n
/ —_ 1 X
FO = lip L
The last equality holds since n — m is an even positive integer and n is an
odd positive integer (see Fig. 2.2). f is differentiable in the extended sense at
x =0 and is differentiable for all x # 0. Hence, f is differentiable in the

extended sense.
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yA

0, 1

®y

(0! - l)

Figure 2.1

EXAMPLE 2.4. Let & be given by h(x) = x™/" for x € R, where m and n are
integers, m even and n odd and 0 < m < n. Then

hp©) = lim X~ pim Ly
R( )—x—l)%l+ X _x—)0+ x("_m)/" B %
and
T T 1 - _
h;(0) = Xl_l)I(I)l_ NEECYE 0.

Each of the equalities on the extreme left holds because n — m and n are

y A

%y

Figure 2.2
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Figure 2.3

odd positive integers. Here 4’(0) does not exist, for A; (0) and hg(0) differ
(see Fig. 2.3). k is continuous at 0, however, and so we have differentiability
in the extended sense at x = 0 from two sides.

Terminology

If f'(a) = + o or f'(a) = — oo, then we say that f'(a) exists even though we
may not have differentiability in the extended sense at a.

3. Evaluating Derivatives. Chain Rule

Pros. 3.1. Prove: If 4 and v are functions having a common domain ¢ and
each is differentiable at x € ), then their sum u + v and their difference
u — v are differentiable at x and

d(u(x) £ v(x)) _ du(x) N dv(x) .

dx dx dx
ProB. 3.2. Prove: If n is a positive integer and u,, ..., u, are functions
having a common domain 9 and each is differentiable at x € 9, then their
sum u, + u, + - - - + u, is differentiable at x and

d(uy(x)+ uy(x)+ - - +u,(x)) duy(x) duy(x) du,(x)
dx T T dx * dx oo dx
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ProB. 3.3. Prove: If u is a function which is differentiable at x and c is
some real number, then

d
4 () = L)

ProB. 3.4. Prove:

d(cosh x) . d(sinh x)
——— 2 =sinhx and ———= =coshux.
dx dx

Pros. 3.5. Let n be some nonnegative integer and P a polynomial function
on R, where P(x) = apx"+ a;x" '+ -+ +a,_;x + a, for x €R. What is
P'(x)?

Theorem 3.1. If u and v are functions having a common domain 9 and each
is differentiable at x € %, then their product is differentiable at x and

du(x)v(x) B do(x) du(x)

— u(x) e + e o(x). 3.1

Proor. Note that since u is differentiable at x, it is continuous there so that

}l'ii%u(x + h) = u(x). 3.2)
Taking h # 0 and x € 9D, x + h € &, we obtain
u(x + hyo(x +hh) — u(x)v(x) — u(x + h) o(x + h})l — 0(x)
PG hz “H) x). (33)

Using (3.2), the fact that ¥ and v are differentiable at x, and theorems on
limits, we have

di + h) — u(x+h)—u
) e 1y SR MR )

+ h) —
+ (llll_l‘)l‘(l) u(x z u(x) )v(x)

= u4(x) —dt:;;cx) + —dz;(xx) o(x),

which proves the theorem.
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ProOB. 3.6. Let n be some positive integer and u,,u,, ..., u, functions
having a common domain . Prove: If u;,u,, . . ., u, are all differentiable
at x, then so is their product uu, . . . u,, and
d du,(x)
L (1w (x)n(x) (X)) = wp(X)uy(%)  + h,(X) —p
du,(x)
+uy(X)uy(x) - - - u,(X) e

du,(x)
dx

+ o u(x)uy(x) - u,(X)

Theorem 3.2. If u and v are functions having a common domain 9, both are
differentiable at x € 9 and v(x) # 0, then their quotient u/v is differentiable
at x and

l( u(x) ) 3 o(x)(du(x)/dx) — (dv(x)/dx)u(x)

dx\ v(x) | 3(x) : (3-4)

Proor. Since v is differentiable at x, it is necessarily continuous there.
Since x is an interior point of @ and ov(x)# 0, there exists a §-
neighborhood N(x,§,) of x such that N(x,8,) C 9. Because of the continu-
ity of v at x and the fact that v(x) # 0, there exists a §-neighborhood
N(x,8,) of x such that v(x + h)# 0 for x + h € N(x,6,) N 9. Also, there
exists a d-neighborhood N(x,8) of x such that N(x,6) C N(x,6,)N
N(x,8,). Hence, N(x,8) C N(x,8,) CD and N(x,8) C N(x,8,) and v(x +
h)#0 for x + h € N(x,6). We now take x + h € N*(x,98), so that A= 0
and o(x + h) # 0, and obtain

1 [ u(x+ h) u(x)
Z(o(x+h) a u(x))

X+ h)—u vo(x + h)— o(x
=[(u< )74 ) ) - i 251 ()]

1
X o+ Ryo(®) (35)

The continuity of v at x implies that v(x + h)—> v(x) as h—>0. Using
theorems on limits, (3.5) yields

i(u(x))—li 1(u(x+h) _u(x))
dx

o(x) =y o(x + h) v(x)

] du(x) do(x)
_oz(x) (vx p e a u(x)). (3.6)

This completes the proof.



3. Evaluating Derivatives. Chain Rule 303

ProB. 3.7. Prove: If cosx # 0, then
(a) dtanx/dx = sec’x and

(b) dsecx/dx = secxtanx.
Pros. 3.8. Prove: If sinx # 0,

(a) dcotx/dx = —csc’x and

(b) dcscx/dx = —cscxcotx.
Pros. 3.9. Prove: If x €R, then
(a) dtanhx/dx = sech’x,

(b) dsechx/dx = —sechx tanhx.
Pros. 3.10. Prove: If x = 0, then
(a) dcothx/dx = —csch’x,

(b) dcschx/dx = —cschx coth x.

Theorem 3.3 (The Chain Rule). If f and g are real-valued functions of a real
variable, .(g) C D(f), g is differentiable at x and f at u = g(x), then the
composite function f o g is differentiable at x and

(fo8)(x)=r(8(x)8& (%) (3.7)
ProoF. The domain of fo g is 9(g) and x is an interior point of D(g)

= ) (fo g). There exists an e-neighborhood N(x,d,) of x such that N(x,§,)
C 9D(g). Take h such that x + h € D(g), h # 0, note that g(x + h) € D(f)

and form
f(8(x + 1) — f(8(x))
7 .

If g(x + h) # g(x) = u, then

fg(x+ M)~ f(g(x) _ f(g(x+ M)~ f(v) s(x+m—g(x) .o
h B g(x+h)—u h - (39
If g(x + h) = g(x) = u, then
+ h)) — X + h) —
f(a(x )2 f(s(x) _ f(u) g(x }3 8(x) (39)
since both sides are 0. Define the function v as follows:
J(8(x + h)) = f(u) .
o(x.h) = st h)—u if g(x+h)#g(x)=u (3.10)
f'(w) if g(x+h)=g(x)=u.

This, (3.8), and (3.9) yield

fg(x+ h>h) B _ o py BEF "h> —8) G
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where x + h € N*(x,8,). We prove first that

,ltin})o(x,h) = f'(u). (3.12)
Since f is differentiable at u = g(x), there exists a §, > 0 such that if
u+ked(f) and 0<|k|<3,, (3.13)

then

+ k) — f(u
&—k)—f() —f(w|<e (3.14)

But g is differentiable at x and, therefore, continuous there. Hence, a §; > 0
exists such that if

x+heD(g)=D(fog) and |h|<$;, (3.15)
then

lg(x + k) —ul=|g(x + h) — g(x)| <9,. (3.16)
Take 0< 8 < min{$,,8;} so that N(x,8)C N(x,8,) N N(x,8;) CD(g)
=6 (fo g). Put k =g(x + h) — u so that g(x + h) = u + k, and take x +
h € N*(x,8). Accordingly, x + h € N(x,8,), x + h € N(x,85), and 0 < |A
< 8 < 85. This implies that (3.15) holds and, therefore, that (3.16) holds.
Thus, u + k= g(x + h) € N(u,8,). If g(x + h) = g(x) = u, then

lo(x,h) — f'(u)| = |f'(4) — f'(u)| =0< e (3.17)
If g(x + h) #* g(x), then k 0. Hence, u + k € N*(u,d,) and

0<|g(x+h)—ul=|k|<8, and u+k=g(x+h)EDf). (3.18)

Thus, (3.13) holds. But then (3.14) holds, and

f(g(x+m) = f(u)
g(x+h)y—u —f )

lo(x,h) = f'(w)| =

<e  (3.19)

Therefore, if € > 0 is given, then, for 0 < |h| < §, one of (3.17) or (3.19)
holds and

lo(x,h) — f'(u)| < e (3.20)
This proves (3.12). Returning to (3.11), we conclude that

+ h)) — x+ h)—
lim f(g(x )h) f(g(x))=}lli_r)r(1)(v(x,h) 8( }3 g(x))
=f(u)g(x)
=f(8(x) &' (%)

Thus, f o g is differentiable at x and (3.7) holds.
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Remark 3.1. If we put y = f and u = g, then the chain rule can be written in
the following easily remembered form:

dy _dy(v)
L (3.21)
or, more briefly, as
Y _ b du
dx du dx’
We can also write it as
d(you
—(EX—)=(Z—Z ou)g—: (3.22)

or as

df(s(x)) _ ( df ag(x)
dx

du )u=g(x) dx

ExampLE 3.1. If p > 0, then

x xIn p

=e

P

Hence, using the chain rule, we have

dpx_dex]np— xlnpd(xlnp)_ N
dx  dx ¢ dx =pnp.

Pros. 3.11. Let u be a function which is differentiable at x and u(x) # 0.
Prove that || is differentiable at x.

ExaMmpLE 3.2. We claim that, for x > 0,

dinx _ 1
dx x
This follows from Theorem VI.5.7, part (d). Indeed, there we learned that,
for x >0,

(3.23)

In(x + h) —1
lim M+ B —lnx gy
h—>0 h x

If x <0, then the chain rule implies that

for x 0. (3.24)
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Now let y be a differentiable function of x such that y(x) # 0. Then the
chain rule and the above imply that

dinjy| _ 1 dy
ExaMPLE 3.3 (Logarithmic Differentiation). Let a,,a,, ..., a,;a;, ..., a,
be real numbers where a; < a, < - - - < a,. Define y as
y(x)=(x—a)*(x—a)™...(x—a,)™, (3.26)

where x > a,. Since x > a,, y(x) > 0. Hence, In y(x) is defined. By proper-
ties of logarithms,

In y(x)=a;In(x — a)) + q;In(x —a,) + - - - + a,In(x — a,).

Taking derivatives of both sides, we have

d a a a,
d—i=y(x)( LIS 2 _ 4.4 )

X = a, X —a, X — a,
=a(x—a)" (x—ay)™...(x—a,)™

+osta(x—a)t .. (x—a,)"(x—a,)" .

Pros. 3.12. Find dy/dx, where

(@) y(x)= x*sin(1/x?) if x #0 and y(0) =0

() y=xy1-x2,-1<x<1,

(© y=y(x=2)/(x—1), where x >2 or x < 1,

(d) y =In(x*— 1), where x> — 1> 0,
(® y=0—I)x=2)(x—3)(x—4).
Pros. 3.13. Prove: If @ > 0, then

dlog,x | _ log,e >0

dx xIna X

4. Higher-Order Derivatives

Def. 4.1(a). If f is a real-valued function of a real variable that is differen-
tiable in some e-neighborhood N(x,e) of x and if its derivative f’ is
differentiable at x, then we say that f is twice differentiable at x and call the
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derivative of f’ at x the second derivative of f at x. Some notations for the
second derivative of f at x are

' (D)),
The function f”, whose domain D(f”) is

D(f") = {x €D(f)|fis twice differentiable at x},

is called the second derivative of f or the derivative of f of the second order
(the first derivative of f is called the derivative of f of the first order). Some
notations for it are

f(x) ¥
dx* =~ dx*|

2
by, 4L

dx*’
We have
N — 2 dzf_ d df
(fy=f" D(Df)=DY, E‘a(d—x)-

If fis differentiable on some e-neighborhood of x and f’ is differentiable in
the extended sense at x, then we call f rwice differentiable in the extended
sense at x and the extended derivative of f” at x, the second derivative of f in
the extended sense at x.

Remark 4.1. If f is defined on some open interval I, then we write f° = f,
calling f itself the Oth-order derivative of f on I.

The nth-order derivative of a function can be defined by using complete
induction.

Def. 4.1(b). Let f be a real-valued function of a real variable and x an
interior point of 9(f), so that there exists an e-neighborhood of x, N(x,e),
contained in 9( f). The Oth-order derivative of fis defined as (¥ = f. Let n
be some positive integer. If for all integers k£ such that 0 < k<, f is
differentiable of order k for each point of N(x,e), then f is said to be
differentiable of order n at x if and only if f"~" is differentiable at x. In
that case, the nth-order derivative of f at x is defined as

fOx) = (f"V)(x). 4.1)
If f*~V is differentiable for each x € N(x,e€), then we say that f is

differentiable of order n on N(x,e) and call the derivative of f("~! the
nth-order derivative of f on N(x,e€). Thus,

fo = (g (42)
Alternate notations for the nth-order derivative of f at x and for the nth
order derivative of f respectively are:

d"f(x
D), )
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and
a’f
(n)
by, dx"’
If n is a positive integer, then, by definition,
_ dn d dn - lf
ng n—1 = %
D"f=D(D""f) and ' dx ( el (4.3)
If n is a nonnegative integer, then
f(n+l) = (f("))/' (44)

Pros. 4.1. Prove: If f is differentiable of order n + 1, where n is some
nonnegative integer, then

£ = (.

ProB. 4.2. Prove: If m and n are nonnegative integers and f is differentiable
of order m + n on N(x,¢), then

flmen = (f('"))(n).

Remark 4.2. We exemplify the concept of higher-order one-sided derivatives
by defining differentiability and derivative from the left at x, of order two.
Let f be a real-valued function of a real variable, x an interior point of
D(f) from the left. Let f be differentiable from the left on some e-
neighborhood N(x,¢€) of x from the left. Then f is called differentiable of
order two at x from the left if and only if f; is differentiable from the left at
x. We write the value of the derivative of f; at x from the left as f;’(x) and
call it the second derivative of f from the left at x.

PrOB. 4.3. Let f be defined as: f(x) = |x|* for each x €R. Prove: f is
differentiable of order 2 on R but fails to be differentiable on R of order 3.

ProB. 4.4. Repeat the instructions of the last problem replacing f by the
function g defined as g(x) = x7/3 for x €R.

PrOB. 4.5. Let P be a polynomial function on R, where P(x)= aux" +
ax" '+ ... +a, x+a,for x €R. Prove: (a) P (x) = n'a, for x eR
and (b) P("*™(x) = 0, where m is a positive integer.

A useful rule for calculating derivatives of higher order for the case of a
function which is a product uv of functions u and v is Leibniz’s rule stated
in the next problem.



4. Higher-Order Derivatives 309

ProB. 4.6 (Leibniz’s Rule). Prove: If u and v are differentiable functions of
order n having a common domain % and » is a positive integer, then

d"(uv)= n (n)dn—ku d*
dx” KZ0\Kk) dxn=k dxk

(Hint: use induction on » and the relation
n n\_(n+1
(Z0)+ () =("5")
where k is an integer such that 0 < k < n).

ProB. 4.7. Using the same conditions on # and v as in Prob. 4.6 above,
prove:

d<_qpkn1d M d o\ _ du 1, d
dx(gl( D™ ek g ) =g TN e
An Application to Polynomials

We first define a special sequence p, of polynomials as follows:

Po(x) =1 forall xeR

4.5)
Pu(x)=x" for x €R,
where n is a positive integer. The Oth-order derivative of p, is
PO(x) = x". (4.6)

If n and j are positive integers and p{” is the jth-order derivative of p,, then
PAxX)=nn=1)---(n—j+)x"J, 1<j<n,
pa(x)=n, (47)
px)y=0 if j>n.

Using the notation for factorials of order n adopted in Section I1.6 we recall
that if » and j are non-negative integers, then

1 if j=0
(n)j= nn=1)---(n—j+1) if 1<j<n (4.8)
0 if j>n
and
n _(")-
(J.)_—j!—f. (49)
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Therefore,
n(n—l)---(n—j+1)=j!(’j’.), if 1<j<n (410
This and (4.7) yield
P (x) =j!('jl.)x"_f for x€R and 0<j<n (411)

By the Binomial Theorem, if a and x are real numbers and n is a
nonnegative integer, then :

n

Pu(X)=x"=(a+(x—a))'= 2 (:.)a"_j(x—a)f. (4.12)

J=0
By (4.11), p{/X(a) = j! (})a" /. Substitution in (4.12) yields
n (02}
. p."(a) -
x"=p,(x)= 20 7l (x — a)’. (4.13)
Jj= :

This last formula is a special case of:

Theorem 4.1. If P is a polynomial on R, where

n
P(x)=ax"+ax""'+ - - +a,_x+a,= 2 a,  x"*
k=0

for x,a, in R,
then
n o k)
P (9
P(x)= 3 —5—(x~ a). (4.14)
k=0 :

Proor. Use the notation of the discussion preceding this theorem and put
pa(x)=x"for x ER and n € Z,. P(x) may be written

P(x)= 3 agx'= 3 apipi(%): (4.15)
k=0 k=0
Now use (4.13) and substitute in the above for p,(x) to obtain
n k (J)( ) .
P(x)= 2 an_k( > —5—(x a)f). (4.16)
k=0 j=0 J:

Note that 0 < j < k < n. Fixing j, we sum with respect to k£ and then with
respect to j. We conclude that

(x— a)’

Pe= 5 T Sawl@) @17)

Jj=0

We claim that 37_.a,_p” (a) is the jth derivative of P at a. To see this,
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we take the jth derivative of P in (4.15),
PU(x) = kéoa,,_kp,gﬂ(x). (4.18)
If j > k, then p{/(x) = 0. Eq. (4.18)_can be written
PU(x)= kﬁ).a,,_ WP (%)
Hence ’
PU@) = 3 0, ipl)(@)
=j

We substitute the second of these expressions in (4.17) and obtain

P(x)= z (x 7 )jp(j)(a)=i P(f)'(a)
j=0 j=o0

This completes the proof.

(x—a)’.

Remark 4.3. This theorem reveals a great deal about polynomial functions.
We recall that if P is a polynomial of degree n > 1 and r is a real number
such that P(r) =0, then we call r a real root of the equation P(x)=0. We
also refer to r as a real zero of the polynomial P. Below we define roots of
multiplicity k.

Def. 4.2. If P is a polynomial on R of degree n > 1, k is an integer such that
1 < k < n, and r is a real number such that

P(x)=(x—r)*Q,_,(x) forall x€R,
Qn—k(r) a 0’

where Q, _, is a polynomial on R of degree n — k, then r is called a zero of
multiplicity k of P or a real root of multiplicity k of the equation P(x) =0. A
zero of P of multiplicity 1 is called a simple zero of P or a simple root of
P(x)=0.

(4.19)

Corollary (of Theorem 4.1). If P is a polynomial of degree n > 1, then r is a
real zero of multiplicity k of P if and only if r €R,

P(ry=P'(ry=---=P* D(r)=0 and P®(r)#0. (4.20)

PROOF. Let P(x) = apx" + a;x" "'+ - - - + a,_,x + a,, where a, # 0. Sup-
pose that (4.20) holds. By Theorem 4.1,

Po

P(x)y=P(r)y+ P'(r)(x—nr)+ -- (x— r) for x €R.

(4.21)
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Note that P”(r)/n!= a, (Prob. 4.5). Using (4.20) in (4.21), we obtain

P&y Py
P(x)= —r(l( -k + .()(x—r)"
P P
=(x—r) ( (r) + - 4+ n!(r) (x — r)"—k). (4.22)
Put
PRy POy
On_i(x) = ( ) + 4+ n!( )(x -k (4.23)

It is clear that Q,_, is a polynomlal of degree n — k. By (4.22) we have
P(x)=(x—r)*Q,_«(x) for xR
Moreover, (4.23) implies that

PRy
Q._(n)= ( ) # 0.

Thus, r is a root of multiplicity k& of P.

Conversely, let 7 be a zero of P of multiplicity k so that P(x) = (x — r)* -
0, _i(x) for all x €R, where k > 1 and Q,_,(r) # 0. Take the ith deriva-
tive on both sides of the equality in the last sentence to obtain with the aid
of Leibniz’s rule (Prob. 4. 6)'

PO(x) = ((x = 10k (%))

i d/ x) d(x—r)k
j=0 j dx'~/ dx’
Now
di(x—r* [(x=r) if j=0
dx/ k(k=1)---(k—j+)(x—r7 if 1<j<k
(4.25)
If i < k, then in (4.24), 0 < j < i < k. It follows from (4.25) that
d’/(x — r)k
( (———)— ) =0 if i<k.
dxj xX=r
Therefore, (4.24) yields
PO(ry=0 for 0<i<k. (4.26)
If i = k, however, then (4.24) becomes
k d*=i x) di(x —r)k
j=0 ] dx*=J dx/
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If we substitute r for x, then (4.25) implies that all the terms on the right
vanish for 0 < j < k so that (4.27) yields, after substitution of r for x,

PW(r) = (Z) O i(P)k!= Q,_ (P! (4.28)

But, by hypothesis, r is a zero of multiplicity k of P. By definition, this
implies that Q, . (r) # 0. By (4.28), this, in turn, implies that P ¥ (r) # 0.
This and (4.26) imply (4.20), and the proof is complete.

Pros. 4.8. Prove: If P is a polynomial in R of degree n > 1 with leading
coefficient a, and r|,r,, . . ., r, are n distinct real zeros of P, then

P(x)=ay(x—r)(x—ry) - (x—r,) forall x €R.

ProB. 4.9. Prove: If P is a polynomial in R of degree n > 1, then P has at
most »n distinct real zeros.

Pros. 4.10. Prove: If P and Q are polynomials in R each of degree not
exceeding n (here, of course, n is some nonnegative integer) such that
P(x) = Q(x) holds for more than n distinct values of x, then P = Q,
i.e., P(x) = Q(x) holds for all values of x and both polynomials have the
same coefficients.

Theorem 4.2 (Lagrange Interpolation Formula). If n is a positive integer and

X[sXp - . ., X, are n distinct real numbers, then for any real numbers y,
Y2 - -« » Y (not necessarily distinct) there exists a unique polynomial P of
degree not exceeding n — 1 such that
P(x))=y1, P(x))=yp ..., P(X,)=),- (4.29)
This polynomial is given by
)’IH'I'c;el(x = Xi) Yol lkoer(x — xi) Ynllkoen(X = Xi)
P(x) == + 2= 4+ = ,
Hk;el(xl - X) T2 (X2 — xi) IThen(Xn — %)
(4.30)

where the symbol [[}_.;(x — x;) for 1 < j < n is defined as follows: if x ER,
then

n n

Hl(x—xk)= IT (x—x) for n>1,
k#j k=1
k=i (4.31)
1
IIx—x)=1 for n=1.
k1

Before presenting a proof let us illustrate (4.30). Assume that n = 3, that
X,, X,, X3 are distinct, and that y,, y,, y; are given. We wish to find a
polynomial P of degree not exceeding 2 such that P(x)) = y,, P(x;) = y,,
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P(x5) = y5. In this case (4.30) becomes

V(X = X)(X = x3)  ya(x — xp)(X —x3)  ys(X T X)(X X))

P(x)= + .
(x1=X)(x1 = X3) (¥ — X)) (X2~ X3) (X3 Xp)(X37 X))

A simple check shows that P is a polynomial in x of degree not exceeding 2

such that P(x,) =y, P(x,) = y,, P(x;3) = ys.

We give a numerical example. We seek a polynomial P of degree not
exceeding 2 such that P(1)=4, P(2)=5, P(3)=6. Here x; =1, x,=2,
x3=13;y,=4,y,=5, y3=6. According to (4.30), P is given by

p 4x—=2)(x—3) S(x—1)(x—=3) 6(x—1)(x—2)
O ="1=pna=3 t@-ne-3 T G-1G-2

We simplify and obtain
P(x)=x+3 for x eR.

Note that P is of degree 1 <2 and that P(1)=1+3=4, P2Q)=2+3=35,
P(3)=3+3=6.
Let us proceed with the proof of Theorem 4.2.

Proor (of Theorem 4.2). If y,=y,=--- =y,=0, then (4.30) yields
P(x) =0 for all x, so P is the zero polynomial. In this case Egs. (4.29) hold
trivially, P has no degree, and, hence, its degree does not exceed n — 1
(explain). Suppose that at least one of y,, . .., y, is not zero. If n = 1, there
is only one y, i.e., y,, and (4.30) becomes

b x—Xx 1
P(x)= AL L) =2 =y, #0 for x €R.

H}c=1,k;él(xl = X) 1
This P has degree 0=1—1=n—1, P(x;)=y, holds and P satisfies
conditions (4.29) with n=1. If n> 1, then each term in (4.30) is a
polynomial of degree not exceeding n — 1. This is so because it is a product
of the constant

¢; = 2
7 k= l,k;&j(xj = Xp)

and the polynomial P, where

P(x)= kl:II(x -x) for x€R.
k)
P, here has degree n — 1 for each j. Hence, the sum in (4.30) and, therefore,

the polynomial P defined by that sum has degree not exceeding n — 1.
Also, for each P; in the sum on the right of (4.30), we have

Pi(x;) = kI;Il (%5 = %),
k#j
P(x)=0 if i#].
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The equalities in the second line hold because x;# x; and x; €

{x}, ..., x,}. This causes all the terms in (4.30) except the jth to vanish.
Hence,
1B (%)
P(x)= =y,
(%) P(x) J

where j € {1, ..., n}. Thus, the P in (4.30) is a polynomial of degree not
exceeding n — 1 which satisfies Eqgs. (4.29).

As for the uniqueness of P, if Q also is a polynomial of degree not
exceeding n — 1 such that Q(x,) =y, ..., Q(x,) = y,, then by Prob. 4.10
we have P = Q. This completes the proof.

Remark 4.4. There is another form of the Lagrange formula (4.30). Let
X1, Xy . . ., X, be distinct real numbers. Define the polynomial g as

g(x)= fI (x=x)=(x—x))(x—Xx) "+ (x—X,) forall x €R.
k=1

(4.32)
Using the notation adopted in (4.31), it is easy to see that

dg(x %
( gd(x)) =g(x) =l (xi—x)=(xi=x) - (x1 = x,),
x=x k1

dg(x) , n
( dx ) =g'(x) = [I (x2= %) = (x2 = x))(Xy = x3) * + = (%= x,),
X=X, k2
(4.33)
dg(x) ,
( e ) - =&(x)
=TI (o= %) = (0 = X)) (% = X2) * = (X0 = X,1),
k#n
and that
- g(x)
x—x)= s
kgl( 2 X=X
. g(x) L g(x)
X — Xx)= ey X —X)= , 434
kl;elz( o X = X kl;In( 9 X = X, ( )
where the first equality holds for x # x,, the second for x # x,, ..., and
the last for x # x,,. Substituting (4.33) and (4.34) in (4.30) we obtain
x
P(x)= ylg(x,) y28( ) s y,.g(x),
(x=x)g'(x1) (¥ = x3)8'(x2) (* = x,)(8'(%n)

(4.35)
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for x # x|, x # x,, ..., x # x,. This is the alternate form we spoke of.
This also implies that
P(x
()= )’1’ + }’2’ +...+_y",____
g(x)  (x—x)g(x1)) (¥~ x2)g'(x2) (x = x,)g'(x,)
(4.36)
if x differs from x,,x,, ..., x,. Note that P(x;) = y; for 1 <i < n. Upon
substitution in (4.36), the latter can be written
Py P P() O N
8(x)  (x—x)g(x) (¥~ x)g(x2) (x = x,)8'(x,) °
(4.37)
where x # x; fori € {1, ..., n}. In (4.37), P is a polynomial of degree not

exceeding n — 1, and g is defined as g(x) = [T%_,(x — x;). The x/’s are
distinct.

Pros. 4.11. Prove: If x,,..., x, are distinct and g(x) = [[%=,(x — x;),
then

1 _ 1 1 e —
) o) T Gemgm T g

forx R, x # x|,%5, ..., X

ne

ProB. 4.12. Prove: If x & {—1,—-2,..., —n} where n is some positive
integer, then

n

_ I _& I
TG0 vy oem — 2V mo—oe s

and

T Th ™ kz( (%) iz

—n + + - +(—1)x+n.

5. Mean-Value Theorems

We remind the reader that when we say that f'(a) exists we mean that it
may be infinite and f need not be differentiable in the extended sense.

Lemma 5.1. Let f be a real-valued function of a real variable defined on an
interval I and let f(x,) be a maximum of f on 1. If x, is an interior point of
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Figure 5.1

I from the right and fr(x,) exists, then fp(x) < 0. If x is an interior point of
I from the left and f; (x,) exists, then f; (x,) > 0. If x, is an interior point of I
and fr(xo) and f; (x,) exist, then

Ji(x0) > 0 > fr(x0)- -
(See Fig. 5.1.)

PROOF. Assume that x, is an interior point of I from the right. Take x € I,
x > x,. Since f(x,) is the maximum of f, we have f(x) < f(x,). This implies
that

M<O for x€1I, x> x,. (5.2)
X = X,

Hence,

faGroy= tim IS

x—>xo+ X — xo

(5.3)

If x, is an interior point of I from the left, then we take x € I, x < x, and
obtain f(x) < f(x,). It follows that

X)— (X
M;O for x€I, x<x,. (4)
X — xO
Hence,

fi(xo)="lim SO 2/

X—>X9— X — xo

(5.5)

Now assume that x, is an interior point of I and that fz(x,) and f;(x,)
exist. The above imply (5.1). This completes the proof.

ProB. 5.1. Let f be defined on an interval I and let f(x;) be a minimum of f
on I. Prove: (a) If fp(x,) exists, then fz(x) > 0. (b) If f;(x,) exists, then
fi(x¢) < 0. If x; is an interior point of I and f; (x,) and fz(x,) exist, then
fi(x9) <0< fa(xo).
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Def. 5.1. If f is defined on S % @ and f(x,) is a maximum or a minimum of
fon S, then we call f(x,) an extremum of f on S.

ProB. 5.2. Let f be defined on an interval I and let x, be an interior point
of I. Prove: If f(x,) is an extremum of on I and f'(x,) exists, then

f'(xg) =0.

Remark 5.1. Lemma 5.1 includes cases such as those shown in Fig. 5.2
since, according to our terminology, existence of fz(x,) or f; (x,) includes
the possibility that they are infinite. This allows for lack of one-sided
differentiability even in the extended sense.

Theorem 5.1 (Rolle’s Theorem with One-Sided Derivatives). If f is a
real-valued function of a real variable that is continuous on the closed interval
[a,b). differentiable (in the extended sense) from both sides at each interior
point of [a,b] and if f(a) = f(b), then there exists an interior point x, of [a,b]
such that either

fi(x0) > 0> fr(xo) (5-6a)

or

fi(xo) SO < fa(xo) (5.6b)

Proor. If f is constant on [a, b], then it is differentiable at each x in (a; b),
and, moreover, f; (x) = fz(x) = f'(x) = 0 for all x in (a; b), and the conclu-
sion holds trivially. Now suppose f is not constant on [a,b], so that a
c €la,b] exists such that f(c)+# f(a) = f(b). Suppose that f(c) > f(a)
= f(b). Since f is continuous on [a, b] and the latter is a bounded closed set,
f has a maximum f(x,) on [a,b] so that f(x,) > f(c) > f(a) = f(b). This
implies that x, is an interior point of [a,b]. Since f;(x,) and f;(x,) exist,
Lemma 5.1 implies that (5.6a) holds. If f(c) < f(a) = f(b), since we know
that f has a minimum f(xg) on [a,b], it follows that f(xp) < f(c) < f(a)
= f(b). Thus, x; is an interior point of [a,b], and, by Prob. 5.1, we obtain
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fi(xp) <0< fr(xp). Thus, (5.6b) holds with x, replacing x;. This completes
the proof. (See Fig. 5.3.)

Corollary (Rolle’s Theorem). If f is a real-valued function of a real variable
which is continuous on the bounded closed interval [a,b), differentiable in the
extended case at each interior point of [a,b] and f(a) = f(b), then there exists
an interior point x of [a,b] such that f'(xy) = 0.

Proor. Exercise.

ProB. 5.3. Prove: (a) If f is continuous on an open interval (a; b) where a
and b are in R* and lim,_,, f(x)= —o0 =lim,,,_ f(x), then f has a
maximum on (a;b). (b) If for the f in part (a) we also assume that it is
differentiable in the extended sense on (a;b), then there exists an x, in
(a; b) such that f'(xy) = 0.

ProB. 5.4. Prove: (a) If f is continuous on an open interval (a; b) where a
and b are in R* and lim,_,,, f(x)= +o0 =lim, ,,_ f(x), then f has a
minimum on (a;b). (b) If for the f in part (a) we also assume that it is
differentiable in the extended sense on (a;b), then there exists an x, in
(a; b) such that f'(xy) = 0.

Theorem 5.2 (Mean-Value Theorem with One-Sided Derivatives). If f is a
real-valued function of a real variable that is continuous on the bounded closed
interval [a,b) and differentiable in the extended sense from both sides at each
interior point of [a,b], then there exists an interior point x of [a,b] such that
either

b) — f(a
i) < 2O IO ¢ g (57)
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Ji(xo f(—)__f'(_) > fr(xo)- (5-8)
(See Fig. 5.4.)
Proor. Construct the function g, where
g9 =0~ 1@ - LD oy tor xefab] (59

g is continuous on [a,b] and g(a) = g(b) = 0. Let x be an interior point of
[a,b]. Then

8L(¥) = fu(x) — M if f(x)€ER, (5-10)

or g;(x)=*oo if fj(x)= *o0. In the latter case, g;(x) = * o0 = f/(x).
Similarly, we obtain, from (5.9),

gr(x) = fr(x) — w

or gr(x)= * oo if fr(x) = = co. In the latter case, gr(x) = * o0 = fr(x).
Thus, g is differentiable in the extended sense from each side at each

interior point of [a,b]. We can, therefore, apply Theorem 5.1 to g and
conclude that there exists an interior point x, of [a, ] such that

81(%o) < 0 < gk (xo) (5-12a)

if fr(x)isfinite  (5.11)

or
8.(%0) > 0> g (%o). (5.12b)

Assume that (5.12a) holds. In this case, we know that g; (x,) # + 00 and
gr(xg) # —oo and, hence, that f/(x,) # + o0 and fr(xy) # — 0. Thus,
either f7(xg) = — o0 or f;(xy) ER and fz(x) = + o or fz(x,) € R. Hence,
there are four cases to comsider: (1) f/(xg) = —o0, fr(xo) = +00, (2)
Ji(xg) = —0, fr(x0) ER, 3) fr(xo) ER, fr(xg)= +00, (4) fr(xo) ER,
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fr(xo) ER.If f; (x0) ER, then (5.10) and (5.12a) imply that

Ji(x0) = /e ) {;( )
and, hence, that
b) —
fixy < 2OZ1E. (5.13)
If fr(xo) ER, then (5.11) and (5.12a) imply that
0< fu(xo) - 51
and, hence, that
FOZID i (5.14)

If f/ (x¢) €ER and fr(x,) € R, then the inequalities in (5.13) and (5.14) yield
(5.7). Thus, (5.7) holds in case (4) above. By the properties of order in R*,
(5.7) also holds in cases (1), (2) and (3). This proves the theorem if (5.12a)
holds. We leave to the reader the proof that if (5.12b) holds, then (5.8)
follows (Prob. 5.5).

ProB. 5.5. Complete the proof of the last theorem by proving that (5.12b)
implies (5.8).

Remark 5.2 (Alternate Formulation of Theorem 5.2). Theorem 5.2 can be
formulated as follows: If f is continuous on an interval /, differentiable in
the extended sense from both sides at each interior point of 7, and a, x are
distinct points of I, then there exists a point x, between a and x such that

f(@) + fr(xo)(x — a) < f(x) < f(a) + fr(xo)(x —a)  (5.15)
or

f(@) + fL(xo)(x — a) > f(x) > f(a) + fa(x0)(x — a). (5-16)
ProB. 5.6. Prove the formulation of Theorem 5.2 stated in the last remark.

Corollary (of Theorem 5.2) (The Mean-Value Theorem). If f is continuous
on the bounded closed interval [a, b] and differentiable in the extended sense at
each interior point of [a, b], then there exists an interior point x of [a, b] such
that

f() fa)

— (5.17)

f(x0) =
(See Fig. 5.5.)

ProOF. Exercise.
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Figure 5.5

Remark 5.3 (Alternate Formulation of the Mean-Value Theorem). The
corollary of Theorem 5.2 can be formulated as follows: If f is continuous
on an interval I and differentiable in the extended sense at each interior
point of I, and a, x are distinct points of /, then there exists a point x,
between a and x such that

f(x)=f(a) + f'(xo)(x — a). (5-18)

ProB. 5.7. Prove the formulation of the corollary of Theorem 5.2 stated in
Remark 5.3.

6. Some Consequences of the Mean-Value Theorems

Theorem 6.1. Let f be continuous on an interval I and differentiable in the
extended sense from both sides at each interior point of I.

@) If fi(x) >0 and fzp(x) >0 for each interior point x of I, then f is
monotonically increasing on I; if these inequalities hold strictly, then f is
strictly increasing on 1I.

(b) If fi(x) <0 and fr(x) <O for each interior point x of I, then f is
monotonically decreasing on I; if these inequalities hold strictly, then f is
strictly decreasing on I.

Proor. We prove (a) and leave the proof of (b) to the reader (Prob. 6.1).
Assume that (a) holds. Take x, and x, in 7 such that x, < x,. By the
formulation of Theorem 5.2 stated in Remark 5.2 we know that there exists
an x, such that x, < x, < x, and

JOe0) + fr(xo)(x2 = x1) < f(x2) < f(x1) + fr(Xo)(x2 = x1)  (6.1)
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or

J(x0) + fL(xo)(X2 = x1) > f(x2) 2 f(x1) + fr(Xo)(x2 = x1).  (62)
If (6.1) holds, then, since f;(xo) >0 and x,— x, >0, it follows that
fi(xo)(x, — x;) > 0 and, therefore that f(x,) < f(x,). If (6.2) holds, then
fr(xe)(x, — x;) > 0 and, therefore, f(x,) < f(x,) holds in this case also.
Thus, x; < x, implies that f(x;) < f(x,) and, hence, f is monotonically
increasing. If the inequalities in (a) are strict, then the same reasoning
implies that if x, < x, in 7, then f(x,) < f(x,) so that f is strictly monotoni-
cally increasing.

Pros. 6.1. Complete the proof of the last theorem by proving part (b) there.

Corollary (of Theorem 6.1). Let f be continuous on an interval I and
differentiable in the extended sense at each interior point x of 1. If (a)
f'(x) > 0 for each interior point x € I, then f is monotonic increasing on I; if
the inequality in (a) is strict, then f is strictly monotonically increasing on I. If
(b) f'(x) < O for each interior point x € I, then f is monotonically decreasing
on I. If in (b) the inequality is strict, then f is strictly monotonically
decreasing.

Proor. Exercise.

Theorem 6.2. If f is continuous on an interval I and differentiable in the
extended sense at each interior point of I and f'(x) = 0 for each interior point
x € I, then f is constant in 1.

PrOOF. Take a € I and x € I such that x # a. By the mean-value theorem,
there exists an x, between a and x such that

f(x)=f(a) + f'(xo)(x = a).

Since f'(xy) =0 by hypothesis, we obtain f(x) = f(a). Thus, f(x)= f(a)
holds for all x € I and f is constant on 1.

Theorem 6.3. If f and g are continuous on an interval I, both are differentiable
at each interior point of I and f'(x) = g'(x) for each interior point x € I, then
a real c exists such that

f(x)=g(x)+c  forall x€lI (6.3)

ProOOF. By hypothesis,
(f(x)—g(x)) =f'(x)—g(x)=0  for each interior point x of I.

The function f— g satisfies the hypothesis of Theorem 6.2 so it is a
constant, ¢ say, and, therefore, (6.3) holds.
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Derivatives and Existence of Inverses

We now apply some of the above results to obtain criteria for the existence
of inverses of functions.

Theorem 6.4. If f is continuous on an interval I, the one-sided derivative f|
exists in the extended sense at each interior point of I from the left, fy exists
in the extended sense at each interior point of I from the right, a and b are
points of I such that a < b, and

Jr(a) <O<fp(b) or fr(a)>0>fi(b), (6-4)
then there exists an x, such that a < x, < b and
fi(x0) <O < fr(xp) or fi(x0) = 02> fr(xo) (6.5)

Proor. Consider the interval [a,b]. We have [a,b] C 1. Since f is continu-
ous on [a,b], it has a maximum and a minimum on [a,b]. Suppose the
maximum and minimum both occur at the endpoints a and b of [a,b]. If
both the maximum and the minimum occurred at the same point, then the
function would be constant. This would imply that

fr(x)=0  for a<x<b and fj(x)=0 for a<x<b,

and, therefore, contradict the hypothesis. Hence, the maximum of f on
[a,b] would occur at @ and the minimum at b or vice versa. If f(a) is the
maximum and f(b) the minimum of f on [a, b], then

fr(a) <0 and f;(b)<0.
If f(a) is the minimum and f(b) the maximum of f on [a, b], then
fr(a) >0 and f;(b)>0.

In either case, (6.4) of the hypothesis is contradicted. Hence, the maximum
or the minimum occur at some interior point x, of [a,b] and one of the
inequalities in (6.5) holds (Lemma 5.1 and Prob. 5.1). The conclusion
therefore holds. This completes the proof.

Corollary. If f is differentiable in the extended sense on an interval I and a, b
are points of I such that a < b and

fi(a) <0< f(b) or f'(a)>0> f(b), (6.6)
then there exists an x such that a < xy < b and f'(xy) = 0.

Proor. Since f is differentiable in the extended sense on /, it is continuous
there. If x is an interior point, then f'(x) = fr(x) = f/(x). If x is a left



6. Some Consequences of the Mean-Value Theorems 325

endpoint of I, then f'(x)= fz(x). If x is a right endpoint of I, then
J'(x) = fL(%)-

We can now apply the theorem to conclude that because of (6.6) an x,
exists such that a < x, < b and

f'(x0) = fr(x0) < 0 < fi(x0) = f'(%o)
or

f'(%0) = fr(%0) > 0> fL(x0) = f'(o)-
Either of these implies that f'(x,) = 0.

ProB. 6.2. Prove: If f is differentiable in the extended sense on an interval /
and f'(x) # 0 for all x € I, then either f'(x) >0 for all x € I or f(x)<0
for all x € I.

Theorem 6.5. If f is continuous on an interval and f'(x) # O for each interior
point x € I, then f(I) is an interval and f has a strictly monotonic and
continuous inverse f~" defined on f(I). The inverse f~" of f is also differentia-
ble at each interior point of f(I) and
~1ys 1 N . ,
(Fym= ————— at each interior point y ef(). (6.6)
o)

PrOOF. The set of interior points of I is an open interval J and f'(x) # 0
there. Hence (Prob. 6.2), either f'(x) >0 for all x € J or f'(x) <0 for all
x € J. By the corollary of Theorem 6.1, f is strictly monotonic on /. Since f
is also continuous on the interval 7, f(I) is an interval, and f has a strictly
monotonic inverse f =1 on f(I) which is continuous on f([) (Theorem
VI1.9.2).

We prove that f~! is differentiable at each interior point of f(I). Let y,
be an interior point of f(I). There exists an x, € I such that y, = f(x) and
xo=f""(yo). Take y € f(I) such that y # y,. There exists y € f(I) such
that y = f(x) and x = f~'(y). Since f is continuous at y,, we know that

lim f~'(y)=f" = X,. 6.7
Jim f7 () =/ (y0) = %o (6.7)
Since y # y, and f ! is strictly monotonic and, therefore, one-to-one,

x=f7' () #f7 (o) = Xo- (6.8)
Since f is differentiable at x,,

S = ko) _
im ————— =
X—>Xg X — xO

J'(xo)- (69)
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Using theorems on limits and (6.7), (6.8) and (6.9), we see that

(7)) - f(xo)

lim = f'(xo)- (6.10)
v fTH ) -
By a change of notation this becomes
NP4 )
2 = f'(xo)- (6.11)

lim
2o f7H) = 7 (o)
Since f’'(x,) # 0, this implies that

lim 7'M =f')
Y=o Y=o ~ f(x0)

Hence,
1

(' 00)’

—1y 1
(f 1) (.yO) = f'(xo) =
where y, is an interior point of f([).

Remark 6.1. The derivative of f ~!at y in Theorem 6.5 is

where x = f~!( ). In the Leibniz notation y often serves as a notation for a
function and dy/dx for its derivative. When y has a differentiable inverse,
the relation between the derivative of y and its inverse is often written

dx _ 1
d_y —dy/dx s (6.13)

where x = f ().
ExampPLE 6.1. We apply Theorem 6.5 to obtain the derivative of the inverse
hyperbolic sine. We have

y=sinh™'x for x€R (6.14)
and
x = sinh y. (6.15)
Since cosh y > 1, it follows that

_ 1 _ 1
dx  dx/dy coshy’ (6.16)

We know that cosh? —sinh’ =1, so cosh y =1 +sinh}) =y1+ x?.

This and (6.17) yield

.
dsinh” x _ _dl=——i— for x €eR. (6.17)

dx dx m
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This result also follows from

sinh_'x=ln(x +y1 +x2) for x €R.

ExAMPLE 6.2. We prove: If f is continuous on an interval I, f'(x) # 0 for
each interior point x of I, and f is twice differentiable for such x, then f -1
is continuous on f([), twice differentiable for each interior point y of f(I),
and

f7(x)
(f(x)*

Yo =- (6.18)

where x = f~'(»).

Proor. From the hypothesis and Theorem 6.5 we see that f has a continu-
ous inverse f ' on f(I), f ' is differentiable at each interior point y of f(I),
and

“ypy= 1

where x = f~'(y). By hypothesis, f’ is differentiable at each interior point
of I. Therefore, the composite f’ o f —1 is differentiable at each interior
point of f(I). Also,

(fef =) =f(x)#0 (6:20)
for each interior point y of f(I). But now we see that (f ') is differentiable
for each interior point y of f(I) and, hence, that f~' is twice differentiable
for each interior point y of f(I). Because of (6.20), the reciprocal of f" o f~!
is differentiable at each interior point y of f(I). Moreover, by the chain
rule,

Y=Yy = ( Tf—ll(T) )

__'UTo)dThm
(F('»))
™ 4 '™
(FEY & (fx)

Here it is perhaps more convenient to use the traditional Leibniz notation
since it is less cumbersome. Beginning with

Q__ 1 = d_y-l= n—1
dy  dy/dx (dx) )

(here (y")~" is the reciprocal of y’), we obtain the second derivative of the
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inverse by means of the chain rule. We have

dx _d(dx\_d n-1o (2 2 dx
dyz_d)’(dy)_d)’(y) - (}") dy_ (.y) dx dy
AN ”1 i d dx2
=_(.y) Z.y == y,3=_ 7)’/ 3

Y ) (dy/dx)

where x = f~'(y). (Compare this with (6.18).)

ProB. 6.3. Prove: If f is continuous on an interval I, f is three times
differentiable and f’(x) # O for each interior point x of I, then the inverse
f~! of f exists, is continuous on f(/), is three times differentiable at each
interior point of f(I), and

3(fx) — f (%)
()Y
where x = f~!(y). This can also be written
B 3(dy/dx) — (dy/dx)(dy/dxY)
@ (dy/dx)’
where x = f ().

("=

’

’

Pros. 6.4. Prove: If x > 1, then

(@) decosh™'x/dx=1/{x*—1,

(b) dtanh~'x/dx=1/(1 - x}) for —1 < x <1,
(c) dsech™x/dx = —1/xy1—x* for0<x <1,
(d) deoth™'x/dx = —1/(x* — 1) for |x| > 1,

(e) desch™'x/dx = —1/|x|y1 + x* for x #0.

We saw that if f'(x) > 0 on an interval, then f is monotonically increas-
ing, and if f'(x) < 0 is an interval, then f is monotonically decreasing, with
strict inequalities on the interval implying strict monotonicity. We now
consider possible converses of these propositions.

Theorem 6.6. If f is monotonically increasing on an interval I and f (x) exists
for some interior point x of I from the left, then f](x) > 0. Similarly, if for
some interior point x of I from the right fr(x) exists, then fp(x) > 0. An
analogous statement holds for a function which is monotonically decreasing on
an interval I (Prob. 6.5).

PrROOF. Assume that x is an interior point of I from the left. Then there
exists a 8§ > 0 such that (x — §,x] C I. For each & such that —8§ < h <0,
we have x + h < x and x + h € I and, hence, f(x + k) < f(x). Therefore,
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for all 4 such that —§ < h <0, we have
+ h) —
Je b =fe) o
h
This implies that

J+ ) =J)
VI 5

4 = lim
fL(x) h—>0—
Similarly, if x is an interior point of / from the right, there exists a §, > 0

such that [x,x + 8,). Taking A such that 0 < A < §,, we have x + h > x,
x+hel f(x+ h) > f(x), and

R (G
h -
so that

ProB. 6.5. Prove: If f is monotonically decreasing on an interval / and
fi(x) exists for some interior point x of / from the left, then f;(x) <O0.
Similarly, if for some interior point x of I from the right f;(x) exists, then

fa(x) <0.

Remark 6.2. In Theorem 6.6 the stronger assumption that f is strictly
monotonically increasing does nor yield the strict inequalities f;(x) >0,
fr(x) > 0. For example, the function f, where

f(x)=x> forall x€R,
is strictly monotonically increasing. Nevertheless,
fa(x) = fi(x) = f(x) = 357 > 0.
Here
fL(0) = fz(0)=f(0) =0.

7. Applications of the Mean-Value Theorem.
Euler’s Constant

Theorem V.7.1 states: If x and y are real numbers, x > 0, then

(@ (x—1y<x’—1< yx? " '(x—1)fory >1ory<0and

G (x—y>x"—1>px? '(x—Dfor0<y< 1

Here we improve these inequalities by stating conditions under which they
are strict. We prove: If x >0, x # 1 and y > 1 or y <0, then the inequality
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in (a) is strict. We ask the reader to prove (Prob. 7.1): If x >0, x # 1 and
0 < y < 1, then the inequality in (b) is strict.

We assume that y > 1, x > 0. Let f be defined by f(x) = x” for x > 0.
Assume x # 1. By the Mean-Value Theorem, we know that there exists an
X, between x and 1 such that f(x)= f(1) + f'(x¢)(x — 1). For our f this
means that

x’ =1 +yx5’_‘(x =1, (7.1)
where 0 < x < xy < 1or 1< x,< x. We note that y — 1 > 0, so that
(1) 0<x T<xy "<l  for 0<x<x5<1, 2)
() 1< xy < xr! for 1< x,<x.

Using the fact that y(x — 1) <0 in (1) above and y(x — 1) >0 in (2), we
obtain, after multiplying each set of inequalities by y(x — 1),

yx—-D<yx{ '(x-1)<yx?"'(x—=1) for x>0, x#1 (7.3)

when y > 1.
We prove next that (7.3) also holds for y < 0. In this case, we have
1 — y > 1. By hypothesis, x > 0 and x # 1, so there exists an x, between x

and 1 such that (7.1) holds. This time we have y — 1 < —1 <0, so that
(1) T<xy < xr! for 0<x<x,<1, (74
) 0<x '<xy <1 for 1 <xy<ux. .

But y(x — 1) > 0 in case (1) and y(x — 1) <0 in case (2). Reasoning as we
did in the previous paragraph, we have

y(x =D <yx§ '(x—1)<yx?"N(x-1) for x>0, x#1 (7.5)
when y < 0. The strictness, under the stated conditions, of the inequality in
(a) now follows from (7.1), (7.3), and (7.5).

Pros. 7.1. Prove:

y(x—=1)>x’—=1>yx?"{(x=1) forx>0,x#1,and0<y <1

ProB. 7.2. Prove: If a and b are distinct positive reals, then

(@ yb’ Na—-b)<a’—b"<ya’ a—b)fory<0ory>1l
() yp’ " Na—b)y>a’—b">ya’ a—b)for0< y< 1.

ProB. 7.3. Prove: If x €R, x # 0, then
l+x<e*<1+ xe™.

Pros. 7.4. Prove: If x > — 1, x # 0, then

x
x+1

<ln(1 + x) < x.
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Euler—Mascheroni Constant

We use the inequality of the last problem to gain some information about
the interesting sequence (y, >, where

v, =1+ 1y 4 % —Inn for each positive integer n.  (7.6)

2

Theorem 7.1. Let v, be defined as in (7.6). Then: (a) 0 < v, <1 for each n,
and 0 <y, <1 for n>1. (b) The sequence v,y is strictly monotonically
decreasing. Hence, <y, converges.

ProoF. By Prob. 7.4, we have

1 1/k 1\_1 T
e el Tk <1n(1 + k)< X for k a positive integer. .7

Hence,
s 1 S 1 1 .y

— < In(1+ —) < - for each positive integer n. (7.8

k§| k + 1 kgl ( k kg] k ( )

We note that In(1 + 1/k) = In(k + 1) — Ink and, therefore, that

n

> ln(l+-1—)= S (In(k + 1) —Ink)=In2—In1+1In3 — In2
k=1 k k=1

+---+In(n+1)—Inn
=In(n+1)—Inl=In(n+1).

By (7.8), this implies that
n 1 n l
k=El T+ 1 <In(n+1) <k=E] R 7.9

i.e., that
Loly v L cmm+ny<i+lele gl (790
23 n+1 2 3 n
holds for each positive integer n. We now add —Inn to the last inequality
in (7.10) to obtain
1,1

0<ln(l+%)=ln(n+l)—lnn<1+§+§+-~- +%—lnn=y,,.

This proves that

0< ln(l + %) <y, for each positive integer n. (7.11)

Consider the first inequality in (7.10). By adding 1 on both sides we obtain

1,1, 1
I+ 3+3+  +— 2 <l+ln(n+1) (1.12)
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= + _1 + _1 + e oo 4+ —1
Yn+l - 1 2 3 } 1

for each positive integer n.  (7.13)

—In(n+1)<1

This and (7.11) yield

0<y, <1 for each positive integer n > 1. (7.14)
Clearly, y, =1 —In1=1. This and (7.14) prove (a). We prove (b). Note
that if n is a positive integer, then

gy =1 -1 _ 1
Yae1 = Y= g ~In(n+ 1) +lnn = — 1n(1+n). (1.15)

By (7.7), the right-hand side of (7.15) is negative and we have

Yos1 = Yn = —In(n+1)<0 for each positive integer n.  (7.16)

n+1

This implies that (v, is a strictly decreasing sequence. This proves (b). The
last statement holds because {y,» is bounded from below by 0 and is
decreasing. Hence, (y,» converges. This completes the proof.
We define
1 1

y= lim yn=nljr+pw(l+—+ +;—lnn). (7.17)

n—>+ o0 2

v is called the Euler—Mascheroni Constant.* Euler evaluated y to 16 places
and Mascheroni to 32. However, an error was found in the 20th place.
Later Gauss and Nicolai corrected the error. Correct to 10 places,

vy = 0.57722156649.

It is still not known whether or not vy is rational.

Pros. 7.5. Prove:
lim 1+l/2+---+1/n=1’
n—>+ o0 Inn

Compare this with the result in Prob. II1.9.2.

We present some further applications of the Mean-Value Theorem in
problem form.

Pros. 7.6. Prove: (a) If f is continuous on (a, b], f'(x) exists for a < x < b,
and lim,_,,_ f'(x) = k, then f/ () exists and f;(b) = k. (b) If f is continu-
ous on [a,b), f'(x) exists for a < x < b, and lim,_,,, f'(x) = L, then fz(a)
exists and fz(a) = L.

Pros. 7.7. Prove: If f is defined at some a €R is differentiable in some
e-neighborhood of @ and lim,_,,f’(x) = B, then f is differentiable at a and

f'(a) = B.

* Chrystal’s Algebra, Vol. 2, Chap. 25, Art. 13, Dover, New York.
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ProB. 7.8. Prove: (a) If f has a bounded derivative on an interval at I, then
it is uniformly continuous there. (b) If f has a bounded derivative on a
bounded open interval (a; b), then f(a + ) and f(b — ) exist and are finite.
(See Theorem VI.11.4 and Prob. VI.11.7.)

Darboux’s Theorem on the Values of the Derivative

We shall see later (Section VIIL.5) that the derivative of a function need not
be continuous. We prove, however, that the derivative of a function which
is differentiable on an interval must have the intermediate-value property.

Theorem 7.2. If g is a real-valued function of a real variable which is defined
on an interval I and is the derivative of some function f defined on I, then g
has the intermediate-value property.

ProoF. This theorem is a consequence of the corollary of Theorem 6.4. By
hypothesis

f(x)=g(x) for x€ I (*)

Suppose that g(a) # g(b) for some a and b in I. Let p be a number
between g(a) and g(b). Consider the function h, where

h(x) = f(x) — px for x€1I.
Clearly,

Kx)y=f(x)—p=g(x)—n for xeI
and, hence, h'(a) = g(a) — p and h’'(b) = g(b) — p. Since p is between g(a)
and g(b), either g(a) < p < g(b) or g(a) > p > g(b) so that either
h'(a) <O< H(b) or H(a)>0>hH(b).

By the corollary of Theorem 6.4, this implies that an x, exists between a
and b such that h'(xy) =0, i.e., g(xo) — p =0 or, equivalently, that g(x,)
= ,.L'
Remark 7.1. Let I be some interval. If (*) holds on I, then it clearly holds
on every closed, bounded subinterval of I. This and Theorem 7.2 imply that

a function g which is the derivative of some function f on an interval has
the strong intermediate value property on that interval (Remark VI.7.3).

An Application of the Corollary of Theorem 6.1.

The following is not a direct application of the Mean-Value Theorem, but
is, instead, an application of the corollary of Theorem 6.1. We use the sign
of the derivative of a function to gain information about its monotonicity.
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We prove:
2 < ln(l + l) for x>0. (7.18)
2x + 1 X
Note first that this may be written
1 <ln(l+—1—) for x>0. (7.19)
x+1 X
We already know that
1 1
x+1<ln(1+x) for x>0. (7.20)
Since
1 1
x+1<_x+% for x>0,

(7.18) is an improvement on (7.20).
We prove (7.18). Define the function g, where

g(x)= 2x2+1 —1n(1+—)1;) for x>0.

Now

1

> >0 for x>0.
(2x + I)’x(x + 1)

g(x)=

This implies that g is strictly increasing. It is easy to see that

lim g(x)=0.

x—>+ 00

Therefore,

0= lim g(x)=sup g(x).
x>0

x>+ o0
This implies that
g(x)<0 for x>0.
Now take x >0 and x, > x > 0. We have g(x) < g(x,;) <0. Thus, g(x)

< 0 for all x > 0 and so (7.18) holds. This inequality will be used later. A
consequence of (7.18) is

1< (n + % )ln(l + % ) for each positive integer n. (7.21)
This implies that

1 )n+l/2

e< (1 + P for each positive integer n. (7.22)

PrOB. 7.9. Prove: The sequence {a,), where
n'e”

n=
nn+1/2

for each positive integer n,
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is strictly monotonically decreasing and converges. Its limit will be evalu-
ated later.

Pros. 7.10.* Prove: If x > 0, then
n(1+ 1) <=—="
* x2+ x
Pros. 7.11. Prove: The function f, where
- 1\
f(x)—(1+x) for x>0,

is strictly monotonically increasing.

Another Application

We prove, using the Mean-Value Theorem, that
BOX 1 for 0<[|x|<Z. (7.23)

If 0 < |x| < 7.2, then there is an x, between 0 and x such that

tan x ; tan0 =( dt;.;lx )

Since 0 < |xo| < /2, it follows that 0 < cosx, <1 and, therefore, that
sec’x, > 1. This implies that

= sec’x,.
x=Xxq

80X > for 0<|x<T. (7.24)
We now prove Jordan’s inequality’ which states that
2 _sinx T
2 g smx <T. }
- Y < 1 for 0<|x| 3 (7.25)
For proof, consider f defined by
sin x <7
fx)= { x dor 0<x<y (7.26)
1 for x=0.

This function is continuous on [0, 7 /2] (explain). Note that

fl(x)= xcostcz— sinx _ C(;Szx (x —tanx) for 0<x <% . (727)

Since cosx >0 for 0 < x < /2, the last result and (7.24) show that
f'(x) <0 for 0 < x < 7/2. We conclude from this that f is strictly mono-

*Mitronovic, Analytic Inequalities, p. 273.
fIbid, p. 33.
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tonically decreasing on [0, 7 /2]. Therefore,

sinx sin(vr/2) 2 T
x > ) p for 0<x<2. (7.28)

Since (Theorem IV.8.2)

0<%l<1 for 0<|x|<1<Z, (1.29)
we obtain the strict inequality
2<Siﬂ<l for 0<x<T. (7.30)
T x 2
If —7/2 < x <0, then 0 < —x < 7 /2. Hence, by (7.30), we see that
sin( — x
; < __(_2 < 1.
7 —-x

This and (7.30) imply that the strict inequality in (7.25) holds for 0 < |x|
< « /2 with equality holding trivially for |x| = 7 /2.

ProB. 7.12. Prove*: If 0 < x < 7 /2, then
cosx < ( sin.x )3
x
(Hint: consider f, where

f(x)=x—sinxcos™'/> if 0<x<m/2, (7.31)
then prove that f” is strictly decreasing on [0,7/2) and f'(x) < f'(0) = 0).

ProB. 7.13. Prove*: If a < 3, then

. a
cosx<(~sm—x) for 0<x<T.
X 2

8. An Application of Rolle’s Theorem to
Legendre Polynomials

The Legendre Polynomials P, for each nonnegative integer n are defined as
follows:
Py(x)=1 for xeR (8.1a)

d"(x*=1)"
_
P = g — G

for x €R and n a positive integer.

(8.1b)
Formula (8.1b) is known as Rodrigue’s Formula.

* Ibid, p. 238.
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Using the Binomial Theorem, we obtain
x2=1)'= SYL k A=k 212k 8.2
2=1'= B (0= 2 (e 6

Taking the nth derivative of both sides, we have

dr -1 n ar 2n—2k
L (i et NS

Here, the terms with n > 2n — 2k, that is, with k > n/2, vanish. But if
0 < k < n/2, then the corresponding term in (8.3) does not vanish. Since k
is an integer, we have: If

0<k <[ —g ] greatest integer < ; (8-4)
then the terms in the sum on the right in (8.3) do not vanish. Note that
[Q]z % if niseven
2 2=l it nisodd, (8.5)
Now,
dn(x2n 2k) ok
— =(2n-2k)2n—-2k—-1)...(n—2k+ I)x
(2n—2ky(2n =2k —1)...(n =2k + 1)(n —2k)! x"~%*
a (n —2k)!
(2n =2k .
Tm=200 Y

where 0 < k < [n/2). Hence substitution into the sum on the right-hand
side of (8.3) yields

d" "o/ 2n — 2k)!
L_)_Z(_l)( )ﬁ_xn—%
(n/2] | (2n=2k)!
= 2 Y e =

After multiplying both sides by 1/(2"n!) we obtain

(x - 1) (n/2] (2n — 2k)!

L
= 2 OV et

n—2k

P (x)=3
(8.6)

It follows that P, is a polynomial of degree n.
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Pros. 8.1. (a) Obtain the Legendre Polynomials P, P,, P;, and P,. (b)
Prove: If n is even, then P,(—x)= P,(x) for x €R. (c) Show that the
leading coefficient of P, is
2n—-1H2n—-3)...3-1
n! )

We show that if j is an integer such that 0 < j < n, then
d(x*-1"

5 =0. (8.7)

x==*1

Write (x> — 1)"=(x — 1)"(x + 1)" and use Leibniz’s Rule (Prob. 4.6) to
obtain the jth derivative of P,. We have
d(xP-1)  dx=-1)(x+1) EJI ANEHE-D dE
dx" - dx/ _k=o(k) dx/ % axk
(8-8)

For 0 < j < n, the index in the sum on the right satisfies 0 < k < j < n, so
that 0 < j — k < j < n. Hence,

dj-k(x - l)n . n—j+k
——W—=n(n—l)...(n—]+k+l)(x—l) J
8.
d(x+1)" .k )
o =nn—=—1)...(n—k+D(x+1)'""

When 0 < k < j < n, then the exponents in (x — 1)"/** and (x + 1)" %
are positive. This implies that when x = = 1, then the terms in the sum on
the right in (8.8) all vanish. This proves (8.7).

Pros. 8.2. Prove: P,(1)=1 and P,(—1)=(=1)".

We now come to the application of Rolle’s Theorem mentioned in the
heading of this section.

Theorem 8.1. The Legendre Polynomial of degree n > 1 has exactly n zeros in
the open interval (—1; 1).

ProOOF. Let v,, where n is some positive integer, be defined by

0,(x) = (x* — l)" for x eR. (8.10)
Obviously, v,(1) = v,(— 1) = 0. By Rolle’s Theorem, the derivative v, has at
least one zero, z; say, in (— 1; 1). Thus, z, exists such that v,(z,) = 0, where
—1< z, < 1. When n =1, we have
dv,(x)

1 d(xz— 1) _
2 dx

dx

Py(x)= x.

Y-
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We see that P, has exactly one zero in (—1; 1). Now assume that n > 1. We
saw in (8.7) that v, (1) = 0 = v, = (—1). By Rolle’s Theorem, there exist z,,
and z,, with —1<z,,<z,<z,, <1 such that v{?(z,,) = 0= 0?(z,,).
These are distinct since they are separated by z,. Thus, v, has at least two
zeros in (— 1; 1). Continuing up to v{"~" we find that it has at least n — 1
distinct zeros in (—1;1). We write these as z,, 1,25, 1, .+ ,Z,_ 101
Then -1<z,, | <--- <z, ,,., <1 By (8.7),

of" " D(=1)=0=o{"~D(1).
It follows that v{™ has n zeros z,,z,,, . . ., z,, in (— 1; 1) (explain). Thus,
P, has at least n zeros in (—1; 1). Since P, is a polynomial of degree n, it

cannot have more than n distinct zeros. Consequently, P, has exactly n
zeros in (—1; 1).

ProB. 8.3. Let u be given by u(x) = (x* — 1)" for x €R, where n is some
positive integer. Prove that

) du(x)
(x*=1 = 2nxu(x) for xE€R. (8.11)
Define y by means of
dr(x*-1)" d"(u(x))
=_1 - _ 1
.y(x) - 2nn! dxn Pn(x) 2””! dxn_ f0r X E R
(8.12)

Take the (n + 1)th derivative of both sides in (8.11) and show that y
satisfies

(xz—l)d?;(zx)+2xdyd(xx)—n(n+l)y(x)=0 for xeR. (8.13)
X



CHAPTER VIII
Convex Functions

1. Geometric Terminology

Let f be a real-valued function of a real variable and G be the graph of f.
Thus,

G = ((x f(x)|x €9))}-

The point (x, y), where x € D(f) is said to be above G if y > f(x) and
below G if y < f(x). If y > f(x), then we say that (x, y) is strictly above G
and dually; when y < f(x), then we say that (x, y) is strictly below G (see
Fig. 1.1). Let (x}, y,), (x,, y,) and (x5, y3) be three points in R® =R X R,
such that x; < x, < x;. Put

Y3~ )1 Y2~ )i Y3~ )2

m = —— - — m =
13 > 12 ) 23
X3~ X Xy~ X X3~ Xy

Define the three functions f3, f,, fo3 on [x;, x3] as follows:
fis(x) =y + my3(x — xy)
Jra(x) =y + mp(x — xy) for x, < x< x4
fr3(x) =y + my(x — x3)

and let G5, G,, G,; be their respective graphs. It is easy to show that
(x5, y,) is below G5 if and only if m, < m 3 (see Fig. 1.2). To prove this,
note first that

—J
,):22_ xi (X2 = x1) =yt mpp(xy — xy).

Vo=t y)=nt
Hence,
Ya=y1+mp(x— x)) < yp+ myy(x;, — xp) = fis(x,)

if and only if m,, < m,;.
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VA
(xzyf(XZ))
|
(x4, f(x1) :
I
i ¢ (x2, )
. i
| |
‘ i >
X1 X, X
Figure 1.1
yA
(x3,¥3)
!
1
(x15 y1) !
! |
1 ]
I' (xls .VZ) : :
A
1 : :
5 i : >
Xy X2 X3 o
Figure 1.2

If x, < x,, then the line /, containing P, = (x,, y,) and P, = (x,, y,) is
the graph 4 of f,, where

fu(X)=y+

The line segment joining P1 = (x;, y;) to P, =(x,, y,) is the graph §,, of
the restriction of f;, to the closed interval [x,, x,] (see Fig. 1.3).

”( —x) forall x€R.

yA

Si2 (x2,y2) = P,

P, =(x1,yl)'/

:( S —

Figure 1.3
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YA
$ (x2, f(x2))
G f () T, S
f | !
i : l
.
i ! I
| ! |
x]1 ;C X2 .
Figure 1.4

If P, = (x,, f(x,)) and P, = (x,, f(x,)) are distinct points of the graph G
of a function f, so that x, # x,, then we call the line segment joining P, to
P, a secant segment of G.

Before “officially” defining the notion of a convex function, we phrase
the definition using the geometric terminology just introduced. A convex
function is a function defined on some interval I such that for any two
points P, = (x,, f(x,)) and P, = (x,, f(x,)) of its graph, the graph of the
restriction of f to the closed interval with endpoints x, and x, is below the
secant segment joining P, to P, (see Fig. 1.4). We now give an analytic
definition.

Def. 1.1. A real-valued function of a real variable which is defined on an
interval I is called convex on I if and only if for x, and x, in I such that
x; < x,, we have

f(x2) = f(x1)

Xy — Xy

f(x) < f(x) +

If x; < x, for x; and x, in I implies the strictness of the inequality (1.1),
then we say that f is strictly convex on I.

(x—x;) forall x€[x;,x,]. (L.1)

Theorem 1.1. A real-valued function of a real variable is convex on an interval
I if and only if
X\ €I, x,€I, and 0<t<1 imply

(1.2)
F((1 = t)x, + txy) < (1= 1) f(x)) + tf(x,).

Proor. Let f be a function for which (1.2) holds. Take x, € I, x, € I,
x,; < x, and x such that x; < x < x,. There exists a unique ¢ such that

0<t<1 and x=(1-1{)x, + tx, (1.3)
(Prob. V.1.7). This implies that

.x_xl
=

Xy~ X
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and, since (1.2) holds, that
J() = f((1 = )%, + 1xg) (1= 1) f(x1) + 1f(x2) = f(x1) + £ (f(x2) = f(x1))
J(x2) = f(x)

+ .
= f(x1) X, — x, (x = x)
Thus, the assumptions x, € I, x, € I, x| < x, imply (1.1) and, hence, that f
is convex on 1.

Conversely, assume that f is convex on I. Take x, € I, x, € I, and ¢ such

that 0 < ¢ < 1 and write

x=(1—-1t)x + tx,. (1.4)
If x; = x,, then (1.4) implies that x = x; = x, and f(x) = f(x,) = f(x,).
Therefore,

=1 =0f(x) + f(x) = (1 = ) f(x)) + 1f (x2)-
In this case (1.2) is satisfied with equality holding there. Now consider the
case x; # X,, so that either x, < x, or x, < x,. Solve for ¢ in (1.4) to obtain
X — xl

t= : (1.5)

Xy =™ Xy

If x; < x,, then (1.4) implies that x, < x < x,. Since f is convex, we have
= o+ ) = ) < gy + DI
= f(x) + 1(f(x2) = f(x1)) = (1 = 1) f(x)) + tf(x).

Thus, x, < x, in I implies (1.2). If x, < x,, then (1.4) implies x, < x < x,.
This time the convexity of f on I yields

f(l—t)x1+tx2)=f(x)<f(x2)+—f(xl—)_£—(——2—)( = X;)
~ e+ LT oy

(check this). Therefore, in view of (1.5), we have

f(x2) = f(x))

f((1 = t)x; + txy) < f(x) + X x, (x—x))
= (f(x1) + 1(f(x2) = f(x1)) = (1 = O f(x1) + 1f(x2),
as before. This completes the proof.

Remark 1.1. We note that a < b implies that a < (1 — #)a + th < b, if and
only if 0 < ¢ < 1. Hence, if x, and x, are in an interval /] and 0 < ¢ < 1,
then (1 — )x, + tx, € I.
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The condition for convexity obtained in Theorem 1.1 can be expressed
somewhat differently.

Theorem 1.1'. A real-valued function f of a real variable f is convex on an
interval I if and only if for x, and x, in I, we have

f(ax, + Bxy) < af(x)) + Bf(x2), (1.7)
where a + B=1,0< a, 0 < B.
ExampPLE 1.1. The absolute value function is convex. We use Theorem 1.1’
to prove this: Take a > 0, 8 >0, a + B =1, then
lex; + Bx,| < |ax)| + | Bxy| = |a|x)| + | B[x,] = a|x,| + B|x,|-

Theorem 1.1’ furnishes us with an alternate definition of convexity.

Def. 1.2. If f is defined on an interval I, it is convex on I if and only if
x €I, x,€Elanda>0,8 >0, a + B =1 imply that

f(ax; + Bxy) < af(x)) + Bf(xy)- (1.8)
f is called strictly convex on I if and only if x, €1, x, € I, x, # x,,
a+ B=1,a>0,B >0 imply the strict inequality in (1.8).
Remark 1.2. Using Def. 1.2, we obtain: If f is strictly convex on I and there
exist x,, x, in / and a, B such thata >0, 8 >0, a + 8 =1 and if

f(axy + Bx;) = af(x1) + Bf(x2),
then x, = x,.

EXAMPLE 1.2. The squaring function ( )? is strictly convex on R. For assume
x; # x, in R, so that (x, — x,)* > 0. Clearly,

2x,x, < x}+ x3. (1.9)
Ifa>0,8>0 a+ =1, then
2afx,x, < aB(xf + x%) (1.10)

This implies
f(ax; + Bxy) = (ax, + ,Bx2)2= a®? + 2aBx,x, + B3
<aixi+ a,B(xf + x%) + B%3
= a’? + afx? + afx? + B3
=a(a+ B)xi+ B(a+ B)x]
= ax? + PBx?

af (x,) + Bf(x,).
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In short, we have proved that: If x, # x, and « >0, 8 >0, « + 8 = 1, then
(ax; + Bx,)’ < ax?+ Bx3.

An interesting special case of the above is

X+ x,5\2 x%+x§
( > ) —=, (L11)

where x| # x,.

Pros. 1.1. Prove: The absolute value function is not strictly convex on R.
(In Example 1.1, we saw that it is convex on R.)

ProB. 1.2. A function f defined on an interval I is strictly convex if and
only if: x, # x, and x is between x, and x, imply that

CORICOPNN

S0 <) + ==
Concave Functions

The notion dual to that of convexity is that of concavity. It goes over into
the former notion by reversing the sense of the inequalities in the definition.

Def. 1.3. Let I be an interval. We call f concave on I if and only if x, € I,
x, €1, x, < x < x, imply

f(x) > f(x)) + (x —xy) (1.12)

(see Fig. 1.5). When the inequality here is strict, f is called strictly concave
onl.

f(x2) = f(x1)

Xy — X

The following theorem holds:

yA
Py = (x4, f(x1))

/p@‘\z’f(xz)) =P,

|
[
|
|
|
|
|
I
|
|
1

|

|
! |
! |
! |
! |
! |
: I
| I
\ |
1 ! 4=
X, X X, X

Figure 1.5
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Theorem 1.2. The function f defined on an interval I is concave if and only if
— f is convex.

ProoF. Exercise.

Remark 1.3. Because of the last theorem, we deal in the sequel mainly with
convex functions.

Theorem 1.3. f is convex on an interval I if and only if for x,,x,, . .., x, in I,
where n is some integer n > 2, we have

flax + -+ +ax,) <o f(x) + - -0+ a,f(x,)
for «;>0, 1<i<n, and oa;+---+a,=1 (1.13)

Proor. Let f be a function for which (1.13) holds for all integers n > 2. This
implies, in particular. that (1.13) holds for n =2. By Theorem L.I’, f is
convex on 1.

Conversely, assume that f is convex on an interval I. We prove that
(1.13) holds for each integer n > 2. If n =2, it holds because of Theorem

1.1". Assume that (1.13) holds for some integer n > 2. Take x,, ..., x,,
X,,yinland ay,...,aq,, a,,, such thata;+ -+ - + a,,,=1and a; >0
for 1<i<n+1 Writt a=a;+---+a, and §=1—a, so that B
=a,,,.fa=0,thena;=--+- =0a,=0,and 8= a,,, = 1. Hence,
flaxy+ oo o1 X,40) = f(X41) (1.14)
and
Jas)) =i f(x)) + -0+ i f(Xn41)s (1.15)

from which (1.13) follows with the equality holding there for the integer
n + 1. Now assume a > 0. Write

m=min{x,...,x,} and M=Max{x,...,x,} (1.16)
and
X+ - +ax,
= 2 . (1.17)
Clearly,
m=ma=m(a1+"'+an) a1x1+ +anxn
a a a
+ - +a,))M
< (al n) - M
a

This implies that m < y; < M. Since each of m and M is one of
Xys - -5 X,, we know that m and M are in I. It follows that y, € 1. Put
Y= X, Since f is convex and a + B =1, « > 0, we know that

f(ayy + Byy) < af(yy) + Bf(»2), (1.18)
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ie.,
+ ..+
flagx,+ -+ +a,x, + a1, < af( o lad = Onn )
+a, 1 f(X41) (1.19)
Since 1 =(a;+ -+ + )/ a=(a;/a)+ -+ +(a,/a) and 0 < a;/a for
i€ {l,...,n}, we have, by the induction hypothesis,

) <G S+ )

f( ox,+ -+ ax,
«

and, therefore

ox, + - +ax,
af "

) Sayf(x)+ - -+ apf(x,)-
This and (1.19) imply, in this case (« 3 0) also, that
flagx, + -+ +a,x, + a0 1%,01) < a f(x))+ - + a,f(x,)

+ an+1f(xn+ 1)'
The theorem holds by induction on n.

Pros. 1.3. Prove: If fis strictly convex on an interval / and o; + - - - + @,
=1, where a; >0 for i € {1, ..., n}, then the equality in (1.13) holds if
and only if x;, = - -+ = x,.

2. Convexity and Differentiability

Lemma 2.1. If f is convex on an interval I, x, is a point of I and g is defined
as

_ J(x) = f(xo)

X% for x€1I, x%#* x, (2.1)

8(x)
then g is monotonically increasing. If f is strictly convex on I, then g is strictly
monotonically increasing.

ProoF. Let x, be an interior point of I from the left. There exist points x;
and x, in 7 such that x; < x, < x,. Put
Xo— Xy X;—X
=222 0, (22)

Xo— X X;— X

Clearly, 0 < ¢t <1 and x,= xy+ t(x, — xo) = (1 — t)xy + tx,. From this
and the convexity of f on I we obtain

J(x2) = f((1 = O)xo + 1x;) <(1 = 1) f(x0) + 1f (x))-



348 VIII. Convex Functions

This implies that
J(x2) = f(x0) < t(f(x1) — f(x0)) = (f(x1) = f(x0))-

Divide the last inequality by x, — x,. Since x, — x, < 0, we obtain

J(x2) = f(x0) > f(x1) = f(xo) _

Xy — X X1 — Xo

Xy — Xo

X1~ Xo

8(xy)-

We proved that if x; < x, < x,, then g(x;) < g(x,). Note that the strict
convexity of f would yield the strict inequality g(x,) < g(x,) here.

Now let x, be an interior point of I from the right and let x, and x, be
points of I such that x, < x, < x, and write

8(xy) =

X, — Xq

‘= (23)

x2 - XO ’
so that 0 < 7 < 1. We have x, = (1 — £)x, + tx,. This time the convexity of
f implies that

J(x1) = f(x0) < t(f(x2) = f(x0)) = (f(x2) = f(x1))-

Since x; — x, > 0 here, dividing both sides in the above inequality by
X, — X, yields

X1 — Xo

x2—x0

f(x1) = f(x0) < J(x2) = f(xo) _

8(x1) = X1~ Xo X2~ Xo

8(x2)-

This proves that x, < x, < x, implies g(x,;) < g(x,).

Now assume that x is an interior point of I and take points x, and x, of
I, differing from x, such that x; < x,. There are two cases: (1) x, < x, or
(2) x; < xq. In case (1), we have x, < x; < x,. Earlier we proved that in
this case g(x,) < g(x,). If (2) holds, we have either (a) x, < x, < x, or (b)
x; < xo < x,. We proved above that in case (a), g(x,) < g(x,). We confine
our attention to (2)(b) so that x; < x, < x,. Because f is convex, we know
that

f(x0) < f(x)) + M(xo— X))

Xy = X

Since x, — x, > 0, this implies that

(f(x0) = f(>1))(x2 = x1) <(f(x2) = f(x1)) (X0 = X1)- (24)
But f(x,) = f(x)) = f(x;) = f(x¢) = (f(x) — f(xo)). Using this equality in
the right-hand side of (2.4) yields

(f(xo) = FEx)(xa = %2) < (f(%2) = (%) = (F(x1) = f(%0)) (%0 = %1).

By adding (f(x,;) — f(x))(xo — x,) to both sides of the last inequality we
obtain, after some algebraic manipulation,

(f(x0) = f(x1))(x2 = x0) < (f(x2) = f(x0))(Xo — X))- (2:5)
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Upon dividing both sides of (2.5) by the positive number (x, — x,)(x, —
x,), we obtain

g(x1)

Thus, x, < x, < x, also implies g(x,) < g(x,).

We summarize: (1) If x, is an interior point of I, either from the right or
from the left, then g is monotonically increasing. (2) If x, is an interior
point of I, then g is also monotonically increasing. Thus, x, € I implies that
g is monotonically increasing. It is also seen that the strict convexity of f
will yield the strict inequality g(x,;) < g(x,) when x, < x, in I where
X, # Xg, X5 7 X,. This completes the proof.

_ SO0 =) _ S = (x0) _

Xo — X Xy — X

8(x2)-

Theorem 2.1. If f is convex on an interval I, then it is differentiable from both
sides at each interior point x, of I and

JL(x0) < fr (0)-

Proor. The function g defined by
N ORC)

(x) X% for x€1I, x+ x,

is monotonically increasing by the lemma. Since x, is an interior point of /,
there exist x; and x, in / such that x, < x, < x,. Hence,

Jo) = fGo) SO S _

()= X1~ Xo X2~ Xo
Here, the left-hand side is bounded from above by g(x,) and the restriction
of g to the set of points x of I such that x < x, is increasing. It follows that
it has a finite limit as x, = x, —. This implies that

fr(xo0) < g(xy) for x,< x,. (2-6)

For similar reasons, the restriction of g to the points x of I such that x, < x
is monotonically increasing and bounded from below by f; (x,). Accord-
ingly, g has a finite limit as x,—> x, + . From this and (2.6) it follows that

Ji(x0) < fr(X0)s

as claimed.

Corollary. If f is convex on an interval I, then it is continuous at each interior
point of 1.

PROOF. Let x, be an interior point of /. By the theorem, the convexity of f
on I implies that f is differentiable from both sides at x,. This implies that f
is continuous from both sides at x, and consequently that f is continuous
at x,.
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Theorem 2.2. If f is convex on an interval I, then fp and f; are monotonically
increasing on the interior (the set of all interior points) of I. Also, if x, and x,
are interior points of I such that x, < x,, then

Jr(x1) < fr(x2)- 2.7)
Moreover, if f is strictly convex, then this inequality is strict and f| and f} are
strictly monotonically increasing in the interior of I.

Proor. Take x such that x; < x < x,. By Lemma 2.1, we have

J0) =S _ Jea) = S)

xl_x xz_x

(2.8)

By Theorem 2.1 and Lemma 2.1, f is differentiable from the left at x, and
from the right at x,

fi(x,) = x_lgg_ f(xx)_;ﬁxz) = x_l,ig;l_ f(xxzz):_)fc(x)
- J(x) = f(x2)
fa(xy) = lim ——f(xx) — {c(,x') = Jim, ——f(i'l)__ ){,( !
: JO) — f(x)
inf ————~

X1 <x<Xxy X — X
hold. Hence,
f(x1) = f(x) f(xz) = f(x)

Jr(x)) < % = % X, — < f(x2)- (29)
This proves (2.7).
We now use Theorem 2.1 and (2.7) to obtain
Jo(x1) < fa(x1) < fo(x2) < fr(x2)s (2.10)
implying
JL(x) < fo(x2) (2.11a)
and
Jr(x1) < fr(x2) (2.11b)

for interior points x, and x, of I such that x, < x,. Thus, f; and f; are
monotonically increasing functions in the interior of I.

Now suppose that f is strictly convex. Assume x, < x, and x; < x < x,
where x, and x, are interior points of /. By Lemma 2.1, the inequality (2.8)
is strict, so (2.9) becomes

falxn) < f(x 1) f(x) f(xz)‘f(x)

xZ'—x

< fL(x)).
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Accordingly, in this case, (2.7) is a strict inequality and (2.10) becomes
JL(x1) < fr(x1) <[r(x2) < fr(x2)- (2.12)

This implies the strictness of the inequalities (2.11). This completes the
proof.

Corollary 1. If f is convex on an interval I and differentiable in the interior of
I, then f’ is monotonically increasing there. If f is strictly convex on an
interval I and differentiable in the interior of I, then f' is strictly increasing
there.

Proor. Exercise.

Corollary 2. If f is convex on an interval I and twice differentiable in its
interior, then f"(x) > 0 for each interior point x of I.

Proor. Exercise.

Thus far, the conditions we obtained for convexity were necessary ones.
We now obtain sufficient conditions.

Theorem 2.3.* If f is continuous on an interval I, differentiable from both
sides at each interior point of I,

fi(x) < fr(x)  for each interior point x of I, (2.13)

and
fr(x) < fi(x) if x, and x, are interior points of I, such that x, < x,,
(2.14)

then the one-sided derivatives of f are monotonically increasing in the interior
of I and f is convex on I.

Proor. Take interior points x; and x, of I such that x;, < x, and obtain
Ji(x1) < fr(x) < fu(x2) < fa(x2): (*)

This implies that
(@) fi(x) < fi(x,) and
(®) fr(xy) < fr(xy): (**)
Hence, f; and f; are monotonically increasing in the interior of I.

We prove now that our conditions imply that f is convex on I. To do this
we turn to Theorem VIL.5.2 (the Mean-Value Theorem with one-sided

derivatives). Take points x,,x,x, of I such that x;, < x < x,. Applying
Theorem VIL.5.2 to f and the interval [x,, x], we know that there exists an

*E. Artin, The Gamma Function, Holt, Rinehart, Winston, New York, 1964, pp. 2-4.
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xo such that x; < xy < x and

g < JI I s S0 = )

e < k() or fi(xe) > ST > fa(xo)

Since x, is an interior point of I, the hypothesis implies that the first of
these possibilities holds, and we have

fix) < L TIE) g, 2.15)

x = X,
where x; < x; < x,. Using the same reasoning on the interval [x, x,] we see
that there exists an xg such that

f(x2) — f(%)

Juw) < == < falxe) (2.16a)

where x < x5 < x,. Since x; < x5 < x < x5 < x,, we have x;, < xg. By the
hypothesis we obtain

Jr(%0) < fL(x0)- (2.16b)
This (2.15) and (2.16) imply that
J) = fx)  Sx) — ()

x
x — X, Xy — X

@2.17)

Since x — x; > 0 and x, — x > 0, this implies that
X = X)(f(x) = f(x1) < (x = x)(f(x2) = f())- (2.18)
We replace f(x,) — f(x) with f(x,) — f(x;) — (f(x) — f(x;)) in (2.18) and

obtain

xy = X)(f(x) = f(x1)) <(x = x)(f(x2) = f(x1)) = (x = x)(f(x) = f(x1))-

It follows that

Xy = X)(f(x) = f(x1)) <(x = x)(f(x2) = f(x1))- (2-19)

Since x, — x, > 0, this implies

f(x) < f(x) +

for x, < x < x,. Hence, f is convex on I.

f(x2) = f(x1)

Xy — X

(x—x)) (2.20)

Corollary. If f is continuous on an interval I, differentiable at each interior
point of 1, and f' is monotonically increasing in the interior of I, then f is
convex on 1.

Proor. We prove that our f satisfies the hypothesis of the theorem. First of
all, f is continuous on I. Second, since f is differentiable at each interior
point of I, the one-sided derivatives of f exist for such points. Third, we
have, because f is differentiable in the interior of I, that f; (x) = fz(x) for
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each interior point x € I and, hence, that (2.13) holds for such points.
Finally, since f’ is monotonic increasing in the interior of I, we have: If x,
and x, are interior points of I such that x; < x,, then

Jo(x))=f(x1) < f1(x2) < fu(%2)-
It follows from this and the theorem that f is convex on 1.

Combining this corollary with Corollary 1 of Theorem 2.2 we have:

Theorem 2.4. A function which is continuous on an interval I and differentia-
ble in the interior of I is convex on I if and only if its derivative is
monotonically increasing in the interior of I.

Pros. 2.1. Prove: If fis continuous on an interval I and twice differentiable
in the interior of I, then f is convex on I if and only if f”(x) > 0 for each
interior point x of I.

We state some theorems concerning strict convexity.

Theorem 2.5. If f is defined on an interval I and satisfies the hypothesis of
Theorem 2.3 with the proviso that inequality (2.14) holds strictly, then the
one-sided derivatives f; and fy are strictly monotonically increasing in the
interior of I and f is strictly convex on I.

ProOF. Repeat the proof of Theorem 2.3 but use the strict inequality
permitted by the present hypothesis to obtain, instead of (*): If x, and x,
are interior points of I such that x; < x,, then

Jo(x) < fr(x1) <fo(x2) < fr(x2)
so that
Ji(x) <fi(xy) and  fr(x;) < fr(X2)

and, hence, that f; and f; are strictly increasing in the interior of I.

Now continue the proof of Theorem 2.3, using points x;, x, and x, of I
such that x; < x < x,. It will follow from the reasoning used there that
there exist x, and x; such that x, < x, < x < xg < x, and such that (2.16b)
holds. The present hypothesis justifies the strict inequality fz(xo) < fi(xo)-
Now (2.17) will be replaced by the strict inequality

f(x) = f(x1) < f(x2) = f(x) .

x—x] xZ_x

221y

It follows that (2.20) can be replaced by the strict inequality

f(x2) = f(x1)

P (x—x)) for x; <x<x,.

fx) <f(x) +

The strict convexity of f on I follows.
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Corollary. If f is continuous on an interval I and differentiable in its interior
and f' is strictly increasing there, then f is strictly convex on I.

Proor. Exercise.

This corollary and Corollary 1 of Theorem 2.2 yield:

Theorem 2.6. If f is continuous on an interval I and differentiable in its
interior, then f is strictly convex on I if and only if f' is strictly increasing in
the interior of I.

Pros. 2.2 (cf. Prob. 2.1). Prove: If f is continuous on an interval I, twice
differentiable in the interior of I, and f”(x) > 0 holds for each x in the
interior of I, then f is strictly convex on 1.

Remark 2.1. Note the result in the last problem is not in “if and only if”
form. We give an example of a function which is twice differentiable in the
interior of an interval and is strictly convex and continuous there for which
the weaker f”(x) > 0 holds but cannot be strengthened to a strict inequal-
ity. We take ( )* on R and prove it is strictly convex. Take x, and x, such
that x, # x, and a, 8 such that « >0, 8 >0 and a + 8 = 1. Since ( )* is
strictly convex on R (Example 1.2), we have

(ax, + ,Bx2)2< ax? + px}.
Squaring again yields
(ax; + Bxy)* < (ax} + ,Bx%)2< ax? + Bx;.

Accordingly f, where f(x) = x* x €R is strictly convex on R. We have,
however, f”(x)= 12x? > 0, x €R. Since f”(0) =0, this inequality cannot
be strengthened.

There are corresponding results on concavity. We state these in problem
form.

Pros. 2.3. Prove: If f is continuous on an interval I and differentiable in
the interior of I, then f is concave on / if and only if f* is monotonically
decreasing.

Pros. 2.4. Prove: If fis continuous on an interval I and twice differentiable
in the interior of I, then f is concave on I if and only if f”(x) < 0 holds for
each interior point x of 7.

Pros. 2.5. Prove: If fis continuous on an interval I and twice differentiable
in the interior of I and f”(x) < O for x in the interior of I, then f is strictly
concave on 1.
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& Cx, f()

(X1, f(x41))

1) + f1(xy)(x = xy)

Figure 2.1

We present still another characterization of convexity for differentiable
functions.

Def. 2.1. If f is differentiable on an interval /, then we say that its graph lies
above its tangents if and only if, for each x, € I, we have

f(x) = f(x)) + f'(x)(x — x) foreach xe€1 (2.22)

(see Fig. 2.1). If at some x, in / the inequality above holds, we say that the
graph lies above its tangent at x,. When the inequality (2.22) is strict for
each x, in I we say that the graph of f lies strictly above its tangents. If for
each x, in I, the sense of the inequality (2.22) is reversed, then we say that
the graph of f lies below its tangents. If x, is an endpoint of 7, then f'(x,) is
the appropriate one-sided derivative of f at x;.

Theorem 2.7. If f is continuous on an interval 1 and differentiable in the
interior of 1, then it is convex on I if and only if its graph lies above all its
tangents at all interior points of I.

Proor. We first assume that f is convex on I. By hypothesis, f is continuous
on I and differentiable in the interior of /. By Theorem 2.4, f is monotoni-
cally increasing on /. Let x, be an interior point of / and x a point of I
such that x > x,. By the Mean-Value Theorem, there exists a point x, such
that

J(x) = f(x1) + f'(xo)(* — x1)s (2:23)
where x; < x5 < x. But f'(x;) < f'(x¢) and x — x, > 0 and, hence,
S = %) < f(xo)(x = %),
This implies, using (2.3), that
J(x) 2 f(x) + f(x)(x = x1)- (2.24)
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Now take x in I such that x < x,. Again there exists an x; such that
J(x) = f(x1) + f'(x0)(x = x1), (2.25)
where x < xi < x,. This time, we have f'(xy) < f'(x,) and x — x, <0, so
that f'(xg)(x — x;) > f'(x)(x — x,). This and (2.25) imply (2.24) in this
case also. Also note that for x = x,, (2.24) holds trivially. This establishes
(2.24) for all x € I for each x, in the interior of I and, hence, that the graph
of f lies above all its tangents at all interior points of 1.
Conversely, let f be continuous on I and differentiable in the interior of 1

and suppose the graph of f lies above all its tangents at all interior points of
I. Let x, and x, be interior points of / such that x; < x,. We have

J(x2) = f(x1) + f/(x1) (%2 — %)) (2.26a)
and

f(x1) 2 f(x2) + f(x2)(%1 = xp)- (2.26b)
Since x, — x; >0 and x; — x, <0, it follows from these two inequalities
that

' JO2) = f(x1) _
f(x) < T, —x < fi(x2)
and that f'(x,) < f'(x,). This proves that f’ is monotonically increasing in
the interior of /. By Theorem (2.4), f is convex on /. The proof is complete.

Pros. 2.6. Prove: If fis continuous on an interval / and twice differentiable
in the interior of I, then the graph of f lies above all its tangents at all
interior points of I if and only if f”(x) > 0 for each interior point x of /.

Pros. 2.7. Prove: If f is continuous on an interval I and differentiable in
the interior of I, then f is strictly convex on 7 if and only if the graph of f
lies strictly above all its tangents at all interior points of 1.

ProB. 2.8. Prove: If f is continuous on an interval I and differentiable in
the interior of 7, and f”(x) > 0 for each interior point x of I, then the graph
of f lies strictly above all its tangents at all interior points of /.

ProB. 2.9. Let f be differentiable in an interval 1. Prove that the graph of f
lies below its tangents on 7, if and only if — f lies above its tangents on /.

ProB. 2.10. Prove: If fis continuous on / and differentiable in its interior,
then (a) f is concave on [ if and only if its graph lies below all its tangents
at all interior points of I. (b) f is strictly concave on I if and only if the
graph of f lies strictly below all its tangents at all interior points of /.

ProB. 2.11. Let f be continuous on an interval I and twice differentiable in
the interior of I. Prove: (a) the graph of f lies below all its tangents at all
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interior points of I if and only if f”(x) < 0 for each x in the interior of I.
(b) If f”(x) <0 for each x in the interior of 7, f lies strictly below all its
tangents at all interior points of I.

We shall see the importance of the notion of convexity when we study
the gamma function. The relation between convexity, concavity, and the
location of maxima and minima of functions will be examined in Chapter
IX. Meanwhile, in the next three problems, we cite some results on convex
functions needed for our later work.

Pros. 2.12. Prove: If f and g are convex functions on an interval J, then so
isf+g.

ProB. 2.13. Prove: If f is a function which is convex on an interval I and ¢
is a positive constant, then cf is convex on /.

Pros. 2.14. Prove: If {f,) is a sequence of functions convex on an interval
I and

lim f,(x) = f(x) foreach x €1,

n—>+ o0

then f is convex on 1.

An Application to an Inequality Involving In

Consider the function f where
f(x)=xInx for x>0. (2.27)

We have,

f(x)=1+Inx and f"(x)= for x>0.

1
x
Thus, f is strictly convex. Also if x;,...,x,>0and a;+ -+ + a, =1,
where ¢, > 0, i € {1, ..., n}, then (Theorem 1.3)

flayx;+ - +a,x,) < a f(x))+ -+ + a,f(x,).

Hence, if x;,..., x, are positive and a;+ - - - + a, =1, where o; >0,
ie{l,...,n}, then
(apxy+ - -+ + a,x,)In(ayx; + - -+ + a,x,)
<axlnx, + -+ +a,x,Inx,. (2.28)
Here the equality holds if and only if x; = x,= --- = x,.

Pros. 2.15. Prove: If u > 0, v > 0, then

@) (u+0v)/2* <+ 0v%/2if k> 1and
(®) (u+0)/2)f > (u*+ v*)/2if0< k< 1.



358 VIII. Convex Functions

3. Inflection Points

Def. 3.1. If f is differentiable on an interval I and x, is an interior point of
I, then the point (x,, f(x,)) is called an inflection point of the graph of f if
and only if there exists a §-neighborhood N(x,,8) of x, contained in I such
that either f is strictly convex on (x,— §,x,) and strictly concave on
(x9, %9+ 8) or f is strictly concave on (x, — 8, x,) and strictly concave on
(x9,xo + 8) (see Fig. 3.1).

Theorem 3.1. If f is differentiable on an interval I and (x,, f(x,)) is an
inflection point of the graph of f and f is twice differentiable at x,, then
f"(x0) = 0.

Proor. Use the definition of inflection point to obtain a §-neighborhood
N(xp,8) in I such that either (1) f is strictly convex on (x, — §,x,) and
strictly concave on (xg,x, + 8) or (2) f is strictly concave on (x, — §,x,)
and strictly convex on (x,,x,+ 8). For the sake of definiteness suppose
that (1) is the case. This implies that f” is strictly increasing on (x, — §, x,)
and strictly decreasing on (xy,x,+ 8). Since f’ is a derivative on the
interval 7, it has the strong intermediate value property on I (Remark
VIL7.1). Therefore, f* will have the strong intermediate value property on
(xg— 8,x0] and on [xy,x,+ 8). Since f’ is also strictly increasing on
(xo — 0;x¢) and decreasing on (x,; x, + &), it follows from Prob. VI.4.6
that f’ is strictly increasing on (x,— 8,x,] and strictly decreasing on
[x9, Xo + 8). Accordingly, if x5 — & < x < x,, then f'(x) < f'(x,) and x —

Xy < 0, so that
HORCOIN

X~ x, (3.1a)
and, hence,
“(x) — f'(x
f"(x0) = lim EAGP G 0; (3.1b)
X—)XO— x —_ xO
y A y r
: ! (%o, f(x0))

\ $(xo, f(x0)), : | /

L i ! z
Xo— 0 X Xo+0 Xo— 0 Xo Xo+0

(a) (b)

Figure 3.1
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and if x, < x < x,+ 8, we have f'(x) < f'(xy) and x — x, > 0, so that

S 1) _

X x (3.22)
and, hence,
, _ f(x) = f(x)
f (XO) = xl)lg(}*- —)_C———XO— < O (32b)

Thus, we have f”(x,) > 0 and f”(x,) < 0, so that f"(x,) = 0.

Remark 3.1. Under the hypothesis of the last theorem we find that f”(x,)
= 0 is a necessary condition for (x4, f(x,)) to be an inflection point of the
graph of f. This condition is, however, not sufficient. For example, let f be
defined as f(x) = x* for x € R. We have f”(x) = 12x%, f”(0) = 0. It is easy
to see that (0, f(0)) = (0,0) is not an inflection point of the graph of f. Since
f'(x) = 4x>, f is strictly increasing on R and, therefore, f is strictly convex
on every 8-neighborhood N(0,8) = (—8;8) of 0. Accordingly, (0, f(0)) =
(0,0) is not an inflection point of the graph of f. Below, we give a sufficient
condition for a point to be an inflection point.

Theorem 3.2. If f’ is continuous in some 8-neighborhood N(x,,8) of x, and
either (1) f"(x) > 0 for xo— 8 < x < xy and f"(x) <0 for xo < x < x5+ 8
or (2) f"(x) <0 for xo— 8 < x < xy and f"(x) >0 for xo < x < xy+ 8,
then (xg, f(x,)) is an inflection point of the graph of f. (Note, the hypothesis
does not require f to be twice differentiable at x).

PrOOF. We consider an f such that f* is continuous on N(x,,8) and for
which (1) holds. (In case (2) holds, the proof is similar.) Since f”(x) > 0 for
Xo— 8 < x < xg, and f”(x) < 0 for xy < x < xo + 8, f’ is strictly increasing
on (x, — 8; x,) and strictly decreasing on (xg; x, + 8). It follows that f is
strictly convex on (x, — 8; x,) and strictly concave on (x,; x, + 8) and that
(x, f(xy)) is an inflection point of the graph of f.

Corollary. If f is twice differentiable in some 8-neighborhood N(x,,8) of x,
and either (1) f"(x) >0 for xo— 8 < x < xy and f"(x) <0 for x,<x
<xg+ 8, or (2) f'(x) <0 for xo— 8 < x < xy and f"(x) >0 for xy< x
< x;+ 8, then f"(x,) = 0.

Proor. Exercise.

Pros. 3.1. Find the inflection points, if any, for (1) f(x) = e ™, x €R and
Q@ gx)=1+x)"", xeR.

PrOB. 3.2. Let f be given by f(x) = x*/3, x €R. Show that (0, f(0)) = (0,0)
is an inflection point of the graph of f and f”(0) does not exist.
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Pros. 3.3. Let g be given by g(x) = x'/3, x € R. Show that (0, f(0)) = (0,0)
is an inflection point of the graph of g, g’(0) = + o0, and g”(0) does not
exist.

4. The Trigonometric Functions

The reader is probably familiar with the properties of the trigonometric
functions noted in this section. We derive these here in order to illustrate
the theory and also to make this book self-contained.

The sine and cosine functions were defined in Section IV.8 and some of
their properties were noted there. Some limits involving the sine and cosine
were obtained in Theorem V.4.2, and in Example VI.1.4 we noted that
these functions are continuous on R. The number 7 was defined in Def.
VI1.4.1 as 7 = 2¢, where 2 < ¢ < 4 and cosc = 0. More information about
sine and cosine is contained in Theorem VI.4.2 and Probs. VI1.4.3-4.5. In
Example VII.1.2 and Prob. VII.1.1 we saw that d(cosx)/dx = —sinx and
d(sin x)/dx = cos x. We note further properties of these functions.

We have sin(7/2) = 1 and sin(— 7 /2) = — 1. Since the sine is continuous
for all x €R, this implies that sine maps [—«/2,7/2] onto [—1,1]. We
recall that

dsin x

I = COS X (4.1a)
and
d(cos x) .
dx = —SsinXx for x € R, (4'1b)
so that
5 .
d’sinx ;“; X = —sinx (4.2a)
Ix
and
2
d ;OEX = —Cosx for xeR. (4.2b)
Ix

From (4.1a) and cosx >0 for —#/2 < x < /2, we obtain that sine is
strictly increasing on [ — 7 /2,7 /2] and, hence, that the restriction of sine to
[—7/2,m/2] is one-to-one. Since cosx <0 for 7#/2 < x < # (Theorem
V1.4.2, part (g)), (4.1a) implies that sine is strictly decreasing on [7/2,7].
From cos(— x) = cosx, we see that cosx <0 for —7 < x < —m/2, so
(4.2a) implies that sine is decreasing on [—7, — 7 /2]. We now use (4.2a)
and the fact that sinx <0 for —7# < x <0 and sinx >0for0< x <« to
obtain that sine is convex on [—#,0] and concave on [0,7], and that
(0,sin 0) = (0, 0) is an inflection point of the graph of sine. Fig. 4.1(a) is a
sketch of the graph of sine on [— 7, 7).
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YA YA
(n/2, 1) ©, 1)
2 TN =/ "
——nv /2 7 —-n/2| =2 §

(—m/2, —1) (—m —1) (n, 1)

(a) (b)
Figure 4.1

We now turn to cosine. We have cos0 = 1 and cos7 = — 1. Since cosine
is continuous for all x €R, it maps the interval [0,7] onto the interval
[—1,1]. From (4.1b) and sinx > 0 for 0 < x < m, it follows that cosine is
strictly decreasing on [0, 7] and, hence, that the restriction of cosine to [0, 7]
is one-to-one. It is also easy to see that cosine is concave on [—7 /2,7 /2]
and convex on the intervals [—7, —7 /2], [7/2,7], and that the points
(—m/2,cos(—m/2))=(—7/2,0) and (7/2,cosm/2)=(7/2,0) are inflec-
tion points of the graph of cosine (prove these statements). See Fig. 4.1(b)
for a sketch of cosine on [— 7, 7].

PrOB. 4.1. Prove: If x and y are real numbers such that x> + y* = I, then
there exists exactly one ¢ such that —7 < ¢ < 7 with x = cos? and y = sin+.

Pros. 4.2. Prove: If n is an integer, then cos(nw) = (—1)" and sin(nw) = 0.

Pros. 4.3. Prove: If n is an integer, then for each x €R (a) sin(x + 2nm)
= sinx and (b) cos(x + 2n7) = cos x.

It follows from Prob. 4.3 that if n is a nonzero integer, then 2n7 is a
period for the sine and cosine. In the theorem which follows we prove that
these functions have no other periods.

Theorem 4.1. (a) If sin p =0, then p = nw, where n is an integer. (b) If
cosp=1, then p = 2km, where k is an integer. (c) If cosp= —1, then
p = Qk + 1)7, where k is an integer. (d) If sin(x + p) = sinx for all x ER,
then p = 2nm, where n is an integer, and similarly for cosine.

ProoF. We first prove (a). Assume sin p = 0 for some p € R. There exists
an integer n such that n < p/« < n + 1. This implies that 0 < p — n7 < .
But

sin(p — nm) = sin p cos(nm) — cos psinnw = (— 1)"sin p =0,
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that is, sin(p — nm)=0. If 0 <p — n7, we would have 0 <p — n7 <,
from which it would follow that sin(p — n7) > 0. This contradiction leads
to the conclusion that 0 = p — n7 and, hence, p = n7, n an integer.

We prove (b). Assume that cos p =1 for some p € R. There exists an
integer n such that n < p/7 < n + 1, which implies that 0 < p — n7 < 7.
Since cosine is strictly decreasing on [0, 7], we have

1 =cos0 > cos(p — nm) > cosm = —1.
If n were odd, we would have
cos(p — nw) = (—1)"cos p=(—1)"= —1

which contradicts the previous inequality. Thus, n is an even integer,
n = 2k. It follows that 0 < p — 2kw < =, where k is an integer. If 0 < p —
2km, we would have 0 < p — 2kw < 7 and

cos(p — 2km)=cos p =1 = cos0.

This is impossible since cosine is one-to-one [0, 7). Hence, 0 = p — 2k, or
p = 2km, where k is an integer.
We prove (c). Assume that cos p = —1 for some p € R. This implies that

cos(p —m)=cos pcosw = (—1)(—1)=1.

In view of (b), this implies that p — = = 2kx, where k is an integer. Hence,
p = (2k + 1)7, where k is an integer.

We prove the part of (d) involving sine. Assume that sin(x + p) = sinx
for all x € R. This implies, in particular, that sin(7/2 + p) = sin(7/2) = 1.
Since cos p =sin(7/2 + p), it follows that cos p =sin(7/2 + p)=1. In
view of (c), p = 2nm, where n is an integer. We leave the proof of the part of
(d) involving cosine to the reader (Prob. 4.4).

Corollary. The fundamental period of the sine function is 2.
ProoF. Exercise.

Pros. 4.4. Prove: If cos(x + p) = cosx for all x €R, then p = 2n7, where n
is an integer and that the fundamental period of cosine is 2.

The graphs of sine and cosine are drawn in Fig. 4.2.

y

—_ cosine sine
—2n ‘q-n/z 377/2M
— 2 n 2 X
TN | NS+ L

Figure 4.2
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ProB. 4.5. Prove: sinx = 1 if and only if x = (4n + 1)(7/2), where n is an
integer, and sinx = —1 if and only if x = (4n — 1)(w/2), where n is an
integer.

ProB. 4.6. Prove: cosx =0 if and only if x = (2n + 1)(7/2), where n is an
integer.

ProB. 4.7. Prove: tan x = 0 if and only if x = n7, where n is an integer, and
that tanx >0 if n7 < x <(2n+ 1)(7/2), and tanx <0 if 2n — 1)(7/2)
< x < nw, where n is an integer.

ProB. 4.8. Note that the domain of tangent is {x ER|x 7% 2n + 1)(7/2),
where n is an integer}. Show tangent is periodic with fundamental period .
Also show that

lim tanx= + o0 and lim tanx= — 0.
x>(2n+ 1)(7/2))— x=>(2n+ 1)(7/2)+

ProB. 4.9. Prove that the tangent function is strictly increasing on the
intervals (2n — 1)(7/2); 2n + 1)(7/2)), n an integer, and that in each of
these intervals it assumes each real number exactly once.

ProB. 4.10. Prove: Tangent is strictly concave on ((2n — 1)(7/2), nm] and
strictly convex on [nm,(2n + 1)(7/2)), n an integer.

The graph of tangent appears along with the graph of secant in Fig. 4.3.
The latter is sketched using heavy broken lines.

VA

Figure 4.3
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ProB. 4.11. Note that the domain of the secant function is {x ER|x
# (2n + 1)(7/2), n an integer). Prove:

(a) limx_,(,,/z)_ secx = + 00 = lin.lx_,(_,,/z)+ secx,

(b) lim, (/5 4 (seCx) = —c0 =lim,, _, /2 - (secx),

(c) sec(nm) = (—1)", n an integer,

(d) secx > 1 for —7/2 < x < /2, and that secx < —1 for x € (—37/2;
—a/2)U (7w /2;37/2).

(e) secant is periodic with fundamental period 2.

ProB. 4.12. Prove: Secant is convex on (—«/2;7/2) and concave on
(=37/2; —«/2) and on (7 /2;37/2).

ProB. 4.13. Note the domain of contangent is {x ER|x # n7, n an
integer}. Prove: (a) cotx = 0 if and only if x = (2n + 1)(7/2) n an integer.
(b) cotx > 0 if and only if n7 < x < (2n + 1)(7/2), and cotx <0 if and
only if 2n — 1)(7/2) < x < nm, n is an integer.

ProB.. 4.14. Prove: Cotangent is periodic with fundamental period 7. Also
prove that for an integer n

lim cotx=+0c and lim cot x= —o0.
x—>(nm)+ x—>(nm)—

Pros. 4.15. Prove: Cotangent is strictly decreasing on (nw; (n + 1)7), n an
integer, and that on each of these intervals it assumes each real number
exactly once.

Pros. 4.16. Prove: Cotangent is strictly convex on (nw,(2n + 1)(7/2)] and
strictly concave on [(2n — 1)(7/2), nm).

The cotangent function is graphed in Fig. 4.4 together with cosecant. The
graph of the latter is drawn with heavy broken lines.

Pros. 4.17. Note that the domain of cosecant is {x ER|x # nm, n an
integer}. Prove:

(a) lim, 5, cscx = + 00 =lim,_,,_cscx,

(b) lim,_,;,_cscx = —o0 =lim,_,,, cscx,

(c) csc((4n + 1)(7/2)) =1, csc((4n — 1) (7w /2) = —1,
(d)cscx > 1for0< x<a,and cscx < —1 for —7 < x <0,
(e) cosecant is periodic with fundamental period 2.

Pros. 4.18. Prove: Cosecant is convex on (0;7) and concave on (— 7;0).

Pros. 4.19. Prove: lim sinx and lim cosx do not exist.

x>+ o0 x>+ o0
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Figure 4.4

PrOB. 4.20. Show that sin18° = (\5 — 1)/4. Then show that if tanx
= cos x, then sinx = 2sin 18°.

5. Some Remarks on Differentiability

We first examine the function f, where
—an 1
f(x)—smx, x #0.
We show that

lim sin 1 does not exist.
x>0+ X

Consider the sequences {x,> and {x,>, where

- 1 1 L
x, = @n+ 1)(7/2) and x;, p_— for each positive integer n.

Clearly,

lim x,=0= lim x,, 3.1

n—+ o0 n—>+ o0
. 1 . . .
lim_sin X  m sin(4n + 1)(7/2) = lim 1=1, (5:2)
and
lim sinL = lim sin(nr)= lim 0=0. (53)
n—>+ o X, no+ow n—>+ o0

Comparing this limit with (5.2), we see that lim,_,,, sin(1/x) does not exist
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y A ywk

2/n x x

(a) (b)
Figure 5.1

(explain). Using similar sequences we see that

lim sin 1
x—>0— X

does not exist (see Fig. 5.1(a)) either.
We now consider the function g, where

-1
(%) ={xsm p for x+0,

0 for x=0
(see Fig. 5.1(b)). Since lim,_,,x = 0 and sin(1/x) is bounded, it follows that
. . 1
lim g(x) = llg})(x sin ) =0=g(0). (5.4)

This proves that g is continuous at 0. In fact, g is continuous for all x € R.
However,

lim M = limsin L does not exist.

x—0 X x—0 X
Hence, g is not differentiable at 0. Of course, g is differentiable for all
x # 0. This gives us another example of a function which is continuous at a
point but not differentiable there (see Example VII.2.1).

Finally we examine A, where

26 1
h(x)={xsmx for x+#0

5.5
0 for x=0 (3)
(see Fig. 5.2). Since
, k()= h(O) 1
HO)= iy = = lim(xsin ) =0 (59
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Figure 5.2

h is differentiable at 0 and 4’(0) = 0. For x # 0, since 4 is a product of
differentiable functions, it is differentiable. Thus,

—cos L 1
h’(x)={ cosx+2xs1nx for x+0

0 for x=0.

Thus, A is differentiable for all x € R. Note, however, that the derivative A’
of A is not continuous at 0 (explain). The derivative of a function need not
be continuous. If the derivative of a function is continuous, then we say
that the function is continuously differentiable.

Pros. 5.1. Define f by
x2sin L for x#0
f(x)= { x?
0 for x=0.

Prove that f is differentiable everywhere but its derivative is not continuous
at 0 and is not bounded in any interval containing 0 as an interior point.

ProB. 5.2. Prove: The function g, where

x + 2x%sin 1 for x#0
8(x)= { x
0 for x=0,
is differentiable for all x and that g’(0)=1>0. Also prove that even
though g’(0) > 0, there exists no §-neighborhood N(0,8) of 0 in which g is
monotonically increasing (see the next problem).

Pros. 5.3. Prove: If fis defined in some &-neighborhood N(a,$) of a ER,
and f’(a) > 0, then there exists some e-neighborhood N(a,e) = (a — €;a +
€) such that f(x) < f(a) for a — e < x < a and f(x) > f(a) for a < x <
a+e.
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Remark 5.1. From the example given in Prob. 5.2 we see that f'(a) > 0, for
some a € D(f) does not imply that f is monotonically increasing in some
neighborhood of a. The result contained in the last problem is the most
information we can gain from f’(a) >0 at some a € D(f). To conclude
from the sign of f’ that f is monotonically increasing in some e-
neighborhood of a, we need to know that f’(x) >0 for all x in this
neighborhood. However, if f is continuously differentiable in some interval
I and f’(a) > 0O for some interior point a of I, then some e-neighborhood of
a exists such that f'(x) > 0 for x in this neighborhood. In turn, this implies
that f is strictly monotonically increasing there.

6. Inverses of Trigonometric Functions.
Tschebyscheff Polynomials

The trigonometric functions are not one-to-one. However, upon restricting
them to intervals on which they are one-to-one and which they map onto
their full range, these restrictions do have inverses.

Inverse Sine

We restrict the sine to [—#/2,7/2]. This restriction maps [— = /2,7 /2]
onto [— 1, 1] and is one-to-one. The inverse of this restriction is defined as
the principal inverse sine or Arcsin. We write this function as sin~! or as
Arcsin. Note, that for —1 < x < 1, there is exactly one y with sin y = x

such that —7/2< y < 7/2.

Def. 6.1. If —1 < x < I, then Arcsinx or sin~ 'x is defined as the unique y
such that siny=x and —7/2< y<7/2. This y is also called the
principal value of the inverse sine of x.
Thus,
sin™ !0 = Arcsin0 = 0,
since sin0 =0 and 0 €[—7 /2,7 /2] and also

sin”'l = Arcsin 1 = % and sin_'(— 1) = Arcsin(—1) = — %
since
I . _T\ - _
smi =1, sm( > ) 1

and /2 €[-7/2,7/2), —w/2€[-7/2,7/2].
If y = Arcsinx, where —1< x <1, then siny=x and —-7/2<y
< 7/2,s0

% < Arcsin x <% for —1<x<1. (6.1

(See Fig. 6.1.)
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\
n24--—-—- (1, m/2)

(n/2, 1)

—n/2

—————
=Yy

——————— ¢ —n/2

(€Y (b)
Figure 6.1. (a) Graph of restriction of sine to [—«/2, 7 /2]. (b) Graph of Arcsin.

By definition,

sin(Arcsinx) = x if —1<x<1, (6.2)
Arcsin(sin y) =y  if - g <y< % . (6.3)
ProB. 6.1. Prove: If —1 < x < 1, then Arcsin(—1) = — Arcsin x.

ProB. 6.2. Prove: If 2n—1)(7/2) < y < (2n+ 1)(w/2), where n is an
integer, then Arcsin(sin y) = (—1)"(y — nm).
Note that if —1 < x < 1, then
cos(Arcsinx) =y1 — x? . (6.4)
In fact y = Arcsin x implies that — 7 /2 < y < #/2 and x = sin y. For such
», cos y > 0. Hence,

cos(Arcsin x) = cos y =1 —sin’y =y1— x> .
Pros. 6.3. Verify: If —1 < x < 1, then

(a) tan(Arcsinx) = x/y1 — x?,
(b) cot(Arcsinx) =y1 — x? /x if x #0,

(c) sec(Arcsinx) = 1/y1 — x?,
(d) csc(Arcsinx) = 1/x for x # 0.

Remark 6.1. Since Arcsine is the inverse of a function which is strictly
monotonically increasing and continuous on an interval, it is continuous
and strictly monotonically increasing. Moreover (Theorem VII.6.5), since
dsin y
dy

it follows that the restriction of the sine function to [—w/2,7/2] is

=cosy>0  for —%<y<%,
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differentiable in the interior (—1; 1) of [1, 1] and

d(Arcsinx) _ gsin~'x _ 1 _ 1 (6.5)
dx dx (dSin.y/d.y)ly=sin’lx 2 ’ '

where —1 < x < 1.

Inverse of Cosine

The cosine function is strictly decreasing on [0,7] and maps [0, 7] onto
[—1,1]. We define its principal inverse, Arccosine or cos™ ', as the inverse of
the restriction of cosine to [0, 7] (see Fig. 6.2).

Def. 6.2. If —1 < x < 1, then Arccosx or cos™ '

<
that cos y = x and 0 < y < #. Accordingly,
0 < Arccosx < 7. (6.6)

x is defined as the y such

It follows that

- T T _ m
> < > Arccosx < > (6.7)
Put y = Arccos x. Then cos y = x. Hence,
s1n( ) Arccos x) s1n( > y) cosy=x
for —1 < x < 1. Since (6.7) holds, we obtain from this that
127— — Arccosx = Arcsinx  for —1<x< 1. (6.8)
We also observe that
cos(Arccos x) = x for —1<x<1 (6.9)
and
Arccos(cos y) =y for 0< y< (6.10)
Arccos x is called the principal value of the inverse cosine of x.
YA y
(_ 1’ 1[) (0’ 7[)
0, 1)
. 0, 7/2)
n/2 x
(x 1) ' Lo  x
(a) (O)

Figure 6.2. (a) Graph of cosine on [0, 1]. (b) Graph of Arccosine.
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ProB. 6.4. Show that Arccosine is strictly decreasing and continuous on
[—1,1], differentiable on (—1,1) and that

dArccosx _ _ 1 if —1<x<l.
dx 2

1—x

ProB. 6.5. Show (a) Arccos0 = 7/2, Arccosl =0, Arccos(—1)= =, and
that Arccos(—x) = 7/2 + Arcsinx for —1 < x < 1.

Inverse Tangent

The tangent function is strictly monotonically increasing on (—«/2; 7 /2)
and it maps this interval onto R. The principal inverse of the tangent or the
Arctangent is defined as the inverse of the restriction of the tangent to the
interval (— 7 /2; 7 /2) and is written as Arctan or as tan~' (see Fig. 6.3).

Def. 6.3. If x €R, then Arctanx or tan™'x is defined as the y such that
tany=xand —7/2<y<7/2.

Thus,
- -725 <Arctanx<% . (6.11)
Also,
tan(Arctan x) = x for xeR (6.12)
and
Arctan(tan y) =y  for - -721 <y <% . (6.13)

ProB. 6.6. (a) Arctan0=0, (b) Arctan(—x) = — Arctanx, (c) Arctanl
= 7 /4 and Arctan(—1) = — 7 /4.

YA | YA
: | W
| I
1 |
| |

—ap2! lap2 ~ o
! I
| ' R I
| | -/
1 |
i |
(a) (b)

Figure 6.3. (a) Graph of the restriction of tangent to (—/2,7/2). (b) Graph of
Arctan.
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Pros. 6.7. Prove:

lim (Arctanx) = and lim (Arctanx)= —
x—> + o0 X—>— 0

ks m
2 27

ProB. 6.8. Verify: If x €R, then

(a) cos(Arctanx) = 1/y1+ x?,
(b) sin(Arctanx) = x/V1 + x2,
(c) sec(Arctanx) =1 + x?.

ProB. 6.9. Verify: if x # 0, then
(a) cot(Arctanx)=1/x and

(b) cscx =1 + x* /x.

ProB. 6.10. Prove: Arctan is differentiable with
d(Arctan x) 1

dx 1+ x?

and that it is strictly monotonically increasing.

for x €R,

Inverses of the Remaining Trigonometric Functions

We define

(a) Arccotx = 7 /2 — Arctanx for x €R,
(b) Arcsec x = Arccos(1/x) for |x| > 1,
(c) Arccscx = Arcsin(1/x) for |x| > 1.

ProB. 6.11. Prove: (a) 0 < Arccotx < 7. (b) cot(Arccotx) = x for x €R.
(c) Arccot(tan y) = 7 /2 — y for | y| < 7 /2.

ProB. 6.12. Prove: (a) If x > 1, then 0 < Arcsecx < #/2 and, also, if
x < —1, then 7/2 < Arcsecx < 7. (b) If |x| > 1, then sec(Arcsecx) = x.
(c) Arcsec(sec y) =y for y €[0,7/2) U (7 /2, 7).

Pros. 6.13. Prove:

(a) lim,_, , (Arcsecx) = 7 /2 and
(b) lim (Arcsecx) = 7 /2.

X—>— 00

Pros. 6.14. Prove:

(a) lim,_, , L Arccotx =0 and
(b) lim Arccotx = .

X—>— 00
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ProB. 6.15. Prove: (a) 0 < Arccscx < 7/2 for x > 1 and — 7 /2 < Arccscx
<0 for x < —1. (b) If |x| > 1, then csc(Arccscx) = x. (¢) If y €[—7/2,0)
U (0,7/2), then Arccsc(csc y) = y.

PrOB. 6.16. Prove:

(a) lim,_,, (Arccscx) =0 =1lim,_,_ (Arccscx).

Pros. 6.17. Prove:

(a) d(Arccotx)/dx = —1/(1 + x?) for x ER,

(b) d(Arcsecx)/dx = 1/|x|m for |x| > 1,

(¢) d(Arc(cscx))/dx = —1/|x|{x* =1 for |x| > 1.

ProB. 6.18. Let E(x) = e* and g(x) = E(—x) = e~ for x € R. Sketch the
graph of E and g.

ProB. 6.19. Sketch the graph of the natural logarithm function.
ProB. 6.20. Sketch the graphs of the hyperbolic functions.
ProB. 6.21. Sketch the graphs of the inverse hyperbolic functions.

PROB. 6.22. Note cos 28 = cos® — sin’d = 2 cos’d — 1. This expresses cos 26
as a polynomial of degree 2 in cosf. (a) Show that if n is a positive integer,
then

cos(n + 1)8 = 2cosnf cos§ — cos(n — 1)6. (6.14)

This last is a recurrence relation, which expresses the cosine of a positive
integral multiple of @ in terms of the cosine of smaller positive multiples of
6. (b) Obtain cos 38 as a polynomial of degree 3 in cos#. (c) Prove: If nis a
nonnegative integer, then cosnf can be expressed as a polynomial of degree
n in cosé.

Pros. 6.23. The Tschebyscheff polynomial T, of degree n, n an integer, is
defined as: Ty(x) =1 and

T,(x)= 2—’}_—1 cos(n Arccos x) for —-1<x<1L (6.15)

We write for eachne Z_,
fn(x) =2""T,(x) = cos(n Arccos x), -1<x<1. (6.16)

We have, for example, f,(x) = cos(Arccosx) = x for —1< x < 1. Put
0 = Arccos x and use Eq. (6.14) of Prob. 6.22 to prove that

Tyo(x)=2xT,(x)— T,_(x)y —1<x<1,
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for each positive integer n, and show that fz(x) =2x*-1, f3(x) =4x% -
3x, Ty(x) = 8x* — 8x2 + 1, Ty(x) = 16x> — 20x> + 5x. Show, for each posi-
tive integer n,

T,(x) =2""'x" + terms of lower degree in x.

Thus show that 7, and hence T, has degree n and that T, has leading
coefficient 1.

PrOB. 6.24. Using the notation and terminology of Prob. 6.23, show that
T,)=1,T,(-D)=(=1)and T,(1)=2"""D T (=1)=(=1)y2"""D,

Theorem 6.1. The nth (n > 1) Tschebyscheff polynomial T, (see Probs.
6.23-6.24) has exactly n zeros x,, . . ., x,, in the open interval (—1;1). These
are given by

2k —1
xi=cos(Tw) for ke{l,...,n}. (6.17)

Proor. The 6, given by
2k -1
0 =
k 2n
are distinct real numbers in the interval (0; 7). Cosine is strictly decreasing
on (0;7), so it maps this interval in a one-to-one way onto the interval

(=1;1). It follows from this that x,...,x, are distinct numbers in
(—1;1). We have

f(xk) = cos(n Arccos(cos 2k — 1 w))

T for ke({l,...,n)

2n
_ 2k—1_\ _ 2k—1_\_
= cos(n P 'rr) cos( > 77) 0
for k € (1, ..., n}. This proves that x,, ..., x, constitute n zeros of T,

and hence of T, (see (6.15) and (6.16)). Since fn and therefore 7, are both
polynomials of degree n, neither can have zeros other than these. It follows
that 7, has exactly n zeros, all of them being in (—1; 1).

Theorem 6.2. The nth (n > 1) Tschebyscheff polynomial T, has extreme
values at the n + 1 points

zk=cos%w, where k€ {0,1,...,n} (6.18)
and no others. These z,’s all lie in the closed interval [— 1, 1] and we have
(—1*
T"(Zk)=7‘_-l— for kE{O,l,...,n}. (619)

ProoF. It is clear from (6.18) that —1 < z, < 1 foreach k € {0,1, ..., n}.
In particular we note that z, =1 and z, = — 1. Reasoning as we did in the
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proof of Theorem 6.1, we see that the z,’s are all distinct and are therefore
n + 1 in number. Since cosine is strictly decreasing on [0,7] we see that
i<jin {0,1,..., n} implies z; > z;. We also note that by the definition of
T,,

n

for —1<x<1. (6.20)
Also,

T(Zk) = __'_ n( k) =

cos(n Arccos(cos % ))

1 k 1 (-D*
= Py cos(n;vr) = YR cos(kw) = T
for k €{0,1, ..., n}. This proves (6.19). It follows from this and (6.20)
that T, has extreme values which are equal to (—1)¥27("~! at the points
zk-
We check to see that T, has no other extreme values. We evaluate T, at
the points z,,z,, . . ., z,_; in the interior of [—1,1]. We have

T,(x)= 5;1: —sin(n Arccos(cosx)))(— #)

\/l—x2

n sin(n Arccos x)

S

and
n sin(n Arccos(cos % 77)) n sin(n k w)
T'(z) = - ! =0
2" 1 — cos == 2k 2" 1 — cos == 2k

forke{l,...,n—1}. In short, T,(z,)=0for k€{l,...,n—1}. Now
T, is a polynomial of degree n, so that T, is a polynomial of degree n — 1.
Consequently 7, has no extreme values other than the z,’s in the interior of
[—1,1] (explain). At the endpoints z, =1 and z, = 1 of [—1, 1] we already
saw that 7, assumes extreme values. Therefore T, has n + 1 extreme values

at zg,zy,...,Zz,, these values being alternately 27(*~" and —27(*~V
beginning with T,,(zo) =2~ "~1. The last extreme value of 7, in [—1,1]
occurs at z, = — | and is equal to (—1)"27("~D,

Theorem 6.3. Let T, (n > 1) be the nth Tschebyscheff polynomial. For all real
polynomials P of degree n with leading coefficient 1, we have

1
= T,(x)| < P(x)|. 21
o7 = _max Tl < _max | [P(x)] (621)
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Proor. The proof is indirect. Assume that for some real polynomial P we
have

max |P(x)|<27(7D,
x<1

-1<
so that
1 1
Y <P(x)< Y for —1<x<1 (6.22)
and hence
1
T < P(z)< # for z, = cos(%w)

where k € {0, 1, ..., n}. By Theorem 6.2,
T"(zk)=(—l)k# for k€ (0,1,...,n).

Therefore

T(z,)— P(z)>0 if kiseven (6.23)
and

T(z)— P(z%)<0 if kisodd. (6.24)

Therefore, beginning with T,(z,) — P(zq) > 0, T(z,) — P(z,) alternates suc-
cessively in sign n times as k € {0, 1, . . ., n} ranges from O through to n.
By the intermediate value theorem the polynomial 7, — P takes on the
value 0, n times. Since T, and P are polynomials of degree n, both having
leading coefficients 1, we see that T, — P is a polynomial of degree n — 1.
Since T, — P has n zeros, it follows that T,(x)= P,(x) for —1 < x < 1.
This yields

2n1—1 = T,(zx) = Pu(2) if kiseven

and
1
2n—1

This contradicts (6.22). We therefore conclude that (6.21) holds and the
proof is complete.

= T,(z) = P,(z) if kis odd.

7. Log Convexity

Def. 7.1. If f is a positive-valued function on an interval /, then it is called
log convex on I if and only if the function g: /- R such that g(x) = In f(x),
x € I, is convex on 1.
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For example, if f(x) = 1/x, x > 0, then f is log convex on I = (0; + )
since g where

g(x)=ln%= —Inx for x>0

is convex on I. Note that g is convex on (0, + c0) since g"(x) =1/ x2>0,
x> 0.

Pros. 7.1. Prove: If f, and f, are log convex on an interval /, then their
product f; f, is log convex on 1.

ProB. 7.2. Prove: If {f,> is a sequence of log convex functions on an
interval  and

lim f(x)=f(x)>0 forall xel,

x—>+

then f is log convex on I.

ProB. 7.3. Let f be continuous and positive on an interval /. Prove: If f is
twice differentiable at each interior point of 7, then f is log convex on I if
and only if f(x)f"(x) — (f’(x))2 >0forallx el

ProB. 7.4. Prove: If f(x) > 0 for x in some interval I and f is log convex on
I, then f is convex on I.

Pros. 7.5. First prove: (a) If a,,a,,b,,b,,c,,c, are real numbers such that
a,>0, a,>0 and ajc,— b} >0, ay,— b3 >0,

then (a, + a))(c, + ¢,) — (b, + b,)* > 0. Next prove: (b) If f and g are
positive and continuous on an interval I, twice differentiable in the interior
of I, and both are log convex on /, then their sum f+ g is log convex on
(Hint: use part (a) and Prob. 7.3.)

ProB. 7.6. Let g, be defined by means of

— n’n!
& (%) x(x+1)---(x+n)’ x>0

for each positive integer n. Prove that g, is log convex.



CHAPTER IX
L’Hopital’s Rule—Taylor’s Theorem

1. Cauchy’s Mean-Value Theorem

Theorem 1.1 (Cauchy’s Mean-Value Theorem). If f and g are real-valued
functions of a real variable, both continuous on the bounded closed interval
[a, b}, differentiable in the extended sense on (a; b) with g'(x) # 0 for x € (a;
b), having derivatives which are not simultaneously infinite, then (1) g(a)
# g(b); (2) there exists an x, € (a; b) such that

&)= f@) _ J(x) | o
g(b)—g(a)  g'(x0)’ '
(3) if f(a) # f(b), then at the x, in (1.1), f'(x,) and g'(x,) are both finite.

Proor. If g(a)= g(b) were to hold, there would exist a ¢ such that
a<c<b and g'(c)=0. This is ruled out by the hypothesis on g. Thus,
g(a) # g(b), proving (1).
We prove (2). If f(a) = f(b), then there exists an x, such that f(x,) = 0.
Hence, (1.1) holds in this case, since
S __ S - f@
8'(xo) 8(b) — g(a)
If f(a) # f(b), consider the function F defined as
F(x)=f(x)[g(®) - g(@)] - g(x)[f(b) - f(@)] ~ for x€E[a,b].
(1.2)

Calculation shows that

F(a) = f(a)g(b) — g(a)f(b) = F(b). (1.3)
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Also, F has the same continuity and differentiability properties on [a, b] as f
and g. We can now use Rolle’s Theorem to obtain an x, € (a; b) with
F'(xy) =0. We now prove that f'(x,) and g'(x,) are both finite. By
hypothesis at least one of f'(x,) or g’(x) is finite. Using (1.2) we have, for
h#0 and x, + h € (a; b), that

F(xo+ h) = F(xo) _ f(xo+ b)— f(x0)
h - h

(g(b) — g(a))

Xxo+ b) — o
- ST () - fa). (14)

Taking the limit as A — 0, we obtain F’(x,) = 0 on the left and therefore
on the right. Suppose that f'(x,) or g'(x,) is *oo. Since the other is
necessarily finite, the limit as A — 0 of the right-hand side of (1.4) is infinite
and we have a contradiction. It follows that f'(x,) and g’(x,) are both finite.
This proves (3). Since

0= F'(xo) = f'(x0)[ g(b) — g(a)] = &'(x0)[ () = f(a)]
as is seen by differentiating (1.2), it follows that
f(x0) _ f(b) = f(a)
g(x0) gb)—g(a)’

which proves (2).

Theorem 1.2 (L’Hdpital’s Rule for the Indeterminate Form 0/0). Let f and
g be functions of which we assume that they are differentiable in the extended
sense on the interval (a;b), that f' and g’ are not simultaneously infinite on
(a; b), that and g'(x) # 0 for x € (a; b), and that

f(a+)=0=g(a+) (1.5a)
and
f(x)
L A (1.5b)
then
/&) _ (1.6)

m =
x>at g(x)

(Here, we allow a, b and L to be in R*.)

PrOOF. Suppose L = + 0. Let B €R. Because of (1.5b) there exists a
deleted neighborhood N*(a) of a from the right such that for x € N*(a) N
(a; b) we have

"(x
f_/(_l > B+ 1. (1L.7)
g'(x)
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Now N*(a) N (a;b) is a deleted neighborhood N§j(a) of a from the right
contained in (a; b) and in N*(a). Assume that x € N¥(a) so thata < x < b
and x € N*(a). There exists x, such that a < x; < x. By Theorem 1.1,
there exists an x, such that

f) = fx) _ f(xo)
g —g(x)) ~ §(x0)

where a < x, < x4 < x. Since X, is necessarily in N¥(a) (explain), we have
Xy € N*(a). Hence,

(1.8)

f) = f(x) _ f(x0)
g(x) — g(x1) g'(%o)
Thus, a < x, < x € N¥(a) implies that
f(x) = f(x))
g(x) — g(x)

Taking limits as x, > a +, we have
fo 0 = )
g(x) xmat g(x)—g(x)

for x € N¥(a). Thus,

> B+ 1.

> B+ 1.

>B+1>B

f(x)
g(x)

> B for x € N¥(a).

We conclude that

fx) _

x>+ g(_x)

+o00 = L.

Thus, (1.6) holds if L = +c0. If L = — o0, a similar proof yields (1.6).

Next consider the case L € R. Let € > 0 be given. There exists a deleted
neighborhood N¥(a) of a from the right such that if x € N¥(a) N (a;b),
then

f'(x)

_ £ €

2 <o “Lti (1.9)
As before, N¥(a) N (a;b) is a deleted neighborhood N%(a) of a from the
right contained in Nj(a) and in (a;b). Assume that x € N¥(a) so that
a < x < b and x € N¥(a) and take x, such that a < x, < x. We obtain an
X, such that

) = f(x) _ f(x0)
g(x)—g(x)  g(x0)’
where a < x, < x, < x. Since x, € N¥(a) C N*(a), it follows from (1.10)

(1.10)



1. Cauchy’s Mean-Value Theorem 381

and (1.9) that
_£< f(X)"f(Xl)

L <L+%  for a<x <x€N}a).

2 g(x)—g(x) 2
Taking limits as x, > a + yields
f(%)
_ _ € € *
L—-e<L 2<g(x)<L+2<L+e for x € Nj(a)

and, hence,

f(%)

—L|<e for x € N¥(a).
g(x) 3( )

We conclude from this that
x
lim J(x) =L
x—a+ g(x)

in this case also. This completes the proof.

Theorem 1.3 (L’Hopital’s Rule for the Case L/ o). If f and g are differentia-
ble in the extended sense on the interval (a;b), with derivatives not simulta-
neously infinite there, g'(x) # 0 for x € (a; b) and

XE&& g(x)= * oo, (1.11a)
f) _
Jim 70 L, (1.11b)
then
& (112)

lim =
x—a+ g(x)

(Here, too, we permit a, b, and L to be in R*.)

Proor. Suppose L € R. Let € > 0 be given. There exists a deleted neighbor-
hood N}(a) of a from the right contained in (a; b) such that

"(x
1,
g'(x)
Fix x’ in N¥(a). The interval (a; x’) is a deleted neighborhood of a from the

right contained in N¥(a) and (1.13) holds for all x such that a < x < x'.
Given x such that @ < x < x’, there exists an x, such that

f) = (<) _ f(xo)
g(x)—g(x)  g(x)’

<3 for x&Na). (1.13)

(1.14)



382 IX. L’Hopital’s Rule—Taylor’s Theorem

where a < x < xy < x’. Since x, is necessarily in N}(a), (1.13) holds for
x = x,. Now (1.14) and (1.13) imply that

J(x) = f(x)
g(x) — g(x)
This may be written

\ f()/8(x) = f()/8(%)

-L|< % for a<x<x"€Nf¥@a). (1.15)

3

L

<£ for a <x<x' € Nf(a)

1—g(x)/g(x) 3

so that

S )= LgC) ||, &)

s FTT 3| em | M9
for a < x < x’ < Nf(a). In turn, this implies that

f) L 8 [ e | SO Lg(x)

£(%) LHI s |37 (17

for a <x < x’€ N\(a). Since lim, ,,, g(x)= *oo, lim, _,, ., |g(x)|=
+ oo holds, so a deleted neighborhood N%(a) of a from the right exists in
(a; b) such that

|5(0)l > max {2 g(x)}. 2 |f(x') ~ Lg(x)
for x € N3(a). Thus,

|g(x)| > 2g(x)| and [g(x)|>2|f(x)~ Lg(x)|  (118)

and, hence,
g(x) | 1 SO~ Lg(x) | ¢
<5 and |——M—= | <= 1.19
} 5 | 2 6 2 (+19)
for x € N3(a). Note that
_ 8D &) s
8(x) g(x) | 2
Take x € (a; x") N N¥(a). For such x, (1.17) and (1.19) hold. Therefore,
f(x) 3 e, ¢
g(x) —L<5§+§<€.
Thus, for each € > 0,
f(x)
—L|<e for x € (a;x") N N¥(a).
s (a5x) N Ni(a)

Since (a; x’) N N3(a) is a neighborhood N¥(a) of a from the right in (a; b),
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we conclude that (1.12) holds for the case L € R. We ask the reader to
complete the proof for the cases L = + oo (Prob. 1.1).

Pros. 1.1. Complete the proof of Theorem 1.3 by showing that the
conclusion there holds for the cases L = + c0.

Remark 1.1. The last two theorems are stated in terms of the limit as
x—>a +. It is clear that, with appropriate modifications of the hypotheses
and conclusions, these theorems can be formulated in terms of x >a —
and also in terms of the two-sided limit x — a.

ExaMPLE 1.1. We evaluate
ln(l + x)

a ’

lim
a—>0+ X
where a € R. If « = 0, L’Hopital’s rule, whether in the form of Theorem 1.2
or of Theorem 1.3, does not apply since lim,_gln(l + x) =0 and
lim,_,, x*=1lim,_,, x°= 1. However, the limit can be evaluated as fol-
lows:
In(1 + x)

In(1 + x
—( )=_- = lim In(1+ x)=0.
x>0+

Xll)%l+ x¢ XLI%’I_’_ _xO
Here we do not have an indeterminate case (explain).

Similarly, we do not have an indeterminate case if a < 0. In fact, in that
case, lim,_,,, In(1 + x) =0 and lim,_,, x* = 4+ c0. However, L’Hdépital’s
rule in the form of Theorem 1.2 does apply since here lim, ., g(x)
=lim,_,, x* = + oo. Using it, we obtain

In(1 + x 1/(1+ x I—a
lim _(.;_).= lim M= lim —=%— =90
x>0+ X x>0+ ax® ! x>0+ (l + x)a
(since 1 — a > 0). The reader can check that this limit can be evaluated
without using L’Hdpital’s rule.
Finally, if « > 0, we have the indeterminate case 0/0. By L’Hopital’s

rule, we obtain

. In(1+ x) 1 0 o<l
lim —— = lim — =11 e =1
>0+ x x>0+ ax (1+x) + o0 if a>1.
In summary
CI(l+x) [0 if a<l
i L
x + o0 if a>1.

Pros. 1.2. Note that in

lim SX =,
x—>+ 0 X
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the limit can be evaluated without the use of L’Hdpital’s rule. Explain why
the rule cannot be used here.

ExampLE 1.2. Consider
X_l)ir+nw[(x+ 1)“—x"‘], a>0.
Since a >0 implies lim,_,, (1 + x)*= 4+ 00 =lim,,, x* we describe

this situation as being indeterminate of the form (+ c0) — (+ ). We write

lim [(x+1)"~x*]= lim x“[(1+%)a—l].

x—>+ x—+ o0

Here

lim x*= 400 and lim [(1+1)a—1]=0

x—>+ 0 x—>+ 00 X

so we have the indeterminate form (+ 0)0. This can be converted to the
form 0/0 by writing
(A+1/x)"=1 (d+1/x) =1
1/x x~¢ )
L’Hdpital’s rule can now be applied to obtain
(1+1/x)* -1

(x+1)*=x°

lim [(x+1)"—x*]= lim

x—>+ o0 x—>+ 00 X
a(l+1/x)*7'(=1/x?)
—x—>+oo _ax—a—l
I 8 V20 L S R
—XETOOT— 1 if a=1
X 0 if 0<a<l.

State what occurs if a < 0.

ExAMPLE 1.3. Other indeterminate forms are: 0°, 0°®, (+ )% 1*®. An
example of the form 0° is

lim x*.
x>0+

To evaluate this limit by L’H0pital’s rule, we write
y=x" for x>0
and take the natural logarithm of both sides to obtain

In x

l/_x as x—>>0+.

Iny=xlnx=

Applying L’Hépital’s rule gives

x>0+ x—>0+

lim In y=lim (li%‘-)= lim —/*_ _¢
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so that we have

lim x*= lim y= lim e"’=¢€"=1.
x—>0+ x—>0+ x—>0+

The remaining forms are treated in the problems.

Remark 1.2. To evaluate certain limits it may be necessary to apply
L’Hopital’s rule several times. For example,

lim £ = lim £ = lim & =+
x>+ x2 x>+ 2x x>+ 2
An important limit is
X
lim = =4+ aeR. (1.20)
x—>+ o0
For a < 0, this is not indeterminate since
x lim e*= 4+ if a=0
llm e — J x>+
a . _ .
x>t X lim x %"=+ if a<0
xX—>+ o0

If « >0, then the limit in (1.20) is indeterminate of the form + co/+ oo.
If 0 < a < 1, then by L’Hdpital’s rule, we have

a—1 x—>+ o0

lim € = lim ( e” )= lim (Lx'"%e*)=+o0 (121)
ax a

(since 0 <1 —a <1). If a =1, then L’Hdpital’s rule again gives the limit
+o00. If @ > 1, put n =[a], so that 1 < n < a. In this case,

d"x* a—n
d;,,=a(a—1)...(a—n+1)x .

If a > n, then the limit in (1.20) is obtained from

X e* . e . e*
lim = = lim =...= lim —
x>+ X n>+o0 pya=l x>+ 00 a(a—l)---(a—n+l)x"‘

(1.22)

If a = n, then x*™" = 1, so the limit on the right is + co0. If & > n, then we
have n=[a]<a<[a]+1=n+1, 50 0<a—n<1. We saw in (1.21)
that, in this case, the limit in the right-hand side of (1.22) is + oo.

Pros. 1.3. Evaluate

(@) lim,_o(1 + x?)/*,

(b) lim,_, ((x"— a")/(x* — a®)), where a > 0 and r, s are real numbers,
(©) lim,_,, ,(tanx — secx),

(d) lim,,,  (n(x + 1)/Inx),
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(e) lim,,, (In(n(l + x))/In(In x)),
() lim, 0, x7,

(® lim,,, ,(cos(1/x))",

(h) lim,_o((a* — b7)/x),

@) lim,,, (x/e%), a €R,

() lim,,, (1/x%)e" /),

(&) lim,, , (cot(1/x) = 1/x),

0 lim, 4, In(1 — x)In(x),

(m) lim__,, (cosx)"/*

ProB. 1.4. Note that lim,_,,x?/(x* + 1) = 1. Explain why L'Hépital’s rule
fails here.

Pros. 1.5. Prove: If lim,,,  f(x)= 400 and lim ,,  f/(x)= L, then
lim, ,, (f(x)/x)= L.

2. An Application to Means and Sums of Order ¢

The arithmetic and harmonic means of x, and x, are defined respectively
as

x, + x,
®) 2
and
(b) 1 2x,%,

(/X +1/x)  x+x°

where x; > 0, x, > 0. These can be treated using the notion of “mean of
order 7 of x, and x, with weights «,, a,.” We write this as M,(x,, x,; a,, &)
and define it as

M,(x,,xz;a,,a2)=(a,x,’+azxz’)l/', (2.1
where a; + a, =1, a; >0, a, >0 and x, > 0, x, > 0.

Using “weights” a; = a, =1, we see that the arithmetic and harmonic
means of x; and x, are seen to occur when =1 and ¢t = —1 are used in
M, (x,,x,;%,%). Thus,

X, + x,

M\(x),x353,3)= )

and
—1 2x,x
L 1y =Lyt gl o 20172
M_\(x,x55%,3) (2xl +2x; ) X+ %,

This notion can be generalized to apply to n positive real numbers.
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Def. 2.1. If x;,x,, ..., x, are positive real numbers, their mean of order
t #+ 0, with weights a,a,, . . ., a,, written as M,(x, . . ., X5, . . ., @,), is
defined as
1
M (xp, oo x50, a)=(ax)+ -0+ a,x,) /’, (2.2)
where
a,>0 for ie{l,...,n} and a;+ - ---+a,=1 (2.3)
Thus, the mean of order 1, with weights a; = - -+ = a,=1/n, of the
positive numbers x, . . ., x,, is their arithmetic mean
1 1 Xy + -+ Xn
M(x,....,x,;—,..., - |]= ——, 24
(3 v) . (24)

and the mean of order — 1, with the same weights, is their harmonic mean,
ie.,

no 9 o e 0y

-1
M,l(x,,...,x' )=(lx,_]+---+lx"_')
n n

S |-

1
n

- n

/x,+---+1/x," (2:3)

It is natural to ask if the geometric mean is among the means of order z. It

turns out that the answer to this question is found by taking lim,_,,M,. We
prove this.

Beginning with (2.2) we take the natural logarithm of both sides in (2.2)

to obtain

InM, = Lin(a,x{+ - + o). (2.6)
Using
dx/ / .
o = Inx; for ie(l,...,n}, (2.7
we obtain by L’Hépital’s rule:
) . oyx{lnx; + -+ + a,x,Inx,
limln M,= lim
-0 -0 alxll+ s 4 a,x)
_oylnx; + -+ +a,lnx, Inf N
= “ ¥ Fa =In(x" ... x.").
Hence,
lim M, = lime' M= (- ") = o0 |y (2.8)
t—0 t—>0
Because of this we extend the definition of M, by defining
My(xy, oo X500 0)= XX (2.9)

We have now M,— M, as t —>0. Using weights a; = - - - = o, = 1/n, we
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obtain
Mo(x,,...,xn;%,..., %)=x,'/"...x,£/"= Vx, o x,, (2.10)
which is the geometric mean of the positive numbers x, . . ., x,.
We also prove: If x,, . . ., x, are positive real numbers, then
lim M, (x,...,x,5a,...,¢q)=max{x,...,x,} (2.11%)
>+ o0
and
lim M, (x,...,x,;a,...,a)=min{x,..., X, ) (2.12%)
[—>—
To prove (2.11), we write x, = max{x,, ..., x,} and obtain
o/ <(oyx{+ -+ 0"«
X < (agx| o,x,) " < X (2.13)

Noting lim, ,, &)/’ = 1, we obtain (2.11) from (2.13) by letting 1 > + oo.
We prove (2.12) next.
Note first that

. - 1
Mo (x5 ) M(1/x, ..., 1/x, 50, ...,a,)
(2.14)
and that
1 1) I
max{ PARRERE Xn} mn(xy, w) (2.15)
Since
. . 1
lim M_,= 1
P M /x, ... 1/ x50, ..., )
_ 1
lim,_,, MO1/x;, ..., 1/x50,...,,)
- 1
max{1/x,...,1/x,}"’
it follows that
. . 1 .
1 = = = .
Iﬂlr—nooM’ I~1)1r+nooM_‘ max{l/xl, ey l/xn} mln{XI’ ’ x"}

which proves (2.12). We define M__ =min{x,,...,x,} and M_
= max{x, ..., X,}.

ProB. 2.1. Prove: (a) M, is a monotonically increasing function (as function
of 7, for fixed x,...,x,;2,,...,a,). (b) M, is strictly monotonically

*Beckenback and Bellman, Inequalities, Ergebmisse D. Mathematik, Band 30, 1965, p. 16.
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increasing if and only if x,,...,x, are distinct (Hint: see inequality
VIIIL.2.28).

Remark 2.1. The result cited in the last problem constitutes another proof
of the arithmetic—geometric inequality (Corollary of Theorem I11.12.3)

since it states that My(x,, ..., x,;1/n, ..., 1/n) < M(x,...,x,;
1/n, ..., 1/n). This is another way of saying that the geometric mean of
Xy - - ., X, does not exceed the arithmetic mean. It also places that inequal-

ity in a broader context since it states that M_ < M_, < My < M,
< M, and relates the minimum, harmonic, geometric-arithmetic, and
maximum of positive x,, . . ., x,. It also states that — 1 < 7 < 1 implies that
M_,<M<M,.

Pros. 2.2. Prove: If n is a positive integer, then for nonnegative numbers
Xy, X9 .« ., X,, We have

"\/x,...x,,<(

n

n

n n n
x1+"'+\/)—€:) X+ +x
<
n

Sums of Order ¢
Def. 2.2. If x|, . . ., x, are positive, then their sum S,(x,, .. ., x,) of order
t # 0 is defined as

Si(X oo Xy = (x4 - +x))" (2.16)

The sum of order ¢ behaves somewhat differently than the mean of order
t. For example, we have for n > 2,

So+ (X -+ -5 X)) =+ 00 (2.17a)
and
So— (X ..., x,)=0, (2.17b)
whereas, for a; >0, a; + - - - + a, = 1, we have
mM,(xp, ..o X, 50, ., )= X" xM. (2.18)

=0

We prove (2.17). Take the natural logarithm of both sides in (2.16) to
obtain

In(xj+ -+ +x,)

n

InS, = ; , n>2, (2.19)
limln(x{+ -+ +x,)=Inn>0, n>2
t—0
It follows from this and (2.19) that
lim InS,= +0 and lim InS,= — oo, n>2

>0+ t—>0—
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and, therefore, that

lim S,= lim ¢"S= +00 and lim S,= lim e™5=0,
t t
-0+ >0+ 1—>0— t—>0—

proving (2.17). (Note that if n =1, then S,(x,) = x, for all .

Pros. 2.3. Prove: If x|, . . ., x, are positive, then

(a) lim S, (xy,...,x,)=max{x,,...,Xx,},
1>+

(b) lim S,(x,...,x,)=min{x,...,x,}.
I—>— 00

Remark 2.2. Concerning S,, there is the well-known inequality of Jensen
which states that: If 0 < ¢, < ¢, or #; < ¢, <0, then

Si(Xp - x,) 2 S (xp v X,). (2.20)
To see this, note

In(x{+ - +x/
InS, = (] t ), t 0.

Taking the derivative of both sides here with respect to ¢, we obtain, after
some easy calculations,

2 ds, | x| H x, X (221

—=hll—n--— .. —7 . .

S, dt xi+ o+ x) xi+ o+ x/ )
But we have

x| H .
O0<|{ —— ] <1 for ie(l,...,n)
X+ 4 x)

(explain). It follows that the product inside the square bracket on the

right-hand side of (2.21) is < 1 so that its natural logarithm is < 0. Thus,
(2.21) implies that

as, <0 f t#0 2.22
W S or ( . )
it follows that S, viewed as a function of ¢ for fixed x,,...,x,, is

monotonic decreasing on (0; + o) and also on (— o0; 0).

ProB. 2.4. Prove: f 0<¢<land x, >0,x,>0,...,x, >0, then

(54 x) ' <(xf+ -+ x).

Pros. 2.5. Prove: If x, > 0, x, > 0, and 0 < ¢ < 1, then

i = x5| < [x) = X
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ProB. 2.6. Prove: If 0 < < 1, then the function given by f(x) = x’ for
0 < x is uniformly continuous.

3. The O-o0 Notation for Functions

We introduced the “big O” and “little 0” notation for sequences in Defs.
IV.4.1 and IV.4.2. Here we extend these notions to functions which are not
necessarily sequences.

Def. 3.1. If f and g are real-valued functions defined on a set D # @ and an
A > 0 exists such that

| f(x)| < 4| g(x)] forall xe€ D, 3.1
then we write
f(x)= 0(g(x)) for x € D. (3-2)

Thus, we write sinx = O(x), x €R, since [sin x| < |x| for x €R.

ProB. 3.1. Prove: |e* — 1| < e|x| for |x| < 1. Consequently e* — 1 = O(x),
x €[-1,1].

Def. 3.2. Let f and g be real-valued functions defined on a set D and a an
accumulation point, possibly extended, of D. If there exists a deleted
neighborhood N*(a) such that

f(x)=0(g(x)) for x € N*(a) N D,
then we say that f is big O of g as x > a and write
f(x)=0(g(x)) as x—a. 3.3)

For example, if a = + o0, then f(x) = O(g(x)), x = a, means that there
exists 4 > 0 and X such that

|f(x)|=A|g(x)] for x€D and x> X. (34
This is similar to the use of big O for sequences (cf. Def. IV .4.1).

On the other hand, if a €R, then f(x) = O(g(x)) as x > a means that
there exist A > 0 and € > 0 such that

|f(x)| < Alg(x)] for x€D(f) and 0<|x—a|<e (3.5)

Def. 3.3. If the functions f, g, and 4 have a common domain D and
f(x) = h(x)=0(g(x)) as x—a
then we write
f(x)=h(x)+ O(g(x)) as x—>a. (3.6)



392 IX. L’Hépital’s Rule—Taylor’s Theorem

Pros. 3.2. Prove: If f and g are defined on D and g(x)# 0 for x € D —
{a} and

lim fx) _
>a g(x)
then f(x) = O(g(x)) as x> a.

L eR,

Pros. 3.3. Prove: (a) sinx = O(x) as x—>0; (b) sinx = O(x) as x > + o0;
(c) cosx =1+ O(x?) as x—>0.

Pros. 3.4. Prove:

1 _1 1
x+1_x+0( 2) as x— + oo.

Pros. 3.5. Prove: If f(x)= O(g(x)) and g(x) = O(h(x)) as x—a, then
f(x) = O(h(x)) as x> a.
Pros. 3.6. Prove: If
) _
x>a g(x)

’

where 0 < L < + o0, then
f(x)=0(g(x)) and g(x)=O(f(x)) as x—a.

Def. 34. If f and g have a common domain D and both f(x) = O(g(x)),
g(x)= 0(g(x)) hold as x —> a, then we write f(x)<g(x) as x —> a, and say
that the f and g are of the same order of magnitude as x - a.

Pros. 3.7. Prove: f(x)=<g(x) as x> a if and only if positive constants 4
and B exist such that for some deleted neighborhood N*(a) of a we have

Bl g(x)| < f(x) < A| g(x)] for x € D N N*(a).

Asymptotic Equivalence

Def. 3.5. When f and g have a common domain D, a is an accumulation
point, possibly extended, of D, g(x) # 0 for x € D — {a}, and

e

m =1,

x—a g(x)

then we say that f and g are asymptotically equivalent as x —> a and write
f(x)~g(x) as x—a. (3.8)

3.7)
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For example, (a) sinx~x as x—>0; (b) In(1+ x)~x as x—>0; (¢)
x+ l~x as x—> +o0.

ProB. 3.8. Prove: (a) coshx~e*/2 as x> + o0 and (b) sinhx~e*/2 as
X —> + o0.

Remark 3.1. Clearly f(x)~g(x) as x —> a implies f(x)< g(x) as x > a.

Pros. 3.7. Prove: If f, g, and & have a common domain 9 and f, g, h are
nonzero in D, then:

@) f(x)~f(x)as x—>a,

(b) f(x)~g(x) as x> a implies g(x)~f(x) as x > a,

(¢) f(x)~h(x) and h(x)~g(x) as x > a imply f(x)~g(x) as x > a.
ProB. 3.8. Prove: If f,(x) = O(g,(x)) and fy(x) = O(gy(x)) as x - a, then;

@) fi(x)fy(x) = 0(g(x)gx(x)) as x> a,
(®) fi(x) + f,(x) = O(| g1(x)| + | go(x)]) as x > a.
Little 0 as x > a

Def. 3.6. If f and g are defined on a common domain D, a is an
accumulation point of D, g(x) # 0 for x € D — {a}, and

lim /) =0, (3.9)
x>a g(x)
then we say that f is “little 0” of g as x > a and write
f(x)=o0(g(x)) as x—a. (3.10)
If f(x) — h(x) = 0(g(x)) as x > a, then we write
f(x)=h(x)+ o(g(x)) as x—a. 3.11)
For example,
cosx=1+o(x) and sin’x=o(x) as x-0.

The notion of “little o” for functions as x = a is similar to the one for
sequences where we spoke of “little 0 as n—> + o0.

Theorem 3.1. If f,, f>; g, g are all defined on a common domain D,
g1(x) >0 and g)(x) >0 for x € D — {a}, and

fix)=o0(g(x),  fu(x)=o(g(x)) as x—>a  (3.12)
then
() )+ foa(x)=o(g(x) + 8(x)) as x—a,
(b) Fi(x) fo(x) = o( g1(X)82A(x)) as x-—>a.
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Proor. We prove (a) and ask the reader to prove (b) in Prob. 3.9. Given
€ > 0, we use (3.12) to establish the existence of some deleted neighborhood
N*(a) of s such that

—€gi(x) < fi(x) < egi(x)
and

—egy(x) < fo(x) < egy(x)
for x € N*(a) N D. Adding these inequalities we see that

X))+ fo(x
—€<M <e€ for x € N*(a)N D.
g1(x) + g(x)

It follows that
Ji(x) + fo(x) -0
x=a g (x) + gx(x)
and, hence, that (a) holds.

Pros. 3.9. Complete the proof of the last theorem by proving its part (b).
Pros. 3.10. Prove: If fi(x) = O(g(x)) and f,(x) = o(g(x)), each as x > a,
then

(a) Si(x) + fo(x) = 0(g(x)) as x—a

(b) fi) fi(x)=o(g(x)) as x—a.

4. Taylor’s Theorem of Order n

Let f be defined in some e-neighborhood N(a,¢) of a € R and continuous at
a, so that

}l'in})f(a + h) = f(a). 4.1
This implies that lim,_y(f(a + k) — f(a)) = 0 or, in the little o notation,
that
fla+ hy=f(a)+o(l) as h—0. (4.2)
Now, in addition, we assume that f is differentiable at a so that

o J@t )~ fa)
im ——————~
h—0 h

=f'(a). (43)
Using the big O notation we can write this as

f(a+ h)=f(a)+ O(h) as h—0. (4.4)
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Equation (4.3) can also be written

f(a+ h)—(f(a)+ f(a)h)  lim ( f(a+ h) f(a)
m im| ————— =

h—0 h h—0

~f(@) =
4.5)
This implies in the little o notation that
fla+ h)—(f(a) + f'(a)h) = o(h) as h—0
and, hence, that
f(a+ h) = f(a)+ f'(a)h + o(h) as h—0. (4.6)

The above result is based on the assumption that f is defined in the
e-neighborhood N(a,¢€) of a and differentiable at a. Now assume that f is
differentiable in N(a,e) and twice differentiable at a. We obtain by
L’Hopital’s rule

_ f@r = @+ f@k) _ . J@+h) - [

h—>0 h? h—0 2h
_1p f@th—f(a)
2 h
= 1 /"(a) (47)

This implies that
f(a+ h) = (f(a) + f/(a)h)= O(h*) as h—>0
and, hence, that
f(a+ h)=f(a)+ f(a)h+ O(h*) as h—0. (4.8)
Equality (4.7) implies that
i fla+h)y=(f(a)+ f(a)h+ (f"(a)/2)h )

h—0 h?

from which it follows that

f()

f(a+ h)=f(a)+ f(a)h + R +o(h*) as h—>0. (49)

ProB. 4.1. Prove: If fis twice differentiable in some e-neighborhood N(a,¢)
of a and three times differentiable at a, then

f”( )

f(a+ h)=f(a)+ f'(a)h + R+ 0(h) as h—>0

and

f(a+ k)= f(a) + f'(a)h + f”( ) fm( )h3+o(h) as h—0.
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Theorem 4.1. If f is differentiable of order n at a, where n is some positive
integer, then

f( ) 12 f(")( a)

+ .

fta+h)=f(a)+ f(a)h +

h" + o(h")
as h—0. (4.10)

Proor. We use induction on n. We already proved (4.10) for n=1,2.
Suppose (4.10) holds for some positive integer n. Assume that f is differen-
tiable of order n + 1 at a. This implies that f” is differentiable of order n at
a. By the induction hypothesis,

'’ _ ” f("+l)( ) n
f(a+h)—f(a)+f(a)h+-- ————h"+o(h") as h—0,
(4.11)
i.e.,
- fathy=(fa)+f(ah+ -+ (f"*(a)/nt)h")
lim - =0.
h—0 h
(4.12)

Hence, by L’Hdpital’s rule and (4.12) we have

lim
h—>

(n+1)
1 f(a+h)_(f(a)+f’(a)h+ .o f(‘ +1()') hn+l)}/hn+l

(n+1) a
= Lij);})(f’(a + h) — (f’(a) + f"(a)h + - f ( ) ))/( n+ 1)h"

=0.
It follows that

” (n+1) a
fla+h)= f(a)+f(a)h+mh+ +£(n—+l(—)!)h"+'+o(h"“)

as h—>0. (4.13)
The conclusion follows by applying the principle of mathematical induc-

tion.

PrOB. 4.2. Prove: If f is differentiable of order n + 1 at a, where n is some
nonnegative integer, then

f(")( a)

f(a+h)y=f(a)+ f(a)h+ -~ h"+ 0"ty as h—0.
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Remark 4.1. Let f be differentiable of order n at a, where n is some positive
integer. Put

(f(a+ k)= Zi-o( fO(a)/ k! )R")

u,(a,h)= W (4.14)
Theorem 4.1 states that lim,_,u,(a, ) = 0. From (4.14) it follows that
(k)
fa+ h)= 2 / ( ) u,(a,h)h", (4.15)

k=0
where u,(a,h)—>0 as h—0. Formula (4.15) is called Taylor’s formula of
order n. The polynomial in A,

(k) M q
§=j / ( ) = f(a) + f'(a)h + - fn!( )h", (4.16)

is called the Taylor Polynomial of order n at a, while the term u,(a,h)h" in
Taylor’s formula of order n is called the remainder in Taylor’s formula of
order n.

Remark 4.2. Put x = a + h and order n and
v,(a,x) =u,(a,x — a).
Formula (4.15) then becomes
r fP(a) n
fx) =3 — (x — a)*+ v,(a,x)(x — a)", (4.17)

where v,(a,x)—>0 as x = a. In this notation the remainder R, (a,x) and
the Taylor polynomial are, respectively,

R, (a,x) = v,(a,x)(x — a)" (4.18a)
and
(k)
2 / k'(a) (x — a)~. (4.18b)
k=0

Calculation shows that Taylor’s Polynomial of order n for f has the same
value and derivatives, up to order n, that f has.

Remark 4.3. If P is a polynomial of degree n > 1 (cf. Theorem VI1.4.1)

n  pk)
P =3 D x-af

(")(a)

=P(a)+ P'(a)(x—a)+ - - (x— a)

and, therefore, the Taylor Polynomial of order n is 1dent1cal with P itself,
the remainder being identically 0. In general, this is not the case. However
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under the appropriate conditions on f, the remainder can be given several
forms. We deduce them in the next theorem and its corollary. We begin
with what is called Schiomlich’s form for the remainder.

Theorem 4.2. Let n be an integer, n > 0 and p be some real number p > — 1.
If f and its derivatives up to and including order n are continuous on an
interval 1 and f"*V(x) exists at least for x in the interior of I, then, for
distinct a and x in I, there exists a ¢ between a and x such that

(k) (n+ 1
f(x)= Z / k'( )(x-—a) +(i’:—1()—;%( c)"A”(x—a)P“. (4.19)

Proor. Fix a and x in I, x # a and construct F, where

(k)
F(1) = f(x) = f(1) - E L0 ey

f(k’( a)

X — p+1
——(——t)-—(f(x)— 2

x—ay" 2 —(x—a) ) (4.20)
for t € I. Note that
F(a)=0= F(x). (4.21)

We can, therefore, apply Rolle’s Theorem to obtain a ¢ between a and x
such that F’(c) = 0. Taking the derivative f'(¢) in (4.20), we have

(k+|)t (k)t
F(ty=—f(n- Zl(f k!()( - - (i (1;.< ))

+ )(x — 1) n fR(a
+b—(——)(f(x)— > fk!( )(x—a)k). (4.22)

(x —ay’*! K=o

We have a “collapsing” sum

(k+1) t (k)¢
f(t>+2(f IOy —(i (1§.< 1y )
(n+1)
SOy
Putting this in (4.22) we obtain
, A n
Fi)= = ——=(x = 1)

+ 1)(x—t n fMa
u——)(f(x)— > f—k!(—)(x— a)*)|. (4.23)

(x—ay™"’ o
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Since F’(c) = 0, this formula yields

(n+1)
0= - LD oy
R G PN L D
+W(f(x) P Gk )

from which (4.19) follows.

Remark 4.4. The remainder R, (a, x) in Theorem 4.2 is

5 e)

R, \(a,x)= m(

x—o)" P(x—ay*, p>-1. (429
This is known as Schlomlich’s form of the remainder in Taylor’s Theorem
of order n. When p = n, we have

(n+1)
TG e

R,,+|(a,x)= —(m‘)!—(x_ a ) (425)
where c¢ is between a and x. This is known as the Lagrange form of the
remainder in Taylor’s Theorem of order n. When p = 0, we obtain from
(4.24)

O e)
!

R, \(a,x)= (x —¢)'(x — a). (4.26)

This is known as Cauchy’s form of the remainder in Taylor’s Theorem of
order n. This proves the corollary below.

Corollary (of Theorem 4.2). If f and its derivatives up to and including order n
are continuous on an interval I and f"*V(x) exists at least for x in the
interior of I, where n is some nonnegative integer, then for distinct a and x in
1, there exists a ¢ between a and x such that

n (k) (n+1)
fx)=> / k!(a) (x —a)+ %—;% (x —a)"*". (4.27)

k=0

Remark 4.5. Using n =0 in the last corollary we obtain a form of the
Mean-Value Theorem. This is why we call the last corollary the extended
mean-value theorem.

Remark 4.6. In Theorem 4.2, let us use the fact that ¢ is between a and x
and write

c—a
= —, X # a,
xX—a

so that 0<|#| <1 and ¢ = a + 0(x — a). Writing h = x — a, we obtain
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x—c=x—a—(c—a)=(1—-08)x — a). The Schlomlich form of the re-
mainder becomes

(-0

Rywi@X) = ggyr (3~ )"t f" ) (a+ 8(x — a))  (428)

and the Lagrange form becomes

(*D(a + 0(x —
R, \(a,x)= / ((‘; " 1§! i) (x —a)"*". (4.29)

In both cases 0 < |0] < 1.

5. Taylor and Maclaurin Series

When f has derivatives of all orders at a € R, then the series

w  f(n) @
> ! ()( —a)‘f(a)+f(a)(x—a)+f ()( —ay+ .-

n=

5.1
is called the Taylor series of f at a. When a = 0, this series has the form
SEMUR 70
> x"=f(0) + f'(O)x + —7— x>+ - - - . (52)

n=0
This series is called the Maclaurin series of f. Thus, the Maclaurin series of f
is its Taylor series at a = 0.

When f has a Taylor series at a, several questions arise. (1) Does it
converge? Of course, at x = a the Taylor series of f at a converges trivially
and reduces to f(a). The convergence question becomes significant when
x # a. (2) Does the Taylor series (5.1) converge to f(x)? If for some x, the
Taylor series of f at a converges to f(x), then we say that it represents f(x)
for that x. For example, when the Taylor series of f at a exists, then it
always represents f(a). Whether or not the Taylor series of f at a represents
f(x) for some x # a can be decided by examining the remainder R, ;(a, x)
in Taylor’s formula of order n.

Let f have derivatives of all orders at a. Then, for each positive integer n,
we have

n K (a
f(x)y=> f—k,(—-) (x — a)*+ R, \(a,x). (53)

There are three possibilities. If lim,_, , , R,(a,x) = 0, then
f (k)( ) (@) )
—a)f= 2 ffg-—af (54

and the Taylor series of f at a converges and represents f(x). If
lim,_, , R, (a,x) does not exist or is infinite, then the Taylor series of f at x

)= lim 3
k=0

n—+ oo
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does not converge. If lim,,_, , . f,(a, x) exists and is finite but is not equal to
0, then the Taylor series of f at a converges but does not represent f(x). We
give some examples.

ExaMmpLE 5.1. In Example IV.5.1 we defined
0 n
expx = > %'— foreach x €R. (5.5)
n=0 "
Using the ratio test, we found that the series on the right converges. In
Theorem VI.1.4 we proved
et n
e*=expx= > x_' for x €R. (5.6)
n=0 M
Simple calculations show that the series on the right is really the Maclaurin
series for the function E defined as E(x) = e* for x € R. It follows that the
Maclaurin series (the Taylor series for E at 0) for E represents E(x). Here
we establish this in another way by proving, more generally, that if a € R,
then the Taylor series for E at a represents E(x) for x € R. We do this by
estimating the remainder R, ,(a, x) for E in Taylor’s Theorem of order n.
For each nonnegative integer n

EM(x)=e*, E"(a)=e". (5.7)

Assume that x # a. Using the Lagrange form of the remainder (Corollary
of Theorem 4.2) we see that there exists a ¢ between a and x such that

n ) E(M+De
E(x) = go —W(al(x - a)'+ _(Tl()T)(x a)"*!

n
e_ e’ _ n+l

§=} o ——(n 1) (x —a)"*". (5-8)
Here

R, \(a,x)= T i 1 (x —a)"*!, (5.9)
where c is between g and x. If a < x, thena<c<xand0<c—a < x —
a so that

ec = ea+(c—a) = eaec—a < eaex—a = eae(x—a)‘ (510)

If x<a,thenx<c<aand x —a <c—a<0so that
ef=e%t (TN = 0% T %0 = 9 L el (X7, (5.11)
This and (5.9) show that

|x—a
|x_a|n+l< )' |x_a|n+l

Rei(@ )] = Gy e

But (Prob. IV.5.1)

|x _ a|n+l

n-l*u-ipoo (n+l)! =0
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which implies that lim,_,, R, (a,x) =0. Using this, (5.8) and (5.9) we
have: If x €R, a € R, then

0

E(x)=e* 2 (x - a)~. (5.12)

On the right we have the Taylor series for E. Thus, (5.12) states that the
Taylor series for E at a represent E(x) = e* for each x € R. We also have
from (5.12) that

k
xX—a
E(x)=e*=e" 2 gy e‘exp(x — a).
Putting a = 0, we have again
E(x)=expx for x eR. (5.13)
This constitutes another proof that E = exp.

Pros. 5.1. Prove: The Maclaurin series for the sine and cosine functions are
the series by means of which these functions were defined in Def. IV.8.1.

ProOB. 5.2. Obtain the Maclaurin series expansion for the hyperbolic sine
and cosine functions and prove these series represent them for all x € R.
(See Example V.2.3.)
EXAMPLE 5.2. Consider the function f, where

f(x) =In(1 + x), x> —1. (5.14)
We have f(0) = 0 and

f® =1~ fO=1

X
” 1
x)= — , " 0 = _
reO=-ay 1O
As a matter of fact, if n is a positive integer, then
fO(x) = (=) Gl and f(0)=(=1)""'(n—1)l. (5.15)
(1+x)" h '

Therefore, the Maclaurin series for f is

© (M © — 1)
f(O) 2] f ( ) n= E (_l)n+l (i’l ) xn

yrrxl oo XX xt
2( sty -t . (5.16)

We examine the convergence of this series. The series obviously converges
if x = 0. If x # 0, the ratio test yields

x"*/(n+ l)'

Ian+ll —
x"/n! P

|a,|

x| > x| (5.17)
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Therefore, the series converges if |x| < 1 and diverges for |x| > 1. At x = 1,
the Maclaurin series for f is
L=gg—tt oo

which converges since it is an alternating series. For x = — 1, we have

which diverges. Thus, the Maclaurin series for f converges for x € (—1,1]
and diverges for (— o0, —1] U (1; + o0). We now inquire whether or not the
Maclaurin series for f represents f(x) for —1<x < 1. We know that
f(0) =0 and that
*+FDx)y=(-1)'—2—.
£ = ( )(1+ o
Using the Corollary of Theorem 4.2, we find that if x # 0, then for a
non-negative integer n there exists a ¢ between 0 and x such that

ln(l+x)=x——2—+---+(—l) (n+l)(1+c)"+" (5-18)

The remainder R, (0, x) is

n+1

x)= (-1 X . .
Ry r(@2)=(=1) (n+ 1)(1 + ¢)"*! (-19)

IfO<x<1,then0<c<x<1and

n+1 n+1

x| DL AP
1+ '(n+1) nt+tl ntl

|Rn+l(0’x)| =

This inequality is valid also for x = 0. Thus,

lim|R,,,(0,x)| < =0 if 0<x<l.

n—)+oc n+1

It follows that

2 3 4
ln(1+x)=x—x—+x——~x-—+--- for 0<x<1. (5.20)
2 3 4
The series represents In(1 + x) for 0 < x < 1. In particular,
In2=In(1+1)=1-4+3—-4+---. (5:21)

We now turn to the case —1 < x < 0. Here we resort to Cauchy’s form
for the remainder (4.26) to obtain

x2 net x" -
In(l+x)=x=3+ -+ (=" E 4+ R ,(0x),  (522)
where

f"0(e) n (x=0)'x

R,‘,“(O,x)= -—-—n!—(X"‘C)nX:(—l) W, (523)
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where —1 < x < ¢ < 0. We prove:

| - |< |x| (5.242)
and
|x|
1+c‘<1+x. (5.24b)

Indeed, (5.24b) follows because we have 0 <1+ x <1+ ¢ <1 and,
therefore,

x - _Ixl |x|

[Tl Tee <Tvx
Inequality (5.24a) holds because 0 < —¢ < —x < 1 and ¢ < 0, which im-
plies that —cx > ¢, so that

(—x)(l+c)=——x—cx>c—x>0, (5.25)

which implies that

1+c¢)
XxX—c =¢c—- X — ( = — =
1+c|—1+c_1+c<( ) T+e x = |x].

Thus, (5.24a) and (5.24b) hold for —1 < x < ¢ < 0. Returning to (5.23), we
conclude that

|x]
1+¢

a 1xXl_
<||1+x—l+x'

Ry (00 = X x—e
(1+c)tt Il+e

Since |x| < 1 here this implies R}(0,x)—>0 as n—> + co. We conclude from
this and (5.22) that

2
ln(1+x)=x—x7+---

holds also if —1 < x < 0. Thus,

In(1 + x "+"‘ for —1<x<1. 5.26
( )= ( (5-26)

Pros. 5.3. Prove: If 0 < x < 2, then
x—1)? x—1) x—1)*
( ) ( ) ( ) |

Inx=(x-1)- 3 + 3 - 7

ProB. 5.4. Prove: If a >0 and 0 < x < 2a, then

x—a (x—a)} (x—a)y (x—a)
242 3a° 4q*

Inx =Ina + + .-

ProB. 5.5. Use

n

Arctanh x = —l—l 1+x if
2 1—x

|x| <1
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to obtain

3 Ls
Arctanhx=x+i‘3—,—+x?+~~ for |x| <.

ExAMPLE 5.3. Our examples illustrate a case where the Taylor series of f at
a converges and represents f(x), and where the Taylor series for f at a
diverges for some x (In(1 + x) for x € (— o0, — 1] U (1; + 0)). We exhibit
now a function f which has derivatives of all orders at a whose Taylor series
at a converges for x # a but does not represent f(x) for x # a.

Let f be defined as

fy={e i x0 (527)
if x=0.
We have
-(1/x%
£0) = tim &2 _ i /X _g
x—0 X x—0 e(l/xz)
so that
f,(x)_{%e‘('/"z’ for x#0
=3 x
0 for x=0.
We can prove by induction on » that if x # 0, then
e~ (1/xp (x)
(M( L
) =
where P, is a polynomial of degree < 3n and, hence,
f('l)(x) = e_(l/xz)Qn( %) for x# O, (528)

where Q, is a polynomial depending on n. We prove that f¢(0) = 0 for all
positive integers n by using induction on n. We have f'(0) = 0= f(0). If
£ (0) for some positive integer n, then using (5.28), we obtain

S0y = tim S 2a1/)

x—0

The last limit is 0. In fact, we can write

1 1) _ 1
2 0(x)=R(5)
where R, is some polynomial, so that

R,,(%)=b0+b,%+--- +b, L
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Here m is some positive integer and b, . . ., b,, are constants. Hence,

f(n+|)(0) — thO (l/x)Q,,(l/x) = lim R"(I/X) =0

e(1/x%) x>0 (1/x)
This proves that f("(0) =0 for each positive integer n. Constructing the
Taylor series Tf(x) at O for f we obtain

Tf(x)= > a,x"= > 0x"=0  for x#0.
n=0 n=0

The series has only zeros fozr its coefficients, and thus converges to O for all
x €R. Since f(x)=e /¥ >0 for x %0, the Taylor series for f at ¢
cannot represent f(x) for x # 0.

6. The Binomial Series

We suggest that at this point the reader review the material on factorials in
Section I1.6.

Pros. 6.1. Prove: If k is a positive integer and a < 0, then
k(@ —
(='(k) > >0
Lemma 6.1. If o« €R and n is a positive integer, then

+oo  for a< —1
lim l(g)’= 1 for a=—1 (6.1)
e 0 for a> —1.

Proor. If a < —1, then —(a + 1) > 0 and

ay @@= (a=n+1)1 Ja+1—-1la+1-2[--|Ja+1—n|
l(n)'_ n! - n!
+1 +1
=(1—(¢)hL1))(1—"‘2 )-.-(1—“'1 )
1 1
>1 - S e 4+ 2,
1 (a+1)(1+2+ +n)
The last inequality is a consequence of Prob. I1.12.14; it implies that
"J}Illw’(‘;)l =+ for a< —1. (6.2)

If a = —1, then

A 2

n n!
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Therefore,
lim (g)|=l for a=—1.

n—+ o

If « > — 1, then we consider the following cases: either (a) —1 < a <0
or (b) 0 < a. In case (a) we have 0 < 1+ a < 1 and also

la=1=1-a, la =2|=2—-a,..., la—n+1ll=n-1-aq,
so that
ay_ lella=1]--Ja=n+1 (—o)(l-a) - - (n—1-a)
|(n)"' n! B 1-2---n
=(1—((X+l))(2—(a+l))(n_(a+l))
1-2---n

_(1_a+l _a+l1lY | ({_a+l

=(me ) ()
Since 0 <(a+1)/n < a+ 1< 1, the above and Prob. I1.12.15(c) imply
that: If —1 < a <0, then

(01024025 (123

1
ST+@+ DA +12+ - +1/n) (6:3)

This time we have: If —1 < a <0, then |(§)| >0 as n—> + c0. In case (b),
a > 0, we prove

(;’1‘)=0(%) as n— +oo. (6.4)

If « is a nonnegative integer, then for sufficiently large n, we have a < n, so
(%) = 0. Thus, (6.4) holds in this case. If 0 < a < 1, then

{(z)'=a|a_1||a_2|n.!..|a_n+1| <a1-2..’;!(n—1)=%' 65)

If 1 < a and «a is not an integer, then there exists a positive integer m such
that m < a < m + 1. Fix m and take n > m + 1, where n is an integer. We
haven—12> m+ 1 and

av a(a—1):---(a—m) (a—m—=1)--(a—n+1)
n 1-2---(m+1 (m+2)(m+3)---n
(%) = )
a (m+l—-a)---(n—1-a)
(1)

(m+2)(m+3)---n

a \(m+tDm+2)---(n—1)
<‘(m+l)’ m(m+2)(m+3)~~n‘n

G )5
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This can be written

i(g)l < ([a]a+ 1)

Our study of cases for (b) a > 0 shows that (6.4) holds if a > 0. This
together with case (a) —1 < a <0, proves that if « > — 1, then

[a] +1

for 1<a, a€l. (5.6)

'(‘;).—)0 as n—> + oo.

and completes the proof.

Pros. 6.2. Prove:

1 for a=0
0 for a<0

(Hint: see Prob. [1.6.14 and Lemma 6.1).

lim (a+n

n—+ oo n

+ 0 for a>0
-]

Remark 6.1. The result in Prob. I1.6.13 states that

2(a+:—1)=(a:n) if nez,, a€R. (6.7)
k=0

Using the result in Prob. 11.6.14, i.e.,
() =1 (“+k‘1), aE€R, ke,
(6.7) can be written
n 1 ol —a
2D (%)
In turn, this implies that
2(—1)( ) (",%) a€R nez,. (6.8)
From this and Prob. 6.2 we conclude that
0 n
_ k[ Q - . _ kA
k§=:0( D (k) nllr}-lw ,Eo( D (k)

T n—a\_ | + if a<0
=, Jm ("% )_{0 i aso0. 69

("T*), «eR nez,.

Binomial Series

We consider the function g given by
g(x)=(1+x)" for x>~-1, a€R (6.9')

If a = n, where n is a non-negative integer, the Binomial Theorem applies
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and we have
= “= "= S (" xk. .
g(x)=(1+x)"= (1 + x) kgo(k) (6.10)

Since (}) = 0 if £ > n we can think of this as an infinite series, whose terms
after the nth are equal to 0. This series converges for all x €R since it
“collapses” to a finite sum. We will obtain the Maclaurin series for g, when
a is not a non-negative integer. We have

g(x)=(1+x)" g0)=1,
g(x)=a(l+x)*"" g0 =a
g'(x)=a(@-(1+x)%  g(0)=a(a—1)
Quite generally, if n is a positive integer, then
gP(x)=a(a—1)...(a—n+ 1)1+ x)*"", 6.11)
gP0)=a(a—1)...(a —n+1).

These may be written as
g"(x) = (a),(1+x)""  g"(0) = (o), (6.12)

The Maclaurin series for g is

o oM © (q had
$ g"O ._ S (D o > ()" (6.13)

n=o " neo M n=0
This series is called the Binomial series. To investigate its convergence we
apply the ratio test to obtain for x # 0, a & Z,

ol (a5 1))

= x =‘ A . l x|.
la,| |(¢;)| x| n+1 x|
Since
SNt
we have
li @, 41| = |x].

n—>+ o |an|

If «a €ER, a &Z, then series (6.13) converges absolutely if |x| <1 and
diverges if |x| > 1. The ratio test fails if |x| = 1. Let « > 0. If x = —1 then
by (6.13) and (6.9),

20(—1)"(g)=0=(1 +(=1)" (6.14)

Thus, the binomial series represents g(—1) for a > 0. If x =1, then the
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binomial series becomes
0

a
Z)O(n). (6.15)
This series diverges if a < —1 (see Lemma 6.1). The case a > —1 will be
considered later.

We now consider the representation of g(x) by its Maclaurin series for
x # — 1 and first treat the case 0 < x < 1. Using (6.12), we note that

gt N(x) = (a),, (1 +x)* """, (6.16)

By the Extended Mean-Value Theorem (Corollary of Theorem 4.2), there
exists a ¢ such that 0 < ¢ < x < 1 and

n o (n+1)
Gaye $ 200 L, 20O

P T R Y

o (a)n+l a—n—1_n+1
':,Eo(k)xh' CE A

=k§0(2)xk+(ni1)(1j:%-

Thus,
(1+x°=3 (z)xk+(nﬁl)-——i‘L, (6.17)

k=0 (1+c)"+l_“

where 0 < ¢ < x < 1. For sufficiently large n, we have n+1— a > 0.
Estimating the remainder, we see that for such n

—_ o8 x"“ « n+1
|Rn+|(0,x)|—"(n+ 1)‘————(1 +c)"+'_“ <l(n+ l)x for 0<x<1.

(6.18)
We consider two cases: (a) 0 < x <1, (b) x =1. In case (a) the series
converges, so that

: o n+1 __
Jim (4 )xt'=0 forall aER. (6.19)

In case (b), Lemma 6.1 implies that

. 41 _ . _
Jim (S )=0 i a>-L. (6.20)

Accordingly, we have

: = . 0<x<l1 forall a €R
lim R,,(0x)=0 if {x=l forall (6.21)
(We recall that the series (6.15) diverges for a« < —1.) Thus, we have
0

(1+ x)*= Z(g)x" for 0<x<1, a€R (6.22)

n=
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and

2= (1+ 1)“=n§=)0(fl‘) for a> —1. (6.23)

We now consider what happens to the remainder as n > + 0 if —1 < x
< 0. We use Cauchy’s form (4.26) for the remainder. In this case, there
exists a ¢ such that —1 < x < ¢ <0 and

(n+|)(c)
R 1(0,x) = i (x—¢)x

( )n+l

(I+o)* " ](x—c)x

( )n+l(]+ )a 1( c)"x.

1+¢
We proved earlier (see (5.24)) that if —1 < x < ¢ <0, then

' I+c¢ l< -
Accordingly,
(@), .l aml] X — ¢ |"
RE(Ox) = == (L + o | T2 |
o
<|i—31"'1‘—|(1 +0)* x|t (6.24)

Since0< 1+ x<1+ ¢<1, we have
I+ '<1+ec<1 if a>1,
1l < 1
1+ (Q+x)°

(6.25)

(1+c)“_]= if a<l.

(For a =1, we are in the case where a is a positive integer and the series
surely represents g(x) then.) This and (6.24) imply that

a
|R¥, (0, x)| <-IL';+'—| |x|*+! if a>1,

|(a)n+]| |x|n+|

nt 1+ x)'me

if a<l. (6.26)

We saw that 3%°_y(5)x" converges for |x| < 1, a« €R, so we know that
im (S)x"=0  if -1<x<0 and «a€R.  (627)

Since

|( )n+l'l In+| Ila(a-l)...(a—n)

>

n!

x" = |anx|y(a — 1)
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we conclude from this and (6.27) that

l( )n+I|

|x|"*'>0 as n—o +oo.

This implies that R"H(O,x)—)O if —1<x<0and a €R. This and (6.21)
imply that

(1+x)“="§=:()(‘;)x" if |x|<1 and a€R. (6.28)

We summarize these results in

Theorem 6.1. Equality (6.28) holds if (a) x ER, a € Z; (b) for |x| < 1 and
a€R; (¢)x=—1ifa>0;(d) for x=1and a > — 1. In all other cases the
binomial series diverges.

ProB. 6.3. Prove: If |x| < 1, then

i <+ (2k - 3)
a l-x=1-%- xk.
® 2 Ez %%
© 1-3- (2k—3)
1
b =+
®) 2 k§=:2 2%k!
ProB. 6.4. Prove:
(a) If |x|<1,aER, then
a(a+1
—=(1-x) —l+ax+¥x2+
(]—x) 2!
< a+n—l
n§=:0( )
(b) If a < 1, then
1 o pa_ g a(a+l)_a(a+1)(a+3)
2a—2 =1l—-a+ 5 3 +
= = _1fa+n—1
,zo( 1)( n )

7. Tests for Maxima and Minima

In Section VIL.5 we obtained necessary conditions for a value f(x,) of f be
a maximum or a minimum of f. Here we seek sufficient conditions.
We introduce the notion of a local maximum or minimum of a function.
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Figure 7.1

Def. 7.1. Let f be a real-valued function of a real variable defined on a set
D # @. We call f(x,) a local maximum of f if some 6-neighborhood N(x,,8)
exists such that f(x,) is a maximum of the restriction of f to N(x,,8) N D,
that is, if f(x) < f(xg) for x € N(xy,6) N D. When we have the strict
inequality f(x) < f(x,) for x € N*(xy,8) N D, then we say that f(x,) is a
strict local maximum of f. Dually, f(x,) is called a local minimum of f if
some d-neighborhood N(x,,8) of x, exists such that f(x,) is a minimum of
the restriction of f to N(x,,8) N D, ie., if f(x) > f(x,) holds for x €
N(x9,6) N D. When we have the strict inequality f(x) > f(x,) for x €
N*(x4,8) N D, then we call f(x,) a strict local minimum of f. Local maxima
or minima will be called local extrema. An extremum on D itself will be
called an absolute extremum. Thus, we speak of an absolute maximum or
minimum at x, if f(x,) is respectively a maximum or minimum of f on D.
(See Fig. 7.1.)

In Fig. 7.1, f(a), f(x,), and f(x,) are local minima of f, f(x,), f(x3), and
f(b) are local maxima of f, f(a) is an absolute minimum, and f(b) is an
absolute maximum of f on D.

Theorem 7.1. Let f be continuous on an interval I, and let x, be an interior

point of I. If f'(x) > 0 for x < x4, x € I, and f'(x) <0 for x > x4, x € I,
then f(x,) is a maximum of f on I. (See Fig. 7.2(a).)

yA v 4 VA ¥4

—_— > R S .

> 3

> >

Xo Xo Xo

() (b)
Figure 7.2
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PROOF. Assume x € ] and x # x,. By the Mean-Value Theorem, there
exists a ¢ between x and x, such that

J(x) = f(x0) + f'(e)(x = xo)- (7.1

If x <xp, x €1, then x < ¢ < x¢, so that x — x, < 0 and f’(¢) > 0. This
implies that f'(c)(x — xo) < 0. Therefore, (7.1) implies that f(x) < f(x,)
holds for x € I, x < x,. If x > xy, we have x,< c < x. In this case,
x —x9>0 and f'(c) <0, so that again f'(c)(x — x) <0. By (7.1), f(x)
< f(x) for x € I, x > x,. Thus, f(x) < f(x,) for all x € 1, and f(x,) is a
maximum of f on 1.

Theorem 7.2. Let f be continuous on an interval 1. If f'(x) < 0 for x < x,,
x €1l and f'(x) > 0 for x > x4, x € I, then f(x,) is the minimum of f on I.
(See Fig. 7.2(b).)

Pros. 7.1. Prove the last theorem.

Remark 7.1. We refer to Theorems 7.1 and 7.2 as the first derivative test for
an extremum. Note that in these theorems we did not assume that f was
differentiable at x,. Hence, the test can be used even if f'(x,) does not exist.
If, in addition to the hypotheses in the theorems mentioned, f'(x,) exists,
then we necessarily have f'(x,) =0. For, in each case, the hypothesis
implies, that f(x,) is an extremum of f and since x, is an interior point of 7,
it follows from Prob. VIL.5.2 that f'(x,) = 0. Sometimes the first derivative
test for an extremum is given the form of Prob. 7.2 below.

Pros. 7.2. Prove: If x, is an interior point of an interval I on which the
function f is differentiable and f'(x,) =0, then (a) f'(x) > 0 for x < x,,
x €1, f'(x) > 0 for x > x4, x € I imply that f(x,) is a maximum of f on 1,
while (b) f'(x) < 0 for x < xy, x € I and f'(x) > 0 for x > x4, x € I imply
that f(x,) is @ minimum of f on I.

Remark 7.2. The example of f, where f(x)= x* for x €R, shows that
f'(x) = 0 can occur without f(x,) being an extremum of f. We have, in this
case, f'(0)=0, yet for € >0, f(¢)=¢€ > 0= f(0) and f(—e=—-€<0
= f(0), and f(0) is not an extremum of f.

ProB. 7.3. Prove: If f is continuous on a bounded closed interval [a, b] and
differentiable in its interior and f’(x) # 0 for x in the interior of I, then the
extrema of f occur on the “boundary of [a,b]; that is, at the endpoints of
[a,b].

Knowing whether f is concave or convex on an interval is helpful in
dealing with questions about the extrema of f.
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Theorem 7.3. Let f be differentiable in the interior of an interval I and
f'(x0) = 0 for some interior point of 1. The following hold: (a) if f is concave
on 1, then f(x,) is a maximum of f on I, and (b) if f is convex on I, then f(x)
is a minimum of fon I.

PrROOF. Assume that (a) f is concave on I. The graph of f then lies below its
tangents at the points in the interior of I (Prob. VIII.2.10). Hence, for x in
I, we have

J(x) < f(x0) + f'(x0)(x — Xo)-
Since f'(xy) = 0 by hypothesis, it follows that
f(x) < f(x0) for each point x of I. (7.2)

This proves that f(x,) is a maximum of f on I. As for what happens if f is
convex on I, we leave this case to the reader (Prob. 7.4).

ProB. 7.4. Complete the proof of the last theorem by proving part (b).

ProB. 7.5. Let f be differentiable in the interior of an interval / and
f'(x¢) = 0 for some interior point x, of I. Prove: (a) If f is strictly concave
on I, then f(x,) is a strict maximum of f on I and (b) if f is strictly convex
on I, then f(x,) is a strict minimum of f on 1.

Pros. 7.6. Let f be continuous on an interval /, twice differentiable in the
interior of I and f'(x,) =0 for some interior point x, € I. Prove: (a) if
f"(x) <0 for x in the interior of I, then f(x,) is a maximum of f on / and
(b) if f"(x) > 0, for x in the interior of /, then f is a minimum of f on /.
Also prove that the strict inequalities in (a) and (b) imply that f(x,) is a
strict maximum in case (a) and a strict minimum in case (b).

Remark 7.3. The second derivative test described in the last problem is one
for absolute extrema. This is why the condition f”(x) < 0 (or f”(x) > 0) is
assumed for all x in the interior of the interval I. For local extrema it
suffices to prescribe f”(x,) < 0 (or f”(x,) > 0) at an interior point x, of f
where f(xy) = 0. This is seen in the next theorem.

Theorem 7.4. If f is continuous on an interval 1, differentiable in the interior of
I, and f'(xy) = 0 for some interior point x of I, then f"(x,) < 0 implies that
f(xo) is a local maximum of f, while f"(xy) > 0 implies that f(x,) is a local
minimum of f.

PRrOOF.* Since f'(x,) = 0, we have, by the definition of f”(x,),
’ '’ — '’ x
S _ o S~ f (%) ~ (o). (13)

lim li
X—-)Xo X — xO X—)Xo X — xO

*J. Olmsted, Advanced Calculus, Appleton-Century-Crofts, New York, 1961.
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Assume that f”(x,) < 0. This and (7.3) imply that a deleted 8-neighborhood
N*(xy,8) of x, exists such that

f(x)

X = Xq
From this we obtain: f'(x) > 0 for xy — § < x < x4, x € I and f'(x) < 0 for
xg<x<xy+8, x€I. The set J= N(x,,6)N I is an interval. Apply
Theorem 7.1 to J and obtain that f(x,) is a maximum of f on J and, hence,

that f(x,) is a local maximum of f. The case f”(x,) >0 can be treated
analogously.

<0 for x €& N*(x5,6)N I (7.4)

Remark 7.4. If f'(xo) = 0= f"(x,) at some interior point x, of interval I,
then f(x,) may or may not be an extremum of f. The function f, where
f(x) = x* for x €R, is such that f(0)=0= f"(0), and here f(0) is neither a
maximum nor a minimum of f. On the other hand, the function g, Where
g(x) = x* for x €R also has the property g0)=0=g"(0) but g(0) is a
minimum of f. The next theorem is an extension of Theorem 7.4 and can be
used, under the appropriate conditions, when f'(xo) = 0 = f”(x).

Theorem 7.5 (Extension of Theorem 7.4). Let n be a positive integer and f a
function such that f, f', . . ., f are continuous on an interval I. Let x, be an
interior point of I. Let f'(xq) = f"(xg) = - - = f("(xo) =0, but f"*(x,)
# 0. If n is odd (so that n + 1 is even), then f(x,) is a local maximum or local
minimum of f according to whether f"*"(xg) <0 or f"*V(x,) > 0. If n is
even (so that n + 1 is odd), then f(x,) is neither a local maximum nor a local
minimum of f.

PROOF.* Suppose that x € I, x # x,. There exists a ¢ between x and x,
such that

F(x) = f(xo) + f/(X0)(x — xg) + - -

(n—1) X | (Mo .
+ f(n_(l)!)(x—xo)n_ + f(n;!)(x—XO)
(n)
= f(xo) + f(n—)('c) (x = x0)". (7.5)

Assume that f"*P(x,) < 0. Since f("(x,) = 0, we have

) %) = f(x)
lim = lim
XDXg X — Xg XOXo X = Xq

= f"*(x0) <0.  (7.6)

Hence, there exists a deleted §-neighborhood N*(x,,8) of x, such that

S7(x)

x_xO

<0 for x € N*(xy,8)N 1. (71.7)

*J. Olmsted, Advanced Calculus, Appleton-Century-Crofts, New York, 1961.
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This implies that f(*(x) > 0 for x, — § < x < xq, x € I and f”(x) < 0 for
xg< x < x5+ 8, x € 1. In the first case we have x, — 6§ < x < ¢ < x, and,
therefore, f("(c) > 0. In the second case we have x, < ¢ < x < x, + 8 and,
therefore, f’(c) > 0. Now suppose n is odd. In the first case, x — x, <0,
so that (x — xp)" <0, yielding f(c)(x — xo)"/n! < 0. Using (7.5), we
obtain f(x) < f(xq), if xo — 8 < x < x,. In the second case, we have x — x,
>0, (x — xo)" >0, so that once more, [ (c)(x — xp)"/n! < 0. Using (7.5)
we have f(x) < f(xy) if xo<x < xy+ 8. Thus, if n is odd, then f(x)
< f(xp) for x € N(xy,8) N I and, therefore, that f(x,) is a local maximum
of f. Next assume that n is even. Then, (x — xy)" > 0 for x # x,. We now
obtain, reasoning as above, that f” (¢)(x — x)"/n! > 0if x5 — 8§ < x < x,
so that f(x) > f(x,) by (7.5). On the other hand, if x, < x < xy + §, we now
have f(c)(x — x0)"/n!'< 0 and f(x) < f(x,). Thus, if n is odd, f(x,) is
neither a local maximum nor a local minimum of f.
The case f"* D (x,) > 0 can be treated analogously.

Pros. 7.7. Let a,, a,, a; be real numbers such that a;, < a, < a;. (a) Locate
the local maximum and minimum of f, where f(x) = (x — a,)(x — a,)(x —
a,). (b) Also locate the inflection point of its graph. How does the graph
look?

Pros. 7.8. Assume that a, < a,. Locate the local maximum and minimum
of fand g, where f(x) = (x — a,)(x — @))%, x ER, g(x) = (x — a,)*(x — a,),
x € R. Also locate the points of inflection of the graphs of f and g.

ProB. 7.9. Prove: If f(x)= x>+ ax + b for x €R, then the inequalities
27b% + 4a° ——E 0 determine the number and multiplicity of the real zeros of f.

State which inequality corresponds to which possibility for the zeros of f.

Pros. 7.10. Let x > 0, x # e. Prove: (a) Inx/x < 1/e, (b)* x® < e*.

8. The Gamma Function

We return to Example 5.2 and consider f, where
f(x) =In(1 + x), x> -1 8.1

We take x > 0. By (5.18), there exists a ¢ such that

1n(1+x)=x——i2—2-, (8-2)
2(1+c¢)

*J. T. Varner, Comparing a® and b° using elementary calculus, The Two-Year College
Mathematics Journal, 7(1976), p. 46.
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where 0 < ¢ < x. We have

2
x
——— = x — In(1 + x). 83
2(1 + c)2 ( ) 8)
Since ¢ > 0, it follows that
2(1+¢)® 2
This and (8.3) imply that
2
O<x~mﬂ+ﬂ<%— if x>0. (84)
Replace x in this inequality by x/k, where k is a positive integer. Then
2
x _ X)Xt
0<% mU+k)<2p’ x>0 and k€Z,. (85)
For each positive integer n, we take k € {1,2, ..., n} in (8.5) and sum. We
arrive at
> 1), x x)ox2 g L
o<k§lk%:1m1+xxx+2)”.@+n)<2kgly. (8.6)

We write for each n,

n

m=u+n@+§y~@+£} %=(2%%—mm.@ﬂ

h k=1

Now (8.6) can be written as follows:

2 a1
O<un<7k§] P . (88)

Since {(2) = 3%_,k 2 converges and has positive terms, (8.8) yields
X2
0<u,< 5 $(2), (8.9)

implying that (u,) is, for each x > 0, a bounded sequence. We now prove
that {(u,) is monotonically increasing for each x > 0. Note first that

—_ = l —_ = 1 —_ Pn+l
e InP,.,+InP, P In P
This implies that
- X x
Upiy = Uy =~ ln(l+ n+1)’ (8.10)

where x>0, n€Z, . Since In(l +z) <z for z >0, this implies that
4, — u, >0 and, hence, that (u,) is strictly monotonically increasing for
x > 0. We already saw that {u,> is bounded (see (8.9)). We conclude: If
x > 0, then {u,) converges.
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We return to the second equality in (8.7) and subtract and add xInn
=Inn~ to obtain

u, = le—lnP,,= zl—lnnx+lnn"—1nP,,
=k =k
or
LI L2
S Z Inn + xl 7 (8.11)
We recall that (y,>, where v, =3%_,k~' — Inn for each n, converges to

the Euler-Mascheronic constant y (see formula VII(7.17)). Thus, (8.11)

becomes
R P (8.12)
x " x P’

n

and we conclude that from this that In(n*/P,) converges as n— + co for
x > 0. This implies that the sequence { g,(x)), where

&(¥) = 15 (8.13)

converges for x > 0. Next, we note that
-nt _ * - nn!
&)= 3 S T+ /R xx v D) xrmy &1

for each positive integer n and x & {0, —1, =2, ..., — n}. We proved:

Lemma 8.1. If x > 0, then the sequence < g,(x)), where g,(x) is defined in
(8.14), converges.

Remark 8.1. In Theorem 8.1 below we shall prove that { g,(x))> converges
for all x other than the nonpositive integers, i.e., for x ER — (Z_ U {0}).

Def. 8.1. We define I'(x) as

T(x)= lim_g,(x)= lim_ x(xH)"x”' i 619

for all x for which the limit on the right exists and is finite. The function T
defined in this manner is called the Gamma Function. Thus far we know
that it is well-defined for x > 0.

Pros. 8.1. Prove:
F(ky=(k-1), (8.16)

where k is a positive integer.

Theorem 8.1. (@) The Gamma Function is positive and log-convex on the
interval (0; + 00). (b) The domain of the Gamma Function is Q(T) =
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(Z_U{0}). (c) We have for the Gamma Function
I(x+1)=xT(x) for xe&NT). (8.17)

ProoFr. We first prove I'(x) > 0 for x > 0. Turn to the discussion preceding
Lemma 8.1 at the beginning of this section. By (8.12) and (8.13)

nx = 1 u, — Xy,
&.(x xP xe , x> 0.

Writing u = lim,,_, , ,u,, we obtain from this and (8.15) that
I(x)==e“""7>0 for x>0.

Next we prove that T is log-convex on (0; +00). We have from (8.14)
and Prob. VIIL.7.16 that each g,, where

_ n’*n!
8(x) = x(x+1)---(x+n)’
is log-convex on (0; + o0). By Prob. VIIL.7.2, since
I'(x)= n_l)irllw 8.(x) for x>0,

and I'(x) > 0 for x > 0, we see that I is log-convex on (0; + c0).

We prove (c). From the definition of T in (8.15) we see that T'(x) is not
defined if x €Z_ U {0} and, hence, that D) CR —(Z_ U{0}). Take
x € 9P(T), so that x & {0, —1, =2, ...} =7Z_U{0}. But

n**in! _ n*n! n
(x+D)(x+2) - (x+n+1) _xx(x+l)~-~(x+n) (x+n+1)°

(8.18)

Taking limits as n—> + 0o, we see that the right-hand side converges to
xT'(x). It follows from (8.18), since the limit of its left-hand side is T'(x + 1),
that (8.17) holds. This proves (c). It also follows from this that x € &(T)
implies that x + 1 € ().

Now take x € D(I") — {1}, so that x € Z_ U {0, 1} and the limit in (8.15)
exists and is finite. Since

n*"'n! __1 n*n! x+n
(x=—Dx(x+1)---(x+n—1) x—1 x(x+1)---(x+n) n
(8.19)

for such x and the right-hand side here converges to the limit I'(x)/(x — 1)
as n—> + oo, the left-hand side converges to I'(x)/(x — 1). But the left-hand
side, when it converges, is equal to I'(x — 1). This proves that

I'(x-1)= ﬁ if xea) - {1} (8.20)

and that x € (T) — {1} 1mp11es that x — 1 € ().
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We prove that R — {Z_ U {0}} C 9(T). We already know that (0; + c0)
C () (Lemma 8.1). We prove: If n is a positive integer, then I'(x) is
defined for x € (—n; —n + 1), and

I(x+n)
r(x)=x(x+l)---(x+n—l)'

(8.21)

We use induction on n. Take n=1 and x €(—1;0)=(—1; -1+ 1) so
that —1 <x <0 and 0<x+ 1< 1. By what was proved in the last
paragraph, we have x = x + 1 — 1 € )(T) and
F(x+1)

[(x)= p

(8.22)

Thus, our statement holds for n = 1. Assume that our statement holds for
some positive integer n. Take —n—1<x< —n, so that —n<x+ 1<
— n+ 1 and, hence, that x + 1 € (T’) and

F(x+1+n) Fx+n+1)
R e R e R I e
(8.23)

By what was proved in the last paragraph, we have x =x + 1 — 1€ 9()

and

F(x+1)

[(x)= —

and, therefore, by (8.23) that
F(x+n+1)

I1(x)=x(x+1)---(x+n)

for x€(—n-1;—n).

By induction our statement holds for all positive integers n. Since (— n;
—n+ 1) C9D(T) for each positive integer n and (0; + o0) C D(T), we have
R—{Z_uU{0}} D). But D) CR - {Z_U{0}} holds. Hence, D(T)
=R — {Z_ U{0}}. This completes the proof.

ProB. 8.2. Prove that (8.21) holds for x € 9(T) for each positive integer n.
Corollary 1 (of Theorem 8.1). The Gamma Function is continuous.

Proor. The Gamma Function is log-convex on (0; + ) and, hence,
convex there (Prob. VIIL.7.4). A function which is convex on an interval /
is continuous in the interior of I (Corollary of Theorem VIII.2.1). Hence, T’
is continuous for x > 0.

If —n<x< —n+ 1, where n is a positive integer, then 0 < x + n < 1.
The function A, where A(x) = I'(x + n), is continuous for —n < x < —n +
1. By (8.21), T' is continuous for —n<x < —n+ 1. Thus, T is also
continuous on (—n; —n + 1). Hence, I is continuous on R — (Z_ U {0}),
its domain, and is, therefore, continuous.
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Corollary 2 (of Theorem 9.1). If n is a positive integer, then I'(x) is positive or
negative for x € (—n; —n + 1) according to whether n is even or odd.

PROOF. Assume x €(—n; —n+ 1) so that 0 < x+ n <1 and I'(x + n)
> 0. In the product x(x + 1) - - - (x + n — 1) there are n negative factors,
so this product is >0 or <0 according to whether n is even or odd. By
(8.21) it follows that I'(x) is positive or negative according to whether n is
even or odd.

Theorem 8.2. If x € D(T') and n is a positive integer, then

T(x + n)~n*T(n) as n—>+o (8.24)

ProOF. By (8.21) and Prob. 8.2, we have
I'(x) 1

I(x + n) =x(x+1)---(x+n)(x+n)'
Hence,
T(x)n"I(n) _ T(x)n"(n— D! n*n! x+n
I(x + n) I'(x+ n) x(x+1)---(x+n) n

Here the right-hand side approaches I'(x) as n = + oo, yielding
T'(x)n*T(n
A, —(r—(H =T
This implies that
n*T'(n)
n>Foo T'(x + n) -
from which (8.24) follows.

Corollary. We have
X_l}er I(x)= +oo0. (8.25)

PrOOF. By the theorem, we know that
i n*T'(n)
n»lr-lpoo F(x + n)

Take y > 0. There exists a positive integer N, such that if n > N,, then
n’T(n
L GRS
2 T(y+n) 2

which implies that
in’T(n)<T(n+y) for n>N,. (8.26)
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Let N =max{N,,2} sothat N > N, and N > 2, and
IN’T(N) < T(N + ). (8.27)
Taking x > N, we have x — N > 0. By (8.26) this implies that
IN“NGENTMI(N)<T(N + x — N)=T(x),
i.e., that
INN<T(x) for x>N>2. (8.28)

Since
lim N " "=+ for N >1,

x—>+ 0

it follows from this and (8.28) that lim ,, I'(x)= + o0, proving the
theorem.

For a sketch of the Gamma Function see Fig. X.11.1.

ProB. 8.3. Prove: () T(0+ )= 400, ®) TO0—-)= —00, () T((=n+1)—)
= -0 =I((—n)+) if n is an odd positive integer, (d) I'((—=n+1)—)
= + 00 =TI'((—n) +) if n is an even positive integer.

9. Log-Convexity and the Functional Equation for T

Equation (8.17) is called the functional equation for the Gamma Function.
This equation does not determine a unique function. For if f satisfies

S+ 1) = xf(x), (0.1)
then g, where g(x) = f(x)sin(27x) also satisfies it. In fact,
g(x + 1) = f(x + ysin[ 27 (x + 1) | = xf(x)sin(2mx + 2)
= xf(x)sin(27x) = xg(x).

However, a unique solution of (9.1) is obtained when further conditions are
imposed on the solution of (9.1).

Theorem 9.1.* If f is positive for x > 0, log-convex, f(1) = 1, and also satisfies
(9.1), then f(x) = T'(x) for x > 0.

Proor. Using (9.1) and induction on n, it is easy to show that if n is a
positive integer, then
f(ny=(-1}, (9.2a)

f(x+n)

f(x)=x(x+1)--~(x+n—l) for x>0. (9-2b)

This can be done for f in the same way it was done earlier for I'.

*E. Artin, The Gamma Function, Holt, Rinehart, Winston, New York, 1964.
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We now take x such that 0 < x < 1 and n > 2, so that
—l+n<n<x+n<n+1l. (9-3)

Consider the function g, defined as

g(x) = (G () R (9.4)

X —hn

This function is monotonically increasing for fixed n > 2 since f is log-
convex and therefore convex on (0; + o0). This and (9.3) imply that

In f(n— 1) —In f(n) - In f(x + n) — In f(n)

-1 x
glnf(n+lz—lnf(n).

By (9.2a), this implies that
x(In(n — ) =In(n - 2)!') <In f(x + n) — In(n — 1)!
< x(Inn!=In(n — 1)!).
Using properties of the natural logarithm, this implies that
xIln(n—1)+1In(n—1)!<In f(x + n) < xlnn + In(n — 1)!
This is equivalent to

In[(n=1)"(n = D] <In f(x + n) <In[n*(n = 1)!] (9.5)

or
(n—1)"(n=1)!< f(x+n)<n*(n—1) (9.6)
Using (9.2b), this yields
(n—1) (n—=1)! n*(n—1)!

x(x+1)---(x+n-1) \f(x)\x(x+1)...(x+n_1)’ ®.7)

where n > 2,0 < x < 1. Here the inequality on the left holds for all integers
n such that n — 1 > 1, so it yields, after replacing n — 1 by n,

n’n! <
x(x+1)"'(x+n)<f(x) for n>1, 0<x<l. (98

This, using the inequality on the right in (9.7), implies that

n*n! n*n! x +
x(x+])---(x+n)<f(x)<x(x+1).’.'.(x+n) nn 99)

for n > 2, 0 < x < 1. Take limits as n > + c0. Then

*n!

: n’n!
n—lylloo x(x+1)---(x+n)

I(x) =

_ n*n! xX+n
nl}Too(x(x+l)~--(x+n) n )
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From this and (9.9) we conclude using the Sandwich Theorem that
I(x) = f(x) for 0<x<1L (9.10)

We now prove this equality is valid for all x > 0. To establish this, we
note, by the induction on n, we can prove (do this) that

f(x+n)=T(x+n) for 0<x<1, n€el,. (9.11)

We already observed that f and I have the same values for the positive
integers. Take x > 1, where x is not an integer. Let n =[x]. We have
n < x < n+ 1, which implies that 0 < x —n < 1. Let y = x — n so that
0 <y < 1. By (9.11), we have

fx)=f(x—n+n)=f(y+n)=T(y+n)=I(x)

for x > 1 and x not an integer. In sum, f(x)=T(x) for all x >0, as
claimed.

ProB. 9.1. Prove: If ¢ > 0, then the function f, defined as f(x) = I'(¢x) for
x >0, is log-convex. Also prove that g, where g(x) =I'(x + 1) for x > 0, is
log-convex.

ProB. 9.2. Prove: If f is defined on S =R — (Z_ U {0}) and log-convex on
(0; + 00), where f(1) =1, and f(x + 1) = xf(x) for each x € S, then f(x)
=TI'(x) for all x € §.

PrOB. 9.3.* Let p be a positive integer. Write

w3 )5) (5

o) {24

where x > 0. Prove: The function H, where

H(x)= hfzx) ,
P

where x > 0, is identical with the Gamma Function. Thus, prove that

pxr(}[;)r(%_l_)...r(ﬁ_%___l)=apr(x)

if p is a positive integer and x >0 (Hint: prove that H satisfies the
hypothesis of Theorem 9.1).

ProB. 9.4. If k and p are integers such that 1 < k < p, we have, by

*E. Artin, The Gamma Function, Holt, Rinehart, Winston, New York, 1964.
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definition of T(k/p),

kY= lim n*/rp!
r( ?) =, (k/p)(k/p+1)---(k/p+n)

- i nk/”n!p
T noTew k(k+p) - - - (k + np)

for ke {1,..., p}. Obtain:

n+1

. =pr(l) N r(£)=p i n(p+l)/2(n!)Ppnp+P
r )2 P n=+oo (np + p)!

ProB. 9.5. Note that
lim (1+L)(1+£).._(1+£)=1
n—+ oo np np np

(np +p)!
A TN Y
nete (np)(np)
Multiply a, by 1, where 1 is in the form of the last limit, and obtain
a=a - -1l=a M
P TR (np)l(np)

or

Use this and the results cited in Prob. 9.4 to conclude that

n PO 2(plyprete (np + p)!
=p i - lim 2P
ST T )t e (np)l (mpy
Prove:
(nty'p™
a,=p lim

n—+ o0 (np)!n(P‘l)/z :

ProB. 9.6. Prove: (a) If x > 0, then
27'T(x/2)T((x + 1)/2)
I(x)= T(1/2)

(See Prob. 9.3.)

Pros. 9.7.* Prove:

x—1

. x(x+1)(x+2)---(x+2n-1)
n—1>1r+r-loo 1-3:5---2n—=-1)2x)2x+2) -+ - (2x +2n - 2) =2

*Bromwich, Infinite Series, 2nd ed., MacMillan, New York, 1942, p. 115.



CHAPTER X
The Complex Numbers. Trigonometric

Sums. Infinite Products

1. Introduction

In order to solve the equation

ax?+ bx + ¢ =0, (1.1)
where a, b, ¢ are real numbers and a # 0, for x € R, we use the identity
2 _ b \?, 4ac—b?
ax“+ bx + ¢ a[(x + 2a) + 4 }, (1.2)

obtained by “completing the square.” A real number x satisfying (1.1) must
satisfy

b\ _ b®—4dac
(x + 2a) = (1.3)
This implies that
b* — dac > 0. (1.4)

When b? — 4ac <0, no x € R exists satisfying (1.1). To obtain a system of
numbers in which (1.1) can be solved we extend the system R to the
complex number system. In this number system there will be a z such that
2= —p, where p > 0.

2. The Complex Number System

Def. 2.1. A complex number is an ordered pair (a, 8) of real numbers a and
B. The set of complex numbers will be denoted by C.
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YA

Figure 2.1

Complex numbers may be visualized by taking a plane p together with a
rectangular coordinate system in it. In this way there is assigned to each
point P in p an ordered pair (a, B) of real numbers a« and B called the
coordinates of P and conversely each ordered pair (a, 8) of real numbers
determines a unique point P having a and B as coordinates (see Fig. 2.1).
We shall often speak of the point a = (a, ) rather than use the more
precise “the point P represented by a = (a, B8).” It is also convenient to
view a = (a, B) as the arrow or vector from the origin 0 = (0,0) to a =
(a, B).

By properties of ordered pairs we have: If a, = (a,, 8,) and a, = (a5, ;)
are complex numbers, then

a, = a, ifandonlyif a;=a, and B,=56,. 2.1
PrOB. 2.1. Prove: (a, B) # (0,0) if and only if a®> + 82 > 0.
We define addition of complex numbers.

Def. 2.2. If a, = (a,, B;) and a, = (a,, B,) are complex numbers, we define
the sum a, + a, as

a +a,=(a, B)+(ay, By)=(a;+ ay, B+ B,) (2.2)
(see Fig. 2.1").

yA

B + B2

\j

oy

a1+a2

Figure 2.1’
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Figure 2.2

For example, let a;=(—1,3) and a,= (-2, —4), then a,+ a,=
(-L3)+(=2,-4)=(-3,-1).

Since for any complex number z = (§,7), we have z + (0,0) = (§,7) +
(0,0) = (£ + 0, + 0) = (§,m) = z, the complex number (0,0) is the additive
identity in C.

Def. 2.3. The negative or additive inverse of z = (§,m) is defined as —z =
—(&,1m) = (—¢& —n) (see Fig. 2.2).

For example, —(—2,3) = (2, —3). In particular,
—(L,0)=(-1,0) and —(0,0)=(—0,-0)=(0,0). (2.3)
ProB. 2.2. Prove: If z € C, then z + (—z) = (0, 0).

Pros. 2.3. Prove: If a,, a,, and a, are complex numbers, then

(1) (a,+a))+a;=a,+(a,+ a;) and
2) a,+a,=a,+a,.

ProB. 2.4. Prove: If z € C, then —(—z) =z.

Def. 24. If a, and a, are complex numbers, then define a, — a, by means
of the equality a, — a, = a; + (—a,).

ProB. 2.5. Prove: If a, = (a,, B)) and a, = (a5, B,), then a, — a, = (a; —

ay, B — By)

PRrOB. 2.6. Prove: If a, and a, are complex numbers, then (1) a, + (a, — a,)
=a,and (2) —(a, — a,) = a, — a,.
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=y

(b)

In Figs. 2.3(a) and 2.3(b) we give graphic representation of a, + a, and
a, — a,, respectively. a, — a, is the z such that a, + z = q,.
Next, we define the product a,a, of complex numbers a, and a,.

Def. 2.5. If a, = («,, B8,) and a, = (a,, B,) are complex numbers, then we

define their product a,a, as

a,a, = (a;, Bi)(ay, By) = (j0, = B By By + &, B)).

(2.4)

For example, let a; = (2,3) and a, = (4,5). Using the definition of a,a,

we see that

aa,=(2,3)(4,5)=(2-4-3-52-5+3-4)=(-17,22).

We see easily that (1,0) is the multiplicative identity in C. In fact, if

z =(&mn) € C, then

z(1,0) = (£,n)(1,0) =¢-1-7-0£-0+7- 1)= (g,'r;)= z.

(2.5)

Pros. 2.7. Prove: If a,, a, and a; are complex numbers, then

(1) (aya))a; = a\(aya,),
(2) aya, = aya,,
() a(ay + a3) = a,a, + aja;.

Pros. 2.8. Prove: If one of the complex numbers a or b is 0, then ab = 0.

ProB. 2.9. Prove: If g, b, and ¢ are complex numbers, then

(1) a(=b) = —(ab),
(2) (=a)(—b) = ab,
3) a(b—c¢)=ab — ac.

Theorem 2.1. If a €C, a+#(0,0), then there exists a z €C such that

az =(1,0).
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PrROOF. Let a = (a, B). Since (a, B)=a+(0,0), we have a’*+ B8>>0

(Prob. 2.1). Take z as
-8
Z=(a2:BZ,a2+BZ). (2.6)

We have
-8B
az=(a"8)(a2z,82’a2+,82)
- o _ -B -B «
(aozz+,82 'Ba2+,82’aa2+,32+ a2+,82)
_ 0z2+,82 _
_(a2+'82,0)—(1,0),
as claimed.

Def. 2.6. If a = (a, B) # (0,0), then the z defined as in (2.6) is written as
a~ ' so that

aa~'=(1,0)=a"'a. (2.7

a~'is called the reciprocal or multiplicative inverse of a.

Pros. 2.10. Prove: If a, b, and ¢ are complex numbers, a # 0, then ab = ac
implies b = c.

Def. 2.7. If a and b are complex numbers, a # 0, then we define

é = =1
2 ba~". (2-8)
Clearly,
(1,0) o
ek (2.9)

Pros. 2.11. Prove: If a and b are complex numbers, a # 0, then a(b/a)
=b.

ProB. 2.12. Prove: If a and b are complex numbers, where a # (0, 0), then
(1,9)
5
We next examine the subset Cy of C where
Cr={(,0)| « & R}. (2.10)

=a

Sl
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Pros. 2.12". Prove: If (a,0) € Cg and ( 8,0) € Cg, then

(@) (a,0) +(B,0) = (a + B,0),

(b) (,0)(B,0) = (aB,0),

(©) (¢,0) = (B,0) = (a = B,0),

(d) (2,0)/(B,0) = (a/B,0) if B 0.

We define the “less than” relation in Cy as follows:
(a,0) <(B,0) if and only if a < B. (2.11)
When (a,0) < (8,0), we write (8,0) > (a,0).

Remark 2.1. The subset Cy of C defined in (2.10), under the operations of
addition and multiplication in C and the ordering relation just defined, is
easily seen to be a complete ordered field.

We next define the mapping f: R— Cy by means of
f(a) =(a,0) foreach a €R. (2.12)

One sees readily that this f is a one-to-one correspondence between R and
Cg such that

(M) fla+ B) = fla) + f(B),

Q) f(aB) = f(a)f(B),

) fla=B)= fla) = f(B),

@) fla/B)= f(e)/f(B) if B#0,

and that
a<p if and only if f(a) < f( B).

It follows that the mapping f enables us to obtain for each theorem in R a
duplicate theorem in Cy. Cg is, thus, seen to be a copy of R. Each («,0) in
Cg can be viewed as simply another notation for a in R. f is called an
isomorphism between R and Cg. R and C are called isomorphic ordered
fields.

Agreement 1. If a € R, then we write a = («,0). We discard the system R of
real numbers, replace it with the system Cg, and reserve the term “real
number” for an element of Cz. We write R = Ci. As examples we have

1=(1,0), 0=(0,0), —1=(-10). (2.13)
Note, that if A €R and (a, B) € C, then
A(a, B) = (Aa,AB). (2.14)

This follows from

Aa, B)=A,0)(a, B) = (Aa — 0B,AB + 0a) = (Aa,AB).
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ProB. 2.13. Prove: If A and p are elements of R (= Cg) and z € C, w € C,
then

(@) Aw)z = A(p2),

(b) A(z + w) = Az + Aw,
©) A+ pww=2Aw+ uw,
d) 1z=1=z.

Finally, we write i = (0, 1). Then
i*=(0,1)(0,1)=(0-0—-1-1,0-1+1-0)=(—-1,0)= —1
so that
i’= -1 (2.15)

We also have

(a, By=a+ Bi for each (a, B)in C. (2.16)
This follows from

(a0, B)=(a,0)+ (0, B) = a(1,0) + B(0,1) = al + Bi=a + Bi.

Agreement 2. We agree to write each («, 8) in C as a + Si. In this notation
C={a+ Bila ERand B ER}. (2.17)

Remark 2.2. The procedure just described is called an embedding of the real
numbers in the system C of complex numbers. The complex number
a = a + Bi is called imaginary if B # 0 and real if B =0. If a =0, then a is
called pure imaginary. Also, « is called the real part of a and B its imaginary
part. If a plane p is equipped with a rectangular coordinate system and the
ordered pair (a, B) associated with a point P is written as a + Bi, then the
latter is called the complex coordinate of P. The x-axis is then called the real
axis and y-axis the imaginary axis (Fig. 2.4).

YA

Big-------= 1

Figure 2.4



434 X. The Complex Numbers

Pros. 2.14. Prove: If «;,a,, B,, B8, are real numbers, then

(D) (e + Bi) = (ay + Byi) = (a; = ay) + (B, £ By)i,
(2) (o + Bii)ay + Byi) = (12, — By B) + (& B, + a, By,
3) a, + Byi = a, + B,i if and only if a; = a, and B, = B,.

The product (a;, + B,i)(a, + B,i) can be obtained by “multiplying out”
and using the relation i* = — 1. Thus,

(al + ,BIi)(a2 + ,32!') = (al + B]i)az + (a, + ,Bli) Bzi
=+ o, Bii+ a Bhi — BB,
=aa,— BB+ (alBZ + aZBl)i'

Def. 2.8. If a = a + Bi € C, we define the modulus |a| of a as follows:

la| = |a + Bi| = o> + B . (2.18)

For example, |3 + 4i| =v3? + 4> = 5. Note that

lif =10+ 1i| =0+ 12 = 1. (2.19)

Remark 23. If a = a, where o is real, then |a| =Va? + 02 =ya? = |a.
Thus, the modulus of a real number agrees with its absolute value. The
modulus of a complex number is, therefore, an extension of the notion of
the absolute value of a real number to the complex numbers. We also refer
to the modulus of a complex number as its absolute value.

Def. 2.9. We define the conjugate a of a = o + Bi as
a=a+ fi=a-— Bi (2.20)

For example, 2 + 3/ = 2 — 3i. In particular, we have
i=—i. (2:21)
We prove that
aa=|a> for a€C. (2.22)
Assume that a = a + Bi. Then
ad = (a + Bi)(a — Biy=a> — (—B?) +0i= o>+ B> =|a + Bi|> = |a|*.
It follows that
la|=Vaa  for a€C. (2:23)

Pros. 2.15. Prove: If a € C, then (1) |a| > 0 and (2) |a| = 0 if and only if
a = 0. Thus, prove: |a| > 0 if and only if a # 0.
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ProB. 2.16. Prove: If a € C and b € C, then
() a+b=a+b,

() ab=ab,

(3) (a/b)y=a/bif b+#0.

Pros. 2.17. Prove: If a = a + Bi, then

_a+a _a—a
a= " and B TR

ProB. 2.18. Prove: (1) a is real if and only if @ =a and (2) @a = —a if and
only if a is pure imaginary.

Remark 2.4. The reciprocal of a #0 is a number z such that az = 1.
Multiplying both sides by a, we have aaz = a. Since aa > 0, we obtain

a_]=z=i

=_a

a@ " Jaf

This agrees with (2.5). For, writing a = (a, 8) # 0, we have

a—|=_(7____ 0‘_.3"= o _ B i= o -8B )
|a|2 a2+,82 a2+,82 a2+B2 a2+,82’a2+,82

As an example, then

1_i_=i__;
i T3 0 i (2.24)
Again, if a # 0, then
b 1 a ba
—_—— b— = b —_— = —, 2.25
a="a ™ ap T aP (22)

The conjugate @ of a is symmetric to a with respect to the x-axis
(Fig. 2.5).

y A

Figure 2.5



436 X. The Complex Numbers

PRrOB. 2.19. Prove: (a + @)’ > 0 and (a — @)* < 0 (see Prob. 2.17).

If « and B are real and a = a + Bi, then we write
a=Rea and B=Ima (2.26)

for the real and imaginary parts of a, respectively. We have (Prob. 2.17)

Rea=234 and Ima= aa. (2.27)

Pros. 2.20. Prove: If @, and a, are complex numbers, then a,a, + @,a, is
real and a,a, — a,a, is pure imaginary.
Lemma 2.1. If a, and a, are complex numbers, then

|a,a, + a,a,| < 2|a||a,|. (2.28)

Equality holds if and only if a\a, — a,a, = 0.

PROOF. Observe that |a,|’|a,|* = a,3,a,d, = (a,a,)(@,a,). Hence,
-2 2
(@@, + @,a;) = 4a\f’|a,f’ = (0,3, — a,a,)". (2:29)

By Prob. 2.20, a,a,+ aa, is real and a,a,— a,a, is pure imaginary.
Therefore (a,a, — @,a,)* < 0 and

(a,@, + @,a,)" < 4]a,|*|ay) (2:30)

This implies (2.28).
Examination of (2.29) shows that its left-hand side is equal to O if and
only if a,a, — a,a, = 0. It follows that

(a,@, + @ya,)*=4|a|||a))*  ifandonlyif a,a,— a,a,=0.
Both sides are real and nonnegative. Taking square roots, we conclude that
la,a, + a,a,| = 2|a,||a,| if and only if a,a, — a,a,=0.

This completes the proof.

Theorem 2.2. If a, and a, are complex numbers, then

(1) | — a)| =|a,| and |a)| = |a,|,

() la,a,| = lal|a,,

3) lail = la,,

@) if a, # 0, then |a,/a,| = |a)|/la,,
(5) la, + a] <la)| + |ay|.

Proor. We ask the reader to prove parts (1) through (4), (Prob. 2.21) and
we prove only part (5) here. We have

la, + @) = (a, + a,)(@, + @) = |a,* + |a,)* + a,a, + a,a, .
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yA as

a;

a,

Figure 2.6
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