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Preface 

There are a great deal of books on introductory analysis in print today, 
many written by mathematicians of the first rank. The publication of 
another such book therefore warrants a defense. I have taught analysis for 
many years and have used a variety of texts during this time. These books 
were of excellent quality mathematically but did not satisfy the needs of the 
students I was teaching. They were written for mathematicians but not for 
those who were first aspiring to attain that status. The desire to fill this gap 
gave rise to the writing of this book. 

This book is intended to serve as a text for an introductory course in 
analysis. Its readers will most likely be mathematics, science, or engineering 
majors undertaking the last quarter of their undergraduate education. The 
aim of a first course in analysis is to provide the student with a sound 
foundation for analysis, to familiarize him with the kind of careful thinking 
used in advanced mathematics, and to provide him with tools for further 
work in it. The typical student we are dealing with has completed a 
three-semester calculus course and possibly an introductory course in 
differential equations. He may even have been exposed to a semester or two 
of modern algebra. All this time his training has most likely been intuitive 
with heuristics taking the place of proof. This may have been appropriate 
for that stage of his development. However, once he enters the analysis 
course he is subject to an abrupt change in the point of view and finds that 
much more is demanded of him in the way of rigorous and sound 
deductive thinking. In writing the book we have this student in mind. It is 
intended to ease him into his next, more mature stage of mathematical 
development. 

Throughout the text we adhere to the spirit of careful reasoning and rigor 
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that the course demands. We deal with the problem of student adjustment 
to the stricter standards of rigor demanded by slowing down the pace at 
which topics are covered and by providing much more detail in the proofs 
than is customary in most texts. Secondly, although the book contains its 
share of abstract and general results, it concentrates on the specific and 
concrete by applying these theorems to gain information about some of the 
important functions of analysis. Students are often presented and even have 
proved for them theorems of great theoretical significance without being 
given the opportunity of seeing them "in action" and applied in a non­
trivial way. In our opinion, good pedagogy in mathematics should give 
substance to abstract and general results by demonstrating their power. 

This book is concerned with real-valued functions of one real variable. 
There is a chapter on complex numbers, but these playa secondary role in 
the development of the material, since they are used mainly as computa­
tional aids to obtain results about trigonometric sums. 

For pedagogical reasons we avoid "slick" proofs and sacrifice brevity for 
straightforwardness. 

The material is developed deductively from axioms for the real numbers. 
The book is self-contained except for some theorems in finite sets (stated 
without proof in Chapter II) and the last theorem in Chapter XIV. In the 
main, any geometry that is included is there for purposes of visualization 
and illustration and is not part of the development. Very little is required 
from the reader in the way of background. However, we hope that he has 
the desire and ability to follow a deductive argument and is not afraid of 
elementary algebraic manipulation. In short, we would like the reader to 
possess some "mathematical maturity." The book's aim is to obtain all its 
results as logical consequences of the fifteen axioms for the real numbers 
listed in Chapter I. 

The material is presented sequentially in "theorem-proof-theorem" fash­
ion and is interspersed with definitions, examples, remarks, and problems. 
Even if the reader does not solve all the problems, we expect him to read 
each one and to understand the result contained in it. In many cases the 
results cited in the problems are used as proofs of later theorems and 
constitute part of the development. When the reader is asked, in a problem, 
to prove a result which is used later, this usually involves paralleling work 
already done in the text. 

Chapters are denoted by Roman numerals and are separated into sec­
tions. Results are referred to by labeling them with the chapter, section, and 
the order in which they appear in the section. For example, Theorem X.6.2 
refers to the second theorem of section 2 in Chapter X. When referring to a 
result in the same chapter, the Roman numeral indicating the chapter is 
omitted. Thus, in Chapter X, Theorem X.6.2 is referred to as Theorem 6.2. 

We also mention a notational matter. The open interval with left end­
point a and right endpoint b is written in the book as (a; b) using a 
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semi-colon between a and b, rather than as (a, b). The latter symbol is 
reserved for the ordered pair consisting of a and b and we wish to avoid 
confusion. 

lowe a special debt of gratitude to my friend and former colleague 
Professor Abe Shenitzer of York University in Ontario, Canada, for pa­
tiently reading through the manuscript and editing it for readability. 

My son Joseph also deserves special thanks for reading most of the 
material, pointing out errors where he saw them, and making some valuable 
suggestions. 

Thanks are due to Professors Eugene Levine and Ida Sussman, col­
leagues of mine at Adelphi University, and Professor Gerson Sparer of 
Pratt Institute, for reading different versions of the manuscript. 

Ms. Maie Croner typed almost all of the manuscript. Her skill and 
accuracy made the task of readying it for publication almost easy. 

I am grateful to the staff at Springer-Verlag for their conscientious and 
careful production of the book. 

To my wife Sylvia I give thanks for her patience through all the years the 
book was in preparatIon. lr:'~1M 

Adelphi University 
Garden City, L. I., N. Y. 
November. 1982 

E. F. 



CHAPTER I 

Preliminaries 

1. Sets 

We think of a set as a collection of objects viewed as a single entity. This 
description should not be regarded as a definition of a set since in it "set" is 
given in terms of "collection" and the latter is, in turn, in need of 
definition. Let us rather consider the opening sentence merely as a guide 
for our intuition about sets. 

The objects a set consists of are called its members or its elements. When 
S is a set and x is one of its members we write xES, and read this as 
"x belongs to S" or as "x is a member of S" or as "x is an element of S." 
When xES is false, we write x t£ S. 

To define a set whose members can all be exhibited we list the members 
and then put braces around the list. For example, 

M = {Peano, Dedekind, Cantor, Weierstrass} 

is a set of mathematicians. We have Cantor E M, but Dickens t£ M. 
When a set theory is applied to a particular discipline in mathematics, 

the elements of a set come from some fixed set called the domain of 
discourse, say U. In plane geometry, for example, the domain of discourse is 
the set of points in some plane. In analysis, the domain of discourse may be 
IR, the set of real numbers, or C, the set of complex numbers. 

As an intuitive crutch, it may help to picture the domain of discourse U 
as a rectangle in the plane of the page and a set S in this domain as a set of 
points bounded by some simple closed curve in this rectangle (Fig. 1.1). 
The figure suggests that xES, but Y t£ s. 

A singleton is a set consisting of exactly one member as in A = {b} . We 
have 

x E { b} if and only if x = b. (1.1) 
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u 

Figure 1.1 

We distinguish between the set {b} and its member b. Thus, we write 

for each b. (1.2) 

For example, 2 is a number, but {2} is a certain set of numbers. 
S = {a, b} is a set whose members are a and b. We refer to it as the 

unordered pair consisting of a and b. 
Unfortunately, the sets usually dealt with in mathematics are such that 

their members cannot all be exhibited. Therefore, we describe sets by 
means of a property common to all their members. Let P(x) read "x has 
property P." The set B of elements having property P is written 

B= {xIP(x)}. (1.3) 

This is read as "B is the set of all x such that x has property P." For 
example, the set IR of real numbers will be written 

IR = {x I x is a real number}. (1.4) 

Here, P(x) is the sentence "x is a real number." If U is the domain of 
discourse, the set of members of U having property P is often written 

B= {XE UIP(x)}. (1.5) 

This is read as "the set of all x belonging to U such that x has property P." 
A set A is called a subset of a set B and we write A C B, if and only if 

each element of A is an element of B, i.e., if and only if x E A implies 
x E B. We visualize this in Fig. 1.2. Each part of this figure suggests that 

u u 

© 
(a) (b) 

Figure 1.2 
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U U U 

W" ·X 00 @ 
(a) (b) (c) 

Figure 1.3 

each element of A is an element of B; in (a) there are supposed to be 
elements of B not in A, where as in (b) every element of B is also an 
element of A. Thus, A ~ B holds also when A and B have the same 
members. If A ~ B is false, we write Art B. 

A rt B is equivalent to "there exists x E A such that x f/. B." (l.6) 

Each of the diagrams in Fig. l.3 portrays the situation A rt B. 
Sets A and B are called equal and we write A = B, if and only if both 

A ~ Band B ~A 
hold. Thus, A = B, if and only if A and B have the same members. 

When A and B are sets such that A ~ B but A =F B, we call A a proper 
subset of B and write 

A cB. 

This means that every element of A is an element of B, but there exists an 
x E B such that x f/. A. 

One should distinguish carefully between the notions "E" and "~." 
Thus, x E A means that x is an element of A, while A ~ B means that 
x E A implies x E B. The distinction is perhaps more noticeable when we 
deny these relations. For example, x f/. A means x is not a member of A, 
whereas A rt B means that there exists x E A such that x f/. B. The distinc­
tion is important. The two relations have different properties. Thus, if 
A ~ Band B ~ C, then A ~ C (cf. Prob. 1.3). Because of this ~ is called a 
transitive relation. On the other hand, the relation" E" is not transitive. For 
consider 

x = 1, A = {l}, and B = {{l}}. 

Here B is a singleton set whose member is A = {I} (nothing prevents us 
from having sets whose members are sets). We have X E A and A E B, but 
X E B is false since this would imply X = {l} or 1 = {l} and this is false 
(cf. (1.2». 

When x E A and A ~ B, we write x E A ~ B. This clearly implies 
x E B. Similarly, when A ~ Band B ~ C, we write A ~ B ~ C. 

A set having no members is said to be empty. Such a set is also called a 
null set. Sometimes, in the course of a mathematical discussion, a set is 
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defined by some property. When no elements exist which have this prop­
erty we call the set empty. An empty set is written 0. We prove that for any 
set A we have 

0~A. (1.7) 

Were this false, i.e., 0 rt A, there would exist x E 0 such that x rt. A. This is 
impossible since no x E 0 exists. 

PROB. 1.1. Prove: {a,b} = {a,b,a}. 

PROB. 1.2. Prove: If A is a set, then A ~ A and A = A. 

PROB. 1.3. Prove: If A ~ B ~ C, then A ~ C. 

PROB. 1.4. Prove: If A and B are sets, then A = B implies B = A. 

PROB. 1.5. When A, B, and C are sets such that A = Band B = C, we write 
A = B = C. Prove: A = B = C implies A = C. 

PROB. 1.6. Prove: If A c B ~ C or A ~ B c C, then A C C. 

PROB. 1.7. Prove: If A ~ 0 for some set A, then A = 0 (cf. (1.7». 

Remark 1.1. Examine the sets A = {a, b} and B = {b, c}, where a, b, and c 
are distinct. Clearly A rt Band B rt A hold. Thus, not all sets are related by 
the subset relation. 

2. The Set IR of Real Numbers 

We shall treat the real numbers axiomatically and list 15 axioms for them. 
In this section we cite only 14 of the 15 axioms. The fifteenth axiom will be 
called the completeness axiom and will be stated in Section 8. 

The set IR of real numbers is postulated to have the properties: 

(I) (Axiom 01). There are at least two real numbers. 
(II) (Axiom OJ. There is a relation called less than, written as < , 

between real numbers such that if x and yare real numbers, then 
exactly one of the following alternatives holds: Either (1) x = y or 
(2) x < y or (3) y < x; 

PROB. 2.1. Prove: If x is a real number, then x < x is false. 

[We need not postulate the existence of a greater than relation between 
real numbers since this relation can be defined in terms of the "less than" 
relation.] 
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Def. 2.1. We define x> y to meany < x, reading this as "x is greater than 
y." We can now reformulate Axiom O2 as 

(II') (Axiom O~. If x and yare real numbers, then exactly one of the 
following alternatives holds: Either (1) x = y or (2) x < y or (3) 
x>y. 

Def. 2.2. When x < y or x = y, we write x .,;; y. 

PROD. 2.2. Prove: If x and yare real numbers such that x .,;; y and x ~ y, 
then x = y. 

(III) (Axiom 03). If x, y and z are real numbers such that x < y and 
y < z, then x < z. 

Def. 2.3. When x < y and y < z both hold, we write x < y < z. Thus, by 
Axiom 03 , x <y < z implies x < z. 

PROD. 2.3. Prove: (a) Either of x < Y .,;; z or x .,;; y < z imply x < z; (b) 
x .,;; Y .,;; z implies x .,;; z. 

[We now introduce postulates for addition and multiplication. The 
lowercase Latin letters x, y, z appearing in the axioms below will 
represent real numbers.] 

(IV) (Axiom At) (Closure for Addition). If x and yare real numbers, 
there is a unique real number x + y called the sum of x and y. 

(V) (Axiom Al ) (Associativity for Addition) 

(x + y) + z = x + (y + z); 

(VI) (Axiom A3) (Commutativity for Addition) 

x + y = Y + x; 

[The next axiom relates addition to the "less than" relation in R.] 

(VII) (Axiom 04). x < y implies x + z < Y + z. 

PROD. 2.4. Prove: x < y and u < v imply x + u < Y + v. 

(2.1 ) 

(2.2) 

(VIII) (Axiom S). If x and yare real numbers, there is a real c such that 
y + c = x; 

(IX) (Axiom M I ) (Closure for Multiplication). If x and yare real num­
bers, there is a real number xy (also written as x . y) called the 
product of x and y; 

(X) (Axiom MJ (Associativity for Multiplication) 

(xy)z = x(yz). (2.3) 
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(XI) (Axiom M3) (Commutativity for Multiplication) 

xy = yx. 

(XII) (Axiom D) (Distributive Law) 

x(y + z) = xy + xz. 

I. Preliminaries 

(2.4) 

(2.5) 

[The next axiom relates multiplication to the "less than" relation in 
IR.] 

(XIII) (Axiom 05). x < y and u < v imply xu + yv > xv + yu. 
(XIV) (Axiom Q). If x and yare real numbers, where z + y =1= z holds for 

some real z, then there exists a real number q such that yq = x. 

Thus far, 14 axioms were cited. As mentioned earlier, the fifteenth and 
last one will be stated in Section 8. 

The axioms indicate that addition and multiplication are binary opera­
tions, that is, we add and multiply two numbers at a time. We define 
x + y + z and xyz by means of 

x+y+z=(x+y)+z and xyz=(xy)z. (2.6) 

Axioms A2 and M2 respectively imply that 

x + y + z = x + (y + z) and xyz = x(yz). (2.7) 

Having defined x + y + z and xyz, we define x + y + z + u and xyzu as 

x + y + z + u = (x + y + z) + u, 

xyzu = (xyz)u. 

PROB. 2.5. Prove: If x, y, z and u are real numbers, then 
(a) x + y + z + u = (x + y) + (z + u) = x + (y + z + u) and 
(b) xyzu = (xy)(zu) = x(yzu). 

PROB. 2.6. Prove: (a) x + z < Y + z implies x < y 

(2.8) 

(b) x + z = Y + z implies x = y. The result in part (b) is called the cancella­
tion law for addition. 

PROB. 2.7. Prove: The c such that y + c = x, of Axiom S, is unique. 

Theorem 2.1. There exists a real number z such that x + z = x holds for all 
x E IR. This z is the only real number with this property. 

PROOF. Let b be some real number. By Axiom S, there exists a real z such 
that b + z = b. We prove that x + z = x for all x E IR. From b + z = b, we 
obtain for x E IR, 

(b+z)+x=b+x and hence, b+(z+x)=b+x. (2.9) 
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In the second equality, we "cancel" the b on both sides to obtain z + x 
= x. This proves the existence of z. Next we prove its uniqueness. 

Assume that there also exists a z' E JR such that x + z' = x for all x E JR. 
It follows that z + z' = z. Similarly, in view of the property of z, z' + z 
= z'. By Axiom A3 we have z + z' = z' + z and we conclude that z' = z. 
This completes the proof. 

Del. 2.4. The z in JR such that x + z = x for all x E JR is called zero and is 
written as O. Thus 

x+O=x=o+x for all x E R. (2.10) 

Theorem 2.2. If x E JR, then xO = O. 

PROOF. For any y in JR 

xy + xO = x(y + 0) = xy = xy + 0, 

so that xy + xO = xy + O. "Cancelling" xy we obtain xO = 0 as claimed. 

Given x E JR, there exists (Axiom S) a real y such that x + y = o. Y is the 
only real number with this property (why?). 

Def. 2.5. For each x E JR, the unique y such that x + y = 0 is called the 
negative (or additive inverse) of x and is written as - x. Accordingly, we 
have 

x + (-x) = 0 for each x E R. (2.11) 

PROB. 2.8. Prove: -0 = O. 

PROB. 2.9. Prove: - ( - x) = x for each x E R. 

Def. 2.6. Define x - y as the c such that y + c = x and call it x minus y. 

PROB. 2.10. Prove: (a) y + (x - y) = x and (b) x - Y = x + (-y). 

PROB. 2.11. Prove: -(x - y) = y - x. 

PROB. 2.12. Prove: z + y =1= z if and only if y =1= O. 

Del. 2.7. A real p such that p > 0 is called positive. A real n such that n < 0 
is called negative. 

PROB. 2.13. Prove: If x > 0 and y ~ 0, then x + y > O. 

PROB. 2.14. Prove: If x > y, then (a) z > 0 implies xz > yz and (b) z < 0 
implies xz < yz. (Hint: use Axiom 05) 
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PROB. 2.15. Prove: z * 0 and xz = yz imply x = y. This is called the 
cancellation law for multiplication of real numbers. 

Using Prob. 2.12 we reformulate Axiom Q as: 

Axiom Q'. If x and yare real numbers and y * 0, then there is a real q such 
that yq = x. 

PROB. 2.16. Prove: If y * 0, then the q of Axiom Q' is unique. 

Theorem 2.3. There exists a real number e * 0 such that xe = x for all 
x E IR, and e is the only such number. 

PROOF. Because of Axiom 01' there exists a real number a such that a * O. 
By Axiom Q' there exists a real number e such that ae = a. We prove that 
xe = x for all x E IR. If x E IR, then (ae)x = ax. This implies that a(ex) 
= ax. Since a * 0, we can "cancel" the a to obtain ex = x, i.e., xe = x. 

We prove that e * O. Were e = 0, we would have for each x E IR, 
x = xe = xO = O. Thus, 0 would be the only real number, contradicting 
Axiom 01, Hence e * O. We leave the proof of the last statement of the 
theorem to the reader (Prob. 2.17). 

PROB. 2.17. Complete the proof of Theorem 2.3 by proving that e is the 
only real number such that xe = x holds for all x E IR. 

Der. 2.S. The e E IR such that xe = x for all x E IR is called one and written 
as 1. Thus we have 

xl = x for all x E IR. (2.12) 

PROB. 2.18. Prove: (a) (-I)x = - x for all x E IR and (b) (-1)( -1) = 1. 

PROB. 2.19. Prove: (a) (- x)y = -(xy) = x( - y) and (b) (- x)( - y) = xy. 

PROB. 2.20. Prove: z(x - y) = zx - zy. 

PROB. 2.21. Prove: - x - y = -(x + y). 

PROB. 2.22. Prove: xy = 0 if and only if x = 0 or y = O. 

Remark 2.1. The "or" in Prob. 2.22, as in all of mathematics, is used in the 
sense of and/or. 

PROB. 2.23. Prove: xy * 0 if and only if x * 0 and y * O. 



2. The Set IR of Real Numbers 9 

Def. 2.9. If X and yare real numbers, where y =1= 0, then the real q such that 
yq = x (Axiom Q' and Prob. 2.16) is called x over y or x divided by y and is 
written as x / y. * If x =1= 0, then 1/ x is called the reciprocal or the multiplica­
tive inverse of x and is also written as X-I, so that 1/ x = X-I when x =1= O. 

PROB. 2.24. Prove: If y =1= 0, then (a) y(x/y) = x, (b) yy-I = 1 = y(1/y), 
and (c) (y-I)-I = y. 

PROB. 2.25. Prove: If y =1= 0, then xy -I = x(l/ y) = x / y. 

PROB. 2.26. Prove: (a) x/I = x, (b) O/x = 0 if x =1= O. 

PROB. 2.27. Prove: If x =1= 0, then x/ x = 1. 

PROB. 2.28. Prove: If b =1= 0 and c =1= 0, then 
ac _ a 
bc - Ii' 

PROB. 2.29. Prove: If b =1= 0 and d =1= 0, then 
a c ac 
Ii'"d= bd' 

PROB. 2.30. Prove: If c =1= 0, then 

a+b=~+!z... 
c c c 

PROB. 2.31. Prove: If b =1= 0 and d =1= 0, then 

~+.£=ad+bc 
b d bd' 

PROB. 2.32. P1"ove: If b =1= 0 and d =1= 0, then 

if and only if ad = bc. 

FROB. 2.33. Prove: 

if b =1= O. 

Remark 2.2 (Do not divide by 0). We defined x / y for y =1= 0 as the q such 
that yq = x. If Y = 0 and x =1= 0, then no such q exists since its existence 
would imply 0 = Oq = x which contradicts x =1= O. If Y = 0 = x, then the q 
such that yq = x, i.e., such that Oq = 0, is not unique (explain). In the last 
case, q exists but is not unique. In any case, we do not divide by O. 

• This is written as a built-up fraction; however, because of its position in the text, the solidus 
notation is used. 
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3. Some Inequalities 

PROB. 3.1. Prove: (a) x > 0, y > ° imply xy > 0, (b) x > ° and y < ° imply 
xy < 0, and (c) x < ° and y < ° imply xy > 0. 

PROB. 3.2. Prove: 1 > 0. 

PROB. 3.3. Prove: x < y implies - y < - x. 

PROB. 3.4. Prove: (a) If p > 0, then x + p > x and if n < 0, then x + n < x. 

PROB. 3.5. Prove: (a) x > ° if and only if - x < ° and (b) x < ° if and only 
if - x> 0. 

PROB. 3.6. Define 2 = 1 + I, 3 = 2 + 1, 4 = 3 + 1. Prove: -2< -1 < ° 
< 1 < 2 and that 2 + 2 = 4. 

PROB. 3.7. Define x 2 = x . x, x 3 = X • x· x. Prove: If x E IR, then x 2 ;;;, ° 
and if x =1= 0, then x 2 > 0. 

PROB. 3.8. Prove: (a) If ° .;;; x and 0.;;; y, then x 2 < y2 if and only if x < y; 
(b) x 3 < y3 if and only if x < y. 

PROB. 3.9. Prove: (a) If x > 0, then x -I > ° and (b) if x < 0, then X-I < 0. 

PROB. 3.10. Prove: If x <y, and xy > 0, then l/Y < llx. 

PROB. 3.11. Prove: x <y implies x < (x + y)/2 <Yo Thus, there exists a 
real number between any two real numbers. 

PROB. 3.12. Prove: If x < Y + f for all f > 0, then x .;;; y. In particular, 
prove: If x < f for all f > 0, then x .;;; 0. 

PROB. 3.13. Let a > ° be given. Prove: If x < Y + f for all E: such that 
0< f < a, then x .;;; y. 

PROB. 3.14. Prove: If x.;;; y + f for all f > 0, then x.;;; y. 

PROB. 3.15. Prove: (a) If x> 1, then x 2 > x and (b) if ° < x < 1, then 
x 2 < x. 

Miscellaneous Problems 

PROB. 3.16. Note that (ax + b)(cx + d) = acx2 + (ad + bc)x + bd and 
4a2x 2 + 4abx + 4ac = (2ax + b)2 + 4ac - b2. Prove: If a> 0, then ax2 + 
bx + c ;;;, ° for all x E IR if and only if 4ac - b2 ;;;, 0. 
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PROB. 3.17. Prove: (a) x> 0 implies x + l/x ;;a. 2 and x < 0 implies x + 
l/x";; -2. 

PROB. 3.18. Prove: If x andy are real numbers, then 

x2 + y2 
xy..;; 2 

PROB. 3.19. Prove: If x E IR, then x - x 2 ..;; 1/4. 

PROB. 3.20. Prove x> 0, Y > 0 and x + y = 1 imply (1 + l/x)(l + l/y) 
;;a. 9. 

PROB. 3.21. Prove xy + yz + zx ..;; x 2 + y2 + z2 for x, y, and z in IR. 

PROB. 3.22. Verify (x + y + Z)(X2 + y2 + z2 - xy - yz - zx) = x 3 + y3 + 
z3 - 3xyz and prove: If x ;;a. 0, y ;;a. 0, z ;;a. 0, then xyz ..;; (x 3 + y3 + z3)/3. 

PROB. 3.23. Prove: x> 0, Y > 0, z > 0, and x + y + z = 1 imply l/x + 
l/y + l/z;;a. 9. 

4. Interval Sets, Unions, Intersections, 
and Differences of Sets 

[The set of real numbers may be visualized by "spreading them out" on a 
line I in a manner familiar to the reader from his earlier mathematical 
education (see Fig. 4.1). 

________ ~' ____ L' __ ~'L_ __ ~ __ _L' __ ~'L_ _________ l ] 
-2 -1 0 2 3 

Figure 4.1 

Certain subsets of IR, called intervals, will play an important role in our 
later work. Let a and b be real numbers such that a < b, then by the open 
interval with left endpoint a and right endpoint b, written here as (a; b),* we 
mean the set 

(a;b)={xElRla<x<b}. (4.1) 

a b 

~""'''' """'" '''''j {ttl 7Tn fj i ttttttttrr? 

Figure 4.2 

• Many texts use (a, b) to denote the open interval just introduced. This, however, could be 
confused with the ordered pair (a, b). 
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Along with (a; b) there are three other types of intervals with the same 
endpoints. These are written respectively as [a, b), (a, b), and [a, b) and are 
defined as 

[a, b] = {x E IR I a ..;;; x ..;;; b}, (4.2) 

(a, b] = {x E IRI a < x ..;;; b}, (4.3) 

[ a, b) = {x E IR I a ..;;; x < b}. (4.4) 

a b a b a b 
t" , , " , " , , " , , , " " "j rrrrn j (tttttfft"'" ; ~' , , , , " , , , " " , , , " , ,,] '11111111 tin rrrr; Itf) ~ l {{ (II It J I J J 1111 1"11) 

iliff In fin rTn rrrn 

Figure 4.3 Figure 4.4 Figure 4.5 

The interval [a, b) in (4.2) is called a closed interval. The last two types of 
intervals may be called half open, or half-closed. The interval sets defined 
thus far are called finite intervals. There are also five types of infinite 
intervals, written respectively as (a; + 00), [a, + 00), (- 00; a), (- oo,a), and 
( - 00; + 00), where a is a real number, and defined as 

a 

(a;+oo)={xElRlx>a}, (4.5) 

[ a, + 00 ) = {x E IR I x ;;;. a}, (4.6) 

(-oo;a)={xElRlx<a}, (4.7) 

(-oo,a] = {x ElRlx,,;;; a}, 

(-00; +00)=1R (see Fig. 4.1). 

a----

(4.8) 

(4.9) 

~IIIJIJIIIIIIIIIIIIJIIJIJJJ 
rtrrrrrrttttffttttttiffl f } t""""""""""""" rrftttttttlt} } ttttttil } ttl 

Figure 4.6 Figure 4.7 

11111 1111111111111,',1111') rrrrrrrrrrrrrrrrttfl, ttttl """ """" """" ""] til tttl tiff ttl , (!(tiffin , 

a a 
Figure 4.8 Figure 4.9 

Unions of Sets 

Sets may be combined in certain ways to yield other sets. If A and Bare 
sets, then by the union of A and B we mean the set A U B, where 

A U B = {x I x E A or x E B }. (4.10) 

Thus, A U B is the set of elements x such that x is in at least one of A or B 
(see Fig. 4.10). In the figure, A is shaded with horizontal lines and B with 
vertical ones. A U B is the set of points having one or the other shading. 
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u 

A B 

Figure 4.10 

For example, if a E IR, then 

(-oo,a] =(-oo;a)U {a}. 

If a E IR and b E IR, where a < b, then 

[ a, b] = (a; b) U {a, b }. 

FROB. 4.1. Prove: If a and b are real numbers such that a < b, then 
( - 00 ; b) U (a; + 00) = IR. 

PROB. 4.2. Prove: If A and B are sets, then A ~ A U Band B ~ A U B. 

FROB. 4.3. Prove: If A and B are sets, then A U B = B if and only if A ~ B. 
Also prove A U 0 = A and A U A = A. 

If ~ is a class of sets, then its union is defined as the set of all x such that 
xES holds for some S E ~. We write the union of ~ as 

u~ or as US. (4.11 ) 
SE~ 

In symbols, 

U ~ = {x I xES for some S E ~ }. (4.12) 

For the special case where ~ = {A, B}, where A and B are sets, we have 

U ~ = U { A, B } = {x I xES for some S E {A, B } } 

= {x I x E A or x E B } 

=A UB. 

If ~ = {A,B,C}, where A, B, and C are sets, we write U~ = U{A,B, 
C} as A U B U C. For example, we write the set IR of reals as 

IR = IR+ U {O} U IR_ , (4.13) 

where IR+ and IR_ are respectively the sets of positive and negative real 
numbers. 

FROB. 4.4. Prove: (a) If A ~ Sand B ~ S, then A U B ~ S. 
(b) More generally prove: If S ~ T for all S E~, then U~ ~ T. 
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Intersections of Sets 

By the intersection A n B of sets A and B we mean the set 

A n B = {x I x E A and x E B }. (4.14) 

Thus, A n B is the set of all elements x such that x is in both A and B (see 
Fig. 4.11). In the figure, A n B is the set of elements having both horizontal 
and vertical shading. For example, if a < b, then 

(a; b) = (- 00; b) n (a; + 00) = (a; + 00) n (- 00; b) 

and if a ~ b, then 
(a; +00) n (-oo;b) = 0. 

When A n B = 0, we say that A and B are disjoint sets. 

PROB. 4.5. Prove: If A and B are sets, then A n B ~ A and A n B ~ B. 

PROB. 4.6. Prove: A ~ B if and only if A n B = A. Also prove A n 0 = 0 
and A nA =A. 

If 1ii is a class of sets, then its intersection is defined as the set of all x 
such that xES for each S E 1ii . We write the intersection of 1ii as 

n1ii or as n S. (4.15) 
SE~ 

In symbols, 

n 1ii = {x I S E 1ii implies xES}. (4.16) 

PROB. 4.7. Let 1ii be a class of sets: Prove: If S E 1ii, then n1ii ~ S. 

For the special class 1ii = {A,B}, where A and B are sets, we have 

n 1ii = n { A, B } = {x I S E {A, B } implies XES} 

= {x I x E A and x E B } 

=A n B. 

A B 

t 
AnB 

Figure 4.11 
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If:;; = {A,B,C}, where A, B, and C are sets, we write n:;; = n{A,B, 
C}asAnBnC. 

FROB. 4.8. Prove: (a) If S k A and S k B, then S k A n B. (b) More 
generally, prove: If T k S, for all S E :;;, where:;; is a class of sets, then 
Tkn:;;· 

When :;; is a class of sets, we say that:;; is a pairwise disjoint class when 
S E :;;, T E :;;, and S =1= T imply S n T = 0. 

It is clear that we have for sets A, B, and C 

A U B U C = (A U B) U C = A U (B U C) (4.17) 

and 

A n B n C = (A n B) n C = A n (B n C). (4.18) 

PROB. 4.9. Prove: If A, B, and C are sets, then (A U B) U C = (A U C) U 
(B U C) and (A n B) n C = (A n C) n (B n C). 

FROB. 4.10. Prove: If A, B, and C are sets, then A n (B U C) = (A n B) U 
(A n C) and A U (B n C) = (A U B) n (A U C). 

Difference and Complements 

If A and B are sets, then by A - B we mean the set of all elements of A 
which are not in B (see Fig. 4.12). 

A - B = {x I x E A and x Et B }. (4.19) 

Note, A - B k A and (A - B) n B = 0. 
When SkU, then U - S is called the complement of S with respect to U 

and is written as Cu(S), When all the sets under discussion are subsets of 
some domain of discourse U, then we write Cu(S) simply as C(S) and call 
it the complement of S. 

u 

Figure 4.12 
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PROB. 4.11. Prove: If A ~ U and B ~ U, where U is the domain of 
discourse, then A - B = A - AB = A n C(B). 

PROB. 4.12. Assume A ~ U and B ~ U. Prove: 

(a) C(A) U A = U, C(B) U B = U. 
(b) C(A)nA =0, C(B)n B=0. 
(c) C(A U B) = C(A) n C(B). 
(d) C(A n B) = C(A) U C(B). 
(e) C(C(A» = A. 

PROB. 4.13. Prove: If A, B, and C are sets such that A U B = C and 
A n B = 0, then A = C - Band B = C - A. 

5. The Non-negative Integers 

We defined 2 = 1 + 1,3 = 2 + 1; 4 = 3 + 1. We wish to single out the set of 
real numbers arrived at by continuing this procedure. To this end we 
introduce the notion of an inductive set of reals 

Der. 5.1. A set [ ~ IR is called an inductive set of reals if and only if (i) 0 E [ 
and (ii) x E [ implies x + I E [ for each x E IR. 

It is clear that the set IR itself is inductive. 

PROB. 5.1. Prove that the following sets of real numbers are all inductive: 
(a) [0, + (0), (b) [-I, + (0), (c) {O} U [I, +(0), (d) {O, I} U [2, + (0). 

By Prob. 5.1 we see that there are many inductive sets of real numbers. 
Let 1 be the class of all inductive sets of reals. We define ?La as the set of all 
real numbers which belong to all the inductive sets of real numbers. Thus 

?La = n 1 = { x E IR I [ E 1 implies x E [ } . (5.1 ) 

Theorem 5.1. The set ?La defined in (5.1) is an inductive set of reals. 

PROOF. Assume [ E 1, so that [ is an inductive set of reals. Then 0 E [. 

Thus, [ E 1 implies that 0 E [ and hence (i) 0 E ?La. We prove that (ii) 
x E ?La implies x + I E ?La. Let x E ?La. Assume that [ E 1 so that [ is an 
inductive set of reals. Since ?La = n1 ~ [ (Prob. 4.7), it follows that x E [ 

and hence that x + 1 E [. Thus, [E 1 implies x + I E [ and we have 
x + 1 E n1 = ?La. This proves: x E ?La implies x + I E ?La. By Def. 5.1, ?La is 
an inductive set of real numbers. 
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Corollary 1. 71.0 is the •• smallest" inductive set of reals in the sense that 71.0 ~ I 
holds for all inductive sets I. 

PROOF. Exercise. 

Corollary 2. If S is an inductive set of reals such that S ~ 71.0, then S = 71.0, 

PROOF. Since S is an inductive set of reals, we have by Corollary 1, 71.0 ~ S. 
But S ~ 71.0 holds by hypothesis. We conclude that S = 71.0' This completes 
the proof. 

Note that n E 71.0 implies n + 1 E 71.0 since 71.0 is an inductive set of reals. 
Accordingly, since 0 E 71.0, we have 1 = 0 + 1 E 71.0, 2 = 1 + 1 E 71.0, and 
3 = 2 + 1 E 71.0, Corollary 2 of Theorem 5.1 states that the only inductive 
subset of 71.0 is 71.0 itself. It is easy to see that Corollary 2 of Theorem 5.1 
may be reformulated as 

Corollary 3 (of Theorem 5.1). If S ~ 71.0, where (i) 0 E Sand (ii) n E S 
implies n + 1 E S, then S = 71.0' 

Theorem 5.2. If n E 71.0' then n ;> O. 

PROOF. The set [0, + 00) is an inductive set of reals (Prob. 5.1). Hence 
71.0 ~ [0, + 00) (Corollary 1 of Theorem 5.1). Consequently, if n E 71.0' then 
n E [0, + 00) and hence n ;> o. 

Remark 5.1. According to the last theorem, a nonzero element of 71.0 is 
positive. 

Def. 5.2. We call 0 an integer. Moreover, each nonzero element of 71.0 will be 
called a positive integer. Elements of 71.0 will be called nonnegative integers. 
The set 71.+ = 71.0 - {O} is the set of positive integers. Since 1 E 71.0 and 
1 > 0, we see that 1 is a positive integer. 

Theorem 5.3. If n is a positive integer, then n ;> 1. 

PROOF. The set A = {O} U [1, + 00) is an inductive set of real numbers 
(Prob. 5.1 (c». Hence, 71.0 ~ A. If n is a positive integer, then n E 71.0 ~ A 
=' {O} U [1, + 00). Hence n E {O} U [1, + 00). Since n > 0, n E [1, + 00). But 
then n ;> 1. This completes the proof. 

We now formulate the principle of mathematical induction. First, we 
define the notion of a statement about nonnegative integers. This is a 
sentence Pen) containing n which becomes a true or false statement when n 
is replaced by some specific nonnegative integer. For example, n = 0 is a 
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statement about nonnegative integers since it is true when n is replaced by 0 
and false if n is replaced by a positive integer. 

Theorem 5.4 (Principle of Mathematical Induction). If Pen) is a statement 
about non-negative integers such that: (i) P(O) is true and (ii) P(k) implies 
P(k + 1) for each k E 7L.o, then Pen) is true for all n E 7L.o. 

PROOF. Let 

S = {n E 7L.o I P ( n) is true}. 

Using the hypothesis on Pen), it is easy to prove that S is an inductive set 
of reals. Also S ~ 7L.o. By Corollary 2 of Theorem 5.1, S = 7L.o. Therefore, 
n E 7L.o implies that n E S and hence that Pen) is true. 

Another principle of mathematical induction is based on 

Theorem 5.5. If S ~ 71..+ , where (i) 1 E Sand (ii) k E S implies k + 1 E S 
for each k E 7L. + , then S = 7L. + • 

PROOF. Let T = {O} U S. We have T ~ 7L.o. (i) It is clear that 0 E T holds. 
Next assume that nET, so that n = 0 or n E S. Either of these implies that 
n + 1 E T. For, if n = 0, then n + 1 = 0 + 1 = 1 E S and if n E S, then 
n + 1 E S k T and hence n + 1 E T. This proves: (ii) nET implies n + 1 
E T. We conclude that T = 7L.o. Thus, {O} U S = {O} U 7L.+ • Since 0 f£ S 
and 0 f£ 7L.+ , it follows that S = 7L.+ (explain). 

Corresponding to this theorem we state a principle of induction: 

Theorem 5.6. If Pen) is a statement about positive integers* such that (i) pel) 
is true and (ii) P(k) implies P(k + 1) for each positive integer k, then Pen) is 
true for all positive integers n. 

PROOF. Exercise. 

We illustrate the use of the last theorem by proving 

Theorem 5.7. If m and n are positive integers, then so is m + n. 

PROOF. m + 1 is a positive integer for all positive integers m (why?). Assume 
that for some positive integer n, m + n is a positive integer for all positive 
integers m. Hence (m + n) + 1 is a positive integer for all positive integers 
m and since m + (n + 1) = (m + n) + 1, so is m + (n + 1). By the principle 
of mathematical induction stated in Theorem 5.6, for each positive integer 

* The reader should explain what is meant by "a statement Pen) about positive integers" using 
as a guide our definition of a "statement about negative integers" in the paragraph following 
Theorem 5.3 and its proof. 
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n, m + n is a positive integer for all positive integers m. Hence, if m and n 
are positive integers, so is m + n. 

PROB. 5.2. Prove: If m and n are positive integers, so is their product mn. 

Theorem 5.S. If m is a positive integer such that m> 1, then m - 1 is a 
positive integer. 

PROOF. Suppose, for the sake of obtaining a contradiction, that there exists 
some positive integer m > 1, such that m - 1 is not a positive integer. Let S 
be the set defined as 

S= {nEZ+ IncFm}. 

Then S C Z+ . By the hypothesis on m, m> 1 holds, so 1 E S. Second, 
assume n E S, so that n E Z+ and n cF m. Since m - 1 flZ+ by our present 
assumption on m, it follows that n cF m - 1 for our n. This implies that 
n + 1 cF m. Since n + 1 E Z+ we obtain n + 1 E S. S is thus a set of 
positive integers satisfying the hypothesis of Theorem 5.5, and we conclude 
that S = Z+ . But this is impossible since m fl Sand mE Z+ . We must 
therefore conclude that if m E Z+ , where m > 1, then m - 1 E Z+ . 

PROB. 5.3. Prove: If m and n are positive integers such that m > n, then 
m - n is a positive integer (Hint: use Theorem 5.8 and induction on n). 

Theorem 5.9. If n is a non-negative integer, then no non-negative integer m 
exists such that n < m < n + 1. 

PROOF. If m were a non-negative integer such that n < m < n + 1, we 
would conclude that 0 < m - n < 1. If n is a positive integer, then by Prob. 
5.3, under the conditions on m and n, so is m - n. This implies m - n > 1 
(see Theorem 5.3}--a contradiction. If n = 0, then 0 < m < 0 + 1 = 1, 
where m is a positive integer, which is impossible, again by Theorem 5.3. In 
either case, n < m < n + 1 cannot hold when m and n are non-negative 
integers. 

Corollary. If m and n are non-negative integers such that m > n, then 
m>n+1. 

PROOF. If m < n + 1, it would follow from the hypothesis that n < m 
< n + 1. This would contradict Theorem 5.9. Hence m > n + 1 as claimed. 

We state another important theorem about elements of ZO' It is referred 
to as the well-ordered property of the non-negative integers. 

Theorem 5.10. Every nonempty set of nonnegative integers has a least 
member. 
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PROOF. The proof we give is indirect. Suppose a set S ~ lo exists which has 
no least number. Let 

T = {n E lo I n < k holds for all k E S }. 

Since T ~ lo, we know that k ;;. 0 holds for all k E lo' If 0 E S holds, then 
o would be the least member of S. This would contradict our assumption 
on S. Hence, 0 t£ S, so that k > 0 holds for all k E S. This implies that 
o E T. Now assume that nET so that n < k holds for all k E S. Since n 
and k are non-negative integers, n + I < k for all k E S (corollary of 
Theorem 5.9). If n + I E S holds, it would be the least member of S, and 
this would contradict the assumption on S. We conclude that n + I t£ S, so 
that n + I < k holds for all k E S. This implies n + lET. Thus, nET 
implies n + lET. All this implies that T = lo. In tum, this implies that 
S = 0. For, if there exists a ko E S, it would follow that ko E lo which 
implies ko E T. But then ko < ko, which is impossible. Hence, S = 0. We 
have proved: If a subset S of lo has no least number, then it is empty. This 
implies that a nonempty subset of lo must have a least member. 

PROB. 5.4. Prove: Every nonempty set of positive integers has a least 
number. (Thus, there is a well-orderedness principle for the positive integers 
also.) 

Certain subsets of lo are important for applications. 

Der. 5.3. If n E lo, we define Wn to be the set 

Wn = { k E lo I k < n}. 

Each Wn is called an initial segment of lo' 

For example, Wo = 0, WI = {O}, W2 = {O, I}. 

PROB. 5.5. Prove: If n is a nonnegative integer, then Wn + I = Wn U {n}. 

When n is a positive integer, we often write Wn as 

wn={O,I, ... ,n-l} or wn={O, ... ,n-I}. (5.2) 

Der. 5.4. An initial segment of l+ is defined as follows: Let n be some 
positive integer, then (n) is the set 

(n)={kEl+lk<n}, (5.3) 

(n) is called an initial segment of positive integers. 

Clearly, 

(1)= P}, (2)= P,2}, (3) = P,2,3}. 

PROB. 5.6. Prove: If n is a positive integer, then (n + I) = (n) U {n + l}. 
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If n is some positive integer, we often write (n) as 

(n) = p,2, ... ,n} or (n) = p, ... ,n}. (5.4) 

It is clear that if n = 0, then (n) = (0) = 0. 
It is now possible to formulate another principle of induction which we 

refer to as complete induction (Theorem 5.12). 

Theorem 5.11. If S ~ 1.0, where Wn ~ S implies n E S, then S = 1.0. 

PROOF. We have 0 ~ S. This implies Wo ~ S. By hypothesis, 0 E S. Con­
sider the complement C(S) = 1.0 - S relative to 1.0. Suppose that C(S) 
oft 0. Since C(S) ~ 1.0 , we know then that C(S) has a least member, no say. 
By our first observation, this implies that no oft O. (Recall that 0 E S. Since 
no f£. S, no oft 0). This implies that no > o. Thus, wno ct S. (If wno ~ S, the 
hypothesis implies that no E S, contradicting no E C(S).) Therefore, there 
exists a k E wno such that k f£. S. This shows that there exists k < no such 
that k E C(S). In turn, this contradicts the definition of no as the least 
member of C(S). We conclude that C(S) = 0. But then S = 1.0 ' as 
claimed. 

Theorem 5.12. If P(n) is a statement about nonnegative integers such that 
P(O) is true, and for each n E 1.0 , the truth of P(k) for k E lLo and k < n 
implies the truth of P(n), then P(n) is true for all n E 1.0 • 

PROOF. Exercise. 

6. The Integers 

Def. 6.1. A real number m is called a negative integer if and only if its 
negative - m is a positive integer. Note, since m = - (- m), m is a negative 
integer if and only if it is the negative of a positive integer. The set of 
negative integers will be written as 1._ . The set 1. where lL = 1.0 U 1._ will 
be called the set of integers and each of its members an integer. 

Thus, - 1, - 2, and - 3 are negative integers since they are negatives of 
positive integers. We have 

1.=1.o U1._=1.+U{O}UlL_. (6.1) 

PROB. 6.1. Prove: If n is an integer, then so is - n. 

PROB. 6.2. If n is an integer, then so are n + 1 and n - 1. 

We now state an induction principle for integers (Theorem 6.2). 
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Theorem 6.1. If S t;;; 7L, where (i) 0 E Sand (ii) n E S implies n + 1 E Sand 
- n E S, then S = 7L. 

PROOF. We first prove 7Lo t;;; S. Let So be the set 

So={nESln>O}. 

Clearly, So t;;; S and So t;;; 7Lo. From the properties of S and from the fact 
that So t;;; S, it is easy to prove that 0 E So and that n E So implies 
n + 1 E So (do this). Using Corollary 3 of Theorem 5.1, we conclude that 
So = 7Lo· It now follows that 7Lo = So t;;; S, and hence that 7Lo t;;; S. 

Now we prove 7L_ t;;; S. Assume n E 7L_ . This implies that - n E 7L+ 
c 7Lo t;;; S and hence that - n E S. By the hypothesis on S this yields 
n = -(-n) E S. Thus n E 7L_ implies n E S so that 7L_ t;;; S. This, the 
result obtained in the first paragraph, and properties of sets imply that 

Z = 7Lo u 7L t;;; S. 

Thus, 7L t;;; S. But S t;;; 7L by hypothesis. Hence, S = 7L. 

Theorem 6.2. If P(n) is a statement about integers such that (i) P(O) is true 
and (ii) P(n) implies P( - n) and P(n + 1), then P(n) is true for all inte­
gers n. 

PROOF. Exercise. 

We use Theorem 6.2 to prove: 

Theorem 6.3. If m and n are integers, so is m + n. 

PROOF. We use the induction principle of the last theorem and perform 
induction on n. The theorem holds for n = 0 and for all integers m. Assume 
the theorem holds for some integer n - so that m + n is an integer for all 
integers m. Therefore (m + n) + 1 is an integer for all integers m and since 
m + (n + 1) = (m + n) + 1 that m + (n + 1) is an integer for all integers m. 
Using the n of the last sentence and the induction hypothesis, we see that 
n - m = n + (- m) is an integer for all integers m (explain). We can now 
claim that m + (- n) = -(n - m) is an integer for all integers m. We have 
proved that if m + n is an integer for all integers m, then m + (n + 1) and 
m + (- n) are integers for all integers m. By the principle of induction for 
integers, we conclude that for each n, m + n is an integer for all integers m. 
This proves the theorem. 

PROB. 6.3. Prove: If m and n are integers, then so is m - n. 

PROB. 6.4. Prove: If m and n are integers, so is their product mn. 

PROB. 6.5. Prove: If n is an integer, then no integer m exists such that 
n<m<n+l. 
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PROB. 6.6. Prove: If m and n are integers such that m > n, then m ~ n + 1. 

FROB. 6.7. Prove: If S ~ 7L where (i) -1 E Sand (ii) n E S implies 
n - 1 E S, then S = 1._ . 

Using the result cited in this problem we obtain still another principle of 
induction for the integers (Theorem 6.5). 

Theorem 6.4. If S ~ 1., where (i) 0 E Sand (ii) n E S implies n + 1 E Sand 
n - 1 E S, then S = Z. 

PROOF. Exercise. 

Theorem 6.5. If P(n) is a statement about integers such that (i) P(O) is true 
and (ii) P(n) implies P(n + 1) and P(n - 1) for each nEZ, then P(n) is true 
for all n E 1.. 

PROOF. Exercise. 

7. The Rational Numbers 

Def. 7.1. A rational number r is one that can be written 

r= p q , 

where p and q are integers such that q =1= O. 

(7.1 ) 

The set of rational numbers will be written as Q. We write Qo, Q+ , and 
Q _ respectively for the sets of nonnegative, positive, and negative rationals. 

Remark 7.1. Since each integer n can be written as nil and is therefore of 
the form (7.1), we see that each integer is a rational number. The converse 
of the last statement is false. For example, 1 is not an integer (why?) but is 
a rational number and we see that not every rational number is an integer. 
Thus, Z C Q, the inclusion being proper. 

FROB. 7.1. Prove: If rand s are rational numbers, then so are r + s, r - s, 
and rs. Moreover, if s =1= 0, then prove r Isis rational. 

PROB. 7.2. Prove: Between any two rational numbers there exists another 
rational number (see Prob. 3.11). 

Remark 7.2. If in our first 14 axioms we replace the reals by the rationals 
and the set IR by the set Q, the axioms will hold (the reader can check this). 
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As a matter of fact, any set 'If in which a "less than" relation is defined and 
for which there are two operations called "addition" and "multiplication" 
such that all the 14 axioms hold with the real numbers replaced by 
elements of 'If and the set IR replaced by 'If is called an ordered field. 
Accordingly, {II and IR are both examples of ordered fields. All the work 
done so far was based on the first 14 axioms characterizing an ordered 
field. Consequently, these results hold in any ordered field. In the next 
section we state the Axiom of Completeness. This fifteenth axiom for the 
real numbers will be seen not to hold for the ordered field of rational 
numbers. 

8. Boundedness: The Axiom of Completeness 

Def. 8.1. A set S C;; IR is called bounded from above if some real number u 
exists such that 

xES implies x';; u. (8.1 ) 

The number u is called an upper bound for S. Similarly, S C;; IR is said to be 
bounded from below if some real number I exists such that 

xES implies x;;' I. (8.2) 

The number I being called a lower bound for S. Finally, a set S c IR is 
called bounded if and only if there exist real I and u such that 

xES implies I.;; x .;; u. (8.3) 

For example, if aEIR, then the intervals (-oo;a) and (-oo,a] are 
bounded from above, but not from below. In both cases a is an upper 
bound and any real number greater than a is also an upper bound for the 
set. Similarly, the intervals (a; + 00) and [a, + 00) are each bounded from 
below but not from above. In both cases, a is a lower bound and any real 
number less than a is also a lower bound for the set. The finite intervals 
(a; b), [a, b], and [a, b), where a and b are real numbers, are all examples of 
bounded sets of reals. We say of a finite interval that it is bounded and of 
an infinite interval that it is unbounded. 

Def. 8.2. If S C;; IR and S has a greatest member M, then M is called the 
maximum of S. On the other hand, if S has a least member m, then m is 
called the minimum of S. When M is the maximum of S, we write 

M = maxS or M = maxx. 
xES 

Similarly, if m is the minimum of S, we write 

m = minS or m = mmx. 
xES 

(8.4) 

(8.5) 
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For example, for a E IR, we have a max( - 00; a]. Note that the set (00; a) 
has no maximum (prove this). As another example, consider the set {a,b}, 
where a and b are real numbers and a « b. We have, max{a,b} = band 
min{a,b} = a. 

The notions of least upper bound and greatest lower bound are very 
important and we introduce them now. 

Del. 8.3. If S <;;; IR, then a real number p. is called the least upper bound or 
supremum of S if and only if (a) p. is an upper bound for S and (b) no upper 
bound for S is less than p.. Similarly, a real number A is called the greatest 
lower bound or the infimum of S <;;; IR if and only if (c) A is a lower bound 
for S and (d) no lower bound for S is greater than A. 

Remark 8.1. Note that an upper bound p. of a set S <;;; IR is a least upper 
bound or supremum of S, when p. « u for each upper bound u of S. 
Similarly, a lower bound A of a set S <;;; IR is a greatest lower bound or 
infimum of S when A > I for each lower bound I of S. 

Theorem 8.1. A set of real numbers has at most one supremum and at most 
one infimum. 

PROOF. Assume that S <;;; IR. Suppose p. and p.' are each suprema of S. Thus, 
p.' is an upper bound for Sand p. is the supremum of S. It follows from this 
that p. « p.'. Using the same reasoning we arrive at p.' « p.. We therefore 
conclude that p. = p.'. The proof for the infimum is similar. 

Notation. If p. is the supremum of S, we write 

p. = sup S or p. = sup X, 
xES 

and if A is the infimum of S, we write 

A = inf S or A = inf x. 
xES 

(8.6) 

(8.7) 

Remark 8.2. As an example we consider the infinite interval 1= ( - 00; a). 
We prove a = sup( - 00; a). Clearly, a is an upper bound for I. Let u be 
some upper bound for I. Suppose that u < a. Since a real number Xo exists 
such that u < Xo < a, an Xo E I exists with Xo > u. This contradicts the 
assumption that u is an upper bound for I. Hence, a « u holds for each 
upper bound of I. This completes the proof. Note that a f1. 1= ( - 00; a), so 
a cannot be the maximum of I. This shows that the supremum of a set, 
when it exists, is not necessarily its maximum. 

PROB. 8.1. Prove: If a E IR, then a = inf(a; + 00). 
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PROB. 8.2. Prove: If M = maxS for S k IR, then M = supS. Similarly, if 
m = min S, then m = inf S. (Note that the converses of these statements do 
not hold in view of Remark 8.2.) 

PROB. 8.3. (a) Let JL = sup S, where S k IR and € > o. Prove: There exists 
Xo E S such that JL - E < xo";; JL. (b) Let A = inf Sand E > o. Prove there 
exists Yo E S such that A ..;; Yo < A + E. 

PROB. 8.4. Assume that S k IR. Prove: (a) S is not bounded from above if 
and only if for each real B there exists an Xo E S such that Xo > B. (b) Sis 
not bounded from below if and only if for each real B there exists a Yo E S 
such that Yo < B. 

PROB. 8.5. Let a E IR. Prove: Neither of [a, + 00) or (a; + 00) is bounded 
from above and that neither of (- 00 ; a) or (- 00, a] is bounded from 
below. 

We now state the fifteenth axiom for the real number system. 

(XV) (Axiom C) (The Completeness Axiom). Every nonempty set of real 
numbers which is bounded from above has a real supremum. 

Theorem 8.2. Every nonempty set of real numbers which is bounded from 
below has a real infimum. 

PROOF. Let S be a nonempty set of real numbers which is bounded from 
below. Therefore, a real number exists which is a lower bound for S. Let B 
be the set of all lower bounds of S. We have that B =1= 0. Since S =1= 0, there 
exists Xo E S, and it follows that b E B implies b ..;; Xo. Thus, Xo is an upper 
bound for the set Band B is bounded from above. By Axiom C there exists 
a real number A such that A = supB. We prove next that A = inf S. 

Assume that x· E S exists such that x* < A. This implies that x* is not 
an upper bound for B and that there exists a b* E B such that b* > x*. 
This is impossible because x* E Sand b* E B implies b* ..;; x*. Thus, 
xES implies that x ;;;. A and we see that A is a lower bound for S. Assume 
I is some lower bound for S. This implies that I E B and, hence, that I ..;; A 
since A = supB. This completes the proof that A = inf S. 

9. Archimedean Property 

Theorem 9.1 (Archimedean Property for IR). If a and b are real numbers 
such that a > 0 and b > 0, then there exists a positive integer such that 
na> b. 
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PROOF. Let ~ be the set 

~ = {na I n is a positive integer} = {a, 2a, 3a, ... }. 

Clearly, ~ =1= 0. If na < b holds for all positive integers n, then ~ is 
bounded from above by b, and, since it is not empty it has a supremum, JL 
say (Axiom C). Since JL is necessarily an upper bound for ~, na < JL for all 
positive integers n. But n + I is a positive integer whenever n is, so that 
(n + I)a < JL holds for all positive integers n. This implies 

na< JL-a for all positive integers n 

so that JL - a is an upper bound for ~. Accordingly, JL - a ~ JL. But this is 
impossible, because a > 0 implies that JL - a < JL. Thus, b is not an upper 
bound for ~ and there exists a positive integer n such that na > b, as 
claimed. 

Corollary 1. If E > 0, there exists a positive integer n such that 1/ n < E. 

PROOF. Since € > 0 and I > 0, there exists by the last theorem, a positive 
integer n such· that nE > 1. The conclusion follows from this. 

Corollary 2. If x is a real number, there exists a positive integer n such that 
n > x. 

PROOF. If x < 0, there is nothing to prove, since then x < 0 < 1. Suppose 
that x > O. Since I > 0, the last theorem implies the existence of a positive 
integer n such that n = n . 1 > x. 

Theorem 9.2. If x is a real number, there exists a unique integer n such that 
n<x<n+1. 

PROOF. By Corollary 2 of Theorem 9.1 there exists an integer m such that 
x < m. It is also easy to see that there exists an integer p such that p < x. 
Indeed, there exists an integer k such that - x < k. Hence - k < x. But 
then p = - k is a required integer. Thus, p < x < m, where p and mare 
integers. Since m - p is a positive integer, it follows that p < x < P + (m -
p). Let S be the set such that 

S={lEl+lx<p+l}. 

Clearly S =1= 0 since m - pES. Thus, S is a nonempty set of positive 
integers. As such, S has a least member, no say. If no = I, we have 
p < x < p + I, so P is the integer n in the conclusion of the theorem. If 
no> I, then no - I is a positive integer. Since no - I < no, the fact that no is 
the least member of S implies that p + no - I < x < P + no. Putting n 
= p + no - I, we obtain n + I = P + no and n < x < n + 1. Here, too, n is 
an integer. This proves the existence of n. 
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We prove that the integer n such that n .;;; x < n + 1 is unique. Assume 
that nl .;;; x < nl + 1 for some integer nl . If nl =1= n, we have nl < n or 
n < nl. In the first case, nl < n .;;; x < nl + 1. But then nl < n < nl + 1, 
where nand nl are integers. This is impossible (Prob. 6.5). Thus, nl < n is 
false. A similar argument shows that n < nl is false. Thus, nl =1= n is false 
and we have nl = n. This completes the proof. 

Def. 9.1. If x E IR, then the unique integer n such that n .;;; x < n + 1 1S 

called the greatest integer.;;; x. It is written as [x]. Thus, 

[x].;;;x<[x]+1 foreach xEIR (9.1) 

and 

O.;;;x-[x]<l for each x E IR. (9.2) 

For example, [n] = n if and only if n is an integer. We have [5/3] = 1, 
[-7/2] = -4, [1/3] = O. 

PROB. 9.1. Prove: If x is a real number, then [x + 1] = [x] + 1. 

PROB. 9.2. Prove: If x is a real number, there exists a unique integer n such 
that n - 1 < x .;;; n. 

10. Euclid's Theorem and Some of Its Consequences 

Theorem 10.1 (Euclid's Theorem). If a and b are integers and b > 0, there 
exist unique integers q and r such that 

a=bq+r, where O';;;r<b. (10.1) 

PROOF. Let q = [alb], the greatest integer.;;; a/b. Then 

q = [ % ] .;;; % <[ % ] + 1 = q + 1. 

Hence, 

bq.;;; a < bq + b. 

This implies that 0 .;;; a - bq < b. Put r = a - qb. It is clear that q and r 
are integers such that a = bq + r, where 0 .;;; r < b. 

We prove the uniqueness of the q and r in (l0.1). Assume that a = bql + 
r l, where ql and r l are integers and 0.;;; r l < b. The equality 

bql + r l = bq + r 

holds. This implies 

b(ql - q) = r - r l . (10.2) 

Since 0 .;;; r < band - b < - r l .;;; 0, we have - b < r - r l < b. This and 
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(10.2) imply 

- b < b( q - qt) < b. 

In tum, this implies -1 < q - qt < 1. Since q - qt is integer, it follows that 
q - qt = o. Thus, q = qt· This and (10.2) yield r = r t , which completes the 
proof. 

PROB. 10.1. Prove: If a and b are integers and b =1= 0 (here b could be 
negative), there exist integers q and r such that a = bq + r, where 0.,;; r 
< b, if b > 0, and 0 .,;; r < - b, if b < O. * 

Del. 10.1. If a and b are integers, b =1= 0, then the integers q and r of Prob. 
10.1 are called respectively the quotient and remainder upon dividing a by b. 

Def. 10.2. If a and b are integers and an integer q exists such that a = bq, 
then we say that a is a multiple of b, or that a is divisible by b, or that b 
divides a, or that b is a factor of a and we write b I a. When b I a is false, we 
write bra. We will never write b I a or bra when b and a are not integers. 
Note that if b =1= 0 and b divides a, then the remainder upon dividing a by b 
is zero. 

We have, for example, 18 = (- 5)( - 3) + 3. The quotient and remainder 
upon dividing 18 by - 5 are - 3 and 3 respectively. Also, since 6 = 2 . 3, we 
have 216 and also 316. 

Remark 10.1. When x =1= 0, x/O does not exist. Since % is not unique, we 
do not divide 0 by O. Nevertheless, 0 lOin the sense of Def. 10.2; indeed, 
o = 0 . m for any integer m. 

PROB. 10.2. Prove: If n is an integer, then n I 0 and Orn when n =1= O. 

PROB. 10.3. Prove: (a) (-1) I n, (b) 11 n, (c) n I n if n is an integer. 

PROB. 10.4. Prove: a I band b I c imply a I c. 

PROB. 10.5. Prove: If b =1= 0, then bra if and only if the remainder upon 
dividing a by b is positive. 

Def. 10.3. An integer which is divisible by 2 is called even. Otherwise, we 
say it is odd. Thus, n is even if and only if there exists an integer m such 
that n = 2m. 

* In terms of the notion of absolute value, which will be introduced in the last section, the 
condition 0 '" r < b, if b > 0, and 0 '" r < - b, if b < 0, can be formulated at once as: 
o '" r < Ibl. Here Ibl is read as the absolute value of b. It is defined as 

II {b if b;;.O 
b = .:. b, if b < O. 
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PROB. 10.6. Prove: An integer n is odd if and only if an integer m exists 
such that n = 2m + 1. 

FROB. 10.7. Prove: If n is an integer, then 

if n is even 

if n is odd. 

PROB. 10.8. Prove: If b I a, where b > 0 and a > 0, then 0 < b .;;; a. 

PROB. 10.9. Prove: If a and b are nonnegative integers and both a I band 
b I a hold, then a = b. 

PROB. 10.10. Prove: If d 11, where d is a positive integer, then d = l. 

The GCD of Integers a and b 

Der. 10.4. If a, b, and m are integers and m I a and m I b, then m is called a 
common divisor of a and b. By the greatest common divisor or GCD of a and 
b we mean the nonnegative integer d such that 

dl a and dl b (IO.3a) 

and 
m I a and m I b imply mid. (lO.3b) 

In other words, the GCD of integers a and b is the nonnegative divisor of 
a and b divisible by all the common divisors of a and b. The GCD of 
integers a and b is written as (a, b). We call integers a and b relatively 
prime, and say that each is prime to the other if and only if (a, b) = l. 

PROB. 1O.1l. Prove: ( a, b) = I if and only if the only common divisors of a 
and bare 1 and - l. 

FROB. 10.12. Let a be a nonnegative integer. Prove: (a, 0) = a. 

PROB. 10.13. Prove: If b I a, where b ~ 0, then (a,b) = b. 

Theorem 10.2. If a and b are integers, then there exist integers Xo and Yo such 
that 

axo + byo = (a,b). (10.4) 

PROOF. If a = 0 = b, then (a,b) = 0 and there is nothing to prove for then 
any integers x and y will satisfy (l0.4). Consider the case where one of a or 
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b is not O. Suppose for definiteness that a =!= O. Let S be the set 

S = { ax + by > 0 I x E 1: and y E 1:}. 
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(10.5) 

If x = 1 and y = 0, we have ax + by = a. If x = - 1 and y = 0, we have 
ax + by = - a. Since a =!= 0, one of a or - a is positive and is in S. Hence 
S =!= 0. Therefore, S is a nonempty set of positive integers. As such S has a 
least member, d say. d > 0 and integers Xo and Yo exist such that 

axo + byo = d. (10.6) 

Now, integers q and r exist such that 

a = dq + r, 

where 0 .;; r < d. Substitute from (10.6) into (10.7) for d to obtain 

a = (axo + bYo)q + r, 
so that 

(10.7) 

( 10.8) 

Suppose that r> O. Then 0 < r < d. In view of (10.8) we could claim that 
there is in S a positive integer less than its least member d. This is 
impossible. Hence, we must conclude r = O. Using (l0.7), we see that 
a = dq, and, hence, that d I a. Similar reasoning establishes d I b. Thus, d is 
a common divisor of a and b. 

Next assume that d' is a common divisor of a and b so that integers m 
and n exist such that a = d'm and b = d'n. Substituting these expressions 
into (10.6) we see that 

d'(mxo + nyo) = d. 

This implies that d'i d. Thus, d is a positive common divisor of a and b 
which is divisible by every common divisor of a and b. By Def. 10.4, we see 
that d = (a, b). This and (10.6) establish (l0.4). 

Corollary 1. If a and b are integers, not both 0, then (a,b) exists and is the 
minimum of the set S defined in (10.5). 

PROOF. Obvious from the proof of the theorem above. 

Corollary 2. If a and b are integers, then (a,b) = 1 if and only if integers Xo 
and Yo exist such that 

axo + byo = 1. 

PROOF. Exercise. 

Theorem 10.3. If a, band m are integers, then (a, m) = 1 = (b, m) if and only 
if (ab,m) = 1. 
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PROOF. If (ab,m) = 1, then, by the last corollary, integers XI and YI exist 
such that 

(ab)xI + my I = 1. (10.9) 

Writing X2 = bX I we have from (10.9) 

aX2 + my I = 1, 

where X 2 and YI are integers. By the last corollary, we have (a, m) = 1. A 
similar argument shows that (b,m) = 1. 

Conversely, assume (a,m) = 1 = (b,m). There then exist integers X andy 
such that 

ax + my = 1. 

Multiply both sides by b and obtain 

abx + bmy = b. ( 10.10) 

There exist integers k and 1 such that 

ab = (ab,m)k and m = (ab,m)/. (10.11) 

Substituting these expressions in (10.10) we obtain 

(ab, m)( kx + bly) = b. 

This implies that (ab, m) I b. Since (ab, m) I m also holds, we find that 
(ab,m) is a nonnegative common divisor of band m. Accordingly, (ab,m) 
I (b,m). Since (b,m) = 1, this implies that (ab,m) = 1 and this completes 
the proof. 

Theorem 10.4. If a, b, and m are integers such that (a,m) = 1 and m lab, 
then m lb. 

PROOF. There exist integers x and y such that 

ax + my = 1. 

Multiply both sides here by b to obtain 

abx + bmy = b. (10.12) 

Since m I ab, there exists an integer k such that ab = km. Substituting in 
(10.12) we obtain 

m(kx + by) = b. 

This implies that m I b. 

PROB. 10.14. If a and b are nonzero integers such that a = (a,b)k and 
b = (a, b)/, then (k, I) = 1. 

PROB. 10.15. Prove: If a, b, c, and d are integers such that (a, b) = I = (c,d) 
and ad = be, where b > 0 and d > 0, then a = c and b = d. 
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Def. 10.5. An integer p > 1 is called a prime if and only if its only factors 
are 1, -1, p, and - p. An integer m > 1 which is not a prime is called 
composite. 

For example, 2, 3, 5, 7, 11, 13, 17, 19,23, and 29 are primes. Note: Since 
6 = 3 ·2 and 91 = 7 . 13, 6 and 91 are composite. 

Remark 10.2. An integer m > 1 is composite if and only if integers a and b 
exist such that a > 1 and b > 1 and m = abo 

PROB. 10.16. Prove: If a prime P does not divide an integer a, then 
(a,p) = 1. 

PROB. 10.17. Prove: If a and b are integers and p is a prime such that pi ab, 
then either p I a or pi b. 

Def. 10.6. We say that the nonzero rational number 

r= p , 
q 

where p and q are integers and q =1= 0 is written in lowest terms if and only if 
q > 0 and (p,q) = 1. 

Theorem 10.5. Each nonzero rational number can be written in lowest terms 
in a unique way. 

PROOF. Let r be a nonzero rational number, then integers PI and ql exist 
such that 

PI r=-, 
ql 

where q =1= O. Multiplying PI and ql by -1 if necessary, we can write 

r= p q , 

where p and q are integers and q > O. We have p = (p,q)a and q = (p,q)b, 
where a and b are integers and b > O. By Prob. 10.14 we know that 
(a,b) = 1. Hence, 

p (p,q)a a 
r=-=---=-

q (p,q)b b' 
(10.13) 

where (a,b) = 1. Thus, r can be written in lowest terms. 
We prove the uniqueness of the representation, in lowest terms, of r. 

Assume 
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where c / d is in lowest terms. It follows from this and (10.13) that 

% = ~ and hence ad = be. (10.14) 

Here (c, d) = I = (a, b) and b > 0, d > 0. Since ad = be, it follows that 
(Prob. 10.15) a = c and b = d. This completes the proof. 

11. Irrational Numbers 

Lemma 11.1. Let k be a positive integer. If there is a rational number r sueh 
that 

r2 = k, (Il.l) 

then r is an integer. 

PROOF. Let r be a rational number satisfying (ll.l). Clearly, r * 0. Write 

r=J!.., (11.2) 
q 

where p / q is in lowest terms. Thus, p and q are integers, q > 0, and 
(p, q) = 1. There exist, therefore, integers Xo and Yo such that 

pXo + qyo = 1. (11.3) 

Since 

we have 

p2 = kq2. (11.4) 

Since (pxo + qyi = 1, (11.3) implies that 

P2x5 + 2pqxoyo + qY5 = I. 
Using (11.4), we obtain 

q2kx5 + 2pqxoyo + qY5 = I 
so that 

q( qkx5 + 2pxoyo + qy5) = l. 
This implies that q II. Since q > 0, it follows that q = 1. But then 

r = : = f = p, p an integer. 

This completes the proof. 
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Theorem 11.1. If k is a positive integer which is not the square of an integer, 
then no rational number r exists such that r2 = k. 

PROOF. If a rational number r exists such that r2 = k, then, by the lemma, r 
is an integer. This implies k is the square of an integer and contradicts the 
hypothesis. We conclude then that no rational number r can exist such that 
r2 = k. 

Corollary (Pythagoras). No rational number r exists such that r2 = 2. 

PROOF. We prove that 2 is not the square of an integer. Suppose p is an 
integer such that p2 = 2. There is no loss of generality if we assume that 
p > O. It is clear that p > 1. This implies that p ~ 2, so that p2 ;;. 4 > 2. 
Thus, p2 = 2 is false and we have a contradiction. Hence, 2 is not the 
square of an integer. By the theorem, no rational number r can exist such 
that r2 = 2. 

Theorem 11.2. If Y E IR where y > 0, there exists exactly one real, positive 
number x such that x 2 = y. 

PROOF. Let S be the set 

Let 

We have 

S = {x E IR I x > 0 and x 2 < y}. 

xo= -y-. 
y+I 

o < Xo < 1 and 0 < Xo < y (why?). 

These imply x~ < Xo < y. This proves Xo E S, so that S =1= 0. 
We prove that S is bounded from above by y + 1. Indeed, let x ;;. y + 1, 

so that x2;;. (y + Ii = y2 + 2y + 1 > y. Then, x> 0 and x 2 > y and 
x f1. S. We conclude that xES implies x';;; y + 1. Therefore S is a 
nonempty set of real numbers bounded from above. By Axiom C, S has a 
real supremum, /L say. We have /L = sup S. 

Since Xo E Sand Xo > 0 and /L is an upper bound for S, we know that 
0< xo';;; /L, so that /L > O. Let t: E IR, where 0 < t: < 1. We have /L < /L + t:. 
Therefore /L + t: is a positive real number not·in S (otherwise /L + t: .;;; /L and 
t: .;;; 0). But then (/L + t:i ;;. y and, therefore, /L 2 + 2/Lf + t: 2 ;;. y. This im­
plies that 

and that 
2 

y-/L <t: 
2/L + 1 

for all 0 < t: < 1. 
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By Prob. 3.13 this implies 

and hence that y .;;; p.2. 
Next take 0 < t: < p., so that 0 < p. - t: < p.. Since p. = sup S, this implies 

that there exists Xo E S such that 0 < p. - t: < xo' It follows that (p. - t:i 
< x~ <Yo We obtain p.2 - 2t:p. + t:2 <y, and hence that 

p.2 _ Y < t:(2p. - t:) = t:( p. + p. - t:) < 2t:p.. 

Thus, 

2 
p.-y<t: 

2p. 
for each t: such that 0 < t: < p.. 

Applying Prob. 3.13 once more we obtain from this that 

2 p.-y.;;;o 
2p. 

so that p.2 .;;; y. Thus p.2 .;;; Y and y .;;; p.2 and, therefore, p.2 = y. We now 
know that there exists a positive real number p. such that p.2 = y. 

We prove the uniqueness of the positive p. such that p.2 = y. If z is a 
positive number such that z2 = y, then we prove p. = Z. If p. =I' z, we would 
have 0 < p. < z or 0 < z < p.. In the first case, we have y = p.2 < Z2 and in 
the second, Z2 < p.2 = y. In either case we obtain the contradiction Z2 =I' y. 
Hence p. = Z. 

PROB. 11.1. Prove: If y > 0, there exists exactly one negative real number x 
such that x 2 = y. 

Remark 11.1. By Theorem 11.2 and the result cited in the last problem we 
find that for each positive real number y there exist exactly two real 
numbers whose square is y, one being positive and the other negative. As a 
matter of fact, if x > 0 where x2 = y, then - x < 0 and (- xi = x 2 = y. 

Del. 11.1. If Y > 0, then any real x such that x 2 = y is called a square root 
of y. The x > 0 such that x 2 = y is called the positive square root and is 
written as x = fY. The negative square root of y is - fY. We also define 
.(0 = O. 

PROB. 11.2. Prove: If Yt ;;;. 0 and Y2 ;;;. 0, then J Yt Y2 = ry; ry;. 

Del. 11.2. A real number which is not rational is called irrational. 
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Remark 11.2. By the corollary of Theorem 11.1, we know that {2 is not 
rational. By Theorem 11.2 we see that it is real. Thus, irrational numbers 
exist. Ii is an example of one. 

PROB. 11.3. Prove: If r is rational and c is irrational, then (a) r + c and 
r - c are irrational; (b) if in addition r =t= 0, then rc, c / r, and r / care 
irrational. 

PROB. 11.4. Prove: ..ff and 3 + 15 are irrational. 

Theorem 11.3. Between any two distinct real numbers, there exists a rational 
number. 

PROOF. Assume x < y for real numbers x and y. Then y - x > O. By 
Corollary 1 of Theorem 9.1, there exists a positive integer q such that 

o<l<y-x, (1l.5) 
q 

so that qx < qx + 1 < qy. There exists an integer p such that p <; qx + I 
< P + 1. The second inequality implies that qx < p. This, p <; qx + 1, and 
the inequalities following (11.5) imply that 

qx < p <; qx + I < qy. 

It follows that qx < p < qy, and, hence, that 

x <1!... <yo 
q 

We see that p / q is a rational number between x and y. 

Theorem 11.4. Between any two real numbers there exists an irrational 
number. 

PROOF. Assume x < y for some real numbers x and y. We have Ii x < {2 y. 
There exists a rational number r such that {2 x < r < {2 y, which implies 
that 

x<~<y. 
{2 

If r =t= 0, then r / Ii is an irrational number between x and y. If r = 0, we 
have x < 0 < y and {2 x < 0 < {2 y. There exists a rational number s such 
that 0 < s <{2y. We now have {2 x < s <{2y, where s is rational and 
s > O. But then 

x <....L <y, 
{2 

s rational and s > o. 

Hence s / {2 is an irrational number between x and y. 



38 

12. The Noncompleteness of the Rational 
N umber System 

We first ask the reader to solve: 

1. Preliminaries 

PROB. 12.1. Prove: If S ~ T ~ IR, where S ¥= 0, then (a) if T is bounded 
from above, then sup S < sup T; (b) If T is bounded from below, then 
inf T < inf S; (c) if T is bounded, then inf T < inf S < sup S < sup T. 

Theorem 12.1. There exist nonempty sets of rationals which are bounded from 
above but have no rational supremum. 

PROOF. Let 

T = {x E Q I x> ° and x 2 < 2} 

(Recall, Q is the set of rational numbers.) We have T ~ Q and T ¥= 0 since 
1 E T. T is bounded from above by 2. In fact, if x is a rational number 
such that x> 2, then x 2 > 2, and hence x (£ T. We conclude: If x E T, 
then x ,;;; 2 so that T is bounded from above. By Axiom C, T has a real 
supremum. Let }L = sup T. Let 

S = {x E IR I x> 0, x 2 < 2}. (12.1 ) 

We proved earlier (see proof of Theorem 11.2) that sup S = If. Since 
T ~ S ~ IR, we obtain (Prob. 12.1) 

sup T < sup S = If and hence sup T <If . 
Now sup T > ° since 1 E T implies ° < 1 < sup T. Suppose that sup T 
< If. Then there exists a rational number r such that sup T < r < If. But 
sup T < r implies r (£ T and since r > 0, r2 ;;;, 2. On the other hand, 
° < r < If. This implies r2 < 2 and we obtain a contradiction. Hence, 
sup T = If. The set T therefore has an irrational supremum and not a 
rational one. This completes the proof. 

Remark 12.1. Theorem 12.1 demonstrates by example that the system Q of 
rationals does not enjoy the completeness property. Since the real numbers 
have the completeness property, they form a complete ordered field (cf. 
Remark 7.2). The rational numbers constitute an ordered field which is not 
complete. 

Remark 12.2. In later chapters we will encounter the notion of Cauchy 
completeness. "Completeness" in the sense of Axiom C will be referred to as 
order-completeness. Thus, we say that the real numbers constitute an 
ordered field which is order-complete. 
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13. Absolute Value 

Def. 13.1. We define the absolute value of x E R, written as lxi, as follows: 

Ixl={x_x if x>O (13.1) 
if x < O. 

For example, 131 = 3, 101 = 0, and 1- 31 = -( -3) = 3. 

PROB. 13.1. Prove: (a) Ixl > 0; (b) Ixl = 0 if and only if x = O. Note: x = Ixl 
if and only if x > 0 and x = -Ixl holds if and only if x.;;; o. 

PROB. 13.2. Prove: (a) -Ixl .;;; x.;;; Ixl and (b) -Ixl .;;; - x .;;; Ixi­

PROB. 13.3. Prove: I - xl = Ixi-

PROB. 13.4. Prove: If € > 0, then Ix - al = € if and only if x = a + € or 
x = a - €. 

Theorem 13.1. If € > 0, then Ixl < € if and only if - € < X < €. 

PROOF. Assume that - € < X < €. If 0 .;;; x, we have 0 .;;; x < €, so Ixl < €. 
If x < 0, then from the hypothesis we have - € < X < 0, and therefore 
o < - x < € so that again Ixl < €. In either case, - € < X < € implies 
Ixl < €. 

Conversely, assume that Ixl < €. Consider the cases (1) x > 0 and (2) 
x < O. In case (1), we have 0.;;; x < € so that - € < 0 .;;; x < € and therefore 
- € < X < €. In case (2), x = -Ixl so we have from Ixl < € that -€ < 
-Ixl = x < 0 < € and again -€ < X < €. Thus, Ixl < € implies -€ < X 

< €. This completes the proof. 

Remark 13.1. It is clear from this theorem and Prob. 13.4 that if € > 0, then 
Ixl .;;; € if and only if - € .;;; X .;;; €. 

Theorem 13.2. If x and yare real numbers, then 

Ix + yl .;;; Ixl + Iyl· 

PROOF. We have (Prob. 13.2) 

-Ixl .;;; x.;;; Ixl and -Iyl.;;; y.;;; Iyl· 
Adding, we obtain 

-(Ixl + Iyl) = -Ixl-Iyl.;;; x + y';;; Ixl + Iyl· 
Hence, 

-(Ixl + Iyl).;;; x + y .;;; Ixl + Iyl· 

(13.2) 

(13.3) 
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Let € = Ixl + Iyl so that € > 0. In view of (13.3) 

Ix + yl ~ € = Ixl + Iyl· 
This proves (13.2). 

PROB. 13.5. Prove: Ix - yl ~ Ixl + Iyl· 

I. Preliminaries 

PROB. 13.6. Prove: Ilxl - Iyll ~ Ix - yl (Hint: note that x = y + (x - y), so 
that Ixl ~ Iyl + Ix - yl, etc.) 

PROB. 13.7. Prove: Ixyl = Ixllyl. 

PROB. 13.8. Prove: Ixl2 = x 2 and R = Ixl. 

PROB. 13.9. Prove: If y =1= 0, then 

PROB. 13.10. Prove that Ix + yl = Ixl + Iyl if and only if xy > 0, and that 
Ix + yl < Ixl + Iyl if and only if xy < 0. 

PROB. 13.11. Prove: 

Ix + yl ~ _Ixl_ + _I_yl_ 
1 + Ix + yl 1 + Ixl 1 + Iyl . 

PROB. 13.12. Prove 

PROB. 13.13. Prove: "fIx + yl ~M +"JiYT. 
Remark 13.2. When dealing with the real numbers, it is often helpful to 
adopt a geometric point of view. This is why we sometimes refer to the 
elements of IR as points. 

Def. 13.2. By the Euclidean distance between real numbers x and y we 
mean d(x, y), where 

d(x, y) = Ix - yl· (13.4) 

For example, d(3, - 5) = 13 - ( - 5)1 = 8. The Euclidean distance between 
a point x E IR and ° is 

d(x,O) = Ix - 01 = 14 (13.5) 
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PROB. 13.14. Prove: If x, y, and z are real numbers, then 

(1) d(x, y) > 0, 
(2) d(x, y) = 0, if and only if x = y, 
(3) d(x, y) = d(y,x), 
(4) (triangle inequality) d(x,z) .;;; d(x, y) + d(y,z). 

PROB. 13.15. Prove: If x, y, and z are real numbers, then 

Id(x, y) - d(x,z)1 .;;; d(y,z). 
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Def. 13.3. By the length of a finite interval (a; b), we mean b - a. By the 
midpoint of this interval we mean the point m E (a; b) such that 

d(m,a) = d(m,b). (13.6) 

Sometimes we refer to the midpoint of (a; b) as its center. 

PROB. 13.16. Prove: If m is the midpoint of the interval (a; b), then 
m = (a + b)/2. 

It is interesting to observe that max{a,b} and min{a,b}, where a and b 
are real numbers can be expressed by using la - bl (see Prob. 13.17 below). 

PROB. 13.17. Prove: If a and b are real numbers, then 

{ b} - a + b + la - bl d . { b} _ a + b -Ia - bl 
max a, - 2 an mm a, - 2 

Del. 13.4. By the positive part of the real number x, we mean x+, where 
x+ = max{O,x}. The negative part x- of x is defined as x- = min{O,x}. 

PROB. 13.18. Prove: 

x+ +x- = x and x+ -x- = Ixl. 

PROB. 13.19. Prove: 

max{-a, -b} = -min{a,b} and min{-a, -b} = -max{a,b}. 

PROB. 13.20. Prove: (a) If a < b, then 

-max{lal,lbl} .;;; a < b .;;; max{lal, Ibl}. 

(b) A set S ~ IR is bounded if and only if there exists an M > ° such that 
Ixl .;;; M holds for all xES. 
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Functions 

1. Cartesian Product 

If {a,b} and {c,d} are given sets, then {a,b} = {c,d} implies a = c or 
a = d and b = c or b = d. This was why we referred to {a, b } (d. Section 
1.1) as the unordered pair consisting of a and b. By the ordered pair* (a, b) 
of elements a and b, we mean the set {a, b} together with the ordering of its 
members in which a is first and b second. We call a the first component or 
coordinate of (a, b) and b its second. 

For ordered pairs, we have 

(a,b) = (c,d) if and only if a = c and b = d. (Ll) 

If A and B are sets, then the Cartesian Product A X B of A and B (in that 
order) is the set. 

A X B = {(x, y) I x E A and y E B }. (1.2) 

For example, let A = {a, I} and B = {2, 3, 4}, then 

A X B = {(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)} 

and 
B X A = {(2, 0), (2, I), (3,0), (3, I), (4,0), (4, I) }. 

In A X B, we may have A = B. The Cartesian product A X A is the set 

A XA = {(x,y)lxEA andyEA}. (1.3) 

For example, let A = {a, l}, we have 

A X A = {(O,O),(O, 1),(1,0),(1, I)}. 

• The ordered pair (a, b) can be defined in set theoretic terms by means of (a,b)= {{a}, 
{a,b}}. 
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y 

Figure 1.1 

The Cartesian product IR x IR is the set 

x 

(x, y) 

y 

IRxlR= {(x,y)lxXlRandyXIR}. 
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x 

(1.4) 

We visualize IR X IR as the set of points in a plane (Fig. 1.1) provided with a 
rectangular coordinate system, familiar to the reader from his earlier 
mathematics education. 

PROB. 1.1. Prove: If A and B are sets, then A X B * ° if and only if A * ° 
and B *0. 

PROB. 1.2. Prove: If A, B, C, and D are sets such that A ~ C and B ~ D, 
then A X B ~ ex D. 

PROB. 1.3. Prove: If AX B * 0, then A X B ~ C X D implies A ~ C and 
B ~D. 

2. Functions 

One of the most important ideas in mathematics is that of a function. 
Intuitively, a junction or a mapping from a set X to a set Y is a correspon­
dence which assigns to each x E X exactly one y E Y. The set X is called 
the domain of j and Y its codomain. This is pictured in Fig. 2.1. The figure is 
meant to suggest that it is possible for a function to assign distinct x's to the 
same y. This definition of a function is "intuitive" because it defines 
"function" in terms of "correspondence"-a term which is itself in need of 
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x y 

Figure 2.1 

definition. It is customary today to define functions in terms of sets. We 
begin by defining "correspondence." 

Der. 2.1. A correspondence '/ between a set X and a set Y is a subset of 
X X Y. If (x, y) EO ,/, we say that y corresponds to x under '/ or that '/ 
assigns y to x. A correspondence is also called a relation. 

Having defined "correspondence," "assigns to," and "corresponds to," 
we proceed to define function. 

Def. 2.2. A junction or mapping with domain X and range in Y is a 
correspondence between sets X and Y which assigns to each x EO X exactly 
one y EO Y. The unique y assigned to x is called the image of x under f and 
is written as 

y = f(x). (2.1 ) 

We write GD(j) for the domain of f, so that GD(j) = X. The set of all the 
images of the x's in X is called the range of f and we write it as ~(j). When 
f is a function with domain X and range in Y we write 

f:X~Y (2.2) 

and also say that f maps X into Y. Y is called the codomain of f. To indicate 
that x is mapped into y = f(x) we also write 

x~f(x). (2.3) 

Thus, if f: X ~ Y, we have f ~ X X Y, f being a certain kind of corre­
spondence between X and Y and, therefore, a subset of X X Y. Since f 
assigns to each x EO X a yEO Y, we have (x, y) EOf, or (x, f(x)) EOf. What 
makes a correspondence a function is the property: 

(x, y) EO f and (x, y') EO f imply y = y' for each x EO X = GD(f). 

(2.4) 

This states that f assigns exactly one y to each x EO GD(j). 
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Let (x, y) E f and (x', y') E f, where f is a function. Then 

y = f(x) and y' = f(x'). (2.5) 

If x = x', x' can be replaced by x to yield (x, y') E f, so that y = y'. 
Therefore, 

f(x') = y' = y = f(x). 

Thus, if the correspondence f is a function, then 

x = x' implies f( x) = f( x') for x in GD(f). (2.6) 

A function will also be referred to as a single-valued correspondence. 
By the definition of the range GJv(J) of a function, we have: y E GJv(J) if 

and only if some x E X exists such that y = f(x). Therefore, 

GJv(f)= {yE Yly =f(x) for some x EGD(f)} 

= {f(x)IXEGD(f)}. (2.7) 

Clearly, we always have 

GJv(f) <;;; Y. (2.8) 

When X is a set, then a subset of X X X is called a correspondence 
between X and itself or a correspondence on X. If f is a function f: X ~ X 
whose domain and codomain are equal, then we say that f is a function or 
mapping from X into itself. We also say that f is a function on X, or a 
mapping on X. A function on X is also called a transformation of X. 

A function having JR as its codomain is called a real-valued function. 
When the domain of f is in JR we say that f is a function of a real variable. 
When both the domain and the range of f are in JR, we call f a real-valued 
function of a real variable (see Fig. 2.2). In this volume we deal with 
real-valued functions of a real variable. 

y 

Bt(f) ---------7 

!?}(f) x 

Figure 2.2 
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y y 

(O,I)~--

x x 

--~(O, -1) 

(a) (b) 

Figure 2.3 

EXAMPLE 2.1 (The Absolute Value Function). This is the function f: IR ~ IR, 
defined as f(x) = Ixl for each x E IR (see Fig. 2.3(a». We write it as Abs. 
Thus, Absx = Ixl for each x E IR. 

EXAMPLE 2.2 (The Signum Function). The function g: IR ~ IR defined as: 

11 if x> 0 
g(x)= 0 if x=O 

-I if x<O 

is called the signum function. We write it as sig. Thus, sigx = I if x > 0, 
sigO = 0, sigx = -I if x < O. Note, Ixl = xsigx for each x E IR. 

PROB. 2.1. Let f: X ~ Y and g : X ~ Y be functions with the same domain 
and codomain. Prove: f = g if and only if f(x) = g(x) for each x E X. 

EXAMPLE 2.3 (The Empty Correspondence). We prove that the only func­
tion f: 0 ~ Y, where Y is some set, is f = 0. Since 0 <;;; 0 X Y, we know that 
o is a correspondence between 0 and Y. Since 0 X Y = 0 (Prob. 1.1) if f is 
any correspondence at all between 0 and Y, we have f = 0. Is this 
correspondence a function? Suppose it is not. There would then exist an 
x E 0 such that no unique y with (x, y) E 0 exists. This is impossible, since 
no x E 0 exists. Hence 0 : 0 ~ Y is a function. 

PROB. 2.2. Prove: If X =1= 0, then no function f: X ~ 0 exists. Thus, if f is a 
function defined on the nonempty set, its range is never empty. 

Remark 2.1. We shall not deal with functions having empty domains unless 
we explicitly say so. 

EXAMPLE 2.4 (A Constant Function). f: X ~ Y defined as f(x) = b for all 
x E X and a fixed bEY is called a constant function with value b. 



3. Sequences of Elements of a Set 47 

EXAMPLE 2.5 (The Identity Function). Let f: X ~ X be defined as follows: 
f(x) = x for all x EX. We calIf the identity function on X, writing it as Ix. 
Thus, Ix(x) = x for all x EX. 

Image of a Set Under Mapping. Restrictions and Extensions 

Given a functionf: X ~ Y and a set A ~ X, we define the image f(A) of A 
as the set of images of the x's in A. Thus, 

f(A) = {J(x)lxEA}. (2.9) 

For example, 

6Jt{f) = f(6D(f»· (2.10) 

Again let f: X ~ Y and A ~ X. Consider the correspondence 

g={(x,y)EflxEA}. (2.11) 

This correspondence is a function g: A ~ Y (explain) such that 

g(x)=f(x) forall xEA. (2.12) 

If A ~ X, then we call g the restriction of j to A and write g = fiA. j is 
called an extension of g. 

PROB. 2.3. Let g = flA be the restriction of f to A ~ X. It is clear that g is 
uniquely determined by f. Show that the extension of g = fl A to X is not 
unique. 

PROB. 2.4. Prove: If j: X ~ Y is a function and A ~ B ~ X, then f(A) 
~f(B). 

3. Sequences of Elements of a Set 

By an infinite sequence of elements of a set S =1= 0 we mean a function 
f: 71.+ ~ S from the positive integers into S. If f(n) = a, we write f(n) = an' 
calling an the nth term or nth coordinate of the sequence. j itself is written as 
f= (an)nE"l+ or asf= (an)n;;.t. The set 71.+ is called the index set and the n 
in an is called the index or subscript of an. Usually, when 71.+ is understood, 
we write the sequence simply as <an>. Sometimes we write out the terms as 
in 

<an> = <at ,a2,a3'··· >. 
By the range of <an> we mean the range f(71.+). We have 

f(71.+) = {an I n E 71.+ }. 

(3.1) 

(3.2) 
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For example, let <an) be a constant sequence m that an = c for all 
n E 71+ . We then have f(71+) = {c} and 

<an) = <c,c,c, ... ). (3.3) 

By a real sequence we mean a sequence <an) such that an E IR for each 
n E 71+ . 

Sometimes 710 is used as an index set. In this case a function f: 710 ~ S is 
also called an infinite sequence of elements of S and we write f = <an) n E lLo' 
or 

<an)n>O = <ao, aI' a2 , ••• ). (3.4) 

This does not overly abuse terminology since <an) can be reindexed by 
thinking of it as the sequence <bn)n> l' where bn = an_ 1 for n E 71+ . In fact, 
let no be some fixed integer and Hno be the set 

Hno = {n E 71 In;;;. no}. (3.5) 

A function f: Hno ~ S is also called an infinite sequence of elements of S 
and we write f = <an)n>no and 

(3.6) 

for the sequence. Here, too, we can reindex and view <an)n>no as <bn)n>I' 
where bn = an+no-I' so that b l = ano' b2 = ano+I' b3 = ano +2 ' •••• 

We sometimes define sequences by induction as in Examples 3.1 and 3.2 
below. 

EXAMPLE 3.1 (Exponents Which Are Nonnegative Integers). Let x be some 
real number. We define the sequence <xn)n>O as follows: (i) X O = I and (ii) 
if xn is defined for some nonnegative integer n, define xn+ 1= xnx. For 
example, Xl = X O+I = xOx = Ix = x; x 2 = X I +1 = XIX = xx; x 3 = X 2 +1 

= x 2x = (xx)x = xxx. 

PROB. 3.1. Prove: If x E IR, Y E IR, and m, n are nonnegative integers, then 

(a) xmxn = x m+n, 
(b) (xmy = x mn, 
(c) In = 1, 
(d) x)n = (xyt, 
(e) ifY'FO, then xn/yn = (x/yr. 

PROB. 3.2. Prove: If a ;;;. 1.5, then for each positive integer n, an > n. 

PROB. 3.3. Prove: (a) If x> I, then x n+1 > xn :> x for each positive integer 
n; (b) if 0 < x < 1, then x n+ I < xn ,;;; x for each positive integer n. 

EXAMPLE 3.2. Here we extend the definition of xn to the case where n is a 
negative integer and x =1= O. If x E IR, x =1= 0 and n is a negative integer, we 
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define xn as 

(3.7) 

This equality holds even if n is a nonnegative integer. Indeed, it holds 
trivially if n = 0. Now suppose n is a positive integer, so that - n is a 
negative integer. If x =1= 0, then 

-I <-n) ( -I _I)<-<-n» ( -I _I)n (x) = (x ) = (x) = x". 

In Prob. 3.6 below we ask the reader to establish the laws of exponents 
for integer exponents. In Prob. 3.1 the reader was asked to establish these 
laws for exponents which were nonnegative integers. The lemmas and 
problems which follow will serve to facilitate the task. 

Example 3.2 implies 

Lemma 3.1. If x =1= 0, then (3.7) holds for any integer n. 

PROB. 3.4. Prove: If x E IR and x =1= 0, then, for n an integer, 

x- n = (X-It (3.8) 

Lemma 3.2. If x E IR, x =1= 0, then 

for any integer n. (3.9) 

PROOF. Using induction on n, (3.9) can easily be proven for n E 1.0 ' We 
therefore assume that n is a negative integer and obtain: 

"-I (-1)<-")-1 x x = x x. (3.10) 

Here - n is a positive integer. By the laws of exponents for positive integers 
(Prob. 3.1) it follows from (3.10) that 

x"x- I = (x-I/-"\-I = (x-I)«-n)+I)= (x- I)<-<"-I)). (3. 11 a) 

By Lemma 3.1, we have 

(x-I/-<n-I»= xn-I. 

This, (3.lla), and (3.10) establish (3.9) for n a negative integer. Thus, the 
conclusion holds also for the case where n is a negative integer and the 
proof is complete. 

PROB. 3.5. Prove: If x E IR, x =1= 0, and n E 1., then x n+1 = xnx. 

Theorem 3.1. If x =1= ° and y =1= 0, then x'Y" = (xy)n for each integer n. 
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PROOF. We use induction on n and the induction principle for integers 
(Theorem 1.5.5). First note: (xy)o = I· 1= x<y°. Next assume x)n holds 
for some integer n. We have 

(xYr+l= (xy)\xy) = (x)n)(xy) = (xnx)(y) = xn+yn+1 

and, similarly, that 

(xyr- I = xn-yn-I. 

By the second principle of induction for integers (Theorem 6.5), we con­
clude that x)n = (xyt holds for any integer n. 

Corollary 1. If n is an integer and x E IR, x =F 0, then 

(xn)-I= (x-I)n = x-no (3.llb) 

PROOF. The second equality here follows from Prob. 3.4. We prove the first 
equality in (3.11 b). We have 

1 = In = (xx-I)n = xn(x-It 

This implies that (X-It is the reciprocal of x n, and hence (Xn)-I = (X-It. 

PROB. 3.6. Prove: If x E IR, x =F 0 and m, n are integers, then 

(a) xmxn = x m+n, 
(b) (xmt = x mn, 
(c) xm / xn = xm-n. 

Finite Sequences of Elements of a Set 

Here the sets (n) = {l,2, ... ,n} of Def. 1.5.4 playa role. Recall that these 
are .. he imtial segments of the set 7L+ of positive integers. 

By a finite sequence of n terms of a set S, where n is a positive integer, we 
mean a function f: (n)~ S. Here, too, just as in the case of an infinite 
sequence, if f(k) = x, then we write x = xk. We write f as 

(3.12) 

We call xk the kth term, XI the first term, and Xn the last term of the finite 
sequence (Xk)I';;k.;;n' 

A finite sequence of n terms is also called an ordered n-tuple. By 
properties of functions (Prob. 2.1), we have for the ordered n-tuples 
XI" .. , xn andy!, ... ,Yn' 

(3.13) 
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Sum and Product of Functions 

If f and g are real-valued functions with a domain 6j), their sum f + g is 
defined by means of 

(f + g)(x) = f(x) + g(x) for x E 6j). (3.14) 

Similarly, their product fg is defined by means of 

(fg)=f(x)g(x) for xE6j), (3.15) 

If c is some constant, the function cf, called a real multiple of f is defined 
by means of 

(cf)(x) = cf(x) for x E 6j), (3.16) 

The function (- l)f is usually written as - f, so that we have 

« -l)f)(x) = (-l)f(x) = - f(x) = (- f)(x) for x E 6j). 

That is, we have ( - l)f = - f. The function f - g is defined as f - g = (f + 
(- g». Clearly, if x E 6j), then 

(f - g)(x) = (f + (- g))(x) = f(x) + (- g(x)) = f(x) - g(x). (3.17) 

4. General Sums and Products 

If at, a2' ... are real numbers, we define the general sum ~k= tak induc­
tively as follows: 

o 
~ ak = 0, 

k=! 

n±! ak = ( ± ak) + an+ t 
k=! k=! 

~k= tak is called a sum of n terms. 
We have 

for each n E 71..0 ' 

± ak = ( f ak) + at = 0 + at = at , 
k=! k=! 

± ak = ( ± ak) + a2 = a! + a2 , 
k=! k=! 

3 2 

~ ak = ~ ak + a3 = (a) + an) + a3 = a) + a2 + a3. 
k=! k=! 

(4.1 ) 

If n is a positive integer, then we write ~k= )ak = a) + a2 + ... + an or 
n 

~ ak= a) + ... + an' 
k=! 

(4.2) 



52 II. Functions 

If ak = X for all k E (n) = {l, ... ,n}, we write 
n n 

2: ak = 2: x for each nonnegative integer n. 
k=1 k=1 

PROB. 4.1. Prove: If x E IR, then for all n E 71... 

n 

2: x= nx. 
k=1 

PROB. 4.2. Prove: If a and b l , ... , bn are real numbers, then 
n n 

2: (abk ) = a 2: bk • 
k=1 k=1 

(4.3) 

PROB. 4.3. Prove: If s, t, XI' •.. , xn; YI' •.. ,Yn are real numbers, then 
n n n 

2: (SXk + tYk) = S 2: xk + t 2: Yk· 
k=1 k=1 k=1 

PROB. 4.4. Note, if n is a positive integer and a and b are real numbers, then 

a n+ 1 - bn+ 1 = an(a - b) + bean - bn). 

Prove: If n is a positive integer and a and b are real numbers, then 
n-I 

(a) an - bn = (a - b) 2: an-I-ib i 
i=O 

n-I 
(b) an - 1 = (a - 1) 2: an- I- i= (a - 1)(a n - 1 + a n- 2 + ... + a + 1). 

i=O 

PROB. 4.5. Prove: (a) If 0 ..; a < b, then for n E 71...+, an < b n; (b) if a < b, 
then a 2n + I < b2n + I for n E 71...0 • 

PROB. 4.6. Prove: If n is a positive integer, then 

n n(n+l) 
(a) 1 + 2 + ... + n = 2: k= --=---

k=1 2' 

(b) 
2 2 2 n 2 n (n + 1 )(2n + 1) 
1+2+···+n=2:k= , 

k=1 6 

n n2(n + 1)2 
13 + 23 + . . . + n3 = 2: k 3 = , 

k=1 4 
(c) 

44 4 n 4 n(n+l)(2n+l)(3n2+3n-l) 
1+2+···+n=2:k= . 

k=1 30 
(d) 
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FROB. 4.7. Prove: If n is a positive integer, then 

n(n + 1)(n + 2) 
(a) 1·2+2·3+ ... +n(n+l)= 3 ' 

n(n + 1)(n + 2)(n + 3) 
(b) 1·2·3 + 2·3·4 + ... + n(n + 1)(n + 2) = 4 . 

PROB. 4.8. Prove: If x is not a negative integer and n is a positive integer, 
then 

n 1 

k~1 (x+k)(x+k+l) 
n 

(x + 1)( x + n + 1) . 

PROB. 4.9. By an arithmetic progression of real numbers we mean a finite 
sequence <a, a + d, ... , a + (n - 1 )d) of n terms, where n is a positive 
integer. a is called the first term and a + (n - l)d = I the last term of the 
progression. By the sum Sn of the progression, we mean 

n 

Sn=a+(a+d)+··· +a+(n-l)d= ~(a+(k-l)d). 
x=1 

Prove: 
n(a + I) 

Sn = 2 . 

PROB. 4.10. By a geometric progression of real numbers, we mean a finite 
sequence <a, ar, ar2, ... , ar n- I ), where a and r are real numbers and n is a 
positive integer. By the sum On of the geometric progression, we mean 

n 

On = ~ ark- I = a + ar + ... + arn- I • 

k=1 
Note, if r = 1, then 

n n n 
~ ark- I = ~ a(l)k-l= ~ a= na = a + a + ... + a 

k=1 k=1 k=1 ' (nterms) , 

Prove: If r =/= 1, then 
n n 1 

on = ~ ark- I = a~. 
k=1 r - 1 

In analogy with the general sum Lk=lak' we have the general product 
IIk=lak' where a l ,a2 , ••• are real numbers. We define it inductively: 

o 
II ak = 1, 

k=1 

nif ak = ( i:r ak)an+ I 
k=l k=l 

We call IIk=lak the product of n terms. 

for each n E 71.0 • 

(4.4) 
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For example, 

When n is a positive integer, then we write 
n 

II ak= a1a2 ... an or 
k=1 

n 

II ak= a l ... an' 
k=1 

If ak = x for all k E (n), then we write 
n n 

II ak = II x. 
k=1 k=1 

PROB. 4.11. Prove: If x is a real number, then 

If n is a nonnegative integer, then we define 
n 

II k= n!. 
k=1 

Thus, 
o 

O! = II k = 1, 
k=1 

I 

1!= II k= 1, 
k=1 

2 

2! = II k = 1 . 2, 
k=1 

3 

3! = II k = 1 ·2·3, 
k=1 

and so on. Note that 

(n + I)! = )j: k = CfIl k) (n + 1) = n! (n + 1) 

for each n E lo. 

II. Functions 

(4.5) 

(4.6) 

(4.7) 

(4.8) 
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PROB. 4.12. By the product Pn of the geometric progression <a,ar, 
... ,arn - I> (cf. Prob. 4.10), we mean: 

Prove: 

n 

Pn = II ar k - I = a(ar) ... arn- I 

k=! 
for n E l+ . 

P; = (al)" for n E l+ , 

where a and I are respectively the first and last terms of the geometric 
progression. 

PROB. 4.13. Prove: If ai' ... , an are nonzero real numbers, then 

al - 1 a2 - 1 an - 1 --+--+ ... + =1----::...--
a l a l a2 a l a2 · .. an a l a2 ... an 

PROB. 4.14. Prove: For all positive integers n, if one of ai' ... , an is 0, then 

5. Bernoulli's and Related Inequalities 

The inequalities below will playa very important role in our work. 

Theorem 5.1. If hEIR, h > -1, h '* ° and n is a positive integer, n > 2, then 

1 + nh(l + h)"-I >(1 + h)"> 1 + nh. (5.1) 

PROOF. We first prove that, (1 + h)" > 1 + nh for n > 2. We use induction 
on n for n > 2. Since h2 > 0, then for n = 2 

(1 + h)2= 1 + 2h + h2 > 1 + 2h. 

This proves that (1 + h)2> 1 + 2h. Assume that for some integer n > 2, 
(1 + h)" > 1 + nh. Multiply both sides by 1 + h. Since 1 + h > ° and 
nh2 > 2h2 > 0, it follows that 

(1 + h)"+I>(l + nh)(l + h) = 1 + (n + l)h + nh2 > 1 + (n + l)h. 

Invoking the principle of induction, we see that (1 + h)" > 1 + nh for all 
integers n > 2. 

We now prove 1 + nh(l + h)"-I > (1 + h)" for all integers n > 2. We 
have 

(1 + h)2= 1 + 2h + h2 < 1 + 2h + 2h2 = 1 + 2h(1 + h) 
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so that 

1 + 2h(1 + h) >(1 + h)2. (5.2) 

Now assume that 1 + nh(l + hr- I > (1 + hr holds for some integer n ;;;. 2 
under the stated conditions on h. Multiply both sides by 1 + h > 0. Then 

1 + h + nh(l + h)n>(l + hr+l. (5.3) 

If h > 0, then (1 + hr > 1, and therefore h(l + hr > h. If -1 < h < 0, 
then (l + hr < 1, and, since h < 0, we again have h(l + h)n > h. In either 
case, if h > -1 and h '* 0, then h(l + hr > h. This implies 1 + h(l + hr 
> 1 + h. Adding nh(l + hr to both sides yields 

1 + (n + l)h(l + h)n> 1 + h + nh(l + ht 

This and (5.3) imply 

1 + (n + l)h(l + h)n>(l + hr+l. (5.4) 

Using induction on n for n ;;;. 2, we conclude that 1 + nh(l + hr- I > (l + 
h r for all integers n ;;;. 2, and the proof is complete. 

Remark 5.1. The inequality 

(1 + h)n> 1 + nh, (5.5) 

where h> -1, h '* 0, and n is an integer n ;;;. 2 is known as the strict 
Bernoulli inequality. When we omit the condition h '* ° and merely require 
h > - 1, we obtain 

(1 + h)n;;;. 1 + nh, (5.6) 

where h > -1 and n is a positive integer. This is known as Bernoulli's 
inequality. 

Note that we also have 

1 + nh(l + hr-I;;;'(l + hf, 

where h > -1 and n is a positive integer. 

(5.7) 

Remark 5.2. When in (5.1) we write x = 1 + h, so that h = x-I, we have 
an alternate form of that inequality, 

n(x - l)xn-1 > xn - 1> n(x - 1), (5.8) 

where x > 0, x '* 1 and n is an integer n ;;;. 2. The weaker form of (5.8) is 

n(x - l)xn-1 ;;;. xn - 1 ;;;. n(x - 1), 

where x > ° and n is a positive integer. 

PROB. 5.1. Prove: If n is a positive integer, then 

(1 + * f;;;. 2. 

(5.9) 
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PROB. 5.2. Prove: If n is a positive integer, then 

PROB. 5.3. Prove: If n is a positive integer, then 

(a)(I- 1 2)n+l> 1-_1_1 and(b)(I+_I_I)n+I>(I+l)n. 
(n+l) n+ n+ n 

PROB. 5.4. Prove: If n is a positive integer, then 

1 n! 1 -.;;;-.;;;--n! nn 2n - I ' 

6. Factorials 

Def. 6.1. If x E IR and r is a nonnegative integer, then by a factorial of 
degree r, we mean: 

It follows that 
o 

, 
(x),= II (x - k + I). 

k=1 

(x)o= II(x-k+l)=I, 
k=1 
, 

(x), = II(x-k+l)=x(x-l) ... (x-r+l) 
k=1 

(6.1 ) 

(6.2) 

if r;;' 1. 

For example, (X)I = x, (X)2 = x(x - 1), and (x)J = x(x - 1)(x - 2). 
Note that if x = n, where n is a nonnegative integer, then there are two 
cases: (1) 0.;;; n < r or (2) 0.;;; r .;;; n. In case (1) we have r;;' 1 and 
nEw,={O,I, ... ,r-l}. Thus, ajE{O,I, ... ,r-l} exists such that 
n = j, and we know that one of the n, n - 1, ... , n - r + 1 is zero. 
Consequently 

, 
(n),= II(n-k+l)=O if 0.;;; n < r. (6.3) 

k=1 

In case (2) 
if r = O. (6.4) 

Continuing with case (2) we consider 1 .;;; r .;;; n and obtain 
, 

(n), = II (n - k + 1) = n(n - 1) ... (n - r + 1) 
k=1 

if 1.;;; r';;; n. 

(6.5) 
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Note: 
n 

(n)n= II(n-k+l)=n(n-l) ... 2·1=n!. (6.6) 
k~l 

We multiply both sides in (6.5) by (n - r)!. Then 

(n)r(n - r)!= n(n - 1) ... (n - r + 1)(n - r)!= n!. 

Hence, , 
(n) - n. 

r - (n - r)! if n is an integer and 0 < r < n. 

In summary: If n E 10 and r E 10, then 

{
a, 

(n)r = n! 
(n - r)! 

if O<n<r 

if 0< r < n. 

PROB. 6.1. Prove: If x E IR and r E 1+ , then 

We now define: 

Der. 6.2. If x E IR and r E 10 , then 

(X) = (xt . 
r r! 

This definition yields 

and 

(X) = x(x - 1) ... (x - r + 1) 
r r! if r;;;' 1. 

For example, 

(X) = ~ = (X) = (x )2 = X (x - 1) 
II! x, 2 2! 2!' 

(X) = (x)) = x(x - l)(x - 2) 
3 3! 3! . 

(6.7) 

(6.8) 

(6.9) 

(6.10) 

(6.11 ) 
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Other examples are: 

( -1) = (-1)5 = (-1)( -1 - 1)( -1 - 2)( -1 - 3)( -1 - 4) = _ 21. = -1 
5 5! 5! 5! 

and 

( ±) = H ± - 1)( ± - 2)0 - 3) = _ 1 .3.5 
4 4! 24. 4! . 

PROB. 6.2. Prove: If x E IR and r E l+ , then 

(See Prob. 6.1.) 

PROB. 6.3. Prove: If n E lo, then 

(a) G) = 0, if 0 (; n < r 
(b) G) = (n!/r!(n - r)!), if 0 (; r (; n. 

PROB. 6.4. Prove: If n E lo, r E lo, then G) is a nonnegative integer. 

PROB. 6.5. Prove: If n E lo, then 

for r E lo' 

PROB. 6.6 (Binomial Theorem). Prove: If x and yare real numbers and 
n E lo' then 

n 
(x + y)n= L: (n)xn-kyk 

k=O k 
(Hint: use induction on nand Prob. 6.2 with x = n). 

PROB. 6.7. Prove: If n E lo, then 
n 

(a) 2n = ± (n), 
k=O k 

(b) 0 = L: (- 1) k ( n ) . 
k=O k 

PROB. 6.8. Prove: If Xl' ... 'Xn + l are real numbers, then 

(a) 

(b) 

(c) 

n 

L: (Xk+l - x k ) = Xn+l - Xl' 
k=I 

(k + 1)!-k!= k· k! 

(n+l)!-I=I·1!+2·2!+ .. · +n·n! for n E l+ . 
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PROB. 6.9. Prove: If n E lL+ , then 

(a) 
n 

L kG) = n2n - 1, 
k=1 

n 
L k2(n) = n(n + 1)2n-2 if n ~ 2. 
k=1 k 

(b) 

PROB. 6.10. Prove: If n E lLo, n ~ 2, then 

(a) 

More generally, prove: 
(b) If 1 ~ j < n, where j and n are integers, then 

n 
L (_I)kki(n) =0 

k=1 k 

and 

(c) 
n 

L (_I)ke(n) = (-Ifn! 
k=1 k 

PROB. 6.11. Prove: If nand k are nonnegative integers, then 

±(i)=(n+l) 
i=1 k k + 1 . 

PROB. 6.12. Prove: If k E lLo, then 

( 1) k-l II7=2(2i - 3) k-I 1 . 3 . 5 ... (2k - 3) 
(b) ~ =(-1) 2kk! =(-1) 2kk! . 

PROB. 6.13. Prove: If n E lLo and a E IR, then 

a(a+l) a(a+I) ... (a+n-l) 
1 + a + + . . . + ---'----'---...,....:-------'--

2! n! 

(a + 1)( a + 2) ... (a + n) 
= 

n! 

i.e., 
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FROB. 6.14. Prove: If a E IR and k E lo, then 

( -k a) = ( - I)k ( a + Z - I ). 

7. Onto Functions. nth Root of a Positive 
Real Number 
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If j: X ~ Y is a function that maps the nonempty set X into the set Y, then 

G.R(f) k Y. (7.1) 

Def. 7.1. If the range of the functionj: X ~ Y above is Y, i.e., if 

G.R(f) = Y, 

then we say that j maps X onto Y and call j an onto function. Onto 
functions are also called surjective functions. When ~(j) c Y, we say that j 
maps X into but not onto Y. 

For example, the function j: IR ~ IR defined as j( x) = x 2 for all x E IR 
does not map IR onto IR since j(x) ;;;. ° for each x E IR here. The range of this 
j is a subset of [0, + 00). When we change the codomain (Def. 2.1) to 
[0, + 00), the resulting function is an onto function. This follows from the 
fact that if y E [0, + 00), then there exists an x E IR such that x 2 = y 
(Theorem 1.11.2) so that [0, + 00) k ~(j). Since ~(j) k [0, + 00) it follows 
that ~(j) = [0, + 00). The function defined here will usually be written as 
j=( f. 

Investigating the ontoness of a function j: X ~ Y amounts to asking 
whether for eachy E Y there exists some x E X such thatj(x) = y. This is 
an existence question. The answer can be provided in two ways. One way is 
to produce the x in question by "solving" for it. Another way is to prove 
that it must exist without necessarily exhibiting it. 

FROB. 7.1. Prove: If a and b are real numbers and a =1= 0, then the function 
j: IR~IR given by j(x) = ax + b for each x E IR is an onto function. 

We now ask whether the function j: IR ~ IR, given by j( x) = X n, X E IR, 
and n a positive integer, is an onto function. We shall usually write this 
function as ( )". It is clear that for n = I, ( )n is onto since it is the identity 
function fRo on IR (Example 2.5), i.e., (X)I = x for each x E IR. We consider 
( )" for integral values of n, n ;;;. 2. If n is even, then xn ;;;. ° for all x and 
the range of ( )" is a subset of [0, 00). Therefore, it does not map IR onto IR. 
Below, we prove that ( )" for n ;;;. 2 maps (0; 00) onto itself. 
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Theorem 7.1. If Y is a positive real number and n an integer such that n > 2, 
there exists exactly one positive real number x such that xn = y. 

PROOF. In many respects the proof is similar to the proof of Theorem 
1.11.2. Construct the set 

S = {x E IR I x > 0 and x n < y}. (7.2) 

Let 

xo=~, 
l+y 

(7.3) 

As in the proof of Theorem 1.11.2, it is easy to see that 0 < Xo < 1 and 
0< Xo < y. Since 0 < Xo < 1, we have Xo " Xo < y from which we con­
clude that Xo E S, so that S =1= 0. 

We prove that S is bounded from above. Take x> 1 + y. We have 
x > 1 + Y > O. In view of Bernoulli's inequality, 

x n > (1 + y) n > 1 + ny > ny > 2 Y > y. 

This implies that x (£. S. Hence, xES implies x " 1 + y. Thus, S is 
bounded from above by 1 + y. 

Since S is a nonempty set of real numbers which is bounded from above, 
it has a real supremum. Let p. = sup S. Since the Xo defined in (7.3) is in S, 
0< xo" p.. 

We prove that y " p.n. Take f E IR such that 0 < f < 1. Then 0 < p. 
< p. + f. This implies that p. + f (£. S, and, since p. + f > 0, it follows that 
(p. + f)" > y, and that 

(p. + f)n_ p'n > y _ p.n. 

Since f/p. > 0, Theorem 5.1 implies that 

n( ~)(1+ ~r-I>(I+ ~r-1. 
Multiply both sides here by p. n. Then 

nf(p. + f)"-I>(p. + f)n_ p.n. 

This and (7.4) imply that 

nf(p.+ 1)"-1> nf(p.+ f)"-l> y_ p.n. 

It follows that 
f> y_p.n 

n(p.+l)"-I 
for all 0 < f < 1. 

By Prob. 1.3.13, we conclude from this that 
y _ p'n 

-=------'---:- " 0, 
n(p.+ 1)"-1 

so that y - p. n " 0, and y " p. n • 

(7.4) 



7. Onto Functions. nth Root of a Positive Real Number 63 

We now prove that IL" ~ y. Consider a real t: such that 0 < t: < IL. We 
have 0 < IL - t: < IL. Therefore, there exists a z E S such that IL - t: < z 
~ IL. This yields 

(IL - t:)"< zn <y, 

so that (IL - t:)" <yo Therefore, 

(IL - t:)n-lLn <y -lL n • 

Now, 0 < t:/ IL < 1. Hence, by Theorem 5.1, 

-n~«I-~r-1. 
Multiply both sides here by ILn. In view of (7.5), 

- nt:1L n-I < (IL - t:)" - IL n < y - IL n. 

This implies that 

IL n - Y < t: for all t: such that 0 < t: < IL. 
nlL n - 1 

By Prob. 1.3.13, we conclude that 

IL n - y ~ 0, 
nlL n- 1 

(7.5) 

so that IL n - Y ~ 0 or IL n ~ y. This and the already established inequality 
y ~ IL n yield IL n = y. Thus, IL is an x> 0 such that xn = y. 

Finally, we prove that at most one x> 0 exists such that x" = y. 
Suppose, that XI also has the properties: XI > 0 and xf = y. This implies 
that xn = xf. If x*' XI' we would have either 0 < XI < X or 0 < X < XI' 
The first of these inequalities implies that xf < xn and the second implies 
that X n < X f. In either case, X '* X implies X n '* X f. This would contradict 
xn = xf. We must conclude that XI = x. This completes the proof. 

PROB. 7.2. Prove: If n is an odd positive integer and y is a real number, then 
there exists exactly one real number X such that xn = y. Accordingly, the 
function ( )n: IR ~ IR where n is an odd positive integer maps IR onto IR. 

Def. 7.2. If Y E IR, Y > 0 and n is a positive integer, then a real X such that 
x" = y is called an nth root of y. The unique positive u such that un = y is 
written as u = nr;. Since x n = 0 if and only if x = 0, we define 0 = W. 
When n = 1, we write y = VY for y E IR. We always write r; instead of 
VY. When n is an odd positive integer and y E IR (note that y can be 
negative), then the unique x such that xn = y is written as x =nr;. 

FROB. 7.3. Let n be a positive integer. Prove: (a) If y ;;;. 0, then ('iYr = y; 
(b) if x ;;;. 0, then 'ifX'i = x. 
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PROD. 7.4. Prove: If n is an even positive integer and Y > 0, then 'Vi is the 
only negative real number x such that xn = y. In this case, there are exactly 
two real nth roots of Y each being the negative of the other. 

PROD. 7.5. Let n be a positive integer andYt,h,'" ,Ym be m nonnegative 
numbers. Prove: (a) '!,f'i; ih ... 'fi:. = 'VYth ... Ym' (b) cry;)m 

= (if . 

8. Polynomials. Certain Irrational Numbers 

Del. 8.1. A polynomial on IR is a functionf: IR~IR defined by means of 

for each x E IR, (8.1) 

where n is a nonnegative integer and aO,a t, ... , an are real numbers. The 
latter are called the coefficients of the polynomial and is aD called its leading 
coefficient. If aD =1= 0, then f is said to be of degree n. Clearly, a polynomial 
of degree 0 is a nonzero constant aD on IR. The polynomial g such that 
g(x) = 0 for all x E IR is called the zero polynomial. It is assigned no 
degree. The equation 

(8.2) 

is called a polynomial equation and an r satisfying it is called a root of the 
equation or a zero of the polynomial in (8.1). By a rational root of the 
equation we mean a root which is rational. Similarly, a real root is defined 
as a root which is real. 

Before proving the next theorem, we cite a lemma. 

Lemma 8.1. If a and m are integers such that (a, m) = 1, then (an, m) = 1 for 
each positive integer n. 

PROOF. This is a corollary of Theorem 1.10.3 and we leave its proof to the 
reader as an exercise. 

Theorem 8.1. The polynomial equation (8.2) is of degree n ;;;. 1 and has integer 
coefficients. If r = p / q, where p and q are relatively prime integers, is a 
rational root of the equation, then p I an and q I aD. 

PROOF. Substitute x = p / q in the equation and multiply both sides of the 
equation by qn. Then 

aopn + atpn-tq + ... + an_tpqn-t + anqn = 0 (8.3) 
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or 

p( aopn-l + alpn-2q + ... + an_lqn-l) = - anqn. (8.4) 

The second factor on the left is an integer, so this implies that pi (- anqn). 
Since (p,q) = 1, it follows (by Lemma 8.1) that (p,qn). By Theorem 1.10.4, 

pi an' 
It also follows from (8.3) that 

- aopn = q( alpn-I + ... + an_ lq n-2 + anqn-I). (8.5) 

Reasoning as we did immediately above, we see that q I ao. The proof is 
now complete. 

Corollary. If, in the equation of the theorem, ao = 1, then a rational root of 
the equation is necessarily an integer. 

PROOF. Exercise. 

PROB. 8.1. Prove: (a) If k and n are positive integers and a rational number 
r exists such that rn = k, then r is an integer; (b) if k is not the nth power of 
an integer, then'ifk is irrational. 

Theorem 8.2. If n is an integer such that n ~ 2, then 'l{ri is irrational. 

PROOF. Suppose 'l{ri is rational. Let r = 'Vii, so that rn = n. By Prob. 
8.1(a), r = p where p is an integer. Now p = r = n..fri is a positive integer, so 
that p ~ 1 and pn = n. Clearly, p =1= 1, so P ~ 2. This implies (Prob. 3.2) that 
pn > n, contradictingpn = n. Hence 'Vii is rational. 

PROB. 8.2. Prove Ii +.f3 and Ii + fi are irrational. 

9. One-to-One Functions. Monotonic Functions 

Del. 9.1. A function f:X ~ Y is called one-to-one or injective, when it maps 
distinct elements of X into distinct elements of Y. In more detail: f is 
one-to-one if and only if XI EX, X2 E X, and XI =1= X2 imply f(x,) =1= f(X2)' 

Remark 9.1. Often one proves that f is one-to-one by proving that f(xl) 
= f(x~ implies XI = X2' Questions concerning the one-to-oneness of a 
function are actually uniqueness questions, whereas questions concerning 
the ontoness of functions are existence questions (see the paragraph preced­
ing Prob. 7.1). 
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EXAMPLE 9.1. The function ( )2: IR ~ [0, + 00) is not one-to-one since ( - 1 i 
= 12. However, the restriction of ( i to [0, + 00) is one-to-one (Theorem 
7.1). 

EXAMPLE 9.2. The identity function Ix: X ~ X on a nonempty set X 
(Example 2.5) is obviously one-to-one (explain). 

Remark 9.2. We saw (Prob. 2.4) that f: X ~ Y and A !: B !: X imply 
f(A) !:f(B). It is possible to have A C B !: X andf(A) = f(B). This occurs 
for the function ( )2: IR ~ IR. It maps both A = [0, + 00) and B = IR onto 
[0, + 00), in spite of the fact that A C B. However, if f: X ~ Y is one-to­
one, then A C B implies f(A) Cf(B). We prove this. Assume A C B !: X, 
so that there exists bE B such that b t£. A. We know that f(A) !:f(B). 
Assume that f(A) = f(B). Since bE B, f(b) Ef(B) = f(A) so that f(b) 
Ef(A). This implies that a E A exists such that f(b) = f(a). Since f is 
one-to-one, we obtain b = a EA. This contradicts b t£. A. We conclude 
f(A) =1= f(B). Hence, f(A) C f(B), as claimed. 

An important class of functions is the class of monotonic functions. 

Def. 9.2. Let f: X ~ IR be a real-valued function of a real variable, so that 
not only is its range f(X) a subset of IR, but also X !: IR. We call such an f 
monotonically increasing if and only if 

XI EX, x2 E X, and XI < X2 imply f(x l ) ~ f(X2)' (9.1) 

Similarly f is called monotonically decreasing if and only if 

XI EX, X2 E X, and XI < X2 imply f(x l ) > f(x2). (9.2) 

f is called strictly monotonically increasing if 

X I E X, X2 E X, and X I < X2 

implies 

f(X I ) <f(x2) 

and strictly monotonically decreasing if (9.3) implies 

f(x l ) > f(x2)' 

(9.3) 

(9.4a) 

(9.4b) 

A function which is monotonically increasing or monotonically decreasing 
is called monotonic. We write ft when f is increasing monotonically and f~ 
when f is monotonically decreasing. We say that f has any of the above 
properties on a set A when its restriction flA to A has that property. 

EXAMPLE 9.3. If n is an even positive integer, the function ( r: [0, + 00] 
~ [0, + 00) is strictly monotonically increasing (Prob. 4.5(a», but ( r: IR 
~ [0, + 00) is neither monotonically increasing nor monotonically decreas­
ing (explain). (See Fig. 9.1(a).) 
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EXAMPLE 9.4. If n is an odd positive integer, then ( r: IR ~ IR is strictly 
monotonically increasing (Prob. 4.5(b». Note, this function is also an onto 
function (Prob. 7.2) (see Fig. 9.1(b)). 

PROB. 9.1. Prove: Xl < X 2 in IR implies [xd ;;;; [x2]. Thus, prove that the 
greatest integer function [ ] is monotonically increasing (Fig. 9.2). Note, [ ] 
is not strictly monotonically increasing (explain). 

The result in the next problem gives a relation between strict monotonic­
ity and one-to-oneness for real-valued functions of a real variable. 

FROB. 9.2. Prove: A real-valued function of a real variable which is strictly 
monotonic is necessarily a one-to-one function. 

y 

---( - 2, 0) (-1, 0) 

(1, 0) (2, 0) (3, 0) x 

-
Figure 9.2 
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EXAMPLE 9.5. The converse of the result in the last problem does not hold. 
For, let D = {x E IRI x ~ O} = (- 00; 0) U (0; + 00). The functionf: D ~IR 
defined as f(x) = X-I for x ~ 0 is one-to-one but not monotonic (prove 
this). 

Monotonic Real Sequences 

An infinite real sequence <an> is a real-value function of a real variable. 
This justifies the use of the terminology of Def. 9.2 for real sequences. 

PROB. 9.3. Let <an> be a real sequence. Prove that <an>t if and only if 
an .;;; an + I for each n E 71.. + and that < an>-J.. if and only if an ;;;. an + I for each 
n E7I..+. 

PROB. 9.4. Let <nk>k';>l be a sequence of positive integers which is strictly 
monotonically increasing. Prove: nk ;;;. k holds for all k E 71..+ . 

10. Composites of Functions. One-to-One 
Correspondences. Inverses of Functions. 

We first define the composite of correspondences y and 8. 

Del. 10.1. Let y be a correspondence between sets Band C. The composite 
of 8 and y (in that order), written as 8 0 y is defined as the correspondence 
'1/ between A and C such that (a, c) E 8 0 y = '1/ if and only if some b E B 
exists such that (a, b) E y and (b,c) E 8. In symbols 

8 0 y = {(a, c) E A X C I (a,b) E y and (b, c) E Hor some bE B }. 

(10.1 ) 

We now define the composite fog of functions f and g. 

Del. 10.2. Let g : A ~ Band f: B ~ C be functions, then their composite 
h = fog is defined as the composite of f and g in the sense of the last 
definition. 

Theorem 10.1(a). If g: A ~ B and f: B ~ C, then fog is a function with 
domain A and codomain C and 

(fo g)(x) = f(g(x» for each ~ EA. (10.2) 

PROOF. Let x EA. There exists a unique y E B such that (x, y) E g. There 
exists a unique z E C such that (y,z) Ef. Thus, for each x E A, there exists 
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a unique z E C such that (x, z) E fog. Therefore, fog is a function with 
domain A and codomain C and (j 0 g)(x) = z. But Y = g(x) and z = fey) 
= f(g(x». Hence 

(fo g)(x) =f(g(x» foreach xEA. (10.3) 

PROB. 1O.I(a). Let g : A ~ Band f: B ~ C be functions. Prove: (a) If f and 
g is one-to-one, so is fog; (b) if f and g are onto functions, so is fog. 

Def. 10.3. If a function f: X ~ Y is both one-to-one and onto, we call it a 
one-to-one correspondence between X and Y. A one-to-one correspondence 
is also called a bijection. 

EXAMPLE 10.1. The identity function I x on a set X is a one-to-one 
correspondence between two copies of X. 

EXAMPLE 10.2. The function ( Y: [0, + (0) ~ [0, + (0), where n is a positive 
integer is a one-to-one correspondence between two copies of [0, + 00). 
When n is an odd positive integer, then the function ( Y: IR ~ IR is a 
one-to-one correspondence between two copies of IR. 

EXAMPLE 10.3. Let a and b be real numbers 
f: [0, I] ~ IR by means of 

such that a < b. Define 

f(t) = a + t(b - a) for each t E [0, I J. (lOA) 

Since a <: a + t(b - a) <: b for each t E [0, 1], a <: f(t) <: b for ° <: t <: 1. 
Thus, f([O, I D ~ [a, b], and we see that f maps [0, I] into [a, b]. Now take 
z E [a,b], so that a <: z <: h. This implies that 0<: z - a <: b - a and hence 
that 

° z - a I <:-b-- <: . -a 
Thus, (z - a)/(b - a) is an element of [0, I]. We have 

f( z - a ) = a + z - a (b - a) = z. 
b-a b-a 

Each z in [a,b] is the image of the element (z - a)/(b - a) in [0,1] and is 
therefore in the range of f. Hence, f([O, 1 D = [a, b]. f is also a one-to-one 
function. Consequently, f is a one-to-one correspondence between the 
interval [0,1] and the interval [a,b] where a < b. 

Inverse of a Function 

We define the inverse of a correspondence and then the inverse of a 
function. 

Def. 10.4(a). If y is a correspondence between X and Y, then its inverse y - I 

is defined as that correspondence between Y and X which assigns x E X to 
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Y E Y if and only if y assigns y to x. In symbols, 

y-I = {(y,x)l(x,y) E y}. 

II. Functions 

(10.5) 

When we apply this definition to the special correspondences we call 
functions we find that a function f always has an inverse correspondence, 
but this correspondence is not always a function. Take, for example, a 
function f which is not one-to-one. There exist distinct x I and X2 in X such 
thaty = f(xl) = f(X2)' Thus, (XI' y) Ef and (X2' y) Ef. By the definition of 
the correspondence f - I, 

(y,x l) Ef-I and (y,x2) Ef- I, 

where XI ¥= x 2 • Thus, different x's are assigned to the same y, and, in this 
case, the correspondence f-I is not a function. 

Another difficulty arises when a function g : X ~ Y is not onto Y. In this 
case, there exists some YI E Y such that (x, YI) fI. f for each X E X. But 
then g - I assigns no x E X to Y I' Here, g - I is a function with domain 
differing from Y. In the theorem below we consider the inverse f-I of a 
one-to-one correspondence. 

Theorem 10.1(b). Iff is a one-to-one correspondence between X and Y, then 
the inverse correspondence f-I is a function with domain Y and range X. 

PROOF. Let y E Y. Since f is one-to-one and maps X onto Y, there exists 
exactly one x E X such that (x,y) Ef. By the definition of f-I, (y,x) 
Ef-I. Thus, f-I assigns to each y E Y exactly one x E X, and is a 
function f-I : Y ~ X with domain Yand codomain X. But each x E X has 
a y corresponding to it under f, so that (x,y) Ef and (y,x) Ef-I. 
Accordingly, x is the image of this y under f-I. Thus, each x E X is the 
image, under f- I, of ayE Y. This proves that f-I maps Y onto X. Thus, 
the range of f-I is X. This completes the proof. 

Def. 10.4(b). Letf: X ~ Y be a one-to-one correspondence between X and 
Y. By the previous theorem, the correspondence f-I is a function. We call 
it the inverse of f, or the function inverse to f. 

Remark 10.1. When f: X ~ Y is a one-to-one correspondence between X 
and Y, then 

f-I(y) = x if and only if y = f(x), where x EX. (10.6) 

It follows that 

fU-I(y)) = f(x) = y and hence fU-I(y)) = y 

Also, 

for each y E Y. 

(10.7) 

(10.8) 
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so that j-I(f(X» = x for each x EX. Using the notation of composition of 
functions, we can express (10.7) and (10.8) as 

joj-I=Iy (10.9a) 

(1O.9b) 

PROD. 10.1 (b). Prove: If j: X ~ Y and g: Y ~ X are functions such that 

jog = I y and g 0 j = Ix, 
then j is a one-to-one correspondence between X and Y and j - I = g. (Note 
that g is also a one-to-one correspondence and g - I = f. Thus, j and g are 
each other's inverses.) Here, j is the inverse of its inverse. To avoid 
confusion, we call j the direct function. 

Apropos the remark in the last problem, we now consider j-I as the 
direct function. We have 

Here, y is a "dummy" variable, and, therefore, 

j-I = {(X,j-I(X») I x E 0t(f)} 

= {(x, y) Iy = j-I(X), where x E 0t(f)} 

= {(x, y) Ij(y) = x, where x E 0t(f)}. 

(10.10) 

Thus, we see that to graph j-I we interchange x and y in y = j(x). The 
result is x = j(y). This amounts to reflecting the graph of y = j(x) in the 
liney = x (see Fig. 10.1). 

Remark 10.2. Having defined the inverse of a one-to-one correspondence, 
we proceed to define the inverse of a one-to-one function. Here, we drop 

(y, x) = (r I (x), x) = (y,J(y» <. y = x 
/ ", , 
f '" " " , 

y )( 
~ , 

~ ", I-I 

" Y " (x, y) = (x,r l(X» = (f(y), y) 

, ~ , 
, , 

x 

Figure 10.1 
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the assumption that the function is onto. We note that any function maps 
its domain onto its range and is, therefore, always a correspondence 
between its domain and its range. Accordingly, if f is one-to-one, the 
functionf: X ~~(j) is a one-to-one correspondence between X and ~(j). 
The latter function has an inverse f-I : ~(j) ~ X. It is this function that we 
call the inverse of the one-to-one function f: X ~ Y. For each y E ~(j), 
f-I(y) is the unique x E X such that y = f(x). We have 6D(f-I) = ~(j) 
and ~(f-I) = 6D(j). Also 

f-I(f( x») = x for each x E 6D(f) (10.11) 

and 

for each y E ~f). (10.12) 

EXAMPLE 10.4. If n is a positive integer, then the function ( )n: [0, + 00) 
~ [0, + 00) is a one-to-one correspondence two copies of [0, + 00). For each 
y E [0, + 00), iY is the unique x such that y = x n. The inverse of our 
function is the nth root function, which we write as nfY. We have 

n 
(iY) = y for each y E [0, + 00) (10.13) 

and 

'l{0i = x for each x E [0, + 00 ). (10.14) 

Thus, ( t and 'V are each other's inverses. When we wish to treat 'V as 
the direct function we interchange x and y and write y = Vx for each 
x E [0, + 00). 

Equipotent Sets 

Def. 10.5. We call sets X and Y equipotent if and only if there exists a 
one-to-one correspondence f: X ~ Y between X and Y. When the sets X 
and Yare equipotent, we write 

X~Y. (10.15) 

The diagram in Fig. 10.2 suggests that the circles C and C' are equipo­
tent, and so are the segments AB and A'B'. 

In Example 10.3 we saw that there exists a one-to-one correspondence 
between the closed intervals [0,1] and [a,b] (where a < b). Thus, we have: 
if a < b for real numbers a and b, then [0, 1]~[a,b]. 

PROB. 10.2. Prove: 0~0. 
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o 
X' 

A,\ 
A' 

(a) 

Figure lO.2 

PROB. 10.3. Prove: If X, Y, and Z are sets, then 

(a) X~X, 
(b) X ~ Y implies Y ~ X, 
(c) X ~ Y and Y ~ Z imply X ~ Z. 

X' 
(b) 

B' 

FROB. 10.4. Prove: If n is a nonnegative integer, then Wn ~ (n) (cf. Defs. 
1.5.3 and 1.5.4). 

PROB. 10.5. Prove: lL+ ~ lLo. (This means that lLo is equipotent with one of 
its proper subsets!) 

Remark 10.3(a). We do our counting by tacitly using the notion of equipo­
tent sets. The set lLo and its initial segments Wn (Def. 1.5.3) are taken as 
standard sets. 

Def. 10.6. We call a set S finite if and only if S ~ Wn for some n E lLo. 
Otherwise we call it infinite. 

When we "count" the elements of a finite set S, we are really defining a 
one-to-one correspondence between S and the set (n) = {I, 2, ... , n} for 
some positive integer n. Since (n) ~ wn for each n, we have S ~ (n) if and 
only if S ~ Wn • 

Remark 10.3(b). We state some properties of finite sets: 

(1) Each subset of a finite set is finite. 
(2) No finite set is equipotent with any of its proper subsets. 
(3) If m and n are nonnegative integers such that m < n, then Wm and Wn 

are not equipotent and neither are (m) and (n). 
(4) If S is a finite set then the n E lLo such that S ~ Wn is unique. This n is 

also called the number of elements of S and we write it as N(S). 
(5) If A and B are finite sets, so are A n B and A-B. 
(6) If A C B where B is finite, then N(A) < N(B). 
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(7) (a) Each finite set of real numbers is bounded. (b) A nonempty finite 
set of real numbers has a maximum and a minimum. 

(8) A nonempty set of nonnegative integers which is bounded has a 
maximum. (This is a consequence of Theorem 1.5.10.) 

(9) (The pigeon-hole principle). If A and B are finite sets such that 
N(A) < N(B), then a function with domain B and range in A is not 
one-to-one. 

Del. 10.7. A set S, such that S ~ Zo is called denumerable. Such a set is said 
to have cardinal No. (Here, N, read as Aleph, is the first letter of the Hebrew 
alphabet. No is read as Aleph-null.) 

Remark 10.4. A denumerable set is necessarily infinite. If S is a denumera­
ble set, so that S ~ Zo, there exists a one-to-one correspondence f: S ~ Zoo 
Letf(n) = an for each n E ZOo The set S - {ao} = B is equipotent with Z+ . 
Since Z+::::: Zo' we have B::::: Zo and Zo::::: S, so that B::::: S. Thus, S is 
equipotent with one of its proper subsets, B. As such, it cannot be finite 
(property (2) of finite sets). Hence, S is infinite. 

Der. 10.8. A set which is either finite or denumerable is called a countable 
set. A denumerable set is also called a countably infinite set. 

Theorem 10.2. Every infinite set of nonnegative integers is denumerable. 

PROOF. Let S be an infinite set of nonnegative integers. Clearly, S has a 
least member. Let xo=minS. We have {xo}~S, Since S is infinite, 
S =I=- {xo}, so S - {xo} =I=- 0. Again, since the last set is a nonempty set of 
nonnegative integers, it has a last member. Let x I = mine S - {xo}). 
Clearly, Xo < XI (explain). We have {xo,xd ~ S, and, since S is infinite, 
{xo,xd C Sand S - {xO'x l } =I=- 0. We proceed inductively. Suppose that 
for some positive integer n, we have {xo, X I' ... , xn} ~ S, where Xn 
= mineS - {xo, ... , xn-d) and Xo < XI < ... < Xn' Since S is infinite, 
we know that S - {xo,x l ... ,xn} =I=- 0. The last is a nonempty set of non­
negative integers and has a least member. Let xn+1 = mineS - {xo' 
XI' ... ,xn }). It is clear that Xn+1 > Xn. This proves the existence of a 
sequence <xn> of distinct nonnegative integers which is strictly monotoni­
cally increasing. By Prob. 9.4 we know that xn ;;;. n holds for each positive 
integer n. Since Xo is also a nonnegative integer, it follows that Xo ;;;. O. Thus, 
Xn ;;;. n for all nonnegative integers n. Let g : Zo ~ S be the function defined 
as g(n) = Xn for each n E ZOo g is a one-to-one function (show this). We 
prove that g maps Zo onto S. 

{XO,x l, ... ,xn} C S for each positive integer n. Assume that xES. 
Suppose xES - {XO,x l, ... , xn} for each positive integer n. Since Xn+1 is 
the least member of S - {xo, X I' ... , xn} it would follow that X ;;;. Xn + I 
;;;. n + I > n for each nonnegative integer n. This is impossible since X itself 
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is necessarily a nonnegative integer. Therefore, x E {XO,X I , ••• ,xn } for 
some nonnegative integer n. Thus, a nonnegative integer k exists such that 
k .;;; n and x = Xk = g(k). This implies that x is in the range of g. Thus, 
each xES is in the range of g and g is an onto mapping. Since g is also 
one-to-one, it is a one-to-one correspondence between 71.0 and S, so that 
71.0 ~ S. This proves that S is denumerable, as claimed. 

PROB. 10.6. Prove: Every infinite subset of a denumerable set is denumera­
ble. 

PROB. 10.7. Prove: Every subset of a denumerable set is countable. 

PROB. 10.8. Prove: The union of two sets, one of which is countable and the 
other denumerable, is denumerable. 

FROB. 10.9. Prove: The union of two countable sets is countable. 

Theorem 10.3. Every infinite set contains a denumerable subset. 

PROOF. * Let S be an infinite set. Since S =1= 0, it contains some element. 
Write this element as ao. We have {ao} ~ S. Since S is infinite, we know 
that S =1= {ao} and hence that S - {ao} =1= 0. The last set contains some 
element. Write this element as a l . We have a l E S - {ao}, so that ao =1= a l 
and {ao,ad c S. We continue this procedure inductively. If, for some 
positive integer n, {ao, ai' ... , an} ~ S, where ai =1= aj for i =1= j, we know, 
since S is infinite, that so is S - {ao,al' ... , an}' Thus, S - {ao, 
ai' ... ,an} =1= 0 and contains some element. Write this element as an+I' 
We have an+1 E S - {ao,a l, . .. , an} so that an+1 =1= ak for all integers k 
such that 0.;;; k .;;; n. This shows the existence of a sequence <an> of distinct 
elements of S. Let g: 71.0 ~ S be defined as g(n) = an for all n E Zoo g is 
one-to-one (why?) and maps 71.0 onto its range g(Zo) = {ao,a l, ... } which 
is the range of the sequence of <an>' Therefore, 71.0 and g(7L.o) are equipotent. 
Accordingly, g(7L.o) is a denumerable subset of S. 

11. Rational Exponents 

The following theorem will be useful in the sequel. 

Theorem 11.1. A real-valued function f of a real variable which is strictly 
monotonic has a strictly monotonic inverse f- I. If f is strictly monotonically 
increasing, so is f-I. Iff is strictly monotonically decreasing, so is f-I. 

* This proof uses the Axiom of Choice. It would carry us too far afield to discuss this axiom 
here. The interested reader could consult P. Halmos, Naive Set Theory. 
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PROOF. We prove the theorem for the monotonically increasing case leaving 
the proof of the decreasing case to the reader (Prob. 11.1). Let f: X ~ JR, 
where X \: JR, be strictly monotonically increasing. This implies that f is 
one-to-one (Prob. 9.2). Using Remark 10.2, we define the inverse j-I of j as 
follows: If Y E 6.flv(j), then j-I(y) is the x such that y = j(x). Take YI < Yz 
in 6.flv(j). There exist x I and X2 in X such that YI = j(x I) and Yz = j(x2)' so 
that XI = j-I(YI) and X2 = j-I(Yz). We prove XI < x2. Suppose that there 
exist XI and X2 in X such that XI ;;;. x2. Since jt, it follows that YI = j(x l) 
;;;. j(x2) = Yz. This contradicts YI <Yz. We see that XI < X2 or j-I(YI) 
<j-I(Yz) for any YI andYz in 6.flv(j), withYI <Yz. Therefore,j-I is strictly 
monotonically increasing. 

PROB. 11.1. Complete the proof of the last theorem by proving that a 
function which is strictly monn;onically decreasing has a strictly monotoni­
cally decreasing inverse. 

PROB. 11.2. Prove: For each positive integer n the function 'r : [0, + (0) 
~ [0, + (0) is strictly monotonically increasing. 

PROB. 11.3. Let n be an odd positive integer. Prove: the function 'r : R 
~ R is strictly monotonically increasing. 

Def. 11.1. Let r = m/ n, where m and n are integers and n > O. Define: 

(a) xr = x m/ n = (njX)m for X > O. 
(b) or = 0 for r > O. 
(c) xr = x m / n for X < 0 and odd n as in (a). 

Remark 11.1. If, in the above definition, n = 1, then xm/I = CIX)m = xm. If 
m / n is an integer k so that m = nk, we have for X > 0 

Also, if n is a positive integer and X > 0, then 

Remark 11.2. From Def. 11.1 parts (a) and (c), we obtain 

° XO=XO/I=(Vx) =1 ifx~O. 

(11.1) 

( 1l.2) 

This leaves 0° undefined. We do not know how this should be defined. If 
we wish to preserve xO = 1, then we must define 0° = 1. However, if we 
wish to preserve or = 0, for r > 0, then we must define 0° = O. We continue 
the usage 0° = 1 adopted in Example 3.1. 
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Note that if x < 0, then we do not define x m / n , where m and n are 
integers and n is even. 

PROB. 11.4. Prove: If m and n are integers, n > 0, then ~ = (ij)m 
whenever both sides are defined. 

PROB. 11.5. Prove: (a) If x> 0 and r is rational, then xr > 0; (b) if m and n 
are integers, where n is odd and positive, and x < 0, then x m / n > 0 if m is 
even, and x m / n < 0 if m is odd. 

PROB. 11.6. Prove: If x > 0, and m, n, p, and q are integers such that n > 0, 
q > 0 and min = plq, then 

PROB. 11.7. Prove: If x > 0 and rand s are rational numbers, then 

(a) xrx s = x r+s and (b) (xr)S= xrs. 

PROB. 11.8. Prove: If x > 0 and r is rational, then 

-r 1 
x = x r ' 

PROB. 11.9. Assume that x > 1 and t is rational. Prove that Xl > 1 if t > 0, 
and x I < 1 if t < O. 

Theorem 11.2. If a > 0, then the function fa : Q ~ IR, defined as 

fa(r) = a r for each r E Q. ( 11.3) 

(recall, Q is the set of rational numbers) is strictly monotonically increasing if 
a > 1 and strictly monotonically decreasing if 0 < a < 1. 

PROOF. Consider first the case a > 1. Assume that r l < r2 for some rational 
numbers r l and r2 • We have r2 - r l > O. By Prob. 11.9, 

ar,-r, > 1. 

Multiplying both sides by a r , gives 

a r, = ar,+(r,-r,) > arlo 

Thus, r l < r2 implies that a r , < a r,. 

If 0 < a < 1, then a -I > 1. Hence, if rl and r2 are rationals such that 
rl < r2 , then 

This implies that 
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that is, a'l > a'z. Thus, r l < r2 implies a'z < a'l for r l and r2 in 10. This 
completes the proof. 

PROB. 11.10. Prove: If r is rational, then 

(a) r> 0 and 0 < Xl < x2 imply XI < x;, 
(b) r < 0 and 0 < X I < X 2 imply X I > x;. 

PROB. 11.11. Prove: If a > 0, b > 0, and n is a positive integer, then 
n-\ 

a - b = (a l/ n - b l/ n) ~ ak/nbl-(k+l)/n. 
k=O 

Special cases of this are (a) a - b = U~ -Ib)( j;i + Ib) and (b) 
a - b = (v;i - Vb )(v;li + 3j;i 31b + Vil ). 

12. Some Inequalities 

PROB. 12.1. Prove: If x ;;;. 0 and y ;;;. 0, then 
r= x+ Y yxy ";;-2-. 

In this problem (x + y)/2 is called the arithmetic mean of x and y and 
/Xi their geometric mean. The result in Prob. 12.1 is that the geometric 
mean of nonnegative real numbers does not exceed their arithmetic mean. 
The harmonic mean of two positive real numbers is defined as the reciprocal 
of the arithmetic mean of their reciprocals. If H(x, y) is the harmonic mean 
of the positive numbers x and y, then 

1 = 2xy 
H(x,y) = !(llx + lly) x + y 

FROB. 12.2. Prove: If x > 0 and y > 0, then 

2xy ..;;/Xi. 
x+y 

PROB. 12.3. Prove: If x, y, and z are nonnegative real numbers, then 
3~ x+y+z yxyz ..;; 3 . 

(12.1 ) 

Generalizing the terminology following Prob. 12.1, we see that the 
geometric mean of three nonnegative real numbers does not exceed their 
arithmetic mean. 
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PROB. 12.4. Prove: If x > 0, y > 0, and z > 0, then 

3xyz 3~ --....:....--- ..;; vxyz . 
xy + yz + zx 

FROB. 12.5. Prove: If x ;;;. 0 and y ;;;. 0, then 

( XI/2+i/2)2 x+y /Xi..;; 2 ";;-2-' 
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The inequalities given in Theorem 12.1 below will be useful in our later 
work. Before proving this theorem we cite a lemma. 

Lemma 12.1.* If P and q are integers such that p > q ;;;. 1, and x> 0, x =1= 1, 
then 

x P - 1 x q - 1 -->--. P q 

PROOF. Case 1. p > 1 = q. By Remark 5.2, if P is an integer p ;;;. 2> 1 = q, 
then 

x P-1>p(x-1) so that xP - 1 > x-I = xl - 1 = x q - 1 . 
P 1 q 

Case 2. P > q > 1. Note that 

q(xP - 1) - p(xq - 1) = qxq(xp - q - 1) - (p - q)(xq - 1). (12.2) 

Since p - q > ° and q - 1 > ° it follows that q ;;;. 2. Hence, by Remarks 5.1 
and 5.2, we obtain 

xp - q - 1 ;;;. (p - q)(x - 1) and x q - 1 < qxq-I(x - 1). 

Using these inequalities on the right-hand side of (12.2) gives us for that 
side 

qxq(xp - q - 1) - (p - q)(xq - 1) > qxq(p - q)(x - 1) 

This and (12.2) imply that 

- (p - q)qxq-I(X - 1) 

= q(p - q)(x - l)(xq - x q- I) 

= q(p - q)(x - 1)2xq- 1 > 0. 

q(xP - 1) - p(xP - 1) > ° 
and the desired conclusion follows in this case also. 

* Chrystal, Algebra, Vol. 2, pp. 42-43, Dover, New York. 
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Theorem 12.1.* If r is rational,t x> 0, and x =1= 1, then 

(a) r > 1 or r < 0 imply 

rex - 1) < x' - 1 < rx,-I(x - 1). 

(b) 0 < r < 1 implies 

rex - 1) > x' - 1 > rx,-I(x - 1). 

II. Functions 

(12.3) 

(12.4) 

PROOF. We consider three cases: (1) r> 1, (2) 0 < r < 1, or (3) r < o. 
Case 1. r > 1, where r = p / q, and p and q are integers such that 

p > q ;;;. 1. It follows that 

Xl/q > 0 and Xl/q =1= 1. 

Apply Lemma 12.1 and obtain: 

(x l / q/ - 1 > ....:...(X_I_/q....:...)q_-_l = x-I 

P q q 
Putting r = p / q, we can write this inequality as 

x'-1 >r(x-l). 

This proves the leftmost inequality in (a) for r > 1. 

(12.5) 

(12.6) 

Now note that X-I> 0 and X-I =1= 1. Replace x in (12.6) by x-I. Then 

(X-I)' - 1 > r(x- I - 1) 

which can be written as x-' - 1 > rx- I(1 - x). Multiply both sides of the 
latter inequality by x'. Since x' > 0, this yields 

1 - x' > rx,-I(1 - x). (12.7) 

Hence, 
x' - 1 < rx,-I(x - 1). 

This (12.7) and (12.6) complete the proof of part (a) for the case (1). 
Case 2. 0 < r < 1. Then r- I > 1, and we can use the result in case (1) 

with r- I instead of r. Replace r with r- I in (12.6). Then 

(X')I/' - 1 > 1 (x' - 1). 
r 

This yields 
x' - 1 < rex - 1) if O<r<1. 

Now use this inequality with x -I replacing x to obtain 

(X-I)' - 1 < r(x- I - 1) = rx-I(I - x). 

* Chrystal, Algebra, Vol. 2, pp. 43-44, Dover, New York. 

t The theorem holds also if r is real (see Theorem V.7.l). 

(12.8) 



12. Some Inequalities 81 

Multiply both sides here by xr and obtain 

1 - xr < rx r - l(l - x). 

But then xr - 1 > rxr-I(x - 1) for 0 < r < 1. This and (12.8) complete the 
proof in case (2). 

Case 3. r < O. This implies that 1 - r > 1. We use the right-hand inequal­
ity in (12.3) with 1 - r in place of r and obtain 

x l - r - 1 «1 - r)x-r(x - 1) = (1 - r)(xl-r - x-r). 

Now add x- r - x l - r to both sides. Then 

x-r - 1 < -r(x l- r - x-r). 

Multiply both sides by xr. Then 

1-xr<-r(x-l). 

But then 
xr-1>r(x-1), (12.9) 

where r < O. Finally replace x by x -I to find, as in case (1), that the 
rightmost inequality in (a) holds also for r < O. The proof is now complete. 

PROB. 12.6. Prove: If a and b are distinct positive real numbers and* r is a 
rational number, then 

(a) r > 1 or r < 0 each imply 

rbr-I(a - b) < a r - b r < rar-I(a - b) 

and 
(b) 0 < r < 1 implies 

rbr-I(a - b) > a r - b r > rar-I(a - b). 

PROB. 12.7. Prove: If a and b are distinct negative real numbers and 
r = m / n, where m and n are nonzero integers and n is odd, then one of the 
inequalities in Prob. 12.6 holds: (1) if m is even then (a) holds if r < 0 or 
r> 1 and (b) holds if 0 < r < 1; (2) if m is odd, then (a) holds if 0 < r < 1, 
while (b) holds if r < 0 or r > 1. 

Theorem 12.2 (Young's Inequality). If a and b are positive real numbers t and 
rand s are rational numbers such that r + s = 1, then 

(a) 0 < r < 1 implies 
arbS..;; ra + sb 

• The statement also holds if r is real (see Prob. V.7.l). 

t The theorem also holds if rand s are real. 

(12.10) 
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and 
(b) r < 0 or r > 1 imply 

a'b S ;;;. ra + sb. (12.11) 

The equality in each of (a) and (b) holds if and only if a = b. If 0 < r < 1, 
then the hypothesis can be extended to a ;;;. 0 and b ;;;. O. 

PROOF. Use Prob. 12.6 and the leftmost inequalities in parts (a) and (b) 
there and add b' to both sides to obtain 

rb,-I(a - b) + b' < a' if (a) r>l or r<O (12.12) 

and 

rb,-I(a - b) + b' > a' if (b) O<r<1. (12.13) 

Now multiply each of these relations by bS and note that s + r - 1 = O. 
Then 

rea - b) + b < a'b s if r> 1 or r<O (12.14) 

and 

rea - b) + b> a'b s if (a) O<r<1. ( 12.15) 

Since r + s = 1, we see that 

ra + sb < a'b s if (a) r>O or r<O (12.16) 

and 

ra + sb > a'b s if (b) O<r<1. (12.17) 

Note that a =1= b, a > 0, and b > 0 imply the strict inequalities in (12.10) 
and (12.11). Consequently, the equality in (12.10) and (12.11) implies that 
a = b. Conversely, if a = b, it is easily seen that equality holds in each of 
(12.10) and (12.11). The last statement in this theorem is obvious. 

Theorem 12.3* (Generalization of Part (a) of Theorem 12.2). If XI' ... , xn 
are nonnegative real numbers and a I , a2' . . . , an are positive rationals t such 
that 

( 12.18) 

then 

(12.19) 

The equality in (12.19) holds if and only if XI = X2 = ... = xn • 

• Beckenbach and Bellman, Inequalities. "Ergebnisse der Mathematik und Ihrer Grenz gebiete 
Neue Folge," Band 30, Springer-Verlag, New York, 1965. 

tThe theorem holds if ai' ... , an are all real. 
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PROOF. We use induction on n for n ;;;. 2. By Part (a) of Theorem 12.2, the 
theorem holds for n = 2. Assume it holds for some integer n ;;;. 2. Take 
distinct positive rational numbers a l , . .. , an,an + 1 such that 

( 12.20) 

Then 
a l 

+ 
a 2 + ... + an 

=1. 
1 - a n + 1 1- an+1 1 - a n + I 

(12.21) 

The numbers 
a l a 2 an 

1 - aa+ I ' 1 - a n + 1 
, ... , 

1 - a n + I 
(12.22) 

are n positive rational numbers satisfying (12.21). By the induction hypoth­
esis, we, therefore, have for nonnegative real XI' ... 'Xn 

xfl/(I-an+llx2',/(l-an+ll ... xnan/(I-an+l) < al XI + a2 X 2 + ... 
1 - an + I I - an + I 

where the equality holds if and only if XI = ... = x n • Next let 

a = xfl/(l-an+l)x2',/(I-an+ll ... xnan/(I-an+l) and b = x n + l , (12.24) 

a and b are nonnegative real numbers, a n + 1+ (1 - a n + I) = 1, and 0 < iXn+ I 
< 1. By Young's inequality we obtain 

(12.25) 

This and (12.24) imply that 

(12.26) 

But the left-hand side of (12.23) is equal to a (see (12.24», so (12.23) may 
be written 

This and the fact that b = X n + I imply that 

(1 - a n + I)a + a n + Ib < alx l + 
This inequality and (12.26) yield 

(12.27) 

( 12.28) 

It is clear that if x I = X2 = ... = xn + I' then the equality holds here. 
Conversely, suppose that two of XI" •• , xn,xn + 1 differ. If the two that 
differ are among XI' ••• , x n ' then, by the induction hypothesis, (12.23) is a 
strict inequality. Hence (12.28) is a strict inequality. On the other hand, if 
XI = ... = x n ' but Xn =1= xn+I' then (12.24) implies 

a = xn and b =1= a. 
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This time (12.25) is a strict inequality. This implies that (12.28) is strict. 
Therefore, if x I = . . . = Xn = Xn + I is false, then the strict inequality in 
(12.28) holds. Hence, if equality holds in (12.28), then XI = ... = Xn 
= X n + I' Invoking induction, we find that the theorem holds for all n. 

Corollary (The Geometric-Arithmetic Inequality). Let n be some positive 
integer. If X I' x2' ... , xn are nonnegative real numbers then 

I/n XI + ... + xn 
(X IX 2 • •. xn) .;;; . (12.29) 

n 

PROOF. In the theorem, let al = a2 = ... = an = 1 I n, so that 

X"'X"2 x"- = xl/nxl/n xl/n = (x X x )I/n 12 ••• n I 2 ... n 12'" n 
and 

1 1 1 XI + ... + Xn 
alx l + a2x2 + ... + a X = -XI + -X2 + ... + -x = --=-----~ nn n n nn n 

The conclusion is an immediate consequence of the theorem. 

Theorem 12.4. Suppose r is rational, r2 *' r, and s = r I(r - 1), so that 

1 + 1 = 1. (12.30) 
r s 

Let A and B be positive real numbers. Then 

(a) r> 1 implies 

AB.;;; AT + B S 

r s 
and 

(b) r < 1 implies 
AT B S 

AB >-+-. 
r s 

Equality holds in (12.31) and (12.32) if and only if 
B = AT-I 

(12.31) 

(12.32) 

(12.33) 

which is eqUivalent to A = B s - I. If r > 0, the hypothesis may be extended to 
A > 0, B > O. 

PROOF. Let a = A T and b = B S , so that A = a l / T and B = b l / s • If r> 1, 
then 0 < llr < 1. By Theorem 12.2 and (12.30) we obtain 

AB = al/Tb l/ s .;;; la + Ib = AT + B S 
• (12.34) 

r s r s 

If r < 1, since r2 *' r, we have r *' O. Therefore, 0 < r < 1 or r < O. This 
implies 1 I r > 1 or 1 I r < O. This time Theorem 12.2 yields: 

(12.35) 
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Equality holds in (12.34) and (12.35) if and only if a = b; that is, if and 
only if A' = B S , or A lis = B II,. Since (1 I r) + (1 Is) = 1, this implies that 

A = A I/'A lis = A I/'B II' = (AB )1/' or A' = AB 

and 

(AB )l/s = A I/sB lis = B I/sB II' = B or AB = B S • 

These yield B = A ,-I and A = B s - I as necessary and sufficient conditions 
for the equality to hold in (12.31) and (12.32). 

Theorem 12.5 (Holder's Inequality). If r is rational* and ai' ... , an' 
b l , ... , bn are real and nonnegative and r2 =1= rand s = r I(r - I), so that 

1 I r + -; = I, (12.36) 

then (a) r > 1 implies 

n (n )1/'( n )I/S .L: ajbj , .L: af .L: b/ 
.=1 .=1 .=1 

(12.37) 

and (b) r < I implies 

n (n )1/'( n )I/S .L: ajbj ;;;' .L: af .L: b/ . 
.=1 .=1 .=1 

(12.38) 

Equality will hold in (12.37) and (12.38) if and only if 
there exists a real A. ;;;. 0 such that af = Ab/ for each i (12.39) 

or 

there exists a real '1/ ;;;. 0 such that b/ = 'l/af . (12.40) 

PROOF. We prove (a) using Theorem 12.4, part (a). The proof of (b) uses 
part (b) of Theorem 12.4 and we leave it to the reader (Prob. 12.8). We 
begin by assuming that r > 1. If 

n 

L: af= 0 or 
i=1 

M 

"'b:"=O L.J I , 

i=1 
(12.41 ) 

then either aj = 0 for all i or bj = 0 for all i and we have equality in (12.37). 
We, therefore, assume that 

n 

L: af> 0 and 
i=1 

n 

L: b/> O. (12.42) 
i=1 

a j bj 1 af 1 b/ _._,--+--
u v r u' s v S 

for each i with 1, i 'n. (12.43) 

* The theorem also holds if r is real. 
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Sum over i. Then 
n ""n r ""n bS --L ~a.b.<l'::";=la; +1'::";=1; =1.1+1.1=1. 

uv ;= I 1 1 r u r S V S r s 

This implies 

n (n )I/S( n )l/r 
.~ a;b; < uv = .~ a;' .~ b/ 
1=1 1=1 1=1 

Thus, if r > 1, then (12.37) holds. 
We examine the conditions under which the equality in (12.37) holds. 

Suppose that a A ~ 0 exists such that a;' = Ab/ for all i. This implies that 
a; = A I/rbslr for each i. Hence, 

n n n 
"" a.b.= "" A I/rb.slrb.= A I/r"" b~s+r)/r 
L.J11 ~ I I L..Jl • (12.44) 
;=1 ;=1 i-I 

But (12.36) implies r + s = rs. It follows from this and (12.44) that 
n n 
~ a;b;= A I/r ~ b/ . (12.45) 
;=1 i=1 

Also, 

( n )l/r( n )I/S (n )l/r( n )I/S (n )l/r+l/s 
~ a;' ~ b/ = ~ Ab/ ~ bij = A I/r ~ b/ 
i=1 ;=1 ;=1 ;=1 ;=1 

(12.46) 

Comparing the right-hand side with (12.41), we arrive at 

n (n )l/r( n )I/S 
.~ a;b; = .~ a;' .~ b/ , 
1=1 1=1 1=1 

(12.47) 

which is the equality in (12.37). Conversely, assume that we have equality 
in (12.37), so that (12.47) holds. 

If u r = 2:,7= I a;' = 0 or V S = ~7= Ib/ = 0, then either a; = 0 for all i or 
b; = 0 for all i and 

either a;' = Ob/ for all i or b/ = Oa;' for all i. (12.48) 

If u > 0 and v > 0, we divide both sides of (12.47) by uv and obtain 

Suppose a k exists such that 

Write 
a· 

A.= --.!. 
1 U 

.± ( a; )( b; ) = 1. 
1=1 U V 

af bI 
r =1=,. u v 

and 
b· 

B.=--.!. 
1 v 

( 12.49) 

(12.50) 

for all i. (12.51) 
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Note that for the k for which (12.50) holds, we have 

A[ =1= Bt and hence Ak =1= Be lor, equivalently, Bk =1= A[-I , 

so that by Theorem 12.4, part (a), 

But then 
n "n A r "n B S 

2': A.B.< .LIl=1 k + LJ,=I , 

;= I "r s 
( 12.52) 

Since 
n "n at 

2': A t = LJ, = I , = 1 and 
;= I' u r 

n "n bS 
2':B.s= LJ,=I 1=1, 
;= I' v r 

(12.53) 

(12.52) implies that 

n 1 1 
2':AB<-+-=1. 
;= I / / r s 

This contradicts (12.49). (In view of (12.51), (12.49) states 2:7= IA;B; = 1.) 
Thus, if (12.47) holds, then we must have (see (12.50» 

at bS 

I _ I and therefore a/.r = Ah,s "Ii' - v S 
for all i, 

where A = u r / v S • Note that necessarily A > O. This proves (12.39). 

PROB. 12.8. Complete the proof of the last theorem by proving part (b). 

Theorem 12.6. (Cauchy-Schwarz Inequality). If aI' ... , an; bl' ... , bn are 
all real numbers (not necessarily nonnegative), then 

( 12.54) 

Here the equality holds if and only if either there exists a real t such that 
b; = ta; for all i or there exists a real s such that a; = sb; for all i. 

PROOF. Use Holder's inequality with r = s = 2 and obtain 

Thus, (12.50) holds. 
Now examine the conditions for the equality in (12.54) to hold. If either a 

real t exists such that b; = ta; for all i or there exists a real s such that 
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aj = sbj for all i, then easy calculations prove that the equality holds in 
(12.54). 

Conversely, suppose the equality in (12.54) holds, so that 

I n I (n )1/2( n )1/2 .L ajbj = .L al .L bl . 
1=1 1=1 1=1 

(12.55) 

If "L.7=lal = 0 or "L.7=lbl = 0, then, as shown earlier, we have bj = Oaj for 
all i or aj = Obj for all i. If "L.7= lal > 0 and "L.7= Ibl > 0, put 

"L.7=l ajbj 
t = n 2' 

"L.j=laj 

We have: 
n n 

L (bj - taj)2 = L (bj
2 - 2ta j bj + t2al) 

;=1 ;-1 
n n n 

= L bl- 2t L ajbj+ t 2 La? 
;=1 ;=1 ;=1 

In view of (12.55), the expression on the right-hand side is equal to O. This 
implies that "L.7=I(b l - ta;i = O. In turn, this implies bj - taj = 0 for all i 
and, hence, bj = taj for all i. 

Theorem 12.7 (Minkowski's Inequality). If ai' ... , an; b l, ... , bn are non­
negative real numbers and r is a rational number,· then 

(a) r> 1 implies 

C~1 (aj + bj)'flr ~ C~1 alflr + C~1 bt fir (12.56) 

and 
(b) r < 1 implies 

( n )llr (n )llr (n )llr L (aj + bj)r >.L at +.L bt . 
n=1 1=1 1=1 

(12.57) 

(If r < 0, we assume in the hypothesis that aj > 0 and bj > 0 for all i.) The 
equality holds in each of (12.56) and (12.57) if and only if (I) there exists a 

* The theorem also holds if r is real. 
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u ;;;. 0 such that bi = uai for all i or (2) there exists a v ;;;. 0 such that a; = vb; 
for all i. 

PROOF. We prove (a) and leave the proof of (b) to the reader (Prob. 12.9). 
Assume r > I and define 

r 
s=r_l 

which implies 1/ s = 1 - 1/ r or 1/ r + 1/ s = 1. Note that 

r-l=~. 
s 

For each i, we have 

(ai + b;)r = (ai + b;)( ai + b;)r~ 1 = (a; + b;)( a; + b;)'/s 

= a;(a; + b;)r/s+ b;(a; + b;)'/s. 

Using Holder's Inequality, we have 

i~1 ai ( a; + b;)'/s '" C~I at f/r C~I ( a; + b;),/s)'f/
s 

= (.± at)l/r(.± (a; + b;)r)I/S. 
1=1 1=1 

Similarly, 

Summing in (12.60) and using (12.61) and (12.62), we obtain 

( 12.58) 

( 12.59) 

( 12.60) 

(12.61) 

(12.62) 

i~1 (a; + b;)' '" (C~1 at f/r + C~1 bt f/r)C~1 (a; + b;)'f/
s
. (12.63) 

If (L7= I(a; + b;)')I/s = 0, then a l + bi = 0 for all i so that a l = 0 = b; for all 
i. In this case the equality in (12.56) holds trivially. If (L7= I(a; + bJr)l/s 
> 0, we divide both sides in (12.63) by (L7= I(a; + b;)')I/s and obtain 

( n )I~I/S (n )I/r (n )I/r 
.L: (a; + b;)r "'.L: at +.L: bt . 
1=1 1=1 1=1 

(12.64) 

Since 1 - 1/ s = 1/ r, (12.56) follows. 
We now investigate the conditions under which we have equality in 

(12.56). If au;;;' 0 exists such that bi = ua for all i or a v ;;;. 0 exists such 
that ai = vb; for all i, then easy calculations show that we have equality in 
(12.56). Conversely, assume 

( n )I/r (n )I/r (n )I/r 
.L: (ai + b;)' =.L: at +.L: bt . 
1=1 1=1 1=1 

(12.65) 
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Examine inequalities (12.61) and (12.62). They are consequences of Hold­
er's Inequality for r > 1 and necessarily hold. If the strict inequality in one 
of (12.61) or (12.62) holds, then the strict inequality in (12.63) would hold. 
Thus, (12.65) would be false. Consequently, (12.61) and (12.62) are equali­
ties. That is, 

(12.66) 

and 

(12.67) 

Apply the condition for the equality in the Holder inequality to (12.66). It 
follows that: either a A > 0 exists such that 

at = Af(a. + b.)T/S)S = A(a. + b.)T 
I \ I r I 1 for all i, (12.68) 

or a p. > 0 exists such that 

(a; + b;)T = p.a/ for all i. (12.69) 

If (12.68) holds and A = 0, then a; = 0 for all i and hence a; = Obi for all i. If 
A > 0, then (12.68) yields 

a. = A I/T(a. + b.) and hence (A -I/T - l)a. = b. I I I I ,. 

Thus b; = vai for all i and some v. A similar conclusion is arrived at if 
(12.69) holds. This completes the proof of part (a). 

PROB. 12.9. Complete the proof of Theorem 12.7 by proving part (b). 

PROB. 12.10. Prove: If a l , • •• , an;b l , • •• , bn are real numbers (not neces­
sarily nonnegative), then 

( n ) 1/2 (n ) 1/2 (n ) 1/2 
.~ (ai + bi .;;;.~ a? + ~ b/ , 
,=1 ,=1 ,=1 

where the equality holds if and only if either a real u exists such that 
b; = uai for all i or a real v exists such that a; = vb; for all i. 

PROB. 12.11. Prove: If aI' ... , an are positive real numbers, then 

PROB. 12.12. Prove: If aI' ... , an are nonnegative real numbers and mn, Mn 
are defined as 
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then 

PROB. 12.13. Prove: Let ai' ... , an; b l , ... ,bn be positive real numbers. 
Put 

Then 

(1) ~ a l + a2 + ... + an ~ M 
mn " b b b" n 1+ 2+"'+ n 

and 

(In (1), aI' ... , an need not be positive.) 

The results cited in the next two problems are useful in the theory of 
infinite products. 

PROB. 12.14.* If a l ,a2, ... , an are nonnegative, then 
n 

II (1 + ak) ;;;. 1 + a l + a2 + ... + an' 
k=l 

PROB. 12.1S.t Prove: If 0 < ai < 1 for 1 ,;;; i';;; n, then 

(a) 

(b) 

(c) 

(d) 

PROB. 12.16. Prove: 

1 3 S 99 1 -'-'- '" -<-
2 4 6 100 10' 

*T. J. I. Bromwich, Infinite Series, Macmillan, New York, 1942. 
t Loc. cit. 



CHAPTER III 

Real Sequences and Their Limits 

1. Partially and Linearly Ordered Sets 

The subset relation t;:;; between sets has the following properties: 

(a) If A is a set, then A t;:;; A. 
(b) If A and B are sets such that A t;:;; Band B t;:;; A, then A = B. 
(c) If A, B, and C are sets such that A t;:;; Band B t;:;; C, then A t;:;; C. 

Note that sets A and B may exist which are not related by t;:;;. Thus, it may 
happen that A rt Band B rt A; Fig. 1.1 makes this clear. 

Def. 1.1. If S is a nonempty set of elements and < a relation between the 
elements of S such that if a, b, and c are in S, then 

(a) a < a, 
(b) a < band b < a imply a = b, 
(c) a < band b < c imply a < c. 

We call the system consisting of S together with the relation < a partially 
ordered system. Such a system will often be written (S, <). Usually, we call 
the system a partially ordered set and abbreviate by referring to it as a POS. 
The relation < is called an ordering of S. When the relation < on S has 
the additional property 

(d) If a E Sand b E S, then a < b or b < a, 

we call the POS a linearly ordered set and the ordering <, a linear ordering 
of S. In a linearly ordered set any two elements are related by the ordering. 
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A B 

Figure l.l 

Remark 1.1. If (S, ";;) is a POS, we define a ;;;. b to mean b ..;; a. It is easy to 
see that the relation;;;' is also an ordering of S. The resulting POS (S, ;;;.) is 
called the dual of the original system. 

Remark 1.2. The real number system with the relation";; as defined in Def. 
1.2.2, which we write as (IR, ..;;), is a linearly ordered system. The relation ;;;. 
on IR is the dual of ..;;. We call the ordering ..;; the natural ordering of IR. 
The system (Ol, ";;) consisting of the set Ol of rationals together with the 
natural ordering ..;; of Ol is also a linearly ordered system. 

Def. 1.2. In a partially ordered system (S, ";;) define a < b to mean a";; b 
but a =1= b. 

It is easy to see that a < a is false, and that a < b ..;; c implies a < c. 

2. The Extended Real Number System IR * 
We extend the real number system as follows: If S is a set of real numbers 
which is not bounded from above, we write 

supS = + 00 or supx= + 00. 
xEs 

Similarly, if S is not bounded from below, we write 

inf S = - 00 or inf x = - 00. 
xES 

(2.1 ) 

(2.2) 

This introduces two symbols, - 00 and + 00, called respectively minus 
infinity and plus infinity. The set 

IR* = { - oo} U IR U { + 00 } (2.3) 

is called the set of extended real numbers and each of its members is called 
an extended real number. We order IR* as follows: (a) - 00 < + 00, (b) if 
x E IR, then - 00 < x < + 00, (c) if x and yare real numbers, they have the 
same order in IR* as in IR. 
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The advantage gained by introducing IR* is that each of the subsets of the 
latter is bounded from above and from below and thus is bounded. 
Moreover, if S ~ IR*, S =F 0, then 

z E S implies infS";; z";; supS. 

Basically, we are interested in sets of real numbers and IR* is introduced 
as an aid in the study of these. 

Terminology. Although each set in IR* is bounded, a set of real numbers 
which is not bounded from above in IR will still be called not bounded from 
above. Similarly, a set of real numbers not bounded from below in IR will 
still be called not bounded from below (even though it is bounded from 
below, in IR*). In the same spirit we say that a set of real numbers which is 
bounded from above or from below or simply bounded, when it is so as a 
subset of IR. 

Functions Whose Ranges Are in Linearly Ordered Sets 

Let S be a nonempty linearly ordered set. If f: X ~ S, where X =F 0, then 
we say that f is bounded from above or that f is bounded from below, or 
simply bounded, if and only if its range is so. An upper bound, or for that 
matter a lower bound of f, is defined as an upper, or respectively a lower 
bound of the range 6Jv(j) of f. Similarly, the supremum of f is defined as the 
supremum of 6Jv(j) and the infimum of f as the infimum of 6Jv(j). If 
JL = sup f, then we write 

JL = sup f= sup f(x), (2.4) 
X xEX 

and if A = inf f, then we write 

A = inf f= inf f(x). 
x xEX 

(2.5) 

If S is also order-complete (every nonempty subset of S which is bounded 
from above has a supremum in S), then, since X =F 0, 6Jv(j) =F 0, we have: 
If f is bounded from above, then sup f exists and is in S and if f is bounded 
from below, then inf f exists and is in S. Iff: X ~ S has u E S as an upper 
bound, then 

x E X implies f(x)..;; u, 

and, dually, if f: X ~ S has I as a lower bound, then 

x E X implies f( x) ;;. I. 

(2.6) 

(2.7) 

Remark 2.1. Since sequences (Section 11.3) of elements of a set are func­
tions, the terminology just adopted for functions whose ranges are subsets 
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of a linearly ordered set S is applicable to sequences of elements of S. We 
can, therefore, speak of sequences of elements of S which are bounded 
from above or from below and of the suprema or infima of such sequences 
when they exist. Hence, if <an> is a sequence of elements of a linearly 
ordered set S, we write 

sup an or inf an 
n> I n> I 

for the supremum or the infimum of <an> when these exist. These are of 
course respectively the supremum or infimum of the range of <an>. 

It should also be clear that just as we spoke of monotonically increasing 
or monotonically decreasing sequences in IR (see end of Section 11.9), so too 
we can speak of monotonically increasing or monotonically decreasing 
sequences of elements of a linearly ordered set S. The result cited in Prob. 
11.9.3 carries over to sequences of elements of a linearly ordered set S. 

PROB. 2.1. Let I: X ~ S be a function whose codomain S is linearly 
ordered. Prove: (a) p. = sup I if and only if (1) I(x)";; p. for all x E X and 
(2) if u < p. for some u E S, then there exists Xo E X such that u < I(xo) 
..;; p.. (b) A = inf I if and only if (1) I(x) ;;;. A for all x E X and (2) if I > A 
for some I E S, then there exists an XI E X such that I> l(x l ) ;;;. A. 

Remark 2.2. When applied to a sequence <xn> of elements of a linearly 
ordered set S the result in the last problem becomes: (a) p. = SUPXn if and 
only if (1) Xn ..;; P. for all n E 7L+ and (2) if u < p. for some u E S, there 
exists an no such that u < xno";; p.; (b) A = infxn if and only if (1) Xn ;;;. A for 
all n E 7L+ and (2) if I > A for some I E S, then there exists an nl such that 
I> xn ,;;;' A. 

PROB. 2.2. Let <an> be a sequence of elements of a linearly ordered set S. 
Prove: (a) If <an>t, then <an> is bounded if and only if it is bounded from 
above; (b) <an>~ if and only if it is bounded from below. 

FROB. 2.3. Let I: X ~ IR be a real-valued function: Prove: I is bounded if 
and only if II(x)1 ..;; M for some real M > 0 (Prob. 1.13.20). 

Def. 2.1 (Subsequence of a Sequence). Let <xn> be a sequence of elements 
of a set Y and <nk >k>1 be a strictly monotonic increasing sequence of 
positive integers. Then the sequence <bk >k>I' where bk = x"" for all k 
·E 7L+ ' is called a subsequence of <xn>. This subsequence is written as <xn). 

Thus if <xn> is a sequence, then the sequence 

where nl < n2 < n3 < ... , is a subsequence of <xn>. As an example, 
consider <xn> = <1,2, 1,2, ... >, where Xn = 1 if n is odd, and Xn = 2 if n is 
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even. Letting nk = 2k for each k E 7L+, we obtain <nk) = <2,4,6, ... ). 
Here, <nk) is a strictly monotonic increasing sequence of positive integers. 
The sequence <X2k ) = <2,2,2, ... ) is a subsequence of (1,2, 1,2, ... ). 

Remark 2.3. If <xn) is a sequence of elements of a linearly ordered set S 
and p. = sup xn ' where p. E S, then it may happen that there exists a 
subsequence <xn) of <xn) which does not have p. as its supremum. For 
example, let <xn)=(1,2,1,2, ... ). Then <x2k - I)=<I,I,I, ... ), 2 
= supxn' and 1 = SUPX2k _ l. For certain classes of sequences of elements 
of a linearly ordered set it is true that if p. = supxn' then p. = SUPk>IXnk 
holds for all subsequences <xn) of <xn). Below we prove that this is the 
case for monotonic sequences. 

Theorem 2.1. If <xn) is a monotonic increasing sequence of elements of a 
linearly ordered set Sand p. = sUPn>lxn, where p. E S, then for each subse­
quence <xn) of <xn) we have p. = SUPk> IXnk' 

PROOF. Since each term of <xn) is a term of <xn), (I) xnk « p. for all 
k E 7L+ . (2) Assume u < p. for some u E S. This implies that u is not an 
upper bound of <xn) and hence that there exists a ko such that u < Xko « p.. 
Since <nk) is a strictly monotonic increasing sequence of positive integers, 
we know (Prob. 11.9.4) that nko ;;.. ko. Since <xn)t, by hypothesis, it follows 

u < Xk « Xn « p. so that u < Xn « p.. 
o *0 kO 

By Remark 2.2, we have p. = SUPk> IXnk' 

PROB. 2.4. Prove: If <xn) is a monotonic decreasing sequence of elements 
of a linearly ordered set S and A = infn>lxn, where A E S, then for each 
subsequence <xn.> of <xn) we have A = infk> IXnk' 

PROB. 2.5. Let <xn) be a monotonic increasing sequence of a linearly 
ordered set Sand p. = sUPn>lxn' Then we know xn « p. for all n. Prove: If 
<xn) is strictly monotonically increasing, then Xn < P. for all n. Dually, let 
<xn) be a strictly monotonically decreasing sequence of elements of a 
linearly ordered set S and A = inf Xn. Prove that Xn > A for all n. 

Remark 2.4. If S is a linearly ordered set where S =1= 0, then the range of a 
sequence of elements of S is not empty. If, in addition, S is order-complete 
(every nonempty subset of S which is bounded from above has a su­
premum in S), then, if <xn) is bounded from above, it has a supremum in 
S. The dual of this is easily formulated and holds also. 

Remark 2.5. The sets IR and IR* are linearly ordered, so all the theorems 
proved about linearly ordered sets hold in IR and in IR*. 
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Since every sequence <xn> of elements of IR* is bounded in the sense that 

(3.1 ) 

holds for all n, we see that each real sequence <xn> (xn E IR for each n) has 
an infimum and supremum in IR*. We have for the kth term Xk of <xn> 

- 00 ,;;; inf xn';;; Xk ,;;; sup xn';;; + 00. 
n> I n> I 

(3.2) 

If our sequence is bounded from above, then it has a real supremum and 
we have 

- 00 < Xk ,;;; supxn< + 00. 
n>1 

If it is bounded from below, then 

- 00 < inf xn';;; Xk < + 00. 
n>1 

(3.3) 

(3.4) 

If the sequence is either not bounded from above or not bounded from 
below, then in the respective cases 

sUPXn= + 00 and inf xn= - 00. 
n>1 n>1 

(3.5) 

As an example, consider the sequence <xn >, where Xn = n for all n, so 
that <xn> = (1,2,3, ... >. Clearly, here 

inf Xn= I and supxn= + 00. 
n>1 n>1 

Notation. We adopt the following notation: Given a sequence <xn> of real 
numbers, we write for eachj E 71.+ 

A j = inf.xn and ~ = supxn . (3.6) 
n>j n>j 

For the ranges of <xn>n>j and <xn>n>j+I' we have 

{xn}n>j+l k {xn}n>j for each j E 71.+ . (3.7) 

These imply (cf. Prob. 1.12.1; the result cited in that problem is extendable 
to IR*) that 

inf.xn';;; i~f xn';;; sup xn';;; supxn for each j E 71.+ , 
n>j n>j+1 n>j+1 n>j 

or, in terms of the notation just adopted, that 

Aj';;;Aj+I';;;~+l';;;~ foreach jE71.+. (3.8) 

These inequalities show that the sequences (di>j>l and <~>j>l are respec­
tively monotonically increasing and monotonically decreasing sequences 
of IR*. 
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We next observe that 

AJ ~ Ak for any positive integers j and k. 

To see this, first take j < k. Since <~~!k>t. we have 

AJ~Ak~ Ak · 

On the other hand, if j ;;. k, then since <Ak>,J." we have 

AJ~ ~ ~ Ak • 

In either case, (3.9) holds. 
In terms of the notation just adopted 

A I ~ AJ ~ Ak ~ Al . 

(3.9) 

(3.10) 

Here d.1 = infn~lxn and Al = sUPn~lxn' We shall drop n;;' 1 in both of 
these equalities when there is no danger of confusion and write inf Xn 
instead of infn~lxn and SUPXn instead of sUPn~lxn' Hence 

inf xn ~ AJ ~ Ak ~ sup Xn if j and k are positive integers. (3.11) 

Def. 3.1. If <xn> is a sequence of real numbers and for each k, d.k and Ak 
are defined as in (3.6), then we call infAk the limit superior of <xn> and 
SUPd.k the limit inferior of <xn> and write 

lim inf xn = sup A k = sup ( inf xn)' 
n-4 + 00 k;;. In;;' k 

lim sup Xn = inf Ak = inf ( sup xn) 
n-4 + 00 k ;;. In;;. k 

(3.12) 

for the limit inferior and limit superior of <xn>. We also use the notation 

lim Xn = lim inf Xn and lim Xn = lim sup Xn . 
n-4+oo n-4+oo n-4+oo n-4+oo 

(3.13) 

Sometimes, when there is no danger of confusion, we omit n ~ + 00. 

Theorem 3.1. If <xn> is a real sequence, then limits superior and inferior of 
the sequence are unique extended real numbers and we have the result: If j 
and k are positive integers, then 

(3.14) 

PROOF. For each k, infn~kxn is a unique extended real number. (That it is 
an extended real number follows from the properties of IR* = { - oo} U IR U 
{ + 00 }.) Since each sequence of elements of a linearly ordered set has at 
most one infimum, we conclude that there exists exactly one extended real 
number d.k that is the infimum of {Xn}n~k') Consider next the sequence 
<d.k>. This is a sequence of extended real numbers and as such its 
supremum (which is limxn) is a uniquely determined extended real number. 
Similar reasoning shows that lim Xn is a unique extended real number. 
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Next we prove that the inequalities (3.14) hold. The leftmost inequality is 
a consequence of limxn = SUP4.k, while the rightmost one is a consequence 
of limxn = infAk. It remains to prove that the middle inequality in (3.14) 
holds. In view of (3.9), each 4; is a lower bound (in IR*) of the sequence 
<Ak >. Hence 

for eachj. 

Here limxn is an upper bound (in IR*) of the sequence <4;>. Hence, 

lim Xn = sup A j ";; lim Xn 

so that limxn ..;;limxn. This completes the proof. 

Theorem 3.2. If <xn> is a real sequence, then 

lim Xn = + 00 if <xn> is not bounded from above 

and 

lim Xn = - 00 if <xn> is not bounded from be/ow. 

(3.15) 

(3.16) 

We prove the first part and leave the proof of the second part to the reader 
(Prob.3.1). 

PROOF. Assume that there exists a positive integer k such that Ak < + 00. 

Since Xm E IR for each m, it follows that 

- 00 < Xm ..;; sup Xn = ~ < + 00 
n>k 

if m;;;' k. 

Therefore, Ak E IR. If k = 1, then we have Xn ..;; Al for all n and, hence, 
<xn> is bounded from above. Let k > 1. Put 

B = max { Xl' ... ,xk ,Ak}. 

{Xl' ... , xk,Ad is a finite set of real numbers and, hence, has a maximum 
B (Remark II.l0.3(b)(7». We have Xn ..;; B for all n (why?). Thus <xn> is 
bounded from above also in the case k> 1. It follows that if <xn> is 
not bounded from above, then Ak = + 00 for all k and so lim Xn = inf Ak 
= +00. 

PROB. 3.1. Complete the proof of Theorem 3.2 by proving that: If the real 
sequence <xn> is not bounded from below, then limxn = - 00. 

PROB. 3.2. Let <xn> be a sequence of real numbers. Prove: (a) If for some 
positive integer j, ~ = + 00, then Ak = + 00 for all k and <xn> is not 
bounded from above; (b) if for some positive integer j, 4; = - 00, then 
4.k = - 00 for all k and <xn> is not bounded from below. 

PROB. 3.3. Let <xn> be a real sequence. Prove: (a) limxn = + 00 if and only 
if <xn> is not bounded from above, and (b) limxn = - 00 if and only if 
<xn> is not bounded from below. (See Theorem 3.2 for the "if" part.) 



100 III. Real Sequences and Their Limits 

EXAMPLE 3.1. Let <xn> be defined by means of: xn = - n for each positive 
integer n. Thus, <xn> = < -1, -2, -3, ... >. If n ~ k, then we have -n 
~ - k, so that 

.irk = supxn= maxxn= -k. 
n;.k n;;.k 

If B E IR, we know that a positive integer k' exists such that - B < k'. This 
implies that 

lim Xn = inf Ak ~ Ak, = - k' < B. 
Thus limxn < B for all real B. The only element of IR* having this property 
is - 00. Hence, limxn = - 00. 

EXAMPLE 3.2. Let <xn> be given by Xn = (-lr+ ln for each positive integer 
n. We have 

and 

+ 00 = Al = sup Xn , 

+ 00 = A2 = sup Xn , 
n;.2 

- 00 = A I = inf Xn 

- 00 = 42 = inf Xn 
n;;.2 

Thus Ak = + 00 for all k and 4k = - 00 for each k. It follows that 

4. Limits of Real Sequences 

Def. 4.1. We shall say that a real sequence has a limit in the extended sense 
if and only if 

(4.1 ) 

When this equality holds and there is no danger of confusion, then we 
often, simply say that <xn> has a limit. The L in IR* such that 
L = lim xn = lim xn is called the limit of Xn' and we write 

L = lim X n • 
n~+oo 

Other notations used when <xn> has a limit are 

as n~ +00 and 

(4.2) 

(4.3) 

When the limit of <xn> is a real number, we say that it converges or that it is 
convergent. In this case we also say that <xn> has afinite limit. A sequence 
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which does not converge is said to diverge or to be divergent. When <xn> 
has a limit in the extended sense but diverges, then we say that it has an 
infinite limit and also that it diverges to that limit. 

Remark 4.1. If a real sequence does not converge, then there are three 
possibilities: (a) limxn <limxn, (b) limxn = - 00, or (c) limxn = + 00. 

Thus, a divergent sequence may not have a limit at all or have an infinite 
limit. 

EXAMPLE 4.1. In Example 3.1, we saw that limn_Hoo( - n) = - 00. Since 
(Theorem 3.1) 

lim (- n)"; lim (- n), 
n~+ao n~+ao 

it follows that lim( - n) ..; - 00. Hence, lim( -: n) = - 00 and lim( - n) 
=lim(-n). Thus, limn_Hoo(-n) exists and limn_Hoo(-n)=limn~+oo= 
-00. 

EXAMPLE 4.2. Let Xn = (-It+ 1 for each n E 71.+ , so that <xn> = (1, -1, 
1, ... >. Clearly, for each k, 

A k = inf (- 1 r + 1 = - 1 and ~ = sup ( - 1 r + 1 = 1. 
n>k n>k 

Hence, 

lim (- 1 r + 1 = - 1 and lim (- 1 r + 1 = 1. 
n~+ao n~+ao 

This implies that our sequence diverges. Since - 1 ..; ( - 1 t + 1 ..; 1 for each 
n, we know that the sequence is bounded. This furnishes us with an 
example of a bounded sequence which diverges. 

PROB. 4.1. What are limn~+oo(l + (-It+ I) and limn-Hoo(l + (-It+ 1)1 

Theorem 4.1. If a real sequence has a limit, then this limit is a unique 
extended real number. 

PROOF. The theorem follows directly from the definition of limit and 
Theorem 3.1. 

Theorem 4.2. If <xn> is a real sequence, then 

(a) - 00 ..;limxn < + 00 if and only if <xn> is bounded from above. 
(b) - 00 <limxn ..; + 00 if and only if <xn> is bounded from below. 

PROOF. The leftmost inequality in (a) and the rightmost inequality in (b) 
always hold for a real sequence. By Prob. 3.3, the rightmost inequality in 
(a) holds if and only if <xn> is bounded from above and the leftmost 
inequality in (b) holds if and only if <xn> is bounded from below. 
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Theorem 4.3. If a real sequence converges, then it is bounded. 

PROOF. This is an immediate consequence of Theorem 4.2 and the defini­
tion of a convergent sequence. In fact, the limit and hence the limits 
inferior and superior of a convergent sequence, are in IR and are therefore 
neither + 00 nor - 00. 

Remark 4.2. In view of Example 4.2, the converse of Theorem 4.3 does not 
hold. The sequence <xn> =« -ly+l> is bounded but does not converge. 

PROB. 4.2. Prove: A sequence <xn> of real numbers is bounded if and only 
if there exists an M > 0 such that IXnl ..; M holds for all n E 71..+ (Hint: see 
Prob. 1.l3.20). Using this criterion for the boundedness of a real sequence 
we see that <xn> = «-lr+ I> is bounded. In fact, IXnl = I( -lr+ II = 1 ..; 1 
holds for all n E 71..+ . 

Theorem 4.4. (a) A monotonic sequence of real numbers has a limit (possibly 
an infinite one). (b) A bounded monotonic sequence converges. (c) If <xn> is 
monotonically increasing, then 

while if <xn> is monotonically decreasing, then 

lim Xn= inf xn . 
n ...... oo 

PROOF. We prove the theorem for the monotonically increasing case, 
leaving the decreasing case to the reader (Prob. 4.3). Let <xn> be a 
monotonically increasing sequence of real numbers. Let p. = supxn. For 
each positive integer k, <Xn>n-;'k is a subsequence of <xn> (explain). By 
Theorem 2.1, 

This implies that 

p. = supxn= Ak 
n>k 

for each k. 

lim Xn = inf Ak = p.. (4.4) 
n ...... + 00 

(The sequence <Ak>k-;'I is a constant sequence, i.e., p. = Ak for all k. Hence, 
its range is the singleton set {p.}. But then, infAk = inf{ p.} = p..) Now 
n ~ k implies that Xn ~ Xk and Xk is an element of the range of <Xn>n-;'k' 
This implies 

for each k E 71.. + . (4.5) 

It follows that 

lim Xn= sup Ak= supxk= supxn = p.. 
n ...... + 00 k> I 

(4.6) 
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This result and (4.4) imply that limn-->+ooxn exists and is an element of IR*, 
and 

(4.7) 

If, in addition, <xn> is bounded from above, then it has a real supremum, 
i.e., the p. here is real. By (4.7), <xn> converges. 

PROB. 4.3. Complete the proof of the last theorem by proving the results 
stated there for the case of a monotonically decreasing sequence. 

Corollary (of Theorem 4.4). If <xn> is a monotonic sequence of real numbers 
which is not bounded, then 

limxn = + 00 or limxn = - 00 

according as to whether <xn> is increasing or decreasing. 

PRoOF. In the increasing case, if <xn) is not bounded, then it is not 
bounded from above (Prob. 2.2). But then (Theorem 3.2) limxn = + 00. By 
Theorem 4.4, 

limxn = lim Xn = + 00. 

The proof for the case where <xn) is decreasing is similar (with the 
appropriate modifications of course). 

PROB. 4.4. Prove: (a) If <xn)t and there exists M E IR* such that Xn " M 
for all n, then limxn " M; (b) if <xn).J." and there exists an mE IR* such 
that xn ~ m for all n, then limxn ~ m. 

PROB. 4.5. Prove: (a) If <xn)t, then for each xk, Xk " limxn. If, moreover, 
<xn)t strictly, then Xk < limxn for each k. (b) If <xn).J." then we have for 
each term Xk' Xk ~ limxn. If moreover <xn).J., strictly, then Xk > limxn. 

PROB. 4.6(a). Prove: If <xn) is a constant sequence, i.e., if xn = c for all n 
for some c E IR, then <xn) converges and c = Xn ~ C. 

n 

Remark 4.3. The notions of limit superior can be extended to any linearly 
ordered set, in particular in IR*. Consequently, if <xn) is a real sequence, 
then its associated sequence (4k) is a monotonically increasing sequence of 
extended real numbers, while the sequence <Ak ) is a monotonically de­
creasing set of extended real numbers. Therefore, 

Hence, 

lim Ak= sup Ak and limAk = infAk . 
k--> + 00 
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and 

lim Xn = inf Ak = lim Ak = lim (sup Xk). 
n--+ + 00 k--+ + 00 k--+ + 00 n;;' k 

EXAMPLE 4.3. We examine <xn>, where Xn = n- k for each n E 1.+ and k is a 
fixed positive integer. Since 

o < 1 < ...L for each n E 1.+ 
(n+l)k n k 

we see that <xn> is strictly monotonically decreasing and bounded from 
below by O. Therefore, it converges (Theorem 4.4) and 

I· I· 1 . flO 1m Xn = 1m - = In - ~ . 
n--++oo n--++oo n k n;;'\ n k 

Given t: > 0, there exists a positive integer no such that no- I < t:, so 

nok < nol < t:. 
Thus, no t: > 0 is a lower bound for <xn >. Accordingly infn- k > 0 is 
impossible and we conclude that inf n - k = O. Therefore, 

(4.9) 

PROD. 4.6(b). Prove: 

lim (1_1)=1= lim (1+ 1 ). 
n--++ 00 n n--+ + 00 n 

Theorem 4.5. If <xn) is a subsequence of the real sequence <xn> (here <xn> is 
not necessarily monotonic), then 

(4.10) 

It follows that if limxn exists, then 

lim Xn= lim Xn • 
n--+ + 00 k--+ + 00 k 

(4.11 ) 

This last result states that if <xn> has a limit, then all its subsequences have 
the same limit. 

PROOF. Since <xn) is a subsequence of <xn>, we have nk ~ k. For the 
respective ranges 

for each k. (4.12) 

(Here we reindexed <xn) to avoid confusion.) Put 

(4.13) 
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and 

Ak= inf X n • 
n>k 
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(4.14) 

By properties of infima and suprema of sets, we obtain from (4.12), (4.13), 
and (4.14), 

and 

By (4.15) we obtain 

A k , B k , sup B k= lim Xnk 
k~+oo 

and by (4.16) we obtain 

Since we also have 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

we see that inequalities (4.10) follow from «4.19», (4.17), and (4.18). 
Finally, if <xn) has a limit, then limxn =limx" = limx". This and (4.10) 

imply that equality holds in (4.19) and that (4.11) holds. The proof is now 
complete. 

Theorem 4.6. If <xn) and <Yn) are real sequences such that Xn ' Yn for all 
n E 71..+, then 

(4.20a) 

and 

(4.20b) 

PROOF. We prove (b) and leave the proof of (a) to the reader (Prob. 4.7). 
Put 

Ak = sup x· and Bk = sup y. for each positive integer k. 
j>k J j>k' 

We have 

Xn ' Yn ' sup Yj= Bk for n ~ k. 
j>k 

Thus, for each k, Bk is an upper bound for the sequence <X,,)n>k and, 
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therefore, 

This implies that 

Ak = sup Xn" Bk 
n>k 

III. Real Sequences and Their Limits 

for each k. 

lim xn " inf Ak " Ak " Bk for each k. 

Thus, limxn is a lower bound for the sequence <Bk). This implies that 

lim xn "inf Bk = lim Yn ; 
this proves (4.20b). 

PROB. 4.7. Complete the proof of Theorem 4.6 by proving (4.20a). 

Corollary 1 (of Theorem 4.6). If <xn) and <Yn) are real sequences such that 
xn " Y n for all n and if lim Xn and lim Y n exist, then lim xn " lim Y n' 

PROOF. This is an immediate consequence of the definition of limit and the 
theorem. 

Corollary 2 (of Theorem 4.6). If b E IR* and <xn) is a real sequence such that 
xn " b holds for all n, then limxn " b. If Xn » b for all n, then limxn » b. 

PROOF. If b = ± 00, then b = + 00 in the first case and b = - 00 in the 
second and the conclusions are obvious. Assume b E IR and let <Yn) be the 
constant sequence where Yn = b for all n. Since limn _H ooYn = limn _H oob 
= b, the theorem yields, in the first case, 

lim Xn "lim Yn = limYn = b 
and in the second, 

Remark 4.4. In Theorem 4.6, the strict inequality xn < Yn for all n does not 
warrant the strict limxn < lim Yn or limxn < lim Yn in the conclusion. For 
example, let xn = I/(n + 1) andYn = lin for all n. Since <xn) is a subse­
quence of <Yn) here, we have 

1· 1 l' l' 1 l' 1 0 1m -- = Imx = Im- = Im- = . 
n+l n n n 

This observation is also relevant to Corollary 2 above. We have 0 < 1 I n for 
all n E 71.+ , and yet lim(l/n) = lim(l In) = lim(lln) = O. 

Corollary 3 (of Theorem 4.6). Let <xn), <Yn)' and <zn) be real sequences 
such that Xn " zn " Yn' Then 

(a) L =limxn =limYn implies L =limzn and 
(b) L =limxn = lim Yn implies L =limzn· 

PROOF. Exercise. 
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Corollary 4 (of Theorem 4.6). If <xn), <Yn)' and <zn) are real sequences such 
that xn ..; Zn ..; Yn and L = limxn = limYn' then L = limzn. 

PROOF. Exercise. 

Remark 4.5. This last corollary is known as the Sandwich Theorem. 

EXAMPLE 4.4. We prove that 

lim = 1. 
n-Hoo ~l + lin 

(4.21) 

This follows from the fact that 

1< W <1+ 1 , VI T n n for each n E 7L+ 

so that 

1_1<1 __ I_=_n_< 1 <1 
n n+l n+l b+l/n 

and hence 

1-1< 1 <1 
n ~1 + lin 

for each n E 7L+ . (4.22) 

Since (Prob. 4.6) limn->+oo(1 - lin) = 1, we obtain from (4.22) and the 
sandwich theorem that (4.21) holds. 

PROB. 4.8. Prove: (a) lim ~1 + lin = 1, (b) limn-> + 00 'VI + lin = 1. (c) 

Prove: limn->+oo(1/~1 + (1/n2» = 1. 

PROB. 4.9. Prove 

(a) lim ± _1_ = 0; 
1. -,+00 k=1 n2 + k 

(b) lim ± 1 = 1. 
n->+oo k=1 ~n2 + k 

5. The Real Number e 

We shall use Theorem 4.4 to prove that the sequence <xn ), 

for each n E 7L+ 

is convergent. 

(5.1 ) 
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Prob. II.5.3(b) implies that the sequence (5.1) is strictly monotonic 
increasing. Next we prove that it is bounded. By the Binomial Theorem 

Xn = (1 + ~ r = k~OG)( ~ f(lr- k 

= 1 + ± (n)-.L 
k=! k n k 

n n(n-I) ... (n-k+I) 
= 1 + ~ 

k=! k!n k 

= 1 + ± ~ (1 - ! )(1 - l) ... (1 - k - 1 ). (5.2) 
k=! k. n n n 

Since for 1 « k « n, k E 1+ , we have 

( 1 - ~ )( 1 - ~ ) ... (1 - k ~ 1 ) « 1, 

it follows that 

~ (1 - ! )(1 - l) ... (1 - k - 1 ) « ~ . (5.3) 
k! n n n k! 

This and (5.2) imply 

1 n n 1 
xn = (1 + -) « 1 + ~ ,. 

n k=! k. 

The reader could prove that 

1 1 -«-­
k! 2k - 1 

if k E 1+ . 

This and (5.4) imply 

But 

± }-l = ± (!)k-l= 1-(~f =2(I-Of)<2. 
k=! 2 k=! 2 1- 2 

From this and (5.5) it follows 

n 1 
x « 1+ ~ --<1+2=3 

n k=! 2k - 1 
for each n E 1+ . 

(5.4) 

(5.5) 

(5.6) 

Thus, <xn> is bounded from above by 3. This together with the fact that 
<xn> is monotonic increasing implies, by Theorem 4.4, that <xn> converges. 
We define 

e = lim (1 + ! )n. 
n~+ao n (5.7) 
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This definition and Theorem 4.4 imply that 

e = sup (1 + 1 )n. 
n> I n 

(5.8) 

Since 3 is an upper bound of <xn >, it follows that 

(1 + ~ ) n .;; e .;; 3 for each n E Z+ . 

Since <xn> is strictly increasing, this result and the result cited in Prob. 2.5 
imply that 

for each n E Z+ . 

Hence 
2 < e .;; 3. 

PROB. 5.1. Prove: n E Z+ and n ;;;. 3, then 

nn+l >(n + It 

PROB. 5.2. (a) Prove: If n is a positive integer, then 

( 1 )n+2 1 
1 + 2) > 1 + - . n(n + n 

(5.9) 

(5.10) 

(b) Let <Yn> be the sequence defined by Yn = (1 + l/nr+l for each 
n E 1+ . Prove: <Yn> is strictly monotonically decreasing. (c) Prove <Yn> 
converges. 

PROB. 5.3. Prove: The sequence <zn), where Zn = (1 - l/nr for n E Z+, is 
strictly monotonically increasing. 

PROB. 5.4. Prove: (a) 

e';; lim (1 + l)n+l. 
n--7 + 00 n 

(Actually, this inequality can be replaced by an equality, but we cannot 
prove this yet.) (See Prob. 8.9.) (b) e < (l + l/nr+ 1 for each n E 1+. 

Remark 5.1. From Prob. 5.4 and formula (5.9), we have 

(1 + i f < e < (1 + i f+ 1 for each k E 1+ . (5.l1 ) 

This implies first of all, using k = 5 on the right, that e < (1 + !)6 = 
2.985984 < 3. Thus, (5.10) may be strengthened to 

2<e<3. (5.12) 
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We now use k E {1,2, ... ,n - l}, n > I, and obtain 

2 = ( I + + ) 1 < e < ( I + + f = 22, 

(1+~f<e«I+~f, 

( I )n-l ( I)n 
l+n_1 <e< l+n_1 . 

Multiplying these together gives us 

32 nn-l n-l 2 33 
2·_·" <e <2·-

22 (n - I r -1 23 (n - If . 
This implies, after cancellation that 

I I n-l I I _n __ < en-1 < 
2'3'" n-I 2'3 if n> I 

and therefore that 

nn-l 1 nn 
(n - I)! < e n

- < (n - I)! or that 
n n+l 
~ < en-1 <_n_. 
n! n! 

We conclude from the second set of inequalities above that 

e(nne- n) < n! «en)(nne- n) for n> 1. 

6. Criteria for Numbers To Be Limits Superior 
or Inferior of Real Sequences 

Theorem 6.1. Let L = lim xn. The following results hold: 

(5.13) 

(a) If L < + 00, then for each B such that L < B there exists a positive 
integer N such that n ;;. N implies xn < B; 

(b) If L E IR*, L < + 00 and if for each real B such that L < B, there exists 
a positive integer N such that n ;;. N implies xn .;;; B, then L .;;; L; 

(c) If - 00 < Land L is an extended real number such that - 00 < L, then 
L .;;; L holds if and only if for each real B with B < L, we have that 
Xn > B holds for infinitely many n's. 

PROOF. Proof of (a). Assume L < + 00 and L < B. Then 

infAk = L < B. 

It follows that B is not a lower bound for the sequence <Ak ). Hence, a 
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positive integer N exists such that AN < B and we have: If n ~ N, then 

xn .;;; sup xj = AN < B. 
j>N 

This proves (a). 
Proof of (b). Assume L E IR*, L < + 00 and that for each real B with 

L < B there exists a positive integer N such that n ~ N implies xn .;;; B. 
Such a B is then an upper bound for the sequence <Xn>n>N. Hence 

E = infAk .;;; AN = sup xn';;; B, 
n>N 

so that E.;;; B. Thus, L < B implies E.;;; B. We conclude from this that 
E .;;; L (otherwise L < E, and there exists a real B such that L < B < E, 
contradicting what was just proved). 

Proof of (c). This is in "if and only if" form. First assume - 00 < E, 
- 00 < L. If L .;;; E, let B < L for a real B. Then 

for each k E 71.+ , 

so that 

for each k E 71.+ • 

Therefore, for each k E 71.+ there exists an n ~ k such that B < x n • This 
implies that the set 

(6.1 ) 

is an unbounded set of positive integers and as such is infinite. Thus, 
xn > B holds for infinitely many n's for each B < L. Conversely, assume 
that for each real B < L, the set IB is an infinite set. It follows that IB is an 
unbounded set of positive integers. Thus for each real B < L and given 
k E 71.+ there exists a positive integer n > k such that Xn > B. For such an n 

B < xn .;;; supxn= Ak 
n>k 

Since B < Ak for each k, 

for each k. 

B .;;; infAk = lim Xn = L. 
Thus, B < L implies B .;;; L. This implies that L .;;; L. (Otherwise E < L 
and a B exists such that E < B < L. This contradicts: B < L implies 
B .;;; L.) This completes the proof. 

Corresponding to Theorem 6.1, there is a dual theorem for limxn • 

Theorem 6.2. Let ~ =limxn • The following results hold: 

(a) If - 00 < b., then for each real B such that B < b., there is a positive 
integer N such that n ~ N implies xn > B; 
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(b) If L E IR*, - 00 < L and if for each real B such that B < L, there exists 
a positive integer N such that n ;;;. N implies xn ;;;. B, then le. ;;;. L; 

(c) If 1::. < + 00 and L is an extended real number such that L < + 00, then 
L ;;;. 1::. holds if and only if for each real B with B > L, xn < B holds for 
infinitely many n's. 

PROB. 6.1. Prove Theorem 6.2. 

Theorem 6.3(a). If Xn is a real sequence, then 

(a) limxn = + 00 if and only if limxn = + 00, 

(b) lim xn = + 00 if and only if for each real B there exists a positive integer 
N such that n ;;;. N implies xn > B. 

PROOF. Let P, Q, and R be the statements: 

P: limxn = + 00 

Q: limxn = + 00 

R: For each real B there exists a positive integer N such that n ;;;. N implies 
xn> B. 

It is easy to see that P implies Q. We prove that Q implies R. Let Q hold 
for a sequence <xn) of real numbers. Let B be some real number. Then 
B < + 00 = limxn. By Theorem 6.2(a) there exists a positive integer such 
that n;;;' N implies xn> B. Thus, Q implies R. Next we prove that R 
implies P. Suppose R holds for a real sequence <xn)' Let L be an extended 
real number with - 00 < L, and B be a real number such that B < L. 
Since R holds for <xn ), there exists a positive integer N such that n ;;;. N 
implies Xn > B. By Theorem 6.2(b), le. ;;;. L. This holds for each L E IR* with 
- 00 < L, and so it holds for L = + 00, that is, 1::.;;;. + 00. But then 

le. = + 00. Since L;;;. le., we have L = + 00 = 1::.. Hence, lim Xn = lim Xn for 
<xn), limxn exists, and limxn =limxn = + 00. This proves that R implies P. 
Thus, P implies Q, Q implies R, and R implies P. Since P implies Q and Q 
implies P, P holds if and only if Q holds. Similarly P holds, if and only if R 
holds. This completes the proof. 

Theorem 6.3(b). If <xn) is a real sequence, then 

(a) limxn = - 00 if and only if limxn = - 00, 

(b) lim xn = - 00 if and only if for each real B there exists a positive integer 
N such that n ;;;. N implies xn < B. 

PROB. 6.2. Prove Theorem 6.3. 

PROB. 6.3. Prove: If <xn) is a real sequence, then 

(a) lim xn = + 00 if and only if there exists a real N (not necessarily a 
positive integer) such that n > N implies Xn < B; 
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(b) limxn = - 00 if and only if for each real B, there exists a real N (not 
necessarily an integer) such that n > N implies Xn < B. 

The result cited in this last problem constitutes a practical way of 
showing that xn ~ + 00 or Xn ~ - 00. 

n n 

EXAMPLE 6.1. We prove: If a E IR, a> I, then limn ..... +ooa n = + 00. Now 
a > 1. Put h = a-I. Then a = I + h, where h > O. By Bernoulli's inequal­
ity, we obtain 

an = (I + h)n;;. I + nh > nh for each n E l+ . (6.2) 

Given a real B, take N such that N ;;. B/h and n > N, n E l+ . We have 

an > nh > Nh ;;. ! h = B for n > N, n E l+ . 

By Prob. 6.3(a), limn ..... +ooa n = +00. 

EXAMPLE 6.2. We prove limn ..... + 00(n2 - n + I) = + 00. We first analyze th.e 
problem. We must prove: For each real B, there exists an N E IR such that 
n > N, n E l+ , implies that n2 - n + I > B. 

PROOF. Given BE IR, take N ;;. max{I,B - I} and n E l+, n > N. We 
then have n > I and n > B-1. Since n > I and n is a positive integer, we 
have n ;;. 2. This implies that 

n2 ;;. 2n = n + n > B-1 + n. 
Hence, 

n2 - n + I > B for nEl+, n>N;;'max{I,B-I}. 

PROB. 6.4. Prove: n2/(n + I)~ + 00. 
n 

PROB. 6.5. Prove: rn ~ + 00 as n ~ + 00. 

PROB. 6.6. Prove: (a) If n is a positive integer and h > 0, then (I + ht 
;;. I + nh + n«n - 1)/2!)h2; (b) use the result in part (a) to prove: If a > I, 
then 

. an 
hm - = +00. n ..... +oo n 

EXAMPLE 6.3. We prove limn ..... + 00 n.frif = + 00. By Prob. 11.5.4, we have 

1.. OS;;; n! 
n! nn' 

so that nn OS;;; (n!i and rn OS;;; 'Vnf < + 00 for n E l+ . Since rn ~ + 00 as 
n ~ + 00 (Prob. 6.5), we have 

+ 00 = lim rn = lim rn OS;;; lim 'Vnf. 
n ..... +oo n ..... +oo n ..... +oo 
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This implies that lim n[,J = + 00, and hence, by Theorem 6.3(a), that 
1· nC! -Imn->+oo yn! - + 00. 

Theorem 6.4. If <xn> is a real sequence and [=limxn, where [E IR, then 

(a) for each real E > ° there exists a positive integer N such that n ;;, N 
implies xn < [ + E; 

(b) if L is a real number such that for each real E > 0, there exists a positive 
integer N such that n ;;, N implies xn < L + E, then [ < L; 

(c) if L is a real number, then L < [ holds if and only if for each E > 0, 
L - E < Xn holds for infinitely many n's. 

PROOF. This theorem is merely a reformulation of Theorem 6.1 for the case 
where [E IR. 

We prove (a). Given E > 0, [ < [ + E. Put B = [ + E, and hence [ < B. 
By Theorem 6.1, (a) there exists a positive integer N such that n ;;, N 
implies Xn < B = [ + E. This proves (a). 

We now prove (b). Let L be a real number such that for each E E IR, 
E > 0, there exists a positive integer N such that n ;;, N implies Xn < L + E. 

Take any real B such that L < B. Put E = B - L, so that B = L + E, where 
E > 0. By the present assumption, there exists a positive integer N such that 
n ;;, N implies Xn < L + E = B. Thus, for each real B with L < B there 
exists a positive integer such that n ;;, N implies xn < B. By Theorem 6.1, 
part (b), this implies that [ < L. This proves (b). 

We prove (c) in a similar manner. Each real B such that B < L may be 
written as B = L - E, where E = L - B > 0. Hence, for each real E > 0, 
L - E < Xn holds for infinitely many n's, if and only if Xn > B holds for 
infinitely many n's for each real B such that B < L. By Theorem 6.1, part 
(c), we have: L < [ holds if and only if, for each real E > 0, L - E < Xn 

holds for infinitely many n's. This completes the proof. 

A dual statement holds for ~ = lim X n • 

Theorem 6.5. If <xn> is a real sequence and ~ =limxn, ~ E IR, then the 
following results hold: 

(a) for each real E > 0, there exists a positive integer N such that n ;;, N 
implies ~ - E < Xn; 

(b) if L is a real number, and if for each real E > ° there exists a positive 
integer N such that n ;;, N implies L - E < Xn, then L <~; 

(c) if L is a real number, then L;;'~ if and only if for each real E > 0, 
Xn < L + E for infinitely many n' s. 

PROB. 6.7. Prove Theorem 6.5. 

PROB. 6.8. Prove: 
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(I) The sentence: there exists a positive integer N such that n ;;. N implies 
Xn < L + f, in parts (a) and (b) of Theorem 6.4, can be replaced by the 
sentence: there exists a real number N such that n > N implies Xn 

<L+f. 
(2) The sentence: there exists a positive integer N such that n ;;. N implies 

1:. - f < X n ' in parts (a) and (b) of Theorem 6.5, can be replaced by the 
sentence: there exists a real n such that n > N implies 1:. - f < xn . 

The following theorem is important in the evaluation of limits of se­
quences. 

Theorem 6.6. If <xn> is a real sequence, then <xn> is convergent and has the 
real number L as its limit if and only if for each real f > 0, there exists a 
positive integer N such that 

n ;;. N implies IXn - LI < f. (6.3) 

PROOF. Let L be a real number such that for each real f > ° there exists a 
positive integer N such that (6.3) holds. Consequently, 

n ;;. N implies L - f < Xn < L + f. (6.4) 

We prove that this implies that <xn> is bounded. Take f = I, then there 
exists a positive integer NI such that 

n ;;. N 1 implies L - I < xn < L + 1. (6.5) 

If NI = I, then (6.5) holds for all n. It is clear that in this case <xn> is 
bounded. If N 1 > I, let 

M = max { XI' ... , X N 1 _ 1 ,L + I} and m = min { x I' •.• , X N 1 _ 1 ,L - I }, 

so that 

m < Xn < M for all n E 7L+ . 

Thus, <xn> is bounded in this case also. Since <xn> is bounded, we have 
(Theorem 4.2) 

(6.6) 

Put 

(6.7) 

Then (6.6) becomes 

-00<1:..< L< +00. (6.8) 

From (6.4) we conclude that for each f > ° there exists a positive integer N 
such that 

n ;;. N implies xn < L + f. (6.9) 
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By Theorem 6.4, part (b), I ..;; L. Similar reasoning tells us that for each 
E > 0 there exists a positive integer N ( such that 

n ;> N ( implies L - E < Xn . (6.10) 

Using part (b) of Theorem 6.5 we conclude that L ";;l... Therefore, 
I ..;; L ";;l.., and hence I ";;l... Since l.. ..;; I is always true, it follows that 
l.. = I = L. We have: <xn> converges with limit L. 

Conversely, let <xn> converge and let L = limxn. This implies that 

L E IR. (6.11) 

By part (a) of Theorem 6.5 there exists a positive integer N( such that 

n ;> N ( implies L - E = L - E < Xn . (6.12) 

By part (a) of Theorem 6.4 there exists a positive integer N2 such that 

n ;> N2 implies Xn < I +E = L + E. (6.13) 

Let N = max{N(>N2} and take n E 7l.+, n > N, so that n > N( and n 
> N 2 • By (6.12) and (6.13) we have 

L - E < Xn < L + E or IXn - LI < E 

if n ;> N. This completes the proof. 

PROB. 6.9. Prove: If <xn> is a real sequence, then it converges to L = limxn 
if and only if for each E > 0 there exists a real N such that n > N implies 
IXn - LI < E. 

Remark 6.1. The result cited in Prob. 6.9 is the one most convenient to use 
in proving that a real number L is the limit of a real sequence. As a matter 
of fact, the usual treatment of limits begins with the result in Prob. 6.9 as a 
definition of the limit L of a real sequence <xn>. 
EXAMPLE 6.4. We prove: If lal < 1, then limn_Hooa n = O. This is trivially 
true when a = 0 (why?). Assume a =1= 0, so that 0 < lal < I, and hence 

I I TQT > 1 or TQT - 1 > o. 

Analysis. We wish to prove that for each E > 0, there exists an N such that 

n > N implies Ian - 01 = Ian I < E. (6.14) 

Write h = lllal - 1, so that lllal = 1 + h, where h > O. By Bernoulli's 
inequality, 

I 1 (l)n n lanl = lain = TQT = (1 + h) ;> 1 + nh > nh 

for each positive integer n. This implies that 

lanl < ...!.. for each positive integer n. 
nh 

(6.14') 

(6.15) 
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PROOF. Given € > 0, take 

N ;;;. ~ and n > N, n E l+ . 

For such n, n > 1/ €h, so that 

Ian - 01 = lanl <-.L =!! «€h)! = €. 
nh n h h 

Using Prob. 6.9 we obtain limn_H (",on = o. 

PROB. 6.10. Prove: If lal < 1, then (see Prob. 6.6) limn_-HOOnan = O. 

PROB. 6.11. Prove: 1/ {ri ~ 0 as n ~ + 00. 

EXAMPLE 6.5. To evaluate 

we note that 

lim n2 + n + 1 
n~ + 00 2n2 - n + 1 ' 

n2+n+1 _1+I/n+l/n2 
2n2-n+I-2-1/n+l/n2 ' 

Later theorems about sums, differences, products, and quotients of limits 
will enable us to prove that the right-hand side has a limit equal to t as 
n ~ + 00. Meanwhile, our intuition tells us the same thing. Indeed, if "n is 
large," then 1 / nand 1/ n2 "become small" so the quotient on the right gets 
close to t as "n gets large." We guess that 

lim n2 + n + 1 =!. 
n~+oo2n2-n+l 2 

To prove that our guess is right we prove that given € > 0 there exists an N 
such that if n > N, then 

I n2 + n + 1 -! I < €, 
2n2 - n + 1 2 

(6.16a) 

that is, 

I 3n + 1 1< € 
2(2n2 - n + I) . 

(6. 16b) 

We first take n > 2, so that n2 > 2n. Adding n2 - n + 1 to both sides gives 
us 

Hence, 

if n > 2. 
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This implies that 

o < 3n + I < 3n + 1 = 1. + ~ . (6.17) 
2n 2 - n + 1 n2 n n 2 

But since n is a positive integer, n ;;. 1 and n2 ;;. n or 1/ n2 .;;; 1/ n. This and 
(6.30) imply that 

o < 3n + I < 1. + ~ .;;; 1. + 1 = 1 . 
2n 2 - n + 1 n n2 n n n 

This proves: If n > 2, then 

I n2 + n + 1 - 11 = 3n + 1 < l (6.l8) 
2n 2 - n + 1 2 2(2n2 - n + 1) n· 

This "analysis" indicates that the second inequality in (6.16) holds if 
2/ n < E:. We, therefore, take for given E: > 0, n > N ;;. max(2, 2/ E:), so that 
n > 2 and n > 2/E:. This and (6.18) yield 

I n2 + n + I - 11 = 3n + I < l = 12 < ~ 2 = E: 

2n2 - n + 1 2 2(2n2 - n + 1) n n 2 

We conclude 
lim n2 + n + 1 _ 1 

n~+oo 2n2 - n + 1 -"2. 

PROB. 6.12. Prove: 

(a) lime f,i+l - rn) = 0, 
(b) lim«n + 1)2 - n2) = + 00, 

(c) limn~+oo rn (f,i+l - rn) =~. 
PROB. 6.13. Prove: 

lim ~ = 0 
n~+oo nn 

(Hint: see Prob. 11.5.4). 

EXAMPLE 6.6. We prove 

lim nrn = I. 
n~+oo 

if n > N. 

(6.19) 

Note that if n > 1, then nrn - 1 > O. Put hn = nrn - 1. Then hn > 0 if 

n> 1. Since '(,i = 1 + hn' where hn > 0 for n > I, we find, using Prob. 6.6, 
part (a) that 

_ n:;;, n(n-l) 2 n(n-l) 2 
n - (1 + hn) po 1 + nhn + 2 hn > 2 hn 

when n > 1. This implies that 

o < nrn - 1 = hn < ~ n : 1 if n> 1. 
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Given t: > 0, take 

For such n 

This proves (6.19). 

7. Algebra of Limits: Sums and 
Differences of Sequences 
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To give our theorems generality, it is useful to define algebraic operations 
in IR*. We do this first for addition and subtraction. (Multiplication and 
division in IR* are defined in Defs. 7.3 and 7.4.) 

Del. 7.1. Let x and y be in IR*. If (1) x E IR, Y E IR, then x ± y retain the 
value they have in IR. If one of x or y is in IR* but not in IR, then we define: 

x+(+oo)=(+oo)+x=+oo for xEIR* and -oo<x. (7.1) 

x+(-oo)=(-oo)+x= -00 for x E IR* and x < + 00. 

- (+ 00) = - 00 and - ( - 00) = + 00. 

(7.2a) 

(7.2b) 

If x E IR*, and y E IR* and x + (-y) is defined as in (7.1) or in (7.2), then 

x - y = x + ( - y). 

According to this definition, 

(+00)+(+00)= +00, 

(-00)+(-00)= -00, 

(+00)-(-00)= +00, 

(-00) - (+00) = -00, 

O±oo=±oo 
and 

O-(±oo)= +00. 

(7.3) 

(7.4) 

Note, however, that (+ 00) + (- 00), (+ 00) - (+ 00), (- 00) - (- 00) are 
not defined. 

Remark 7.1. There is no closure in IR* for addition and subtraction. As 
remarked above, there exist x and y in IR* for which x ± yare not defined. 
We also note that not every element x of IR* has an additive inverse. Since 
( + 00) + Y = + 00 for all y E IR* such that y =1= - 00 and ( + 00) + ( - 00) is 
not defined, no y E IR* exists such that (+ 00) + y = 0, and + 00 has no 
additive inverse. Similarly - 00 has no additive inverse. 
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The systems IR and IR* differ from each other with respect to their order 
properties. For, assume x <y for some x andy in IR*. Normally, if we add 
Z to both sides of x < Y then we obtain x + Z < Y + z. But if z = ± 00, then 
one of x + z or Y + z may not be defined. Hence, we qualify and state: 

(a) If - 00 < x < Y and z E IR, then x + z < Y + z and if z = + 00, then 
x+z=y+z= +00; 

(b) if x < Y < + 00 and z E IR, then x + z < Y + z and if z = - 00, then 
x + z = Y + z = - 00. 

Thus, in case (a), if z E IR*, z > - 00, then the most that can be concluded 
is x + z ~ Y + z and in case (b), if z E IR*, z < + 00, then x + z ~ Y + z. 
However, from 

- 00 < x < u and - 00 < Y < v, 

we can still conclude the strict 

x + y < u + v. 

To see this, note that - 00 < y < v implies y E IR. Since - 00 < x < u, it 
follows that - 00 < x + y < u + y. Since u may be + 00, we obtain from 
- 00 < y < v that u + y ~ u + v. This implies that x + y < u + v. Simi­
larly, we note that 

x < u < + 00 and y < v < + 00 

imply 

x + y < u + v. 

Def. 7.2(a). The absolute value lxi, of x E IR*, we define as 

ifO~x~+oo 
if - 00 ~ x < O. 

FROB. 7.1. Prove: (a) x E IR* implies 0 ~ Ixl ~ + 00, (b) 1- xl = lxi, (c) 
I - xl ~ x ~ Ixl and -Ixl ~ - x ~ Ix!-

PROB. 7.2. Assume that x E IR* and 0 < A E IR*. Prove: (a) - A < x < A if 
and only if Ixl < A; (b) Ixl = A, if and only if x = A or x = -A; (c) if 
o ~ A E IR*, then -A ~ x ~ A if and only if Ixl ~ A. 

FROB. 7.3. Prove: if x E IR* and y E IR* and x + y is defined, then Ix + yl 
~ Ixl + Iyl. (Note, Ixl + Iyl is always defined for x and y in IR*.) 

Del. 7.2(b). If <xn) and <Yn) are real sequences, (a) define their sum 
<xn> + <Yn> as the sequence <cn>, where cn = xn + Yn for all n. Thus, 
<xn> + <Yn) = <xn + Yn)' (b) If C E IR, define c<Yn> as the sequence <zn), 
where zn = cYn for all n, so that c<Yn) = <cYn). In particular, we have: 
(-l)<Yn> = < - Yn>· We write (-I)<Yn) as - <Yn)' (c) The difference 
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<Xn> - <Yn> of the above sequence is defined as <xn> - <Yn> = <xn> 
+ ( - <Yn»' so that <xn> - <Yn> = <xn - Yn>· 

Theorem 7.1. If <xn> and <Yn> are sequences of real numbers, then 

(a) 

and 

(b) 

provided that the sums on the right in (a) and (b) are defined. 

PROOF. We prove (a) and leave the proof of (b) to the reader (Prob. 7.4). 
First consider the case where one of [ = lim xn' M = lim Yn is + 00 and the 
other is not - 00. Then [+ M = + 00 and we have 

(7.5a) 

Now suppose one of [ or M is - 00 and the other is not + 00. For 
definiteness, let [= - 00 and M < + 00. Let B be some real number. 
There exists some BI such that M < BI < + 00. By Theorem 6.1, part (a), 
there exists a positive integer NI such that 

n;;' NI implies Yn < B I . (7.5b) 

Since limxn = [= - 00, limxn = - 00, this implies (Theorem (6.3(a» that a 
positive integer N 2 exists such that 

n ;;. N 2 implies xn < B - B I • (7.6) 

Let n ;;. max{NI,N2}. Then n ;;. NI and n ;;. N 2, and (7.5b) and (7.6) imply 
that 

for n;;' N. (7.7a) 

Thus, for each real B, there exists a positive integer N such that n ;;. N 
implies that xn + Yn < B. But then (Theorem 6.3(b» lim(xn + Yn) = - 00. 

Since here [ + M = - 00, it follows that in this case, 

lim(xn + Yn) = lim(xn + Yn) = - 00 = [+ M 

and (a) holds with equality. 
The remaining case where [+ M is defined is: - 00 < [ < + 00 and 

- 00 < M < + 00. We consider this case now: Given 10 > 0, we have 
[ < [+ 10/2 and M < M + 10/2. By Theorem 6.4(a), there exist positive 
integers NI and N2 such that 

- E - E Xn < L + '2 if n;;' Nand Yn < M + '2 if n;;' N 2 • (7.7b) 

Put N = max{NI ,N2} and take n;;' N. Then n;;' NI and n ;;. N 2, and 
(7. 7b) yields 

Xn + Yn < [ + M + E if n;;' N. (7.8) 
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Thus, for each ( > 0 there exists a positive integer N such that (7.8) holds. 
By Theorem 6.4(b), we conclude that 

lim (xn + Yn) « L + M = lim Xn + lim Yn . 

This completes the proof of part (a). 

PROB. 7.4. Complete the proof of the last theorem by proving part (b) there. 

Remark 7.2. We use notation adopted in the proof of Theorem 7.1. Let 
L = - 00 and M < + 00. Theorem 6.3(b) implies that lim Xn = lim Xn = L 
= - 00 and that 

L+M=(-oo)+M= -00. 

Thus (Theorem 7.1), 

lim(xn + Yn) « -00. 

This implies that lir ,\,xn + Yn) = - 00. In this case the inequality in Theo­
rem 7.1, part (a) becomes an equality. We may therefore state: If limxn 
= - 00 and <Yn) is bounded from above, then limxn and lim(xn + Yn) each 
exist and 

lim(xn + Yn) = - 00 = limxn + lim Yn' (7.9) 

Similarly, with respect to part (b) of Theorem 7.1, we state: If limxn = + 00 

and <Yn) is bounded from below, then limxn and lim(xn + Yn) each exist 
and we have the equality 

(7.10) 

Corollary (of Theorem 7.1). If lim Xn and lim Yn each exist and their sum is 
defined in IR*, then lim(xn + Yn) exists and 

(7.11 ) 

PROOF. Exercise. 

Def. 7.3 (Multiplication in IR*). Let x andy be in IR*. If x E lR,y E IR, then 
xY retains the value it has in IR. If x E IR*, x > 0, define 

If x E IR*, x < 0, define 

X(+oo)=(+oo)= +00, 

x(-oo)=(-oo)= -00. 

X(+oo)=(+oo)X= -00, 

x(-oo)=(-oo)x= +00. 

We do not define O( ± 00). 

(7.12) 

(7.13) 
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Def. 7.4 (Division in IR*). Let x and y be in IR*. If x E IR and y E IR, where 
y =1= 0, then x / y retains the value it has in IR. If x E IR, then we define 

_x_ = O. (7.14) 
±oo 

If x E IR, x =1= 0, define 

± 00 = 1 (± 00). 
x x (7.15) 

We do not define x/y if y = 0 or if Ixl = Iyl = + 00. 

Remark 7.3. As was the case for addition in IR*, there is no closure for 
multiplication in IR* since O( ± 00) are not defined. Also, + 00 and - 00 do 
not have multiplicative inverses (explain) even though they are nonzero 
elements of IR*. 

We add some remarks about the preservation of order under multiplica­
tion in IR*. Assume z > 0 and x < y. If one of x or y is equal to 0 and 
z = + 00, then one of xz or yz is not defined, so they are not comparable. 
However, if x < y, neither x nor y is equal to 0, and z > 0, then we can 
conclude that xz .( yz, but cannot infer that the inequality here is necessar­
ily strict. In fact x < y < 0 implies that x( + 00) = - 00 = y( + 00) and 
o < x < y implies that x( + 00) = + 00 = y( + 00). On the other hand, 
x < 0 < y implies that x( + 00) = - 00 < + 00 = y( + 00). 

Note also that in IR* we still have: (a) x > 0, y > 0 imply xy > 0, (b) 
x > 0, Y < 0 imply xy < 0, and (c) x < 0 and y < 0 imply xy > O. 

We also have: If x E IR*, Y E IR*, and xy is defined, then Ixyl = Ixllyl. If 
x/y is defined, we have Ix/yl = Ixl/lyl. 

Theorem 7.2. If <xn> is a real sequence, then (a) 0 < C < + 00 implies 
lim(cxn) = c1imxn and lim(cxn) = c1imxn and (b) - 00 < C < 0 implies 
lim(cxn) = c1imxn and lim(cxn) = c1imxn. For the case c = 0, we have 
lim( cXn) = c1im xn if lim xn is a real number, and lim( cXn) = C lim Xn if lim xn 
is a real number. 

PROOF. Suppose 0 < C < + 00. If L =limxn = + 00, then <xn> is not 
bounded from above. It follows that <cxn> is not bounded from above 
(why?). Therefore, 

lim cXn = + 00 = c( + 00) = cL = C lim xn' 

in this case. If L < + 00, then <xn> is bounded from above. Hence, <cxn> is 
(why?) and we have lim(cxn) < + 00. Take a real B such that lim(cxn) < B. 
There exists a positive integer N) such that 

n ~ N) implies cXn < B, so that B xn <- . 
C 
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This implies that 

Thus, 

L = lim Xn = infAk .;;; AN .;;; B , 
1 C 

so that cL.;;; B. 

cL.;;; B for all real B such that lim (cxn) < B. 

This implies that 

Now put 

F or each k E 71. + , 

Dk = sup ( cXn) 
n>k 

for each k E 71.+ . 

(7.16) 

(7.17) 

for n;;;' k and hence cXn';;; cAk for n;;;' k. 

It follows that 

for each k. 

Accordingly, 

for each k E 71.+ . 

This implies that 

and finally that 

(7.18) 

This and (7.17) prove that lime cXn) = clim Xn for the case when lim Xn < 
+ 00 also. 

We now prove: If - 00 < C < 0, then lim(cxn) = climxn. First assume 
limxn= +00, so that climxn= c(+oo)= -00. Clearly, <xn> is not 
bounded from above, so < cxn> is not bounded from below and we have 
lim(cxn) = - 00 = C limxn. Now suppose limxn < + 00, so that <xn> is 
bounded from above and <cxn> is bounded from below. Let 

L = lim xn and ~ * = lime cxn). 

We have L < + 00, £:* > - 00. Let B be a real number such that £:* > B. 
By Theorem 6.2, part (a) there exists a positive integer N such that 

This implies that 

n ;;;. N implies cXn> B. 

if n;;;' N, then B xn <-. 
C 
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Thus, AN .:;;; B / c and, therefore, 

This implies that 

lim Xn = inf Ak .:;;; AN':;;; B . 
c 

cL = c lim xn > B. 
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We have proved: for each real B such that B <!o:.*, B .:;;; cL. This proves 
(explain) 

1:.*.:;;;cL. (7.19) 

Now, for each k E 1+ put 

We have 

Xn .:;;; Ak and hence CXn > cAk for n > k. 

The last inequalities imply that 

CAk .:;;; D k':;;; lim( cXn) for each k 

and, therefore, that 

This implies that 

L = lim xn = infAk > 1 lim (cxn) = 1 L*, c- c-

from which it follows that 

cL.:;;; L*. 

This and (7.19) yield 

lim(cx ) = L * = cL = c lim x _ n n' 

also when lim Xn < + 00. 

To complete the proof, we note that if - 00 < c < 0, then applying what 
we just proved 

so that 

lim (cxn) = c lim xn if - 00 < c < O. 

This completes the proof of part (b). 
We now complete the proof of part (a). Let 0 < c < + 00. By what was 

just proved, we know that 

(7.20) 
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and that 

(7.21 ) 

The second conclusion in (a) now follows by equating the two right-hand 
sides in (7.20) and (7.21). The last part of the theorem is obvious. The proof 
is now complete. 

PROB. 7.5(a). Prove: If C E IR and limxn exists, then limn_Hoo(cxn) 
= C limxn. 

Remark 7.4. Note that special cases of Theorem 7.2 are lim( - xn) 
= -limxn and lime - xn) = - limxn. 

PROB. 7.5(b). Prove: (a) lim(xn - Yn) <limxn -limYn and (b) lim(xn - Yn) 
;;;. lim Xn -lim Yn when the differences on the right are defined: 

PROB. 7.6. Prove: If limxn and lim Yn exist, then lim(xn - Yn) = limxn -
lim Yn' provided the difference on the right is defined. 

EXAMPLE 7.1. We point out that if limxn = + 00, lim Yn = - 00, then 
lim(xn + Yn) can be any value in IR*. Thus, 

(a) If a E IR and we write xn = n + a, Yn = - n for each n E IR, then 
lim(xn + Yn) = lim a = a. (Here lim Xn = + 00 and lim Yn = - 00.) 

(b) Let xn = rn+T, Yn = - [,l for each n E 7L+. Then limxn = + 00, 

lim Yn = - 00 and lim(xn + Yn) = limn_H oo( rn+T - [,l) = 0 (Prob. 
6.12, part (a)). 

(c) Let xn = n2 and Yn = - n. Then limxn = limn 2 = + 00, lim Yn = 

lime - n) = - 00, and lim(xn + Yn) = lim(n2 - n) = + 00. 

(d) Let xn = nand Yn = - n2• Then limxn = limen) = + 00, lim Yn = 

lime - n)2 = - 00, and lim(xn + Yn) = limen - n2) = - 00. 

Theorem 7.3. If limxn exists, then limlxnl = llimxnl· 

PROOF. The proof for the case limxn = L E IR follows readily from 

Ilxnl-ILII < IXn - LI 
as the reader can check. 

Let limxn = + 00. Since xn < IXnl for all n, it is clear that limlxnl = + 00. 

Let limxn = - 00. Since - xn < IXnl for all nand lime - xn) = + 00, then 
it follows that limlxnl = + 00 = 1- 001 = llimxnl. 

Remark 7.5. There are some important observations to be made concerning 
the relation between limxn and limlxJ First, we note that limlxnl may exist 
but limxn may not. This is evident from the sequence <xn), where xn = 
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(-Ir+ 1 for each n. Clearly, IXnl = 1 for all n so limlxnl = 1 in this case. 
However, note that <xn> itself diverges here. 

We also observe that even if <xn> has a limit, it may happen that 
limlxnl = IAI but that Iimxn =1= A. In fact, 

liml * -11 = 1 = III and lim( * -1) = - 1. 

An important special case is cited in Prob. 7.7 below. 

PROB. 7.7. Prove: limxn = 0, if and only if limlxnl = O. 

PROB. 7.8. Prove: If <xn> is a real sequence, then -limlxnl ..;; lim Xn ..;; 
limxn ..;; limlxJ 

8. Algebra of Limits: Products and Quotients of 
Sequences 

Del. 8.1. By the product <xn><Yn> of real sequences <xn> and <Yn>' we 
mean the sequence <Pn>' where Pn = xnYn for all n. Thus, <xn><Yn> 
= <xnYn>' 

Theorem 8.1. If <xn> and <Yn> are real sequences, where limxn = 0, and 
<Yn> is bounded, then lim(xn Yn) = O. 

PROOF. Since <Yn> is bounded, there exists a real M > 0 such that IYnl ..;; M 
holds for all n. Let t: > O. Since lim xn = 0, there exists a positive integer N 
such that 

n ;;.. N implies IXnl = IXn - 01 < ~ . 

Therefore, 

IXnYn - 01 = IXnYnl = IXnIlYnl";; ~ M = t: for n;;" N. 

It follows that limxnYn = O. 

PROB. 8.1. Let <xn> be a real sequence such that Xn ;;.. 0 for all nand Ak = 0 
for some positive integer k. (Here, as usual, Ak = SUPn>kXn') Prove: limxn 
= 0 and for any real sequence <Yn> we have limxnYn = O. 

Theorem 8.2. If <xn> is a real sequence such that limxn > 0, then there exists 
a positive integer N such that n ;;.. N implies xn > O. 
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PROOF. There exists a B such that limxn > B > O. By Theorem 6.2, part (c), 
there exists a positive integer N such that n ;;;. N implies xn > B > O. 

Theorem 8.3. If <xn> and <Yn> are real sequences such that limxn = + 00 

and lim Yn > 0, then lim(xn Yn) = + 00. 

PROOF. There exists an L such that lim Yn > L > O. By the hypothesis and 
Theorem 6.2, there exists a positive integer N j such that 

n;;;' N j implies Yn> L > O. (8.1) 

Let B be some real number. Since limxn = + 00, there exists a positive 
integer N2 such that 

1+ IBI 
xn> L (8.2) 

Let N = max{N j ,N2 } and n;;;' N. Then n;;;' N j and n;;;' N 2 • Since (8.1) 
and (8.2) hold for such n, it follows that 

1+ IBI 
xnYn>L L =1+IBI>IBI;;;'B if n;;;'N. 

Thus, for each real B there exists a positive integer N such that n ;;;. N 
implies xn Y n > B. This yields lim xn Y n = + 00. 

PROB. 8.2. Prove: (a) limxn = - 00 and lim Yn > 0 imply limxnYn = - 00; 

(b) limxn = + 00, lim Yn < 0 imply limxnYn = - 00; (c) limxn = - 00 and 
limYn < 0 imply limxnYn = +00. 

Theorem 8.4. If <xn> and <Yn> are real sequences such that Xn ;;;. O,Yn ;;;. 0 for 
all n, then 

(a) lim(xnYn)';;;; limxnlimYn' and 
(b) lim(xn Yn) ;;;. lim xn lim Yn' 

provided that the products on the right in (a) and (b) are defined. 

PROOF. We first prove (a). The hypothesis implies that limxn ;;;. 0, lim Yn 
;;;. 0, and lim(xn Yn) ;;;. O. The product lim xn lim Yn is defined if one of lim Xn 
or lim Yn is not 0 and the other is not + 00. Consider first the case where 
one of lim xn or lim Yn is + 00 and the other is > 0, so that lim xn lim Yn 
= + 00. We then have 

lim (xnYn) .;;;; + 00 = lim xn lim Yn' 

so the theorem holds in this case. 
Next consider the case 0 .;;;; limxn < + 00,0 .;;;; lim Yn < + 00. Put 

Bk = sup Yn' 
n;;.k 

Ck=suP(XnYn) 
n;;.k 
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for each k E l+ . If J and k are positive integers, then 

for n > k and 0" Yn " ~ for n > J. (8.3) 

If a positive integer k1 exists such that Ak) = 0, then by Prob. 8.1, we have 

limxn = 0 = lim(xnYn), so that we obtain limxn limYn = limxn limYn = 0 
= lim(xn Yn) = lim(xn Yn). Thus, (a) holds with equality. Similarly (a) holds 
i.!. ~, = 0 for some positive integer J]. We therefore assume that Ak > 0 and 
Bj > 0 for any positive integers J and k. Suppose J > k. Take n > J so that 
n > k. It follows from (8.3) that 

But then 

Hence 

It follows that 

if n > J. 

lim (xnYn) = infCk " S = supxnYn" Ak~· 
n>j 

for J> k. 

1 -.- " --=- lIm (xnYn) '" Bj 
Ak 

for J> k. (8.4) 

Now (Bk> is a monotonic decreasing sequence of elements of IR*. Hence, 
we have (Prob. 2.4), 

lim Y = inf jj. = inf jj. 
n } j>k } 

This and (8.4) imply 

~ lim (xnYn) "lim Yn 
Ak 

for each k. 

for each k. (8.5) 

Assume that lim Yn = o. Since Yn > 0 for all n, it follows that lim Yn = O. 
Also limxn < + 00 here. It follows that <xn> is a bounded sequence and 
therefore that lim(xnYn) = 0 (Theorem 8.1). This implies that (a) holds. If 
lim Yn > 0, then (8.5) yields 

lim (xnYn) _ 
--===--- " Ak for each k. 

lim Yn 

But then 

lim (xnYn) _ _ 
--==-- "lim Xn = inf Ak . 

lim (yn) 

Thus, the conclusion in (a) holds in this case also. This completes the proof 
of (a). 
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We prove (b). As before limxn ~ 0, limYn ~ 0, and limxnYn ~ o. We 
consider several cases. If limxn = + 00 and lim Yn > 0, then (b) holds with 
equality (Theorem 8.3). The same is true if limxn > 0 and lim Yn = + 00. It 
is left to consider the case 0 .,;;limxn < + 00,0 .,;;lim Yn < + 00. If limxn = 0 
or limYn = 0, we have limxn limYn = 0 .,;;limxnYn and (a) holds in this 
case. 

It remains to consider the case 0 <lim xn < + 00 and 0 <lim Yn < + 00. 
Put 

Ak= infxn' B k= inf Yn' Ck=infxnYn foreachk. 
n;.k n;.k 

We have: 0 .,;;d.k, 0 .,;;fl.k, 0 ";;{;.k for each k. If d.k = 0 for all k, we would 
have limxn = SUpd.k = 0, contradicting limxn > O. Hence, a positive integer 
k) exists such that d.k, > O. Similarly, there exists a positive integer j) such 
that fl.}. > O. We write 1 = max{k),jd and take j ~ k ~ I. Since <d.k)1' 
and <fl.k) l' , 

Also, 

Hence, 

This implies that 

Therefore, 

lim(xnYn) 
A-";;---::---'-
-J Bk 

for n ~ j. 

for n ~ j. 

for j ~ k ~ I. 

Since <4;)1' we have (Theorem 2.1) 

lim xn = sup AJ= sup AJ 
j;' k 

for k ~ I. 

Because of (8.6), this implies 

. lim(xnYn) 
IImxn .,;;----
- B _k 

for k ~ I 

and hence that 

for k ~ I. 

By reasoning as before, we conclude that 

. lim(xnYn) 
lIm Yn = sup B k= sup Bk< -""1.---

k;./ Imxn 

Thus, (b) follows in this last case also. This completes the proof. 

(8.6) 
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Products of Sequences Which Have Limits 

Lemma 8.1. If <xn> is a real sequence and a positive integer N exists such 
that limk-->+ooxk+N-l = L E IR*, then limxn = L. 

PROOF. We prove the lemma for the case L E IR and ask the reader to prove 
it for L = ± 00 (Prob. 8.3). Given € > 0, there exists a positive integer N) 
such that 

k;;;. Nl implies IXk + N - 1 - LI < €. (8.7) 

We take n > N + N) - 1, so that n = k + N - 1, where k> N). By (8.7), 

IXn - LI < € for n > N + N) - 1. 

Thus, lim Xn = L when L E IR. 

PROB. 8.3. Prove Lemma 8.1 for the cases L = ± 00. 

Theorem 8.5. If limxn and lim Yn each exist, then lim(xnYn) exists and 

lim(xnYn) = limxn limYn (8.8) 

provided that the product on the right is defined in IR*. 

PROOF. If lim Xn = 0 and lim Yn E IR, the conclusion follows from Theorem 
8.1. This is also the case if limxn E IR and limYn = O. Suppose limxn = X 
> 0 and lim Yn = Y > O. By Theorem 8.2, there exist positive integers N) 
and N2 such that 

n;;;' N) implies Xn > 0 and n ;;;. N2 impliesYn > O. (8.9) 

Put N = max{Np N 2 }. Then 

Xn > 0 and Yn > 0 if n;;;' N. (8.10) 

Consider the respective subsequences <Uk> and <vk> of <xn> and <Yn>' 
where 

Uk = Xk+N- 1 and Vk = Yk+N-l for each positive integer k. 

We have Uk > 0 and Vk > 0 for each k, and also 

lim (Xk+N_1)=X and lim (Yk+N-l) = Y. (8.11) 
k~+oo k~+oo 

By Theorem 8.4, we know that 

lim (Uk Vk)';;;; lim Uk lim Vk = XY 
k~+oo k~+oo k+ 

(8.12) 

and 

lim (Uk Vk) ;;;. lim Uk lim Vk = XY. (8.13) 
k~+oo 

It follows that 
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and hence that (explain) 

XY = lim (UkVk) = lim(ukvk) = lim(ukvk). (8.14) 

By Lemma 8.1, we conclude from this that 

lim (xnYn)= lim (ukvk)=XY=limxnlimYn 
n~+oo k~+oo 

in the case under consideration. 
If X < ° and Y < 0, then - X > ° and - Y > 0, so 

lime Xn Yn) = lime - Xn)( - Yn) = lime - xn)lim( - Yn) = ( - X)( - Y) = XY. 

If X > ° and Y < 0, then 

lim(xn( - Yn» = limxn lime - Yn) = X( - Y) = - (XY) 
so 

lime Xn Yn) = -lime Xn ( - Yn» = XY. 

The proof is now complete. 

Quotients of Real Sequences 

Lemma 8.2. If <xn> is a real sequence such that Xn =1= ° for all nand 
lim Xn =1= 0, then 

lim.l = _._1_ . 
xn hmxn 

(8.15) 

PROOF. Let lim xn = + 00 and let t: > ° be given. There exists a positive 
integer N such that 

This implies that 

Hence 

But then 

n ;;. N implies I Xn > - > 0. 
t: 

if n;;' N. 

if n;;' N. 

lim.l = ° = _1_ = _._1_. 
Xn + 00 hmxn 

(8.16) 

Similarly, if limxn = - 00, then for a given t: > ° there exists a positive 
integer N such that 

Xn < -1 < ° 
t: 

if n;;' N. 
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This implies that 

Ix I = -x >1 n n t: if n> N. 

Hence 

I-L - 01 = I-L 1 = _1 < f 
Xn Xn IXnl if n> N. 

Again we conclude that 

lim -L = ° = _1_ = _. _1_ . 
Xn - 00 hmxn 

We now consider the case where limxn exists, is finite, and =1= 0. Put 
L = limxn • We have L =1= ° and L E IR. There exists a positive integer N, 
such that 

so 

and hence 

I I ILl . 
Xn > T' 1.e., (8.17) 

Let t: > ° be given. There exists a positive integer N2 such that 

IXn - LI < 1~12 t: (8.18) 

Put N = max{N"N2 } and take n> N, so that n > N, and n> N 2 • This 
implies that 

if n> N. 

We conclude that 

This completes the proof. 

Theorem 8.6. If limxn = X and lim Yn = Y =1= 0, where Yn-' =1= ° for all n, 
then 

. Xn limxn X 
hm - = -.-- = - , 

n~+oo Yn hmYn Y 
(8.19) 

provided X and Yare not infinite together. 
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PROOF. Since Y *' 0, 1 j Y *' ± 00 (explain). By properties of real numbers 
and Def. 7.4, 

The hypothesis can be phrased as follows: Either X is not infinite or 
IjY*,O, so that X(ljY) is defined. Applying Theorem 8.5 and Lemma 
8.2, we obtain 

. Xn . ( I). . I ( I) X lim Xn hm - = hm xn - = hmxn hm - = X - = - = -.-- . 
Yn Yn Yn Y Y hm Yn 

Theorem 8.7. If <xn> is a real sequence such that xn > ° for all n, then 
-.- I I 

(a) hm - = -- if lim Xn > ° 
xn limxn 

and 

(b) 

PROOF. We begin by proving that 

lim -.1.;;; _1_ 
Xn limxn 

(8.20) 

The hypothesis implies that ° .;;; limxn .;;; limxn. If limxn = + 00, <xn> has a 
limit and lim xn = + 00. By Lemma 8.2, < I j xn> has a limit and 

lim -.1 = lim -.1 = _1_ = _1_ 
xn Xn lim Xn lim Xn ' 

in this case. Thus, the equality in (8.20) holds here. Next assume ° < limxn 
< + 00. Put 

. - I A k = mf Xn and B k = sup -
n> k n> k Xn 

for each k. 

Since ° <lim Xn < + 00 and Xn > ° for all n, it follows that ° ';;;4k < + 00 

for each k. As a matter of fact, ° <limxn implies that a positive integer k( 
exists such that Ak > 0. Therefore 

I 

so that 

This implies that 

(8.21 ) 
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The sequences (Jik) and <I /4k) are monotonic decreasing and, therefore, 
have limits. Since 

1· B- 1· ( 1) 1· 1 1m k = 1m sup - = 1m -
k--'> + 00 k--'> + 00 n;;> k Xn n--'> + 00 Xn 

and 

IimAk = lim (inf xn) = lim Xn ' 
k-> + 00 n;;> k n-> + 00 

we obtain from (8.21) and Lemma 8.2 

-1· - 1 1· B- 1· 1 1 1m - = 1m k';;; 1m - = - --
Xn k--'> + 00 A k Iimk-> + 00 A k lim Xn . 

Thus, (8.20) holds in this case also. 
We now prove that under the hypothesis, 

Put 

We have 

and hence 

1· 1 1 1m- >=-­
-xn lim xn 

if lim Xn > o. 

Ak = sup Xn and 
n;;>k 

B k = inf -.L for each k. 
n;;>k Xn 

for n> k 

if n > k. 

This implies that 

0< ~ .;;; inf (-.L) = Bk 
Ak n;;>k Xn 

for each k. 

(8.22) 

(8.23) 

The sequences <1/ Ak ) and <11k) are monotonic increasing and therefore 
have limits. Also 

lim Ak= lim (supxn) = lim xn > 0 
k--'> + 00 k--'> + 00 n;;> k 

and 

lim B k = Iim( inf -.L) = lim -.L. 
k--'>+oo n;;>k xn n->+oo xn 

It therefore follows from this, (8.23), and Lemma 8.2 that 

1 1· 1 1· B 1· 1 --_- = 1m-::-';;; 1m_k= 1m -, 
IimAk Ak Xn 
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i.e., that 

This proves (8.22). 
We prove (b). Assume limxn > 0 so that (8.22) holds. If lim(1/ xn) = 0, 

we obtain from limxn :> 0 and (8.22) that l/limxn = 0 so that (b) holds in 
this case. If lim(1 / xn) > 0, we apply (8.20) to the sequence <1/ xn) to 
obtain 

0< lim Xn < 1 
lim(l/xn) . 

This implies that lim(1 / xn) < + 00. Thus, 0 <lim(1 / xn) < + 00. Therefore, 
o <limxn < + 00 and 

This and (8.22) imply that the equality in (8.22) holds and prove (b) in this 
case (lli!!(l / xn) > 0) also. 

We now prove (a). Begin with limxn > O. If limxn = + 00, we obtain 
from (8.20) that lim(l / xn) = O. Thus, both sides of (a) are equal to 0 in this 
case and (a) holds. If lim xn < + 00, we have 0 <lim(l / xn) < + 00. We can 
now apply (b) to the sequence <I / xn) to obtain 

limx = 1 
- n lim (1/ xn) , 

-.- 1 1 so that hm - = -=-- . 
Xn lim Xn 

Hence, (a) holds in this case also. This completes the proof. 

Theorem 8.8. liO < xn and 0 < Yn' then: (a) liO < lim Yn and limxn' lim Yn 
are not both equal to + 00 together, then 

-.- Xn lim Xn 
hm- <-.--. 

Yn hm Yn 
(8.24) 

(b) liO < limYn and limxn' limYn are both not equal to + 00 together, then 

PROOF. Exercise. 

. xn limxn 
hm- :>-=-­
- Yn lim Yn 

Remark 8.1. The theorems on limits superior and inferior and limits of sums 
and products of real sequences can be extended to the cases of sums and 
products of finitely many sequences by induction on the number n of 
sequences. Thus, if <xn1 ), <xn2), ... , <xnm) are finitely many sequences 
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where m is some positive integer, then 

lim (xnl + Xn2 + ... + xnm)';;; lim Xnl + lim xn2+ 
n~+oo n~+oo n~+oo 

(8.25) 
and 

(8.26) 

provided that the sums on the right exist in IR*. Therefore, if <Xnl>' <Xn2>' 
... , <xnm> are m sequences which have limits, then 

+ limxnm 

(8.27) 
if the sum on the right is defined in IR*, and 

(8.28) 

if the product on the right exists in IR*. We also have: If Xnl ;;;. 0, Xn2 ;;;. 
0, ... , Xnm ;;;. 0 for all n, then 

lim (xn1 xn2 ... xnm)';;; lim Xnl lim Xn2 ... lim xnm (8.29) 
n~+oo n~+oo n~+oo n~+oo 

and 

provided that the products on the right exist in IR*. 
We use these results to evaluate lim X n ' where 

x = 2n2 - 3n + I 
n 3n2 + 4 

We have 

. . 2 - 3/n + 2/n2 lim(2 - 3/n + l/n2) limx = hm = ______ ...,..---C. 

n 3+4/n2 lim(3+ 4/n2) 

2 - 3(lim(l/n»)2 2 - 3(0) + Q2 = 13 . 

3 + 4(lim(l/n»)2 3 + 4(0)2 

Remark 8.2. We observe that the equalities 

lim(xnYn) = limxn limYn and lim Xn = l~mxn (8.30b) 
Yn hmYn 

break down when the operations on the right are not defined in IR*. Here 
the limit on the left can be any value. For example, let a E IR and 
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Xn = an~2'Yn = n2 for all n. We have xn~O andYn~ + 00 as n~ + 00, but 
xnYn = a~a as n~ +00. On the other hand, if Xn = n~1 andYn = n2 for 
all n, we still have xn~O andYn~ +00 as n~ +00 and xnYn = n~ +00 
as n ~ + 00. Similar examples illustrate the same point with respect to the 
second equality in (8.30b). Thus, if xn = an for each nand Yn = n for each n 
and a > 0, we have Xn ~ + 00 and Yn ~ + 00 as n ~ + 00 but xnlYn ~ a as 
n ~ + 00. Similarly, if Xn = n2 and Yn = n3 for each n, we have Xn ~ + 00, 
Yn~ +00 and xnlYn~O as n~ +00. On the other hand, writing xn = n3, 
Yn = n2 for each n, we have Xn ~ + 00, Yn ~ + 00 and xnl Yn ~ + 00. 

EXAMPLE 8.1. We prove: If p > 0, then limn_Hoc/In = 1. This is obvious if 
P = 1. Hence, assume first that p > 1. We have 1 < /In. This and Theorem 
11.12.1 yield 

o</In-I <l(p-l) 
n 

where p - 1 > O. It is clear from this that limn_Hoc/In = 1 (explain). If 
0< P < 1, then we have II p> 1. By the result just proved, we have 

hm -- = hm - = 1. . 1 . (I)l/n 
n-->+ 00 pl/n n-->+ 00 p 

Thus, 

if 0 < P < 1. Hence, for all p > 0, limn~H oc/ ln = 1. 

PROB. 8.4. Evaluate 

(a) lim 3n3 - 4n + 1 
n-->+oo 4n4 - 3n + 2 ' 

(b) 

• . IlIOn _ PROB. 8.5. Prove. If p > 0, then hmn_H ocP - 1. 

(c) 3 - n2 
lim ---. 

n--> + 00 n + I 

PROB. 8.6. Let <xn> be defined as follows: XI = Ii and Xn+ I = ~ 
for each positive integer n. For example, x 2 = ~ = -/2 + Ii , 

X3 = J2 + x 2 = ~2 + ~2 + Ii . Prove: <xn> converges and limxn = 2. 

PROB. 8.7. Let <xn> be defined as follows: XI = Ii and Xn+ 1= bXn for 

each positive integer n. For example, X2 = bXI = ~21i , 

X3 = J2X2 = ~2~21i . Prove: <xn> converges and limxn = 2. 
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PROB. 8.8. Let a> 0 be given. Define (xn) as follows: XI> 0, xn+1 
= H xn + a I xn)' Prove: limn_H ooxn = Va . 

PROB. 8.9 (See Probs. 5.2(b), 5.3, and 5.4). Prove: limn-> + 00(1 + Ilnt+ 1 
= e. 

PROB. 8.10. Prove: limn-Hoo(1- lint = lie. 

PROB. 8.11. Define sequences (xn> and (Yn) as follows: (1) 0 < XI < YI 
and (2) Xn+ I = JXn Yn and Yn+ I = (xn + Yn)/2 for each n. Prove: (xn> and 
(Yn> converge to the same limit L. (Gauss called this L the arithmetic­
geometric mean of X I and Y I .) 

PROB. 8.12.* Define the sequences (xn> and (Yn> as follows: (1) 0 < XI 
< YI and (2) xn+1 = 2xnYnl(xn + Yn),Yn+1 = (xn + Yn)/2 for each n (Note: 
xn+1 is the harmonic mean andYn+1 is the arithmetic mean of xn andYn 
(Prob. 11.12.1). Prove: (xn> and (Yn> each converge to JXIYI (Hint: note 

xn+IYn+1 = xnYn for each n). 

PROB. 8.13. Given a E JR, a> 1, and some positive integer k. Prove: (1) 
limn_Hoo(an/k In) = + 00 and (2) limn_Hoo(a n Ink) = + 00. 

PROB. 8.14. Prove: If 0 <p < I and k is some positive integer, then (1) 
limn_HOO(npn/k) = 0 and (2) limn_Hoo(nkpn) = O. 

PROB. 8.15. Give some examples showing that lim(xn + Yn) may exist, but 
limxn and lim Yn need not exist. 

PROB. 8.16. Give some examples showing that limxnYn may exist, but limxn 
and lim Yn need not exist. 

~,,"vB. 8.17. Evaluate limn_Hoo(n + I)I/n. 

9. L'Hopital's Theorem for Real Sequences 

Theorem 9.1. If (an> is a real sequence and (bn> is a real sequence such that 
bn+1 > bn > 0 for all nand limbn = + 00, then 

. an + I - an ..' an 
hm b b = L lmplzes hm-b = L. 

n~+oo n+1 - n n 
(9.1) 

• T. J. 1. Bromwich: Introduction to the Theory of Infinite Series, Macmillan, 1942, p. 23, 
Prob.9. 
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PROOF. First suppose that L = + 00. Because of (9.1), if a real B is given, 
then there exists a positive integer N such that 

a - a 
n+l n > 21BI + 1 if n;;' N. (9.2) 

bn + 1 - bn 

For each positive integer k define 

This and (9.2) yield 

1 + 21BI < mN,k 

By Prob. 11.12.13, part (1), 

for each k. 

(aN+ 1 - aN) + (aN+ 2 - aN+ 1) + ... + (aN+ k - aN+ k- 1) 
mn k < -'-:--:----o-'-:-~--__;___,___---____;_;,___-___:,___-__:_ 

, (bN+ 1 - bN) + (bn+ 2 - bN) + ... + (bN+ k - bN+ k- 1) 

aN+ k - aN 

bN + k - bN 

(Note: this is where the condition bn + 1 > bn is used). Thus, 
a k - a 1 + 21BI < N+ N for each k. 
bN + k - bN 

Now consider the sequence (Uk)' where 

(9.3) 

(9.4) 

(9.5) 

(9.6) 

aN+k-aN 1 (aN+k-aN ) 
U = = for each k. (9.7) 

k bN+ k - bN 1 - bN/bN+ k bN+ k 

Since limbn = +00, limk-HOO(bn/bN+k)=O. Therefore, a positive integer 
N 2 exists such that 

bN 1 o < -b - < 2"' i.e., 
N+k 

bN 1 
1- -- >-

bN+k 2 
(9.8) 

This, (9.7), and (9.6) yield 
a - a 1+2IBI<2 N+k N. 

bN + k 

Hence 
2a 2a k 
-N-+l+2IBI<~ 
bN + k bN + k 

for k;;. N 2 • 

Taking lim of both sides and using the fact that on the left-hand side the 
limit exists and is equal to I + 21 B I, we find that 

( 
2aN ) aN+ k 1+2IBI= lim -b-+l+2IBI <2 lim -b-' 

k~+oo N+k k~+oo N+k 

From this it follows that 
aN + k 21BI < I + 21BI < 2 lim -b-' 

N+k 
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so that 
aN + k 

B .;;; IB I.;;; lim --
k~+oo bN + k 

for each real B. 

This implies that 

. aN + k +00 = hm -­
k~+oo bN + k 

By Lemma 8.1 we obtain 

and, hence, that 

. an 
hm - = +00. 

n~+oo bn 

. aN + k 
hm -- = +00. 

k~+oo bN + k 
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This proves the theorem for the case L = + 00. We leave the proof for the 
case L = - 00 to the reader (Prob. 9.1). 

We now consider the case L E IR. By the hypothesis in (9.1), for each 
E: > 0 there exists a positive integer N such that 

a 1- a L_5..<.....!!.2..-__ n <L+5.. 
2 bn + 1 - bn 2 

We now define mN,k as in (9.3) and MN,k as 

for n;;;' N. 

{ aN+I - aN aN+2 - aN+ 1 aN+ k - aN+ k- 1 } 
M N,k = max b _ b 'b - b ' ... , b b 

N+I N N+2 N+I N+k - N+k-I 

for each k and obtain by (7.9) and Prob. 12.13 

(9.9) 

E: (aN+ 1 - aN) + (aN+2 - aN+ 1) + + (aN+k - aN+k-I) 
L - - < mN k .;;; --:-----:------0------0-------,-----.,,----

2 ' (bN+ 1 - bN) + (bN+ 2 - bN+d + + (bN+ k - bN+k-I) 

.;;; MN,k < L+ i, 
so that 

a k - a 
L - 5.. < N+ N < L + 5.. 

2 bN+k-bN 2 
for each positive integer k. (9.10) 

This is equivalent to 

( 1 - ~ )(L - 5..) < aN+ k - aN < (1 - ~ )(L + 5..) 
bN+ k 2 bN+ k bN+ k 2 

for each k. This can be written as 

- 1--- -<---L- < 1--- -( bN ) E aN+k ( aN - Lbn ) ( bN ) E 

bN+ k 2 bN+k bN+ k bN+ k 2' 

U sing properties of absolute value, we obtain from this 

laN+ k I IaN -LbNllaN+ k (aN-LbN)1 ---L-I ';;;---L-
bN+ k bN+ k bN+ k bN+ k 

< 1--- -<-( bN ) E E 

bN + k 2 2 
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for each k. This yields 

for each k. (9.11 ) 

Taking lim on both sides and noting that the limit of the right-hand side 
exists and is equal to f./2, we arrive at 

lim ---L-(-<f.. - \ aN+k \ f. 
k ..... +oo bN + k 2 

Thus, 

0-( lim I aN+k -LI -( lim I a N + k -L\< f. 
k ..... +oo bN + k k ..... +oo bN + k 

for all f. > O. 

This implies (explain) that 

lim I an + k - L\ = 0 and, hence, that lim an + k = L. 
k ..... +oo bn + k ' k ..... +oo bn + k 

Applying Lemma 8.1 we obtain the desired conclusion for the case L E IR. 

PROB. 9.1. Prove Theorem 9.1 for the case L = - 00. 

EXAMPLE 9.1. We prove that if liman = L E IR*, then 
a + ... + a 

lim 1 n = L. 
n ..... + 00 n (9.12) 

(This result is due to Cauchy.) Let Sn = ~L lak = a 1 + + an and 
bn = n for each positive integer n. We have Sn+ 1 - Sn = an for each nand 
hence 

By Theorem 9.1, 

PROB. 9.2. Prove: 

. Sn+l - Sn 1. 
hm b b = 1m an + 1 = L. 

n ..... + 00 n + 1 - n n ..... + 00 

lim 
n~+oo n 

1. Sn 
1m - = L. 

n ..... + 00 n 

lim _1_+_1....:../_2_+_· _. _. _+_I..:....I_n = o. 
n ..... +oo n 

10. Criteria for the Convergence of Real Sequences 

In this section we present two criteria for the convergence of sequences of 
real numbers. It is important to know whether or not a sequence converges 
even if we do not know its limit. We encountered such a criterion for 
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bounded monotonic sequences and proved that such sequences converge. 
We now state such criteria for general real sequences. 

Theorem 10.1. If <xn> is a real bounded sequence and we put, as usual 

for each k, 

then <xn> converges if and only if for each E > 0, there exists a positive integer 
N such that 

(10.1 ) 

PROOF. Let L =limxn and L =limxn • Since <xn> is bounded, we know that 

- 00 < inf Xn = A ] « A] = sup Xn < + 00 

and, hence, that 

- 00 < A k « L « L « Ak < + 00 

This implies that 

for each k. 

for each k. 

(10.2) 

(10.3) 

Now assume that for each E > ° there exists a positive integer N such that 
(10.1) holds. By (10.4) this implies 

for each E > 0. ( 10.4) 

It follows from this that L - L = ° (explain) and, hence, that L = r. But 
then <xn> has the limit L =L = L and also that - 00 <L = L < + 00. 

Hence, <xn> converges. 
Conversely, assume that <xn> converges so that - 00 <L = L < + 00. 

Let L = L = r. Then <xn> is necessarily bounded now. Given E > 0, we 
have 

L-i<L=~ ud L=L<L+i. 

There exists positive integers N] and N2 such that 

E - E L-"2<AN, and AN2 <L+"2' 

Put N = max{N],N2}. This implies that N ;;;. N] and N ;;;. N2 so that 
d.N, «d.N and AN « AN2 and, therefore, 

E - - E 
L -"2 <AN,«A N« AN « AN2 < L +"2' 

Hence, 

AN - AN< E. 

This completes the proof. 
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Def. 10.1. A real sequence <xn> is called a Cauchy sequence if and only if 
for each £ > 0 there exists an N E IR such that 

if m > Nand n > N, then IXm - xnl < €. (10.5) 

For example, the sequence <xn> where Xn = n -[ for each positive integer 
n, is a Cauchy sequence since 

1~_II<~+I. 
m n m n 

Let £ > 0 be given. Take N = 2/£. If m > Nand n > N, we have 

I ~ - 11 < ~ + 1 < i. + i. = £. 
m n m n 2 2 

The main theorem on Cauchy sequences will be Theorem 10.2 below. 
Before stating and proving this theorem we ask the reader to do Probs. 
10.1-10.4 below. These are problems concerning equivalent formulations of 
the notion of a Cauchy Sequence. 

PROB. 10.1. Prove: <xn> is a Cauchy sequence if and only if for each £ > 0 
there exists an N E IR such that if m > n > N, then IXm - xnl < £. 

PROB. 10.2. Prove: <xn> is a Cauchy sequence if and only if for each £ > 0 
there exists a positive integer N such that if m ;;;. Nand n ;;;. N, then 
IXm - xnl < £. 

PROB. 10.3. Prove: <xn> is a Cauchy sequence if and only if for each £ > 0 
there exists a positive integer N such that if m > n ;;;. N, then IXm - xnl < £. 

PROB. 10.4. Prove: <xn> is a Cauchy sequence if and only if for each £ > 0 
there exists a positive integer N such that if n is an integer such that n ;;;. N 
and p is any positive integer, then Ixn+ p - xnl < €. 

Theorem 10.2. A sequence of real numbers converges if and only if it is a 
Cauchy sequence. 

PROOF. Let <xn> be a real sequence which converges. There exists a real 
number L such that lim xn = L. Given £ > 0, there exists an N such that if 
n > N, then IXn - LI < £/2. If m is a positive integer such that m > N, 
then IXm - LI < £/2. Hence, if m > Nand n > N, then 

IXm - xnl = IXm - L - (xn - L)I < IXm - LI + IXn - LI < ~ + ~ = £. 

This proves: If <xn> converges, then it is a Cauchy sequence. 
Conversely, assume <xn> is a Cauchy sequence. Given £ > 0, there exists 

a positive N (Prob. 10.2) such that 

if m;;;' Nand n;;;' N. 
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It follows that 

if n> N. 

This implies that 

(10.6) 

so that - 00 <d.N .;;; AN < + 00. This, in tum, implies that <xn> is bounded 
(why?). Inequality (10.6) also yields 

- 2£ 
AN -A N ';;;3<L 

Hence, by Theorem 10.1, <xn> converges. This completes the proof. 

Def. 10.2. An ordered field (Remark 1.7.2) §" in which every Cauchy 
sequence converges to an element of §" is said to be Cauchy-complete. 

Remark 10.1. According to the above terminology, Theorem 10.2 states that 
the real numbers constitute a Cauchy-complete ordered field. This result 
may be formulated as follows: Every order-complete (cf. Remarks 1.12.2) 
ordered field is Cauchy-complete. 

The rational numbers form an ordered field which is not order-complete 
(Remark I.l2.1 and Theorem I.l2.1). It is not difficult to prove that the 
rational numbers are not Cauchy-complete. Consider the sequence <XI' 
X2' ... > in which 

Xn+ I = t ( xn + ;J 
for each positive integer n. This sequence is a sequence of rational numbers 
(explain) and moreover it converges to the limit Ii (Prob. 8.8). It, there­
fore, is an example of a Cauchy sequence (because it converges) of rational 
elements of 10 which does not converge to an element of 10. 

Def. 10.3. An ordered field §" is called an Archimedean-ordered field if it has 
the Archimedean property (Theorem 1.9.1), that is, if a and b are elements 
of §" such that a > 0 and b > 0, then there exists a positive integer n such 
that na > b. 

The system IR of real numbers is Archimedean-ordered (Theorem 1.9.1). 
In the next problem we ask the reader to prove that the system 10 of 
rational numbers is Archimedean-ordered. 

PROB. 10.5. First prove: If i and j are positive integers, then there exists a 
positive integer n such that ni > j, then prove: If rand s are positive 
rational numbers, there exists a positive integer n such that nr > s. 
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In Theorem 10.3 below we prove that an Archimedean-ordered field 
which is Cauchy-complete is also order-complete. We state some lemmas 
first. 

Lemma 10.1. If '?J is an Archimedean-ordered field and G/1 is a nonempty 
subset of'?J which is bounded from above, there exists a unique integer n in '?J 
such that n + 1 is an upper bound for G/1 but n is not. 

PROOF. By hypothesis G/1 ~ '?J is bounded from above so that '?J contains an 
upper bound b of G/1. Since '?J is Archimedean-ordered, there exists an 
integer N in '?J such that b < N (see the proof of Corollary 2 of Theorem 
1.9.1.) Thus, N is an integral upper bound of G/1. Let S be the set of all 
integral upper bounds of G/1. Since N E S, it follows that S =1= 0. Also, there 
exists Xo E G/1. Clearly, Xo is a lower bound for S. Since [xol < x o, the 
integer [xol is a lower bound for S. S is now seen to be a nonempty set of 
integers which is bounded from below. As such S has a least number, mo 
say. Thus, mo is an integer and is an upper bound for G/1 but mo - 1 is not 
an upper bound for G/1. Writing n = mo - 1, we have: the integer n + 1 
= mo is an upper bound for G/1, but n = mo - 1 is not. We leave the proof 
of the uniqueness of n to the reader. 

The next lemma is stated in terms of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. 

Lemma 10.2. If'?J is an Archimedean-ordered field and G/1 is a nonempty set 
of elements of'?J which is bounded from above, there exists an integer N, an 
infinite sequence <dn> of digits such that dn =1= 0 for infinitely many n's and 
such that the sequences <rn> and <qn>' defined by means of 

n 

r = N + '" d lO- k and q = r + lO- n 
n L.J k n n (10.7) 

k=1 

for each nonnegative integer n, have the property: for each n, qn is an upper 
bound for G/1 but rn is not. 

PROOF. By Lemma 10.1, there exists an integer N in '?J such that N + 1 is an 
upper bound for G/1 but N is not. Write ro = Nand qo = ro + 1 = N + 1. 
We prove there exists a digit d l such that 

r l = N + dl lO- 1 is not an upper bound for G/1, but ql = r l + 10- 1 is. 

(10.8) 

Take all digits d such that 

N + (d + 1)10- 1 is an upper bound for G/1. (10.9) 

d = 9 is such a digit. Let d l be the least digit d for which (10.9) holds. We 
have 0 < d l < 9 and 1 < d l + 1 < 10. Here d l + 1 is the least integer d + 1 
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with 1 « d + 1 « 10 for which (10.9) holds. Since d l < d l + 1, it follows 
that r l = N + dllO- 1 is not an upper bound for 621 and that ql = 'I + 10- 1 

= N + (d l + 1)10- 1 is. Thus, d l is a digit for which (10.8) holds. Using 
n = 1 in (10.7), we see 'n = 'I is not an upper bound for 621 but qn = ql is. 

We proceed inductively and assume that for some positive integer n there 
exist digits d l , d2 , ••• , dn such that for 'n and qn as defined in (10.7); 'n is 
not an upper bound for 621 and qn is. Now take all the digits d such that 

'n + (d + 1 )IO- n - I is an upper bound for 621. (10.10) 

Note that d = 9 is such a digit. Let dn+ I be the least digit d for which 
(10.10) holds. Then we have 0 « dn + I « 9, and 1 « dn + I + 1 « 10. Here 
dn+ I + 1 is the least integer d + 1 with 1 « d + 1 « 10 for which (10.10) 
holds. Define 'n + I and qn + I as 

'n+1 ='n + dn+IIo-n-1 
and 

qn+1 ='n + (dn+1 + I)IO- n - I . 

Since dn+ I < dn+ I + 1, 'n+ I is not an upper bound for 621 and qn+ I is. By 
the principle of mathematical induction, there exists a sequence of digits 
<dn> and sequences <'n> and <qn> defined as in (10.7), such that for each n, 
rn is not an upper bound for 621 and qn is, as claimed. 

We prove next that dn =1= 0 for infinitely many n's. In order to obtain a 
contradiction, suppose that there exists positive integer j such that if n > j, 
then dn = O. We have: n ;;;. j implies 'n = 'j and qn = 'j + IO- n. Here, if 
n;;;' j, 

'n = '1 is not an upper bound for 621 but qn = '1 + IO- n is. (10.11) 

Take E > O. There exists a positive integer n' such that 1/ n' < E so that 

IO- n'-I = _1_ < l < E. 
lOn' n' 

Let M = max{n',j} so that M is an integer such that M ;;;. n' and M ;;;. j 
and, therefore, 

IO- M « IO- n' < E 

and 

'1 + IO- M < '1 + E. (10.12) 

Here, because of (10.11), the left-hand side is an upper bound for 621, so the 
right-hand side is. Assume x E 621, so that x « '1 + E. Since this is true for 
all E > 0, X « '1' Thus, '1 is an upper bound for 621. But this contradicts the 
fact that 'j is not an upper bound for 621 (d. (10.11». We, therefore, 
conclude that for each positive integer j there exists an integer n > j such 
that dn > O. Accordingly, infinitely many dn's are positive and, hence, =1= O. 
This completes the proof. 
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Remark 10.2. We observe that if j is a nonnegative integer and n is an 
integer such that n > j and ~+1>~+2" •. , dn are digits where ~+I > 0, 
then 

I ~+I ~+2 dn I 
-- <: -- + -- + ... + Ion < I OJ· . 10j+ I IOj + I IOj +2 

(10.13) 

The inequality on the left is obvious. To establish the right-hand inequality 
note that 0 <: dk <: 9 for j + I <: k <: n so 

~+I dn 9 9 --+ ... +-<:--+ ... +­
IO j + I Ion IO j + I Ion 

= _9_ (I +...L + ... + I ) 
IO j +1 10 lon-j - I 

= _9_ ( 1- I/Ion-j ) 

IOj +1 1-10 

= I~j ( I - 1O!-j) 
<_1_ .. 

IOJ 

PROB. 10.6. Prove that the sequence <rn> of Lemma 10.2 is monotonic 
increasing, and that the sequence < qn> there is monotonic decreasing. 

Theorem 10.3. An Archimedean-ordered field i!J that is Cauchy-complete is 
also order-complete. 

PROOF. Assume that GIL is a nonempty subset of i!J which is bounded from 
above. By Lemma 10.2, there exists an integer N and a sequence <dn> of 
digits such that dn =1= 0 for infinitely many n's, and such that the sequences 
<rn> and <qn> defined for each n by the equations 

and 

have the property 

n 

rn = N + L: dk lO- k 

k=! 

rn is not an upper bound for GIL but qn is. 

Take € > O. There exists a positive integer M such that IO- M < €. For 
integers m and n such that m > n > M, we have 

Ir - r I = dn + I + ... + dm < I < I < ~ 
m n lon+ I 10m IOn 10M '-. ( 10.14) 
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This implies that <rn> is a Cauchy sequence of elements of '?f. Since '?f is 
Cauchy-complete by hypothesis, there exists L E '?f such that lim rn = L. 
Since <rn> is monotonic increasing, we know rn < L for all n (why?), so that 
L is an upper bound for <rn>. If M is a real number such that M < L, then 
M = L - (L - M), where L - M > 0, so an integer no exists s such that 
Irn - LI < L - M for n;;;' no and, hence, M - L < rn - L < L - M for 
n ;;;. no' This implies that M < rn for n ;;;. no and, hence, that M is not an 
upper bound for <rn>' Thus, any upper bound M for <rn> is ;;;. L. 
Accordingly, 

suprn = L = limrn . 

We prove that sup 611 = L. Assume x E 611. The properties of the se­
quence <qn> imply that 

for each n. (10.15) 

Since limqn = lim(rn + lO- n ) = limrn + lim lO- n = L + 0 = L, it follows 
from (10.15) that x < L. This proves that L is an upper bound for the set 
611. Now take B E '?f such that B < L and put E = L - B, so that E > 0 and 
B = L - E. Since L = sup rn' there exists an integer n1 such that B = L - E 

< rn ,' But rn , is not an upper bound for 611. Since B < rn" it follows that B 
is not an upper bound for 611. Thus, no B E '?f such that B < L is an upper 
bound for 611. Since L is an upper bound for 611, we conclude that 
L = sup 611. Thus, each nonempty subset 611 of '?f which is bounded from 
above has a supremum in '?f. '?f is therefore order-complete, as claimed. 

Theorem 10.4. Corresponding to each real number x, there exists a unique 
integer N and a unique sequence <dn> of digits such that dn =1= 0 for infinitely 
marry n's and such that for the sequence <rn>, where 

n 
rn = N + ~ dk lO- k for each n, (10.16) 

k=1 

we have 

rn < x < rn + lO- n for each n. (10.17) 

PROOF. Apply Lemma 10.2 to the set 611 = (- oo,x]. This is a nonempty set 
of real numbers which is bounded from above by x. There exists an integer 
N and a sequence <dn> of digits such that the sequence <rn> defined in 
(10.16) and the sequence <qn), where qn = rn + lO- n for each n have the 
property that for each n, rn is not an upper bound for 611 but qn is. Since 
x = sup 611, this implies that (lO.l7) holds. 

We prove the uniqueness of N and the <dn >. Let N' be an integer and 
<d~> be a sequence of digits such that for the sequence <r~>, where 
r~ = N' + Lk= Id';IO-k, we have 

r~ < x < r~ + lO- n for each n. 
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If N > N', then N > N' + 1. Since rn > N > N' + 1 > x, we obtain a 
contradiction to rn < x. N' > N is also impossible. Hence, N = N'. Sup­
pose dn =F d~ holds for some n. Let j be the least positive integer such that 
~ =F dj. Assume ~ < dj so that ~ + 1 ",;;; dj. For k <j, we have dk = dfc. 
Hence, 

) )-1 ~ 

r; = N + 2: dfclO- k= N + 2: dklO- k+ _l_. 
k=1 k=1 10 1 

)-1 (d. + 1) 
> N + 2: dk 10 - k + l . 

k=1 101 

) 

= N + 2: dklO- k+ _1_ 
k=1 IOj 

= r. + _1_ 
1 IO j 

= qj. 

Thus, r; > qj which is impossible (explain). Therefore, we have N = N' and 
dn = d~ for all n so that rn = r~ for all n. 

Remark 10.3. Let x E IR. The sequence <rn> of the last theorem, where 
rn = N + ~1=ldklO-k for each n such that dn =F 0 for infinitely many n's 
and 

has the property 

for each n. 

Hence, limrn = x. 



CHAPTER IV 

Infinite Series of Real Numbers 

1. Infinite Series of Real Numbers. Convergence 
and Divergence 

The sums 
n n 

~ ak = a I + ... + an , ~ ak = ao + ... + an ' 
k=1 k=O 

where n is some positive integer, were defined in Chapter II. They are 
examples of finite sums. Now we define the "sum" of the infinite series 

00 

~ an = a I + a2 + ... 
n=1 

00 

or ~ ak= ao + a l + .... 
k=O 

Del. 1.1. If <an> is a real sequence, then the sequence (Sn), where for each 
n, 

Sn = a l + ... + an' 

is called the infinite series of terms of the sequence <an>' The nth term of 
the sequence <Sn> is called the nth partial sum of the series. The series <Sn> 
is written L~= Ian and an is called the nth term of this series. 

According to this definition, L ~ = I an is merely a notation for the se­
quence <Sn> of partial sums Sn' where 

I 2 

SI = ~ ak = ai' S2 = ~ ak = a1 + a2 , 
k=1 k=1 

3 

S3 = ~ ak = a l + a2 + a3 , etc. 
k=1 
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The partial sums are defined inductively from the sequence (an) of terms 
of Ln= Ian by means of 

SI =a l for each n. 

If N is some positive integer, then Lk=Nak is the infinite series of terms 
of (an)n>N = (aN,aN+I, ... ). 

Def. 1.2. The series Lk=lak is said to converge if and only if the sequence 
(Sn) of its partial sums converges. Otherwise it is said to diverge. If 

n 

S = lim Sn = lim 2: ak , 
n~+oo n~+oo k=! 

then S is called the sum of the series. We also write 

00 

S= 2: an' 
n=! 

Thus, when L~=lan converges, the symbol L~=lan has two meanings: In 
Def. 1.1 it denotes the sequence (Sn) of partial sums, and in another sense, 
Def. 1.2, it denotes the sum S of the series. We hope that the sense in which 
L ~ = I an will be used will be clear from the con text. 

According to Def. 1.2, the series has sum S E IR if and only if for each 
E > 0 there exists an N such that n > N implies 

(l.l ) 

Using the Cauchy criterion for the convergence of (Sn)' we see that 
L~=lan converges if and only if for each E > 0 there exists an N such that if 
n> m > N, then 

I i: akl = lan+1 + ... + ani = ISm - Snl < E. (1.2) 
k=m+! 

This is equivalent to saying that Lan converges if and only if for each E > 0 
there exists an N such that if n > N, then 

lan+ I + ... + an+pl = ISn+p - Snl < E for all positive integers p. 

(l.3) 

We refer to (1.2), or its equivalent form (1.3), as the Cauchy criterion for the 
convergence of series. 

If n is a nonnegative integer, then L'k=n+ lak is the series whose terms are 
those of the sequence (ak)k>n+ I' Writing Sn.m for the nth partial sum of 
this series, we have 

m 

Sn.m = 2: ak 
k=n+! 

where m> n. (1.4) 



I. Infinite Series of Real Numbers. Convergence and Divergence 153 

If the above series converges, then we write its sum as Rn , so that 
m 

Rn = lim Sn m = lim 2: ak • 
m---> + 00 ' m---> + 00 k = n + \ 

(1.5) 

We call Rn the remainder after n terms of L%'=lak. 

FROB. 1.1. Prove: (a) If L%,=\ak converges, then for each n, L%'=n+\ak 
converges; (b) iffor some n, L~+\ak converges, then so does L%,=\ak' Also 
prove: L%'=lak = S = Sn + Rn for each n and Rn~O as n~ + 00 in this 
case. 

EXAMPLE 1.1 (The Telescoping Series). The series 

00 I I I 
n~\ n (n + I) =}:2 + 2· 3 + ... 

converges and its sum is I. We prove this. First note that if k is a positive 
integer, then 

7"":"":-,I~:-:- = 1 __ 1_ 
k(k+l) k k+1 

The nth partial sum for this series is Sn' where 

n I n l I I n 
Sn = k~\ k( k + I) = k~\ k - k + I = I - n + I = n + I . 

Hence, 

S= lim S= lim _n_=1. 
n--->+oo n n--->+oo n + I 

FROB. 1.2. Prove: If x is not a nonnegative integer, then 

00 I =_1_ 
n~\(x+n)(x+n+l) I+x' 

FROB. 1.3. Prove: 

(a) 
00 I 
2: 
n=\ n(n + I)(n + 2) 

(b) 
00 I 

n~1 n(n + I)(n + 2)(n + 3) 

We now present a necessary, but not sufficient, condition for the conver­
gence of an infinite series. 

Theorem 1.1. If Lan converges, then an ~O. 
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PROOF. If n is a positive integer, then 

Sn = Sn-I + an and Sn - Sn-I = an· 

If S is the sum of the series, then S = lim Sn' where for each n, Sn is the nth 
partial sum of the series. It follows (explain) that S = lim Sn- 1> so 

o=s-s= lim Sn- lim Sn-I= lim (Sn-Sn-I)= lim an. 
n ..... + 00 n ..... + 00 n ..... + 00 n ..... + 00 

This proves the theorem. 

We shall see later (Example 1.3) that the converse of the above theorem 
is false. We apply this theorem in the next example to prove the divergence 
of certain series. 

EXAMPLE 1.2 (The Geometric Series). The series 
00 

2: xn=1+x+x2 + ... (1.6) 
n=O 

is called the geometric series. We prove that it converges for Ixl < I and 
diverges for Ixl ;;;. 1. First note that if x =1= I, then 

2 n l -xn+1 I x S =I+x+x + ... +x =-=--:---=..: __ = __ -xn __ 
n I-x I-x I-x· 

If Ixl < I, then limn ..... +oox n = O. Hence 

1m = 1m ---x -- =--. 1· S 1· (I n X) I 
n ..... + 00 n n ..... + 00 I - x I - x I - x 

It follows that 

I 2 I +x+x+···=-­
I-x if Ixl < 1. 

(1.7) 

(1.8) 

However, if Ixl ;;;. I, then limn ..... + ooxn =1= O. Therefore, by Theorem 1.1 ~ xn 
diverges for Ixl ;;;. 1. 

EXAMPLE 1.3 (The Converse of Theorem 1.1 Is False). Here, we give an 
example of a series for which an ~ 0 as n ~ + 00 holds but such that ~ an 
diverges. The series 

00 I I I 2: -=1+-+···+-+··· 
n= I n 2 n 

(1.9) 

is called the harmonic series. We have an = 1/ n ~ 0 as n ~ + 00. We prove, 
however, that this series diverges. Let <Hn> be the sequence of partial sums 
of the harmonic series (1.9). Then 

I I n I 
Hn = I + -2 + ... + - = 2: -. 

n k=1 k 
(1.10) 

Note that 

HI = I, H2 = I + ! ' 
H22 = H4 = I + ! + t + ~ > I + ! + ~ + ~ = I + 20). 
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We claim that, quite generally, 

H 2" ;;;. 1 + I for each nonnegative integer n. (1.11) 

We prove this by induction on n. Inequality (1.11) holds for n = 0, 1, and 2. 
Let (1.11) hold for some nonnegative integer n. Now 

2n + 1 

H 2,,+1 = H 2" + ~ -k' 
k=2"+ 1 

In the second sum on the right 

(1.12) 

1 ;;;. _1_ for all integers k such that 2n + 1 ,;;; k ,;;; 2n+ 1 = 2n + 2n. 
k 2n + 1 

This implies that 

2"+1 2"+2" 2"+2" 
~ 1;;;. ~ _ _ _ ~ 1 = _1_ (2n) = 1 

k=2"+1 k k=2"+12n+1 2n + 1 k=2"+1 2n + 1 2 . 

This, (1.l2), and the induction hypothesis yield 
2n+ I 

H 2"+1 = H 2" + ~ 
k=2"+ 1 

By the principle of mathematical induction it follows that (1.11) holds. It is 
clear from (1.l2) that limn _Hoo H 2" = + 00. Thus, the subsequence <H2"> 
diverges. This implies that <Hn> diverges. But then the harmonic series 
diverges, even though lim an = lim( 1/ n) = O. 

Remark 1.1. The sum and difference of Lan and Lbn are defined respec­
tively as 

~ (an + bn) and ~ (an - bn)· 

We also define L(can) as the series whose nth term for each n is can' where 
c is some constant. 

PROB. 1.4. Prove: If Lan and Lbn converge, then so do L(an + bn), 
L(an - bn) and L(can) and we have (a) L(an + bn) = Lan + Lbn, (b) 
L(an - bn) = Lan - Lbn, (c) L(can) = CLan' 

2. Alternating Series 

Der. 2.1. An alternating series is a series of the form 
00 

~ (- 1 t+ I an = a1 - a2 + a3 - a4 + ... , 
n=l 

(2.1 ) 

where (1) an > 0 for all n, (2) <an> is strictly decreasing, and (3) an~O as 
n~+oo. 
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For example, the series 

~(-lr+ll=1-1+1_1+ 
n= I n 2 3 4 

(2.2) 

is an alternating series. 

Theorem 2.1. Each alternating series ~~= I( -lr+ Ian converges. Moreover, if 
S is its sum, we have for each partial sum Sn' 

IS - Snl < an + I. (2.3) 

PROOF. We first prove that the subsequence <S2k> of even-indexed partial 
sums of the sequence <Sn> is strictly monotonic increasing. Note that 
S2 = a l - a2 > 0 and S4 = S2 + (a3 - a4) > S2. More generally, since a2k +1 
> a2k+2' we have 

S2k+2 = S2k + (a2k +1 - a2k +2) > S2k for each k. (2.4) 

Since a2k > a2k+ I' the subsequence <S2k-l> of odd-indexed partial sums is 
strictly monotonic decreasing, as we see from 

S2k+1 = S2k-1 - (a2k - a2k+l ) < S2k-1 

It also follows from 

for each k. 

for each k 

that S2k < S2k-1 for each k. 

(2.5) 

(2.6) 

We prove that each even-indexed partial sum is less than every odd­
indexed partial sum. If m < n, since <S2k> is increasing and (2.6) holds, we 
obtain 

S2m < S2n < S2n-l· 

If m > n, we obtain from (2.6) and the fact that <S2k-l> is decreasing that 

S2m < S2m-1 .,;; S2n-l· 

Thus, we have 

S2m < S2n-1 for any positive integers m and n. (2.7) 

It follows that each S2n-1 is an upper bound for <S2k>. Hence, putting 
S = sUPS2k' we have 

for m and n. 

Since <S2k> is strictly increasing and <S2k-l> is strictly decreasing, this 
inequality can be strengthened to read 

S2m < S < S2n-1 for m and n, 

It follows from (2.8) that for each m 

S2m < S < S2m+1 

S2m < S < S2m-l· 

(2.8) 

(2.9a) 

(2.9b) 
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The first of these inequalities yields 

0< S - S2m < S2m+l - S2m = a2m+l 

and the second yields 

-a2m = S2m - S2m-l < S - S2m-l < o. 
We use absolute values in (2.10) and (2.11) and obtain for each m 

IS - S2ml < a2m +1 and IS - S2m-ll < a2m · 
Together these imply 

IS - Sn I < an + 1 for any positive integer n, 
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(2.10) 

(2.11 ) 

which proves (2.3). Since lim an + 1 = 0, (2.3) yields lim Sn = S and that the 
alternating series we began with converges. 

According to this theorem, the series (2.2), which is alternating, con­
verges. On the other hand, the series whose terms are the absolute values of 
the terms of the series (2.2) is the harmonic series and so diverges. Contrast 
this behavior with that of the series 

00 

"" (_I)n+l_l_ = I-I + 1. -1. + ... 
n-=l 2n- 1 2 22 23 

(2.12) 

This series converges (why?). The series 

~ _1_=1+1+1.+1.+ ... 
n=l 2n - 1 2 22 23 ' 

(2.13) 

whose terms are the absolute values of the previous series, also converges 
(why?). Series that behave like the series (2.12) are called absolutely converg­
ing. 

Def. 2.2. Given :2:an' If :2:lanl converges, we call :2:an an absolutely 
converging series. If :2:an converges and :2:lanl diverges, then we say that 
:2:an is conditionally convergent. 

According to this definition, the series (2.12) converges absolutely and 
the series (2.2) is conditionally convergent. 

Theorem 2.2. An absolutely converging series converges. 

PROOF. Assume that :2:an converges absolutely so that :2:lanl converges. Let 
<Sn> be the partial sum sequence of :2:an and <Tn> the sequence of partial 
sums of :2:lanl. We know that <Tn> is a Cauchy sequence. We shall prove 
that <Sn> is a Cauchy sequence. Let £ > 0 be given. There exists an N such 
that if m > n > N, then 

m 

2: lakl= ITm - Tnl < £. (2.14) 
k=n+l 
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By the properties of absolute value, we have 

ISm - Snl =1 i: akl.;;; i: lakl= ITm - Tnl < E, 
k=n+l k=n+l 

for m > n > N. 

Thus, <Sn> is a Cauchy sequence and is, therefore, convergent. This implies 
that 2:an converges. 

PROB. 2.1. Prove: If 2:~=l(-lr+lan IS alternating, then for each n, 
0< an - an+ 1 + an+2 - an+3 + .... 

3. Series Whose Terms Are Nonnegative 

Theorem 3.1. If 2:~= Ian is a series such that an ? 0 for all n, then it 
converges if and only if the sequence <Sn> of its partial sums is bounded from 
above. 

PROOF. Assume that 2:an converges, so <Sn> converges and, therefore, is 
bounded. 

Conversely, assume that <Sn> is bounded. Since an ? 0 for all n, it 
follows that 

Sn+1 = Sn + an+1 ? Sn 

so that Sn + I ? Sn for each n. Thus, < Sn> is monotonic increasing. Since it is 
also bounded, it converges. 

Remark 3.1. Suppose that 2:an has nonnegative terms and its sequence of 
partial sums is not bounded. Since the partial sum sequence is monotonic 
increasing, 

00 

2: an= lim Sn= + 00. 
n = 1 n--> + 00 

(3.1 ) 

If the above 2:an converges, then 

0.;;; 2:an< + 00. (3.2) 

PROB. 3.1. Prove: If Lan has nonnegative terms and some M E IR exists 
such that Sn .;;; M for all the partial sums Sn' then S';;; M for its sum S. 
Note that Sn .;;; S for each n. Also prove: If an > 0 holds for infinitely many 
n's, then Sn < S holds for each n. 

EXAMPLE 3.1. If <dn> is an infinite sequence of digits and N is an integer, 
then the series 

(3.3) 
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has the sequence (rn>' where 

~ -k ~ ~ r = N + 4.J dk 10 = N + - + ... + -n k~1 10 IOn 
as its sequence of partial sums. As is customary we write 

n 

.dJd2 • •• dn = ~ dk lO- k , 
k~1 

so that rn = N + .dJ ••• dn for each n.) Then 

Hence 

9 N.;;; rn';;; N+~=N+ 10 + 
n mnes 

=N+~(l+~+ ... +_1_) 
10 10 IOn - J 

9 (I-IlIOn) 
= N + 10 1 - 1/10 

1 =N+1- lOn <N+1. 

N.;;; rn < N + 1 for each n. 
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for each n (3.4) 

(3.5) 

(3.6) 

This tells us that the sequence of partial sums of the infinite series (3.3) is 
bounded. Since its terms are nonnegative, Theorem (3.1) implies that it 
converges. Writing S for the sums of the series, we have 

(3.7) 
n~1 

By Prob. 3.1 and by (3.6) we have N .;;; rn .;;; S .;;; N + 1. Hence N .;;; S 
.;;; N + 1. When ~ > ° for some j > 0, then N < N + rj" Hence, N < 'j .;;; S 
.;;; N + 1. But then 

N<S';;;N+1 
holds when not all the terms of (dn> are equal to 0. We write 

S = N + .dJd2 • • • (3.8) 

for the sum of the series (3.7), and call N + .dJd2 ••• , an infinite decimal. 
When infinitely many of the digits dn are not equal to 0, we call the infinite 
decimal nonterminating. Numbers of the form (3.5) are called terminating 
decimals. When the decimal in (3.8) is non terminating, we call it a non­
terminating decimal representation of S. We refer to rn = N + .dJ ••• dn, the 
nth truncation of the infinite decimal and (rn> as the sequence of its 
truncations. 

By Theorem 111.10.4, to each real number x there corresponds a unique 
integer N and a unique sequence (dn> of digits dn such that dn =t= ° for 
infinitely many n's and such that the sequence (rn>' where rn = N + 
.dJ ••• dn for each n, has the property 

for each n. (3.9) 
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As observed in Remark 111.10.2, this implies x = lim rn and we have 

x = N + .dl d2 • •• • (3.10) 

Using the terminology just introduced, we state this result as follows: Each 
real number x has a unique non-terminating decimal representation. 

PROB. 3.2. Prove: (a) N + .99 ... = N + I. In the decimal on the left the 
decimal point IS followed by 9's only, so that dn = 9 for all n. More 
generally, (b) 

all nines 
~ . 

N + .0 ... 099 ... = N + .0 ... 01 = N + 10-1. 

--------­j zeros --------­j-I zeros 

(3.11 ) 

PROB. 3.3. Prove: The terminating decimal x = N + .dl ••• dy, where 
dy > 0, has the nonterminating decimal representation 

all nines 
~ 

X = N + .dl ••• dy = N + .dl ••• (dy - 1 )99 .... 
'-------.,.---­

j places 

(3.12) 

Thus, we see that although each real number has a unique non terminating 
decimal representation, some also have a terminating one. 

Remark 3.2. Let x = N + .dl d2 ••• , where the decimal on the right is 
nonterminating. Let <rn) be the sequence of its truncations and <qn) the 
sequence defined as qn = rn + IO- n for each n. For rn+1 and qn+1 we have 
rn+ I = rn + dn+ llO-n-1 and qn+ I = rn+ I + IO- n- I . The sequence <rn) is 
monotonic increasing. Since it converges, 

x = limrn = suprn' 

Notice that <qn) is monotonic decreasing. In fact, for each n, 

qn+1 = rn+1 + IO- n - I = rn + (dn+1 + I)IO- n - I 

< rn + (IO)IO- n - I = qn' 

Consequently qn + I < qn for each n. Clearly, 

x = limrn = lim(rn + IO- n) = limqn = infqn' 

EXAMPLE 3.2. Consider the series 

co 1 1 I L p=I+ 2p + 3p + 
n=1 n 

(3.13) 

(3.14) 

(3.15) 

where p is rational and p > I. We limit ourselves to rational p > 1 because, 
thus far, powers with real exponents have not been defined. Once these are 
defined (see Section 10) it will be seen that the results proved here also hold 
for real p > I. We consider the subsequence <S2n-l) of the sequence <Sn) 
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of partial sums of our series 

S21-1 = SI = 1, 

S22 _1 = S3= 1+ ip + ip < 1 + ip = 1 +2-(p-I). 
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(3.16) 

More generally, if n ;;. 2 and p > 0, we prove using induction on n that 
,,-1 

S2n_1 < 1 + ~ 2-(p-l)k 

k=1 

= 1 +2-(p-l) + ... +2-(p-I)(,,-I). (3.17) 

We saw in (3.16) that (3.17) holds for n = 2. Assume that (3.17) holds for 
some integer n ;;. 2. We have 

2"+1_1 

_ '" 1 S2"+I-1 - S2"-1 + 4J k P ' 
k=2n 

(3.18) 

In the sum on the right, k ;;. 2n. Since p > 0, this implies that kP ;;. (2ny 

= 2P". Therefore k-P ..; 2-p". Now 

2"+1_1 2"+1_1 2"+1-1 

~ k- p ..; ~ 2-p"=2-pn ~ 1=2-pn(2n+ l -l-(2"-I») 

k=2" k=2" k=2" 

= 2-pn 2 n = 2-(p-l)n. 

This and (3.18) yield 

S2n+I_I"; S2"-1 + 2-(p-l)n. 

This and the induction hypothesis (3.17) imply that 
,,-1 

S2"+I-1 < 1 + ~ 2-(p-l)k+ 2-(p-l)n 

k=1 

n 
= 1 + ~ 2-(p-l)k 

k=1 

(3.19) 

(3.20) 

for p > 0 and n ;;. 2. In view of the induction assumption, (3.17) holds for 
each n ;;. 2 and p > O. Now note that, for p > 0, 

n-I 
1 + ~ 2-(p-l)k= 1 + 2-(p-l) + ... + (2-(p-I»(n-l) 

k=1 

1 - 2-(p-l)n 

1 - 2-(p-l) • 
(3.21 ) 

Using the assumption p > 1, we have 2-(p-l) < 1. Hence (3.21) yields 
n-I 1 2P-1 

1 + '" 2-(p-l)k< = 
k-=I 1 - 2-(p-l) 2 P - 1 - 1 

if p> 1, n;;' 2. 

This and (3.17) imply that 

if p> 1, n;;' 2. (3.22) 
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Using (3.16) and noting that the number on the right is greater than I, we 
conclude that (3.22) also holds for p > I and n a positive integer. Now 
2n > n holds for each positive integer n. Therefore, we have 2n > n + I and 
2n - 1 > n for n a positive integer. Accordingly, we have 

2P - 1 
Sn .;;; S2n _1 < 2P - 1 _ 1 if P > 1 and n a positive integer. (3.23) 

This proves that the partial sums of our series are bounded. By Theorem 
3.1, we see that the series (3.15) converges for p > 1. Note that if p = 1, the 
series diverges with sum S = + 00. 

We write 
00 1 

Kep) = L: p 
n=1 n 

if p> 1. (3.24) 

The function ~ just defined is called the Riemann zeta function. It plays an 
important role in the study of prime numbers. 

4. Comparison Tests for Series Having 
Nonnegative Terms 

Theorem 4.1. If ~an and ~bn are series for which there exists a positive 
integer N such that 0 .;;; an .;;; bn holds for n > N, then the convergence of ~ bn 
implies the convergence of ~an' and the divergence of ~an implies the 
divergence of ~bn' 

PROOF. Assume ~bn converges. This implies that ~'::=Nbn converges. Let 
TN be the sum of the last series and TN,n be its nth partial sum. Let SN,n be 
the nth partial sum of ~'::=Nan' Since 0.;;; an .;;; bn for n > N, it is clear that 

SN,n .;;; TN,n .;;; TN for n > N. 

Thus, the sequence <SN,n)n>N of ~'::=Nan is bounded from above by TN' 
Hence, ~ ':: = Nan converges. This implies that ~ ':: = I an does. 

Next assume ~an diverges, so that ~'::=Nan does. Since the terms of the 
latter are nonnegative, we know that the sequence <SN,n) of its partial sums 
is not bounded from above. Writing TN,n again for the nth partial sum of 
~'::=Nbn' we see that 

for n> N. 

This implies that < TN,n) is not bounded. Accordingly, L'::=Nbn diverges. It 
follows that ~oobn also does. 

PROB. 4.1. Prove: If p .;;; 1, then ~ ':: = 11/ nP diverges. 

PROB. 4.2. Prove: If Lan and ~bn are infinite series of real numbers and 
there exist M and N where M > 0 and N is a positive integer such that 
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o < an < Mbn for n :;;. N, then the convergence of '2.bn implies that of '2.an 
and the divergence of '2.an implies that of '2.bn. 

Def. 4.1. If (an> and (bn> are real sequences for which there exists an 
M > 0 and a positive integer N such that 

for n:;;' N, (4.1 ) 

then we write 

n~ +00 (4.2) 

and read this as: an is big 0 of bn as n~ + 00. 

EXAMPLE 4.1. The reader can show that 

if n:;;' 2. (4.3) 

Therefore we can write 

n2 ~ I = o( n\ ) n~+oo. 

EXAMPLE 4.2. If a sequence (an> is bounded, then 

n~ + 00. 

Indeed, there exists an M > 0 such that lanl < M = M· 1 for n :;;. 1. Let 
(bn> be the constant sequence bn = 1 for all n. Then lanl < Mbn = M· 1 for 
n :;;. 1. 

PROB. 4.3. Let (bn> be a sequence of positive numbers. Prove: If limn_H "" 

(ani bn) = 0, then an = O(bn), n ~ + 00. 

Def. 4.2. If (an> and (bn> are real sequences such that bn > 0 for all nand 
limn- H ",,(ani bn) = 0, then we write 

as n~ + 00 (4.4) 

reading this as: an is little 0 of bn as n ~ + 00. 

Remark 4.1. By Prob. 4.3 we have: If an = o(bn) as n ~ + 00, then an 
= O(bn ) as n ~ + 00. The converse does not hold (give an example). 

PROB. 4.4. Prove: If an = O(bn) as n~+oo, and bn = O(cn) as n~+oo, 
then an = O(cn) as n~ +00. 

Def. 4.3. If an = O(bn) as n ~ + 00 and bn = O(an) as n ~ + 00, we say that 
an and bn are of the same order of magnitude as n ~ + 00 and write an:::=:: bn as 
n ~ + 00. This occurs if and only if there exist M I > 0, M 2 > 0, and a 
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positive integer N such that 

for m;> N. (4.5) 

Del. 4.4 (Asymptotic Equivalence). If limn .... + oo(an/bn) = I, we say that an 
and bn are asymptotically equivalent as n ~ + 00 and write 

as n~ +00. (4.6) 

EXAMPLE 4.3. Since limn .... +oo«n + I)/n) = I, we write n + I-n as 
n~ +00. 

Using the "big 0" notation we can extend the result In Prob. 4.2 
somewhat. 

Theorem 4.2. If (bn> is a real sequence for which there exists a positive 
integer N such that bn ;> 0 for all n ;> N and an = O(bn) as n ~ + 00, then 
the convergence of '2,bn implies that of '2,an and the divergence of '2,lanl 
implies that of '2,bn· 

PROOF. By the hypothesis on (bn >, there exists a real M > 0 and a positive 
integer Nl such that 

for n;> N 1 • (4.7) 

Assume that '2,bn converges. By the Cauchy criterion for the convergence 
of series (Section I), we have: for each E: > 0, there exists an N2 such that 

if m> n > N 2 • (4.8) 

Put N3 = max{N,N1,N2 }. From the hypothesis on (bn>, (4.7) and (4.8), it 
follows that if m > n > N 3 , then 

lan+11 + lan+21 + ... + laml < M(bn+ 1 + bn+ 2 + ... + bm) < f.. 

By the Cauchy criterion for the convergence of series, '2,lanl converges. 
Therefore '2,an converges. 

Next assume that '2,lan l diverges. Using (4.7) we see that '2,bn diverges 
(Prob. 4.2). 

Theorem 4.3. If '2,an and 'Lbn are series with a nonnegative term, where 
bn > 0 for all nand 

an - an o < lim b < lim b < + 00, 
n n 

then 'Lan and '2,bn converge together or diverge together. 

PROOF. Put 

and 
- -a 
L = lim --.!!.. 

b ' n 
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so that 

and, hence, 

There exist positive integers N) and N2 such that 

L a 
0<-= < .-!!. for n > N) 

and 

2 bn 

an <l[ 
bn 2 

for n > N 2 • 

We put N = max{N),N2} and obtain from (4.9) and (4.10) 

o < t £:..bn < an < ( t [)bn 
The conclusion follows readily from this. 

for n> N. 
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(4.9) 

(4.10) 

Corollary. If ~an and ~bn have nonnegative terms where bn > 0 for all nand 

O 1· an < 1m b < +00, 
n 

then ~an and ~bn converge together or diverge together. 

PROOF. Exercise. 

PROB. 4.5 Prove: If bn > 0 for all n and ~an has nonnegative terms, then 
(a) 0" Iim(anl bn) < + 00 implies that an = O(bn) as n ~ + 00 and (b) 
0< lim(anl bn) " + 00 implies that bn = O(an) as n ~ + 00. In each case 
draw the appropriate conclusions about the relation between the conver­
gence or divergence of ~an and that of ~bn' 

Remark 4.2. If bn > 0 and an > 0 for all nand 

or 

-. (an) hm b
n 

= +00 

1. an 
Im- =0 

- bn ' 

(4. 11 a) 

(4.l1b) 

then, in the first case, an = O(bn) as n ~ + 00 is false, and in the second 
case, bn = O(an ) as n~ + 00 is false. To see this, assume that an = O(bn) as 
n ~ + 00, so that there exist a positive integer N and a real M > 0 such that 
o " an " Mbn, or ani bn " M for n > N. This implies (explain) that 
lim(anl bn) < + 00. We must therefore conclude, under the hypothesis, that 
lim(anl bn) = + 00 implies that an = O(bn), n ~ + 00, is false. 

Similarly, if bn = O(an), n ~ + 00, there exists a positive integer N) and a 
real M) > 0 such that ani bn > M) > 0 for n > M) (explain) so that 
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lim(anl bn) > 0 (why?). It follows from the hypothesis that lim(anl bn) = 0 
implies that bn = O(an ), n ~ + 00, is false. 

Lemma 4.1. If 2;an and 'L,bn have positive terms and there exists a positive 
integer N such that 

for all n> N, (4.12) 

then an = O(bn) as n~ + 00. Therefore, the convergence of 2;bn implies that 
of 2; an , and the divergence of 2;an implies that of'L,bn. 

PROOF. From (4.12) we obtain 
an+ 1 an --<­
bn + 1 bn 

for n > N. 

This implies that the sequence <ani bn>n;;>N is monotonic decreasing. Since 
its terms are positive, it is also bounded from below. Accordingly, it 
converges. This implies that the sequence <ani bn> converges (explain). We 
have 

I· an -1·- an I· an o < 1m - = 1m - = 1m - < + 00. - bn bn bn 

By Prob. 4.5(a), an = O(bn ) as n ~ + 00. In view of Prob. 4.2, we conclude 
that the convergence of 'L,bn implies that of 'L,an and the divergence of 2;an 
implies that of 2;bn • 

PROB. 4.6. Test the following series for convergence or divergence. 

(a) 'L,~=ll/(n2- n + 1), 

(b) 2;~=11/"I2il=T, 
(c) 'L,~=ll/~n2 - n + I, 
(d) 2;~=ln-l-(l/n). 

5. Ratio and Root Tests 

Theorem 5.1 (Ratio Test). If 2; an is a series whose terms are all positive, then 

(a) 
-.- an + 1 -
hm--=L<l 

an 

implies that 'L,an converges, and 

I· an+ 1 I Im-- =L> 
- an -(b) 

implies that 2;an diverges. If b. < I < L, then the series may be convergent or 
divergent. 
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PROOF. Assume (a) holds, so that L < 1. There exists a real q such that 
L < q < 1. Write t: = q - L, so that t: > 0 and q = L + t:. There exists a 
positive integer N such that 

an + 1 -O<--<L+t:=q<1 for n>N. (5.1) 
an 

Since 0 < q < 1, the geometric series 2:n= Iqn converges. Write bn = qn. 
From (5.1) we obtain 

a b O < n+1 < _ n+1 - q--
an bn 

for n> N. 

This implies (Lemma 4.1) that an = O(qn) as n~ + 00, and since 2:bn 
= 2:qn converges, 2:an converges. 

Next assume ~ > 1. Then a real q exists such that 1 < q <~. Put 
t: = ~ - q so that f > 0 and q = ~ - f. There exists a positive integer N such 
that 

if n> N. 

This implies an < an+ 1 if n > N so that 0 < aN .;; an for n > N. It follows 
that lim an =1= 0 (explain) and, hence, that 2:an diverges. 

We prove that the cases ~ .;; I .;; L fail to distinguish between convergent 
and divergent series. Take an = n -I for all positive integers n. We have 

a (n + 1)-1 _ a 
lim ~ = lim = lim( _n_ ) = lim _n_ = 1 = lim ~ 
- an - n - 1 - n + 1 n + 1 an 

and 2:an = 2:n-1 diverges. Next take bn = n- 2 for all positive integers n. 
Here, too, it is clear that 

. bn+ 1 . (n+l)-2 . ( n )2 . ( n)2 -.-bn+ 1 hm -- = hm = hm -- = hm -- = 1 = hm -- , - bn - n- 2 - n + 1 n + 1 bn 

and 2:bn = 2:n -2 converges. 

Corollary (Modified Ratio Test). If 2: an is a series whose terms are positive, 
then 

(a) 

and 

(b) 

. an + 1 
hm -- = L < 1 implies that 2:an converges 

an 

. an + 1 
hm -- = L > I implies that 2: an diverges. 

an 

The case lim( an + 1/ an) = I fails to distinguish between convergent and diver­
gent series. 

PROOF. Exercise. 



168 IV. Infinite Series of Real Numbers 

EXAMPLE 5.1. For each x E IR, consider the series 

00 xn x2 x3 
n~o nT = I + x + 2T + 3T + (5.2) 

If x = 0, this series converges trivially. If x =1= 0, we apply the ratio test to 
the series 

~ 1 x~ I· n=O n. 
(5.3) 

We have: 

Ixn+1/(n + I)!I -.- Ixl . I 
lim -......,....~~-- = hm -- = Ixl hm -- = 0 < I. n->+oo Ixn/n!1 n->+oo n + 1 n->+oo n + I 

This implies that (5.3) converges for x =1= o. We conclude that (5.2) con­
verges absolutely for all x E IR and, therefore, converges for all x E IR. The 
series (5.2) is called the exponential series. We put: 

00 n 

expx = ~ :;-
n=O n. 

for x E IR. (5.4) 

PROB. 5.1. Prove: If x E IR, then limn _H oo(x n / n!) = o. 

PROB. 5.2. Prove: Each of the series 

(a) 

(b) 

converges absolutely for each x E IR. 

PROB. 5.3. Prove: The series 

00 n 2 3 4 
~(-lr+l£=x-£+£-£+ 

n= I n 2 3 4 

converges for - 1 < x .;;:; 1 and diverges for Ixl > 1. Note also that the 
convergence is absolute for - 1 < x < 1 and not for x = 1. 

PROB. 5.4. Prove: If b > 0, then the series 

a-b 2 (a-b)(a-2b) 3 
x+~x+ 3! x+ 

converges absolutely for Ixl < b- 1 (Whittaker and Watson). 

PROB. 5.5. Test the series 2:~=ln!/nn for convergence. 
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Theorem 5.2 (Root Test). If ~an is a series whose terms are nonnegative, 
then 

(a) lim'fci;, < 1 implies that ~an converges and 
(b) lim'fci;, > 1 implies that ~bn diverges. 

The case lim an = 1 fails to distinguish between convergent and divergent 
series. 

PROOF. Assume that lim'fci;, < 1, so that a q exists such that lim'fci;, < q 
< 1. This implies that there is an integer N such that 

nfcl;, < q if n;;;' N, 

I.e., 

if n;;;' N. 

In turn this implies that an = O(qn) as n~ + 00. Since 0 < q < 1, ~qn 
converges. The relation between an and qn implies that ~an converges. 

N ow assume lim'fci;, > 1. This implies that 

'fci;, > 1 for infinitely many n's 

We conclude that lim an * 0, and hence that ~an diverges. 
We consider the case lim'fci;, = 1. Consider the series (1) ~n-I and (2) 

~ n - 2. For each of these we have lim'fci;, = 1. Series (1) diverges and series 
(2) converges. 

Corollary (Modified Root Test). If~an has nonnegative terms, then 

(a) lim'fci;, < 1 implies that 2: an converges 

and 

(b) lim'fci;, > 1 implies that 2: an diverges. 

The case lim'fci;, = 1 fails to distinguish between convergence and divergence. 

PROOF. Exercise. 

EXAMPLE 5.2. We apply the root test to the series 

n~1 (1 + * fx n (5.5) 
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and test for absolute convergence using the modified ratio test. We have 

Hence, if Ixl < 1, then the series (5.5) converges absolutely. If Ixl ;;;. 1, then 

if Ixl = 1 

if Ixl > 1. 
lim lanl = lim 1(1 + 1 )nxnl = {e 

n ...... + 00 n ...... + 00 n + 00 

Therefore, if Ixl ;;;. 1, we have lim an =1= O. We conclude that (5.5) diverges 
for Ixl ;;;. 1. 

The next theorem relates the ratio and root tests. 

Theorem 5.3. If Lan has positive terms, then 

PROOF. Put 

L 1· an+l 
I = -.!!!!. -a­

n 

(5.6) 

(5.7) 

We have 0 <!o:.l. If Ll = 0, then!o:.l = 0 <!o:.2, so that!o:.l <!o:.2. If 0 <!o:.l' there 
exists a q such that 0 < q <!o:.l. This implies that a positive integer N exists 
such that 

This implies 

a 
O<q<~ 

aN 

O<q<aN + 2 
aN + 1 

a O<q< N+m 

aN + m - 1 

for n;;;' N. 

so that 

for each positive integer m. Put n = N + m so that m = n - N. Then 

if n> N. 

This implies that 

for n;;;' N. 

(5.8) 
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Taking lim of both sides we obtain 

q lim Y;;.;;;; lim 'if;;:. = L 2 • 
n-->+oo V? n-->+oo 

(5.9) 

Since here 

we obtain from this and (5.9) that, 0 < q ,;;;;b2. This proves: q <bl implies 
q ';;;;b2 and, hence, that bl ';;;;b2 in this case (0 <bl) also. 

Now let 

d - -.- an + 1 an LI = hm --. 
an 

(5.10) 

Thus far, 0 ';;;;bl ';;;;b2 .;;;; 1,2' If 1,1 = + 00, since 1,2';;;; + 00 = 1,1' we have 
1,2 .;;;; 1,1 in this case. If 1,1 < + 00, there exists a real q such that 1,1 < q. 
Accordingly, there is a positive integer NI such that 

(5.11) 

It follows from this that 

that is, 

f'lf each positive integer m. Putting n = NI + m, so that m = n - N 1, we 
have 

if n> N. 

Reasoning as we did before, we see from this that 

lim 10:. = 1,2 .;;;; q. 

(5.12) 

Thus, 1,1 < q implies 1,2 .;;;; q and we conclude that 1,2 .;;;; 1,1' This yields 
finally that bl .;;;;L.2 .;;;; 1,2 .;;;; 1,1 and completes the proof. 

Remark 5.1. It follows from Theorem 5.3 that the root test is "at least as 
powerful" as the ratio test. Inequalities (5.6) inform us that whenever the 
ratio test detects convergence or divergence so does the root test (explain). 
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To see that the root test is "more powerful" than the ratio test, we present 
in Example 5.3 below a series for which the ratio test fails to detect 
convergence but for which the root test does detect convergence. 

EXAMPLE 5.3.* Consider the series 

Here 

so 

Hence 

~a =l+l+~+~+~+~+ 
n = I n 2 3 22 32 23 33 

a = {2-(n+ 1)/2 
n 3 -n/2 

a = {3-(n+1)/2 
n+1 2-(n+2)/2 

{ 

3 -(n+ 1)/2 

an+ 1 = 2-(n+I)/2 

an 2-(n+2)/2 

3- n / 2 

if n is odd 
if n is even, 

if n is odd 
if n is even. 

if n is odd 

if n is even. 

Consider the subsequences 

of \ a~:1 ). 

We have (Theorem 111.4.5) 

hm --.;; hm -- = hm - = 0 . an+ 1 . a2k . (2)k 

n ..... + 00 an k ..... + 00 a 2k _ I k ..... + 00 3 

and 

hm --.;; hm -- = hm - - = +00 -. an+ 1 -. a 2k + 1 . (I (3 )k) 
n ..... +oo an k ..... +oo a 2k k ..... +oo 2 2 

so that lim(an+ 1/ an) = 0 < 1 < + 00 = lim(an+ 1/ an)' The ratio test fails to 
detect convergence or divergence. We apply the root test. We have 

if n is odd 

and 

if n is even. 

Thus, 

for all n. 

• John Randolph, Basic and Abstract Analysis, Academic Press, New York, p. 144. 
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This implies that lim 1Q;, < 2 -1/2 < 1. But then Theorem 5.2 yields conver­
gence of the series. 

PROB. 5.6. Prove: L~=o(l - l/(n + l)Y' converges. 

PROB. 5.7. Prove: 

lim 
n-'> + 00 n e 

(Hint: cr. Prob. 5.5). 

6. Kummer's and Raabe's Tests 

If Lan has positive terms, then the ratio test fails to detect convergence in 
the cases lim(an+ II an) < I <lim(an + II an)' The tests which follow can then 
be applied. 

Theorem 6.1 (Kummer's Test). If Lan has positive terms and (a) there exists 
(I) a real c > 0, (2) a sequence <bn> whose terms are positive, and (3) a 
positive integer N such that 

for n;;;' N, (6.1 ) 

then Lan converges. (b) If there exists a sequence <bn> whose terms are 
positive such that Lbn- I diverges and such that for some positive integer N I , 

for n;;;' N I , (6.2) 

then Lan diverges. 

PROOF. We prove (a) first. By (6.1), 

-aN+,bN+1 ;;;, caN+, 

- aN+2bN+2 ;;;, caN+2 

for each positive integer m. 

Adding, we obtain 

aNbN > aNbN - aN+mbN+m ;;;, c(aN+ l aN+2 + ... + aN+m )· 

Hence 

for each positive integer m. 

We add Sn = a, + ... + aN to both sides to obtain 

for each positive integer m. 
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This implies that the sequence (Sn) of partial sums of the series ~an is 
bounded. Since the terms of ~an are positive, this implies that ~an 
converges. 

We now prove (b). From (6.2) we obtain 

aN,bN, 

AN,+lbN,+1 

-aN,+lbN,+1 "0 

-aN,+2bN,+2 ,,0 

for each positive integer m. 

Adding, we have 

aN,bN, - aN,+mbN,+m " 0 for each positive integer m. 

Put p = aN,bN, and n = NI + m. Then 
p 

an ;;. b > 0 for n > N I . 
n 

Thus, 
I I 

- " - a for n > NI . bn P n 

Therefore bn- I = O(an) as n ~ + 00. Since ~bn-I diverges, this implies that 
~ an also diverges. 

EXAMPLE 6.1. Consider the series 

~ (2n)! )3 

n= I 26n(n!)6 . 

Let us apply the modified ratio test. We have 

(2n + 2)! )3 

26n +6(n + 1)!)6 

and, therefore, 

(2n)!)3 

I· an+1 I Im-- = . 
an 

(2n + 1)3 

(2n + 2)3 

(6.3) 

(6.4) 

Thus, the ratio test fails to detect convergence. Let us apply Kummer's test. 
We choose the sequence (bn), where bn = n for each positive integer n. 
Using (6.4), we have 

an ( 2n + 2 )3 n--(n+I)=n -- -(n+l) 
an+1 2n + I 

= (n + I) 4n 2 + 2n - I > 4n2
( n + I) = 1 n2 

(2n + 1)3 (2n + 2)3 2 (n + 1)2 . 
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Since 

1 n2 1 1 
'2 (n + 1)2 - '2 (1 + l/n)2 

1 1 1 »_._=-
2 22 8 

for each positive integer n, 

we have 

an 1 
n--(n+I»-

an + 1 8 
for n» l. 

By Kummer's test, the series (6.4) converges. 

EXAMPLE 6.2. Consider the series 

~ 1· 3 ... (2n - 1) 

n=l 2·4 ... 2n 
(6.5) 

and test it for convergence. We use the modified ratio test first. We have 

an+ 1 = 2n+ 1 ~I as n~+oo. (6.6) 
an 2n + 2 

Hence, the ratio test fails. We now use Kummer's test. We take bn = n for 
each positive integer n and obtain 

= n( 2n + 2) - (n + I) = -~ < 0 (6.7) 
2n + 1 2n + 1 

for n » l. Since "L, bn- I diverges, we see from (6.7) and Theorem 6.1, part (b) 
that "L,bn diverges. 

Theorem 6.2 (Raabe's Test). Let "L,an have positive terms. If 

(a) limn(2.. -1) =1:.> 1, 
an + 1 

then "L,an converges. If 

(b) lim n _n_ - I = L < 1, - (a )-
an + 1 

then "L, an diverges. 

PROOF. Assume that (a) holds. There exists a real q such that!::. > q > l. 
Therefore, there exists a positive integer N such that 

n( 2.. - 1) > q> I for n» N. 
an+l 

This implies that 

an 0 n- - (n + 1) > q - 1 > 
an + 1 

for n» N. 
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Since the sequence <bn), where bn = n for all n, satisfies the hypothesis of 
part (a) of Theorem 6.1, Lan converges. 

Now assume (b) so that a real q exists such that 0 < L < q < 1. There­
fore, a positive integer N I exists such that 

n(~ -1) < q 
an + 1 

for n;;:.N 1 • 

This implies that 

an 
n - - (n + 1) < q - 1 < 0 

an + 1 
for n;;:' N 1 • 

This time <bn), where bn = n for each n, satisfies the hypothesis of part (b) 
of Theorem 6.1 since 2:bn-1 = Ln- 1 diverges. We conclude that Lan 
diverges. 

Corollary (Modified Raabe's Test). If Lan has positive terms, then 

(a) lim (n( ~ - 1)) = L> 1 implies that 2: an converges 
n--'>+oo an + 1 

and 

(b) lim( n ( a~: I - 1) ) = L < 1 implies 2: an diverges. 

PROOF. Exercise. 

Remark 6.1. Examining the proof of the last theorem, we see that Raabe's 
test is really a corollary of Kummer's test with the "testing" sequence < bn ), 

where bn = n for all n. We shall have occasion to use other testing 
sequences after we study the natural logarithm. 

PROB. 6.1. We saw that the ratio test fails to detect convergence or 
divergence for the series Ln -2. Apply Raabe's test and show that it 
"works" for that series. 

7. The Product of Infinite Series 

In what follows, it will be convenient to use indices in our series whose 
ranges are the nonnegative integers. Let 

00 00 

A = 2: an and B = 2: bn (7.1 ) 
n=O n=O 

be convergent series. We wish to obtain a series whose partial sums tend to 
their product AB. We first perform some "formal" calculations. The 
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product AB should be given by 

+ 
+ 
+ ... + .... 

We form the series ~~=Ocn' where 

Co = aobo, 
c l = aOb l + albo, 
c2 = aOb2 + albl + a2bO' 
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(7.2) 

(7.3) 

The c's here are obtained by summing the terms marked by the lines in 
(7.2) and are then summed. 

Def. 7.1. If ~an and ~bn are infinite series, then their product, sometimes 
called their Cauchy product, is defined as ~~=Ocn' where for each n, 

n 

Cn = 2: akbn-k= aobn + albn- l + ... + anbO (7.4) 
k=O 

(if each of the indices in the two series to be multiplied ranges over the 
positive integers, then we define ~~= lCn by putting 

n 

cn = 2: akbn+l-k= albn + a2bn- 1 + ... + anb l (7.5) 
k=l 

for each positive integer n.) Note that 
n n 

cn = 2: akbn- k= 2: an-kbk for each n. (7.6) 
k=O k=O 

Theorem 7.1 (Mertens's Theorem). Let ~an and ~bn converge and let ~an 
converge absolutely. If A = ~~=oan and B = ~~=Obn' then 

00 

2: cn = AB, (7.7) 
n=O 

where ~~=Ocn is the Cauchy product of ~an and ~bn' 

PROOF.* Write the respective nth partial sums of ~an' ~bn' and ~cn as 
n n n 

An = 2: ak , Bn = 2: bk , and fn = 2: ck . (7.8) 
k=O k=O k=O 

*W. Rudin, Principles of Mathematical Analysis, Second Edition, McGraw.Hill, New York, 
p.65. 
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We know that 

limAn = A, limBn = B, and limAnBn = AB. (7.9) 

We wish to prove that limfn = AB. Now 

and 

so that 

fn = Co + c i + ... + cn 

= aobo + (aob l + albo) + ... + (aobn + ... + anbO) 

= aoBn + alBn_ 1 + ... +anBo, 

(7.10) 

(7.11 ) 

AnBn - fn = al(Bn - Bn_ l) + a2(Bn - Bn- 2) + ... + an(Bn - Bo)· 

(7.12) 

Since 2:an converges absolutely, the partial sums of 2:lanl are bounded and 
an M > 0 exists such that 

lall + la21 + ... + lanl .;; laol + lall + la21 + ... + lanl .;; M 

for each n. (7.13) 

Since <Bn> converges, it is a Cauchy sequence. Let f > 0 be given. There 
exists a nonnegative integer N such that 

for n > m;;' N. (7.14) 

Using n > m ;;, N, we have from (7.12), 

AnBn - fn = al(Bn - Bn- I ) + ... + an-m(Bn - Bm) 

+an+l-m(Bn-Bm-d+'" +an(Bn-Bo). (7.15) 

Therefore, fixing m = N and taking n > N = m, we obtain for the sum of 
the first n - m terms in (7.15) the inequality 

lal(Bn - Bn_ l) + ... + an-N(Bn - BN)I «Iall + ... + lan-NI) 2~ 

.;; M 2~ = ~. 
This and (7.15) imply 

IAnBn - fnl < ~ + lan+I-N(Bn - BN_ I) + ... + an(Bn - Bo)1 

for n > N. (7.16) 

Since N is fixed, there are N terms in the sum on the right inside the 
absolute value signs, regardless of n > N. Since 2:an converges 

lim an+I - N= lim an+2 - N= ... = lim an= O. 
n---+ + 00 n---+ + 00 n---+ + 00 

Because Bn ~ Bas n ~ + 00, we have for the second term on the right-hand 
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side of (7.16) 

lim lan+1-N(Bn - BN- 1) + ... + an(Bn - Bo)1 = O. 
n-> + OC! 

Accordingly (7.16) yields 

for each E > O. 

This implies 

lim(AnBn - fn) = lim (AnBn - fn) = 0 

and, therefore, that 

lim (AnBn - fn) = O. 
n->+ OC! 

This, because of (7.9), implies 

limfn = lim [ AnBn - (AnBn - fn)] = limAnBn -lim(AnBn - fn) 

= AB - 0 = AB, 
completing the proof. 
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EXAMPLE 7.1. We apply the last theorem to prove that the function 
exp: IR ~ IR defined in Example 5.1 satisfies 

expxexp y = exp(x + y) for x E IR and y E IR. (7.17) 

By the definition of expx given in Example 5.1, 
OC! n 

expx= ~ ~ 
n=O n. 

for x E IR. (7.18) 

The series on the right converges absolutely for each x E IR. By the last 
theorem, 

expx exp y = C~O ~; )( m~o ~~) = n~o cn ' (7.19) 

where using an = xn In! and bn = yn In! for each n, we have 

_ n _ n Xk yn-k 
cn - ~ akbn - k- ~ F (n - k)' 

k=O k=O· • 

= 1- ± n! yn-kxk 
n! k=O k! (n - k)! 

_ 1 ~ (n) n-k k -- ~ Y x 
n! k=O k 

= ~(y + xf· n. 
(This follows from the Binomial Theorem.) Substitution in (7.19) yields 

OC! (x + yf 
expx exp y = ~ , = exp(x + y) for each x E IR. (7.20) 

n=O n. 
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Theorem 7.2. In addition to satisfying equality (7.17), the function exp : IR ~ IR 
of Example 5.1 and the last example also has the following properties: 

(a) expO = 1, 
(b) expx > 0 for all x E IR, 
(c) exp( - x) = I/exp(x) for each x E IR, 
(d) 1 + x ,,;;;; exp x ,,;;;; 1 + x exp x for x E IR, 
(e) exp x > 1, if x > 0 and 0 < exp x < 1 if x < 0, 
(f) exp 1 = e, 
(g) x > y implies exp x > exp y. 

PROOF. By the definition of expO and Example 5.1, (a) holds trivially. We 
prove (c). Apply (a) and (7.17) to obtain 

1 = expO = exp(x + (- x)) = expx exp( - x). (7.21) 

This proves that expx 1= 0 for x E IR and (c) follows. To prove (b), note that 

exp x = exp( 1- + 1- ) = ( exp 1- )2 > 0 for x E IR. 

The strict inequality on the right follows from expx 1= 0 for x E IR. 
The proof of (d) is somewhat lengthy. For x E IR, 

ao nOOn 00 n-l 

expx = L ~ = 1 + L ~ = 1 + x L ~ 
n=O n. n=l n. n=l n. 

from which we obtain 
00 n-l 

(exp x) - 1 = x L ~. 
n= 1 n. 

(7.22) 

For each positive integer n, 

-.!.. ,,;;;; 1 
n! (n-I)! 

which implies 

for x > 0, n > 1. 

This implies that 

00 n-l 00 xn-1 x 2 
L~, ,,;;;; L = 1 + x + -2! + ... = expx 

n=l n. n=l (n - I)! 
for x> O. 

Because of (7.22) the inequality (7.23) yields 

(expx) - 1 ,,;;;; xexpx, 

Now, x > 0 implies that 

if x> o. 

x 2 x 2 
expx = 1 + x + 2! + ... > 1 + x + 2T > 1 + x. 

This and (7.24) yield 

1 + x < expx ,,;;;; 1 + x expx, if x> O. 

(7.23) 

(7.24) 

(7.25) 
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Next take x < 0 so that - x> O. From (7.25) we obtain 

1 - x < exp( - x) .;;;; 1 - x exp( - x) if x < O. 

After multiplying through by expx, this implies that 

(1 - x )exp x < 1 .;;;; exp x - x 

and, after some elementary manipulations, that 

1 + x .;;;; exp x < 1 + x exp x if x < O. 
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(7.26) 

(7.27) 

Thus far, we proved that (d) holds for x =F O. If x = 0, it is obvious that 
the equality in (d) holds. This completes the proof of (d). 

To prove (e), we use (7.25) from which it follows that if x > 0, then 
exp x > 1. This implies that if x < 0, then 

exp x = / ) < 1 since - x > O. exp -x 

This completes the proof of (e). (g) is an immediate consequence of (e), 
since 

if x> y. 

Multiplying both sides by eY > 0, we obtain (g). 
We prove (f). Recall from Section 111.5 that 

e = lim (1 + l)n 
n~+oo n (7.28) 

and by the inequality III.(5.4) that 

1 n n 1 
( 1 + -) .;;;; 1 + L: -k' 

n k=I' 
if n is a positive integer. (7.29) 

This implies 
In 00 1 00 1 

( 1 + -) .;;;; 1 + L: .... = L: .... = exp 1, 
n k=1 k. k=O k. 

i.e., 

(1 + 1/ n f .;;;; exp I for each positive integer n. 

Taking the limit on the left as n ~ + 00, we obtain 

e = lim (I + l)n .;;;; exp I, (7.30) 
n~+oo n 

so that e .;;;; exp I holds. 
We return to equality 111.(5.2) and observe that if m > n for the positive 

integers m and n, then 

(1 + ..l)m = I + i; .l.. (I _ ..1 )(1 _ 1-) ... (I _ k - I ) 
m k=1 k! m m m 

> 1+ ± 1, (1 - ..1 )(1 - 1-) ... (1 _ k - 1 ) 
k=1 k. m m m 
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and, since III.(5.9) holds, 

~I( I) ( k-I) e>l+ ~ - 1-- ... 1---
k=! k! m m 

if m> n. (7.31) 

Here we fix n and note that the second sum on the right-hand side of this 
inequality consists of n terms each of which is a product of at most n 
factors. We take limits as m....:; + 00 in (7.31) and obtain 

n I n I 
e > I + ~ - = ~ - if n is a positive integer. 

k=! k! k=O k! 

Here we take the limit on the right as n....:; + 00 to obtain 

00 I 
e > ~ k! = exp 1. 

This and the already proved inequality e " exp I give us (f). With this, the 
proof of the theorem is complete. 

PROB. 7.1. Prove: If r is rational, then expr = e r (Hint: first prove this for 
the case where r is a nonnegative integer, then for the case where r is an 
integer, etc.). 

PROB. 7.2. Prove: If Ixl < I, then 

I 

Observe that the series on the right converges for Ixl < I and diverges for 
Ixl> 1. 

PROB. 7.3. Prove: L~=o( -Inn + 1)-1/2 converges and that the Cauchy 
product of the series with itself diverges. Reconcile this with Theorem 7.1. 

8. The Sine and Cosine Functions 

Del. 8.1. We define the sine and cosine functions by means of the following 
infinite series: 

• 00 n x2n+1 x 3 x 5 x7 
sm x = ~ (- I) (2 I) I = X - - + - - - + ... 

n=O n +. 3! 5! 7! 

foreach xEIR. (8.1) 

00 n x2n x 2 X4 x6 
cosx=n~o(-I) (2n)!=1- 2!+4!-6!+···· (8.2) 
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Note that these series converge absolutely for each x E IR (Prob. 5.2). We 
must prove, of course, that the sine and cosine functions given by this 
definition possess all the properties of their intuitive namesakes. This will 
be done, in piecemeal fashion, in various parts of the book. But in this 
development, information about these functions is limited to the definitions 
above and their consequences. 

PROB. 8.1. Prove: (a) sinO = 0, (b) cosO = I, (c) sin(-x) = -sinx, and (d) 
cos( - x) = cosx for x E IR. 

Theorem 8.1. If x andy are real numbers, then 

(a) 

and 

(b) 

sin(x + y) = sin x cos y + cosx sin y 

cos(x + y) = cosx cos y - sin x sin y. 

PROOF. By Prob. 8.1, parts (a) and (b), the theorem holds if x = 0 or y = O. 
We, therefore, assume that x =1= 0 and y =1= O. It follows that 

sin x 00 k X2k 
-.x = k~O (-1) (2k + I)! ' (8.3) 

where x =1= O. By the ratio test we see that this series converges absolutely. 
By Theorem 7.1, we obtain 

00 (2)k 00 (2)k 00 

sin x " k x " k Y " -.x cos y = k~O (-I) (2k + I)! k~O (-1) (2k)! = n~O Cn , (8.4) 

where for each n 

n n x2"y2n - 2k 

=(-1) k~O (2k+ 1)!(2n-2k)! 

n n x 2"y2n+I-(2k+l) 

=(-1) k~O (2k+ 1)!(2n+ 1-(2k+ I»)! 

Multiplying and dividing by (2n + I)! and then multiplying by x, we obtain 

_ (_I)n ~ (2n+ I)! 2k+12n+I-(2k+l) 
xCn - (2n + I)! k~O (2k + I)! (2n + 1 - (2k + I»)! x y 

which can be written 

( If n 
xC = - ~ (2n + 1 )x2k + y2n+ 1-(2k+ I). (8.5) 

n (2n + I)! k=O 2k + I 
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In turn, this may be written 

(-I) 2n+ 1 ( ) 
xCn = (2n + I)! L 2n:- I X:r 2n + l - i • 

;=0, I 
iodd 

Now we multiply both sides of (8.4) by x and obtain 
co 

sinxcosy = L xCn • 

n=O 

We interchange x and y in the above to obtain 
co 

cosxsiny = L yDn, 
n=O 

(8.6) 

(8.7) 

(8.8) 

where each yDn is obtained from the corresponding xCn in (8.5) by 
interchanging x and y. Hence, 

( I)n n 
yD = - L (2n + 1 )y2k+lx 2n+I-(2k+l) 

n (2n + I)! k=O 2k + 1 

= (-I( , ± (2n + l)x2n-2ky2k+l. 
(2n + I). k=O '2,k + 1 

(8.9) 

Now we put j = n - k so that k = n - j and 2k + I = 2n + I - 2j and 
note that for k E {O, ... , n},j E {O, ... , n}. Then (8.9) becomes 

( _ I)n n 
D = L( 2n+1 ) 2j2n+I-2j 

y n (2n + I)! j=o 2n + I - 2j x y . 

We observe that 

( 2n + 1 ) (2n + 1) 
2n + 1 - 2j = 2j 

and substitute this in (8.10). It follows that 

+(_I)n n 
D = " (2n + 1) 2j 2n+I-2j 

y n (2n + I)! /::0 2j x y . 

The last expression may be rewritten 

( - I) n 2n + 1 ( 2 ). . 
yDn = L n + I xy2n+I-,. 

(2n + I)! ;=0, i 
ieven 

Adding (8.7) and (8.8) yields 
co 

sin x cos y + cosx sin y = L (xCn + yDn), 
n=O 

(8.10) 

(8.11 ) 

(8.12) 
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where for each n 

xCn + yDn 
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( _I)n [2n+l 2n+l 1 = ,~ (2n ~ I )x~2n+l-i + ~ (2n ~ I )x~2n+l-i 
(2n + I). ;=0, I ;=0, I 

; odd ; even 

( _I)n 2n+! 
= ~ (2n + I )x~2n+l-i. 

(2n + I)! ;=0 i 

By the binomial theorem we see that 

C D ( - If ( )2n + I 
X n+y n= (2n+I)! x+y . (8.13) 

Substituting this in (8.12) and using Def. 8.1 we obtain 

00 (_I)n 
sin x cos y + cosx sin y = ~ (2 I)' (x + yfn+ I 

n=O n + . 
= sin(x + y). (8.14) 

We prove (b) next. Calculations similar to the previous one yield 
k k 

00 k (x2) 00 k (y2) 00 

cosx cos y = k~o(-I) (2k)! k~o(-I) (2k)! = n~oEn' (8.15) 

where for each n 

En = (_I),n ± (2n)x2'»2n-2k. 
(2n). k=O 2k 

Note that Eo = 1 and that (8.15) may be written 
00 

cos x cos y = 1 + ~ En . 
n=! 

(8.16) 

(8.17) 

Let x =1= 0 and y =1= O. Using the series (8.3), we obtain from Theorem 7.1 the 
relation 

. n (X2)k n (y2)k 
sinx sm Y = ~ (_I)k ~ (_I)k -::-::-'--'--,-_ 

x Y k=O (2k+ I)! k=O (2k+ I)! 
00 

= ~ C:' (8.18) 
n=O 

where for each n 

( I)n n 
C:' = - ~ (2n + 2)x2ky 2n+l-<2k+l). 

(2n + 2)! k=O 2k + I 
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Multiplying both sides by xy, we obtain 

( I)n n 
xyC~' = - , 2: (2n + 2)X2k+ y2n+2-(2k+ I). 

(2n + 2). k=O 2k + 1 

Put m = n + I. This m is a positive integer and 

( I)m-I m-\ 
xyC';; 1 = - 2: ( 2m )X2k+ y2m-(2k+ I). 

- (2m)! k=O 2k + 1 

Because of this, (8.18) yields 
00 

- sin x sin y = 2: (- xyC';;_I)' 
m=\ 

Replacing m in (8.19) by n yields 

( Ir- I n-\ 
_ xyC" = - 2: ( 2n )X2k+ y2n-(2k+ I). 

n-I (2n)! k=O 2k + 1 

Adding (8.17) and (8.20) yields 
00 

cosx cos y - sinxsiny = I + 2: (En - XyC~/_I)' 
n=\ 

where for each positive integer n 

E _ xyC" = (-1 )n ~ (2n )x2ky2n-2k 
n n-I (2n)! kL::O 2k 

+ ~ ( 2n )x2k+ y2n-(2k+ I). 
k=O 2k + I 

Reasoning as we did in the first part of the proof, we see that 

(8.19) 

(8.20) 

(8.21) 

(8.22) 

(8.23) 

( - l)n 2n .. ( - If 
E - xyC" = -- "(2n)x'y2n-,= --(x +y)2n (8.24) 

n n-I (2n)! i~O i (2n)! . 

Now using (8.22) and Def. 8.1, we obtain 

00 (_I)n 
cos x cos y - sin x sin y = I + 2: -(2 )' (x + y)2n 

n=1 n. 

The proof is now complete. 

PROB. 8.2. Prove: If x E IR and y E IR, then 

(a) sin(x - y) = sinx cos y - cos x sin y, 
(b) cos(x - y) = cos x cos y + sinx sin y, 
(c) sin2x + cos2x = l. 
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FROB. 8.3. Prove: If x E IR, then Icosxl ..;; I and Isinxl ..;; 1. 

PROB. 8.4. Prove: If x E IR, then (a) sin2x = 2sinxcosx, and (b) cos2x 
= cos2x - sin2x = 2cos2x - 1 = 1 - 2sin2x, and (c) sin2x = (1 - cos2x)/2 
and cos2x = (1 + cos2x)/2. 

We proceed to obtain information about the sine and cosine functions 
from their definitions as infinite series. 

Theorem 8.2. (a) If 0 < x ..;; 1, then sinx > 0 and if -I ..;; x < 0, then 
sinx < O. (b) If 0 < Ixl ..;; I, then Isinx - xl < IxI3/6. (c) If x E IR, then 
Isinxl ..;; Ixl and we have: If 0 < Ixl ..;; I, then 0 < (sinx)/ x < 1. 

PROOF. We begin with the series 

sin x ~ n x2n 
X-=n~o(-I) (2n+I)!' (8.25) 

where x * O. Multiply both sides by -1 and obtain 
• 00 2n 00 2n 

- smx = ~ (-lr+ 1 x = -1 + ~ (-lr+I-:-::-'-'-x----:-,-:-
x n=O (2n + I)! n=1 (2n + I)! 

Hence, 
00 x 2 n 

I - sin x = ~ (- I r + I () . 
X n=1 (2n + I)! 

(8.26) 

We prove: If 0 < Ixl ..;; 1, then the infinite series on the right of (8.26) is 
alternating. We begin by assuming 0 < Ixl ..;; I so that 0 < x 2 ..;; 1. There­
fore, 

0< (x2)(n+ I)..;; (X2) n 

This implies 

if 0 < Ixl ..;; I and n is a positive integer. 

X~+2 x~ x~ 

0< (2n + 3)! ..;; (2n + 3)! < (2n + I)! 

if 0 < Ixl ..;; I and n is a positive integer. 

This proves that if 0 < Ixl ..;; I, then the series in (8.26) is of the form 
L:~= I( -It+ lan, where 0 < an+ I < an for each positive integer n. More­
over, as the reader can show by means of the ratio test, the above­
mentioned series is absolutely convergent. This implies that 

(x2)n 
lim = lim a = O. 

n--> + 00 (2n + I)! n--> + 00 n 

This completes the proof that the series on the right of (8.26) is alternating. 
In the proof of Theorem 2.1 on alternating series we saw that the partial 

sums <Sn> of the alternating series were such that S2 < S < SI' where S is 
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the sum of the series. Accordingly, we have for the series on the right of 
(8.26) that 

2 4' 2 
S2 = £ - £ < 1 - smx < S = £ 

6 24 x I 6 for 0 < Ixl ,,1. (8.27) 

Since 0 < x2/4" 1/4 and 1 - x2/4 > 3/4 for 0 < Ixl " 1, it follows that 

x 2 1 and 0 < - ,,-
6 6 

if 0 < Ixl " 1. 

Therefore, by (8.27), 

0< x 2 < 1 _ sinx < 1 < 1 
8 x 6 if 0 < Ixl " 1. 

This implies that 

if 0 < Ixl " 1. (8.28) 

From this we conclude: (a) sinx > 0 if 0 < x " 1 and sinx < 0 if -1 " x 
< O. This proves (a). Returning to (8.27), we see that 

if 0 < Ixl " 1 

so that 

if 0 < Ixl " 1. 

This proves (b). 
To prove (c), we first use (8.28) to obtain 

0< sinx < 1 
x if 0 < Ixl " 1. 

(8.29) 

(8.30) 

From this we conclude that 0 < Isinx/xl < 1 and, therefore, that Isinxl 
< Ixl if 0 < Ixl " 1. If Ixl > 1, we have from Prob. 8.3 that Isinxl " 1 < IxI­
Thus, Isinxl < Ixl for 0 < Ixl. Since sinO = 0 (Prob. 8.1), we obtain Isinxl 
" Ixl for x E JR. This proves (c) since we have already proved (8.30). 

PROB. 8.5. Prove: cosx > 0 if Ixl " 1. 

The remaining trigonometric functions are defined as follows: 

Del. 8.2. The tangent and secant are defined as: 

(a) tan x = sin x/cos x and 
(b) secx = l/cosx if cosx =1= 0, 

and the cosecant and cotangent as 

(c) cscx = l/sinx and 
(d) cotx = cos x/sin x if sinx =1= O. 
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FROB. 8.6. Prove: 

(a) 1 + tan2x = sec2x if cos x =F 0, 
(b) cot2x + 1 = csc2x if sin x =F 0, 
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(c) tan(x + y) = «tanx + tan y)/(I - tan x tan y» if cos(x + y) =F 0, and 
cos x cos y =F 0, 

(d) cot(x + y) = «cot x cot y - I)/(cotx + cot y» if sin(x + y) =F 0, 
(e) tan(2x) = «2 tanx)/(l - tan2x» if cos2x =F 0, and cos x =F 0, 
(f) cot(2x) = «cot2x - 1)/(2cotx» if sin2x =F 0. 

9. Rearrangements of Infinite Series and 
Absolute Convergence 

We return to the discussion of absolute and conditional convergence. 
As we saw, 

(9.1 ) 

converges conditionally. The sum is positive (why?). Let S be the sum of 
the series in (9.1). Then 

o<!S= 

Adding, we have 

1 
"2 

_1 
4 

_1 
8 -12+··· . 

O<t S = 1 +t-!+~+~-*+~+-rr-i+··· 

This series has the same terms as the first one, but its terms are rearranged. 
Thus, rearranging the terms of a converging series may change its sum. We 
prove that this cannot occur with absolutely converging series (Theorem 
9.1). We first make precise the notion of a rearrangement of a series 
(Def. 9.1). 

Intuitively, a rearrangement of a series Lan is a series Lbn such that each 
term of the first one occurs exactly once in the second and vice versa. 

Def. 9.1. Letf: 1.+ ~1.+ be a one-to-one correspondence on 1.+ and <an> a 
sequence. If <bn> is a sequence such that bn = af(n) for each n E 1.+ , we call 
it a rearrangement of <an>. The infinite series Lbn is called a rearrangement 
of the infinite series Lan when <bn> is a rearrangement of <an>. The 
function f is called the rearrangement function. 

For example, the nth term of the infinite series (9.1) is (-l)n+l(l/n). 
Define f: 1.+ ~ 1.+ as follows: For k E 1.+ : 

(I) If n = 3k - 2, define fen) = f(3k - 2) = 4k - 3, 
(2) If n = 3k, define fen) = f(3k) = 2k, 
(3) If n = 3k - I, define fen) = f(3k - I) = 4k - 1. 
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The sequence <f(n) of positive integers is 

<f( n» = (1,3,2,5,7,4,9,11,6, ... ). 

Hence, 

and 
00 00 

"b-"a _1+1_1+1+1_1+1+1_1+ 
~ n- ~ f(n) - 3""2"5"1"4"9 IT 6 

n= I n= I 

Remark 9.1. Note that if the sequence <bn) = <af(n» is a rearrangement of 
<an), then the sequence <an) = <br l(n» is a rearrangement of <bn). 

Lemma 9.1. If the sequence <bn) is a rearrangement of the sequence <an), k 
is some positive integer, and f is the rearrangement function, then there exists 
a positive integer j such that 

{al,a2, ... ,ak}~{bl,b2, ... ,bn} for n>j. 

PROOF. Let n be an integer such that n > j, where 

j = max{I-l(I),f- 1(2), ... ,f-1(k)}. 

We have: 

for 1 < i < k. 

Hence, 

{I-I(I), ... ,f-I(k)} ~ {l, ... ,j} ~ {l, ... , n}. 

Since 

it follows that 

{a l ,a2,· .. , ad = {br l(l) ,br l(2)," ., br l(k)} 

~ { b I ,b2, ... , bj } ~ { b I ,b2, ... , bn} 

for n > j. 

Theorem 9.1. If 2:an converges absolutely, then all its rearrangements con­
verge to its sum. 

PROOF. Let 2:an converge absolutely and S = 2:an. Let 2:bn be some 
rearrangement of :2:an • This implies (Def. 9.1) that the sequence <bn ) is a 
rearrangement of the sequence <an). By Lemma 9.1, if k 1S a positive 
integer, then there exists a positive N such that 

for n> N. (9.2) 

Now take € > O. The series 2:lanl converges by hypothesis. By the Cauchy 
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criterion for series, there exists an N' such that 
j 

~ lai l<1" 
i=k+1 

if j> k> N'. (9.3) 

The sequence <Sn> of partial sums of ~an satisfies 

IS; - Ski = I ± ail ~ ± lail < 1" . 
i=k+1 i=k+1 

(9.4) 

This implies that 

IS - Ski = .lim ISj - Ski ~ -2t: 
J-40+ 00 

for k> N'. (9.5) 

Retain k> N'. We know that a positive integer N exists such that (9.2) 
holds. Let <S~> be the sequence of partial sums of the rearrangement Lbn 

of Lan and consider 

S~ - Sk for k > N' and n > N. 

Note that S~ = ~7=lbi and Sk = L7=lai. Since n > N, (9.2) holds. If any 
terms remain at all in S~ - Sk after cancelling, they are a's whose indices 
are greater than k. Since k> N', the sum of the absolute values of these 
terms is ~ a sum of the form L{=k+ IlaJ This because of (9.3) is < t:/2. 
By (9.4) this implies 

IS~ - Ski < 1" if n> Nand k> N'. 

This and (9.5) yield 

IS~ - SI ~ IS~ - Ski + ISk - SI < 1" + 1" = t: for n> N. 

But then limS~ = S. It follows that Lbn converges to the sum S of Lan. 
This completes the proof. 

We recall that for x E JR, we define x + and x - as 

x+ = max{O,x} and x- = min{O,x}. (9.6) 

By Prob. 1.13.17, 

+ x + Ixl x = --=-,---'-
2 

and 
_ x-Ixl 

x =---
2 

for x E JR 

and, therefore, 

x+ +x- = x and x+ -x- = Ixl for x E JR. (9.7) 

Theorem 9.2. A real series ~an converges absolutely if and only if each of 
~an+ and ~an- converges. Moreover, if the latter two series converge, then 

(9.8a) 

and 

(9.8b) 
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PROOF. Assume that 2:,an+ and 2:,an- converge. Then 

~ an+ - ~ an- = ~ (an+ - an-) = ~ I ani-

But then 2:,lanl converges and, therefore, 2:,an converges absolutely. We 
also have in this case that 

~ an+ + ~ an- = ~ (an+ + an-) = ~ an . 

This proves (9.8). 
Conversely, if 2:,an converges absolutely, 2:,1 ani converges. From 

2~an+ = ~ (an + lanl) = ~an+ ~ lanl 

and 

2~an- = ~(an -Ianl) = ~an- ~ lanl, 

it follows that 2:,an+ and 2:,an- converge. This completes the proof. 

Theorem 9.3. If 2:, an converges conditionally, then 2:,an+ diverges to + 00 and 
2:, an- diverges to - 00. 

PROOF. By hypothesis, 2:,an converges but 2:,lanl diverges. Taking partial 
sums, we have: 

(9.9) 

and 

(9.10) 

Since 2:,lanl has positive terms and diverges, it diverges to + 00. Thus (9.9) 
and (9.10) imply that 

00 00 1 
~ at = 1 S + 00 = + 00 and ~ ak- = - S - 00 = - 00. 

k=l 2 k= 1 2 

PROB. 9.1. Prove: (a) If 2:,an is a real series which is conditionally conver­
gent, then it has infinitely many positive terms and infinitely many negative 
terms. (b) If 2:, Pn is the series whose terms are the positive terms of 2:, an (in 
the order they appear in this sum) and 2:, tn is the series whose terms are the 
negative terms of 2:,an (in the order they appear in this sum), then 2:,Pn 
diverges to + 00 and 2:, tn diverges to - 00. 

Riemann proved the following remarkable theorem on conditionally 
converging series. 

Theorem 9.4. If 2:,an is a real conditionally converging series, then for any 
real number I, there exists a rearrangement 2:,bn of 2:, an such that 2:,bn = I. 
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PROOF. Let ~Pn and ~tn be respectively the series of positive and negative 
terms of ~an where the terms of each are in the order in which they appear 
in Lan. By Prob. 9.1 we have 

(9. 11 a) 

and 

(9.llb) 

Let I be a given real number. There exists a positive integer m such that 
~k= IPk > I. Let gel) be the least such m. Then I < g(I). Since ~tn = 
- 00, there exists a positive integer m such that 

m g(l) 

2: tk < 1- 2: Pk· 
k=g(I)+1 k=1 

Let g(2) be the least such m. Then 
g(l) g(2) 

2: Pk+ 2: tk < I, 
k=1 k=g(I)+1 

where g(l) < g(l) + I < g(2). If g(l) + I = g(2), this implies 
g(l) 

2: Pk + tg(2) < I. 
k=1 

If g(2) > g(l) + I, (9.12) implies, by the definition of g(2), that 
g(l) g(2) g(l) g(2)-1 

2: Pk + 2: tk < 1 < 2: Pk + 2: tk • 
k=1 k=g(I)+1 k=1 k=g(I)+1 

U sing the convention for sums according to which 
j 

2: Xk = 0 
k=j+1 

if j is a nonnegative integer, 

(9.12) 

(9.13) 

(9.14) 

we can say that (9.14) includes the case g(2) = g(l) + 1. The first g(2) 
terms of Lan have now been given the arrangement PI' ... ,Pg( I) , 

tg( I) + I' .•. , tg(2)· We write T; for the ith partial sum of the rearrangement. 
We have 

g(l) 

if 1< i < g(l) and Tg(l) = 2: Pk, 
k=1 

i 

1'; = Tg(l) + 2: tk if g(l) + I < i < g(2) so that 
k=g(l)+1 

g(2) 

T g(2) = Tg(l) + 2: tk • 
k=g(I)+1 

In terms of the T/s, (9.14) can be written 

Tg(2) < 1 < Tg(2)_I. 

(9.15) 

(9.16) 
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Since T g(2) -I - Tg(2) = - tg(2) , this implies that 

0< 1- T g(2) < - tg(2) = Itg(2) I 
and hence that 

1/- Tg(2) I < Itg(2) I· 

From the definition of g(l), it follows that 

Tg(l) > I. 

(9.17) 

(9.18) 

We continue with the rearrangement and define g(3) as the least positive 
integer m such that 

m 

I - Tg(2) < ~ Pk 
k=g(2)+1 

and obtain g(l) < g(2) < g(3) 
; g(3) 

Tg(2) + ~ Pk< 1< Tg(2) + ~ Pk 
k= g(2) + I k= g(2) + 1 

for g(2) < i < g(3). 

(9.19) 

Now the first g(3) terms of the arrangement are PI"" ,Pg(I),tg(I)+I' 

... ,tg(2) ' P g(2) + I' ... ,Pg(3)' The corresponding partial terms T; are given 
by (9.15) and 

; 

T; = Tg(2) + ~ Pk 
k= g(2) + I 

g(3) 

Tg(3) = Tg(2) + ~ Pk . 
k= g(2) + 1 

if g(2) < i < g(3), so that 

(9.20) 

This yields 

T g(2) < T; < 1< Tg(3) 

and, in particular, that 

for g(2) < i < g(3) (9.21 ) 

T g(2) < T g(3) -I < 1< Tg(3) • (9.22) 

This and (9.16) also imply Tg(2) < T; < I < T g(2) -I for g(2) < i < g(3). 
Accordingly, see (9.17), the partial sums Ti , g(2) < i < g(3), satisfy 

1/- Til < 1/- Tg(2) I < Itg(2) I for g(2) < i < g(3) (9.23) 

and 

II - Tg(3) I < Tg(3) - T g(3) -I = Pg(3) = Ipg(3) I· (9.24) 

Continuing, we define g(4) as the least positive integer m such that 
m 

Tg(3) + ~ tk < I. 
k=g(3)+1 

(9.25) 
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We have g(l) < g(2) < g(3) < g(4), the rearranged terms after the g(3)th 
being tg(3) + I' ... , tg(4) • The corresponding partial sums T j are 

i 

T j = Tg(3) + 2: tk 
k= g(3) + 1 

g(4) 

T g(4) = Tg(3) + 2: tk • 
k=g(3)+ 1 

This yields 

Tg(4) < I « T j « Tg(3) 

and, in particular, 

for g(3) < i « g(4), so that 

(9.26) 

for g(3) < i < g(4), (9.27) 

(9.28) 

This and (9.22) also imply Tg(3) -I « I « T j « Tg(3) for g(3) < i < g(4). 
Accordingly, see (9.24), the partial sums Tj , where g(3) « i « g(4), satisfy 
the relations 

for g(3) « i < g(4) (9.29) 

and 

(9.30) 

Proceeding inductively in this manner, we obtain a rearranged series 'with 
partial sums T j which satisfy the relations 

if g(n) « i < g(n + 1) if n is even (9.31) 

and 

if g(n) « i<g(n+ 1) ifnisodd. (9.32) 

Here g(n) < g(n + 1) for all n. 
Since our original series converges conditionally (by hypothesis), it fol­

lows that Pg(n) ~ 0 and tg(n) ~ 0 as n ~ + 00. From the inequalities (9.31) 
and (9.32) we see that the rearrangement 'L.bn of 'L.an is such that for its 
partial sum sequence <Tn> we have Tn ~ I as n ~ + 00. This completes the 
proof. 

Corollary. If all the rearrangements of a converging real series converge to its 
sum, then the series converges absolutely. 

PROOF. Let 'L.an be a converging series with sum S such that all its 
rearrangements also converge and have sum S. If Lan did not converge 
absolutely, then by Theorem 9.4, there would be two rearrangements of the 
series converging to different sums; this contradicts the assumption on 
'L.an • Therefore, Lan converges absolutely. 
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10. Real Exponents 

Before beginning the next chapter it will be convenient to define real 
exponents, that is, to deal with px, where p > 0 and x is any real number. 
Our approach is to use the nonterminating decimal representation of x (cf. 
Example 3.1, Theorem I1I.10A and Remark 3.2). 

Let 
(10.1 ) 

be nonterminating decimals. We have x = limrn and y = limsn, where, for 
each n, rn and Sn are the respective n truncations of the decimals of x and y 
in (10.1). By theorems on limits we have 

x + y = limrn + limsn = lim(rn + sn)' (10.2) 

The sum x + y is a real number and has a nonterminating decimal 
representation 

(10.3) 

where P is an integer and Ak is a digit for each k. Let <zn> be the sequence 
of truncations of this nonterminating decimal representation of x + y, so 
that 

for each n. 

Note that in general rn + Sn =1= zn' For example, consider 2 = 1.99 ... and 
1 =.99 .... Let 

rn = 1 + .99 ... 9 and Sn = .99 ... 9 
~ ~ 

for each n 
n nines n nines 

be the respective nth truncations of the nonterminating decimal representa­
tions of 2 and 1. We have 

so that 

IOn - 1 Ion 1 
rn = 1 + IOn and Sn = 10-:-

n-I nines 
~ 

rn + Sn = 3 - 2(10-n) = 2 + .99 ... 98, 

whereas the nonterminating decimal representation of 2 + 1 = 3 is 

2 + 1 = 3 = 2 + .99 ... 
The nth truncation of this representation is 

lOn-l 1 zn = 2 + .99 ... 9= 2 + IOn = 3 - Ion 

and we see that here rn + sn =1= Zn for any positive integer n. It is clear, 
however, that lim(rn + sn) = limzn since the limit of each side of the 
equality is x + y. In general, we have 

n 

X + Y = lim(rn + sn) = N + M + lim ~ (dk + 8dlO-k. (lOA) 
n~+oo k= I 
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We can now define px, where p > 0 and x E IR. We first treat the case 
p ~ 1. Let x = N + .d1d2 ••• , where the decimal on the right is non­
terminating, and let <rn) be the sequence of its truncations. We have 

N < rn < N + I for all positive integers n; (10.5) 

pN, pr., pN+ 1 are defined for rational exponents; and 

pN .;;; pr_ .;;; pN+l for each n. (10.6) 

It follows that the sequence (pr_) is bounded from above. Since it is also 
monotonically increasing (recall that p ~ I and the sequence <rn) is increas­
ing), this sequence converges. If 0 < P < I, then the sequence <pr.) is 
monotonic decreasing and 

for each n. (10.7) 

It follows that here too (pr.) converges. We now define: 

Der. 10.1. If P > 0 and x are real numbers, then we define the function 
Ep: IR~IR as 

E (x) = lim p\ 
p n~+oo 

(10.8) 

where for each positive integer n, rn is the nth truncation of the non­
terminating decimal representation of x. We also define 

Eo(x) = 0 if x> O. (10.9) 

Remark 10.1. It follows from the remarks preceding this definition that the 
limit in (10.8) exists in IR. Therefore, Ep(x) is defined for each x E IR. As an 
example, we prove: If p > 0, then Ep(O) = 1. By Def. 10.1, we must use the 
nonterminating decimal representation of O. This is, 

0= -I +.99 .... (10.10) 

The nth truncation of the decimal on the right is 

I + 99 9 I Ion - I = -IO-n • rn = - ..: '" , = - + Ion (10.11) 
n nines 

Hence (Prob. III.8.S), 

E(O)= lim p-IO--= lim (p-l)IO-.=1. 
p n~+ 00 n~+ 00 

PROB. 10.1. Prove: E1(x) = I for each x E IR. 

PROB. 10.2. Prove: If p > 0, then E/l) = p. 

PROB. 10.3. Prove: If p > 0, then Ep(x) > 0 for x E IR (Hint: note (10.6) and 
(10.7». 
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PROB. lOA. Prove: If p > 0 and q > 0, then E/x)Eq(x) = Epq(x). 

PROB. 10.5. Prove: If p > 0, then Ep-l(X) = Ep(x)-J. 

Theorem 10.1. If p, x and yare real numbers and p > 0, then 

Ep(x)Ep(Y) = Ep(x + y). (10.12) 

PROOF. Let x = N + .dJd2 ••• and y = M + .8 J82 ••• be the nonterminat­
ing decimal representation of x and y and <rn), <sn)' their respective 
sequences of truncations. Since <pr,) and <pS,) converge (see remarks 
preceding DeL 10.1), the definition of Ep(x) and Ep(Y) implies that 

lim pr,+Sn = lim prnpSn = lim prnlim pSn = Ep(x)Ep(Y)' (10.13) 

It remains to prove that 

( 10.14) 

However, since the sequence <zn) of truncations of the nonterminating 
decimal representation of x + y, in general, differs from the sequence 
<rn + sn) (see remarks in the opening paragraph), (10.14) is not obvious. 
We note that since rn < x, Sn < y, we have rn + sn < X + Y for all n. Since 
x + y = limzn = supzn' it follows that 

for all n. 

Consequently, to each n there corresponds an m such that 

rn + Sn < Zm < supzn = X + y. 

For P > 1, this implies that 

for each n. 

( 10.15) 

( 10.16) 

(10.17) 

Thus, for p > I, the sequence <pr,+sn) is bounded from above. Since it is 
also monotonic increasing (explain), it converges. From (10.13) and (10.17) 
we obtain 

Ep(x)Ep(Y) = lim prn+sn <; Ep(x + y) 

Now, for each n, 

for p> 1. 

Zn < X + Y = lim(rn + sn) = sup(rn + sn)· 

Hence, for each n, there exists an m such that 

zn<rm+sm' 

It follows that if p > I, then 

pZn < prm+sm = prnpsm <; Ep( x)Ep(Y) for each n. 

This implies that for p > I, 
Ep(x + y) = lim pZn <; Ep(x)Ep(Y)' 

(10.18) 

(10.19) 

(10.20) 

This and (10.18) imply (10.12) for the case p > 1. If P = I, then (10.12) 
holds trivially (Prob. 10.3). 
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As for the case 0 < P < 1, we note that here p -I > 1. Hence, by what 
was already proved 

if O<p<1. (10.21) 

By Prob. 10.5, this yields 

Ep-I(X)Ep-l(y) = Ep-I(X + y) 

and, therefore, taking reciprocals, we find that (10.12) holds in this case 
also. This completes the proof. 

PROB. 10.6. Prove: Ifp > 0, then Ep(-x) = E/X)-I = Epl(X). 

PROB. 10.7. Prove: If p > 1, then Ep(x - y) = Ep(x)1 Ep(y), 

PROB. 10.8. Prove: If p > 1, then (a) x> 0 implies Ep(x) > 1 and (b) x < 0 
implies 0 < E/x) < 1. 

PROB. 10.9. Prove: If 0 < P < 1, then (a) x > 0 implies that 0 < Ep(x) < 1 
and (b) x < 0 implies that E/x) > 1. 

PROB. 10.10. Prove: (a) If p > 1, then the function Ep is strictly monotoni­
cally increasing; (b) if 0 < P < 1, then the function Ep is strictly mono­
tonically decreasing. 

PROB. 10.11. Prove: If p > 0 and r is rational, then for each x E IR, we have 
E/rx) = (Ep(x)),. In particular, prove: If r is rational and p > 0, then 
Ep(r) = pr (Hint: first carry out the proof for the case where r is a 
nonnegative integer, then for the case when r is an integer, etc.). 

Remark 10.2. We noted in the last problem that if p > 0 and r is rational, 
then Ep(r) = pro Thus, if r = min, where m and n are integers and n > 0, 
then Ep(r) = Ep(mln) = (ij)m. Now let r have the non terminating deci­
mal representation r = N + .d1d2 • •• and let <sn> be the sequence of 
truncations of the decimal representation of r. From Ep(r) = pr and Def. 
10.1 it follows that 

pm/n = pr = lim pSk. 
k-'> + 00 

(10.22) 

If x is irrational, we define pX = E/x). Thus, for x irrational, our interpre­
tation of pX is 

pX = lim prn= E (x), 
n-'> + 00 P 

(10.23) 

where rn is the nth truncation of the non terminating decimal representation 
of X. By Theorem 10.1, we have 

for p > 0 (10.24) 

for real x and y. 
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Remark 10.3. We list all the results obtained thus far for the function Ep 
and express them in terms of the notation Ep(x) = pX. We have: If p > 0 
and x = N + .d]d2 ••• , where the decimal on the right is nonterminating 
and rn = N + .d]d2 ••• dn is, for each n, the truncation of this decimal, then 

(a) pX = limn->+oop\ 
(b) po= 1,/ =p, 
(c) OX = 0 if x > 0, 
(d) P > 0 and q > 0 imply (pqY = pXqX, 
(e) (p-]Y= l/px=p-x, 
(f) pX /pY = pX-Y, 
(g) p> 1 and x > 0 imply pX > I; P > 1 and x < 0 imply 0 < pX < I, 
(h)O<p<1 and x>O imply O<px<l; O<p<1 and x<O imply 

pX> 1. 
(i) The result in Prob. 10.10 can be expressed as: p > I and x] < X 2 imply 

o <px\ <pX2, 0 <p < 1 and x] < x2 imply pX\ > pX2 > O. 
(j) If r is rational, then prx = (pxy. (In the next theorem this is extended to 

the case where r is any real number.) 

PROB. 10.12. Prove: If p > 0, q > 0, then for x E IR, pX / qX = (p / qY. 

PROB. 10.13. Prove: If 0 <: x] < X 2 and y > 0, then xi < x{ 

Theorem 10.2. If p, x and yare real numbers and p > 0, then 

(pXl = pxY. (10.25) 

PROOF. The conclusion is obvious if x = 0 or y = O. Suppose that x =1= 0 and 
y =1= O. We first consider the case (a) p > 1, x > O. Let y = N + .d]d2 ••• , 

where the decimal on the right is non terminating and let <rn> be its 
sequence of truncations. By Remark 111.10.2 

for each n 

and, hence, 

It follows that 

( 10.26) 

We have 

(10.27) 

and 

(10.28) 



10. Real Exponents 201 

These two limit relations together with (10.26) and the sandwich theorem 
imply that 

pxy = lim (pX)rn= (pX)Y 
n~+oo 

in case (a). In case (b) p > I, x < 0, we have - x > O. From what was 
proved in case (a), we obtain 

(p-Xl = p-xY 

which implies (I/pxy = I/pxy, and, hence, 

I _ I 
(pXl - pxY . 

Thus, (10.25) holds for case (b) also. We leave the remaining cases (c) 
o <p < I, x > 0,0 <p < I, x < 0 for the reader to prove. 

Remark 10.4. The series 
00 

Hp) = 2: p' 
n= I n 

p>1 (10.29) 

(Example 3.2) was seen to converge for p > I and p rational. The reader 
can now use the properties of real exponents to demonstrate the conver­
gence of this series for the case p > I, where p is real. 



CHAPTER V 

Limit of Functions 

1. Convex Set of Real Numbers 

In Chapter III we dealt with limits of real sequences. These are real-valued 
functions whose domains are essentially 71.0 or 71.\. In this chapter we treat 
limits of real-valued functions of a real variable whose domains are not 
necessarily confined to 71.0 or 71.\. Of special interest are functions whose 
domains are intervals. 

PROB. 1.1. Prove: The function I: IR ~ IR, where 

I(x) = 1 :Ixl for x E IR 

is a one-to-one correspondence between IR and the open interval (-1; 1) 
whose inverse is g, where 

g(y) = 1 !Iyl for Iyl < 1, y E IR. 

Accordingly, IR and the open interval ( - 1; 1) are equipotent (Def. 11.10.5). 

FROB. 1.2. Prove: If a, b, c, d are real numbers such that a < band c < d, 
then the function I: (a; b) ~ IR, where I is defined as 

I(x)=c+~=~(x-a) for xE(a;b), 

is a one-to-one correspondence between the intervals (a; b) and (c; d). Its 
inverse is g:(c;d)~(a;b), where 

g(y) = a + bd - a (y - c) for y E (c;d). 
-c 

Consequently the intervals (a; b) and (c; d) are equipotent. 



2. Some Real-Valued Functions of a Real Variable 203 

PROB. 1.3. Prove: If a E IR, b E IR (a < b), then the set IR of real numbers 
and the interval (a; b) are equipotent. 

Intervals of real numbers can be characterized as convex sets of real 
numbers. 

Def. 1.1. A subset S ~ IR is called convex if and only if XI E S, X2 E S, 
XI < X 2 imply [X I ,X2] ~ S. 

PROB. 1.4. Prove: If S is a family of convex subsets of IR, then its 
intersection n S is convex. 

PROB. 1.5. Prove: If I is an interval in IR, then I is convex. 

FROB. 1.6. Prove: (a) The empty set and any singleton set in IR are convex 
sets; (b) if S is a convex subset of IR containing at least two members, then 
S is an interval. 

PROB. 1.7. Prove: If a and b are real numbers such that a < b, then 
X E (a; b) if and only if there exists exactly one t such that 0 < t < 1 and 
X = (1 - t)a + tb. 

2. Some Real-Valued Functions of a Real Variable 

In Chapter II we already defined some real-valued functions of a real 
variable. The notion of a polynomial on IR was defined in Def. 11.8.1. 

EXAMPLE 2.1 (Rational Functions). A rational function on IR is a fUnction R 
defined by the following means. Let P and Q be polynomials and Q not the 
zero polynomial, 

P(x) 
R(x) = Q(x) for X E IR such that Q(x) =1= O. (2.1 ) 

FROB. 2.1. Prove: (a) Every polynomial is a rational function, (b) the 
rational function R, where 

R(x) = 1 
x 

for x E IR, x =1= 0 

is not polynomial. 

EXAMPLE 2.2. If P > 0, the function Ep : IR ~ IR defined in Def. IV. 1 0.1 is a 
useful function. In Remark IV.1O.2 we introduced the notation 

pX = Ep( x) for x E IR. (2.2) 
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Of special importance is Ee , which we often write simply as E. Thus, 

E(x) = eX for x E IR. (2.3) 

By Prob. IV.7.1, we have: 

expr = e r = E(r) for rational r, (2.4) 

where expx is defined in Example IV.5.l. Note, since e > 2, we have 
eX > 1 for x > 0, and that 0 < eX < 1 for x > o. 
EXAMPLE 2.3 (Hyperbolic Sine and Cosine). The hyperbolic sine and cosine 
junctions, abbreviated respectively as sinh and cosh, are defined as 

sinh x = eX - e- x 

2 ' 
coshx = eX + e- x 

2 
for x E IR. (2.5) 

Clearly, 
sinh 0 = 0 and cosh 0 = 1. (2.6) 

PROB. 2.2. Prove: If x E IR, then cosh x ;;. 1. 

PROB. 2.3. Prove: (a) sinh( - x) = - sinh x, (b) cosh( - x) = coshx. 

PROB. 2.4. Prove: If x > 0, then sinh x > 0 and if x < 0, then sinh x < o. 

PROB. 2.5. Prove: If x E IR, Y E IR, then 

(a) cosh(x + y) = coshxcoshy + sinhxsinhy, 
(b) sinh(x + y) = sinh x cosh y + cosh x sinh y, 
(c) cosh2x - sinh2x = 1. 

PROB. 2.6. Prove: If n is an integer, then 

(cosh + sinh x) n = cosh nx + sinh nx 

PROB. 2.7. Prove: If x E IR, then 

(a) sinh 2x = 2 sinh x cosh x, 

for x E IR. 

(b) cosh2x = cosh2x + sinh2x = 2cosh2x - 1 = 1 + 2sinh2x, 
(c) sinh2(x/2) = (cosh x - 1)/2 and cosh2x = (cosh x + 1)/2. 

PROB. 2.8. We define hyperbolic tangent, hyperbolic cosecant, and hyperbolic 
cotangent, written respectively as tanhx, csch, coth, by means of 

(a) tanh x = sinh x x E IR, (b) 1 if x =1= o. cschx = -.--
coshx ' smhx 

(2.7) 

(c) 1 x E IR, (d) coth x = c?sh x if x =1= O. sechx = --, 
cosh x smhx 

(2.8) 
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Prove: (a) 1 - tanh2x = sech2x. (b) coth2x - 1 = csch2x for x E IR. (c) tanh ° 
= 0, sechO = 1. 

PROB. 2.9. Prove: (a) -1 < tanh x < 1. (b) If x> 0, then cothx > I and if 
x < 0, then cothx < -1. (c) ° < sechx ..;; 1. 

PROB. 2.10. Prove: The hyperbolic sine function IS strictly monotonic 
increasing. 

PROB. 2.11. Prove: The hyperbolic cosine function is strictly monotonic 
increasing on [0, + 00) and strictly decreasing on ( - 00,0]. 

Def. 2.1. A function f: IR ~ IR is called an even function if and only if 

f( - x) = f( x) for all x E IR. (2.9) 

A function f is called an odd function if and only if 

f(-x)= -f(x) forall xEIR. (2.10) 

Thus, the hyperbolic cosine function and the cosine function are exam­
ples of even functions, whereas the hyperbolic sine function and the sine 
function are examples of odd functions. 

PROB. 2.12. Prove: The hyperbolic tangent and cotangent are odd func­
tions. 

Remark 2.1. Let f: IR ~ IR be a real-valued function of a real variable. The 
function g defined as 

f(x) + fe-x) 
g(x) = 2 for each x E IR 

is even, and the function h defined as 

f(x) - f( - x) 
hex) = 2 for each x E IR 

is odd, as can be checked. Since f(x) = g(x) + hex) for each x E IR we see 
that any real-valued function of a real variable can be written as the sum of 
an even and an odd function. 

PROB. 2.13. Prove: (a) The product of two even functions is even; (b) the 
product of two functions one of which is even and the other is odd is an 
odd function; (c) the product of two odd functions is an even function. 

EXAMPLE 2.4 (Distance to the Nearest Integer). We define 

<x)* = the distance of x E IR to the integer nearest x. (2.11 ) 
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In the literature this is sometimes written as {x}. Since the latter notation 
conflicts with the notation {x} = singleton set whose only member is x, we 
prefer to use the notation in (2.11). We have, [xl";;; x < [xl + 1, where [xl is 
the greatest integer..;;; x, and that the respective distances of x from the 
integers [xl and [xl + 1 are x - [xl and [xl + I-x. We have 

<x)*=min{x-[x],[x]+I-x} foreach xEIR. (2.12) 

We recall (Prob. 1.13.17) that 

. { b} _ a + b - la - bl 
mm a, - 2 for a E IR, b E IR. (2.13) 

This implies that in terms of the greatest integer function, we have (explain) 

<x)*=t-lt-x+[x]1 for xEIR. (2.14) 

PROB. 2.14. Prove: <[xl + t)* = t for x E IR. 

FROB. 2.15. Prove: <x + 1)* = <x)* for x E IR. 

PROB. 2.16. Prove: 0 ..;;; <x)* ..;;; t for x E IR. 

For the graph of the nearest integer function see Fig. 2.1. It is an 
example of a periodic function. 

Del. 2.2. A function f: IR ~ IR is called periodic if there exists a real number 
a =1= 0 such that 

f(x + a) = f(x) for each x E IR. (2.15) 

The number a is called a period of the function. The least positive period is 
called the fundamental period or the period of the function. 

Note that a constant function has any nonzero number as a period. 

FROB. 2.17. Prove: If f: IR ~ IR is periodic and a is some period of f, then 
any nonzero integral multiple na of a is also a period of f. Thus, a periodic 
function always has some positive number as a period. 

y 

(t. t) 

x 

Figure 2.1 



3. Neighborhood of a Point. Accumulation Point of a Set 207 

PROB. 2.18. Prove: (a) The period of the function < )* is 1. (b) Also prove 
that it is an even function. 

3. Neighborhood of a Point. Accumulation Point 
of a Set 

We wish to extend the notion of limit to functions whose domains are 
subsets of lit Before doing this it will be convenient to introduce the notion 
of a neighborhood of a point of !R or of a point of !R*. 

Def. 3.1. Let a E lit By an i-neighborhood of a, we mean the set N(a, i) 
defined as 

N(a,i)={xE!Rllx-al<i}, (3.1 ) 

where i is some positive real number. By a deleted i-neighborhood of a we 
mean the set N*(a,i), where 

N*(a,i) = {x E !RIO < Ix - al < f}. 

We never use the notation N(a,f) or N*(a,f) unless f > O. 

It is clear that 

N(a,f) = (a - i; a + f). 
N*(a,i) = N(a,f) - {a}. 

N*(a,f) = (a - f;a) U (a;a + i). 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

PROB. 3.1. Prove: If a and b are real numbers such that a < b, then (see 
Fig. 3.1). 

N( a + b b - a) = (a' b) 2 '2 ,. 

PROB. 3.2. Prove: If a E !R and f > 0, then the set S, where 

S = { a ± n! 1 fin E Z+ }, 

(3.6) 

(3.7) 

is a subset of N*(a, f). Thus, N(a, f) is not empty and, as a matter of fact, 
contains infinitely many points. 

(a + b)/2 
~J J I (J II II {( it I (11 I (III II) thlttflh)} l)tffl,ttYl 

a b 
Figure 3.1 
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Theorem 3.1. If Xo E IR and N(XO,i1), N(XO,i2) are i-neighborhoods of Xo, 
then there exists an i-neighborhood N(xo, i) of Xo such that 

N(XO,i) ~ N(XO,i1) n N(XO,i2)' (3.8) 

PROOF. By hypothesis, i1 > 0 and i2 > 0 and each is in IR. Let 

i = miri.{ i1 ,i2}' 

We have 0 < i ..;; i1 and 0 < i ..;; i2' Use this i. Assume x E N(XO,i). We 
obtain 

Ix - xol < i ..;; i1 and Ix - xol < i ..;; i2· 

This implies that x E N(XO,i1) n N(XO,i2). This proves (3.8). 

It is also useful to consider neighborhoods of ± 00. 

Def. 3.2. By a neighborhood of + 00, written N( + 00), we mean a subset of 
IR* of the form 

N (+ 00) = {x E IR* I x > B }, (3.9) 

where B is some real number. Similarly, a neighborhood of - 00, written as 
N( - 00), is a subset of IR* of the form 

N( - 00) = {x E IR* I x < B}, (3.10) 

where B is some real number. Clearly, 

N(+oo) = {+oo} U (B; +00) (3.11 ) 

and 

N ( - 00) = { - oo} U ( - 00; B), (3.12) 

where B E IR. Deleted neighborhoods of ± 00, written as N*( ± 00), are 
defined respectively as 

N*( + 00) = {x E IR I x> B} = (B; + 00) (3.13) 

and 

N*(-oo) = {x E IRlx < B} = (-oo;B), (3.14) 

where B E IR. These are subsets of IR. 

Def. 3.3. If Xo E IR, then by an i-neighborhood of xofrom the right, written as 
N + (xo, i), we mean a set of the form 

N+(XO,i) =[xo,xo+ i) = {x ElRlxo";; x < xo+ i}. (3.15) 

Dually, by an i-neighborhood of Xo from the left, written as N _ (XO,i), we 
mean the set 

N _ (XO,i) =(Xo - i,XO] = {x E IR I Xo - i < X ..;; xo}. (3.16) 
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These are called one-sided neighborhoods. Corresponding to them we have 
deleted one-sided neighborhoods N":r (xo, €) and N~ (xo, f), where 

N":r (xo,€) = (xo ;Xo + €) = {x E IRI Xo < x < Xo + €} (3.17) 

and 

N~ ( Xo€) = (xo - €; xo) = {x E IR I Xo - € < X < xo}. (3.18) 

Remark 3.1. A neighborhood of + 00 can be viewed as a neighborhood of 
+ 00 from the left and a neighborhood of - 00 as a neighborhood from the 
right of - 00, respectively. 

PROB. 3.3. Prove: If L E IR* and Nt(L) and Ni(L) are deleted neighbor­
hoods of L from the same side, then there exists a deleted neighborhood 
N*(L) of L, from that side, such that 

N*(L) !: Nt(L) n Ni(L). 

We will need the notion of an accumulation point of a set S !: IR. 

Der. 3.4. An accumulation point, in IR, of S !: IR is a point Xo E IR such that 
each deleted €-neighborhood N*(xo,€) of Xo contains points of S; that is, 
such that N*(xo, €) n S =1= 0 for all € > O. When there is no danger of 
confusion, an accumulation point Xo E IR of S !: IR will be referred to 
simply as an accumulation point of S. 

EXAMPLE 3.1. Let 

-{II I }-{11' ... } A - '2'3"" - Ii n IS a posItive mteger . 

The point 0 is an accumulation point of A. For, given N*(O, f), where € > 0, 
there exists an integer m such that 0 < 11m < € and hence 11m E N*(O,€). 
Since 1 I mEA also, it follows that 

N*(O, €) n A =1= 0 

for every € > O. Note that 0 f£. A. 

Remark 3.2. The set of all accumulation points of a set S !: IR is called its 
derived set and is written as S'. 

PROB. 3.4. Let S = {n + 11m I nand m are integers and m > O}. What is 
the derived set S' of S? Does S' !: S hold? 

PROB. 3.5. Let a E IR and bE IR. (a) Prove (a; b)' = [a, b], (b) [a, + 00)' 
= [a, + 00). 
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Remark 33. There exist subsets of IR having no accumulation points. For 
example, let Xo E IR, then A = {xo} has no accumulation points (explain). 

PROB. 3.6. Prove: The set 7L of integers has no accumulation points. 

Remark 3.4 (Extended Accumulation Points). When a set S (:; IR is not 
bounded from above, then for each B E IR, there exists x \ E S such that 
x\ > B. In terms of neighborhoods of + 00, this states that each deleted 
neighborhood of + 00 contains points of S. In this sense, although + 00 is 
not an element of IR, it may be viewed as an accumulation point of S. We 
speak of + 00 as an extended accumulation point of S. Similarly, if S (:; IR is 
not bounded from below, - 00 may be thought of as an accumulation point 
of S and is referred to as an extended accumulation point of S. Thus, ± 00 

are called extended accumulation points of a set S, under appropriate 
conditions on S. When no reference is made at all as to whether the 
accumulation point we are dealing with is an extended one or not, we will 
mean an accumulation point in IR referring to it as a real or finite 
accumulation point. 

Remark 3.5 (Real, One-Sided Accumulation Points). If S (:; IR, then Xo E IR 
is an accumulation point (in IR) of S from the right if and only if each 
deleted E-neighborhood (xo; Xo + E) of Xo from the right contains points of 
S. Dually, Xo E S is called an accumulation point of S from the left, if and 
only if each deleted E-neighborhood (xo - E, xo) of Xo from the left contains 
points of S. Such accumulation points are called one-sided accumulation 
points. 

For the bounded open interval (a; b), a is an accumulation point of (a; b) 
from the right and b is an accumulation point of (a; b) from the left. 

Clearly, a one-sided accumulation point of a set is also an accumulation 
point of the set, but the converse does not hold. 

Theorem 3.2. If S (:; IR, then Xo E IR is an accumulation point of S if and only 
if each E-neighborhood N(xo, E) of Xo contains infinitely many points of S. 

PROOF. Assume that each N(XO,E) of Xo contains infinitely many points of 
S. Let N*(XO,E') be some deleted E-neighborhood of xo' Now {xo} u 
N*(xo, E') = N(xo, E') is an E-neighborhood of Xo and contains infinitely 
many points of S. This implies that N*(xo, E') = N(xo, E') - {xo} contains 
points of S. Thus, each deleted E-neighborhood N*(xo, E') contains points of 
S. Therefore Xo is an accumulation point of S. 

Conversely, suppose Xo is an accumulation point of S. Suppose that there 
exists some N(xo' E\) of Xo exists containing at most finitely many points of 
S. Since Xo is an accumulation point of S, N*(xo, E\) contains some points 
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of S. Since 

N*(XO,El) C N(XO,El)' 

we see that N*(xo, El) contains at most finitely many such points. Take the 
set N*(xo, El) n S. This set is not empty and consists of points Xl' ... , Xk ' 

where k is some positive integer. Consider the real numbers 

dl = IXI - xol, d2 = IX2 - xol, ... , dk = IXk - xol· 

Each ~ is a positive real number and the set {d l , ••• , dd is a nonempty 
set of positive real numbers. Let 

E' = min{ d l , ••• , dk }. 

We have E' > O. Now, consider N*(XO,E'). If X E N*(XO,E'), then 

0< Ix - xol < E' < ~ = Ix) - xol for) E p,2, ... , k}. 

Thus, X differs from Xl' ... , Xk and is not in N*(XO,E') n S. This implies 

N*(XO,E') n S = cp 

and, hence, that the deleted E-neighborhood N*(xo, E') contains no points of 
S. This contradicts the assumption that Xo is an accumulation point of S. 
Hence, we must conclude that each E-neighborhood N(xo, E) of S contains 
infinitely many points of S. This completes the proof. 

Theorem 3.3. If S (;;; IR, then Xo is an accumulation point of S if and only if 
there exists a sequence <Xn> of distinct points of S such that limn _H ooXn 
= Xo' 

PROOF. Suppose first that there exists a sequence <xn> of distinct points of 
S such that limxn = xo. Let N(XO,E) be some E-neighborhood of Xo' There 
exists an N such that if n > N, then IXn - xol < E. For at least one n > N, 
nl say, we have xn, E Sand xn, =1= Xo (otherwise xn = Xo holds for all n > N 
and the points of <xn> are not distinct). This implies that xn, E N*(xo, E) n 
S. Thus, for each E > 0, we have N*(xo, E) n S =1= 0. It follows that Xo is an 
accumulation point of S. 

Conversely, let Xo be an accumulation point of S. There exists Xl E S 
such that Xl E N*(xo, 1). Take E2 =!. N(xo,!) contains infinitely many 
points of S. Hence, there exists x2 E S such that X2 =1= xo, x2 =1= Xl and 
X2 E N(xo,!)' We have X2 E N*(xo,!) and X2 =1= Xl' We continue this 
procedure inductively. If for some positive integer n there exist distinct 
Xl' ... , xn in S such that x) E N*(xo, 1/) for) E {l, ... , n}, then take 
En+l = I/(n + 1) and N(xo, I/(n + 1». There exists a point xn +l E S dif­
fering from XO,X l, ... , xn such that xn+l E N(xo, I/(n + 1» (why?). We 
see that xn+l E N*(xo, I/(n + 1» and that it differs from Xl"'" Xn. The 
sequence <xn> constructed in this manner consists of distinct elements of S. 
Since I Xn - xol < 1/ n for each n, it follows that lim xn = xo' This completes 
the proof. 
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PROB. 3.7. Prove: If Xo E IR, then there exists a sequence rn of rational 
numbers such that rn ~ Xo as n ~ + 00 and there is a sequence <cn> of 
irrational numbers such that cn ~ Xo as n ~ + 00. 

PROB. 3.8. Prove: If S C; T C; IR, then S' C; T. 

PROB. 3.9. Suppose S C; IR. Prove: (a) + 00 is an extended accumulation 
point of S if and only if there exists a sequence <xn> of distinct points of S 
such that limxn = + 00. (b) State and prove an analogous criterion for - 00 

to be an extended accumulation point of S. 

4. Limits of Functions 

We recall that a sequence <xn> of real numbers converges with L = limxn if 
and only if for each i > 0, there exists an N such that if n > N, then 
IXn - LI < t:. We formulate this in terms of the notion of neighborhood. 

A sequence < Xn > is a function whose domain is l' + . Let f be the function 
such thatf(n) = Xn for each n E 1'+. We have 1'+ = GD(j). Since 1'+ is not 
bounded from above, we can think of + 00 as an (extended) accumulation 
point of 1'+ = GD(j). The condition n > N becomes n E (N; + (0) n GD(j), 
and the condition IXn - LI < i becomesf(n) = xn E N(L,i), the last being 
an i-neighborhood of L. Thus, we have the formulation: <xn> converges 
with L = limxn if and only if for each i-neighborhood N(L,i) of L, there 
exists a deleted i-neighborhood N*( + (0) = (N; + (0) of + 00 such that 

n E N*(+oo) n GD(f) = (N; +(0) n 1'+, 

implies that 

fen) = Xn E N(L,f). 

Finally, this can be formulated as follows: L = limn _H ooXn if and only if 
for each given f-neighborhood N(L, f) of L there exists a deleted neighbor­
hood N*( + (0) of + 00 such that 

f(N*( + (0) n 1'+) C; N(L,f). 

Below, in Def. 4.1, we extend the definition of limit to functions that do 
not necessarily have 1'+ as their domain of definition. This is general 
enough to accommodate the cases where the limit is ± 00. 

Der. 4.1. Let f be a real-valued function of a real variable and a E IR*. We 
say that f approaches L E IR* as x approaches a or that f has limit L as x 
approaches a and write 

lim f(x) = L 
x ..... a 

(4.1 ) 
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if and only if: (1) a is an accumulation point of 6fJ(j) (possibly in the 
extended sense) and (2) for each given neighborhood N(L) of L there exists 
a deleted neighborhood Nf(a) of a such that 

f(Nf(a) n 6fJ(f») k N(L). (4.2) 

Sometimes we also write f(x) ~ L as x ~ a for limx-->af(x) = L. If L E IR, 
then we say that f has a finite limit as x approaches a. 

In this definition we use deleted neighborhoods of a to ensure the 
independence of the limit of f as x ~ a from the value that f has at a (if it is 
defined there at all). 

Remark 4.1. In Def. 4.1, there are three possibilities for a: a E IR, a = + 00, 

or a = - 00. Similarly, there are three possibilities for L. Hence, there are 
altogether nine cases for the pair (a, L). We detail some of these cases 
below and leave the others for the reader. 

Def. 4.2(a). Case of Def. 4.1 where a E IR, L E IR. In this case f(x) ~ L as 
x ~ a means: For each £-neighborhood N(L, £) of L, there exists a deleted 
8-neighborhood N*(a,8) of a such that if x E N*(a, 8) n 6JJ(j), then f(x) 
E N(L, f). We translate this from the neighborhood terminology into the 
"language" of inequalities below: 

Let a E IR, L E IR. We write limx-->J(x) = L (where a E IR, L E IR) if and 
only if for each £ > 0, there exists a 8 > ° such that 

imply 

See Fig. 4.1. 

Given N(L) 

x E 6JJ(f) and ° < Ix - al < 8 (4.3) 

If(x) - LI < £. 

y 

L + Il t----------p" 
f(~ I-------/:----f: 

L ~ 
-1lt------7-~,-~ 

I 
I 
I 
I 

a-b a x +b x 

there exists N*(a) 

Figure 4.1 

(4.4) 
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EXAMPLE 4.1. We prove: 

lim (2X2 - x) = 15. (4.5) 
x---+3 

Here, f(x) = 2X2 - x and we take GD(j) = K It is clear that 3 is an 
accumulation point of IR = GD(j). We do an analysis first. We wish to prove 
that if E > 0 is given, then there exists a ~ > 0 such that if 0 < Ix - 31 < ~, 
then 

If(x) - 151 = 12x2 - X - 151 = 1(2x + 5)(x - 3)1 = 12x + 511x - 31 < E. 

(4.6) 

Given E > 0, we first take ~I = I and x such that 0 < Ix - 31 < ~I = 1, so 
that x =1= 3 and - I < x - 3 < I or 

x =1= 3 and 2 < x < 4. (4.7) 

These imply that x =1= 3 and 

9 < 2x + 5 < 13. (4.8) 

Hence, by (4.6) 

If( x) - 151 = 12x + 511x - 31 < 13lx - 31· (4.9) 

From this we see that if we take x such that 0 < Ix - 31 < E/13, then (4.6) 
will hold. Our analysis leads to the choice of a ~ such that 0 < ~ .;;; min{l, 
E/13}. We prove that such a ~ "works." For x such that 0 < Ix - 31 < ~ 
.;;; min{l,E/13}, we have 0 < Ix - 31 < I and 0 < Ix - 31 < E/I3. For such 
x, (4.8) holds and, hence, (4.9) holds. Therefore 

If(x) - 151 < 13lx - 31 < 13( I~ ) = E, 

so that (4.6) holds. This proves (4.5). 

EXAMPLE 4.2. We prove: If ao =1= 0 and n is a positive integer, then 

lim ( aox n + a I X n - I + . . . + an _ I X + an) = an . 
x---+o 

(4.10) 

We define P:IR~IR as P(x)=aOxn+alxn-l+ ... +an_Ix+an for 
x E IR. The idea is to prove that limx---+oP(x) = an. We must prove: If E > 0 
is given, then there exists a 8 > 0 such that if 0 < Ixl = Ix - 01 < 8, then 

laoxn + alx n- I + ... + an_Ixl = IP(x) - ani < E. (4.11) 

Let E > 0 be given. If n = 1, then P(x) = aox + aI' so (4.11) becomes 

IP(x) - ad = laoxl = laollxl < E. (4.12) 

We take 0 < Ixl < E/laol and obtain 

IP(x) - all = laollxl < laoll:ol = E. 

As a matter of fact, this will hold for 0 < Ixl < ~, where 0 < ~ .;;; E/laol. 
Thus, (4.10) holds if n = 1. If n ;. 2, we first take x such that 0 < Ixl < 1. 
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For such x we have Ixln < Ixln- I < ... < 14 Thus, 0 < Ixl < I implies 
that 

IP(x) - ani = laoxn + ... + an_lxl .;; laollxln + ... + lanllxl 

.;; (Iaol + ... + lan l)14 (4.13) 

Since aD 1= 0, we know that laol + ... + lanl > O. We take 0 such that 

O<o.;;min{I'11 E I I} (4.14) aD + ... + an 

and 0 < Ixl < o. For such x, 

0< Ixl < I 

0< Ixl < E 
laol + ... + lanl 

This and (4.13) imply that 

IP( x) - ani < (Iaol + ... + lanl)lxl < E­

We conclude that (4.10) holds also for n ;;. 2 also. 

(4.15a) 

(4.15b) 

Remark 4.2. As a special case of the result proved in the last example, we 
have: If n is a positive integer, then limx~oxn = O. This could also be 
proved by noting that if a > 0, then 

(4.16) 

(Recall that f, where f(x) = x" and a E IR is defined for x > 0.) Here 
GD(j) = (0; + (0). Given E > 0, we take 0 such that 0 < 0 .;; Ell" and x 
E (0; + (0) = GD(j) such that 0 < Ixl < 0 and obtain 0 < x < 0 .;; Ell". 
This implies 0 < x" < (Ell")" = E and, hence, that 

If(x)-OI=lx"-OI=x"<E for XE(O;+oo) and O<lxl<o. 

Therefore, (4.16) follows. 

PROB. 4.1. Let c be some real number and S some subset of IR having a as 
an accumulation point (possibly an extended one). Let Is be the identity 
function on S. Prove: limx~aIs(x) = c. 

Before proceeding further, we prove a theorem which can reduce some of 
the work involved in proving limx~a!(x) = L when this is the case. 

Theorem 4.1. Let f and g have a common domain D and let a E IR* be an 
accumulation point of D. If for some real number L there exists a deleted 
neighborhood Nf(a) of a exists such that 

If(x)-LI.;;lg(x)1 foral! xENf(a)nD (4.17) 

and g(x) ~ 0 as x ~ a, then 
lim f(x) = L. 
x~a 

(4.18) 
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PROOF. Assume E > o. Since g(x) ~ 0 as x ~ a, there exists a deleted 
neighborhood N!(a) of a such that if x E N!(a) n D, then 

Ig(x)1 = Ig(x) - 01 < E. (4.19) 

There is a deleted neighborhood N*(a) of a such that N*(a) ~ Nf(a) n 
N!(a). This implies N*(a) ~ Nf(a) and N*(a) ~ N!(a). Therefore, if x 
E N*(a) n D, then both (4.17) and (4.19) hold so that 

If(x) - LI < Ig(x)1 < E. 

This proves (4.18). 

We illustrate the use of Theorem 4.1 by evaluating some special limits 
involving the sine and cosine functions. 

Theorem 4.2. The following limit statements hold: 

(a) limx->osinx = 0 
(b) limx->o«sinx)j x) = I, 
(c) limx->ocosx = I, 
(d) limx->o«1 - cosx)j x) = o. 

PROOF. We use Theorem IV.8.2. By part (c) of that theorem, we have 

Isinx - 01 = Isinxl < Ixl for all x E IR. (4.20) 

We apply Theorem 4.1 with f(x) = sin x, g(x) = x for all x E IR, with 
a = L = O. Since limx->og(x) = limx->ox = 0 (Remark 4.2 and (4.16», we 
obtain (by Theorem 4.1) 

lim sinx= O. 
x->o 

This proves (a). To prove (b), we use Theorem IV.8.2, part (b) according to 
which we have 

Isinx _ xl < 1~13 for 0 < Ixl < 1. 

This implies that 

if 0 < Ixl < 1. (4.21) 

The reader can prove: limx->ox2j6 = o. We can then apply Theorem 4.1 
with 

f(x) = sinx , 
x 

and obtain from (4.21) 

x 2 
g(x) = 6' 

lim sinx = 1. 
x->o X 

a = 0, L = I 
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This proves (b). To prove (c), we use the equality -cosx = 2sin2(x/2) 
which holds for all x E IR (Prob. IV.8A). We have 

I II 2 · 2 X 2 x 2 x 2 cos X - = sm -.;;; - = -
242 

for x E IR. (4.22) 

After proving that Iimx->ox2/2 = 0, we can use Theorem 4.1 to prove 
Iimx->ocosx = l. This proves (c). 

By (4.22) we have 

II - ~osx - 01 = II - ~osx I.;;; I~I for x =1= O. (4.23) 

Since limx->olxl/2 = 0, this implies by Theorem 4.1 again that 

lim I - cos x = O. 
x->o X 

This proves (d). 

PROB. 4.2. Prove: limx->1(2x2 - x) = l. 

Def. 4.2(b). (Detailing Def. 4.1 for the case: a = + 00, L E IR.) Here 

lim f(x) = L, 
X~+OO 

LEIR (4.24) 

means: (l) The domain of f is not bounded from above (+ 00 is an 
(extended) accumulation point of 6fJ(j) and (2) for each € > 0, there exists 
a real number X such that if 

x E 6fJ(f) and x > X, (4.25) 

then 

If(x) - LI < f. (4.26) 

(See Fig. 4.2.) 

y 

L + e -

I Given e L -
f(x) 
-~,. '-../' 

L - e 

X x x 

there eXists an X 
Figure 4.2 
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EXAMPLE 4.3. We prove that limx->+oo(2x2 - 1)/(3x2 - x) = i. Although 
nothing is said here about GJJ(f), we adhere to customary usage and assume 
that the domain of f is such that the operations involved in its definition 
yield a real-valued function of f. Accordingly, 

GJJ(f) = {x E IR I x * 0 and x * t } = IR - {O, t }. 
This case is similar to that of limits of sequences except that here the 
domain contains real numbers that are not positive integers. In the case of 
sequences, the variable n is "discrete." Using Def. 4.2(b), we first make an 
analysis. 

We must prove that if € > 0 is given, there exists an X such that if 
x E GJJ(f) and x > X then 

If(x) - II = 1
2x2 - I _ II = I 2x - 3 1< €. 

3 3x2 - x 3 3(3x2 - x) 

Let € > 0 be given. We first take XI = 1 and x > 1 = X. We then obtain 
x E GJJ(f) and x 2 > x > 1. Adding 2x2 to both sides of x 2 > x, we have 

3x2> 2X2 + x, 
so that 

3x2 - X > 2X2 > O. 
This implies that if x > 1 = X I' then 

1 
21 12x - 31 21xl + 3 2x + 3 I I 1 1 

f(x) - 3" = 313x2 _ xl < 3(2x2) = 6T = 3x + 2X2 < 3x + 2x . 

In short, if x > 1 = XI' we have 

If(x) - j 1 < 3~ + 2~ = ix . (4.27) 

Here the right-hand side will be less than € when x > 5/6€. We, therefore, 
take x > X;;;. max{I,5/(6€)}. For such x we have x E GJJ(f) and that both 
x> 1, x > 5/6€ hold. It follows that 

1 
21 5 5 I 5 6€ f( x) - 3" < 6x = 6" . ;- < 6" "5 = €. 

But then 

PROB. 4.3. Prove: 

(a) limx-->+oo([x]/x) = 1, 
(b) limx-> + oo«sinx)/ x) = 0, 
(c) limx-->+oo«cosx)/x) = 0, 

lim f(x) = I. x->+ 00 3 

(d) limx_->+oo«3x2 - 1)/(x2 + X + 1» = 3. 
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Given B 

y 

f(x) f---------I--i--\ 

Br-------,f----"--t-'~-

a-b x a+b 

there exists a b 

Figure 4.3 
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Def. 4.2(c). (Details of Def. 4.1 for the case a E IR, L = + 00.) limx-->J(x) 
= + 00, where a E R This means: (1) a is an accumulation point of GfJ(j) 
and (2) for each real B, there exists a 8 > 0 such that if x E GfJ(f) and 
0< Ix - al < 8, thenf(x) > B (see Fig. 4.3). 

EXAMPLE 4.4. Let a E R We prove 

1· 1 
1m -I --I = +00. x->a X - a 

(4.28) 

Here GfJ(j)={xElRlxoFa}=IR-{a}. Clearly, a is an accumulation 
point of GfJ(f) (explain). We prove that if B is given, then there exists a 
8 > 0 such that if 0 < Ix - al < 8 and x E GfJ(j), then 

I -I -I = f(x) > B. x-a 

Given B, it suffices to take 8 such that 

0<8< I}IBI 
and 0 < Ix - al < 8. This implies x E GfJ(f) and 

f(x) = Ix ~ al > i ;> 1+ IBI > IBI ;> B. 

(4.28) now follows (explain). 

Def. 4.2(d). (Details of Def. 4.1 for the case a = - 00 and L = - 00.) 

lim x--> _ oc'!( x) = - 00 means: (1) GfJ (f) is not bounded from below ( - 00 is 
an (extended) accumulation point of GfJ(f) and (2) if B is given, there exists 
an X such that if 

x E GfJ(f) and x < X 
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y 

x 

Figure 4.4 

then 

!(x) < B. 

(See Fig. 4.4.) 

PROB. 4.4. Prove: limx-->_oox3 = - 00. 

PROB. 4.5. Give a detailed definition, in terms of inequalities, of limx-->J(x) 
= - 00, a E IR, thus detailing Def. 4.1 for the case a E IR, L = - 00. 

PROB. 4.6. Carry out the instructions in Prob. 4.5 for 

(a) limx-->+oo!(x) = + 00, 

(b) limX-HOO!(x) = - 00, 

(c) limx->_oo!(x) = L E IR, 
(d) limx-->_oo!(x) = + 00. 

PROB. 4.7. Prove: 

(a) limx-->+ oox3= +00, 
(b) limx-->+oox2= +00, 
(c) limx-->_oox2 = + 00. 

PROB. 4.8. Prove: If n is a positive integer, then limx-> + oox n = + 00. 

PROB. 4.9. Prove: If n is an even positive integer, then limx-> _ ooX n = + 00. 

PROB. 4.10. Prove: If n is an odd positive integer, then limx->_oox n = - 00. 
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PROB. 4.11. Prove: If limx-+J(x) = + 00, then limx-+a ( - f(x» = - 00 and if 
limx-+J(x) = - 00, then limx -+a ( - f(x» = + 00. 

PROB. 4.12. Assume a E lIt Prove: limx -+a ( -Ix - ai-I) = - 00. 

We wish to give examples where limx-+J(x) does not exist. The next 
theorem is useful in this connection. 

Theorem 4.3. Let a E IR* and L E IR* and a be a possibly extended accumula­
tion point of 6fJ(j), then limx-+J(a) = L if and only if for each sequence <xn> 
of elements of 6fJ (j) such that Xn =1= a for all nand limn-+ + ~Xn = a, we have 
limn-++~f(xn) = L. 

PROOF. First assume limx-+J(x) = L, so that a is an accumulation point of 
6fJ(j). Let <xn> be a sequence of elements of 6fJ(j) such that Xn =1= a for all n 
and limn-++~xn = a. (Such a sequence exists by Theorem 3.3 and Prob. 
3.9.) Let N(L) be some neighborhood of L. Since limx-+J(x) = L, there 
exists a deleted neighborhood N*(a) of a such that 

f(N*(a) n 6fJ(f») ~ N(L). (4.29) 

Since lima-H~xn = a, there exists an N such that if n > N, then Xn E N(a). 
Since Xn =1= a for all n, we have Xn E N*(a) for n > N. Since Xn E 6fJ(j) for 
all n, it follows that 

Xn E N*( a) n 6fJ(f) 

for n > N. By (4.29) this implies that 

Yn = f(xn) E N(L) 

(4.30) 

for n> N. Thus, corresponding to each neighborhood N(L) of L, there 
exists an N such that if n > N, then f(xn) E N(L). This implies that 
limx-++oof(xn) = L. 

Now assume that limx-+J(x) = L is false. This implies that some neigh­
borhood N(L) of L exists such that for each deleted neighborhood N*(a) 
of a we have 

f(N*(a) n 6fJ(f» rt N(L). (4.31 ) 

Thus, for each N*(a) there exists an x such that 

x E N*(a) and x E 6fJ(f) but f(x) f£ N(L). (4.32) 

Let 

s = {x E 6fJ(f) If( x) f£ N (L)}. (4.33) 

Clearly, S ~ 6fJ(j). Let N*(a) be any deleted neighborhood of a. By (4.32) 
and (4.33), N*(a) contains points of S. Hence a is an accumulation point of 
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S. Hence, there exists a sequence <xn) of elements of S such that xn =1= a for 
all n and limn .... + ooxn = a (Theorem 3.3 and Prob. 3.9). For this sequence 
we have 

for all n. (4.34) 

This implies that limn .... +oof(xn) = L is false (otherwise some N would exist 
that if n > N, then Xn E GJ)(j) and f(xn) E N(L), contradicting (4.34». We, 
therefore, conclude that if for each sequence <xn) of elements of GJ)(j) such 
that Xn =1= a for all nand limn .... axn = a we have limn .... + 00 f( xn) = L, then 
limx .... J(x) = L. This completes the proof. 

EXAMPLE 4.5. Let <x)* be the distance from x to the integer nearest x for 
x E lit We prove that lim x .... + 00 < x) does not exist. Construct the sequences 
<xn) and <x~), where 

Xn = n and x~ = n + t for each n. 

Clearly, limn .... +ooxn = limn-;+oon = + 00 and limn .... +oox~ = 

limn .... +oo(n + t) = + 00. However, 

<xn)* = <n)* = 0 and <x~)* = <n + t)* = t 
for each n. It follows that 

lim <x)* = 0 and lim <x')* = 1 . 
n----') + 00 n n~ + 00 n 2 

(4.35) 

By Theorem 4.3, limx .... + 00 <x)* does not exist. If it did exist and had value 
L, then for each sequence <zn) such that limzn = + 00 we would have 
lim <zn)* = L. This is not compatible with (4.35). 

EXAMPLE 4.6. We show that the condition Xn =1= a for all n in Theorem 4.3 is 
needed. Let f be defined as 

f(x) = U if x=I=O 
if x = 0 

(see Fig. 4.5). One sees easily that here limx .... of(x) = 1. Take the sequence 

y 

(0,2) 

(0,1) 

Figure 4.5 

x 
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<xn>, where xn = 0 for all n. Clearly, limn-->+ooxn = 0, xn E IR = 15fJ(f) for all 
n. Since 

for all n, we have 

lim f(xn) = lim 2= 2 * I = lim f(x). n--> + 00 n--> + 00 x-->o 

Theorem 4.4. Let a E IR*. If limx-->J(x), exists, then it is unique. 

PROOF. Assume: 

lim f(x) = L and lim f(x) = L'~ 
x~a x4a 

Suppose Land L' are in IR. Take any £ > O. There exist deleted neighbor­
hoods NHa) and N!(a) of a such that 

If(x) - LI < ~ for x E NT(a) n 6D(f) 

and 

If(x) - £II < ~ for x E N!( a) n 6D(f). 

There exists a deleted neighborhood N*(a) of a such that N*(a) S; Nf(a) n 
N!(a). We have 

N*( a) n 6D(f) S; (NT( a) n N!( a») n 6D(f) 

= (Nf(a) n 6D(f») n (N!(a) n 15fJ(f»). 

Let x E N*(a) n 6D(f). We have x E Nf(a) n 6D(f) and x E N!(a) n 15fJ(f), 
so that If(x) - LI < £/2 and If(x) - L'I < £/2. Hence, 

IL' - LI < IL' - f(x)1 + IL - f(x)1 < ~ + ~ = £. 

Thus, IL' - LI < £ for all E > O. This implies that IL' - LI < 0 which yields 
L=L'. 

Now assume that one of L or L' is ± 00 and the other is not. Say, 
L = + 00 and L' * + 00. Suppose, first that L' = - 00. There exist deleted 
neighborhoods Nf(a) and N!(a) of a such that f(x) > 0 for x E Nf(a) n 
15fJ(f) and f(x) < 0 for x E N!(a) n 6D(f). There exists a deleted neighbor­
hood N*(a) of a such that N*(a) S; Nf(a) n N2(a). Let x E N*(a) n 6D(f), 
so that x E Nf(a) n 6D(f) and x E N!(a) n 6D(f). This implies that f(x) 
> 0 and f(x) < 0 which is impossible. Thus, L' * - 00. Now assume 
L' E IR. This time there exists a deleted neighborhood Nt(a) of a such that 
L' - I < f(x) < L' + 1 for x E Nt(a) n 6D(f) and a deleted neighborhood 
N:(a) of a such that for xENia) n 15fJ(f), f(x) > L' + I (by hypothesis 
L = + (0). As before, there exists a deleted neighborhood N5( a) of a such 
that N5(a) S; Nt(a) n N:(a). Let x E N5(a) n 15fJ(f), so that x E Nt(a) n 
15fJ(f) and x E N:(a) n 6D(f). This implies f(x) < L' + I and f(x) > L' + I 
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which is also impossible. Thus, L' E IR is also impossible. Since L' E IR*, we 
remain with the alternative L' = + 00 = L. Similarly, if L = - 00, we can 
prove L' = - 00 = L. This completes the proof. 

5. One-Sided Limits 

Def. 5.1. Let f be a real-valued function of a real variable. Let a E IR, 
L E IR*. We say thatf approaches L as x approaches a from the left, or that f 
has limit L as x approaches a from the left, and write: 

as x~a- (5.1 ) 

if and only if: (1) a is an accumulation point from the left of Gj)(j) and (2) 
for each neighborhood N(L) of L, there exists a deleted neighborhood 
(a - 8; a) of a from the left such that 

f(a - 8; a) n Gj)((f») ~ N(L). (5.2) 

Similarly, we say that f approaches L as x approaches a from the right or that 
f has limit L as x approaches from the right and write 

lim f(x) = L or f(x) ~ L 
x~a+ 

as x~a + (5.3) 

if and only if (1) a is an accumulation point from the right of Gj)(j) and (2) 
for each neighborhood N(L) of L there exists a deleted neighborhood 
(a; a + 8) of a from the right such that 

f(a;a + 8) n Gj)(f») ~ N(L). (5.4) 

(Note that in our definition, a E IR. The cases a = ± 00 were considered in 
the last section.) 

An alternate notation for one-sided limits is f(a - ) for limx _M _ f(x) and 
f(a + ) for limx .... a + f(x). 

One-sided limits are related to the limits discussed in Section 4 by means 
of Theorem 5.1 below. Before stating this theorem we point out that by a 
two-sided accumulation point of a set S ~ IR, we mean one which is an 
accumulation point of S both from the right and from the left. 

Theorem 5.1. Iff is a real-valued function of a real variable and a E IR is a 
two-sided accumulation point of Gj)(f) and L E IR*, then 

lim f( x) = L (5.5) 
x"" a 

if and only if both one-sided limits f(a - ) and f(a +) exist and 

f( a + ) = L = f( a - ). (5.6) 

PROOF. Let a be a two-sided accumulation point of Gj)(j) and suppose that 
f(x)~L as x~a. a is an accumulation point of Gj)(j) from the right and 
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from the left. Let N(L) be some neighborhood of L so that a deleted 
8-neighborhood N*(a,8) = (a - 8;a) U (a;a + 8) of a exists such that 

f(N*(a,8) n 6D(f» ~ N(L). (5.7) 

By properties of functions defined on sets, we obtain for the left-hand side 
of (5.7) 

f(N*(a,8) n 6D(f») = f«a - 8;a) n 6D(f») U f«a;a + 8) n 6D(f»). 

This and (5.7) imply 

f«a - 8;a) ~ 6D(f») ~ N(L), (5.8a) 

and 
f«a;a + 8) ~ 6D(f») ~ N(L). (5.8b) 

Thus, for each N(L), (a - 8; a) is a neighborhood of a from the left such 
that (5.8a) holds and (a; a + 8) is a 8-neighborhood from the right such 
that (5.8b) holds. Therefore, 

f(a-)=L and f(a+)=L. (5.9) 

This proves (5.6). 
Conversely, assume (5.6) holds. We know that a is an accumulation point 

of 6D(j) from the right and from the left. Let N(L) be some neighborhood 
of L. Because of (5.9), there exists a deleted 8-neighborhood (a - 8); a) of a 
from the left and a deleted 8-neighborhood (a; a + 82) of a from the right 
such that 

f«a - 8) ;a) n 6D(f» ~ N(L) and f«a;a + 82) n 6D(f») ~ N(L). 

(5.10) 

By properties of sets of functions defined on sets, we obtain from (5.10) 
that 

f«a - 8) ;a) n 6D(f») U f«a;a + 82) n 6D(f» ~ N(L), 
and 

f([(a - 8) ;a) U (a;a + 82)] n 6D(f») ~ N(L). (5.11) 

Put 8 = min{8),82}. Then 0 < 8 0( 8) and 0 < 80( 82 , From this it is easily 
seen that 

N*(a;8) ~ (a - 8) ;a) U (a;a + 82), 

This and (5.11) imply 

f(N*(a,8) n 6D(f») ~ N(L). (5.12) 

We proved that for each neighborhood N(L) of L, there exists a deleted 
8-neighborhood of a such that (5.12) holds. We, therefore, conclude that 
limx->J(x) = L. This completes the proof. 

Remark 5.1. It follows from Theorem 5.1 that if a is a two-sided accumula­
tion point of 6D(j), then limx->J(x) does not exist if and only if either (1) 
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one of l(a - ) or l(a + ) does not exist or (2) each of l(a - ) and l(a + ) 
exists but l(a - ) 7" l(a + ). 

EXAMPLE 5.1. We consider the signum function. Recall that 

{
I if x>O 

sig x = 0 if x = 0 
- 1 if x < o. 

We prove: limsigx-->o_ x = -1 and Iimx-->o+ sigx = 1 from which it will be 
seen that Iimx-->osigx does not exist. 

Given f > 0, take 8 such that 0 < 8,.;;; 1 and -8 < x < O. For such x, 

Isigx - (- 1)1 = I( -1) + 11 = 0 < f. 
This implies sig x ~ - 1 as x ~ 0 -. Similarly, if f > 0 is given, take 8 such 
that 0 < 8 ,.;;; 1 and 0 < x < 8. For such x, 

Isigx - 11 = 11 - II = 0 < f 
and conclude sigx ~ 1 as x ~ 0 +. 

EXAMPLE 5.2. We prove: 

I· 1 1m -=+00 and I· 1 1m -=-00 
x-->o+ X x-->o- X 

(see Fig. 5.1.) Here lex) = 1/ x for x 7" 0, so 6f)(j) = {x E IR I x * O}. Given 
B, take x such that 0 < x < 8, where 

0<8,.;;; I}IBI' 
This implies 

1 1 
~ > 8 » 1 + IBI > IBI » B. 

y 

x 

Figure 5.1 
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Hence, for each neighborhood (B; + 00 1 of + 00 in IR*, we have a deleted 
neighborhood (0; 8) = (0; 0 + 8) of 0 from the right such that if x E (0; 
8)nGJ)(j)=(0;8), thenj(x)E(B;+oo]. Hence, Ilx~+oo as x~O+. 
Next, given B, take x such that - 8 = 0 - 8 < x < 0, where 

0< 8 .;; I +IIBI . 

Then 

I 
0< -x < 1+ IBI . 

This implies that 

_1_ > I + IBI > IBI ;;;. - B 
-x 

and, hence, that 

for x E (- 8; 0) n GJ)(f) = (- 8; 0). 

We conclude from this limx-->o_ (11 x) = - 00. 

Remark 5.2. A one-sided limit of a function j of a real variable can be 
viewed as an ordinary limit of the restriction of j to the set ( - 00; a) n GJ) (j) 
for the case x ~ a -, and to the set (a; + 00) n GJ)(j) for the case x ~ a +. 
Because of this, many theorems true for limx-->J(x) are also true for j(a + ) 
and j(a - ). 

EXAMPLE 5.3. We give an example where neither one-sided limit exists. Let 

g(x) = ( ~ )* for x =1= O. 

(See, e.g., Fig. 5.2, where (y)* is the distance from y to the integer nearest 
y.) We prove limx-->o+ g(x) does not exist. Let (xn ) and (x~) be sequences 

y 

( - 2, 1) (2, t) 

-/-+--1 -~~ 
-2 -1' -'t' ill l i 2 x 

-1 -t "3 S 2 "3 

Figure 5.2 
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defined as 

I d' 2 xn =;; an xn = 2n + I for each positive integer n. 

Then Xn > 0 and x~ > 0 for all n, and 

lim xn=O= lim x~. 
n------++ 00 n-----')+ 00 

But g(xn) = g(l/n) = <n)* = 0 and g(x~) = g(2/(2n + I» = 
<n + 1)* = 1 for each n. Hence, 

lim g(xn) = 0 and lim g(x~) = 1. 
n~ + 00 n----7 + 00 

By Theorem 5.3 applied to the restriction of g to the interval (0; + (0) it 
follows that limx-->o+ g(x) does not exist. It is also easy to prove that 
g(O - ) does not exist either. 

6. Theorems on Limits of Functions 

Theorem 6.1. Let a EO IR* and L EO IR. If limx-->J(x) = L, then some deleted 
neighborhood N*(a) of a exists such that f is bounded on the set N*(a) n 
Gj) (j). 

PROOF. Let € = 1. Since f(x) ~ L as x ~ a, there exists a deleted neighbor­
hood N*(a) of a such that 

f(N*(a) n Gj)(I») C; N(L, I) = (L - I; L + I). 

This implies that if x EO N*(a) n Gj)(j), then L - I < f(x) < L + I and the 
conclusion follows. 

Theorem 6.2. Let a EO IR* and L > o. If f( x) ~ L as x ~ a, then there exists a 
deleted neighborhood N*(a) of a such that f(x) > 0 for all x EO N*(a) n 
Gj)(j); on the other hand, if L < 0, then there exists a deleted neighborhood 
NfCa) of a such that f(x) < 0 for all x EO NfCa) n Gj)(j). 

PROOF. We prove the first part and ask the reader to prove the second 
(Prob. 6.1). Suppose LEO IR* and L > o. If L = + 00, take B = o. There 
exists a deleted neighborhood N*(a) of a such that if x EO N*(a) n Gj)(j), 
then f(x) > B = o. Thus, the conclusion of the first part holds in this case. 
If 0 < L < + 00, take € = L/2. There exists a deleted neighborhood N*(a) 
of a such that if x EO N*(a) n Gj)(j), then 

L L L If(x)-LI<2 and hence -2<f(x)-L<2· 

This implies that if x E N*(a) n Gj)(j), then f(x) > L/2 > O. We see that 
the conclusion of the first part holds also for 0 < L < + 00. 
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PROB. 6.1. Complete the proof of Theorem 6.2 by proving the second part 
of that theorem. 

Remark 6.1. Actually, we proved more than was stated in Theorem 6.2. We 
proved that if f(x) ~ L E IR, where L > 0, then some deleted neighborhood 
N*(a) exists such thatfis "bounded away from 0" on N*(a) n GfJ(j) in the 
sense that f(x) > L/2 > 0 for x E N*(a) n GfJ(j). If L = + 00, then using 
B = I, we find that some deleted neighborhood N*(a) of a exists such that 
f(x) > B = 1 for x E N*(a) n GfJ(j). Thus, in this case too there is a deleted 
N*(a) of a such that f is "bounded away from 0" on N*(a) n GfJ(j). 

Theorem 6.3. Iff and g are real-valued functions of a real variable having a 
common domain GfJ and 

lim f(x) = L, 
x--->a 

lim g(x) = M, 
x--->a 

then 

lim (f(x) + g(x») = L + M = lim f(x) + lim g(x), 
x~a x-+a x-+a 

if L + M is defined in IR*. 

PROOF. Let <xn> be a sequence of elements of GfJ such that xn =F a for all n 
and limn_H ooxn = a (such a sequence exists since a is an accumulation 
point of GfJ). It follows (Theorem 4.3 and Prob. 3.9) that 

lim f( xn ) = L and lim g( xn ) = M. 
n--->+oo n--->+oo 

This implies that 

(6.1 ) 

whenever L + M is defined in IR*. Since (6.1) holds for all sequences <xn> 
of elements of GfJ such that xn =F a for all nand limxn = a, we have 
(Theorem 4.3) limx--->a(j(x) + g(x» = L + M wherever L + M is defined in 
IR*. 

Theorem 6.4. Iff and g are real-valued junctions of a real variable having a 
common domain GfJ, where f( x) ~ 0 as x ~ a and some deleted neighborhood 
N*(a) of a exists such that g is bounded on N*(a) n GfJ, then 

lim f(x)g(x) = O. 
x--->a 

(6.2) 

PROOF. Although this theorem could be proved by using sequences as in the 
proof of Theorem 6.3, we proceed differently. Since g is bounded on 
N*(a) n GfJ(j), there exists an M > 0 such that I g(x)1 "M for x 
E N*(a) n GfJ(j). Let € > 0 be given. Since limx--->J(x) = 0, there exists a 
deleted neighborhood Nf(a) of a such that 

If(x)1 < ~ for x E Nf(a) n GfJ(f). (6.3) 
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Also, there exists a deleted neighborhood N!(a) of a such that N1.(a) 
~ Nf(a) n N*(a). Hence, 

N1.(a) n 6fJ(f) ~ Nf(a) n N*(a) n 6fJ(f) 

~ (NT(a) n 6fJ(f)) n (N*(a) n 6fJ(f)). (6.4) 

Assume that x E N!(a) n 6fJ(f). From (6.4) we have x E Nf(a) n 6fJ(f) and 
x E N*(a) n 6fJ(f). This implies that 1 g(x)1 .;;; M and that (6.3) holds for all 
x E N1.(a) n 6fJ(f). Hence, for such x, 

If(x)g(x) - 01 = If(x)g(x)1 = If(x)11 g(x) < ~M = €. 

This yields limx~J(x)g(x) = 0 and completes the proof. 

Theorem 6.5. Let cEIR and LEIR*. If f(x)~L as x~a, where cL is 
defined, then 

lim (cf(x)) = cL = c lim f(x). 
x~a x~a 

PROOF. Exercise. 

Theorem 6.6. Let a, L, and M be extended real numbers such that LM is 
defined in IR*. Iff and g are real-valued functions of a real variable having a 
common domain 6fJ and 

lim f(x) = L, 
x~a 

lim g(x) = M, 
x~a 

then 

lim f(x)g(x) = LM = lim f(x) lim g(x). 
x~a x~a x~a 

PROOF. Exercise. 

PROB. 6.2. Prove: If fl' ... ,fm are m functions with common domain 6fJ 
and 

lim f".(x) = L x~aJ; I 
for each i E P, ... , m}, 

then 

(a) 

and 

(b) 

provided that the right-hand sides in (a) and (b) are defined in IR*. 

PROB. 6.3. Let P be a polynomial function in IR and Xo E IR. Prove that 

lim P( x) = P( xo). 
X~Xo 
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Theorem 6.7. Let a, L, and M be extended real numbers, M =1= 0. Iff and g 
are real-valued functions of a real variable with a common domain 6J), 

g(x) =1= ° for x E 6J) and f(x) ~ L, g(x) ~ M as x ~ a, then 

lim f(x) =.b.. = l~f(x) 
x ..... a g(x) M lim g(x) 

x"'" a 

provided that L/ M is defined in IR*. 

PROOF. Exercise. 

PROB. 6.4. Prove: If f(x)~ L as x ~ a, where a and L are III IR, then 
If(x)1 ~ ILl as x ~ a. 

EXAMPLE 6.1. We prove that if L E IR and L =1= 0, then the converse of the 
result in Prob. 6.4 is false. Define f as 

f(x) = { L 
-L 

if x is rational 
if x is irrational. 

We have If(x)1 = ILl for all x E IR. Hence, if a E IR, then If(x)1 ~ ILl as 
x ~ a. On the other hand, there exist sequences <rn> and <cn> such that rn 
is rational and Cn is irrational for each nand rn ~ a, Cn ~ a as n ~ + 00. It 
follows that 

lim fern) = L, 
n ..... + 00 

lim f( cn) = - L. 
n ..... +oo 

Since L =1= 0, this implies that limn-> + o,,f(rn) =1= limn __ H ,x'!( cn)' so that 
lim x ..... J( x) does not exist. 

PROD. 6.5. Prove: f(x) ~ ° as x ~ a if and only if If(x)1 ~ ° as x ~ a. 

PROB. 6.6. Prove: If f(x) <; L for all x E 6J)(j) and limx->J(x) exists, then 
limx->J(x) <; L. 

PROD. 6.7. Prove: If f(x) <; g(x) for all x E 6J) and 6J) is a common domain 
of f and g, where both f and g have limits as x ~ a, then limx ..... J(x) 
<; limj ..... ag(x). 

PROB. 6.8 (Sandwich Theorem for Functions). Prove: If f, g, and hare 
functions having a common domain 6J) and f(x) <; h(g) <; g(x) for all 
x E 6J) and limx ..... J(x) = limx ..... ag(x) = L, then limx ..... ah(x) = L. 

PROB. 6.9. Prove: If a E IR, where a =1= 0, then 

(a) limx ..... o«sinax)/ x) = a, 
(b) lima ..... o«(l - cosx)/ x 2) = 1. 
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7. Some Special Limits 

We first extend the validity of the inequalities in Theorem 11.12.1. Accord­
ing to this theorem we have: If x > 0, x =1= I, and r is rational, where r < 0 
or r > 1, then 

r(x - 1) < xr - 1 < rxr-I(x - 1). (7.1) 

Let y be a real number such that y < 0 or y > 1. Write y as a nonterminat­
ing decimal 

(7.2) 

Now Y = suprn' where rn is the sequence of truncations of N +.dld2 ••• , 

i.e., 
rn = N + O.dl ... dn for all positive integers n. (7.3) 

By the definition of x Y , we have (Def. IV.IO.l, and Remark IV.IO.2) 

xY = EAy) = xli1J.\o xrn. (7.4) 

By theorems on limits of sequences this implies that 

lim x rn - I= lim x-Ix rn = X-I lim x rn = x-lxY = x y - I if x> O. 
n4+oo n~+oo n~+oo 

(7.5) 

Since y < 0 or y > 1, we have, for the nth truncation rn of y, rn < y < 0 or 
1 ..; rn < y. Using (7.1), this implies that 

rn(x - 1)"; x rn - 1 ..; rnxrn-I(x - 1). 

Taking limits as n ~ + 00 and using theorems on limits of sequences, we 
obtain 

(7.6) 

Note, this holds trivially if x = 1 or y = O. Thus, (7.6) holds for y ..; 0 or 
y ;;;. 1 and x > O. At this stage we do not establish the strictness of the 
inequality in (7.6) for 

y < 0 or y > 1 and x > 0, x =1= I. 

Reasoning as above and using the inequality 

r(x - 1) > xr - 1 > rxr-I(x - 1) if r is rational and 0 < r < 1, (7.7) 

we can prove: If x> 0 and 0 ..; y ..; 1 where y E IR, then 

y(x - 1) ;;;. xY - 1 ;;;. Xy-I(X - 1). (7.8) 

At this point we do not establish the strict inequality for 0 < Y < 1 and 
x > 0, x =1= I. Summarizing we obtain the following theorem: 

Theorem 7.1. If x and yare real numbers, x > 0, then 

(a) y(x - 1) ..; x y - 1 ..; YXy-I(X - 1) if Y ..; 0 or y ;;;. 1 and 
(b) y(x - 1) ;;;. x y - 1 ;;;. yxy - I if 0..; y ..; I. 
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PROB. 7.1. Prove: If a, b, and yare real numbers, where a and b are both 
positive, then 

(a) yby-I(a - b) <: aY - bY <: yay-I(a - b) if Y <: 0 or y ;;;, 1 and 
(b) yay-I(a - b) <: aY - bY <: yby-I(a - b) if 0 <: Y <: 1. (See Prob. 

11.12.6.) 

Theorem 7.2. If Xo and yare in IR and Xo > 0, then 

lim xY= xb'. 
X~Xo 

(7.9) 

PROOF. x Y is defined for x > 0 and y E IR. First take y ;;;, I, x > 0, x o > O. 
By Prob. 7.1, part (a), 

yxb'-I(X - xo) <: xY - xb' <: YXy-I(X - xo)' (7.10) 

Next take x such that Xo < x < Xo + 1. Since y ;;;, 1, 

0< xr l <: Xy-I <: (xo + Iy-I. 

This and (7.10) imply that 

o <yxb'-I(x - xo) <: xY - xb' <: YXy-I(X - xo) <: y(xo + ly-I(x - xo)' 

Hence, we have 

0< xY - xb' <: y(xo + 1 y-I( x - xo) 

for y;;;' 1 and Xo < x < Xo + 1. 

This yields 

lim xY= xb' 
X-4 X 6 

for y;;;' 1. 

If 0 < x < x o, we use Prob. 7.1, part (a) again and obtain 

yxy-I(XO - x) <: xb' - xY <: yxr I(XO - x) 

(7.11 ) 

for y;;;' 1 and 0 < x < Xo . 

This implies that 

0< xb' - xY <: yxrl(xo - x) 

We conclude from this that 

lim xY= xb' 
X-4 X o-

if y;;;' 1, 0 < x < xo' 

for y;;;, 1. 

This and (7.11) yield the conclusion for y ;;;, 1. 
If Y <: 0, we have 1 - Y ;;;, 1. Using what was just proved, we have 

lim x l - y = xl-y. 
x-->xo 0 

This implies that 

(7.12) 

lim x-y= lim X-I(X I - y ) = lim X-I lim x l - y= Xo- IX6-y = xoY. 
X-4Xo X-4Xo x-)xo X-4Xo 
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From this it follows that 

lim x y= lim _1_ = _1_ = xb. 
X~Xo X~Xo x-y xo-y 

Thus, the conclusion also holds if y .;;; o. 
If 0 < y < 1, then 1 + Y > 1. By what has already been proved, 

lim x 1+y = x 1+y • 
X~Xo 0 

This yields 

lim x y = lim X-1(X 1+y ) = X-1X 1+y = x y 
X->Xo X->Xo 0 0 0 

for 0 <y < 1. 

This completes the proof. 

PROB. 7.2. Prove: If y E IR, then 
1 ny 

lim (1 + -) = eY • 
n~+oo n 

Theorem 7.3. If z E IR, then 

1 + z .;;; e Z .;;; 1 + ze Z • (7.13) 

PROOF. The conclusion is trivially true if z = O. Assume z =1= 0, taking z < 0 
first. Using Theorem 7.1, part (a), with x = 1 + lin, y = nz, n a positive 
integer, we have 

( 1 ) ( 1 )nz (1 )nZ-l( 1 ) z=nz 1+-;;-1';;; 1+-;; -1';;;nz 1+-;; 1+-;;-1 

so that 

( l)nz (l)nZ-l 
z.;;; 1+-;; -l';;;z 1+-;; , (7.14) 

where z < 0 and n is a positive integer. Fix z and let n ~ + 00. By theorems 
on limits of sequences and Prob. 7.2, 

z .;;; e Z - 1 .;;; ze z , 

where z < O. Now assume that z > 0, so that -z < O. By (7.15), 

-z';;; e- z - 1 .;;; -ze-z and, hence, ze- z ,;;; 1 - e- z ,;;; z. 
Multiplying the second set of inequalities by e Z we obtain 

z .;;; e Z - I .;;; ze z if z > O. 
This proves that (7.15) holds if z > O. The proof is now complete. 

Corollary 1. The following hold: 

(a) limx~oex = 1, 
(b) limHo«e X - 1)1 x) = 1. 

(7.15) 
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PROOF. We prove (a) first. Assume that x < O. By the theorem, 

o < - xe x .;;;; 1 - eX .;;;; - x = lxi, 

so that 

if x < O. 

This implies 

Now assume that x> 0 and use the theorem to obtain 

o < x .;;;; eX - 1 .;;;; xe x 

from which we have, using eXe- x = 1, that 

0< xe- x .;;;; 1 - e- x .;;;; x = Ixl for x> O. 

It follows from this that 

and, hence, 

lim e X = lim ~x = 1. 
X~O+ x~o+ e 

This and (7.13) prove (a). 
We prove (b). By the theorem, 

1 .;;;; eX - 1 .;;;; eX 
x 

eX 1 eX .;;;;----.;;;; 1 
x 

By part (a) and the Sandwich Theorem, 

for x> 0, 

for x < o. 

lim eX - 1 = 1 = lim eX - 1 . 
x~o+ x x~o- X 

This proves (b). 

PROB. 7.3. Prove: 

(a) eX.;;;; 1/(1 - x) for x < 1, 
(b) limx .... +ooe x = + 00, 

(c) limx .... _ooe x = O. 

PROB. 7.4. Prove: 

(a) limx .... +oocoshx = + 00 = limx .... _oocoshx, 
(b) limx .... +oosinhx = + 00 and limx~_oosinhx = - 00. 

PROB. 7.5. Prove: 

(a) limx_Hootanhx = 1 and limx .... _ootanhx = -1, 
(b) limx .... +oosechx = 0 = limx .... _oosechx. 

235 
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PROB. 7.6. Prove: 

(a) limx~o+ cschx = + 00 and limx~o_ cschx = - 00, 

(b) limx~+oocschx = 0 = limx~_oocschx, 
(c) limx~o+ cothx = + 00 and limx~o_ cothx = - 00, 

(d) limx~+oocothx = 1 and limx~_oocothx = -1. 

FROB. 7.7. Evaluate: 

(a) limH ±oo(l/(l + e l / x )), 

(b) 1imx~o+ (1/(1 + e l/ x)) and limHo_ (l/(l + el/ x)). 

Corollary 2 (of Theorem 7.3). 

(a) 1imx~xoex = e Xo, 
(b) limx~xo«eX - eXO)/(x - xo)) = eXo. 

PROOF. Using Theorem 7.3, we have 

lim e X= lim eX"e X- XO = e Xo lim e X - XO = e Xo . 1 = e Xo 
X~Xo X~Xo X~Xo 

which proves (a), and 
x Xo X-Xo 1 x-xo 1 

lim e - e = lim eXo e - = eXo lim e - = e Xo . 1 = eXo 
X~Xo x - Xo X~Xo X - Xo X~Xo X - Xo 

which proves (b). 

8. P(x) as x ~ + 00, Where P Is a Polynomial on IR 

Theorem 8.1. Let P : IR ~ IR be a polynomial of degree n > 1, 

P(x) = aoxn + alX n- 1 + ... + an_IX + an' (8.1) 

where ao > O. Then 

lim P(x) = + 00. 
X~+OO 

(8.2) 

PROOF. Given a real B, let 

M = max{lad,la21, ... , lan-II,lan - BI} (8.3) 

and 
M X > 1 + - . (8.4) ao 

Assume that x > X, so that x > 1 and x-I > O. This implies that 

x> 1 + ~, and 1 > ao(:- 1) > O. (8.5) 
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Since x n > X n - 1 > 0, it follows that 

Hence, 

But then 

xn > M xn - 1 . 
ao x-I 

aox n > M (x n - I + ... + x + 1) 

= Mx n- I + ... + Mx + M 

;;. I a II x n - I + . . . + I an _ Ii x + I an - B I 
= la,x n- ' + ... + an_Ix + an - BI 

P ( x) = aox n + a 1 X n - I + . . . + an _ I X + an > B 

for x > X ;;. 1 + M lao. The conclusion follows readily from this. 

PROB. 8.1. If ao < 0 and n is a positive integer, then 

lim (aoxn + alX n- 1 + ... + an_IX + an) = - 00. 
X~+OO 
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PROB. 8.2. Prove: Let n be a positive integer and ao, ai' ... ,an be n + 1 
real numbers with ao =1= O. Put 

M = max{la1, ••• , lanl). 

Then for x> 1 + Mllaol we have aoxn + ... + an_Ix + an > 0 or 
aoxn + ... + an_Ix + an < 0 according to whether ao > 0 or ao < O. 

PROB. 8.3. Prove: If ao > 0 and n is a positive integer, then 

lim (aoxn + alX n- 1 + ... + an_Ix + an) = + 00 or - 00, 
x---t-oo 

according to whether n is even or n is odd. 

PROB. 8.4. Prove: (a) If n is a nonnegative integer and at least one of the 
n + 1 real numbers ao' a" ... ,an IS not zero, then there exists a real 
number x such that 

aoxn + alx n- I + ... + an_Ix + an =1= O. 

(b) If n is a nonnegative integer and ao,a" ... ,an are n + I real numbers 
such that 

aox n + a I X n - I + . . . + an _ I X + an = 0 
for all x E IR, then ao = a I = ... = an = O. 
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PROB. 8.5. Prove: If m and n are integers such that 0 .;; m < nand 

aoxn + alx n- I + ... + an-Ix + an 

= boxm + blx m- I + ... + bm_Ix + bm 

for all x E IR, then 

ao=a l = ... =an-m_I=O and an-m=bo, 

an- m+ 1 = bl, ... , an = bm· 

9. Two Theorems on Limits of Functions. Cauchy 
Criterion for Functions 

The theorem which follows is very useful. A special case of it is Theorem 
4.3. 

Theorem 9.1. Let a, b, and L be in IR*. Iff and g are real-valued functions of 
a real variable and 0l( g) c: GD (j), then 

lim g( t) = b, lim f( x) = L, and g(t) *" b for all t E GD(f). 
I->a x->b 

(9.1 ) 

Then 

limf(g(t») = L. 
I->a 

(9.2) 

PROOF. Let N(L) be a neighborhood of L. Since f(x)~ L as x ~ b, there 
exists a deleted neighborhood N*(b) of b such that if x E N*(b) n GD(j), 
thenf(x) E N(L). Since g(t)~b as t~a, there exists a deleted neighbor­
hood N*(a) of a such that if t E N*(a) n GD(g), then g(t) E N(b). But 
g(t) *" b for all t E GD(j). This implies that for t E N*(a) n GD(g), we have 
get) E N*(b). Since get) E GD(j) for all t E GD(g), we see that t E N*(a) n 
GD(g) implies get) E N*(b) n GD(j) and, therefore, that f(g(t» E N(L). In 
turn, this implies that (9.2) holds. The proof is now complete. 

Theorem 9.2 (Cauchy Criterion for Limits of Functions). Let a E IR* and 
L E IR. If a is an accumulation point of GD (j), then 

lim f(X) = L 
x->a 

if and only if for each { > 0 there exists a deleted neighborhood N*(a) of a 
such that if x' and x" are in N*(a) n GD(j), then 

If(x') - f(x")1 < L (9.3) 
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PROOF. Assume first f(x) ~ L E IR as x ~ a E IR*. Let t: > 0 be given. There 
exists, therefore, a deleted neighborhood N*(a) of a such that 

if x E N*(a) n GD(f), then If(x) - LI < ~ . 

Let x' E N*(a) n GD(f) and x" E N*(a) n GD(f). We have 

If(x') - LI < ~ and If(x") - LI < ~ . 

But then 

If(x') - f(x")1 ~ If(x') - LI + If(x") - LI < ~ + ~ = t:. 

(9.4) 

Conversely, assume that for each t: > 0 there exists a deleted neighbor­
hood N*(a) of a such that if x' and x" are in N*(a) n GD(f) then (9.3) 
holds. Since a is an accumulation point of GD(f), there exists a sequence 
<xn ) of elements of GD(f) such that Xn =1= a for all nand limxn = a. We 
prove that the sequence <f(xn» is a Cauchy sequence. Let t: > 0 be given, 
so that there exists a deleted neighborhood N*(a) of a such that if x' and 
x" are in N*(a) n GD(f), then (9.3) holds. Since limxn = a, there exists an N 
such that if n > N, then Xn E N*(a). Take n> Nand m> N. Then 
xn E N*(a) n GD(f) and Xm E N*(a) n GD(f). Hence, 

If(xn ) - f(xm)1 < t:. 

Thus, <f(xn» is a Cauchy sequence of real numbers. As such it converges 
to some real limit L. We prove that limx--.J(x) = L. Let t: > 0 be given. 
There exists a deleted neighborhood N'(a) such that if x' and x" are in 
Ni(a) n GD(f), then 

If(x') - f(x")1 < ~ . 

Take x E N'(a) n GD(f). Now an N2 exists such that if n > N2, then 
Xn E N'(a) n GD(f). We have 

If(x) - f(xn)1 < ~ (9.5) 

for x E N'(a) n GD(f) and n> N2 • Since f(xn)~ L as n ~ + 00, we have 
limn--.+ oo If(x) - f(xn)1 = If(x) - LI· This and (9.5) imply 

.If(x) - LI ,,;; 1 < t: for x E Ni(a) n GD(f). (9.6) 

We conclude from this that limx--.J(x) = L. The proof is now complete. 



CHAPTER VI 

Continuous Functions 

1. Definitions 

The notion of limHJ(x) was defined without reference to the value of fat 
a. Here we are interested in the value of f at a and its relation to the limit of 
f as x approaches a when this limit exists. 

We recall that limHJ(x) = L, where a and L are real numbers, means 
that, first of all, a is an accumulation point of 6D(j), and, second, that for 
each E-neighborhood N (L, E) of L, there exists a deleted ~-neighborhood 
N*(a,~) of a such that if x E N*(a) n 6D(j), thenf(x) E N(L, E). This can 
be phrased more intuitively as: f(x) is as close to L as we like provided that 
x is taken sufficiently close to a. Continuity of f at a can be phrased as: (1) 
f is defined at a and (2) any change in the value of f at a can be brought 
about by a sufficiently small change in the value of a. We state this with 
more precision in the following definition. 

Del. 1.1. If f is a real-valued function of a real variable and Xo E IR, then f is 
called continuous at Xo if and only if: (1) f is defined at Xo and (2) for each 
E-neighborhood N(j(xo), E) of f(xo), there exists a ~-neighborhood N(xo,~) 
of Xo such that 

(1.1) 

This can also be written: 

x E N(xo,/» n 6D(f) implies f(x) E N(f(XO), E) (1.2) 

or as 

I x - xol < /) and x E 6D(f) (1.3) 
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imply that 

If(x) - f(xo)1 < €. (1.4) 

We therefore rephrase Def. 1.1 as: 

Def. l.l/.fis continuous at Xo if and only if: (1) Xo E GfJ(j) and (2) for each 
( > 0, there exists a 8 > 0 such that if 

Ix - xol < 8 and x E GfJ(f), 

then 

If(x) - f(xo)1 < (. 

If Xo is not only in GfJ(j) but also an accumulation point of GfJ(j), then we 
may use limits to define continuity at Xo. 

Del. 1.1". If f is a real-valued function of a real variable and Xo E IR is an 
accumulation point of GfJ(j), then f is continuous at Xo if and only if: (1) 
Xo E GfJ(j) and (2) 

lim f(x) = f(xo)· 
X~Xo 

(1.5) 

Remark 1.1. By an isolated point of a set S we mean a point of S which is 
not an accumulation point of S. Def. 1.1" cannot be used to define 
continuity of f at an isolated point Xo of GfJ(j) since, in this case, 
Iimx -->xJ(x) does not exist. We prove in Example 1.1 below that if Xo is an 
isolated point of GfJ(j), then f is continuous at Xo. 

PROB. 1.1. Prove: If S ~ IR, then Xo is an isolated point of S if and only if 
there is a deleted 8-neighborhood N*(xo,8) of Xo such that N*(xo, 8) n S 
= 0. Accordingly, Xo is an isolated point of S if and only if there exists a 
8-neighborhood N(xo,8) of Xo such that N(xo,8) n S = {xo}. 

EXAMPLE 1.1. We prove that if Xo is an isolated point of GfJ(j), where f is a 
real-valued function of a real variable, then f is continuous at Xo. Thus, let 
Xo be an isolated point of GfJ(j). Then f is defined at Xo and there is a 
8-neighborhood N(xo,8) of Xo such that N(xo,8) n GfJ(j) = {xo}. Given 
( > 0, assume that x E GfJ(j) and Ix - xol < 8. This implies that x E N(xo, 
8) n GfJ(j) and, hence, that x = xo. Hence, If(x) - f(xo)1 = If(xo) - f(xo)1 
= 0 < €. According to Def. 1.1 /, f is continuous at xo. 

Remark 1.2. Note that in defining continuity at x o, we used 8-
neighborhoods and not deleted 8-neighborhoods as in the definition of 
limx-->xJ(x) = L. 
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Def. 1.2. A function is called continuous if and only if it is continuous at 
each point of its domain. A function is called continuous on a set A if and 
only if it is continuous at each point of A. 

For example, each polynomial function P on IR is continuous since for 
each Xo E IR = GfJ(P) we have (Prob. V.6.3) limx-->xoP(x) = P(xo). Here the 
limit definition of continuity can be used, since each point of IR = GfJ(j) is 
an accumulation point of GfJ (f) (explain). 

EXAMPLE 1.2. The function E: IR ~ IR, where E(x) = eX for each x E IR, is 
continuous since eX ~ e Xo as x ~ 0 (see Corollary 2 of Theorem V.7.3). 

EXAMPLE 1.3. The functionf: (0; + (0)~1R, defined asf(x) = x Y for x> 0, 
where y is some fixed real number is a continuous function. Its domain is 
(0; + (0). Each point of (0; + (0) is an accumulation point of (0; + (0) 
(prove this). Using limits, we have (Theorem V.7.2) limx-->xoxY = xc\' for 
Xo > O. 

EXAMPLE 1.4. The sine function is a continuous function. We have 

( X + Xo x - Xo ) ( x + Xo x - Xo ) 
sin x - sin Xo = sin --2- + --2- - sin --2- - --2-

x + Xo . x - Xo 
= 2 cos --2- sm --2- . 

Since Icos(x + xo)/2)1 < 1, it follows that 

But 

so that 

x-x 
Isinx - sinxol < 21sin T I· 

I
· x - Xo I I x - xol 

sm--2- < 2 ' 

Isinx - sinxol < Ix - xol for x E IR, Xo E IR. 

(1.6) 

(1.7) 

From this it is clear that sin x ~ sin Xo as x ~ Xo and, hence, that sine is 
continuous for each Xo E IR = GfJ(sine). 

PROB. 1.2. Prove: The cosine function is continuous. 

PROB. 1.3. Prove: The absolute value function is continuous. 

PROB. 1.4. Prove: (a) If x;;. 0, then 1v'X -FoI<,jlx - xol ; (b) the func­

tion g: [0, + (0) ~ IR, defined as: g(x) = v'X for x E [0, + (0), is a continu­
ous function. 

The following theorem should be compared with Theorem V.4.3. It gives 
a criterion for continuity at a point in terms of sequences. 
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Theorem 1.1. f is continuous at Xo if and only if for each sequence <Xn> of 
points of 6O(j) such that xn ~ Xo as n ~ + 00, we have f(xn) ~ f(xo) as 
n~+oo. 

PROOF. Suppose that f is continuous at xo. Let <xn> be a sequence of 
elements of 6O(j) such that xn ~ Xo as n ~ + 00. (Such sequences exist. For 
example, Xn = Xo for all n is such a sequence.) Let N(j(xo),f.) be a given 
f.-neighborhood of f(xo). By the continuity of f at xo, there exists a 
~-neighborhood N(xo'~) of Xo such that 

f(N(xo,~) n 60(/» ~ N(J(xo), f.). (1.8) 

But since Xn ~ Xo as n ~ + 00, there exists an N such that if n > N, then 
xn E N(xo, ~), and since Xn E 6O(j) for all n, we have: If n > N, then 
Xn E N(xo, 8) n 6O(j). By (1.8) this implies that 

f(xn) E N(J(xo),f.) for n > N. 

Thus, for each f. > 0, there exists an N such that 

If(xn) - f(xo) I < f. for n> N. 

But then f(xn) ~ f(xo) as n ~ + 00. 

Conversely, assume that for each sequence <xn> of elements of 6O(j) 
such that Xn ~ Xo as n ~ + 00, we have f(xn) ~ f(xo) as n ~ + 00. If Xo is an 
isolated point of 60 (j), then f is continuous at xo. If Xo is an accumulation 
point of 6O(j), let <xn> be a sequence of elements of 6O(j) such that xn =1= Xo 

for all nand Xn ~ Xo as n ~ + 00. By the present hypothesis we have 
f(xn)~ f(xo) as n ~ + 00. By Theorem V.4.3 we have f(x)~ f(xo) as 
x ~ Xo' so that f is continuous at Xo in this case also. This completes the 
proof. 

The next theorem should be compared to Theorem V.9.1. 

Theorem 1.2. If g is a junction such that 0t(g) ~ 6O(j), where f is continuous 
at Xo and limt-Hog(t) = xofor some to E IR*, then limt_HJ(g(t» = f(xo). 

PROOF. Exercise. 

Theorem 1.3. (A Continuous Function of a Continuous Function is Contin­
uous.) Let g be continuous at to E IR, and g(to) = xo. Let f be continuous at 
xo, and let 0t( g) ~ 60 (j). Then the composite junction fog is continuous at 
to· 

PROOF. Exercise. 

Remark 1.3. The criterion for continuity at a point in terms of sequences 
converging to the point given in Theorem 1.1 is called sequential continuity. 
Thus, Theorem 1.1 states that a function is continuous at a point if and 
only if it is sequentially continuous at the point. Theorem 1.1 is often used 
to demonstrate the lack of continuity at a point. We demonstrate this in the 
next example. 
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EXAMPLE 1.5. Consider the function D : IR ~ IR defined as: 

if x is rational 
if x is irrational. D(x)= {~ (1.9) 

This function is called Dirichlet's function. This function is defined for all 
x E IR but is continuous at no x E JR. We prove this. 

Let ro be rational. Take a sequence <cn> of irrational numbers such that 
Cn ~ ro as n ~ + 00. (By Prob. V.3.7 such sequences exist.) We have 
D(cn ) = 0 for all n, so that limn_HooD(cn) = O. Since D(ro) = 1, we have 
1imn-->+ooD(cn) =1= D(ro) even though limn-->+oocn = roo By Theorem 1.1, D is 
not continuous at roo Now let Co be irrational and take a sequence <rn> of 
rational numbers such that rn ~ Co and n ~ + 00. (By Prob. V.3.7 such 
sequences exist.) We have D(rn) = 1 for all n, so that limn_HooD(rn ) = 1. 
Here, too, rn~cO as n~+oo and limn_HOOD(rn)=I=D(co)=O. By Theo­
rem 1.1, D is not continuous at Co. Thus, D is not continuous at any real 
number. 

We now apply Theorem 1.1 to prove an important identity. We recall 
that the function exp: JR ~ JR was defined in Example IV.5'! as 

00 n 

expx = L: ;-
n=O n. 

for x E IR. (1.10) 

In Prob. IV.7.1 it was noted that 

expr = e r if r is rational. (1.11) 

In the next theorem we prove that this equality holds for all r E JR. 

Theorem 1.4. If x E JR, then 
00 n 

L: ;- = expx = eX. (1.12) 
n=O n. 

PROOF. We already proved that the function E: JR ~ JR defined as 

E(x) = eX for xEJR (1.13) 

is continuous (see Example 1.2). We now prove that the function exp is a 
continuous. Observe that the function exp satisfies the following: 

1 + x..;; expx ..;; 1 + xexpx for x E IR. (1.14) 

(See Theorem IV.7.2, part (d).) Now turn to Corollary 1 of Theorem V.7.3. 
There we proved that limx-->oe x = 1. Examining the proof we find that all 
we used there was the inequality 

for z E IR (1.15) 

of Theorem V.7.3, and the fact that eZe- z = 1. Since the function exp 
satisfies (1.14) which is similar to (1.15), and since exp also has the 
property: expz exp( - z) = 1 (see Theorem IV.7.2, part (c», it is a simple 
matter to imitate the proof of Corollary 1 of Theorem V.7.3 and to prove 
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that 

lim expx= 1. 
x---+o 

We now note that exp also satisfies 

expxexp y = exp(x + y). 

(See formula (7.17) of Example IV.7.!.) This implies that 

lim expx= lim (expxoexp(x - xo» = expxo lim exp(x - xo) 
X~Xo x----)xo x----)xo 

But then 

= expxo' 1 

= expxo' 
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( 1.16) 

(1.17) 

lim expx= expxo. (1.18) 
X~Xo 

This proves that the function exp is continuous at each x E IR and, 
therefore, that it is continuous. 

Next we take any x E IR and a sequence <rn> of rational numbers such 
that rn~x as n~ +00. We have (1.11) 

for each n. 

This and the continuity of E and exp imply that 

expx = lim (expr) = lim ern = eX, 
n~ + 00 n n----) + 00 

so that 

expx = eX 

and the proof is complete. 

for each x E IR, 

PROB. 1.5. The principle used in proving Theorem 1.4 is far-reaching. It can 
be stated as follows: Two functions continuous in IR which have the same 
values for the rational numbers are identical. Prove the last statement. 

FROB. 1.6. Prove: 

(a) If x > 0 and n is a nonnegative integer, then 

(b) limx-->+oo(e X / xn) = + 00. 
(c) If a E IR, then limx-->+oo(eXx- a ) = + 00. 

FROB. 1.7. Prove: 

~ x2n x 2 x4 
cosh x = L.J --=1+-+-+ .. · 

n=O (2n)! 2! 4! 

• 00 x2n+ I x 3 x5 
smhx = n~o (2n + I)! = x + 3T + Sf + 
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The Dirichlet function (Example 1.5) though defined for all of IR is 
continuous for no x E IR. There are functions defined for all IR which are 
continuous at one point only. 

PROB. 1.8. Prove: I, where 

I(x) = {~2 
is continuous at x = 0 only. 

PROB.1.9. 

g(x) = {x 
I-x 

is continuous at x =! only. 

for x rational 
x =0, 

if x is rational 
if x is irrational, 

PROB. 1.10. Let I: [0, I]alR be defined as 

1, if x = 1, 
1 if 0< x < 1, where x is rational 
q 

I(x) = x = pi q,p and q being 
relatively prime positive 
integers, 

1, if x =0. 

The figure (Fig. 1.1) is a poor attempt at portraying the graph of this 
function. Prove: If Xo E [0, 1], then limx~xJ(x) = O. Conclude that I is 
continuous at Xo if Xo is irrational and discontinuous if Xo is rational. 

y 

• 

• 

• • 
• • • • • • 

.!..!. 1 2 1 J. 1 i! 1 54 "3 S 2" 5 3 

Figure 1.1 
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2. One-Sided Continuity. Points of Discontinuity. 

Just as there are one-sided limits, we can speak of one-sided continuity. 

Del. 2.1 (One-Sided Continuity). A real-valued function of a real variable is 
called continuous from the left at Xo if and only if: (1) Xo E 6O(j) and (2) 
for each E-neighborhood N (j(xo), E) of f(xo), there exists a 8-neighborhood 
N _ (xo, 8) = (xo - 8, xol of Xo from the left such that 

f(xo - 8,xoJ n 6O(f)) C N(f(XO),E). (2.1) 

Similarly, f is called continuous from the right at Xo if and only if: (1) 
Xo E 6O(j) and (2) for each E-neighborhood N(j(Xo),E) off(xo), there exists 
a 8-neighborhood N + (xo,8) = [xo,xo + 8) of Xo from the right such that 

f(xo,xo + 8) n 6O(f») C N(f(XO,E»). (2.2) 

In terms of inequalities this is equivalent to: 

Def. 2.1'. f is continuous from the left at Xo if and only if: (1) Xo E 6O(j) 
and (2) for each E > 0 there exists a 8 > 0 such that if Xo - 8 < x « Xo and 
x E 6O(j), then If(x) - f(xo)1 < E. Similarly, f is continuous from the right 
at Xo if and only if: (1) Xo E 6O(j) and (2) for each E > 0 there exists a 8 > 0 
such that if Xo « x < Xo + 8 and x E 6O(j), then If(x) - f(xo)1 < €. 

Remark 2.1. If Xo E 6O(j) but Xo is not an accumulation point of 6O(j) from 
one side, then f is continuous from that side at xo' (See Example 1.1 where 
continuity of f at an isolated point of 60 (j) is discussed.) 

If Xo is an accumulation point of 6O(j) from one side, then the continuity 
of f from that side can be defined in terms of the limit of f as x approaches 
Xo from that side. 

Del. 2.3". If Xo is an accumulation point of 6O(j) from the left, then f is 
continuous from the left at Xo if and only if: (1) Xo E 6O(j) and (2) 
f(xo - ) = f(xo). Similarly, if Xo is an accumulation point of 6O(j) from the 
right, thenfis continuous from the right at Xo if and only if: (1) Xo E 6O(j) 
and (2) f(xo + ) = f(xo). 

PROB. 2.1. Prove: f is continuous at Xo if and only if f is continuous from 
the right and from the left at Xo' 

Remark 2.2. A function f is continuous from the left at Xo if and only if its 
restriction to (- 00; xo] n 60 (j) is continuous at Xo' Similarly, f is continu­
ous from the right at Xo if and only if its restriction to [xo, + 00) n 60 (j) is 
continuous at Xo' (See Remark V.5.2.) 
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EXAMPLE 2.1. We prove that the greatest integer function is continuous 
from the right but that it is not continuous from the left at each integer. 

Assume Xo E IR. Given E > 0, take 8 such that 0 < 8 < 1+ [xol- Xo. 
(Note that [xol < Xo < [xol + 1, so that I + [xol- Xo > 0.) Therefore, if 
Xo < x < Xo + 8, then Xo < x < [xol + 1 and 

[ xo] < Xo < x < [ xo] + 1 

from which it follows that [xl = [xol for such x. Hence, 

I [ x] - [ xo] I = I [ xo] - [ xo] I = 0 < E for Xo < x < Xo + 8, 

and 

lim [x] = [xo]. 
X~Xo+ 

(2.3) 

On the other hand, if Xo is an integer, then Xo = [xol. Take 8, such that 
0< 8, < 1 and x such that Xo - 8, < x < xo. For such x we have [xol - 1 
= Xo - 1 < x < Xo = [xol, and therefore [xl = [xol- 1 = Xo - 1, so that 

lim [x] = Xo - 1 < Xo = [xo], if Xo is an integer. 
X~Xo-

PROB. 2.2. Prove: If Xo is not an integer, then limx-->xo- [xl = [xol. 

A point Xo E IR at which a function f is discontinuous is called a point of 
discontinuity of the function. According to the last example and the prob­
lem following it we may state: The greatest integer function is continuous 
for each noninteger Xo and its points of discontinuity are the integers. 

Let Xo be an accumulation point of GD(f). If limx-->xJ(x) exists and is 
finite but either f is not defined at Xo or limx-->xJ(x) ¥= j(xo), we call Xo a 
removable discontinuity of f. This is to suggest that the discontinuity "can be 
removed" by redefiningf appropriately at Xo. That is, a new function g can 
be defined where 

This g is such that 

{
f(X) 

g(x) = lim f(x) 
X~Xo 

for x ¥= Xo 

for x = Xo. 

lim g(x) = lim f(x) = g(xo), 
X~Xo X~Xo 

and is, therefore, continuous at Xo. 

EXAMPLE 2.2. The function f, where 

f(x) = x 2 
- 4 

x-2 
for x ¥= 2, 

(2.4) 

(2.5) 

has a discontinuity at x = 2 since it is not defined there. This discontinuity 
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is removable since 

limf(x) = lim x 2
- 24 = lim(x+2)=4 

x-->2 x-->2 x - x-->2 
(see Fig. 2.1). 

PROB. 2.3. Consider the functionf, where 

{ 
sinx 

f(x) = 2~ 
if x *0 

if x = o. 

(a) Show that f has a removable discontinuity at x = o. 
(b) Redefine f so that it is continuous at O. 
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If Xo is a two-sided accumulation point of GfJ(j) but at least one 
one-sided limit as x ~ Xo is infinite, we say that f has an infinite discontinu­
ity at xo. 

EXAMPLE 2.3. Let f be defined as: 

f(x) ~ {( if x * 0 

if x = O. 

This function has an infinite discontinuity at x = O. (See Fig. 2.2.) No 
matter how we define f at 0, the discontinuity there will persist (explain). 

It may happen that Xo is a two-sided accumulation point of GfJ(j) but 
limx-->xJ(x) does not exist, even in the extended sense. One way in which 
this can occur is if both one-sided limits exist and are finite but f(xo - ) 
* f(xo + ). Here limx-->xJ(x) does not exist and f is discontinuous at Xo· 
This type of discontinuity is called a jump discontinuity and f(xo + ) -
f(xo - ) is called the value of the jump. 
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EXAMPLE 2.4. The signum function (d. Example 11.2.2 and Example V.5.l) 
has a jump discontinuity at x = 0, and the value of the jump is sig(l + ) -
sig(1 - ) = 1 - (- 1) = 2. 

If Xo is a two-sided accumulation point of GD(j) and at least one of the 
one-sided limits of f as x ~ Xo does not exist, even in the extended case, 
then Xo is yet another type of discontinuity of f. 

EXAMPLE 2.5. Consider the function g, where 

if x = o. 
(Recall <z)* is the distance from z to the integer nearest z. It is shown in 
Example V.5.3 that neither of the limits g(O - ) = <0 - )*, g(O + ) = 

<0 + )* exist. Hence, x = 0 here is a discontinuity of g of the last type. 

PROB. 2.4. Prove that limx-->o(x<I / x)*) = O. 

3. Theorems on Local Continuity 

The theorems which follow are similar to the ones in Section V.6 on limits. 
They concern themselves with the properties of functions which are contin­
uous at a point Xo. We refer to such properties as local properties of 
continuous functions. On the other hand, properties of functions which are 
continuous on certain types of sets are called global properties, or proper­
ties in the large, of continuous functions. 
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Theorem 3.1. Iff is continuous at x o, there exists a 8-neighborhood N(xo, 8) 
of Xo such that f is bounded on N(xo,8) n 6fJ(f). 

PROB. 3.1. Prove Theorem 3.1. (See the proof of Theorem V.6.1.) 

Theorem 3.2. Let f be continuous at Xo' If (a) f(xo) > 0, then there exists a 
8-neighborhood N(xo, 8) of Xo such that f(x) > 0 for x E N(xo, 8) n 6fJ(f). If 
(b) f(xo) < 0, then there exists a 8-neighborhood N(xo,8) of Xo such that 
f(x) < 0 for x E N(xo,8) n 6fJ(f). 

PROB. 3.2. Prove Theorem 3.2. (See the proof of Theorem V.6.2.) 

Theorem 3.3. If f and g are functions having a common domain 6fJ and each is 
continuous at xo, then so are their sum f + g and product fg. 

PROB. 3.3. Prove Theorem 3.3. 

PROB. 3.4. Prove: If f is continuous at Xo and c is some constant, then cf is 
continuous at Xo' 

PROB. 3.5. Let f1' ... , fn be n functions with a common domain 6fJ. If all 
the /; are continuous at x o, prove that (a) f1 + ... + fn and (b) fd2 ... J,. 
are continuous at Xo' 

Def. 3.1. If f and g are functions with a common domain 6fJ, and g is not 
identically 0 on 6fJ, then we define f / g to be the function Q, where 

f(x) 
Q(x) = g(x) for x E 6fJ such that g( x) =1= O. 

EXAMPLE 3.1. Since a rational function in IR is a quotient P / Q, where P 
and Q are polynomials and Q is not the zero polynomial, we know that the 
rational function R, where 

P(x) 
R(x) = Q(x) for x such that Q(x) =1= 0, 

has a nonempty domain of definition (Prob. V.8.4). Polynomials are contin­
uous functions. Hence, if Xo E IR is such that Q(xo) =1= 0, some 8-
neighborhood N(xo, 8) of Xo exists such that Q(x) =1= 0 for x E N(xo, 8) n IR 
= N(xo, 8) (Theorem 3.2). Thus, there exists an open interval (xo - 8; Xo + 
8) such that Q(x) =1= 0 for x E (xo - 8; Xo + 8). This implies that Xo is an 
accumulation point of 6fJ(R) (explain) and 

. . P(x) limx~xoP(x) P(xo) 
hm R(x) = hm -- = =-----:-- = -- = R(xo)' 
X~Xo X~Xo Q(x) limHxo Q(x) Q(xo) 
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This tells us that a rational function on IR is continuous since it is 
continuous for each Xo in its domain. (This is a special case of Theorem 3.4 
below.) Note that each point of the domain of a rational function is one of 
its accumulation points. 

Theorem 3.4. If f and g are functions having a common domain GD, where 
each is continuous at Xo and g(xo) oF 0, then f / g is continuous at xo' 

PROB. 3.6. Prove Theorem 3.4. 

PROB. 3.7. Prove that the hyperbolic functions are continuous. 

4. The Intermediate-Value Theorem 

Here we encounter our first global property of continuous functions. It is a 
property of functions continuous on intervals. 

Lemma 4.1. Iff is a real-valued function of a real variable which is continuous 
on an interval I, and if for some a and b in I we have f(a) < ° < feb) or 
feb) < ° < f(a), then there exists a c between a and b such that fCc) = 0. 

PROOF. For the sake of definiteness let a < b andf(a) < ° <feb). Since I is 
an interval, it is a convex set of real numbers. Hence [a, b j C I, and f is 
continuous on [a,bj. We restrictfto the interval [a,bj. Sincef(a) < 0, there 
exists a 8\ > Osuch thatf(x) < ° for x E [a,a + 8\) n [a,bj (Theorem 3.2), 
and since feb) > 0, it follows that a < a + 8\ .;; b. Similarly, again by 
Theorem 3.2, there exists a 82 > ° such that for x E (b - 82 ,bj n [a,bj we 
have f(x) > ° and a';; b - 82 < b. Clearly, a + 8\ .;; b - 82 (otherwise 
a .;; b - 82 < a + 8\ .;; b and for b - 82 < X < a + 8\ we would have f(x) 
> ° and f(x) < O-an impossibility). Define the set S as 

S= {xE[a,bJlf(x»O}. (4.1 ) 

Since S C [a,bj, it is bounded from below, and since feb) > 0, S oF 0. 
Hence, S has a real infimum. Let c = inf S. Now (b - 82 , bj C S, and, 
therefore, c = inf S .;; inf( b - 82 , b j (Prob. 1.12.1). Since inf( b - 82 , b j 
= b - 82 , we have c';; b - 82 < b. But x E [a,a + 8\) implies that f(x) 
< O. In turn, this implies that a + 8\ is a lower bound for S (explain), and 
a + 8\ .;; c. Thus, a < a + 8\ .;; c .;; b - 82 < b, and, therefore, a < c < b. 
Now observe that if a';; x < c, then x f/. S. Since such an x is in [a,bj, it 
follows that f(x) .;; O. In short, a .;; x < c implies that f(x) .;; o. 

If j(c) > 0, then, because of the continuity of fat c, we know (Theorem 
3.2) that there is an E-neighborhood (c - E; C + E) of c such that x E (c - E; 
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c + £) n [a,b] implies f(x) > O. Accordingly, if x E [a,b] and c - £ < X 

< c, we have f(x) > O. By the last sentence of the last paragraph that is 
impossible. Hence, f(c) :s;;; O. If f(c) < 0, then there is an £\-neighborhood 
(c - £\; c + £\) of c such that x E (c - £\; c + £\) n [a; b] implies f(x) < O. 
This and the last sentence of the last paragraph imply that if x E [a, b] and 
a:S;;; x < c + £\' then f(x):s;;; O. Hence, xES implies x ;;. c + £\. But then 
c + £\ is a lower bound for S. This is impossible, for c + £\ > c, and, by 
definition, c is the greatest lower bound for S. Hence, f(c) ;;. O. Since we 
already showed that f( c) :s;;; 0 holds, we must have f( c) = O. This completes 
the proof. 

Theorem 4.1 (The Intermediate-Value Theorem). If f is continuous on an 
interval I and f(a) =1= f(b) holds for some a and b in I, then for each y between 
f(a) and f(b), there exists a c between a and b such that f(c) = y. 

PROOF. We have 

f(a) <y<f(b) or f(a) >y >f(b). 

Define g on I as follows: 

g(x) = f(x) - y for x E I. 

This function g is continuous on I, and, because of (4.2), we have 

g(a) < 0 < g(b) or g(a) > 0 > g(b). 

(4.2) 

(4.3) 

(4.4) 

Thus, g satisfies the hypothesis of Lemma 4.1. But then there exists a c 
between a and b such that g( c) = O. This implies that 

f(c) - y = 0, 

i.e., f(c) = y, where c is between a and b. The proof is now complete. 

This theorem is often phrased as follows. 

Intermediate-Value Theorem. A real-valued function of a real variable which 
is continuous on an interval assumes every value between any two of its values. 

Remark 4.1. The c of Theorem 4.1 is by no means unique. Theorem 4.1 
merely asserts its existence. 

When a real-valued function assumes every value between any two of its 
values we say that it has the intermediate-value property. Functions which 
are continuous on intervals have the intermediate-value property, but the 
converse is false. There exist functions defined on intervals having the 
intermediate-value property which are not continuous. We present an 
example. 
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EXAMPLE 4.1. Let f: [ - 1, 1] ~ IR be defined as: 

f(x)=l-x if O<x<l 

= -1- x if -1<x<O 
(see Fig. 4.1). This function is defined on the interval [- 1, 1] has the 
intermediate-value property there but is not continuous (see Remark 4.3 
and Probs. 4.6 and 4.7). 

PROB. 4.1. Prove: A real-valued function has the intermediate-value prop­
erty if and only if its range is a convex set (Def. V.l.1). Since a nonempty 
convex set of real numbers is either a point or an interval (Prob. V.l.6, part 
(b)), this result states that a real-valued function with nonempty domain 
has the intermediate-value property if and only if its range is either a point 
or an interval. 

Remark 4.2. Because of the result stated in the last problem, alternate 
formulations of the intermediate-value theorem (Theorem 4.1) are: (a) a 
real-valued function of a real variable that is continuous on an interval I 
has a convex range f(l); (b) if a real-valued function of a real variable is 
continuous on an interval I, then its range f(l) is either a point or an 
interval. 

PROB. 4.2. Prove: If P is a polynomial function in IR of odd degree, then it 
has a real zero, i.e., a real r exists such that P(r) = O. 

EXAMPLE 4.2. Although we have already accumulated much information 
about the sine and cosine functions, we have no information about the 
zeros of these functions. We use the intermediate-value theorem to prove 
that the cosine function has real zeros. 
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We recall that if Ixl < 1, then cosx > 0 (Prob. IV.8.5). Thus, cos 1 > o. 
We prove that cos 2 < O. By definition, 

00 n 22n 22 24 26 
cos 2 = 2.: (- 1) -- = 1 - - + - - - + ... 

n=O (2n)! 2! 4! 6! 

= -1 + 24 _ 26 + 
4! 6! 

(4.5) 

Therefore, 

24 26 
1 + cos 2 = - - - + ... 

4! 6! 
(4.6) 

We now prove that the series on the right is alternating. We write it in the 
form 2:~= I( -It+ lan' where 

22n + 2 
a = --:-==---,--,-

n (2n + 2)! 
for each positive integer n. (4.7) 

We have: (1) an > 0 for each nand (2) an ~ 0 as n ~ + 00. The last holds 
because the series (4.5), and, therefore, the series (4.6), is converging. To 
complete the proof that the series in (4.6) is alternating we show that (3) 
an+ I < an for each n. Note that 

an+ I 22n +4 / 22n +2 2 
0< ---a,;- = (2n + 4)! (2n + 2)! = (n + 2)(2n + 3) < 1. (4.8) 

The inequality on the right is a consequence of 

2n 2 + 7 n + 6 > 2 for n;;;' 1. 

Thus, (3) 0 < an + I < an for each n and the series in (4.6) is alternating. By 
Prob. IV.2.1, 

Hence, 

24 2 
a l - a2 + a3 - a4 + ... < a l = 4! = '3 . 

This and (4.6) yield 

l+cos2<t, 

from which it follows that 

cos2 < - t. (4.8') 

Thus, cos 2 < 0 < cos 1. Since cosine is continuous on IR, the intermediate­
value theorem tells that there exists a real e such that I < e < 2 and 
cose = O. 

We now prove that the e such that 1 < e < 2 and cose = 0 is unique. 
Since sin2e + cos2e = 1, sin2e = 1 and, hence, sin e = ± 1. We prove that 
sin e = 1. We do this by first proving that if 0 < x <16, then sin x > O. We 
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use the definition of sin x and obtain, after reindexing, 

• 00 n+1 X2n-1 
sm x = ~ (- 1 ) (2 _ 1) , . 

n=1 n. 
(4.9) 

We put 
_ X 2n - 1 

an - (2n - I)! for n ~ 1 (4.10) 

so that 
00 

sinx = ~ (-lr+1an' (4.11 ) 
n=1 

We take x such that 0 < x <.J6 and note that (1) an > 0 for all nand (2) 
limn- Hooan = 0 (for (4.11) converges). We also have 

an + 1 x2n+1 / X 2n - 1 x 2 6 
0<--= = < .;;;;1 

an (2n + I)! (2n - I)! (2n)(2n + 1) (2n)(2n + 1) . 

Here the last inequality follows from (2n)(2n + 1) ~ 6 for n ~ 1. Thus, (3) 
an + 1 < an for all n. We proved that if 0 < x <.J6, then the series (4.9) is 
alternating. Therefore, 

for 0 < x <.J6. (4.12) 

Since 1 < e < 2 <.J6, it follows that sin e > O. This and sin e = ± 1 yield 
sin e = 1. As a by-product we have 

sinx > 0 if 0 < x .;;;; e. (4.13) 

Also 

sin(e - x) = sinecosx - cosesinx = cosx, 

i.e., 

sin(e-x)=cosx forall xEIR. (4.14) 

Now, if 0.;;;; x < e, then 0 < e - x .;;;; e. It follows from this and (4.13) that 
sin(e - x) > 0 and, hence, from (4.14), that cosx > 0 for 0 .;;;; x < e. 

Finally, we show the uniqueness of e such that 1 < e < 2 and cos e = O. 
To this end we take x such that e < x .;;;; 2e so that 0 < x - e .;;;; e. By 
(4.14), for such x, -cosx = -sin(e - x) = sin(x - c) > O. Thus, 

cosx < 0 if e < x .;;;; 2e. (4.15) 

But e < 2 < 2e. It follows that if e < x .;;;; 2, then cosx < O. Since we also 
proved cosx > 0 for 0.;;;; x < e, we have cosx =1= 0 for 0 .;;;; x < e or e < x 
.;;;; 2. We conclude that the e such that 1 < e < 2 and cos e = 0 is unique. 
This e is the least positive x such that cos x = O. 

Def. 4.1. We define 7T = 2e, where 1 < e < 2 and cose = O. Accordingly, 
cos(7Tj2) = 0 and 2 < 7T < 4. 
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We summarize our results in: 

Theorem 4.2. The following hold: 

(a) 2 < '11" < 4 and cos('1I"/2) = O. 
(b) '11" is the only real number such that (a) holds. 
(c) sin('1I" /2) = I. 
(d) If 0 < x';;; '11"/2, then sinx > O. 
(e) If 0 .;;; x < '11"/2, then cosx > O. 
(f) If x E IR, then sin('1I"/2 - x) = cosx. 
(g) If '11"/2 < x.;;; '11", then cosx < O. 
(h) '11"/2 is the least positive x such that cosx = o. 
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PROB. 4.3. Prove: (a) sin( - '11"/2) = -I and cos( - '11" /2) = o. (b) If Ixl 
< '11"/2, then cosx > O. (c) If x E IR, then cos('1I"/2 - x) = sinx. (d) If 
'11" /2.;;; x < '11", then sinx > O. This, together with part (d) of Theorem 4.2, 
yields: If 0 < x < '11", then sinx > O. (e) If -'11" < X < 0, then sinx < O. 

PROB. 4.4. Prove: (a) sin(±'1I") = 0 and cos(±'1I") = -I. (b) sin(3'11"/2) = -I 
and cos(±3'11"/2) = O. (c) cos 2'11" = 1 and sin 2'11" = O. (d) cos(x + 2'11") = cos x 
and sin(x + 2'11") = sinx for x E IR, (e) sin(x ± '11") = -sinx and cos(x ± '11") 
= -cosx for x E IR. 

PROB. 4.5. Prove: 

(a) sin('1I"/4) = I/fi = cos'1l"/4, 
(b) cos('1I"/3) = t = sin('1I"/6), 

(c) cos('1I"/6) =fS /2 = sin('1I"/3), 

(d) cos('1I" /12) = (J6 + fi)/4 = J2 + fS /2, 

(e) sin('1I" /12) = (J6 - fi)/4 = J2 - fS /2, 
(f) tan('1I"/12) = 2 -fS. 

Remark 4.3. In connection with. the intermediate value theorem, we intro­
duce the following definition: A function will be said to have the strong 
intermediate value property on an interval I if it has the intermediate value 
property on every closed, bounded subinterval of I. For example, a 
function continuous on an interval I has the strong intermediate value 
property on I (why?). On the other hand, the function defined in Example 
4.1, cited as an example of a function having the intermediate value 
property which is not continuous, does not have the strong intermediate 
value property (show this). 

FROB. 4.6. (a) Let f be a function which has the strong intermediate value 
property on the interval (a,b]. Prove: If f is also strictly monotonically 
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increasing on (a; b), then f is strictly monotonically increasing on (a, b). (b) 
More generally, let f be a function having the strong intermediate value 
property on an interval I which includes one of its endpoints, say c. Prove: 
If f is also strictly monotonic on the interval J = 1- {c}, then f is strictly 
monotonic on I. 

PROB. 4.7. Let f have the strong intermediate value property on an interval 
I. Prove: If f is also monotonic in the interior (the set of all interior points) 
of I, then f is continuous and monotonic on I. 

5. The Natural Logarithm: Logs to Any Base 

Let E: IR~ be the function defined as E(x) = eX for x E IR. We prove: 

Theorem 5.1. The range of E is (0; + 00). 

PROOF. We know that E(x) = eX> 0 so that 0t(E) \: (0; + 00). We wish to 
prove that this subset relation can be reversed: that is, that (0; + 00) 
\: 0t(E). Assume y E (0; + 00) so that y > O. By Theorem V.7.3, 

eY#I+y>y>O 

and 

Taking reciprocals, we have 

e-(l/y) <yo 

Thus, there exist real numbers b = Y and a = - 1/ Y such that 

eQ <y < eb• 

(5.1 ) 

(5.2) 

(5.3) 

(5.4) 

Since E is continuous, (5.4) and the intermediate-value theorem imply that 
there is an x between a and b such that E(x) = eX = y, and hence that 
y E 0t(E). This proves that (0; + 00) \: 0t(E). This and the first sentence of 
the proof yield 0t(E) = (0; + 00), as claimed. 

Since e > 1, part (i) of Remark IV. 10.3 shows that the function E: IR ~ IR 
such that E(x) = eX for x E IR is strictly monotonically increasing. There­
fore, E has a strictly monotonic increasing inverse E - 1 defined on its range 
0t( E) = (0; + 00), whose range is IR, the domain of E (Theorem 11.11.1). 

Def. 5.1. The inverse of the function E is called the natural logarithm 
function. If x > 0, then the unique y such that E(y) = eY = x is called the 
natural logarithm of x and is written 

y = In x. (5.5) 
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Theorem 5.2. The domain of the natural logarithm function is (0; + 00) and 
its range is IR. We have 

if x> 0 (5.6) 

and 

IneY = y if Y E IR. (5.7) 

In is also a strictly monotonic increasing function. 

PROOF. The first statement is a consequence of the definition of the natural 
logarithm as the inverse of E. By properties of the inverse we have 

for x E (0; + (0) = 0t(E) = 6])(ln) 

and 

IneY = E-I(E(y») = y for y E IR = 6])(E) = 0t(ln). 

This proves (5.6) and (5.7). The function In is strictly monotonically 
increasing since it is the inverse of the strictly increasing function E. 

Theorem 5.3. We have: (a) In I = 0, (b) lne = I, and (c) lnx < 0 for 
o < x < I and In x > 0 for x > 1. 

PROOF. In I = 0 follows from eO = I and the definition of In. Since e l = e, 
In e = I for the same reason. In view of the strictly increasing character of 
In, 

o < x < I implies that In x < In I = 0 

and 

x > I implies that lnx > In I = o. 

Theorem 5.4. If a > 0 and b > 0, then 

(a) In(ab) = Ina + lnb, 
(b) In(lja) = -Ina, 
(c) In(ajb) = Ina -lnb, 
(d) Ina" = alna for a E IR. 

PROOF. We prove (a). Let u = Ina and v = lnb. Then 

e U = a and e v = b 
and, hence, 

ab = eUe v = e U+ v • 

By the definition of In(ab), this implies that 

In(ab) = u + v = Ina + lnb. 

This proves (a). We prove (d) next. Since a > 0, we have 

e1na = a. 
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Hence, for a E IR, 

Taking the natural logarithm of the left- and right-hand sides, we obtain 

alna = lne"lna = Ina". 
This proves (d). We leave the proofs of (b) and (c) to the reader (Prob. 5.1). 

PROB. 5.1. Complete the proof of the last theorem by proving parts (b) and 
(c). 

Theorem 5.5. We have 

(a) 

and 

(b) 

lim lnx= + 00 
x--->+oo 

lim lnx= - 00. 
x--->O+ 

PROOF. Take B E IR and X ;;;. e B • Note that e B > o. If x> X, then x> e B • 

Since In is strictly increasing, this implies that 

lnx > lne B = B. 
Thus, for each B, there exists an X such that if x> X, then lnx > B. This 
proves (a). 

We prove (b). Given B, we have e B > o. Take ~ such that 0 < ~ < e B 

and 0 < x <~. We have 0 < x < e B and, therefore, lnx < lne B < B. 
Thus, for each B E IR, there exists a ~ > 0 such that if 0 < x < ~, then 
In x < B. This proves (b). 

Remark 5.1. It is important to note that if p > 0, then 

pX = (e1n P)x = ex1n p. 

PROB. 5.2. Prove: 

(a) If p > 1, then limX_HOOpx = + 00 and limx->_oopx = 0; 

(5.8) 

(b) If 0 <p < 1, then limx_Hoopx = 0 and limx-->_oopx = + 00 (see Re­
mark 5.1). 

PROB. 5.3. Letp > 0 and Ep: IR~IR be the function Ep(x) = pX for x E IR. 
Prove: Ep is continuous. Note that Ep is strictly monotonically increasing if 
p > 1 and strictly monotonically decreasing if 0 < P < 1. 

PROB. 5.4. Prove: Ep: IR ~ IR, where p > 0, p =1= 1 has the range (0; + 00), 

and has an inverse E -I that is strictly monotonically increasing for p > 1 
and strictly monotonically decreasing for 0 < P < 1. 
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Def. 5.2. If P > 0, p =1= I, then the inverse Ep - I of Ep is called the logarithm 
to the base p. If x > 0, then y such that 

pY = x 

is called the logarithm to the base p of x and is written 

y = logpx. 

We have, as a special case, 

logex = Inx for x> o. 
Thus, the natural logarithm of x > 0 is the logarithm to base e of x. 

(5.9) 

(5.10) 

(5.11) 

PROB. 5.5. Prove: If p > 0, p =1= I, then the domain of logp is (0; + 00) and 
its range is ~. Also, 

if x> 0 

and 

if Y E IR. 

PROB. 5.6. Prove: If p > 0, p =1= I, then (a) logp I = 0 and (b) logpp = I. 

PROB. 5.7. Prove: If p > 0, p =1= I, then 

log x = Inx 
p In p 

and (logpe)(ln p) = l. 

for x> 0 

PROB. 5.8. Prove: If p > I, then logp is strictly increasing and 

(a) 0 < x < I implies logpx < 0, 
(b) x > I implies Iogpx > O. 

PROB. 5.9. Prove: If 0 < P < I, then logp is strictly decreasing and 

(a) 0 < x < I implies logpx > 0, 
(b) x > I implies logpx < O. 

PROB. 5.10. Prove: If p > 0, p =1= I, then a > 0 and b > 0 imply 

(a) log/ab) = logpa + logpb, 
(b) log/l / a) = -logpa, 
(c) logp(a/b) = Iogpa -logpb, 
(d) logpa<X = IX logpa if IX E IR. 

PROB. 5.11. Prove: If p > I, then 

(a) lim logpx= + 00 
x"'" + ao 
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and 

(b) lim logpx= - 00. 
x~o+ 

PROB. 5.12. Prove: If ° < P < 1, then 

(a) 

and 

(b) 

lim logpx = - 00 
x----)-+ 00 

lim 10gpx= +00. 
x~o+ 

Theorem 5.6. If h > -1, then 

h 
1 + h ~ In(1 + h) ~ h. 

PROOF. By Theorem V.7.3., 

1 + z ~ e Z ~ 1 + ze Z for z E lit 

(5.12) 

(5.13) 

Since h > - 1 by hypothesis, we have h + 1 > 0. Let z = In(1 + h) so that 

e Z = 1 + h, 
and, therefore, 

h = e Z - 1. 

Now use (5.13) in the form z ~ e Z - 1 ~ ze z to obtain 

In(1 + h) = z ~ e Z - 1 = h ~ ze Z = (In(l + h»)(1 + h), 

i.e., 

In( 1 + h) ~ h ~ (1 + h) In( 1 + h) for h>-1. (5.14) 

If h > 0, then In(l + h) > 0, so (5.14) yields 

1 ~ In(1 h+ h) ~ 1 + h. 

Taking reciprocals, we obtain 

1 In( 1 + h) 
l+h~ h ~l for h > 0, 

from which (5.12) follows after multiplying by h. This establishes (5.12) for 
h > 0. If - 1 < h < 0, then ° < 1 + h < 1 and In(l + h) < 0. Multiplication 
by I/ln(l + h) reverses the inequalities (in (5.14» and we obtain 

1 ;;. In(1/~ h) ;;. 1 + h > ° for -I < h < 0. 

Taking reciprocals, we obtain 

In(1 + h) 1 
l~ h ~--

1 + h 
for -I < h < 0. 
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Inequality (5.12) now follows after we multiply the last inequalities by h 
(h < 0). Thus, (5.12) holds for - I < h < 0 also. If h = 0, the conclusion 
holds trivially. 

PROB. 5.13. Prove: 

(a) lim In( 1 + h) = 0, 
h-+O 

. In(1 + h) 
hm h = 1. 
h-+O 

(b) 

PROB. 5.14. Prove: limh->o(l + h)l/h = e. 

Theorem 5.7. If x =1= 0, then 

(a) lim In(1 + l!.) = 0, 
h-+O X 

(b) lim 11n( 1 + l!. ) = 1 . 
h-+O h x x 

Let x > O. If h > - x, then 

(c) 

(d) 

limln(x+h)=lnx, 
h-+O 

. In( x + h) - In x 1 
hm = -. 
h-+O h x 

PROOF. If x> 0, take h> - x and obtain hi x> -1. If x < 0, take 
h < - x and obtain again hi x> -1. By Theorem 5.6, if hi x> -1, then 

_h_ = hi x < In(1 + l!.) < l!. . (5.15) 
x+h I+hlx x x 

Here hlx> -I; if x>O and h> -x, or x<O and h< -x. Letting 
h ~ 0, we obtain (a). 

If h > 0, we obtain from (5.15) 

_1_ < 11n( I + l!.) < 1 
x+h h x x 

from which it follows that 

if 

lim 11n(1 + l!.) = 1. 
h-+O+ h x x 

h - > -I, 
x 

(5.16) 

(5.17) 

If h < 0, then multiplication by Ilh reverses the inequalities (5.15), so 

_1_;;;. 11n(1 + l!.);;;. 1 for l!. > -1. (5.18) 
x+h h x x x 

It follows that 

lim 11n( I + l!.) = 1 . 
h-+O- h x x 

(5.19) 

Equations (5.17) and (5.19) yield (b) if x =1= 0. 
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If X > 0, then h > - x implies x + h > 0, and we may write 

In( 1 + ~ ) = In(x + h) -Inx. 

So (5.15) can be written 

x ~ h .;;; In(x + h) -Inx .;;; ~ . 
This implies (c). Part (d) follows from (b) when x> 0 and h > - x for then 
(b) can be written 

. In(x + h) -Inx I 
lIm = -. 
h-+O h x 

Remark 5.2. It follows from part (c) of the last theorem that In IS a 
continuous function. 

PROB. 5.15. Prove: If x E IR, then 

(a) 

and 

(b) 

lim (I + hX)I/h= eX 
h-+O 

lim (I + :!h )h = eX. 
h->+ 00 

FROB. 5.16. Prove: If x > 1, then 

0<lnx.;;;2(,(X-I). 

FROB. 5.17. Prove: limx->+oo(lnx/x) = 0 (Hint: use Prob. 5.16). 

FROB. 5.18. Assume a> o. Prove: 

(a) 

(b) 

(c) 

FROB. 5.19. Prove: 

(a) limx->o+ (x In x) = 0, 

lim x"= + 00, 
x-++ 00 

lim Inx" = 0, 
x->+oo x" 

lim Inx = O. 
x-++ 00 x" 

(b) If a > 0, then limx->o+ x"'lnx = O. 

PROB. 5.20. Let <bn> be a sequence of real numbers such that bn ~ bE IR as 
n ~ + 00. Prove: 

(a) nln(l + bn/n)~b as n~ + 00, 

(b) (I + bn/nt~eb as n~ +00, 
(c) (1- bn/nt~e-b as n~ +00. 
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Remark 5.3. It follows from Prob. 5.20 that if <bn> is a sequence of real 
numbers such that bn ~ b E IR, then for any positive integer k we have 

lim (n)( bn )k(l _ bn )n-k = ...Lbke- b • 
n-->+oo k n n k! 

We prove this. Note that 

= ...L(1_1)(1-1) (1- k..=..l) b: (1- bn)n 
k! n n ... n (I-bnln)k n' 

Hence, 

(5.19') 

where 

Ck,n = k\ (1 _1 )(1 - 1) ... (1 - k - 1 ) b: k' (5.20) 
. n n n (1 - bnl n) 

Since k is fixed, we obtain 

b k 
Ck,n~ k! as n~+oo. (5.21 ) 

This and Prob. 5.20, part (c), together with (5.19'), yield (*). 
The limit in (5.18) is useful in the theory of probability. 

PROB. 5.21. Prove: If b > 0 and k is a positive integer and 

for each positive integer k, 

then (1) 0 < Pk < 1 for each k and (2) 'L.'k=OPk = 1. 

PROB. 5.22. Prove: If <an> is a real sequence such that 

(a) for all n 

and 

(b) as n~ + 00, where a> 0, 

then limn-->+oo(a,a2 ••• an)l/n = a (Hint: use the properties of naturalloga­
rithms and Example 111.9.1). 
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PROB. 5.23. In Prob. IV.5.7 we asked the reader to prove 

lim 'Vnf = 1. 
n--->+oo n e 

As a hint we suggested that the reader use Prob. IV.5.5. This limit may also 
be evaluated by using the result cited in Prob. 5.22 above. Thus, we ask the 
reader to prove that 

lim _n_ = e 
n---> + 00 n.,[nf 

by constructing the sequence <Pn >, where 

for each positive integer n, 

by observing that 

(n+l( nn( l)n 
P 1P2 ••• Pn = , = I"" 1 + -• n. n. n for each n, 

and by using Prob. 5.22. It is also useful to examine Example 1II.6.3. 

PROB. 5.24*. Prove: If a > 0, x > 0, then 

and 

1 -lnx<--. 
eax a 

6. Bolzano-Weierstrass Theorem and Some 
Consequences 

Def. 6.1. If <xn> is a real sequence, then c E IR is called a cluster point of the 
sequence if and only if there exists a subsequence <Xn,> of <xn> which 
converges to c. 

EXAMPLE 6.1. Let xn = (- lr+ I for each positive integer n. We have 
<xn> = <t, - 1, 1, -1, ... >. The subsequence <X2k - l> = <1, 1, 1, ... > of 
odd-indexed terms converges to 1, while the subsequence <X2k> = < - 1, -
1, -1, ... > of even-indexed terms converges to - 1. Therefore, 1 and - 1 
are cluster points of the sequence. 

*0. S. Mitrinovic, AnalytiC Inequalities, Springer-Verlag, New York, 1970, p. 266. 
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EXAMPLE 6.2. Let xn = n -I if n is an odd positive integer and Xn = 1 - n- I 

if n is an even positive integer. We have 

< xn > = (I, t ,t ,~ ,! ,i ' . . . ). 
Since <X2k-l> = <l,t.!, ... >. we have X2k-\ ~O, as k~ + 00, and since 
<X2k>=<t,~,i, ... >, we have X2k~l, as k~+oo. Here 0 and 1 are 
cluster points of the sequence. 

There exist real sequences having no cluster points. 

EXAMPLE 6.3. Let xn=n for each positive integer so that <xn>=<1,2, 
3, ... >. Here, no subsequence is bounded. Therefore, no subsequence 
converges. The sequence has no cluster points. 

Remark 6.1. If a sequence <xn> converges and has limit L, then every 
subsequence converges to L. This makes L the only cluster point of the 
sequence. 

Theorem 6.1. Every bounded (infinite) sequence of real numbers has a real 
cluster point. 

PROOF. Let <xn> be a bounded sequence of real numbers. This implies that 

- 00 < lim Xn .;;; lim Xn < + 00. 

Let 

l = lim Xn 

and £ = 1. By Theorem III.6.4, part (c), 

for infinitely many n's. 

(6.1 ) 

(6.2) 

By part (a) of the theorem just mentioned, there exists a positive integer N 
such that 

for n;;;' N. (6.3) 

The set of n's for which (6.2) holds is an infinite set of positive integers and, 
thus, is not bounded. Hence, there exists a positive integer n\ such that 
n\ > Nand l - 1 < xn ,' It follows that 

where n\ > N. (6.4) 

Now, a positive integer N2 exists such that 

(6.4') 

Let N~ = max{n\,N2} and N.J.' = N2 + 1. Again, since 

for infinitely many n's, (6.5) 
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there exists among these n's one greater than N 2, n2 say, and we have 

where n, < n2 • (6.6) 

This procedure can be continued inductively to obtain a subsequence <xn) 
of <xn> such that 

- 1 - 1 
L - k < xnk < L + k for each positive integer k. (6.7) 

It is clear that xnk ~ L as k ~ + 00. Thus, L is a cluster point of <xn>. We 
ask the reader to prove that 1:. = lim Xn is also a cluster point of < xn> (Prob. 
6.1). 

PROB. 6.1. Prove: If <xn> is a bounded infinite sequence of real numbers, 
then 1:. =limxn is a cluster point of <xn)' 

PROB. 6.2. Prove: If <xn) is a bounded infinite sequence of real numbers, 
then L = lim Xn and 1:. = lim xn are respectively the greatest and least cluster 
points of <xn)' 

Remark 6.2. We call Theorem 6.1 the Bolzano- Weierstrass Theorem for 
sequences. The theorem which follows will be referred to as the Bolzano­
Weierstrass Theorem for sets. 

Theorem 6.2 (Bolzano-Weierstrass Theorem for Sets). Every bounded infi­
nite set of real numbers has at least one accumulation point. 

PROOF. Let S be a bounded infinite set of real numbers. We know that an 
infinite set contains a denumerable subset (Theorem 11.10.3). Let A ~ S, 
where A is denumerable. Then there is a one-to-one correspondence f 
between 7L + and A. Let xn = f( n) for each n E 7L + . This gives us an infinite 
sequence <xn) of distinct elements of S. Since S is bounded, so is <Xii)' By 
the Bolzano-Weierstrass Theorem for sequences, the sequence <xn) has a 
cluster point c. There exists a subsequence <xn) of <xn) such that xnk ~ c 
as k ~ + 00. The terms of this subsequence are all distinct (how do we 
know this?). Since there is a sequence of distinct elements of S converging 
to c, c is an accumuation point of S (Theorem V.3.3). 

It is often useful to know whether or not an accumulation point of a set 
is also a member of the set. Sets containing all their accumulation points 
constitute an important class. 

Def. 6.2. A set S ~ IR is called closed (in IR) if and only if it contains all its 
accumulation points. Using the notation S' for the derived set of S (see 
Remark V.3.2), the definition may be phrased as: S is closed in IR if and 
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only if Sf ~ S. Since all our sets will be in IR, we shall usually refer to a set 
simply as being closed or not closed without adding "in IR." 

EXAMPLE 6.4. A bounded closed interval [a, b] is a closed set. Let Xo be an 
accumulation point of [a,b]. We prove that Xo « b. Suppose that xo> b. 
Consider the neighborhood N(xo,xo - b) of Xo. Assume that x E N(xo, 
Xo - b) so that Ix - xol < Xo - b and, hence, b - Xo < x - Xo < Xo - b. 
The last inequalities imply that b - Xo < x - Xo and, hence, that x > b. 
This proves: If Xo > b, then the neighborhood N(xo,xo - b) and, therefore, 
the deleted neighborhood N*(xo,xo - b), of Xo contains no points of [a,b]. 
It follows that if Xo > b, then Xo is not an accumulation point of [a, b]. 
Hence, if Xo is an accumulation point of [a,b], then Xo « b. A similar 
indirect proof shows that if Xo is an accumulation point of [a, b], then 
a « Xo (carry out this proof). It follows that if Xo is an accumulation point 
of [a,b], then Xo E [a,b]. Since the bounded closed interval [a,b] contains 
all its accumulation points, it is a closed set. 

EXAMPLE 6.5. The bounded interval [a,b) is not a closed set since b is an 
accumulation point of [a,b) which is not in [a,b). 

PROB. 6.3. Prove: [a, + 00) and ( - 00, a], where a E IR, are closed sets. 

Remark 6.3. Clearly, IR is closed. The empty set 0 is also closed. For 
otherwise it would contain a point that is not an accumulation point of 0. 
This is impossible, for 0 has no elements. If Sf = 0, then S is closed, since 
then Sf = 0 ~ S, so that Sf ~ S. All finite subsets of IR are closed since 
their derived sets are empty (prove this). 

Theorem 6.3. A set S ~ IR is closed if and only if each converging sequence 
<Xn> of elements of S converges to a point of s. 

PROOF. Let S be a subset of IR having the property that each converging 
sequence <xn> of elements of S converges to a point of S. We prove that S 
is closed. Let Xo be an accumulation point of S. There exists a sequence 
<xn> of distinct points of S which converges to Xo (Theorem V.3.3.). By the 
assumption on S, Xo E S. This proves that Sf ~ S and, hence, that S is 
closed. 

Conversely, let S be a set that is closed in IR. Let <xn> be a sequence of 
points of S which converges to some point c. Suppose c is not in S. By the 
present assumption on S, c is not an accumulation point of S and some 
deleted €-neighborhood N*(c,€) exists containing no points of S. Since 
c f£. S to begin with, this implies that N(c,€) n S = 0. In turn, this implies 
that Xn f£. N(c,€) for all n. Thus, IXn - cl > € > 0 for all nand limxn 7'= c. 
This contradicts the assumption on the sequence <xn>. We must, therefore, 
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conclude that c E S. This proves that each converging sequence of ele­
ments of S converges to an element of S. This completes the proof. 

Of special importance are sets which are bounded and closed. 

Theorem 6.4. A nonempty set of real numbers which is closed and bounded 
from above has a maximum. 

PROOF. Let S ~ IR be nonempty, bounded from above and closed. This 
implies that S has a real supremum. Let p. = sup S. Let n be some positive 
integer so that p. - n - I < p.. Corresponding to n, there is an xn E S such 
that p. - n - 1 < xn ,;;; p.. This implies that 

p. = limxn . 

Thus, <xn> is a sequence of elements of S which converges to p.. Since S is 
closed, we know (Theorem 6.3) that p. E S. Accordingly, p. is the maximum 
of S (explain). 

PROB. 6.4. Prove: A nonempty set of real numbers that is closed and 
bounded from below has a minimum. 

Remark 6.4. Combining the results of Theorem 6.4 and Prob. 6.4, we have: 

Theorem 6.4'. A nonempty set of real numbers that is closed and bounded has 
a maximum and a minimum. 

7. Open Sets in IR 

Along with closed set in IR we consider sets which are open in R Before 
defining the notion of an open set we introduce the notion of an interior 
point of a set S ~ IR. 

Def. 7.1. If S ~ IR, then Xo E S is called an interior point of S if and only if 
there is an t:-neighborhood N(xo,t:) of Xo such that N(xo,t:) ~ S. 

EXAMPLE 7.1. A point of an interval [ which is not an endpoint of [ is an 
interior point of [ (see Fig. 7.l). Although this seems intuitively clear, we 
prove it for the case of an interval [ = [a, + (0), where a E R Let Xo be a 
point of [ which differs from a. We have Xo > a so that Xo - a > O. Take 
the neighborhood N(xo,xo - a) of xo' We prove that N(xo,xo - a) ~ [. 
Let x E N(xo,xo - a) so that Ix - xol < Xo - a and, therefore, a - Xo 
< x - Xo < Xo - a. This implies that x> a. But then x E [= [a, + (0). We 
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Xo 

(I ] 
a Xo - e Xo + e b 

Figure 7.1 

proved that x E N(xo,xo - a) implies x E I. This proves that N(xo'xo - a) 
r:;;" I. 

PROB. 7.1. Let 1= (- 00; b) where bE IR. Prove: If Xo E I and Xo -=1= b, then 
Xo is an interior point of I. 

PROB. 7.2. Let I = [a, b]. Prove: If a < Xo < b, then Xo is an interior point of 
I. 

PROB. 7.3. Prove: No endpoint of an interval is an interior point of an 
interval. 

PROB. 7.4. Prove: If Xo is an interior point of an interval I, then it is an 
accumulation point of I (Hint: see Prob. V.3.2). 

PROB. 7.5. Prove: No finite subset of IR has interior points. 

PROB. 7.6. Prove: The set Q of rational numbers has no interior points. 

Der. 7.2. A set S r:;;" IR is called open if and only if each of its points is an 
interior point of S, that is, if and only if for each Xo E S there exists some 
f-neighborhood N(XO, f) of Xo such that N(xo, f) r:;;" S. 

PROB. 7.7. Prove: An open interval is an open set. 

Remark 7.1. The set of real numbers is open. The empty set is open (why?). 

EXAMPLE 7.2. The bounded closed interval 1= (a,b] is not open. Indeed, 
bEl and b is not an interior point of I, that is, no f-neighborhood N (b, f) 
of b is contained in I. It is important to note that (a, b] is not closed either. 
Thus, there exist sets that are neither open nor closed. 

The next theorem relates open sets to closed ones. 

Theorem 7.1. A set G r:;;" IR is open if and only if its complement IR - G is 
closed. A set F r:;;" IR is closed if and only if its complement IR - F is open. 

PROOF. We prove the first statement. Assume that G r:;;" IR is open. We prove 
that its complement IR - G is closed. Let Xo be an accumulation point of 
IR - G. If Xo was in G, there would exist an f-neighborhood N(Xo,f) of Xo 
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such that N(xo, £) ~ G. Since N*(xo, £) ~ N(xo' E), the deleted £­
neighborhood N*(xo, £) is in G and contains no points of IR - G. This 
implies that Xo is not an accumulation point of IR - G and contradicts the 
assumption on xo' We conclude that Xo EO IR - G. Thus, IR - G contains all 
its accumulation points and is, therefore, closed. 

Conversely, assume that the complement IR - G of G is closed. Then 
IR - G contains all its accumulation points. Let Xo EO G so that Xo is not in 
IR - G. Accordingly, there exists a deleted £-neighborhood N*(xo, £) of Xo 
which contains no point of IR - G and, consequently, is a subset of G. For 
this £-neighborhood we have N(xo, £) = {xo} U N*(xo, £) ~ G. This means 
that if Xo EO G, then Xo is an interior point of G. Thus, each point of G is an 
interior point of G and G is open. 

We ask the reader to prove the second statement (Prob. 7.8). 

PROB. 7.8. Complete the proof of the last theorem by proving: A set F is 
closed if and only if its complement is open. 

Theorem 7.2. The intersection of two open sets is open. 

PROOF. Let G1 and G2 be open sets. Consider their intersection G1 n G2 • 

Let Xo EO G1 n G2, so that Xo EO G1 and Xo EO G2. This implies that there 
exist £-neighborhoods N(xo'£I) and N(XO'£2) of Xo such that 

N(xo'£I) ~ G1 and N(XO'£2) ~ G2 . 

But there exists an £-neighborhood N(xo,£) of Xo such that N(xo,£) 
~ N(xo'£I) n N(XO'£2) (Theorem V.3.l). Hence, 

N(xo,£) ~ N(xo'£I) n N(xO ,£2) ~ G1 n G2. 

Thus, each point X o of G1 n G2 is an interior point of G1 n G2 , and 
G1 n G2 is open. 

PROB. 7.9. Prove: If FI and F2 are closed sets, then their union is closed. 

Theorem 7.3. The intersection of any family of closed sets is closed. 

PROOF. Let IJ be a family of closed sets. We will prove that nIJ is closed. 
Let Xo be an accumulation point of nIJ. That is, let 

XoEO(nqJ)'. (7.1) 

Let F EO IJ. By properties of intersections this implies that 

nIJ~~ r~ 

But S ~ T ~ IR implies S' ~ T' (Prob. V.3.8) and, hence, by (7.2), 

(n~' ~ F' ~ F. (7.3) 

Here F' ~ F holds because each F EO IJ is closed. In view of (7.3) we see 
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that (n§")' is a subset of every FE§". Hence, 

(n'!J), ~ n§"o 

This proves that n§" is closed. 

PROB. 7.10. Prove: The union of any family of open sets is open. 
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PROB. 7.11. Prove: If f is a function which is continuous on IR and c E IR, 
then the sets 

A={XElRlf(x»c}, B= {xElRlf(x)';;; c}, E={XElRlf(x)=c} 

are all closed and the sets 

F={xElRlf(X»c}, G={xElRlx<c} 

are open. 

8. Functions Continuous on Bounded Closed Sets 

PROB. 8.1. Prove: A bounded closed interval [a, b] is a bounded closed set. 

Theorem S.l. A function continuous on a bounded closed set is bounded. 

PROOF. Let f be continuous on the bounded closed set S. Suppose f is not 
bounded. This implies that corresponding to each positive integer n, there 
exists an Xn E S such that 

(8.1 ) 

This gives us a sequence <xn> of elements of S for which (8.1) holds. Since 
S is bounded, <xn> is a bounded sequence of elements of S. As such, it has 
a cluster point c. There exists a subsequence <xn) of <xn> such that xnk ~ c 
as k~ + 00. Using (8.1), we obtain 

If(xnJI > nk > k for each positive integer k. (8.2) 

This means that the sequence <f(xn» is not bounded. Since S is a closed 
set and <xn) is a sequence of elements of S converging to c, we have c E S. 
This implies that f is continuous at c and, therefore, sequentially continuous 
at c. It follows that f(xn)~ f(c) as k~ + 00. Thus, <f(xn» converges. 
Consequently, it is a bounded sequence. This contradicts our previous 
conclusion, i.e., that <f(xn» is not bounded. Therefore, we conclude that f 
is bounded. 

PROB. 8.2. The function f defined as 

f(X)-H if O<x';;;l 

if x = 0 
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is defined on the bounded closed set [0, I] and is not bounded. Reconcile 
this with Theorem 8.1. 

PROB. 8.3. The function f, where 

f( x) = I 
~ 

for -I < x < I, 

is continuous on the bounded set (- I; I) but is not bounded. Reconcile 
this with Theorem 8.1. 

Theorem 8.2. A function which is continuous on a bounded closed set has a 
range which is bounded and closed. 

PROOF. Let f be continuous on the bounded closed set S. By Theorem 8.1 
we know that f and, hence, its range 0t(j), is bounded. We prove that 0t(j) 
is a closed set. Let <Yn) be a sequence of elements of 0t(j) such that Yn ~ Y 
as n ~ + 00. For each n there exists an Xn E S such that Yn = f(xn)' The 
sequence <xn) is a sequence of elements of S. Since S is bounded, the same 
is true of <xn). Hence, <xn) has a cluster point c and there exists a 
subsequence <xn) of <xn) which converges to c. Since S is closed, we have 
c E S.fis continuous at c andf(xn)~ fCc) as k~ + 00. But thenYnk ~ fCc) 
as k ~ + 00. Since Yn ~ Y as n ~ + 00 the subsequence <Yn) of (Yn) also 
converges to y. This yields Y = f(c) and, hence, Y E 0t(j). We proved: If 
<Yn) is a sequence of elements of 0t(j) converging to Y, then Y E 0t(j). 
This implies that 0t(j) is closed (Theorem 6.3). Thus, 0t(j) is closed and 
bounded, as claimed. 

Corollary 1. A real-valued function of a real variable which is continuous on a 
nonempty bounded closed set has a maximum and a minimum. 

PROOF. Let f be a function continuous on the bounded, nonempty, closed 
set S. By the hypothesis on f and by Theorem 8.2, the range 0t(j) of f is 
nonempty closed and bounded. This implies (Theorem 6.4') that 0t(j) has a 
maximum and a minimum. The maximum and minimum of 0t(j) are the 
maximum and minimum of f. 

Corollary 2. The range of a real-valued function of a real variable that is 
continuous on a bounded closed interval [a, b] and not constant there is the 
bounded closed interval [j(xo), f(x,)], where f(xo) and f(x,) are respectively 
the minimum and maximum of f. 

PROOF. By Corollary I above, f has a minimum f(xo),xo E [a,b] and a 
maximumf(x,), x, E [a,b]. Thus, 

for all x E [ a, bJ. (8.3) 
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If f(xo) = f(x\), then f(x) = f(xo) for all x E [a, b], that is, f is constant on 
[a,b]. But this is precluded by the hypothesis, so thatf(xo) <f(x\). By (8.3) 
we have 0t(j) ~ [j(xo), f(x\)]. By the intermediate-value property (recall 
that f is continuous on the bounded interval [a, b], and so has the interme­
diate-value property there), we have [j(xo), f(x\)] ~ 0t(j). We conclude 
that 0t(j) = [j(xo), f(x\)]. 

PROB. 8.4. Let f be given by means of f(x) = l/(l + x 2) for x E IR. This 
function is continuous on the closed set IR but its range (0, 1] (prove this is 
the range) is not closed. Reconcile this with Theorem 8.2. 

PROB. 8.5. Let f be defined as f( x) = x for - 1 < x < 1. This f is continuous 
on the bounded interval (- 1; 1) but has neither a maXImum nor a 
minimum there. Reconcile this with Corollary 1 above. 

PROB. 8.6. Define f as 

f(x)={~ if -1 < x < 1 
if x = ± 1. 

Here f is defined on the bounded closed interval [ - 1, 1] but it has neither a 
maximum nor a minimum there. Reconcile this with Corollary 1 above. 

9. Monotonic Functions. Inverses of Functions 

We first prove a lemma. 

Lemma 9.1. If I is an interval and a, b are accumulation points of I (possibly 
extended ones) such that a < b, then (a; b) ~ I. 

PROOF. We first consider the case where a and b are real. Assume that 
x E (a; b) so that a < x < b, b - x > 0, x - a > O. Since b - a > 0, there 
exist positive integers n\ and n2 such that 

b - a < x _ a and b - a < b - x. 
n\ n2 

Hence, 

(9.1 ) 

Since a and b are accumulation points of I, there exist points x \ and X 2 of I 
such that x\ E N*(a,(b - a)/n\) and x 2 E N*(b,(b - a)/n2) and, there­
fore, 

b-a and b - -- < X2 . 
n2 
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These and (9.1) imply that XI < X < x 2 • Since I is a convex set, it follows 
that X E [X I ,X2] ~ I and so x E I. Thus, (a; b) ~ I in this case. 

Next we consider the case a = - 00, bE IR. Assume that x E (a; b) = 
(- 00; b) so that - 00 < x < b. The deleted neighborhood (- 00; x) of - 00 

contains a point of I. Hence, there is XI E I such that XI < x. Let n3 be a 
positive integer such that n3 > 1. Then 

0< b - x < b - x (9.2a) 
n3 

and, therefore, 

(9.2b) 

Now the deleted neighborhood N*(b, (b - x)/ n3) contains a point x 2 of I. 
This point is such that 

(9.3) 

This and (9.2b) imply that x < x 2 . Thus, there exist XI and x 2 in I such that 
XI < X < x 2 • In view of the convexity of I, we see that X E I. This proves 
that ( - 00; b) ~ I. We ask the reader to prove the theorem for the remain­
ing cases (Prob. 9.1). 

PROB. 9.1. Complete the proof of Lemma 9.1 by proving it for the cases 
a E IR, b = + 00 and a = - 00, b = + 00. 

Theorem 9.1. If f is monotonically increasing on the interval I and a, bare 
accumulation points of I (possibly extended ones) such that a < b, then 
f(a +) and f(b -) exist in IR* and f(a + ) ..;; f(b -). (1) If bEl, then 
f(b - ) ..;; f(b). (2) If b fI. I, then f(b - ) E IR or f(b - ) = + 00 according to 
whether f is bounded from above or not. (3) If a E I, then f(a) ..;; f(a + ). (4) 
If a fI. I, then f( a + ) E IR or f( a + ) = - 00 according to whether f is 
bounded from below or not. 

PROOF. By Lemma 9.1, we have (a; b) ~ I. Clearly, a is an accumulation 
point of I from the right, while b is an accumulation point from the left 
(these are possibly extended). First assume thatfis bounded from above on 
I. Since (a; b) ~ I, this implies that f is bounded from above on (a; b) so 
that f has a real supremum there. Write 

L = sup f(x). (9.4) 
a<x<b 

Given E > 0, we have L - E < L, and there exists an x I such that a < x I 
< band 

(9.5) 
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If XI < X < b, we have a < X < band f(x l ) "" f(x) "" L. This and (9.5) 
imply that 

for XI < X < b. 

Hence: If E > 0 is given, there exists an X I E I such that 

If(x) - LI < E if XI < X < b. 

Whether b = + 00 or b E IR, this implies that 

f( b - ) = lim f( x) = L E IR 
x~b-

(9.6) 

(explain). In case (1), where bEl, we have f(x) "" f(b) for a < X < b. 
Therefore f(b) is an upper bound for f«a; b». This implies that f(b - ) = L 
"" f(b). This proves (1). In case (2), if f is bounded from above, then (9.6) 
holds and so f( b - ) E IR. On the other hand, if, in case (2), f is not 
bounded from above, given B there exists an x' in I such that f(x') > B. 
Here x' < b since b is a right endpoint (possibly extended) of I. Since f is 
monotonically increasing, it follows that if x' < x < b, then f(x) ;;;. f(x') 
> B. We conclude that 

f(b-)= lim f(x) = +00. 
x~b-

(9.7) 

This proves the second part of case (2). Thus, cases (1) and (2) are 
dispensed with. 

To deal with cases (3) and (4), we assume first that f is bounded from 
below on I. Since (a; b) ~ I, this implies that f is bounded from below on 
(a;b) so thatfhas a real infimum there. We put 

1= inf f(x). 
a<x<b 

(9.8) 

Given E > 0, we note that I < I + E and that an X2 exists such that 
a < X2 < band 

(9.9) 

If a < x < X 2 we have a < x < b and I"" f(x) "" f(x2). These and (9.9) 
imply that 

[""f(x)<I+E for a < x < x2 • 

Hence: If € > 0 is given, there exists an X2 E I such that 

If(x) - II < E if a < x < x 2 • 

We conclude that 

f(a+)= lim f(x)=/EIR. 
x~a+ 

(9.10) 

The reader can now complete the proofs of cases (3) and (4). These proofs 
are analogous to those of cases (1) and (2). 
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It remains to prove that f(a + ) ..;; f(b - ). This is trivially true if f(a + ) 
= - 00 or f(b - ) = + 00. The cases f(a + ) E ~,f(b - ) E ~ are treated by 
comparing (9.4) and (9.8). These imply I..;; L and, therefore, f(a + ) = I 
..;; L = f(b -). 

FROB. 9.2. State and prove the dual of Theorem 9.1 for the case where f is 
monotonically decreasing on an interval I and a, b are extended accumula­
tion points of I such that a < b. 

Corollary (of Theorem 9.1). Iff is monotonically increasing on an interval I 
and Xo is an interior point of I, then f(xo - ) and f(xo + ) are finite and 
f(xo - ) ..;; f(xo) ..;; f(xo + ). 

PROOF. Since Xo is assumed to be an interior point of I, there exist XI and X2 

in I such that XI < Xo < X2 • Since, in this case, Xo is a two-sided accumula­
tion point of I, Theorem 9.1 implies that f(xo - ) ..;; f(xo) and f(xo) 
..;; f(xo + ). This completes the proof. 

Inverses of Functions 

Theorem 11.11.1 states that a strictly monotonic real-valued function of a 
real variable has a strictly monotonic inverse f- I. Here we examine the 
effect of requiring that a strictly monotonic function is also continuous. 

EXAMPLE 9.1. Consider f, where 

f(x) = {~+ 1 ~~ ~:: ~ 1, 
x-I if x>1. 

(see Fig. 9.1). The domain of f is 6f)(j) = (- 00; 1) U {O} U (1; + 00). Since 

y 

(-1,0) 

(1,0) x 

Figure 9.1 
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x 

(0,1) 

y 

(0, -1) 

Figure 9.2 

o is an isolated point of G[)(j), f is continuous at O. f is also continuous also 
at x E G[)(j), x =1= O. (Prove this.) Thus, f is a continuous function. The 
range of f is IR. Accordingly, f has an inverse f- I defined as: 

f-I(y) = y - 1 if Y <0, 
=0 if y=O, 

=y+l if y>O 

(see Fig. 9.2). 
We note that f- I is discontinuous, since it is not continuous at y = 0 

(prove this). Thus, we can see that a function may be discontinuous but its 
inverse may be continuous (j-I is discontinuous but its inverse f is 
continuous). 

Theorem 9.2.* If f is strictly monotonic on an interval I, then it has an inverse 
f - I on f(J) which is strictly monotonic and continuous. 

PROOF. We prove the theorem for the case where f is increasing. The proof 
for the decreasing case is similar. 

Assume that f is strictly monotonically increasing on the interval I. 
Therefore, f has an inverse f- I defined on ~(j) = f(J). Let Yo E f(J). 
There exists Xo E I such that Yo = f(xo) and Xo = f-I(yo)' Since Xo E I and 
I is an interval, Xo is either (1) an interior point or (2) a left endpoint of I, 
or (3) a right endpoint of I. 

We examine case (1), where Xo is an interior point of I. In this case, Xo is 
a two-sided accumulation point of I. Given E > 0, there exist XI and X 2 in I 
such that Xo - E < XI < Xo < x2 < Xo + E. Put YI = f(x l ) and Y2 = f(x2)· 

• Burril-Knudsen. Real Variables, Holt, Rhinehart, Winston, New York, p. 225. 
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We have 
(9.11) 

so that YI < Yo < h· Therefore, Yo - YI > 0, h - Yo > o. Put 81 = Yo - YI 
and 82 = h - Yo' Then YI = Yo - 81 and h = Yo + 82 , where 81 > 0 and 
82 > O. Also put 8 = min{8 1,82 } so that 8> 0 and 

YI = Yo - 81 ..; Yo - 8 < Yo < Yo + 8 ..; Yo + 82 = h . (9.12) 

Take Y E N(Yo,8) and Y Ef(1). There exists x E I such that Y = f(x), 
x = f-I(y), and 

YI ..; Yo - 8 < Y < Yo + 8 ..; h· 

Accordingly, if £ > 0 is given, we have 

xo- £ < XI = f-I(YI) <f-I(y) <f-I(h) = X 2 < x o+ £ 

and, therefore, 

If-I(y) - f-l(Yo)1 = If-I(y) - xol < £ 

for Y E N(yo, 8) and y E f(I). (9.13) 

It follows thatf-I is continuous at Yo in case (1). We leave the proofs that 
f- I is continuous at Yo in cases (2) and (3) to the reader (Prob. 9.3). Thus, 
f- I is continuous at each Yo E f(1) and is, therefore, continuous on f(1). 

PROB. 9.3. Complete the proof of Theorem 9.2 by proving that the f- I there 
is continuous at Yo, where Xo = f-I(yo) is either (2) a left endpoint of I or 
(3) a right endpoint of I. 

Theorem 9.3. Iff is strictly monotonic and continuous on an interval I, then 
f( I) is an interval, f - I exists and is strictly monotonic and continuous on f( I). 

PROOF. The continuity of f on an interval I implies that its range f(1) is 
either a point or an interval (Remark 4.2). However, since f is strictly 
monotonic on the interval I,f(1) cannot be a point (explain). The existence, 
strict monotonicity, and continuity of the inverse is a consequence of 
Theorem 9.2. 

EXAMPLE 9.2. In Theorem 5.7 we saw that the natural logarithm is continu­
ous (see Remark 5.2). Theorem 9.3 furnishes us with another proof of its 
continuity. The function In is defined as the inverse of the function E, 
where E(x) = eX for all x E IR. The latter is strictly monotonically increas­
ing on the intervallR = (- 00; + 00) and continuous there, so Theorem 9.3 
guarantees the continuity and the strict monotonically increasing character 
of In, the inverse of E on its range 01,(E) = (0; + 00). 

PROB. 9.4. Prove: If f is one-to-one and continuous on an interval I, then it 
is strictly monotonic on I. 
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10. Inverses of the Hyperbolic Functions 

We apply the results of Section 9 to the hyperbolic functions to obtain their 
inverses. 

Inverse Hyperbolic Sine 

The domain of sinh is IR. It is strictly monotonically increasing (Prob. 
V.2.1O). By Prob. V.7.4 we also know that 

lim (sinhx) = - 00 and lim (sinh x) = + 00. 
x~-oo X~+OO 

(10.1 ) 

By Prob. 3.8, sinh is continuous. This, (10.1), and the intermediate-value 
theorem imply that the range gt(sinh) of the hyperbolic sine is IR. Theorem 
9.4 implies that sinh has a strictly monotonically increasing and continuous 
inverse defined on gt(sinh). This inverse is written as sinh -lor as Arcsinh, 
and we call it the inverse hyperbolic sine or arc hyperbolic sine. Given x E IR 
there exists a unique y E IR such that 

x = sinhy and y = sinh-Ix. (10.2) 

We can obtain an explicit expression for sinh - IX in terms of functions 
defined earlier. Thus, if x is given, then the y such that 

. h eY - e - Y e2y - 1 
x=sm y= 2 =2'eJ' 

satisfies 

e2y - 2xeY - 1 = 0 or (ey )2_ 2xeY - 1 = O. 

This implies that 

NoweY > 0 and 

eY = 2x ± V4x2 + 4 = x ± Vx2 + 1 . 
2 

(10.3) 

(10.4) 

x - vx2 + 1 < 0 and x + vx2 + I > 0 

(prove 10.5). Hence, y in (10.4) must satisfy 

for x E IR (10.5) 

eY = x +.Jt + x 2 for x E IR. 
This implies that 

y = In( x + VI + x 2 ) for x E R (10.6) 

PROB. 10.1. Verify by direct substitution that 

sinh(ln(x+Vl+x2))=x for xER 
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From the above it follows (explain) that 

sinh-Ix = In(x +~) 

Inverse Hyperbolic Cosine 

for x E II\t (10.7) 

Since cosh( - x) = cosh x for x E IR, the hyperbolic cosine function is not 
one-to-one, so we define a principal inverse hyperbolic cosine. 

The hyperbolic cosine is strictly monotonically increasing on [0, + 00) 
(Prob. V.2.11) and is continuous (Prob. 3.8). We also note that cosh 0 = 1, 
and 

lim coshx= + 00. 
X-----»+OO 

With the aid of the intermediate-value theorem we infer that cosh maps 
[0, + 00) onto [1, + 00). We restrict the hyperbolic cosine to [0, + 00) and 
conclude, using The0;"em 9.3, that this restriction has a unique continuous 
and strictly monotonically increasing inverse defined on [1, + 00). We call 
the inverse of this restriction the principal inverse hyperbolic cosine or the 
principal arc hyperbolic cosine, and write it as cosh -lor as Arccosh. Thus, if 
x ;;;, 1, then cosh - IX is defined as the unique y ;;;, 0 such that 

eY + e - Y = cosh Y = x 
2 ' 

which implies that 

e2y - 2xeY + 1 = o. 
This yields 

eY=x±~ for x;;;, 1. 

Since y ;;;, 0, we know that eY ;;;, 1. However, for x ;;;, 1 we have 

~ -vix+T <0 and ~ +vix+T>0. 

( 10.8) 

(10.9) 

We multiply each of the above inequalities by ,jx - I and obtain 

x-I -~ .;; 0 and x-I + ~ ;;;, 0, so that, if x ;;;, 1, then 

x-~';;1 
and 

x+~;;;, 1. 

Since y ;;;, 0, it follows that the x and y in (10.8) satisfy 

eY=x+~, 

where y ;;;, 0 and x ;;;, 1. Hence, y = In(x + ~), that is, 

y = Arccoshx = cosh -IX = In( x + Jx 2 - 1 ), 

where x ;;;, 1. 

(1O.10a) 

(lO.lOb) 

(10.11) 

(10.12) 
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PROB. 10.2. Recall the definition of sech by means of 

1 sechx = -- for x E IR 
cosh x 
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in Prob. V.2.8. Prove that sech is strictly decreasing on [0, + 00). Prove: 
sech maps [0, + 00) onto (0, I]. Define the principal inverse hyperbolic secant 
as the inverse of the restriction of sech to [0, + 00) and write it as Arcsech 
or as sech- I. Prove: If ° < x.;;; 1, then 

Arcsechx = sech-Ix = COSh-I ~ = In( 1 +~ ). 

PROB. 10.3. In Prob. V.2.8 the hyperbolic tangent was defined as 

tanh x = sinh x 
cosh x 

for x E IR. 

Prove: tanh is strictly monotonically increasing and continuous and that its 
range is ( - 1; 1). Define the inverse hyperbolic tangent or the arc hyperbolic 
tangent as the inverse of tanh. Prove: If -1 < x < 1, then 

Arctanh x = tanh -IX = lin 1 + x . 
2 1 - x 

PROB. 10.4. Recall the definitions of the hyperbolic con tangent and the 
hyperbolic cosecant: 

coth x = c?sh x 
smhx 

and csch x = ~h 
sm x for x * 0. 

Prove that these are one-to-one functions. Using the obvious notation, 
prove that 

coth - IX = lin x + 1 
2 x-I 

for Ixl> 1 

and 

csch-1x = sinh-I 1 = In( 1 + _1_~) 
x x Ixl 

for x * 0. 

11. Uniform Continuity 

When we test a function for continuity on a set A ~ ®(f) we check to see if 
it is continuous for each Xo EA. Thus, given € > 0, we look for a ~ > ° 
such that if Ix - xol < ~ and x E ®(j), then If(x) - f(xo)1 < €. The ~ is not 
unique, for once one is found, any smaller one will do. The ~ also depends 
on € and will, in general, depend on Xo. For example, let f be given by 

1 f(x) = -
x 

for x> 0. 
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Here 6D(f) = (0; + 00). We prove that f is continuous at Xo > O. Suppose 
£ > 0 is given. We wish to find a 8 > 0 such that if Ix - xol < 8 and x > 0, 
then 

We first take x such that Ix - xol < xo/2 so that 

1 Xo Xo 
2" Xo = Xo - 2 < x < Xo + 2 . 

Note that x > xo/2 > 0 holds for such x and, hence, that 

0<1<1... 
x Xo 

In short, if Ix - xol < xo/2, then x > 0 and 

1
1 - 1 1_ Ix - xol _ Ix - xol 2 I - I - - - - <- x Xo 
x Xo Ixlixol xXo x6 . 

Here the right-hand side-and therefore also the left-hand side-will be less 
than £ if Ix - xol < (x6/2)£. We, therefore, take 8 such that 

{ Xo x6 } o < 8 ,;;; min 2' 2 £ 

and x such that x > 0 and Ix - xol < 8. This will imply that 

Xo 
Ix - xol <2 

and it will follow that for such x 

X2 

and I x - xol < 20 £, 

2 

11 - ...!..I < 1.. Xo £ = €. 
X Xo x6 2 

Hence, f is continuous at each Xo E 6D(f). 
However, for the same £ > 0, the closer Xo is to 0, the smaller the 

corresponding 8 (see Fig. 11.1). 
It is not always the case that 8 depends on xo. For example, let f be given 

by 

f(x)=2x+3 for each x E IR. 

If Xo E IR and £ > 0 are given, then taking x such that Ix - xol < 8, where 8 
is such that 0 < 8 ,;;; £/2, yields 

If(x) - f(xo)1 = 12x + 3 - (2xo + 3)1 = 21x - xol < 21- = €. 

Here, for a given £ > 0, 8 does not depend on xo. (See Fig. 11.1(b).) 
These distinctions are expressed by means of the notion of uniform 

continuity. 
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y 

{ -~:----

28 _~ ~ _____________ ~-_ 

Xo - fJ Xo Xo + fJ 

(a) (b) 

Figure 11.1 

Def. 11.1. f is said to be uniformly continuous on a set A if and only if (1) 
A ~ GD(j) and (2) for each £ > ° there exists a 8 > ° such that if XI E A 
and X2 E A and IXI - x21 < 8, then If(x l ) - f(x 2)1 < £. (Here 8 depends on 
£ only.) Iff is uniformly continuous on GD(j), then we say that f is uniformly 
continuous. 

PROB. 11.1. Prove: If f is uniformly continuous on a set A, then it is 
continuous on A. 

EXAMPLE 11.1. The sine function is uniformly continuous. Here A 
= GD(sine) = IR. By Example 1.4, we have: If XI and X 2 are in IR, then 

Isinxi - sinx21 .;; IXI - x21· 

Hence, if £ > ° is given, we take 8 such that ° < 8 .;; £ to obtain: If 
IXI - x21 < 8, then 

PROB. 11.2. Prove: The cosine function is uniformly continuous. 

PROB. 11.3. Prove: If A = [1, + (0), then the f such that f(x) = 1/ X for 
X E A is uniformly continuous on A. 

PROB. 11.4. Prove: If A = [0, 1] and f is given by f(x) = x 2 for x E A, then f 
is uniformly continuous on A. (In Example 11.2 we see that if f is given by 
f(x) = x 2 and we take A = GD(j) = IR, then f is not uniformly continuous.) 

FROB. 11.5. Prove: If g is given by IX for x E [0, + (0), then g is uniformly 
continuous (cf. Prob. 1.4). 
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The next theorem gives a sequential criterion for uniform continuity. 
This will enable us, at least in some cases, to determine when a function is 
not uniformly continuous. 

Theorem 11.1. f is uniformly continuous on A ~ 6fJ(f) if and only if for any 
two sequences <x~> and <x;> of A such that x~ - x; ~ 0 as n ~ + 00 we 
have f(x~) - f(x;)~O as n ~ + 00. 

PROOF. Assume that f is uniformly continuous on A ~ 6fJ(f). Let <x~> and 
<x;> be sequences of elements of A such that x~ - x;~O as n~ +00. In 
view of the uniform continuity of f on A, given t: > 0, there exists a 8 > 0 
such that 

Since x~ - x; ~ 0 as n ~ + 00, there exists an N such that 

for x~, x; in A and n > N. 

Because of (1Ll), this implies that 

If(x~) - f(x;)1 < t: if n > N, 

and we conclude thatf(x~) - f(x;)~O as n~ + 00. 

N ow assume that f is not uniformly continuous on A ~ 6fJ (f). By Def. 
11.2, this implies that some t: > 0 exists such that for each 8 > 0 there exist 
x' and x" in A such that 

lx' - x"l < 8 and If(x') - f(x")1 > t: > o. ( 11.2) 

It follows that, corresponding to each positive integer n, there exist x~ and 
x; in A such that 

Ix~ - x;1 < ~ and If(x~) - f(x;)1 > t: > o. (11.3) 

Thus, <x~> and <x;> are sequences of elements of A such that x~ - x; ~ 0 
as n~ + 00, butf(x~) - f(x;)~O as n~ + 00 is false. We conclude that if 
for any sequences <x~> and <x;> of A such that x~ - x~ ~ 0 we have 
f(x~) - f(x;)~O, thenfis necessarily uniformly continuous on A. 

EXAMPLE 11.2. We prove that f, where f(x) = x 2 for x E IR is not uniformly 

continuous. Let x~ =..f1l+T and x~' = + [,I for each positive integer n. We 
have 

x' - x" =..f1l+T -[,I = 1 ~O 
n n ..f1l+T + [,I 

as n~ + 00 and 

lJ(x~) - f(x;)1 = IX~2 - x;21 = In + 1 - nl = 1 

for all n so that f(x~) - f(x~)~O as n ~ + 00. By Theorem ILl, f is not 
uniformly continuous on IR = 6fJ(j). 
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PROB. 11.6. Use Theorem 11.1 to prove that f, where f( x) = 1 I x for x > 0, 
is not uniformly continuous (Hint: consider the sequences <x~> and <x:>, 
where 

x' = 1 
n n 

and x" = _I_ 
n n + 1 for each n). 

We show that there are several respects in which uniformly continuous 
functions are "better behaved" than continuous functions that are not 
uniformly continuous. We first show that there exists a function continuous 
on a set A which maps some Cauchy sequence of elements of A into a 
sequence which is not a Cauchy sequence. 

EXAMPLE 11.3. Let f: (0, 1] --? IR be defined as 

f(x) = 1 for x E(O, 1 J. x 
The sequence <xn> given by Xn = lin for each positive integer n converges 
to 0, and so is a Cauchy sequence of elements of (0, 1]. On the other hand, 
in spite of the continuity of f, the sequence <f(xn), 

1 f( xn) = X = n for each positive integer n, 
n 

is not bounded and diverges to + 00, and so is not a Cauchy sequence. 
A uniformly continuous function on a set A never behaves in this way. 

Specifically, 

Theorem 11.2. Iff is uniformly continuous on a set A t;;;; 6fJ(f) and <xn> is a 
Cauchy sequence of elements of f, then the sequence <f(xn» of images of 
<xn> is a Cauchy sequence. 

PROOF. Let <xn> be a Cauchy sequence of elements of A and <f(xn» the 
sequence of images of <xn>. Let E > ° be given. Since f is uniformly 
continuous on A, there exists a l) > ° such that if XI and X 2 are in A and 
IXI - x21 < l), then If(x l ) - f(x 2)1 < E. There exists an N such that if 
m > Nand n > N, then IXm - xnl < l). Hence, If(xm ) - f(xn)1 < E from 
m> Nand n > N. Clearly, <f(xn» is a Cauchy sequence. 

Remark 11.1. The function f of the last example maps the bounded set (0, 1] 
onto the unbounded set [1, + 00) even though it is continuous. This cannot 
occur when a function is uniformly continuous. In fact, 

Theorem 11.3. If f is uniformly continuous on a bounded set A, then f is 
bounded on A. 

PROOF. Suppose that f is not bounded on A. This implies that correspond­
ing to each positive integer n there exists an xn E A such that 

If(xn)l>n. (11.4) 
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Since A is bounded and Xn E A for all n, the sequence <xn> is bounded. By 
the Bolzano-Weierstrass Theorem for sequences, <xn> has a cluster point c 
and there exists a subsequence <xn) of <xn> such that x nk ~ c as k ~ + 00. 

This implies that <xn) is a Cauchy sequence of elements of A. By Theorem 
11.2 it follows that <f(xn» is a Cauchy sequence. As such, <f(xn» is a 
bounded sequence. But this is impossible. In fact, since (see (11.3» 

If( xnJI > nk ;;;. k for each positive integer k, 

<f(xn» is not bounded. Because of this contradiction we conclude that f is 
bounded on A. 

Theorem 11.4. Iff is uniformly continuous on a bounded interval of the form 
(a; b), then f( a + ) exists and is finite. 

PROOF. Given E > 0, there exists a 8 > ° such that if XI and X2 are in (a, b) 
and 

( 11.5) 

then 

(11.6) 

Using the above 8, we take x' E N*(a,8/2) n (a,b) and x" E N*(a,8/2) n 
(a,b). For such x' and x", we have x' E (a,b), x" E (a,b] and 

lx' - x"l .;;; lx' - al + Ix" - al < Q + Q = 8 
2 2 

so that (11.5) and, therefore, also (11.6), hold with XI = x', x 2 = x". Thus, 
given E > 0, we have that x' E N*(a,8/2) n (a,b) and x" E N*(a,8/2) n 
(a,b) imply that If(x') - f(x")1 < E. By the Cauchy criterion for functions, 

lim f(x) = L 
x-->a 

for some L E IR. 

Since for all x E (a; b) we have x> a, this limit is one from the right as 
x ~ a and we have f( a + ) = L E IR, as claimed. 

PROB. 11.7. Let f be uniformly continuous on a bounded interval of the 
form [a,b). Prove: f(b -) exists and is finite. 

Theorem 11.5. Iff is continuous on a bounded closed set, then f is uniformly 
continuous there. 

PROOF. Let F be a bounded closed subset of IR and suppose f is continuous 
on F but not uniformly continuous there. The last implies that an E > ° 
exists such that for each 8 > 0, there exist x I and X 2 in F such that 

IXI - x21 < 8 but If(xl) - f(x 2)1 ;;;. E > 0. 

This implies that corresponding to each positive integer n, there exist x~ and 
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x; such that 

Ix~ - x;1 < ~ but IJ(x~) - J(x;)1 ~ £ > O. (11.7) 

Thus, <x~> is a sequence of elements of the bounded set F and is, therefore, 
a bounded sequence. As such, <x~> has a cluster point c and a subsequence 
<x~) of <x~> exists such that X~k ~ C as k~ + 00. Since F is closed, c E F. 
We obtain 

( 11.8) 

and 

IJ(x~.) - J(x~)1 ~ £ > 0 (11.9) 

for each positive integer k. By (11.7), we have limk -> + OO(X~k - x~) = 0 and, 
therefore, 

lim x" = lim (x" - x' + x' ) 
k--'> + 00 nk k--'> + 00 nk nk nk 

=O+c 
=c 

so that x~ ~ c as k ~ + 00. Since c E F, J is continuous at c. Since x~ ~ c, 
X~k ~ C as k ~ + 00, it follows that 

kEIJ 00 J( x~) = J( c) = kEIJ 00 J( x~J 

These yield limk->+oo(f(x~) - J(X~k» = O. This is impossible by (11.9). 
Hence, J is 'necessarily uniformly continuous on F. 

Corollary. A function which is continuous on a bounded closed interval is 
uniformly continuous there. 

PROOF. Exercise. 

PROB. 11.8. Prove: Each polynomial function on IR is uniformly continuous 
on a bounded closed interval. 

PROB. 11.9. Prove: J, where J(x) = va2 + x2 for all x E IR, a =1= 0, is uni­
formly continuous. 



CHAPTER VII 

Derivatives 

1. The Derivative of a Function 

Limits often arise from considering the derivative of a function at a point. 

Def. 1.1. If f is a real-valued function of a real variable and a is an interior 
point of 6fJ(j), then f is said to be differentiable at a if and only if 

lim f(x) - f(a) 
x~a X - a (1.1 ) 

exists and is finite. When f is differentiable at a, the limit in (1.1) is called 
the derivative off at a and will be written as j'(a) or (Dj)(a). Thus, 

(Df)(a) = j'(a) = lim f(x) - f(a) . (1.2) 
x~a x - a 

[We pause in our development to remind the reader that derivatives can 
be used to define the tangent line to the graph of a function. The slope of a 
line T' (see Fig. 1.1) joining (a, f(a» and (x, f(x», x =1= a, is 

f(x) - f(a) 
x-a 

If f is differentiable at a, then 

j'(a) = lim f(x) - f(a) . 
x~a X - a 

We define the tangent line T to the graph of f at (a, f(a» as the line 
through (a, f(a» having the slope j'(a). The equation of the line Tis 

y = f(a) + j'(a)(x - a), x E IR.] (1.3) 
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y T 

a x x 

Figure l.l 

Del. 1.2. The derivative of f or its derived function is the function l' whose 
domain 6D (j') is the set 

6D(f') = {x E 6D(f) I f is differentiable at x} 

and whose value at x is 1'(x). We will also write the derivative of f as Df. 
Other notations for the derivative of a function will also be used. 

Other Notation for Derivatives 

The following is a slight variant of (1.2). Put x - a = h, then x = a + hand 

f '( )=1· f(a+h)-f(a) 
a 1m h . 

h--+O 
(1.3') 

The traditional notation introduced by Leibniz uses the notation y for 
the function f and dy / dx for its derivative. In this notation one often writes 
x +!::.x for a value different from x. !::.X is called the increment or the 
change in x. The increment in y induced by the increment !::.X in x is defined 
as 

!::.y = f(x + !::.x) - f(x). 

dy / dx is given by 

dy . !::.y . f(x+!::.x)-f(x) 
-=ltm-=hm 
dx ~x--+o!::.x ~x--+o !::.X ' 

where !::.X =1= o. 
Some books use 

df 
dx 

for l' and y' for 
dy 
dx· 

(1.4) 

(1.5) 
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In the Leibniz notation the derivative of the function y at a is written as 

( dy ) or as dYI 
dx x=a dx x=a' 

A convenient notation we shall often use for the derivative of f at x is 

d0:) = f'(x). 

EXAMPLE 1.1. From Corollary 1 of Theorem V.7.3 we know that 

lim eh - 1 = 1. 
h~O h 

It follows that if x E IR, then 

(1.6) 

de X = lim ex + h - eX = timex eh - 1 = eX lim eh - 1 = eXI = eX 
dx h~O h h~O h h~O h ' 

so that 

EXAMPLE 1.2. We prove that 

dsinx = cosx 
dx 

By Theorem V.4.2, 

If h =t= 0, then 

lim sinh = 1 and 
h~O h 

for x E IR. 

for x E IR. 

lim cosh - 1 = O. 
h~O h 

sin( x + h) - sinx 

h 
sinxcosh + cosxsinh - sinx 

h 

= sinx( cost - 1 ) + cosx si~h . 

This implies that 

(1.7) 

(1.8) 

dsinx . sin(x + h) - sinx . (. cosh - 1 . h) -- = hm = hm SInX + cosx SInh 
dx h~O h h~O h 

= (sinx)O + (cosx)(I) 

= cosx, 
which proves (1.8). 

FROB. 1.1. Prove that 

d(cosx) 
--'---:--'- = - sin x. 

dx 
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PROB. l.2. (a) Let e be the constant function whose value is e for all x E IR. 
Prove: 

de =0 dx . 

(b) Let f be the identity function in IR, i.e., f(x) = x for x E IR. Prove: 
d(x)/ dx = 1 for x E IR. 

In what follows it will be convenient to use the notion of a one-sided 
interior point of a subset of IR. 

Del. 1.3. If Xo ESC; IR, then we call Xo an interior point of S from the right 
when some f-neighborhood N + (XO,f) = [xo,xo + f) of Xo from the right is 
contained in S. Dually, Xo ESC; IR will be called an interior point of S from 
the left when some f-neighborhood N _ (xo, f) = (xo - f,XO] of Xo from the 
left is contained in S. 

For example, let [a,b] be some bounded closed interval. The point a is a 
left endpoint of [a,b] and is an interior point of [a,b] from the right. Also, b 
is an interior point of [a,b] from the left. Certainly, an interior point of a 
set S is an interior point of S from the right and from the left. However, an 
interior point of a set from one side need not be an interior point of the set. 

We now define one-sided derivatives at a point in the obvious way. 

Der. 1.4. Let f be a real-valued function of a real variable and a an interior 
point of 6fJ(f) from the right. If 

lim f(x) - f(a) (l.9) 
x--+a+ X - a 

exists and is finite, then we say that f is differentiable at a from the right, call 
the limit the derivative off at a from the right, and write 

fl (a) = lim f(x) - f(a) . (1.10) 
JR x--+a+ X - a 

Similarly, if a is an interior part of 6fJ(f) from the left and 

lim f(x) - f(a) 
x--+a- X - a 

(1.11) 

exists and is finite, then we say that f is differentiable at a from the left, call 
this limit the derivative off at a from the left, and write 

fl( ) _ l' f(x) - f(a) 
JL a - 1m . 

x--+a- X - a 
(1.12) 

PROB. l.3. Prove: If f is a real-valued function of a real variable and a is an 
interior point of 6fJ(f), then (1) f is differentiable at a if and only if both 
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j{(a) and j~(a) exist, are finite, and equal, that is, j{(a) = j~(a); (2) 
j'(a) = jL'(a) = j~(a) if and only if j{(a) = j~(a). 

EXAMPLE 1.3. We prove: If a EO IR, then, for x > 0, 

d;x" = ax,,-I. ( 1.13) 

We use Prob. V.7.1. By part (a) of that problem we have: If a .;;; ° or a > 1, 
and x > 0, x + h > 0, then 

ax,,-Ih = ax,,-I(x + h - x) ';;;(x + h)OI._ x"';;; a(x + hr-I(x + h - x) 

= a(x + hr-1h. 

This means that if x > 0, x + h > 0, a .;;; ° or a > 1, then 

(1.14) 

It follows that 

-I (x+hr- 1- x " 
ax"';;; h .;;; a(x + hr- I 

(x+hr- 1- x " 
ax,,-I> h > a(x + hr- I 

if h > 0, 
( 1.15) 

if -x < h < 0. 

Since, for x> 0, (x + hr-l~xOl.-1 as h~O (Theorem V.7.2), the first row 
of inequalities in (1.15) yields 

. (x+hr- 1- x " 
hm = ax,,-I for x> 0, a';;; ° or a > 1, 
h~O+ h 

and the second row of inequalities yields 

. (x+hr- 1- x " 
hm = ax,,-I 
h~O- h 

for x > 0, a';;; ° or a > 1. 

Since the last two one-sided limits are equal, (1.13) holds for a .;;; ° or 
a > 1. To complete the proof of (1.13) for ° < a < 1, all we need do is use 
part (b) of Prob. V.7.1 and reason as we did here (with appropriate 
modifications, of course). 

EXAMPLE 1.4. Suppose a > 1 and 

j(x) = {~" if x> ° 
if x = 0. 

( 1.16) 

Here j is defined on [0, + 00) and ° is an interior point of [0, + 00) from the 
right. From the definition of j~(O) it follows that if x > 0, then 

j(x) - j(O) = x" = X,,-I 

x-O X 
(1.17) 
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y 

(x, x«) IX> 1 

~/ 
-T

1 
Figure 1.2 

Since a - I > 0, this implies that 

I~(O) = lim I(x) - 1(0) = lim (x a - 1) = O. 
x~o+ X - 0 x~o+ 

Since 0 is a left endpoint of the interval [0, + 00) on which 1 is defined, we 
say that 1 is differentiable at 0 and has the derivative 1'(0) = I~ (0) = 0 there 
(see Def. 1.5 below) even though it is just a one-sided derivative. We 
conclude that if a > I, then 

1'(x) = {~xa-l if x> 0 
if x = 0 

(see Fig. 1.2). Thus, for a > I, formula (1.13) retains its validity when 
x=O. 

PROB. 1.4. Prove: If 0 < a < I and 1 is defined as 

if x> 0 I(x) = {~a 
if x = 0, 

then 1 is not differentiable at 0 (see Fig. 1.3). 

y 

Figure 1.3 

0<1X<1 

x 
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PROB. 1.5 (An Application of Formula (1.13)). Prove: (a) If a E IR, then 

. (n+l)"-n" 
hm =a 

n~+oo n,,-I 

and (b) use (a) and Theorem 111.9.1 to prove that if a ~ 1, then 

lim 
n~+oo 

1,,-1 + 2,,-1 + ... + n,,-I 
n" a 

PROB. 1.6. Let a = min, where m and n are integers and n is odd. Prove: 
(a) If 0 < n < m, then formula (1.15) remains valid for all x E IR; (b) If 
m ~ n, then formula (1.15) holds for all x E IR, x =1= o. 

The notion of differentiability was defined at a point. We also speak of 
differentiability on a set. 

Def. 1.5. When a function is differentiable at each point of its domain, then 
we say that it is differentiable. When the function is differentiable at each 
point of a set A, then we say that it is differentiable on A. If I is an interval 
of the form (- 00, a] or [a, b] or [a, + 00), where a and b are in IR, then we 
say that f is differentiable on I if and only if it is differentiable at each 
interior point of I and differentiable from the appropriate side of an 
endpoint of I. The derivative of f at an endpoint of I is defined to be the 
appropriate one-sided derivative of f at that endpoint if the latter exists. For 
example, f is said to be differentiable on the bounded closed interval [a, b] 
if and only if it is differentiable at each interior point of [a, b] and 
differentiable at a from the right and at b from the left. 

There exist functions defined on intervals which are differentiable at one 
point only (Prob. 1.7). 

PROB. 1.7. Let f be defined as 

f(x) = {~2 if x is rational 
if x is irrational. 

Prove that f is differentiable at x = 0 only. 

2. Continuity and Differentiability. Extended 
Differentiability 

Theorem 2.1. Iff is differentiable at a point, then it is continuous there. 

PROOF. Let f be differentiable at a. Then a is an interior point of 6f) (f) and 
there exists an t:-neighborhood (a - t:; a + t:) such that (a - t:; a + t:) 
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~ 6f)(j). Assume that x E (a - £; a + £) and x =1= a. Then 

f(x) = f(a) + f(x) - f(a) (x - a), 
x-a 

and 

( f(x) - f(a) ) 
lim f(x) = lim f(a) + (x - a) 
x-'>a x-'>a X - a 

= f(a) + f'(a)· 0 

= f(a). 

This establishes the conclusion. 

The next example shows that the converse of Theorem 2.1 is false. 
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EXAMPLE 2.1. The absolute value function is continuous on IR and, in 
particular, at x = O. However, it is not differentiable at x = O. In fact, let 
g(x) = Ixl for x E IR. Then 

g(x) - g(O) 
g~(O) = lim 

x-'>O+ x-O 
lim Ixl - 101 = lim ~ = lim I = I 

x-'>O+ X x-'>O+ X x-'>O+ 

and 

g~(O) = lim g(x) - g(O) = lim 0.l = lim -x = -1. 
x-'>O- x x-'>O- X x-'>O- X 

Since g~(O) = I and g~(O) = -I, g is not differentiable at 0 even though it 
is continuous there. Later we shall give an example of a function which is 
continuous for all real x but is differentiable nowhere. 

We note, however, that g is differentiable at x =1= O. We first prove this for 
x > 0, i.e., we prove that for x > 0 

g'(x) = lim g(x + h) - g(x) = 1. 
h-'>O h (*) 

Given £ > 0, take h such that 0 < Ihl < x so that -x < h < x and h =1= 0 
for such h. Since h + x > 0, 

Ilx + ~ - Ixl - II = I x + ~ - x - II = II - II = 0 < £ for 0 < Ihl < x. 

This proves (*). We now prove: If x < 0, then 

g'(x) = lim g(x + h) - g(x) = -1. 
h-'>O h (* *) 

Given £ > 0, take h such that 0 < Ihl < - x, so that x < h < - x and 
h =1= O. We have x + h < 0 and, therefore, 

Ilx + ~ -Ixl - (-1)1 = 1- x -h h + x + II = 1- I + II = 0 < £ 

for 0 < Ihl < - x. 



298 VII. Derivatives 

This proves (* *). Thus, the absolute value function is differentiable for all 
x*,O. 

Def. 2.1. When x is an interior point of 0) (j) and 

. f(x+h)-f(x) 
11m h = + 00 or - 00, 
h-->O 

then we will write, respectively, 1'(x) = + 00 or 1'(x) = - 00. We say that f 
is differentiable at x in the extended sense if and only if: either (a) f is 
differentiable at x (in the sense of DeL 1.1) or (b) f is continuous at x and 
1'(x) = + 00 or 1'(x) = - 00. Similarly, if x is an interior point of 0)(j) 
from one side, we call f differentiable at x in the extended sense, from that 
side, if and only if (c) f is differentiable from that side at x, or (d) f is 
continuous at x from that side and the derivative from that side at x is + 00 

or - 00. 

EXAMPLE 2.2. It can happen that 1'(a) = + 00 or 1'(a) = - 00 and f is 
discontinuous at a. For example, let f be the signum function. We have 

Therefore, 

and 

f(X)=SigX{ ~ 
- I 

if x> 0 
if x = 0 
if x < o. 

sig(h) - sig(O) 1 
fl (0) - I' - I' - - + JL - 1m - 1m - - 00 

h-->O- h h-->O- h 

sig(h) - sig(O) 1 
fl (0) - I' - I' - + JR - 1m - 1m - - 00. 

h-->O+ h h-->O+ h 

Thus, 1'(0) = f~(O) = f{(O) = + 00. However, we do not call the signum 
function differentiable in the extended sense at 0 since it is not continuous 
there. (See Fig. 2.1.) 

EXAMPLE 2.3. Let m and n be odd integers such that 0 < m < n. Let f be 
given by f(x) = x m / n for x E lit f is continuous for all x E IR. At x = 0, we 
have 

min om/n 1 
1'(0) = lim x - = lim = + 00. 

x-->O X x-->O x(n-m)/n 

The last equality holds since n - m is an even positive integer and n is an 
odd positive integer (see Fig. 2.2). f is differentiable in the extended sense at 
x = 0 and is differentiable for all x *' O. Hence, f is differentiable in the 
extended sense. 
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y 

(0, 1) ~-____ --

x 

-----'---I (0, -1) 

Figure 2.1 

EXAMPLE 2.4. Let h be given by h(x) = x m/ n for x E IR, where m and n are 
integers, m even and n odd and 0 < m < n. Then 

min 1 
h~(O) = lim _x_ = lim = + 00 

x~o+ X x~o+ x(n-m)/n 

and 

hi.(O) = lim 1 = - 00. 
x~o- x(n-m)/n 

Each of the equalities on the extreme left holds because n - m and n are 

y 

x 

Figure 2.2 
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VII. Derivatives 

odd positive integers. Here h'(O) does not exist, for h~(O) and hR(O) differ 
(see Fig. 2.3). h is continuous at 0, however, and so we have differentiability 
in the extended sense at x = 0 from two sides. 

Terminology 

If j'(a) = + 00 or j'(a) = - 00, then we say that j'(a) exists even though we 
may not have differentiability in the extended sense at a. 

3. Evaluating Derivatives. Chain Rule 

PROB. 3.1. Prove: If U and v are functions having a common domain OJ) and 
each is differentiable at x E OJ), then their sum U + v and their difference 
U - v are differentiable at x and 

d(u(x) ± vex)) du(x) dv(x) 
---'--'-"':"'d-=-x--'-'.":"" = -dx- ± -dx-

FROB. 3.2. Prove: If n is a positive integer and Ul' ••• , Un are functions 
having a common domain OJ) and each is differentiable at x E OJ), then their 
sum U 1 + U2 + ... + Un is differentiable at x and 

d( u1( x) + uix) + ... + un( x)) du 1( x) du2( x) dUn ( x) 
dx = ----;IX + ----;IX + .. . + ----;IX . 



3. Evaluating Derivatives. Chain Rule 301 

FROB. 3.3. Prove: If u is a function which is differentiable at x and c is 
some real number, then 

d df(x) 
-(cf(x)=c-. 
dx dx 

PROB. 3.4. Prove: 

d(coshx) . 
dx = smhx and 

d(sinhx) 
dx = coshx. 

PROB. 3.5. Let n be some nonnegative integer and P a polynomial function 
on IR, where P(x) = aoxn + alx n- I + ... + an_IX + an for x E IR. What is 
P'(x)? 

Theorem 3.1. If u and v are functions having a common domain 6j) and each 
is differentiable at x E 6j), then their product is differentiable at x and 

du(x)v(x) dv(x) du(x) 
dx = u(x) ----;IX + ----;IXv(x). (3.1) 

PROOF. Note that since u is differentiable at x, it is continuous there so that 

limu(x + h) = u(x). 
h-->O 

(3.2) 

Taking h =1= 0 and x E 6j), x + h E 6j), we obtain 

u(x + h)v(x + h) - u(x)v(x) vex + h) - vex) 
h =u(x+h) h 

u(x + h) - u(x) 
+ h vex). (3.3) 

Using (3.2), the fact that u and v are differentiable at x, and theorems on 
limits, we have 

du(x)v(x) . ( vex + h) - vex) u(x + h) - u(x) ) 
d =hm u(x+h) h + h vex) 

X h-->O 

vex + h) - vex) 
= limu(x + h) lim h 

h-->O h-->O 

(
. U(X+h)-U(X)) 

+ hm h vex) 
h-->O 

dc(x) du(x) 
= u(x) ----;IX + ----;IX vex), 

which proves the theorem. 
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PROB. 3.6. Let n be some positive integer and u\, u2' ... , un functions 
having a common domain 6j). Prove: If u\, U2' ... , Un are all differentiable 
at x, then so is their product u\u2 ••• Un' and 

d du\(x) 
dx (u\(x)u2(x) ... un(x)) = u2(x)U3(x) ... un(x) ~ 

dU2(X) 
+u\(x)u3(X)'" un(x)~ 

Theorem 3.2. If U and v are functions having a common domain 6j), both are 
differentiable at x E 6j) and v (x) '* 0, then their quotient U / v is differentiable 
at x and 

.if... ( u(x) ) = v(x)(du(x)/ dx) - (dv(x)/ dx)u(x) . 
dx v(x) v2(x) (3.4) 

PROOF. Since v is differentiable at x, it is necessarily continuous there. 
Since x is an interior point of 6j) and v(x) '* 0, there exists a 8-
neighborhood N(x, 8\) of x such that N(x, 8\) ~ 6j). Because of the continu­
ity of v at x and the fact that v(x) '* 0, there exists a 8-neighborhood 
N(x,82) of x such that v(x + h) '* 0 for x + h E N(x,82) n 6j). Also, there 
exists a 8-neighborhood N(x,8) of x such that N(x,8) ~ N(x,8\) n 
N(x,82). Hence, N(x, 8) ~ N(x, 8\) ~ 6j) and N(x, 8) ~ N(x,82) and v(x + 
h),*O for x + h E N(x,8). We now take x + h E N*(x,8), so that h ,*0 
and v(x + h) '* 0, and obtain 

l(U(X+h) _ U(X)) 
h v(x + h) v(x) 

[( 
u(x + h) - u(x) ) v(x + h) - v(x) ] 

= h v(x) - u(x) h 

X 1 
v(x + h)v(x) . 

(3.5) 

The continuity of v at x implies that v(x + h)~v(x) as h~O. Using 
theorems on limits, (3.5) yields 

d(U(X)) . l(U(X+h) U(X)) 
dx v(x) = l~ Ii v(x + h) - v(x) 

1 ( du(x) dv(x) ) = -- v(x) -- - -- u(x) . 
v2(x) dx dx 

(3.6) 

This completes the proof. 
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PROB. 3.7. Prove: If cos x =1= 0, then 

(a) dtanx/dx = sec2x and 
(b) dsecx/ dx = secx tanx. 

PROB. 3.8. Prove: If sin x =1= 0, 

(a) dcotx/dx = -csc2x and 
(b) dcscx/ dx = -cscxcotx. 

PROB. 3.9. Prove: If x E IR, then 

(a) dtanhx/ dx = sech2x, 
(b) d sech x/ dx = -sechx tanhx. 

PROB. 3.10. Prove: If x =1= 0, then 

(a) dcothx/ dx = -csch2x, 
(b) dcschx/ dx = -cschxcothx. 
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Theorem 3.3 (The Chain Rule). Iff and g are real-valued functions of a real 
variable, ~(g) ~ 6fJ(j), g is differentiable at x and f at u = g(x), then the 
composite function fog is differentiable at x and 

(fo g)'(x) = j'(g(x»g'(x). (3.7) 

PROOF. The domain of fog is 6fJ(g) and x is an interior point of 6fJ(g) 
= 6fJ(j 0 g). There exists an to-neighborhood N(x, 8\) of x such that N(x, 8\) 
~ 6fJ(g). Take h such that x + h E 6fJ(g), h =1= 0, note that g(x + h) E 6fJ(j) 
and form 

f(g(x + h» - f(g(x» 
h 

If g(x + h) =1= g(x) = u, then 

f(g(x + h» - f(g(x» f(g(x + h» - feu) 
h g(x+h)-u 

If g(x + h) = g(x) = u, then 

g(x + h) - g(x) 
h 

(3.8) 

f(g(x + h» - f(g(x» _, g(x + h) - g(x) (3.9) 
h - f (u) h 

since both sides are 0. Define the function v as follows: I f(g(x + h» - feu) 

v(x,h) = g(x + h) - u 

f'(u) 

This, (3.8), and (3.9) yield 

if g(x + h) =1= g(x) = u 

if g(x+h)=g(x)=u. 

(3.10) 

f(g(x + h» - f(g(x» g(x + h) - g(x) 
h = v(x,h) h ,(3.11) 
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where x + h E N*(X'~l). We prove first that 

limv(x,h) = j'(u). (3.12) 
h---)O 

Since J is differentiable at u = g(x), there exists a ~2 > 0 such that if 

u + k E GfJ(f) and 0 < Ikl < ~2' (3.13) 

then 

IJ(U+k)-J(U) , I 
k -J(u)<€. (3.14) 

But g is differentiable at x and, therefore, continuous there. Hence, a ~3 > 0 
exists such that if 

x + h E GfJ(g) = GfJ(fo g) and Ihl < ~3' (3.15) 

then 

Ig(x + h) - ul = Ig(x + h) - g(x)1 < ~2. (3.16) 

Take 0 < ~ <; min{~\>~3} so that N(x,~) ~ N(X'~l) n N(X'~3) ~ 6j)(g) 
= GfJ(jo g). Put k = g(x + h) - u so that g(x + h) = u + k, and take x + 
h E N*(x,~). Accordingly, x + h E N(X'~l)' X + h E N(X'~3)' and 0 < Ihl 
< ~ <; ~3. This implies that (3.15) holds and, therefore, that (3.16) holds. 
Thus, u + k = g(x + h) E N(U'~2). If g(x + h) = g(x) = u, then 

Iv(x,h) - j'(u)1 = Ij'(u) - j'(u)1 = 0 < €. (3.17) 

If g(x + h) =1= g(x), then k =1= O. Hence, u + k E N*(u, ~2) and 

O<lg(x+h)-ul=lkl<~2 and u+k=g(x+h)EGfJ(f). (3.18) 

Thus, (3.13) holds. But then (3.14) holds, and 

Iv(x,h) - j'(u)1 = I J(g:;x ++ ~~ = ~(U) - j'(U)1 < €. (3.19) 

Therefore, if € > 0 is given, then, for 0 < Ihl < ~, one of (3.17) or (3.19) 
holds and 

Iv(x,h) - j'(u)1 < €. (3.20) 

This proves (3.12). Returning to (3.11), we conclude that 

. J(g(x + h» - J(g(x)) _. ( g(x + h) - g(x) ) 
hm h - hm v(x,h) h 
h---)O h---)O 

= j'(u)g'(x) 

= j'(g(x»g'(x). 

Thus, Jog is differentiable at x and (3.7) holds. 
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Remark 3.1. If we put y = f and u = g, then the chain rule can be written in 
the following easily remembered form: 

dy dy(u) du 
dx=~dx 

or, more briefly, as 

We can also write it as 

d(y 0 u) = (dy 0 u) du 
dx du dx 

or as 

df(g(x» = ( df ) dg(x) 
dx du u=g(x) ~ 

EXAMPLE 3.1. If P > 0, then 

pX = ex1n p. 

Hence, using the chain rule, we have 

dpx = de x1n P = e x1n p d(xlnp) =pxlnp. 
dx dx dx 

(3.21 ) 

(3.22) 

PROB. 3.11. Let u be a function which is differentiable at x and u(x) =1= O. 
Prove that lui is differentiable at x. 

EXAMPLE 3.2. We claim that, for x > 0, 

dlnx 
(fX=-X (3.23) 

This follows from Theorem VI.5.7, part (d). Indeed, there we learned that, 
for x> 0, 

. In( x + h) - In x 1 
hm = -. 
h~O h x 

If x < 0, then the chain rule implies that 

dln( - x) 1 d( - x) 1 1 
dx = -x dx = _x(-l)= -X. 

This and (3.23) can be summarized as 

for x =1= 0. (3.24) 
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Now let y be a differentiable function of x such that y(x) =1= O. Then the 
chain rule and the above imply that 

dlnlyl 1 dy 
(fX = y dx . (3.25) 

EXAMPLE 3.3 (Logarithmic Differentiation). Let a l ,a2, ... , an;a!, ... , an 
be real numbers where al < a2 < ... < an' Define y as 

y(x) = (x - alt'(x - a2t2 ••• (x - as!'", (3.26) 

where x> an' Since x> an,y(x) > O. Hence, In y(x) is defined. By proper­
ties of logarithms, 

lny(x) = alln(x - a l) + a2ln(x - a2) + ... + an1n(x - an)' 

Taking derivatives of both sides, we have 

1 dy al a2 an --=--+--+ '" +--
Y dx x - a l X - a2 X - an ' 

dy (a l a2 an ) -d =y(x) --+--+ '" +--x x - al X - a2 X - an 

= al(x - al)",-I(x - a2t 2 ••• (x - anto 

+ ... + an(X - alt' ... (x - an_ItO(X - an)"o-I. 

FROB. 3.12. Find dy / dx, where 

(a) y(x) = x 2 sin(1/x2) if x =1= 0 andy(O) = 0 

(b) Y = x~, -1 , x , 1, 

(c) Y = ~(x - 2)/(x - 1), where x> 2 or x < 1, 

(d) Y = In(x2 - 1), where x 2 - 1 > 0, 
(e) y = (x - l)(x - 2)(x - 3)(x - 4). 

FROB. 3.13. Prove: If a> 0, then 

dlogax logae 
dx = xlna = -x-

4. Higher-Order Derivatives 

x>O. 

Def. 4.1(a). If f is a real-valued function of a real variable that is differen­
tiable in some £-neighborhood N(x, £) of x and if its derivative l' is 
differentiable at x, then we say that f is twice differentiable at x and call the 
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derivative of f' at x the second derivative of fat x. Some notations for the 
second derivative of f at x are 

I"(x), (D1)(x), 

The function 1", whose domain 6fJ(I") is 

6fJ(f") = {x E 6fJ(f) I f is twice differentiable at x}, 

is called the second derivative of f or the derivative of f of the second order 
(the first derivative of f is called the derivative of f of the first order). Some 
notations for it are 

f", 

We have 

(f'r = 1", D(Df) = D1, 

If f is differentiable on some €-neighborhood of x and f' is differentiable in 
the extended sense at x, then we call f twice differentiable in the extended 
sense at x and the extended derivative of f' at x, the second derivative off in 
the extended sense at x. 

Remark 4.1. If f is defined on some open interval I, then we write .f = f, 
calling f itself the Oth-order derivative of f on I. 

The nth-order derivative of a function can be defined by using complete 
induction. 

Def. 4.1(b). Let f be a real-valued function of a real variable and x an 
interior point of 6fJ(j), so that there exists an €-neighborhood of x, N(x, f), 
contained in 6fJ (j). The Oth-order derivative of f is defined as PO) = f. Let n 
be some positive integer. If for all integers k such that 0 ~ k < n, f is 
differentiable of order k for each point of N(x,€), then f is said to be 
differentiable of order n at x if and only if pn-I) is differentiable at x. In 
that case, the nth-order derivative of f at x is defined as 

pn)(x) = (j(n-I»'(x). (4.1) 

If f(n-') is differentiable for each x E N(x, f), then we say that f is 
differentiable of order n on N(x,€) and call the derivative of pn-I) the 
nth-order derivative of f on N(x,€). Thus, 

f(n) = (j(n-I»'. (4.2) 

Alternate notations for the nth-order derivative of f at x and for the nth 
order derivative of f respectively are: 

d"f( x) 

"'dx" 
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and 

dl 
dx n ' 

If n is a positive integer, then, by definition, 

(4.3) 

If n is a nonnegative integer, then 

(4.4) 

PROB. 4.1. Prove: If f is differentiable of order n + 1, where n is some 
nonnegative integer, then 

PROB. 4.2. Prove: If m and n are nonnegative integers and f is differentiable 
of order m + n on N(X,E), then 

j<m+nJ = (f(mltl. 

Remark 4.2. We exemplify the concept of higher-order one-sided derivatives 
by defining differentiability and derivative from the left at x, of order two. 
Let f be a real-valued function of a real variable, x an interior point of 
®(j) from the left. Let f be differentiable from the left on some E­

neighborhood N(X,E) of x from the left. Then f is called differentiable of 
order two at x from the left if and only if ff is differentiable from the left at 
x. We write the value of the derivative of ff at x from the left as H(x) and 
call it the second derivative of f from the left at x. 

PROB. 4.3. Let f be defined as: f(x) = Ixl3 for each x E IR. Prove: f is 
differentiable of order 2 on IR but fails to be differentiable on IR of order 3. 

PROB. 4.4. Repeat the instructions of the last problem replacing f by the 
function g defined as g(x) = X 7/ 3 for x E IR. 

PROB. 4.5. Let P be a polynomial function on IR, where P(x) = aoxn + 
alX n- 1 + ... + an_Ix + an for x E IR. Prove: (a) p(nl(x) = n! ao for x E IR 
and (b) p(n+ml(x) = 0, where m is a positive integer. 

A useful rule for calculating derivatives of higher order for the case of a 
function which is a product uv of functions u and v is Leibniz's rule stated 
in the next problem. 
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PROB. 4.6 (Leibniz's Rule). Prove: If u and v are differentiable functions of 
order n having a common domain 6j) and n is a positive integer, then 

dn(uv) = ± (n) dn-ku dkv 
dx n k=O k dx n - k dx k 

(Hint: use induction on n and the relation 

(k ~ I) + (~) = ( n ; I ), 
where k is an integer such that 0 ..;; k..;; n). 

PROB. 4.7. Using the same conditions on u and v as in Prob. 4.6 above, 
prove: 

.!l...(~(_l)k+ldn-ku dk-1V)=vdnu +(_l)n+ludnv. 
dx k'7:1 dx n- k dX k- 1 dxn dxn 

An Application to Polynomials 

We first define a special sequence Pn of polynomials as follows: 

PO(x) = 1 

Pn(x) = xn 

for all x E IR 

for x E IR, 

where n is a positive integer. The Oth-order derivative of Pn is 

(4.5) 

p~O)(x) = xn. (4.6) 

If nand j are positive integers and p~j) is the jth-order derivative of Pn' then 

p~j)(x) = n(n - I) ... (n - j + I)x n- j, 

p~n)(x) = nt, 

if j> n. 

1 ..;; j";; n, 

(4.7) 

Using the notation for factorials of order n adopted in Section 11.6 we recall 
that if nand j are non-negative integers, then 

(n)i-{:(n - I) ... (n -j + I) 
if j = 0 
if I";;j";;n (4.8) 
if j> n 

and 

( n) = (n)j 
j j!' (4.9) 
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Therefore, 

n(n - I) ... (n - ) + I) = j! C), if I « ) « n. (4.10) 

This and (4.7) yield 

for x E IR and 0 « ) « n. (4.11 ) 

By the Binomial Theorem, if a and x are real numbers and n IS a 
nonnegative integer, then 

Pn(x) = xn = (a + (x - a)f= ± (~)an-J(X - a)f. 
j=o J 

By (4.11),p~J)(a) = )!(j)a n- J. Substitution in (4.12) yields 

n p~J)(a) . 
xn=Pn(x)= 2: ., (x-a)f. 

j=O J. 

This last formula is a special case of: 

Theorem 4.1. If P is a polynomial on IR, where 
n 

P(x)=aoxn+a\xn-l+ ... +an_\x+an = 2: an_kx n- k 
k=O 

(4.12) 

( 4.13) 

for x, an in IR, 

then 

(4.14) 

PROOF. Use the notation of the discussion preceding this theorem and put 
Pn(x) = xn for x E IR and n E ?Lo. P(x) may be written 

n n 

P(x) = 2: an_kx k= 2: an-kh(x). (4.15) 
k=O k=O 

Now use (4.13) and substitute in the above for Pk(X) to obtain 

n ( k PkJ)( a) .) 
P(x) = 2: an - k 2: ., (x - a)l . 

k=O j=o J. 
(4.16) 

Note that 0 « ) « k « n. Fixing), we sum with respect to k and then with 
respect to). We conclude that 

n (x - a)J n 
P(x) = 2: ., 2: an_kPkJ)(a). 

j=O J. k=j 
(4.17) 

We claim that "f,J=oan-kPkJ)(a) is the )th derivative of P at a. To see this, 
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we take the jth derivative of P in (4.15), 
n 

p(j)(x) = ~ an-kPk})(X). 
k=O 

Ifj> k, then Pkj ) (x) = O. Eq. (4.18) can be written 

Hence 

·n 

p(j)(x) = ~ an-kPkj)(X). 
k=j 

n 

p(j)(a) = ~ an-kPkj)(a). 
k=j 

We substitute the second of these expressions in (4.17) and obtain 

n (x - a)j n p(j)(a) 
P(x) = ~ ., p(j)(a) = ~ ., (x - a)j. 

j=O J. j=O J. 

This completes the proof. 
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(4.18) 

Remark 4.3. This theorem reveals a great deal about polynomial functions. 
We recall that if P is a polynomial of degree n > 1 and r is a real number 
such that P(r) = 0, then we call r a real root of the equation P(x) = o. We 
also refer to r as a real zero of the polynomial P. Below we define roots of 
multiplicity k. 

Def. 4.2. If P is a polynomial on IR of degree n > 1, k is an integer such that 
I < k < n, and r is a real number such that 

P(x) = (x - r)kQn_k(X) 

Qn-k(r) =1= 0, 

for all x E IR, 
(4.19) 

where Qn-k is a polynomial on IR of degree n - k, then r is called a zero of 
multiplicity k of P or a real root of multiplicity k of the equation P(x) = o. A 
zero of P of multiplicity I is called a simple zero of P or a simple root of 
P(x) = o. 

Corollary (of Theorem 4.1). If P is a polynomial of degree n > I, then r is a 
real zero of multiplicity k of P if and only if r E IR, 

Per) = pI(r) = ... = p(k-I)(r) = 0 and p(k)(r) =1= O. (4.20) 

PROOF. Let P(x) = aoxn + a1x n - 1 + ... + an_Ix + an' where ao =1= O. Sup­
pose that (4.20) holds. By Theorem 4.1, 

p(n)(r) 
P(x) = Per) + P'(r)(x - r) + ... + n! (x - rf for x E IR. 

(4.21) 
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Note that p(n)(r)/n! = ao (Prob. 4.5). Using (4.20) in (4.21), we obtain 

p(k)(r) p(n)(r) 
P(x) = k! (x - r)k+ ... + n! (x - r)n 

( 
p(k)(r) p(n)(r) ) 

= (x - r)k k! + ... + n! (x - rr- k . (4.22) 

Put 

p(k~r) p(~(~ 
Qn-k(x) = k! + ... + n! (x - r)"-k. (4.23) 

It is clear that Qn-k is a polynomial of degree n - k. By (4.22) we have 

P(x) = (x - r)k Qn-k(x) for x E IR. 

Moreover, (4.23) implies that 

p(k)(r) 
Qn-k(r) = k! =1= O. 

Thus, r is a root of multiplicity k of P. 
Conversely, let r be a zero of P of multiplicity k so that P(x) = (x - rl' 

Qn-k(X) for all x E IR, where k ;;;. I and Qn-k(r) =1= O. Take the ith deriva­
tive on both sides of the equality in the last sentence to obtain with the aid 
of Leibniz's rule (Prob. 4.6): 

p(i)(x) = ~ (x - rlQn-k(X») 
dx' 

= i (i)di-iQn_k(X) di(x-r)k 
~. .. . 

j=O } dx'-J dxJ 
(4.24) 

Now 

di(x - r)k {(X - r)k 

dxJ = k(k - 1) ... (k - j + 1)(x - rl-i 

if j = 0 

if 1 < j < k. 

(4.25) 

If i < k, then in (4.24), 0 < j < i < k. It follows from (4.25) that 

( dJ(x-.rl) --0 if i < k. 
dxJ 

x=r 

Therefore, (4.24) yields 

p(j)(r) = 0 for 0 < i < k. (4.26) 

If i = k, however, then (4.24) becomes 

p(k)(x) = ± (~) dk-iQn~k(X) 
j=O } dx k J 

(4.27) 
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If we substitute r for x, then (4.25) implies that all the terms on the right 
vanish for 0 .;;; j < k so that (4.27) yields, after substitution of r for x, 

p(k)(r) = (Z) Qn_k(r)k! = Qn_k(r)k! (4.28) 

But, by hypothesis, r is a zero of multiplicity k of P. By definition, this 
implies that Qn-k(r) * O. By (4.28), this, in turn, implies that p(k)(r) * O. 
This and (4.26) imply (4.20), and the proof is complete. 

FROB. 4.8. Prove: If P is a polynomial in IR of degree n ;. 1 with leading 
coefficient ao and r l ,r2, ... ,rn are n distinct real zeros of P, then 

P(x) = ao(x - rd(x - r2)'" (x - rn) forall x E IR. 

PROB. 4.9. Prove: If P is a polynomial in IR of degree n ;. 1, then P has at 
most n distinct real zeros. 

PROB. 4.10. Prove: If P and Q are polynomials in IR each of degree not 
exceeding n (here, of course, n is some nonnegative integer) such that 
P(x) = Q(x) holds for more than n distinct values of x, then P = Q, 
i.e., P(x) = Q(x) holds for all values of x and both polynomials have the 
same coefficients. 

Theorem 4.2 (Lagrange Interpolation Formula). If n is a positive integer and 
x l' x 2, ... 'Xn are n distinct real numbers, then for any real numbers Yl' 
h' ... ,Yn (not necessarily distinct) there exists a unique polynomial P of 
degree not exceeding n - I such that 

P(x l) = YI' P(x2) = h' ... ,P(xn) = Yn' (4.29) 

This polynomial is given by 

P(x) = YI~k7<AX - xk) + h~k,,",I(X - xd 
IIk,,",l(x l - xd IIk#(x2 - xk) 

(4.30) 

where the symbol IIk,,",/x - xk) for I .;;; j .;;; n is defined as follows: if x E IR, 
then 

n n 

II (x - xk) = II (x - xk) 
k"foj k= 1 

k"foj 

I 

II (X-xk )= I 
k"fol 

for n> I, 

(4.31 ) 

for n = 1. 

Before presenting a proof let us illustrate (4.30). Assume that n = 3, that 
x), x 2, X3 are distinct, and that Y), h' Y3 are given. We wish to find a 
polynomial P of degree not exceeding 2 such that P(x) = YI' P(X2) = h, 
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P(X3) = Y3' In this case (4.30) becomes 

Yl(x - x 2)(x - x 3) Y2(x - xI)(x - x 3) Y3(X - xI)(x - x 2) 
P(x) = (XI - X2)(X I - x3) + -:(-x-2 --x-I)-:(-X-2 ---x-3-:) + (X3 - XI)(X3 - x 2) . 

A simple check shows that P is a polynomial in X of degree not exceeding 2 
such that P(x l) = YI' P(X2) = Y2, P(x3) = Y3' 

We give a numerical example. We seek a polynomial P of degree not 
exceeding 2 such that P(l) = 4, P(2) = 5, P(3) = 6. Here XI = 1, x 2 = 2, 
X3 = 3; YI = 4, Y2 = 5, Y3 = 6. According to (4.30), P is given by 

4(x - 2)(x - 3) 5(x - l)(x - 3) 6(x - l)(x - 2) 
P(x)= (1-2)(1-3) + (2-1)(2-3) + (3-1)(3-2) . 

We simplify and obtain 

P(x)=x+3 for X E IR. 

Note that P is of degree 1 < 2 and that P(l) = 1 + 3 = 4, P(2) = 2 + 3 = 5, 
P(3) = 3 + 3 = 6. 

Let us proceed with the proof of Theorem 4.2. 

PROOF (of Theorem 4.2). If YI = Y2 = ... = Yn = 0, then (4.30) yields 
P(x) = 0 for all x, so P is the zero polynomial. In this case Eqs. (4.29) hold 
trivially, P has no degree, and, hence, its degree does not exceed n - 1 
(explain). Suppose that at least one of YI' ... ,Yn is not zero. If n = 1, there 
is only one Y, i.e., YI' and (4.30) becomes 

Y II I _ (x - x ) 1 
P(x) -_ I I k-l,k'Fl k YI . 0 = -1- = YI =I=-

IIk~l,k'FI(xl - xk) 
for x E IR. 

This P has degree 0 = 1 - 1 = n - 1, P(x l) = YI holds and P satisfies 
conditions (4.29) with n = 1. If n > 1, then each term in (4.30) is a 
polynomial of degree not exceeding n - 1. This is so because it is a product 
of the constant 

c· = Yj 
} II~~I,k'FiXj - xk) 

and the polynomial Pj , where 
n 

lj(x) = II (x - xk) for x E IR. 
k~l 

k¥=j 

Pj here has degree n - 1 for eachj. Hence, the sum in (4.30) and, therefore, 
the polynomial P defined by that sum has degree not exceeding n - 1. 
Also, for each Pj in the sum on the right of (4.30), we have 

n 

Pj(xJ = II (Xj - xk ), 
k~l 

k¥=j 

if i =I=- j. 
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The equalities in the second line hold because Xi =!= Xj and Xi E 
{XI' ... ,xn }. This causes all the terms in (4.30) except the jth to vanish. 
Hence, 

y.P.(X-) 
P(xj ) = ~(x3 = Yj' 

where j E {I, ... , n}. Thus, the P in (4.30) is a polynomial of degree not 
exceeding n - 1 which satisfies Eqs. (4.29). 

As for the uniqueness of P, if Q also is a polynomial of degree not 
exceeding n - 1 such that Q(x l) = YI' ... , Q(xn) = Yn' then by Prob. 4.10 
we have P = Q. This completes the proof. 

Remark 4.4. There is another form of the Lagrange formula (4.30). Let 
XI,X2' ... 'Xn be distinct real numbers. Define the polynomial gas 

n 

g(x) = II (x - xk) = (x - xl)(x - x2) ... (x - xn) 
k=1 

for all x E IR. 

Using the notation adopted in (4.31), it is easy to see that 

and that 

n 
= II (xn - xk) = (xn - xl)(xn - x2) •.• (xn - xn- I), 

k=l=n 

fr (x - xk) = g(x) , 
k=l=l x- XI 

(4.32) 

(4.33) 

n g(x) n g(x) II (x - Xk) = --, ... , II (x - Xk) = --, (4.34) 
k=l=2 x - x2 k=l=n X - xn 

where the first equality holds for x =!= x I' the second for x =!= X2' ... , and 
the last for x =!= Xn • Substituting (4.33) and (4.34) in (4.30) we obtain 

P x = Ylg(x) + Y2g(x) + ... + Yng(x) 
() (x - xl)g'(x l) (x - X2)g'(x2) (x - xn)(g'(xn) 

(4.35) 
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for X *- x], X *- X 2, ••• , X *- x n • This is the alternate form we spoke of. 
This also implies that 

+ ... + Yn 
(x - xn)g' (xn) 

(4.36) 

if X differs from X l 'X2, • •• ,xn. Note that P(xJ = Yi for I ,,; i,,; n. Upon 
substitution in (4.36), the latter can be written 

P(x) __ P(x]) P(x2) P(xn) 
------,-- + ------,-- + ... + ------,--

g(x) (x - x])g'(x]) (x - X2)g'(X2) (x - xn)g'(xn) , 

(4.37) 

where x *- Xi for i E {I, ... , n}. In (4.37), P is a polynomial of degree not 
exceeding n - I, and g is defined as g(x) = rr~= leX - xk). The x;'s are 
distinct. 

PROB. 4.11. Prove: If Xl' ... ,xn are distinct and g(x) = rr~= lex - xk)' 
then 

PROB. 4.12. Prove: If x f/:. { - I, - 2, ... , - n} where n is some positive 
integer, then 

x(x+I)···(x+n) 

n 

k2JO(-I)k k!(n-k;!(x+k) 

n! =±(_I)k(n)_I_ 
rr~=o(x + k) k=O k x + k 

1 1 n( n - 1) 1 n 1 
= X - n x + 1 + 2! x + 2 + ... + (-1) x + n . 

5. Mean-Value Theorems 

We remind the reader that when we say that j'(a) exists we mean that it 
may be infinite and f need not be differentiable in the extended sense. 

Lemma 5.1. Let f be a real-valued function of a real variable defined on an 
interval I and let f(xo) be a maximum off on I. If Xo is an interior point of 
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I from the right and f~(xo) exists, then f~(xo) ..;; o. If Xo is an interior point of 
I from the left and fL<xo) exists, then fL<xo) ~ O. If Xo is an interior point of I 
and f~ (xo) and fI. (xo) exist, then 

fL(xo) ~ 0 ~ f~(xo). (5.1) 

(See Fig. 5.1.) 

PROOF. Assume that Xo is an interior point of I from the right. Take x E I, 
x> xo' Since f(xo) is the maximum of f, we have f(x) ..;; f(xo). This implies 
that 

Hence, 

.:....f..:-.( x..:-.) _-..:-.f(..:-.x--:...o) ..;; 0 
x-xo 

for x E I, x > Xo . 

f' (x )"= lim f(x) - f(xo) ..;; O. 
JR 0 X-+Xo+ X - Xo 

(5.2) 

(5.3) 

If Xo is an interior point of I from the left, then we take x E I, x < Xo and 
obtainf(x) ..;; f(xo). It follows that 

f(x) - f(xo) -... 0 f I (5.4) 
? or x E , x < Xo . 

x - Xo 

Hence, 

f,( ) _ I' f(x) - f(xo) -... 0 
JL Xo - 1m ? • 

x-+xo- X - Xo (5.5) 

Now assume that Xo is an interior point of I and that f~(xo) and fI.(xo) 
exist. The above imply (5.1). This completes the proof. 

PROB. 5.1. Let f be defined on an interval I and let f(xo) be a minimum of f 
on I. Prove: (a) If f~(xo) exists, then f~(xo) ~ o. (b) If fL<xo) exists, then 
fI.(xo) ..;; o. If Xo is an interior point of I and fL<xo) and f~(xo) exist, then 
fL<xo) ..;; 0 ..;; fk(xo)' 
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y 
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(c) 

Del. 5.1. If f is defined on S =1= 0 and f(xo) is a maximum or a minimum of 
f on S, then we callf(xo) an extremum of fan S. 

PROB. 5.2. Let f be defined on an interval I and let Xo be an interior point 
of I. Prove: If f(xo) is an extremum of on I and j'(xo) exists, then 
j'(xo) = O. 

Remark 5.1. Lemma 5.1 includes cases such as those shown in Fig. 5.2 
since, according to our terminology, existence of f~(xo) or f{(xo) includes 
the possibility that they are infinite. This allows for lack of one-sided 
differentiability even in the extended sense. 

Theorem 5.1 (Rolle's Theorem with One-Sided Derivatives). If f is a 
real-valued function of a real variable that is continuous on the closed interval 
[a, b], differentiable (in the extended sense) from both sides at each interior 
point oj[ a, b] and if f( a) = f( b), then there exists an interior point Xo oj[ a, b] 
such that either 

(5.6a) 

or 

(5.6b) 

PROOF. Iffis constant on [a,b], then it is differentiable at each x in (a;b), 
and, moreover,f{(x) = f~(x) = j'(x) = 0 for all x in (a; b), and the conclu­
sion holds trivially. Now suppose f is not constant on [a, b], so that a 
c E [a,b] exists such that f(c) =1= f(a) = feb). Suppose that f(c) > f(a) 
= f( b). Since f is continuous on [a, b] and the latter is a bounded closed set, 
f has a maximum f(xo) on [a,b] so that f(xo) ;;;. f(c) > f(a) = feb). This 
implies that Xo is an interior point of [a,b]. Since f{(xo) and f~(xo) exist, 
Lemma 5.1 implies that (5.6a) holds. If f(c) < f(a) = feb), since we know 
that f has a minimum f(x~) on [a,b], it follows that f(x~) .;;; f(c) < f(a) 
= feb). Thus, x~ is an interior point of [a,b], and, by Prob. 5.1, we obtain 
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y 

a b 

Figure 5.3 

f£(xo) « 0 « fk(xo). Thus, (5.6b) holds with Xo replacing xo. This completes 
the proof. (See Fig. 5.3.) 

Corollary (Rolle's Theorem). If f is a real-valued function of a real variable 
which is continuous on the bounded closed interval [a, b), differentiable in the 
extended case at each interior point of[ a, b) and f( a) = f( b), then there exists 
an interior point Xo oj[a,b] such that j'(xo) = o. 

PROOF. Exercise. 

PROB. 5.3. Prove: (a) If f is continuous on an open interval (a; b) where a 
and b are in IR* and limx-->a+ f(x) = - 00 = limx->b_ f(x), then f has a 
maximum on (a; b). (b) If for the f in part (a) we also assume that it is 
differentiable in the extended sense on (a; b), then there exists an Xo in 
(a; b) such thatj'(xo) = O. 

PROB. 5.4. Prove: (a) If f is continuous on an open interval (a; b) where a 
and b are in IR* and limx->a+ f(x) = + 00 = limx-->b_ f(x), then f has a 
minimum on (a; b). (b) If for the f in part (a) we also assume that it is 
differentiable in the extended sense on (a; b), then there exists an Xo in 
(a; b) such that j'(xo) = o. 

Theorem 5.2 (Mean-Value Theorem with One-Sided Derivatives). If f is a 
real-valued function of a real variable that is continuous on the bounded closed 
interval [a, b) and differentiable in the extended sense from both sides at each 
interior point of [a, b), then there exists an interior point Xo of [a, b) such that 
either 

f'( ) <C f(b) - f(a) <C fl ( ) 
J L Xo '" b _ a '" J R Xo (5.7) 
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or 

f'( )~f(b)-f(a)~f'( ) 
JL XO,r b _ a ,r JR Xo . (5.8) 

(See Fig. 5.4.) 

PROOF. Construct the function g, where 

f(b)-f(a) 
g( x) = f( x) - f( a) - b _ a (x - a) for x E [ a, b J. (5.9) 

g is continuous on [a,b] and g(a) = g(b) = O. Let x be an interior point of 
[a,b]. Then 

, ( ) _ f'( ) _ f(b) - f(a) 
gL x - JL X b - a if fi( x) E IR, (5.10) 

or gUx) = ± 00 if f{(x) = ± 00. In the latter case, gUx) = ± 00 = fUx). 
Similarly, we obtain, from (5.9), 

, ( )_ f'( )_ f(b)- f(a) 
gR x - JR X b _ a if f~ (x) is finite (5.11 ) 

or g~(x) = ± 00 if f~(x) = ± 00. In the latter case, g~(x) = ± 00 = f~(x). 
Thus, g is differentiable in the extended sense from each side at each 
interior point of [a, b]. We can, therefore, apply Theorem 5.1 to g and 
conclude that there exists an interior point Xo of [a, b] such that 

g~(xo) < 0 < g~(xo) (5.12a) 

or 
(5.12b) 

Assume that (5.12a) holds. In this case, we know that g~(xo) =1= + 00 and 
g~(xo) =1= - 00 and, hence, that f{(xo) =1= + 00 and f~(xo) =1= - 00. Thus, 
either fUxo) = - 00 or f{(xo) E IR and f~(xo) = + 00 or f~(xo) E IR. Hence, 
there are four cases to consider: (1) f{(xo) = - 00, f~(xo) = + 00, (2) 
fUxo) = - 00, f~(xo) E IR, (3) fUxo) E IR, f~(xo) = + 00, (4) f{(xo) E IR, 
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fR(XO) E IR. If fL<xo) E IR, then (5.10) and (5.12a) imply that 

"( )_ f(b)-f(a) ~O 
JL Xo b - a "'" 

and, hence, that 

"( )"f(b)-f(a) 
JL Xo b - a . 

If fR(XO) E IR, then (5.11) and (5.l2a) imply that 

o ~ " ( ) _ feb) - f(a) 
"'" JR Xo b - a 

and, hence, that 

f(b)- f(a) ~ "( ) 
b - a "'" JR Xo· 
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(5.13) 

(5.14) 

If f{(xo) E IR and fR(XO) E IR, then the inequalities in (5.13) and (5.14) yield 
(5.7). Thus, (5.7) holds in case (4) above. By the properties of order in IR*, 
(5.7) also holds in cases (1), (2) and (3). This proves the theorem if (5.l2a) 
holds. We leave to the reader the proof that if (5.l2b) holds, then (5.8) 
follows (Prob. 5.5). 

PROB. 5.5. Complete the proof of the last theorem by proving that (5.l2b) 
implies (5.8). 

Remark 5.2 (Alternate Formulation of Theorem 5.2). Theorem 5.2 can be 
formulated as follows: If f is continuous on an interval I, differentiable in 
the extended sense from both sides at each interior point of I, and a, x are 
distinct points of I, then there exists a point Xo between a and x such that 

f(a) + fHxo)(x - a) " f(x) " f(a) + fR(XO)(X - a) (5.15) 

or 

f(a) + fHxo)(x - a) ;;;. f(x) ;;;. f(a) + fR(XO)(X - a). (5.16) 

PROB. 5.6. Prove the formulation of Theorem 5.2 stated in the last remark. 

Corollary (of Theorem 5.2) (The Mean-Value Theorem). If f is continuous 
on the bounded closed interval [a, b] and differentiable in the extended sense at 
each interior point of [a,b], then there exists an interior pOint Xo of[a,b] such 
that 

f '( ) = feb) - f(a) 
Xo b - a . (5.17) 

(See Fig. 5.5.) 

PROOF. Exercise. 
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Remark 5.3 (Alternate Formulation of the Mean-Value Theorem). The 
corollary of Theorem 5.2 can be formulated as follows: If f is continuous 
on an interval I and differentiable in the extended sense at each interior 
point of I, and a, x are distinct points of I, then there exists a point Xo 
between a and x such that 

f(X) = f(a) + f'(xo)(x - a). (5.18) 

PROB. 5.7. Prove the formulation of the corollary of Theorem 5.2 stated in 
Remark 5.3. 

6. Some Consequences of the Mean-Value Theorems 

Theorem 6.1. Let f be continuous on an interval I and differentiable in the 
extended sense from both sides at each interior point of I. 

(a) If fUx) ~ 0 and f~(x) ~ 0 for each interior point x of I, then f is 
monotonically increasing on I; if these inequalities hold strictly, then f is 
strictly increasing on I. 

(b) If f{(x) < 0 and f~(x) < 0 for each interior point x of I, then f is 
monotonically decreasing on I; if these inequalities hold strictly, then f is 
strictly decreasing on I. 

PROOF. We prove (a) and leave the proof of (b) to the reader (Prob. 6.1). 
Assume that (a) holds. Take XI and x2 in I such that XI < x 2. By the 
formulation of Theorem 5.2 stated in Remark 5.2 we know that there exists 
an Xo such that XI < Xo < X2 and 

J(x l ) + J{(XO)(X2 - XI) < f(X2) < f(x l ) + J~(XO)(X2 - XI) (6.1) 
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or 

f(X I ) + fU x O)(X2 - Xl) ;;;. f(X 2) ;;;. f(X I ) + f~(XO)(X2 - Xl)' (6.2) 

If (6.1) holds, then, since f£(xo) ;;;. 0 and X2 - Xl > 0, it follows that 
f{(xO)(x2 - Xl) ;;;. 0 and, therefore that f(x l) ,;;;;; f(x 2). If (6.2) holds, then 
f~(XO)(X2 - Xl) ;;;. 0 and, therefore, f(x l) ,;;;;; f(x 2) holds in this case also. 
Thus, Xl < x 2 implies that f(x l ) ,;;;;; f(x 2) and, hence, f is monotonically 
increasing. If the inequalities in (a) are strict, then the same reasoning 
implies that if Xl < X2 in I, thenf(xl) <f(X2) so thatfis strictly monotoni­
cally increasing. 

PROB. 6.1. Complete the proof of the last theorem by proving part (b) there. 

Corollary (of Theorem 6.1). Let f be continuous on an interval I and 
differentiable in the extended sense at each interior point X of I. If (a) 
j'(x) ;;;. 0 for each interior point X E I, then f is monotonic increasing on I; if 
the inequality in (a) is strict, then f is strictly monotonically increasing on I. If 
(b) j'(x) ,;;;;; 0 for each interior point X E I, then f is monotonically decreasing 
on I. If in (b) the inequality is strict, then f is strictly monotonically 
decreasing. 

PROOF. Exercise. 

Theorem 6.2. If f is continuous on an interval I and differentiable in the 
extended sense at each interior point of I and j'(x) = 0 for each interior point 
X E I, then f is constant in I. 

PROOF. Take a E I and X E I such that X =1= a. By the mean-value theorem, 
there exists an Xo between a and X such that 

f(x) = f(a) + j'(xo)(x - a). 

Since j'(xo) = 0 by hypothesis, we obtain f(x) = f(a). Thus, f(x) = f(a) 
holds for all X E I and f is constant on I. 

Theorem 6.3. If f and g are continuous on an interval I, both are differentiable 
at each interior point of I and j'(x) = g'(x) for each interior point X E I, then 
a real c exists such that 

f(x) = g(x) + c for all X E I. (6.3) 

PROOF. By hypothesis, 

(J(x) - g(x»)' = j'(x) - g'(x) = 0 for each interior point X of I. 

The function f - g satisfies the hypothesis of Theorem 6.2 so it is a 
constant, c say, and, therefore, (6.3) holds. 
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Derivatives and Existence of Inverses 

We now apply some of the above results to obtain criteria for the existence 
of inverses of functions. 

Theorem 6.4. Iff is continuous on an interval I, the one-sided derivative f{ 
exists in the extended sense at each interior point of I from the left, fk exists 
in the extended sense at each interior point of I from the right, a and bare 
points of I such that a < b, and 

fk(a) < 0 < fab) or fk(a) > 0 > fab), (6.4) 

then there exists an Xo such that a < Xo < band 

faxo) "0,, fk(xo) or faxo) > 0 > fk(xo). (6.5) 

PROOF. Consider the interval [a,bj. We have [a,bj ~ I. Since f is continu­
ous on [a,bj, it has a maximum and a minimum on [a,bj. Suppose the 
maximum and minimum both occur at the endpoints a and b of [a,bj. If 
both the maximum and the minimum occurred at the same point, then the 
function would be constant. This would imply that 

fk(x) = 0 for a" x < b and fax) = 0 for a < x" b, 

and, therefore, contradict the hypothesis. Hence, the maximum of f on 
[a, b j would occur at a and the minimum at b or vice versa. If f( a) is the 
maximum and f( b) the minimum of f on [a, b j, then 

fk(a) ,,0 and fa b) " O. 

If f( a) is the minimum and f( b) the maximum of f on [a, b j, then 

fk(a) > 0 and fab) > O. 

In either case, (6.4) of the hypothesis is contradicted. Hence, the maximum 
or the minimum occur at some interior point Xo of [a, b j and one of the 
inequalities in (6.5) holds (Lemma 5.1 and Prob. 5.1). The conclusion 
therefore holds. This completes the proof. 

Corollary. Iff is differentiable in the extended sense on an interval I and a, b 
are points of I such that a < band 

f'(a) < 0 <f'(b) or f'(a) > 0 > f'(b), (6.6) 

then there exists an Xo such that a < Xo < band f'(xo) = O. 

PROOF. Since f is differentiable in the extended sense on I, it is continuous 
there. If x is an interior point, then f'(x) = fk(x) = f{(x). If x is a left 
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endpoint of I, then j'(x) = f~(x). If x is a right endpoint of I, then 
j'(x) = fl<x). 

We can now apply the theorem to conclude that because of (6.6) an Xo 
exists such that a < Xo < band 

or 

Either of these implies that j'(xo) = O. 

PROB. 6.2. Prove: If f is differentiable in the extended sense on an interval I 
and j'(x) =1= 0 for all x E I, then either j'(x) > 0 for all x E I or j'(x) < 0 
for all x E I. 

Theorem 6.5. Iff is continuous on an interval and j'(x) =1= 0 for each interior 
point x E I, then f(l) is an interval and f has a strictly monotonic and 
continuous inverse f - I defined on f( /). The inverse f - I off is also differentia­
ble at each interior point of f(l) and 

(f-I)'(y) = j'U!I(y») at each interior point y Ef(l). (6.6') 

PROOF. The set of interior points of I is an open interval J and j'(x) =1= 0 
there. Hence (Prob. 6.2), either j'(x) > 0 for all x E J or j'(x) < 0 for all 
x E J. By the corollary of Theorem 6.l, f is strictly monotonic on I. Since f 
is also continuous on the interval I, f(l) is an interval, and f has a strictly 
monotonic inverse f- I on f(l) which is continuous on f(l) (Theorem 
VI.9.2). 

We prove that f- I is differentiable at each interior point of f(l). Let Yo 
be an interior point of f(l). There exists an Xo E I such that Yo = f(xo) and 
Xo = f-I(yo)· Take y E f(l) such that y =1= Yo. There exists y E f(l) such 
that y = f(x) and x = f-I(y). Since f is continuous at Yo, we know that 

lim f-I(y) = f-I(yo) = Xo. (6.7) 
y~yo 

Since y =1= Yo and f- I is strictly monotonic and, therefore, one-to-one, 

x = f-I(y) =1= f-I(yo) = xo. (6.8) 

Since f is differentiable at xo, 

1· f(x) - f(xo) -f'( ) 1m - xo. 
X~Xo X - Xo 

(6.9) 
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Using theorems on limits and (6.7), (6.8) and (6.9), we see that 

lim j(J-I(y») - j(xo) = f'(xo). (6.10) 
y~yo j-I(y) - Xo 

By a change of notation this becomes 

lim y - Yo =j'(x) (611) 
y~yo j-I(y) - j-l(yO) o· . 

Since f'(xo) =1= 0, this implies that 

lim j-I(y) - j-l(yO) = _1 _ 
y~yo Y - Yo f'(xo) . 

Hence, 

(J-I)'(yO) = f'(~o) = f'(J-\Yo») , 

where Yo is an interior point of j(l). 

Remark 6.1. The derivative of j-I at y in Theorem 6.5 is 

(J-I)'(y) = f'tX) , (6.12) 

where x = j - I(y). In the Leibniz notation y often serves as a notation for a 
function and dy / dx for its derivative. When y has a differentiable inverse, 
the relation between the derivative of y and its inverse is often written 

dx = _1_ (6 13) 
~ ~/~' . 

where x = j-I(y). 

EXAMPLE 6.1. We apply Theorem 6.5 to obtain the derivative of the inverse 
hyperbolic sine. We have 

y = sinh-Ix for x E IR (6.14) 

and 
x = sinhy. (6.15) 

Since cosh y ~ 1, it follows that 

dy_ 1 _ 1 
dx - dx/ dy - cosh Y . (6.16) 

We know that cosh) - sinh) = 1, so cosh Y = ./1 + sinh) = ·h + x 2 • 

This and (6.17) yield 

dsinh-Ix = dy = 1 
dx dx .h + x 2 

for x E IR. (6.17) 
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This result also follows from 

sinh-Ix = In(x +Jl + X 2 ) for x E IR. 

EXAMPLE 6.2. We prove: If j is continuous on an interval I, 1'(x) =1= 0 for 
each interior point x of I, and j is twice differentiable for such x, then j-I 
is continuous on j(l), twice differentiable for each interior point y of j(I), 
and 

(j_I)"( ) f"(x) 
Y = - (J'(x)3 ' (6.18) 

where x = j-I(y). 

PROOF. From the hypothesis and Theorem 6.5 we see that j has a continu­
ous inverse j-I on j(l), j-I is differentiable at each interior point y of j(l), 
and 

(6.19) 

where x = j-I(y). By hypothesis, l' is differentiable at each interior point 
of I. Therefore, the composite l' 0 j-I is differentiable at each interior 
point of j(I). Also, 

(J' 0 j-I)(y) = 1'U-I(y)) = 1'(x) =1= 0 (6.20) 

for each interior point y of j(l). But now we see that (j-I)' is differentiable 
for each interior point y of j(I) and, hence, that j-I is twice differentiable 
for each interior point y of j(l). Because of (6.20), the reciprocal of l' 0 j-I 
is differentiable at each interior point y of j(l). Moreover, by the chain 
rule, 

(J-I),,(y) = ((J-I)'(y))' = ( 1'U~I(Y) ), 

f"U-I(y))(J-I)'(y) 
= -

(1'U- I(y)))2 

f"(x) 1 _ f"(x) 
= - (J'(X)2 1'(x) - - (J'(X)3 . 

Here it is perhaps more convenient to use the traditional Leibniz notation 
since it is less cumbersome. Beginning with 

dx_ 1 _(dy)-I_( ,)-1 
dy - dy/dx - dx - Y 

(here (y,)-I is the reciprocal of y'), we obtain the second derivative of the 
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inverse by means of the chain rule. We have 

d 2x = .!L ( dx ) = .!L ( ,)-1 = _(y,)-2 dy' = _(y,)2 dy' dx 
dy2 dy dy dy Y dy dx dy 

, -2 " 1 y" dy/dx2 
= -(y) y y' = - (y,)3 = - (dy/dx)3 ' 

where x = f-I(y). (Compare this with (6.18).) 

PROB. 6.3. Prove: If f is continuous on an interval I, f is three times 
differentiable and f'(x) =/= 0 for each interior point x of I, then the inverse 
f- I of f exists, is continuous on f(I), is three times differentiable at each 
interior point of f(I), and 

-I If' _ 3(f"(X))2 - f'(x)f"'(x) 
(f ) (y) - (f'(X))5 ' 

where x = f-I(y). This can also be written 

d3x 3( dy / dX2)2 - (dy / dx)( d) / dx 3) 
-= 
dy 3 (dy/dx)5 

where x = f-I(y). 

PROB. 6.4. Prove: If x> 1, then 

(a) dcosh-Ix/dx = l/vx2 - 1, 
(b) dtanh-Ix/dx = 1/(1 - x 2) for -1 < x < 1, 
(c) dsech-Ix/dx = -1/xVI - x 2 for 0 < x < 1, 
(d) dcoth-Ix/dx = -1/(x2 - 1) for Ixl > 1, 

(e) dcsch-Ix/dx= -1/lxlb +x2 for x =/=0. 

We saw that if f'(x) ~ 0 on an interval, then f is monotonically increas­
ing, and if f'(x) ..;; 0 is an interval, then f is monotonically decreasing, with 
strict inequalities on the interval implying strict monotonicity. We now 
consider possible converses of these propositions. 

Theorem 6.6. Iff is monotonically increasing on an interval I and fUx) exists 
for some interior point x of I from the left, then f{(x) ~ O. Similarly, if for 
some interior point x of I from the right f~(x) exists, then f~(x) ~ O. An 
analogous statement holds for a function which is monotonically decreasing on 
an interval I (Prob. 6.5). 

PROOF. Assume that x is an interior point of I from the left. Then there 
exists a 6 > 0 such that (x - 6,x] k I. For each h such that - 6 < h < 0, 
we have x + h < x and x + h E I and, hence, f(x + h) ..;; f(x). Therefore, 
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for all h such that - ~ < h < 0, we have 

f(x + h) - f(x) 
h ;;;. o. 

This implies that 

f(x + h) - f(x) 
f£(x) = lim h ;;;. o. 

h-40-
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Similarly, if x is an interior point of I from the right, there exists a ~I > 0 
such that [x, x + ~I)' Taking h such that 0 < h < ~I' we have x + h > x, 
x + h E I,f(x + h);;;' f(x), and 

f(x + h) - f(x) 
h ;;;. 0, 

so that 
f(x + h) - f(x) 

f~(x) = lim h ;;;. o. 
h-40+ 

PROB. 6.5. Prove: If f is monotonically decreasing on an interval I and 
ff(x) exists for some interior point x of I from the left, then fUx) .;; O. 
Similarly, if for some interior point x of I from the right f~(x) exists, then 
f~(x) .;; O. 

Remark 6.2. In Theorem 6.6 the stronger assumption that f is strictly 
monotonically increasing does not yield the strict inequalities fUx) > 0, 
fMx) > O. For example, the function f, where 

f(x) = x 3 for all x E IR, 

is strictly monotonically increasing. Nevertheless, 

f~(x) = ff(x) = 1'(x) = 3x2 ;;;. O. 

Here 

ff(O) = f~ (0) = 1'(0) = o. 

7. Applications of the Mean-Value Theorem. 
Euler's Constant 

Theorem V.7.l states: If x andy are real numbers, x > 0, then 

(a) (x - l)y .;; x y - 1 .;; YXy-I(X - 1) for y ;;;. 1 or y .;; 0 and 
(b) (x - l)y ;;;. xY - 1 ;;;. yxy-I(x - 1) for 0 < Y < 1. 

Here we improve these inequalities by stating conditions under which they 
are strict. We prove: If x > 0, x 1= 1 and y > 1 or y < 0, then the inequality 
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in (a) is strict. We ask the reader to prove (Prob. 7.1): If x> 0, x =1= 1 and ° < Y < 1, then the inequality in (b) is strict. 
We assume that y > 1, x> 0. Let f be defined by f(x) = xY for x > 0. 

Assume x =1= 1. By the Mean-Value Theorem, we know that there exists an 
Xo between x and 1 such that f(x) = f(1) + j'(xo)(x - 1). For our f this 
means that 

xY = 1 + yxb'-I(X - 1), 

where ° < x < Xo < 1 or 1 < Xo < x. We note thaty - 1 > 0, so that 

(1) 

(2) 

0<xy - 1 <xr 1 <1 

l<xr 1 <xy - 1 

for ° < x < Xo < 1, 

for 1 < Xo < x. 

(7.1 ) 

(7.2) 

Using the fact that y(x - 1) < ° in (1) above and y(x - 1) > ° in (2), we 
obtain, after multiplying each set of inequalities by y(x - 1), 

y(x-l)<yxrl(x-l)<yxy-l(x-l) for x>O, x =1= 1 (7.3) 

wheny> 1. 
We prove next that (7.3) also holds for y < 0. In this case, we have 

1 - Y > 1. By hypothesis, x > ° and x =1= 1, so there exists an Xo between x 
and 1 such that (7.1) holds. This time we have y - 1 < - 1 < 0, so that 

(1) 

(2) 

1 < xr 1 < x y - 1 

O<Xy-l<xb'-I<1 

for ° < x < Xo < 1, 

for 1 < Xo < x. 
(7.4) 

Buty(x - 1) > ° in case (1) andy(x - 1) < ° in case (2). Reasoning as we 
did in the previous paragraph, we have 

y(x-l)<yxrl(x-l)<yxy-l(x-l) for x>o, x =1= 1 (7.5) 

when y < 0. The strictness, under the stated conditions, of the inequality in 
(a) now follows from (7.1), (7.3), and (7.5). 

PROB. 7.1. Prove: 

y(x - 1) > x y - 1 > yxy-l(X - 1) for x> 0, x =1= 1, and ° <y < 1. 

PROB. 7.2. Prove: If a and b are distinct positive reals, then 

(a) yby-1(a - b) < aY - bY <yay-l(a - b) for y < ° or y > 1 
(b) ybY-\a - b) > aY - bY > yay-1(a - b) for ° <y < 1. 

PROB. 7.3. Prove: If x E IR, x =1= 0, then 

1 + x < eX < 1 + xe x • 

PROB. 7.4. Prove: If x > - 1, x =1= 0, then 

~I < In( 1 + x) < x. x+ 
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Euler-Mascheroni Constant 

We use the inequality of the last problem to gain some information about 
the interesting sequence < Y n), where 

Y = 1 + 1 + ... + 1 -Inn for each positive integer n. (7.6) 
n 2 n 

Theorem 7.1. Let Yn be defined as in (7.6). Then: (a) 0 < Yn ..;; 1 for each n, 
and 0 < Yn < 1 for n> 1. (b) The sequence <Yn) is strictly monotonically 
decreasing. Hence, <Yn) converges. 

PROOF. By Prob. 7.4, we have 

_1_ = 1/ k 1 (1 1) I 
k + I 1+ I/k < n + k < k for k a positive integer. (7.7) 

Hence, 
n n n 
~ _1_ < ~ In( 1 + 1) < ~ 1 

k= I k + 1 k= I k k= I k 
for each positive integer n. (7.8) 

We note that In(1 + l/k) = 1n(k + 1) -Ink and, therefore, that 

k~lln( 1 + -Ii) = k~1 (In(k + 1) -Ink) = In2 -In 1 + In3 -ln2 

+ . . . + In( n + I) - In n 

= In( n + I) - In I = In( n + I). 
By (7.8), this implies that 

n I n 1 
k~ I k + 1 < In( n + I) < k~ I k ' 

i.e., that 

(7.9) 

t + t + . . . + n! 1 < In( n + I) < 1 + ~ + t + . . . + ~ (7.1 0) 

holds for each positive integer n. We now add -Inn to the last inequality 
in (7.10) to obtain 

0< In( 1 + ~ ) = In(n + 1) -Inn < 1 + ~ + t + ... + ~ -Inn = Yn • 

This proves that 

o < In( I + ~) < Yn for each positive integer n. (7.11 ) 

Consider the first inequality in (7.10). By adding 1 on both sides we obtain 

1 + ~ + t + ... + n! 1 < 1 + In(n + 1). (7.12) 
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This implies that 

I I I Y = I + - + - + ... + --I - In(n + I) < I n+ 1 2 3 n + 
for each positive integer n. (7.13) 

This and (7.11) yield 

0< Yn < I for each positive integer n > 1. (7.14) 

Clearly, Yl = I -In 1= 1. This and (7.14) prove (a). We prove (b). Note 
that if n is a positive integer, then 

Yn+l-Yn = n!1 -In(n+I)+lnn= n!1 -In(I+~). (7.15) 

By (7.7), the right-hand side of (7.15) is negative and we have 

I Yn+l-Yn=--I-ln(n+I)<O for each positive integer n. (7.16) n+ 
This implies that < Yn) is a strictly decreasing sequence. This proves (b). The 
last statement holds because <Yn) is bounded from below by 0 and is 
decreasing. Hence, < Y n) converges. This completes the proof. 

We define 

Y = lim Y = lim (I + 1 + . . . + 1 - In n). 
n--> + 00 n n--> + 00 2 n (7.17) 

Y is called the Euler-Mascheroni Constant.* Euler evaluated Y to 16 places 
and Mascheroni to 32. However, an error was found in the 20th place. 
Later Gauss and Nicolai corrected the error. Correct to 10 places, 

Y = 0.57722156649. 

It is still not known whether or not y is rational. 

PROB. 7.5. Prove: 

lim 
n--> + 00 

1+1/2+ ... +I/n 
Inn = 1. 

Compare this with the result in Prob. 111.9.2. 

We present some further applications of the Mean-Value Theorem in 
problem form. 

PROB. 7.6. Prove: (a) Iffis continuous on (a,b],j'(x) exists for a < x < b, 
and limx-->b_ j'(x) = k, then fl(b) exists and fl(b) = k. (b) If f is continu­
ous on [a,b),j'(x) exists for a < x < b, and limx-->a+ j'(x) = L, thenfk(a) 
exists andfk(a) = L. 

PROB. 7.7. Prove: If f is defined at some a E IR is differentiable in some 
€-neighborhood of a and limx-->J'(x) = B, then f is differentiable at a and 
j'(a) = B. 

• Chrystal's Algebra, Vol. 2, Chap. 25, Art. 13, Dover, New York. 
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PROB. 7.8. Prove: (a) Iff has a bounded derivative on an interval at I, then 
it is uniformly continuous there. (b) If f has a bounded derivative on a 
bounded open interval (a; b), then f(a + ) and feb - ) exist and are finite. 
(See Theorem VI.l1.4 and Prob. VI.11.7.) 

Darboux's Theorem on the Values of the Derivative 

We shall see later (Section VIII.5) that the derivative of a function need not 
be continuous. We prove, however, that the derivative of a function which 
is differentiable on an interval must have the intermediate-value property. 

Theorem 7.2. If g is a real-valued function of a real variable which is defined 
on an interval I and is the derivative of some function f defined on I, then g 
has the intermediate-value property. 

PROOF. This theorem is a consequence of the corollary of Theorem 6.4. By 
hypothesis 

f'(x) = g(x) for x E I. 

Suppose that g(a) =1= g(b) for some a and b in I. Let I-' be a number 
between g(a) and g(b). Consider the function h, where 

h(x) = f(x) - /LX for x E I. 

Clearly, 

h'(x) = f'(x) - I-' = g(x) - I-' for x E I 

and, hence, h'(a) = g(a) - I-' and h'(b) = g(b) - 1-'. Since I-' is between g(a) 
and g(b), either g(a) < I-' < g(b) or g(a) > I-' > g(b) so that either 

h'(a) < 0 < h'(b) or h'(a) > 0 > h'(b). 

By the corollary of Theorem 6.4, this implies that an Xo exists between a 
and b such that h'(xo) = 0, i.e., g(xo) - I-' = 0 or, equivalently, that g(xo) 
= 1-'. 

Remark 7.1. Let I be some interval. If (*) holds on I, then it clearly holds 
on every closed, bounded subinterval of I. This and Theorem 7.2 imply that 
a function g which is the derivative of some function f on an interval has 
the strong intermediate value property on that interval (Remark VI.7.3). 

An Application of the Corollary of Theorem 6.1. 

The following is not a direct application of the Mean-Value Theorem, but 
is, instead, an application of the corollary of Theorem 6.1. We use the sign 
of the derivative of a function to gain information about its monotonicity. 
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We prove: 

_2_ < In(1 + 1) 
2x + 1 x 

for x> O. 

Note first that this may be written 

_1_ < In( 1 + 1) 
x + 1 x 

for x> O. 

We already know that 

Since 

_1_ < In( 1 + 1 ) 
x+l x 

_1_ <_1_ 
x+l x+1 

for x> O. 

for x> 0, 

(7.18) is an improvement on (7.20). 
We prove (7.18). Define the function g, where 

g(x) = _2_ - In( 1 + 1 ) for x > O. 
2x + 1 x 

Now 

g'(x) = 1 >0 
(2x + 1)2x(x + 1) 

for x> O. 

This implies that g is strictly increasing. It is easy to see that 

lim g(x) = O. 
x~+ao 

Therefore, 

0= lim g(x) = sup g(x). 
x~+ao x>o 

This implies that 

g(x) < 0 for x> O. 

VII. Derivatives 

(7.18) 

(7.19) 

(7.20) 

Now take x > 0 and XI > X > O. We have g(x) < g(x l ) < O. Thus, g(x) 
< 0 for all x > 0 and so (7.18) holds. This inequality will be used later. A 
consequence of (7.18) is 

1 « n + ~ )In( 1 + ~) for each positive integer n. (7.21) 

This implies that 

( 1 )n+ 1/2 
e < 1 +­n 

for each positive integer n. 

PROB. 7.9. Prove: The sequence <an), where 

n!e n 
a =---

n nn+1/2 
for each positive integer n, 

(7.22) 
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is strictly monotonically decreasing and converges. Its limit will be evalu­
ated later. 

PROB. 7.10. * Prove: If x > 0, then 

In( 1 + 1) < 1 
X ~x2+ X 

FROB. 7.11. Prove: The function j, where 

j(X)=(l+~r for x> 0, 

is strictly monotonically increasing. 

Another Application 

We prove, using the Mean-Value Theorem, that 

tanx > 1 
x for 0 < Ixl < I . 

If 0 < Ixl < 'IT.2, then there is an Xo between 0 and x such that 

tanx - tanO = ( dtanx )1 = sec2xo . 
x dx X=Xo 

(7.23) 

Since 0 < IXol < 'IT /2, it follows that 0 < cosxo < 1 and, therefore, that 
sec2xo > 1. This implies that 

ta:x > 1 for 0 < Ixl < I . (7.24) 

We now prove Jordan's inequalityt which states that 

1 ,;;;; sinx < 1 for 0 < Ixl ,;;;; J!..2 . (7.25) 
'IT x 

For proof, consider j defined by 

{ 
sinx 

j(x)= ~ 
for 0 < x,;;;; I 
for x = O. 

This function is continuous on [0, 'IT /2] (explain). Note that 

(7.26) 

j '(x) = xcosx - sinx = cosx (x _ tanx) f 0 < < 'IT (7.27) x2 x2 or x "2' 

Since cosx > 0 for 0 < x < 'IT /2, the last result and (7.24) show that 
j'(x) < 0 for 0 < x < 'IT /2. We conclude from this that j is strictly mono-

*Mitronovic, Analytic Inequalities, p. 273. 

t Ibid, p. 33. 
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tonically decreasing on [0, 7T /2]. Therefore, 

sin x sin(7T/2) 2 --> =-
x 7T /2 7T for 0 < x < I' (7.2S) 

Since (Theorem IV.S.2) 

0< Si~x < 1 for 0 < Ixl " 1 < I ' (7.29) 

we obtain the strict inequality 

1. < sinx < 1 for 0 < x < J!..2 . (7.30) 
7T x 

If - 7T /2 < x < 0, then 0 < - x < 7T /2. Hence, by (7.30), we see that 

2 sine-x) 
-< <l. 7T -x 

This and (7.30) imply that the strict inequality in (7.25) holds for 0 < Ixl 
< 7T /2 with equality holding trivially for Ixl = 7T /2. 

PROB. 7.12. Prove*: If 0 < x < 7T /2, then 

cosx < ( si~x f 
(Hint: consider j, where 

j(x) = x - sinxcos-I/3x if 0" x < 7T/2, (7.31) 

then prove that l' is strictly decreasing on [0, 7T /2) and I'(x) < 1'(0) = 0). 

FROB. 7.13. Prove*: If a " 3, then 

cosx < ( si~x f for 0 < x <I' 

8. An Application of Rolle's Theorem to 
Legendre Polynomials 

The Legendre Polynomials Pn for each nonnegative integer n are defined as 
follows: 

Po(x) = 1 for x E IR (S.la) 

1 d n (x2 - l)n 
Pn(x) = 2nn! dxn for x E IR and n a positive integer. 

(S.lb) 

Formula (S.lb) is known as Rodrigue's Formula. 

* Ibid, p. 238. 
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Using the Binomial Theorem, we obtain 

(8.2) 

Taking the nth derivative of both sides, we have 

dn(X2 - 1/ n k n dn(x2n-2k) 
-d-'---'xn::--- = ~ (-I) (k) dxn . 

k=O 
(8.3) 

Here, the terms with n > 2n - 2k, that is, with k> n/2, vanish. But if 
o < k < n /2, then the corresponding term in (8.3) does not vanish. Since k 
is an integer, we have: If 

o < k < [ ~ ] = greatest integer < ~ , (8.4) 

then the terms in the sum on the right in (8.3) do not vanish. Note that 

if n IS even 

if n is odd. (8.5) 

Now, 

d n(X2n-2k) 
dxn = (2n - 2k)(2n - 2k - I) ... (n - 2k + l)xn-2k 

(2n - 2k)(2n - 2k - I) ... (n - 2k + I)(n - 2k)! Xn- 2k 

(n - 2k)! 

(2n - 2k)! n-2k 
= (n-2k)! x , 

where 0 < k < [n/2]. Hence substitution into the sum on the right-hand 
side of (8.3) yields 

d n(x2 - I)n [n/2] (2n - 2k)! 
dxn = k~O (_I)k(~) (n _ 2k)! Xn- 2k 

[n/2] ,(2n - 2k)! 
'" (I)k n. Xn-2k 

= k~O - k!(n - k)! (n - 2k)! . 

After multiplying both sides by 1/(2nn!) we obtain 

1 d n(X2 - I)n [n/2] k (2n - 2k)! 
Pn(x) = 2nn! dxn = k~O (-I) 2nk! (n _ k)! (n _ 2k)! xn-2k. 

(8.6) 

It follows that Pn is a polynomial of degree n. 
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PROB. 8.1. (a) Obtain the Legendre Polynomials PI' P2 , P3 , and P4 • (b) 
Prove: If n is even, then Pn( - x) = Pn(x) for x E IR. (c) Show that the 
leading coefficient of Pn is 

(2n - 1 )(2n - 3) ... 3 . 1 

n! 
We show that if j is an integer such that 0 ..;; j < n, then 

dj (X2 - 1/ I =0 dx j • 
x=±l 

(8.7) 

Write (x 2 - It = (x - lr(x + It and use Leibniz's Rule (Prob. 4.6) to 
obtain the jth derivative of Pn • We have 

dj (x2 _ l)n 

dxn 
dj(x - If(x + If j ( .) dj-k(x - If dk(x + l)n _____ =~J . 

dxj k=O k dX1 - k dx k 

(8.8) 

For 0 ..;; j < n, the index in the sum on the right satisfies 0 ..;; k ..;; j < n, so 
that 0 ..;; j - k ..;; j < n. Rence, 

dj-k(x _ l)n . 
--dx~l-.---:-k--'-- = n(n - 1) ... (n - j + k + 1)(x - lr-1 +k 

d\x + l)n 
--- = n(n - 1) ... (n - k + 1)(x + lr- k. 

dx k 

(8.9) 

When 0..;; k ..;; j < n, then the exponents in (x - It-j + k and (x + l)n-k 
are positive. This implies that when x = ± 1, then the terms in the sum on 
the right in (8.8) all vanish. This proves (8.7). 

FROB. 8.2. Prove: Pn(l) = 1 and Pn( -1) = (_l)n. 

We now come to the application of Rolle's Theorem mentioned in the 
heading of this section. 

Theorem 8.1. The Legendre Polynomial of degree n > 1 has exactly n zeros in 
the open interval (- 1; 1). 

PROOF. Let Vn , where n is some positive integer, be defined by 

for x E lit (8.10) 

Obviously, vn(l) = vn ( -1) = O. By Rolle's Theorem, the derivative v~ has at 
least one zero, Zo say, in (-1; 1). Thus, Zl exists such that V~(ZI) = 0, where 
-1 < Zl < 1. When n = 1, we have 

1 dVI(X) 1 d(x 2 - 1) 
Pl(x) = 2" ---;]X = 2" dx = x. 



8. An Application of Rolle's Theorem to Legendre Polynomials 339 

We see that PI has exactly one zero in (-I; I). Now assume that n > 1. We 
saw in (8.7) that v~(l) = 0 = v~ = (-I). By Rolle's Theorem, there exist ZI2 
and z22 with -I < Z12 < ZI < Z22 < 1 such that V~2)(ZI2) = 0 = V(2)(Z22)' 
These are distinct since they are separated by Z I' Thus, v:; has at least two 
zeros in (-1; 1). Continuing up to v~n-I) we find that it has at least n - 1 
distinct zeros in (-1; 1). We write these as zl,n-pz2,n-I"" ,zn-I,n-I' 
Then -1 < zl,n_1 < ... < zn-I,n-I < 1. By (8.7), 

v~n-I)( -I) = 0 = v~n-I)(I). 

It follows that v~n) has n zeros Z In' Z2n' ... , Zn n in ( - I; 1) (explain). Thus, 
Pn has at least n zeros in (- 1; 1). Since Pn is' a polynomial of degree n, it 
cannot have more than n distinct zeros. Consequently, Pn has exactly n 
zeros in ( - I; 1). 

FROB. 8.3. Let u be given by u(x) = (x2 - It for x E IR, where n is some 
positive integer. Prove that 

du(x) 
(X2 - 1) ~ = 2nxu(x) for x E IR. (8.11) 

Define y by means of 

I d n(X2 - l)n I dn(u(x») 
y(x) = 2nn! dxn = Pn(x) = 2nn! dxn for x E IR. 

(8.12) 

Take the (n + l)th derivative of both sides in (8.11) and show that y 
satisfies 

dy(x) dy(x) 
(x2 - 1)-- + 2x-- -n(n + I)y(x) = 0 

dx2 dx 
for x E IR. (8.13) 



CHAPTER VIII 

Convex Functions 

1. Geometric Terminology 

Let J be a real-valued function of a real variable and G be the graph of f. 
Thus, 

G= {(x,J(x»lx E6D(f)}. 

The point (x, Y), where x E 6D(j) is said to be above G if Y ~ J(x) and 
below G if Y ..;; J(x). If Y > J(x), then we say that (x, Y) is strictly above G 
and dually; wheny <J(x), then we say that (x,y) is strictly below G (see 
Fig. 1.1). Let (XI' YI)' (x2' y2) and (X3' h) be three points in 1R(2) = IR X IR, 
such that XI < x 2 < x 3 • Put 

Define the three functions J13' J12' J23 on [x l ,x3] as follows: 

J13(X) = YI + m l 3(x - XI) 

Jdx) = YI + mdx - XI) 

h3(X) = h + m23(x - x2) 

and let G13 , G12 , G23 be their respective graphs. It is easy to show that 
(X2' h) is below GI3 if and only if m12 ..;; m l 3 (see Fig. 1.2). To prove this, 
note first that 

h- YI 
h = YI + (h - YI) = YI + (x2 - xI) = YI + mdx2 - XI)' x 2 - XI 

Hence, 

h = YI + mdx2 - XI) ..;; YI + m13(x2 - XI) = JI3(X2) 

if and only if m12 ..;; m 13 . 
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y 

x 

Figure 1.1 

y 

Figure 1.2 

If XI < x2, then the line 112 containing PI = (XI' YI) and P2 = (x2, Y2) is 
the graph h of 112' where 

1 Y2 - YI 
dX)=YI+ (X-XI) 

X2 - XI 
for all X E IR. 

The line segment joining PI = (XI'YI) to P2 = (x2 ,Y2) is the graph S12 of 
the restriction of 112 to the closed interval [XI' x2] (see Fig. 1.3). 

y 

x 

Figure 1.3 
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~(X2' !(X2» 

(Xl~x1) 
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Figure 1.4 
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VIII. Convex Functions 

If PI = (XI' j(x l )) and P2 = (X2' j(x2)) are distinct points of the graph G 
of a functionj, so that XI =/= x 2 , then we call the line segment joining PI to 
P2 a secant segment of G. 

Before "officially" defining the notion of a convex function, we phrase 
the definition using the geometric terminology just introduced. A convex 
junction is a function defined on some interval I such that for any two 
points PI = (xI,j(x l )) and P2 =(X2,j(X2)) of its graph, the graph of the 
restriction of j to the closed interval with endpoints XI and X 2 is below the 
secant segment joining PI to P2 (see Fig. 1.4). We now give an analytic 
definition. 

Def. 1.1. A real-valued function of a real variable which is defined on an 
interval I is called convex on I if and only if for XI and X2 in I such that 
XI < X 2 , we have 

If XI < x2 for XI and X 2 in I implies the strictness of the inequality (1.1), 
then we say that j is strictly convex on I. 

Theorem 1.1. A real-valued junction oj a real variable is convex on an interval 
I if and only if 

X I E I, x 2 E I, and 0 < { < 1 imply 

j(l - t)XI + (X2) < (1 - t)j(xI) + tJ(x2)· 
(1.2) 

PROOF. Let j be a function for which (1.2) holds. Take XI E I, x 2 E I, 
XI < x 2 and X such that XI < X < X 2 • There exists a unique t such that 

0< t < 1 and X = (1 - t)XI + tX2 (1.3) 

(Prob. V.l.7). This implies that 
X - XI 

t=---'--
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and, since (1.2) holds, that 

f(x) = f(l - t)x, + tx2) « (I - t)f(x,) + tf(x2) = f(x,) + t(f(x2) - f(x,») 

-f( ) + f(x2) - f(x,) ( _ ) - x, X x,. 
X 2 - x, 

Thus, the assumptions x, E I, x2 E I, x, < X2 imply (Ll) and, hence, thatf 
is convex on I. 

Conversely, assume thatfis convex on I. Take x, E I, x2 E I, and t such 
that 0 « t « I and write 

x = (1- t)x, + tx2. (1.4) 

If x, = x2, then (1.4) implies that x = x, = X2 and f(x) = f(x,) = f(x2)' 
Therefore, 

f(x) = (I - t)f(x) + tf(x) = (I - t)f(x,) + tf(x2)· 

In this case (1.2) is satisfied with equality holding there. Now consider the 
case x, =1= x2, so that either x, < X2 or X2 < x,. Solve for t in (1.4) to obtain 

x-x 
t = ' x 2 - x, 

(1.5) 

If x, < x2, then (1.4) implies that x, « x « X2' Since f is convex, we have 

f(X2) - f(x,) 
f(1 - t)x, + tX2) = f(x) « f(x,) + (x - x,) 

X2 - Xl 

= f(x l) + t(f(x2) - f(x,» = (1 - t)f(x l) + tf(x2). 

Thus, x, < X2 in I implies (1.2). If X2 < Xl' then (1.4) implies x2 « x « Xl' 
This time the convexity of f on I yields 

(check this). Therefore, in view of (1.5), we have 

f( x 2) - f( Xl) 
f(l - t)XI + tx2) « f(x l) + (x - Xl) 

x 2 - Xl 

= (f(x l) + t(f(x2) - f(x l») = (1 - t)f(x,) + tf(x2), 

as before. This completes the proof. 

Remark 1.1. We note that a < b implies that a < (l - t)a + tb < b, if and 
only if 0 < t < I. Hence, if x, and X 2 are in an interval I and 0 « t « 1, 
then (l - t)x l + tX2 E I. 
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The condition for convexity obtained in Theorem 1.1 can be expressed 
somewhat differently. 

Theorem 1.1'. A real-valued function f of a real variable f is convex on an 
interval/if and only if for x I and x2 in /, we have 

f(axl + {3X2) ~ af(x l) + {3f(x2), (1.7) 

where a + {3 = 1, 0 ~ a, 0 ~ {3. 

EXAMPLE 1.1. The absolute value function is convex. We use Theorem 1.1' 
to prove this: Take a ;;;. 0, {3 ;;;. 0, a + {3 = 1, then 

laxI + {3x21 ~ laxII + I {3xII = lalxll + I {3llx 21 = alxll + {3lx21· 
Theorem l.l' furnishes us with an alternate definition of convexity. 

Del. 1.2. If f is defined on an interval /, it is convex on I if and only if 
x I E I, X2 E I and a ;;;. 0, {3 ;;;. 0, a + {3 = 1 imply that 

f( ax I + {3x2) ~ af( x I) + {3f( x2)· (1.8) 

f is called strictly convex on I if and only if XI E /, X2 E I, XI =1= x2, 
a + {3 = 1, a > 0, {3 > 0 imply the strict inequality in (1.8). 

Remark 1.2. Using Def. 1.2, we obtain: If f is strictly convex on / and there 
exist XI' X2 in I and a, {3 such that a > 0, {3 > 0, a + {3 = 1 and if 

f(ax l + {3x2) = af(x l) + {3f(X2)' 

EXAMPLE 1.2. The squaring function ( f is strictly convex on IR. For assume 
XI =1= x2 in IR, so that (XI - x2i > o. Clearly, 

If a > 0, {3 > 0, a + {3 = 1, then 

2a{3x I X2 < a{3 ( x; + x~). 
This implies 

f(axl + {3X2) = (ax l + {3x2)2= a2x; + 2a{3xlx2 + {32x~ 

< a2x; + a{3(x; + xn + {32x~ 

= a2x; + a{3x; + a{3x~ + {3 2X~ 

= a(a + {3)x; + {3(a + {3)x~ 

= axt + {3x~ 
= af( X I) + {3f( x2)· 

(1.9) 

(l.l0) 
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In short, we have proved that: If XI *- X2 and a> 0, f3 > 0, a + f3 = 1, then 

( ax I + f3X2)2 < ax; + f3xi . 

An interesting special case of the above is 

( X I + X2)2 x; + xi 
2 < 2 ' (1.11) 

where XI *- X2· 

PROB. 1.1. Prove: The absolute value function is not strictly convex on lit 
(In Example 1.1, we saw that it is convex on lit) 

PROB. 1.2. A function f defined on an interval I is strictly convex if and 
only if: XI =1= X2 and X is between XI and X2 imply that 

f(x) < f(xd + f(x2) - f(x l) (x - xd· 
X2 - XI 

Concave Functions 

The notion dual to that of convexity is that of concavity. It goes over into 
the former notion by reversing the sense of the inequalities in the definition. 

Der. 1.3. Let I be an interval. We call f concave on I if and only if X I E I, 
x2 E I, XI < X < x2 imply 

f(x) > f(x l) + f(x2) - f(x l) (x - XI) 
X2 - XI 

(1.12) 

(see Fig. 1.5). When the inequality here is strict, f is called strictly concave 
on I. 

The following theorem holds: 

y 

Figure 1.5 
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Theorem 1.2. The function f defined on an interval I is concave if and only if 
- f is convex. 

PROOF. Exercise. 

Remark 1.3. Because of the last theorem, we deal in the sequel mainly with 
convex functions. 

Theorem 1.3. f is convex on an interval I if and only if for x I' x 2 , ••• , xn in I, 
where n is some integer n ;;. 2, we have 

f(alx l + ... + anxn)';;; ad(x l) + ... + aJ(xn) 

for a;;;' 0, 1,;;; i ,;;; n, and al + ... + an = 1. (1.13) 

PROOF. Letfbe a function for which (1.13) holds for all integers n ;;. 2. This 
implies, in particular. that (1.13) holds for n = 2. By Theorem 1.1', f is 
convex on I. 

Conversely, assume that f is convex on an interval I. We prove that 
(1.13) holds for each integer n ;;. 2. If n = 2, it holds because of Theorem 
1.1'. Assume that (1.13) holds for some integer n ;;. 2. Take xl> ... , X n ' 

xn+1 in I and al' ... ' an' an+1 such that al + ... + an+1 = 1 and a;;;' 0 
for 1,;;; i ,;;; n + 1. Write a = a l + ... + an and f3 = I - a, so that f3 
= an+ l . If a = 0, then a l = ... = an = 0, and f3 = an+1 = 1. Hence, 

f(alxl + ... + an+lxn+ l) = f(Xn+l) (1.14) 

and 

(1.15) 

from which (1.13) follows with the equality holding there for the integer 
n + 1. Now assume a > O. Write 

m = min{ XI' ••• ,xn} and M = Max{ XI' ••• , xn} (1.16) 

and 

( 1.17) 

Clearly, 

(a + ... + a)M 
,;;; I n =M. 

a 
This implies that m ,;;; YI ,;;; M. Since each of m and M is one of 
XI' ••. , xn ' we know that m and M are in I. It follows that YI E I. Put 
h = Xn+l· Sincefis convex and a + f3 = 1, a > 0, we know that 

f( aYI + f3h) ,;;; af(YI) + f3f(h), (1.18) 
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i.e., 

+an+d(Xn+t). (1.19) 

Since 1 = (at + ... + an)1 a = (atl a) + ... + (ani a) and 0 .;;;; aJ a for 
i E {I, ... , n}, we have, by the induction hypothesis, 

( atxt + ... + anxn ) at an 
f a .;;;; a f(x t) + ... + a f(xn) 

and, therefore 

( atXt + ... + anXn ) 
af a .;;;; ad(x t) + ... + aJ(xn)· 

This and (1.19) imply, in this case (a 3 0) also, that 

f(at x t + ... + anxn + an+txn+t)';;;; ad(x t) + ... + aJ(xn) 

+an+d(xn+t). 

The theorem holds by induction on n. 

PROB. 1.3. Prove: If f is strictly convex on an interval I and at + ... + an 
= 1, where a i > 0 for i E {l, ... , n}, then the equality in (1.13) holds if 
and only if X t = ... = X n • 

2. Convexity and Differentiability 

Lemma 2.1. Iff is convex on an interval I, Xo is a pOint of I and g is defined 
as 

f(X) - f(xo) 
g ( x) = ----'-----'-----'-...:.. 

X - Xo for x E I, x *' Xo , (2.1 ) 

then g is monotonically increasing. Iff is strictly convex on I, then g is strictly 
monotonically increasing. 

PROOF. Let Xo be an interior point of I from the left. There exist points Xt 
and X2 in I such that Xt < X2 < Xo. Put 

(2.2) 

Clearly, 0 < t < 1 and X2 = Xo + t(Xt - xo) = (1 - t)xo + tXt. From this 
and the convexity of f on I we obtain 

f(x2) = f«l - t)xo + tXt) .;;;; (1 - t)f(xo) + tf(x t). 
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This implies that 
X2 - Xo 

f(x2) - f(xo) .;; t(J(x l) - f(xo)) = (J(x l) - f(xo))· 
XI - Xo 

Divide the last inequality by X2 - Xo' Since X2 - Xo < 0, we obtain 

( ) _ f(X2) - f(xo) :;. f(xI) - f(xo) _ ( ) 
g X2 - P - g XI' X2 - XI XI - Xo 

We proved that if XI < X2 < xo, then g(x l )';; g(x2). Note that the strict 
convexity of f would yield the strict inequality g(x I) < g(x2) here. 

Now let Xo be an interior point of I from the right and let XI and X2 be 
points of I such that Xo < XI < X2 and write 

XI - Xo 
t=--­

X2 - Xo 
(2.3) 

so that ° < t < 1. We have XI = (1 - t)xo + tx2. This time the convexity of 
f implies that 

XI - Xo 
f(x l ) - f(xo) .;; t(J(X2) - f(xo)) = (J(x2) - f(x l ))· X2 - Xo 

Since X I - Xo > ° here, dividing both sides in the above inequality by 
X I - Xo yields 

This proves that Xo < XI < X2 implies g(x l ) .;; g(x2). 
Now assume that Xo is an interior point of I and take points XI and X2 of 

I, differing from Xo such that XI < X2. There are two cases: (1) Xo < XI or 
(2) XI < xo' In case (1), we have Xo < XI < x2. Earlier we proved that in 
this case g(x l ) .;; g(x2). If (2) holds, we have either (a) XI < X2 < Xo or (b) 
XI < Xo < X2· We proved above that in case (a), g(x l ) .;; g(x2). We confine 
our attention to (2)(b) so that XI < Xo < x 2. Because f is convex, we know 
that 

Since x 2 - X I > 0, this implies that 

(J(xo) - f(x I))(X2 - XI) .;; (J(x2) - f(xI))(xo - xI)' (2.4) 

But f(x2) - f(x l) = f(x2) - f(xo) - (j(x l) - f(xo)). Using this equality in 
the right-hand side of (2.4) yields 

(J(xo) - f(x I))(X2 - XI) .;; (J(x2) - f(xo) - (J(x l) - f(xo))(xo - XI)' 

By adding (j(x l) - f(xo))(xo - XI) to both sides of the last inequality we 
obtain, after some algebraic manipulation, 

(J( xo) - f( X 1))( x2 - xo) .;; (J( x 2) - f( xo))( Xo - X I)' (2.5) 
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Upon dividing both sides of (2.5) by the positive number (X2 - xo)(xo­
XI)' we obtain 

( ) _ f(xo) - f(xl) .-- f(X2) - f(xo) _ ( ) 
g XI - "'" - g X2 . 

Xo - XI X2 - XI 

Thus, XI < Xo < x2 also implies g(x l) ..;; g(X2)' 
We summarize: (1) If Xo is an interior point of I, either from the right or 

from the left, then g is monotonically increasing. (2) If Xo is an interior 
point of I, then g is also monotonically increasing. Thus, Xo E I implies that 
g is monotonically increasing. It is also seen that the strict convexity of f 
will yield the strict inequality g(x l) < g(x2) when XI < x2 in I where 
XI =1= Xo, X2 =1= xo' This completes the proof. 

Theorem 2.1. Iff is convex on an interval I, then it is differentiable from both 
sides at each interior point Xo of I and 

fL( Xo) ..;; fR( Xo)· 

PROOF. The function g defined by 

f(x) - f(xo) 
g(x)=----

x- Xo 
for X E I, X =1= Xo 

is monotonically increasing by the lemma. Since Xo is an interior point of I, 
there exist X I and x2 in I such that X I < Xo < X2' Hence, 

( ) _ f(x l) - f(xo) .-- f(x2) - f(xo) _ ( ) 
g XI - "'" - g X2' 

XI - Xo X2 - Xo 

Here, the left-hand side is bounded from above by g(X2) and the restriction 
of g to the set of points X of I such that X < Xo is increasing. It follows that 
it has a finite limit as X I ~ Xo -. This implies that 

fL( Xo) ..;; g( x2) for Xo < X2 . (2.6) 

For similar reasons, the restriction of g to the points X of I such that Xo < X 
is monotonically increasing and bounded from below by fL<xo). Accord­
ingly, g has a finite limit as X2 ~ Xo + . From this and (2.6) it follows that 

fL( Xo) ..;; fk (Xo), 

as claimed. 

Corollary. Iff is convex on an interval I, then it is continuous at each interior 
point of I. 

PROOF. Let Xo be an interior point of I. By the theorem, the convexity of f 
on I implies that f is differentiable from both sides at xo' This implies that f 
is continuous from both sides at Xo and consequently that f is continuous 
at xo' 
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Theorem 2.2. Iff is convex on an interval I, then fk and f{ are monotonically 
increasing on the interior (the set of all interior points) of I. Also, if XI and x 2 
are interior points of I such that XI < X2, then 

fk(x l ) ,.; fUX2). (2.7) 

Moreover, iff is strictly convex, then this inequality is strict and f{ and fk are 
strictly monotonically increasing in the interior of I. 

PROOF. Take x such that XI < x < X 2 . By Lemma 2.1, we have 

f(x l ) - f(x) f(x2) - f(x) 
-----,.; . 

XI - X X2 - X 
(2.8) 

By Theorem 2.1 and Lemma 2.1, f is differentiable from the left at X 2 and 
from the right at X I 

hold. Hence, 

I" ( ),( f(x l ) - f(x) ,( f(x2) - f(x) ,( 1"( ) 
JR XI '" '" '" JL X2 . 

XI - X X 2 - X 
(2.9) 

This proves (2.7). 
We now use Theorem 2.1 and (2.7) to obtain 

fUx l ) ,.; fk(x l ) ,.; fU X2) ,.; fk(x2), (2.10) 

implying 

(2.11a) 

and 

(2.11b) 

for interior points XI and X2 of I such that XI < x2. Thus, f{ and fk are 
monotonically increasing functions in the interior of I. 

N ow suppose that f is strictly convex. Assume X I < X2 and X I < X < x 2 
where X I and X2 are interior points of I. By Lemma 2.1, the inequality (2.8) 
is strict, so (2.9) becomes 

fk(x
l
) ,.; f(x l ) - f(x) < f(x2) - f(x) ,.; fUx2). 

XI - X X2 - X 
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Accordingly, in this case, (2.7) is a strict inequality and (2.10) becomes 

fLex l)";; fR.(x l) <fLex 2)";; f~(x2)' (2.12) 

This implies the strictness of the inequalities (2.11). This completes the 
proof. 

Corollary 1. Iff is convex on an interval I and differentiable in the interior of 
I, then f' is monotonically increasing there. If f is strictly convex on an 
interval I and differentiable in the interior of I, then f' is strictly increasing 
there. 

PROOF. Exercise. 

Corollary 2. If f is convex on an interval I and twice differentiable in its 
interior, then j"(x) > 0 for each interior point x of I. 

PROOF. Exercise. 

Thus far, the conditions we obtained for convexity were necessary ones. 
We now obtain sufficient conditions. 

Theorem 2.3.* If f is continuous on an interval I, differentiable from both 
sides at each interior point of I, 

fLex) ..;; f~(x) for each interior point x of I, (2.13) 

and 

f~(xl)";; fLex2) if XI and X 2 are interior points of I, such that XI < x2, 

(2.14) 

then the one-sided derivatives off are monotonically increasing in the interior 
of I and f is convex on I. 

PROOF. Take interior points XI and X2 of I such that XI < X 2 and obtain 

fLex l)";; f~(xl)";; fLex2)";; f~(x2)' (*) 

This implies that 

(a) f{(x l)";; f{(x2) and 
(b) f~(xl) ..;; fM x 2)' 

Hence, f{ and f~ are monotonically increasing in the interior of I. 
We prove now that our conditions imply thatfis convex on I. To do this 

we turn to Theorem VII.5.2 (the Mean-Value Theorem with one-sided 
derivatives). Take points XPX,X2 of I such that XI < X < x2 • Applying 
Theorem VII.5.2 to f and the interval [xl'x], we know that there exists an 

*E. Artin, The Gamma Function, Holt, Rinehart, Winston, New York, 1964, pp. 2-4. 



352 VIII. Convex Functions 

Xo such that Xl < Xo < X and 

fL(xo) ~ f(x) - f(x l) ~ f~(xo) 
X-Xl 

f/( ) .... f(X)-f(XI) .... f / ( ) or JL Xo ,. ,. JR Xo . X-Xl 

Since Xo is an interior point of I, the hypothesis implies that the first of 
these possibilities holds, and we have 

fL(xo) ~ f(x) - j(XI) ~ f~(xo), (2.15) 
x- Xl 

where Xl < Xo < x2. Using the same reasoning on the interval [x,x2] we see 
that there exists an Xo such that 

(2.16a) 

where X < Xo < X2. Since Xl < Xo < X < Xo < X2, we have Xo < xo. By the 
hypothesis we obtain 

f~(xo) ~ ff(xo)· 

This (2.15) and (2.16) imply that 

f(x) - f(x l) f(x2) - f(x) 
--'--'----------'----'-- ~ . 

X - Xl X2 - X 

Since X - Xl > 0 and x2 - X > 0, this implies that 

(2.16b) 

(2.17) 

(X2 - x)(J(x) - f(x l») ~ (x - XI)(J(X2) - f(x»). (2.18) 

We replace f(X2) - j(x) with f(X2) - f(x l) - (j(x) - j(xl» in (2.18) and 
obtain 

(X2 - x)(J(x) - f(x l» ~ (x - XI)(J(X2) - f(x l» - (x - XI)(J(X) - f(x l»). 

It follows that 

(X2 - XI)(J(X) - f(XI» ~ (x - XI)(J(X2) - f(x l»). (2.19) 

Since X 2 - X I > 0, this implies 

f(x) ~ f(x l) + f(x2) - f(x l) (x - Xl) (2.20) 
X 2 - Xl 

for Xl < X < x 2• Hence, f is convex on I. 

Corollary. If f is continuous on an interval I, differentiable at each interior 
point of I, and J' is monotonically increasing in the interior of I, then f is 
convex on I. 

PROOF. We prove that our f satisfies the hypothesis of the theorem. First of 
all, f is continuous on I. Second, since f is differentiable at each interior 
point of I, the one-sided derivatives of f exist for such points. Third, we 
have, because f is differentiable in the interior of I, that ff(x) = f~(x) for 
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each interior point x E I and, hence, that (2.13) holds for such points. 
Finally, since!, is monotonic increasing in the interior of I, we have: If XI 
and X2 are interior points of I such that XI < x2, then 

f~(xI) = !'(x I) ..;; !'(X2) ..;; ff( X2)' 

It follows from this and the theorem that f is convex on I. 

Combining this corollary with Corollary 1 of Theorem 2.2 we have: 

Theorem 2.4. A function which is continuous on an interval I and differentia­
ble in the interior of I is convex on I if and only if its derivative is 
monotonically increasing in the interior of I. 

PROB. 2.1. Prove: If f is continuous on an interval I and twice differentiable 
in the interior of I, then f is convex on I if and only if j"(x) ~ 0 for each 
interior point X of I. 

We state some theorems concerning strict convexity. 

Theorem 2.5. If f is defined on an interval I and satisfies the hypothesis of 
Theorem 2.3 with the proviso that inequality (2.l4) holds strictly, then the 
one-sided derivatives f{ and f~ are strictly monotonically increasing in the 
interior of I and f is strictly convex on I. 

PROOF. Repeat the proof of Theorem 2.3 but use the strict inequality 
permitted by the present hypothesis to obtain, instead of (*): If XI and X2 
are interior points of I such that XI < X2' then 

ff( X I) ..;; f~ (x I) < ff( X2) ..;; f~ (x2) 

so that 

ff(X I) <ff(x2) and f~(xI) <f~(X2) 

and, hence, that f{ and f~ are strictly increasing in the interior of I. 
Now continue the proof of Theorem 2.3, using points XI' X, and X2 of I 

such that X I < X < X2' It will follow from the reasoning used there that 
there exist Xo and Xo such that XI < Xo < X < Xo < X2 and such that (2.16b) 
holds. The present hypothesis justifies the strict inequality f~(xo) < f{(xo)' 
Now (2.17) will be replaced by the strict inequality 

f(x) - f(x l ) f(x2) - f(x) 
----'--' < . 

X - XI X2 - X 
(2.21) 

It follows that (2.20) can be replaced by the strict inequality 

f(X) <f(XI) + f(X2)-f(xI) (X-XI) for XI <x<X2' 
x2 - XI 

The strict convexity of f on I follows. 
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Corollary. Iff is continuous on an interval I and differentiable in its interior 
and f' is strictly increasing there, then f is strictly convex on I. 

PROOF. Exercise. 

This corollary and Corollary 1 of Theorem 2.2 yield: 

Theorem 2.6. If f is continuous on an interval I and differentiable in its 
interior, then f is strictly convex on I if and only iff' is strictly increasing in 
the interior of I. 

PROB. 2.2 (cf. Prob. 2.1). Prove: If f is continuous on an interval I, twice 
differentiable in the interior of I, and f"(x) > 0 holds for each x in the 
interior of I, then f is strictly convex on I. 

Remark 2.1. Note the result in the last problem is not in "if and only if" 
form. We give an example of a function which is twice differentiable in the 
interior of an interval and is strictly convex and continuous there for which 
the weaker f"(x) ~ 0 holds but cannot be strengthened to a strict inequal­
ity. We take ( )4 on IR and prove it is strictly convex. Take XI and X 2 such 
that XI =I=- X2 and a, f3 such that a > 0, f3 > 0 and a + f3 = 1. Since ( )2 is 
strictly convex on IR (Example 1.2), we have 

( ax I + f3X2)2 < ax~ + f3x~ . 
Squaring again yields 

(ax I + f3X2)4 < (ax~ + f3x~)2.;;;; axt + f3xi, . 

Accordingly f, where f(x) = X4, X E IR is strictly convex on IR. We have, 
however, f"(x) = 12x2 ~ 0, X E IR. Since 1"(0) = 0, this inequality cannot 
be strengthened. 

There are corresponding results on concavity. We state these in problem 
form. 

PROB. 2.3. Prove: If f is continuous on an interval I and differentiable in 
the interior of I, then f is concave on I if and only if f' is monotonically 
decreasing. 

PROB. 2.4. Prove: If f is continuous on an interval I and twice differentiable 
in the interior of I, then f is concave on I if and only if f"(x) .;;;; 0 holds for 
each interior point x of I. 

PROB. 2.5. Prove: If f is continuous on an interval I and twice differentiable 
in the interior of I and f"(x) < 0 for x in the interior of I, then f is strictly 
concave on I. 
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y 
(x,f(x» 

Figure 2.1 

We present still another characterization of convexity for differentiable 
functions. 

Def. 2.1. If f is differentiable on an interval I, then we say that its graph lies 
above its tangents if and only if, for each XI E I, we have 

for each X E I (2.22) 

(see Fig. 2.1). If at some XI in I the inequality above holds, we say that the 
graph lies above its tangent at XI. When the inequality (2.22) is strict for 
each XI in I we say that the graph of f lies strictly above its tangents. If for 
each XI in II the sense of the inequality (2.22) is reversed, then we say that 
the graph off lies below its tangents. If X I is an endpoint of I, then 1'( X I) is 
the appropriate one-sided derivative of f at X I. 

Theorem 2.7. If f is continuous on an interval I and differentiable in the 
interior of I, then it is convex on I if and only if its graph lies above all its 
tangents at all interior points of I. 

PROOF. We first assume thatfis convex on I. By hypothesis,fis continuous 
on I and differentiable in the interior of I. By Theorem 2.4, l' is monotoni­
cally increasing on I. Let XI be an interior point of I and X a point of I 
such that X> XI. By the Mean-Value Theorem, there exists a point Xo such 
that 

f(X) = f(xI) + j'(xo)(x - XI)' 

where XI < Xo < x. Butj'(xI) .;;;; j'(xo) and X - XI > 0 and, hence, 

j'(XI)(X - XI) .;;;; j'(xo)(x - XI)· 

This implies, using (2.3), that 

f(x) ~ f(x l ) + j'(XI)(X - XI)· 

(2.23) 

(2.24) 
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Now take x in I such that x < Xl. Again there exists an Xo such that 

I(x) = I(x l) + 1'(xo)(x - Xl)' (2.25) 

where X < Xo < Xl. This time, we have 1'(xo) ..;; j'(x l) and X - Xo < 0, so 
that j'(xo)(x - Xl) ;.. j'(xl)(x - Xl). This and (2.25) imply (2.24) in this 
case also. Also note that for X = xI> (2.24) holds trivially. This establishes 
(2.24) for all X E I for each Xl in the interior of I and, hence, that the graph 
of I lies above all its tangents at all interior points of I. 

Conversely, let I be continuous on I and differentiable in the interior of I 
and suppose the graph of I lies above all its tangents at all interior points of 
I. Let Xl and X2 be interior points of I such that Xl < X2. We have 

l(x2) ;.. I(x l) + j'(Xl)(X2 - Xl) (2.26a) 

and 

(2.26b) 

Since x2 - Xl > 0 and Xl - x2 < 0, it follows from these two inequalities 
that 

and that 1'(xl) ..;; j'(x2). This proves that l' is monotonically increasing in 
the interior of I. By Theorem (2.4), I is convex on I. The proof is complete. 

PROB. 2.6. Prove: If I is continuous on an interval I and twice differentiable 
in the interior of I, then the graph of I lies above all its tangents at all 
interior points of I if and only if j"(x) ;.. 0 for each interior point X of I. 

PROB. 2.7. Prove: If I is continuous on an interval I and differentiable in 
the interior of I, then I is strictly convex on I if and only if the graph of I 
lies strictly above all its tangents at all interior points of I. 

PROB. 2.S. Prove: If I is continuous on an interval I and differentiable in 
the interior of I, and j"(x) > 0 for each interior point X of I, then the graph 
of I lies strictly above all its tangents at all interior points of I. 

PROB. 2.9. Let I be differentiable in an interval I. Prove that the graph of I 
lies below its tangents on I, if and only if -I lies above its tangents on I. 

PROB. 2.10. Prove: If I is continuous on I and differentiable in its interior, 
then (a) I is concave on I if and only if its graph lies below all its tangents 
at all interior points of I. (b) I is strictly concave on I if and only if the 
graph of I lies strictly below all its tangents at all interior points of I. 

PROB. 2.11. Let I be continuous on an interval I and twice differentiable in 
the interior of I. Prove: (a) the graph of I lies below all its tangents at all 
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interior points of I if and only if j"(x) ..;; 0 for each x in the interior of I. 
(b) If j"(x) < 0 for each x in the interior of I, f lies strictly below all its 
tangents at all interior points of I. 

We shall see the importance of the notion of convexity when we study 
the gamma function. The relation between convexity, concavity, and the 
location of maxima and minima of functions will be examined in Chapter 
IX. Meanwhile, in the next three problems, we cite some results on convex 
functions needed for our later work. 

PROB. 2.12. Prove: If f and g are convex functions on an interval I, then so 
isf+ g. 

PROB. 2.13. Prove: If f is a function which is convex on an interval I and c 
is a positive constant, then cf is convex on I. 

PROB. 2.14. Prove: If <fn) is a sequence of functions convex on an interval 
I and 

lim fn(x) = f(x) 
n~+oo 

for each x E I, 

thenfis convex on I. 

An Application to an Inequality Involving In 

Consider the function f where 

f(x) = xlnx for x> O. (2.27) 

We have, 

f'(x) = 1 + lnx and j"(x) = 1 x for x> O. 

Thus, f is strictly convex. Also if XI' ... 'Xn > 0 and a l + ... + an = 1, 
where ai > 0, i E {t, ... , n}, then (Theorem 1.3) 

f(alx l + ... + anxn) ..;; at/(xl) + ... + anf(xn)· 

Hence, if XI' ... ,xn are positive and al + ... + an = 1, where a; > 0, 
i E {I, ... , n}, then 

(alxl + ... + anxn)ln(alxl + ... + anxn) 

..;; alxllnxl + ... + anXn lnxn . 

Here the equality holds if and only if XI = X2 = ... = Xn • 

PROB. 2.15. Prove: If u > 0, v > 0, then 

(a) «u + V)/2)k ..;; (Uk + v k)/2 if k > 1 and 
(b) «u + V)/2)k ~ (Uk + v k)/2 if 0 < k < 1. 

(2.28) 
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3. Inflection Points 

Def. 3.1. If f is differentiable on an interval I and Xo is an interior point of 
I, then the point (xo, f(xo» is called an inflection point of the graph of f if 
and only if there exists a 8-neighborhood N(xo, 8) of Xo contained in I such 
that either f is strictly convex on (xo - 8, xo) and strictly concave on 
(xo, Xo + 8) or f is strictly concave on (xo - 8, xo) and strictly concave on 
(xo,xo + 8) (see Fig. 3.1). 

Theorem 3.1. If f is differentiable on an interval I and (xo, f(xo» is an 
inflection point of the graph of f and f is twice differentiable at xo, then 
1"(xo) = o. 

PROOF. Use the definition of inflection point to obtain a 8-neighborhood 
N(xo,8) in I such that either (1) f is strictly convex on (xo - 8,xo) and 
strictly concave on (xo, Xo + 8) or (2) f is strictly concave on (xo - 8, xo) 
and strictly convex on (xo, Xo + 8). For the sake of definiteness suppose 
that (1) is the case. This implies that l' is strictly increasing on (xo - 8,xo) 
and strictly decreasing on (xo, Xo + 8). Since f' is a derivative on the 
interval I, it has the strong intermediate value property on I (Remark 
VII.7.1). Therefore, l' will have the strong intermediate value property on 
(xo - o,xo] and on [xo,xo + 8). Since l' is also strictly increasing on 
(xo - 8; xo) and decreasing on (xo; Xo + 8), it follows from Prob. V1.4.6 
that l' is strictly increasing on (xo - 0, xo] and strictly decreasing on 
[xo, Xo + 8). Accordingly, if Xo - 8 < x < x o, then 1'(x) < 1'(xo) and x -
Xo < 0, so that 

_f_' (x_)_-_f_' (_xo_) > 0 
x - Xo (3.la) 

and, hence, 
1'(x) - 1'(xo) 1" ( x 0) = lim ---'---'----'--'--;;, 0; 

x~Xo- X - Xo (3.1b) 

y y 

Xo - (j Xo Xo + (j Xo - (j Xo Xo + (j 

(a) (b) 
Figure 3.1 
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and if Xo < x < Xo + ~, we have f'(x) < f'(xo) and x - Xo > 0, so that 

f'(x) - f'(xo) < 0 
x - Xo 

(3.2a) 

and, hence, 

f "( )- l' f'(x)-f'(xo) /0 Xo - 1m "" . 
X~Xo+ X - Xo (3.2b) 

Thus, we have 1"(xo) ;;;. 0 and 1"(xo) <: 0, so that 1"(xo) = o. 

Remark 3.1. Under the hypothesis of the last theorem we find that 1"(xo) 
= 0 is a necessary condition for (xo, f(xo» to be an inflection point of the 
graph of f. This condition is, however, not sufficient. For example, let f be 
defined as f(x) = X4 for x E IR. We have 1"(x) = 12x2, 1"(0) = o. It is easy 
to see that (0, f(O» = (0,0) is not an inflection point of the graph of f. Since 
f'(x) = 4x3, I' is strictly increasing on IR and, therefore, f is strictly convex 
on every 8-neighborhood N(O, 8) = (- 8; 8) of O. Accordingly, (0, f(O» = 
(0,0) is not an inflection point of the graph of f. Below, we give a sufficient 
condition for a point to be an inflection point. 

Theorem 3.2. If I' is continuous in some 8-neighborhood N(xo,8) of Xo and 
either (1) 1"(x) > 0 for Xo - 8 < x < Xo and 1"(x) < 0 for Xo < x < Xo + 8 
or (2) 1"(x) < 0 for Xo - 8 < x < Xo and 1"(x) > 0 for Xo < x < Xo + ~, 
then (xo, f(xo» is an inflection point of the graph off. (Note, the hypothesis 
does not require f to be twice differentiable at xo). 

PROOF. We consider an f such that I' is continuous on N(xo,8) and for 
which (1) holds. (In case (2) holds, the proof is similar.) Since 1"(x) > 0 for 
Xo - 8 < x < xo, and 1"(x) < 0 for Xo < x < Xo + 8,1' is strictly increasing 
on (xo - ~; xo) and strictly decreasing on (xo; Xo + 8). It follows that f is 
strictly convex on (xo - 8; xo) and strictly concave on (xo; Xo + ~) and that 
(xo, f(xo» is an inflection point of the graph of f. 

Corollary. If f is twice differentiable in some 8-neighborhood N(xo,~) of Xo 
and either (1) 1"(x) > 0 for Xo - ~ < x < Xo and 1"(x) < 0 for Xo < x 
< Xo + 8, or (2) 1"(x) < 0 for Xo - 8 < x < Xo and 1"(x) > 0 for Xo < x 
< XI + 8, then 1"(xo) = O. 

PROOF. Exercise. 

PROB. 3.1. Find the inflection points, if any, for (1) f(x) = e- x ', x E IR and 
(2) g(x) = (1 + X 2)-I, X E IR. 

PROB. 3.2. Let f be given by f(x) = x 5/ 3, X E IR. Show that (0, f(O» = (0,0) 
is an inflection point of the graph of f and 1"(0) does not exist. 
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PROB. 3.3. Let g be given by g(x) = X 1/3, X E IR. Show that (0, j(O» = (0,0) 
is an inflection point of the graph of g, g'(O) = + 00, and g"(O) does not 
exist. 

4. The Trigonometric Functions 

The reader is probably familiar with the properties of the trigonometric 
functions noted in this section. We derive these here in order to illustrate 
the theory and also to make this book self-contained. 

The sine and cosine functions were defined in Section IV.8 and some of 
their properties were noted there. Some limits involving the sine and cosine 
were obtained in Theorem V.4.2, and in Example VI.1.4 we noted that 
these functions are continuous on IR. The number 77 was defined in Def. 
V1.4.1 as 77 = 2e, where 2 < e < 4 and cose = O. More information about 
sine and cosine is contained in Theorem V1.4.2 and Probs. VI.4.3-4.S. In 
Example VII.1.2 and Prob. VII.l.l we saw that d( cos x) / dx = - sin x and 
d(sinx)/ dx = cosx. We note further properties of these functions. 

We have sin(77 /2) = 1 and sin( -77 /2) = -1. Since the sine is continuous 
for all x E IR, this implies that sine maps [-77/2,77/2] onto [-1,1]. We 
recall that 

and 

so that 

and 

dsinx = cosx 
dx 

d(cosx) 
--;-- = - sin x 

dx 
for x E IR, 

d 2 • smx = -sinx 
dx 2 

(4.1a) 

(4.1b) 

(4.2a) 

d 2cosx = -cosx for x E IR. (4.2b) 
dx2 

From (4.la) and cosx > 0 for -77/2 < x < 77/2, we obtain that sine is 
strictly increasing on [ - 77 /2,77 /2] and, hence, that the restriction of sine to 
[ - 77 /2,77/2] is one-to-one. Since cos x < 0 for 77/2 < x < 77 (Theorem 
VI.4.2, part (g», (4.la) implies that sine is strictly decreasing on [77/2,77]. 
From cos( - x) = cosx, we see that cosx < 0 for -77 < X < -77/2, so 
(4.2a) implies that sine is decreasing on [- 77, - 77 /2]. We now use (4.2a) 
and the fact that sinx < 0 for -77 < X < 0 and sinx > 0 for 0 < x < 77 to 
obtain that sine is convex on [- 77,0] and concave on [0,77], and that 
(0, sin 0) = (0,0) is an inflection point of the graph of sine. Fig. 4.l(a) is a 
sketch of the graph of sine on [ - 77, 77]. 
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y y 

(n/2, 1) (0, 1) 

____ -.n --""/ I n 

-n/2[ n/2C -n 

(-n/2, -1) (-n, -1) (n, 1) 

(a) (b) 

Figure 4.1 

We now turn to cosine. We have cosO = 1 and cos 'IT = -I. Since cosine 
is continuous for all x E IR, it maps the interval [0, 'IT] onto the interval 
[-1,1]. From (4.1b) and sinx > ° for ° < x < 'IT, it follows that cosine is 
strictly decreasing on [0, 'IT] and, hence, that the restriction of cosine to [0, 'IT] 
is one-to-one. It is also easy to see that cosine is concave on [ - 'IT /2, 'IT /2] 
and convex on the intervals [-'IT, -'IT/2], ['IT/2,'IT], and that the points 
( - 'IT /2, cos( - 'IT /2)) = ( - 'IT /2,0) and ('IT /2, cos 'IT /2) = ('IT /2,0) are inflec­
tion points of the graph of cosine (prove these statements). See Fig. 4.1(b) 
for a sketch of cosine on [ - 'IT, 'IT]. 

PROB. 4.1. Prove: If x and yare real numbers such that x 2 + y2 = 1, then 
there exists exactly one t such that - 'IT < t .:;; 'IT with x = cos t and y = sin t. 

PROB. 4.2. Prove: If n is an integer, then cos(n'IT) = (-It and sin(n'IT) = 0. 

PROB. 4.3. Prove: If n is an integer, then for each x E IR (a) sin(x + 2n'IT) 
= sin x and (b) cos(x + 2n'IT) = cosx. 

It follows from Prob. 4.3 that if n is a nonzero integer, then 2n'IT is a 
period for the sine and cosine. In the theorem which follows we prove that 
these functions have no other periods. 

Theorem 4.1. (a) If sin p = 0, then p = n'IT, where n is an integer. (b) If 
cos P = 1, then p = 2k'IT, where k is an integer. (c) If cos P = -1, then 
p = (2k + 1)'IT, where k is an integer. (d) If sin(x + p) = sinx for all x E IR, 
then p = 2n'IT, where n is an integer, and similarly for cosine. 

PROOF. We first prove (a). Assume sin p = ° for some p E IR. There exists 
an integer n such that n .:;; p / 'IT < n + I. This implies that ° .:;; p - n'IT < 'IT. 
But 

sin(p - n'IT) = sin p cos(n'IT) - cos p sinn'IT = ( - 1 )nsin p = 0, 
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that is, sin(p - mr) = O. If 0 < p - mr, we would have 0 < p - mr < w, 
from which it would follow that sin(p - nw) > O. This contradiction leads 
to the conclusion that 0 = p - nw and, hence, p = nw, n an integer. 

We prove (b). Assume that cos p = 1 for some p E IR. There exists an 
integer n such that n < p / w < n + 1, which implies that 0 < p - nw < w. 
Since cosine is strictly decreasing on [0, w], we have 

1 = cosO;;' cos(p - nw) > cosw = -1. 

If n were odd, we would have 

cos(p - nw) = ( - 1 f cos P = ( - 1) n = - 1 

which contradicts the previous inequality. Thus, n is an even integer, 
n = 2k. It follows that 0 < p - 2kw < w, where k is an integer. If 0 < p -
2kw, we would have 0 < p - 2kw < wand 

cos(p - 2kw) = cos P = 1 = cosO. 

This is impossible since cosine is one-to-one [O,w]. Hence, 0 = p - 2kw, or 
p = 2kw, where k is an integer. 

We prove (c). Assume that cos p = -1 for some p E IR. This implies that 

cos(p - w) = cos pcosw = (-1)( -1) = 1. 

In view of (b), this implies that p - w = 2kw, where k is an integer. Hence, 
p = (2k + l)w, where k is an integer. 

We prove the part of (d) involving sine. Assume that sine x + p) = sin x 
for all x E IR. This implies, in particular, that sine w /2 + p) = sine w /2) = 1. 
Since cos p = sinew /2 + p), it follows that cos p = sinew /2 + p) = 1. In 
view of (c), p = 2nw, where n is an integer. We leave the proof of the part of 
(d) involving cosine to the reader (Prob. 4.4). 

Corollary. The fundamental period of the sine function is 2w. 

PROOF. Exercise. 

PROB. 4.4. Prove: If eos(x + p) = cos x for all x E IR, then p = 2nw, where n 
is an integer and that the fundamental period of cosine is 2w. 

The graphs of sine and cosine are drawn in Fig. 4.2. 

y 

Figure 4.2 
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PROB. 4.5. Prove: sinx = 1 if and only if x = (4n + 1)('17/2), where n is an 
integer, and sin x = - 1 if and only if x = (4n - 1)('17/2), where n is an 
integer. 

PROB. 4.6. Prove: cos x = 0 if and only if x = (2n + 1)('17/2), where n is an 
integer. 

PROB. 4.7. Prove: tanx = 0 if and only if x = n'17, where n is an integer, and 
that tanx > 0 if n'17 < x < (2n + 1)('17/2), and tanx < 0 if (2n - 1)('17/2) 
< x < n'17, where n is an integer. 

PROB. 4.8. Note that the domain of tangent is {x E IR I x =F (2n + 1)('17/2), 
where n is an integer}. Show tangent is periodic with fundamental period '17. 
Also show that 

lim tanx= + 00 and lim tanx= - 00. 
x~«2n+ 1)('IT/2»- x~«2n+ 1)('IT/2» + 

PROB. 4.9. Prove that the tangent function is strictly increasing on the 
intervals «2n - 1)('17/2); (2n + 1)('17/2», n an integer, and that in each of 
these intervals it assumes each real number exactly once. 

PROB. 4.10. Prove: Tangent is strictly concave on «2n - 1)('17/2), n'17] and 
strictly convex on [n'17,(2n + 1)('17/2», n an integer. 

The graph of tangent appears along with the graph of secant in Fig. 4.3. 
The latter is sketched using heavy broken lines. 

y 

Figure 4.3 
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PROB. 4.11. Note that the domain of the secant function is {x E IR I x * (2n + I)('IT /2), n an integer}. Prove: 

(a) limX --?(7T/2)_secx= +00 =limx _->(_7T/2)+secx, 
(b) limX ->(7T/2) + (sec x) = - 00 = lim x ->( -7T/2) _ (sec x), 
(c) sec(n'IT) = (-It, n an integer, 
(d) secx;;;' I for -'IT/2 < x < 'IT/2, and that secx < -I for x E (-3'IT/2; 

- 'IT /2) U ('IT /2; 3 'IT /2). 
(e) secant is periodic with fundamental period 2'IT. 

FROB. 4.12. Prove: Secant is convex on (- 'IT /2; 'IT /2) and concave on 
(- 3 'IT /2; - 'IT /2) and on ('IT /2; 3 'IT /2). 

PROB. 4.13. Note the domain of contangent is {x E IR I x * n'IT, n an 
integer}. Prove: (a) cotx = 0 if and only if x = (2n + I)('IT /2) n an integer. 
(b) cotx ;;;. 0 if and only if n'IT < x < (2n + 1)('IT /2), and cotx < 0 if and 
only if (2n - 1)('IT/2) < x < n'IT, n is an integer. 

PROB. 4.14. Prove: Cotangent is periodic with fundamental period 'IT. Also 
prove that for an integer n 

lim cotx= + 00 and lim cot x= - 00. 
x->(mT) + x-->(mT)-

PROB. 4.15. Prove: Cotangent is strictly decreasing on (n'IT; (n + I)'IT), n an 
integer, and that on each of these intervals it assumes each real number 
exactly once. 

PROB. 4.16. Prove: Cotangent is strictly convex on (n'IT, (2n + I)('IT /2)] and 
strictly concave on [(2n - 1)('IT/2),n'IT). 

The cotangent function is graphed in Fig. 4.4 together with cosecant. The 
graph of the latter is drawn with heavy broken lines. 

PROB. 4.17. Note that the domain of cosecant is {x E IR I x * n'IT, n an 
integer}. Prove: 

(a) limx->o+ cscx = + 00 = limx->7T_ cscx, 
(b) limx->o_ cscx = - 00 = limx ->7T+ cscx, 
(c) csc«4n + 1)('IT/2» = 1, csc«4n - 1)('IT/2) = -I, 
(d) cscx ;;;. 1 for 0 < x < 'IT, and cscx < -1 for - 'IT < X < 0, 
(e) cosecant is periodic with fundamental period 2'IT. 

PROB. 4.18. Prove: Cosecant is convex on (0; 'IT) and concave on (- 'IT; 0). 

PROB. 4.19. Prove: limx->±oosinx and limx->±oocosx do not exist. 
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PROB. 4.20. Show that sin 18° = (.f5 - 1)/4. Then show that if tanx 
= cosx, then sin x = 2 sin 18°. 

5. Some Remarks on Differentiability 

We first examine the function f, where 

f(x) = sin~, 

We show that 

x =1= o. 

lim sin 1 does not exist. 
x~o+ x 

Consider the sequences <xn> and <x~>, where 

x = 1 
n (4n + 1)( 'IT /2) 

and x' = _I_ 
n n'IT for each positive integer n. 

Clearly, 

lim x = 0 = lim x' (5.1) 
n~+oo n n~+oo n' 

lim sin-.!.. = lim sin(4n + 1)('IT/2) = lim 1= 1, (5.2) 
n~+oo xn n~+oo n~+oo 

and 

lim sin 1, = lim sin( n'IT) = lim 0 = O. 
n~+oo Xn n~+oo n~+oo 

(5.3) 

Comparing this limit with (5.2), we see that limx~o+ sin(l / x) does not exist 
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y 

(a) 

Figure 5.1 

(explain). Using similar sequences we see that 

lim sin 1 
x~O- x 

does not exist (see Fig. 5.1(a)) either. 
We now consider the function g, where 

{ 
. 1 

() XSlll-
g X = X 

o for x = 0 

for x =1= 0, 

y 

x 

(b) 

(see Fig. 5.1(b)). Since limx-->ox = 0 and sin(l/x) is bounded, it follows that 

lim g( x) = lim (x sin 1) = 0 = g(O). 
x~o x~o X 

(5.4) 

This proves that g is continuous at O. In fact, g is continuous for all x E IR. 
However, 

lim g( x) - g(O) = lim sin 1 does not exist. 
x~O x x~O X 

Hence, g is not differentiable at O. Of course, g is differentiable for all 
x =1= O. This gives us another example of a function which is continuous at a 
point but not differentiable there (see Example VII.2.1). 

Finally we examine h, where 

{ 
2· 1 

h(x) = ~ Slllx 
for x =1= 0 

for x = 0 
(5.5) 

(see Fig. 5.2). Since 

h(x) - h(O) ( 1 ) h'(O) = lim = lim x sin - = 0, 
x~O X x~O X 

(5.6) 
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x 

h is differentiable at 0 and h'(O) = O. For x =1= 0, since h is a product of 
differentiable functions, it is differentiable. Thus, 

f 1 2 . 1 
h'(x) = l-:os:x + xsm:x for x =1= 0 

for x = O. 

Thus, h is differentia.hle for all x E IR. Note, however, that the derivative h' 
of h is not continuous at 0 (explain). The derivative of a function need not 
be continuous. If the derivative of a function is continuous, then we say 
that the function is continuously differentiable. 

PROB. 5.1. Define f by 

{ 
2' 1 

f(x) = ~ sm x2 
for x =1= 0 

for x = O. 

Prove that f is differentiable everywhere but its derivative is not continuous 
at 0 and is not bounded in any interval containing 0 as an interior point. 

PROB. 5.2. Prove: The function g, where 

g x = x for x =1= 0 () jx + 2x2sin 1 

o for x = 0, 

is differentiable for all x and that g'(O) = 1 > O. Also prove that even 
though g'(O) > 0, there exists no <5-neighborhood N(O, 8) of 0 in which g is 
monotonically increasing (see the next problem). 

PROB. 5.3. Prove: If f is defined in some 8-neighborhood N(a,8) of a E IR, 
and j'(a) > 0, then there exists some E-neighborhood N(a, E) = (a - 10; a + 
E) such that f(x) < f(a) for a - 10 < X < a and f(x) > f(a) for a < x < 
a + E. 
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Remark 5.1. From the example given in Prob. 5.2 we see that j'(a) > 0, for 
some a E 6fJ(f) does not imply that f is monotonically increasing in some 
neighborhood of a. The result contained in the last problem is the most 
information we can gain from j'(a) > 0 at some a E 6fJ(f). To conclude 
from the sign of j' that f is monotonically increasing in some f­
neighborhood of a, we need to know that j'(x) > 0 for all x in this 
neighborhood. However, if f is continuously differentiable in some interval 
I and j'(a) > 0 for some interior point a of I, then some f-neighborhood of 
a exists such that j'(x) > 0 for x in this neighborhood. In turn, this implies 
that f is strictly monotonically increasing there. 

6. Inverses of Trigonometric Functions. 
Tschebyscheff Polynomials 

The trigonometric functions are not one-to-one. However, upon restricting 
them to intervals on which they are one-to-one and which they map onto 
their full range, these restrictions do have inverses. 

Inverse Sine 

We restrict the sine to [- '17 /2, '17 /2]. This restriction maps [- '17 /2, '17 /2] 
onto [ - 1, 1] and is one-to-one. The inverse of this restriction is defined as 
the principal inverse sine or Arcsin. We write this function as sin -lor as 
Arcsin. Note, that for -1 , x , 1, there is exactly one y with sin y = x 
such that -'17/2, y' '17/2. 

Del. 6.1. If - 1 , x , 1, then Arcsin x or sin - IX is defined as the unique y 
such that sin y = x and - '17 /2 , y , '17/2. This y is also called the 
principal value of the inverse sine of x. 

Thus, 
sin - 10 = Arcsin 0 = 0, 

since sin 0 = 0 and 0 E [ - '17 /2, '17 /2] and also 

since 

sin - 11 = Arcsin 1 = ~ and sin - 1(_ 1) = Arcsin( - 1) = - ~ 

sin~ = 1 
2 ' sin( - ~) = -1 

and '17/2 E [ - '17 /2, '17 /2], - '17 /2 E [ - '17 /2, '17 /2]. 
If y = Arcsin x, where -1, x, 1, then siny = x and -'17/2, Y 

, '17/2, so 

(See Fig. 6.1.) 

~ , Arcsinx ,~ 
2 2 

for -1, x , 1. (6.1) 
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y y 
n/2 ------- (1, n/2) 

(n/2, 1) 

(a) 

------- -n/2 
(-1, -n/2) 

(b) 

x 

Figure 6.1. (a) Graph of restriction of sine to [- 'IT /2, 'IT /2]. (b) Graph of Arcsin. 

By definition, 

sine Arcsin x) = x 

Arcsin( sin y) = y 

if 

if 

-1"; x"; 1, 

7T 7T -I";y";1· 

PROB. 6.1. Prove: If -1 ..; x ..; 1, then Arcsin( -1) = - Arcsinx. 

(6.2) 

(6.3) 

PROB. 6.2. Prove: If (2n - 1)( 7T /2) ..; Y ..; (2n + 1)( 7T /2), where n is an 
integer, then Arcsin(sin y) = (-lrey - n7T). 

Note that if - 1 ..; x ..; 1, then 

cos(Arcsinx) =..ft - x 2 • (6.4) 

In facty = Arcsin x implies that -7T/2..; y"; 7T/2 and x = siny. For such 
y, cos y ;;;. O. Hence, 

cos(Arcsinx) = cos y = ~I - sin).> = ~I - x 2 • 

PROB. 6.3. Verify: If -1 < x < I, then 

(a) tan(Arcsinx) = x/~1 - x 2 , 

(b) cot(Arcsinx) = ~1 - x 2 / x if x =1= 0, 
(c) sec(Arcsinx) = 1/~1 - x 2 , 

(d) csc(Arcsinx) = 1/ x for x =1= O. 

Remark 6.1. Since Arcsine is the inverse of a function which is strictly 
monotonically increasing and continuous on an interval, it is continuous 
and strictly monotonically increasing. Moreover (Theorem VII.6.5), since 

dsiny 
~ = cos y > 0 for - I < y < I ' 

it follows that the restriction of the sine function to [- 7T /2, 7T /2] is 
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differentiable in the interior ( - I; I) of [1, 1] and 

d(Arcsinx) dsin-Ix 1 

dx dx (dsiny/dy)ly=sin-'x 
(6.5) 

where - 1 < x < 1. 

Inverse of Cosine 

The cosine function is strictly decreasing on [0,71] and maps [0,71] onto 
[-1,1]. We define its principal inverse, Arccosine or COS-I, as the inverse of 
the restriction of cosine to [0,71] (see Fig. 6.2). 

Del. 6.2. If -1 ..; x ..; 1, then Arccosx or COS-IX is defined as the y such 
that cos y = x and 0 .;;; y..; 71. Accordingly, 

0.;;; Arccosx .;;; 71. 

It follows that 
71 71A 71 -"2 ";"2 - rccosx';;;"2. 

Puty = Arccosx. Then cosy = x. Hence, 

sin( I - Arccos x) = sin( I -y) = cos y = x 
for -1 .;;; x ..; 1. Since (6.7) holds, we obtain from this that 

I - Arccos x = Arcsin x for -1.;;;x";1. 

We also observe that 

cos( Arccos x) = x for -1 .;;; x ..; 1 

and 
Arccos( cos y) = y for 0..; y"; 71. 

Arccosx is called the principal value of the inverse cosine of x. 

y 

(-1,11:) 

(0,1) 

x 

(11:, -1) 
(1,0) 

(a) (b) 

Figure 6.2. (a) Graph of cosine on [0, I). (b) Graph of Arccosine. 

(6.6) 

(6.7) 

(6.8) 

(6.9) 

(6.10) 



6. Inverses of Trigonometric Functions. Tschebyscheff Polynomials 371 

PROB. 6.4. Show that Arccosine is strictly decreasing and continuous on 
[ -1, I], differentiable on (-1,1) and that 

d Arccos x 1 
dx b - x 2 

if -1<x<1. 

PROB. 6.5. Show (a) Arccos 0 = 17/2, Arccos 1 = 0, Arccos( - 1) = 17, and 
that Arccos( - x) = 17/2 + Arcsin x for -1 < x < 1. 

Inverse Tangent 

The tangent function is strictly monotonically increasing on (- 17 /2; 17 /2) 
and it maps this interval onto IR. The principal inverse of the tangent or the 
Arctangent is defined as the inverse of the restriction of the tangent to the 
interval ( - 17 /2; 17 /2) and is written as Arctan or as tan -I (see Fig. 6.3). 

Del. 6.3. If x E IR, then Arctan x or tan - IX is defined as the y such that 
tan y = x and - 17 /2 < Y < 17/2. 

Thus, 
17 A 17 - 2' < rctan x < 2' . (6.11) 

Also, 
tan( Arctan x) = x for x E IR (6.12) 

and 

Arctan(tan y) = y for - I <y < I' (6.13) 

PROB. 6.6. (a) Arctan 0 = 0, (b) Arctan(-x)=-Arctanx, (c) Arctanl 
= 17/4 and Arctan( -1) = -17/4. 

y y 

n/2 

-n/2 n/2 

-n/2 

(a) (b) 

Figure 6.3. (a) Graph of the restriction of tangent to (- 'Tr /2, 'Tr /2). (b) Graph of 
Arctan. 
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PROB. 6.7. Prove: 

lim (Arctanx) =!!..2 and lim (Arctanx) = - !!..2 . 
x--> + 00 x--> - 00 

PROB. 6.8. Verify: If x E IR, then 

(a) cos(Arctanx) = I/Jl + x2 , 

(b) sin(Arctanx) = x/Jl + x2 , 

(c) sec(Arctanx) = b + x 2 • 

PROB. 6.9. Verify: if x oF 0, then 

(a) cot(Arctanx) = 1/ x and 

(b) cscx =Jl + x 2 Ix. 

PROB. 6.10. Prove: Arctan is differentiable with 

d(Arctanx) 1 

dx 1 + x 2 
for x E IR, 

and that it is strictly monotonically increasing. 

Inverses of the Remaining Trigonometric Functions 

We define 

(a) Arccotx = 'IT /2 - Arctanx for x E IR, 
(b) Arcsecx = Arccos(l/x) for Ixl > 1, 
(c) Arccscx = Arcsin(l/ x) for Ixl > 1. 

PROB. 6.11. Prove: (a) 0 < Arccotx < 'IT. (b) cot(Arccotx) = x for x E IR. 
(c) Arccot(tan y) = 'IT /2 - y for Iyl < 'IT /2. 

PROB. 6.12. Prove: (a) If x> 1, then 0..;; Arcsecx < 'IT/2 and, also, if 
x..;; -1, then 'IT/2 < Arcsecx";; 'IT. (b) If Ixl > 1, then sec(Arcsecx) = x. 
(c) Arcsec(sec y) = y for y E [0,'lT /2) U ('IT /2, 'IT]. 

PROB. 6.13. Prove: 

(a) limx_Hoo(Arcsecx) = 'IT/2 and 
(b) limx-->_oo(Arcsecx) = 'IT/2. 

PROB. 6.14. Prove: 

(a) limX_HooArccotx = 0 and 
(b) limx-->_ooArccotx = 'IT. 
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FROB. 6.15. Prove: (a) 0 < Arccsc x ,.;; 7T /2 for x ;;. 1 and - 7T /2 ,.;; Arccsc x 
< 0 for x ,.;; -1. (b) If Ixl ;;. 1, then csc(Arccscx) = x. (c) If Y E [- 7T /2,0) 
U (0, 7T /2), then Arccsc(csc y) = y. 

PROB. 6.16. Prove: 

(a) limx->+oo(Arccscx) = 0 = limx->_oo(Arccscx). 

PROB. 6.17. Prove: 

(a) d(Arccotx)/ dx = -1/(1 + x 2 ) for x E !R, 

(b) d(Arcsecx)/ dx = I/lxlVx2 - 1 for Ixl > 1, 

(c) d(Arc(cscx))/ dx = -I/lxIVx2 - 1 for Ixl > 1. 

PROB. 6.18. Let E(x) = eX and g(x) = E( - x) = e- x for x E IR. Sketch the 
graph of E and g. 

PROB. 6.19. Sketch the graph of the natural logarithm function. 

PROB. 6.20. Sketch the graphs of the hyperbolic functions. 

PROB. 6.21. Sketch the graphs of the inverse hyperbolic functions. 

PROB. 6.22. Note cos20 = cos20 - sin20 = 2cos20 - 1. This expresses cos20 
as a polynomial of degree 2 in cosO. (a) Show that if n is a positive integer, 
then 

cos(n + 1)0 = 2cosnOcosO - cos(n - 1)0. (6.14) 

This last is a recurrence relation, which expresses the cosine of a positive 
integral multiple of 0 in terms of the cosine of smaller positive multiples of 
O. (b) Obtain cos 30 as a polynomial of degree 3 in cosO. (c) Prove: If n is a 
nonnegative integer, then cos nO can be expressed as a polynomial of degree 
n in cos O. 

PROB. 6.23. The Tschebyscheff polynomial Tn of degree n, n an integer, is 
defined as: To(x) = 1 and 

Tn(x) = 2}-1 cos(nArccosx) 

We write for each n E 71.+ , 

for -1";; x ,.;; 1. 

fn(x) = 2n - ITn(x) = cos(nArccosx), -I,.;;x";;1. 

(6.15) 

(6.16) 

We have, for example, fl(x) = cos(Arccosx) = x for - 1 ,.;; x ,.;; 1. Put 
0= Arccos x and use Eq. (6.14) of Prob. 6.22 to prove that 

-1 ,.;; x ,.;; 1, 
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for each positive integer n, and show that T2(x) = 2X2 - 1, T3(X) = 4X3 -
3x, Tix) = 8x4 - 8x2 + 1, T5(X) = 16x5 - 20x3 + 5x. Show, for each posi­
tive integer n, 

Tn ( x) = 2n - IX n + terms of lower degree in x. 

Thus show that Tn and hence Tn has degree n and that Tn has leading 
coefficient 1. 

PROB. 6.24. Using the notation and terminology of Prob. 6.23, show that 
Tn(l) = 1, Tn(-I)=(-lt and Tn(l)=2-(n-I), Tn (-I)=(-lr2-(n-I). 

Theorem 6.1. The nth (n;;;' I) Tschebyscheff polynomial Tn (see Probs. 
6.23-6.24) has exactly n zeros x I' ... , xn in the open interval ( - 1; 1). These 
are given by 

x. = cos( 2k - 1 'll) 
I 2n 

PROOF. The Ok given by 

Ok = 2k - I 'll 
2n 

for k E {I, . . . , n}. (6.17) 

for k E {I, ... , n} 

are distinct real numbers in the interval (0; 'll). Cosine is strictly decreasing 
on (0; 'll), so it maps this interval in a one-to-one way onto the interval 
(-I; 1). It follows from this that XI"'" xn are distinct numbers in 
(-1; 1). We have 

T (xk) = cos( n Arccos( cos 2k2~ 1 'll)) 
= cos( n 2k2~ 1 'll) = cos( 2k 2- 1 'll) = 0 

for k E {I, ... , n}. This proves that X I' ... , xn constitute n zeros of Tn 
and hence of Tn (see (6.15) and (6.16)). Since Tn and therefore Tn are both 
polynomials of degree n, neither can have zeros other than these. It follows 
that Tn has exactly n zeros, all of them being in ( - 1; 1). 

Theorem 6.2. The nth (n;;;' 1) Tschebyscheff polynomial Tn has extreme 
values at the n + 1 points 

Zk = cos k 'll, 
n 

where k E {O, 1, ... , n} (6.18) 

and no others. These Zk'S aI/lie in the closed interval [ -1,1] and we have 

( _l)k 
Tn(zk) = 2n=-I for k E {O, 1, ... ,n}. (6.19) 

PROOF. It is clear from (6.18) that -1 ..;; Zk ..;; 1 for each k E {O, 1, ... , n}. 
In particular we note that Zo = 1 and Zn = - 1. Reasoning as we did in the 
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proof of Theorem 6.1, we see that the Zk'S are all distinct and are therefore 
n + 1 in number. Since cosine is strictly decreasing on [0, 'IT] we see that 
i < j in {O, I, ... , n} implies Zj > z)" We also note that by the definition of 

Tn' 

Also, 

1 ---<: 
2n - 1 

1 T(x) <:-
n 2n - 1 

for -I<:x<:l. (6.20) 

1 (k) 1 ( - I)k 
= --cos n-'IT = --cos(k'IT) =--2n - 1 n 2n - 1 2n - 1 

for k E {O, I, ... , n}. This proves (6.19). It follows from this and (6.20) 
that Tn has extreme values which are equal to (-ll2-(n-l) at the points 
Zk' 

We check to see that Tn has no other extreme values. We evaluate T~ at 
the points ZI,Z2' ..• , Zn_1 in the interior of [-1,1]. We have 

and 

T~(x)= _1_1 (-Sin(nArCCOS(cOSX»))(- 1 ) 
2n - ~ 

n sin( n Arccos x) 

2n-l~ 

n sin( n Arccos( cos ~ 'IT) ) 
T'( Zk) = -----;=====__ 

r-I~I - cos ~k 'IT 

for k E {t, ... ,n - I}. In short, T~(zk) = ° for k E {t, ... , n - l}. Now 
Tn is a polynomial of degree n, so that T~ is a polynomial of degree n - I. 
Consequently Tn has no extreme values other than the Zk'S in the interior of 
[-I, I] (explain). At the endpoints Zo = 1 and Zn = 1 of [-I, I] we already 
saw that Tn assumes extreme values. Therefore Tn has n + 1 extreme values 
at zO,zl"",zn' these values being alternately 2-(n-') and _2-(n-l) 
beginning with Tn(zO) = 2-(n-l). The last extreme value of Tn in [- I, I] 
occurs at zn = -I and is equal to (-lr2-(n-l). 

Theorem 6.3. Let Tn (n ~ I) be the nth Tschebyscheff polynomial. For all real 
polynomials P of degree n with leading coefficient I, we have 

max ITn(x)1 <: max IP(x)l. 
-!<x<! -!<x<! 

(6.21 ) 
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PROOF. The proof is indirect. Assume that for some real polynomial P we 
have 

max IP(x)l< 2-(n-l), 
-l<x<l 

so that 

1 1 --<P(x)<-
2n - 1 2n - 1 

for -1';;; x .;;; 1 (6.22) 

and hence 

- _1_ < P(Zk) < _1_ for zk = cos( k:.n 7T) 
2n - 1 2n - 1 

where k E {O, 1, ... , n}. By Theorem 6.2, 

1 k 1 Tn(zk)=(- ) 2n - 1 for kE{O,I, ... ,n}. 

Therefore 

if k is even (6.23) 

and 

if k is odd. (6.24) 

Therefore, beginning with Tn(zO) - P(zo) > 0, T(zk) - P(Zk) alternates suc­
cessively in sign n times as k E {O, 1, ... , n} ranges from 0 through to n. 
By the intermediate value theorem the polynomial Tn - P takes on the 
value 0, n times. Since Tn and P are polynomials of degree n, both having 
leading coefficients 1, we see that Tn - P is a polynomial of degree n - 1. 
Since Tn - P has n zeros, it follows that Tn(x) = Pn(x) for - 1 .;;; x .;;; 1. 
This yields 

if k is even 

and 

1 
- 2n - 1 = Tn(zk) = Pn(Zk) if k is odd. 

This contradicts (6.22). We therefore conclude that (6.21) holds and the 
proof is complete. 

7. Log Convexity 

Del. 7.1. If f is a positive-valued function on an interval I, then it is called 
log convex on I if and only if the function g: I ~ IR such that g(x) = In f(x), 
x E I, is convex on I. 
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For example, if l(x) = 1/ x, x> 0, then 1 is log convex on 1=(0; + 00) 
since g where 

g(x) = lnl = -lnx 
x 

for x >0 

is convex on I. Note that g is convex on (0, + 00) since g"(x) = 1/ x 2 > 0, 
x >0. 

PROB. 7.1. Prove: If 11 and 12 are log convex on an interval I, then their 
product 11 12 is log convex on I. 

PROB. 7.2. Prove: If <In) is a sequence of log convex functions on an 
interval I and 

lim In(x) = l(x) > ° 
X~+OO 

for all x E I, 

then 1 is log convex on I. 

PROB. 7.3. Let 1 be continuous and positive on an interval I. Prove: If 1 is 
twice differentiable at each interior point of I, then 1 is log convex on I if 
and only if l(x)f"(x) - (j'(x)f ;;. ° for all x E I. 

PROB. 7.4. Prove: If l(x) > ° for x in some interval I and 1 is log convex on 
I, then 1 is convex on I. 

PROB. 7.5. First prove: (a) If al,a2,bl,b2,cI,c2 are real numbers such that 

a l > 0, a2 > ° and alc l - bi ;;. 0, a2c2 - bi ;;. 0, 

then (a l + a2)(c I + c2) - (b l + b2i ;;. 0. Next prove: (b) If 1 and g are 
positive and continuous on an interval I, twice differentiable in the interior 
of I, and both are log convex on I, then their sum 1 + g is log convex on I 
(Hint: use part (a) and Prob. 7.3.) 

PROB. 7.6. Let gn be defined by means of 

x = nXn! 
gn () X (x + 1) . . . (x + n) , x>o 

for each positive integer n. Prove that gn is log convex. 



CHAPTER IX 

L'Hopital's Rule-Taylor's Theorem 

1. Cauchy's Mean-Value Theorem 

Theorem 1.1 (Cauchy's Mean-Value Theorem). If f and g are real-valued 
functions of a real variable, both continuous on the bounded closed interval 
[a, b 1, differentiable in the extended sense on (a; b) with g' (x) =I=- 0 for x E (a; 
b), having derivatives which are not simultaneously infinite, then (l) g( a) 
=1= g(b); (2) there exists an Xo E (a; b) such that 

feb) - f(a) j'(xo) 
g( b) - g( a) = g'(xo) ; (Ll ) 

(3) if f(a) =1= f(b), then at the Xo in (Ll), j'(xo) and g'(xo) are both finite. 

PROOF. If g(a) = g(b) were to hold, there would exist a c such that 
a < c < band g'(c) = O. This is ruled out by the hypothesis on g. Thus, 
g(a) =1= g(b), proving (1). 

We prove (2). If f(a) = f(b), then there exists an Xo such that j'(xo) = O. 
Hence, (1.1) holds in this case, since 

j'(xo) = 0 = feb) - f(a) 
g'(xo) g(b) - g(a) . 

If f(a) =1= f(b), consider the function F defined as 

F(x) = f(x)[ g(b) - g(a)] - g(x)[J(b) - f(a)] 

Calculation shows that 

F(a) = f(a)g(b) - g(a)f(b) = F(b). 

for x E [ a, b J. 
(1.2) 

(1.3) 
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Also, Fhas the same continuity and differentiability properties on [a,b] asf 
and g. We can now use Rolle's Theorem to obtain an Xo E (a; b) with 
F'(xo) = O. We now prove that 1'(xo) and g'(xo) are both finite. By 
hypothesis at least one of 1'(xo) or g'(xo) is finite. Using (1.2) we have, for 
h =!= 0 and Xo + h E (a; b), that 

F(xo + h) - F(xo) f(xo + b) - f(xo) 
h = h (g(b) - g(a») 

- g(xo + b1- g(xo) (f(b) - f(a»). (1.4) 

Taking the limit as h ---.:; 0, we obtain F'(xo) = 0 on the left and therefore 
on the right. Suppose that 1'(xo) or g'(xo) is ± 00. Since the other is 
necessarily finite, the limit as h ---.:; 0 of the right-hand side of (1.4) is infinite 
and we have a contradiction. It follows that 1'(xo) and g'(xo) are both finite. 
This proves (3). Since 

0= F'(xo) = 1'(xo) [ g(b) - g(a)] - g'(xo) [J(b) - f(a)] 

as is seen by differentiating (1.2), it follows that 

f'(xo) feb) - f(a) 
---
g'(xo) g(b) - g(a) , 

which proves (2). 

Theorem 1.2 (L'Hopital's Rule for the Indeterminate Form 0/0). Let f and 
g be functions of which we assume that they are differentiable in the extended 
sense on the interval (a; b), that l' and g' are not simultaneously infinite on 
(a; b), that and g'(x) =!= 0 for x E (a; b), and that 

f(a+)=O=g(a+) (1.5a) 

and 

then 

lim 1'(x) = L 
x~a+ g'(x) , 

lim f(x) = L. 
x->a+ g(x) 

(Here, we allow a, band L to be in IR*.) 

(1.5b) 

(1.6) 

PROOF. Suppose L = + 00. Let B E IR. Because of (1.5b) there exists a 
deleted neighborhood N*(a) of a from the right such that for x E N*(a) n 
(a; b) we have 

1'(x) >B+1. 
g'(x) 

(1.7) 
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Now N*(a) n (a; b) is a deleted neighborhood Nr(a) of a from the right 
contained in (a; b) and in N*(a). Assume that x E Nr(a) so that a < x < b 
and x E N*(a). There exists XI such that a < XI < X. By Theorem 1.1, 
there exists an Xo such that 

f(X) - f(x l) _ f'(xo) 
g(x) - g(x l ) - g'(xo) ' 

(1.8) 

where a < xI < Xo < x. Since Xo is necessarily in Nr(a) (explain), we have 
Xo E N*(a). Hence, 

f(x) - f(x l ) f'(xo) 
-----=-->B+1. 
g(x) - g(x l ) g'(xo) 

Thus, a < xI < X E Nr(a) implies that 

f(x) - f(x l ) 
----:---:---',-.:.,.. > B + 1. 
g(x) - g(x l ) 

Taking limits as X I ~ a +, we have 

f(x) = lim f(x) - f(x l ) ~ B + 1 > B 
g(x) xI--->a+ g(x) - g(x l ) 

for x E Nr(a). Thus, 

We conclude that 

f(x) > B 
g(x) 

for x E Nr( a). 

. f(x) 
hm -- = + 00 = L. 

x--->+oo g(x) 

Thus, (1.6) holds if L = + 00. If L = - 00, a similar proof yields (1.6). 
Next consider the case L E lit Let t: > 0 be given. There exists a deleted 

neighborhood N!(a) of a from the right such that if x E N!(a) n (a; b), 
then 

L- i. < f'(x) < L+ i.. 
2 g'(x) 2 

(1.9) 

As before, N!(a) n (a; b) is a deleted neighborhood Nj(a) of a from the 
right contained in N!(a) and in (a; b). Assume that x E Nj(a) so that 
a < x < b and x E N!(a) and take XI such that a < XI < x. We obtain an 
Xo such that 

f(x) - f(x l) f'(xo) 
g(x) - g(x l) = g'(xo) ' 

(LlO) 

where a < XI < Xo < x. Since Xo E Nj(a) C; N*(a), it follows from (LlO) 
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and (1.9) that 

L _ ~ < f(x) - f(x l ) < L + ~ 
2 g(x) - g(x l ) 2 

for a < XI < X E Nj(a). 

Taking limits as X I ~ a + yields 

f f(x) 
L-f<L--<:.-- <:'L+-2f <L+f 

2 g(x) 
for xENj(a) 

and, hence, 

1 
f(x) -LI< f 
g(x) 

for x E Nj( a). 

We conclude from this that 

lim f(x) = L 
x->a+ g(x) 

in this case also. This completes the proof. 

Theorem 1.3 (L'Hopital's Rule for the Case L/ (0). Iff and g are differentia­
ble in the extended sense on the interval (a; b), with derivatives not simulta­
neously infinite there, g'(x) * 0 for x E (a; b) and 

then 

lim g(x) = ± 00, 
x->a+ 

lim f'(x) = L 
x->a+ g'(x) , 

lim f(x) = L. 
x->a+ g(x) 

(Here, too, we permit a, b, and L to be in IR*.) 

(Ula) 

(Ulb) 

(1.12) 

PROOF. Suppose L E IR. Let f > 0 be given. There exists a deleted neighbor­
hood Nf(a) of a from the right contained in (a; b) such that 

1 
f'(x) -LI<~ f EN*( ) (1.13) g'( x) 3 or x I a . 

Fix x' in Nr(a). The interval (a; x') is a deleted neighborhood of a from the 
right contained in Nr(a) and (1.13) holds for all x such that a < x < x'. 
Given x such that a < x < x', there exists an Xo such that 

f(x) - f(x') f'(xo) 
g(x) - g(x') - g'(xo) , (1.14) 
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where a < x < Xo < x'. Since Xo is necessarily in Nt(a), (1.13) holds for 
x = xo' Now (1.14) and (1.13) imply that 

I-f (:---cx ):---_f--;-( x--;:-') - LI < ~ 
g(x) - g(x') 3 

This may be written 

for a < x < x' E Nt(a). (1.15) 

I f(x)/g(x) - f(x')/g(x) -LI<~ 
1 - g(x')/g(x) 3 

for a < x < x' E Nt(a) 

so that 

I f(x) -L- f(X')-Lg(X')I<~ll_ g(x') I 
g(x) g(x) 3 g(x) (1.16) 

for a < x < x' < Nt(a). In turn, this implies that 

I f(x) - LI <11 _ g(x') I ~ + I f(x') - Lg(x') I 
g(x) g(x) 3 g(x) (1.17) 

for a < x < x' E N)(a). Since limx->a+ g(x) = ± 00, limx->a+ 1 g(x)1 = 
+ 00 holds, so a deleted neighborhood N!(a) of a from the right exists in 
(a; b) such that 

1 g(x)1 > max { 21 g(x')I, ~ If(x') - Lg(x')I} 

for x E N!(a). Thus, 

Ig(x)1 > 2Ig(x')1 and Ig(x)1 > llf(x') - Lg(x')1 
€ 

and, hence, 

I 
g(x') I 1 I f(x') - Lg(x') I € 

g(x) <"2 and g(x) <"2 

for x E N!(a). Note that 

1
1 - g(x') I ,;;; 1 + I g(x') I ,;;; 1. 

g(x) g(x) 2 

( 1.18) 

( 1.19) 

Take x E (a; x') n N!(a). For such x, (1.17) and (1.19) hold. Therefore, 

I f(x) I 3 € € 
g(x) - L <"2 "3 + "2 < €. 

Thus, for each € > 0, 

I f(x) - LI < € 
g(x) 

for xE(a;x')nNf(a). 

Since (a; x') n Nf(a) is a neighborhood Nj(a) of a from the right in (a; b), 
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we conclude that (1.12) holds for the case L E IR. We ask the reader to 
complete the proof for the cases L = ± 00 (Prob. 1.1). 

PROB. 1.1. Complete the proof of Theorem 1.3 by showing that the 
conclusion there holds for the cases L = ± 00. 

Remark 1.1. The last two theorems are stated m terms of the limit as 
x ~ a +. It is clear that, with appropriate modifications of the hypotheses 
and conclusions, these theorems can be formulated in terms of x ---7 a -
and also in terms of the two-sided limit x ~ a. 

EXAMPLE 1.1. We evaluate 

. In(1 + x) 
hm a' 

,,~O+ X 

where lX E IR. If lX = 0, L'Hopital's rule, whether in the form of Theorem 1.2 
or of Theorem 1.3, does not apply since limx-->oln(l + x) = 0 and 
limx-->o+ x" = limx-->o+ X O = 1. However, the limit can be evaluated as fol­
lows: 

In(1 + x) In(1 + x) 
lim a = lim ° = lim In( I + x) = O. 
x~O+ X X-->O+ X x~o+ 

Here we do not have an indeterminate case (explain). 
Similarly, we do not have an indeterminate case if lX < O. In fact, in that 

case, limx-->o+ In(l + x) = 0 and limx-->o+ x" = + 00. However, L'Hopital's 
rule in the form of Theorem 1.2 does apply smce here limx-->a+ g(x) 
= limx-->o+ x" = + 00. Using it, we obtain 

. In( I + x) . 1 / (I + x) . X I - " __ 0 
hm " = hm = hm 
X~O+ X x-->O+ lXX,,-1 x~o+ (I + X)lX 

(since I - lX > 0). The reader can check that this limit can be evaluated 
without using L'Hopital's rule. 

Finally, if lX > 0, we have the indeterminate case 0/0. By L'Hopital's 
rule, we obtain 

. In(1 + x) 
hm " =lim 
x~o+ x x~O+ lXx,,-I(1 + x) 

In summary 

hm " = 1 
. In(1 + x) {O 

x~O+ x +00 

PROB. 1.2. Note that in 

={~ 
+00 

if 0 < lX < I 
if lX = 1 
if lX>1. 

if lX < 1 
if lX = 1 
if lX > I . 

lim sinx = 0, 
x~+oo X 
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the limit can be evaluated without the use of L'Hopital's rule. Explain why 
the rule cannot be used here. 

EXAMPLE 1.2. Consider 

lim [(x + I)" - x"], 
X~+OO 

a >0. 

Since a> 0 implies limx-->+oo(l + x)" = + 00 = limx-->+oox", we describe 
this situation as being indeterminate of the form ( + 00) - ( + 00). We write 

lim [(x + I)" - x"] = lim X"[(I + 1)" - I]. 
x~ + 00 x~ + 00 x 

Here 

lim x"= +00 and lim [(I + 1)" -I] =0 
x~ + 00 x~ + 00 x 

so we have the indeterminate form (+ 00 )0. This can be converted to the 
form % by writing 

" (I+I/x)"-I (I+I/x)"-I 
(x + I) - x" = I/x" = x " 

L'Hopital's rule can now be applied to obtain 

(I+I/x)"-I 
lim [(X + I)" - x"] = lim " 

x~+oo X~+OO X 

. a(1 + I/X),,-I( _1/X2) 
= hm 
x~+oo -ax-,,-I 

(I + I/x)"-I _{+oo 
= lim I X~+OO 1-" -

X 0 

State what occurs if a < O. 

if a> I 
if a = I 
if O<a<1. 

EXAMPLE 1.3. Other indeterminate forms are: 0°, O±oo, (+ 00)°, I ±OO. An 
example of the form 0° is 

To evaluate this limit by L'Hopital's rule, we write 

y = XX for x> 0 

and take the natural logarithm of both sides to obtain 

Iny = xlnx = Inx as X~O +. 
I/x 

Applying L'Hopital's rule gives 

lim Iny= lim ( lin/x) = lim I/x = 0 
X~O+ x~o+ X x~o+ - 1/ x 2 
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so that we have 

lim XX= lim y= lim e lo Y= eO = 1. 
x-->O+ X-->O+ x-->O+ 

The remaining forms are treated in the problems. 

Remark 1.2. To evaluate certain limits it may be necessary to apply 
L'Hopital's rule several times. For example, 

. eX . eX . eX 
hm - = hm - = hm - = +00. 

x--> + 00 x 2 x--> + 00 2x x--> + 00 2 

An important limit is 

. eX 
hm -=+00 

x--> + 00 x a 

For a < 0, this is not indeterminate since 

aEIR. 

1· e x-> + 00 1m -= 
X {lim eX = + 00 

x->+oo x a lim x-ae X = + 00 
x~+oo 

if a = 0 

if a < 0 

(1.20) 

If a > 0, then the limit in (1.20) is indeterminate of the form + 00 / + 00. 
If 0 < a < 1, then by L'Hopital's rule, we have 

hm - = hm --- = hm - X e = + 00 . eX . ( eX) . (1 I-a x) 
x--> + 00 x" x->+ 00 ax,,-I x-->+ 00 a (1.21 ) 

(since 0 < I - a < I). If a = I, then L'Hopital's rule again gives the limit 
+ 00. If a> I, put n = [a], so that I < n < a. In this case, 

dn a d:n = a(a - 1) ... (a - n + l)xIX-n. 

If a ;;;. n, then the limit in (1.20) is obtained from 

. eX . eX eX 
hm - = hm --- = ... = lim In' 

x->+oo XIX n-->+oo ax IX - 1 x->+oo a(a - ) ... (a - n + l)xIX 

( 1.22) 

If a = n, then x IX - n = I, so the limit on the right is + 00. If a> n, then we 
have n = [a] < a < [a] + I = n + I, so 0 < a - n < I. We saw in (1.21) 
that, in this case, the limit in the right-hand side of (1.22) is + 00. 

PROB. 1.3. Evaluate 

(a) 
(b) 
(c) 
(d) 

lim (I + X2)1/x 
x~o , 

limX -7a«x r - ar)/(x S - as)), where a > 0 and r, s are real numbers, 
limX -7,,/2(tanx - sec x), 
limx--->+oo(1n(x + I)/lnx), 
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(e) limx_Hoo(1n(1n(l + x»/ln(1nx», 
(f) limx-->o+ x(x'), 

(g) limx-->+oo(cos(l/ x)y, 
(h) limx-->o«a X 

- b X )/ x), 
(i) limx-->+oo(x/e X

), a E IR, 
(j) limx-->+00(l/x2)e-(I/x), 

(k) limx-->+oo(cot(l/x) - I/x), 
(1) limx-->o+ In(1 - x)ln(x), 
(m) limx-->o+ (COSX)I/x2 

PROB. 104. Note that limx-->lx2/(x2 + 1) = l' Explain why L'Hopital's rule 
fails here. 

PROB. 1.5. Prove: If limx-->+cxJ(x) = + 00 and limx-->+oof'(x) = L, then 
limx--> + 00 (f(x)/ x) = L. 

2. An Application to Means and Sums of Order t 

The arithmetic and harmonic means of XI and x 2 are defined respectively 
as 

(a) 
XI + X2 

2 

and 

(b) I 2X IX2 

1(l/x I + l/x2 ) XI + x 2 
, 

where XI > 0, x 2 > 0. These can be treated using the notion of "mean of 
order t of XI and X 2 with weights aI' (X2'" We write this as M/x l , x 2 ; aI' ( 2) 

and define it as 

(2.1 ) 

where a l + a 2 = I, a l > 0, a2 > ° and XI> 0, x 2 > 0. 
U sing "weights" a I = a2 = 1, we see that the arithmetic and harmonic 

means of x I and x 2 are seen to occur when t = I and t = - I are used in 
M,(x"x2 ;1,1)' Thus, 

and 

M ( . I I) _ (I -I I _1)-1_ 2x IX2 
-I XI ,X2 '2'2 - 2 XI +2 X2 - . 

XI + X2 

This notion can be generalized to apply to n positive real numbers. 
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Def. 2.1. If X I' x 2, ... , xn are positive real numbers, their mean of order 
t * 0, with weights aI' a2, ••• , an' written as M/(x l , ••• , Xn; aI' ... , an)' is 
defined as 

(2.2) 

where 

ai >0 for iE{i, ... ,n} and al+···+an=l. (2.3) 

Thus, the mean of order 1, with weights al = ... = an = lin, of the 
positive numbers XI' ... 'Xn is their arithmetic mean 

( 1 1) X I + . . . + xn 
MI XI'· .. ,xn ; n ' ... 'n = n (2.4) 

and the mean of order -1, with the same weights, is their harmonic mean, 
i.e., 

M_I(XI' ... 'Xn;~' ... , ~)=(~XII+ ... +~Xn-trt 
n 

1 I X t + ... + 1 I Xn • 
(2.5) 

It is natural to ask if the geometric mean is among the means of order t. It 
turns out that the answer to this question is found by taking limHoM/. We 
prove this. 

Beginning with (2.2) we take the natural logarithm of both sides in (2.2) 
to obtain 

(2.6) 

Using 

dx/ / 
- = x.lnx. dt I I 

for iE{i, ... ,n}, (2.7) 

we obtain by L'Hopital's rule: 

. 1 1· atxpnxl + ... + anx~lnxn hm n M t = 1m ~....:...--=-----:.:......:-=------=.:. 
HO HO alx: + ... + anx~ 

Hence, 

limM(= limelnM,= eln{xfl ... X:n) = Xi" ... xna". (2.8) 
(->0 1->0 

Because of this we extend the definition of M t by defining 

(2.9) 

We have now MI~ Mo as t~O. Using weights a l = ... = an = lin, we 
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obtain 

MO( XI' ••• , xn; ~ , ... , ~) = xl ln ... x~/n = ".JXI ... xn ' (2.10) 

which is the geometric mean of the positive numbers X I' ... , Xn • 

We also prove: If XI' ..• , Xn are positive real numbers, then 

lim M,(x l, ... , xn ; ai' ... , an) = max { XI' ••. , xn} (2.11*) 
,->+ 00 

and 

To prove (2.11), we write xk = max{x l , ... , xn} and obtain 

ail'xk .;;; (alxr + ... + anx~) II' .;;; Xk' (2.l3) 

Noting lim,_Hooai l ' = I, we obtain (2.11) from (2.13) by letting t~ +00. 
We prove (2.12) next. 

Note first that 

M_,(xl,···,xn;al,···,an)= M(I/ I~' ) 
, XI' ... , Xn , ai' ... , an 

(2.14) 

and that 

(2.15) 

Since 

it follows that 

lim M,= lim M ,= / I / = min{ XI' ... , xn} 
,-> - 00 ,-> + 00 - max {I X I' . . . , 1 xn } 

which proves (2.12). We define M -00 = min{x l , ... , xn} and M +00 

= max{x l , ... , xn }· 

PROB. 2.1. Prove: (a) M, is a monotonically increasing function (as function 
of t, for fixed XI' ... , xn; ai' ... , an)' (b) M, is strictly monotonically 

* Beckenback and Bellman, Inequalities, Ergebmisse D. Mathematik, Band 30, 1965, p. 16. 
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increasing if and only if XI' ... ,xn are distinct (Hint: see inequality 
VIII.2.28). 

Remark 2.1. The result cited in the last problem constitutes another proof 
of the arithmetic-geometric inequality (Corollary of Theorem 11.12.3) 
since it states that Mo(x l , ... , xn; lin, ... , lin)';; MI(x l , ... , xn; 
1 I n, ... , 1 In). This is another way of saying that the geometric mean of 
XI' ... , Xn does not exceed the arithmetic mean. It also places that inequal-
ity in a broader context since it states that M _ 00 .;; M _ I .;; M 0 .;; M I 

.;; M + 00 and relates the minimum, harmonic, geometric-arithmetic, and 
maximum of positive XI' ... , xn • It also states that -1 < t < 1 implies that 
M_ I .;; M 1 ';; MI' 

PROB. 2.2. Prove: If n is a positive integer, then for nonnegative numbers 
XI 'X2, ••• ,Xn' we have 

n I ( "IX; + . . . + rx:. ) n X I + . . . + xn 
VXI ... xn .;; n .;; n 

Sums of Order t 

Def. 2.2. If XI' ... , xn are positive, then their sum St(xl' ... , Xn) of order 
t =F ° is defined as 

( 1 1)1/1 SI(x l, ... , xn) = XI + ... + Xn • (2.16) 

The sum of order t behaves somewhat differently than the mean of order 
t. For example, we have for n ;;. 2, 

So+ (XI' ... ,xn) = + 00 (2.l7a) 

and 

So- (XI' ... ,xn ) = 0, 

whereas, for ai > 0, a l + ... + an = 1, we have 

(2.17b) 

(2.18) 

We prove (2.17). Take the natural logarithm of both sides III (2.16) to 
obtain 

In(x: + ... + x~) 
InSI = t ' n;;' 2, (2.19) 

limln(x: + ... + x~) = Inn> 0, 
t-->O 

n;;' 2. 

It follows from this and (2.19) that 

lim InSt = + 00 and lim InSt = - 00, n ;;. 2 
t-->O+ t-->O-
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and, therefore, that 

lim S, = lim eln s, = + 00 and lim S, = lim eln S, = 0, 
,-->0 + ,-->0 + 1-->0 - 1-->0-

proving (2.17). (Note that if n = 1, then SI(x I) = XI for all t.) 

PROB. 2.3. Prove: If XI' ... , xn are positive, then 

(a) 

(b) 

lim St(x l , ... , xn) = max{ XI' ... ,xn}, 
1--> + 00 

lim S,(x l , ... , xn) = min{ XI' ... , x n }· 
1--> - 00 

Remark 2.2. Concerning Sf' there is the well-known inequality of Jensen 
which states that: If ° < t I < t2 or t I < t2 < 0, then 

(2.20) 

To see this, note 

In(x;+'" +x~) 
In St = , t =1= 0. 

t 

Taking the derivative of both sides here with respect to t, we obtain, after 
some easy calculations, 

t 2 ,XI Xn dS 
[( t )Xi ( t )X';1 

S, Tt=ln x[+ ... +x~ .. , x[+'" +x~ . 
(2.21 ) 

But we have 

0« x[ )x:<l 
x; + ... + x~ 

for i E { 1, ... , n} 

(explain). It follows that the product inside the square bracket on the 
right-hand side of (2.21) is < 1 so that its natural logarithm is < 0. Thus, 
(2.21) implies that 

dSf 
-<0 
dt for t =1= ° (2.22) 

it follows that Sf viewed as a function of t for fixed XI" .. ,Xn' IS 

monotonic decreasing on (0; + (0) and also on (- 00; 0). 

PROB. 2.4. Prove: If ° < t < 1 and XI ;;. 0, X2 ;;. 0, ... , Xn ;;. 0, then 

( X + ... +X)f«Xf+ ... +x f ) I n In' 

PROB. 2.5. Prove: If XI ;;. 0, X 2 ;;. 0, and ° < t < 1, then 

Ix; - x~1 < IXI - x21· 
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PROB. 2.6. Prove: If 0 < t ..;; 1, then the function given by f(x) = Xl for 
o ..;; x is uniformly continuous. 

3. The 0-0 Notation for Functions 

We introduced the "big 0" and "little 0" notation for sequences in Defs. 
IV.4.1 and IV.4.2. Here we extend these notions to functions which are not 
necessarily sequences. 

Der. 3.1. If f and g are real-valued functions defined on a set D =1= 0 and an 
A > 0 exists such that 

If(x)l..;; Alg(x)1 for all xED, (3.1) 

then we write 

f(x) = O(g(x» for xED. (3.2) 

Thus, we write sinx = O(x), x E IR, since Isinxl ..;; Ixl for x E IR. 

PROB. 3.1. Prove: lex - 11 ..;; elxl for Ixl ..;; 1. Consequently eX - 1 = O(x), 
x E [ - 1, 1]. 

Der. 3.2. Let f and g be real-valued functions defined on a set D and a an 
accumulation point, possibly extended, of D. If there exists a deleted 
neighborhood N*(a) such that 

f(x) = O(g(x» for x E N*(a) n D, 

then we say that f is big 0 of g as x ~ a and write 

f(x) = O(g(x») as x~a. (3.3) 

For example, if a = + 00, then f(x) = O(g(x)), x~ a, means that there 
exists A > 0 and X such that 

If(x)1 = A I g(x)1 for xED and x > X. (3.4) 

This is similar to the use of big 0 for sequences (cf. Def. IV.4.l). 
On the other hand, if a E IR, then f(x) = O( g(x)) as x ~ a means that 

there exist A > 0 and £ > 0 such that 

If(x)1 ..;; Alg(x)1 for x E 6fJ(f) and 0 < Ix - al < £. (3.5) 

Del. 3.3. If the functions f, g, and h have a common domain D and 

f(x) - hex) = O(g(x» as x~a, 

then we write 

f(x) = hex) + O(g(x» as x~a. (3.6) 
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PROB. 3.2. Prove: If I and g are defined on D and g(x) =1= 0 for xED -
{a} and 

. I(x) 
hm -- = LEIR 
t->a g(x) , 

then I(x) = O( g(x» as x ~ a. 

PROB. 3.3. Prove: (a) sinx = O(x) as x~O; (b) sinx = O(x) as x~ +00; 
(c) cosx = 1 + 0(X2) as x ~o. 

PROB. 3.4. Prove: 

_1_ = 1 +o(...!..) 
x + 1 X x 2 

as x~+oo. 

PROB. 3.5. Prove: If I(x) = O(g(x» and g(x) = O(h(x» as x ~ a, then 
I(x) = O(h(x» as x~ a. 

PROB. 3.6. Prove: If 

where 0 < L < + 00, then 

lim I(x) = L, 
x .... a g( x) 

I(x) = O(g(x» and g(x) = O(f(x» as x~a. 

Del. 3.4. If I and g have a common domain D and both I(x) = O(g(x», 
g(x) = O(g(x» hold as x~a, then we write/(x)xg(x) as x~a, and say 
that the I and g are of the same order of magnitude as x ~ a. 

PROB. 3.7. Prove: I(x)xg(x) as x~a if and only if positive constants A 
and B exist such that for some deleted neighborhood N*(a) of a we have 

Blg(x)I" I(x) " Alg(x)1 for xED n N*(a). 

Asymptotic Equivalence 

Del. 3.5. When I and g have a common domain D, a is an accumulation 
point, possibly extended, of D, g(x) =1= 0 for xED - {a}, and 

lim I( x) = 1, (3.7) 
x .... a g(x) 

then we say that I and g are asymptotically equivalent as x ~ a and write 

I(x)-g(x) as x~a. (3.8) 
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For example, (a) sinx-x as x~O; (b) In(l + x)-x as x~O; (c) 
x + 1-x as x ~ + 00. 

PROB. 3.8. Prove: (a) coshx-e x /2 as x ~ + 00 and (b) sinh x_ex /2 as 
x~ + 00. 

Remark 3.1. Clearly f(x)-g(x) as x~ a impliesf(x)xg(x) as x~ a. 

PROB. 3.7'. Prove: If f, g, and h have a common domain 6j) and f, g, hare 
nonzero in D, then: 

(a) f(x)-f(x) as x~a, 
(b) f(x)-g(x) as x ~ a implies g(x)-f(x) as x~ a, 
(c) f(x)-h(x) and h(x)-g(x) as x~a imply f(x)-g(x) as x~a. 

PROB. 3.8'. Prove: If fl(x) = O(gl(x» and Hx) = O(gix.) as x ~ a, then; 

(a) iI(x)fix) = O(gl(x)gzex) as x ~ a, 
(b) iI(x) + fix) = 0(1 gl(x)1 + I gz{x)l) as x ~ a. 

Little 0 as x ~ a 

Def. 3.6. If f and g are defined on a common domain D, a is an 
accumulation point of D, g(x) =!= 0 for xED - {a}, and 

. f(x) 
hm -(-) = 0, (3.9) 
x-'>a g x 

then we say that f is "little 0" of g as x ~ a and write 

f(x) = o(g(x)) as x~a. (3.lO) 

If f(x) - hex) = o( g(x») as x ~ a, then we write 

f(x) = h(x)+ o(g(x)) as x~a. (3.11 ) 

For example, 

cosx = 1 + o(x) and sin2x = o(x) as x~o. 

The notion of "little 0" for functions as x ~ a is similar to the one for 
sequences where we spoke of "little 0" as n ~ + 00. 

Theorem 3.1. If fl' f2; gl' g2 are all defined on a 
gl(x) > 0 and gix) > 0 for xED - {a}, and 

fl(x) = o(gl(x)), f2(X) = O(g2(X») 

common domain D, 

as x ~ a, (3.12) 

then 

(a) fl(X) + f2(X) = o(gl(x) + g2(X» 

fl(X)f2(X) = o(gl(x)g2Cx » 

as x~a, 

(b) 
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PROOF. We prove (a) and ask the reader to prove (b) in Prob. 3.9. Given 
t: > 0, we use (3.12) to establish the existence of some deleted neighborhood 
N*(a) of s such that 

and 

- t:g2( x) < f2( x) < t:g2( x) 

for x E N*(a) n D. Adding these inequalities we see that 

fl( x) + f2( x) 
-t:< <t: 

gl(x) + g2(X) 
for x E N*(a) n D. 

It follows that 

lim fl(x) + f2(X) = 0 
x-'>a gl(x) + g2(X) 

and, hence, that (a) holds. 

PROB. 3.9. Complete the proof of the last theorem by proving its part (b). 

PROB. 3.10. Prove: If fl(x) = O(g(x» and fix) = o(g(x», each as x ~ a, 
then 

(a) 

(b) 

fl(x) + f2(X) = O(g(x» 

fl(X)f2(X) = o(g(x» 

4. Taylor's Theorem of Order n 

as x~a 

as x~a. 

Letfbe defined in some t:-neighborhood N(a,t:) of a E IR and continuous at 
a, so that 

limf(a + h) = f(a). 
h-,>O 

(4.1 ) 

This implies that limh-->o(f(a + h) - f(a» = 0 or, in the little 0 notation, 
that 

f(a + h) = f(a) + 0(1) as h~O. (4.2) 

Now, in addition, we assume that f is differentiable at a so that 

I, f(a+h)-f(a) =f'() 
1m h a. 

h-,>O 
(4.3) 

Using the big 0 notation we can write this as 

f(a + h) = f(a) + O(h) as h~O, (4.4) 
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Equation (4.3) can also be written 

. f(a + h) - (f(a) + f'(a)h) . (f(a + h) - f(a) I ) 

lIm = lIm -f(a) =0. 
h--->O h h--->O h 

(4.5) 

This implies in the little 0 notation that 

f(a + h) - (f(a) + f'(a)h) = o(h) as h~O 

and, hence, that 

f(a + h) = f(a) + f'(a)h + o(h) as h~O. (4.6) 

The above result is based on the assumption that f is defined in the 
€-neighborhood N(a,€) of a and differentiable at a. Now assume thatfis 
differentiable in N(a,€) and twice differentiable at a. We obtain by 
L'Hopital's rule 

. f(a+h)-(f(a)+f'(a)h) . f'(a+h)-f'(a) 
lIm = lIm --~,----
h--->O h2 h--->O 2h 

I. f'(a + h) - f'(a) = - lIm ---C_~ __ _ 

2 h 

= t /,,(a). (4.7) 

This implies that 

f(a + h) - (f(a) + f'(a)h) = O(h2) as h~O 

and, hence, that 

f(a + h) = f(a) + f'(a)h + O(h2) as h~O. (4.8) 

Equality (4.7) implies that 

. f(a + h) - (J(a) + f'(a)h + (f"(a)j2!)h2) 
lIm 2 = 0, 
h--->O h 

from which it follows that 

f(a + h) = f(a) + f'(a)h + f'~\a) h2 + o(h2) as h~O. (4.9) 

PROB. 4.1. Prove: If f is twice differentiable in some €-neighborhood N (a, €) 
of a and three times differentiable at a, then 

as h~O 

and 

as h~O. 
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Theorem 4.1. If f is differentiable of order n at a, where n is some positive 
integer, then 

1"(a) pn)(a) 
f(a + h) = f(a) + 1'(a)h + -V- h2 + ... + -n-! _hn + o(hn) 

as h ~ O. (4.10) 

PROOF. We use induction on n. We already proved (4.10) for n = 1,2. 
Suppose (4.10) holds for some positive integer n. Assume that f is differen­
tiable of order n + I at a. This implies that l' is differentiable of order n at 
a. By the induction hypothesis, 

pn+ 1)( a) 
l' (a + h) = l' ( a) + 1" ( a)h + . . . + , h n + 0 ( h n) 

n. 
as h~O, 

(4.11 ) 

i.e., 

lim 
h-->O 

1'(a+h)-(J'(a)+1"(a)h+ ... + (J(n+I)(a)/n!)h n) 
h n = O. 

(4.12) 

Hence, by L'Hopital's rule and (4.12) we have 

lim [f(a + h) - (f(a) + 1'(a)h + ... + ~(n+')i~) hn+I)]1 hn+' 
h-->O n + ). 

=lim(1'(a+h)-(1'(a)+1"(a)h+ ... + pn+:)(a) hn))/(n+ l)hn 
h-->O n. 

= O. 

It follows that 

1"(a) pn+I)(a) 
f(a + h) = f(a) + 1'(a)h + --h + ... + hn+1 + o(hn+l) 

2! (n+I)! 

as h ~O. (4.13) 

The conclusion follows by applying the principle of mathematical induc­
tion. 

PROB. 4.2. Prove: If f is differentiable of order n + I at a, where n is some 
nonnegative integer, then 

pn)(a) 
f(a + h) = f(a) + 1'(a)h + ... + n! hn + O(hn+l) as h~O. 
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Remark 4.1. Let f be differentiable of order n at a, where n is some positive 
integer. Put 

(4.14) 

Theorem 4.1 states that limhOun (a, h) = O. From (4.14) it follows that 

n fk)(a) 
f(a+h)=k~O k! +un(a,h)h n, (4.15) 

where un(a,h)~O as h~O. Formula (4.15) is called Taylor's formula of 
order n. The polynomial in h, 

n f(k)(a) f(n)(a) 
2: ,hk=f(a)+j'(a)h+ ... + ,hn, (4.16) 

k=O k. n. 

is called the Taylor Polynomial of order n at a, while the term un(a,h)h n in 
Taylor's formula of order n is called the remainder in Taylor'S formula of 
order n. 

Remark 4.2. Put x = a + h and order nand 

vn(a,x) = un(a,x - a). 

Formula (4.15) then becomes 

n fk)(a) k n 
f(x) = 2: k' (x - a) + vn(a,x)(x - a) , (4.17) 

k=O . 
where vn(a,x)~O as x~a. In this notation the remainder Rn+l(a,x) and 
the Taylor polynomial are, respectively, 

Rn+l(a,x) = vn(a,x)(x - a)n (4.18a) 

and 

n f(~(a) k 

k~O k! (x - a) . (4.18b) 

Calculation shows that Taylor'S Polynomial of order n for f has the same 
value and derivatives, up to order n, that f has. 

Remark 4.3. If P is a polynomial of degree n ;;;. I (d. Theorem VII.4.1) 

n p(k)( a) 
P(x) = 2: k' (x - a)k 

k=O . 
p(n)( a) 

=P(a)+P'(a)(x-a)+ .. · + n! (x-af 

and, therefore, the Taylor Polynomial of order n is identical with P itself, 
the remainder being identically O. In general, this is not the case. However 
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under the appropriate conditions on f, the remainder can be given several 
forms. We deduce them in the next theorem and its corollary. We begin 
with what is called Schlomlich's form for the remainder. 

Theorem 4.2. Let n be an integer, n ;;, 0 and p be some real number p > -1. 
If f and its derivatives up to and including order n are continuous on an 
interval I and j<n+ I)(X) exists at least for x in the interior of I, then, for 
distinct a and x in I, there exists a c between a and x such that 

PROOF. Fix a and x in I, x =!= a and construct F, where 

n f(k)( t) 
F(t) = f(x) - f(t) - k~l ~ (x - t)k 

(X-t)p+l ( n j<k)(a) k) 
- (x _ ay+l f(x) - k~O k! (x - a) (4.20) 

for tEl. Note that 

F(a) = 0 = F(x). (4.21 ) 

We can, therefore, apply Rolle's Theorem to obtain a c between a and x 
such that F'(C) = O. Taking the derivative f'(t) in (4.20), we have 

F'(t) = - f'(t) - 2: (x - t)k - (x - t)k-I 
n (j<k+ l)(t) f<k)(t) ) 

k=l k! (k-l)! 

(p + l)(x - tl ( n f<k)(a) k) 
+ +1 f(x)- 2: k' (x-a) . 

(x-ay k=O' 
(4.22) 

We have a "collapsing" sum 

f'(t) + 2: (x - t)k - (x - t)k-I 
n (j<k+ \)(t) f<k)(t) ) 

k=l k! (k-l)! 

j<n+ I)(t) n 

---:-, - (x - t) . 
n. 

Putting this in (4.22) we obtain 

f (n+')(t) 
F'(t)=- (x-t)n 

n! 

(P+l)(X-t)P( n j<k)(a) k) 
+ +1 f(x)- 2: k' (x-a) . 

(x - ay k=O' 
(4.23) 
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Since F'(c) = 0, this formula yields 

pn+ 1)( c) 
0=- n! (x - ct 

(P+l)(X-Ct ( n pk)(a) k) 
+ +1 f(x)- 2: k' (x-a) , 

(x - a)p k=O' 

from which (4.19) follows. 
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Remark 4.4. The remainder Rn + I (a, x) in Theorem 4.2 is 

f(n+ 1)( c) 
Rn+l(a,x) = ( 1) 1 (x - ct-P(x - a)p+I, 

p + n. 
p> - 1. (4.24) 

This is known as Schlomlich's form of the remainder in Taylor's Theorem 
of order n. When p = n, we have 

pn+I)(c) 
Rn+l(a,x) = (n + I)! (x - ar+ l , (4.25) 

where c is between a and x. This is known as the Lagrange form of the 
remainder in Taylor's Theorem of order n. When p = 0, we obtain from 
(4.24) 

pn+ 1)( c) n 

Rn+l(a,x) = , (x-c) (x-a). 
n. 

(4.26) 

This is known as Cauchy's form of the remainder in Taylor's Theorem of 
order n. This proves the corollary below. 

Corollary (of Theorem 4.2). If f and its derivatives up to and including order n 
are continuous on an interval I and p n + I) (x) exists at least for x in the 
interior of I, where n is some nonnegative integer, then for distinct a and x in 
I, there exists a c between a and x such that 

n pk)(a) pn+I)(c) 
f(x) = 2: k' (x - a)k+ ( 1)1 (x - ar+ I. 

k=O' n + . 
(4.27) 

Remark 4.5. Using n = ° in the last corollary we obtain a form of the 
Mean-Value Theorem. This is why we call the last corollary the extended 
mean-value theorem. 

Remark 4.6. In Theorem 4.2, let us use the fact that c is between a and x 
and write 

o=c-a, 
x-a 

x =!= a, 

so that ° < 101 < 1 and c = a + o(x - a). Writing h = x - a, we obtain 
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x - c = x - a - (c - a) = (l - B)(x - a). The Schlomlich form of the re­
mainder becomes 

(1 - B(-P 
R (a x) = (x - a)f/+ If(f/+ Il(a + B(x - a») (4.28) 
f/+I' (p+1)n! 

and the Lagrange form becomes 

j<n+ll(a + B(x - a» 
Rn+l(a,x) = (n + I)! (x - a)"+I. (4.29) 

In both cases 0 < IB I < 1. 

5. Taylor and Maclaurin Series 

When f has derivatives of all orders at a E IR, then the series 

00 j<nl( a) j<2l( a) 
~ ,(x - a)n= f(a) + f'(a)(x - a) + --, - (x - a)2+ ... 

n=O n. 2. 
(5.1 ) 

is called the Taylor series of fat a. When a = 0, this series has the form 

00 f(n)(o) f(n)(o) 
~ --, _xn= f(O) + f'(O)x + --, _x2 + ... (5.2) 

n=O n. 2. 

This series is called the Maclaurin series of f. Thus, the Maclaurin series of f 
is its Taylor series at a = O. 

When f has a Taylor series at a, several questions arise. (I) Does it 
converge? Of course, at x = a the Taylor series of f at a converges trivially 
and reduces to f(a). The convergence question becomes significant when 
x =1= a. (2) Does the Taylor series (5.1) converge to f(x)? If for some x, the 
Taylor series of f at a converges to f(x), then we say that it represents f(x) 
for that x. For example, when the Taylor series of f at a exists, then it 
always represents f(a). Whether or not the Taylor series of f at a represents 
f(x) for some x =1= a can be decided by examining the remainder Rn+ I(a, x) 
in Taylor's formula of order n. 

Let f have derivatives of all orders at a. Then, for each positive integer n, 
we have 

n j<k)( a) 
f(x) = k~O k! (x - a)k+ Rn+l(a,x). (5.3) 

There are three possibilities. If limn->+ooRn(a,x) = 0, then 

n j<k)(a) 00 (a) 
f(x) = n1!~oo k~O k! (x - a)k= k~ofkTI(X - a)k (5.4) 

and the Taylor series of f at a converges and represents f(x). If 
limn--> + ooRn(a, x) does not exist or is infinite, then the Taylor series off at x 
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does not converge. If limn _H 00 fn (a, x) exists and is finite but is not equal to 
0, then the Taylor series of f at a converges but does not represent f(x). We 
give some examples. 

EXAMPLE 5.1. In Example IV.5.1 we defined 
00 n 

expx = 2: ~ 
n=O n. 

for each x E lit (5.5) 

Using the ratio test, we found that the series on the right converges. In 
Theorem Vl.l.4 we proved 

00 n 

x " x e = expx = L.." -
n=O n! 

for x E lit (5.6) 

Simple calculations show that the series on the right is really the Maclaurin 
series for the function E defined as E(x) = eX for x E JR. It follows that the 
Maclaurin series (the Taylor series for E at 0) for E represents E(x). Here 
we establish this in another way by proving, more generally, that if a E JR, 
then the Taylor series for E at a represents E(x) for x E JR. We do this by 
estimating the remainder Rn+ lea, x) for E in Taylor's Theorem of order n. 
For each nonnegative integer n 

(5.7) 

Assume that x =1= a. Using the Lagrange form of the remainder (Corollary 
of Theorem 4.2) we see that there exists a c between a and x such that 

n E(k)(a) k E(n+l)(c) n+l 
E(x) = k~O k! (x - a) + (n + I)! (x - a) 

(5.8) 

Here 

Rn+l(a,x) = (n:c I)! (x - ar+ l, (5.9) 

where c is between a and x. If a < x, then a < c < x and 0 < c - a < x -
a so that 

If x < a, then x < c < a and x - a < c - a < 0 so that 

This and (5.9) show that 

IRn+l(a,x)1 = (n:c I)! Ix - aln+ l < (~I:-;~! Ix - aln+ l . 

But (Prob. IV.5.1) 

Ix - aln + l 
lim .!...----':--:- = 0 

n-H 00 (n + I)! 

(5.10) 

(5.11) 
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which implies that limn.-.+ooRn+l(a,x)=O. Using this, (5.8) and (5.9) we 
have: If x E IR, a E IR, then 

(5.12) 

On the right we have the Taylor series for E. Thus, (5.12) states that the 
Taylor 'series for E at a represent E(x) = eX for each x E IR. We also have 
from (5.12) that 

n (x - a)k 
E(x) = eX = eQ 2: , = eQexp(x - a). 

k=O k. 

Putting a = 0, we have again 

E(x) = expx for x E IR. (5.13) 

This constitutes another proof that E = expo 

PROB. 5.1. Prove: The Maclaurin series for the sine and cosine functions are 
the series by means of which these functions were defined in Def. IV.8.1. 

PROB. 5.2. Obtain the Maclaurin series expansion for the hyperbolic sine 
and cosine functions and prove these series represent them for all x E IR. 
(See Example V.2.3.) 

EXAMPLE 5.2. Consider the function f, where 

f(x) = In(I + x), x> -I. (5.14) 

We have f(O) = 0 and 

1'(x) = 1 ~ x ' 1'(0) = 1, 

1"(x) = - 1 , 1"(0) = -I. 
(1 + X)2 

As a matter of fact, if n is a positive integer, then 

(n - 1)' 
pn)(x)=(-lr+ 1 . and f(n)(0)=(-lr+ 1(n-I)!. (5.15) 

(1 + x)n 

Therefore, the Maclaurin series for f is 

00 f(n)(o) 00 (n - 1)' 
f(O) = 2: --, _xn= 2: (-It+ 1 ,. xn 

n=1 n. n=1 n. 

00 n+1 xn x 2 x 3 X4 = 2: (-I) - = x - - + - - - + . . . . (5.16) 
n=O n 2 3 4 

We examine the convergence of this series. The series obviously converges 
if x = O. If x =1= 0, the ratio test yields 

lan+,1 I xn+I/(n + I)! I n 
TaT = xn/n! = n + Ilxl-:lxI- (5.17) 
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Therefore, the series converges if Ixl < 1 and diverges for Ixl > 1. At x = 1, 
the Maclaurin series for I is 

I-t+t-t+··· 

which converges since it is an alternating series. For x = -1, we have 

-1-t-t-t-··· . 

which diverges. Thus, the Maclaurin series for I converges for x E (-1,1] 
and diverges for (- 00, -1] U (1; + (0). We now inquire whether or not the 
Maclaurin series for I represents I(x) for -1 < x ..;; 1. We know that 
1(0) = ° and that 

j<n+I)(X) = (-If n! 
(l+x)n+1 

Using the Corollary of Theorem 4.2, we find that if x =1= 0, then for a 
non-negative integer n there exists a c between ° and x such that 

x 2 n x n + 1 
In(1 + x) = x - - + ... + (-I) 

2 (n+l)(I+cr+1 
(5.18) 

The remainder Rn+ 1(0, x) is 

R (Ox)=(-I)n x n+1 
n+l , (n + 1)(1 + cr+ 1 (5.19) 

If ° < x ..;; 1, then ° < c < x ..;; 1 and 

Ixln + I Ixln + I 1 
IR (Ox)l= ..;;--..;;--

n+I' (l+cr+l(n+l) n+l n+l· 

This inequality is valid also for x = 0. Thus, 

lim .IRn+1(0,x)I";; lim _1-1 = ° 
n~+oo n~+oo n + 

if 0..;; x..;; 1. 

It follows that 

x 2 x 3 X4 
In(1 + x) = x - T + 3"" -"4 + ... for 0..;; x ..;; 1. (5.20) 

The series represents In(1 + x) for ° ..;; x ..;; 1. In particular, 

In 2 = In( I + 1) = 1 - t + t - t + . .. . (5.21) 

We now tum to the case -I < x < 0. Here we resort to Cauchy's form 
for the remainder (4.26) to obtain 

2 n 
In(I + x) = x - ~ + ... + (-Ir+ 1 : + R:+ 1(0,x), (5.22) 

where 

j<n+l)(C) n n (x - cfx 
R*(O,x) = (x-c)x=(-I) , 

n n! (I + cr+ 1 
(5.23) 
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where - I < x < e < O. We prove: 

I x - e 1< \x\ 
I + e 

(S.24a) 

and 

I x I \x\ 
I+e <I+x' (S.24b) 

Indeed, (S.24b) follows because we have 0 < I + x < I + e < I and, 
therefore, 

II ~ e 1= 1\:\ e < 1\:\ x . 

Inequality (S.24a) holds because 0 < - e < - x < I and e < 0, which im­
plies that - ex > e, so that 

(- x)(1 + e) = - x - ex > e - x > 0, (S.2S) 

which implies that 

Ix-el\x-e\ e-x (I+e) 
1+ e = l+C = 1+ e «-x) 1+ e = -x = \x\. 

Thus, (S.24a) and (S.24b) hold for -I < x < e < O. Returning to (S.23), we 
conclude that 

\R*(O,x)\ = \x - e\n\x\ =1 x - e In ~ < \x\n~ = \x\n+l . 
n (l+er+1 I+e I+e I+x I+x 

Since \ x\ < I here this implies R:(O, x) ~ 0 as n ~ + 00 . We conclude from 
this and (S.22) that 

x 2 
In(1 + x) = x - '2 + ... 

holds also if - I < x < O. Thus, 
00 n 

In(l+x)= 2;(-lr+ 1 £ 
n=1 n 

for -I < x < I. (S.26) 

PROB. S.3. Prove: If 0 < x < 2, then 

(X_I)2 (X_I)3 
Inx=(x-I)- 2 + 3 

PROB. S.4. Prove: If a> 0 and 0 < x < 2a, then 

x-a (x-a)2 (x-a)3 (x-a)4 
In x = In a + -- - + - + ... 

a 2a2 3a3 4a4 

PROB. S.S. Use 

h Ill+x Arctan x = - n--2 I-x if \x\ < I 
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to obtain 

x 3 X 5 
Arctanh x = x + - + - + ... 

3 5 for Ixl < 1. 

EXAMPLE 5.3. Our examples illustrate a case where the Taylor series of fat 
a converges and represents f(x), and where the Taylor series for f at a 
diverges for some x (In(l + x) for x E (- 00, -1] U (1; + 00». We exhibit 
now a function f which has derivatives of all orders at a whose Taylor series 
at a converges for x =1= a but does not representf(x) for x =1= a. 

Let f be defined as 

We have 

so that 

f(x) = {~-(I/X') if x =1= 0 
if x = o. 

-(I/x') l/x 
/,(0) = lim e = lim --, = 0, 

x~o X x~o e( I/x ) 

for x =1= 0 

for x = O. 
We can prove by induction on n that if x =1= 0, then 

e-(I/x')p (x) 
j<n)(x) = 3n n , 

x 
where Pn is a polynomial of degree < 3n and, hence, 

j<n)(x) = e-(I/X')Qn( ~ ) for x =1= 0, 

(5.27) 

(5.28) 

where Qn is a polynomial depending on n. We prove that j< n) (0) = 0 for all 
positive integers n by using induction on n. We have /,(0) = 0 = f(O). If 
j<n)(o) for some positive integer n, then using (5.28), we obtain 

e-(I/x')Q (l/x) 
j<n+ 1)(0) = lim n 

x~o X 

= lim (1 Qn( 1 ))/ e(l/x') 
x~o X X 

=0. 
The last limit is O. In fact, we can write 

where Rn is some polynomial, so that 

R - = bo + bl - + ... + b -. ( I ) 1 1 
n X X m xm 
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Here m is some positive integer and b l , ••• , bm are constants. Hence, 

j<n+I)(o) = lim (I/X)Qn~I/X) = lim Rn(l/:) = O. 
x->O e(l/x) x->O e(l/x) 

This proves that f(n) (0) = 0 for each positive integer n. Constructing the 
Taylor series Tf(x) at 0 for f we obtain 

00 00 

Tf(x) = 2: anx n= 2: Ox n = 0 for x =1= O. 
n=O n=O 

The series has only zeros for its coefficients, and thus converges to 0 for all 
x E IR. Since f(x) = e-(l/x') > 0 for x =1= 0, the Taylor series for f at c 
cannot represent f(x) for x =1= O. 

6. The Binomial Series 

We suggest that at this point the reader review the material on factorials in 
Section 11.6. 

PROB. 6.l. Prove: If k is a positive integer and a < 0, then 

(_I)k(~) > -/ > o. 

Lemma 6.1. If a E IR and n is a positive integer, then 

PROOF. If a < -1, then -(a + 1) > 0 and 

for a < -1 
for a = -1 
for a>-l. 

(6.1 ) 

I ( ~) I = I a (a - 1) .. ~! (a - n + 1) I = I a + 1 - 111 a + 1 ~! 21 ... I a + 1 - n I 

= (1 - (a + 1))( 1 - a ; 1 ) ... (1 _ a ; 1 ) 

> 1 - (a + 1)( 1 + ~ + ... + *). 
The last inequality is a consequence of Prob. 11.12.14; it implies that 

lim l(a)1 = + 00 n->+ 00 n 
for a < -l. (6.2) 

If a = - 1, then 

I (~) I = I ( ~ 1 ) I = I (- 1 )( - 1 - 1) ~ ~ . (- 1 - n + 1) I = 11 . 2 ~! .. n I = 1. 
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Therefore, 

lim /(a)/ = I 
n~+oo n for a = -1. 

If a > - I, then we consider the following cases: either (a) - 1 < a < 0 
or (b) 0 ..;; a. In case (a) we have 0 < 1 + a < 1 and also 

la - 11 = 1 - a, la - 21 = 2 - a, ... , la - n + 11 = n - 1 - a, 
so that 

/( a)/= lalla-II"'la-n+II = (-a)(I-a)···(n-I-a) 
n n! 1 ·2 ... n 

(1 - (a + 1»)(2 - (a + 1») ... (n - (a + 1») 
1 . 2 ... n 

= (I - a r 1 )( 1 _ a ; 1 ) ... (1 _ a ~ 1 ). 

Since 0 < (a + I)/n ..;; a + 1 < 1, the above and Prob. II.l2.15(c) imply 
that: If - 1 < a < 0, then 

/(~)/ = (1 - a r 1 )( 1 _ a; 1 ) ... (I _ a ~ 1 ) 

< 1 
1 +(a+ 1)(1 + 1/2+··· + I/n)' 

(6.3) 

This time we have: If -1 < a < 0, then I(:)I~O as n~ +00. In case (b), 
a > 0, we prove 

(~) = o( ~ ) as n~ +00. (6.4) 

If a is a nonnegative integer, then for sufficiently large n, we have a < n, so 
(:) = O. Thus, (6.4) holds in this case. If 0 < a < 1, then 

/( a)/_ la - lila - 21· .. la - n + II 1·2· .. (n - I) _ a 
n - a , < a , - -. (6.5) n. n. n 

If 1 < a and a is not an integer, then there exists a positive integer m such 
that m < a < m + 1. Fix m and take n > m + 1, where n is an integer. We 
have n - 1 > m + 1 and 

a _ja(a-I) ... (a-m) (a-m-I) ... (a-n+I)j 
l(n)l- 1·2···(m+I) . (m+2)(m+3)···n 

( a (m+I-a)"'(n-I-a) 
=1 m+I)1 (m+2)(m+3)···n 

" a (m + 1)( m + 2) ... (n - I) 

"'I(m + 1)1 (m +2)(m + 3)'" n 

=1(m:I)lm;I. 
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This can be written 

for 1 < a, a ft. 71... (5.6) 

Our study of cases for (b) a > 0 shows that (6.4) holds .if a > O. This 
together with case (a) -1 < a < 0, proves that if a > - 1, then 

as n~ + 00. 

and completes the proof. 

PROB. 6.2. Prove: 

• Ii'!' ~ I( a ! ")1_ {t' 
(Hint: see Prob. 11.6.14 and Lemma 6.1). 

for a >0 
for a =0 
for a < 0 

Remark 6.1. The result in Prob. 11.6.l3 states that 

ktJ a + Z - I) = (a ~ n) if nE7I..o, aEIR. 

Using the result in Prob. 11.6.14, i.e., 

( -/) = (_I)k( a + Z - 1), 
(6.7) can be written 

n 

k~o(-l)k(~a)=(n~a), a E IR, n E 71..0 • 

In turn, this implies that 
n 

k~O (-l)k(%) = (n ~ a), aEIR, nE7I..o. 

From this and Prob. 6.2 we conclude that 
00 n 

2: (-l)k(ak ) = lim 2: (-l)k(ak ) 
k=O n-4+ 00 k=O 

= lim (n - a) = { + 00 
n-4+oo n 0 

Binomial Series 

We consider the function g given by 

if a < 0 
if a> O. 

(6.7) 

(6.8) 

(6.9) 

g(x)=(l+x)a for x>-l, aEIR. (6.9') 

If a = n, where n is a non-negative integer, the Binomial Theorem applies 
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and we have 
n 

g(x) = (1 + x)"= (1 + x)n= k~O(~)Xk. (6.10) 

Since G) = 0 if k > n we can think of this as an infinite series, whose terms 
after the nth are equal to O. This series converges for all x E IR since it 
"collapses" to a finite sum. We will obtain the Maclaurin series for g, when 
a is not a non-negative integer. We have 

g(x) = (1 + x)" 

g'(x) = a(I + X),,-l, 

gl/(x) = a(a - 1)(1 + X),,-2, 

g(O) = 1, 

teO) = a, 

gl/(O) = a(a - 1). 

Quite generally, if n is a positive integer, then 

g(n)(x) = a(a - 1) ... (a - n + 1)(1 + x)a-n, 

g(n)(o) = a(a - 1) ... (a - n + 1). 

These may be written as 

The Maclaurin series for g is 
00 g(n)(o) 00 (a) 00 

L _,_xn= L -, n x n= L (~)xn. 
n=O n. n=O n. n=O 

(6.11 ) 

(6.12) 

(6.13) 

This series is called the Binomial series. To investigate its convergence we 
apply the ratio test to obtain for x =1= 0, a fI. lL, 

Since 

lim I a - n I = 1 
n--> + 00 n + 1 ' 

we have 

lim lan+11 = Ix!-
n-->+oo lanl 

If a E IR, a fI. lL, then series (6.13) converges absolutely if Ixl < 1 and 
diverges if Ixl > 1. The ratio test fails if Ixl = 1. Let a > O. If x = - 1 then 
by (6.13) and (6.9), 

00 

L (-I((~)=O=(I +(-1»)". 
n=O 

(6.14) 

Thus, the binomial series represents g( - I) for a > O. If x = I, then the 
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binomial series becomes 
00 

~ (~). 
n=O 

(6.15) 

This series diverges if a ..;; -I (see Lemma 6.1). The case a > -I will be 
considered later. 

We now consider the representation of g(x) by its Maclaurin series for 
x =1= -I and first treat the case 0 < x ..;; I. Using (6.12), we note that 

g(n+I)(x) = (a)n+l(l + xr- n - I. (6.16) 

By the Extended Mean-Value Theorem (Corollary of Theorem 4.2), there 
exists a c such that 0 < c < x ..;; 1 and 

" n g(k)(O) k g(n+ 1)( c) n+ 1 

(1 + x) = ~ k' x + ( 1)' x 
k=O' n + . 

= ± (a)xk+ (a)n+1 (1 + cr-n-lxn+1 
k=O k (n + I)! 

n (a) k ( a) xn+ 1 

= k~O k x + n + 1 (1 + cr+ I -" . 

Thus, 
n n+1 

(1 + x)"= ~ (a)xk+ ( a ) ----=x~-:--
k=O k n+1 (l+cr+ I -'" 

(6.17) 

where 0 < c < x ..;; I. For sufficiently large n, we have n + 1 - a > O. 
Estimating the remainder, we see that for such n 

for 0 < x..;; I. 

(6.18) 

We consider two cases: (a) 0 < x < I, (b) x = I. In case (a) the series 
converges, so that 

lim ( a )xn+l= 0 
n~+oo n + 1 

In case (b), Lemma 6.1 implies that 

lim ( a )=0 
n~+oo n + 1 

Accordingly, we have 

for all a E IR. 

if a>-1. 

lim Rn+I(O,x) = 0 
n~+oo 

if {O<X<I 
x=l 

for all a E IR 
a> -I. 

(We recall that the series (6.15) diverges for a";; -I.) Thus, we have 
00 

(1 + x)"= ~ (~)xn 
n=O 

for 0 < x < I, a E IR 

(6.19) 

(6.20) 

(6.21) 

(6.22) 
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and 
00 

2" = (1 + 1)" = ~ (~) 
n=O 

for 0'>-1. (6.23) 

We now consider what happens to the remainder as n ~ + 00 if - 1 < x 
< 0. We use Cauchy's form (4.26) for the remainder. In this case, there 
exists a c such that - 1 < x < c < ° and 

* g(n+ 1)( c) n 
Rn+I(O,x) = 1 (x-c)x n. 

(a)n+1 (1 + ),,-n-I( )n =-- C x-c x 
n! 

= (a)n+1 (1 + C)"-I( x - c )nx. 
n! 1 + c 

We proved earlier (see (5.24» that if - 1 < x < c < 0, then 

, ~ ~ ~ ,< Ix!-
Accordingly, 

IR:+1(0,x)1 = l(a~!+11 (1 + C),,-I, ~ ~ ~ ,n lxl 

< l(a)~+11 (1 + c)"-llxln+ l • 
n. 

Since ° < 1 + x < 1 + c < 1, we have 

(1 + C)"-I < 1 + c < 1 

(l+c)"-'= 1 < 1 
(1 + c)l-a (1 + x)l-a 

if a> 1, 

if 0'<1. 

(6.24) 

(6.25) 

(For 0'= 1, we are in the case where a is a positive integer and the series 
surely represents g(x) then.) This and (6.24) imply that 

IR:+1(0,x)1 < l(a)~+lllxln+1 if a> 1, 
n. 

< l(a)n+11 Ixln+1 
n! (1 + x)l-a 

if 0'< 1. (6.26) 

We saw that L:~=o(~)xn converges for Ixl < 1, a E IR, so we know that 

lim (a)xn= ° 
n--> + 00 n if - 1 < x < ° and a E IR. (6.27) 

Since 

l(a~!+lllxln+1 = ,x'la (a - 1) .~!. (a - n) xnl= lallxll( a; 1 )xnl' 
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we conclude from this and (6.27) that 

l(a)~+lllxln+I~O 
n. 

as n~ + 00. 

This implies that R:+I(O,x)~O if -1 < x < 0 and a E IR. This and (6.21) 
imply that 

if Ixl < 1 and a E IR. (6.28) 

We summarize these results in 

Theorem 6.1. Equality (6.28) holds if (a) x E IR, a E 10 ; (b) for Ixl < 1 and 
a E IR; (c) x = -1 if a> 0; (d) for x = 1 and a> -1. In all other cases the 
binomial series diverges. 

PROB. 6.3. Prove: If Ixl .;; 1, then 

x 00 1· 3 ... (2k - 3) k 
(a) ~ = 1 - - - 2: x . 

2 k=2 2kk! 

1 00 1· 3 ... (2k - 3) 
(b) - + '" = 1 

2 k-=2 2kk! . 

PROB. 6.4. Prove: 

(a) If Ixl < 1, a E IR, then 

1 -t> a(a+l) 2 
--=-----:c=(I-x) =1+ax+ x + ... 
(1 - x)" 2! 

(b) If a < 1, then 

1 -t> a(a+l) a(a+l)(a+3) 
-=2 =1-a+ - + ... 
2t> 2! 3! 

7. Tests for Maxima and Minima 

In Section VII.S we obtained necessary conditions for a value f(xo) of f be 
a maximum or a minimum of f. Here we seek sufficient conditions. 

We introduce the notion of a local maximum or minimum of a function. 
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Figure 7.1 

Def. 7.1. Let f be a real-valued function of a real variable defined on a set 
D =1= 0. We callf(xo) a local maximum offif some 8-neighborhood N(xo,8) 
exists such that f(xo) is a maximum of the restriction of f to N(xo, 8) n D, 
that is, if f(x) .;;; f(xo) for x E N(xo,8) n D. When we have the strict 
inequality f(x) < f(xo) for x E N*(xo, 8) n D, then we say that f(xo) is a 
strict local maximum of f. Dually, f(xo) is called a local minimum of f if 
some 8-neighborhood N(xo,8) of Xo exists such thatf(xo) is a minimum of 
the restriction of f to N(xo, 8) n D, i.e., if f(x) > f(xo) holds for x E 

N(xo,8) n D. When we have the strict inequality f(x) > f(xo) for x E 

N*(xo, 8) n D, then we callf(xo) a strict local minimum of f. Local maxima 
or minima will be called local extrema. An extremum on D itself will be 
called an absolute extremum. Thus, we speak of an absolute maximum or 
minimum at Xo if f(xo) is respectively a maximum or minimum of f on D. 
(See Fig. 7.1.) 

In Fig. 7.1, f(a), f(x 2), and f(X4) are local minima of f, f(x\), f(X3)' and 
f(b) are local maxima of f, f(a) is an absolute minimum, and f(b) is an 
absolute maximum of f on D. 

Theorem 7.1. Let f be continuous on an interval I, and let Xo be an interior 
point of I. If j'(x) > 0 for x < xo, x E I, and j'(x) .;;; 0 for x > x o, x E I, 
then f(xo) is a maximum off on I. (See Fig. 7.2(a).) 
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Figure 7.2 
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PROOF. Assume x E I and x =I' xo' By the Mean-Value Theorem, there 
exists a c between x and Xo such that 

f(x) = f(xo) + 1'(c)(x - Xo)' (7.1) 

If x < xo, x E I, then x < c < xo, so that x - Xo < 0 and 1'(c) ;;. O. This 
implies that 1'(c)(x - xo) < O. Therefore, (7.1) implies that f(x) < f(xo) 
holds for x E I, x < xo' If x > xo, we have Xo < c < x. In this case, 
x - Xo > 0 and 1'(c) < 0, so that again 1'(c)(x - xo) < O. By (7.1), f(x) 
< f(x o) for x E I, x > xo' Thus, f(x) < f(x o) for all x E I, and f(xo) is a 
maximum of f on I. 

Theorem 7.2. Let f be continuous on an interval I. If 1'(x) < 0 for x < xo, 
x E I and 1'(x) ;;. 0 for x > xo, x E I, then f(xo) is the minimum off on I. 
(See Fig. 7.2(b).) 

PROB. 7.1. Prove the last theorem. 

Remark 7.1. We refer to Theorems 7.1 and 7.2 as the first derivative test for 
an extremum. Note that in these theorems we did not assume that f was 
differentiable at xo' Hence, the test can be used even if 1'(xo) does not exist. 
If, in addition to the hypotheses in the theorems mentioned, 1'(xo) exists, 
then we necessarily have 1'(xo) = O. For, in each case, the hypothesis 
implies, that f(xo) is an extremum of f and since Xo is an interior point of I, 
it follows from Prob. VII.S.2 that 1'(xo) = O. Sometimes the first derivative 
test for an extremum is given the form of Prob. 7.2 below. 

PROB. 7.2. Prove: If Xo is an interior point of an interval I on which the 
function f is differentiable and 1'(xo) = 0, then (a) 1'(x) ;;. 0 for x < xo, 
x E I,1'(x) ;;. 0 for x> xo, x E I imply that f(xo) is a maximum of f on I, 
while (b) 1'(x) < 0 for x < xo, x E I and 1'(x) ;;. 0 for x> xo, x E I imply 
that f(xo) is a minimum of f on I. 

Remark 7.2. The example of f, where f(x) = x 3 for x E IR, shows that 
1'(xo) = 0 can occur withoutf(xo) being an extremum ofj. We have, in this 
case, 1'(0) = 0, yet for c:: > 0, f( c::) = c:: 3 > 0 = f(O) and f( - c::) = - c:: 3 < 0 
= f(O), and f(O) is not an extremum of j. 

PROB. 7.3. Prove: Hfis continuous on a bounded closed interval [a,b] and 
differentiable in its interior and 1'(x) =I' 0 for x in the interior of I, then the 
extrema of f occur on the "boundary of [a, b]; that is, at the endpoints of 
[a, b]. 

Knowing whether f is concave or convex on an interval is helpful in 
dealing with questions about the extrema of j. 
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Theorem 7.3. Let f be differentiable in the interior of an interval I and 
j'(xo) = 0 for some interior point of I. The following hold: (a) iff is concave 
on I, then f(xo) is a maximum off on I, and (b) iff is convex on I, then f(xo) 
is a minimum off on I. 

PROOF. Assume that (a) f is concave on I. The graph of f then lies below its 
tangents at the points in the interior of I (Prob. VIII.2.1O). Hence, for x in 
I, we have 

f(x) < f(xo) + j'(xo)(x - xo)· 

Since j'(xo) = 0 by hypothesis, it follows that 

f( x) < f( xo) for each point x of I. (7.2) 

This proves that f(xo) is a maximum of f on I. As for what happens if f is 
convex on I, we leave this case to the reader (Prob. 7.4). 

PROB. 7.4. Complete the proof of the last theorem by proving part (b). 

PROB. 7.5. Let f be differentiable in the interior of an interval I and 
j'(xo) = 0 for some interior point Xo of I. Prove: (a) If f is strictly concave 
on I, then f(xo) is a strict maximum of f on I and (b) if f is strictly convex 
on I, then f(xo) is a strict minimum of f on I. 

PROB. 7.6. Let f be continuous on an interval I, twice differentiable in the 
interior of I and j'(xo) = 0 for some interior point Xo E I. Prove: (a) if 
j"(x) < 0 for x in the interior of I, thenf(xo) is a maximum of f on I and 
(b) if j"(x) ~ 0, for x in the interior of I, then f is a minimum of f on I. 
Also prove that the strict inequalities in (a) and (b) imply that f(xo) is a 
strict maximum in case (a) and a strict minimum in case (b). 

Remark 7.3. The second derivative test described in the last problem is one 
for absolute extrema. This is why the condition j"(x) < 0 (or j"(x) ~ 0) is 
assumed for all x in the interior of the interval I. For local extrema it 
suffices to prescribe j"(xo) < 0 (or j"(xo) > 0) at an interior point Xo of f 
where j'(xo) = O. This is seen in the next theorem. 

Theorem 7.4. Iff is continuous on an interval I, differentiable in the interior of 
I, and j'(xo) = 0 for some interior point Xo of I, then j"(xo) < 0 implies that 
f(xo) is a local maximum off, while j"(xo) > 0 implies that f(xo) is a local 
minimum off. 

PROOF.* Since j'(xo) = 0, we have, by the definition of j"(xo), 

lim j'(x) = lim j'(x) - j'(xo) = j"(xo). (7.3) 
X--->Xo x - Xo X--->Xo X - Xo 

*J. Olmsted, Advanced Calculus, Appleton-Century-Crofts, New York, 1961. 
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Assume that 1"(xo) < O. This and (7.3) imply that a deleted ~-neighborhood 
N*(xo'~) of Xo exists such that 

1'(x) -- < 0 for x EO N*(xo,~) n I. (7.4) 
x - Xo 

From this we obtain: 1'(x) > 0 for Xo - ~ < x < xo' x EO I and 1'(x) < 0 for 
Xo < x < Xo +~, x EO I. The set J = N(xo,~) n I is an interval. Apply 
Theorem 7.1 to J and obtain that f( xo) is a maximum of f on J and, hence, 
that f(xo) is a local maximum of J. The case 1"(xo) > 0 can be treated 
analogously. 

Remark 7.4. If 1'(xo) = 0 = 1"(xo) at some interior point Xo of interval I, 
then f(xo) mayor may not be an extremum of J. The function f, where 
f(x) = x 3 for x EO IR, is such that 1'(0) = 0 = 1"(0), and here f(O) is neither a 
maximum nor a minimum of J. On the other hand, the function g, where 
g(x) = X4, for x EO IR also has the property g'(O) = 0 = g"(O) but g(O) is a 
minimum of J. The next theorem is an extension of Theorem 7.4 and can be 
used, under the appropriate conditions, when 1'(xo) = 0 = 1"(xo). 

Theorem 7.5 (Extension of Theorem 7.4). Let n be a positive integer and fa 
function such that f, 1', ... ,fn) are continuous on an interval I. Let Xo be an 
interior point of I. Let 1'(xo) = 1"(xo) = ... = fn)(xo) = 0, but fn+I)(xo) 
=1= O. If n is odd (so that n + I is even), then f(xo) is a local maximum or local 
minimum off according to whether fn+I)(xo) < 0 or fn+I)(xo) > o. If n is 
even (so that n + I is odd), then f(xo) is neither a local maximum nor a local 
minimum of J. 
PROOF. * Suppose that x EO I, x =1= Xo' There exists a c between x and Xo 
such that 

f(x) = f(xo) + 1'(xo)(x - Xo) + ... 

+ f(n~I)(xo)( _ )n~l+ fn)(c) ( _ )n 
(n - I)! x Xo ( n)! x Xo 

f n)( c) n 
= f( Xo) + ~ (x - Xo) . (7.5) 

Assume that f(n+ I) (xo) < O. Since f(n) (xo) = 0, we have 

I· fn)( x) _ I' fn l( x) - f(n)( xo) _ f(n+ 1)( ) < 0 
1m - 1m - Xo . 

x ..... xo X - Xo x ..... xo X - Xo (7.6) 

Hence, there exists a deleted ~-neighborhood N*(xo,~) of Xo such that 

fnl(x) 
---<0 
x - Xo 

for XEON*(xo,~)nI. 

* 1. Olmsted, Advanced Calculus, Appleton-Century-Crofts. New York, 1961. 

(7.7) 



8. The Gamma Function 417 

This implies thatj<n)(x) > 0 for Xo - 8 < x < xo, x E I andf(n) (x) < 0 for 
Xo < x < Xo + 8, x E I. In the first case we have Xo - 8 < x < c < Xo and, 
therefore,j<n)(c) > O. In the second case we have Xo < c < x < Xo + 8 and, 
therefore, j<n)(c) > O. Now suppose n is odd. In the first case, x - Xo < 0, 
so that (x - xo)" < 0, yielding j<n)(c)(x - xo)" In! < O. Using (7.5), we 
obtainf(x) < f(xo), if Xo - 8 < x < Xo' In the second case, we have x - Xo 
> 0, (x - xo)" > 0, so that once more, j<n)(c)(x - xo)" In! < O. Using (7.5) 
we have f(x) < f(xo) if Xo < x < Xo + 8. Thus, if n is odd, then f(x) 
.;;; f(xo) for x E N(xo, 8) n I and, therefore, that f(xo) is a local maximum 
of f. Next assume that n is even. Then, (x - xo)" > 0 for x =1= xo' We now 
obtain, reasoning as above, that j<n) (c)(x - xo)" In! > 0 if Xo - 8 < x < Xo 
so thatf(x) > f(xo) by (7.5). On the other hand, if Xo < x < Xo + 8, we now 
havej<n)(c)(x-xo)"ln!<O andf(x) <f(xo). Thus, if n is odd,f(xo) is 
neither a local maximum nor a local minimum of f. 

The case j<n+ I) (xo) > 0 can be treated analogously. 

PROB. 7.7. Let aI' a2 , a3 be real numbers such that al < a2 < a3 • (a) Locate 
the local maximum and minimum of f, where f(x) = (x - al)(x - a2)(x -
a3). (b) Also locate the inflection point of its graph. How does the graph 
look? 

PROB. 7.8. Assume that a l < a2 • Locate the local maximum and minimum 
of f and g, where f(x) = (x - al)(x - a2i, x E IR, g(x) = (x - ali(x - a2), 

x E IR. Also locate the points of inflection of the graphs of f and g. 

PROB. 7.9. Prove: If f(x) = x 3 + ax + b for x E IR, then the inequalities 
27 b2 + 4a3 ~ 0 determine the number and multiplicity of the real zeros of f. 
State which inequality corresponds to which possibility for the zeros of f. 

PROB. 7.10. Let x > 0, x =1= e. Prove: (a) lnxl x < II e, (b)* x e < eX. 

8. The Gamma Function 

We return to Example 5.2 and consider f, where 

f(x)=ln(l+x), x>-l. 

We take x > O. By (5.18), there exists a c such that 
2 

In(l + x) = x - X 2' 
2(1 + c) 

(8.1 ) 

(8.2) 

* 1. T. Varner, Comparing a b and b a using elementary calculus, The Two- Year College 
Mathematics Journal, 7(1976), p. 46. 
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where 0 < c < x. We have 
2 

0< X 2 = X - In(1 + x). 
2(1 + c) 

Since c > 0, it follows that 

This and (8.3) imply that 
2 

o < X - In( 1 + x) < ~ if x> O. 

(8.3) 

(8.4) 

Replace x in this inequality by x / k, where k is a positive integer. Then 

o < - - In 1 + - <-x ( X) x 2 
k k 2k2 ' 

x > 0 and k E 71.+ . (8.5) 

For each positive integer n, we take k E {l, 2, ... , n} in (8.5) and sum. We 
arrive at 

We write for each n, 

Pn = (I + X)( 1 + 1) ... (I + ~ ), un =(± i)X-InPn • (8.7) 
k=l 

Now (8.6) can be written as follows: 

x 2 n 1 
0< un <2 ~ 2' 

k=l k 

Since ~ (2) = 2, r: = ] k - 2 converges and has positive terms, (8.8) yields 

x 2 
0< un < 2 ~(2), 

(8.8) 

(8.9) 

implying that <un> is, for each x > 0, a bounded sequence. We now prove 
that <un> is monotonically increasing for each x > O. Note first that 

1 I I 1 I Pn +] un+]-un=--lx- nPn+]+ nPn=--lx- n-p . 
n+ n+ n 

This implies that 

(8.10) 

where x > 0, n E 71.+. Since In(I + z) < z for z > 0, this implies that 
un+] - un > 0 and, hence, that <un> is strictly monotonically increasing for 
x> O. We already saw that <un> is bounded (see (8.9». We conclude: If 
x> 0, then <un> converges. 
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We return to the second equality in (8.7) and subtract and add xlnn 
= In n x to obtain 

un=(± l)x-lnPn=(± I-lnn)x+lnnX-lnPn 
k=1 k k=1 k 

or 

Un .s I 1 nX 
-= ~ --lnn+-ln-. 
X k=1 k X Pn 

(8.11 ) 

We recall that <"In), where "In = Lk=tk-t -Inn for each n, converges to 
the Euler-Mascheronic constant "I (see formula VII(7.17)). Thus, (8.11) 
becomes 

Un 1 nX 
-="1 +-In-
X n X Pn' (8.12) 

and we conclude that from this that In(n X / Pn) converges as n~ + 00 for 
X > O. This implies that the sequence < gn(x), where 

(8.13) 

converges for X > O. Next, we note that 
nX nX 

gn(x) = xPn = xI1k=t(1 + x/k) x(x + 1) ... (x + n) 
(8.14) 

for each positive integer n and x fl. {O, -1, -2, ... , - n}. We proved: 

Lemma 8.1. If x > 0, then the sequence < gn(x), where gn(x) is defined in 
(8.14), converges. 

Remark 8.1. In Theorem 8.1 below we shall prove that <gn(x) converges 
for all x other than the nonpositive integers, i.e., for x E IR - (l_ U {O}). 

Der. 8.1. We define f(x) as 

f(x) = lim g (x) = lim nXn! 
n~+oo n n->+oo x(x + 1) ... (x + n) (8.15) 

for all x for which the limit on the right exists and is finite. The function f 
defined in this manner is called the Gamma Function. Thus far we know 
that it is well-defined for x > O. 

PROB. 8.1. Prove: 

f(k) = (k - I)!, (8.16) 

where k is a positive integer. 

Theorem 8.1. (a) The Gamma Function is positive and log-convex on the 
interval (0; + 00). (b) The domain of the Gamma Function is 6j) (f) = IR -
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CL U {O}). (c) We have for the Gamma Function 

f(x + 1) = xf(x) for x E GD(f). (8.17) 

PROOF. We first prove f(x) > 0 for x > O. Turn to the discussion preceding 
Lemma 8.1 at the beginning of this section. By (8.12) and (8.13) 

x >0. 

Writing u = limn-HOOun , we obtain from this and (8.15) that 

f(x)=leu-xy>O for x>O. 
x 

N ext we prove that f is log-convex on (0; + (0). We have from (8.14) 
and Prob. VIII.7.16 that each gn' where 

x = nXn! 
gn () X (x + I) . . . (x + n) , 

is log-convex on (0; + 00). By Prob. VIII.7.2, since 

f(x) = lim gn(x) 
n~+oo 

for x> 0, 

and f(x) > ° for x > 0, we see that f is log-convex on (0; + 00). 
We prove (c). From the definition of f in (8.15) we see that f(x) is not 

defined if x E 7L U {o} and, hence, that GD(f) ~ IR - CL U {O}). Take 
x E GD(f), so that x f£ {O, -1, -2, ... } = 7L U {o}. But 

~_-:-:-:_--,n,-=X:-+_l.:..:n..:...! ~ __ ~ = x n Xn! 
(x+I)(x+2)···(x+n+l) x(x+I)"'(x+n) 

n 
(x+n+I)' 

(8.18) 

Taking limits as n ~ + 00, we see that the right-hand side converges to 
xf(x). It follows from (8.18), since the limit of its left-hand side is f(x + 1), 
that (8.17) holds. This proves (c). It also follows from this that x E GD(f) 
implies that x + I E GD (f). 

Now take x E GD(f) - {l}, so that x f£ 7L U {a, I} and the limit in (8.15) 
exists and is finite. Since 

nX-1n! _ 1 nXn! x + n 
(x - I)x(x + 1)· .. (x + n - 1) - x - I x(x + 1)· .. (x + n) n 

(8.19) 

for such x and the right-hand side here converges to the limit f(x)/(x - I) 
as n ~ + 00, the left-hand side converges to f(x)/(x - I). But the left-hand 
side, when it converges, is equal.to f(x - 1). This proves that 

rex) 
r(x-I)= -­

x-I 
if x E GD(r) - {l} 

and that x E GD (f) - {I} implies that x - I E GD (f). 

(8.20) 
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We prove that IR - C:L U {O}} <;;; GD(f). We already know that (0; + 00) 
<;;; GD(f) (Lemma 8.1). We prove: If n is a positive integer, then f(x) is 
defined for x E (- n; - n + I), and 

f(x + n) 
f(x)- (8.21) 

x(x + I) ... (x + n - I) 

We use induction on n. Take n=1 and xE(-I;O)=(-I;-I+I) so 
that -I < x < 0 and 0 < x + 1 < 1. By what was proved in the last 
paragraph, we have x = x + 1 - I E GD(f) and 

f(x + 1) 
f(x) =. (8.22) 

x 
Thus, our statement holds for n = 1. Assume that our statement holds for 
some positive integer n. Take - n - I < x < - n, so that - n < x + I < 
- n + I and, hence, that x + I E GD (f) and 

f(x+l+n) 
f(x) - --..,...----::,...----­

(x + I)(x + 2)· .. (x + n) 

f(x + n + I) 
(x + 1)(x + 2) ... (x + n) . 

(8.23) 

By what was proved in the last paragraph, we have x = x + I - I E GD(f) 
and 

f( x + 1) 
f(x) = --x-

and, therefore, by (8.23) that 

f(x + n + I) 
f(x) - -----­

x(x + I) ... (x + n) 
for xE(-n-I;-n). 

By induction our statement holds for all positive integers n. Since (- n; 
- n + I) <;;; GD(f) for each positive integer nand (0; + 00) <;;; GD(f), we have 
IR - CL U {O}} <;;; GD(f). But GD(f) <;;; IR - CL U {O}} holds. Hence, GD(f) 
= IR - {L U {O}}. This completes the proof. 

PROB. 8.2. Prove that (8.21) holds for x E GD(f) for each positive integer n. 

Corollary 1 (of Theorem 8.1). The Gamma Function is continuous. 

PROOF. The Gamma Function is log-convex on (0; + 00) and, hence, 
convex there (Prob. VIII.7.4). A function which is convex on an interval I 
is continuous in the interior of I (Corollary of Theorem VIII.2.1). Hence, f 
is continuous for x > O. 

If - n < x < - n + I, where n is a positive integer, then 0 < x + n < 1. 
The function h, where hex) = f(x + n), is continuous for - n < x < - n + 
1. By (8.21), f is continuous for - n < x < - n + 1. Thus, f is also 
continuous on (- n; - n + I). Hence, f is continuous on IR - (1_ U {O}), 
its domain, and is, therefore, continuous. 
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Corollary 2 (of Theorem 9.1). If n is a positive integer, then f(x) is positive or 
negative for x E (- n; - n + 1) according to whether n is even or odd. 

PROOF. Assume x E (- n; - n + 1) so that 0 < x + n < 1 and f(x + n) 
> O. In the product x(x + 1) ... (x + n - 1) there are n negative factors, 
so this product is > 0 or < 0 according to whether n is even or odd. By 
(8.21) it follows that f(x) is positive or negative according to whether n is 
even or odd. 

Theorem 8.2. If x E 6Jl(f) and n is a positive integer, then 

f(x + n)_nXf(n) as n-? + 00 

PROOF. By (8.21) and Prob. 8.2, we have 

f(x) 

f(x+ n) 
1 (x + n) 

x(x+l)"'(x+n) . 

Hence, 

f(x)nXf(n) 

f(x + n) 

f(x)nX(n - I)! 

f(x + n) 
nXn! x + n 

x(x+l)"'(x+n) n 

Here the right-hand side approaches f(x) as n-? + 00, yielding 

. f(x)nXf(n) 
hm = f(x). 

n->+co f(x + n) 

This implies that 

nXf(n) 
lim = 1 

n->+co f(x + n) 

from which (8.24) follows. 

Corollary. We have 

lim f(x) = + 00. 
x->+ co 

PROOF. By the theorem, we know that 

lim nXf(n) = 1 
n->+co f(x + n) 

(8.24) 

(8.25) 

Take y > O. There exists a positive integer N ( such that if n ;;;. N (, then 

_ 1 < nYf(n) _ 1 < 1 
2 f(y + n) 2 ' 

which implies that 

1nYf(n) < f(n + y) for n;;;' N(. (8.26) 



9. Log-Convexity and the Functional Equation for r 

Let N = max{Nl,2} so that N > Nl and N > 2, and 

tNYf(N) < f(N + y). 

Taking x > N, we have x - N > O. By (8.26) this implies that 

tNx-N .;;;; tNx-Nf(N) < f(N + x - N) = f(x), 
i.e., that 

Since 
lim Nx-N= +00 

x~+oo 

for x> N > 2. 

for N> I, 

423 

(8.27) 

(8.28) 

it follows from this and (8.28) that limx _H oof(x) = + 00, proving the 
theorem. 

For a sketch of the Gamma Function see Fig. X.1l.l. 

PROB. 8.3. Prove: (a) f(O + ) = + 00, (b) f(O - ) = - 00, (c) f« - n + I) - ) 
= - 00 = f« - n) +) if n is an odd positive integer, (d) f« - n + 1) - ) 
= + 00 = f« - n) + ) if n is an even positive integer. 

9. Log-Convexity and the Functional Equation for r 
Equation (8.17) is called the functional equation for the Gamma Function. 
This equation does not determine a unique function. For if f satisfies 

f(x + 1) = xf(x), (9.1) 

then g, where g(x) = f(x)sin(2'1Tx) also satisfies it. In fact, 

g(x + 1) = f(x + l)sin[2'1T(x + 1)] = xf(x)sin(2'1Tx + 2'1T) 

= xf( x)sin(2'1Tx) = xg( x). 

However, a unique solution of (9.1) is obtained when further conditions are 
imposed on the solution of (9.1). 

Theorem 9.1. * Iff is positive for x > 0, log-convex, f(1) = 1, and also satisfies 
(9.1), then f(x) = f(x)jor x> O. 

PROOF. Using (9.1) and induction on n, it is easy to show that if n is a 
positive integer, then 

f(n) = (n - I)!, (9.2a) 

f(x + n) 
f( x) = x (x + 1) ... (x + n - 1) for x> O. (9.2b) 

This can be done for f in the same way it was done earlier for f. 

*E. Artin, The Gamma Function, Holt, Rinehart, Winston, New York, 1964. 
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We now take x such that 0 < x < 1 and n ;;;. 2, so that 

-I+n<n<x+n<n+l. 

Consider the function g, defined as 

Inf(x) -Inf(n) 
g(x) = , x-n x> 0, x =1= n. 

(9.3) 

(9.4) 

This function is monotonically increasing for fixed n ;;;. 2 since f is log­
convex and therefore convex on (0; + 00). This and (9.3) imply that 

Inf(n - I) -Inf(n) Inf(x + n) -Inf(n) 
-----.,.---- < --------

-I x 

Inf(n + I) -Inf(n) 
< 1 . 

By (9.2a), this implies that 

x(ln(n -I)!-In(n - 2)!) < Inf(x + n) -In(n - I)! 

< x(lnn!-ln(n - I)!). 

Using properties of the natural logarithm, this implies that 

xln(n - I) + In(n - I)! < Inf(x + n) < xlnn + In(n - I)! 

This is equivalent to 

In [ (n - 1 t (n - I)!] < In f( x + n) < In [ n x (n - I)!] (9.5) 

or 

(n - It(n - I)! < f(x + n) < nX(n - I)!. (9.6) 

Using (9 .2b), this yields 

(n - It(n - I)! 
x(x + 1) ... (x + n - 1) 

nX(n - I)! 
< f(x) < , 

x(x+l)"'(x+n-l) 
(9.7) 

where n ;;;. 2,0< x < l. Here the inequality on the left holds for all integers 
n such that n - 1 ;;;. 1, so it yields, after replacing n - 1 by n, 

nXn! 
---:----:---:-:-'-'--=":":'--:---:--:- < f(x) for n;;;' 1, 0 < x < l. (98) 
x(x+l)"'(x+n) . 

This, using the inequality on the right in (9.7), implies that 

nXn! ,,:: f(x) ,,:: nXn! 
x(x + 1) ... (x + n) "" "" x(x + I) ... (x + n) 

x+n 
n 

(9.9) 

for n ;;;. 2, 0 < x < l. Take limits as n ~ + 00. Then 

rex) = lim nXn! 
n-Hoo x(x + 1)· .. (x + n) 

r ( nXn! x + n ) 
= nJIJ100 x(x + 1) ... (x + n) -n- . 
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From this and (9.9) we conclude using the Sandwich Theorem that 

rex) = f(x) for 0 < x ..;; 1. (9.10) 

We now prove this equality is valid for all x> o. To establish this, we 
note, by the induction on n, we can prove (do this) that 

f(x+n)=r(x+n) for 0 < x ..;; 1, n E 71.0 . (9.11 ) 

We already observed that f and r have the same values for the positive 
integers. Take x > 1, where x is not an integer. Let n = [x). We have 
n < x < n + 1, which implies that 0 < x - n < 1. Let y = x - n so that 
o <y < 1. By (9.11), we have 

f(x) = f(x - n + n) = fey + n) = r(y + n) = rex) 

for x > 1 and x not an integer. In sum, f(X) = r(x) for all x > 0, as 
claimed. 

PROB. 9.1. Prove: If t > 0, then the function f, defined as f(x) = r(tx) for 
x > 0, is log-convex. Also prove that g, where g(x) = r(x + 1) for x > 0, is 
log-convex. 

PROB. 9.2. Prove: If f is defined on S = IR - (71._ u {On and log-convex on 
(0; + 00), where f(l) = I, and f(x + 1) = xf(x) for each xES, then f(x) 
= r(x) for all xES. 

PROB. 9.3.* Let p be a positive integer. Write 

ap = pr( ! )r( ~ ) ... r( ~ ), 
hex) = pxr( ; )r( x; 1 ) ... r( x + ~ - I ), 

where x > O. Prove: The function H, where 

hex) 
H(x) = -, 

ap 

where x > 0, is identical with the Gamma Function. Thus, prove that 

if P is a positive integer and x > 0 (Hint: prove that H satisfies the 
hypothesis of Theorem 9.1). 

PROB. 9.4. If k and p are integers such that I ..;; k..;; p, we have, by 

*E. Artin, The Gamma Function, Holt, Rinehart, Winston, New York, 1964. 
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definition of f( kip), 

f( k ) r nk/Pn! 
p = n-PJ!oo (klp)(klp + 1) ... (kip + n) 

. nk/Pn! pn+1 
= hm 

n-Hoo k(k + p) ... (k + np) 

for k E {l, ... ,p}. Obtain: 

1 p . n(p+I)/2(n! tpnp+p 
ap=pf(p)"'f(p)=Pnl!~oo (np+p)! 

PROB. 9.5. Note that 

lim (1 + -.1)(1 + -.£) ... (1 + L) = 1 n--->+oo np np np 

or 

. (np+p)! 
hm = 1. 

n-->+ 00 (np)! (npt 

Multiplyap by 1, where 1 is in the form of the last limit, and obtain 

. (np+p)! 
a =a ·I=a hm 
p p p n---> + 00 (np)! ( np t 

Use this and the results cited in Prob. 9.4 to conclude that 

. n(p+I)/2(n! tpnp+p . (np + p)! 
a = p hm . hm 
p n--->+OO (np + p)! n--->+oo (np)! (np)p 

Prove: 

. (n! tpnp 
a =p hm p n--->+oo (np)!n(p-I)/2 

PROB. 9.6. Prove: (a) If x > 0, then 

2X-lf(xI2)f«x + 1)/2) 
f(x) = f(I/2) 

(See Prob. 9.3.) 

PROB. 9.7.* Prove: 

lim x(x + I)(x + 2)· .. (x + 2n - 1) = 2x - l . 

n-->+oo 1·3·5· .. (2n - I)(2x)(2x + 2) ... (2x + 2n - 2) 

* Bromwich, Infinite Series, 2nd ed., MacMillan, New York, 1942, p. 115. 



CHAPTER X 

The Complex Numbers. Trigonometric 
Sums. Infinite Products 

1. Introduction 

In order to solve the equation 

ax 2 + bx + c = 0, (1.1 ) 

where a, b, c are real numbers and a =1= 0, for x E IR, we use the identity 

ax2 + bx + c = a[(x + J!..-)2 + 4ac - b2 ], (1.2) 
2a 4a2 

obtained by "completing the square." A real number x satisfying (1.1) must 
satisfy 

(X + J!..-)2 = b2 - 4ac . 
2a 4a2 

(1.3) 

This implies that 

b2 - 4ac > 0. (1.4) 

When b2 - 4ac < 0, no x E IR exists satisfying (1.1). To obtain a system of 
numbers in which (1.1) can be solved we extend the system IR to the 
complex number system. In this number system there will be a z such that 
z2 = - p, where p > 0. 

2. The Complex Number System 

Der. 2.1. A complex number is an ordered pair (0:, {3) of real numbers 0: and 
{3. The set of complex numbers will be denoted by C. 
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y 

(ex, fJ) 

ex x 

Figure 2.1 

Complex numbers may be visualized by taking a plane p together with a 
rectangular coordinate system in it. In this way there is assigned to each 
point P in p an ordered pair (a, f3) of real numbers a and f3 called the 
coordinates of P and conversely each ordered pair (a, f3) of real numbers 
determines a unique point P having a and f3 as coordinates (see Fig. 2.1). 
We shall often speak of the point a = (a, f3) rather than use the more 
precise "the point P represented by a = (a, f3)." It is also convenient to 
view a = (a, f3) as the arrow or vector from the origin 0 = (0,0) to a = 

(a, f3). 
By properties of ordered pairs we have: If a] = (a], f3]) and a2 = (a2' f32) 

are complex numbers, then 

a] = a2 if and only if a] = a2 and f3] = f32' (2.1) 

PROB. 2.1. Prove: (a, f3) =1= (0,0) if and only if a 2 + f32 > O. 

We define addition of complex numbers. 

Del. 2.2. If a] = (a], f3]) and a2 = (a2' f32) are complex numbers, we define 
the sum a] + a2 as 

a] + a2 = (a], f3]) + (a2' f32) = (a] + a2, f3] + f32) (2.2) 

(see Fig. 2.1'). 

y 

Figure 2.1' 
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For example, let al =(-1,3) and a2=(-2,-4), then al +a2= 
(-1,3) + (-2, -4) = (-3, -1). 

Since for any complex number z = (~, '1/), we have z + (0,0) = (~, '1/) + 
(0,0) = (~ + 0, '1/ + 0) = (~, '1/) = z, the complex number (0,0) is the additive 
identity in C. 

Del. 2.3. The negative or additive inverse of z = (~, '1/) is defined as - z = 
- (~, '1/) = ( -~, - '1/) (see Fig. 2.2). 

For example, - ( - 2, 3) = (2, - 3). In particular, 

-(1,0)=(-1,0) and -(0,0)=(-0,-0)=(0,0). (2.3) 

FROB. 2.2. Prove: If z E C, then z + (- z) = (0,0). 

PROB. 2.3. Prove: If ai' a2 , and a3 are complex numbers, then 

(1) (a l + a2) + a3 = al + (a2 + a3) and 
(2) al + a2 = a2 + al . 

FROB. 2.4. Prove: If z E C, then - ( - z) = z. 

Del. 2.4. If al and a2 are complex numbers, then define al - a2 by means 
of the equality al - a2 = al + (- a2)' 

FROB. 2.5. Prove: If al = (ai' {31) and a2 = (a2' {32)' then al - a2 = (al -
a2' {31 - {32)' 

PROB. 2.6. Prove: If al and a2 are complex numbers, then (1) a2 + (al - a2) 
= al and (2) -(al - a2) = a2 - al . 
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Figure 2.3 
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In Figs. 2.3(a) and 2.3(b) we give graphic representation of a 1 + a2 and 
a 1 - a2, respectively. a 1 - a2 is the z such that a2 + z = a 1. 

Next, we define the product a1a2 of complex numbers a 1 and a2. 

Def. 2.5. If a 1 = (a l' /31) and a2 = (a2' /32) are complex numbers, then we 
define their product a 1 a2 as 

a 1a2 = (a 1, /31)(a2' /32) = (0'10'2 - /31/32,0'1/32 + 0'2/31)' (2.4) 

For example, let a1 = (2,3) and a2 = (4,5). Using the definition of a1a2 
we see that 

a 1a2 = (2,3)(4,5) = (2·4 - 3·5,2·5 + 3·4) = (-7,22). 

We see easily that (1,0) is the multiplicative identity in C. In fact, if 
z = (~,1)) E C, then 

z(I,O) = (~,1))(1,0) = (~. 1-1)' O,~· ° + 1)' I) = (~,1)) = z. (2.5) 

PROB. 2.7. Prove: If a1, a2 and a3 are complex numbers, then 

(1) (a 1a2)a3 = a1(a2a3), 
(2) a 1a2 = a2a1' 
(3) a 1(a2 + a3) = a 1a2 + a1a3. 

PROB. 2.8. Prove: If one of the complex numbers a or b is 0, then ab = 0. 

PROB. 2.9. Prove: If a, b, and c are complex numbers, then 

(1) a( - b) = - (ab), 
(2) (-a)(-b)=ab, 
(3) a(b - c) = ab - ac. 

Theorem 2.1. If a E C, a =1= (0,0), then there exists a z E C such that 
az = (1,0). 
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PROOF. Let a = (a, f3). Since (a, f3) = a 'i' (0,0), we have a2 + f32 > ° 
(Prob. 2.1). Take z as 

(2.6) 

We have 

( a2 + f32 ) 
= 2 2 ,0 = (1, 0), 

a + f3 

as claimed. 

Def. 2.6. If a = (a, f3) 'i' (0,0), then the z defined as in (2.6) is written as 
a-I, so that 

aa- I = (1,0) = a-Ia. (2.7) 

a - I is called the reciprocal or multiplicative inverse of a. 

PROB. 2.10. Prove: If a, b, and c are complex numbers, a 'i' 0, then ab = ac 
implies b = c. 

Def. 2.7. If a and b are complex numbers, a 'i' 0, then we define 

Q = ba- I • (2.8) 
a 

Clearly, 

(1,0) -I 
--=a . 

a 
(2.9) 

PROB. 2.11. Prove: If a and b are complex numbers, a'i'O, then a(bja) 
= b. 

PROB. 2.12. Prove: If a and b are complex numbers, where a 'i' (0,0), then 

a (1, 0) 
fj=a-b-· 

We next examine the subset CD{ of C where 

CD{ = {(a, 0) I a I;t: IR}. (2.10) 
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PROB. 2.12'. Prove: If (a,O) E CIR and (fJ,O) E CR, then 

(a) (a,O) + ({3,0) = (a + {3,0), 
(b) (a,O)({3,O) = (a{3,O), 
(c) (a, 0) - ({3,0) = (0: - {3,0), 
(d) (a, 0)/( {3, 0) = (a/ {3, 0) if {3 '1= O. 

We define the "less than" relation in CIR as follows: 

( a, 0) < ( {3, 0) if and only if a < {3. 

When (a, 0) < ({3, 0), we write ({3, 0) > (a, 0). 

(2.11 ) 

Remark 2.1. The subset C IR of C defined in (2.10), under the operations of 
addition and multiplication in C and the ordering relation just defined, is 
easily seen to be a complete ordered field. 

We next define the mappingj: IR-;CIR by means of 

j(a) = (a,O) for each a E IR. (2.12) 

One sees readily that this j is a one-to-one correspondence between IR and 
CIR such that 

(1) j(a + f3) = j(a) + j( {3), 
(2) j(af3) = j(a)j({3), 
(3) j(a - {3) = j(a) - j({3), 
(4) j(a/{3)=j(a)/j(f3) if {3'1=O, 

and that 

a<{3 if and only if j( a) < j( {3). 

It follows that the mapping j enables us to obtain for each theorem in IR a 
duplicate theorem in CR. CIR is, thus, seen to be a copy of IR. Each (a, 0) in 
C IR can be viewed as simply another notation for a in IR. j is called an 
isomorphism between IR and C IR • IR and C are called isomorphic ordered 
fields. 

Agreement 1. If a E IR, then we write a = (a, 0). We discard the system IR of 
real numbers, replace it with the system CIR , and reserve the term "real 
number" for an element of CIR. We write IR = CIR. As examples we have 

1 = (1,0), 0=(0,0), -1 = (-1,0). (2.13) 

Note, that if A E IR and (a, {3) E C, then 

A( a, {3) = (Aa, A{3 ). (2.14) 

This follows from 

A(a, {3) = (A,O)(a, {3) = (Aa - O{3,A{3 + Oa) = (Aa,A{3). 
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PROB. 2.13. Prove: If A and JL are elements of IR (= CO{) and Z E C, W E C, 
then 

(a) (AJL)Z = l\( JLZ), 
(b) l\(z + w) = Az + AW, 
(c) (l\ + JL)w = AW + JLW, 
(d) Iz = z. 

Finally, we write i = (0, I). Then 

i 2 = (0, I )(0, I) = (0 . 0 - I . 1,0 . I + I . 0) = ( - 1,0) = - I 

so that 

We also have 

(a, (3) = a + f3i 

This follows from 

for each (a, /3) in C. 

(2.15) 

(2.16) 

(a, (3) = (a,O) + (0, (3) = a(I,O) + /3(0, I) = al + f3i = a + /3i. 

Agreement 2. We agree to write each (a, (3) in C as a + /3i. In this notation 

C = {a + f3i I a E IR and f3 E IR}. (2.17) 

Remark 2.2. The procedure just described is called an embedding of the real 
numbers in the system C of complex numbers. The complex number 
a = a + f3i is called imaginary if f3 =1= 0 and real if /3 = O. If a = 0, then a is 
called pure imaginary. Also, a is called the real part of a and /3 its imaginary 
part. If a plane p is equipped with a rectangular coordinate system and the 
ordered pair (a, (3) associated with a point P is written as a + f3i, then the 
latter is called the complex coordinate of P. The x-axis is then called the real 
axis and y-axis the imaginary axis (Fig. 2.4). 

y 

IX + Pi = (IX, fJ) 
Pi - ---- - - -1 

I 
I 
I 

:P 
I 
I 
I 
I 
I ~ 

IX X 

Figure 2.4 
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PROD. 2.14. Prove: If at, a2, f3t, 132 are real numbers, then 

(1) (at + f3ti) ± (a2 + f32i) = (at ± a2) + (f3t ± f32)i, 
(2) (at + f3ti)(a2 + f32i) = (at a2 - f3t 132) + (at 132 + a2f3t)i, 
(3) at + f3ti = a2 + f3i if and only if at = a2 and f3t = 132· 

The product (at + f3ti)(a2 + f32i) can be obtained by "multiplying out" 
and using the relation ;2 = - 1. Thus, 

(at + f3t i)( a2 + f3i) = (at + f3t i)a2 + (at + f3 ti) f32i 

= a ta2 + a2 f3t i + at f32i - f3t 132 

= at a2 - f3t 132 + (at 132 + a2f3t)i· 

Der. 2.S. If a = a + f3i E C, we define the modulus lal of a as follows: 

lal = la + f3il = Va2 + 13 2 . 

For example, 13 + 4il =.../32 + 42 = 5. Note that 

Iii = 10+ Iii =J02+ 12 = 1. 

(2.18) 

(2.19) 

Remark 2.3. If a = a, where a is real, then lal = Ja2 + 02 = .;;;.'2 = lal. 
Thus, the modulus of a real number agrees with its absolute value. The 
modulus of a complex number is, therefore, an extension of the notion of 
the absolute value of a real number to the complex numbers. We also refer 
to the modulus of a complex number as its absolute value. 

Der. 2.9. We define the conjugate a of a = a + f3i as 

a = a + f3i = a - f3i. 

For example, 2 + 3i = 2 - 3i. In particular, we have 

i = -i. 

We prove that 

for a E C. 

Assume that a = a + f3i. Then 

(2.20) 

(2.21 ) 

(2.22) 

aa = (a + f3i)( a - f3i) = a2 - ( - 13 2) + Oi = a 2 + 13 2 = la + f3W = lal2• 

It follows that 

for a E C. (2.23) 

PROD. 2.15. Prove: If a E C, then (1) lal ;;. 0 and (2) lal = 0 if and only if 
a = O. Thus, prove: lal > 0 if and only if a =1= O. 
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PROB. 2.16. Prove: If a E C and bEe, then 

(1) a + b = a + b, 
(2) ab = ab, 
(3) (alb) = alb if b =1= 0. 

PROB. 2.17. Prove: If a = a + f3i, then 

a=a+a 
2 

a-a 
and f3= 2i. 
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PROB. 2.18. Prove: (1) a is real if and only if a = a and (2) a = - a if and 
only if a is pure imaginary. 

Remark 2.4. The reciprocal of a =1= ° is a number z such that az = 1. 
Multiplying both sides by a, we have aaz = a. Since aa > 0, we obtain 

a-I = z = a = a . 
aa lal2 

This agrees with (2.5). For, writing a = (a, f3) =1= 0, we have 

- I a a - f3i a f3. (a - f3 ) 
a = lal2 = a2+f32 = a2+f32 - a 2+f3 2' = a2+f32' a2 +f32 . 

As an example, then 

1 i - i . 
-=-=-=-/. 
i Ii 1 

(2.24) 

Again, if a =1= 0, then 
b I a ba -=b-=b-=-. 
a a lal2 lal2 

(2.25) 

The conjugate a of a is symmetric to a with respect to the x-axis 
(Fig. 2.5). 

y 

Figure 2.5 

a 

I 
I X 
I 
IP 
I 



436 X. The Complex Numbers 

PROB. 2.19. Prove: (a + G)2;;. 0 and (a - G)2 <: 0 (see Prob. 2.17). 

If a and f3 are real and a = a + f3i, then we write 

a = Re a and f3 = 1m a (2.26) 

for the real and imaginary parts of a, respectively. We have (Prob. 2.17) 

Rea = a + ii 
2 

and Ima = a - G 
2i . (2.27) 

PROB. 2.20. Prove: If a, and a2 are complex numbers, then a,G2 + G,a2 is 
real and a,G2 - G,a2 is pure imaginary. 

Lemma 2.1. If a, and a2 are complex numbers, then 

la,G2 + G,a21 <: 2Ia,lla21· 

Equality holds if and only if a,G2 - ii,a2 = O. 

PROOF. Observe that la,121a212 = a,G,a2G2 = (a,a2)(G,G2). Hence, 

(2.28) 

(a,G2 + G,ai- 41a,121a212 = (a,G2 - G,ai. (2.29) 

By Prob. 2.20, a,G2 + G,a2 is real and a,G2 - G,a2 IS pure Imagmary. 
Therefore (a,G2 - ii,a2)2 <: 0 and 

(a,G2 + G,ai<: 41ad21a212. (2.30) 

This implies (2.28). 
Examination of (2.29) shows that its left-hand side is equal to 0 if and 

only if a, G2 - G, a2 = O. It follows that 

(a,ii2 + G,a2)2= 41a,121a212 if and only if a,G2 - G,a2 = O. 

Both sides are real and nonnegative. Taking square roots, we conclude that 

la,G2 + G,a21 = 21a,lla21 

This completes the proof. 

Theorem 2.2. If a, and a2 are complex numbers, then 

(I) 1- a,1 = la,1 and IGd = lad, 
(2) la,a21 = ladla21, 
(3) la?1 = lad2, 
(4) if a2 =1= 0, then la, I a21 = lad/la21, 
(5) la, + a21 <: la,1 + laJ 

PROOF. We ask the reader to prove parts (1) through (4), (Prob. 2.21) and 
we prove only part (5) here. We have 

la, + a212 = (a, + a2)(G, + G2) = la,12 + lal + a,G2 + G,a2· 
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y 

x 

Figure 2.6 

By Lemma 2.1, a lQ2 + Qla2 .;;; 21adla21. This and the above imply that 

la l + a21
2 .;;; lad2 + la212 + 21adla21 = (lad + la21)2. 

Now (1) follows after taking square roots of both sides. 
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PROB. 2.21. Complete the proof of the last theorem by proving parts (1), (2), 
(3), and (4). 

PROB. 2.22. Prove: If ai' a2, and a3 are complex numbers, then (1) 
la l - a21 ;;;. 0; (2) la l - a21 = ° if and only if a l = a2; (3) la l - a21 = 

la2 - ad; (4) la3 - ad .;;; la2 - ad + la3 - a21; (5) IIa3 - ad -la2 - adl .;;; 
la3 - a21· 

Def. 2.10. The distance d(a l,a2) between complex numbers a l and a2 is 
defined as 

(2.31 ) 

Remark 2.5. By this definition and Prob. 2.22 we have: If ai' a2, and a3 are 
complex numbers, then (1) d(a p a3);;;' 0; (2) d(a l ,a2) = ° if and only if 
al = a2; (3) d(a l ,a2) = d(a2,al); (4) d(a l ,a3)';;; d(a l,a2) + d(a 2 ,a3). The 
last inequality is known as the triangle inequality (see Fig. 2.6). 

3. Polar Form of a Complex Number 

We saw that if a and b are complex numbers, then Ibal = Ibllal. In 
particular, we have: If b = A, where A is real and A;;;' 0, then IAal = IAIIal 
= Alai- From this we obtain: If z E C, z *- 0, then the u such that 

z u=-
Izl 

(3.1 ) 
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has modulus 1, that is, lui = 1. This is seen from 

Del. 3.1. A complex number whose modulus is 1 is called a direction. It is 
also referred to as a unit vector. 

If z =1= 0, then the u given by 
z u=-
Izl 

is called the direction oj z. We assign no direction to z = 0. 

PROB. 3.1. Prove: If u is a direction, then so are - u, u, and u - I. 

PROB. 3.2. Prove: If u and v are directions, then so are uv and uv - I. 

Del. 3.2. If u is a direction, then we refer to u and - u as opposite 
directions, each being called the direction opposite to the other (see Fig. 
3.1). 

As examples of directions we have 

U 1 = _1_ + _1_ i, 
Ii Ii 

1 ff. 
u2 = - '2 + Tl. 

Note also that - 1,1, i, and - i are directions. 

PROB. 3.3. Prove: If z =1= 0, then z and - z have opposite directions. 

By Def. 3.1 each z =1= ° has a unique direction and 

z = Izlu, 

where u is the direction of z. 

-1 

-i 

Figure 3.1 

(3.2) 
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z = ~ + rti 

x 

Figure 3.2 

PROB. 3.4. Prove: If z and ware nonzero complex numbers, then z = w if 
and only if z and w have the same modulus and direction. 

Let u = a + f3i be the direction of z =1= O. By (3.2) 

z = Izlu = Izl(a + f3i), (3.3) 

where a 2 + f32 = lul 2 = 1. By Prob. VIII.4.1 there exists exactly one 0 such 
that 

a = cosO and f3 = sinO, 

where - 'IT < 0 ,;; 'IT so that 

z = Izl(cosO + isinO), 

(3.4) 

(3.5) 

where - 'IT < 0 ,;; 'IT. We visualize this in Fig. 3.2, where z = ~ + 'lJi 
= Izl( cos 0 + i sin 0). The 0 in (3.5) is called the principal argument of z and 
is written as Argz. Clearly, 

-'IT < Argz';; 'IT. (3.6) 

For each integer n, write On = 0 + 2n'lT, where 0 = Argz. We have 

Iz\(cosOn + isinOn) = Izl(cosO + isinO) = z. 

Each On is called an argument of z and is written as On = argnz. Note that 
ar&z = Argz. In z = Izl(cosO + isinO), where 0 is an argument of z, we 
call the right-hand side the polar form of z. r = Izl and 0 are called polar 
coordinates of z. By argz (as distinguished from Argz) we mean some 
argument of z. The polar coordinates of z = 0 are defined as r = 0 and 0, 
where 0 is any real number. 

For example, let z = 1+ i. Then 

Z=l+i=vI(k+ k i). 
Since cos( 'IT / 4) = 1/ vI = sine 'IT /4), we have 

z =vI(cosi +isini)· 
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Also 

i = cos ° + i sin 0, 
i = cos ~ + i sin ~ 

2 2 ' 

-I = cos 'IT + isin'IT 
. ('IT)' . ( 'IT ) - I = cos -"2 + I Sill -"2 . (3.7) 

PROB. 3.5. Find polar forms of: (1) 1- i, (2) -I - i, (3) -I + i, (4) 

I + f3 i, - I + f3 i, - I - f3 i, (5) I - f3 i. 

Theorem 3.1. Nonzero complex numbers z and z' are equal if and only if they 
have the same modulus and their arguments differ by an integral multiple of 
2'IT. If principal arguments are used, then we have: z and z' are equal if and 
only if they have the same modulus and their principal arguments are equal. 

PROOF. Write z and z' in polar form 

z = Izl(cosO + isinO), z' = Iz'l(cosO' + isinO'). 

If Izl = Iz'l and 0' = 0 + 2n'IT, n an integer, then it is clear that z = z'. 
Conversely, assume z = z'. Clearly, Izl = Iz'l. It then follows that cosO + 

isinO = cosO' + isinO' so that cosO = cosO' and sinO = sinO'. Since 

1= cos20 + sin20 = cosO cosO' + sinO sinO' = cos(O' - 0) (3.8) 

and 

0= sinO cosO - cosOsinO = sinOcosO' - cosO sinO' = sin(O' - 0), (3.9) 

it follows from (3.9) that 0 - 0' = k'IT, where k is some integer. By (3.8), 

1= cos(O' - 0) = cos(k'IT) = (-It 

This implies that k is even and that k = 2n for some integer n. Hence, 
0- 0' = k'IT = 2n'IT, that is, 0 = 0' + 2n'IT. Thus, 0 and 0' differ by an 
integral multiple of 2'IT, as contended. 

If 0 and 0' are principal arguments, then - 'IT < 0 < 'IT and - 'IT < 0' < 'IT 
so that 10 - 0'1 < 2'IT. Since 0 - 0' = 2n'IT, this implies that 12n'ITl < 2'IT, or 
Inl < 1. Because n is an integer, this implies that n = ° and, therefore, that 
0=0'. 

Translations and Vectors 

If a is a complex number, then by a translation of the complex plane through 
a we mean a function T: C ~ C defined as follows: 

T(z)=z+a for each z E C. (3.10) 

Each translation is called a vector. 
If a = 0, then T(z) = z for all z E C. T is, therefore, the identity mapping 

on C. Then the vector is called the zero vector. If z, E C and Z2 = T(z,), 
then T sends z, into z2' and z2 - Z, = a. Thus, an ordered pair (Z"z2) of 
points z, and z2 is created which we write as z,z;. We call z,z; an 
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Figure 3.3 

arrow with initial point z, and terminal point Z2' We say that it represents 
the vector a and write z,z; = a. We abuse terminology and call z,z; the 
vector with initial point z, and terminal point Z2' Clearly 

Z]Z;= a if and only if Z2 - Z, = a. (3.l1) 

The modulus lal of a is called the magnitude of the vector a. If a =1= 0, then 
the direction of a is termed the direction of the vector a. We call vectors 
z,z~ and w,w; equal and write z,z;=w,w~ if and only if they represent the 
same vector. Thus, 

z,z; = w,w; if and only if Z2 - Z, = w2 - w, . (3.12) 

Since T(O) = 0 + a = a, the vector 0; represents a and we have 0; = a. 0; 
is called the position vector of the point a. In the above spirit we have 

(3.13) 

(See Fig. 3.3.) 

PROB. 3.6. Prove: Nonzero vectors z,z; and w,w; are equal if and only if 
they have the same direction and magnitude. 

By the sum of the vectors a and b we mean the composite of the 
translation a followed by the translation b. Therefore, the function S: 
C ~ C defined as 

S(z) = (z + a) + b for each z E C (3.14) 

is the sum of a and b. Since (z + a) + b = z + (a + b) for each z E C, we 
see that the sum of the vectors a and b is the vector a + b. We also have: If 
a =z,z; and b =Z2Z;, then 

a + b = z,z; + z2z~ = Z2 - Z, + Z3 - Z2 = Z3 - Z2 = Z2Z; (3.15) 

(see Fig. 3.4). The additive inverse of the vector a is the vector - a. The 
latter is the additive inverse of the translation a because a + (- a) = 0 and 
o is the "identity" translation. Since z,z; +z;z7=z,z; = z, - z, = 0, we see 
that -(ZjZ';) =Z2Z~. 
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Figure 3.4 

PROB. 3.7. Prove: If a, b, and c are vectors in the complex plane, then (1) 
a + b = b + a and (2) (a + b) + c = a + (b + c) (see Fig. 3.5). 

We define the difference a - b of vectors a and b as a - b = a + ( - b). It 
is easy to see that b + (a - b) = a. Thus, a - b is the c such that b + c = a. 
We have: If a =z,zi and b =ZIZ;, then 

Z ,zi - Z IZ; = a - b = a + ( - b) = Z A + ( - Z IZ;) = Z IZ; + Z3Z~ 

(see Fig. 3.6). 

PROB. 3.8. Prove: ZIZ; +Z2Z; +Z3Z~ = 0 if and only if ZI = Z4. 

Let a be a nonzero vector in C and A a nonzero real number, so that 
Aa =!= O. The direction of Aa is the u such that 

if A> 0 

if A < o. 

(a) (b) 

Figure 3.5 
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Figure 3.6 

Thus, the direction of Aa is equal to the direction of a if A > 0, and equal to 
the direction opposite a if A < O. As to the magnitude of Aa, we have 
IAal = IAIIal (see Fig. 3.7). 

Theorem 3.2. If ZI = rl(cosO I + isinOI) and Z2 = rz{cos02 + isin02), where 
r l = Izd, r2 = IZ21, and 01,02 are arguments of ZI and Z2' respectively, then 

(1) ZIz2 = rlr2(cos(01 + O2) + isin(OI + O2)), 
(2) z\ = r\(cosOI - isinO\), 
(3) zil Z2 = (rll r2)(cos(01 - O2) + i sin(OI - O2). 

PROOF. We prove (1). We have 

ZIZ2 = rl[rl(cosOI + isinOI)][r2(cos02 + isin02)] 

= rlr2(cosOI + isinOI)(cos02 + isin02) 

= rlr2[ cosOlCOS02 - sin Olsin O2 + i(sin OICOS O2 + cosOlsin02)] 

= r l r 2 [ COS(OI + O2) + isin(OI + O2)], 

which proves (1). We ask the reader to prove parts (2) and (3) (Prob. 3.9). 

PROB. 3.9. Complete the proof of Theorem 3.2 by proving parts (2) and (3). 

From the last theorem we see that if ZI and Z2 are nonzero complex 
numbers, then the modulus of their product is the product of their moduli 

Figure 3.7 
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Figure 3.8 

and that an argument of their product is the sum of their arguments (Fig. 
3.8). On the other hand, the quotient z]/ z2 has as its modulus the quotient 
Izd/lz21 of their moduli and one of its arguments is the difference argz] -
argz2· 

4. The Exponential Function on C 

To define z n for z E C, where n is a nonnegative integer, we use induction 
on n and define 

(1) 

(2) for each nonnegative integer n. 

We then define zn, where z =1= ° and n is a negative integer, as 

(4.1 ) 

zn = (z-])(-n). (4.2) 

We can then prove that the following relations hold: If z =1= ° and m, n 
are integers, then 

(a) zmzn = zm+n, 
(b) (zmy = zmn, 
(c) zm/ zn = zm-n, 
(d) if also w =1= 0, then (wzY = wnz n. 

PROB. 4.1. Prove: If z E C and n is a nonnegative integer, then 

( _)n ----n z = z . 

If z =1= 0, then (4.3) holds for all integers n. 

(4.3) 
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PROB. 4.2 (De Moivre's Theorem). Prove: If 0 E IR and n is an integer, then 

(cosO + isinO)n= cos(nO) + isin(nB). (4.4) 

We illustrate the usefulness of (4.4) for n = 2 and n = 3. We have 

(cos B + i sin B)2 = cos(20) + i sin(20). 

Squaring on the left yields 

cos20 - sin2B + 2i sin 0 cos B = cos 20 + i sin 20. 
Equating real and imaginary parts, we arrive at the identities 

cos2B = cos20 - sin20 and sin2B = 2sinOcosO. (4.5) 

Again, we have 

(cosO + isinO)3= cos30 + isin30. 

So cubing on the left yields 

cos30 + 3icos20sinO - 3cosOsin20 - isin30 = cos30 + i sin 30. 
Equating real and imaginary parts we have 

cos3B = cos30 - 3cosOsin20 and sin30 = 3cos2BsinO - sin30. (4.6) 

We now define E: C~ Cas 

E ( z) = E (~ + 1)i) = e~( cos 1) + i sin 1) for each z = ~ + 1)i E C. (4.7) 

This definition yields 

E(~) = E(~ + Oi) = e~(cosO + i sin 0) = e~l = e~ 

so that 

E(~) = e~ for ~ E IR. 

for ~ E IR, 

(4.8) 

Thus, the restriction of E to IR is the exponential function on IR. E is, 
therefore, an extension of the exponential function on IR to the set C of 
complex numbers. In particular, 

E(O) = 1 and E(l) = e. (4.9) 

We define 

e Z = E(z) for each z E C. (4.10) 

Theorem 4.1. If z I and Z2 are complex numbers, then 

(1) eZ,+Z2 = eZ'e z" 
(2) e Z , * 0, 
(3) e- z , = lle z " 

(4) e Z21 eZ, = eZ'-z,. 
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PROOF. Let z, =~, + 11,i and Z2 = ~2 + 112i. We have 

eZ'e Z2 = E(z,)E(Z2) = e~'(coS1lJ + isinll,)e~2(cos'lh + isin112) 

= e~' +~2( cos 11, + i sin 11,)( cos 112 + i sin 112) 

= e~'+~2(COS(11' + 112) + isin(l1, + 112)) 

= E«~, + ~2) + (11, + 112)i) 

= E(z, + z2) 

This proves (1). It follows that 

(4.11 ) 

and, hence, that e Z , =1= 0 for z, E C. This proves (2). Part (3) follows from 
(4.11). Part (4) holds because 

This completes the proof. 

Theorem 4.2. If z E C and n is an integer, then 
eZ+2mTi = eZ. 

Moreover, if 

for some z E C, then a = 2mri, where n is some integer. 

PROOF. Equation (4.12) holds because 

eZ+2mTi = eZezmTi = eZ(cos2mr + i sin 2mr) 

= e Z • I = e Z • 

(4.12) 

(4.13) 

We prove the second part of the theorem. Assume that z and a in C exist 
such that 

This implies that 

(4.14) 

Let a = a + {3i, a E IR, {3 E IR. This and (4.14) imply that 

eIY.+Pi = eIY.(cos {3 + isin {3) = I = l(cosO + isinO). 

By Theorem 3.1, we obtain from this 

elY. = I and {3 = 2mr, 

where n is an integer. But a real and elY. = I imply that a = O. Hence, we 
have a = a + {3i = 2mri, where n is an integer. This completes the proof. 
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Theorem 4.3 (Euler's Formula). If y E IR, then 

eyi = cosy + isiny 

and 

eyi + e-yi 
cosy = 2 

and 

. e yi - e-yi 
smy = 2i 

PROOF. Since y E IR, we have 

447 

(4.15) 

(4.16a) 

(4.l6b) 

eyi = E(yi) = E(O + yi) = eO(cos y + i sin y) = cos y + i sin y. 

This proves (4.7). To prove (4.16) note that 

e - yi = cos Y - i sin y. ( 4.17) 

This and (4.15) imply (4.16a) and (4.16b). 

Euler's formula (4.15) enables us to write each nonzero complex number 
as 

z = reiD, (4.18) 

where r = Izl and (J is some argument of z. 

PROB. 4.3. Prove: (a) If z = IzleiD, w = Iwle N', where z =1= 0, w =1= 0, (J 

= Argz, and I/; = Argw, then z = w if and only if Izl = Iwl and (J = 1/;. If, 
however, (J and I/; are not necessarily principal arguments, then (J = I/; + 
2mT, where n is some integer. (b) Prove: If u is a direction, then there is 
exactly one (J such that (J = Argz and u = eiD. 

PROB. 4.4. Prove: If z E C, then for any integer n, we have 

(eZ)n= enz . 

PROB. 4.5. Prove: If z E C, then e Z = eZ• 

Polynomials on C 

Polynomial functions on C can be defined in the same way polynomials on 
IR were defined (see Def. II.8.l). Thus, a polynomial on C is a function 
f: C ~ C defined by means of 

for each z E C, (4.19) 

where n is a nonnegative integer and aO,a i , ••• ,an are complex numbers. 
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The latter are called the coefficients of the polynomial. The notions of 
degree of a polynomial, a polynomial equation and its root, the zero of a 
polynomial all carryover from IR to C in the obvious manner. 

PROD. 4.6. Prove: If aO,a l, ... ,an are real and P is a polynomial on C of 
degree n > 1 which has r as a zero, then r is also a zero of P. 

Remark 4.1. The following are results holding in IR which can be extended 
to C. Let n be a positive integer and a, b complex numbers. Then 

n-l 
an - bn = (a - b) ~ an-1-kb k 

k=O 
and (the binomial theorem on C) 

(4.20) 

(4.21) 

Theorem 4.4 (Remainder Theorem). If P is a polynomial on C of degree 
n > 1, then 

P(z) = (z - a) Q(z) + P(a) 

where Q is a polynomial of degree n - 1. 

for each z E C, 

PROOF. Assume that 
n 

P(z) = aoz n + a1z n- 1 + ... + an_1z + an = ~ an_kzk, 
k=O 

where ao =F O. Then 
n n 

P( z) - P( a) = ~ an_kz k - ~ an_ka k 
k=O k=O 

n 

= ~ an_k(zk - ak) 
k=l 

= ± an_k[(Z-a)ki:,lzJak-I-J] 
k= 1 J=O 

n k-l 
= (z - a) ~ an- k ~ ZJak-(I+J) 

k= 1 j=O 
n k 

= (z - a) ~ an - k ~ zm-lak-m 
k=l m=l 

(see (4.20») 

(4.22) 

(reindex by writing m = j + 1, so 

that 1 .;;;; m .;;;; k and j = m - 1). 

Note that 1 .;;;; m .;;;; k.;;;; n. Interchange the order of summation by fixing m 
and summing first with respect to k, where m .;;;; k .;;;; n and then with 
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respect to m to obtain 
n n 

P(z) - pea) = (z - a) 2: an-k 2: Zm-Iak-m 
m=1 k=m 

n n 
= (Z - a) 2: Zm-I 2: am_ka k- m 

m= I k=m 
Now write Am = "2,~=man_kak-m and note that 

Then (4.23) becomes 

n 

An = 2: an_ka k- n= ao· 
k=n 

P(z) - pea) = (z - a)(AI + A2z + 

Next write 

Q(z)=A,+A2Z+'" +An_IZn-2+aozn-'. 

Q is a polynomial of degree n - 1. This and (4.24) lead to 

P(z) = (z - a) Q(z) + pea), 

where Q is a polynomial of degree n - I. 
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(4.23) 

(4.25) 

(4.26) 

PROB. 4.7 (Factor Theorem). Prove: If P is a polynomial on C of degree 
n ;;, 1, then a E C is a zero of P if and only if P(z) = (z - a)Q(z) for all 
z E C, where Q(z) is a polynomial of degree n - 1. If ao is the leading 
coefficient of P, then it is the leading coefficient of Q. 

PROB. 4.8. Prove: If P is a polynomial on C of degree n ;;, 1 and a is a zero 
of P, then there exists an integer k such that 1.;; k .;; n, and P(z) = 
(z - alQn-k(Z) for all z E C, where Qn-k is a polynomial of degree n - k 
with Qn-k(a) =!= 0 (Hint: try induction on n). 

Remark 4.2. If P is a polynomial on C of degree n ;;, I having a as one of 
its zeros, then the k of Prob. 4.8 is called the multiplicity of a. If k = 1, then 
a is called a simple zero of P. 

PROB. 4.9. Prove: If P is a polynomial on C of degree n ;;, 1 having ao as its 
leading coefficient and '1' ... , 'n are n distinct zeros of P, then 

P(z) = ao(z - 'I)(Z - '0) ... (z - 'n) for all z E C. 

PROB. 4.10. Prove: If P is a polynomial on C of degree n ;;, 1, then P has at 
most n distinct real zeros. 

PROB. 4.11. Prove: If P and Q are polynomials each of degree not 
exceeding some nonnegative integer n such that P(z) = Q(z) holds for 
more than n distinct values of z, then P = Q and both polynomials have 
the same coefficients. 
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PROB. 4.12. Extend Theorem VII.4.2 (the Lagrange interpolation formula) 
to the complex numbers. 

Remark 4.3. Let Z"Z2' ... 'Zn be n zeros of a polynomial of degree n ;;;. 1, 
where 

so that 

P(Z) = ao(z - ZI)(Z - Z2) ... (z - zn)' 

Multiply on the right and obtain 

P(z)=aO(zn-0IZn-I+02Zn-2+ ... + (-I)non ), 

where 

01=ZI+ Z2+ ... +Zn' 
°2 = ZI Z2 + ... + ZIZn + Z2Z3 + ... + Z2Zn + ... + Zn_IZn 

= sum of the products of Z I' ... , Zn taken two at a time 
03 = ZI Z2Z3 + ... + Zn-I Zn-2Zn 

= sum of the products of Z I' ... , zn taken three at a time 

(4.27) 

(4.28) 

(4.29) 

(4.30) 

These o's are known as the elementary symmetric functions of Z I' Z2' ... , zl1' 
Since (4.29) holds for all z, we can equate coefficients to conclude that 

a _ ( l)n n On - - - • 
ao 

(4.31 ) 

A polynomial is called monic if its leading coefficient ao is equal to 1. Let M 
be a monic polynomial and 

(4.32) 

and let its zeros be Z I' ... , Zn' We then have, in view of (4.31), 

1 11 

On = (- ) Pn' (4.33) 

5. nth Roots of a Complex Number. Trigonometric 
Functions on C 

Theorem 5.1. If a E C, where a =1= 0, and n is a positive integer (n ;;;. 2). Then 
there exist exactly n complex numbers ZO,ZI' ... 'Zn_1 such that 

ZJ: = a for each k E {O, ... , n - 1 }. (5.1 ) 
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PROOF. Write a in polar form as a = pe ia , IX = Arga. Suppose Z exists such 
that zn = a. Write Z in polar form as z = re ilJ , where (} is some argument of 
z. Then 

r ne nlJi = (re ilJ) n = Z n = U = pe ia. 

This implies that 

r = pl/n and nO = IX + 2'lTm, 

where m is an integer. Put 

° = Q. + 2'lTm 
m n n 

and 

This proves: If z n = a, then for some integer m, 

(5.2) 

(5.3a) 

(5.3b) 

where Om is defined in (5.3). It is a simple matter to verify that z:;, = a for 
each integer m. 

We now prove that any z with zn = a is of the form Zk = pl/ne ilJ" where 
k E {O, 1, ... , n - I}. This will prove that there are at most n z's with 
z 11 = a. Since m and n are integers and n > 0, there exist integers q and k 
such that m = nq + k, where ° < k < n. Thus, 

IX (nq + k)2'lT 
Om = - + = Ok + 2q'lT, (5.4) 

n n 

where k E {O, 1, ... , n - I} and 

where k E to, 1, ... , n - I}. 
Finally, we prove that zo, z I' ... ,zn-I are all distinct. Assume that kl 

and k2 are distinct elements of {O, 1, ... , n - I}. There is no loss of 
generality if we take kl < k2. We have ° < k2 - kl « k2 < n where kl and 
k2 are integers. Assume that Zk, = Zk, so that 

e ilJ" = e ilJ" and, therefore, ei(IJ,,-IJ,,) = 1 

l.e., 

(5.6) 

This implies that 0< «k2 - k l )/ n)2'lT = 2m'lT, where m is an integer. Here 
m is necessarily a positive integer and we have k2 - kl = mn ;;;. n. This 
contradicts the earlier k2 - kl < n. Thus, kl =1= k2 in to, 1, ... , n - I} 
implies Zk, =1= Zk,. In other words, ZO,ZI' •.• ' Zn-I are all distinct. This 
together with what was proved above implies that ZO,ZI' • .• , Zn_1 consti­
tute n distinct complex numbers whose nth power is equal to a. Moreover, 
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these numbers are given by 

Zk = pl/ne i(e</n+2kw/n), 

where k E {a, 1, ... , n - l}. This completes the proof. 

Del. 5.1. If a E C and n is a positive integer, then a Z E C such that zn = a 
is called an nth root of a. When a = 1, then a z such that zn = 1 and z =/= 1 
is called an nth root of unity. 

Remark 5.1. In Theorem 5.1 we proved: Let a =/= ° in C. Put a = peie<, where 
a = Arga. If n is an integer such that n > 2, then a has exactly n distinct 
roots, zO,ZI' ••• ' Zn-l' where for each k E {a, 1, ... , n-l} 

(5.7) 

Writing 

we have 

If a = 1, then a = ° and Zo = 1. In this case (5.8) becomes 

Zn-l = e«n-l)/n)27Ti. (5.9) 

We see that if n > 2, then 1 has n - 1 roots of unity. We usually write 
w = Zl = e(2w/n)i. In this case the nth roots of unity can be written 

Zl =w, (5.10) 

We saw in the proof of the last theorem that these are all distinct. It follows 
that all the nth roots of a = peie<, where p > 0, a = Arga, can be written 

k E {O, 1, ... , n - 1 }, (5.11) 

where 

Remark 5.2. If n is an integer, n > 2, and w is an nth root of unity, so that 
wn = 1, w =/= 1, then 

(w_l)(wn-l+ ... +w+l)=wn-l=O. 

The fact that w =/= 1 implies that 

1 +w+w2 + ... +w n- 1 =0, (5.12) 

where w is an nth root of unity and n > 2. Since each of the numbers 
w,w2, ••• , wn- 1 is an nth root of unity, it satisfies the equation 

1 + Z + z2 + . . . + Z n - I = 0. (5.13) 
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By factor theorem, this implies that 

l+z+z2 + ... +zn-I=(z-w)(z-w2) ••• (z-w n- l ) (5.14) 

and, hence, that 

Z n - I = (z - 1)( z - w) ... (z - W n - I) foreach zEC. (5.15) 

It follows that if a and b are complex numbers and n is a positive integer 
> 2, then 

an - bn = (a - b)(a - wb)(a - w2b) .. . (a - wn-1b), (5.16) 

where w = e(27l/n)i. 

As an example we compute the cube roots of unity. We must solve 
Z3 = I, so we search for a () such that 

(5.17) 

and obtain 

3(} = 2k'fT, 
where k is an integer. Distinct roots of (5.17) are obtained from (}o = 0, 
(}I = i 'fT, (}2 = 4 'fT. These yield 

Zo = 1, 

Graphically, we have Fig. 5.1 and 

e(27l/3)i = cos( 2'fT) + isin( 2'fT) = _1 + f3 i 
3 3 2 2' 

e(47l/3)i = cos( 4'fT) + isin( 4'fT) = -1- f3 i 
3 3 2 2· 

y 

Figure 5.1 

:---
1 x 

(5.18) 
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The three roots of Z3 = I are Zo = I, w = -1/2 + (/3 12)i, and w2 = 

-1/2 - (/3 12)i. 

PROB. 5.1. Solve: Z3 = I + i. 

PROB. 5.2. Prove: If w = e(2w/n)i, where n is an integer, n ;;;. 2, then 

PROB. 5.3. Prove: If IX is an nth root of unity, where n ;;;. 2, then any integral 
power IX m of IX is also an nth root of unity. 

PROB. 5.4. Prove: (a) If m and n are positive integers and (m,n) is their 
greatest common divisor, then any solution z of both z m = I and z n = I is 
also a solution of z(m.n) = 1. (b) If m and n are relatively prime, then the 
only solution z common to z n = I and z m = I is z = 1. 

Hyperbolic and Trigonometric Functions on C 

By Theorem 4.3, Euler's Formula implies that 

e yi + e-yi 
cos y = 2 

. e iy - e-(v 
and sm y = 2i for y E lit (5.19) 

We use these to extend the definition of the sine and cosine functions from 
IR to C. We define 

e iz + e- iz 
cosz = 2 and 

. e iz _ e- iz 

smz = 2i for each z E C. (5.20) 

PROB. 5.5. Prove: (a) e iz = cosz + isinz for z E C and (b) cos2z + sin2z = I 
for all z E C. (c) cosz = cosz and sinz = sinz for z E C. 

In a similar manner we extend the definition of hyperbolic sme and 
cosine to C by defining 

and 
e Z - e- Z 

sinhz = 2 for z E C. 

It follows from (5.20) and (5.21) that 

cosz = coshiz, 
cos iz = cosh z 

(5.2Ia) 

(5.2Ib) 

(5.22a) 
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and 

i sinz = sinh iz, 
siniz = isinhz. 

PROB. 5.6. Prove: cosh2z - sinh2z = 1 for z E C. 

PROB. 5.7. Prove: If a and b are complex numbers, then 

(1) cos(a + b) = cosacosb - sinasinb, 
(2) cosh( a + b) = cosh a cosh b + sinh a sinh b, 
(3) sin(a + b) = sinacosb + cosasinb, 
(4) sinh(a + b) = sinhacoshb + coshasinhb. 
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(5.22b) 

PROB. 5.8. Prove: If z E C, then (1) cos( - z) = cosz, (2) cosh( - z) = coshz, 
(3) sin(-z) = -sinz, (4) sinh(-z)= -sinhz. 

Using (5.22) and Prob. 5.7, we have for a = a + fJi E C, 

cos a = cos( a + fJi) = cos a cos fJi - sin a sin fJi 

= cos a cosh fJ - i sin a sinh fJ, 

sin a = sin( a + fJi) = sin a cos fJi + cos a sin fJi 

(5.23) 

= sinacosh fJ + icosasinh fJ, (5.24) 

cosh a = cosh( a + fJi) = cosh a cos fJ + i sinh a sin fJ, (5.25) 

sinh a = sinh( a + fJi) = sinh a cos fJ + i cosh a sin fJ. (5.26) 

It follows from the last four identities that if a = a + ifJ E C, then 

Icosal2 = Icos( a + fJiW = cos2a cosh2fJ + sin2a sinh2fJ, (5.27) 

Isin al2 = Isin( a + fJiW = sin2a cosh2fJ + cos2a sinh2fJ, (5.28) 

Icosh al2 = Icosh( a + fJi)12 = cosh2a cos2fJ + sinh2a sin2fJ, (5.29) 

I sinh al2 = Isin( a + fJiW = sinh2a cos2fJ + cosh2a sin2fJ. (5.30) 

PROB. 5.9. Prove: If a = a + fJi E C, then 

(1) Icosal = Icos(a + fJi)1 = ~cos2a + sinh2fJ , 

(2) Isinal = Isin(a + fJi)1 = ~sin2a + sinh2fJ , 

(3) Icoshal = Icosh(a + fJi)1 = ~cos2fJ + sinh2a , 

(4) Isinhal = Isinh(a + fJi)1 = ~sin2fJ + sinh2a . 
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PROB. 5.10. Prove: (1) If a = a + f3i is imaginary, then cosa =1= 0 and 
sin a =1= 0; (2) cos a = 0 if and only if a = (2n + 1)'17/2, where n is an 
integer; (3) sina = 0 if and only if a = n'17, where n is an integer. 

PROB. 5.11. Prove: (1) If a is not pure imaginary, then cosh a =1= 0 and 
sinh a =1= 0; (2) cosh a = 0 if and only if a = (2n + 1)('17 /2)i, where n is an 
integer; (3) sinh a = 0 if and only if a = n'17i, where n is an integer. 

PROB. 5.12. Prove: (1) The sine and cosine functions on C are periodic with 
fundamental period 2'17; (2) the hyperbolic sine and cosine functions sinh 
and cosh are periodic with period 2'17i. 

The tan, cotangent, secant, and cosecant and similarly the hyperbolic 
counterparts of these, such as tanh, coth, sech, and cosh can be defined on 
C in the usual way. For example: 

tanz = smz , 
cosz 

tanh z = sinh z 
coshz ' 

etc. 

6. Evaluation of Certain Trigonometric Sums 

We evaluate the sum 

n 

2: sin k(), 
k=1 

where n is a positive integer. Note that 

() E IR, 

°IJ k °IJ k . e iklJ _ e - iklJ ( e I ) - ( e - I ) 

smk(} = 2i = 2i 

(6.1 ) 

(6.2) 

where k is an integer. Write e ilJ = u, so that e- ilJ = U. Hence, (6.1) becomes 

n n n 

2: sink(}= 2: sink(}= L 2: (Uk - Uk) 
k= I k=O k=O 

= ~ 2: Uk - 2: Uk = ~ 1 - u n + ( n n) ( I 

21 k=O k=O 21 I - u 

(1 - u)(1 - u) 

1 - un + I ) 

1 - u 

In the last expression on the right, we have (a) uu = I, (b) u - u = 2isin(}, 
( c) u + u = 2 cos (), (d) (I - u)(1 - u) = 1 - (u + u) + uu = 2 - (u + u) 
= 2 - 2 cos (), (e) un - un = 2isinn(}, (f) u n+ 1 - u n+ 1 = -2isin(n + IW. 
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Substituting these in the expression following (6.2), we obtain 

n. sinO - sin(n + 1)0 + sinnO 
2: smkO= 2 2 0 ' (6.3) 

k= I - cos 

where cos 0 =1= 1. 

PROB. 6.1. Prove: If n is a positive integer and 0 E IR, then 

~. sin(nO/2)sin«n + 1)/2)0 
~ smkO= , 

k= I sin(0/2) 
if 0 is not an integral multiple of 2n. 

PROB. 6.2. Prove: If n is a positive integer and 0 E IR, then 

~ sin(nO/2)cos«n + 1)/2)0 
~ cos kO = -----,-~,.,..,.----

k=1 sin(0/2) 
if 0 is not an integral multiple of 2n. 

PROB. 6.3. Prove: If n is a positive integer and 0 is not an integral multiple 
of 7T, then 

(a) 2:~ = Isin(2k - 1)0 = sin2nO / sin () and 
(b) 2:~=lcos(2k - 1)0 = sin2nO/2sinO. 

Def. 6.1. A function T of the form 
n 

T(O) = A + 2: (akcosk() + bksinkB), 
k=l 

(6.4) 

where 0 and A, a I' ... , an; bl, b2, ••• , bn are real, is called a trigonometric 
polynomial of order n on R (Here n is some nonnegative integer.) T is called 
even if b l = b2 = ... = bn = 0, and odd if A = a l = a2 = ... = an = 0. 

Theorem 6.1. If n is a nonnegative integer and () E IR, then 
(n-l)/2 

2n-lcosn()= 2: G)cos(n-2k)0 ifnisodd (6.5) 
k=O 

and 

if n is even. (6.6) 

PROOF. Write u = ei(J, so that u = e-i(J and 2cosO = u + u. Therefore, 

(6.7) 

The sum on the right has n + 1 terms. Assume that n is odd. We obtain 
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from (6.7) 
(n-I)/2 n 

2ncosn() = 2: (n)un-ku k+ 2: (n)un-ku k. (6.8) 
k=O k k=(n+ 1)/2 k 

Noting that 

we can write the second sum on the right in (6.8) as 

~ (n) n-k-k ~ (n) n-k-k £.oJ U u= £.oJ u u. 
k=(n+I)/2 k k=(n+I)/2 n - k 

(6.9) 

Reindex by putting j = n - k. For k E {(n + 1)/2, ... , n), 
E {O, ... , (n - 1)/2). Accordingly, we obtain from (6.9) 

we have j 

n (n-I)/2 

'" (n) n-k-k= '" (n) j-n-j £.oJ k U u £.oJ .uu . 
k=(n+ 1)/2 n - )=0 } 

(6.10) 

Here we may replace the "dummy" variable j by k and obtain from (6.10) 
n (n-I)/2 

'" (n) n-k-k '" (n)-n-k k £.oJ U U = £.oJ u U. 
k=(n+ 1)/2 n - k k=O k 

Using this in (6.8), the latter becomes 
(n-I)/2 

2ncosn() = 2: (n)(un-kU k + Un-ku k). 
k=O k 

Now note that uu = 1, so that 

(6.11 ) 

(6.12) 

Un-kU k = un-2kukuk = Un- 2k and similarly Un-kU k = Un- 2k. 

Substituting these in (6.12) yields 
(n -1)/2 

2ncosn() = 2: (n)(u n- 2k + Un- 2k ). 
k=O k 

Since 

Un- 2k + Un- 2k = e i(n-2kjIJ + e- i(n-2kjIJ = 2cos(n - 2k)(), 

it follows from (6.13) that (6.5) holds. 

(6.13) 

Next assume that n is even. In (6.7), the sum on the right consists of an 
odd number of terms, and we have from there 

(6.14) 

Reasoning as we did in the first case and noting that u n/ 2un/ 2 = 1, we 
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obtain 

Now (6.6) follows. 

PROB. 6.4. Prove: 

(a) If n is an odd positive integer, then 

(n -1)/2 

2n- 1(_I)(n-l)/2sinnO= L (-I)k(n)sin(n-2k)O; 
k=O k 

(b) if n is an even nonnegative integer, then 

Theorem 6.2. If n is a positive integer, then, for 0 E IR, we have 
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n 
sinnO= L (_I)(k-l)/2(n)cosn-kOsinkO ifnisodd (6.15) 

k=l,kodd k 
and 

if n is even. (6.16) 

PROOF. We have 

2isinnO = cos nO + i sin nO - (cos nO - isinnO) 

= (cosO + isinO)n- (cosO - isinO)n 

n n 
= L (n)cosn-kO(iksinkO) - L (n)cosn-kO(-i)ksinkO) 

k=O k k=O k 
n 

= L G )(COSn-kO sinkO )(ik - (- i)k). 
k=O 

Since i k - (- il = 0 if k is even, the only terms appearing in the last sum 
are those for which k is odd. Hence, 

n 
2isinnO = L 2ikcosn-kOsinkO. 

k= I,k odd 
(6.17) 
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We divide both sides by 2i to obtain from this 
n 

sin nO = 2: (n )ik-1COSn-kO sinkO. (6.18) 
k=l,kodd k 

In this sum, k - 1 is even. Hence, ik- 1 = (i2)(k-l)/2 = (_1)(k-l)/2, and 
(6.18) becomes 

(6.19) 

if n is odd and 

if n is even. 

Corollary. If n is an odd positive integer and 0 E IR, then sin nO can be written 
as a polynomial of degree n in x = sin 0 of the form 

sin nO = A1x + A3X3 + ... + Anx n , 

where AI' A 3' ..• , An are constants not depending on O. 

PROOF. Since n is odd, the theorem yields 

(6.20) 

sin nO = n cosn-10 sin 0 - (~) cosn- 30 sin30 + ... + (- 1 )(n-l)/2sinnO 

= sin O[ cosn-10 - (~) cosn- 30 sin2fJ + ... + ( - 1 )(n- 1)/2sinn- IO l 
(6.21 ) 

In the second factor on the right the exponents n - 1, n - 3, ... , 0 are all 
even and (6.21) can be written 

. 0 . o[ 1 . 2(J (n-l)/2 (n) 1 . 20 (n-3)/2 . 21l smn = sm n( - sm) - 3 ( - sm) sm-11 

+ ... + (- 1 )(n-I)/2sinn- 10 J- (6.22) 

On the right here the exponents (n - 1)/2, (n - 3)/2, ... are all nonnega­
tive integers. We expand 

(1 - sin2fJ)(n-I)/2, (1 _ . 21l)(n-3)/2 Sln--u , ... (6.23) 

by the binomial theorem and find that the factor in square brackets on the 
right in (6.22) has the form Al + A3X2 + ... + Anxn-I, where x = sinO 
and Al = n. Thus, (6.22) has the form 

sinnO=x(Al+A3X2+ ... +Anxn-l)=AIX+A3X3+ ... +Anx n, 

(6.24) 
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where x = sinO and AI = n. We examine the term t = Anxn. We have for 
this term (from (6.22), after using the binomial theorem in (6.23», 

t = sin O( n ( - 1 )(n- 1)/2(sin1J t- I)/2 - G)( - 1 )(n-3)/2(sin1J )(n-3)/2 sin20 

+ ... + (- 1 )(n-I)/2sinn- IO ) 

= sinO( (- 1 )(n-I)/2n sinn-IO + (-1 )(n-I)/2( ~)sinn-IO 

+ ... + (-I)(n-I)/2sinn-IO) 

= (_I)(n-I)/2(n + G) + ... + l)sinnO. 

Thus, 

An=(-I)(n-I)/2(n+(~)+ '" +1)*0, 

and the polynomial in (6.24) in x = sin 0 is of degree n, as claimed. 

PROB. 6.5. Prove: If n is an odd positive integer, then cos nO can be written 
as a polynomial of degree n in x = cos 0 of the form 

cos nO = Blx + B3X3 + ... + Bnxn. 

The following result will be needed later (Section 9). 

Theorem 6.3. If n is an odd positive integer and t is real, then 

sm t = n sm i IT 1 - . 
. . (n-I)/2[ sin2(t/n) 1 

n k=1 sin2(k/n)'IT 
(6.25) 

PROOF. We begin with the last corollary. From (6.20) and the fact that 
s nnO vanishes for nO = k'IT, where k is an integer, we see that the right­
hand side of (6.20) vanishes for Xk' where 

xk=sin(k~), k=0,±I,±2,.... (6.26) 

Since n is odd, ±(n - 1)/2 are integers. We know that the sine function is 
one-to-one on the interval [ - 'IT /2, 'IT /2]. Therefore, if k is an integer such 
that Ikl ..;; (n - 1)/2, so that 

Ik J!..I..;; n - 1 J!.. < J!.. , (6.27) 
n n 2 2 

the xk's in (6.26) are distinct zeros of the polynomial on the right of (6.20). 
But Ikl ..;; (n - 1)/2 holds for n - 1 distinct nonzero k's and for k = 0 and, 
therefore, for n of the k's. We conclude that the polynomial on the 
right-hand side of (6.20) has n distinct zeros x k , where Ikl ..;; (n - 1)/2. This 
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polynomial is of degree n in x and has no other zeros. By the factor 
theorem, we have for this polynomial 

sin nO = Anx( x - sin ~)( x + sin ~) ... 

· ( x - sin n 2 I ~) ( x + sin n 2 I ~) 
= Anx ( x2 - sin2 ~ )( X2 - sin2 2n7T ) ... 

· ( x2 - sin2 n 2 I ~) 
= Ansin 0 ( sin20 - sin2 ~ )( sin20 - sin2 2n7T ) ... 

· (sin20 - sin2 n 2 1 ~). 

We multiply and divide the right side of the above by 

sin 2 J!. sin 22 J!. . . . sin 2 n -2 1 J!., 
n n n 

and then rearrange its factors to obtain from (6.28) 

sin nO = BSino( 1- sin~~:~n))( 1 - sin~;;~n)7T) ... 

. (I - sin2(n ~nI2~/2)7T/n)' 
where B is some constant depending only on n. We have 

. sin nO . ( sin nO ) / nO 
hm-.-=hmn. =n 
IJ~O sm 0 IJ~O (sm 0 ) / 0 

and 

lim (I - sin20 )(1 _ sin2 ) ... 
IJ~O sin2( 7T / n) sin2(27T / n) 

. ( I - sin2( n ~i~~2)( 7T / n) ) = 1. 

(6.28) 

(6.29) 

(6.30) 

(6.31 ) 

These relations and (6.29) imply that B = n. Thus, (6.29) can be written 

sin nO = n sinO(1 - sin20 )(1 _ sin20 ) ... 
sin2(7T/n) sin2(27T/n) 

. (I - sin2(n ~i~;~2)(7T/n) ). (6.32) 

Equation (6.25) is obtained by putting t = nO. 
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Theorem 6.4. * If m is a positive integer, then 

m 2 k7T m(2m - 1) 
L: cot 2 1 = 3 . 

k=1 m + 
(6.33) 

PROOF. Use Theorem 6.2. Let n = 2m + I, where m is a positive integer and 
0=1= V7T, where v is an integer. By (6.15), we have 

sin(2m + 1)0 = (2m + l)cos2mOsinO - e m3+ I )cos2m- 20sin30 

+ ... + (-I tsin2m+ 10 

= sin2m+ 10[ (2m + 1 )cot2mO - em 3+ I )cot2m - 20 

+ ... +(-I)ml (6.34) 

The factor in square brackets on the right is a polynomial P(x) of degree m 
in x = cot20, and we may write (6.34) as 

sin(2m + 1)0 = (sin2m+10)p(x). (6.35) 

The left-hand side vanishes for 0 = k7T / (2m + 1), k E {I, ... , m}. Clearly, 

0< k7T < J!.. 
2m + I 2 

for kE{I, ... ,m}. 

Therefore, we know that the xk's given by 

20 k7T 
Xk = cot 2m + 1 ' k E P, ... , m}, (6.36) 

are all distinct. Since sin2m+ 10 does not vanish on (0; 7T /2), it is not equal to 
o at any of the xk's above. These xk's are m distinct zeros of the mth degree 
polynomial P and therefore constitute all the zeros of P. Their sum is 
a l = XI + ... + xm • Hence (d. (4.29)), al is the negative of the coefficient 
of x m- I divided by the leading coefficient 2m + I of P. Thus, 

i: cot2 k7T = i: Xk= a l = (2m + 1)(2m + I)-I 
k=1 2m+1 k=1 3 

This proves the theorem. 

(2m + 1)2m(2m - I) 

3! (2m + I) 

m(2m - I) 

3 

*L. B. W. lolley, Summation of Series, formula (451), Dover, New York, 1961. 
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This theorem enables one to evaluate r(2), where r is the zeta function, 
i.e., 

00 1 1 I 
r(2) = "" - = 1 + - + - + .... 

n7:1 n2 22 32 

The proof of the next theorem is due to Apostol. 

Theorem 6.5. We have 

'TT2 00 1 
- = ~ 2" = r(2). 
6 n=l n 

(6.37) 

PROOF. Let 0 < x < 'TT/2, so that 0 < sin x < x < tanx. It follows that 
o < cot x < 1/ x < csc x and 

(6.38) 

substitute x = k'TT/(2m + 1), k E {I, ... , m} and sum to obtain 

m k (2m + 1)2 (2m + 1)2 (2m + 1)2 
~ cot2 'TT < + + ... + ---c:--::--

k= 1 2m + 1 'TT2 22'TT2 m2'TT2 

< m + i: cot2 k'TT 
k=l 2m+l 

Use Theorem 6.4 to conclude that 

m(2m - 1) (2m + 1)2 (1 1 ) m(2m - 1) -----,,.--- < 1 + - + ... + - < m + -----,:---
3 'TT2 22 m2 3 

and, therefore, that 

m (2m - 1) 2 1 1 'TT2 2 
---~'TT < 1 + - + ... + - < (2m +2m). (6.39) 
3(2m + 1)2 22 m2 3(2m + 1)2 

Now let m ~ + 00 and note 

m(2m - 1) 2 2 
lim 'TT2= lim 'TT (2m2 + 2m) = J!...- . 

m--->+oo 3(2m + 1)2 m--->+oo 3(2m + 1)2 6 

By the sandwich theorem, this and (6.39) imply that 

'TT2 lim i: -L = ~ + ~ + ~ + ... 
6 = m--->+oo k=l k 2 12 22 32 

PROB. 6.6. Prove 

00 1 'TT2 
~ 2 I =6-1. 

n= 1 n (n + ) 
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7. Convergence and Divergence of Infinite Products 

Finite products such as 
n 

II ak and 
k=1 

were defined in Chapter II. Here we define infinite products of real 
numbers. 

Der. 7.1. Let <un) be an infinite sequence of real numbers. The sequence 
<Pn ), where 

n 

for each n, (7.1 ) 

is called an infinite product of terms of the sequence <un)' The nth term of 
<Pn) is called the nth partial product of the infinite product. We write this 
infinite product as 

00 

II Un' (7.2) 
n=1 

(This is analogous to the procedure we used in defining infinite series.) 
Next we wish to assign a number to the infinite product. We do not 
proceed in full analogy with infinite series. If we were to do so, an infinite 
product would be called convergent if the sequence of its partial products 
converges. It would then follow that if one of the terms of <un) is equal to 
0, say uj = 0, then all the partial products Pn for n > j would equal 0. 
Therefore, the partial product sequence would converge to 0, regardless of 
what the terms un for n > j are like. The partial product sequence of the 
subsequence <Uj + l' Uj + 2 , ••• ) might not converge even though the se­
quence of partial products of the sequence <U 1, U2 , ••• ) converges. We, 
therefore, restrict the sequences <un) whose infinite products we form. We 
form infinite products of sequences <un) for which there exists a positive 
integer N such that un =1= ° for n > N. Then we define the convergence of 
the infinite product 

00 

II uk = UN + 1UN + 2 ••• 
k=N+l 

and form the sequence <P~+I,P~+2" .. ), where 
n 

p~ = II Uk for n> N + l. 
k=N+l 

(7.3) 

The P~'s are the partial products of (7.3). Here too we impose a restriction 
and call (7.3) convergent when the sequence of its partial products con-
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verges to a nonzero limit. If we were to allow lim P~ = 0 and write 
00 n 

II uk = lim II uk = lim P~, 
k = N + 1 n--> + 00 k = N + 1 n--> + 00 

we would have 

even though UN + l' UN + 2' . •. are all different from O. This behavior of 
infinite products would differ from that of finite products. The latter have 
the property that 

implies one of u 1, ••• , un is zero. 
Next we give an "official" definition of convergence for infinite products. 

Def. 7.2. The infinite product II:::'= lUn will be called convergent if (1) there 
exists a positive integer N such that Un =/= 0 for n > Nand (2) 

n 

lim II Uk 
n--> + 00 k = N + 1 

(7.4) 

is a nonzero real number. Writing P' for the number in (7.4), we define the 
product P of u 1, u2' ... as 

(7.5) 

In this case, we write 
00 00 

II Uk= P' = lim II Uk 
k=N+l n-->+oo k=N+l 

and 
00 00 

II Uk = P= U 1U2 ••• UN II Uk' (7.6) 
k=l k=N+l 

If for some N the limit in (7.4) does not exist, or is infinite, or equal to 0, we 
then say that the infinite product II~= IUk diverges. 

In analogy with infinite series, the symbol II~= IUk is given two meanings. 
Indeed, on the one hand, it represents the sequence of partial products of 
<un> and, on the other hand, it is the number defined by (7.5). It should be 
clear how to define the infinite product 

00 

II Uk' 
k=O 
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EXAMPLE 7.1. Consider 

The nth partial product of this infinite product is 

P = IT (1- 1 ) = (1- ..1)(1-..1) (1- ------,,--1 ) 
n k=l (k+l)2 22 32 '" (n+l)2' 

Since 

Pn = (1- ;2)( 1- ;2)'" (1- (n ~ 1)2) 
= ( 1 - t )( 1 - t ) ... ( 1 - n! 1 ) 

. ( 1 + t )( 1 + t ) ... ( 1 + n! 1 ) 

1 2 n 3 4 n+2 
=2'3'" n+l '2'3'" n+l 
_ 1 n + 2 
-2n+l' 

we have 

P = lim P = lim( 1 n + 2 ) = 1 . 
n 2n+l 2 

PROB. 7.1. Prove: 

EXAMPLE 7.2. The infinite product 

diverges. We have for the nth partial product 

n ( 1 1 1 
Pn = ill 1 + k) = (I + 1)( 1 + 2) ... (I + n) 

EXAMPLE 7.3. The infinite product 

00 1 JI(I- n + l ) 
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diverges to O. For each n, 

Pn = (I - ! )( I -1 ) ... (I - n! I ) 

= ! . t . .. n ~ I = n! I ~ O. 

EXAMPLE 7.4 (The Gamma Function as an Infinite Product). We recall that 

f(x) = lim nXn! 
n-Hoo x(x + I)(x + 2) ... (x + n) 

if x =1= 0 or x is not a negative integer. 

For each positive integer n, define 

x = nXn! 
gn() x(x + I)(x + 2) ... (x + n) . 

We have 

gn(x) = x(1 + x)(1 + x/2) ... (I + x/n) x(1 + x) ... (I + x/n) 

= lex['nn-('+'/2+ ... +l/n)] eX ex/ 2 e x / n 
x (I + x) (I + x/2) ... 1+ x/n 

= 1 e-Y"X IT e x / k 
x k= 1 (I + x/ k) , 

where 

'V = 1+ ! + ... + ! -Inn. 
In 2 n 

The sequence <'Yn> is dealt with in Theorem VII.7.1. There we saw that it 
converges. Its limit 'Y is the Euler-Mascheroni constant. We have 

I 00 x/k n x/k 
e- Yx - II e = lim e-Y"x II ..".....:e,---....,...,-

x k=I(I+x/k) n-Hoo k=l l + x / k 

i.e., 

_ -yx I 00 e x / k 

f(x)-e - II (I /k)' x k=1 + X 

Next we state a necessary condition for the convergence of an infinite 
product. 

Theorem 7.1. If II~= lUn converges, then Un ~ I as n ~ + 00. 
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PROOF. Since the product converges, there exists a positive integer N such 
that if n > N, then Un * 0 and 

n 

p' = lim II Uk' 
n--->+oo k=N+\ 

where P' is some nonzero real number. This implies that 

and completes the proof. 

It is customary to write Un = 1 + an for each n so that 
00 00 

II Un= II (1 + an)· 
n= \ n= \ 

In this notation Theorem 7.1 takes the form: 

Theorem 7.1'. If II:;'= ,(1 + an) converges, then an ~o as n~ + 00. 

Remark 7.1. The criterion for convergence given in the last theorem is 
necessary but not sufficient. Consider the infinite product of Example 7.2, 
i.e., II:;'= ,(1 + II n). This diverges, but an = 1 I n ~ 0 as n ~ + 00. Note also 
that the infinite product 

00 1 
)I(I- n +l) 

of Example 7.3 diverges to ° even though an = 1 I (n + 1) ~ 0 as n ~ + 00. 

The divergence of both products mentioned here, the first to + 00 and the 
second to 0, can also be deduced from the inequalities 

1 + + + -!- + ... + ~ < (1 + + )( 1 + -!- ) ... (1 + ~ ) (7.7) 

and 

(1 - -!- ) (1 - i ) . . . ( 1 - n ! 1 ) < -:-1-+----:1:-1;--=:2-+-~+----:-1 1-;-("-n-+--:-C-1 ) (7.8) 

(see Prob. 11.12.15), and the divergence of the harmonic series to + 00. 

PROB. 7.2. Prove: If x * 0, x E IR, then 
00 

II(l+:!) 
n=\ n 

diverges (see Prob. IX.6.2). 
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PROB. 7.3. Prove: 
00 I II(I-(-I)n_)=1. 

n= 1 n 

Remark 7.2. Consider the infinite products 
00 

(7.9a) 

and 
00 

(7.9b) 
n=1 

where 0 < an < I for all n. Let their respective partial product sequences be 
<Pn ) and < Qn). The first sequence is monotonically increasing and the 
second is monotonically decreasing. We also see that Pn > 0 and Q" > 0 for 
all n. It therefore follows that if (7.9a) diverges, then it diverges to + 00 and 
if (7.9b) diverges, it diverges to O. 

Theorem 7.2. If 0 < an < I for all n, then the infinite product (7.9a) converges 
if and only if <Pn ) is bounded, whereas the product (7.9b) converges if and 
only if < Qn) is bounded from below by some positive number. 

PROOF. Exercise. 

Theorem 7.3. Given the infinite products in (7.9), the convergence of 

2: an (7.10) 

is a necessary and sufficient condition for (7.9a) to converge provided that 
an ? 0 for all n, and is a necessary and sufficient condition for (7.9b) to 
converge, provided that 0 < an < I for all n. 

PROOF. Assume that 0 < an for all n. Consider (7.9a). Assume that (7.10) 
converges. Let S = 2:an, <Sn) be its sequence of partial sums and <Pn ) its 
sequence of partial products. We know that In(l + x) < x for x> - 1. 
Hence, 

n n n 

In II (I + ak ) = 2: In(1 + ak ) < 2: ak = Sn < S 
k=1 k=1 k=1 

This implies that 
n 

Pn = II (I + ak ) < e S 

k=1 
for all n. 

for all n. 

(7.11 ) 

Thus, the monotonically increasing sequence <Pn ) (see Remark 7.2) is 
bounded and, therefore, converges to a finite limit P. It is also clear that 
P ? 1. Thus, (7.9a) converges. Conversely, assume that the infinite product 
(7.9a) converges. We have Pn < P for all n, where P is a value of the 
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infinite product (explain). By Prob. 11.12.14 we have 
n n 

I + ~ ak"; IT (I + ak) = Pn ..; P for all n. 
k=1 k=1 

This tells us that <Sn> is bounded. Since an ;;. 0 for all n, we know that Lan 
converges. 

We now concern ourselves with (7.9b). Assume that 0 ..; an < I for all n 
and that ~an converges. Write S for its sum and Sn for the nth partial sum 
for each n. There exists a positive integer N such that 

<Xl 

0..; ~ ak = S - S N < I. 
k=N+1 

Put RN = ~r=N+lak so that 

Hence, 

n 

0..; ~ ak "; RN < I 
k=N+1 

n 

o < 1 - RN ..; 1 - ~ ak 
k=N+l 

By Prob. 11.12.15 we have 
n n 

I - ~ ak "; IT (I - ak ) 
k=N+l k=N+1 

Therefore, 
n 

0< 1 - RN ..; IT (I - ak ) 

k=N+l 

Thus, the sequence <P~> of partial sums of 

if n> N. 

for n> N. 

for n> N. 

for n> N. 

(7.12) 

(7.13) 

(7.14) 

(7.15) 

is bounded from below by the positive number 1 - RN • By Theorem 7.2 the 
infinite product (7.15) converges. It follows from Def. 7.2 that (7.9b) 
converges. 

Now return to the condition 0 ..; an < 1 for all n and assume that (7.9b) 
converges. Let < Qm> be its sequence of partial products. By Theorem 7.2 
the sequence < Qn> is bounded from below by a positive number, say, B. 
We have 0 < B..; Qn for all n. We now use Prob. 11.12.15, part (b) and 
obtain 

n 1 
0< B..; Qn = }ll (I - ak ) < n~=l(1 + ak ) 

This implies that 
n 1 IT (I + ak ) < B 

k=1 
for all n. 

for all n. 

This and Theorem 7.2, part (a) imply that (7.9a) converges. This and the 
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assumption that 0 ..; an < 1 for all n guarantee, by the first part of this 
theorem, that Lan converges. The proof is now complete. 

EXAMPLE 7.5. The infinite product 

f(x) = IT (1 - x~ ) 
n=1 n 

(7.16) 

converges for each x E IR. This is clear if Ixl < 1, for then 

for each positive integer n (7.17) 

and 

converges. Using the second part of the last theorem we obtain from this 
that the infinite product (7.16) converges. If Ixl > 1, let N = [Ixll so that 
1 ..; N ..; Ixl < N + 1. For n > N + 1, we have 0..; x 2 j n2 < 1 and that 
Lk=N+lx2jk2 converges. Thus, 

II 1- ~ 00 ( 2 ) 

n=N+ I n2 

converges. This yields the convergence of (7.16) also for the case Ixl > 1. 

PROB. 7.4. Prove: 

converges if a > 1, and diverges to + 00 if a"; 1. (See Remark 7.1 for the 
case a = 1.) 

PROB. 7.5. Prove: 
00 1 

}I (1 - n a ) 

converges for a > 1 and diverges for a ..; 1. 

Theorem 7.4. The infinite product 

(here an is not necessarily positive for all n) converges, if and only if for each 
E > 0 there exists a positive integer N such that if m > n > N, then 

Ik=~+I(I+ak)-II<E. (7.18) 

PROOF. We prove sufficiency first. Suppose that for each E > 0 there exists a 
positive integer N such that if m > n > N, then (7.18) holds. Let E > 0 be 
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given. There exists a positive integer N such that if m > n > N\, then 

There also exists a positive integer N2 such that if m > n > N2, then 

I IT (I + ak) - II < ~ . 
k=n+1 

Let N = max{N\,N2 }. By (7.20), we have 

so that 

I IT (I+ak)-II<~ for m>N+l 
k=N+1 

1 m 3 
0<'2< II (l+ak )<'2 

k=N+1 
for m> N + 1. 

We consider the sequence <p~> of partial products of 
00 

II (I + ak )· 
k=N+1 

(7.19) 

(7.20) 

(7.21 ) 

(7.22) 

(7.23) 

We know that N > N\ and N > N 2 • Take m > n > N so that m > n > N\ 
and m > n > N2 • We have, first of all, that (7.19) holds and, therefore, that 

I P;" I (; p~ - I < '3 . 

This, the fact that m > N + I, and (7.22) imply that 

IP;" - P~I < P~ t < ~ t < (; for m > n > N. 

Thus, <P~> is a Cauchy sequence and converges. But (7.22) also implies 
that lim P~ > o. Thus, (7.23) converges by Def. 7.2. We conclude that 
II::"= \(1 + an) converges. 

We prove the necessity next. Assume that II::"= \(1 + an) converges. Then 
there exists a positive integer N such that if n > N, then I + an =1= 0 and 
that (7.23) converges to a nonzero number. It is easy to prove for the partial 
products P~ of (7.23) that some M > 0 exists such that 

IP~I > M for all n. (7.24) 

Since <p~> is necessarily a Cauchy sequence of real numbers, there exists a 
positive integer N\ such that 

IP;" - P~I < M(; for m> n > N\. (7.25) 

Take N2 = max{N,Nd and m > n > N 2. Thus, (7.24) and (7.25) hold and 

I IT (l+ak)-II=I~0-11<1~1(;<(; 
k=n+1 n n 

for m > n > N2 • This completes the proof. 
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8. Absolute Convergence of Infinite Products 

Def. 8.1. When the infinite product 
00 

II (I + lanl) (8.1 ) 
n=1 

converges, we say that the infinite product IT~= 1(1 + an) is absolutely 
convergent. 

Theorem 8.1. The infinite product IT(l + an) converges absolutely if and only 
if 2: an converges absolutely. 

PROOF. Exercise. 

PROB. 8.1. Prove: 
00 

II (I + xn) and 
n=1 

converge absolutely if Ixl < 1. 

Theorem 8.2. If an infinite product converges absolutely, it converges. 

PROOF. Assume that i and j are integers such that j > i > 1. We obtain, 
after "multiplying out," 

I rr(l+ak)-II=,ai+ai+l + ... +aj + ... +aiai+I ... a) 
k=1 

.;;; lail + lai+d + ... + la) + ... + laillai+d .. ·Ia) 

= l1:Y + lakl) - I = I k~Y + lakl) - II· 

Now assume IT(l + ak) converges absolutely. Let E > 0 be given. There 
exists a positive integer N such that if m > n > N, then 

Ik=~+1 (I + ak) - II .;;;lk=~+1 (I + lakl) -11< E. 

This implies (by Theorem 7.4) that IT(l + ak ) converges. 

As in the case of infinite series, the absolute convergence of an infinite 
product implies that all its rearrangements converge to it. 

We defined the notion of a rearrangement of an infinite series 2:an • The 
notion of a rearrangement of an infinite product is similar. Intuitively, a 
rearrangement of an infinite product IT(l + an) is an infinite product 
IT(l + bn ) such that each factor of the first product occurs exactly once as a 
factor in the second and vice versa. This definition can be made more 
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precise as follows: Let f: 71+ ~ 71+ be a one-to-one correspondence on 71+ 
and <an) a sequence. If <hn) is a sequence such that bn = af(n) for each 
n E 71+, then we call it a rearrangement of <an). The infinite product 
IT(l + bn) is called a rearrangement of IT(l + an) if <bn) is a rearrangement 
of <an). The functionfis called the rearrangement function. Remark IV.9.1 
and Lemma IV.9.1 apply to rearrangements of infinite products. Below we 
state an infinite product analogue of Theorem IV.9.1. 

Theorem 8.3. If IT:;'~ ,(1 + an) converges absolutely, then all its rearrange­
ments converge to its product P. 

PROOF. We first consider the case where 1 + an =fo 0 for all n and let 
00 

P = IT (1 + an), (8.2) 
n=' 

where the product on the right converges absolutely. We then assume that 
IT~~ ,(1 + hn ) is some rearrangement of our product. Thus, I + bn =fo 0 for 
all n. We have 

P = limPn , (8.3) 

where <Pn ) is the sequence of partial products of IT(1 + an). We shall prove 
that 

P = lim Q", 
n-7 + 00 

(8.4) 

where < Qn) is the sequence of partial products of IT(l + bn)· Let <Pn) be 
the sequence of partial products of IT(1 + la"I). The latter product con­
verges by hypothesis. Let E > 0 be given. There exists a positive integer N, 
such that if j > k> N" then 

P 1 j 1 .!. - 1 = IT (1 + la,,1) - 1 < 1 ' 
Pk n=k+' 

(8.5) 

By properties of the absolute value, this implies that 

1;-11=1 IT (l+an)-ll<1 IT (1+la"I>-11<1· (8.6) 
k n=k+l n=k+l 

N ow we let j ~ + 00 and obtain 

- - 1 = hm - - 1 <-I PI· 1 Pj 
1 E Pk j~+oo Pk 2 

for k> N,. (8.7) 

Fix such a k. By Lemma IV.9.1, there exists a positive integer N2 such that 

{a" ... ,ak }<{b"b2, ... ,bn} for n>N2. (8.8) 

Assume that n > max{N2,k} so that n > N2 and n > k, and consider 

for such n. 
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Since n > N2, (8.8) holds. If any factors of IT(l + an) remain at all after 
cancelling, they have indices greater than k. Hence, by (8.6) we have 

(8.9) 

This implies that 

I Qn_LI<1 Qn_II+IL_II<i.+i.=t: 
Pk Pk Pk Pk 2 2 

(8.10) 

for n > max{N2,k}. From this it follows that 

lim Qn = L 
n--->+oo Pk Pk 

and, hence, that 

This completes the proof of (8.4) in the present case. 
We turn to the case where finitely many I + an's are equal to 0, so that a 

positive integer N exists such that if n > N, then I + an =1= O. By Def. 7.2, 
the product P is defined as 

P = (I + al) ... (I + aN)P', 

where 
n 

P' = lim II (I + ak )· 
n--->+oo k=N+ 1 

There exists a positive integer N' such that 

{a l ,a2, .•• , aN} ~ {b l , b2, ••. , bn} 

For such n, the factors of Qn include those of 

PN=(I+a1)···(I+aN)· 

for n > N'. 

We omit the factors of PN from the rearrangement IT~=I(I + bn ) of 
IT~= l(l + an)' and obtain thereby an infinite product which is a rearrange­
ment of 

00 

P' = II (I + an)· 
n=N+l 

We now apply the first part of the proof and ascertain that the infinite 
product of the rearrangement with the factors of P N deleted has the same 
infinite product P'. Hence, 

00 00 

II (I + bn ) = PNP' = II (I + an)' 
n=l n=l 
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EXAMPLE 8.1.* Consider the infinite products 
00 00 

Qo = II (1 - q2n), QI = II (1 + q2n), 
n=\ n=\ 

00 00 
(8.11 ) 

Q2 = II (1 + q2n-I), Q3 = II (1 - q2n-I), 
n=\ n=\ 

where I ql < 1. Since the series 
00 00 

2: q2n and 2: q2n-l, (8.12) 
n=\ n=\ 

where Iql < 1 are absolutely convergent, so are all the products in (8.11) 
(Theorem 8.1). 

We have 
n n 

Q3QO= lim II (I_ q2k-l) lim II (I_ q2k) 
n->+oo k=\ n->+oo k=\ 

= lim (IT (1 - q2k-l) IT (1 - q2k)). (8.13) 
n->+oo k=\ k=\ 

But 
n n 
II (1 - q2k-l) II (1 - q2k) = (1 - q)(1 _ q3) ... 

k=\ k=\ 

and, hence, 

(1 - q2n-I)(I - q2)(1 _ q4) ... (1 _ q2n) 

= (1 - q)(1 - q2)(1 _ q3) ... 

(1 - q2n-I)(I _ q2n) 

2n 

= II (1 - qk) 
k=\ 

n 2n 

Q3 Qo = lim II (1 - q2k-I)(I - q2k) = lim II (1 - qk). (8.14) 
n->+oo k=\ n->+oo k=\ 

Since the sequence <rIin= 1(1 - qk» is a subsequence of the sequence 
<II~= 1(1 - qk», it has the same limit as the latter. Hence, we conclude 
from (8.14) that if Iql < 1, then 

~ n 00 

Q3 Qo = lim II (1 - qk) = lim II (1 - qk) = II (1 - qk). (8.15) 
n->+ 00 k= \ n->+ 00 k= \ k= \ 

The last infinite product converges absolutely when Iql < 1 since 

"Harris Hancock. Lectures on the Theory of Elliptic Functions, Dover, New York, 1958, p. 396. 
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does. Similarly, 
00 

Q2 QI = II (I + qk) if Iql < I. 
k=1 

PROB. 8.2. Prove: If Qo, QI' Q2' and Q3 are defined as in Example 2.1, then 

Qo QI Q2 Q3 = Qo and QI Q2 Q3 = I. 

PROB. 8.3. Prove: If Iql < I, then 

IT (I + n) - 1 
n= 1 q - rr~= 1(1 - q2n-l) 

PROB. 8.4.* Prove: If Iql < I, then 

(I + q + q2 + ... + q9)(1 + qlO + q20 + ... + q90) ... 

(I + q 100 + q200 + ... + q900) ... = 1 ~ q . 

9. Sine and Cosine as Infinite Products. Wallis' 
Product. Stirling's Formula 

Theorem 9.1. If t E /R, then 

sin t = t IT (I - ;2 2 ) 
k= I k 7T 

and 

cos t = 1 _ 4t . 00 ( 2) }I 7TZC2k - 1 )2 

(9.la) 

(9.lb) 

PROOF. We prove (9.la) first. Begin with Theorem 6.3. That theorem states: 
If n is an odd positive integer and t E /R, then 

sm t = n sm i II I - 2 . 
. . cn-l l /2[ sin2(tln) 1 

n k = 1 sin (k 1 n ) 7T 
(9.2) 

We fix t =1= 0 and take a positive integer m such that m > max{1 t1/2, t 2 1 4}, 
so that 0 < Itl/2 < m and m > t2/4. We then take an odd integer n such 
that n > max{2m + I, 2Itl/7T}. This implies that n > 2m + 1 and n 

*Polya-Szego, Aufgaben und Lehrsiitze aus der Analysis, Vol. I, Dover, 1945, Prob. 18. 
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> 2Itl/'lT, and, therefore, that 

O<m<n-I 
2 

and 

479 

(9.3a) 

(9.3b) 

Because of the second inequality, we have sin(t/n) =1= O. From (9.2) we 
obtain 

.smt = II 1- , 
. (n-l)/2 [ Sin2(t/n)] 

nsm(t/n) k=l sin2(k/n)'lT 

where n is odd. For the left-hand side we have 

. sint . (sint)/t = sint 
hm. =hm 

n-Hoo nsm(t/n) n-Hoo (sint/n)(t/n)-l t 

This implies, using (9.4), that 

lim II I - = sm t . 
(n-l)/2 [ Sin2(t/n)] . 

n-->+oo k=l sin2(k/n)'lT t 

We examine the right-hand side of (9.4) and recall (9.3a). We have 

Note that 

(n-l)/2 [ sin2(t/n)] II 1---­
k= I sin2(k/n)'lT 

= IT [1- sin2(t/n) ] (n rr/2 [I - sin2(t/n) ]. 
k=l sin\k/n)'lT k=m+l sin\k/n)'lT 

(9.4) 

(9.5) 

(9.6) 

(9.7) 

(9.8) 

We also note that, since I .( k .( (n - 1)/2, as is the case for the index k in 
the products on either side of (9.7), we have 

0< k:!!.. .( n - I :!!.. <:!!.. . (9.9) 
n n 2 2 

By Jordan's inequality (VII.7.25), we obtain from (9.9) 

sink('lT/n) 2 I > - for 0 < k .( n -2. (9.10) 
k('lT/n) '17 

This and (9.8) imply that 

sin2(t/n) t2 
0< <-

sin2(k/n)'lT 4k2 
for 0 < k .( n "2 I . (9.11) 

However, for the index k in the second factor on the right of (9.7) we have 
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0< m < k and, therefore, 1/4k2 < 1/4m2. But, to begin with, we have 
0< Itl/2 < m. Hence, we have 

221 
_t_ < _t_ < 1 if m < k '" n -2 . (9.12) 
4k2 4m2 

This and (9.11) imply that 

sin2(t/n) 1 
0< < 1 if m < k '" n -2. (9.13) 

sin2(k/n)'IT 

We write the second factor on the right-hand side of (9.7) as Rm. Because 
of (9.13) it follows that 

- (n-I)/2 [ _ sin2(t/n) 1 
O<Rm - II I 2 <1. 

k = m + I sin k ( 'IT / n ) 

Next we use Prob. 11.12.15 to obtain, since (9.13) holds, 

I > Rm > 1 - + -::-----'----'--- + ... [ 
sin2(t/n) sin2(t/n) 

sin2(m + 1)('IT/n) sin2(m + 2)('IT/n) 

+ . sin2(t/n) 1 
sin2«n - 1)/2)('IT/n) 

Now use (9.11) to obtain from (9.15), after writingj = (n - 1)/2, 

1 > Rm > 1 - f ( I + I + ... + 1-). 
4 (m + 1)2 (m + 2)2 / 

Note that 
1 + 1 + ... +1-

(m+ 1)2 (m+2)2 / 

< 1 + I 
m (m + 1) (m + 1)( m + 2) +···+(j-I)j 

=.1 __ 1_+_1 ___ 1_+ ... +_1 __ 1 
m m+1 m+1 m+2 j-I j 

=.1_~<.1. 
m ] m 

This, (9.12), and (9.16) imply, since m > t 2/4, that 

t2 
I > Rm > I - 4m > o. 

(9.14) 

(9.15) 

(9.16) 

(9.17) 

This, by the definition of Rm in (9.14) and by (9.4) and (9.7) implies that 

o < 1 - 4t2 < .sin / 1 = Rm < 1. 
m nsm(t n) IIk=I(1 - sin2(t/n)/sin2(k'IT/n») 

(9.18) 
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Now fix m and let n ~ + 00. Since 

as n~ + 00, 

we have 

lim IT [1 - sin
2

( t / n) 1 = IT (1 - L). 
n->+oo k=l sin2(k17/n) k=l k 2172 (9.19) 

Take limits as n~ +00 in (9.18), use (9.19) and (9.5), and obtain 

2' 1 o < 1 - _t_ < Sill t < 1. (9 20) 
4m t II'k=,(l- t2/k217 2) . 

Now let m ~ + 00 and obtain from (9.20) 

for t =!= O. 

This proves (9.1a). 
Next we prove (9.1b). Use the identity sin2t = 2sintcost and the 

appropriate product formula for the sine on each side to arrive at 

2t IT (1 - ~2 ) = 2t IT (1 - ~2 2 )cost. 
k=! k172 k=l k17 

(9.21 ) 

Now 

(9.22) 

and 

= lim II 1 __ t_ II 1- t . n( 2)n( 4 2 ) 

n->+ooj=1 /172 j=1 (2j-1)172 
(9.23) 

Since the product 

(9.24) 
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converges (why?), we obtain from (9.23) 

lim IT (I - 4t2 
) = lim IT (I - L) lim IT (I _ 4t2 

) 
n-H 00 k = 1 k 27[2 n-> + 00 j= 1 /7[2 n-> + 00 j= 1 (2j - 1 )27[2 

= IT (I -L) IT (1 _ 4t2 ) 
k=1 k 27[2 k=1 (2k - 1)27[2 . 

By (9.22), this implies that 

IT (I -K) = IT (I -L) IT (1 _ 4t2 
) 

k=1 k 27[2 k=1 k 27[2 k=1 (2k - 1)27[2 . 
(9.25) 

Substitute in (9.21) to obtain 

2t IT 1 - -h IT 1 - t 2 = 2t IT 1 - -h cos t. oo( 2)00( 4 2 ) oo( 2) 
k=1 k 7[ k=1 (2k - 1) 7[2 k=1 k 7[ 

This implies that 

This proves (9.lb). 

Corollary 1. If x E IR, then 

sin7[x = 7[X IT (1 _ x~ ) 
k=1 k 

(9.26a) 

and 

COS7[X=IT(I- 4X22)' 
k= 1 (4k - 1) 

(9.26b) 

PROOF. Obvious. 

Remark 9.1. The infinite product expansions for sin t and cos t become 
comprehensible intuitively by making an analogy with the case of a 
polynomial P(x) = aoxn + alx n + ... + an of degree n ;;;. I having zeros 

'1,'2,···,'n· 
P can be expressed as a product 

P(x) = ao(x - 'I)(X - '2) ... (x - 'n)' 

sin t is expressed in (9.la) as a product of factors 

t, t 2 
1--

2 ' 7[ 

which vanish at the zeros 0, ± 7[, ± 27[, ± 37[, ... of sin t. Similarly cos t is 
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expressed in (9.1b) as a product of factors 

1 - 4t2 1 _ 4t2 1 4t2 
'172 ' 9'172 ' - 25 '172 ' . . . 

which vanish at the zeros ± '17 /2, ± 3'17 /2, ± 5'17 /2, .. , of cos t. This was 
how Euler discovered these formulas. 

Corollary 2 (Wallis Product). We have 

'!!.. = rroo (~)(~) = (1.1)(1.1)(§.. §.)... (927) 
2 k= 1 2k - 1 2k + 1 1 3 3 5 5 7 ., 

PROOF. Substitute 1/2 for x in (9.26a) and obtain 

'17
00

( 1) '17
00 1 1 

1 = 2"}I 1 - 4k2 = 2" }ll (1 - 2k )( 1 + 2k ) 

which implies (9.27). 

10. Some Special Limits. Stirling's Formula 

We prove 

. (n!)222n 1) 
fi; = hm (2) , . - . 

n~+oo n. In (10.1) 

By Wallis' Product, we have 

'17 . n 2k 2k). 22.42 ••• (2n)2 
-= hm rr(--·-- = hm 
2 n~+oo k=l 2k - 1 2k + 1 n~+oo 32 .52 ••• (2n - 1)2(2n + 1) . 

Since 

(10.2) implies that 

lim ~=1, 
n~+oo 2n + 1 

'!!.. = lim 2n . [ 
22 . 42 ... (2n - 2)2 1 

2 n~+oo 32 .52 ... (2n-l)2 

Taking square roots, we have 

- = hm ..fin . if . ( 2 . 4 ... (2n - 2) ) 
2 n~ + 00 3· 5 ... (2n - 1) 

(10.2) 

(10.3) 
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We multiply the numerator and denominator inside the limit by 2· 
4 ... 2n - 2 and obtain 

r;; 22 . 42 ... (2n - 2)2 
V I = nl!~ 00 (2n - I)! an 

. 22 .42 ••• (2n - 2)\2n)2 an 
= hm 

n-->+ 00 (2n)! 2n 

. (22n(n!)2 1 1) 
= n-2~oo (2n)! [,i,ff . 

This yields, after multiplying both sides by ,ff, 

f; = hm -. (22n(n!)2 1 ) 
n--> + 00 (2n)! [,i 

and proves (10.1). 
We are now in a position to evaluate the number G2 in Prob. IX.9.3. 

There we offered the definition: If p is a positive integer, then 

Gp = pr( ~ )r( ~ ) ... r( ~ ), ( lOA) 

where r is the gamma function. This formula yields 

G2 = 2[( ! )r( ~ ) = 2r( ! ). ( 10.5) 

In Prob. IX.9.5 we have the result 

. (n! )Ppnp 
G =p hm p n-->+oo (np)!n(p-I)/2 ( 10.6) 

This implies that 

(10.7) 

This and (10.1) yield 

G2 = 2f;. ( 10.8) 

Using (10.5) we conclude from this that 

2f; = G2 = 2rO) 

and obtain 

(10.9) 

PROB. 10.1. Evaluate: rG) and r( - !). 
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PROB. 10.2. Prove: If n is a positive integer, then 

1 . 3 . 5 ... (2n - 1) 
f( n + 1) = 2n f; . 

Theorem 10.1. If x is not an integer, then 

f(x)f(I - x) = ~ . 
SIll'lTX 

(10.10) 

PROOF. By hypothesis, we have x E G))(f). Hence, 1 - x E G))(f). We recall 
that 

f(x) = lim gn(x), 
n~+oo 

where 

x _ nXn! 
gn ( ) - x (x + 1) . . . (x + n) x(I + x)(1 + x/2) ... (1 + x/n) . 

(10.11 ) 

Substituting 1 - x for x, we have 

n'-Xn! 
g(I-x)-~--~--~~~----~--

n - (1 - x)(2 - x)(3 - x) ... (n + 1 - x) 

(1 - x)(1 - x/2) ... (1 - x/n) n + 1 - x . 

From (10.11) and (10.12) we conclude that 

gn( x) gn(1 - x) 

(10.12) 

x(I + x)(1 + x/2) ... (1 + x/n)(1 - x)(1 - x/2) ... (1 - x/n) 

X 1 
n+I-x 

1 n 
x(I - x 2)(1 - x 2/4) ... (1 - x 2/n 2) n + 1 - x . 

For n ~ + 00 the second factor, n/(n + 1 - x), approaches 1. Hence, we 
have 

lim g (x)g (1 - x) = lim 1 
n-Hoo n n n .... +oo x(I _ x 2)(1 _ x 2/4) ... (1 _ x2/n2) 

=_7T_ 
sin'lTx 
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The last equality is a consequence of Theorem 9.1. Thus, we have 

r(x)r(1 - x) = lim gn(x) lim gn(l - x) 
n~ + 00 n-7 + 00 

= lim g (x)g (1 - x) = _'TT_ 
n--> + 00 n n sin'TTx 

if x is not an integer. This completes the proof. 

PROB. 10.3. Prove: If n is a positive integer, then 

(-2ff; rc - n) - -:;--::--:=---------,--::-~ 
"2 - I . 3 . 5 ... (2n - 1) 

We now prove an important asymptotic formula due to Stirling. 

Theorem 10.2 (Stirling's Formula). We have 

as n~+oo. ( 10.13) 

This formula is useful in approximating to n! for large values of n. Before 
proving this formula, we state and prove some preliminary lemmas. 

Lemma 10.1.* Let g be defined as 

g( x) = ( x + t )In( 1 + ~ ) - I for x> O. (10.14) 

g satisfies 

(10.15) 

PROOF. Use Prob. IX.5.5 to obtain 

1 1 + Y y3 y5 
Arctanhy = -In-- = y + - + - + 

2 l-y 3 5 
for [y[ < l. 

Lety = 1/(2x + 1), where x > O. We obtain 

11 ( 1) 1 1 1 "2 n 1 + x = 2x + 1 + 3(2x + 1)3 + 5(2x + 1)5 + ... 

Multiply both sides of the above by (2x + 1) and then subtract 1 from both 
sides. This yields 

g(X)=(x+l)ln(1+1)-I= 1 + 1 + ... 
2 x 3(2x + 1)2 5(2x + 1)4 

00 1 

= k~l (2k + 1)(2x + 1)2k 

1 001 2: > O. 
(2x + 1)2 k=l (2k + 1)(2x + 1)2(k-l) 

• E. Artin, loc. CIt. 
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Since k ~ I in the above, we have 2k + I ~ 3. Therefore, for each term in 
the last series, we have 

I < I 
(2k + I )(2x + I )2(k-J) 3(2x + I )2(k-J) 

It follows that 

o < g(x) < I ~ I k-J. 
3(2x + 1)2 k7:J 2 [(2x + I) ] 

(10.16) 

The series on the right is a geometric series with ratio r = 1/(2x + 1)2. 
It, therefore, sums to 

1- 1/(2x + 1)2 

Thus, (10.16) implies that 

(2x+ 1)2 

(2x + 1)2 - I 

(2x + 1)2 

4x(x + I) 

= (2X+I)2(1 __ I_). 
4 x x + I 

O<g(x) < lix - 12(xl+ I) 

This completes the proof. 

Lemma 10.2.* If g is defined as in (10.14), then the series 
00 

~ g(x+n), x >0, 
n=O 

(10.17) 

(10.18) 

converges to a real number p,(x), thereby defining a function p, on (0; + (0). 
This function p" which is defined as 

00 

p,(x)=~g(x+n) 
n=O 

is convex and satisfies 

I 
0< p,(x) < 12x 

for x> 0, (10.19) 

for x> o. (10.20) 

PROOF. By the definition of g and the last lemma, the terms of the series 
(10.19) are all positive. We also know from that lemma that 

0< g( x + k) < 112 ( x ! k - x + k + I ) 

for each nonnegative integer k. (10.21) 

* E. Artin, lac. cit. 
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Hence, the nth partial sum Sn of the series (10.18) satisfies 

n I n I I) 
o < Sn = k~O g( X + k) ,;;; 12 k~O ( X + k - x + k + I 

_1(1 1)<1 - 12 ~ - x + n + I 12x ( 10.22) 

for x > O. Thus, for each x > 0 the terms of (10.18) are positive, its partial 
sum sequence is bounded, so that the series converges. Writing JL(x) for the 
sum, we have 

I 0< JL(x) ,;;;-
12x 

for x> O. (10.23) 

This proves that the function JL defined in (10.19) satisfies (1 0.20). We prove 
below that JL is a convex function. 

We have 

g(x + n) = (x + n + ~ )In( 1 + x! n ) - 1, 
where x > 0 for each nonnegative integer n. Simple calculations show that 

g" (x + n) = 1 > 0 
2(x + n)2(x + n + 1)2 

for x > 0 and each nonnegative integer n. 

This proves that each term g(x + n) in the series (1O.l9) is convex (Prob. 
VIII.2.2). It follows that its partial sums are convex. Since the limit of a 
sequence of convex functions is convex (Prob. VIII.2.l4), the sum JL(x) is 
convex. This completes the proof. 

Lemma 10.3.* Let g be the function defined in (1O.l4) and JL the series 
00 

JL(x) = 2: g(x + n) for x> 0 (10.24) 
n=O 

dealt with in Lemma 10.2. The function f defined as 

for x> 0 (10.25) 

is log-convex and satisfies the functional equation 

f(x + 1) = xf(x) for x> O. (10.26) 

Moreover, the function h defined as f(x)lf(1) is identical with the gamma 
function on (0; + 00) and we have 

x x- 1/ 2e- Xef'(x) = f(l)f(x) = af(x) 

where f(1) = a is a positive constant. 

* E. Artin. loc. cit. 

for x> 0, (10.27) 
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PROOF. It follows from the definition of f that f(x) > 0 for x > 0 and that 

f(x + 1) 
f(x) 

for x> O. Clearly, 
00 00 

p.(x)-p.(x+l)= 2: g(x+n)- 2: g(x+n+l) 
n=O n=O 

00 00 

= 2: g(x+n)- 2: g(x+n)=g(x), 
n=O n=i 

so that 

p. ( x) - p. (x + 1) = ( x + 1 ) In( 1 + ~ ) - 1. 

This and (10.28) imply that 

f(x + 1) = x(1 + -xl )X+I/2e - 1el -(X+I/2)ln(I+I/X) 
f(x) 

( 1 )X+I/2 I 
=x l+x (1+1/x)x+I/2 

= x, 

(10.28) 

yielding (10.26). Since p. is convex, eft is log-convex. Now define the 
function A as 

A(x) = x x - I / 2e- x for x> O. 

It is easily checked that (InA (x»" > 0 for x > 0 and, hence, that the 
function A is log-convex. It follows that the product Ae ft is log-convex (d. 
Prob. VIII.7.l). Thus,fis log-convex. 

The function h, where 

h(x) = f(x) 
f(l) 

for x> 0, 

is a posltlve multiple of a log-convex function and IS, therefore, also 
log-convex. As can be verified, h satisfies 

h(x + 1) = xh(x) for x> 0 

and has the property h(l) = l. By Theorem IX.9.l, h is identical with the 
gamma function. Writingf(l) = a, we have f(x) = ah(x), so that 

for x> 0, 

where a is a positive constant. The proof is now complete. 

We are now in a position to prove Stirling's formula. 
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PROOF OF THEOREM 10.2. Use the notation adopted in the last three lemmas 
and begin with (10.27). After replacing x there by a positive integer n, we 
obtain 

nn-I/2e - ne ll(n) = af(n). 

Multiply both sides by n and arrive at 

so that 

nn+I/2e - ne ll(n) = anf(n) = af(n + 1) = an! 

, n 
ell(n) = an. e . 

nn+ 1/2 

By Lemma 10.2,0 < /L(n) 0( 1/12n. Hence, 

1 < ell(n) 0( e l/ 12n. 

This and (10.29) imply that 

1 < an! en 0( e l / 12n for each positive integer n. 
nn+ 1/2 

Since limn_Hooel/12n = 1, this yields 
,n 1 

lim ~=-. 
n~+oo nn+I/2 a 

Let Xn be the sequence defined as 
_ n!e n 

x ----n nn+I/2 

We just proved (see (10.31)) that 

for each n. 

r 1 nJIf 00 Xn = a ' 

( 10.29) 

(10.30) 

(10.31 ) 

(10.32) 

(10.33) 

where f(l) = a > O. Since <xn> converges to the positive limit 1/ a, so does 
each of its subsequences. Hence, limn~ + oox2n = 1/ a. Therefore, 

. x; 1 
hm -=-. 

n~+ 00 x2n a 
(10.34) 

But 

x; (n! /22n 
-= -12 
X2n (2n)! rn for each n. (10.35) 

By (10.1) and (10.34) this implies that 

X2 (n! )222n 
1 = lim _n =-12 lim =&. 
a n~+oo X2n n~+oo (2n)! rn 

This evaluates a. Using this result in (10.31) we find that 
, n 

lim ~=& 
n~+oo nn+I/2 (10.36) 
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or that 
lim __ -,-,n..;...! -- = 1. 

n~+ 00 ffii e-nnn+ 1/2 

This proves Theorem 10.2. 
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Remark 10.1. In the notation used in the last three lemmas we have by the 
proof of Stirling's formula 

a = J(l) = _1_ . 
ffii 

By the definition of J (see (10.25», this implies that 

_1_ = e-lel'(l) and, therefore, p.(l) = In _e_ . 

ffii ffii 
By (10.20) we have p.(1) > O. Hence, (10.38) yields 

e >ffii . 
Using (10.19) of Lemma 10.2, we obtain 

00 00 

In_e_=p.(l)= L g(l+n)= L g(n). 
ffii n=O n=1 

This and the definition of gin (10.14) yield 

~ [(n+-21)ln(1+1)-1]=ln_e . 
n=l n ffii 

PROB. 10.4. Prove: r(x)-ffii e -xxx-I/2 as x ~ + 00. 

11. Evaluation of Certain Constants Associated 
with the Gamma Function 

( 10.37) 

(10.38) 

(10.39) 

(10.40) 

(10.41 ) 

We can now evaluate the constants ap defined in Prob. IX.9.3 and the limits 
associated with them there and in Probs. 9.4-9.6. In Prob. IX.9.3 we 
defined 

ap = pr( ~ )r( ~ ) ... r( ~ ), 
where p is a positive integer. In Prob. IX.9.5 we found that 

. (n! lpnp 

a =p hm 
p n~+oo (np)!n(p-I)/2 

Now consider the sequence <xn >, where 

n!e n 
x=--

n nn+ 1/2 
for each n. 

(ILl) 

( 11.2) 

( 11.3) 
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This sequence was defined in (10.32). In (10.36) we saw that 

limxn =&. ( 11.4) 

Since (xnp) = (xp,x2p ' ... ) is a subsequence of (xn), we have xnp ~& 
as n ~ + 00. Therefore, 

( 11.5) 

On the other hand, by the definition of X n , we know that 

xt (n!)Pe Pn (nprp+ 1/2 (n!)Ppnp//2 

xnp npn + p/2 ' (np)!e Pn (np)!n(p-l)/2' 

From this it follows readily that 

p (n!. )Ppnp -1/2 Xn p - = --'-------,----;-:c 
Xnp (np)!n(P-l)/2· 

( 11.6) 

Now take limits as n ~ + 00. Use (11.5) to obtain the limit of the left-hand 
side and (11.2) to obtain the limit of the right-hand side and conclude that 

a p-I/2(2'lT)(P-l)/2= 2 . 
P 

This implies that 

ap = p 1/2(2'lT)(P-l)/2. 

This combines with (11.1) to yield 

//\2'lT)(p-l)/2 = pr( ~ )r( ~ ) ... r( ~ ). 
For example, we have a l = 1. For p = 2, this yields 

21/2(2'lT)1/2= 2r(1) 

and, therefore, as already noted, that 

For p = 3, (11.8) yields 

r(1)=G. 

ro)ro) = 2'lT . 
f3 

( 11.7) 

( 11.8) 

( 11.9) 

Theorem 11.1 (Gauss' Multiplication Formula). If X> 0 and p is a positive 
integer, then 

r(.:!. )r( x + 1 ) ... r( x + p - 1 ) = (2'lT)(p-I)/2 rex). 
p p p px-l/2 
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PROOF. Turn to Prob. IX.9.3 to obtain 

The conclusion follows from this and (11.7). 

Corollary (Legendre's Relation). If x > 0, then 

r( 1 )r( x; I ) = 21!-, rex). 

PROOF. Use Gauss' Multiplication Formula with p = 2 (d. Prob. IX.9.6). 

y 

(I 
I 

Figure 11.1 



CHAPTER XI 

More on Series: Sequences and Series 
of Functions 

1. Introduction 

We began studying infinite series in Chapter IV. They were used to define 
the function exp and the sine and cosine functions. Not enough properties 
of exp and the trigonometric functions were derived in Chapter IV to use 
them in examples and problems illustrating the theorems on infinite series 
gathered there. As for the natural logarithm, this function was first defined 
in a later chapter, so we did not consider its series in Chapter IV. In this 
chapter, among other things, we fill this gap in our development 
of introductory analysis. We ask the reader to review the material in 
Chapter IV. 

EXAMPLE 1.1. Consider the infinite series 

00 1 
~-

n=2 Inn' 
(1.1) 

(Here we sum from n = 2 on because In 1 = 0.) We first note that 0 < Inn 
< n - 1 < n for n ;;;. 2 (explain) so that 

1 <_I_ 
n Inn 

for n;;;' 2. (1.2) 

Comparing (1.1) with the harmonic series, we gather from (1.2) that the 
series (1.1) diverges since the harmonic series does. 
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PROB. 1.1 (a). Prove: If p E IR, then 

00 1 
~-

n=2 (lnnl 

diverges. 

PROB. l.l(b). Prove: 2:(1 - (lnn)/n) diverges. 

EXAMPLE 1.2. We test 

~ sin('17ln) 

n= 1 n 
(1.3) 

for convergence. We have 

sin( '17 In) I n 1 sin( '17 In) sin( '17 In) 
----=-'17 ='17 ~'17 

1/n2 n '17ln2 '17ln 
as n~ +00. 

Since 2:~=I(1ln2) converges, this implies that the series (1.3) converges (see 
the Corollary of Theorem IVA.3). 

Remark 1.1. The use of the ratio and root tests for convergence of series is 
fairly straightforward. The reader can review this material by turning to 
Section IV.5. 

PROB. 1.2. Test 2:an for convergence if for each n 

(1) an = e1/ nln2, 
(2) an = f,l+T - Vn , 
(3) an = (f,l+T - Vn ) In, 
(4) an = (f,l+T - Vn)/n 2, 

(5) an = (ln~) I n2, 

(6) an =nfP - 1,p > 0, 
(7) an = (1 - (lnn)/nr. 

PROB. 1.3. Test 2:an for convergence if 

(1) an = l/(lnnr for n ;;. 2, 
(2) an = 2nn!/nn for each n. 

2. Cauchy's Condensation Test 

The test which we give in this section for convergence of series is applicable 
to infinite series whose terms are nonnegative and monotonically decreas­
ing. We first prove a lemma. 
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Lemma 2.1. If <an> is a monotonically decreasing sequence of nonnegative 
numbers, then, for each positive integer n, the nth partial sum of ~~= Ian 
satisfies 

and 

n 

2S2" ~ ~ 2ka2k 
k=O 

n-\ 

S2"_1 ,;;; ~ 2ka2k. 
k=O 

(2.1 a) 

(2.lb) 

PROOF. Each part will be proved by induction. We prove (2.la) first. First 
note that 

so that 
\ 

2S2 ~ a l + 2a2 = ~ 2ka2k, 
k=O 

thus, (2.la) holds for n = 1. Similarly, since a3 ~ a4, we have a3 + a4 ~ 2a4' 
so that 

implying 
2 

2S22 ~ a l + 2a2 + 22a4 = ~ 2ka2k . 
k=O 

This proves (2.la) for n = 2. Assume that (2.la) holds for some positive 
integer n. Consider 

2n + 1 

S2"+1 = S2" + ~ ak· 
k=2n+ \ 

On the right we have k ,;;; 2n + 1 in the second term and, therefore, ak ~ a2"+1 
for all such k. Therefore, 

We have 

2n+1 2n+ 1 

S2"+1 = S2" + ~ ak ~ S2" + a2"+1 ~ 
k=2"+ \ k=2"+ \ 

2"+1 

~ 1=2n+I_2n=2n. 
k=2n+ \ 

This and (2.2) imply that 

S2"+1 ~ S2" + 2na2"+'· 

Multiply through by 2 to obtain 
n 

1. 

2S2"+1 ~ 2S2" + 2n+la2"+1 ~ ~ 2ka2k+ 2n+la2"+I. 
k=O 

(2.2) 
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(The second inequality is a consequence of the induction hypothesis.) It 
follows that 

n+1 
2S2"+1 ;;;. L: 2ka2k. 

k-O 
Thus, induction on n proves (2.1a). 

We prove (2.lb). Note that 
o 

S21-1 = SI = al = L: 2ka2k 
k=O 

1 

S22 _1 = S3 = al + a2 + a3 " al + 2a2 = L: 2ka2k. 
k=O 

This proves (2.1 b) for n = 1 and n = 2. Assume that (2.1 b) holds for some 
positive integer n and consider 

2"+1-1 

S2"+I-1 = S2n _1 + L: ak • 
k=2n 

(2.3) 

The second term on the right consists of a sum such that the k satisfies 
k ;;;. 2n. Since the sequence <an> is decreasing, this implies that ak " a2n for 
such k and, therefore, that 

2n+I_1 2n+I_1 

L: ak"a2n L: l=a2"[(2n+I-I)-(2n-I)]=2na2n. 
k=2n k=2" 

Using (2.3) and the induction hypothesis we see that 
n-I n 

S2n+ 1_ 1 " S2" _ 1 + 2na2n " L: 2ka2k + 2na2n = L: 2ka2k • 

k=O k=O 
Invoking induction, we see that (2.lb) holds for all positive integers n. 

Theorem 2.1 (Cauchy's Condensation Test). If <an> is a monotonically 
decreasing sequence of nonnegative numbers, then the series 

00 

L: an and 
n=1 

converge together or diverge together. 

PROOF. The theorem is an easy consequence of Lemma 2.1 and we ask the 
reader to carry out the details. 

Remark 2.1. The reason for calling the last theorem a "condensation" test is 
that establishment of convergence or divergence of a series by means of it is 
accomplished by deleting infinitely many of its terms. 
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EXAMPLE 2.1. We use Cauchy's Condensation Test to test the convergence 
of the series 

00 1 
~-

n=2 nlnn . 

By Theorem 2.1 this series diverges or converges according as does the 
series 

00 2k 00 I I 00 I 
~-=~-=-~-

n = \ 2kln 2k k = \ k In 2 In 2 k = \ k . 

Since the last series on the right is a positive multiple of the harmonic series 
and consequently diverges, the first series diverges. 

FROB. 2.1. Use Cauchy's Condensation Test to prove that 

00 I 
~P' 

n=\ n 
p>O, 

converges if p > I and diverges if pO;;; 1. (Cf. Examples IV.1.3 and IV.3.2.) 

PROB. 2.2. Prove that the series 
00 I 

n~2 n(lnnl 

converges if p > I and diverges if pO;;;I (cf. Example 2.1). 

FROB. 2.3. Prove: 
00 1 

n~3 (nlnn)(lnlnn) 
diverges. 

FROB. 2.4. Prove that the series 
00 1 
~ p' 

n=3 (nlnn)(lnlnn) 
p>O, 

diverges if p > 1 and converges if p 0;;; 1. 

FROB. 2.5. Prove: If n > 1 where n is an integer, then 

nil I 1 -< +-+-+···+--<n 2 2 3 2n - 1 . 

3. Gauss' Test 

Theorem 3.1. If 2. an has positive terms and we can express ani an + l' for each 
n, as 

(3.1 ) 
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where i\ > 1 and <An) is a bounded sequence, then an converges if r > 1 and 
diverges if r .;;; 1. 

PROOF. First assume that r =1= 1 so that r < 1 or r> 1, and apply the 
modified Raabe test (corollary of Theorem IV.6.2). We can write (3.1) as 

for each n. 

Hence, 

lim n(~ -I) = lim (r+~) = r. 
n~+oo an + 1 n~+oo nA-1 

The modified Raabe test yields the conclusion in this case. 
Assume that r = I so that (3.1) now has the form 

for each n. (3.2) 

This can be written 

for each n. 

We now multiply both sides by In n and then we add to both sides 
(n + I)lnn - (n + 1)ln(n + 1). The result is 

(nlnn) ~ - (n + I)ln(n + 1) = (n + 1)ln~1 +An I~~I 
an + 1 n + n 

= In 1 + An 1?~I' (3.3) 
(1 + Ijn)"+1 n" 

As n ~ + 00, the first term in the last expression approaches In e - I = - 1, 
while the second term approaches O. Hence, 

lim [(nlnn) ~ - (n + 1)ln(n + 1)] = -1. (3.4) 
n~+oo an + 1 

Therefore, there exists a positive integer N such that 

an 
(nlnn)--(n+ 1)ln(n+ 1)<0 for n>N. (3.5) 

an + 1 

The sequence < bn), where bn = n In n, has positive terms for n > 1. More­
over ~~=2bn-1 diverges (Example 2.1). By Kummer's test (Theorem IV.6.1), 
~an diverges. This proves the conclusion for r = 1. The proof is complete. 

EXAMPLE 3.1 (The Hypergeometric Series). The infinite series 

ab a(a + l)b(b + I) 2 

1 + -1' x + 2' ( 1) x .c .c c + 

+ a(a + 1)(a + 2)b(b + 1)(b + 2) x3 + . . . (3.6) 
3!c(c + 1)(c + 2) , 
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where a, b, and c are neither 0 nor negative integers, is called the 
hypergeometric series. (If c is equal to 0 or a negative integer the series is not 
defined. If a or b is equal to 0 or a negative integer, then tl;1e series 
terminates.) We first test for convergence using the ratio test. We can write 
the nth term an as 

Since 

we have 

(a + n)(b + n) 
l x, 

(n+ )(c+n) 

lim lan + II = Ixl 
n-Hoo lanl 

(3.7) 

(3.8) 

(3.9) 

and conclude that the series converges absolutely for Ixl < 1 and diverges 
for Ixl > 1. Next we investigate the case Ixl = 1. 

Consider the hypergeometric series for x = 1. We have from (3.8) 

an (n+l)(n+c) n2+(c+l)n+c 

an+ 1 (a+n)(b+n) n2+(a+b)n+ab 
for each n. (3.10) 

We wish to write this in the form (3.1) so that we can apply Theorem 3.1. 
By (3.10), 

( an ) [ n2 + (c + l)n + c 1 
n an+ 1 -1 =n n2+(a+b)n+ab-1 

(c + 1 - a - b)n 2 + (c - ab)n 

n2 + (a + b)n + ab 

"Dividing out" in the last expression we find that it can be written 

(3.11 ) 

(c + 1 - a - b)n2 + (c - ab)n An + B -'--------::----'-----'-----'---- = C + 1 - a - b + ----::-_..0=.-'------'-----'-__ 

n2 + (a + b)n + ab n2 + (a + b)n + ab ' 

(3.12) 

where 

A = c - ab - (a + b)( c + 1 - a - b) and B = abe a + b - c - 1). 

(3.13) 

Using (3.11) and (3.12) we can write 

~ = 1 + c + 1 - a - b + An + B 
an + 1 n n[n2+(a+b)n+ab] ' 

(3.14) 
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where A and B are defined as in (3.13) and are independent of n. We have 

An + B 1 ( A + Bin ) (3.15) 
n3+(a+b)nz+abn = nZ 1+(a+b)ln+ablnz . 

Putting 

A = A + Bin 
n 1+(a+b)ln+ ablnz 

for each n (3.16) 

and noting that An ~ A as n ~ + 00, we conclude that the sequence <An> is 
bounded. Thus, (3.14) can be written 

(3.17) 

where <An> is a bounded sequence of real numbers. Gauss' test (Theorem 
3.1) tells us that the hypergeometric series (3.6) converges for x = 1 if 
c + 1 - (a + b) > 1 and diverges if c + 1 - (a + b) « 1. Accordingly, the 
series 

1 + ab + a(a + l)b(b + 1) + a(a + 1)(a + 2)b(b + 1)(b + 2) + ... 
l!c 2!c(c+ 1) 3!c(c+ 1)(c+2) 

(3.18) 

converges if a + b < c and diverges if a + b ;;;. c. 
We now investigate the convergence of (3.6) when x = -1. In this case, 

by (3.8) 

~ = _ (n + 1)( c + n) 
an+1 (a+n)(b+n) 

nZ + (c + l)n + c 

nZ + (a + b)n + ab . 
(3.19) 

This implies that lim(anl an+ I) = -1 < O. From this we conclude that a 
positive integer NI exists such that ani an+ 1 < 0 for n> N 1• Accordingly, 
for n > N 1, the terms have opposite signs. Gauss' test cannot be used here. 
However, the situation can be analyzed from another point of view. 

We add 1 to both sides of (3.19) and obtain 

an (a + b - c - l)n + ab - c 
--+1= . 
an+ 1 nZ + (a + b)n + ab 

(3.20) 

If a + b > c + 1, then there exists a positive integer N2 such that for n > N z 
the numerator and denominator on the right-hand side of (3.20) are both 
positive. Combining this information with that at the end of the last 
paragraph, we have for n > max{N1,Nz} that 

which implies that 

~<1 
lan+d 

a 
1>-n-+l>O 

an + 1 

for n > max{ Nl ,Nz}. 
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In turn, this implies that lim an =1= 0 and, therefore, that the series diverges if 
a+b-c>1. 

Now consider the case a + b < c + 1, so that a + b - c - 1 < O. This 
implies that for sufficiently large n the fraction on the right in (3.20) is 
negative (explain). Since also ani an + 1 < 0 for sufficiently large n, it follows 
that for sufficiently large n 

I
an 1 an -=-->1 

an + 1 an + 1 
(3.21 ) 

This implies that for sufficiently large n 

lanl > lan + 11· (3.22) 

Thus, there exists an N such that for n > N the an's alternate in sign and 
their absolute values decrease monotonically. We prove that an ~ 0 as 
n ~ + 00 holds also (in the present case). We rewrite (3.19) as 

an+ 1 = _ n2 + (a + b)n + ab 

an n2+(c+l)n+c' 
By (3.21), 

0< -----<1 
n2 + (a + b)n + ab _ an+ 1 _I an+ 1 1 
n2 + (c + l)n + c an an 

(3.23) 

for sufficiently large n. 
Calculations similar to the ones already performed prove that we can 

write 

an+1 n2+(a+b)n+ab c+l-a-b En 
---= =1- +-

an n2 + (c + l)n + c n n2 
for each n, 

where <En> is a bounded sequence. Because of (3.23) this implies that for 
sufficiently large n 

0< 1 _ c + 1 - a - b + En = lan + 11 < 1. 
n n2 lanl 

(3.24) 

We can also show that we have 

En IEnl c + 1 - a - b - .;; -- < -"-----'--"--=-----"-
n2 n2 n 

for sufficiently large n. (3.25) 

We conclude that there exists a positive integer N such that (3.24) and 
(3.25) both hold for n > N. We have 

lanl = laNllaN+ d laN+ 21 
laNI laN+d 

and, therefore, by (3.24), 

lanl = laNI IT [1 - ( c + 1 - a - b _ E~ )] 
k=N+1 k k 

for n> N 

for n > N. (3.26) 
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Now the infinite product 

IT [1 - ( c + 1 - a - b _ E~ )] 
k=N+l k k 

converges if and only if 

~ (c + I - a - b _ Ek ) 
k=N+l k e 

converges (Theorem X.7.3). But 

k=N+l 

c+l-a-b 
k 

diverges and 

503 

(3.27) 

(3.28) 

converges. 

(Explain.) Therefore, (3.28) diverges. This implies that the infinite product 
(3.27) diverges. Because of (3.24) and (3.25), we have 

o < c + I - a - b _ Ek < 1 
k k 2 

for k> N. 

Because of the divergence of the infinite product (3.27) this tells us that it 
diverges to 0 (Remark X.7.2). It follows from (3.26) that an ~ 0 as n ~ + 00. 

The information we have thus far about L~=N+lan is that it is an 
alternating series and, therefore, converges. Consequently L~=oan con­
verges. We conclude that if a + b < c + 1, then the hypergeometric series 
converges for x = - 1. 

We examine the hypergeometric series for x = - 1 if a + b = c + l. In 
this case we have 

for each n. (3.29) 

Since <En> is bounded, there exists an M > 0 such that - En';;;; IEnl ,;;;; M 
for all n. Hence, - M ,;;;; En for all n. Let N be a positive integer such that 
N 2 > M. We have 

M EN --,;;;;-
N 2 N 2 ' 

M EN + 1 
-..::....::..~,;;;; 2'··· 
( N + 1)2 (N + 1) 

and, therefore, 

0< 1 - M ,;;;; 1 + EN = laN + 11 

N 2 N 2 laNI' 

0< 1 - M ,;;;; 1 + EN+l laN+ 21 

(N + 1)2 (N + 1)2 = laN+Ii ' 
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for n > N. Consequently, 

lanl = laNllaN+ll laN +21 lanl 
laNI laN+11 lan-Ii 

> laN I(l - ~ )(1 - M 2) ... (1 - M 2) (3.30) 
N (N+1) (n-1) 

for n > N. Now laNI > O. The factor of laNI in (3.29) is a product of 
nonzero factors and is a partial product of a convergent infinite product. 
Therefore, this factor approaches a positive limit P as n ~ + 00. From this 
and (3.29) it follows that liman =1= 0 and, hence, that the series diverges. We 
summarize the results of this example in: 

Theorem 3.2. The hypergeometric series (3.6) converges if Ixl < 1 and diverges 
if Ixl > 1. If x = 1, then (3.6) converges if a + b < c and diverges if a + b 
> c. If x = -1, then (3.6) converges if a + b - c < 1 and diverges if a + b -
c> 1. 

A function defined by the hypergeometric series is written as F( a, b, c; x) 
and is called a hypergeometric function. Thus, 

00 (a + ~ - 1 )( b + ~ - 1) n 

F(a,b,c;x) = 2: ( ) x 
n=O C + n - 1 

n 

(3.31 ) 

whenever the series on the right converges. Many of the functions we have 
already encountered are hypergeometric functions. 

PROB. 3.1. Prove: If Ixl < 1, then F(a,b,b; x) = (l - x)-a. 

PROB. 3.2. Prove: (1) If 0 < Ixl < 1, then 

In(l + x) 
F(l, 1,2; - x) = --­

x 
(2) F(l, 1,2; -1) converges and F(l, 1,2; -1) = In2. 

PROB. 3.3. Prove: If Ixl < Ibl, then 

F(a,b,a; ~) = (1- ~ r b
• 

Note, that if we fix x and take b such that b > Ixi. then 

lim F(a,b,a; ~b) = lim (1 - ~b )-b = ~x = eX. 
b-'> + 00 b-'> + 00 e 

PROB. 3.4. Prove: (l) F(a,b,a; 1) converges if b < 0 and in this case 
F(a, b, a; 1) = O. (2) If b > 0, then F(a, b, a; 1) diverges. 
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PROB. 3.5. Prove: (1) If b < 1, then F(a,b,a; -1) converges and in this case 
F(a,b,a; -1) = rh. (2) If b ;;;. 1, then F(a,b,a; -1) diverges. 

4. Pointwise and Uniform Convergence 

Let <In) be a sequence of real-valued functions all having a common 
domain D and let I be a real-valued function defined on A (;; D, where 
A =1= 0. If for each x E A, we have 

lim In(x) = I(x), 
n~+oo 

(4.1 ) 

then we say that <In) converges pointwise to Ion A. 
Actually, we have been dealing with this notion all along. For example, 

in one of our early results on limits we proved: 

for Ixl < l. 

Here the sequence of functions was « r), and the limit function was the 
constant function whose value is 0 for all x such that Ixl < l. Similarly, we 
defined the exponential function exp by means of 

n k 

expx = lim ~ xk ' 
n-'> + 00 k = I . 

for x E IR. 

Here the sequence of functions was <In)' where for each n 

n Xk x 2 xn 
J, (x) = ~ - = 1 + x + - + ... +-

n k=O k! 2! n! . 

For each fixed x E IR, the sequence of real numbers <In(x) converges and 
exp x is defined as its limit; the sequence <In) here converges pointwise to 
expo 

In terms of E'S and N's, if <In) converges pointwise to I on A, then for 
x E A and E > 0 there exists an N such that 

IIn(x) - I(x)1 < E. 

Usually, the N which exists for each E > 0 depends on X. If for each E > 0, 
the N depends on E only we say the convergence of <J,,) to I on A is 
uniform. We give an "official" definition. 

Del. 4.1. Let <In) be a sequence of real-valued functions all having a 
common domain D, and let I be defined on A (;; D where A =1= 0. We say 
that <In) converges uniformly to Ion A if and only if, for each E > 0, there 
exists an N, depending only on E > 0 such that if n > N, then 

IIn(x) - I(x)1 < E holds for all x EA. (4.2) 

(See Fig. 4.1.) When <In) converges uniformly to I on D, then we say 
simply that <In) converges uniformly to I, often writingJ" ~ I as n ~ + 00. 
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~f+' 

~~-, 
I I 
I I 

A x 

Figure 4.1 

Remark 4.1. We often dispense with < > and write "fn converges to f." 

Remark 4.2. Clearl), if fn converges uniformly to f then it converges to it 
pointwise. 

Remark 4.3. From the definition of uniform convergence (Def. 4.1) it 
should be clear that we may assume, when necessary, that the N in that 
definition is a positive integer. 

Remark 4.4. It also follows from Def. 4.1 that when fn ~ f as n ~ + 00 

uniformly on a set A, then an N exists such that if n> N, then the 
difference fn - f is bounded on A (see (4.2) and Theorem 4.1 below). 

Theorem 4.1. Let D be the common domain of a sequence of <fn> and a 
function f. Suppose that there exists an N such that for n > N, fn - f is 
bounded on D. Define Mn by means of 

Mn = sup Ifn(x) - f(x)1 for n> N. (4.3) 
xED 

If limn-->+ooMn = 0 for the sequence <Mn> defined in (4.3), then fn converges 
to f uniformly. Conversely, if fn converges to f uniformly, then there exists an 
N such that if n > N, then fn - f is bounded (on D) and the sequence <Mn> 
defined by means of (4.3) is such that limn--> + ooMn = o. 

PROOF. Suppose that an N exists such that for n > N, fn - f is bounded and 
limMn = 0 for the sequence <Mn> defined in (4.3). Let t: > 0 be given. 
There exists an N I such that if n > N I' then 0 ..;; Mn < t:. N I depends on t: 

alone, since the Mn are constants. For n > N I , 

Ifix) - f(x)1 ..;; Mn < t: for all xED. 

This implies that fn converges uniformly (on D). 
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Conversely, assume that fn converges to f uniformly (on D). Let £ > 0 be 
given. There exists an N such that if n > N, then 

Ij,,(x) - f(x)1 < I for all xED. 

Thus, for n > N, fn - f is bounded on D and 

o ~ Mn = sup Ifn(x) - f(x)1 ~ £/2 < £. 
xED 

This implies that lim Mn = O. 

EXAMPLE 4.1. For each positive integer n define fn as 

j,,(x) = xn for Ixl < 1. 

This sequence converges pointwise to the constant function 0 on (-1; 1). 
However, for each n we have 

Mn = sup Ixn- 01 = sup Ixln= 1. 
-l<x<l -l<x<l 

Thus, lim Mn = 1. By Theorem 4.1 we see that fn does not converge to its 
limit function uniformly on D. (If it did we would have limMn = 0.) We 
depictfl,f2' andf3 on [0, 1) in Fig. 4.2. 

EXAMPLE 4.2. Sometimes the convergence of fn to f is not uniform on one 
set but is uniform on another set. Let us consider the fn'S of the last 
example but examine their convergence on the set A = [ - xo, xo), where Xo 
is some fixed number such that 0 < Xo < 1. Write 

M: = sup Ixn- 01 = sup Ixln= Ixoln. 
-Xo<X<Xo -Xo<X<Xo 

Here M: = I xoln ~ 0 as n ~ + 00. Hence, by Theorem 4.1, fn ~ 0 uniformly 
onA. 

y 

/ 
Figure 4.2 
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y 

Figure 4.3 

EXAMPLE 4.3. For each positive integer n, let the sequence <fn) be defined 
by means of 

fn(x) = nxe- nx for x> O. 

Clearly, fn(O) = 0 and limn-HexJn(x) = 0, for x > O. Hence, 

lim fn(x) = lim n;" = O. 
n--> + 00 n--> + 00 e 

Thus, this sequence <f,,) tends to the constant function 0 pointwise on 
A = [0, + (0). The maximum of fn on [0, + (0) occurs at x = 1/ n and is 
equal to f" (1 / n) = e - I for each n. Therefore, 

Mn = sup If" (x) - 01 = sup Inxe-xi = max (nxe- nx ) = e- I , 
x>o x>O x>o 

so that limn-->+ooMn = e- I • As in Example 4.l, we conclude that the 
convergence is not uniform (see Fig. 4.3). 

PROB. 4.1. Letfn(x) = 1/(1 + x2n) for each positive integer n, where x E IR. 
What is the pointwise limit of this sequence? State whether or not the 
convergence is uniform. 

PROB. 4.2. Discuss the pointwise and uniform convergence of fn on [0, 
+ (0), where 

(1) f,,(x) = 1/(n + x); 
(2) fn(x) = nx2/(1 + nx); 
(3) f,,(x) = nx/(l + n2x); 
(4) f,,(x) = (sinnx)/n. 

Before we show why the notion of uniform convergence is important we 
state Cauchy's criterion for uniform convergence. 

Theorem 4.2. Let <f,,) be a sequence of functions defined on some domain D. 
A necessary and sufficient condition for this sequence to converge uniformly to 
some junction f on D is that for each f > 0, there exists an N depending on f 
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only such that if m > N and n > N, then 

Ifm(x) - j,,(x)1 < E for all xED. (4.4) 

PROOF. We prove the "if" part and ask the reader (see Prob. 4.3) to prove 
the "only if' part. 

Assume that for each E > 0 there exists an N depending on E only such 
that if m > Nand n > N then (4.4) holds. Fix xED. Since (4.4) holds for 
the sequence of numbers <fn(x», this sequence is a Cauchy sequence of 
real numbers. Consequently, it has a unique limit. Write this limit as f(x). 
The function f defined in this manner is the pointwise limit of fn' We prove 
that the convergence is uniform. Let E > 0 be given. There exists an N 
depending on only E such that if m > Nand n > N, then 

for all xED. 

Fix n > N and take some xED. We know that limm-> + 00 fm (x) = f(x). 
Therefore, 

If(x) - fn(x)1 = lim Ifm(x) - fn(x)1 ~ -2E < E, 
m->+oo 

where xED. Here N depends only on t: and for n > N we have 
If(x) - fn(x)1 < t: for xED. 

Thus, fn ~ f uniformly on D. 

PROB. 4.3. Prove: If <fn> converges uniformly to f on 6j), then for each 
E > 0, there exists an N such that if m > Nand n > N, then 

Ifm(x) - fn(x)1 < E for all xED. 

(This completes the proof of Theorem 4.2.) 

Remark 4.5. It is clear that we may assume, if necessary, that the N in 
Theorem 4.2 is a positive integer. 

The reason uniform convergence is important is that when <fn> con­
verges uniformly to the function f, some of the properties common to all 
the functions fn are transmitted to the limit function f. We shall see this in 
the next two theorems. We first define what we mean by the uniform 
boundedness of a sequence of functions. 

Def. 4.2. A sequence <fn> of real-valued functions is said to be uniformly 
bounded on a set D if and only if there exists an M > 0 such that for each n 

1j,,(x)1 ~ M for all xED. (4.5) 

For example, let j" be defined as 

J, (x) - 1 for each x E IR and for each n. n - 1 + x2n 
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For each n 

for all x E IR. 

Hence, this sequence of functions is uniformly bounded on IR. 

Theorem 4.3. If <fn> converges uniformly to f on a set D and each fn is 
bounded on D, then <j,,> is uniformly bounded on D and the limit function f is 
bounded on D. 

PROOF. Since the convergence on D is uniform, there exists a positive 
integer N not depending on x such that if m > Nand n > N, then 

for xED. (4.6) 

Fix m > N. By hypothesis, fm is bounded on D. Hence, there exists an 
M > 0 such that Ifm(x)1 " M for all xED. Take n > N and xED. We 
have 

Thus, 

1j,,(x)1 < 1+ M for all xED and for n > N. 

Hence, the sequence <fN+I,fN+2"" > is uniformly bounded on D by 
1+ M. But fl' ... ,fN are each bounded on D, and there exist M I, 
M2, ... ,MN such that for each k E p, ... ,N} 

Ifk(X)1 " Mk for all xED. 

Let M* = max{M I , ... , MN, 1+ M}. Clearly, for each positive integer n, 
we have 

for xED. 

It follows that <fn> is uniformly bounded on D. Since fn converges 
uniformly to f on D, it converges to f pointwise there and, by (4.6), 

If( x)1 = lim Ifn( x)1 " M* n--'>+oo for each xED. 

This proves that f is bounded on D, as claimed. 

EXAMPLE 4.4. Here we exhibit a sequence of bounded functions converging 
pointwise but not uniformly to a function f on D whose limit function is 
not bounded on D. Define 

n2 

fn(x) = 1+ n2x2 

Clearly, 

for each positive integer n and for 0 < x " 1 

for each positive integer n and for xED = (0, I ]. 
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Thus, eachfn is bounded on D. We have 

lim f, (x) = lim 
n~+oo n n~+oo 

= lim =-
n~+oo l/n2 + x 2 x 2 

for 0 < x ..;; 1. 

The limit function is f, where f(x) = x -2 for ° < x ..;; 1, and f is not 
bounded even though each fn is. Note that 

Ifn(x) - f(x)1 = I n2 
- ...L I 

1 + n2x 2 x 2 

x 2(1 + nx2) 
for each n and for x E(O, 1]. 

Thus, none of the differences fn - f is bounded on D. By Theorem 4.1, this 
sequence does not converge uniformly to f. 
EXAMPLE 4.5. The sequence <fn)' where 

fn(x) = 1 + .:!. for each n and for all x in (0, 1], 
x n 

converges uniformly to f, where f( x) = X-I for x E (0, 1]. This is so because 

Mn = sup Ifn(x) - f(x)1 = sup I.:!. I = 1 
O<x<\ O<x<\ n n 

and lim Mn = O. However, none of the fn is bounded. Thus, uniform 
convergence alone is not sufficient to guarantee uniform boundedness. 

Another property transmitted to the uniform limit of a sequence of 
functions is continuity. 

Theorem 4.4. If all the functions of a sequence <fn) are continuous on a set D 
and fn converges uniformly to the function f on D, then the limit function f is 
continuous on D. 

PROOF. Let Xo E D and let t: > ° be given. Since the convergence of fn to f is 
uniform (by hypothesis), there exists an N depending only on t: such that if 
n > N, then 

Ifn(x) - f(x)1 < j- for all xED. (4.7) 

Fix n > N and note that 

(4.8) 

By hypothesis, fn is continuous on D, and, thus, in particular, at Xo' There 
exists a 8 > 0 such that if xED and Ix - xol < 8, then 

Ifn(x) - fn(xo)1 < j- . (4.9) 
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Now take xED and Ix - xol < 8. Inequality (4.7), (4.8), and (4.9) hold for 
such x. Hence, 

I:: I:: I:: <3 + 3 + 3 = 1::. 

Thus, for each I:: > 0, there exists a 8 > 0 such that if xED and Ix - xol 
< 8, then If(x) - f(xo)1 < £. This implies that f is continuous at Xo. We 
proved that f is continuous at each Xo E D and, hence, that f is continuous 
on D. 

Remark 4.6. Mere pointwise continuity of a sequence of continuous func­
tion to a limit function does not guarantee the continuity of the limit 
function. For each positive integer n define 

gn(x) = xn 

Here D = [0, I). We have 

for 0 « x « 1. 

{
lim xn = 0 

n~+oo 

g(x) = I. n I 
1m x = 

n-j. + 00 

for 0 « x < I 

for x = 1. 

The sequence < gn> converges pointwise to g on [0,1) = D. Each gn is 
continuous but g is not continuous on D because it lacks continuity at 
x = 1. The sequence does not converge uniformly to g. 

Note that the pointwise limit of a sequence of continuous functions may 
be continuous even though the convergence is not uniform. The example of 
<fn> where fn(x) = xn for 0 < x < I for each n illustrations this. Here fn 
converges pointwise to the constant function 0 on (0; I). The limit function 
and all the fn's are continuous on (0; I). 

Remark 4.7. Theorem 4.4 states that if each fn is continuous on D and fn 
converges uniformly to f on D, then f is continuous. Thus, if for each n, 

for Xo E D (4.10) 

and 

lim fn(x) = f(x) 
n--->+ 00 

for xED (4.11 ) 

and the convergence is uniform, then 

lim f(x) = f(xo)· 
X~Xo 

(4.12) 

Because of (4.11), this yields 

lim ( lim fn(x)) = f(xo). 
x-joXo n--..:;. + 00 

(4.13) 

Taking limits as n ~ + 00 in (4.10), we have 

lim (lim fn(x)) = lim fn(xo) = f(xo). 
n~ + 00 x--+ Xo n--+ + 00 
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This and (4.13) imply that 

lim ( lim fn(x») = lim (lim f(x») = f(xo). 
X~Xo n~+ 00 n~+ 00 X~Xo 

(4.14) 

Thus, Theorem 4.4 states that the uniform convergence of fn to f permits 
the interchangeability of the order of limits indicated in (4.14). 

PROB. 4.4. Prove: If J" converges uniformly to f on a set D, then J" 
converges uniformly to f on any nonempty subset of D. 

PROB. 4.5. Prove: If fn converges uniformly to f on D and gn also converges 
uniformly to g on D, then (1) the sum sequence (J" + gn> converges 
uniformly to f + g on D and (2) the product sequence (fngn> converges 
uniformly to fg on D, provided each fn and gn is bounded on D. 

PROB. 4.6.* Prove: If J" converges uniformly to f on a set D and (xn> is a 
sequence of elements of D such that Xn ~ x as n ~ + 00, where also xED, 
then 

as n~ +00. 

PROB. 4.7.t For each positive integer n define 

Note that 

j, (x) - nx for x E [0, + 00). 
n - I+nx 

lim fn(x) = f(x) = {O 
n~+oo I 

if x = 0 
if x> O. 

Let Xn = I/n for each positive integer n. Note that limn-Hoo f(1/n) = 1/2 
and we have limn-HooJ,,(xn) 1= f(O), in spite of the fact that limn_Hooxn = O. 
Reconcile this result with Prob. 4.6. 

5. Applications to Power Series 

The notions of pointwise and uniform convergence defined in the last 
section for sequences of functions are readily extended to infinite series. Let 
2,fn be an infinite series of functions all defined on a set D, and let (Sn> be 
the sequence of partial sums of the series, that is, Sn = fl + . . . + J" for 
each n. Let S also be defined on D. We say that '2.':= dn converges pointwise 
to S on D if and only if Sn converges pointwise to S on D, i.e., if and 
only if 

for each xED. 

*1. Bass, Exercises in Mathematics, Academic Press, New York, 1966, pp. 54-55. 

t/bid. 
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We then write 
00 

S(x) = ~ Jk(x) for each x, 
k=l 

and call S the sum of the series. When Sn converges uniformly to Son D, 
we say that the series '2:.':- lin converges uniformly to its sum S on D. 

PROB. 5.1. Prove: If <fn> is a sequence of functions all of which are defined 
on D and continuous there and the series '2:.':= lin converges uniformly to 
its sum S on D, then S is continuous on D. 

To test the uniform convergence of series we often use Weierstrass' 
M-test. 

Theorem 5.1. If <In> is a sequence of functions all of which are defined in a 
set D and <Mn> is a sequence of positive numbers such that for each n 

IIn(x)I";Mn foreachnandforall xED (5.1) 

and such that ~':= IMn converges, then the infinite series ~':= lin converges 
uniformly to its sum on D. 

PROOF. Let E > 0 be given. Since '2:.':=IMn converges, there exists an N, 
depending only on E, such that for m > n > N, 

m 

~ Mk< E. (5.2) 
k=n+l 

Let <Sn> be the sequence of partial sums of the series. Bearing in mind (5.1) 
and (5.2), we obtain for m > n > N, 

ISm(x) - Sn(x)1 = i k=~+ I Jk(X)i..; k=~+ Ilfk(x)1 

for all xED. 

This implies that Sn converges uniformly on D and hence that the series 
converges uniformly on D. 

We now apply some of our theory to the study of power series. 
A power series is a series of the form 

00 

~ an(x - xor= ao + al(x - x o) + alx - xo)2+ . . . (5.3) 
n=O 

where <an> is a sequence of constants and Xo is some fixed number. Xo is 
called the center of the series. We refer to (5.3) as a power series in x - Xo' 
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When Xo = 0, (5.3) has the form 
00 

~ anx n= ao + a\x + a2x2 + ... 
n=O 

This is a power series in x. 

515 

(5.4) 

The development in this chapter will be confined to real series. Thus, the 
an's in (5.3), which we call the coefficients of the series will always be real. 
This applies to x and Xo also. 

As examples we have the series 

x 2 x 3 
eX = 1 + x + - + - + ... 

2! 3! ' 
x E JR, (5.5) 

. x 3 x 5 x 7 
SInX=X--+---+ ... 

3! 5! 7! 
x E JR, (5.6) 

x 2 X4 x 6 
cos x = 1- - + - - - + '" 

2! 4! 6! ' 
x E JR, (5.7) 

In(1 + x) = x _ x 2 + x 3 _ X4 + ... 
2 3 4 ' 

where -1<x";;l. (5.8) 

The series 

(x -It 
(5.9) + ... 

4 

(x-I)2 (x-Ii 
Inx=(x-I)- 2 + 3 

where 0 < x ,.;; 2, is an example of one not centered at x = O. 
Note that when x = xo, the power series (5.3) converges trivially to ao. 

Theorem 5.2. Given the power series L~=oanxn and XI =1= O. If the series 
converges for x = x I' then it converges absolutely for all x such that I xl 
< I x II. However, if the series diverges for x = X I' then it diverges for all x 
such that Ixl > Ixll. 

PROOF. Assume L~=oanxf converges. This implies limn_H ",,(anxD = 0 and, 
hence, that the sequence < anx f> is bounded. There exists an M > 0 such 
that, for all n, 

lanxfl < M. (5.10) 

Take x such that Ixl < lXII, so that 

O,.;;r=M<I 
IXII ' 

and consider the series L~=olanxnl. Since, by (5.10), 

lanxnl = lanXfl1 :1 In < Mr n for all n 

and L~=oMrn converges (why?), it follows that L~=olanxnl converges. 
Thus, L~=Oanxn converges absolutely. 
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Now assume ~~=oanxr diverges and take x such that Ixl > IXII. If 
~~=oanxn converges, it would follow by what was just proved that 
~~=oanxr converges, contradicting the assumption. We, therefore, con­
clude that ~~=oanxn diverges. This completes the proof. 

Remark 5.1. The power series (5.5), (5.6), and (5.7) converge for all x. On 
the other hand, (5.8) is a power series in x converging for Ixl < 1 and 
diverging for Ixl > 1. Thus, some power series in x converge for all x and 
some converge for certain x =1= 0 and diverge for other x =1= O. All power 
series in x converge for x = O. We exhibit a power series in x converging for 
x = 0 only. Consider 

00 

~ n! xn = 1 + x + 2! x + 3! x 3 + ... (5.11 ) 
n=O 

for some x =1= O. Write the nth term as an' We have an = n! xn for each n. 
Applying the ratio test to ~~=olanl we have 

lan+d = (n + l)lxl~ +00 as n~ +00. 
lanl 

There exists a positive integer N such that if n > N, then 

lan+d > 1 
lanl . 

We have 0 < laNI < laN+d < ... so that limn-Hooan = limn_HOOn!x n =1= O. 
Hence, the series (5.11) diverges for x =1= O. This means that x = 0 is the 
only point at which our series converges. 

Theorem 5.3. Given the power series ~~=oanxn. Let 

L = lim Viani . (5.12) 
n~+oo 

We have 0,.; L E IR*. If (1) L = + 00, then the series converges for x = 0 
only. If (2) L = 0, then the series converges absolutely for all x E IR. If (3) 
0< L < + 00, then the series converges absolutely if Ixl < L -1 and diverges 
iflxl>L-'. 

PROOF. Apply the root test (Theorem IV.5.2) to the series ~~=olanxnl to 
test for absolute convergence. Write 

An = lanxnl for each n. 

We know that 

lim VA:. = lim Vlanxnl = Ixl lim Viani = IxlL. (5.13) 
n~+oo n~+oo n~+oo 

By the root test and (5.13) we conclude: ~Ianxnl converges if IxlL < 1 and 
diverges if IxIL> 1. Examine the case IxIL> 1, where ~~=olanxnl di-

verges. In this case we see that lim VA:. > 1. It follows that VA:. > 1 for 
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infinitely many n. This implies that lanxnl = An > 1 for infinitely many n 
and, therefore, that limanx n =1= O. It follows that our (original) series di­
verges. Accordingly we may state: ~anxn converges absolutely if IxlL < 1 
and diverges if IxlL > 1. If L = + 00, then, for x =1= 0, IxlL > 1 and our 
series diverges. In this case we see that our series converges for x = 0 only. 
If L = 0, then IxlL = 0 < 1 for each x E IR and, therefore, our series 
converges for all x E IR. Finally assume that 0 < L < + 00. If I x I < L - I, 

we have IxlL < 1 and the series converges absolutely. If Ixl > L -I, then 
IxIL> 1 and the series diverges. This completes the proof. 

Corollary. Given the power series in ~~=oan(x - xoY, define L as in the 
above theorem. If (1) L = + 00, then the series converges for x = Xo only. If 
(2) L = 0, then the series converges for all x E IR. If (3) 0 < L < + 00, then 
the series converges absolutely if Ix - xol < L -I and diverges if Ix - xol 
<L- 1• 

PROOF. Write x' = x - Xo so that ~:=oan(x - xoY = ~~=oanxm. Apply the 
theorem to ~~=oanxm. When applied to ~~=oanxm, the three alternatives 
of the theorem give rise to the three alternatives of this corollary. 

Remark 5.2. Consider the power series ~~=oan(x - xoY' When L = 
limn __ Hoc Viani is such that 0 < L < + 00, the last corollary states that 
the series converges for all x such that Ix - xol < L - I, i.e., in the interval 
(xo - L -I; Xo + L -I) and diverges for x such that Ix - xol > L -I, i.e., for 
x in (- 00; L -I) U (L -I; + 00). The interval (xo - L -I;XO + L -I) is called 
the interval of convergence and L - 1 is called the radius of convergence of the 
series. We repeat that R, where 

R = L -I = ___ -"'-__ _ (5.14) 
lim n-H oc V( an) 

is the radius of convergence of the series and (xo - R; Xo + R) is its interval 
of convergence (see Fig. 5.1). The above-mentioned corollary yields no 
information about the endpoints Xo ± R of the interval of convergence. We 
shall see below that some series exist which converge at neither of these 
endpoints; others at both endpoints. There are also series converging only 
at one of the endpoints. 

The three cases delineated in the corollary of Theorem 5.2 can be 
subsumed under one if we define 1/0 = + 00. We do this just in this 
corollary. Accordingly, if L = 0, then (5.14) yields R = + 00 and we say 

xo-R xo+R 
(II' "" "".' '" ""'11\ ~ ; , ) 111rtn ,.rrrn tTl fI j 7 

Xo 

Figure 5.1 
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that the radius of convergence is equal to + 00. We then have Xo - R 
= Xo - 00 = - 00 and Xo + R = Xo + 00 = + 00 so that, in this case, the 
interval of convergence becomes (xo - R; Xo + R) = ( - 00; + 00) = IR. This 
is consistent with case (2) of the corollary. When L = + 00, (S.14) yields 
R = 0 and we say the radius of convergence is R = O. In this case, the 
interval of convergence is (xo - R; Xo + R) = (xo; xo) = 0. Thus, in this 
case, there is no interval of convergence, and the series converges only for 
x = xo' This is consistent with alternative (1) of the corollary. Formula 
(S.14) is called the Cauchy-Hadamard formula for the radius of conver­
gence of a power series. 

Theorem 5.4. If the power series L:~=oAn(x - xor has nonzero coefficients 
and limn-Hoo(IAn+II/IAnl) exists in IR*, then the radius of convergence R of 
the series is given by 

IAnl 
R= lim -IA I' 

n~+oo n+1 (S.1S) 

PROOF. We recall Theorem IV.S.3. It states that if the senes L:an has 
positive terms, then 

(S.16) 

The proof of Theorem IV.S.3 shows that these inequalities concern them­
selves with the sequence <an> of positive numbers only and do not depend 
on the assumption that the an's are the terms of the series L:an • It follows 
from (S.16) that if I = lime an + I I an) exists in IR*, then lim nfi; exists and is 
equal to I so that lim(an + II an) = I = lim nfi; . Apply this to the sequence 

<IAn I>· We obtain 

1· IAn+11 = l' n'f'iA I ImlA,;! 1m VIAni' 

If lim(IAn+II/IAnl> > 0, then by (S.17) and Lemma III.8.2 we have 

. IAnl 1 
hm -IA I = --=--- = R. 

n+ I lim VIAni 

If lim(IAn+II/IAnl> = 0, then we have 

. IAnl 
hm--= +oo=R 

IAn+d 

in this case also. 

EXAMPLE S.l. The geometric series 
00 

2: xn = I + x + x 2 + ... 
n=O 

(S.17) 
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has the interval of convergence ( - 1; 1) since limn-H 00 'VI an I = limn ..... + 00 1 
= 1 and 

R= lim _1_=1. 
n ..... +oo nflanl 

EXAMPLE 5.2. The logarithmic series 

00 n+l xn x 2 x 3 X4 
~(-l) -=x--+---+ 

n= 1 n 2 3 4 

has radius of convergence R = 1. Here lanl = 1/ n for each positive integer 
n so 

Viani =_1 
'Vn 

Since 'Vri ~ 1, we see that 

for each n. 

R = lim _1_ = lim'Vn = 1. 
Viani 

The interval of convergence is ( - 1; 1). This series converges for x = 1 and 
diverges for x = - 1. 

EXAMPLE 5.3. One can readily calculate that the series 
00 n 

~\ 
n=l n 

has radius of convergence R = 1. Its interval of convergence is ( - 1; 1) and 
it also converges for x = 1 and x = - 1. 

The set of all x at which a power series ~an(x - xo)n converges will be 
called its domain of convergence. The domain of convergence may include 
the endpoints of the interval of convergence I, and so may differ from it. 
For each x in the domain of convergence the power series converges to its 
sum P(x). The function P defined as 

00 

P(x) = ~ an(x - xo)n for x in the domain of convergence 
n=O 

of the power series (5.18) 

is the sum of the power series. A power series converges pointwise to its 
sum P in the domain of convergence. In the next theorem we prove that P 
is continuous on the interval of convergence. Before stating this theorem we 
point out that if the power series converges for x = Xo only, its sum is 
certainly continuous since its domain consists of Xo only and the latter is, 
therefore, an isolated point (Remark VI.1.l) of this domain (see Example 
VI.l.1). 
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Theorem 5.5. If the power series (5.18) has a radius of convergence R > 0, 
and a, b are real numbers such that Xo - R < a < b < Xo + R, then it 
converges uniformly on [a,b] to its sum P. This sum is a continuous function 
on the interval of convergence (xo - R; Xo + R) of the power series. 

PROOF. The power series converges absolutely at a and at b, which are 
points in the interval of convergence. Thus, 

00 00 

2: lanlla- xoln and 2: lanllb- xoln (5.19) 
n~O n~O 

converge. Let 

M = max{la - xol, Ib - xol}· (5.20) 

Clearly, M > O. Assume that a < x < b and obtain - M < a - Xo < x -
Xo < b - Xo < M, and, hence, Ix - xol < M. This proves [a,b] (;;; [xo - M, 
Xo + M]. Since the two series in (5.19) converge, we know that 

00 

2: lanlMn converges. (5.21 ) 
n~O 

Take x such that Ix - xol < M. For such x we have 

lan(x - xotl = lanllx - xoln < lanlMn. 

This and (5.21) imply that L~~oan(x - xoy converges uniformly on the set 
of all x such that Ix - xol < M, and, hence, on [xo - M,xo + M]. Since 
[a, b] (;;; [xo - M, Xo + M], we conclude (Prob. 4.4) that the power series 
(5.15) converges uniformly on [a, b]. The partial sum sequence < Pn> of the 
power series consists of polynomials in x, and, consequently, of functions 
which are continuous on [a,b] and by what was just proved, converge 
uniformly to the sum P of the power series on [a,b). By Theorem 4.4, Pis 
continuous on [a,b]. 

Remark 5.3. The situation is described by saying that the sum P of the 
power series is continuous on every bounded closed subinterval [a, b] 
contained in the interval (xo - R; Xo + R) of convergence. We prove that P 
is continuous on the interval of convergence. Take Xl E (xo - R; Xo + R) 
so that Xo - R < Xl < Xo + R. There exist real numbers a and b such that 
Xo - R < a < Xl < b < Xo + R. Since P is continuous on [a,b] and Xl E [a, 
b], it is continuous at Xl' Thus, P is continuous for each Xl E (xo - R; Xo + 
R) and, therefore, it is continuous on (xo - R; Xo + R). 

Having shown that the sum of a power series is continuous on the 
interval of convergence, it is natural to ask whether or not it is continuous 
at an endpoint of this interval when it converges at such a point. We shall 
deal with this question later. We also postpone the discussion of uniform 
convergence and differentiability. Instead we continue discussing uniform 
convergence and continuity in the next two sections. In the next section we 
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exploit Theorem 4.4 to prove the existence of a continuous function on IR 
which is nowhere differentiable. 

6. A Continuous But Nowhere Differentiable 
Function 

Weierstrass was the first to give an example of a function which was 
continuous for all x E IR and differentiable nowhere. Here we present an 
example of such a function due to Van der Waerden. 

The above-mentioned function is constructed with the aid of the function 
< )*, the distance to the nearest integer function defined in Example V.2.4. 
Recall: for each x E IR, <x)* is defined as 

<x)* = the distance from x to the integer nearest x. (6.1) 

(The graph of < )* is drawn in Fig. V.2.1.) 
In Example V.2.4, it is shown that 

<x)*=-t-I-t-x+[xJI for xEIR. (6.2) 

By means of this formula one can easily prove that < )* is a continuous 
function. To see this, we first recall that [ ], the greatest integer function, is 
continuous for each x which is not an integer and is continuous from the 
right for all x, including integers. It is left to prove that < )* is continuous 
from the left at x = n, where n is an integer. First note that [n] = nand, 
therefore, that 

<n)* = -t- l-t - n + [ n J 1 = -t- \-t- n + n\ = O. (6.3) 

Note that [x]~n - 1 as x~n -. Using this and (6.2) we have 

<x)* = -t-I-t- x + [x JI ~-t-I-t- n + (n - 1)1 

=-t-\--t\=O=<n)*, 

as x~n -. Thus, we have 

lim <x)*= <n)* = lim <x)*. 
x~n- x~n+ 

This means that < )* is continuous at each integer n. Since it is also 
continuous for each x which is not an integer, it is continuous for all x E IR. 

PROB. 6.1. Let m be some integer. Define g: IR ~ IR by means of 

g(x) = <mx)* for all x E IR. 

Prove that g is continuous on IR. 

To follow the reasoning it is useful to recall (Probs. V.2.l5 and V.2.l6) 
that 

<x + 1)* = <x)* (6.4a) 
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and that 

o ~ <x)* ~t for x E lit (6.4b) 

We now define Van der Waerden's function as 

f(x) = ~ <H),,~)* 
n=O 10 

(6.5) 

By (6.4b), we know that 

I <lO"x)* I 1 
IOn ~2.lOn for each nonnegative integer n. (6.6) 

Since 
00 

2: 2. IOn 
n=O 

obviously converges, it follows from (6.6) and the Weierstrass M-test for 
uniform convergence that the series on the right converges uniformly to its 
sum f on IR. The partial sum functions Sn are given by 

Sn(x) = ± (lo"x)* 
k=O 10" 

for each n and all x E IR. 

Each Sn is continuous on IR since it is a finite sum of constant multiples of 
functions which are continuous on IR (Prob. 6.1). Thus, the sum f of the 
series in (6.5) is a limit of a sequence of functions continuous on IR which 
converges to it uniformly on IR. Therefore, f is continuous on IR. In the next 
paragraph we prove that f is differentiable for no x E IR. 

We take x E IR and write it in its nonterminating decimal form so that 

x = N + .a)a2 ... , (6.7) 

where N is an integer and a)a2, ... are digits. Construct the sequence <hm ), 

where for each m 

h ={-Ilr 
m 1 

10m 

if am = 4 or 9 
(6.8) 

if am is neither 4 nor 9. 

Form 

(6.9) 

We examine the numerators of the terms of the last series for n ~ m and 
then for n < m. If n ~ m, then 

10"(x + hm) = lOnx + lOnhm = lOnx ± lOn- m. (6.10) 

Since the function < )* is periodic with period 1 (see (6.4a» and lOn- m is 
an integer, (6.10) gives us 

(lO"(x + hm)* = (lonx)* for n ~ m. 
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Therefore, the numerators of the terms of the series on the right in (6.9) all 
vanish for n ~ m, and (6.9) becomes 

f(x + hm} - f(x} m-\ (lO"(x + hm»* - <1Onx)* 
---'-----:--'--------'---'-- = ~ 

hm n=O 10"hm 
m-\ 

(6.11) 

= ~ ± 1Om - n«lO"(x + hm»* - (lO"x)*). 
n=O 

In the sum on the right here, we have n < m. To evaluate this sum we first 
multiply both sides of (6.7) by 10" and obtain 

(6.12) 

Here a)a2 ... an is not the product of the digits a),a2' ... , an' It is rather 
the decimal representation of the integer M = a)lO"-) + a210"-2 + ... + 
an' To avoid confusion, we write this integer as M = (a)a2 ... an)' and then 
write I) = 10nN + (a)a2 ... an) and 12 = I) + 1. Thus, (6.12) can be written 

(6.13) 

where I) is an integer. It follows from this that the integer nearest 1000x is I) 
or 12 = I) + 1, and that the distance from 1000x to the nearest integer is 

if .an + lan+2 .•. ..;; t 
(6.14) 

if .an+ )an+2 .•• > t . 
Now 

10"(x + hm) = 10"x + 10"hm = I) + .an+ )an+2 ... ± 1O-(m-n). (6.15) 

Since n < m here, we have am = an+(m-n) ' where m - n > O. We see that 
(6.15) can be written 

10"( x + hm) = I) + an+ )10-) + an+210-2 + ... 
+am1O-(m-n) + ... ± 1O-(m-n) 

= I) + an+ )10- 1 + an+210-2 + ... 
+ (am ± l)lo-(m-n) + .... 

The decimal .an+ )an +2 ••• is nonterminating. 

(6.16) 

Assume that .an+)an +2 ••• ..;; 1/2 =.4999 ... , so that an+1 ..;; 4. If 
am = 4 or 9, we have from (6.8) that 1000hm = - 1000hm = _1O-(m-n). There­
fore, the term (am ± l)1O-(m-n) in (6.16) is equal to (am - 1)1O-(m-n), and 
am - 1 = 3 or 8. This and (6.16) imply that 

II < 1000(x + hm} < I) +.an+)an+2 ··· ..;; II + t. 
It follows from this that I) is the integer nearest 1000(x + hm), and (6.16) 
yields 

(lO"(x + hm»* =.an+)an+2'" ± 1O-(m-n). (6.17) 

If am =1= 4 and am =1= 9, then (6.8) implies that 1000hm = 1O-(m-n). Therefore, 
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the term (am ± 1)1O-(m-n) in (6.16) is equal to (am + 1)1O-(m-n) and 
am + 1 .;;; 9. We then have 

I) < IOn(x + hm)';;; I) +.4999 ... = I) +!. 

Again the integer nearest IOn(x + hm) is I). Hence, (6.17) holds here also. 
Assume that .an+)an+2 . •• > 1/2. This implies an+) ;;;. 5. Let am = 4 or 

9, we know that IOnhm = _1O-(m-n), so the term (am ± I)IO-(m-n) in 
(6.16) is equal to (am - I)Io-(m-n). This implies that 

lOne x + hm ) < I) + .an + )an+2 .•. .;;; I) + 1. 

Suppose m > n + 1. Since an + I ;;;. 5, we also have 

I) +! .;;; IOn(x + hm). 

This and (6.18) imply that 

II +! .;;; Ion(x + hm ) < I) + 1, 

from which we conclude that 

(lon( x + hm)* = I - .an+ lan+2 ••• + 1O-(m-n). 

(6.18) 

(6.19) 

(6.20) 

Suppose m = n + 1, then am = an+ I ;;;. 5. Since am = 4 or 9, we have an+ I 
= am = 9. Again, 

and (6.20) holds in this case also. If am =1= 4 and am =1= 9, it is not difficult to 
see that (6.20) still remains valid. 

We summarize and state: If n < m, then 

(IOn(x+hm)*= .an+lan+2 ···-{ 
+ 1O-(m-n) 

1 - .an + )an+2 ••• + 1O-(m-n) 

This, in conjunction with (6.14), leads to: If n < m, then 

{ 
± 1O-(m -n) if .an + lan+2 ••• .;;; -21 

<lOn(x + hm)* - <lOnx)* = 
-+ Io-(m-n) )'f > I .an + l an + 2 • • • 2:' 

Therefore, if n < m, then 

± IOn-m«lOn(x + hm)* - (lonx)*) = ± 1. 

Substituting these in the sum on the right-hand side of (6.11), we have 

f(x + hm ) - f(x) m-) 

h = 2: en' 
m n=O 

(6.21 ) 

where en = ± 1, for 0 .;;; n .;;; m - 1 for each positive integer m. Here hm ~ 0, 
as m~ + 00 by the construction of <hm). However, the limit in (6.21) does 
not exist as m ~ + 00 since on the right there the sum is an odd integer if 
m - 1 is even, and an even integer if m - 1 is odd. Therefore, the sequence 
of numbers on the left cannot be a Cauchy sequence and diverges. Thus, f 
is differentiable for no x E IR, as claimed. 
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7. The Weierstrass Approximation Theorem 

In 1885 Weierstrass proved that a function which is continuous on a 
bounded closed interval can be approximated uniformly on this interval by 
polynomials. This result has many applications. We present here a proof 
due to Bernstein. We first state some preliminary results and invite the 
reader to prove some of these himself. 

PROB. 7.1. Prove: If n is a nonnegative integer, then 

for x E IR. 

Lemma 7.1. If x E IR and n is a positive integer, then 
n 

2: k(Z)xk(1 - xr- k= nx. 
k=l 

PROOF. We have 

n 

= x 2: k(n)xk-l(l_ xr-1-(k-l) 

k=l k 

n n(n - I) ... (n - k + I) 
= x 2: k , Xk-1(1 - xr-I-(k-I) 

k=1 k. 

(7.1 ) 

(7.2) 

n (n - I)(n - 2) ... (n - 1 - (k - I) + I) = nx 2: xk-1(1 - xr-1-(k-l) 

k=l (k-I)! 

= nx ± (n - l)xk-l(l_ xr-1-(k-l). 

k= I k - 1 

We now reindex in the last sum by writing} = k - I, then use Prob. 7.1, 
and conclude that 

n n-l 
2: (n - 1 )Xk-l(1 - xr-1-(k-l)= 2: (n ~ 1 )xj(1 - xr- 1- j= 1. 

k= 1 k - 1 j=O ) 

We see from this and the 12.:;t set of equalities that 

± k(n)xk(1 _ xr- k= nx ± (n - 1 )Xk-1(1_ xr-1-(k-l) 

k= 1 k k= 1 k - 1 

= nx(l) = nx. (7.3) 
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Remark 7.1. The last result is also valid when n = ° for then both sides of 
(7.2) vanish. Hence, Lemma 7.1 can be used also when x E IR and n is a 
nonnegative integer. 

Lemma 7.2. If x E IR and n is a positive integer, then 

(7.4) 

PROOF. As in the last lemma, we have 

± k2(n)xk(1 - xr~k= nx ± k(n - 1 )Xk~I(1 - xr~k. 
k=l k k=l k-I 

Now reindex in the sum on the right by writing) = k - 1 to obtain 

= nx(n5:1 )(n ~ 1 )xj(1 - xr~l~j 
J=O ) 

+ n5:1(n ~ l)xj(l_ xr~l~j) 
J=O } 

= nx«n - I)x + I) = nx(1 - x + nx). 

PROB. 7.2. Prove: If x E IR and n is a positive integer, then 
n 

L: (k - nx)2G)xk(1 - xr~k= nx(1 - x). (7.5) 
k=O 

(Hint: expand inside the summation sign to obtain (k - nxf = e -
2nkx + n2x 2, then apply the last two results.) 

PROB. 7.3. Prove: If x E IR and n is a positive integer, then 

Def. 7.1. Let f be defined on [0, I]. The Bernstein polynomial of order n for f, 
written as Bn(j; x), is defined as 

(7.6) 

EXAMPLE 7.1. Let U2 be the function defined as 

for xE[O,I]. 
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By (7.6), the above definition, and Lemma 7.2, we have 

for x E [0, 1]. 

Bn(u2 ;x) = k~O u2( ~ )(Z)xk(I - xr- k 

= k~O( ~ f(Z)xk(I - xr- k 

=...L ± k2(n)xk(I - xr- k 
n2 k=\ k 

= ...Lnx[I- x + nx] 
n2 

=~[I-x+nx] 

x(I - x) 2 
= +x 

n 

FROB. 7.4. Let Uo = I for x E [0, I]. Prove that 

Bn(uO'x) = I for XE[O,I]. 

527 

PROB. 7.5. What is the Bernstein polynomial Bn(u\; x) for u\' where 
u\(x) = x for all x E [0, 1]1 

Theorem 7.1. If f is continuous on [0, I], then the sequence <Bn> of its 
Bernstein polynomials converges uniformly to f on [0, 1]. 

PROOF. We wish to prove that for each t: > ° there exists an N, depending 
only on t:, such that if n > N, then 

IBn(f;x) - f(x)1 < t: for all x E [0, I J. 
Using Prob. 7.1, we have for x E [0, 1], 

IBn(f; x) - f(x)1 = IBn(f; x) - f(x) k~O (Z)xk(I - xr-kl 

=Ik~of( ~ )(Z)x\l- xr- k 

- f(x) k~O (Z)xk(I - xr-kl 

= Ik~Jf( ~) - f(X))(Z)xk(I - xr-kl 

~ k~O If( ~ ) - f(X)I(Z)xk(1 - xr- k. 

(7.7) 
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Thus, for each n, 

for x E [0,1]. 

(7.8) 

Since I is continuous on the bounded closed interval [0, 1], it is bounded 
there. Therefore, there exists an M > 0 such that 

I/(x)l..; M for all x E [0, 1 ]. (7.9) 

Now let f > 0 be given. Since I is continuous on the bounded closed 
interval [0, 1], it is uniformly continuous there. Therefore, there exists a 
I) > 0 depending only on f such that 

I/(x') - l(x")1 < ~ for x' and x" in [0, I] and lx' - x"I < I). (7.10) 

We take x E [0, 1]. Corresponding to the positive integer n, we consider the 
set "'n + 1 = {O, 1, ... , n} of nonnegative integers. We partition "'n + 1 into 
the sets An and Bn such that 

An = { k E "'n+ 111 ~ - xl < I)} and Bn = { k E "'n+ 111 ~ - xl ~ I) }. 
Clearly, An n Bn = 0 and An U Bn = "'n+ 1. We can now express the sum on 
the right-hand side of inequality (7.8) as 

k~oI/( ~ ) - f(X)\(~)xk(l - X)"-k 

= k~A \f( ~) - I(X)\G)xk(l - X)"-k 
n 

+ k~BJ/( ~) - I(X)\G)xk(l - X)"-k. (7.11) 

Let k E An. Because of (7.10), we have 

If( ~ ) - I( x)1 < ~ . 
Hence, the first sum on the right-hand side can be estimated as follows: 

L \f(k) - f(X)\(n)Xk(l- xr-k..;.!. L (n)xk(l_ X)"-k kEA n k 4 kEA k n n 

n 

..;.!. L (n)xk(l - X)"-k 
4 k=O k 

= .!. 1 
4 

=~ . (7.12) 
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We now turn to the second sum on the right-hand side of (7.11). If k E Bn , 

then k / n E [0, 1]. Since x is also in [0, I], we see that 

for k E Bn. (7.13) 

Thus, for k E Bn , we have 

~ If( ~) - f(X)I(~)xk(1 - xr- k" 2M ~ (~)xk(1 - Xr- k 
kERn kERn 

and 

This yields 
(k-nx)2 

2 2 > 1 
n"8 

(7.14) 

for k E Bn. (7.15) 

Consider the sum on the right-hand side of (7.14). From the above, using 
Prob. 7.3, we conclude that 

(k - nx)2 
~ (n)xk(1 - xr- k" ~ (n)xk(1 - Xr- k 

kERn k kERn n282 k 

= _1_ ~ (k - nX)2(n)xk(1 - Xr- k 
n282 kERn k 

,,_1_ ± (k - nxl(n)xk(1 - xt-k 
n282 k=O k 

1 n I ,,---=--n282 4 4n8 2 · 
This and (7.14) imply that 

~ If( k) - f(X)I(n)X k(1 - xr- k" 2M = ~ . (7.16) 
kERn n k 4n8 2 2n8 2 

Therefore, by (7.S), (7.11), (7.12), and (7.16), 

IBn(f; x) - f(x)1 "-4£ + M 2 for each n and for x E [0,1 J. (7.17) 
2n8 

Take n such that n > M/f.8 2• For such n, because of (7.17), we have 

I BnCf;x) - f(x)1 "f + I = ~£ < f. for all x E [0, I J. (7.1S) 

This completes the proof. 

Theorem 7.2 (Weierstrass' Approximation Theorem). If f is continuous on 
the bounded closed interval [a, b], then for each £ > 0, there exists a polyno-
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mial P such that 

If(x) - P(x)1 < € for all x E [ a, b ]. (7.19) 

PROOF. Let € > ° be given. For u E [0, 1], we obviously have a < a + u(b -
a) < b. Define g : [0, 1] ~ IR as 

g(u)=f(a+u(b-a»), for UE[O,l]. 

Clearly, g is continuous on [0,1]. By Theorem 7.1, we know that an n exists 
such that the Bernstein polynomial Bn(g; u) satisfies 

IBn(g; u) - g(u)1 < € for all u E [0, 1]. (7.20) 

Now take x E [a,b] so that a < x < band 

o x - a 1 <-b-- < . -a 
Substitute (x - a)/(b - a) for u in (7.20). Since 

g{ ~ = : ) = f( x), 

we see that 

for x E [ a, b]. 

Put 

P(x) = Bn{ g; ~ = :). 
P is a polynomial in x and, in view of (7.21), it satisfies (7.19). 

(7.21 ) 

(7.22) 

This theorem can be used to prove that a continuous periodic function of 
period 2'IT can be approximated uniformly by trigonometric polynomials 
(Def. X.6.1), a result also proved by Weierstrass. We state Weierstrass' 
result in Theorem 7.4 below. Before doing this we prove: 

Theorem 7.3. Iff is continuous on the interval [0, 'IT], then for each € > 0, there 
exists an even trigonometric polynomial T such that 

If(x) - T(x)1 < € for all x E [ 0, 'IT J. (7.23) 

PROOF. The cosine function maps [0, 'IT] onto [-1,1] in a one-to-one way. 
Write x = Arccos y for y E [ -1,1]. We have 0< Arccos y < 'IT. Define gas 
the composite f 0 Arccos. Thus, 

g(y) = f(Arccos y) for y E [ -1, 1]. (7.24) 

g is the composite of continuous functions and, therefore, continuous. 
Hence, if € > ° is given, there exists a polynomial P such that 

I g(y) - P(y)1 < € forall yE[-l,l]. 
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P is of the form 

so that 

If(Arccos y) - (aoyn + a1yn-l + ... + an)1 < € for all y E [ - 1, 1 J. 

(7.24') 

Since y = cosx, we obtain from this 

If(x)-(aocosnx+alcosn-lx+ ... +an)I<€ for all x E [0,1]. 

(7.25) 

By Theorem X.6.l, each coskx for k E {O, 1,2, ... , n} can be written as a 
finite sum of even trigonometric functions. It is clear from the definition of 
even trigonometric polynomials that any finite sum of constant multiples of 
such trigonometric polynomials is also an even trigonometric polynomial. 
Therefore, T, where 

T(x) = aocosnx + a1 cosn-1x + ... + an' 

is an even trigonometric polynomial. Substituting in (7.25), we obtain 
(7.23). 

Corollary. If f is an even junction, continuous on IR and periodic with period 
2'IT, then for each € > 0 there exists an even trigonometric polynomial T such 
that 

If(x) - T(x)1 < € for all x E IR. (7.26) 

PROOF. If € > 0 is given, there exists, by the theorem, an even trigonometric 
polynomial T such that 

If(x) - T(x)1 < € for all x E [0, 'IT J. (7.27) 

It is clear that T is also an even function since it is a sum of constant 
multiples of cosines. Take x E [ - 'IT, OJ so that - x E [0, 'lTj. From (7.27) we 
have 

If(x) - T(x)1 = If(-x) - T(-x)1 < € for x E [ - 'IT, OJ. (7.28) 

It follows that If(x) - T(x)1 < € holds for all x E [-'IT,'lTj. 
Now take x E IR. There exists an integer n such that 

- 'IT < X - 2n'IT < 'IT. 
Since f and T are periodic with period 2'IT and x - 2n'IT E [ - 'IT, 'IT), we 
obtain 

If(x) - T(x)1 = If(x - 2n'IT) - T(x - 2n'IT) I < € 

This completes the proof. 

for x E IR. 
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The corollary can be phrased as follows: An even function which is 
continuous on IR and is periodic with period 2'1T can be approximated 
uniformly by (even) trigonometric polynomials. 

PROB. 7.6. Prove: If T is a trigonometric polynomial, then g, defined as 

g(x) = T(x) sin x for xEIR, 

can also be written as a trigonometric polynomial (Hint: note the identities 

sin(n + 1)x - sin(n - 1)x 
sin x cos nx = --------=-----

2 
and 

.. cos(n - l)x - cos(n + I)X) 
smxsmnx = 2 . 

PROB. 7.7. Prove: Let a be some constant. If T is a trigonometric polyno­
mial, then so is the function h, where h(x) = T(x + a) for all x E IR. 

Theorem 7.4.* (Weierstrass). Iff is continuous on IR and periodic with period 
2'1T, then for each t: > 0 there exists a trigonometric polynomial T such that 

If(x) - T(x)1 < t: for all x E IR. (7.29) 

PROOF. Define the functions g and h by means of 

f(x) + fe-x) f(x)- fe-x) . 
g(x) = 2 ,h(x)= 2 smx for x E IR. 

(7.30) 

It is easy to see that g and h are even functions and from the hypothesis on 
f that they are periodic with period 2'1T. 

Let t: > 0 be given. By the last corollary, there exist even trigonometric 
polynomials T J and T2 such that 

Ig(x)-TJ(x)l<i and Ih(x)-T2(x)l<i for xEIR. (7.31) 

Multiply the first inequality by sin2x, the second by Isin xl, and obtain 

for x E IR (7.32) 

and 

for x E IR. (7.33) 

By Prob. 7.6 applied twice, the product TJ(x) sin2x can be written as a 
trigonometric polynomial in x. The product T2(x) sinx can also be written 

*1. Nathanson, Theory oj Functions oj a Real Variable, Frederick Ungar Publishing Co., New 
York, 1955, Vol. I, p. Ill. 
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that way. Let T3 be defined as 

T3(X) = TJ(x)sin2x + Tix)sinx for x E IR. (7.34) 

T3 can also be written as a trigonometric polynomial. Hence, by (7.33) 
and (7.34) we have 

Ig(x)sin2x + h(x)sinx - T3(x)l..;; i for x E IR, (7.35) 

where T3 is a trigonometric polynomial. Using (7.30) we see that 

g(x)sin2x + h(x)sinx = f(x)sin2x for x E IR. 

Substituting this in (7.35) we have 

If(x)sin2x - T3(x)l..;; i for x E IR. (7.36) 

Define gl as 

for all x E IR. 

gJ is periodic with period 277 (show this). It is also continuous on IR. Hence, 
we can manipulate gJ in the same way that we did g above and prove that 
there exists a trigonometric polynomial T4 such that 

If( x - ~ )sin2x - T4(X) 1 = I gJ(x)sin2x - T4(x)l..;; i 
for x E IR. 

We replace x here by x + 77/2 and obtain 

If(x)cos2X - T4( X + ~ )1..;; i for x E IR. (7.37) 

But by Prob. 7.7, Tix + 77/2) can be written as a trigonometric polynomial 
in x. Define T5 as T5(X) = Tix + 77/2) for x E IR and substitute in (7.38) 
to conclude that 

If(x)cos2x - T5(X)1 ..;; i 
Use this and (7.36) to arrive at 

for all x E IR. (7.37') 

lJ(x) - (T3(X) + T4(X))1 = If(x)sin2x + f(x)cos2x - (T3(X) + T4(X))1 

..;; If(x)sin2x - T3(X)1 + If(x)cos2x - T5(X)1 

..;;~+~ 
4 4 

=~ 
2 

for all x E IR. T5 = T3 + T4 is a trigonometrtc polynomial and by the last 
equality we have 

If(x) - T5(X)1 ..;; I < £ for all x E IR. 

This completes the proof. 
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8. Uniform Convergence and Differentiability 

Suppose <fn) is a sequence of functions each of which is differentiable on 
some set D. For each n, let f~ be the derivative of fn. We refer to the 
sequence <f~) of derivatives as the derived sequence of the sequence <fn>' 
Does the convergence of <fn) imply the convergence of its derived se­
quence or conversely? If both <fn> and its derived sequence <f~> converge, 
how are their limit functions related? We deal with these questions in this 
section. First we consider some examples. 

EXAMPLE 8.1. For each n, define fn as 

fn(x)=x+n for xEIR. 

It is clear that for no x E IR does <fn> converge. Since 

f~(x) = 1 for x E IR, 

we have limn - H 00 f~ (x) = 1 for each x E IR. The sequence <f~> consists of 
terms each of which is the constant function 1 on IR and converges (even 
uniformly) to the constant function 1. Thus, we have an example of a 
sequence which does not converge even though its derived sequence con­
verges uniformly. 

EXAMPLE 8.2. For each n, define gn' as 

gn(x) = Slllnnx 

Since, for each n, 

for x E IR. 

for x E IR, 

we have limn _H 00 gn(x) = 0 for x E IR. Thus, gn ~ 0 on IR. Also, for each n, 

g~(x) = cosnx for x E IR. 

The derived sequence < g~> does not converge on IR. It does not converge 
for x = 'TT and x = 'TT /2, for example. Here we have an example of a 
sequence which converges uniformly on a set, but whose derived sequence 
does not converge on that set. 

Theorem 8.1.* If <fn> consists of functions all of which are differentiable on 
the bounded closed interval [a, b] and for some c E [a, b] the sequence <fn (c» 
of constants converges and if its derived sequence <f~> converges uniformly on 
[a, b], then (1) <fn> converges uniformly to a function f on [a, b] which is 
differentiable on [a,b] and (2)f'(x) = limn_Hoof~(x)for x E [a,b]. 

PROOF. We first prove that <fn> converges uniformly on [a, b]. Let E > 0 be 
given. Since <f~> converges uniformly on [a, b], there exists an N l' depend-

" Burri1 and Knudsen, Real Variables, Holt, Rinehart, Winston, New York, 1969, p. 240. 
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ing only on E, such that if m > NI and n > N I, then 

If';'(x) - f~(x)1 < 2(b ~ a) for all x E [ a, b J. (8.1) 

There exists an N 2, depending only on f, such that if m > N2 and n > N 2, 
then 

(8.2) 

Let N = max{NI,N2}. N depends only on E because NI and N2 have this 
property. Take m > Nand n > N and apply the Mean-Value Theorem to 
fm - fn· For x E [a,b], there exists an Xo between x and c such that 

fm(x) - fn(x) - Um(c) - fn(c)) = U';'(xo) - f~(xo))(x - c). (8.3) 

Because of (8.1), we have If';'(xo) - f~(xo)1 < f/2(b - a). This and (8.3) 
imply that 

Ifm(x) - fn(x) - Um(c) - fn(c))1 ~ 2(b ~ a) Ix - 4 (8.4) 

Since x and c are in [a,b], we have Ix - cl/(b - a) ~ 1. From this and 
(8.4) we have 

(8.5) 

Note next that 

Ifm(x) - fn(x)1 ~ Ifm(x) - fn(x) - Um(c) - fn(c))1 + Ifm(c) - fn(c)l· 

This, (8.5), and (8.2) imply that 

Ifm(x) - j,,(x)1 < E. 

This holds for any m > Nand n > N and for x E [a,b]. From the Cauchy 
criterion for uniform convergence it follows that <fn> converges uniformly 
on [a,b]. Definefby means of 

f(x) = lim fn(x) for x E [a,bJ. (8.6) 
n--,>+oo 

Since the convergence of fn to f is uniform on [a, b] and each fn is 
continuous there, we know that f is continuous on [a, b). We prove that f is 
differentiable on [a, b]. 

Take some XI E [a,b]. For each n define Fn as 

if x*x I , xE[a,bJ 

if x = XI' 

(8.7) 

Since fn is differentiable, Fn is continuous on [a, b] and < Fn> is a sequence 
of functions each of which is continuous on [a, b]. By hypothesis, the 
sequence <f~(xI» converges. Let 

(8.8) 
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Define F on [a, b] as 

{ 
f(x) - f(x ,) 

F(x) = x - XI 

L 

(8.9) 

if x=x l . 

The sequence <Fn> converges pointwise to F on [a,b] since for X =!= XI' 

lim F (x) = lim fn(x) - fn(x ,) = f(x) - f(x ,) 
n~+oo n n~+oo X - XI X - XI 

and 

lim Fn(x l) = lim f~(x,) = L. 
n--) + 00 n--) + 00 

We prove that this convergence of Fn to F is uniform on [a, b]. Note that 
for each m and n and X =!= x" X E [a,b], we have 

Fm(x) _ Fn(x) = fm(x) - fn(x) - (fm(x I ) - fn(x ,) . 
X - XI 

By the Mean-Value Theorem applied to fm - fn' there exists a 7" between X 

and X I and, therefore, in [a, b] such that 

fm(x) - fn(x) - (fm(x I ) - fn(x ,)) = f:"(7") - f~(7"). 
X - XI 

This implies that if x =!= x I' then 

IFm(x) - Fn(x)1 = If:"(7") - f~(7")I· (8.10) 

For X = XI we have 

IFm(x l) - Fn(xl)1 = If:"(x ,) - f~(x,)I· (8.11 ) 

<f~> converges uniformly on [a,b]. Therefore, using the Cauchy criterion 
for uniform convergence, (8.10) and (8.11) imply that <Fn> converges 
uniformly on [a,b]. It follows that F= limn-HooFn is continuous on [a,b]. 
We have 

and, hence, 

lim f(x) - f(x ,) = L. 
X~XI X - XI 

Thus, f is differentiable at XI and 

J'(x l ) = L = lim f~(x,). 
n~+oo 

This holds for each XI in [a,b]. Therefore,fis differentiable in [a,b] and 

J'(x)= lim f~(x) for xE[a,bJ, 
n~+oo 

wheref(x) = limn-Hoofn(x) for X E [a,b]. This completes the proof. 
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Corollary. If limn - H oofn = f pointwise on some interval I, where each fn is 
differentiable on I and the derived sequence <f~> converges uniformly on every 
bounded closed subinterval of I, then f is differentiable on I and limn-> + 00 f~ 

= l' pointwise on I. 

PROOF. Exercise. 

If all the terms of the sequence <fn> are differentiable on some set D, 
then it is said to be termwise differentiable on D if its derived sequence 
converges on D and 

limf~ = 1', 
where f = limn-> + 00 fn on D. A termwise differentiable sequence of func­
tions is also said to be differentiable term by term, or element by element. If 
<fn> is termwise differentiable, then 

. dfn( x) df( x) 
hm --=--

n--->+oo dx dx' 
where f(x) = limn--->+oofn(x) so that 

. dfn(x) d . 
hm -- = - hm j,(x). n--->+oo dx dx n--->+oo n 

Accordingly, we say that <fn> is termwise differentiable if we can inter­
change the order of the operations of differentiation and passing to the 
limit. 

EXAMPLE 8.3. For each positive integer n define j" as 

fn(x) = I ::2X2 for x E[O, +00). 

Inspection shows that <fn> converges to ° pointwise on [0, + 00). We can 
even show that the convergence to ° is uniform. To see this note that 
(I - nx)2 ;;;. ° for all x and n so that for each n 

for all x E [0, + 00). 

Thus, ° .;;; fn(x) .;;; lin for all x E [0, + 00) and for each n. We see from 
this that fn ~ ° as n ~ + 00 uniformly on [0, + 00). Each fn is differentiable 
on [0, + (0), and 

2(1 - n2x 2) 
f~(x) = 2 for x E[O, +(0). 

(I + n2x 2) 

We have f~(O) = 2 and, for x > 0, 

, _ 2 (I I n2 - x 2) 
fn(x) - 2" 2 

n (l/n 2 + x 2) 
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so that f~(x)~O as n ~ + 00 for x > O. Thus, limn-Hoof~(x) = g(x), where 

g(x) = {~ if x = 0 
if x> O. 

The convergence of f~ to g as n ~ + 00 is not uniform (explain). We have 

JL ( lim j, (x») = JL (0) = 0 dx n~+oo n dx for all x;;. 0, 

while 

( lim dd fn(x») = 2, 
n~+oo x x=o 

so on [0, + 00) 

d (1' j, ( »)...J.. l' dfn(x) - 1m x,lm--dx n~+oo n n~+oo dx 

and <fn> is not differentiable termwise on [0, + 00). 

We state series formulations of Theorem 8.1 and its corollary. 

Theorem 8.2. If the terms of the infinite series 2::::= I f,. are all differentiable 
functions on the bounded closed interval [a, b] and for some Xo E [a, b], 
L ~ = I fn (xo) converges and the derived series L ~ = I f~ converges uniformly on 
[a,b], then (1) L~=dn converges uniformly to a sum function S on [a,b] 
which is differentiable there and (2) 

00 

S'(x) = ~ f~(x) for x E [ a, b]. 
n=! 

PROOF. Exercise. 

Corollary. If the terms of the series L~= dn are all differentiable on some 
interval and the series converges pointwise to some junction S on I, and the 
derived series Lf~ converges uniformly on every bounded subinterval of I, then 
S is differentiable on I and S' = Lf~ pointwise on I. 

PROOF. Exercise. 

EXAMPLE 8.4. Let 
00 

S(x) = ~ sinnx 
n3 

for x E IR. 
n=! 

Since for each n ;;. 1 

1 sinx I..;; -.L for all x E IR 
n3 n3 

(8.12) 

and L~=I(I/n3) converges, we conclude that series in (8.12) converges 
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uniformly to its sum function S on IR. The terms of the series 
00 

~ cos;ZX 
n=l n 

for x E IR (S.13) 

are the derivatives of the terms of the series (S.12) and this series also 
converges uniformly on IR. Therefore, the series (S.13) converges uniformly 
on every bounded closed interval. By the corollary of Theorem S.2, S is 
differentiable on IR and 

00 

S'(x) = ~ cos:x 
n=l n 

for x E IR. 

Application to the Gamma Function 

We can now obtain information about the differentiability of the gamma 
function. We use the Weierstrass product representation of f(x) confining 
ourselves to x > 0 at first. In Example X.7.4 we saw that 

I 00 x/k 
f(x) = e- Yx - IT e (S.14) 

xk=ll+x/k' 

where y is the Euler-Mascheroni constant 

y = lim (I + 1 + ... + 1 -Inn). (S.15) 
n~+oo 2 n 

By Theorem IX.S.l we know that f(x) > 0 if x> O. Assume that x > 0 so 
that f(x) > O. For each positive integer n we have 

n x/k IT e > 0 
k=ll+x/k 

and 
n e x / k 00 e x / k 

lim In IT - In IT -,--'=---...,...,..-
n~+oo k=1 1+ x/k - k=1 (1 + x/k) . 

(S.16) 

This and (S.14) imply that 
00 x/k 

Inf(x)=-yx-Inx+lnkI]1 (l~x/k) 
n 

= -yx-Inx+ lim ~ (~-ln(1 + ~)) 
n~+oo k=1 k k 

00 

= - yx -Inx + ~ (~ -In(1 + ~ )). 
k=1 k k 

Thus, 
00 

Inf(x)= -yx-lnx+ ~ (~-ln(I+~)) 
k=1 k k 

for x > O. (S.17) 
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The series 
00 

1/>( x) = L ( I - In( 1 + I )) 
k=1 

(8.18) 

converges. Its derived series is 

00 1 1 
k~1 (k - x + k) for x> O. (8.19) 

We prove that it converges uniformly on every interval of the form (0, b], 
where b > O. Let 0 < x .;;; b. For each term of (8.19) we have 

0<1 1 _ x x <..£.;;;~. 
k - x + k - k(x + k) kx + k 2 k 2 k 2 

This holds for k = 1,2,3, .... The series 

00 b L-
k=1 k 2 

(8.20) 

converges. It follows from (8.20), using the Weierstrass M-test, that the 
series (8.19) converges uniformly on the intervals (0, b] for each b > O. 
Therefore, if 0 < a < b, this series converges uniformly on [a,b]. Hence, it 
converges uniformly on every bounded subinterval of the interval (0; + 00). 
Applying the corollary of Theorem 8.2, we conclude that the series (8.18) is 
term wise differentiable on (0; + 00) and 

00(1 1) I/>'(x) = L ---
k=1 k x+k 

for x> O. (8.20') 

Turning to (8.17), we obtain from this that In rex) is differentiable on 
(0; + 00). But then r( x) is differentiable there. Moreover, we may differen­
tiate both sides of (8.17) to obtain 

r' ( x ) 1 00 ( 1 1) 
rex) = - y - x + k~1 k - x + k for x> O. (8.21 ) 

We wish to extend the validity of this equality to include negative values 
of x that are not negative integers. Towards this end, we write the series on 
the right-hand side of (8.21) as H(x) so that 

and also define 

00 1 1 
H(x) = k~l(k- X+k) (8.22) 

00 1 1 
G(x) = L ( k + 1 - x + k)' 

k=O 
(8.23) 

Suppose the last series converges for some x E Gj) (f) = IR - {O, - 1, 
-2, .. , }. We then have 

1 00 1 1 G(x)=l--+ L (---) 
x k=1 k+1 x+k 
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so that 

I 00 1 1 
G( x) + - = 1 + ~ (- - -) 

X k=1 k + 1 x + k 
(8.24) 

for such x. Note that 

00 1 1 
I = k~1 ( " - k + 1 ). 

Substitute this series for 1 in (8.24) and obtain 

1 00(1 I) 00 ( 1 1 
G(x) + x = k~1 ,,- k + I + k~1 k + 1 - x + k) 

00 1 I 

= k~1 ( " - x + k ) 

= H(x) 

so that 

G(x) + ! = H(x). 
x 

(8.25) 

Observe that we may reindex in the series H(x) and write 

00(1 1 00 1 1 H(X)=k~1 ,,- X+k)=k~o(k+l - x+k+l) 

00 ( I 1) 
= k~O k+ 1- (x+ 1)+k = G(x+ 1). 

This and (8.25) yield 

G(x) + ! = H(x) = G(x + I) 
x 

(8.26) 

so that 

G(x + 1) - G(x) = ! . 
x 

(8.27) 

We conclude from (8.26) that if G(x) converges for some x E 6J)(r), then 
H(x) converges, and so does G(x + 1). Also if G(y) converges for some 
y E 6J)(r), then G(y - 1) and H(y - 1) both converge. 

By (8.20') and (8.22) we have H(x) = <J>'(x). We already proved that the 
series <J>'(x) = H(x) converges for x > O. Thus, G(x) converges for x > O. 
Now assume that -1 < x < 0 so that 0 < x + 1. G(x + 1) then converges. 
By the concluding remarks of the last paragraph we see that G(x) and 
H(x) converge. It follows that G(x) and H(x) converge for - 1 < x < O. 
Continue and assume - 2 < x < - I so that - 1 < x + 1 < O. This implies 
that G(x + 1) converges and, therefore, that G(x) and H(x) converge for 
- 2 < x < - 1. Obviously this procedure can be continued inductively, 
leading to the conclusion that G(x) and H(x) = G(x + 1) converge for 
- n < x < - n + 1 for every positive integer n. These, of course, also 
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converge for x> o. Thus, G(x) and H(x) = G(x + 1) converge on G[)(f) 
= IR - {O, - 1, - 2, ... }. All this extends the meaning of the right-hand 
side of (8.21) to include negative values of x which are not negative 
integers. It is still left to prove that Eq. (8.21) persists for such values of x. 
We begin the proof in the next paragraph. 

Assume -1 < x < 0 so that x + 1 > O. From f(x + 1) = xf(x), we have 

f(x + 1) 
f( x) =. (8.28) 

x 
The right-hand side is differentiable. We know this because we proved that 
f is differentiable for x > O. Differentiating both sides of (8.28) we obtain 

f'(x + 1) f(x + 1) 
f'(x) = - 2 

X x 
f'(x + 1) f(x) 

x x 
Dividing both sides by f( x) and rearranging terms we get 

f'(x + 1) f'(x) 1 

f(x + 1) - f(x) = ~ for -1 < x < O. 

This also holds for x > 0, as the reader could show. 
Because of (8.22) and (8.25), we can write (8.21) as 

f'(x) 
f(x) = -y+ G(x) for x> O. 

(8.29) 

(8.30) 

Retaining the assumption - 1 < x < 0, we can replace x by x + 1 in 
(8.30) to obtain 

f'(x + 1) 
f(x+I) =-y+G(x+l) for -1 < x < O. (8.31 ) 

Now use (8.27) and (8.29) and substitute in (8.30). We have 

1 f'(x) 1 
~+ f(x) = -y+~+G(x). 

Therefore, (8.30) holds for -1 < x < O. It now follows that Eq. (8.21) holds 
for x E ( - 1; 0) U (0; + 00). This procedure can be used repeatedly to 
obtain that (8.21) holds for x E G[)(f) = IR - {O, -1, -2, ... }. In sum, we 
have the following result: 

Theorem 8.3. If x E G[)(f) = IR - {O, - 1, - 2, ... }, then f is differentiable 
and 

f' ( x ) 1 00 ( 1 I) 
f(x) = -y - ~ + k~1 k - x + k ' (8.32) 

the series on the right-hand side being convergent for x E G[)(f). 
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PROB. 8.1. Prove that f is twice differentiable for x E 6D(f) and that 

JL f'ex) = ~ I 
£.J for x E 6D(f). 

dx f(x) k=1(X+k)2 
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PROB. 8.2. Prove that f has derivatives of all orders and that for each 
positive integer n 

d n f'ex) ~ (l)n+l n! 
dxn f(x) = k~O (x + kr+ 1 

for x E 6D(f). 

PROB. 8.3. Let G be the function defined in (8.23). Prove: G(1) = 0, 
G(2) = I, and that if n is a positive integer, then 

I I G(n + I) = 1 + '2 + ... + n . 

PROB. 8.4. Define 

for x E 6D(f). 

Prove that 0/(1) = - y, where y is the Euler-Mascheroni constant. Also 
prove that 0/(1/2) = - y - 2In 2. 

PROB. 8.5. Using the notation of Prob. 8.4, prove: If ° < x < I, then 

0/(1 - x) - o/(x) = 7Tcohrx 

(Hint: use Theorem X.IO.I). 

An Application to the Trigonometric Functions 

Theorem X.9.1 states that 

sinx = x IT (I - ~22) 
n= 1 7T n 

for x E IR. 

Squaring, we have 

and, therefore, that 

(8.33) 

co ( 2 )2 Insin2x = Inx2 + ~ In 1 - ~ 2 if Xf£{0,±7T,±27T, ... }. 
n= 1 7T n 

(8.34) 
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Write the series on the right as 

00 ( 2 )2 if(X) = 2: In 1 - ~ 2 
n=l 'IT n 

(8.35) 

and its derived series as 

00 _ 4x 
hex) = 2: 2 2 2 

n=ln'lT-X 
for x f1. {±'IT, ±2'lT, ... }. (8.36) 

We seek information about the uniformity of the convergence of the 
series h(x). Take some a > 0 and Ixl <: a. Let N be some positive integer 
such that 2a/'lT < N. This implies that Ixl < 'lTN /2 and x 2 < N 2'lT 2 /4. For 
each n > N, we have x 2 < n2'lT 2/4. For such n's we have 

I - 4x I 41xl <: 4a 1 < ~. (8.37) 
n2'lT 2 - x 2 = n2'lT 2 - x 2 3n 2'lT 2 / 4 + n2'lT 2 /4- x 2 3'lT2n2 

Since the series 
00 

2:~ 
n=N+ I 3'lT2n2 

converges, (8.37) implies that the series 
00 

" -4x 
L.J 22 2 n=N+1 n'lT - X 

converges uniformly for Ixl <: a. It follows that the series 

ifl(X) = ~ In(l- ~22) 
n=N+l 'IT n 

(8.38) 

is differentiable term by term and its derivative is 
00 

" - 4x if; ( x) = L.J 2 2 2 
n=N+1 n'lT - X 

(8.39) 

for Ixl <: a. But the sum 

N ( 2 )2 if2( x) = 2: In 1 - ~ 2 
n=l n'lT 

(8.40) 

is a finite sum of differentiable terms if x f1. {± 'IT, ±2'lT, ... } and its 
derivative is 

N _ 4x 
if;( x) = 2: 2 2 2 . 

n=ln'lT-X 
Returning to (8.35), we now have 

if(x) = if2(X) + ifl(X) 

and that if is differentiable with 
00 

if/(X) = if;(x) + if;(x) = 2: 2 -; 4x 2 = hex) 
n=ln'lT-X 

(8.41 ) 

(8.42) 

(8.43) 
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for Ixl .;;; a, x tf. {± 'IT, ± 2'IT, ... }. But a is arbitrary. It follows that (8.43) 
holds for all x tf. {± 'IT, ± 2'IT, ... }. Therefore, we may differentiate (8.34) 
to obtain 

dlnsin2x = dlnx 2 + i: 4x 
dx dx n=1 x 2 - n2'IT2 . 

We obtain after dividing by 2 that 

_ 1 co 2x 
cotx - - + 2: 2 2 2 ' 

X n=lx-n'IT 
x tf. {O, ±'IT, ±2'IT, ... }. (8.44) 

It is also easy to see that replacing x by 'lTX in the last equality gives us 

1 co 2x 
'IT cot 'lTX = - + 2: 2 2 ' 

X n=1 X - n 
x tf. {O, ± 1, ±2, ... }. (8.45) 

PROB. 8.6. Obtain 

In cos2x = i: In( 1 _ x 2 2 )2. 
n= 1 (n - t) 'lT2 

Justify differentiating the above term by term and arrive at 

PROB. 8.7. Note that if x tf. {O, ±'IT, ±2'IT, ... }, then cscx = tan(x/2) + 
cotx. Prove: 

9. Application to Power Series 

Theorem 5.5 tells us that a power series having radius of convergence 
R > ° is continuous in its interval of convergence. We now investigate its 
differentiability there. 

Theorem 9.1. The two power series 
co co 

(1) 2: an(x - xof and (2) 2: nan(x - xo)n-l 
n=O n=1 

have the same radius of convergence and interval of convergence. 

PROOF. Multiply the second series by x - Xo to obtain the power series 
co 

(3) 2: nan(x - xof· 
n=1 
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The power series (2) converges for some x if and only if the power series 
(3) converges for that x. Hence, (2) and (3) have the same radius of 
convergence. We prove that (I) and (3) have the same radius of conver­
gence. 

For each positive integer n, we have VIaJ .;;; nVlnanl . This implies that 

(9.1 ) 

Now recall that lim n{ri = 1 (Example III.6.6). By Theorem 111.8.4 we have 

lim VI nan I .;;; lim (n{ri Viani) .;;; lim Vn lim Viani = lim Viani. 

This and (9.1) imply that 

lim nVlanl = lim Vlnanl . (9.2) 

By the definition of the radius of convergence of a power series, this implies 
that series (I) and (3) have the same radius of convergence. Hence, series 
(1) and (2) have the same radius of convergence. It now follows that (I) and 
(2) have the same interval of convergence. 

Remark 9.1. Note that series (2) in the last theorem is the derived series of 
series (1). We, therefore, may rephrase this theorem as 

Theorem 9.1'. A power series has the same radius of convergence and interval 
of convergence as its derived series. 

Theorem 9.2. If ~~=oan(x - xot has a nonzero radius of convergence Rand 
00 

Sex) = 2: an(x - xot for x E (Xo - R;xo + R), (9.3) 
n=O 

then S is differentiable on (xo - R; Xo + R) and 
00 

S'(x) = 2: nan(x - xor- 1• (9.4) 
n=l 

PROOF. By Theorem 5.5, the power series ~~=oan(x - xo)n converges to its 
sum Sex) for x E (xo - R; Xo + R). By Theorem 9.1', the derived series of 
our series has the same interval of convergence, (xo - R; Xo + R), as our 
series. Therefore, by Theorem 5.5, the derived power series converges 
uniformly on every bounded closed subinterval of (xo - R; Xo + R). By the 
corollary of Theorem 8.2, the series ~~=oan(x - xo)n is differentiable 
termwise on (xo - R; Xo + R), and equation (9.4) holds. This completes the 
proof. 

PROB. 9.1. Prove: 

.!L ( eX - 1 ) = ~ n xn-1 
dx x n=l(n+l)! . 
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Corollary. If the power series 
00 

S(X) = ~ an(x - Xo)n (9.5) 
n=O 

has a positive radius of convergence R, then its sum S has derivatives of all 
orders on the interval of convergence (xo - R; Xo + R). Moreover, the kth 
derivative S(k) of the sum S is obtained by differentiating the series term by 
term k times. In other words, if x E (xo - R; Xo + R), then 

00 

S(k)(X) = ~ n(n - 1) ... (n - k + l)an(x - xot- k (9.6) 
n=k 

for each positive integer k. 

PROOF. Exercise. Use induction on k. 

Remark 9.2. We extend the validity of the last corollary to include k = 0 
by interpreting S(O)(x) as S(x) and then by writing the expression 
n(n - 1) ... (n - k + 1) in the sum appearing in (9.6) as (n)k (see Section 
11.6 on factorials). We recall that (n)o = 1. With these extensions (9.6) 
becomes for k = 0 

00 00 

S(O)(x) = ~ (n)oan(x - x)n= ~ an(x - xof= S(x), 
n=O n=O 

which is true in view of the convention just adopted. Accordingly, under 
the hypothesis of the last corollary, we have for the sum S(x): 

00 

S(k)(X) = ~ (nhan(x - xot- k (9.7) 
n=k 

for each nonnegative integer k. Here, of course, 

(n)o = 1, 

(nh = n(n - 1) ... (n - k + 1) if k>1. 
(9.8) 

Remark 9.3. An alternate form for (9.6) is obtained from 
00 

S(k)(X) = ~ n(n - 1) ... (n - k + l)an(x - xot- k 
n=k 

_ 00 ,n(n - 1) ... (n - k + 1) _ n-k 
- n~k k. k! an(x xo) 

00 

_ k' ~ ( n ) ( _ )n-k - . ~ n _ k an x Xo . 
n=k 
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This is equivalent to 

S(k)(X) 

k! (9.9) 

Now reindex, in the above, by writing m = n - k and n = m + k. The 
above becomes 

(9.10) 

and is valid for all nonnegative integers k (Remark 9.2). This may be 
written 

Substitute Xo for x and obtain 

(9.11 ) 

where k is a nonnegative integer. This proves: 

Theorem 9.3. If the power series S(x) = L~=oan(x - xot has a radius of 
convergence R > 0, then 

s(n)(xo) 
an = n! 

for each nonnegative integer n, 

and 

00 s(n)(xo) n 
S(x) = 2: , (x-xo) 

n=O n. 
for each x in the interval of convergence. 

(9.11') 

Each power series is, therefore, the Taylor series of its sum. 

Remark 9.4. Clearly, Theorem 9.2 and its corollary retain their validity 
when the interval of convergence mentioned in them is replaced by any 
interval (xo - r; Xo + r), where 0 < r ..;; R. This is so because such an 
interval is a subset of the interval of convergence. 

Del. 9.1. We say that a function f can be expanded in a power series about 
the point Xo if and only if an r > 0 and a power series in x - Xo exist such 
that for each x in the interval (xo - r; Xo + r), f(x) is the sum of the power 
series evaluated at x. When f can be expanded in a power series about xo, 
we call f analytic at Xo' In other words f is analytic at Xo if and only if an 
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r > 0 and a power series ~an(x - xot exist such that 
00 

f(x) = L: an(x - xof for each x E (xo - r; Xo + r). 
n=O 

When f is analytic at Xo = 0, we say that it is analytic at the origin. 

Remark 9.5. When f is analytic at a point, it necessarily has derivatives of 
all orders at the point. However, Example IX.5.3 shows that the converse is 
false. There we saw that the function f defined as 

f(x) = {~_(I/x2) for x 7'" 0 
for x = 0 

has derivatives of all orders at x = O. As a matter of fact, we proved 
j<n) (0) = 0 for all nonnegative integers n. f is not analytic at O. Indeed, if f 
were analytic at x = 0, there would exist an r > 0 and a power series 
~~=oanxn in x such that 

00 

f(x) = L: anx n for x in (xo - r; Xo + r). 
n=O 

By Theorem 9.3, we would have 

f(n)(o) 
a =---=0 

n n! for all nonnegative integers n, (9.12) 

so we would have f(x) = 0 for all x in (xo - r; Xo + r). This is impossible in 
view of the fact that 

for x 7'" O. 

Thus, functions exist having derivatives of all orders at some point in their 
domain which are not analytic at this point. 

EXAMPLE 9.1. A polynomial P on IR, where 

P(x) = aoxn + alx n- I + ... + an-IX + an for each x E IR, 

is certainly analytic at the origin. P is the sum of a power series in x for 
which the coefficients of the terms containing x m are all equal to 0 for 
m > n. The power series collapses to a finite sum P(x) for all x E IR and 
certainly converges for each x E IR to P(x). By Theorem VII.4.I, we have 
for P: If a E IR, then 

n p(k)(a) 
P(x) = k~O k! (x - a)k for all x E IR. 

This shows that P is analytic not only at the origin but it is analytic for 
each a E IR. 
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PROB. 9.2. Prove: If in some interval I = (xo - r; Xo + r), where r > 0, f has 
derivatives of all orders, then f is analytic at Xo if and only if the remainder 
Rn+l(xO'x) in Taylor's formula of order n (see Remarks IX.4.I-4.2) ap­
proaches zero as n ~ + 00 for each x E I. 

FROB. 9.3. Prove: If in some interval I = (xo - r; Xo + r), where r > 0, f has 
derivatives of all orders and there exists an M > 0 such that lj<n)(x)1 .;;; M 
for all x E I for each positive integer n, then f is analytic at Xo (use Taylor's 
formula of order n with the Lagrange form of the remainder. This is found 
in Remark IX.4.4). 

The results in the last two problems supply us with methods of proving 
the analyticity of a function f at a point Xo. To use Prob. 9.2 we must 
obtain Taylor's formula of order n for fat Xo with the remainder Rn+ I(XO' 
x) and attempt to show that Rn+l(XO'X)~O as n~ + 00. This method was 
used in the examples in Sections IX.5 and IX.6. There we used somewhat 
different terminology, however. To relate the terminology in Chapter IX to 
the one used here, we observe that a power series in x - Xo is the Taylor 
series of its sum S(x) (Theorem 9.3). From this observation it follows that 
the definition of analyticity at a point may be phrased as follows: A 
function f having derivatives of all orders at a point Xo is analytic at Xo if 
and only if there exists an interval (xo - r; Xo + r), where r > 0, such that 
the Taylor series of fat Xo represents f(x) for each x in that interval. We 
recall that the Taylor series of fat Xo represents f(x) when f(x) is its sum 
for x. 

It is often not practical to use the method of Prob. 9.2 to prove 
analyticity of a function at a point. To use Taylor's formula of order n with 
any form of the remainder one needs to calculate all the derivatesf(n) (x) of 
f when these exist. This often leads to rather cumbersome formulas. In the 
examples below we use other methods. 

EXAMPLE 9.2. We proved in Chapter IX that 

1 00 

-- = 1 + x + x 2 + ... = ~ xn 
1 - x n=O 

forall xE(-I;I). (9.13) 

Accordingly, we say that the function f, defined as 

f(x) = _1_ for x =1= 1, 
1- x (9.14) 

is analytic at the origin. The proof of (9.13) did not use Taylor's formula 
with the remainder. Instead, we used the identity 

1 - xn 1 + + + n-I ---= X ••• x 
I-x 

for x =1= 1 

for each positive integer n. From this we obtained 

1_ 1_ - (1 + x + ... + x n - 1)1 = £L 
I-x I-x 
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and that for Ixi < 1, the left-hand side, and, therefore, also the right-hand 
side, tend to zero as n~ + 00. This constituted a proof of (9.13). f is not 
analytic at x = 1 since it is not defined there. Even if we assigned to f some 
value at 1, the resulting function would not be differentiable at 1 and, 
therefore, would not be analytic there. 

Is f analytic at Xo =1= I? To investigate this, we note that for Xo =1= 1, 

f(x) - 1 - 1 (9 15) 
- l-xo-(x-xo) -1-xo 1-(x-xo)/(I- xo)· . 

Let x be such that Ix - xol < 11 - xol so that Ix - xoi/ll - xol < 1 and 

-:--------''----,...,.-:--- = 1 + -- + -- + ... 1 x - Xo ( x - Xo )2 
1 - (x - xo) / (1 - xo) 1 - Xo 1 - Xo . 

Using (9.15), we conclude that 

f(x) = _1_ = _1_ + 1 (x - xo) + (x - XO)2+ ... 
1 - x 1 - Xo (1 - XO)2 (1 - XO)3 

00 1 n 

= n~o (1 _ xor+l (x - xo) (9.16) 

for Ix - xol < 11 - xol, where Xo =1= 1. We conclude that our f is analytic at 
Xo =1= 1. It is clear that the series on the right in (9.16) converges in the 
interval (xo - r; Xo + r), where r = (l - xo). Taylor's theorem with the 
remainder was not used here. As a matter of fact, we can use (9.16) to 
evaluate j<n)(xo). By Theorem 9.3, (9.16) implies that 

f (n)(x ) = n! a = n! 
o n (1 _ XOf+1 

We have shown that f is not only analytic at the origin, but it is analytic at 
each real number other than 1. We call a function analytic on a set if it is 
analytic at each point of the set. In Section 10 we shall prove that if a 
function is analytic at a point, then it is analytic in some f-neighborhood of 
the point. 

PROB. 9.4. Prove that f is analytic at the origin if 

(1) f(x) = (1 + x 2)/(1- x), x =1= 1; 
(2) f(x) = 1/(1 + x + X2); 
(3) f(x) = 1/(1 - X)2; 
(4) f(x) = ~1 - X2 , Ixi < 1 (Hint: see Prob. IX.6.3). 

Theorem 9.4. If 
00 

~ an(x - xof= 0 for all x E (xo - r; Xo + r), r > 0, 
n=O 

then an = 0 for all nonnegative integers n. 
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PROOF. Let 
00 

f(x) = 2: an(x - xof for all x E (xo - r; Xo + r). 
n~O 

By the hypothesis, f(x) = 0 for all x in the interval (xo - r; Xo + r). Hence, 
j<n)(x) = 0 for all x E (xo - r; Xo + r) and for each nonnegative integer n. 
On the other hand, the hypothesis also implies that the series has a nonzero 
radius of convergence. f is the sum of the series on the given interval. 
Hence, by Theorem 9.3 

0= j<n)( xo) 
n! 

for all nonnegative integers n, 

as claimed. 

Corollary. If some r > 0 exists such that 
00 00 

2: an(x - xof= 2: bn(x - xof for all x E (xo - r; Xo + r), 
n~O n~O 

then an = bn for all nonnegative integers n. 

PROOF. Exercise. 

This corollary is known as the identity or the uniqueness theorem for 
power series. Its use in applications is often referred to as the method of 
undetermined coefficients. We illustrate it in the next example. In that 
example we present another means of proving the analyticity of a function 
at a point. 

EXAMPLE 9.3. The method of testing for analyticity given here can be 
presented more briefly after integration is studied. We test f, where 

f(x) = Arctanx for each x E IR, 

for analyticity at the origin. Thus, we seek a power series ~anxn such that 
00 

f(x) = Arctanx = 2: anx n for some interval ( - r; r) = I. (9.17) 
n~O 

If such a series exists, then it must be differentiable term by term on I, so 
00 00 

f'( x) = _1_2 = 2: nanx n- 1 = 2: (n + 1 )an+ lX n 
l+x n~1 n~O 

for all x E I. 

(9.18) 

But 

for all x E ( - 1; 1). 
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Equating the two right-hand sides, we have 
00 00 

~ (n + l)an+lxn= ~ (_1)nx2n for xE(-l;l)n(r;r). (9.19) 
n=O n=O 

The intersection (-1; 1) n (- r; r) is again an interval (- r l ; r l ), where 
r l = min{1,r}.1t will be convenient to replace the "dummy variable" n in 
the second series by k, so that (9.19) can be written 

00 00 

~ (n + 1)an+1xn= ~ (_1)kx2k. (9.20) 
n=O k=O 

We apply the uniqueness theorem for the power series above and "equate 
coefficients." When n = 2k, k E {O, 1,2, ... }, the corresponding coeffi­
cients on opposite sides of (9.20) are equal. Hence, 

(2k + 1)a2k +1 = (_l)k for all k E {O, 1,2, ... }. (9.21 ) 

When n = 2k - 1, k E {I, 2, ... }, the coefficient of X 2k - 1 on the right­
hand side is equal to 0, and the corresponding coefficient on the left is 
([2k - 1] + 1)a[2k_1] + 1 = 2ka2k' Equating these coefficients we have 

2ka2k = 0 for all k E p, 2, 3, ... }, 

so that a2k = 0 for all positive integers k. By (9.21) we have 

( _l)k 
a2k + 1 = 2k + 1 for all nonnegative integers k. 

The series we are looking for is 

00 00 k x2k+1 x 3 x 5 x7 
n~o anxn= k~O (-1) 2k + 1 = x - 3 + 5 - T + .. '. (9.22) 

By the ratio test for absolute convergence, this series converges absolutely 
for Ixl < 1 and diverges for Ixl > 1. The interval of convergence of the 
series is (- 1; 1). The question that needs to be answered now is: does it 
converge to our f? 

Write the sum of the series as q,(x) so that 
00 2k+1 

</>(x) = ~ (_l)k_x__ forall xE(-l;l). (9.23) 
k=O 2k + 1 

By termwise differentiation, we have 

</>'(x) = ~ (_I)kx2k= _1_ = (Arctan x)' 
k=O 1 + x 2 

for all x E ( - 1; 1). 

(9.24) 

By Theorem VII.6.3, we obtain from (9.24) that a constant c exists such 
that 

</>( x) = Arctanx + c for all x E ( - 1; 1). (9.25) 

But </>(0) = 0 holds as is seen from (9.23). Substituting 0 for x in (9.25) we 
see that 0 = </>(0) = Arctan 0 + c = c and that c = O. We can now write 
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<I>(x) = Arctan x for all x E ( - 1; 1). This leaves us with the result 

x 3 x 5 x 7 
Arctanx = x - - + - - - + . . . for x E (- 1; 1). (9.26) 

357 
This proves that the Arctan function is analytic at the origin. We shall see 
later that this method can be shortened considerably. Since the validity of 
what was done here is confined to the open interval ( - 1; 1), we cannot, as 
yet, say anything about the endpoints except that the series on the right 
converges at both endpoints (why?). 

PROB. 9.5. Prove: 

x3 x 5 
Arctanh x = x + - + - + ... 

3 5 
if -1<x<1. 

10. Analyticity in a Neighborhood of XO. Criteria 
for Real Analyticity 

We first prove: 

Theorem 10.1. A function f is analytic at a point Xo in its domain if and only 
if there exist a real r > 0 and a positive real number A (r), not depending on x, 
such that f possesses derivatives of all orders on (xo - r; Xo + r) and 

rA (r)n! 
If (n)(x)1 ,,;; for all x E (xo - r; Xo + r) (10.1) 

(r -Ix - xolr+ 1 

and for each nonnegative integer n. 

PROOF. Assume the existence of an r and an A (r) and the validity of (10.1) 
for each nonnegative integer n. Take x such that 0 < Ix - xol < r /2 so that 

Ix - xol 
r - Ix - xol < 1. (10.2) 

By Taylor's theorem of order n with the Lagrange form of the remainder 
we have 

n fk)(xo) f(n+I)(c) 
f(x) = k~O k! (x - XO)k+ (n + I)! (x - xor+ I. 

This and (10.1) imply that 

I
n fk)(XO) kl rA(r)(n + I)! 

f(x) - k~O k! (x - xo) ,,;; (r -Ix - xolr+ 1 

Ix - xoln+1 

(n + I)! 

( 
Ix - xol )n+1 

= rA (r) r - Ix - xol ( 10.3) 
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Since (10.2) holds, we have 

( IX - xol )n+ 1 

r-Ix-xol ~O as n~ +00. 

Hence, by (10.3), we conclude that 

00 f{k)( xo) 
f(x) = k~O k! (x - XO)k (10.4) 

for Ix - xol < r /2. Therefore, f is analytic at Xo' 
Conversely, assume that f is analytic at xo' Therefore, f is expandable in 

a power series about Xo which has a nonzero radius of convergence Rand 
is infinitely differentiable in the interval of convergence (xo - R; Xo + R). 
Thus, a power series 2:an(x - xoy exists such that 

00 

f(x) = ~ an(x - xo)n for all x E (Xo - R; Xo + R). (10.5) 
n=O 

Using Remark 9.3 we have for each nonnegative integer k, 

f{k)(X) = k! ~ (n + k)an+k(x - xof. 
n=O k 

Taking absolute values, we obtain 

(10.6) 

Now take r such that 0 < r < R so that Xo + r is in the interval of 
convergence of the power series in (10.5). Then the series 

converges and we conclude that lanlrn~o as n~ +00. This implies that 
there exists a positive real number A (r), such that for each nonnegative 
integer n 

lanlrn < A (r) 

holds. Using this in (10.6), we arrive at 

00 ) Ix x In 
lJ<k)(x)1 = k! r- k ~ (n ~ k lan+kl ~n 0 rn+k 

n=O 

~ k! r-kA(r) n~o (n ~ k)1 x ~ Xo In. 

By Prob. IX.6.4, we know that 

1 _ ~ (n + k) I x - Xo In 
(1 -I(x - xo)/rl)k+l n=O n r 

(10.7) 
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and, hence, by (10.7) that 

If(k)(x)I';; k! r~k A (r) rA (r)k! 
(1 - Ix - xoi/ r)k+ I (r -Ix - xOl k + I 

for each nonnegative integer k. Replacing k by n yields (10.1). 

We apply this result to obtain: 

Theorem 10.2. Iff is analytic at a point Xo in its domain, then there exists an 
r > 0 such that f is analytic on the open interval (xo - r; Xo + r). 

PROOF. By Theorem 10.1, we know that there exists an r > 0 and a positive 
A (r) such that f possesses derivatives of all orders on (xo - r; Xo + r) and 

rA (r)n! 
lj<n)(x)I';;(r_lx_xolf+ 1 forall xE(xo-r;xo+r) (10.8) 

for each nonnegative integer n. Fix XI E (xo - r; Xo + r) so that IXI - xol 
< rand r - I x I - xol > O. Let 

(10.9) 

We have 

(10.10) 

We first prove that (XI - r l ; XI + r l ) ~ (xo - r; Xo + r). Assume that 
x E (xI - rl;x I + r l ) so that Ix - xd < r l • For such x, 

Ix - xol .;; Ix - xd + IXI - xol < r l + IXI - xol· (10.11) 

If (1) IXI - xol .;; r/2, then, by the first inequality in (10.10), 

r l + IXI - xol.;;1I x l- xol + Ix l - xol =ilxl - xol';;*r < r. (10.12) 

If (2) r/2 < IXI - xol < r, then, by the second inequality in (10.10), 

1 r l + IXI - xol .;; 2" (r -ix i - xol) + IXI - xol 

r IXI - xol r r 
= 2" + 2 < 2" + 2" = r. (10.13) 

In either case, 

r l + IXI - xol < r. (10.14) 

This and (10.11) imply that Ix - xol < r. We proved: If Ix - xII < r l , then 
Ix - xol < r and, hence, (XI - rl ; XI + rl ) ~ (xo - r; Xo + r). 

Now assume that Ix - xII < r l . By what was just proved, we know that 
X E (xo - r;xo + r) and, hence, that (10.8) holds for such x. Since (10.14) 
holds, we know that I X I - xol < r - r I' Since 

Ix - xol-Ix - xII.;; IXI - xol < r - r l , 
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we have for our x that 

0< r l - Ix - xII < r - Ix - xol. 

Hence, for each nonnegative integer n, 

1 < __ ----''--_---..,. 
(r -Ix - xolf+1 (rl -Ix - xllt+ 1 

This and (10.8) imply that 

If (n)(x)1 ~ rA (r)n! rA (r)n! 

(r -Ix - xolr+1 < (rl -Ix - xllf+ 1 (10.15) 

for x E (XI - r l ; XI + r l ) and for each nonnegative integer n. Thus, for 
each nonnegative integer n, 

for x E (XI - rl;x I + r l). 

r l ( (r / rl)A (r) )n! 

(rl - Ix - xlln+ I 

Writing B(rl) = (r / rl)A (r). We conclude that for each nonnegative 
integer n, we have an r l > 0 and a positive B(r l ) such that 

r B(r )n! 
If (n)(x)1 < I I f II ( + ) '" or a x E x I - r I ; X I r I 

(rl -Ix - xdf+1 

and for each nonnegative integer n. By Theorem 10.1, we conclude that f is 
analytic at x I' 

This proves that f is analytic for each XI E (xo - r; Xo + r) and, therefore, 
that it is analytic on (xo - r; Xo + r). 



CHAPTER XII 

Sequences and Series of Functions II 

1. Arithmetic Operations with Power Series 

We consider power series ~an(x - xot and ~bn(x - xot with respective 
radii of convergence Ra and Rb and write R = min{Ra,Rb}' We also 
assume that R > 0 so that Ra ;;;. R > 0 and Rb ;;;. R > O. 

For each x EO (xo - R; Xo + R), each of the above power series converges 
and so does 2:(an ± bn)(x - xoy. We have 

00 00 00 

~ an(x - xo)n± ~ bn(x - xot= ~ (an ± bn)(x - xo)n. (1.1) 
n=O n=O n=O 

As for the products of the above series, each converges absolutely for 
x EO (xo - R; Xo + R). They can, therefore, be multiplied by using Cauchy 
products (Def. IV.7.1 and Theorem IV.7.1). We have 

00 00 00 

~ an(x - xof ~ bn(x - xo)n= ~ Cn , (1.2) 
n=O n=O n=O 

where for each n 
n n 

cn = ~ ak(x - xo)kbn_k(x - xor- k= (x - xo)n ~ akbn- k . (1.3) 
k=O k=O 

Thus, 

n~Oan(X - xof n~o bn(x - xot= n~o C~O akbn- k )(X - xot 

for x EO (xo - R; Xo + R). (1.4) 
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(Here it is useful to note that 

n n 

~ akbn - k = ~ an-kbk (1.5) 
k=O k=O 

holds for each n.) 
Some examples of the product of power series were given in Sections IV.7 

and IV.8. We consider further examples. 

EXAMPLE 1.1. Suppose the power series in x, Lanx n, has a radius of 
convergence R > O. Let p = min{R, I}, so that 0 < p < Rand 0 < p < 1. 
Assume that Ixl < p. This implies Ixl < I and Ixl < r. Hence, the geometric 
series 

I co 
-- = 1 + x + x 2 + ... = ~ xn 
I-x n=O 

and the series we began with converge absolutely, and 

for Ixl < p. (1.6) 

The first few terms of the product are 

For example, by (1.6), we have 

EXAMPLE 1.2. We expand the function f given by 

In(l + x) 
f(x)= I+x for x>-1 

in a power series about the origin. If Ixl < 1, then 

1 co co n 

-- = ~ (_l)nxn and In(l + x) = ~ (-If+l £. 
I + x n=O n=1 n 

We divide both sides of the second equation by x to obtain 

In(I+x) co n-l 00 n 
___ = ~ (-1r+l-X _ = ~ (_1)n_x_. 

X n=1 n n=O n+l 

(1.7) 
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Using Cauchy products, we have 

In( I + x) 00 00 n 
_1_ = ~ (-lfx n ~ (-If_x-
l + x x n=O n=O n + 1 

= ~ (± (_lr -k (-I)k)x n 

n=O k=O k + 1 

so that 

for Ixl < 1. 

PROB. 1.1. Expand in a power series about the origin: 

(1) 1/(1 - X)3, 
(2) 1/(1 + X)2, 
(3) 1/(1 + X)3, 
(4) (In(1 - x))/(1 - x). 

PROB. 1.2. We write a repeating decimal 

N + .d\d2 ••• dk d\d2 ••• dk ••• , 

where N is an integer and d\, d2, ••• , dk are digits as 

N + .d\d2 ••• dk • 

For example 
7 -
33 =.212121 ... =.21. 

Prove: 

(1) 1/92 = 1/81 =.012345679, 
(2) 1/(99)2 = .0001020304 ... 95969799. 

We now consider division of power series. We state the results in terms of 
power series in x. Extensions to power series in x - Xo can be carried out in 
the obvious manner. 
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Let Lanx n be a power series in x with nonzero radius of convergence R 
and sum 

00 

g(x) = ~ anx n for all x E (- R; R). (1.9) 
n=O 

We assume that ao =!= O. The reciprocal h of g is given by 

h( x) = _1_ = ___ ~--::--__ 
g(x) ao + alx + a2x 2 + ... 

- ao 1 + al/ ao + (a2/ ao)x2 + ... (1.10) 

To deal with h, it suffices to examine the factor of 1/ ao. We, therefore, 
examine series of the form I + ~~=ICnXn' 

Theorem 1.1. If 
00 

g(x) = ~ cnx n, (1.11) 
n=O 

where Co = I and the power series on the right has radius of convergence 
R > 0, then there exists an r> 0 such that g(x) =!= 0 for Ixl < r and a power 
series 

00 

hex) = ~ bnx n, (1.12) 
n=O 

which converges for I x I < r such that 
00 00 

g(x)h(x) = ~ cnx n ~ bnx n= I for all x E ( - r; r). 
n=O n=O 

Moreover, the coefficients bn of the series in (1.12) satisfy the equations 

{

CObO = I 

± ckbn-k = 0 
k=O 

(1.13) 

for each positive integer n 

and are uniquely determined by them. 

PROOF. The existence of a sequence <bn>n~o satisfying (1.13) can be proved 
by induction on n. Since Co = 1, obviously bo = 1. For n = I, the system 
(1.13) is 

cobo = 1, 

cob l + clbo = O. 

Clearly bo = 1, bl = - c l satisfy this system. If bo, bl' ... ,bn satisfy the 
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system 

cobo = 1, 

cob l + clbo = 0, 

cobn + clbn_ 1 + ... + cnbO = 0, 

where n is some positive integer, then bo' bl' ... , bn, bn+ I' where 

bn+ l = -clbn-c2bn_l- ... -cnbl-cn+ 1 

will satisfy the system 

cobo = 1, 

cob l + clbo = 0, 

Thus, there exists a sequence (bn> satisfying the system of equations (1.13). 
We prove the uniqueness of this sequence later. 

If a sequence (bn> satisfies (1.13), then the power series 2:,bnx n has a 
nonzero radius of convergence. We prove this now. By hypothesis the series 
in (1.11) has a nonzero radius of convergence. Therefore, 

and the sequence (\fcJ > is bounded. An M > ° exists such that 

\fcJ .;;; M and, therefore, Icnl';;; M n 

for each positive integer n. Now, b l = - ci so that Ibll .;;; Icd .;;; M. Also 
b2 = cOb2 = -(clb l + c2bo) = -(clb l + C2) and, therefore, 

Ib21 .;;; Icdlbd + IC21 .;;; M2 + M2 = 2M2. 

We prove that 

for each positive integer n (1.14) 

by using complete induction on n. Assume that (1.14) holds for m E 
{1,2, ... , n - I} (we already saw that it holds for n = 1 and n = 2), where 
n is some positive integer. Since 

bn = cObn = - (clbn_ 1 + c2bn- 2 + ... + cn_lb l + cnbO) 

= - (clbn _ 1 + c2bn- 2 + ... + cn_lb l + cn)' 
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we have 

..;; M(2n-2Mn-l) + M2(2n-3Mn-2) + ... + Mn-1M + M n 

= Mn(2n-2 + 2n- 3 + ... + 1 + 1) 

= Mn( 2n- 1 - 1 + 1) 
2 - 1 
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Invoking the principle of complete induction, we conclude that (1.14) holds 
for each positive integer n. The series 

00 00 

1 + 2: M n 2n- 1x n= 1 + 1 2: (2Mxf 
n=1 2 n=1 

converges if 12Mxl < 1, i.e., if 

Since 

1 
Ix l<2M' (1.15) 

holds for each positive integer n, it follows that the series ~bnxn converges 
for x satisfying (1.15). We conclude that the radius of convergence of 
~bnxn is not equal to O. We now know that there exists an rl > 0 such that 
the series (1.12) converges on (-rl;r l). Put r=min{rl,R}. Then 0< r 
..;; r l , 0 < r ..;; R, and both of the series (1.11) and (1.12) converge on the 
interval (- r; r). We multiply the two series and obtain, in view of (1.13), 

00 00 

g(x)h(x) = 2: cnx n 2: bnx n 
n=O n=O 

=1+0 

= 1 

for x E (- r; r). This proves that g(x) =1= 0 for all x E (- r; r), that the series 
with sum h converges for all x E (- r; r), and that g(x)h(x) = 1 for such x. 
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It remains to prove that the sequence <bn> is uniquely determined by 
(1.13). Assume that <b~> also is a sequence satisfying (1.13). The series 

00 

h\(x) = ~ b~xn 
n=O 

converges for all x E (- r; r) and satisfies g(x)h\(x) = 1 for all such x. We 
then conclude that g(x)h\(x) = g(x)h(x) for all x E (- r; r) and, therefore, 
that h\(x) = h(x) for such x. This implies that 

00 00 

~ bnx n= ~ b~xn for all x E ( - r; r). (1.16) 
n=O n=O 

By the identity theorem for power series (Corollary of Theorem XI.9.4) we 
conclude from (1.16) that bn = b~ for all n. 

Corollary 1. Iff is analytic at the origin and f(O) =1= 0, then its reciprocal h, 
defined as 

1 
h(x) = f(x) 

is also analytic at the origin. 

for all x such that g( x) =1= 0, (1.17) 

PROOF. By hypothesis, there exists a power series ~anxn and an r\ > 0 such 
that 

00 

f(x) = ~ anx n 
n=O 

Here ao = f(O) =1= 0 and 

f(x) = ao(1 + ~ an xn) 
n=1 ao 

for all x E ( - r\ ; r\). 

The power series 
00 a 

g(x) = 1 + ~ -.!!..x n 
n=1 ao 

converges for all x E (- r1 ; r\) and we have f(x) = aog(x) for x E ( - r\; 
r\). By the theorem, there exists an r > 0 and a power series 2;bnx n such 
that 

_1_ = ~bxn 
g(x) n=O n 

Multiply through by 1/ ao and obtain 

for all x E ( - r; r). 

_1_ = 1 = ~ bn xn 

f(x) aog(x) n=O ao 
for all x E ( - r; r). 

Thus, the function h in (1.l7) is analytic at the origin. This completes the 
proof. 
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PROB. 1.3. Prove: If f is analytic at a point Xo in its domain and f(xo) =1= 0, 
then its reciprocal is analytic at Xo. 

Corollary 2 (of Theorem 10.1). If f and g are analytic at the origin and 
g(O) =1= 0, then f / g is also analytic at the origin. 

PROOF. Exercise. 

PROB. 1.4. Prove: If f and g are analytic at a point Xo and g(xo) =1= 0, then 
f / g is analytic at Xo· 

PROB. 1.5. Prove: A rational function is analytic at each Xo which is not a 
zero of the polynomial in its denominator. 

2. Bernoulli Numbers 

Consider the series 

eX _ 1 x x 2 co xn 
--=1+-+-+ ... = ~ 

x 2! 3! n=o(n+l)! 
(2.1 ) 

The series on the right converges absolutely for all real x (why?). (The 
function on the left is not defined at the origin, but we extend its domain of 
definition to include the origin by assigning to the extended function the 
value 1 there. This is the value the series has at x = O. The extension is 
continuous and infinitely differentiable at x = 0 since the latter point is in 
the interior of the interval of convergence of the series.) By Theorem 1.1, 
this (extended) function has a reciprocal B which is analytic at the origin. B 
is defined as 

B ( x) = { Ie X ~ 1 

There exists r > 0 such that at x = 0, i.e., 

co B (n)(o) 
B(x)=~= ~ ,xn 

e - 1 n=O n. 

We write 

for x =1= 0 

for x = O. 

for all x E ( - r; r). 

for each n 

and 

x ~ Bn 
B(x) = -x-- = L.J ,xn 

e - 1 n=O n. 
for -r < x < r. 

(2.2) 

(2.3) 

(2.4a) 

(2.4b) 

The Bn's are called the Bernoulli numbers, after their discoverer Jacob 
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Bernoulli. They can be evaluated with the aid of a certain recurrence 
relation that they satisfy. 

Theorem 2.1. If <Bn> is the sequence of Bernoulli numbers, then 
n-\ 

Bo = 1 and 2: (~)Bk= 0 
k=O 

for n;;;' 2. (2.5) 

PROOF. The numbers Bn/ n! are the coefficients of the power senes In 

(2.4b). It is the reciprocal of the power series in (2.1). We write 

c = I 
n (n+l)! 

Bn 
and b =­

n n! for each n. 

Note the cn's are the coefficients of the power series in (2.1). To determine 
the b/s we use formulas (1.13) m Theorem 1.1. Before using these we 
observe that 

n n 

2: ckbn - k= 2: bkcn - k · 
k=O k=O 

We, therefore, have 

(2.6a) 

and 

n Bk I 
k~O k! (n + 1 - k)! = 0 

for each positive integer n. (2.6b) 

Thus, Bo = 1. We multiply both sides of (2.6b) by (n + I)! to obtain 

n ( 1) n (n+l)! 
k~O n ~ Bk= k~O k! (n + 1 _ k)! Bk= 0 for each positive integer n. 

(2.7) 

We then write m = n + 1 so that m ;;;. 2 and formulas (2.7) become 

m-\ 

2: (~)Bk= 0 
k=O 

for m;;;' 2. 

These are really the second set of formulas in (2.5), written in terms of m 
instead of n. This completes the proof. 

Remark 2.1. The formulas (2.5) can be written m terms of one set of 
formulas as follows: 

n-\ 

2: (n)Bk= {I 
k=O k 0 

if n = 1 
if n;;;' 2. 

(2.8) 
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The Bernoulli numbers can now be evaluated one after the other from 
formulas (2.5) (or formulas (2.8». For example, for n = 2, we have 

± (2)Bk= 0 or Bo + 2B) = O. 
k=O k 

Since Bo = I, we obtain 

Similarly, for n = 3 we have 
2 

L (3)Bk = 0, and, therefore, Bo + 3B) + 3B2 = O. 
k=O k 

Since Bo = 1 and B) = -1, we see that 

PROB. 2.1. Show that 

B2 = i· 

1 
B4 = - 30 ' 

1 
Bs = - 30 ' 

PROB. 2.2. Prove: If n = 0 or n > 2, then 

(2.10) 

Remark 2.2. A mnemonic device for remembering formula (2.5) for the 
Bernoulli numbers is to replace each Bn in it by B n. We then obtain 

n-I 

L (n)Bk=- 0 for n > 2 (2. 11 a) 
k=O k 

which can be written, in tum, 

if n > 2. (2.11b) 

This formula is not to be taken literally. Its sense is, that after expanding, 
each B k should be replaced by Bk • The symbolic B in (2.11) is called an 
"umbra" and the symbol =- is used to express symbolic equivalence, where 
we write Bk =- Bk in (2.11).* 

Theorem 2.2. If n is an odd integer, n > 2, then Bn = O. 

• Andrew Guinand, The umbral method: A survey of elementary mnemonic and manipulative 
uses, The American Mathematical Monthly, (1979), 181-184. 



568 XII. Sequences and Series of Functions II 

PROOF. Assume that - r < x < r, where r is the positive number in (2.4). 
Since B2 = - 1, (2.4b) implies that 

This can be written 

x 1 00 B 
~ ~ = 1 + 2: -fx n • 
2 e - 1 n=2 n. 

Since 

cosh( x /2) 
-:--;--:---;c:-:- = co th ~ 
sinh( x /2) 2 ' 

(2.12) becomes 

x x ~ Bn - coth - = 1 + L.J - x n 
2 2 n=2 n! 

for - r < x < r. 

The function defined by the left-hand side is even. Hence, 

~ Bn n ~ Bn 
1 + L.J ,(-x) = 1 + L.J ,xn 

n=2 n. n=2 n. 

so that 

for - r < x < r. 

Equating coefficients, we obtain 

(-I)nBn =Bn for n;;;' 2. 

We conclude that if n is odd and> 2, then Bn = 0, as claimed. 

(2.12) 

(2.13) 

(2.14) 

Remark 2.3. Write the odd integer n > 2 as n = 2k + 1, where k ;;;. 1. Then 

B2k + 1 = 0 for each positive integer k. 

We can now rewrite (2.4b), (2.12), and (2.13) as 

x 1 x ~ B2k 2k 
eX - 1 = - 2" + n-:;\ (2k)! x , 

~ eX + 1 = ~ coth ~ = 1 + ~ B2k 2k = ~ B2k 2k 
2 eX - 1 2 2 k-:;\ (2k)! x k-:;O (2k)! x , 

each formula being valid for - r < x < r. 

Remark 2.4. We replace x /2 by x in (2.17) and obtain 

00 22kB 
" 2k 2k 

xcothx= k-:;O (2k)! x for 

(2.15) 

(2.16) 

(2.17) 

(2.18) 
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PROB. 2.3. Show 

h 112142618 X cot X = +"3 X - 45 X + 945 X - 4725 X '" 

PROB. 2.4. Prove: 

tanhx = 2 coth 2x - cothx. 
Then prove 

00 22k(22k - I) 
tanh x = k2;;1 (2k)! B2kX2k-1 

=x-lx3+lx5-...!Lx7+ ... 
3 15 315 

for Ixl < r / 4. (The r here is defined in (2.4).) 

PROB. 2.5. Prove: 

Then prove that 

coth X - tanh ~2 = -,-Lh . 
sm X 

_x_ = _ ~ (22k - 2)B2k X2k 
sinh x k=O (2k)! 

1 x 2 7 4 31 6 
= - 6 + 360 X - 15120 X + ... 

for Ixl < r /2. 

Remark 2.5. Some writers call the numbers B~, where 

for k;;. 1, 

569 

(2.19) 

the Bernoulli numbers. With this definition and in view of Prob. 2.1, we 
have, for example, 

B' 1 
2 = 30 ' 

Theorem 2.3. If k is a positive integer, then 

(-I)k+I B2k = B~ > o. 

PROOF. * Simple calculations show that 

_x_=_x __ 2x 
eX + I eX - I e2x - I 

(2.20) 

(2.21 ) 

*L. J. Mordell, Signs of the Bernoulli numbers, The American Mathematical Monthly, (1973). 
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Use (2.4b) for both terms on the right to arrive at 

_ _ x _ __ ~ (1 - 2n)Bn xn f r r 
~ or - 2 < x <2' eX + 1 n=O n! 

(2.22) 

Multiply both sides by x/(e X -1). If -r/2 < x < r/2, then 

X 2x 2 00 (1 - 2n)B 00 B 
x "" n n"" n n 

2 e2x _ 1 (eX + 1)( eX - 1) = n~O n! x n~O n! x 

= ~ ~ k n-k n 00 ( n (1 - 2k)B B ) 
n=O k=O k! (n - k)! x. 

(2.23) 

For the coefficient of xn on the right-hand side of this formula and for all 
nonnegative n we have 

(2.24) 

Note that if n = 0, then both sides of the above vanish, so (2.23) can be 
written 

~ e/;~ 1 = n~1 L~o (1 - 2k)(~)BkBn_k ) ~; if - I < x < I' 

Now use (2.4b) for the factor 2x/(e2x - 1) on the left here to obtain 

2 00 B 00 2n-2 
x x = ~ 2n- 1 2 x n+ I = ~ B xn 
2 e2x _ 1 n = 0 n! n = I (n - I)! n - I , 

(2.25) 

(2.26) 

where - r /2 < x < r /2. Comparing coefficients on the right in (2.25) and 
(2.26) we arrive at 

2n - 2 1 ~ k (n) 1 ~ k (n) ( _ 1)' Bn- 1 =,. ~ (1 - 2 ) k BkBn- k=,. ~ (1 - 2 ) k BkBn- k n. n. k=O n. k= 1 

(2.27) 

for each positive integer n. (The Oth term in the middle expression vanishes. 
This is why the rightmost sum begins with k = 1.) If n is even and> 2, 
then n > 3 and n - 1 > 2 so that n - 1 is odd and > 2. For such n, 
Theorem 1.2 states that Bn- 1 = O. Putting n = 2m, where m is a positive 
integer, we, therefore, conclude from (2.27) that 

2m 

0= "" (1 - 2k)(2m)B B if m> 1. ~ k k 2m-k 
k=l 

But B2m - 1 = 0 when m > 1. Hence, in the sum on the right we can omit the 
term corresponding to k = 1, and the last equation is equivalent to 

m >2. 
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Here the terms for which k is odd vanish. We, therefore, 
j E {l,2, ... , m}, and obtain 

~ 2" (2m) ~ (I - 2 ") 2' B2J B2(m-J) = O. 
J=I :.J 

We isolate the last term and write 

so that 

571 

write k = 2j, 

(2.28) 

(2.29) 

Now Bke = (-l)k+ IB2k for each positive integer. Substitute this in (2.29). 
This yields 

m-I 
(22m_I)(_I)m+IB';'= 2: (1-22J)(22":)(-I)J+I(-I)m-J+I B;B';'_J' 

J=I :.J 

(2.30) 

We divide both sides of the above by ( - I)m + I. The powers of - 1 in each 
term on the right are now ( -l)J+ I( - I)J = - 1. Then we note that (I - 22J) 
( - I) = 22J - 1 and finally obtain from (2.30) that 

m-I 
(22m - I)B';' = 2: (22J - 1)(22":)B; B';'-J' m;;;' 2. (2.31) 

J= I :.J 

This puts us in a position to use induction on m. By Remark 2.5, we know 
that B] > 0 and B2 > O. Assume that B], B2, ... , B';' _ I are all positive for 
some m ;;;. 2. Then (2.31) implies that B';' is positive. By the principle of 
complete induction and the fact that B] > 0 we conclude that B';' > 0 for 
all positive integers m. This completes the proof. 

The next two lemmas will help us prove: 

Theorem 2.4. If Ixl < r/2, where r is the positive number defined in (2.4b), 
then 

00 22nB 
_ " n 2n 2n 

X cot X - ~ (- 1) -(2 )' x . 
n=O n . 

(2.32) 

(See formula (2.18).) 

Lemma 2.1. If 
00 

2: an and (2.34) 
n=O 
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converge absolutely, then 

(2.35) 

PROOF. The last two series on the left in (2.35) converge absolutely because 
the series in (2.34) do. Forming their Cauchy product, we have 

Remark 2.6. Consider the particular case where the series in the lemma are 
power series 

00 00 

A (x) = 2: anx n and B(x) = 2: bnx n 
n=O n=O 

with radii of convergence Ra > 0 and Rb > O. Then it is easy to see that the 
lemma implies that 

n~o (-lfanxnn~o (-I)nbnxn= n~o (-I)nC~o akbn- k )xn (2.36) 

for Ixl < R = min{Ra,Rb}· 

Lemma 2.2. If the series 
00 

g(x) = 2: cnx n, 
n=O 

where Co = 1, has the series 
00 

h(x) = 2: bnx n 
n=O 

as its reciprocal on the interval ( - r; r), r > 0, then the series 
00 

g*(x) = 2: (-lfcnx n 
n=O 

has the series 
00 

h*(x) = 2: (-I)nbnxn 
n=O 

as its reciprocal on ( - r; r). 
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PROOF. For x such that Ixl < r, g* and h* converge absolutely and we have 
by Remark 2.6 

00 00 

g*(x)h*(x) = 2: (-I)"cnx n 2: (-I)"bnx n 
n=O n=O 

Since h is the reciprocal of g on (- r; r), we know by Theorem 1.1 that Eqs. 
(1.13) hold. We, therefore, obtain from the above that if Ixl < r, then 

g*(x)h*(x) = cobo + 0 = cobo = 1. 

This completes the proof. 

We now give a proof of Theorem 2.4. Consider the series for the 
hyperbolic sine 

. x3 x5 00 X2n+ 1 00 X2n 
smh x = x + -3' + -5' + . . . = 2: (2 I) , = x 2: (2 I) , .. n=O n +. n=O n + . 

This series converges on IR = (- 00; + (0). Divide both sides by x to obtain 

sinh x = ~ x2n = I + x 2 + X4 + ... 
X n=O (2n + I)! 3! 5! 

(2.37) 

for x 1= O. We extend the domain of the function on the left to include 0 by 
assigning to it at 0 the value at 0 of the series on the right. This value is 1. 
The resulting function is analytic at 0 since the right-hand side is. The 
reciprocal of this function has a power series expansion at 0 which is found 
in Prob. 2.5. We have from there that 

_x_ = ~ (2 - 22n)B2n x2n 
sinh x n=O (2n)! for Ixl < I' (2.38) 

where r is defined in (2.4b ). We also have 

sin x 00 n x2n x 2 X4 x 6 
-= 2:(-1) , =1- 3'. +-51• -7'. + .... (2.39) x n=O (2n + 1). 

This expansion is valid on IR when we extend the domain of the function on 
the left to include 0 by assigning to it, at 0, the value that the series on the 
right has at O. This value is 1. We now apply Lemma 2.2 to the function g 
and g* defined as 

g(x) = sinhx and g*(x) = sinx . (2.40) 
x x 
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The power series for these have coefficients which are related to each other 
as are the coefficients of g and g* in that lemma. In view of (2.38) it follows 
that the reciprocal of g* has the series expansion 

00 (2 - 22n)B 00 (22n - 2)B 
_x_ = ~ (_I)n 2n = ~ (_ 1 r+! 2n x2n (2.41) 
sinx n=O (2n)! n=O (2n)! 

for Ixl < r /2. We recall that 

and 

00 2n 
cosh x = ~ _x_ 

n=O (2n)! 

00 n x2n 
cos X = ~ (- 1) -(2 )' 

n=O n . 

for all x E IR. We know from (2.18) that 

(2.42a) 

(2.42b) 

00 22nB 
( X) _ _ '" 2n 2n coshx -'-h- - xcothx - .::.. -(2 ,x 

sm x n=O n). 
for Ixl < ~. (2.43) 

Use Remark (2.6) with 

A (x) = cosh x and B(x) = _._x_ 
smhx 

and take note of (2.42a) and (2.42b) and also of (2.38) and (2.41) and 
obtain from the remark cited that 

00 22nB _ (X) _ '" n 2n 2n xcotx-cosx -.- -.::.. (-1) -(2 )' x 
smx n=O n . for Ixl < ~ . 

Remark 2.7. In the process of proving the last theorem we proved (see 
(2.41)) that 

00 (22n - 2)B 
--,-£- = ~ (- 1 r + ! 2n x2n 
smx n=O (2n)! 

for Ixl < ~ . (2.44) 

Remark 2.S. The radius of convergence p of the series (2.44) is positive. If 
p> 17, the series would converge for x = 17. This is impossible since it 
would then follow from (2.44) that 

1 = ~ (-lr+! -, 2n x2n sinx ( 

00 (22n 2)B ) 

n=O (2n). x 

at x = 17. Hence, 0 < p ,;;; 17. It follows that r /2 ,;;; p ,;;; 17 and, hence, that 
0< r ,;;; 217. 

PROB. 2.6. Prove that 

tan x = cotx - 2cot2x 
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and show that 
00 22n(22n - I)B 

t = "" (_I)n+l 2n 2n-l 
anx -'.J (2 )' x 

n=! n . 

for Ixl < ,/4 (cf. Prob. 2.4) and that the coefficients in the series are all 
positive. 

3. An Application of Bernoulli Numbers 

We shall evaluate the sums 
n 

S,(n) = ~ k'= l' + 2' + ... + n', 
k=! 

(3.1 ) 

where n is a positive integer and, is a nonnegative integer. We already 
know that 

So(n) = n (3.2a) 

and that 
n(n + 1) 

Sl(n) = 2 . (3.2b) 

One method of evaluating Sl(n) is to note that 
n 
~ « k + 1)2 - k 2) = (22 - 12) + (32 - 22) + . . . + « n + 1)2 - n2) 

k=l 

= (n + 1)2_ 1 

and that 
n n n n 

~ «k + 1)2 - k 2) = ~ (2k + 1) = 2 ~ k+ ~ 1 = 2S1(n) + n 
k=! k=! k=! k=l 

so that the two right-hand sides above are equal. Therefore, 

2S1(n) + n = (n + 1)2_ 1 or 2S1(n) = (n + 1)2_ (n + 1) = n(n + 1). 

From this (3.2b) follows after solving for Sl(n). 
This method can be used to obtain S,(n) for, = 1,2,3, .... In fact, 

n 

~ «k + 1)' - k') = (n + 1)' - 1, 
k=l 

± «k + 1)' _ k') = ± (± ('.)kj _ k') = ± (r~! ('.)k j ) 
k=l k=l )=0 ] k=1 )=0 ] 

(3.3) 

so that 

± (r~1 (~)k)) = (n + l)r - 1. 
k=1 )=0 ] 

(3.4) 
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Consider the left side of (3.4). Keeping j fixed and summing first with 
respect to k and then with respect to j, we have from (3.4) 

r~1 (r.)( ± kJ ) = (n + 1)' - 1. (3.5) 
)=0 } k=1 

This gives us 
r-I 

2: (r.)s)(n) = (n + 1)' - 1. 
)=0 } 

(3.6) 

Equation (3.6) can be used to successively calculate S)(n). For example, for 
r = 3 we have 

or 

So(n) + 3S1(n) + 3S2(n) = (n + 1)3_ 1. 

Using formulas (3.2) we obtain 

n(n + 1) 
n+3 2 +3S2(n)=(n+ 1)3-1. 

Solving for Sin) we get 

i.e., that 

S2(n) = t(n + 1)3 - (n + 1) -1n(n + 1)) 

= t (n + 1)( n + 1)2 -1 n - 1) 

= i (n + 1)(2n2 + n) 

n(n + 1)(2n + 1) 
6 

n (n + 1 )(2n + 1) 
S2(n) = 6 . 

PROB. 3.1. Use (3.7) and formulas (3.2) to obtain 

_(n(n+1))2 
S3(n)- 2 . 

PROB. 3.2. Prove that 

n(n + 1)(2n + 1) 2 
S4(n) = 30 (3n +3n-1). 

(3.7) 
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PROB. 3.3. Prove: For each nonnegative integer r, there exists a polynomial 
of Pr+ /n) in n such that Sr(n) = Pr+ len). 

PROB. 3.4. Prove: If r ;;. 1, then for each positive integer n, n(n + 1) divides 
Sr(n). 

We shall now obtain a variant of Jacob Bernoulli's formula for Sr(n) 
which is expressed in terms of Bernoulli numbers. We begin with 

(n+ l)x 1 
1 + eX + ... + e nx = e -

eX - 1 for x E IR. (3.8) 

(The validity of this formula for x = 0 is to be interpreted in the sense that 
the function on the right is assigned the value n + 1 at x = O. This is its 
limit as x ~ O. On the left in (3.8) we have a finite sum of functions each of 
which is analytic at O. We may, therefore, substitute the power series 
expansion in x for each e kx there and then add the terms involving xr to 
obtain 

for all x E IR. 

n 
1 + eX + e2x + ... + e nx = 1 + 2: e kx 

k=l 

= 1 + 2: 2: kr£ n (00 r) 
k=l r=O r! 

= 1 + i: x; ( "i: kr) 
r=O r. k=1 

00 r 

= 1 + 2: Sr(n)~ 
r=O r. 

00 r 

= 1 + n + 2: Sr(n)~ (3.9) 
r=1 r. 

As for the function on the right-hand side of (3.8), we can write it as 

e(n+l)x - 1 = (n + 1) e(n+l)x -1 . __ x_ (310) 
e X -1 (n+ I)x e X -1 . 

and then use the power series expansion in x for the last two factors on the 
right. These are 

e(n+l)x _ 1 00 (n + l)'xr 
..::....-----:-~ = 2: 

(n + l)x r=O (r + I)! 
(3.I1a) 

and 

x _ ~ Br r 
-x--1 -.tC.J ,x. 
e - r=O r. 

(3. lIb) 
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(Here B, is the rth Bernoulli number (see (2.4b).) Now substitute into 
(3.10). This becomes 

e(n+l)x _ I ~ (n + I)' ~ B, 
x = (n + I) "" --, x' "" -x' e - I ,=0 (r + I). ,=0 r 

[ 
00 ( , (n + I)k B ) 1 

= (n + 1) I + '~l k~O (k + I)! (r ~-;)! x'. 

From this (3.8) and (3.9), we have 

00 , 00 ( , (n + l)k B ) 
r~/,(n) ~! = (n + I) '~l k~O (k + I)! (r ~-;)! x'. 

Equating coefficients, we obtain 

S (n) , (n + I)k+ 1 B _'_= ~ ,-k 

r! k=O k + I k! (r - k)! 
for r> 1. 

Multiply both sides by r! and use the expression for the binomial coeffi­
cients to obtain from this 

r (n+l)k+l r 
S,(n) = ~ k + 1 (k)B,-k for r> I (3.12) 

k=O 
for each positive integer n. This is the formula we were aiming at. 

Checking, we find from (3.12): If r = I, then 

I (n+ I)k+l 
Sl(n) = k~O (k + I) (!)B1- k 

(n + 1)2 (n + 1)2 _ n + I = n(n + I) 
= (n + I)Bl + 2 Bo = 2 2 2 

and 

3 (n+ll+ 1 

S3(n) = k~O k + I (i)B3- k 

(n+l)2 (n+I)3 (n+I)4 
= (n + I)B3 + 2 3B2 + 3 3B1 + 4 Bo 

(n + 1)2 (n + 1)3 (n + 1)4 _ ( (n + 1) )2 
= 4 - 2 + 4 - n-2- . 
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PROB. 3.5. Prove: 

(1) Ss(n) = 15 + 25 + 35 + ... + nS = n2(n + 1i(2n2 + 2n - 1)/12, 
(2) S6(n) = 16 + 26 + 36 + ... + n6 = n(n + 1)(2n + 1)(3n4 + 6n3 - 3n + 

1)/42. 

The Euler Numbers 

The hyperbolic cosine series is 

00 x2n x2 X4 
cosh x = 2: --=1+-+-+ .. · 

n=O (2n)! 2! 4! 
for all x E IR. (3.13) 

Hence, its reciprocal is analytic at the origin. Write 

1 00 xn x2 
-- = 2: En-, = Eo + E1x + E2- + . .. . (3.14) 
cosh x n=O n. 2 

The numbers Eo, E1, E2, .. , are called the Euler numbers. We see readily 
that the function defined by the expression on the left in (3.14) is even so 
that 

E2k _ I =0 

Hence, we may write 

for each positive integer k. (3.15) 

_1_ = i: E2n x2n (3.16) 
cosh x n=O (2n)! . 

PROB. 3.6. Prove: If (En> is the sequence of Euler numbers, then 

Eo= 1 and k~0(;~)E2n-2k=0 for n ~ 1 (3.17) 

and show 

E2= -1, E4=5, E6= -61, E8= 1385, EIO= -50,521. 

PROB. 3.7. Prove: 
00 E 

_1_ = '" (_1)n~x2n 
cos x n~O (2n)!' 

4. Infinite Series of Analytic Functions 

The series 

S(x) = _1_ + 1 + 1 +... (4.1) 
1 - x (1 - X)2 (1 - X)3 
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can be written 

S(x) = _1_ (1 + _1_ + 1 + ... ). 
1 - x 1 - x (1 _ x)2 

The second factor is a geometric series in u = 1/(1 - x). Hence, if 

1 
11 - xl < 1, 

that is, if x < 0 or x > 2, then (4.1) converges to 

S(x)- 1 1 =_1 
- 1 - x 1 - 1/(1 - x) x 

Write each term as an infinite series. 

1 1 2 --= +x+x + ... 
1- x ' 

1 = 1 + 2x + 3x2 + ... 
(1 - X)2 ' 

1 = 1 + 3x + 6x2 + ... 
(I-x)3 ' 

It is clear that we could not add columnwise and then write the sum as a 
power series in x; for then we would have 

1 + 1 + ... 
+ (1 + 2 + 3 + ... )x 

+ (1 + 3 + 6 + ... )X2 
+ ... , 

which is impossible. To add columnwise and then sum again we need a 
condition guaranteeing that the columnwise addition should yield conver­
gent columns. 

Theorem 4.1. Given a sequence </;) of power series such that for each 
nonnegative integer i 

00 

/;(x) = ~ a;nxn (4.2) 
n=O 

converges for all x such that Ixl < R, R > O. Assume that for each i the series 

and 

00 

u;(r) = ~ la;nlrn 
n=O 

00 

~ u;(r) 
;=0 

(4.3a) 

(4.3b) 
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converges for all r with 0 < r < R. Then (1) for each n 

(4.4) 

converges absolutely; (2) the series 

(4.5a) 

and 
00 

2: hex) (4.5b) 
i=O 

converge absolutely and uniformly for Ixl « r, and 
00 00 

2: Anxn = 2: hex), (4.6) 
n=O i=O 

i.e., 

(4.7) 

PROOF. The series in (4.3b) consists of nonnegative terms and converges. 
Hence, its sequence <Sn(r» of partial sums is bounded. For each m, we 
have 

(4.8) 

since Sm(r) is a finite sum of nonnegative terms. An M > 0 exists such that 
Sm(r) « M for all m. It follows that for each m and n, 

or 
m M 2: laknl « Ii· 

k=! r 
This implies that ~~-Olainl converges and, hence, that for each n the series 
(4.4) converges absolutely. Put 

00 

Bn = 2: lainl, (4.9) 
;=0 

and consider the series 
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We prove that this is a Cauchy sequence. We know that the series (4.3b) 
converges. Hence, its sequence <Sn(r) of partial sums is a Cauchy se­
quence. 

Assume that E > 0 is given. By what was just mentioned, there exists an 
N such that if m > j > N, then 

m 

2: u;(r) < 1· ;=j+l 
This implies that 

n~oC=~+lla;nl)rn= ;=~l C~ola;nlrn) 
m 

= 2: u;(r) < i. ;=j+l 4 
for m > j > N. 

We conclude from this that if p > k, then 

n=*+l C=~lla;nl)rn< n~oC=~+llainl)rn< 1· 
We fix p and k and let m ~ + 00 and obtain from this 

for p> k and j> N. (4.10) 

N ow consider 

The series on the right converges. Hence, it is a Cauchy sequence. There­
fore, there exists an N] such that if p > k > N], then 

n=*+1 Ct1Ia;nl)rn< ~ . (4.11 ) 

Adding this to (4.1 0) we find that if p > k > N], then 

n=*+1 C~olainl)rn< E. 
This states that 

if p> k> N]. 

We conclude that 2:,Bnrn is a convergent series. Since IAn I < Bn for each n, 
it now follows that if Ixl < r, then 2:~=oAnxn converges absolutely. By the 
Weierstrass M-test for uniform convergence it follows that the convergence 
is also uniform on [ - r; rl. 

We now prove that (4.6) holds for Ixl < r. Given E > 0 we use the known 
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convergence of ~~=ou;(r) to obtain an N such that if n > N, then 

;=~+I u;(r) = I;=~+I u;(r)1 < I 
or that 

i=~+IC~olaiplrp) <I for n > N. 

It follows from this that for each m, 

i=~+ I C~o la;plr p) < i=~+ I C~o laiPlr p) < I for n < N. (4.12) 

But 

i=~+ I C~o laiPlrv) = .~J i=~+ IlaiPI)r p. 
This and (4.12) imply that for each m, 

.~Ji=~+llaipl)rp< I for n > N. 

N ow let m ~ + 00. We conclude that 

P~Ji=~+llaipl)rv < I < E 
for n> N. (4.13) 

We conclude from this that for n > Nand Ixl < r 

I .~oApXp - itoh(X)1 = 1 v~/pxP - ito C~o a;px')1 

=1.~oApXV- r~oCtoa;v)xvl 

It now follows that 

the convergence being uniform on [ - r; r]. This completes the proof. 

EXAMPLE 4.1. We knew that certain series converged but we could not sum 
them. Now we can use the above theorem to obtain such sums. By formula 
XI.8,45, 

00 

'IT cot 'lTX = 1 + ~ 22x 2 
X n=lx-n 

if n is not an integer. (4.14) 
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We write this as 

00 X 2 
X'17 cot '17X = 1 - 2 ~ 2 2 • 

n=! n - x 
( 4.15) 

For each n ;;;. 1 we have 

... ) 
00 2k 
=~~ 

k=! n2k 
for Ixl < n. ( 4.16) 

Hence, if Ixl < 1, we have 

x 2 

~ 2 2 
n=! n - x 

00 

~ (~ X2k). 
n=! k=! n2k 

(4.17) 

We apply Theorem 4.1 with 

Ixl < 1, 

for n E {1, 2, 3, ... }. These power series have terms which are all positive 
and converge absolutely and their sum converges; this is seen from (4.17) 
and (4.15). Using (4.7) in Theorem 4.1, we have 

x 2 

~ 2 2 
n=! n - x 

00 00(00 2k) 00(00 1) ~ ~ X 2k = ~ ~ 2k X 2k. 
n=! k=! n k=! n=! n 

Substituting for this into (4.15), we obtain 

X'17 cot '17X = 1 - 2 ~ ( ~ -k) x 2k 

k=! n=! n 
for Ixl < 1. 

Replacing X'17 here by x, we have 

00 (00 1) X2k xcotx = 1 - 2 ~ ~ 2k 2k 
k=! n=! n '17 

for Ixl < '17. (4.18) 

Turning to Theorem 2.4, we recall that 

00 22kB 
" k 2k 2k x cot X = L... (- 1) -(2k , x 

k=O ). 

00 22kB 
= 1 + ~ (_I)k __ 2_k x 2k 

k=! (2k)! 
for Ixl < ~ . (4.19) 

Take Ixl < min{'17,,/2}. Compare (4.18) and (4.19) and obtain 

00 22kB 00 (00 1) 2k 
~(-I)k(2k)2,kx2k=-2~ ~2k \k for Ix l<min{'17'-2'}· 

k=! . k= I n= I n '17 
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Equating coefficients yields 

22kB 00 

k 2k 2" 
( - 1) (2k)' = - 2k.t::..J 2k . 7T n=ln 

This implies that 

00 (27T)2kB 
~(2k) = ,,_1 = (_I)k+l 2k 

n~1 n2k 2(2k)! 

Thus, for k = 1, we have 

00 

~(2)=~ 2 
n=l n 

PROB. 4.1. Prove: 

(1) ~(4) = ~~=II/n4 = 7T4 /90, 
(2) K(6) = ~~= 11/ n6 = 7T 6 /945. 

PROB. 4.2(a). Use the equality 

for k;> 1. 

for k;;;. 1. 

tanx = ~ 2x 
.t::..J 2 2 2 ' n=l(n-!)7T-x 

585 

(4.20) 

(4.21 ) 

where x ft. { ± 7T /2, ± 37T /2, ... } (see Prob. XI.8.6), and the result in Prob. 
2.6, where we learned 

00 22n(22n - I)B 
tan x = ~ (- 1 r + I (2 )' 2n x2n - I 

n=l n . 
for Ixl < i, 

to obtain: If k is a positive integer, then 

~ 1 1 1 1 ( I)k+ I 22k - 1 B 2k 
.t::..J 2k = + 32k + 52k + ... = - 2(2k)' 2k7T . n= 1 (2n - 1) . 

(b) Obtain 

1 1 7T2 
1+-+-+ ... =-

32 52 8 
and 1 1 7T4 

1+-+-+ ... =-
34 54 96 . 

PROB. 4.3(a). Prove: If k is a positive integer, then 

00 (_l)k+1 1 1 1 
n~1 n2k = 1 - 22k + 32k - 42k + ... 

k+1 22k - 1 - 1 2k 
=(-1) (2k)! 7T B2k · 
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(b) Obtain: 

1 1 1 w2 
1--+---+···=-

22 32 42 12 ' 
1 1 1 7 4 1--+---+ .. · =-w 

24 34 44 720 . 

Remark 4.1. This remark deals with the radius of convergence of some of 
the series involving Bernoulli numbers. Again we recall formula (2.32): 

co 22nB 
X cotx = 2: (- l)n __ 2_n x2n for Ixl < -2r , 

n=O (2n)! 

where r is defined in (2.4b). The coefficient an of xn in this series is 

a = k B2k22k (4.22) {
o if n is odd 

n a2k =(-I) (2k)! if n=2k, kE{0,1,2, ... }. 

By Theorem 2.3, we know that (-It+ IB2k > 0, so 

k+1 B2k22k 
la2kl = (-1) (2k)! for k E {O, 1,2, ... }. 

By (4.20), we have 

co B 22k 
2 '" 1 k+ 1 2k 
2k .c.- 2k = (-1) (2k)' = la2k l, 

w n=1 n . 

where k E {l, 2, 3, ... }. We know that 2 < w < 4 and 

1 . w w "2 =Sln 6 <6 

so that 3 < w < 4 and 9 < w2 < 16. This implies that 

3 w2 8 
"2 <6" <3' 

Hence, 

co 1 co 1 w2 8 
1<2: -..;;2: -=-<-

n=1 n2k n=1 n2 6 3 
for kE{l,2,3, ... }. 

Thus, 

8 2k~ (8 )1/2k 
1 < H2k) < 3 and 1 < Vt(2k) < 3 . 

Since limk_H 00(8 j3)1/2k = 1, this implies that 

lim 2VH2k) = 1. 
k~+co 

(4.23) 

(4.24) 
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It follows from this by (4.23) that 

lim ~Ianl = lim 2o/Ia2k l = lim [2kr-;: 2VH2k) 1 = 1 . n~+ 00 k~+ 00 k~+ 00 V -::;v: 'fT 

(4.25) 

We see from this that the radius of convergence for the series in (2.32) is 'fT. 
Since (4.23) can be written 

we have 

B 22k 
-.L K(2k) = (_I)k+l_2k_ 
'fT2k (2k)! ' 

lim [22k (_I)k+l B2k 
h+oo (2k)! 

1 B 22k 
= lim 2k (_1)k+l_2k_ 

h+oo (2k)! 

and, therefore, that 

2 
-z,J(2k) 
'fT 

lim 2k (_I)k+l B2k = _1_. 
h+oo (2k)! 2'fT 

(4.26) 

From this it follows that the radius of convergence of the series in (2.16) 
is 2'fT. 

PROB. 4.4. Prove that the radius of convergence of the series in Prob. 2.4 
is 'fT /2. 

PROB. 4.5. Prove: 2(2k)! (2'fT)-2k < IB2kl for k ;;. 1 and that limk-HoolB2kl 
=+00 

5. Abel's Summation Formula and Some of Its 
Consequences 

Let <xn> = <xO'X 1,X2, ... > be a sequence of complex numbers. Define 
aXn as 

aXn = xn+ I - xn for each nonnegative integer n. (5.1) 

We call aXn the nth successive difference of the sequence <xn>. The 
operation a assigns to the sequence <xn> the sequence <axn> = <aXO,aXl' 
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~X2, ... >=<XI-XO,X2-XI,X3-X2' ..• >. The operation ~ on se­
quences is analogous to the differentiation operation on functions. To see 
this let us apply ~ to the product sequence <xnYn>. We observe that for 
each nonnegative integer k, 

Xk +lYk+ I - XiJlk = Xk+1(Yk+l - Yk) + Yk(Xk + 1 - x k )· (5.2) 

In terms of the ~ operation this can be expressed as 

~(XiJlk) = Xk+ I~Yk + Yk~Xk' 
reminding us of 

It is also clear that 

~(XiJlk) = Yk+ I~Xk + Xk~Yk • 
Next we observe that if m ;;;. n + 1, then 

m m 

L ~Xk= L (Xk+l - x k ) 
k=n+l k=n+l 

(5.3) 

(5.4) 

(5.5) 

= (xn+2 - x n+ 1) + (xn+3 - x n+2) + ... + (xm+l - xm) 

so that 

If we define 

m 

L ~Xk= Xm + 1 - Xn+ 1 · 
k=n+l 

(5.6) 

(5.7) 

formula (5.6) retains its validity for m = n. Now apply 2: to both sides of 
(5.3) to obtain 

m m 

xm+1Ym+l - xn+1Yn+l = L ~(XiJlk) = L (Xk+l~Yk + Yk~Xk) 
k=n+l k=n+l 

or 
m m 

xm+1Ym+l - xn+1Yn+l = L (Xk+l~Yk) + L (Yk~Xk)· (5.8) 
k=n+l k=n+l 

This implies that 
m m 

L (Xk+l~Yk) = x m+ 1Ym+l - xn+1Yn+l - L (Yk~Xk)· (5.9) 
k=n+l k=n+l 

We now consider sequences <an> and <bn> of complex numbers. With 
2:an we associate its partial sum sequence <Sn). We have 

for each nonnegative integer n. (5.10) 
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Here we define 

Note that if k > 1, then 

o 
So= ~ ak=O. 

k=1 

6.Sk _ 1 = Sk - Sk-l = ak · 

In view of (S.11), we have 

6.So = Sl - So = SI = a 1 . 

From (S.12) we obtain by reindexing 
m+1 m+1 m+1 m 

S89 

(S.I1) 

(S.12) 

(S.13) 

~ akbk = ~ bkak = ~ bk6.Sk - 1= ~ bk + I6.Sk . (S.14) 
k=n+2 k=n+2 k=n+2 k=n+1 

This implies that 
m m+1 m 

am+1bm+ 1 - an+ 1bn+ 1 + ~ akbk = ~ akbk = ~ bk + I6.Sk · 
k=n+l k=n+2 k=n+l 

(S.IS) 

Apply (S.9) to the right-hand side and obtain 
m m 

~ bk + I6.Sk = bm+ 1S m+ 1 - bn+ 1S n+ 1 - ~ Sk6.bk · 
k=n+l k=n+l 

This and (S.IS) imply that 
m m 

am+1bm+ 1 - an+ 1bn+ 1 + ~ akbk = bm+ 1S m+ 1 - bn+ 1S n+ 1 - ~ Sk6.bk • 
k=n+1 k=n+1 

m m 

~ akbk = bm+ 1(Sm+l - am+ 1) - bn+ 1(Sn+l - an+ 1) - ~ Sk6.bk 
k=n+1 k=n+1 

and finally that 
m m 

~ akbk=bm+lSm-bn+lSn- ~ Sk6.bk · (S.16) 
k=n+1 k=n+l 

This formula is called Abel's partial sum formula. In particular, for n = 0, 
(S.16) becomes 

m m 

~ akbk= bm+1Sm - ~ Sk6.bk for each nonnegative integer m. 
k=1 k=l 

(S.17) 

We apply Abel's formulas (S.16) and (S.17) to obtain criteria for the 
convergence of certain series. Throughout this section we adhere to the 
notation just adopted. 
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Theorem 5.1. "i:,anbn converges if the sequence (bn+ISn> and the series 

converge. 

00 

~ Sk(bk+1 - bk) 
k=1 

PROOF. The theorem is a consequence of (5.17) when we replace the m 
there by n and let n ~ + 00. 

Der. 5.1. If (bn> is a sequence of real numbers, we say it is of bounded 
variation if the series "i:,(bn+ I - bn) converges absolutely. 

Remark 5.1. Any real sequence which is monotonic and 
necessarily of bounded variation for 

bounded is 

Ib - b I = { bk+ I - bk 
k+1 k b - b 

k k+1 

for each positive integer k. Hence, 

± Ibk + l - bkl = {bn+l - bl 

k=1 bl-bn+1 

In either case, if (bn> is monotonic, 
n 

if (bn> is increasing 
if (bn> is decreasing 

if (bn> is increasing 
if (bn> is decreasing. 

(5.18) 

(5.19) 

~ Ibk+ I - bkl = Ibn+ I - bll for each positive integer n. (5.20) 
k=1 

If, besides being monotonic, (bn> is also bounded, then there exists an 
M > 0 such that Ibnl ..;; M for all n. Therefore, by (5.20), 

n 

~ Ibk+l- bkl = Ibn + 1 - bll ..;; Ibnl + Ibll ..;; 2M 
k=1 

for each positive integer n. It follows that "i:,lbn+1 - bnl converges (explain) 
and, therefore, that (bn> is of bounded variation. We proved: 

Theorem 5.2. If (bn> is a bounded and monotonic sequence, then it is of 
bounded variation. 

Theorem 5.3 (DuBois-Reymond's Test). "i:,anbn converges if (1) "i:,an con­
verges and (2) (bn> is of bounded variation. 

PROOF. This theorem is actually a corollary of Theorem 5.1. Since ~an 
converges by hypothesis, its partial sums are bounded. Hence, an M > 0 
exists such that I Snl ..;; M. (Here, of course, Sn = "i:,k= lak for each n.) Since 
(bn> is of bounded variation, the series "i:,(bn+1 - bn) converges absolutely. 
Let to > 0 be given. There exists an N such that if m > n > N, then 

m 

~ Ibk - bk + Ii < ~ . 
k=m+1 
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It follows that if m > n > N, then 

I i: Sk(bk - bk+I)1 .;;; M i: ibk- bk+li < M l..t = £. 
k=n+l k=1 

By the Cauchy convergence criterion for series, we conclude that the series 

Now 

00 00 

2: Sn( bn+ I - bn) = - 2: Sn( bn - bn+ I) converges. 
n=1 n=1 

n 

2: (bk - bk+l) = bl - bn+1 
k=1 

(5.21 ) 

and the fact that 2:( bk - bk + I) converges imply that the sequence < bn + I> 
converges. This and the convergence of <Sn> imply that the sequence 
<bn+ISn> converges. Using Theorem 5.1, we conclude from this and (5.21) 
that 2:anbn converges. 

Corollary (Abel's Test). If 2:an converges and <bn> is monotonic and 
bounded, then 2:anbn converges. 

PROOF. Exercise. 

PROB. 5.1. A series of the form 
00 

2: a: 
n=1 n 

(5.22) 

is called a Dirichlet senes. Note that if Xo EO IR and x > xo, then the 
sequence < n ~ (x ~ Xo) > decreases monotonically to O. Prove: If for some 
Xo EO IR the series 

00 a 

2: n;o 
n=1 

converges, then the series in (5.22) converges for each x > xo' 

PROB. 5.2. Prove: If 2:an converges, then so do the series 

(1) 2:'::=lan/n, 
(2) 2:'::=2an/lnn, 
(3) 2:'::=1(1 + l/nfan • 

PROB. 5.3. Prove: If the Dirichlet series (5.22) diverges for some x = x I' 
then it diverges for all x such that x < x I' 

Theorem 5.4 (Dedekind's Test). 2:anbn converges if the sequence <Sn> of 
partial sums of 2:an is bounded, <bn> is of bounded variation and limbn = O. 
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PROOF. As in the proof of Theorem 5.3, one can prove that the hypothesis 
implies that the series 

00 

n=1 

converges. The boundedness of <Sn> and limbn = 0 imply that 

lim Snbn+ 1 = o. 
n~+oo 

Theorem 5.1 can now be used to complete the proof. 

Corollary (Dirichlet's Test). '2,anbn converges if the sequence of partial sums 
of '2, an is bounded and <bn> converges monotonically to O. 

PROOF. Exercise. 

EXAMPLE 5.1. We apply Dedekind's test to the series 

(5.22') 

where <bn> is of bounded variation and limbn = 0 to prove that it con­
verges for all x. If x is an integral multiple of 'fT then there is nothing to 
prove, for then all the terms of the series vanish and the series converges 
trivially to O. Hence, if we fix some x which is not an integral multiple of 'fT, 

then, by Prob. X.6.1, we have 

n. sin(nx/2)sin(n + 1)x/2) 
2: smkx= . ( /2) (5.23) 

k=1 sm x 

It follows from this that 

Iktl sinkxl < Sin(~/2) 
Hence, the partial sums of the series 

00 

2: sinkx 
k=1 

are bounded. Since <bn> is of bounded variation and limbn = 0, it follows 
from Theorem 5.4 that the series (5.22') also converges for values of x that 
are not integral multiples of 'fT. Thus, the series (5.22') converges for all 
x E IR. 

PROB. 5.4. Prove: If <bn> is of bounded variation and limbn = 0, then the 
series 

00 

2: bn cosnx 
n=O 

converges for each x which is not an integral multiple of 2'fT. 
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6. More Tests for Uniform Convergence 

Weierstrass's M-test for uniform convergence, though quite practical and 
easy to use, is limited in scope. It requires, among other things, that the 
series it is testing is absolutely convergent. The tests of the last section can 
be easily modified to yield more delicate tests for uniform convergence. 

Throughout this section we write the nth partial sum corresponding to x 
of the series of functions 

00 

S(x) = L: an(x) 
n=! 

as Sn(x). By Sn we shall mean the nth partial sum function of this series. 

Theorem 6.1. L:an(x)bn(x) converges uniformly on D sIR provided that the 
series 

00 00 

L: Sn(x)(bn+1(x) - bn(x)) = L: Sk(x)Abn(x) (6.1) 
n=l k=! 

converges uniformly on D, and the sequence of functions < bn + I Sn> converges 
uniformly on D. 

PROOF. Applying (5.17), we have for each x EO D, 

n n 

L: ak(x)bk(x) = bn+1(x)Sn(x) - L: Sk(x)Abk(x). (6.2) 
k=l k=l 

The right side of (6.2) converges uniformly on D (why?). Hence, so does its 
left side. 

Theorem 6.2 (Dubois-Reymond's Test for Uniform Convergence). The 
series L:an(x)bn(x) converges uniformly on the set D sIR if L:an(x) and 
L:\bn+1(x) - bn(x)\ converge uniformly and the sequence of functions <bn> is 
uniformly bounded on D. 

PROOF. Let 
00 

S(x) = L: ak(x) for x EO D. 
k=! 

If m > n, we have for x EO D. 

m 

S(x)(bm+1(x) - bn+1(x)) = L: S(x)(bk+1(X) - bk(x)) 
k=n+! 

m 

= L: S(x)Abk(x). (6.2') 
k=n+l 
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By Abel's summation formula (5.16), we have 
m m 

~ ak(x)bk(x) = bm+l(x)Sm(x) - bn+l(x)Sn(x) - ~ Sk(x)l1bk(x). 
k=n+1 k=n+1 
Because of (6.2) this can be written 

m 

~ ak(x)bk(x) = bm+l(x)(Sm(x) - S(x» - bn+l(x)(Sn(x) - S(x» 
k=n+1 

m 

- ~ (Sk(X) - S(x»l1bk(x). (6.3) 
k=n+1 

By the hypothesis, there exists an M > 0 such that Ib/x)1 ..; M holds for all 
j and xED. Because of (6.3), this implies that if m > n and xED, then 

I ~ ak(X)bk(X)I..; M(lSm(x) - S(x)1 + ISn(x) - S(x)l) 
k-n+1 

n 

+ ~ ISk(X) - S(x)lll1bk(x)l. (6.4) 
k=n+l 

Since Lan(x) converges uniformly on D, there exists an N 1, not depending 
on x, such that if k > N 1, then 

ISk(X) - S(x)1 < 1 for all xED. 

It follows from this and (6.4) that if m > n > N 1, then 

I k=~+ 1 ak(X)bk(X)I..; M(ISm(x) - S(x)1 + ISn(x) - S(x)l) 

m 

+ ~ ILlbk(x)1 (6.5) 
k=n+l 

for all xED. Given € > 0, we have from the uniform convergence of 
Lan(x) and Llbn+l(x) - bn(x)1 = LILlbk(x)1 that there exist N2 and N 3 , 

depending on € only, such that for all xED 

ISm(x) - S(x)1 < 2~ , ISn(x) - S(x)1 < 2~ 

if m > n > N2 and 
m 

~ ILlbk(x)1 < I 
k=n+l 

if m > n > N 3 • Take m > n > N = max{N1,N2,N3 }. The above and (6.5) 
imply that for all xED 

I k=~+ 1 ak( x)bk{ X)I < € for n > N. 

By Cauchy's criterion for uniform convergence this implies that Lan(x) 
bn(x) converges uniformly on D. 
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Theorem 6.3 (Modified Abel* Test for Uniform Convergence). The series 
Lan(x)bn(x) converges uniformly on a set D ~ IR provided that Lan(x) 
converges uniformly on D and there exists an M > 0 such that 

00 

~ Ibn+l(x) - bn(x)1 ,;;;; M and Ibl(x)l,;;;; M for all xED. 
n=1 

PROOF. By hypothesis, 
00 

Sex) = ~ an(x) converges uniformly on D. 
n=1 

We now turn to (6.3) in the proof of Theorem 6.2. This also holds here 
for all xED. It follows from (6.3) that if m > n, then 

Ik=~+1 ak(X)bk(X)1 ,;;;; Ibn+l(x)IISm(x) - S(x)1 + Ibn+l(x)IISn(x) - S(x)1 

m 

+ ~ ISk(X) - S(x)ll~bk(X)1 
k=n+1 

for all xED. 
From the hypothesis on the sequence <bn> and the fact that 

n 

bn+l(x) = bl(x) + ~ (bk+l(x) - bk(x)) 
k=1 

holds for each xED, we obtain 
n 

Ibn+l(x)1 ,;;;; Ibl(x)1 + ~ Ibk+l(x) - bk(x)1 ,;;;; M + M = 2M. 
k=1 

This and the hypothesis on b l imply that 

Ibn(x)1 ,;;;; 2M for all xED and all n. 

In turn, this and (6.6) imply: If m ;;;, n, then 

Ik=~+1 ak(X)bk(X)1 ,;;;; 2M(ISm(x) - S(x)1 + ISn(x) - Sex)!) 

m 

(6.6) 

+ ~ ISk(X) - S(x)ll~bk(X)1 (6.7) 
k=n+1 

for all xED. 
Let € > 0 be given. Since Lan(x) converges uniformly on D, there exists 

an N depending on € only such that if n > N, then 

ISn(x) - S(x)1 < 4~ for all xED. 

*W. Fulks (Advanced Calculus, 2nd Edition, John Wiley and Sons, New York, 1978 (Theorem 
(14.4b» cans this the modified Dirichlet Test for uniform convergence. 
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It follows from this and (6.7) that if m > n > N, then 

Ik=~+l ak(X)bk(X)1 .;;; 2M( 4~ + 4~) + 4~ k=~+llbk+l(X) - bk(x)1 

.;;; ~ + _€- (M) = 1. € < € 
2 4M 4 

for all xED. This implies that ~an(x)bn(x) converges uniformly on D. 

Corollary 1 (Abel's Test for Uniform Convergence). L:an(x)bn(x) converges 
uniformly on D provided that ~an(x) converges uniformly on D, the sequence 
of functions <bn> is uniformly bounded on D, and for each xED, the 
sequence <bn(x» is monotonic. 

PROOF. By the uniform boundedness condition on <bn >, there exists an 
M > 0 such that 

for all n and all xED. 

Since <bn(x» is monotonic for each xED, we have for each n 
n 

~ Ibk+l(x) - bk(x)1 = Ibl(x) - bn(x)1 
k=1 

Because of (6.8), this implies that 
n 

for each xED. 

~ Ibk+l(x) - bk(x)1 .;;; 2M for each n and all xED. 
k=l 

(6.8) 

The terms on the left here are all nonnegative, so the limit as n ~ + 00 

exists and we have 

Also 

~ Ibk+l(x) - bk(x)1 .;;; 2M = k 
k=1 

for all xED. 

for all xED. 

The conditions of the hypothesis of the theorem are now seen to be fulfilled 
and we conclude that ~an(x)bn(x) converges uniformly on D. 

An important and interesting consequence of this result is: 

Corollary 2 (Abel's Limit Theorem). If <an> is a sequence of real constants 
and ~an converges, then 

00 00 

lim ~ anx n= ~ an' 
x--> I - n = 0 n = 0 

(6.9) 

Similarly, if L:( -Iran converges, then 

(6.10) 
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PROOF. We first write 

so as to be in a position to apply Corollary 1. Putting 

An = an_I and Bn(x) = x n- I 

for each positive integer n, we have 
00 00 

~ anx n= ~ AnBn(x). 
n=O n=1 
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The series L~=oan = L~=IAn is a converging series of constant functions. 
As such, it converges uniformly on IR. For each x E [0, 1], the sequence 
<Bn(x» is monotonically decreasing. Since IBn(x)1 = Ixn-11 " 1 for all 
x E [0, 1] for each positive integer n, <Bn> is also uniformly bounded on 
[0,1]. By Corollary 1, the series 

00 00 

~ anx n= ~ AnBn(x) 
n=O n=l 

converges uniformly on [0,1]. The partial sum sequence of ~anxn is a 
sequence of polynomials on IR. As such, it is a sequence of functions which 
is continuous on [0, I]. Hence, the sum S(x) of the series is continuous on 
[0,1] and 

lim Sex) = S(I). 
x~l+ 

This is equivalent to (6.9). 
As for the second part of the corollary, we consider 

00 

T(y) = ~ (-I)na,JIn. 
n=O 

Since now ~( - I tan converges, we have by the first part 
00 

lim T(y) = T(I) = ~ (-lfan. 
y~l- n=O 

Puttingy = - x, we have y ~ 1 - if and only if x ~ (-1) +. Hence, 

00 00 

= lim ~ (-lfany n= ~ (-l)nan . 
y~l- n=O n=O 

EXAMPLE 6.1. In Example X1.9.3 we proved (see formula XI.9.26) that 

x 3 x 5 x 7 
Arctanx = x - - + - - - + ... 

357 
forall XE(-I;I). (6.11) 
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The series obtained by replacing x by 1 on the right is 

1 1 1 
1- 3 + 5 -"1+'" . 

This series converges. By Abel's limit theorem and (6.11) we may conclude 
that 

- = lim Arctan x = lim x - - + - - - + ... 'IT ( x 3 x 5 x 7 ) 
4 x"'" 1 - x"'" 1 - 3 5 7 

1 1 1 =1--+---+ 
3 5 7 

so that we have 

~=1-1+1-1+ ... 
4 3 5 7 . (6.12) 

The series on the right is called the Gregory Series. 

Remark 6.1. If the power series Lanx n has radius of convergence 0 < R 
< + 00 and LanR n converges, then 

00 00 

lim 2: anx n= 2: anRn. 
x ..... R- n~O n~O 

Indeed, by Abel's limit theorem, 
00 00 

lim 2: anR"yn= 2: anRn. 
y ..... l- n~O n~O 

Put x = Ry. Since x~ R -, if and only if y~ 1 -, we have 

Similarly, if L( -lyanRn converges, we can conclude that 

Theorem 6.4 (Dedekind's Test for Uniform Convergence). Lan(x)bn(x) 
converges uniformly on a set D C;;; IR provided that the sequence <Sn(X) of 
partial sums of Lan(x) is uniformly bounded on D, Llbk+ l(X) - bk(x)1 
converges uniformly on D, and bn(x)~O as n~ + 00 uniformly on D. 

PROOF. Since the partial sum sequence <Sn(x) of Lan(x) is bounded 
uniformly on D, there exists an M > 0 such that 

ISn(x)1 < M for all n and all xED. 

If m > n, this implies that 

jk~~+l Sk(x)(bk+1(X) - bk(x))j< M k~~+llbk+l(X) - bk(x)1 
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for all xED. Since Llbn+ t(x) - bn(x)1 is uniformly convergent on D, the 
last inequality implies that LSn(x)(bn+t(x) - bn(x» is uniformly conver­
gent on D. Also, 

for all xED. 

Since <bn(x» converges uniformly to 0 on D, this implies that the sequence 
of functions <bn+tSn> converges uniformly to 0 on D. By Theorem 6.1 it 
follows that Lan(x)bn(x) converges uniformly on D. 

Corollary (Dirichlet's Test for Uniform Convergence). Lan(x)bn(x) con­
verges uniformly on D provided that the partial sum sequence < Sn (x) > of 
Lan(x) is uniformly bounded on D, <bn(x» is monotonic for each xED, 
and the sequence <bn(x» converges to 0 uniformly on D. 

PROOF. Since <bn(x» is monotonic for each xED, it follows that if m ;;. n, 
then 

m 

~ Ibk+ t( x) - bk( x)1 = Ibm + t(x) - bn+ t( x)1 for all xED. 
k=n+t 

But, by hypothesis <bn(x» converges uniformly on D. We, therefore, 
obtain from the last equality that Llbn+ t(x) - bn(x)1 is uniformly conver­
gent on D. The partial sum sequence <Sn(x» of Lan(x) is uniformly 
bounded on D. The hypothesis of Theorem 6.4 is now satisfied and 
Lan(x)bn(x) converges uniformly on D. 

EXAMPLE 6.2. We examine the series 

where <bn> converges monotonically to O. We write 

an( x) = cosnx 

and examine the partial sums 
n n 

for each n 

~ ak(x) = ~ coskx. 
k=! k=! 

By Prob. X.6.2, we have: If n is a positive integer, then 

~ sin(x/2)cos(n + 1)/2)x 
£.J coskx= . 

k=! sm(x/2) 

if x is not an integral multiple of 27T, 

so that for each positive integer n 

if x is not an integral multiple of 27T. 
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We take 8 such that 0 < 8 < wand 0 < 8 .;;;; x .;;;; 2w - 8. We have 

o . 8 . x < sm 2 .;;;; sm 2 
and 

< sm - = sm w - - .;;;; sm-O ·8 .( 8) . x 
2 2 2 

if w';;;; x .;;;; 2w - 8. 

In either case, 

. x . 8 0 sm 2 ;;;. sm 2 > . 

Equivalently, 

0< I 
sin(x/2) 

.;:: I 
"" sine 8/2) 

if x E [ 8, 2w - 8 J. 

Thus, we have: for each positive integer n, 

for xE[8,2w-8J. 

It follows that the partial sum sequence of the series 
00 

~ cosnx 
n=1 

is uniformly bounded on [8; 2w - 8]. 
On the other hand, by our assumption, the sequence <bn> of constant 

functions bn is monotonic for each x and converges uniformly to 0 on IR. By 
Dirichlet's test, we conclude that the series 

converges uniformly on [8, 2w - 8]. Since the partial sums of this series are 
all continuous, the sum of the above series is continuous on [8, 2w - 8], 
where 0 < 8 < 2w - 8. 

PROB. 6.1. Prove: If < bn> is a real sequence which converges monotonically 
to 0, then the series 

converges uniformly on [8,2w - 8], wpere 0 < 8 < w. 



CHAPTER XIII 

The Riemann Integral I 

1. Darboux Integrals 

Until now we dealt with one type of limit process. The different aspects of 
it that we treated were variations on the same theme. In integration we 
encounter a different type of limit. 

We begin with a bounded closed interval I = [a, b] and assign to it a 
number called its length. The length L([a,b]) of [a,b], is defined as 

L([a,b]}=b-a. (1.1) 

By a partition P of [a, b] we mean a finite sequence <XO, XI' ••• , xn) of 
points of [a,b] such that 

a = Xo < X I < . . . < Xn _ I < Xn = b (1.2) 

(see Fig. 1.1). The partition P effects a partitioning of [a,b] into subinter­
vals II = [Xo,xd, 12 = [X I,X2],' .. , In = [Xn_l,xn] such that 

n 

U [Xi_I,Xi] =[a,b]. (1.3) 
i=1 

Since Ii = [Xi_I' X;] for each i E {l,2, ... , n}, we have L(I;) = Xi - Xi-I' 
We also write 

6.xi=Xi-Xi_I=L(Ii) foreach iE{l,2, ... ,n}. (1.4) 

Note that 
n n n 

~L(Ii)= ~6.Xi= ~(Xi-Xi_I)=Xn-xo=b-a 
i-I ;=1 ;=1 

= L([ a,b]) = LC~ Ii)' (1.5) 
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a = Xo b = Xs 

[ I I ] 

Figure l.l 

By abuse of language, we sometimes refer to the finite sequence of 
intervals (/1,/2, ••• , In> induced by the partition P as a partition of [a,b), 
and to the intervals Ii as the subintervals of the partition. 

EXAMPLE 1.1. Given [a, b), where a E IR, b E IR, and a < b, define 

Xi = a + i b - a . 
n 

Here i E {l,2, ... , n}, and n is some positive integer. 

Xo= a, b-a xl=a+--, ... , n 
For each i E {l, ... , n}, 

b-a 
Xn = a + n -- = b. 

n 

b-a ( b-a) b-a dx.=x.-x·_I=a+i--- a+(i-l)-- =--. , "n n n 

All subintervals of this partition have the same length. 

Def. 1.1. By the norm IIPII of a partition P = (XO,x l , ... ,xn> of [a,b) we 
mean 

IIPII = max{dx I , ... , dXn } = m~ dxi · 
l';;,';;n 

(1.6) 

For example, in the partition of Example 1.1 we have 

b-a b-a IIPII = max dx·= max -- = --. 
l.;;i';;n ' l.;;i';;n n n 

EXAMPLE 1.2. The subintervals of a partition need not all have the same 
length. Let a and b be real numbers such that 0 < a < band n be some 
positive integer and let 

_(b)l/n q- -
a 

so that q > 1. Let 

( b )i/n x·= a -, a for iE{O,l, ... ,n}. 

Clearly, Xo = a and Xn = band 

dXi = Xi - Xi_ 1 = a( ~ )i/n - a( ~ t-I)/n = a( ~ t-I)/n( (~) I/n - 1) > 0 

for each i E {l,2, ... , n}. We have 

a = Xo < XI < ... < xn _ 1 < xn = b, 

but the lengths of different subintervals are not equal. 
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PROB. 1.1. Show that for the partition P of Example 1.2, we have 

IIPII = bl-Iln(bl/n - al/n). 

603 

What follows will apply to a real-value function f defined on [a, b] and 
bounded there. We write 

m = inf f and M = sup f 
[a,b] [a,b] 

(1.7) 

Clearly, 

m"; f(x)..; M if x E [a,b]. (1.8) 

On the subintervals I; = [X;_I'X;] of the partition [a,b], f inherits the 
boundedness property. We write 

m· = inf f and M. = sup f 
I I; I Ii 

for iE{l, ... ,n}. (1.9) 

Since [x;_px;] ~ [a,b], we have f([x;_I'x;]) ~f([a,b]). Hence, x E 
[x; _ I ,x;] implies that 

(1.10) 

where i E {l, 2, ... , n}. It will sometimes be necessary to emphasize that 
m, m;, M;, and M are associated with a particular function. We then write 
these as m(j), m;(j), M;(j), and M(j). 

When f(x) > 0 for x E [a,b], then the products m;Llx; and M/l.x; are 
interpreted as the areas of rectangles based on I; = [Xi_I'X;] with respective 
"heights" m; and M; (see Fig. 1.2) for a given partition P of [a, b]. 

Def. 1.2. If P = <xo,xl, ... ,xn> is a partition of [a,b] andfis bounded on 
[a,b], then the sums 

n n 

2: M/ lXi 2: m/lx; and 
i=1 ;=1 

will be called respectively the lower and upper Darboux sums of f on [a, b] 

y 

a Xi-l 

Figure 1.2 

~ 
I 
I 

b 



604 XIII. The Riemann Integral I 

for the partition P and will be written as ~(j, P) and S(j, P). Thus, 
n n 

s..(f, P) = 2: mjilxj and S (j, P) = 2: Mjilxj . (1.11 ) 
i=l i=1 

PROB. 1.2. Prove: If f is bounded on [a, b], then for each partition P of 
[a,b], we have 

m(b - a) "'s..(f,P) '" S(j,P) '" M(b - a). (1.12) 

Der. 1.3. By a refinement of a partition P of [a, b] we mean a partition P' of 
[a,b] such that P ~ P'. 

Lemma 1.1. Iff is bounded on [a,b) and P' is a refinement of the partition P 
oj[a, b), then 

s..(f,P) "'s..(j,P ') '" S(f,P ') '" S(f,P). ( 1.13) 

(In short, a refinement does not decrease the lower Darboux sum and does not 
increase the upper one.) 

PROOF. Let P = <XO,x 1, ... ,xn) and P' = <x~,x;, ... ,x;") be partitions 
of [a,b), where P' is a refinement of P. Then 

a = Xo < X I < . . . < Xn _ I < xn = b (1.14) 

and 

a = x~ < x; < . . . < x;" _ I < x;" = b 

and P ~ P'. 
Assume that I j = [Xi_1,X;] is a subinterval of P ~ P'. Then X i - 1 E P' 

and Xi E P' so thatj and k exist such that x j _ 1 = x} and Xj = xk. Clearly,j 
and k are nonnegative integers such that j < k and, therefore, j '" k - 1. 
Hence, 

Xj _ I = x} '" xk _ 1 < xk = Xi . 

Thus, either (1) j = k - 1 or (2) j < k - 1. In the first case, 

[Xj _ 1 ,Xi] = [Xk- I ,xk]. (1.15) 

In the second case, Xi _ I = x} < Xk _ 1 < Xk = Xj and there is at least one 
partition point of P' between X j _ 1 and Xi' Take all the partition points, say 
X}+I,X}+2' ... , xk-l' of P' which are between Xj_1 and Xi' We have 

Xi- 1 = x} < X}+l < ... < xk-l < xk = Xi' (1.16) 

The points x}, X}+p ... , Xk_P xk constitute a partition of the interval 
Ii = [xj_1,x;], in this case. Write m; and M: for the infimum and supremum 
of f on the subinterval [X;_l' x;) of P'. When j = k - 1, (1.15) holds. In that 
case, 

( 1.17) 
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If j < k - 1, then (1.16) holds. Write tili and S; for the lower and upper 
Darboux sums of f restricted to the subinterval I; = [x; _ I' x;] and due to the 
partitioning of I; by X1,X1+ I , . .. , Xk_I,Xk. We have 

mAx; = mj(xj - X;-I) < .s..~i < S; < M;(Xj - X;-I) = M/1Xj . (1.18) 

Here tili appears as a sum in ti(j, PI) of f corresponding to the partition P' 
and, similarly, Sf appears as a sum in S(j, P'). What was done in I; can be 
repeated for all s~bintervals of P. Forming the Darboux sums for P and P' 
by using (1.17) and (1.18) we obtain 

.s..(f,P) <.s..(f,P') < S(f,P') < S(f,P), 

as claimed. 

Lemma 1.2. Let f be bounded over [a,b]. For any two partitions P and P" of 
[a,b] we have 

.s..(f,P) < S(f,P"). (1.19) 

PROOF. Let P' = pUP". P' is now a partition of [a,b]. Since P ~ P' and 
P" ~ pI, P' is a refinement of P and P". By Lemma 1.1, we have 

.s..(f,P) <.s..(f, PI) < S(f,P') < S(f,P"), 

and the conclusion follows. 

PROB. 1.3. Prove: If fis bounded on [a,b] and B is some upper bound of If I 
on [a, b], then for any partitions P and P' of [a, b], we have 

-B(b - a) <.s..(f,P) < S(f,P') < B(b - a) 

and, therefore, 

0< S(f,P') - .s..(f,P) < 2B(b - a). 

Note that whenfis bounded on [a,b], each lower Darboux sum off for a 
partition P is never greater than any upper Darboux sum for f on [a,b]. 
Hence, if G is the set of all lower Darboux sums of f over [a, b], then G is 
bounded from above by each S(j, P) (Lemma 1.2). Since G is certainly not 
empty, it has a real supremum. Similarly, the set H of all upper Darboux 
sums of f over [a, b] is bounded from below by any lower Darboux sum of f 
over [a,b] and, therefore, has an infimum. 

Del. 1.4. If f is bounded on [a,b], then the infimum of H, the set of all 
upper Darboux sums of f over [a, b], is called the upper Darboux integral of 
f over [a, b] and is written 
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The supremum of the set G of all lower Darboux sums of f over [a, b] is 
called the lower Darboux integral of f over [a, b] and is written 

l b f(x)dx. 

Remark 1.1. To guarantee the existence of each of 

Jb f(x)dx and Ib f(x)dx, 

it suffices to assume that f is bounded on [a, b]. 

Lemma 1.3. If f is bounded on [a, b] and P and P" are partitions of [a, b], 
then 

lb l-b -
~(j,P) ~a f(x)dx< a f(x)dx< S(j,P"). 

PROOF. The first inequality is an immediate consequence of the definition 
of the lower Darboux integral of f over [a, b]. Similarly the last inequality 
follows directly from the definition of the upper Darboux integral of f over 
[a,b]. We prove the inequality 

(1.20) 

Since s..(j,P) < S(j,P') holds for any partitions P and P' of [a,b], any 
upper Darboux S(j, P') is an upper bound for the set G of all lower 
Darboux sums of f over [a, b]. This implies 

(1.21 ) 

since on the left we have the supremum of G. But (1.21) holds for all upper 
Darboux sums of f over [a, b]. Accordingly, the left side of (1.21) is a lower 
bound for the set H of all upper Darboux sums of f over [a,b] and, 
therefore, cannot exceed the infimum of H. This implies (1.20). The proof is 
complete. 

Def. 1.5. If f is bounded over [a, b], then it is called Darboux integrable over 
[a,b] if and only if 

Jb f(x)dx= Ib f(x)dx. ( 1.22) 

When f is Darboux integrable over [a, b], we call the common value in 
(1.22) the Darboux integral of f over [a, b] and write it as 

Lb f(x)dx. 
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Thus, 

Lb f(x)dx= Jb f(x)dx= Ib f(x)dx. (1.23) 

We also define 

(1.24a) 

and 

if a < b. (1.24b) 

If f is Darboux integrable over [a, b], then we say briefly that it is 
D-integrable over [a, b]. 

PROB. 1.4. Prove: If f is bounded over and B is some upper bound of If I, 
then 

o ,,;;Ib f(x)dx-lob f(x)dx,,;; 2B(b - a) 

(see Prob. 1.3). 

Do D-integrable functions exist? We exhibit such a function. 

Theorem 1.1. If k is some real number and f(x) = k for all x E [a,b], that is, 
iff is the constant function having value k on [a, b], then f is D-integrable over 
[a,b] and 

PROOF. Let P = <XO,x l , ••• ,xn ) be some partition of [a,b]. Then 

m; = inf f(x) = inf k= k 
Xi-I'" X" Xi Xi-J <: x <Xi 

and 

M; = sup f(x) = sup k= k. 
X;_I"'X<Xj Xi_l<X<X; 

Hence, 
n n 

§.(j,P) = ~ m/lX;= ~ kt:.x;= k(b - a) 
i=1 i=1 

and 
n n 

S(j,P) = ~ M;t:.x;= ~ kt:.x;= k(b - a). 
i=1 i=1 
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It follows that 

that is, our function is D-integrable over [a,b] and 

Lbkdx= k(b - a). 

Are there functions which are not D-integrable? 

EXAMPLE 1.3. Take the Dirichlet function D and restrict it to the interval 
[0, I]. Thus, 

D(x) = {b if x is rational and 0 < x < 1 
if x is irrational and 0 < x < 1. 

Let P = <xo,x 1' ••• , x n> be any partition of [0, I]. We have 

m; = inf D(x) = 0 and M; = sup D(x) = 1 
Xi - I 0( X < Xi Xi _ I < x 0( Xi 

(explain) for each subinterval [X;_I'X;] of P. Therefore, 
n n 

~(D,P) = 2: m/lx;= 2: OAx;= 0 
;=1 ;=1 

and 
n n 

S(D,P) = 2: M;Ax;= 2: lAx= 1 - 0 = 1. 
;=1 ;=1 

These hold for any partition P of [0, 1]. It follows that 

foID(X)dx= 0 and fD(X) = 1. 

Therefore, D is not D-integrable over [0, 1]. 

To produce more D-integrable functions we prove the following criterion 
for D-integrability. 

Theorem 1.2. If f is bounded over [a,b], then f is D-integrable over [a,b] if 
and only if for each E: > 0 there exists a partition P of [a, b] such that 

S(j,P) - ~(j,P) < E:. ( 1.25) 

PROOF. Assume that for each E: > 0, there exists a partition P of [a,b] for 
which (1.25) holds. For any partition P of [a,b] we have 

(b (b -
~(j,P) ~a f(x)dx<Ja f(x)dx< S(j,P) 
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and, hence, 

o .;;;Ib f(x)dx-Jb f(x)dx.;;; S (f,P) - §..(f,P). 

Let E > 0 be given so that for some partition P' of [a, b], 
S(j,P') -SJf,P') < E. Using (1.26) we obtain 

o .;;;Ib f(x)dx- L b f(x)dx.;;; S(f,P') - §..<f,P') < E. 

Thus, 

o .;;;Ib f(x)dx-Jb f(x)dx< E. 
This holds for any given E > o. It follows that 

lab f(x) = Ib f(x)dx 

(explain) and, therefore, that f is D-integrable over [a, b]. 
Conversely, assume that f is D-integrable over [a, b] so that 

Jb f(x)dx= Ib f(x)dx= Lb f(x)dx. 

Let E > 0 be given. We know that 

609 

(1.26) 

we have 

(1.27) 

A = Jb f(x)dx- I <jb f(x)dx and Ib f(X)dx<Ib f(x)dx+ I = B. 

Here A is not an upper bound for the set G of lower Darboux sums of f, so 
a partition P' of [a,b] exists such that the lower Darboux sum £(j,P') 
corresponding to P' satisfies 

Jb f(x)dx- I <§..(f,P'). (1.28) 

Similarly, B is not a lower bound for the set H of upper Darboux sums of f, 
and, therefore, a partition P II of [a, b] exists such that 

(1.29) 

Let P = P' U P" so that P is a refinement of P' and of P" and, therefore, 

§..(f,P') ';;;§..(f,P)';;; S(f,P)';;; S(f,P"). 

This, (1.28) and (1.29) imply 

Jbf(X)dx- I <§..(f,P)';;; S(f,P) <Ibf(X)dx+ I· 
Now use this and the equality of the upper and lower integrals to obtain for 
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the partition P 

S(f,P) - £(f,P) <lb f(x)dx+} - (lb f(x)dx -}) = f. 

This completes the proof. 

Theorem 1.3. Iff is monotonic on [a,b], thenfis D-integrable over [a,b]. 

PROOF. The mono tonicity of f on the bounded closed interval implies its 
boundedness (why?). Assume, for definiteness, that f is monotonically 
increasing on [a,b]. Let P = <xo,xl' ... , xn> be a partition of [a,b]. For 
the subinterval [X;-l' xJ of P we have 

forall xEI;=[X;_I'X;], 

and 

M; = sup f= maxf= f(x;). 
Ii Ii 

Therefore, 
n n 

2: f( X;_I)!1X;= £(f, P) < S (f, P) = 2: f( x;)!1x; 
i= I i= I 

and 
n 

s(f,P) - £(f,P) = 2: (f(x;) - f(X;_I))!1X;. (1.30) 
i= I 

If f is constant on [a, b], then we know it is D-integrable there. Assume f is 
not constant on [a, b]. Hence, f( a) < f( b). Take a partition P such that 

IIPII < feb) ~ f(a) 

and obtain 

!1x; < IIPII < feb) ~ f(a) 

for all i E {l, ... , n}. Using (1.30), this implies that 
n 

S(f,P) - £(f,P) = 2: (f(x;) - f(x;_I»)!1x; 
;=1 

n 

<;~l (f(x;) - f(X;-I») feb) ~ f(a) 

= (f(b) - f(a») feb) ~ f(a) 

= E. 
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Thus, the integrability criterion in Theorem 1.2 is satisfied and we conclude 
that j is D-integrable over [a, b]. 

We leave the case where j is monotonic decreasing to the reader (Prob. 
1.5). 

PROB. 1.5. Complete the proof of Theorem 1.3 by proving: If j is monotoni­
cally decreasing on [a,b], thenjis D-integrable there. 

EXAMPLE 1.4. Let a and b be real numbers such that 0 < a < b and let j be 
defined as 

1 j(x) =-
X2 

for x E [ a, b J. 
Let P = <XO,XI' •.• , x n> be any partition of [a,b]. Since 0 < a";;; Xi-I";;; X 

..;;; Xi for X E Ii = [Xi_I,X;], we have 

o < Xi2_ I ..;;; X2 ..;;; xl 

and, therefore, that 

Clearly, 

and 

m. = infj=-L 
I 2 

Ii Xi 

for x Eli. 

I and Mi=SUpj= -2-
Ii Xi-I 

_ n 1 n 1 
S(j,P) = ~ -2- l1xi = ~ -2-(Xi - Xi-I)· 

;= I Xi-I ;=1 Xi-I 

Note that, for each i E {l,2, ... , n}, we have 

-L <_1_ <_1_ 
xl XiXi _ 1 xLI 

so that 

This implies that 

n 1 _ 
< ~ -2-(Xi - Xi-I) = S(j,P). 

;=1 Xi-I 
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for each partition P of [a,b]. This is equivalent to 

~(f,P) < ~ - t < S(f,P) 

for each partition P of [a, b]. This yields 

(b ~ dx';;;; 1 _ 1 .;;;; (b ~ dx. 
Ja x 2 a b Ja x 2 

(1.31) 

But j is monotonic decreasing and, therefore, D-integrable on [a, b]. It 
follows that the upper and lower integrals in (1.31) are equal, their common 
value being the Darboux integral ofjover [a,b]. This and (1.31) imply that 

(1.32) 

PROD. 1.6. Suppose that ° < a < b and that j is defined as 

f( x) = ~ for x E [ a, b J. 
x 3 

Let P = <XO,x1, ... , xn> be a partition of [a,b]. Show that 

.l. < _1_ + _1_ < _2_ 
xi X;2X; _ 1 X;X;2_ 1 xi -1 

holds for the points of P. Prove that 

EXAMPLE 1.5. Once it is known that the function is D-integrable and we 
merely wish to evaluate its integral we need not deal with all of the 
partitions of the interval. It suffices to choose certain special sequences of 
partitions. Thus, consider the function j, where 

j(x) = x 2 

for x E [0, b], b > 0. On this interval j is monotonic increasing and, there­
fore, D-integrable. We wish to evaluate 

fob x2dx. 

Take a sequence < Pn> of partitions of [0, b] such that 

We have 

.b 
x· = I­

I n for i E {O, 1, ... ,n}. 
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and 

[X;_I,Xi]=[i-lb,ib] and !:J.x;=Q. 
n n n 

For the interval Ii = [Xi-I' Xi) we have 

m;= infx2=(i- 1 b)2 and M;=suPx2=(ib)2. 
xE/, n xE/, n 

Therefore, 

n n (i _ 1 )2 b L m;!:J.x;= L -b -
;=1 ;=1 n n 

and 

This implies that 

b3 n 
£(f,Pn ) = 3" L (i - 1)2 

n ;=1 
and 

Now, as is seen from Prob. II.4.6(b), 

n (n - l)n(2n - 1) 
L (i - 1)2= 6 
;=1 

and 
n.2 n(n + 1)(2n + 1) 
L 1= 6 . 
;=1 

Thus, 

b3 (n-l)n(2n-l) b3 ( 1)( 1) S(f P ) = - = - 1 - - 2 - -
- 'n n3 6 6 n n 

and 

- b3n(n+l)(2n+l) b3 ( 1)( 1) S (f P ) = - = - 1 + - 2 + -
'n n3 6 6 n n . 

Therefore, 

b; (1 - ~ )(2- ~ ) ~ fob :2 dx ~ ~ (1 + ~ )(2+ ~ ) 
for each positive integer n. Taking limits as n ~ + 00, we obtain 

~ = fobx2dx. 

PROB. 1.7. Assume b > O. Evaluate, using Darboux sums: 

(1) fgx 3 dx, 
(2) fgx4dx, 
(3) fgexdx. 

PROB. 1.8. Prove: The functions f and g defined as 

if a~x<b 
if X = b 

613 
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and 

g(X) = {~(a)*o if a<x<.b 
if x = a, 

are D-integrable and 

i b f(x)dx= 0 = i b g(x)dx. 

Theorem 1.4. Iff is continuous on [a,b], thenfis D-integrable over [a,b]. 

PROOF. The continuity of f on the bounded closed interval [a, b] implies its 
boundedness and uniform continuity there. Let £ > 0 be given. There exists 
a/» 0 such that if ~ and 1/ are points of [a,b] with I~ -1/1 < 8, then 

If(~) - f(1/) I < b ~ a . 

Take a partition P = <xo,xl, ... ,xn> such that IIPII < 8. For each subin­
terval [xj _ I' Xj] of P (since f is continuous on that bounded closed interval) 
fhas a maximum and a minimum there. Letf(~;) andf(1/;) be the respective 
maximum and minimum of f on [xj_l,x;]. Thus, ~j and 1/j are in [xj_l,x;] 
and 

f(1/j) = Mj . 

We have I~j - 1/jl <. tJ.Xj <. IIPII < 8 and 

M j - mj = IMj - mjl = If(~j) - f(1/j)1 < b ~ a 

for each i E p,2, ... , n}. Hence, 
n n 

- " £" £ S(f,P) - §..(f,P) = j~1 (Mj - mj)tJ.xj< b _ a j~1 tJ.Xj= b _ a (b - a) = £. 

By Theorem 1.2, f is D-integrable over [a, b]. 

Lemma 1.4. Iff is bounded over [a,b] and a < c < b, then 

JC f(x)dx+ lb f(X)dx=Jb f(x)dx 

and 

(1.33) 

( 1.34) 

PROOF. We prove (1.33) and leave the proof of (1.34) to the reader (Prob. 
1.9). Let P = <XO,xl, ... , xn> be a partition of [a,b]. Let [Xk-I,Xk] be the 
subinterval of P containing c. If c is not one of the endpoints X k _ 1 or xk , 
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define P' = P U {c}. If c is one of X k _ 1 or xk , define P' = P. P' is now a 
partition of [a, b] containing the point c and since P k P', P' is a refine­
ment of P. Let P{a,c] and P{c,b] be the subsets of P' forming respectively 
partitions of [a,c] and [c,b]. We have 

and 

Thus, 

P k P' = P{a,c) U P(c,b] 

§..(f, P) <, §..(f, P') = §..(j, P(a,c) + §..(j, P(e,b]) 

1cf(X)dX+ Jb f(x)dx. 

§..(f,P) <jcf(X)dx+ Jb f(x)dx 

for any partition P of [a,b]. The number on the right is an upper bound for 
the set G of all lower Darboux sums of f over [a,b]. Since J~(x)dx is a 
supremum of G, this implies that -

(1.35) 

We now prove that this inequality can be reversed. Let £ > 0 be given. 
We have 

loC f(x)dx- ~ <.~r f(x)dx and Jb f(x)dx- ~ <Jb f(x)dx. 

Therefore, there exist partitions p[a,c) of [a, c] and P[c,b) of [b, c] such that 

JCf(X)dX- ~ <§..(j,p[a,c) and Jb f(x)dx- ~ <§..(j,P[c,b)· 

Adding, we obtain 

LCf(X)dx+ Lb f(x)dx- £ <§..(j,p[a,c]) + §..(j,P[c,b). (1.36) 
- -

Put P' = p[a,c) U P[c,b)' P' is a partition of [a,b]. Moreover, 

§..(j,P[a,b) + §..(j,P[c,b) = §..(f,P I). 

This and (1.36) imply that 

jC f( x) dx + Jb f( x) dx - £ < §..(f, PI) 1b f( x) dx. 

Therefore, 

LC f(x)dx+ Lb f(x)dx- £ <Lb f(x)dx 
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for all £ > O. We conclude that 

lCf(X)dx+ lbf(X)dx.;;;;lbf(X)dx. ( 1.37) 

This and (1.35) yield (1.33). 

PROB. 1.9. Complete the proof of the last lemma by showing that (1.34) 
holds if f is bounded over [a, b]. 

Theorem 1.5. If a < c < b for real numbers a, b, and c and f is D-integrable 
over [a, c j and over [c, b j, then f is D-integrable over [a, b j and 

lCf(X)dx+ lbf(X)dX= lbf(X)dx. 

PROOF. Exercise. 

PROB. 1.10. Prove: If a .;;;; c .;;;; b is defined as 

if a';;;; x .;;;; b, x =1= c 
if x = c, 

then his D-integrable over [a,bj and f~h(x)dx = 0 (see Prob. 1.8). 

PROB. 1.11. Prove: If a < c < band f is continuous on [a,cj and on [c,bj, 
thenfis D-integrable over [a,bj and 

lC f(x)dx+ lb f(x)dx= lb f(x)dx. 

PROB. 1.12. Prove: If f is D-integrable over [a,bj and a < c < b, then f is 
D-integrable over [a,cj and over [c,bj. 

PROB. 1.13. Prove: If f is D-integrable over [a,bj, then it is D-integrable 
over every bounded, closed subinterval of [a,bj. 

Remark 1.2. If f is integrable over all the intervals involved in 

lCf(X)dx+ lb f(x)dx= lb f(x)dx, 

then this equality holds regardless of the order of a, b, and c. For example, 
suppose c < b < a, then 
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and, therefore, 

This implies 

i C f(x)dx+ lb f(x)dx= - La f(x)dx= i b f(x)dx. 

Theorem 1.6. If f is bounded on [a, b] and is D-integrable over every closed 
interval [c, d] such that a < c < d < b, then f is D-integrable over [a, b]. 

PROOF. Since f is bounded on [a, b], there exists a B > 0 such that 

If(x)I<B forall xE[a,bJ. 

Given E > 0, take 8 such that 

O< ~,,;:: . {E b-a} 
u "" mm 4b' -2- . 

This implies that 0 < 8 < (b - a)/2 and, hence, that a < a + 8 < b - 8 
< b. We have 

i-
b i-a + 8 i b- 8 i-b f(x)dx= f(x)dx+ f(x)dx+ f(x)dx 

a a a+8 b-8 
and 

i
b ia+8 i b- 8 i b f(x)dx= f(x)dx+ f(x)dx+ f(x)dx. 

a a a+8 b-8 

Subtract (1.39) from (1.38) and obtain 

o <1b f(x)dx-lob f(x)dx= (1aH f(x)dx - loaHf(X)dX) 

+ ((b f(x)dx _ (b f(x)dX). 
Jb - 8 Jb -8 

(1.38) 

( 1.39) 

(1.40) 

Apply the result in Prob. 1.4 to the two differences in parenthesis on the 
right and obtain 

(1aHf(X)dX _loaHf(X)dX) + (I~/(X)dX -J~/(X)dX) 

< 2B8 + 2B8 = 4B8 < E. 

This and (1.40) imply that 

o <ib f(x)dx- i b f(x)dx< E 
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for each € > 0. It follows from this that 

Ib f(x)dx= i b f(x)dx. 

This proves the theorem. 

PROB. 1.14. Prove: If f is defined on [ - 1, Ij as 

{
. 1 

f(x) = ~nx for x =1= ° and x E [ - 1, 1 ] 

x =0, 

PROB. 1.15. Prove: Iffis monotonic on [a,bj, then 

1 
(b f(x)dx - b - a ± f{a + k b - a)1 « If(b) - f(a)1 (b - a) 
~ n k=1 n n 

for each positive integer n. 

PROB. 1.16. Prove: If f is monotonic over [a, b j, then 

i b f(x)dx 

lies between f(a)(b - a) and f(b)(b - a). 

2. Order Properties of the Darboux Integral 

Lemma 2.1. If f and g are bounded on [a,bj and f(x) « g(x) for all 
x E [a, bj, then 

(2.la) 

and 

(2.1b) 

PROOF. Let m(!) be the infimum of f on [a,bj and M(!) its supremum 
there, and let meg) and M(g) have similar meanings for g. We have 

m(f)«f(x)«g(x)«M(g) forall xE[a,bJ. 

It follows that 

m(f) « m(g) and M(f) « M(g) 

(explain). 
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Let P = <XO,x l , ••• , x n> be a partition of [a,b). Apply the result just 
proved for the interval [a,b) to each subinterval [Xi_I,X;] of P. We obtain 

mi(f) ,,; mi( g) and M;(f)"; M;( g) 

and, therefore, 

~(f,P) ";~(g,P) and S(f,P)"; S(g,P). 

It follows that 

These hold for all partitions P of [a, b). In turn, this implies that 

Lb f(x)dx,,;L b g(x)dx and Ib f(X)dX,,;Ib g(x)dx 

(why?). 

Theorem 2.1. Iff and g are D-integrable over [a,b) and f(x) ,,; g(x) for all 
x E [a, b), then 

PROOF. Exercise. 

Corollary. Iff is D-integrable over [a,b) andf(x);;. o for all x E[a,b), then 

Lb f(x)dx;;. O. 

PROOF. Exercise. 

Theorem 2.2. If f is continuous on [a,b) and f(x);;. 0 for all x E [a,b), but 
f(x) =1= 0 for some x E [a, b), then the strict inequality 

Lb f(x)dx> 0 

holds. 

PROOF. Assume first that a c exists such that a < c ,,; band f( c) =1= O. By the 
hypothesis on f, we must have f(c) > O. Since f is continuous at c, there 
exists a 8 > 0 such that if x E [a, b) and c - 8 < x ,,; c, then f(x) > O. Let 
AI = max{a,c - 8} so that a"; AI < c and c - 8,,; AI < c. Take A such 
that AI < A < c. It follows that f(x) > 0 for all x E [A, c). Since [A, c) C [a, 
b), f is continuous on the bounded closed interval [A, c) and, therefore, has a 
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minimum f(~) there. Clearly, f(~) > O. Now f is continuous on [a,b] and, 
therefore, D-integrable over [a, b], and 

L b f(x)dx= LA f(x)dx+ i C f(x)dx+ Lb f(x)dx. (2.2) 

But fromf(x);;. 0, x E [a,b], we conclude that 

iAf(X)dx;;,O and Lbf(x)dx;;.O. 

This and (2.2) imply that 

L b f(x)dx;;. iCf(X)dx;;. f(~)(e - A) > O. 

Here, the middle inequality is a consequence of Lemma 1.3 and the result 
cited in Prob. 1.2. 

When a e exists such that a .;;; e < band f( e) =1= 0, the conclusion follows 
by analogous reasoning. This completes the proof. 

Remark 2.1. If f is continuous on [a, b] and nonnegative there, but f(x) =1= 0 
for some x E [a, b], then 

Laf(X)dx= - Lbf(x)dx<O. 

PROB. 2.1. Prove: If f is continuous on [a, b] and nonnegative there and 

Lb f(x)dx= 0, 

thenf(x) = 0 for all x E [a,b]. 

PROB. 2.2. Prove: If f is continuous on [a, b] and nonpositive there and 

Lb f(x)dx= 0, 

thenf(x) = 0 for all x E [a,b]. 

FROB. 2.3. Prove: If f is continuous on [a, b] and 

L b f2(X)dx= 0, 

thenj(x) = 0 for all x E [a,b]. 

Lemma 2.2. If f is bounded over [a,b], then: (I) m(ej) = em(j), and 
M(ej) = eM(j)for e > 0; (2) m(ej) = eM(j) and M(ej) = em(j) for e < o. 

PROOF. Exercise. 
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Theorem 2.3. Iff is bounded and D-integrable over [a,b] and c is some real 
constant, then so is cf and 

LbCf(X)dX= c Lb f(x)dx. 

PROOF. The theorem certainly holds if c = 0 (explain). Assume that c > O. 
Let P = <XO,x l , ••. ,xn> be a partition of [a,b]. Apply Lemma 2.2(1) to 

each subinterval [x; _ I' x;] of P and conclude that 

m;( ef) = em;(f) and M;( cf) = cM;(f). 

We obtain 
n n n 

c£(f,P) = c ~ m/lx;= ~ cm/lx;= ~ m;(cf)t:.x; 
;=1 ;=1 ;=1 

(2.3) 

and 
n n n 

cS(f,P) = c ~ M;t:.x;= ~ cM;t:.x;= ~ M;(cf)t:.x; 
;=1 ;=1 ;=1 

= S(ef,P) > Ibef(X)dx. (2.4) 

From (2.3) we conclude that 

£(f,P) < ~ LbCf(X)dx. 

This holds for any partition P of [a, b]. Hence 

(b f(x)dx= (b f(x)dx< 1 (bcf(x)dx 
Ja Ja c Ja - -

and, therefore, 

C Lb f(x)dx <LbCf(X)dx. (2.5) 

Similarly, we conclude from (2.4) that 

c L b f(x)dx > IbCf(X)dx. (2.6) 

Inequalities (2.5) and (2.6) imply that 

IbCf(X)dx< c L b f(x) dx < LbCf(X) dx. 

In turn, this iml'lies (explain) that 

IbCf(X)dx= c Lb f(x)dx= JbCf(X)dX. (2.7) 
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We conclude from this that cf is integrable and, moreover, that 

ibCf(X) = c i b f(x)dx. 

Now assume that c < O. Again take a partition P = <xo,x 1, ••• , xn ) of 
[a,bj. Apply Lemma 2.2 to each subinterval [Xi-1,X;] of P and conclude 
that 

Obtain 

c~(f,P) = S(cf,P);;;' IbCf(X)dX 

and 

cS(f,P) = ~(cf,P) "'ibCf(X)dX, 

and conclude from (2.8) and (2.9) that 

~(f,P) ",libcf(x)dx and S(f,P) ;;;.libcf(x)dx. 
c a C a 

These hold for any partition P of [a, b j, so they imply respectively 

and 

and, hence, 

Ib cf(x)dx '" c i b f(x) dx '" i b cf(x) dx. 

(2.8) 

(2.9) 

(2.l0a) 

(2. lOb) 

Reasoning as before, we obtain the conclusion in this case (c < 0) also. 
This completes the proof. 

Corollary. Iff is bounded and D-integrable on [a, bj, then so is - f and 

i\ - f(x))dx= - i b f(x)dx. 

PROOF. Exercise. 

We are now in a position to prove an important inequality concerning 
D-integrals. 
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Remark 2.2. Consider the function f defined on [ - I, I] as 

if x is rational and - I ..; x ..; I f(x) = {I 
- I if x is irrational and - I ..; x ..; 1. 

One sees readily that f is bounded but not D-integrable over [a, b]. 
However, If I is the constant function 1 on [-1,1] and, therefore, D­
integrable. Thus, If I may be D-integrable without f itself being so. In the 
next theorem (Theorem 2.4) we prove that if f is bounded and D-integrable, 
then so is If I· We precede the proof with a definition and some lemmas. 

Der. 2.1. If f is defined and real-valued on a set A =1= 0, then its fluctuation 
0, A (j) on A, is defined as 

o,Af) = sup f- inf f (2.11) 
A A 

For example, let f be defined as 

I f(x)=--
1 + x 2 

It is easily checked that 

for all x E IR. 

supf=maxf=l and inff=O. 
R R R 

Hence, 

Lemma 2.3. Iff is a real-valued function bounded on some set A =1= 0, then 

sup If(x l ) - f(x2)1 = o,Af). (2.12) 
XI,X2 EA 

PROOF. Write 

DA(f) = sup If(x l ) - f(x 2)1. (2.13) 
Xh X 2 EA 

Note that if XI E A and X 2 E A, then 

inff"; f(x l ) ,,;supf and inff"; f(x2) ..;supf. 
A A A A 

These imply that 

If(x l ) - f(x 2)1 .;;; sup f- inf f= o,Af)· 
A A 

This holds for any x I and x 2 in A and we obtain 

DAf) .;;; o,Af)· (2.14) 

On the other hand, if XI E A and X2 E A, then 

f(x l) - f(x2) .;;; If(x l) - f(x2)1 .;;; DA (f) 
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so that 

f(x l ) < f(x 2) + DA(f) for all XI E A and each x 2 E A. 

This implies that 

sup f < f( x2) + D A (f) for each X2 E A. 
A 

It follows from this that 

supf- DA(f) < f(x 2) for each X 2 E A. 
A 

Hence, 

In view of (2.13), this yields (2.12). 

Lemma 2.4. Iff is bounded on A, then 

QAlfl) < QAf)· (2.15) 

PROOF. By the properties of absolute value and the last lemma we have: If 
xlEA andx2EA,then 

Ilf(x l)I-lf(x2)11 < If(x l) - f(x 2)1 < sup If(x l) - f(x 2)1 = QAf). 
XJ,X2EA 

This and the last lemma imply that 

QA(lfl) = sup Ilf(xl)l- If(x 2)iI < QAf)· 
X\>X2 EA 

Theorem 2.4. Iff is bounded and D-integrable on [a,b], then so is If I and 

(2.16) 

PROOF. Since f is bounded on [a,b], so is If I· Let P = <xa,x l, ... , xn> be 
any partition of [a, b]. Apply the last lemma to each subinterval Ii = [Xi _ I' 
xJ of P. We have 

which states that 

sup If 1- inf If I < sup f- inf f. 
~ ~ ~ ~ 

This can be written 

Hence, 

S(lfl,P) - £(lfl,P) < S(f,P) - £(f,P). (2.17) 
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By hypothesis, f is D-integrable on [a, b]. By Theorem 1.2, (2.17) implies 
that If I is D-integrable on [a,b] (prove this). 

We complete the proof by proving (2.16). We have 

-If(x)I':;;;f(x).:;;;lf(x)1 forall xE[a,b]. 

The functions involved in this inequality are all D-integrable. Hence, 

- .Clf(x)ldx= L b -If(x)ldx .:;;;Lbf(x)dx.:;;;Lblf(x)ldX, 

i.e., 

- Lblf(x)ldx.:;;;Lbf(X)dx.:;;;Lblf(x)ldX. 

This implies (2.16). 

PROB. 2.4. Prove: If f is Darboux integrable on a bounded interval with 
endpoints II and t2 and B is an upper bound for the function Ifl, then 

l.t2f(X) dx l.:;;; Blt2 - tIl· 

3. Algebraic Properties of the Darboux Integral 

Theorem 3.1. Iff and g are bounded and Darboux integrable on [a, b], then so 
isf+gand 

LbU(X) + g(x)dx= Lb f(x)dx+ Lb g(x)dx. (3.1) 

PROOF. By hypothesis, f and g are both bounded on [a, b]. Hence, f + g is. 
Let P = (XO'x l , ••• ; xn> be a partition of [a,b]. For each subinterval 
Ij = [Xj_px;] of P, we have, in our usual notation, 

mj(f) .:;;; f(x) .:;;; Mj(f) and mj(g)':;;; g(x) .:;;; Mj(g) for all x E Ij . 

These imply that 

mj(f) + mj(g) .:;;; f(x) + g(x) .:;;; Mj(f) + Mj(g) for all x E I j . 

It follows that 

mj(f) + mj(g)':;;; mj(f+ g)':;;; Mj(f+ g)':;;; Mj(f) + Mj(g) 

for each i E {1,2, ... ,n}. Forming Darboux sums, we have 

and 

Ibu(X) + g(x)dx':;;; S(f+ g,P)':;;; S(f,P) + S(g,P) 
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so that 

(3.2) 

and 

Lb(J(X) + g(x))dx<. S(J,P) + S(g,P) (3.3) 

for each partition P of [a,b]. 
Let E > 0 be given. There exist partitions P' and P" of [a, b] such that 

L b f(x)dx-1 <~(J,P') (3.4a) 

and 

Lb g(x)dx-1 <~(g,P"). (3.4b) 

Note, f and g are assumed to be D-integrable over [a, b] so the integrals 
appearing on the left in (3.4) needn't be underlined with an underbar. Let 
P = P' U P" so that P is a refinement of P' and also of P" and, hence, 

~(J,P') <.~(J,P) and ~(g,P") <.~(g,P). 

These, together with (3.4), yield 

Lb f(X)dX-1 <~(J,P) and Lb g(x)dx-1 <~(g,P). 

After adding and using (3.2), these imply that 

Lb f(x)dx+ Lb g(x)dx- E <~(J,P) + ~(g,P) <.Lb(J(X) + g(x))dx. 

Thus, 

Lb f(x)dx+ Lb g(x)dx- E <Lb(J(X) + g(x))dx. 

This holds for each E > O. Therefore, 

Again, let E > 0 be given. There exist partitions P' and P" of [a, b] such 
that 

S(J,P') <Lb f(x)dx+ ~ and S(g,P") <Lb g(x)dx+ 1. 

Proceeding as we did before and using (3.3) we obtain 

I\f(X) + g(X))dx<.Lb f(x)dx+ L b g(x)dx. (3.6) 
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This and (3.5) yield 

I\f(X) + g(x))dx <.lb(f(X) + g(x))dx. 

Since the reverse inequality always holds, this implies that 

I\f(X) + g(x))dx= lb(f(X) + g(x))dx. (3.7) 

Thus, f + g is D-integrable over [a, b]. Equation (3.1) now follows from 
(3.5), (3.6), and (3.7). This completes the proof. 

In view of this theorem and Theorem 2.3, we have: 

Theorem 3.2. If c and d are real constants and both f and g are bounded and 
D-integrable over [a, b], then so is cf + dg and 

lb(cf(X) + dg(x))dx= c i b f(x)dx+ d lb g(x)dx. 

PROOF. Exercise. 

PROB. 3.1. Prove: Letfandg be continuous on [a,b]. Iff(x) <. g(x) for all 
x E [a,b], butf(x) < g(x) holds for some x E [a,b], then the strict inequal­
ity 

holds. 

PROB. 3.2. Prove: If n is a nonnegative integer, then 

fo7T/2sinn + IX dx <fo7T/2sinnx dx. 

Theorem 3.3.* Iff is bounded on [a, b] and its values are changed at finitely 
many points of [a, b], then this changes neither its D-integrability nor its 
D-integral. 

PROOF. Assume that f is D-integrable on [a, b] and its value is changed at 
some c E [a,b]. Let g be the new function. Then 

g(x) - {
f(X) for x=l=c, xE[a,bJ 

g(c)=I=f(x) for x=c. 

Define has h(x) = g(x) - f(x) for each x E [a,b]. We have 

{o if x=l=c, xE[a,bJ 
h(x) = g(c) - f(c) =1= 0 if x = c. 

• See Section XIV.S below. 
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h is certainly bounded on [c,b]. By Prob. 1.10, it is Darboux integrable and 

Lbh(x)dx= O. 

Now g = I + h on [a, b], where I and h are bounded and D-integrable, so 

Lb g(x)dx= LbU(X) + h(x»dx= L b I(x)dx+ Lbh(X)dX= Lb I(x)dx. 

Thus, g has the same D-integral as I (over [a,b]). If I is not Darboux 
integrable, then the function g defined above is not Darboux integrable 
either (since 1= g - h, the D-integrability of g would imply the D­
integrability of f). To prove an analogous result for n points c1' ••• , cn 

rather than one point, we use induction on n. The reader should complete 
the proof by carrying out this induction. 

PROB. 3.3. Prove: If I and g are bounded and Darboux integrable on [a, b], 
then the functions m and M, defined as 

m(x) = min{f(x), g(x)} and M(x) = max{f(x), g(x)} 

for each x E [a,b], are also bounded and Darboux integrable on [a,b] 
(Hint: see Prob. 1.l3.17). 

PROB. 3.4. Prove: If I is bounded and Darboux integrable on [a, b], then so 
are 1+ and 1-, where these are defined as 

1+ (x) = max{O, I(x)} and 1- (x) = min{O, I(x)} 

for each x E [a,b]. 

We now consider products of Darboux integrable functions. First we 
prove: 

Theorem 3.4. II I is bounded and Darboux integrable on [a,b], then so is 12. 

PROOF. Suppose I is real-valued and bounded on a set A =1= 0. Then 

mA (III) .;;; I/( x)1 .;;; MA (III) for all x EA. (3.8) 

Here mAG/I) and MA(I/I) are defined as 

mA(I/I) = infl/l and MAI/I) = sup III. 
A A 

Since I/(x)1 ;;. 0 for all x E A, it follows that 0.;;; mA (III). Hence, upon 
squaring in (3.8) we obtain 

for all x EA. (3.9) 

Since I/(x)12 = 12(x), (3.9) can be written 

m~(I/I) .;;; F(x) .;;; Ml(I/I)· (3.10) 
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Now let P = <xo,x)' ... , xn> be a partition of [a,b]. By (3.10) we obtain 
for each subinterval [x; _ ) ,x;] of P 

m}(lfl) ~ m;(l) ~ M;(f2) ~ M/(Ifl)· 

Hence, for each i E {I, 2, ... , n}, we have 

M;(f2) - m;(f2) ~ M/(Ifl) - m}(lfl) 

= (M;(lfl) + m;(lfl))(M;(lfl) - m;(lfl))· (3.11) 

Let B be some upper bound of If I on [a,b]. We have 

M;(lfl) + m;(lfl) ~ 2M;(lfl) ~ 2B 

for each i E {l, 2, ... , n}. We use (3.11) and form Darboux sums for f2 
and obtain 

S (f2, P) - £(f2, P) ~ 2B (S (If I, P) - £(Ifl, P)). (3.12) 

By hypothesis, f is bounded and Darboux integrable over [a,b]. By Theo­
rem 2.4, this implies that If I is also bounded and Darboux integrable over 
[a,b]. Using (3.12) and Theorem 1.2 it is easy to see that the Darboux 
integrability of If I implies that of f2. Since If I is Darboux integrable over 
[a, b], it follows that so is l. 

Corollary. Iff and g are bounded and Darboux integrable over [a,b], then so 
is their product fg. 

PROOF. As the reader can prove, this is a consequence of 

PROB. 3.5. Prove: If there exist real numbers band B such that 

0< b ~ f(x) ~ B for all x E [ a, b] 

andfis Darboux integrable over [a,b], then Iff is bounded and Darboux 
integrable of [a,b]. 

4. The Riemann Integral 

We can also approach the elementary theory of the integral via Riemann 
sums. 

Del. 4.1. If f is defined on [a,b], P = <xo,x)' ... ,xn> is a partition of 
[a, b), and ~)' ~2' ••• , ~n are real numbers such that for each i E {I, ... , n} 

~i E [Xi-) ,Xi]' (4.1) 
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y 

a x 

Figure 4.1 

then we write 
n 

R(f,~,P) = ~ f(~;)l1xi (4.2) 
i=l 

and call this sum a Riemann sum of f over [a, b J. 

The motivation for treating Riemann sums arises from considering the 
special case wheref(x);;;. 0 for all x E [a,bJ. In this case eachf(~;)l1xi in the 
Riemann sum (4.2) can be interpreted as the area of a rectangle based on 
the subinterval Ii = [Xi_1,X;] whose "height" is f(~;) (see Fig. 4.1). The 
Riemann sum (4.2) is then the sum of n such rectangles. This sum is an 
approximation to the area of the set of points in the x, y plane which are 
below the graph of f, above the x-axis and between the vertical lines x = a 
and x = b (Fig. 4.2). 

Remark 4.1. The ~ in R(j,~,P) is actually an ordered n-tuple ~ = <~l' 
~2' ... , ~n> whose coordinates ~l' ~2' ... '~n are all subject to conditions 
(4.1). 
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Remark 4.2. Given an f defined on [a,b] and a partltIOn P = (xo' 
XI' ... , xn ), there are two Darboux sums associated with P, the upper one 
S(f, P) and the lower sum ~(j, P). However, for the same partition P, there 
could be infinitely many Riemann sums associated with P. In general, each 
choice of gl,g2' ... , ~n subject to ~i E [Xi_pXi ] for i E {l,2, ... , n}, gives 
rise to a different Riemann sum. 

Def. 4.2. A function f defined on a bounded closed interval [a, b] is called 
Riemann Integrable over [a, b] if and only if some real number J exists such 
that for each € > 0, there exists a 8 > 0 such that for all partitions 
P = (xo,x l , . •• , xn) of [a,b] with IIPII < 8 and points ~pg2' ... , ~n such 
that ~i E [xj_px;] for all i E {1,2, ... , n} we have 

IR(f,~, P) - JI < €. (4.3) 

If f is Riemann integrable over [a,b], then we write 
n 

lim R(f,~,P) = J or lim 2: f(O!:J.x j = J, (4.4) 
IIPII--->O II p 11--->0 i= I 

where J is the number satisfying (4.3). The number J is then called the 
Riemann Integral of f over [a, b]. 

Theorem 4.1. Iff is Riemann integrable over [a, b], then there is exactly one J 
such that (4.4) holds. 

PROOF. We know by Def. 4.2 that there exists at least one J such that (4.4) 
holds. Suppose (4.4) holds also for J', that is, suppose we have 

lim R(f,~,P) = J and lim R(f,~,P) = J'. 
II p 11--->0 lIP 11--->0 

Assume that € > 0 is given. By Def. 4.2, there exist: (1) a 81 > 0 such that if 
P = (XO,x l , ... ,xn) is a partition with IIPII < 81 and gl' ... ,gn are such 
that ~j E [xj _ l , x;] for all i E {I, 2, ... , n}, then 

IR(f,~,P) - JI < i ' (4.5) 

and (2) a 82 > 0 such that if P' = (x~, Xl' ... , x;") is a partition of [a, b] 
with II P'II < 82 and ~;, ~;, ... , ~;" are such that ~; E [x:_ I' x:J for all i E {l, 
2, ... , m}, then 

IR(f,f,P') - J'I < i· (4.6) 

Let 8 = min{8p 82} and P" = <xo,x~, ... , x;> be a partition of [a,b] 
such that IIP"II < 8. Choose~;' E [x:~I'x;'] for each i E {l, ... , q}. Since, 
necessarily, IIP"II < 81 and liP"" < 82 , it follows that 

IR(f,~",P") - JI < i and R(f,f',P") - J'I < €. 

By properties of absolute value, these imply that 

IJ - J'I ~ IJ - R(f,f',P")1 + IR(f,f',P") - J'I < ~ + i = € 
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Thus, IJ - J'I < t: holds for all t: > 0, implying that IJ - J'I .;;; O. This can 
only occur if J - J' = 0, i.e., J = J'. This completes the proof. 

Before forming a Darboux sum of f over [a, b], we must assume that f is 
bounded over [a,b]. On the other hand, a Riemann sum can be formed 
even if f is not bounded over [a,b]. However, we can prove that if f is 
Riemann integrable over [a, b], then it is bounded there. This is the content 
of the next theorem. 

Theorem 4.2. If f is Riemann integrable over [a, b], then it is necessarily 
bounded on [a, b]. 

PROOF. Suppose thatfis not bounded over [a,b] but is Riemann integrable. 
There exists a real J and a 8 > 0 such that if P = <xo,x 1, ••• , xn> is a 
partition of [a,b] with IIPII < 8 and ~1'~2' .•. '~n are points such that 
~l E [xj _ 1, x;] for each i E {l, ... , n}, then 

(4.7) 

Fix such a partition P. Since f is not bounded on [a, b], then a subinterval 
[Xk_I,Xk ] = Ik of P exists on whichfis not bounded (why?). We have 

If(~k ).:hkl - j~l f(~j ).:hj - J .;;; I i~l f(~j )~Xj - JI < 1 
i"fok 

so that 

If(~k)1 < ~~k [1 + j~l f(~j )~Xj - J]. 
i"fok 

(4.8) 

Fix the ~/s for i =1= k, i E {I, ... , n}. Then the number on the right is fixed. 
On the left in (4.8) we can take any ~k such that xk _ 1 .;;; ~k .;;; xk • This 
implies that f is bounded on I k , giving us a contradiction. We must, 
therefore, conclude that if f is Riemann integrable over [a, b], then it is 
bounded there. 

We will now prove that if a function is bounded, then it is Riemann 
integrable over [a, b] if and only if it is D-integrable and that the two 
integrals are equal when they exist. We first prove: 

Theorem 4.3. If f is Riemann integrable over [a, b], then it is D-integrable 
over [a, b] and 

lim R(f,~,P) =Lb f(x)dx. 
IIPII~O a 

(4.9) 

(Here, the integral on the right is the Darboux integral.) 
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PROOF. By hypothesis, J is Riemann integrable on [a, b]. By Theorem 4.2, J 
is bounded on [a, b]. This implies that the upper and lower Darboux 
integrals 

are real numbers. Let i > 0 be given. Since J is Riemann integrable over 
[a,b], there exists a 8> 0 such that if P = <XO,x l , ... , xn> is a partition of 
[a,b] with IIPII < 8 and ~I"'" ~n are points such that ~I Eli = [Xi_I,X;] 
for each i E {l, ... , n}, then 

\i~1 J(~i)Axi - J\ < 1· 
Hence 

n 

J -1 <2: J(~i)Axi< J + 1· 
1=1 

(4.10) 

For each i, write the supremum of J on Ii as Mi and the infimum of J on Ii 
as mi' There exists a ~; E Ii such that 

Mi - 2(b~a) <J(~;). 

Multiply by AXi and sum to obtain 

.s i~7=IAxi 
i~1 MiAx;- 2(b - a) 

n 

< 2: J(~; )Ax; . 
i=1 

This implies, in view of (4.10), that 

Thus, 

and, hence, 

Ib J(x)dx< J + i. 

This holds for each i > O. We conclude that 

lbJ(X)dX<IbJ(X)dX < J. 

Similarly, for each i there is an TJ; E I; such that 

J(TJ;) < mi + 2(b ~ a) . 

We multiply each of these by Ax; and sum to obtain 
n 

2: J(TJi)Ax;<£(f,P) + 1· 
;=1 

(4.11 ) 

(4.12) 
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Using (4.10), this implies that 

€ € lb € J - "2 <s..(f,P) + "2 .;;; a f(x)dx+"2 

so that 

J <lb f(x)dx+ €. 

This holds for each € > O. We conclude from this that 

J .;;;lb f(x)dx .;;;lb f(x)dx. 

This and (4.12) imply that 

lb f(x)dx= J = Ib f(x)dx. 

We conclude that f is D-integrable over [a, b] and (4.9) holds. 

We prepare for a proof of a converse of this by proving: 

Lemma 4.1. Iff is bounded on [a, b], then for each € > 0 there exists a 8 > 0 
such that if P is a partition oj[a,b] with IIPII < 8, then 

(4.13a) 

and 

(4.13b) 

PROOF. We prove (4.l3a). Let € > 0 be given. There exists a partition 
P' = <xo,x~, ... ,x;") of [a,b] such that 

lb f(x)dx- i <s..(f,P'). (4.14) 

We fix the partition P'. P' consists of m subintervals. (This m will be a 
fixed integer in what follows.) Since f is bounded on [a,b] by hypothesis, 
there exists a B > 0 such that If(x)1 .;;; B for all x E [a,b]. Take a 8] such 
that 

0< 8] .;;; 4~B ' (4.15) 

and any partition P = <xo,x], ... , xn ) of [a,b] such that IIPII < 8]. Let 
P" = P U P'. P" is a refinement of P and of pI, so 

( 4.16) 

Write the points of P" as zO,Z],Z2' ••• 'Zr. We wish to estimate the 
difference s.(f, P ") - s.(f, P). 
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A term of §.(J, P) is of the form mJ:lxi , where mi is the infimum of f on 
[Xi_I,Xi ], and a term of §.(J,P") is of the form m;'Azv ' where m;' is the 
infimum of f on [zv _ I' zv]· Since Xi _ I E P" and Xi E P", for each i there 
exists a Zj_1 E P" and a Zk E P" such that X i _ 1 = Zj_1 and Xi = Zk' this 
implies that j - 1 < k and, therefore, that j ..; k. If j = k, then 

[X;_I'X;] =[Zj-I,Zd =[Zj_I,Zj] 

and 

(4.17) 

If j < k, then X;_I = Zj_1 < Zj < Zk = x;. Hence, there exist points z}' 
Zj+I' •• . , Zk_1 such that 

(4.18) 

All the points here constitute a partition of the subinterval [Xi -I> X;] of the 
partition P, and 

This implies that 

k 

- Bt:1X; ..; m/lx; ..; L m;' Az,,"; BAx; . 
v=j 

k 

L m;' Az" - m;Ax; ..; 2BAx; . 
v=j 

(4.19) 

But Ax;,,; IIPII < 81 so that 2BAx; < 2B81 • This, (4.19), and (4.15) imply 
that 

(4.20) 

Consider §.(J, P") - §.(J, P). We see that if j = k, then the contribution to 
it from X;_I = Zj_1> X; = Zk vanishes because (4.17) holds in this case. If 
j < k, the contribution to §.(J, P") - §.(f, P) from the points in the inequali­
ties (4.18) appears on the left of (4.20) and is estimated there. Note that 
whenj < k, the points zp ... , Zk_1 between Xi _ 1 = Zj_1 and X; = Zk are all 
points of the partition P'. But j < k occurs at most m times. In fact, if this 
were not the case, then (4.18) would occur ntore than m times and P' would 
consist of more than m subintervals, which is impossible. Adding up all the 
contributions to §.(J,P") -§.(J,P) from all the subintervals of P, we obtain 
in view of (4.20), 

£(j,P") - £(j,P) < m 2~ = ~ . (4.21) 

This implies §.(J,P") <§.(J,P) + £./2. Using (4.16), we conclude from this 
that 

(b £. £. Ja f(x)dx- "2 <£(j,P) + "2 . (4.22) 
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Thus, for each partition of P of [a,b], with IIPII < 81, we have 

Jb f(x)dx- £ <~(j,P). (4.22') 

We now ask the reader to prove that there exists a 82 > 0 such that if P is a 
partition of [a,b] with IIPII < 1>2' then 

(4.23) 

(The required proof is similar to the previous one.) Finally, taking 8 
= min{81,1>2} and partitions P such that IIPII < 8, we conclude that both 
(4.13a) and (4.l3b) hold for all such P. 

Theorem 4.4. If f is bounded on [a, b] and D-integrable then it is also 
Riemann integrable and 

lim R(j,g,P) =fb f(x)dx. 
IIPII~O a 

PROOF. Since f is D-integrable on [a, b], we have 

Lb f(x)dx= Lb f(x)dx= Ib f(x)dx. 

Let £ > 0 be given. By Lemma 4.1, there exists a I> > 0 
IIPII < 1>, then 

(b - fb Ja f(x) - £ <~(f,P) < S(j,P) < a f(x)dx+ £. 

such that if 

(4.24) 

Suppose that P = <xo,x 1, ••• ,xn >, where IIPII < 8. For each i E 

{l, ... , n} we have, in the usual notation, 

mi<f(gi)<Mi for giE[Xi_I,Xi] 

and, hence, 
n 

~(j,P) < L f(gi)Axi< S(j,P). 
i=1 

Because of (4.24), this implies that 
b n b 

L f(x)dx- £ <i~/(gi)AXi<L f(x)dx+ £. 

Therefore, 

for liP II < 8. 

Hence, the conclusion holds. 

We can combine Theorems 4.3 and 4.4 to obtain: 
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Theorem 4.5. Iff is bounded on [a,b], then f is D-integrable on [a,b] if and 
only if it is Riemann integrable there and the two integrals are equal. 

Remark 4.3. Because of Theorem 4.5, we no longer distinguish between the 
Darboux and Riemann integrals and refer to a function as being either 
Riemann integrable or not. When a function is Riemann integrable, we 
often abbreviate and call it R-integrable. The Riemann integral 

lb f(x)dx 

is also termed the definite integral of f over [a, b], and the function f is 
called the integrand. 

It is often desirable to consider a sequence <Pm)=<Pp P2 , ••• ) of 
partitions of an interval [a, b]. In this case we need a notation indicating 
which partition a point belongs to and which point of the partition it is. 
This suggests the use of double subscripts. Thus, Xim stands for the ith point 
of the mth partition of the sequence. Different partitions may consist of a 
different number of subintervals. The number of subintervals in Pm will be 
written as nm • Thus, for example, 

PI = (XOI ,XII' ... , Xn,I)' 

P2 = (X02 'X I2,···, X n22 )' 

The ith subinterval of Pm is lim = [X(i-Ilm,xim ] and its length is !lxim 
= x(i-Ilm - Xim · When Riemann sums are used, we select some ~im E lim' 
Corresponding to these fs in the mth partition, we have the Riemann sum 

R(f'~m,Pm)= ~ f(~im)!lxim' 
i=1 

Here <~m) is a sequence of ordered nm-tuples, where 

~m = <~Im '~2m' ••• , ~nmn)' 

and ~im E lim' 
As an example, we take the interval [a,b] and 

Pm= a,a+--,a+2--, ... ,a+m-- . ( b-a b-a b-a) 
m m m 

Here 

X. = a + i b - a 
1m m 

where i E {O, I, ... , m} and nm = m, 

b-a !lxim = --, 
m 

i E {O, I, . . . , m}, 
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with 

~;m = a + i-I b - a or ~;m = a + i b - a . 
m m 

PROB. 4.1. Letfbe Riemann integrable over [a,b]. Let <Pm> be a sequence 
of partitions of [a, b], and <~m> a sequence of ordered nm-tuples with 
~;m E I;m = [xu-I)m,x;m]· Prove: If limm--> + 00 IlPm II = 0, then 

lim RU'~m,Pm)= (bf(X)dx. 
m-)+oo Ja 

PROB. 4.2. If f is Riemann integrable over [a, b], then 

lim b - a ± f(a + i b - a ) 
n~+oo n ;=1 n 

= (b f(x)dx= lim (b - a ± f(a + (i _ I) b - a)). 
Ja n-->+oo n ;=1 n 

PROB. 4.3. Use Prob. 4.2 to prove: If b > 0, then 

fobcosXdX= sinb and fobsinxdx= I - cosb. 

5. Primitives 

Def. 5.1. If f and G are defined on an interval I and 

dG(x) 
---;JX = f(x) for all x E I, (5.1 ) 

then G is called a primitive of f on I. We shall also use this terminology 
when I is replaced by some set S which is open in lit Primitives are also 
called antiderivatives. 

EXAMPLE 5.1. By Example VII.1.3, we have, if {3 =1= -I, then 

A.(xIHI)=XfJ dx {3 + 1 for all x E (0; + 00). (5.2) 

Therefore, if {3 =1= -1, then the function G defined as G(x) = xfJ+ 1/({3 + 1) 
for x E (0; + 00) is a primitive on (0; + 00) of f defined as f(x) = xfJ for 
x E (0; + 00). If {3 > 0, so that {3 + I > 1, then the domains of G and f, 
when extended to include 0, by defining G(O) = 0 = f(O), are still related in 
the same way; that is, G is a primitive of f on the closed interval [0, + 00). 
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If G is a primitive of f on an open set Sand c is some constant, then 
(G(x) + c)' = G'(x) = f(x) for xES and therefore G + c is also a primi­
tive of f on S. Accordingly, once a function has a primitive on an open set, 
then it has infinitely many primitives there. We also observe that if F and G 
are primitives of a function f on an interval I, then F'(x) = f(x) = G'(x) 
for x E I and therefore by Theorem VII.6.3 a constant c exists such that 
F(x) = G(x) + c for x E I. Thus two primitives of a function on an 
interval differ by a constant there. 

Notation and Terminology 

The traditional notation for a primitive of f is 

f f(x)dx. 

Thus, if G is known to be a primitive of f on some interval I, then by the 
last paragraph, 

f f(x)dx= G(x) + c for x E I, 

where c is some constant. 
A primitive of f is also called an integral of f, but this should not be 

confused with 

ib f(x)dx, 

which is the Riemann integral of f over [a, b]. The relation between 
primitives and Riemann integrals is revealed by the Fundamental Theorem 
of the Calculus. 

To "integrate" f is to find a primitive of f. For example, if {3 =1= - 1, then 

f fJ x fJ + 1 
X dx= -- +c for x> O. (5.3) 

{3+1 

If {3 = - 1, then 

f ~dx= Inlxl + c for x =1= O. (5.4) 

By Example VII.3.2, this holds for x > O. To see that it also holds for x < 0, 
assume that x < 0 and note that 

dlnlxl dln( - x) 1 d( - x) 
-;JX= dx = -x dx =:x 

Since 

for x =1= 0, 

(5.4) holds. 
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We list some more primitives. 

f eXdx = eX + c x E IR (Example VII.l.l) (5.5) 

f cos x dx = sin x + c, x E IR (Example VII.I.2) (5.6) 

f sin x dx = - cos x + c, x E IR (Prob. VII.l.l) (5.7) 

f coshxdx = sinh x + c, x E IR (Prob. VII.3.4) (5.8) 

(5.9) f sinh x dx = cosh x + C 

f sec2x dx = tanx + c, x 7"'(4n ± I) I' where n is an integer 

(Prob. VII.3.7) (5.10) 

f sec x tan x dx = sec x + c, x 7"'(4n ± I) I' where n is ar. integer 

(Prob. VII.3.7) (5.11) 

f csc2xdx = -cotx + c, x 7'" n, where n is an integer 

(Prob. VII.3.8) (5.12) 

f cscx cotx dx = - cscx + c, x 7'" n, where n is an integer 

f sech2x dx = tanh x + c, xEIR 

f sech x tanh x dx = - sech x + c, xEIR 

f csch2xdx = -cothx + c, 

f csch x coth x dx = - csch x + c, x 7'" 0 

f I dx = Arcsin x + c, I x I < I 
~ 

(Prob. VII.3.8) (5.13) 

(Prob. VII.3.9) 

(Prob. VII.3.9) 

(Prob. VII.3.1O) 

(5.14) 

(5.15) 

(5.16) 

(Prob. VII.3.1O) (5.17) 

(Remark VIII.6.1) (5.18) 

f I dx=cosh-lx+c=ln(x+~)+c, Ixl>1 
~ 

(Prob. VII.6.4) (5.19) 

f I dx=sinh-lx+c=ln(x+~)+c, xEIR 

~ 
(Example VII.6.1) (5.20) 
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I _1_2 dx = Arctan x + c, 
I+x 

xEIR (Prob. VIII.6.1O) (5.21) 

I _I-dx = tanh-Ix + c = lin 1 + x +c 
1 - x 2 2 1 - x 

if \x\ < 1 

h -I 1 1 x + 1 = cot x + c = - n--
2 x-I if \x\ > 1 

(Prob. VII.6.4) (5.22a) 

--dx= -In -- +c I II !1+X! 
1 - x 2 2 I - x 

(5.22b) 

I I dx = Arcsec\x\ + c, 
x~ 

\x\ > 1 (Prob. VIII.6.17) (5.23) 

I I - I+~ 
dx = -sech I\X\ + c = -In \x\ ' 

x-/I - x 2 
0< \x\ < I 

(Prob. VII.6.4) (5.24) 

I I - 1+~ 
dx = -csch I\X\ + c = -In \x\ +c, 

x~ 
(Prob. VII.6.4). (5.25) 

PROB. 5.1. Prove: If II and 12 have primitives on some set S, where S is 
either an open set or an interval, then so does II + 12 and 

I (JI(X) + I2(x))dx= I II(x)dx+ II2(x)dx. 

PROB. 5.2. Prove: If I has a primitive on a set S, where S is either an open 
set or an interval, and c is some constant, then 

I cI(x)dx= c I I(x)dx. 

PROB. 5.3. Prove: If the functions 11,12' ... ,In have primitives on an 
interval I and cl' C2' ••• 'Cn are constants, then the function C I II + 
Czf2 + ... + cnfn has a primitive on I and 

I(cdl(x) + Czf2(X) + ... + cnfn(x))dx 

= cIIII(x) + c2II2(x)dx+ ... + cnIIn(x)dx. 

EXAMPLE 5.2. If n is a nonnegative integer, then 

I 
xn+1 xn 

(aoxn + a1x n- 1 + ... + an)dx= ao n + I +a l n + ... + anx + c. 

(5.26) 
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It follows that each polynomial on IR has a primitive on IR and that its 
primitive is obtained as in (5.30). 

EXAMPLE 5.3. Using tan2x = sec2x - 1, we have 

J tan2xdx= J (sec2x - l)dx= J sec2xdx- J dx= tanx - x + c. 

Substitution Formula for Primitives 

Theorem 5.1. If G is a primitive off on an interval J and v is a function which 
is differentiable on some interval I whose range is in J, then the composite 
Go v is a primitive of (j 0 v)dv/ dx on I. In symbols, 

J dv(x) 
f(v(x» (iXdx= G(v(x» + c for x E I. (5.27) 

PROOF. By hypothesis, 

G'(u) = feu) for u E J. 

Also, according to the hypothesis, x E I implies v(x) E J. By the chain 
rule, the composite G 0 v is differentiable on I and 

dv(x) 
(G 0 v)'(x) = (G(v(x»' = G'(v(x»v'(x) = f(v(x»(iX 

for x E I. In the notation for primitives, this yields (5.27). 

Notation. It will be convenient to introduce the following notation. If G is a 
primitive of f and v is a function such that 0t(v) ~ 6ll(G), then we define 

JV(X) feu) du= G(v(x» 

In this notation, (5.27) becomes 

for XE611(v). 

J dv(x) JV(X) 
f(v(x» (iXdx= feu) du+ c for x E i. 

This is easier to remember if it is written 

J dv( x) JV(X) 
f(v(x»(iXdx= f(v)dv+c for x E I. 

If f is the constant function 1, this becomes 

J dv(x) JV(X) 
(iXdx= dv+ c = vex) + c for x E I. 

(5.28) 

(5.29) 

(5.30) 

(5.31 ) 

This is consistent with the fact that v is a primitive of dv(x)/ dx on the 
interval I. 
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Def. 5.2. As a mnemonic device for remembering (5.30), if v is a differentia­
ble function on the interval I, we call 

dv(x) 
--dx 

dx 

the differential of v on I and write it as dv. Thus, 

dv(x) 
-- dx = dv for x E I. 

dx (5.32) 

The meaning this has for us is that it summarizes the behavior of the 
symbol dx as described by (5.30) and (5.31). 

For example, the differential of v(x) = x 2 + 2x for x E IR is d(x 2 + 2x) 
= (2x + 2)dx for x E IR. 

Remark 5.1. The form of dv in (5.32) remains the same under a differentia­
ble change of variables. Thus, if x = q,(u), where q, is a differentiable 
function, and v*(u) = v(q,(u)), then by the chain rule 

dv*(u) dv(q,(u)) 
dv* = --du = du = v'(q,(u))q,'(u)du 

du du 

, dx(u) , dv(x) 
= v (x) -- du = v (x) dx = -- dx = dv. du dx 

More briefly, 

dv*( u) dv( x) 
--du=--dx. 

du dx 
(5.33) 

Use of the Substitution Formula for Obtaining Primitives 

EXAMPLE 5.4. We evaluate 

J x dx. 
VI - x 2 

We use the substitution v(x) = 1 - x 2 for -1 .;;;; x .;;;; 1 so that 

del - x 2) 
-2xdx = dx dx = dv. 

From (5.30), we obtain 

del - x 2) 

J x dx=J-l -2x dx=_lJ(I-X2)-1/2 dx 
VI - x 2 2 VI _ x 2 2 dx 

- I J 1- x 2 
- 1/2 d - -"2 v v. (5.34) 
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Noting that 

V- I / 2 dv=V +C=2V I/ 2 +C J -1/2+1 

-t+ 1 ' 

we obtain from this and (5.34) 

J P dx= - t JI-x2V-I/2dv 

I ( 2 1/2) 2 1/2 = - 2" 2(1 - X) + c = -(I - X) + Cl , 

EXAMPLE 5.5. If a > 0, then 

J a X dx=JeXlnadX= _1_ JeX1na d(xlna) dx= _1_ JXlnaevdv 
Ina dx Ina 

= _1_(e X1na + c) = _I_(a x + c) = aX +c . 
Ina Ina Ina I 

PROB. 5.4. Show: If a =F 0, then 

(1) f(1/(a 2 + x 2»dx = (1/ a)Arctan (x / a) + c, 

(2) f(I/Ja 2 - x 2 )dx = Arcsin(x/a) + c. 

EXAMPLE 5.6. If v is a differentiable function on an interval I and v(x) =F ° 
for x E I, then 

J 
I dv(x) JV(X) I 

-- --dx= -dv+ c = Inlv(x)1 + c. 
vex) dx v 

(5.35) 

EXAMPLE 5.7. We illustrate the result in the last example by finding 

J secxdx. 

Multiply and divide the integrand secx by secx + tanx to obtain 

J secx dx= J sec2x + sec x tan x dx= J I .!L (sec x + tan x) dx 
secx + tanx secx + tanx dx 

= Inlsecx + tanxl + c = Inll + sinx 1+ c. 
cosx 

FROB. 5.5. Show that 

J cscx dx = Inl sinx 1+ c. 
I + cosx 
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PROB. 5.6. Integrate 

(1) f eX 
1 + eX dx, 

(2) f 1] eX dx, 

(3) f sinx dx, 
1 + cosx 

(4) f ~ (Inx)n dx, n =1= 1, 

(5) f-/- dx, x nx 

(6) f cotxdx, 

(7) ftanxdx, 

(8) fi~ - dx. rx 
PROB. 5.7. Show that 

(1) ff(a + x)dx = r+xf(v)dv + c, 
(2) ff(ax)dx = 1/ afaxf(v)dv + c, a =1= O. 

PROB. 5.8. Integrate 

(1) 

(2) 

f 1 dx 
1 + cosx ' 

f ...,-1-----'1'-c.- dx. 
+ smx 

EXAMPLE 5.8. Whenfis of the formf(x) = g(sin x)cos x, then 

f f(x)dx= f g(sinx)cosxdx= f g(sinx) d~~x dx 

f Sinx = g(v)dv+ c. 

Also 
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(5.36) 

fh(Cosx)sinxdx= fh(COSX) dC;:x dx= fcosxh(v)dv+ c. (5.37) 

EXAMPLE 5.9. As a special case of the last example, we have 

f cos4x sin x dx = - f cos4x d ~o: x dx = - cotx + c. 
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EXAMPLE 5.10. When the integrand is of the form sin"x cosmx, where one of 
m or n is an odd positive integer, then the integration can be performed 
with the aid of the idea in Example 5.8. For example, we may write 

then 

sin2xcos3x = sin2x cos2x cos x = sin2x(1 - sin2x)cosx, 

Jsin2xcos3xdx= JSin2x(1 - sin2x)cosxdx 

= J sin2x cos x dx - J sin4x cos x dx 

= sin3x _ sin5x + c 
35' 

PROB. 5.9. Integrate 

(I) fCOS3Xdx, 
(2) f sin3x dx, 
(3) f cos5x dx, 
(4) f~cosxsin3xdx. 

EXAMPLE 5.10'. The trigonometric identities 

sin2x = 1 - cos 2x 
2 

and cos2x = 1 + cos 2x 
2 

are useful in dealing with even powers of sine or cosine. Thus, 

Jsin2xdx= J 1 - ~OS2x dx= t J (1- cos2x)dx= t (x - sin22x) + c 

= .!. _ sin 2x + c 
2 4 

and 

J cos2xdx= J 1 + ~os2x dx= t J (1 + cos2x)dx= ~ + sin42x + c. 

If the integrand is an even power of sine or cosine as in 

J cos4xdx, 

then 

J cos4xdx= J(COS2X)2 dx= J( 1 + ~os2x t dx 

= i J (1 + 2 cos 2x + cos22x) dx = i J ( 1 + 2 cos 2x + 1 + ~os 4x ) dx 

= i J(3 + 4cos2x + cos4x)dx = i (3x + 2sin2x + sin44x) + c. 
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PROB. 5.10. Integrate 

(1) Jsin4xdx, 
(2) J cos6x dx, 
(3) J sin6x dx, 
(4) J sin2x cos4x dx. 

PROB. 5.11. Show that 

and that 

cosh2x = 1 + cosh 2x 
2 

and sinh2x = cosh 2x - 1 
2 

(1) f cosh2xdx= t (x + sin~2x) + c, 

(2) fsinh2xdx= t( sin~2x -x) + C. 

EXAMPLE 5.11 (A Reduction Formula). If n =1= 1, then 

ftannxdx= ftann-2xtan2xdx= ftann-2x(sec2x - l)dx 
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= f tann- 2x sec2x dx - f tann- 2x dx = t~n~- ;x - f tann- 2x dx 

or 

ftannxdx= t~n~;x - ftann-2xdx, (5.38) 

where n =1= - 1. This is an example of a reduction formula. If n is a positive 
integer such that n > 1, then it leads to the integration of a power of tan 
which is two degrees lower. 

PROB. 5.12. Integrate 

(1) Jtan5xdx, 
(2) Jtan6x dx, 
(3) J sec4x dx, 
(4) Jsec6xdx. 

EXAMPLE 5.12. The substitution v = (b j a) tan x can be used to integrate 

f 1 dx 
a2cos2x + b2sin2x ' 

where a =1= 0 and b =1= O. We have 

f 1 dx= -.L f 1 !!.. sec2xdx 
a2cos2x+b2sin2x ab 1 + «bja)tanx)2 a 

= a~ Arctan( ~ tan x ) + c. 
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EXAMPLE 5.13. The primitives 

(1) f cos mx cos nx dx, 
(2) fsinmxsinnxdx, 
(3) f sin mx cos nx dx 

play an important role in the theory of Fourier series. If m 2 * n2, then we 
use the trigonometric identities 

(1) cosmxcosnx = !(cos(m + n)x + cos(m - n)x), 
(2) sinmxsinnx = !(cos(m - n)x - cos(m + n)x), 
(3) sinmxcosnx = !(sin(m + n)x + sin(m - n)x). 

Hence, 

f cosmxcosnxdx= t J(cos(m + n)x + cos(m - n)x)dx 

1 ( sin(m + n)x sin(m - n)x ) 
=- + +~ 2 m+n m-n 

fsinmxsinnxdx= t J(cos(m - n)x - cos(m + n)x)dx 

= l( sin(m - n)x _ sin(m + n)x) + c 
2 m-n m+n 

Jsinmxcosnxdx= t J(sin(m + n)x + sin(m - n)x)dx 

(5.39) 

(5.40) 

= _ 1 ( cos(m + n)x + cos(m - n)x ) + c. 
2 m+n m-n (5.41) 

The case where m2 = n2 * 0 is left to the reader (Prob. 5.13). 

PROB. 5.13. Show: If m 2 = n2 * 0 so that (1), (2), and (3) of the last 
example become respectively 

(1') fcos2nxdx, 
(2') fsin2nxdx, 
(3') fsinnxcosnxdx, 

then we have 

J cos2nxdx = 1 (x + sin2nx) + c 
2 2n ' 

J sin2nx dx = t (x - sin2~nx ) + c, 

J sin nx cos nx dx = - co~~nx + c. 
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Further techniques for obtaining primitives will be given later. We 
proceed to the next section where it is shown how to use them to evaluate 
Riemann integrals. 

6. Fundamental Theorem of the Calculus 

Theorem 6.1 (Fundamental Theorem of the Calculus). If f is Riemann 
integrable over an interval [a, b] and has a primitive G on [a, b], then 

i b f(x)dx= G(b) - G(a). (6.1) 

PROOF. By the definition of primitive, we have from the hypothesis 

G'(x)=f(x) forall xE[a,b]. (6.2) 

Let P = <xo,x l , ... , xn> be a partition of [a,b]. Then 
n 

~ (G(x;) - G(X;_I)) = G(xn ) - G(xo) = G(b) - G(a). (6.3) 
;=1 

By the Mean-Value Theorem for derivatives there exists in each subinterval 
[X;_I'X;] of P a ~; such that G(x;) - G(X;_I) = G'(~;)!!lXi = f(~;)!!lx;. Be­
cause of (6.3), this implies that 

n 

~ f(~; )!!lx;= G(b) - G(a). (6.4) 
;=1 

Writing m; and M; for the infimum and supremum of f on [X;_I'X;] for 
each i, we have 

n n n 

£(f,P) = ~ m/J.x;'" ~ f(~;)!!lx;'" ~ M;!!lx;= S(f,P) 
;=1 ;=1 ;=1 

so that (6.4) implies 

£(f,P) '" G(b) - G(a) '" S(f,P). (6.5) 

Here P is any partition of [a, b]. This implies that 

ib f(x)dx '" G(b) - G(a) "'Ib f(x)dx. (6.6) 

But according to the hypothesis, f is Riemann integrable over [a,b]. This 
guarantees that f is bounded and Darboux integrable over [a, b] and that 

ib f(x)dx= lab f(x)dx= Ib f(x)dx. 

This and (6.6) yield (6.1). 
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Notation. When G is defined on a bounded closed interval whose endpoints 
are a and b, we often write 

G(b)- G(a)=G(x)I:. 

Hence, (6.1) can be written 

Lb f(x)dx= G(x)I:, 

where G'(x) = f(x) for x E [a,b]. 

EXAMPLE 6.1. If f3 ;;;. 0, then 
1 

(6.7) 

(6.8) 

(lx(:3dx= x (:3+ 1 I = 1(:3+1 - 0(:3+1 _ 1 
Jo f3 + 1 0 f3 + 1 - f3 + 1 . (6.9) 

Remark 6.1. Theorem 6.1 does not state that a Riemann integrable function 
necessarily has a primitive on [a, b]. It merely states that if it has a primitive 
on [a, b], then this primitive may be used to evaluate its Riemann integral 
as indicated in (6.1). A function may be Riemann integrable on an interval 
[a, b] without having a primitive there. For example, let f be defined as 

if O<;x<;1 
if 1 < x <; 2. 

f is defined and monotonic increasing on [0,2], so it is Riemann integrable. 
On the other hand, this f has no primitive on [0,2]. If there were a primitive 
G of f on [a, b], then f would be a derivative of G on [0,2]. By Theorem 
VII.7.2, f would necessarily have the intermediate-value property on [0,2]. 
But f clearly does not have the intermediate-value property on [0,2] 
(explain) and we have a contradiction. Hence, f has no primitive on [0,2]. 

We also note that a function may have a primitive and not be Riemann 
integrable. Define G as 

if x = 0, 
G(x) = {02' 1 x Slll2 if x * ° and x E [ -I, I], 

x 

andf as 

f(x) = G'(x) = {~lcos~ + 2xsin~ 
x x 2 x 2 

if x = ° 
if x * 0, x E [ - 1, 1 ]. 

fhas G as its primitive on [-1,1]. Butfis not Riemann integrable on [a,b] 
since it is not bounded there. (We recall that Theorem 4.2 states that a 
function which is Riemann integrable on a bounded closed interval is 
necessarily bounded there.) 

Remark 6.2. The fundamental theorem of the calculus implies: 
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Corollary (of Theorem 6.1). If G is differentiable on [a, b] and its derivative 
G' is R-integrable there, then 

(b dG(x) 
Ja ~dx= G(b) - G(a). (6.10) 

PROOF. This follows from the fact that G is a primitive of G' on [a, b], the 
assumption that G' is R-integrable on [a,b], and Theorem 6.1. 

Next we present a sufficient condition for a function to have a primitive 
on an interval. 

Indefinite Integrals 

Der. 6.1. Let f be defined on an interval I and let a E I. Iff is R-integrable 
on every bounded closed subinterval of I, then the function F defined as 

F(x) = LX f(t)dt for each x E I (6.11 ) 

is called an indefinite integral of f on I. 

We give an example. We have 

dint = 1 for t E (0; + 00). 
dt t 

For each x> 0 and x =1= I, the f defined as f(t) = I/t, for all t in the 
interval whose endpoints are x and 1, is continuous. Hence, 

rx Idt=lntl;= lnx -In 1 = Inx 
J1 t 

(6.11') 

for all x E (0; + 00). (Because of (1.24) this relation also holds for x = I.) 
Accordingly, the natural logarithm function is an indefinite integral of the f 
just defined. In some developments this is used as tile definition of the 
natural logarithm. 

If f has a primitive G on an interval I and a E I, then the indefinite 
integral F of Def. 6.1 can be evaluated by the fundamental theorem of the 
calculus and (1.24) to yield 

F(x) = LX f(t)dt= G(x) - G(a) for all x E I (6.12) 

and we have 

F'(x) = 1x (G(x) - G(a») = G'(x) for all x E I. 

In this case, the indefinite integral F is also a primitive of f in I and we 
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have 

J f(x)dx= c + LX f(t)dt for all x E I, (6.13) 

where c is some constant. 
Formula (6.13) makes sense only if f has a pnmlhve on I and is 

R-integrable there. However, the indefinite integral of f may exist on an 
interval I (it suffices to require that f is R-integrable on every bounded 
closed subinterval of I) and still not possess a primitive on an I. To see this, 
define f on I = IR as 

f(x) = {~I if x < 0 
if x;;;. O. 

This f is R-integrable on every bounded closed subinterval in IR. Hence, 

F(x) = fox f(t)dt 

exists for each x E IR = I, but f has no primitive on IR since it does not have 
the intermediate value property on IR (see Remark 6.1). 

Remark 6.3. It is tempting to conclude that all the primitives of f, if f has 
any, can be obtained from (6.12) by using different a's in I and that the c 
in (6.13) is not necessary. This is not the case, however. Consider 

LXcostdt=sinxl;= sinx - sina for x E I. (6.14) 

Clearly, the primitive y, given by y(x) = 100 + sinx for x E IR, cannot 
occur among those in (6.14) since 1- sinal';;;; 1 holds for any a E IR. 

Theorem 6.2. Iff is R-integrable on [a, bj, then the indefinite integral F given 
by 

for all x E [ a, bJ 

is (I) differentiable from the left at each Xo such that a < Xo ,;;;; b for which f 
is continuous from the left, and (2) differentiable from the right at each Xo 
such that a ,;;;; Xo < b for which f is continuous from the right. In the respective 
cases we have 

(6.15) 

PROOF. Assume that a ,;;;; Xo < b and that f is continuous from the right at 
Xo' First take h such that 0 < h < b - Xo so that Xo < Xo + h ,;;;; b. We have 

F(xo + h) =ixo+hf(t)dt= ixof(t)dt+ (xo+h f{t)dt 
a a Jxo 

= F(xo) + (xo+h f(t)dt. 
Jxo 
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Hence, 

F(xo + h) - F(xo) 1 jX +h 
--~---=- ° f(t)dt 

h h Xo 

and 

\ F(xo + hh - F(xo) _ f(xo) \ = * I.to+h f(t)dt - .to+ h f(XO)dtl 

= * IL~o+h(f(t) - f(XO))dtl 

(6.16) 

Let € > 0 be given. There exists a 8 > 0 such that 

If(1) - f(xo) 1 < € for all t such that Xo « t < Xo + 8, t E [ a, bJ. 

(6.17) 

Now let 81 = min{ b - X O' 8} and h such that 0 < h < 81• This implies that 
Xo < Xo + h « band Xo < Xo + h < Xo + 8. For all t such that Xo « t 
« Xo + h we now have Xo « t < Xo + 8, t E [a, b]. It therefore follows from 
(6.17) that If(t) - f(xo)1 < € and that 

for 0 < h < 81• This and (6.16) imply that 

\ 
F(xo + h) - F(xo) \ 

h - f(xo) < € for 0 < h < 81 • 

We conclude that 

, . F(xo + h) - F(xo) 
FR(xO) = hm h = f(xo)· h->O+ 

This proves that F is differentiable from the right at Xo and that the second 
equality in (6.15) holds if f is continuous from the right at xo. 

We leave the proof of (2) to the reader (Prob. 6.1). 

PROB. 6.1. Complete the proof of the last theorem by proving: If f is 
R-integrable on [a,b] and f is continuous from the left at Xo such that 
a < Xo « b, then the indefinite integral F of f on [a,b] (see above) is 
differentiable from the left at Xo and F{(xo) = f(xo). 

Corollary 1 (of TheorelT' 6.2). Iff is R-integrable on [a, b] and f is continuous 
at Xo, where c, < Xo < b, then the indefinite integral F in Theorem 6.2 is 
differentiable at Xo and F'(xo) = f(xo). 

PROOF. Exercise. 
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Corollary 2 (of Theorem 6.2). Iff is continuous on [a, b], then the indefinite 
integral F given by 

F(x) = LX f(t)dt 

is a primitive off on [a,b], i.e., we have 

~ LX f(t)dt= f(x) for x EO [ a, b J. 

PROOF. The continuity of f on [a,b] implies its R-integrability. Corollary 1 
can now be applied to give the conclusion. 

Remark 6.4. The last corollary provides a sufficient condition for a function 
f to have a primitive on an interval I, namely, if f is continuous on an 
interval I, then it is R-integrable on every bounded subinterval of I. 
Therefore, an indefinite integral of f is differentiable on I and is a primitive 
of f on I. 

Whenfis known to be R-integrable on [a,b] we cannot conclude that an 
indefinite integral of f is differentiable. (See the discussion preceding 
Remark 6.3.) However, the next theorem states that, in this case, an 
indefinite integral of f is continuous. 

Theorem 6.3. Iff is R-integrable on [a,b], then the indefinite integral F of f 
given by 

F(x) = LXf(t)dt 

is uniformly continuous on [a, b ]. 

PROOF. For XI and x2 in [a,b], we have 

for x EO [a,b] 

(6.18) 

Because f is R-integrable on [a, b], it is bounded there. Hence, a B > 0 
exists such that If(x)1 ,,;; B for all x EO [a,b]. Let £ > 0 be given. Take XI and 
X2 in [a, b] such that 

This and (6.18) imply that 
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Therefore, 

IF(X2) - F(Xl)1 ..;; Blx2 - xII < € 

(explain). This completes the proof. 
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PROB. 6.2. Prove: If f is continuous on [a, b] and u and v are differentiable 
functions on an interval [c, d] which map this interval into the interval 
[a,b], then 

dd iV(X) f(t)dt= f( v( x»v'(x) - f(u(x»u'( x) 
X u(x) 

for x E [c,d]. 

PROB. 6.3. Prove that 

PROB. 6.4. Prove that 

lim (1 rx e 12 dt) = 1. 
x~o x Jo 

lim (e- x2 (Xe 12 dt) = o. 
x~+CXl Jo 

PROB. 6.5. Evaluate 

(a) limn ..... +ooL~_ll/(n + k), 
(b) limn ..... +ooL~=ln/(n2 + k 2), 

(c) limn ..... +ooL~=lk/(n2 + k 2). 

PROB. 6.6. Prove: If f is positive and increasing on [0, a], then the function 
G, defined as 

for x E (0; a), is increasing. 

G(X) = 1 rx f(t)dt 
x Jo 

PROB. 6.7. Prove: If f is R-integrable over [a,b] and has a primitive there, 
then 

PROB. 6.8. Evaluate 

(1) J~(x - a)(b - x)dx, 

(2) J~(x - ai(x - bi dx. 
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PROB. 6.9. Evaluate 

(1) JbXI dx, 

(2) J~a(Va/ x + VX/ a )2dx, a > O. 

PROB. 6.10. Evaluate 

(I) f" /2 COS x dx, 
-7T/2 

(2) fo7Tsin x dx, 

(3) LJ3-I- dx 
o 1 + x 2 ' 

(4) fo l / a 1 dx 
~' 

(5) LI 1 d x, 
o~ 

(6) l3 1 d 
2~ X. 

7. The Substitution Formula for Definite Integrals 

As mentioned earlier, the Riemann integral 

Lbf(X)dX 

is also called a definite integral. 
In Theorem 6.1, we assumed that the integrand there has a primitive. The 

first theorem in this section gives conditions which guarantee the existence 
of primitives of certain integrands. 

Theorem 7.1. Let f be continuous on an interval J and v differentiable on an 
interval I, where 0t(v) c:: J and bE J. If G is the indefinite integral of f 
defined as 

for u E J, 

then the composite G 0 v is a primitive of (j 0 v)v' on I and 

J f(v(x» dVd~) dx= c + iV(X)f(t)dt, 

where x E I and c is a constant. 

(7.1) 

(7.2) 



7. The Substitution Formula for Definite Integrals 657 

PROOF. By the hypothesis on f and Remark 6.4 the function G defined in 
(7.1) is a primitive of f on J. Since G'(v) = f(v) for v E J, <3t(v) ~ J, and 
J ~ 6D(G') ~ 6D(G), we know that <3t(v) ~ 6D(G). By Theorem 5.1 we 
conclude that G 0 v is a primitive of (j 0 v)v' on I, and 

f dv(x) (v(x) 
f(v(x»----;]Xdx= C + G(v(x» = c + Jb f(t)dt. 

Remark 7.1. This theorem states conditions for the existence of a primitive 
of (j 0 v)v'. It yields no information about its R-integrability. The hypothe­
sis only guarantees the R-integrability of f on the bounded closed subinter­
vals of J. The hypothesis in the following theorem guarantees the R­
integrability of (j 0 v)v' on a certain interval. 

Theorem 7.2. Let f be continuous on an interval J with endpoints c and d. Let 
v be a function whose derivative is R-integrable on [a,b] which maps [a,b] 
onto the interval J where v(a) = c and v(b) = d, then (j 0 v)v' is R­
integrable on [a, b], and 

i b dv(x) J,V(b) 
f(v(x» -d-dx= f(v)dv. 

a X v(a) 
(7.3) 

PROOF. The differentiability of v implies its continuity. Since f is continuous 
on J, v is continuous on [a,b], and <3t(v) ~ J, the composite fo v is 
continuous on [a,b]. This implies thatfo v is R-integrable on [a,b]. By the 
hypothesis on v' and the fact that the product of functions which are 
R-integrable on a bounded closed interval also are R-integrable, it follows 
that (jo v)v' is R-integrable on [a,b]. It is left to evaluate the R-integral on 
the left of (7.3). By Theorem 7.1, we know that Go v, where G is the 
indefinite integral of f defined by 

G(u) =J,u f(t)dt 
v(a) 

for u E J, 

is a primitive of (j 0 v)v' on I = [a, b]. By the Fundamental Theorem of the 
Calculus, we have 

(b dv(x) 
Ja f( vex»~ ----;]X dx= G( v (x))!! 

This proves the theorem. 

= G(v(b» - G(v(a» 

= J,V(b) f( t) dt 
v(a) 

= (v(b) f(v)dv. 
Jv(a) 



658 XIII. The Riemann Integral I 

EXAMPLE 7.1. To evaluate 

l e2 I --dx 
e x lnx ' 

we use the substitution v(x) = lnx, x E [e,e 2]. v maps [e,e 2] onto [lne, 
Ine 2] = [1,2]. Theorem 7.2 applies (explain) and 

(e 2 _1_ dx= (e 2 _1_ dlnx dx= (Ine 2 1 dv= (2 1 dv 
Je xlnx Je lnx dx Jlne V JI V 

= In 2 - In 1 = In 2. 

PROB. 7.1. Evaluate 

(1) (1/2 x dx, 
Jo ~ 

(2) (1/2 1 dx, 
Jo ~ 

(3) l! 1 
o~ 

Arcsinxdx, 

(4) ll/2 x 2 dx, 
o ~ 

(5) 13 1 d x, 
1/2 J2x + 3 

(6) f x dx. 
o (1 + x 4) 

PROB. 7.2. Show: If a =i= 0, b =i= 0, then 

('IT/4 dx= ~ArctanQ . 
Jo a2cos2x + b2sin2x ab a 

One technique for obtaining the primitive 

J f(x)dx 

is to make a substitution x = </>(u) and define 

d</>(u) 
h(u) = f(</>(u)) ~ . 

(7.4) 

(7.5) 

One has in mind that by doing this it may be easier to find a primitive of h. 

Suppose f is defined on some interval J. Introduce the substitution 
x = </>(u), where </> is continuous on an interval I, maps I into J, and is 
differentiable in the interior of I with </>'(u) =i= ° for u in the interior of I. It 
follows that </> has an universe </> - 1 which maps the range of </> back into I 
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and 

dcp - \x) 1 

dx cp' ( cp - I ( x) ) 
for x in the interior of the range of cp (7.6) 

(Theorem VII.6.5). Suppose also that the function h defined in (7.5) has a 
primitive G on I. We have 

dcp( u) 
G/(u) = h(u) = f(cp(u» ~ for u E I. (7.7) 

This implies 

fx G ( cp - I ( X ») = G I ( cp - I ( X ») dCP:} x ) 

- G/(cp -I(X») 1 
cpl(cp-I(x») 

_h(cp-I(X») I 
cp' ( cp - I ( x) ) 

= f(X)cpl(cp-l(x») cpl(cp!I(X») 

= f(x) 

for x E J. In our notation for primitives this gives rise to 

f f(x)dx= G(cp-I(X») + c 

= fr'(X)h(u)du+ c 

= fCP- '(x) f(cp(u» d~~U) du+ c, 

i.e., that 

EXAMPLE 7.2. We use (7.8) to obtain the primitive 

f ~a2 - x 2 dx, 

for x E J. (7.8) 

where a > O. Here, of course, - a .;;; x .;;; a. Substitute x = a sin u, - 'IT /2 
.;;; u .;;; 'IT /2 so that 

and 

u = Arcsin~. 
a 

dx = acosudu 
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Note that dxl du =1= 0 for -7T 12 < u < 7T 12. From (7.8) and Example 5.10', 

J~ 2 2 JArCSinx/a a - x dx= (acosu)(acosu)du+ C 

=a cosuu C 2JArCSinx/a 2 d + 

2 u=Arcsinx/a 

= ; (u + sinucosu)1 + C 

= a2 (Arcsin~ + ~ Va 2 - X2) + C. 
2 a a2 

PROB. 7.3. Show: If a > 0, then 

(1) J Va 2 + x 2 dx = (a 2 12)(sinh -t(xl a) + (xl a2)Va2 + x 2 ) + C 

= (a 2/2)(ln(x + Va 2 + x 2 ) + (xl a2)Va2 + x 2 ) + C t ' 

(2) J Vx 2 - a2 dx = (a 2 12)( -cosh-t(xl a) + (xl a2)Vx2 - a2 ) + C 

= (a 2 12)( -In(x + Vx 2 - a2 ) + (xl a2)Vx2 - a2 ) + Ct. 

(Hint: in (1) use the substitution x = a sinh u, u ~ 0, and in (2) use 
x = a cosh u, u ~ O. Also note that C t and C may differ). 

EXAMPLE 7.3. To obtain the primitive 

J-l-dx 
1 +rx ' 

we substitute u = rx, x ~ O. Hence, 

and 

1 _ 
l+rx - l+u' 

dx = 2udu 

J -_l-dx=J.fX_l_2UdU+ C 

l+rx l+u 

=2J.fX_u- dU 
1 + u 

= 2 J.fX (1 - II u ) du 

= 2( rx - In( 1 + rx)) + c. 
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PROB. 7.4. Find 

(I) JxiX=T dx, 

(2) J I dx. 
x{l+x2 

Corresponding to the technique for finding primitives discussed after 
Prob. 7.2, we have a theorem concerning definite integrals. This theorem is 
actually a corollary of Theorem 7.2. 

Theorem 7.3. Let f be continuous on the interval J = [c, d), and </> continuously 
differentiable on a bounded closed interval I whose endpoints are a and b. If </> 
maps I onto J with </>(a) = c and </>(b) = d and </>'(u) =1= 0 for u in the interior 
of I, then </> has an inverse </> - I on J and 

(d f(x)dx=L<I>-I(d) f(</>(u») d</>d(U) duo 
Jc <I>-I(c) U 

(7.9) 

PROOF. </>' is continuous on I and so it is R-integrable there. Hence, </>' is 
R-integrable on I. </> maps I onto J = [c,d). Hence, Theorem 7.2 applies, 
and we have 

i b d</>( u) L<I>(a) Jd f(</>(u») -d- du= f(x)dx= f(x)dx. 
a U q,(b) c 

(7.10) 

By the hypothesis on </>, it has an inverse </> - I on J = [c, d). This inverse 
maps [c,d) onto I and </>-I(C) = a, </>-I(d)=b. Hence, (7.10) can be 
written as (7.9) and the proof is complete. 

EXAMPLE 7.4. One way of evaluating 

where a > 0, is to introduce the substitution x = a sinh u, u ~ O. Since 
sinh - 11 = In(l + ~ ) = In(l + Ii), we know that I = sinh In(l + Ii). 
Since u ~ 0, we have 

~a2 + x 2 = ~a2 + a2sinh~ = a cosh u 

and dx = a cosh u duo Also, 

u = sinh-I ~, u(O) = 0, and u(a) = sinh-I ~ = sinh-II = In(I +Ii). 
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Therefore, 

(a V (sinh-II Jo a2 + X 2 dx= Jo (a coshu)(a coshu) du 

2 (Sinh-II 2 
= a Jo cosh udu 

2lln(l+ff) h2 d = a cos u u. 
o 

By Prob. 5.11, this implies that 

=~ u+~ 2 ( . h2 )lln(l+v'2) 
220 

2 In(l + v'2) 
= ; (u + sinh u COShU)lo 

2 

= ; (In(1 + Vi) + sinh In(1 + Vi)cosh In(1 + Vi)) 

2 

= ; (In(1 +Vi) +Vi). 

EXAMPLE 7.5 (The Substitution u = tanx/2). We find the primitive 

J I dx 
3 + 4cosx 

by using the substitution x = 2Arctanu. We obtain 

u = tan~ 
2' 

COS2~ = _1_. 
2 1+ u2 

These imply that 

and 

Also 

cos x = 2 cos2 ~ - I = _2 __ I = I - u2 

2 1+ u2 1+ u2 

. 2 . x x 2 x 2 X 2u SIllX = Sln-cos- = tan-cos - = -- . 
2 2 2 2 1+ u 2 

dx= _2_ du . 
1+ u2 

(7.11 ) 

(7.12) 

(7.13) 

(7.14) 



7. The Substitution Formula for Definite Integrals 663 

Substituting, we obtain 

f 1 dx=2f tan(X/2) 1 _1-du 
3 + 4cosx 3 + 4(1 - u2)/(1 + u2») 1 + u2 

= 2ftan(x/2) _1_ du 
7 - u2 

= 1 If ran(x/2) 1 2 d( .J£). 
7 1 - (u/If) If 

In short, using the constant of integration, we have 

f 1 dx= 21f f tan(x/2) 1 2 d(.J£) + c. (7.15) 
3+4cosx 7 1-(u/lf) If 

By (5.22b), we know that 

f 1 d( .J£ ) = lin 1 + u / If 
1 - (U/If)2 If 2 1 - u/If 

=llnllf+ul. (7.16) 
2 If-u 

This and (7.15) imply that 

Since 

f 
1 If If + tan(x/2) 

-::----7--- dx = - In ----'------'-
3+4cosx 7 If -tan(x/2) 

tan.:!. = sin x 
2 1 + cosx ' 

we can obtain an alternate expression for this. 

+c. 

Remark 7.2. Let R (u, v) be a rational expression in u and v, i.e., let 

Po(u) + p(u)v + ... + Pn(u)v n 
R ( u, v) = Q Q m , Qo(u) + (u)v + ... + m(u)v 

(7.17) 

(7.18) 

where m and n are nonnegative integers and PO,p(,···, Pn ; Qo, Q(, 
... , Qm are polynomials. Consider the integral 

f R(cosx,sinx)dx. (7.19) 

We say that a substitution x = <{>(u) rationalizes this integral if it transforms 
it into 

(7.20) 

where R* is a rational function. 
The substitution x = 2 Arctan u rationalizes the integral (7.19). To see 

this, perform the manipulations carried out in Example 7.5 to obtain 



664 XIII. The Riemann Integral I 

u = tan(xI2) and 

cosx = 1 - u2 , 

1 + u2 

Then obtain 

sinx=~, 
1 + u2 

2 dx= --duo 
1 + u2 

J R(COSX,SinX)dx=Jtan(x/2)R( 1 - u2 ,~) _2_ du + C. 

1 + u2 1 + u2 1 + u2 

It is easy to see that R*, where 

can be written 

R*(u) = R( 1- u2 ~) _2_ 
1 + u2 ' 1 + u2 1 + u2 

P*(u) 
R*(u) = Q*(u) , 

where P* and Q* are polynomials. It follows that the substitution x = 
2 Arctan u rationalizes (7.19). 

Remark 7.3. In certain instances, the presence of a quadratic expression of 
the form ax2 + b + c, a =fo 0, in the integrand is handled by "completing the 
square." Thus, we note that 

ax2 + bx + c = a[(x + ~)2 + 4ac - b2 ]. (7.21) 
2a 4a2 

How one proceeds further depends on the sign of 4ac - b2. 
Consider, for example 

J x dx 
ax 2 + bx + c ' 

We obtain from (7.21), 

a =fo 0. (7.22) 

J x dx= 1 J x dx. (7.23) 
ax2 + bx + c a (x + b12a)2 + (4ac - b2)j4a2 

We consider cases (1) 4ac - b2 = 0, (2) 4ac - b2 > 0, (3) 4ac - b2 < 0. 
Case (1): Since 4ac - b2 = 0, (5.42) becomes 

J x dx=lJ x dx. 
ax2+bx+c a (x+bI2a)2 

Substituting u = x + (bI2a), we have x = u - (bI2a) and dx = duo We 
obtain 

J 
x 1 JX+(b/2a) U - (bI2a) 

--....:..:....-- dx = - du 
ax2 + bx + c a u2 

= 1 JX+(b/2a) 1 du- .JL JX+(b/2a) 1- du 
a u 2a2 u2 

= ~lnlx+ {a 1+ 2:2 x+(~/2a) +c. 
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Case (2): We have 4ac - b2 > O. Write 

A = J4ac - b2 

lal 
Proceeding from (7.23) we obtain 

f x dx- 1 f x 
ax2 + bx + c a (x + (b/2a»2 + A2 

= I f X +(b/2a) U - (b/2a) du 
a u2 + A2 
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= I f X +(b/2a) U du- --.lL f X+(b/2a) 1 du 
a u2 + A 2 2a2 u2 + A 2 

= 21a 1n[ ( x + {a r + A 2 ] 

b x + (b/2a) 
- -2-Arctan A +c. 

2aA 

Case (3): We have 4ac - b2 < 0, so that b2 - 4ac > O. Write 

B = Jb2 - 4ac 
lal 

We then obtain 

J x dx= IJ x dx 
ax2 + bx + c a (x + (b/2a»2 - B2 

= I f X +(b/2a) U - (b/2a) du 
a u2 _ B2 

= I JX+(b/2a) U du- --.lL f X +(b/2a) 1 du 
a u2 - B 2 2a2 u2 - B 2 

so that 

f x dx= _1 1n[(x + l!....)2 - B2] 
ax2 + bx + c 2a 2a 

+ --.lL JX+(b/2a) 1 du 
2a2 B2 - u2 

= 21a 1n[ (x + {a r -B2 ] 

+ _b_ 1n! B + (x + (b/2a» ! +c. 
4a2B B - (x - (b/2a» 
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PROB. 7.5. Integrate 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

I -=3-+---71--;si-n-x dx, 

I 1 dx 
4+3cosx' 

I 1 dx 
1 + x + x 2 ' 

I bx - x 2 dx, 

I Jx 2 + 4x + 5 dx, 

I 3x - 2 dx 
x 2 - 4x + 5 . 

complete the square under the square root, 

8. Integration by Parts 

Theorem 8.1. If u and v are differentiable functions on an interval I and the 
product vu' has a primitive on I, then the product uv' has a primitive on I and 

I u dv dx= uv -Iv du dx jor x E I. 
dx dx (8.1 ) 

PROOF. By hypothesis, the product uv is differentiable on I and 

due x) v( x) dv( x) due x) 
dx = u(x)~ +v(x)~ for x E I. (8.2) 

The hypothesis also states that uv' has a primitive on I. Let G) be this 
primitive. Then 

dG)(x) dv(x) 
dx = u(x)~ for x E I. 

This and (8.2) imply that 

d du(x) 
dx (u(x)v(x) - G)(x» = vex) ~ for x E I. 

(8.3) 
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Thus, uv - G1 is a primitive of vu' on I. Therefore, 

(8.4) 

where C1 is some constant. But - G1 + c1 is a primitive of - uv' (see (8.3». 
This and (8.4) imply that 

f du(x) f du(x) 
v(x)~dx= v(x)v(x) - u(x)~dx for x E I. (8.5) 

We usually write (8.1) as 

f udv= uv - f vdu. (8.6) 

When this formula or (8.1) is used to integrate a function we say that we 
are using Integration by parts. 

EXAMPLE 8.1. We perform the integration 

f xcosxdx 

using integration by parts. Let u(x) = x and dv(x) = cos x dx, so that 
v(x) = sinx. Using (8.6), 

f xcosxdx= f xdsinx= x sin x - fsinxd(x) = x sin x + cosx + c. 

EXAMPLE 8.2. Sometimes we have to integrate by parts more than once. 
Thus, let us try to integrate 

f x 2cosxdx. 

Let u(x) = x 2, dv(x) = cosxdx, and v(x) = sinx. By (8.6), 

f x 2cosxdx= f x 2 d(sinx) = x 2 sinx - 2 f xsinxdx. (8.7) 

In the second integral, put u(x) = x, dv(x) = sinxdx so that v(x) = 
-cosxdx. From this and (8.7), we have 

f x 2cosxdx= x 2sinx - 2 f xd( -cosx) 

= x2sinx + 2 f xdcosx 

= x 2sin x + 2( x cos x - J cos x dX) 

= x 2sinx + 2xcosx - 2sinx + c. 

The reader is invited to check the right-hand side and show that it is 
actually a primitive of x 2cosx. 
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EXAMPLE 8.3. We integrate 

(see Example 7.2). We have 

I~a2 - X2 dx= I a2 - x 2 dx= a21 I dx- I x 2 dx 
~a2 - x 2 ~a2 - x 2 ' ~a2 _ x 2 

=a2Arcsin.:!.-I x 2 dx. 
a ~a2 _ x2 

(8.8) 

In the second integral on the right we use integration by parts. We have 

I 2 I x dx= x x dx. 
~a2 - x 2 ~a2 _ x 2 

(8.9) 

Here, we put u(x) = x, dv(x) = x(a 2 - X2)-(1/2)dx = -(lj2)(a 2 -

X2)-(1/2)( -2x)dx so that v(x) = -(1j2)(a2 - X2)1/2(2) = -(a2 - X2)1/2. 

We have 

I x 2 dx=Ixd( -(a2 - X2)1/2) = -x(a2 - X2)1/2+I~a2 - x 2dx. 
~a2 - x 2 

This and (8.8) imply that 

This implies that 

2 I ~a2 - x 2 dx = a2( Arcsin ~ + :2 (a 2 - x 2) 1/2) + C 

so that 

EXAMPLE 8.4. We perform the integration 

Ilnxdx. 

Let u(x) = Inx, dv(x) = dx so that v(x) = x. We have 

I In x dx = x In x - I x d In x = x In x - I x ~ dx = x In x - x + c. 
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PROB. 8.1. Integrate 

(1) J xnlnxdx, 

(2) J sec3xdx, 

(3) J Arcsin x dx, 

(4) J Arctan x dx, 

(5) Jeaxcosbxdx, 

(6) J eaxsin bx dx, 

(7) J :x dx, 

(8) J x 2e x dx, 

(9) Jln(x +~)dx, 

(10) J e,Jx dx. 

We now give a Riemann integral counterpart of Theorem 8.1. 

Theorem 8.2. If u and v are differentiable on [a, b], and u', v' are R­
integrable, then 

(b dv(x) (b du(x) 
Ja u(x) ti.X dx=u(x)v(x)I!- Ja vex) ti.X dx. (8.10) 

PROOF. Note, x E [a, b] implies that 

du(x)v(x) dv(x) du(x) 
dx = u(x) ti.X + vex) ti.X . (8.11 ) 

The right side here is a sum of R-integrable functions on [a,b]. As such, it 
is R-integrable on [a,b] and its primitive is uv. By the Fundamental 
Theorem and properties of integrals, 

(b( dv(x) du(x) ) 
u(x)v(x)I!= Ja u(x) ti.X + vex) ti.X dx 

(b dv(x) (b du(x) 
= Ja u(x)ti.Xdx+ Ja v(x)ti.X dx. 

This yields (8.10). 
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EXAMPLE 8.5. We evaluate 

fo'lT /2COS2X dx 

using integration by parts. We have 

fo'lT/2cos2xdx= fo'lT/2cosxcosxdx= fo'lT/2cosx d~~x dx 

This implies that 

so that 

=cosxsinxl'lT/2- ('IT/2sinx dcosx dx 
o Jo dx 

= fo'lT/2sin2xdx 

= fo'lT/2(I - cos2x)dx 

= io'lT/2 1dx - fo'lT/2cos2xdx 

= I - fo'lT /2 cos2x dx. 

(8.Il') 

EXAMPLE 8.6. The device used here can be used to obtain a reduction 
formula for integrals of the form 

We have 

= sinx cosn-Ix - j sinx( (n - I )cosn- 2x( - sinx) )dx 

= sinxcosn-Ix + (n - 1) jsin2xcosn- 2xdx 

= sinxcosn-Ix + (n - 1) j(1- cos2x)cosn- 2xdx 

= sin x cosn - IX + (n - 1) j cosn - 2X dx - (n - 1) j cosnx dx 
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so that 

n J cosnxdx= sinxcosn-1x + (n - 1) J cosn- 2xdx 

and finally that, if n =1= 0, then 

This implies that 

If n = 2, we obtain the result (8.11'). If n = 3, then 

(fT/2COS3Xdx= 1 (fT/2cosxdx= 1. 
Jo 3)0 3 

By induction on m, we can prove: If m is a positive integer, then 

(fT/2COS2m+1xdx= 1.1 ... 2m - 2 2m 
)0 352m - 1 2m + 1 

and 

(fT/2 2m 132m - 1 'TI' Jo cos x dx = "2 . '4 . . . 2m "2' 

FROB. 8.2. Prove: If n =1= 0, then (1) 

and that (2) 

PROB. 8.3. Prove: If n is an integer such that n ~ 0, then 

FROB. 8.4. Prove: If n > 0, then 

J 1 dx = x + 2n - 1 J 1 dx 
(I + x2)n+l 2n(1 + x2)n 2n (1 + x2)n 
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(8.12) 

(8.12') 

(8.13) 

(8.14) 

(8.15) 

(Hint: begin with the integral on the right and use integration by parts with 
u(x) = (1 + x 2)-n, and v(x) = x). 
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9. Integration by the Method of Partial Fractions 

We wish to discuss 

J P(x) 
Q(x) dx, 

where P and Q are polynomials. 

P(x) = aoxm + alx m- l + ... + am' 

Q(x) = boxn + blx n- I + ... + bn, 

m and n being nonnegative integers. 

bo =1= 0, 

(9.1 ) 

(9.2) 

If m ;;;. n, we can perform a "long division" to express the rational 
function R = P / Q as 

P(x) rex) 
R(x) = Q(x) = hex) + Q(x) , 

where h is a polynomial and r is a polynomial of degree at most n - 1. The 
h here is the quotient and r is the remainder upon dividing P by Q. 

Since polynomials are readily integrated, (9.1) reduces the integration to 
that of a rational T, where 

rex) 
T(x) =-­

Q(x) 
(9.3) 

and rand Q are polynomials such that the degree of r is less than that of Q. 
We assume the last in the ensuing discussion. 

Also, we assume that the leading coefficient ao of Q is equal to 1, and 
that the degree of Q is n ;;;. 1. 

Case 1. Q has n distinct real zeros x I' Xl' ... , xn. It follows that Q (x) 
= (x - XI) ... (x - xn). We prove that in this case there exist constants 
A I' ... , An such that 

rex) AI Al An 
Q(x) = x - XI + X - Xl + ... + X - xn . (9.4) 

Write the values r has at XI"'" Xn aSYI = r(x l),··· 'Yn = r(xn)' 
By Theorem VII.4.2, there exists exactly one polynomial PI' of degree 

n - 1 at most, which assumes these values at Xl' ... , xn • Since r is of 
degree less than n, this implies that rex) = P(x) for all X E IR. The polyno­
mial P is set down in formula (VII.4.30). However, there is another form 
for this formula given in (VII.4.35) of Remark VII.4.4. Since the latter is 
easier to write out we use it here. The function g of Remark VII.4.4 is 
g(x) = (x - Xl) ..• (X - xn), so it is identical with our Q. 
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According to (VII.4.35), we have (using our Q instead of the g there) 

r(x) = P(x) 

YI Q(x) + Y2 Q(x) + ... + YnQ(x) 
(x - xl)Q'(X I) (x - X2)Q'(X2) (x - xn)Q'(xn) 

This yields 

r(x) 
T(x) = Q(x) 

r(xI) r(x2) r(xn) 
----- + ----- + ... + --:----:-::-:-:---:-
(x - xl)Q'(X I) (x - x2)Q'(X2) (x - xn)Q'(xn) 

Putting 

r(xi) 
Ai = Q'(xi) 

we obtain (9.4) from (9.5). 

(9.5) 

for iE{l, ... ,n}, (9.6) 

Case 2. At least one of the zeros of Q is a real zero multiple of multiplicity 
k> l. Clearly, I < k .;;; n. Let a be such a zero. We have 

Q(x) = (x - a)kh(x), 

where h(a) =1= 0 and where h is of degree n - k. Thus, 

r(x) r(x) 

Q(x) = (x - a)kh(x) . 

Let Al = r(a)jh(a). We have 

r(x) r(x)h(a) - r(a)h(x) 

(x - a)kh(x)h(a) . 

(9.7) 

(9.8) 

(9.9) 

The numerator on the right is a polynomial of degree less than nand 
evidently has a as one of its zeros. By the Factor Theorem a polynomial S 
exists such that 

r(x)h(a) - r(a)h(x) = (x - a)S(x). 

The degree of S is less than n - l. We substitute this into (9.9) and obtain 

r(x) Al (x - a)S(x) 
--'---:- + ----:-"---'---

(x - a)kh(x) (x - a)k (x - a/h(x)h(a) 

AI S*(x) ---:- + , 
(x- a)k (x-a)k-Ih(x) 
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where S*(x) = S(x)/ h(a). In short, we have 

r(x) AI S*(x) 
--'-~- = + ,(9.10) 
(x - a)kh(x) (x - a)k (x - a)k-Ih(x) 

where AI = r(a)/h(a), a constant, and S* is a polynomial of degree less 
than n - 1 (n - 1 is the degree of (x - a)k-Ih(x». Since k - 1 > 0, we can 
apply the above procedure to 

S*(x) 

to obtain 

S*(x) A2 + S**(x) 
(x-a)k-I (x-a)k-2h(x) 

(9.11 ) 

where A2 = S*(a)/ h(a), a constant, and S** is a polynomial of degree less 
than n - 2. From (9.10) we conclude (show this) that 

S*(a) d r(x) I 
A2 = h(a) = dx h(x) x=a' 

(9.12) 

Equations (9.10) and (9.11) combine to yield 

r(x) A A S**(x) 
_--,1,--:- + 2 + (9.13) 

(x - a)kh(x) (x - a)k (x - a)k-I (x - a)k-2h(x) 

We continue this procedure until we finally arrive at 

r(x) = r(x) 

Q(x) (x - a)kh(x) 

AI A2 Ak g(x) 
----:-+ + ... + -- + -- (914) 
(x-a)k (x-a)k-I x-a h(x) , . 

where A I' ... ,Ak are constants, hand g are polynomials such that the 
degree of h is n - k, the degree of g is less than that of h, and where 
h(a) =1= O. Multiply both sides of (9.14) by (x - a)k to obtain 

r(x) k-I g(x) k 
h(x) =A I +A2(x-a)+ .. , +Ak(x-a) + h(x) (x-a). (9.15) 

Substitute a for x to obtain 

r(a) 
h(a) =A I • 

Thus, A I is uniquely determined by r / h. We note that in 

g(x)(x - a)k 
f(x) = h(x) , 

(9.16) 
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a is a zero of multiplicity k of the numerator. Hence, j, 1', 1", ... ,jk-I all 
vanish at x = a. It follows from (9.15) that 

d rex) I 1 d Z rex) I 
dx hex) x=a = A z , 2! dxZ hex) x=a = A 3, ••• , 

(9.17) 
1 dk- I rex) I 

(k - I)! dX k- 1 hex) x=a = Ak , 

and that not only is A I uniquely determined by r / h but so are A z, ... , Ak. 
Using (9.14) we also see that the g there is uniquely determined by r/h. 

If Q has k real zeros XI' ... , xk and is of the form 

(9.18) 

where n = n I + nz + . . . + nk and n I' nz, ... , nk are positive integers, then 
we write 

(9.19) 

Assuming that r is a polynomial of degree less than n, we use (9.14), with X I 

replacing a and n l replacing k, to obtain 

rex) = rex) 
Q(x) (x - xlf'h(x) 

Al1 Au A lnk g(x) 
----....::.::.--,,-n + + ... + -- + --. (9.20) 
(x - XI)' (x - Xlf,-I X - XI hex) 

Here A 11' A IZ' ••. , A Ink are uniquely determined constants, g is a polyno­
mial of degree less than that of h, and h(x l) * O. We can then apply the 
procedure to g/ h and continue until all the factors in (9.19) are exhausted 
and finally obtain 

rex) = rex) 
Q(x) (x - XI)n,(X - x2f' ... (x - xdn, 

A 11 n + A 12 + ... + ~ 
(X-XI)' (x-Xlf,-I X-XI 

A2J A22 A 2n + n + + ... +--'-
(x-xz)' (x-x2f,-1 x-x2 

Akl Ak2 Akn + ... + + + ... + --'-
(X-Xk)n, (x-xkf,-I X-Xk 

(9.21 ) 

where all the A's here are uniquely determined constants. 

Case 3. The Q in (9.3) has an imaginary zero a. Since Q is a real 
polynomial, iX, the conjugate of a, is also a zero of q. This implies that 
X - a and X - iX are factors of Q and, hence, the product (x - a)(x - iX) 
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= X2 - (a + a)x + aa is a factor of Q. We write this quadratic factor as 
x 2+bx+c, where b= -(a+a) and c=aa. We have (a+ai-4aa 
= b2 - 4ac < 0 and hence (a - a)2 < 0, so that a - a =1= O. We assume that 

Q(x) = (X2 + bx + c/u(x), (9.22) 

where u is a real polynomial of degree n - 2, P is a positive integer, and 
u(a) =1= O. This, of course, implies that u(a) =1= O. We prove* that unique real 
constants A I and B I and a real polynomial S of degree less than n - 2 
exists such that 

r(x) r(x) 
T( x) = -- = ------.,~-

Q(x) (x2+bx+c/u(x) 

Alx+BI S(x) 
------=p + I. (9.23) 
(X2 + bx + c) (X2 + bx + cl- u(x) 

We first prove that there exist unique real constants A I and B I such that 
the polynomial equation 

r(x) - u(x)(Alx + B I) = 0 (9.24) 

has a and a as roots. 
First assume that a is a root of (9.24). It follows that (9.24) also has a as 

a root and that 
_ r(a) _ 

Ala +BI = -_- = v(a). (9.25) 
u(a) 

Subtracting the second of these equations from the first and dividing by 
a - a =1= 0 gives us AI in terms of a. We then obtain BI from BI = v(a)­
Ala. Thus, 

v(a) - v(a) v(a) - v(a) 
AI = = _, 

a-a a-a (9.26) 
av(a) - av( a) av(a) - av(a) 

B I = = --'--'-_"":-:"'-
a-a a-a 

We see that AI and BI are real. Using these values of AI and Bp it is easy 
to see from (9.26) that (9.25) and, hence, (9.24), has a and a as roots. This 
implies that the product (x - a)(x - a) = x 2 + bx + c is a factor of r(x) -
u(x)(Ax + B), i.e., 

r(x) - u(x)(Alx + B I) = (X2 + bx + c)S(x), (9.27) 

where S is a polynomial of degree less than n - 2. Hence, 

r(x) - u(x)(Alx + B I) (X2 + bx + c)S(x) S(x) 

(X2 + bx + c/ 2 p-I 
(x + bx + c) 

·Hugh J. Hamilton, The partial fraction decomposition of a rational function, Mathematics 
Magazine, May, 1972, 117-119. 
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This yields (9.23). Thus, real constants AI and BI and a real polynomial S 
exist such that (9.23) holds. The uniqueness of AI and BI follows from the 
fact that if (9.23) holds, so must (9.24) and, therefore, (9.26). The latter 
determine A I and B I uniquely. 

If P = 1, we have from (9.23) 

rex) Alx+BI Sex) 
~:------- = + --
(x2 + bx + c)u(x) x 2 + bx + c u(x) , 

where u(a) =!= O. If P > 1, we return to (9.23). Repeated applications of this 
procedure lead to the existence of unique real constants A 2 ,B2, ••• ,Ap,Bp' 
and a real polynomial S* such that, together with A I and B I' we have 

rex) Alx + BI A2x + B2 
----------~p + I 

(x2 + bx + c) (x2 + bx + c{-

Apx + Bp S*( x) 
+ ... + +--

x 2 + bx + c u( x) 
(9.28) 

for all x E IR for which u(x) =!= O. 
We now combine all these cases. Q may be of the form 

( 2 b )pj ... x + jX + Cj , (9.29) 

where XI' ... ,xk are real, the quadratic polynomials x 2 + blx + CI , x 2 + 
b2x + C2' ... , x 2 + bjx + cj have respective distinct pairs of imaginary 
zeros al,al,a2,a2"'" aj,aj , and where n = n l + ... + nk + 2pI 
+ ... 2pj, nl , . .. , nk , PI' ... 'Pj being positive integers. If r is a real 
polynomial of degree < n, then 

(9.30) 

where the A's, C's, and D's are uniquely determined real constants. 
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EXAMPLE 9.1. To evaluate 

J 2x2 + 3x + 1 dx 
X4 + 6x3 + llx2 + 6x ' 

we write Q(x) = X4 + 6x3 + llx2 + 6x = x(x3 + 6x2 + llx + 6). By in­
spection we see that x = - 1 is a zero of x 3 + 6x2 + llx + 6. Hence, 

Q(x) = X(X3 + 6x2 + llx + 6) = x(x + 1)(x2 + 5x + 6) 

= x(x + l)(x + 2)(x + 3). 

There exist unique constants A, B, C, and D such that 

2X2 + 3x + 1 2X2 + 3x + 1 
x(x + l)(x + 2)(x + 3) 

= A + ---..!l..- + ~ + -----'2- (9.31) 
x x+1 x+2 x+3 

for all x fI. {O, -1, -2, -3}. Multiply both sides by Q(x) = x(x + l)(x + 
2)(x + 3) to obtain 

2X2 + 3x + 1 = A(x + l)(x + 2)(x + 3) + Bx(x + 2)(x + 3) 

+ Cx(x + l)(x + 3) + Dx(x + l)(x + 2). 

Next let x~o, x~ -1, x~ -2, x~ -3 successively to obtain 

B=O, D= -i. 
These imply 

J 2X2+ 3x + 1 dx= IJ1dx+ lJ_l_dx_1J_1_dx 
X4 + 6x3 + 11 x 2 + 6x 6 x 2 x + 2 3 x + 3 

= ilnlxl + tlnlx + 21- tlnlx + 31 + C 

= In(lxll/6Ix + 21 3/ 2 fix + 315/ 3) + C 

X(X+2)9] 
(x+3)\O 

+ C. 

The answer could have also be deduced by using (9.6) with XI = 0, 
x2= -1,x3= -2,andx4 = -3. 

EXAMPLE 9.2. Integrate 

(9.32) 

In the integrand, the degree of the numerator and denominator are equal. 
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We divide out to obtain 

X4 + 3 

679 

= 1 _ 2x3 + 2X2 + 2x - 2 (9.33) 
X4 + 2x3 + 2X2 + 2x + 1 

Hence, 

We evaluate the second integral /2 on the right using the partial fraction 
expansion 

2x3 + 2X2 + 2x - 2 = ~ + B + Cx + D . 
(x+ 1)\x2+ I) x+l (X+I)2 x 2+1 

Multiplying both sides by (x + 1)2(X2 + I), we have 

2x3 + 2X2 + 2x - 2 = A (x + 1)( x 2 + I) + B (X2 + I) + (x + I )2( Cx + D) 

= (A + C)x3 + (A + B + 2C + D)X2 

+ (A + C + 2D)x + A + B + D. 

Equating coefficients, we have 

A + C = 2, 
A + B + 2 C + D = 2, 
A + C + 2D = 2, 
A + B + D = -2. 

Solving for A, B, C, and D we obtain 

A =0, B= -2, C=2, D=O. 

Hence, 

/ =J 2X3+2X2+2X-2dX=J(~ - 2 )dX 
2 (x + 1)\ x2 + I) x2 + I (x + 1)2 

= In( I + x 2 ) + ~I + C. 
x+ 

This and (9.34) imply that 

J X4 + 3 dx= x -In(l + x 2) - _2_ + C' 
(x + 1 )2( X + 1)2 X + I 

=x+ln-l- - _2_ +C'. 
1 + x 2 X + I 
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PROB. 9.1. Find 

(1) J x dx 
(x + 1)( x 2 - 1) , 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

J (x + a)I(X + b) dx, 

J 5X3 + 2 dx 
x 3 - 5x2 + 4x ' 

J 1 dx 
(X2 - 4x + 3)( x 2 + 4x + 5) , 

J- I-3 dx, 
l+x 

J 1 2 dx, 
(1 + X 2) 

J 1 2 dx, 
(X + 1)( x 2 + X + 1) 

J X4 
-4-- dx, 
x-I 

J 1 dx 
(X4 _ 1)2 ' 

XIII. The Riemann Integral I 

(10) J X4 ~ 1 dx (Hint: note (1 + Ii x + x 2)(1 -Ii x + x 2) = 1 + x 4). 



CHAPTER XIV 

The Riemann Integral II 

1. Uniform Convergence and R-Integrals 

We now consider the legitimacy of passing to the limit under the integral 
sign. If the sequence <fn> of R-integrable functions converges to a limit f 
on an interval [a,b] does it necessarily follow that 

. Lb Lb hm fn(x)dx= f(x)dx? 
n~+oo a a 

(1.1) 

The question has an affirmative answer provided the convergence is uni­
form. 

Theorem 1.1. If <In> is a sequence of R-integrable functions on [a, b] which 
converges uniformly to some function f, then f is R-integrable on [a,b] and 
(1.1) holds. 

PROOF. Each fn is bounded on [a, b]. Since the convergence of <In> to f is 
uniform on [a,b], the sequence is uniformly bounded and the limit function 
f is bounded on [a,b] (Theorem XI.4.3). We prove next that f is R­
integrable on [a,b]. 

Let P = <xo,x l , ••• ,xm> be some partition of [a,b]. Write the suprema 
and infima of f and each fn on each subinterval Ii = [Xi _ I' xJ of P as 

(l.2) 
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respectively. We have 
m 

S(f,P) - ~(f,P) = ~ (M;(f) - m;(f») Ax; 
;=1 

m 

= ~ (M;(f) - M;(fn») Ax; 
;=1 

m 

+ ~ (M;(fn) - m;(fn») Ax; 
;=1 

m 

+ ~ (m;(fn) - m;(f») Ax; 
i=l 

n 

< ~ IM;(f) - M;(fn)1 Ax; 
;=1 

n 

+ S (fn ,P) - ~(fn ,P) + ~ Im;(f) - m;(fn)1 Ax; 
;=1 

(1.3) 

for each n. 
Let t: > 0 be given. There exists an N such that if n > N, then 

1J,,(x) - l(x)1 < 3(b ~ a) for all x E [ a, b J. (1.4) 

This implies that 

:~~i Iln( x) - I( x)1 < 3( b ~ a) for each i. 

But for each i 

IM;(f) - M;(fn)1 < sup I/(x) - In(x)1 
xEI, 

and 

Im;(f) - m;(fn)1 < sup I/( x) - In( x)1 
xEI, 

(prove these). Therefore, for n > N, we have 
m 

i~IIM;(f) - M;(fn)IAx; < 3(b ~ a) (b - a) = t (1.5) 

and 
m 

i~llm;(f) - m;(fn)IAx; < 3(b ~ a) (b - a) = t· (1.6) 

By hypothesis, each In is R-integrable on [a,b]. Fix an In with n > N. 
There exists a partition P' of [a,b] such that 

S (fn ,Pi) - ~(fn ,P') < t . (1.7) 
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Since (1.5) and (1.6) hold for any partition P of [a, b], they hold for the 
partition P' in particular. We use (1.3), with pi replacing P, (1.5), (1.6), and 
(1.7) to conclude that 

S (f,P') - £(f,P ') < 1 + 1 + 1 = f. (1.8) 

This proves that for each f > 0, there exists a partition P' of [a, b] for which 
S(j,P ') -S.Jf,P') < f holds, and thatfis R-integrable on [a,b]. 

We now prove that (1.1) holds. Given f > 0, there exists an N such that if 
n> N, then 

\fn(x) - f(x)\ < b ~ a for all x E [ a, b ]. 

Therefore, if n > N, then 

lib fn(x)dx - i b f(X)dxl = lib(fn(X) - f(X)dxl 

,;;;ib\fn(X) - f(x)\dx < b ~ a (b - a) = f. 

This implies that (1.1) holds. 

Corollary 1. If <un> is a sequence of R-integrable functions on [a,b] and the 
series ~un(x) converges uniformly to a sum Sex) on [a,b], then S is 
R-integrable on [a,b] and 

(1.9) 

PROOF. Exercise. 

Corollary 2. If <fn> is a sequence of continuous functions on [a,b] which 
converges uniformly to a function f on [a,b], then f is R-integrable in [a,b] 
and 

lim (b fn(x)dx= (b f(x)dx. 
n-'> + 00 Ja Ja 

(1.10) 

PROOF. Exercise. 

Corollary 3. If each Un in Corollary I is continuous on [a,b], then (1.9) holds. 

Remark 1.1. We give an example of a sequence <fn> of functions which 
converges pointwise to a function f on [0,1] but for which (1.1) is false 
there. For each positive integer n we define 

fn(x) = 2n2xe- nx for x E [0,1] 

for each positive integer n. Clearly, j,,(0) = ° for all n. Take x such that 
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o < X ..;; 1. For such x 

1 2 (nx)2 
fn(x) = 2(nX)2e- nx x = x -;nx 

for each n. Hence also 

lim fn(x) = 0 
n~+oo 

for x E (0, 1 ]. 

Thus, <In> converges pointwise to the constant function f = 0 on [0, 1]. On 
the other hand, 

so that 

Thus, (1.1) is false for this sequence. It follows from Theorem 1.1 that this 
sequence does not converge uniformly on [0, 1]. 

EXAMPLE 1.1. In Example X1.9.3 we proved that 

x 3 x 5 x7 
Arctanx = x - 3 + 5 - ""7 + . . . for Ixl < 1. (1.11) 

This result can be established much more easily with the aid of the 
corollaries of Theorem 1.1. 

We observe that 

1 I 2 4 6 --= -I+t-I+'" 
1 + t 2 

for It I < 1. (1.12) 

The series on the right is a power series expansion about the origin of the 
function on the left. Hence, it converges uniformly on every bounded 
closed interval [ - r, r], where 0 < r < 1. By Corollary 3 we can integrate the 
series term by term to obtain for each x E [ - r; r] 

rx 1 x 3 x 5 x7 
Arctanx = Jo 1 + t2 dl= x - 3 + 5 - ""7 + .... 

It follows that this expansion is valid for Ixl < 1. We can then use Abel's 
limit theorem (Corollary 2 of Theorem XII.6.3) to extend its validity to the 
closed interval Ixl ..;; 1 and to obtain 

.!!. = 1 - 1 + 1 - 1 + .. . (1.13) 
4 3 5 7 

(See Example XII.6.I). The series on the right sums to .,,/4. Hence, it can 
be used to evaluate.". Although this result is aesthetically pleasing, it is not 
very practical. The nth term of the series on the right side of (1.13) is 
( - 1 t + lan, where an = 1/ (2n - 1). The series is clearly alternating. By 
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Theorem IV.2.l, we see that 

1:!!:._(I_l+l_l+ ... +(_I)n+l_I_)I<_I_ 
4 3 5 7 2n - 1 2n + 1 

and, hence, 

I'TT- (4-.1 +.1_.1 + ... +(_I)n+l_4_)1 <_4_. 
3 5 7 2n - 1 2n + 1 
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For n = 500, this states that the error in approximating 'TT by summing the 
first 500 terms of the series 

444 4--+---+ .. · 
357 

(1.14) 

is less than 4/1001 < 4/1000 = 0.004 < 0.005. To guarantee an approxima­
tion of 'TT to the nearest one-hundredth we must sum at least the first 500 
terms of the series. We obtain next a more rapidly converging series 
expansion for 'TT. 

Let U and v satisfy 
'TT 'TT 'TT 'TT 'TT 'TT -I<u<I' -I<v<I' I<u+v<I' 

Put tan u = s and tan v = t. Then 

so that 

or 

tan( u + v) = tan u + tan v =.2...±...L 
1 - tanutanv 1 - st 

u + v = Arctan(tan(u + v» = Arctan t ~ :t 

Arctan s + Arctan t = Arctan IS + t . 
- st 

By using s = t, t = t, we obtain from this * = Arctan 1 = Arctan t + Arctan t . 
By (1.11), 

Arctan 1 = 1 _ 1 ( 1 )3 + 1 ( 1)5 _ 1 ( 1)7 + . . . 
2232 52 72 

and 

Arctan 1 = 1 _ 1 ( 1 )2 + 1 ( 1)5 _ 1 ( 1)7 + . . . 
3333 53 73 • 

These and (1.16) imply that 

(1.15) 

(1.16) 

'TT = 4( 1 + 1 ) - .1 ( l.. + l.. ) + .1 ( l.. + l..) - .1 ( l.. + l.. ) + ... 
2 3 3 23 33 5 25 35 7 27 37 

= ~ (_I)n+l_4_(_I_ + _1_) 
n7:1 2n - 1 22n - 1 32n - 1 ' 

(1.17) 
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The series on the right is alternating (check this). Its nth term is (-lr+ lan, 

where 

Writing Sn for the nth partial sum of the series for each n, we obtain 
(Theorem IV.2.1), 

'IT-S <-- --+--4 (1 1) 
I nl 2n + 1 22n+1 32n+1 

< 4 (1 + 1) 2n+l 22n+1 22n+1 

For n = 4, we have 

1 1 1 1 
1'lT - S41 < 9" . 64 = 576 < 500 = 0.002. 

To evaluate 'IT with the aid of (1.17) to the nearest hundredth it suffices to 
sum its first four terms. (Compare this with the result obtained using series 
(1.14).) 

FROB. 1.1. Prove: 

Arctan! = Arctan t + Arctan ~ 

and * = 2 Arctan t + Arctan ~ . 

FROB. 1.2. Prove: If Ixl .;;; 1, then 

Arcsinx = x + 1. x 3 + !.:l . x 5 + 1·3·5 . X 7 + ... 
2 3 2·4 5 2·4·6 7 

and, therefore, that 

'IT 1 1 1·3 1 1·3·5 1 
"2=1+"2·3+ 2·4 ·5+ 2·4·6 ."7+ .... 

PROB. 1.3. Prove: 

123 4 
2! + 3T + 4! + 5! + ... = 1. 

EXAMPLE 1.2. We prove that 

lim ('IT /2 si~ 2nx dx = J!.. • 
n ..... +oo Jo smx 2 ( 1.18) 
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When x is not a multiple of 'IT and n is a positive integer, then (Prob. 
X.6.3) 

si~2nx = 2 ± cos(2k - l)x. 
smx k=l 

(1.19) 

The integrand is undefined at O. To deal with this we proceed as follows. By 
L'Hopital's rule, we have 

lim si~ 2nx = 2n. 
x--->o smx 

The function In defined on [0, 'IT /2] as 

{
2n 

fn(x) = si~2nx 
smx 

if x = 0 

if 0 < x -( ~ , 

for each positive integer n is continuous on [0, 'IT /21 and, therefore, R­
integrable there. With this interpretation, we are to evaluate 

('IT /2 si~ 2nx dx. 
Jo smx 

(All integrals of the form 

(a f(x) si~nx dx or (a f(x) sinnx dx 
Jo smx Jo x 

are called Dirichlet's Integrals.) By (1.19), we have 

('IT /2 si~ 2nx dx = 2 ('IT /2( ± cos(2k - 1 )x) dx 
Jo smx Jo k=l 

n /2 = 22: ('IT cos(2k - l)xdx 
k=l Jo 

_ n Sin(2k-l)XI'IT12 
- 22: (2k - 1) 

k= 1 0 

= 2 ± _ cosk'IT 
k=l 2k-l 

=2 ± (_I)k+l_l_ 
k=l 2k - 1 

=2(1-1+1_1+ ... (-If+l_l_). 
3 5 7 2n - 1 

By (1.13), we obtain from this 

1· l'IT/2 sin2nx d 1m -.-- X 
n--->+oo 0 smx 
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PROB. 1.4. Use (l.l9) to obtain: If x is not a multiple of 7T, then for each 
positive integer n 

sin 2~x cos x = 2 ± cos( (2k - I)x )cos x 
smx k=1 

n 

= 2: (cos 2kx + cos(2k - 2)x). 
k=1 

Prove: If n is a positive integer, then 

{'IT /2 si~ 2nx cos x dx = '!i . 
Jo smx 2 

PROB. 1.5. Prove: If n is a positive integer, then 

(a) i
,l-(I-X)n il1-xn I 1 
-----dx= ---dx= I + - + ... +-

o x 0 I-x 2 n 

(b) ( ~) - (;) 1 + . . . + ( - I) n + I ( ~) = k~ 1 ( - I) k + I t (~ ) 
=1+1+ ... +1. 

2 n 

PROB. 1.6. Prove: Let <fn> be a sequence of functions that are R-integrable 
on [a,b]. If <fn> converges uniformly to a function f on [a,b], then, for 
each g which is R-integrable on [a,b], we have 

lim {b fn(x)g(x)dx= {b f(x)g(x)dx 
n~+ 00 Ja Ja 

(see Prob. XI.4.6). 

PROB. 1.7. Prove: Hfis continuous on [a,b] and for each positive integer n, 
we have 

Lb f(x)xndx= 0, 

thenf(x) = 0 for all x E [a,b] (Hint: use Weierstrass' approximation theo­
rem X1.7.2 and attempt to prove that the hypothesis implies 

Lb f\x)dx= 0). 

PROB. 1.8. Prove: if x E IR, then 

(a) Jocost2dt = ~:;"=o( -ltx4n+ 1/(4n + 1)(2n)!, 
(b) Joe-I'dt = ~:;"=o( -ltx2n + 1/(2n + l)n!. 
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2. Mean-Value Theorems for Integrals 

Theorem 2.1. Ij j and g are R-integrable junctions on [a,b] such that g does 
not change sign on [a,b] (either g(x) ~ 0 jor all x E [a,b] or g(x) .;;;; 0 jor all 
x E [a, b]) and if m and M are respectively the infimum and supremum oj jon 
[a, b], then there exists a p. such that m .;;;; p.';;;; M and 

Lb j(x)g(x)dx= P. Lb g(x)dx. (2.1) 

PROOF. Consider the case g(x) ~ 0 for all x E [a,b]. We have 

m .;;;; j(x)';;;; M and, therefore, mg(x)';;;; j(x)g(x) .;;;; Mg(x) (2.2) 

for all x E [a, b]. It follows from the second set of inequalities that 

m Lb g(x)dx .;;;;Lb j(x)g(x)dx';;;; M Lb g(x)dx. (2.3) 

If f:g(x)dx = 0, then the middle integral is also equal to 0, and, therefore, 
(2.1) holds trivially for any p.. If f:g(x)dx > 0, then (2.3) implies that 

f:J(x)g(x)dx 
m';;;; ';;;;M. 

f:g(x)dx 

Writing 

f:J(x)g(x)dx 
p.= 

f~g(x)dx 

we obtain (2.1) with m .;;;; p. .;;;; M. 

Corollary 1. Ij j is continuous on [a,b] and g is an R-integrable junction 
which does not change sign on [a, b], then there exists a c such that a .;;;; c .;;;; b 
and 

Lb j(x)g(x)dx= f(c) Lb g(x)dx. (2.4) 

PROOF. Since j is continuous on [a, b], it is R-integrable there. Hence, the 
theorem guarantees the existence of a p. such that m .;;;; p. .;;;; M and such 
that (2.1) holds. (Here, of course, m and M are the infimum and supremum 
of j on [a, b].) Since j is a function which is continuous on the bounded 
closed interval [a, b], it has a minimum j( xo) and a maximum j( x I) there. 
Thus, m = j(xo) and M = j(x l ), where Xo E [a,b] and XI E [a,b]. We have 
j(xo) = m .;;;; p.';;;; M = j(x l ). The continuity of jon [a,b] implies that it has 
the intermediate-value property there. Hence, for some c in [a, b], j( c) = p.. 
This yields (2.4) with c E [a,b]. 
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PROB. 2.1. Prove: If f is continuous on a bounded closed interval with 
endpoints a and b, then a c exists between a and b such that 

Lb f(x)dx= f( c)(b - a). (2.5) 

Remark 2.1. Corollary I of Theorem 2.1 is often called the first mean-value 
theorem of the integral calculus. 

Remark 2.2. The result cited in Prob. 2.1 can be used to prove that if f is 
continuous on [a,b], then the indefinite integral F defined as 

F(x) = LX f(t)dt, a';; x.;; b, 

is a primitive of f on [a, b]; that is, F is differentiable on [a, b] and 

F'(x)=f(x) for xE[a,bJ. 

(See Corollary 2 of Theorem XIII.6.2.) For proof take x E [a, b] and h such 
that h =1= 0, x + h E [a, b]. By the result in Prob. 2.1, there exists a c between 
x and x + h such that 

rx+ h 
F(x + h) - F(x) = Jx f(t)dt= f(c)h 

so that 

F(x + h) - F(x) 
h = f(c). 

But limh~of(c) = f(x) (why?). Hence, 

F(x + h) - F(x) 
F'(x) = lim = f(x) 

h-->O h for x E [ a, bJ. 

The Second Mean-Value Theorem for Integrals 

Theorem 2.2. Iff is monotonically decreasing and nonnegative on [a,b] and g 
is R-integrable on [a,b], then there exists acE [a,b] such that 

Lb f(x)g(x)dx= f(a) LC g(x)dx. (2.6) 

PROOF.* Since it is monotonic on [a,b],fis R-integrable on [a,b] (Theorem 
XIII.1.3). By hypothesis, g is R -integrable on [a, b]. It follows (Corollary of 
Theorem XIII.3.4) that the product fg is R-integrable on [a,b]. Suppose 

*H. S. Carslaw, Introduction to the Theory of Fourier Series and Integrals, Dover, New York, 
1930, pp. 110-112. 
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j(a) = O. Since j is monotonically decreasing and nonnegative on [a,b], it 
follows that j(x) = 0 for all x E [a,b]. In this case the integral on the 
left-hand side in (2.1) is equal to 0 and the right-hand side there is equal to 
o for any C E [a, b]. Thus, the conclusion holds in this case. 

Suppose j(a) > O. Given to > 0, there exists a partition P = <xo, ... , xn> 
of [a, b] such that 

i b j(x)g(x)dx- t <£(fg,P) ~ S(fg,P) <ib j(x)g(x)dx+ t (2.7) 

and 

i b g(x)dx- 3j(a) <£(g,P) ~ S(g,P) ~ib g(x)dx+ 3j(a) (2.8) 

(using refinements if necessary). Put 

(a) (J = 'L,7=t!(x;_,)g(x;_,)6.x;, 
(b) C; = g(x;_I)6.x; and d; = 'L,~=ICk for each i E {I, ... , n}, 

so that c; = d; - d;_1 for each i E {l, ... , n}. We have s.(jg,P) ~ (J 

~s.(jg, P). Therefore, by (2.7) it follows that 

i(J - i b j(X)g(X)dXi < t . 
In turn, this implies that 

(J - t <ib j(x)g(x)dx< (J + t . 
Continuing, we have 

n 

(J = 2: j(x;_I)C; 
;=1 

n 

= j(xo)C1 + 2: j(x;_I)C; 
;=2 

n 

= j(xo)d, + 2: j(x;_I)(d; - d;_I) 
;=2 

= j( xo)dl + j( x l)( d2 - dl) + j( x2)( d3 - d2) + ... 

+ j(xn_I)(dn - dn_l) 

= (f(xo) - j(xl))dl + (f(XI) - j(x2))d2 + ... 

+ (f(Xn-2) - j(xn_I))dn_1 + j(xn_,)dn 

n-I 

= 2: (f(X;-I) - j(x;))d;+ j(xn_l)dn • 

;=1 

(2.9) 

(2.10) 

Let dq = max,.;;;.;;nd; and dp = minl';;;';;nd;. Since j is monotonically de­
creasing and positive, we know that j(x;_I) - j(x;) ;;;. 0 for all i E 
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{l, ... , n - I}, butf(xo) > O. Hence, we conclude from (2.10) that 

(
n-I ) 

dp i~1 (f(Xi- l) - f(xi)) + f(xn - I ) ..;; (1 

..;; dqCt: (f(Xi- l) - f(xi)) + f(Xn - d) 

or that 

dJ(a) ..;; (1 ..;; dJ(a). (2.11 ) 

Consider dq = Lk=lck = L'!=lg(Xi-I)~Xi' The points Xo,X 1, ••• , Xq+1 
constitute a partition of the subinterval [a, Xq+ d of [a, b]. Write this 
partition as p* = <XO,xl, ... , xq+I ). Clearly, 

£(g,P*)";; dq ";; S(g,P*) and £(g,P*) ..;;LXq+l g(X)dx..;; S(g,P*). 

(2.12) 

Note also that S(g,P*) -fi.(g,P*)";; S(g,P) -fi.(g,P) (explain). It follows 
from this and (2.8) that 

0..;; S(g,P*) - £(g,P*) < 3l<~) . 

This implies after taking note of the second inequality in (2.12) that 
q 

dq = i~l g(Xi-l)~Xi";; S(g,P*) <£(g,P*) + 3l<~) 

<iXq +1 g(x)dx+ ~ . 
a 3f(a) 

From this and (2.11) we conclude that 

(1";; f(a)dq <f(a) Lxq+. g(x)dx+ ;f: . 

A similar analysis of dp yields 

f(a) LXp+l g(x)dx- ;f: < f(a)dp ..;; (1. 

Hence, 

f(a) (Xp+l g(x)dx- 2f: < (1 <f(a) (Xq+' g(x)dx+ 2f: . (2.13) 
Ja 3 Ja 3 

Combining this with (2.9) we obtain 

f(a) LXp +l g(x)dx- f: <Lb f(x)g(x)dx< f(a) LXq+l g(x)dx+ f:. (2.14) 

Define F by means of 

for x E [ a, b]. 
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F is continuous on [a, b] (Theorem XIII.6.3). Hence, it has a maximum 
M = F(x() and a minimum m = F(xo) on [a,b]. Accordingly, 

LXOg(t)dt= F(xo) <Lxp+1 g(t)dt and LXq+1 g(t)dt< F(x() = LXI g(t)dt. 

By (2.14), we obtain from these 

f(a)F(xo) - f <Lb f(x)g(x)dx< f(a)F(x() + f. 

This holds for any f > O. Hence, 

f(a)F(xo) <Lb f(x)g(x)dx < f(a)F(x(). 

Thus, we have 

Jt;J( x)g( x) dx 
F(xo) < f(a) < F(x(). 

But F is continuous on [a, b] and, therefore, has the intermediate-value 
property there. Hence, there exists a c between Xo and x ( and, hence, in 
[a, b] such that 

LC g(x)dx= F(c) = Jt;J(X)fa\X)dX 

Thus, the conclusion follows in the case f(a) > O. 

The following theorem has a proof similar to the last one: 

Theorem 2.3. If f is monotonic increasing and nonnegative on [a, b] and g is 
R-integrable on [a,b], then there exists acE [a,b] such that 

L b f(x)g(x)dx= f(b) Lb g(x)dx. 

PROB. 2.2. Prove: Theorem 2.3. 

A more symmetric version of the last two theorems is obtained by 
retaining the monotonicity of f but dropping the requirement that it be of 
fixed sign on [a, b]. 

Theorem 2.4. If f is monotonic and g is R-integrable on [a,b], then there 
exists acE [a, b] such that 

L b f(x)g(x)dx= f(a) LC g(x)dx+ f(b) L b g(x)dx. (2.15) 

PROOF. Let f be monotonic increasing. Consider h, where hex) = f(b)­
f(x) for x E [a,b]. The function h is nonnegative and monotonic decreasing 
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on [a, b). By Theorem 2.2, there exists acE [a, b) such that 

Lbh(x)g(X)dX= h(a) LC g(x)dx. 

Hence, 

and 

L\f(b) - f(x»)g(x)dx= (f(b) - f(a») Le g(x)dx 

Lb f(x)g(x)dx= f(b)[ Lb g(x)dx - LC g(X)dX] + f(a) Le g(x)dx 

= f(a) Le g(x)dx+ feb) Lb g(x)dx. 

If f is monotonic decreasing, define h as h(x) = f(x) - f(b) for x E [a, b) 
and argue as before, using Theorem 2.3. 

Remark 2.3. For an application of the last theorem see the proof of 
Theorems XV.3.3 and XV.3.4 in Chapter XV. 

3. Young's Inequality and Some of Its Applications 

Theorem 3.1. Iff has a continuous and nonzero derivative l' on [a, b), then 

bf(b) - af(a) = (b f(x)dx+ (f(b)f-I(x)dx. (3.1) 
Ja J J(a) 

PROOF. By the hypothesis on f, f is strictly monotonic on [a, b) and has a 
strictly monotonic and differentiable inverse f- I on the interval with 
endpoints f(a) and f(b). Integration by parts yields 

Lb x1'(x)dx=xf(x)I!- Lb f(x)dx= bf(b) - af(a) - Lb f(x)dx. (3.2) 

On the other hand by the substitution formula for definite integrals 
(Theorem XIII.7.2), 

(b x1'(x)dx= (b f-I(f(x») dfd(X) dx= (J(b) f-I(V)dv. 
k k x Jf(~ 

This and (3.2) yield (3.1). 

Theorem 3.2 (Young's Inequality). Iff has a continuous and positive deriva­
tive on [0, c) (c > 0) and f(O) = 0, then for a E [0, c), b E [0, f( c)), we have 

ab ~foaf(x)dx+ fobf-I(x)dx. (3.3) 

The equality holds if and only if b = f(a). 
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PROOF.fis necessarily strictly increasing on [O,c] so thatf(x) > f(O) = 0 for 
0< x .;; c. f has a continuous and strictly increasing inverse defined on 
[0, f(c)] and f~ 1(0) = 0 < f~ I(X) for 0 < x .;; f(c). By Theorem 3.1, we 
have: If z E [O,c], then 

(3.4) 

Assume that a E [0, c] and bE [0, f(c)]. There are three cases to consider: 
(1) 0.;; f(a) < b, (2) f(a) = b, (3) 0.;; b < f(a). In case (1) we note that 
x ;;;. f(a) implies f~ I(X) ;;;. f~ 1(j(a)) = a so that 

(b f~\x)dx> a(b - f(a)). (3.5) 
Jj(a) 

Using (3.4) with z = a, we see that 

(af(x)dx+ (b f~I(X)dx= (af(x)dx+ (j(a)f~l(x)dx+ (b f~I(X)dx 
Jo Jo Jo Jo J j(a) 

= af(a) + (b f~I(X)dx 
J j(a) 

> af(a) + a(b - f(a)) = abo 

Thus, (3.3) holds in case (1). In case (2), the equality in (3.3) holds in view 
of (3.4). Finally, in case (3) we have f(a) > b ;;;. 0 so that a > f~ I(b) ;;;. O. 
Here x ;;;. f~l(b) implies thatf(x);;;. f(j~I(b)) = band 

(a f(x)dx> f(J~I(b))(a - f~l(b)) = b(a - f~\b)) 
Jrl(b) 

=ab-bf~l(b). (3.6) 

This implies that 

(a f(x)dx+ (b f~ I(x)dx= (f-I(b) f(x)dx+ (a f(x)dx+ (b f~I(X)dx 
Jo Jo Jo J j-I(b) Jo 

> forl(b)f(X)dx+ fob f~l(X)dx+ ab - bf~l(b). 

In view of (3.4) with z = f~l(b) and b = f(z), the last expression reduces to 
abo Therefore, (3.3) follows in this case also. Here cases (1) and (3) yield the 
strict inequality in (3.3). Hence, we conclude that the equality in (3.3) holds 
in case (2) only. This completes the proof. 

Remark 3.1. Young's inequality furnishes another proof of part (a) of 
Theorem 11.12.4 and even extends its validity to the case where the r 
mentioned there is real and not necessarily rational. Thus, we can prove: 
Suppose r is real, r2 =1= r, and s = r I(r - 1) so that 

1 1 3 - + - = 1 ( .7) 
r s 
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and A and B are positive real numbers. Then r > I implies 

AB ..: A r + B S . (3.8) 
r s 

Equality holds in (3.8) if and only if B = A r-I . 
To prove the last statement we define 1 as I(x) = x r- I for x ;;;. O. The 

inverse of 1 is 1 - I, where 

By (3.3) we have 

I-I(X) = xl/(r-I) for x;;;.O. 

AB ..:foAxr-Idx+ foBxl/(r-l)dx 

ArB I/(r-I)+I 
=-+..,....=,----,,.--~ 

r I/(r-I)+I 

A r Br/(r-I) 
= - + -=,.-:----::-:-

r r/(r-I) 

A r B S 

=-+-. 
r s 

The equality holds here if and only if B = I(A) = A r-I. 

Remark 3.2. The inequality of the last remark has as a consequence part (a) 
of Holder's inequality (Theorem 11.12.5). Hence, we have: Suppose r is real, 
r> 1, and s = r /(r - 1) so that 

1 1 r + s = 1, 

then for any nonnegative real numbers ai' ... ,an; b l , ••• ,bn, 

n (n )I/r( n )I/S 
.~ aibi ..: .~ a; .~ b;' . 
.=1 .=1 .=1 

(3.9) 

A consequence of this result is part (a) of Minkowski's inequality 
(Theorem 11.12.7). Hence, we have the following: Suppose r> 1. If 
ai' ... , an; b l , ••• , bn are nonnegative real numbers, then 

( n )I/r (n )1/r (n )1/r 
.~ (ai + bi)' ..:.~ a; +.~ b; . 
.=1 .=1 .=1 

(3.10) 

The Holder and Minkowski inequalities have integral analogues. For 
example, if r = 2, the following result holds: 

If 1 and g are R-integrable over [a, b], then so are 12, g2, and Ig (Theorem 
XIII.3.4 and its corollary) and we have 

Ilb I(X)g(X)dxl..: (3.11 ) 
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PROB. 3.1. Prove (3.11) (Hint: first consider 

(b 2 Ja (tl(x) - g(X») dx= At2 - 2Bt + C, 

where 

A = Lb j2(x)dx, B = Lb j(x)g(x)dx, C = Lb g2(x)dx, 

and observe that in the present case At2 - 2Bt + C ;;;. 0 holds for all real t). 
State conditions for equality to hold in (3.11). 

PROB. 3.2. Prove: If j and g are R-integrable over [a, b], then 

(b) 1/2 ( b ) 1/2 ( b ) 1/2 L (J(x) + g(x»2dx ,,;; L j2(x)dx + L g2(x)dx . 

State conditions for the equality to hold. 

PROB. 3.3. Prove: If j, g, and hare R-integrable over [a,b], then 

( b) 1/2 ( b ) 1/2 L (J(x) - h(X)2dx ,,;; L (J(x) - g(x»2dx 

( b) 1/2 
+ L (g(x) - h(X»2dx . 

4. Integral Form of the Remainder in 
Taylor's Theorem 

Taylor's Theorem with Schlomlich's form of the remainder (Theorem 
IX.4.2) states that if j and its derivatives up to and including order n are 
continuous on an interval I andj(n+'l(x) exists at least for x in the interior 
of I, then for distinct a and x in I, there exists a c between a and x such 
that 

n j<kl(a) k j<n+ll(c) n-p +1 
j(x) = ~ k' (x - a) + 1) , (x - c) (x - ay . (4.1) 

k=O' (p + n. 

Here n is a nonnegative integer and p > - 1. The last term is Schlomlich's 
form of the remainder in Taylor's formula of order n. We write it as 
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For p = n the remainder becomes 

j<n+ 1)( c) 
Rn+l(a,x) = (n + I)! (x - ar+ l , (4.3) 

which is Lagrange's form of the remainder. For p = 0, (4.2) becomes 

j<n+I)(c) n 
Rn+l(a,x) = , (x - c) (x - a), (4.4) 

n. 
the Cauchy form of the remainder. 

If we strengthen the conditions on f by requiring the continuity of the 
(n + I)th derivative, then we can obtain an integral form of the remainder. 

Theorem 4.1. Iff and its derivatives up to and including those of order n + 1 
are continuous on an interval I and a E I, then for each x in I, we have 

Here n is some nonnegative integer. 

PROOF. We use induction on n. Let n = O. Then l' is continuous on I and, 
for x and a in I, 

f(x) = f(a) + iX1'(t)dt. (4.6) 

This means that the theorem holds for n = O. Assume that the theorem 
holds for some nonnegative integer n and that f and all its derivatives up to 
and including those of order n + 2 are continuous on I. Thus, (4.5) holds. 
Using integration by parts, we have, for x and a in I, 

rx(X-,) j<n+I)(t)dt= rxj<n+lJ(t)iL _ x- , dt t
n 

( ( t f +
l

) 

Ja n. Ja dt (n+I). 

t n+ 1 IX =_f(n+l)(t)(X- ) 
(n + I)! 

a 

(x ar+ I 
= j<n+I)(a) __ --:-:-:-_ 

(n + I)! 

+ I ,rx(x - tf+ If(n+2)(t) dt. 
(n+ I). Ja 
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We can now substitute in (4.5) to obtain 

n f(k}(a) J<n+I}(a) 
f(x) = ~ k' (x - a)k+ ( 1)' (x - ar+ 1 

k=O' n + . 

+ 1 ,rx(x - tr+ 1f(n+2}(t)dt 
(n + 1). Ja 

n+1 J<k}(a) 
= ~ ,+ 1 ,rx(x - tr+ IJ<n+2}(t)dt. 

k=O k. (n + 1). Ja 

This means that if the theorem, therefore, holds for n, then it holds for 
n + 1. Since it also holds for n = ° because of (4.6), we obtain by the 
principle of mathematical induction that it holds for all nonnegative 
integers n. This completes the proof. 

PROB. 4.1. Prove: If f is continuous on some interval J and x and a are in J, 
then 

(a) .r(Lf(u)du)dt= iX(X - t)f(t)dt, 

(b) iX(fn( ... (flf(u)dU) dt l ••• ) dtn = :! i\x - tff(t)dt. 

5. Sets of Measure Zero. The Cantor Set 

We saw (Theorem XIII.3.3) that a function defined on a bounded closed 
interval [a,b) can have its value changed at finitely many points of [a,b) 
without this affecting its R-integrability or its R-integral. It follows from 
this that if f is defined on [a, b) except on a finite nonempty set S ~ [a, b) 
and there exists an extension g of f to all of [a, b) which is R-integrable on 
[a,b), then all extensions of f to all of [a,b) are R-integrable and have the 
same R-integral on [a,b). Hence, we calIf R-integrable on [a,b) if (1) it is 
defined there except possibly on a finite set S ~ [a, b) and (2) it has an 
extension g to all of [a, b) which is R -integrable on [a, b) in the sense of 
Chapter XIII. If f is R-integrable in the sense just defined, then its 
R-integral is defined as that of some extension of f to [a, b). For example, 
the integrand in the integral 

(I sinx dx 
Jo x 

is defined on [0,1) except at x = 0. However, this integrand has an 
extension to [0,1) which is continuous and, therefore, R-integrable in the 
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sense of Chapter XIII. Hence, we say that this integrand is R-integrable (in 
the sense of the last paragraph) on [0,1]. 

Under what conditions does a function defined on the bounded open 
interval (a; b) have an extension to [a, b] which is R-integrable? Theorem 
XIII.I.6 points to the answer. Let f be bounded on the bounded open 
interval (a; b) and R-integrable on every closed subinterval [c,d] of (a; b). 
Define f(a) and feb) in some way to obtain an extension of f which is 
bounded on [a,b] and R-integrable on every closed subinterval [c,d] of 
[a,b] such that a < c < d < b. Then, by Theorem XIII.1.6, this extension 
of f to all of [a, b] is R -integrable. 

An f which is continuous on the bounded open interval I = (a; b) and 
has finite one-sided limits f(a + ), feb -) at the endpoints of I has a 
continuous extension g to all of [a,b]. In fact, it suffices to define g(a) 
= f(a + ) and g(b) = feb - ) and g(x) = f(x) for a < x < b. This extension 
g is continuous on the bounded closed interval [a, b] and, therefore, 
bounded and R-integrable on [a,b]. 

These ideas lead us to the notion of a piecewise continuous function on 
[a, b]. We call f piecewise continuous on [a, b] if a partition P = < X O' 

Xl"'" xn> of [a,b] exists such thatfis continuous on each open interval 
Ii = (Xi_I,X;) of P and has finite one-sided limitsf(xi_l + ),f(x; -) at the 
two endpoints of Ii for each i E {1, ... , n}. It follows from what was said 
at the beginning of this paragraph that: 

Theorem 5.1. Iff is piecewise continuous on [a,b], then it is R-integrable on 
[a, b]. 

To investigate these matters further it is necessary to introduce the notion 
of a set of measure zero. 

Def. 5.1. A set S \: IR is said to have measure zero if and only if for each 
E > 0, there exists a sequence <In> of open intervals such that S \: U n~ lIn 
and 

where L(IJ is the length of Ii' 

The sequence <In> in this definition is said to cover S; if A is a set and ~ 
is a set or family or sequence of sets such that A \: U ~, then we say that ~ 
covers A or that it constitutes a cover of A. We also refer to '2,L(In) as the 
total length of the sequence <In>. Using this terminology, Def. 5.1 can be 
phrased as: A set S \: IR is said to have measure zero if and only if for each 
E > 0, there exists a sequence <In> of open intervals covering S whose total 
length is less than E. 
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EXAMPLE 5.1. We show that a denumerable set (Def. 11.10.7) S = {XI' 
X2' ••• } is of measure zero. Let f > 0 be given. Corresponding to each 
X; E S take the open interval 

/. = (x. - _f_ . X. + _f_ ). 
I I 2;+2' I 2;+2 

Note each X; E I; ~ Uk=IIk , so S ~ Uk=IIk • Also, 

L(I.) = _f_ + _f_ = _f_ 
I t+2 2;+2 2;+1 

so that 

By Def. 5.1, S has measure zero. 

Theorem 5.2. If a set S ~ IR is such that for each f > 0, there exists a finite 
sequence (II' 12, ••• , In> of open intervals covering S such that 

n 

~ L(I;) < f, 
;=1 

then S has measure zero. 

PROOF. Given f > 0, we must prove that there exists an infinite sequence 
<Jk> of intervals covering S whose total length is less than f. But the 
hypothesis guarantees the existence of a finite sequence of intervals 
<II' ... , In> such that 

n 

S ~ U Ik and 
k=1 

n 

~ L(I;) <t. 
;= ! 

Using this n, let In = (an; bn). Construct the sequence <JD as follows: For 
each positive integer k, let J: = (bn - f/2k +2 ; bn + f/2k +2). We have 

L(J*)= _f_ 
k 2k + 1 

00 (I 1 ) and ~ L( J: ) = f - + - + . " =!.. 
k=! 22 23 2 

Now consider the new sequence <Jk > defined as J I = II' ... , I n = In' 
I n + I = Jr, I n + 2 = J~, .... Clearly, 

00 00 n 00 

S ~ U Jk and ~ L(Jd = ~ L(ld + ~ L(Jn < -2f + t = f. 
k=1 k=! k=1 k=n+! 

Thus, for each f > 0, there exists an infinite sequence <Jk> of open intervals 
whose total length is less than f so that S has measure zero, as contended. 

PROB. 5.1. Prove: Each finite set of real numbers has measure zero. 
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A Noncountable Set of Measure Zero 

A noncountable set is one which is neither finite nor denumerable. Hence, 
it is an infinite nondenumerable set. Being infinite, such a set contains a 
denumerable subset (Theorem 11.10.3). The following lemma proves the 
existence of noncountable sets. 

Lemma 5.1. The interval (0, 1] in IR is a noncountable set. 

PROOF. For each positive integer n, we have 1/ n E: (0, 1]. Therefore, {l, 
1/2,1/3, ... } ~ (0,1]. (0,1] contains an infinite set and is, therefore, 
infinite. 

We present a proof, due essentially to Cantor, that (0,1] is nondenumer­
able. The proof is indirect. Assume I = (0, 1] is denumerable. Let I: 71.. + -) I 
be a one-to-one correspondence between 71..+ and I. Write Xi = I(i) for each 
i E: 71..+ • Let 

for each i E: 71..+ 

be the nonterminating decimal representation of Xi (see Example IV.3.1 and 
Theorem 1II.10.4). Construct the real number X = .dl d2 ••• as follows. 
Examine the ith digit dii of Xi and define 

d = {4 
I 5 

if dii =5 

if dii =1= 5. 

Thus, di =1= dii for all i. The decimal X = .dl d2 ••• is non terminating and 
X E: (0, 1]. By the assumption on I, there exists a positive integer j such that 
X = xi" This implies that the non terminating decimal representations of x 
and Xj are the same and ~ = ~j-an impossibility. Since I is not finite, and, 
as just proved, non denumerable, it is noncountable. 

Lemma 5.2. The interval (0, 1] and the open interval (0; 1) are equipotent sets. 

PROOF. We prove the existence of a one-to-one correspondence I: (0; 1) 
-) (0, 1]. Consider the sets 

A = { n ~ 1 In E: 71..+ } = { t ,i ,~ , ... }, 
B = A U {I} = { 1, t ,i ,~ , ... }. 

These sets are both denumerable. Hence, they are equipotent and there 
exists a one-to-one correspondence g: A -) B between A and B. We also 
know that 

A C (0; 1) and B C (0, 1 ] 
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and that 

(0; 1) - A = (0, 1] - B. 

Let C = (0, 1) - A = (0, 1] - B. We have 

AUC=(O,l) and BUC=(O,1], 

with A n C = 0 = B n C. Define f: (0; 1)~(0, 1] as follows: 

f(x) = {;(X) for x E A 

for x E C, 
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where g is the one-to-one correspondence between A and B mentioned 
above. f maps A onto Band C onto itself and is one-to-one and is, 
therefore, a one-to-one correspondence between (0,1) = A U C and (0,1] 
= B U C. Thus, (0; 1) and (0,1] are equipotent as claimed. 

Theorem 5.3. The half-open interval (0; 1] and the set IR of real numbers are 
equipotent. 

PROOF. By the last lemma, we have (0, 1] ~ (0; 1). The function g defined as 
g(x) = TTX - 7T /2 is a one-to-one correspondence between (0; 1) and 
(- 7T /2; 7T /2). Therefore, (0; 1) ~ (- 7T /2; 7T /2). The tangent function f(x) 
= tan x for - 7T /2 < x < 7T /2 (see Fig. 5.1) maps ( - 7T /2; 7T /2) onto IR and 
is one-to-one. Thus, we see that ( - 7T /2; 7T /2) ~ IR. We have 

(0, 1 ] ~ (0; 1), (0; 1) ~ ( - 7T /2; 7T /2), ( - 7T /2; 7T /2) ~ IR. 

These imply that (0,1] and IR are equipotent and that we have (0, 1] ~ IR. 

I 

I 

y 
graph of y = tan x, 

x E ( - n/2; n/2) 

n n 
x=-2 x=2 

Figure 5.1 
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Def. 5.2. Any set S such that S ~ IR is said to have cardinal N. (Recall Def. 
11.10.7.) There, a denumerable set was said to have cardinal No. N is the first 
letter of the Hebrew alphabet. 

PROB. 5.2. Prove: [0, 1] ~ [0; 1), (0, 1] ~ [0,1), [0, 1] ~ (0; 1). 

PROB. 5.3. Prove: If a and b are real numbers such that a < b, then 
(a,b]~IR, (-oo,a]~IR, [a, +oo)~IR. 

PROB. 5.4. Prove: A set containing a noncountable subset is noncountable 
(Hint: see Prob. 11.10.6). 

Remark 5.1. The proof that the interval (0, 1] is not countable relied on the 
decimal representation of real numbers. This representation uses 10 as a 
base. Any positive integer b > 1 can be used as a base to obtain a system of 
numerals representing the real numbers. Put Wb = {O, 1, ... , b - 1}. For 
example, if b = 2, then W2 = {O, I}; if b = 3, then W3 = {O, I}. If b is greater 
than 10, say, b = 12, use t for 10 and e for 11 and obtain W12 = {O, 1,2,3,4, 
5,6,7,8,9, t, e}. If N is some positive integer, then there exist integers 
ai' a2, ••• , an' where n is some positive integer such that alE wb ' a2 

E wb' ••• , an E Wb and 

N=anbn-l+an_lbn-l+ ... +a2b+a1 • 

We then write 

N = (aman- 1 ••• a2a 1)b' 

For example, if b = 2 so that W2 = {O, 1}, then 

2 = 1 . 2 + 0, 22 = 1 . 22 + ° . 2 + 0, 23 = 1 . 23 + ° . 22 + 0 . 2 + 0, 
etc., and 

If N = 29, then 

29 = 16 + 8 + 4 + 1 = I . 24 + 1 . 23 + 1 .22 + 0 . 2 + ° + 1 = 1110012, 

The system of numerals with 2 as a base is called the binary system. The 
ternary system uses 3 as a base. We have W3 = {O, 1,2} and 

3 = 1 . 3 + ° = 103, 32 = 1 . 32 + 0 . 3 + ° = 10°3, 

33 = I . 33 + ° . 32 + ° . 3 + ° = 100°3, 

In this system we have 

4 = 1 ·3+ 1 = 11 3 , 5 = 1 . 3 + 2 = 123, 

6 = 2 . 3 + ° = 203 , 7=2·3+ I =213' 8 = 2 . 3 + 2 = 223 , 

11 = 1023, 
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etc. We then have 

29 = 27 + 2 = 1 .32 + 0.32 + 0·3 + 2 = 10023 

and 

64 = 54 + 9 + 1 = 2 . 33 + 1 .32 + 0 . 3 + 1 = 21013 , 

In connection with the representation of real numbers in base b > 1, we 
have an analogue of Theorem 111.10.4: 

Theorem. Let b be an integer, b > 1. If x E IR, there exists a unique integer 
N, and a unique sequence <an> of elements of Wb = {O, 1, ... , b - I} (digits 
in base b) such that (1) an =1= 0 for infinitely many nand (2) if <rn> is the 
sequence defined as 

Then 

so that 

for each n. 

n 

rn = N + ~ akb- k 
k=\ 

for each n, (5.1) 

(5.2) 

Remark 5.2. An analogue of Example IV.3.1: If <an> is a sequence of 
elements of Wb = {O, 1, ... , b - I}, where b is an integer > 1, then the 
series 

00 a\ a2 
S = N + " a b- n = N + - + - + . . . (5.3) 

n~\ n b b2 

has the sequence <rn>, where 

n k a 1 a2 an 
r = N + ~ akb - = N + - + - + ... + - for each n (5.4) 
n k= \ b b2 b n 

as its sequence of partial sums. We write 
n 

(.a\a2 ••• an)b= ~ akb- k , (5.5) 
k=\ 

so that rn = N + (.a 1a2 ••• anh for each n. We also write the series (5.3) as 

S = N + (.a\a2 ... h. (5.6) 

Each real number x has a unique representation in base b, 

(5.7) 

Here N is an integer and infinitely many of the an's are nonzero. If b = 2 
we call this the non terminating binary representation of x and when b = 3 
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the nonterminating ternary representation of x. In general, we call (5.7) the 
nonterminating b-adic representation of x. As examples consider 

1 = .l + .l + .l + . .. and 1 = 1 + .l + .l + . . . (5.8) 
3 22 24 26 2 3 32 33 • 

These hold because 

.l + .l + .l + ... = .l (1 + .l + .l + ... ) = .l 1 = 1 
22 24 26 22 22 24 22 1 - 1/22 3 

and 

1 + .l + ... = 1 (1 + 1 + .l + ... ) = 1 _1_ = 1 . 
3 32 3 3 32 3 1 - t 2 

We, therefore, write 
1 _ 
"3 - .010101 ... 2 and 

If in (.a 1a2 ••• h there is a solidly repeating block of digits, then we 
indicate this by placing a bar over the repeating block. For instance, we 
write 

We now present an example of a noncountable set of measure zero. 

EXAMPLE 5.2 (The Cantor Set). Begin with the bounded closed interval 
So = [0, 1]. Remove its open middle third (t; t) and denote the remaining 
set as Sl so that Sl = [O,t] U [t, 1]. Next remove the open middle thirds of 
each of the subintervals of Sl to obtain S2 = [O,~] U [i,t] U [t,~] U [~, 1]. 
Continue this inductively (see Fig. 5.2) to obtain the sequence <Sn> of sets 
where 

So = [0, I], 

S 1 = [ 0, t ] u [ t ' 1], 
S2=[0,~] U[i,t] U[t,~] U[~,IJ. 

0 1 
So: [ ] 

0 1 2 1 3 3 

Sl: [ ] [ ] 
0 1 2 1 2 7 8 1 9 9 3 3" 9 9 

S2: H H H H 

Figure 5.2 
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The Cantor set is defined as 
co 

c= n Sn' (5.9) 
n=1 

Each Sn is a finite union of bounded closed intervals and is, therefore, a 
closed set (Prob. VI.7.9). C is the intersection of a family of closed sets in IR 
and is, therefore, a closed (Theorem VI.7.3) set. This implies that any 
converging sequence <xn> of elements of C converges to an element of C. C 
is not empty since the endpoints of the subintervals of each Sn are in C. For 
example, 0, ~, i, 1-, t, i, ~ are in C. In Theorem 5.4 below we prove that 
C is noncountable and in Theorem 5.5 we prove that C has measure zero. 

Theorem 5.4 will be proved by using the ternary representation of the 
real numbers in [0,1]. We agree to write zero as O. When a number has 
both a terminating and a nonterminating ternary representation we agree to 
use the nonterminating form except when the terminating representation 
ends in 2. Thus, we write t as .023 rather than as .13 and we write t as .23 
rather than as .123 , 

PROB. 5.5. Prove: If x = (.a la2a3 ... h is the ternary representation of 
x E [0, 1], where .023 < x < .23, then al = 1, and from among a2, a3' ... at 
least one aj * 0 and at least one aj * 2. 

PROB. 5.6. Prove the converse of Prob. 5.5 above; that is, prove: if 
x = (.la2a3 .. ')3 is in ternary form, where at least one of a2,a3, ... is * 0 
and at least one is * 2., then .023 < x < .23' 

Remark 5.3. Since x E SI = [O,t] u [t, 1] if and only if 0 " x ".023 or 
.23 " x " .23, it follows from the last two problems that x E SI if and only 
if it has a ternary representation (.a la2a3 ... )3 such that al E {0,2}. In 
forming S2' we remove the open middle thirds (.0023; .023) of [0, .023] and 
(.2023; .223) of [.23' .23] so that 

S2 = [ 0, .0023] u [ .023 , .023] u [ .23 , .2023] u [ .223 , .23]' 

We see from this that x E S2 if and only if x has one of the ternary 
representations 

(.ooa3a4 · .. )3' (.02a3a4 ···), (.20a3a4 ···)3' (.22a3a4)3· 

This amounts to saying that x E S2 if and only if x has a ternary 
representation (.a la2a3 .. ')3 such that QI E {0,2} and a2 E {0,2}. 

Continuing inductively, we find that x E Sk if and only if x has a ternary 
representation (.a la2 .. ')3 such that al E {0,2}, a2 E {0,2}, ... , ak E {O, 
I} etc. We conclude that x E C, the Cantor set, if and only if it has a 
t~rnary representation (.a la2a3 ... )3 such that ai E {O, 2} for all i. This is 
equivalent to saying that x E C if and only if it has a ternary representation 
(.a l a2a3 ••• )3 such that ai = 2h;. where hj E {O, I} for all i. 
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Theorem 5.4. The Cantor set is noncountable. 

PROOF. Let B be the subset of C of elements x E C having a non terminating 
ternary representation (.a 1a2a3 • ")3 such that aj E {0,2} for all positive 
integers i and let A = {O} U B. This omits all those elements of C having a 
terminating ternary representation that ends with 2. Now define f: A ~ [0,1] 
as follows: (1) f(O) = 0; (2) if x E A so that x = (.a 1a2 ••• )3' where this 
ternary representation of x is nonterminating and each aj E {O, 2}, then 
define f(x) as the y in [0,1] whose binary (base 2) representation is 
(.b 1b2 ... )2' where b; = a;/2 for each O. Thus,f(x) = (.b 1b2 ... )2 where on 
the right we have a nonterminating binary representation of y. For exam­
ple, 

JO) = f(·023) =.012 =!, 

JO) = f(· 02 3) =. or 2 = .010101 ... 2 = ;2 + ;4 + ;6 + ... = '3 ' 

fO) = f(·0023) =.0012 = ;3 + ;4 + ;5 + ... = i· 
The f defined here is one-to-one on A (why?). We prove that it maps A onto 
[0,1]. Assume that y E [0, 1]. If Y = 0, then f(O) = O. If ° < Y .,; 1, let 
(.b 1b2 . .. )2 be the nonterminating binary representation of y. We have 
b; E {O, I} for all i with infinitely many of the b;'s =1= O. Now take 
(.ala2 ... )3 with a; = 2b; for each i. The x whose ternary representation is 
(.a 1a2 ... )3 is in A and f(x) = y. Thus, each yin [0, 1] is the image of an x 
in A. We conclude A ~ [0, I] and, hence, that A is noncountable. But 
A ~ C. By Prob. 5.4, C is noncountable. 

This result is surprising. After removing so much of [0, 1] in order to form 
the Cantor set C, one does not expect to have noncountably many elements 
left there. In the next theorem we prove that C has measure zero. 

Theorem 5.5. The Cantor set has measure zero. 

PROOF. The Cantor set C was defined in Example 5.2 in formula (5.9). Each 
set Sn of Example 5.2 is the union of 2n bounded closed subintervals each 
of length 3 - n. Given t: > 0, each of the subintervals of Sn can be enclosed 
in an interval of length 3- n + 2-n- 1t:. [For example, in SI = [O,t] U [t, 1], 
we enclose [O,t] in G1 = (-2-3t:;t + 2- 3t:) and [t, 1] in G2 = (~ - 2- 3t:; 
1+ 2- 3t:). We have SI ~ G1 U G2 and L(G1) = L(G2) = 3- 1 + 2- 2t:.] Thus 
Sn-and hence C-can be covered by a finite sequence of open intervals 
whose total length is 2n(3-n + 2- n- 1t:) = (~r + t:/2. For sufficiently large 
n we have (tr < t:/2. Hence, for each t: > 0, there exists a finite sequence 
of open intervals of total length (t r + t:/2 < t:/2 + t:/2 = t: covering C. 
By Theorem 5.2, C has measure zero. 
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Remark 5.4. Sets of measure zero are of significance for the theory of 
Riemann integration because of the following theorem (which we shall not 
prove here): 

Theorem. A function which is bounded on a bounded closed interval [a, b] is 
R-integrable if and only if the set of points in [a,b] at which it is discontinuous 
has measure zero. 



CHAPTER XV 

Improper Integrals. Elliptic Integrals and 
Functions 

1. Introduction. Definitions 

Whenfis R-integrable over [a,b], then its indefinite integral F, defined as 

F(x) = LX f(t)dt for xE[a,b], 

is continuous on [a, b] (Theorem XIII.6.3). Hence, 

lim rx f(t)dt= (b f(t)dt. 
x-->b- Ja Ja 

Similarly, under the above condition on f, 

lim (b f(t)dt= (b f(t)dt. 
x-->a+ Jx Ja 

(1.1) 

(1.2) 

(1.3) 

However, it is possible for the limits in (1.2) and (1.3) to exist and be finite 
without f being R-integrable on the bounded closed interval [a,b]. For 
example, let f(x) = l/~ for 0..; x < 1. Any extension of this func­
tion to the closed interval [0,1] is unbounded and, therefore, not R­
integrable. Nevertheless, 

lim (C 1 dx= lim (Arcsine) = J!..2 . (1.4) 
c-->I- Jo VI _ x2 c-->I-

Thus, it is possible for the limit 

c~T- LCf(X)dx 

to exist and be finite even though f is not R-integrable on [a, b]. 
We are confronted with the same situation when we have an unbounded 
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interval [a, + 00) or (- 00, b]. The Riemann integral is not defined on such 
intervals, but there are functions f for which the limit 

lim (B f(x)dx 
B--,>+ooJa 

exists and is finite; e.g., let f be given by f( x) = x - 2 for x E [1, + 00). The 
R-integral of this f is not defined on [1, + 00), but 

lim (B...L dx= lim (- liB) = lim (I - 1.) = 1. (1.5) 
B--'>+ooJ) x 2 B--'>+oo x 1 B--'>+oo B 

We note that if f is not R-integrable on the bounded closed interval [a, b] 
but is R-integrable on every interval [a,c) such that a .;;;; c < b, then f is 
necessarily unbounded on [a,b). For, if f were bounded on [a, b), then we 
could extend its definition by defining it at b in some manner. The resulting 
extension would then be bounded on [a, b). By the previous assumptions on 
f and Theorem XIII.1.6 this extension would be R-integrable on [a,b). 
Hence, f would be R-integrable in the extended sense of Section XIV.5, 
contradicting the original assumption on f. 

We are thus led to the notion of an improper integral. 

Def. 1.1(a). Assume that a < b, where a E IR and b E IR*. If f is R­
integrable on every interval [a,c] such that a < c < b, but not R-integrable 
on [a, b ] (either because b E IR and f is not bounded on [a, b) or because 
b = + (0), then we call 

(1.6) 

an improper integral. Specifically we say that it is improper at b. We refer to 
b as a singularity of f. We then define (1.6) as 

(b f(x)dx= lim (C f(x)dx, 
Ja c--,>b- Ja 

(1.7) 

If the limit on the right in (1.7) is finite, then we call (1.6) a convergent 
integral. If the limit on the right in (1.7) is infinite or fails to exist, then we 
call (1.6) a divergent integral. Convergent integrals are said to converge and 
divergent ones to diverge. When (1.6) converges we say that f is improperly 
integrable on [a, b] at b. 

We give a similar definition of (1.6) if the singularity of f is at a. 

Def. 1.1(b). Assume that a < b, where a E IR* and b E IR. If f is R­
integrable on every interval [c,b] such that a < c < b but not R-integrable 
on [a,b] (either because a E IR and f is unbounded on (a,b] or because 
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a = - (0), then we call (1.6) an improper integral on [a, b] at a. In this case 
(1.6) is defined as 

i b . lb f(x)dx= hm f(x)dx 
a c~a+ c 

(1.8) 

when the limit on the right exists. If the limit on the right in (1.8) is finite, 
we call (1.6) a convergent integral and if it is infinite or fails to exist, then we 
call (1.8) a divergent integral. When (1.6) converges and the f there has a 
singularity at a, then we say that f is improperly integrable on [a, b] at a. 

For example, in view of (1.4) and (1.5), 

and 

(I 1 d 'TT 

Jo ~ x=I 

(+00 ~dx= 1, 
J1 x 2 

both integrals being improper and convergent. 

PROB. 1.1. Prove: 

f o 1 dx=:!!" 
_I~ 2· 

(1.9a) 

(1.9b) 

PROB. 1.2. Prove: If f is improperly integrable on [a,b] at a or at band 
a < c < b, then 

EXAMPLE 1.1. We examine 

(I ~dx 
Jo x P 

for p E IR. ( l.l0) 

The integrand is continuous on [c, 1] for all c such that ° < c <; 1 but is not 
defined at x = 0. We consider cases. 

Case 1. p <; 0. In this case the integrand is bounded on (0,1] and, when 
extended by defining it at x = ° as ° when p < ° and as I when p = 0, the 
extension is continuous and, therefore R-integrable on [0,1]. 

Case 2. ° < p < 1. The integrand is unbounded on (0, 1] and 1 - P > 0. 
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We have 

I II 1 1 . 1 _ . x-P 
( -dx= hm i x Pdx= hm -­
Jo x P c ..... o+ c c ..... o+ 1 - P 

c 

so that, for p < 1, 

(I -.Ldx= _1_ 
Jo x P 1 - P . 

Case 3. p > 1. In this case p - 1 > 0 and, therefore, 

(I -.L dx = lim (_1 _ _ c I - P ) = lim ( 1 
Jo x P c ..... o+ 1 - P 1 - P c ..... o+ (p - l)cp - 1 

The integral diverges. 
Case 4. p = 1. Here 
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(1.11) 

__ 1 ) = +00. 
I-p 

(I-.Ldx= (11dx= lim i11dx= lim (-Inc) = +00. 
Jo x P Jo X c ..... o+ c X c 0+ 

Accordingly, 

1 1 11 --(-dx= 1 - p 
Jo x P 

+00 

if P < 1 

if p;;. 1. 

EXAMPLE 1.2. We show that 

We have 

PROB. 1.3. Prove: 

PROB. 1.4. Prove: 

(+00 Jo e- x dx= 1. 

1+00 
(00 -.L dx= 1 

J1 x P --
p-l 

if p';;;; 1 

if p>1. 

(+ 00 __ 1_ dx = '!!.. 
Jo 1 + x 2 2 . 

PROB. 1.5. Show that the integrals 

(+00 Jo cos x dx and 10+ 00 sinxdx 

diverge. 

(1.12) 

(1.13) 
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Remark 1.1. If f is R-integrable over [a, b), then so is f2. This property fails 
to carryover to improper integrals. Thus (see Example 1.1), 

(I _1_ dx converges, but (I( _1_)2 dx= (I! dx diverges. 
Jo IX Jo IX Jo x 

Def. 1.2. Let a < c < b, where a E IR* and b E IR*. If the integrals 

LC f(x)dx, ( 1.14) 

are improper, where either the first is improper at a and the second at b or 
both are improper at c and each is convergent, then we define J~f(x)dx as 

(1.15) 

and say that it is convergent. If at least one of the integrals on the right 
diverge, we call J!/(x)dx divergent. It is also convenient to use (1.15) when 
the integrals on the right are in IR* and their sum is defined in IR*. 

As in the Riemann integrable case, if b < a, then define 

Lb f(x)dx= - La f(x)dx 

when the integral on the right is improper and is in IR*. 

EXAMPLE 1.3. For any p E IR, we have 

(+00 ...L = (I ...Ldx+ (+00 ...Ldx. 
Jo x P Jo x P JI x P 

(1.16) 

This integral diverges because one of the integrals on the right is divergent. 

EXAMPLE 1.4. Consider 

JI I dx. 
-I~ 

By (1.9a) and Prob. 1.1, we have 

J 1 _--'I=---_ dx = JO 1 dx + (1 I dx = J!.. + J!.. = 'IT. (1.17) 
-1~ -1~ Jo b-x2 2 2 

Remark 1.2. If the singularity of the integrand is in the interior of the 
interval of integration, say, at c where a < c < b, and we wish to examine 

Lb f(x)dx= LC f(x)dx+ Lb f(x)dx 

for convergence or divergence, then we must evaluate the limits on the 
right-hand side, needed for the evaluation of the improper integral, sepa-
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rately. This means that 

Lb f(x)dx= lim (c-h f(x)dx+ lim Ib f(x)dx, 
a h~O+Ja k~O+ c+k 

(1.18) 

rather than 

Lb . (LC-h I b ) f(x)dx= hm f(x)dx + f(x)dx . 
a h~O a c+h 

Using the latter may result in calling a divergent integral convergent. In 
fact, the limit on the right-hand side of (*) may e~ist even though none of 
the limits on the right-hand side of (1.18) exists. For example, the singular­
ity in 

(3 1 d 
Jo (x _ 1)3 X 

(1.19) 

occurs at x = I. We check for convergence by writing 

(3 1 dx= (I 1 dx+ (3 1 dx 
Jo (x - 1)3 Jo (x - 1)3 J1 (x - 1)3 

= 1m + 1m dx. 1· Inl -h 1 1· 1:3 1 
h~O+ 0 (x - 1)3 k~O+ I+k (x - 1)3 

(1.20) 

Evaluation of the limits on the right shows that each of them diverges so 
that our integral diverges. On the other hand, if we try to evaluate (1.19) by 
writing the extreme right-hand side as in (*), we obtain 

l~(fol-h (x ~ 1)3 dx + J::h (x ~ 1)3 dX) 

- lim [ [- 1 1
1

- hl + [- 1 1
3 II 

hO 2(x - 1)2 0 2(x - 1)2 I+h 

= l~ [ - 2~2 + ! -( - 2"22 + 2~2 ) ] = i . 
This answer makes no sense in view of the divergence of (1.19). 

If J: f(x) dx diverges but the limit in (*) exists, then we call that limit the 
Cauchy principal value of J':J(x)dx. We shall not deal with this concept. 

2. Comparison Tests for Convergence of 
Improper Integrals 

We now obtain some criteria for the convergence and divergence of 
improper integrals of nonnegative functions. We will state these for im-
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proper integrals of the form 
(+00 Ja f(x)dx. (2.1 ) 

The reader can then adapt them to the case where the interval of integra­
tion is bounded and there is a singularity of the integrand at one of the 
endpoints of the interval. 

Theorem 2.1. If f is nonnegative and R-integrable over [a,B] for all B > a, 
then the improper integral of f over [a, + 00) converges if and only if its 
indefinite integral F, defined as 

F(x) = LX f(t)dt for x E[a, +00), (2.2) 

is bounded on [a, + 00). In general, for an f satisfying the hypothesis, we have 

Lx L+oo sup f(t)dt= f(t)dt. 
x;;.a a a 

(2.3) 

The values in (2.3) are in IR*. 

PROOF. Since f is nonnegative for x ;;;. a, F is a nonnegative monotonically 
increasing function. This implies that limx __ HooF(x) exists in IR* and that 

supF(x) = lim F(x) = (+00 f(x)dx. (2.4) 
x;;'a x ..... +oo Ja 

This is equivalent to (2.3). 
If F is bounded on [a, + 00), then there exists a real M such that 

F(x) ..; M for all x ;;;. a. Then (2.4) implies that limx->+ ooF(x) exists, IS 

finite, and 

L+oo 
sup f(x) = f(x)dx..; M < + 00. 
x;;.a a 

On the other hand, if F is not bounded on [a, + 00) then, using properties 
of monotonically increasing functions, we see that limx ..... +ooF(x) = + 00 
and, hence, that 

L+oo f(x)dx= + 00. 

In this case the integral diverges. It follows that if the integral converges, 
then F must be bounded on [a, + 00). This completes the proof. 

Theorem 2.2. If 0 ..; f(x) ..; g(x) for x ;;;. a and f and g are both R-integrable 
over [a, B] for all real B such that B > a, then convergence of the improper 
integral of g over [a, + 00) implies the convergence of the improper integral of 
f over [a, + 00) and the divergence of the improper integral off over [a, + 00 ) 
implies the divergence of the integral of g over [a, + 00). 
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PROOF. The conclusion follows from Theorem 2.1 and the fact that the 
hypothesis implies that 

o <iB f(X)dx<i B g(X)dX<i+ oo g(x)dx 

for all B such that a < B < + 00. 

PROB. 2.1. Assume that (i) f and g are nonnegative on [a, + 00) and 
R-integrable on [a, B] for all B such that a < B < + 00 and (ii) f = O(g) as 
x ~ + 00 (see Section IX.3 for the meaning of the 0 symbol). Prove that 
the convergence of the integral of g over [a, + 00) implies the convergence 
of the integral of f and the divergence of the integral of f implies the 
divergence of the integral of g. 

There is also a Cauchy criterion for the convergence of improper inte­
grals. (See Theorem 3.1 below). 

EXAMPLE 2.1 (Euler's Second Integral). Consider G, where for each a we 
have 

(2.5) 

The integral on the right is known as Euler's Second Integral. We test for 
convergence. If a-I < 0, there is a singularity of the integrand at the 
lower limit of integration. Hence, we consider 

G(a) = folta-Ie-Idt+ i+oota-Ie-Idt. (2.6) 

We denote the first integral on the right by II and the second by 12 • We 
prove that 12 converges by comparing its integrand with r2. Note that for 
a E IR, 

a-I -I a+1 
lim t e = lim _t - = o. 

(-4+ 00 t -2 /-4+ 00 e t 

Using the "big 0" notation we have from this that 

ta-Ie- t = 0(t-2) as t~ + 00 (2.7) 

(explain). Since the improper integral 

ioor2dt 

converges on [1, + (0) (Prob. 1.3), we obtain from Prob. 2.1 that 12 
converges for all a E IR. We now examine 
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If a-I < 0, then the singularity is at the origin. We compare the integrand 
with g, where g(t) = t",-I and note that 

lim t",-Ie-I = 1. 
I~O+ t",-I 

By Prob. IX.3.6, 

t",-Ie-I = 0(1,,-1) and t",-I = O(t",-Ie-I) 

as t ~ O. This and Prob. 2.1 imply that the integrals (a) II and (b) 
f~t"'-Idt = f~lltl-"'dt converge together or diverge together. Since the 
integral in (b) converges for I - a < 1 and diverges for 1 - a ;> I, we see 
that II converges for a > 0 and diverges for a .;;; O. Combining the results 
obtained for II and 12 , we have: 

Theorem 2.3. The integral (2.5) converges if and only if a > O. 

PROB. 2.2. Decide whether or not the following integrals converge and 
evaluate those that do. 

(a) LI-l- dx, 06 
(b) fo2~2 - x dx, 

(c) Joo 1 d x, 
-00 x2 + 4x + 5 

(d) 100 1 3 dx, I x 

(e) LI 1 ---3 dx, 
o 1- x 

(f) LI/2-1- dx 
o xln2x ' 

(g) Loo Arctanx dx, 
o 1+ x 2 

(h) fooo xe- x dx, 

(i) LOO 2 o xe- X dx, 

(j) fooo e- X cos2x dx. 
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PROB. 2.3. Test the following integrals for convergence: 

(a) .r 1 dx 
ox+vx ' 

(b) i oo 1 d 
o (I + x)/X x, 

(c) i oo I -I--x dx, 
o + e 

(d) i oo - x2d e x, 
0 

100 (e) dx. 
2 x~ 

PROB. 2.4. Prove: If a> 0, then 

(a) ftfe-axcosbxdx = a/(a2 + b2) and 
(b) ftfe-axsinbx = b/(a2 + b2). 

3. Absolute and Conditional Convergence of 
Improper Integrals 

719 

Theorem 3.1 (Cauchy Criterion for Convergence of Improper Integrals). Iff 
is R-integrable over [a, B] for all B such that a < B < + 00, then 

l+oo f(x)dx 

converges if and only if for each € > ° there exists an X > a such that 
x" > x' > X imply 

(3.1 ) 

PROOF. Apply the Cauchy criterion for the limits of a function (Theorem 
V.9.2) to the limit 

lim (B f(x)dx= (+00 f(x)dx. 
B~+ooJo Ja 

Remark 3.1. By making appropriate modifications the reader should extend 
the validity of Theorem 3.1 to include 

(a) f~ f(x)dx and 
(b) f~~f(x)dx, 
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where a E IR and b E IR. Here, in the first case, we assume that f has a 
singularity at a only or at b only, and in the second that b is not a 
singularity of f. 

EXAMPLE 3.1. Consider the integral 

(00 sinx dx 
Jo x 

-an integral treated by Dirichlet. Write 

(00 sinx dx= (I sinx dx+ (00 sinx dx. 
Jo x Jox Jo x 

(3.2) 

(3.3) 

The integrand in the first integral on the right is bounded on (0, 1] and 
continuous for all [c, 1] such that 0 < c « 1. Hence, it can be extended to a 
function continuous on [c,l]. Thus, the first integral is convergent. We 
examine the second integral on the right in (3.3) for convergence. 

Note that 

. 2· x X 2 d (.2X) smx = sm"2cos"2 = dx sm "2 . (3.4) 

Take B > 1. Using (3.4) and then integration by parts we obtain 

i B sinx 1: B 1 dsin2(xj2) 
--dx=2 - dx 

1 X 1 X dx 

= 2[ 1 sin2:! IB + 2 (B ...!.. sin2:! dX] 
x 2 1 J1 x 2 2 

= 1. sin2( B ) - 2 sin21 + 2 (B ...!.. sin2:! dx. (3.5) 
B 2 2 J1 x 2 2 

We examine the last integral on the right and note that if x > 0, then 

o « ...!.. sin2:! « ...!.. 
x 2 2 x 2 

This implies that 

converges. This and 

and that (00 ~ dx converges. 
J1 x 

lim 1. sin2 B = 0 
8-'>+00 B 2 

yield, after taking limits in (3.5) as B ~ + 00, 

(+ 00 sin x dx = _ 2 sin21 + 2 (+ 00 ...!.. sin2 :! dx, (3.6) 
J1 x 2 J1 x 2 2 
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where both integrals are convergent. We conclude that the integral (3.2) 
converges. 

However, if absolute values are inserted in the integrand of (3.2) so that 
it becomes 

(+00 Isinxl dx, 
Jo x 

(3.7) 

then we obtain a divergent integral. To see this let n be some positive 
integer. We have 

(n7T Isinxl dx= ('IT Isinxl dx+ (2'1T Isinxl dx+ ... 
Jo x Jo X J'IT X 

f
n'IT Isinxl d + -- x. 

(n-l)'IT X 

If k is an integer such that k > 1 and (k - 1)'17 .;;; X .;;; k'17 so that 

_1_ .;;; 1 .;;; -:-;--=l=--:-:-_ 
k'17 x (k - 1)'17 ' 

then we obtain 

f
k'IT Isinxl d 1 fk'IT I· Id 2 -- x>- Slnx x= -. 

(k- 1)'IT X k'17 (k- 1)'IT k'17 

This and (3.5) yield 

(n'IT Isinxl dx>l.(l + 1 + ... + 1) 
Jo x '17 2 n 

(3.8) 

(3.9) 

for each positive integer n. From this it follows that the integral (3.7) 
diverges. 

PROB. 3.1. Prove: 

(00 sin2x dx= (00 sinx dx. 
Jo x 2 Jo x 

We now introduce the notion of absolute convergence for improper 
integrals. 

Del. 3.1. Assume that a E IR*, bE IR*, and a < b. We call the improper 
integral f:f(x)dx absolutely convergent over [a,b] if and only if f:lf(x)ldx 
converges. If the first of these integrals converges and the second does not, 
then we call the first one conditionally convergent. 

For example, the integral (3.2) in Example 3.1 is conditionally conver­
gent. 
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EXAMPLE 3.2. The integral 

(CO cosx dx 
)1 X 3/ 2 

(3.10) 

is absolutely convergent. Since 

1 cosx I.;: I 
X 3/ 2 '" x 3/ 2 

for x;;;, I 

and ff'x - 3/2 dx converges, the comparison test of Theorem 2.2 implies that 
(3.10) converges. 

Theorem 3.2. Absolutely convergent improper integrals converge. 

PROOF. Assume that f:oof(x)dx converges absolutely so that f:oolf(x)1 dx 
converges. Let € > 0 be given. By Theorem 3.1, there exists an X > a such 
that if x' and x" are real numbers such that x" > x' > X, then 

It follows that 

for x" > x' > X. By Theorem 3.1 it follows that f: j(x) dx converges. 

The theorems on convergence of improper integrals resemble the theo­
rems on convergence of real infinite series. We cite an example for which 
the resemblance fails. 

EXAMPLE 3.3. We first prove that 

(3.11) 

converges. We have 

(3.12) 

Clearly, it suffices to consider only the convergence of the second integral 
on the right. We take I < B < + 00 and use the substitution x = u2 for 
u ;;;, I to obtain 

B I B 2 • 
( sinu 2 du= - ( SlllX dx. 

)1 2)1 IX (3.13) 
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The integral on the right becomes, after using integration by parts, 

= - _x--cosx - - X- 3/2cosxdx -1/2 18 2 1 iB2 
2 I 4 I 

= co; 1 _ CO;:2 _ ± iB2X-3/2COSxdX. (3.14) 

However, on the right we have, by Example 3.2, that the limit exists as 
B ~ + 00 and is finite. It follows that 

1 roo sinx dx= cos 1 _ 1 roo cosx dx 
2 JI IX 2 4 JI X 3/ 2 ' 

(3.15) 

where both integrals converge. This implies that the integral on the left in 
(3.13) tends to a finite limit as B ~ + 00 and, hence, by (3.12), that our 
original integral (3.11) converges. 

We remark that although the integral (3.11) converges, limu .... + 00 sin u2 

does not exist and, therefore, limu-? + 00 sin u2 =1= O. This contrasts with the 
behavior of infinite series. There the convergence of 2: an implies that an ~ 0 
as n~ +00. 

PROB. 3.2. Prove that 

converges. 

PROB. 3.3. Let P and Q be polynomials of degrees m and n, respectively, 
where n :> m + 2. Let a be a number greater than the greatest zero of Q. 
Prove: 

i + OO P(x) 
a Q( x) dx converges absolutely. 

PROB. 3.4. Prove: If p > 1, then 

(a) Jt 00 sin x/ xP and 
(b) ftoocosx/ x P dx 

converge absolutely. 

PROB. 3.5. Prove: If r:j(x)dx converges, then, for each positive c E IR, we 
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have 

lim f Y +c f(x)dx= O. 
y~+oo Y 

PROB. 3.6. Prove: If r:oof(x)dx converges absolutely, then 

li+ oo f(X)dXI"i+oolf(X)'dx. 

PROB. 3.7. Assume that f is bounded on [a, + (0) (a E IR) and R-integrable 
on every interval [a,B] such that a < B < + 00. Prove that if J:OOg(x)dx 
converges absolutely, then J: OOf(x)g(x)dx converges absolutely [Hint: use 
the Cauchy criterion for the convergence of improper integrals (Theorem 
3.1)]. 

Theorem 3.3. Iff is monotonic and bounded on [a, + (0) (a E IR), 

lim f(x) = 0, 
X~+OO 

and g is bounded on [a, + (0) and R-integrable on every interval [a, B] such 
that a < B < + 00 and the G such that 

for xE[a,+oo) 

is bounded on [a, + (0), then f:oof(x)g(x)dx converges. 

PROOF. First note that by Theorem XIV.2.4, for any x' and x" such that 
a " x' < x" < + 00, there exists aBE [x', x"] such that 

J~"f(x)g(x)dx= f(X')JB g(x)dx+ f(x") (X" g(x)dx. (3.16) 
x x' JB 

Since G is bounded on [a, + (0), there exists an M > 0 such that 

for all x E [ a, + 00 ). 

This implies that, for B such that a " B < + 00, we have 

IL~ g(X)dXI = liB g(x)dx - iX' g(X)dXI 

"liB g(X)dXI + lix
' g(X)dXI" 2M. 

(3.17) 

Here x' is some value in [a, + (0). Similarly, for x" E [a, + (0), we have 

if a" B < + 00. (3.18) 

Let t: > 0 be given. Since f( x) ~ 0 as x ~ + 00, there exists an X such 
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that 

Ij(x)l< 4~ for x;;. X ;;. a. (3.19) 

Now take x' and x" such that X < x' < x" < + 00 so that a B exists in 
[X',X"] for which (3.16) holds. This and (3.16)-(3.19) yield 

for X < x' < x" < + 00. 

By Cauchy's criterion for the convergence of improper integrals, we con­
clude from this that J:oo j(x)g(x)dx converges. 

PROB. 3.8. Prove: If p > 0, then 

(+00 sinx dx 
J) xP 

and (+00 COSX dx 
J) x P 

converge. (By Prob. 3.3, if P > 1, these integrals converge absolutely.) 

PROB. 3.9. Prove the convergence of 

(+00 cos ax - cosbx dx. 
Jo x 

Theorem 3.4. Ij j is monotonic and bounded on [a, + 00) and g is R-integrable 
on every [a,B] such that a < B < +00 and J:oog(x)dx converges, then 
J:ooj(x)g(x)dx converges. 

PROOF. As in the proof of the last theorem, we use Theorem XIV.2.4 to 
note that for any x' and x" such that a < x' < x" < + 00 there exists a 
B E [x', x"] with 

(X" j(x)g(x)dx= j(X/) (B g(x)dx+ j(x") (X" g(x)dx. 
k· k· h (3.20) 

The boundedness of j implies that some M > 0 exists such that lJ(x) I < M 
holds for all x E [a, + 00). Hence, 

lJ(x')1 < M and Ij( x")1 < M for x' and x" in [a, + 00). (3.21) 

Let € > 0 be given. Since J:oog(x)dx converges by hypothesis, there exists 
an X ;;. a such that for any c and d such that X < c < d < + 00 we have 

(3.22) 

It follows that for x' and x" such that X < x' < x" and x' < B < x" we 
have 

iL~ g(X)dXi < 2~ and iInx" g(X)dxi< 2~ . 
This, (3.20), and (3.21) imply that for x' and x" such that X < x' < x" 
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< +00 we have 

Using Cauchy's criterion for the convergence of improper integrals, we 
conclude that J:OOj(x)g(x)dx converges. 

PROB. 3.10. Prove: 

(a) 

(b) 

(c) 

i OO x . d 
--2 smx x, 

I 1 + x 

(00 e-xsinx dx, 
Jo x 

i OO (1 - e-X)cosx 
-----dx 

I x 

converge. 

4. Integral Representation of the Gamma Function 

We learned in Example 2.1 that 

G(a)=fo+OOt"'-le-tdt converges if and only if a>O. (4.1) 

We shall show that the G defined in (4.1) satisfies 

G(a+l)=aG(a) for a>O. (4.2) 

Take Band E: > 0 such that 0 < E: < B < + 00. Integrating by parts we find 
that for a > 0, we have 

B B IB (B ( t"'e- t dt= L t"'d( - e- t ) = - t"'e- t + a J. t",-Ie-t dt 
J( E E E 

(4.2') 

Letting E: ~ 0 and B ~ + 00, we obtain 

G(a + 1) = foOOtOle-tdt= a foOOt",-le-tdt= aG(a). 

Thus, (4.1) is proved. 

PROB. 4.l. Let G be defined by means of formula (4.l). Prove: G(l) = 1 
= G(2). 

We establish a lemma which will help us prove that the function G 
defined in (4.1) is log-convex. 
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Lemma 4.1.* Iff is a real-valued function of two real variables t and x such 
that a ~ t ~ b and x is in some interval I and if for each x E I, f is 
continuous as a function of t, and for each t E [a, b], f is log-convex and 
differentiable as a function of x, then H, given by 

H(x) = Lb f(t,x)dt for x E I, (4.3) 

is log-convex. 

PROOF. For each positive integer n, let Pn = <to, t l , ••• , tn> be the partition 
of [a,b] defined as 

to = a, 

so that 

b-a tl=a+-n-, b-a • t2 = a + 2 -- , ... , tn = b, 
n 

A b-a Uot =--
n n and ti = a + illtn for iE{O, ... ,n}. 

Corresponding to each n, construct the Riemann sum Rn , where 

for x E I. Each such Rn is a sum of log-convex functions and is, therefore, 
also log-convex. For each x E I, f viewed as a function of t is continuous 
for t E [a, b] and is, therefore, R -integrable there. Now 

b-a lltn = IIPnl1 = -n-~O as n~ +00. 

Hence, for x E I, 

as n~+oo. 

This shows that H is a limit of log-convex functions on I. As such H itself 
is log-convex on I. 

Theorem 4.1. The function G defined in (4.1), called Euler's second integral, 
is identical with the gamma function. Thus, 

for a> 0. (4.4) 

PROOF. We examine the integrand in the integral on the right. Define h as 

for t > 0, a > o. 
For each t > 0, h is a log-convex function of o'. To see this, note that 

A..lnh(t,O') = A.. (a - l)lnt - t) = lnt 
dO' dO' 

* E. Artin, The Gamma Function, Loc. cit. 
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and 

d 2h = ° 
da 2 

for a> ° 
and each t. Thus, let a> 0, 0< t: .;;; 1, and B ;;;. 1. By Lemma 4.1 the 
functions J. and gB' defined as 

J.(a) = ilta-le-tdt and gB(a) = iBta-le-tdt 

are log-convex. But the limit of log-convex functions is log-convex. Hence, f 
and g, defined as 

and 

for a > 0, are log-convex. Finally, the sum f + g of f and g is log-convex. 
This implies that, for a > 0, 

G(a) = folta-Ie-tdt+ i+oota-le-tdt 

is log-convex. 
We now recall that G(1) = 1 (Prob. 4.1) and that for a> 0, G(a + 1) 

= aG(a) (see 4.2). Also, Theorem IX.9.1 states that the only functionfwith 
f(1) = 1 which is log-convex and satisfies the functional equation f(a + 1) 
= af(a) for a > ° is the gamma function. Hence, G(a) = rea) for a > 0. 
This proves (4.4). 

EXAMPLE 4.1. As an application of the last theorem, we prove that 

(00 -t2d f; 
Jo e t= T' ( 4.5) 

PROOF. By formula (X.lO.9) we have 

ro) = f; . (4.6) 

By the last theorem, this implies that 

fooot-l/2e-tdt= ro) =f;. (4.7) 

We now take Band t: such that ° < t: < B < + 00 and consider the integral 

fB~dt. 
£ {t 

(4.8) 



5. The Beta Function 

We substitute t = u2 for u > 0 so that dt / du = 2u. This yields 

We let B ~ + 00 and obtain 

Next we let E:~O + and obtain, taking note of (4.7), 

This yields 

i +OO -Pd i+ oo - u2 d .;; e t= e U=-
o 0 2 ' 

as claimed. 

PROB. 4.2. Prove: 

J+OO 2 C 
_ 00 e - t dt = y'TT • 

PROB. 4.3. Prove: 

l( I ),,-1 fo In t dt= f( a). 

PROB. 4.4. Prove: If a > 0, then 

(ooe-att,,-ldt= f(~) . 
Jo a 

5. The Beta Function 

We begin with a problem for the reader: 

PROB. 5.1. Prove: If x > 0 and y > 0, then 

fo1tX-1(1- tV- 1dt 

converges. 

729 
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We now define a function B by means of 

for x > 0, y > O. (5.1 ) 

By the result cited in Prob. 5.1, this function is a real-valued function of x 
and y for x > 0, y > O. It is called the Beta function. The integral on the 
right side of (5.1) is also called Euler's first integral. 

PROB. 5.2. Prove: 

B(x, y) = B(y,x) for x > 0, y > O. 

PROB. 5.3. Prove: 

B(x, I) = 1 
x 

for x> 0 and I B(l,y) =-
Y 

for y > O. 

PROB. 5.4. Prove: If y > 0 is fixed, then Bin (5.1) is a log-convex function 
of x (Hint: see the proof of Theorem 4.1 where the log-convexity of Euler's 
second integral is demonstrated). 

Lemma 5.1. If x E IR and y E IR, then 

B(x + l,y) = -x-B(x,y) 
x+y 

for x > 0 and y > O. (5.2) 

PROOF. First take u and v such that 0 < u < v < 1. The integrand appear­
ing in B(x + 1, y) is R-integrable on the interval [u, v]. Using integration by 
parts, we obtain 

= lV( 1 ~ t r :r [ - (1: 2;+Y J dt 

t X(I-tt+YI V 

=-(T=t) x+y u 

+ _x_ (V( _t_ )X-l 1 (1 _ t)x+y dt 
x + y Ju 1 - t (1 _ t)2 

(1 - t) Y IV 
= _t X + _x_ (~tX-l(l- ty-1dt. 

x + y x + Y Ju 
u 
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Let v ~ I - and then u ~ 0 + and obtain 

B(x + I,y) = _x_ (ItX-I(1 - tV- 1dt = -x-B(x,y), 
x+yJo x+y 

as claimed. 

Theorem 5.1. The beta and gamma functions are related by 

f(x)f(y) 
B(x,y) = f(x + y) for x > 0 and y > O. 

PROOF. We first construct the function G, given by 
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(5.3) 

f(x + y) 
G(x,y)=B(x,y) fey) for x > 0 and y > O. (5.4) 

By the lemma and the properties of the gamma function, we have 

f(x+l+y) x (x +y)f(x+y) 
G(x+l,y)=B(x+l,y) fey) =x+yB(X,y) fey) 

f(x + y) 
= xB(x,y) fey) = xG(x,y). 

Thus, for fixed y > 0, we have 

G(x + l,y) = xG(x,y) if x> O. (5.5) 

Also, 

f(l + y) yf(y) 
G(l, y) = B(l, y) fey) = B(l, y) fey) = B(l, y)y. (5.6) 

Clearly, B(I, y)y = I holds (for y > 0) by Prob. 5.3. This and (5.6) imply 
that 

G(l, y) = I for y > O. 

Our aim is to prove 

G(x,y) = f(x) for all x > 0 and for each y > O. 

(5.7) 

(5.8) 

This will be done by first proving that for each fixed y > 0, the function G 
is a log-convex function of x. We know (by Prob. 5.4) that for each fixed 
y > 0, B(x, y) is log-convex as a function of x. We also know that for each 
fixed x > 0, f(x + y) is log-convex as a function of x (explain). Since the 
product of a log-convex function and a positive constant is a log-convex 
function (why?), it follows that as a function of x, f(x + y)/f(y) is convex 
for each y > O. Finally, since products of log-convex functions are log­
convex, it follows that as a function of x, G(x, y) is log-convex on IR+ for 
each fixed y > O. By what was proved (Eqs. (5.5) and (5.7» and by 
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Theorem IX.9.1, it follows that 

f(x + y) 
f(x) = B(x, y) fey) for x > 0 and y > O. 

This proves (5.3). 

PROB. 5.5. Prove: 

B( x, y) = 2 fo7r/2sin2X-IO COS2y-IO dO if x> 0, Y > 0 

(Hint: use the substitution t = sin20 in (5.1 )). 

The result in Prob. 5.5 implies: If a > - t, then 

B( 0: + I 1) = 2 (7r/2sinaOdO 
2 '2 Jo ' 

B( 1- ' 0: ; I ) = 2 fo7r/2cosaO dO. 

For 0: > -I, we have 

( 0:+ 1 1)= f(o:+ I)/2)fO) = (1 0:+ 1) 
B 2 '2 f(0:/2+I) B 2' 2 . 

It follows (see (5.9)) that 

i
7r/2. an,m=i7r/2 an-1n= f; f(o:+ 1)/2) 

SIn u uu cos u uu f( /2 . o 0 0: 0:) 

In (5.1) puty = 1- x and obtain from (5.3): If 0 < x < 1, then 

(I x-I -x_ _ f(x)f(I - x) _ 
Jo t (1 - t) - B(x, 1 - x) - f(I) - f(x)f(I - x). 

This, because of Theorem X.IO.l, implies that 

(5.9a) 

(5.9b) 

(5.10) 

(5.11 ) 

(5.12) 

(ItX-I(I_ t)-Xdt= _._'IT_ if 0< x < 1. (5.13) 
Jo smx'lT 

This result can also be expressed as 

B(x,I-x)=-.-'lT- for O<x<1. (5.14) 
smx'lT 

In (5.13) substitute 

so that 

u=_t_ 
1 - t ' 

1 u+ 1 =--
1- t ' 

O<t<I 

t=_u_ 
u+I' 
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We have 

dt _ 1 
du - (1 + U)2 . ° < u < + 00, 0< t < 1, and 

Therefore, for t: and T such that ° < t: < T < 1, we obtain 

J TtX - I(l - t) -x dt= JT/(I- T)( _u_ )X-I (1 + uf 1 2 du 
• ./(1-.) 1 + u (1 + u) 

= --du JT(I-T) ux-I 

'/(1_') 1 + u . 

We now let T ~ 1 - and then let t: ~ ° + and obtain 

LI L+oo x-I B(x,l - x) = tX-I(l - tfX dx= ~1 du 
o 0 + u 

(5.15) 

or 

--du=--L+OO ux-I 'IT 

o 1 + u sin'lTx . 
(5.16) 

PROB. 5.6. Prove: If x > 0, y > 0, and r > 0, then 

fo 1t X - I(1- try-Idt= +B( 7 ,y). 

PROB. 5.7. Prove: 

(I xn f;; r((n + 1)/2) 
)0 b _ x2 dx= 2 r((n + 2)/2) , n > ° 

and 

(I 1 dx= r; r( ~ ) 
)0 VI - x n n r( ~ + t) . 

EXAMPLE 5.1. Sometimes having information about just the convergence of 
an improper integral puts us in a position to evaluate the integral. Consider 

(''In(sinx)dx= (,,/2ln(sinx)dx+ (" In(sinx)dx. (5.17) 
)0 )0 ),,/2 

We have 

In( sin x) ~ - 00 as x~o + 
and 

In(sinx) ~ - 00 as X~'lT-. 
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Hence, the first of the integrals on the right is improper at x = 0, while the 
second is improper at x = 7T. We compare the integrand with x -1/2. By 
L'Hopital's rule we have 

. In(sinx) . X 3/ 2cosx . (X C ) 
hm 1/2 = -2hm. = -2 hm -.- (vx cosx) = O. 
x~o+ x- smx x~o+ Slnx 

This implies that 

In(sinx) = O(X-I/2) as x~O +. (5.18) 

From this we see that the first integral on the right in (5.17) converges. 
As for the second integral on the right side of (5.17), we compare the 

integrand to (x - 7T)-1/2. L'Hopital's rule yields 

Thus, 

In(sinx) (x - 7T)3/2COS X 
lim = -2 lim 

X~7T- (x - 7T)-1/2 X ..... 7T- sin x 

= -2 lim x.- 7T (x - 7T)1/2COS X) 
X ..... 7T- Slnx 

= -2 lim x.- 7T lim [(x - 7T)1/2COSX] 
X ..... 7T- Slnx X ..... 7T-

= - 2( lim _1_). 0 
X ..... 7T- COSX 

= (- 2)( - 1) ·0 

=0. 

In(sinx) = O( x - 7T) -1/2 as X~7T-. 

This implies that the second integral on the right in (5.17) also converges. It 
is easy to conclude that 

(7T In( sin x) dx = (7T In( sin( 7T - x) dx = (7T /21n( sin u du) = (7T /21n( sin x) dx. 
J7T /2 J7T /2 Jo Jo 

The second equality is obtained by using the substitution u = 7T - x. Thus, 
(5.17) gives rise to 

fo7Tln(sinx)dx= 2 fo7T/21n(sinx)dx. 

We begin anew with the left-hand side of (5.17) and note that 

fo7Tln(sinx)dx= fo7Tln(2sin 1- cos 1- ) dx. 

(5.19) 

(5.20) 

We take u and v such that 0 < u < v < 7T /2 and use the substitution 
t = x/2, so that dx = 2dt. We have 

iVln( 2 sin 1- cos 1- ) dx = 2 i~~21n(2 sin t cos t) dt. 
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We let u~O + and then V~'1T - to obtain 

fo"lTln(2sin I cos I )dx= 2 fo'IT/21n(2 sin t cos t) dt 

= 2 fo'IT/21n(2sinxcoSx)dx. 

This and (5.20) yield 

fo'IT In( sin x) dx = 210 'IT /21n(2 sin x cos x) dx 

= 2 fo'IT/2(ln2 + In sin x + lncosx) dx 

= '1Tln2 + 2 fo'IT/21n(sinx)dx+ 2 fo'IT/21n(cosx)dx. 

The two integrals on the lower right converge (why?). This and (5.19) imply 
that 

2 fo'IT/'n(sinx)dx= '1Tln2 + 2 fo'IT/21n(sinx)dx+ 2 fo'IT/'n(cosx)dx. (5.21) 

We conclude from this that 

fo'IT/21n(COSX)dX= - I ln2. (5.22) 

Note that cosx = sin«'1T/2) - x). The substitution t = ('1T/2) - x leads to 

fo'IT/21n(COSX) dx= fo'IT/21n(sinx)dx. (5.23) 

Also, 

fo'IT/21n(sinx)dx= - I ln2. (5.24) 

This, (5.23), and (5.24) yield 

fo'ITln(sinx)dx= - '1Tln2. (5.25) 

PROB. 5.S. Obtain 

fo'ITln(l- cosx)dx= fo'ITln(1 + cosx)dx= -'1Tln2. 

6. Evaluation of ftOO(sinx)/ xdx 

In Example 3.1 we proved that this integral converges conditionally. We 
now evaluate it. We first prove a lemma. 



736 XV. Improper Integrals 

Lemma 6.1.* If 0 < X < 'fr/2, then 

sin2x > x 2 cosx. (6.1) 

PROOF. Define f as 

f(x) = x - sinx(cosx)-1/2 for Ixl < ~ . 

We take derivatives and obtain 

'2+22 1+ 2 1'(x) = 1 - sm x cos x = 1 _ cos X 

2(COSX)3/2 2(COSX)3/2 
(6.2) 

and 

f"(x) = t (cosx)-S/2sinx(cos2x - 3) < 0 if 0 < x < ~. (6.3) 

This implies that l' is strictly decreasing on [0, 'fr /2). We conclude that 
1'(x) < 1'(0) = 0 if 0 < x < 'fr /2. In turn, this implies that f is strictly 
decreasing on [0, 'fr /2) and we have: f(x) < f(O) = 0 for 0 < x < 'fr /2. This 
tells us that 

Thus, 

x - sinx(cosx) -1/2 < 0 

0< x < sin x 
(COSX)I/2 

if O<x<~. 

if O<x<~. 

This yields (6.1) for 0 < x < 'fr/2. 
We now prove: 

(00 sin x dx= J!. . 
Jo x 2 

We begin by considering the sequence <In> of integrals 

I = sm(2nx) -.- - - dx L7T/2 . (1 1 ) 
n 0 smx x for each positive integer n. 

These integrands are singular at x = O. In fact, L'Hopital's rule gives 

1· (1 1 ) l' x - sin x _ l' 1 - cos x 1m -.---=lm . -1m . 
x~o+ slnx x x~o+ X smx x~o+ x cos x + Slnx 

= lim sinx = 0 
x~o+ 2cosx - x sin x . 

Hence, the integrands in the In's satisfy 

lim [sin2nx( _._1_ - !)] = O. 
x~o+ smx x 

(6.4) 

(6.5) 

(6.6) 

For each positive integer n, the integrand in In has an extension fn which is 
continuous on [0, 'fr /2] and is, therefore, R-integrable there. 

·D. S. Mitronovic, Analytic Inequalities, p. 238, Loc. cit. 
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We take £ E (0, 'IT /2]. By the discussion above, we have 

lim IW/2sin2nx( _._1_ - 1) dx= (w/2sin2nx( _._1_ - 1) dx, 
.~o+ • smx x Jo smx x 

the limit here being finite (explain). 
We use integration by parts and obtain for £ E (0, /2] 

I W/2sin2nx( _._1_ - 1) dx 
• smx x 

= IW/2( _.1 __ 1) A.. (_ cos2nx ) dx 
• smx x dx 2n 

= _ (- 1 f (1 _ 1) + cos 2n£ ( _.1 __ 1) 
2n 'IT 2n sm£ £ 

+ _1_ I?T/2cos2nx(...!.. _ cosx ) dx. 
2n • x 2 sin2x 

(6.7) 

For £ ~ 0 +, we have, as (6.6) shows, that 

-.1- -l~o 
sm£ £ 

and 

(w/2sin2nx(_._1_ -l)dx= (-lr+ 1 (1_1) 
Jo smx x 2n 'IT 

+ _1 (w/2cos2nx(...!.. _ cosx ) dx. (6.8) 
2n Jo x 2 sin2x 

This holds for each positive integer n. We examine the last integral. Using 
Lemma 6.1, we have for the integrand 

Icos2nx(...!.. - cos x )1..; I...!.. - cosx 1 = sin2x - x 2 cosx . 
x 2 sin2x x 2 sin2x x 2 sin2x 

Applying L'Hopital's rule several times we obtain 

lim sm x - x cosx = o. ( 
. 2 2 ) 

x~o+ x 2 sin2x 

Accordingly, the integral on the right in (6.8) converges. Taking absolute 
values in (6.8) we obtain 

1 
(w/2sin2nx( _._1_ - 1) dxl..; _1_ (1 _ 1) + _1_ (w/2 sin2x - x 2 cosx 

Jo smx x 2n 'IT 2n Jo x 2 sin2x 

for each positive integer n. Now let n ~ + 00 and obtain 

lim (.,./2sin2nx( _._1_ - 1) dx= O. 
n~ + 00 Jo sm x x (6.9) 

By Example XIV.1.2, we know that 

lim (.,./2 si~2nx dx= !!. . 
n~+oo Jo smx 2 
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Because of (6.9), this implies that 

1m --- x=-. 1· i7T /2 sin 2nx d 7T 
n ..... +oo 0 X 2 

(6.10) 

Using the substitution u = 2nx we obtain, for each n, 

(7T/2 sin2nx 2ndx= (n'" sinu duo 
Jo 2nx Jo u 

This and (6.12) imply that 

- - 1m --- x- 1m -- u- -- u 7T _ l' i7T / 2 sin2nx d - l' in", sinu d -i+ oo sinu d 
2 n ..... + 00 0 X n ..... + 00 0 U 0 U ' 

proving (6.4) 

PROB. 6.1. Prove: If n is a positive integer, then 

(a) So"'/\cos2nx)ln(sinx)dx 

converges and is equal to - 7T /4n. Prove: 

(b) So"'/2cos2nx In(cosx) dx= (-lr+ 1 In . 

7. Integral Tests for Convergence of Series 

Sometimes improper integrals can be used to test for convergence or 
divergence of certain infinite series. This topic is usually presented together 
with the results on infinite series. Since we studied infinite series before the 
Riemann integral was even defined, we are treating this topic now. 

Theorem 7.1. If 2;an is a series with positive decreasing terms and f is a 
monotonically decreasing function such that 

f(n) = an for all positive integers n, 

then the improper integral 

i+ oo f(x)dx (7.1 ) 

and the infinite series 2;an converge together or diverge together. 

PROOF. Assume that x E [k,k + 1], where k is some positive integer. The 
assumptions onf and on <ak ) imply that 

ak = f(k) ~ f(x) ~ f(k + 1) = ak+ l , 

so that 
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Taking integrals on [k,k + 1], we see that 

(k+1 (k+1 (k+1 
ak =)k ak dx > A f(x)dx> A ak+1dx= ak+I' 

It follows that if k is a positive integer, then 

(k+1 
ak > A f(x)dx> ak+l · (7.2) 

Summing from k = I to k = n, we obtain for the nth partial sum Sn' 

n n lk+1 n 
Sn = 2: ak> 2: f(x)dx> 2: ak+l= Sn+1 - al' 

k=1 k=1 k k=1 

This implies that 

(7.3) 

for each positive integer n 
Assume that ~an converges so that its partial sum sequence converges. 

From the inequality on the left in (7.3) it follows that the sequence <Yn>' 
where 

Yn = in f(x)dx 

for each n, is bounded. Since f(x) > a l > 0 for all x > 1 (explain), tht: 
sequence <Yn> is also monotonic increasing. We conclude that <Yn> con­
verges. Since 

(OOf(x)dx= lim (nf(x)dx= lim Yn' 
)1 n~+oo)1 n~+oo 

the integral (7.1) converges. 
Conversely, if (7.1) converges, then <Yn> is a converging sequence and, 

therefore, bounded. The sequence <Yn> is also monotonically increasing. 
This and the right-hand inequality in (7.3) imply that <Sn> is bounded. The 
latter sequence is also monotonically increasing. We conclude that Lan 
converges. 

We proved that Lan converges if and only if the integral (7.1) does. This 
is equivalent to saying the series ~an diverges if and only if the integral 
(7.1) does. 

Theorem 7.2. Let L an be a series with positive decreasing terms and f a 
monotonically decreasing function such that f(n) = an for all positive integers 
n. If <Sn> is the sequence of partial sums Lan' then 

lim ((n f(x)dx - Sn) 
n~+oo )1 

exists and is finite. 
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PROOF. Form the sequence <Tn)' where for each positive integer n 

Tn = inf(X)dx- Sn' 

For each positive integer n we have 

(n+1 
Tn+1 - Tn = In f(x)dx- an+l · 

Since (7.2) holds for each positive integer k, it follows that 

(n+1 
Tn+1 - Tn = In f(x)dx- an+1 > 0 

(7.4) 

for all n. Hence, the sequence <Tn) is monotonically increasing. Since (7.3) 
holds for each n, we have 

(n+1 0> J1 f(x)dx- Sn > an+1 - a l . 

Hence, 

Equivalently, 

-an+l> Tn+1 > -al 

for each n. This and TI = - a 1 proves that the terms of < Tn) are negative. 
Hence, < Tn) is bounded from above by zero. Since it is also monotonically 
increasing, we conclude that <Tn) converges. Hence, the conclusion holds. 

According to Theorem 7.1, the harmonic series 

1+1+ ... +1+ ... 
2 n 

diverges. Here the functionfisf(x) = l/x for x> 1. Since 

(00 f(x)dx= (00 1dx= lim (B 1dx= lim InB= +00, 
J1 J1 x B~+oo J1 X B~+oo 

the harmonic series diverges. 
On the other hand, if p > 1, then 

00 

~ nP 
n=1 

converges. This is so because 

converges for p > 1. 

(+00 2..dx 
JI xP 

Theorem 7.2 also furnishes us with another proof of the fact that the 
sequence < Yn), where 

1 1 
Y = 1 + - + ... + - -Inn 

n 2 n 



8. Jacobian Elliptic Functions 741 

for each positive integer n, converges. This is so because 

y = 1 + 1 + ... + 1 - (n 1 dx. 
n 2 n J I x 

This converges according to Theorem 7.2. 

PROB. 7.1. For what values of p do we have convergence and for which p do 
we have divergence in 

(a) ~n=11/nP, 
(b) ~n=21/nlnPn, 
(c) ~n=31/ n In n(lnln nY, 
(d) ~n=31/ n In n(ln In n)(ln In In nY? 

8. Jacobian Elliptic Functions 

We saw how infinite series can be used to define functions. We defined the 
sine and cosine functions by means of certain power series. It will now be 
shown that also indefinite integrals can be used to define functions. 

We recall that 

Arcsinx = rx 1 dt, 
Jo~ 

-1";;x";;1. 

This integral is improper at ± I, and 

J!.. = (I 1 dt and 
2 Jo ~ 

- - t 7T In-lid 
2"-0 ~ . 

A generalization of (6.1) is the function u given by 

-I";; x ..;; I, 

where k is some fixed constant with 0 ..;; k ..;; 1. If k = 0, we have 

u(x,O) = Arcsin x, 

When k = I, we obtain 

-I";;x";;l. 

u(x, I) = rx_1_2 dt= Arctanhx, 
Jo 1 - t 

-1<x<1. 

If x = ± I, we obtain improper divergent integrals. This follows from 

lim rx _1_ dt = lim Arctanh x = lim (lin 1 + x ) = + 00 
x--+ I - Jo 1 - t2 x--+ I - x--+ I - 2 I - x 

(8.1) 

(8.2) 

(8.3) 

(8.4) 

(8.5) 
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and 

lim rx _1_ dt= lim ( lIn 1 + x ) = - 00. 
x-+(-I)+JO I-t2 x-+(-I)+ 2 I-x 

For (8.3) to yield functions differing from Arctanh and Arcsin, we take 
0< k < 1. For such values of k, (8.3) is called an elliptic integral of the first 
kind. This terminology is due to Legendre. He called the integrals 

(8.6) 

(8.7) 

(8.8) 

elliptic integrals of the first, second, and third kind, respectively. Since 

if It I < 1 and 0 < k < 1, 

and the integrals 

Inl 1 d t, 
o~ 

f o 1 d 
_I~ t 

converge, it follows (in the notation of (8.3» that the integrals 

u( -I,k) = In-I 1 dt, 
o ~~I-k2t2 

0< k < 1, 

(8.9) 

(8.10) 

converge. These integrals are called complete elliptic integrals of the first 
kind. k is called the modulus and k' = ~ 1 - e is called the complementary 
modulus. We also put 

K(k) = u(I,k) if O<k<1. (8.11) 

Here K(k) for fixed k is analogous to 'TT /2 which arises when k = 0 in 
(8.10). 

We now derive some properties of u in (8.3). Using the substitution 
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t = - s, dt = - ds in the integral in (8.3) we obtain 

for -1 < x < l. Thus, u is an odd function of x. We have: 

and 

u(l,k) = K(k), 

u(O, k) = 0, 

u(-l,k)= -K(k), 

u(-x,k)= -u(x,k). 

Since the integrand in (8.3) is positive, it is clear that 

0< u(x,k) < K(k) for 0 < x < 1 

and 

- K(k) < u(x,k) < 0 for -1 < x < 0 

(explain). Thus, 

-K(k) < u < K(k) for x E [ - 1, 1 J. 
By the definition of improper integrals, we have 

lim u(x,k) = u(l,k) = K(k), 
x--> 1-

lim u(x,k) = u( -1,k) = - K(k). 
x-->( -1)+ 

743 

(8.12) 

(8.13) 

(8.14) 

(8.15) 

(8.16) 

(8.17) 

(8.18) 

Thus, u is continuous on the closed interval [- 1, 1] and its range is the 
interval [ - K, K]. Also, 

du > 0 
dx = VI - x 2 VI - k 2x 2 

for xE(-I;I). (8.19) 

We conclude that u is strictly increasing on [ - 1, 1] and that it has a strictly 
increasing inverse defined on the range [- K, K] of u, whose range is 
[ - 1, 1], the domain of u. We call this inverse the modular sine and write it 
as sn. For each u E [ - K, K], sn( u, k) is the unique x E [ - 1, 1] such that 
u = u(x, k). This may be stated as: 

x=snu if and only if u=u(x,k) (8.20) 
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for u E [ - K, K]. Since the function u itself is the inverse of its inverse, we 
may write 

sn-l(x,k) = u(x,K) for x E [ - 1, 1 J. (8.21 ) 

Thus, 

sn-l(x,k) = rx 1 dt, 
Jo ~V1- k 2t2 

-l";;x";;1. (8.22) 

In the new notation, we have 

-K..;;sn-1(x,k)";;K for xE[-l,l], (8.23) 

sn- 1( -1, k) = - K, sn-1(0,k) = 0, sn-l(l,k) = K, (8.24) 

and 

for x E (-1; 1). (8.25) 

Also, 

sn- 1( - x,k) = -sn-1(x,k), (8.26) 

sn( - K,k) = -1, sn(O,k) = 0, sn(K,k) = 1, (8.27) 

and 

-1 ..;; sn(u,k) ..;; 1. (8.28) 

PROB. 8.1. Prove: sn( - u, k) = - sn( u, k). 

Other elliptic functions are: 

cn( u, k) = J1 - sn2( u, k) and dn( u, k) = J1 - k 2sn2( u, k) (8.29) 

for - K(k) ..;; u ..;; K(k). The function cn is called the modular cosine, while 
dn u is called delta amplitude u. The functions sn, cn, and dn are called 
Jacobian elliptic functions. It is often convenient to suppress their depen­
dence on k. This we usually do from now on. In the theory, we define the 
so-called complementary modulus k' as 

k' =V1- e, O<k<1. (8.30) 

We have from the definitions: 

cn2u + sn2u = 1, dn2u + k 2sn2u = 1, (8.31 ) 

cn( - K) = 0 = cnK, dn( - K) = k' = dn K, (8.32) 
and 

cnO = 1, dnO = 1. (8.33) 
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One also notes readily that 

cn( - u) = cnu and dn( - u) = dnu (8.34) 

and that 

O<cnu<l, 0< k' < dnu < 1 if 0 < lui < K. (8.35) 

PROB. 8.2. Prove: If - K " u " K, then 

(a) ecn1u + k,2 = dn2u, 
(b) cn1u + k,2sn1u = dn2u. 

To obtain differentiation formulas for the Jacobian elliptic functions we 
begin with sn. By theorems on derivatives of inverses of differentiable 
functions we have from (8.21), (8.25), and (8.29), 

dsnu = = ( 1 )-1 = cnudnu 
du (dsn-lx/dx)lx=snu ~l - sn1u ~l - k 2 sn1u 

(8.36) 

for - K < u < K. Note that sn is continuous on [ - K, K). Hence, 

lim ddsnu = lim ~1 - sn1u ~1 - k2sn2u = 0 = cnKdnK. 
u4K- U u4K-

Similarly, 

lim ddsnu = 0 = cn( - K) dn( - K). 
u4(-K)+ U 

In view of Prob. VII.7.6 we see that sn is differentiable from the left at 
u = K and from the right at u = - K and that (8.36) holds for - K " u 
" K. In sum, 

dsnu = cnudnu 
du for - K" u " K. 

FROB. 8.3. Prove: If - K " u " K, then 

d(cnu) 
du = -snudnu, 

d(dnu) 
du = -k2 snucnu. 

(8.37) 

(8.38a) 

(8.38b) 
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Theorem 8.1. If s, c, and d are functions, defined on some interval I centered 
at 0, possibly IR itself, such that 

and 

s'(u) = c(u)d(u), 

c'(u) = -s(u)d(u), 

d'(u) = - k 2s(u)c(u), 

uEI 

s(O) = 0, c(O) = 1 = d(O), 

then, for u E I, we have 

(1) 

(2) 

(3) 

(4) 

S2(U) + c2(u) = 1, 

k 2s2(u) + d 2(u) = 1, 

k'=~, 

(8.39) 

(8.40) 

(8.41 ) 

PROOF. We prove (8.41)(1) and leave the proofs of the other formulas 
(8.41)(2), (3) and (4) to the reader (see Prob. 8.4 below). 

We multiply the first equation in (8.39) by s(u), the second by c(u), and 
obtain 

s(u)s'(u) + c(u)c'(u) = 0 

This implies that 

A..- ( s2(u) + c\u) ) = 0 
du 2 

for all u E I. 

for all u E I. 

In turn, this implies that a constant a exists such that 

for u E I. 

Substitute u = 0 here and use (8.40) to obtain 

1 = 0 + 1 = S2(0) + c\O) = 2a. 

In view of (8.42) this implies that 

S2(U) + c2(u) = 1 for u E I. 

This proves (8.41)(1). 

(8.42) 

PROB. 8.4. Complete the proof of Theorem 8.1 by proving the relations 
(8.41 )(2), (3), (4). 
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PROB. 8.5. Let s, d, and c be functions satisfying the hypothesis of Theorem 
8.1 above. Prove that the relations 

(1) s" = - s(d2 + ee2), 
(2) c" = - c(d2 - k 2s2), 
(3) d" = - k 2d(c2 - S2), 

hold for u E I, where I is the interval referred to in Theorem 8.1. Also 
prove that the relations 

(4) s" = -(1 + k2)S + 2k2s3, 

(5) e" = - (1 - 2k2)e - 2k2c3, 

(6) d" = (2 - k 2)d - 2d3 

hold for all u E I. 

PROB. 8.6. * Prove: If 0 < u < K, then 

cnu < dnu < 1 <--.!L <_1_. 
snu cnu 

9. Addition Formulas 

Formulas for sn(u + v), cn(u + v), and dn(u + v) are called addition formu­
las. We state these for functions s, c, and d satisfying the hypothesis of 
Theorem 8.1. 

Theorem 9.1. Let s, c, and d be junctions, defined on an interval I centered at 
O-possibly IR itself-for which (8.39) and (8.40) hold for u E I. Then 

(a) s(u + v) = (s(u)c(v)d(v) + s(v)c(u)d(u»j(l - k 2s2(U)S2(V», 
(b) c(u + v) = (c(u)c(v) - s(u)d(u)s(v)d(v»j(l- k 2s2(U)S2(V», 
(c) d(u + v) = (d(u)d(v) - k 2s(u)c(u)s(v)c(v»j(l - k 2s2(U)S2(V». 

PROOF. We begin by proving (a). Fix lX E I, u E I and let v = lX - u E I. 
Define 

(9.1 ) 

*F. Bowman, Introduction to Elliptic Functions, Dover, New York, p. II, Example 6. 
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Because of the hypothesis, we have from the above 

ds l ( u) 
~ = c(u)d(u), 

ds2(u) ds(v) ds(v) dv ds(v) 
~= ~= ~ du = - ~= -c(v)d(v). 

(9.2) 

Therefore, 

dS I dS2 
S2 du -Sl du = s(v)c(u)d(u) + s(u)c(v)d(v). (9.3) 

Also, 

= -2k2s(u)s(v)(s(v)c(u)d(u) - s(u)c(v)d(v». (9.4) 

Multiplying corresponding sides of (9.3) and (9.4) we obtain 

( dSI dS2 ) d 2 2 
S2 du -Sl du du (1 - k SIS2) 

(9.5) 

Using the hypothesis and Theorem 8.1 we obtain 

and 

These imply that 

(9.6) 

Substituting this into the right-hand side of (9.5) we obtain 
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The second equation in (9.2) implies that 

(9.8) 

By Prob. 8.5(4), we have 

and, by (9.8), 

d 2s2(u) d 2s(v) 
--- = --2- = -(1 + e)s(v) + 2k2S3(V) = -(1 + k2)S2 + 2k2S~. 

du2 dv 

These imply that 

or that 

(9.9) 

(9.10) 

This is of the form 

(9.11) 

where 

This implies that 

.!L(F)=O 
du G 

for u E I. 
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and, hence, that there is a constant c such that 

Therefore, 

F = c for u E I. 
G 

s2(u)(dsl(u)/du) - sl(u)(ds2(u)/du) 

I - k 2sf( u)s5( u) 
which implies that for all u E I, 

= c, 

sea - u)c(u)d(u) + s(u)c(a - u)d(a - u) 

I - k 2s2( U)S2( a - u) 

(9.12) 

uEI 

= c. (9.13) 

The constant c is determined from (8.40) by using u = a, s(O) = 0, and 
c(O) = I = d(O). We obtain 

sea) = c. 

By (9.13) 

sea - u)c(u)d(u) + s(u)c(a - u)d(a - u) 
----'----:-::---'--:-'----'---'------'- = S ( a) 

I - k 2s\ U)S2( a - u) 
for u E I. Putting v = a - u and u + v = a, we obtain (a). 

Next we prove (b). To simplify the formulas we put: 

SI(U) = s(u), dl(u) = d(u), s2Cu) = sea - u) = s(v), 

c2(u) = c(a - u) = c(v), d2(u) = d(a - u) = d(v) 
(9.14) 

and 

d(u) = I - k2s2(u)s\a - u) = I - k2sf(u)s~(u). (9.15) 

From (I) of (8.41) in Theorem 8.1 and the already proved (a), we have 

2 2 (S(U)C(V)d(V) + s(v)c(u)d(u) )2 
c (u + v) = 1- s (u + v) = I - d 

d2 - (s(u)c(v)d(v) + s(v)c(u)d(u»2 

d2 

Now, 

I - k 2s2s2 - c2 + S2 - k2s2S2 - c2 + S2( I _ k 2s2) - 2 + 2d2 1 2 - J 1 , 2 - 1 1 2 - c 1 Sl 2' 

Similarly, 

Hence, 

d 2 - (1 - k 2s2S2)2 - (c2 + s2d2)(C2 + s2d2) - 12 - 1 '22 21' 

For u, v and u + v in I we have, using (9.16) and (9.19), 

(d + sfdi) ( c5 + s~df) - (Slc2d2 + s2c ,d,)2 
c2(u+v)= 2 

(c'C2 - SIS2dld2)2 

d2 

d 

(9.16) 

(9.17) 

(9.18) 

(9.19) 
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This implies that 

C)C2 - s)s2d)d2 c(u)c(v) - s(u)s(v)d(u)d(v) 
c(u+v)= ± = ± . 

Il 1 - k 2s2(U)S2(V) 

Fixing a E I, we have for u E I, v = a - u E I, 

c(u)c(a - u) - s(u)s(a - u)d(u)d(a - u) 
c(a) = ± . (9.20) 

1 - k 2s2( u)s2( a - u) 

Using u = a, we have 

c( a)c(O) - s( a)s(O)d( a)d(O) 
c(a)=± =±c(a). 

1 - k 2s2( a )S2(0) 

For c(a) '* 0, this implies that the minus sign cannot be used and (9.20) 
becomes 

c(u)c(a - u) - s(u)s(a - u)d(u)d(a - u) 
c( a) = ------::-;:---;:-------

1 - k 2s2( U)S2( a - u) 

for u, a, and a - u = v E I. Using a = u + v yields (b). 
We prove (c). This time, we notice from (9.17), (9.18), and Theorem 8.1, 

that 

Similarly, 

Therefore, 

Il = 1 - k2Sfs~ = cf + sfdi = cf + sf( k2C~ + kf2) 

= cf + sf( k2C~ + 1 - k 2) 

= 1 - k 2sf + k 2sfci 

= dt + k2Sfc~ . 

112 = (dt + k 2sfd)( di + k2sicf)· 

By Theorem 8.1 and the already proved (a), we have 

( s)c2d2 + s c d )2 d 2( U + v) = I - k 2s2( U + v) = 1 - e Il 2 ) ) 

112 - k2(S)c2d2 + s2c)d)2 
=----~--~----~-

112 

(9.21) 

(9.22) 

(9.23) 

(9.24) 

Examining the numerator on the right, we have from (9.22) and (9.23), 

112 - k2(s)c2d2 + s2d)d)2= (dt + estci)(di + es2cf) 

- k 2(s)C2d2 + s2c)di 

= (d)d2 - k2s)S2C)C2( 
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This and (9.24) imply that 

dld2 - k2SlS2CIC2 d(u)d(v) - k 2s(u)s(v)c(u)c(v) 
d (u + v) = ± = ± ---'----'-----::---=---'--::---'-----'--

~ 1 - k 2s2(u)S2(V) 

Here, we eliminate the minus sign by reasoning as we did in the proof of 
part (b) to obtain (c). 

10. The Uniqueness of the s, c, and d in 
Theorem 8.1 

2 2 2 1/2 [ 2 J 1/2 <[a2 +b2 +c +al +bi+cl] (a-alf+(b-b l) +(C-C I)2 . 

(10.1 ) 

PROOF. By the properties of absolute value and Cauchy's inequality 
(Theorem 11.12.6), we have 

lab - albll = la(b - bl) + bl(a - al)1 <~a2 + bi J(a - al)2 + (b - b l)2 , 

Ibc - blcll <~b2 + d J(b - bl)2 + (c - Cl)2 , 

Ica - clall <~C2 + af J(a - al)2 + (b - b l)2 . 

Hence, 

lab - albll <~a2 + bi J(a - al)2 + (b - bl)2 

<~a2 + bf J(a - al)2 + (b - bl)2 + (c - cl)2 , 

Ibc - blCll <~b2 + cf J(a - al)2 + (b - bl)2 + (c - Cl)2 , 

Ica - clall <~C2 + af J(a - al)2 + (b - bl)2 + (c - CI)2 . 

Squaring, adding, and then taking square roots, we arrive at (10.1). 

Lemma 10.2. If <s,c,d) and <Sl,cl,dl) are ordered triples of functions each 
of which satisfies the hypothesis of Theorem 8.1 on an interval I centered at 0 
then, for each u E I, we have 

[ 2 2 2JI/2/ (cd - cldl) + (sd - sldl ) + (sc - SIC I) u 

[ 2 2 2Jl/2/ <2 (S-Sl) +(c-c l ) +(d-dl) u' (10.2) 
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PROOF. By Lemma 10.2, we know that if U E I, then 

[( cd - C)d)2 + (sd - s)d)2 + (sc _ s)c)2] 1/21 .. 

.;;;;[ s2 + c2 + d2 + s? + c? + dlJl/21 .. 
. [<s - S)2 + (c - C)2 + (d - d l )2f/21.. . (10.3) 

By (8.41) of Theorem 8.1, we know that for u E I, 

s\u) + c2(u) = 1 = s?(u) + d(u). (10.4) 

We also know from there that 

for u E I. (10.5) 

It follows that for u E I we have 

s2(U) + c2(u) + d2(u) .;;;; 1 + d 2(u) .;;;; 2 

and 

s?(u) + d(u) + df(u) .;;;; 1+ df(u) .;;;; 2. 

These and (10.3) imply (10.2). 

The following lemma is used in the theory of ordinary differential 
equations to prove uniqueness of solutions of certain differential equations. 

Lemma 10.3.· Let E > o. If f is continuous on [a, a + E), differentiable on 
(a; a + E), and if a constant L exists such that 

f'(x) .;;;; Lf(x) (10.6) 

for x E (a; a + E), then 

f(x) .;;;; f(a)eL(X-a) for xE[a,a+E). (10.7) 

PROOF. Multiply both sides of (10.6) bye-Lx and transpose to obtain 

for x E (a;a + E). 

Hence, 

for x E (a;a + E). 

It follows that the function g, defined as 

for x E (a; a + E), 

* Birkhoff and Rota, Ordinary Differential Equations, 2nd Ed., Blaisdell Publishing Co., Chap. 
I, Lemma 2. 
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.is monotonically decreasing on [a, a + f). This implies that 

f(x)e- Lx .;;; f(a)e- La 

Therefore, (10.7) holds. 

for a';;; x < a + f. 

PROB. 10.1. Prove: Iff is continuous on (a - f; a] (f > 0), differentiable on 
(a - f; a), and if a constant L exists such that 

j'(x)~Lf(x) for xE(a-f;a), 

then 

f(x) .;;; f(a)eL(X-a) for xE(a-t:;a]. 

Theorem 10.1. If I is an interval centered at 0, then there exists at most one 
ordered triple <s, c, d) of functions s, c, d defined on I which satisfy the 
hypothesis of Theorem 8.1. 

PROOF. Let <s, c, d) and <Sl' c l , d l ) be ordered triples of functions satisfy­
ing the hypothesis of Theorem 8.1 on I. Define f as 

for u E I. (10.8) 

Note that f is differentiable on I and that, in view of (8.40), 

f(O) = O. (10.9) 

Differentiating f, we have 

j'(u) =2[(s - SI)(S' - sl) + (c - cl)(c' - cl) + (d - dl)(d' - dl)Jlu. 
(10.10) 

By the Cauchy-Schwartz inequality this implies that 

j'(u) 

.;;;2 [ (s - SI)2 + (c - CI)2 + (d - dl)2f/2U (s' - s1)2 + (c' - C1)2 + (d' - d1)2f /l 

By (8.39) and the fact that 0 .;;; k .;;; 1 we know that 

[(S' - Sl)2 + (c' - Cl)2 + (d' - d1)2f /l 
[ 2 2 4 2J 1/21 = (cd-cA) +(-sd+s1dl) +k(sc-slc1) u 

[ 2 2 2J 1/21 .;;; (cd-c1dl) + (sd-s1dl) +(SC-S1CI) u· 

(10. II) 
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Applying Lemma 10.2 to the right-hand side here we obtain 

[(s' - S;)2 + (C' - C;)2 + (d' - d))2f /l 
,,;;;;2[ (s - SI) + (c - CI)2 + (d - dl) f/l, 

and, hence, by (10.11), 

11'( u)1 ";;;;4[ (s - SI)2 + (c - CI)2 + (d - dl)2] lu = 4f( u) 

for u E I. Thus, 

-4f(u) ,,;;;; 1'(u) ,,;;;; 4f(u) for u E I. 
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(10.12) 

Now apply Lemma 10.3 to the inequality on the right. Since f(O) = 0, we 
see that if u E I and u > 0, then 

feu) ,,;;;; e4 j(0) = O. (10.12') 

By definition, feu) > 0 for u E I. We conclude that 

feu) = 0 for all u E I, u > O. (10.13) 

Using the inequality on the left-hand side of (10.12) and Prob. 10.1, we see 
that if u E I and u ,,;;;; 0, then 

(10.14) 

Hence, 

feu) = 0 for u E I, u,,;;;; o. (10.15) 

Now (10.13) and (10.15) combine to yieldf(u) = 0 for all u E I, and we see 
from (10.8) that 

for u E I. This completes the proof. 

11. Extending the Definition of the Jacobi 
Elliptic Functions 

Thus far, the Jacobi elliptic functions sn, dn, and cn are defined on 
[ - K, K]. They satisfy the hypothesis of Theorem 8.1 (see (8.27), (8.33), 
(8.37), and Prob. 8.3). Hence, they satisfy the conclusion of Theorem 9.1 on 
I = [ - K, K]. Because of this we can apply Theorem 9.1 to them with 
S = sn, C = cn, and d = dn and we have: If u, v and u + v are in [ - K, K], 
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then 

sn( u + v) = sn u cn v dn v + sn v cn u dn u (11.1 ) 
1 - esn2u sn2v ' 

cn( u + v) = cn u cn v - sn u dn u sn v dn v (11.2) 
1 - k 2sn2u sn2v ' 

dn(u + v) = dnudnv - k 2 snucnusnvcnv (11.3) 
1 - esn2u sn2v ' 

We obtain "double angle" formulas for sn, cn, and dn by letting v = u in 
the last equations. We have 

for u E [- K/2,K/2]. 

sn2u = 2snucnudnu 
1 - k 2 sn4u ' 

cn 2u = cn2u - sn2u dn2u , 
1 - esn4u 

dn 2u = dn2u - k 2 sn2u cn2u 
1 - esn4u 

( 11.4) 

( 11.5) 

(11.6) 

We extend the definitions of sn, cn, and dn from [ - K, K] to [ - 2K, 2K] 
by defining functions s, c, and d as 

2 sn(u/2) cn(u/2) dn(u/2) 
s(u) = ,(11.7) 

1 - k 2 sn4(u/2) 

cn2( u /2) - sn2( u /2) dn2( u /2) 
c(u) = 1 _ esn4(u/2) , 

dn2( u /2) - k 2 sn2( u /2) cn2( u /2) 
d( u) - ------::----:-----'--

1 - k 2 sn4(u/2) 

( 11.8) 

(11.9) 

for u E [ - 2K, 2K]. Here we used (11.4), (11.5), and (11.6) with u replacing 
2u. 

PROB. 11.1. Prove that the functions s, c, and d defined in (11.7), (11.8), and 
(11.9) satisfy the relations 

(a) s'(u) = c(u)d(u), 
(b) c'(u) = s(u)d(u), 
(c) d'(u) = - k 2s(u)c(u) 

for u E [ - 2K, 2K], and that 

(d) s(O) = 0, c(O) = 1 = d(O). 

In view of the result cited in the last problem, we know by Theorem 10.1 
that the s, c, and d defined in (11.7), (11.8), and (11.9) are the only 
functions defined on [ - 2K, 2K] satisfying the hypothesis of Theorem 8.1. 
Since the Jacobian elliptic functions sn, cn, and dn satisfy the hypothesis of 
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Theorem 8.1 on [ - K, K], the s, c, and d defined in (11.7), (11.8), and (11.9) 
agree with sn, cn, and dn on [- K, K] and furnish us with respective 
extensions of the Jacobian elliptic functions on [ - 2K, 2K]. We, therefore, 
define sn, cn, and dn on [ - 2K, 2K] by means of (11.7), (11.8), and (11.9). 
By Prob. 11.1, the extended Jacobian elliptic functions defined on [ - 2K, 
2K] satisfy the hypothesis of Theorem 8.1. By Theorem 9.1, these extended 
functions satisfy the addition formulas (a), (b), and (c) of that theorem. 
Because of this we can again use the "half-angle" formulas (11.7), (11.8), 
and (11.9) to obtain extensions of sn, cn, and dn to the interval [ - 4K, 4K] 
in the same way in which we obtained extensions from [- K, K] to 
[ - 2K, 2K]. This procedure can be applied inductively to any interval 
[ - 2nK, 2nK] where n is a positive integer. The union of these intervals is IR 
(explain). We now have sn, cn, and dn defined on all of IR. Moreover, they 
satisfy the addition formulas (a), (b), (c) of Theorem 9.1 on IR. Also, the 
extensions of the Jacobian elliptic functions were obtained in a manner 
preserving the property of satisfying the hypothesis of Theorem 8.1. We 
now have: 

If u and v are in IR, then sn, cn, and dn satisfy (11.1), (11.2), and (11.3). 

PROB. 11.2. Prove: If u E IR, then 

sn( - u) = -snu, cn( - u) = cnu, and dn( - u) = dnu. 

(Previously, these were known to hold only on [ - K, K].) 

PROB. 11.3. Prove: If u E IR and v E IR, then 

(a) 

(b) 

(c) 

sn( u - v) = sn u cn v dn v - sn v cn u dn u , 
1 - e sn2u sn2v 

cn( u _ v) = cn u cn v + sn u dn u sn v dn v , 
1 - k 2 sn2u sn2v 

dn( u _ v) = dn u dn v + k 2 sn u cn u sn v cn v . 
1 - e sn2u sn2v 

PROB. 11.4. Prove: If u E IR, then 

sn( u ± K) = ± dcn u , 
nu 

and 

cn(u ± K) = "+ k' dsnu , 
nu 

k' 
dn(u±K)=-d ' nu 

sn(2K) = 0, cn(2K) = -1, dn(2K) = 1. 

PROB. 11.5. Prove: If u E IR, then 

sn(u ± 2K) = -snu, cn(u ± 2K) = -cnu, dn(u ± 2K) = dnu. 

We see from the last relation that dn is periodic with period 2K. 
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y 

Graph of sn for 2- 1/ 2 < k < I 

(K,I) 

u 

Figure Il.l 

FROOF. 11.6. Prove: If u E IR, then 

sn(u + 4K) = snu and cn(u + 4K) = cnu. 

FROB. 11.7. Prove: dn u > 0 for all u E IR and, moreover, 0 < k' ..;; dn u ..;; 1. 

FROB. 11.8. Prove: (a) If K < u < 3K, then cnu < 0; (b) if 0 < u < 2K, 
then snu > 0; (c) snu < 0 for 2K < u < o. 

FROB. 11.9. Prove: (a) sn is strictly increasing on [- K, K] and strictly 
decreasing on [K, 3 K]; (b) sn is strictly concave on [0, K] and strictly 
convex on [ - 2K, 0] (see Fig. 11.1). 

FROB. 11.10. Prove: (a) cn is strictly decreasing on [0,2K]. (b) If 0 < k 
..;; 2- 1/ 2, then cn is concave on [-K,K] and convex on [K,3K]. (c) If 
2- 1/ 2 < k < 1, then cn is concave for u such that - Uo < u < uo, and 
convex for u such that Uo < u < K, where sn Uo = 1/ kfi (see Fig. 11.2). 

y 
Graph of en for 2- 1/ 2 < k < I 

(0, 1) 

K 2K 
-~--~'----'--+-----'~y-3K' 

'" ~ 
(2K, -1) 

Figure 1l.2 

(4K,I) 

• 4K u 
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y 
Graph of dn for 2- 1/ 2 < k < 1 

(2K, 1) 

-K ko K 2K 

Figure 11.3 

FROB. 11.11. Prove: (a) dn is strictly decreasing on [0, K] and strictly 
increasing on [K, 2K]. (b) If Uo is such that sn Uo = 1/ Ii = cn uo, where 
0< Uo < K, then dn is concave on [ - uo, uo] and convex on [uo, K] (see Fig. 
11.3). 

12. Other Elliptic Functions and Integrals 

We go back to 

sn-l(x,k) = fox 1 dl, 
o ~"ft_k2/2 

-l";;x";;1. (12.1 ) 

Using the substitution I = sinO, 0 E [- 'IT /2, 'IT /2] so that dl = cosO dO, we 
have 

- 1 k _ foArcsin x 1 ~'O sn (x, ) - UI • 

o "ft - k 2 sin2fl 
(12.2) 

One often writes </> = Arcsin x and 

(12.3) 

We, therefore, have 

F(k,</» = F(k,Arcsinx) = sn-l(x,k). (12.4) 

Other elliptic integrals are 

E(k,</» = fo<l>"ft - esin2fl dO (12.5) 

and 

II(k,n,</» = (<I> 1 dO. (12.6) 
Jo "ft + n sin2fl "ft - k2sin2fl 
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These are different forms for the elliptic integrals of the second and third 
kind, respectively (see Section 8). Using the substitution () = Arcsin t, d(} 

= (I - t2)-1/2dt, we obtain 

E(k,cp) = (</>b - esin2() d(}= (sin</> b - k 2t 2 dt 
Jo Jo,f1=t2 

(12.7) 

and 

II(n,k,cp) = L</> d(} 
o (I + n sin~ )b - k2sin2() 

LSin </> I = ~ 
o (I + nt2),f1=t2 ~I - k 2t2 

(12.8) 

Writing x = sincp, these become 

Lx 'VI - et2 
E(k,Arcsinx) = dt 

o ,f1=t2 
( 12.9) 

and 

II(n,k,Arcsinx) = rx I dt. 
Jo (I + nt2),f1=t2 ~I - et2 

(12.10) 

In (12.9) we use the substitution t = sn u, dt = cn u dn u du to obtain 

Lx ...jI - k 2t 2 Lsn-1x d E(k,Arcsinx) = dt= nu cnudnudu 0,f1=t2 0 cn u 

(sn- 1x (sn-1x 
= Jo dn2u du = Jo dn2t dt. 

Put u = sn -IX. Then x = sn u, and we have 

E(k,Arcsin(snu» = foudn2tdt. 

Suppressing k, we define E by means of 

E(u) = LUdn2tdt. 

Note that E(O) = O. 

PROB. 12.1. Prove: 

Io u 2 _u-E(U) 
sn tdt- 2 • 

o k 

(12.11 ) 

( 12.12) 

(12.13) 
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The definite integral 

E(K) = E(k,Arcsin(snK» = foKdn2tdt (12.14) 

is known as the complete integral of the second kind. Note that since 
snK= 1, we have ArcsinsnK= 7T/2 and from (12.12) that 

E(K) = E(k,7T/2) = foKdn2tdt. (12.15) 

Because of this, we obtain from (12.9) 

In ! ~1 - k 2t2 
E( k, 7T /2) = E( K) = E( k,Arcsin 1) = dt. 

o ~ 

PROD. 12.2. Prove: 

F(k,7T/2) = In'IT/2 I dO= u(l,k) = K. 
o b - k2sin20 

We obtain next an addition formula for E(u). First we ask the reader to 
solve the following two problems: 

PROD. 12.3. Prove: 

dn2(c + u) - dn2(c - u) = -4k2 snucnudnusnccnc2dnc . 
(I - k2 sn2usn2c) 

PROD. 12.4. Prove: 

sn( c + u)sn( c - u) = sn2c - sn2u 
1 - k 2 sn2c sn2u 

By (12.13) we obtain, after substituting and differentiating, 

fu E(c + u) = dn2(c + u) 

and 

This implies that 

(12.16a) 

(12.16b) 

f (dn2(c + u) - dn2( c - u»)du= C' + E(c + u) - E( c - u), (12.17) 

where C' is some constant. 
In view of Prob. 12.3, it follows from this that 

-J 4k2 snucnudnusnccnc2dnc du= C' + E(c - u) + E(c + u). 
(1 - k2 sn2usn2c) 
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This implies that 

2snec~edne J- 2k2 sn2esnucnudnu2 du = C' + E(e - u) + E(e + u). 
sn c (1 - k 2sn2usn2e) 

Since 

fu (1 - esn2usn2e) = -2k2 snucnudnusn2e, 

(12.18) implies that 

(12.18) 

2snecnedne 
sn2e 

2 1 Zu 2 = C" + E( e - u) + E( e + u), 
l-k sn snc 

(12.19) 

where C" is some constant. Replacing u by e here yields 

2snecnedne 1 = C" + E(2e). 
sn2e 1 - k 2 sn4e 

(12.20) 

Now subtract (12.20) from (12.19) and obtain 

E(e + u) + E(e - u) - E(2e) 

= 2snecnedne ( 1 _ 1 ) 
sn2e 1 - k 2 sn4e 1 - k 2 sn2u sn2e 

2k2 sn e cn e dn e sn2e - sn2u 
1 - k 2 sn4e 1 - esnZusn2e . 

Using Prob. 12.4, we obtain from this 

E(e + u) + E(e - u) - E(2e) = 2k2snecnedne sn(e + u)sn(e - u) 
1 - k 2 sn4e 

(12.21 ) 

for u and e in IR. In view of (11.4), of which we now know that it holds for 
all u E IR, (12.21) can be written 

E(e + u) + E(e - u) - E(2e) = k 2sn2esn(e + u)sn(e - u). (12.22) 

We now put x = e + u, y = e - u, so that x + y = 2e and obtain 

E(x) + E(y) - E(x + y) = k 2sn(x + y)snxsny, 

or that 

E(x + y) = E(x) + E(y) - k 2sn(x + y)snxsny. (12.23) 

This is an addition formula for E. 
We mention one more elliptic function. We put E = E(K) (see (12.14» 

and define Z by means of 

(12.24) 
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This is known as Jacobi's zeta junction. 
From the definition of Z we obtain, in view of Prob. 8.3, 

PROB. 12.5. Prove: If u E IR, then writing E = E(K), we have 

(a) E(u + K) = E(u) + E - k 2(snucnu/dnu), 
(b) E(2K) = 2E, 
(c) E(u + 2K) = E(u) + 2E, 
(d) E( - u) = - E(u). 

PROB. 12.6. Prove: For the Jacobi zeta function Z, we have 

(a) Z(u + v) = Z(u) + Z(v) - k 2 snusnvsn(u + v), 
(b) Z(O) = 0, z(K) = 0, Z( - u) = - Z(u), 
(c) Z(u + K) = Z(u) - k 2(snucnu/dnu), 
(d) Z(u + 2K) = Z(u) for all u E IR. 
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(12.25) 
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