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Micky: Ancora una volta, tutto quello che faccio,
lo faccio per te.



Preface

History

In 1972, I took a summer course from the late Ken Ireland at Bowdoin
College. I was a new high-school teacher attending a four-summer NSF
institute leading to a master’s degree. For close to fifty years, I had wanted to
create a book for mathematics majors based on Ken’s course, his typed notes,
and the accompanying experience of learning from his lectures and discus-
sions during his office hours. Now I have done so, and you are holding it in
your hands or reading it on a computer monitor. I had three reasons for
writing this book:

(i) As a capstone course for majors, it ties together much of undergraduate
mathematics in ways that situate topics in the history of the subject and
that make connections to major themes in the discipline. It is not that
the mathematical topics have direct connections to the content of any
particular course (although many do); rather, they provide valuable
background that can be used to place that content in the broad land-
scape of mathematics as a scientific discipline. One of Ken’s premises
was that there are dozens of famous mathematical results that are part
of the “folklore” of many of the courses that undergraduates take.
Some of those results go back to the Greeks. Some come from arith-
metic, number theory, and analysis, and some involve classical alge-
bra. His course developed the mathematics needed to prove a large
collection of these results.

(ii) Most “content courses” for undergraduates use a classical structure and
pedagogy; general results are developed with proofs, and then the
results are applied to several concrete situations. This is a wonderfully
efficient and elegant structure for presenting established results, but it
misses some of the messiness and false starts that are so typical of
doing (as opposed to learning) mathematics. Ken’s style was much less
formal; it was based much more on filling in details and background
for problem sets that provide practice with technique, to be sure, but
also preview ideas that might not get nailed down until later in one’s
mathematical career. This kind of immersion in doing mathematics has
been one of the inspirations for my teaching and for the approach that
my colleagues and I take to professional development for practicing
teachers. The other is my collaboration with Glenn Stevens in Boston
University’s PROMYS for teachers, also organized around experience
before formality. I have seen how an immersion experience in math-
ematics is a jump start for many people, helping them develop the

For example, the fact
that p is irrational is
part of the folklore of
precollege mathematics—
often stated but
never proved. So too
with the fundamental
theorem of algebra.
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disposition and habits needed to make sense both of more traditionally
organized courses and of mathematics in practice.

(iii) In addition to a dive into classical content, this book gives students a
real sense of mathematical culture—its history, its norms, and even its
humor. The book is full of anecdotes about mathematicians, examples
of milestones in the history of mathematics, and stories about life as a
mathematician. Ken was a master at this, a consummate mathematician
who loved to tell stories and make jokes. “Problem 17 is left out due to
lack of space.” “Hint for Problem 23: See Problem 17.”My experience
is that this kind of playfulness draws people into the culture. It cer-
tainly had that effect on me.

Some will look at the book and say that it has holes. And indeed it does,
but that, too, is on purpose. It makes assumptions about what the reader
knows (a little field theory, for example). Although I have triaged some
of these, I think leaving things to the reader is important, because having to
act on insufficient information reflects reality. We routinely face problems
that arrive without having asked us what chapter we just read. I have included
citations that help students look up material for themselves.

The book is aimed at students who have the equivalent of the first two or
three years of undergraduate mathematics, but it would work for students
with less background if they have the disposition and drive to fill in some
gaps. Instructors may need to (re)introduce some common notation—Z, Q,
and so on.

The Ireland course had a huge influence on my teaching and career, and
this book is my attempt to preserve his work and share it with others. I hope
that it will help students and readers bind together undergraduate studies and
give them a big-picture view of the landscape they want to tour with their
own students or in their future mathematical work.

—Al Cuoco

From Ken’s Original Preface

These notes represent a series of thirty lectures delivered to an enthusiastic
and capable audience of sixty-four secondary school teachers. The purpose
of the course was to acquaint the student with several mathematical struc-
tures, their interrelationship and fundamental properties. At the same time,
technique was developed through exercises. As the lectures proceeded, two
hundred exercises were distributed so that the students could acquire
manipulative skills and encounter the limitations in actual practice of general
theory. The exercises cover special cases of Galois theory, Fourier series,
field theory, symmetric functions, modular arithmetic, and so forth. Discus-
sion resulting from the problems generated supplements, expanded chapters,
and a deeper study of certain concepts.

The fundamental theorem of algebra was examined from several points of
view, and its algebraic-analytic aspect thoroughly discussed. An interest in
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numbers not algebraic over the rationals led to a chapter on irrational and
transcendental numbers.

The use of orbits in elementary group theory shows, beyond a doubt, that
reasonably sophisticated results can be obtained with very little effort. The
Sylow theorem on existence of subgroups in a group, while appearing here at
the end of Chapter 2, was proved toward the end of the course, as a result of
interest generated by the problems. The underlying theme of Galois theory
sprinkled through the lectures and exercises would have led to a proof of the
fundamental theorem, had time permitted.

The analytic portion of the lectures entered with the fundamental theorem
of algebra and continued with an elementary treatment of classical Fourier
series. After a tedious proof of the transcendence of p, it was refreshing to
find simple regular expressions for this number arising from trigonometric
expansions of simple functions. A sophisticated link with Chapter 2, on
pentagons and modular arithmetic, is achieved by the evaluation of the
classical Gauss sum, a sum of roots of unity appearing in the construction of
regular polygons. The central result in the Fourier series chapter is the simple
proof of convergence due to Dirichlet. The simplicity of this result is often
obscured in texts that develop the theory more extensively or are primarily
concerned with physical applications.

The constant interplay between basic concepts and the frequent capturing
of substantial results, along with the wonderful cooperation and enthusiasm
of the members, of course, made the adventure a great pleasure for me.

I wish to thank Bowdoin College and NSF for giving me the opportunity
to work with the participants of the program. Special thanks also to Nancy
MacDonald, who did a fantastic job of keeping abreast of the daily ream of
lecture notes.

—Kenneth Ireland
August, 1972

From Ken’s Original Preface ix
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Using This Book

For Readers

This is not your grandmother’s mathematics book. Rather than a “dogmatic
exposition of an established theory” [9], think of this book as a guided tour of
some major themes in modern mathematics. It is based on a course given by
Ken Ireland in 1972, so a great deal has happened since then. Most notably,
the celebrated Fermat conjecture (that there are no triples ða; b; cÞ of positive
integers such that an þ bn ¼ cn for n[ 2 is now a theorem, established in the
1990s. And the use of computational technology (including computer alge-
bra), now a mainstay of mathematics research, was in its infancy in the
1970s. So I have added sections that address these and other advancements,
but I have tried to stay faithful to the playful and parsimonious style of Ken’s
original notes—typescript and handwritten notes that I have hung onto all
these years.

The book begins with a chapter called “Dialing In Problems.” It contains
eight problem sets, each designed to help you “dial in” to several mathe-
matical structures and theories. I can’t stress the following enough:

These problems make up the heart of what you’ll learn from this book.
The chapters exist to support your work on the Dialing In problems.

The sets are split into smaller numbered sections, each one prefaced with a
note about the main themes developed in that set. Each set also contains
problems that deepen earlier results and methods and preview upcoming
ideas, often with special cases of theorems that will be proved later in more
generality. The purpose of this setup is to develop interconnections—for
example, connections between algebra and geometry or between analysis and
arithmetic.

If you are using the book as a text for a course, your instructor will have
more to say about how the Dialing In problems are be assigned and used.
Here’s my advice (from someone who has lived with these problems and
used them with students for decades) about how they can be most useful:

Look over each set before you dig in. Look for problems that look familiar and try
them. And make a mental or real list of the problems that make no sense (because of
either vocabulary or notation). If a problem makes you wonder or scratch your head,
that’s good. The Dialing Ins are meant to be tried and tried again. Feel free to skip
around and to revisit a problem after you have given it some time to percolate.

While each section contains a mix of problems, each of them can be
supported by chapters in the book:

• Set 1 is a tour of some ideas that are developed in Chapter 2, a chapter that
introduces some of the main structures and themes developed in the
book—complex numbers, finite fields, group theory, and number theory.

Using This Book xi



• Set 2 is supported by the ideas in Chapter 3, a chapter that develops
unique factorization in Z and introduces formal Dirichlet series as a tool
to investigate questions in arithmetic.

• Set 3 deepens some of the ideas and methods in Chapter 3 and develops
some concrete experiencewith the algebraic tools that are used in Chapter 4.
If you like to calculate in old-fashioned algebra (as I do), this set is for you.

• Set 4 offers more classical algebra, including a heavy dose of what was
once called the theory of equations—expressing the roots of a polynomial
equation as expressions in its coefficients. Chapter 4 provides support.

• Set 5 revisits and deepens some algebraic and arithmetic ideas and results
from the previous chapters—field theory, group theory, polynomial
algebra, and arithmetic. It previews some ideas that will come up in
Chapter 5 around irrational real numbers.

• Set 6 introduces in earnest the analytic themes of the book (there are
previews before this). Use Chapter 5 as a resource. In this chapter, you will
study the proofs of the irrationality and transcendence of some classical
constants that show up in precollege mathematics (such as p and e).
In this set, you will see some of the ideas that motivate the proofs in
Chapter 5, but you will also revisit some old friends from the previous
chapters.

• Sets 7 and 8, the last two Dialing Ins, cover a wide swath of beautiful
mathematics, folding Fourier series into the mix of algebra, number
theory, and analysis, with lots of trigonometry and beautiful series cal-
culations for added measure. Use the last two chapters of the book as a
resource.

After you have worked through a chapter or two, look back at the Dialing
Ins. Just think about what you have learned. It will make you smile.

There are also exercises at the end of most sections. These are closely tied
to the sections themselves, and they provide practice and extensions of some
of the ideas introduced in the section. Some of them are previewed in the
Dialing In sets.

In addition to the Supplement sections that Ken mentions in his intro-
duction, there are also sections labeled Lookout Point and Take It Further.
These are digressions into related topics or deeper dives into the ideas pre-
sented in the chapter. Many of them are accompanied by citations to other
works. They can often be skipped, but doing so would be a shame.

The main point I want to make is that this book is an invitation to do
mathematics. Yes, you’ll learn about many results and develop many tech-
niques, all curated by a brilliant mathematician (Ken, not me) and teacher.
But what is more important is that you will experience the thrill of your own
mathematical thinking.

About prerequisites: I want to say that there are none, except for the drive
and stamina needed to work on hard problems and ideas. More realistically,
the formal prerequisites for this book are standard courses in abstract algebra
and real analysis. However, readers without these courses, do not despair!

Of course, you can use, this
material in any way you
like, but the preferred
sequence is try, study, try
again.
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The process of learning mathematics need not always be linear; with a spirit
of inquiry and some extra reading, the background material can be acquired
as you go along. If you come across a term or result that you haven’t
encountered before (or perhaps you have, but it didn’t stick), look it up.
Internet searches of the kind we have now didn’t exist when I started
teaching, but now they are ubiquitous. (Warning: The quality of search
results varies wildly.) Keith Conrad’s website [12] is a wonderful resource,
beautifully written and thorough. There are others, and if you are using this
for a text or resource in a course, your instructor will surely have a stash of
good references. As for published books, most of what is needed here is
developed in [19, 41, 53, 70].

And finally, spending as much time as you can working on the Dialing In
problems, looking up terms or results when they do not make sense, will
enhance your enjoyment and understanding of the expository parts of the
text.

I’ll bet that a great deal of this preface makes little sense right now. Think
of it as a kind of Dialing In. After you have worked through a couple of
chapters, come back and try again.

For Instructors

The advice in the section above was for readers of the book. But for instructors
who are thinking about using it as a text or resource for a course, a piece of that
advice still holds: this is not your grandmother’s mathematics text.

A central feature of the design is the Dialing In problem sets. They are
based on problem sets that were handed out in waves during the original
course, roughly one set (15–20 problems) each day or two. They contained
reviews, previews, and études. Like the celebrated Ross–PROMYS [81] and
PCMI [82] problem sets, students should not (and will not) be able to
complete all of the problems when they are first introduced. So to distinguish
them from the section-specific Exercises, I have numbered them consecu-
tively, 1–200, and placed them in the first chapter, sectioned off, with advice
about how to use them. Each Dialing In problem is a kind of open invitation
to explore an idea or a connection among ideas. Students will get the most out
of the book if they spend most of their time Dialing In before ideas are
elaborated in lecture, and of course afterward as well. Indeed, in the original
course, lectures were often inspired by ideas that arose from students’
attempts to approach this or that problem. It would be fun for you and your
students to build an occasional lecture that is a riff on what students have
done in the Dialing In sets.

Dialing In supports an approach to learning mathematics that my col-
leagues and I call experience before formality. In the last decade, this design
principle has gained traction among instructors at all levels. It goes by several
names these days, each a variation on the theme of active learning,
inquiry-based learning, exposure before closure, and many others. Teachers
at all levels who have taught in this way cite many benefits; one of the most

And by the way, many
of the citations used in the
chapters refer to other
books, some very old. If
you don’t have ready
access to some of these,
you can use the good old
internet.

The Epilogue (which
follows Chapter 6) will
say more about this
interplay between “doing
and studying.”

Anote on notation: to avoid
a digression into the mean-
ing of Z=pZ, Zp stands
for the field with
a prime number, p, of
elements, identified as
the field of integers modulo
p, even though it often
stands for the p-adic
integers. I hope this doesn’t
irritate anyone.

Even the “flipped class-
room” model can be made
to fit into this genre.
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salient is that students retain what they learn and use it in ways that are
faithful to how mathematics is done.

The Ireland course was decades ahead of its time in this regard, and I still
remember how unsettling it was for many teachers in the class (“why doesn’t
he just tell us how to do it?”). Working intensely on problems in tandem with
learning from lectures and explanations has had a profound effect on my own
approach to teaching and learning. And I am convinced that before grad
school, all of the mathematics I really understood (rather than simply learned)
had its roots in the experience before formality structure of Ken’s course.

This book is based on an intense residential course for practicing
high-school teachers that ran for six weeks, two hours a day, five days a
week. That model is perfect for this material, but what about the more
realistic situations faced by most faculty? Here are some thoughts, gathered
from my experience and that of colleagues.

(i) Many states now require that teachers enroll in a content-based mas-
ter’s program early in their careers. The NSF teacher institutes in the
1960s and 70s were also aimed at early-career teachers. This material
would fit perfectly with such programs, as a full course or as selections
curated from the text (see item iv below for examples of curations).

(ii) For all the reasons listed in the preface, this material would make a
great capstone course for mathematics majors. But don’t be fooled by
the fact that this is a thin book. It covers a wide swath of modern
mathematics, and it treats it in depth with a minimum of pedantry. If
students really dig into the problems as they learn the material, the
book can easily fill a semester. For example, a semester course that
meets twice a week for 80-minute sessions might go like this:

• Weekend homework is the Dialing In for the upcoming week.

• Tuesday: class begins with table/small group discussions of Dialing
In problems (15–20 minutes). Then

– 20–25 minutes of lecture
– 30 minutes of work on the Exercises specific to that section
– 10 minutes of reflection and presenting

• Homework for Thursday: work on the remaining Exercises and
Dialing In problems.

• Repeat

This structure can be easily adapted to a flipped classroom by
switching out the lecture for a preclass video.

(iii) Selections from the book are ideal fodder for seminars for advanced
students. A good example is Chapter 4, which offers different takes on
the fundamental theorem of algebra. Especially for preservice teachers,
this is a valuable piece of background for talking about historical
developments and different approaches. The fundamental theorem of
algebra lives in the folklore of high school, and without an

If cuts have to be made,
consider the fact that
although algebra, analysis,
and number theory
rear their heads throughout,
the front half of the
book is more algebra than
analysis, and then things
switch in Chapter 4.

Many of the alumni of
those NSF institutes
(including the Bowdoin
program) contributed to
the directions that
high-school mathematics
took throughout the last
century.

For 50-minute classes,
some days could be
mostly student work and
some could be mostly
lecture.

Chapter 5 is another
good choice for this
audience, but it may be a
little steep for students
without solid algebra and
analysis backgrounds.
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understanding of the essential “analytic step,” it is all too easy (as
some books do) to fall into the trap of Exercise 4.12.

(iv) Sections of the book could enhance a number of standard under-
graduate courses:

• Sections 2.1–2.3 and 3.1–3.4 fit nicely into an elementary number
theory course.

• Sections 2.3–2.6 and 3.1–3.3 make ideal units for a first abstract
algebra course.

• Sections 5.1–5.5 make a good basis for an extended project in an
analysis course.

These are just examples of how the book can be used as a flexible resource
for many undergraduate courses. My hope is that however you use these
materials, you will find in them ways to fuel your imagination and that of
your students.
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Recollections from Colleagues and Friends

From Michael Rosen

I began my career as an instructor of mathematics at Brown University in
September 1962. Ken came to Brown as an assistant professor a few years
later. Soon after his arrival on campus, we became friends, partly because we
had many interests in common, e.g., number theory, algebraic geometry,
literature, poetry, and classical music.

For a while we shared an office. I soon discovered that Ken was a fas-
cinating individual with a keen intellect, a wonderful dry sense of humor, and
a zest for life. I found Ken to be one of the most engaging and interesting
people I would ever know.

He came to Brown after receiving his Ph.D. degree from Johns Hopkins
University under the direction of Bernard Dwork. He spent a year or two at
Brandeis University before coming to Brown. As it happened, I received my
BA degree from Brandeis in 1959. Our paths were destined to cross early and
often.

At first, Ken and I shared an office on the first floor of Howell House, a
rickety old building that housed the Mathematics Department. Ken imme-
diately noticed that our office could easily accommodate a ping-pong table.
We rented and installed such a table and soon became very popular with our
colleagues, who would show up often for “a game or two.” This was great
fun, but not at all conducive to serious work. We soon abandoned both our
office and the ping-pong table for two small individual offices on the third
floor. Our productivity immediately increased.

Ken brought to my attention a short, but very influential, paper by the
world-famous mathematician André Weil. The title of Weil’s paper was
“Number of Solutions of Equations in a Finite Field.” Toward the end of this
paper, Weil formulated three conjectures that became the focus of research in
arithmetic-algebraic geometry for many years. The first conjecture was
proved by Ken’s thesis advisor, Bernard Dwork. The second was proved
primarily by Alexander Grothendiek, and the third, the Riemann hypothesis
for varieties over finite fields, was proved by Pierre Deligne. Weil’s paper
gave evidence for his conjectures by showing that they were true in special
cases. All these conjectures were proved with the use of new and very
difficult theorems in algebraic geometry. These were far from being acces-
sible to beginners. However, we noted that the results in Weil’s paper were
relatively elementary and could be made understandable to advanced
undergraduates and beginning graduate students in mathematics. Thus was
born our project of writing a number theory book with the goal of presenting
all the background needed to be able to read and understand Weil’s paper
discussed above. Our first book in this direction was Elements of Number
Theory: Including an Introduction to Equations over Finite Fields. It was
published by Bogden and Quigley in 1972. Subsequently, Bogden and
Quigley went out of business. However, Springer-Verlag agreed to publish a
greatly expanded version of our book with the title A Classical Introduction
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to Modern Number Theory [41]. This was published in 1982. A second
edition appeared in 1990. Unfortunately, before the second edition appeared,
Ken Ireland passed away, suddenly, and prematurely, in 1991.

The University of New Brunswick, where Ken taught from 1971 to 1991,
established an annual lecture series in his honor entitled “The Ken Ireland
Memorial Lecture.” I was very pleased to have been asked to give the first
lecture in this series, on November 2, 1992. The title of my talk was “Niels
Henrik Abel and Equations of the Fifth Degree.”

I have many fond memories of our relationship. When we were both at
Brown, I would occasionally visit the Math Department after dinner to work
in my office. On entering the building I would often find Ken, alone in the
Common Room, playing classical music on his flute. The beautiful music
would follow me up the stairs. He was a truly unique and memorable indi-
vidual. To this day, I still miss him.

—Michael Rosen, Professor Emeritus, Brown University

From Ken Ribet

When I arrived at Brown University in 1965, I thought that I would major in
mathematics but had no sense of what a mathematics student might study in
college. I was turned on to abstract mathematics by my first professors—
Frank M. Stewart and Allan H. Clark. As Clark’s course on abstract algebra
was coming to a close, I met Ken Ireland by chance in the Brown math
building (Howell House). After I told Ireland what I was studying, he
challenged me to cite examples of abelian Galois extensions. I replied
immediately that extensions of finite fields were cyclic. Ireland agreed that
this was the case but then asked me about number fields. Cyclotomic
extensions were on his mind. At the end of our discussion, Ireland suggested
that I read an article about roots of unity. He handed me André Weil’s
celebrated 1949 article “Numbers of Solutions of Equations in Finite Fields.”
This was the article that corresponds to the Weil conjectures about the
cohomology of algebraic varieties over finite fields. The article is totally
elementary (and very clearly written); I could follow every word. I returned
to see Ireland not long after our initial encounter and reported that I had
finished Weil’s paper. “Great! Now read this one.” Ireland was asking me to
study Weil’s “Jacobi Sums as ‘Grössencharaktere,”’ which I was able to do,
more or less. (I had no sense that Weil was computing the Hasse–Weil zeta
function in special cases.)

As a result of the apparent success of my independent study, Ireland offered
to direct the senior thesis, which I wrote during my last year at Brown. He was
not shy about making recommendations: he told me what literature to read,
where to apply to graduate school, and who my advisor should be at Harvard
—the school that he recommended for my graduate study.

Although Ken Ireland seemed to have a mental block against doing
research on his own, he devoured preprints on all sorts of topics and orga-
nized research-level seminars for discussion of the most interesting papers.
He was a marvelous classroom teacher, and he had a great sense of humor.
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He began the graduate algebra course that I attended with the statement that
the definition of a group would be left as an exercise. While visiting a
middle-school class, he asked the children in front of him to define a point in
mathematics. A kid walked up to the front of the room and drew a dot on the
blackboard. Ireland squinted at the dot and proclaimed, “That’s no point. It
looks like a pile of chalk.”

—Kenneth A. Ribet, University of California, Berkeley

From the University of New Brunswick

Ken Ireland joined the Department of Mathematics and Statistics at the
University of New Brunswick, Fredericton, in 1971. He immediately became
one of its most prominent members in scholarship, teaching, and collegial
decision-making, remaining a leading light throughout his two decades with
us. A colleague recalls that “Ken was a penetrating thinker who could go to
the heart of a problem and solve it with elegant style and transparent rigor.”
His command of mathematics was exceptionally broad and deep, enabling
him to assist colleagues in diverse fields and facilitate their research work,
while keeping abreast of developments well beyond his own immediate fields
of number theory, algebra, algebraic geometry, and analysis. A colleague
working in analysis recalls, “Ken’s example motivated me ... to improve.”
An applied mathematician recalls successful collaborations with Ken on
projects in computational number theory.

He was an outstanding, truly gifted teacher. He inspired the students in his
classes and was exceptionally generous with his time assisting students, not
only those enrolled in his own courses but any students who approached him
for help in mathematics. Many students in mathematics courses are appre-
hensive and lack confidence in their own abilities. A colleague recalls how
Ken helped them overcome these issues by “offering respect to them and
receiving it back,” and by breaking tension with the use of humour that
helped such students to relax and focus on course topics. Another recalled
that he also was a generous mathematical mentor to talented undergraduate
and graduate students.

A superb expositor in general and frequent contributor of talks in the
department’s weekly research seminar series, he inspired others by his
example. These talents were brought to international audiences in the widely
acclaimed book A Classical Introduction to Modern Number Theory, coau-
thored with his long-time collaborator and friend Michael Rosen of Brown
University. This text appeared in two editions, 1982 and 1990, the latter with
additional chapters discussing research advances by prominent number the-
orists during the intervening decade. Both written during his time at UNB,
they made accessible to graduate students some of the most significant results
of mid-twentieth-century research in the field.

Ken actively engaged in recruitment of new faculty, insisting on excellent
research and teaching, while also promoting equity and diversity. He was a
leader in successful efforts to recruit the department’s first two women in
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full-time faculty positions, making this a priority. He helped encourage both
these highly qualified candidates to accept UNB’s offers by being knowl-
edgeable about their specialties. One recalls, “Ken knew all about my thesis.”

His interest in improving mathematical education in schools and experi-
ence in summer NSF programs for school teachers in the United States led to
securing a joint appointment between our department and UNB’s Faculty of
Education. His knowledge and active engagement at UNB in this area, along
with personal persuasiveness, were key factors in the two relevant deans and
the vice-president agreeing to authorize the joint position. Both women that
Ken helped recruit were granted tenure and made many significant contri-
butions during their careers at UNB.

Ken also was an inspiration in cultural and intellectual matters, encour-
aging others to broaden their horizons. A dedicated amateur flautist, he
occasionally gave public recitals, both solo and accompanied by other
musicians. He preferred challenging scores, with J. S. Bach his favourite
composer. He had wide literary interests, including novels and poems by
Russian, German, and Austrian writers, which he read in the original lan-
guages. His profound understanding of the history of mathematics shone in
the course he regularly taught, which always attracted substantial enrollments
of students in diverse degree programs. At the time of his death, Ken was
well advanced in a manuscript on the history of reciprocity laws in number
theory. It extended from the conjecture by Euler and first proofs by Gauss
through the many generalizations and applications by others during subse-
quent centuries.

Ken’s life and work are honoured by the Ken Ireland Memorial Schol-
arship (two are awarded annually to UNB undergraduates) and the annual
Kenneth Ireland Memorial Lecture series delivered at UNB by distinguished
mathematicians. Topics in the lectures have represented a wide range of
mathematical fields, as may be illustrated by a partial list of speakers from the
three decades of the series: Michael Rosen (Brown University—the first in
the series), Yuri Bahturin (Lomonosov Moscow State University), Gilbert
Strang (Massachusetts Institute of Technology), Nigel Higson (Pennsylvania
State University), Kenneth Ribet (University of California, Berkeley), Kumar
Murty (University of Toronto, the most recent in the series).

—Bruce Lund, Gordon Mason, Barry Monson, Nora NiChuiv,
Donald Small, and Jon Thompson.
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1 Dialing In Problems

In case you forgot or didn’t read (ahem) the purpose of the Dialing In problem
sets in the preface, these are problems for you to try before (or in tandemwith)
your formal instruction or reading. They cover a wide range of topics. Some
of them will not be familiar to you. But try them now, look things up (in this
book, for example), and come back to them as you proceed through the text.

1.1 Dialing In Set 1

1. Find the solutions in C to x4 + 1 = 0.
2. Find all primitives in Z17.

In this book, Zp stands for
the ring of integers modulo
p, while Z∗p stands for the
nonzero elements of Zp .
See Section 2.2.4 for the
meaning of primitive.

3. Show that

cos 4x = cos4 x − 6 cos2 x sin2 x + sin4 x.

4. Show that there are infinitely many primes p ≡ 3 (mod 4).
5. Find a group of order 16 such that every element different from the iden- For inspiration, how about

a group of order 4 in
which every nontrivial
element has order 2?

tity has order 2.
6. Find the subgroup of order 4 in Z∗13.
7. Calculate the subgroup of cubes in Z∗19 and Z

∗

37.

8. Find all groups of order 4.
9. Let E ⊃ F ⊃ K be three fields. Suppose that E is a vector space of What does it mean for

a vector space to have
dimension n over F?dimension n over F, while F is a vector space of dimension m over K .

Show that E is a vector space of dimension nm over K .

10. Find an irreducible polynomial with rational coefficients that has
√

2+
√

3
for a root.

11. Show that if G is a cyclic group of order n, then there is exactly one
subgroup of order m for each m ∣ n.

12. Show that if p is prime, then there is a polynomial in Zp[x] with no root.

13. Find an irreducible polynomial in Z2[x] of degree 4.
14. Show that −3 is a square in Zp if and only if p ≡ 1 (mod 3). Give

examples.

© Springer Nature Switzerland AG 2023
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2 Chapter 1 Dialing In Problems

1.2 Dialing In Set 2

Welcome to a new installment of Dialing In. As usual, it contains some look-The intriguing question
of representation by sums
of squares is taken up in
Section 3.4. Let us see
what we can work out for
ourselves with the tools
we already have.

ing back and some previews of coming attractions. The previews include a
visit with the following intriguing question: given an integer, in how many
ways can it be expressed as the sum of two perfect squares? Try a few exam-
ples and see what you can see. Looking back, we revisit some group and field
theory. There’s plenty here to appeal to a wide variety of interests. So pick
and choose and have fun.

15. Factor 8 + 7i, 4 + 5i, 11 + 12i into irreducibles in Z[i].

16 Show that

1 + x + x2 + x3 + x4 + x5 + x6

is irreducible in Q[x].

17. Find a greatest common divisor of 3 + 5i and 1 + 3i.Why a greatest common
divisor and not the
greatest? Stay tuned. 18. Define χ(n) = 0 if n is even, χ(n) = −1 if n ≡ −1 (mod 4), and

χ(n) = +1 if n ≡ 1 (mod 4). Show that χ(ab) = χ(a)χ(b).

19. Show that if γ is irreducible in Z[i], then so is γ.

20. Apply the Euclidean algorithm in Z[i] to

(a) α = 1 + i, β = 6 + 5i,

(b) α = 4 + 3i, β = −1 + 7i.

21. A subset σ ⊆ Z[i] is called an ideal if

(a) α, β ∈ σ⇒ α + β ∈ σ and

(b) α ∈ σ, γ ∈ Z[i] ⇒ αγ ∈ σ.

Show that every ideal in Z[i] is of the form δ ⋅ Z[i].

22. Develop the arithmetic of Z[ρ] = { a+bρ ∣ a, b ∈ Z}, where 1+ρ+ρ2 = 0.See [19, Chapter 8] for
more about Z[ρ].

23. Show that if γ is irreducible in Z[i], than either

(a) γ γ = p for a prime p ≡ 1 (mod 4), or

(b) γ = u q for a prime q ≡ 3 (mod 4) and a unit u ∈ Z[i], or

(c) γ = u(1 − i) for some unit u ∈ Z[i].

24. Define μ(1) = 1, μ(n) = 0 if p2 ∣ n for some prime p, and μ(p1⋯ps) =
(−1)s if p1, . . . , ps are distinct primes. Show that∑d∣n μ(d) = 0 if n > 1,
and conclude that

“Formal Dirichlet series”?

(

∞

∑

n=1

1
ns
)(

∞

∑

n=1

μ(n)
ns
) = 1

as formal Dirichlet series.

25. If (a, b) = 1, a, b ∈ Z, a, b > 0, show that 4r(ab) = 4r(a)r(b).
The representation func-
tion r(n) is defined in
Section 3.4.



1.3 Dialing In Set 3 3

26. Let f (n) be a real-valued function on 1, 2, 3, . . . with f (ab) = f (a) f (b)
when (a, b) = 1. Show that as a formal Dirichlet series,

∞

∑

n=1

f (n)
n2

=∏

p

(

1
1 − f (p)/p2

) .

27. Consider 10 as an element of Zp . For example, 10 = 1 in Z3, 10 = 3
in Z7, 10 = 10 in Z11, . . . . Show that for p ≠ 2, 5, the order of 10 as
an element of Z∗p is the length of the period in the repeating decimal
expansion of 1/p.

It isn’t known whether
there are infinitely many p
for which the order of 10
is maximal, i.e., p − 1.

28. Show that x4 + 7 is irreducible in Q[x]. Is it irreducible in Z5[x]? in
Z11[x]?

29. Show that the only automorphisms ofQ(i) leavingQ pointwise fixed are
the identity map and σ ∶ a + bi → a − bi.

30. Show that the only automorphisms of Q (
√

2) are the identity and σ ∶
a + b

√

1→ a − b
√

2.
31. Compute the Galois group of Q (ζ + ζ−1), where ζ7 = 1, ζ ≠ 1.
32. (a) If G and H are groups with operations ∗ and ⊙ respectively, then

G ⊕ H is the set of pairs (g, h), g ∈ G, h ∈ H, with the operation
(g, h) ⋅ (g′, h′) = (g ∗ g′, h ⊙ h′). Show that G ⊕ H is a group.

(b) Show that an abelian group of order 8 must be isomorphic to G2 ⊕

G2 ⊕G2 ⊕G2 or G4 ⊕G2 or G8, where Gn denotes the cyclic group
with n elements.

33. Find an irreducible polynomial of degree 3 over Z11.

34. Write x41+x
4
2+x

4
3 as a polynomial in the elementary symmetric functions

σ1 = x1 + x2 + x3, σ2 = x1x2 + x1x3 + x2x3, σ3 = x1x2x3 with coefficients
in Q.

35. What is the highest power of p dividing ( n
ps) for a prime p?

36. Look up a primitive in Z41. Use it to solve the equations x5 = 1 and
x8 = 1 in Z41.

37. Is the product of the first n primes plus 1 always prime?

38. Show that there are infinitely many primes ≡ 5 (mod 6).
39. Use the fundamental theorem of arithmetic to show that 5√31 is not ratio-

nal.

1.3 Dialing In Set 3

This Dialing In set is mainly an algebraic excursion (although some analysis
sneaks in). The algebra involves formal polynomial identities (arithmetic in
Z[x], for example) and the connections to polynomial functions and equa-
tions. Many of these problems look at results from high-school algebra in
more general settings. Relax and have fun. And remember: you can pick and
choose and then revisit (over and over).



4 Chapter 1 Dialing In Problems

40. How many subgroups does Z
∗

397 have? Write 397 as the sum of two
squares. Did you know that 5 is the smallest primitive in Z397?

41. The largest prime less than 4000 is 3989. Show that 2 is a primitive inIt is not known whether
there are infinitely many
primes p for which 2 is a
primitive in Zp . This is
Emil Artin’s conjecture.

Z3989.1

42. Carry out the proof of the symmetric function theorem (Theorem 4.10)
for the case of two variables. Does the proof significantly simplify?

43. Consider the ring R[x]. Call two polynomials f and g equivalent if
x2 + 1 divides f − g. We write f ≡ g mod (x2 + 1). Define multipli-
cation and addition of equivalence classes (after you have shown that
the relation between polynomials is an equivalence relation) and show
that the resulting ring is a field isomorphic to C.

This problem asks you
to consider (once again)
Exercise 3.8 in Sec-
tion 3.1.

44. Consider a fixed E with C ⊃ E ⊃ Q. If dimQ E = 2, show that E =
Q(
√

α) = { a + b
√

α ∣ a, b ∈ Q} for some integer α.

45. Let R be a commutative ring with identity. If f ∈ R[x] and f (α) = 0
for some α ∈ R, show that f (x) = (x − α)h(x) for some h(x) ∈ R[x].
(Note: You don’t have a division algorithm in general.)

Hint: Observe that
x − α divides xn − αn

(proof?). Then write
f (x) = f (x) − f (α)
= ⋯ . 46. Show that the matrices of the form ( a b

−b a ) for a, b real form a subfield
of the ring of all 2 × 2 matrices and that this subfield is isomorphic to C

via the mapping

(

a b
−b a

) ←→ a + bi .

What does the norm in Z[i] correspond to?

47. Use the existence of a primitive to proveWilson’s theorem: (p−1)! = −1
in Zp .

48. Suppose that f and g are polynomials of degree n in Q[x]. Show that if
f and g agree on n + 1 values, then they are equal as functions on Q.

49. Construct a field E with p2 elements that contains Zp for p ≡ 3 (mod 4)
by imitating the construction ofC fromR. Determine the automorphisms
of E that leave Zp fixed. What group do you get?

50. Show that if π is irreducible in Z[i], then N(π) is either prime or the
square of a prime.

51. Let f (x) be an irreducible polynomial in Q[x]. If α and β are roots of
f , show that the field Q(α) is isomorphic to Q(β) by an isomorphism
that takes α to β.

52. Use de Moivre’s theorem to show that for each positive integer n, oneIn fact, you will show in
Chapter 6 that cos nx ∈
Z[cos x] (see Exercise 6.1,
part ii). Or show it now—
give it a try.

has

sin nx ∈ Z[sin x, cos x] ,
cos nx ∈ Z[sin x, cos x] ,

where as usual, Z[α, β] means polynomials in α and β.

1Don’t do this problem. [When Ken wrote this footnote, pocket calculators, let alone com-
puters, were not widely available. Go ahead and solve the problem!]
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53. Let S be a set and G a group. Suppose each g ∈ G is also a map from S
to S and denote the image of s ∈ S under g by g(s). Suppose e(s) = s for
the identity e and g1 ⋅ g2(s) = g1(g2(s)) for each s, g1, g2. Put G(s) =
{ g(s) ∣ g ∈ G }. Show that either G(s) = G(s′) or G(s) ∩G(s′) = ∅ for
two elements s and s′ from S.

54. Consider the cubic polynomial x3 + x + 1. Find a polynomial in Q[x]
whose roots are the squares of the roots of the above polynomial.

55. Consider x3 + 4x2 + 2x + 1 Z5[x]. Find the polynomial whose roots are
α1 +α2, α1 +α3, and α2 +α3, where α1, α2, α3 are the roots of the above
polynomial in some extension field E of Z5.

56. Write (x1 − x2)2(x1 − x3)2(x2 − x3)2 as a polynomial in Z[σ1, σ2, σ3],
where in σ1, σ2, σ3 are the three elementary symmetric functions in x1,
x2, x3.

57. Consider ζ12 = cos 2π
12 + i sin

2π
12 . Show that ζ12 + ζ

−1
12 is not a rational

number.

58. Find the polynomial f ∈ Q[x] of lowest degree such that f (ζ12 + ζ−112 )

= 0.

59. Is x4 + x2 + 1 irreducible in Q[x]? Well, x2 + x + 1 is
irreducible in Q[x], right?

60. Consider x3 + ax2 + bx + c = (x − α)(x − β)(x − γ). Find the cubic
polynomial with roots α+ β, α+ γ, β+ γ. Here a, b, c, α, β, γ belong to
a field.

61. Calculate, up to isomorphism, all groups with eight elements.

62. Use the proof of the theorem on the primitive element to construct a
primitive in Z13. Exercises like 60 and 63

give a taste of the sym-
metric function theorem,
which is coming up.

63. Consider f (x) = x3 + ax2 + bx + c = (x − α)(x − β)(x − γ). Find the
polynomial with roots α + β + αβ, α + γ + αγ, and β + γ + βγ.

64. Consider the additive groups in Z5 and Z3. Show that Z5⊕Z3 is isomor-
phic to Z15.

65. (For those who need to review analysis.) Let E ⊂ R×R with E compact. Our definition of compact
is in Section 4.2.Show that if E ⊂ ⋃αVα, where Vα is open and α an arbitrary index set,

then there exist α1, . . . , αn such that E ⊂ Vα1 ∪Vα2 ∪ ⋅ ⋅ ⋅ ∪Vαn .

66. Show that the map x ↦ ∣x∣ of C to R is continuous.

1.4 Dialing In Set 4

This set develops some of the algebraic background that will be useful in our One way to state the
theorem is that every
polynomial with real
coefficients has a root in
the complex numbers.
More is true, as you will
see.

algebraic approach to the fundamental theorem of algebra. And as usual, it
revisits some earlier results and previews some of what is coming up later in
the book. And as usual, pick and choose and come back often.

67. If E ⊃ Q, where E is a field of vector space dimension 3 over Q, show
that E = Q(θ), where θ is a root of an irreducible cubic in Q[x].
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68. Show that log10 7 is irrational.

69. Show that
√

2 +
√

3 is irrational.

70. Calculate the minimal polynomial for
√

a +
√

b, where a and b are
square-free integers.

71. Let A be an integral domain. If α ∈ A, call α irreducible if α = βδ implies
that either β or δ is a unit in A. Show that if Ψ is an automorphism of A,
then Ψ(α) is irreducible if and only if α is irreducible.

72. One of the other problems is a special case of problem 71. Which one
is it?

73. Show that 1, 3√2, 3√4 form a vector space basis for the field obtained by
adjoining to Q the real root of x3 − 2.

74. Find a reducible polynomial over Q with all roots nonreal.

75. Check out Wilson’s theorem explicitly for Z5, Z11, Z13, Z17, Z19. Do not
cheat.

76. This problem is omitted for lack of space.

77. Consider Zp[x1, . . . , xn]. Notice that xp1 + xp2 + ⋅ ⋅ ⋅ + xpn is symmetric.
According to the symmetric function theorem, it must be in Zp[σ1,

. . . , σn]. Which element is it?

78. True or False: problem 77 is a trick. The answer is immediate.

79. Let Ψ be an automorphism of a ring R. Define Ψ∗ on R[x] by

Ψ∗ (a0 + a1x + ⋅ ⋅ ⋅ + anxn) = Ψ(a0) +Ψ(a1)x + ⋅ ⋅ ⋅ +Ψ(an)xn .

If f and g are in R[x], show that Ψ∗ ( f ⋅ g) = Ψ∗ ( f ) ⋅Ψ∗ (g).

80. Let α1, . . . , αn be indeterminates. Consider the polynomial

∏

i<j

(z − (αi + αj + αiαj)) = H(z) .

Show that the coefficients of H(z) are symmetric in α1, . . . , αn.

81. Let

f (x) = xn + an−1xn−1 + ⋅ ⋅ ⋅ + a0 ∈ Q[x]

= (x − θ1)(x − θ2)⋯(x − θn) .

If g(x) ∈ Q[x], show that∏n
i=1 (x − g(θi)) is in Q[x].

82. Factor xp + yp in Zp[x, y].

83. Show that if 0 < m < n, then n(n−1)⋯(n−m+1)
m! ∈ Z.

84. Show that x4 + 6x2 + 1 is irreducible over Q but reducible mod p for all
primes p.
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85. Show that if f is irreducible in Q[x], then in C[x] one has

f (x) = (x − α1)⋯(x − αn) ,

where αi ≠ αj for i ≠ j.

86. Consider F (α) /F, where α is algebraic over F. Let g(α) ∈ F(α). Show
that g(α) is algebraic and the minimal polynomial of g(α) has degree

Hint: Consider the
derivative f ′(x).

dividing the degree of the minimal polynomial of α.

87. Calculate the irreducible monic polynomial in Q[x] that has
√

−1+
√

−2
as a root.

88. Find four real roots of x8 − 47x4 + 1.

Hint: Study “Some
properties of algebraic
extensions of fields” in
Section 2.2.

89. Consider x3 + ax + b = (x − α)(x − β)(x − δ). Express 1
α2 +

1
β2 +

1
δ2

in
terms of a and b.

90. Show that for every real number N > 0, there exist consecutive primes p
and q such that q − p > N .

91. Find an algebraic number α such that αn/∈Q for all n > 0.

1.5 Dialing In Set 5

To finish up this algebraic tour, here is a collage of problems that revisits and
extends some of the algebra we have used from group theory, ring theory,
and polynomial algebra. It also previews some themes about irrationality in
Chapter 5. Enjoy.

92. Consider Z[i]. Show that if N(α) = p, where p is prime, then α is irre-
ducible.

93. Show that the reflections and rotations of an equilateral triangle form a
group of order 6 that is not abelian.

94. Classify, up to isomorphism, all groups of order 6.

95. Calculate the order of 10 mod p for the primes 7, 11, 13, 17, 19 and show
that in each case, it is the length of the period in the repeating decimal
expansion of 1/p.

96. Consider the quartic x4+x+1 mod 2. Find the polynomial Z2[x]whose
roots are the squares of the roots of x4 + x +1 (those latter roots being in
some larger field containing Z2).

97. Calculate the number of irreducibles mod p of degree 3 for low p. Any
conjectures as to a general formula?

98. Although there is space for problem 98, that space has been used by the
present sentence (problems 99 to∞ to follow).

99. If K is a field, show that K[x] has unique factorization.

100. Show that there are infinitely many nonisomorphic cyclic groups each
having no proper subgroup other than the identity subgroup.
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101. Show that there are infinitely many primes by considering n! + 1.
102. Write out the proof of the symmetric function theorem (Theorem 4.7)

for the special case of three variables.

103. Find the minimal polynomial for
√

2 + 3√2.
104. Show that

√

2 + 3√2 is irrational.
105. Write out carefully a proof that the set of algebraic numbers is countable.

106. Construct a field with eight elements.

107. Give an example of a nonabelian group with 2n elements for each posi-
tive integer n.

108. Show that if G is a group with an even number of elements, then there is
an element of order 2 in G.

109. Show that if 3 divides the order of a finite group G, then there is an
element of order 3. Don’t use any general theorems that automatically
give the result (like Cauchy or Sylow).

110. Show that x5 + 6x4 + 18x3 + 463104x + 1155 is irreducible in Q[x].

1.6 Dialing In Set 6

Finally, we get to some analysis. Some of the problems ask you to fill in
details in the proofs in Chapter 5. These proofs all use the same basic method
(proof by contradiction) to show that a cleverly constructed function cannot
exist. The purpose of many of the problems in this set is to show that the
“cleverness” of these functions is no mystery—they are defined as a result
of looking at concrete examples and abstracting off the properties needed to
obtain a contradiction. There is algebra in here, too, just to mix things up.
And some problems belong to more than one mathematical field.

111. Show that every rational number has a repeating decimal expansion.

112. Show that every repeating decimal is a rational number.

113. The irrationality of en follows the same pattern of proof as that of π. CanFor problems 113 and
114, consult the proofs of
Theorems 5.4 and 5.5. you use a similar method to show that πn is irrational? How about π2 for

context.

114. In the proof of the irrationality of π, why won’t x(1 − x)/n! work in
place of xn(1 − x)n/n!?

115. Let f (x) ∈ Z[x] and consider h(x) = xn f (x)/n!. Show that the h(j)(0)
are always integers. Prove also that n+1 divides h(j)(0) for j ≠ n. What
happens at j = n?

116. In the proof of the transcendence of e why can’tAnd for 116, check out the
proof of Theorem 5.8.

xp−1[(x − 1)⋯(x − n)]p

(p − 1)!
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be replaced simply by

[x(x − 1)⋯(x − n)]p

(p − 1)!
?

117. Let ζ9 = cos 2π
9 + i sin

2π
9 . Compute the minimal polynomial for ζ + ζ−1.

118. Show that a + bi is algebraic over Q if and only if a and b are algebraic
over Q.

119. Find the number of representations of 119 as the sum of two squares.

120. Using the theorem of Weierstrass–Lindemann (Theorem 5.2), show that
logα is transcendental for α a nonzero real algebraic number, α ≠ 1.

121. Show that under the assumptions of problem 120, sinα is transcendental The restriction to “real”
is inessential in problems
120 and 121.for α nonzero real algebraic.

122. Show that if α is transcendental, then so is αr for r ≠ 0 and rational.

123. Show that the set of all algebraic numbers in C is an algebraically closed
field.

124. Find the minimal polynomial for
√

7 +
√

11 in Z[x].

125. Use the proof of the transcendence of e (Theorem 5.5) to show that e
does not satisfy a relation of the type ae2+be+c = 0 with a, b, c rational.

126. Show that if f and g are n-times differentiable real-valued functions,
then

( f g)(n) =
n

∑

k=0
(

n
k
) f (n−k)g(k) ,

where f (m) denotes the mth derivative of f .

127. Prove that f (j)(s) is always an integer for s = 1, 2, . . . , n, where

f (x) =
xp−1[(x − 1)(x − 2)⋯(x − n)]p

(p − 1)!
.

128. Show that if E ⊃ F are fields and E is a one-dimensional vector space
over F, then E = F.

129. Use the method of proof for the irrationality of e to exhibit other irra-
tional numbers.

130. Can you use the method of proof for the irrationality of e to show that

1 +
1
2
+

1
(2 ⋅ 3)2

+

1
(2 ⋅ 3 ⋅ 5)3

+ ⋅ ⋅ ⋅ +

1
(2 ⋅ 3 ⋅ pn)n

+⋯

is irrational, where pn is the nth prime?

131. By considering ∫
π/4
0 tannx dx, show that

ln 2 = 1 −
1
2
+

1
3
−

1
4
+⋯ .
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132. Reduce the proof of the transcendence of e to the case n = 1. This gives
a proof of the irrationality of e that does not depend on the series for e.

133. Suppose a finite group satisfies the condition that xd = 1 has exactly d
solutions for every d ∣ n. Show that the group is cyclic.

134. Use the pentagon game of Section 2.2 to find a fifth root of unity in Z41.

135. Show that π does not satisfy a quadratic equation with rational coeffi-
cients.

136. (For those who have done Dialing In problem 53, a really important
problem.) Let G be a finite group and let p divide ∣G∣, p prime. Put

S = {(a1, . . . , ap) ∣ a1 ⋅ a2⋯ap = e, ai ∈ G }

and let Zp = {1, σ, . . . , σp−1
} be a cyclic group of order p that operates

on G by σ (a1, . . . , ap) = (ap, a1, a2, . . . , ap−1). Show that this is a goodThis proof is due to
McKay [55]. action on S, and by counting orbits, show that there is an element of

order p in G (Cauchy’s theorem).

137. Let p ≡ 3 (mod 4) and consider Zp (
√

−1). Show that conjugation is
the pth-power map.

138. Using the mean value theorem, get an explicit estimate for the constantLiouville’s theorem:
Theorem 5.1. in Liouville’s theorem on approximation of algebraic numbers.

139. Can you get an explicit proof of Liouville for 3√2?

140. (For those who have done Dialing In problem 53, still a really important
problem.) Let G operate as a transformation group on a set S. If s ∈ S,
let Is be the subgroup of all g ∈ G such that g(s) = s. Show that the
number of cosets of Is is equal to the number of distinct elements in the
orbit G(s) of s.

141. Let F be a field and α, β, γ ∈ F. Suppose that α + β + γ = 0. Show that
α3 + β3 + γ3 = 3αβγ.

142. Let n be a positive integer. Consider

Ψn(x) = ∏

(j,n)=1
1≤j≤n

(x − ζ j) ,

where ζ = e2πi/n = cos 2π
n
+ i sin 2π

n
. Show that Ψn(x) ∈ Z [x] .

143. A subgroup H of a group G is called normal if aH = Ha for all a ∈ G.
Let G be a group of order pn and H a subgroup of order pn−1. Using
orbits and counting, find a result concerning the normality of H.

144. Compute

'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

1 x y z
1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4

'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

.

145. Consider ζ11= cos 2π
11+i sin

2π
11 . Find the minimal polynomial for ζ11+ζ−111 .
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146. Show that if m > 1, m an integer, then ∣Ψn(m)∣ > (m − 1)s , where s is
the number of positive integers less than n and relatively prime to n.

147. Fill in the blanks: The of is or

Ψn is defined above in
problem 142.

1.7 Dialing In Set 7

Fourier series are added to the mix of Dialing Ins from the first five chapters.
The formula in problem 151 might seem quite mysterious, but the mystery
will be solved in Chapter 6. The result of problem 158 might seem obvious,
but how can you prove it?

148. Show that the Galois group of Q(ζp) over Q is a cyclic group of order
p − 1. Here p is a prime larger than 2.

149. Calculate the Fourier series for f (x) = x2 on [−π, π]. Calculating Fourier series
for specific functions
builds algebraic muscle.150. Calculate the Fourier series for f (x) = cos x

2 on [−π, π].

151. Find a Fourier series proof of π2

6 = 1 +
1
22 +

1
32 +⋯.

152. Find the Fourier series for cos x if cos is rendered an odd function on
[−π, +π] by defining

f (x) =
⎧
⎪
⎪

⎨

⎪
⎪
⎩

cos x, 0 < x < π ,

− cos x, −π < x < 0 .

153. (For those who have done Dialing In 53 and related problems.) If G is
a group, then the center of G is the set of all x such that xy = yx for
all y ∈ G. Show that the center Z(G) is a subgroup and that if G is a
p-group (that is, ∣G∣ = pn for a prime p), then Z(G) ≠ {e}.

154. Let p and q be distinct primes. What can you say about Q(ζp, ζq)? Can
you find ξ such that Q(ζp, ζq) = Q(ξ)? If not, why not? If so, why?

155. Calculate the Fourier series for f (x) = ∣x3∣, −π ≤ x ≤ π.

156. Let F be a field with pn elements, p prime. Show that σ ∶ F → F defined
by σ(x) = xp is an automorphism. Show also that the fixed field of σ is
(isomorphic to) Zp .

157. Show that ∫
∞

0 xn−1e−x dx = (n − 1)! for n an integer, n ≥ 1.

158. Prove that there is no integer x such that 0 < x < 1.

159. Write out a careful proof that the Fourier series averages at jump discon-
tinuities with finite left slope and right slope.

160. Compute ∫Γ e
z dz, where Γ is the unit circle traversed counterclockwise.

Compute also ∫Γ z
n dz, n ≥ 1. Finally, be sure to calculate ∫Γ

1
z
dz.

161. Consider the curve defined by y =
√

∣x∣ on [−π, π]. The left and right Hint: Sketch a graph.

derivatives at 0 are∞. Show that nevertheless, Dirichlet’s argument can
be modified to give the Fourier series at 0.
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162. Using

1 + eix + e2ix + ⋅ ⋅ ⋅ + enix =
ei(n+1)x − 1
eix − 1

,

show that

1
2
+ cos x + cos 2x + ⋅ ⋅ ⋅ + cos nx =

sin(n + 1
2)x

2 sin x
2
.

Show other things too.

163. Show that ∫
1
0 xx dx = 1 + 1

22 +
1
33 +

1
44 +

1
55 +⋯. Hint: See problem 157.

164. Omitted.

165. Show that x2 + y2 = −1 always has a solution for x, y in Zp . Hint: See
problem 164.

166. Let f (x) = x5 + x2 + 2x and g(x) = x2 + 3x. Show that f (a) = g(a) forBut f ≠ g in Z[x]. How
can this happen? all a in Z5.

167. Show that (x + y)
pn

= xp
n

+ yp
n

in Zp[x, y].

1.8 Dialing In Set 8

This last set contains more variations on the recurring themes that run through
the book, developing some especially nice identities. The one in problem 172
shows up in many texts (precollege and undergraduate) without proof, joining
the long list of identities that are part of the folklore of mathematics. So too
with problems 181 and 194. Chapter 6, with its results and methods of Fourier
series, will give you the tools to prove identities like this and more exotic ones
like the stunning formula in problem 180.

168. Write down a group of order 6561 every nonidentity element of which
has order 3.

169. Left out due to lack of ideas.

170. Let E ⊃ Zp be fields and assume that E is finite-dimensional over Zp .
Consider the mapping from E into E defined by ϕ(x) = xp . Show that
ϕ is onto E .

171. Show that for x ∈ [0, π],

π2

8
−

πx
4
= cos x +

cos 3x
32

+

cos 5x
52

+⋯ .

172. Prove that

π

3
= 1 +

1
5
−

1
7
−

1
11
+

1
13
+

1
17
−

1
19
−

1
23
+⋯ .

173. Calculate the units in the ring Z [
√

−5], which comprises all a + b
√

−5,
a, b ∈ Z.
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174. Show that Lemma 3.11 in Section 3.2 breaks down for Z [
√

−5] and find
a counterexample to Lemma 3.16 for Z [

√

−5].
175. Let p and q be distinct primes. When is ζp /∈ Q(ζq)? Here, of course,

p ≠ 2.
176. Find the minimal polynomial for ζp2 for an arbitrary prime p.

177. Find the nonprime that differs by 2 from the 41st prime.

178. In Z[x], let

f (x) = anxn + an−1xn−1 + ⋅ ⋅ ⋅ + a0 ,

g(x) = bmxm + bm−1xm−1 + ⋅ ⋅ ⋅ + b0 .

Suppose that an, an−1, . . . , a0 have no common factors except ±1, and
bn, bn−1, . . . , b0, have no common factors except ±1. Show that the same
is true of the coefficients of f (x) ⋅ g(x).

179. Take It Further. Consider the ring Z[x]. Show that the polynomial
zn + x2zn−1 + x3zn−2 + ⋅ ⋅ ⋅ + xn+1z + x is irreducible in (Z[x]) [z].

180. Take It Further. Show that for x ∈ (−π, π), one has

x3 = 2π2
∞

∑

n=1
(−1)n+1

sin nx
n
+ 12

∞

∑

n=1
(−1)n

sin nx
n3
.

Conclude that sin x − sin 2x
23 +

sin 3x
33 −⋯ is (on (−π, π)) a polynomial in x

of degree 3 in R[x].
181. Prove (at least formally) that

sin−1 x = x +
1
2
⋅

x3

3
+

1 ⋅ 3
2 ⋅ 4

+

x5

5
+

1 ⋅ 3 ⋅ 5
2 ⋅ 4 ⋅ 6

⋅

x7

7
+⋯ .

Letting x = 1, we have

π

2
= 1 +

1
2 ⋅ 3

+

1 ⋅ 3
2 ⋅ 4

⋅

1
5
+

1 ⋅ 3 ⋅ 5
2 ⋅ 4 ⋅ 6

⋅

1
7
+⋯ ,

a positive series for π.

182. Making cos odd on (−π, π) by defining

f (x) =
⎧
⎪
⎪

⎨

⎪
⎪
⎩

cos x, 0 < x < π ,

− cos x, −π < x < 0 ,

show that

cos x =
8
π

∞

∑

n=1

n sin 2nx
4n2 − 1

for x ∈ (0, π).
183. Show that every group of order p2, where p is prime, is abelian.
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184. Let f (x) be irreducible of degree n in Zp[x]. Suppose f (x) = (x − α1)
⋯(x −αn), where αi ∈ E ⊃ Zp . Find the polynomial whose roots are the
pth powers of the roots α1, . . . , αn.

185. Consider E ⊃ F, where E, F are fields. If α ∈ E is algebraic over F and
σ is an automorphism of E leaving F elementwise fixed, then show that
α and σ(α) have the same minimal polynomial.

186. Relate problem 185 to problem 184.
For this reason, Zp is
called perfect. It truly is
perfect.

187. Let f (x) be irreducible in Zp[x]. Show that f (x) cannot have a repeated
root in any extension field of Zp .

188. Find the Fourier series for sin5(x).

189. Calculate lim
x→0
(
cos x
x4
+

x2

6! −
1
4! +

1
2x2 −

1
x4
) if the limit exists.

190. Calculate lim
x→0
(

1
x2
−

1
2 sin x2

2
).

191. Evaluate ∫
∞

0
sin x
x
⋅ cos x dx. Hint: The answer is π/2.

192. Let G be a group of order 2p, where p is prime. IsG abelian? How many
nonisomorphic groups are there of order 2p?

193. Calculate the Fourier series on [−π, π] for ex .

194. Show that π4

90 = 1 +
1
24 +

1
34 +

1
44 +⋯.

195. Establish the following trig identities:

cos 2θ = 2 cos2 θ − 1 ,

cos 3θ = 4 cos3 θ − 3 cos θ ,

cos 4θ = 8 cos4 θ − 8 cos2 θ + 1 .

196. Prove that if x /∈ π ⋅ Z, then

sin x + sin 3x + ⋅ ⋅ ⋅ + sin(2n − 1)x =
sin2 nx
sin x

.

197. Using problem 196, show that ∫
π
2

0
sin2 nt
sin2 t dt = πn

2 .

198. Show that 1
2 +

1
3 +

1
4 + ⋅ ⋅ ⋅ +

1
n
is never an integer.

199. Consider F = Q( 4√2, i) = Q( 4√2)(i). Calculate the Galois group of F/Q.
200. Let G be a finite group of order n = pm, p ∤ m. Show that if H1 and

H2 are subgroups of order p, then there is an element α ∈ G such that
αH1α

−1
= H2.



2 Polygons and Modular
Arithmetic

There are connections between algebra and geometry that go well beyond the Those high-school con-
nections are important
too.function–graph–analytic-geometry connections studied in high school.

We will use the field of complex numbers to tie together the geometry of
regular polygons and the algebra of polynomials. As a bonus, we will meet
some number theory and a little group theory, all bound up in a delightful
package. Here we go . . .

2.1 The Complex Numbers

One of the richest mathematical structures is the field of complex numbers.
With its wonderful balance of algebraic, analytic, and topological properties,
it has played a major role in the development of classical and modern mathe-
matics.

But as late as the nineteenth century, the existential status of this field was
unclear, resulting in the unfortunate but colorful adjective “imaginary.” One
reason for this is that unlike the folklore prevalent in most school algebra
texts, complex numbers originally appeared not as attempts to adjoin

√
−1 to

the real numbers, but as devices that were used in algorithms that produced
solutions to cubic equations with real coefficients and real solutions. These
“imaginaries” occurred in the algorithms at certain points but canceled out in
the end.

It took more than two centuries before the reification of complex numbers
as pairs of real numbers came into common usage. This topological visual- In 1797, Caspar Wessel

presented a paper to the
Royal Danish Academy
of Sciences entitled “On
the Analytic Represen-
tation of Direction: An
Attempt.” Largely unno-
ticed, it contained the
essence of the geometric
correspondence.

ization as the Cartesian plane by Carl Friedrich Gauss (1777–1855) and Jean-
Robert Argand (1768–1822) already suggested a rigorous definition, and the
realization that the correspondence a + bi ↔ (a, b) admitted both algebraic
and geometric interpretation was a breakthrough in mathematics. The flood-
gates surrounding the idea soon broke open.

But in point of fact, simply the consideration of expressions like a + bi,
where i2 = −1, gives a perfectly valid algebraic construction. This point
of view was generally accepted by Leopold Kronecker’s (1823–1896) time.
The definition of the field of complex numbers as ordered pairs with the
desired multiplicative and additive structure had already appeared in Hein-
rich Weber’s Lehrbuch der Algebra. James Pierpont, who reviewed the first
edition, commented:

© Springer Nature Switzerland AG 2023
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In so small a space as this, the complex numbers and the four arithmeti-
cal operations upon it are defined. Of the mystery that once surrounded
this number, not an atom is left by such a treatment; fractions and irra-
tional numbers, negative and complex numbers, all stand on the same
footing; all are equally real or unreal.

Thus the romance of the imaginary was replaced by the romance of abstract
construction.

Leopold Kronecker
gave a procedure for
constructing a general
field that contains all the
roots of a polynomial with
coefficients in that field, a
construction that applies
to C. More about this in
Chapter 4.

Throughout this book, we will denote by R the field of real numbers, and
we will assume that you are familiar with their structure. For a quick and
elegant review, consult the first several chapters of Jean Dieudonné’s Foun-
dations of Modern Analysis [22].

By C we will denote the field of complex numbers. Recall that this field
is conveniently defined as the set R ×R with the following addition and mul-
tiplication:Section 2.3 develops

another way to think about
C using modular arith-
metic for polynomials,
very much in the spirit of
Kronecker’s formulation.

(a, b) + (c d) = (a + c, b + d) ,

(a b) ⋅ (c, d) = (ac − bd, bc + ad) .

You should quickly verify that these definitions indeed impose the struc-
ture of a field (a general set with two operations satisfying all the ordinary
high-school rules of associativity and commutativity for both operations,
inverses for the nonzero elements, and the distributive laws) on R ×R, where
the additive identity is (0, 0) and the multiplicative identity is (1, 0). If we
identify (a, 0) with the number a ∈ R, then R becomes a subfield of C. Now
by definition,

(0, 1) ⋅ (0, 1) = (−1, 0) .

So on putting (0, 1) = i, we have, using the above identification, i2 = −1,
which was what we wanted in the first place. Furthermore, every element of
C is uniquely represented in the form a + bi, where a and b are in R, which
is rephrased by saying that C is a two-dimensional vector space over R with
basis 1 and i.

We can therefore represent the set of complex numbers C in Cartesian
coordinates, where the horizontal axis represents the real numbers a, the ver-
tical axis represents the complex numbers bi for real b, and the point (a, b)
represents the number a + bi. We can now say that a complex number lies in
the complex plane.

Observe that the multiplicative inverse of a + bi ≠ 0 is

a − bi
a2 + b2

,

the existence of which is ensured by the fact that a2 + b2 = 0 if and only if
a = b = 0. This is equivalent to the fact that −1 is not a square in R, which
was the original observation of the subject.

Not only is −1 not a square, it is not even the sum of squares in R. A great
deal of interesting mathematics has arisen out of generalizing this notion to a
general field.
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Lookout Point 2.1. A field F is called formally real if −1 is not the sum of
squares. If it is the sum of squares, then we call the minimum positive integer
s(F) for which −1 is the sum of s(F) squares the level of the field. We shall
see later in connection with our study of modular arithmetic that the integers
modulo p have level one if 4 divides p−1. A very beautiful result was proved
by Albrecht Pfister in 1965 [62]. He showed that the level of a field is always
a power of 2. And furthermore, given any power of 2, say 2n, there is a field
with that level. Pfister has proved many other exciting results in the modern
theory of quadratic forms and questions related to Hilbert’s 17th problem.

See Section 3.5 for more
on Hilbert’s 17th problem.

Returning to the complex numbers C, there is a very important operation
largely responsible for much of C’s success. It is called conjugation and is
defined by z = a − bi, where z = a + bi. Geometrically, conjugation is a
reflection in the x-axis, and algebraically, it is an automorphism over R of
order 2. These statements are codified in a theorem:

Theorem 2.1. If z and w are complex numbers, then the following relations
hold:

(i) z + w = z + w,

(ii) zw = zw, Property (iii) is really
important—it character-
izes R as a subfield of C.
We will use it often.

(iii) z = z if and only if z ∈ R,

(iv) z z ∈ R,

(v) z = z.

It follows that the map z ↦ z is one-to-one and onto. See Exercise 2.2 for the
meanings of “one-to-one”
and “onto.”The real number z z is called the norm of z and is denoted by N(z). If

z = a+bi, then N(z) = zz = a2+b2, and since
√
(a2 + b2) is the distance from

the origin to the point z in the complex plane, we call
√
N(z) the absolute

value or modulus of z and denote it by ∣z∣. The norm inherits most of its
properties from the above theorem. One that will be very important in what
follows is that the norm function is multiplicative.

Corollary 2.2. If z and w are complex numbers, then If z = a + bi, then
N(z) = a2 + b2.
Pythagoras, anyone?N(zw) = N(z)N(w)

In particular, N (z2) = (N(z))2.

Lookout Point 2.2. If z = (a + bi) and w = (c + di), the result of Corol-
lary 2.2, when written out in all its glory, becomes

(a2 + b2) (c2 + d2) = (ac − bd)2 + (bc + ad)2 .

Establishing this identity shows up in some high-school texts as an exercise
(try it). The multiplicativity of the norm shows where it comes from. Alge-
braically, we see that the product of the two “quadratic forms” on the left is a
sum of two squares of bilinear forms in all the variables.
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In general, Adolf Hurwitz [40] showed that the identity

(x21 + ⋅ ⋅ ⋅ + x2n) (y
2
1 + ⋅ ⋅ ⋅ + y2n) = z

2
1 + ⋅ ⋅ ⋅ + z

2
n ,

where the zi are bilinear expressions in the x’s and y’s, has a solution only
for n = 1, 2, 4, 8.

The set of complex numbers with norm 1 is called the unit circle. We
denote it by S1. Hence

S1 = { z ∣ N(z) = 1} = {z ∣ z = x + iy, x2 + y2 = 1} .

Topologists call this a 1-sphere. (What is the common name for a 2-sphere?)The 3-sphere is the set
of all (a, b, c, d) with
a2 + b2

+ c2 + d2
= 1.

Notice that S1 is a multiplicative group. It has lots of points with rational
coordinates. In fact, the points

2t
1 + t2

+ (
1 − t2

1 + t2
) i

are on S1 for every real t (check this). Notice that we are doing number theory
again, because the homogenized identity of this reads

(2xy)2 + (x2 − y2)
2
= (x2 + y2)

2
,

and that says that there are infinitely many (primitive) Pythagorean triples,
i.e., triples (a, b, c) of coprime integers with a2 + b2 = c2.

. . . another old chestnut
from high school.

In what follows, we will need the existence and basic properties of the
trigonometric functions. It would be a long analytic digression, equivalent
roughly to one semester of elementary analysis, to develop them thoroughly.

For a basic and complete
development of elemen-
tary trigonometry, see the
notes written by the late
Dick Askey at http://go.
edc.org/askey-trig-2021.

Let us stabilize the situation by defining them and listing the properties we
need using algebra. Note carefully the way in which π sneaks into the act,
because later, when we prove that π is irrational, the definition chosen here
will be important.

We define sin x and cos x as two functions of a real variable x given by the

In addition to expediency
and elegance, this devel-
opment inverts the usual
path (the usual path: from
geometry of the unit circle
to the algebra of power
series). It is probably not
a good way to introduce
trig, but it is a very elegant
example of the power of
old-fashioned algebra.

following formulas:

sin x = x −
x3

3!
+
x5

5!
−
x3

3!
−
x7

7!
+⋯ ,

cos x = 1 −
x2

2!
+
x4

4!
−
x6

6!
−
x8

8!
+⋯ .

(2.1)

The geometric motivation for this definition comes from the desire to find
functions satisfying the differential equation y′′ = −y. Check that using these
definitions, if y = sin x, then y′′ = −y. Is the same true for y = cos x?

You can show (try it) that sine and cosine defined in this way satisfy the
following functional equations:

sin(x + y) = sin x cos y + sin y cos x ,
cos(x + y) = cos x cos y − sin x sin y .

(2.2)

http://go.edc.org/askey-trig-2021
http://go.edc.org/askey-trig-2021
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It follows (with some work) that

sin2 x + cos2 x = 1 ,

showing that these two functions are bounded in absolute value by 1. The
cosine function is positive at x = 0, since cos 0 = 1. If the cosine were
positive everywhere, then its second derivative, − cos x, would be negative
everywhere. But that is incompatible with a bounded continuous function.
It follows that the cosine function must have zeros, and it must have them
at positive and negative values of x (why?). Let η denote the first positive
number such that cosη = 0. That is,

The work is yours in
Exercise 2.9

cos x > 0 on [0, η) and cos η = 0 .

From this, using equations (2.2), one derives the periodicity of the sine and
cosine:

sin(x + 4η) = sin x, cos(x + 4η) = cos x .

We see that as t goes from 0 to 4η, the complex number cos t+ i sin t traverses
the unit circle S1 starting at (1, 0) in the Cartesian plane, in a counterclock-
wise manner, exactly once.

Putting x = cos t and y = sin t and using the formula for arc length, we see
that the arc on S1 from (1, 0) to (cos t, sin t) in the counterclockwise sense
has length t for 0 ≤ t ≤ 4η, as illustrated in Figure 2.1.

Figure 2.1. The arc defined by (cos t, sin t).

The unit circle, of course, has length 2π, so 2π = 4η, whence η = π/2,
the period of the sine and cosine functions is 2π, cos ( π2 + πn) = 0 for all
integers n, and everyone is happy.

One of the most important results in mathematics is the famous theorem of
Abraham de Moivre (1667–1754), who is now well recognized as an unrec-
ognized genius. He knew Isaac Newton and Alexander Pope. The result is
simply this.

Theorem 2.3 (De Moivre). For every integer n,

(cos x + i sin x)n = cos nx + i sin nx.
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Proof. First, we can assume n to be positive. (Why?) The base case: if n =
1, we are through. (Why?) The inductive step is just the addition formulas:
Assume that the theorem is true for n − 1. Then

(cos x + i sin x)n = (cos x + i sin x)(cos x + i sin x)n−1 ,

which by the induction hypothesis equals

(cos x + i sin x)(cos(n − 1)x + i sin(n − 1)x)

= cos x cos(n − 1)x − sin x sin(n − 1)x
+ i(sin x cos(n − 1)x + cos x sin(n − 1)x)

= cos nx + i sin nx. So there.

∎

This result is really useful, for it enables us to solve lots of important equa-
tions. The most important equation for us is

xn = 1 . (2.3)

It is not a priori clear at all that this has any roots besides x = 1. However,
consider the complex number

ζn = cos
2π
n
+ i sin

2π
n
.

Then

ζnn = (cos
2π
n
+ i sin

2π
n
)
n

= cos 2π + i sin 2π = 1. (2.4)

Hence ζn is a root of (2.3). You can also see this by noting, as you will see
in Lookout Point 2.4, that to multiply two complex numbers, just add their
angles and multiply their absolute values.

It follows that

1, ζn, ζ2n, ζ
3
n, . . . , ζ

n−1
n

are the n distinct roots of (2.3), and they give the vertices of a regular polygon
with n sides, as shown in Figure 2.2.

Figure 2.2. The powers of ζn .

This is a remarkable fact. Let us restate it as follows.
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Theorem 2.4. The solutions to the equation xn = 1 form a multiplicative These terms are all defined
in Section 2.5.cyclic group of order n.

Lookout Point 2.3. Here is an interesting fact. Are there any other finite
multiplicative subgroups of the complex numbers? Suppose G is a subgroup
of C∗ = C − {0} with n elements. Since G is a group, we see that xn = 1 for See Sections 2.5 and 2.6

for more detail. And
Joseph Rotman’s An
Introduction to the Theory
of Groups [70] is a good
reference for group theory.

each x ∈ G, by elementary group theory. In this situation, trigonometry plays
the role of establishing an existence theorem. Later, we shall see that if a field
K has a finite multiplicative subgroup G, then that group G must necessarily
be cyclic; that is, there is an element ρ ∈ K such thatG = { e, ρ, ρ2, . . . , ρn−1 }.
Hence G is an n-sided regular polygon. This observation plays an impor-
tant role in establishing arithmetic analogues of some ruler-and-compass con- What are the finite

multiplicative subgroups
of the field of real
numbers?

structions in plane geometry (stay tuned).

Now, since 1, ζn, ζ2n, ζ3n, . . . , ζn−1n are n roots of xn −1, and since xn −1 can
have at most n roots, we have by elementary algebra (writing ζ for ζn),

xn − 1 = (x − 1) (x − ζ) (x − ζ2)⋯(x − ζn−1) .

However, it is straightforward to see (in several different ways) that This formula implies the
formula for the sum of a
geometric series. This is
Exercise 2.10.

xn − 1
x − 1

= 1 + x + x2 + ⋅ ⋅ ⋅ + xn−1 , (2.5)

so that

1 + x + x2 + ⋅ ⋅ ⋅ + xn−1 = (x − ζ) (x − ζ2)⋯(x − ζn−1) .

This is a very nice formula, and we will have an opportunity to refer to it
again.

Putting x = 1, we have

n = (1 − ζ) (1 − ζ2)⋯(1 − ζn−1) ,

which decomposes n into the product of n − 1 complex numbers.
Now

ζ = cos
2π
n
+ i sin

2π
n
,

so

ζ−1 = cos
2π
n
− i sin

2π
n
.

Hence

ζ + ζ−1 = 2 cos
2π
n
. (2.6)

This will be useful when we look at constructibility of regular polygons in
Section 2.2.
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One more thing: notice that

ζ2 = cos
2π
2
+ i sin

2π
2
= −1

and

ζ4 = cos
2π
4
+ i sin

2π
4
= i .

Lookout Point 2.4. When we derived equation (2.4) in Section 2.1, we
noted that to multiply two complex numbers, you just add their angles and
multiply their absolute values. The typical way to develop the “add their
angles” piece of this is to wait for the addition formulas for sine and cosine
(equations (2.1) in Section 2.1). Which is why many texts punt when they
get to “multiply the lengths and add the angles” in classes before trig, usu-
ally appealing to experiments or other kinds of motivation. But teachers at the
Park City Teacher Leadership Program [82] (re)discovered a proof that uses
nothing more than similar triangles. A detailed development of this proof can
be found in [19, Chapter 3].

This may seem like small potatoes to many (“who cares what comes before
what?”), but it has curricular implications:

● Students can understand the addition formulas before any advanced trig.
● More importantly, one can use the geometry of multiplication to prove the
addition formulas. This saves a great deal of class time and simplifies the
whole arc of results.

And it allows one to use complex numbers to derive trig identities (some-
thing that used to be considered circular reasoning).

For example, to get a formula for cos ( π4 + θ), calculate like this:

cos(
π

4
+ θ) + i sin(

π

4
+ θ) = (cos

π

4
+ i sin

π

4
)(cos θ + i sin θ)

=
1
√
2
(1 + i) (cos θ + i sin θ) =

1
√
2
((cos θ − sin θ) + i(cos θ + sin θ)) .

Hence

cos(
π

4
+ θ) =

1
√
2
(cos θ − sin θ) ,

and as a bonus,

sin(
π

4
+ θ) =

1
√
2
(cos θ + sin θ).

Exercises

2.1 Prove Theorem 2.1.

2.2 Show that the map z ↦ z satisfies two properties:
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(i) it is one to one: if z = w, then z = w;

(ii) if z ∈ C, then z = w for some w ∈ C.

2.3 Show that the norm function is multiplicative.

2.4 Take It Further. If f is a polynomial with complex coefficients, define
f to be the polynomial you get by replacing each coefficient in f by its
conjugate. Show that

(i) f + g = f + g.

(ii) f g = f g.

(iii) f = f if and only if f (x) has real coefficients.

(iv) f f has real coefficients.

(v) If z ∈ C, then f (z) = f (z).

2.5 Let f be a polynomial with coefficients in C. If a complex number z is a
root of f , show that z is a root of f .

2.6 Suppose f is a polynomial with coefficients in C. Let g = f f . Show that
if g(z) = 0, then either f (z) = 0 or f (z) = 0.

2.7 Show that S1 has the structure of a multiplicative group. Recall that S1 is the set
of complex numbers of
norm 1.2.8 Let � be a line in the plane that passes through −1 + 0i with rational

slope t.

(i) If � intersects S1 in another point, show that this point’s coordinates
are rational.

(ii) In fact, find an expression in terms of t for the second intersection
point.

2.9 Using our definitions of sine and cosine, show that “Our definitions” are
equations (2.1).

sin2 x + cos2 x = 1 .

2.10

(i) Establish the algebraic identity

xn − 1
x − 1

= 1 + x + x2 + ⋅ ⋅ ⋅ + xn−1 .

(ii) Use it to derive the formula for the sum of a geometric series.

2.11 Generalize the “very nice formula” (2.5) to show that if n is a nonneg-
ative integer and ζ = ζn, then the following hold:

(i) If x and y are integers, then

xn − yn = (x − y)(x − ζ y) (x − ζ2y)⋯(x − ζn−1y) .



24 Chapter 2 Polygons and Modular Arithmetic

(ii) If x and y are integers and n is odd, then

xn + yn = (x + y)(x + ζ y) (x + ζ2y)⋯(x + ζn−1y) .

2.12 Take It Further. Using the power series definitions of sine and cosine,
prove all the statements made in this section. Prove other things too.

2.2 The Pentagon, Gauss, and Kronecker

The pentagon is the first really interesting polygon. We will see how the use
of complex numbers leads to a proof that the pentagon can be constructed by
ruler and compass. An examination of the proof also leads to some interesting“Ruler” here refers to a

straightedge—a ruler with
no markings. arithmetic questions that will enable us to explore a little modular arithmetic.

Consider the five-sided regular polygon inscribed in the unit circle in the
complex plane, as illustrated in Figure 2.3:

Figure 2.3. The regular unit pentagon.

Here, ζ = cos 2π
5 + i sin

2π
5 and ζ5 = 1. It follows that

ζ4 = ζ−1, ζ3 = ζ−2, ζ2 = ζ−3, ζ = ζ−4 .

This follows from de
Moivre’s theorem.

Already we see the modular arithmetic that we will further develop in
Section 2.3, because the exponents are always “congruent modulo 5.” Thus
ζ21 = ζ and ζ−7 = ζ13. For example,

Two whole numbers a and
b are said to be “equal
modulo m” or “congruent
modulo m” if m divides
a − b, in which case a
and b are the same up to
(modulo) a multiple of m.
One writes, with Gauss,
a ≡ b mod m or simply
a ≡ b(m).

ζ21 = ζ1+5⋅4 = ζ1 ⋅ ζ5⋅4 = ζ ⋅ (ζ5)4 = ζ .

Notice that

ζ + ζ−1 = 2 cos
2π
5
, (2.7)

which is twice the real part of the first vertex, as previewed in equation (2.6)
in Section 2.1. So to get the value of the side length of our pentagon, we must
first find a nice expression for ζ + ζ−1.

For that, we use the great idea of squaring ζ + ζ−1, which gives

(ζ + ζ−1)
2
= ζ2 + 2 + ζ−2 .
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Now, ζ is a solution to

x5 − 1
x − 1

= 0 ,

but by Exercise 2.10, we have

x5 − 1
x − 1

= 1 + x + x2 + x3 + x4 , (2.8)

so we have

1 + ζ + ζ2 + ζ3 + ζ4 = 0 . (2.9)

Rewrite this as

1 + ζ + ζ2 + ζ−2 + ζ−1 = 0 ,

or

ζ2 + ζ−2 = −1 − ζ−1 − ζ ,

or

To see this, use the
fact that (ζ + ζ−1)2 =
ζ2 + 2 + ζ−2.

(ζ + ζ−1)
2
= 1 − (ζ + ζ−1) ,

or

(ζ + ζ−1)
2
+ (ζ + ζ−1) − 1 = 0 .

Well, this is wonderful! We have a quadratic equation in ζ + ζ−1.
Solving this equation gives

ζ + ζ−1 =
−1 +

√
5

2
,

and there we are: we have an expression for cos 2π
5 that involves only rational

numbers and
√
5.

We can play with this. Here we have also found the golden mean. Consider
the segment of length 1, divided into two parts. Find x such that the length
of the larger segment is the geometric mean of the length of the whole (that
is, 1) and the length of the smaller segment, that is, such that

1 − x
x
=
x
1
.

See Figure 2.4.

The rest of the story is
taken up in the exercises.

Figure 2.4. Find the point x such that 1−x
x
=

x
1 .

This becomes

x2 = 1 − x ,

or

x2 + x − 1 = 0 ,
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so that

x =
−1 +

√
5

2
(our old friend).

And there’s more: from

x2 + x − 1 = 0 ,

we see that

x(1 + x) = 1 ,

or

As Van Morrison said so
well [56], “Too late to stop
now.”

x =
1

1 + x
=

1
1 + 1

1+x
=

1
1 + 1

1+ 1
1+x

= ⋯ .

This gives rise to the continued fraction

1 +
1

1 +
1

1 +
1

1 +⋯

,

whose partial sums are the ratios of consecutive Fibonacci numbers! So it’s a
small world.

There are a few other observations to make about the above argument. We
have seen that

ζ + ζ−1 =
−1 +

√
5

2
,

or
√
5 = 1 + 2 (ζ + ζ−1) = 1 + ζ + ζ4 + ζ9 + ζ16 .

In other words,
√
5 is the sum of square powers of a fifth root of unity. This

ζ9 = ζ4, and . . .

remarkable fact was generalized by Gauss. He took an arbitrary prime number
p and considered ζp , the first vertex of a p-sided polygon. Then he showed
that if 4 ∣ (p − 1), then

√
p = 1 + ζ + ζ4 + ζ9 + ζ16 + ⋅ ⋅ ⋅ + ζ(p−1)

2
. (2.10)

This is not an elementary fact, and it took Gauss at least a year of work to
prove it. We shall prove it in Chapter 6.

The right-hand side is called a Gauss sum. It lies at the base of his proof
that a regular polygon with a prime number p of sides can be constructed if p
is of the form 2t + 1 for some t. Such primes are called Fermat primes. This
result is the very first entry of Gauss’s diary for March 30, 1796, and he was
quite proud of it, for it represented the first progress in the constructibility
of regular polygons since classical antiquity. Although Gauss stated as well
that for a regular polygon with a prime number of sides to be constructible,
the prime had to be a Fermat prime, he did not provide a proof. A proof was
given in 1837 by Pierre Wantzel (1814–1848). The next two primes to which
his result applies are 17 and 257.



2.2 The Pentagon, Gauss, and Kronecker 27

2.2.1 A Theorem of Kronecker

Another observation on the above results has to do with a deep result due to
Kronecker. Since

√
5 = 1 + 2(ζ5 + ζ45 ), we see that the field Q[

√
5] of all

expressions a + b
√
5, where a and b are rational numbers, lies in the field

Q[ζ5] of all expressions a0 + a1ζ5 + a2ζ25 + a3ζ
3
5 , where a0, a1, a2, a3 are ratio-

nal. More generally, it is true that Q[
√
d] lies in some Q[ζn] for some n (4d

will do it). The fields Q[
√
d] are special cases of what are known as abelian

extensions of the rationals. The word “abelian” here refers to the fact that the
set of automorphisms of Q[

√
d] forms an abelian group under the composi-

tion of mappings. Indeed, the only automorphisms of Q[
√
d] are the identity

and the mapping that sends a + b
√
d to a − b

√
d, and these two operations

form a group of order 2, which is, of course, abelian. You should verify this.

Q denotes the field of
rational numbers. Think
“Q for quotient.”

The fields Q[
√

d] and
Q(ζ5)? Stay tuned.

Even more generally, let F be any subfield of the complex numbers that Such fields are called
algebraic number fields.has a finite basis as a vector space over Q. Every element α of F must satisfy

a polynomial equation with coefficients in Q, because

1, α, α2, α3, . . . , αn

must be Q-linearly dependent for some n. If every isomorphism of F into C

sends F back to F (as in the above examples), then we say that F is a Galois
extension of Q or simply that F is Galois.

Now given a Galois extension F, one can attach to it a very important finite
group G called its Galois group. This group reflects in its structure much of
the interaction between F and Q and is the object of many interesting inves-
tigations in algebra. It is quite simple to define: it is the set of all automor-
phisms of F, and the group operation is composition of functions. That is,

For example, the Galois
group of Q[

√

d] consists
of the two automorphisms
described above: the
identity map and the map
that sends a + b

√

d to
a − b

√

d.

an element of G is a mapping from F to F that is onto, one-to-one, and pre-
serves all the algebraic operations. If such a mapping is denoted by σ, then
the structure-preserving requirement means that

σ(a + b) = σ(a) + σ(b)

and

σ(ab) = σ(a)σ(b) .

We say that the field F is abelian if the Galois group of F is abelian (that is,
commutative). Now at last we can state Kronecker’s big result. Here it is: Kronecker’s theorem

is also known as the
Kronecker–Weber
theorem. Note that n
depends on F .

Every abelian extension field F of Q sits inside Q[ζn] for some n.

This result is quite deep, and its generalizations form the object of much
research.

Another example: Consider ζ8, the first vertex of the regular octagon situ-
ated in the complex plane. Then ζ48 = −1, and so (putting ζ8 = ζ), we have

(ζ + ζ−1)
2
= ζ2 + 2 + ζ−2 = 2 +

ζ4 + 1
2

= 2 .
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Hence ζ + ζ−1 =
√
2, and therefore, Q[

√
2] ⊂ Q[ζ8]. Again we have a special

case of Kronecker–Weber.
Another simple example:
i = ζ4, so trivially,
Q[i] ⊂ Q[ζ4], because
Q[i] = Q[ζ4]. Notice that in our examples, all the fields Q[

√
−1], Q[

√
2], Q[

√
5] are

two-dimensional over Q. Later, we will encounter a field F of dimension 3
over Q, and again, as a byproduct of a deeper investigation on roots of unity,
we will have another instance of Kronecker’s theorem.

2.2.2 Some Properties of Algebraic Extensions
of Fields

In Section 2.2.1, we slipped in a comment that may have gone unnoticed—
we referred to Q[ζ5], the set of rational linear combinations powers of ζ5, as

Unnoticed, had it not been
for the sidenote on that
page.

a field. Recall that this means that in Q[ζ5], addition and multiplication are
commutative and that all the usual rules of high-school algebra hold. It also
means that the reciprocal of every nonzero element of Q[ζ5] sits in Q[ζ5].
Other familiar fields are Q, R, and C. But Z is not a field, because, for exam-Z (zahlen) denotes the ring

of ordinary integers. ple, 1
5 is not in Z.

In this section, we will prove that Q[ζ5] is a field, and along the way, we
will show that Q[ζ5] is a vector space over Q with basis {1, ζ, ζ2, ζ3 }. In
the following paragraphs, we shall develop a few facts from field theory that

And there will be nothing
special about 5 in the
development.

cover these statements.

A Little Field Theory

We have been a little relaxed until now about distinctions that we should
make explicit. If F is a field, we let F[x] denote the system of polynomials in
x with coefficients in F together with the usual operations of high school—Are there any polyno-

mials in Q[x] that have
reciprocals in Q[x]? addition and multiplication. But F[x] is not a field, because the reciprocal of

a polynomial is not, in general, another polynomial. In fact, F[x] is a ring,
the ring of polynomials with coefficients in F

Polynomials are formal objects, and as such, you can do arithmetic withThis arithmetic is very
similar to ordinary arith-
metic with integers (this
similarity is described in
detail in [19, Chapter 6]).

them. You can also evaluate polynomials at real or complex numbers, so
that each formal polynomial defines a polynomial function. This interplay
between formal polynomials and polynomial functions—form and function—
is a cornerstone of modern algebra. For example, you can factor x5 − 1 using
equation (2.8):

x5 − 1 = (x − 1) (x4 + x3 + x2 + x + 1) .

This is a formal identity in Q[x]. It is a statement about polynomials, not
numbers, and you could prove it by, for example, multiplying out the right-
hand side and watching all but two terms disappear. Because this is a formal
identity, you can replace x by any number, and you will get a true statement
about numbers (why?). So for example, on replacing x by 2, we get

31 = 16 + 8 + 4 + 2 + 1 .

And putting x = ζ5, we get

The motto is “formal
polynomial identities
are true under any
substitution.”
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0 = (ζ5 − 1) (ζ45 + ζ
3
5 + ζ

2
5 + ζ5 + 1) ,

providing another look at equation (2.9) from Section 2.2.

Lookout Point 2.5. Suppose again that F is a field. If you take all the
polynomials in F[x] and replace x by some number, say ζ5, you get a new
system (this time consisting exclusively of numbers), which we can sugges-
tively denote by F[ζ]. So elements of F[ζ] are “polynomials in ζ .” Note, Let’s use just plain ζ

for ζ5.though, that two polynomials in F[x] can produce the same number in F[ζ].
For example, x5 − x + 1 and 2− x both produce 2− ζ when x is replaced by ζ
(check this). While F[x] does not contain the reciprocals of all of its nonzero
elements, we will prove next that F[ζ] does! It is not at all obvious that the
reciprocal of a linear combination of powers of ζ with coefficients in F is also
a linear combination of powers of ζ . But it is true. For example, in Q[ζ], we
have

1
ζ3 − ζ2 + 2ζ

= −
1
11
(7ζ3 + 9ζ2 + 8ζ + 3) .

Checking that

(ζ3 − ζ2 + 2ζ) (7ζ3 + 9ζ2 + 8ζ + 3) = −11

makes for a delightful calculation—try it! (This calculation didn’t drop out
of the sky. You will see later that there is a general method that allows one to
calculate reciprocals in Q[ζn] using little more than high-school algebra and
some arithmetic. We will take this up in the coming chapters.)

Meanwhile, back at the ranch . . . If E and F are fields and E ⊃ F, we say If you don’t get “Mean-
while, back at the
ranch. . . ,” check out
the Wikipedia article on
the subject.

that E is an extension field of F, and we make a “tower diagram” like this:

E

F

An element α ∈ E is said to be algebraic over F if there exists a nonzero
polynomial f in F[x] for which f (α) = 0. For example, i, viewed as an
element ofC orQ(i), is algebraic overQ, since it satisfies the equation x2+1 =
0. Similarly, ζn is algebraic over Q, since ζnn − 1 = 0. If α ∈ E is algebraic
over F, we can construct F[α] in the same way that we built F[ζ] in the
Lookout Point above: F[α] is the set of linear combinations of powers of α
with coefficients in F.

It is natural to seek, among all polynomials f in F[x] that admit α as a
root, polynomials of lowest degree. The next result shows that such a polyno-

In Chapter 5, we will
prove that π is not
algebraic over Q.

mial is essentially unique and that it is irreducible.
A polynomial is irre-
ducible in F[x] if it
doesn’t factor into poly-
nomials of lower positive
degree. And a polynomial
with leading coefficient 1
is a monic polynomial.

Theorem 2.5. Let α be algebraic over a field F, and let f (x) be a polyno-
mial in F[x] of minimal degree with f (α) = 0, normalized so that its leading
coefficient is 1. Then:
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(i) f (x) is the only monic polynomial with this property.

(ii) f (x) is irreducible.

Proof. (i) Suppose there were two monic polynomials of smallest degree that
send α to 0. Their difference would also vanish at α, and the difference would
have lower degree. This contradicts the minimality of degree of the original
polynomial.

(ii) If f (x) = g(x)h(x), f (α) = 0, and both g(x) and h(x) are of positive
degree, then we must have either g(α) = 0 or h(α) = 0. But the (alleged) g
and h would then have degree less than that of f . ∎

Corollary 2.6. Let f (x) be the monic polynomial in F[x] of minimal degree
with f (α) = 0. If g(x) ∈ F[x] and g(α) = 0, then f (x) divides g(x).

Proof. WriteThis is the division
algorithm for polynomials.
See [41] or [19].

g(x) = f (x)h(x) + r(x) with 0 ≤ deg r(x) < deg f (x) .

Then

0 = g(α) = f (α)h(α) + r(α) = r(α) .

By the minimality of the degree, we must have r(x) = 0. ∎

It follows that the monic polynomial f ∈ F[x] of minimal degree satis-
fying f (α) = 0 is uniquely determined by α and F. It is called the minimal
polynomial for α. Theorem 2.5 shows that the minimal polynomial is noth-
ing more than the unique monic irreducible polynomial in F[x] that has α as
a root.

2.2.3 Now We Can Show That Q[ζn] Is a Field

Up until now, Q[ζn] has meant the set of rational linear combinations of ζn.
We will now show that Q[ζn] contains the reciprocals of all its nonzero ele-
ments.

Theorem 2.7. Let α be algebraic over a field F, and let f be the minimal
polynomial for α in F[x].

(i) If g(x) is a nonzero polynomial in F[x] and g(α) ≠ 0, then 1
g(α)

is
in F[α].

(ii) If f is the minimal polynomial for α, then F[α] is a vector space over F
of dimension equal to the degree n of f with basis {1, α, α2, . . . , αn−1 }.

Proof. (i) Note that f (x) does not divide g(x) (for g(α) ≠ 0). Since f (x) is
irreducible, it follows that f (x) and g(x) are relatively prime. Now, just asFor more on the Euclidean

algorithm in F[x] (and
in Z), see Chapter 3,
[19, Chapter 6], or [41,
Chapter 1].

in the case of Z, one can use the Euclidean algorithm in F[x] to show that the
greatest common divisor of two polynomials is an F[x]-linear combination of
the two polynomials. In other words, one can find s(x) and t(x) in F[x] such
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that s(x) f (x)+ t(x)g(x) = 1. On substituting x=α, we see that t(α)g(α)=1.
So 1/g(α) = t(α).

(ii) Write

f (x) = xn + an−1xn−1 + an−2xn−2 + ⋅ ⋅ ⋅ + a1x + a0 .

Since f (α) = 0, we have

αn = −an−1αn−1 − an−2αn−2 − ⋅ ⋅ ⋅ − a1α − a0 .

Thus every linear combination of powers of α may be written (by repeated
substitution) in the form

c0 + c1α + c2α2 + ⋅ ⋅ ⋅ + cn−1αn−1 .

It remains to show that 1, α, α2, . . . , αn−1 are linearly independent over F.
Suppose to the contrary that

b0 + b1α + b2α2 + ⋅ ⋅ ⋅ + bn−1αn−1 = 0 ,

with not all the bi zero. Then by Corollary 2.6, f (x) must divide the polyno-
mial

b0 + b1x + b2x2 + ⋅ ⋅ ⋅ + bn−1xn−1 .

However, that is absurd, since f (x) has degree n and b0 + b1x + b2x2 + ⋅ ⋅ ⋅ +
bn−1xn−1 has degree less than n. Hence we have established all assertions. ∎

Corollary 2.8. Let α be algebraic over a field F. Then F[α] is a field. That
is,

F[α] =
⎧⎪⎪
⎨
⎪⎪⎩

h(α)
g(α)

�����������
h, g ∈ F[x], g(α) ≠ 0

⎫⎪⎪
⎬
⎪⎪⎭

.

When a ring F[a] turns out to be a field, we usually indicate this by
employing the notation F(a).

Corollary 2.9.
Q(ζn) is a field; it contains the reciprocals of its nonzero elements. We may

therefore write Q[ζn] as Q(ζn), the field of linear combinations of powers of
ζn.

2.2.4 A Criterion for Irreducibility

This is just the beginning. One can go on and on, developing the entire theory

“cyclotomic” = “circle
dividing.”

of algebraic extensions. One of the early payoffs in such a program is Galois
theory. However, let us limit ourselves to a clarification of the cyclotomic
situation discussed earlier in Section 2.1.

In general, it is difficult to establish the irreducibility of a given polynomial

There is a story that
may be true. On being
asked who he believed
were the three greatest
mathematicians of all
time, Gauss answered,
“Archimedes, Newton,
and Eisenstein.” The
correct answer is, of
course, Archimedes,
Newton, and Gauss.

in Z[x]. One very useful criterion is due to Gotthold Eisenstein (1823–1852).
It is based on a bit of modular arithmetic, which we will take up in more detail
in Section 2.3. For now, here are some basic facts.



32 Chapter 2 Polygons and Modular Arithmetic

Preview: A Little Modular Arithmetic

Before we develop modular arithmetic systematically, let us look at a special
case. Consider the prime number 7 and denote by Z7 the set of seven sym-
bols {0, 1, 2, 3, 4, 5, 6}. These symbols are already familiar to you, but we can
introduce new operations on them, new addition and new multiplication, so
that we remain in Z7. For that, we use the following rule: multiply or add
as like in the old days, but throw away sevens until you get back to Z7. For
example, 5 × 6 = 2 (because 30 − 4 × 7 = 2), and 5 + 6 = 4. The complete
addition and multiplication tables are given in Figure 2.5.You may have met

these operations before.
Sometimes, they are called
the operations of “clock
arithmetic.” Why?

Figure 2.5. Addition and multiplication tables for Z7.

An examination of the tables shows that Z7 is a field—in particular, every
nonzero element has a multiplicative inverse. There are other properties that
are not so evident. Take 2, for example, and begin raising it to various powers,
1, 2, 22, 23, . . . . One obtains 1, 2, 4, 1, 2, 4, 1, 2, 4, . . . , showing that {1, 2, 4} is a
(cyclic) subgroup of three elements. On the other hand, beginning with 3, we
have {1, 3, 32, 33, 34, 35 } = {1, 3, 2, 6, 4, 5}, which is the whole set of nonzero
elements in Z7. Because the number 3 generates the entire multiplicative sub-
group of Z7, it is called a primitive element, or simply a primitive, modulo 7.
Are there any other primitives modulo 7?

Just as with any field, we can consider the set Z7[x] of formal polynomi-
als in one variable with coefficients in Z7. And just as with polynomials in
Q[x] or C[x], we can do arithmetic with elements of Z7[x]. This arithmetic
supports addition and multiplication, and all the usual rules of algebra apply.
In particular, it so happens that every polynomial in Z7[x] can be factored
into irreducible polynomials in essentially one way. It takes a little time to getThe shorthand for this is

that Z7[x] is a unique
factorization domain. used to algebra in Z7[x], but you will get used to it with a little practice. For

example, x2 − 1 = (x − 1)(x + 1), as always. But x2 − 1 = (x + 6)(x + 1), too.
(Why is this the same factorization?) Another example: x2−2 = (x+4)(x+3).

One of the most useful properties of this setup is in the interaction between
Z7[x] and Z[x]. If f is any polynomial in Z[x], you can get a correspond-7 is just a placeholder here

for any prime. ing polynomial f by “reducing the coefficients of f modulo 7.” This means
replacing each coefficient in f with the remainder when that coefficient is
divided by 7. So for example:

(i) x3 + 14x2 + 8x + 9 = x3 + x + 2;
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(ii) x3 − 12x2 + 21x − 10 = x3 + 2x2 + 4 ;
(iii) x3 − 49x2 + 21x − 7 = x3;

(iv) x3 − 14x2 + 28x − 7 = x3;

(v) x100 − 14x2 + 28x − 7 = x100;

(vi) (x40 − 14x2 + 28x − 7)(x60 − 42x2 + 28x − 14) = x100.

If you work it out, you will see that

(x40 − 14x2 + 28x − 7) ⋅ (x60 − 42x2 + 28x − 14)

is also x100. And it works with addition, too. Details are in the exercises.
Meanwhile, back at the ranch . . . We want a test for irreducibility. As

usual, we begin with an example. Consider the polynomial x4 + 2 in Z[x].
How do you know that this polynomial is irreducible? You should check that
there is no linear factor. To eliminate the possibility of quadratic factors, how-
ever, requires a bit of calculation, which, although far from insurmountable, is
doomed to limitation. Suppose, for example, we asked about the irreducibil-
ity of x100 + 2. Eisenstein simply viewed the equation modulo 2. In Z2[x],
the polynomial becomes x100. If x100+2 were reducible, then one could write
x100 + 2 = f (x)g(x) in Z[x], each having positive degree less than 100 and
monic. On reducing modulo 2, in Z2[x] we would have

x100 + 2 = f (x)g(x) ,

or

x100 = f (x) g(x) ,

and since factorization is unique, we must have, in Z2[x], Gauss showed that if a
polynomial is irreducible
in Z[x], then it is also
irreducible in Q[x].f (x) = xm and g(x) = xn, 0 < m, n < 100 .

Lifting these equations back to Z[x], we see that f (x) must look like
xm + am−1xm−1 + am−2xm−2 + ⋅ ⋅ ⋅ + a0, with 2 dividing all the ai , and g(x)
must look like xn + bn−1xn−1 + bn−2xn−2 + ⋅ ⋅ ⋅ + b0, with 2 dividing all the bi .
Thus 4 must divide a0b0, which is impossible, because f (x)g(x) = x100 + 2.

The argument is identical if we consider x100 + 2x47 + 12x5 + 2 or x100 +
16x+2, because we only picked on a0 and b0 and required that the polynomial
become x100 in Z2[x]. You see how powerful the criterion is. It was crucial
that the constant term was 2 and not 22. On the other hand, it could have been
6 or 2s for s odd. These observations lead to the following theorem due to
Eisenstein. The proof is just as simple as the example, and we leave it to you
as an exercise.

Theorem 2.10 (Eisenstein’s criterion). Suppose that f (x) = xn+an−1xn−1+
an−2xn−2 + ⋅ ⋅ ⋅ + a0 is a polynomial in Z[x] and that p is a prime number that
divides each of the ai but p2 does not divide a0. Then f is irreducible inQ[x].

Proof. This is Exercise 2.30. Have fun. ∎
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Lookout Point 2.6. Here is a famous example of how Eisenstein’s criterion
is applied: when p is a prime, f (x) = xp−1 + xp−2 + ⋅ ⋅ ⋅ + 1 is irreducible in
Q[x].

But there aren’t any primes dividing the coefficients! A clever substitution
comes to the rescue: It is enough to show that f (x + 1) is irreducible (as you
will show in Exercise 2.31). We have seen this before for p = 5, but it works
in general. Namely, f (x) = xp

−1
x−1 . So

You will show this in
Exercise 2.15. f (x + 1) =

(x + 1)p − 1
x

= xp−1 + pxp−2 + (
p
2
)xp−3 + ⋅ ⋅ ⋅ + p .

Each of the binomial coefficients is of the form

(
p
j
) =

p(p − 1)(p − 2)⋯(p − j + 1)
j!

,

where j < p. Look at the fraction on the right-hand side: p is a factor of the
numerator, but p doesn’t divide the denominator. Hence p is a factor of (p

j
).

And p2 is not a factor of the constant term (it is just p). So Eisenstein applies,
and f (x) is irreducible.

A couple of facts follow from this:

Theorem 2.11.

(i) The minimal polynomial for ζp in Q[x] is 1 + x + x2 + ⋅ ⋅ ⋅ + xp−1.

(ii) If p is a prime, then Q[ζp] (=Q(ζp)) is the set of all linear combinations

a0 + a1ζ + a1ζ2 + ⋅ ⋅ ⋅ + ap−1ζ p−2

with coefficients ai in Q.

(iii) To close a loop that we opened earlier in this section, when p = 5, Q(ζ5)
is a vector space over Q with basis 1, ζ5, ζ25 , ζ

3
5 .

What about a method for producing the minimal polynomial for ζn for any
positive integer n, a polynomial that we will denote by Ψn(x)? Instead of
considering all powers of ζn, just consider the powers ζ jn , where ( j, n) = 1,
that is, where j and n are relatively prime. The number of such integers is
denoted by φ(n). The function φ (“Euler’s phi function”) shows up all over
mathematics and has some beautiful properties. One of them is that φ(n) =
n∏p∣n (1 − 1

p
), where the product is over all primes dividing n. The minimal

polynomial for ζn turns out to be

Ψn(x) = ∏
(j,n)=1

(x − ζ jn) .

It is not obvious that this polynomial is in Z[x], but it is. Even less obvious isTake heart. We’ll prove
both of these statements
in the Supplement to
Chapter 4.

that it is irreducible in Z[x]. But it is.
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Lookout Point 2.7. You should notice that 1 + x + x2 + ⋅ ⋅ ⋅ + xn is not
irreducible for general n. It is irreducible when n = p − 1 for a prime p, as we

This is a beautiful exam-
ple, one that can be mined
to illustrate the power of
unique factorization in
Q[x].

have just seen. But consider

1 + x + x2 + x3 + x4 + x5 =
x6 − 1
x − 1

.

You can factor x6 − 1 in two ways: as a difference of squares or a difference
of cubes:

x6 − 1 = (x3)
2
= (x3 − 1) (x3 + 1) = (x − 1)(x2 + x + 1)(x + 1)(x2 − x + 1) ,

x6 − 1 = (x2)
3
= (x2 − 1) (x4 + x2 + 1) = (x − 1)(x + 1) (x4 + x2 + 1) .

Either way, 1 + x + x2 + x3 + x4 + x5 is not irreducible. And there’s more:
Comparing the two factorizations and invoking unique factorization, we must
have

(x4 + x2 + 1) = (x2 + x + 1) (x2 − x + 1) .

This could be computed directly by expanding the right-hand side and watch-
ing things fall away. Or you can recognize that the left-hand side is a “differ-
ence of squares in disguise”:

x4 + x2 + 1 = (x4 + 2x2 + 1) − x2 .

One moral of the story: It may seem natural to assume that x4+ x2+1must
be irreducible because h(x) = x2 + x + 1 is, and the quartic is just h(x2). But
the implication goes only one way: if p(x) is a reducible polynomial in Q[x],
then so is p(xn) for every positive integer n, as can be seen by a substitution.
But if p(x) is irreducible, then all bets are off regarding p(xn). It may or may
not factor.

Meanwhile, back at the ranch . . . Because ζ6 satisfies

(x + 1) (x2 + x + 1) (x2 − x + 1) = 0,

we see that [Q[ζ6] ∶ Q] < 5. In fact, thanks to de Moivre, ζ6 = 1
2 + i

√

3
2 , so

ζ6 and its conjugate are roots of x2 − x + 1 = 0 (check this), and the minimal
polynomial for ζ6 over Q is thus x2 − x + 1.

The dimension of Q[ζ6]
as a vector space over Q
is called the degree of the
extension. We denote this
degree by [Q[ζ6] ∶ Q] and
decorate the field tower
diagram like this:

As a final example, let us consider the problem of constructing a regular
7-gon with ruler and compass. As we did with the pentagon, let ζ = cos 2π

7 +

i sin 2π
7 , so that the regular unit heptagon inscribed in the unit circle in the

complex plane looks like Figure 2.6.
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Figure 2.6. The regular unit heptagon.

Just as we did in equation (2.7), let us look for the numerical value of the
real part of ζ ; that is, look at ζ + ζ−1 = 2 cos 2π

7 . It’s the same drill: Start with
our favorite relation

1 + ζ + ζ2 + ζ3 + ζ4 + ζ5 + ζ6 = 0 .

On dividing through by ζ3, we obtain

ζ−3 + ζ−2 + ζ−1 + 1 + ζ + ζ2 + ζ3 = 0 ,

or

ζ3 + ζ−3 + ζ2 + ζ−2 + ζ + ζ−1 + 1 = 0 .

It begins to look suspiciously as though ζ + ζ−1 satisfies a cubic polynomial.
In fact,

(ζ + ζ−1)
3
= ζ3 + ζ−3 + 3 (ζ + ζ−1)

and

(ζ + ζ−1)
2
= ζ2 + ζ−2 + 2 ,

and solving these two equations for ζ3 + ζ−3 and ζ2 + ζ−2 respectively and
substituting in the above gives

(ζ + ζ−1)
3
− 3 (ζ + ζ−1) + (ζ + ζ−1)

2
− 2 + 1 = 0 ,

or

(ζ + ζ−1)
3
+ (ζ + ζ−1)

2
− 2 (ζ + ζ−1) − 1 = 0 .

Hence ζ + ζ−1 is a root of the cubic

x3 + x2 − 2x − 1 .

You can show that this cubic is irreducible.

Hint: Do you recall the
rational root theorem from
high-school algebra?

Thus Q (ζ + ζ−1) is a vector space of dimension 3 over Q. Since Q(ζ)

is of dimension 6 over Q (because 1 + x + x2 + ⋅ ⋅ ⋅ + x6 is irreducible), the
rest of the extension, that is, Q(ζ) over Q(ζ + ζ−1), must be quadratic (see
Exercise 2.38).

So, we have a field tower
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Now for the punchline. Exercise 2.13 implies that a segment whose length
is a quadratic irrationality (resulting in an extension of degree 2) can be con-
structed with ruler and compass. A succession of such constructions always
results in a field of degree 2n over Q. And it can be shown (see [19, Chap-
ter 7], for example) that this is the whole story: a length can be constructed
with ruler and compass if and only if it lies in an extension of degree 2n for
some integer n. The side length of a regular heptagon results in an exten- Many details are missing

here, but this is the basic
idea.sion of degree 3. Hence the heptagon cannot be constructed with ruler and

compass.
Incidentally, the other roots of x3+ x2−2x−1 = 0 are ζ3+ζ−3 and ζ2+ζ−2

(check this). Thus we have constructed a cubic polynomial that is irreducible
and has three real roots. Can you think of an easier way to find an irreducible
cubic with three real roots?

Lookout Point 2.8. When Gauss was seventeen years old, he showed that
it is possible to construct a regular 17-gon with ruler and compass; in fact,
he outlined a method for carrying out the construction. A wonderful video
shows David Eisenbud actually carrying out the steps.1

Later, Gauss showed that a regular polygon with p sides is constructible if More details are in [19,
Chapter 7].p is a so-called Fermat prime—a prime of the form 2n +1 (such as 5 and 17).
We met Fermat primes
before in the discussion
after equation (2.10).

Exercises

2.13 If n is a positive integer, show how to construct a segment of length
√
n

with ruler and compass.

2.14 In the figure below, △ABC, AB = BC = 1, and the measure of ∠B is
36○. Find AC.

1Available at https://youtube.com/watch?v=87uo2TPrsl8.

https://youtube.com/watch?v=87uo2TPrsl8
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2.15 Show that if n is a positive integer, then xn−1
x−1 = 1+ x + x

2 + ⋅ ⋅ ⋅ + xn−1 in
Q[x].

2.16 Find the value ofHint: Use the result of
Exercise 2.15.

20
∑
k=0

3k .

2.17 Let f (n) = a+ar+ar2+⋅ ⋅ ⋅+arn , where n is a positive integer and a and
r are real numbers. Use the result of Exercise 2.15 to find a closed-form
formula for f (n).

2.18 What is the side length of a unit regular pentagon. How would you
construct it?

2.19 Find the length of a side of a regular decagon inscribed in the unit circle.

2.20 Show that the only automorphisms of Q(
√
d) are the identity and the

mapping that sends a + b
√
d to a − b

√
d, and these two mappings form

an abelian group of order 2.
2.21 Show that partial sums of

1 +
1

1 +
1

1 +
1

1 +⋯

are the ratios of consecutive Fibonacci numbers.It’s a small world after all.

2.22 In Section 2.2.1, we stated that inQ(ζ5), addition and multiplication are
commutative and that all the usual rules of high-school algebra hold.
Prove this.

2.23 Establish the formal identity

(x2 + y2)
2
= (x2 − y2)

2
+ (2xy)2 .

Replace x and y by some integers and describe what you get.

2.24 Show that

(ζ35 − ζ
2
5 + 2ζ5) (7ζ

3
5 + 9ζ

2
5 + 8ζ5 + 3) = −1 .

2.25 Are there any polynomials in Q[x] that have reciprocals in Q[x]?
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2.26 Using polynomial arithmetic, characterize the set of polynomials in
Q[x] that produce the same complex number when x is replaced by ζ5.

2.27 Let α = ζ45 + ζ5. Express 1/α as a polynomial in ζ5.

2.28 Find the minimal polynomial for ζ8 in Q[x]. How about ζ9? How about√
2? Oh, and don’t forget

√
2+
√
3. Try some other interesting algebraic

numbers.

2.29 Suppose p is a prime and f and g are polynomials in Z[x] Let f̄ be the
polynomial in Zp[x] that you get when you reduce all the coefficients
of f modulo p. Show that

(i) f + g = f̄ + ḡ

(ii) f g = f̄ ⋅ ḡ

2.30 Prove Eisenstein’s criterion (Theorem 2.10).

2.31 Show that a polynomial f (x) ∈ Z[x] is irreducible if and only if f (x +
1) is irreducible.

2.32 Show that

(x + 1)p − 1
x

= xp−1 + pxp−2 + (
p
2
)xp−3 + ⋅ ⋅ ⋅ + p .

2.33 Let ζ = ζ5. Express each of these numbers in Q(ζ) as a linear combi-
nation of the basis {1, ζ, ζ2, ζ3}:

(i) ζ4

(ii) ζ−4

(iii) ζ58

(iv) 2ζ7

(v) 2ζ7 + ζ58 + 1
ζ58

(vi) more like these . . .

2.34 Give an example of a polynomial p(x) in Q[x] with the property that
p(x) and p(x2) are both irreducible.

2.35 Calculate φ(n) for n = 1, . . . , 50. Or go higher, just for fun. Conjecture
some properties of φ. Prove some of them.

2.36 Can you show that 1 − x2 + x4 is irreducible directly without using the
fact that it is the minimal polynomial for ζ12? Go ahead.

2.37 Show that x3 + x2 − 2x − 1 is irreducible in Q[x].

2.38 Show that in a field tower with degrees like this:
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the degree of E over L is mn.

2.39 Show that it is impossible to construct (with ruler and compass) a cube
with twice the volume of a given cube.

2.40 Take It Further. If n is a nonnegative integer, how many irreducible
factors in Z[x] does xn −1 have? (Fill in the table below to gather some
data.)

2.3 Modular Arithmetic

In this section we’ll show how the algebra of the last section can be extendedA complete development
of quadratic reciprocity
can be found in [41,
Chapter 5]. It requires
some background from the
earlier parts of that book.

to mod p considerations and give special cases of a famous result due to Gauss
called the law of quadratic reciprocity. We won’t be able to prove this result,
but you will acquire some experimental familiarity with it.

Caution: The standard
notation for the finite field
of integers modulo p is
Z/pZ. It would make a
long digression to describe
the motivation for this,
so we have adopted the
nonstandard Zp . See [19,
Chapter 7] for details.

You met the finite fields Zp in Section 2.2.4. We used p = 7, but any
prime will do. Carrying on with the questions asked there, another important
question to ask is this: what are the squares in Z7? On squaring everything
nonzero, we get {1, 4, 2}, and so these are the three squares.

Note that 2, which isn’t a square in Z, is a square in Z7. However, in Z5,
the squares are {1, 4}, and 2 is not a square. How can one tell when 2 is a
square in Zp? How about the set of all primes p for which 2 is a square in
Zp? Is it infinite? Do they have a pattern? For the answers to these and many
other really interesting questions, continue reading.

The more general issue concerning “reciprocity” is simply the following.
If p and q are distinct primes, is there any relationship between p being a
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square in Zq and q being a square in Zp?
Back up a bit and fix a prime p. How does one know that Zp is a field? If

a ∈ Zp is not 0, we must show that there is an element b in Zp such that ab = 1
(recall that = means equality in Zp). But if a ≠ 0, then (since 1 ≤ a ≤ p − 1) a
and p have no common factor. According to a basic result due to Euclid that

You can check that Z7 is
a field just by looking at
its tables for addition and
multiplication. But you
wouldn’t want to use that
method for Z101.

we will prove in Chapter 3, there exist integers x and y such that

ax + py = 1 .

But that just means that ax = 1 in Zp (if x happens to be outside the range
1, . . . , p − 1, just take x mod p).

This argument proves that Zp is a field, and that deserves to be celebrated
in a theorem.

Theorem 2.12. If p is a prime, then Zp is a field—every nonzero element of
Zp has a multiplicative inverse in Zp .

Next, string out the elements of

Zp − {0} = {1, 2, 3, . . . , p − 1}

and consider { a, 2a, 3a, . . . , a(p − 1) }, a ≠ 0 in Zp . The second sequence is
the same as the first! Hence

Prove that the two
sequences are the same
using the fact that Zp is a
field.

1 ⋅ 2 ⋅ 3 ⋅ 4⋯(p − 1) = a ⋅ 2a ⋅ 3a ⋅ a(p − 1) = ap−1(1 ⋅ 2 ⋅ 3⋯(p − 1)) .

Canceling gives the basic result of modular arithmetic, due to Pierre de Fer-
mat (1607?–1665), as stated in the following theorem.

Theorem 2.13 (Fermat’s little theorem). If a ≠ 0 in Zp , then ap−1 = 1 in
Zp . Equivalently, if a ∈ Z, p ∤ a, then ap−1 ≡ 1 (mod p). In other words, p

There’s another very
famous theorem asso-
ciated with Fermat:
Fermat’s last theorem.
That wasn’t proved until
the 1990s (not by Fermat,
of course). See [19] for
some of the history.

divides ap−1 − 1.

Using group theory, a bit of which we shall review later in this chapter,
we could have proved Theorem 2.13 more compactly as follows: Since Zp is
a field, Zp − {0} is a multiplicative group of order p − 1. By Lemma 2.25,
ap−1 = 1 for all a ∈ Zp − {0}.

Sometimes the theorem is stated in the form “if a ∈ Zp , then ap = a in Zp .”
Or equivalently, “if a ∈ Z, then ap ≡ a (mod p).” And another formulation is
worthy of statement as a corollary:

Corollary 2.14. If p is prime, then in Zp[x],

xp−1 − 1 = (x − 1)(x − 2)⋯(x − (p − 1)) .

The next, equally important, result is called the theorem on the primi-
tive element. It was conjectured by Euler and used in his investigations, but
although it isn’t very hard, the proof had to wait until Gauss came along. It
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is the generalization of the fact that Z7 = {3, 32, . . . , 36 }. Namely, there is an
element ρ ∈ Zp such that

Z
∗

p = {1, ρ, ρ
2, . . . , ρp−2 } .

Let us assume this result for a while, as Euler did, and using arguments like

Recall that
Z
∗

p = Zp − {0}.

those in the previous section, derive some interesting results. A proof will
show up soon, in Section 2.5.

The following observation is basic: Suppose n divides p − 1. Since Z∗p is
cyclic, we can find a generator ρ as above. Then ρ(p−1)/n = ξ is an element
of Z∗p that generates a cyclic subgroup of order n, namely

{1, ξ, ξ2, . . . , ξn−1 } .

For example, 3 7−1
3 = 32 = 2 should generate a subgroup with three elements.

And it does: {1, 2, 4}.
Let’s return to the argument we used to construct the regular pentagon and

see how one adapts this to Zp . Suppose that 5 divides p−1. Then one can find
an element in Zp , call it ζ , such that ζ5 = 1 and ζ ≠ 1. Then Zp has the five
distinct elements 1, ζ, ζ2, ζ3, ζ4. It follows that

ζ−1 = ζ4, ζ−2 = ζ3, ζ−3 = ζ2 ,

where ζ−1, ζ−2, and ζ−3 make perfectly good sense, since Zp is a field. ThenCaution: This is not a
rerun of what we did
earlier—this all happens
in Zp .

just as before (equation (2.9) in Section 2.2), because

ζ5 − 1 = (ζ − 1) (1 + ζ + ζ2 + ζ3 + ζ4) = 0 ,

we have

1 + ζ + ζ2 + ζ3 + ζ4 = 0

and

(ζ + ζ−1)
2
= ζ2 + ζ−2 + 2 = 1 − (ζ + ζ−1) .

Hence

(ζ + ζ−1)
2
+ (ζ + ζ−1) − 1 = 0 .

Hence ζ + ζ−1 satisfies the quadratic equation

x2 + x − 1 = 0 .

Now the question is this: can we solve this quadratic equation in Zp? Sure,
because p ≠ 2 implies that 2 has an inverse mod p. Call it 1

2 . Then

x2 + x − 1 = (x +
1
2
)
2
−
5
4
.

Hence in Zp , we have

But notice that in Z7, 1
2

is 4, and in Z11, 1
2 is 6.
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x = −
1
2
±

√
5
2
.

In any event,
√
5 is in Zp(!) That means that 5 is a square in Zp . The condition

on p was that p ≡ 1 mod 5.
Legendre introduced the following notation for this kind of statement. If

a ≠ 0 and a is a square in Zp , then one writes ( a
p
) = +1. If a is not a square

modulo p, one writes ( a
p
) = −1. Using this Legendre symbol, we can phrase

the above statement as the following theorem.

Theorem 2.15. If p ≡ 1 mod 5, then ( 5
p
) = +1.

Lookout Point 2.9. Theorem 2.15 can be stated in a slightly different way.
The statement amounts to p− 1 = 5t, or p = 5t + 1. In other words, the primes
congruent to 1 modulo 5 are just the primes in the arithmetic progression
{5t + 1 ∣ t ∈ Z}, which consists of the integers 1, 6, 11, 16, 21, 26, 31, . . . . Our
result says that 5 is a square modulo each prime p in that sequence (check
this out for a few primes).

An interesting question: How many prime numbers are there in the pro-
gression 1, 6, 11, 16, 21, . . . ? If there were infinitely many primes, then 5would
be a square in Zp for infinitely many p. See Section 2.4 for more on the story.

Another slight variation points to another interesting question: to say that 5
is not a square in Zp is simply to say that x2 − 5 is irreducible in Zp[x]. For
example, x2 − 5 is irreducible in Z7[x]; that is, it cannot be factored into

Results of this type were
arrived at experimentally
by Fermat already in the
early 1640s.

linear polynomials in Z7[x]. On the other hand, x2 − 5 is reducible in Z11[x].
In fact, x2 − 5 = (x − 4)(x − 7). Indeed, 4 and 7 are the two square roots of 5 Notice that 7 + 4 = 0

in Z11. What is the sum
of the roots of x2 − 5 in
Zp[x] for any prime p?

in Z11. In general, it is very difficult to know when a polynomial with integer
coefficients is reducible modulo p for a prime p.

2.3.1 Quadratic Reciprocity

We showed above that if p ≡ 1(5), then 5 is a square mod p. When is p a
square mod 5? The squares in Z5 are 1 and −1, so if p is a square mod 5, then

The condition p ≡ ±1(5)
is that p be of the
form 5k + 1 or 5k + 4.

we must have p ≡ ±1(5). Is there a reciprocity here? That is, if p ≡ −1(5),
is 5 also a square mod p? More generally, if p and q are primes, what the
relationship between ( p

q
) and ( q

p
)?

The answer, the law of quadratic reciprocity, is one of the most beautiful
results in arithmetic. It has several parts, so we state them one at a time:

Why does 4 play such
an important role? That’s
connected to arithmetic
in the “Gaussian inte-
gers,” which we take up
in Chapter 3.

Theorem 2.16 (Odd primes). Let p and q be distinct odd primes. If p or q
is congruent to 1 modulo 4, then p is a square modulo q exactly when q is a
square modulo p. If both are congruent to 3 modulo 4, then p is a square in
Zq if and only if q is not a square in Zp .

You should test some cases and show that the above statement can be writ-
ten in the nicely symmetric form

(
p
q
) (

q
p
) = (−1)(

p−1
2 )(

q−1
2 ) .
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Lookout Point 2.10. Here is one way to think about this. Say that two odd
(Z
∗

p)
2 means (as the

notation suggests) the set
of squares in Z∗p .

primes p and q have “positive reciprocity” if

p ∈ (Z∗q)
2
⇐⇒ q ∈ (Z∗p)

2
.

“Negative reciprocity” means (no surprise)

p ∈ (Z∗q)
2
⇐⇒ q /∈ (Z∗p)

2
.

Then quadratic reciprocity for odd primes can be summarized in a table:

Prime type 4n + 1 4n + 3
4n + 1 + +

4n + 3 + −

Theorem 2.16 was first proved by Gauss (of course) in his masterworkDisqui-
sitiones Arithmeticae [29], a book that laid the foundation for modern number
theory. He loved the result so much that he gave eight proofs over his career,
including one that uses geometry. A complete proof can be found in [41].See Chapter 7 of [15] for

a geometric proof, essen-
tially due to Eisenstein. Theorem 2.16 answers the question for p and q both odd. What happens

if one of the primes is 2? The question as to when 2 is a square in Zp can be
partially answered by appealing to the octagon.

Suppose that 8 divides p − 1. By the theorem on the primitive element,
there is an element ζ in Zp such that ζ8 = 1 and no lower positive power is
1. Then (ζ4)2 = 1, so ζ4 = ±1. Since ζ4 = 1 is excluded, we conclude that
ζ4 = −1. Then just as before,

(ζ + ζ−1)
2
= ζ2 + ζ−2 + 2 = 2 . (2.11)

(This is Exercise 2.47.) Hence ζ + ζ−1 is an element of Zp whose square is 2.
What have we shown?

Lemma 2.17. If p ≡ 1(8), then ( 2
p
) = +1.

For example, take p = 17. Then 17 ≡ 1(8), so ( 2
17) = +1. Indeed, 6

2 =

36 ≡ 2(17). A good exercise is to find a primitive ζ modulo 17 and show that
ζ + ζ−1 must be either 6 or 11. (This is Exercise 2.46.)

The complete answer about the nature of 2 is given by the following theo-Again, the details are
in [41]. rem.

Theorem 2.18 (The quadratic character of 2). 2 is a square in Z
∗

p if and
only if p ≡ ±1(8).

Another useful part of the story concerns the quadratic nature of −1. For
which primes p is −1 a square in Zp?

Suppose that p is a prime and that for some integer a, −1 = a2 in Zp . A
clever idea: raise both sides to the p−1

2 power and use Theorem 2.13:

(−1)
p−1
2 = (a2)

p−1
2 = ap−1 = 1 .
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This is an equation in Zp .

Now, in Z, we know that (−1)
p−1
2 = ±1. And as long as p ≠ 2, we have

−1 ≠ 1 in Zp , so in Z, we must have

(−1)
p−1
2 = 1 .

This implies that p−1
2 is even, and this implies that p ≡ 1(4) (why?), from

which the next lemma follows.

−1 is already a square in
Z2, so we can assume that
p ≠ 2.

Lemma 2.19.

(
−1
p
) = 1 /⇒ p ≡ 1(4) .

And conversely, −1 is a square for all primes that are congruent to 1mod 4.
One way to see this is to use Corollary 2.14. A numerical example gives the
basic idea. Suppose, for example, that p = 29. Then in Z29[x], we have

x28 − 1 = ((x4)7 − 1)

= (x4 − 1) ((x4)6 + (x4)5 + (x4)4 + (x4)3 + (x4)2 + x4 + 1)

= (x2 − 1)(x2 + 1) ((x4)6 + ⋅ ⋅ ⋅ + 1) .

And by Corollary 2.14, the distinct roots of x28 − 1 = 0 are the nonzero ele-
ments of Z29, namely 1, 2, 3, . . . , 28. Hence one (in fact two) of these elements
must satisfy x2 + 1 = 0.

What makes this work is that x2 + 1 is a factor of x28 − 1. That depends on
the fact that 29− 1 is divisible by 4. So we have the converse of lemma 2.19:

Lemma 2.20.

p ≡ 1(4) /⇒ (
−1
p
) = 1 .

Putting the lemmas together, we have a pretty result:

Theorem 2.21 (The quadratic character of −1).

(
−1
p
) = (−1)

p−1
2 .

Theorems 2.16, 2.18, and 2.21 combine to the give several parts of the law
of quadratic reciprocity:

Theorem 2.22 (The Law of Quadratic Reciprocity).

(i) If p and q are odd primes, then

(
p
q
) (

q
p
) = (−1)(

p−1
2 )(

q−1
2 ) .

(ii) If p is an odd prime, then ( 2
p
) = 1 ⇐⇒ p ≡ ±1(8).

(iii) If p is an odd prime, then (−1
p
) = (−1)

p−1
2 .

(iv) (−12 ) = 1.
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Exercises

2.41 Find a generator for Z∗p if

(i) p = 11
(ii) p = 17
(iii) p = 37
(iv) p = 101
(v) p = 109
(vi) p = 1009

2.42 Find
√
5 in Z11 and in Z101.

2.43 Take It Further. Find
√
5 in Z1011.

2.44 Using the notation from Section 2.2.4, show that if a monic polynomial
f is reducible in Z[x], then f is reducible in Zp[x] for every prime p.

2.45 Show that if p is a prime and p ≡ 1(8), then there is an element ζ in Zp

such that ζ8 = 1.
2.46 Find a primitive ζ in Z17 and show that ζ + ζ−1 is either 6 or 11.
2.47 Using the notation of equation (2.11), show that

(ζ + ζ−1)
2
= ζ2 + ζ−2 + 2 = 2 .

2.48 Prove Corollary 2.14.

2.49 Prove Lemma 2.20.

2.50 Let p be prime.

(i) Show that the product of two nonsquares in Z∗p is a square in Z∗p .

(ii) (Euler) If u and v are nonzero integers, show that

(
u
p
) (

v

p
) = (

uv
p
) .

2.51 (Euler) Suppose p is an odd prime and p ∤ a. Show that in Zp ,

(
a
p
) = −1(

p−1
2 ) .

2.52 Prove Wilson’s theorem: If p is a prime, then

(p − 1)! ≡ −1(p) .

2.4 Supplement: Dirichlet’s Theorem on
Primes in Arithmetic Progression

In Lookout Point 2.9, we asked about the number of primes in the sequence

1, 6, 11, 16, 21, 26, 31, . . . .
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An examination of a large portion of this progression might suggest to the
optimist that there are infinitely many such primes. This is indeed the case, but
the proof is far from trivial. More generally, consider an arbitrary arithmetic
progression a, a + b, a + 2b, . . . , where a and b have no common factor.
Peter Gustav Lejeune Dirichlet (1805–1859) proved in the 1830s that such
an arithmetic progression contains infinitely many primes. His proof was a
great triumph of complex analytic machinery, and it established Dirichlet as
the leading mathematician in the world. He assumed Gauss’s chair at the time
of the latter’s death in 1855. While Dirichlet’s proof is well beyond the scope
of this book, it will come as a pleasant surprise that we can, with the aid of
our results on the “modular” fifth roots of unity and a simple fact from group
theory, establish the result for the 5n + 1 sequence 1, 6, 11, 16, 21, . . . .

In order to motivate the proof, recall the famous Euclidean argument for

A complete proof of
Dirichlet’s theorem can be
found in [41].

the existence of infinitely many primes. If p1, . . . , ps are distinct primes, con-
sider their product increased by 1: p1⋯ps + 1. By the fundamental theorem
of arithmetic, this integer has a prime divisor, say p. Then p must be distinct
from p1, . . . , ps. (Why?) This gives a new prime. See Exercise 2.53.

In order to generalize this argument to our situation, we step back a bit
and look at Euclid’s argument from a higher vantage point. Euclid asserts
that the progression 1, 3, 5, 7, 11, . . . of all odd numbers contains infinitely
many primes. The number that makes the argument work, p1⋯ps + 1, is the
value of p1⋯ps when it is substituted into the polynomial x + 1. Thinking of
cyclotomic integers and polynomials (a bit of a stretch), note that

x + 1 =
x2 − 1
x − 1

.

For the 5n+ 1 sequence 1, 6, 11, 16, 21, . . . , we use a similar argument, this
time with the polynomial

x5 − 1
x − 1

= 1 + x + x2 + x3 + x4 .

Now begin as above. Suppose p1, . . . , ps are s distinct primes all of the
form 5n+ 1. Our goal is to find another prime, distinct from p1, . . . , ps, of the
form 5n + 1.

To that end, we form the product You will see in a minute
why we need to toss in 5.

α = 5p1p2⋯ps

and let ξ = 1 + α + α2 + α3 + α4. This is a big integer, and so it of course has
at least one prime divisor; call it p. We are going to show that p is the desired
new prime.

First, we will show that p is of the form 5n+1. Since p divides 1+α+α2+
α3 + α4, it follows that in Zp ,

1 + α + α2 + α3 + α4 = 0 .

Therefore, α is a root in Zp of x5 − 1 = (x − 1) (1 + x + x2 + x3 + x4).
We must show that α ≠ 1 in Zp . If such were the case, we would have

1+ α + α2 + α3 + α4 = 1+ 1+ 1+ 1+ 1 = 0, which holds in Zp only for p = 5.
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But by the construction of α, we have ξ ≡ 1 (mod 5), so 5 ∤ ξ, whence p ≠ 5,
and so α ≠ 1 in Zp .

It follows that α is one of the other roots, and so 1, α, α2, α3, α4 are distinct
elements of Z∗p , forming a subgroup of five elements. Now recall that if H is
a subgroup of order h in a group G of order n, then h is a factor of n. This too
is proved in Section 2.5.

It follows that 5 divides p − 1, which is precisely the condition for p to be
a member of the progression 1, 6, 11, 16, . . . .

And p is surely distinct from p1, . . . , ps , since otherwise, it would divide
α and hence divide 1+α +α2 +α3 +α4 − (α + α2 + α3 + α4), which is equal
to 1. Thus the proof of Dirichlet’s theorem is a rather nice application of roots
of unity and modular arithmetic.

You should test your understanding of the argument by showing that the
sequence 1, 4, 7, 10, 13, . . . contains infinitely many primes. In this case, use
1 + x + x2.

Exercises

2.53 True or false: If p1, p2, . . . , pn is the set of the first n primes, then

p1p2⋯pn + 1

is prime.

2.54 Show that the sequence

1, 4, 7, 10, 13, . . .

contains infinitely many primes.

2.55 Show that there are infinitely many primes in the sequence defined by
4n + 1:

1, 5, 9, 13, 17, . . . .

Perhaps use the polynomial x2 + 1.

2.5 A Little Group Theory

In the past several sections, we have used the language of groups. Here, we
review the most elementary properties of finite groups and prove the impor-
tant result on the primitive element that formed the basis of our arithmetic
considerations.

Lookout Point 2.11. The arguments in this section are intentionally aus-
tere. We shall develop a few results in the theory of finite groups with no

It is a good idea to
ameliorate the austerity
with some concrete
examples of your own.
See [70] for inspiration.

examples and no historical motivation. However, the arguments, as you will
see, involve many of the same ideas from the first several sections.
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Recall that a group is a set G equipped with a binary operation, denoted
here by ⋅, satisfying the following axioms:

(i) x ⋅ (y ⋅ z) = (x ⋅ y) ⋅ z .

(ii) There is an element e ∈ G such that x ⋅ e = e ⋅ x = x for all x .

(iii) For every x ∈ G, there is an element y ∈ G such that xy = e = yx.

You should show that there is only one e in a group and that the element y
of item (iii), which is generally denoted by x−1, is also unique. Exercise 2.56
asks you to show that xy = xw implies y = w, so that cancellation is possible.

Lemma 2.23. Let a be an element of a finite group G. Then there is a small-
est positive integer n such that an = e. If am = e for a positive integer m, then
n ∣ m.

Note that the operation ⋅
need not be commutative.

Proof. Start raising a to various powers: a, a2, a3, . . . . Since G is finite, it
follows that as = at for some s ≠ t, 0 < s < t. Hence at−s = e. So a to some
power is e. Let n be the smallest positive power such that an = e. If am = e,
then m ≥ n. Divide n by m and use the division algorithm to write the result
as m = nδ + ρ, where 0 ≤ ρ < n.

Then e = am = anδ ⋅ aρ. Since an = e, this becomes aρ = e. But 0 ≤ ρ < n,

The division algorithm
codifies “division with
remainder” for integers.
Its proof can be found in
Chapter 3 (Lemma 3.3).

so the minimality of n forces ρ = 0. Thus m = nδ and n ∣ m. ∎

The n of Lemma 2.23 is called the order of a.
A subset H of G is called a subgroup if H is a group with the same oper-

ation. Let ∣H∣ denote the number of elements of H. It is called the order of
H. If a has order n, then {e, a, . . . , an−1 } is a subgroup of G, called a cyclic
subgroup. It has order n. (Thus the order of an element is the order of the
cyclic subgroup that it generates.)

Note the overloading of
the notation ∣ ⋅ ∣. We have
seen it used to denote
absolute value, and here
it is being used both for
the number of elements of
a group and the minimal
positive power of a group
element equal to the
identity.

Lemma 2.24. If H is a subgroup of a finite group G, then the order of H
divides the order of G.

Proof. If H = G, we are through. Otherwise, let a ∈ G, a ∉ H. Consider aH,
the set of all ah, h ∈ H. These elements are distinct from one another, and
aH ∩ H = ∅, since ah1 = h2 would give a = h2h1−1 ∈ H. If aH ∪ H = G,
then stop. Otherwise, let b ∈ G, b ∉ aH, b ∉ H, and consider bH. Then
bH ∩ (aH ∪ H) = ∅, and bH has ∣H∣ distinct elements. Keep going until you
have exhausted the group. Each time, we have added ∣H∣ new elements. So
∣G∣ is an integer multiple of ∣H∣. ∎

The sets aH are called left cosets of H.

Lemma 2.25. If a ∈ G and G is a finite group, then the order of a divides the
order of G.

Proof. H = { e, . . . , an−1 } is a subgroup of G, so apply the preceding lemma.
∎
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Earlier in this section, we stated and used the result due to Gauss that
Z
∗

p (= Zp − {0}), viewed as a finite multiplicative group, is cyclic. We also
noticed that every finite subgroup of C∗ = C − {0} is also cyclic, and its
elements form a regular polygon when plotted in the complex plane. That was
proved with the help of de Moivre and Lemma 2.25. However, as mentioned
in Section 2.1, one can establish a general result about finite subgroups of any
field whatsoever: they are always cyclic.

To prove this, we first need a lemma on abelian groups, that is, groups in
which multiplication is commutative: xy = yx for all x, y ∈ G.

Lemma 2.26. Let G be a finite abelian group and a and b two elements of
orders s and t respectively. Suppose that s and t are relatively prime. Then
the order of ab is s ⋅ t.

Proof. Since as = e, bt = e, and G is abelian, it follows that (ab)st = e. Now
let the order of ab be m. Then by Lemma 2.23, we know that m ∣ st. Since s
and t have no common factor, it follows that m = s1t1, where s1 ∣ s and t1 ∣ t,

That m = s1t1 follows,
for example, from the
fundamental theorem of
arithmetic, which we will
prove in Chapter 3.

so that e = (ab)m = (ab)s1t1 . Then using a little fancy footwork, we have

e = es/s1 = ((ab)s1t1)
s/s1
= (ab)st1 = ast1bst1 = bst1 .

Therefore, again by Lemma 2.23, we find that t ∣ st1. Hence t ∣ t1, since s and
t have no common factor. Since t1 ∣ t, we see that t = t1. Similarly, s = s1. ∎

We are now ready to prove the basic result. Suppose F is a field and G a
finite multiplicative subgroup of F∗ = F − {0}. If n denotes the order of G,
write n = p1α1p2α2⋯pmαm , where p1, . . . , pm are distinct primes. Since G has
order n, it follows that αn = 1 for each α ∈ G.

By basic algebra, xn − 1 = ∏α∈G(x − α) is in F[x]. If c ∣ n, then xc − 1
divides xn − 1. It follows that xc − 1 has c distinct roots in G. Hence for each
i from 1 to m, xp

αi
i − 1 has piαi roots in G. Let βi be a root of xpi

αi
− 1 thatThe relationship between

factors and roots of
polynomials shows up in
high-school algebra in
R[x], in Corollary 2.14 in
Zp[x], and here in F[x].
What makes it work in all
these systems?

is not a root of xpi
αi−1
− 1. Then since β

p
αi
i

i = 1, the order of βi must be
a power of pi . But that power cannot be less than αi , or else one would get

βi
p
αi−1
i = 1. Hence the order of βi is piαi . But p1α1, . . . , pmαm are mutually

relatively prime. Hence by an inductive generalization of Lemma 2.26, we
conclude that β1 ⋅ β2⋯βm has order p1α1 ⋅ p2α2⋯pmαm = n. This means that
G is cyclic! This deserves to be celebrated as a theorem.

Theorem 2.27. If F is a field, then every finite subgroup of F∗ is cyclic.

As a special case, we finally state the theorem that was so essential to our
investigation of cyclotomy.

Theorem 2.28 (Theorem of the primitive element). The multiplicative
group of a finite field is cyclic. In particular, if p is a prime, there exists anThe first complete proof

of Theorem 2.28 was
given by Gauss (of course)
in [29].

element ρ ∈ Zp such that

Z
∗

p = { ρ, ρ
2, . . . , ρp−2 } .
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Incidentally, we have retrieved the existence of polygons without trigonom-
etry. By the fundamental theorem of algebra, we know that xn = 1 has n
roots in C. They form a group, so the group is cyclic. Let ζ1 be a gener-
ator, so the group’s elements are ζi = ζ i1, i = 1, . . . , n. Since ζni = 1, we
have ∣ζi ∣ = 1 for all i, and so these n elements sit on the unit circle. Finally, Recall that ∣ζ ∣ denotes the

absolute value of ζ .∣ζi − ζi+1∣ = ∣ζ1
i − ζ1

i+1∣ = ∣ζ1
i ∣∣1 − ζ1∣ = ∣1 − ζ1∣, and so the ζi are all the same

distance apart!

Exercises

2.56 Show that in a group G, cancellation is possible; that is, if xy = xw,
then y = w.

2.57 True or False: If G is a group and x, y ∈ G, then one always has
(xy)−1 = x−1 ⋅ y−1. If it is true, prove it. If it is not, salvage it with
a fix.

2.58 Suppose that F is a field and c, n are nonnegative integers.

(i) Show that (xc − 1) ∣ (xn − 1) in F[x].

(ii) Is the converse true?

2.59 Prove all the assertions made in the proof of Lemma 2.24.

2.60 The proof of Theorem 2.27 makes several assertions. Prove them all.

2.6 Orbits and Elementary Group Theory

In 1959, Helmut Wielandt (1910–2001) published a very simple proof of a
general theorem in group theory due to the Norwegian mathematician Peter
Ludwig Mejdell Sylow (1832–1918) [88]. The theorem states that if n is the
order of G and ps ∣ n for a prime p and positive integer s, then there is a
subgroup H of order ps . The standard proofs prior to Wielandt’s were con-
sidered somewhat difficult for beginners. Many textbooks on algebra and ele-
mentary group theory now contain an exposition of Wielandt’s proof. In this
section, we develop this point of view and prove a number of results about
finite groups.

The basic notion is that of a groupG operating on a set S. In other words, if
g ∈ G and s ∈ S, then g(s) denotes an element of S. Picture it like Figure 2.7.

The group structure of G is involved in two axioms that we shall impose The action of G on S
equips G with additional
structure: elements of G
become functions with
domain S and image in S.

on the action of G on S:

1. In the first place, we want the identity e of G to operate on S like an
identity: e(s) = s for all s ∈ S.

2. Our second condition states that multiplying in G corresponds to com-
position of the action on S. In symbols, this is the requirement that for
g1, g2 ∈ G, we should have

(g1 ⋅ g2)(s) = g1(g2(s)).
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Figure 2.7. Every element g ∈ G sends s ∈ S to g(s) ∈ S.

We then say that G operates on S and that the action of G on S is good.
Let us give a few examples.

Example 1. Fix a set H. Let S be the set whose elements are pairs (a, b)
with a, b ∈ H. For the group G we take a cyclic group with two elements, say
{e, σ}, σ2 = e. We shall let G operate on S according to the prescription

e(a, b) = (a, b) ,

σ(a, b) = (b, a) .

To check that G really operates on S we need, by axiom 2, to see thatYou should also check that
σ(e(a, b)) = σ ⋅ e(ab),
and so on.

σ(σ(a, b)) = σ2(a, b) ,

which is immediate, since σ2 = e and σ(σ(a, b)) = σ(b, a) = (a, b).

Example 2. Do the same as above, but put

S = H × H ×⋯× H
67777777777777777777777777777777777777877777777777777777777777777777777777779

n

,

and let G be a cyclic group with n elements, G = { e, σ, σ2, . . . , σn−1 },
σn = e. How shall G operate on S? Define

e(a1, a2, . . . , an) = (a1, a2, . . . , an) ,

σ(a1, a2, . . . , an) = (an, a1, a2, . . . , an−1) ,

σ2(a1, a2, . . . , an) = (an−1, an, a1, a2, . . . , an−2) ,

⋮

σn−1(a1, a2, . . . , an) = (a2, a3, a4, . . . , an, a1) .

Check that G operates on S. We shall see a little later how this simple action

G cyclically permutes the
elements of S.

gives a swift proof that when p divides the order of a group G, for a prime p,
then there is an element of order p in G.

Example 3. Suppose G already operates on a set T . Let S be the set of all
subsets of T . If A ∈ S, then define g(A) = { g(t) ∣ t ∈ A}. Then g(A) ∈ S and
G operates on S (check this).
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Example 4. This time, let G be a group and let the set that we usually call S
be G as well. That is, we are going to let G operate on itself. If g ∈ G, then
define g(s) = g ⋅ s ⋅ g−1 for all s ∈ G. Then e(s) = ese−1 = s for all s, and we
have

(g1 ⋅ g2)(s) = (g1g2)s(g1g2)−1 = g1g2sg−12 g−11

= g1(g2sg−12 )g
−1
1 = g1(g2(s)) .

We say that G operates on G by inner automorphisms.

Example 5. Let G be any group and H a subgroup of G. We let S be the set
of left cosets aH = { ah ∣ h ∈ H }. The action of G on S is given by

g(aH) = gaH ∈ S .
(g1 ⋅ g2)(aH)
= g1 ⋅ (g2 ⋅ aH)
= g1(g2(aH)).

Example 6. This is the one used in proving Sylow’s theorem. Here G is a
fixed group, s is a fixed positive integer, and S is the set whose elements are
subsets consisting of ps elements of G. If A ∈ S, then define the action by
g(A) = { ga ∣ a ∈ A}. You can show that g(A) ∈ S and G operates on S. Try
it.

Each of the above examples will be used in later applications.

If G operates on a set S, then we define the orbit G(s) of an element s ∈ S
by G(s) = { g(s) ∣ g ∈ G }. In Example 4, the orbit of an element a is called
the conjugacy class of a. A basic result is the following lemma.

Lemma 2.29. Two orbits are either identical or disjoint.

Proof. It is enough to show that if two orbitsG(s) andG(s′) have a common
element, then G(s) = G(s′). But if g(s) = g′(s′), then by definition of G
operating on S, we have s = e(s) = g−1g(s) = g−1g′(s′). Hence s ∈ G(s′),
and it follows that G(s) ⊂ G(s′). By symmetry, G(s′) ⊂ G(s). ∎

It follows that the action of G on S breaks S up into disjoint orbits. For
applications, it is important to have some way of obtaining information on
the number of elements in a given orbit. For example:

(i) If g(s) = s for all g ∈ G, then G(s) = { s }, and the orbit has just one
element.

(ii) In Example 2 above, take H × H × H. Then (a, a, a) has an orbit of one
element, while (a, b, b) has an orbit of three elements: (b, a, b), (b, b, a),
and (a, b, b).

Another example: If we let a cyclic group of order 6 operate on H ×H ×H ×
H × H × H as in Example 2, then (a, b, a, b, a, b), a ≠ b, has an orbit of two
elements. Which elements of G = { e, σ, σ2, σ3, σ4, σ5 } leave (a, b, a, b, a, b) What is the stabilizer of

(a, b, c, a, b, c) if a, b, c
are distinct elements
of H?

fixed? Answer: { e, σ2, σ4 }, which is the subgroup of G of order 3. We call
{ e, σ2, σ4 } the stabilizer (or the isotropy group) of (a, b, a, b, a, b).
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Let G operate on a set S. The stabilizer, or the isotropy group, of an ele-
ment s ∈ S is the set Is = { g ∈ G ∣ g(s) = s }. The set Is is a subgroup of G.
Thus the stabilizer of an element s of S is the subgroup of G of elements that
don’t move s, i.e., that leave s fixed.

In the above examples, notice that the number of elements in the orbit of
an element of a group G multiplied by the number of elements in the stabilizer
of that element is equal to the order of G.

If G1 is a subgroup of a finite group, then the index of G1 in G, denoted
from now on by [G ∶ G1], is, by definition, the number of left cosets of G1.
Lemma 2.24 tells us that if the order of G1 is m and the order of G is n, then
m divides n. Thus [G ∶ G1] = n/m.

In the above examples, we can use this vocabulary to rephrase “the number
of elements in the orbit of an element multiplied by the number of elements
in the stabilizer of that element is equal to the order of G” as “the number of
elements in the orbit of s ∈ S is equal to the index of its stabilizer.” This is
true quite generally.

Lookout Point 2.12. There is a way in which the above statement makes
some intuitive sense: The real action of G on an element s happens outside
the action of the stabilizer of s—the stabilizer just leaves s alone. In a sense,
to see what really happens to s under G’s action, you can “mod out” by Is .
This is the same principle as viewing Z7 as Z, ignoring multiples of 7.

More precisely:

Lemma 2.30. If Is is the stabilizer of an element s ∈ S, then the number of
elements in the orbit G(s) of s is equal to the index of Is in G. In symbols,∣G(s)∣ denotes the

number of elements in
G(s).

∣G(s)∣ = [G ∶ Is], or ∣G(s)∣ ⋅ ∣Is ∣ = ∣G∣ .

Proof. Write a left coset decomposition of Is in G:

G = g1Is ∪ g2Is ∪⋯∪ gmIs .

Then m is the index of Is inG, by definition. To prove the lemma, it is enough
to show that the set { g1(s), g2(s), . . . , gm(s) } comprises precisely the dis-
tinct elements in the orbit G(s). And indeed it does. Here is why.

First, the elements are distinct, for gi(s) = gj(s) implies g−1j gi(s) = s
implies g−1j gi ∈ Is implies gi ∈ gj Is , which is impossible. (Why?)

Next let g(s) ∈ G(s). Then using the above decomposition, you can say
that g = gih for some i and h ∈ Is . Then g(s) = gih(s) = gi(s), an element of
our alleged orbit { g1(s), g2(s), . . . , gm(s) }. Done. ∎

Corollary 2.31. With notation as in the lemma, both ∣G(s)∣ and ∣Is ∣ divide ∣G∣.

Let us put Lemmas 2.29 and 2.30 to work.
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Application 1. Let H be a finite group and let p be a prime dividing the
order of H, which we denote by n. A theorem due to Cauchy states that there
is an element of order p in H. The following “orbit” proof is due to James
McKay [55].

Consider the set S of all p-tuples (a1, a2, . . . , ap) with a1, . . . , ap ∈ H and
a1 ⋅a2⋯ap = e. As in Example 2, define a cyclic permutation σ of the elements
of S by

σ(a1, a2, . . . , ap) = (ap, a1, a2, . . . , ap−1) .

Let Gp denote the cyclic group { e, σ, σ2, . . . , σp−1 } of order p. Then Gp

operates on S.
We must check, of course, that Gp is a good action. In Example 2, you

saw that the action satisfies the two properties from Section 2.6. We also need
to check that (ap, a1, . . . , ap−1) ∈ S. But a1 ⋅ a2⋯ap = e, so a1⋯ap−1 is the
inverse of ap . It follows that apa1a2⋯ap−1 = e.

Now let us look at orbits. If the orbit of (a1, . . . , ap) has only one element,
then a1 = a2 = ⋯ = ap , so that a1p = e and a1 is an element of order p. If
s ∈ S has an orbit with more than one element, then Is is a proper subgroup Much of this argument

uses Lemma 2.24.of Gp , and that forces Is = { e }, since p is prime. This means that G(s) has
p elements.

Hence either the orbit has one element or p elements. Now use Lemma
2.29. The set S is partitioned into disjoint orbits. If there are k elements with
orbit just a single element, then the number of elements of S is k + pt for
some whole number t. But for each choice of a1, . . . , ap−1, there is a unique
ap such that a1a2, . . . , ap = e. Thus the number of elements in S is np−1.
Hence np−1 = k + pt, from which it follows that p ∣ k, since p ∣ n. Hence
k > 1, and there is an element of orbit a single point besides (e, e, e, . . . , e).
That gives an element of order p.

Lookout Point 2.13. This argument is a direct generalization of the argu-
ment that shows that a group with an even number of elements has an element
of order 2: Each element a that is not of order 2 can be paired with its inverse
a−1 ≠ a. Thus there is an even number of such elements. What remains are
the identity and the elements of order 2. Since the group has an even number
of elements altogether, it must have an odd number of elements of order 2,
hence at least one such element.

Application 2. Let G be a group. If a ∈ G and ag = ga for all g ∈ G, then
we say that a belongs to the center of G. The center of G is denoted by Z(G),
and you can see that Z(G) forms a subgroup. Here is another way to describe

Thus the center of G is all
of G if and only if G is
abelian.

Z is for the German word
Zentrum = center.

Z(G). Put S = G and let G operate on G by inner automorphisms (Exam-
ple 4). Thus g(s) = gsg−1. What is the isotropy group Is? By definition,

Is = { g ∣ gsg−1 = s } = { g ∣ gs = sg } .

Thus Is is the subgroup of all elements in G that commute with s. If Is =
G, then every element commutes with s, and we have s ∈ Z(G). In other
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words, Z(G) is the set of single-element orbits. When does Z(G) contain
more elements than just e? A partial answer is given in the following lemma.

Lemma 2.32. If the order of G is pn, for a prime p, then Z(G) ≠ { e }.

Proof. It suffices to show that the number of single-element orbits is greater
than 1. To that end, we decompose G under the above action into disjoint
orbits. Each orbit G(s) contains either one element (an element of Z(G)) or
pj elements for some j (Corollary 2.31). Counting, we have

pn = ∣G∣ = k + pt ,

where k ≥ 1 is the number of single-element orbits. We then have p ∣ k,
whence k ≥ p, and therefore Z(G) ≠ { e }. ∎

Application 3. Sylow’s theorem. LetG be a group with n elements and sup-
pose that ps ∣ n, where p is a prime. We will locate a subgroup of order ps . To
do this, we let S be the set whose elements are subsets of G with ps elements.
The number of elements in S is

(
n
ps
) =

n(n − 1)⋯(n − ps + 1)
(ps)!

.

We need to know the highest power of p dividing ( n
ps). The answer: Put

n = ptmwith p ∤ m. Then the highest power is pt−s . This is seen by matching:

(
ptm
ps
)
(ptm − 1)
(ps − 1)

⋯
(ptm − p)
(ps − p)

⋯
(ptm − (ps − 1))
ps − (ps − 1)

.

You can show (Exercise 2.63) that each fraction except the first has the same
power of p in the numerator and denominator. Thus the answer is t − s.

Now let G operate on S as in Example 6, namely, for A ∈ S and gA = { ga ∣
a ∈ A}. Check that gA also has ps elements and that G is a good action on S.

Since pt−s is the highest power of p dividing the number of elements of
S, and since, by Lemma 2.29, the orbits disjointly partition S, it follows that
there must exist at least one orbit whose number of elements is not divisible
by pt−s+1.

Denote this distinguished orbit by G(α), where α is a fixed element of S.
The main point of the construction is this: the stabilizer Iα of α in G is a
subgroup with ps elements. Let us prove this. By Lemma 2.30, we have

∣G(α)∣ ⋅ ∣Iα∣ = ∣G∣ .

Also, if r is a positive integer, let νp(r) denote the highest power of pFor example,
ν5(2625) = 3. dividing r . Then

vp ∣G(α)∣ + vp ∣Iα∣ = vp ∣G∣.
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By definition of G(α), we know that

vp ∣G(α)∣ ≤ t − s .

Hence since vp ∣G∣ = t, we see that

t − s + νp ∣Iα∣ ≥ t ,

or

vp ∣Iα∣ ≥ s .

Thus ∣Iα∣ ≧ ps .

Recall that n = ptm with
p ∤ m.

In order to show that ∣Iα∣ ≤ ps , we make the following observation. Write

α = { g1, g2, . . . , gps } .

If g is an arbitrary element of Iα, we know by the definition of Iα that gα = α.
In other words,

{ g1, g2, . . . , gps } = { gg1, gg2, . . . , ggps }

(as sets!). Hence gg1 = gj for some j, with 1 ≤ j ≤ ps . But then g = gjg
−1
1 ,

which shows that there are only ps choices for g. Hence ∣Iα∣ ≤ ps . We con-
clude finally that ∣Iα∣ = ps , which proves Sylow’s theorem.

Theorem 2.33 (Sylow’s theorem). Let G be a group with n elements and
suppose that ps ∣ n, where p is a prime. Then G has a subgroup of order ps .

Exercises

2.61 Fill in the details for the claim in the proof of Sylow’s theorem that

νp(
ptm
ps
) = t − s .

2.62 If p is a prime and a and b are positive integers, show that

νp(ab) = νp(a) + νp(b) .

2.63 Referring to the proof of Sylow’s theorem, show that each fraction
except for the first has the same power of p in the numerator and denom-
inator.



3 The Fundamental Theorem of
Arithmetic

In Chapter 2, we made extensive use of the fact that every positive integer
can be written in one and only one way as a product of powers of distinct
primes. This property of Z is basic to mathematics. It is so basic that many
people don’t even think to question it. This is especially true in school, where
students spend much of elementary school working with integers, using this And later in school, it is

usually taken for granted
that two different factor-
izations in Z[x] produce
the same irreducible
factors.

unique factorization property as if it were a law of nature. For example, young
children build “factor trees” for whole numbers, and it is usually taken for
granted that two different trees, like those in Figure 3.1, end up with the same
set of prime factors.

Figure 3.1. Two factor trees for 60.

Assuming unique factorization isn’t the sole province of beginners. As we
shall see in Section 3.2, accomplished mathematicians assumed that rings of
cyclotomic integers enjoyed unique factorization and ended up with flawed
proofs of a longstanding conjecture, the famous “Fermat conjecture” (read
on). And attempts to fix the flaws contributed to the creation of modern alge-
braic number theory.

But happily, our old friend Z enjoys unique factorization, and that is what
we take up in this chapter.
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3.1 Getting Started

We never defined the word prime in Chapter 2 (whoops). To set things right,
a positive integer distinct from 1 is said to be prime if it has only 1 and itself
as positive divisors. From this definition it is not immediately clear that everyInsisting that primes be

positive eliminates the
need for some fussiness. positive integer different from 1 has a prime divisor. But it’s true:

Lemma 3.1. Let n > 1, n ∈ Z. Then there exists a prime p such that p ∣ n.

Proof. The integer n has divisors bigger than 1 (itself, for example). Let m
be minimal in the set of divisors of n larger than 1. If m were not prime, then
we could write m = ab, 1 < a < m (a ∈ Z). But then we would have a ∣ m and
m ∣ n, from which we conclude that a ∣ n, which contradicts the minimality
of m. ∎

Lemma 3.2. Let n > 1, n ∈ Z. Then n can be written in the form

n = p1p2⋯ps, for primes p1, . . . , ps .

Proof. We proceed by strong induction. Check the first few cases, say n =

2, 3, 4, 5, 6. If n is prime, we are done. So assume that n is composite. Choose
p1 ∣ n by Lemma 3.1. Then 1 < n/p1 < n, so by induction, there are primes
p2, . . . , ps such that

n
p 1

= p2⋯ps .

But then

n = p1p2⋯ps .

∎

On grouping the distinct primes, we see that one may write n = pα1
1 ⋯pαs

s

for distinct primes p1, . . . , ps. But here is the catch. Suppose p ∣ n for a
prime p. How do you know that p = pi for some i? The proof is by no means

It is a great experiment to
ask a youngster whether
13 divides 2×3×5×7×11.
Many kids will perform
the multiplication, divide
by 13 and (hopefully)
obtain a nonzero remain-
der.

trivial—it requires a chain of lemmas, each of which is important in itself and
which, taken together, determine the algebraic structure of Z. Here we go.

Lookout Point 3.1. Before we carry on, let us tie up another loose end
from Chapter 2, one that is essential to what follows.

Lemma 3.3 (The division algorithm). If a is an integer and b is a positive
integer, then a = bq + r, where q and r are integers with 0 ≤ r < b.

Proof. Consider the set of all a − bj, where j ranges over Z. This set has
nonnegative members (right?). Let q be such that a − bq ≥ 0 and a − bq is
minimal among the nonnegative members. Put a − bq = r . Claim: r < b.

The existence of a minimal
element among the a− bq
follows from the “well-
ordering property of
Z,” discussed in [19,
Chapter 1].

Suppose to the contrary that r ≥ b. This would imply that a − bq ≥ b. Then
a − (q + 1)b ≥ 0. But a − (q + 1)b < a − qb, since b > 0. This contradicts the
minimality of a − bq, so r < b after all, and that establishes the lemma. ∎
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Another way to think about this is to consider the rational number a/b. It
gets caught between two consecutive integers, q and q+1, say. Put a

b
−q = w.

This makes ∣w∣ < 1 (why?), and it is rigged to make

a = bq + bw .

But

∣bw∣ = ∣b∣ ∣w∣ < ∣b∣ .

So we take r to be bw.

The fact that every real
number is caught between
two consecutive integers
is called the Archimedean
property of R. It implies
that there exist real
numbers arbitrarily large
in absolute value. Young
children get used to this
when they play with
the “number line.” Not
every useful field is
Archimedean [45].

Back at the ranch, consider two positive integers a and b. They have a
common divisor, namely 1. And since every divisor of a and b must be less
than max{ a, b}, one can consider their largest (aka greatest) common divi-
sor. Call it d. Our first goal is to show that if m is a common divisor of a and
b, then m divides d. To do this, we show that d has an amazing property: it
turns out that the set of Z-linear combinations of a and b coincides with the
set of multiples of d. We capture the greatest common divisor “linearly” by
the following fundamental lemma.

Lemma 3.4. Let a and b be integers. Let

aZ + bZ = { ax + by ∣ x, y ∈ Z} .

Then:

(i) There is a unique nonnegative integer d satisfying

aZ + bZ = dZ.

(ii) If m ∣ a and m ∣ b, then m ∣ d. Hence d is the greatest common divisor of
a and b.

Proof. (i) If a = b = 0, let d = 0. Otherwise, aZ + bZ has positive elements.
Let d be positive and minimal in aZ + bZ. Then dZ ⊆ aZ + bZ. To get the
reverse inclusion, suppose that m ∈ aZ + bZ. Write m = ds + r , where 0 ≤

r < d. Then one sees that m − ds ∈ aZ + bZ (because aZ + bZ is closed
under addition and subtraction). Hence r ∈ aZ+ bZ, which forces r to be zero
(why?). Therefore, d ∣ m. Hence m is a multiple of d, and we have established
the reverse inclusion:

aZ + bZ ⊆ dZ.

(ii) Since a ∈ aZ + bZ, we have a ∈ dZ, which means that d ∣ a. Similarly,
d ∣ b. Ifm ∣ a andm ∣ b, thenm divides every member of aZ+bZ. In particular,
it divides d, since d ∈ aZ + bZ. ∎

Lookout Point 3.2. Lemma 3.4 is responsible for a very suggestive piece
of notation: if a1, . . . , am are integers, we let (a1, . . . , am) denote the set

a1Z + a2Z + ⋅ ⋅ ⋅ + amZ .
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Using this convention, the lemma says that if d is the greatest common divisor
of a and b, then

(a, b) = (d) .

This is an equality of sets. If we want to refer to integers rather than sets, theYes, (a1, . . . , am) often
denotes an n-tuple.
Context matters.

convention is to write

d = gcd(a, b) .

But (again, context matters), we will sometimes refer to (a, b) as the greatest
common divisor of a and b. There is more to the story behind all this (see
[41]).

We are now in a position to establish the result that if a prime p divides a
product, then it divides one of the factors.

Theorem 3.5 (Euclid’s lemma). Let p be prime. If p ∣ ab for integers a andIf 6 divides a product ab,
must it divide a or b? b, then p divides at least one of a and b.

Proof. Suppose that p ∤ a. Since p is prime, p and a have greatest common
divisor 1. By Lemma 3.4, we have ax + py = 1 for suitable integers x and y.
Multiply by b to get ab into the act. This gives

abx + pby = b . (3.1)

But p ∣ ab and p ∣ p. Therefore, p divides the left-hand side of equation (3.1),
so it also divides the right-hand side: p ∣ b. Done. ∎

We conclude immediately the following:

Lemma 3.6. If n > 1 is written n = pα1
1 ⋯pαs

s , where p1, . . . , ps are distinct
primes, and if a prime p divides n, then p = pi for some i = 1, . . . , s.

Proof. Write n = p1 ⋅ (pα1−1
1 ⋯pαs

s ). Then either p ∣ p1, in which case p = p1,
or else p ∣ pα1−1

1 ⋯pαs
s . Continue in this way. ∎

The fundamental theorem of arithmetic follows in the same spirit:

Theorem 3.7 (The fundamental theorem of arithmetic for Z). Every inte-
ger can be written as a product of primes in essentially one way.“Essentially one way”

means that the list of
prime powers in such a
factorization is unique up
to the order in which they
are listed.

Proof. The existence of such a factorization is the content of Lemma 3.2.
On to uniqueness: Suppose that pα1

1 ⋯pαs
s = qβ11 ⋯qβtt , where the pi and qi

are primes, pi ≠ pj for i ≠ j, and qi ≠ qj for i ≠ j. We claim that s = t,
{ p1, . . . , ps } = { qi, . . . , qt }, and if pi = qj , then αi = βj .

Well, Lemma 3.6 implies that the sets { p1, . . . , ps } and { q1, . . . , qt } are
the same. Hence s = t. After relabeling, we have

pα1
1 ⋯pαs

s = pβ11 ⋯pβts .
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Suppose, however, that αi ≠ βi for some i. If, say, αi < βi , then cancellation
shows that pi divides the product p

α1
1 ⋯pαi−1

i−1 pαi+1
i+1 ⋯pαs

s . This contradicts the
previous lemma. ∎

There are various ways to organize the above steps depending on how you
like to write out formal inductions. The real point is Theorem 3.5.

This completes the basic result. By restricting ourselves to positive primes
and positive integers, we have avoided the harassment of the unit −1. In more
general rings, however, you have to live with the units. The integers ±1 are
the only integers whose inverse in Q is actually in Z. They form a subgroup
of order 2. In more general rings, however, where arithmetic still plays an
important role, there may be many units. For example, in Z[ζ6], there are six
units: The complex roots of

unity were defined in the
previous chapter.1, ζ6, ζ26 , ζ

3
6 , ζ

4
6 , ζ

5
6 .

And it gets worse (or better, depending on your tastes). Consider the ring
Z[

√

2]. Its elements look like a + b
√

2, where a and b are in Z. In Z[

√

2],
1 +

√

2 has inverse −1 +

√

2, which is in Z[

√

2]. So (1 +

√

2)n, where n is a
positive integer, will have inverse (−1+

√

2)n. Since 1+
√

2 ≠ 1, the sequence
{(1 +

√

2)}
n
, −∞ < n < ∞, will give an infinite cyclic group of units!

Lemma 3.4 is often sufficient to prove results that also follow from the
fundamental theorem. Here is an example.

Lemma 3.8. If a ∣ st and a and t have no common factor bigger than 1,
then a ∣ s.

Proof. Since a and t are relatively prime, one can find x and y such that
ax + ty = 1. Multiply by s to get asx + sty = s. Then a ∣ a and a ∣ st, so
a ∣ s. ∎

Can you show that a ∣ cd, where (c, d) = 1, implies a = μν, where μ ∣ c
and ν ∣ d, using only Lemma 3.4 and not the uniqueness argument of Theo-
rem 3.7?

3.1.1 Computing Greatest Common Divisors

Lemma 3.3 is the basis of an algorithm for calculating the greatest common
divisor of two integers, an algorithm that is simple (and enjoyable) to carry
out by hand and is easily programmed in any programming language that For example, see [18].

supports recursion.
Greek mathematicians used a process called antanairesis, a free transla-

tion of which is “back and forth subtraction,” when they realized that one
consequence of the arithmetic structure of the integers is that

if a < b, then gcd(a, b) = gcd(b − a, a) .

In repeated applications of this process, we can replace subtraction by divi-
sion with remainder.
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Lemma 3.9 (Euclid’s algorithm). If a and b are positive integers with a <

b, and

b = aq + r, 0 ≤ r < a ,

then

gcd(a, b) = gcd(r, b) .

The proof is up to you (Exercise 3.1).
Repeated applications produce a wonderful rhythm. As an example, we

illustrate one way to organize the steps that has been effective with students.
Arrange the steps in computing gcd(124, 1028) as on the left:

8

124) 1028
992 3

36 ) 124
108 2

16 ) 36
32 4

4 ) 16
16

0

4 = 36 − 2 ⋅ 16
↘

= 36 − 2 ⋅ (124 − 3 ⋅ 36)
= −2 ⋅ 124 + 7 ⋅ 36

↘

= −2 ⋅ 124 + 7 ⋅ (1028 − 8 ⋅ 124)
= 7 ⋅ 1028 − 58 ⋅ 124

The last nonzero remainder is the greatest common divisor, so we have
gcd(124, 1028) = 4. This arrangement can be used (on the right) to read off
the coefficients s and t, so that we have 4 = 124s+1028t. Start at the next-to-
last division and solve for each remainder.

Lookout Point 3.3. In fact, you can check that the two recursively defined
functions

s(a, b) =

⎧
⎪
⎪

⎨

⎪
⎪
⎩

0 if a = 0,
t(r, a) − qs(r, a) otherwise,

and

t(a, b) =

⎧
⎪
⎪

⎨

⎪
⎪
⎩

1 if a = 0,
s(r, a) otherwise,

where b = aq + r is as in Lemma 3.9, calculate two integers such that

s(a, b)a + t(a, b)b = gcd(a, b) .

Model them in your favorite programming language and check them out.
Then figure out how they mimic the “start at the next-to-last division and
solve for each remainder” algorithm stated above.
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3.1.2 Modular Arithmetic with Polynomials

There is a deep structural similarity between the rings Z and R[x]. The key
lever in this similarity is that there is a division algorithm—given two poly-

The degree of a poly-
nomial f is denoted by
deg( f ). For a complete
development of arithmetic
with polynomials with
coefficients in arbitrary
fields, see [19, Chapter 6].

nomials g and f in R[x], you can divide g by f and get a smaller remainder.
The measure for “smaller” is now the degree, so that the division algorithm
becomes the following lemma.
Lemma 3.10. Let f (x), g(x) ∈ R[x]. Then there exist q(x), r(x) ∈ R[x]
with g = q f + r ,

deg(r) < deg( f ).

It is most likely that you practiced the execution of this algorithm in high
school. Just for old times’ sake, finish off the rest of this calculation:

4x3 − 14x2

x2 + 3x − 2) 4x5 − 2x4 + x3

4x5 + 12x4 − 8x3

−14x4 + 9x3

⋮

The results about Z in this section carry over with only slight modification
to R[x]. For example, every polynomial can be factored into irreducibles,
and the factorization is essentially unique up to order and unit factors. Oh,
and what are the units in R[x]? You can check that if g and f are in R[x],
then

deg f g = deg f + deg g .

This implies that the only polynomials in R[x] that have reciprocals in R[x]

This answers the question
raised in a sidenote
in Section 2.2. One
significant difference
between Z and R[x]: Z
has two units and R[x]
has infinitely many.

are the nonzero constants—polynomials of degree 0.
And there’s more: Euclid’s lemma, properly formulated, holds in R[x]:

there is a greatest common divisor for two polynomials (unique up to a unit),
and this greatest common divisor is a linear combination of the two polyno-
mials.

This implies that you can compute the greatest common divisor of two
polynomials with the same routine that you used in Z. For example:

3

2x2 − x − 1) 6x2 + x − 1
6x2 − 3x − 3 1

2 x −
1
2

4x + 2 ) 2x2 − x − 1
2x2 − x − 1

0
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This says that

gcd (2x2 − x − 1, 6x2 + x − 1) = 4x + 2 .

Hmm. . . . The high-school way to do this is to factor each polynomial into
irreducibles and take the common factors:

2x2 − x − 1 = (2x + 1)(x − 1) ,

6x2 + x − 1 = (2x + 1)(3x − 1) ,

so the gcd is 2x + 1, not 4x + 2. But recall that gcd is unique only up to unit
factors, and 4x + 2 = 2(2x + 1).

This peskiness goes away if we use the “linear combination” way to char-
acterize gcd that we saw in Lemma 3.4, because

(2x2 − x − 1)R[x] + (6x2 + x − 1)R[x]

= (4x + 2)R[x] = (2x + 1)R[x] ,

as you can (and should) check.
And there’s more. . . . The two functions defined in Lookout Point 3.3 work

for polynomials! That is, if f , g ∈ R[x] and q(x) and r(x) are the (quotient
and remainder) polynomials guaranteed by Lemma 3.10, define two func-
tions s and t on R[x] by

s( f , g) =

⎧
⎪
⎪

⎨

⎪
⎪
⎩

0 if f = 0,
t(r, f ) − q s(r, f ) otherwise,

(3.2)

and

t( f , g) =

⎧
⎪
⎪

⎨

⎪
⎪
⎩

1 if f = 0,
s(r, f ) otherwise.

(3.3)

Then

(s( f , g) ⋅ f ) R[x] + (t( f , g) ⋅ g) R[x] = gcd( f , g)R[x] .

Indeed,

(s( f , g) ⋅ f ) + (t( f , g) ⋅ g)

is the output of Euclid’s algorithm applied to the pair ( f , g) (Exercise 3.6).

Lookout Point 3.4. By now, you are probably itching to implement the
calculations and algorithms described in this chapter on a computer, and it
is a worthwhile and satisfying adventure to build computational models of
all this. If you are inclined to do it, one piece of advice: build your models
in an environment that has formal expressions (polynomials, for example) as
first-class objects. There are many such computer algebra systems, such as
Mathematica and Wolfram alpha; some even exist on handheld calculators
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(like the TI family). A detailed account of what we do in this section, com-
plete with Mathematica code, can be found in [16].

Just as an example, you can use these algorithms to compute (by hand,
even) the output of Euclid’s algorithm on the pair

f (x) = x4 − x3 − 5x2 + 8x − 4, g(x) = 3x3 − 6x2 + x − 2 .

You will get (we hope)

7
4
x −

7
2
.

Next, compute s( f , g) and t( f , g):

s( f , g) =

9
10

x +

9
20
,

t( f , g) = −

3
10

x2 −

9
20

x +

17
20
.

And (applause) finally: Don’t take our word for
it; dig in and calculate or
write the program.

The high-school method
(looking for common
factors) produces x − 2,
right?

(

9
10

x +

9
20

)(x4 − x3 − 5x2 + 8x − 4)

+ (−

3
10

x2 −

9
20

x +

17
20

)(3x3 − 6x2 + x − 2)

=

7
4
x −

7
2
.

There is an important application of these ideas, one that goes back to
when C first reared its head in mathematics. The approach to complex num-
bers taken by many Renaissance mathematicians (and the same approach This approach is some-

times frowned upon by
educators, but it contains
the germ of a brilliant
insight.

taken by many high-school students) is, essentially, to consider complex num-
bers as polynomials in i, where calculations are carried out as usual with the
extra simplification rule i2 = −1. This amounts to looking at polynomials in i
and setting i2 + 1 = 0.

This setting of something equal to 0 should look familiar. In constructing For more on Renaissance
approaches to C, check
out [19, Chapter 3].Zp from Z, we threw away multiples of p (that is, we set them equal to 0),

and we saw that this idea is compatible with addition and multiplication. The
ring Zp turned out to be a field, thanks in large part to Theorem 2.12.

We can transport this idea to R[x] by exploiting its structural similarities
with Z. More precisely, x2 + 1 is irreducible in R[x], so it could play the role
of the prime p in Zp . And it turns out that “reducing mod x2 + 1” produces a And this is exactly

what our teenagers and
Renaissance ancestors
wanted.

field, a field that is abstractly identical to C (Exericse 3.8).
And there is more: later, we will see that this construction (reducing mod-

ulo an irreducible polynomial) is much more general, and we shall apply it to
fields other than R.

Exercises

3.1 Prove Lemma 3.9.
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3.2 Write gcd(216, 3162) as a linear combination of 216 and 3162.
3.3 Find the remainder when each polynomial is divided by x2 + 1:

(i) 5x3 − 3x2 + 2x + 1
(ii) x4 − 3x3 + 2x − 4
(iii) 5x3 − 3x2 + 2x + 1 + x4 − 3x3 + 2x − 4
(iv) (5x3 − 3x2 + 2x + 1)(x4 − 3x3 + 2x − 4)
(v) (5x3 − 3x2 + 2x + 1)2 + (x2 + 1)(x4 − 3x3 + 2x − 4)

3.4 Find the greatest common divisor of each pair ( f , g) in R[x] and write
it as a linear combination of f and g:

(i) (x3 − x2 − x − 2, x3 − 3x2 + 3x − 2)
(ii) (x6 − 1, x5 − 1)
(iii) (x3 − x2 − x − 2, 2x3 − 4x2 + 2x − 4)
(iv) (x6 − 1, x6 + x5 − 2)
(v) ((2x + 1)(x6 − 1), (2x + 1)(x5 − 1))
(vi) (3x6 − 3, 2x5 − 2)

3.5 Show that xm − 1 divides xn − 1 in R[x] if and only if m ∣ n.

3.6 Consider the functions (3.2) and (3.3) defined above. Show that

(s( f , g) ⋅ f ) + (t( f , g) ⋅ g)

is the output of Euclid’s algorithm applied to the pair ( f , g).

3.7 Prove Lemma 3.10.

3.8 Take It Further. Develop the theory of polynomials modulo x2 +1 and
show that the resulting ring is a field that is structurally identical to C.For inspiration, you can

consult [16], but don’t
do that until you have
played with this exercise
for yourself.

Show that every polynomial is congruent (modulo x2 + 1) to a linear
polynomial a+bx for a, b ∈ R. Make sure to show that nonzero elements
have reciprocals, and while you’re at it, find a formula for the reciprocal
of a + bx.

3.2 The Gaussian Integers

Gauss developed the arithmetic of the integral domain of complex numbersAn integral domain is a
commutative ring in which
every product of nonzero
elements is nonzero.
What are some examples
besides the Gaussian
integers? Nonexamples?

of the form a+bi, where a and b are ordinary integers, in his memoir of 1828
on biquadratic residues. He was interested in problems concerning the sub-
group of fourth powers in Zp , the field of integers modulo p, and was able
to establish the remarkable fact that 2 is a fourth power in Zp for p ≡ 1(4)
if and only if p = a2 + 64b2. His treatment of the elementary properties of
the above integral domain, now known as the Gaussian integers and denoted
by Z[i], represents an important step in the early development of algebraic
number theory. Although we won’t prove the result about 2, we will, with the
aid of the simplest considerations in Z[i], be able to show that every prime p
that exceeds by 1 a multiple of 4 is the sum of two squares. Thus we gener-
alize the observations 13 = 9 + 4, 41 = 25 + 16, and 2232037 = 12 + 14942.
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Furthermore, if such a representation is unique, then the number is prime! In
this way, the representation of 2232037 can be used to prove that it is prime
(Euler). The result on two squares goes back to Fermat. In fact, we find a
letter of June 15, 1641, from Fermat to Bernard Frénicle de Bessy (c. 1604–
1674) beginning, “La proposition fondamentale des triangles rectangles est
que tout nombre premier, qui surpasse de l’unité un multiple de 4, est com-
posé de deux quarrés” [27, p. 221].1 It was later discovered by Lagrange that
every integer is the sum of four squares. The two-square result depends on the
fact that −1 is a square in Zp only when p ≡ 1 (mod 4), while the four-square
result depends on the fact that −1 is always the sum of two squares in Zp . Let
us therefore begin with the arithmetic in Z[i].

If α ∈ Z[i], recall that α denotes the complex conjugate of α. The com-
plex conjugate of an element of Z[i] is also in Z[i], and moreover, αα is an
ordinary integer in Z, called the norm of α and denoted by N(α).

We observe that N(α) ≥ 0, and N(α) = 0 if and only if α = 0. Furthermore,
as we saw in Chapter 2, the norm mapping is multiplicative:

N(α)N(β) = N(αβ) .

An element u ∈ Z[i] is called a unit if ut = 1 for some t ∈ Z[i], that is,
if u has an inverse in Z[i]. In other words, the units in a ring are the ring’s
invertible elements. If u is a unit, then N(u)N(t) = N(ut) = N(1) = 1.
Since N(u) is a positive integer, we have N(u) = 1. If we put u = x + iy,
then N(u) = 1 says that x2 + y2 = 1. The integer solutions to this equation
are x = 0, y = ±1, and x = ±1, y = 0, giving the four elements ±i, ±1. So
the units form the vertices of a square in the complex plane and coincide
with the cyclic group of fourth roots of unity. We see also that the units are
precisely the elements of Z[i] of norm 1. Two Gaussian integers are said to
be associates if one is a unit times the other. What are all the associates

of 3 + 2i?The really nice thing about the ring Z[i] is that one can prove a division
algorithm. It goes as follows: In much of the following,

we are harassed by units
dangling in front of our
elements. Learn to deal
with it.

Lemma 3.11 (Division algorithm in the Gaussian integers). Let α, β ∈

Z[i], β ≠ 0. Then there exist γ, δ ∈ Z[i] such that α = βγ + δ, where 0 ≤

N(δ) < N(β).

Proof. If we write α/β as the complex number a + bi, then it is easily seen
that a and b are rational numbers, but they won’t be integers in general. But
we can find integers x and y such that ∣x − a∣ ≤ 1/2 and ∣y − b∣ ≤ 1/2. Form Where is x + yi in

relation to a + bi in the
complex plane? That is
Exercise 3.11.

the element x + iy of Z[i] and try it as a candidate for γ. That is, form α
β
− γ.

And then put δ = α − βγ. So we have

α = βγ + δ .

So far, all we have done is rig things so that this equation is true. Now we
would like to show that 0 ≤ N(δ) < N(β) .

To this end, we would like

N (

α

β
− γ) < 1 ,

1The fundamental proposition on right triangles is that every prime number that exceeds by
one a multiple of 4 is composed of two squares.
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for then

N(α − βγ) = N(δ) < N(β) .

But

N (

α

β
− γ) = N(a + bi − (x + iy)) = N(a − x + i(b − y))

= (a − x)2 + (b − y)2 ≤

1
4

+

1
4

=

1
2

< 1.

∎

So Z[i] has a division algorithm.We should put it to work for us and derive
a fundamental theorem of arithmetic for Z[i]. Instead of using the word prime
again, let’s introduce the somewhat more general concept of irreducible to
describe an element whose only divisors are itself and a unit times itself.
Thus an irreducible element in Z[i] is an element α whose only divisors are
units and units times α. For example, since the only divisors of 2+ 3i are 1, i,
−i, −1, 2i − 3, 2 + 3i, −2i + 3, and −2 − 3i (Check this!), it follows that 2 + 3i
is irreducible.

In general, suppose a + bi has norm p a prime. Then a + bi is irreducible.
Because if a + bi = αβ, where α and β are nonunits, then N(α) > 1 and
N(β) > 1. But N(a + bi) = p = N(α)N(β), so that is impossible. But an
irreducible need not have a prime norm. For example, you can check that 7
is irreducible in Z[i] (try it). But N(7) = 49. We will show later that the norm
of an irreducible in Z[i] is either prime or the square of a prime.

Lemma 3.12. If α is a nonunit in Z[i], then there exists an irreducible ele-
ment π ∈ Z[i] such that π ∣ α.

Proof. We know that α has nonunit divisors (α, for example). Let π be a
nonunit divisor of smallest norm. If π were not irreducible, then π could be
written as a product, π = π1π2, with N(π1) > 1 and N(π2) > 1 (because π1,
π2 are nonunits). This would imply that N(π1) < N(π). But π1 ∣ α. ∎

Similarly, we have a result analogous to Lemma 3.2 in Section 3.1.

Lemma 3.13. If α is a nonunit in Z[i], then α = π1π2π3⋯πs , where the πi ,
i = 1, . . . , s, are irreducible.

Proof. The lemma is true for all elements of Z[i] of norm 2 (in fact, it is
true for all elements whose norm is prime, as we showed above). If α is irre-
ducible, then it is the product of one irreducible, and we are done. Suppose,
then, that α is not irreducible and has norm n, and assume for the inductionThis proof should feel

familiar. hypothesis that the lemma holds for all elements of norm at least 2 and less



3.2 The Gaussian Integers 71

than n. Choose π1 ∣ α, where π1 is irreducible, and write α = π1β, and so
N(α) = N(π1β) = N(π1)N(β), whence 2 ≤ N(β) = N(α)/N(π1) < N(α),
the first inequality holding because β is not a unit. By the induction hypothe-
sis, β = π2⋯πs , and so α = π1π2π3⋯πs , as desired. ∎

Lemma 3.14. If α is a nonunit, then α = u ⋅ πα1
1 ⋯πs

πs , where π1, . . . , πs are
irreducibles no two of which differ by a unit (i.e., πi ≠ u ⋅ πj for a unit u).

Proof. Write α = π1⋯πt and collect terms. ∎

Many of the results in Section 3.1 generalize to Z[i]. One important exam-
ple is that there is an analogue of the greatest common divisor, inspired by
Lemma 3.4, not as a Gaussian integer (units get in the way), but as a linear
combination. That is, if α and β are in Z[i], we put

(α, β) = αZ[i] + βZ[i] (= {αx + βy ∣ x, y ∈ Z[i]}) ,

and we use this as our gcd.

Lemma 3.15. If α and β are in Z[i], then there is δ ∈ Z[i] such that

αZ[i] + βZ[i] = δZ[i].

Furthermore, δ has the following properties:

(i) δ ∣ α and δ ∣ β.

(ii) If μ ∣ α and μ ∣ β, then μ ∣ δ.

Proof. If α = β = 0, then put δ = 0. Otherwise, consider the set of all αx+ βy,
x and y ranging over Z[i]. Choose δ in that set with smallest positive norm.
If μ is in the set, then by the division algorithm, we have

μ = sδ + r, where0 ≤ N(r) < N(δ) .

However, μ − sδ is of the form αx′ + βy′. So r is in αZ[i] + β Z[i], which
forces N(r) = 0. Therefore, r = 0. Thus

δZ[i] ⊃ αZ[i] + βZ[i].

You can establish the reverse inclusion (try it).
Finally, α and β are in δZ[i], so δ ∣ α and δ ∣ β. If μ ∣ α and μ ∣ β, then μ

divides every αx + βy. In particular, μ ∣ δ. ∎

Note that if δZ[i] = δ′Z[i], then δ ∣ δ′ and δ′ ∣ δ. Thus δ and δ′are asso-
ciates, that is, δ = uδ′, with u a unit.

The basic result corresponding to Euclid’s lemma (Theorem 3.5) is as fol-
lows.

Theorem 3.16 (Euclid’s lemma in the Gaussian integers). If π is irre-
ducible and π ∣ αβ, then π ∣ α or π ∣ β.
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Proof. If π ∤ α, then π and α have only units as common factors. By Lemma 3.15,
therefore,

π Z[i] + α Z[i] = u Z[i] ,

where u is a unit. Now, uZ[i] = Z[i]. Hence 1 = πs + αt for s and t from
Z[i]. Multiplying by β gives β = πβs + αβt. Thus π ∣ π and π ∣ αβ implies
π ∣ β. ∎

The fundamental theorem is next, and the proof is up to you (Exercise 3.12):

Theorem 3.17 (The fundamental theorem of arithmetic for Gaussian
integers). Every Gaussian integer can be written as a product of irreducibles
in essentially one way.

A very nice way to spend (at least) a half hour is to carry through the results
of this section for the integral domain Z[ρ], where ρ = (−1 + i

√

3) /2 is one
of the two complex cube roots of unity satisfying 1+ρ+ρ2 = 0. Eisenstein did
this and was led to cubic reciprocity. For these results and others, he received
the praise of Gauss.

If you get stuck, see [19,
Chapter 8]. The ring Z[ρ]
is often called the ring of
Eisenstein integers.

Exercises

3.9 Show that the distance between two complex numbers z and w in the
complex plane is

√

N(z − w).

3.10 The division algorithm locates a quotient and remainder. Are they unique

(i) in Z?

(ii) in Z[i]?

3.11 Using the notation of Lemma 3.11, where is x + yi in relation to a + bi
in the complex plane?

3.12 Prove Theorem 3.17.

3.3 The Two Square Theorem

In Section 3.2, you checked that 7 is an ordinary prime that is also an irre-
ducible in Z[i], while 13 = (2+3i)(2−3i) is not. We say that 7 is inert, while
13 is said to split. Can one describe the set of all primes that are inert? When
does a prime split?

In order to answer these questions, we need a lemma from modular arith-
metic.

Lemma 3.18. If p ≡ 1 (mod 4), then −1 is a square in Zp .

Proof. We did this already! Remember Theorem 2.21 (or more precisely,
Lemma 2.20) in Section 2.3? But if something is worth proving once, it is
worth proving twice. Here is a proof that has a bonus:
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By Fermat’s little theorem, ap−1 − 1 = 0 for a = 1, 2, . . . , p − 1. Hence

xp−1 − 1 = (x − 1)(x − 2)⋯(x − (p − 1)) in Zp .

Put x = 0 to obtain You met Wilson’s theorem
in Exercise 2.52 in
Section 2.3.

−1 = (−1)(−2)⋯(−(p − 1)) = (p − 1)! (Wilson’s theorem!)

But

−1 = p − 1 ,
−2 = p − 2 ,

⋮

−

(p − 1)
2

=

p + 1
2
.

Hence

Some people think that
Wilson’s theorem is
named after the rock ’n’
roll legend Jackie Wilson.

−1 = ((

p − 1
2

)!)
2
⋅ (−1)

p−1
2 = ((

p − 1
2

)!)
2
.

∎

Lookout Point 3.5. And if that’s not enough, here is another variation on a
proof: Since 4 ∣ p−1, the theorem of the primitive element gives an element α
of order 4. Thus α4 = 1, or (α2 − 1) (α2 + 1) = 0. Since α2 ≠ 1, we conclude
that α2 = −1, showing that −1 is a square.

Now we can prove the famous two square theorem.

On which proof is this a
variation?

Theorem 3.19. If p ≡ 1 mod 4, then

p = ππ ,

where π is irreducible in Z[i].

Proof. Since −1 is a square modulo p, we see that a2 = −1 in Zp for an
ordinary integer a. Thus p ∣ (a2 + 1) in Z. So p ∣ (a + i)(a − i) in Z[i]. It

In fancy language, if
p ≡ 1 mod 4, then p splits
in Z[i].

follows that p is not irreducible in Z[i]. For otherwise, by Euclid’s lemma
(Lemma 3.16), we would have p ∣ (a − i) or p ∣ (a + i). That would say that

a
p

−

1
p
i or

a
p

+

1
p
i

is in Z[i], which is absurd. So write p = αβ with N(α) > 1, N(β) > 1. On
taking norms, we obtain

p2 = N(α)N(β).

Hence by unique factorization in Z, we have p = N(α) = αα. Since N(α) is
prime, α is irreducible. ∎
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As a corollary we have the lovely result that every prime in the sequence
{1, 5, 9, 13, 17, 21, 25, . . . } is expressible as the sum of two squares.

Corollary 3.20. If p ≡ 1 mod 4 is prime, then p = a2 + b2 for integers a and
b in Z.

Proof. Write π = a + bi in Theorem 3.19. ∎

Using unique factorization in Z[i], you can show that the above represen-
tation is unique up to order and the signs of a and b (try it).

It would be good also to know whether p ≡ 3 mod 4 implies that p is inert
(does not split) in Z[i], in other words, that p is not the sum of two squares.
Indeed, if p = a2 + b2, then exactly one of a2 and b2 would be even. Say a2

is even and b2 is odd. That implies that 4 divides a2 and b2 is congruent to 1
modulo 4. Thus a2 + b2 is congruent to 1 mod 4. Thus the inertial primes are
precisely the primes congruent to 3 modulo 4.

There is one remaining prime that we haven’t discussed. The even prime 2
can be written as

2 = −i(1 + i)2.

The number 1 + i is irreducible, since it has norm 2, and −i is a unit. Hence
2 = u ⋅ π2. In algebraic number theory, 2 is called a ramified prime.

To summarize all this:

Theorem 3.21 (Law of decomposition in the Gaussian integers). Every
rational prime p decomposes in Z[i] in one of three ways:

(i) p splits into two conjugate prime factors if p ≡ 1 mod 4.
(ii) p is inert if p ≡ 3 mod 4.
(iii) p = 2 ramifies: 2 = −i(1 + i)2.

Theorem 3.21 tells us how primes in Z behave when they are viewed as
elements of Z[i]. And you can show that every irreducible in Z[i] divides a
prime in Z, because every irreducible π divides its norm, π π. Using this, you
can establish how primes in Z[i] behave.

Corollary 3.22 (Classification of Gaussian irreducibles). The irreducibles
π in Z[i] are of three types:

We say that π lies over p. (i) π = a + bi, and π divides a prime p ∈ Z such that p ≡ 1 mod 4. In this
case, N(π) = a2 + b2.

(ii) π = p, where p is a prime in Z such that p ≡ 3 mod 4. In this case,The proof is up to you
(Exercise 3.13). N(p) = p2.

(iii) π = 1 + i and its associates. In this case, N(1 + i) = 2.

Figure 3.2 shows one way to visualize the story.
One can consider integral domains other than Z[

√

−1], for example, the
domain Z[

√

−d] for a fixed positive square-free integer. If d ≡ −1 mod 4, you
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Figure 3.2. Primes upstairs in Z[i] and primes downstairs in Z.

need a slightly larger ring that allows 2 in the denominator. It turns out that the
only such rings that have a Euclidean algorithm are those for d = 1, 2, 3, 7, 11.
That the fundamental theorem of arithmetic fails for certain rings can be seen
by considering the decomposition of 6 in the ring of integers Z[

√

−5]. Then

A T-shirt that celebrates
nonunique factorization.

6 = 3 ⋅ 2 = (1 +

√

5)(1 −

√

−5), and one proves quickly that 2, 3, 1 +

√

−5,
and 1−

√

5 are all irreducible in Z[
√

−5] and that they do not differ by a unit
factor. Similarly, 9 = 3 ⋅ 3 = (1 +

√

10)(−1 +

√

10) in Z[
√

10].

3.3.1 Fermat’s Last Theorem

Surely, one of the oldest and best-known problems in number theory involves
the search for Pythagorean triples—triples of positive integers (a, b, c) that
are side lengths of a right triangle, so that

a2 + b2 = c2.

Diophantus of Alexandria developed, around 250 CE, a geometric method for
generating such triples. Stated in modern language, he realized that a rational
point on the unit circle (the graph of x2 + y2 = 1), when written in the form
(
a
c
, b
c
), produces a Pythagorean triple:

(

a
c
)

2
+ (

b
c
)

2
= 1 "⇒ a2 + b2 = c2 .

One can get such a rational point by forming a line with positive rational
slope through the point P = (−1, 0) and intersecting the line with the circle.
The second intersection point will then be rational (check this). Hence, it was
known early on that there are infinitely many Pythagorean triples (details are
in [19]).

There are several algebraic methods for generating Pythagorean triples.
One method builds on an old party trick: Ask each person at a party to pick
a favorite Gaussian integer r + si (make r > s > 0) and square it. Watch eyes
light up:

(2 + i)2 = 3 + 4i ,

(3 + 2i)2 = 5 + 12i ,

(5 + 2i)2 = 21 + 20i ,

(5 + 4i)2 = 9 + 40i .

The punchline: the square of a Gaussian integer seems to be of the form x+yi,

Compute the norms of
each of these Gaussian
integers for another nice
punchline.
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where x and y are the legs of a Pythagorean triple. You should prove this using
only high-school algebra.

This is more than a party game, though. It expresses a property of Gaussian
integers that you may have noticed: if z ∈ Z[i], then the norm N(z) is a sum
of the squares of two integers. So if we can find z such that N(z) is a perfect
square, then you have a Pythagorean triple, right?

Corollary 2.2 from Chapter 2 comes to the rescue: for every Gaussian inte-
ger z, we have

N(z2) = (N(z))2 .

The right-hand side is the square of an integer, and the left-hand side (because
it is a norm) is the sum of two squares of integers. Bingo.

For example, suppose that z = 3+ 2i. Then N(z) = 13 and z2 = 5+ 12i. So

(N(z))2 = 132 and N(z2) = 52 + 122 .

This gives an easily programmable method for generating all the Pythagorean
triples you will ever need. Try it. Table 3.1 gives just a small sample of the
treasures that await:

Table 3.1. (r + si)2 and the square of the resulting norm.

We can see the same thing in a less fancy way: if you want integers a and b

Fermat was not the first
mathematician to write a
marginal note in a copy
of Diophantus. Next to
the same problem, the
Byzantine mathematician
Maximus Planudes wrote,
“Thy soul, Diophantus,
be with Satan because
of the difficulty of your
theorems.”

such that a2 + b2 is a perfect square, you might write the sum of those two
squares as

a2 + b2 = (a + bi)(a − bi)

and try to make each factor on the right-hand side the square of a Gaussian
integer. And it is within the scope of high-school mathematics to show that if
a + bi = (r + si)2, then a − bi = (r − si)2. You can finish the argument.

About fourteen centuries after Diophantus, Fermat (1607?–1665) proved
that there are no positive integers a, b, c such that a4+b4 = c4. He was studying
his copy of Diophantus’s Arithmetica, published in 1621, and he wrote in its
margin:

It is impossible for a cube to be written as a sum of two cubes or a fourth
power to be written as a sum of two fourth powers or, in general, for any
number that is a power greater than the second to be written as a sum
of two like powers. I have discovered a truly marvelous demonstration
of this proposition which this margin is too narrow to contain.
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Fermat never returned to this problem (at least not publicly) except for his
proof of the case n = 4. The statement that if n > 2, there are no positive
integers a, b, c such that an + bn = cn is called Fermat’s last theorem. The
original text in which Fermat wrote his famous marginal note is lost today.
Fermat’s son edited an edition of Diophantus, published in 1670, containing
his father’s annotations, including his famous “last theorem.” It contained
other unproved assertions as well, most true, some not. By the early 1800s,
only Fermat’s conjecture about sums of powers remained undecided, whence
the name “last theorem.” It became a famous problem, resisting the attempts
of mathematicians of the highest order for 300 years. Most mathematicians
believe that Fermat did not have a correct proof. The quest for a proof of
Fermat’s last theorem generated much beautiful mathematics. In particular, it
led to an understanding of complex numbers, factorization, and polynomials.

One of the basic strategies for trying to prove Fermat’s last theorem in the
seventeenth, eighteenth, and nineteenth centuries was the method we used
for n = 2: show that an + bn factors in Z[ζn], but this time, show that the
factors cannot combine to produce a perfect nth power in that system. It is
worth looking at the basic idea, because it shows the importance of unique
factorization.

If the equation xn + yn = zn has a solution in Z, then it has a solution for
every prime factor of n, because if n = pq, then

an + bn = cn "⇒ (aq)p + (bq)p = (cq)p . (3.4)

Because Fermat proved the theorem for n = 4, equation (3.4) implies that it
has no solution for n = 2r for every integer r ≥ 2. So using equation (3.4)
again, it follows that it is enough to show that there are no integer solutions
to xn + yn = zn for odd prime exponents.

Suppose, then, that p is an odd prime number. The goal is to show that
there are no positive integer solutions to

ap + bp = cp , (3.5)

and again, the idea is to factor ap+bp in Z[ζp] and show that the factorization
cannot contain the pth power of some prime.

Using Exercise 2.11 in Section 2.1, we have

ap + bp = (a + b)(a + ζb) (a + ζ2b)⋯(a + ζn−1b) .

With excruciatingly technical calculations and arguments, mathematicians
(Lamé may have been the first, around 1847) showed that it was impossible
for at least one prime factor of ap + bp to show up at least p times on the
right-hand side of this equation. It seemed as if the “Fermat conjecture” was
settled.

But there was a basic flaw in these arguments, a flaw that has its roots in
school mathematics. As we said in the introduction to this chapter, elementary-
school students build “factor trees ” for whole numbers, and it is more or less
assumed that if two different children build two different trees by starting
from, say, 4 × 3 and 6 × 2, they will end up with the same prime factors. This
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unique factorization property is never questioned (and hardly ever comes up)
in school mathematics.

And the argument outlined above for ap + bp also assumes that elements
in Z[ζp] can (just as in Z) be factored into primes in only one way. For some
values of p, this is true, and for such primes, Z[ζp] has the unique factor-
ization property mentioned above. The arguments that use Gaussian integers
are solid, because Z[i] has unique factorization. The first case in which the
property fails is Z[ζ23] [66, p. 7], a fact established by Ernst Eduard Kummer
while he was researching a different but related question. It was eventually
shown that unique factorization fails in infinitely many cases.

In high school, we also
assume the same property
for C[x].

It was natural to think that just as in Z or in the polynomials of high school,
the rings Z[ζp] would have unique factorization, as evidenced by the num-
ber of mathematicians in the seventeenth, eighteenth, and nineteenth cen-
turies who assumed it. How could so many not have known, for example,
that unique factorization failed in Z[ζ23]? It may seem that 23 is not all that
large, but the calculations in Z[ζ23] are hefty, even with computers. Imagine
the stamina required to calculate by hand in this ring (some of Kummer’s
tour-de-force calculations are recounted in [24, Chapter 4]). So the assump-
tion that Z[ζp] is a unique factorization domain was widespread, and once it
occurred to Kummer and others that this might not hold for every p, the proof
that unique factorization fails in Z[ζ23] was, quite simply, very hard (again,
see [24, Chapter 4]).

We shall leave the story here, only to note that Kummer went on to prove
Fermat’s last theorem in the case that Z[ζp] has unique factorization. And
using an idea that is already present when children argue that the prime fac-
torization of 4×3 is the same as that of 6×2—there are primes “behind” each
of the composite factors that are recombined in different ways—Kummer also
developed a theory that would restore a kind of unique factorization, proving
the theorem for a much wider class of primes [19]. But a complete proof had
to wait until the mid-1990s, when Andrew Wiles, using sophisticated meth-
ods developed in the twentieth century, was finally able to prove Fermat’s last
theorem in full generality.

Exercises

3.13 Prove Corollary 3.22.

3.14 Show that there are no integers x, y, z with 3 ∤ xyz such that x3 + y3 =

z3 mod 9.
3.15 Show that there are no integers x, y, z with 5 ∤ xyz such that x5 + y5 =

z5 mod 25. This exercise implies Fermat’s last theorem for exponent 5
in the case that 5 ∤ xyz.

3.16 Are there any integers x, y, z with 7 ∤ xyz such that x7+y7 = z7 mod 49?
3.17 (i) Sketch the graph of x3 + y3 = 1.

(ii) Show that the only rational points on the graph are (1, 0) and (0, 1).

3.18 Take It Further. Let G be the graph of x3 + y3 = 9.
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(i) Sketch G.

(ii) Find the equation of the line 
 tangent to G at (2, 1).
(iii) Find the intersection of 
 and G.

(iv) Show that there are infinitely many triples of integers (x, y, z) such that

x3 + y3 = 9z3.

3.4 Formal Dirichlet Series and the Number
of Representations of an Integer as the
Sum of Two Squares

We saw in the previous section that every prime congruent to 1 modulo 4 is
the sum of two squares. In fact, if p ≡ 1 mod 4, then p = ππ for π ∈ Z[i].
Furthermore, since π is irreducible (N(π) = p), it follows that if π = a + bi,
then p = a2 + b2 is the only representation up to plus or minus signs and
permuting a and b. For π irreducible means that the only factorizations of p
in Z[i] are p = (πu)(πu′), where u and u′ are units. But the only units in Z[i]
are 1,−1, i,−i, which leads to the representations

p = a2 + b2 = (−a)2 + (−b)2 = a2 + (−b)2 = (−a)2 + b2.

Four other trivial changes (interchanging a and b) arise from π and its
associates. We say that p has eight representations as a sum of two squares.

If we consider an integer that is not prime, then the situation is quite dif-
ferent. For example,

65 = 49 + 16 = 1 + 64 .

The different possibilities come from

65 = 5 ⋅ 13 = (2 + i)(2 − i)(2 + 3i)(2 − 3i) .

One grouping gives (7+ 4i)(7− 4i), and another gives (1+ 8i)(1− 8i), as
illustrated in Figure 3.3.

Figure 3.3. 65 obtained in two different ways as the sum of two squares.

For a general integer n, the various regroupings into conjugate pairs of
terms of the complete factorization of n in Z[i] lead to a messy counting argu-
ment. However, the final result is hardly wanting in mathematical elegance:
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Theorem 3.23. The number of representations of a positive integer n as the
sum of two squares in Z is four times the excess of the number of divisors of
the form 4t + 1 over those of the form 4t − 1.

Let’s consider an example. Take n = 18. Its divisors are 1, 2, 3, 6, 9, 18.
Two of these are congruent to 1 modulo 4 (1 and 9). There is one, namely 3,
that is congruent to −1 modulo 4. Thus the excess is 1, and so there are four
representations. They are (±3)2 + (±3)2. On the other hand, take n = 12. Its
divisors are 1, 2, 3, 4, 6, 12. The only one congruent to 1 mod 4 is 1, while 3 is
the only divisor congruent to −1 modulo 4. The excess is 0, so there are no
representations of 12 as the sum of two squares, a fact that is quickly checked.
It seems remarkable that the number of divisors of the form 4t−1 should never
exceed the number of the form 4t + 1. Can you prove this without knowing
that it is the number of representations of n as a sum of two squares?

It is worth spending a half hour to compute more examples and to tabulateYes, there are computer
algebra systems that
will do this for you,
but (as Glenn Stevens
always says), don’t let the
computer have all the fun.

the results for n between, say, 1 and 50. You could also check, just for fun,
that 15625 can be written as a sum of two squares in 28 ways, and 815730721
can be so written in a whopping 36 ways.

This result can be formulated nicely by introducing the function χ. We
define χ(n) = 0 if n is even. If n = 4k +1, put χ(n) = 1, and if n = 4k −1, put
χ(n) = −1. If you think about it, the sum

∑

d>0, d∣n
χ(d)

measures the difference between the number of positive divisors of n of the
form 4k + 1 and those of form 4k − 1, right?

So, letting r(n) be the total number of representations of n as a sum of two
squares, our result can be stated in the following theorem.

Theorem 3.24. The number of representations of a positive integer n as a
sum of two squares is given by

r(n) = 4(∑
d∣n

χ(d)) ,

where the sum is over the positive divisors of n.

There are several ways to prove this. One of the prettiest uses a piece of
equipment that finds applications all over number theory. Here we go. . . .

3.4.1 Formal Dirichlet Series

There is a formalism going back to Euler that makes it possible to prove
Theorem 3.24 in a particularly elegant manner. A formal Dirichlet series is a
creature of the form

∞

∑

n=1

a(n)
ns

= a(1) +

a(2)
2s

+

a(3)
3s

+⋯ ,

where the a(n) are complex numbers.
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The word “formal” is important here—we think of these series as book-
keeping devices keeping track of combinatorial or numerical data. We don’t
worry about questions of convergence; we think of s simply as an indetermi-
nate rather than as a variable that can be replaced by a real or complex num-
ber. This misses many of the wonderful analytic applications of such series,
but it turns out that their formal algebraic properties are all we need for this
discussion.

Dirichlet series are added and multiplied formally. Addition is done term
by term:

∞

∑

n=1

a(n)
ns

+

∞

∑

n=1

b(n)
ns

=

∞

∑

n=1

a(n) + b(n)
ns

.

Multiplication is also done term by term, but then one gathers up all terms
with the same denominator. For example, if we are looking for c(12)/12s in

∞

∑

n=1

a(n)
ns

∞

∑

n=1

b(n)
ns

=

∞

∑

n=1

c(n)
ns
,

then a denominator of 12s could come only from the products

a(1)
1s

⋅

b(12)
12s
,

a(2)
2s

⋅

b(6)
6s
,

a(3)
3s

⋅

b(4)
4s
,

a(4)
4s

⋅

b(3)
3s
,

a(6)
6s

⋅

b(2)
2s
,

a(12)
12s

⋅

b(1)
1s
.

In general, the coefficient c(n) above is given by

c(n) = ∑

d∣n

a(d) ⋅ b(

n
d
) ,

where again, ∑d∣n means that the sum is over the positive divisors of n.
The simplest Dirichlet series is the Riemann zeta function: Actually, the zeta function

usually means the function
of a complex variable s
(introduced by Riemann)
that analytically continues
this infinite series. It is
the object of much current
research. Google, for
example, the Riemann
hypothesis.

ζ(s) =

∞

∑

n=1

1
ns
.

Then the above expression for c(n) implies that if

ζ(s)
∞

∑

n=1

a(n)
ns

=

∞

∑

n=1

c(n)
ns
,

then

c(n) = ∑

d∣n

a(d) .

Let us state this as a theorem.

Theorem 3.25.

ζ(s)
∞

∑

n=1

a(n)
ns

=

∞

∑

n=1

c(n)
ns
,

where c(n) = ∑d∣n a(d).
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Theorem 3.25 gives us a key corollary that we will need very soon:

Corollary 3.26. If α(n) is defined by

∞

∑

n=1

α(n)
ns

= ζ(s)
∞

∑

n=1

χ(n)
ns
,

then

α(n) = ∑

d∣n

χ(d).

So, α(n) is the excess of the number of positive divisors of n of the form
4k + 1 over the number of divisors of n of the form 4k − 1. Bingo: this is
exactly the function that is the heart of Theorem 3.24. The idea, then, is to
form the Dirichlet series with coefficients r(n) and show that

∞

∑

n=1

r(n)
ns

= 4 ζ(s)
∞

∑

n=1

χ(n)
ns
.

The 4 out front is there because we want to include the different ways to
write a2 + b2 (switching a and b and sign changes). To keep things simple, let
us use the function r1 instead, where r1(n) is the number of representations
x2 + y2 = n, x ≥ 0, y > 0. When we are done, we will simply multiply by 4.

Our (new) goal, then, is to show that

∞

∑

n=1

r1(n)
ns

= ζ(s)
∞

∑

n=1

χ(n)
ns
.

To do this, we will convert each of the sums to a product. For that, we need
a (yet another) new idea: a function a defined on nonnegative integers is
strongly multiplicative if for all nonnegative integers m, n, we have

a(mn) = a(m)a(n).

Examples of strongly multiplicative functions include the constant functionA function is said to
be multiplicative if
a(mn) = a(m)a(n)
whenever gcd(m, n) = 1.

that assigns 1 to every number and (check this) our function χ. Can you think
of some others?

When a is strongly multiplicative, the Dirichlet series with coefficients
a(n) has an alternative form that shows its connection with arithmetic.

Theorem 3.27. If a is a strongly multiplicative function, then

∞

∑

n=1

a(n)
ns

= ∏

p

(

1
1 − a(p)/ps

) ,

where the product is over all prime numbers p.

Lookout Point 3.6. Wait! What does “product is over all prime numbers”
mean? Here is what we need: Consider the formal product

∏

p

(

1
1 − a(p)/ps

) .
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To write this as a Dirichlet series ∑
∞

n=1
b(n)
ns , fix n and factor n into prime

powers:

p1α1
⋯ptαt

= n .

Next, look at the finite product

t

∏

i=1
(

1
1 − a(pi)/psi

) .

Each factor can be expanded as a geometric series:

1
1 − a(pi)/psi

= 1 + (

a(pi)
psi

) + (

a(pi)
psi

)

2

+ (

a(pi)
psi

)

3

+⋯

= 1 + (

a(pi)
psi

) + (

a(p2i )
p2si

) + (

a(p3i )
p3si

) +⋯.

Then look at the coefficients of

a(ps1)
pα1s
1
,

a(ps2)
pα2s
2
, . . . ,

a(pst )
pαt s
t

,

and multiply them together. That’s b(n).

Back at the ranch, we want to show that

∞

∑

n=1

a(n)
ns

= ∏

p

(

1
1 − a(p)/ps

) ,

where a is our strongly multiplicative function.

Proof. As above, each factor on the right-hand side is a geometric series:

1
1 − a(p)/ps

= 1 + (

a(p)
ps

) + (

a(p)
ps

)

2

+ (

a(p)
ps

)

3

+⋯

= 1 + (

a(p)
ps

) + (

a(p2)
p2s

) + (

a(p3)
p3s

) +⋯ .

Now multiply the expressions for 1
1−a(p)/ps together (one for each prime).

You get the sum of every possible expression of the form

a(pe11 )a(pe22 )⋯a(perr )

pe1s1 pe2s2 ⋯per sr
=

a(pe11 pe22 ⋯perr )

(pe11 pe22 ⋯perr )

s .

Since every n ∈ Z can be written in one and only one way as a product of
powers of primes (the fundamental theorem of arithmetic again), this is the
same as the sum

∞

∑

n=1

a(n)
ns
.

∎
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We shall use two applications of Theorem 3.27:

(i) The constant function a(n) = 1 is strongly multiplicative, so the Rie-
mann zeta function has a product expansion

ζ(s) =

∞

∑

n=1

1
ns

= ∏

p

1
1 − 1/ps

. (3.6)

(ii) Our favorite function χ is also strongly multiplicative, so
∞

∑

n=1

χ(n)
ns

= ∏

p

(

1
1 − χ(p)/ps

) .

At last, we are ready to derive a formula for r1(n), the number of repre-
sentations of n in the form x2 + y2, where x > 0, y ≥ 0. Consider the formal
Dirichlet series

∞

∑

n=1

r1(n)
ns
.

Where does Q1 sit in the
complex plane?

Here’s the clever idea: each term in the sum is itself a sum of fractions
with numerator 1, and the number of such fractions is the number of Gaussian
integers with given norm. For example, r1(25) = 3, because 25 can be written
as a sum of squares in Q1 ∶= { x + yi ∣ x, y ∈ Z, x > 0, y ≥ 0} in three ways,

32 + 42, 42 + 32, 52 + 02 ,

so 3/25s comes from

1
N(3 + 4i)

+

1
N(4 + 3i)

+

1
N(5 + 0i)

.

Using this idea of representing a sum of two squares as a norm from Z[i],
using the multiplicativity of N , and letting Q1 denote the first quadrant as we
have defined it, we get a product formula for the left-hand side:
∞

∑

n=1

r1(n)
ns

= ∑

α∈Q1

1
(N(α))

s

= ∏

π∈Q1

∞

∑

k=0

1

((N(π))
k
)

s (use the fundamental theorem inZ[i])

= ∏

π∈Q1

1
1 − 1/N(π)s

(sum a geometric series) .

Here the product is over all Gaussian irreducibles in the first quadrant.
Now, for convenience, let us use P as a shorthand for ∑

∞

n=1 r1(n)/n
s , so

that

P = ∏

π∈Q1

1
1 − 1/N(π)s

.

We will now pick P apart, looking at the each factor. Here we go. . . .

This is best understood
by calculating a few
coefficients by hand.

If π is an irreducible in Z[i], then N(π) = p for some prime p in Z. And
by the law of decomposition in Z[i] (Theorem 3.21), there are three kinds of
primes p:
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(i) If p ≡ 1 mod 4, then p splits into two conjugate prime factors: p = π π

for an irreducible π. This contributes two identical terms to P:

1
1 − 1/N(π)s

and
1

1 − 1/N (π)
s ,

both equal to 1
1−1/ps , and hence P contains a term

(

1
1 − 1/ps

)

2

,

one for each prime p Z, p ≡ 1 mod 4.
(ii) If p ≡ 3 mod 4, then p is inert, so it is irreducible in Z[i] and we can

move p upstairs to Z[i] as itself. Hence p = p and N(p) = p2. So P
contains a term

1
1 − 1/p2s

,

one for each prime p in Z, p ≡ 3 mod 4.
(iii) If p = 2, it ramifies: −i(1 + i)2, and N(p) = 2. Hence P contains exactly

one term for the prime p = 2:

1
1 − 1/2s

.

And now, put it all together into one lovely algebraic calculation. Enjoy: It is a very good idea to
give reasons for each step
in this calculation.

∞

∑

n=1

r1(n)
ns

= ∏

π∈Q1

1/(1 −

1
N(π)s

)

=

1
1 − 1/2s

⎛

⎝

∏

p≡1 mod 4

1
1 − 1/ps

⎞

⎠

2
⎛

⎝

∏

p≡3 mod 4

1
1 − 1/p2s

⎞

⎠

=

1
1 − 1/2s

⎛

⎝

∏

p≡1 mod 4

1
1 − 1/ps

⎞

⎠

2
⎛

⎝

∏

p≡3 mod 4

1
1 − 1/ps

⎞

⎠

⎛

⎝

∏

p≡3 mod 4

1
1 + 1/ps

⎞

⎠

=

1
1 − 1/2s

⎛

⎝

∏

p odd

1
1 − 1/ps

⎞

⎠

⎛

⎝

∏

p≡1 mod 4

1
1 − 1/ps

⎞

⎠

⎛

⎝

∏

p≡3 mod 4

1
1 + 1/ps

⎞

⎠

= ζ(s)
⎛

⎝

∏

p≡1 mod 4

1
1 − χ(p)/ps

⎞

⎠

⎛

⎝

∏

p≡3 mod 4

1
1 − χ(p)/ps

⎞

⎠

= ζ(s)
⎛

⎝

∏

p odd

1
1 − χ(p)/ps

⎞

⎠

= ζ(s)
∞

∑

n=1

χ(n)
ns
.
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And finally, invoking Corollary 3.26, we have

r1(n) = ∑

d∣n

χ(d) .

That’s the punchline (applause)—we have proved Theorem 3.24, which gives
the number of representations of an integer as a sum of two squares.

We have seen that the classification of the irreducible elements in Z[i]
using Dirichlet series gives a remarkably simple proof of the representation
formula of an integer as the sum of two squares. For a proof not using Dirich-
let series, see, for example, Hardy and Wright [35] or Niven and Zucker-
man [61]. Both texts are excellent introductions to elementary number theory.

Exercises

3.19 If α and β are two strongly multiplicative functions, show that the func-
tion γ defined by

γ(n) = ∑

d∣n

α(d) β
n
d

is also strongly multiplicative.

3.5 Supplement: Hilbert’s 17th Problem

At the International Congress of Mathematicians held in Paris in 1900, Pro-
fessor David Hilbert delivered an address entitled “Mathematical Problems.”
Here is the opening statement of his address:

Wer von uns würde nicht gern den Schleier lüften, unter dem die Zukunft
verborgen liegt, um einen Blick zu werfern auf die bevorstehenden
Fortschritte unsererWissenschaft und in die Geheimnisse ihrer Entwick-
lung während der künftigen Jahrhunderte!

And here is a translation:

Who among us would not gladly lift the veil behind which the future
lies hidden to cast a glance at the coming advances of our science and
the secrets of its development in future centuries?

Hilbert, then still in his thirties and recognized by many as the greatest liv-
ing mathematician, then proceeded to discuss twenty-three problems that he
considered the most pressing at that time. The problems range over analysis,
geometry, topology, number theory, and algebra. The seventeenth problem is
easy to state.

Consider the rational numbers Q and the field of rational functions

Q(x1, . . . , xn)
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in n variables. Recall that this means that an element of Q(x1, . . . , xn) looks
like

f (x1, . . . , xn)
g(x1, . . . , xn)

,

where f and g are polynomials in x1, . . . , xn with coefficients in Q. Call such
a rational function definite if

f (α1, . . . , αn)
g(α1, . . . , αn)

≥ 0

whenever α1, . . . , αn are n rational numbers such that g(α1, . . . , αn) ≠ 0.
Hilbert asked whether every definite element in Q(x1, . . . , xn) can be rep-
resented as the sum of a finite number of squares of rational functions. This
seemingly simple question had to wait until 1926 for a solution, when Emil
Artin answered the question in the affirmative. His solution follows from his
work with Otto Schreier on formally real fields. Hilbert himself had already
shown that every definite polynomial in two variables can be represented as
the sum of four squares. The question of how many squares would be needed
for n variables remained unsettled. Then in 1966, James Ax conjectured that
2n squares should do it, and his conjecture was proved by Albrecht Pfister in
1967.

Lookout Point 3.7. One can seek, however, more quantitative information
by asking, for a given field F, the smallest number t(F) such that if α ∈ F
can be represented as a sum of squares, then it can be done with t(F) squares.
Pfister’s theorem implies that t(R) ≤ 2n. It is also known that t(R) ≥ n + 1,
because J. W. S. Cassells proved in 1964 that 1+x21+⋅ ⋅ ⋅+x2n cannot be written
as a sum of n squares in R(x1, . . . , xn). Hence

n + 1 ≤ t(R) ≤ 2n.

But nobody knows what the actual value of t(R) is! Cassels, William Ellison,
and Pfister showed in 1971 that in the case of two variables, the answer is 4. In
other words, every rational function that is a sum of squares can be expressed
as the sum of at most four squares, and furthermore, three won’t do for at
least one definite function. Indeed, they exhibited the function

f (x, y) = 1 + x2 (x2 − 3) y2 + x2y4

and showed that although f is definite, it is not the sum of three squares of
rational functions in R(x, y). Their proof is very difficult and uses a lot of
fancy algebraic geometry.

As you can see, the problem is still very much alive. The solution to Hilbert’s
original question only led to more problems. Such is the nature of mathemat-
ics. As Hilbert said, “Moreover, a mathematical problem should be difficult in
order to entice us, yet not completely inaccessible, lest it mock our efforts.”
And in another place, Hilbert reminds us, “As long as a branch of science
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offers an abundance of problems, so long is it alive; a lack of problems fore-
shadows extinction or the cessation of independent development.”

In 1930, Hilbert wrote a paper, “Naturerkennen und Logik,” which he
delivered at the Kongress der Gesellschaft Deutscher Naturforscher und Ärtze,
which ends with these words:

Wir müssen wissen.
Wir werden wissen.2

2Naturerkennen und Logik = logic and the understanding of nature; Kongress der Gesellschaft
Deutscher Naturforscher und Ärtze = conference of the Association of German Naturalists and
Physicians; Wir müssen wissen, Wir werden wissen = we must know; we shall know.



4 The Fundamental Theorem of
Algebra

The field C of complex numbers has the remarkable property that every non-
constant polynomial with coefficients in that field has a root in that field. An
arbitrary field F with this property is said to be algebraically closed.

That C is algebraically closed is not an obvious fact, and there are numer-
ous proofs from various points of view. The proofs are roughly grouped into
those that exploit the algebraic aspect of the theorem and those that use
mainly topology and analysis.

The fundamental theorem guarantees the existence of roots of polynomial
equations, but it doesn’t provide methods for finding roots—that is another
whole can of worms. There are classes of equations, such as quadratic equa-
tions and cyclotomic equations, for which solution algorithms exist, but there See [19, Chapter 3] for

more on algorithms for
solving equations.are no general methods that apply to all polynomial equations. In this chapter,

we will be (very) happy just establishing the existence of solutions.

4.1 Getting Started

First, note that it is enough to establish the fundamental theorem of algebra for
polynomials with real coefficients. For if f has complex coefficients, then f f̄
has real coefficients, where f̄ is the polynomial obtained from f by replacing
each coefficient by its complex conjugate (this is Exercise 4.1). Then a root
α of f (x) f̄ (x) will satisfy either f (α) = 0 or f̄ (α) = 0. In the latter case,
taking conjugates gives f (ᾱ) = 0.

The theorem then says that the field obtained from R by adjoining a root of
x2 + 1 = 0 is algebraically closed. It seems rather amazing, viewed abstractly,
that one can arrive at an algebraically closed field from a given field by adjoin-
ing a root of a single polynomial. A beautiful theorem of Emil Artin and Otto
Schreier states that if E ⊃ F, where E is any algebraically closed field that
is a finite-dimensional vector space over F, then if F ≠ E , one can conclude
that E = F(i), where i satisfies x2 + 1 = 0.

It is easy to find fields that are not algebraically closed:

(i) No subfield of R (Q, for example) is algebraically closed (why?).

(ii) Consider the simplest field Z2, of two elements. Then x2 + x + 1 has no
root in Z2.

(iii) If Zp is the field with p elements, where p is prime, then xp − x +1 has no
root in Zp by Fermat’s little theorem.
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(iv) A formally real field—a field in which −1 is not the sum of squares, will
not be algebraically closed.

(v) In the same way, no finite field can be algebraically closed. For let F be
finite. Then F∗ is a finite group with, say, n − 1 elements. By elementary
group theory, xn−1 = 1 for all x ≠ 0. Hence xn − x + 1 has no root in F.

It is even easier than that.
If the elements of F are
a1, . . . , an , then (x −
a1)(x−a2)⋯(x−an)+1
has no root.

(vi) More generally, if F is an ordered field such that α2 > 0 for α ≠ 0, then F
will not be algebraically closed.

Don’t get the impression that C is the end of the road. For let t be an inde-
terminate and consider the field C(t) of rational functions in t with complex
coefficients. Since x2 − t has no root in C(t), we see that C(t) is not alge-
braically closed. You should write out a proof of this.

We will need a more abstract (and hence more general) description of the
real numbers. The set of real numbers R can be described axiomatically as a
complete Archimedean ordered field. It is constructed fromQ by a completionSee Section 3.1 of

Chapter 3 for what we
mean by Archimedean. process: First, one puts the usual absolute value ∣r ∣ onQ by means of the order

relation in Q, namely, ∣r ∣ = r if r > 0 and ∣r ∣ = −r if r ≤ 0. Using this absolute
“This” absolute value?
Yes, there are others. Read
on.

value, one defines Cauchy sequences. Two Cauchy sequences {an} and {bn}

A Cauchy sequence (an)
is one whose terms can be
made as close together as
you like by taking n large
enough.

are called equivalent if an − bn has limit zero as n → ∞. Then equivalence
classes of Cauchy sequences form a field that contains an isomorphic (struc-
turally identical) copy of Q and is complete (Cauchy sequences converge to
a limit in the field), ordered, and Archimedean (if α > 0, then α + α + ⋯ gets
as big as you like). The order relation plays a very important role in this con-
struction. The complete Archimedean order on R already gives substantial
information about the roots of polynomials.

For example, one of the main theorems in elementary analysis is the inter-
mediate value theorem, a result first proved by Bernard Bolzano in 1817. It
implies that if a continuous real-valued function defined on [a, b] (the closed
interval from a to b) satisfies the conditions f (a) < 0 and f (b) > 0, then
there is a real number ξ with f (ξ) = 0. In particular, if f is a monic poly-
nomial in R[x] of odd degree, convince yourself that f (x) < 0 for x very
negative and f (x) > 0 for x very positive. It follows that f (x) has a real root.
Hence to prove the fundamental theorem of algebra, which is the historical
name for the fact that C is algebraically closed, one has “only” to deal with
polynomials of even degree.

Lookout Point 4.1. Another way of stating the result about polynomials
of odd degree goes like this: there is no field E containing the field of real
numbers R such that E is a finite-dimensional vector space over R of odd
degree greater than 1.

To see this, suppose that E is a finite-dimensional vector space of odd
degree over R. Take an element α ∈ E . Since E is finite-dimensional over R,
we see that for some n, the powers 1, α, α2, . . . , αn are R-linearly dependent.
Thus α is the root of a polynomial. Let f be the monic polynomial of minimal
degree m that has α as a root. By Theorem 2.7 in Section 2.2, we see that
R(α) is a field that is a vector space of dimension m over R. Thus we have a
tower:



4.1 Getting Started 91

Then by Exercise 2.38 in the same section, it follows that m divides the
degree of E over R, which forces m to be odd. But the intermediate value
theorem then shows that f (x) has a root in R, which shows that f (x), an
irreducible polynomial, must be x − α. Thus α ∈ R. Since α was arbitrary,
we conclude that E ⊂ R, and so E = R. This observation will be useful to
us later, when we see how the fundamental theorem of Galois theory gives a
very short proof that C is algebraically closed.

Incidentally, there are other ways to put an absolute value on Q. First we
must decide what an “absolute value” is. It is a real-valued function ∣ ⋅ ∣ on Q

such that

∣x∣ ≥ 0, and ∣x∣ = 0 if and only if x = 0 ,
∣xy∣ = ∣x∣ ∣y∣ ,

∣x + y∣ ≤ ∣x∣ + ∣y∣ .

To find other absolute values on Q, fix a prime p. If n ∈ Z, n ≠ 0, write
n = pam, p ∤ m. Define ∣n∣p = p−a. Thus n is “small” if a high power of p
divides it. If a/b ∈ Q, b ≠ 0, put

∣
a
b

∣
p

=
∣a∣p

∣b∣p
.

Show that this doesn’t depend on the way a
b
is written (Euclid!), and

check that ∣α + β∣p ≤ ∣α∣p + ∣β∣p . This is enough to put the Cauchy machine
into action: you can now form sequences and equivalence classes and finally
arrive at a field, denoted by Qp , that contains Q and is complete; but it is
not Archimedean, because ∣n∣p ≤ 1 for all integers n! (that is an exclamation
point, not a factorial symbol).

Lookout Point 4.2. Thus one can construct infinitely many new fields
Q2,Q3,Q5,Q7,Q11, . . . , arising from different absolute values on Q. The
number-theoretic mystique requires that one write Q∞ in place of R. From
this point of view, Q∞ occupies a very special position, for unlike Q∞, the
field Qp for p ≠ ∞ never has the property that Qp(s), where s is a sym-
bol satisfying s2 = −1, is algebraically closed! In fact, one can show that if
p ≡ 1 mod 4, then −1 is actually a square in Qp . Furthermore, there are irre-
ducible polynomials of arbitrarily high degree over Qp . For example x3 + p
has no root in Qp , in contrast to the case for Q∞. These observations are not Very readable introduc-

tions to this “p-adic” land
include [3, 33, 45].deep, but they require a little better understanding of Qp than is offered here.

Thus it is a remarkable fact of nature that one can get from R to an alge-
braically closed field with so little effort. In general, one has to be content
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with an abstract construction. Indeed, there is a basic result established in
every commutative algebra course that asserts that for every field F, one can
construct a field E that contains F and is algebraically closed. Furthermore,
every element in E is algebraic over F. This last condition does not follow
from the fact that E is algebraically closed. For example, we shall see in
Chapter 6 that π is not algebraic over Q. The field of all complex numbers
that are algebraic over Q is algebraically closed. Can you prove this, assum-
ing that C is algebraically closed? It is a good exercise (and it is Exercise 4.4).

Gauss found a proof that C is algebraically closed in 1797 and published
it as his PhD thesis in 1799. During his lifetime, Gauss discovered a num-
ber of proofs of the theorem and published four in all. They appeared in
1799, 1816 (two proofs), and 1850. In the following, we will give a num-
ber of proofs. After giving a particularly simple proof that relies on a few
basic facts from elementary analysis, we examine other proofs that involve
more background. One is based on an idea of Gauss and uses the theorem on
symmetric functions. Except for the existence of an abstract field containing
the roots of a polynomial over a given field, this proof is completely elemen-
tary. On the other hand, we will show how a very simple proof (Artin, 1926)
can be derived from the basic result of Galois theory. The field C is a veryOf course, we shall not

prove the fundamental
theorem of Galois theory
but just content ourselves
with giving a clear
statement.

special field, and it is perfectly reasonable to ask whether one can verify that
it is algebraically closed by applying general algebraic theorems. But alge-
bra alone will not do. We will discuss this later in this chapter after we work
through several proofs of the theorem.

Take It Further

On the other hand, anyone who has had a basic course in complex analy-
sis is familiar with proofs using complex integration theory. Polynomials are
entire functions (holomorphic in the whole complex plane), and if a polyno-
mial f has no zeros, then it is bounded away from zero, and therefore 1/ f
is a bounded entire function. Hence by Liouville’s theorem, it is constant.

The definition of holo-
morphic function is in
Section 4.7.

Another complex-analytic proof that exploits the topological character of the
mapping f (x) is the following. A basic result in complex analysis is that
holomorphic functions (analytic, regular) are open. That is, they map open
sets onto open sets. For polynomials, this turns out to be equivalent to the fact
that C is algebraically closed.

In the next section, we will begin a completely rigorous proof of the theo-
rem. But first, some exercises:

Exercises

4.1 Show that if f ∈ C[x], then f f̄ has real coefficients, where f̄ is the
polynomial obtained from f by replacing each coefficient by its complex
conjugate

4.2 Prove the claim made in this section that the equivalence classes of
Cauchy sequences form a field that contains an isomorphic copy of Q.
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4.3 Referring to the definition of ∣ ⋅ ∣p in this section, prove a strong triangle
inequality: If α and β are integers, then

∣α + β∣p ≤ max{∣α∣p, ∣β∣p} .

Also, show that equality holds if ∣α∣p ≠ ∣β∣p .

4.4 Take It Further. Assuming that C is algebraically closed, show that the
field of all complex numbers that are algebraic over Q is algebraically
closed.

4.5 Prove Corollary 4.3.

4.2 Background from Elementary Analysis

Consider R × R as the Euclidean plane with its usual metric. The distance
function allows one to introduce the notions of boundedness and closedness
for subsets. We need to use the fact that R × R is complete as a metric space. Here ∥z∥ denotes the

distance from z to the
origin.

In other words, if ξ1, ξ2, . . . are in R×R and if ∥ξi − ξj∥ → 0 as i, j → ∞ (more
precisely, if given ε > 0, there exists an integer N such that ∥ξi − ξj∥ < ε for
i, j > N), then there is a point ξ ∈ R×R such that ∥ξ − ξi∥ → 0. A set A ⊂ R×R

is said to be closed if A contains all its limit points. In other words, if ξi → ξ,
ξi ∈ A, then ξ ∈ A. If A is closed and bounded, then we say that A is compact.

Lemma 4.1. Let f be a real-valued continuous mapping defined on a com-
pact set A in R×R. Then f is bounded on A. That is, there exists N such that
∣ f (x)∣ < N for all x ∈ A.

Proof. Since A is compact, put a big square S around it. Divide the square
into four congruent squares. If f is unbounded on A, then it is unbounded on
a part of A inside one of the smaller squares. Pick one of those squares and
call it S1. Take ξ1 ∈ S1 ∩ Awith ∣ f (ξ1)∣ > 2. Divide S1 into four squares. Since
f (x) is unbounded in S1, it is unbounded in one of the new smaller squares,
say S2. Take ξ2 ∈ S2 ∩ A with ∣ f (ξ2)∣ > 4. Continuing in this way, we get a
sequence {ξi} in which f (ξi) > 2i for each i.

Consider ⋂∞i=1 Si = {ξ}, which must be a single point. Since A is closed,
we have ξ ∈ A. Now, ξi ∈ Si ∩ A implies that ξi → ξ. Furthermore, since f is
continuous, it follows that f (ξi) → f (ξ). But then for every positive integer
i, we must have

2i < ∣ f (ξi)∣ ≤ ∣ f (ξ) − f (ξi)∣ + ∣ f (ξ)∣ .

Since ∣ f (ξ) − f (ξi)∣ goes to zero, we have a ridiculous situation. Since math-
ematics is not ridiculous, we have proved the lemma. ∎

Lemma 4.2. Let f be a real-valued continuous function defined on a com-
pact set A in R × R. Then there exists ξ ∈ A such that f (x) ≤ f (ξ) for all
x ∈ A.

Proof. By the preceding lemma, the set of real numbers f (A) is a bounded
set. By a fundamental property of R, there is a least upper bound (“maxi-
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mum”) τ to f (A). Recall that this τ is characterized by the following proper-
ties:

(i) τ ≥ α for α ∈ f (A).

(ii) Given ε > 0, there exists β ∈ f (A) such that β > τ − ε .

Choose α, τi ∈ f (A) such that α ≥ τi > τ − 1/2i . Then τi = f (ξi) for some
ξi , and τi → τ. Now, {ξi} is a bounded sequence of points in A, and a bisec-
tion argument shows that {ξi} has a convergent subsequence. Call this sub-
sequence ξρi . Then ξρi → μ, and since A is closed, we see that μ ∈ A. Since
f is continuous, we conclude that f (ξρi ) → f (μ). But f (ξρi ) → τ, and so
f (μ) → τ. Thus τ, the least upper bound of f (A), is attained by an element
of A. This finishes the proof. ∎

Corollary 4.3. Given f and A as above, there is an element b ∈ A such that
f (x) ≥ f (b) for all x ∈ A.

Proof. Exercise 4.5. ∎

This completes the analytic preliminaries, with the exception of one more
comment. The equation xn = α for α ∈ C always has a root in C. First of all,
if r > 0, then n

√
r exists as a real number. Then de Moivre gives

n
√
r (cos

θ

n
+ i sin

θ

n
)

as a root, where α = r(cosθ + i sinθ). Thus the proof of the fundamental
theorem of algebra that follows also uses the existence of sin x and cos x. Can
you show that xn = α has a root without trigonometry (and of course, without
already knowing that C is algebraically closed)?

4.3 First Proof of the Fundamental Theorem
of Algebra: An Analytic Approach

This proof is adapted from the classic calculus text by Edmund Landau [46].
The only facts we need from analysis are the theorem that continuous func-
tions on compact sets attain their maxima and minima and de Moivre’s theo-
rem.

The fact that C is algebraically closed will follow immediately from the
following two lemmas.

Lemma 4.4. Given a polynomial f (x) ∈ C[x], there is a complex number α
such that ∣ f (x)∣ ≥ ∣ f (α)∣ for all x ∈ C.

Convince yourself that
together, these two
lemmas imply that C is
algebraically closed.

Lemma 4.5. If f is a nonconstant polynomial in C[x], then given α ∈ C for
which f (α) ≠ 0, there exists β ∈ C such that ∣ f (β)∣ < ∣ f (α)∣.

Lemma 4.4 is not immediate. We cannot apply Lemma 4.2, for although
f (x) is a continuous real-valued function, the domain C is not compact (it is
closed but not bounded). However, it is the easier of the two lemmas:
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Proof of Lemma 4.4. We shall use the following fact: for complex numbers
α and β, one has ∣α + β∣ ≥ ∣α∣ − ∣β∣. This follows from the triangle inequality
∣a + b∣ ≤ ∣a∣ + ∣b∣ by replacing a by α + β and b by −β.

Consider a polynomial f (x), which we may normalize to the form

f (x) = xn + an−1xn−1 + ⋅ ⋅ ⋅ + a0.

Then by the above, we see that

∣ f (x)∣ ≥ ∣x∣n − ∣an−1xn−1 + ⋅ ⋅ ⋅ + a0∣

≥ ∣x∣n (1 − ∣
an−1
x

+
an−2
x2

+ ⋅ ⋅ ⋅ +
a0
xn

∣) .

If ∣x∣ is sufficiently large, then ∣ an−1
x

+ ⋅ ⋅ ⋅ + a0
xn

∣ < 1
2 , say. Thus for ∣x∣ > R, we

have ∣ f (x)∣ ≥ ∣x∣n/2.
Now choose ∣x∣ larger (if necessary) so that ∣x∣n/2 > ∣a0∣ = ∣ f (0)∣. With

this adjustment, we now see that outside some big disk (∣x∣ > R1), we have

∣ f (x)∣ > ∣ f (0)∣ for x > R1 .

Inside the closed disk defined by ∣x∣ ≤ R1 (which is compact!), there exists
α such that by the corollary to Lemma 4.2 applied to the continuous function
∣ f (x)∣ on a compact set (the closed disk of radius R1), we have

∣ f (x)∣ ≥ ∣ f (α)∣ for ∣x∣ ≤ R1 .

Oh, and note that ∣ f (0)∣ ≥ ∣ f (α)∣ too, because 0 is in the disk! So, even
outside the disk (∣x∣ > R1), we have

∣ f (x)∣ > ∣ f (0)∣ ≥ ∣ f (α)∣ .

This shows that for every x ∈ C, we have

∣ f (x)∣ ≥ ∣ f (α)∣ ,

which finishes the proof of Lemma 4.4. ∎

The proof of Lemma 4.5 is a little more subtle. We will start with a partic-
ular form for f (x) and then show how to reduce f to this special form. And
so . . . we need (yet) another lemma:

Lemma 4.6. Suppose n ≥ m and f has the following special form: That is, f (0) = 1 and
the lowest-degree term
besides the constant term
has coefficient −1.f (x) = 1 − xm + am+1xm+1 + ⋅ ⋅ ⋅ + anxn .

Then there is a real number ξ, 0 < ξ < 1, such that ∣ f (ξ)∣ < 1.

Proof. To see this, apply the (generalized) triangle inequality: for every x ∈

C, we have

∣ f (x)∣ ≤ ∣1 − xm∣ + ∣am+1xm+1∣ + ⋅ ⋅ ⋅ + ∣anxn∣ .
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If we restrict x to 0 < x < 1, then 1 − xm > 0 and ∣am+i xm+i ∣ = ∣am+i ∣ xm+i , so
we can make this inequality even stronger:

∣ f (x)∣ ≤ 1 − xm + ∣am+1∣xm+1 + ∣am+2∣xm+2 + ⋅ ⋅ ⋅ + ∣an∣xn .

Factor out xm:

∣ f (x)∣ ≤ 1 − xm [1 − (∣am+1∣x1 + ∣am+2∣x2 + ⋅ ⋅ ⋅ + ∣an∣xn−m)]

∶= 1 − xm[1 − B(x)] .

We can now choose x close enough to zero to make 0 < B(x) < 1, and so we
have 0 < 1 − xm[1 − B(x)] < 1. Done. ∎

And now . . . on to Lemma 4.5. It has been a while, so recall what we want to
prove:

If f is a nonconstant polynomial in C[x] and α is a complex number
for which f (α) ≠ 0, we want to show that there exists β ∈ C such that
∣ f (β)∣ < ∣ f (α)∣.

Here we go . . .

Proof of Lemma 4.5. Suppose now that

We can assume that a0 ≠ 0
(otherwise, we would be
wasting our time).

f (x) = a0 + amxm + ⋅ ⋅ ⋅ + anxn .

Let

g(x) =
f (x)

a0
= 1 +

am
a0

xm + ⋅ ⋅ ⋅ +
an
a0

xn .

Now, to make this look like the special case, we construct

g ( m

√

−
a0
am

x) = 1 − xm + terms of higher degree ,

where m

√
− a0

am
is any one of the roots of xm − a0

am
= 0 in C (de Moivre!). So,

by our special case, there is a real number ξ such that

∣g ( m

√

−
a0
am
ξ)∣ < 1 ,

or since g = f
a0
,

∣ f ( m

√

−
a0
am
ξ)∣ < a0 = f (0) .

So there exists τ such that

∣ f (τ)∣ < f (0) .

Almost there. One more clever transformation: Suppose f (α) ≠ 0. Consider
the polynomial in C[x] defined by h(x) = f (α + x). Then by Lemma 4.6
applied to h, there exists τ′ such that

f (α + τ′) = h(τ′) < h(0) = f (α) .

Bingo: We have built a β that the lemma promised. ∎
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This completes the proof of Lemma 4.5 and our first proof of the funda-
mental theorem of algebra. Notice that besides using the existence of minima
for continuous functions on compact sets in R×R, we have used de Moivre’s
theorem to find mth roots of −a0/am. In later, more algebraic, proofs we still
need to use properties of continuous functions on compact sets, but we will
need to assume only that if α ∈ C, then there exists β ∈ C with β2 = α. This
can be shown without de Moivre. Nevertheless, the above proof is extremely
elegant and is just about the simplest we know.

4.4 Background from the Theory of
Equations

The proof of the algebraic closure ofC presented in Section 4.3 leaned heavily
on classical analysis and the order relation in R. Furthermore, we used the
extension of the absolute value to C and the triangle inequality in C. The
only analytic fact used in the proof developed in this section is that every
polynomial of odd degree in R[x] has a real root. All the rest of the argument
is algebraic.

A very old result from algebra is the theorem on symmetric functions. It
played an important role in the classical development of the theory of equa-
tions and Galois theory. We shall develop the result in a little more generality
than we need.

Consider an integral domain D and n indeterminates x1, . . . , xn. As usual,
D[x1, . . . , xn] denotes the ring of all polynomials in x1, . . . , xn with coeffi-
cients in D. We are interested in the following special polynomials:

σ1 = x1 + x2 + ⋅ ⋅ ⋅ + xn ,

σ2 = x1x2 + x1x3 + ⋅ ⋅ ⋅ + x1xn + x2x3 + x2x4 + ⋯ = ∑
i<j

xi xj ,

σ3 = ∑
i<j<k

xi xj xk ,

⋮

σn = x1x2⋯xn.

These are called the elementary symmetric functions. For example, consider
D[x1, x2, x3, x4]. Then

σ1 = x1 + x2 + x3 + x4 (the sum) ,

σ2 = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 (the sum two at a time) ,

σ3 = x1x2x3 + x1x3x4 + x2x3x4 (the sum three at a time) ,

σ4 = x1x2x3x4 (the “sum” four at a time) .

The polynomials σ1, . . . , σn all satisfy the important property that each
remains the same when the variables are permuted in any of the n! different
ways (recall that a permutation of {1, 2, . . . , n} = T is a one-to-one mapping
of T onto itself). In fancy language, they are invariant under the action of
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the symmetric group Sn on n letters. However, there are other polynomials
invariant under Sn as well. For example, x21 + x22 + ⋅ ⋅ ⋅ + x2n is invariant. Such
polynomials that are invariant under the action of Sn are called called sym-
metric. But

(x1 + ⋅ ⋅ ⋅ + xn)2 = x21 + ⋅ ⋅ ⋅ + x2n + 2∑
i<j

xi xj ,

and so x21 + ⋅ ⋅ ⋅ + x2n = σ2
1 − 2σ2, and we see that x21 + ⋅ ⋅ ⋅ + x2n belongs to

the ring D[σ1, σ2, . . . , σn] of all polynomials in σ1, σ2, . . . , σn. The theorem
on symmetric functions states that this is always the case, namely that every
symmetric polynomial can be written as a polynomial in the elementary sym-
metric polynomials.

Theorem 4.7. Let f (x1, . . . , xn) ∈ D[x1⋯xn], and suppose that

f (x1, . . . , xn) = f (xσ(1), xσ(2), . . . , xσ(n))

for every permutation σ of the integers 1, . . . , n. Then

f (x1⋯xn) ∈ D[σ1, σ2, . . . , σn].

For a refresher on determi-
nants, see [20, Chapter 9].

There are a number of proofs of this result. We give a proof that supplies a
little more information. First of all, we need to calculate the famous Vander-
monde determinant.

Lemma 4.8.

*******************

1 x1 ⋯ xn−11
1 x2 ⋯ xn−12
⋮ ⋮ ⋯ ⋮

1 xn ⋯ xn−1n

*******************

= ∏
i>j

(xi − xj) .

Proof. By replacing the ith row by itself minus the jth row and noticing
that xi − xj divides xsi − xsj , we see that xi − xj divides the left-hand side.
But the various xi − xj for different pairs (i, j), i > j, are relatively prime.
Hence the right-hand side divides the left-hand side (here we used the fact
that D[x1, . . . , xn] is a unique factorization domain). But the left-hand side
has degree n(n − 1)/2, since 1 + 2 + 3 + ⋅ ⋅ ⋅ + n − 1 = n(n − 1)/2, and so
does the right-hand side, since (n2) = n(n − 1)/2. Therefore, they differ by a
constant. As an exercise, show that the constant is 1.

Another proof, perhaps simpler, is to continue to operate on the rows and
columns. We proceed by induction on n. Check the lemma for n = 1 and 2.
Then if we subtract from each column, beginning with the second, x1 times
the column preceding it on the left, we obtain

*******************

1 0 0 ⋯ 0
1 x2 − x1 x22 − x1x2 ⋯ xn−12 − x1xn−22
⋮ ⋮ ⋯ ⋮

1 xn − x1 x2n − x1xn ⋯ xn−1n − x1xn−2n

*******************

.
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But now we can kill all the ones in the first column except the top one by
subtracting the first row from each of the other rows. Then you see that the
resulting rows have x2 − x1, x3 − x1, . . . , xn − x1 as a common factor, and so
we have the whole determinant equal to

(x2 − x1)(x3 − x1)⋯(xn − x1)

*******************

1 0 0 0 ⋯ 0
0 1 x2 x22 ⋯ xn−22
⋮ ⋮ ⋮ ⋮ ⋯ ⋮

0 1 xn x2n ⋯ xn−2n

*******************

= (x2 − x1)⋯(xn − x1) ∏
i>j
i, j≠1

(xi − xj)

by the inductive hypothesis. But this is simply

∏
i>j
i, j≤n

(xi − xj) ,

and that finishes the proof. ∎

Now consider the integral domain D[x1, . . . , xn], which contains the inte-
gral domain D[σ1, . . . , σn] as a subdomain:

D[x1, . . . , xn]

∣

D[σ1, . . . , σn].

Build the polynomial in a new indeterminate z given by

(z − x1)(z − x2)⋯(z − xn).

This polynomial is simply

zn − σ1zn−1 + σ2zn−2 − ⋅ ⋅ ⋅ + (−1)nσn

(verify this). It follows that each xi satisfies the relation

xni − σ1xn−1i + σ2xn−2i − ⋅ ⋅ ⋅ + (−1)nσn = 0 .

This shows that xi is algebraic over the ring D[σ1, . . . , σn].
The following lemma shows that the above polynomial is the minimal

polynomial of each xi as an algebraic quantity over the field of symmetric
functions. We state it only for x1, but the proof is general in principle. Let S
denote the subring of D[x1, . . . , xn] consisting of all symmetric polynomials
in x1, . . . , xn.

Lemma 4.9. If

In other words,
1, x, x2, . . . , xn−1 are
linearly independent
over S.

an−1xn−11 + an−2xn−21 + ⋅ ⋅ ⋅ + a0 = 0

for a0, a1, . . . , an−1 ∈ S, then a0 = a1 = ⋅ ⋅ ⋅ = an−1 = 0.
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Proof. Since 0 is symmetric, the right-hand side is symmetric. Any permu-
tation that sends x1 to xi for i = 1, . . . , n leaves a0, . . . , an−1 fixed by the
definition of S. Hence for i = 1, . . . , n, we have

an−1xin−1 + an−2xin−2 + ⋅ ⋅ ⋅ + a0 = 0 .

Hence (an−1, an−2, . . . , a0) is a solution vector to the homogeneous system of
linear equations whose coefficient matrix has determinant

**************

x1n−1 x1n−2 ⋯ 1
⋮ ⋮ ⋯

xn−1n xnn−2 ⋯ 1

**************

.

But Vandermonde tells us that this determinant is ∏i>j(xi − xj), which is
nonzero. Hence this matrix is nonsingular, and (an−1, an−2, . . . , a0) must be
(identically) the zero vector. This finishes the proof. ∎

Nowwe can prove the symmetric function theorem (Theorem 4.7), restated
more simply as follows.

Theorem 4.10 (Symmetric function theorem). Let D be an integral domain
and S the ring of all symmetric polynomials in D[x1, . . . , xn]. Then S is equal
to D[σ1, . . . , σn], the ring of polynomials in the first n elementary symmetric
polynomials.

Proof. Check that the right-hand side is contained in the left-hand side. In
the other direction, let f (x1, . . . , xn) ∈ S. View f (x1, . . . , xn) as a polynomial
in x2, . . . , xn with coefficients in D[x1]. We prove the theorem by induction
on n. In particular, we shall prove that a symmetric polynomial in n variables
over any integral domain is a polynomial in σ1, . . . , σn.

The case n = 1 is self-evident: every symmetric polynomial in D[x] is a
polynomial in the symmetric polynomial x.

Now assume the result for n − 1. Then f (x1, . . . , xn) is certainly symmet-
ric in x2, . . . , xn (we ignore x1). Hence f (x1, . . . , xn) = g(x1, σ′1, . . . , σ

′

n−1),
where g(X1, X2, . . . , Xn) is a polynomial with coefficients in D, and where, of
course,

σ′1 = x2 + x3 + ⋅ ⋅ ⋅ + xn ,

σ′2 = ∑
i<j
i, j≥2

xi xj ,

⋮

σ′n−1 = x2⋯xn.

However, there are simple relations between σ1, . . . , σn and σ′1, . . . , σ
′

n−1.
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In fact,

σ1 = x1 + σ′1 ,

σ2 = x1σ′1 + σ′2 ,

⋮

σn−1 = x1σ′n−2 + σ′n−1 ,

σn = x1σ′n−1 .

Thus each σ′1, σ
′

2, . . . , σ
′

n−1 is seen to be a polynomial in x1, σ1, . . . , σn by
successive substitution. Hence by substitution, g(x1, σ′1, . . . , σ

′

n−1) becomes
a polynomial h(x1, σ1, . . . , σn). Now recall that x1 satisfies a relation

xn1 − σ1x1n−1 + ⋅ ⋅ ⋅ + (−1)nσn = 0 ,

and therefore, solving for xn1 and repeatedly substituting, we may lower the
degree of h(x1, σ1, . . . , σn) until it has degree less than n in x1. Write the
resulting polynomial as

a0xn−11 + a1xn−21 + ⋅ ⋅ ⋅ + an−1 ,

where a0, . . . , an−1 are in D[σ1, . . . , σn]. Recall that this polynomial is still
g(x1, . . . , xn), which is in S. Hence

a0xn−11 + a1xn−2 + ⋅ ⋅ ⋅ + (an−1 − g) = 0

is a polynomial in x1 with coefficients that are symmetric. According to
Lemma 4.9, every coefficient is identically zero. In particular, an−1 − g = 0,
or g = an−1. Thus g ∈ D[σ1, . . . , σn]. This completes the proof. ∎

From the point of view of Galois theory we have done the following. The
symmetric group on n letters Sn is a group of automorphisms of the ring
R = D[x1, . . . , xn]. The subring of symmetric polynomials is simply the fixed
ring of the group Sn. Denote that fixed ring by RSn . Then Theorem 4.10 above
states that RSn = D[σ1, σ2, . . . , σn]. The general procedure of descending
from a ring with a group operating on it to the fixed ring and investigating the
relationship between the group and the rings in between the top one and the
fixed one is an extremely important source of information. It is the basic idea
behind Galois theory.

4.5 Second Proof of the Fundamental
Theorem of Algebra: All Algebra (Almost)

With the aid of the symmetric function theorem we will give another proof
that C is algebraically closed. However, we need one more construction from
abstract algebra. In this proof, we need to know that there exist roots some-
where. In other words, we need the fact that if F is a field and f ∈ F[x],
then one can construct a field E in which f (x) has all its roots. Although
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the construction of such a field is not particularly difficult, we will assume its
existence and include a sketch of the proof in the next subsection. For now,
we assume the following result.

Theorem 4.11. Let F be a field and f (x) a polynomial with coefficients in
F. Then there is a field E such that E ⊃ F and f (x) = (x − α1)⋯(x − αn)

with α1, . . . , αn ∈ E.

Now we prove our main result.

Theorem 4.12. The field of complex numbers C is algebraically closed.

Proof. We will show that every polynomial with real coefficients has a com-
plex root. As we mentioned earlier, in Section 4.1, this is sufficient. The proof
goes by induction on m, where deg f = 2mn and n is odd. If m = 0, the result
follows from the intermediate value theorem.

So, take a polynomial f ∈ R[x] of degree 2mn, where m > 0. We want to
show that f (x) has a complex root. Consider f (x) as a polynomial in C[x]

and let E be a field containing C that contains all the roots of f .
Let s = 2mn and f (x) = ∏

s
i=1(x −αi), where the αi are the roots of f . Fix

a positive integer h and form the polynomial whose roots are αi + αj + hαiαj
for i < j. Namely,

g(x) = ∏
i<j

(x − (αi + αj + hαiαj)) .

The coefficients of g are symmetric in α1, . . . , αn. Hence by the symmetric
function theorem, they are polynomials (with coefficients in R) in the ele-
mentary symmetric functions of α1, . . . , αn. But these elementary symmetric
functions are the coefficients (up to ±1) of f (x). Hence g(x) ∈ R[x]. Now,
deg g(x) = (s2) = s(s − 1)/2 = 2m−1n′, where n′ is odd. Hence the power of 2
dividing deg g(x) = (s2) is less than m. By the induction hypothesis, g(x) has
a root in C.

The idea is to vary the integer h. The induction hypothesis implies that
for each h, at least one of the α1 + αj + hαiαj is in C. So if we let h take
on more than (s2) integral values, there must be two of the αi + αj + hαiαj
that are in C with the same i, j. Thus there are distinct integers h1 and h2
such that αi + αj + h1αiαj ∈ C and αi + αj + h2αiαj ∈ C for some pair (i, j).
By subtraction, we obtain (h1 − h2)αiαj ∈ C, and so αiαj ∈ C. This implies
αi + αj ∈ C. Then

(αi − αj)
2 = αi

2 + αj
2 − 2αiαj = (αi + αj)

2 − 4αiαj ∈ C ,

whence αi − αj ∈ C, since C certainly contains all its square roots (Exer-
cise 4.6). But then αi + αj ∈ C implies that αi ∈ C. This completes the
proof. ∎

Let’s review the ingredients of this proof. We needed the intermediate
value theorem to get the induction going, the symmetric function theorem
to build the polynomial g, and a general lemma from field theory that ensures
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the existence of an abstract extension field that houses all the roots of f . All
the analysis is tucked away in the statement that polynomials of odd degree
with real coefficients have at least one real root.

4.5.1 The Idea behind the Proof of Theorem 4.11:
More Modular Arithmetic with Polynomials

We have used the fact that if F is a field and f ∈ F[x], then one can construct
a field E that contains F in which f (x) has all its roots. The fact that there is
such a field somewhere up in the sky is due to Kronecker, and it deserves to
be celebrated as a theorem:

Theorem 4.13 (Kronecker). Let F be a field and let f ∈ F[x] be a non-
constant polynomial. Then there exist a field extension E/F and an element
u ∈ E such that f (u) = 0.

A complete proof is in [19, Chapter 7]. But the idea is the same one that
we used in the discussion of modular arithmetic with polynomials in Sec-
tion 3.1. More precisely, we can assume that f is irreducible (and monic)
of degree n, and then construct the ring E obtained by reducing elements of
F[x] modulo f . The construction is a little intricate, but (to oversimplify) the
steps involved include showing the following:

(i) The ring E obtained by replacing each element of F[x] by its remainder
on division by f is given a ring structure (exactly as we built Zp from Z).

(ii) That makes E into a field that contains (an isomorphic copy of) F.

(iii) The image of x in E is a root of f in E (think of the image of x when
polynomials in R[x] are reduced modulo x2 + 1).

(iv) If g(x) ∈ F[x] and z is a root of g in E , then f ∣ g in F[x].

(v) E is a vector space over F, the set {1, x, x2, . . . , xn−1 } is a basis, and

A main message here
is that the same ideas
that lead from Z to Zp

can be used as a method
that guarantees roots of
equations. That’s quite
wonderful.

dimF E = n.

As an example, in Lookout Point 2.5, we did a little arithmetic in Q[ζ5],
and you checked that

1
ζ3 − ζ2 + 2ζ

= −
1
11

(7ζ3 + 9ζ2 + 8ζ + 3) .

As we said there, this value of (ζ3 − ζ2 + 2ζ)−1 didn’t drop out of the sky.
Here’s the secret to the story:

The minimal polynomial for ζ5 is

Φ(x) = x4 + x3 + x2 + x + 1 .

Hence, the Kronecker construction of the field that houses a root of Φ is
obtained by reducing polynomials in Q[x] modulo Φ. So use Euclid’s algo-
rithm in Q[x] to compute

gcd (x3 − x2 + 2x,Φ) .
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You will get 11/49, a unit in Q[x] (try it). Using the functions s and t defined
in Lookout Point 3.3, find that

(
x3

7
−
9x2

49
−
8x
49

−
3
49

) (x3 − x2 + 2x) + (
x2

7
−
5x
49

+
11
49

)Φ(x) =
11
49
.

So

(
x3

7
−
9x2

49
−
8x
49

−
3
49

) (x3 − x2 + 2x) ≡
11
49

mod Φ .

Multiply both sides by 49/11, and the secret is out.

Exercises
4.6 (i) Without using de Moivre, show that every nonzero complex number

a + bi has two square roots in C.

(ii) Use the identity

(αi − αj)
2 = αi

2 + αj
2 − 2αiαj = (αi + αj)

2 − 4αiαj

to derive the quadratic formula without “completing the square.”

4.7 Let Ψ(x) = x2 + 1. Reduce each polynomial mod Ψ:

(i) 3 + 2x
(iii) 3 + 2x + x2 + x3

(v) x3

(vii) x18

(ii) 3 + 2x + x2

(iv) 3 + 2x + x2 + x3

(vi) x4

(viii) x101

4.8 Find the multiplicative inverse of each polynomial modulo x2 + 1:

(i) 3 + 2x
(iii) 3 + 2x + x2 + x3

(v) x3

(vii) x54

(ii) 3 + 2x + x2

(iv) 3 + 2x + x2 + x3 + x4

(vi) x4

(viii) a + bx

4.9 Let ρ(x) = x2 + x + 1. Reduce each polynomial mod ρ:

(i) 3 + 2x
(iii) 3 + 2x + x2 + x3

(v) x3

(vii) x18

(ii) 3 + 2x + x2

(iv) 3 + 2x + x2 + x3 + x4

(vi) x4

(viii) x101

4.10 Find the multiplicative inverse of each polynomial modulo x2 + x + 1.

(i) 3 + 2x
(iii) 3 + 2x + x2 + x3

(v) x3

(vii) x101

(ii) 3 + 2x + x2

(iv) 3 + 2x + x2 + x3 + x4

(vi) x4

(viii) a + bx
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4.11 In Q[ζ5], express

1
3 + 7ζ5 + 2ζ25

as a linear combination of powers of ζ5 with coefficients in Q.

4.6 Galois Theory and the Fundamental
Theorem of Algebra

The fundamental theorem of algebra follows quickly from the fundamental
theorem of Galois theory and a few elementary facts about groups. While It is possible, as Emil

Artin has shown, to
develop Galois theory
without the symmetric
function theorem.

this may seem a little heavy-handed, it is nevertheless instructive to obtain
special facts such as C being algebraically closed from more general ones.
The following proof that C is algebraically closed is taken from Artin’s paper
of 1926 with Otto Schreier [2]. The fundamental theorem of Galois theory
as stated in modern language leaves little trace of its origins in the theory of
equations. It goes as follows:

Let F be a field that contains Q and let E ⊃ F be a field containing F such
that E is a finite-dimensional vector space over F. If α ∈ E , let f (x) be the
minimal polynomial for α. Recall that this is the unique monic irreducible
polynomial that has α as a root. If for each α ∈ E , f (x) has all its roots in
E , i.e., f (x) splits into linear factors, we say that E is a Galois extension
of F. The Galois group of E over F is the group of all automorphisms of E
that leave each element of F fixed. Denote this group by G(E/F) = G. It can
be shown that G is a finite group of order equal to dimFE . The fundamental
theorem of Galois theory states that there is a one-to-one correspondence
between subgroups ofG and subfields of E containing F. The correspondence
is quite explicit. If E ⊃ E1 ⊃ F, where E1 is a field, then the corresponding
subgroup of G is G(E/E1), the automorphisms of E that leave E1 fixed. The
inverse correspondence associates to each subgroup H ⊂ G the field EH of
all α in E with h(α) = α for all h ∈ H. The field EH is called the fixed field
of H. One can see that G(E/EH) = H. Finally, H is a normal subgroup of
G if and only if EH is a Galois extension of F. (A subgroup H ⊂ G is a
normal subgroup if ghg−1 ∈ H for each h ∈ H and g ∈ G; see Example 4 in
Section 2.6.)

In order to obtain the fact that C is algebraically closed, consider a poly-
nomial f (x) ∈ R[x]. Then let E ⊃ C be a Galois extension of R in which
f (x) has all its roots. That such a field exists follows from Kronecker’s the-
orem (Theorem 4.13). We want to show that E = C. If G is the Galois group
of E/R, suppose that G has order n = 2tm with m odd. By Sylow’s theorem
(Theorem 2.33 in Section 2.6), there exists a subgroup H of G of order 2t . If
EH is the fixed field, we have the diagram in Figure 4.1.

Since the fundamental theorem of Galois theory implies that the dimension
of E over EH is 2t , we see that EH is an extension of R of odd degree. By
Section 4.1 of this chapter, EH = R. Thus E/R has degree 2t , and m = 1.
Hence the Galois group of E/C is of order 2t−1. If E ≠ C, then there would Where is the “analytic

step” in this proof?be a subgroup J in G(E/C) of order 2t−2, again by Sylow. Then the fixed
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Figure 4.1. The “hypothetical” extension E/C.

field EJ is a quadratic extension, i.e., an extension of degree 2, of C (again by
Galois theory). That is impossible, since all quadratic equations over C have
their roots in C. This finishes the proof (applause).

The use of Galois and Sylow enabled us to collapse the “hypothetical”
extension E to C. Again, the analytic part of the proof is contained in the
statement that R has no field extensions of odd degree greater than one.

You should by this time be drooling to read a good account of Galois
theory. There are quite a few excellent books. Especially recommended:

(i) Lisl Gaal’s Classical Galois Theory [28].

(ii) Pierre Samuel’s beautiful introduction to algebraic number theory, Theo-
rie Algébrique des Nombres, translated into English by Allan Silberger [76].

(iii) Joseph Rotman’s Galois Theory [69].

(iv) Jörg Bewersdorff’s Galois Theory for Beginners: A Historical Perspec-
tive, translated into English by David Kramer [6].

(v) And the best simple introduction to Galois theory is still Artin’s Galois
Theory [1].

4.7 The Topological Point of View

In this section, we examine the fact that C is algebraically closed from the
point of view of topology. Thus we view C as the metric space R × R with its
Euclidean topology. We know, for example, that R×R is connected, complete,
and locally connected. A polynomial f (x) can be viewed as a mapping from
C to C. The fundamental theorem of algebra then states that for every non-
constant polynomial f (x), zero is in the image f (C). But this is equivalent
to the assertion that f is an onto mapping, i.e., f (C) = C. For suppose we
know that C is algebraically closed. Let a ∈ C and consider f (x) − a = g(x).
Then g(α) = 0 for some α ∈ C, and so f (α) = a. Conversely, if f (C) = C,
then f (α) = 0 for some α. Hence the fact that f (x) is onto implies that C is
algebraically closed.

We will use some vocabulary and basic results from topology. A good
introduction is the book by Steenrod and Chinn [4].
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An important class of functions studied in complex function theory is the
class of functions holomorphic on an open set U ⊂ C. These functions are
characterized by the property of having, near each α ∈ U, a representation as
a convergent power series, or equivalently, of having a complex derivative at
each point. A basic result in the subject states that a holomorphic function
is an open map. This means that if V ⊂ U, V open, then f (V) is open in C.
Since a polynomial is a convergent power series defined everywhere on C, it A polynomial is a “short”

power series.follows that f (C) is open.
And f (C) is also a closed set. For let f (ξi) → α for some α ∈ f (C).

Then {ξi} is a bounded sequence, since we saw that ∣ f (x)∣ is arbitrarily
large outside arbitrarily large disks (see Section 4.2). If ξτi is a convergent
subsequence, then f (ξτi ) → α and f (ξτi ) → f (μ), where ξτi → μ. Hence
α = f (μ), and since f (C) contains all its limit points, it is closed in C.

We know that C is a connected space, which means that C cannot be writ-
ten as A ∪ B where A and B are nonempty, disjoint, and open. Or equiva-
lently, C has no nonempty proper subset that is at the same time open and
closed. This may be derived by combining the facts that R is connected and
the topological product of two connected spaces is connected. Since f (C) is
not empty, we must have f (C) = C, and that proves our theorem.

A slight variation on this argument goes as follows. We learned in Sec-
tion 4.2 that ∣ f (x)∣ has an absolute minimum, say ∣ f (α)∣. Suppose ∣ f (α)∣ ≠ 0.
Then since f is open, there is a little disk centered at f (α), not containing 0,
that must be covered by f , i.e., every point in the little disk must be an image
point of f . But there are points closer to 0 than f (α) is. This contradicts the
minimality of ∣ f (α)∣. Hence f (α) = 0.

Take It Further

A very intuitive proof is possible if we consider the image under f of a closed
curve Γ in C, as pictured in Figure 4.2.

Figure 4.2. The image of Γ under the function f .

Consider a circle Γr of radius r in C and the simple polynomial zn for
n ≥ 1. What is the image f (Γr)? It is just a circle of radius rn. But since
multiplication of complex numbers adds the angles, we see that the image
circle is traversed n times as z goes around the circle of radius r once. We say
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that n is the winding number of zn.
Now, zn is a particularly simple example, but it plays the leading role in

this proof. Consider a polynomial f (z) of degree n and view it as a mapping
of circles of various radii in one plane to curves in another plane as illustrated
in Figure 4.3.

Figure 4.3. The image of a circle under the function f .

If f (Γr) does not contain the origin, we may speak of the number of times
the image goes around 0 as z traverses the circle Γr once in a counterclock-
wise manner. We count algebraically, so if the image point goes around clock-
wise, we subtract 1. Call this number Wr( f ). It is defined for every contin-
uous function f . Although the picture is tempting, it isn’t immediate how to
define such a number rigorously. The idea is to vary the angle of f (z) contin-
uously and show that the total variation is an integral multiple of 2π. If you
don’t want to do that, then complex integration gives a good definition as

1
2πi ∫

Γr

f ′

f
.

However, let us proceed intuitively. If you think about it, you will see that the
“winding” number varies continuously with r . What we shall do is to assume
that f (z) has no zero, so that Wr( f ) exists for all r > 0. Then we examine
Wr( f ) for large r and see that it is n, and examine it for r small and see that
it is zero. But Wr( f ) varies continuously with r , and since R is connected,
it cannot jump from 0 to n. That is a contradiction, and so f (z) must have a
zero after all.

Now let us put in a few details. First consider f (z) for large r . Since f has
no zero, we must have an ≠ 0. Write f (z) as

f (z) = zn + a1zn−1 + ⋅ ⋅ ⋅ + an = zn (1 +
a1
z

+ ⋅ ⋅ ⋅ +
an
zn

) .
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Since angles add, we see that

Wr( f ) = Wr(zn) +Wr (1 +
a1
z

+ ⋅ ⋅ ⋅ +
an
zn

)

= n +Wr (1 +
a1
z

+ ⋅ ⋅ ⋅ +
an
zn

) .

But when ∣z∣ is very large, we have that

∣
a1
z

+ ⋅ ⋅ ⋅ +
an
zn

∣

is very small, and

1 +
a1
z

+ ⋅ ⋅ ⋅ +
an
zn

just can’t get around the origin. More precisely, if

∣1 +
a1
z

+ ⋅ ⋅ ⋅ +
an
zn

− 1∣ <
1
2
,

then

1 +
a1
z

+ ⋅ ⋅ ⋅ +
an
zn

is confined to a disk of radius 1/2 around 1. It follows that

Wr (1 +
a1
z

+ ⋅ ⋅ ⋅ +
an
zn

)

is zero for r large, and henceWr( f ) = n for r large.
Now we look at Wr( f ) for r small. As z goes around a little circle of

radius r, 1/z goes around a big circle of radius 1/r in the opposite direction.
So let us just calculate the winding number of the composition of f with 1/z.
That is,

f (
1
z

) =
1
zn

+
a1
zn−1

+ ⋅ ⋅ ⋅ + an = zn (1 +
a1
z

+ ⋅ ⋅ ⋅ +
an
zn

) .

As z goes around a little disk, 1/z goes around a big disk, and so

1 +
a1
z

+ ⋅ ⋅ ⋅ +
an
zn

has winding number −n. However, zn still has winding number n, so the
total winding number is 0. Another way, perhaps simpler, of seeing this is
to observe that

∣zn + a1zn−1 + ⋅ ⋅ ⋅ + an−1z∣ <
∣an∣

2

for ∣z∣ small. Hence ∣zn + a1zn−1 + ⋅ ⋅ ⋅ + an−1z + an∣ stays in a disk of radius The integer W( f ) is
called the Brouwer degree
of the mapping, and its
general properties are
developed in many texts
on algebraic topology.

∣an∣/2 about an ≠ 0 for ∣z∣ < ε . Hence the winding number is zero. And that
does it!
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This concludes our excursion into the fundamental theorem of algebra.
But there’s one more point that needs to be stressed: As we have seen, the
fundamental theorem is a basic fact about C, and all proofs must involve
in some way the fact that R is a complete Archimedean field. This so-called
analytic step showed up in each of our proofs, and it can be shown that it needs
to be there. Otherwise, we could have modified our proofs to show that Q[i]
is algebraically closed, and that is just not true. The simplest invocation of
analysis is in the algebraic proof, where it is used to ensure that polynomials
of odd degree in R[x] have a root in R.

Exercises

4.12 Show that if you assume the fundamental theorem of algebra, polynomi-
als of odd degree have a real root. What is wrong with your proof?

4.8 Supplement: xn
− 1 and Its Factors

The polynomials xn −1 (n a positive integer) just might be the most important
(read useful) class of polynomials in all of modern algebra. We have used
these polynomials so far to investigate the geometry of regular polygons and
the structure of Pythagorean triples. The roots of xn − 1 (the “nth roots of
unity”) were an important part of the story when we looked at primes in an
arithmetic progression, primitive elements, and Fermat’s last theorem. They
come up in field theory, group theory, analysis, and topology. Much of the
success of xn −1 comes from the fact that its factors and roots have algebraic,
geometric, and arithmetic interpretations. The irreducible factors of xn−1, the
cyclotomic polynomials, have fascinated mathematicians ever since Gauss’sAnd after working through

some of the references,
you might consult [86]. Disquitiones Arithmeticae [29], and there is a vast literature that digs into

their properties (see, for example, [12], or do a Google search).
We will just scratch the surface here. More precisely, there are three pur-

poses for this supplement.

(i) We will fulfill the promise made in Section 2.2: the polynomial Ψn

defined byExpression (4.1) describes
a polynomial with com-
plex coefficients. We
want more: we will
show that Ψn has integer
coefficients.

Ψn(x) = ∏
(j,n)=1

(x − ζ jn) (4.1)

has integer coefficients and is irreducible in Z[x]. In fact, we shall prove
the following theorem.

Theorem 4.14. The polynomial Ψn(x) is the minimal polynomial in Z[x]

for

ζn = cos
2π
n

+ i sin
2π
n
.

(ii) We shall also show that we have the factorization

xn − 1 = ∏
d∣n

Ψd(x)
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in Z[x], where the product is over the positive integer divisors of n.

(iii) And we shall investigate the structure of the various Ψn: their degrees
and coefficients. This will make for some nice connections and (maybe)
a surprise or two.

Let us break up our story into smaller pieces.

First: The Factorization of Ψn(x) in Z[x]

Every root of xn − 1 has an order d that divides n. Conversely, if d ∣ n, then
a primitive dth root of unity satisfies xn − 1. Since the x − ζ j are relatively
prime in C[x], we get the second claim in Theorem 4.14:

Lemma 4.15.

xn − 1 = ∏
d∣n

Ψd(x). (4.2)

Second: Ψn(x) ∈ Z[x]

Equipped with the basics of group theory, we can restate some of the results
from Chapter 2. The solutions to xn = 1 in C form a cyclic group of order
n with generator ζ = cos 2π

n
+ i sin 2π

n
. The other generators are then ζ j for

In Section 2.2, we denoted
the number of integers j
such that (j, n) = 1 by
φ(n).

1 ≤ j < n with j relatively prime to n. These are the primitive nth roots of
unity—the primitive elements in the group. Our polynomial Ψn is thus the
monic polynomial whose roots are the primitive nth roots of 1.

The degree of Ψn(x) is φ(n). If n = p, a prime, then Ψn(x) = xp−1+xp−2+

⋅ ⋅ ⋅ + x + 1 (Theorem 2.11 in Section 2.2), so the coefficients are certainly
integral. But in general, we don’t have such an explicit expression (yet).

We will need Gauss’s lemma.

Try working this out with
two specific polynomials.
It will feel very much like
the argument we used for
Eisenstein.

Lemma 4.16 (Gauss). Let

f (x) = anxn + ⋅ ⋅ ⋅ + a0, ai ∈ Z ,

g(x) = bmxm + ⋅ ⋅ ⋅ + b0, bi ∈ Z ,

be polynomials such that an, . . . , a0 have no common prime divisor, and simi-
larly for bm, . . . , b0. Then f (x)g(x) = cn+mxn+m+⋅ ⋅ ⋅+c0, where cn+m, . . . , c0
have no common prime divisor.

Proof. Suppose, to the contrary, that f (x)g(x) = ph(x) for a prime p. Then
reducing modulo p gives f (x)g(x) = 0 in Zp . Since Zp[x] has no zero divi-
sors (the whole point of the proof!), it follows that f (x) = 0 or g(x) = 0. If,
say, f (x) = 0, then p divides each of the coefficients of f , a contradiction. ∎

A corollary of Gauss’s lemma is sometimes more convenient to use.

As usual, f is the polyno-
mial obtained by reducing
the coefficients of f
modulo p. It lives in
Zp[x].

Corollary 4.17. A polynomial f ∈ Z[x] is irreducible in Z[x] if and only if
f is irreducible in Q[x].
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Back at the ranch, we have a lemma to prove.

Lemma 4.18. Ψn(x) ∈ Z[x].

Proof. We use induction on n. When n = 1, we have Ψ1 = x − 1, which is
surely in Z[x]. When n > 1, we write

xn − 1 = Ψn(x) ∏
d∣n
d<n

Ψd(x) =∶ Ψn(x) f (x) .

By the inductive hypothesis, f (x) is in Z[x]. But xn − 1 is in Z[x] as well,
and therefore, Ψn(x), which by definition is a polynomial with complex coef-
ficients, must in fact have real, indeed rational, coefficients. Clearing denom-
inators, we can write Ψn(x) = 1

b
Ψ̂n(x), where b ∈ Z, b ≥ 1, Ψ̂n(x) ∈ Z[x],

and the coefficients of Ψ̂n(x) have no common prime divisor. Since f (x) is
monic by construction, its coefficients also have no common prime divisor.
Thus f (x) and Ψ̂n(x) satisfy the conditions of Lemma 4.16, so we may con-
clude that the coefficients of their product have no common prime divisor. But
that means that the coefficients of b(xn − 1) have no common prime divisor.
Hence b = 1, and we have Ψn(x) ∈ Z[x], as advertised. ∎

Third: Ψn(x) Is Irreducible

We can now finish the proof of the main result for this section, which isOur proof will be the
briefest of sketches, but
you can fill in the details. repeated here:

Theorem 4.14. The polynomial Ψn(x) is the minimal polynomial in Z[x]

for

ζn = cos
2π
n

+ i sin
2π
n
.

Proof. We have established that Ψn(x) has integer coefficients, and we know
that ζn is a root. So “all” that is left is to establish the irreducibility of Ψn. We
will do that now.

Let f (x) be the minimal polynomial for ζn; we claim that Ψn = f . Since
f is irreducible, this will do the trick. To show this, it is enough to show thatThanks to Eisenstein, if p

is prime, we already know
that Ψp is irreducible. if p is a prime not dividing n, then f (ζ pn ) = 0. That last sentence requires an

argument. ∎

Lemma 4.19. Using the above notation, if p is a prime not dividing n implies
that f (ζ pn ) = 0, then Ψn(x) is the minimal polynomial in Z[x] for

ζn = cos
2π
n

+ i sin
2π
n
.

Proof. The roots of Ψn are the ζkn , where (k, n) = 1. But such a k has a prime
factorization involving only primes that don’t divide n. So every root of Ψn

is of the form (ζ pn )
k′

, where p does not divide n, and (k′, n) = 1. But the
hypothesis says that ζ pn is a root of both Ψn and f . Repeat the argument with
ζn = ζ pn and k = k′ . . . . This shows that f and Ψn have the same roots. Since
both are monic, they are the same. ∎
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Let us now prove our claim that f (ζ pn ) = 0. If f ≠ Ψn, then f ∣ Ψn, because
the minimal polynomial for ζn is a factor of every polynomial in Z[x] that has
ζn as a root. Assuming the worst, let us suppose that f g = Ψn. Then we know
that

xn − 1 = f (x)g(x)h(x) , (4.3)

where

h(x) = ∏
d∣n

1≤d<n

Ψd(x) .

If f (ζ pn ) ≠ 0, then g(ζ pn ) = 0 (because all the other factors have roots that
have orders less than n, and ζ pn has order n), so ζn is a root of g(xp). Hence
there exists j(x) ∈ Z[x] such that g(xp) = f (x) j(x).

Now reduce mod p. By Fermat’s little theorem, as a polynomial in Zp[x],
we have

g(xp) = (g(x))
p
,

so in Zp[x], we have

(g(x))
p

= f (x) j(x)

and f ∣ gp . Hence f ∣ g. So from 4.3 above, we have

( f (x))
2

∣ xn − 1 .

Hence xn − 1, as a polynomial in Zp[x], has a multiple factor. So it and
its derivative share a factor (mod p). But the derivative is nxn−1, and since
(p, n) = 1, its only factor in Zp[x] is x, which is not a factor of xn − 1.

The punchline is that f (ζ pn ) = 0. It follows that f = Ψn, and hence Ψn is
irreducible. ∎

Fourth: Calculating Ψn

We can rewrite equation (4.2) in a form that allows us to calculate the Ψn:

Ψn(x) =
xn − 1

∏
d∣n
d<n

Ψd(x)
.

Using the fact that Ψ1(x) = x − 1, we have a recursively defined formula
for Ψn:

Ψn(x) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x − 1 if n = 1 ,
xn − 1

∏
d∣n
d<n

Ψd(x)
if n > 1 . (4.4)
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The recursive definition can be programmed into a computer algebra system.
Doing this (or just doing it all by hand) gives, for example, the following
table:

n Ψn(x)

1 x − 1
2 x + 1
3 x2 + x + 1
4 x2 + 1
5 x4 + x3 + x2 + 1
6 x2 − x + 1
7 x6 + x5 + x4 + x3 + x2 + 1
8 x4 + 1
9 x6 + x3 + 1
10 x4 − x3 + x2 − x + 1
11 x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + 1
12 x4 − x2 + 1

Some of these will look familiar to you—they are applications of Eisen-

You should verify
that x12 − 1 =
∏d∈{1,2,3,4,6,12} Ψd(x).

stein. The table contains (especially if you extend it to more entries) a candy
store of patterns. What do you see in it?

Look at one example: the minimal polynomial for ζ12. Using the product
∏(j,n)=1 (x − ζ jn), we want

(x − ζ12) (x − ζ512) (x − ζ712) (x − ζ1112 ) .

The table says that this is equal to x4 − x2 + 1. Why? Well,

x12 − 1 = (x − 1) (x2 + x + 1) (x + 1) (x2 − x + 1) (x2 + 1) (x4 − x2 + 1) ,

(4.5)
and we need something of degree four (why?). Hence the last factor is it. Can
you show directly that x4 − x2 + 1 is irreducible?

One more remark: each factor of (4.5) has, as its roots, powers of a primi-
tive root ζ12 = ζ . It is a good exercise to check that they break up like this:

(x − 1) (x + 1) (x2 + x + 1) (x2 + 1) (x2 − x + 1) (x4 − x2 + 1)

↑ ↑ ↑ ↑ ↑ ↑

1 −1 − 1
2 ±

√

3
2 i ±i 1

2 ±
√

3
2 i ±

√

3
2 ± 1

2 i
↑ ↑ ↑ ↑ ↑ ↑

ζ0 ζ6 {ζ4, ζ8} {ζ3, ζ9} {ζ2, ζ10} {ζ, ζ5, ζ7, ζ11}

Lookout Point 4.3. A delightful consequence of the fact that degΨn =

φ(n) uses Lemma 4.2 to obtain a result from elementary number theory that
is often proved without mentioning cyclotomic polynomials, usually in much
more complicated ways.

Corollary 4.20.

n = ∑
d∣n

φ(d) .
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Convince yourself that this is true and verify it in some numerical cases.
It’s fun.

Fifth: The Coefficients of Ψn

Much has been written about the coefficients of Ψn. We include one exam- Section 5 of Keith
Conrad’s expository
paper [12] is a good place
to see the lay of the land.

ple here: the sequence of cyclotomic polynomials gives rise to a wonderful
“gotcha” example of misleading conclusions based on examining what seems
to be a large data set.

If you calculate (or look up, but calculate is better) Ψn for several dozen There are many other
computable formulas for
Ψn out there. Take your
pick.

integers n using, say, formula (4.4), you might conclude that the coefficients
are all 0, 1, or −1. Indeed, that is true for the first 104 values of n. But ψ105
contains −2 as the coefficient of x7 and of x41.

And it gets worse (or better, depending on your preference). Cleve Moler
(Google him), founder of MathWorks [52] and the creator of MATLAB,
wrote a MATLAB program to compute Ψn for some large values of n. He
reported:

For n = 11 ⋅ 13 ⋅ 17 ⋅ 19 ⋅ 23 = 1062347, the degree of Ψn(x) is 760320.
The coefficients range from −1749 to +1694. There are 11804 zero
coefficients. The average coefficient magnitude is 409.9 . . . .

Ψn(x) is computed from the ratio of two polynomials, a numerator of
degree 1105920 and a denominator of degree 345600. It takes about 6
minutes on my laptop to compute the numerator and denominator, and
then about 21

2 hours to compute their ratio using only deconvolution.

This particular choice for n didn’t come out of the blue. In [80], Jiro Suzuki
proves the following result:

Theorem 4.21. If k is odd and if p1 < p2 < ⋅ ⋅ ⋅ < pk is a “front-loaded”
sequence of primes—the sum of the first two in the sequence is greater than
the last—and if n is the product of all the primes in the sequence, then ψn(x)

has −k + 1 and −k + 2 as coefficients.

Since 105 = 3 ⋅5 ⋅7, and {3, 5, 7} is a front-loaded sequence of length 3, for
ψ105(x) the theorem predicts the coefficient −2. And it is known that there
exists a front-loaded sequence of length k for every odd k ≥ 3.

Lookout Point 4.4. If you have access to a fairly powerful computational
environment, take a look at the distribution of the coefficients of Ψn for some
large values of n. Cleve Moler did it for Ψ760320 mentioned above. The distri-
bution is given in Figure 4.4.
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Figure 4.4. The distribution of coefficients of Ψn , based on a graphic by Cleve Moker,
used with permission.

The moral of this story is that mathematical objects are real, and they exhibit
all of the nuance found in physical phenomena.

Exercises

4.13 Develop a formula in terms of n for the number of irreducible factors in
Z[x] of xn − 1.



5 Irrational, Algebraic, and
Transcendental Numbers

We have seen in the last chapter that the field of complex numbers admits no
further algebraic extensions. Within the field of complex numbers, however,
there are many numbers that are not algebraic overQ. In fact, the algebraically
closed field of all algebraic numbers in C is a countable set, for you can check
that the algebraic numbers over Q that have a minimal polynomial of degree
n are countable. Letting n vary gives a countable collection of countable sets,
which is therefore countable. Let us agree to call a complex number that
is not in Q an irrational number, so that an irrational number need not be
real. For example, i is irrational. The irrational algebraic numbers are the
algebraic numbers whose minimal polynomials have degree greater than one.
Thus a real root of x5 + x + 1 is a real irrational number. A real number
is rational if and only if its decimal expansion is eventually periodic. Thus
101001000100001 . . . , with an ever increasing number of 0’s between the 1’s,
is irrational.

Many interesting numbers occur naturally in higher mathematics. They
may arise as roots of polynomials, as in the case of algebraic numbers, or as
values assumed by the various functions of classical analysis. Such numbers Google Serge Lang. And

see [49].may be roughly called “classical” numbers (S. Lang, Ltd.).
Several of the most important of these functions are

cos x = 1 −
x2

2!
+

x4

4!
−⋯ ,

sin x = x −
x3

3!
+

x5

5!
−⋯ ,

ex = 1 + x +
x2

2!
+

x3

3!
+⋯ ,

J0(x) = 1 −
x2

22
+

x4

x4(2!)2
−

x6

26(3!)2
+⋯ ,

ζ(x) = 1 +
1
2x

+

1
3x

+⋯ (x > 1) ,

ln(1 + x) = x −
x2

2
+

x3

3
−

x4

4
+⋯ ,

Γ(x) = ∫
∞

0
tx−1e−t dt .

A complex number is said to be transcendental if it is not algebraic overQ.
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Thus α is transcendental if f (α) ≠ 0 for every nonzero polynomial f (x)
in Q[x]. A general, and unsolved, problem in the theory of transcendental
numbers is to construct an algorithm that will determine, for a given classical
function h(x), whether h(α) is transcendental on input an algebraic number
α. Of course, one may compound classical functions and substitute algebraic
numbers, pass to the algebraic closure of the field obtained by such proce-
dures, and then begin all over again. For example, consider eα, where α is a
real root of x5+J20 (1)x

4
−ζ(e

√

2
)x+1 = 0. Needless to say, mathematics does

not have a method to handle the question of transcendence of such numbers.
It isn’t necessary to consider such complicated numbers to give examples

of classical numbers whose irrationality or rationality is still open. For exam-
ple, although it is known that ζ(2) = 1 + 1

22 +
1
32 +⋯ is equal to π2

6 , which isWe shall show that
ζ(2) = π2

6 in Section 6.1. known to be transcendental, the number ζ(3) = 1+ 1
23 +

1
33 +

1
43 +⋯ has been

studied without success. No one knows even whether it is irrational, much
less transcendental.1 The irrationality issue for e+π has also not been settled.
This whole area is full of unanswered questions.Since “almost every” real

number is transcendental,
and since algebraic
numbers arise in a
very special way, most
mathematicians would be
shocked were it to turn
out that numbers like
ζ(3) and e + π are not
transcendental.

But take heart—we will get some important answers in this chapter.

(i) In Section 5.3, we will show that e is irrational.

(ii) In Section 5.4, we will show that en (n ∈ Z) and π are irrational.

(iii) In Section 5.5, we will show that e is transcendental.

(iv) And the grand finale: in Section 5.6, we will show that π is transcenden-
tal.

To get going, we need some preliminary ideas, all useful in themselves. Here
we go . . .

5.1 Liouville’s Observation

It isn’t easy to give explicit examples of classical transcendental numbers.
There is, however, a simple observation that was made by Joseph Liouville
(1809–1882) that allows us to write down nonalgebraic numbers. Liouville’s
result has to do with the approximation of algebraic numbers by rational num-
bers. Here it is.

Theorem 5.1. Let ξ be an algebraic number with minimal polynomial of
degree n ≥ 2. Then if p

q
is a rational number such that ∣ p

q
− ξ∣ < 1, then

∣
p
q
− ξ∣ > c

qn , where c is a constant depending only on ξ.

In other words you can’t get too close to ξ with a rational number in the
sense of the above inequality.

Proof. By clearing the denominators in the minimal polynomial, we have
f (ξ) = 0, where f (x) is an irreducible polynomial with integer coefficients:

anxn + an−1xn−1 + ⋅ ⋅ ⋅ + a0.
1Such was the case in 1972 when I took Ken Ireland’s summer course. But just six years later,

completely out of the blue, the French mathematician Roger Apéry proved that ζ(3) is irrational.
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Since f has degree n > 1, we see that f ( p
q
) ≠ 0 for every rational num-

ber p
q
(why?). Hence on substituting, we have

∣ f (
p
q
)∣ = ∣

anpn + an−1pn−1q + ⋅ ⋅ ⋅ + a0qn

qn
∣ ≥

1
qn
,

since the numerator is a nonzero integer.
Since ξ is a root of f (x), we have

f (x) = (x − ξ)g(x) ,

where g(x) is a polynomial with complex coefficients. Consider the closed
interval [ξ − 1, ξ + 1]. Since a continuous function on a closed interval is
bounded (Lemma 4.1), we may choose M such that ∣g(x)∣ < M in that inter-
val. Then for x in that interval, we have

∣ f (x)∣ = ∣x − ξ ∣∣g(x)∣ < ∣x − ξ ∣M .

Hence ∣x − ξ ∣ > ∣ f (x)∣
M

.

For rational x = p
q
in our interval, we have

∣

p
q
− ξ∣ >

∣ f ( p
q
)∣

M
≥

1
Mqn

.

Putting c = 1
M
, we are through. ∎

As a corollary we produce a transcendental number. Consider the unclas-
sical number

α =
1

101!
+

1
102!

+

1
103!

+ ⋅ ⋅ ⋅ = 0.110001000000000000000001 . . . .

Let us show that α is transcendental.
First of all, it isn’t rational, because the decimal digits never repeat. And

furthermore,

α −
1
10

−

1
102!

− ⋅ ⋅ ⋅ −

1
10m! =

1
10(m+1)!

+⋯ ,

so

∣α −
pm
10m! ∣ <

2
10(m+1)!

, (5.1)

where

pm
10m! =

1
10

+

1
102!

+ ⋅ ⋅ ⋅ +

1
10m! .

Now suppose α were an algebraic number of degree n for some n ≥ 2.
Then for sufficiently large m, the Liouville inequality would imply

∣α −
pm
10m! ∣ >

c
10nm! . (5.2)
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On combining inequality (5.2) with inequality (5.1), we get a sandwich,

2
10(m+1)!

> ∣α −
pm
10m! ∣ >

c
10nm! ,

or

10(m+1)!−nm!
<

c
2
,

which is false if m is big enough (recall that c and n are fixed!).
Hence we have shown that α is transcendental. There is an added bonus to

this argument. Besides giving a simple explicit example of a transcendental
number, we can even exhibit uncountably many transcendentals. Although
we know that the transcendentals are uncountable by counting the algebraic
numbers and knowing that the reals are uncountable, this argument is unde-
niably great.

The same argument also works for

±1
101!

+

±1
102!

+

±1
103!

+⋯ ,

where the + and − signs are sprinkled arbitrarily. Each such number is cre-
ated by taking a subset of the positive integers and putting minus signs at
those terms and plus signs everywhere else. Thus the number of such reals
is the cardinality of the set of all subsets of the positive integers, which is an
uncountable set. This gives us an uncountable set of nonalgebraic numbers.

5.2 Gelfond–Schneider and
Lindemann–Weierstrass

The problem of exhibiting a “classical” transcendental number requires meth-
ods more difficult than Liouville’s observation. In Section 5.5, we prove that
e is transcendental. In this section, in order to give a little more perspectiveThe transcendence of

e was first proved by
Charles Hermite in 1873,
and it marks the beginning
of the modern theory of
transcendental numbers.

as to what is known, we discuss two big theorems—without proof, of course.
There is no need to stop at e. A general result called the Lindemann–

Weierstrass theorem (stated below) was proved in the early 1880s, and it
implies that for every nonzero algebraic number α, the number eα is tran-
scendental. Its proof requires techniques more advanced than those used to
prove the transcendence of e.

In order to state Lindemann–Weierstrass, we need a new piece of lan-
guage. Notice first the relationship between transcendence and linear inde-
pendence. The statement that α is transcendental is equivalent to the statement
that for every n, the set of complex numbers {1, α, α2, . . . , αn } is linearly
independent over Q. In this case, we say that the sequence 1, α, α2, α3, . . . is
Q-linearly independent. The transcendence of eα then amounts to the require-
ment that

{1, eα, e2α, e3α, . . . }

be Q-linearly independent. The Lindemann–Weierstrass theorem replaces the
exponents 0, α, 2α, 3α, . . . by an arbitrary sequence of distinct algebraic num-
bers and allowsQ to be replaced by the field of all algebraic numbers. In other
words, the theorem states the following.
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Theorem 5.2 (Lindemann–Weierstrass). Let F be the field of all algebraic
numbers in C. Let α1, α2, . . . be a sequence of distinct algebraic numbers.
Then the sequence eα1, eα2, eα3, . . . is F-linearly independent. We allow α1 = 0.

As a consequence, we see that π is transcendental. For we know by the
above result that eα is transcendental when α is nonzero and algebraic. So
if π were algebraic, then iπ would be algebraic, and then eiπ = −1 would
be transcendental, which is nonsense. But this is a tough way to show that π
is transcendental. In Section 5.6, we will show that π isn’t algebraic using a A very clear proof of

Theorem 5.2 can be found
in Ivan Niven’s delightful
introduction Irrational
Numbers [61]. This little
book should be in your
mathematical library.

proof by Ivan Niven (1915–1999) inspired by an 1883 paper by Adolf Hur-
witz (the same Hurwitz of the sums of squares theorems in Chapter 2).

Lookout Point 5.1. The seventh problem in Hilbert’s 1900 Paris address
is about this very circle of ideas. Here is the text from his address:

Irrationality and Transcendence of Certain Numbers.

Hermite’s arithmetical theorems on the exponential function and their exten-
sion by Lindemann are certain of the admiration of all generations of math-
ematicians. Thus the task at once presents itself to penetrate further along
the path here entered, as Hurwitz has already done in two interesting papers,
“Ueber arithmetische Eigenschaften gewisser transzendenter Funktionen.” I Math. Annalen, vols. 22,

32 (1883, 1888).should like, therefore, to sketch a class of problems which, in my opinion,
should be attacked as here next in order. That certain special transcenden-
tal functions, important in analysis, take algebraic values for certain alge-
braic arguments, seems to us particularly remarkable and worthy of thorough Note that if α is algebraic,

α ≠ 0, then, again using
Lindemann–Weierstrass,
we see that eiα is
transcendental. It follows
that cosα and sinα
are transcendental, as
expected.

investigation. Indeed, we expect transcendental functions to assume, in gen-
eral, transcendental values for even algebraic arguments; and, although it is
well known that there exist integral transcendental functions which even have
rational values for all algebraic arguments, we shall still consider it highly
probable that the exponential function eiπz , for example, which evidently has
algebraic values for all rational arguments z, will on the other hand always
take transcendental values for irrational algebraic values of the argument z.
We can also give this statement a geometrical form, as follows:

If, in an isosceles triangle, the ratio of the base angle to the angle at the See Exercise 5.1.

vertex be algebraic but not rational, the ratio between base and side is always
transcendental.

In spite of the simplicity of this statement and of its similarity to the prob-
lems solved by Hermite and Lindemann, we consider the proof of this theo-
rem very difficult; as also the proof that

The expression aβ , for an algebraic base a and an irrational algebraic
exponent β, e.g., the number 2

√

2 or eπ = i−2i , always represents a transcen-
dental or at least an irrational number.

It is certain that the solution of these and similar problems must lead us to
entirely new methods and to a new insight into the nature of special irrational
and transcendental numbers.

Thirty-four years later, Alexander Osipovich Gelfond (1906–1968) solved
the αβ conjecture, to be followed a year later by an independent proof by
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Theodor Schneider (1911–1988). In order to clarify the result, recall that if
α and β are complex numbers, the number αβ , α ≠ 0, is defined by eβ lnα,
where ln is the natural logarithm function. But the logarithm is not single-
valued. For example, eiπ = −1 and e3πi = −1, so iπ and 3πi are both values of
ln(−1). Thus we speak of the values of αβ . Hence Gelfond–Schneider states
the following.

Theorem 5.3 (Gelfond–Schneider). If α and β are algebraic, α ≠ 0, and
β ∉ Q, then every value of αβ is transcendental.

Thus 3
√

5,
√

2
√

3
, 6ζ5 , and 2s , where s is a root of x5 + x + 1 = 0, are all

transcendental. But here is an added surprise. We can even catch eπ , which
is a transcendental to a transcendental power. For consider the fun number ii .
By definition, this represents the various numbers ei ln i . One value of ln i is
ln(−11/2) = 1

2 ln(−1) =
1
2πi. Hence e

i ln i
= e−π/2. Thus e−π/2 is transcenden-

tal. From that you can quickly conclude that eπ is transcendental. This is hard
to keep straight. The fact that eiπ = −1 with Lindemann gives the transcen-
dence of π, while the fact that ii has a value e−π/2 proves the transcendenceThe Gelfond–Schneider

theorem is much deeper
than the Lindemann–
Weierstrass theorem. A
very clear treatment by
Einar Hille can be found
in [38].

of eπ via Gelfond–Schneider. Got it?
Another important naturally occurring real number is the Euler–Masche-

roni constant γ, defined as the limit of the sequence {1+ 1
2+

1
3+⋅ ⋅ ⋅+

1
n
−ln(n)}.

It appears in the canonical decomposition of the gamma function Γ(x) that
exhibits its poles:

Γ(x)−1 = xeγx
∞

∏

n=1
(1 +

x
n
) e−x/n.

This constant “ought” to be transcendental, but in fact, it is unknown whether
γ is even irrational.

Exercises

5.1 How is the assertion made in Lookout Point 5.1 connected to Hilbert’sThe assertion: if, in an
isosceles triangle, the
ratio of the base angle
to the angle at the vertex
be algebraic but not
rational, the ratio between
base and side is always
transcendental.

seventh problem?

5.3 The Irrationality of e

Two classical constants that you probably encountered before you delved very
deeply into mathematics are e, the base for the natural logarithm, and π. Let’s
discuss these constants more thoroughly. It turns out that e is the easier of the
two to handle. This is due to the fact that e is nicely expressed as an infinite
series with excellent denominators. More precisely,

e = 1 + 1 +
1
2!
+

1
3!
+

1
4!
+⋯ .

we can use this to show that e is not a rational number. For suppose e−1 were
rational and write e − 1 = p

q
, where p and q are integers, q ≠ 0. Then when n



5.4 The Irrationality of π and ec (c ∈ Z) 123

is large (in fact n ≥ q), the number n!(e− 1) is a positive integer. An estimate
shows this to be impossible. Set A = ∑

n
j=1

1
j! , the sum of the first n terms in

the power series expansion of e−1. We note that n!A is an integer, since every
term in the sum when multiplied by n! is an integer. Then we have

0 < n!(e − 1) − n!A

= n!
∞

∑

j=n+1

1
j!
= n!(

1
(n + 1)!

+

1
(n + 2)!

+⋯)

=

1
(n + 1)

+

1
(n + 1)2

+

1
(n + 1)3

+⋯ <

1
n
.

Thus n!(e − 1) − n!A is a positive integer less than 1
n
, which is impossible. Be sure to verify each step

in this calculation.That was not too bad. For the record. . .

Theorem 5.4 (e is irrational).

e /∈ Q .

5.4 The Irrationality of π and ec (c ∈ Z)

In the case of π, an even more familiar constant to many, it is no longer
a simple exercise to show that it is irrational. That it is irrational was first
proved by Johann Heinrich Lambert (1728–1777) in 1761. Here is a very
beautiful proof due to Ivan Niven (1946). The proof is related to an elegant
treatment of the transcendence of e by Adolf Hurwitz in 1883. Hurwitz’s We’ll work though

Hurwitz’s proof later.paper, in turn, was a response to a paper by David Hilbert (1862–1943) in
which the gamma function is used to establish the nonalgebraic character
of e. In all these papers, the basic technique comes from an 1873 proof by
Charles Hermite (1822–1901).

Assume that π is rational and write π = a/b, where a and b are integers.
Then construct (of course) the function f defined by Of course, the “(of

course)” is facetious.
Functions like this are
created by studying many
examples and looking for
underlying structure. Also,
we shall need to adjust n
to suit our needs as that
proof goes on.

f (x) =
xn(a − bx)n

n!
. (5.3)

We consider f (x) on the interval [0, π], and we observe that f (x) = f (π−x).
When n is large, the value of f (x) is uniformly very small. Now form the
alternating sum of the even derivatives of f (x):

F(x) = f (x) − f (2)(x) + f (4)(x) −⋯ .

Since f (x) has degree 2n, this is a finite sum with n terms. Then on differen-
tiating twice,

F′′(x) = f (2)(x) − f (4)(x) + f (6)(x) −⋯ ,

and adding, we see that

F(x) + F′′(x) = f (x) .
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Set G(x) = F′(x) sin x − F(x) cos x and notice that its derivative is

F′′(x) sin x + F′(x) cos x − F′(x) cos x + F(x) sin x ,

which is (F′′(x) + F(x)) sin x, which is f (x) sin x.
By the mean value theorem, we have

G(π) −G(0) = π f (ξ) sin ξ (5.4)

for some ξ ∈ (0, π). What we shall show is that the left-hand side of this
equality is an integer, while the right-hand side is a positive real number that
is less than 1.

Returning to the definition of f (x), we see that since the term of lowestRecall the definition of f :

f (x) =
xn(a − bx)n

n!
.

degree is anxn/n!, all the derivatives of order less than n vanish at x = 0,
while all subsequent derivatives are integers at x = 0. But f (x) = f (π − x),
so f (j)(π) are also all integers. Using the fact that sin π = 0, cos π = −1, we
conclude that the left-hand side of (5.4) is integral. As for the right-hand side,
we notice that 1 > sin x > 0 on (0, π), and for some constant M , we have
0 < f (x) < Mn

/n!, which approaches zero as n gets large. Hence for large n,
π f (ξ) sin ξ is positive and less than 1. Since a positive integer cannot be less
than 1, this proves the irrationality of π. Done. Let’s celebrate this:

Theorem 5.5 (π is irrational).

π ∉ Q .

Exercise 5.2 asks you to
fill in the details in the
above argument. It’s a
good idea to do this now. Notice that we have used only the facts that cos π = −1, sin π = 0, and 0 <

sin x < 1 for 0 < x < π. These facts follow quickly from the characterization
of π as twice the first positive zero of cos x. Furthermore, the only results
from calculus used were the mean value theorem and the derivatives of sin x
and cos x. Hence the irrationality of π can be established quite early in the
undergraduate program or even at the high-school calculus level. In view of
the dominant role played by π in geometry and analysis, proving this result
in beginning calculus seems like a good idea.

Lookout Point 5.2. The arguments for the irrationality and ultimately the
transcendence of our classical constants will increase in complexity over the
rest of this chapter, but the methods underneath them all will be quite similar
to what we just did for the irrationality of π: assume that the numbers are
rational (or, later, algebraic) and derive a contradiction by cooking up expres-
sions (and this is the part that requires work, insight, and inspiration) that take
on impossible values if our candidates are rational (or algebraic). For exam-
ple, in the case of π above, the expression turned out to be integral and less
than 1 at the hypothetical rational value, and that is a contradiction.The “inspiration” that led

to formula (5.3) was likely
the result of a great deal of
experiment and play.

Oh, and another device that will be useful in several places is a simple
polynomial identity that should (and may be) part of every undergraduate
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experience: Suppose that f (x) is a polynomial with coefficients in a field and
F(x) is the (finite, really) sum of all the derivatives of f :

F(x) =
∞

∑

i=0
f (i)(x) .

Then

F(x) − F′(x) = f (x) .

5.4.1 Next up: ec

Using a very similar technique to the one used in establishing the irrationality
of π, one can show in fact that ec is irrational for every nonzero integer c. For
the proof, we take our basic function to be

f (x) =
xn(1 − x)n

n!
. (5.5)

Form the alternating derived series with powers of c sprinkled about, this time
using all derivatives. We have

F(x) = c2n f (x) − c2n−1 f ′(x) + ⋅ ⋅ ⋅ + f (2n)(x) .

Again we observe that since f (x) = f (1 − x), it follows that f (j)(0) and
f (j)(1) are integers for all derivatives (check this).

Form G(x) = ecxF(x) and calculate its derivative

G′(x) = ecxF′(x) + cecx F(x)

= ecx(F′(x) + cF(x))

= ecx c2n+1 f (x) .

Now use the mean value theorem on [0, 1] applied to the function G to obtain

ecF(1) − F(0) = ecθc2n+1 f (θ) ,

where 0 < θ < 1.
Up until now, we haven’t assumed anything about our number ec . We fin-

ish the proof by contradiction. If ec were rational, we could write ec = A/B
for integers A, B. Then

AF(1) − BF(0) = Becθn c2n+1 f (θn).

The left-hand side is a positive integer. As for the right-hand side, we see, by
the definition of f (x), that for 0 < x < 1, we have

0 < f (x) <
1
n!
.

Hence

Becθn c2n+1 f (θn) <
Becc2n+1

n!
,

which goes to zero as n→∞. This proves the result.
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Theorem 5.6 (Integer powers of e are irrational). If c ∈ Z, then

ec ∉ Q .

It follows that eα is irrational for every rational nonzero α. And as a bonus,
we can use Theorem 5.6 to show that the natural logarithm takes irrational
values at integer arguments:

Corollary 5.7. If m ∈ Z, then

lnm ∉ Q .

The proof is up to you (Exercise 5.4). Of course, if we ask about the irra-
tionality of log10 2, the answer is forthcoming if we suppose that log10 2 =

p/q, which leads to an equality asserting that 2 to some integer power is equal
to 5 to some integer power, which is impossible by the fundamental theorem
of arithmetic. Fill in the details in Exercise 5.3.

Exercises

5.2 The proof of Theorem 5.5 makes quite a few claims. Write out a detailedFor example, “Using
the fact that sin π = 0,
cos π = −1, we conclude
that the left-hand side
of (5.4) is integral.”

proof of each one.

5.3 Prove that log10 2 is irrational.
5.4 Prove Corollary 5.7.

5.5 Show that for every real number r ,

lim
n→∞

rn

n!
= 0 .

5.5 The Transcendence of e

The fact that en is not rational is equivalent to the fact that e does not satisfy
a polynomial equation of the form xn − r = 0, where r is rational. Hence
we have made some progress toward the transcendental character of e. It is a
pleasant surprise that the same methods used to establish the irrationality of
π and en generalize to prove that e is transcendental. Here are the details.

Suppose that e were algebraic. Write a polynomial relation for e with inte-
ger coefficients and nonvanishing constant term:

a0 + a1e + a2e2 + ⋅ ⋅ ⋅ + anen = 0, a0 ≠ 0.

In place of the little function xn(1−x)n
n! used earlier, we consider a more com-

plicated beast, the Hermite function

f (x) =
xp−1[(x − 1)(x − 2)⋯(x − n)]p

(p − 1)!
. (5.6)
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Keep in mind that throughout the proof, n is fixed, while we will choose p In fact, n is the alleged
degree of the alleged
polynomial satisfied by
e, a polynomial that
allegedly doesn’t exist (we
hope).

to be an appropriate large prime.
Again sum all the derivatives,

F(x) =
∞

∑

j=0
f (j)(x) = f (x) + f (1)(x) + f (2)(x) +⋯ ,

where the∞ sign is phony, since f (x) is a polynomial of degree np + p − 1,
so that the sum is actually finite.

Again, we have F′(x) − F(x) = − f (x), and therefore,

(e−xF(x))′ = e−xF′(x) − e−xF(x) = −e−x f (x) .

Now consider the intervals [0, 1], [0, 2], [0, 3], . . . , [0, n] and apply the mean
value theorem to the function e−xF(x) on each of these intervals. We have

e−1F(1) − F(0) = −e−θ1 f (θ1), 0 < θ1 < 1 ,

e−2F(2) − F(0) = −2e−θ2 f (θ2), 0 < θ2 < 2 ,
⋮

e−nF(n) − F(0) = −ne−θn f (θn), 0 < θn < n,

or equivalently,

F(1) − eF(0) = −e1−θ1 f (θ1) = δ1 ,

F(2) − e2F(0) = −2e2−θ2 f (θ2) = δ2 ,
⋮

F(n) − enF(0) = −nen−θn f (θn) = δn .

Now multiply the jth equation by aj , the coefficient of e j in the relation that
we assumed e to satisfy. Noting that

−a1e − a2e2 − a3e3 − ⋅ ⋅ ⋅ − anen = a0 ,

we add and obtain

a1F(1) + a2F(2) + ⋅ ⋅ ⋅ + anF(n) + a0F(0) = a1δ1 + ⋅ ⋅ ⋅ + anδn . (5.7)

Again, the strategy is similar to that used in Section 5.4. We will show the
following:

(i) For large enough p, the left-hand side of equation (5.7) is an integer not
divisible by p.

(ii) As p→∞, the right-hand side goes to 0.

Here we go . . .
For the left-hand side, the Hermite function may be written in the form This is a finite sum.

f (x) =
±n!

(p − 1)!
xp−1 +

c0xp

(p − 1)!
+

c1xp+1

(p − 1)!
+⋯ , (5.8)
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where the ci are integers. You can check (Exercise 5.6) that when i ≥ p, the
coefficients of f (i) are all integers divisible by p. Hence for i ≥ p and all
integers k, we have p ∣ f (i)(k).For i ≥ p and all integers

k, we have p ∣ f (i)(k).
Hold onto this.

Now look at the definition of f in Section 5.6 to see that f has a root of
multiplicity p at 1, 2, . . . , n. Hence all the derivatives f (i) for i = 0, . . . , p − 1
vanish at 1, 2, . . . , n.And . . . the derivatives

f (i) for 0 ≤ i ≤ p − 1
vanish at 1, 2, . . . , n.
Hold onto this.

Remember F?

F(x) =
∞

∑

j=0
f (j)(x) = f (x)+ f (1)(x)+⋅ ⋅ ⋅+ f (p−1)(x)+ f (p)(x)+ f (p+1)(x)+⋯ .

(5.9)
Put the two side notes together to see that F(k) is an integer multiple of p for
k = 1, . . . , n.

This looks like trouble, because we want to show that for large enough p,
the left-hand side of equation (5.7) is an integer not divisible by p. But we
have just shown that all the terms but the last in that left-hand side of (5.7) are
divisible by p. Everything now hinges on the nature of the last term: a0F(0).It all hinges on our hope

that p ∤ a0F(0). Look again at equation (5.8) to see that f has a root of multiplicity p − 1
at x = 0. So

f (0) = f (1)(0) = f (2)(0) = ⋅ ⋅ ⋅ = f (p−2)(0) = 0 .

And as the side note reminds us, f (i)(0) is divisible by p for i ≥ p. So on
canceling everything that is divisible by p (including 0), we have

F(0) =������������������f (0) + f (1)(0) + . . . + f (p−1)(0) +����������������������f (p)(0) + f (p+1)(0) + . . . ,

(5.10)

So now everything depends on i = p − 1. That is, what can we say about
f (p−1)(0)?

Looking at (5.8), we see that

f (x) =
±n!

(p − 1)!
xp−1 + higher-degree terms ,

so we keep whittling it down to obtain

f (p−1)(0) = ±(n!) .

So far, we haven’t restricted the prime p. But choose it now so that p ∤ (n!)Choose p so large that
p ∤ (n!) and p ∤ a0. and p ∤ a0. Bingo: We can now conclude with no further ado that

a1F(1) + a2F(2) + ⋅ ⋅ ⋅ + anF(n) + a0F(0) (5.11)

is an integer not divisible by p. This is half of what we want to show.
The other half is that the right-hand side of our favorite equation,

a1F(1) + a2F(2) + ⋅ ⋅ ⋅ + anF(n) + a0F(0) = a1δ1 + ⋅ ⋅ ⋅ + anδn , (5.12)

goes to 0 as p→∞. To see this, recall that

δi = −ei−θi f (θi) =
−ei−θi θp−1i (θi − 1)p(θi − 2)p⋯(θi − n)p

(p − 1)!
.
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Now, recalling that 0 < θi < i < n, we have

ei−θi < en, θp−1i < np−1 < np, (θi − 1)p(θi − 2)p⋯(θi − n)p < (n!)p .

Sooo. . .

∣δi ∣ =
ei−θi θp−1i (θi − 1)p(θi − 2)p⋯(θi − n)p

(p − 1)!
<

ennp(n!)p

(p − 1)!
.

Recalling now that n is fixed, we see that the right-hand side of the equality
above goes to 0 as p→∞ (Exercise 5.5). So we can choose p so large that

∣a1δ1 + ⋅ ⋅ ⋅ + anδn∣ < 1 .

But the left-hand side of (5.12) is an integer. So the right-hand side must be 0.
But p doesn’t divide the left-hand side. It’s all impossible.

And that does it. If e were algebraic, it would have to be a positive integer
less than 1 not divisible by p, and that’s crazy. So we have (applause) the
following theorem.

Theorem 5.8 (e is not algebraic). e is transcendental.

Except for staring intently at a more complicated polynomial, the idea
is the same as the proof of the irrationality of π. We were concerned with
e−x f (x) instead of f (x) sin x. A very instructive exercise is to carry out the
proof explicitly for n = 1 and 2. This gives a proof that e is irrational, which
is a very simple fact, and a proof that e is neither a rational number nor a
quadratic irrationality, a less simple fact. Of course, living with the general
proof is most satisfying of all.

Exercises

5.6 Show that if h(x) ∈ Z[x] and p is a prime, then for i ≥ p,

di

dx
(

h(x)
(p − 1)!

)

is a polynomial in Z[x] whose coefficients are all congruent to 0 mod p.

5.7 If 
 ∈ Q, show that e� is transcendental.

5.6 π Is Transcendental

We showed earlier that π is irrational. In this section we will establish, by a
nontrivial extension of the basic idea underlying the irrationality proof, that See Lookout Point 5.2 for

the basic idea.π is not an algebraic number. The proof we give is due to Ivan Niven and was
published in 1939 in the American Mathematical Monthly.
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5.6.1 More About Symmetric Functions

In our proof we need a corollary to the symmetric function theorem (Theo-
rem 4.10 in Section 4.4):

Lemma 5.9. Consider the following polynomial in Z[x]:

f (x) = xn + a1xn + ⋅ ⋅ ⋅ + an = (x − θ1)⋯(x − θn) .

If g(x1, . . . , xn) is a symmetric polynomial in variables x1, . . . , xn with coeffi-
cients in Z, then g(θ1, θ2, . . . , θn) is an integer.

Proof. By the symmetric function theorem, g(x1, . . . , xn) = h(σ1, . . . , σn) ∈
Z[σ1, . . . , σn], where σ1, . . . , σn are the elementary symmetric functions in
x1, . . . , xn. Now substitute (θ1, . . . , θn) for (x1, . . . , xn). The σi evaluated at
θ1, . . . , θn are precisely the integers a1, . . . , an up to a ± sign. Hence the result.
∎

In the application we have in mind, the values of θ that arise satisfy poly-
nomials in Z[x] that are not monic. But by a change of variable, we can
transform any polynomial in Z[x] into a monic one. If

anxn + an−1xn−1 + ⋅ ⋅ ⋅ + a0 = an(x − θ1)⋯(x − θn) ,

then

an−1n (anxn + an−1xn−1 + ⋅ ⋅ ⋅ + a0) = ann(x − θ1)⋯(x − θn) ,

so

(anx)n + anan−1(anx)n−1 + a2nan−2(anx)
n−2

+ ⋅ ⋅ ⋅ + an−1n a0

= (anx)n + a′n−1(anx)
n−1

+ a′n−2(anx)
n−2

+ ⋅ ⋅ ⋅ + a′0
= (anx − anθ1)(anx − anθ2)⋯(anx − anθn) ,

where a′n−1, . . . , a′0 are integers. It follows that if g(x1, . . . , xn) is a sym-
metric polynomial with coefficients in Z and leading coefficient an, then
g(anθ1, . . . , anθn) is in Z. In particular, if g(x1, . . . , xn) is homogeneous of
degree s, which means that

g(t x1, . . . , t xn) = tsg(x1, . . . , xn) ,

then asng(θ1, . . . , θn) is in Z. We will make use of this observation later in this
section, so let us state it as a lemma.

Lemma 5.10. Suppose

anxn + an−1xn−1 + ⋅ ⋅ ⋅ + a0 = an(x − θ1)⋯(x − θn) ,

where the coefficients are in Z. If g(x1, . . . , xn) is a symmetric polynomial
with coefficients in Z and leading coefficient an, then g(anθ1, . . . , anθn) is in
Z. In particular, if g(x1, . . . , xn) is homogeneous of degree s, then we also
have that asng(θ1, . . . , θn) is in Z.
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5.6.2 Euler’s Identity

We now prove that π is transcendental. The basic strategy is similar to that
used for e: assuming that π is algebraic, we construct a nonzero integer that
is of absolute value less than 1. See Lookout Point 5.2.

The function that plays the central role is somewhat more complicated
than the one used for e. Here is how we define it. If π were algebraic, then iπ
would also be algebraic. Recall that ex is a complex-valued function of the
complex variable x. We have

ex = 1 + x +
x2

2!
+⋯ ,

and this holds for complex x. Substituting x = it, where t is real, we have

eit = 1 + it +
i2t2

2!
+

i3t3

3!
+⋯ ,

and on rearranging the (absolutely convergent!) series, we obtain See formula 2.1 in
Section 2.1.

eit = 1 −
t2

2!
+

t4

4!
+ ⋅ ⋅ ⋅ + i (t −

t3

3!
+

t5

5!
+⋯) = cos t + i sin t .

On substituting t = π, we obtain

eiπ = −1.

This is a very famous
and celebrated formula.
Google “Euler’s Identity.”

5.6.3 Setting the Stage

This is our beginning point. Suppose that iπ = α1 satisfies an irreducible
polynomial over Q with roots α1, α2, . . . , αn. Then since eα1

+ 1 = 0, we have

(eα1
+ 1) (eα2

+ 1)⋯(eαn
+ 1) = 0 . (5.13)

Multiplying out yields

1 + eα1
+ eα2

+ . . . + eαn
+ eα1+α2

+ ⋅ ⋅ ⋅ + eαn−1+αn
+ eα1+α2+α3

+⋯

+ eα1+α2+⋅⋅⋅+αn .

The exponents are the various sums of subsets of {α1, . . . , αn}. There are
2n−1 such numbers (why?). Call them ρ1, . . . , ρs, where s = 2n−1, and form
the polynomial that has them as roots: ∏s

i=1(x − ρi) = g(x). Then g(x) ∈
Q[x]. This follows from the symmetric function theorem and the observation
that g(x) = ∏n

j=1 hj(x), where hj(x) is the polynomial whose roots are the
various sums of j of the α’s. Since the set of sums taken j at a time is invariant
under the various permutations of α1, . . . , αn, it follows that hj(x) ∈ Q[x],
and from this it follows that g(x) ∈ Q[x].

On clearing the denominators, we may now assume that g(x) has integer
coefficients. There is one more comment: It may happen that various sums of
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the α’s are 0, and that will contribute a factor of x to g(x). Cancel them out
so that we may write

α(x) = cxr + c1xr−1 + ⋅ ⋅ ⋅ + c0 , (5.14)

where c, c1, . . . , c0 are in Z and c0 ≠ 0. Furthermore, now the roots of α(x)
are the nonzero roots of g(x). Call these roots β1, . . . , βr , so that

α(x) = c(x − β1)(x − β2)⋯(x − βr). (5.15)

Notice also that from equation (5.13), we have

eβ1 + eβ2 + ⋅ ⋅ ⋅ + eβr + k = 0 , (5.16)

where k is an integer arising from the various zero exponents.

5.6.4 And Now . . . the Proof

With these preliminaries out of the way, we can construct the analogue of the
Hermite beast. We define f (x) by

f (x) =
cmxp−1(α(x))p

(p − 1)!
=

cm+pxp−1 (∏r
i=1(x − βi))

p

(p − 1)!
, (5.17)

where m is any fixed integer greater than rp, the degree of α(x)p . Now we
proceed as earlier. Form

F(x) = f (x) + f ′(x) + f (2)(x) +⋯ ,

F′(x) = f ′(x) + f (2)(x) +⋯ ,

F(x) − F′(x) = f (x) .

Hence, we have (as usual)A worthwhile timeout:
count the number of
times you have seen a
calculation like this.

(e−xF(x))
′

= e−xF′(x) − e−xF(x) = e−x (F′(x) − F(x)) = −e−x f (x) .

The various βi are complex numbers. Draw line segments to the various βi
in the complex plane as in Figure 5.1. These segments play the role of closed
intervals in calculus, so that we can write ∫

β1
0 −e−x f (x)dx and so on.

The function e−x f (x) is a complex-valued continuous function of the
complex variable x. Thus we may integrate e−x f (x) along segments, and the
fundamental theorem of calculus carries over without difficulty. The deriva-
tive of e−xF(x) is −e−x f (x) (in the complex sense), and so we obtain, for“carries over without dif-

ficulty. . . ” See Lookout
Point 5.3. the various βi ,

∫

βi

0
−e−x f (x)dx = e−βiF(βi) − F(0).

And then

eβi ∫
βi

0
−e−x f (x)dx = F(βi) − eβiF(0) .
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Figure 5.1. The segments to the various βi .

Summing over i = 1, . . . , r and using equation (5.13), we obtain the basic
relation

F(β1) + ⋅ ⋅ ⋅ + F(βr) + kF(0) =
r

∑

i=1
(−∫

βi

0
eβi−x f (x)dx) . (5.18)

The remainder of the proof consists in showing (as is our custom) that for a
suitable prime p, the left-hand side is a nonzero integer, while the right-hand
side is less than 1 in absolute value.

Let us handle the left-hand side first, and begin with kF(0). Recall the
definition of f from equation (5.17):

f (x) =
cmxp−1(α(x))p

(p − 1)!
=

cmxp−1 (cxr + c1xr−1 + ⋅ ⋅ ⋅ + c0)
p

(p − 1)!
.

We see that at 0, all derivatives up to the (p − 2)nd are 0. The (p − 1)st
derivative at 0 is cm+pcp0 , and all subsequent derivatives are integers divisible
by p. Thus if we choose the prime p so large that p ∤ cc0, then it won’t divide
cm+pcp0 , and thus f (0)+ f ′(0)+ f (2)(0)+⋯must be an integer not divisible
by p. Hence for p sufficiently large, kF(0) is not divisible by p.

Now we examine the integrality of F(β1) + ⋅ ⋅ ⋅ + F(βr). First, each βi is a
root of α(x) (see equation (5.13)), so each βi is a root of f (x) of multiplic-
ity p. This implies that

f (j)(βi) = 0 for j = 1, . . . , p − 1 ,

and this implies that for j = 1, . . . , p − 1, we have

F(j)(β1) + F(j)(β2) + ⋅ ⋅ ⋅ + F(j)(βr) = 0 . (5.19)

Hence f (t)(β1) + f (t)(β2) + ⋅ ⋅ ⋅ + f (t)(βr) = 0 for t = 1, 2, . . . , p − 1.
Now consider the above sum for t = p, p + 1, . . . :

f (t)(β1) + ⋅ ⋅ ⋅ + f (t)(βr) .
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First of all, f (t)(x) in this range of t has integer coefficients divisible by
p, and furthermore, each coefficient is divisible by cm. The degree of f (x)
is rp + p − 1. Therefore, after p − 1 differentiations, it has degree rp = s.
Since m > rp, we conclude that pcs divides each coefficient of f (t)(x) for
t = p, p + 1, . . . .

Now substitute βj into f (t)(x), giving f (t)(βj). This quantity is a poly-
nomial in βj each of whose coefficients is divisible by pcs .

Now, f (t)(β1)+⋅ ⋅ ⋅+ f (t)(βr) is symmetric in β1, . . . , βr , and furthermore,
it is a sum of homogeneous symmetric polynomials each of degree at most s.
Hence by Lemma 5.10, we see that f (t)(β1) + ⋅ ⋅ ⋅ + f (t)(β1) is an integer
divisible by p. It follows that F(β1) + ⋅ ⋅ ⋅ + F(βr) is an integer divisible by p.
Finally, we conclude that the left-hand side of equation (5.18) is an integer
not divisible by the prime p. Hence it is not zero. Whew!Recall that f (x) =

cmxp−1(α(x))p

(p−1)! . In order to estimate the right-hand side of equation (5.18), we use a stan-
dard estimate for ∫L h(x)dx, where L is a path in the complex plane and h(x)
is a continuous complex-valued function on L. If ∣L∣ denotes the length of L,
then the estimate is

∣∫
L
h(x)dx∣ ≤ ∣L∣M , (5.20)

where M is the maximum (least upper bound) of ∣h(x)∣ on L. That the right-
hand side is less than 1 in absolute value for some p follows just as in all the
other proofs. It boils down to Exercise 5.5:

lim
p→∞

Rp−1

(p − 1)!
= 0 .

The proof is finished by observing that p had to be chosen big enough to
satisfy a (small) and finite number of conditions. Hooray!

Lookout Point 5.3. Don’t consider the introduction of the complex line
integral in this proof as a serious violation of the request for simplicity and
elementary technique. The integral is defined simply in terms of ordinary
Riemann integrals. More precisely, if (φ(t), ψ(t)) parametrizes an arc Γ as t
goes from 0 to 1 and if f (z) = u(x, y) + iv(x, y), then one defines

∫
Γ
f (z)dz ∶= ∫

1

0
u(φ(t), ψ(t))φ′(t) − v(φ, ψ)ψ′(t) dt

+ i∫
1

0
v(φ, ψ)φ′ + u(φ, ψ)ψ′(t) dt .

This follows formally from

f (z) dz = (u + iv)(dx + i dy) = u dx − v dy + i(v dx + u dy) .

Suppose that F(z) = U(x, y) + iV(x, y) satisfies the Cauchy–Riemann equa-
tions

∂U
∂x

=

∂V
∂y
,
∂U
∂y

=

∂V
∂x
. (5.21)
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Write F′(z) = Ux+iV x . It is shown in every text on complex analysis that this
definition is consistent with the definition in terms of differential quotients.
For our functions e−xF(x), it is a simple exercise. Then F′(z) = f (z) is a
simple application of the definition and the ordinary fundamental theorem of
calculus which states that

∫

β

α
f (z) dz = F(β) − F(α) ,

where Γ begins at α and ends at β. Finally, by referring everything to Riemann
sums, it is possible to derive the basic estimate ∣∫L f (z)dz∣ ≤ ∣L∣max ∣ f (z)∣ .

For a proof of the transcendence of π that does not use calculus, see Hardy
and Wright [35]. But the use of complex integration theory is essential to the
modern theory of transcendental numbers.

One more thing: It is a good idea to have a simple infinite series for π, just
as we had one for e. Such a series is given by the Leibnitz–Gregory series

π

4
= 1 −

1
3
+

1
5
−

1
7
+⋯ .

A short proof of this identity has been noted by Donat Kazarinoff [44]. Con-
sider

αn = ∫
π/4

0
tann x dx, n ≥ 2 .

Since tan x is between 0 and 1 on [0, π/4], we see that αn is a monotonically
decreasing sequence. Suppose αn → α. Now

αn = ∫
π/4

0
tann−2 x tan2 x dx = ∫

π/4

0
tann−2 x(sec2 x − 1)dx

= ∫

π/4

0
tann−2 x sec2 x dx − ∫

π/4

0
tann−2 x dx

=

tann−1 x
n − 1

∣

π/4

0
− αn−2 =

1
n − 1

− αn−2 .

Thus αn + αn−2 = 1
n−1 .

Letting n →∞, we see that α + α = 0, and therefore α = 0. Now replace n
by 2n and use the recurrence relation

α2n =
1

2n − 1
− α2n−2 =

1
2n − 1

−

1
2n − 3

+ α2n−4 +⋯

=

1
2n − 1

−

1
2n − 3

+

1
2n − 5

+ ⋅ ⋅ ⋅ ±

1
3
∓ α2 .

We have

α2 = ∫
π/4

0
tan2 x dx = ∫

π/4

0
(sec2 x − 1) dx = 1 −

π

4
.

Transposing gives

π

4
= 1 −

1
3
+

1
5
−

1
7
+ ⋅ ⋅ ⋅ ±

1
2n − 1

∓ α2n .
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Since α2n → 0, we have proved the desired formula.
If we begin instead with α2n+1, we get another nice formula:

α2n+1 =
1
2n

−

1
2n − 2

+ ⋅ ⋅ ⋅ ±

1
2
∓ α1.

But

α1 = ∫
π/4

0
tan x dx = log sec x∣

π/4

0
= ln

√

2 =
1
2
ln 2 .

ThusIn case you didn’t notice,
this is Dialing In 131. 1

2
ln 2 =

1
2
−

1
4
+

1
6
− ⋅ ⋅ ⋅ ±

1
2n

∓ α2n+1 .

Since α2n+1 → 0, we have

ln 2 = 1 −
1
2
+

1
3
−

1
4
+⋯ .

Exercises

5.8 Show that if g(z) ∈ C[z], then e−zg(z) satisfies the Cauchy–Riemann
equations (5.21).

5.9 Suppose that f and g are polynomials in C[x] and n is a nonnegative
integer. Show that

( f g)(n)(x) =
n

∑

k=0
(

n
k
) f (k)(x)g(n−k)(x) .

5.10 Take It Further. The proofs in this chapter involved concocting certain
functions that were at the core of the results:

(i) f (x) = xn(a−bx)n

n! is used in the proof that π is irrational.

(ii) f (x) = xn(1−x)n
n! is used in the proof that ec is irrational.

(iii)

f (x) =
xp−1[(x − 1)(x − 2)⋯(x − n)]p

(p − 1)!

is used in the proof that e is transcendental.

(iv) In the proof that π is transcendental, we used this:

f (x) =
cmxp−1(α(x))p

(p − 1)!
=

cm+pxp−1 [∏r
i=1(x − βi)]

p

(p − 1)!
.

What are some structural similarities among these beasts? How are their
definitions related to the results in which they are used?

5.11 Show that a rectangle is determined by its perimeter and area.

5.12 Show that a rectangular box is is determined by its edge perimeter, sur-
face area, and volume.

5.13 Find two different rectangular boxes with the same edge perimeter and
volume. Can you find two such that have rational side lengths?



6 Fourier Series and Gauss Sums

The basic functions that we will be concerned with in this chapter are

x ↦ sin nx and x ↦ cos nx

for n = 0, 1, 2, 3, . . . . The elements of the vector spaces over R spanned by
these functions are called finite trigonometric series. Thus a finite trigono-
metric series of degree at most n is a function of the form

f (x) = c0 + c1 sin x + d1 cos x + c2 sin 2x + d2 cos 2x +⋯

+ cn sin nx + dn cos nx ,
(6.1)

where c0, c1, . . . , cn, d1, . . . , dn are in R. For example, 1 + cos 2x is a trigono-
metric series that defines the same function as 2 cos2 x. Similarly, the function And there’s more to come:

See Exercise 6.1.4 cos3 x is the trigonometric series 3 cos x + cos 3x.
If one is given a function f that can be expressed as a finite trigonometric

series, is it possible to express the coefficients c0, c1, d1, . . . , cn, dn in terms
of f ?

This is where the chapter will begin, showing that there are indeed explicit
expressions for the coefficients in a finite trigonometric series in terms of the
function so expressed. And there’s more: we shall investigate the extent to
which an arbitrary function (with some restrictions) can be expressed as a
(possibly infinite) trigonometric series called its Fourier series. Fourier series
will lead us into a wonderful garden of formulas that involve trigonometric
functions and to a generalization of the “Gauss sum” that we met way back
in Section 2.2.

6.1 The Fourier Series of a Differentiable
Function and ζ(2)

This chapter opened with a question:

If one is given a finite trigonometric series f (x) of the above form, is it
possible to express the coefficients c0, c1, d1, . . . , cn, dn in terms of the
function f ?

The answer is supplied by recalling the basic “orthogonality relations”
between the functions sin nx and cos nx. Namely, if n and m are nonnega-
tive integers, then
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(i)
∫

π

−π
cos nx cosmx dx =

⎧
⎪
⎪

⎨

⎪
⎪
⎩

π if n = m ≠ 0,
0 if n ≠ m;

(ii)
∫

π

−π
sin nx cosmx dx = 0 for all n,m;

(iii)
∫

π

−π
sin nx sinmx dx =

⎧
⎪
⎪

⎨

⎪
⎪
⎩

π if n = m ≠ 0,
0 if n ≠ m.

In order to verify these formulas, recall the formulas

2 cos nx cosmx = cos(n +m)x + cos(n −m)x ,

2 sin nx sinmx = cos(n −m)x − cos(n +m)x ,

2 sin nx cosmx = sin(n +m)x + sin(n −m)x .

To check equality (i), for example, we use the first identity: If n = m, then
2 cos2 nx = cos 2nx + 1, so that

2
∫

π

−π
cos2 nx dx =

∫

π

−π
cos 2nx dx +

∫

π

−π
1 ⋅ dx =

sin 2nx
2n

∣

π

−π
+ 2π = 0 + 2π ,

or equivalently,

∫

π

−π
cos2 nx dx = π.

If n ≠ m, then

2
∫

π

−π
cos nx cosmx dx =

sin(n +m)x
(n +m)

∣

π

−π

+

sin(n −m)x
(n −m)

∣

π

−π

= 0 .

The remaining orthogonality relations are left as an (important!) exercise.Exercise 6.3.

In order to answer our question about expressing the c’s and d’s in terms
of f (x), we proceed as follows. To get c0, we simply integrate both sides of
equation (6.1) from −π to π. That gives

∫

π

−π
f (x) dx = 2πc0 ,

or equivalently,

c0 =

1
2π ∫

π

−π
f (x) dx.

For cn when n > 0, multiply by sin nx and integrate from −π to π, obtaining

∫

π

−π
f (x) sin nx dx = cn ∫

π

−π
sin2 nx dx = cnπ ,

or equivalently,

cn =

1
π
∫

π

−π
f (x) sin nx dx. (6.2)

Similarly,

dn =

1
π
∫

π

−π
f (x) cos nx dx . (6.3)
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In this way, we have expressed the coefficients cn and dn in terms of the
integrals of f multiplied by sin nx and cos nx, the range of integration being
the interval from −π to π. As a simple example, taking n = 3 and using the
identity 4 cos3 x = 3 cos x + cos 3x, a computation shows that that

∫

π

−π
cos3 x cos 3x dx =

π

4
.

If f (x) is any function integrable on [−π, π] (say, continuous or piecewise
continuous), then the above observations motivate the definition of a series of
constants called the Fourier coefficients of f . They are defined by the follow-
ing formulas:

an =

1
π
∫

π

−π
f (x) cos nx dx, n = 0, 1, . . . ,

bn =

1
π
∫

π

−π
f (x) sin nx dx, n = 1, 2, . . . .

(6.4)

Notice that the an begin with Keep in mind that the an

belong to the “cosine”
coefficients and the bn

belong to the “sine”
coefficients.

a0 =

1
π
∫

π

−π
f (x) dx ,

while the bn begin with b1, b2, . . . . Formulas (6.2) and (6.3) can now be stated
like this:

Lemma 6.1. If f (x) is a finite trigonometric series of degree n ,

f (x) =

a0
2

+

n

∑

k=1
ak cos kx + bk sin kx ,

then a0, a1, . . . , an, b1, . . . , bn are the Fourier coefficients of f .

If f (x) is not a finite trigonometric series, then the Fourier coefficients
an and bn need not be zero for n large. But it is natural to ask whether the
resulting infinite series

a0
2

+

∞

∑

k=1
(ak cos kx + bk sin kx) (6.5)

converges for x ∈ (−π, π) and whether, if it does, it equals f (x). When it does
equal f (x), we call it the Fourier series of f .

This is the basic problem in the elementary theory of Fourier series. A
partial solution to the problem was supplied by Johann Peter Gustav Lejeune
Dirichlet (1805–1859) in 1829 when he proved that if f (x) has a derivative
at x0 in (−π, π), then indeed, the series of numbers

a0
2

+

∞

∑

n=1
an cos nx0 + bn sin nx0

converges to the number f (x0). We will prove this result in the next section.
But there is a special case of a lemma due to Riemann that implies that the
infinite sum above has a chance of converging to something.
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Lemma 6.2 (Riemann). If f (x) is continuous on [a, b] and has a contin-
uous derivative on (a, b), then the Fourier coefficients of f go to zero as n
approaches infinity. In symbols,

bn =

1
π
∫

π

−π
f (x) sin nx dx → 0 as n → ∞ ,

an =

1
π
∫

π

−π
f (x) cos nx dx → 0 as n → ∞ .

Proof. On integrating by parts, we have

∫

π

−π
f (x) sin nx dx = − f (x)

cos nx
n

∣

π

−π
+

1
n ∫

π

−π
f ′(x) cos nx dx .

Each term goes to 0 as n → ∞. The proof of the second statement is similar.
∎

Lookout Point 6.1. Actually, the above lemma holds for every function
f (x) that has an integral on [a, b]. Recall that this condition imposes restric-
tions on f . It turns out that the requirement of (Riemann) integrability is
equivalent to the requirement that the set of discontinuities have “measure”
zero. In particular, a function with a countable set of discontinuities has a
Riemann integral. (As an example of a function that does not have a Rie-
mann integral, consider the so-called Dirichlet function, which equals 1 for
x rational and 0 for x irrational. It does not have a Riemann integral on any
finite interval because it is discontinuous everywhere.) Although we will useFor a discussion and proof

of this situation (and
more), see Casper Goff-
man’s Real Analysis [85].
And, as you’ll soon see,
“elementary” is not the
same as “simple.”

only the case in which f (x) is composed of a finite number of continuously
differentiable pieces (piecewise C1), let us show how the general Riemann
lemma follows from an important inequality due to Bessel. The proof of
Bessel’s inequality (up next) is actually more elementary than the proof of
Lemma 6.2, because it doesn’t use integration by parts. However, the basic
idea is sophisticated, since it asks for the “mean square” approximation of
f (x) by the partial sums of its Fourier series. More precisely, we prove the
following lemma.

Lemma 6.3 (Bessel’s inequality). If f (x) is integrable on [−π, π], then

a20
2

+

∞

∑

n=1
a2n + b2n ≤

1
π
∫

π

−π
f (x)2 dx ,

where the an and bn are the Fourier coefficients of f (x).

Proof. Consider (of course)

0 ≤
∫

π

−π
( f (x) − (

a0
2

+

n

∑

m=1
am cosmx + bm sinmx))

2

dx .

The integrand is a (complicated) square of a binomial, so we pick it apart.
Note first that if we apply the orthogonality relations from Section 6.1, we
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find that (check this)

∫

π

−π
(

n

∑

m=1
am cosmx + bm sinmx)

2

dx = π
n

∑

m=1
a2m + b2m .

Next, check that

am ∫

π

−π
f (x) cosmx dx = πa2m and bm ∫

π

−π
f (x) sinmx dx = πb2m .

The checks are yours in
Exercise 6.5.

Using this and the rule for squaring a sum, we have

0 ≤
∫

π

−π
( f (x) − (

a0
2

+

n

∑

m=1
am cosmx + bm sinmx))

2

dx

=
∫

π

−π
f (x)2 dx +

2πa02

4
+ π

n

∑

m=1
am2

+ bm2
− 2

∫

π

−π
f (x)

a0
2

dx

− 2
n

∑

m=1
bm ∫

π

−π
f (x) sin mx dx − 2

n

∑

m=1
am ∫

π

−π
f (x) cosmx dx

=
∫

π

−π
f (x)2dx − π

a20
2

− π
n

∑

m=1
(am2

+ bm2
) .

Hence

1
π
∫

π

−π
f (x)2 dx ≥

a20
2

+

n

∑

m=1
(a2m + bm2

) .

We did it! ∎

For each n, consider the partial sums in Bessel’s inequality summed up
to n. Since the left-hand side is positive, it gives a bounded monotonically
increasing sequence. Thus the limit exists, which is, of course, the infinite
series

a20
2

+

∞

∑

m=1
(am2

+ bm2
) .

Furthermore, the series is bounded by 1
π ∫

π
−π f (x)2 dx.

Hence

a20
2

+

∞

∑

m=1
(am2

+ bm2
) ≤

1
π
∫

π

−π
f (x)2dx .

This can be viewed as a weak Pythagorean theorem. The sum of the squares
of the “components” or “sides” of f (x) is at most the square of the
“hypotenuse.” It turns out, although it is harder to prove, that for a large
class of functions (including continuous ones), equality holds. That equal-
ity is called Parseval’s theorem. The abstract development of the allusion
to geometry is called the theory of Hilbert and Banach spaces and is part
of a large branch of contemporary mathematics called functional analysis.
A pleasant essay on the development of these ideas in the first part of the
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twentieth century can be found in Hermann Weyl’s article “A Half Century
of Mathematics” [87].

Oh, and by the way, Bessel’s inequality implies Lemma 6.2 (this is Exer-
cise 6.6).

Before we prove the general result on Fourier series, let’s do a calculation
that contains the basic strategy and that delights many people who see it for
the first time.

Small world: This series
is ζ(2), where ζ is the
Riemann zeta function
defined in Section 3.4.

Theorem 6.4.

π2

6
= 1 +

1
22

+

1
32

+

1
42

+⋯ .

Proof. We need the following identity, which will be used any number ofThis proof was pointed out
by D. Giesy [30]. times during this chapter, so let’s make it a lemma. ∎

Lemma 6.5. For x ∈ [−π, π], we have the equality

1
2
+ cos x + cos 2x + ⋅ ⋅ ⋅ + cos nx =

sin (n +
1
2) x

2 sin x
2

. (6.6)

This is even true for
x = 0 if one defines the
right-hand side at 0 to be
its continuous extension
at 0, namely n + 1

2 (use
l’Hospital).

Proof. To see this, simply multiply both sides by 2 sin x
2 to obtain

sin
x
2
+ 2 sin

x
2
cos x + 2 sin

x
2
cos 2x + ⋅ ⋅ ⋅ + 2 sin

x
2
cos nx .

Using 2 sin Acos B = sin(A+ B)+ sin(A− B), we find that this sum nicely
telescopes (always a good sign):

sin
x
2
+ (sin

3
2
x − sin

1
2
x) + (sin

5
2
x − sin

3
2
x) +⋯

+ (sin(n +

1
2
) x − sin(n −

1
2
) x) ,

which is simply sin (n +
1
2) x, as desired. ∎

Back at the ranch, to prove Theorem 6.4, multiply both sides of equa-
tion (6.6) by x and integrate from 0 to π. We obtain

π2

4
+
∫

π

0
x cos x dx +

∫

π

0
x cos 2x dx + ⋅ ⋅ ⋅ +

∫

π

0
x cos nx dx

=
∫

π

0

x sin (n +
1
2) x

2 sin x
2

dx .
(6.7)

Let’s take up the right-hand side first and show that it approaches 0 as n goes
to infinity. Using the addition formula for sine, we see that the numerator of
the integrand splits, so that

sin(α + β) = cosα sinβ
+ sinα cosβ

∫

π

0

x sin (n +
1
2) x

2 sin x
2

dx =
∫

π

0

x cos x
2

2 sin x
2
sin nx dx +

∫

π

0

x
2
cos nx dx (6.8)

=
∫

π

0

x
2

sin x
2
cos

x
2
sin nx dx +

∫

π

0

x
2
cos nx dx .
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Both integrals in (6.8) satisfy the conditions of Riemann’s lemma (Lemma 6.2),
since x

2 /sin
x
2 is continuous on [0, π] and goes to 1 as x → 0, so applying Rie-

mann, we see that

lim
n→∞

∫

π

0

x sin (n +
1
2) x

2 sin x
2

dx

= lim
n→∞

∫

π

0

x cos x
2

2 sin x
2
sin nx dx + lim

n→∞
∫

π

0

x
2
cos nx dx = 0 .

On to the left-hand side of equation (6.7). This is a little easier:

∫

π

0
x cos kx dx =

x sin kx
k

∣

π

0
−

1
k ∫

π

0
sin kx dx

=

1
k2

cos kx∣
π

0
=

1
k2

((−1)k − 1) ,

which is 0 if k is even and −2/k2 if k is odd. Therefore, replacing n by 2n+1,
we obtain

π2

4
− 2(1 +

1
32

+

1
52

+

1
72

+ ⋅ ⋅ ⋅ +

1
(2n + 1)2

) =
∫

π

0

x sin (n +
3
2) x

2 sin x
2

dx .

Now letting n → ∞, we have, by the same reasoning as above,

π2

8
= 1 +

1
32

+

1
52

+⋯ .

A little juggling gives the desired result. (The one just proved is already inter-
esting.) And we also have

1
22

+

1
42

+

1
62

+⋯ =

1
4
(1 +

1
22

+

1
32

+

1
42

+⋯) .

Also,

(1 +

1
32

+

1
52

+⋯) + (

1
22

+

1
42

+⋯)

is equal to

1 +

1
22

+

1
32

+

1
42

+⋯

on the one hand, and to

π2

8
+

1
4
(1 +

1
22

+

1
32

+⋯)

on the other. Equating the two results yields

π2

8
=

3
4
(1 +

1
22

+

1
32

+⋯) ,

or equivalently (applause),

π2

6
= 1 +

1
22

+

1
32

+

1
42

+⋯ .

∎
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Lookout Point 6.2. The ubiquitous π2/6. What is the probability that
two integers chosen at random are relatively prime? In spite of the fact that
the notion of “a randomly chosen integer” is a strange one, there is at least
an intuitive idea of what the question means. Indeed, if we set up an exper-
iment that picks two random integers and calculates their greatest common
divisor and we repeat this thousands of times, then the ratio of the number of
relatively prime pairs to the number of trials is a good approximation to the
answer to our question. Of course, we are only picking numbers between 1
and 100,000 (or whatever), and that is precisely the difference between what
we can do experimentally and what it might mean to choose an integer at
random from all of Z.

To get a feel for the situation, you can set up an experiment in your favoriteAnd it reinforces the
belief that questions about
integers are questions
about real things.

computational environment, run it many times, and see whether the results
seem to cluster around a particular value. Try it—it’s fun. And if you run the
experiment many times, you will see that it almost always outputs a number
close to 0.6. What is that trying to tell us? Put the computer away, and let’s
settle on a meaning for our question.

Let us assume that if p is a prime, the probability that an integer chosen atThink for a minute.
Why is this assumption
reasonable? random is divisible by p is 1

p
. Thus the probability that an integer is even is

1
2 , the probability that an integer is divisible by 3 is 1

3 , and so on.
It follows from this assumption that the probability that two integers cho-

sen at random are both divisible by p is 1
p2 . So the probability that two integers

chosen at random are not both divisible by p is 1 − 1/p2.

1− 1
p2 ? Things are heating

up.

Under these assumptions, we see that the probability that two randomly
chosen integers are not both divisible by 2, 3, 5, 7, 11, or 13 is

(1 −

1
22

)(1 −

1
32

)(1 −

1
52

)(1 −

1
72

)(1 −

1
112

)(1 −

1
132

) ≈ 0.6180 .

Perhaps you can now see what is happening here—we have seen a product
like this before. With a (small) leap of faith, we can pass to the limit: a and
b are relatively prime if they are not both divisible by any prime. So, the
probability that two integers a and b are relatively prime is

∏

p

(1 −

1
p2

) ,

where the product is over all primes p.
Oh, my! Remember equation (3.6) in Section 3.4? Just in case, here it is:

ζ(s) = 1 +

1
1s

+

1
2s

+

1
3s

+ ⋅ ⋅ ⋅ = ∏

p

1
1 −

1
ps

.

It follows that our favorite product can be expressed in terms of the Riemann
zeta function:

∏

p

(1 −

1
p2

) =

1
ζ(2)

.

Combine this with Theorem 6.4:

π2

6
= ζ(2) = 1 +

1
22

+

1
32

+

1
42

+⋯ ,
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and we have this remarkable result:

Theorem 6.6. The probability that two integers chosen at random are rela-
tively prime is

6
π2
.

Note that π2/6 = 0.60792710 . . . ≈ 0.6, the experimental result proposed
above. Most people who hear this result (without proof) wonder what in the

See https://mathworld.
wolfram.com/
RelativelyPrime.html
for more detail about these
ideas.world π has to do with it. Now you know.

Exercises

6.1 Consider the following recursively defined sequence of polynomials
{T(k)} in Z[x]:

T(k) =

⎧
⎪
⎪
⎪
⎪
⎪

⎨

⎪
⎪
⎪
⎪
⎪
⎩

1 if k = 0,
x if k = 1,
2xT(k − 1) −T(k − 2) if k > 1 .

For example,

T(0) = 1, T(1) = x, T(2) = 2x2 − 1, T(3) = 4x3 − 3x .

(i) Calculate a few more of the (six, say) terms T(k) in the sequence
and find some patterns in it. Prove your conjectures.

(ii) The T(k) are formal polynomials in x, so you can substitute values
for x and get identities about numbers. Show that for every real value
of θ,

T(n)(cos θ) = cos nθ .

(iii) Take It Further. How about a closed form for T?

This generalizes the
high-school “double-angle
formula” for cos 2θ.

6.2 Show that

∫

π

−π
cos3 x cos 3x dx =

π

4
.

6.3 Prove the remaining orthogonality relations from this section:

(ii)
∫

π
−π sin nx cosmx dx = 0 for all n,m ,

(iii)
∫

π
−π sin nx sinmx dx =

⎧
⎪
⎪

⎨

⎪
⎪
⎩

π if n = m ≠ 0 ,
0 if n ≠ m .

6.4 Interpret the expression

∫

π

−π
( f (x) − (

a0
2

+

n

∑

m=1
am cosmx + bm sinmx))

2

dx

as an “average (mean) square distance.”

https://mathworld.wolfram.com/RelativelyPrime.html
https://mathworld.wolfram.com/RelativelyPrime.html
https://mathworld.wolfram.com/RelativelyPrime.html
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6.5 Using the notation of this section, show that

(i)

(

n

∑

m=1
am cosmx + bm sinmx)

2

= π
n

∑

m=1
a2m + b2m ,

(ii)

am ∫

π

−π
f (x) cosmx dx = πa2m and bm ∫

π

−π
f (x) sinmx dx = πb2m .

6.6 Show that Bessel’s inequality (Lemma 6.3) implies Riemann’s lemma
(Lemma 6.2).

6.7 What is the probability that an integer picked at random has no perfect
square factor?

6.2 Dirichlet’s Theorem

Let us state at once what we want to prove.

Theorem 6.7 (Dirichlet, 1829). Let f (x) be continuous on [−π, π] and dif-
ferentiable at a point x0 ∈ (−π, π). Then

f (x0) =

a0
2

+

∞

∑

n=1
(an cos nx0 + bn sin nx0) ,

where

an =

1
π
∫

π

−π
f (x) cos nx dx, n = 0, 1, 2, . . . ,

bn =

1
π
∫

π

−π
f (x) sin nx dx, n = 1, 2, . . . .

Notice that we have assumed f (x) to be differentiable only at x = x0. It
can be quite nasty away from x0. In fact, the proof we give will show that
whether the series converges depends only on the behavior of f near x0.

This is not a superficial
statement, since the
coefficients an and bn are
determined by the values
of the functions on the
whole interval.

Proof. To prove the result, form the number

Sn =

a0
2

+

n

∑

k=1
(ak cos kx0 + bk sin kx0) .

We must show that

Sn → f (x0) as n → ∞ .

Our first (and major) task is to express Sn as a definite integral. Replace
a0, a1, . . . , an, b1, b2, . . . , bn in Sn by their values as definite integrals to obtain
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Sn =

1
2π ∫

π

−π
f (x)dx +

n

∑

k=1

1
π
∫

π

−π
f (x)(cos kx cos kx0 + sin kx sin kx0) dx

=

1
π
∫

π

−π
f (x){

1
2
+

n

∑

k=1
cos kx cos kx0 + sin kx sin kx0} dx

=

1
π
∫

π

−π
f (x){

1
2
+

n

∑

k=1
cos k(x − x0)} dx

=

1
π
∫

π

−π
f (x)

sin(n +
1
2)(x − x0)

2 sin ( x−x0
2 )

dx .

This expresses the finite sum Sn of the series we are investigating as a definite

This last equality is thanks
to Lemma 6.5.

integral involving f (x). Next we want to change the variable by replacing
x−x0 with t. However, f is defined only on [−π, π]. Extend f (x) periodically
to R by defining f (x+2π) = f (x), so that that f now is periodic of period 2π. Check that the entire

integrand is now periodic
of period 2π.On effecting the change of variable x − x0 = t, we obtain

Sn =

1
π
∫

π−x0

−π−x0
f (x0 + t)

sin(n +
1
2)t

2 sin t
2

dt ,

which by periodicity is just the integral from −π to π. For the record:

Sn =

1
π
∫

π

−π
f (x0 + t)

sin(n +
1
2)t

2 sin t
2

dt . (6.9)

We need to show that Sn − f (x0) has limit zero. The idea is to absorb
f (x0) under the integral sign and estimate the difference using Riemann’s
lemma and the hypothesis of differentiability. The absorption is achieved by
going back to our favorite identity:

1
2
+ cos x + cos 2x + ⋅ ⋅ ⋅ + cos nx =

sin(n +
1
2)x

2 sin x
2
.

Integrating from −π to π gives

π + 0 + 0 + ⋅ ⋅ ⋅ + 0 =
∫

π

−π

sin(n +
1
2)t

2 sin t
2

dt .

Multiplying by f (x0) (a constant!) and dividing by π shows that

f (x0) =

1
π
∫

π

−π
f (x0)

sin(n +
1
2)t

2 sin t
2

dt .

Subtracting f (x0) from our expression for Sn gives the lovely relation

Sn − f (x0) =

1
π
∫

π

−π
( f (x0 + t) − f (x0)) ⋅

sin(n +
1
2)t

2 sin t
2

dt . (6.10)

Next, let g(t) = f (x0 + t) − f (x0).
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We are ready to operate. Consider

1
t
−

1
2 sin t

2
=

2 sin t
2 − t

2t sin t
2
. (6.11)

We apply l’Hospital a few times to see the behavior of the right-hand side
at 0:

lim
t→0

2 sin t
2 − t

2t sin t
2

= lim
t→0

cos t
2 − 1

t cos t
2 + 2 sin t

2
= lim

t→0

− sin t
2

cos t
2 −

t
2 sin

t
2 +

cos t
2

= 0 .

So, thanks to l’Hospital, we see that

1
t
−

1
2 sin t

2

is continuous at 0.
Thus, with some fancy footwork, we can write

Sn(x) − f (x0) = (6.12)

1
π
∫

π

−π
g(t)

sin (n +
1
2) t

t
dt −

1
π
∫

π

−π
g(t)(

1
t
−

1
2 sin t

2
) sin(n +

1
2
) t dt .

But

1
π
∫

π

−π
g(t)(

1
t
−

1
2 sin t

2
) sin(n +

1
2
) t dt =

1
π
∫

π

−π
H(t) sin(n +

1
2
) t dt ,

where H is continuous. So again by Riemann (Lemma 6.2), we have

lim
n→∞

1
π
∫

π

−π
H(t) sin(n +

1
2
) t dt = 0 .

Next, passing to ∞, we have

lim
n→∞

(Sn(x) − f (x0)) = lim
n→∞

1
π
∫

π

−π
g(t)

sin(n +
1
2)t

t
dt

= lim
n→∞

1
π
∫

π

−π

f (x0 + t) − f (x0)
t

sin(n +

1
2
) t dt .

Here is where differentiability enters the action, because the differential quo-
tient

f (x0 + t) − f (x0)
t

is continuous at x0. And once again, Riemann comes to the rescue, so that (at
last)

lim
n→∞

Sn(x) − f (x0) = 0 .

We did it! ∎
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Although l’Hospital is convenient, it is useful (and fun) to derive Theo-
rem 6.7 directly from the mean value theorem. Here are the details.

Proof. Applying the mean value theorem to 2 sin t
2 on [0, t] gives

2 sin
t
2
− 0 = t cos ξt, where0 < ξt < t .

Hence

1
t
−

1
2 sin t

2
=

1
t
(1 −

1
cos ξt

) =

cos ξt − 1
ξt

⋅

ξt

t cos ξt
.

Now, (cos ξt − 1)/t approaches 0 as ξt → 0, as follows from the mean value
theorem again applied to cos x, since ξt/t < 1 and cos ξt approaches 1 as
ξt → 0.

A double application of the mean value theorem replaces a double
application of l’Hospital. Returning to Sn − f (x0), we write

After all, how does one
prove l’Hospital!?

Sn − f (x0) =

1
π
∫

π

−π

f (x0 + t) − f (x0)
t

⋅ sin(n +

1
2
) t dt (6.13)

−

1
π
∫

π

−π
( f (x0 + t) − f (x0))(

1
t
−

1
2 sin t/2

) ⋅ sin(n +

1
2
) t dt .

The second integral approaches zero as n → ∞ by Riemann’s lemma. As
for the first integral, we will see that its behavior is concentrated at 0. More
precisely, let δ > 0 be very small. Write the first integral of (6.13) as the sum
of three integrals by splitting the interval of integration at t = −δ and t = δ.
Away from 0, the denominator of t is harmless, and Riemann’s lemma tells
us that two of the three integrals go to 0 as n → ∞. In other words,whether
the series Sn converges to f (x0) depends solely on the remaining integral

∫

δ

−δ

f (x0 + t) − f (x0)
t

⋅ sin(n +

1
2
) t dt .

If we assume that f (x) is differentiable at x0, then by definition,

f (x0 + t) − f (x0)
t

is continuous at 0, and a final application of Riemann’s lemma finishes the
proof of Dirichlet’s theorem. ∎

Lookout Point(s) 6.3. It turns out that without some restriction on the
behavior of f (x) at x0 (i.e., of f (x0 + t) at t = 0), one cannot prove that
Sn → f (x0). In 1910, Lipót Fejér (1880–1959) produced an example of a con-
tinuous function for which the sequence Sn(x0) is unbounded. The assump-
tion of differentiability at x0 is stronger than needed, but it illustrates the
method and suffices for many applications.

Dirichlet’s paper in which he establishes this result leaves nothing to be
desired in terms of modern-day rigor. An examination of the proof shows that
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Figure 6.1. There can be cusps in the graph of y = f (x).

it still goes through if we assume f (x) to have only left and right derivatives
at x0. It is only necessary to break the integral ∫

δ
−δ f (x) dx into

∫

0
−δ f (x) dx+

∫

δ
0 f (x) dx and use Riemann’s lemma on each integral, observing that the
existence of a left and right derivative gives continuity at the critical endpoint.
Thus the situation illustrated in Figure 6.1 is allowed to happen.

Furthermore, one can handle the case of a simple jump discontinuity as in
Figure 6.2. For this we assume that left- and right-hand derivatives

lim
t→0+

f (x0 + t) − f (x0)
t

and lim
t→0−

f (x0 + t) − f (x0)
t

exist. For you can just push the pieces together and use the proof above. TheIt’s a good exercise to
carry out the translation. result is that Sn(x0) approaches the average

f (x0+) + f (x0−)
2

.

Figure 6.2. There can be jumps.

Finally, we mention that due to the fact that f has been extended to have
period 2π, the limits −π and π can be replaced by a and a+2π. In other words,
it is just the length of the interval that matters. Often you will see integrals
from −π to π replaced with the same integrand with limits from 0 to 2π. Thus
we can state a corollary.

Corollary 6.8. If f (x) is defined on [0, 2π] and differentiable at x0 ∈ (0, 2π),
then

f (x0) =

a0
2

+

∞

∑

k=1
(ak cos kx0 + bk sin kx0) ,
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where

an =

1
π
∫

π

−π
f (x) cos nx dx, n = 0, 1, 2, . . . ,

bn =

1
π
∫

π

−π
f (x) sin nx dx, n = 1, 2, . . . .

Figure 6.3. Endpoint discontinuities at odd multiples of π.

Another thing: if f is continuous on [−π, π], its periodic extension need
not be continuous at an endpoint of the interval (see Figure 6.3). However, the
above observations show that if we shift the interval of integration so that the
jump discontinuity falls inside, then we may conclude that the Fourier series
at x = π is f (π)+ f (−π)

2 when the graph of f has left and right derivatives at π.
We shall use this observation later.

And one more thing: In our evaluation of Gauss sums we need to work on
[0, 1], which doesn’t have length 2π. But if f (x) is defined on [0, 1], then
f ( x

2π ) is defined on [0, 2π]. Applying the theorem on [0, 2π] and simplifying
gives the following normalized result.

Theorem 6.9 (Theorem 6.7, version 2). If f (x) is continuous on [0, 1] and
differentiable there, then for all x in (0, 1), one has

f (x) =

α0

2
+

∞

∑

k=1
(αk cos 2πkx + βk sin 2πkx) ,

where

αk = 2
∫

1

0
f (t) cos 2πkt dt, k = 0, 1, . . . ,

βk = 2
∫

1

0
f (t) sin 2πkt dt, k = 1, 2, . . . .

Furthermore, when f (x) has a right derivative at 0 and a left derivative at 1,
one has

α0

2
+

∞

∑

k=1
αk =

f (0) + f (1)
2

.
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6.3 Applications to Numerical Series

One thing to do with Dirichlet’s theorem is to calculate the Fourier series for
some familiar functions. Another is to find a function with a given series. In
this section, we will do the second thing and end up with some very prettyDoing the first thing will

show up in the exercises. identities.

Example 1. One of the earliest series investigated was

sin x +
sin 2x
2

+

sin 3x
3

+⋯ .

For this, consider (of course) the function f defined by f (x) =
π−x
2 on [0, π].

In order to apply Dirichlet’s theorem (Theorem 6.7), we need to extend its
domain to [−π, π], so let’s consider (again, of course) the function f that is
π−x
2 on [0, π] and −π−x2 on [−π, 0). Its graph is pictured in Figure 6.4.

Figure 6.4. f (x) = π−x
2 on [0, π] and −π−x

2 on [−π, 0).

We have, by construction,

f (x) = − f (−x) for x ∈ [0, π].

Such a function is called odd. All the “even” Fourier coefficients for an odd
function are zero, since

And how would you define
an even function? How
about an example of each
kind? See Exercises 6.8
and 6.9 for more about
even and odd functions. an =

1
π
∫

π

−π
f (x) cos nx dx =

1
π
∫

−π

π
f (−x) cos n(−x) d(−x)

=

1
π
∫

−π

π
f (x) cos nx dx = −

1
π
∫

π

−π
f (x) cos nx dx = −an.

Thus 2an = 0, which implies an = 0. Furthermore, we can simplify calculation
of the “odd” coefficients by showing in the same way that

bn =

2
π
∫

π

0
f (x) sin nx dx.

On [0, π], we have f (x) =
π−x
2 . Therefore,

This is Exercise 6.10.



6.3 Applications to Numerical Series 153

bn =

2
π
∫

π

0
(

π − x
2

) sin nx dx

=

2
π
∫

π

0

π

2
sin nx dx −

1
π
∫

π

0
x sin nx dx

=
∫

π

0
sin nx dx −

1
π
[

−x cos nx
n

∣

π

0
+

1
n ∫

π

0
cos nx dx]

= −

1
n
cos nx∣

π

0
+

(−1)n

n
+ 0

= −

(−1)n

n
+

1
n
+

(−1)n

n
+ 0 =

1
n
.

Applying Dirichlet’s theorem gives us the following result.

Theorem 6.10. For x ∈ (0, π),

π − x
2

= sin x +
sin 2x
2

+⋯ . (6.14)

How nice. Substitute x = π/2 to obtain

π

4
= 1 −

1
3
+

1
5
−

1
7
+⋯ , (6.15)

which is our friend the Leibniz–Gregory series. See Exercise 6.11.

Example 2. As a second application, consider the function f defined by

f (x) =

⎧
⎪
⎪

⎨

⎪
⎪
⎩

π
4 if x ∈ (0, π),
−π
4 if x ∈ (−π, 0),

and then further defined indefinitely in both directions so that it has period 2π.
Since the Fourier series insists on the value 0 at the origin, we might as well
put f (0) = 0. Hence the graph of y = f (x) is as in Figure 6.5.

Figure 6.5. An odd function.
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Since f is odd, the “even” coefficients a2n are all zero, and

bn =

2
π
∫

π

0
f (x) sin nxdx =

2
π
∫

π

0

π

4
sin nx dx =

1
2 ∫

π

0
sin nx dx

=

1
2
∣−

cos nx
n

∣

π

0
=

−1
2n

((−1)n − 1) ,

which is equal to 1
n
if n is odd, and 0 if n is even.

Hence if x ∈ (0, π), then

π

4
= sin x +

sin 3x
3

+

sin 5x
5

+⋯ .

Putting x =
π
6 gives

π

3
= 1 +

1
5
−

1
7
−

1
11

+

1
13

+

1
17

−

1
19

−

1
23

+⋯ .
This expression for π

3
might require a “little
think” in order to convince
yourself that it is true.

Take It Further
Here is another pretty formula. For x ∈ [0, π],

π2

8
−

πx
4

=

cos x
12

+

cos 3x
32

+

cos 5x
52

+⋯ .

For the proof, just calculate the Fourier series of the left-hand side. You
might ask how one invents the left-hand side. Well, it is linear in x. But x
is an odd function, and the right-hand side is even. So any Fourier seriesThis is Exercise 6.12.

experimenter who tried ∣x∣, which is x made even, will arrive at the desired
series. You should make x2 odd and see what happens. Incidentally, putting
x = 0 gives once again

π2

8
= 1 +

1
32

+

1
52

+⋯ .

Example 3. As a third application of Fourier series we will see how the
Fourier series for certain functions that depend on a parameter give non-
trigonometric expansions for other functions. The example we use here is
cos ax, where a is a fixed real number, but not an integer. If you calculate the
Fourier series on [−π, π], you get

cos ax =

sin aπ
π

∣

1
a
−

2a
a2 − 12

cos x +
2a

a2 − 22
cos 2x −⋯∣ .

Putting x = 0 and viewing a as a variable, we have

π

sin aπ
=

1
a
−

2a
a2 − 1

+

2a
a2 − 4

−

2a
a2 − 9

−⋯ .

In other words, on replacing a by x, we have the result that if x ∉ Z, then

π csc(πx)
2x

=

1
2x2

−

1
x2 − 1

+

1
x2 − 4

−

1
x2 − 9

+⋯ ,

which yields an infinite partial fraction expression for for the cosecant func-
tion csc(πx).
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Exercises

6.8 Show that every real-valued function is the sum of an even function and
an odd function.

6.9 What polynomial functions are even functions? Odd functions? Prove
what you state.

6.10 Show that for an odd function, the odd Fourier coefficients bn are given
by

bn =

2
π
∫

π

0
f (x) sin nx dx.

6.11 Show that sin nπ/2 is a Dirichlet character modulo 4. In other words,

sin
nπ
2

=

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

0 if n ≡ 0 (mod 4) ,
0 if n ≡ 2 (mod 4) ,
1 if n ≡ 1 (mod 4) ,
−1 if n ≡ 3 (mod 4) .

6.12 Calculate the Fourier series for f (x) = ∣x∣.

6.13 Let f and g be continuous on [−1, 1] and differentiable on (0, 1). Show
that the Fourier coefficients of a linear combination of f and g, say
c f + dg, where c and d are real numbers, are the corresponding linear
combinations of the Fourier coefficients of f and g.

6.14 Take It Further. Calculate the Fourier coefficients on [−π, π] for fn(x)=
∣x∣n, n = 1, 2, 3, 4. State and prove any regularity (in terms of n) that you
find in the formulas.

6.4 Gauss Sums

In Chapter 2, we met a certain sum of roots of unity called a Gauss sum. A
special case came up in the construction of a regular pentagon. Recall what a See equation (2.10) in

Section 2.2.Gauss sum is: if ζ = cos 2π
n

+ i sin 2π
n

= e2πi/n, then

Gn = 1 + ζ + ζ4 + ζ9 + ⋅ ⋅ ⋅ + ζ(n−1)
2
.

Gauss succeeded in evaluating Gn. The answer is rather amazing. One has

Note that G1 = 1. We will
use this in a bit.

Gn =

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

(1 + i)
√

n if n ≡ 0 (4) ,
√

n if n ≡ 1 (4) ,
i
√

n if n ≡ 3 (4) ,
0 if n ≡ 2 (4) .

This remarkable result has been proved many times over. The proof we
give here is due to Dirichlet and amounts to an ingenious application of a
Fourier series. More precisely, the evaluation of Gn will be achieved by eval-
uating

∫

∞

0 cos(x2) dx and
∫

∞

0 sin(x2) dx in two different ways, coupled with
the Fourier series for cos(x2) and sin(x2). Here we go . . .
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6.4.1 A Brief Review of Infinite Integrals

We need some facts about real-valued functions f defined on [a,∞). Suppose

∫

N
a f (x) dx exists for each N ≥ a. If limN→∞ ∫

N
a f (x) dx exists, then we

denote it by
∫

∞

a f (x) dx. The only lemma we need concerns integrals of
the type

∫

∞

0 f (x) cos x dx and
∫

∞

0 f (x) sin nx dx, where f (x) is a positive
monotonically decreasing function with limit zero as x → ∞. We prove the

It’s left to you as
Exercise 6.15.

lemma for the sine integral and leave to you the other case.

Lemma 6.11. If f (x) is integrable on [a,N) for every N > a and if f (x) is
positive and monotonically decreasing to 0 as x → ∞, then

∫

∞

a f (x) sin x dx
exists.

Proof. Since f (x) > 0 and sin x alternates sign, the graph of y = f (x) sin x
is as in Figure 6.6.

Figure 6.6. y = f (x) sin(x).

We must show, by definition, that

lim
N→∞

∫

N

a
f (x) sin x dx

exists. For that, divide [a,∞) as pictured in Figure 6.7.
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Figure 6.7. A partition of [a,∞).

That is, m0π is the first multiple of π after a, and N is chosen such that The Archimedean prop-
erty of R raises its head
again.nπ < N ≤ (n + 1)π. Then

∫

N

a
f (x) sin x dx =

∫

m0π

a
f (x) sin x dx +

∫

(m0+1)π

m0π
f (x) sin x dx

+ ⋅ ⋅ ⋅ +
∫

nπ

(n−1)π
f (x) sin x dx +

∫

N

nπ
f (x) sin x dx.

Convince yourself that since f (x) is positive and monotonically decreasing,
we have

∣
∫

N

nπ
f (x) sin x dx∣ ≤ f (nπ)

∫

(n+1)π

nπ
∣ sin x∣ dx = 2 f (nπ). (6.16)

Hence (using equation (6.16)), we have

∣
∫

(k+1)π

kπ
f (x) sin x dx∣ =

∫

(k+1)π

kπ
f (x)∣ sin x∣ dx

≤ 2 f (kπ) ≤ ∣
∫

kπ

(k−1)π
f (x) sin x dx∣ .

So by Leibniz’s result on alternating series whose nth term goes to zero, we
see that

∫

(m0+1)π

m0π
f (x) sin x dx + ⋅ ⋅ ⋅ +

∫

nπ

(n−1)π
f (x) sin x dx

converges. Hence

Leibniz’s result on
alternating series is also
known as the alternating
series test.

lim
N→∞

∫

N

a
f (x) sin x dx

exists. That is the same as saying that
∫

∞

a f (x) sin x dx exists, as promised.
∎
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Corollary 6.12. It follows that the integrals

∫

∞

0
sin (x2) dx =

1
2 ∫

∞

0

sin x
√

x
dx

andLet u = x2, so that
dx = du

2
√

u
.

∫

∞

0
cos (x2) dx =

1
2 ∫

∞

0

cos x
√

x
dx

exist.

6.4.2 Using Complex Numbers

Next, we up the ante a little and look at functions defined on R and takingMoving up to C will make
the calculations simpler
and highlight the essential
ideas in the proof.

values inC. If f (x) is a complex-valued function of a real variable x, then one
may define

∫

b
a f (x) dx =

∫

b
a f1(x) dx+i ∫

b
a f2(x) dx, where f1(x)+i f 2(x) =

f (x). We say that f is differentiable if f1 and f2 are. In this way, all of our
results on Fourier series carry over formally, and we can state the following
theorem.

Theorem 6.13. If f (x) is complex-valued on [0, 1] and differentiable at x0 ∈

(0, 1), then

f (x0) =

α0

2
+

∞

∑

n=1
(αn cos 2πnx0 + βn sin 2πnx0) ,

where

αn = 2
∫

1

0
f (t) cos 2πnt dt, n = 0, 1, . . . ,

βn = 2
∫

1

0
f (t) sin 2πnt dt, n = 1, 2, . . . .

Furthermore, if f (x) has a right-hand limit at 0 and a left-hand limit at 1,
then

α0

2
+

∞

∑

n=1
αn =

f (0) + f (1)
2

.

If we write exp t = et and define f (x) by the formula

f (x) ∶= exp(
2πix2

n
) = cos(

2πx2

n
) + i sin(

2πx2

n
) ,

then f (1) = ζn and f ( j) = ζ
j2

n when j is an integer. So the Gauss sum Gn is
simply f (0) + f (1) + ⋅ ⋅ ⋅ + f (n − 1).

6.4.3 The Value of the Gauss Sum

We are now ready to compute Gn. Recall that if f (x) is differentiable and
complex-valued on [0, 1], then we have

α0

2
+

∞

∑

n=1
αn =

f (0) + f (1)
2

, (6.17)
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where α0, α1, . . . are the even “normalized” Fourier coefficients for the inter-
val [0, 1]:

αn = 2
∫

1

0
f (t) cos 2πnt dt .

If we extend the definitions of αn and βn to negative n, we can symmetrize
the above identity. For if n ≥ 0, then

α
−n = 2

∫

1

0
f (t) cos 2π(−n)t dt = αn ,

β
−n = 2

∫

1

0
f (t) sin 2π(−n)t dt = −βn.

Hence
N

∑

n=−N
(αn + iβn) = α0 + 2

N

∑

n=1
αn .

But

αn + iβn = 2
∫

1

0
f (t)(cos 2πnt + i sin 2πnt) dt

= 2
∫

1

0
f (t) exp(2πint) dt .

Hence on summing from −N to N , we have

N

∑

n=−N

(αn + iβn) = 2
N

∑

r=−N
∫

1

0
f (t) exp(2πirt) dt .

It follows that

α0

2
+

N

∑

n=1
αn =

N

∑

r=−N
∫

1

0
f (t) exp(2πirt) dt.

But the limit as N → ∞ of the left-hand side is f (0)+ f (1)
2 by equation (6.17),

and we end up with the beautiful formula

f (0) + f (1)
2

= lim
N→∞

N

∑

r=−N
∫

1

0
f (t) exp 2πirt dt .

Next, consider our function on the interval [ j, j + 1]. Then just as for the
[0, 1] Fourier theorem, we have

f ( j) + f ( j + 1)
2

= lim
N→∞

N

∑

r=−N
∫

j+1

j
f (t) exp (2πirt) dt. (6.18)

So we consider f (x) = exp ( 2πix2
n

) on [0, 1], [1, 2], . . . , [n − 2, n − 1] and
sum (6.18) on j from 0 to n − 1. The left-hand side is

1
2
( f (0) + f (1) + f (1) + f (2) + f (2) + f (3) + ⋅ ⋅ ⋅ + f (n − 1) + f (n))

= f (0) + f (1) + ⋅ ⋅ ⋅ + f (n − 1) (since f (0) = f (n))

= Gn ,
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while the right-hand side is the unsightly mess

lim
N→∞

N

∑

r=−N
∫

n

0
exp(

2πit2

n
+ 2πirt) dt .

The change of variable t = nt′ changes the limit of integration, and the expres-t = nt′, dt = ndt′,
t
n
= t′. sion becomes

lim
N→∞

N

∑

r=−N

n
∫

1

0
exp(

2πin2t′2

n
+ 2πirnt′) dt′

= lim
N→∞

N

∑

r=−N

n
∫

1

0
exp (2πin (t′2 + rt′)) dt′ .

Dropping the ′ decoration, this becomes

Gn = n lim
N→∞

N

∑

r=−N
∫

1

0
exp (2πin (t2 + rnt)) dt . (6.19)

So far, so good. Now we operate on
∫

∞

−∞

exp(2πix2) dx. Call its value T .

If you’ve hung on so far,
keep going. The rest will
be worth the effort.

This integral is simply 2
∫

∞

0 exp(2πix2) dx. However, we symmetrize around
zero to fit the earlier discussion. Then

∫

∞

−∞

exp(2πix2) dx = lim
N→∞

∫

N

−N
exp(2πix2) dx .

Change the variable by setting x =

√

ny. Then

T =
∫

∞

∞

exp(2πix2) = lim
N→∞

√

n
∫

√

nN

−

√

nN
exp(2πiny2) dy

=

√

n lim
N→∞

∫

N

−N
exp(2πiny2) dy , (6.20)

since replacing
√

nN by N doesn’t change the limit. (We already know that it
exists!)

To keep notation down, let h(y) = exp(2πiny2). Now the idea (due to
Dirichlet) is to compute the limit in two ways, breaking up the interval of
integration at integers:

∫

N

−N
h(y) dy =

∫

−N+1

−N
h(y) dy +

∫

−N+2

−N+1
h(y) dy + ⋅ ⋅ ⋅ +

∫

N

N−1
h(y) dy,

(6.21)
and then by half-integers, considering the partial sum:

∫

N+ 1
2

−N− 1
2

h(y) dy =
∫

−N+ 1
2

−N− 1
2

h(y) dy+
∫

−N+ 3
2

−N+ 1
2

h(y) dy+⋅ ⋅ ⋅+
∫

N+ 1
2

N− 1
2

h(y) dy.

(6.22)
Changing the integration interval to [0, 1] in 6.20 gives

T =

√

n lim
N→∞

N

∑

k=−N
∫

1

0
exp (2πin (x2 + 2kx)) dx. (6.23)
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On the sum by half-integers, change the variable again, referring every-
thing to [0, 1]. A typical term in the sum is

∫

k+ 1
2

k− 1
2

exp (2πiny2) dy.

The substitution y = k −
1
2 + x transforms the integral to

∫

1

0
exp(2πin(k −

1
2
+ x)

2
) dx

=
∫

1

0
exp(2πin(k2 − k +

1
4
+ (2k − 1) x + x2)) dx

= exp(
2πin
4

)
∫

1

0
exp (2πin(x2 + (2k − 1)x) dx .

However, exp ( 2πin
4 ) = in. Hence equation (6.22) becomes

T =

√

n in lim
N→∞

N

∑

k=−N
∫

1

0
exp (2πin (x2 + (2k − 1)x)) dx . (6.24)

Let us now examine (6.23) and (6.24) (repeated here for reference):

T =

√

n lim
N→∞

N

∑

k=−N
∫

1

0
exp (2πin (x2 + 2kx)) dx , (6.23)

T =

√

n in lim
N→∞

N

∑

k=−N
∫

1

0
exp (2πin (x2 + (2k − 1)x)) dx . (6.24)

In (6.23), we have a sum on k from −N to N with 2k appearing under the
integral, and in (6.24) we have the sum over the odd integers 2k − 1. In other
words, we have summed

∫

1
0 exp(2πin(x2 + sx))dx for all s from −2N to 2N .

That is to say, dividing (6.23) by
√

n and (6.24) by
√

n in and adding gives
(replacing 2N by N , of course)

T
√

n
(1 + i−n) = lim

N→∞

N

∑

s=−N
∫

1

0
exp (2πin (x2 + sx)) dx .

Comparing this with equation (6.19), we have the remarkable result, and
the aim of the entire investigation,

T
√

n
(1 + i−n) =

Gn

n
.

This gives

Gn =

√

nT (1 + i−n) . (6.25)

The magic isn’t over yet. In this relation, let n = 1. SinceG1 = 1 (and
√

1 = 1),
we have

T =

1
1 − i

=

1 + i
2
.
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That is,

∫

∞

−∞

exp (2πix2) dx =

1
2
+

1
2
i .

Equating the real and imaginary parts gives

∫

∞

−∞

cos (2πx2) dx =

1
2

and

∫

∞

−∞

sin (2πx2) dx =

1
2
.

Changing variables givesLet u = x2, so that
dx = du

2
√

u
.

∫

∞

0

cos x
√

x
dx =

√

π

2
(6.26)

and

∫

∞

0

sin x
√

x
dx =

√

π

2
. (6.27)

However, knowing

T =

1
2
+

1
2
i

gives (at last) the value of the Gauss sum Gn:

Theorem 6.14 (The value of the Gauss sum). The Gauss sum

Gn =

√

n
(1 + i−n) (1 + i)

2
(6.28)

can be simplified depending on the value of n modulo 4:

(i) If n ≡ 0 mod 4, then

Gn =

√

n
(1 + 1)(1 + i)

2
=

√

n (1 + i) .

(ii) If n ≡ 1 mod 4, then

Gn =

√

n
(1 + i−1) (1 + i)

2
=

√

n .

(iii) If n ≡ 3 mod 4, then

Gn =

√

n
(1 + i−3) (1 + i)

2
= i

√

n .

(iv) If n ≡ 2 mod 4, then

Gn =

√

n
(1 + i−2) (1 + i)

2
= 0 .



6.5 On ∫
∞

0
sin t
t

dt and ∑∞k=1
sin kx

k
163

In particular, if n is a prime p, we have the famous result of Gauss that we
cited earlier in Section 2.2:

Corollary 6.15. If ζ = cos ( 2π
n
) + i sin ( 2π

n
), we have

1 + ζ + ζ4 + ζ9 + ⋅ ⋅ ⋅ + ζ(p−1)
2
=

⎧
⎪
⎪

⎨

⎪
⎪
⎩

√

p if p ≡ 1(4) ,
i
√

p if p ≡ 3(4) .

Exercises

6.15 Show that if f (x)is integrable on [a,N) for every N > a and if f (x)
is positive and monotonically decreasing to 0 as x → ∞, then

∫

∞

a f (x)
cos x dx exists.

6.5 On ∫
∞
0

sin t
t dt and ∑∞k=1

sin kx
k

We have seen that a differentiable function defined on [−π, π] may be
expressed as a trigonometric series (its Fourier series). The proof depended on
our favorite trigonometric identity ((6.30) below) and a lemma of Riemann’s
(Lemma 6.2). This technique was already used in the proof of the identity
π2

6 = 1+ 1
22 +

1
32 +⋯ that we gave in Section 6.1. And in the preceding section,

using a somewhat more involved argument, we saw that Fourier series gave
the value of the Gauss sum and the value of the integrals

∫

∞

0

cos x
√

x
dx and

∫

∞

0

sin x
√

x
dx .

The use of trigonometric series can also be used to evaluate
∫

∞

0
sin x
x

dx,
and that is what we take up here to close out the chapter. The proof is an
elegant application of all the methods developed in this chapter, and it shows
simultaneously that for x ∈ (0, π],

π − x
2

= sin x +
sin 2x
2

+

sin 3x
3

+⋯ (6.29)

and

∫

∞

0

sin x
x

dx =

π

2
.

Of course, the infinite series (6.29) is, by Theorem 6.10, the Fourier series
of π−x

2 made odd on [−π, π]. However, we shall not assume that fact. We will
use a simple case of Riemann’s lemma and the fact that

∫

∞

0
sin x
x

dx exists.
The existence of

∫

∞

0
sin x
x

dx is a special case of Lemma 6.11, proved in the Lemma 6.11 says that
∫
∞

0 f (x) sin x dx exists
when f (x) is positive and
monotonically decreasing
to zero as x →∞.

previous section. The proof then goes as follows . . .
Beginning (of course) with the identity

1
2
+ cos t + cos 2t + ⋅ ⋅ ⋅ + cos nt =

sin(n +
1
2)t

2 sin t
2
, (6.30)
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we integrate both sides from 0 to x for 0 < x ≤ π. That gives

x
2
+ sin x +

sin 2x
2

+

sin 3x
3

+ ⋅ ⋅ ⋅ +

sin nx
n

=
∫

x

0

sin(n +
1
2)t

2 sin t
2

dt . (6.31)

Think of x as fixed on (0, π]. Write

∫

x

0

sin (n +
1
2) t

2 sin t
2

dt

= −
∫

x

0
(

1
t
−

1
2 sin t

2
) sin(n +

1
2
) t dt +

∫

x

0

sin (n +
1
2) t

t
dt .

For fixed x, the first integral goes to zero as n → ∞ by Riemann’s lemma.
We need to know, of course, that

1
t
−

1
2 sin t

2

is well behaved at the origin, a point we established in Section 6.2 with a
double application of l’Hospital. As for the second integral, we change the
variable by writing

(n +

1
2
) t = ξ .

Then

∫

x

0

sin(n +
1
2)t

t
dt =

∫

(n+ 1
2 )x

0

sin ξ
ξ

dξ .

But this integral approaches
∫

∞

0
sin ξ
ξ

dξ as n → ∞, since x ≠ 0. It follows
that (6.31) has a limit as n → ∞, and that limit is

∫

∞

0
sin t
t

dt. In other words,

x
2
+

∞

∑

k=1

sin kx
k

=
∫

∞

0

sin t
t

dt for0 < x ≤ π .

And now (more magic) . . . let x = π (note that x = 0 is forbidden). We obtain
the following lovely result.

Theorem 6.16.
π

2
=
∫

∞

0

sin t
t

dt .

And there’s even more: On substituting back, we have

π − x
2

=

∞

∑

k=1

sin kx
k

for0 < x ≤ π .

We can’t resist then putting x = π/2 to obtain (again)

π

4
= 1 −

1
3
+

1
5
−

1
7
+

1
9
−⋯ .

Thus the formal analogy between the “continuous” sum
∫

∞

0
sin t
t

dt and the
“discrete” sum ∑

∞

k=1
sin kx
k

seems more than merely formal.

We met this identity
before—equation (6.15).



Epilogue

Looking Back

This text involves immersing oneself in two faces of the discipline:

(i) working on hard problems, accompanied by reflection on the habits of
mind you use or develop during this process;

(ii) studying the work of others, trying to figure out how they might have
been thinking when developing their methods and results.

There are many wonderful texts that address both faces of this Janus head,
but the 1972 course by Ken Ireland was my first encounter with a design
that integrates these two ways of doing mathematics in what might seem like
a reversal of the customary order—what I called in the preface “experience
before formality.”

Experience before formality became a foundation not only for my own
mathematical work (where it is the typical way new results emerge), but also
for my approach to teaching mathematics. It is quite difficult to explain how Another instance of why

experience precedes
formality . . . .effective this teaching practice is to someone who hasn’t experienced it as a

student, but you have just been through a text that is based on this principle.
Take some time to reflect on what you have done. Think about how it would
play out in your future work in mathematics. Think about how it would play
out in your teaching. This is beginning to sound preachy, so I’ll make only
one suggestion: Just try it.

One way to think about the results developed in these chapters is a theme
I mentioned in the preface: in high school, and, to some extent, in undergrad-
uate courses, many results of fundamental importance in the history of math-
ematics are stated without proof. There are good reasons for this: Many of
the proofs are quite technical (as you have just seen) and involve background
that may not be current (or may not exist) for some students. Developing the
prerequisite knowledge would take more time than a syllabus allows. But the
proof of a result does more than establish a fact; it gives you a sense of why
the fact was of interest to mathematicians in the first place, and it helps you
to make teaching decisions about what to emphasize, what examples to use,
and where the result fits into the overall mathematical landscape.
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You can’t construct a regular heptagon with straightedge and compass; the
fundamental theorem of algebra requires the odd-degree root theorem; e and
π are transcendental; π2

6 = ∑
∞

k=1
1
k2
; every prime congruent to 1 mod 4 can

be written as the sum of two squares; there is a formula for the number of
representations of an integer as a sum of two squares . . . . All these and more
appear somewhere in high-school and college programs, and one of the major
goals of this book is to “mop up”—to fill in the details of why these things
are true.

Many of the proofs of these central results that we present here have been
revisited and polished for generations, so you are seeing a kind of finished
product. But the elegance of the proofs are the capstones for long periods
(sometimes years or decades) of intense work. Following a long proof often
gives you the feeling of “I get it, but how would someone come up with that?”

A good example appears in Chapter 5, where the proofs of the main results
follow a recognizable rhythm, each starting with a function we call the “Her-
mite beast.” How in the world did someone come up with these? That’s where
some of the Dialing In problems come in. They provide ideas about, for exam-
ple, how one might conceive of an expression that is a positive integer lessSee, for example, Dialing

In problems 114, 115, and
116. than 1 and hence can’t exist, negating the assumption that the number in ques-

tion is rational or algebraic.

Looking Forward

What next? I have some suggestions.

(i) Join a professional organization. These make available many useful
resources for mathematical work:

(a) The AmericanMathematical Society (AMS.org) is aimed at the math-
ematics research community.

(b) The Mathematical Association of America (MAA.org) serves the
mathematics teaching community, mainly undergraduate and high
school.

(c) The National Council of Teachers of Mathematics (NCTM.org) is
primarily for PK–12 mathematics teachers.NCTM features a mix of

pedagogy and mathemati-
cal activities. Each of these organizations supports local, regional, and national con-

ferences. Membership will keep you informed of when and where these
take place, and, with a little careful curating, you will find in them some
wonderful mathematics and very useful ideas about teaching.

(ii) Present your work to the field.Getting ideas out there is becoming eas-Just suggestions: Exer-
cise 2.40, and Dialing In
problems 22, 43, 95, 126,
all make launchpads for
interesting MAA, AMS,
or NCTM papers.

ier all the time. Outlets include widely read blogs (each of the organiza-
tions above has at least one), journals (electronic and paper), presenting
at conferences (like the ones mentioned above), and good old paper texts
(like this one). Publishing or presenting serves many purposes, but one
that is often overlooked is that it helps you clarify ideas and make new
connections for yourself. Many of the problems and exercises in this
book make ideal loci for a journal article or a blog post.

https://www.ams.org
https://www.maa.org
https://www.nctm.org
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(iii) Join a community of mathematical practice. A mathematical inves-
tigation usually begins in solitude—you read or hear about something
intriguing and you dive in, all by yourself, doodling, thinking, experi-
menting, and trying things. But when the insight comes, it really helps
to brainstorm with friends and colleagues. Many teachers have formed
informal study groups that meet regularly to work on specific topics.
Many departments sponsor regular seminars. And there are national sites
of mathematical practice. Two in particular use the “experience first”
design:

(a) The Park City Mathematics Institute [82] offers summer programs
for all parts of our community (mathematics research, undergraduate
teaching, precollege teaching . . . ).

(b) PROMYS at Boston University [81] is a longstanding program for
advanced secondary-school students and practicing secondary-school
teachers. The program is explicitly designed to give participants the
experience of working as a mathematician.

These are just examples. The point is that staying connected with oth-
ers who have similar mathematical dispositions greatly enhances your
mathematical experience.

The 1972 version of the last Dialing In problem ended with a quotation
from the Looney Tunes cartoons:

True to form, that was a joke; I sincerely hope that you keep doing and
teaching mathematics in the style and spirit of this book.

—Al Cuoco
May 29, 2022
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