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Preface

Calculus of real-valued functions of several real variables, also known as mul-
tivariable calculus, is a rich and fascinating subject. On the one hand, it seeks
to extend eminently useful and immensely successful notions in one-variable
calculus such as limit, continuity, derivative, and integral to “higher dimen-
sions.” On the other hand, the fact that there is much more room to move
about in the n-space R™ than on the real line R brings to the fore deeper
geometric and topological notions that play a significant role in the study of
functions of two or more variables.

Courses in multivariable calculus at an undergraduate level and even at
an advanced level are often faced with the unenviable task of conveying the
multifarious and multifaceted aspects of multivariable calculus to a student in
the span of just about a semester or two. Ambitious courses and teachers would
try to give some idea of the general Stokes’s theorem for differential forms on
manifolds as a grand generalization of the fundamental theorem of calculus,
and prove the change of variables formula in all its glory. They would also
try to do justice to important results such as the implicit function theorem,
which really have no counterpart in one-variable calculus. Most courses would
require the student to develop a passing acquaintance with the theorems of
Green, Gauss, and Stokes, never mind the tricky questions about orientability,
simple connectedness, etc. Forgotten somewhere is the initial promise that we
shall do unto functions of several variables whatever we did in the previous
course to functions of one variable. Also forgotten is a reasonable expectation
that new and general concepts introduced in multivariable calculus should
be neatly tied up with their relics in one-variable calculus. For example, the
area of a bounded region in the plane, defined via double integrals, should be
related to formulas for the areas of planar regions between two curves (given
by equations in rectangular coordinates or in polar coordinates). Likewise, the
volume of a solid in 3-space, defined via triple integrals, should be related to
methods for computing volumes of solids of revolution, thereby resolving the
mystery that the washer method and the shell method always give the same
answer. Indeed, a conscientious student is likely to face a myriad of questions
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if the promise of extending one-variable calculus to “higher dimensions” is
taken seriously. For instance: Why aren’t we talking of monotonicity, which
was such a big deal in one-variable calculus? Do Rolle’s theorem and the
mean value theorem, which were considered very important, have genuine
analogues? Why is there no L’Hopital’s rule now? Can’t we talk of convexity
and concavity of functions of several variables, and in that case, shouldn’t it
have something to do with derivatives? Is it still true that the processes of
differentiation and integration are inverses of each other, and if so, then how?
Aren’t there any numerical methods for approximating double integrals and
triple integrals? Whatever happened to infinite series and improper integrals?

We thought and believed that questions and concerns such as those above
are perfectly legitimate and should be addressed in a book on multivariable
calculus. Thus, about a decade ago, when we taught together a course at IIT
Bombay that combined one-variable calculus and multivariable calculus, we
looked for books that addressed these questions and could be easily read by
undergraduate students. There were a number of excellent books available,
most notably, the two volumes of Apostol’s Calculus and the two-volume In-
troduction to Calculus and Analysis by Courant and John. Besides, a wealth of
material was available in classics of older genre such as the books of Bromwich
and Hobson. However, we were mildly dissatisfied with some aspect or the
other of the various books we consulted. As a first attempt to help our stu-
dents, we prepared a set of notes, written in a telegraphic style, with detailed
explanations given during the lectures. Subsequently, these notes and prob-
lem sets were put together into a booklet that has been in private circulation
at IIT Bombay since March 1998. Goaded by the positive feedback received
from colleagues and students, we decided to convert this booklet into a book.
To begin with, we were no less ambitious. We wanted a self-contained and
rigorous book of a reasonable size that covered one-variable as well as multi-
variable calculus, and adequately answered all the concerns expressed above.
As years went by, and the size of our manuscript grew, we developed a better
appreciation for the fraternity of authors of books, especially of serious books
on calculus and real analysis. It was clear that choices had to be made. Along
the way, we decided to separate out one-variable calculus and multivariable
calculus. Our treatment of the former is contained in A Course in Calculus
and Real Analysis, hereinafter referred to as ACICARA, published by Springer,
New York, in its Undergraduate Texts in Mathematics series in 2006.

The present book may be viewed as a sequel to ACICARA, and it caters
to theoretical as well as practical aspects of multivariable calculus. The table
of contents should give a general idea of the topics covered in this book. It
will be seen that we have made certain choices, some quite standard and
some rather unusual. As is common with introductory books on multivariable
calculus, we have mainly restricted ourselves to functions of two variables.
We have also briefly indicated how the theory extends to functions of more
than two variables. Wherever it seemed appropriate, we have worked out the
generalizations to functions of three variables. Indeed, as explained in the first
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chapter, there is a striking change as we pass from the one-dimensional world
of R and functions on R to the two-dimensional space R? and functions on
R2. On the other hand, the work needed to extend calculus on R? to calculus
on the n-dimensional space R™ for n > 2 is often relatively routine. Among
the unusual choices that we have made is the noninclusion of line integrals,
surface integrals, and the related theorems of Green, Gauss, and Stokes. Of
course, we do realize that these topics are very important. However, a thorough
treatment of them would have substantially increased the size of the book or
diverted us from doing justice to the promise of developing, wherever possible,
notions and results analogous to those in one-variable calculus. For readers
interested in these important theorems, we have suggested a number of books
in the Notes and Comments on Chapter 5.

The subject matter of this book is quite classical, and therefore the novelty,
if any, lies mainly in the selection of topics and in the overall treatment. With
this in view, we list here some of the topics discussed in this book that are nor-
mally not covered in texts at this level on multivariable calculus: monotonicity
and bimonotonicity of functions of two variables and their relationship with
partial differentiation; functions of bounded variation and bounded bivaria-
tion; rectangular Rolle’s and mean value theorems; higher-order directional
derivatives and their use in Taylor’s theorem; convexity and its relation with
the monotonicity of the gradient and the nonnegative definiteness of the Hes-
sian; an exact analogue of the fundamental theorem of calculus for real-valued
functions defined on a rectangle; cubature rules based on products and on tri-
angulation for approximate evaluations of double integrals; conditional and
unconditional convergence of double series and of improper double integrals.

Basic guiding principles and the organizational aspects of this book are
similar to those in ACICARA. We have always striven for clarity and precision.
We continue to distinguish between the intrinsic definition of a geometric no-
tion and its analytic counterpart. A case in point is the notion of a saddle
point of a surface, where we adopt a nonstandard definition that seems more
geometric and intuitive. Complete proofs of all the results stated in the text,
except the change of variables formula, are included, and as a rule, these do
not depend on any of the exercises. Each chapter is divided into several sec-
tions that are numbered serially in that chapter. A section is often divided
into several subsections, which are not numbered, but appear in the table
of contents. When a new term is defined, it appears in boldface. Definitions
are not numbered, but can be located using the index. Lemmas, propositions,
examples, and remarks are numbered serially in each chapter. Moreover, for
the convenience of readers, we have often included the statements of certain
basic results in one-variable calculus. Each of these appears as a “Fact,” and
is also serially numbered in each chapter. Each such fact is accompanied by a
reference, usually to ACICARA, where a proof can be found. The end of a proof
of a lemma or a proposition is marked by the symbol O, while the symbol <
marks the end of an example or a remark. Bibliographic details about the
books and articles mentioned in the text and in this preface can be found in
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the list of references. Citations appear in square brackets. Each chapter con-
cludes with Notes and Comments, where distinctive features of exposition are
highlighted and pointers to relevant literature are provided. These Notes and
Comments may be collectively viewed as an extended version of the preface,
and a reader wishing to get a quick idea of what is new and different in this
book might find it useful to browse through them. The exercises are divided
into two parts: Part A, consisting of relatively routine problems, and Part B,
containing those that are of a theoretical nature or are particularly challeng-
ing. Except for the first section of the first chapter, we have avoided using the
more abstract vector notation and opted for classical notation involving ex-
plicit coordinates. We hope that this will seem more friendly to undergraduate
students, while relatively advanced readers will have no difficulty in passing
to vector notation and working out analogues of the notions and results in
this book in the general setting of R™.

Although we view this book as a sequel to ACICARA, it should be em-
phasized that this is an independent book and can be read without having
studied ACICARA. The formal prerequisite for reading this book is familiarity
with one-variable calculus and occasionally, a nodding acquaintance with 2 x 2
and 3 x 3 matrices and their determinants. It would be useful if the reader has
some mathematical maturity and an aptitude for mathematical proofs. This
book can be used as a textbook for an undergraduate course in multivariable
calculus. Parts of the book could be useful for advanced undergraduate and
graduate courses in real analysis, or for self-study by students interested in
the subject. For teachers and researchers, this may be a useful reference for
topics that are skipped or cursorily treated in standard texts.

We thank our parent institution, II'T Bombay, and in particular its Depart-
ment of Mathematics for providing excellent infrastructure. Financial assis-
tance received from the Curriculum Development Cell at IIT Bombay is grate-
fully acknowledged. We are indebted to Rafikul Alam, Aldric Brown, Dinesh
Karia, Swanand Khare, Rekha Kulkarni, Shobhan Mandal, Thamban Nair,
S. H. Patil, P. Shunmugaraj, and especially R. R. Simha, for a critical reading
of parts of this book and many useful suggestions. We thank Maria Zeltser
for reviewing the entire book. We are especially thankful to Arunkumar Patil,
who is mainly responsible for drawing the figures in this book. Thanks are also
due to Ann Kostant and her colleagues at Springer, New York, for excellent
cooperation, to C. L. Anthony for typing a substantial part of the manuscript,
and to David Kramer for his thorough copyediting. Last, but not least, we ex-
press our gratitude toward Sharmila Ghorpade and Nirmala Limaye for their
continued support. We would appreciate receiving comments, suggestions, and
corrections. A dynamic errata together with relevant information about this
book will be posted at http://www.math.iitb.ac.in/~srg/acimc, and we
encourage the reader to visit this website for updates concerning this book.

Mumbai, India Sudhir Ghorpade
August 2009 Balmohan Limaye
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1

Vectors and Functions

Typically, a first course in calculus comprises of the study of real-valued func-
tions of one real variable, that is, functions f : D — R, where D is a subset
of the set R of all real numbers. We shall assume that the reader has had a
first course in calculus and is familiar with basic properties of real numbers
and functions of one real variable. For a ready reference, one may refer to
[22], which is abbreviated throughout the text as ACICARA. However, for the
convenience of the reader, relevant facts from one-variable calculus will be
recalled whenever needed.

The basic object of our study will be the n-dimensional (Euclidean)
space R" consisting of n-tuples of real numbers, namely,

R" := {(xl,...,xn) BRI ) ER}?

and real-valued functions on subsets of R". Whenever we write R", it will be

tacitly assumed that n € N, that is, n is a positive integer. Elements of R™
are sometimes referred to as vectors in n-space when n > 1. In contrast, the
elements of R are referred to as scalars. Given a vector x = (z1,...,2,) in
R™ and 1 <7 < n, the scalar z; is called the ith coordinate of x.

The algebraic operations on R can be easily extended to R" in a com-
ponentwise manner. Thus, we define the sum of x = (z1,...,2,) and
y= (w1, .. ,yn) tobe x+y:= (1 +y1,...,2Zn + yn). It is easily seen that
addition defined in this way satisfies properties analogous to those in R. In
particular, the zero vector 0 := (0,...,0) plays a role similar to the number
0 in R. We might wish to define the product of (x1,...,x,) and (y1,...,yn)
to be (z1y1,...,Tnyn). However, this kind of componentwise multiplication
is not well behaved. For example, the componentwise product of the nonzero
vectors (1,0) and (0,1) in R? is the zero vector (0,0), and consequently, the
reciprocals of these nonzero vectors cannot be defined. As a matter of fact,
there is no reasonable notion whatsoever of division in R™, in general. (See
the Notes and Comments at the end of this chapter.) Moreover, as explained
later, the order relation on R extends only partially to R” when n > 1.

S.R. Ghorpade and B.V. Limaye, 4 Course in Multivariable Calculus and Analysis, 1
Undergraduate Texts in Mathematics, DOI 10.1007/978-1-4419-1621-1 1,
© Springer Science + Business Media, LLC 2010
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For these reasons, the theory of functions of several variables differs sig-
nificantly from that of functions of one-variable. However, once n > 1, there
is not a great deal of difference between the smaller values of n and the larger
values of n. This is particularly true with the basic aspects of the theory of
functions of several variables that are developed here. With this in view and
for the sake of simplicity, we shall almost exclusively restrict ourselves to the
case n = 2. In this case, the space R" can be effectively visualized as the
plane. Also, graphs of real-valued functions of two variables may be viewed
as surfaces in 3-space. More generally, a surface in 3-space can be given by
(the zeros of) a function of three variables. With this in mind, we shall also
occasionally allude to R? and to real-valued functions of three variables.

In the first section below we discuss a number of preliminary notions con-
cerning vectors in R and some important types of subsets of R". Next, in
Section 1.2, we develop some basic aspects of (real-valued) functions of two
variables. Finally, in Section 1.3, we discuss some useful transformations or
coordinate changes of the 3-space R3.

1.1 Preliminaries

We begin with a discussion of basic facts concerning algebraic operations,
order properties, elementary inequalities, important types of subsets, etc. In
these matters, there is hardly any simplification possible by restricting to R?,
and thus we will work here with R” for arbitrary n € N.

Algebraic Operations

We have already discussed the notion of addition of points in R™ and the
fact that the corresponding analogue of algebraic properties in R holds in R™.
More precisely, this means that the following properties hold. Note that each
of these is an immediate consequence of the corresponding properties of real
numbers. (See, for example, Section 1.1 of ACICARA.)

Al. x+(y+2)=(x+y)+zforalx,y,zecR"

A2. x+y=y+x foralx,y € R".

A3. x+0=x for all x € R".

A4. Given any x € R™, there is X' € R™ such that x +x = 0.

These properties may be used tacitly in the sequel. As indicated earlier,
we do not have a good notion of multiplication of points in R"™ when n > 2.
But we have useful notions of scalar multiplication and dot product that are
defined as follows.

Given any ¢ € R and x = (21, ...,2,) € R", we define

x = (ex1,. .., cxy).
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This is referred to as the scalar multiplication of the vector x by the scalar
c. Geometrically speaking, the scalar multiple ¢x corresponds to stretching
or contracting the vector x according as ¢ > 1 or 0 < ¢ < 1, whereas if
¢ < 0, then e¢x corresponds to the reflection of x about the origin followed by
stretching or contracting.

Given any x = (21,...,2,) and y = (y1,...,yn) in R™ the dot product
(also known as the inner product or the scalar product) of x and y is the
real number denoted by x -y and defined by

Xy =z + Ty

The dot product permits us to talk about the “angle” between two vectors.
We shall explain this in greater detail a little later.

We also have an analogue of the notion of the absolute value of a real
number, which is defined as follows. Given any x = (z1,...,2,) € R", the
norm (also known as the magnitude or the length) of x is the nonnegative
real number denoted by |x| and defined by

|x| ::\/x~x:\/x%+~-~+x%.

Geometrically speaking, the norm |x| represents the distance between x and
the origin 0 := (0,...,0). More generally, for any x,y € R", the norm of their
difference, that is, |x — y|, represents the distance between x and y. A vector
u in R” for which |u| = 1 is called a unit vector in R". For example, in R?
the vectors i:= (1,0) and j := (0,1) are unit vectors.

Elementary properties of scalar multiplication, dot product, and the norm
are given in the following proposition. It may be remarked that the inequality
in (iv) below is a restatement of the Cauchy—Schwarz inequality as given in
Proposition 1.12 of ACICARA. But the proof given here is somewhat different.
The inequality in (v) is referred to as the triangle inequality.

Proposition 1.1. Given any r,s € R and x,y,z € R", we have

(i) (rs)x =r(sx), r(x+y) =rx+ry and (r + s)x = rx + sx,
i)x y=y'x,(x+y)-z=x-z+y-zandr(x-y)=(rx) -y =x-(ry),
(iii) |x| > 0; moreover, |x| =0 <= x =0,
(iv) [x-y| < |x[lyl,
v) [x +y| < [x|+ |yl
(vi) [rx| = r[[x|.

Proof. Properties listed in (i), (ii), and (iii) are obvious. The inequality in (iv)
is obvious if x = 0. Assume that x # 0. Let a := x-x, b:=x-y, and c : =y y.
Then by (iii), @ > 0. Given any ¢ € R, consider ¢(t) := at? +2bt + c. In view of
(i) and (ii), we have ¢(t) = (tx+y) - (tx +y), and hence by (iii), ¢(¢) > 0 for
all t € R. In particular, upon putting ¢ = —b/a and multiplying throughout
by a, we obtain ac — b? > 0, that is, b> < ac. Hence |b| < y/a+/c, which proves
(iv). The inequality in (v) follows from (ii) and (iv), since



4 1 Vectors and Functions
x+y[* = (x+y) (x+y) = xx+2xy+yy < [x[+20x||y|+|y[* = (|x]+]y])*.
The equality in (vi) is obvious. O

From parts (iii) and (iv) of Proposition 1.1, we see that if x,y € R™ are
any nonzero vectors, then (x-y/|x||y|) is in the closed interval [—1,1], that
is, the subset {r e R: —1 <r < 1} of R. We define the angle between x and
y to be cos™! (x - y/|x||y|). In other words, the angle between x and y is the
unique real number 0 € [0, 7] such that x -y = |x]||y| cos 6.

Order Properties

On R, there is a natural order relation < that permits us to compare any two
real numbers. In fact, given any a,b € R, we write a < b if a = b or if a is
to the left of b on the real line. As is well known, this order relation plays a
crucial role in the study of functions of one-variable. In R", the idea of one
vector being to the left of another does not seem to make sense, and it is
natural to ask whether there is an analogous order relation. To understand
this better, let us first give precise definitions of what is meant by an order
relation.

Let S be a set. A relation on S is a subset R of S x S; for z,y € S, if
the pair (z,y) is in R, then we write xRy and say that x is related to y by
the relation R. A relation < on S is called a partial order on S if for any
x,y, z € S, the following three properties are satisfied: (i) [reflexivity] = < z,
(ii) [transitivity] if <y and y < z, then x < z, and (iii) [antisymmetry]
if t <yandy <z, then x = y. If < is a partial order on S, then S together
with the relation < is called a partially ordered set, or simply a poset.
If S is a poset, then for any z,y € S, it is customary to write x > y as an
equivalent form of y < x. A total order, or simply an order, on S is a partial
order < on S such that z <y or y < z for every z,y € S. If < is a total
order on S, then the set S together with the relation < is called a totally
ordered set or a linearly ordered set.

For example, the natural order on R is a total order. It is clear that a
total order is a partial order, but the converse need not be true. For instance,
suppose on the set N of positive integers, we define m < n if m | n, that is,
if m divides n. Then it is easily seen that < is a partial order on N, but not
a total order on N. What makes the natural order on R particularly useful in
the study of functions of one variable is not only the fact that it is a total
order, but also that it has many useful properties. First, it is compatible with
the algebraic operations, that is, for any z,y,z € R and ¢ € R, we have

r<y=x+z<y+z and cx<cy if ¢>0, while cx > cy if ¢<0.
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Further, the natural order on R has the archimedean property, which can
be stated as follows:!

For any z,y € R with x > 0 and x # 0, there is k € N such that kz > y.

Last, but not least, the natural order on R has the least upper bound property.
To explain this, let us first note that if S is a poset, then a subset D of S is said
to be bounded above if there is @ € S such that z < « for all x € D; any
such « is called an upper bound of S. If a subset D of S is bounded above,
then an element M of S is called a least upper bound or a supremum of
D if M is an upper bound of S and M < « for every upper bound « of D. It
is clear that if D C S and D has a least upper bound M, then M is unique,
and we shall denote it by sup S. Similarly, a subset D of a poset S is said to
be bounded below if there is 8 € S such that § < x for all x € D; any such
[ is called a lower bound of S. If a subset D of S is bounded below, then
an element m of S is called a greatest lower bound or an infimum of D if
m is a lower bound of S and 5 < m for every lower bound [ of D. Again it is
clear that if D C .S and D has a least upper bound m, then m is unique, and
we shall denote it by inf S.

Now the least upper bound property for a poset S can be stated as
follows: Every nonempty subset of S that is bounded above has a supremum in
S. A key fact about the real numbers is that the set R together with its natural
total order has the least upper bound property. In the case of R™, it is possible
to define a total order, known as the lexicographic order, which is compatible
with the algebraic operations of addition and scalar multiplication (Exercise
1), but it satisfies neither the archimedean property nor the least upper bound
property. (See Exercise 32 as well as the Notes and Comments at the end of
this chapter.) However, there is a more natural partial order on R™, described
below, which not only is compatible with the algebraic operations on R", but
also satisfies the least upper bound property. Given any x = (1, ...,x,) and
vy = (y1,--.,yn) in R" we define

x<y<=ux; <y, foralli=1,... n.

Clearly, this is a partial order on R", and it may be called the product order
or the componentwise order on R". If n > 1, then the product order on R™
is not a total order; for example, if x := (1,0,0,...,0) and y := (0, 1,0,...,0),
then neither x <y nor y < x. However, the product order has a number of
nice properties listed in the proposition below.

Proposition 1.2. Let < denote the product order on R™. Then for r;s € R
and x,y,z € R™, we have the following:

! The archimedean property for R is often stated as follows: Given any = € R with
x > 0, there is £ € N such that £ > x. The formulation given here is slightly
different, but obviously equivalent. It has the advantage that it makes sense in
the context of R as well.
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(i) Given any x,y € R™ with x <y, we have x +z <y + z for all z € R";
also, for any ¢ € R, we have cx < cy if ¢ >0, and cx > ¢y if ¢ < 0.
(ii) For any x = (x1,...,2n) andy = (Y1, ..., Yn) in R™ such that x; > 0 and
x; #0 for eachi=1,...,n, there is k € N such that kx >y.
(iii) Every nonempty subset of R™ that is bounded above has a supremum in
R™. Likewise, every nonempty subset of R™ that is bounded below has an
nfimum in R™.

Proof. The properties listed in (i) are obvious. To prove (ii), use the archimedean
property on R to find k; € N such that k;z; > y; for each i = 1,... n.
Now k := max{ki,..., k,} satisfies kz; > y; for all i = 1,...,n, and in
particular, kx > y. Finally, let D be a nonempty subset of R™. Then for
1 <@ < n, the set D; consisting of the ith coordinates of the elements of D
is a nonempty subset of R. If D is bounded above, then so is each D;, and if
M; :=sup D;, then M := (M, ..., M,) is clearly the supremum of D in R™.
Likewise, if D is bounded below, then so is each D;, and if m; := inf D;, then
m := (mq,...,my,) is clearly the infimum of D in R™. O

Remark 1.3. If D is a nonempty bounded subset of R™, then by part (iii) of
Proposition 1.2, supremum and infimum (with respect to the product order)
of D exist, and it is clear that these are unique. However, if n > 1, then the
supremum and infimum can be far away from the elements of D. For example,
if D:={x=(z1,72) € R?:0 <1 <land 23 =1— 21}, then M := (1,1)
is the supremum of D and m := (0,0) is the infimum of D, and we have
Ix — M| =|x —m|>1/y2 for all x € D. &

Intervals, Disks, and Bounded Sets

Let us begin by recalling the general notion of an interval in R. To this end,
given any a,b € R, let I,; denote the closed interval between a and b. In
other words, I,, = [a,b] if a < b, while I, = [b,a] if b < a; equivalently,
I, = [min{a, b}, max{a,b}]. A subset I of R is said to be an interval if
I, € I for every a,b € I. It is well known and elementary to see that a
subset of I is an interval if and only if it is one among the familiar types of
intervals, namely an open interval or a closed interval or a semiopen interval
or semi-infinite interval or the doubly infinite interval R. (See, for example,
Proposition 1.7 of ACICARA.) We are now ready to define an analogous notion
in R™.

Given any a = (a1,...,a,) and b = (by,...,b,) in R™, let

n

Tap = lay by X o X 1oy b

A subset [ of R™ is said to be an n-interval if I, 1, C I for every a,b € I. For
example, if I1,..., I, are intervals in R, then I; x --- X I, is an n-interval. It
turns out that every n-interval is of this form.
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Proposition 1.4. Let I C R" be an n-interval. Then I = 11 x --- X I, for
some intervals Iy, ..., I, in R.

Proof. For 1 < j < n, let I; denote the set of all possible jth coordinates of
elements of I, that is, let

I; == {a € R : there is a = (a1,...,a,) € I such that a; = a}.

Let a,b € I;. Then there arec a = (a1,...,a,) and b = (b1,...,b,) in I such

that a; = @ and b; = b. Now, if € I, then (a1,...,aj-1,%,aj41,...,a0n)
is in Iap and hence in I; thus « € I;. This shows that each I; is an interval.
Next, it is clear that I C I; x --- x I,. To prove the other inclusion, let
x := (z1,...,2,) € Iy X -+ x I,. Then there are a; = (a;1,...,a5n) € I
such that a; ; = x; for j =1,...,n. Now let u; = (z1,...,25,0; 41, --,0jn)
for j = 1,...,n. Observe that w; = (z1,a1,2,...,a1,,) = a1 € I. Since ay =
(a21,%2,a23,...,02,), we see that us = (z1,22,a2,3,...,02) € Iy, a, C I.
Next, since ag = (as,1,a3,2, 23,034, ...,03,) € I, we see that ug € Iy, a, C 1.
Continuing in this manner, we see that w; € Iy, , a; €I for j =2,...,n. In
particular, x =u, € I. Thus I = I; x --- X I,,. O

As a special case of the above proposition, we note that every 2-interval
in R? is of the form

I><J::{(m,y)ERQ:erandyeJ},

where I and J are intervals in R. This fact will be used tacitly in the sequel.

An n-interval of the form Iy x --- x I,,, where each of the I1,...,I, is a
closed and bounded interval in R, is called a hypercuboid in R™. In other
words, a hypercuboid is a subset of R™ of the form {x € R" : a < x < b}
for some a,b € R™. Note that this is nonempty if and only if a < b. A
hypercuboid in R™ shall be referred to as a cuboid when n = 3 and as a
rectangle when n = 2.

In the local study of a function of one variable near a point ¢ € R, it
is often helpful to consider symmetric open intervals about ¢, that is, open
intervals of the form (¢ — r, ¢+ r), where r is a positive real number. In the
case of R", the corresponding role is played by sets that look like open disks
or open squares when n = 2. General definitions are given below. These may
be easier to follow if one notices that the symmetric open interval (¢ —r,c+7)
can be viewed as the set {x e R: |z —¢| <7}.

Given any ¢ = (c1,...,¢,) € R" and any r > 0, we define

Sr(c) i={x=(x1,...,2n) ER" : Jx; —¢;| <rfori=1,...,n}

and
B,(c) ={x=(z1,...,2p) ER" 1 |[x — | < r}.

For example, if n = 2, then S,(c) looks like a square (with its boundary
excluded) with ¢ = (¢1,¢2) at its “center” and each side having length 2r
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Fig. 1.1. The open square S1(0,0) and the open disk B1(0,0).

(Figure 1.1), whereas B,(c) looks like a disk (with its boundary excluded)
centered at ¢ = (c1,c2) and of diameter 27 (Figure 1.1). Thus when n = 2,
we shall refer to S,.(c) as the open square centered at c of radius r and
to B, (c) as the open disk centered at c of radius r. When n = 2 and
c = (c1,c2), we will often write S, (c1, c2) in place of S,(c).

A subset D of R"™ is said to be bounded if it is bounded above as well
as bounded below, that is, if there are a,b € R™ such that a < x < b for
all x € D. Equivalently, D is bounded if there is r > 0 such that D C S,(0).
For example, if D := {x € R? : |x| < 1}, then D is bounded, whereas its
complement R? \ D = {x € R? : x| > 1} is not bounded.

If a subset D of R™ is nonempty and bounded, then we define the diameter
of D, denoted by diam(D), to be the real number

diam(D) :=sup{|x —y| : x,y € D}.

Roughly speaking, the diameter of a nonempty bounded set is the largest
possible distance between any two of its points. For example, if R is a rectangle
of side lengths a, b, then diam(R) = v/a2 + b2.

Line Segments and Paths
Let ¢,d € R™. The line segment joining c and d is defined to be the subset
{1—=t)c+td:te]0,1]}

of R™. Note that the endpoints ¢ and d correspond to the parameter values
t =0 and t = 1, respectively. Given any D C R", we say that the line segment
joining ¢ and d lies in D if (1 —¢)c+td € D for all ¢t € [0, 1].

If n = 1, a line segment is essentially the only way of joining ¢ and d.
But if n > 1, then there is more room to move about, and the points ¢
and d can be joined by many different paths. Formally, a path in R™ is an
n-tuple (z1,...,2,) of continuous functions z1,...,z, : [a,3] — R, where
a,f € R with a < (. Often we will simply say that the path is given by
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(x1(t),...,xn(t)), t € [a, f]. Tt is then understood that «, 5 € R with o < 3
and x1,...,, are continuous functions from [«, 5] to R.

Let I" be a path in R™ given by (z1(t), ..., 2,(t)), t € [a, ]. The endpoints
(z1(a),...,zn(a)) and (x1(06),...,x,(0)) are called the initial point and
the terminal point of I', respectively. If we let ¢ := (z1(a),...,z,(«)) and
d:= (1(8),...,2,(B)), then I' is said to be a path from ¢ to d, or a path
joining ¢ to d. Given any D C R", we say that the path I" lies in D if
(x1(t),...,xn(t)) € D for all t € [a, 3].

The two ways of connecting points in R™ (by a line segment or by a path)
lead to the following definitions. A subset D of R™ is said to be

1. convex if the line segment joining any two points of D lies in D,
2. path-connected if any two points of D can be joined by a path that lies
in D.

Examples 1.5. (i) Given any r € R and ¢ € R", the sets S,.(c) and B,.(c) are
convex. This follows from the definition of a line segment and the triangle
inequality (part (v) of Proposition 1.1).

(ii) If D C R™ is convex, then for any ¢ = (¢1,...,¢,) and d = (dy,...,dy,)
in D, the path corresponding to the line segment joining c to d, that is,
the path given by ((1 —t)cy +tdy,..., (1 —t)c, +tdy), t € [0,1], lies in
D. Hence D is path-connected. Thus every convex set is path-connected.
However, the converse is not true. For example, if D := R? \ $1(0,0) is
the complement of the open square of radius 1 centered at the origin in
R?, then D is path-connected, but D is not convex. (See Exercise 5.)

(iii) On R, the notions of a convex set and a path-connected set coincide.
Indeed, if D C R, then

D is convex <= D is path-connected <= D is an interval in R.

The equivalence of the three notions follows from the definitions and the
intermediate value theorem in R, which implies that if = : [a, 8] — R is
continuous, then z ([c, 3]) is an interval in R.

(iv) If I is an n-interval, then using Proposition 1.4, we see that I is a convex
subset of R™; in particular, by (ii) above, I is path-connected.

(v) Denote, as usual, by Q the set of all rational numbers, and consider
D :=Q" = {(r,....,mn) € R® : ry,....7, € Q}. Then D is not path-
connected. Indeed, if D were path-connected, then by restricting to one
of the coordinates, we find that Q is path-connected, and hence by (iii)
above, Q would be an interval in R. But of course, Q is not an interval in
R because we know (for example, from Proposition 1.6 of ACICARA) that
between any two rational numbers, there is an irrational number. &

For more examples, see Exercises 5, 6, and 8.
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1.2 Functions and Their Geometric Properties

In this section we shall restrict to R” with n = 2 and develop a number of
basic notions concerning the central object of our study, namely, a function
of two variables. We give basic examples of functions, and note that there are
two broad types: algebraic functions and transcendental functions. Prominent
among the former are the polynomial functions and rational functions. Next,
we consider a number of geometric properties of functions. Most of these prop-
erties are intimately related to notions such as continuity and differentiability
that are studied in later chapters. What is of the essence here is to understand
the intrinsic and geometric nature of these properties, and to realize that basic
aspects can be studied without recourse to continuity and differentiability.

Basic Notions

A (real-valued) function of two variables is simply a function f : D — R,
where D is a subset of R?. For instance, if D := B1(0,0), then f(x,y) :=
V1 —122—y? for (r,y) € D defines a function f : D — R. Composites of
a function such as f : D — R can be formed in at least three ways. For
example, given any E C R such that f(D) C E and a function g : E — R, we
can form the composite g o f : D — R. Moreover, given any £ C R and two
functions x,y : E — R such that (z(¢),y(t)) € D, we can form the composite
F : E — R defined by F(t) := f(z(t),y(t)) for t € E. Similarly, if £ C R?
and z,y : E — R are such that (z(u,v),y(u,v)) € D, then we can form the
composite F' : E — R defined by F(u,v) := f(x(u,v),y(u,v)) for (u,v) € E.

Sums, products, and scalar multiples of real-valued functions of two vari-
ables are given by pointwise addition, multiplication, and scalar multiplica-
tion, respectively. Thus, given any D C R? and f,g: D — R and r € R, we
let f+g, fg, and rf be the functions from D to R defined by (f + g)(z,y) :=
f(z,y) + g(z,y), (fo)(z,y) == f(z,y)9(z,y), and (rf)(z,y) = rf(z,y) for
(z,y) € D. Further, if ¢ is such that g(x,y) # 0 for all (x, y) € D, then the quo-
tient f/g is the function from D to R defined by (f/g)(z,y) := f(z,v)/9(z,v)
for (z,y) € D. Moreover, if f is such that f(x,y) > 0 for all (z,y) € D,
then for any r € R, the rth power f” is the function from D to R defined by
[ (x,y) :== f(x,y)" for (x,y) € D. Sometimes, we write f < g to mean that
f(z,y) < g(x,y) for all (z,y) € D.

Given any D C R? and f : D — R, the graph of f is defined to be the
subset {(z, y, f(z,v)) : (z,y) € D} of R?; in other words, the graph of f is
the surface in R? given by 2z = f(x,y), (z,y) € D. For example, the graph of
f:B1(0,0) — R defined by f(z,y) := /1 — 22 — y2 is an upper hemisphere,
whereas the graph of f : R? — R defined by f(z,y) = 2%+ y? is a paraboloid.
(See Figure 1.2.)

In general, graphs of functions of two variables are difficult to draw, but
we can get some idea of the graph by looking at certain curves associated with
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Y Y

Fig. 1.2. The upper hemisphere z = \/1 — 22 — 42 and the paraboloid z = 22 +y2.

the function. For D C R? and f : D — R, the level curve of f corresponding
to any ¢ € R is the curve in R? given by f(z,y) = ¢, (z,y) € D, that is, the
subset {(x,y) € D : f(z,y) = ¢} of R?; the contour line of f corresponding
to any ¢ € R is the curve in R? obtained by intersecting the surface given by
z = f(x,y), (x,y) € D, with the horizontal plane given by z = ¢, that is, the
subset {(x,y, f(x,y)) € R3: (z,y) € D and f(x,y) = c} of R3.

Fig. 1.3. The level curves and the contour lines for the function f(z,y) := 2% + y°.

For example, if f : B;(0,0) — R is defined by f(z,y) := /1 — 22 — y2 for
(z,y) € B1(0,0), then the level curves of f are concentric circles centered at
the origin of radius < 1, while the contour lines of f are the circles on the
upper hemisphere obtained by intersecting it with planes given by z = ¢ as ¢
varies over [0, 1]. The level curves of f : R? — R defined by f(x,y) = 22 + ¢>
for (x,y) € R? are also concentric circles centered at origin (of any radius),
but for equally spaced values of ¢, the level curves f(z,y) = c for (z,y) € R?
are not as evenly placed as in the case of the hemisphere. (See Figure 1.3.)

We shall now discuss some basic examples of functions. The most basic
among these are polynomial functions. Before discussing these, let us first
recall a few basic notions from algebra.
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A polynomial in two variables z and y (with real coefficients) is a finite
sum of terms of the form cxz’y’, where i, j are nonnegative integers and ¢ € R;
here c is called the coefficient of the term and i+ j is called its total degree,
provided it is a nonzero term, that is, ¢ # 0. Two polynomials are equal if
they have identical nonzero terms. The zero polynomial is the polynomial
having all of its coefficients equal to zero. The total degree, or simply the
degree, of a nonzero polynomial is the maximum of the total degrees of its
nonzero terms. A nonzero polynomial is said to be homogeneous if all its
nonzero terms have the same total degree. For instance, 2°y + 2z* + y2 + 1
and 23 + 2%y + 62y? are polynomials of total degree 6 and 3 respectively; the
latter is homogeneous, while the former is not. Notice that we can evaluate a
polynomial at points of R2. Thus, if p(x,y) is a polynomial in the variables
x and y, then for any (x¢,y0) € R?, by substituting x¢ for x and yo for y in
p(z,y), we obtain a real number, denoted by p(xo, yo). Observe that if p(z,y)
is a homogeneous polynomial of degree d, then p(Azg, \yo) = A\¥p(w0, o) for
all (zo,90) € R? and X € R.

Let D C R? and let f : D — R be a function. If there is a polynomial
p(x,y) in two variables such that f(xo,y0) = p(zo,yo) for all (xo,yo) € D,
then f is said to be a polynomial function on D. In case D = R? or more
generally, when D = I x J, where both I and J are intervals containing
more than one point in R, the polynomial p(z,y) is uniquely determined by
the function f. (See Exercise 36.) So in this case we may talk about the
total degree or the coefficients of a polynomial function f. We say that f
is a rational function on D if there are polynomials p(x,y) and ¢(z,y)
in two variables such that g(xo,yo) # 0 for any (zo,y0) € D and f(xo,y0) =
p(xo,y0)/q(x0,yo) for all (zg,yo) € D. The polynomials p(x,y) and ¢(z,y) are
not uniquely determined by the rational function f even when D = R?. For
example, (3 —22+x—1)/(2%y%+22%+y%+2) and (zy?+r—y>—1)/(y*+3y%+2)
define the same rational function on R2, but the corresponding numerators
and denominators are not the same. We say that f is an algebraic function
on D if z = f(x,y) satisfies an equation of the form

Pz, y)2" -i—pn_l(ac,y)z’“1 + -+ pi(z,y)z + po(z,y) =0 for (z,y) € D,

where n € N and po(z,y),p1(x,y),...,pn(x,y) are polynomials in two vari-
ables such that p,(z,y) is a nonzero polynomial. For example, f : B1(0,0) — R
defined by f(x,y) := /1 — 22 — y2 for (x,y) € B,(0,0), is an algebraic func-
tion, since z = f(x,y) satisfies the equation z? — (22 + y2 — 1) = 0 for
(z,y) € B1(0,0). Finally, if f is not an algebraic function, then it is said
to be a transcendental function. For example, f : R? — R defined by
f(z,y) = sin(zy) is a transcendental function because if z = f(z,y) were to
satisfy an equation of the kind above, then by substituting a suitable value for
y we would find that the sine function (of one variable) was algebraic, but we
know from one-variable calculus (for example, Proposition 7.29 of ACICARA)
that the sine function is transcendental. (See Exercise 11.)
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Another useful way to generate examples of functions is by combining
or piecing together known functions. For example, if I and J are intervals
in Rand ¢ : I — R and ¢ : J — R are functions of one variable, then
f,9:1xJ— R defined by

flzy) =¢(x) +¢(y) and  g(z,y) = ¢(2)P(y)

are functions of two variables on I x J. If Dy and D5 are subsets of R? and
fi: D1 — R and fo : Dy — R are functions of two variables such that
fi(z,y) = fa(z,y) for all (x,y) € Dy N Da, then f: Dy U Dy — R defined by

fl('r’y) if (x,y) € Dl)

Jww= {fz(x,y) if (z,y) € D2,

gives a function of two variables on D1 U Dy, which may be referred to as the
function obtained by piecing together f; and fs.

Bounded Functions

To talk about bounded functions, we use, in effect, the terminology applicable
to the range of a given function. The definitions given below are analogous
to the corresponding notions for functions of one variable. (See, for example,
page 22 of ACICARA.)

Let D C R? and let f : D — R be any function. We say that f is bounded
above on D if there is @ € R such that f(z,y) < « for all (z,y) € D; in this
case, we say that f attains its upper bound on D if there is (zg,y0) € D
such that sup{f(z,y) : (z,y) € D} = f(xo,y0). Likewise, we say that f
is bounded below on D if there is § € R such that f(z,y) > g for all
(x,y) € D; in this case, we say that f attains its lower bound on D if
there is (x0,y0) € D such that inf{f(x,y) : (z,y) € D} = f(x0,0). Finally,
we say that f is bounded on D if it is bounded above on D as well as bounded
below on D; in this case, we say that f attains its bounds on D if it attains
its upper bound on D and also attains its lower bound on D.

For example, f : R? — R defined by f(z,y) := (2% + %?) is bounded below
(but not bounded above) on R? and attains its lower bound (which is 0),
while f : R? — R defined by f(x,y) := —(2? + y?) is bounded above (but
not bounded below) on R? and attains its upper bound (which is 0). The
function f : R? — R defined by f(z,y) := xy is neither bounded below nor
bounded above on R?. Thus, each of these three functions fails to be bounded
on R2. (See Figures 1.2 and 1.9.) On the other hand, f : R? — R defined by
flz,y) = (2% + 3%)/(2® + y? + 1) is bounded on R? and it attains its lower
bound (which is 0), but does not attain its upper bound (which is 1). (See
Figure 1.4.)
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Fig. 1.4. Graphs of f(z,y) := —(2® +¢?) and f(z,y) = (2* +¢°)/(2® + > + 1).

Monotonicity and Bimonotonicity

The notion of product order on R? enables us to talk about monotonicity
of a function of two variables. There is also a related but distinct notion for
functions of two variables, called bimonotonicity, which will be discussed here.

Let D C R? and let f : D — R be any function. Also, let I and .J be
intervals in R such that I x J C D. We say that

1. f is monotonically increasing on I x J if for all (z1,y1), (z2,y2) in
I x J, we have

(z1,91) < (22,92) = f(z1,91) < f(22,92),

2. f is monotonically decreasing on I x J if for all (x1,y1), (x2,y2) in
I x J, we have

(z1,91) < (22,92) = f(21,91) > f(22,92),

3. f is monotonic on I x J if f is monotonically increasing on I x J or
monotonically decreasing on I x J,

4. f is bimonotonically increasing on I x J if for all (x1,y1), (z2,y2) in
I x J, we have

(x1,91) < (z2,92) = f(z1,92) + f(22,91) < f(@1,91) + f(22,92),

5. f is bimonotonically decreasing on I x J if for all (z1,y1), (z2,y2) in
I x J, we have

(x1,91) < (z2,92) = f(z1,92) + f(22,91) > f(21,91) + f(22,92),

6. f is bimonotonic on I x J if f is bimonotonically increasing on I x J or
bimonotonically decreasing on I x .J.
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It may be noted that f is monotonically increasing on I x J if and only if it
is (monotonically) increasing in each of the two variables, that is, for every
fixed x € I, the function y — f(x,y) from J to R is increasing on J, and
for every fixed y € J, the function z — f(z,y) from I to R is increasing
on I. Likewise for monotonically decreasing functions. The following result
gives conditions under which an increasing function in the variable z and an
increasing function in the variable y can be added or multiplied to obtain a
monotonic and/or bimonotonic function of two variables.

Proposition 1.6. Let I, J be nonempty intervals in R. Given any ¢ : I — R
andp:J — R, consider f: 1 xJ—R and g: 1 xJ— R defined by

fla,y) = o(@) +@y) and g(x,y) = d@)(y) for (z,y) € I xJ.
Then we have the following.

(i) f is monotonically increasing on I x J if and only if ¢ is increasing on
I and 1 is increasing on J.

(i1) Assume that ¢(x) > 0 and ¥(y) > 0 for all x € I, y € J, and also that
¢(zo) > 0 and ¥(yo) > 0 for some xo € I and some yo € J. Then g is
monotonically increasing on I x J if and only if ¢ is increasing on I and
1 is increasing on J.

(iii) f is always bimonotonically increasing and also bimonotonically decreas-
mg on I x J.

(iv) If ¢ is monotonic on I and ) is monotonic on J, then g is bimonotonic on
I x J. More specifically, if ¢ and v are both increasing or both decreasing,
then g is bimonotonically increasing, whereas if ¢ is increasing and v is
decreasing, or vice-versa, then g is bimonotonically decreasing.

Proof. Both (i) and (ii) are straightforward consequences of the definitions.
Next, (iii) follows by noting that for all (z1,y1), (z2,y2) € I x J, we have
f(@1,y2) + f(z2,01) = f(@1,91) + f(22,92). Finally, the identity

9(x2,92) + 9(w1,51) — g(@1,y2) — 9(22,41) = (B(22) — P(21)) (V(y2) — ¥(¥1))
valid for all (z1,41), (z2,y2) € I x J, implies the assertions in (iv). O

Results similar to parts (i) and (ii) of Proposition 1.6 hold for monoton-
ically decreasing functions. (See Exercise 15.) Also, the converse of part (iii)
holds. (See Exercise 38.) The above proposition as well as the one below can
be used to generate several examples of monotonic and bimonotonic functions.

Proposition 1.7. Let I, J be nonempty intervals in R. The the set
I+J={z+y:x€l andye J}

is an interval in R. Further, let ¢ : I + J — R be any function and consider
f:IxJ— R defined by

flz,y) =z +y) for (z,y) €l xJ
Then we have the following:
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(i)
(i1)
(iii)
(iv)
Proof. Let x1,x9 € I and y1,y2 € J be such that x14+y; < z2+y2 and consider
r € R such that 21 + y1 < r < 23 + y2. Then thereis t € R with 0 < ¢ < 1 [in
fact, t = (x2+ya—7r)/(z2+y2—x1—y1 )] such that r = t(z1+y1)+(1—t)(z2+y2).
Hence if x :=tx1 + (1 — t)ze and y :=ty; + (1 — t)ys, then x € I, y € J and
r=x +y. Thus I 4+ J is an interval in R.

Both (i) and (ii) are straightforward consequences of the definitions. Next,
suppose ¢ is convex on I + J. Consider any (z1,y1), (z2,y2) € I x J with
(z1,11) < (22,y2) and (z1,y1) # (z2,y2). Observe that

¢ 1is increasing on I +J = f is monotonically increasing on I X J.
¢ is decreasing on I + J = f is monotonically decreasing on I X J.
¢ is convex on I + J = f is bimonotonically increasing on I X J.

¢ is concave on I +J = f is bimonotonically decreasing on I X J.

r14y2 = AMz1+y1)+ (1= (z2+y2) and zo+y1 = (1-A)(x14+y1)+A(z2+Yy2),

where A = (22 — 1) /(22 — 21 + Y2 — y1). Hence ¢ (x1 +y2) < Ap (1 +v1) +
(1=MN¢ (z2 +y2) and ¢ (22 +y1) < (1= A)@ (z1 + y1) + Ad (22 + y2) . Conse-
quently, ¢ (z1 + y2)+¢ (z2 + y1) < ¢ (21 +y1)+¢ (z2 + y2), that is, f(21,y2)+
fza,y1) < f(z1,y1)+ f(z2,y2). Thus f is bimonotonically increasing on I x.J.
This proves (iii). The proof of (iv) is similar. O

Examples 1.8. (i) Consider f : [—1,1] x [-1,1] — R defined by

(z+1)(y+1) ifzxt+y<0,

f(m,y) = {(m+2)(y+2) ifx+y>0.

If we fix yo € [—1,1] and consider the function ¢ : [-1,1] — R defined by

o(z) = (Yo+D(z+1) if —1<z< —yo,
: (o +2)(x+2) if —yp <z <1,

then it is easy to see that ¢ is increasing on [—1,1]. Also, if we fix z¢ €
[—1,1] and consider 1 : [-1,1] — R defined by

Wy) = (xo+D(y+1) if —1<y< —ux,
C @0+ 2)(y+2) if —x <y <1,

then it is easy to see that 1 is increasing on [—1,1]. It follows that f
is monotonically increasing on [—1,1] x [—1,1]. However, f is not bi-
monotonic on [—1,1] x [—1,1]. To see this, note that (0,0) < (1,1) and
FO, 1)+ f(1,0) =6+6 <4+9= f(0,0)+ f(1,1), whereas (—1,0) < (0,1)
and f(—=1,1)+ f(0,0) =3+4>0+6 = f(—1,0) + f(0,1).

(ii) Consider f : R? — R defined by f(z,y) := cosz + siny. Using Proposi-
tion 1.6, we readily see that f is bimonotonic, but not monotonic.
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(iii) Let p € R and let f : (0,00) X (0,00) — R be defined by f(z,y) :=
(z+y)P. Consider ¢ : (0,00) — R defined by ¢(t) := tP. Clearly, ¢ is twice
differentiable and ¢'(t) = pt?~1, while ¢ (t) = p(p — 1)t*~2 for t € (0, 00).
It follows that ¢ is decreasing if p < 0, increasing if p > 0, convex if either
p < 0orp>1, and concave if 0 < p < 1. Thus, using Proposition 1.7,
we see that f is monotonically decreasing and bimonotonically increasing
if p < 0, monotonically increasing and bimonotonically decreasing if 0 <
p < 1, and both monotonically and bimonotonically increasing if p > 1.
For another example of this kind, see Exercise 17. O

Remark 1.9. In Chapter 3, we shall define and study the notion of partial
derivatives of a function of two variables. It will be shown that a function
f of two variables is bimonotonically increasing if and only if the second-
order mixed partial derivative f,, is nonnegative, while f is bimonotonically
decreasing if and only if f;, is nonpositive. (See Proposition 3.55.) <&

Functions of Bounded Variation

In general, the sum of two monotonic functions need not be monotonic. For
example, f : [0,1]x[0,1] — R defined by f(x,y) := x—y is a sum of monotonic
functions (given by (z,y) — z and (z,y) — —y), but it is neither increasing
nor decreasing. On the other hand, since a monotonic function on a (closed)
rectangle is bounded (f : [a,b] X [¢,d] — R monotonic = the values of f
lie between f(a,c) and f(b,d)), sums of monotonic functions are bounded. In
fact, they satisfy a stronger property defined below.

Let a,b,¢,d € R with a <band ¢ < d, and let f : [a,b] X [¢,d] — R be any
function. Denote by Sy the subset of R consisting of finite sums of the form

n

Z |f (i yi) = f(@im1, yi-1)]

i=1

where n € N and (20, v0), - - -, (¥, yn) are any points in R? satisfying

(a,c) = (wo,90) < (¥1,91) <+ < (Tn—1,Yn—-1) < (Tn,Yn) = (b, d).

If the set Sy is bounded above, then f is said to be of bounded variation.
In this case, we denote the supremum of Sy by V(f), and call it the total
variation of f on [a,b] X [c,d].

We record below some elementary properties of functions of bounded vari-
ation. It may be noted that parts (ii) and (iii) of the proposition below can be
readily used to produce several examples of functions of bounded variation.
Henceforth, when we consider a rectangle of the form [a,b] X [c,d], it will be
tacitly assumed that a,b,c,d € R with a < b and ¢ < d.
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Proposition 1.10. Let f,g : [a,b] X [¢,d] — R and r € R. Then

(i) f is of bounded variation => f is bounded,
(ii) f is monotonic = [ is of bounded variation,
(iii) f, g are of bounded variation = f + g, rf, fg are of bounded variation.

Proof. (i) Assume that f is of bounded variation. Given any (x,y) € [a, b] x
[Cvd]v we have (a,c) = (SE y) (b d) and so |f(x,y) - f( a,c | + |f(b7 d) -
F(z.y)| < V(f). This implies that 21f(z, )| < |f(ac)| + [F(b,d)] + V(F).
Thus, f is bounded.

(ii) If f is monotonic, then for any n € N and (zo, yo), - - -, (Tn,yn) € R?

with (a,c¢) = (0, y0) < (21,y1) < -+ < (Tpn,yn) = (b,d), we have
D @iy = f@ioa,yio1)| = ’Z (f(zisyi) = f(@im1,9i-1)) |,
i=1 i=1

which reduces to | f(2n,yn) — f(x0,%0)|; hence f is of bounded variation and
moreover, V(f) = |f(b,d) — f(a,c)|.

(iii) Suppose f and g are of bounded variation. Using elementary properties
of the absolute value (parts (v) and (vi) of Proposition 1.1 with n = 1), we
see that V(f +g) < V(f) +V(g) and V(rf) = |[r|V(f). Moreover, if we let
M(f) 1= sup{If(@,p)| : (2.9) € [a,b] x [c,d]} and N (g) = sup{lg(z,)| :
(z,y) € [a,b] x [¢,d]}, then adding and subtracting appropriate quantities, we
obtain V(fg) < M(f)V(g) + M(g)V(f). This proves (iii). O

From parts (ii) and (iii) of Proposition 1.10, we see that sums of monotonic
functions are of bounded variation. We shall soon show that the converse is
also true. For this purpose, we need the following auxiliary result.

Lemma 1.11. If [ : [a,b] X [¢,d] — R is of bounded variation, then for any
(7,y) € [a,b] x [c,d], the restriction f|iqq)x[c,y] 5 of bounded variation and

Vv (f|[a,a:]><[c,y]) + |f(b’ d) - f(x,y)| < V(f)

Proof. Given any n € N and any (z0,y0), (z1,%1), - -, (Zn, yn) € R? satisfying
(CL,C) (x07y0) (xlayl) - < (xnayn) = (x7y)a we have

n

D U @isys) = f@ioa,gi-)| + £ (0,d) = fla,9)] < V().

i=1

Hence fl(4,2]xc,y) 18 Oof bounded variation and its total variation is at most

V() = 1f(b,d) = f(z, ). 0

If f:]a,b] X [c,d — R is of bounded variation, then we define the cor-
responding total variation function vs : [a,b] X [¢,d] — R by v¢(z,y) =
V( f |[a7x]x[c7y]). The following result gives the so-called Jordan decomposi-
tion of a function of bounded variation.
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Proposition 1.12. If f : [a,b] X [¢,d] — R is of bounded variation, then
there are unique functions g,h : [a,b] X [¢,d] — R such that g and h are
monotonically increasing, f = g — h, and vy = g + h.

Proof. Define g,h : [a,b] x [c,d] > R by g = 3(vs + f) and h = L(vf — f).
Clearly, f = g —h and vy = g + h. Let (z1,y1), (22,92) € [a,b] X [c,d] with
(z1,y1) < (z2,92). Applying Lemma 1.11 to the restriction f|(4 z,]x[c,yo]s W€
see that vy(z1,y1) + | f(x2,y2) — f(z1,y1)| < vg(z2,y2), and hence

9(2,2) — gen,) = 5 [op(2,2) — g, 90) + Fl ) — Fon, )] 20

as well as

HCe2,m) — (easun) = [og (2, 2) = vy (en, ) = fo2,) + S, )] 2 0,

Thus g and h are monotonically increasing. The uniqueness of g and h is
obvious from the conditions f = g — h and vy = g+ h. O

As remarked earlier, Proposition 1.12 gives a characterization of functions
of bounded variation. We have also seen that a function of bounded variation
need not be monotonic, that is, the converse of part (ii) of Proposition 1.10
is not true. We shall now give an example to show that a bounded function
need not be of bounded variation, that is, the converse of part (i) of Proposi-
tion 1.10 is not true. The same example shows that a bivariate function that
is monotonically increasing in one variable and monotonically decreasing in
the other need not be of bounded variation.
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Fig. 1.5. llustration of the function in Example 1.13 and the points (i, y;) of the
rectangle [0, 1] x [0, 1] that straddle the diagonal line y = x.
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Example 1.13. Consider f :[0,1] x [0,1] — R defined by

0 ifz <y,
fa,y) = {1 if x> y.
Clearly, f is a bounded function. But if we consider points of the rectangle
[0,1] x [0,1] that straddle the diagonal line y = x, then it is seen that there
is too much variation in the values of f. (See Figure 1.5.) For example, if
n € Nis even and for i = 1,...,n, we let (z;,v;) := (i/n,i/n) if i is even and
(i, yi) == (i/n, (i —1)/n) if i is odd, then we clearly have (0,0) = (zo,yo) <
(21,51) < -+ < (2, ) = (1,1) and

S f@iys) = f@i i) = [1=0[+[0 =1+ +[1=0/+ [0 — 1| = n.

i=1
It follows that f is not of bounded variation on [0, 1] x [0, 1]. <&

Remark 1.14. For further results on functions of bounded variation, see Ex-
ercises 43-46, 48, and 49. <&

Functions of Bounded Bivariation

Just as a sum of monotonic functions need not be monotonic, the sum of
bimonotonic functions need not be bimonotonic. Accordingly, we are led to
the following analogue of a function of bounded variation.

Let a,b,c,d € R with a < b and ¢ < d, and let f : [a,b] X [¢,d] — R be a
function. Denote by Ty the set of finite double sums of the form

ZZ |f(@i,y;) + f@im1,y5-1) — f(@ayi-1) = f(@ie1,95)]

i=1 j=1
where n,m € N and (z0,%0), - - -, (Zn, ¥m) are any points in R? satisfying
a=z9g<z1 < <xp1<zp=bandc=yo <y < <Ym_1 < Yym =d.

If the set T is bounded above, then f is said to be of bounded bivariation.
In this case, we denote the supremum of Ty by W(f), and call it the total
bivariation of f on [a,b] X [¢,d].

The properties below are analogous to those in Proposition 1.10, except
that part (i) needs an additional hypothesis (Example 1.19 (i)) and in part
(iii), one has to exclude products of bimonotonic functions (Example 1.19 (ii)).

Proposition 1.15. Let f,g: [a,b] X [¢,d] — R and r € R. Then:

(i) If f is of bounded bivariation and, in addition, [ is bounded on any two
adjacent sides of the rectangle [a,b] X [c,d], then f is bounded.



1.2 Functions and Their Geometric Properties 21

(ii) If f is bimonotonic, then f is of bounded bivariation.
(iii) If f and g are of bounded bivariation, then so are f+ g and rf.

Proof. (i) Assume that f is of bounded variation and f is bounded on the
two sides [a,b] x {c} and {a} % [¢,d]. Given any (x,y) € [a,b] X [¢,d], we have
a < z and ¢ < y. Hence |f(z,y) + f(a,c) — f(z,¢) — fla,y)| < W(f), and
so |f(z,y)| < |f(a,0)| + |f(z, )| + |f(a,y)] + W(f). This implies that f is
bounded. A similar argument applies if f is bounded on any of the other two
adjacent sides of [a, b] X [c, d].

(ii) If f is bimonotonic, then for any m,n € N and (x0,v0), - - -, (Tn, yn) in
R? with a = 29 < 71 <« .<zp=bandc=yo <y1 < -+ <y, =d, the
double sum

ZZ (@i, yi) + f(wim1, yi—1) — f(zi,y5-1) — f(@iz1,y5)]

is equal to | f(zn,yn) + f(20,90) — f(x0,yn) — f(zn,y0)]; so f is of bounded
bivariation and moreover, W (f) = |f(b,d) + f(a,c) — f(a,d) — f(b,¢)|.

(iii) Suppose f and g are of bounded bivariation. Using elementary prop-
erties of the absolute value, we see that W(f + ¢g) < W(f) + W(g) and
W (rf) = |r]W(f). This proves (iii). 0

From parts (ii) and (iii) of Proposition 1.15, we see that sums of bimono-
tonic functions are of bounded bivariation. We shall show that the converse
is also true. For this purpose, we need the following auxiliary result, which
is analogous to but a little more subtle than Lemma 1.11. We employ the
following notation and terminology.

Let a,b,¢,d € R with a < b and ¢ < d. A collection (xo,yo),- - -, (Tn, Ym)
of points in R? satisfying

a=x90<x < <2, =b and c=yo <y < <yn=4d

will be referred to as a collection of grid points of [a, b] x [¢,d]. If P is such
a collection of grid points of [a,b] X [¢,d] and f : [a,b] X [¢,d] — R is any
function, then we will denote by W (P, f) the following double sum

)= > > Nf @i yy) + F@in,yi1) = f(wi,y;-1) — @i, y:)l-

i=1 j=1

Note that the total bivariation W(f) of f is the supremum of W (P, f) as P
varies over all possible collections of grid points of [a,b] x [, d].

Lemma 1.16. If f : [a,b] x [¢,d] — R is of bounded bivariation, then for any
(x,y) € [a,b] X [¢,d], each of the restrictions f1, fa, f3, fa defined by

fi1:= f|[a,:c}><[c,y}v fa = f|[a,x]><[y7d}’ fs:= f|[$vb]><[cvy]’ fai= f|[va}x[y’d]
is of bounded bivariation and W (f) =W (f1) + W (f2) + W(fs) + W (f4).
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Proof. Assume that f is of bounded bivariation and fix (x,y) € [a,b] X [¢,d].
First, observe that if Py, P, P3, P, are any collections of grid points of the
rectangles [a,x] X [c,y], [a, 2] X [y,d], [x,b] X [¢,y], [x,b] X [y,d], respectively,
then by collating the grid points of P;, P, P3, Py, we obtain a collection P of
grid points of [a, b] X [¢, d] with W (P, f) = W (P, f1)+W (Pa, f2)+W (Ps, f3)+
W (Py, fa). In particular, 0 < W (P, f;) < W(P, f) < W(f) for i = 1,2,3,4.
This shows that each f; is of bounded bivariation and W(f;) < W(f) for
i=1,2,3,4. Moreover, W(P, f) < W (f1) + W(f2) + W(f3) + W(fs).

Next, observe that if Q is any collection of grid points of [a, b] X [¢, d] and if
P is obtained by adjoining (z,y) to @, then W(Q, f) < W(P, f). Now P can
be regarded as a collection of grid points of [a, b] X [¢, d] obtained by collating
certain collections of grid points of the rectangles [a, x] X [¢,y], [a, z] X [y, d],
[,b] X [¢,y], [x,b] X [y,d], and hence

W(Q, f) <W(P f) < W(f1) + W(f2) + W(f3) + W(fa).

Since @ is an arbitrary collection of grid points of [a, b] X [¢, d], it follows that
W(f) <W(f1)+W(f2)+W(fs)+W(fs). On the other hand, given any e > 0,
we can find collections Py, P2, Ps, Py of grid points of [a, z] X [¢,y], [a, 2] X [y, d],
[x,0] x [c,y], [x,b] x [y, d], respectively, such that W (f;) — § < W(F;, f;) for
i =1,2,3,4. Hence, if P denotes the collection of grid points of [a,b] X [c, d]
obtained by collating P;, P>, P53, Py, then we have

W(f1) + W(f2) + W(fs) + W(fa) —€
< W(Py, f1) + W(Ps, fa) + W(Ps, fa) + W (P, fa) = W(P, f) < W(f).

Since € > 0 is arbitrary, W(f) = W(f1) + W(f2) + W(f3) + W(fa). O

If f: [a,b] x [¢,d] — R is of bounded bivariation, then we define the
corresponding total bivariation function wy : [a,b] X [¢,d] — R by
wy(z,y) = W(f“ax]x[gy]). The following result gives the so-called Jordan
decomposition of a function of bounded bivariation.

Proposition 1.17. If f : [a,b] X [¢,d] — R is of bounded bivariation, then
there are unique functions g,h : [a,b] X [¢,d] — R such that g and h are
bimonotonically increasing, f = g —h, and wy = g+ h.

Proof. Define g, h : [a,b] X [¢,d] — R by g = %(wf + f)and h = %(wf —
f). Clearly, f = g — h and wy = g + h. Consider any (z1,y1), (22,%2) in
[a,b] x [¢,d] with (z1,y1) < (22,y2). Then the rectangle R := [a, z2] X [c,y2]
has four subrectangles Ry := [a,x1] X [¢,y1], R2 := [a,21] X [y1,¥2], Rs =
[z1, z2] X [, y1], and Ry := [x1, z2] X [y1, y2]. (See Figure 1.6.) Applying Lemma
1.16 to f|r, that is, to the restriction of f to R, we see that wy(z2,y2) =
Wi + Wy + W3 + Wy, where W, := W (f|g,) for i = 1,2,3,4. Moreover,
applying Lemma 1.16 t0 f|{a.zo]x[c,yi] @S Well as t0 flja.x1]x[c,ys]> We also see
that wy(xe,y1) = Wi + W3 and wy(z1,y2) = Wi + Wa. Now let us write
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(a,d) (b, d)

((17 yz) (51317 yz) E (Izy yz)

(a,y1) (z1, 1) (z2,91)

(av C) (1}1, C) (va C) (bv C)

Fig. 1.6. Typical positions of the points (z1,y1) and (x2,y2) in the proof of Propo-
sition 1.17 and the corresponding subrectangles.

1
9(x2,y2) + g(x1,y1) — g(@2, 1) — g(21,92) = 5 (A+B)

and
1
h(z2,y2) + h(z1,91) — h(z2,9y1) — h(z1,92) = 9 (A-B),
where
A= wy(2,y2) +wyp(x1,y1) — wi(T2, Y1) — Wi (T1,Y2)
and

B = f(x2,y2) + f(w1,91) — f(z2,951) — f(21,92).

Since A = (Wi + Wa + W3 + Wy) + Wiy — (W1 + W3) — (Wi + Wa) = Wy
and |B| < Wy, it follows that g and h are bimonotonically increasing. The
uniqueness of g and h is obvious, since f = g —h and wy = g + h. a

Remark 1.18. For further results on functions of bounded bivariation, see
Exercises 22, 43, 44, and 46-49. O

Examples 1.19. (i) Consider f: [0,1] x [0,1] — R defined by

(1/x)+ (1/y) ifx#0and y #0,

1/x ifz#0and y=0,
flz,y) = .

1/y ifz=0andy#0,

0 ifr=0and y=0.

Then f is of the form ¢(z) + ¢(y), and hence (by part (iii) of Propo-
sition 1.6), f is bimonotonic. In particular, f is of bounded bivariation.
But clearly, f is not bounded on any of the four sides of [0, 1] x [0, 1].
(As a consequence, f is not of bounded variation on [0,1] x [0, 1].) This
shows that the additional hypothesis in part (i) of Proposition 1.15 about
boundedness on two adjacent sides of the rectangle cannot be dropped.
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(ii) Comsider f,g: [0,1] x [0,1] — R defined by

1/z itz #0,

d = .
0 ifz=0 9(z.9) =y

f(x,y) = {

Clearly f and g are bimonotonic on [0, 1] x [0, 1]; indeed, each is a function
of the form ¢(z)+1(y). In particular, f and g are of bounded bivariation.
However, fg is not of bounded bivariation. Indeed, if fg were of bounded
bivariation, then by considering grids of the form (xo,yo),- -, (Tn, Ym),
where m = 1, yop = 0, and y; = 1, we see that f would be of bounded
variation. But then by part (i) of Proposition 1.10, f would have to be
bounded, which is not the case. Thus, we could not have included products
in the statement of part (iii) of Proposition 1.15.

(071)1 ) (1,1)

(0,0 o "

Fig. 1.7. Hlustration of the function in Example 1.19 (iii) and the points (x;,y;) of
the rectangle [0, 1] x [0, 1] that straddle the diagonal line y =1 — .

(iii) Consider f : [0,1] x [0,1] — R defined by

0 fr+y<l1,
fla,y) = :
1 ife+y>1.

Then f is monotonically increasing in [0,1] x [0,1]. Indeed, given any
(x1,9y1), (x2,y2) € [0,1] x [0,1] with (z1,11) < (22,y2), we have 1 +
y1 < xo + yo, and hence z1 + y; > 1 implies 2o + y2 > 1. So either
f(z1,91) = 0 < f(z2,y2) or f(z1,91) = 1, in which case f(x2,32) = 1.
Being monotonically increasing, f is of bounded variation on [0, 1] x [0, 1].
But if we consider points of the rectangle [0,1] x [0, 1] that straddle the
diagonal line y = 1 — z, then it is seen that there is too much bivariation
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in the values of f. (See Figure 1.7.) For example, if n € N and we let
x; ==1/n and y; == j/n for 0 < i,j <n, then

DO U @inyy) + f@in,yj1) = f@iyj1) = f@ior,y))]

i=1 j=1

n

> Z |f (ks Yn—rr1) + F(@h—1,Yn—k) — f(@k, Yn—k) — [(Th—1,Yn—kt1)]

k=1
=> 1+0-0-0]=n.
k=1
It follows that f is not of bounded bivariation on [0, 1] x [0, 1]. <&

Remark 1.20. The concepts of bimonotonicity and bounded bivariation in-
troduced in this chapter for functions of two variables can be extended to
n-fold monotonicity and bounded n-fold variation for functions of n variables.
To this end, it is useful to consider the difference operator A defined as fol-
lows. Given any a = (a1,...,a,) and b = (b1,...,b,) in R™ with a < b, that
is, a; < b; fori=1,...,n, and any f : [a,b] — R, define

ARf = k(c)f(c),

where the summation is over all ¢ = (¢q,...,¢,) € R" such that ¢; € {a;,b;}
fori=1,...,n, and for any such c,

1 if C; = bi,

k(c):=ki-+-kn, whereforl1<i<n, k; = )
-1 if¢; = ay.

For example, if n = 1, then Agllf = f(b1) — f(a1), while if n = 2, then

A F = F(b1,bo) + f(ar,a2) = f(br,a2) = f(ar, ba),
and if n = 3, then

AEZ?,?;,bjs))f = f(b1,b2,03) + f(b1,a2,a3) + f(a1,b2,a3) + f(a1,az,bs)
—f(b1,b2,a3) — f(a1,b2,b3) — f(b1,az2,b3) — f(a1,az,as).

Now, f is said to be n-fold monotonically increasing if AYf > 0 for all
X,y € [a,b] with x <y. The remaining concepts are defined analogously. <

Convexity and Concavity

The notions of convex and concave functions from one-variable calculus ad-
mit a straightforward analogue to functions of several variables, provided we
discuss convexity and concavity of a function on convex subsets of its domain.

Let D C R? and f : D — R be any function. Also, let A be a convex
subset of D. We say that
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1. fis convex on A if for all (z1,y1), (z2,y2) € A and t € (0,1), we have

F(A=t)(1,91) +t(z2,92)) < (1 —t)f(21,91) +tf(z2,92),

2. f is concave on A if for all (z1,v1), (z2,y2) € A and t € (0,1), we have

F(A=t)(z1,91) + t(z2,92)) > (L =) f(21,91) + tf (22, 92).

Changing the inequalities < and > to strict inequalities < and >, respectively,
in 1 and 2 above, we obtain the notions of strictly convex and strictly
concave functions.

Geometrically speaking, convex functions are those whose graph lies below
the triangle in the plane determined by three points on the graph. More
precisely, if D C R? is convex and not a line segment in R?, then f: D — R is
convex on D if and only if for any noncollinear points P; := (z;,v:), 1 = 1,2, 3,
in D and any (x,y) in the triangle with Pj, Py, P3 as its vertices, we have
flx,y) < g(z,y), where z = g(x,y) is the equation of the plane passing
through (z;,y:, f(z:,y:)) for i = 1,2,3. Similarly for concave functions. (See
Exercise 50.)

Examples 1.21. (i) If f : R> — R is the norm function on R? given by
f(x,y) == /22 +y2 for (z,y) € R?, then by part (v) of Proposition 1.1
we see that f is convex on R2.

(ii) Let I,J be intervals in R. Then I x J is a convex set in R?. Further, if
¢: I — Risconvexon I and ¢ : J — R is convex on J, then the function
f:IxJ — Rdefined by f(z,y) := ¢(z) + ¥(y) is convex on I x J. For
instance, f : R? — R defined by f(z,y) := €* + |y| for (z,y) € R? is
convex on R?.

(iii) If D C R? is convex and f : D — R is any function, then f is concave on
D if and only if — f is convex on D. Using this, (i) and (ii) above give rise
to examples of concave functions. O

Local Extrema and Saddle Points

The notions of local maxima and local minima for functions of one variable
extend easily to functions of two (or more) variables. Geometrically, the local
extrema correspond to the peaks and dips on the graph. Moreover, a new and
interesting phenomenon emerges, namely, that of a saddle point. To define the
latter, we first introduce some terminology concerning paths in R2.

Let I' be a path in R? given by (z(t),y(t)), t € [, 8]. The path I' is
said to pass through a point (zg,7¢) € R? if there is ty € (, 3) such that
(x(to),y(to)) = (xo,yo). As in one-variable calculus (for example, Section 4.1
of ACICARA), we say that the tangent to I" at a point (x(to), y(to)), where ¢y €
(a, B), is defined if z,y are differentiable at to and (2/(t0),y'(to)) # (0,0).
In this case, we will refer to the pair (z/(t9),y'(t0)) as the tangent vector
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to I' at (x(to),y(to)). In general, we will say that I" is a regular path if the
tangent is always defined, that is, if the functions z,y are differentiable on
(a, B) and (2'(t),y'(t)) # (0,0) for all ¢t € («, 3).

Let D C R? and let (0, 0) be an interior point of D. Suppose I lies in D,
that is, (x(t),y(t)) € D for all t € [a, B8], and I" passes through (x¢, yo), that
is, (zo,y0) = (x(t0),y(to)) for some ty € (o, ). Given any f : D — R, the
function F' : [, 8] — R given by F(t) := f(x(t),y(t)) is sometimes referred
to as the restriction of f to the path I'. We shall say that f has a local
maximum at (zg,y0) along I' if F' has a local maximum at ¢y. Likewise,
we say that f has a local minimum at (z,yo) along I" if F' has a local
minimum at tg.

Suppose I} and I are regular paths in R? given by (z1(t),y1(t)), t €
[a1, B1], and by (z2(t),y2(t)), t € [aa, O], respectively. Also, suppose both Iy
and Iy pass through a point (x¢,y0) € R?, so that there are t; € («a;, 3;) with
(x(t;),y(t;)) = (zo,y0) for ¢ = 1,2. Then Iy and I are said to intersect
transversally at (xo,yo) if the tangent vectors at (zo,yo) are defined and
are not multiples of each other, that is, (2 (¢1), v} (t1)) and (24 (¢2), y4(t2)) are
both different from (0,0) and there is no A € R such that (2} (t1),y1(t1)) =

A5 (t2), y5(t2))-

Fig. 1.8. A nonregular path I" and regular paths I, I'>, I'5; note that Iy and I»
as well as Iy and I3 intersect transversally, but > and I's do not.

For example, the path I" given by (¢2,3), t € [—1,1], is not a regular path.
(See Figure 1.8.) On the other hand, consider the paths Iy, Iy, and I's given
by (t,—t), (¢,t), and (2t + t2,2t — t2), respectively, with ¢t € [~1,1] in each
case. Each of these paths is regular and passes through the origin (0,0). The
tangent vectors to I, I's, and I3 at the origin are (1,—1), (1,1), and (2,2),
respectively. Hence I'y and I intersect transversally at (0,0); also, Iy and I3
intersect transversally at (0,0), but I and I's do not intersect transversally
at (0,0). (See Figure 1.8.)

Let D C R? and let (x9,y0) be an interior point of D. We say that a
function f: D — R has
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1. a local maximum at (g, yo) if there is § > 0 such that Ss(xo,y0) € D
and f(z,y) < f(2o,yo) for all (z,y) € Ss(z0, o),

2. a local minimum at (z,yo) if there is 6 > 0 such that Ss(xo,y0) € D
and f(‘r7y) > f(x07y0) for all (xvy) € st(xovyo)v

3. a saddle point at (z¢,yo) if there are regular paths Iy and I lying in D
and intersecting transversally at (xo,yo) such that f has a local maximum
at (zo,yo) along 'y, while f has a local minimum at (zg, yo) along I's.

As in the case of functions of one variable, we can define stronger versions
of the above notions in which the adjective strict is added. Thus, f: D — R
has a strict local maximum at (zg,yo) of D if there is § > 0 such that
Ss(z0,y0) € D and f(z,y) > f(zo,yo) for all (z,y) € Ss(zo,yo) With (z,y) #
(x0,y0)- A strict local minimum is defined similarly. Further, f is said to
have a strict saddle point at (xg,yo) if there are regular paths Iy and I
lying in D and intersecting transversally at (xo,yo) such that f has a strict
local maximum at (x,yo) along Iy, while f has a strict local minimum at
(x0,y0) along I%.

Examples 1.22. (i) The function f : R? — R defined by f(z,y) := — (2% +
y?) has a local maximum at (0,0). (See Figure 1.4.)

(i) The function f : R? — R defined by f(z,y) := 22+y? has a local minimum
at (0,0). (See Figure 1.2.)

(iii) The function f : R? — R defined by f(x,%) := zy has a saddle point at
(0,0). (See Figure 1.9.) To see this, consider the paths Iy and I'> given
by (t,—t), t € [-1,1], and by (t,t), t € [-1, 1], respectively. We have seen
that these are regular paths in R? that intersect transversally at (0,0).
Moreover, we have f(t,—t) = —t? and f(t,t) = t* for t € [~1,1]. Hence
f has a local maximum at (0,0) along I'1, and a local minimum at (0,0)
along .

(iv) The function f : R? — R defined by f(z,y) := x* + y> has neither
a local maximum nor a local minimum at (0,0). To see this, note that
f(0,0) = 0 and f takes both positive as well as negative values in any
open square centered at the origin. [For example, f(r,0) = r* > 0 and
f(0,—r) = —r® < 0 for any r > 0.] It turns out that f does not have
a saddle point at (0,0). (See Figure 1.9.) In fact, if I and I are any
regular paths in R? such that f has a local maximum at (0,0) along I
and a local minimum at (0,0) along I, then it can be shown that I
and I'» do not intersect transversally at the origin. A proof of this will be
given later, in Example 4.13 (v) of Chapter 4. o

In the first three examples above, a stronger conclusion is valid. Namely,
in Examples 1.22 (i), (ii), and (iii), f has a strict local maximum, a strict local
minimum, and a strict saddle point, respectively, at (0,0).
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QB
:‘0‘0“‘:\:

Fig. 1.9. Craphs of f(x,y) := xzy and f(z,y) := z* +¢°.

Intermediate Value Property

Let us begin by recalling from one-variable calculus that if D C R, then a
function ¢ : D — R is said to have the Intermediate Value Property (IVP)
on an interval I C D if for any a,b € I and any r € R between ¢(a) and
¢(b), there is ¢ € I, such that r = ¢(c¢). This notion has the following
straightforward analogue for functions of several variables.

Let D C R2. A function f D — R is said to have the Intermediate
Value Property, or in short, the IVP, on a 2-interval I x J C D if for any
(x1,91), (x2,y2) € I x J and any r € R between f(z1,y1) and f(x2,y2), there
is (20,90) € I(z,,y1),(2,y2) Such that r = f(zo,yo0).

Proposition 1.23. Let D C R? and let f : D — R be a function. Then for
any 2-interval I x J C D,

f has the IVP on I x J = f(I x J) is an interval in R.

Proof. Let a,b € f(I x J). Then a = f(z1,y1) and b = f(x2,y2) for some
(x1,91), (x2,y2) € I x J. If r € I3, then by the IVP of f on I x J, there is
(x0,90) € L2y 1), (2,y0) Such that f(xo,y0) = r. Since Ty 1) (warye) © 1 X J,
we see that I, C f(I x J). This proves that f(I x J) is an interval. O

Remark 1.24. It is easy to see that the converse of Proposition 1.23 is not
true. In fact, in contrast to one-variable calculus, the converse is not true even
for monotonic functions. (Compare Remark 1.21 in ACICARA.) For example,
consider I = J = [0,1] and f : I x J — R defined by f(z,y) := [z] + ¥,
where [z] denotes the integer part of x. Clearly, f is monotonic as well as
bimonotonic. Moreover, f(I x J) = [0,2] is an interval in R. Note, however,
that the real number % lies between f(0,0) =0 and f(1,}) = 3, but ? is not
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the value of f at any point on the 2-interval 1o o) 1,1y = [0, 1] x [0, 5. Indeed,

the image of this 2-interval is [0, 3] U[1, 5], which is not an interval in R. <

As indicated by the example in Remark 1.24, a simple modification of the
result in Proposition 1.23 yields a characterization of the IVP.

Proposition 1.25. Let D C R? and let f : D — R be a function. Then for
any 2-interval I x J C D,

f has the IVP on I x J <= f(E) is an interval in R
for every 2-interval E C I x J.

Proof. The implication “==" follows from Proposition 1.23. To prove the
converse, let (z1,y1), (z2,y2) € I x J and let r be a real number that lies
between f(z1,y1) and f(z2,y2). Let E denote the 2-interval iy, .Y, (zs,y)-
Since f(E) is an interval in R, it follows that r = f(xo,yo) for some (xg,yo) €
E. Since E C I x J, it follows that f has the IVP on I x J. O

1.3 Cylindrical and Spherical Coordinates

For points in RZ?, one has the familiar notion of polar coordinates. These
provide an alternative and useful way to represent points in the plane other
than the origin. Recall that the polar coordinates of (z,y) € R?\ {(0,0)} are
given by (r,0), where r and 6 are real numbers determined by the equations
x = rcosf and y = rsinf and the conditions » > 0 and 6 € (—m,n]. The
precise relationship is stated below. For a proof of this, one may refer to
Proposition 7.20 of ACICARA.

Fact 1.26. If z,y € R are such that (x,y) # (0,0), then r and 0 defined by

cos™! (ac) ify >0,
T
ri= /22 + 2 and 0 :=
—cos™! (x) ify <0,
r
satisfy the following properties:
rdeR, r>0, 0¢&(—mmn], x=rcosf, and y=rsind.

Conversely, if r,0 € R are such that r > 0 and 6 € (—m, 7], then x := rcosf
and y := rsinf are real numbers such that (x,y) # (0,0), r = /22 + y2, and
0 equals cos~t(z/r) or —cos™Y(z/r) according asy >0 ory < 0.

In the 3-space R?, there are at least two important and useful representa-
tions of points, and these are known as cylindrical coordinates and spherical
coordinates. Of these, the former is a straightforward extension of the notion
of polar coordinates, and we describe it first.
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Cylindrical Coordinates

The cylindrical coordinates of a point that is not on the z-axis, that is,
a point (z,y,2) in R? for which (z,y) # (0,0), are defined to be the triple
(r,0, z), where (r,0) are the polar coordinates of (z,y). Thus the cylindrical
coordinates are related to the rectangular coordinates (x,y, z) by the equa-
tions

r=rcosf, y=rsinf, and z=z,

where the real numbers r and 6 satisfy the conditions
r>0 and 0¢€ (—mml.

As an immediate consequence of Fact 1.26, we obtain a one-to-one correspon-
dence between the sets

{(z,y,2) € R®: (2,9) # (0,0)} and {(r,0,2) eR®:r >0, 6 € (—m,7]}.
The equations for r, #, and z in terms of the rectangular coordinates are
cos™! (m) if y >0,
r

r:\/xz_i_yz’ 0: and Zz=2Z.
x
—cos™! ( ) if y <0,
r
Notice that if we fix 7g > 0, then the points whose cylindrical coordinates

(r,0, z) satisfy r = r( constitute a cylinder of radius ¢ with its axis along the
z-axis. See, for instance, the picture on the left in Figure 1.10.

P\

Fig. 1.10. Illustrations of cylindrical and spherical coordinates.
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Spherical Coordinates

The spherical coordinates of a point that is not on the z-axis, that is,
a point (z,y,2) in R3 for which (z,y) # (0,0), are defined to be the triple
(1,0, ) in R? determined by the equations

x = psingpcosh, y=psinpsinf, z= pcosp,
and the conditions
pop,0 R, p>0, e (0,m), 6¢c(—mmnl.

Geometrically speaking, p is the distance from the vector (z,y, z) to the origin
(0,0,0), while ¢ is the angle made by the vector (x,y,z) with the vector
(0,0,1) on positive z-axis, and 6 is the angle made in the xy-plane by the
vector (x,y,0) with the vector (1,0,0) on the positive z-axis. See, for instance,
the picture on the right in Figure 1.10. The following proposition justifies the
above definition and describes the precise relationship between rectangular
coordinates and spherical coordinates.

Proposition 1.27. If z,y,z € R with (z,y) # (0,0), then p, ¢, 0 defined by

cosl< x ) if y>0,
psin

pi= 22+ %+ 22, go:zcos_lz, 0=
p
_Cos_l(psixngo) if y<O,

satisfy the conditions

pp,0 R, p>0, e (0,m), 6¢c(—mmn],
and the equations

r = psinpcosf, y=psinpsing, z= pcosy.

Conversely, if p,p,0 € R are such that p > 0, ¢ € (0,7), and 0 € (—m, 7],
then the real numbers x,y, z defined by

x:=psingpcosf, y:=psinpsinfh, z:= pcosy,

are such that (x,y) # (0,0), p = /22 + 42 + 22, ¢ = cos~*(z/p), and 0 equals
cos~ Yz /psinp) or —cos™(x/psin ) according asy >0 or y < 0.

Proof. Suppose z,y,z € R with (x,y) # (0,0) are given. Define p, ¢, and 6
by the formulas displayed above. Since (z,y) # (0,0), we see that p > 0 and
|z/p| < 1. Consequently, ¢ := cos™! (z/p) € (0,n). Clearly, z = pcosp, and
by Fact 1.26, we see that (psin ¢, §) are the polar coordinates of (z,y). Hence
0 € (—m, ] and moreover, = psin g cos and y = psin psin b.
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Conversely, suppose p,¢,0 € R are such that p > 0, ¢ € (0,7), and
0 € (—m, m]. Define x := psingpcosf, y := psinpsinf, and z := pcose. Then
22 +y? = p?sin® p > 0, and hence (z,7) # (0,0). Also, it is clear that

p=+v22+y2+22 and ¢ =cos (z/p).

Finally, applying Fact 1.26 with r := psiny, we readily see that 6 equals
cos~1(z/psin ) or —cos™!(z/psinp) according as y > 0 or y < 0. O

As an immediate consequence of Proposition 1.27, we obtain a one-to-
one correspondence between the sets {(z,y,z) € R : (z,y) # (0,0)} and
{(p,¢,0) €R®*: p>0, p € (0,m), 0 € (]}

Remark 1.28. The arguments used in the proof of Proposition 1.27 also give
the following relation between the cylindrical and the spherical coordinates
of a point. Let P be a point of R3 that is not on the z-axis. If (p, p, ) are
the spherical coordinates of P, then the cylindrical coordinates of P are given
by (r,0,z), where 6 is common to both sets of coordinates, while the other
coordinates are determined by the relations

r=psing and 2z = pcosy.

On the other hand, if the cylindrical coordinates of P are (r,0, z), then the
spherical coordinates are given by (p, ¢, ), where 6 is common to both sets
of coordinates, while the other coordinates are determined by the relations

p= Vr2 422 and @ =rcos ! (Z/\/T2+22>.

These formulas can also be verified directly. <

Notes and Comments

A course in multivariable calculus generally proceeds along the lines of a course
in one-variable calculus. Several of the notions and results in the setting of
R have a natural analogue in the context of R™. However, there are some
fundamental differences. For example, as mentioned in the text, there is, in
general, no reasonable notion whatsoever of division in R™. There have been
attempts to understand this phenomenon and sometimes to overcome the ob-
stacles. For example, if n = 2, then by defining multiplication suitably, one can
ensure that division by monzero vectors is possible. This leads to the so-called
complex numbers, and in turn to an important and beautiful subject known as
complex analysis. A famous theorem that goes back to Frobenius (1878) asserts
that for n > 2, a reasonable notion of multiplication in R™ is possible only
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when n =4 and n = 8, and this leads to the “quaternions” and “octonions,”
respectively. However, when n = 4, the multiplication is not commutative and
when n = 8, it is neither commutative nor associative. For an in-depth look at
numbers in general, and complex numbers in particular, one can consult the
book [16] by Ebbinghaus et al. For more on quaternions, octonions, and the
theorem of Frobenius, one can consult the book of Kantor and Solodovnikov
[33] and the expository article of Baez [4].

Yet another difference between R and R"™ is the apparent absence of a nat-
ural order on R™ for n > 1. There are, of course, total orders on R™, such
as the lexicographic order on R™ (Exercise 1), that are compatible with the
algebraic operations, but they fail to satisfy the archimedean property and the
least upper bound property. In fact, Holder showed in 1901 that there cannot
be an archimedean total order compatible with addition on R™ if n > 1. More
precisely, he proved that a totally ordered group is archimedean if and only if
it is order-isomorphic to a subgroup of R. For more details and a proof of this
result, we refer to the book of Fuchs [20]. We have argued in this text that
the product order or the componentwise order on R™ is a suitable extension
of the natural order on R. The product order is only a partial order, but it
is compatible with the addition and scalar multiplication on R™ and satisfies
the least upper bound property and a weak form of the archimedean property.
It is more suitable for analysis on R™ because unlike the lexicographic order,
which gives progressively less importance to later components, the product or-
der treats all the components equitably. We have used the product order on R™
to discuss monotonicity for functions of several variables. Moreover, we have
discussed an interesting variant of monotonicity for functions of two variables,
called here bimonotonicity. Continuing on this theme, we have also consid-
ered functions of bounded variation and the so-called functions of bounded
bivariation. These notions go back to Arzela (1905) and Vitali (1908). The
interested reader may consult Sections 254-256 of Hobson’s treatise [32], the
survey papers [9, 10] of Clarkson and Adams, and Section J in Chapter III of
Hildebrand’s book [31].

As in ACICARA, we have defined geometric notions such as local extrema
before derivatives enter the picture. The notion of a saddle point is also treated
in the same vein, and our definition does not involve partial derivatives or the
discriminant. In fact, this definition differs from the definitions found in most
texts. But arguably it is more natural and geometric. We shall revisit saddle
points and explain this point further in Chapter 4. Cylindrical and spherical
coordinates are introduced in this chapter and are handled them with some care
and precision, just as we treated polar coordinates in Chapter 7 of ACICARA.

Exercises
Part A

1. The lexicographic order or the dictionary order on R" is defined as
follows. For x = (z1,...,2,) andy = (y1,...,¥n) in R™, we define x < y if
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4.

10.

11.

12.

either x =y or if the first nonzero coordinate in y — x is positive. We may
write x > y as an equivalent form of y < x. Show that < is a total order
on R™. Further, show that < is compatible with the algebraic operations
in the sense that for any x,y € R™ with x <y, we have x+2z <y + z for
all z € R", and also, ¢x <X ¢y or ¢x > ¢y according as ¢ > 0 or ¢ < 0.

. (Parallelogram Law) Show that |x + y|? + |x — y|* = 2|x|? + 2|y|? for

all x,y € R™.

Let ¢ = (c¢1,...,¢,) € R® and r € R with r > 0.

(i) Show that B,(c) C S,(c) C B, /,(c).

(i) If welet M, (c) :={x € R" : |z1 —c1|+ - -+ |z — | < 1}, then show
that M.,.(c) C B,.(c) € M,.,(c). (Hint: (a;+---+a,)? < n(a?+---+a2)
for any ay,...,a, € [0,00); see, for example, page 34 of ACICARA.)

(iii) Sketch the sets in (i) and (ii) above when n = 2, r = 1, and ¢ = (0,0).

Give an example of a subset D of R? such that D is not a 2-interval, but
D has the property that Io, C D for every a,b € D with a <b.

Show that if I and J are intervals in R, then the complement of their
product, that is, the set D := R?\ (I x J) = {(z,y) € R? : (x,y) € [ x J},
is path-connected. Further, show that if I and J are nonempty bounded
intervals in R, then D is not convex.

Let r,s € R with 0 < r < s, and let ¢ € R™. Show that the sets Bs(c) \
B, (c) and S,(c) \ S;(c) are path-connected, but not convex.

Let ke Nand P,..., P, € R". A convex combination of P,..., P is
an element in R™ of the form Ay Py + - -+ + A\ Px, where A1,..., A\ € [0,1]
and A\; + --- + A = 1. Show that if D C R"™ is convex, then the convex
combination of any k points in D is in D.

Let S C R"™. The convex hull of S in R is defined as the set of all convex
combinations of finitely many elements of S. Show that the convex hull
of S is a convex, and hence a path-connected, subset of R™. Deduce that
a line segment in R™ as well as a triangle in R™, being the convex hull of
two distinct points or three noncollinear points, is a convex subset of R™.
Describe the level curves and contour lines for f : D — R corresponding
to the values ¢ = —3,—-2,—1,0,1,2,3,4, where f(x,y) is given by

i)z —y, (i) 2y, (i) 2?2 +y?,  (iv) y/z, (v) /5 —22 —y2,

and where D := R? in (i), (ii), and (iii), while D := {(z,y) € R? : = # 0}
in (iv) and D := {(x,y) € R? : 2% + y? < 5} in (v).

Let D C R? and let f : D — R be a function. Fix (z9,70) € D and let
Dy :={zx eR: (x,y0) € D} and Dy := {y € R: (x,y) € D}. Consider
¢: D1 — Rand ¢ : Dy — R defined by ¢(x) := f(x,yo) for x € Dy and
U(y) := f(xo,y) for y € Dg. Show that if f is a rational function, then
both ¢ and v are rational functions. Also show that if f is an algebraic
function, then both ¢ and v are algebraic functions.

Show that f : R? — R defined by f(z,y) := |zy| is not a rational function,
and g : R? — R defined by g(z,y) := sin(zy) is a transcendental function.
Consider D C R? and f : D — R defined by either of the following.
Determine in each case whether f is bounded above. If it is, then find an
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13.

14.

15.

16.

17.

18.

19.
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upper bound. Also determine whether f is bounded below. If it is, then

find a lower bound. Further, determine whether f attains its upper bound

or lower bound.

(i) D:=81(0,0) and f(z,y) == 2? +y*> — 1,

(ii) D :=Sz(0,0) and f(z,y) = sin(zy),

(iii) D :=S;,4(0,0) and f(z,y) := tan(x + y).

Let I, J be nonempty intervals in R. Given any ¢ : I — Rand ¢ : J — R,

define f,g: I xJ — R by f(z,y) == ¢(x) +¥(y) and g(z,y) := d(x)(y).

(i) Show that f is bounded on I x J if and only if ¢ is bounded on I and
1 is bounded on J.

(ii) Assume that ¢ and ¢ are not identically zero, that is, ¢(xo) # 0 and
¥(yo) # 0 for some xg € I and some yo € J. Show that g is bounded
on I x J if and only if ¢ is bounded on I and % is bounded on .J.

Let I and J be nonempty intervals in R and let f : I xJ — R be a function

that is monotonically increasing as well as monotonically decreasing on

I x J. Show that f is a constant function.

Let I, J be nonempty intervals in R. Given any ¢ : I — R and ¢ : J — R,

define f,g: I x.J — R by f(z,y) := ¢(z) +1(y) and g(z,y) := d(x)(y).

(i) Show that f is monotonically decreasing on I x .J if and only if ¢ is
decreasing on I and %) is decreasing on J.

(ii) Show that if ¢ is decreasing on I and ¢ is decreasing on J, and if
¢(x) > 0 and ¢(y) > 0 for all x € T and y € J, then g is monotoni-
cally decreasing on I x J. Conversely, show that if g is monotonically
decreasing on I x J and if ¢(z) > 0 and ¢ (y) > 0 for all z € I and
y € J, then ¢ is decreasing on I and 1 is decreasing on J. Give an
example to show that this converse may not be true if ¢ and ¢ are
nonnegative but not strictly positive.

Consider f : R? — R defined by f(z,y) := = — y for (z,y) € R%. Is f

monotonic on R x R? Is f bimonotonic on R x R? Justify your answers.

Let p € R and let g : (1,00) x (1,00) — R be defined by g(z,y) :=

[In(z + y)]P for (z,y) € (1,00) x (1,00). Show that g is monotonically

decreasing and bimonotonically increasing if p < 0, whereas ¢ is mono-

tonically increasing and bimonotonically decreasing if 0 < p < 1. What

can be said about g if p > 1?7 (Hint: Proposition 1.7.)

Consider f :[0,2] x [0,2] — R defined by

c+1)(y+1) ife+y>2,
flz,y) = @+ 1)y +1) :
Ty ife4+y<2.

Show that f is monotonically increasing on [0,2] x [0,2], but f is not
bimonotonic on [0, 2] x [0, 2].

Let I and J be closed and bounded intervals in R. Show that a monotonic
function on the rectangle I x J is bounded. Give an example to show that
a bimonotonic function on I x J need not be bounded.



Exercises 37

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Let f : [a,b] X [c,d] — R be a function on the rectangle [a,b] X [c,d].
For a fixed y € [¢,d], let ¢y : [a,b] — R denote the function defined by
oy(x) :== f(x,y). Also, for a fixed = € [a,b], let ¢, : [¢,d] — R denote the
function defined by v, (y) := f(x,y). Assume that f is bimonotonically
increasing and prove the following.

(1) If ¢, is increasing on [a, b], then so is ¢, for every y € [c, d].

(ii) If 9, is increasing on [c,d], then so is 1, for every z € [a, b].
(iil) If ¢, is increasing on [a,b] and 1), is increasing on [c,d], then f is

monotonically increasing on [a, b] X [c, d].

Consider f : [0,1] x [0,1] — R defined by f(z,y) := 0 if 2 < y and
flz,y) := 1if x > y. We have seen in Example 1.13 that f is not of
bounded variation. Show that f is not of bounded bivariation. (Hint: Ex-
ample 1.19 (iii))

Let f: [a,b] X [¢,d] — R be of bounded bivariation. Show that the corre-
sponding total variation function w; is monotonically as well as bimono-
tonically increasing on [a, b] X [c, d].

Let D := {(z,y) € R : 2 > 0and y > 0} and f : D — R be defined
by f(x,y) := In(1/zy). Show that D is a convex subset of R? and f is a
convex function on D. (Hint: f(x,y) :=In(1/z) +In(1/y).)

Let D C R? be a convex set containing (0,0) and let f : D — R be a
convex function. Show that for any (z,y) € D, we have (—z, —y) € D and
f(—],‘, _y) > _f(xay)'

(Jensen’s inequality) Let D C R? be convex and let f : D — R be
any function. Given any k € N with k£ > 1, show that f is convex on
D ifand only if f (MPr+ -+ XMePr) < M f(P1)+ -+ A f(Py) for all
Ay A € [0,1} with A\ +---+ A\ = 1.

Show that f : R? — R defined by f(z,y) := 2% — y> has neither a local
maximum nor a local minimum at (0, 0).

Show that f : R? — R defined by f(z,y) := 22 — 3? has a saddle point at
(0,0).

Recall that for any a € R, the integer part of a is denoted by [a]. Consider
f : R? — R defined by one of the following. In each case, determine
whether f has the IVP on R2.

Q) flz,y) =a+y, () f(z,y) = [z] +[y], (i) f(z,y) =2+ [yl

Let R :=10,2] x [0,2] and let f : R — R be defined by
0 f0<z<land0<y<I1,
flzyy) =qr—1 ifl<zx<2and0<y<1,
1 if0<z<2and 1 <y<2

Show that f is monotonic, f(R) is an interval, but f does not have the
IVP on R.

Find the cylindrical coordinates as well as the spherical coordinates of the
points in R3 whose Cartesian coordinates are as follows:

(i) (1,0,0), (ii) (0,1,0), (iii) (1,1,0), (iv) (1,—1,0).
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Let ¢ € R be given. Describe geometrically the surface defined by the
following equations in cylindrical coordinates:

(i)r=¢, ()0=c (i) z=c,

and by the following equations in spherical coordinates:

i)p=c, (ii)p=c (i) bl=c

Part B

Consider the lexicographic order =< on R"™ defined in Exercise 1. Given
any x,y € R" we will write x < y if x < y and x # y; likewise, we
will write x > y if x = y and x # y. Show that if n > 1, then < is not
archimedean, that is, show that there are x,y € R” with x = 0 andy > 0
such that kx <y for all k& € N. Show, however, that the following weak
version holds. For any x = (21,...,2,) and y = (y1,...,yn) in R™ with
x1 > 0, there is k& € N such that kx > y. Further, show that if n > 1,
then R™ does not satisfy the least upper bound property with respect to
=, that is, there is a nonempty subset S of R™ such that S is bounded
above but S does not have a supremum with respect to <.
Given any p € R with p > 1 and x = (21, ...,2,) € R", define the p-norm
of x by

Il := (jaal” + -+ aal?) .
Show that ||x||, > 0, and moreover, ||x||, = 0 <= x = 0. Also, show that
for any x,y € R™ and r € R, we have

[x+yllp < [xlp +lIyll, and {lrx]l, = [ |[x[-

(Hint: The first assertion is essentially the Minkowski inequality for sums;
see, for example, page 281 of ACICARA.)
Extend the p-norm defined in Exercise 33 to the case p = oo as follows.

IX|loo := max (Jx1],...,|zs|) for x = (21,...,2,) € R".
Given any p,q with 1 < p < ¢ < oo, prove that
Ixlly < lxll, < n¥flx]l,  for all x € B,

where A := 1/pif p < ¢ = oo and A := (¢ —p)/pq if p < g < oo, while
A:=0if p = ¢ = co. (Hint: For the first inequality, reduce to the case
x|, = 1, and note that p < g and |z;| < 1 implies |z;|? < |x;|P. For the
second inequality, use the power mean inequality; see, for example, page
286 of ACICARA.)

Let p be such that 1 < p < oco. For c € R" and r > 0, let

B® (c):={x € R": ||x —c|, <7}
Show that if ¢ is such that p < ¢ < oo and A is as in Exercise 34 above,
then B () C B\? (c) C IB%&I;L)A (c). Show that the inclusions in parts (i)

and (ii) of Exercise 3 follow as particular cases.
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40.

Let p(x1,...,2,) be a polynomial in n variables z1,...,x, with coeffi-
cients in R. This means that p(x1,...,2,) is a finite sum of terms of the
form cxi'xy? ---alr, where ¢ € R and iy, ...,4, are nonnegative integers;

here ¢ is called the coefficient of the term and in case ¢ # 0, the sum
i1 + -+ + i, is called the total degree of the term. By a zero or a

root of p(x1,...,x,) in R™ we mean a point a = (ai,...,a,) € R" such
that p(ai,...,a,) = 0, that is, by substituting a; in place of x; for each
t=1,....,nin p(z1,...,2T,), we obtain the value 0.

(i) Show that if n = 1 and p(z1) is a nonzero polynomial (that is, not all
of its coefficients are zero), then it has at most finitely many zeros.

(ii) Give an example to show that if n > 1, then there can be a nonzero
polynomial in n variables with infinitely many zeros in R™.

(iii) If there are subsets Ei,...,E, of R such that E; is an infinite
set for each 7 = 1,...,n and we have p(a1,...,a,) = 0 for all
(a1,...,an) € Fy X -+ X E,, then show that p(z1,...,z,) must be
the zero polynomial, that is, all its coefficients are zero.

Now suppose f is a polynomial function on a subset D of R", that is,
suppose there is a polynomial p(z1, ..., x,) in n variables with coefficients
in R such that f(a1,...,a,) =p(ai,...,a,) forall (ay,...,a,) € D. Show
that if D = By x -+ x E,, where I} is an interval containing more than
one point in R for each j = 1,...,n, then the polynomial p(x1,...,x,) is
uniquely determined by the function f.

Let (z0,y0) and (x1,%1) be any two points in R? and let I" be a path

joining them, that is, I" is the path given by (x(t),y(t)), t € [«, 5], where

z,y : [, 8] — R are continuous functions with (z(a),y(a)) = (20, 30)

and (z(0),y(8)) = (x1,y1). Prove that the image of I', that is, the set
{(z(t),y(t)) : t € [o, B]}, is a closed and path-connected subset of R?.
Let I and J be nonempty intervals in R and let f : I x J — R be
any function that is bimonotonically increasing as well as bimonotonically
decreasing. Show that there exist functions ¢ : I — R and ¢ : J — R such
that

flz,y) = ¢(x) +¥(y) forall (z,y) € I x J.

Further, show that in this case the functions ¢ and ¥ are unique up to a
constant, that is, if there are functions ¢ : I — R and ¢y : J — R such
that f(z,y) = ¢1(x) + 1 (y) for all (z,y) € I x J, then ¢ = ¢ + ¢ and
1 =1 — ¢ for some ¢ € R.

Let a and ¢ be any real numbers. Given a function f : [a, 00) x [¢,00) — R,
let F': [a,00) X [e,00) — R be the function defined by

F(]J,y) = f(a:,y)—f(a:,c) —f(a,y)—!—f(a,c) for (x,y) € [CL, OO) X [C, OO)

Show that if f is bimonotonic, then F' is monotonic.
Define a relation <* on R? as follows: For (z1,y1) and (x2,92) in R?,

(x1,51) <" (z2,y2) if a1 <apand yi > yo.
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Show that <* is a partial order on R2. Next, let I,J be intervals in R
and let f: I x J — R be a function. Define f to be antimonotonically
increasing on I x J if

(1,91), (T2,92) € IxJ and (1,y1) <* (w2,92) = f(21,91) < f(22,92),

and antimonotonically decreasing on I x J if

(xlvyl)v (x2»y2) € IxJ and (xlvyl) S* (x2»y2) = f(xlvyl) > f(x27y2)'

We say that f is antimonotonic on I x J if f is antimonotonically
increasing on I x J or antimonotonically decreasing on I x J. Let I* :=
{reR:—xel}and J*:={y € R: —y € J}, and define f,: I*xJ - R
and f* [ x J* — R by fu(z,y) = f(—z.y) and f*(z,y) = f(z, ).
Show that

f is antimonotonic on [ X J <= f, is monotonic on I* x J

<= f* is monotonic on I x J*.

Let a,b € R with a < b. A function ¢ : [a,b] — R of one variable is said to
be of bounded variation on [a, b] if the set S := {>""" | [¢(z;)—p(wi—1)| :
ne€Nandl =29 <27 < -+ <z, = b} is bounded above in R. In
this case, we denote the supremum of S by V(¢) and call this the total
variation of ¢ on [a,b]. Prove that ¢ : [a,b] — R is of bounded variation
if and only if ¢ is a difference of two monotonically increasing functions.
Given any n > 0, let ¢, : [0,1] — R be defined by ¢,(0) := 0 and
On(z) = 2"sin(1/z) for 0 < 2 < 1. Show that ¢g and ¢; are not of
bounded variation on [0, 1], whereas ¢2 is of bounded variation on [0, 1].
Let ¢ : [a,b] — R and ¢ : [¢,d] — R be functions of one variable. Define
fig:]a,b] x[e,d] = R by f(z,y) = ¢(z) +¢(y) and g(z,y) = ¢(z)¢(y).
(i) Show that f is of bounded variation on [a, b] X [¢, d] if and only if ¢ is
of bounded variation on [a, b] and ¥ is of bounded variation on [, d].
(ii) Assume that ¢ and v are not identically zero, that is, ¢(z9) # 0
and ¥ (yo) # 0 for some z¢ € [a,b] and yo € [c,d]. Show that ¢ is
of bounded variation on [a,b] X [¢,d] if and only if ¢ is of bounded
variation on [a,b] and ¢ is of bounded variation on [c, d].
(iii) Show that f is always of bounded bivariation on [a, b] x [c, d].
(iv) Assume that ¢ and ¢ are not constant functions, that is, ¢(z.) #
d(x*) and ¥(y.) # ¥(y*) for some ., x* € [a,b] with z, < z* and
Yu, ¥* € [c,d] with y. < y*. Show that g is of bounded bivariation on
[a,b] x [e,d] if and only if ¢ is of bounded variation on [a,b] and ) is
of bounded variation on [c, d].
Let f: [a,b] X [¢,d] — R be a function. Show that V(f) = 0 if and only
if f is a constant function, whereas W (f) = 0 if and only if there are
functions ¢ : [a,b] — R and % : [¢,d] — R such that f(x,y) = ¢(x) + ¥ (y)
for all (z,y) € [a,b] X [c,d].
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Let f : [a,b] x [¢,d] — R be of bounded variation. Fix z* € (a,b) and let
1 = flaw)x(e,d) and fo = fla= p)x[c,q)- Show that V(f) < V(f1) + V(f2).
Give an example to show that the inequality can be strict, that is, we can
have V(f) < V(f1) + V(f2).

Let f : [a,b] X [¢,d] — R be any function, and let ¢, : [a,b] — R and

Py @ [e,d] — R be as in Exercise 20.

(i) Show that if f is of bounded variation on [a,b] X [¢,d], then ¢, is of
bounded variation on [a,b] for each y € [c,d], and 1), is of bounded
variation on [, d] for each x € [a, b].

(ii) Use Example 1.13 to show that the converse of the assertion in (i)
above is not true.

(iii) Suppose f is of bounded bivariation on [a, b] X [¢, d], and, in addition,
¢. is of bounded variation on [a, b] and 1, is of bounded variation on
[¢, d]. Show that f is of bounded variation on [a, b] X [¢,d], and V(f) <
2W(f) + V(ée) + V(the). Also, show that there are unique functions
D,q : [a,b]x[c,d] — R such that both p and g are monotonically as well
as bimonotonically increasing, f = p— ¢, and wy =p+q —vg, — vy, -
(Hint: Let g, h be determined by g +h = wy and g —h = f — ¢ — a,
and let ac, B¢, Ve, 04 be determined by ¢. = ae — B¢, v, = ac + Be,
Yo = Ya — 0q, and vy, = 7Y, + 04. Consider p := g + a. + v, and

=h+ ﬂc + 5a~)

(iv) Use Example 1.19 (iii) to show that the converse of the assertion in
(iii) above is not true.

Let f : [a,b] x [c,d] — R be a function of bounded bivariation. Define

f : [avb] x [Cvd] —R by f(xvy) = f(xvy) - f(aay) - f(x’c) + f(a,c).

Show that there are unique functions p,q : [a,b] X [¢,d] — R such that p

and ¢ are monotonically as well as bimonotonically increasing, f =p—q,

and w = P+ q.

Let f : [a,b] X [¢,d] — R be a function with the property that there is

d > 0 such that |f(z,y)| > d for all (x,y) € [a,b] x [¢c,d].

(i) If f is of bounded variation, then show that so is 1/f.

(ii) Give an example in which f is of bounded bivariation, but 1/f is not
S0.

Let f : [a,b] x [¢,d] — R be a function.

(i) Suppose there is K > 0 such that

|f(z2,92) — f(z1,y1)| < K (22 — 21 +y2 — Y1)

for all (z1,y1), (z2,y2) € [a,b] x [¢,d] with (z1,y1) < (22,y2). Then
show that f is of bounded variation and V(f) < K(b—a+d — ¢).
(ii) Suppose there is M > 0 such that

|f(z2,y2) + f(w1,91) — fl@2, 1) — f(21,92)] < M |22 — 21| [y2 — 31

for all (z1,vy1), (z2,y2) € [a,b] x [¢,d] with (x1,y1) < (22,y2). Then
show that f is of bounded bivariation and W (f) < M (b — a)(d — ¢).
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1 Vectors and Functions

Let D C R? be convex and let f : D — R be any function. Assume that D

is not a line segment, that is, given any P, P> € D, there is some P € D

such that P # (1 —t)P; + tP, for all ¢ € R, that is, P is not on the line

joining P; and Ps.

(i) Let Py, Py, P3 be any noncollinear points in D. Write P; := (z;,v;),
zi = flxi,y), and Q; = (w4,yi,2) for i = 1,2,3. Show that
Q1,Q2, Qs lie on a plane in R? given by z = Az + By+ C for uniquely
determined A, B, C € R. (Hint: Those familiar with determinants may
note that Py, P>, P3 are noncollinear if and only if the 3 x 3 matrix hav-
ing (z;,yi,1) as its ith row, for i = 1,2, 3, has a nonzero determinant.
Further, the equation of the plane in R? passing through (z;, y;, 2;) is
given by A(z,y,z) = 0, where A(z, y, 2) is the determinant of the 4 x4
matrix whose first row is (z,y, z,1) and (i + 1)th row is (x4, y:, 2i, 1)
fori=1,2,3.)

(ii) Show that f is convex on D if and only if for any noncollinear points
Py, Py, P; in D and any (z,y) in the triangle with Py, Ps, Ps as its
vertices, we have f(x,y) < g(z,y), where z = g(z,y) is the equation
of the plane passing through (z;,y;, f(x;,y;)) for i =1,2,3.

Consider R := [-1,1] x [-1,1] and f,g : R — R defined by f(0,0) := 0,

9(0,0) := 0, while f(z,y) := 2[z|y/(2* + y*) and g(z,y) := 2|yly/(z* + y*)

for (x,y) # (0,0). Show that f has the IVP on R, whereas g does not

have the IVP on R. (Hint: Let £ := I(;, ) (2s,4.) b€ a 2-interval in

R. If (0,0) ¢ E, then consider the restriction of f to the line segment

joining (z1,y1) and (z2,y2) and use the intermediate value theorem of

one-variable calculus (Proposition 3.13 of ACICARA). If (0,0) € E, then
observe that f({t} x [0,t]) = [0,1] and f([—¢,0] x {—t}) = [-1,0] for any
€ (0,1]. As for g, consider the image of a line segment on the y-axis.)

Let D C R? and let f : D — R be a function. Also let C' be a convex

subset of D. Let us say that f has the Strong Intermediate Value

Property, or in short, the SIVP, on C if for any (z1,41), (z2,y2) € C

and any r € R between f(x1,y1) and f(x2,y2), there is a point on the

line joining (x1,y1) and (x2,y2) whose image under f is r, that is, there
is t € [0,1] such that r = f((1 — t)z1 + tza, (1 —t)y1 + tya).

(i) Show that if f has the SIVP on C, then f(C) is an interval in R. Give
an example to show that the converse is not true.

(ii) Show that f has the SIVP on C' if and only if f(E) is an interval for
every convex subset F of C.

(iii) In case C' is a 2-interval and f has the SIVP on C, then show that f
has the IVP on C'. Give an example to show that the converse is not
true. (Hint: Exercise 51.)

Let a be a positive real number. Determine the equation in cylindrical

coordinates of a helix on the cylinder 2% + y? = a? and the equation in

spherical coordinates of a great circle on the sphere 22 + y? + 22 = a?.
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Sequences, Continuity, and Limits

In this chapter, we introduce the fundamental notions of continuity and limit
of a real-valued function of two variables. As in ACICARA, the definitions as
well as proofs of basic results will be given using sequences. There are, actually,
two possible generalizations of real sequences that seem natural in the setting
of two variables. First, functions defined on N with values in R?, and second,
functions defined on N? with values in R. As we shall see, for developing the
notions of continuity and limit of a function of two variables, only the former
is relevant, and it is studied in this chapter. The study of the latter will be
taken up in Chapter 7.

This chapter is organized as follows. Sequences in R? are introduced in
Section 2.1 below and their fundamental properties, including the Bolzano—
Weierstrass Theorem and the Cauchy Criterion, are derived from the corre-
sponding results for sequences in R. We also use the notion of sequence to
introduce basic topological notions of closed and open sets, boundary points,
and interior points, and also the closure and the interior of subsets of R2.
Section 2.2 deals with the notion of continuity, and it is shown here that con-
tinuous functions on path-connected subsets of R? or on closed and bounded
subsets of R? possess several nice properties. An important result known as
the Implicit Function Theorem is also proved in this section. Finally, in Sec-
tion 2.3 we introduce limits of functions of two variables. The definition is
given using sequences, while most of the basic properties are proved using
a simple observation that the existence of limit of a function at a point is
equivalent to the continuity of an associated function at that point.

2.1 Sequences in R?

A sequence in R? is a function from N to R2. Typically, a sequence in R? is
denoted by ((acn,yn)), ((un,vn)), ete. The value of a sequence ((acn,yn)) at
n € N is given by the element (x,,%,) of R?, and this element is called the
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nth term of that sequence. In case the terms of a sequence ((a:n, yn)) lie in a
subset D of R?, then we say that ((xn, yn)) is a sequence in D.

The notions of boundedness and convergence extend readily from the set-
ting of sequences in R to sequences in R?. Let ((acn, yn)) be a sequence in R?.
We say that ((2,,yn)) is bounded if there is & € R such that |(zy, yn)| < @
for all n € N. The sequence ((acn,yn)) is said to be convergent if there is
(70,%0) € R? that satisfies the following condition: For every ¢ > 0 there is
ng € N such that (z,,y,) € Se(xo,yo) for all n > ng, that is,

|2y — 20| < € and |y, — yo| < € for all n > ng.

In this case, we say that ((xn,yn)) converges to (xo,yo) or that (zo,yo) is
a limit of ((xn,yn)), and write (,,yn) — (xo,Yo0)- ( T, Yn ) does not
converge to (xo,yo), then we write (z,,yn) # (2o,y0); if ((acn,yn)) is not
convergent, then it is said to be divergent.

A sequence ((zn,yn)) in R? gives rise to two sequences (z,,) and (y,) in R,
and vice versa. It turns out that the properties of ((xn, yn)) can be completely
understood in terms of the properties of the sequences (z,,) and (y,) in R.

Proposition 2.1. Given a sequence ((acn,yn)) in R?, we have the following.

(i) If ((acn,yn)) is convergent, then it has a unique limit.
(ii) ((2n,yn)) is bounded <= both (xy,) and (yn) are bounded.
(iii) ((zn,yn)) is convergent <= both (z,) and (yn) are convergent. In fact,
for (z0,y0) € R?, we have (zn,yn) — (20,Y0) <= @n — To and yn — Yo.

Proof. Each of (i), (ii), and (iii) is immediate from the definitions. O

As noted in part (i) of Proposition 2.1, if ((xn,yn)) is a convergent se-
quence in R2, then it has a unique limit in R2. The limit of ((xn,yn)) is
sometimes written as lim, o (Zn, yn) or as lim (z,, yn).

n—oo

Examples 2.2. (i) If ((z,,y,)) is a constant sequence in R?, that is, if
there is (w9,90) € R? such that (z,,yn) = (z0,y0) for all n € N, then
clearly, ((xn,yn)) is convergent and (2, yn) — (o, Yo)-

(i) If ((#n,yn)) is the sequence in R? defined by (25, yn) := (1/n,—1/n) for
all n € N, then clearly, ((zn,yn)) is convergent and (zy,yn) — (0,0).
(iii) The sequence ((zn,y,)) in R? defined by (zy,y,) := (1/n,(—1)") for all

n € N is divergent, since the sequence ((—1)") in R is divergent. &

Basic properties of sequences in R? readily follow from the corresponding
properties of sequences in R. For ease of reference, we recall the relevant results
for sequences in R. For proofs, one may refer to pages 45-47 of ACICARA.

Fact 2.3. Let (ay) and (b,) be sequences in R, and let a,b, o, B € R.
(i) If an, — a and b, — b, then a,, + b, — a+b and a,b, — ab.
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(i) If a,, — a, then for any r € R, we have ra, — ra.

(i) If a # 0 and a, # 0 for alln € N, then (1/a,) — (1/a).

(iv) Let ay, — a. If there is £ € N such that a, > « for all n > £, then a > «.
Likewise, if there is m € N such that a,, < § for all n > m, then a < f3.

(v) If ap, — a and a, > 0 for all n € N, then at/* — ql/k for any k € N.

(vi) (Sandwich Theorem in R) If (b,) and (c,) are sequences such that
b, — a and ¢, — a, and if there is m € N such that b, < a,, < ¢, for all
n > m, then a, — a.

A few of these facts yield the result that sums, dot products, and scalar
multiples of sequences in R? converge, respectively, to the sums, dot products,
and scalar multiples of the corresponding limits.

Proposition 2.4. Let ((zn,yn)) and ((un,vy)) be sequences in R?, and let
(xoayo)’ (anUO) S R2.

(1) If (xnv yN) - (3507?/0) and (un» vn) - (’LL(),’U()), then (xn» yn)+(un» vn) -
(w0, yo) + (uo, vo) and (T, Yn) - (Un, va) — (20, Yo) - (uo, o).
(ﬁ) If (xna yn) - (370’ yO): then for any r € R, 7‘(1‘n, yn) - T(x0> yo)-

Proof. Tmmediate consequence of part (iii) of Proposition 2.1 together with
parts (i) and (ii) of Fact 2.3. O

Analogues of properties of sequences in R that depend on order relations,
are considered in Exercise 2.

Subsequences and Cauchy Sequences

Let ((xn, yn)) be a sequence in R2. If ny,ng, . .. are positive integers such that
ny < niy1 for each k € N, then the sequence ((acnk,ynk)), whose terms are
(Zny s Yni)s (Tng, Yna)s - - -, is called a subsequence of (2, yn)). The sequence
((acn,yn)) is said to be Cauchy if for every ¢ > 0 there is ng € N such that
|2y — 2| < € and |y, — ym| < € for all n,m > ng. It is clear that ((xn,yn))
is Cauchy if and only if both (z,) and (y,) are Cauchy sequences in R.

Let us recall the following basic facts about sequences in R. For proofs,
one may refer to pages 45, 56, and 58 of ACICARA.

Fact 2.5. Let (ay,) be a sequence in R. Then we have the following.

(i) (an) is convergent = (ay,) is bounded.
(ii) (Bolzano—Weierstrass Theorem in R) If (ay) is bounded, then (a,)
has a convergent subsequence.
(iil) (an) is convergent <= (ay) is bounded and every convergent subsequence
of (ay) has the same limit.
(iv) (Cauchy Criterion in R) (a,) is Cauchy <= (a,) is convergent.

These facts, in turn, lead to the following results.
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Proposition 2.6. Given a sequence ((xn,y")) in R?, we have the following.

(1) ((xn,yn)) is convergent = ((x",y")) 15 bounded.
(ii) (Bolzano—Weierstrass Theorem) If ((z,yn)) is a bounded sequence,
then ((xn,yn)) has a convergent subsequence.
(iii) ((xn,yn)) is convergent <= ((xn,yn)) is bounded and every convergent
subsequence of ((xn,yn)) has the same limit.
(iv) (Cauchy Criterion) ((zn,yn)) is Cauchy <= ((zn,yn)) is convergent.

Proof. Clearly, (i) is an immediate consequence of parts (ii) and (iii) of
Proposition 2.1 and part (i) of Fact 2.5. To prove (ii), suppose ((x",yn))
is bounded. Then (z,) is a bounded sequence in R and hence by part (ii)
of Fact 2.5, (x,) has a convergent subsequence, say (z,,). Now, (y,) is a
bounded sequence in R and hence so is (yn,). So, by part (ii) of Fact 2.5,
(yn, ) has a convergent subsequence, say (ynkJ) Clearly, ((xnkJ ,ynkj)) is a
convergent subsequence of ((#y,yn)). This proves (ii). Next, if ((zn,yn)) is
convergent, then it is clear that it is bounded and every convergent sub-
sequence of ((a:,,,,y,,,)) has the same limit. To prove the converse, suppose
((xn,yn)) is bounded. By (ii), ((xn,yn)) has a convergent subsequence. Sup-
pose (xo, yo) is the (same) limit for every convergent subsequence of ((xn, yn)) .
If (n, yn) # (z0,y0), then there are € > 0 and positive integers n; < ng < ---
such that max{|z,, — zol, [Yn, — vo|} > € for all k € N. Now, ((zn,,Yn,)) is
bounded and hence by (ii), it has a convergent subsequence. Moreover, this
subsequence must converge to (zg, o). This is a contradiction. Thus (iii) is
proved. Finally, (iv) follows from part (iii) of Proposition 2.1, part (iv) of Fact
2.5, and our earlier observation that ((xn, yn)) is Cauchy if and only if both
() and (yn) are Cauchy sequences in R. O

The result in part (iv) of Proposition 2.6 is sometimes referred to as the
Cauchy completeness of R%. A similar result holds for R™.

Closure, Boundary, and Interior

Let D C R2 We say that D is closed if every convergent sequence in D
converges to a point of D. The set of all points in R? that are limits of
convergent sequences in D is called the closure of D and is denoted by D.
It is clear that D is closed if and only if D = D. A point of R? is said to be
a boundary point of D if there is a sequence in D that converges to it and
also a sequence in R?\ D that converges to it. The set of all boundary points
of D in R? is called the boundary of D (in R?), and is denoted by dD. It
is easy to see that 9D = 9(R? \ D), that is, the boundary of a set coincides
with the boundary of its complement. A relation between the closure and the
boundary is described by the following.

Proposition 2.7. Given any D C R?, we have D = D U 0D.
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Proof. Let (z,y) € D. Then there is a sequence in D converging to (z,y).
Further, if (x,y) € D, then the constant sequence ((xn,yn)) defined by
(Tn,yn) = (z,y) for all n € N gives a sequence in R? \ D converging to
(x,y), and so in this case, (x,y) € 9D. It follows that D C D U dD. On
the other hand, if (z,y) € D U dD, then it is clear, using either a constant
sequence or the definition of D, that (z,y) € D, and so D UJD C D. |

Proposition 2.8. Let D be a nonempty subset of R? such that D # R?. Then
0D is nonempty.

Proof. Since D is nonempty, there is some (x¢,%0) € D, and since D # R?,
there is some (z1,71) € R? \ D. Consider the line segment joining these two
points, that is, consider L := {t € [0,1] : (1 — t)(xo,y0) + t(x1,y1) € D}.
Then L is a nonempty subset of R bounded above by 1. Let ¢* := sup L and
(", y*) := (1 —t*)(xo,y0) + t*(x1,y1). We claim that (z*,y*) is a boundary
point of D. To see this, let (t,) be a sequence in L such that ¢, — t*. Let
(xn»yn) = (1 - tn)(xO»yO) + tn(xhyl) for n € N. Clearly ((xn»yn)) is a
sequence in D that converges to (x*,y*). Further, if t* < 1, then we can
find s, € R for n € N such that s, — t* and t* < s, < 1, and we let
(Un,vn) = (1 — sp)(T0,%0) + sn(x1,y1) for n € N, whereas if t* = 1, then
we let (up,vy) := (z1,y1) for n € N. In any case, we see that ((un,v,)) is a
sequence in R?\ D that converges to (z*,y*). This proves the claim. O

Let D be a subset of R? and let (z0,70) be any point of R2. We say
that (20, o) is an interior point of D if (z¢,y0) € D and (xo,y0) is not a
boundary point of D. It is easy to see that (xo,yo) is an interior point of D
if and only if there is 7 > 0 such that S,(zo,y0) € D. The interior of D is
defined to be the set of all interior points of D. Clearly, the interior of D is a
subset of D. We say that D is open if every point of D is an interior point
of D. The following proposition shows the connection between the notions of
an open set and a closed set.

Proposition 2.9. Let D C R2. Then D is closed if and only if R?\ D is open.

Proof. First, suppose D is a closed set. Let (zg,y0) € R%\ D. If (x0,0) is
not an interior point of R? \ D, then there is a sequence ((#,,y,)) in the
complement of R? \ D, that is, in D, such that (z,,y,) — (z0,0), and so
(z0,90) € D = D, which is a contradiction. This proves that R? \ D is an
open set. Conversely, suppose R? \ D is open. Let ((xn, yn)) be any sequence
in D such that (z,,yn) — (z0,y0) for some (z9,y0) € R% Then (z,yo)
cannot be an interior point of R?\ D. But since R?\ D is open, it follows that
(w0,90) € R?\ D, that is, (9, y0) € D. This proves that D is closed. O

Example 2.10. Let o, 8 € R with @ > 0 and 8 > 0. Consider the sets D :=
{(z,y) € R?: |z[ < aand |y| < 8}, D2 := {(z,y) € R?: |z[ < a and |y| < B},
D3 = {(z,y) € R? : |z| < a and |y| < B}, and Dy = {(z,y) € R? : |z| <
a and |y| < G}. In view of part (iv) of Fact 2.3, we readily see that Dy is
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closed, D, is open, whereas Dy and D3 are neither closed nor open. Further,
for each i = 1,2, 3,4, the closure of D; is D1, the interior of D; is Dy4, and the
boundary of D; is the set {(z,y) € R? : |z| = a and |y| = §}. <&

Remark 2.11. The notions discussed in this section concerning sequences in
R2, closed sets, closure, boundary points, boundary, interior points, interior,
and open sets admit a straightforward extension to R? and more generally, to
R™ for any n € N. To avoid a notational conflict, one may denote a sequence
in R™ by (xg), where the parameter k runs through N and x; € R™ for each
k € N. It may be instructive to formulate precise analogues of the notions and
results in this section for R™ and write down proofs of analogous results in
the general case. This may also be a good opportunity to review the results
in this section. <&

2.2 Continuity

Let D be a subset of R? and let (zg,%0) be any point in D. A function
[+ D — Ris said to be continuous at (zo, yo) if for every sequence ((z,,yn))
in D such that (x,,yn) — (20, Y0), we have f(xn,yn) — f(z0,y0). If f is not
continuous at (xg,yo), then we say that f is discontinuous at (z, yo). When
f is continuous at every (zg,y0) € D, we say that f is continuous on D.

Examples 2.12. (i) If D is any subset of R? and f : D — R is a constant
function on D, that is, if there is ¢ € R such that f(z,y) = ¢ for all
(z,y) € D, then clearly, f is continuous on D.

(i) If f : R? — R is the norm function given by f(z,y) := /22 +y?2 for
(x,y) € R?, then f is continuous on R2. To see this, let (zg,70) € R be any
point and let ((xn, yn)) be a sequence in R? such that (2, y,) — (70, %0)-
Then by part (iii) of Proposition 2.1, the sequences (z,) and (y,) in R
are such that x, — z¢ and y,, — yo. Hence, by parts (i) and (v) of Fact
2.3, we see that /22 +y2 — /22 + y2. Thus f is continuous on R2,

(iii) Consider the coordinate functions p1, ps : R? — R defined by py(z,y) :=
x and py(z,y) ==y for (z,y) € R% Then by part (iii) of Proposition 2.1,
we immediately see that p; and py are continuous on R2.

(iv) Let D C R? and let us fix (zg,y0) € D. Consider

Dy :={zeR:(z,y0) € D} and Dy:={yeR:(z9,y) € D}.

Notice that the set Dy depends on yg, whereas Do depends on xy. Given
any f: D — R, let ¢ : Dy — R and ¢ : Dy — R be functions of one
variable defined by

o(r) = f(x,yo) forze Dy and ¢(y):= f(zo,y) fory e Ds.

These functions will play a useful role in the study of the function f of
two variables around the point (zg, yo). If f is continuous at (zo, yo), then
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¢ is continuous at zp and v is continuous at yo. To see this, let (z,) be
a sequence in Dp such that z, — xg. Then (z,,vy0) — (20, yo) and hence
f(zn,y0) — f(zo,0), that is, ¢(x,,) — ¢(xo). Thus ¢ is continuous at .
Similarly, 1 is continuous at yg. O

Let us recall that the sign of a continuous function of one variable is pre-
served in a neighborhood of that point. More precisely, we have the following.
For a proof, one may refer to page 68 of ACICARA.

Fact 2.13. Let E C R, ¢ € E, and let ¢ : E — R be continuous at c. If
¢(c) > 0, then there is § > 0 such that ¢(x) > 0 for all z € EN (¢ —6,¢c+
0). Likewise, if ¢(c) < 0, then there is 6 > 0 such that ¢p(z) < 0 for all
xe€EN(c—0d,c+0).

A similar result holds for functions of two variables.

Lemma 2.14. Let D C R?, (xg,90) € D, and let f : D — R be a function
that is continuous at (zo,yo). If f(xo,y0) > 0, then there is 6 > 0 such that
f(z,y) > 0 for all (x,y) € D N Ss(xo,yo). Likewise, if f(xo,yo) < 0, then
there is § > 0 such that f(xz,y) <0 for all (z,y) € D N Ss(x0,Yo)-

Proof. First, suppose f(xg,y0) > 0. If there is no § > 0 with the desired
property, then for each n € N, we can find (2, y,) € DNS; (w0, yo) such that
f(@n,yn) < 0. Now (z,,yn) — (20,Y0), and since f is continuous at (xo,yo),
we have f(zn,yn) — f(x0,y0). Hence, by part (iv) of Fact 2.3, f(xo,y0) <0,
which is a contradiction. The proof when f(zg, o) < 0 is similar. |

Proposition 2.15. Let D C R?, (xg,90) € D, 7 € R, and let f,g: D — R be
continuous at (xo,yo). Then f+ g, rf, and fg are continuous at (xo,yo). In
case f(xo,y0) # 0, there is § > 0 such that f(x,y) # 0 for all (z,y) € D N
Ss(xo, yo), and the function 1/ f : DN Ss(xo,yo) — R is continuous at (xo, yo).
In case there is § > 0 such that f(z,y) > 0 for all (z,y) € DN Ss(xo,y0), the
function fY* . DN Ss(xo,y0) — R is continuous at (xo,yo) for every k € N,

Proof. The continuity of f+g, rf, and fg at (zo, yo) follows readily from parts
(i) and (ii) of Fact 2.3. In case f(zo,y0) # 0, we have either f(zg,y0) > 0
or f(xo,y0) < 0. Thus, by Lemma 2.14, there is 6 > 0 such that f(z,y) # 0
for all (z,y) € D N Ss(xo,y0). Now, by part (iii) of Fact 2.3, we see that
the function 1/f : D N Ss(x,y0) — R is continuous at (xg,yo). Finally, the
assertion about the continuity of f1/* at (x,40) is a direct consequence of
part (v) of Fact 2.3. O

As in the case of functions of one variable, we can easily deduce from
Proposition 2.15 the following. Suppose D C R? and f,g : D — R are con-
tinuous at (zo,yo) € D. Then the difference f — g is continuous at (xo, o).
Also, if g(zo,yo) # 0, then the quotient f/g is continuous at (o, yo). Further,
if there is 0 > 0 such that f(x) > 0 for all z € D N Ss(xo,yo), then for every
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positive rational number 7, the function f” is continuous at (xo, yo). Similarly,
if f(zo,y0) > 0, then for every negative rational number r the function f7 is
continuous at (zg, yo)-

Examples 2.16. (i) Using Proposition 2.15 and the above remarks, we see
that every polynomial function on R? is continuous and every rational
function is continuous wherever it is defined, that is, if p(z,y) and ¢(z,y)
are polynomials in two variables and if D := {(z,y) € R? : g(x,y) # 0},
then the rational function f : D — R defined by f(x,y) := p(x,y)/q(x,y)
for (z,y) € D is continuous on D. Moreover, if £ = {(x,y) € R? :
p(z,y) > 0 and ¢(z,y) > 0}, then for any m,n € N, the algebraic function
g : E — R defined by g(x,y) := p(z, )™ /q(z,y)"/" for (z,y) € E, is
continuous on E.

(ii) Consider f:R? — R defined as follows.

fog) o dsotge @D F 00,
o if (2,) = (0,0).

Then f is not continuous at (0,0). To see this, consider a sequence in
R? approaching (0,0) along the line y = x; for example, the sequence
((1/n,1/n)). Then (1/n,1/n) — (0,0), but f(1/n,1/n) — 1/2 % f(0,0).
(iii) Consider a variant of the function in (ii), namely, f : R? — R given by
2

fz,y) = x2x+yy2 if (z,y) # (0,0),

0 if (z,y) = (0,0).

Then f is continuous at (0,0). To see this, note that for any (x,y) € R?,
we have 22 < 22 +y? and consequently, |f(x,y)| < |y|. Hence if ((xn, yn))
is any sequence in R? with (z,,,,) — (0,0), then y,, — 0, and as a result,
f(@n,yn) — 0= f(0,0).

(iv) Consider a variant of the function in (iii), namely, f : R? — R given by

2
fz,y) = x4x+yy2 if (z,y) # (0,0),

0 if (z,y) = (0,0).

Then f(x,y) approaches 0 along every line passing through the origin
[indeed, f(0,y) = 0 and f(z,mz) = mz/(z> + m?) — 0 as z — 0].
However, f is not continuous at (0,0). To see this, consider a sequence
in R? approaching (0,0) along the parabola y = z?; for example, the
sequence ((1/n,1/n?)). Then (1/n,1/n?) — (0,0), but f(1/n,1/n%) —
1/2 # £(0,0).

(v) Consider a variant of the function in (iv), namely, f : R? — R given by
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3
Fla,y) = xf—l—yy? if (z,) # (0,0),

0 if (z,y) = (0,0).

Then f is continuous at (0,0). To see this, use the A.M.-G.M. Inequality
(given, for example, on page 12 of ACICARA) to obtain 2|z2y| < a* + 42,
and hence |f(z,y)| < |#]/2 for all (z,y) € R? Thus, if ((zn,yn)) is any
sequence in R? with (z,,,y,) — (0,0), then we see that z,, — 0 and as a
result, f(zn,yn) — 0= f(0,0). <&

Composition of Continuous Functions

We now show that the composition of continuous functions is continuous. It
may be noted that for functions of two variables, three types of composites
are possible. Thus, the following result is stated in three parts.

Proposition 2.17. Let D C R?, (x0,v0) € D, and let f : D — R be continu-
ous at (xo,yo)-

(i) Suppose E C R is such that f(D) C E. If g : E — R is continuous at
f(xo,y0), then go f: D — R is continuous at (xo,yo)-

(i) Suppose E C R, to € E, and z,y : E — R are such that (x(t),y(t)) € D
for all t € E and (x(to),y(to)) = (xo,y0). If x,y are continuous at to,
then F: E — R defined by F(t) := f(x(t),y(t)) is continuous at ty.

(iii) Suppose E C R2, (ug,v9) € E, and x,y : E — R are such that
(x(u,v),y(u,v)) € D for all (u,v) € E and (x(ug,vo),y(uo,v0)) =
(zo,y0). If x,y are continuous at (ug,vp), then F : E — R defined by
F(u,v) := f(z(u,v),y(u,v)) is continuous at (ug,vg).

Proof. (i) Suppose E and g satisfy the hypotheses in (i). Let ((xn,yn)) be
a sequence in D such that (x,,y,) — (xo,y0). By the continuity of f at
(x0,Y0), we obtain f(xn,yn) — f(z0,%0). Now (f(xn,yn)) is a sequence in
f(D), and hence by the continuity of g at f(xo,yo), we obtain g (f(zn,yn)) —
g (f(zo,y0)). So go f: D — R is continuous at (zg, yo)-

(ii) Suppose E, tg, and the functions z,y satisfy the hypotheses in (ii),
and F is as defined in (ii). Let (¢,) be a sequence in E such that ¢, — to. By
the continuity of = and y at ¢y, we obtain x(t,) — x(to) and y(t,) — y(to).
Thus, by part (iii) of Proposition 2.1, (x(tn),y(tn)) is a sequence in D that
converges to (zo,yo). Hence by the continuity of f at (zo,yo), we obtain
flz(tn),y(tn)) — f(zo,yo0), that is, F(t,) — F(to). So F is continuous at ¢.

(iii) Suppose E, (ug,vp), and the functions z,y satisfy the hypotheses
in (iii), and F' is as defined in (iii). Let (u,,v,) be a sequence in E such
that (un,vn) — (ug,vo). By the continuity of x and y at (ug,vo), we obtain
(U, vn) — x(u0,v0) and y(uy, vy) — y(uo, vo). Thus, by part (iii) of Propo-
sition 2.1, (2(un, vy), y(un, vy)) is a sequence in D that converges to (2o, yo)-
Hence by the continuity of f at (zo,y0), we obtain f(z(wn, vn), y(tn,vy)) —
f(zo,yo), that is, F(un,v,) — F(ug,vo). So F is continuous at (ug,vp). O
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Examples 2.18. (i) By part (i) of Proposition 2.17, f : R> — R defined by
f(x,y) = sin(zy) is continuous at each (zg,yo) € R?, and g : R?> — R
defined by g(z,y) := cos(z + y) is continuous at each (zg,%0) € R?.

(ii) By part (ii) of Proposition 2.17, if f(z,y) is any polynomial in two vari-
ables, then F': R — R defined by F'(t) := f(e',sint) for t € R is continu-
ous at every tg € R.

(iil) By part (iii) of Proposition 2.17, if f(x,y) is any polynomial in two vari-
ables, then F : R? — R defined by F(u,v) := f(sin(uv),cos(u + v)) for
(u,v) € R? is continuous at every (ug,vo) € R2.

(iv) Consider the functions that give the polar coordinates of a point in R?
other than the origin. (See Section 1.3 and, in particular, Fact 1.26.) More
precisely, consider 7 : R? — R and 6 : R? \ {(0,0)} — R defined by

cos_1< . ) if y >0,
r(z,y)

—cosl< v ) if y < 0.
r(z,y)

Then, as seen already in Example 2.12 (ii), the function r is continuous
on R2. Also, we know that cos™' : [~1,1] — R is a continuous function
of one variable. (See, for example, page 252 of ACICARA.) Consequently,
by Proposition 2.15 and part (i) of Proposition 2.17, we see that the
function 6 is continuous at every (zg,%0) € R? for which yo # 0. Also, 6
is continuous on the positive z-axis. To see this, note that if (zg,0) € R?
with zg > 0 and if ((@n,ys)) is any sequence in R? \ {(0,0)} converging

to (o, 0), then
cos ! on
N

and hence 6(z,,y,) — 0. However, at points on the negative z-axis, the
function 6 is discontinuous. To see this, fix (x9,0) € R? with zg < 0.
Clearly, we can find sequences ((x,,y,)) and ((un,v,)) in R?\ {(0,0)}
converging to (z,0) such that y, > 0 and v,, < 0 for all n € N. Now,

_ X _ Zo _
0(zy, =cos™! " — Cos 1( ):cosl—l =,
o) <¢xa+yz> oo Y

whereas

O(tn,vn) = —cos_1< tn ) — —cos_1< o ) =—cos '(-1) = —7.

Vu2 42 |0l

Thus, € is discontinuous at every point of {(z,y) € R? : < 0 and y = 0}.
In fact, given any zg < 0, we can take x,, = u, = xg for all n € N in

r(z,y) = \/x2 + 92 and 6(z,y) =

0(zn, yn)| =

cos1< o )’ = | cosH(1)] = 0,

o]
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the above argument, and this shows that the function from (—o0,0] to
R given by y — 6(xzo,y) is discontinuous at 0. On the other hand, the
functions that give the rectangular coordinates of a point in the (polar)
plane are continuous. More precisely, the functions z,y : R?> — R defined
by x(r,0) := rcosf and y(r,0) := rsind are continuous on R2. <&

Piecing Continuous Functions on Overlapping Subsets

An effective way to construct continuous functions of one variable is to piece
together two continuous function defined on overlapping subsets that intersect
at a single point, provided their values agree at the common point of intersec-
tion. (See, for example, Proposition 3.5 of ACICARA.) We now obtain a similar
result for functions of two variables. A precise statement is given below, and
the key hypothesis in this result is illustrated in Figure 2.1.

Proposition 2.19. Let D; and D be subsets of R? and let fi : D1 — R
and fo : Dy — R be continuous functions such that f1(x,y) = fa(z,y) for all
(z,y) € D1 N Dy. Let D := D1 U D3 and let f: D — R be defined by

T - fi(z,y) if (z,y) € D,
Ty {f2($»y) if (x,y) € Da.

If D; is closed in D, that is, D; N D = D; for i = 1,2, then f is continuous.

Proof. Since fi; and fo agree on D1 N Dag, it is clear that f is well defined.
Assume now that each D; is closed in D for i = 1,2. Fix (zo,y0) € D. Let
((zn,yn)) be a sequence in D such that (zy,yn) — (20,%0). In case there is
ny € N such that (x,,y,) € Dy for all n > nq, then (xo,y0) € D; since Dy
is closed in D; further, by the continuity of f; on D1, we obtain f(z,,y,) =
f1(xn,yn) — f1(xo,y0) = f(xo,y0). Similarly, in case there is no € N such that
(Tn,yn) € Do for all n > ng, then (o, yo) € D2 and f(x4n,yn) — f(x0,y0). In
the remaining case, there are two subsequences ((ze,, e, )) and (T, Ymy))
of ((2n,yn)) such that (z¢,,ye,) € D1 and (@, , Ym,) € D2 for all k € N, and
moreover, N = {{1,0s,...} U{my,mo,...}. Clearly, (z¢,,ve,) — (vo,y0) and
(Tmy» Ymy) — (20, Y0). Now, since each D; is closed in D, we have (xq,yo) €
Dy N Dy; further, since each f; is continuous at (o, yo), we have f (x¢,,ye,) =
f1(@e,ye,) — fi(zo,y0) = f(zo,90) and f (Tmy, Ymy) = f2 (Tmy, Ym,,) —
fa(xo,y0) = f(20,y0). Since N = {l1,0o,...} U{mq,ma,...}, it follows that
f(@n,yn) — f(x0,y0). This proves that f is continuous at (xq,yo)- O

Examples 2.20. (i) Consider the semiopen rectangles Dy := (0,1] x [—1,1]
and Dy := [1,2) x [—1, 1]. (See Figure 2.1.) Note that neither Dy nor Dy is
closed in R?, but each D; is closed in D := D; U D for ¢ = 1, 2. Thus the
hypothesis of Proposition 2.19 is satisfied, and continuous functions on
D; and D5 that agree on Dy N Dy = {1} x [—1, 1] extend to a continuous
function on D.



54 2 Sequences, Continuity, and Limits
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Fig. 2.1. Illustration of the conditions D1 N D = D; and D2 N D = D3 in Proposi-
tion 2.19 that are satisfied in Example 2.20(i) and violated in Example 2.20(ii).

(ii) Let Dy be the open disk By (0,0) and let D5 the closure of the disk B, (2, 0),
that is, D1 = {(z,y) € R? : 22 + ¢?> < 1} and Dy = {(x,y) € R? :
(x —2)% 4+ y% < 1}. (See Figure 2.1 (ii).) Consider f; : D; — R and f5 :
Dy — R defined by f1(z,y) := 0 for all (z,y) € Dy and fa(x,y) := 1 for all
(z,y) € Dy. Clearly, f; and f2 are continuous. Moreover, D1 N Dy = () and
hence f: D1 UDs — R as given in Proposition 2.19 is well defined. But f
is not continuous at (1,0), since (z,y,) := (1— 1, 0) — (1,0), whereas
f(@n,yn) = fi(zn,yn) = 0foralln € N, and thus f(2n,yn) /1= f(1,0).
This shows that the hypothesis D; N D = D; for ¢ = 1,2 in Proposition
2.19 cannot be dropped. <

An easy inductive argument shows that the result in Proposition 2.19 can
be extended to piece together continuous functions not just on two overlapping
sets, but on any finite number of sets, provided they agree on all pairwise
intersections and each of the sets is closed in the union of all the sets. For our
purpose, it will suffice to record the following special case of partitioning a set
into four quadrants at a given point.

Corollary 2.21. Let D C R and let f : D — R be a function. Given any
(x0,90) € D, let Dy :={(x,y) € D:x>x¢ andy > yo}, D2 :={(x,y) € D :
x<wxoandy>yo}, D3 :={(x,y) €D :x <xg and y < yo}, Dy :={(x,y) €
D:xz>wx0 andy < yo}, and f; = fip, fori=1,...,4. Then f is continuous
if and only if f; is continuous for each i =1,...,4.

Proof. If f is continuous, then clearly f; is continuous for each ¢ = 1,...,4.
To prove the converse, consider Fy := D1 U Dy and Es := D3 U Dy, and also
gi = fig, for i = 1,2. Using Proposition 2.19, we see that the continuity of fi
and fo implies the continuity of g1, while the continuity of f3 and f; implies
the continuity of go. Further, the continuity of f follows from the continuity
of g1 and go using Proposition 2.19 again. O
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Characterizations of Continuity

We have chosen to define continuity of a function at a point using sequences.
Alternative definitions are possible, as is shown by the result below.

Proposition 2.22. Let D C R?, (x9,90) € D, and let f : D — R be any
function. Then the following are equivalent.

(i) f is continuous at (o, yo), that is, for every sequence ((Tn,yn)) in D such
that (Xn,yn) — (xo,y0), we have f(xn,yn) — f(xo,Yo0)-
(ii) For every € > 0, there is § > 0 such that |f(z,y) — f(xo,y0)| < € for all
(z,y) € DN Ss(xo,y0)-
(iii) For every open subset V' of R containing f(xo,yo), there is an open subset
U of R? containing (xo,yo) such that f(UN D) CV, that is, f(x,y) €V
for all (z,y) e UND.

Proof. Assume that (i) holds. If (ii) does not hold, then there is € > 0 such
that for every § > 0, there is (z,y) in D N Ss(xo,yo) with the property that
|f(xz,y) — f(zo,y0)] > e. Consequently, for each n € N, there is (z,,y,) in
D NSy (x0,y0) such that |f(z,,yn) — f(zo,y0)| > €. But then (z,,yn) —
(x0,90) and f(zn,yn)# f(x0,y0). This contradicts (i). Thus, (i) = (ii).

Next, assume that (i) holds. Let V' be an open subset of R containing
f(xo,y0). Then there is € > 0 such that (f(zo,y0) — ¢, f(xo,y0) +€) C V.
By (ii), we can find ¢ > 0 such that |f(z,y) — f(xo,v0)| < € for all (z,y) €
DN Ss(z0,y0). Thus, if we let U = Ss(x0,90), then U is an open subset of R?
containing (o, yo) such that f(U N D) C V. Thus, (ii) = (iii).

Finally, assume that (iii) holds. Let ((#,%s)) be any sequence in D such
that (xn,yn) — (z0,%0). Given any ¢ > 0, take V' to be the open interval
(f(x0,v0) — €, f(x0,v0) + €) in R. By (iii), there is an open subset U of R?
containing (zg, yo) such that f(U N D) C V. Since U is open, there is 6 > 0
such that Ss(zo,y0) C U. Further, since (z,,y,) — (xo,¥0), there is ng € N
such that (2,,yn) € Ss(xo,y0) for all n > ng. Consequently, f(x,,y,) is in
(f(xo,y0) — €, f(z0,y0) +€), that is, | f(zn, yn) — f(z0,y0)| < € for all n > ny.
Thus, f(zn,yn) — f(x0,%0), and so (iii) = (i).

This proves the equivalence of (i), (ii), and (iii). O

Corollary 2.23. Let D C R? be open in R? and let f : D — R be any
function. Then f is continuous on D if and only if for every open subset V/
of R, the set f~2(V) :={(z,y) € D: f(z,y) € V} is open in R?.

Proof. Follows easily from Proposition 2.22. O

Example 2.24. Clearly, the intervals (0, 00), (—o00,0) and the set R\ {0} are
open subsets of R. Thus, as a consequence of Corollary 2.23, we see that if
f : R? — R is continuous, then each of the sets {(z,y) € R? : f(z,y) > 0},
{(z,y) € R? : f(z,y) <0}, and {(z,y) € R? : f(x,y) # 0} is open in R%. &
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Continuity and Boundedness

A bounded function need not be continuous. Consider, for example, the func-
tion f: R? — R defined by

1 if both = and y are rational,

0 otherwise.

f(x,y) = {

Clearly, f is bounded but f is not continuous at any point of R2. Also, a
continuous function need not be bounded. For example, ¢ : R? — R and
h:(0,1) x (0,1) — R defined by

gz, y) :==x+y and  h(z,y):=1/(z+y)

are both continuous, but neither g nor h is a bounded function. It may be
noted that the domain of ¢ is closed, but not bounded, whereas the domain
of h is bounded, but not closed. The following result shows that the situation
is nicer if the domain is closed as well as bounded.

Proposition 2.25. Let D C R? be closed and bounded, and let f : D — R be
continuous. Then f is bounded, that is, f(D) := {f(z,y) : (z,y) € D} is a
bounded subset of R. Also, f(D) is a closed subset of R. As a consequence, if

D is nonempty, then f attains its bounds, that is, there are (a,b),(c,d) € D
such that f(a,b) =sup f(D) and f(c,d) = inf f(D).

Proof. Suppose f is not bounded above. Then for each n € N, there is
(zn,yn) € D such that f(x,,y,) > n. Since D is bounded, by the Bolzano—
Weierstrass Theorem (part (i) of Proposition 2.6), the sequence ((@n,yn))
has a convergent subsequence, say ((xnk , ynk)) Suppose (Zn,, s Yn,,) — (T0,Y0)-
Then (zo,y0) € D, since D is closed, and f(xn,,Yn,) — f(xo,y0), since f is
continuous. On the other hand, f(xy, ,yn,) > ni for each k € N, and njy — oo
as k — oo, which leads to a contradiction. Hence f must be bounded above.
Similarly, it can be seen that f is bounded below. Thus f(D) is bounded.
Next, suppose (z,) is a sequence in f(D) such that z, — r for some r € R.
Write z, = f(xn, yn), where (z,,y,) € D for n € N. As before, ((xn, yn)) has
a convergent subsequence, say ((xnk,ynk)), which must converge to a point
(x0,90) of D. Since f is continuous at (zo,Y0), 2n, = f(Tny, Ynr) — f(To,Y0),
and hence r = f(zo, o), which shows that r € f(D). Thus f(D) is closed.
Finally, if D is nonempty, then f(D) is a nonempty bounded subset of R and
thus M := sup f(D) and m := inf f(D) are well defined. By the definition
of supremum and infimum, for each n € N, we can find (ay,by), (¢n,dn) € D
such that M — 711 < flan,bn) < M and m < f(cp,dn) <m+ 711 Consequently,
flan,bp) — M and f(cp,dyn) — m. Since f(D) is closed, M, m € f(D), that
is, f(a,b) =sup f(D) and f(c,d) = inf f(D) for some (a,b), (¢,d) € D. O
Remark 2.26. Subsets of R? (and more generally, of R™) that are both closed
and bounded are often referred to as compact sets. Thus, the above proposition

says that the continuous image of a compact set is compact. For more on
compactness, see Exercise 17. O
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Continuity and Monotonicity

For functions of one variable, there is no direct relationship between continu-
ity and monotonicity. Indeed, it suffices to consider the integer part function
x — [z] and the absolute value function z — |z| to conclude that a mono-
tonic function need not be continuous and a continuous function need not be
monotonic. For functions of two variables, a similar situation prevails. In fact,
using the product order on R?, we have introduced in Chapter 1 two distinct
notions: monotonicity and bimonotonicity. We will show below that neither
of these implies or is implied by continuity.

Examples 2.27. (i) Consider f : [-1,1] x [-1,1] — R defined by f(z,y) :=
xy. Clearly, f is continuous but not monotonic on [—1,1] x [—1,1]. Note,
however, that f is bimonotonically increasing on [—1, 1] x [—1, 1], since we have
Toys + T1y1 — T2y — T1y2 = (v2 — x1)(y2 — y1) for all (x1,y1), (v2,y2) € R

(ii) Conmsider f : [~1,1] x [~1,1] — R defined by f(x,y) = (x + y)3.
Clearly, f is continuous. However, f is not bimonotonic on [—1,1] x [—1,1].
To see this, observe that (z1,y1) := (0,0) and (z2,y2) := (1,1) are points of
[—1,1] x [-1,1] satisfying (z1,y1) < (22,y2) and

f@y) + f(@2,y2) — f(21,92) — fla2,91) =04+8-1-1=6>0,
whereas (u1,v1) := (=1, —1) and (ug, v2) := (0, 0) are points of [-1, 1] x[—1, 1]
satisfying (u1,v1) < (ug2,v2) and

flur,v1) + fluz,v2) — f(ur,v2) — flug,v1) ==8+0+1+1=-6<0.
(iii) Consider f: [—1,1] x [-1,1] — R defined by

1 ifz>0andy >0,
0 otherwise.

It is easy to see that f is monotonically as well as bimonotonically increasing,
but not continuous on [—1,1] x [—1,1]. <&

Continuity, Bounded Variation, and Bounded Bivariation

In general, a function of bounded variation need not be continuous. Likewise
for a function of bounded bivariation. In fact, Example 2.27 (iii) provides
a common counterexample. We have seen earlier that a continuous function
need not be monotonic or bimonotonic. The following example shows that it
need not even be of bounded variation or of bounded bivariation.

Example 2.28. Consider f :[0,1] x [0,1] — R defined by

xycos(m/2x) if x#0,

fz,y) = {0 if = 0.



58 2 Sequences, Continuity, and Limits

Clearly, f is continuous on (0, 1] x [0, 1]. Moreover, since |f(z,y)| < |xy| for
all (z,y) € [0,1] x [0,1], it is readily seen that f is continuous at (0,y) for
each y € [0,1]. Thus, f is continuous on [0, 1] x [0, 1]. Next, given any even
positive integer n, say n = 2k for some k € N, if we consider the points

1
ro=0=9yo and x;:= cand y;=1fori=1,...,n,
n+1-—1
then we have (0,0) = (xo,y0) < (x1,y1) < -+ < (2n,yn) = (1,1) and more-
over, f(z;,y;) = 01if i is even and f(x;,y;) = £x; if 7 is odd. Thus

7
i=1

’ 111 1 11 &K
;If(x“yz) finyia)l =+ 4+ + tod g, =0
Since the set {Zle(l/z) : k € N} is not bounded above (as is shown, for
example, on page 51 of ACICARA), it follows that f is not of bounded variation
on [0,1] x [0,1].

Furthermore, if we let n = 2k and zg,z1,...,z, be as above, but take
m=1y =0,and y; = 1, then 0 = 20 < ;7 < -+ < z, = 1 and
0 = yo < y1 = 1, and moreover, for any ¢ > 0, we have f(x;,0) = 0, whereas
f(zi, 1) =0if i is even and f(x;,1) = £, if ¢ is odd, and thus

ZZ |f(@isyi) + f(xim1,y5-1) — f(@i, y5-1) — f(@io1,95)]

i=1 j=1 i=1

M?r
=

It follows, therefore, that f is not of bounded bivariation on [0,1] x [0,1]. <

Remark 2.29. Using Exercise 38, a refined version of the Jordan decompo-
sition (Propositions 1.12 and 1.17) can be obtained for continuous functions.
Namely, a continuous function of bounded variation is a difference of contin-
uous monotonic functions, whereas a continuous function of bounded bivari-
ation is a difference of continuous bimonotonic functions. <&

Continuity and Convexity

In general, a continuous function is neither convex nor concave. For example,

consider D := [~1,1] x [-1,1] and f : D — R defined by f(z,y) := 23 + 5.
Clearly, f is continuous. But f is neither convex nor concave. To see this,
observe that (—3,—1) = 2(=1,—1)+ 1(0,0) and (3,3) = (1,1) + (0,0),

but f(=3,-3) = —1 > -1=1f(-1,-1) + 1 £(0,0), and f(2,2) =1<
1=1f(1,1)+ }f(0,0). Moreover, a convex function need not be continuous.
For example, if D := {(z,y) € R? : 2% + y? < 1} is the closed unit disk and
f+D — Ris a variant of the norm function defined by

Vaz+y? if 2?9 <1,
f(z,y) = e o o
2 if 2 +y* =1,
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then f is convex on D, but not continuous on D. Here, the continuity of f
fails precisely at the boundary points of D. In fact, we will show that a convex
function is always continuous at the interior points of its domain. First, we
prove a couple of auxiliary results, which may also be of independent interest.

Lemma 2.30. Let a,b,c,d € R with a < b and ¢ < d. Then every real-valued
convex function on the closed rectangle [a,b] x [c,d] in R? is bounded.

Proof. Let D := [a,b] X [e,d] and let f : D — R be any convex function.
Define M := max{f(a,c), f(a,d), f(b,c), f(b,d)}. Let (x,y) € D. Then there
is s in [0, 1] such that = (1 — s)a + sb. Using the convexity of f on D, we see
that f(z,y) < (1 —s)f(a,y) + sf(b,y). Further, there is ¢ € [0, 1] such that
y = (1 —t)c+ td. Again, using the convexity of f on D, we obtain

flay) <A =s)[1=t)f(a,c) +tf(a,d)] +s[(1—1)f(bc)+1f(bd)]
<(1=s)[(1—t)M+tM]+s[(1—t)M +tM] = M.

It follows that M is an upper bound for f. Next, consider the center point
(p,q) == (“3°, 3%) of D and let (u,v) := (a +b— =, c+d — y). Clearly,
(u,v) € D and (p,q) = é(m,y) + %(u,v). Hence using the convexity of f, we
obtain f(p,q) < 5f(z,y) + 5 f(u,v) < §f(x,y) + M, that is, f(z,y) > m,
where m := 2 (f(p,q) — M). It follows that m is a lower bound for f. O

Lemma 2.31. Let D be convezx and open in R?, and let f : D — R be convez.
Also, let [a,b] X [c,d] be a closed rectangle contained in D, where a,b,c,d € R
with a < b and ¢ < d. Then there is K € R such that

[f(2,y) = f(u,0)| <K (Jz —ul+ |y =) for all (z,y), (u,v) € [a,b]x[c, d].

Proof. Since D is open, there is ¢ > 0 such that [a—3,b+d] x [c—9,d+] C D.
By Lemma 2.30, there are m, M € R such that m < f(z,w) < M for all
(z,w) € [a—0,b+ 0] x [c — d,d+ d]. Now, fix any (z,y), (u,v) € [a,b] X [c,d].
The case (z,y) = (u,v) is trivial, and so we will assume that (z,y) # (u,v).
Then ¢ := |x —u| + |y — v| > 0, and we can consider z := u + g(u — )
and w = v+ g(v —y). Since |u — x| < £, that is, —¢ < u —z < ¢, we have
u—0 <z <wu+9J, and hence z € [a — J,b+ §]. Similarly, w € [c — J,d+ d]. In
particular, (z,w) € D. Moreover, it can be easily verified that

b e Ot
R R S AT
Thus (u,v) = (1 —t)(z,y) + t(z,w), where t := £/(£ + §). Since 0 < t < 1,

using the convexity of f on D, we obtain f(u,v) < (1 —1t)f(z,y) + tf(z,w).
Further, since 0 < t < £/0, we see that

u

l
Fl,0) = F(o) < H(w) = Gy < § M —m] = K (jz — ul +]y o).
where K := (M — m)/d. Similarly, f(z,y) — f(u,v) < K (|z —u| + |y — v]).
This proves the desired inequality for |f(u,v) — f(z,y)|. O
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We are now ready to show that a convex function is continuous at all the
interior points of its domain. This is an immediate consequence of the above
lemma. (See also Exercise 10.)

Proposition 2.32. Let D be a convex subset of R? and let f : D — R be
a convez function. Then f is continuous at every interior point of D. In
particular, if D is also open in R?, then f is continuous on D.

Proof. Let (xo,yo) be an interior point of D. Then there is r > 0 such that
R := [xg—7r,20+7] X [yo—7,yo+7] is contained in D. By Lemma 2.31, there is
K € R such that |f(z,y) — f(zo,v0)| < K (|Jx — x0| + |y — yol) for (z,y) € R.
This implies that if ((zn, yn)) is a sequence in D such that (zy, yn) — (x0,%0),
then f(xn,yn) — f(z0,y0). Thus, f is continuous at (zg, yo). O

Continuity and Intermediate Value Property

A result of fundamental importance in one-variable calculus is that continuous
functions possess the intermediate value property (IVP). For ease of reference,
we state this result below; see, for example, Proposition 3.13 of ACICARA.

Fact 2.33. (Intermediate Value Theorem) Let D be a subset of R and let
¢ : D — R be a continuous function. Then ¢ has the IVP on every interval
I C D, that is, if a,b € I with a < b andr € R is between ¢(a) and ¢(b), then
there is ¢ € [a,b] such that ¢(c) = r; in particular, ¢p(I) is an interval in R.

The following result may be viewed as an analogue of Fact 2.33 for real-
valued continuous functions of two variables.

Proposition 2.34 (Bivariate Intermediate Value Theorem). Let D be
a subset of R? and let f : D — R be a continuous function. Then f(E) is an
interval in R for every path-connected subset E of D. In particular, f has the
IVP on every 2-interval in D.

Proof. Suppose E C D is path-connected. Let 21,20 € f(F) and let r be any
real number between z; and z9. Then 21 = f(z1,y1) and 2o = f(x2,y2) for
some (z1, 1), (x2,y2) € E. Since E is path-connected, there is a path I” joining
(21,91) to (z2,y2) that liesin E. Let x,y : [o, 5] — R be continuous functions
such that I" is given by (z(¢),y(t)), t € [, 8]. Consider F : [a, ] — R defined
by F(t) := f(x(t),y(t)). By part (ii) of Proposition 2.17, F' is continuous, and
by Fact 2.33, F has the IVP on [a, 8]. It follows that r = F(tg) for some
to € [a, 5], and hence r € f(E). This proves that f(E) is an interval in R.
Finally, every 2-interval is path-connected (Example 1.5 (iv)), and so in view
of Proposition 1.25, we see that f has the IVP on every 2-interval in D. 0O

The following example shows that the converse of the above result is not
true, that is, the IVP does not imply continuity.
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Example 2.35. Consider f :[0,1] x [0,1] — R defined by

_ feos(t/y) ity o,
foy) = {0 if y = 0.

Then f is not continuous on [0, 1] x [0, 1], because, for example, (0, 1/n7w) —
(0,0), but f(0, 1/nw) = (—=1)" 4 f(0,0) = 0. Note, however, that f is contin-
uous on [0,1] x (0,1]. We show that f has the IVP on [0,1] x [0,1]. Let r € R
be an intermediate value of f, that is, r is between f(z1,y1) and f(z2,y2)
for some (z1,41), (x2,y2) € [0,1] x [0,1]. If y3 > 0 and y2 > 0, then by the
continuity of f on [0,1] x (0,1] and Proposition 2.34, we see that r = f(z,y)
for some (z,y) € I(z, y1),(2sy0)- 1 =y2 =0, then f(z1,y1) = f(w2,92) =0
and there is nothing to prove. Thus we may assume, without loss of gener-
ality, that y1 = 0 and yo > 0. Choose k& € N such that (1/k7) < y2. Now
y1 < (1/(k+2)m) < (1/km) < y2, and therefore cos(1/y) assumes every value
between —1 and 1 as y varies from y; to yo. It follows that r = f(x1,y) for
some y € [y1,y2]. Thus f has the IVP on [0,1] x [0, 1]. O

Corollary 2.36. Let D be a nonempty, path-connected, closed, and bounded
subset of R? and let f : D — R be a continuous function. Then the range
f(D) of f is a closed and bounded interval in R.

Proof. First, note that since D is nonempty, so is f(D). By Proposition 2.25,
f(D) is bounded, and moreover, if m := inf f(D) and M := sup f(D), then
f(D) C [m,M] and m, M € f(D). Further, by Proposition 2.34, f(D) is an
interval in R. It follows that f(D) = [m, M]. ]

Uniform Continuity

The notion of uniform continuity for functions of one variable can be easily
extended to functions of two variables. Let D be a subset of R?. A function
f D — R is said to be uniformly continuous on D if for any sequences
((a:n,yn)) and ((un,vn)) in D such that [(2n,¥Yn) — (tn,vn)| — 0, we have
|f(@n,yn) = f(tn, vn)| — 0.

Specializing one of the two sequences to a constant sequence, we readily see
that a uniformly continuous function is continuous. As in the case of functions
of one variable, the converse is true if the domain is closed and bounded.

Proposition 2.37. Let D C R? be a closed and bounded set. Then every
continuous function on D is uniformly continuous on D.

Proof. Suppose f : D — R is continuous but not uniformly continuous
on D. Then there are sequences ((xn,yn)) and ((un,vn)) in D such that
[(n, yn) — (un,vn)| — 0, but |f(zn,yn) — f(un,vs)| # 0. The latter im-
plies that there are ¢ > 0 and positive integers n; < no < --- such that
| (2 Yny) = f (tny, v, )| > € for all k € N. Now, by the Bolzano-Weierstrass
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Theorem (part (ii) of Proposition 2.6), ((x"k,y"k)) has a convergent sub-

sequence, say ((xnkj,ynkj)). If (xnkj,ynkj) — (z0,90), then (u"kj,vnkj) —
(x0,Y0), because |(xyn,Yn) — (tn,vy)| — 0. Since f is continuous on D, we see

that ‘f(xnkj7ynkj) - f(u"kj7vnkj )' — |f(x0,90) — f(x0,y0)| = 0. But this is

a contradiction, since |f(xnkj,ynkj) — f(unkj,vnkj)| >eforall j e N O

Examples 2.38. (i) Consider f : R? — R defined by f(z,y) :=  + y. Then
it is clear that f is uniformly continuous on R2.

(i) If D C R? and f : D — R is uniformly continuous, then for every fixed
(z0,y0) € D, the functions ¢ : D; — R and ¥ : Dy — R, defined as in
Example 2.12(iv), are uniformly continuous. This follows from the defi-
nition of uniform continuity by specializing one of the coordinates in the
two sequences to a constant sequence.

(iii) Consider D C R? and f : D — R given by
1

D :={(z,y) € R? : z,y € [0,1] and (z,y) # (0,0)} and f(z,y) := r+y

Then f is continuous on D but not uniformly continuous on D. To see
the latter, consider the sequences ((zn,yn)) and ((un,v,)) in D given
by (Zn,yn) = (1/n,0) and (up,v,) := (1/(n + 1), 0) for n € N. We
have |(zn,yn) — (un,vn)| = 1/n(n+1) — 0, but | f(zn, yn) — f(tn, va)| =
[n — (n+1)| =14 0. Alternatively, we could use (ii) above and the fact
that ¢ : (0,1] — R defined by ¢(x) = f(x,0) = 1/z is not uniformly
continuous on (0,1]. (See Example 3.18 (ii) on page 80 of ACICARA.) It
may be noted here that the domain of f is bounded but not closed.

(iv) Consider f : R? — R defined by f(z,y) := 2? + y2. Then f is continuous
on R2, but not uniformly continuous on R2. To see the latter, consider the
sequences ((xn,yn)) and ((un,vn)) in D given by (z,,yn) := (n, 0) and
(Un,vn) = (n—(1/n), 0) for n € N. We have |(n, yn) — (un,vn)| = 1/n —
0, but | £ (s ) — £ (s va)| = |n? — [0 — 2+ (1/n?)]| = 2—(1/n2) /> 0.
Alternatively, we could use (ii) above and the fact that ¢ : R — R defined
by ¢(z) = f(z,0) = 22 is not uniformly continuous on R. (See Example
3.18 (iii) on page 80 of ACICARA.) It may be noted here that the domain
of f is closed but not bounded. On the other hand, the restriction of f to
any bounded subset of R? is uniformly continuous. <&

A criterion for the uniform continuity of a function of two variables that
does not involve convergence of sequences can be given as follows. The result
below may be compared with Proposition 2.22.

Proposition 2.39. Let D C R?. Consider a function f : D — R. Then f is
uniformly continuous on D if and only if it satisfies the following -0 condition:
For every e > 0, there is 6 > 0 such that

(x7y)7(u7v) €D and |($7y) - (U,U)| <0 = If(as,y) _f(uav)| <e€
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Proof. Assume that f is uniformly continuous on D. Suppose the e-J condi-
tion does not hold. Then there is € > 0 such that for any § > 0, we can find
(x,y), (u,v) € D for which |(x,y) — (u,v)| < d, but | f(z,y)—f(u,v)| > e. Con-
sidering 6 := 1/nfor n € N, we obtain sequences ((z,yy)) and ((un,vy)) in D
such that |(zn, yn) — (n,vn)| < |} and | f (2, yn)— f (un, vn)| > eforalln € N.
Consequently, |(2n, Yn) — (tn, vpn)| — 0, but | f(zn, Yn) — f(tn,vn)| + 0. This
contradicts the assumption that f is uniformly continuous on D.

Conversely, assume that the e-§ condition is satisfied. Suppose ((xn,yn))
and ((un,vn)) are any sequences in D such that |(z,,yn) — (un,v,)| — O.
Let € > 0 be given. Then there is 6 > 0 such that if (z,y), (u,v) € D satisfy
|(z,y) — (u,v)| <6, then |f(x,y) — f(u,v)| < e. Now, for this § > 0, we can
find ng € N such that [(2n,yn) — (Un,vn)| < d for all n > ng. Consequently,
|f(zn,yn) — f(un,vn)| < € for all n > ng. Thus |f(@n, yn) — f(tn,vn)] — 0.
This proves the uniform continuity of f on D. O

Implicit Function Theorem

In the study of functions of one variable, one considers the so-called implicitly
defined curves, that is, curves given by equations of the form f(z,y) = 0,
(x,y) € D, where f : D — R is a real-valued function of two variables.
Heuristically, such an equation defines one of the variables as a function of
the other; for example, it may define y as a function of x. In other words,
from the equation f(z,y) = 0, we may be able to solve for y in terms of z. In
fact, this is tacitly assumed when one does implicit differentiation in calculus
of functions of one variable. The following result asserts that it is possible
to solve the equation f(z,y) = 0 locally, around a point (xg,yp) satisfying
f(zo,y0) = 0, provided f is continuous in each variable and is either a strictly
increasing or a strictly decreasing function of y, for each fixed x. Moreover,
the solution y = n(x) is unique and it is a continuous function of z.

Proposition 2.40 (Implicit Function Theorem). Let D C R? and (o, yo)
be an interior point of D, and let f : D — R satisfy f(xo,y0) = 0. Assume
that there is r > 0 with S, (xo,y0) C D such that the following conditions hold.

(a) Given any x € (xg—r,x0+71), the function i : (yo—r,yo+7) — R defined
by Y(y) = f(x,y) is continuous. Also, given any y € (yo — 7,90 + 1), the
function ¢ : (xo —r,xo + 1) — R defined by ¢(x) := f(x,y) is continuous.

(b) Given any x € (xg—1,20+7), the function 1y : (yo—7r,y0+7r) — R defined
by Y¥(y) := f(x,y) is strictly monotonic.

Then there are 6 > 0 and a unique continuous functionn : (xo—3d,x0+0) — R
with n(xo) = yo such that (x,n(x)) € S.(xo,y0) and f(x,n(z)) = 0 for all
x € (xg — 0,x0 +9).

Proof. In view of (b), let us first suppose that ¢ : (yo — 7, yo+7) — R defined
by ¥o(y) := f(xo,y) is strictly increasing on (yo — r,yo + 7).
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Fig. 2.2. Illustration of the proof of the Implicit Function Theorem.

Choose any y1 € (yo — r,y0) and y2 € (Yo, yo + 7). Since f(zo,yo) = 0
and the function vy is strictly increasing on (yo — 7,y0 + 7), we see that
f(zo,y1) < 0 and f(xo,y2) > 0. By continuity, the sign of f is preserved on
small horizontal segments of the lines y = y; and y = y2. (See Figure 2.2.)
More precisely, using (a), we see that the function defined by = —— f(x,y1) is
continuous on (zg —r, g +7r), and hence it follows from Fact 2.13 that there is
01 > 0 with 61 < r such that f(z,y1) < 0forall x € (xg—0d1,xo+0d1). Similarly,
there is do > 0 with d2 < 7 such that f(z,y2) > 0 for all x € (xg — d2, xo + d2).
Let § := min{dy, d2}. Then

flzyy1) <0< f(x,y2) forall z € (g —d, 20 + ).

Thus, given any = € (zg — 6§,z + 9), the function ¢ : (yo — r,50 +r) — R
defined by ¥(y) := f(z,y) satisfies ¥(y1) < 0 < 9(y2). Also by (a), w
continuous. Hence by the IVP of v, there is y € (y1,y2) such that ¢ (y)
that is, f(z,y) = 0. Moreover, since ¥(y1) < ¥(y2), it follows from (b) that w
is strictly increasing on (yo — 7, yo +7), and hence y is uniquely determined by
x. Thus if we write y = n(x), then we obtain a unique function 7 : (o —J, zo+
0) — R such that n(z) € (y1,y2) and f(z,n(x)) =0 for all z € (xg— 4, xo+9).
In particular, since f(zo,y0) = 0 and yo € (y1,y2), we have n(xo) = yo-

To prove the continuity of n, fix any z* € (zg — d,20 + ¢) and let (x,,) be
a sequence in (xg — d, ¢ + 0) such that x,, — z*. We have seen above that
for any = € (zg — §, 29 + 0), the function ¢ : (yo — r,y0 + ) — R defined
by ¥(y) = f(z,y) is strictly increasing. Fix y1,y2 € (yo — 7,0 + ) as above,
so that y1 < n(z) < yo for all x € (xg — 0,20 + J). Let € > 0 be given and
let us suppose € is so small that y; < n(z*) —e < n(x*) + € < yo, that is,
0 < e <min{n(z*) —y1, y2 — n(z*)}. Using (a) and (b), we see that

f(@n,m(a?)—€) — f(a”,n(z")—€) and  f(z",n(z")—€) < f(z”,n(z")) = 0.
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Hence there is n1 € N such that f(z,,n(z*) —¢) <0 for all n > ny. Similarly,
flzn,n(x*) +€) = flz*,n(x*) +¢€) > f(a*,n(z*)) = 0, and hence there is
ng € N such that f(z,,n(z*) +¢€) > 0 for all n > na. Let ng = max{ny,na}.
Then f(zn,n(a*) —e€) < 0 < f(an,n(a*) + €) for all n > ny. But since
f(zn,n(zy)) =0, it follows from (b) that n(z*) — e < n(z,) < n(z*) + ¢, that
is, [n(xzn) — n(x*)| < e for all n > ng. Thus, n(x,) — n(x*). This proves that
7 is continuous on (xg — d, g + 9).

The case in which ¢ : (yo — 7,90 +r) — R defined by ¥o(y) := f(x0,y)
is strictly decreasing on (yo — r,y0 + r) is proved similarly. Alternatively, it
follows from applying the result proved above to — f. O

Example 2.41. Consider f : R? — R defined by f(x,y) = 22 + 3% — 1. Then
C = {(z,y) € R? : f(z,y) = 0} is the unit circle in R?. If (zg,y0) € C and
yo # 0, then we can easily see that the hypotheses of the Implicit Function
Theorem are satisfied, and the “solution” is given by n(z) := v/1 — 22 or by
n(x) := —v/1 — 22 according as yo > 0 or yo < 0. &

Remark 2.42. We have a straightforward analogue of the Implicit Function
Theorem for solving f(z,y) = 0 for x in terms of y. In this situation, condition
(a) in Proposition 2.40 remains the same, while (b) is replaced by the condition
that for any y € (yo — 7,90 + r), the function ¢ : (xg — r,zo +7) — R
defined by ¢(z) := f(x,y) is strictly monotonic. The conclusion would be
that there are 6 > 0 and a unique continuous function £ : (yo — d,y0+9) — R
with £(yo) = xo such that (£(y),y) € S,(xo,y0) and f(£(y),y) = 0 for all
y € (yo — 0,y0 + 6). This can be proved in a manner similar to the proof of
Proposition 2.40. Alternatively, it follows from applying Proposition 2.40 to
the function (z,y) — f(y,x) and the point (yo, xo). <&

An important consequence of the Implicit Function Theorem is that a
continuous real-valued function of one variable that is strictly monotonic in
an interval about a point admits a continuous (and strictly monotonic) inverse,
locally. A more precise statement appears below. This result may be viewed
as a special case of the so-called Inverse Function Theorem.

Proposition 2.43. Let I be an interval in R and x¢ € I. Suppose f: I — R
is continuous and strictly monotonic on Iy := (xg — r,xo + 1) NI for some
r > 0. Let yo == f(xo), J := f(I), and Jy := f(I1). Then there are 6 > 0 and
a unique continuous function & : (yo — d,yo +0) NJ — R such that £(yo) = o
and f(&(y)) =y for all y € (yo — 8,y0 + &) N J. In particular, f~':Jy — R
18 continuous at yo.

Proof. First, let us consider the case in which x( is an interior point of I.
Then we may choose r > 0 such that (vg — 7,20 + r) C I, and therefore
I = (zo—r,zo+7). Consider h : S, (xg,y0) — R defined by h(z,y) := f(x)—y.
Then h is continuous, h(zg,yo) = 0, and given any y € (yo — 7,90 + 1), the
function from I; to R given by x — h(z,y) is strictly monotonic. Hence by
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the Implicit Function Theorem (Proposition 2.40 and Remark 2.42), there are
0 > 0 and a unique continuous function ¢ : (yo—d, yo+0) — R with {(yo) = xo
such that (£(y),y) € S, (xo,y0) and h(£(y),y) = 0 for all y € (yo — 5,y + 9).
Consequently, f(&(y)) =y for all y € (yo — 6,90 + ) N J and, in particular,
(yo — d,y0 + &) C J. Since f is continuous and strictly monotonic on Iy =
(xo — ryxo + 1) C 1, it follows that yo is an interior point of J; := f(I1) and
f~'=¢on J;. Hence f~!:J; — R is continuous at yq.

In case xg is an endpoint of I, we can extend f to a continuous, strictly
monotonic function f* on a larger interval I* such that x( is an interior point
of I*. For example, if f is strictly increasing and I = [x¢, b), then we may take
I* :=[xo — 1,b) and f*(x) := f(z) if © € [x0,b) and f*(x) := (x — x0) + yo if
x € [rg — 1,20). Applying the arguments in the previous paragraph to f*, we
obtain the desired result. O

As an immediate corollary of Proposition 2.43, we obtain an alternative
proof of the Continuous Inverse Theorem for functions of one variable (given,
for example, on page 78 of ACICARA), which asserts that a continuous one-one
function defined on an interval has a continuous inverse. To this end, we shall
use the following fact from the theory of functions of one variable, which is
completely elementary in the sense that neither the statement nor the proof
involves the notions of continuity or limits. For a proof of this fact and also
for some related results, one may refer to page 29 of ACICARA.

Fact 2.44. Let I be an interval in R. If f : I — R is one-one and has the
IVP on I, then f is strictly monotonic on I.

Corollary 2.45. Let I be an interval in R and let f : I — R be a one-one
continuous function. Then the inverse function f=': f(I) — R is continuous.

Proof. By part (i) of Fact 2.33, f has the IVP on I. So, by Fact 2.44, f is
strictly monotonic on I. Hence by Proposition 2.43, f~! is continuous. o

The notion of continuity can be extended to functions of three or more
variables in a completely analogous manner. Most results extend to this case
in a straightforward way. A result for which the extension to functions of three
variables may not be immediate is the Implicit Function Theorem (Proposition
2.40). Recall that the latter may be roughly stated by saying that if around a
point, f(z,y) is continuous in x as well as in y and strictly monotonic in y, then
we can solve the equation f(z,y) = 0 for y in terms of & around that point. It
turns out that for functions of three variables, in order to solve f(x,y,z) =0
for z in terms of x and y around a point, what we need apart from the strict
monotonicity in z is not just the continuity in each of the three variables, but
the continuity in the variable z and the (bivariate) continuity in « and y. In
effect, the statement as well as the proof of Proposition 2.40 generalize easily
if the variable x is replaced by two (or more) variables. For ease of reference,
we record below a precise statement of this result. Formulation of analogues
as in Remark 2.42 and a general result in the case of functions of n variables
is left to the reader.
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Proposition 2.46 (Trivariate Implicit Function Theorem). Let D C
R3, (20,v0,20) € D, and f : D — R be such that f(xo,vo,20) = 0. Assume
that there is r > 0 with S,(xo, Yo, 20) C D and the following conditions hold:

(a) Given any (z,y) € Sy(z0,Yo), the function 1 : (zg — 1,20 +7) — R defined
by ¥(z) = f(z,y, z) is continuous. Also, given any z € (zo — 1,20+ 1), the
function ¢ : Sy (xo,y0) — R defined by ¢(x,y) = f(x,y, z) is continuous.

(b) Given any (z,y) € Sy(x0,Y0), the function i : (zo —r,z0+1) — R defined
by ¥(z) = f(x,y, 2) is strictly monotonic.

Then there are 6 > 0 and a unique continuous function ¢ : Ss(zo, yo) — R with
C(xO»yO) = 20 such that (xvyv C(xvy)) € Sr(xmyOv ZO) and f(xvyv C(xvy)) =0
for all (x,y) € Ss(wo, yo)-

Proof. The proof is similar to that of Proposition 2.40 if we make appropriate
notational changes. O

2.3 Limits

Let D C R? and (9, y0) € R?. Assume that an open square of positive radius
centered at (x,yo), except possibly the center, is contained in D, that is,
Sr(zo,y0) \ {(z0,y0)} C D for some r > 0. Let f : D — R be any function. We
say that a limit of f as (x,y) tends to (x, yo) exists if there is a real number ¢
such that whenever a sequence ((#,,x)) in D\{(zo,y0)} converges to (z0,yo),
we have f(x,,yn) — £. We then write f(x,y) — £ as (z,y) — (2o, yo)- It may
be noted that there do exist sequences in D \ {(zo,y0)} that converge to
(0, Yo). For example,

r

7y0_n+1

r

(Tn, yn) == (xo—n+1 ) forn e N

defines one such sequence. Using this and the fact that the limit of a sequence
in R? is unique (part (i) of Proposition 2.1), we readily see that if a limit
of f as (z,y) tends to (xg,yo) exists, then it is unique. With this in view, if
flz,y) — L as (x,y) — (z0,y0), then we may refer to ¢ as the limit of f(z,y)

as (z,y) tends to (x,yo), and write

i fla,y) =L
Examples 2.47. (i) Consider f : R? — R defined by f(0,0) := 1 and
f(z,y) = sin(zy) for (z,y) € R?\ {(0,0)}. Then the limit of f as (x,y)
tends to (0, 0) exists and is equal to 0. Indeed, if ((xn, yn)) is a sequence in
R2\ {(0,0)} such that (z,,y,) — (0,0), then x,y, — 0, and by the con-
tinuity of the sine function, sin(z,y,) — sin 0 = 0, that is, f(zn,y,) — 0.
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(i) Consider f:R? — R defined by

x4y ifx#uy,
f(ﬂc,y)={1 . 7_é
ifx=uy.

Then the limit of f as (z,y) tends to (0,0) does not exist. This can
be seen by considering two sequences approaching (0,0), one along the
line y = z and another staying away from this line. For example, if
(n,yn) == (1/n,1/n) and (up,v,) = (=1/n,1/n) for n € N, then
(1, yn)) and ((un,vy,)) are sequences in R?\ {(0,0)} converging to (0, 0),
but f(zn,yn) — 1 and f(un,v,) — 0.

(iii) Consider f : R2\ {(0,0)} — R given by f(z,y) = zy/(2® + y?) for
(z,y) € R? (x,y) # (0,0). Then the limit of f as (x,y) tends to (0,0)
does not exist. This can also be seen by considering two sequences ap-
proaching (0,0), along different lines through the origin. For example,
if (xp,yn) := (1/n,1/n) and (un,v,) := (1/n,2/n) for n € N, then
((#n,yn)) and ((un,vn)) are sequences in R?\ {(0,0)} converging to (0,0),
but f(zn,yn) — % and f(un,vn) — g %

Limits and Continuity

The concepts of continuity and limit are related in a similar way as in the
case of functions of one variable.

Proposition 2.48. Let D C R? and let (xo,y0) € R? be an interior point of
D, that is, S;(zo,y0) C D for somer > 0. Let f : D — R be any function.
Then f is continuous at (xo,yo) if and only if the limit of f as (x,y) tends to
(xo,y0) exists and is equal to f(xo,yo)-

Proof. Assume that f is continuous at (zg, yo). Let ((xn, yn)) be any sequence
in D such that (z,,y,) — (20, y0). By the continuity of f at (zq,y0), we see
that f(xn,yn) — f(xo,y0). It follows that the limit of f as (z,y) tends to
(0, yo) exists and is equal to f(z0,yo)-

To prove the converse, assume that the limit of f as (x,y) tends to (z¢, yo)
exists and is equal to f(xg,yo). Let ((xn, yn)) be any sequence in D such that
(Tn,yn) — (z0,y0). If there is ng € N such that (x,,yn) = (xo,yo) for all
n > mng, then it is clear that f(z,,yn) — f(xo0,y0). Otherwise, there are
positive integers ny,ng,... such that ny < ng < --- and {n € N: (x,,yn) #
(z0,y0)} = {nw : k € N}. Now, ((2n,,¥n,)) is a sequence in D\ {(z0,yo)} that
converges to (zo, yo), and therefore f(xn, ,yn,) — f(20,%0). Since f(zn,yn) =
f(zo,yo) for all n € N\ {ns, : k € N}, it follows that f(z,,yn) — f(x0,%0).
Hence f is continuous at (xg,yo)- O

As a consequence, we obtain a useful characterization for the existence of
the limit of a function in terms of the continuity of an associated function.



2.3 Limits 69

Corollary 2.49. Let D C R? and (z0,y0) € R? be such that D contains
Sr(zo,y0) \ {(z0,y0)} for some r > 0. Given a function f: D — R and { € R,
let F': DU{(x0,y0)} — R be the function defined by

f(xvy) Zf ((E,y) €D \ {(x07y0)}»

F(z,y) = {£ if (z,y) = (20,%0)-

Then

lim f(x,y) exists and is equal to ¢ <= F is continuous at (o, Yyo)-
(z,y)—(w0,y0)

Proof. Since f(z,y) = F(z,y) for (z,y) € D\ {(zo,y0)}, it is clear that
lim 4y (z0,y0) f (2, y) exists if and only if im g ) (z.40) F(,y) exists, and
in this case the two limits are equal. Further, since (zg, yo) is an interior point
of DU {(zo,y0)} and F(zg,yo) = ¢, the desired result follows from applying
Proposition 2.48 to F. O

Examples 2.50. (i) In view of Proposition 2.48 and Example 2.16 (i), we
see that every rational function has a limit wherever it is defined, that is,
if p(z,y) and g(x,y) are polynomials in two variables and if (2o, o) € R?
is such that g(zo, yo) # 0, then

lim p(xay) — p(x07y0)

(@)= (owo) q(z,y)  q(x0,90)

On the other hand, if ¢(zo,yo) = 0, then the limit of p(z,y)/q(z,y) may
not exist, in general. For example, for any m, k € N, the rational function
flx,y) := 2™ /y* does not have a limit as (z,y) tends to (0,0). To see
this, it suffices to approach (0,0) along the parametric curve given by
(z(t),y(t)) = (at®, pt™), t € [~1, 1], where a, 3 are any nonzero constants.
For example, if (z,,y,) := (1/nF,1/n™) and (u,,v,) := (2/nF, 1/n™)
for n € N, then ((z,,y,)) and ((un,vy)) are sequences in R? \ {(0,0)}
converging to (0,0), but f(2n,ys) — 1 and f(un,v,) — 2™.

(i) Consider f : R?\ {(0,0)} — R defined by f(z,y) = 2%y/(x® + y?). Then
in view of Proposition 2.48 and Example 2.16 (i), we see that the limit of
f(z,y) as (z,y) tends to (0,0) exists and is equal to 0. <&

Thanks to Corollary 2.49, basic properties of limits of real-valued func-
tions of two variables can be deduced from the corresponding properties of
continuous functions.

Proposition 2.51. Let D C R? and (zo,y0) € R? be such that D contains
St(zo,y0) \ {(z0,y0)} for somet > 0. Let f,g: D — R, and let £{,m € R be
such that

lim z,y) =L and lim T,y) = m.
(a:,y)ﬂ(ajo,yo) f( y) (I,y)%(wo,yo) g( y)
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Then for any r € R, the limits of f +g, rf, and fg as (x,y) tends to (xo,yo)
ezist, and are equal to L +m, rl, and fm respectively. Moreover, if £ # 0, then
there is § > 0 such that f(z,y) # 0 for all (x,y) € DNSs(zo,y0) \ {(x0,%0)},
and the limit of 1/f : DNSs(x0,v0) \ {(x0,v0)} — R as (z,y) tends to (xo,yo)
exists, and is equal to 1/¢.

Proof. Let F,G : D U {(z9,y0)} — R be the functions defined by letting
F(z,y) = f(2,y) and G(z,) = g(z, ) for (z,5) € D\ {(zo, yo)} and setting
F(x0,y0) := ¢ and G(zo, yo) := m. By Corollary 2.49, F and G are continuous
at (20, o). So the assertion concerning the limits of f + g, rf, and fg follow
from Proposition 2.15 and Corollary 2.49. If ¢ # 0, then the desired existence
of 6 and the limit of 1/f follow from Lemma 2.14, Proposition 2.15, and
Corollary 2.49. a

As in the case of functions of one variable, if there are certain inequalities
among the values of real-valued functions of two variables, then the same
prevail when we pass to limits, provided the limits exist. But of course, strict
inequalities such as < can change to weak inequalities such as < when we pass
to the limit. (See Exercise 11.) On the other hand, strict inequalities on limits
yield strict inequalities on the values of the corresponding function around the
point where the limit is taken. (See Exercise 12.) Moreover, for nonnegative
functions, extraction of roots is preserved by passing to limits.

Proposition 2.52. Let D, (zo,y0),7, f,g,¢, and m be as in Proposition 2.51.

(i) If there is § > 0 with § < r such that f(x,y) < g(z,y) for all (z,y) in
Ss(x0,y0)\{(x0,y0)}, then £ < m. Conversely, if ¢ < m, then thereisd >0
such that § <r and f(x,y) < g(z,y) for all (z,y) € Ss(xo0,y0) \{(z0,y0)}-

(ii) If f(z,y) > 0 for all (x,y) € D, then £ > 0 and for each k € N, the limit
of f1% : D — R as (x,y) tends to (xg,yo) exists, and is equal to £*/*.

(iii) [Sandwich Theorem] If ¢ = m and if there is h : D — R such that
flx,y) < h(z,y) < g(x,y) for all (x,y) € D, then the limit of h as (z,vy)
tends to (xo,yo) exists, and is equal to L.

Proof. Consider H : DU{(x0,y0)} — R defined by H(z,y) := g(x,y)— f(z,y)
for (z,y) € D\ {(x0,y0)} and H(xg,y0) := m — £. By Corollary 2.49 and
Proposition 2.51, H is continuous at (xo, yo). If £ > m, then H(x¢,yo) < 0 and
hence by Lemma 2.14, there is 7 > 0 such that H(z,y) < 0, that is, f(z,y) >
g(x,y) for all (x,y) € DNS,(x0,yo). This contradicts the assumption on f and
g. Hence ¢ < m. Conversely, suppose £ < m. Then H (zq,yo) > 0, and hence by
Lemma 2.14, there is 6 > 0 such that H(z,y) > 0 for all (x,y) € DNSs(xo0, yo),
and so f(z,y) < g(z,y) for all (x,y) € D N Ss(xo,yo). This proves (i). Next,
if f(z,y) > 0 for all (x,y) € D, then by (i), we obtain ¢ > 0. Further, given
any k € N, the assertion about the limit of f/* follows from Proposition 2.15
and Corollary 2.49. Finally, (iii) is an immediate consequence of part (vi) of
Fact 2.3. O
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As in the case of functions of one variable, a criterion for the existence
of the limit of a real-valued function of two variables that does not involve
convergence of sequences can be given as follows.

Proposition 2.53. Let D C R? and (x9,v0) € R? be such that D contains
Sr(zo,y0) \ {(x0,90)} for some r >0 and let f : D — R be a function. Then
the limit of f(x,y) as (z,y) tends to (xo,yo) exists if and only if there is £ € R
satisfying the following €-§ condition: For every ¢ > 0, there is § > 0 such that

(z,y) € DN Ss(z0,90) and (x,y) # (z0,y0) = |f(z,y) — | <.

Proof. Given £ € R, let F' : D U {(z0,y0)} — R be the function associated
with f and ¢ as in Corollary 2.49. Using the equivalence of (i) and (ii) in
Proposition 2.22 together with Corollary 2.49, we obtain the desired result.

O

The above characterization yields the following analogue of the Cauchy
Criterion for sequences in R? (part (iv) of Proposition 2.6).

Proposition 2.54 (Cauchy Criterion for Limits of Functions). Sup-
pose D C R? and (z0,yo) € R? are such that D contains S,(xo,y0) \ {(z0,y0)}
for some v > 0. Let f : D — R be a function. Then im g y)_(zq,y0) f (T, Y)
exists if and only if for every e > 0, there is 6 > 0 such that

(z,y), (u,v) € DN Ss(zo,y0) \ {(z0,50)} = [f(z,9) — f(u,v)] <e

Proof. Assume that £ := lim, ) (z0,y0) f (2, y) exists. Let € > 0 be given. By
Proposition 2.53, there is 6 > 0 such that |f(z,y) — ¢| < €/2 for all (z,y) in
D1S5(x0, 90) \ { (0, yo)}. Hence for (z, ), (u, v) € DS (z0,0)\ {(z0, 30)}
we obtain |(z,9) — £(u,0)] < |f(@,4) — €+ |0 = f(u,v)] < (6/2)+ (e/2) = €.
as desired. The converse follows readily from the Cauchy Criterion for limits
of sequences in R (part (iv) of Fact 2.5). O

Limit from a Quadrant

An analogue of the notion of left(-hand) or right(-hand) limits for functions of
one variable is given by limits from any one of the four quadrants for functions
of two variables. These may be defined as follows.

Let D C R? and (z0,%0) € R? be such that (xg,z¢ +7) X (y0,90 +7) C D
for some r > 0. Given a function f : D — R, we say that a limit of f
from the first quadrant as (x,y) tends to (xo,yo) exists if there is a
real number ¢ such that whenever ((zn,yn)) is a sequence in D\ {(zo,0)}
satisfying (2, yn) > (z0,%0) for all n € N and (zy,,yn) — (%0, y0), we have
f(xn,yn) — L. Tt is easy to see that if such a limit exists, then it is unique. In
this case, we write

fla,y) = Las (z,y) — (xg,y5) or lim — f(z,y) =~
(5 v0) L g
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Similarly, we can define limits of f from the second, the third, and the fourth
quadrants. Obvious analogues of the above notation are then used.

Remark 2.55. For limits from a quadrant, Corollary 2.49 admits a straight-
forward analogue. More precisely, let D C R? and (x9,%0) € R? be such that
(xo, 20 + 1) X (Yo,y0 + r) C D for some r > 0. Consider Dy := {(z,y) € D :
x>x9and y > yo}t and Fy : Dy U{(x0,y0)} — R defined by

Fi(z,y) = fla,y) i (z,y) € Di\ {(zo, 90)},
R if (z,y) = (o, y0)-

Then

lim f(z,y) exists and is equal to ¢ <= F3 is continuous at (xg,yo).
()= (= yd)
This can be proved by a similar argument as in Corollary 2.49. Moreover, anal-
ogous results for limits from the second, the third, and the fourth quadrants
can be readily obtained. <&

Proposition 2.56. Let D C R? and (zo,y0) € R? be such that D contains
Sr(zo,y0) \ {(z0,y0)} for some r > 0. Let f : D — R be a function and let
E.E R. Then lim(Ly)H(mo,?o) f(x,y) = € if and only if hfn(x,y)ﬂ(m;’,ya') flz,y),
llm(x7y)_,(xg,y(;r) f(xv y)! llm(x7y)_,(xg7yg) f(xv y)! and 11m(3:7y)—>($g7y5) f(xv y)
exist and are all equal to L. If, in addition, (xo,y0) € D, then f is continuous
at (zo,yo) if and only if the limit of f from each of the four quadrants as (x,y)
tends to (zo,yo) exists and they are all equal to f(xo,yo).

Proof. If im ;) (z0,y0) f(z,y) = £, then it is clear that the limit of f from
each of the four quadrants as (z,y) tends to (zg,yo) exists and they are all
equal to ¢. To prove the converse, suppose the limit of f from each of the
four quadrants as (z,y) tends to (xg,yo) exists and they are all equal to ¢.
Consider F' : D U {(zo,y0)} — R defined by F(zo,yo) := £ and F(z,y) :=
f(z,y) for (x,y) € D with (x,y) # (z0,y0). Let Dy := {(x,y) € D : = >
xo and y > yo}, D2 = {(z,y) € D : xz < zg and y > yo}, D3 := {(x,y) €
D:x <zgandy < yo}, and Dy := {(x,y) € D : © > zpand y < yo}.
Also, let lNDZ = D; U{(x0,90)} and F; := F\E,; for i = 1,2,3,4. In view of
Remark 2.55, we see that Fj; is continuous at (xo,yo) for i = 1,2, 3, 4. Hence
by Corollary 2.21, F is continuous at (o, o), and therefore by Corollary 2.49,
limz,y)—(wop0) £ (2, 9) = L.

In case (xo,y0) € D, the assertion about the continuity of f at (xo,yo)
follows from what is proved above and Proposition 2.48. O

Approaching Infinity

Let D C R? be such that D contains a product of semi-infinite open intervals
of the form (a, c0) x (¢, 00), where a,c¢ € R. Given a function f: D — R, we
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say that a limit of f as (z,y) tends to (00, 00) exists if there is a real number
¢ satisfying the following property:

((xn,yn)) any sequence in D with z,, — oo and y, — 00 = f(@n,yn) — L.

In this case the real number ¢ is unique and it is sometimes denoted by
lim ;) (00,00) f(2,9). Similarly, we can define a limit of f as (z,y) —
(—00,00), or as (x,y) — (—o0,—0), or as (z,y) — (00, —00), provided of
course the domain D of f contains a product of semi-infinite open intervals
of the form (—o00,b) X (¢,0), (—00,b) X (—00,d), or (a,0) X (—c0,d), as the
case may be, for some a, b, ¢, d € R. An alternative definition that is analogous
to the e-0 characterization (Proposition 2.53) can be given for such limits. It
should suffice to consider the case of limits as (z,y) — (o0, 00). We leave a
formulation of the statement and proofs in the other three cases as an exercise.

Proposition 2.57. Let D C R? be such that D D (a,00) x (c,00) for some
a,c€R, and let f: D — R be a function. Then lim(, y)_(0o,00) [ (7, y) exists
if and only if there is ¢ € R satisfying the following e-(a, B3) condition: For
every € > 0, there are a, 3 € R such that

(z,y) € D with (z,y) = (a, f) = [f(z,y) — ] <€

Proof. Assume that lim(, ). (x,00) f(, ) exists and is equal to a real number
L. Suppose the e-(«, 5) condition is not satisfied. Then there is € > 0 such
that for every o, € R, we can find (z,y) € D with (z,y) > («, ), but
|f(x,y) — €] > €. Taking («,3) = (n,n), as n varies over N, we obtain a
sequence ((xn,yn)) in D such that z,, — oo and y,, — oo, but f(zn,yn) # L.
This contradicts lim, ) (c0,00) (2, %) = L.

Conversely, assume the e-(a, 3) condition. Let ((xn, yn)) be a sequence in
D such that z,, — oo and y,, — oco. Given any € > 0, find «a, 8 € R for which
a > a and B > c. Now, there is ng € N such that (z,,y,) > (o, 3) for all

n > ng, and hence | f(2n,yn) — €| < € for all n > ng. Thus f(zn, yn) — ¢, and
SO hm(a:’y)*}(oo’oo) f(],‘, y) = /. O

As in the case of functions of one variable, in some cases oo or —oo can
be regarded as a “limit” of a function of two variables. Let D C R? and
(z0,y0) € R? be such that D contains S,(xo,%0) \ {(20,%0)} for some r > 0
and let f: D — R be any function. We say that f(z,y) tends to co as (z,y)
tends to (zo, yo) if for every sequence ((2y,,yn)) in D\{(z0, o)} that converges
to (zo, o), we have f(x,,y,) — co. We then write

f(xvy) — 00 as (.’E,y) - (.’Eo,yo)~

Likewise, we say that f(x,y) tends to —oo as (x,y) tends to (zg,yo) if for
every sequence ((@,y,)) in D\ {(z0,40)} that converges to (zo,yo), we have
f(zn,yn) — —oo. We then write
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f(xay) — —00 as (1"7:'-/) - (anyo)'
For example,

1 1
22 4y — o0 as (z,y) — (0,0) and T2 — —o0 as (x,y) — (0,0).
We now give an analogue of Proposition 2.53 for a real-valued function of
two variables that tends to oo or to —oo.

Proposition 2.58. Let D C R? and (z0,y0) € R? be such that D contains
Sr(zo, y0) \ {(z0,y0)} for somer >0 and let f : D — R be any function. Then
flz,y) — o0 as (x,y) — (xo,y0) if and only if the following a-6 condition
holds: For every a € R, there is 6 > 0 such that

(z,y) € DNSs(z0,y0) and (z,y) # (v0,%0) = f(z,y) > .

Likewise, f(x,y) — —o0 as (z,y) — (xo,y0) if and only if the following B-6
condition holds: For every 3 € R, there is 6 > 0 such that

(z,y) € DNSs(xo,y0) and (x,y) # (x0,y0) = f(z,y) < .

Proof. Assume that f(z,y) — oo as (z,y) — (z0,y0). If the a-d condition
does not hold, then there exists a € R such that for every § > 0, there is
(x,y) € DNSs(xo,yo) with (z,y) # (zo,yo) and f(x,y) < . Taking 6 =1/n
as n varies over N, we obtain a sequence ((#n,¥n)) in D\ {(zo,y0)} such that
(Tny Yn) — (X0, Y0), but f(2n,yn) # co. This contradicts the assumption.

Conversely, assume the a-0 condition. Let ((xn,yn)) be a sequence in
D\ {(z0,y0)} such that (x,,y,) — (20,%0), and let « > 0 be given. Then
there is § > 0 such that f(x,y) > « for all (z,y) € DNS;s(xo, yo) with (x,y) #
(x0,y0). Further, there is ng € N such that (,,yn) € Ss(xo,y0) for n > ny.
Hence f(zn,yn) > a for n > ng. Thus f(z,y) — oo as (z,y) — (2o, Yo)-

The equivalence of the condition f(z,y) — —o0 as (z,y) — (xo,yo) with
the (-6 condition is proved similarly. O

Recall that we have defined the notion of a monotonically increasing func-
tion of two variables using the product order on R?. We show below that for
such functions, existence of a limit from the first or the third quadrant is
equivalent to boundedness properties.

Proposition 2.59. Let a,b,c,d € RU{—00, 00} with a <b and ¢ < d be such
that either a,c € R or a = ¢ = —o0, and either b,d € R or b =d = co. Let
f:(a,b) x (¢,d) — R be a monotonically increasing function. Then

(1) imy )y, a-) f(x,y) ewists if and only if f is bounded above; in this

case, lim(a:,y)ﬂ(b_,d_) f(xvy) = Sup{f(xvy) : (xvy) € (avb) X (Cv d)} Iff
is not bounded above, then f(x,y) — oo as (z,y) — (b~,d™).
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(ii) im g ) o+, oty f(,y) ewists if and only if f is bounded below; in this

case, 1irn(ac,y)—>(a+,c+) f(xay) = lnf{f(xay) : (1',:/./) € (a7b) X (Ca d)} Iff
is not bounded below, then f(x,y) — —oo as (z,y) — (a™,cT).

Proof. (i) Suppose f is bounded above. Let M := sup{f(z,y) : (z,y) €
(a,b) x (¢,d)}. Given any € > 0, there is (bg,do) € (a,b) x (¢,d) such that
M —e€ < f(bo,do) < M. Now, if ((zn,yn)) is any sequence in (a,b) x (¢, d) such
that (xn,yn) — (b,d), then there is ng € N such that (bg,dy) < (zn,yn) for
n > ng. Since f is monotonically increasing, we obtain M —e < f(x,,yn) < M
for n > ng. It follows that lim g ), 4-) f(7,y) exists and is equal to M.

On the other hand, suppose f is not bounded above. Let o € R. Then there
is (bo,do) € (a,b) x (c¢,d) such that f(bo,dy) > «. Since f is monotonically
increasing, we see that f(z,y) > « for all (x,y) € (bo,b) x (do,d). Now,
if ((zn,yn)) is any sequence in (a,b) x (c,d) such that (zn,yn) — (b,d),
then there is ng € N such that (bg,dp) < (zn,yn) for n > ng, and hence
f(zn,yn) > « for n > ng. Thus f(xn,yn) — o0 as (x,y) — (b~,d7). It
follows that f(z,y) — oo as (z,y) — (b—,d ™). This proves (i).

(ii) The proof of this part is similar to the proof of part (i) above. O

A result similar to the one above holds for monotonically decreasing func-
tions. (See Exercise 31.) Consequently, we see that if f : (a,b) X (¢,d) — R is
a monotonic function, then

lime, oy, a-) f(2,y) and img ) o+, o) f(2,y) exist <= [ is bounded.

However, for a bounded monotonic function, limits along the other two quad-
rants may not exist. For example, consider f : [-1,1] x [-1,1] — R defined
by
Fay) = {(x+2)(y+2) it w4y >0,
’ (z+1)(y+1) ifz+y<0.

We have noted in Example 1.8 (i) that f is monotonically increasing. Also, it
is clear that f is bounded and (consequently, or otherwise) the limits of f from
the first and the third quadrants as (z,y) tends to (0,0) exist. But the limits
of f from the second and the fourth quadrants as (z,y) tends to (0,0) do not
exist. To see this, consider the sequences in R? defined by (2, y,) = (=}, 2)
and (2),,y,,) == (-2, }) for n € N. Then

(Tn,yn) — 0 and (z),,y,) — 0, but f(z,,yn) — 4 and f(z,,y)) — 1.

Likewise, if (4, yn) := (2 _71;) and (2, yh) = (1 —3) for n € N, then

(Tn,yn) — 0 and (z),,9,) — 0, but f(x,,yn) — 4 and f(z,,y)) — 1.
Thus lim(, )0, 0+) f(7,y) and lim, )+, 0-) f(2,y) do not exist.

In Exercise 40 of Chapter 1, we introduced the notion of an antimonotonic
function. It can be seen that if f : (a,b) X (¢,d) — R is antimonotonic, then
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lime, oy (at,a—) f(2,y) and lime, oy - o) f(2,y) exist <= [ is bounded.
(See Exercise 35.)

Remark 2.60. The notion of limit of a real-valued function of two variables
admits a straightforward extension to real-valued functions of three or more
variables. Moreover, analogues of all the results in Section 2.3 concerning
limits can be easily formulated and proved in this case. <

Notes and Comments

For the local study around a point in R? (and more generally, in R™), there
are at least two natural analogues of the notion of an interval around a point
in R: open disks and open squares. These two are essentially equivalent, in
the sense that an open disk can be inscribed in an open square with the same
center, and vice versa. (See Exercise 3 of Chapter 1). In this book, we have
preferred to use open squares instead of open disks. This approach is slightly
unusual, but it pays off in several proofs that appear subsequently.

The development of topics discussed in this chapter proceeds along similar
lines as in ACICARA. Sequences in R? are introduced first and their basic prop-
erties are deriwed quickly from the corresponding properties of sequences in R.
The notion of continuity is defined using convergence of sequences, and basic
properties of continuous functions are proved using properties of sequences in
R2. These include a result on piecing together continuous functions on over-
lapping domains, which does not seem easy to locate in the literature. Standard
results about continuous functions on connected domains and on compact do-
mains are included, except that for pedagogical reasons, we have preferred the
terminology of path-connected sets and of closed and bounded sets. It may be
remarked that the more general notions of connectedness and compactness are
of fundamental importance in analysis and topology; for an introduction, we
refer to Exercises 17, 18, 19, 20 21, and also the books of Rudin [48] and
Munkres [40]. For a convex function of one variable, continuity at an interior
point was relegated to an exercise in ACICARA. A similar result holds for con-
vex functions of several variables, but proving it is a little more involved, and
we have chosen to give a detailed proof for functions of two variables, using
arguments similar to those in the book of Roberts and Varberg [47]. For an
alternative proof, one may consult the book of Fleming [19].

Following Hardy [29], we state and prove the Implicit Function Theorem
under a weak hypothesis of continuity in each of the two variables and strict
monotonicity in one of the variables. That this is possible appears to have been
first observed by Besicovitch. (See the footnote on p. 203 of [29].) This version
of the Implicit Function Theorem can be used to give an alternative proof of
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the Continuous Inverse Theorem. Also, it will pave the way for proving the
classical version of the Implicit Function Theorem in Chapter 3.

Limits of functions of two variables are defined using sequences. We have
deduced basic properties of limits from the corresponding properties of contin-
wous functions. Perhaps the only nonstandard notion introduced here is that
of a limit from a quadrant. This provides an interesting analogue of the notion
in one-variable calculus of left(-hand) and right(-hand) limits. In general, for
functions of n variables, the notion will have to deal with 2™ hyperoctants.

Exercises

Part A

1. Consider the sequence in R? whose nth term is defined by one of the
following. Determine whether it is convergent. If it is, then find its limit.
(i) (1/n, n?), (i) (n, 1/n?), (i) (1/n, 1/n2), (iv) (1/n, (=1)"/n),
() (U i gy b m), () (14 )" (1= 1))

2. A sequence ((xn, yn)) in R? is said to be

bounded above if there is (a1, a2) € R? such that (z,,, y,) < (a1, aa),
that is, =, < a1 and y,, < ay for all n € N,

bounded below if there is (31, 32) € R? such that (81, 82) < (0, Yn),
that is, 81 < x,, and (B <y, for all n € N,

monotonically increasing if (z,,,yn) < (Zn41,Ynt1) for all n € N|

monotonically decreasing if (z,,,yn) > (nt1,Yny1) for all n € N,
monotonic if it is monotonically increasing or decreasing.

Prove the following.

(i) A monotonically increasing sequence in R? is bounded above if and
only if it is convergent. Also, if ((xn, yn)) is monotonically increasing
and bounded above, then lim, o (Zpn, yn) = sup{(zn, yn) : n € N}.

(ii) A monotonically decreasing sequence in R? is bounded below if and
only if it is convergent. Also, if ((n,¥,)) is monotonically decreasing
and bounded below, then lim, o (zy, yn) = inf{(zn, yn) : n € N}.

(iii) A monotonic sequence in R? is convergent if and only if it is bounded.

3. Is it true that every sequence in R? has a monotonic subsequence? Justify
your answer. [Note: It may be remarked that every sequence in R has a
monotonic subsequence; see page 55 of ACICARA.]

4. Let (z0,y0) € R% We say that (zg,%0) is a cluster point of a sequence
((zn,yn)) in R? if there is a subsequence ((Zn,,¥Yn,)) of ((zn,yn)) such
that (zn,,Yn,) — (20,Y0). Show that if (z,,yn) — (0,v0), then (xo,yo)
is the only cluster point of ((xn, yn)) Also, show that the converse is not
true, that is, there is a sequence ((xn, yn)) in R? that has a unique cluster
point but is not convergent.

5. If a subset D of R? is bounded, then show that its closure D is also a
bounded subset of R2.
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. Find the closure, the boundary, and the interior of the following subsets
of R?. Also, determine whether these subsets are closed or open.
(i) {(z,y) eR*:0<z<land0<y<2} (i) {(x,2?): 2 € R},
(iii) any finite subset of R,  (iv) {(m,n) : m,n € N},
V) {(1/m,1/n):m,n e N}, (vi) {(r,s) :r,s € Q}.

. Let D C R2. Show that the closure of D is the smallest closed subset of
R? containing D and the interior of D is the largest open subset of D.

. Let f,g:[-1,1] x [-1,1] — R be the functions defined by

(x+y)? ifz+y>0,

—(r+y)? fx+y<0.
Show that both f and g are continuous on [—1, 1] x [—1, 1]. Further show
that f is bimonotonic but g is not bimonotonic on [—1, 1] x [-1,1].

. Consider f : R? — R defined by f(0,0) := 0 and for (z,y) # (0,0), by
one of the following. In each case, determine whether f is continuous.

f(z,y) = (x+1)?* and g(z,y):=

2

(1) 1'2 + yg I (11) 1'2 + y4 ) (111) 1'6 + y2 9 (IV) 1'2 + y2 )
3 4
2 2 . Y .. Yy
(v) zyln(z® 4+ y*), (vi) 22y (vii) 2y
o Ty — ayB . sin(z +y) sin?(z + y)

(vili) ~ 5 5 () ;o ()

z? +y |z| + |yl 2] + |y

Let D be convex and open in R?, and let f : D — R be a convex function.
If [a,b] % [c,d] is a closed rectangle contained in D, where a,b,c,d € R
with a < b and ¢ < d, then show that f satisfies a Lipschitz condition
on [a,b] X [c,d], that is, there is L € R such that

If(x,y) - f(uav)| <L |($,y) - (U,U)| for all (x’y)7 (U,U) € [a,b]x[c, d]

(Hint: Use Lemma 2.31, or give a proof similar to that of Lemma 2.31.)
Let D :=S;(0,0)\ {(0,0)} and let f,¢g: D — R be defined by f(z,y) :=
lz| + |y| and g(z,y) := 3 (Jz| + |y[). Show that f(z,y) < g(z,y) for all
(.’E, y) € D, but lirn(nc,y)—>(0,0) f(CC, y) = lim(ac,y)—>(0,0) g(ac, y)

Show that there is 6 > 0 such that sin(zy) < cos(xy) for all (z,y) €
S5(0,0). (Hint: Proposition 2.52.)

Consider f : R? — R defined by one of (i)-(iv) below. Determine whether
the two-variable limit lim(, ,)—(0,0) f(2,%) and the two iterated limits
limg_.q [limy_,o f(x,y)] and lim, g [hmx_,o f(x,y)] exist. If they do,
then find them.

x2y2
() F(ory) = aty, () floy) =4 a2 + (@ -y @97 00
0 if (2,y) = (0,0),
THY 1
(iii) f(z,y) =4~y ey, (iv) f(x,y) = L Yy ify #0,

0 if x =, 0 if y=0.
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14.

15.

16.

17.

18.

19.

20.

Part B

Show that a sequence in R? is convergent if and only if it is bounded
and all its convergent subsequences have the same limit. (Hint: Bolzano—
Weierstrass Theorem.)

Let m, n be nonnegative integers and let 7, 5 € N be even. Let f : R? - R

be defined by £(0,0) := 0 and f(x,y) := 2™y"/(2' +y?) for (x,y) #

(0,0). Show that f is continuous at (0,0) if and only if mj + ni > ij.

Let E C R be open in R and let ® = (x,y) be a pair of real-valued

functions z,y : F — R. Show that both x and y are continuous on E if

and only if the set @1 (V) := {t € E : (z(t),y(t)) € V} is open in R for
every open subset V of R2.

Let D C R2%. A family {U, : @ € A} indexed by an arbitrary set A is

called an open cover of D if each U, is open in R? and D is contained

in the union of U, as a varies over A. Such an open cover is said to have

a finite subcover if there are finitely many indices ag,...,a, € A such

that D C U,, U---UU,,, . The set D is said to be compact if every open

cover of D has a finite subcover. Prove the following.

(i) If D is finite, then D is compact.

(i) If D is compact and E C D is closed, then F is compact. (Hint: If {U, :
a € A} is an open cover of D, then consider {U, : « € A}U{D\ E}.)

(iii) If D is compact, then D is closed. (Hint: If (zq,y0) € D\ 9D, then the
set of open squares centered at (x,y) and of radius |(x, y) — (zo, yo)|/2,
as (x,y) varies over D, is an open cover of D.)

(iv) If D is compact, then D is bounded.

(v) If D = [a,b] X [e,d] is a closed rectangle, then D is compact. (Hint:
Use the midpoints (a + b)/2 and (¢ + d)/2 to subdivide D into four
smaller rectangles. If an open cover of D has no finite subcover, then
the same holds for one of the smaller rectangles. Continue this process
and look at the limiting situation.)

(vi) (Heine—Borel Theorem) D is compact <= D is closed and bounded.

Generalize the definition and the properties above to subsets of R™.

Let D C R2 and F C R. Prove the following.

(i) If D is compact and f : D — R is continuous, then the range f(D) is
closed and bounded.

(ii) If E is closed and bounded and z,y : E — R are continuous, then the
subset {(z(t),y(t)) : t € E} of R? is compact.

If D C R? is path-connected and f : D — R is a continuous function

such that the image f(D) is a finite set, then show that f is a constant

function. Is the conclusion valid if D is not path-connected? Justify your
answer. (Hint: If D has two points, take a path (z(t),y(t)) joining them.

Consider t — f (x(t),y(t)) and use Fact 2.33.)

If D C R? is path-connected, then show that D cannot be written as a

union of two disjoint, nonempty open subsets of D. (Hint: If it could, then

there would be a continuous function f: D — {0,1}. Use Exercise 19.)
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Let D be an open subset of R2. If D cannot be written as a union of two
disjoint, nonempty open subsets of D, then show that D is path-connected.
Let D be a bounded subset of R? and let D denote its closure. Suppose
f: D — R be a continuous function. Prove that f is uniformly continuous
on D if and only if there is a continuous function f : D — R such that
flo=f.

Let f:[0,1] x [0,1] — R be the bivariate Thomae function defined by

1 ifz=0andyeQnlo0,1],
1/q if 2,y € QN[0,1] and x = p/q for some

relatively prime positive integers p and q,
0  otherwise.

f(a?,y) =

Show that the set of discontinuities of f is {(x,y) € [0,1]x[0,1] : z,y € Q}.
(Duhamel’s Theorem) Let a,b € R with a < b and D := [a,b] X [a, b].
If f: D — R is continuous and ¢ : [a,b] — R is defined by ¢(x) := f(z,x)
for = € [a,b], then show that ¢ is Riemann integrable on [a,b]. Further,
show that given any e > 0, there is 6 > 0 such that for every partition
P :={zo,21,...,2,} of [a,b] with u(P) < ¢, and every ¢;, & € [xi—1, x4,
fori=1,...,n, we have

b n
/ $a)de — > flei, &) (v —2i1) | <e

a i=1

(Bliss’s Theorem) If ¢, ¢ : [a,b] — R are continuous, then show
that given any ¢ > 0, there is § > 0 such that for every partition
P :={zo,21,...,2,} of [a,b] with u(P) < ¢, and every ¢;, & € [xi—1, x4,
fori=1,...,n, we have

n

b
/ b)) dz — 3 ple) (@) (wi — 1) | < e

i=1

Let D C R and ¢y € R be such that D contains (to — r,to) U (to, to + 1)
for some r > 0. For each t € D, let f; : [a,b] — R be a Riemann inte-
grable function. Suppose f(z) := lim;_, fr(z) for « € [a,b], and f; — f
uniformly in the sense that for every e > 0, there is § > 0 such that

teD, 0<|t—ty] <0, x €la,b = |fe(x) — f(x)] <e.

Show that f : [a,b] — R is Riemann integrable. Further, show that
limy 4, ff fi(z)dz exists and is equal to f; f(x)dz. Deduce that if F :
[ev, B8] x [a,b] — R is continuous, then for each ty € [a, 5], we have

b b b
lim F(t,z)dx = / tlir? F(t,z)dx = / F(to, z)dz.
a 'TPO a

t—to a

Conclude that ¢ : [, 3] — R defined by ¢(t) := f; F(t,z)dx is continuous.
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27.

28.

29.

30.

31.

32.

Let D C R be such that D contains [c,00) for some ¢ € R. For each
t € D, let fi : [a,b] — R be a Riemann integrable function. Suppose
f(z) := limy_ fi(x) for x € [a,b], and f; — f uniformly in the sense
that for every € > 0, there is s € D such that |f;(z) — f(x)| < € for all
t € D with t > s and all © € [a,b]. Show that f : [a,b] — R is Riemann

integrable. Further, show that lim; .~ ff fi(x)dx exists and is equal to

J7 fl@)da.

Let D C R? and (w0,%0) € R? be such that D contains a punctured

square S, (g, yo)\{(zo,yo)} for some r > 0. Suppose f : D — R is such

that lim, ) (z0,y0) f(2,y) exists and is equal to £. Prove the following.

(1) If limy_.,, f(z,y) exists for every fixed = € (zg — 7, 20) U (x0, 20 + 1),
then the iterated limit lim, .., [lim,_, f(z,y)] exists and is equal
to £.

(ii) If limy 4, f(2,y) exists for every fixed y € (yo — 7,y0) U (Y0, Y0 + 1),
then the iterated limit lim, ., [lim,_,, f(z,y)] exists and is equal
to £.

Use Exercise 13 (ii) to show that even when both the iterated limits in (i)

and (ii) of Exercise 28 exist, they may not be equal. Also, use Exercise 13

(iv) to show that the existence of the two-variable limit does not imply

that the one-variable limits in (i) and (ii) of Exercise 28 exist.

Let D C R? be such that D contains (a,00) x (¢, 00) for some a,c € R.

Suppose f : D — R is such that lim(, ) (c0,00) f(, ) exists and is equal

to £.

(i) If limy oo f(x,y) exists for every fixed & > a, then prove that the
iterated limit lim,_. ., [hmy_,OQ f(x, y)] exists and is equal to /4.

(i) If limy oo f(x,y) exists for every fixed y > ¢, then prove that the
iterated limit lim, . [hm:,c_,oc f(x, y)] exists and is equal to /4.

Let a,b,c,d € R with a < b and ¢ < d, and let f : (a,b) X (¢,d) — R be a

monotonically decreasing function. Prove the following.

(1) limy ), a-) f(2,y) exists if and only if f is bounded below; in this
case, lim(, )b q-) f(x,y) = inf{f(z,y) : (x,y) € (a,b) x (c,d)}. If
f is not bounded below, then f(x,y) — —oc0 as (z,y) — (b=,d ™).

(ii) Hmy ) —(a+, ety f(2,y) exists if and only if f is bounded above; in this
case, 11m(z,y)~>(a+,c+) f(xvy) = Sup{f(x,y) : (SC,y) € (av b) X (Cv d)} It
f is not bounded above, then f(z,y) — oo as (x,y) — (a™,c").

Let a,b,¢,d € R with a < b and ¢ < d, and let f : (a,b) X (¢,d) — R

be a monotonically increasing function. Show that for every (zo,y0) €

(a,b) x (¢,d), both lim(%y)_)(xg’ya)f(x,y) and lim(:c,y)é(:cg,yg)f(x,y)

exist, and llm(x7y)_>(xg7y5) fz,y) < f(xo,y0) < llm(x7y)_>(x0+7y()+) f(z,y).

Also, show that if (z1,41) € (a,b) X (¢,d) with o < 21 and yo < y1, then

lim(ﬂ,y)é(ﬂg,yg) flz,yy) < lim(%y)_)(x;’yD f(x,y). Formulate and prove

an analogue of these properties for monotonically decreasing functions.
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Let D C R? and (xo,y0) be any point of RZ. If there is a sequence
((#n,yn)) in D\ {(z0,y0)} such that (z,,yn) — (20,y0), then (zo,yo)
is called a limit point (or an accumulation point) of D.

(i) Show that (xo,yo) is a limit point of D if and only if for every r > 0,
there is (z,y) € D such that 0 < |(z,y) — (0, y0)| <.

(i) If (xo,y0) is a limit point of D, then show that for every r > 0,
the open disk B, (o, yo) as well as the open square S,.(xg, yo) contain
infinitely many points of the set D.

(iii) If D is a finite subset of R?, show that D has no limit point.

(iv) Determine all the limit points of D if D :=Nx N, or D :=Q x Q, or
D:={(},}):n,meN} orD:=(ab)x(c,d),orD:=[a,b)x(cd],
where a,b,c,d € R with a < b and ¢ < d.

(v) Let ((zn,yn)) be asequence in R? and suppose D = {(z,,yn) : n € N}
is the set of all its terms. Show that a limit point of D is a cluster
point of the sequence ((xn,yn)) Give an example to show that a
cluster point of ((acn, yn)) need not be a limit point of D.

Let D C R? and let (x9,y0) be a limit point of D. We say that a limit

of a function f: D — R as (x,y) tends to (zo,yo) exists if there is a real

number ¢ such that whenever ((z,,yx)) is any sequence in D\ {(zo, o)}

that converges to (xo,yo), we have f(x,,y,) — ¢; in this case ¢ is called

a limit of f as (z,y) tends to (z¢,yo). Show that if a limit of f as (z,y)

tends to (xo,yo) exists, then it must be unique. Also, prove analogues of

Propositions 2.48, 2.51, 2.52, 2.53, 2.54 and Corollary 2.49.

Let a,b,¢,d € R with a < b and ¢ < d, and let f : (a,b) X (¢,d) — R be

an antimonotonic function. Show that both lim(, ) (a+,4-) f(,y) and

lim, )b, ct) f(2,y) exist if and only if f is bounded. (Hint: Exercise

40 of Chapter 1)

Let a,b,¢,d € R with a < b and ¢ < d, and let D := (a,b] x (¢,d] and

f D — R be a bimonotonic function.

(i) Define F': D — R by F(z,y) := f(z,y) — f(z,d) — f(b,y) + f(b,d).
Show that either F'is monotonically increasing and bounded below,
or F' is monotonically decreasing and bounded above.

(ii) If the one-variable limits lim, ;- f(x,d) and lim, ;- f(b,y) exist,
then show that lim(, )., a-) f(2,y) exists.

Let a,b,¢,d € R with a < b and ¢ < d. State and prove results analogous

to those in Exercise 36 above for functions defined on [a, b) X [¢, d), [a, b) x

(¢,d], and (a,b] x [¢,d). (Hint: For [a,b) x (¢,d] and (a,b] x [¢,d), consider

the notion of antimonotonicity.)

Let a,b,c,d € R with a < b and ¢ < d, and let f : [a,b] X [¢,d] — R be

any function. Show that if f is of bounded variation and vy is continuous,

then f is continuous. On the other hand, give an example to show that
if f is of bounded bivariation and wy is continuous, then f need not be
continuous.
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Partial and Total Differentiation

The notion of derivative of a function of one-variable does not really have
a solitary analogue for functions of several variables. Indeed, for a function
of two (or more) variables, there is a plethora of derivatives depending on
whether we choose to become partial to one of the variables, or opt to move
about in a specific direction, or prefer to take the total picture in consider-
ation. The first two viewpoints lead to the notions of partial derivatives and
directional derivatives, while the last leads to a somewhat more abstract no-
tion of differentiability and, in turn, to the notion of total derivative. We define
partial and directional derivatives in Section 3.1, and prove a number of basic
properties including two distinct analogues of the mean value theorem and a
version of Taylor’s theorem using higher-order directional derivatives. In Sec-
tion 3.2, we study the notion of differentiability and prove the classical version
of the Implicit Function Theorem. It may be remarked that those wishing to
bypass the abstract notion of differentiability can always replace it, wherever
invoked, by a slightly stronger but more pragmatic condition on the existence
and continuity of partial derivatives. (See Proposition 3.33.) These readers
can, therefore, skip all of Section 3.2 except perhaps the classical version of
the Implicit Function Theorem. Some key results regarding differentiable func-
tions of two variables such as the classical version of Taylor’s theorem and the
chain rule are discussed in Section 3.3. Next, in Section 3.4, we revisit the
notions of monotonicity, bimonotonicity, convexity, and concavity introduced
in Chapter 1, and relate these to partial derivatives. Finally, in Section 3.5, we
briefly outline how some of the results discussed in previous sections extend
to functions of three variables, and also discuss the notions of tangent plane
and normal line, which can be better understood in the context of surfaces
defined (implicitly) by functions of three variables.
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3.1 Partial and Directional Derivatives

Let us first recall the notion of derivative for a function of one variable. Let
D C R and let ¢ be an interior point of D, that is, (¢ —r,c¢+ 1) C D for some
r > 0. A function f: D — R is said to be differentiable at ¢ if the limit
h) —

Lo fle+ 1) = £

h—0 h
exists; in this case the value of the limit is denoted by f’(c) and is called the
derivative of f at c¢. Now suppose D C R? and (¢, yo) is an interior point of
D, that is, S, (20, y0) C D for some r > 0. For a function f: D — R, it might
seem natural to consider a limit such as

I f(xo + h,yo + k) — f(zo,y0)
1im .
(h,k)—(0,0) (h, k)

But this doesn’t make sense for the simple reason that division of a real
number by a point in R? has not been defined. There are ways to get around
this problem but they are not particularly easy, and we defer a discussion of
the notion of differentiability for functions of two (or more) variables to a later
section. For the moment, we shall see that choosing to become partial to one
of the variables makes things easier and leads to a useful notion.

Partial Derivatives

Let D C R? and let f : D — R be any function. Fix (zo,y0) € D and define
Dy,Dy CR by Dy :={z €R:(x,y0) € D} and Dy :={y € R: (x0,y) € D}.
If 2y is an interior point of D;, we define the partial derivative of f with
respect to = at (xo,yo) to be the limit

lim f(xo +h,yo) — f(%’o,yo)’
h—0 h

provided this limit exists. It is denoted by f.(xo,yo). Likewise, if yo is an
interior point of D5, we define the partial derivative of f with respect to y
at (2o, yo) to be the limit

lim f(xo,y0 + k) — f(xoayo)’
k—0 k

provided this limit exists. It is denoted by f,(zo,%0). These partial deriva-
tives are also called the first-order partial derivatives or simply the first
partials of [ at (xg,yo). They are sometimes denoted by

0 0
6£ (w0,y0) and 65 (70,0)
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instead of fy(zo,v0) and fy(zo,yo), respectively. If these partial derivatives ex-
ist, then the pair (fz(xo, y0), fy(x0, yo)) is called the gradient of f at (zo,yo)
and is denoted by V f(xo,yo). Thus

V f(zo,y0) = (gi (70, 90), ({;Jyt (xo,yo)) :

The partial derivative f..(xo,yo) gives the rate of change in f at (zo,yo) along
the z-axis, whereas fy(xo,yo) gives the rate of change in f at (zo,yo) along
the y-axis. In practice, finding the partial derivative of f with respect to x
amounts to taking the derivative of f(x,y) as a function of x, treating y as
a constant. Indeed, if ¢ : D; — R is the function of one variable defined
by ¢(x) := f(x,yo), then ¢ is differentiable at xo if and only if the partial
derivative of f with respect to = at (z¢, o) exists; in this case f.(zo,y0) =
@' (zo). Similarly, if ¢ : Dy — R is defined by ¥ (y) = f(x0,y) for y € Ds, then
1 is differentiable at yo if and only if the partial derivative of f with respect
to y at (zo,yo) exists; in this case fy(zo,v0) = ¥'(y0). As a consequence, we
see that partial derivatives of sums, scalar multiples, products, reciprocals,
and radicals possess exactly the same properties as derivatives of functions of
one variable. Moreover, since differentiability implies continuity for functions
of one variable, we see that if the partial derivatives of f at (zo,yo) exist,
then ¢ is continuous at xp and v is continuous at yy. However, as Example
3.1 (iii) below shows, existence of both the partial derivatives at a point does
not imply continuity at that point.

Analogous to the left(-hand) and the right(-hand) derivatives in one-
variable calculus, we have the concepts of left(-hand) and right(-hand) partial
derivatives at points that are akin to endpoints of an interval in R. Let, as
before, D C R? and let f : D — R be a function. Fix (zg,%0) € D, and let
Dy :={z € R: (z,5) € D} and Dy := {y € R : (z9,y) € D}. If there is
r > 0 such that (zg — r,zo] C D, then we define the left(-hand) partial
derivative of f with respect to x at (z¢, o) to be the limit

lim flzo+h,yo) — f(‘r07y0)’
h—0~ h

provided this limit exists. It is denoted by (f.)_(xo,y0). On the other hand,
if there is > 0 such that [zg,20 + ) C D, then the right(-hand) partial
derivative of f with respect to = at (xo,yo) is defined to be the above limit
with h — 07 replaced by h — 0T It is denoted by (f.),(z0,90). Likewise, we
define the left(-hand) and right(-hand) partial derivatives of f with respect to
y at (2o, yo). These are denoted by (f,) (zo,yo) and (fy) (zo,yo) respectively.

In case D is the rectangle [a,b] x [c,d], then for each (xo,y0) € D, we
have D; = [a,b] and Dy = [¢,d]. If a < z9 < b, then z is an interior point
of Dy and it is clear that the partial derivative of f with respect to x at
(x0,yo) exists if and only if both the left(-hand) and the right(-hand) partial
derivatives of f with respect to x at (xo,yo) exist and are equal. Likewise for
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partial derivatives with respect to y when ¢ < yg < d. If xg = a or xyg = b,
then xg is not an interior point of Dy, but the right(-hand) partial derivative
of f with respect to = at (zg,yo) can still be defined when zo = a, while the
left(-hand) derivative of f with respect to = at (x,yo) can be defined when
xg = b. Likewise if yo = ¢ or yo = d. With this in view, we shall say that the
partial derivative f, of f exists on [a,b] x [¢,d] if f, exists at each point
of (a,b) x [c,d], (fz), exists at each point of {a} x [c,d], and (f,)_ exists at
each point of {b} x [¢,d]. In this case, we will simply write f,(a,yo) to denote
(fz).(a,y0) and fz(b,y0) to denote (fz)_(b,yo) for every yo € [c,d]. In this
way, we obtain a function f, : [a,b] X [¢,d] — R. A similar convention holds

for f,.

Examples 3.1. (i) Let f : R? — R be given by f(z,y) := 2% +5>. Then both
the partial derivatives of f exist at every point of R?; in fact, fu(z0,%0) =
2z and f,(z0,v0) = 2yo for any (zo,yo) € R%.

(i) Let f : R? — R be the norm function given by f(z,y) := /22 4 y2. Then
both the partial derivatives of f exist at every point of R? except the
origin; in fact, for any (xo,yo) € R? with (29, v0) # (0,0),

Zo Yo
folwo,yo) =, 7, and  fy(zo,mo)= , 7 -
Va3 +yd Va3 +yl

To examine whether any of the partial derivatives exist at (0,0), we have
to resort to the definition. This leads to a limit of the quotient h/|h| as h
approaches 0. Clearly, such a limit does not exist. It follows that f,(0,0)
and f,(0,0) do not exist.

(iii) Let f : R? — R be given by £(0,0) := 0 and f(x,y) := zy/(2? + y?) for
(z,y) # (0,0). Then for any h,k € R with h # 0 and k # 0, we have

f(0+h70)_f(0»0) —0 and f(0,0+k)—f(0,0)

h 1 =0.

Hence f5(0,0) and f,(0,0) exist and are both equal to 0. However, as seen
already in Example 2.16 (ii), f is not continuous at (0,0).

(iv) Let f : R? — R be given by f(z,y) = |z|+ |y| for (x,y) € R%. Clearly, f is
continuous at (0,0). But for any h, k € R with h # 0 and &k # 0, we have

FO+h0) = F0.0) bl F0,04k)~ [0,0) _ |k
h h k Ok

Hence f(0,0) and f,(0,0) do not exist. However, the left(-hand) and the
right(-hand) partial derivatives of f at (0, 0) do exist. Indeed, (fz),(0,0) =
1 =(fy),(0,0), while (f2)_(0,0) = =1 = (f,)_(0,0). On the other hand, if
we let g and h denote the restrictions of f to the rectangles [—1,1] x [0, 1]
and [0,1] x [—1, 1] respectively, then in accordance with our conventions,
94(0,0) and h,(0,0) do exist and are both equal to 1.
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(v) Let 6 : R?\ {(0,0)} — R be the polar angle function defined by 0(z,y) :=
cos™! (x/\/x2 —l—y2) if y > 0 and O(z,y) := —cos™! (x/\/x2 —|—y2> f
y < 0. We have seen in Example 2.18 (iv) that 6 is continuous on all of R?
except on the negative z-axis. Now let us examine the existence of partial
derivatives of 6. First, consider (zg,70) € R? with 39 # 0. Then there
is r > 0 such that 6 is given by only one of the two expressions above
throughout S, (0, %0). So, if we remember that the derivative of cos™! ¢ is
—1/V/1 =2 for t € (—1,1), and apply standard rules of differentiation of
functions of one variable, then we see that both the partial derivatives of
0 exist and

—-

—Yo

provided yo # 0.
xf +yg

(0, y0) = and 6, (zo,%0) =

0
w5+ g
Next, let us consider points on the z-axis. We have 6(z,0) = 0 if x > 0
and 0(z,0) = 7 if © < 0. Hence if 9 € R with z¢ # 0, then 6,(x0,0)
exists and is equal to 0. Moreover, if o > 0, then in view of Example
2.18 (iv), L'Hopital’s rule for 0 indeterminate forms (Proposition 4.37 of

0
ACICARA), and the expression above for 6, (xo, yo), we see that

ey(l‘o,()) = lim 0(zo, k) — 0(z0,0)

k—0 k
2 2
k—0  k k—0 1 o

Finally, if xo < 0, then from Example 2.18 (iv), we know that the function
0o : (—00,0] — R defined by 0y(y) := 6(z0,y) is not continuous at y = 0.
Hence 6y cannot be differentiable at 0. In other words, 6, (zg,0) does not
exist if xg < 0. O

We have seen in Example 3.1 (iii) above that existence of both the partial
derivatives does not imply continuity. However, it is easy to show that it does
imply the continuity in each of the two variables, and also, bivariate continuity
in case one or both of the partial derivatives are bounded. For the latter, we
need to use a basic result in one-variable calculus known as the mean value
theorem, or, in short, the MVT. Let us first recall the statement. A proof can
be found, for example, on page 120 of ACICARA.

Fact 3.2 (MVT). Leta,beR witha <b. If ¢ : [a,b] — R is continuous on
[a,b] and differentiable on (a,b), then there is ¢ € (a,b) such that

¢(b) — ¢(a) = ¢'(c)(b - a).
Proposition 3.3. For any f : [a,b] X [¢,d] — R, we have the following:

(i) If f. exists on [a,b] X [c,d], then for each fized yo € [c,d], the function
from [a,b] to R given by x — f(x,yo) is continuous.
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(ii) If fy exists on [a,b] X [c,d], then for each fized xy € [a,b], the function
from [e,d] to R given by y — f(z0,y) is continuous.

(ii) If both fr and f, exist, and if one of them is bounded on [a,b] X [c,d], then
f s continuous on [a,b] x [c,d].

Proof. (i) Fix yo € [c,d]. The existence of f,(xg,y0) for every xz¢ € [c,d]
readily implies that the function of one variable given by = —— f(z,yo) is
differentiable, and hence continuous, on [a, b].

(ii) Proof of (ii) is similar to that of (i) above.

(iii) Assume that both f, and f, exist, and f, is bounded on [a, ] x [, d].
Then there is @ € R such that |f,(u,v)| < « for all (u,v) € [a,b] X [¢,d]. Fix
(%0,%0) € [a,b] X [¢,d]. Given any (z,y) € [a,b] X [c,d] with = # z¢, by the
MVT (Fact 3.2), we see that there is u € R between = and x such that

f(@,y) = f(xo,y) = folu,y)(z—z0) andso |f(z,y) = f(xo,y)| < alz—zol.

Consequently,

|f(x,y) — f(xo,v0)| < |f(x,y) — fzo, y)| + | f (20, y) — f(z0,y0)]
< alz — zo| + [f(w0,y) — f(z0,%0)] -

Moreover, these inequalities are clearly valid if x = . Thus, in view of (ii),
f(z,y) — f(wo,y0) as (x,y) — (w0, y0)- So f is continuous at (zo, yo). 0

Directional Derivatives

The notion of partial derivatives can be easily generalized to that of a direc-
tional derivative, which measures the rate of change of a function at a point
along a given direction. We specify a direction by specifying a unit vector. Let
u = (u1,uz) be a unit vector in R?, so that u? +u3 = 1. Also let D C R?
and f: D — R be any function. Let (x0,y0) € D be such that D contains a
segment of the line passing through (zo,y0) in the direction of u, that is, 0 is
an interior point of Dy := {t € R : (z¢ + tui,yo + tus) € D}. We define the
directional derivative of f at (x,yo) along u to be the limit

lim flzo + tur, yo + tuz) — f(xo, yo)
t—0 t

b

provided this limit exists. It is denoted by Dy, f (20, y0). Note that if v = —u,
then Dy f (20, y0) = —Duf (20, yo). Note also that if i := (1,0) and j := (0,1),
then D; f(z0,y0) = fz(z0,y0) and Djf(zo,y0) = fy(%o, o).

Examples 3.4. (i) Let f : R?> — R be given by f(z,y) := 22 + y2. Given
any unit vector u = (ug,us) in R? and any (zo,yo) € R?, for every t € R
with t # 0, the quotient [f(zo + tu1, yo + tuz) — f(x0,y0)] /t is equal to
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(zo + tur)? + (yo + tuz)? — (af + 43)  2twous + t2u + 2tyous + tu3
t t
= 2xou1 + 2yous + t.

It follows that Dy f(zo,y0) exists and is equal to 2xou; + 2yous. Thus,
in view of Example 3.1 (i), we see that Dy f(zo,y0) = fz(Zo,v0)u1 +
Jy(o,yo)us.

(ii) Let f : R? — R be given by f(z,y) := \/x2 + y2. Given any unit vector
u = (u1,u2) in R? and any (zg,y0) € R?, for every ¢t € R with t # 0, the
quotient [f(xo + tuy, yo + tuz) — f(zo, yo)] /t is equal to

V(@o + tur)? + (yo + tuz)? — /a3 + 2
t
2txguy + 2tyous + t2

(Vo + tun)? + (o + tua)? + /ad + 1)

Tt follows that if (xg,y0) # (0,0), then Dy f(xo,yo) exists and

ToU1 + YoUz
Vg + g

Thus, in view of Example 3.1 (ii), we see once again that Dy, f(x0,y0) =
fo(zo,yo)ur + fy(xo,yo)us for (xo,y0) # (0,0). On the other hand,
D, f(0,0) does not exist, since the quotient ¢/[t| does not have a limit
ast — 0.

(iii) Let f : R? — R be given by £(0,0) := 0 and f(z,y) := 2%y/(z* + y?)
for (z,y) # (0,0). Given any unit vector u = (u1,u2) in R? and any
t € R with ¢t # 0, the quotient [f(0 4 tuy,0 + tus) — f(0,0)] /¢ is equal to
ulus/(uit? + u3). It follows that Dy, f(0,0) exists and

2

Dy f(20,%0) =

Zl if us # 0,
D.f(0,0)=4 °
0 if uy = 0.

In particular, f;(0,0) = 0 = f,(0,0). Thus, we see this time that
D.f(0,0) # f2(0,0)u1 + f,(0,0)usz, unless u; = 0 or us = 0. Notice that
in view of Example 2.16 (iv), f is not continuous at (0,0) even though all
the directional derivatives of f at (0,0) exist.

(iv) Let f : R? — R be given by f(x,y) = |z| + |y| for (z,y) € R2. Let
u = (u1,uz) be any unit vector. Then |ui| + |uz| # 0 and for any t € R
with ¢t # 0, we have

f(O + tu1,0 + tUQ) — f(O, 0) _ |t|
t t

Hence D, f(0,0) does not exist. Notice that here, f is clearly continuous
at (0,0), but none of the directional derivatives of f at (0,0) exist. <

(lua] + fual) -
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We shall now use the notion of a directional derivative to derive an ana-
logue of the MVT (Fact 3.2) in the case of functions of two variables. Clearly,
such an analogue should, roughly speaking, say that the difference between
the values of a function at two distinct points is equal to the product of the
distance between the two points and the value of the “derivative” at a point
“lying between” them. To make the idea of “lying between” precise, we sim-
ply restrict to the line segment joining the two points, and then it becomes
clear that the appropriate notion of “derivative” to consider here is that of
the directional derivative in the direction of this line segment. More precisely,
we have the following.

Proposition 3.5 (Bivariate Mean Value Theorem). Let D C R? and
let D° denote the interior of D. Suppose (xo,yo), (x1,y1) are distinct points
of D such that L := {(x(t),y(t)) € R? : t € (0,1)} C D°, where

z(t) =20 +t(z1 —x0) and y(t):=yo +t(y1 — Yo)-

Let u = (uq,uz) be the unit vector given by

1
u = (u1,up) = . (r1 — 20,91 —Y0), where r:= \/(331 —20)? + (Y1 — y0)?,

and let f : D — R be a continuous function such that Dyf exists at each
point of L. Then there is (c,d) € L such that

f(x1,y1) — f(20,y0) = rDuf(c, d).

Proof. Let F': [0,1] — R be defined by F(t) := f(x(t),y(t)) for t € [0,1]. By
part (ii) of Proposition 2.17, F' is continuous on [0, 1]. Moreover, given any
to € (0,1) and ¢ € [0, 1] with ¢ # to, we have

JJ(t) = .Io—l—t(xl —xo) = xo—l—to(l‘l —xo)-i-(t—to)(l‘l —xo) = 1‘(t0)+(t—t0)’rul,
and similarly, y(¢) = y(to) + (¢ — to)ruz, and hence

B(t) = F(to) _ f(z(to) + (t —to)rua, y(to) + (t — to)ruz) — f(2(to), y(to))
t—to t—to '
Thus, multiplying the numerator and the denominator of the expression on
the right by r, we see that F' is differentiable at ¢ty and

F'(to) = rDuf(z(to), y(to)).

Hence by the MVT (Fact 3.2) applied to F, there is 8 € (0,1) such that
F(1) — F(0) = (1 — 0)F’'(#). Consequently, (c,d) := (z(0),y(#)) is a point of
L, and we have f(z1,y1) — f(20,y0) = rDuf(c, d). O

We have seen in Examples 3.4 that in many (but not all) situations, the
directional derivative Dy f equals Vf - u. In this case an alternative version
of the Bivariate Mean Value Theorem can be given as in the corollary below.
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Corollary 3.6. Let D C R? and let D° denote the interior of D. Suppose
(w0,%0), (r1,91) are distinct points of D such that L := {(z(t),y(t)) € R? :
te€ (0,1)} C D°, where x(t) :== xo+t(x1 —x0) and y(t) := yo +t(y1 —yo). Let
f: D — R be a continuous function such that Dy f exists at each point of L
for all unit vectors u € R%, and moreover Dy f(z(t),y(t)) = Vf(z(t),y(t)) - u
for all unit vectors u € R? and t € (0,1). Then there is (c,d) € L such that

fx1,y1) — f(wo,y0) = (x1 — w0) fu(c, d) + (y1 — yo) fy(c, d).

In particular, if there are m, M € R such that m < f,(u,v) < M and also
m < fy(u,v) < M for all (u,v) € L, then the following Bivariate Mean
Value Inequality holds:

m (21 —xo +y1 —yo) < fl@1,91) — f(@0,90) < M (21 — 20 + 31 — Yo) -

Proof. Let h := x1 — o, k := y1 — 3o, and r := vh2 + k2. Define
1 1
u = (ug,ug) = T(h»k) = - (r1 — 20,y1 — Yo) -

Then u is a unit vector in R? with ru = (h, k). Thus, in view of the assumption
on Dy f, we see that for any (c¢,d) € L,

rDuf(c,d) =rVf(c,d)-u=hfy(c,d) + kfy(c,d).

Thus, the desired result follows from Proposition 3.5. O

Higher-Order Partial Derivatives

Let D C R? be an open set and let us fix (xq,y0) € D. It is clear that xq is
an interior point of Dy := {x € R: (z,y0) € D} and yp is an interior point of
Dy :={y€eR: (x9,y) € D}. Let f: D — R be any function.

If fu(zo,y0) exists at every (xo,yo) € D, then we obtain a function from
D to R given by (z,y) — f.(x,y). It is denoted by f, and called the partial
derivative of f with respect to x on D. The partial derivative of f with
respect to y on D, denoted by f,, is defined in a similar way. Sometimes
these partial derivatives on D are denoted by gi and gi instead of f, and
fy, respectively. In case both f, and f, are defined on D, then we define
the gradient of f on D to be the transformation Vf : D — R? given by
Vi(z,y) = (fﬂc('ray)7fy(x’y)) for (z,y) € D.

In case f, is defined on D, we can consider its partial derivatives at any
point of D. Let (xg,y0) € D. The partial derivative of f, : D — R with
respect to x at (zg,yo), if it exists, is denoted by fu.(z0,y0). Also, the par-
tial derivative of f, with respect to y at (zo, o), if it exists, is denoted by
fwy(o,90). In case f, is defined on D, we can similarly define f,.(zo,yo) and
fyy(x0,Y0). These partial derivatives are sometimes denoted by
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0% f 0% f 0% f 0% f
axQ(xo,yo)a 8y8x(x0’y0)’ 6x6y(x0’y0)’ and ayQ(xoayo)

instead of fox(20,%0), fay(T0.%0), fye(®o,v0), and fy,(zo,y0), respectively.
Collectively, these are referred to as the second-order partial derivatives
or simply the second partials of f at (z¢,yo). Among these, the middle two,
namely,

O f O*f
fxy($0>y0) = 8y8x<x0’y0) and fyac(anyo) = 8x8y(x0’y0)’

are called the mixed (second-order) partial derivatives of f, or simply
the mixed partials of f. The order in which x and y appear in mixed partial
derivatives can sometimes be a matter of confusion. The order may be easier
to remember if one notes that

- o (of\ _ o B 0 [(of\ _ 0*f
Joy = Ue)y = g, (&n) = oyor M Fe ==, (811) - Owdy’

Finally, we remark that in light of our conventions in respect of left(-hand)
and right(-hand) partial derivatives, the higher-order partial derivatives of
any f :[a,b] X [¢,d] — R are defined in a similar manner.

Examples 3.7. (i) Let f : R?> — R be given by f(z,y) := 2%y + zy?. Given
any (xo,y0) € R?, we have fi(zo,90) = 2zoyo + yg and fy(zo,y0) =
23 + 20y, and consequently, fro(%0, o) = 240 and fyy (70, 30) = 270,
while

fay(@o,y0) = 220 + 2y0 = fyz(0,Y0)-

(i) Let f : R? — R be given by f(z,y) := sinzy. Given any (x0,v0) € R?,
we have fu(z0,y0) = yo cos(zoyo) and fy(xo, yo) = o cos(zoyo), and con-
sequently, fuz(zo,70) = —ygsin(zoyo) and fyy(x0,y0) = —afsin(zoyo),
while

fxy(xO;yO) = cos(zoyo) — Zoyo sin(zoyo) = fyac(anyo)' <&

In the examples above, the mixed partials turned out to be equal. Presently,
we will show that this is always the case whenever the first-order partial deriva-
tives exist and one of the mixed second-order partial derivatives is continuous.
To this end, we will use yet another version of the MVT (Fact 3.2) for bivari-
ate functions defined on a rectangle, which, in turn, will be deduced from a
version of Rolle’s theorem. To begin with, let us recall the statement of Rolle’s
theorem from one-variable calculus. It may be noted that this is an immediate
consequence of the MVT (Fact 3.2). A direct proof can be found, for example,
on page 119 of ACICARA.
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Fact 3.8 (Rolle’s Theorem). Let a,b € R with a < b. If f : [a,b] — R is
continuous on [a,b], differentiable on (a,b), and satisfies f(a) = f(b), then
there is ¢ € (a,b) such that f'(c) = 0.

In the two-variable analogue below, an interval is replaced by a rectangle,
that is, a product of intervals, and the equality of function values on the
boundary of an interval is replaced by the equality of sums of function values
on the opposite endpoints of a rectangle. Alternatively, the alternating sum
of function values at the corner points is required to be zero. The hypothesis
concerning continuity and differentiability is also analogous.

Proposition 3.9 (Rectangular Rolle’s Theorem). Let a,b,c,d € R with
a<bandc<d, andlet f:[a,b] x [c,d] — R satisfy the following.

e For each fized yo € [c,d], the function given by x — f(x,yo) is continuous
on [a,b] and differentiable on (a,b).

e For each fized x¢ € (a,b), the function given by y — f.(x0,y) is contin-
uous on [e,d] and differentiable on (c,d).

e f(a,c)+ f(b,d) = f(b,c)+ f(a,d).
Then there is (zo,yo0) € (a,b) x (¢,d) such that fuy(xo,yo) = 0.

Proof. Consider ¢ : [a,b] — R defined by ¢(x) := f(z,d) — f(z,¢). Then ¢
is continuous on [a, b], differentiable on (a,b), and ¢(a) = f(a,d) — f(a,c) =
f(b,d) — f(b,¢) = &(b). Hence by Rolle’s Theorem (Fact 3.8), there is xg
in (a,b) such that ¢'(zo) = 0, that is, fy(x0,¢) = fz(wo,d). Next, consider
Y : [e,d] — R defined by ¥ (y) := fz(z0,y). Then 9 is continuous on |[c,d],
differentiable on (c¢,d), and ¥(c) = fi(xo,¢) = fz(xo,d) = ¥(d). Hence by
Rolle’s Theorem (Fact 3.8), there is yo € (¢, d) such that ¥'(yo) = 0, that is,
fay(z0,90) = 0. O

Remark 3.10. Another version of Rolle’s Theorem (Fact 3.8) is given in Ex-
ercise 26 of Chapter 4. )

Proposition 3.11 (Rectangular Mean Value Theorem). Leta,b,¢,d € R
with a < b and ¢ < d, and let f : [a,b] X [c,d] — R satisfy the following.

e For each fized yo € [c,d], the function given by x — f(x,yo) s continuous
on [a,b] and differentiable on (a,b).

e For each fixed xg € (a,b), the function given by y — fo(xo,y) is contin-
uous on [e,d] and differentiable on (c,d).

Then there is (zo,yo) € (a,b) X (¢,d) such that
f(bv d) + f(av C) - f(b7 C) - f(a7 d) = (b - a’)(d - C)fxy(xo»yo)»
Proof. Consider s € R and F': [a,b] X [¢,d] — R defined by

Flz,y) = f(z,y) + fla,¢) = f(z,¢) = fla,y) — s(z —a)(y — ).
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Observe that F(a,c) = F(a,d) = F(b,¢) = 0. Thus, if we choose s such that
F(b,d) =0, that is, if we take

f(bvd)+f(a7c)_f(b7c)_f(a7d)
(b—a)(d—c) ’

then we have F(a,c) + F(b,d) = F(b,c) + F(a,d). So by the Rectangular
Rolle’s Theorem, there is (x9,y0) € (a,b) X (¢,d) such that Fyy(xo,yo) = 0,
that is, fuy(z0,y0) = s. This yields the desired result. O

The Rectangular Mean Value Theorem can be used to estimate the value
of a function at one of the corner points of a rectangle, provided its values
at the remaining corner points are known and we have bounds for one of its
second-order mixed partial derivatives at the interior points of the rectangle.

Corollary 3.12 (Rectangular Mean Value Inequality). Let a,b,c,d € R
and let f :[a,b] X [¢,d] — R satisfy the following.

e For each fized yo € [c,d], the function given by x — f(x,yo) is continuous
on [a,b] and differentiable on (a,b).

e For each fixed xg € (a,b), the function given by y — f(x0,y) is continu-
ous on [e,d] and differentiable on (c,d), and moreover, there are m, M € R
such that m < foy(x0,y0) < M for all (zo,y0) € (a,b) x (¢, d).

Then
m(b_a)(d_c) < f(b,d)—l—f(a,c)—f(b,c)—f(a,d) < M(b_a)(d_c)'

Proof. If a < b and ¢ < d, then the desired inequalities are an immediate
consequence of Proposition 3.11, whereas if a = b or ¢ = d, then each of the
three expressions in the above inequalities is zero. O

Remark 3.13. In each of the last three results, namely, the Rectangular
Rolle’s Theorem, the Rectangular Mean Value Theorem, and the Rectangular
Mean Value Inequality, the hypothesis that for each yo € [c,d], the function
given by @ —— f(x,yo) is continuous on [a, b] can be weakened. Indeed, as the
proofs show, it suffices to assume that the function ¢ : [a,b] — R defined by
o(x) = f(x,d) — f(x,c) is continuous. Moreover, each of these three results
admit a straightforward analogue with f, and f,, replaced by f, and fy,. <

We are now ready to prove the equality of mixed second-order partial
derivatives provided one of them is continuous.

Proposition 3.14 (Mixed Partials Theorem). Let D C R? be an open
set and let (xo,yo0) be any point of D. Let f : D — R be such that both f, and
fy exist on D. If fy, or fyo exists on D and is continuous at (zo,yo), then
both froy(zo,y0) and fyz(xo,y0) exist and

fa:y(xO»yO) = fyw(x07y0)~
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Proof. Assume that f,, exists on D and is continuous at (zo,yo). Let € > 0
be given. Since D is an open subset of R? and f,, is continuous at (zq, o),
by Proposition 2.22; there is § > 0 such that Ss(zo,y0) € D and

(u,v) € Ss(x0,y0) = | fay(u,v) — fay(z0,90)| < €

Fix (h,k) € S5(0,0) with h # 0 and &k # 0. By the Rectangular Mean Value
Theorem (Proposition 3.11), there is (¢, d) € Ss(xo,yo) such that

f(xo+h,yo + k) — f(xo+ h,y0) — f(wo,y0 + k) + f(20,y0) = hk fay(c, d).

The left-hand side of the above equation can be written as G(yo + k) — G(yo),
where G : (yo — 6,50 + §) — R is defined by G(y) := f(xo + h,y) — f(x0,y).
Consequently,

’G(yo + k) — G(yo)

hk = |f$y(c7 d) - fﬂy(any0)| <€

- facy(anyo)

Since f, exists on D, the function G is differentiable at yo and G'(yo) =
fy(xo + h,yo) — fy(xo,y0). Hence, taking the limit as k — 0 (with h fixed),
we see that for 0 < |h| < 4,

fy(wo + h,y0) — fy(wo, yo)

h = fay(@o,90)| < €.

- fa:y(xO»yO)

_ ‘G'(yo)
h

Since € > 0 is arbitrary, we conclude that f,.(xo,yo) exists and is equal to
fay(20,90). The case in which f,, exists on D and is continuous at (zo, yo) is
proved similarly in view of the last statement in Remark 3.13. o

Remark 3.15. In light of our conventions in respect of left(-hand) as well as
right(-hand) partial derivatives, it is easily seen that a result analogous to the
Mixed Partials Theorem (Proposition 3.14) holds when D = [a, ] X [¢,d] and
(x0,y0) is any point of D. <&

Example 3.16. Consider f : R> — R given by

a2 —y?
o2 gy if (z,y) # (0,0),

0 if (x,y) = (0,0).

f@y) =

It is clear that f., fy, fry, and fy. exist on R?\ {(0,0)}. Also, it is easy to
see that f,(0,70) = —yo for any yo € R and f,(x0,0) = x¢ for any z¢ € R.
Hence f;4(0,0) = =1 # 1 = f,2(0,0). Thus from Proposition 3.14, it follows
that neither f, nor fy,, can be continuous at (0, 0). <&

Let D C R? be an open set and f : D — R a function on D. In case
a second-order partial derivative of f is defined at every point of D, we can
consider partial derivatives of the second-order partial derivatives with respect
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to x or with respect to y. This leads to the third-order partial derivatives
Jaazs fowys foyes feyys fyeas Fyay, fyyz, and fyyy. Applying the Mixed Partials
Theorem to f, and to f,, we see that fyry = frys and fyye = fyzy at each
point of D at which these mixed third-order partial derivatives are continuous.
Moreover, if f,y = fys on D, then taking partial derivatives with respect to
x and with respect to y, we obtain fyys = fyze and fyzy = fryy. Thus, if
the second-order partial derivatives exist and are continuous on D, and the
third-order partial derivatives exist on D, then we have fioy = fryz = fyan
and fryy = fyzy = fyy= at each point (xo,yo) of D where these third-order
partial derivatives are continuous. At such a point, instead of eight possible
third-order partial derivatives, it suffice to consider only four, and these may
be denoted by

>*f >*f >*f q >*f

93 (£0:%0); 9220y (20, Y0), 20y (z0,y0), an oy (20, Y0),

instead of facacac (1'0, yO)a fyacx(an 90)7 fyyac(an ZUO)’ and fyyy (1'0, yO)a respec-
tively. Continuing in this way, for each n € N, we can consider the nth-order

partial derivatives of f at any point (xo,yo) of D. As such, there are 2"
possibilities, but if the partial derivatives of order < n exist and are contin-
uous on D and those of nth-order exist on D and are continuous at (xg, o),
then it suffices to consider only n + 1 of them, namely,

o f o f o f o f

oxn (SCO? yo)v ax"_lay (.’EO, yO)» ceey 8x8y"‘1 (SCO, y0)7 ayn (SCO, yo)7
or, in short,
ax"?mfaym (xo,y0) form=0,1,...,n.

Examples 3.17. (i) Let I and J be nonempty open intervals in R, and let
¢ : I — Rand ¥ : J — R be infinitely differentiable functions of one
variable. Consider f,g: I x J — R defined by

f(z,y) = ¢(x) +¥(y) and g(z,y) = ¢(x)Y(y).

Using an easy induction on £+ m, where ¢, m are nonnegative integers, we
see that all the higher-order partial derivatives of f and g exist on I x J,
and are given, at any (zo,y0) € I x J, by

B(xo) +1b(yo) if £=0=m,

ottmf # () if £>1and m =0,

¢ (anQO) = (m) .
Oztoy™ YU (yo) if¢=0and m>1,
0 if¢>1and m > 1.

Likewise, the higher-order partial derivatives of g are given by

aZer

Dptgym (0 40) = ¢! (20)"™ (o) for £ >0, m >0, and (o, y0) € IxJ.
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(ii) Given any nonnegative integers i, j, let g;; : R — R denote the func-
tion defined by g; ;(z,y) = z'y?. Using (i) above, we see that for any
nonnegative integers ¢, m and any (zo,yo) € R?, we have

il g!

a€+m fi,j J

Oxtoym

i—f0 j—m . . )
(w0, y0) = (i— Ol (G—m) ™o ¥ if £ <iandm < j,
0 if £ >4 orm>j.

Next, let f: R? — R be a polynomial function, so that

flz,y) = ZZci,jxiyj for all (z,y) € R?

i>0 >0

i+j<n
where n is a nonnegative integer and ¢; ; € R for 4,j > 0 with ¢ + 7 < n.
Let us set ¢; j := 0if ¢, 7 > 0 with ¢ 4+ j > n. Also, as usual, let a’ ;=1 for
any a € R and set any empty sum equal to 0. Then in view of the above
formula for the partial derivatives of g; j, we see that for any nonnegative
integers £, m and any (x9,v0) € R?, we have

aé—"—mf ( ) Z Z le' i—L, j—m
Zo,Yo) = Cij .. . Ty Yo oo
14 AN — |
Oxtoy™ ey ) (1 =017 —m)!
i+j<n
Thus, the partial derivatives of f of any order exist at every (xg,9o) € R?
and are given by the above formula.

(iii) As remarked earlier, taking partial derivatives is tantamount to differen-
tiating a function of one variable, and thus usual rules of differentiation
are applicable. Consider, in particular, the effect of the chain rule on a
composite function of the form f(z,y) := g(u(z,y)), where g : E — R and
u: D — R? are such that u(D) C E, and where E is an open subset of R
and D is an open subset of R%. Assume that all the partial derivatives of u
exist on D and g is infinitely differentiable on E. Then all the higher-order
partial derivatives of f exist on D. However, finding an explicit formula
for them in terms of the partial derivatives of u and the derivatives of
f does not seem easy. In the special case in which wu is linear, that is,
u(x,y) := ax + by for (x,y) € D, where a,b € R, it is easy to see that at
any (zo,yo) € D, upon letting ug := u(zg, yo) = axo + byo, we have

a€+m

gy (T0-90) = 8 uo)a’ b for £20.m > 0,

Another special case is treated in Exercise 39. Formal statements of the
chain rule are discussed later, in Section 3.3. O

Given any h, k € R, we define the partial differential operator Dy, ;, as
follows:
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0 i 0

Ox + oy’

Dp, 1 transforms a real-valued function of two variables to another real-valued
function of two variables. Thus, if D C R? is open and f : D — R is such that
both the partial derivatives of f exist at every point of D, then Dy, 1 f : D — R
is the function defined by

Dpp:=h

OF (29, 50) = hfu (w0, 0) + K, (0, 30),

0
f(xo,yo) + kay

(Dhif) (zo,y0) := hax

where (x,y0) varies over D. The operator notation Dy, ;, has the advantage
that we can consider formal powers (or successive composites) of Dy, j, and
these allow us to consider a combination of the nth-order partial derivatives
at once. Thus, for any n € N, we define

m = <hax +kay> => <m>h K o gnemaym-

m=0

In other words, if D C R? is open and f : D — R has continuous partial
derivatives of order < n at every point of D, then Dy, f : D — R is the
function defined by

" /n —mm  O"
(Dh wf) (xo,90) == Z ( )hn k ax"—mfaym (z0,%0),

m
m=0
where (xg,yo) varies over D. For example,

*f *f >’f
2 g2 2
(Dii 1) (o, 90) = h O (zo,v0) + Qhkaxay(ﬂﬁoayo) +k 0y (0, Y0)-

Example 3.18. Consider, as before, a polynomial function f : R? — R given
by

flzy) = Z Zci,jxiyj for all (z,y) € R%
i>0 >0
i+j<n

Putting (zo,yo) = (0,0) in the formula for higher-order partial derivatives of
f given in Example 3.17 (ii), we see that

a€+mf

St dym (0,0) ='m!cp,, for any nonnegative integers £, m.
-0y

Consequently, given any nonnegative integer p, we have
P
(Di,kf) (0,0) =p! Z Cp—m,m WP~™K™  for any (h, k) € R2.
m=0

Dividing both sides by p! and summing as p varies from 0 to n, we see that
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n

fk)y =" ;! (931;7,6 f) (0,0) for any (h, k) € R.

p=0

Thus, we obtain an alternative expression for f(x,y) in terms of its higher-
order partial derivatives at (0,0). &

Higher-Order Directional Derivatives

Let D C R? be an open subset of R? and let u = (u1,us2) be a unit vector in
R2. Then for every (zg,v0) € D, the real number 0 is clearly an interior point
of Do :={t € R: (zg + tui,yo + tuz) € D}. Let f: D — R be any function.

If Dy f(xo,y0) exists for every (zo,y0) € D, then we obtain a function
from D to R given by (z,y) — Dy f(z,y). It is denoted by D, f and called
the directional derivative of f on D along u. Since Dy, f is a real-valued
function of two variables, we can further consider its directional derivatives
along u at points of D. If these exist at every point of D, then we obtain a
function from D to R given by (z,y) — Dy (Duf) (z,y). It is denoted by
D2 f and called the second-order directional derivative of f on D along u.
In general, we can make a recursive definition as follows. Let fy := D% f := f
and suppose f; := D f has been defined for i = 0,1,...,n — 1, where n € N.
If the directional derivative of f,—; on D along u exists, then we denote it by
D} f and call it the nth-order directional derivative of f on D along u.
Note that DL f := Dy f.

Remark 3.19. Suppose f: D — R and u are as above, and the directional
derivative Dy f of f on D along u exists. If v is any unit vector in R? and if the
directional derivative of Dy f on D along v exists, then we obtain a function
from D to R given by (z,y) — Dy (Duf) (z,y). It may be denoted by D2 f.
Proceeding in this manner, one can formulate a notion of nth-order directional
derivatives along an ordered n-tuple of unit vectors in R%. However, we shall
not have any occasion to use such notions in their full generality, and hence
we refrain from discussing it further. O

We have seen earlier that a bivariate analogue of the MVT can be for-
mulated using directional derivatives. In a similar vein, we can formulate and
prove a bivariate analogue of Taylor’s theorem using higher-order directional
derivatives. First, let us recall the statement of Taylor’s theorem from one-
variable calculus. For a proof, one may refer to page 122 of ACICARA.

Fact 3.20. Leta,b € R with a < b and n a nonnegative integer. If f : [a,b] — R

is such that f', f",..., f™ exist on [a,b] and further, f) is continuous on
[a,b] and differentiable on (a,b), then there is ¢ € (a,b) satisfying
(n) (n+1)
£0) = @) + P —ay+-+ T Dpay Oy

n! (n+1)!
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Here is an analogous result for functions of two variables.

Proposition 3.21 (Bivariate Taylor Theorem). Let D C R? be an open
set and let (zo,y0) and (x1,y1) be distinct points in D such that the line
segment joining them is in D, that is, L := {(z(t),y(t)) € R? : t € [0,1]} C D,
where

2(t) := xo + t(xr1 — x0) and y(t) :== yo + t(y1 — yo)-
Let u = (uq,uz) be the unit vector given by

1
u = (ug,up) = . (r1 — 20,91 —Y0), where r:= \/(331 —20)? + (Y1 — yo)*.

Let n be a nonnegative integer and let f : D — R be such that D! f exists and
is continuous on D fori=0,...,n, and moreover, DV f exists at (z(t), y(t))
for each t € (0,1). Then there is (¢,d) € L\ {(xo,y0), (x1,41)} such that

n

flx,p) = Z :: (Dﬁf) (%o, y0) +

=0

Tn+1

n+1

(n+1)! (D) (e, d).
Proof. Fori =0,...,n,define f; : D — Rby fi := D! fand F; : [0,1] — R by
Fi(t) i= fi(a(t), y(1)) for ¢ € [0,1]. Define foyr 5 L\ {(zo,50), (w1, 1)} — R
by fa+1:= Dyt f and Fopq 2 (0,1) — R by Fpya(t) = fupa(2(t),y(t)) for
te(0,1).

Using the definition of directional derivative, we see, as in the proof of the
Bivariate Mean Value Theorem (Proposition 3.5) that if n > 1, then F := Fj
is differentiable on [0, 1] and

F'(t) =7 (Duf) (x(t),yt) = rfi(zt),y(t)) = rFi(t) forall t e [0,1].

Similarly, if n > 2, then F; is differentiable on [0, 1] and FY(t) = rF5(¢) for all
t € [0, 1]. Hence F := Fy is twice differentiable on [0, 1] and

F"(t) = rF|(t) = r*Fy(t) forall t € [0,1].

Continuing in this way, we see that for i = 0,...,n, the ith-order derivative
of F exists on [0,1] and F()(t) = r'F;(t) for all t € [0,1]. Moreover, the
(n + 1)th-order derivative of F' exists on (0,1) and F D (¢) = ¢+ F, i (t)
for all ¢ € (0,1). Hence by Taylor’s theorem of one-variable calculus (Fact 3.20)
applied to F, there is § € (0, 1) such that

n F(i) (0) F(”+1)(9)

F(1) = .
S Z:O RO
Consequently, (¢, d) := (x(0),y(0)) € L\ {(x0,%0), (x1,y1)}, and we have
n i ’I“"+1

f(xl’yl) = Zr

i (DL, f) (zo,90) +
i=0

(n+ 1)' (D3+1f) (C7 d)7

as desired. 0
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In case the identity Dy f = Vf - u is satisfied by f as well as its higher-
order directional derivatives, we obtain the following alternative version of the
Bivariate Taylor Theorem that is analogous to Corollary 3.6.

Corollary 3.22. Let D C R? be an open set and n a nonnegative integer.
Let (xo,y0) and (x1,y1) be distinct points in D and let L be the line segment
joining them. Assume that L C D. Let f : D — R be such that f has contin-
wous partial derivatives of order < n + 1 at every point of D and moreover,
the higher-order directional derivatives Di f exist at every point of D for all
unit vectors u in R? and i =0,1,...,n+ 1. Assume further that for any unit
vector u in R?, the functions f; := D o f satisfy

(Dufi) (x,y) = Vfi(z,y)-u forall (x,y) €D andi=0,...,n
where fo := f. Then there is (¢,d) € L\ {(x0,%0), (x1,y1)} such that

f(xhyl)_z (Dh kf) (%o, 10) + (n_'l_l)!< n“f)( d),

i= O
where h == x1 —x¢ and k :=y1 — yo.

Proof. With h and k as above, let r := v/h2 + k2 and u := (h/r, k/r). Then
u is a unit vector in R? with ru = (h, k). As in the proof of Corollary 3.6, for
any (x,y) € D and i =0,1,...,n, we have

i) = Dufie.n) = (WG 65 (00) = D1t )

Successively using the above identity, we see that r* (Dﬁf) =rif; = (D;%kfi)i
for i =0,...,n+ 1. So the desired result follows from Proposition 3.21. 0O

3.2 Differentiability

The difficulties involved in generalizing the notion of differentiability from
functions of one variable to functions of two (or more) variables were dis-
cussed at the beginning of Section 3.1. We shall show in this section how to
overcome these difficulties. The key idea here is twofold: (i) a realization that
the derivative of a real-valued function of two variables may not be a single
number but possibly a pair of real numbers, and (i) an observation that the
problem of division by a point (h, k) in R? can be solved by replacing (h, k)
with its norm |(h, k)| := v/h2 + k2. To understand this better, let us first note
that if D C R and c is an interior point of D, then a function f: D — R is
differentiable at ¢ if and only if there is @ € R such that

i T+ ) = 1(0) = ah

=0.
h—0 |h|
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In this case, « is the derivative of f at c¢. Now suppose D C R? and (o, y0)
is an interior point of D. A function f: D — R is said to be differentiable
at (xo,o) if there is (a1, ) € R? such that

f(xo+h,yo + k) — f(wo,y0) — arh — ask

lim =0.
(h,k)—(0,0) Vh2 4 k2

In this case, we call the pair (a1, az2) the total derivative! of f at (zq,vo)-

Let us note that if f is differentiable at (zo, yo) and if (a1, az) is the total
derivative of f at (xo,y0), then letting (h, k) approach (0,0) along the z-axis
or the y-axis, we see that

lim f(xo + h,y0) — f(x0,y0) — arh 00— lim f(xo,y0 + k) — f(xo,y0) — azk.

h—0 |h| k—0 |k|

Consequently, both f,(zo,y0) and fy (2o, yo) exist and are equal to a; and s,
respectively. In other words, if f is differentiable, then the gradient of f at
(z0,yo) exists and

the total derivative of f at (zo,y0) = Vf(z0,Yy0)-

Thus in checking the differentiability of f at (z¢,yo), it is clear which values
of a1 and a can possibly work, and the task reduces to checking whether the
corresponding two-variable limit exists and is equal to zero. Also, if either of
the partial derivatives does not exist at a point, then we can be sure that f
is not differentiable at that point. This is illustrated by Example 3.23 (iii).
On the other hand, existence of both the partial derivatives at (z¢,yo) is not
sufficient for f to be differentiable at (z¢,yo), and this will be seen later in
Example 3.29 (i).

Examples 3.23. (i) Let f : R? — R be the constant function given by
flx,y) :== 1 for all (z,y) € R2. It is clear that f is differentiable at
any (zo,y0) € R? and the total derivative at (zo,yo) is (0,0).

(ii) Let f: R? — R be given by f(z,y) := 22 + y2. Given any (x¢,yo) € R?,
we have fq(zo,y0) = 2z and fy(x0,yo) = 2yo, and moreover,

i @0+ hoyo + k) = f(@o,y0) — 2z0h — 2yok
(h,k)*»(0,0) \/hQ +k2

h? + k?
lim = h?+k2=0.
(h B)—(0,0) VA2 + k2 (h, k)ﬂ(o 0) \/ +

It follows that f is differentiable at (xo,yo) and V f(xo,y0) = (220, 2y0).

! In modern treatments of multivariable calculus, instead of the pair (a1, a2), the
linear map from R? to R given by (h, k) — a1h-+azk is called the (total) derivative
of f at (zo,y0). However, the pair (a1,a2) and the corresponding linear map
determine each other uniquely. For this reason and for the sake of simplicity, we
have chosen to call the pair (a1, a2) the (total) derivative of f at (zo,yo).
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(iif) Let f : R? — R be the norm function given by f(z,y) := /22 + y2. We
have seen in Example 3.1 (ii) that both f;(0,0) and f,(0,0) do not exist.
Hence f is not differentiable at (0, 0).

(iv) Let f: R? — R defined by f(x,y) = |zy|. It is easily seen that f,(0,0) =
0 = f£,(0,0). Moreover, for any (h,k) € R%, we have |h| < v/h2 + k2 and
thus if (h, k) # (0,0), then

f(hk) = £(0,0)=0-h—0-k _  |hk| ‘
Vh? + k2 TR 4k < |kl — 0 as (h,k) — (0,0).
Hence, f is differentiable at (0,0) and V f(0,0) = (0,0). >

For functions of one variable, one has a useful characterization of differ-
entiability given by Carathéodory’s lemma. Let us recall its statement; for a
proof we refer to page 107 of ACICARA.

Fact 3.24 (Carathéodory’s Lemma). Let D C R and let ¢ be an interior
point of D. Then f: D — R is differentiable at ¢ if and only if there exists a
function fi : D — R such that f(z) — f(c) = (x — ¢) fi(z) for all x € D, and
f1 is continuous at c. Moreover, if these conditions hold, then f'(c) = fi(c).

If the conditions of Fact 3.24 hold, then the function f; is uniquely deter-
mined by f and ¢, and f; is called the increment function associated with
f and c. For functions of two variables, there is an analogous characterization
of differentiability, and it will play an important role in the sequel.

Proposition 3.25 (Increment Lemma). Let D C R? and let (z9,yo) be an
interior point of D. Then [ : D — R is differentiable at (xo,yo) if and only
if there exist functions f1, fo : D — R such that fi and fo are continuous at
(zo,y0) and

f@,y) = f(zo,y0) = (¢ — wo) fr(@,y) + (y — yo) f2(x,y)  for all (x,y) € D.
Moreover, if these conditions hold, then V f(xo,y0) = (f1(z0,v0), f2(xo,%0))-

Proof. Assume that f : D — R is differentiable at (xo,yo). Then there is
(a1, ) € R? such that

lim Fl@y) —0,

(@) —=(@o.y0) /(= — 20)% + (y — ¥0)2
where
Fa,y) = f(2,y) = f(z0,40) — ar (2 — o) — aaly —yo) for (z,y) € D.
Define f1, fa: D — R by fi(xo,y0) := «; for i = 1,2, and for (x,y) # (o, o),

(JJ - xO)F(x,y) (y - yo)F(JJaZU)

fley) =t e - o) (@ —20)* + (y —90)*

fol,y) i= art
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Then for all (z,y) € D with (z,y) # (20,%0), we have

(x —z0) fi(z,y) + (y — vo) f2(z,y)
(z —20)*F(z,y)
(z —20)* + (¥ — ¥o)
= a1 (v — x0) + a2(y — vo) + F(x,y).

(y — v0)*F(z,y)

:Ozl(.’ﬂ_xo)"‘ $—$0)2+(y—y0)2

2+a2(y—yo)+(

Thus, using the definition of F(z,y) and making a direct verification when
(z,y) = (20,y0), we obtain

f(.y) = f(@o,p0) = (x — @o) fr(@,y) + (y — yo) fo(w,y)  for all (z,y) € D.
Moreover, given any (z,y) € R? with (z,y) # (70,%0), we clearly have

|z — o ly — yol <1
V(@ = 20)% + (y — y0)? Vi —20)? + (y—yo)? ~

and hence for (x,y) € D with (x,y) # (zo,¥0), and for i = 1,2, we have

<1 and

)

F(z,y)
\/(33 —20)? + (¥ — yo)?

Thus, in view of Proposition 2.48, we see that f; and f, are continuous at
(ﬂfo,yo)~

Conversely, assume that there are fi, fo : D — R that are continuous at
(o, yo) and satisfy

|fi(z,y) —ai] < — 0 as (z,y) — (z0,Y0)-

f(@,y) — f(x0,90) = (. — x0) fr(2,y) + (y — yo) fo(z,y)  for all (z,y) € D.

Define a; := f1(zo,y0) and as := fa(x0,y0), and for (z,y) € D, let F(xz,y)
be as before. Then

F(z,y) = (& —z0)(fi(z,y) — a1) + (y — yo) (f2(z,y) — a2) for (z,y) € D.
Consequently, for any (z,y) € D with (z,y) # (x0,yo), we have
F(z,y)
V(& —20)% + (y — vo)

Since both f; and fs are continuous at (zg,yo), we have |fi(z,y) — a1| — 0
and |fa(z,y) — az| — 0 as (x,y) — (x0,yo). Hence,

. F(z,y)
im
(@y)=(@o.v0) \/(x — 20)% + (y — ¥0)2

,| < |f1(2,y) — ai| + | fa(2,y) — az].

=0.

It follows that f is differentiable at (xo,yo) and also that Vf(zg,yo) =
(f1(xo,¥0), f2(x0,Y0))- i
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A pair (f1, f2) of functions satisfying the conditions in the Increment
Lemma will be called a pair of increment functions associated with the
function f and the point (z¢,yo). Thus the Increment Lemma may be para-
phrased by saying that the differentiability of f at (xo,yo) is equivalent to the
existence of a pair of increment functions associated with f and (zg,yo).

Remarks 3.26. (i) As in the case of functions of one variable, differentiability
of a function of two variables is a local condition. In other words, if D C R?
and (zo,y0) is an interior point of D, then f : D — R is differentiable at
(xo,y0) if and only if there is § > 0 with Ss(xo,y0) € D such that the
restriction fis, (zo.yo) Of f t0 Ss(z0, yo) is differentiable at (xo, yo). In particular,
the Increment Lemma can be applied to such a restriction of f, and to check
differentiability of f at (xg,yo) it suffices to find a pair of increment functions
on Ss(xo,yo) for some 6 > 0.

(ii) In contrast to the case of functions of one variable, a pair of increment
functions associated with a function f : D — R of two variables and an
interior point (xg,yo) of D may not be unique. Indeed, let (f1, f2) be a pair
of increment functions associated with f and (zo, o), and let A : D — R be
any function that is continuous at (o, yo). Define g1, g2 : D — R by

g1(z,y) = fi(z,y) + (y —vo)h(z,y) and g2(z,y) = f2(x,y) — (v — x0)h(z, ).

Then (g1,92) is also a pair of increment functions associated with f and
(70, y0). Thus, when f is differentiable at (xo,y)), there are infinitely many
pairs of increment functions associated with f and (zo, yo)- &

Example 3.27. Consider f : R? — R given by f(z,y) := x, and let (29, yo)
be any point of R2. Define fi, fo : R?> — R by fi(z,y) := 1 and fo(z,y) := 0.
Then it is clear that (f1, f2) is a pair of increment functions associated with
f and (zo,y0). Thus, f is differentiable at (zo,y0) and V f(zo,y0) = (1,0).
Similarly, g : R? — R given by g(z,y) := y is differentiable at any (z, y0) € R?
and Vg(zo,y0) = (0,1). <

An immediate consequence of the Increment Lemma is the following.

Proposition 3.28. Let D C R? and let (xo,y0) be an interior point in D. If
f: D — R is differentiable at (zo,y0), then f is continuous at (xo,yo).

Proof. If (f1, f2) is a pair of increment functions associated with f and (xo, yo),
then

f(x7y) = f(x07y0) + (J) - xo)fl(l‘,y) + (y - yO)fQ(xay) for all (x’y) €D.

Consequently, the continuity of f at (zg,yo) follows from the continuity of f;
and fa at (20, o). O
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Examples 3.29. (i) Let f : R? — R be given by £(0,0) := 0 and f(z,y) :=
2%y /(z* + y?) for (z,y) # (0,0). We have seen in Example 2.16 (iv) that
f is not continuous at (0,0). Hence, f is not differentiable at (0,0). On
the other hand, it may be recalled from Example 3.4 (iii) that all the
directional derivatives of f at (0,0) exist.

(i) Let f : R? — R be the norm function given by f(z,y) = \/x2 +y2. We
have seen in Example 2.12 (ii) that f is continuous at (0, 0), but we have
also seen in Example 3.23 (iii) that f is not differentiable at (0,0). Thus,
the converse of Proposition 3.28 is not true. &

An easy application of the Increment Lemma shows that (total) derivatives
of sums, scalar multiples, products, reciprocals, and radicals of real-valued
functions of two variables behave in the same way as in the one-variable case.

Proposition 3.30. Let D C R? and let (xo,y0) be an interior point of D.
Suppose v € R and f,g : D — R are functions that are differentiable at
(x0,y0). Then f+ g, rf, and fg are differentiable at (zq,yo); moreover,

V(f +9)(xo,y0) = Vf(x0,90) + Vg(x0,%0), V(rf)(xo,y0) =1V f(z0,%0),

and
V(fg)(wo,y0) = 9(z0,%0)V f(x0,y0) + f(0,%0)Vg(z0,Y0)-

In case f(xo,yo) # 0, then there is 6 > 0 such that Ss(xo,y0) € D and
flz,y) # 0 for all (x,y) € Ss(xo,yo); moreover, 1/f : DN Ss(xo,y0) — R is
differentiable at (x0,yo) and

1 1
v <f) (20, y0) = —f(xo,yO)Q Vf(zo,y0)-

In case there is 6 > 0 such that Ss(xo,y0) € D and f(z,y) > 0 for all
(z,y) € Ss(xo,y0), then for every k € N, the function f'/* : Ss(xo,y0) — R
is differentiable at (xo,yo) and

V(575 @o.t0) = - (a0,u0) I (o, 10).

k
Proof. Let (f1, f2) and (g1, g2) denote, respectively, pairs of increment func-
tions associated with f and g and the point (zo,y0). Using Propositions
2.15 and 3.28, we readily see that (f1 + ¢1,f2 + g2), (rf1,7f2), (fig +
f(zo,y0)91, f29 + f(xo,y0)g2) are, respectively, pairs of increment functions
associated with f 4 g, rf, fg and the point (zg, o). In case f(zo,y0) # 0,
in view of Proposition 3.28 and Lemma 2.14, we see that there is § > 0 such
that Ss(zo,y0) € D and for all (z,y) € Ss(xo,y0), we have f(z,y) # 0 and

—fi(z,y) —fa(2,y) ] _

1 1 ]+( N )[
Fy) f@o,wo)) YT L f(,y) f o, wo)

@) Faoye) ~ T [
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Thus, in view of Proposition 2.15 and Proposition 3.28, it follows that
(—f1/f(xo,y0)f, —f2/f(x0,y0)f) is a pair of increment functions associated
with 1/f and (xo,yo). Finally, if f(xo,y0) > 0, then by Proposition 3.28 and
Lemma 2.14, there is 6 > 0 such that Ss(zo,y0) € D and f(z,y) > 0 for
all (z,y) € Ss(xo,y0). Now fix any (z,y) € Ss(zo,y0). For simplicity, write
F(x,y) := f(z,y)"*. Then

f(@,y) = f(@o,y0) = Fa,y)" = F(xo,y0)" = [F(x,y) — F(z0,40)] G(z,y),
where G(x,y) := F(z,y)* 1+ F(z0,y0)F (2, y)* 2+ - -+ F(x0,y0)" . Hence

fl('r’y)
G(z,y)

By Proposition 2.15 and Proposition 3.28, F' is continuous at (zg,yo) and
therefore so is G. It follows that (f1/G, f2/G) is a pair of increment functions
for f1/%. Now apply the Increment Lemma. O

)f2(1',y).

+ (v — %o Gz, y)

F(z,y) — F(xo0,y0) = (* — x0)

Remark 3.31. With notation and hypotheses as in the above proposition, we
can deduce, using the results for sums and scalar multiples, that the difference
f—g is differentiable at (xq, yo) and V(f—g)(zo, y0) = Vf(z0, y0)—Vg(xo, yo).
Also, using the results for products and reciprocals, we see that if g(xo, yo) # 0,
then the quotient f/g is differentiable at (z¢,yo) and

f _ 9(xo,Y0)V f (w0, y0) — f(x0,y0)Vg(z0,Y0)
v ( ) (z0,30) = 9(x0,v0)? .

Further, we can deduce, using the result for products, reciprocals, and radicals,
that if » € Q, then the rational power f” is differentiable at (x¢,yo) and

V(") (zo,y0) = rf(20,y0)" "'V £ (20, 0),

provided f(xo,yo) # 0 if r is a negative integer, and f(xo,yo) > 0 if r is not
an integer. O

Example 3.32. Using Proposition 3.30 together with Example 3.23 (i) and
Example 3.27, we see that every polynomial function in two variables is dif-
ferentiable on R?. Moreover, in view of Remark 3.31, we also see that every
rational function of two variables is differentiable at each point of R? where it
is defined. Also, if f(z,y) is a rational function of two variables and r is a ra-
tional number, then the algebraic function f" is differentiable at (zg,y0) € R?,
provided f is defined at (xo,yo) and f(zo,yo) # 0. O

While the Increment Lemma gives an alternative way to check differen-
tiability of a function of two variables, in practice, neither the definition nor
the Increment Lemma is particularly effective in ascertaining differentiability.
Note, however, that Proposition 3.28 does give a necessary condition for dif-
ferentiability, namely, continuity. This can sometimes be used to show that
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a function is not differentiable at a point. Likewise, if either of the partial
derivatives does not exist at a point, then the function cannot be differen-
tiable at that point. We have also seen in Examples 3.29 (i) and (ii) that
neither continuity nor the existence of partial derivatives is sufficient to as-
certain differentiability. But it turns out that the existence and continuity of
partial derivatives imply differentiability. This result, proved below, gives a
very useful set of sufficient conditions for differentiability.

Proposition 3.33. Let D C R? and let (xq,yo) be an interior point of D. Let
f D — R be such that both f, and f, exist on DNSs(xo,yo) for some d > 0.
If one of them is continuous at (xo,yo), then f is differentiable at (zo,yo).

Proof. Suppose f; is continuous at (xg,yo). Since (zg, yo) is an interior point
of D, we may assume without loss of generality that Ss(xo,yo) C D. In view of
Remark 3.26 (i), it suffices to find a pair of increment functions associated with
J1Ss(w0,y0) @and (z0,%0). To this end, let us first observe that for any (z,y) €
Ss(xo,y0), we have (zo,y) € Ss(zo,%0), and moreover, we can decompose
f(z,y) — f(zo,yo) along the “hook” (Figure 3.1) linking (x,y) and (xq, yo),
that is, we can write f(z,y) — f(xo,y0) = A(z,y) + B(y), where

A(z,y) := f(x,y) — f(wo,y) and B(y) := f(xo,y) — f(0,Y0)-

Y
Yo+ 01
(@) oo
. (=)
Yo 1 (z0,90) ®
Yo — 01
" " " x
) T To+ 0

Fig. 3.1. The “hook” linking (x,y) and (xo0,¥o).

Let us define functions f1, f2 : Ss(zo,y0) — R by

B(y)

if © # xo, =

if Yy 7& Yo,
and  fa(z,y) =

Jz(z0,y) if © = 2o, Jy(xo,v0) if y = yo.
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Then it is easily seen that

f(@,y)=f(xo,0) = (—z0) f1(2, y)+(y—y0) f2(2,y) for all (z,y) € Ss(x0,y0)-

Moreover, since f,. exists on Ss(z, yo), we see that if x € (g —J, xo + ) with
x # x9and y € (yo — d,yo + J), then by the MVT (Fact 3.2), there is ¢ € R
between zo and z such that A(z,y) = f(z,y) — f(zo,y) = (x — x0) f(c, y),
and hence fi(z,y) = fz(c,y). Now, since f, continuous at (xg,yo), we see
that fi is continuous at (zo,yo). Also, since fy(zo,yo) exists, we see that fo
is continuous at (zg,yo). Thus it follows from the Increment Lemma that f
is differentiable at (zo,y0). The case in which f, is continuous at (zo,yo) is
proved similarly. a

The first example below illustrates how Proposition 3.33 can be used to
determine differentiability, while the second example shows that the converse
of Proposition 3.33 is not true. Another example of a differentiable function
whose partial derivatives exist but are not continuous is given in Exercise 29.

Examples 3.34. (i) Consider f : R?> — R defined by f(0,0) := 0 and
flz,y) = 2%y?/(z* + y?) for (z,y) # (0,0). It is easily seen that
fﬂ(ovo) =0= fy(0,0) A]SO, for ($0>y0) 7é (070)a

2$8y0
x5 +y5)?

2x0y5 (Y5 — x0)

fa:(lCO»ZJO) = (1'401 +y8)2

and  f,(z0,¥0) = (

Moreover, since (z¢ + y3)? > y5 and (2§ + y3)? > 2zdy3, we see that
| fa(@o,y0)| < 2[wo| + 20| = 3|wo| for (20,y0) # (0,0), and therefore f,
is continuous at (0,0). Hence by Proposition 3.33, f is differentiable at
(0,0). Note, however, that f,(zg,z3) = % for all zyp # 0, and hence f, is
not continuous at (0, 0).

(i) Consider f : R? — R defined by f(z,y) := |xy|. We have seen in Example
3.23 (iv) that f is differentiable at (0,0). Let (z0,%0) € R2. For any h € R
with h # 0,

f(@o +h,yo) = f(x0,90) _ yol (Jzo + h| — |zol)
h h '

Consequently, f.(zo,0) = 0, whereas f,(0,yo) does not exist if yo # 0.
Similarly, it can be seen that f,(0,y0) = 0, whereas fy(xo,0) does not
exist if zg # 0. Thus neither f, nor f, exists on S5(0,0) for any ¢ > 0. ¢

Differentiability and Directional Derivatives

We shall now show that if a function f of two variables is differentiable, then
all its directional derivatives exist and they can be computed by the simple
formula Dy f = V f - u. More precisely, we have the following.
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Proposition 3.35. Let D C R? and let (xg,%0) be an interior point of D. If
f D — R is differentiable at (xo,yo0), then for every unit vector u = (uy, usg)
in R?, the directional derivative Dy f(zo,y0) exists and moreover,

Duf(zo,y0) = Vf(zo,y0) - u = fz(xo,y0)u1 + fy(xo,yo)us.

Proof. Let (f1, f2) be a pair of increment functions associated with f and
(z0,Yo). Then for any ¢t € R such that (zg + tu1,yo + tus) € D,

frottur, yo+tus)—f(xo, yo) = tur f1(zo+tur, yot+tus)+tus fo(ro+tur, yo+tus).

Thus, using Proposition 2.15 and the continuity of f; and fy at (xo,yo), we
see that Dy, f(x0,yo) exists and moreover,

Duf(zo,y0) = fi(wo,yo)u1 + f2(xo,y0)uz = fol(xo,yo)ur + fy(xo,yo)uz,
as desired. O

The above result suggests the following geometric interpretation of the
gradient. Let D C R? and let (z9,%0) be an interior point of D. Let f : D — R
be differentiable at (zg,yo) and suppose V f(zo,yo) # (0,0). Given any unit
vector u = (u1,u2),

Dy f(zo,y0) = Vf(2o,y0) - u= |V f(xo,y0)|cosb,

where 6 € [0, 7] is the angle between V f(z0,yo) and u. Thus, if we keep in
mind the fact that Dy (xo, yo) measures the rate of change in f in the direction
of u, then we can make the following observations.

1. Duf(x0,y0) is maximum when cosf = 1, that is, when # = 0. Thus near
(x0,Y0), u=Vf(xo,v0)/|Vf(x0,yo)| is the direction in which f increases
most rapidly.

2. Duf(20,y0) is minimum when cosf = —1, that is, when § = m. Thus
near (zo,yo), u = —Vf(xo,vy0)/|Vf(x0,y0)| is the direction in which f
decreases most rapidly.

3. Duf(z0,%0) = 0 when cosf = 0, that is, when § = 7/2. Thus near
(zo,90), u = £ (fy(20,90), —fu(z0,90)) /IVf(20,y0)| are the directions
of no change in f.

For example, consider f : R?> — R defined by f(z,y) = 4 — 2% — y%. We
have f, = —2z and f, = —2y. So at (zo,y0) = (1,1), the gradient is given
by Vf(1,1) = (=2, —2). Thus, near (1,1), the steepest ascent on the surface
z = f(z,y) is in the direction of Vf(1,1)/|Vf(1,1)| = (-1/V2, —1/V2),
while the steepest descent is in the reverse direction, namely, (1 /N2, 1V 2).
The directions of no change are + (1/\/2, —1/\/2) .

Proposition 3.35 is also useful in showing that certain functions are not
differentiable even though the gradient may exist. Indeed, it suffices to find a
single unit vector u such that the identity D, f = V f - u fails to hold. On the
other hand, even when this identity holds for all unit vectors u, the function
f may not be differentiable. These remarks are illustrated below.
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Examples 3.36. (i) Let f : R?2 — R be given by f(z,y) := /|zy|. It is easy
to see that f is continuous at (0,0) and f;(0,0) = 0 = f,(0,0). On the
other hand, given a unit vector u = (uy,us) in R? and any ¢ € R with
t # 0, we have

FO+tur, 0+ tup) — £(0,0) _ [ty/|urue]
t t ’

Tt follows that the directional derivative Dy, f(0, 0) does not exist whenever
u; and ug are nonzero, for example, if u = (1/v/2,1/v/2). Hence, by
Proposition 3.35, we conclude that f is not differentiable at (0, 0).

(ii) Let f: R? — R be given by £(0,0) := 0 and f(z,y) := 2%y/(2? + y?) for
(z,y) # (0,0). We have seen in Example 2.16 (iii) that f is continuous at
(0,0). Also, given a unit vector u = (u1,us) in R? and any ¢t € R with
t # 0, we have

£(0+ tuy,0+ tug) — £(0,0) t3utusy 9
= = UjU2.
t t(t2u? + t2u3)
It follows that the directional derivative Dy, f(0,0) exists and is equal to
u3us. In particular, f,(0,0) = 0 = £,(0,0). Consequently, Dy f(0,0) #
Vf(0,0) - u whenever u; and us are nonzero. Hence, by Proposition 3.35,
we conclude that f is not differentiable at (0, 0).

(iii) Let f : R? — R be given by £(0,0) := 0 and f(z,y) := 2%y/(z* + y?)
for (x,y) # (0,0). We have seen in Example 2.16 (v) that f is continuous
at (0,0). Moreover, for any unit vector u = (uy, uz) in R? and any t € R
with t # 0, we have

f(0+ tuy,0+ tug) — £(0,0) ttudus tudug

t ottt 4 t2u3)  2ud 4’

and so, considering separately the cases us = 0 and us # 0, we see that
D, f(0,0) exists and is equal to 0. In particular, f,(0,0) = 0 = f,(0,0).
Consequently, D, f(0,0) = V f(0,0)-u for all unit vectors u. On the other
hand, if we consider

Q(hk)._f(0+h,0+k)—f(O,O)—O-h—O-k_ h3k

T Vh? + k2 (h4 + k2)Vh2 + k2’
then Q(h,k) 4 0 as (h,k) — (0,0). To see this, consider a sequence in
R?\ {(0,0)} approaching (0,0) along the parabola k = h%. For example,
if (an,bn) = (1/n,1/n?) for n € N, then Q(an,b,) — 1/2. It follows that
f is not differentiable at (0,0). This shows that the converse of Proposi-
tion 3.35 is not true. In fact, it shows that a function can satisfy all the
necessary conditions for differentiability given in Propositions 3.28 and
3.35, but still it may fail to be differentiable. <&
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It may be worthwhile to record the following consequence of the sufficient
and the necessary conditions for differentiability proved in this section.

Corollary 3.37. Let D C R? and let (xq,y0) be an interior point of D. If
f D — R is such that both f, and f, exist on DNSs(xo,yo) for some d > 0,
and one of them is continuous at (xg,yo), then

(i) f is continuous at (xo,Yyo),
(ii) for every unit vector u = (u1,us2), the directional derivative Dy f(xo,yo)
exists and moreover,

Duf(zo,y0) = Vf(zo,y0) - u = fz(wo,y0)u1 + fy(xo,y0)us.

Proof. By Proposition 3.33, f is differentiable at (x¢,yo). Hence (i) follows
from Proposition 3.28, while (ii) follows from Proposition 3.35. O

Implicit Differentiation

In calculus of functions of a single variable, one encounters the process of
implicit differentiation. Typically, this is applied to equations of the form
f(z,y) = 0, which are “implicitly differentiated,” treating y as a function of
T, SO as to obtain an equation such as

dy

dar =0.

P(z,y) + Q(z,y)
Using this, the derivative of y with respect to x is computed at points where
Q(z,y) does not vanish. To gain a proper perspective on this process and to
put it on a firm footing, one has to take recourse to functions of two variables
and an important result known as the Implicit Function Theorem. To begin
with, note that P(x,y) and Q(x,y) are, in fact, the partial derivatives f,(x,y)
and fy(z,y), and the process of differentiation at a point can be justified if the
chain rule is applicable and if the equation f(x,y) = 0 does indeed define y as
a function of z, at least around the point at which derivatives are taken. The
Implicit Function Theorem, in the form given below, enables us to justify the
latter. It may be recalled that we had already proved a version of the Implicit
Function Theorem in the context of continuous functions. The following is the
classical version and the one that is most often used in practice.

Proposition 3.38 (Classical Version of Implicit Function Theorem).
Let DCR?, f: D — R, and (x0,y0) € D be such that f(xo,y0) = 0. Assume
that there is v > 0 with S, (x0,y0) € D and the following conditions hold:

(a) fz and f, exist at every point of S,(zo,yo),
(b) fy is continuous at (xo,yo) and fy(xo,y0) # 0.
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Then there are & > 0 and a unique continuous functionn : (xg—3d,x0+0) — R
with n(xo) = yo such that (x,n(x)) € S.(xo,y0) and f(x,n(z)) = 0 for all
x € (xg — 0,x0 + 9). Moreover, n is differentiable at xo and

fa:(xO»yO)

(@) = _fy(ﬂﬁo,yo)'

Further, if the condition (b) is replaced by the stronger condition
(b*) fy is continuous on S,(xo,y0) and fy(zo,y0) # 0,

then n is differentiable at every point of (xo — 0,0 + d), and moreover,

_ Ja(z,n(2))
fy(xv n(x))

Proof. Assume that fy(zo,%0) > 0. Since f, is continuous on S,(zo,y0), by
Lemma 2.14, we see that there is ¢ > 0 with ¢ < r such that f,(x,y) > 0 for all
(z,y) € S¢(x0,yo). Thus from the first derivative test of one-variable calculus
(for instance, part (iii) of Proposition 4.27 of ACICARA), we see that for each
x € (xo — t,zo + t), the function given by y — f(z,y) is strictly increasing,
that is, the condition (b) of the Implicit Function Theorem (Proposition 2.40)
is satisfied. Also, by (a) above, we see that the condition (a) of Proposition
2.40 is satisfied. Hence there there are 6 > 0 with § < ¢t < r and a unique
continuous function 7 : (zg — &, 20 +9) — (yo —t,yo +t) such that n(xg) = yo
and f(z,n(z)) =0 for all x € (x¢ — 0,z + J). Furthermore, by (a), (b), and
Proposition 3.33, we see that f is differentiable at (z¢,y0), and hence by the
Increment Lemma (Proposition 3.25), there are fi, fo : Ss(zo,y0) — R that
are continuous at (o, yo) and satisfy

fy(x,n(x)) #0 and n'(x) = for all © € (xg — d, 20 + 9).

f(@,y) = f(x0,90) = (x—x0) f1(2,y) + (y —yo) f2(w,y) for (z,y) € Ss(20,v0)-

Since fo is continuous at (zo,y0) and fa(zo,%0) = fy(xo,y0) # 0, we can
find § > 0 such that ¢’ < § and fao(x,y) # 0 for all (x,y) € Ss(x0,0)-
Further, since 7 is continuous at x, we can find 6” > 0 with ¢/ < ¢’ such that
In(x) — yo| < &’ whenever x € (zg — 8", 29+ 0”). Putting y = n(x), we obtain

—nlze) = nlz) — :_f1(90777(90)) I—x or T 20 — 6" 1 1"
n(z) —n(xo) = n(z) — yo fz(x,n(a:))( 0) forz € (zo—48",mo+0").

Moreover, since f1, fo are continuous at (zg,yo) with f1(zo,v0) = fz(x0,v0)
and fa(zo,y0) = fy(2o,%0) # 0, by Proposition 2.15 together with part (ii) of
Proposition 2.17 and by Carathéodory’s Lemma (Fact 3.24), we see that 7 is
differentiable at xo and 7’(zg) satisfies the desired formula.

Finally, suppose (b) is replaced by (b*). Let ¢, 4, and 1 be as above. Since
0 < 't, we have f,(z,y) # 0 for all (z,y) € S¢(x0,yo) and hence f,(x,n(x)) #0
for all z € (zg — 6,20 + ). Fix any x1 € (zg — d, 20 + 9) and put y; := n(z1).
Let r1 > 0 be such that S, (z1,¥1) € S;(zo,¥0). Applying what we have
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proved so far to (x1,y;) instead of (xo,y0), we see that there are §; > 0
with ¢; < r; and a unique continuous function 7y : (1 — 01,21 + 1) — R
with 71(x1) = y1 such that (z,n(x)) € Sy, (z1,y1) and f(x,m(z)) = 0 for
all z € (x1 — 61,21 + 01). Moreover, 1, is differentiable at z1 and 7] (x;) =
—fe(z1,y1)/ fy(x1, y1). Without loss of generality, we may assume that 6; > 0
is so small that I; := (x1 — d1,21 + 61) C (w0 — d,20 + 0). Now, by the
uniqueness of 7y, it follows that n|;, = n;. In particular, i is differentiable at
x1 and 7’ (x1) satisfies the desired formula. Since x; was an arbitrary element
of (zg — 6,z + 0), the last assertion in the theorem is proved.

The case in which fy(20,y0) < 0 is proved similarly. O

Examples 3.39. (i) Let m,n € N and consider f : R? — R given by
f(z,y) == 2™ +y" — 1. Then f, = ma™ ! and f, = ny" ! exist and are
continuous on R2. Thus, by the Implicit Function Theorem (Proposition
3.38), for any (wg,90) € R? with f(x0,50) = 0 and yo # 0, the equa-
tion f(z,y) = 0 can be solved for y in terms of z, locally near (zg,yo).
Likewise, for any (zg,%0) € R? with f(xo,y0) = 0 and x¢ # 0, we have
fz(xo,90) # 0, and hence the equation f(x,y) = 0 can be solved for z in
terms of y, locally near (g, yo). Notice that in this example both f,.(xo,yo)
and fy(2o,y0) are zero when (20,%0) = (0,0) but then f(0,0) # 0. It fol-
lows that for every (zo,y0) € R? with f(z0,y0) = 0, there are § > 0 and
a differentiable function 7 : (z¢g — d, 29 + 0) — R with f(x,n(x)) = 0 for
all x € (xg — 9,0+ 9), or a differentiable function & : (yo —d,y0 +0) — R
with f(&(y),y) =0 for all y € (yo — 5,90 + 9).

(ii) Consider f : R? — R defined by f(z,y) = y? — 2°. Then f£,(0,0) =
fy4(0,0) = 0. So the Implicit Function Theorem is not applicable near
(0,0). Indeed, the “solutions” for y in terms of x, or for z in terms of y,
namely, y = £v/z3 or z = f’/yz, are not differentiable at the origin. <

Remark 3.40. As in Remark 2.42, we have a straightforward analogue of
the Classical Version of the Implicit Function Theorem, which corresponds
to solving f(z,y) = 0 for z in terms of y. In this situation, condition (a) in
Proposition 3.38 remains the same, while in (b) and (b*), one has to replace f,
by fz. The conclusion would be that there are § > 0 and € : (yo—J,90+9) — R
as in Remark 2.42. Moreover, £ would be differentiable and & = —f,/ fs.
Combining either of the two situations, we can make a unified statement of
the Classical Version of the Implicit Function Theorem as follows.

Let D C R? and let (z0,30) be an interior point of D. Let f : D — R have
continuous partial derivatives in S, (zg, yo) for some r > 0 with S, (xo, yo) C D.
Suppose f(zo,y0) = 0 and V f(xo,y0) # (0,0). Then there are 6 > 0, ty € R,
and differentiable functions x,y : (to—9,to+39) — R such that (x(tg), y(to)) =
(z0,90), and for every ¢t € (to — d,t9 + ), we have (xz(t),y(t)) € Sy(xo,v0)
and f(z(t),y(t)) = 0. Moreover, (z'(t),y'(t)) # (0,0) and f,.(z(¢),y(t))z'(¢) +
Jy(z(t),y(t)y'(t) = 0 for all t € (to— 9, to+0). In other words, if f(zo,yo) =0
and V f(zo,y0) # (0,0), then there is a regular path passing through (xo,yo)
and lying on the surface z = f(z,y). &
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As in Proposition 2.43, we can derive a classical version of the so-called
Inverse Function Theorem for real-valued functions of one variable as a
consequence of the Classical Version of the Implicit Function Theorem.

Proposition 3.41. Let I be an interval in R and xq an interior point of 1.
Suppose [ : I — R is continuously differentiable on (xo —r,xo + 1) for some
r >0 with (xo—r,xz0+7) C I and f'(xo) #0. Let yo := f(xo) and J := f(I).
Then there are 6 > 0 with (yo — 0,y0 + 0) € J and a unique differentiable
function £ : (yo — 0,y0 + ) — R such that £(yo) = xo and f(E(y)) =y for all
y € (yo— 9,50+ 0). Moreover, there is t > 0 with t < r such that f is one-one
on (xo —t,mo+1t) and f~1 is differentiable at yo with (f’l)/ (yo) = 1/f'(x0).

Proof. Consider h : S,(zo,y0) — R defined by h(z,y) := f(x) — y. Then
h(zo,y0) = 0, both h, and h, exist and are continuous on S,(x¢,yo), and
ha(x0,y0) = f'(x0) # 0. Hence by the Classical Version of the Implicit Func-
tion Theorem (Proposition 3.38 and Remark 3.40), there are 6 > 0 and a
unique continuous function & : (yo — d,y0 +0) — R with £(yo) = xo such that
(€(y),y) € Sr(z0,y0) and h(&(y),y) = 0 for all y € (yo — 6, y0 + J). More-
over, ¢ is differentiable at yo and &' (yo) = —hy(z0,%0)/hz(20,y0) = 1/ f'(z0).
Consequently, f({(y)) = y for all y € (yo — J,y0 + 6), and in particular,
(yo — 0,90 + ) C J. Moreover, since f'(zg) # 0 and f’ is continuous on
(xo — 20 + 1), there is t > 0 with ¢ < r such that f'(x) # 0 for all
x € (xg — t,xo + t). Hence by the IVP of f’ and the first derivative test
of one-variable calculus (or more specifically, by part (ii) of Corollary 4.28 of
ACICARA), we see that f is strictly monotonic, and in particular, one-one, on
(wo —t, 20 +t). It follows that =1 = ¢ on f ((x¢ — t, w0 +t)). Also, in view of
the continuity and strict monotonicity of f on (xg — t,x0 + t), we see that yq
is an interior point of f(xg — t,z + t). Hence f~! is differentiable at yo with

(F1) (wo) = 1/ f'(wo)- O

As an immediate corollary of Proposition 3.41, we obtain a version of the
differentiable inverse theorem of one-variable calculus (given, for example, on
page 112 of ACICARA).

Corollary 3.42. Let I be an open interval in R and let f : I — R be
a continuously differentiable function such that f'(z) # 0 for all x € I.
Then the inverse function f=1 : f(I) — R is continuously differentiable and

(f_l)/ (f(x)) =1/f'(x) for all z € I.

Proof. Apply Proposition 3.41 at each point of I to obtain the differentiability
of f~! and the formula (f_l)/ (f(z)) = 1/f'(x) for all x € I. This formula
implies the continuity of the derivative of f~!, since f’ is continuous and
f(x) #0forall xel. O
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3.3 Taylor’s Theorem and Chain Rule

In this section, we discuss two important results in multivariable calculus
known as Taylor’s theorem and the chain rule. We have already discussed
Taylor’s theorem using the notion of higher-order directional derivatives. We
give here a classical version that is more widely used in practice. The chain
rule for functions of two (or more) variables is an analogue of the chain rule
for functions of one variable (given, for example, on page 111 of ACICARA).

Bivariate Taylor Theorem

We have already discussed in Section 3.1 analogues of the mean value the-
orem (MVT) and Taylor’s theorem for functions of two variables using the
notion of directional derivatives. We have also stated alternative versions of
these results in case the directional derivatives satisfy an identity of the form
D, f = Vf-u. Subsequently, in Section 3.2, we have seen that such an identity
is a consequence of differentiability of the function, and in particular, a con-
sequence of the continuity of the partial derivatives. We can now put these
facts together and derive the classical version of the Bivariate Mean Value
Theorem and the Bivariate Taylor Theorem.

Proposition 3.43 (Classical Version of Bivariate Mean Value Theo-
rem). Let D be a conver and open subset of R%, and let f : D — R be any
differentiable function. Given any distinct points (xo,yo) and (x1,y1) in D,
there is (¢,d) € D lying on the line segment joining (xo,yo) and (x1,y1), with
(¢,d) # (x;,y;) fori=0,1, such that

f(x1,91) = f(w0,90) = (x1 — @0) fz(c,d) + (y1 — yo) fy(c, d)
= (z1 — 20, y1 — yo) - Vf(c,d).

Proof. Since D is convex, the line segment joining (z¢,y0) and (x1,y1) is
contained in D, that is, L := {(xo+t(x1 —x0),yo+t(y1—yo)) : t € [0,1]} C D.
Also, since f is differentiable on D, by Proposition 3.35, we have Dy, f(z,y) =
Vf(x,y)-u for (z,y) € D and all unit vectors u in R?. Thus, the desired
result follows from Corollary 3.6. O

Remark 3.44. With notation and hypotheses as in Proposition 3.43, if we
write h := x1 —x¢ and k := y; — yo, then the conclusion of the Bivariate Mean
Value Theorem may be paraphrased by saying that

f(zo+h,yo + k) = f(xo,y0) + hfe(xo + Oh,yo + 0k) + kfy(zo + Oh,yo + Ok)
for some 0 € (0, 1). &

Corollary 3.45. Let D C R? be nonempty, convex, and open in R2, and let
f: D — R be any function. Then f is a constant function on D if and only
if f is differentiable and both f, and f, vanish identically on D.
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Proof. If f is a constant function, then it is obvious that f is differentiable and
fe = fy =0 on D. Conversely, suppose f is differentiable and both f, and f,
vanish identically on D. Let (xo,yo) be any point of D. Since f, = f, =0 on
D, by Proposition 3.43, for any (z1,y1) € D with (x1,y1) # (z0,y0) we have
f(xz1,y1) — f(zo,y0) = 0, that is, f(z1,y1) = f(x0,y0). Thus, f is a constant
function on D. O

Remark 3.46. If D C R? is not convex, then there do exist differentiable
functions on D whose gradient does not vanish identically on D. For example,
if D =S;(0,0)US;(2,2) is a disjoint union of two open squares and f : D — R
is defined by f(x,y) = 1if x € S1(0,0) and f(z,y) = 2 if © € S1(2,2), then
clearly D is nonempty and open, and f; = f, = 0 on D, but f is not a constant
function. This shows that the hypothesis that D is convex cannot be dropped
from Corollary 3.45. However, it can be shown that a weaker hypothesis on
D, namely, that D is path-connected, also suffices. (See Exercise 37.) O

Proposition 3.47 (Classical Version of Bivariate Taylor Theorem).
Let D be a convex and open subset of R?, and let n be a nonnegative integer.
If f: D — R is such that all the partial derivatives of f of order < n+1 exist
and are continuous on D, then for any distinct points (xzo,yo) and (x1,y1) in
D, there is (¢,d) € D lying on the line segment joining (zo,yo) and (z1,y1),
with (¢,d) # (x;,y;) for i = 0,1, such that

1/ 0 9\ 1 o o\,
e =4 (g vk ) o Ly (g vk ) sea

where h := x1 — xg and k := y1 — yo. Alternatively,

n+1f (x _ xo)é (y _ yo)m

f(mlayl) n xlayl Z Z ea m ¢, ) Y| m! )
>0 m>0
l+m=n+1

where

aerm _ L _ m
=> > 5 xtoym (wo,50) T BT g (ey) € R2.

| |
>0 m>0 ¢ e
l+m<n

Proof. Since D is convex, the line segment joining (zo,yo) and (x1,y1) is
contained in D, that is, L := {(xo+t(x1 —x0),yo+t(y1—yo)) : t € [0,1]} C D.
Let u = (u1,u2) be the unit vector given by

1
u = (up,us) := . (21 — 20,41 — o), where 7 := /(21 —20)2 4 (y1 — y0)2.

Now, by Propositions 3.33 and 3.35, fo := f is differentiable on D and the
directional derivative Dy, f exists at every point of D. More generally, using
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Propositionb 3.33 and 3.35 together with induction on 7, we see that for i =
1,...,n, the ith directional derivative D’ f exists at every point of D and
moreover, if f; : D — R is defined by f; := D f, then f; is differentiable
on D. Consequently, by Propositions 3.28 and 3.35, for each i = 0,...,n, the
function f; is continuous on D and satisfies Dy, f;(z,y) = V fi(z,y)-u for every
(x,y) € D. Thus, by Corollary 3.22, there is (¢,d) € L\ {(x0,%0), (x1,91)}
such that

n 7 n+1
1 0 0 1 0 0
= h k h k d
Ferm =3 4 (hgr k) S+ Ly (he +0) G
where h := 21 — zg and k := y; — yo. This proves the first assertion. To prove
the alternative expression for f(z1, 1), note that for i = 0,...,n+ 1, we have
1 0 0 he km
i <h8x + kay) Z Z x"@ym é' for any (z,y) € D.
£>0m>0
l+m=1i
The last two displayed equations yield the desired result. O

Remarks 3.48. (i) The classical version of the Bivariate Mean Value Theo-
rem corresponds to the case n = 0 of the Bivariate Taylor Theorem.

(ii) The case n = 1 of the classical version of the Bivariate Taylor Theorem
is sometimes called the Extended Bivariate Mean Value Theorem. It
can be stated as follows: If D C R? is convex and open, and f : D — R
has continuous first-order and second-order partial derivatives on D, then
for any distinct points (xo,y0) and (x1,y1) in D, there is (¢,d) € D on the
line segment joining (xo,yo) and (x1,y1), with (¢,d) # (xi,y;) for i = 0,1,
such that

2
e = Foom)+ () + kg ) fanam)+ ) (g +5 ) ) Fled
(iii) The polynomial P,(x,y) defined in Proposition 3.47 above is called
the nth (bivariate) Taylor polynomial of f around (zg, yo). The difference
R, := f — P, is called the (bivariate) remainder of order n. Thus, Propo-
sition 3.47 relates the function f to its Taylor polynomial by saying that for
every (x,y) € D, there is (¢,d) € D such that

n—+1 % — ¢ . m
fay) = Puley)+ 5 DT e.g) S W)

£ m |
m.
>0 m>0 a
l+m=n+1

The last expression is sometimes referred to as the Bivariate Taylor For-
mula for f around (z¢,yo). This formula shows that the remainder R, is
given by
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Ro(z,) Z Z a”Jrlf ’ )(ﬂf —aﬂ?o)é (Y —vo)™

0x'oy m m!
>0 m>0
l+m=n+1

for some (¢,d) € D. <&

The following corollary of the Bivariate Taylor Formula generalizes Corol-
lary 3.45 and gives a characterization of polynomial functions on convex open
subsets of R2.

Corollary 3.49. Let D be a nonempty, convez, and open subset of R?, and
let f: D — R be any function. Let n be a nonnegative integer. Then f
is a polynomial function on D of total degree < n if and only if all partial
derivatives of f of order < n+1 exist and are continuous on D, and moreover,
all the (n + 1)th-order partial derivatives of f vanish identically on D.

Proof. Suppose f is a polynomial function on D of total degree < n, that is,
f(z,y) is a finite sum of terms of the form ¢; jz'y’ where i, j are nonnegative
integers with i +j < n and ¢; ; € R. In view of Example 3.17 (ii), we see that
the partial derivatives of f of every order exist and are continuous on D, and
moreover, all the (n + 1)th-order partial derivatives of f vanish identically on
D. To prove the converse, it suffices to fix some (zg,y0) € D and apply the
Bivariate Taylor Formula for f around (xo,yo). O

Examples 3.50. (i) Let I and J be nonempty open intervals in R, and let
¢ : 1 — Rand ¥ : J — R be infinitely differentiable functions of one
variable. Consider f,g: I x J — R defined by

f(z,y) =¢(x) +¢(y) and g(z,y) = ¢(x)Y(y).

Let g € I, yo € J, and let n be a nonnegative integer. If @, (¢) and
Q@ (1) denote the nth Taylor polynomials of ¢ and ¢ around x and yo
respectively, then using the formulas in Example 3.17 (i), we see that
the nth Taylor polynomial of f around (zg,yo) is given by Qn(¢)(z) +
Qn(¥)(y), whereas the nth Taylor polynomial of g around (zg, yo) is given
by the sum of terms of total degree < n in the product Q,,(¢)(x)Qx (¥)(y).
For instance, the nth Taylor polynomials around (0,0) of f,g : R? — R
defined by f(z,y) := e + e¥ and g(x,y) := e*¥ are given by

Po(f)(z,y) = Z +Zy and Py ZZ'W

m=0 £>0 m>0
l+m<n

(ii) Let E be an open subset of R and D an open subset of R? such that
{zr+y:(x,y) € D} C E. Suppose g : E — R is infinitely differentiable
and f: D — R is defined by f(z,y) := g(z + y). Given any nonnegative
integer n and any (xg,yo) € D, if Q,(g) is the nth Taylor polynomial of
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g around zp + Yo, then using the formulas in Example 3.17 (iii), we see
that the nth Taylor polynomial of f around (z¢,yo) is given by

Tr—x £ _ m
Pn(f)(l‘,y) = Z Zg(£+7n)(x0 + yO)( B O) (y yo)

m!
£>0 m>0
l+m<n

LIE) i |
_ g\ (xo + yo) 4! B 0 i
B jz:;) J! éz:(:) 0@ — g)!(x 20)" (¥ — Yo)

" g (g
:Z;JQ ( ;1+y0)(
= Qn(g)(z +y).

For instance, the nth Taylor polynomial of f : S;,5(0,0) — R defined by
flz,y) = 1/(1 =z — y) around (0,0) is given by >-"_(z +y)’. Results
similar to those above for functions of the form f(z,y) := g(zy) are given
in Exercise 40. O

x+y—$o—yo)j

Chain Rule

The Chain Rule for functions of two variables is a widely used technique for
computing derivatives of composite functions. As in Proposition 2.17 concern-
ing the continuity of composite functions, we state the Chain Rule in three
parts, applicable to three ways of forming composites.

Proposition 3.51 (Chain Rule). Let D C R? and let (zg,%0) be an interior
point of D and let f : D — R be differentiable at (zq,yo).

(i) Let E C R be such that f(D) C E and f(xo,yo) is an interior point of E.
If g : E — R is differentiable at f(xo,yo), then the function F : D — R
defined by F := go f is differentiable at (xo,yo) and

VF(zo,y0) = g (f(z0,90)) Vf(z0,0)-

(ii) Let E C R and let ty be an interior point of E. If x,y : E — R are
differentiable at to and if (x(t),y(t)) € D for allt € E and (z(to),y(to)) =
(z0,90), then the function F : E — R defined by F(t) := f(x(t),y(t)) for
t € E is differentiable at ty, and

F'(to) = Vf(20,90) - (' (t0), ¥ (to)) = fu(wo,y0)x" (to) + fy(x0,y0)y (to)-

(iii) Let E C R? and let (ug,vo) be an interior point of E. If v,y : E — R
are differentiable at (ug,vo) and if (z(u,v),y(u,v)) € D for all (u,v) € E
and (x(uo,v0),y(uo,v0)) = (xo,y0), then the function F : E — R defined
by F(u,v) == f(xz(u,v),y(u,v)) for (u,v) € E is differentiable at (ug,vo),
and VF(ug,vo) is equal to

(Vf(x0,0) - (2u(u0,v0), yu(uo,v0)) , Vf(x0,y0) - (2 (o, v0), Yo (uo, v0)) ).
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Proof. By the Increment Lemma, there is a pair (f1, f2) of increment functions
associated with f and (xo,yo). Thus fi, fo : D — R are continuous at (xq, 3o)

with (f1(z0,%0), f2(%0,%0)) = V f(z0,%0), and

f(x,y) = f(@o,90) = (x — @0) f1(z,y) + (y — yo) f2(w,y) for all (z,y) € D.

This result will play a crucial role in proving (i), (ii), and (iii).

(i) Suppose E and g satisfy the hypotheses in (i). By Carathéodory’s
Lemma (Fact 3.24), there is an increment function g; : F — R associated
with g and 2¢ := f(x0,y0). Thus g; is continuous at zyp with g1(29) = ¢'(20)
and

g(z) — g(z0) = (2 — 20)g1(z) forall z € E.

Since f(D) C E, it follows that for every (z,y) € D,

Fz,y) — F(zo,40) = (910 f)(2,9) [(z = 20) f1(z,y) + (y — o) fa(2, y)] -

Moreover, by Propositions 3.28, 2.15 and part (i) of Proposition 2.17, we see
that (g1of)f1 and (g10f)f2 are continuous at (g, yo). Thus we conclude from
the Increment Lemma that F' is differentiable at (zo,yo) and VF(xo,y0) =

(91 0 f)(0,40)V f (20, 90) = g (f (z0,90)) V f (20, yo)-

(ii) Suppose FE, to and x, y satisfy the hypotheses in (ii). By Carathéodory’s
Lemma (Fact 3.24), there are increment functions z1,y; : E — R associ-
ated, respectively, with z,y, and ty. Thus x1,y; are continuous at ty with
(x1(t0), y1(to)) = (&' (to), ¥ (t0)), and for all t € E,

x(t) = x(to) = (t —to)xr(t) and y(t) —y(to) = (t — to)ya(t)-
Given any t € E, we have (z(t),y(t)) € D, and so F(t) := f(x(t),y(t)) satisfies
F(t) — F(to) = (x(t) — z(to)) f1 (x(t), y(2)) + (y(t) — y(to)) f2 (x(t),y(t)) -

If Fy : E— Ris defined by Fi(t) := z1(t) f1 ((t),y(t)) + y1(t) f2 (x(t), y(t)),
then we have

F(t) — F(to) = (t — to) Fl(t) forallt € F.

Moreover, in view of part (ii) of Proposition 2.17, we see that F} is continuous
at to. Thus, we conclude from Carathéodory’s Lemma (Fact 3.24) that F is
differentiable at to and that F'(tg) = Fi(to) = V f(xo,v0) - (2'(t0),y (to))-

(iil) Suppose E, (ug,vg), and x,y satisfy the hypotheses in (iii). Let
Ei:={uelR: (u,vg) € E} and FEy:={veR: (up,v)e€ E}.
Also, let ¢,¢& : F1 — R and 9,7 : E5 — R be functions defined by

¢(u) :=z(u,v0),  §(u) :=y(u,v0), P(v) :=x(uo,v), nv) :=y(uo,v).
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Then E1, ug, and ¢, € satisfy the hypotheses in (ii), and hence F; : E; — R de-
fined by Fy(u) = f(¢(u),&(u)) for u € Ey is differentiable at ug and Fy(ug) =
V f(xo,90) (¢ (uo), & (up)). Similarly, s, vg, and 1, 1 satisfy the hypotheses in
(ii), and hence Iy : B3 — R defined by Fa(v) = f(1(v),n(v)) for v € Ey is dif-
ferentiable at vg and Fj(vo) = V f(zo,yo) - (¥'(vo),n (vo)). Also, since Fy (u) =
f(x(u,v0),y(u,vp)) for u € Ey and Fa(v) = f(x(ug,v),y(ug,v)) for v € Es, it
follows that

Fy(uo,v0) = Fi(uo) = Vf(zo,y0) - (2u(uo, v0), Yu(uo, v0))
E,(UO,’UO) = FQ/(UO) = vf(x())yO) ' (xv(uO)’UO))yv(uO)’UO)) .
Hence VF'(ug,vo) satisfies the desired equality. O

Remark 3.52. It is often helpful to write the identities given by the Chain
Rule in a slightly informal but suggestive notation as follows.

(i) If z = f(x,y) and w = g(z), then w is a function of (z,y), and

ow  dw 0z
dr  dz Ox

ow  dw 0z

d = .
a oy  dz Jy

(i) If z = f(z,y) and if z = z(t), y = y(t), then z is a function of ¢, and

dz 82dx+8zdy
dt Oz dt Odydt’

(iii) If z = f(2,y) and if z = x(u,v), y = y(u,v), then z is a function of (u,v),

d
o 0z 0z0x 0z 0y 0z 0z0x 0z0y
= + an = + .
Ou Oxdu Oyou Ov  Oxdv 0Oydv

It should be noted that the identities in (i), (ii), and (iii) above are valid
when the concerned (partial) derivatives are evaluated at appropriate points
and when the hypothesis of Proposition 3.51 holds. In view of Proposition
3.33, the latter holds if each of the (partial) derivatives exists in an open
square around the relevant point and is continuous at that point.

We also remark that the displayed identities in (ii) and (iii) above can be
written in a unified form, using matriz notation, as follows:

ox or Oz
dz [0z 0z ot d 0z 0z] [0z 0= ou v
dt—[ax 3y} Ay " {8u av]_{&n 83/] oy By
ot ou  Ov

The 2 x 2 matrix on the right-hand side of the second identity is called the
Jacobian matrix of the functions z and y with respect to the variables v and
v, or more precisely, the Jacobian matrix of the transformation ® : £ — R?
defined by ®(u,v) := (z(u,v),y(u,v)). The determinant of this matrix gives
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a function J(®) : E — R, and it is called the Jacobian of ® or the Jacobian
of the functions x and y with respect to the variables u and v. Thus,

Jx Oz

du v __O0rx0y 0Ox 0y

) = det = — f E.
J(®)(u,v) e . wdw  dvou O (u,v) €
ou Ov
The Jacobian of x and y with respect to u and v is sometimes denoted by
O(x,y)
d(u,v)

Similar notation prevails in the case of n functions of n variables.

It will be useful to record the following consequence of the Chain Rule
for Jacobian matrices of composite functions. Suppose E is an open subset of
R? and ® : E — R? is as above, that is, ®(u,v) := (z(u,v),y(u,v)), where
the component functions =,y : E — R are differentiable on E. Let D C R?
be an open subset with ®(E) C D. If ¥ : D — R? given by U(z,y) =
(w(z,y),z(x,y)) is such that the component functions w,z : D — R are
differentiable on D, then the component functions of ¥ o ® : E — R? are
differentiable on F and

J (Vo) (u,v)=J (V) (x(u,v),y(u,v)) J (®) (u,v) forall (u,v) € E.

In other words, the Jacobian of the composite is equal to the product of the
Jacobians. To see this, note that the above identity can be written as follows:

ow OJw ow  Ow or O
du  Ov dz Oy ou Ov
dz 0z 0z 0z dy Oy
ou Ov oxr Oy ou Ov

The equality of each entry in the matrix on the left with the corresponding
entry of the product of the two matrices on the right is a direct consequence
of part (iii) of Proposition 3.51. &

Examples 3.53. (i) Consider f : R?> — R and g : R — R defined by
f(z,y) := xy for (z,y) € R? and g(z) = sin z for z € R. By the Chain Rule,
the composite function F' : R? — R given by F(z,y) := (go f)(z,y) =
sin(xy) is differentiable at every point of R? and

OF  dF 0z
dr  dz Oz

OF  dF 0z

oy~ dz Oy = (coszy)z.

= (coszy)y and

(ii) Consider f : R? — R defined by f(z,y) :

= 22 + y? for (z,y) € R2%
Further, let x,y : R — R be defined by z(t) :=

et and y(t) := sint for
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t € R. By the Chain Rule, the composite function F : R? — R given by
F(t) == f(z(t),y(t)) = e** +sin?t is differentiable at every point of R and

Cﬁ; = gi CCZ; gi]; ng = (2z(t))e’ + (2y(t)) cost = 2e*' + 2sint cost.

(iii) As in (ii) above, consider f : R? — R defined by f(z,y) := 22 + y? for
(r,y) € R% Let z,y : R? — R be defined by z(u,v) := u? — v? and
y(u,v) := 2uv for (u,v) € R By the Chain Rule, the composite function
F :R? — R given by

F(u,v) :== f(z(u,v),y(u,v)) = (u? —v*)? + (2uv)? = u* + 2u?? + v*

is differentiable at every point of R? and

OF O0Fdx O0OFdy
ou 3x6u+ oy ou
oF OF0x O0F0y
o 3xav+ oy ov
Thus, VF(u,v) = 4(u? 4+ v?)(u,v) for all (u,v) € R2 Note that the
Jacobian of the functions x and y with respect to the variables v and v is
equal to (2u)(2u) — (—2v)(2v) = 4(u? + v?).

(iv) As in (iii) above, consider f : R? — R defined by f(z,y) := 2% + 3>
for (z,y) € R2. Let z,y : R? — R be defined by z(r,6) := rcosf and
y(r,0) :=rsind for (r,0) € R%. By the Chain Rule, the composite function
F :R? — R given by

F(r,0) := f(z(r,0),y(r,0)) = (rcos)? + (rsinf)? = r?
is differentiable at every point of R? and

OF O0FO0x OF 0y

or 8x8r+6y37‘

({;1; = gi g; + 885 gz = (2rcos@)(—rsind) 4 (2rsind)(rcosd) = 0.
Thus, VF(r,0) = (2r,0) for all (r,0) € R?. Note that the Jacobian of the
functions x and y with respect to the variables r and 6 is equal to r.

(v) Consider f: R? — R defined by f(0,0) := 0 and f(z,y) := zy/(2? + y?)
for (x,y) # (0,0). Also consider z,y : R — R defined by x(t) = ¢t and
y(t) := t? for t € R. We have seen in Example 3.1 (iii) that f, and f,
exist on R? and that f,(0,0) = 0 = f£,(0,0). Also, both z and y are
differentiable on R and 2/(t) = 1 and y/(¢t) = 2t for ¢ € R. On the other
hand, if F : R? — R is defined by F(t) := f(x(t),y(t)), then F(t) =
t/(1+t%) and F'(t) = (1 —t?)/(1 4+ 2)? for all t € R. Thus, we see that

F'(0) =1, whereas f,(0,0)z'(0)+ f,(0,0)y'(0) = 0.

This shows that the hypothesis in the Chain Rule that f is differentiable
cannot be dropped. &

2(u? — v*)(2u) + 2(2uv) (2v) = 4u(u® + v?),

2(u? — v*)(—20) + 2(2uv)(2u) = 4v(u? + v?).

= (2rcos®)(cos ) + (2rsinb)(sin ) = 2r,
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3.4 Monotonicity and Convexity

We have seen in Section 1.2 that the notion of monotonicity for functions
of one variable admits two distinct analogues in the setting of real-valued
functions of two variables. In this section, we will relate these to the sign of
certain partial derivatives, thereby obtaining analogues of the first derivative
test of one-variable calculus. Next, we will obtain useful criteria for functions
of bounded variation as well as for functions of bounded bivariation in terms
of partial derivatives. The gradient of a real-valued function of two (or more)
variables is a vector-valued function of two (or more) variables. We will see
that there is a natural notion of monotonicity for such functions. Subsequently,
we will relate monotonicity of the gradient with the notions of convexity and
concavity of functions of two (or more) variables.

Monotonicity and First Partials

Let us recall that a function f : I x J — R defined on a product of intervals
I and J in R is said to be monotonically increasing if

(x1,y1), (z2,92) € I x J and (z1,91) < (22,92) = f(x1,y1) < f(x2,¥2).

If this condition holds with < replaced by > in the last inequality, then f is
said to be monotonically decreasing. Thus, in effect, monotonicity of a function
of two variables is the same as monotonicity in each of the two variables.
Likewise, taking the partial derivative of a function of two variables amounts
to treating it as a function of one variable (regarding the other variable as
constant) and taking the derivative as in one-variable calculus. Thus, it is
natural to expect that the following characterization holds.

Proposition 3.54. Let D C R? and let I,.J be any intervals in R such that
IxJCD. Let f: D — R be such that both f, and f, exist on I x J. Then

(1) f is monotonically increasing on I X J <= f, >0 and f, >0 on I x J.
(ii) f is monotonically decreasing on I X J <= f, <0 and f, <0 on I x J.

Proof. (i) Suppose f is monotonically increasing on I x J. Then given any
(xo,90) € I x J, we find [f(xzo + h,y0) — f(x0,y0)]/h > 0 for any h € R such
that h # 0 and (xg + h,yo) € I x J. Taking the limit as h — 0, it follows that
fa(20,%0) > 0. In a similar manner, we see that f,(zo,y0) > 0.

Conversely, suppose f > 0and f, > 0on IxJ. Let (z1,y1), (x2,y2) € IxJ
be such that (z1,y1) < (x2,y2). Let us first show that f(x1,y1) < f(x2,y1)-
This is trivial if 1 = a9. If 1 < w2, consider ¢ : [z1,22] — R defined
by ¢(t) := f(t,y1) for t € [x1,22]. Using the MVT (Fact 3.2), we see that
d(x2)—p(x1) = ¢'(c) (w2 —x1) for some ¢ € R with 21 < ¢ < z2. Consequently,
f(xa,y1) — f(z1,y1) = fale,y) (@2 —21) > 0, that is, f(21,y1) < f(22,91).
Next, we will show that f(z2,y1) < f(xe2,y2). This is trivial if y; = ys,
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whereas if y; < y2, then this follows in a similar manner by applying the
MVT (Fact 3.2) to ¢ : [y1,y2] — R defined by v¢(s) := f(z2,s). Combining
the two inequalities, we obtain f(z1,y1) < f(z2,y2). Thus, f is monotonically
increasing on I x J.

(ii) A proof similar to that of (i) can be given. Alternatively, (ii) follows
by applying (i) to —f. O

Bimonotonicity and Mixed Partials

Let us recall that a function f : I x J — R defined on a product of intervals
I and J in R is said to be bimonotonically increasing if

(x1,91) < (22,92) = f(21,92) + f22,91) < f(21,91) + f(22,92)-

If this condition holds with < replaced by > in the last inequality, then f is
said to be bimonotonically decreasing. It turns out that these notions admit
a neat characterization in terms of a mixed second-order partial derivative.

Proposition 3.55. Let D C R? and let I,.J be any intervals in R such that
IxJCD. Let f:D — R be such that f. and fz, exist on I x J. Then

(i) f is bimonotonically increasing on I x J <= fqy >0 on I x J.
(ii) f is bimonotonically decreasing on I x J <= fqy <0 on I x J.

Proof. (i) Suppose f is bimonotonically increasing on I x J. Given any
(zo,y0) € I x J and nonzero h, k € R, we see that

f(zo+h,yo + k) + f(x0,y0) — f(z0,%0 + k) — f(wo + hyyo)
hk
1 (f($0+hayo+k)—f($o,yo+k) f(xo+h,yo)—f($oay0)>

k h - h

0<

whenever (zg+ h,yo + k) € I x J. Taking the limit first as h — 0 and then as
k — 0, it follows that fg,(zo,y0) > 0.
Conversely, suppose fzy, > 0 on I x J. Let (x1,y1), (x2,y2) € I x J be

such that (z1,11) < (22,y2). If 21 < 22 and y1 < y2, then by the Rectangular
Mean Value Theorem (Proposition 3.11), there is (¢,d) € I x J such that

f(xi,y1) + f(z2,92) — f(z1,92) — f(z2,91) = fay(c, d)(y2 — y1) (w2 — x1) > 0.

Moreover, the expression on the left is equal to zero if =1 = z2 or if y1 = yo.
It follows that f is bimonotonically increasing on I x J.

(ii) A proof similar to that of (i) can be given. Alternatively, (ii) follows
by applying (i) to —f. O
Remark 3.56. Characterizations similar to those in Proposition 3.55 hold
with f, and f,, replaced throughout by f, and fy.. O
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Bounded Variation and Boundedness of First Partials

Let us recall that a function f : [a,b] X [¢,d] — R is said to be of bounded
variation on [a,b] X [c,d] if the set of all finite sums of the form

n

Z (i yi) = f(@im1, yi-1)]

i=1

where n € N and (z0,%0), - - -, (Zn, yn) vary over points of R? satisfying

(a,c) = (33an0) < (xhyl) << (xn—layn—l) < (xnayn) = (b7d)>

is bounded above. We have seen in Section 1.2 that a real-valued function on
a rectangle is of bounded variation if and only if it is the difference of two real-
valued monotonically increasing functions. In practice, it is not always easy to
verify whether a given function is of bounded variation using the definition or
this characterization. However, the following simple criterion is often helpful.

Proposition 3.57. Let f : [a,b] X [¢,d] — R be continuous on [a,b] x [c,d]
and differentiable on (a,b) X (c,d). Assume that f, exists and is bounded on
(a,b) X [c,d], while f, exists and is bounded on [a,b] x (¢,d). Then f is of
bounded variation on [a,b] X [c,d].

Proof. Let o € R be such that |fy(u,v)] < « for all (u,v) € (a,b) X [¢,d]
and |fy(u,v)] < « for all (u,v) € [a,b] X (¢,d). Suppose n € N and
(20,%0), - -, (Tn,yn) are any points of R? such that

(a,c) = (33an0) < (xlayl) << (xn—layn—l) < (xnayn) = (b>d)-

In view of the Bivariate Mean Value Inequality (Corollary 3.6) together with
Proposition 3.35, we see that

|f(@isyi) = f@im,yi-)| < a(@ — @1 +yi —yima)  fori=1,....n,

and consequently,
ST (i yi) — fF@ictyim)| <ab—a+d—c).
i=1

Thus f is of bounded variation on [a, b] x [c, d]. O

The above proof not only shows that the function f as in Proposition 3.57
is of bounded variation, but also gives an upper bound for the total variation
of f on [a,b] X [e,d]. Moreover, we also have the following useful corollary,
which is perhaps more useful in practice.

Corollary 3.58. If f : [a,b] X [¢,d] — R has continuous partial derivatives on
[a,b] x [e,d], then [ is of bounded variation on [a,b] X [c,d].

Proof. By Proposition 3.33, f is differentiable on (a,b) x (¢, d). Moreover, by
Proposition 2.25, the first partials f, and f, are bounded on [a,b] x [c,d].
Hence the desired result follows from Proposition 3.57. O
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Bounded Bivariation and Boundedness of Mixed Partials

Let us recall that a function f : [a,b] X [¢,d] — R is said to be of bounded
bivariation on [a, b] X [c, d] if the set of all finite double sums of the form

ZZ |f(@i,y;) + f(@im,y5-1) — f(@ayi-1) = f(@ie1,95)]

i=1 j=1
where n,m € N and (z0,%0), - - -, (Zn, ym) vary over points of R? satisfying
a=w9<z1 <---<zp 1 <zy,=bandc=yo <y < <ym_1 < ym =d,

is bounded above. We have seen in Section 1.2 that a real-valued function on
a rectangle is of bounded bivariation if and only if it is the difference of two
real-valued bimonotonically increasing functions. Again, in practice, it is not
always easy to verify whether a given function is of bounded bivariation using
the definition or this characterization. However, the following simple criterion
is often helpful.

Proposition 3.59. Let f : [a,b] x [¢,d] — R be continuous on [a,b] x [c,d].
Assume that f, exists and is continuous on (a,b) X [¢, d], while fy, exists and
is bounded on (a,b) x (c,d). Then f is of bounded bivariation on [a,b] X [c,d].

Proof. Let § € R be such that |f,,(u,v)] < 8 for all (u,v) € (a,b) x (c,d).
Suppose m,n € N and (29, ¥0), - - -, (Tn,Ym) are any points of R? such that

a=29<x < <arpg<ap=bandc=yo<y1 < <Y1 S Ym =d.

Fori=1,...,nand j =1,...,m, using the Rectangular Mean Value Inequal-
ity (Corollary 3.12), we see that

|f(zi,y5) + f(ric1,y5-1) — f(@i,y5-1) — f(rim1,y5)] < BAiy,

where A = (2; —zi-1) (y; — yj-1). Now 300, 370 Ayj = (b —a)(d — o),
and consequently,

SN 1 @iys) + F@ioayio1) — fiyi-1) — fl@io,y;)| < Bb—a)(d—c).

i=1 j=1
Thus f is of bounded bivariation on [a, b] X [¢, d]. O

Remark 3.60. In light of the last statement in Remark 3.13, it is readily
seen that a result similar Proposition 3.59 holds with f, and f,, replaced
throughout by f, and fy.. &

The proof of Proposition 3.59 not only shows that the function f therein is
of bounded bivariation, but also gives an upper bound for the total bivariation
of f on [a,b] x [c,d].
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Convexity and Monotonicity of Gradient

The notions of convex functions and concave functions of two variables have
been discussed in Section 1.2. As in one-variable calculus, we can relate these
notions to the monotonicity of the (total) derivative, which we now define.
To motivate this, let us first note that if I C R is an interval in R, then
f I — R is monotonically increasing if for every x1,zo € I with x7 < 2,
we have f(z1) < f(x2). Equivalently, f : I — R is monotonically increasing if
and only if

(f(z2) = f(x1)) - (w2 —21) >0 for all my, x5 € 1.

This condition generalizes easily if we replace the function of one variable
by the gradient of a function of two (or more) variables and we replace the
multiplication of real numbers by the dot product of vectors.

Let D C R? be open and convex, and let f : D — R be any differentiable
function. We say that V f is monotonically increasing on D if

(Vf(x2,y2) =V f(z1,1)) - (x2—21,92—y1) >0 for all (z1,41), (x2,y2) € D.

Likewise, we say that V f is monotonically decreasing on D if

(Vf(x2,y2) =V f(z1,01)) (2—21,92—3y1) <O for all (z1,41), (x2,y2) € D.

We say that Vf is monotonic on D if it is monotonically increasing or
monotonically decreasing on D.

We shall now see that the convexity or the concavity of f can be character-
ized in terms of the monotonicity of V f in exactly the same manner as in the
case of functions of one variable. (See, for example, Section 4.3 of ACICARA.)
First, we require an auxiliary result.

Lemma 3.61. Let D C R? be open and convez, and let f : D — R be any
function. If f is differentiable at some (xo,y0) € D and f is convex on D,
then

f(z,y) — f(@o,y0) = Vf(wo,90) - (x — 20,y —y0) for all (x,y) € D.

Conversely, if f is differentiable on D and satisfies

f(z,y) = f(@o,y0) > Vf(wo,90) (x — 20,y —y0) for all (x0,y0), (v,y) € D,
then f is convex on D.

Proof. Suppose f is differentiable at some (x,yo) € D and f is convex on D.
Let (f1, f2) be a pair of increment functions associated with f and (zg,yo).
Then f1, fo : D — R are continuous at (xg,yo) and we have

f(x,y) — f(@o,y0) = (v — x0) f1(z,y) + (y — yo) f2(w,y) for all (x,y) € D.
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Fix any (z,y) € D. Let h := x — 29 and k := y — yo. Then for any ¢ € (0, 1),
the point (zg + th,yo + tk) = t(z,y) + (1 — t)(x0,y0) is in D because D is
convex; further, since f is convex, we have
f(zo+th,yottk) < tf(x,y)+(1-t) f(zo,y0) = t [f(x,y) — f(z0,y0)]—f (0, Y0)-
Consequently, for every ¢t € (0,1), we have
t[f(z,y) — f(zo.yo)] = f(xo + th,yo + tk) — f(20,y0)
= t[hfi(zo + th,yo + tk) + kfa(zo + th,yo + tk)].
It follows that for every ¢ € (0, 1), we have
f(@,y) = f(z0,y0) = hfi(xo + th,yo + tk) + k f2(xo + th,yo + tk).

Since (f1(wo0,v0), f2(z0,%0)) = (fz(z0,Y0), fy(T0,y0)) = V f(z0,90), by taking
the limit as ¢ — 07 and using the continuity of fi, f2 at (29, %0), we obtain

f(@,y) = (@o,50) = hfz(zo,90) + kfy(z0,y0) = Vf(xo,50) - (x — 0,y — yo)-
This proves the desired inequality.

Conversely, suppose f is differentiable on D and satisfies
f(@,y) = f(@o,y0) = Vf(2o,y0) - (x — 20,y —yo) for all (o, y0), (z,y) € D.
Consider any (x1,91), (x2,92) € D and t € (0, 1). Define

(z0,90) == (1 = t)(z1,91) + t(22,y2) = (T1,y1) + t(z2 — T1,92 — ¥1).

Since D is convex, (xg,y9) € D. Moreover, by the hypothesis, we have

f(xi,y:) — f(wo,90) = V f(zo,v0) - (i — 20, yi —yo) fori=1,2.

Multiplying the inequality corresponding to i = 1 by (1 — t), the inequality
corresponding to ¢ = 2 by ¢, and then adding the two, we obtain

(=) f(z1,y1) + tf(22,92)] — f(wo,90) = Vf(z0,90) - (¥3,93),

where (z3,y3) = [(1 —¢)(21 — Zo,y1 — Yo) + t(x2 — T, y2 — Yo)]. But since
($3>y3) = (1 - t)(x17yl) + t(x27y2) - ($07y0) = (O’ 0)7 we obtain

f(@o,y0) < (1 =) f(21,y1) + Lf (22, 92).
This proves that f is convex on D. O

Remark 3.62. It may be noted that the proof of the “converse” in Lemma
3.61 does not make an essential use of the hypothesis that f is differentiable,
except for the existence of the gradient Vf. In fact, the first assertion in this
lemma can also be proved under the weaker hypothesis that V f(zo, yo) exists.
This follows from a general property of convex functions, which states that if
D C R? is open and convex, (z¢,y0) € D, and f : D — R is a convex function
such that V f(zo, yo) exists, then f is differentiable at (x,yo). A proof of this
property is slightly technical, and will not be needed in the text; however, it
is sketched in Exercise 42. O
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The next lemma is an elementary characterization of the convexity of a
function f of two variables in terms of the convexity of functions of one variable
obtained by restricting f to various line segments in the domain of f.

Lemma 3.63. Let D C R? be convex, and let f : D — R be any function.
Then f is convex on D if and only if for every (z1,y1), (z2,y2) € D, the
function F : [0,1] — R defined by F(t) := f (1 + t(z2 — x1), 11 + t(y2 — y1))
is convez on [0, 1].

Proof. Suppose f is convex on D. Fix any (x1,y1), (x2,y2) € D, and consider
F : [0,1] — R be defined by F(t) := f(x1+t(xa—21), y1 +t(y2 — y1))-
Given any t1,t2 € [0,1] and A € (0,1), let us take ¢ := (1 — A)t; + Ata. Then
te (tl,tz) - (O, 1) and

x1 + (e —x1) = [(1 —A)+ )\]xl + [(1 - Mt1 + )\tg](xg — 1)
= (1= N)[(1 —t1)z1 + t1xo] + A[(1 — t2)z1 + toxa].

Thus, if we let uy := (1 — t1)x1 + t122 and ug := (1 — t2)x1 + toxe, then
1+ t(za — 1) = (1 — N)ug + Aug. Similarly, if we let vy := (1 — t1)y1 + t1y2
and ve 1= (1 — t2)y1 + toys, then y1 +t(y2 —y1) = (1 — \)v1 + Ave. Now since
D is convex, (u1,v1), (ug,v2) € D, and further, since f is convex,

F(t) = f((1 = X)(u1,v1) + AMuz,v2)) < (1= X) f(ur,v1) + Af(uz,v2).

It follows that F'((1 — A)t1 4+ Ma) < (1 = X)F(t1) + AF(t2). Hence F is convex
on [0, 1].

To prove the converse, let (z1,y1) and (x2,y2) be any two points of D, and
suppose F' : [0,1] — R defined by F(t) := f (21 + t(x2 — x1), y1 + t(y2 — ¥1))
is convex on [0, 1]. Then

Ft)=F(1—=t)-0+t-1)<(1—-t)F(0)+tF(1) forallte (0,1),
and therefore,

fA =)@, 01) +t(22,92)) < (L=t)f(21,91) +tf(22,92) forallt € (0,1).
This yields the desired result. a

Remark 3.64. The argument used in the first part of the above proof can
also be used to prove a local version of Lemma 3.63, namely, if D C R? is
convex and f : D — R is convex on D, and if (zg,y0) € D is such that
(xo + th, yo +tk) € D for all t € I and (h,k) € R%, where I is an interval
in R containing 0, then F : I — R defined by F(t) := f(xo + th, yo + tk)
for t € I is convex on I. To see this, note that for any ¢1,t2 € I and any
A€ (0,1), we have zp + [(1 - Mt1 + )\tg]h = (1 = A)(zo + t1h) + A(zo + t2h),
and yo + [(1 — A)t1 + Malk = (1 — A)(yo + t1k) + A(yo + t2k); hence by the
convexity of f on D, we obtain
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F ((1 — /\)tl + )\tg) < (1 — )\)f(.lio +t1h, Yo + tlk‘) + /\f(yo + t2h, Yo + tgk‘)
— (1= NF(t1) + \F(ta),

which proves that F'is convex on I. &

We are now ready to prove a characterization of convexity in terms of the
monotonicity of the gradient.

Proposition 3.65. Let D C R? be open and convex, and let f : D — R be
any differentiable function on D. Then

f is convex on D <= V [ is monotonically increasing on D.

Proof. Suppose f is convex on D. Let (x1,y1) and (x2,y2) be any two points
of D. By Lemma 3.61, we have

f(@2,y2) — f(z1,91) = V(z1,01) - (22 — 21, Y2 — y1)
and

f(@1,y1) — f(z2,y2) = Vf(22,92) - (21 — 22, Y1 — Y2).
Adding the two inequalities above, we obtain

(Vf(x2,y2) = Vf(x1,0)) - (22 — 21, y2 — y1) > 0.

Hence V f is monotonically increasing on D.

Conversely, suppose V f is monotonically increasing on D. Fix any (z1,y1)
and (z2,y2) in D. Let E := {t € R: (21 + t(z2 — x1), 11 + t(y2 —y1) € D}.
Note that since D is convex, E contains the interval [0,1]. Let z,y : E — R
and let F': E — R be defined by

a(t) = a+t(re—m), y(t):=y+tlya—y1), and F(t) = f(xt),y(t).

Since D is open in R?, by part (ii) of Proposition 2.23, we see that E is open
in R. By the Chain Rule (part (ii) of Proposition 3.51), F is differentiable and
for any t € E, we have

F'(t) = Vf(x(t),y(t) - (@' (1),y' (1)) = V((t),y(t)) - (x2 — 21, y2 — 11).

In particular, for any t1,ts € [0, 1], we have
F'(t2) — F'(t1) = [V f(x(t2), y(t2)) — Vf(2(t1),y(t1))] - (22 — 21, y2 — y1).

Now, since (x(t2) — z(t1), y(t2) — y(t1)) = (t2 — t1)(22 — 21, y2 — Y1), We see
that (to — t1) (F'(t2) — F'(t1)) equals

[V (2(t2), y(t2)) = Vf((tr), y(t2))] - (2(t2) — 2(t1), y(t2) — y(t1)) -

Further, since V f is monotonic on D, we have (to —t1) (F'(t2) — F'(t1)) > 0.
It follows that F’ is monotonically increasing on [0, 1]. Hence by a standard
result in one-variable calculus (for instance, part (i) of Proposition 4.31 of
ACICARA), F is convex on [0,1]. Thus, by Lemma 3.63, we conclude that f is
convex on D. O
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Remark 3.66. Let D C R? be open and convex, and let f : D — R be any
function. It is clear that f is concave on D if and only if —f is convex on D.
Also, if f is differentiable on D, then V f is monotonically decreasing on D if
and only if V(—f) is monotonically increasing on D. Thus, Proposition 3.65
readily implies the following characterization of concavity:

f is concave on D <= V f is monotonically decreasing on D.

The notions of strict convexity and strict concavity of a real-valued function
of two variables are defined by changing the inequalities < and > in the
definition of convexity and concavity to < and >, respectively. Similarly, we
can easily formulate the notion of the gradient being strictly increasing or
strictly decreasing. Now, each of the results in this subsection has an analogue
for strictly convex functions. In particular, if f is differentiable, then we have
the following characterization:

f is strictly convex on D <= V f is strictly increasing on D.
Applying this to —f, we see also that
f is strictly concave on D <= V f is strictly decreasing on D.

Thus, we obtain analogues of the results in one-variable calculus for strictly
convex and strictly concave functions (given, for example, on page 128 of
ACICARA). o

Convexity and Nonnegativity of Hessian

We shall now proceed to investigate whether the characterization of convex-
ity of a function of one variable in terms of the nonnegativity of its second
derivative (given, for example, on page 129 of ACICARA) has an analogue for
a function of two variables. To this end, we have first to reckon with the fact
if f is a function of two variables, then there are four possible second-order
partial derivatives, namely, fruz, fzy, fyz, and fy,. If these are well behaved,
then we have f,, = fyz, and we need consider only three. Collectively, these
are captured in the form

B N, LOf 2f  LOf
<hax+kam) f=h ax2+2hkawy+k o2

Treating h and k as variables and evaluating the partials at a particular point,
we obtain a homogeneous polynomial of total degree 2 in (h, k) given by

Q(h, k) = ah® + 2bhk + ck*, ~ where a,b,c € R.

Such a polynomial is called a binary quadratic form in the variables h and
k. If D C R? is open and f : D — R has the property that the first-order and
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second-order partial derivatives of f exist and are continuous on D, then for
any (xo,yo) € D, the associated binary quadratic form

0? 0? 0?
n? aszc (20, y0) + Qhkaxgy (x0,y0) + k> ayJ; (z0,Y0)

is called the Hessian form of f at (xq,yo).

In general, a binary quadratic form Q(h, k) is said to be nonnegative
definite if it always takes nonnegative values, that is, Q(s,t) > 0 for every
(s,t) € R%. For D C R? and f : D — R as above, we shall say that the Hessian
form of f is nonnegative definite on D if the Hessian form of f at (xo,yo)
is nonnegative definite for every (zo,yo) € D.

It turns out that the nonnegativity of the second derivative of a function of
one variable is analogous to the nonnegative definiteness of the Hessian form
of a function of two variables. This is the theme that we shall develop in the
remainder of this section.

Proposition 3.67. Let D C R? be open and convex, and let f : D — R
be such that the first and second order partial derivatives of f exist and are
continuous on D. Then

f is convex on D <= Hessian form of f is nonnegative definite on D.

Proof. Since the first-order partial derivatives of f exist and are continuous
on D, by Proposition 3.33, we see that f is differentiable on D.

Suppose f is convex on D. Let (zq,y0) € D and (h,k) € R2. Since D is
open, there is § > 0 such that (zo+th,yo+tk) € D for allt € (=0, ). Consider
F : (=4,8) — R defined by F(t) := f(xo + th,yo + tk). By Proposition 3.33
and the Chain Rule (part (ii) of Proposition 3.51), F' is differentiable and for
any t € (—0,0), we have

F'(t) = (hfe + kfy) (xo + th,yo + tk).

Applying similar reasoning to F’, we see that I is twice differentiable and for
any ¢t € (—0,0), we have

F"(t) = (h[hfow + kfoy) + k [Rfye + Efyy]) (xo + th,yo + tk).
Thus, in view of the Mixed Partials Theorem (Proposition 3.14), we have

F"(t) = ( h? o + 2hk o + k2 o f(zo +th, yo + tk).
Ox2 0xdy Oy ’

Now, in view of Remark 3.64, F is convex on (—4, ), and hence by a standard
result in one-variable calculus (for instance, part (i) of Proposition 4.32 of

ACICARA), we have F"(t) > 0 for all t € (=4, ). In particular, F”(0) > 0, and
hence
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9? 0? 0?
h? 83:5 (x0,%0) + Qhkaxafy (20, Y0) + k2 8y£ (x0,y0) > 0.

This proves that the Hessian form of f is nonnegative definite on D.

Conversely, suppose the Hessian form of f is nonnegative definite on D.
Let (zo,y0), (z,y) € D and take h := v —z( and k := y —yo. By the Extended
Bivariate Mean Value Theorem (Remark 3.48 (ii)), there is (¢,d) € D such
that

2
e = Foosn) + (g, 4k ) Faosn)+ ) (g 45 ) G

Further, since the Hessian form of f at (¢, d) is nonnegative definite, we obtain

) = fanon) = (4 ) Flao.0) = V5 an,an) (o = 0.3~ o)

Hence by Lemma 3.61, f is convex on D. O

Remark 3.68. A binary quadratic form Q(h, k) := ah? + 2bhk + ck? is said
to be positive definite if Q(s,t) > 0 for all (s,t) € R? with (s,t) # (0,0).
If D CR? and f: D — R are as in Proposition 3.67, then the Hessian form
of f is positive definite on D if the Hessian form of f at (z¢,yo) is positive
definite for all (zg,yo) € D. For such a function f,

the Hessian form of f is positive definite on D = f is strictly convex on D.

This can proved using arguments exactly similar to those in the second half
of the proof of Proposition 3.67. However, as in the case of functions of one
variable, the converse is not true. For example, if f : R?> — R is defined by
f(x,y) = x* +y*, then f is strictly convex but the Hessian form of f at (0,0)
is not positive definite. &

A priori, the nonnegative definiteness of the Hessian form of a function
does not seem like a condition that is easy to check in practice. In general,
to know that a binary quadratic form Q(h, k) is nonnegative definite appears
to require substitution of all possible pairs of real numbers (s,t) to check
whether the resulting value Q(s, t) is nonnegative. Interestingly, this can often
be avoided because there is a simple and practical test to check whether
a binary quadratic form is nonnegative definite. This test is given in the
following proposition in a purely algebraic set-up, and later we use it to derive
a simple criterion for convexity.

Proposition 3.69. Let Q(h,k) := ah® + 2bhk + ck?® be a binary quadratic
form in the variables h and k with coefficients a,b, c in R. Then

Q(h, k) is nonnegative definite <= a >0, ¢ >0 and ac — b* > 0.
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Proof. Suppose Q(h, k) is nonnegative definite. Then a = Q(1,0) > 0 and
¢=Q(0,1) > 0. In case a # 0, consider

Q(b, —a) = ab® — 2ab® + ca® = ca® — ab® = a(ac — b?).

Since Q(b, —a) > 0 and a > 0, we must have ac — b*> > 0. Next, in case a = 0
and ¢ # 0, consider

Q(c, —b) = ac® — 2cb® + cb® = ac® — cb* = c(ac — b?).

Since Q(c, —b) > 0 and ¢ > 0, we must have ac —b? > 0. Finally, in case a = 0
and ¢ = 0, we have 2b = Q(1,1) > 0 and —2b = Q(1,—1) > 0, which implies
that b = 0; hence, in this case ac — b = 0.

Conversely, suppose @ > 0, ¢ > 0 and ac — b?> > 0. Let A := ac — b%. In
case a > 0, the identity

aQ(h, k) = a*h? 4 2abhk + ack® = (ah + bk)* + Ak?
implies that Q(h, k) > 0 for all (h, k) € R?. In case ¢ > 0, the identity
cQ(h, k) = ach® + 2bchk + *k? = (bh + ck)? + Ah?

implies that Q(s,t) > 0 for all (s,t) € R2. In case a = ¢ = 0, the condition
ac —b* > 0 implies that b = 0, and hence Q(s,t) = 0 for all (s,t) € R%. Thus,
in any case, Q(h, k) is nonnegative definite. O

Remark 3.70. For the positive definiteness of a binary quadratic form Q(h, k) :
ah? 4 2bhk + ck?, we have the following characterization:

Q(h, k) is positive definite <= a > 0 and ac — b* > 0.

The proof is similar to that of Proposition 3.69. In fact, it is simpler. On the
other hand, the example Q(h, k) := —k? shows that the conditions a > 0 and
ac—b% > 0 are not sufficient to imply that Q(h, k) is nonnegative definite. <

The real number A := ac — b? will be called the discriminant? of the
binary quadratic form Q(h, k) := ah? + 2bhk + ck®. In case D C R? is open
and f : D — Ris such that the first-order and second-order partial derivatives
of f exist and are continuous on D, then for any (xg,yo) € D, we define the
discriminant of f at (zg, o) to be the discriminant of the Hessian form of
f at (zo,y0), and denote it by Af(zo,yo); in other words,

2 The binary quadratic form ah? + 2bhk + ck? corresponds to the quadratic poly-
nomial az? + 2bx + ¢, whose classical discriminant is (2b)? — 4ac = 4(b* — ac). The
reason we have ignored the constant factor 4 and, more significantly, reversed the
sign while defining the discriminant of Q(h, k) is because of its connection with
the theory of matrices. This connection is explained in Remark 3.73. The notion
of discriminant in the manner that we have defined generalizes easily to the case
of quadratic forms in more than two variables.



3.4 Monotonicity and Convexity 137

Af(20,90) = fuu(20,90) fyy (0, Y0) — [foy (w0, %0)]*

An immediate consequence of Propositions 3.67 and 3.69 is the following prac-
tical criterion for convexity.

Proposition 3.71. Let D C R? be open and convex, and let f : D — R be
such that the first-order and second-order partial derivatives of f exist and
are continuous on D. Then

fis convex on D <= foz(x0,%0) > 0, fyy(20,%0) >0 and
Af(zo,y0) > 0 for all (zo,y0) € D.

Proof. By Proposition 3.69, we see that the Hessian form of f is nonnegative
definite if and only if fuz(x0,y0) > 0, fyy(zo,y0) > 0, and Af(zo,yo) > 0 for
all (x0,y0) € D. Hence the desired result follows from Proposition 3.67. o

Remark 3.72. In view of Remarks 3.68 and 3.70, we see that if D C R? and
f D — R are as in Proposition 3.71, then the positivity of f,.(zo,y0) and
Af(zo,yo) for all (zg,yo) € D implies that f is strictly convex on D. However,
the example discussed in Remark 3.68, namely, f(z,y) := 2* + y*, shows that
the converse is not true in general. &

Remark 3.73. The study of binary quadratic forms is closely related to the
study of 2 x 2 real symmetric matrices. Indeed, the binary quadratic form
Q(h, k) := ah? + 2bhk + ck? can be expressed as the matrix product

hTAh, where A:= a b and h:= h ,
b c k

where h”' denotes, as usual, the transpose [h,k] of h. In this set-up, the
discriminant A of Q(h, k) is precisely equal to the determinant of A. Note also
that the condition for nonnegative definiteness in Proposition 3.69, namely,
a>0,c>0,and ac—b? > 0, can be formulated by stating that the principal
minors® of A are nonnegative. On the other hand, the condition for positive
definiteness in Remark 3.70, namely, a > 0 and ac—b? > 0, can be formulated
by stating that the leading principal minors of A are positive. In case D C R?
is open and f : D — R is such that the first-order and second-order partial
derivatives of f exist and are continuous on D, then the 2 x 2 real symmetric
matrix corresponding to the Hessian form of f at (xo,y0) € D is given by

faa(@0,Y0) fa:y(‘r07y0):| _ |:fa:a:(x0»y0) fay(Z0, Yo)
fey(z0,90)  fyy(T0,y0) fyz(20,90)  fyy(xo,yo)

3 In general, for any matrix, a minor is the determinant of a square submatrix. If
the rows and columns chosen to form the submatrix have the same indices, then
it is called a principal minor; further, if these indices are consecutive, starting
from 1, then it is called a leading principal minor.
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Classically, the matrix on the right is called the Hessian matrix of f at
(x0,Y0), and this is, in fact, the reason why we have called the associated
binary quadratic form the Hessian form of f at (zo,yo). Note also that the
discriminant of f at (xg,yo) is exactly the determinant of the Hessian matrix
of f at (zo,yo) %

3.5 Functions of Three Variables

In this section we briefly indicate how the theory developed so far in this
chapter extends to functions of three (or more) variables. Details are provided
only when the extension is not obvious. Along the way, we will also encounter
some new concepts and results. For example, the notions of tangent planes
and normal lines to surfaces will be introduced here. Graphs of functions of
two variables are particular cases of surfaces in 3-space, and we could have
discussed these notions in earlier sections. But as we shall see, tangent planes
and normal lines can be better understood in the context of functions of three
variables. Likewise, it is in the context of functions of three (or more) variables
that the question of solving two equations for two of the variables becomes
meaningful. We shall see that an answer can be given by an appropriate
analogue of the Implicit Function Theorem.

Extensions and Analogues

The notion of partial derivatives of a function f of three variables is defined
similarly. There are, of course, three possible partial derivatives, denoted by

fa, fy, and f; or by

of of _ of

, , an: .

dx’ Oy 0z
There is also a similar notion of the directional derivative Dy f of f along
a unit vector u := (uy,us,u3) in R3. The Bivariate Mean Value Theorem

extends easily to the Trivariate Mean Value Theorem.

The higher-order partial derivatives of f : D — R, where D C R3, are
defined in a similar manner as in the case of functions of two variables. This
time around, we have 32 = 9 possible second-order partial derivatives, namely,
fa:a:v fwy» fa:z» fya:v fyy» fyz» fza:v fzyv and fzz' The equality of any two whose
variables in the subscript differ only in their order holds at those points Py
where at least one of them exists in S, (Py) for some r > 0 and is continuous at
Py. In other words, we have a Mixed Partials Theorem for functions of three
variables analogous to the corresponding result for functions of two variables
(Proposition 3.14). Moreover, the former can be proved as a consequence of the
latter. For example, to prove that f.,(xo,yo,20) = fyz(Z0, Yo, 20), it suffices
to consider the function of two variables defined by (z,y) — f(z,y, 20) and
apply the Mixed Partials Theorem (Proposition 3.14). As a result, if D C R?
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is open in R3, then for any f : D — R, we have equality of any two nth-
order partial derivatives of f whose variables in the subscript differ only in
their order, provided all partial derivatives of f of order < n exist and are
continuous on D. In such a case, a typical nth-order derivative of f at Py =
(0, Y0, z0) may be written as

anf anf

Oz OY10 2" (Po) = Durdyi0:T (w0, Yo, 20),

where p, ¢, 7 are nonnegative integers with p + ¢ + r = n.

An alternative approach to prove the Mixed Partials Theorem for func-
tions of three variables is to use a “Cuboidal Mean Value Theorem.” In other
words, we first obtain analogues of the Rectangular Rolle’s Theorem (Proposi-
tion 3.9) and the Rectangular Mean Value Theorem (Proposition 3.11). These
analogues can be readily formulated and proved for functions of three or more
variables. To this end, it is convenient to use the notation introduced in Re-
mark 1.20 and notice that the quantity f(b,d) + f(a,c) — f(b,c) — f(a,d)

appearing in the statement of the Rectangular Mean Value Theorem (Propo-
(b,d)

sition 3.11) can be succinctly expressed as A (a.0)

of three variables is given in Exercise 43.

Successive directional derivatives (along the same unit vector) lead us to
higher-order directional derivatives of a function of three variables. This notion
behaves in the same way as in the case of functions of two variables. We
can easily formulate and prove the Trivariate Taylor Theorem in the setting
of higher-order directional derivatives, thus obtaining results analogous to
Proposition 3.21 and Corollary 3.22.

The notion of differentiability extends easily. Thus, if D C R3 and
(0, Y0, 20) is an interior point of D, then f : D — R is differentiable at
(w0, %0, 20) if there is (a1, ag, az) € R? such that

f. A statement for functions

lim f(wo+h,yo + K, 20 +£) — f(z0,90,20) — a1h — azk — azl _0
(h,k,0)—(0,0,0) Vh2 4+ k2 4 g2 '

In this case, we call the triple (a1, a2, a3) the total derivative of f at
(20, Y0,20). If f is differentiable at (x0,yo0,20), then fs, fy, and f. exist at
(0, Y0, z0) and are equal to ay, ag, and as, respectively. In other words, the
gradient V[ of f exists at (xo,yo,20) and

the total derivative of f at (xo,v0,20) = Vf(xo0,Y0,20)-

An analogue of the Increment Lemma (Proposition 3.25) is readily obtained
in the above situation. It shows that the differentiability of f at (xo,yo, 20)
is equivalent to the existence of a triple (f1, f2, f3) of increment functions
associated with f and (o, yo, 20), that is, the existence of functions f1, fa, f3 :
D — R that are continuous at (zg, yo, 20) and are such that for every (z,y, 2) €
D, the difference f(x,y,z) — f(xo,y0,20) is equal to
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(JJ - I'O)fl(l',y, Z) + (y - yO)fQ('r’:% Z) + (Z - Zo)fg(l‘,y, Z)

If these conditions hold, then we necessarily have f1(xo, yo, 20) = fx(z0, Yo, 20),
J2(20,Y0,20) = fy(w0,%0,20), and f3(x0, Yo, 20) = f=(T0,%0,20). Existence of
all the partial derivatives in S, (o, yo, 20) for some r > 0 and the continuity
of any two of them at (zo, o, 20) is sufficient for f to be differentiable at
(0, Y0, z0). The proof is similar to that of the corresponding result for func-
tions of two variables (Proposition 3.33). Thus, if f, and f, are continuous at
(0, Y0, 20), then one writes

f(xvyvz) - f(x03y07 ZO) = A(.’E,y,Z) + B(yv Z) + C(Z)v

where A(Jj, Y, Z) = f(l', Y, Z) - ,f(an Y, 2)7 B(y’ Z) = f(an Y, Z) - f(an Yo, Z))
and C(z) := f(xo,v0,2) — f(x0, Y0, 20). Next, f1, f2, f3 : D — R are defined
using A, B, C, and one proceeds along the same lines as in the proof of Propo-
sition 3.33. The necessary conditions for differentiability of f are exactly the
same as in the case of functions of two variables. Thus, if f : D — R is dif-
ferentiable at (zo, yo, 20), then f is continuous at (xg, Yo, 20), and for any unit
vector u = (u1,uz,usz) in R?, the directional derivative Dy, f (o, Yo, 20) exists
and is equal to V f(zo, yo, 20) - u.

Important results such as the classical versions of the Implicit Function
Theorem as well as of Taylor’s Theorem, and the Chain Rule remain valid for
functions of three (or more) variables, and play a useful role. We have already
considered the Trivariate Implicit Function Theorem in Proposition 2.46.
However, it is the classical version given below that is most easily remem-
bered and widely used in practice.

Proposition 3.74 (Classical Version of Trivariate Implicit Function
Theorem). Let D C R? f: D — R and (x0,90,20) € D be such that
[ has continuous partial derivatives in S,(xo,yo,20) for some r > 0 with
Sr(z0, Y0, 20) C D, and f(xo, Yo, 20) = 0, while f,(xo,y0, 20) # 0. Then we can
solve the equation f(x,y,z) =0 for z in terms of x and y around (xo,yo), that
is, there are § > 0 and a unique continuous function ¢ : Ss(xo,yo) — R with
C(z0,y0) = 20 such that (z,y,((x,y)) € Sr(zo,Y0,20) and f(z,y,{(z,y)) =0
for all (z,y) € Ss(xo,y0). Moreover, ¢ is differentiable on Ss(zo,yo), and for
any (x,y) € Ss(zo,Yyo), we have f,(x,y,((z,y)) #0 and

falwy, Cla,y)  fy(y, (e, y)))
fz(x,y,C(ﬂc,y))’ f=(z,y,{(z,y)) .

Proof. This is proved in the same way as in Proposition 3.38: the continuity
of partial derivatives is used to verify that the hypothesis of Proposition 2.46
holds. This yields a continuous function ¢ that has the desired properties.
Moreover, if (f1, f2, f3) is a triple of increment functions associated with f
and (zo, Yo, z0) and we substitute z = {(x,y), then (— f1/fs, — f2/ f3) becomes
a pair of increment functions associated to ¢ and (zg,yo). Consequently, ¢

V((z,y) = (
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is differentiable at (xo,yo) and V{(zo,yo) is given by the desired formula.
Thanks to the continuity of f, on S, (o, yo, 20), the differentiability of ¢ and
the formula for V¢ extends to all of Ss (o, yo)- |

A careful analysis of the proof of Proposition 3.74 shows that a slightly
weaker hypothesis suffices, namely, instead of requiring the three partial
derivatives of f to be continuous, it is enough if f, and either of f, and
[y is continuous.

Remark 3.75. As in Remark 3.40, there is a straightforward analogue of the
classical version of the Trivariate Implicit Function Theorem, which corre-
sponds to “solving” the equation f(x,y,z) = 0 for y in terms of = and z, or
for  in terms of y and z, near Py := (xo, Yo, 20). The key hypothesis would
be f,(Py) # 0, or f(Py) # 0, instead of f.(Fy) # 0. One can combine these
three results by stating the key hypothesis as V f(Fy) # 0. Then the conclu-
sion would be that there are § > 0, (ug,vo) € R?, and differentiable functions
x,y,2 ¢ Ss(up,v0) — R with (z(uo,vo), y(uo,v0), 2(uo,v0)) = Po such that
(2(u,v),y(u,v), 2(u,v)) € Sr(zo,Y0,20) and f(2(u,v),y(u,v),2(u,v)) = 0
for all (u,v) € Ss(ug,vo). Moreover, at any (u,v) € Ss(ug,vg), the vectors
(Twy Yuy 2u) and (4, Yo, 2,) are nonzero and are not multiplies of each other,
and we have

f:cl'u'i‘fyyu‘i‘fzzuzo and f:cl'v+fyyv+fzz11:0a

where the partial derivatives of z and y are evaluated at (u,v), while the
partial derivatives of f are evaluated at (z(u,v),y(u,v), z(u,v)). <&

The classical version of the Trivariate Taylor Theorem is quite analogous
to the Bivariate Taylor Theorem with polynomials in three variables entering
the picture. The Chain Rule for real-valued functions of three variables can be
formulated in various situations analogous to those in Proposition 3.51. For ex-
ample, if we consider composite functions of the form g(¢) := f(z(t), y(t), 2(t)),
then the Chain Rule would tell us that

dg Ofdx Ofdy Ofdz
dt — Oxdt Oydt 0zdt’

Similarly, if g(u,v) := f(z(u,v), y(u,v), z(u,v)), then we will have

dg Ofox Ofody  Of 0z

ou Oxdu Oyou 0z0u
and

dg Ofox Of0y  Of 0z

dv Oz dv  Oydv 0z0v

All the equalities above are valid when the derivatives are evaluated at ap-
propriate points that are assumed to be interior points of the domains of the
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concerned functions, and moreover, all the functions are assumed to be dif-
ferentiable at these interior points. We leave it to the reader to make a more
formal statement of the Chain Rule for functions of three variables, and also
to prove it along the same lines as in Proposition 3.51.

As an application of the Chain Rule, we can obtain a natural extension
of the classical version of the Trivariate Implicit Function Theorem, which
permits us to “solve” two equations in three variables, say f(z,y,2) = 0 and
g(z,y,2) =0, for y and z in terms of x.

Proposition 3.76. Let D C R? and let (xo,y0,20) be an interior point of D.
Let f,g: D — R have continuous partial derivatives in S, (xo,yo, 20) for some
r >0 with S; (2o, Yo, 20) € D. If f(20, Y0, 20) = 0 = g(xo, Yo, 20) and

Jy (0, Y0, 20)92 (%0, Y0, 20) — f=(%0, Y0, 20) gy (T0, Yo, 20) # O,

then there are 6 > 0 and continuous functions ¢, : (xg — 0,20 +0) — R
with ¢(xg) = yo and Y(xg) = zo such that (x,p(x),¥(x)) € Sy (zo, Yo, 20) and
flz,o(x),¥(x)) =0 = g(x, d(x),¥(x)) for all x € (xo — I, ¢ + §). Moreover,
¢ and Y are differentiable on (xo— 9,0+ 0), and for any x € (xg — 0,20+ 9),
we have fyg: — g-fy # 0 at (z,¢(x),¥(x)) and also

/ - f292 — [29- n / _ facgy_fygac
¢(x)_ fygz_fzgy and w($) fygz_fzgy’

where the partial derivatives of f and g are evaluated at (x, (x),p(x)).

Proof. Let Py := (z0,yo, 20). Since fyg. — f.gy # 0 at Py, both f.(P) and
g-(Py) cannot be zero. Suppose f.(FPp) # 0. Since the partial derivatives of
f and g are continuous on S,(zo, Yo, 20), replacing r by a smaller positive
value, we may assume that fyg. — f.g, # 0 and f. # 0 at every point of
Sy (x0, Y0, 20). By the Classical Version of the Trivariate Implicit Function
Theorem (Proposition 3.74), there are t > 0 and ¢ : S¢(zo,y0) — R with
C(x0,y0) = 2o such that (z,y,{(z,y)) € S, (x0,y0,20) and f(z,y,((x,y)) =0
for all (z,y) € S¢(xo,y0). Moreover, ¢ is differentiable on S;(zg,yo) and for
any (x,y) € S¢(zo,y0), we have V( = (—fz/f-,—fy/f-), where the partial
derivatives of f are evaluated at (z,y,((x,y)). Define h : S¢(zo,y0) — R by
h(z,y) == g (z,y,{(z,y)). Now h(zo,y0) = g(Py) = 0, and by the Chain Rule
for functions of three variables, h is differentiable in S;(zo, yo) with

hy =gy + 9:Cy = gy + g- (_fy/fz) = - (fygz — fzgy)/fz’

where the partial derivatives of f and g are evaluated at (x,y,{(z,y)). In
particular, h, is continuous and h, # 0 on S;(x¢, yo). Hence by the classical
version of the Implicit Function Theorem (Proposition 3.38) applied to the
function h, there are § > 0 and 1 : (zg — 6,29 + J) — R with n(xo) = yo
such that (x,n(z)) € S¢(xo,y0) and h(z,n(x)) = 0 for all x € (xg — d, 20 +
0). Moreover, n is differentiable and n'(x) = —hg(z,n(x))/hy(z,n(z)) for all



3.5 Functions of Three Variables 143

x € (xg — 0,x0 + 9). Now, let ¢, 9 : (xg—0,20+0) — R be defined by ¢(x) :=
n(z) and ¥(z) := ((x,n(z)). It is readily verified that ¢ and 1 satisfy the
desired properties.

The case in which g¢.(Pp) # 0 is proved similarly. O

Remark 3.77. As in Remark 3.75, there is a straightforward analogue of
Proposition 3.76, which corresponds to “solving” two equations f(z,y,z) =0
and g(z,y, z) = 0 for  and z in terms of y, or for z and y in terms of z, near
Py := (20, Y0, 20)- The key hypothesis would be f,g, — f.g. # 0 at Py, or that
feGy — fyg. # 0 at Py, instead of f,g. — f.g, # 0 at Fy. One can combine
these three situations to arrive at the following version of Proposition 3.76.
Let D C R3 and let Py := (z0,¥0,20) be an interior point of D. Let
fyg : D — R have continuous partial derivatives in S,.(P) for some r > 0
with S,(Fy) € D. If f(Py) = 0 = g(P) and some 2 x 2 minor of the 2 x 3

matrix
<f:c(P0) fy(PO) fz(P0)>
9:(Po) gy(PO) 9-(Po)

is nonzero [or equivalently, its rows, namely, Vf(Py) and Vg(F), are not
multiples of each other], then there are § > 0, ty € R, and differentiable
functions x,y, z : (to — 0,10 + 0) — R with (x(t0), y(to), 2(to)) = Po such that

(@(t),y(), 2(t)) € Sp(Po) and f (2(t),y(t), 2(t)) = 0 = g (2(t),y(t), 2(t)) for
all t € (to — d,to + 0). Moreover, (2'(t),y'(t), 2'(t)) # (0,0,0) and

fo (@), y(8), 2(1) &' (6) + £y (2(), y (), 2(£)) ' () + f= (2(8), y(t), 2(£)) 2 () = 0

as well as

g (), y(t), 2(t)) 2 (t) + gy (x(t), y(t), 2(1) ' (t) + g2 (2 (1), y (1), 2(t)) 2'(t) = 0

for all ¢t € (tg — d,tp 4+ 0). This unified version may be compared with the
unified statement of the classical version of the Implicit Function Theorem for
functions of two variables, given in Remark 3.40. In an analogous manner, we
can formulate and prove a general version of the Implicit Function Theorem
for solving m equations in n variables, where m,n € N with m < n. The
special case n = 2m can be used to prove a general version of the so-called
Inverse Function Theorem for inverting m functions in m variables. <

Tangent Planes and Normal Lines to Surfaces

Let us first review the notion of a tangent line to a curve as discussed in a
course on one-variable calculus. Let D C R and let ¢ be an interior point of
D. If f: D — R is differentiable at ¢, then the line given by

y—fle)=fc)(@—0)
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is called the tangent line to the curve y = f(z), © € D, at the point (¢, f(c)).
Often, one extends this notion to parametrically defined curves and implicitly
defined curves as follows. (See, for example, pages 114-116 of ACICARA.)

Let C' be a parametrically defined curve given by (z(t),y(t)), t € D, and
let ty be an interior point of D such that both x and y are differentiable
at to and (2'(t0), v (to)) # (0,0). Then the tangent line to C' at the point
(2(to),y(to)) is defined to be the line given by

(y — y(to))2'(to) = (z — (to))y' (o).
Notice that this line can be represented parametrically by
(z(t0), y(to)) + A(2'(to), ¥'(to)), where X varies over R.

In other words, this is the line passing through (z(¢o),y(to)) and having
the direction of the vector (x'(to),y’(to)). This is, in fact, the reason why
in the context of paths, we called (2'(t9), ¥y (to)) the tangent vector to C' at
(z(t0),y(to)) when we introduced saddle points in Chapter 1. The line in R?
passing through (x (o), y(t9)) and perpendicular to the tangent line to C' at
(x(to),y(to)) is called the normal line to C at (z(to), y(to)). It may be noted
that this normal line is parametrically given by

(z(to), y(to)) + A(y'(to), —2'(to)), where A varies over R.

Now consider an implicitly defined curve, that is, a curve in R? defined by
an equation of the form F(x,y) =0, (z,y) € E. The notion of a tangent line
to such a curve is defined in one-variable calculus, if at all, in a rather ad hoc
way. Indeed, one performs “implicit differentiation” with respect to x or with
respect to y, so as to arrive at an equation of the form

dy

dx:o or R(x,y)—l—S(x,y)dx:O.

P(z,y) + Q(z,y) dy

Now, if (x, yo) is a point on the curve, so that (xg,yo) € E and F(zq,y0) = 0,
then the tangent line to the curve at (zg, yo) is the line given by

_ _ _P(anQO) R(Jio,yo)
v Q(xmyO) S(xo,yo)

according as Q(zo,y0) # 0 or S(zo,y0) # 0. This approach can now be
streamlined in the light of the theory of functions of two variables. First,
the process of “implicit differentiation” is readily justified by the classical ver-
sion of the Implicit Function Theorem (Proposition 3.38). Next, the condition
Q(zo,y0) # 0 or S(xp,y0) # 0 corresponds to the more intrinsic condition
F,(z0,y0) # 0 or Fy(xo,y0) # 0, or equivalently, VF(zo,yo) # (0,0). This
is, of course, the condition needed for the Implicit Function Theorem to be
applicable. When this condition is satisfied, the tangent line to the curve
F(x,y) =0, (z,y) € E, at the point (z0, o) is the line in R? given by

(¥ — o)

(x —mg) orby z—x0=—



3.5 Functions of Three Variables 145

Fy(wo,y0)(z — 0) + Fy(z0,Y0)(y — yo) = 0,

whereas the normal line to this curve at (zg, %) is the line in R? given by

Fy(zo,y0)(x — x0) — Fa(x0,%0)(y — y0) = 0.

In a similar manner, the notion of a tangent plane to the graph of a function
of two variables can be obtained as a special case of the notion of tangent plane
to an implicitly defined surface given by f(x,y,z) = 0, (z,y,2) € D, where
D CR3 and f: D — R. More precisely, if (xo,yo, 20) is an interior point of D
such that f is differentiable at (xo,yo, 20) and V f(xo, o, 2z0) # (0,0,0), then
we define the tangent plane to the surface f(z,y,z) =0, (x,y,2) € D, at
the point (zo, yo, z0) to be the plane in R? given by

fe(%0, Y0, 20)(x — z0) + fy(z0, Y0, 20)(y — yo) + f= (0, Y0, 20)(2 — 20) = 0.

In particular, if £ C R? and F : E — R is differentiable at an interior
point (zg,yo) of E, then the tangent plane to the graph of F' at the point
(xo, Yo, F'(x0,y0)) is the tangent plane to the surface defined by z—F(x,y) = 0,
(x,y) € E, namely, the plane in R3 given by

z— F(xo,y0) = Fir(20,Y0)(x — 20) + Fy(w0,y0)(y — Yo)-

These notions extend easily to the case of functions of n variables for any
n > 1. Thus, associated to a function of n variables and an interior point of
the domain at which it is differentiable with nonzero gradient, there will be a
tangent hyperplane in R™ given by the vanishing of one linear equation in
the n variables.

The notion of a tangent vector to a parametrically defined curve in R?
readily extends to parametrically defined curves in R3. Thus, if C is a para-
metrically defined curve in R? given by (z(t),y(t), 2(t)), t € D, where D C R,
and if ¢y is an interior point of D such that x,y,z : D — R are differentiable
at to and if (2'(t0), y'(to), 2’ (to)) # (0,0,0), then (2'(to), y' (to), 2’ (to)) is called
the tangent vector to C' at the point Py := (z(to), y(to), 2(to)). The line in
R3 given parametrically by

Py + X' (to),y'(to), 2 (to)), where X varies over R,

is called the tangent line to C at Pj.

It may be interesting to note that the tangent lines at a point to curves
lying on a surface are contained in the tangent plane to the surface at
that point. More precisely, suppose S is an implicitly defined surface in
R3 given by f(z,y,2) = 0, (z,y,2) € D, and C is a parametrically de-
fined curve given by (x(t),y(t),z(t)), t € D, such that C lies in D, that
is, (z(t),y(t),2(t)) € D for all t € D. Let ty be an interior point of D
and let (zo,v0,20) = (x(to),y(to), 2(tp)). Assume that the tangent vector
vo = (2'(to), ¥ (to), 2’ (to)) to C at Py := (xo,Yo,20) is defined. Now, if P
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is an interior point of D and f is differentiable at Py, then the claim is that
Py + A\vg is on the tangent plane to S at Py for every A € R. To see this, note
that since C lies in D, we have f(x(t),y(t),z(t)) = 0 for all ¢ € D. Hence by
the Chain Rule,

fo(Po)x'(to) + fy(Po)y'(to) + f=(Po)2'(to) = 0, that is, Vf(Fy) - vo = 0.

It follows that if we write Py + Avy = (2, v, z), then we have

fz(20, Y0, 20)(x — 20) + fy(20, Y0, 20) (¥ — Yo) + f=(z0, Y0, 20)(2 — 20) = 0.

This proves the claim. In case Vf(FPy) # 0, then the line in R? given para-
metrically by
Py + AV f(Py), where A varies over R,

is called the normal line to S at the point Py, and either of the unit vectors
+Vf(P)/IVf(PRy)| is called a normal vector to S at Py. Note that in case
fo(Po), fy(Po), and f.(Py) are all nonzero, then the normal line can also be
described by the equations

T—Zo _ Y—Y 2= 20

f:c(PO) B fy(PO) B fz(PO).

Let S be a parametrically defined surface given by (x(u, v), y(u,v), z(u, v)),
(u,v) € E, where E C R? and x,y, 2 : E — R are differentiable at an interior
point Qo = (ug,vp) of E. Assume that the vectors (x,(Qo), yu(Qo), 2.(Qo))
and (2, (Q0), yu(Qo), 24(Qo)) are nonzero and are not multiples of each other.
Equivalently, assume that ng := (yuzv — ZuYvs Zuly — TyZy, Tuly — yuxv),
where all the partials are evaluated at @, is a nonzero vector in R3. Let
Py = (2(Qo), ¥(Qo), 2(Qo)). Then the tangent plane to S at Fy is defined
to be the plane in R? given parametrically by

Po+ AM2u(Q0), yu(Qo), 2u(Q0)) + 1(24(Q0)s y0(Qo)s 2:(Qo)), (A, p) € R
Moreover, the line in R? given parametrically by
Py 4+ Ang, where X\ varies over R,

is called the normal line to S at F.

Examples 3.78. (i) Consider f : R? — R defined by f(x,vy,2) := 2% + y? +
22 — 1. Then the tangent plane to the surface given by f(z,y,z) = 0 at
the point (0,0, 1) is given by 0(z —0) 4+ 0(y —0) +2(z —1) = 0, that is, the
plane given by z = 1. The normal line at this point is given parametrically
by (0,0,1+2X) as A varies over R, that is, by the z-axis. Notice that the
surface here is the unit sphere and the point (0,0, 1) is its north pole.
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(ii) Consider f : R3 — R defined by f(x,y,2) := € + siny — cos z. Then the
surface given by f(z,y,2) = 0 passes through the origin, and the tangent
plane at the origin is given by x + y = 0. The normal line at the origin
is given parametrically by (A, A,0), as A varies over R, that is, by the
intersection of the planes given by x = y and z = 0.

(iii) Consider the cylinder S in R? given parametrically by (coswu, sinu, v),
(u,v) € R2. Let (ug,v9) € R? and let Py := (cosug,sinug,vg) be the
corresponding point on S. Then the tangent plane to S at Py is given by
Py+ X (= sinug, cosug, 0) + (0,0, 1), (A, ) € R?, whereas the normal line
to S at Py is given by Py + A(cos ug, sinug,0), A € R. <&

Convexity and Ternary Quadratic Forms

The notions of convexity and concavity were already defined in the context
of real-valued functions of n variables. There is no difficulty in extending the
notion of monotonicity of the gradient and using it to characterize convexity
or concavity in exactly the same way as in Section 3.3. On the other hand,
the characterizations in terms of the second-order partial derivatives call for
some explanation. To begin with, instead of a binary quadratic form one has
to consider a ternary quadratic form, that is, a homogeneous polynomial
of total degree 2 in three variables. If the variables are denoted by h, k, and
£, then a ternary quadratic form looks like

Q(h, k, ) := ah® + ck? + rl* + 2bhk + 2qkl + 2plh,

where a,b, ¢, p,q,r are real numbers. In matriz notation, Q(h,k,¢) can be
expressed as the matrix product

a b p h
h”Ah, where A:=|b ¢ ¢ and h:= k]|,
pqr 14

where h7 denotes the transpose [h, k, ] of h. We may refer to A as the 3 x 3
symmetric matrix corresponding to Q(h, k, ¢).

If D C R3 is open and f : D — R has the property that the first-order
and second-order order partial derivatives of f exist and are continuous on D,
then for any (xo,yo0,20) € D, the associated ternary quadratic form

0% f 0% f 0% f 0% f 0% f 0% f
2 2 2
h 02 Tk y? +e 022 2k Oxdy + ngayaz + %hazax’

where all the second-order partial derivatives are evaluated at (xo,yo, 20),
is called the Hessian form of f at (o, %0,20). The corresponding 3 x 3
symmetric matrix is called the Hessian matrix of [ at (zo,yo, 20)-

In general, a ternary quadratic form Q(h, k,¢) or the corresponding 3 x 3
symmetric matrix A is said to be nonnegative definite if Q(s,t,u) > 0 for



148 3 Partial and Total Differentiation

all (s,t,u) € R3 For D C R® and f : D — R as above, we say that the
Hessian form of f is nonnegative definite on D if the Hessian form of f
at (zo,¥0,20) is nonnegative definite for every (zo,yo0,20) € D. When D is
convex (and open), the convexity of f on D is equivalent to the condition
that the Hessian form of f is nonnegative definite on D. This is proved in
exactly the same way as in Proposition 3.67.

The analogue of Proposition 3.69 that gives an algebraic characterization
of nonnegative definiteness is far from obvious, and for this reason we give a
complete statement and proof below.

Proposition 3.79. Let Q(h, k,{) := ah? + ck?® + rf? + 2bhk + 2qk{ + 2plh
be a ternary quadratic form in the variables h, k, and { with coefficients
a,b,e,p,q,7 in R. Let

A=

ESTES OS]
Q o o

p
q| = p(bg — cp) + q(bp — aq) + r(ac — b?)
r

denote the determinant of the corresponding 3 x 3 matrixz. Then

Q(h, k,£) is nonnegative definite
<~ a>0,¢c>0,r>0, ac—bzzo, cr—q220, ar—pQZO, and A > 0.

Proof. Suppose Q(h, k,{) is nonnegative definite. Then the binary quadratic
forms Q(h, k,0), Q(h,0,¢), and Q(0, k, ) are nonnegative definite. Hence, by
Proposition 3.69, each of a,c,r, ac — b%, cr — ¢?, and ar — p? is nonnegative.
Further, we observe that Q(bg — cp, bp — aq, ac —b*) = (ac — b*)A. Hence if
ac—b? # 0, then A > 0. By permuting the variables h, k, and £ cyclically, we
obtain Q(cr—q?, pg—br, bg—cp) = (cr—q*)A and Q(pq—br, ar—p?, bp—aq) =
(ar — p?)A. Hence if cr — ¢® # 0 or if ar — p? # 0, then A > 0. Finally,
suppose ac — b?> = cr — ¢ = ar — p?> = 0. Now, if @ = 0, then we must have
b = p = 0. Similarly, if ¢ = 0, then b = g = 0, while if » = 0, then p = ¢ = 0.
It follows that if acr = 0, then A = 0. Next, suppose acr # 0. Consider
Q(b, —a, l) = 20(bp — aq) + rf%. Since Q(h, k, ) is nonnegative definite, we see
that 2(bp —aq) +1¢ > 0if £ > 0 and 2(bp —aq) + ¢ < 0 if £ < 0. Upon
letting £ — 0T, we see that (bp — aq) > 0, and upon letting £ — 07, we
see that (bp — ag) < 0. Consequently, bp — aq = 0, that is, ag = bp. Hence
abq = b%*p = acp, and therefore bg = cp. Thus bqg — cp = 0, bp — aqg = 0, and
ac — b? = 0. It follows that A = 0.

Conversely, suppose each of a, c,r, ac — b%, ar — p?, cr — ¢%, and A is non-
negative. In case a = 0, then the inequalities ac — > > 0 and ar — p? > 0
imply that b = 0 and p = 0. Thus, in this case, Q(h, k,¢) = ck?® + 2qkl + r¢?,
and this is nonnegative definite by Proposition 3.69. Similarly, if ¢ = 0, then
b =q = 0, while if » = 0, then p = ¢ = 0, and in either of these cases,
Q(h, k,£) is nonnegative definite by Proposition 3.69. Suppose a > 0, ¢ > 0,
and 7 > 0. If ac — b? > 0, then the identity

2
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a(ac—b*)Q(h, k,{) = (ac—b*)(ah+bk+pl)*+[(ac—b?)k+(aq—bp)l]* +aAr?
implies that Q(h, k, £) is nonnegative definite. Similarly, if cr — ¢ > 0, then
c(er—g*)Q(h, k, £) = (cr —q*)(bh+ck+ql)* +[(cr — ¢* )0+ (cp —bq)h)* +cAh?
implies that Q(h, k, £) is nonnegative definite, whereas if ar — p*> > 0, then
r(ar—p*)Q(h, k,0) =

implies that Q(h,k,¢) is nonnegative definite. Finally, suppose ac — b? =
ar —p?> = cr — ¢> = 0. Then bpg # 0, because a, ¢, and r are positive.
Moreover, b*p? = (ac)(ar) = a?(cr) = a?q?. Hence bp = +aq. On the other
hand, A = 2¢(bp — aq), and so if bp = —aq, then A = —4aq® < 0, which is
a contradiction. It follows that bp = aq, and as a consequence, aQ(h, k,{) =
(ah + bk + pf)?, which implies that Q(h, k, £) is nonnegative definite. O

ar —p?)(ph+qk+10)* 4 [(ar —p? )0+ (br — pq)k]? +rAK?

—

Remark 3.80. For the positive definiteness of a ternary quadratic form
Q(h,k,0) == ah® + ck® + r(* + 2bhk + 2qk{ + 2plh, we have the following
characterization:

Q(h, k,0) is positive definite <= a >0, ac —b*> >0, and A > 0,

where A is the determinant of the 3 x 3 symmetric matrix A corresponding to
Q(h, k,£). The proof is similar to that of Proposition 3.79. In fact, it is much
simpler. It may be noted that as in the case of binary quadratic forms, the
nonnegative definiteness of Q(h, k, ¢) is characterized by the nonnegativity of
all the principal minors of A, while the positive definiteness of Q(h,k,¥) is
characterized by the positivity of all the leading principal minors of A. This
holds, in general, for quadratic forms in any number of variables. &

As a consequence of Proposition 3.79, we obtain a necessary and sufficient
condition for the convexity of a function of three variables with continuous
first-order and second-order partial derivatives. Also, we can obtain a suf-
ficient condition for strict convexity. These results are analogous to those in
Proposition 3.71 and Remark 3.72. We leave the precise formulation and proof
to the reader.

Notes and Comments

The notion of differentiability of functions of two (or more) variables is rather
subtle, and it is always a dilemma to decide how soon it should be introduced.
We have chosen to work exclusively with partial derivatives and directional
deriwatives at an initial stage. Moreover, we have introduced higher-order di-
rectional derivatives in a manner analogous to higher-order partial derivatives.
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This facilitates a compact formulation of Taylor’s theorem that is very simi-
lar to the corresponding one-variable result. The proofs given here of the mean
value theorem and Taylor’s theorem do not use the Increment Lemma or the
Chain Rule. Thus they are somewhat different from the standard proofs of
these results. (See Exercise 38.) The notion of differentiability appears later,
and the treatment here is elementary in so far as the total derivative is de-
fined to be a vector (the gradient vector) rather than a linear map. The In-
crement Lemma (Proposition 3.25), which gives a useful characterization of
differentiability, is used extensively in the sequel. All this is analogous to the
Carathéodory Lemma (Fact 3.24) and its use in Chapter 4 of ACICARA.

Notions of monotonicity and bimonotonicity were defined in Chapter 1 for
functions of two (or more) variables, and we have related them here to partial
derivatives. We also obtain analogues of the criterion in one-variable calculus
that shows that a function with a bounded derivative is of bounded variation.
Here we use a “rectangular” version of the mean value theorem that appears,
for example, in Rudin [48, Theorem 9.40]. The notions of convexity and con-
cavity extend readily to functions of several variables, and one can obtain cri-
teria in terms of derivatives in an analogous manner. Such material is often
found in books on convexr analysis but seldom in texts on multivariable calcu-
lus. Our treatment of this topic is partly influenced by the book of Roberts and
Varberg [47]. In this context, we have also included an algebraic characteriza-
tion of nonnegative definiteness of quadratic forms in two or three variables.
This is usually proved in books on linear algebra with the help of eigenvalues
by first proving a characterization of positive definiteness. We have avoided
etgenvalues altogether and given a direct proof instead. In effect, we use here
an explicit form of the so-called Lagrange—Beltrami identity. (See, for exam-
ple, Section 6 in Chapter 2 of [6] and the article [253].) The case of binary
quadratic forms is classical and goes back to Gauss’s 1801 treatise [21].

Since we have restricted almost exclusively to real-valued functions, some
important topics have not been covered. For example, we have not discussed
higher-order differentiability and the notion of higher-order total derivatives.
For a similar reason, we have not included details about the Inverse Function
Theorem, except the special case of n = 1 (Proposition 3.41) and a fleeting
mention of the general case (Remark 3.77). For such topics and more, see,
for example, the books of Courant and John [12] and Rudin [48]. For a more
comprehensive treatment, see the little book of Spivak [54] and the classic of
de Rham [14], which is now available in English.

A notable exception to the development of multivariable calculus along the
lines of one-variable calculus is the absence of any analogue of L’Hoépital’s rule.
This is mainly because the total derivative of a function of n variables is not
a real-valued function, unless n = 1. Thus quotients of real-valued functions
of two or more variables and the quotients of their derivatives are birds of a
different feather! Moreover, as we have pointed out in Chapter 1, there is no
reasonable notion of division in R™ for n > 1.
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Exercises
Part A

1. Consider f : R? — R defined by £(0,0) := 0 and for (z,y) # (0,0), by one
of the following. In each case, determine whether the partial derivatives

f2(0,0) and f,(0,0) exist. If they do, then find them.
2

2 2
Y e @ L S @
W) eyl 442, () % . (i) Y
v v v
o 2y — 2y . sin(z +y) sin?(z + y)
(vii) =~ 5 5 (i) » (%) :
2% +y ]+ ly] [+ [y
2. Consider f : R? — R defined by f(z,y) = ||z — |y|| — |z — |y|. De-

termine whether (i) f is continuous at (0,0), (ii) the partial derivatives
f2(0,0) and f,(0,0) exist, and (iii) the directional derivative Dy f(0,0)
exists. Is f differentiable at (0,0)? Justify your answer.

3. Let D C R? be such that (y,x) € D whenever (x,y) € D. Let f, g: D — R
satisfy f(z,y) = g(y,x) for all (z,y) € D. Given any (zo,y0) € D, show
that (i) if fa(xo,yo) exists, then gy(yo,xo) exists and equals fo(zo,v0),
and (ii) if f,(zo,y0) exists, then g,(yo,zo) exists and equals f,(zo,yo).

4. Consider f:R? — R defined by f(0,0) := 0 and

xsin(1l/z) + ysin(l/y) if  # 0 and y # 0,
f(z,y):= ¢ xsinl/z ifx#0and y =0,
ysinl/y ify#0and x =0.

Show that none of the partial derivatives of f exist at (0,0) although f is
continuous at (0,0).

5. Let f : R? — R be defined by f(z,y) := 0 if zy = 0, and f(z,y) = 1
otherwise. Show that f is not continuous at (0, 0) although both the partial
derivatives of f exist at (0, 0).

6. Let f : R?> — R be defined by f(z,y) := 2® + y? if 2 and y are both
rational, and f(x,y) := 0 otherwise. Determine the points of R? at which
(1) fo exists, (i) f, exists.

7. Consider f : R? — R defined by £(0,0) := 0 and for (x,y) # (0,0), by one
of the following. In each case, determine whether the directional derivative
D, f(0,0) exists for a unit vector u in R2. If it does, then check whether
D, f(0,0) = Vf(0,0) - u for a unit vector u in R% Finally, determine

whether f is differentiable at (0,0).
2 2,2 23 2

. = =Yy . zy
(11) xny +y27 (111) .1:2 +y27 ( ) x4+y27

(vi) In (2® + %), (vii) zyln (2° + ¢?).
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8.

10.

11.

12.

13.

14.

15.

16.

17.

3 Partial and Total Differentiation

Consider f:R? — R defined by f(z,y) :== (y/|y|]) /22 + y2 if y # 0, and
flx,y) := 0 if y = 0. Show that f is continuous at (0,0), both f,(0,0)
and f,,(0,0) exist, Dy, f(0,0) exists for every unit vector u in R?, but f is
not differentiable at (0, 0).

Assume that f:R? — R is such that f, and f, exist in S,(1,2) for some
r > 0 and are continuous at (1,2). If the directional derivative of f at
(1,2) in the direction toward (2,3) is 2¢/2 and in the direction toward
(1,0) is —3, then find f,(1,2), f,(1,2), and the directional derivative of f
at (1,2) in the direction toward (4, 6).

Starting from (1, 1), in which direction should one travel in order to obtain
the most rapid rate of decrease of the function f : R? — R defined by
fla,y) = (x+y—2)*+ Bz —y —6)*?

About how much will the function f(z,y) := In+\/22 + 32 change if the
point (x,y) is moved from (3,4) a distance 0.1 unit straight toward (3,6)?
Consider f : R? — R defined by f(z,y) := (z +y)/v2 if x = y, and
f(z,y) :== 0 otherwise. Show that f,(0,0) = f,(0,0) =0 and Dy f(0,0) =
1, where u = (1/\/2, 1/\/2). Deduce that f is not differentiable at (0,0).

Let m and n be positive integers. Consider f : R? — R defined by
fl@y) == 0if v =y and f(z,y) = (@ +y")/(x—y) if © # y.
Show that f is discontinuous at (0,0). (Hint: Consider the equation
™+ y" — (x —y) = 0, which defines y implicitly as a function of x.)

Let f(z,y) := 2 + 2zy for (z,y) € R? and g(r, §) := f(rcosf, rsind) for
(r,0) € R%. Determine the partial derivatives g, and gs.

Let f(x,y) := e* + xy? for (x,y) € R? and g(u,v) := f(u + v, e“*?) for
(u,v) € R2. Determine the partial derivatives g, and g,.

Let D and E be open subsets of R? and let f : D — R and z,y : E — R
be such that (z(u,v),y(u,v)) € D for all (u,v) € E. Define g : D — R
by g(u,v) := f (x(u,v),y(u,v)). If the second-order partial derivatives of
f as well as z and y exist and are continuous, then show that the same
holds for g. Further, show that

Guu = fmcxi + 2facy$uyu + fyyyi + feTuu + fyyuu,
Jov = fzwxqz; + Qfmyxvyv + fyyys + fa:xvv + fyyvva

and

Guv = Guu = fmc (xuxv + yuyv) + facy (xuyv + xvyu) + fncxuv + fyyuv~

Given any nonnegative integer n, determine the nth Taylor polynomials
around (0,0) of f:S;,5(0,0) — R defined by each of the following.

y—z
(1—a)(1—y)’ 1-2)1-y)
sin(z +y), cos(x+y), I(l+xzy), (1+zy)", (1-xy),

sinx + cosy, (sinz)(cosy),

where r denotes a rational number.
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18.

19.

20.

21.

22.

23.

24.

25.
26.
27.

28.

29.

Let f,g:[0,1] x [0,1] — R be defined by f(z,y) := cos (5 (z +y)) and
g(z,y) := (x+y—1)3. Show that f is monotonically decreasing, while g is
monotonically increasing. Also show that neither f nor g is bimonotonic.
Find the equations of the tangent plane and the normal line to the surface
2z =% +y? — 2wy + 3y — = + 4 at the point (2, -3, 18).

Let f: R2 — R be defined by f(0,0) := 0 and f(z,y) := |z|y/ /22 + 32
for (z,y) # (0,0). Let C1,Cy, and C3 be the curves in R? given, respec-
tiVGIY» by (xl(t)v yl(t)v Zl(t)) = (tv 0, 0)7 (‘rQ(t)v y2(t)» ZQ(t)) = (07 t, 0)7
and (z1(t), y1(t), z1(t)) := (¢, t, t). Show that each of these three curves
passes through (0,0, 0) and lies on the surface given by z = f(z,y). Also,
show that the tangent vector to C; at (0,0, 0) is defined for each i = 1,2, 3,
but these tangent vectors are not coplanar.

Find equations of the line tangent to the curve of intersection of the two
surfaces 22 + y? = 4 and z = 22 + 2 at (V/2,v/2,4).

Let F(x,y,z2) := 2® + 22y — y? + 22 for (z,y,2) € R3. Find the gradient
of F at (1,—1,3) and the equations of the tangent plane and the normal
line to the surface F(x,y,z) =7 at (1,—1,3).

Find a constant ¢ such that at any point of intersection of the two spheres
(r—c)?+y*+2%2 =3 and 2%+ (y—1)?+ 22 = 1, the corresponding tangent
planes will be perpendicular to each other.

Find D, F(2,2,1), where F(z,y, z) := 3z — 5y + 22 for (x,y,z) € R® and
u is in the direction of the outward normal to the sphere 2% + ¢y + 22 =9
at (2,2, 1).

Given w := ztan™ ' (z/y) for (z,y) € R?, y # 0, find gf;g + ‘g}f + %ig”.
Given z = f(z,y), z := u+v, and y := u—v, show that 8?1,251) = giﬁ — g;;.
Given sin(z + y) +sin(y + z) = 1 for (z,y,2) € R?, find éggy at those
(x,y,2) € R3 for which cos(y + z) # 0.

Let z := f(x,y) have continuous second-order partial derivatives with
respect to z and y. If z := r cosf and y := rsinf, then show that

1 1 1
(i) fgf"‘fyzzzf"_rzzg (ii) fww+fyy:ZTT+rZT+r2200'
Part B
Let f : R — R be defined by
1
(22 + y?)sin R if (z,y) # (0,0),
0 if (z,y) = (0,0).

flz,y) =

Show that f is continuous at (0,0), both the partial derivatives of f exist,
but none of the partial derivatives of f is bounded in S,(0,0) for any
r > 0. [Note: This shows that the converse of the result in Proposition 3.3
is not true.] Also, show that f is differentiable at (0,0), but none of the
partial derivatives of f is continuous at (0,0). [Note: This shows that the
converse of the result in Proposition 3.33 is not true.]
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30.

31.

32.

33.

34.

35.

3 Partial and Total Differentiation

(Differentiation under the Integral) Let f : [a,b] x [¢,d] — R be
continuous. If f, exists and is continuous on [a, b] X [¢, d], then show that

the function v : [¢, d] — R defined by ¢ (y) := f; f(z,y)dx is differentiable

and ¢'(yo) = ff Jy(z,yo)dx for yo € [c,d]. Moreover, ¢’ is continuous on
[c,d]. (Hint: Uniform continuity of f, and Exercise 26 of Chapter 2)
(Alternative Definition of Differentiability) Let D C R? and let
(20, yo0) be an interior point of D. Prove that f: D — R is differentiable
at (zo,yo) if and only if there exist a, 5 € R such that

|f(wo + h,yo + k) — f(w0,y0) — ah — Bk| _

0.
(h,k)—(0,0) Vh2 + k2

(Alternative Version of the Increment Lemma) Let D C R? and let
(z0,yo) be an interior point of D. Prove that f: D — R is differentiable
at (zo, o) if and only if there exist real numbers «, §, § with § > 0 and
functions €1, €3 : S5(0,0) — R such that

f(@o+h,yo + k) = f(20,y0) + ah + Bk + hei(h, k) + kea(h, k),
for all (h, k) € Ss(0,0), and

(h,k%l—>rn(0,0) c1(h. k) = 0= (h,k%l—>rn(0,0) e2(h. k).

Moreover, if the above conditions hold, then V f(zq,y0) = («, 5).
(Young’s Theorem) Let D C R?, (xg,%0) € D, and f : D — R be such
that both f, and f, exist and are differentiable in S, (zo,yo) for some
r > 0. Prove that the second-order partials of f exist on S, (z¢,yo) and
fay(T0,Y0) = fya(z0,v0). (Compare Proposition 3.14.)
Let D C R2, (x9,y0) € D, and f : D — R be such that both f, and
fy exist and are continuous in S,(zo,yo) for some r > 0. Assume that
f(zo,y0) = 0and fy(xo,yo) # 0. Then there are § > 0 and a differentiable
function 7 : (xo—9,20+9d) — R as given by the Implicit Function Theorem
(Proposition 3.38). In case fyz, fzy, and fy, exist and are continuous in
S, (0, o), show that n is twice differentiable on (z¢ — §,xo + 0) and

d277 - (fzwf5_2fwfyfxy+fyyf§)

dz? f3 ’

where the partial derivatives on the right are evaluated at (x,n(x)).
Suppose the implicit equation F(z,y, z) = 0 determines each of the three
variables as a function of the other two variables, that is, there exist
functions &, n, ¢ of two variables such that

F(f(y,z),y,z) =0, F(xan(zvm)v'z) =0, and F(x,y,((a:,y)) =0.

Assume that the partial derivatives of F', &, n, and ( exist and are contin-
uous. Show that (gg) (g”) (gf) - 1
y z x
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36.

37.

38.

39.

(Euler’s Theorem) Suppose F : R? — R has the property that there
exists n € N such that F(tx,ty,tz) = t"F(x,y,z) for all t € R and
(7,y,2) € R3. [Such a function is said to be homogeneous of degree n.] If
the first-order partial derivatives of F' exist and are continuous, then show
that xaF —|—y6y +Zaz =nF.

Let D C R? be a nonempty, path-connected, and open subset of R?, and
let f: D — R be any function. Show that f is a constant function on D
if and only if both f, and f, exist and are identically zero on D. (Hint:
Given any two points in D, there is a path in D joining them. Use Exercise

8 (ii), Corollary 3.45, and Exercise 19.)
Let D be a convex and open subset of R?, and let (zo,y0), (z1,y1) be
distinct points in D. Let h := 21 — 29, k := y1 — Yo, and x,y : R — R be
defined by x(t) := xo + ht and y(t) := yo + kt. Suppose [ : D — R is any
real-valued function and F' : [0,1] — R is defined by F(t) := f (x(¢),y(¢)).
(i) If f is differentiable on D, then use the Chain Rule to show that F is
continuous on [0, 1], differentiable on (0, 1), and satisfies

F'(t) = hfy (x(t), y(t)) + kfy (x(t), y(t)) forall t € (0,1).

Use this to deduce the classical version of Bivariate Mean Value The-
orem as a consequence of the MVT for functions of one real variable.

(ii) Let n be a nonnegative integer. If the partial derivatives of f of order
< n+1 exist and are continuous on D, then show that F”, ..., F(»+1)
exist and are continuous on [0, 1], and moreover,

FOMw)=>"%" () oty (F0) y(t)) k™ for all ¢ € [0, 1].
>0 m>0
l+m=1

Use this to deduce the classical version of the Bivariate Taylor The-
orem as a consequence of Taylor’s Theorem for functions of one real
variable. (Hint: E := {t € R : (z(t), y(t)) € D} is open and contains
[0,1]. Use the Chain Rule and the Mixed Partials Theorem.)
Let E be an open subset of R and D be an open subset of R? such that
{zy: (z,y) € D} CE.If g: E — R is an infinitely differentiable function
of one variable, then show that for the function f : D — R defined by
flz,y) := g(zy) for (z,y) € D, all the higher-order partial derivatives
exist. Further, show that given any nonnegative integers ¢, m and any
(z0,y0) € D, the higher-order partial derivatives of f are given by

min{¢,m}
aé—i—mf ¢ m ]
_ ) (0+m—1) —i . m—i
ozt dym (z0,90) = ;0 (z) (z ) ilg ’ (900190) Yo -

Deduce that if (0,0) € D, then
equal to £! g (0) if m = .

zfa - (0 0) is equal to 0 if m # ¢, and is
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40. Let E be the open interval (—1,1) in R and D := E x E the open square of
radius 1 centered at (0,0). Suppose g : E — R is infinitely differentiable
and f : D — R is defined by f(x,y) := g(xy). Given a nonnegative
integer n, let @, (g) denote the nth Taylor polynomial of g at 0 and let
P, (f) denote the nth Taylor polynomial of f around (0,0). Show that
Po(f)(x,y) = Qnyo(9)(xy) for (z,y) € R2. Use this to determine the nth
Taylor polynomial at (0,0) of the functions

™, sin(zy), cos(ry), In(1+zy), (1+ay)", (1—xy)",

where 7 denotes a rational number. (Hint: Exercise 39)

41. Consider f : R — R defined by £(0,0) := 0 and f(z,y) = e~ /(=" +v")
for (z,y) # (0,0). Show that the partial derivatives of f at (0,0) of all
orders exist, and moreover, they all have the value 0. Deduce that the
nth Taylor polynomial of f around (0,0) is the zero polynomial for every
nonnegative integer n.

42. Let D C R? and let (z0,y0) be an interior point of D. Let f: D — R be
such that f is convex on Ss(xg,yo) for some & > 0 with Ss(zo,y0) C D.
Show that if both f.(xo,v0) and fy(xo, yo) exist, then f is differentiable
at (ro,yo). (Hint: Consider ¢(h, k) == f(xo + hyyo + k) — f(z0,y0) —
hfz(zo,y0) — kfy(zo,yo) for (h, k) € Ss(0,0). Use the convexity of f to
show that ¢(h, k) < h(¢(2h,0)/2h) + k (6(0,2k)/2k) for 0 < |h|, k] < 6.
Next, use Exercise 24 and the Cauchy—Schwarz inequality.)

43. (Cuboidal Mean Value Theorem) Let a,b,c,d,p,q € R with a < b,
¢ < d,and p < ¢, and let f : [a,b] X [¢,d] X [p,q] — R be a function
satisfying the following three conditions: (i) For yo € [¢,d] and zg € [p, q],
the function given by = —— f(x,yo,20) is continuous on [a,b] and dif-
ferentiable on (a,b); (ii) for z¢p € (a,b) and zg € [p,q], the function
given by y — f.(x0,y, 20) is continuous on [¢,d] and differentiable on
(¢,d); and (iii) for =9 € (a,b) and yo € (¢, d), the function given by
z — fay(®o,y0,2) is continuous on [p,q] and differentiable on (p,q).
Show that there is (xo,yo, 20) € (a,b) x (¢,d) X (p,q) such that

AEZ:(Z’,Z))f = (b - a‘)(d - C)(q - p)fzyz(xO» Yo, ZO)v

where, as in Remark 1.20,

ALED fi= f(b,d,q) + F(b,e,p) + [(a,d,p) + f(a,c,q)
_f(b7 d7p) - f(&, da Q) - f(b7 ¢, Q) - f(a'a C7p)'
(Hint: In case AP®D ¢ — 0 consider ¢ : [a,b] X [e,d] — R defined by

(a,c,p)
o(x,y) := f(x,y,q) — f(x,y,p) and use the Rectangular Rolle’s Theorem

(Proposition 3.9). In the general case, consider F : [a,b] x [¢,d] x [p,q] — R
defined by F(l’,y,Z) = f(ivyaz) + f(l.vcap) + f(avyup) + f(a,C,Z) -
f(mvyup) - f(avyv Z) - f(xvcu Z) - f(a,c,p) - S(.’E - a’)(y_ b)(’z - C)7 where
s € R is so chosen that F(b,d,q) =0.)
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Applications of Partial Differentiation

In one-variable calculus, it is customary to apply the notion of differentiation
to study local and global extrema of real-valued functions of one variable. (See,
for example, Chapter 5 of ACICARA.) Here, we shall consider similar applica-
tions of the notion of differentiation to functions of two (or more) variables.
As noted in Chapter 3, in multivariable calculus, the notion of differentiation
manifests itself in several forms. The simplest among these are the partial
derivatives, which together constitute the gradient. When the gradient exists,
its vanishing turns out to be a necessary condition for a function to have a
local extremum. We shall use this in Section 4.1 below to arrive at a useful
recipe for determining the absolute (or global) extremum of a continuous real-
valued function defined on a closed and bounded subset of R2. A variant of
the optimization problem discussed in the first section will be considered in
Section 4.2, where we try to determine the maximum or the minimum of a
function subject to one or more constraints. Such problems are nicely and ef-
fectively handled by a technique known as the method of Lagrange multipliers.
The theoretical as well as practical aspects of this method will be discussed
here. In Section 4.3, we shall make a finer analysis involving the second-order
partial derivatives to arrive at a sufficient condition for a function to have a
local maximum or a local minimum or a saddle point. Finally, in Section 4.4,
we revisit the Bivariate Taylor Theorem with a view toward approximating
functions of two variables by linear or quadratic functions.

4.1 Absolute Extrema

We have seen in part (ii) of Proposition 2.25 that a continuous real-valued
function defined on a closed and bounded subset of R? is bounded and attains
its bounds. In other words, if D C R? is closed and bounded, and f: D — R
is continuous, then the absolute minimum and the absolute maximum
of f on D, namely,

S.R. Ghorpade and B.V. Limaye, 4 Course in Multivariable Calculus and Analysis, 157
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m = inf{f(z,y): (z,y) € D} and M :=sup{f(z,y): (v,y) € D}
exist, and moreover, there are (z1,y1), (z2,y2) € D such that

m:f(],‘l’yl) and M:f(x27y2)a

so that m = min{f(x,y) : (x,y) € D} and M = max{f(z,y) : (z,y) € D}.
The following question arises naturally. Knowing the function f, how does one
find the absolute extrema m and M and points (z1,y1) and (x2,y2) where
they are attained? As in one-variable calculus, it helps to consider the interior
points of D at which the partial derivatives vanish or fail to exist, and also
the boundary points of D.

Boundary Points and Critical Points

Recall that the notions of an interior point and a boundary point were defined
in Section 2.1. It may suffice to remember that given any D C R2, a point
(70,90) € R? is an interior point of D if and only if S, (zo,y0) € D for
some r > 0, whereas (z9,%0) € R? is a boundary point of D if and only if
S, (x0,9o) contains a point of D as well as of R?\ D for every r > 0. Observe
that if (x0,y0) € D, then (xq,yo) is either an interior point of D or a boundary
point of D.

Given D C R? and f : D — R, a point (z9,70) € R? is called a critical
point of f if (xg,yo) is an interior point of D such that either V f(xq, yo) does
not exist, or V f(xo,yo) exists and V f(xo,yo) = (0,0).

Let us recall a basic result from one-variable calculus that helps us answer
a question similar to the one raised above. A proof is given, for example, on
pages 117 and 118 of ACICARA.

Fact 4.1. Let E C R and let ty be an interior point of E. If ¢ : D — R has a
local extremum at toy and if ¢ is differentiable at to, then ¢'(tp) = 0.

Here is an analogous result for functions of two variables.

Lemma 4.2. Let D C R? and let (z0,10) be an interior point of D. Suppose
f D — R has a local extremum at (zo,y0). If u = (u1,u2) is a unit vector
in R? such that Duf(wo,y0) ewists, then Dyf(xo,y0) = 0. In particular, if
Vf(xo,y0) exists, then V f(zo,y0) = (0,0).
Proof. Suppose f has a local minimum at (zg,yo). Then we can find § > 0
such that Ss(zo,y0) € D and f(z,y) > f(xo,yo0) for all (z,y) € Ss(xo, o).
Consequently, if A(t) := f(xo + tur,yo + tus) — f(xo,yo) for t € (=4, ), then
A(t) A(t)
t t
But Dy f(zo,y0) is, by definition, the limit of A(t)/t as ¢ — 0. Hence if
Duf(zo,yo) exists, then Dy, f (20, yo) = 0. The last assertion follows by taking

u = (1,0) and u = (0, 1). The case in which f has a local maximum at (z¢, yo)
is proved similarly. O

<0 if —0<t<0 and >0 if0<t<é.
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Examples 4.3. (i) Consider f : R? — R defined by f(z,y) := — (22 + y?).
Then f is differentiable and V f(z,y) = (—2x, —2y) for (z,y) € R2. Thus
the only point where f can possibly have a local extremum is (0, 0). Indeed,
we have seen in Example 1.22 that f does have a local maximum at (0, 0).

(i) Consider f : R? — R defined by f(z,y) := 22 +y?. Then f is differentiable
and Vf(x,y) = (2x,2y) for (z,y) € R%. Thus the only point where f can
possibly have a local extremum is (0, 0). Indeed, we have seen in Example
1.22 that f does have a local minimum at (0, 0).

(iii) Consider f : R? — R defined by f(x,y) := 2y. Then f is differentiable and
Vf(x,y) = (y,z) for (x,y) € R2. Thus the only point where f can possibly
have a local extremum is (0,0). But f(0,0) = 0 and for any § > 0, there
are (x1,y1), (r2,y2) € Ss(0,yo) such that f(x1,y1) <0 and f(z2,y2) > 0.
For example, one can choose any t € (0,9) and let (z1,y1) := (¢, —t) and
(z2,y2) := (t,t). It follows that f has neither a local maximum nor a local
minimum at (0, 0). &

We are now in a position to identify the points at which an absolute
extremum is attained.

Proposition 4.4. Let D C R? be closed and bounded, and let f : D — R
be a continuous function. Then the absolute minimum as well as the absolute
mazimum of [ are attained either at a critical point of f or at a boundary
point of D.

Proof. By part (ii) of Proposition 2.25, f attains its absolute minimum as
well as its absolute maximum on D. Let (x1,y;) € D be a point at which the
absolute minimum of f is attained. Suppose (1, 1) is an interior point of D.
Then f has a local minimum at (z1,y1). If Vf(z1,y1) exists, then by Lemma
4.2,V f(z1,y1) = 0. It follows that (x1,y1) must be a critical point of D. Thus
(z1,y1) is either a critical point of f or a boundary point of D.

A similar argument applies to a point at which the absolute maximum of
f is attained. O

In practice, the critical points of a function are few in number, whereas
the boundary points consist of “one-dimensional pieces.” The function, when
restricted to a “one-dimensional piece,” is effectively a function of one variable.
Thus, the methods of one-variable calculus (given, for example, in Section
5.1 of ACICARA) can be applied to determine the absolute extrema of the
restrictions of the function to the “one-dimensional pieces.” Thus, in view of
Proposition 4.4, we have a plausible recipe to determine the absolute extrema
and the points where they are attained:

First, determine the critical points of the function and the values of the
function at these points. Next, determine the boundary of its domain. Restrict
the function to the boundary components and determine the absolute extrema
of the restricted function by one-variable methods. Compare the values of the
function at all these points. The greatest value among them is the absolute
maximum, while the least value is the absolute minimum.
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This recipe is illustrated by the following examples.

Examples 4.5. (i) Let D := [—2,2] x [-2,2] and let f : D — R be given
by f(z,y) := 4wy — 22% — y*. Clearly, D is closed and bounded, and f is
continuous. Thus the absolute extrema of f exist and are attained by f.
To determine these, consider the partial derivatives of f. These exist at
all interior points of D, and f,(z,y) = 4y — 4z, while f,(z,y) = 4z — 4¢3
for (z,y) € (—2,2) x (—2,2). Thus,

Vf(z,y) =(0,0) = (x,y) =(0,0),(1,1), or (—1,-1).

Also, (z,y) € D is a boundary point if and only if x = £2 or y = 2.
The restrictions of f to its boundary components are the four functions
from [—2,2] to R given by f(2,v), f(-2,v), f(z,—2), and f(x,2). Due
to symmetry [f(—x,—y) = f(z,y)], it suffices to consider only the first
and the last of these. So, let us determine the absolute maximum and
minimum of f(2,y) for =2 <y < 2 and of f(z,2) for —2 < z < 2. As for
f(2,y) =8y — 8 —y*, y € [-2,2], the only critical point is y = /2, and
the boundary points are y = +2. Comparing the values of f(2,y) at these
three points, we see that the absolute maximum of f(2,y) is at y = /2
and the absolute minimum is at y = —2. Similarly, f(x,2) = 8z —22%— 16,
x € [—2,2], and it is easily seen that the absolute maximum of f(x,2) is
at * = 2 and the absolute minimum is at = —2. We can now tabulate
all the relevant values as follows.

(z,y) (0,00 (1,1) (2,v2) (2,-2) (2,2)
flx,y) 0 1 6v2—-8  —40 -8

Here we have disregarded the points (—1,—1), (—2,—+/2), (—2,2), and
(—2,—2) due to symmetry. It follows that the absolute maximum of f on
D is 1, which is attained at (1,1) as well as at (—1, —1), and the absolute
minimum of f on D is —40, which is attained at (2, —2) as well as at
(_27 2)

(i) Let us consider the problem of finding the triangle for which the product
of the sines of its three angles is the largest. Since sin(r—x—y) = sin(z+y)
for all z,y € R, we may consider the function of two variables defined by

flx,y) :=sinz siny sin(z+y) for 0<uz vy, x+y<m,

and seek its absolute maximum. If x, y, or 2+ is 0 or , then f(z,y) = 0.
Thus f vanishes at each boundary point. For 0 < z, y, z +y < 7, the
vanishing of the gradient means that

fo(z,y) = cosz siny sin (x + y) +sinx siny cos (x +y) =0,
fy(x,y) =sinx cosy sin (z + y) +sinz siny cos (z +y) = 0.

Since 0 < z, y < m, we see that sinz and siny are nonzero. Hence we
obtain sin (2x 4+ y) = 0 = sin(z + 2y). Also, since 0 < x + y < 7, we have
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0 < 2x+ vy, z+ 2y < 2w, and hence the only solution of sin (2x + y) =
0 = sin(z + 2y) is given by 2x +y = © = x + 2y, that is, (z,y) =
(r/3, w/3). Since f is positive at (7/3,7/3), it follows that it has an
absolute maximum at (7/3,7/3). We thus conclude that the triangle for
which the product of the sines of its three angles is the largest must be
equilateral.

(iii) Let a,b € R be positive and let D := {(z,y) € R? : b?z* +a*y* < a®b?} be
the region enclosed by the ellipse (22/a?) + (y?/b%) = 1. Then D is closed
and bounded, and f : D — R defined by f(z,y) := 22 — y? is continuous
on D. Thus f has absolute extrema, and they are attained at points in
D. Let us find them. To begin with, Vf(z,y) = (2z, —2y) for (z,y) € R?,
and thus (0,0) is the only critical point of f in D. The boundary of D
consists of the points on the ellipse, which is parametrically given by
(acost,bsint), 0 <t < 27. The restriction of f to D is essentially given
by the function g : [0,27] — R defined by g(t) := a®cos®>t — b?sin¢.
Clearly, g is differentiable on (0,27) and ¢'(t) = —(a® + b*) sin 2t. Hence
the critical points of g are nn/2 for n = 1,2,3. Also, the endpoints of
[0,27] are nm/2 for n = 0,4. Now, g(nm/2) equals a? if n is even and
equals —b? if n is odd. It follows that the absolute maximum of g is a2,
which is attained at t = 0,m, 27, while the absolute minimum of g is
—b?, which is attained at t = 7/2, 37/2. Since f(0,0) = 0, we see that
the absolute maximum of f is a?, which is attained at (£a, 0), while the
absolute minimum of f is —b2, which is attained at (0, £b). <&

Remark 4.6. The notion of a critical point readily extends to a function
of n variables. Analogues of Lemma 4.2 and Proposition 4.4 can be easily
formulated and proved along similar lines. Thus, if D C R™ and f : D — R
has absolute extrema (which would be the case if, for example, D is closed
and bounded, and f is continuous), then they can be found by considering the
values of f at its critical points together with the absolute extrema of f on the
boundary of D. In general, if D C R"™, then the boundary of D usually consists
of several “(n — 1)-dimensional pieces.” Determination of absolute extrema of
f on any one of them further gives rise to several (n — 2)-dimensional pieces,
and so on. At any rate, the method outlined in this section can be iteratively
applied to determine absolute extrema of functions of n variables. In principle,
it works for any n € N, but in practice, it is efficient when n is small. <&

4.2 Constrained Extrema

In Section 4.1, we considered the problem of finding the absolute maximum or
minimum of a function f: D — R, where D C R2. We showed that when D is
closed and bounded and f is continuous, the absolute extrema exist and are
attained at critical points of f or at boundary points of D. The boundary is
usually given by the zero set of an equation such as g(x,y) = 0. For example,
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if D is the closed disk centered at (xo,yo) and of radius r, then we can let
g(z,y) == (x — 20)2 + (y — yo)? — 2. In such a case, optimizing f(z,y) on
the boundary corresponds to finding the absolute extrema of f subject to the
constraint g(z,y) = 0. In Section 4.1, we indicated how this could be done
in some examples by solving g(z,y) = 0 for one of the variables, thereby
reducing to a one-variable problem. We now provide an alternative by way
of an elegant method to determine absolute extrema of a function of two (or
more) variables, subject to the constraint given by the vanishing of another
function or, more generally, by the vanishing of several other functions.

Lagrange Multiplier Method

The method of Lagrange for determining constrained extrema is based on the
following result.

Proposition 4.7 (Lagrange Multiplier Theorem). Let D C R? and let
(zo,y0) be an interior point of D. Suppose f,g : D — R are such that the
partial derivatives of f and g exist and are continuous in S,(xo,yo) for some
r > 0 with Sy (x0,y0) € D. Let C := {(x,y) € D : g(x,y) = 0}. Suppose the
following three conditions are satisfied.

(1) (x07y0) € C; that iS, g(xO»yO) = 0;

(i) Vg(zo, yo) # (0,0), and
(iil) the function f, when restricted to C, has a local extremum at (xo,Yyo).

Then V f(z0,y0) = AoVg(xo,yo) for some Mg € R.

Proof. By (ii), gz(z0,y0) # 0 or gy(wo,yo0) # 0. Suppose gy(zo,y0) # 0.
By the classical version of the Implicit Function Theorem (Proposition 3.38)

applied to g, there are 6 > 0 with 6 < r and n : (xg — d,z0 + ) — R
with n(zo) = yo such that (z,n(z)) € Sr(xo,y0) and g(x,n(z)) = 0, that is,
(z,n(x)) € C, for all x € (xg — I,z + J). Moreover, 7 is differentiable at z
and 7'(z0) = —gz(x0, Y0)/9y(T0,Y0). Now consider ¢ : (zg — 0,20 + ) — R
defined by ¢(x) := f (x,n(z)). By the Chain Rule (part (ii) of Proposition
3.51), ¢ is differentiable at x¢ and

g:c(%, yo)

¢’ (o) = V f(xo,n(x0)) - (1, 7'(20)) = fu(0,y0) — fy(mo’yO)gy(xo Yo)

On the other hand, by (iii), ¢ has a local extremum at xo. Consequently,

by Fact 4.1, ¢'(x0) = 0, and so fy (20, y0)9x (0, y0) = fe(20,y0)9y (20, 0). It
follows that

fy(x07y0)

Vf(zo,y0) = MoVg(zo,y0), where Xg:= .
gy(‘rano)

The case in which g, (xo,yo) # 0 is proved similarly. O
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Thanks to the Lagrange Multiplier Theorem (Proposition 4.7), we have
the following useful recipe to determine constrained extrema.

To determine the absolute extremum of a real-valued function f of two
variables, subject to the constraint g(x,y) = 0, we consider a new variable A,
called an undetermined multiplier, and seek simultaneous solutions of

Vf(z,y) =AVg(z,y) and g(z,y)=0.

If it can be ensured that f does have an absolute extremum on the zero set of g
(which will certainly be the case if the zero set of g is closed and bounded, and
f is continuous), then the absolute extremum of f is also a local extremum
of f and it is necessarily attained either at a simultaneous solution (xg,yo) of
the above two equations for which Vg(xo,yo) # (0,0) or at a point where the
hypothesis of Proposition 4.7 does not hold. Thus the Lagrange Multiplier
Method amounts to checking the values of f at such simultaneous solutions,
and also at exceptional points such as points in the zero set of g at which V f
or Vg does not exist, or at which Vg vanishes.

Examples 4.8. (i) Consider the problem of finding the maximum and the
minimum of the function f given by f(z,y) := xy on the unit circle,
that is, subject to the constraint given by 2% + y? — 1 = 0. Following the
Lagrange Multiplier Method, we let g(z,y) := 22 + y? — 1 for (z,y) € R?
and consider the equations Vf = AVg and g(z,y) = 0, that is,

y=2\x, z=2\y, and z?+y*—1=0.

These imply 4\? = 1, since (z,y) = (0,0) does not satisfy 2% + y? —
1 = 0. Thus A = £1/2, and the simultaneous solutions of the above
equations are given by (z,y) = (+1/v/2, +£1/v/2). Note that Vg is nonzero
at every solution of g(x,y) = 0. Also, the zero set of g, that is, the unit
circle, is closed and bounded and f is continuous. Thus by the Lagrange
Multiplier Theorem (Proposition 4.7), the maximum of f on the unit
circle is 1/2, which is attained at (1/v/2, 1/v2) and (—1/v2, —1/v/2),
while the minimum is —1/2, which is attained at (1/\/2, —1/\/2) and
(-1/v2,1/V2).

(ii) Consider the problem of finding the shortest distance from the origin to a
point on the cuspidal cubic given by (x — 1)? = y2. This amounts to find-
ing the minimum of the function f : R? — R given by f(x,y) := 22 + y?
subject to the constraint given by g(z,y) := (z — 1)® — 32 = 0. Ge-
ometrically, it is obvious that the minimum is 1 and it is attained at
(1,0). (See Figure 4.1.) But Vf(1,0) = (2,0), while Vg(1,0) = (0,0).
Hence Vf(1,0) # AVyg(1,0) for any A € R. This shows that the condi-
tion Vg(zo,y0) # (0,0) cannot be dropped from the Lagrange Multiplier
Theorem. <&
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Fig. 4.1. Illustration of Example 4.8 (ii): Finding the minimum distance from the
origin to points on the cuspidal cubic (z — 1)* = .

Case of Three Variables

We have seen in Section 3.5 that the classical version of the Implicit Func-
tion Theorem readily extends to functions of three (or more) variables. (See
Proposition 3.74.) This, in turn, yields an extension of the Lagrange Multiplier
Theorem (Proposition 4.7) for functions of three or more variables. Thus, the
Lagrange Multiplier Method is applicable for such functions. Namely, to de-
termine the maximum or the minimum of a function f subject to a constraint
given by g = 0, we seek simultaneous solutions of Vf = AVg and g = 0 at
which Vg # 0. In case f and ¢ have continuous partial derivatives and we
know a priori that f does have absolute extrema on the zero set of g, then
the extrema can be found by comparing the values of f at the simultaneous
solutions of Vf = AVg and g = 0 or at exceptional points such as those where
Vg =0 and g =0.

Examples 4.9. (i) To find the maximum and the minimum of the function
f given by f(x,y,2) := 2%y?2? subject to the constraint that (z,v, 2) lies
on the unit sphere given by {(z,y,2) € R : 22 + y? + 22 = 1}, we let
g(z,y,2) == a? +y* + 22 — 1 for (n,y,2) € R®. Now Vf = A\Vg implies

20y%2% — 20 =0, 22%yz? —2\y=0, and 2z%y%z—2\z=0.

Either a solution of this system of equations will have one of its coordi-
nates 0 [and the value of f at such a point is 0], or else it must satisfy
2?2 = 2 = 22 and A = 2*. If, in addition, we require g(z,y,z) = 0,
then we necessarily have + = y = 2z = +1//3. The value of f at
each of the corresponding eight points is 1/27. Also, f is continuous
on the unit sphere, which is a closed and bounded set, and hence f
attains its maximum as well as its minimum there. Therefore, subject
to g(x,y,2) = 0, the maximum of f is 1/27 [attained, for instance, at
(1/4/3,1/4/3,1/4/3)] and the minimum of f is 0 [attained, for instance,



4.2 Constrained Extrema 165

at (0,0, 1)]. Note that as a consequence, we obtain an alternative proof of
the A.M.-G.M. inequality for three nonnegative real numbers as follows.
Given any a, b, ¢ € R with (a,b,c) # (0,0,0), let r := Va2 + b2 4 2. Then
r # 0 and the point (z,vy,2) := (a/r,b/r,c/r) is on the unit sphere in R3.
Thus f(z,y,2) < 1/27, that is,

@t =22y?2? < L and hence (a2b202)1/3 < (0% +0% 4 ¢%)
- 27 - 3 '

(ii) To find the points on the surface given by 22 = xy + 4 closest to the
origin, we let f(z,y,2) := 22 + y? + 22 and g(x,y, 2) := vy + 4 — 22 for
(z,y,2) € R3. Now

Vf=ANVg=2x=M\y, 2y=>Ar, and 2z=-2\z.

Since A = 0 implies (z,y, z) = (0,0, 0) and since ¢(0,0,0) # 0, we assume
that A # 0. Then z = 0 or A = £2. In case z = 0, we have y = 0,
and if also g(x,y,z) = 0, then z = +2. In case x # 0 and A = £2, we
have y = 2 and z = 0, so that g(z,y,z) = £2% + 4. It follows that the
only common solutions of Vf = AVg and g = 0 are (0,0,2), (0,0, —2),
(2,—2,0), and (—2,2,0). We have f(0,0,£2) = 4 and f(£2,F2,0) =
8. Now, f is continuous, and although the set E = {(x,y,2) € R? :
g(z,y,2) = 0} is not bounded, the set By = {(z,y,2) € E: 2?2 +y*+ 22 <
r}, where r = 23 +y2 + 23 for some (0, yo, 20) € E, is closed and bounded,
and the minimum of f on F; equals the minimum of f on E. Note also that
the only solution of Vg = (0,0, 0) is (0,0, 0) and this does not satisfy g = 0.
Thus, by the Lagrange Multiplier Method, we conclude that (0,0, £2) are
the points on the surface 22 = xy + 4 closest to the origin. &

The Lagrange Multiplier Method can also be adapted to a situation in
which there is more than one constraint. For example, suppose we want to
find the absolute extremum of a function f of three variables x,y, z subject
to the constraints given by g(x,y,2) = 0 and h(x,y, z) = 0. Then we can use
the following variant of the Lagrange Multiplier Theorem.

Proposition 4.10 (A Variant of the Lagrange Multiplier Theorem).

Let D C R? and let Py := (0, Y0, 20) be an interior point of D. Let f, g, h :
D — R have continuous partial derivatives in Sy(FPy) for some r > 0 with
Sr(Py) € D. Let C :={(z,y,2) € D : g(x,y,2) = 0 and h(z,y,z) = 0}.
Suppose the following three conditions are satisfied.

(i) Py € C, that is, g(Py) =0 and h(Py) =0,
(ii) Vg(Py) and Vh(Fy) are nonzero and are not multiples of each other,
(iii) the function f, when restricted to C, has a local extremum at Py.

Then V f(Py) = MVg(Po) + poVh(Py) for some Ao, o € R.
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Proof. By the Implicit Function Theorem for solving two equations (Propo-
sition 3.76 and Remark 3.77), there are § > 0, tp € R, and differentiable
functions z,y, z : (to — 0,10 + ) — R with (z(to), y(to), z(to)) = Py such that
(5(t), y(2), (1)) € Si(Py) and g (a(t), y(t), 2(1)) = 0 = h(x(2), y(2), ()
for all t € (to — 0,t0 + §). Moreover, vg := (2/(to), ¥'(to), 2'(t0)) # (0,0,0)
and Vg(Py) - vo = 0 = VA(FP) - vo. Consequently, vo is orthogonal to
the plane spanned by Vg(Py) and Vh(F). This implies’ that every vec-
tor v.€ R3 can be expressed as A\Vg(Py) + uVh(Py) + vvo for some
A i, v € R In particular, there are Ao, uo,v9 € R such that Vf(FPy) =
M Vag(Py) + poVh(Py) + vove. Now consider ¢ : (tg — d,tg + 0) — R defined
by ¢(t) := f (z(t), y(t), z(t)). By the Chain Rule, ¢ is differentiable at to and
&' (to) = Vf(Po) - (2'(to), ¥'(to), 2’ (to)). On the other hand, by (iii), ¢ has a
local extremum at to. Hence by Fact 4.1, ¢/(t9) = 0, and so Vf(P)-vo = 0. It
follows that if V f(FPy) = A Vg(Py)+pnoVh(Po)+vovo for some Ao, o, 1o € R,
then vy (vo - vo) = (Vf(Fy) - vo) = 0. Since vg # 0, we have vy = 0 and so
the desired assertion is proved. a

Thanks to Proposition 4.10, we have a Lagrange Multiplier Method
for finding the absolute extrema of a function f of three variables x,y, z sub-
ject to two constraints given by g(z,y,z) = 0 and h(z,y,z) = 0. Namely,
introduce new variables A and pu, called undetermined multipliers, and
seek simultaneous solutions of

Vi(@,y,2z) = AVg(z,y,2) + ph(z,y,2) and g(z,y,2z) = 0= h(z,y,2).

If it can be ensured that f does have an absolute extremum on the intersection
of the zero sets of g and h [which will certainly be the case if this intersection
is closed and bounded, and f is continuous], then an absolute extremum is
necessarily attained either at a simultaneous solution Py := (z, Yo, 20) of the
above three equations for which Vg(FPy) and VA(Fy) are nonzero and are not
multiples of each other, or at a point where the hypothesis of Proposition 4.10
does not hold. Thus the absolute extrema of f can be determined by comparing
the values of f at such simultaneous solutions and also at exceptional points
such as those where V f, Vg, or VA does not exist or where Vg or Vh vanishes
or where they are multiples of each other.

Example 4.11. To find the point on the intersection of the two planes given
by t +y+ 2z = 1 and 3x 4+ 2y + z = 6 that is closest to the origin, we let
flx,y, 2) == 22 +y>+22, g(z,y,2) = v+y+z—1and h(z,y, z) := 32+2y+2—6
for (x,y,z) € R®. Now we have to find the absolute minimum of f subject to
g =0 and h = 0. Consider the equation Vf = AVg + uVh. It yields

x_)\—i—Su A+ 2 Z_)\—I—u
T A T A
! This implication is an elementary fact in linear algebra or the study of vectors in

3-space. Its proof may be taken as an exercise or can be gleaned from the first
few pages of any book on linear algebra.
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Substituting these in the equations g(z,y, z) = 0 and h(x,y, z) = 0, we obtain
3\ +6u=2 and 3\+7u=6.

This gives u = 4 and A\ = —22/3, and therefore, Py := (;, é,—g) is the
unique simultaneous solution of Vf = AVg+ uVh and g = h = 0. Arguing as
in Example 4.9 (ii), f must have an absolute minimum on the intersection of
the zero sets of g and h. Also, Vg and Vh exist at every P € R?, and we have
Vg(P)=(1,1,1) and VA(P) = (3,2, 1); in particular, Vg(P) and Vh(P) are
always nonzero and are not multiples of each other. Hence, we conclude that

Py =(%,%,-75) is the desired point. <&

4.3 Local Extrema and Saddle Points

The local analysis of a real-valued function f of two variables exhibits a phe-
nomenon not encountered in the study of functions of one variable. Namely,
apart from the local maxima and local minima, which are like peaks and dips
on the surface z = f(x,y), there can also be saddle points. As the name sug-
gests, a saddle point is rather like the center point of a saddle that one puts on
a horse. If one traverses along a certain path on the saddle, the center point
appears as a peak, while along some other path, it appears as a dip. Our aim
in this section is to describe analytic methods to locate the local extrema and
saddle points.

In Section 1.2, we have given precise definitions of local extrema and saddle
points. In Lemma 4.2, we showed that the gradient, if it exists, vanishes at
points of local extrema. We will now see that a similar thing happens at a
saddle point of a smooth function.

Proposition 4.12. Let D C R? and let (x9,y0) be an interior point of D.
Suppose [ : D — R is differentiable at (xo,y0) and f has a saddle point
at (xo,y0). Then V f(xo,y0) = (0,0). Consequently, Dy f(xo,y0) = (0,0) for
every unit vector u in R2.

Proof. Since f has a saddle point at (xo,yo), there are regular paths Iy and
I, lying in D and intersecting transversally at (0, yo) such that f has a local
maximum at (g, yo) along I't, while f has a local minimum at (xg,yo) along
I'y. Let I be given by (x;(t),yi(t)), t € [ay, 5], and let t; € (au, 5;) be such
that (2;(t;),yi(t:)) = (x0,90) for i = 1,2. Now ¢y : [a1, $1] — R defined by
1(t) := f(x1(t),y1(t)) has a local maximum at t1, while ¢3 : [z, 2] — R
defined by ¢a(t) = f (x2(t),y2(t)) has a local minimum at ty. Since f is
differentiable at (xo,yo) and x;,y; are differentiable at t;, the Chain Rule
(part (ii) of Proposition 3.51) shows that ¢; is differentiable at ¢; and

¢;(ti) = V (o, y0) - (2(ta), yi(t:))  for i =1,2.
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Further, since ¢; has a local extremum at t;, by Fact 4.1 we have ¢}(t;) =0
for i = 1,2. Thus

vf(x(%yo) : (x/l(tl)vyi(tl)) = (070) = Vf(x(%yo) ’ (x/2(t2)7y/2(t2)) :

Since the tangent vectors (2 (t1), ¥} (t1)) and (z5(t2), y4(t2)) are nonzero and
are not multiples of each other, it follows that V f(xo,y0) = (0,0). Hence by
Proposition 3.35, Dy f(z0,30) = (0,0) for every unit vector u in R O

Examples 4.13. (i) Consider f : R? — R defined by f(x,y) := xy. Then f
is differentiable and V f(z,y) = (y, ). Hence the only saddle point that f
can possibly have is at (0,0). Indeed, we have seen in Example 1.22 (iii)
that f does have a saddle point at (0,0). In fact, f has a strict saddle
point at (0,0). (See Figure 1.4 on page 14.)
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Fig. 4.2. Tllustration of a monkey saddle: Graph of the function f(z,y) := x> —3zy?
in Example 4.13 (ii).

(i) Consider f: R? — R defined by f(x,y) := 2% — 3zy%. Then f is differen-
tiable and V f(x,y) = (322 —3y?, —62y). Hence the only saddle point that
f can possibly have is at (0,0). Now, f(t, +t/v/3) =0 for all ¢ € R. Thus
it is trivial to see that if Iy is the path given by (, t//3), t € [~1,1], and
I, is the path given by (t, —t/v/3), t € [~1,1], then I, I% are regular
paths intersecting transversally at (0,0) such that f has a local maxi-
mum at (0,0) along I'y and a local minimum at (0,0) along I's. This does
not, however, prove that f has a strict saddle point at (0,0) or that f
does not have a local extremum at (0,0). To see this, let us observe that
f(z,y) = z(x—+/3y)(x++/3y) and consider the parabolic paths I and I
given by (tv/3 — 12, t +12/3), t € [-1,1], and by (—tV/3 + 12, t +12V/3),
t € [-1,1], respectively. Then I and I are regular paths intersecting
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transversally at (0,0) such that f has a strict local maximum at (0,0)
along I} and a strict local minimum at (0,0) along I;. The graph of the
function f looks like a saddle on which a two-legged animal with a long
tail such as a monkey could ride. It is sometimes called a monkey saddle.
(See Figure 4.2.)

(iii) Consider f : R? — R defined by f(z,y) := 22 +y2. Then f is differentiable
and V f(z,y) = (2z,2y). Hence the only point where f can possibly have a
saddle point is (0, 0). But as we have seen in Example 1.22 (ii), f has a local
minimum at (0,0), and in fact, f(z,y) > 0 = £(0,0) for all (z,y) € R?
with (x,5) # (0,0). It follows that if I is any path in R? passing through
(0,0) and f has a local maximum at (0,0) along I', then I' cannot be
regular. Hence f does not have a saddle point at (0,0). Similarly, one
can see that for f : R?> — R defined by f(z,y) := —(2? + y?), the only
possibility for a saddle point is (0,0), but f does not have a saddle point
at (0,0). (See Figures 1.2 and 1.4 on pages 11 and 14.)

Fig. 4.3. Tllustration of a fake saddle: Graph of f(z,%) := 2® near the origin.

(iv) Consider f : R? — R defined by f(x,y) := 3. Then f is differentiable
and Vf(z,y) = (322,0). Hence the only points at which f can possibly
have a saddle point are points of the form (0, y), where yo € R. Now let
us suppose that yo € R and f has a saddle point at (0,yp). Then there
are regular paths Iy and Ib lying in R? and intersecting transversally
at (0,y0) such that f has a local maximum at (0,yo) along I, while f
has a local minimum at (0, yo) along I's. Let I be given by (z;(t), yi(t)),

€ [ai, (], and t; € (4, 0;) be such that (z;(t;),vi(t;)) = (0,y0) for
i =1,2. Note that a real number and its cube always have the same sign.
With this in view, since x1(¢1) = 0 and 23 has a local maximum at ¢,
we see that z7 has a local maximum at t1, and so 2/ (¢;) = 0. Similarly,
x9 has a local minimum at ¢, and so x5 (t2) = 0. Hence the two tangent
vectors (2} (t1),y](t1)) and (25 (t2), v5(t2)) are multiples of each other. It
follows that f does not have a saddle point at (0,0). (See Figure 4.3.)

(v) Consider f : R?> — R defined by f(z,y) := 2* + y>. (See Figure 1.9.)
Then f is differentiable and Vf(z,y) = (423, 3y?). Hence the only point
where f can possibly have a saddle point is (0,0). Suppose I}, given by
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(wi(t),yi(t)), t € o, Bi], for i = 1,2 are regular paths in R? such that f
has a local maximum at (0,0) along I, and a local minimum at (0,0)
along Iy. Let t; € (ay, 8;) be such that (x;(t;),y:(¢;)) = (0,0) for i = 1,2.
Now observe that given any t € (ay, 1), if z1(¢)* + y1(t)® < 0, then
y1(t)3 < —z1(t)* < 0 and hence y;(t) < 0. On the other hand, given any
t € (ag, B2),if wo(t)*+y2(t)® > 0, then yo(t)® > —xo(t)* and hence yo(t) >
—2o(t)*/3, that is, ya (t) +z2(t)*/® > 0. It follows, therefore, that y, (t) has
a local maximum at ¢ = ¢; and y(t) + 22(¢)*/? has a local minimum at
t = to. Consequently, y;(t1) = 0 and y}(t2) + a2 (t2)xh(t2)!/® = 0. Since
x2(t2) = 0, we find that ¢} (t1) = v4(t2) = 0, and so the two tangent
vectors (o) (t1),y1(t1)) and (x4 (t2), y4(t2)) are multiples of each other. In
other words, I'y and I'> do not intersect transversally at (0,0). It follows
that f does not have a saddle point at (0, 0). &

Discriminant Test

As we have seen thus far, the vanishing of the gradient is a necessary condition
for a function to have a local extremum or a saddle point, but it is not a
sufficient condition. To obtain a sufficient condition, we attempt to extend
the first derivative test and the second derivative test of one-variable calculus
(as given in Propositions 5.3 and 5.4 of ACICARA) to the case of functions of
two variables. While it does not make sense to look at the sign of the gradient,
we may consider the sign of the discriminant.

The basic idea is quite simple. Suppose the second-order partial derivatives
of f exist and are continuous around (zo,yo). If Vf(zo,y0) = (0,0), then by
the Extended Mean Value Theorem, the difference f(z,y) — f(xo,40) can be
expressed in terms of the Hessian form at some point near (xo,yo). It turns
out that the behavior of the Hessian form at and around (zg, yo) is governed
by its leading coefficient f,. (20, y0) and the discriminant Af(zo,yo). Recall
(from Section 3.4) that Af(xo,yo) is defined by

Af(wo,y0) = f:c:c(xoayo)fyy(xoayo) - [fxy($0>y0)]2~

More precisely, we have the so-called discriminant test, whose statement and
proof will be given shortly. But first, we require the following algebraic result,
which is a variant of Proposition 3.69.

Lemma 4.14. Let Q(h, k) := ah® + 2bhk + ck? be a binary quadratic form in
the variables h and k with a,b,c € R. Let A := ac — b>.

(i) If a < 0 and A > 0, then Q(z,y) < 0 for all (x,y) € R%, (z,y) # (0,0).
(i) If a > 0 and A > 0, then Q(z,y) > 0 for all (z,y) € R?, (x,y) # (0,0).
(iii) If A < 0, then there are two distinct lines Ly and Lo passing through the

origin such that Q(x,y) < 0 for (x,y) on Ly with (x,y) # (0,0), while
Q(x,y) > 0 for (x,y) on Lo with (x,y) # (0,0).
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Proof. Both (i) and (ii) follow from the identity
aQ(z,y) = a’x? + 2abxy + acy® = (ax + by)*> + Ay?  for all (z,y) € R?.

To prove (iii), suppose A < 0. We consider three cases.

Case 1: a # 0. In this case, a and aA have opposite signs,
Q(bt, —at) = (—ab® + ca®) t* = aAt?, and Q(t,0) =at® for all t € R.

So let Ly := {(bt,—at) : t € R} and Ly := {(¢,0) : t € R} or vice versa
according as a > 0 or a < 0.

Case 2: a =0 and ¢ # 0. In this case, ¢ and cA have opposite signs,
Q(et, —bt) = (a02 - cb2) t? = cAt?, and Q(0,t) =ct®> foralltcR.

So let Ly := {(ct,—bt) : t € R} and Ly := {(0,t) : t € R} or vice versa
according as ¢ > 0 or ¢ < 0.

Case 3: a=c¢=0. In this case, b # 0,
Q(t,t) =2bt?, and Q(t,—t) = —2bt> for all t € R.

So let Ly := {(t,t) : t € R} and Ly := {(t, —t) : t € R} or vice versa according
asb<Oorb>0.
Thus, in all cases, we can find lines L and Lo as desired. O

Proposition 4.15 (Discriminant Test). Let D C R? and let (xo,y0) be
an interior point of D. Suppose f : D — R is such that the first-order and
second-order partial derivatives of [ exist and are continuous in S, (xo,yo) for
some r > 0 with S, (xo,y0) € D, and V f(z0,y0) = (0,0).

(i) If Af(xo,y0) > 0 and fox(xo,y0) < 0, then f has a local mazimum at
(20, Yo)-
(i) If Af(xzo,y0) > 0 and frz(x0,y0) > 0, then f has a local minimum at
(20, Yo)-
(iii) If Af(xzo,y0) < 0, then [ has a saddle point at (xo,yo).

Proof. Since the second-order partial derivatives of f are continuous at
(z0,Y0), by Lemma 2.14, we can find some 6 > 0 with § < r such that the
signs of Af and f,, are preserved in Ss(zo, yo0), that is, the following hold:

(a) If Af(xo,y0) # 0, then Af(x,y)Af(xo,yo) > 0 for all (z,y) € Ss(xo, yo)-
(b) If fa:a:(x07y0) 7£ 0» then fa:a:(‘rvy)fwz(x()vy()) > 0 for all (x»y) S Sé(xmyO)'

Let (z,y) € Ss(x0, yo) with (z,y) # (xo0, yo). Since V f(zo,yo) = (0,0), apply-
ing the Extended Bivariate Mean Value Theorem (Remark 3.48 (ii)) to f on
Ss(x0,y0), we see that there is 6 € (0,1) such that upon letting h := x — xo,
k:=1vy —yo, and (¢,d) := (xo + 0h, yo + 0k), we have (¢, d) € Ss(xo,yo) and
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f(xvy) - f(xO»yO) = ; [fww(cv d)h2 + Qfmy(cv d)hk + fyy(cv d)kz] .

Using (a) and (b) above and applying parts (i) and (ii) of Lemma 4.14 to the
Hessian form of f at (¢, d), we see that if Af(xg,yo) > 0 and f.(z0,y0) <0,
then f(z,y) < f(xo,y0), whereas if Af(zo,y0) > 0 and fr.(x0,y0) > 0, then
f(z,y) > f(xo0,y0)- Since (x,y) was an arbitrary point of Ss(xo, yo), assertions
(i) and (ii) are proved.

Next, suppose Af(zo,y0) < 0. Applying part (iii) of Lemma 4.14 to the
Hessian form of f at (zg, y0), namely,

Qo(ha k) = facac(anyO)h2 + 2f$y(x0ay0)hk + fyy(anyo)k2a

we see that there are (hy, k1), (ha, k2) € S1(0,0) that are different from (0,0)
and are not multiples of each other such that Qo(h1, k1) < 0 and Qo (hs, ko) >
0. Now for ¢ = 1,2, the second-order partial derivatives of f are continuous
at (zo,%0), and hence by Lemma 2.14, there is §; > 0, with d; < J, such that
for all t € (—6;,9;),

foa(xotthi, yotthi)hi+2fry (wo+ths, yo+thk)hiki+ fyy(votthi, yo-+tk)k?

is nonzero and has the same sign as Qo(h;, k;). Thus, if for i = 1,2, we let T;
denote the path given by (xo+th;, yo+tki), t € [—;, d;], then we see that I
and Iy are regular paths in D and they intersect transversally at (xg,yo). (See
Figure 4.4.) Moreover, applying the Extended Bivariate Mean Value Theorem
to f on Ss, (0, y0), we see, as in the proof of (i) and (ii) above, that for each
t e (—(51;, (51),

fxo + thi, yo +tk;) — f(zo,y0) is <0 if i=1 and >0 if i=2.
It follows that ¢; : [—d;,d;] — R defined by ¢;(t) := f(xo + ths, yo + tk;) has

a local maximum at t = 0 if 4 = 1 and a local minimum at ¢t = 0 if ¢ = 2.
Thus f has a saddle point at (zo,yo), and assertion (iii) is proved. O

(w0 + 02ha, Yo + d2ks)

/~

Iy (2o, vo) (

(w0 + ha, Yo + k2)

(o + ha, Yo + k1)
(w0 + 01hy, yo + 01ky)

Fig. 4.4. Illustration of the paths I't and I in the proof of Proposition 4.15.
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Remarks 4.16. (i) If Af(zo,v0) := faz(T0,Y0) fyy(x0,y0) — [f;cy(ar;o,yo)]2 is
positive, then we clearly have fuq(z0,y0) > 0 <= fyy(20,y0) > 0. Thus in
parts (i) and (ii) of the Discriminant Test, the condition on the sign of f,.
can be replaced by an identical condition on the sign of f,.

(ii) Our proof of the Discriminant Test shows that the test can, in fact,
be made stronger. Namely, with D, (xo,y0), and f as in Proposition 4.15, we
have the following:

If Af(xo,y0) > 0, then f has a strict local mazimum or a strict local
minimum at (xo,yo) according as fr(xo,y0) < 0 or fuz(xo,y0) >0,
whereas if Af(xo,y0) <0, then f has a strict saddle point at (xo,yo).

Hence assuming that Af(zg,y0) # 0 (but not necessarily that V f(zo,yo) =
(0,0)), we can deduce from the above stronger version of the Discriminant
Test and Proposition 4.12 the following:

[ has a saddle point at (xo,y0) <= V f(x0,y0) = (0,0) and Af(zg,yo) < 0.

In particular, if Af(zg,y0) # 0, then f has a saddle point at (zg,yo) if and
only if f has a strict saddle point at (zo, yo). O
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Fig. 4.5. Craph of the function f(z,vy) := 4xy — 2* — * in Example 4.17 (ii).

Examples 4.17. (i) Consider an example that we have seen earlier, namely,
f:R? — R defined by f(z,y) := zy. (See the graph on the left in Figure
1.9.) We have Vf(x,y) = (y,x), so that Vf(x,y) = (0,0) < (z,y) =
(0,0). Moreover, fys = fyy = 0, while f;, = 1, and thus Af(z,y) =
Sawfyy— fﬂfy = —1 < 0. So, it follows from the Discriminant Test that f has
a saddle point at (0,0). In a similar manner, we can see that f : R? — R
defined by f(z,y) := 22 —%? has a saddle point at (0, 0). More generally, if
f is given by product of “distinct” linear forms, then a similar conclusion
holds. (See Exercise 16.)



174 4 Applications of Partial Differentiation

(i) Consider f : R? — R defined by f(z,y) := 4zy — 2* — y*. Then f has
continuous partial derivatives of all orders. Also, f, = 4(y — #3) and
fy =4(z —y?), and so

Vf(xvy) = (070) — (x,y) = (070)7 (17 1)7 or (_17 _1)'

Further, f., = —1222, foy = 4, and fy, = —1242, and so the discrimi-

nant is given by Af(x,y) = foafyy — :fy = 16(92%y? — 1). In particu-

lar, Af(0,0) = —16 < 0 and Af(1,1) = Af(—1,—-1) = 128 > 0. Also
faox(1,1) = fox(—1,—1) = —12 < 0. By the Discriminant Test, f has a
saddle point at (0,0) and a local maximum at (1,1) as well as at (=1, —1).
Compare these with the graph of f depicted in Figure 4.5.
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Fig. 4.6. Illustration of a local maximum and a local minimum: graphs of the
functions f(z,y) := —(z* +y*) and g(z,y) := 2* + y* in Example 4.17 (iii).

(iii) Consider f : R? — R defined by f(x,y) := —(2* + y*). Then Vf(z,y) =
(=423, —4y?) is (0,0) only when (x,y) = (0,0). But Af(0,0) = 0, and so
the Discriminant Test is not applicable to f at (0,0). In fact, we can see
directly that f has a local maximum at (0,0). Similarly, if g : R? — R
is defined by g(x,y) := 2* + y*, then Vg(x,y) = (422,49?) is (0,0) only
when (z,y) = (0,0). But Ag(0,0) = 0, and so the Discriminant Test is
not applicable. In fact, we can see directly that g has a local minimum at
(0,0). (See Figure 4.6.)

(iv) Consider f : R? — R defined by f(z,y) := 23y — 23>. Then Af(0,0) = 0,
and so the Discriminant Test is not applicable to f at (0,0). In fact, we
can see directly that f has a saddle point at the origin. Indeed, it suffices
to consider the paths Iy and I given by (¢t,—t/2), t € [—1,1], and by
(t,t/2), t € [—1,1], respectively. The graph of the function f looks like
a saddle on which a four-legged animal such as a dog could ride. It is
sometimes called a dog saddle. (See Figure 4.7.)
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Fig. 4.7. Tllustration of a dog saddle: graph of the function f(z,y) := 23y — zy>® in
Example 4.17 (iv).

(v) Consider f : R? — R defined by f(z,y) := z3. Then Vf(0,0) = (0,0) and
Af(0,0) = 0. Thus the Discriminant Test is not applicable to f at (0,0).
We have seen in Example 4.13 (iv) that f has neither a local extremum
nor a saddle point at (0,0). (See Figure 4.3.) &

4.4 Linear and Quadratic Approximations

In one-variable calculus (for example, Section 5.4 of ACICARA), we encounter
the concept of a tangent line approximation or a linear approximation. In
this way, if we know the value of a function of one variable and the value of
its derivative at a particular point, then we can approximately determine the
values of the function at all nearby points. Better approximations, known as
quadratic, cubic, or in general, nth-degree approximations, can be obtained if
we also know the values of the higher-order derivatives at that particular point.
In effect, the given function is replaced, locally, by a linear or a quadratic or
in general, a polynomial function. The key result that enables us to do this is
Taylor’s theorem. A similar situation prevails for functions of two (or more)
variables. Let us first discuss the simplest of such approximations, namely the
linear approximation of a function of two variables.

Linear Approximation

Let D C R? and let (z0,%0) be an interior point of D. Suppose f : D — R is
such that the first-order partial derivatives of f at (xg,yo) exist. The function
L : R? — R defined by
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L(z,y) = f(w0,90) + fu(T0,y0)(x — 7o) + fy(l“o,yo)(y —yo) for (z,y) € R?

is called the linear approximation to f around (zo,yo). Note that L(z,y)
is the first Taylor polynomial of f around (zo,yo). Geometrically speaking,
z = L(z,y) represents a plane that is precisely the tangent plane to the surface
z = f(z,y) at the point (x0,yo, 20), where zo := f(xo,yo). For this reason, L
is also called the tangent plane approximation to f around (zg,yo). (See
Figure 4.8.) The difference

ez, y) = fla,y) = L(z,y) for (z,y) € D

is called the error at (z,y) in the linear approximation to f around (zo, yo).

1
1
:
(350, Z/o)

Fig. 4.8. Illustration of linear approximation, or the tangent plane approximation:
for (z,y) near (zo,yo), the value of z = f(x,y) is approximated by z = L(z,y).

(z,9)

Proposition 4.18. Let D C R? and let (xg,y0) be an interior point of D. If
f D — R is such that both fo(xo,y0) and fy(zo,yo) exist, then the linear
approzimation L to f around (xo,yo) is indeed an approximation to f around
(0,Y0), that is,

lim L(z,y) = f(zo,y0), or equivalently, lim ei(x,y) =0.
(z,y)—(z0,y0) (@,y)—(x0,y0)
Further, if f is differentiable at (xo,yo), then e1(x,y) rapidly approaches zero
as (x,y) — (xo,yo) in the sense that

li €1 (.’E, y)

im =

(z,y)—(z0,y0) \/(1‘ —20)? + (y — yo)?

Moreover, if the first-order and second-order partial derivatives of f exist and

are continuous in S, (zo,yo) for some r > 0 with S, (x¢,y0) C D, then for any
(x1,91) € Sp(x0,y0) with (x1,y1) # (x0,Yo), we have the error bound
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Ms(x1,y1)
2

lex(z1,91)] < (Je1 — ol + ly1 — wol)*,

where Ma(z1,y1) is an upper bound for | fzzl, | fyy| and |fzy| on the open line
segment {(zo +t(z1 — 20), yo + t(y1 — yo)) : t € (0,1)} joining (20,y0) and
(z1,91)-

Proof. 1t is obvious from the definition of L that L(z,y) — f(xo,yo0), or equiv-
alently, e1 (z,y) — 0, as (z,y) — (x0,yo). The assertions about e; (x, y) rapidly
approaching zero follow from the definition of differentiability of functions of
two variables.

Suppose the first-order and second-order partial derivatives of f exist and
are continuous in S, (zo,yo) for some r > 0 with S,(zo,y0) € D. Now,
S, (x0,yo) is convex and open, and so the Extended Bivariate Mean Value
Theorem (Remark 3.48 (ii)) is applicable to the restriction of f to S,(xo,yo).
Thus, given any (z1,y1) € Sr(x0,y0) with (z1,y1) # (20, ¥0), there is some
(¢,d) on the line segment joining (zo,yo) and (z1,y1), with (¢,d) # (zi, ;)
for i = 1,2, such that

Fonun) = Lonn) + ) (0 fualesd) 20k oy ) + 2 e D),

where h := 21 — z¢ and k := y; — yo. This implies the desired error bound for

lex(z1,y1)l = |f(@1,91) — L(w1,91)]- i
Y

1/2

\ )

1/2
\ r+y=1

z+y=0
r+y=-—1

Fig. 4.9. Tllustration of Example 4.19: the open square S;,5(0,0) subdivided into
regions above and below the line given by = +y = 0.

Example 4.19. Let D := {(z,y) € R? : 2 + y # 1} and consider f : D — R
defined by f(z,y) :=1/(1—x—vy). Then f, = f, = 1/(1 —z—y)?, and so the
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linear approximation to f for (z,y) near (0,0) is given by L(z,y) :=1+z+y
for (z,y) € R% Further, fip = fuy = fyy = 2/(1 — 2 — y)3. To find an upper
bound for |fyz|, |fyy|, and |fzy| on an open line segment joining (0,0) to a
point nearby, say in the open square S;,5(0,0), it is convenient to consider
separately the points in the square that are above and below the line given by
r+y = 0. (See Figure 4.9.) Thus for any (z1,y1) € S1/2(0,0) with 21 +y; # 1
and (x1,y1) # (0,0), we can take Ma(z1,71) = 2/(1 —21 —y1)% if 21 +y1 > 0
and Ms(zy1,y1) = 2 if 21 + y1 < 0. In particular, if |z1] < 0.1 and |y;1| < 0.1,
then we obtain |eq(z1,y1)| < 0.0782 if 1 + y1 > 0 and |e1(z1,y1)] < 0.04 if
1 +y; <0. &

Quadratic Approximation

As in the case of functions of one variable, quadratic approximations yield
better estimates than linear approximations. Here are the basic definitions.

Let D C R? and let (x9,%o) be an interior point of D. Suppose f: D — R
is such that the first-order and second-order partial derivatives of f at (xq,yo)
exist. Define Q : R? — R by

Q(xvy) = L(x,y) + ; [hzfa:a:(xO»yO) + 2hkfwy(x07y0) + szyy(xO»yO)] )

where h = © — xo, k := y — yo, and L(z,y) := f(xo,y0) + hfz(zo,y0) +
kfy(zo,yo) for (z,y) € R%. We call Q) the quadratic approximation to f
around (zg, o). Note that Q(x,y) is the second Taylor polynomial of f around
(z0,y0). Geometrically speaking, z = Q(x,y) represents a paraboloid passing
through (o, yo, f (20, yo)) such that the surface given by z = f(z,y) and this
paraboloid have a common tangent at (zo, yo, f(z0, %0)). The difference

ea(x,y) = f(a,y) — Qz,y) for (z,y) € D

is called the error at (z,y) in the quadratic approximation to f around
(20, ¥o)- In this situation, an analogue of Proposition 4.18 is the following.

Proposition 4.20. Let D C R? and let (x0,y0) be an interior point of D.
Suppose f : D — R is such that the first-order and second-order partial
derivatives of [ at (xo,yo) exist. Then the quadratic approximation Q to f
around (xo,yo) is indeed an approzimation to f around (xo,yo), that is,

lim Q(z,y) = f(xo,y0), or equivalently, lim ea(x,y) = 0.
(z,y)—(z0,y0) (z,y)—(w0,y0)
Further, if the first-order and second-order partial derivatives of f exist and
are continuous in Sy (xo,yo) for somer > 0 with S, (xo,yo) C D, then ea(x,y)
approaches zero as (x,y) — (xo,y0) doubly rapidly in the sense that

hm 62(33,:9) —
(@,y)—(z0.0) (2 — 20)? + (Y — Y0)?
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Moreover, if the first-, second-, and third-order partial derivatives of f exist
and are continuous in S,(zo,yo) for some r > 0 with S, (xg,y0) C D, then for
any (x1,y1) € Syp(xo,y0) with (x1,y1) # (x0,Y0), we have the error bound

Ms(x1,y1)
3!

where Ms(z1,y1) is an upper bound for |fozals |fowyls |foyyl, and |fyyyl on
the open line segment {(xo + t(x1 — x0), yo +t(y1 —vo)) : t € (0,1)} joining
(w0, y0) and (r1,y1).

Proof. Tt is obvious from the definition of @ that Q(z,y) — f(zo,0), or
equivalently, es(x,y) — 0, as (z,y) — (xo,yo). Further, if the first-order and
second-order partial derivatives of f exist and are continuous in S, (xq, yo) for
some r > 0 with S, (zg,yo) C D, then by the Extended Bivariate Mean Value
Theorem (Remark 3.48 (ii)), we see that given any (z,y) € S,(zo,yo) with
(x,y) # (x0,y0), there is some (c,d) on the line segment joining (¢, yo) and
(z,y) such that

3
le2(z1,41)] < (Jz1 — zo| + |y1 — wol)”,

f(z,y) = L(z,y) + ; (B2 fra(c,d) + 2Rk fuy(c, d) + K2 fyy(c, )]

where h 1= x — z0, k := y — yo, and L(z,y) = f(zo,v0) + hfe(zo,v0) +
kfy($0,y0)~ Thus, upon lettlng A= fncac(ca d) - fxaf(x07y0)’ B = fncy(ca d) -
fxy(x07y0)a and C := fyy(ca d) - fyy(x07y0)a we obtain

lea(a, )] = | (2,9) — Qa,v)| = | | AR +2BRk + OR?].

Now (z,y) # (x0,yo) implies that (h, k) # (0,0), and thus we have

Al |nf? Bl [2hk| |Cl kP _ A+ (Bl +[C]
2 |h2+ K2 2 |R2H4E? 0 2 |hW?2+ER?| T 2 ’

62(‘1:’ y)
h? 4 k2

It is clear that if (z,y) — (x0,%0), then (¢,d) — (zo,¥0), and so by the
continuity of the second-order partial derivatives of f at (xq,yo), it follows
that A — 0, B — 0, and C — 0 as (z,y) — (20,%0). This implies the
assertion about es(x,y) approaching zero doubly rapidly.

Finally, suppose the first-, second-, and third-order partial derivatives of
f exist and are continuous in S, (xg,yo) for some r > 0 with S, (zo,y0) C D.
Let (z1,y1) € Sy (x0,y0) with (z1,11) # (z0,y0). By the classical version of
the Bivariate Taylor Theorem (Proposition 3.47) with n = 2, there is some
(¢,d) on the line segment joining (zo,yo) and (z1,y1), with (¢,d) # (zi,y:)
for i = 1,2, such that f(z1,y1) is equal to

1
Q(z1,y1)+ N (B? frza(c, d) 4 W2k fozy(c, d) 4+ 3hk? foyy(c, d) + K fyyy(c,d)) ,

where h := 21 — z¢ and k := y; — yo. This implies the desired error bound for
le2(x1, 1) = | f(z1,91) — Q(z1,y1)|- o
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Example 4.21. Let D := {(z,y) € R? : 2 +y # 1} and consider f: D — R
defined by f(z,y) := 1/(1 —x —y). Then f, = f, = 1/(1 — z — y)? and
fex = foy = fyy = 2/(1— 2 —y)>. Thus, the quadratic approximation to f for
(z,y) near (0,0) is given by Q(z,y) := 1 +x+y+a2+22y+y? for (v,y) € R?.
As in Example 4.19, it is convenient to consider separately the points in the
open square S;,5(0,0) that are above and below the line given by = +y = 0.
(See Figure 4.9.) Further, fire = fozy = fayy = fyyy = 6/(1 — 2 —y)*. Thus
for any (x1,y1) € S1/2(0,0) with (z1,y1) # (0,0), we can take M3z(x1,y1) =
6/(1—21—y1)* if v1 +y1 > 0 and M3(z1,y1) = 6 if 21 +y; < 0. In particular,
if |21] < 0.1 and |y1| < 0.1, then we obtain |ez(z1,y1)| < 0.0196 if 21 +y; > 0
and |eq(z1,y1)] < 0.008 if 21 + y1 < 0. Compare Example 4.19. &

Notes and Comments

In sequencing the topics in this chapter, we have followed the same principles
as i Chapter 5 of ACICARA. Tests for local extrema have no bearing on the
determination of absolute extrema nor on the study of constrained extrema
and the Lagrange multiplier method. Thus, absolute extrema and constrained
extrema of functions of two (or more) variables are treated before considering
local extrema and saddle points.

As noted in Chapter 1 already, our definition of a saddle point differs from
that found in most texts. Usually, a saddle point is defined as a critical point
(that is, an interior point of the domain at which the gradient vanishes) where
the function has neither a local mazimum nor a local minimum. Some books
define a saddle point as a critical point where the discriminant is negative.
These definitions do ensure that the Discriminant Test can be proved fairly
easily. But they do not seem to be completely in tune with the geometric idea
of a saddle point. Indeed, functions such as f(x,y) := 2 or f(z,y) := 2* +y3
whose graph near the origin scarcely looks like a saddle would end up having a
saddle point at the origin. Anomalies such as these are avoided in our defini-
tion. Moreover, to talk about a function having a saddle point, we do not have
to presuppose that the function is differentiable at that point, let alone require
that the point be a critical point. This is consistent with the tenet we have
followed throughout this text: geometric notions come first and have an in-
trinsic definition; criteria involving derivatives and such come later, provided
suitable differentiability conditions are satisfied.

We have shown that if a real-valued function of two variables merely has
first-order partial derivatives at a point, then it is approximated by a “linear”
function around that point. Further, if the function is differentiable at that
point, then the error in this approximation rapidly approaches zero. Further
still, if the function has continuous first-order and second-order partial deriva-
tives in a neighborhood of that point, then explicit error bounds for this error
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can be given. A similar situation is brought out for “quadratic” approximation.
This graded approach seems noteworthy.

As an important application of differentiation of functions of one variable,
one obtains sufficient conditions, usually ascribed to Picard, for the existence
and uniqueness of a fixed point of a map from a closed and bounded interval in
R into itself. Another important application is a method of Newton for deter-
mining approzimate solutions of equations of the form f(x) = 0. Analogues of
these for functions of several variables are possible. But it is clear that these
will necessarily involve vector-valued functions and their derivatives. Since we
have restricted ourselves to only real-valued functions of several variables in
this book, we have skipped applications such as these. However, for those in-
terested in these applications, we suggest Chapter 54 (especially Sections 5, 6,
8, 15, 16, 19) of Vol. 3 of [18].

Exercises
Part A

1. Find the absolute minimum and the absolute maximum of the function f
given by f(z,y) := 22? — 4x +y? — 4y + 1 on the closed triangular region
bounded by the lines given by x =0, y = 2, and y = 2z.

2. Find the absolute maximum and the absolute minimum of the function
f given by f(z,y) := (2% — 4x) cosy over the rectangular region given by
1<x<3, —7n/4<y<n/4

3. Determine constants a and b such that the integral

1
/ [az + b — f(z)]*dz
0

is minimal if (i) f(z) := 22, (ii) f(z) = (2> +1)7%.

4. The temperature at a point (x,y, z) in 3-space is given by T'(z,y,z) =
400zyz2. Find the highest temperature on the unit sphere 22 +y?+22 = 1.

5. Consider the surface in R? given by z = zy + 1. Find the point on the
surface that is nearest to the origin.

6. Let a,b,c,d € R with a, b, ¢ not all zero and let (zo, yo, z0) € R3. Find the
shortest distance between the plane given by ax + by + cz = d and the
point (g, Yo, 20)-

7. Let a, b, and ¢ be nonzero real numbers. Find the minimum volume
bounded by the planes given by x = 0, y = 0, z = 0, and a plane that is
tangent to the ellipsoid given by (z?/a?) + (y?/b?) + (2%/c?) = 1.

8. Let a, b, and ¢ be positive real numbers. Find the maximum value of
f(z,y,2) = 2%P2° subject to the constraint given by = +y + 2z = 1.
Deduce that if u, v, w are any positive real numbers, then

" . +bte
CYGICr=(nin)
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9. Let s € R with s > 0 and let E be the set of all (x,vy,z) € R? satisfying
the inequalities 0 <z, y, 2 < s, x+y > 2,y+ 2z > x, and z + x > y. For
the function f : E — R defined by f(z,y,2) := s(s—x)(s—y)(s—z), show
that (2s/3,2s/3,2s/3) is the unique point in R? where f has a maximum
subject to the constraint given by x + y + 2z = 2s. Deduce that a triangle
with a given perimeter 2s and maximum possible area is equilateral.

10. A space probe in the shape of the ellipsoid 422 + y? 4 422 = 16 enters the
earth’s atmosphere and the surface of the probe begins to heat. After one
hour, the temperature at the point (z,y, z) on the surface of the probe is
given by T'(z,y, z) = 822 + 4yz — 162 + 600. Find the hottest point on the
surface of the probe.

11. Find the maximum value of the function f : R® — R given by f(z,vy,2) :=
xyz subject to the constraints given by z +y 4+ 2z =40 and x + y = 2.

12. Find the minimum value of the function f : R® — R given by f(z,vy,2) :=
22 + y? + 22 subject to the constraints given by = + 2y + 3z = 6 and
z+3y+92=09.

13. Find the maximum value of the function f : R®* — R given by f(z,vy,2) :=
22 + 2y — 22 subject to the constraints given by 22 —y = 0 and y + z = 0.

14. Show that the following functions have local minima at the indicated
points.

(i) flz,y) =a* +y* +42 - 32y =7, (20,90) = (—1,2),
(i) f(z,y) == 23 + 32% — 22y + 5y% — 443,  (20,%0) = (0,0).

15. Consider f : R? — R defined by f(x,y) := 32* — 422y + y2. Show that f
has a local minimum at (0,0) on every line through (0,0). Does f have a
local minimum at (0,0)? Does f have a saddle point at (0,0)?

16. Let a,b,c,d be any real numbers. Show that f : R?> — R defined by
f(z,y) == (ax + by)(cx + dy) has a saddle point at (0,0) if ad — bc # 0
and has a local extremum at (0,0) if ad — be = 0.

17. Consider f : R? — R defined by one of the following. In each case, find
the points at which f has a local maximum, a local minimum, or a saddle
point.

(i) fla,y) = (2 = ") 20 (i) f(a,y) = a®y,
(i) flz,5) = 0% — g%, (iv) F(a,) = 62 — 20° + 39 + 6y,
v) flx,y) = 2% +y> - 3oy + 15, (vi) f(z,y) := 2™, where m € N.

18. Consider f : R? — R defined by

min{|z|, |y|}, if xy > 0,
fla,y) = ﬂ blyl) :
—min{|z|, ly|}, if zy <O0.

Does Vf(0,0) exist? Is f differentiable at (0,0)? Does f have a local
extremum at (0,0)? Does f have a saddle point at (0,0)? Justify your
answers.

19. Let ¢i1,¢2 € R with ¢; < co. Show that f : R? — R defined by
f(z,y) == (y — c12?)(y — c22?) has a strict local minimum at (0,0) on
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20.
21.

22.

23.
24.

25.

26.

27.

every line passing through the origin. Further, show that f has a sad-
dle point at (0,0). (Hint: Consider the segment of a line and a parabola
passing through the origin.)

Find the linear approximation of f(z,y) := \/22 + 32 near (3,4).

Find the linear approximation of f(z, y) near (2,2) if f(z,y) = 22% +
4y +y? + 122 — 12y + 16. Also, find an upper bound for the error e; (z,y)
that is valid for all (x,y) € R? such that |z — 2| < 0.1 and |y — 2| < 0.1.
Find the linear approximation of f(x,y) near (0,0) if

() f(z,y) == 1+ x+y for (z,y) € R? with z +y > —1,

(i) f(z,y) :==1/v/1—x —y for (z,y) € R? with x +y < 1.

Find an estimate for the error e;(z,y) for (z,y) € R? with z +y > 0 and
for (x,y) € R? with z +y < 0. Find an upper bound for the error e;(z,y)
that is valid (a) for all (z,y) € R? with |z| < 0.1, |y| < 0.1, and z +y > 0
and (b) for all (z,y) € R? with |z| < 0.1, |y| < 0.1, and z +y < 0.

Find an approximate value of [(0.99)e 02]

The dimensions of a cylindrical tin are known to change as follows. The
radius changes from 3 inches to 2.9 inches, while the height changes from
4 inches to 4.2 inches. Estimate the change in the volume of the tin.

Part B

Let D denote the closed triangular region in R? with vertices (0,0), (1, 1),

and (1, —1). If f : D — Ris defined by f(x,y) := /22 — y2 for (z,y) € D,

then prove the following.

(i) f is continuous on D and f(0,0) = f(1,1) = f(1,-1) = 0.

(ii) At every interior point (xo,yo) of D, both f, and f, exist, but
Vf(xo,y0) # (0,0).

[Note: From the MVT (Fact 3.2), we know that the line joining any two

points on a curve C given by y = f(z), x € E, is parallel to the tangent

line to C' at some interior point of E. The above example shows that there

can be three points on a surface S given by z = f(z,y), (z,y) € D, such

that no tangent plane to S at an interior point of D is parallel to the plane

passing through the three points on S.]

Let D be a closed and bounded subset of R? and let f : D — R be

a continuous function such that f|sp is constant. If the interior of D is

nonempty and both f, and f, exist at every interior point of D, then show

that there exists some interior point (xg,yo) of D such that V f(xo,yo) =

0.

[Note: This result may be viewed a version of Rolle’s Theorem (Fact

3.8) for functions of two variables.]

Given the conic section Ax?+2Bxy+Cy? = 1, where A > 0 and B% < AC,

let m and M denote respectively the distances from the origin to the

nearest and the farthest points of the conic. Show that

(A+C)++/(A—C)? +4B2

2 _
M= 2(AC — B2) ’
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28.

29.

30.

31.

32.

33.

4 Applications of Partial Differentiation

and find a companion formula for m?2.

Let p, g be positive real numbers such that (1/p) + (1/q) = 1. Determine
the minimum of the function f(z,y) := (zP/p) + (y?/q), =,y > 0, subject
to the constraint given by xy = 1. Deduce Holder’s inequality, that is,

n n 1/p n 1/q
Zaibi < (Z af) (Z bg) ,
i—1 i1 i—1

for any nonnegative real numbers a1, ..., a,,b1,...,by,.

Let A,B,C,D,E,F € R with A > 0 and B? < AC. Consider f: R?> - R
defined by f(z,y) := Ax? + 2Bxy + Cy? + 2Dz + 2Ey + F. Show that
there is a unique point (z1,y1) in R? at which f has a local minimum,
and further,

ABD

f(z1,y1) = Dxy + Ey1 + F = , | BCE]|.
AC — B DEF

(Hint: Transform the quadratic form to a sum of squares.)

Let m,n € N and let f: R? — R be defined by f(z,y) := 2™ — y™. Show
that f has a saddle point at (0,0) if and only if both m and n are even.
Let m,n € N and let f: R? — R be defined by f(x,y) := 2™ + y". Show
that f does not have a saddle point at (0, 0).

Let n € N and let f,g : R> — R be defined by f(z,y) := Re(z +iy)"
and g(z,y) := Im (z + iy)", where x + iy is the complex number corre-
sponding to (z,y) € R? and Re denotes the real part, while Im denotes
the imaginary part. Show that if n > 2, then both f and g have a saddle
point at (0,0).

[Note: The surface z = f(x,y) is parametrically given by = = rcos#,
y =rsind, and z = r" cosnf, where r > 0 and —7 < 6 < 7. It is known
as a generalized monkey saddle. Compare with Example 4.13 (ii) when
n=3]

Let m,n € N and let f : R? — R be defined by f(x,y) := 2™y". Show
that f has a strict saddle point at (0,0) if and only if both m and n are
odd.
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Multiple Integration

In one-variable calculus, we study the theory of Riemann integration. (See, for
example, Chapter 6 of ACICARA.) In this chapter, we will extend this theory
to functions of several variables. As in the previous chapters, we shall mainly
restrict to functions of two variables and briefly show how things work for
functions of three variables. Further extension to the case of functions of n
variables, where n > 4, is similar.

In Section 5.1 we consider the relatively simpler case of double integrals of
functions defined on rectangles in R2. The general case of double integrals of
functions defined on bounded subsets of R? is developed in Section 5.2. This
will lead, in particular, to the general concept of area of a bounded region in
R2. Next, in Section 5.3, we discuss the change of variables formula for double
integrals and prove it in an important special case. Finally, in Section 5.4, we
will indicate how the theory of double integrals extends to triple integrals of
functions defined on bounded subsets of R3, and discuss the general concept
of volume of such subsets.

5.1 Double Integrals on Rectangles

In this chapter, by a rectangle we shall mean a nonempty closed rectangle
in R2. In other words, a rectangle is a subset of R? of the form

[a,b] x [c,d] := {(z,y) ER? :a<x <band c <y < d},

where a, b, c,d € R with a < b and ¢ < d. Likewise, by a cuboid we shall mean
a nonempty closed cuboid in R?. Henceforth whenever we consider a rectangle
of the form [z1,x2] X [y1,y2], it will be tacitly assumed that x1, 22, y1,y2 are
real numbers with x7 < z2 and y; < ys. Likewise, whenever we consider a
cuboid of the form [z1,x2] X [y1,y2] X [21, 22, it will be tacitly assumed that
1, %2, Y1, Y2, 21, 22 are real numbers with x1 < z2, y1 < y2, and 27 < z9. Given

S.R. Ghorpade and B.V. Limaye, 4 Course in Multivariable Calculus and Analysis, 185
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186 5 Multiple Integration

a rectangle R := [a, b] X [¢,d] and a cuboid C' := [z1,x2] X [y1,y2] X [21, 22], it
is usual to set

Area(R):=(b—a)(d—c¢) and Vol (C):= (x2 —z1)(y2 — y1)(z2 — #1),

and call these the area of R and the volume of C, respectively.

With the above understanding of the volume of a cuboid, let us investi-
gate whether we can assign a meaning to what can reasonably be called the
“yolume” of a solid under a surface in R3. More precisely, consider a non-
negative bounded function defined on a rectangle [a,b] x [c, d], and the solid
lying under its graph, above the xy-plane, and bounded by the planes given
by x =a, x = b, y = ¢, and y = d. The problem of determining the “volume”
of such a solid can be approached by subdividing the rectangle [a,b] x [c, d]
into a finite number of subrectangles and then finding the sum of the volumes
of the cuboids inscribed within the solid and also the sum of the volumes of
cuboids that circumscribe the solid. (See Figure 5.1.) This leads to the notion
of “double integral” of a bounded function, which, in turn, yields the desired
notion of “volume” when the function is nonnegative. To arrive at these, we
first formalize certain preliminary notions such as subdivisions of rectangles,
volumes of inscribed and circumscribing cuboids.

I

Fig. 5.1. Inscribed and circumscribing cuboids for a solid lying below a surface.

By a partition of a rectangle [a,b] X [¢,d], we mean a finite set

P:={(x;,y;):i=0,1,...,nand j =0,1,....k}
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of points in [a, b] X [¢,d] such that
a=x0g <21 < - <Tp1<xTp=>0and c=yo<y1 < - <Yp_1 < Y =d.

The points (z;,y;), where 0 < i <n and 0 < j < k, are sometimes called the
grid points of P. For 1 < i < n and 1 < j < k, the rectangle [z;_1,z;] X
[yj—1,y;] is called the (i,j)th subrectangle induced by P. Further, we
define the mesh of P to be

pw(P) = maX{xl — 20y Ty — L1, Y1 — Y05 - - Yk — Yh—1}-

Note that the mesh of P is the maximum of the lengths of sides of the
subrectangles induced by P. The mesh of P can be thought of as a measure
of how finely the partition P subdivides the rectangle [a, b] x [¢, d]. The reason
why u(P) has been defined the way we have will be clear from the proof of
Lemma 5.2. Further justification is given later, in Remark 5.33.

Example 5.1. The simplest partition of [a, b] X [¢, d] is the one with only the
corner points as its grid points, namely,

Pi1:={(a,c),(a,d),(b,c),(b,d)}.
More generally, for any n, k € N, the partition
Pok ={(zi,y;):i=0,1,...,nand j =0,1,...,k},

where

i(b— i(d—
xi:a—i—z( a), 1=0,1,...,n, and yj:c—i—]( °)

, 7=0,1,...,k,
n k ]

divides the rectangle [a, b] X [c, d] into nk subrectangles of equal area, namely,
(b — a)(d — ¢)/nk. We shall refer to P, ; as the partition of [a,b] X [c, d] into
nxk equal parts. Note that p (P, ) = max{1/n,1/k}. It is clear that as n
and k become large, it (P, 1) tends to zero and the subdivision of [a, b] X [c, d]
corresponding to P, ;; becomes uniformly finer. O

Let R := [a, ] x [¢,d] be a rectangle in R? and let f : R — R be a bounded
function. Let us define

m(f) = nf{f(z,y) : (z,y) € R} and M(f):=sup{f(z,y): (z,y) € R}.
Given a partition P = {(x;,y;) : ¢ =0,1,...,nand j =0,1,...,k} of R, let

m i (f) == nf{f(x,y) : (z,y) € [zi1, 2] X [yj—1, 5]},
M; ;(f) :==sup{f(z,y) : (z,y) € [Ti-1, 7] X [yj—1,Y5]},

fori=1,...,nand j=1,...,k. Clearly,
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m(f) <m;(f) <M ;(f) <M(f) foralli=1,...,nandj=1,... k.

We define the lower double sum and the upper double sum for the
function f with respect to the partition P as follows:

n k
)i= Y > ma (A —2i1)(yy —y5-1),

n k
(P, f) ZZMi,'(f)(JJ —zi—1)(Y; — Yj-1)
Since
n k
ZZ —zi ) —yi-1) =Y (@i —wii1) Y (Y —y-1) = (b—a)(d—c),
=1 j=1 i=1 7j=1

it follows that
m(f)(b—a)(d ) < L(P, f) < U(P, f) < M(f)(b— a)(d — ).
We now define the lower double integral of a bounded function f by
L(f) :=sup{L(P, f) : P is a partition of [a,b] X [c,d]}
and the upper double integral of f by

U(f) :=nf{U(P, f) : P is a partition of [a, ] x [c,d]}.

Given a partition P of [a, b] X [c, d], we say that a partition P* of [a, b] X [c, d]
is a refinement of P if every grid point of P is also a grid point of P*. Given
partitions Py and P of [a, b] X [¢, d], we say that a partition P* of [a, b] X [c, d]
is their common refinement if the grid points of P* consist entirely of the
grid points of P; and the grid points of Ps.

It turns out, as in the case of the Riemann integral, that as we refine a
partition, the lower double sums can only become larger, whereas the upper
double sums can only become smaller. To prove this, we will first analyze
the effect of inserting one additional point, say (z*,y*) in a subrectangle
induced by a partition P = {(z;,y;) : ¢ = 0,1,...,nand j = 0,1,...,k}.
Note, however, that the resulting partition can have several additional points,
namely, (z;,y*) fori =0,1,...,nand (z*,y;) for j =0,1,..., k. We shall refer
to such a refinement as a one-step refinement of P by the point (z*,y*).

Lemma 5.2. Let f : [a,b] X [¢,d] — R be a bounded function and let o € R be
such that | f(z,y)| < « for all (x,y) € [a,b] X [c,d]. Also, let P be a partition of
[a,b]x[c,d] and P* a one-step refinement of P by a point (z*,y*) of [a, b]x][c, d]
not in P. Then
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0<UP,f)—UP*", f)<aul and 0<L(P*, f)— L(P,f) < aul,

where (1 := p(P) denotes the mesh of P and £ := 2 (b — a+ d — c¢) denotes the
perimeter of [a,b] X [c,d].

Yr-1 1

Yoy /

ST |||% o

Fig. 5.2. Illustration of Case 1 in the proof of Lemma 5.2, where P* splits the
(4, ¢)th subrectangle induced by P into the top and the bottom subrectangles.

Proof. Let P := {(z,y;) : ¢ =0,1,...,nand j =0,1,...,k}. Since (z*,y*)
is not a grid point of P, it suffices to consider the following three cases.
Case 1. z* € {zg,21,...,xn}, but y* & {yo,y1,..., Yk}

In this case there are unique integers p,q with 0 < p <nand 1 < ¢ < k
such that 2* = z, and y,—1 < y* < yq. Now, for any ¢ = 1,...,n and
j = 1,... k, the (¢,7)th subrectangle induced by P is also a subrectangle
induced by P*, provided j # ¢, while for i = 1,...,n, the (4, ¢)th subrectangle
induced by P splits into the bottom subrectangle [z;—1,z;] X [y4—1,y"] and
the top subrectangle [z;_1,x;] X [y*,y,], which are among the subrectangles
induced by P*. (See Figure 5.2.) Thus, if for i = 1,...,n, we let Mi’i](f) and
ng( f) denote the supremum of f on the bottom subrectangle and the top
subrectangle respectively, then the difference U (P, f) — U(P*, f) reduces to

n

D (@i—wi1) [Mig(f)(yg = ya—1) = ML (F)yg —v*) = ME ()W = yg-1)] -

i=1
Writing (yq — Yg—1) = (Yq — ¥*) + (¥* — y4—1) in the first term of the above
summands, we see that

n

UP.f) = UP*, f) = (i —xic1) [(Mig(f) = MI(F) (g — v

i=1

+ (Mig(f) = ME () (v —vg-1)] -
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Now, 0 < [M;4(f) = MI,(f)] < 2 and 0 < [M; 4(f) = M, (f)] < 2« for
each i =1,...,n, and so it follows that

0<U(P,f) = UP", f) <20y — Yg-1) D (i — wi1)
=1

= a(yg = Yg-1) [2(0 - a)] < apl.

In a similar way, we see that 0 < L(P*, f) — L(P, f) < aul.

Yt

Ye-1 +

v =yt

yq—l T

Y1+
Yo+

t t t — t t t
Tp Ty eee Tp-1 T Ty eee Tp—1  Tn

Fig. 5.3. Illustration of Case 2 in the proof of Lemma 5.2, where P* splits the
(p, j)th subrectangle induced by P into the left and the right subrectangles.

Case 2. z* & {xg,x1,...,2,}, but y* € {yo,y1,...,Yx}
In this case there are unique integers p,q with 1 < p <mn and 0 < g < k such
that z,_1 < z* <z, and y* = y,. We can then consider the left subrectangle
[zp—1,2*] X [yj—1,y;] and the right subrectangle [z*, ;] X [y;—1,y;] for each
j=1,...,k (see Figure 5.3), and proceed as in Case 1 above to obtain

k
0<UP,f) = UP", f) < 20(xp — 1p-1) (45 — yj-1)
J=1

— ala, — tp1) [2(d - )] < apl,

and also that 0 < L(P*, f) — L(P, ) < aul.
Case 3. z* & {xo,x1,...,2,} and y* &€ {yo,v1,- .-, Yk }-

In this case there are unique integers p,q with 1 < p <nand 1 < ¢q < k
such that , 1 < 2* < 2, and y,1 < y* < yq. As in Case 1, P* has
the effect of splitting the (i, ¢)th subrectangle induced by P into the bottom
subrectangle [z;_1, x;] X [y4—1,y*] and the top subrectangle [x;_1, 2] X [y*, y4]
for each i = 1,...,n except ¢ = p, and as in Case 2, splitting the (p,j)th
subrectangle 1nduced by P into the left subrectangle [z,—1,2*] X [yj_1,y;]
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Y
Yk 1+

Yk—1 1

v S I |%

Yg—11

Y1t
Yo+

Fig. 5.4. Tllustration of Case 3 in the proof of Lemma 5.2, where the refinement P*
splits the (p, ¢)th subrectangle induced by P into the top left (TL), the top right
(TR), the bottom left (BL), and the bottom right (BR) subrectangles.

and the right subrectangle [2*,z,] X [y;_1,y;]| for each j = 1,...,k except
J = q. However, the (p, ¢)th subrectangle splits into four subrectangles, namely
the bottom left subrectangle [z,—1,2*] X [yq—1, y*], the top left subrectangle
[Tp—1,2*] X [y*,yq], the bottom right subrectangle [z*,z,] X [yq—1,y*], and
the top right subrectangle [z*,z,] X [y*, yq]. (See Figure 5.4.) Let Mf;(f),
MIE(f), MPE(f), and M (f) denote, respectively, the supremum of f over
these four subrectangles, and let

Upg = Myg (F)(@™ = 2p-1)(y" = yg-1) + My g (f)(@" = 2p-1)(yg — ¥°)
+ Myt (f)(@p = 2") (5" = yg-1) + My g (f)(@p — ") (yg —y7).

Also, let Uy g = My o(f)(2p — 2p—1)(Yg — Yq—1) denote the corresponding
contribution to U(P, f) from the (p, ¢)th subrectangle induced by P. Writing

(yq_yq—l) = (yq_y*)'i‘(y* _yq—l) and (xp_l'p—l) = (xp—x*)—i—(x* _xp—l)v
we see that

Up.q = U;,q = [Mp,q(f) - Mf,qL(f)] (@ — 2p-1)(y" — yg-1)
+ [Myg(f) = My g ()] (=" = 2p-1)(yq — y7)
+ [Myq(f) = Myt (£)] (2p — 2)(y" — yg-1)
+ [Mp,q(f) - Mg:f(f)] (xp - x*)(yq -y")

Since the differences in the square brackets are clearly nonnegative and
bounded above by 2a, we see that

0<Upg—Upy < 20(xp — 2p-1)(yg — Yg—1)-

Combining this with the arguments in Case 1 as well as Case 2, we see that
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0 < UP.f) ~UP*. f) < 2y, — yo1) (1 — 211)
i#p
+20(zp — xp1) Y (Y5 — Yj-1)
J#4q
+20(xp — 2p—1)(Yg — Yg—1)-
Since it is clear that }°,, (z; —2;—1) = (b —a) — (¥, — zp—1) and also that
3205 = 4i-1) = (d = &) = (3, = yo-1), we obtain

OSU(P’f)_U(P*’f)

< 2a[(yg — Yg-1)(b —a) + (xp — 2p—1)(d — ¢) — (2p — Tp—1)(Yq — Yg—1)]
<ap2(b—a)+2(d—c)] = apl.

In a similar way, we see that 0 < L(P*, f) — L(P, f) < aul. O

We shall see below that the lower bound, namely 0, on the differences
U(P, f)=U(P*, f) and L(P*, f)— L(P, f) proved in Lemma 5.2 has a number
of nice consequences. It may be remarked that the upper bounds on these
differences will be used only toward the end of this section, where we discuss
Riemann double sums.

Proposition 5.3. Let f : [a,b] x [¢,d] — R be a bounded function.
(i) If P is partition of [a,b] X [c,d], and P* is a refinement of P, then

L(P,f) < L(P*,f) and U(P", f) <U(P,f),
and consequently,
U(P*af)_L(P*af) SU(P’f)_L(Pvf)

(i) If Py and Py are partitions of [a,b] X [¢,d], then L(Py, f) < U(Pa, f).
(iii) L(f) < U(f).

Proof. (i) Any refinement P* of P can be obtained by a finite succession of
one-step refinements starting with P. Hence by successively applying Lemma
5.2, we see that 0 < L(P*, f) — L(P, f) and 0 < U(P, f) — U(P*, f), that is,
L(P, f) < L(P*,f) and U(P*, f) < U(P, f). As a consequence, we also have
U(P*af)_L(P*af) < U(Pvf) _L(Pvf)'

(ii) Let P* denote the common refinement of partitions P; and P». Then
in view of (i) above, L(Py, f) < L(P*, f) < U(P*, f) < U(Pa, f).

(iii) Fix a partition Py of [a,b] x [¢,d]. By (ii) above, we have L(Py, f) <
U(P, f) for any partition P of [a,b] x [c, d]. Hence L(Py, f) < U(f). Now, since
Py is an arbitrary partition of [a, b] x [¢, d], we see that L(f) < U(f). O
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Let f : [a,b] X [¢,d] — R be a bounded function. Then f is said to be
integrable on [a,b] X [e,d] if L(f) = U(f). In other words, f is integrable
if its lower double integral is equal to its upper double integral. In case f is
integrable, the common value L(f) = U(f) is called the double integral, or
simply the integral, of f (on [a,b] X [¢,d]), and it is denoted by

// f(z,y)d(x,y) or simply by // f
[a,b] % [c,d] [a,b]x[c,d]

If f is integrable and also nonnegative, then the volume of the solid under
the surface given by z = f(z,y) and above the rectangle [a, b] X [¢, d] is defined
to be the double integral of f on [a,b] X [¢,d]. In other words,

Vol(Ey) = / /[a,blx[c’d] fy)d(z, y),

where

Ef::{(x,y,z)ER?’:anSb,cgygdandogzgf(ac,y)}.

Basic Inequality and Criterion for Integrability

The following result gives an elementary but useful estimate for the absolute
value of a double integral.

Proposition 5.4 (Basic Inequality). Let f : [a,b] X [¢,d] — R be an inte-
grable function. If there are a,, 3 € R such that 8 < f < «, then we have

se-a@d-a< [[  faydey) <ab-a@-o.
la,b] x[c,d]
In particular, if |f| < a, then we have

‘//[a,b]x[c,d] f(a,y)d(z,y)

Proof. As noted earlier, for every partition P of [a,b] X [c,d], we have

< a(b—a)(d-rc).

m(f)(b—a)(d—c) < L(P, f) <U(P, f) < M(f)(b—a)(d—c).

This implies that m(f)(b —a)(d —c¢) < L(f) < U(f) < M(f)(b—a)(d — ¢).
Now, since 8 < f(z) < «a for all z € R, we have § < m(f) and M(f) < a.
Also, since f is integrable, we have L(f) = U(f). Using these facts, we readily
obtain the desired inequalities. a
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Examples 5.5. (i) Let f(z,y) := 1 for all (x,y) € [a,b] X [¢,d]. Then for
every partition P := {(z;,y;) : ¢ = 0,1,...,nand j = 0,1,...,k}, we
have m; j(f) =1= M, ;(f) foralli=1,....,nand j =1,...,k. Since

L(P, f) = ZZ i = i)y — yj—1) = (b —a)(d —c),

=1 j=1

we see that L(f) = U(f) = (b —a)(d — ¢). Thus f is integrable and its
double integral is equal to (b — a)(d — ¢). In a similar manner, we see
that if r € R and f is the constant function on [a,b] X [¢,d] defined by
f(z,y) :=r for (x,y) € [a,b] X [¢,d], then f is integrable and

// Sy = [[ vy ==
[a,b] X [c,d] [abx[cd]

(ii) Suppose ¢ : [a,b] — R is a bounded function of one variable. Let us regard
¢ as a function of two variables or in other words, consider f : [a,b] x
[e,d] — R defined by f(x,y) := ¢(z) for all (z,y) € [a,b] x [¢,d]. Clearly,
f is a bounded function. Now, if P = {(x;,y;) : ¢ = 0,1,...,nand j =
0,1,...,k} is any partition of [a,b] x [¢,d], then P := {zg,21,..., 2} is
a partition of [a, b], whereas if @ is any partition of [a, b], then @ = P; for
some partition P of [a,b] X [¢,d]. (For example, if Q = {so,51,-.-,8m},
then we can take P = {(s;,t;) : ¢ = 0,1,...,mand j = 0,1}, where
to := c and t; := d.) Moreover, for any partition P := {(z;,y;) : ¢ =
0,1,...,nand j =0,1,...,k} of [a,b] x [c,d], we have m; ;(f) = mi(¢),
where m;(¢) denotes the infimum of ¢ on [z;_1,2;], and therefore

ZZ i = xie1)(yy — yj-0)mii(f) = (d—¢) p_(wi —zi1)mi(9),

i=1 j=1 i

that is, L(P, f) = (d — ¢)L(Py, ¢). Similarly, U(P, f) = (d — ¢)U(Py, ¢).
Consequently, L(f) = (d — ¢)L(¢) and U(f) = (d — ¢)U(¢). Hence

v

I
-

f is integrable on [a, b] x [¢,d] <= ¢ is Riemann integrable on [a, ],

and in this case,

J etz = =0 ot

A similar conclusion holds in case v : [¢,d] — R is a bounded function of
one variable and we define f : [a,b] X [¢,d] — R by f(z,y) := ¢ (y) for all

(z,y) € [a,b] X [e,d].
(iii) It may be recalled that the Dirichlet function ¢ : [a,b] — R defined by

6(2) 1 if z is a rational number,
xTr) =
0 if « is an irrational number,
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provides a standard example of a function of one variable that is not
Riemann integrable. (See, for instance, Example 6.4 (ii) of ACICARA.)
Consider a variant of ¢, namely, the function f : [a,b] X [¢,d] — R defined
by

1 if x and y are rational numbers,

flz,y) = { . S

0 if z or y is an irrational number.
We shall refer to f as the bivariate Dirichlet function. Let P =
{(zs,y;) 11 =0,1,...,nand j = 0,1,...,k} be any partition of [a,b] X
[, d]. Since both [z;_1,2;] and [y;—1, y;| contain a rational number as well

as an irrational number, we see that m; ;(f) = 0 and M, ;(f) = 1 for all
i=1,....,nand j=1,..., k. Thus

n k

L(P,f) = 0-(2i — xi-1)(y; —yj—1) =0,

i=1 j=1

whereas

n k
UP, f) = Zzl'(ﬂii —2i-1)(yj —yj-1) = (b—a)(d - o).

Consequently, L(f) = 0, whereas U(f) = (b — a)(d — ¢). Since a < b and
¢ < d, we have L(f) # U(f), that is, f is not integrable. &

The following result gives a useful criterion to determine whether a
bounded function defined on [a,b] X [¢,d] is integrable. It is exactly analo-
gous to the corresponding criterion, also known as the Riemann Condition,
for functions of one variable. (See, for example, Proposition 6.5 of ACICARA.)

Proposition 5.6 (Riemann Condition). Let f : [a,b] x [¢,d] — R be a
bounded function. Then f is integrable if and only if for every e > 0, there is
a partition P. of [a,b] x [¢,d] such that

U(P.,f)—L(P,f) <e.
Proof. Suppose the stated condition is satisfied. Then for every ¢ > 0, we have
0<U(f) = L(f) SUPe, f) = L(Pe. f) <e.

Hence L(f) = U(f), that is, f is integrable.
Conversely, suppose f is integrable. Let ¢ > 0 be given. By the definitions
of U(f) and L(f), there are partitions Q. and Q. of [a,b] X [c,d] such that

U(Qe.f) <U() + and L(Qef) > L(f) —

Let P. denote the common refinement of Q. and @E. Then by part (i) of
Proposition 5.3,
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L(f) = § < L@ ) € LP f) SUP ) SUQe, f) < UM + .

Since L(f) = U(f), it follows that U(P,, f) — L(P., f) < €, as desired O

Example 5.7. Let f : [a,b] X [¢,d] — R be a bounded function such that
f(z,y) =0 for all (x,y) € (a,b) x (¢,d). Although the values of the function f
on the sides of the rectangle [a,b] X [¢, d] can be arbitrary (though bounded),
we show that f is integrable and its double integral is equal to zero.

Let € > 0 satisfy € < min{b — a,d — ¢}/2, and consider the partition
P. = {(z;,y;) 14,5 =0,1,2,3} of [a,b] X [¢, d], where zg := a, z1 := a+e€, T9 1=
b—e xz3:=band yo:=c, y1 :=c+e¢, ys :=d — ¢, y3 := d. (See Figure 5.5.)

ct+e +

aa+e b—e b
Fig. 5.5. The partition P. of [a,b] X [¢,d] as in Example 5.7.

Since f is bounded, there is @ > 0 such that —a < f(z,y) < « for all
(x,y) € [a,b] X [¢,d]. Further, since f(z,y) =0 for all (x,y) € [a + €,b — €] x
[c+ €,d — €], we have

U(P., f) <a2e(b—a)+2e(d—c)] =2ae(b—a+d—c)

and
L(P.,f) > —a[2e(b—a) +2¢(d — ¢)] = —2ae(b—a+d — ¢).

Thus U(P,, f) — L(P., f) < 4ae(b— a + d — ¢). Since ¢ > 0 can be taken
arbitrarily small, the Riemann Condition (Proposition 5.6) shows that f is
integrable. Moreover,

—Za(b—a—l—d—c)eg// flz,y)d(z,y) <2a(b—a+d—c)e,
[a,b]x[c,d]

and since € > 0 is arbitrary, it follows that the double integral of f on [a, b] %
[e,d] is equal to 0. &
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Domain Additivity on Rectangles

A basic property of Riemann integrals is domain additivity, which is recalled
below. A proof can be found, for example, on page 187 of ACICARA.

Fact 5.8 (Domain Additivity of Riemann Integrals). Let ¢ : [a,b] — R
be a bounded function and let ¢ € (a,b). Then ¢ is integrable on [a,b] if and
only if ¢ is integrable on [a,c] as well as on [c,b]. In this case,

/ab ¢(z)dx = /: o(z)dx + /cb o(z)dx.

We shall now state and prove an analogous result for double integrals on
rectangles.

Proposition 5.9 (Domain Additivity on Rectangles). Let f : [a,b] x
[e,d] — R be a bounded function.

(i) Let s € (a,b). Then f is integrable on [a,b] X [e,d] if and only if [ is
integrable on |a, s] X [¢,d] as well as on [s,b] X [c,d]. In this case,

/ /[a’b}x[c’d]f (z, y)d(z, y) = / /[Q’S}X[C’d]f (z, y)d(z, y) + / /[S’b]x[c’d]f(x,y)d(x,y).

(ii) Let t € (c,d). Then f is integrable on [a,b] X [c,d] if and only if f is
integrable on [a,b] X [c,t] as well as on [a,b] X [t,d]. In this case,

L, o= [ sepdensf] e

Proof. (i) Assume that f is integrable on [a,b] X [c,d]. Let € > 0 be given.
Then, by the Riemann Condition (Proposition 5.6), there is a partition
P. = {(zs,y;) : i = 0,1,...,nand j = 0,1,...,k} of [a,b] x [c,d] such
that U(P., f) — L(P.,f) < e. Adjoining the points (s,o),...,(s,yx) to
the points of P, if these are not already points of P., we obtain a refine-
ment P’ = {(zf,y;) : ¢ = 0,1,...,n"and j = 0,1,...,k} of P, where
n* € {n,n+ 1} and {zf : i = 0,1,...,n*} = {z; : i = 0,1,...,n} U {s}.
In particular, there is a unique p € {1,...,n} such that x; = s. Part (i) of
Proposition 5.3 shows that

OSU(P:,f)—L(P:,f) SU(Peaf)_L(Peaf) <e

Now let g denote the restriction of f to [a, s] x [¢,d], and let QF := {(z],y;) :
i=0,1,...,pand 7 =0,1,...,k}. Then Qf is a partition of [a, s] X [¢,d] and
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M=

U(Q:9) — L(Q¢, 9) = Z > [Mij(g) —mij(g)l(2} — 2i-1)(y; — yj-1)

1

Il
-

[
.M@
M=

s
I
—
<.
I
-

[M; 5 (f) —mi s (O] — 27_1)(y; — yj-1)

3

M=

(M 5(f) —mi; (O] — 2i_1) (Y5 — yj—1)

1

f) = LS ),

which is less than e. Hence the Riemann Condition shows that ¢ is integrable,
that is, f is integrable on [a,s] x [c,d]. Similarly, it can be seen that f is
integrable on [s,b] x [c,d].

Conversely, suppose f is integrable on [a, s] X [¢, d] as well as on [s, b] x [¢, d],
and let g and h denote the restrictions of f to these two subrectangles respec-
tively. Given any € > 0, let Q. := {(z;,y;) : ¢ =0,1,...,nand j=0,1,...,k}
and Re = {(u;,v;) : ¢ = 0,1,...,mand j = 0,1,...,¢} be partitions of
[a, s] x [e,d] and of [s, ] X [c,d] respectively, such that

H
<.
*

|
-

(P

™

U(Qeag) - L(Qeag) < 6/2 and U(Rﬂh) - L(Reah) < 6/2'

d d
Yr-1 ks aduied piniats Euladed sldets fafled sldady
edececcheceedececchenee ceee V-1
Yr—2 ks aduied piniats Euladed sldets fafled sldady
edececcheceedececchenee ceee V-9
......................... ceee Vo
Y2 ks Enduded pintnts Enfaded slniets futaded sldaty
......................... ceee V1
n ks Enduded pintnts Enfaded slniets futaded sldaty
c c
a Ty T2 Tp-2 Tp-1 S Uy U2 Up—2 Up—1 b

Fig. 5.6. Refinements of the partition Q. := {(z:,y;)} by adding the dotted lines
and of R. := {(ui,v;)} by adding the dashed lines.

Let @7 denote the refinement of the partition (). obtained by adding the
points {(z;,v;) : ¢ =0,1,...,nand j = 0,1,...,¢}, and let R} denote the
refinement of the partition R, obtained by adding the points {(u;,y;) : i =
0,1,...,mand j =0,1,...,k}. (See Figure 5.6.) Let P denote the partition
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of [a, b] X [c, d] obtained by combining the points of the partitions @ and R;.
Then we have

UF:, f) =U(Q¢9) +U(R:,h) and  L(PZ, f) = L(Q7, 9) + L(RZ, ).
Now by part (i) of Proposition 5.3, it follows that
U f) <U(Qe,g9) + U(Re,h) and  L(PY, f) > L(Qc, 9) + L(Re, h).

Hence U(P*, f)— L(P*, f) < ¢/2+¢/2 = e. Thus, by the Riemann Condition,
f is integrable on [a, b] X [c, d].

To prove the last assertion in (i), suppose f is integrable on [a, b] X [c, d].
Note that with P*, QZ, and R} as in the last paragraph, we have

L(Pr, f)<I<U(P f), wherel:= // flz,y)d(z,y).

[a,b] X [c,d]

Also, note that U(FP?, f) = U(Q¢,9) + U(RZ, h) and L(P?, f) = L(Q¢, 9) +
L(R!,h), and so we have

el tepden s [[ 0 feden <@,
la,s] x[c,d] [s,b] x [c,d]

Since U(P¥, f) — L(P}, f) < ¢, it follows that

’//[a,s]x[c,d} f(x,y)d(z,y) + //[s,b]x[gd] Flz,y)d(a,y) — I < e

But € > 0 is arbitrary and therefore we must have

I = //[a,s]x[c,d} fzyy)d(z,y) + //[s,b]x[c,d] [z, y)d(z,y),

as desired.

(ii) This part can be proved using arguments similar to those in the proof
of part (i) above. O

Corollary 5.10. Let f : [a,b] X [¢,d] — R be a bounded function. Consider

€ (a,b) andt € (c,d). Then f is integrable on [a,b] X [¢,d] if and only if f is
integrable on each of the four rectangles [a, s| x [c,t], [a, s] X [t,d], [s,b] X [¢, ],
and [s,b] X [t,d]. In this case,

/PR LY NS | IS | R
[a,b] X [c,d] la,s] x[c,t] [a,s] x[t,d] [s,b] X [c,t] [s,b] X [t,d]

Proof. The result follows from parts (i) and (ii) of Proposition 5.9. O
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Remark 5.11. As mentioned at the beginning of this chapter, we have as-
sumed a < b and ¢ < d while defining the double integral of a function
f :]a,b] x [c,d] — R. In order to obtain uniformity of presentation, we adopt
the following conventions. Suppose a, b, ¢, d are arbitrary real numbers and R
is the rectangle in R? with (a,c) and (b, d) as its diagonally opposite vertices.
If a =0 or ¢ =d, then every f: R — R is integrable and

//[a,b}x[c,d] fl@y)d(z,y) :=0.

Ifa>band c < dorifa <bandc > d (sothat R = [ba] x [¢,d] or
R = [a,b] x [d,c]), then an integrable function f : R — R is also said to be
integrable on [a, ] X [c, d] and we set

// [z, y)d(z,y) //fxy (z,y).
la,b] X [c,d]

Finally, if a > b and ¢ > d (so that R = [b,a] x [d, c]), then an integrable
function f: R — R is also said to be integrable on [a, b] x [c,d] and we set

//[a,b]x[c,d]f(x’y)d(x’y) ::/Rf(xay)d(x»y).

Using these conventions together with Corollary 5.10, we obtain the fol-
lowing useful consequence of domain additivity. Suppose a,b,c,d € R with
a < band ¢ < d, and suppose [ : [a,b] x [¢,d] — R is integrable. Given any
(u,v), (ug,vo) € [a,b] X [¢,d], the double integral I, of f on [a,u] X [c,v] is
given by

o= oo i M Mo
la,uo] X [c,v0] la,uo] X [vo,v] [wo,u] X [e,v0] [wo,u] X [vo,v]

Note that the above formula holds regardless of the relative positions of (u,v)
and (ug,vp) in the rectangle [a,b] X [c, d]. <&

Integrability of Monotonic and Continuous Functions

Recall that in Chapter 1, we have defined the notion of monotonicity for func-
tions of two variables. In effect, a function f : [a,b] X [¢,d] — R is monotoni-
cally increasing (respectively monotonically decreasing) if it is monotonically
increasing (respectively monotonically decreasing) in each of the two variables.
We show below that such a function is always integrable. In fact, we prove
a slightly more general result that permits the possibility that a function is
monotonically increasing in one variable and monotonically decreasing in an-
other. We also show that continuity implies integrability. As in one-variable
calculus, proofs of both the results mainly use the Riemann Condition.
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Proposition 5.12. Given any f : [a,b] X [¢,d] — R, we have the following.

(i) If for every fized x € |a,b], the function 1, : [c,d] — R given by ¥, (y) :=
f(z,y) is monotonic, and for every fired y € [c,d], the function ¢, :
[a,b] — R given by ¢y(x) = f(x,y) is monotonic, then f is integrable. In
particular, if f is monotonic, then f is integrable.

(i) If f is continuous, then it is integrable.

Proof. (i) First assume that for every fixed x € [a, b], the function 1),,, and for
every fixed y € [c, d], the function ¢,, are monotonically increasing. Then it is
clear that f(a,c) < f(z,y) < f(b,d) for all (z,y) € [a,b] x [¢,d]. In particular,
f is a bounded function. For n € N, consider the partition Py, ,, := {(z;,y;) :
i,7=0,1,...,n}of [a,b] X [¢,d] into nxn equal parts. Then fori,j =1,...,n,
we have

M; ;(f) = f(zi,y;) and mg;(f) = f(ziz1,y5-1).

Hence

The last double sum is telescopic and it is equal to

[f(zn,yn) — f(x0,90)] + i:[f(xiayn) — f(@isyo)] + z_:[f(xnayj) — f(zo,y5)]-

By our hypothesis, each of the differences in the square brackets in the above
sum is at most [f(b,d) — f(a,c)]. Consequently,

U )= LPu $) < OV, 0,0 40140 1)
=2 - @) - Ol (b d) -~ (a0

n

Thus, given any € > 0, there is n € N such that U(Py, n, f) — L(Ppn, f) <€
By the Riemann Condition (Proposition 5.6), it follows that f is integrable.

A similar proof holds if the function f is monotonically decreasing in each
of the two variables x and y, or if it is monotonically increasing in one variable
and monotonically decreasing in the other.

(ii) Assume that f : [a,b] X [¢,d] — R is continuous. Then f is bounded,
thanks to Proposition 2.25. Also, by Proposition 2.37, f is uniformly contin-
uous. Let A := (b — a)(d — ¢) denote the area of [a,b] X [¢,d] and let € > 0 be
given. By Proposition 2.39, there is § > 0 such that
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(2,9), (u,v) € D and |(z,y) — (u,0)| <& = |f(z,y) — f(u,0)| <

%
Let P = {(xi,y;) : ¢ = 0,1,...,nand j = 0,1,...,k} be a partition of
[a,b] x [c,d] such that the area A, ; := (z; — x;—1)(y; — y;—1) of the (¢,7)th
subrectangle R; ; := [z;—1,2;] X [yj—1,y;] is less than § for ¢ = 1,...,n and

j=1,...,k. Now by Proposition 2.25, for each i =1,...,nand j =1,...,k,
there are (a;,b;) and (c¢;,d;) in R;; such that f(a;,b;) = M, ,;(f) and
flei,dj) = m; ;(f). Hence we have

Mij(f) = ma(f) = flai,bs) — fleid;) <

A
and so
n k n k
U(Per ) = L(Pe ) = D2 30 Mg (f) = mig ()] Ay <\ DD Asj =
i=1 j=1 i=1 j=1
Thus, by the Riemann Condition (Proposition 5.6), f is integrable. O

In Proposition 5.43 we shall see that even if a function is discontinuous at
a few points, it can be integrable.

Examples 5.13. (i) Let a,b, ¢, d,r, s be nonnegative real numbers such that
a < band ¢ < d. Define f : [a,b] X [e,d] — R by f(z,y) := 2"y°. By
either part (i) or part (i) of Proposition 5.12, we see that f is integrable
on [a,b] X [c,d].

(ii) Consider f : [a,b] X [¢,d] — R defined by f(x,y) := sin(z + y). Then by
part (ii) of Proposition 5.12, f is integrable on [a, b] X [c, d]. <&

Algebraic and Order Properties

First, we shall see that double integrals behave just like Riemann integrals
with respect to algebraic operations on functions.

Proposition 5.14. Let f,g: [a,b] X [¢,d] — R be integrable functions. Then

( ) f +g is mtegmble and ff[a b] x [e,d] f + g ff[a b] x[c,d] f + ff[a b] X [e,d] 9
(ii) rf is integrable for any r € R and ff[ab Ixe, d](rf = rff[a bxed
(iii) fg is integrable,
(iv) if there is § > 0 such that |f(z,y)| > 6 for all (z,y) € [a,b] X [¢,d], then
1/f is integrable,
(v)if f(x,y)) > 0 for all (z,y) € [a,b] X [c,d], then for any k € N, the
function f1/* is integrable.

Proof. Let € > 0 be given. By the Riemann Condition (Proposition 5.6), there
are partitions @ and R of [a,b] X [¢,d] such that U(Q, f) — L(Q, f) < € and
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U(R,g9) — L(R,g) < ¢e. Let P, denote the common refinement of @ and R.
Then by part (i) of Proposition 5.3, we have

U(P.,f)—L(P.,f)<e and U(P.,g) — L(P.,g) <e.

(i) Let P. = {(z4,9;) : 4 =0,1,...,nand j = 0,1,...,k}. For any i =
1,...,nand j=1,...,k, we have

M;;(f +9) < M ;(f) + M j(g) and mi;(f+g)>mi;(f)+mi;(g)

Multiplying both sides of these inequalities by (x; — xi—1) (y; — yj—1) and
summing from ¢ =1 to n and from j = 1 to k, we obtain

UPe, f+9) SU(P, [)+U(Pe,9) and L(P, f+g) > L(P., f) + L(Fe, 9).
Hence
U(Pe, f+9)—L(Pe, f+9) S U(Pe, f)=L(Pe, f)+U(Pe, 9)—L(Pe, g) < e+€ = 2e.

Since € > 0 is arbitrary, the Riemann Condition shows that the function
f + g is integrable. Further, if we let o := U(P., f) + U(P.,g) and (8 :=
L(P., f)+ L(P., g), then we have

B< L(P.. f+9) < L(f+g) = Am[dg+w=UUﬂﬂSWRJ4wa
Also, we have

p< L(f) * L(g) - //[a,b}x[c,d] f+ //[a,b]x[c,d] o U(f) " U(g) =

Thus, we see that

I[ o[ e [[ g
[a,b] X [c,d] [a,b] X [c,d] la,b] X [c,d]

Since this is true for every € > 0, we obtain

// (f+g)=// f+// 9-
[a,b]x[c,d] la,b] x[c,d] [a,b] x[c,d]

(ii) Let » € R. If » = 0, then rf(z,y) = 0 for all (x,y) € [a,b] x [c,d]
and (ii) follows easily. Now assume that r > 0. Then for any partition P of
[a,b] x [e,d], we see that

<a-—[(<2e.

L(P,rf)y=rL(P, f) and U(P,rf)=rU(P,f).

Hence

L(rf) =rL(f) =rU(f) = U(rf).
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On the other hand, if » < 0, then for any partition P of [a,b] X [c,d], we see
that
L(P,rf)=rU(P,f) and U(P,rf)=rL(P,f),

and so

L(rf) =rU(f) = rL(f) = U(r ).

In both cases, we see that rf is integrable and

Howien™ = i
[a,b]x[c,d] [a,b] x[c,d]

(iii) For any i = 1,...,n, and (z,y), (v, v) € [Ti—1, %] X [yj—1,¥;],

(f9)(@,y) — (fg)(u,v)
= [z, y)lg(z,y) — g(u,v)] + [f(z,y) — f(u,v)]g(u,v)
< [f(z. )l g(z,y) — g(u,v)| + |g(u, v)| [ f(z,y) — f(u,v)]|
< M(|fD[M;,5(g) — mi ()] + M(lgD)[M;(f) — mi;(f)]-

Taking the supremum for (z,y) in [z;—1,2;] X [y;—1,y;] and the infimum for
(u,v) in [zi—1,2;] X [yj—1,Y;], we obtain

M; j(fg) —mij(fg) < M(|f)[M; ;(g) —mi;(g)] + M(|lg))[Mi;(f) —mi;(f)]-

Multiplying both sides of this inequality by (x; — z;—1) (y; — yj—1) and sum-
ming from ¢ =1 to n and from j = 1 to k, we obtain

U(Pe, fg) — L(P., f9g)
< M([fDU(Pe, g) — L(Pe, g)l + M (|g)[U (Pe, f) — L(P, f)]
< [M([f]) + M(|g])]e.

Since € > 0 arbitrary, the Riemann Condition shows that fg is integrable.

(iv) Let 0 > 0 be such that |f(z,y)| > 0 for all (x,y) € [a,b] X [¢,d]. For
i=1,...,n,j=1,...,k and (x,v), (u,v) € [z;—1, ;] X [yj_1,y;], we have

1 B 1 :f(UJ)U)_.f(x)y)
Fey) ~ fluw) — Faay) i)
< ) = 0l L () = mas (1)

eyl f o) =

Taking the supremum for (z,y) in [z,—1,2;] X [y;—1,y;] and the infimum for
(u,v) in [zi—1,2;] X [yj—1,Y;], we obtain

M; 5(1/f) = mu(l/f)fp[ () =mi; (),

and consequently
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€

U(Pevl/f)_ (P671/f) [ (Peaf) (P67f)]<52'

Again, since € > 0 is arbitrary while § > 0 is fixed, the Riemann Condition
shows that the function 1/f is integrable.

(v) Let k € N and write ' = f!/*. First we assume that there is § > 0
such that f(x,y) > § for all (x,y) € [a,b] x [¢,d]. For any (x,y), (u,v) in
[a,8] X [¢,d], we have f(z,) — f(u,v) = F(z,5)* — Pu,0)*, and 50

k
f(zyy) — flu,v) = [F(z,y) — ZFacyk TF(u,v)~ L.
j=1

Now for j =1,...,k,
F(z,y)* I F(u,v)=! > §k=)/kgla=0/k — s=1/k - ¢

and so

Floy) - Flun) = _, 1@ —Jwo) ) = 7o)

S jer Fla, )9 F(uo)=t = kOETD/E
If P={(xi,y;):i=0,1,...,nand j =0,1,...,k} is any partition of [a, b] x
[e,d] and (z,y), (u,v) € [zi—1,2;] X [yj—1,y;] for some i = 1,...,n and j =
., k, then

[f(z,y) = flu,0)] _ Mi;(f) _mi,j(f)'

F(z,y) — F(u,v) < Lo(k—1)/k - ko(k=1)/k

Taking the supremum for (z,y) in [z;_1,2;] X [yj—1,y;] and the infimum for
(u,v) in [zi—1,2;] X [yj—1,Y;], we obtain

M; 5 (f) —mi;(f)

Mi’j(F) - mi,j(F) < Es(k—1)/k

fori=1,...,nand j=1,... k.
Multiplying both sides of this inequality by (z; — z;—1) (y; — yj—1) and sum-
ming from ¢ =1 to n and from j = 1 to k, we obtain

UPF) = LPF) < |y 0P ) = LP P,

Since f is integrable, the Riemann Condition shows that F' is also integrable.

Next, we consider the general case of any nonnegative integrable function f
on [a, b] x[c,d]. Let § > 0 and define g : [a, b] x[¢,d] — R by g(z,y) = f(z,y)+
§ and G := ¢g'/*. Then g is integrable by part (i) above, and g(z,y) > ¢ for
all z € [a,b] X [¢,d]. It follows from what we have proved above that G is
integrable. Moreover, since f is nonnegative, we have

G — 61/k (f+6)1/k 61/k < fl/k —F < (f+6)1/k _ G,
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and therefore,
L(G = 6"%) < L(F) <U(F) < U(G).

But L(G — §'/F) = L(G) — §'%(b — a)(d — ¢) and so
—§Vky = G =6 b—a)d—c)=U(G)="*b—a)(d—c).
) //{abx[cd] (b—a)(d—c) = U(G) = 8/*(b—a)(d—c)

This shows that
0<U(F)—L(F) <U(G) — L(G = 6'F) = 6% (b — a)(d — ¢).
Since 6'/F — 0 as § — 0, we see that F' = f/* is integrable. O

With notation and hypotheses as in the above proposition, a combined
application of its parts (i) and (ii) shows that the difference f — g is integrable

and
abXCd ab><cd a,b><c,d

Further, given any n € N, successive applications of part (iii) of the above
proposition show that the nth power f” is integrable. Likewise, a combined
application of parts (iii) and (iv) shows that if there is § > 0 such that
lg(x,y)| > 6 for all (x,y) € [a,b] X [c,d], then the quotient f/g is integrable.
Also, a combined application of parts (iii) and (v) shows that if f(x,y) > 0
for all (z,y) € [a,b] x [¢,d], then given any positive r € Q, the rth power f”
is integrable since r = n/k, where n, k € N.

Example 5.15. Let ¢ : [a,b] — R and v : [¢,d] — R be Riemann integrable
functions of one variable. Consider f : [a,b] X [¢,d] — R defined by f(x,y) :=
o(z) + ¥(y) for (z,y) € [a,b] X [¢,d]. In view of Example 5.5 (ii) and part (i)
of Proposition 5.14, we readily see that f is integrable on [a, b] X [¢, d], and

//[abx[”i] (x,y)d(x,y) = —c/¢ Ydx + ( b—a/w

In particular, given any r, s € R with » > 0 and s > 0, we have
br+1 _ ar+1 ds+1 _ Cs+1
(@ +y°)d(z,y) = (d—c) +(b—a) ;
/»/[a,b]x[c,d] r+1 s+1
provided 0 < a <band 0 <c¢ < d. &

Next, we consider how double integration behaves with respect to the order
relation on functions.

Proposition 5.16. Let f,g: [a,b] X [¢,d] — R be integrable functions. Then
(W) If f < g on[a,b] x [e.d], then [[i, ysieaf < Jjanxiead
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(ii) The function |f] is integrable and ’ff[%b}x[cﬁd] f’ < ff[mb]x[gd] |f]-

Proof. (i) Let f(x,y) < g(x,y) for all (z,y) € [a,b] x [¢,d]. Then for any
partition P of [a,b] X [c,d], we have U(P, f) < U(P,g), and so

/ ~/[a,b]><[c,d] f=U) =t = / /[a,blx[cm s

(ii) Let € > 0 be given. By the Riemann Condition, there is a partition
P, of [a,b] x [¢,d] such that U(P., f) — L(P., f) < €. Let P. = {(x;,y,) : i =
0,1,...,nand j=0,1,...,k}. Foranyi=1,...,nand j =1,...,k, and any
(z,y), (u,v) € [xi—1,xi] X [yj—1,y;], we have

1, y) = [f1(u,0) < [f(2,y) = flu,0)] < Mij(f) = mi;(f)-

Taking the supremum for (z,y) in [z;_1,2;] X [y;—1,y;] and the infimum for
(u,v) in [zi—1,2;] X [yj—1,Y;], we obtain

M i (If]) = mi(If]) < Mij(f) —mi(f) fori=1,...;nandj=1,... k.

Multiplying both sides of this inequality by (z; — z;—1) (y; — yj—1) and sum-
ming from ¢ =1 to n and from j = 1 to k, we obtain

U(Pea‘.ﬂ)_L(Pe)‘fD SU(Peaf)_L(Peaf) <e

Now by the Riemann Condition, |f]| is integrable. Further, since —|f|(x,y) <
flz,y) < |f|(z,y) for all (x,y) € [a,b] x [¢,d], by part (i) above we see that

[[ an<[] g<[[
[a,b] x[c,d] la,b] X [c,d] la,b] x[c,d]

But by part (ii) of Proposition 5.14, ff[a bxea — 1=~ ff[a b)x[ea /|- Hence

’ [[ o a<[]
la,b] x[c,d] la,b]x[c,d]

as desired. O

Remark 5.17. It may be noted that the converse of part (ii) of Proposition
5.16 is not true. In other words, if f : [a,b] X [¢,d] — R is such that |f] is
integrable, then f need not be integrable. To see this, let f~: [a,b] X [e,d] = R
denote the bivariate Dirichlet function and consider f :=2f—1. Then in view
of Example 5.5 (iii), f is not integrable (lest f = 1 (1+ f) be integrable), but
|f(z,y)| =1 for all (z,y) € [a,b] X [¢,d], and thus |f| is integrable. <&
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A Version of the Fundamental Theorem of Calculus

A central result of one-variable calculus is the Fundamental Theorem of Cal-
culus, or in short, the FTC, which, roughly speaking, says that the processes
of differentiation and integration are inverses of each other. A precise state-
ment of the FTC is given below, and we remark that it is essentially the same
as Proposition 6.21 of ACICARA, except in part (i) we require only that F' be
differentiable and satisfy F’ = f on the open interval (a,b) rather than on
[a, b], provided F' is continuous on [a,b]. It may be observed that the proof
given in ACICARA goes through verbatim even with this weaker hypothesis.

Fact 5.18 (FTC). Let f: [a,b] — R be a Riemann integrable function.

(i) If there is F : [a,b] — R such that F is continuous on [a,b], differentiable
on (a,b), and F' = f on (a,b), then f; f(x)dx = F(b) — F(a).

(ii) If f is continuous at some ¢ € [a,b], then the function F : [a,b] — R
defined by F(x) := [7 f(t)dt is differentiable at ¢ and F'(c) = f(c).

There are analogues of the FTC to two dimensions which involve the notion
of a “line integral.” One of them, known as Green’s Theorem, also involves
the notion of “orientation.” (See Theorems 10.3, 10.4, and 11.10 of [2, vol.
I1], and the Notes and Comments at the end of this chapter.) We describe
below another analogue which does not involve either of these notions. It
may be compared with Theorem 10.22 and Exercise 10-14 of [1, first ed.].
It says, roughly speaking, that the processes of mixed second-order partial
differentiation and double integration are inverses of each other.

To begin with, we prove some basic properties of the function obtained
from an integrable function defined on a rectangle R by integrating over vary-
ing subrectangles of R that share a vertex with R. It indicates already that
(double) integration is a smoothing process in the sense that it converts an
integrable (and possibly discontinuous) function into a continuous function,
and a continuous function into a function whose partial derivatives exist.

Proposition 5.19. Let f : [a,b] X [¢,d] — R be an integrable function, and
let F: la,b] x [e,d] — R be defined by

Fla,y) = //[a’w}xm F(s,0)d(s, ) for (z,9) € [a, 5] x [c,d].

Then we have the following.

(i) F is continuous on [a,b]x[c,d]. In fact, F satisfies a Lipschitz condition
on [a,b] x [e,d], that is, there is L € R such that

|F($,y> - F(uvv)| <L |(x,y) - ('LL,U)| fO’i‘ all (l',y), ('LLJ)) € [(L,b]X[C, d]
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(il) Given any (xo,y0) € [a,b] X [c,d], if we assume that for every e > 0, there
is 6 > 0 such that

x € [a,b], |z —x0| <6 = |f(z,y) — f(x0,y)| < € for all y € [c,d],

and also assume that fcyo f(zo, t)dt exists, then Fy(xo,yo) exists and is
equal to ngo f (o, t)dt.

Proof. (i) Since f is integrable on [a,b] X [¢, d], it is bounded on [a, b] X ¢, d],
that is, there is a > 0 such that |f(s, )| < « for all (s,t) € [a,b] X [¢,d].

Let (u,v) € [a,b] X [¢,d]. Given any (z,y) € [a,b] X [¢,d], in view of the
version of domain additivity in Remark 5.11, we have

Fag)-Fao)= [[  pa [ g [[ g
la,u] x[v,y] [u,z] x [c,v] [u,z]x [v,y]

Hence by the Basic Inequality (Proposition 5.4),
[F(z,y) = F(u,0)] < a((b-a)ly—v|+(d— )|z —ul + |z — ully — v]).

Thus, if we let K := max{b — a,d — ¢} and observe that both |z — u| and
ly — v| are <|(z,y) — (u,v)|, and also < K, then we can conclude that

|F(z,y) — F(u,v)| <L |(z,y) — (u,v)|, where L :=3aK.
Hence F satisfies a Lipschitz condition on [a,b] X [¢,d], and consequently, F'
is continuous (in fact, uniformly continuous) on [a, b] x [c, d].
(ii) Fix (zo,y0) € [a,b] X [c,d]. Assume that the e- condition in (ii) is

satisfied and that fcyo f(zo,t)dt exists. Given any = € [a,b] with = # x¢, by
Example 5.5 (ii), we see that

Yo 1
/ Flwo, £)dt = / / Fwo, )d(s,1).
. 2 =20 J s 0l (ool

Using this together with the conventions and a version of domain additivity
stated in Remark 5.11, we obtain

F(z,y0) — F(2o,y0) _
Tr — X0 P

1
- T — Xo <//[wo,m]><[c,yo] (f(& t) = f(wo, t))d(s’ t)> .

Now let € > 0 be given. By our hypothesis, there is § > 0 such that

Yo
f(xo s t)dt

x € la,b], |z — x| <0 = |f(z,t) — f(xo,t)] < p ‘ . for all ¢ € [e, d].

Thus, in view of the Basic Inequality (Proposition 5.4), for € [a,b] with
0 < |x — x| < 0, we see that
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F(z,y0) —»17(r0,y0)__
r — X ¢

€

Yo 1
f(xo,t)dt’ < |x_x0|d_c|x—xo|(d—c) =e.

This proves that F; (2o, y0) exists and is equal to [*° f(xo,t)dt. 0
We are now ready to prove an analogue of the FTC for double integrals.
Proposition 5.20. Let f : [a,b] X [¢,d] — R be an integrable function.
(i) Suppose there is F : [a,b] x [¢,d] — R satisfying the following properties:
e For each fized yo € [c,d], the function given by x — F(x,yo) is
continuous on [a,b] and differentiable on (a,b).
e For each fized xo € (a,b), the function given by y —— Fy(xo,y) is
continuous on [c,d] and differentiable on (c,d).
o Fy, exists and is equal to f on (a,b) x (c,d).
Then

J[ fewd.y = ALF = Fb.0)-Fb.0-Fla.d)+Fla.o).
la,b] x[c,d
(ii) Let F : [a,b] x [¢,d] — R be defined by
Fw)= [[ fetdlst)  for (o) € o] x fe.d)
[a,z]x[e,y]
Suppose (xo,yo) € [a,b] X [¢,d] and f satisfies the following properties:
o for every e > 0, there is § > 0 such that
€ [a,b], |z —x0] <6 = |f(z,y) — f(zo,y)| <€ for all y € [c,d].

e the function v : [c,d] — R defined by ¥(t) := f(xo,t) is Riemann
integrable on [c,d] and continuous at yo.
Then Fyy(zo,y0) exists and is equal to f(zo,Yo)-

Proof. (i) Let P = {(z;,y;) :4=0,1,...,nand j =0,1,...,k} be a partition
of [a,b] x [¢,d]. Given any i = 1,...,n and j = 1,...,k, by applying the
Rectangular Mean Value Theorem (Proposition 3.11) to the (restriction of) F'
on [;—1,x;] X [yj—1,y;], we see that there is (x;"j, y;“J) € (i—1, i) X (Yj—1,Y5)
such that F'(z;,y;) — F(xi—1,vy;) — F(2i,y-1) + F(zi—1,yj-1) is equal to

Foy (275,05 5) (mi —2ic1) (y; —yj—1) = [ (25 5,055) (@6 — 2im1) (5 — yj-1) -

Summing over i =1,...,n and j = 1,...,k, we see that
F(b,d)—F(b,c)—F(a,d)+F(a,c) ZZ]‘ x; i) (@ —wica) (y5 — yio1) -
=1 j=1

Consequently, L(P, f) < F(b,d) — F(b,¢) — F(a,d) + F(a,c) < U(P, f). Since
this is true for every partition P of [a,b] X [c, d], it follows that
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L(f) =sup L(P, f) < F(b,d)=F(b,c)—F(a,d)+F(a,c) <infU(P, f) = U(f),

where the supremum and the infimum are taken over the set of all partitions
of [a,b] x [e,d]. Since f is integrable, we have L(f) = U(f), and so

//[ e f(z,y)d(z,y) = F(b,d) — F(b,¢) — F(a,d) + F(a,c).

(i) Fix (zo,y0) € [a,b] X [¢,d]. Since ¥ : [¢,d] — R defined by ¢(t) :=
f(xo0,t) is Riemann integrable on [c, d], it is Riemann integrable on [c, y], that
is, f vf (x0,t)dt exists, for every y € [c,d]. Hence by part (ii) of Proposition
5.19, we see that F, (xo, y) exists and

= (o, y /fxo, t)dt = /w dt  for every y € [c,d].

Further, since 1 is continuous at yo, by part (i) of the FTC (Fact 5.18), we
see that Fy, (2o, yo) exists and is equal to ¥(yo) = f(z0,%0)- O

Remark 5.21. Part (ii) of Proposition 5.19 admits a straightforward ana-
logue with F, replaced by F,. More precisely, given any (zo,yo) € [a,b] X [c, d],
if we assume that for every € > 0, there is § > 0 such that

y€le,d], ly—yol <d=|f(z,y) — f(z,y0)| < € for all z € [a, b],

and also assume that f;o f(s,y0)ds exists, then Fy(zo,yo) exists and is equal
to [ f(s,yo)ds. The proof is similar.

Likewise, both the parts of Proposition 5.20 admit a straightforward ana-
logue with F,, and F,, replaced by F, and F)., respectively, and the proofs
are similar. &

Example 5.22. Suppose ¢ : [a,b] — R and 9 : [¢,d] — R are differentiable
functions of one variable such that ¢" and ¢’ are Riemann integrable. Then

//[ e ¢ (2) (y)d(z,y) = (3(b) — d(a)) (¥(d) — ¥(c)).

To see this, consider F' : [a, b] X [c,d] — R defined by F(z,y) := ¢(x)w(y). Note
that F' is continuous in the first variable, F exists and is continuous in the
second variable, and Fy,, exists. Indeed, Fj (u,v) = ¢'(u)y(v) and Fyyy(u,v) =
¢’ (v)y' (v) for (u,v) € [a,b] X [¢,d]. Moreover, in view of Example 5.5 (ii) and
part (iii) of Proposition 5.14, we see that Fj, is integrable on [a,b] X [c, d].
Thus by part (i) of Proposition 5.20, we see that

// F,, = // ¢ (@ (y)d(w,y) = AL,
la,b] x[c,d] [a,b] X [c,d]

Finally, observe that A(") F = (¢(b) — ¢(a)) (¥(d) — ¥(c)). o
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Corollary 5.23. Let f : [a,b] X [¢,d] — R be continuous and let F : [a,b] x
[e,d] — R be defined by

Fw)= [[  fetdist)  for (o) € o] x fe.d)
la,z] X [c,y
Then Fy, Fy, Fyy, and Fy, exist on |a,b] X [c,d]. Moreover,

Yo
Fz(x07y0) - f(x()»t)dt? xO»yO / f S yO

c

Foy(xo,90) = f(20,90) = Fya(xo,y0) for every (xo,y0) € [a,b] x [c, d].

Proof. Follows from part (ii) of Proposition 5.19 and of Proposition 5.20, in
light of Remark 5.21. O

Remark 5.24. For an analogue of Corollary 5.23 for the second-order partials
F,, and F),,, see Exercise 34. An alternative and easier proof of Proposition
5.20, under an additional hypothesis on continuity, and in particular, of Corol-
lary 5.23, is possible using a result known as Fubini’s Theorem that we shall
prove in the next subsection. (See Exercises 35 and 36.) <&

Two of the most important applications of the FTC in one-variable calcu-
lus are results that are usually known as Integration by Parts and Integration
by Substitution. (See, for example, Propositions 6.25 and 6.26 of ACICARA.)
We prove below an analogous formula for Double Integration by Parts, and
subsequently for Double Integration by Substitution.

Proposition 5.25 (Double Integration by Parts). Let R := [a,b] X [, d]
and let f,g,G : R — R be integrable functions satisfying the following:

The functions f and G are continuous in the first variable.

far [y, foy, Go, and Gy exist and are integrable on R.

The functions f, and G, are continuous in the second variable.
Gy exists and Gyy = g on R.

Then
J[ ro=atbuer - [[ 0.6+ 1,60+ 16

where AL (fG) = (FG)(b,d) = (fG)(b,¢) = (fG)(a, d) + (fG)(a,0).

Proof. Let H := fG. By part (iii) of Proposition 5.14, H is integrable on
R. Also, Hy = fGy + f.G and Hyy = fGay + [yGe + [2Gy + foyG. Define
h:R—Rbyh:=fg+ [.Gy+ fyGs + foyG. Then H,, = h on R. Hence by

part (i) of PrOpOblthH 5.20, we have [[,h = (Z Ccl;H A(Z Ccl)(fG) that is,

Wrto= (a(') G) = [Ig (f2Gy + fyGa + f2yG) - 0
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It may be remarked that in contrast to one-variable calculus, the function
G in the above result is not uniquely determined (up to addition by a constant)
by the function g. Indeed, even if G(z,y) is replaced by G(z,y) + ¢(x) + ¥ (y)
for any differentiable functions ¢ and v of one variable, the condition G, = g
remains valid. Also, we remark that an analogous version of the above result is
valid with f;, foy, Gz, and G4y replaced by fy, fyz, Gy, and Gy, respectively.

Proposition 5.26 (Double Integration by Substitution). Let «, 3,7v,d
be real numbers with o < 3 and vy < 6, and let E := [, 5] x [, 0] be a rectangle
in R2. Suppose ® : E — R? is a transformation given by

D (u,v) = (p(u),(v)) for all (u,v) € E,

where ¢ : (o, B] — R and 1 : [y,8] — R are differentiable functions such that
@' is integrable on [a, 5] and ' is integrable on [vy,8]. Then D := ®(E) is a
rectangle in R? and the Jacobian J(®) of ® is given by J(®)(u,v) = ¢ (u)y' (v)
for all (u,v) € E. Moreover, we have the following.

(i) If f : D — R is continuous, then (f o ®)J(®) is integrable on E and

x,y)d(x,y) = P(u,v)) J(P)(u,v)d(u,v).
//[¢<a>,¢<m]x[w<v>,w<6>]f( ptey) //Ef( (u,v)) J(®)(w, v)d(u, v)

(i) If f : D — R is integrable and if J(®)(u,v) # 0 for all (u,v) € R? with
a<u<pfandy<v<d, then (fo®)J(P)| is integrable on E and

J[ e = [ £@ o) @)oo,

Proof. Since ¢ and 1 are differentiable functions of one variable, they are
continuous. Hence from one-variable calculus (for example, Propositions 3.8
and 3.13 of ACICARA), we see that ¢ ([, ]) and v ([,0]) are closed and
bounded intervals in R. Let [a,b] := ¢ ([, 5]) and [¢,d] := 9 ([7y,0]). Then it
is clear that D := ®(E) is the rectangle [a,b] x [c,d] in R?. Also, it is clear
that J(®@)(u,v) = ¢'(u)y’(v) for all (u,v) € E. We now prove (i) and (ii).

(i) Suppose f: D — R is a continuous function. Define F': D — R by
F(z,y) = // f(s,t)d(s,t) for (z,y) € D = [a,b] x [c,d].
[a,z]x[c,y]

Then by Corollary 5.19, F, F,,, and Fy, exist and Fy, = f on D. Consider
H : E — R defined by H := F o ®. By the Chain Rule of one-variable
calculus (Proposition 4.9 of ACICARA), we see that for each fixed v € [v,4],
the function given by u —— H (u,v) is differentiable on (v, 3) and its derivative
at ug € (o, 0) is given by

Hy(ug,v) = Fr (¢(uo), 1 (v)) ¢ (uo).
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Consequently, again by the Chain Rule in one-variable calculus, we obtain

Hyy (w0, v0) = Fry (¢(u0), ¥ (v0)) ¥’ (v0)¢' (uo) = (f o @) (ug,vo)J (®)(uo, vo)

for all (ug,v9) € R? with @ < ug < 3 and v < vy < &. Note also that since
F,y exists, F, is continuous in the second variable, and therefore so is H,.
Hence by part (i) of Proposition 5.20, we see that

//f (u,v)) J (@) (u, v)d(u,v) = AL H,

and thus, in view of Corollary 5.10 and Remark 5.11, we obtain

[éf@WWDHQWWW( v) = ALO YO

= // f(z,y)d(z, y).
[¢(a), ()] x [ (7),%(8)]
This proves (i).

(ii) Suppose f : D — R is integrable and J(®)(u,v) # 0 for all (u,v) € R?
with @« < u < fand v < v < 6. Let g := (f o ®)|J(P)|. We will prove
the integrability of g and the equality of [[,, f and [[. g by showing that
L(f) < L(g) and U(f) > U(g).

Since ¢ (u)y'(v) = J(P)(u,v) # 0, we see that ¢'(u) # 0 for all u € («, )
and ¢/ (v) # 0 for all v € (v,4). Hence by the IVP of derivatives of functions
of one variable (given, for example, in Proposition 4.14 of ACICARA), it follows
that ¢ does not change sign in the open interval («, 3) and 1)’ does not change
sign in the open interval (y,0). Hence we consider the following four cases.

Case 1. ¢'(u) > 0 for all u € (a, 8) and ¥'(v) > 0 for all v € (v, 9).

In this case, ¢ is strictly increasing on [«, 3], ¢(«) = a, and ¢(3) = b. Also,
1 is strictly increasing on [y, d], ¥(y) = ¢, and ¢(d) = d. Consider a partition
P :={(z;,y;):i=0,1,...,nand j =0,1,...,k} of [a, b] X [c, d]. We shall now
show that L(P7 f) < L(g). To begin with, let u; :== ¢~ (x;) for i = 0,1,...,n
and v; = ¢~ 1(y;) for j = 0,1,...,k. Then {(u;,v;):i=0,1,...,nand j =
0,1,...,k} is a partition of [a, 8] X [ 0]. Moreover, f ([xi—1, %] X [yj-1,y;]) =
(fo<I>)([uZ 1, U] X [vj—1,v5]) and so m; ;(f) = m; i (fo®) fori=1,....n
and j =1,...,k. Also, in view of Example 5.22, we see that

(i —zim1)(y; — yj—1) = //[ . ]¢/(u)1/)/(v)d(u,v).

Since |J(®)(u,v)| = ¢'(u)y)’ (v) for all (u,v) € [a, B] X [, 0], we obtain
n k
=22 mig(F)wi = wia) (s — yi1)
i=1 j—l

-y /] mi (f 0 @) [J(®)(u,v)|d(w, ).

i=1 j=1 [wi—1,ui] X [v;—1,05]
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For ¢ = 1,....n andj =1,.. .,k‘, let g@j,hi,j : [ui_l,ui] X [Uj_l,’l}j] — R be
defined by g¢; ;(u,v) := g(u,v) and h; ;(u,v) :=m; ; (f o ®) |J(®)(u,v)|. Then
hi j is integrable on [u;—1, u;] X [vj_1,v;] and h; ; < g; ;. Thus,

=33 TED ) SHIOVED ) 18

i=1 j=1 [wi—1,ui] X [v;— 17%] i=1 j=1

Let € > 0 be given. Then for each i = 1,...,n and j = 1,...,k, there is a
partition Q;; of [u;—1,u;] x [vj_1,v;] such that L(g; ;) — % < L(Qij, i)
Now let @ denote the partition of [«, 3] x [y, §] obtained from putting together
the partitions Q; ; of [u;—1,u;] X [vj_1,v;] fori =1,....,nand j =1,...,k.
In effect, @ is the union of suitable refinements Q7 ; of Q; ; as i varies from 1
to n and j from 1 to k.! Thus, in view of Proposition 5.3, we see that

n k n k
ZZ { gl,j } < ZZ Ql,j?g’b,] S ZZ ,ngz,j (Q»g)'

i=1 j=1 i=1 j=1

It follows that

L(P, f) < ZZL (9i5) < L(Q,9)+€ < L(g)+ € for every e >0,
i=1 j=1

and so L(P, f) < L(g). Taking the supremum over all partitions P of [a, b] x
[e,d], we have L(f) < L(g). In a similar manner, we see that U(f) > U(g).

Case 2. ¢/(u) > 0 for all u € (o, 8) and ¢’ (v) < 0 for all v € (v, 0).

In this case, ¢ is strictly increasing on [a, (], ¢(a) = a, and ¢(5) = b,
whereas 1) is strictly decreasing on [y, (5], ¥(v) = d, and 9(6) = ¢. Consider,
as before, a partition P := {(xz,yj) :1=20,1,...,nand j = 0,1,...,k} of
[a,b] x [c, d]. This time, let u; := ¢~ (x ) ri=0,1,...,nand v; = ¥~ (yp_;)
for j = 0,1,...,k. Then {(u;,v;) : ¢ = 0,1,...,nandj = 0,1,...,k}
is a partition of [a, ] X [v,d]. Moreover, f([xz,l,xi] X Yk—j, Ye—jt1]) =
(fo®) ([wi—1,w] X [vj—1,v;]) and so m;k—jr1(f) = m;;(fo®) for i =
1,...,nand j =1,... k. Also, in view of Example 5.22, we see that

(@1 = i) s~ vige) = [ [ o S

Since |J(®)(u,v)| = —¢'(u)y'(v) for all (u,v) € [a, F] X [7,d], we obtain

! Asillustrated in a special case in Figure 5.6 in the proof of Proposition 5.9, merely
taking the union of the partitions Q;,; of subrectangles [u;—1,u;] X [vj—1,v;] may
not yield a partition of the rectangle [a, 3] X [, d], and it is often necessary to add
several points to each Q;; so as to obtain a legitimate partition of [a, 8] x [y, d].
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n k
=3 mik— i (@i = 2i1) Wk—jr1 — Ys—s)

i=1 j=1
- ZZ// mj (f o ®@)[J(®)(u,v)|d(u,v).
i=1 j=1 [wi—1,ui] X [vj—1,v5]

Now we proceed exactly as in Case 1 to conclude that L(f) < L(g). In a
similar manner, we see that U(f) > U(g).

Case 3. ¢'(u) < 0 for all u € (a, 8) and ¥'(v) > 0 for all v € (v, 9).
This is similar to Case 2.
Case 4. ¢'(u) < 0 for all u € (o, B) and ¢’ (v) < 0 for all v € (v, 9).
This is similar to Cases 2 and 3.
Thus, in each case we have L(f) < L(g) < U(g) < U(f). Since f is

integrable, we have L(f) = U(f), and hence L(g) = U(g) = [, f. It follows
that g is integrable and [, f = [[, g, as desired. 0

Remark 5.27. An analogue of Proposition 5.26 holds if ® is instead a trans-
formation given by

O (u,v) = (Y(v), p(u)) for all (u,v) € E,

where ¢, 1 are as in Proposition 5.26. In this case, J(®)(u,v) = —¢'(u)y)’(v)
for all (u,v) € E, and the equality of the two double integrals in part (i) takes
the form

z,y)d(z,y) = — ®(u,v)) J(P)(u,v)d(u,v),
//[w(“/)W(&)]XW(a)@(ﬁ)]f( ptey) //Ef( (u,0)) J(@)(w, v)d(u, v)

whereas the statement in part (ii) remains the same. Proofs are similar. A
result analogous to part (ii) of Proposition 5.26 for more general transforma-
tions @ is known as the change of variables formula, and it will be discussed
in greater detail in Section 5.3. <

Fubini’s Theorem on Rectangles

The easiest and the most widely used method to evaluate double integrals
is to reduce the problem to a repeated evaluation of Riemann integrals of
functions of one variable. The following result shows when and how this can
be done.

Proposition 5.28 (Fubini’s Theorem on Rectangles). Let f : [a,b] X
[e,d] — R be an integrable function and let I denote the double integral of f
on [a,b] x [e,d].

(i) If for each fized x € [a,b], the Riemann integral f flz,y)dy exists,
then the iterated integral f ( d

c

(z,y dy) dx exists and is equal to I.
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(i) If for each fized y € [c,d], the Riemann integral f; f(z,y)dx exists,
then the iterated integral fcd (f; f(x,y)dx) dy exists and is equal to I.

(iil) If the hypotheses in both (i) and (ii) above hold, and in particular, if
f is continuous on [a,b] X [c,d], then

/(/fwydy>dx—//[ab]md (2, y)d(w,y) = /(/fxydx)dy

Proof. Let € > 0 be given. By the Riemann Condition (Proposition 5.6), there
is a partition P, := {(z;,9;) :1=0,1,...,nand j =0,1,...,k} of [a,b] x[c, d]
such that

U(Pﬁvf) _L(Pﬁvf) <e€.

(i) Assume that for each fixed x € [a, b], the Riemann integral fcd f(z,y)dy
exists and consider the function A : [a,b] — R defined by

7) = / oy

Since m(f)(d — ¢) < A(z) < M(f)(d — ¢) for all = € [a,b], we see that A is
a bounded function. Also, by Domain Additivity of Riemann integrals (Fact
5.8), we have

Z " )

Yi—-1

Hence for each fixed ¢ € {1,..., n}, we obtain

. k
Zmi,j(f) —Yj— 1 Z yj—l) for all x € [xi_l,xi].

Thus, upon letting m;(A) := inf{A(z) : « € [x;_1,2;]} and M;(A) =
sup{A(z) : © € [z;—1, 2]}, we see that

k k
> mii () — yio1) < mai(A) < Mi(A) <> M, ;(f)(y; — ;)-
Jj=1 j=1

Multiplying these inequalities by z; — x;—1 and summing over ¢ = 1,...,n, we
obtain
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LP =3 [me vi = yi-1)] (@ — i)

< Zm,(A)(xZ —Ti-1)
i=1

< ZMy(A)(l“y —Ti-1)
i=1
n k

<> {ZMi,j(f)(yj - ?Jj—l)} (i = xi1) = U(Pe, f).
=1 j=1

Thus the partition P. of [a,b] X [¢, d] induces a partition P := {xg,z1,...,2,}

of [a, b] such that the difference between the upper Riemann sum U (P, A) and
the lower Riemann sum L(P, A) of A is given by

U(P,A)~ = > [Mi(A) = mi(A)] (2i—2i-1) S U(Pe, f)=L(Pe, ) < €

i=1

Hence by the Riemann Condition for functions of one variable (as given, for
example, in Proposition 6.5 of ACICARA), the function A is integrable on [a, b].
Also, since

L(P, f) < L(P,A) < /bA(w)dx <SU(PA) <U(F, f)

and since

L(P.]) < / /[ g TV SUE D),

‘//[a,b]x[c,d] flay)d(e,y) - /abA(x)dg;

Since € > 0 is arbitrary, this proves (i).

we see that

< €.

(ii) Assume that for each fixed y 6 [¢, d], the Riemann integral f; f(z,y)dx
exists and consider the function B : [¢,d] — R defined by

/fxy

A proof similar to the proof of (i) above can now be given.

(iii) If the hypotheses in both (i) and (ii) are satisfied, then the desired
equalities are an immediate consequence of (i) and (ii). If f is continuous on
[a, b] X [¢,d], then for each fixed z € [a, b], the function given by y — f(z,y)
is continuous on [¢,d], and the function given by x — f(x,y) is continuous
on [a,b], and consequently, both fcd f(z,y)dy and f; f(z,y)dz exist, that is,
the hypotheses in both (i) and (ii) are satisfied. O
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Remark 5.29. Let f : [a,b] X [¢,d] — R be a bounded function. Fubini’s
Theorem says that if f is integrable, then the double integral of f is equal
to an iterated integral of f whenever all the Riemann integrals appearing in
the latter exist. Geometrically this means that if f is a nonnegative bounded
function defined on a rectangle and if the volume of the solid under the surface
z = f(z,y) and above the rectangle [a,b] x [c,d] is well defined, then it can
be found either by calculating the areas

d
:/ fla,y)dy, € [a,b]

of cross sections of the solid perpendicular to the z-axis, or by calculating the
areas

b
B(y) = / flz,y)dz, y€le,d],
a
of cross sections of the solid perpendicular to the y-axis. <&

In the examples below, we show that Fubini’s Theorem can be used to
quickly calculate some double integrals, and also that the conclusion of this
theorem is not valid if any of its hypotheses is not satisfied.

Examples 5.30. (i) Let ¢ : [a,b] — R and ¢ : [¢,d] — R be Riemann
integrable functions of one variable. Consider f : [a,b] x [¢, d] — R defined
by f(z,y) := ¢(x)¢(y) for (z,y) € [a,b] x[c, d]. In view of Example 5.5 (ii),
part (iii) of Proposition 5.14, and Fubini’s Theorem (Proposition 5.28),
we readily see that f is integrable on [a, b] X [¢, d], and

[ e = [ ([ stowtonn)
_ (/ qS(ac)dx) (/ w(y)dy>.

In particular, given any r,s € R with r > 0 and s > 0, we have

// - d( ) (br—i-l _ ar—i—l) (ds—H _ cs+1>
z"ytd(x,y) = ,
[a,b] x [¢,d] r+1 s+ 1

provided 0 <a <band 0 <c < d.

(ii) Let R := [0, 7] x [0, 7] and let f : R — R be defined by f(x,y) := sin(z+y)
for (z,y) € R. We have seen in Example 5.13 (ii) that f is integrable.
Applying Fubini’s Theorem (Proposition 5.28), we see that

//R sin(z + y)d(z,y) = /07T [/Oﬂ sin(z +y)dy} dx

:/ —[cos(x—i—w)—cosx]dx:?/ cosxdr = 0.
0 0
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(iii) Consider the function f :[0,1] x [0,1] — R defined by

/2?2 f0<y<az<l,
flz,y):=q -1/y? if0<az<y<l,
0 otherwise.
Note that if x, := 1/n and y, := 1/y/n for n € N, then f(x,,y,) =
—n — —oo, whereas if z, := 1/y/n and y, := 1/n for n € N, then
f(zpn,yn) =n — oo. Thus f is neither bounded below nor bounded above.

Hence the double integral of f is not defined. On the other hand, if x =0
or if x =1, then

A(x) = /Olf(x,y)dy= /010dy=0,

whereas if 0 < x < 1, then

1 x 1
Al) = /O fy)dy = /O Fly)dy + / Fy)dy
z q o 1

1
1 1 1
= dy+/ dy = x—i—[} =1.
/0 z? e Y z? v,

Thus except at the two endpoints of [0,1], A is the constant function 1
on [0,1]. So it follows (using, for example, Proposition 6.12 of ACICARA)
that the function A : [0,1] — R is integrable. Moreover, by Proposition
5.28, we have

/O1 [/Olf(x,y)dy} da::/olA(x)dx:/Olldle.

Similarly, if y = 0 or if y = 1, then

B(y) = / f(x,y>dx=/olodx=o,

and if 0 < y < 1, then

1 Y 1
B(y) = /0 f(ay)de = /0 fapdo+ [ fGag)do
Yy
v _q 1 1 17!
:/0 yzdx—i—/y xde:_yQ Sy + [_x]y:—l.

So, as before, the function B : [0,1] — R is integrable and

/01 [/Olf(x,y)dx] dyz/olB(y)dy:/ol_ldy:_L

This example shows that both the iterated integrals can exist without
being equal. The reason Fubini’s Theorem does not apply here is that f
is not integrable on [0, 1] x [0, 1].
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(iv) In one-variable calculus, we come across the Thomae function, namely,
the function ¢ : [0,1] — R defined by

1 ifax=0,

1/qitx € @N[0,1] and = = p/q, where p,q € N
are relatively prime,

0 otherwise.

¢(x) =

It is shown that ¢ is Riemann integrable on [0, 1] and fol ¢(z) dz = 0. (See,
for instance, Example 6.16 of ACICARA.) Let us consider a variant of this

function, namely, the bivariate Thomae function f : [0,1] x [0,1] = R
defined by

1 ifz=0andyeQn]o,1],

1/q if 2,y € QN[0,1] and = = p/q, where p,q € N
are relatively prime,

0  otherwise.

flx,y) =

First we show that f is integrable. Let ¢ > 0 be given. Let us assume
without loss of generality that € < 2. Then the set

{z €]0,1] : f(z,y) > ¢/2 for some y € [0,1]}

is finite and it contains 0; thus we may write it as {ci1,...,c¢} for some
¢ € N. Let {zg,x1,...,2,} be a partition of [0,1] such that (z; — z,-1) <
e/4¢ for i = 1,...,n, and consider the partition

Pe = {(xO»O)v (.’to, 1)7 (xlv 0)7 (xlv 1)7 ERR) (SCn,O), (xn» 1)}

of [0,1] x [0,1]. Since there is always an irrational number in [z;_1, 2],
we have m; 1(f) =0 for i = 1,...,n, and so L(P., f) = 0. Also, noting
that f(x,y) <1 for all (x,y) € [0,1] x [0, 1], and that the points ¢1, ..., ¢y
belong to at most 2¢ subintervals among [zg, 21], ..., [2,_1,2,] and also
that f(z,y) < €¢/2 whenever (z,y) belongs to any of the remaining sub-
rectangles, we obtain

UP., f)= ZMvi,l(f)(ﬂ«"i —zi-1)(1-0)

€ €
< g2ty ;(x —zi_1)(1-0)=e.
Thus U(P., f) — L(P., f) < ¢ = 0 = e. The Riemann Condition implies
that f is integrable. Moreover, since f(z,y) > 0 for all z € [0,1] x [0, 1],
we see that

// f(z,y)d(z,y) = inf{U(P, f) : P a partition of [0,1]x[0,1]} = 0.
[0,1]x[0,1]
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Next, let us consider one of the iterated integrals. To this end, fix y € [0, 1].
If y ¢ Q, then f(x,y) =0 for all z € [0,1], and so

B(y) == /0 f(y)dz = 0,

and if y € Q, then the function ¢, : [0,1] — R defined by ¢, (z) = f(z,y)
is Thomae’s function on [0,1]. Hence ¢, is Riemann integrable and its
integral is equal to zero. Thus,

B) = [ g = / gy @)z = 0.

Consequently, the iterated integral

/0 1 ( /0 1 f(w)dx) dy = /0 By

exists and is equal to zero in conformity with Fubini’s Theorem. On the
other hand, consider a fixed x € [0,1]. If ¢ Q, then f(x,y) = 0 for all
y € [0,1], and so

Aw) = [ iy = o

Next, if  := 0, then the function vy : [0,1] — R given by o (y) := f(0,y)
is the Dirichlet function on [0, 1], whereas if > 0 and = = p/q, where
p,q € N have no common factor, then the function v, : [0,1] — R given
by . (y) := f(x,y) is the Dirichlet function on [0, 1] multiplied by 1/¢,
and as remarked in Example 5.5 (iii), this function is not integrable on
[0,1]. Hence for any € Q N[0, 1], fol f(x,y)dy does not exist. Thus the

iterated integral fol ( fol fz, y)dy) dzx is not defined. This example shows

that a function f : [a,b] X [¢,d] — R can be integrable and yet one of its
iterated integrals may not exist. See also Exercise 32. &

Riemann Double Sums

Let f : [a,b] x [¢,d] — R be a bounded function. We have seen that the inte-
grability of f on [a,b] X [¢,d] can be characterized by the Riemann Condition.
Although we have made good use of the Riemann Condition to prove several
interesting results earlier in this section, there are a number of difficulties in
employing it to test the integrability of an arbitrary bounded function. To
begin with, the calculation of U(P, f) and L(P, f), for a given partition P, in-
volves finding suprema and infima of f over many subintervals of [a, b] x [c, d].
This task is rarely easy. Next, it is not clear how one would go about finding
a partition P for which U(P, f) — L(P, f) is smaller than a prescribed positive
value. Faced with these difficulties, we note that evaluating f at points of
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[a,b] x [e,d] is much easier than finding suprema and infima of f over subin-
tervals. With this in mind, we introduce the following variant of lower and
upper double sums.

Let P := {(x;,y;) : i =0,1,...,nand j = 0,1,...,k} be a partition of
[a,b] x [¢,d]. Consider s; € [z;—1,2;] for ¢ = 1,...,n and t; € [y;_1,y;] for
j=1,...,k. Then

n k
S(Pf) =) > flsinty) (@i —wi1)(y; — yj-1)

i=1 j=1

is called a Riemann double sum for f corresponding to P. It should be

noted that S(P, f) depends not only on P and f, but also on the choice of the
points (s;,t;) in the (¢, j)th subrectangle induced by P for ¢ = 1,...,n and
j=1,...,k In any case, we always have L(P, f) < S(P, f) < U(P, f).

It turns out that the integrability of f can be characterized in terms of
Riemann double sums. To this end, we will use the notion of the mesh of a
partition that was introduced at the beginning of this section and the upper
bounds obtained in Lemma 5.2. It will follow that when a function f is inte-
grable, the integral of f is, in some sense, a ‘limit’ of the Riemann double sums
S(P, f) as the mesh of P tends to zero. In particular, one can readily obtain
a sequence (P,) of partitions of [a,b] X [c,d] such that S(P,, f) converge to
the integral of f.

Proposition 5.31 (Theorem of Darboux). Let [ : [a,b] X [¢,d] — R be
a bounded function. If f is integrable on [a,b] X [c,d], then given any e > 0,
there is & > 0 such that for every partition P of [a,b] X [c,d] with u(P) < 4,
we have

S(P.f)— / /{M}X[C’d] fle.y)d(ey)| < e

where S(P, f) is any Riemann double sum for f corresponding to P.
Conversely, assume that there is r € R satisfying the following condition:
Given € > 0, there is a partition P of [a,b] X [¢,d] such that

IS(P, f) —r| <e

where S(P, f) is any Riemann double sum for f corresponding to P. Then f
is double integrable and its double integral is equal to r.

Proof. First, assume that f is integrable on [a, b] X [¢,d], and let I(f) denote
the double integral of f on [a, b] X [¢, d]. Let € > 0 be given. Since I(f) = U(f),
there is a partition P; of [a,b] X [¢,d] such that U(Py, f) < I(f) + (¢/2).
Likewise, since I(f) = L(f) as well, there is a partition P, of [a, b] X [¢, d] such
that L(Ps, f) > I(f) — (¢/2). Let Py be the common refinement of P; and Ps.
Then in view of part (i) of Proposition 5.3, we have

U(Ro. f) SUPLS) <I(f)+ o and L(Po, f) = L(Pe. ) > 1(f) =
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Let a > 0 be such that |f(z,y)| < « for all (z,y) € [a,b] X [¢,d], and let £ :=
2 (b — a+ d — c¢) be the perimeter of [a,b] x [c,d]. Let mq denote the number
of grid points of the partition Py in [a,b) x [¢,d), and define § := €/2almy.
Suppose P is any partition of [a,b] X [¢,d] such that p := u(P) < 6. Let P*
denote the common refinement of P and P,. Then P* is obtained from P
by successive one-step refinements by points of Py. By successively applying
Lemma 5.2 to each of the mg points of Py, we see that

UP f)<U(P*, )+ moaul and L(P,f)> L(P*, f)— moaul.

Further, in view of part (i) of Proposition 5.3, we have
€ €
UP' f) U f) <I(H)+ 5 and L(P".f) = L(Ro.f) > 1(f) = .
Combining the last two sets of inequalities displayed above and noting that
moaul < (€/2), thanks to our choice of §, we see that

I(f) —e < L(P,f) <S(P,f) SU(P,f) < I(f) + ¢

and hence |S(P, f) — I(f)| < ¢, as desired.

Conversely, suppose there is r € R satisfying the condition in the second
paragraph of the proposition. Let ¢ > 0 be given, and let P := {(z;,y;) :
i=0,1,...,nand j = 0,1,...,k} be a partition of [a,b] X [¢,d] such that
|S(P, f) —r| < (¢/4) for any Riemann double sum S(P, f) for f corresponding
to P. Now, for each ¢ = 1,...,n and j = 1,...,k, we can find (s;,t;) and
(éi,fj) in [x;—1, %] X [yj—1,y;] such that
€

Mij(f) < f(sist;) + , and mij(F) > f (3ints) =,

4A

where A:=(b—a)(d—c)=>", Zle(xi —2i-1)(y; — yj—1). If we consider
the specific Riemann double sums

n k
S(Pf) =) > flsinty) (@i —wi1)(y; — yj-1)
i=1 j=1
and i
S )= f(Ginty) (i — zio1)(y; — yj-1),
i=1 j=1
then on the one hand,
UP.H) <S(P.H+ ) and L(P.f)>S8(Pf)~ .

whereas on the other hand,

€

S(pjf)_g(P,f)gS(P,f)—r+r—§(P,f)< i-i-i: 9
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Consequently,

UP.) = L(P.)) < S(P.H) = S(P+ |+ < oy =c
Since f satisfies the Riemann Condition, f is integrable. Furthermore, if I(f)
denotes the double integral of f on [a,b] X [¢,d], then

r—g<§(P,f)—z<L(P,f)SI(f)SU(P,f)<S(P,f)+2<r+;.

Thus |r — I(f)| < (¢/2). Since € > 0 is arbitrary, we obtain r = I(f). O

Corollary 5.32. If f : [a,b] X [¢c,d] — R is integrable and if (P,,) is a sequence
of partitions of [a,b] X [¢,d] such that p(P,) — 0, then

S(Pm f) - //[a,b]x[c,d] f’

where S(P,, f) is any Riemann double sum for f corresponding to P,.

Proof. Let I(f) denote the double integral of f on [a,b] X [¢,d], and let € > 0
be given. By Proposition 5.31, there is 6 > 0 such that |S(P, f) — I(f)| < ¢
for every partition P of [a, b] X [¢, d] with u(P) < §. Since u(P,) — 0, there is
no € Nsuch that u(P,) < § for all n > ng. Consequently, |[S(Py, f) — I(f)| < e
for all n > ng. Thus S(P,, f) — I(f). O

Remark 5.33. It may be tempting to define the mesh of a partition P =
{(zi,y;) :1=0,1,....,nand j =0,1,...,k} of [a, b] X [c, d] to be the maximum
of the areas of subrectangles induced by P, that is, to define u(P) to be
max{(z; — z;—1)(y; —yj—1) 1t = 1,...,nand j = 1,...,k}. However, with
this definition, the Theorem of Darboux (Proposition 5.31) and Corollary 5.32
do not hold. To see this, consider the bivariate Thomae function defined in
Example 5.30 (iv). This is an integrable function f : [0,1] x [0,1] — R with
the property that f(0,y) = 1 = f(l,y) for all y € QN [0,1] and I(f) =
0, where I(f) denotes the double integral of f on [0,1] x [0,1]. If for any
k € N, we let P, := {(i,j/k) : i = 0,1and j = 0,1,...k}, then P} is a
partition of [0,1] x [0,1] such that the area of each subrectangle induced
by Py is 1/k, which tends to 0 as k& — oo. However, the Riemann double
sum S(Py, f) = 2;21 2?21 f(i,j/k)(1/k) is equal to 1 for every k € N.
In particular, S(Px, f) # I(f). This example shows why it is important to
define the mesh of a partition as the maximum of the lengths of sides of
the subrectangles induced by it. An alternative, and essentially equivalent,
definition would be to take the mesh of a partition as the maximum of the
diameters of the subrectangles induced by it. <&
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5.2 Double Integrals over Bounded Sets

In this section we extend the theory of double integrals on rectangles devel-
oped in Section 5.1 to double integrals over an arbitrary bounded subset D
of R?. The approach followed here is to extend the function to a rectangle
containing D by setting the extended function equal to zero outside D. While
we have maintained a minor linguistic distinction, whereby we talk of inte-
grals over D as opposed to integrals on a rectangle, it is quickly shown that
the definition of integrals over D is independent of the choice of the rectangle
containing D, and, in particular, consistent with the definition of integrals
on rectangles. Algebraic and order properties are obtained as an immediate
consequence of the corresponding results in Section 5.1. Further, Fubini’s The-
orem (Proposition 5.28) extends easily to integrals over regions that can be
nicely sliced along one of the axes. Asserting the integrability of important
classes of functions, such as continuous functions, does present some difficul-
ties. The trouble is that even if a function is continuous on D, its extension
to a rectangle containing D may well be discontinuous on the boundary of D,
and can even fail to be integrable. To tackle this, we require a suitable notion
to say that the boundary of D is “thin”, in which case continuous functions
on D become integrable. To this end, we introduce sets of content zero and
prove a number of basic properties. This leads to a general definition of the
“area” of a bounded subset of R%2. We end this section with a general version
of domain additivity (Proposition 5.9).

Let D be a bounded subset of R? and let f : D — R be a bounded
function. Consider a rectangle R := [a,b] X [¢,d] such that D C R and the
function f*: R — R defined by

f(x,y) if (x,y) € D,
0 otherwise.

We say that f is integrable over D if f* is integrable on R, and in this case,
the double integral of f (over D) is defined to be the double integral of f*

(on R), that is,
//Df(x»y)d(x,y) = //Rf*(x,y)d(x,y),

Let us first observe that the double integral of f is well defined. In other
words, the integrability of f over D and the value of its double integral are
independent of the choice of a rectangle R containing D and the corresponding
extension f* of f to R. This can be seen as follows. Let

a1 :=inf{x € R: (z,y) € D for some y € R},
by :=sup{z € R: (z,y) € D for some y € R},
¢ = inf{y € R: (x,y) € D for some = € R},
dy :=sup{y € R: (z,y) € D for some = € R}.
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Consider Ry := [a1,b1] X [c1,d4]. Clearly, Ry is uniquely determined by D.
Since D C R, we see that a < a; < by < band ¢ < ¢; < dy < d, that
is, Ri C R. If f; := f";l, it is enough to show that f* is integrable on R
if and only if f{ is integrable on Ry, and in this case [, f*(z,y)d(z,y) =
Sz, fi (2 y)d(z,y).

Assume first that a; = by or ¢; = dy. Then f*(z,y) = 0 for all (x,y) € R?
except when either = a1 or y = ¢;. The domain additivity (Proposition 5.9)
and Example 5.7 show that f* is integrable on R and [, f*(z,y)d(x,y) = 0.
Also, by our definition, f; is integrable on Ry and [[, f{(z,y)d(z,y) = 0.

Now assume that a1 < by and ¢; < d;. If Ry = R, then there is nothing
to prove. Otherwise, the rectangle R gets divided into p subrectangles, where
p=2,3,4,6 or 9, depending on whether « = a1, b = by, ¢ = ¢1, d = dy. One of
these p subrectangles is the rectangle R;. These cases are illustrated in Figure
5.7. By domain additivity (Proposition 5.9), f* is integrable on R if and only
if it is integrable on each of these subrectangles, and then the double integral
of f* on R is the sum of the double integrals of f* on these subrectangles. If
R is any of these subrectangles of R, other than the subrectangle Ry, then
f*(z,y) = 0 for every (x,y) € Ra except possibly at some of the points on the
sides of Ry. Example 5.7 shows that f* is integrable on Ry and the double
integral of f* on Ry is equal to 0. This proves our assertion.

dl dl

c1 C1

dy

dy

€1

€1

a by a by a; by

Fig. 5.7. Various possibilities for the subrectangle R;.

If D is a bounded subset of R? and f : D — R is integrable, then we may
denote the double integral

//Df(iv,y)d(m,y) simply by //Df

If, in addition, f is nonnegative, then the volume of the solid under the
surface given by z = f(z,y) and above the region D is defined to be the
double integral of f over D. Thus
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Vol(Ey) := //D [z, y)d(z,y),

where
Ep:={(z,y,2) €R’: (x,y) € D and 0 < 2 < f(z,y)}.

We now consider the algebraic and the order properties of a double integral,
and derive an analogue of Propositions 5.14 and 5.16.

Proposition 5.34. Let D be a bounded subset of R% and let f,g: D — R be
integrable functions. Also let r € R and k € N. Then

(i) f 4+ g is integrable and [[,(f+9) = [[p f+ [p 9
(ii) rf is integrable and [[,(rf)=7r [[, [,
(iii) fg s integrable,
(iv) if there is & > 0 such that |f(xz,y)| > § for all (z,y) € D, then 1/f is
integrable,
(v) if f(z,y) >0 for all (z,y) € D, then the function f'/* is integrable,
(Vi) if f < g on D, then [[,f < [[59,
(vii) the function |f| is integrable and | [[, f| < [[, |f]-

Proof. Let R be arectangle such that D C R and let f*, g*, (f+9)*, (rf)*, (fg)*
denote, respectively, the extensions of f, g, f 4+ g,7f, fg to R by setting these
equal to zero on points of R\ D. It is clear that

(f+g) =f"+g" f)y=rf", and (fg)"=f"g"

Thus (i), (ii), and (iii) follow as an immediate consequence of parts (i), (ii),
and (iii) of Proposition 5.14.

To prove (iv), assume that ¢ > 0 such that |f(x,y)| > ¢ for all (z,y) € D,
and let h:=1/f. Define h* : R — R by extending the function h : D — R as
usual, that is,

B (2, y) = h(z,y) if (z,y) € D,
Y= 0 otherwise.

Since 1/h* is not even well defined unless R = D, we cannot give a proof as
above. We therefore modify the proof of part (iv) of Proposition 5.14, and
proceed as follows.

Let P := {(z;,y;) :4=0,1,...,nand j =0,1,...,k} be a partition of R.
Fix 4,5 € N with ¢ < n and j < k, and consider (z,y), (u,v) € [zi_1,2;] X
[yj—1,y;]. We show that

W)~ B () < ) Mo () = mas ()]

by considering various cases separately.
Case 1. (z,y) € D and (u,v) € D.
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In this case we have

f*(l',y) = f(J"?y) < Mi7j(f*) and f*(u7v) = f(uvv) > m%](f*)
Hence

f(u7v)_f(x’y) < |f(u,v)—f(x,y)|
f@,y)f(u,0) = [f(z,9)] |f(u,0)|

< ) ().

h*('r’y) - h*(u7v) =

Case 2. (z,y) ¢ D and (u,v) € D.
In this case h*(z,y) = 0 = h*(u,v). Since M; ;(f*) — m,;(f*) > 0, we are
through.

Case 3. (z,y) € D and (u,v) ¢ D.
In this case h*(z,y) —h*(u,v) = 1/ f(x,y). If f(z,y) < 0, then we are through.
If f(xz,y) > 0, then in fact f(z,y) > J, and so M, ;(f*) > 6. On the other
hand, since (u,v) € D, we have m; ;(f*) < 0. Hence

M;;(f*) 1

h*(xvy) - h*(u,v) < 52 [

IA

1
5 Moy (%) = mi (1)
Case 4. Let (x,y) € D and (u,v) € D.
In this case h*(z,y) — h*(u,v) = —1/f(u,v). If f(u,v) > 0, then we are
through. If f(u,v) < 0, then in fact f(u,v) < —6, and so m; ;(f*) < —d. On
the other hand, since (z,y) ¢ D, we have M, ;(f*) > 0. Hence
m; 4 * 1

gif ) < go Mg (f7) = ma (f)).

Having established the desired inequality in all possible cases, we now pro-
ceed as in the proof of part (iv) of Proposition 5.14. Thus, taking the supre-
mum for (z,y) in [z;—1, z;] X [y;—1,y;] and the infimum for (u,v) in [z;_1, z;] X
[yjfl,yj], we obtain Mi,j(h*) — mi,j(h*) S (1/52) [Mi,j(f*) — mi’j(f*)], and
consequently U(P,h*) — L(P,h*) < (1/6%) [U(P, f*) — L(P, f*)]. Now, since
¥ satisfies the Riemann Condition, so does h*. Thus h* is integrable on R,
that is, h is integrable over D. This proves (iv).

To prove (v), it suffices to observe that if f > 0 on D, then f* > 0 on R
and (f1/%)* = (f*)/*, and so the desired result is an immediate consequence
of part (v) of Proposition 5.14.

Finally, the order properties (vi) and (vii) follow from Proposition 5.16 by
noting that f < g implies f* < ¢g* and also that |f|* = |f*|. O

W (y) — () < < -

With notation and hypotheses as in the above proposition, a combined
application of its parts (i) and (ii) shows that the difference f — g is integrable

and [[,(f —g) = [[, [ — [[;g- Further, given any n € N, successive appli-
cations of part (iii) of the above proposition show that the nth power f™ is
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integrable. Likewise, a combined application of parts (iii) and (iv) shows that
if there is 6 > 0 such that |g(z,y)| > ¢ for all (z,y) € D, then the quotient
f/g is integrable. Also, a combined application of parts (iii) and (v) shows
that if f(z,y) > 0 for all (z,y) € D, then given any positive r € Q, the rth
power f" is integrable since r = n/k, where n, k € N.

Remark 5.35. Let D be a bounded subset of R? and let f : D — R be any
function. Then

-1

I+
= 9 and 5

f=ft—f", where f*: f

Note that both f™ and f~ are nonnegative functions defined on D, and

f*(x,y) = max{f(x’y)70} and fi('r’y) = _min{f(x’y)70} for (.li,y) €D.

The functions f* and f~ are known as the positive part and the negative
part of f, respectively. By parts (i), (ii), and (vii) of Proposition 5.34, we see
that f is integrable if and only if fT and f~ are integrable, and then

//Df=/Df+_//Df— and //D|f|://Df++//Df_'

The integral of f over D may be interpreted as the “signed volume” of the
solid in R? delineated by the surface given by z = f(x,y), (z,y) € D. &

Fubini’s Theorem over Elementary Regions

In Section 5.1, we have given a useful method of evaluating a double integral
on a rectangle by converting it to an iterated integral. The relevant result of
Fubini, when generalized to other subsets of R2, yields the most convenient
way to calculate double integrals over a variety of regions. A precise definition
of the kind of regions for which Fubini’s Theorem is applicable is given below.

Let D be a bounded subset of R?. If there are ¢1, ¢2 : [a,b] — R such that
¢1 and ¢o are integrable, ¢1 < ¢o, and

D={(z,y) eR*:a <z <band ¢1(z) <y < ¢o(x)},

or if there are 11,15 : [¢,d] — R such that ¢; and ¥, are integrable, ¢ < 1,
and
D= {(z,y) eR*:c <y < dand ¢1(y) <z <y},

then D is called an elementary region. (See Figure 5.8.)
Clearly, a rectangle is an elementary region in R2. Also, if @ > 0, then the
disk D := {(x, y) ER? 2% + 92 < a2} is an elementary region in R?, since

D:{(x,y)ERzz—anSaand —\/az—ngyg\/az—xz},
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Fig. 5.8. Illustration of elementary regions

or alternatively,
D:{(x,y)€R2:—a§y§aand Va2 —yp2<z< \/az—yz}.

An essential feature of any elementary region D is the following: either
there are a,b € R such that for every = € [a,b], the vertical slice of D at z
is a closed and bounded interval, or there are ¢,d € R such that for every
y € [¢,d], the horizontal slice of D at y is a closed and bounded interval.

There do exist bounded subsets of R? that are not elementary regions.
For example, let D denote the star-shaped (closed and bounded) subset of R?
shown in Figure 5.9. Then D is not an elementary region, since for any = € R
with 1 < |z| < 2, the vertical slice of D at z is not an interval, and for any
y € R with 1 < |y| < 2, the horizontal slice of D at y is not an interval.

Y
(—2,2) (2,2)
xXr
(—1,0) (1,0)
(—2,-2) (2,-2)

Fig. 5.9. A star-shaped subset of R? that is not an elementary region

Proposition 5.36 (Fubini’s Theorem over Elementary Regions). Let
D be an elementary region in R? and let f : D — R be an integrable function.
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() If D = {(z,y) € R?2: a <z < band ¢1(x) < y < ¢a(x)}, where
¢1, 02 : [a,b] — R are Riemann integrable, and if for each fixed x € [a,b], the
Riemann integral fflz((;)) fx,y)dy exists, then

/[ s@wiea = [ b ( /¢ i()) f<x,y>dy> dr.

(i) If D := {(z,y) € R? : c <y < dand ¥1(y) < x < a(y)}, where
1,12 : [e,d] — R are Riemann integrable, and if for each fized y € [c,d], the

Riemann integral fiz((yy)) f(z,y)dx exists, then

/[ r@wiea - | ' ( /w w(()) f(a:,wdx) dy.

Proof. (i) Let D and ¢1, ¢ be as stated in (i). In particular, assume that for
each fixed z € [a,b], the Riemann integral fd)f((z) f(z,y)dy exists. Define

)

c:=inf{¢1(z) : x € [a,b]} and d:=sup{ga(x):x € [a,b]}.

Then ¢ < d. Let R := [a,b] X [¢,d]. Now for each fixed x € [a, ],

flzy) ify € [pi(x), d2(z)],

o= {0 if y € e, ¢1(x)) or y € (p2(x),d].

Hence by domain additivity of Riemann integrals (Fact 5.8), for each z € [a, b],
the Riemann integral fcd f*(z,y)dy exists, and we have

d $1(x) $a(x) d
(x,y)dy = (@, y)dy + *(x,y)dy + (@, y)d
/Cf(wy)y /C [ (x,y)dy /¢ T (z,y)dy / [ (x,y)dy

1(x) ¢a2(x)

$2 ()

= / [z, y)dy.
¢1(z)

Thus by Fubini’s Theorem for the function f* (Proposition 5.28), we have

/[ s = [[ 7= [ ( / ¢(()) f(x,y)dy) .

(ii) The proof is similar to the proof of part (i) above. O

Sets of Content Zero

If a function of one variable does not have too many discontinuities, then it
is Riemann integrable. More precisely, if f : [a,b] — R is bounded and if
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the set of discontinuities of f is of (one-dimensional) content zero, then f is
Riemann integrable. (See Remark 5.42 below.) Recall that a bounded subset
C of R is said to be of one-dimensional content zero if for every ¢ > 0,
there are finitely many closed intervals whose union contains C' and the sum
of whose lengths is less than e. Examples of subsets of R of one-dimensional
content zero include finite sets, the set {1/n : n € N} and, in general, any
C' C R such that the interior of C' is empty and dC is of content zero. (See,
for example, Exercise 53 in Chapter 6 of ACICARA.) We shall now discuss an
analogous notion for subsets of R?, which will turn out to be especially useful
in the sequel. Let E be a bounded subset of R2. We say that E is of (two-
dimensional) content zero, or that F has (two-dimensional) content
zero, if the following condition holds: For every € > 0, there are finitely many
rectangles whose union contains E and the sum of whose areas is less than e.

We list below some basic properties of subsets of R? of content zero. Here
and hereinafter, we will simply speak of sets of content zero, that is, suppress
the prefix “two-dimensional,” while dealing with subsets of R2. On the other
hand, when we consider subsets of R of content zero and, later in this chapter,
subsets of R3 of content zero, we will explicitly mention the prefixes “one-
dimensional” and “three-dimensional” as the case may be.

Proposition 5.37. Let E be a subset of R?.

(i) If E is of content zero, then every subset of E is of content zero.

(ii) If E is a finite union of sets of content zero, then E has content zero.

(iii) If E is of content zero, then its closure E is of content zero.

(iv) E is of content zero if and only if E has no interior point and its boundary
OF is of content zero.

(v) If E = Cx D, where C C R is of one-dimensional content zero and D C R
s bounded, then E is of content zero.

Proof. Both (i) and (ii) are obvious consequences of the definition of a set
of content zero. To prove (iii), observe that rectangles are closed subsets of
R2. It follows that if E is contained in the union of finitely many rectangles,
then E is also contained in that union. Next, to prove (iv), first suppose E is
of content zero. Then by (iii), E is of content zero. But by Proposition 2.7,
E = EUOQE, and hence by (i), OF is of content zero. Further, if (g, o) is an
interior point of F, then there is a rectangle R such that (zo,y0) € R C E.
Now if € > 0 is smaller than the area of R, then F cannot be covered by a finite
union of rectangles having the sum of their areas less than e. Thus E has no
interior points. Conversely, suppose F has no interior points and its boundary
OF is of content zero. Since every point of F is either an interior point of F or
a boundary point of E, it follows that £ C 0F and hence by (i), we conclude
that F is of content zero. Finally, to prove (v) suppose E = C x D, where
C C R is of one-dimensional content zero and D C R is bounded. Then there
are o, € R with a < 8 such that D C [«, ]. Now, given any € > 0, there
are finitely many closed intervals [ay, b1], ..., [an, b,] whose union contains C'
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and the sum of whose lengths is less than ¢/(8 — «). It follows that the sum
of areas of the rectangles [a1,b1] X [, 5], ..., [an, bn] X [, 0] is less than € and
the union of these rectangles contains E. Thus F is of content zero. O

Corollary 5.38. Let Ey and Ey be subsets of R? such that OE, and OE5 are
of content zero. Then each of the sets O(E1 U Es), O(E1NEy), and O(E; \ E2)
s of content zero.

Proof. Observe that each of 0(E1UE3), 0(E1NEs), and O(E; \ Es) is a subset
of OF, UJEs,, and use parts (i) and (ii) of Proposition 5.37. O

Examples 5.39. (i) Every finite subset of R? is of content zero. But there
also exist infinite subsets of R? that are of content zero. For example, the

infinite set 11
E::{( , >6R2:n,keN}
n' k

is of content zero. This follows by considering a square of arbitrarily small
size with center (0,0) and noting that only a finite number of points of
the set E lie outside any such square. On the other hand, the infinite set
D = {(z,y) € [0,1] x [0,1] : z,y € Q} is not of content zero. This can
be seen by noting that if the set D is contained in the union of finitely
many rectangles, then this union also contains the square [0,1] x [0, 1].
Notice that both E and D are countable sets, that is, each of them is in
one-to-one correspondence with N.

(ii) The graph of a Riemann integrable function is of content zero. More
precisely, if ¢ : [a,b] — R is Riemann integrable, then the set E :=
{(z,¢(z)) € R? : = € [a,b]} is of content zero. To prove this, let
€ > 0 be given. By the Riemann Condition for functions of one vari-
able (given, for example, in Proposition 6.5 of ACICARA), there is a par-
tition P = {xg,x1,...,2,} of [a,b] such that U(P,¢) — L(P, ¢) < e. Let
R; = [wi—1, x5] X [mi(¢), M;(¢p)] for ¢ = 1,...,n. Clearly, E is contained
in the union of Ry,..., R,, and

n n

> Area(Ri) = Y [Mi()) — mi(9)|(w; — zi-1) = U(P,¢) — L(P,¢) < e.
i=1 i=1
Thus E is of content zero. Similarly, it can be seen that if ¢ : [¢,d] — R
is an integrable function, then the set {(¥'(y),y) € R? : y € [¢,d]} is of
content zero. In particular, if L is any line segment (of finite length) in
R2, then L is of content zero, and so is any subset of L. O

Remark 5.40. In contrast to Example 5.39 (ii) above, images of parametric
curves in R? need not be of content zero. More precisely, there can be contin-
uous functions z,y : [0, 1] — R such that the set C' := {(z(t),y(t)) : t € [0,1]}
is not of content zero. In fact, C' can be equal to the entire unit square
[0,1] x [0,1]; parametric curves with this property are called space-filling
curves. For an explicit example, see Exercise 14 in Chapter 7 of Rudin’s
book [48]. For more on space-filling curves, see the book of Sagan [50]. <&
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Let us use the notion of sets of content zero to prove a neat generalization
of part (ii) of Proposition 5.12.

Lemma 5.41. Let R be a rectangle in R? and f : R — R a bounded function.
If the set of discontinuities of f is of content zero, then f is integrable on R.

Proof. Let E denote the set of discontinuities of f and let € > 0 be given.
Since F is of content zero, there are finitely many rectangles Ry, ..., R,, such
that

m m
€
E C R; d A R; .
C l:le ;  an ;_1 rea(R;) < 5

We may assume without loss of generality that the rectangles Ry, ..., R, are
contained in the rectangle R. For each ¢ = 1,...,m, we enlarge R; slightly
across cach of its sides (except when a side of R; lies on a side of R) and
obtain a rectangle S; such that

E C GRi C GSi CR and iArea(Si) < e.
i=1 ;

i=1 i=1

We then extend all four sides of each of the rectangles Si,...,5,, till they
meet the boundary of R; this is indicated by the dashed lines in Figure 5.10.
This gives a partition P, of R such that each subrectangle induced by P, is
either contained in the union of Si,...,S,, or is disjoint from the union of
Rq,..., R,,. Hence the sum of the areas of all the subrectangles induced by
the partition P. that intersect F is less than or equal to the sum of the areas
of the rectangles S1, ..., Sy, and hence less than e.

T
I
I
I
I
R
I
I
I
I
I
F--——-r

Fig. 5.10. The set E of content zero covered by small rectangles R, ..., R, and
by slightly larger rectangles Si,..., Sm.

Let Dy denote the union of all the subrectangles induced by P. that do
not contain any point of E. Then f is continuous at every point of Dy, and
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since Dy is a closed and bounded subset of R2, f is uniformly continuous on
Dy (Proposition 2.37), that is, there is § > 0 such that

($7y), (u,v) € DOv |.’E—U| < ¢ and |y—’U| <0= |f(x,y)—f(u,v)| <e

Let P’ := {(z;,y;) :¢=0,1,...,nand j =0,1,...,k} be a refinement of P.
such that |z; —x;—1| <dfori=1,...,nand |y; —y—1| <dforj=1,... k.
We will use the partition P to show that f satisfies the Riemann Condition.

First, note that for ¢ = 1,...,n and 7 = 1,...,k, the subrectangles

R; j = [xi—1, %] X [yj—1,y;] induced by P fall into two categories according
as whether or not they intersect E. Thus the indexing set A := {(¢,7) : i =
1,...,nand j =1,...,k} is a disjoint union of A; and Ay, where

A1 = {(Z,]) cA: R,‘,J NE = (Z)} and A2 = {(Z,]) cA: R@j HE# (Z)}

Clearly,
that

i j)E R;; € Dy. So the uniform continuity of f on Dy implies

flz,y) — f(u,v) <e forall (z,y), (u,v) € R;;, provided (i,7) € Ay.
Consequently,
Mi,j(f) - mi,j(f) <e for (Z,]) €A

On the other hand, since the function f is bounded on R, there is o > 0 such
that —a < f(z,y) < a for all (z,y) € R, and consequently, M; ;(f) < a and
mij(f) > —afori=1,...,nand j=1,...,k Thus,

M;;i(f) —mi;(f) <2« for (i,j) € Ay and Z Area(R; ;) < ¢
(i’j)€A2
It follows that

U(P, f) - Z

i

M;r

= mi i ()] (T — 2i-1)(yj — yj-1)

Il
-

E —a)(d—c)+ 2ae
:[(b a)(d — ¢) + 2ale.

Since € > 0 is arbitrary, the Riemann Condition (Proposition 5.6) shows that
f is integrable on R. O

Remark 5.42. An argument similar to (and in fact, simpler than) that in
the proof of Proposition 5.41 proves the following one-variable analogue: If
¢ : la,b] — R is a bounded function such that the set of discontinuities of
¢ is of one-dimensional content zero, then ¢ is Riemann integrable on [a, b].
(Compare Exercise 55 in Chapter 6 of ACICARA.) &
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We are now ready to show that a continuous function on a bounded subset
of R? is integrable provided the boundary of its domain is thin, that is, it is of
content zero. In fact, we shall prove a more general result, similar to Lemma
5.41, which gives a sufficient condition for a possibly discontinuous function
defined on a bounded subset of R? to be integrable. In practice, this condition
is very useful for checking the integrability of a function and, in turn, ensuring
that Fubini’s Theorem is applicable.

Proposition 5.43. Let D be a bounded subset of R% and f : D — R a bounded
function. If the boundary OD of D is of content zero and if the set of disconti-
nuities of f is also of content zero, then f is integrable over D. In particular,
if f: D — R is continuous and 0D is of content zero, then f is integrable
over D.

In case the set D itself is of content zero, every bounded function is inte-
grable over D and its double integral over D is equal to zero.

Proof. Let R be a rectangle containing the set D and let f*: R — R be the
function obtained by extending the function f : D — R as usual. Let F and
E* denote the sets of discontinuities of f and f* respectively. It is easily seen
that E* C FUOD. Thus, if 0D and E are of content zero, then by parts (ii)
and (i) of Proposition 5.37, E* is of content zero. Hence by Lemma 5.41, f*
is integrable on R, that is, f is integrable on D. In case f is continuous, then
FE is empty and so f is integrable over D.

Finally, assume that the set D itself is of content zero. In this case, with
R and f* as before, if € > 0 is given, then there is a partition Q. of R such
that the sum of the areas of the subrectangles (induced by @) that intersect
D is less than e. Since the function f* vanishes identically on the remaining
subrectangles, we have

—ae < L(Qe, f*) SU(Qe, f*) < ae, where a:=sup{|f(z,v)|: (z,y) € D}.

So, in view of the Riemann Condition, we see that f* is integrable on R and
its double integral is equal to zero, that is, the function f is integrable over
D and its double integral is equal to zero. a

Remarks 5.44. (i) The above proposition gives two conditions that together
imply the integrability of a bounded function f on a bounded subset D of
R2. Neither of these two conditions is necessary. For example, if f := 0,
then f is clearly integrable over D even if 9D is not of content zero. Also, if
D :=10,1] x [0,1] and f : D — R is the bivariate Thomae function, then, as
shown in Example 5.30 (iv), f is integrable on D, but the set of discontinuities
of fis D N Q?, which is not of content zero. (See Exercise 23 of Chapter 2
and Example 5.39 (i).) On the other hand, neither of these two conditions
can be dropped from the hypotheses of Proposition 5.43. For example, if
D = ([0,1] x [0,1]) N Q? and f : D — R is defined by f(z,y) := 1 for all
(x,y) € D, then f is continuous on D, so that the set of discontinuities of
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f is of content zero (in fact, empty), but f is not integrable over D; indeed,
if f* denotes the extension of f to [0,1] x [0,1] defined as usual, then f* is
the bivariate Dirichlet function, which is not integrable on [0, 1] x [0, 1]. (See
Example 5.5 (iii).) Also, if D :=[0,1] x [0, 1], then 0D is of content zero, but
the bivariate Dirichlet function is not integrable over D.

(ii) Recall that if f : [a,b] X [¢,d] — R is a bounded function, and if
a = b or ¢ = d, then in Remark 5.11 we “declared” f to be integrable and
its double integral to be equal to zero. This declaration is consistent with the
last assertion of the preceding proposition because if a = b or ¢ = d, then
[a,b] x [c,d] reduces to the line segment {(a,y) : y € [c,d]} or to the line
segment {(z,¢) : © € [a,b]}, and any such line segment is of content zero
(Example 5.39 (ii)). <&

Corollary 5.45. Let D be the elementary region given by
D:={(zr,y) eR?*:a <z <band d1(x) <y < da(x)},

where ¢y, d2 : [a,b] — R are bounded functions such that ¢1 < ¢ and the set
of discontinuities of ¢1 as well as of ¢2 is of one-dimensional content zero.
Then OD is of content zero.

Further, if f : D — R is a bounded function on D whose set of disconti-
nuities is of content zero, then f is integrable over D, and if in addition, for

each fized x € [a,b], the iterated integral f¢2($) f(z,y)dy exists, then

/D flx,y)d(z,y) = /ab (/(:::) f(x,y)dy) dx.

Proof. Let Cy and C5 denote, respectively, the subsets of [a, b] consisting of the
discontinuities of ¢ and ¢5. Since C; and C5 are of one-dimensional content
zero, it follows (using, for example, Exercise 55 in Chapter 6 of ACICARA) that
¢1 and ¢9 are Riemann integrable. Hence, in view of Example 5.39 (ii), their
graphs are of content zero. In other words, if we define

By = {(z,¢1(2)) €ER?*:a <z < b} and By := {(x,¢2(z)) € R? : a < x < b},

then both F; and Es are of content zero. Next, since ¢ and ¢o are bounded
with ¢1 < @9, there are o, § € R with o < 8 such that o < ¢ (x) < ¢o(x) < 5
for all z € [a,b]. It follows that D C R, where R := [a,b] X [, 3]. More-
over, if we let B3 := {(z,y) € R: x = aorz = b} and By := {(z,y) €
R: ¢ or ¢ is discontinuous at x}, then Ej3 is a union of two line segments,
whereas E; C (Cy X [a, 8]) U(Cs x [a, f]). Thus, in view of parts (ii) and (v)
of Proposition 5.37, we see that F5 and F, are of content zero. Thus, to show
that 9D is of content zero, it suffices to prove that dD is contained in the
union of the sets Fy, Fy, E3, and Ejy.

Let (u,v) € OD. Then there is a sequence ((un,vn)) in D such that
(Un,vn) — (u,v). Since a < uy, < b and ¢1(uy) < v, < Pa(uy,) for all n € N,
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we see that a <u < band a <v < 3. Ifu=aor u="b, then (u,v) € E5. Also,
if either ¢ or ¢9 is discontinuous at u, then (u,v) € E;. Now suppose that
a < u < band that both ¢; and ¢y are continuous at u. Then ¢1(u,) — ¢1(u)
and ¢ (uy) — ¢2(u), and so ¢1(u) < v < ¢a(u). Moreover, if v = ¢1(u), then
(u,v) € Eq, whereas if v = ¢2(u), then (u,v) € Es. Finally, suppose a < u < b
and ¢1(u) < v < ¢2(u) and also that both ¢; and ¢o are continuous at u.
Let € := min {(v — ¢1(u)) /2, (¢2(u) —v) /2}. Then there is 6 > 0 such that
(u—0,u+ ) C [a,b] and moreover,

r€(u—"06utd) = |d1(z) —d1(u)] <e and |pa(z) — Ppa(u)| < €
= d1(z) < P1(u) +e<v—e<v+e< da(u) —e< pax).

It follows that (u — d,u +J) x (v —e,v+¢€) C {(r,y) € R? : a < 2 <
band ¢1(x) <y < ¢a(x)}. In other words, (u,v) is an interior point of D.
But this contradicts the assumption that (u,v) € 0D. Thus, we have proved
that 0D is contained in the union of the sets F1, Es, F3, and Ejy.

Now let f: D — R be a bounded function such that the set of discontinu-
ities of f is of content zero. By Proposition 5.43, f is integrable over D. The
assertion about the equality of the double integral of f and the corresponding
iterated integral follows from Proposition 5.36. O

Results similar to Corollary 5.45 hold for an elementary region D given by
D :={(z,y) eR*:c <y <dand P1(y) <z < a(y)},

where 11,19 : [¢,d] — R are bounded functions such that ¢; < ¢ and the
sets of discontinuities of 17 and v are of one-dimensional content zero.

Examples 5.46. (i) Let D := {(z,y) € R? : y > 0 and z? + 2y? < 4} be the
semiellipsoidal region depicted on the left in Figure 5.11 and consider
f D — R defined by f(z,y) :=y. Since
D= {(x,y) €ER?: 2<r<2and0<y< \/(4—x2)/2},

we see that D is an elementary region. Also, since f is continuous on D,
it follows that f is integrable over D, and

2 V(4—a?)/2 1 (2 4 22 8
= dy | dx = / der = _.
/], /2</0 ! y) 2/, 2“7

On the other hand, since
D:{(x,y)ERzzogygx/? and —\/4—-2y2 <z < \/4—2y2},

we have alternatively
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J[-]" ( /j ydx) Y N

Note that the evaluation of the last integral is a bit more involved as
compared to the earlier evaluation in this example.

(2,0)

(1,0)

(72: 0)

Fig. 5.11. The elementary regions in Example 5.46 (i) and (ii).

(ii) Let D := {(z,y) € R? : 0 < 2 < land 0 < y < 2z} be the triangular
region depicted on the right in Figure 5.11 and consider f : D — R
defined by f(x,y) = exp(x?). Since D is clearly an elementary region and
f is continuous on D, we see that the function f is integrable over D, and

//D f= /01 </02z eXp(xZ)dy) dr = /01 2z exp(2?)dr = e — 1.

Also, since D = {(z,y) € R? : 0 <y < 2and y/2 < 2 < 1}, we have

alternatively
2 1
// f :/ (/ exp(xz)dx> dy.
D o \Jy/2

However, the integral fyl/z exp(2?)dxr cannot be evaluated in terms of
known functions. This example shows that an iterated integral may not
always be useful in evaluating a double integral, and also that if one of
the two ways of evaluating a double integral as an iterated integral does
not work, then we should try the other. &

Concept of Area of a Bounded Subset of R?2

We have seen earlier that the integrability of a function over a bounded subset
D of R? depends not only on the function, but also on the domain D. The
simplest example of this is the constant function

1p: D —R defined by 1p(z,y):=1 forall (z,y) € D.
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In general, this is not an integrable function. For example, if R := [0, 1] x [0, 1]
and D := {(z,y) € R : z,y € Q}, then the function 1}, : R — R, obtained
by extending the function 1p : D — R as usual, is the bivariate Dirichlet
function. Thus, from Example 5.5 (iii), we see that 17}, is not integrable on
R, that is, 1p is not integrable over D. We shall presently see, however, that
for a large class of bounded subsets D of R?, the function 1p is integrable. In
this case, it is natural to regard the double integral of 1p over D to be the
“area” of D. In light of this, we make the following general definition.

Let D be a bounded subset of R2. We say that D has an area if the
function 1p is integrable over D. In this case, the area of D is defined to be

Area(D) := //D 1p(z,y)d(z,y).

As an illustration, suppose D is a rectangle, say D := [a,b] X [¢,d]. From
Example 5.5 (i), we see that D has an area, and Area(D) = (b — a)(d — ¢).
Thus, the general definition of area is consistent with the usual formula for
the area of a rectangle given at the beginning of this chapter.

Proposition 5.47. Let D be a bounded subset of R%2. Then
D has an area <= 0D is of content zero.
Furthermore,
D has an area and Area(D) = 0 <= D is of content zero.

Proof. Suppose 0D is of content zero. Since the function 1p is continuous on
D, by Proposition 5.43 we see that 1p is integrable, that is, D has an area.

Conversely, assume that D has an area, that is, 1p is integrable. Let R be
a rectangle such that D C R and let 1}, : R — R be the function obtained by
extending the function 1p : D — R as usual, that is,

1 if (z,y) € D,

1b(zy) = {0 if (z,y) & D.

Let ¢ > 0 be given. By the Riemann Condition (Proposition 5.6), there is a
partition P := {(z;,y;) : ¢ = 0,1,...,n and j = 0,1,...,k} of R such that
U(P,1}) — L(P,1}) <e€¢/2.Fori=1,...,nand j =1,...,k, let R; ; denote
the (7, j)th subrectangle [z;_1, 2;] X [yj—1,y;] induced by P. Then

n k
* * €
DD M j(1h) —mij(1p)] - Area(Rij) < .
i=1 j=1
We note that

1 ifR@jﬂD?é@,
0 ifRi’ij:@,

0 ifR;; £ D,

M, ;(1%) =
(D) { 1 if R, ; C D.

and m,,j(lj‘j) = {
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Let Ri,...,R, denote those subrectangles among R;;, i = 1,...,n,j =
1,...,k, for which R, ; N D # () and R; ; € D. For such i, j, we have

P
M; ;(1p) —m;;(1p) =1—-0=1 and thus ZArea(R(g) < ;
=1

Let E denote the union of the boundaries OR;; of R;;,i = 1,...,n and
j=1,...,k. Since any line segment is of content zero as shown in Example
5.39 (ii), and since a finite union of sets of content zero is a set of content
zero, we see that E is of content zero. Hence there are rectangles El, e ,Eq
such that £ is contained in their union and

q
Z Area(Ry) < ; .
=1

We shall show that D is contained in the union of the rectangles R, ..., R,
Ri,..., Eq. Let (x,y) € OD. Since the rectangle R containing D is closed, we
see that 0D C R, and so there are ¢ and j such that (z,y) € R; ;. First suppose
that (z,y) belongs to the interior of R; ;. Then by the definition of a boundary
point, the interior of R; ; contains a point belonging to D as well as a point
not belonging to D, and so R; ;N D # 0 as well as R; j; € D. Hence R; ; must
be one of the subrectangles Ry, ..., R,. On the other hand, if (z,y) € OR; ;,
then (z,y) € E and hence (z,y) belongs to one of the rectangles ]?21, ceey Eq.
Thus D C Ry U---UR,URy U---U R, and

P q
~ € €
;Area(R(g) + ;Area(R(g) < 9 + o =€

This shows that 9D is of content zero.
To prove the second part, assume that D has an area and Area(D) = 0,
that is, the double integral of 1p over D is equal to zero. Then

inf {U(P,1},) : P is a partition of R} = // 15 (z, y)d(z,y) = 0.
R
Thus for any given € > 0, there is a partition P. of R such that U(P, 17,) < e.

Let Ry,...,R, denote the subrectangles induced by the partition P, that
contain some point of D. Now D is contained in the union of Ry, ..., R,, and

P
ZArea(Rg) =U(P,1}) <e.
=1

Hence the set D is of content zero. Conversely, if D is of content zero, then
by Proposition 5.43, 1p is integrable and its double integral over D is equal
to zero, that is, D has an area and Area(D) = 0. O
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—c/m a b

Fig. 5.12. Trapezoidal region in Example 5.48 (ii).

Examples 5.48. (i) We have seen already that if R := [0,1] x [0,1] and
D :={(xz,y) € R: z,y € Q}, then 1p is not integrable over D, that is,
D does not have an area (Remark 5.44 (i)). Alternatively, we can reach
this conclusion using Proposition 5.47 by observing that 9D is R, which
is not of content zero. For a closed and bounded subset of R? that does
not have an area, see Exercise 47.

(ii) Consider D := {(z,y) € R? : a < 2 < band 0 < y < mx + c}, where
a,b,c,m € R are such that a < b, m > 0, and ma + ¢ > 0. (See Figure
5.12.) Then by Corollary 5.45, D has an area, which is given by

//DlDZ/ab(/(meJrcdy)dx:/(lb(mx—i—c)dx:mb2;a2+C(b_a).

Consequently,

Area(D) = (b ; @) [(ma+c¢)+ (mb+c)].

It follows that the area of a trapezoid is half the height times the sum of
the lengths of the two parallel sides. &

Corollary 5.49 (Basic Inequality). Let D be a bounded subset of R? such
that its boundary OD is of content zero, and let f : D — R be an integrable
function. If there are a, f € R such that 3 < f < «, then

B Area(D) < //D f(z,y)d(z,y) < a Area(D).

In particular, if |f| < a, then we have

/[ i) < reai)

Proof. By Proposition 5.47, D has an area, that is, the function 1p is inte-
grable. Hence the desired inequalities follow from parts (ii) and (vi) of Propo-
sition 5.34. O
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Corollary 5.50. Let D be a bounded subset of R? and let f : D — R be an
integrable function. If Do is a subset of D such that 0Dy is of content zero,
then f is integrable over Dy.

Proof. Let R be a rectangle such that D C R and let f* : R — R be the
function obtained by extending the function f : D — R as usual. Let g
denote the restriction of f to Dy. Since Dy is contained in R, we may define
g*, 1p, + R — R by extending the functions g, 1p, as usual. It is easily seen
that g* = f*-1p,. Now f* is integrable on R by the definition of integrability
of f, and since 9Dy is of content zero, Proposition 5.47 shows that 17, is
integrable on R. Hence part (iii) of Proposition 5.34 shows that ¢* is integrable
on R, that is, g is integrable over Dy, as desired. a

It may be noted that the requirement that Dy be of content zero cannot
be omitted from the above corollary. For example, let D = [0, 1] x [0, 1] and
Dy = {(z,y) € D : z,y € Q}. Then the function 1p is integrable (Example
5.5 (1)), but its restriction to Dy is not integrable (Example 5.5 (iii)).

Domain Additivity over Bounded Sets

Often a bounded subset D of R? can be “decomposed” into several elementary
regions. If a function is integrable over each of these elementary regions, then
its double integral over D can be evaluated by splitting it over these regions.
This is referred to as domain additivity, and we have already seen an instance
of this in Proposition 5.9 in the context of double integrals on rectangles. The
following two results give more general versions of domain additivity in the
context of double integrals over bounded sets.

Proposition 5.51. Let D be a bounded subset of R% and let Dy, Do be subsets
of D such that D = D1 U Dsy. Also, let f: D — R be a bounded function. If
f is integrable over D1, over Do, and over D1 N Dy, then f is integrable over

el o S

Conversely, if f is integrable over D and further, if 0Dy and 0Ds are both of
content zero, then f is integrable over Dy, over Do, and over Dy N Ds.

Proof. Let R be a rectangle in R? containing D and let f*: R — R be the
function obtained by extending the function f : D — R as usual. Let f1, fa,
and ¢ denote the restrictions of f to Dy, to D3, and to D1 N Dy respectively.
Since all these sets are contained in R, we may define the functions f;, f5, ¢* :
R — R by extending the functions f; : D1 — R, fo : Dy — R, and ¢ :
Dy N Dy — R as usual. It is easily seen that

ff=rH+h-9.
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Now, if f is integrable over D1, over Dy, and over D; N Dy, that is, if f}, f3,
and ¢g* are integrable on R, then by parts (i) and (ii) of Proposition 5.34, the
function f* is integrable on R, and

I =i J 5 e

and this yields the desired formula. Conversely, suppose f is integrable over D
and both dD; and 9D are of content zero. Then by Corollary 5.38, 9(D1ND3)
is of content zero. Hence from Corollary 5.50 it follows that f is integrable
over Dy, over Dy, and over Dy N Ds. O

In most applications, a bounded subset D of R? is split as D; U Dy and
the overlap D1 N Dy is of content zero. In this case Proposition 5.51 takes the
following simpler form.

Corollary 5.52 (Domain Additivity over Bounded Sets). Let D be a
bounded subset of R? and let D1, Dy be subsets of D such that D = Dy U Dy
and Dy N Do are of content zero. Also, let f : D — R be a bounded function
such that f is integrable over D1 and over Ds. Then f is integrable over D
and

//D [z, y)d(z,y) =/D1 f(ar:,y)d(gc,y)+/D2 Fz,y)d(z, ).

Proof. By Proposition 5.43, we see that f is integrable over D1 N Do and its
double integral over D1 N Dy is equal to zero. Hence the desired result is an

immediate consequence of Proposition 5.51. o
Examples 5.53. (i) Let D :=[a,b] X [¢,d] and ¢ : [a,b] — R be defined by
d—

() = b ;(b—x) +ec.

Then y = ¢(x) gives the line passing through (a,d) and (b,¢), and it
divides the rectangle D into nonoverlapping triangular regions Dy and Ds
as shown in Figure 5.13. More precisely, D1 := {(z,y) € D : ¢ <y < ¢(z)}
and Dg := {(z,y) € D : ¢(z) <y < d}. Thus D; and D, are elementary
regions, and hence 9D and 0 D> are both of content zero. Further, DN Dy
is the line segment joining the points (a, d) and (b, ¢), and so it is of content
zero. Hence if a bounded function f : D — R is integrable over D; as well
as over Do, then it is integrable over D, and its double integral over D is
the sum of its double integrals over Dy and over Ds.

(ii) Let D be the star-shaped (closed and bounded) region shown in Figure 5.9.
Let Dy :={(x,y) € D:y >0} and Dy := {(z,y) € D : y < 0}. Then D,
and D, are elementary regions. Indeed, define ¢1, ¢3 : [—2,2] — R by

—2(x+1) if —2<2x< -1,
o1(z) =<0 if —1l<a<l,
2@ —-1) ifl<z<2
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)
d
M
D,
C Il
f T
a b
Fig. 5.13. Division of the rectangle D := [a,b] X [¢, d] into nonoverlapping regions
D1 and D3 by the line segment joining (a, d) and (b, c).

and
_J@-x)/2 if —2<a <0,
#ale) = {(2+x)/2 if0<z<2

Then ¢; and ¢o are continuous and ¢; < ¢, and it is easily seen that
Dy = {(z,y) e R? : =2 < 2 < 2and ¢1(z) < y < ¢a(x)} and Dy =
{(r,y) e R? : =2 <z < 2and — ¢a(z) <y < —¢1(z)}. Also, the line
segment D1 N Dy = {(z,y) € R? : =1 <z < 1, y = 0} is of content zero.
Hence if a bounded function f : D — R is integrable over D as well as
over Dy, then it is integrable over D, and its double integral over D is the
sum of its double integrals over Dy and over Ds. &

As an application of domain additivity, we now prove an interesting prop-
erty of double integrals that says, roughly speaking, that if the values of an
integrable function are changed on a subset of content zero such that the
modified function is bounded, then it is in fact integrable, and its double in-
tegral is equal to the double integral of the given function. This result may be
compared with Proposition 6.12 and Exercise 57 in Chapter 6 of ACICARA.

Proposition 5.54. Let D be a bounded subset of R?, let f : D — R be
integrable, and let g : D — R be a bounded function such that the set
{(z,y) € D : g(z,y) # f(z,y)} is of content zero. Then g is integrable over

D and
//D 9(@,y)d(z,y) = //D flx,y)d(z,y).

Proof. Let Dy := {(x,y) € D : g(x,y) # f(z,y)} and Dg := D\ D;. Define
h:D — Rbyh:=g— f,and let h; and hy denote the restrictions of A to D,
and Dy respectively. Let R be a rectangle such that D C R.

Since hp is a bounded function on D; and the set D; is of content zero,
Proposition 5.43 shows that h; is integrable over Dy and its double integral is
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equal to zero. Also, since the function hs vanishes identically on the set Do,
that is, the function A3 vanishes identically on R, we see that hs is integrable
over Dy and its double integral is also equal to zero. Further, the set Dy N
D, is of content zero, since it is the empty set. Hence by domain additivity
(Corollary 5.52), the function h is integrable over D = Dy U Dy and

//Dh://Dl“/Dzh:Mozo.

Now it follows from part (i) of Proposition 5.34 that ¢ = h + f is integrable

over D and //Dg://Dth//Df:/Df’

as desired. O

5.3 Change of Variables

In this section, we shall examine the effect of a change of variables in a double
integral. Thus, if f is a real-valued function on a bounded subset D of R?,
and we change the variables z and y to new variables v and v by

x=d1(u,v) and y= ¢a(u,v) or collectively (x,y) = ®(u,v),

where the transformation ® = (¢1, ¢2) maps a bounded subset E of R? onto
D, then we would like to see how the double integral of f(z,y) over D is
related to the double integral of the function g(u,v) := f(®(u,v)) over E.
The precise relationship, which holds if f as well as ® are sufficiently nice, is
called the change of variables formula. It is an extremely useful result, but at
the same time rather difficult to prove in the general case. In light of this, we
shall proceed as follows. First, we consider the simplest of transformations,
namely translations, and show that these do not alter the double integral. As
an application, we shall determine a neat formula for the area of a parallelo-
gram in R2. Next, we look at transformations that are a little more general
than translations, but still of a simple kind, namely, affine transformations,
and prove the corresponding change of variables formula. The case of affine
transformations motivates the general result, which is stated precisely but
not proved here. Finally, assuming the general result, we will prove a useful
variant of it that will enable us to use polar coordinates.

Translation Invariance and Area of a Parallelogram

Translations are transformations of the form ®(u,v) := (2° 4+ u,y° +v), where
(2°,9°) is a fixed point in R? and (u,v) varies over a subset E of R%. These
have the effect of interchanging the point (z°,y°) and the origin. It is quite
natural to expect that translations do not alter the area of a bounded region.
More generally, we have the following.
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Lemma 5.55 (Translation Invariance). Let D be a bounded subset of R?
and let f: D — R be an integrable function. Fiz (x2°,y°) € R2, and consider
E = {(x —2°,y —v°) : (x,y) € D} and the function g : E — R? defined by
g(u,v) :== f(x° +u,y° +v) for (u,v) € E. Then E is a bounded subset of R?,
g is integrable over E, and [, f(x,y)d(z,y) = [[, g(u,v)d(u,v).

Proof. Let R := [a,b] x [¢,d] be a rectangle such that D C R. Then E C S,
where S := [a—2°,b—12°] x [c—y°, d—y°]. In particular, F is a bounded subset
of R2. Let f*: R — R and g* : S — R be obtained by extending the functions
f:D —Randg: E:— Rasusual. Partitions P := {(x;,y;) : ¢ =0,...,nand
j=0,...,k}of Rand Q := {(u;,v;) :i=0,...,nand j =0,...,k} of Sarein

one-to-one correspondence given by the equations u; = x; —z° fori =0,...,n
and v; = y; —y° for 5 =0,...,k. Also, if fori =1,...,nand j = 1,...,k,
we let Ri,j = [aci,l,xi] X [yjfl,yj] and Si’j = [ui,l,ui] X [’Ujfl,’Uj] be the

(i, )th subrectangles induced by the corresponding partitions, then
Area(R; ;) = (xi — i-1)(y; — yj-1) = (wi — wi1)(vj — vj-1) = Area(S; ;).
Hence L(P, f*) = L(Q, g*) as well as U(P, f*) = U(Q, g*), and so
L(f*)=L(g") = U(g") = U(f").

But since f is integrable on D, that is, L(f*) = U(f*), we obtain L(g*) =
U(g*), that is, g is integrable on E, and moreover, ffEQ = ffD [ O

Proposition 5.56. Let (z;,v;) € R? for i =0,1,2 be noncollinear and let D
denote the parallelogram with one vertex at (xq,yo) and the vertices adjacent
to (zo,y0) at (z1,y1) and (x2,y2). Then D has an area and

det |:.131—$0 .132—$0:|

Area(D) =
(D) Y1 — Yo Y2 — Yo

= |(z1—20)(y2—Y0) — (¥2—70) (y1—Y0) |-

Proof. Since 0D is the union of four line segments of finite length, it is clear
that 9D is of content zero, and hence from Proposition 5.47, it follows that D
has an area. To obtain the desired formula for Area(D), let us first assume that
(z0,%0) = (0,0). Then our aim is to show that Area (D) = |r1ys — z2y1|. We
shall do this by describing the parallelogram D as an elementary region and
using Fubini’s Theorem to compute Area (D) as an iterated integral. However,
such a description of D depends on the location of the vertices of D, and so
we consider several cases as follows.

First, let us fix some notation that will be used in the rest of the proof.
If 21 # 0, then we let m; denote the slope y;/x; of the line passing through
(0,0) and (x1,y1), and if x5 # 0, then we let mo denote the slope y2 /x5 of the
line passing through (0,0) and (x2,y2). Note that m; # mo whenever both
m1 and mo are defined.

Case 1. x; and x5 are both nonzero and are of the same sign.
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First assume that x; > 0 and x2 > 0. Also, suppose m; < ma. (See the
parallelogram on the left in Figure 5.14.) Define ¢1, ¢2 : [0, 21 + 23] — R by

mix if 0 <z <z,
¢1(x) == .
mo(z —x1) +y1 if o1 <z <1+ @9,
and
Mo if 0 <2 <o,
P2(x) == .
my(z —x2) +yo  if wo <z <21 + 0.

Then it is easily seen that ¢, @s are continuous and ¢; < ¢ and also that
D= {(z,y) €eR?:0< 2 <z +aand ¢1(x) <y < ¢o(z)}. Since 1p is
continuous on D, in view of Corollary 5.45, we see that

a0 = [[ 1= [ ( Af(jj dy) = [ 0w pnte

Now fozﬁ_m ¢o(x)dx = fom mex dr + f$1+z2 [m1(z — z2) + yo] dx, whereas

z2

S gy (2)de = [ myade + f;llJmQ [ma(x — 1) + y1] dz, and thus

72 22 72 72
Area(D) = {mz 22 + my 21 +y2x1} - |:m1 21 + mao 22 +y1w2} = T1Y2—T2Y1.
If instead we suppose mo < my, then we can easily see that ¢o < ¢; and
D={(z,y) €R?:0<z < + 2 and ¢(z) < y < ¢1(2)}, and proceeding
as above, we obtain Area(D) = zay; — x1y2. Since my < mo if and only if
x1y2 — x2y1 > 0, we see that Area(D) = |z1y2 — x2y1| when 23 > 0 and
x9 > 0. If 1 < 0 and x2 < 0, then we obtain the same formula for Area(D)
by a similar argument.

(x1+ 22, Y1+ y2)

S

)

Fig. 5.14. Parallelograms in Proposition 5.56: (i) the case 1 > 0 and x2 > 0, and
(ii) the case 1 > 0 and z2 < 0.

Case 2. x; and 2 are both nonzero and are of opposite signs.

First assume that z; > 0 and z2 < 0. Also, suppose my < ma. (See the
parallelogram on the right in Figure 5.14.) Define ¢4, ¢ : [22,21] — R by
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61(2) my(x —x2) +y2 if xp <o <ap + 21,

1(x) = .
mo(z —x1) +y1 ifzo+ 21 < <,

and

mox if zo < <0,
P2(x) = .
mix i 0<ax<ax.

Then it is easily seen that ¢1, ¢ are continuous and ¢; < ¢2, and also that
D = {(z,y) € R? : 25 < 2 < 21 and ¢1(z) < y < ¢o(x)}. Since 1p is
continuous on D, in view of Corollary 5.45, we see that

west) = [[ 1= [ ( [:f )d [ o) -

As before, a simple computation of Riemann integrals shows that

22 22 22 22
Area(D)= {—mz 22 +my 21] - [m1 21 + Y221 — My 22 - ylwz] = T2Y1—T1Y2.
If instead we suppose mz < mi, then ¢o < ¢1 and D = {(x,y) € R? :
2o < < xp and ¢o(x) <y < ¢1(x)}, and proceeding as above, we see that
Area(D) = 1y — x2y1. Since my < mq if and only if xoy; — x1y2 > 0, we
obtain Area(D) = |z1y2 — x2u1]. If 21 < 0 and x2 > 0, then we obtain the
same formula for Area(D) by a similar argument.

Case 3. x129 = 0.

First assume that xo = 0. Then z; # 0 and y2 # 0. Let us suppose that
x1 > 0. Define ¢1, ¢3 : [0,21] — R by

o1(x) == mix and ¢o(x) :=mix+ys for 0 <z <.

It is clear that ¢1,¢s are continuous. Moreover, if yo > 0, then ¢ < ¢o
and D = {(z,y) € R? : 0 < 2 < 21 and ¢1(x) < y < ¢a(x)}. Since 1p is
continuous on D, in view of Corollary 5.45, we see that

¢2($) ®1
Area(D // 1D—/ (/ )dx:/ yodr = T1Y2 = |21Y2|.
0

On the other hand, if y2 < 0, then ¢o < ¢1 and we have D = {(z,y) € R? :
0 <z <z and ¢a(x) <y < ¢1(x)}, and a similar computation shows that
Area(D) = —z1y2 = |z1y2|. If instead we suppose z1 < 0, then proceeding
as above, with the interval [0, z1] replaced by the interval [z1, 0], we obtain
Area(D) = |z1y2|. Hence when zo = 0, we have Area(D) = |z1y2|. Finally, if
x1 = 0, then by a similar argument, we see that Area(D) = |zay1|. Thus, in
any case, Area(D) = |z1y2 — x2y1]-

Finally, let us consider the general case in which (zg, yo) is not necessarily
equal to (0,0). Let E := {(x — 20,y — o) : (z,y) € D}. Then by Lemma 5.55,
FE has an area and
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Area(D) = // 1p(x,y)d(z,y) = // 1g(u,v)d(u,v) = Area(FE).
D E

Now FE is a parallelogram with one vertex at (0,0) and the vertices adjacent
to (0,0) at (z1 — xo,y1 — yo) and (z2 — xo,y2 — Yo). Hence using the result
proved above, we see that

Area(D) = Area(FE) = |(z1 — z0)(y2 — yo) — (2 — z0)(y1 — vo)|,

as desired. 0

Case of Affine Transformations

A function ® : R? — R2 is called an affine transformation if there are
(2°,y°) € R? and ay, by, az, by € R such that

®(u,v) = (2° + aru + brv, y° + agu + bov) for all (u,v) € R?.

In matriz notation, this can be written as follows:

® [u} = [xo] + {al bl] [u] for all (u,v) € R%,
v Y az bo| | v
Let ® be an affine transformation given as above. It can be readily seen
that for any t1,...,t, € R and (ug,v1),..., (un,v,) € R?,

[ (Zt,(uz,w)) = Zt1<1>(u1,v1) + (1 — Zt1> (xo,yo).

In particular, ® preserves convex combinations. More precisely, ® sends
a convex combination Y . ; t;(u;,v;), where t; > 0 for i = 1,...,n and
Z?:l t; = 1, of (uy,v1),..., (un,v,) to the corresponding convex combina-
tion Y1, t;®(ui, v;) of ®(ur,v1),. .., P(un,vy).
We say that ¢ is an invertible affine transformation if
a1b2 - CLle = det |:a1 b1:| 7é 0.

az bo
This condition ensures that ® is bijective, that is, for every (z,y) € R?, there
is a unique (u,v) € R? such that ®(u,v) = (z,y). In other words, for every
(x,y) € R2, the equations

2’ +au+biv=x and y°+asut+bv=y

have a unique solution (u,v) € R2. In fact, if we let d := aiby — aby, then it
is easy to see that the unique solution is given by

1 1
u = d [(b1y° — baz®) + (box — b1y)] and v = d [(agz® — a1y°) + (a1y — azx)].
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This shows that if ® is an invertible affine transformation, then ®~! : R? — R?
is also an affine transformation. The important quantity a;bs —asby associated

to @ can be easily recognized as the Jacobian J(®) of ®. Indeed, if we write
® = (¢1,¢2), where ¢1, ¢y : R* — R are defined by

d1(u,v) = 2°+ajut+biv  and  @a(u,v) := y°+agutbyv for all (u,v) € R?,

then both ¢; and ¢2 have continuous partial derivatives and

dp1  Oh
0 0
J(®)(u,v) = det ! Y- det [Zl Zl] = a1bz — asb;
Op2 0o 22
ou ov

for all (u,v) € R2. In particular, the Jacobian of the affine transformation ®
is a constant, which may be denoted simply by J(®). Moreover,

® is an invertible affine transformation <= J(®) # 0.

Now assume that ® is an invertible affine transformation. Then ® maps
distinct points in R? to distinct points in R2. Moreover, since ® preserves
convex combinations, it maps the line segment joining two points (u1,v1)
and (uz2,v2) of R? to the line segment joining the two points ®(u1,v1) and
D (ug,v9). Consequently, ® maps a straight line onto a straight line. Further,
® maps two parallel straight lines onto two parallel straight lines. To see this,
note that a line L in R? is given parametrically by

{x =TS Shere r,s,p,q € R with (r,p) # (0,0),

y =pt+q,

and the parameter ¢ varies over R. The slope of L is determined, up to pro-
portionality, by the pair (r, p). One checks easily that the image L’ of L under
® is the line given parametrically by

r=1r't+s, where | lar bl |7 and s fa® n a1 b |s
y=pt+d, Y az ba| |p q y° ] laz ba] [q]’
and the parameter t varies over R. Now suppose L is another line in R? and

! is its image under ®. Then their parametric equations

T =711t + 51, and x =rit+ s,
y=npit+aq, y=pit+di,

are related to each other in the same manner as those of L and L. It follows
that if (r, p) is proportional to (r1,p;1), then (r/,p") is proportional to (v, p}).
In other words, ® maps parallel lines onto parallel lines. As a consequence, ®
maps a parallelogram onto a parallelogram.
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Remark 5.57. In case J(®) = 0, then it can be seen that ® maps R? onto
a straight line when not all a1, b1, az, by are zero, whereas ® maps R? to the
single point (z°,y°) when a1 = b; = ay = by = 0. O

It is natural to ask what is the effect of an invertible affine transformation
on the area of a parallelogram, or more generally, on a bounded region that
has an area. This question has an elegant answer given by the following.

Proposition 5.58. Let ® : R? — R? be an affine transformation such that
J(®) # 0. If E is a bounded subset of R? that has an area, then D := ®(E)
is a bounded subset of R? such that D has an area and

Area(D) = |J(®)|Area(E).

Proof. Let the affine transformation ® : R? — R2 be given by

i) [u} = [xo] + {al bl] [u] for all (u,v) € R?,
v Y as bo| | v
where (2°,9°) € R? and ay, b1, as, by € R with J(®) = a1by — agby # 0.

We shall first consider the case in which F is a parallelogram. Then as
noted above, D := ®(FE) is also a parallelogram, and so D is bounded. More-
over, in view of Proposition 5.56, both E and D have an area. Let one vertex of
the parallelogram E be at (ug,vo) and let the vertices adjacent to (ug,vo) be
at (up,v1) and (ug,va). Let ®(ug,v;) := (x;,y;) for i = 0,1, 2. Then (z9,yo) is
a vertex of the parallelogram D := ®(F) and the vertices adjacent to (xo,yo)
are at (z1,y1) and (z2,ys2). For i = 1,2,

Ti—xo| _ |Ti| |Zo| _ |a1 b wi|  fuo|\ _ a1 bi| |ui—wuo
vi—yo| | Yo | |az be V4 vo|)  |az ba| [vi—wo
and thus

|:J}1—JJO $2—$0:| _ [al b1:| |:U1—UO UQ—UO]

Y1 —Y Y2 — Yo az by U1 —Vp V2 — o

Since the determinant of the product of two matrices is equal to the product
of the determinants of those matrices, we obtain

I e |
Y1 —Yo Y2 —Yo az be V1 —vo V2 =70
Thus, using Proposition 5.56, we see that Area(D) = |J(®)|Area(E).
Now let us consider the general case in which E is a bounded subset of R?
that has an area. Let S be a rectangle such that £ C S. Then D = ®(E) C
®(S) and ®(S) is a parallelogram. In particular, ®(.5) is bounded and hence

so is D. To prove that D has an area that equals |J(®)|Area(E), we proceed
as follows. Let 1%, : S — R be obtained by extending the function 1g : £ — R
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as usual. Since F has an area, 17 is integrable. Let ¢ > 0 be given and let
0 :=|J(®)| > 0. By the Riemann Condition (Proposition 5.6), we can find a
partition @ := {(u;,v;) :9=0,1,...,nand j =0,1,...,k} of S such that

€

Area(E) — L(Q,1%) < y 25°

05 and U(Q,1%) — Area(F) <

Let Ey denote the union of all those subrectangles induced by @ that are
contained in F, and let F; denote the union of all those subrectangles induced
by @ that intersect E. Then Ey C E C E. (See Figure 5.15.)

If we let Dy := ®(FEp) and Dy := ®(F;), then clearly Dy € D C D;.
Let R be a rectangle such that Dy C R, and let 13, ,17,,1, : R — R
be obtained by extending the functions 1p, : Dy — R, 1p : D — R and
1p, : Dy — Rasusual. For i = 1,...,nand j = 1,...,k, let S;; denote
the (i, j)th subrectangle induced by Q. Now, from the case of parallelograms
considered above, ® maps the parallelogram (in fact, the rectangle) S, ; onto
a parallelogram with the effect that Area(S; ;) is multiplied by 0 := J(®).
Thus, using domain additivity (Corollary 5.52), we see, as in the proof of
Proposition 5.47, that

Area(Dy) = ¢ Z Area(S; ;) = 0L(Q,1%) > dArca(E) — ;

SingE
and

Area(D1) =38 > Area(Si;) =6U(Q,1}) < 6Area(E) + ;
Si,;NE#¢

Since 15, < 13 < 15, we obtain
§Area(E) — ; < Area(Do) = L(1p,) < L(1%)

and

AN

=

[~

Fig. 5.15. Surrounding OF by the union of subrectangles contained in E and by
the union of subrectangles that intersect E.
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U(13) < U(1%,) = Area(Dy) < 6Area(E) + ;
so that
€ €
< * 0\ * _ _ — ¢
0<U(1y) — L) < (5Area(E) + 2) (6Area(E) 2) €

Since this is true for every € > 0, we see that L(1%},) = JArea(E) = U(1},).
Hence the function 17, is integrable, that is, D has an area and

Area(D) = //R 15 (z,y)d(z,y) = dArea(E) = |J(®)|Area(E),

as desired. 0O

Proposition 5.59 (Change of Variables by Affine Transformations).
Let D be a bounded subset of R? such that D is of content zero, and let
f D — R be a bounded function whose set of discontinuities is of content
zero. Suppose ® : R? — R? is an affine transformation with J(®) # 0 and
E C R? is such that ®(E) = D. Then E is bounded and OF is of content zero.
Moreover, fo® : E — R is a bounded function whose set of discontinuities is
of content zero, and

[ teien = [[ s@wos@)i.o.

Proof. Since E = ®~1(D), by Proposition 5.47 together with Proposition 5.58
applied to the affine transformation ® 1, we see that F is bounded and OF is
of content zero. Also, it is clear that f o ® is a bounded function. Moreover, if
we write ® := (¢1, ¢2), then clearly the component functions ¢, ¢o : R? — R
are continuous, and hence from part (iii) of Proposition 2.17, we see that if C'
is the set of discontinuities of f, then ®~1(C) is the set of discontinuities of
f o ®. So again, by Proposition 5.47 together with Proposition 5.58 applied
to the affine transformation ®~1, it follows that ®~1(C) is of content zero.

Fig. 5.16. Typical view of the sets D, R, E, and R in the proof of Proposition 5.59.

Let R be a rectangle containing D, let f* : R — R be obtained by extend-
ing f as usual, and let R := ®~1(R). (See Figure 5.16.) Define g : E — R and
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§:R—Rby g(u,v) := fod((u,v)) for (u,v) € E and §(u,v) := f*(®(u,v))
for (u,v) € R. Since gjg = g and moreover, § is zero on R\ E, we see
that the set of discontinuities of g is contained in the union of OF and the
set of discontinuities of g. Also, R is of content zero, being a union of
four line segments. Hence by Proposition 5.43, g is integrable on R. Now
let P := {(x;,y;) : i = 0,1,...,n and j = 0,1,...,k} be any partition
of R. Fix integers i,7 such that 1 < ¢ < n and 1 < j < k, and let
R; j := [xi—1, %] X [yj—1,y;] denote the (7, j)th subrectangle induced by P, and
let ]TBU =¢! (Ri,j) denote the corresponding parallelogram in R. Since 8]%7]»
is of content zero, it follows from Corollary 5.50 that g is integrable on E,] as
well. Given any (u,v) € ﬁi,j, we have ®(u,v) € R; j and f*(®(u,v)) = g(u,v),
and hence

mi i (f*) < glu,v) < Mij(f*)  for all (u,v) € Ry ;.

Integrating over Ev] and using the order property (part (vi) of Proposition
5.34), we obtain

/ () < I () < /I M)

But ffR — Area(R; ), and since R; ; = ®(R; ;), by Proposition 5.58

we see that Area( 5)=|J(® )|Area(§i7j). Hence multiplying throughout by
|J(®)|, we obtain

me(F)Asea(Re) < 7@ [ g v)dtu,) < 2 () Area( ).

Summing from ¢ = 1 to n and from j = 1 to k, and using domain additivity
(Corollary 5.52), we see that

L(p ) < 19@) [ gtwodtu.e) <UE 5.
R
Since P is an arbitrary partition of R, it follows that

L(f*) < 7(@)| / /R 3, v)d(u,v) < U(f7).

But f* is integrable on R, and so L(f*) = U(f*) = [[, f* = [/, f. Thus

/ [ty =17@) / /R 3, 0)d(u,0),

Now, OF and OR are both of content zero, and so by Corollary 5.38, 8(&\ E)
is also of content zero. Hence by Corollary 5.50, the integrability of g on R
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implies the integrability of g on R \ E as well as on E. Consequently, by
domain additivity (Corollary 5.52), we have

Jho = [owre Jfoo=os ffoo = [fo

Thus we obtain

J[ 1t =11@) [[ st = [[ swori@ya.o,

as desired. O

Example 5.60. Let D := {(z,y) e R? ;7 <2+y<3rand —7 <x—y < 7}
and let f : D — R be defined by f(z,y) = (z — y)?sin*(z + y). Since D is
an elementary region, one can evaluate the double integral of f over D using
Fubini’s Theorem. However, changing the variables z and y to u and v, so as
to have u = = + y and v = x — y, that is, letting « := (u +v)/2 and y :=
(u—w)/2, simplifies the region of integration as well as the integrand. Consider
® : R? — R? given by ®(u,v) := ((u+ v)/2,(u — v)/2). The conditions
T<z+y<3nand 7 <z—y<myleldrm <u<3rmand -7 <v < If we
let E := [r,3n] x [—m, 7], then ®(E) = D. (See Figure 5.17.)

Fig. 5.17. Illustration of the sets D and F in Example 5.60.

Since

Proposition 5.59 shows that

//Df(x,y)d(a:,y): ;//EUQSinzud(u,v): ;/:m (/_:v2sin2udv> du

1 2 3 3 3 4
:2-371'3/7r sinzudu=7;/7r sinzuduzg.

The simplification in the calculation of the above double integral due to an
appropriate change of variables is noteworthy. &
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General Case

While we have proved a satisfactory result for a change of variables by an
affine transformation, its use is limited. We therefore look for a change of
variables result involving a more general transformation. The basic idea is to
utilize the fact that any “nice” transformation from a subset of R? to R? can
be approximated, at least locally, by an affine transformation from R? to R2.

v
E { o)
.QO / /q)\x
U(E)
G
7\
u xr

Fig. 5.18. The idea behind the change of variables formula for double integrals.

To be more precise, consider Qg := (ug,vo) € R?, a square neighborhood
E of Qo, and a transformation ® : E — R2. Let ® := (¢, ¢2). Assume that
¢1 and ¢o have partial derivatives at all points in I and they are continuous
at Qo, and moreover, J(®)(Qo) # 0. Let Py := ®(ug,vp). For (u,v) € R?, let

6¢>1 a¢)1

1 (u,v) == ¢y (ug, vo) + T ug) + P (uoﬂ)o)(v —9)
be the linear approximation to ¢ around (ug, vg), and
_ O 02

Yo (u,v) = Pa(ug,vo) + 91t | (ug.o0) u—ug) + P (uoﬂ)o)(v Vo)

the linear approximation to ¢o around (ug,vg). Then by Proposition 4.18, we
have for all (u,v) € E,

o1(u,v) = 1 (u,v) + er1(u,v) and  da(u,v) = o (u,v) + e3(u, v),

where €;(u,v) — 0 and e2(u,v) — 0 as (u,v) — (ug,vp). Thus the transfor-
mation ¥ : R? — R? given by ¥ := (11,1)2) is affine, maps Qo to Py, and
approximates the transformation ® around Qg. Also,

_ (01 O0Ya Oy Onpa\ _ (01 O O O
J(\I')_<au v v 8u)_(8u v v Ou

Since J(¥) # 0, Proposition 5.58 shows that ¥(FE) has an area and

)(uo,vo) = J(®)(uo, v0).
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Area(V(E)) = |J(V)|Area(E) = |J(®)(ug, vo)|Area(E).

(See Figure 5.18.) It is therefore reasonable to expect that if £ is a small
square neighborhood of the point (ug,vp), then Area(®(E)) would be approx-
imately equal to Area(¥(FE)), which equals |J(®)(ug, vo))|Area(E) as we have
seen above, that is, the scaling factor around (ug, vg) would be |J(®)(uo, vo)]|.
Keeping the above motivation in mind, we now state a version of the change
of variables result. Typically, the sets appearing in the statement of this result
may be viewed as in Figure 5.19.

Proposition 5.61 (Change of Variables Formula). Let D be a closed and
bounded subset of R? such that D is of content zero, and let f: D — R be a
bounded function whose set of discontinuities is of content zero. Suppose ) is
an open subset of R and ® : QO — R? is a one-one transformation such that
D C ®(Q). Also, suppose ® := (p1, d2), where both ¢y and po have continuous
partial derivatives in @ and J(®)(u,v) # 0 for all (u,v) € Q. Let E C Q be
such that ®(E) = D. Then E is a closed and bounded subset of Q0 such that
OF s of content zero. Moreover, fo® : E— R is a bounded function whose
set of discontinuities is of content zero, and

J[ 1@ = [[ (00wl 7@) @ vl

o \ q’(Q)

Fig. 5.19. Typical view of the sets D, F,Q, and ®() in Proposition 5.61.

Proof of Proposition 5.61 is omitted. Among the various proofs available
in the literature, we suggest the proof given in the book of Pugh [45] for
interested readers. In fact, the statement and proof of the change of variables
formula in [45] assumes that the set E in Proposition 5.61 is a rectangle.
However, using domain additivity and the fact that F is closed and bounded,
it is not difficult to see that Proposition 5.61 can be deduced from Proposition
33 in Section 8 of Chapter 5 in the book of Pugh [45]. Further remarks and
references for the change of variables formula and its proof can be found in
the Notes and Comments at the end of this chapter.
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Remark 5.62. The change of variables formula is analogous to the principle
of Integration by Substitution in one-variable calculus (given, for example, in
Proposition 6.26 of ACICARA). To understand this better, let us recall that the
latter states that if ¢ : [«, 3] — R is a differentiable function such that ¢’ is
integrable on [a, 8], ¢([a, B8]) = [a,b] and ¢'(¢) # O for every t € (o, 3), then
for any integrable function f : [a,b] — R, the function (f o ¢)|¢'| : [o, 3] = R
is integrable and

[ o= [ oo, o [ o= [ s

where in the second formula we have written x = ¢(t). If ¢ is strictly increas-
ing, then ¢(«) = a, ¢(8) = b, and ¢'(t) > 0 for t € («, 3), and so the above

formula becomes
#(B) B
[ twe = [ reeye v
#(e) a

Notice that the scaling factor is the absolute value of the derivative in the gen-
eral case. The analogy with the change of variables formula becomes clearer if
we write the Jacobian in a more suggestive notation and rewrite the conclusion
of Proposition 5.61 as follows:

A(z,y)

[ @ = [[ romwn |5

Proving the one-variable Integration by Substitution formula is relatively easy.
The difficulty in the case of functions of two variables may be attributed to
two factors. First, there is no two-dimensional analogue of the one-dimensional
result that says that if the derivative of a function is nonzero, then the function
is strictly monotonic, and second, we treat double integrals over a variety of
regions in R2. On the other hand, we can use the change of variables formula
not only to simplify the integrand, but more importantly to simplify the region
of integration. This is illustrated in Examples 5.63 (i) and (ii).

The change of variables formula stated in Proposition 5.61 above may
also be compared with the result in part (ii) of Proposition 5.26, where the
function f was assumed only to be integrable, albeit on a rectangle, but the
transformation ¢ was of a restrictive kind. O

d(u,v).

Examples 5.63. (i) Consider D := {(z,y) € R? : x > 0, y > 0and 1 <
2(x +y) <2} and f: D — R defined by

flzy) = xf—y for (x,y) € D.

To find [/ p f, one can use Fubini’s Theorem. But it is much more efficient
to consider the following change of variables:
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v

1/2 1 1/2 1

Fig. 5.20. Illustration of the sets D := {(z,y) € R* : 2 > 0, y > 0and 1 <
2z +y) <2} and E = [1/2,1] x [0, 1] in Example 5.63 (i).

u:=x+yandv:= _:7_ or equivalently, z:=wu(l—v) and y := uwv.
rTy

More precisely, we let Q = {(u,v) € cuw > 0} and let @ : Q@ —
R? be defined by ® (u — ) ) Then & gives a one-to-one
correspondence from Q to <I>( ) = {( y) € R? : o +y > 0}. Also, if
® = (¢1, P2), then clearly, the partial derlvatives of ¢1 and ¢ exist and
are continuous, and

T(®)(u, v) = det [1 —v ‘“}

=u#0 forall (u,v) €.

Further, if we let E denote the rectangle [1/2,1] x [0, 1], then it can be
seen that ®(F) = D. (See Figure 5.20.) Since f is continuous on D, we
obtain

/ [ 1wty - / /E F(u(l — ), w)luld(u, v) = / /E wv d(u, v)
1 1
= (/1/2udu>(/0 vdv) = 136'
2

(i) Let D denote the subset of R? bounded by the curves given by y = —2,
y==x,and z = 1, and let f : D — R be defined by f(z,y) := x — y.
Consider Q := {(u,v) € R? : v > —1/2} and ® : Q — R? defined by

®(u,v) = (u+v,u—v?).

If 2 :=u+vandy:=u—v? for (u,v) € Q, then x —y = v + v* and

r — v = u, that is,
1 1+4(x — 1+ 4(x —
\/ (z—y) and \/ (z y)7

2 2 2 2

provided 1+ 4(z — y) > 0. This shows that the function ® gives a one-to-
one correspondence from Q to ®(Q2) = {(z,y) € R? : 1 +4(x — y) > 0}.

u=2x+
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Fig. 5.21. Illustration of the sets D and E in Example 5.63 (ii).

Also, if & = (¢1, ¢2), then the partial derivatives of ¢; and ¢o are clearly
continuous and

J(®)(u,v) = det E _12@} =—(2v+1)#0 forall (u,v) € Q.

Further, if we let E denote the triangular region bounded by the lines

given by u = 0, v = 0, and u + v = 1, then it can be seen that ®(EF) = D.
(See Figure 5.21.) Since f is continuous on D, we obtain

/ e, y)d(e,y) = / St v, — %) = (20 + 1)|d(u, v)
D

// v+ 02)(20 + 1)d(u, v)
:/0 </0 (v +v?) 2u+1)dv>du

/01[(1—u 1—u)3—|—(1_u)2}du

2
1 + + ~ 31
10 4 6 60

As a check on our calculations, we obtain

/Df(x,y)d(x,y) = /01 {/_;(x—y)dy} dzx = /01 (x;—i-xg—i—x;)da: = 2(1),

as before. O

Remark 5.64. The hypothesis J(®)(u,v) # 0 for all (u,v) € £ of Proposition
5.61 may be weakened by assuming only that J(®)(u,v) > 0 for all (u,v) € Q
or J(®)(u,v) <0 for all (u,v) € Q, and J(®)(u,v) = 0 only for (u,v) in a
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subset of Q) having content zero. (See the hint for Exercise 10-30 in the first
edition of [1].) This weakening is reasonable, since the values of a function on
a set of content zero do not affect either the integrability of the function or
the value of its double integral (Proposition 5.54). &

We now discuss an important change of variables carried out by switching
to polar coordinates. Let ® : R? — R2 be defined by

O(r,0) = (rcosb, rsind).
If ® = (¢1, ¢2), then ¢; and ¢ have continuous partial derivatives in R? and

cosf) —rsinf
sin 6 rcosf

J(®)(r,0) = det [ } =r forall (r,0) € R%

Thus the Jacobian of ® is nonzero on {(r,6) € R? : r # 0}. Also, it follows
from Proposition 1.26 that given any 6y € R, the function ® gives a one-to-one
correspondence from the set {(r,0) € R? : 7 > 0and fy — 7 < 0 < Oy + 7}
to the set {(z,y) € R? : (z,y) # (0,0)}. In this case, Proposition 5.61 will
therefore be directly applicable to a closed and bounded subset D of R? if D
does not intersect a “cone” with vertex at (0,0), as illustrated in Figure 5.22.

Fig. 5.22. A closed and bounded subset D of R? disjoint from a “cone” with vertex
at the origin.

We shall now prove a result that shows that switching to polar coordinates
is possible even when the above conditions on D are not satisfied. Its proof
uses Proposition 5.61 for suitable subsets of D.

Proposition 5.65. Let D be a closed and bounded subset of R? such that
0D is of content zero, and let f : D — R be a continuous function. Suppose
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E :={(r0) e R2 :r > 0,—7 < 0 < 7 and (rcosf,rsinf) € D}, and
also suppose OF is of content zero. Then the function from E to R given by
(r,0) — f(rcosf,rsin®) is continuous and

//Df(xvy)d(xay)://Ef(rcose,rsiné)rd(r,é),

Proof. Let g : E — R be defined by g(r,0) := f(rcosf,rsinf). From the
continuity of f and part (iii) of Proposition 2.17, we see that g is continuous.

Define D := {(z,y) € D:y >0} and D~ := {(z,y) € D : y < 0}. Then
D% and D~ are closed and bounded subsets of R? such that D = Dt U D~
and the set D™ N D~ is of content zero. Also, since the set D is of content
zero, the sets D1 and D~ are of content zero.

Let ET :={(r,0) e E:0< 60 <7}and E~ :={(r,0) € E: —7 <6 < 0}.
Then Et and E~ are bounded subsets of R? such that £ = E+ U E~, and
the set ET N E~ is of content zero. Also, since the set OF is of content zero,
the sets OET and OF~ are of content zero.

First we show that

/ flz,y)d(z,y) = / f(rcosO,rsind)rd(r,0).
D+ E+

Note that since f and g are continuous and since DT and E™ are of content
zero, both the integrals above exist. Let € > 0 be given and define

Dj::{(x,y)eD"‘:eS\/xQ—i—yQ} and Ef :={(r,0)e ET:e<r}.

(See Figure 5.23.) By Domain Additivity (Corollary 5.52),

[ s = [[ s [[ e,

The continuous function f is bounded on the closed and bounded set D
by part (ii) of Proposition 2.25. Thus there is o € R such that |f| < a. Also,
since DT\ DI C [—¢,¢€] x [0, €], we see that Area(D* \ DF) < 2¢2. Hence

‘// f(@,y)d(z,y)
DH\DZF
It follows that

//Dj f(@y)d(z,y) — //D+ f(@,y)d(z,y) ase— 0.

Similarly, we see that

< 20€?.

// flrcosO,rsinf)rd(r,0) — / f(rcosf,rsind)rd(r,d) ase—0.
EX E+
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Fig. 5.23. Illustration of the sets E.7, E- and their polar transforms D, D .

Thus it is enough to prove that

//DF+ f (@, y)d(x, y) ://E: f(rcos,rsind)rd(r,6).

But this follows by appealing to Proposition 5.61 if we note the following:
Define ® : R2 — R? by

®(r,0) := (rcosh, rsinf) for (r,0) € R?
and let QF := {(r,0) e R? : r > 0,—7/2 < 0 < 37/2}. Then QF is an open
set in R2, @ is one-one on QF, J(®)(r,0) = r # 0 for all (r,0) € QF, DF is a
closed and bounded subset of R? such that D7 is of content zero, EY is a

bounded subset of Q1 such that JES is of content zero, and ®(E}) = D .
Thus we obtain

/ flz,y)d(z,y) = / f(rcosO,rsind)rd(r,0).
D+ E+
Similarly, we obtain
/ flzyy)d(x,y) = / f(rcosf,rsinf)rd(r,6)
D~ E-
by defining the sets D_ and E. analogously and letting Q= := {(r,0) € R? :

r>0,-37/2 <6< m/2}.
Domain Additivity (Corollary 5.52) now implies that

//D f(z,y)d(z,y) = //E f(rcosf,rsind)r d(r,0),

as desired. O
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Examples 5.66. (i) Let D := {(z,y) e R?: 2?2 +y? <1} andlet f: D - R
be defined by f(z,y) := /1 — 22 — y2. As in Proposition 5.65, let

E:={(r,0) eR?:r>0,—7 <0< and (rcos,rsinf) € D}.

Then E :=[0,1] x [—7, 7] and we have

//fa:y (2,1) //frcos@ rsin @) r d(r, 0)
:/0 (/_ﬂ(\/l—ﬂ)rcw)dr

1 1
2

:271/ 7‘\/1—7‘2dr:7r/ Vsds = T
0 0 3

(ii) Let a,b be positive real numbers, let D denote the ellipsoidal region
{(z,y) e R? : (#*/a?) + (y*/b*) <1}, and let f : D — R be defined by
f(x,y) = y?. We can first change D to the unit disk Dy := {(u,v) € R? :
u? +v2 < 1} by the simple affine transformation (z,y) — (z/a,y/b), that
is, consider the change of variables given by v = z/a and v = y/b. This
shows that

/ /D f= / [t o) abdov), - since ggg; _ab

Now transform D; to E := [0, 1] x [—, ] by switching to polar coordinates
as in (i) above. This yields

// /D flau, bv) abd(u,v) // f(ar cosf,brsin @) abrd(r,0).

Hence we have

//D f(z,y)d(z,y) = /01 </—Z(brsmg)2 abr d9> dr — Gb:ﬂ'.

(iii) Let us evaluate the improper integral fooo e tdt using double integrals.
For b > 0, let Dy := {(s,t) € R?> : s > 0,t > 0 and s +* < b?}
and I, := fé} e~ dt. Note that D, C Ry, where Ry := [0,5] x [0,b]. Now
switching to polar coordinates, we obtain

/2 b —b?
~+) q(s, ¢) :/ / ardo="(1-°_).
e s, re r

On the other hand, by Fubini’s Theorem, we have

//Rb e_(32+t2)d(s,t) = (/Ob e_szds> (/Ob e_tzdt> =
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Since Dy, € Ry C D, /, and e~ (") > 0 for all (s,t) € R2, we see that

—b? —2b?
4 2 4 2

Letting b — oo, we obtain

[e) b
/ e dt=lim [ e tdt= lim I = \/7r _ v
0 b—oo Jo b— o0 4 2

This result can be used to show that I'(1/2) = /7. (See, for example,
Exercise 49 in Chapter 9 of ACICARA.) O

5.4 Triple Integrals

In this section we shall extend the considerations of the last three sections
to functions defined on subsets of R3. All statements made in Sections 5.1
and 5.2 about bounded subsets of R? and functions defined on them can be
carried over to bounded subsets of R? (or more generally, to bounded subsets
of R™, where n > 3) and functions defined on them in a straightforward
manner. There is no need to introduce any new ideas. We shall therefore
merely mention some important points without giving detailed proofs.

Let us recall that by a cuboid we mean a subset of R? of the form

[a,b] % [c,d] x [p,q] :== {(2,y,2) ER¥*:a<2<bc<y<d, and p< 2z <q},

where a, b, c,d,p,q € Rwitha < b, ¢ < d, and p < ¢, and by the volume of this
cuboid we mean the number (b—a)(d—c)(¢—p). Let K := [a,b] X [¢,d] x [p, q]
and let f : K — R be a bounded function. Let us consider a partition
P = {(zi,yj,2¢) :i=0,1,...,n,5=0,1,...,k and £ = 0,1,...,r} of K,
where a =xg <21 < - <Tp1<xTp=bc=yo <y << yYp_1<yx =d,
and p =20 < 21 < - < zp_1 < zp. =q. Fori=1,...,n,7 = 1,...,k,
and ¢ = 1,...,r, the cuboid [z;_1,2;] X [yj—1,Yy;] X [2e—1,2¢], is called the
(4, 7,€)th subcuboid induced by the partition P; let m; ; ¢(f) and M; ; .(f)
denote respectively the infimum and the supremum of the values of f on this
subcuboid. We define the lower triple sum L(P, f), the upper triple sum
U(P, f), the lower triple integral L(f), and the upper triple integral
U(f) exactly as we did in Section 5.1 for a function defined on a rectangle
[a,b] X [¢,d]. A refinement of a partition of K is defined similarly, and it easy
to see that analogues of Lemma 5.2 and Proposition 5.3 hold. The function f
is said to be integrable on K if L(f) = U(f), and then the common value
is called the triple integral, or simply the integral, of f (on K), and it is

denoted by
///Kf(x,y,Z)d(x,y,Z) or simply by ///Kf
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The simplest example of an integrable function on K is given by the con-
stant function f(x,y, z) := 1 for all (z,y, 2) € K. For any partition P of K, we
see that L(P, f) =U(P, f) = (b—a)(d—c¢)(¢—p), and so the triple integral of
f is equal to (b—a)(d —¢)(¢ —p). On the other hand, consider the trivariate
Dirichlet function given by f: K — R, where

1 if (z,y,2) € K and all z,y, and z are rational numbers,

f(x7y7z):{

0 if (z,y,2) € K and x,y, or zis an irrational number.

For any partition P of K, we see that U(P, f) = (b —a)(d — ¢)(¢ — p), while
L(P, f) = 0. Hence f is not integrable on K.

We remark that analogues of refinement results (Lemma 5.2 and Proposi-
tion 5.3), Basic Inequality (Proposition 5.4), the Riemann Condition (Proposi-
tion 5.6), Domain Additivity on Rectangles (Proposition 5.9), the integrability
of a monotonic and of a continuous function (Proposition 5.12), the algebraic
and order properties (Propositions 5.14 and 5.16), the Fundamental Theorem
of Calculus (Proposition 5.20), and the Theorem of Darboux together with its
consequence (Proposition 5.31 and Corollary 5.32) can be obtained for triple
integrals on a cuboid. It may be noted that the Cuboidal Mean Value Theo-
rem (Exercise 43) is useful for formulating an analogue of the first part of the
Fundamental Theorem of Calculus for functions of three variables. A version
of Fubini’s Theorem for triple integrals on a cuboid goes as follows.

Proposition 5.67 (Fubini’s Theorem on Cuboids). Let K := [a,b] X
[e,d] x [p,q] be a cuboid in R and f : K — R be an integrable function. Let
I denote the triple integral of f on K.

(i) If for each fized x € [a,b], the double integral ff[c dx[p.d] f(z,y,2)d(y, 2)

exists, then the iterated integral fab (ff[c,d]X[p,q] f(2,y,2)d(y,2))dz ex-
ists and is equal to I.

(ii) If for each fized (x,y) € |a,b] X [¢,d], the Riemann integral f; flx,y, 2)dz
exists, then the iterated integral [f 1 .. 4 (f; f(z,y,2)dz)d(z,y) e
ists and is equal to I.

(iil) If the hypotheses in both (i) and (ii) above hold, then the iterated integral

ff [fcd (f; f(z,y,2)dz)dy|dz exists and is equal to I.

Proof. (i) Assume that for each x € [a, ], the double integral

Al) = / /[c,d}x[p,q} f(@,y,2)d(y, =)

exists. Since m(f)(d—c)(g—p) < A(x) < M(f)(d—c)(g—p) for all z € [a,b],
it follows that A is a bounded function on [a,b]. Proceeding exactly as in
the proof of part (i) of Proposition 5.28, using Domain Additivity on the



5.4 Triple Integrals 269

rectangle [c, d] x [p, q] (Proposition 5.9) as well as the Riemann Condition for
the function A on [a, b] (Proposition 6.5 of ACICARA), we see that the function
A is integrable on [a, b] and

b
I:/ A(z)dz,
as desired. ¢

(if) Assume that for each (x,y) € [a,b] x [¢,d], the Riemann integral
q
Aw.y)i= [ fap2)ds
P

exists. Since m(f)(q—p) < A(z,y) < M(f)(g—p) for all (x,y) € [a,b] X [¢,d],
it follows that A4 is a bounded function on [a, b] X [¢, d]. Proceeding exactly as in
the proof of part (i) of Proposition 5.28, using domain additivity of Riemann
integrals on the interval [p, ¢] (Fact 5.8) as well as the Riemann Condition for
the function A on [a,b] X [¢,d] (Proposition 5.6), we see that the function A
is integrable on [a, b] X [c, d] and

1= / / A, y)d(z, y),
la,b] x[c,d]

as desired.

(iii) Under the assumptions in both (i) and (ii) above, we proceed as fol-
lows. Fix z € [a,b] and let g, : [¢,d] X [p,q] — R be given by g¢.(y,z) :=
f(z,y,2). By the assumption in (i) above, the function g, is integrable on
[e,d] X [p, q], and by the assumption in (ii) above, f; 9 (y, z)dz exists for each
fixed y € [¢,d]. Hence by applying Fubini’s Theorem for double integrals on
the rectangle [c,d] x [p, q] (Proposition 5.28) to the function g,, we obtain

Aw = [ /[Qd}xw a2, = [ ' ( / ' gz<y,z>dz) dy.

But I = f; A(z)dz by (i) above. Thus the desired result follows. O

There are other versions of Fubini’s Theorem obtained by interchanging
the roles of the three variables x,y, and z. In each case, an iterated integral
is shown to be equal to the triple integral. This implies that the order of
integration can be reversed under suitable conditions.

Triple Integrals over Bounded Sets

Let D be a bounded subset of R? and f : D — R a bounded function. Let K
be a cuboid in R? such that D C K and define f*: K — R by

0 otherwise.

oy ) = {f(x,y,z> if (2,9,2) € D,
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We say that f is integrable (over D) if f* is integrable (on K), and in this
case, the triple integral of f (over D) is defined to be the triple integral
of f*on K, that is, [[[, f = [[[x f*. The integrability of the function f*
and the value of the triple integral of f* are independent of the choice of the
cuboid K containing D.

An analogue of Proposition 5.34 regarding algebraic and order properties
holds for triple integrals as well. Let us now consider Fubini’s Theorem for a
function defined on a bounded subset D of R? that is of one of the following two
special kinds: (i) Each slice of D by a plane perpendicular to one of the three
coordinate axes has a boundary of (two-dimensional) content zero, (ii) D is
the region in R? lying between the graphs of two functions defined on a subset
of one of the three coordinate planes whose boundary has (two-dimensional)
content zero. These cases are illustrated in Figures 5.24 and 5.25.

Fig. 5.24. Tllustration of Cavalieri’s Principle (i): the slice D, of a solid D.

Proposition 5.68 (Cavalieri’s Principle). Let D be a bounded subset of
R3 and f : D — R an integrable function. Let I denote the triple integral of
f over D.

(i) Suppose D := {(x,y,z) € R® : a < x < b and (y,z) € D,}, where for
each fized x € [a,b], D, is a subset of R? whose boundary is of (two-
dimensional) content zero, and for each fized x € [a, b], the double integral
ffDx f(z,y,2)d(y, 2) exists. Then the iterated integral

/ab <//D [y, 2)d(y, z)) dz

exists and is equal to I.
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(ii) Suppose D := {(z,y,2) € R® : (z,y) € Dy and ¢1(z,y) < z < ¢2(z,y)},
where Dy is a subset of R? whose boundary is of (two-dimensional) content
zero, ¢1,¢2 : Dy — R are integrable functions such that ¢1 < ¢o, and for

each fized (x,y) € Do, the Riemann integral fd)l((;;jy)) flx,y, 2)dz exists.
Then the iterated integral

¢2(x,y)
// / f(@,y,z)dz | d(z,y)
Do ¢1(z,y)

exists and is equal to I.

Fig. 5.25. Illustration of Cavalieri’s Principle (ii): a solid between two surfaces
defined over Dy.

Proof. Let K := [a,b] x [e,d] X [p,q] be a cuboid containing D, and let f* :
K — R be obtained by extending f : D — R as usual.

(i) The iterated integral f; (ff[c,d]x[p,q] f(x,y, 2)d(y, z)) dz exists and is
equal to the triple integral of f* on K by part (i) of Proposition 5.67. Hence

I= /ab <//[c,d]><[p,q] f*(ac,y,z)d(y,z)) dx.

Fix z € [a,b]. Then D, C [¢,d] X [p, q], and since the boundaries of [¢, d] x
[p, q] and D, are of content zero, the boundary of [¢,d] X [p,q] \ D, is also of
content zero. Since f*(z,y,z) = 0 for all (y,z) € [¢,d] x [p,q] \ Dy, Domain
Additivity (Corollary 5.52) shows that

// “(z,y,2)d(y, 2 /fx.% d(y, z)-
[cdx[pq

This proves (i).
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(ii) The iterated integral ff[a b [end] (f; [ (z,y, z)dz) d(x,y) exists and is
equal to the triple integral of f* on K by part (ii) of Proposition 5.67. Hence

= [ ([ s

Now Dg C [a,b] x [¢,d] is such that Dy is of content zero, and f*(x,y,z) =0
if (z,y) € [a,b] X [¢,d] \ Do and z € [p, ¢]. Thus, as in (i) above,

//[a,b}x[c,dl (/pq Fey ZW) () = //DO (/pq Py, Z)dz) d(z,y).

But f*(xvyvz) =0if (x,y) € DO and z € [pv q] \ [¢1(x7y)7¢2(x7y)} Hence for
each (z,y) € Dy, we have

$2(z,y)
/f (z,y,2 dz—/ f(x,y,2)dz.
$1(2,9)

This proves (ii). O

Other versions of Cavalieri’s Principle can be obtained by interchanging
the roles of the three variables x,y, and z. In each case, an iterated integral
is shown to be equal to the triple integral. This implies that the order of
integration can be changed under suitable conditions.

Remark 5.69. In part (i) of Proposition 5.68, if D, is an elementary region
in the yz-plane for every fixed = € [a, b], then Fubini’s Theorem (Proposition
5.36) can be used to evaluate the double integral fwa f(z,y, z)d(y, z), pro-
vided the function (y,2) — f(z,y,2) from D, to R satisfies the required
additional hypotheses. Similarly, in part (ii) of Proposition 5.68, if Dy is an
elementary region in the zy-plane, then Fubini’s Theorem (Proposition 5.36)

can be used to evaluate the double integral [/}, (f(bf((f’yy)) flz,y, 2 )dz) d(y, 2),

provided the function (z,y) — f(z,y, z) from Dy to R satisfies the required
additional hypotheses. In this manner, the evaluation of a triple integral can
be reduced to the evaluation of several Riemann integrals. (See Exercise 21.)

For example, if D := {(z,y,2) €R®: 22 +y? + 22 < 1},and f: D — R is
a continuous function, then we have

et = [ (L )]

Similar expressions for the triple integral of the function f over the set D can
be obtained by interchanging the orders of integrations with respect to z, y,
and z. &
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Sets of Three-Dimensional Content Zero

Let E be a bounded subset of R3. We say that E is of three-dimensional
content zero if the following condition holds: For every e > 0, there are
finitely many cuboids whose union contains £ and the sum of whose volumes
is less than e.

It is easily seen that each of the properties in Proposition 5.37 admits a
straightforward analogue for subsets E of R3. This will also have a consequence
similar to Corollary 5.38, and moreover, examples similar to those listed in
Examples 5.39 can also readily be given. In particular, if Dy is a bounded
subset of R%Z and ¢ : Dy — R is an integrable function of two variables, then
the graph of ¢ is of three-dimensional content zero.

A proof similar to the proof of Proposition 5.43 can be given to show that
if D is a bounded subset of R? such that dD is of three-dimensional content
zero and f : D — R is a bounded function such that the set of discontinuities
of f is also of three-dimensional content zero, then f is integrable over D.

Using Proposition 5.43 and part (ii) of Cavalieri’s Principle (Proposition
5.68), we can obtain the following analogue of Corollary 5.45 for triple inte-
grals: Let Dy be a bounded subset of R? such that 9Dy is of (two-dimensional)
content zero, and let ¢1, @2 : Dy — R be bounded functions such that ¢; < ¢o
and the sets of discontinuities of ¢; and ¢2 are of (two-dimensional) content
zero. If D := {(x,y,2) € R?: (z,y) € Dy and ¢1(x,y) < 2 < ¢o(z,y)}, then
0D is of three-dimensional content zero. Moreover, if f : D — R is a bounded
function such that the set of discontinuities of f is of three-dimensional con-
tent zero, then f is integrable on D and

JJ[ @ = [[ 0 (/:() (x,y,z>dz>d<x,y>.

Concept of Volume of a Bounded Subset of R3

The integrability of a function over a bounded subset D of R? depends not
only on the function, but also on its domain D. For example, consider the
constant function

1p: D —R defined by 1p(z,y,z2):=1 for all (x,y,z) € D.

In general, this is not an integrable function. For example, if K := [a,b] x
[e,d] x [p,q] and D := {(z,y,2) € K : z,y,z € Q}, then the function 17,

K — R, obtained by extending the function 1p : D — R as usual, is in fact
the trivariate Dirichlet function. We have seen that it is not integrable on K,
that is, 1p is not integrable over D. However, for a large class of bounded
subsets D of R3, the function 1p is integrable. It is natural to regard the
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triple integral of 1p over D to be the “volume” of D. With this in mind, we
make the following general definition.

Let D be a bounded subset of R3. We say that D has a volume if the
function 1p is integrable over D, and then the volume of D is defined to be

Vol(D) = / / /D 12,9, 2)d(z, g, 2).

If D is a cuboid, say D := [a,b] X [¢,d] X [p, ¢, then we have seen that 1p is
integrable on D and its triple integral is equal to (b — a)(d — ¢)(¢ — p), that
is, D has a volume and Vol(D) = (b — a)(d — ¢)(q¢ — p). Thus, the general
definition of volume is consistent with the usual formula for the volume of a
cuboid given at the beginning of this chapter.

The following analogue of Proposition 5.47 holds. If D is a bounded subset
of R3, then D has a volume if and only if D is of three-dimensional content
zero. Moreover, if D has a volume, then Vol(D) = 0 if and only if D is of three-
dimensional content zero. In particular, it follows that if D is a bounded subset
of R? and f: D — R is an integrable function, then f is integrable over every
subset Dy of D for which 9Dy is of content zero. This result allows us to
deduce domain additivity of a triple integral over a bounded set in R? as in
Proposition 5.51 and Corollary 5.52.

Change of Variables in Triple Integrals

Translations are among the simplest transformations of R? onto itself. Along
the lines of Lemma 5.55 and its proof, it can be easily shown that triple inte-
grals remain invariant under translations. As an application, we can obtain a
formula for the volume of a parallelepiped similar to the formula for the area
of a parallelogram given in Proposition 5.56. More precisely, consider non-
coplanar points (2o, %0, 20), (21, Y1, 21), (T2, Y2, 22), and (x3,ys, z3) in R? and
let D denote the parallelepiped with one vertex at (xg, Yo, 20) and the vertices
adjacent to (xo, Yo, 20) at (x1,y1,21), (T2,y2, 22), and (z3,ys, 23). Then

1 —To Y1 — Yo 21— X0
Vol(D) = |det | x2 —x9 Y2 —Yo 22 — 20
T3 —2o Y3 —Yo 23— %20

A function @ : R3 — R3 is called an affine transformation if there are
(2°,9°,2°) € R® and a;, b;, ¢; € R for i = 1,2, 3 such that

D (u,v,w) = (2° + aru+brv+ crw, y° + agu + bav + cow, 2° + azu+ bzv + czw)
for all (u,v,w) € R?. The Jacobian of this function is given by

aq bl C1
J(®)=det |az b2 ¢
as bg C3
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Let @ : R® — R? be an affine transformation. As in the case of an affine
transformation from R? to R2, it can be seen that if J(®) # 0, then @ is
bijective and ®~1 : R? — R? is also an affine transformation. In this case, ®
maps a parallelepiped E onto a parallelepiped, and the volume changes by a
factor of |J(®)|. More generally, we can show, as in Proposition 5.58, that if
E is a bounded subset of R? that has a volume and if D := ®(E), then D has
a volume and

Vol(D) = |J(®)|Vol(E).

With this preparation we obtain the following analogue of Proposition 5.59
for triple integrals by a straightforward modification of its proof.

Proposition 5.70. Let D be a bounded subset of R® such that 0D is of three-
dimensional content zero, and let f: D — R be a bounded function whose set
of discontinuities is of three-dimensional content zero. Suppose ® : R3 — R? is
an affine transformation with J(®) # 0, and E C R3 is such that ®(E) = D.
Then E is bounded and OF is of three-dimensional content zero. Moreover,
fo® : E — R is a bounded function, the set of discontinuities of f is of
three-dimensional content zero, and

// F (@, 2)d(z, g, 2 ///f (1, 0, w))|J (@), v, w).

Finally, we have the following analogue of Proposition 5.61.

Proposition 5.71 (Change of Variables Formula for Triple Integrals).

Let D be a closed and bounded subset of R such that OD is of three-
dimensional content zero, and let f : D — R be a bounded function such that
the set of discontinuities of f is of three-dimensional content zero. Suppose )
is an open subset of R® and ® : @ — R3 is a one-one transformation such
that D C ®(Q). Also, suppose ® = (¢1, P2, ¢3), where ¢1,d2, and ¢3 have
continuous partial derivatives in Q and J(®)(u,v,w) # 0 for all (u,v,w) € Q.
Let E C Q be such that ®(E) = D. Then E is a closed and bounded subset of
Q such that OF is of three-dimensional content zero. Moreover, fo® : F — R
18 a bounded function such that the set of discontinuities of f o ® is of three-
dimensional content zero, and

// F (@, 2)d(z, g, » // (f 0 ®) (1, v, )| T (®) (1, v, ) (1, v, ).

Two important cases involving a change of variables in triple integrals are
given by switching to cylindrical coordinates or to spherical coordinates. First,
we consider cylindrical coordinates. Let ® : R? — R3 be defined by

®(r,0,z) = (rcosb, rsinf, z) for (r,0,z) € R3.

Then for all (1,0, 2) € R, we have
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cosf sinf 0
J(®)(r,0,z) =det | —rsinf rcosf 0| =r.
0 01

The Jacobian of @ is nonzero on the set {(r, 6, z) € R3 : r # 0}. Also, it follows
from what we have seen in Section 1.3 that given any 6y € R, the function ¢
gives a one-to-one correspondence from the set

E.:={(r0,2) €R®:r>0and g — 7 <0 <y +n}

to the set {(z,y,2) € R®: (z,y) # (0,0)}.
Next, we consider spherical coordinates. Let ® : R? — R? be defined by

(p,p,0) = (psinpcosh, psinpsinb, pcosy) for (p,¢,0) € R3.
Then for all (p, ¢, 0) € R, we have

sinpcosf  sinpsind cos
J(®)(p,p,0) =det | pcospcosf pcospsing —psing | = p?sinp.
—psingsinf  psinecos b 0

The Jacobian of ® is nonzero on the set {(p,¢,0) € R3 : p # 0 and ¢ #
mm for any m € Z}. Also, it follows from Proposition 1.27 that given any
0y € R, the function ® gives a one-to-one correspondence from the set

Ey:={(p,0,0) eR3:p>0, 0<po<mand by — 7 <0 <0y +7}

to the set {(z,y,2) € R3: (z,y) # (0,0)}.

The above observations show that in switching to cylindrical or spherical
coordinates, the three-dimensional change of variables result will be directly
applicable for a closed and bounded subset D of R? if D does not intersect
a triangular wedge based on the z-axis. However, the following proposition
shows that switching to cylindrical or spherical coordinates is possible even
when the above condition on D is not satisfied.

Proposition 5.72. Let D be a closed and bounded subset of R such that
0D s of three-dimensional content zero and let f : D — R be a continuous
function.

() IfE:={(r,0,z) eR3:r>0,—7 <0 <7 and (rcosf, rsinf, z) € D}
and if OF is of three-dimensional content zero, then the triple integral of f

over D is equal to
/// flrcosO,rsing, z)rd(r,0,z).
B

(i) If B == {(p,p,0) € R3 : p>0,0< ¢ <m—7<860< 7 and
(psinpcosf, psinpsinb, pcosp) € D} and if OF is of three-dimensional con-
tent zero, then the triple integral of f over D is equal to

/// f(psingcos®, psin@sin, pcos p) p*sinpd(p, ,6).
E
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Proof. As in the proof of Proposition 5.65, let Dt := {(z,y,2) € D : y > 0}
and D~ = {(z,9,2) € D+ y < 0}.

(i) Let ET := {(r,0,z) € E : 0 < 0 < w}. Given € > 0, let D =
{(x,y,z) € Dt :e< /a2 —|—y2} and Ef :={(r,0,2) € ET : e < r}. If we let
OF :={(r,0,2) eR3:7 >0and —7/2 < 6 < 37/2}, then the desired result
follows using arguments similar to those given in the proof of Proposition 5.65.

(ii) Let BT :={(p,¢,0) € E:0<6 <7}. Givenany e € Rwith 0 < e < 7,
let DY denote the set of all elements (x,y,z) in D that satisfy

e < \/x2+y2+22 and \/$2+y2+22008(7(—6) <z< \/x2+y2—|—220086,

and let EF = {(p,p,0) € Et : e < pande < p <7 —¢}. If welet QT :=
{(p,p,0) € R : p > 0,0 < ¢ < mand — /2 < 6 < 37/2}, then the
desired result follows using arguments similar to those given in the proof of
Proposition 5.65. o

As a consequence of the above proposition, we can determine the volume
of a solid cylinder and of a solid ball. The formulas for the volumes of these
solids are well known in high school geometry.

Corollary 5.73. Let a and h be positive real numbers.

(i) The volume of {(z,y,2) € R® : 2? +y? < a? and 0 < z < h} is ma?h.
(ii) The volume of {(z,y,z) € R : 2 + y? + 22 < a?} is 4wa®/3.

Proof. (i) Let D := {(x,y,z) ER?: 22 +y?<a?and 0 < z < h}, f = 1p,
let E :=0,a] x [-m, 7] x [0, h], and apply part (i) of Proposition 5.72.

(i) Let D := {(z,y,2) e R¥:2? +y* 4+ 2> <a?}, f := 1p, and E :=
[0,a] x [0, 7] x [—m, 7], and apply part (ii) of Proposition 5.72. O

Examples 5.74. (i) Let D := {(z,y,2) € R3 : 2 >0, y >0, 2>0, z <
y+zand 1 < 2(x +y+ 2) < 2}, and consider f : D — R defined by
f(z,y,2) == z/(y + z). As in Example 5.63 (i), we can find the triple
integral of f over D by making the following change of variables:

Y+ z Wi z

U:=r+y+z, vV:= , = ,
rT+y+z Y+ z

or equivalently,
z:=u(l —v), y:=uw(l—-w), z:=uvw.

More precisely, consider Q := {(u,v,w) € R® : u > 0 and v > 0}, and
P : Q — R? defined by ®(u,v,w) = (u(l — v),uv(l — w),uvw). Then
® gives a one-to-one correspondence from  to ®(Q2) = {(z,y,2) € R? :
x> —y—zand y+ 2z > 0}. Also, if ® = (41, P2, ¢3), then the partial
derivatives of ¢1, ¢2, and ¢3 are clearly continuous and
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Fig. 5.26. The sets D := {(a:,y,z) eER*:2>0,y>0,2>0, e <y—+z and
1<2(@+y+2)<2}and E:=[},1] x [},1] x [0,1] in Example 5.74 (i).

1—wv —u 0
J(®)(u,v,w) =det | v(1l —w) u(l —w) —uv| =u?v#0
vw uw uv

for all (u,v,w) € Q. Further, if we let E denote the cuboid [1/2,1] x
[1/2,1] x [0,1], then it can be seen that ®(E) = D. (See Figure 5.26.)
Since f is continuous on D, we obtain

JJ s a2 = [[[ =m0 - w)ww it
= ///Euszd(u,v,w)
_ (A;Quzdu)(/;;dv)(/olwdw) .

(ii) Let a,h be positive real numbers. Consider the solid cylinder D :=
{(z,y,2) €R?: 2% +y? < a? and 0 < z < h} and the function f: D — R
defined by f(z,y,2) = z\/a2 — 22 — y2. As in part (i) of Proposition 5.72,
let £ :={(r,0,z) eR3:7r >0, —7 <0 <7 and (rcos,rsinf,z) € D}.
Then E = [0, a] X [—m, 7] X [0, h] and we obtain

///Df = ///Ef(rcos@,rsin&,z)rd(r,&,z)
- /0 [/_: (/oh ar/a? = dz) de] dr

orh2 [ 2 pd’ 372
_ 2mh / r\/aQ—Ter:Fh / \/sds:ﬂ-ah )
2/, 2/, 3
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(iii) Let @ € R with @ > 0 and D := {(x,y,2) € R3 : 2% + 4y + 22 < a?}.
Consider f : D — R defined by f(z,y,2) = 22. As in part (ii) of Propo-
sition 5.72, let E := {(p, ¢, 0) € R3:p>0,0<¢p <7 —7 <0 <7 and
(psingcosf, psinesing, pcosp) € D}. Then E = [0,a] x [0, 7] X [—m, 7]
and the triple integral of f over D is equal to

/// f(psingpcos®, psinpsin b, pcos ) p*sin pd(p, @, h)
E
= / [/ (/ (p2 cos? <p) 0> singpd@) d(p] dp
0 0 —T

@ T 2ra® 2 4Awa®
=2 4 ;2 3 d d = . = .
71'/0 p (/0 cos” psin go) p 5 g 15

Alternatively, we may use part (i) of Proposition 5.72, and observe that if
E:={(r0,2) eR®:r >0, -7 <0 < 7and (rcos,rsinf, z) € D}, then
E = {(r,9,z)€R3:—a§z§a, 0<r<+va?2-22and —7r§0§7r}.
This shows that the triple integral of f over D is equal to

a Va2 —z2 T a 4ra’
/ 22 / (/ d9> rdr] dz = 71'/ 2%(a® — 2?)dz = e
—a 0 —T —a 15

¢=m/3

Fig. 5.27. Illustration of the solid in Example 5.74 (iv).

(iv) Let a € R with @ > 0 and D := {(z,9,2) € R3: a? < 22 + 9% + 22 < 2az}.
Consider f : D — R defined by f(z,y,2) := z. We note that the set D
consists of points in R? that are outside the sphere given by 22 +y?+ 22 =

a? and are inside the sphere given by 22 + y% + (z — a)? = a?. (See
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Figure 5.27.) As in part (ii) of Proposition 5.65, let E := {(p, ¢,0) € R? :
p> 0,0 < <7 —7<6<7and (psinpcosh, psinysinb, pcosy) €
D}. Now if a® = 22 + y? + 22 = 2az for (z,9,2) € R?, then a® = p? =
2ap cos ¢, that is, cosp = 1/2, and if 0 < ¢ < 7, then it follows that ¢ =
7/3. Thus E = {(p,0,0) ER3:0< p <7/3,a<p<2acosp and —7 <
0 < m}. Hence the triple integral of f over D is equal to

/// f(psinpcos®, psinpsin b, pcos ) p*sin p d(p, @, 0)
E

/3 2a cos ¢ T
= / [/ (/ (pcos @) p? singpdﬂ) dp} dy
0 a -7

/3 16 4 4 _ 4
:27r/ cos<psin<p( @ ot = @ )dgp
0 4
4 /3 . 9 4
:W; / (16 cos® ¢ — cos @) sinp dp = ﬂ; . &
0

Notes and Comments

It is customary in textbooks on multivariable calculus to define a double in-
tegral as some kind of “limit” of Riemann double sums. The fact that such
a “limit” is of a different genre and needs to be handled carefully is often
ignored. We have chosen instead to define double integrals over rectangles by
considering suprema and infima of lower and upper Riemann double sums.
This mimics a standard approach in one-variable calculus and the one that
was followed in ACICARA. The Riemann condition and domain additivity re-
main the key tools to derive most of the basic properties of double integrals
over rectangles. Alternative approaches to defining the double integral of a
real-valued function on a rectangle are possible. One such would be to con-
sider more general types of partitions of a rectangle rather than the kind of
“product partitions” considered in this book. For example, a partition of a
rectangle could be defined as a finite collection of nonoverlapping subrectan-
gles or, more generally, a finite collection of nonoverlapping subsets whose
boundaries are of content zero. While this might make the initial definition
somewhat difficult to assimilate, it can lead to simpler proofs of such basic
results as Lemma 5.2, where the effect of a one-step refinement on upper and
lower sums is studied. For a treatment using a general notion of a partition
along the above lines, we refer the reader to Section 4.2 of Courant and John
[12, vol. II].

As an application of the Rectangular Mean Value Theorem proved in Chap-
ter 8, we obtain here a version of the Fundamental Theorem of Calculus for
double integrals on rectangles. There are other analogues of the Fundamen-
tal Theorem of Calculus that involve the notion of “line integral” and more
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generally, the notion of an integral of a “differential form,” and are known

as Green’s Theorem and Stokes’s Theorem, respectively. To learn more about
these, one can begin by consulting the books of Apostol [2, vol. II] and Courant
and John [12, vol. II], moving on to somewhat more advanced books such as
Fleming [19], Munkres [39], and Spivak [54]. The concept of “orientability”
plays an important role in these results. They are not discussed in this book.

On the real line, the intervals are the only connected subsets, and hence
there isn’t an acute need to extend the theory of Riemann integration to func-
tions defined on arbitrary bounded subsets of R other than intervals. However,
on R? there are far too many bounded connected subsets other than rectan-
gles. Thus it is necessary to extend the theory of double integrals on rectangles
to doubles integrals over arbitrary bounded subsets D of R?. We have done
this by extending a real-valued function on D to a rectangle containing D by
setting it equal to zero outside D. In particular, the integrability of the con-
stant function 1p leads to a general definition of “area” of D. It may be noted
that our treatment avoids the use of relatively sophisticated notions such as
Jordan measurability and Lebesgue measurability. Instead we use a relatively
simpler notion of sets of (two-dimensional) content zero. Bounded subsets of
R? having an area can be characterized as those for which the boundary is of
content zero. More generally, we show that if D is a bounded subset of R?
such that the boundary of D is of content zero, then a bounded real-valued
function on D is integrable over D if its set of discontinuities is of content
zero. It may be remarked that a subset D of R? is said to be of (Lebesgue)
measure zero if for every € > 0, there are countably many rectangles whose
union contains D and the sum of whose areas is less than €. It can be shown
that a bounded function defined on a rectangle in R? is integrable if and only
if the set of points at which the function is discontinuous is of measure zero.
(See, for example, Theorem 14.5 in the second edition of Apostol [1].) A set
of content zero is clearly of measure zero, but the converse need not be true.
In fact, the closure of a set of content zero is of content zero, but this is not
so for a set of measure zero. However, a closed and bounded subset of R? is
of measure zero if and only if it is of content zero.

In our view, a proof of the general result regarding a change of variables
is too involved to be included in this book. This is perhaps the only result in
the book that we have stated and used in the sequel without giving a proof.
Nonetheless, we have given a proof for the special case of the result involving
an affine transformation. Even in this special case, the proof is by no means
simple-minded and gives an indication of the level of difficulty of a proof of
the general result. The case of affine transformations is used to motivate the
change of variables formula in the general case. For a proof of the latter that
seems closest to the spirit of our book, we have referred the reader to Section 8
of Chapter 5 in Pugh [45]. The general change of variables result does not di-
rectly apply when we change Cartesian coordinates to polar coordinates in two
dimensions, and to cylindrical or spherical coordinates in three dimensions.
In these cases, we have shown why such a switch of coordinates is justified.
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For alternative approaches to the change of variables formula, each involving
significantly different techniques, one may consult Theorem 6 of Chapter 8
in Buck [8], Theorem 10-30 in the first edition of Apostol [1], Theorem 10.9
of Rudin [48], and the articles [34] and [35] of Lax. Proofs of some versions
of the change of variables formula, based on the article of Schwartz [51], are
given in Section 12.7 of Corwin and Szczarba [11], Theorem 6.42 of Webb
[57], and Theorem 9.3.1 of Marsden and Hoffman [38].

Exercises
Part A

1. Let a,b,c,d e Rwith0<a<b,0<c<d,andlet f,g: [a,b] X [c,d] = R
be defined by f(z,y) := 2?y? and g(z,y) := 2%+ y?. From first principles,
show that f and g are integrable and find their double integrals.

2. Show that ff[O,ﬂ']X[O,Tr] | cos(z + y)|d(z,y) = 2.

3. Let a,b € R with @ > 0 and b > 0, and let f : [0, 00] — R be defined by

0 if ¢ =0,
f(t) = {(e—at —eM)/t if £ > 0.

Show that the improper integral [J* f(t)dt converges to In(b/a). (Hint:

Observe that f(t) = f; e~ tdu for t > 0. Use Proposition 5.28.)

4. Let f : [a,b] x [¢,d] — R be a function. Show that f is integrable if and
only if there is r € R satisfying the following condition: For every ¢ > 0,
there is a partition P, of [a,b] x [¢, d] such that |S(P, f) —r| < €, where P
is any partition of [a,b] X [¢,d] finer than P, and S(P, f) is any Riemann
double sum corresponding to P and f.

5. Let D and D be bounded subsets of R? and let f : D — R be a function.
Suppose D C D and f: D — R is defined by

3 _ f(xay) if (if,y)GD,
f@,y) = {0 otherwise.

Show that f is integrable over D if and only if f is integrable over D.

6. Let D denote the triangular region bounded by the line segments joining
(0,0),(0,1), and (2,2). If f(z,y) := (z +y)? for all (z,y) € D, find the
double integral of f over D.

7. Let D denote the region bounded by the lines given by y = 0, z = 1,
y =2z, and let f(z,y) := e®” for all (z,y) € D. Find the double integral
of f over D.

8. Let D:={(r,y) €eR?:0< 2 <y<1,}, andlet f: D — R be defined by

) (sinx)/z if (x,y) € D with (z,y) # (0,0),
fley) = {1 if (2,y) = (0,0).
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10.

11.

12.

13.

14.

15.

16.

Show that f is integrable over D and find the double integral of f over D.
Let D := {(z,y) € R?: 0 <2 <1 and 2% < y < 22%} and let f(z,y) :=
2 +y for all (z,y) € D. Find the double integral of f over D.

In each of the following cases, write the iterated integral with the order
of integration reversed.

T

(i) /01 (/16 dy) dx, (i) /01 (/:: dy) dz,
(i) /02 (/0 dy> dz,  (iv) /01 (/_j: da:) dy.

Evaluate the following integrals.

Q) /01 (/Jl x%wdx> dy, (i) /08 (/j yﬁl)dx,

2
(iii) / (tan! 7z — tan~! x)dz.
0

Let D be a bounded subset of R? such that dD is of content zero, and let
€ > 0 be given. Prove the following.
(i) There are finitely many rectangles Ry, ..., Ry such that each of them is
contained in D and the sum of their areas is greater than Area(D) —e.
(ii) There are finitely many rectangles St, . .., Sy, such that D is contained
in their union and the sum of their areas is less than Area(D) + e.
Further, show that each rectangle R; in (i) above can be assumed to be
one of the rectangles among S1,...,S,, in (ii) above.
Let D be a bounded subset of R?, f : D — R an integrable function, and
define f*,f~ : D — R as in Remark 5.35. Also, let D" := {(z,y) € D :
f(z,y) >0} and D™ := {(z,y) € D : f(z,y) < 0}. Assume that DT and
dD~ are both of content zero. Show that f is integrable over DT as well

as over D~, and moreover, [[,. f = [[,fT and [[,_f = —[[,f".
Deduce that

W= e dh e fLv= L= f)

Further, show that either [[,[f] < 2|ffD+ f| or [[H1fI < QUfD, -
Let 0 <a<band D := {(a:,y) ER?:a < /22 + 32 Sb}. Show that D

is not an elementary region, but there are elementary regions Dy and Ds
such that D = D1 U D5, while D1 N D5 is of content zero. If f: D — R is
defined by f(z,y) := « + y, then find the double integral of f over D.
Let D denote the parallelogram with (m,0), (27, 7), (7,27), and (0,7) as
its vertices, and let f : D — R be defined by f(z,y) := sin®(z + y). Find
the double integral of f over D. (Hint: Let u := x + y.)

Let D denote the subset of R? bounded by the lines given by y = z,
y=—a,y=—x+4,andy = z+2.If f : D — Risdefined by f(z,y) := zy,
then find the double integral of f over D. (Hint: Let u := y — = and
vi=x+y.)
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17. Let D := {(z,y) € R*: O<y<2andy<2x<y+4}andletf D—R
be defined by f(z,y) :=y (2x y)e?*=¥)" Show that the double integral
of f over D is equal to e'® — 1. (Hint: Let u := 2z — y.)

18. If D C R? and

ffenr= [ ([ )]

then describe D. Rewrite the triple integral as an iterated integral in which
dz,dy, and dz appear in each of the following orders (i) dz,dz,dy, (ii)
dz,dy,dz, (iii) dz,dz,dy, (iv) dy,dz,dz, and (v) dy,dz, dz.

19. Let D denote the subset of R? bounded by the plane given by z = 0, the
circular cylinder given by the polar equation r» = cos f, and the paraboloid
given by the polar equation z = 3r%. Write

/// rd(r,0,z)
D
as an iterated integral.

20. Let D denote the subset of R? bounded by the planes given by = = 0,
y =0, z = 2, and the paraboloid given by z = 22 + 2. Find

///Dxd(x,y,z)

21. (Fubini’s Theorem for Triple Integrals) Let D be a bounded subset
of R3. Also, let f : D — R be an integrable function and let I denote the
triple integral of f over D.

(i) With notation and hypotheses as in part (i) of Proposition 5.68, sup-
pose further that for every x € [a,b], there are c¢;,d, € R with ¢, < d,
and integrable functions ¢, ¥, : [¢x, dz] — R such that ¢, < 1, and

Dy ={(y,2) €R?: ¢c;, <y < dy and ¢(y) < z < 1ha(y)}.

If the Riemann integral [ w*(;y)) f(z,y, z)dz exists for each fixed x € [a, D]

and each fixed y € [cy, dy], then show that

I= /ab l/:m (/:P:y()?/) f(x,y,z)dz) dy] dx.

(ii) With notation and hypotheses as in part (ii) of Proposition 5.68,
suppose further that there are a,b € R with ¢ < b and integrable functions
@, : [a,b] — R such that ¢ < and

Do = {(z,y) eR?:a <z <band ¢(x) <y <)}

If the iterated integral fd)(x) (fd)f((f;jy)) flz,y, 2 )dz) dy exists for each fixed
x € [a,b], then show that
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22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

b Pp(x) d2(z,y)
I:/ / / flz,y,z)dz | dy| dx.
a #() o1(z,y)

Let Dy be a bounded subset of R? and ¢ : Dy — R an integrable function.
Show that the set {(x,y,¢(z,y)) : (x,y) € Do} is of three-dimensional
content zero.

Let D be a bounded subset of R?, and Dy its projection on the zy-plane,
that is, Do = {(x,y) € R? : (z,y,2) € D for some z € R}. If Dy is of
(two-dimensional) content zero, then show that D is of three-dimensional
content zero.

Let E = {(z,y,2) € R® : 2,5,z > 0Oand v +y + z < 1} denote the
tetrahedron with (0,0, 0), (1,0,0),(0,1,0), and (0,0, 1) as its vertices. If
1, j, k are nonnegative integers, then show that

o itk
ik d - v .
///Exyz (z,9,2) (3+i+j+k)

In particular, conclude that Vol(E) = .

Let D = {(z,y,2) €ER3:2,y,2>0and 2 +y+2z<1}andlet f: D — R
be given by f(z,vy, 2) := e*2YT3%. Show that the triple integral of f over
D is equal to (e — 1)3/6.

Let D be a subset of R? as in Example 5.74 (i) and let f : D — R be
defined by f(z,y,z2) := (y + z)/(x + y + z). Show that the triple integral
of f over D is equal to 49/192.

Let D := {(z,y,2) € R®: (z%/a®) + (y*/b*) + (2?/c?) < 1}, where a,b,c
are positive real numbers, and let f : D — R be defined by f(x,y,z) :=
|zyz|. Show that the triple integral of f over D is equal to a?b*c? /6. (Hint:
Let 2 = apsinpcosf, y = bpsingsin b, and z = ¢pcos .)

Let D := {(x,y,z) eER}: 22492 <22and0< 2 < 1} denote the cone
with vertex at (0,0,0) and height 1, having its axis on the positive z-axis.
If f: D — R is defined by f(x,y,2) := 22 + 32 + 22, show that the triple
integral of f over D is equal to 37/10, using (i) cylindrical coordinates
and (ii) spherical coordinates.

Let « € R with @ > 0 and D := {(x,y,z) ER3: 2?2+ 2 +22< a2}.
Consider f : D — R defined by f(z,y,2) := z* Show that the triple
integral of f over D is equal to 4mwa”/35.

Let D := {(x,y,z) ER3:a?2 <% +92422< b2}, where a,b € R with
0 < a < b. Consider f : D — R defined by f(x,y,2) := (22 + > + 22)3/2.
Show that the triple integral of f over D is equal to 47 1n(b/a).

Let a, b, ¢ be positive real numbers and let

22 2 22
D = {(J;,y,z)eR3:x20, y >0, z>0, and o2 + 52 +62 Sl}.
Consider f : D — R defined by f(z,y,z) := xyz. Show that the triple

integral of f over D is equal to a?b?c?/48.
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Part B

32. Let f : [a,b] X [c,d] — R be a bounded function. For each fixed

€ [a,b], define ¢, : [c,d] — R by ¥, (y) := f(x,y) and let Ay(z) =

U(Yg), Ar(x) := L(1);). Also, for each fixed y € [c,d], define ¢y, : [a,b] —

R by y(x) = f(z,y) and let Bu(y) == U(gy), Bu(y) := L(gy). Prove
the following:

L(f) < L(Av) < U(Au) <U(f), L(f) < L(AL) <U(AL) <U(J),

L(f) < L(Bu) <U(By) <U(f), L(f) < L(BL) <U(BL) <U(f).

Further, if f is integrable, then show that each of the following integrals
exists and is equal to the double integral of f:

/ab Ay (z)dz, /ab Ap(x)dr, /Cd By (y)dy, /Cd B1(y)dy.

(Hint: Proof of Proposition 5.28 and Exercise 41 in Chapter 6 of ACICARA)
33. (Domain Additivity of Lower Double Integral and Upper Double
Integral) Let f : [a,b] x [¢,d] — R be a bounded function, s € (a,b), and
€ (¢,d). Let fi1 = filas)xjet)s 1.2 = fllasix(t.ds f2.1 = fifs,p]x[e,) and
foo = f\[s,b]x[t,d]' Show that

2 2 2 2

Uf) =3 Ulfi;) and L(f) =Y > L(fi).

i=1 j=1 i=1 j=1

34. Let f :[a,b] X [¢,d] — R be continuous. Define F': [a,b] X [¢,d] — R by
Faw)= [ fendsn) for (o) € ot x ed)
[a,a] X [e,y]

Show that the first partials as well as the mixed second-order partials of
F exist and are continuous on [a,b] X [¢,d]. Further, if, in addition, f,
exists and is continuous on [a,b] X [c,d], then show that F,, exists and
is continuous on [a,b] x [c,d]. Likewise, if, in addition, f, exists and is
continuous on [a,b] x [c,d], then show that F,, exists and is continuous
on [a, b] x [¢,d]. Also, show that if the additional hypotheses on f, and f,
are satisfied, then for each (zg, o) € [a,b] X [c, d], we have

Yo Zo
Fﬂﬂ(l‘O)yO) = fﬂ(l‘O)t)dt and EJy(Z‘O)yO) = / fy(sayo)ds'
c a
(Hint: Exercise 30 of Chapter 3)
35. Let F : [a,b] X [¢,d] — R be a continuous function such that both F,
and Fy, exist and are continuous on [a,b] x [¢,d]. Use Fubini’s Theorem
(Proposition 5.28) and the FTC (Fact 5.18) to show that
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36.

37.

38.

39.

40.

41.

// Fuy = F(b,d) — F(b,c) — Fla,d) + F(a,c).
[a,b] x[c,d]

(Compare part (i) of Proposition 5.20.)
Let f : [a,b] x [¢,d] — R be continuous. Define F : [a,b] X [¢,d] — R by

F(z,y) := //[ " f(s,t)d(s,t) for (z,y) € [a,b] X [¢,d].

Use Fubini’s Theorem (Proposition 5.28) and the FTC (Fact 5.18) to show
that the first-order as well as the mixed second-order partial derivatives
of F exist and moreover, Fyy(z0,y0) = f(x0,y0) = Fyz(xo, yo) for every
(z0,y0) € [a,b] x [¢,d]. (Compare part (ii) of Proposition 5.20.)

Let R := [a,b] X [¢,d] and let f,g,G : R — R satisfy the following four
properties: (i) fg, fy, and fs, exist and are continuous on R, (ii) g is
integrable on R, (iii) G, and G, exist and are continuous on R, and (iv)
Gy exists and G, = g on R. Show that

(bd) ’ _
| 19=00006) - [ (16)6.0) ~ (£:G)(s,0) ds

- / (1,600~ (el [[ 16

where ALY (fG) = (fG)(b,d) — (fG)(b,c) — (fG)(a, d) + (fG)(a, ).
(Cauchy Condition) Let f : [a,b] X [¢,d] — R be a bounded function.
Show that f is double integrable on [a, b] x [¢, d] if and only if the following
“Cauchy Condition” is satisfied: For every e > 0, there is a partition P,
of [a,b] X [¢,d] such that |S(P., f) —T(P., f)| < € for any Riemann double
sums S(P., ) and T(P,, f) for f corresponding to P..

(Theorem of Darboux for Lower and Upper Integrals) Let f :
[a,b] x [¢,d] — R be a bounded function. Show that given any e > 0, there
is 0 > 0 such that for every partition P of [a,b] X [c,d] with u(P) <, we
have 0 < U(P, f) —U(f) <eand 0 < L(f) — L(P, f) <.

Let f : [a,b] x [¢,d] — R be such that f, f,, and f,, exist and are contin-
uous on [a, b] X [¢,d]. Show that f is of bounded bivariation and

- / / Fay(s,8)] d(5.8).
la,b]x[c,d]

(Hint: Part (i) of Proposition 5.20 and Proposition 5.9.)

Let f : [a,b] x [¢,d] — R be a bounded function, and let (P,) be any
sequence of partitions of [a,b] X [¢,d] such that u(P,) — 0. Show that
U(P,, )= U(f)and L(P,, f) — L(f). Deduce that if f is integrable and
I(f) denotes the double integral of f on [a, b] x [¢c, d], then U(P,, f) — I(f)
and L(P,, f) — I(f). (Compare Corollary 5.32.)
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42.

43.

44.

45.

46.

5 Multiple Integration

Let D be a bounded subset of R? and let f : D — R be a bounded function.
Suppose there is r € R satisfying the following condition: For every € > 0,
there are integrable functions g, he : D — R such that gc < f < h, and

//D ge(z,y)d(z,y) > r —e, whereas //D he(z,y)d(z,y) <7+ €.

Show that f is integrable over D and the double integral of f equals r.
Let D be a bounded subset of R? such that 9D is of content zero and let
f D — R be integrable over D.

(i) If Dy C D is such that 0Dy is of content zero, show that f is integrable
over Dy as well as over D \ Dy, and the double integral of f over D is
equal to the sum of the double integrals of f over Dy and over D\ Dy.
(ii)) If ¢ : D — R is integrable over D and there is § > 0 such that
|f — g| < 3, then show that

[ st~ [[ steate.n| < paseaio)

(iii) If Dy and Dy are bounded subsets of D such that 9D and D5 are
of content zero, then show that

‘/Dl [z, y)d(z,y) —/D2 f(x,y)d(x,y)‘ < aArea(S),

where S := (D1 \ D2) U (D2 \ Dy) and « := sup{|f(z,v)| : (z,y) € S}.
Let D be a bounded subset of R? and let f : D — R be a function. Let
R be a rectangle such that D is contained in the interior of R. Define
f*: R — R by extending the function f as usual. Let (zq,y0) € R. Show
that f* is discontinuous at (g, yo) if and only if either (xg,yo) € D and
f is discontinuous at (zo, o), or (xo,yo) € 0D and there is a sequence
(Tn,yn) in D such that f(x,,yn) 7 0.

Let D be a bounded subset of R? and let f : D — R be a bounded
function. Define f :R?2 - R by

; ) fxy) i (z,y) € D,
fay) = {0 otherwise.

IfE denotes the set of discontinuities of f, then show that E is a bounded
set, and if F is of content zero, then f is integrable over D. In particular,
if D is a closed set, f(z,y) := 0 for every (z,y) € 0D, f is continuous
at every (z,y) € 9D, and the set of discontinuities of f has content zero,
then show that f is integrable over D.

Let D be a bounded subset of R? and let 1p : D — R be defined by
1p(z,y) =1 for all (x,y) € D. If R is a rectangle containing D and 1%,
is the function obtained by extending the function 1, as usual, then for
any partition P := {(x;,y;) :¢=0,...,nand j =0,1,...,k}, show that
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47.

48.

49.

50.

o1.

U(P, l*D) P 1* ZZ i — Li— 1 _yj—l)a

(i,)€8

where S is the set of all pairs (i, j) of nonnegative integers with ¢ < n and
J < k such that the (7, j)th subrectangle [z;_1,z;] X [yj_1,y;] of P has a
nonempty intersection with D as well as with R\ D.

Let R :=[0,1] x [0,1] and write R N Q? = {(pn,qn) : m € N}. Let § € R
with 0 < § < 1, and for n € N, let S,, denote the open square of area §/2™
centered at (py, ¢n). If D := R\|J;—, Sn. then show that D is a closed and
bounded subset of R? but D does not have an area. Further, if f : R — R
is defined by f(z,y) := inf{|(x,y) — (u,v)| : (u,v) € D}, then show that
f is continuous and the boundary of the set {(z,y) € R: f(x,y) = 0} is
not of content zero. (Hint: 0D = D)

Show that if ® : R?> — R? is an affine transformation, then ® satisfies a
Lipschitz condition, that is, there is a constant L > 0 such that

|D(ur,v1)—Pug,v2)| < L|(u1,v1)—(uz,v2)| for all (uy,v1), (uz,vs) € R2.

Let Q be an open subset of R? and let ® = (¢1,¢2) : Q — R? be such
that both ¢; and ¢ have continuous partial derivatives on . Let D
be a bounded subset of ®(2) such that dD is of content zero and let
f: D — R be an integrable function. Suppose there is a sequence (D,,)
of closed subsets of D such that for each n € N, the boundary 9D,, of
D,, is of content zero, f is continuous on D,,, and Area(D \ D,) — 0 as
n — oo. Further, suppose (E,) is a sequence of subsets of Q such that
®(E,) = D,, and OF, is of content zero for each n € N. Show that

[, s = i [ s,

Formulate and prove a similar result for subsets of R3.
Let D:={(z,y) €eR?>:2 >0, y>0ando+y <1}andlet f: D - R
be defined by f(0,0) := 0 and f(z,y) := y/(z + y) for (z,y) € D with
(z,y) # (0,0). Use the change of variables given by

Y

=x+ d = f ,y) € D with (z, 0,0
u:=xz+y and w sty or (z,vy) with (z,y) # (0,0)

to show that [/, f = 1/4. (Hint: Consider D,, := {(z,y) € D 1z +y > !
for n € N and use Exercise 49. Compare 5.63 (i).)
Let D := {(z,y,2) €ER3:2 >0, y >0, 2>0, andz +y + 2 < 1} and
let f: D — R be defined by f(z,y,z) := z/(y + z) for (z,y,2) € D with
y+ 2z # 0 and f(x,y,2) := 0 for (x,y,2) € D with y + 2 = 0. Use the
change of variables given by

Y+ z z

ui=x+y+z, v:= , and w:=
rT+y+z y+z



290

92.

93.

o4.

95.

56.

5 Multiple Integration

for (x,y,2) € D with y+z # 0 to show that [, f = 1/12. (Hint: Consider
D, = {(z,y,2) € D:n(x+y+z2) >landn(y+z) >z +y+ z} for
n € N and use Exercise 49 for subsets of R®. Compare 5.74 (i).)

Let Q,®, D, f, and E be as in Proposition 5.61. Let A be an open subset
of R? and let ¥ : A — R? be one-one and such that ¥(A) C Q. Let ¥ :=
(11,12), and assume that ¢, and 1 have continuous partial derivatives
in A and J(¥)(s,t) # 0 for all (s,t) € A. If G is a bounded subset of A
such that G is of content zero and ¥(G) = E, then show that the double
integral of f over D is equal to

/ /G (f 0 ®)(T (s, )| (B) (W1 (5. £), U (s, )] [J(T)(s, 6)|d(s. ).

(Double Polar Coordinates) Let ® : R* — R* be the function given
by ®(r,0,p,p) = (rcos, rsind, pcosp, psinp). Show that the Jaco-
bian of ® is given by J(®)(r,0, p, ) = rp for all (1,0, p, ) € R%. Prove
a result analogous to Proposition 5.65 and deduce that if ¢ > 0 and
D = {(z1,22,73,24) € R : 2% + 23 + 2% + 23 < a?}, then the quadru-
ple integral of the function 1p is equal to 72a*/2.

(Spherical Polar Coordinates) Let ® : R — R® be the function given
by ®(p,p,0,7,1) = (psinpcosl, psinpsin, pcosp, rcost), rsiny).
Show that the Jacobian of @ is given by J(®)(p,¢,0,r,1) = rp?sin .
Prove a result analogous to Proposition 5.72 and deduce that if a > 0
and D := {(x1, 22,23, x4, 75) € R% : 2 + 23 + 23 + 2] + 2 < a®}, then
the quintuple integral of the function 1p is equal to 872a®/15.

Forn e N,let D := {(21,...,2,) ER" 1 2y,...,2p >0, 21+ -+2, < 1}
denote the standard n-simplex in R". If 74, ..., 4, are any nonnegative
integers, then show that

//xxd(x oy = bl
p b T T (g i)

In particular, conclude that

1
/ /D D(xla » T )d(xl x) n

Let n € N. For i =0,1,...,n, let (acy),...,ng)) be points in R™ that do
not lie in any translate of an (n — 1)-dimensional subspace of R", and let
D denote the n-simplex having these points as its vertices. Show that

||
1 T s, X)) =,
//DD(xla s T )d(21 Tn) n

where d is the determinant of the n x n matrix whose (7, )th entry is
(0)

xy)—xj fori,j=1,...,n.
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Applications and Approximations of
Multiple Integrals

It is customary in one-variable calculus to include geometric applications of
Riemann integration so as to give definitions and methods for the evaluation
of area of a planar region, arc length of a curve, volume of a solid of revolution,
and area of a surface of revolution. (See, for example, Chapter 8 of ACICARA.)
While the definition of arc length thus obtained is quite general, the defini-
tions of area, volume, and surface area are applicable only to a restricted class
of planar regions, solids, and surfaces. In fact, general definitions are obtained
using the notions of double integrals and triple integrals developed in Chapter
5. In Section 6.1 below, we discuss the general notions of area and volume,
and show that these are consistent with the definitions given in one-variable
calculus for certain regions in R? and solids in R3. Areas of surfaces in R? are
discussed in Section 6.2, and it is shown that areas of surfaces of revolution
are a special case. Subsequently, a general treatment of centroids of planar
regions, solids, and surfaces is given in Section 6.3, and this includes a the-
orem of Pappus relating the volume of a solid of revolution with the area of
the corresponding planar region and its centroid. In the last section of this
chapter, we consider cubature rules, which are higher-dimensional analogues
of quadrature rules given in Section 8.6 of ACICARA. These are useful in finding
approximations of double and triple integrals.

6.1 Area and Volume

We begin by considering areas of subsets of R2. This discussion will be followed
by a discussion of volumes of subsets of R3.

Area of a Bounded Subset of R?

Let D be a bounded subset of R? such that dD is of content zero, and let
1p : D — R denote the function given by 1p(z,y) := 1 for (z,y) € D. By
Proposition 5.47, we see that D has an area and moreover,
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Area(D) := //D 1p(z,y)d(z,y).

Let Dy and D5 be bounded subsets of R? such that 0D, and dD5 are of
content zero. Then d(D1 U D) and 9(D; N Ds) are also of content zero, since
each of these sets is contained in the union of 9D, and 9D5. Hence letting f
be the function 1p,up, in Proposition 5.51, we obtain

Area(D; U D3) = Area(Dq) + Area(D3) — Area(D; N Dy).
If, in particular, D1 N D5 itself is of content zero, then we have
Area(D; U Dy) = Area(Dy) + Area(Ds).

In one-variable calculus, it is customary to define the area between two
curves, say y = fi(x) and y = fa(x), where f1, f2 : [a,b0] — R are Riemann
integrable functions satisfying f; < fo, to be

b
/ [fa(z) — fi(2)]d.

To show that this is consistent with the general definition of area in terms of
double integrals, we proceed as follows. Let f1, fo be as above and consider
the elementary region

D :={(z,y) eR*:a<z<band fi(z) <y < fa(x)}.

Then D is the region between the two curves y = f1(x) and y = fo(x), where
x € [a,b]. Assume that the sets of discontinuities of the functions f; and fo
are of one-dimensional content zero. Then from Corollary 5.45, we see that
dD is of content zero and moreover,

Avea(D) = | b ( /f f(()) dy) @~ [ 'fal@) — fu(a)de.

For example, if a = 0 and if b, h are any positive real numbers and we take
fi(z) :=0and fao(x) := ha/bfor x € [0,b], then D is the triangular region with
(0,0), (b,0), and (b, h) as its vertices. Further, Area(D) = fob fo(x)dz = Jbh.
In other words, the area of a triangle is half the base times the height.

In a similar manner, if an elementary region D is given by

D= {(z,y) eR*:c <y <dand gi(y) <z < g2(y)},

where g1, g2 : [¢,d] — R are such that g; < go, and the sets of discontinuities
of g1 and gs are of one-dimensional content zero, then by Corollary 5.45, D
has an area and moreover,

Area() = [ ’ ( / (()) dm) a= | l92(9) — 01 ().
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Thus the definitions usually given in one-variable calculus (for example, in
Section 8.1 of ACICARA) of the area of a region between two curves given by
Cartesian equations are consistent with our general definition of an area.

Remark 6.1. Let f1, f2 : [a,b] — R be bounded functions with f; < f2 and
let D := {(z,y) € R? :a <z < band fi(r) <y < fa(x)}. We have shown
that f; [f2(x) — fi(z)]dz equals Area(D) := [[, 1p(x,y)d(x,y) under the as-
sumption that the set of discontinuities of f; and f5 are of one-dimensional
content zero. Of course, this assumption implies Riemann integrability of f;
and fo, and it is satisfied by most functions that one comes across. However,
equality also holds if we assume only that f; and f; are Riemann integrable.
This can be shown using a result (given, for example, in Theorem 11.53 of
Rudin [48]) that a bounded function of one variable is Riemann integrable
if and only if its set of discontinuities is of (Lebesgue) measure zero. Indeed,
using this and proceeding as in the proof of Corollary 5.45, we see that 9D
is of (Lebesgue) measure zero, and hence, as observed in the Notes and Com-
ments on Chapter 5, D is of content zero. So the desired equality follows
from Fubini’s Theorem over elementary regions (Proposition 5.36). A similar
remark applies to elementary regions bounded by curves of the type z = g1(y)
and © = ¢ga2(y), where y € [e,d]. &

Regions between Polar Curves

Our aim is to show that the general definition of area using double integrals is
consistent with the formula given in one-variable calculus for the area of the
region between two polar curves, that is, curves in R? defined by an equation
given in polar coordinates. For simplicity we shall restrict to continuous polar
curves. A basic fact needed is the formula worked out in the example below.

Example 6.2. Let ¢ € R with a > 0, 6y € [0,7], and let Dy denote the
sector of a disk of radius a that subtends an angle 6, at the center; for ex-
ample, let Dy denote the set of (z,y) € R? such that 22 + y*> < a? and
0 < cos™! (alc/\/x2 —l—y2) < O for (z,y) # (0,0). If §y = 0, then Dy reduces
to a line segment, and its area is clearly equal to 0. Now let 6y € (0,7/2].
Then Dy = T U E, where T is the triangular region with (0,0), (acos6y,0),
and (acosfy,asinfy) as its vertices, whereas E is the region below the curve
y = Va2 —22 2 € [acosfy,a]. (See Figure 6.1.) Also, T N E is clearly of
content zero. It follows that Dy has an area and Area(Dy) is equal to

a

1
Area(T) + Area(E) = ) (acosbp)(asinby) + Va2 — 22 de =

a cos 6

a290
9

Next, if 0y € (7/2, 7], then we can consider 6y := 0y — (7/2) and observe
that 6, € (0,7/2] and also that
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(acos by, asinby)

(0,0)
Fig. 6.1. Illustration of the regions 7" and F in Example 6.2.

a®(n/2) a0, a*m  a? ™ a?0y
_ 00 — ):
S 4 T (0 2 27

which leads to the conclusion that Area(Dg) = a%6y/2 for any 6y € [0,7]. <

It may be noted that it would have been much easier to obtain the formula
Area(Do) = a6y/2 in the above example by directly using double integrals,
switching to polar coordinates, and using Fubini’s Theorem. However, to en-
sure that this switching is valid, that is, that Proposition 5.65 is applicable,
one has to check that the relevant sets have boundaries of content zero. We
shall show below that such a thing holds in a greater generality.

Proposition 6.3. Let p : [, 5] — R be a nonnegative Riemann integrable
function. Then the set C' = {(p(#) cos, p(f)sinf) € R? : a < 0 < B} is of
content zero.

Proof. Since the function p is nonnegative and bounded, there is a positive
real number M such that 0 < p(f) < M for all 6 € [«, 5]. Let € > 0 be given.
By the Riemann Condition for functions of one variable (given, for example,
in Proposition 6.5 of ACICARA), there exists a partition Q := {6, 61,...,0,}
of [a, B] such that U(Q,p) — L(Q,p) < ¢/2M, that is,

> _IMi(p) = mi(p)](6: — 6:1) <
i=1
Fori=1,...,n,let D; := {(rcosf,rsinf) € R?:6; ; <6 <0; and m;(p) <
r < M;(p)}. (See Figure 6.2.) Fix i € {1,...,n}. Since dD; consists of two
line segments and two circular arcs, it is of content zero. Also, by the formula
in Example 6.2 for the area of a sector of a circle and by Domain Additivity
(Proposition 5.51),

€

M

Area(Dy) = ) Mi(p)2 (0~ 0,1) — ymi(p)* (0, — 0i 1)
= 3 M)+ map)] [Mip) — ma(p))(0: — 0:-1)
< M[M;(p) — mi(p)](6s — 0i-1).
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Fig. 6.2. Transformation of a polar rectangle.

Now let D := D1U---UD,,. Since for every 6 € [a, 0], thereisi € {1,...,n}
such that 0 € [0;_1,6;] and then p(0) € [m;(p), Mi(p)], we see that

C ={(p(0)cos,p(f)sinh) € R? : a« < 0 < 3} C D.
In view of Corollary 5.38, 9D is of content zero. Thus D has an area and

n n
€ €
A D) < A D;) < MM, —m,; 0;, —0,_ M - = .
rea(D) £ 3 Area(D) < 3% MIMAp) — milp)0s —0ims) < M- 51 =
Let R be a rectangle containing D and consider the function 1}, : R — R
obtained by extending the function 1p : D — R as usual. Then

Area(D) = / /D Lpd(z,y) = / /R 15 d(z, y).

Since 17, is integrable, there is a partition P of the rectangle R such that
U(P,1}) < Area(D) + § . Among the subrectangles induced by the partition
P, let Ry,...,R; be the ones that intersect with D. Then D is contained in
the union of Ry,..., Rg, and the sum of the areas of these subrectangles is
equal to U(P,17,). Thus we have C € D C Ry U---U R, and the sum of
the areas of the rectangles Ry,..., R, is less than Area(D) + 5 < § + 5 = e.
Hence the set C' is of content zero. O

Consider a region D between two polar curves. (See Figure 6.3.) More
precisely, let «, f € R be such that either —mr < a< f<mora=—-m, =m.
Suppose pi1,p2 : [o, 3] — R are nonnegative continuous functions such that
p1 < pa. In case « = —m, § = 7, assume that p;(7) = p;(—m) for i = 1,2. Let

D :={(rcosf, rsinf) € R?*:a <0 < B and p1(0) <r < pa2(0)}.

Note that 0D = Lo, U Lg U Cy U Cy, where
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Y Y

Fig. 6.3. Illustrations of regions between two polar curves.

L., :={(rcosv, rsiny) € R? :p1(y) <r < pa(y)} for v € {e, S},
Ci = {(pi(0) cos b, p;(0)sinh) € R* :a <O < B} foric {1,2}.

Moreover, since L, and Lg are line segments, they are of content zero, whereas
by Proposition 6.3, both C; and C5 are of content zero. Hence 0D is of content
zero. To find the area of D, we shall use the change of variables result for polar
coordinates. Thus, as in Proposition 5.65, let

E:={(r0)cR?:r>0, -1 <0 <7 and (rcosf,rsinf) € D}.

Consider the set Ey := {(r,0) € R? : a« <0 < B and p1(#) < < p2(6)}. Then
E = Ey if (0,0) & D, while E = Ey U {(0,0) : § € [—, 7]} if (0,0) € D. (See
Figure 6.3.) Also, as in Corollary 5.45, we see that dFj is of content zero. It
follows that OF is of content zero. Now by the change of variables formula for
polar coordinates (Proposition 5.65) and by Fubini’s Theorem for elementary
regions (Proposition 5.36), we have

Area(D) = //Erd(r, 0) = /: /:(2:) rdrdf = ; /j[p%(@) — p2(6)]db.

This shows that the definition sometimes given in one-variable calculus (for
example, in Section 8.1 of ACICARA) of the area of a region between two
continuous curves given by polar equations of the form r = p(6) is consistent
with our general definition of an area. The area between curves given by polar
equations of the form 6 = a(r) is treated in Exercise 33.

Finally, we observe that the area of a bounded set in R? is invariant under
a translation and a rotation of the set. In fact, invariance under a translation
has already been proved in Lemma 5.55. The following result proves invariance
under a rotation.
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Proposition 6.4. Let E be a bounded subset of R? that has an area. Also,
let € (=m, 7] and D := {(ucosa —vsina, usina+vcosa) : (u,v) € E}.
Then D has an area and Area(D) = Area(FE).

Proof. Consider the affine transformation ® : R? — R? defined by ®(u,v) :=
(ucosa —vsine, usina + vcosa). It is clear that ®(E) = D. Moreover,

cosa —sina
sina  cosa

J(®@)(u,v) = det [ ] = cos’ a+sin®a = 1 for all (u,v) € R%

Hence by Proposition 5.58, D has an area and Area(D) = Area(FE). O

Volume of a Bounded Subset of R3

Let D be a bounded subset of R? such that 9D is of three-dimensional content
zero, and let 1p : D — R denote the function given by 1p(x,y) := 1 for
(z,y) € D. In Section 5.4, we have defined the volume of D by

Vol(D) 1= / / /D (@, 9, 2)d(z, y, 2).

Let Dy and D5 be bounded subsets of R? such that D, and dD5 are of
three-dimensional content zero. Then 9(Dy U D3) and 9(Dy N Dy) are also
of three-dimensional content zero, since each of these sets is contained in the
union of dD; and 0Ds. Hence by the domain additivity of the triple integral
of the function 1p,up,, we obtain

VOI(Dl U Dg) = VOI(Dl) + VOI(DQ) — VOI(Dl N DQ)
If, in particular, D1 N D5 itself is of three-dimensional content zero, then
VO](Dl U DQ) = VO](Dl) + VO](DQ)

In analogy with “area between two curves,” we now proceed to discuss
the notion of “volume between two surfaces.” Let Dy be a bounded subset of
R? such that 9Dy is of (two-dimensional) content zero. Let fi, fo : Do — R
be bounded functions such that f; < fo and the sets of discontinuities of
f1 and fy are of (two-dimensional) content zero. Then by Proposition 5.43,
the functions f; and fy are integrable over Dy. If D is the solid between the
surfaces given by z = fi(x,y) and z = fo(x,y), that is, if

D :={(x,y,2) € R®: (x,y) € Dy and fi(z,y) < 2z < falz,y)},

then 0D is of three-dimensional content zero, as seen in Section 5.4. By part
(ii) of Cavalieri’s Principle (Proposition 5.68), the volume of D is equal to

Vol(D) — / /D o, y) — fi(,p))d(x, ).
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Similar results hold for solids between surfaces given by equations of the type
y = g(xz,2) or of the type © = h(y,z). Moreover, comments analogous to
those in Remark 6.1 are applicable. Thus, in particular, the above formulas
for volume hold in greater generality when the functions f1, fo : Dy — R are
assumed only to be integrable.

Example 6.5. Let a € R with ¢ > 0 and let D denote the subset of R?
enclosed by the cylinders given by x? + y? = a? and z? + 22 = a?. Then
D = {(z,y,2): (z,y) € Dy and —Va? —2? <z <Va®>— 22}, where Dy :=
{(z,y) € R? : 2% + y* < a?}. Hence

Vol(D) = //D (/Z_i dz) d(z,y) = //D 2v/a2 — 22 d(z,y).

Also, Dy = {(x,y) eR?2: —a<z<aand — Va2 —22 §y§\/a2—x2}. So

a Va2—z2 a 16@3
Vol(D)zQ/ (/ \/az—xzdy> dac:4/ (a® — 2%)dx = 3 -
—a —Va2—x2 —a

This example may be compared with Example 8.4 (ii) of ACICARA. o

Solids between Cylindrical or Spherical Surfaces

Analogous to the formula for the area of a region between two polar curves, we
shall obtain formulas for the volume of a solid between two cylindrical surfaces,
that is, surfaces given by equations in cylindrical coordinates (r, 6, z), and a
solid between two spherical surfaces, that is, surfaces given by equations in
spherical coordinates (p, 0, ¢). Basic facts needed for these formulas are worked
out in the examples below. These examples are analogous to Example 6.2.

Examples 6.6. (i) Let a € R with a > 0 and 6y € [0, 7]. Let Dy denote the
sector of a disk of radius a that subtends an angle 6y at the center; for

(acos by, asin by, 0)

Fig. 6.4. Sector of a cylindrical solid considered in Example 6.6 (i).
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(asin ¢ cos O,
@ sin ¢ sin 6y,

@ cos )

Fig. 6.5. Sector of a spherical solid considered in Example 6.6 (ii).

example, let Dy C R? be exactly as in Example 6.2. Given zy > 0, we
shall refer to the set D := {(z,y,2) € R*: (z,y) € Dy and 0 < 2 < 2} as
a sector of a cylindrical solid. (See Figure 6.4.) It is clear that D has
a volume and

CL2 902’0

Vol(D) = //D zod(x,y) = zoArea(Dy) = 5

(ii) Let @ € R with @ > 0, 6y € [0, 7], and ¢ € [0, 7]. Let D denote the set of
all (z,y, z) € R3 such that 22 +y>+22 < a?,0 < cos™! (ac/\/x2 + y2> < by

whenever (z,y) # (0,0), and 0 < cos_l(z/\/ac2 +y? —1—22) < o when-
ever (x,y,z) # (0,0,0). We shall refer to D as a sector of a spheri-
cal solid. (See Figure 6.5.) Observe that if y = 0, then D reduces to
a surface in the xz-plane, whereas if ¢y = 0, then D reduces to a line
segment on the z-axis, and thus in either of these two cases, D is of three-
dimensional content zero, and so Vol(D) = 0. Assume that 0y € (0,7/2]
and ¢g € (0,7/2]. Now, (z,y,z) € D if and only if z < \/a2 —x2 — g2,
0 < cos’l(x/\/xz—i—yz) < B whenever (z,y) # (0,0), and cospy <
2/\/x2 + y2? + 22 whenever (z,y,2) # (0,0,0). Let (z,y,2) € R® with
(z,y,2) # (0,0,0). Then it is easy to see that cospy < z//22 +y2 + 22
if and only if 22 +y? < (22 +y2 + 22) sin o, that is, cot po\/22 + y2 < 2.
Thus, if we let Ey = {(x,y) € R? : 22 +¢? < a’sin®gpand 0 <

cos’l(ac/\/x2 —l—y2) < By for (x,y) # (0,0)}, then D = {(z,y,2) € R®:
(z,y) € Ep and cot ppy/22 4+ y2 < 2 < \/a® — 22 — y2}, that is, D is the
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solid between the surfaces z = cot pg\/22 +y2 and 2z = /a2 — 2% — y2

as (z,y) ranges over Ey. Note also that cot pg/22 + 32 < /a2 — 22 — 32
for all (x,y) € Ey. It follows that D has a volume and

Vol(D / \/az—xz—y —cotgoo\/xz—i—y] (z,y).
Eo

To compute the above double integral, we use polar coordinates and obtain

0o pasineg 6o prasineg
Vol(D):/ / \/@2—7"2 rdrdf —/ / (rcot ) rdrdd
[(a2 —r )3/2}“1“00 0 a® sin® g cot g
= - — 0
2 312 |, 3
30,
a3 (1= cosgp).

The case in which 0y € (7/2, 7] or ¢ € (7/2, 7] can be handled by symme-
try considerations or by arguing as in Example 6.2. At any rate, the sector
D of a spherical solid has a volume and Vol(D) = a6 (1 — cosg) /3 for
any 0y € [0, 7] and ¢g € [0, 7]. <&

It may be noted that the above examples are in consonance with the formu-
las given in Corollary 5.73 for a solid cylinder and a solid ball. Using these ex-
amples, we can derive analogues of Proposition 6.3 for surfaces given by equa-
tions in cylindrical coordinates (r,6,z) or in spherical coordinates (p, 6, p).
For example, if h : [a,b] x [, ] — R and p : [a, 5] X [7,d] — R are inte-
grable, then the subsets {(rcosf, rsin@, h(r,0)): (r,0) € [a,b] X [«, 5]} and
{(p(6, ) sinpcosb, p(0, ) sinpsinb, p(0,¢)cosp) : (0,9) € [a,B] x [v,d]}
of R? have three-dimensional content zero. In other words, the surface given
in cylindrical coordinates by z = h(r, ), (r,0) € [a,b] x [a, 5] and the sur-
face given in spherical coordinates by p = p(0, @), (0,¢) € [a, 5] x [y,0] are
of three-dimensional content zero. As a consequence, we can derive formulas
analogous to those for the area of the region between two curves given by
polar equations. Let a,b, a, 3, 7,0 e Rwith 0 < a <b, —m <a < < 7or
a=-rmand f=m, and 0 <y <6 <, and let hy,hy : [a,b] X [a, 5] — R
and p1,p2 : [, 0] X [7,d] — R be continuous functions satisfying hy < hg
and p; < po. In case « = —m and [ = m, assume that for i = 1,2, we have
hi(r,—m) = hi(r,m) for all r € [a,b] and p;(—7, @) = pi(mw, @) for all v € [y, 4].
If D is the solid in R? bounded by the surfaces given in cylindrical coordinates
by z = hy(r,0) and z = ha(r, 8), where (r,0) € [a,b] X [a, 5], then

Vol(D / / [ha(r,8) — hyi(r,0)] rdrdb.

Likewise, if D is the solid bounded by the surfaces given in spherical coordi-
nates by p = p1(0, ) and p = pa(6, @), where (6, ) € [a, 5] X [7, ], then
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1 [0 )
Vol(D)=3// (p3(0,¢) — pi(0, ) sinp df de.
vy Ja

To see that these formulas are correct, we use the change of variables formula
for cylindrical or spherical coordinates (Proposition 5.72) together with Cav-
alieri’s Principle and Fubini’s Theorem (Proposition 5.68 and Remark 5.69).
Note that the change of variables is justified, since the boundaries of the rele-
vant sets are of three-dimensional content zero, thanks to the above-mentioned
analogues of Proposition 6.3. In a similar manner, one can obtain formulas
for the volume of solids bounded by surfaces given by equations in cylindrical
coordinates of the form 6 = «(r, z) or r = g(6, z), or by equations in spherical
coordinates of the form 0 = a(p, p) or ¢ = v(p, ).

T Yy

Fig. 6.6. The solid between the plane z = 1 and the paraboloid z = 22 + y2.

Examples 6.7. (i) Let D denote the subset of R? between the plane given
by z = 1 and the paraboloid given by z = 2% + 2. (See Figure 6.6.) Using
cylindrical coordinates, we see that D is the solid bounded by the surfaces
given by z =72 and z = 1, where (r,0) € [0, 1] x [, w]. Thus the formula
obtained above yields

T 1
Vol(D):/ /0(1—r2)7’d7“d9:27r<;—i>:7;

(i) Let @ € R with @ > 0 and let D denote the subset of R?® consisting of
points that are outside the sphere given by z? + y? + 22 = a2 and inside
the sphere given by 22 + 4% + (2 — a)? = a?. (See Figure 5.27.) Using
spherical coordinates, we see that D is the solid bounded by the surfaces
given by p = a and p = 2a cos ¢, where (¢, 0) € [0,7/3] x [—7, 7]. [Observe
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that if @ = p = 2acosp, then cosy = 1/2, that is, ¢ = 7/3.] Thus the
formula obtained above yields

™ /3 1 271'(13 1

Vol(D) = / / [8a® cos® p — a®] sinp dp df = / (8t3—1)dt.
—xJo 3 3 Jiy

It follows that Vol(D) = 11ma®/12. &

Slicing by Planes and the Washer Method

The Washer Method is typically used in one-variable calculus for finding the
volume of a solid obtained by revolving about the z-axis a region in R?
bounded by two curves, say y = fi(x) and y = fa(x), where z € [a,b].
According to this method, the volume of such a solid is given by the Riemann
integral

b
/ wlfale)? — fi(2)?)de,

where it is assumed that f1, fa : [a,b] — R are Riemann integrable and 0 <
f1 < fo. Here, the integrand A(x) := 7[fa(x)? — f1(x)?] represents the area of
a slice of the solid by a plane perpendicular to the x-axis. We shall now relate
the formulas used in the Washer Method and the more general Slice Method
to the general definition of volume as a triple integral.

Let D be a bounded subset of R such that 0D is of three-dimensional
content zero, and let a,b € R with a < b be such that a < z < b for all
(x,y,2) € D. For each x € [a,b], let D, denote the corresponding cross section
of D, yz-plane, that is, let D, = {(y,2) € R? : (z,y,2) € D}. Clearly, D,
is a bounded subset of R2. Assume that 9D, is of (two-dimensional) content
zero. Then by part (i) of Proposition 5.68, we obtain

Vol(D) = /ab (// ] d(y,z)> dx = /ab A(z)dz.

This shows that the formula for calculating the volume of a solid by slicing it
by planes perpendicular to the z-axis (as given, for example, in Section 8.2 of
ACICARA) is consistent with our general definition of volume.

Now suppose f1, f2 : [a,b] — R are bounded functions whose sets of dis-
continuities are of one-dimensional content zero and that satisfy 0 < f; < fs.
Let D be the subset of R3 obtained by revolving the planar region between the
graphs of f1 and fo, namely {(z,y) € R?*:a <2 <band fi(z) <y < fo(z)},
about the z-axis. It is clear that

D={(z,y,2) eR*:a<z<band fi(z)* <y’ + 2> < fo(x)?}.

Let M € R be such that fa(x) < M for all x € [a,b]. Then D is clearly a
subset of {(x,y, z)ER?*:a<x<bandy?+ 2% < Mz}, and in particular, D
is bounded. Moreover, D is contained in the union of the sets
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{(J;,y,z) eR3:a<z<bandy?®+2%= f,(x)Q} for i € {1,2},
{(c.y,2) eR®: fi(c)* <y® + 2% < fa(c)?}  for c € {a,b},
{(x,y,z) €R3:a<x<b, fi or fyis discontinuous at = and y? + 22 < MQ}.

It can be easily seen that all these sets are of three-dimensional content zero.
Hence 0D is of three-dimensional content zero. Now, for any x € [a, b], the cor-
responding cross section is Dy = {(y,2) € R?: fi(z)? < y? + 2% < fo(z)?},
and 0D, = {(y,z) ER?:y? 4+ 22 = fl(x)z}u{(y,z) ERZ:y? 422 = fg(]})z}.
So, in view of Proposition 5.37 and Example 5.39 (ii), we see that 9D, is of
(two-dimensional) content zero for every x € [a,b]. Also, since the set

B, :={(r,0) cR?:7>0,—71 <0 <7 and (rcosf,rsinf) € D,}

is the rectangle [—m, 7| X [f1(z), fo(x)], we see that OF,, is of (two-dimensional)
content zero for each x € [a,b]. Hence by Proposition 5.65, we have

T fa(zx)
= z) = rdr =7[fa(x)? — f1(x)?].
A(’”"/Dwd(y’) /(/m d)de Fa(e)? — ()]

Thus we conclude that

b b
Vol(D) = / A(x)de = = / [fa(2)? — f1(2)?]da.

In other words, the formula for calculating the volume of a solid of revolution
by the Washer Method (as given, for example, in Section 8.2 of ACICARA) is
consistent with our general definition of volume.

Example 6.8. Let a,b,¢,d € R with a < b and 0 < ¢ < d, and consider
fi, f2 : [a,b] — R defined by fi(z) := c and fa(z) := d for all « € [a,b]. Let
D :={(x,y,2) €R3:a <x <band c® <y?+ 22 < d?}. Then D consists of
a portion of a solid circular cylinder of radius d and height b — a with a solid
circular cylinder of radius ¢ of the same height removed from the center. As
a special case of the discussion and the formula above, we see that 0D is of
three-dimensional content zero, that is, D has a volume, and the volume of
this solid is equal to 7(b — a)(d? — c?). &

Slivering by Cylinders and the Shell Method

In one-variable calculus, the Washer Method is usually studied alongside the
Shell Method. Just as the Washer Method is a special case of the Slice Method,
the Shell Method is a special case of the method of slivering by coaxial right
circular cylinders (as explained in Section 8.2 of ACICARA), in which one con-
siders the slivers' of a solid lying between two right circular cylinders, and

L A sliver of a solid D is a cross section of D by a cylinder.
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then the volume is given as the Riemann integral of the surface area of such
slivers. More precisely, let D be a bounded subset of R3 and suppose there
are p,q € R with 0 < p < ¢ such that p? < 2% +y? < ¢® for all (x,y,2) € D.
Consider the counterpart of D in cylindrical coordinates, namely,

E:={(r0,2)€R?:r>0,—7 <60 <7 and (rcosf,rsind,z) € D}.
For each r € [p, ¢|, let E, be the corresponding cross section of E given by
E.:={(0,2) € [-m,n] x R: (rcosf,rsiné, z) € D}.

Note that E,. is a bounded subset of R? for each r € [p, ¢}, and E is a bounded
subset of R3. Now suppose D and OF are of three-dimensional content zero,
while OE, is of (two-dimensional) content zero. Then by part (i) of Proposition
5.72 and part (i) of Proposition 5.68, we obtain

Vol(D ///rdr@z /pq(r/ETd(e,z))dr.

Thus, if we let B(r) := Area(E,) = [[; d(6,z) for r € [p, g], then we have

Vol(D) = /q rB(r)dr.

This shows that the formula for calculating the volume of a solid of revolution
by the method of slivering by coaxial cylinders whose axes lie on the z-axis is
consistent with our general definition of volume.

Now let us consider solids of revolution in R?® to which the Shell Method
is usually applied. More precisely, let a,b € R with 0 < a < b and let fi, fo :
[a,b] — R be continuous functions such that f; < fo. Let D be the solid ob-
tained by revolving the region {(z,y) € R? :a <z < b and fi(z) <y < fao(2)}
about the y-axis. Then

D={(z,y,2) eR?:a® <2®+ 2> < V% and fi(z) <y < fo(z)}.

Since the functions f; and f5 are continuous, the set D is a closed and bounded
subset of R3. Also, D is the union of the sets

{(z,y,2) eR*:2” +2* =c? and fi(z) <y < fo(x)} for c € {a,b},
{(z,y,2) eR*:a® <2®+ 2> <V’ and y = f;(x)} forie {1,2}.

Since each of these sets is of three-dimensional content zero, we see that 9D
is of three-dimensional content zero. Further, since the set

E:={(z,0,y) eR®:2 >0, -7 <0 <7 and (zcosh, y, xsinf) € D}

is the same as the set
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{(z,0,y) € R¥:a<zx<b —m<@<mand fi(z) <y < fa(x)},

we see that E is a closed and bounded subset of R3, and OF is of three-
dimensional content zero. Lastly, for each = € [a,b], the corresponding cross
section of F is given by E, = [—m, 7] x [f1(x), f2(z)], and so it is clear that
OF, is of (two-dimensional) content zero. Thus D and E satisfy the conditions
in our discussion of the method of slivering by coaxial cylinders. Also, since

B(z) := Area(E,) = // d(0, z) = 2r[fa(x) — f1(x)],

we conclude that

b b
Vol(D) :/ xB(z)dx = 27r/ z[fo(z) — f1(z)]dx.

This shows that the formula for calculating the volume of a solid of revolution
by the Shell Method (as given in Section 8.2 of ACICARA) is consistent with
our general definition of volume. It may be noted that the equivalence of the
general definition of volume (as a triple integral) and of the definition in terms
of a Riemann integral as in the Washer Method or the Shell Method continues
to hold if the roles of the z-axis, the y-axis, and the z-axis are interchanged.
In particular, if for a solid of revolution, both the Washer Method and the
Shell Method are applicable, then the volume can be calculated by either of
these methods.

We shall now see how to find the volume of a solid generated by revolving
a bounded closed subset in R? about an arbitrary line in its plane. Its proof
will involve the use of cylindrical coordinates as well as a change of variables
under an affine map. First we prove a preliminary result that says that if a
subset of R? having (two-dimensional) content zero is revolved about the -
axis, then it generates a subset of R? having three-dimensional content zero.
The method of proof is similar to that used in proving Proposition 6.3.

Lemma 6.9. Let By be a bounded subset of R? having (two-dimensional) con-
tent zero. Suppose By lies in the upper half-plane, that is, y > 0 for every
(z,y) € By, and let B denote the set generated by revolving By about the
x-axis. Then B is of three-dimensional content zero.

Proof. Since By is bounded and lies in the upper half-plane, there is M > 0
such that 0 < y < M for all (z,y) € By. Let ¢ > 0 be given. Since By is
of (two-dimensional) content zero, there are finitely many rectangles R; :=
[ai, bi] X [ei,d;],i = 1,...,n, such that By is contained in their union and
the sum of their areas, namely, > = ;(b; — a;)(d; — ¢;), is less than e/4m M.
We may assume without loss of generality that ¢; > 0 and d; < M for each

i =1,...,n. If the rectangle R; is revolved about the z-axis, then we obtain
the solid D; := {(z,y,2) € R® : a; < 2 < b; and ¢? < y? + 22 < d?} for
1 =1,...,n. In view of Example 6.8, 0D; is of three-dimensional content zero

and the volume Vol(D;) of D; is equal to m(b; — a;)(d? — ¢?) fori =1,...,n.
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Let W denote the union of Dy, ..., D,. Since By is contained in the union
of Ry,..., Ry, the set B generated by revolving the set By about the z-axis is
contained in W. Also, in view of Corollary 5.38, W is of three-dimensional
content zero, and

Vol(W <ZV01 ;wb — a;)(d; ci)(dﬁci)gw,MeM.QM:;
Let K denote the cuboid [a,b] x [-M, M] x [-M, M]. Clearly, K contains
W. Consider the function 1}, : K — R obtained by extending the function
1w : W — R as usual. Then

Vol(W) = ///W lwd(x,y, z) /// wdlz,y, 2

Now there is a partition P of the cuboid K such that U(P, 1) < Vol(W) +
€/2. Among the subcuboids induced by the partition P, let K, ..., K, be the
ones that intersect with W. Then W is contained in the union of Ky,. .., K,,,
and the sum of the volumes of these subcuboids is equal to U(P, 1};,). (Com-
pare Exercise 12 of Chapter 5.) Thus B C W C K; U --- U K,,, and the
sum of the areas of the cuboids Kji,..., K,, is less than Vol(W) + (¢/2) <
(e/2) + (¢/2) = e. It follows that B is of three-dimensional content zero. O

Proposition 6.10. Let Dy be a closed and bounded subset of R? such that
0Dy is of content zero, and let L be a line given by ax + by + ¢ = 0, where
a,b,c € R and a®> +b> # 0. If L does not cross Dy and if Dy is revolved about
L, then the volume of the solid D so generated is given by

laz + by + ¢
Vol(D) =2 d(z,y).
olD) 7r//DO Va2 + b2 (=9)

Proof. Since the line L does not cross Dy, we obtain ax + by + ¢ > 0 for all
(x,y) € Do or ax + by + ¢ < 0 for all (x,y) € Dy. Let us assume the former.

First we prove the proposition in the special case in which the line L
is the z-axis, that is, when a = 0, b = 1, and ¢ = 0. In this case, y > 0
for all (z,y) € Do. We shall consider the cylindrical coordinates (z,r,6) in
(z,y, z)-space by letting y := rcosf and z := rsinf. First we note that
D = {(x,y,z) € R3 : (x, \/y2+22) € Do}. Since Dj is a closed and
bounded subset of R2, we see that D is a closed and bounded subset of R3.
Also, it is easy to see that D C {(z,y,2) € R* : (z, VY2 +22) € 0Dg}.
Since 0Dy is of (two-dimensional) content zero, it follows from Lemma
6.9 that 0D is of three-dimensional content zero. Further, the set F :=
{(a:, r0)ER3:r >0, -7 <0 <7 and (x,7cosf,rsinf) € D} is the same
as the set {(x,y,H) €ER3:(z,y) € Dgand —7m <0< Tr}. Now, since 0D is
of (two-dimensional) content zero, it follows that JF is of three-dimensional
content zero. Hence by part (i) of Proposition 5.72 and part (ii) of Proposition
5.68, we obtain
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Vol(D) := ///Dd(x,y,z):///Erd(x,r,G)
LT o e

This proves the desired formula for Vol(D) when the line L is the z-axis.

v
y
~—
Wy
) u

Fig. 6.7. Adjusting the axis of revolution of a planar region.

Let us now consider the case in which a,b, c € R satisfy a? + b% = 1. We
show that by a suitable change of variables, the line L can be assumed to be
the z-axis. Consider an affine function ®q : R? — R? defined by

Po(u,v) == (bu+av —c(a —b), —au+bv—cla+b)).
Then

b a

J(@o)(u,v)=det[_a b}=a2+b2:1 for all (u,v) € R2.

Also, it is easy to see that if we define
x:=bu+av—cla—b) and y:=—au+bv—c(a+Db),

then
ar+by+c=v and bxr—ay—c=u.

Thus, letting ¥ := <I>al, it follows that
Uo(x,y) = (br —ay — ¢, ax +by +c) for all (z,y) € R

It can be easily checked that J(¥o)(z,y) = 1 for all (x,y) € R?. Let Ey :=
W(Dy). (See Figure 6.7.) Then Proposition 5.59 shows that dEj is of content
zero, and since ®o(Ey) = Dy,
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// (ax + by + ¢)d(z,y) = |J<I>0|// vd(u,v) // vd(u,v).
Do Ey Eo

Note that v > 0 whenever (u,v) € Eg. Let E denote the solid in R3 generated
by revolving the region Ey about the u-axis, that is,

E = {(u,v,w) eR3: (u, \/7}2+w2) GEO}.

Since Dy is a bounded, closed subset of R? and Ey := Wo(Dy), the set Ej is
also bounded and closed. As we have seen in the special case at the beginning
of this proof, it follows that E is a closed subset of R® and dF is of three-
dimensional content zero, and moreover,

Vol(E // duvw—Qﬂ'// vd(u,v).
Eq

It remains to show that D has a volume and Vol(D) = Vol(E). To this end,
we use a suitable change of variables in R3. Consider ® : R? — R? defined by

P(u, v, w) = (Po(u,v),w) = (bu+av — c(a —b), —au + bv — c(a + b), w).

Then @ is an affine function, ®(E) = D, and J(®)(u, v, w) = 1 for all (u, v, w)
in R3. It follows by the three-dimensional analogue of Proposition 5.59 that 9D
is of three-dimensional content zero and Vol(D) = |J(®)[Vol(E) = Vol(E).
Now, since az + by + ¢ > 0 for all (z,y) € Dy, we conclude that

Vol(D) = 2 // laz + by + cld(x, y).
Dg

If a®> +b* # 1, we replace a,b, and ¢ by a/Va2+ b2, b/va?+ b2, and
¢/va? + b2, respectively, and obtain the desired formula for Vol(D). The case
in which ax + by + ¢ < 0 for all (z,y) € Dy is proved similarly. O

Remark 6.11. The Washer Method and the Shell Method are particular
cases of Proposition 6.10. To see this, let Dy := {(z,y) € R? : a < z <
band fi(x) <y < fa(x)}, where fi, fa : [a,b] — R are continuous functions.
Then Dy is a closed and bounded subset of R?, and & Dy is of (two-dimensional)
content zero. If 0 < f; < fo and L is the z-axis given by y = 0, then by Propo-
sition 6.10, the volume of the solid generated by revolving the region Dy about
L is equal to

o [[ Iyld(r,y) =2 / b ( /f f(()) ydy) do=r [ 'h@)? — fule)?la,

as in the Washer Method. Also, if a > 0 and L is the y-axis given by x = 0,
then by Proposition 6.10, the volume of the solid generated by revolving the
region Dy about L is equal to
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o [ Ield(r,) = 20 / b ( /f f(()) xdy> da=2m [ slhal) — (@)

as in the Shell Method. O

Before concluding this section, we mention that the volume of a solid in
R3 is invariant under a translation and a rotation just as the area of a region
in R? is invariant under a translation and a rotation. A translation in R? is
carried out by an affine function ® : R? — R? given by

O(u,v,w) = (2° +u, y°+v, 2°+w),

where (2°,9°,2°) € R3 is fixed. The absolute value of the Jacobian of this
affine function is equal to 1. A rotation in R? by an arbitrary angle about an
arbitrary line passing through the origin can be carried out by a composition
of affine functions ®, ¥, Z : R? — R3 given by

b (u,v,w) = (u, vecosa — wsina, vsina + wcos ),
U(u,v,w) = (ucos B —wsin B, v, usin + wcos )

)

E(u,v,w) = (ucosy — vsiny, usiny + vcosy, w),

where a, 3,7 € (—m,7|. These a, 3,7 are known as the Euler angles in the
xyz-convention. (See pages 31-33 of [41], or pages 143-148 and 608 of [25].)
Now for all (u,v,w) € R3, the Jacobians J(®)(u,v,w), J(¥)(u,v,w), and
J(Z)(u,v,w) are given by the 3 x 3 determinants

1 0 0 cosf 0 —sing cosy —siny 0
0 cosa —sinal, 0 1 0|, and sin vy cosy Of,
0 sina cosa sing 0 cosf 0 0 1

respectively. Since the absolute value of these Jacobians is equal to 1, the
invariance result follows as in Proposition 6.4.

6.2 Surface Area

In this section, we discuss how to measure the extent of a surface in 3-space,
that is, how to calculate the “area of a surface.” In the special case of a planar
surface, that is, when the surface lies entirely in a plane, say the xy-plane,
the question is identical to that of measuring the area of a region in R2. We
have discussed this already in Chapter 5 and noted that the area is given by a
double integral. We shall now proceed to motivate and formulate the general
definition of surface area, which will be a natural extension of the definition
of the area of a planar region. It will be convenient and useful to restrict to
what are known as parametrically defined surfaces.
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A parametrically defined surface S in R? is given by (z(u,v), y(u,v),
z(u,v)), (u,v) € E, where E is a bounded subset of R? such that OF is of
content zero, and z, v, z : £ — R are real-valued functions defined on E. 2 We
shall refer to F as the parameter domain of the surface S and the triple
(z,y, z) of real-valued functions as the parametrization of S. Note that the
surface S is determined by its parametrization, that is, by the three functions
z,y,2 : E — R, and not by the subset {(x(u,v), y(u,v), z(u,v)) : (u,v) € E}
of R? traced by S. For example, the surface S; in R? given by (cosu, sinu,v),
(u,v) € [~m,7] x [0,1], and the surface Sz in R? given by (cos 2u, sin 2u, v),
(u,v) € [=m,m] x [0,1], have the same parameter domain and they trace the
same subset of R3, but they are obviously different surfaces, since S; goes
around the z-axis once, while Sy goes around the z-axis twice.

In order to motivate the general definition of the area of a surface, let
us first consider a special case in which the parameter domain is a parallelo-
gram in R? and the parametrization is given by affine functions, that is, the
parametrization is obtained by restricting an affine transformation from R?
to R? to the parameter domain. Recall that as in Section 5.3, ® : R? — R3
is an affine transformation if there are (z°,7°,2°) € R? and a;,b; € R for
i =1,2,3 such that

D(u,v) := (2° + aru + byv, y° + agu + bov, 2° + agu + bsv) for (u,v) € R2.

In matriz notation, this can be written as follows:

u .130 a1 b1 u
(0] [ ] = |y° | + [az b [ ] for (u,v) € R2.
v o v
z as bg

It is easy to see that ® is injective if and only if the “rank” of the 3 x 2 matrix
above is 2, that is, at least one of the three determinants

ag b

ai b1 2
az bs

o az b3
d1 ;= det |:CL2 b2 :|

}, do ::det[ }, and d3 := det [CM by
is not equal to zero. Moreover, if (u;,v;) € R? and t; € R fori = 1,...,n

(where n € N), then as in Section 5.3, we have

P (Zti(ui,vi)> = Ztiq)(ui,vi) -+ (1 — Zti> (xovyo’zo).
i=1 i=1 i=1

This implies that ® maps a line segment in R? onto a line segment in R3.
In fact, ® maps parallel lines in R? onto parallel lines in R3. Also, ® maps a

2 To be pedantic, a parametrically defined surface is a (vector-valued) map
from E to R® that sends (u,v) in E to (z(u,v),y(u,v),z(u,v)) in R®, where
E CR? and z,y,2 : E — R are as above. Generally, one requires that E be a
rectangle and that the three functions z,y,z : £ — R be continuous. In most
applications this is so, but we do not make it a part of the definition.
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parallelogram in R? onto a parallelogram lying in a plane in R?. Thus, if the
parameter domain F is a parallelogram in R?, then ®(E) is a parallelogram
in R3. With this in view, to define the surface area in this special case, we
undertake an analysis of the area of a parallelogram in R? or in R3.

Parallelograms in R? and in R3

Let p; := (u;,v;), i = 1,2,3, be noncollinear points in R?, and let E denote
the parallelogram with p1, p2, p3 as vertices such that ps and ps3 are adjacent
to p1. (See Figure 6.8.) By Proposition 5.56,

Area(E) := |(ug — u1)(vs — v1) — (v2 — v1)(ug — uqg)|.
Using the identity (ad — bc)? = (a® + b?)(c? + d?) — (ac + bd)?, we obtain
[Area(E)]* = [(uz — u1)® + (v2 — v1)?] [(ug — w1)? + (v3 — v1)?]
—[(us — ur)(ug — u1) + (v2 — v1)(vs —v1)] "

The last term on the right-hand side can be expressed in terms of the cosine
of the angle between the line segments p1p2 and p1ps. Indeed, if « € [0, 7] is
this angle, then as in Section 1.1, cos « is equal to

(P2 —P1) (P3 —P1) _ (u2 —ur)(us —ur) + (v2 — v1)(vs — 1)

|p2 — p1||p3 — p1] \/(UQ —u1)? + (ve — 01)2\/(U3 —u1)? + (v3 —v1)? '
Consequently, [Area(E)]? = |p2 — p1/?|ps — p1/?(1 — cos? @), that is,
Area(FE) = |p2 — p1l|ps — p1| sina.

Thus the area of a parallelogram in R? is the length of its base times its height.

Now consider noncollinear points q; := (x;,y:, 2;) for i = 1,2,3 in R® and
let D denote the parallelogram in R?® with qi, qz, qs as vertices such that q
and qz are adjacent to q;. (See Figure 6.8.) In analogy with the area of a
parallelogram in R?, let us tentatively define the “area” of the parallelogram
D in R? to be equal to the length of its base times its height. Thus, if 3 € [0, 7]
is the angle between the line segments q1q2 and qiqs, then

Area(D) :=|q2 — q1||gs — q1|sin S.

Since cos f = (q2 — q1) - (s — q1)/|d2 — a1las — q1| and sin® § = 1 — cos? 3,
squaring both sides of the above formula for Area(D), we obtain

* -

[Area(D)]? = |q2 — q1*|as — a1 (a2 —a1) - (a3 —a1)]’-

Further, using the algebraic identity

(@®+°+*)(P*+¢*+r*) = (ap+bg+cr)® = (ag—bp)*+ (br —cq)* + (cp—ar)?,
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Fig. 6.8. Finding the “area” of a parallelogram in R? and in R3.

we can conclude that

[Area(D))? = [(y2 — y1)(2s — 21) — (22 — 21) (s — 1))

+[(z2 — z1) (23 — m1) — (w2 — 1) (23 — Zl)]2
+ (@2 — 21)(ys — y1) — (Y2 — y1) (23 — 581)]2.

It follows that if Dy, Dy, and D3 denote projections of the parallelogram D
onto the yz-plane, the za-plane, and the xy-plane respectively, then

Area(D) = \/Area(D;)? + Area(D5)? + Area(D3)2.

We are now ready to prove the following analogue of Proposition 5.58 for
affine transformations of the plane into 3-space.

Proposition 6.12. Let ® : R?> — R3 be an affine transformation and let
¢1, 02, 03 be its components, that is, ® = (¢1, P2, ¢3). Define the transfor-
mations ®1, Py, @3 : R2 — R? by &1 (u,v) := (¢a(u,v), d3(u,v)), ®a(u,v) :=
(p3(u,v), d1(u,v)), and ®3(u,v) := (¢1(u,v), p2(u,v)). Assume that at least
one of the Jacobians J(®1), J(P2), and J(P3) is not equal to zero. Let E be
a parallelogram in R? and let D denote the parallelogram ®(E) in R3. Then

Area(D) = (W(q»l)z (@) + J(cpg)?) Area(E).
Proof. Let the affine transformation ® : R — R3 be given by
®(u,v) = (2° + aru + brv, y° + agu + bov, 2° + azu + bzv) for (u,v) € R?,

where (2°,5°,2°) € R? and a;,b;,¢; € R for i = 1,2,3 are fixed. Then it is
easily seen that
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J((I)l) = (lzbg — bgag, J((I)Q) = a3b1 — bgal, and J(‘I’g) = a1b2 — b1a2.

Let (u1,v1) denote one of the vertices of the parallelogram E in R?, and
let (ug2,v2), (us,v3) denote the vertices of E adjacent to (ui,v1). Then by
Proposition 5.56,

Area(E) = |(ug — u1)(vs — v1) — (ug — uq)(va — v1)|.

Also, if ®(u;,v;) = (x4,v4,2:) for i = 1,2,3, then (z1,y1,21) is a vertex of
the parallelogram D := ®(E) in R® and (2,2, 22), (73,93,23) are the ver-
tices of D adjacent to (z1,y1,21). As we have noted just before stating this
proposition, Area(D) = \/Area(D1)2 + Area(D2)? + Area(D3)?, where

Area(D1) = [(y2 — y1)(23 — 21) — (y3 — y1)(22 — 21)|,
Area(D3) = |(z2 — z1) (x5 — 1) — (23 — 2z1) (22 — 21)],
Area(D3) = [(z2 — 21)(y3 — y1) — (z3 — 21)(y2 — y1)|-

For i = 2,3, we have (z;,v;, 2:) — (21,91, 21) = P(u;, v;) — P(u1,v1), and hence
Ty —T1 = al(ui - Ul) + bl('Ui - Ul), Yi —Y1 = a2(ui - u1) + bz(w - Ul), and
zi — 21 = az(u; — uy) + b3(v; — v1). Thus, in matriz notation, we have

T2 — T T3 —T1| _ |1 b1 U2 — U uz — Uy

Y2—Y1  Ys— U azg ba||va—vi wvz—wvr |’
Since the determinant of the product of two square matrices is the product of
the determinants of those matrices, we see that Area(D;) = |J(Py)|Area(FE).
Similarly, Area(D3) = |J(®2)|Area(F) and Area(Ds) = |J(®s3)|Area(E).
Thus,

Area(D (\/J (®1)2 + J (D)2 + J(<I>3)2) Area(E),

as desired. O

Area of a Smooth Surface

In Proposition 6.12, we have shown that if a parallelogram (and, in particular,
a rectangle) in R? is transformed to a parallelogram in R3 by an affine trans-
formation ®, then the area will have to be scaled by the “Jacobian factor”
\/J D)2 4 J(P2)? + J(P3)2. We shall presently see that this result is quite
crucial in developing the notion of the area of any “smooth” surface. The
key idea is that any such surface can be approximated locally by a plane. To
explain this, let £ C R? and consider a surface S in R? parametrically given
by (z(u,v),y(u,v), z(u,v)), (u,v) € E. Let Qo := (ug, vg) be an interior point
of E and let Py = (z9, Y0, 20) := (x(Qo), y(Qo), Z(Qo)). Assume that the
functions z, y, and z are differentiable at Qg. For (u,v) € R?, let
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&1 (u,v) == xo + Ty (w0, v0) (u — ug) + Ty (o, vo) (v — Vo),
¢2(u,v) := yo + yu(uo, vo)(u — uo) + yu (o, vo)(v — vo),
D3 (u, v) 1= 2o + 24 (vo, v0) (U — up) + 24 (Uy, Vo) (v — Vo).

Then by Proposition 4.18, we see that
x(U’)’U) - (bl (U,U) - 07 y(u,v) - ¢2(U,U) - Ov Z(U,U) - ¢)3(U,U) - 07

as (u,v) — (uo,v0). Thus the tangent plane to S at Py, parametrically
given by (¢1(u,v), p2(u,v), d3(u,v)), (u,v) € R?, approximates the surface
S around (ug,vg). It is therefore reasonable to expect that if R is a small
rectangle centered at @, then the “area” of the small surface in R? given
by (z(u,v),y(u,v), z(u,v)), (u,v) € R, will be approximated by the area of
the parallelogram ®(R), namely \/J(®;)2 + J(®g)2 + J(P3)2 Area(R), where

= (¢1,92,¢3), @1 = (d2,93), P2 = (¢3,¢1), and 3 = (¢1,¢2),
as before. Here, J(®1) is equal to the Jacobian of the function given by
(u,v) — (y(u,v), z(u,v)) at Qo, and similarly for J(®2) and J(P3). We
observe that this parallelogram is in a plane that is tangent to the surface at
the point Qg := ®(F). (See Figure 6.9.)

‘:.
" xk/////\\\\\\y

Fig. 6.9. Motivating the definition of surface area.

Keeping the above motivation in mind, we proceed to define the area
of a surface. Let a parametrically defined surface S in R3 be given by
(z(u,v),y(u,v), 2(u,v)), (u,v) € E, where E is a bounded subset of R? such
that OF is of content zero. We say that S is a smooth surface if the func-
tions x,y, z are defined on an open subset  of R? containing £ and have
continuous first-order partial derivatives on 2. In this case, the surface area
of S is defined to be

Area(S / VI(®1)2 4+ J (@)% + J(Ds)2 d(u, v),

where ®@1,®5,®3 : E — R? are given by ®;(u,v) := (y(u,v), z(u,v)),
Dy (u,v) := (2(u,v), z(u,v)), and P3(u,v) := (z(u,v), y(u,v)). Note that
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J(®1)? + J(2)° + J(P3)* = (yuzv — Yozu)* + (2uv — 20%0)” + (TuYo — Toyu) >
Thus, if we define

U := xi + yﬁ + zg, V.= x% + yg + 25, and W :=zy2zy + Yo Yo + 2u2v,

then using the algebraic identity quoted earlier, it can be easily seen that
Area(S) = // VUV — W2 d(u,v).
E

This formulation is useful in calculating the area of a surface.
We now show that the area of a surface does not change under certain
“reparametrizations.”

Proposition 6.13. Let E be a bounded subset of R? such that OF is of content
zero, and let S be a smooth surface in R given by (x(u,v),y(u,v),2(u,v)),
(u,v) € E. Let Q2 be an open set containing E on which the functions x,y, and

z have continuous first-order partial derivatives. Suppose (2 is an open subset
of R? and W := (11, 12) : Q — R? is a one-one function such that ¥(2) C Q,
1 and 1y have continuous first-order partial derivatives, and J(¥)(4,v) # 0
for all (u,v) € Q. Let E = O~Y(E), and let S denote the surface given by
(#(a, ), §(@,0), 2(i,0)), (@,0) € E, where & := z0®, j := yo®, and

Z:=zo0®. Then S is a smooth surface and Area(S) = Area(S).

Proof. Let ®1,®2,®3 : Q — R? be defined by ®;(u,v) := (y(u,v), 2(u,v)),
P2 (u,v) = (2(u,v), x(u,v)), and P3(u,v) := (z(u,v), y(u,v)) for (u,v) € Q.

Define &1, P5, P53 : Q@ — R by &; := &; o ¥ for i = 1,2, 3. By the Chain Rule
(Proposition 3.51) together with Remark 3.52, we obtain

J(®:)(@,7) = J(®:)(®(a,7))J(®)(a,7), for (@,d) € Qandi=123.

Hence Proposition 5.59 (Change of Variables by Affine Transformations) gives
Area(S) = / / VI (®1) + J(@2)2 + J(B)? d(u, v)
E
— //N VI (@1 0 )2 4 J(Dy 0 W)2 + J (P30 )2 |J (V)| d(a, D)
E

= [ V@024 3@+ 3@2 i
= Area(S),
as desired. a

Let us consider three special cases of parametrically defined surfaces in-
volving Cartesian, cylindrical, or spherical coordinates.
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Cartesian Coordinates: Let D be a bounded subset of R? such that
0D is of content zero, and let 2 be an open subset of R? containing D, and
[+ Q — R a function having continuous first-order partial derivatives. Then
for the smooth surface S given by z = f(z,y), (z,y) € D,

Area(S) = / /D 1+ 2+ f2 ().

This follows by considering the parametrization of S given by x(u,v) := wu,
y(u,v) =0, z(u,v) := f(u,v) for (u,v) € D.

Similar expressions can be written down for smooth surfaces given by
equations of the form z = f(y,2) and y = f(z,x).

Cylindrical Coordinates: Let E be a bounded subset of [—m, 7] x R
such that OF is of content zero, and let { be an open subset of R? contain-
ing E, and g : 2 — R a nonnegative function having continuous first-order
partial derivatives. Assume that g(—m, z) = g(m, z) whenever z € R, and both
(—m, z) and (m, z) are in E. Then for the smooth surface S given, in cylindrical
coordinates, by r = g(0, z), (0,2) € E,

Area(S) = //E \/gg +g%(g2 +1)d(0, 2).

This follows by considering the parametrization of S given by z(u,v) :=
g(u,v)cosu, y(u,v) = g(u,v)sinu, z(u,v) := v for (u,v) € E and noting
that Tu,Yy — ToYu = —99vs YuZo — YoZu = Gu SNV + gcosv, and 2,Ty — 2pTy =
Gy COSV — gSinv.

Similar expressions can be written down for smooth surfaces given, in
cylindrical coordinates, by equations of the form 6 = a(r, z) and z = h(r,0).
(See Exercises 34 and 35.)

Spherical Coordinates: Let E be a bounded subset of [0, 7] X [—m, 7]
such that OF is of content zero, and let 2 be an open subset of R? containing
FE, and p : 2 — R a nonnegative function having continuous first-order partial
derivatives. Then for the smooth surface S given, in spherical coordinates, by

p=p(p,0), (¢,0) € E,
Area(S) = // p4/sin? o(p? +p2) + pjd(e,0).
E

This follows by considering the parametrization of S given by x(u,v) =
p(u,v)sinucosv, y(u,v) = p(u,v)sinusinv, and z(u,v) = p(u,v)cosu for
(u,v) € E and noting that 22 +y2 +22 = p> +p2, 22 +y2+22 = p*sin® u+p?2,
and @, 2, + YuYv + Zu2y = Pubo-

Similar expressions can be written down for smooth surfaces given, in
spherical coordinates, by equations of the form 6 = a(p, ¢) and ¢ = vy(p, 0).
(See Exercises 36 and 37.)
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(2,2,0)

Fig. 6.10. A piecewise smooth surface that is not smooth.

Remark 6.14. The notion of the area of a smooth surface can be extended
to more general surfaces as follows. Let a parametrically defined surface S in
R3 be given by (x(u,v),y(u,v), z(u,v)), (u,v) € E, where E is a bounded
subset of R? such that OF is of content zero. Then S is said to be piece-
wise smooth if the functions x,y,z : E — R are continuous and there are
finitely many smooth surfaces that together constitute the surface S. More
precisely, there is n € N and for ¢ = 1,...,n, there is a surface S; given by
(2 (u,v),yi(u,v), z;(u,v)), (u,v) € E;, such that E = J;_, E;, OE; is of con-
tent zero for ¢ = 1,...,n, I; N Ej is of content zero whenever ¢ # j, and we
have x;(u,v) = z(u,v), yi(u,v) = y(u,v), z(u,v) = z(u,v) for all (u,v) € E;
and i = 1,...,n. In this case, the area of S is defined to be

Area(S) = ZArea(S )

In view of Propositions 5.51 and 5.54, we may write
Area(S / VI(@1)2 4+ J(92)2 + J(B3)2 d(u,v),

where @1, ®5,®3 : E — R? are given by ®1(u,v) = (y(u,v), z(u,v)),
Dy (u,v) = (2(u,v), x(u,v)), and ®3(u,v) := (z(u,v), y(u,v)). A simple ex-
ample of a piecewise smooth surface that is not smooth is depicted in Figure
6.10. More precisely, let E := [—2,2] x[0,2] and let z,y, 2z : E — R be given by
x(u,v) :=u, y(u,v) := v, and z(u,v) := u/2 if w > 0, while z(u,v) := —u/2 if
u < 0. Let By :=[0,2] %[0, 2] and consider the surface Sy given by z(u,v) := u,
y(u,v) :=v, z(u,v) :=u/2 for (u,v) € Ey. Also, let Fy :=[—2,0] x [0,2] and
consider the surface Se given by x(u,v) := u, y(u,v) == v, z(u,v) := —u/2 for
(u,v) € Es. Then it is clear that S; and Sy are smooth surfaces, and together
they define the piecewise smooth surface S. <&
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Examples 6.15. (i) Let a € R with a > 0 and let S denote the part of the
paraboloid given by z = 22 + y? that is cut out by the cylinder given
by 22 + y* = a® If we let D := {(z,y9) € R? : 2% + y? < a?} and
flx,y) = 2% + 4?2 for (x,y) € D, then

Area(S // \/1+f2+f2dxy / V14422 + 4y2 d(z, y),

and using polar coordinates, we obtain

™ a

Area(S) = / (/ (\/1 + 4r2> rdr) df = g[(l +4a?)3? —1].

- 0

(ii) Let @ € R with a > 0 and let E, denote a bounded subset of [—m, 7] x
R such that 0F, is of content zero. Let S denote the surface given, in
cylindrical coordinates, by » = a and (6, z) € E,. Note that S is a part of
a right circular cylinder of radius a. If we let p(0, z) := a for (0, 2) € E,,
then py = p, = 0 and hence

Area(S) = / /E a VPE PR 1) d(6,2) = / /E ad(t, ) = a Area(E,).

In particular, if h € R with h > 0 and E, := [—7, 7] x [0, h], then
Area(E,) = 2wh and thus we see that the surface area of a right circular
cylinder of radius a and height h is 27ha.

(iii) Let @ € R with @ > 0 and let E, denote a bounded subset of [0, 7] X
[—7, 7] such that OF, is of content zero. Let S denote the surface given,
in spherical coordinates, by p = a for (p,0) € E,. Note that S is a part of
a sphere of radius a. If we let p(p, 0) := a for (¢, 0) € E,, then p, = pg =0
and hence

Area(S) = // p4/sin? o(p2 +p2) +pid(p,0) = a® // sinp d(¢p, 0).
E

a

In particular, if we recall (from Remark 8.13 of ACICARA, for example)
that the solid angle © subtended by the surface S at the center of the
sphere of radius a is, by definition, the ratio Area(S)/a?, then we have
the following integral formula for the solid angle:

o- //E sin g d(p, 0)

In particular, if ¢o € [0,7] and E, := [0, po] x [—m,x], then the area of
the spherical cap S is given by

™ Yo
Area(S) = az/ </ singodgo) df = 2ma*(1 — cos g).
—7 0

As a special case, by taking ¢y = 7, we obtain that the surface area of
the sphere of radius a is 4wa?. &
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Surfaces of Revolution

In one-variable calculus, the definition of the area of a surface of revolution
obtained by revolving a piecewise smooth curve® about a line is usually given
in terms of a Riemann integral. (See, for example, Section 8.4 of ACICARA.)
The following result shows that this definition is consistent with the general
definition given in Remark 6.14 of the area of a piecewise smooth surface.

Proposition 6.16. Let C be a piecewise smooth curve C in R? given by
(x(t),y(t)), t € [o, 0], and let L be a line given by ax + by + ¢ = 0, where
a,b,c € R, and not both a and b are zero. If L does not cross C and if C 1is
revolved about L, then the area of the surface S so generated is given by

B8
Area(S) = 27r/ laa(t) + by(t +c|\/ t)2 dt.

a \/a2 + b2

Proof. Because of the domain additivity of Riemann integrals (Proposition
6.7 of ACICARA) and the domain additivity of double integrals (Proposition
5.51), there is no loss of generality in assuming that C' is a smooth curve.

Since the line L does not cross the curve C, we have ax(t) + by(t) +¢ >0
for all ¢t € [a, f] or ax(t) + by(t) + ¢ < 0 for all ¢ € [a, f]. Let us assume the
former. Let R denote the rectangle [a, 5] X [—, 7].

First we prove the proposition in the special case in which the line L is
the z-axis, that is, when @ =0, b = 1, and ¢ = 0. In this case, y(t) > 0 for all
t € o, 0] and S is given by (£(¢,0), n(t,0), ((t,0)), (¢,0) € R, where

E(t,0):=x(t), n(t,0):=y(t)cosd, and ((t,0):=y(t)sinb.

Note that S is a smooth surface. Moreover, for all (t,0) € R, we have

Ui=&+m+G =) + (y(H)cos)” + (y/(£) sin0)” =2/ (t)> +y/(1)?,
V=4 + =0+ (— y(t) sin&) (y cos 0) =y(t)?,
W = &8 + mme + CeCo

= 2'(t) - 0+ (y'(t) cos ) (— y(t) sin ) + (y'(t)sin ) (y(t) cosd) =0

Hence we obtain

3 Recall that a parametrically defined curve C' given by (z(t),y(t)), t € [a, 3], is
said to be smooth if the functions z,y : [a, 3] — R are differentiable and their
derivatives are continuous. It is is said to be piecewise smooth if the functions
x and y are continuous on [«, 8] and if there are finitely many points vo < 1 <

- < Yn in [a, 8], where 7o = o and vy, = 3, such that for each i = 1,...,n, the
curve given by (z(t),y(t)), t € [yi—1, v, is smooth If the curve C is piecewise
smooth, then the length of C is defined to be £(C) = [ \/a'(t) )2dt =

> f;ﬁ V' (t) )? dt.
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Area(S):/R\/UV—Wzd(t,G):/_: (/ ly()|v/z () 2dt> de,

and thus Area(S) =27 ff )/ (t) t)2 dt, as desired.
Y
v
Po
— &
C
0 ~—_ /<
/\/ 7,
T
Yo
/ @&
X
&

Fig. 6.11. Adjusting the axis of revolution of a smooth curve.

Let us now consider the case in which a,b, c € R satisfy a? + b? = 1. We
show that by a suitable change of variables, the line L can be assumed to be
the x-axis. Let us use the affine functions ®g, ¥y : R2 — R? and @ : R® — R3
introduced in the proof of Proposition 6.10. If U := (¢1,2), then we have

1(z,y) =br —ay —c and o(z,y) = ax +by +c for (z,y) € R
Consider the curve Cy given by (u(t),v(t)), t € o, 8], where
u(t) = 1(x(t),y(t)) and o(t) :=a(z(t),y(t)), tE€ o]

(See Figure 6.11.) Note that v(t) > 0 for all ¢ € [a, §] and let Sy denote the
surface in R? obtained by revolving the curve Cy about the u-axis. Thus by
the special case considered earlier,

Area(Sy) = / |v(t |\/u t)2dt.
Now, for ¢ € [« 8], we have v(t) = ax(t) + by(t) + ¢ and
W (1) 40 (1) = (b (1) — ay' (1) + (a2’ (1) + by (1) = 2/ (1) + 4/ ()",
where the last equality follows since a? + b> = 1. Hence
B
Area(Sy) = / laz(t) + by(t) + c|/2' (1) t)2dt.

On the other hand, since Sy is obtained by revolving Cy around the u-axis, it
is given by (EO(L 9)7 Mo (ta 9), CO (t7 9))7 (t7 9) € R7 where
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&o(t,0) :=u(t), no(t,0):=wv(t)cosd, and (o(t,0):=v(t)sind.

Further, the surface S obtained by revolving the curve C' about the line L is
given by

(f(tv 9)7 n(tv 0)7 C(tv 9)) = (I)(£O(t7 9)7 770(t7 9)7 CO(tv 0))7 (tv 9) € R

Since ®(u, v, w) = (bu+av—c(a—b), —au+bv—c(a+b),w) for (u,v,w) € R3,
we see that

&(t,0) =b&o(t,0) 4+ ano(t,0) — c(a —b),
n(t,0) = —a&o(t,0) + bno(t,0) — c(a + b),
C(t,0) = (o(t,0) forall (¢,0) € R.

Thus, if we let
(06N (ono\? | [06\® (08N, (o | (06
UO"(@t) +<6t> *(at) ’ VO"(%) *(ae) +<66>
and &\ [ 0¢ o B} G\ [ ¢
L 0 0 Mo o 0 0
WO'_<6t)(69)+<6t><69)+<6t)(69)’

then we see that

o6 Om)’ o om\*, (90’
U::€§+n§+<f:(b;0+a;0) +<_a(‘§to+b(’;7to> —|—( CO) = Uy,

where the last equality follows since a? + b = 1. In a similar manner we see
that V := & +n3 + (¢ = Vo and W := &g+ mmo + (o = Wo. Consequently,
UV — W? = UyVy — W, and therefore Area(S) = Area(Sp). This yields the
desired formula for Area(S) in the case a® + b = 1. If a® + b2 # 1, then we
replace a, b, and ¢ by by a/v/a? + b2, b/v/a? + b2, and ¢/v/a? + b2, respectively,
and obtain the desired result. O

Examples in which areas of surfaces of revolution are computed can be
found in books on one-variable calculus; in particular, see Examples 8.14 (i),
(ii), and (iii) of ACICARA.

Remark 6.17. Let a,b,c be positive real numbers and consider the ellip-
soid {(z,y,2) € R®: (%/a?) + (y*/c?) + (2*/c?) = 1}. If R :== [0, 7] x [—m, ],
then this ellipsoid is the image of the surface S parametrically given by
(x(u,v), y(u,v), z(u,v)), (u,v) € R, where

x(u,v) := asinucosv, y(u,v):=bsinusinv, z(u,v):= ccosu.

In general, S is not a surface of revolution. We can easily check that



322 6 Applications and Approximations of Multiple Integrals

2 u(a2 cos? v + b? sin? v) + Zsin?u,

2

U:=a2+y> + 22 = cos

2

V=22 442 + 22 =sin u(a sin2v—|—bzcos2v),

W = 24y + Yulp + 2u2e = (b2 — az) cosu sinu cos v sin v
for all (u,v) € R, and so
UV —W? =sin’u [a2b2 cos? u + ¢? sin? u(a2 sin? v + b2 cos? )] .

To calculate the area of the ellipsoid S, we need to evaluate the double integral
Area(S) = // sinu\/a2b2 cos? u + ¢ sin® u(a? sin® v + b2 cos? v) d(u, v).
R

If a,b, and ¢ are distinct, then this integral cannot be evaluated in terms
of elementary functions. In fact, we are led to consider the so-called elliptic
functions. If ¢ = b = a, then S is a sphere of radius a, and its area is equal to

Area(S) = // sinuvatd(u,v) = a2/ (/ sinudu) dv = 4ma®.
R —T 0

Now let ¢ = b. Then S is the spheroid obtained by revolving the ellipse given
by (z%/a®) + (y?/b%) = 1 about the z-axis. It can be shown (as in Example
8.14 (i) of ACICARA) that if b < a, then

2 5 o
Area(S) = 27h? 4+ \/272"@ bb2 sin—1 (\/a b ) ,
a/ —

a

whereas if b > a, then

2ma®b b+ Vb2 — a2
o2
Area(S) = 27b° + B — o In ( " > .

Note that Area(S) — 2wa? + 2ma® = 47a? as b — a. &

6.3 Centroids of Surfaces and Solids

The centroid, also known as the center of gravity or the barycenter, of a body
is the center of its mass or the point at which the body will balance itself
when placed on a needle. For example, the centroid of a triangular region
is the point of intersection of its three medians. For planar regions or more
generally, for surfaces and for solids, the centroid can be precisely defined and
effectively calculated using integrals. In effect, the coordinates of a centroid are
the weighted averages of the corresponding coordinate functions. We begin this
section with a brief discussion of averages and weighted averages, and follow
it up by the definitions and examples of centroids of bodies of the following
types: (i) planar regions, (ii) surfaces in 3-space, and (iii) solids. It may be
noted that the treatment here extends the notion of centroid to more general
situations than those given in Section 8.5 of ACICARA.
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Averages and Weighted Averages

The notion of average of finitely many values is elementary and well known.
In turn, this leads to the notion of average value of a function f : D — R
when the domain D is finite, say the finite subset {(ai,b1),..., (an,bn)} of
R?, where n € N. The average of f is then given by

AV(f) — f(CLl)bl) + -+ f(anabn) )
n
Alternatively, if z1,..., z; are the distinct values of f and if wy,...,wy are
the corresponding weights, that is, w; is the number of elements in the set

{(a,b) € D: f(a,b) =z} for i =1,...,k, then wy + -+ +w, = n and

w121 + -+ Wi 2k

Av(f) =

Thus, Av(f) could also be viewed as the “weighted average” of the k values
Z1,..., 2k, where the “weight function” is the map w : {1,...,k} — R given
by ¢ — w;. Simple examples show that Av(f) need not be a value of f.

To pass from the discrete to the continuous case, first suppose D := [a, b] x
[c,d] is a rectangle in R? and f : D — R is any function. We can subdivide
D into small subrectangles and assume, for simplicity, that on each of these
subrectangles, f is a constant function. For example, let P := {(x;,y;) : i =
0,1,...,nand j = 0,1,...,k} be a partition of [a,b] X [c,d] and let (s;,%;)
fori =0,1,...,nand j = 0,1,...,k be points in the (7,j)th subrectangle
[#i—1,2;] X [yj—1,y;] induced by P. Then the quotient

S S F(sity) (@i — mimn) (5 — Y1)
S Yy (@ = i) (5 — yi1)

can be construed as the “average value” of f over D. The denominator in the
quotient above is simply (b — a)(d — ¢), that is, the area of D, whereas the
numerator approaches the (double) integral of f over D as the partition P
becomes finer and finer, provided f is integrable. Moreover, for such a partition
P, the assumption that f is a constant function on each of the subrectangles
induced by P appears reasonable even for an arbitrary integrable function
f: D — R. With this in view, we make the following definition.

Let D be a bounded subset of R? such that D has an area, that is, D
is of content zero. Assume that Area(D) # 0. The average of an integrable
function f : D — R is defined to be the real number

()= oy [ Fade).

More generally, if D is a bounded subset of R? and w : D — R is an integrable
function such that w > 0 and [[, w(z,y)d(z,y) # 0, then for an integrable
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function f : D — R, the weighted average of f with respect to w is defined
to be the real number

fiw .W/fxy (z,y)d(z,y), where W := // w(z,y)d(z,y).

Note that if 0D is of content zero and w := 1, then Av(f;w) = Av(f). If D is
a “nice” region (for example, a rectangle) and f: D — R is continuous, then
it can be easily seen that in contrast to the discrete case, Av(f) is a value
of f (at some point of D). However, in general, simple examples show that a
(weighted) average of f need not be a value of f. (Exercises 16 and 17.)

The average and the weighted average of a function defined on a subset of
R3 are defined analogously using triple integrals instead of double integrals.

Centroids of Planar Regions

Consider a bounded subset D of R? such that D has an area, that is, D is
of content zero. Assume that its area is not equal to zero, that is,

Area(D) := / Dd(x,y) # 0.

Let f,g: D — R denote the coordinate functions on D given by f(z,y) := «
and g(z,y) := y. The centroid of D is defined to be (z, y) € R?, where

x:=Av(f) and y:=Av(g).

= aweapy S, 7D 0 0= gy [y

It may be worthwhile to note a special case of an elementary region given
by D := {(z,y) € R? : a <z < band fi(z) < y < fa(x)}, where fi, fo :
[a,b] — R are bounded functions whose sets of discontinuities are of one-
dimensional content zero and that satisfy f1 < fo. In this case, by Corollary
5.45, 9D is of (two-dimensional) content zero. Moreover, by Fubini’s Theorem
for elementary regions (Proposition 5.36), we have

Thus

b
Area(D) = / [f2(x) = fi(=)]d>

and in case Area(D) # 0, the coordinates of the centroid of D are given by

Area /b</fl(x) xdy) dz = Are;(D) /abl“[fz(x) — fi(z))dx
Area /b (/ff::) ydy> dx = 2Are1a(D) /jfz(QC)2 — fi(z)?) dx
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Similar results hold if D := {(z,y) e R? : ¢ <y < d and ¢1(y) < = < g2(y)},
where g1, g2 : [¢, d] — R are bounded functions whose sets of discontinuities are
of one-dimensional content zero and that satisfy g1 < go. This shows that the
definition of centroid we have given is consistent with the definition and/or
formulas usually given in texts on one-variable calculus. (See, for example,
Section 8.5 of ACICARA.)

Example 6.18. Let D denote a parallelogram in R? with vertices (z;,¥;),
1=1,2,3,4. Assume that no three of these four points are collinear and that
(z2,y2) and (z3,ys) are the vertices adjacent to (z1,y1). Then it is clear that

Ta=2xa+x3—21 and ys=Y2+Y3 — Y1

As noted in Proposition 5.56, D has an area and

Area(D) = [(z2 — x1)(y3 — y1) — (x3 — x1)(y2 — v1)|-

To determine the centroid (z,y) of D, we need to compute [[, zd(x,y) and
I yd(z,y). To this end, we transform D to the unit square E := [0, 1] x [0, 1].
This can be done using the affine transformation ® : R? — R? given by

D(u,v) = (21 + (w2 — z1)u+ (23 — 21)v, Y1 + (y2 — y1)u + (yz — ¥1)v).

Observe that maps (07 0)7 (17 0)7 (07 1)7 and (17 1) to (xlv yl)v (‘r27 y?)» (SE3, y3)7
and (x4, y4), respectively, and since ®(FE) must be a parallelogram, it follows
that ®(E) = D. Also, it is easily seen that

J(®) = (2 —x1)(ys — 1) — (3 —21)(y2 —y1), andso |J(P)| = Area(D).

Let f: D — Rand g : E — R be defined by f(z,y) := = and g := f o ®.
Using the Change of Variables formula (Proposition 5.59), we obtain

/_/D flz,y)d(z,y) = //Eg(u,v)|J(<I>)|d(u,v) = Area(D) //Eg(u,v)d(uvv)'

Now g(u,v) =21 + (2 — z1)u + (3 — x1)v for (u,v) € E, and so

= /01 (/01 (214 (z2 — 21)u+ (25 — xl)v)du) dv

Xr1+ Ty +2x3+ X4

1 1
=1 + ($2—$1)+2(9€3—$1): 4

2
In a similar manner, we see that y = (y1 + y2 + ys + ya) /4. &

As indicated at the beginning of this section, if D is any triangular region
in R? with vertices (;,1;), i = 1,2,3, then the centroid of D is the point
((z1 + @2 + 23)/3, (y1 +y2 +y3)/3), that is, the point of intersection of the
medians of D. This will be proved in the next section (Corollary 6.30), and
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subsequently, we shall indicate a method to determine the centroid of a large
class of planar regions known as polygonal regions. Using this method, we
shall show that the centroid (x,y) of a quadrilateral with vertices (z;,¥;),
i=1,...,4, need not be given by x = (z; + z2 + x3 + x4)/4 and y = (y1 +
Y2 + ys + ya)/4 (Remark 6.31). A method of finding the centroid of a planar
region based on a result of Pappus is given in Exercise 20.

Remark 6.19. Symmetry considerations are often useful in the calculation
of centroids. For example, suppose D C R? is a bounded subset of R? that
has an area and Area(D) # 0. If D is invariant under reflection with respect
to the y-axis, that is, if (—z,y) € D whenever (z,y) € D, then the centroid
(z, y) of D will necessarily be on the y-axis, that is, z = 0. To see this,
consider the affine transformation ® : R? — R? defined by ®(u,v) = (—u,v).
Then J(®) = —1 and ®(D) = D. Hence by the Change of Variables formula
(Proposition 5.59) applied to f : D — R defined by f(z,y) := z, we see that

J[ ziten = [[ roatuuls@)a.y) - //—uduv

Consequently, © = —z, that is, z = 0. In a similar manner, we see that if
(x,—y) € D whenever (z,y) € D, then we have y = 0.

For example, let ¢ € R with a > 0, and let (z, y) denote the centroid of
the semidisk D := {(z,y) € R? : y > 0 and 22 + y? < @?}. By symmetry, we
can immediately conclude that = 0. On the other hand, y # 0, and in fact,
an easy calculation shows that y = 4a /3. O

Centroids of Surfaces

Let a smooth surface S in R? be given by (z(u,v),y(u,v), z(u,v)), (u,v) € E,
where E is a bounded subset of R? such that OF is of content zero. Assume
that the surface area of S is not equal to zero, that is,

Area(S) = / VUV = W2 d(u,v) # 0
E
where U, V, W : E — R are defined, as usual, by

Ui=a2+y2 422, Vi=a?2+y2+22 and W= 2,20 + Yulo + 202

Let w : E — R be defined by w := UV — W2. Then the centroid of S is
defined to be (z,y, z) € R?, where

z:=Av(z;w), y:=Av(y;w), and z:=Av(z;w).

Thus, for example,

x:Are;(S) //Ex(u,v)w(u,v)d(u,v):Are;(s) //Ex\/UV—WQ.
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As with the area of a surface (Remark 6.14), the above definition of the
centroid readily extends to the more general case in which S is a piecewise
smooth surface. This may be tacitly assumed in some of the examples below.

As in Remark 6.19, symmetry considerations can be used in the calcu-
lation of centroids of surfaces, and these can be justified using the Change
of Variables formula (Proposition 5.59). Roughly speaking, if the surface is
invariant with respect to reflection along the yz-plane, that is, if (—xz,y, 2)
is on the surface whenever (x,y,z) is on it, then z = 0. More precisely, if
S, E, and z,y,2, U, V,W,w : E — R are as above and if & : R? — R? is
an affine transformation such that |J(®)] = 1 and ®(EF) = E and more-
over, (z (®(u,v)) , y (D(u,v)), 2 (®(u,v))) = (~x(u,v), y(u,v), 2(u,v)), and
w (P(u,v)) = w(u,v) for all (u,v) € E, then the z-coordinate x of the centroid
of S is zero. Similar results hold for y and z.

It may be worthwhile to note a special case of the general formula for the
centroid of a surface. Suppose the surface S is given by z = f(z,y), (z,y) € D,
where D is a bounded subset of R? that has an area and f is a real-valued
function of two variables defined on an open subset of R? containing D such
that f has continuous first-order partial derivatives. Then as in Section 6.2,

Area(S) = //D \/1 + 2+ fid(z,y).

Moreover, if we let A := Area(S) and assume that A # 0, then it is readily
seen that

x:i//Dx\/l-i-ff-f-fgd(x,y) and yz‘il//Dy\/l-I-f%—i—f;d(x,y),

whereas )
z:A//Df(x,y)\/1+f§+f5d(xay)~

Examples 6.20. (i) Let S be the surface in Example 6.15 (i), that is, let S
be the surface given by z = f(z,v), (v,y) € D, where D := {(x,y) € R? :
2?2 +y? < a?} and f: D — R is defined by f(x,y) := 2% + y?. Denote
the surface area of S by A. We have seen that A = 7[(1+4a?)3/? — 1] /6.
Moreover, if (z,y, z) denotes the centroid of S, then as noted above,

1 1
— 2 2 — 2 2 —

where the last equality follows from switching to polar coordinates and
noting that ffﬂ cosfdf = 0. In a similar manner, we see that y = 0.
Equivalently, we could have deduced from symmetry that + =y = 0. On
the other hand, as noted above,

Z:ix//[,f(x»y)\/”f%fﬁd(w,y):i/:(/oarzx/uwrdr> dé.
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Since the integral inside the parentheses is equal to

1 /11+4a2\/8(3 e = 1 ((1 + 4a2)/? — 1) B 418 ((1 +4a?)P? — 1) :

32 80
we conclude that

3 ((1+4a®)2-1) 1

20 ((144a2)3/2—1) 4

(ii) Let @ € R with a > 0 and let S denote the right circular cylinder given
by 22 +y* =a? and 0 < z < h. If we let E := [—m, 7] x [0, h], then S is
parametrically given by (acosf, asiné, z), (0,z) € E. We have seen in
Example 6.15 (ii) that VUV — W2 = @ and Area(S) = 2rah. Now, using
symmetry (or alternatively, a direct calculation), we have x = y = 0, while

z= Are;(S) //Eazd(H,z): 27raah (/_:d@) (/thdz> zg

Thus (0,0, h/2) is the centroid of S.

(iii) Let @ € R with a > 0 and let S denote the sphere given by z? + y* +
22 =a% If we let E :=[0,7] x [, 7], then S is parametrically given by
(asinpcosf, asinpsinb, acosy), (p,0) € E. We have seen in Example
6.15 (iii) that VUV — W2 = a%sin ¢ for (p,0) € E and Area(S) = 4na.
Using symmetry (or alternatively, a direct calculation), we see in this case
that x =y = 2z = 0, that is, the origin is the centroid of S. <&

We remark that in all three examples given above, the centroid (z,y, z)
of the surface S does not lie on S, that is, if the surface S is given by
(x(u,v),y(u,v), z(u,v)), (u,v) € E, then there is no (ug,v9) € E such that
(z,y,2) = (z(uo, v0),y(uo, vo), z(uo, v0)).

Let us consider the case in which the surface S is a surface of revolution.
Let C be a piecewise smooth curve in R? given by (z(t),y(t)), t € |a, 8], and
let L be a line in R? that does not cross C. Let the line L be given by the
equation ax + by 4+ ¢ = 0, where a, b, ¢ € R and we assume, for simplicity, that
a?+0b% = 1. Let S denote the surface obtained by revolving the curve C about
the line L. If R := [a, B8] X [—m, 7], then as in the proof of Proposition 6.16,
the surface S is given by (£(¢,0), n(t,0), ((t,0)), (t,0) € R, where

£(t,0) := b(ba(t) — ay(t) — ¢) + a(az(t) + by(t) + c) cos§ — c(a — b),
n(t,0) :== —a(ba(t) — ay(t) — c) + b(ax(t) + by(t) + ¢) cosf — c(a + b),
¢(t,0) := (ax(t) + by(t) + c) sin b

for (¢,0) € R. By Proposition 6.16,
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Area(S) = //R |az(t) + by(t) + c|/2'(£)2 + v/ (t)2 d(t, )
=2 /ﬁ laz(t) + by(t) + c[/2' ()2 + y'(t)2 dt.
Assume that Area(S) # 0. Since [*_cosdf =0 = [" sinfdf, we obtain

/§t0|ax )+ by(t) + | /2 (t)2 + v/ (t)2 d(t, 0)

T Area

= Arz;T(S)/ [b(bx()—ay( )) —GC”afﬂ )+ by(t) +c|\/x 2dt,
V= pronsy 8 Olarlt) +bule) + el (02 0 d(.0)

= AT(ZT(S)/& [a(ay(t) — bx(t)) _bC”ax ) + by(t) +c|\/x ()2 dt,
= Area /CM |am(t) + by(t) + ¢| /2! ()% + ' (1) d(t, 0) = 0.

Of course, we could as well have concluded that z = 0 by symmetry. It can
be checked easily that (x,y) lies on the line given by ax + by + ¢ = 0.

In case a®+4b? is nonzero, but not necessarily equal to 1, we may replace a, b,
and ¢ by a/va? + b2, b/v/a? + b2, and ¢/va? + b2, respectively, and obtain

f’a[( t) —ay(t)) — ac]|az(t) + by(t) —|—c|\/ac/(t) t)2dt
(a2 +62) [7 |az(t) + by(t) + |/ (1) y/(t2dt ’
fﬁ[ (ay(t) — bz (t)) — be]|ax(t) + by(t) +c|\/x’(t) )2 dt
(a2 + b?) f’g’ax t) + by(t) + c|/2/(t) y’(tht ,

z=0.

Special cases of the above formulas for x and y and corresponding examples
are given in Section 8.5 of ACICARA, notably Examples 8.15 (iii) and (iv).

Centroids of Solids

Let D be a bounded subset of R3 such that D has a volume, that is, D is
of three-dimensional content zero. Suppose the volume of D is nonzero, that is,

vol(D) = [[[ dta..) 201

Let f,g,h: D — R be the coordinate functions on D given by f(z,y, z) := z,
g(z,y,2) =y, and h(z,y,z) := z. Then the centroid of D is defined to be
(z,y,2) € R3, where z := Av(f), y := Av(g), and z := Av(h). Thus, for

example,
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e

Asin Remark 6.19, symmetry considerations can be used in the calculation
of centroids of solids and these can be justified using the Change of Variables
formula for triple integrals (Proposition 5.70). In effect, if a solid D C R? is
invariant with respect to reflection along the yz-plane, that is, if (—z,y,2) € D
whenever (z,y, z) € D, then x = 0. Similar results hold for y and z.

It may be worthwhile to consider reductions of the general formulas for z,
y, and z in three special cases.

Case 1. Suppose D is a solid lying between two surfaces given by z =
fi(z,y) and = = fo(z,y), that is, D = {(z,,2) : (£,y) € Do, fi(z,y) <
2 < fa(x,y)}, where Dy is a subset of R?. Let us assume that the set Dy is
bounded, 9Dy is of content zero, fi1, fo : Dy — R are bounded functions whose
sets of discontinuities are of (two-dimensional) content zero, and f; < fo. In
this case, by Corollary 5.45, 9Dy is of (two-dimensional) content zero, and by
Cavaherl s Principle (part (ii) of Proposition 5.68), we have

Vol(D /Dﬁxy file, y)ld(z, y).

Now let V' := Vol(D) and suppose V' # 0. Then by Cavalieri’s Principle (part
(ii) of Proposition 5.68), we also see that x and y, that is, the z-coordinate
and the y-coordinate of the centroid of D, are given, respectively, by

‘1///DOx[f2(x,y)—f1(x,y)]d(x,y) and ‘1///DOy[fz(x,y)—fl(];,y)}d(x)y)’

whereas z, that is, the z-coordinate of the centroid of D, is given by

fa(z.y)
‘1///170 </fl<m,y) Zdz) A= 21/ Do [£2(2,9)* = filzy)*]d(w.v).

Similar results hold for solids lying between surfaces given by y = g1 (x, z) and
y = ga(, 2), or given by x = hi(y,2) and x = ha(y, 2).

Case 2. Suppose D is a solid lying between two vertical planes given by
z =a and ¢ = b, that is, D C R? and a,b € R with a < b are such that
a <z <bforall (z,y,2) € D. For each x € [a, ], let D, be the corresponding
cross section of D given by D, = {(y,2) € R? : (x,y,2) € D}. Let us assume
that the set D is bounded, 0D is of three-dimensional content zero, and 0D,
is of (two-dimensional) content zero for each x € [a,b]. Now let V := Vol(D)
and assume that V # 0. Also let (z, y, z) denote the centroid of D. Then by
Cavalieri’s Principle (part (i) of Proposition 5.68),

vz/b(/ d(y,z))dac, = v/ (// vd(y, )da:
v=y [ (], viwa)ae. <=5 [ (f], za02)
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Let us interpret the above formulas in terms of the areas and the centroids
of the cross sections D, x € [a,b], of the solid D by vertical planes. Assume
that for each x € [a, b], the area

m=//fma

of D, is not equal to zero. Then the centroid (g(x), Z(z)) of D, is given by

// yd(y,z) and Zz(z) // zd(y, 2)

V= /:A(x)da:, - é/lexA(x)dx
y = ‘1//: g(x)A(z)dz, z= ;/}bé(x)A(x)dx

In particular, suppose fi, f2 : [a,b] — R are bounded functions whose sets of
discontinuities are of one-dimensional content zero and 0 < f; < f5. Let D
denote the solid generated by revolving the region

and hence

{(z,y) eR*:a<z <band fi(z) <y < fo(x)}

about the z-axis. Then for each z € [a, b] the corresponding cross section
is given by Dy, == {(y,2) € R? : f1(2)? < y* 4 2% < fo(x)?}. We have seen in
Section 6.1 that A(z) = 7[fa(x)? — f1(z)?] for all z € [a, ], and consequently,

b b
V:/ A(x)dxzw/ [fo(2)? = fi(z)?]da

Now it can be easily seen that g(x) = Z(z) = 0 for each = € [a,b], and so
y =0 = z. On the other hand,

V/xA V/ [2(@)? = f1(2)2)de

This shows that our definition of the centroid of a solid is consistent with
the formulas given in Section 8.5 of ACICARA. Similar results hold for solids
lying between two vertical planes given by y = ¢ and y = d, or between two
horizontal planes given by z = p and z = q.

Case 3. Suppose D is a solid lying between two cylinders whose common
axis is the z-axis, that is, there are p,q € R with 0 < p < ¢ such that
p? < 2? +y? < ¢? for all (z,y,2) € D. Let

E:={(r0,2) €R®:r>0,—7 <0 <mand (rcosf,rsiné,z) € D},
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and for each r € [p,ql, let E, := {(0,2) € [-m, 7] xR : (r,0,2) € E}. Let us
assume that D and E are closed and bounded subsets of R3, 9D and OF are
of three dimensional content zero, OF,. is of (two-dimensional) content zero
for each 7 € [p, q], and V # 0, where V := Vol(D). By part (i) of Proposition
5.72 and Cavalieri’s Principle (part (i) of Proposition 5.68), we obtain

V:/pqr</ETd(9,z)) dr.

Moreover, Cavalieri’s Principle (part (i) of Proposition 5.68) also shows that

:é/})qr2<//7.0059d(9,z))dr, y:‘l//p (//Tsmedez)d
. L[] )

Let us interpret the above formulas in terms of areas and centroids of the
slivers S, = {(z,y,2) € D : 22 +y?> = r*},r € [p,q], of D by coaxial
cylinders whose common axis is the z-axis. For r € [p,¢|, the surface S, is
given by (rcosf,rsinb, z), (0, z) € E,. Assume that the area

r) = / [ 6.2

of the parameter domain F, is nonzero for each r € [p, ¢]. Define z,y : E, — R
by (0, z) := rcosf and y(6, z) := rsinf. Then S, is parametrically given by
(z(0, 2), y(0,2),2), (0,2) € E,. Correspondingly, we have U = (—rsin6)? +
(rcos)? +02 =72 V=02402+12=1, W = (—rsin0)(0) + (rcos6)(0) +
(0)(1) = 0, and so VUV — W2 = r. Hence the surface area of S, is equal to

- //Errd(ﬂ,z) — rB(r).

The centroid (z(r), y(r), Z(r)) of S, is determined by the equations

ri(r) =r //rcosedﬂ z A(r)gj(r)zrz//rsinﬂd(ﬂ,z),

r)Z(r) = 7“// z2d(0, z)
E,
for each r € (p, q]. Thus

q 1 q
V:/A(r)dr, T = /icrArdr

P V P

L A(r)d L A(r)d
y—v/p G Ar)dr, z—V/p H(r)A(r)dr.

and
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Similar results hold if D is a solid lying between two cylinders whose common
axis is the z-axis or the y-axis. We consider a special case of the latter.

Let 0 < a < b and consider continuous functions fi, f2 : [a,b] — R such
that f; < fy and let D be the solid generated by revolving the region

{(z,y) eR*:a<z<band fi(z) <y < fola)}

about the y-axis. Now, with notation as above, E, := [—7, 7| x [f1(2), f2(2)]
and B(z) = 2w[fa(x) — fi(z)], and therefore, A(x) = 2wz[fa(x) — f1(z)] for
all z € [a,b]. Hence

V= /abA(x)da: P /abx[fg(x) ~ fi(2)]da.

Further, it can be easily seen that x = 0 = z and

o=y [o([J[ viw)as=7 [“atpewr - i

Note that

b T €T
?aLm>;hUJﬂﬁ@—ﬁ@Wa

where [f1(x) + f2(x)]/2 is the y-coordinate of the centroid of the vertical cut
of the region {(z,y) € R? :a < x < band fi(z) <y < fa(z)} at = € [a,b]. It

may be noted that this fact was used in Section 8.5 of ACICARA as a motivation
for defining the centroid of D.

y:

Examples 6.21. (i) Let a € R with @ > 0 and let D denote the subset of
R3 enclosed by the cylinders given by z2 + y? = a? and 22 + 2% = a?. Let
(z,v, z) be the centroid of D. Proceeding as in Example 6.5, if we let Dy :=
{(x,y) eER?: 22442 < az}, then D = {(x,y,z) € R3: (z,y) € Dy and
Va2 — 22 <2< +Va? —xz} and Vol(D) = 16a%/3 # 0. Hence, as in
Case 1 above, Vol(D) z is equal to

//Dox [2\/a2 —xﬂ d(x,y) = /_2 (/_\Z:; 2zv/a? — da;) dy =0,

and Vol(D)y is equal to

a Va2 —z?
// y[Q\/aQ—xQ}d(x,y):/ 2v/a2 — 22 (/ ydy)dxzo,
Do —a —Va2—z2

and moreover,
2Vol(D) z = //D [(a® —2?) = (® — 2%)] d(z,y) = 0.

Thus (0,0,0) is the centroid of D.



334 6 Applications and Approximations of Multiple Integrals

(i) Let D denote the subset of R? between the plane given by z = 1 and the
paraboloid given by z = 22 + 32. Let (z,y, z) be the centroid of D. It is
clear from the symmetry of D that x = 0 = y. In Example 6.7 (i), we
have found that Vol(D) = /2. If for r € [0,1], we let E, := {(6,2) € R?:
—7 <60 <mandr? <z <1}, then we see that D = {(rcosf, rsin, z) :
0<r<1and (0,2) € E,}. Hence, as in Case 3 above, Vol(D) z equals

/()1r<//rzd(9,z)) dr:/()lrﬂ(l—r4)dr:7r<;—é> :g,

and consequently, z = 2/3. Thus (0,0,2/3) is the centroid of D.

(iii) Let @ € R with @ > 0 and let D denote the subset of R?® consisting of
points that are outside the sphere given, in spherical coordinates, by p = a
and are inside the sphere given, in spherical coordinates, by p = 2a cos ¢.
Thus, as in Example 5.74 (iii), D = {(psinpcosf, psinpsinb, pcosy) :
(p,p,0) € E}, where E := {(p,p,0) € R? : 0 < ¢ < 7/3,a < p <
2acosp and — 7 < 0 < 7}. Let (x,y,2) be the centroid of D. It is clear
from the symmetry of D that x = 0 = y. In view of Example 5.74 (iv),

Vol(D) 2 = ///Dzd(x,y,z):///E(pcosnp)p2sin<pd(p,go,9): 97;;4.

Now, as noted in Example 6.7 (ii), Vol(D) = 117a3/12. Thus it follows
that (0,0,27a/22) is the centroid of D.

(iv) Consider the solid D := {(rcosf,rsind,z) € R* : (r,0,2) € E}, where
E:={(r0z)eR:1<r<2 0<60<m/2and 0 < 2z <r}. It is clear
that D and E are closed and bounded subsets of R3, and that 9D and
OF are of three-dimensional content zero. Also, if E, := [0,7/2] x [0,7]
for 1 < r < 2, then JF, is of (two-dimensional) content zero for each

€ [1,2]. Let (z,y,2) be the centroid of D. Then, as in Case 3 above,

Vol(D / (/ErdH,z)dr—/ ()(r)dr:zr,

and moreover,

2 2
/r(// rcosﬂdﬂz) /7‘ dr—15,
1 . 1 4

2 2
/ <// rsm0d92> /r dr—15,
1 4
m 157
Vol(D) / (//rzd92>dr—/r(2)< ) 16

Thus 45(4, 4, 7)/567 is the centroid of D. &

Vol(D)

Vol(D)
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Centroids of Solids of Revolution

When a solid in R3 is obtained by revolving a planar region about a line in
its plane, we can obtain simpler formulas for its centroid in terms of double
integrals rather than triple integrals. We shall now proceed to derive these
formulas and deduce a theorem of Pappus that relates the volume of a solid of
revolution with the area of the corresponding planar region and the centroid.
Let Dy be a closed and bounded subset of R? such that Dy has an area,
that is, 9Dy is of (two-dimensional) content zero, and let L be a line in R? that
does not cross Dy. Assume that L is given by ax+by+c = 0, where a,b,c € R
with a2+ % = 1 and azx + by +c > 0 for all (z,y) € Dy. If D denotes the solid
generated by revolving Dy about the line L, then by Proposition 6.10,

Vol(D) = 27 / /D (0 by ().

Now let (z,y, z) denote the centroid of D. It is clear from the symmetry of D
that z = 0. To obtain simpler formulas for x and y, we will transform the line
L to the z-axis. To this end, let us use the affine functions ®q, Vg, and @ as
well as the sets By := Uo(Dp) and E := {(u,v,w) eR3: (u, Vo2 + w2) € EO}
introduced in the proof of Proposition 6.10. The assumption ax + by + ¢ > 0
for all (x,y) € Dg corresponds to the condition v > 0 for all (u,v) € Ey. Also,
®(E) = D and J(®)(u,v,w) = 1 for all (u,v, w) € R3. Hence by the Change
of Variables Formula (Proposition 5.70), we obtain

///Dxd(x,y,z) - ///E (b“+‘w_ cla— b))d(u,v,w).

Switching to cylindrical coordinates (u,r, ) in (u, v, w)-space by letting v :=
rcosf and w := rsinf and using part (i) of Proposition 5.72, we obtain

/R A .
=27 //EO (bu — c(a —b))rd(u,r),

where the last equality follows since [ fﬂ cosfdf = 0. Thus
/// xd(z,y,2z) = 271'// (bu — c(a —b))vd(u,v)
D Eq
=27 // (b(bz — ay — ¢) — c(a — b)) (az + by + ¢)d(x,y)
Do
=27 // (b(bx — ay) — ac) (azx + by + c)d(z, y).
Do

Similarly,
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/// yd(@,y,2 —277//]30 a(ay — bz) — be)) (azx + by + c)d(w, y).

Hence we obtain
2w
= Vol(D) //DO (b(bz — ay) — ac)(az + by + c)d(z, y),

Y= VOQIZTD) //D (alay — bx) — be) (ax + by + c)d(z, y).

In case a? + b? is not necessarily equal to 1, we may replace a,b, and ¢ by
a/va? 4 b2, b/v/a? + b2, and ¢/va? + b2, respectively, in the above formulas
and obtain

ffDo (b(bx — ay) — ac)|az + by + c|d(z, y)
(a® +0?) [[p, laz + by + cld(z,y) ’

(

)

ffD (a(ay — bx) — be)|ax + by + c|d
(a® +0%) [[p, laz + by + cld(z,y

z,y)
Y=

z = 0.

We remark that the following special cases of the above formulas are often
considered in one-variable calculus (for example, in Section 8.5 of ACICARA).
Let Do = {(z,y) € R? : a < 2 < band fi(z) <y < fa(x)}, where f1, fo :
[a,b] — R are continuous functions. First, if 0 < f; < fo and L denotes the
x-axis, that is, a = 0 = ¢ and b = 1, then we have

b f2(=)
r = zyd(z,y) / / ydy | dx
VO] //DO V 1( ) ( )

i | A~

and y = 0 = z. Next, if @ > 0 and L denotes the y-axis, that is, b = 0 = ¢ and
a =1, then we have r = 0 = z and

T ™ b 2 2
v= V021(D) //D yrd(z,y) = Vol(D)/a t[fo(@)” = fi(2)"]de

Before concluding this section, we prove a theorem of Pappus for solids of
revolution. Two special cases of this result were treated in Proposition 8.18
of ACICARA.

Proposition 6.22 (Theorem of Pappus). Let Dy be a bounded subset of
R? such that 0Dy is of (two-dimensional) content zero and let L be a line in
R? that does not cross Dg. If Dy is revolved about L, then the volume of the
solid so generated is equal to the product of the area of Dy and the distance
traveled by the centroid of Dy. Symbolically, we have

Volume of Solid of Revolution = Area x Distance Traveled by Centroid.



6.3 Centroids of Surfaces and Solids 337

Proof. Let (z,y) denote the centroid of Dy, and let D denote the solid gener-
ated by revolving Dy about the line L. Then by Proposition 6.10, we have

laz + by + ¢
Vol(D) = 2 // d(x,y).
)= [[ 10N ey

On the other hand, by the definition of a centroid, we have

Further, the distance d traveled by (z,y) about the line L is equal to 27 times
the distance of the point (z,y) from the line L. Thus if the line L is given by
ax + by + ¢ = 0, where a,b,c € R with a? + b # 0, then

_ 2mlax +by+ ¢ 2

B 2 // |aac—|—by+c\d(x )
Area(Do) J/p, a2+ b2 Yl

where the last equality follows since either ax 4+ by+c¢ > 0 for all (z,y) € D or
ax 4+ by + ¢ <0 for all (x,y) € D. Thus Vol(D) = Area(Dy) x d. This proves
the proposition. a

d

Example 6.23. Let p,¢ € R with p > 0 and 0 < ¢ < p/v/2. Consider the
disk Dy := {(z,y) € R? : (x — p)? + y* < ¢*}. Let L be the line given by
x+ 1y = 0. Then L does not cross Dy. Let us find the volume of the solid D
generated by revolving Dy about L. (See Figure 6.12.) The area of Dy is 7¢>.
By symmetry, the centroid of Dy is at (p,0), and its distance from L is equal
to p/v/2. By the Theorem of Pappus (Proposition 6.22),

r+y=0

Fig. 6.12. Region Dy in Example 6.23 revolved about the line z +y = 0.
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p _

V2

Let us also determine the centroid (x,y, z) of the solid D. Letting a = b =
1/v/2 and V := Vol(D) in the formulas for the centroid of a solid of revolution,
we obtain

v 25 //D Vlz(fz_\%) (ff\%)d(x’y) - V7\T/2 //Do(xz_yz)d(x’y)'

Switching to polar coordinates, we obtain

//D (@ =) = /Oq (/_: [(p+ 7 cos0)? —r? sin® ¢] de) rdr

q g
= / (/ [p2 — 2prcos O + 12 cos 26 dH) rdr
0 -7

q
= 27r/ p?rdr = mp*g>.
0

Vol(D) = 7¢* - 27 Vorlpg?.

Thus it follows that )
Lo )
V2 (V2r?pg?) 2
Since the point (x,y) lies on the line L, we have y = —z = —p/2. Since z =0
by symmetry, we see that (p/2, —p/2,0) is the centroid of the solid D. O

6.4 Cubature Rules

The actual evaluation of a double integral by analytical methods is in general
a formidable task. In the case of a double integral over an elementary region
(or more generally, over a finite union of nonoverlapping elementary regions),
one may reduce it to an iterated integral using Fubini’s Theorem, but even
then it is necessary to evaluate several Riemann integrals, a task that is by
no means easy. It is therefore useful to develop methods that will yield at
least an approximation of a given double integral. Thus we seek analogues of
the quadrature rules for approximate evaluation of Riemann integrals that are
usually studied in one-variable calculus (for example, Section 8.6 of ACICARA).
It may be remarked that the case of double integrals is more difficult than
the corresponding one-variable situation, for a Riemann integral, because one
would like to evaluate double integrals over a variety of regions in R?, while one
is usually content with evaluating Riemann integrals on closed and bounded
intervals in R.

Thanks to the Theorem of Darboux (Proposition 5.31) and Corollary 5.32,
Riemann double sums can be employed to find approximate values of a double
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integral. This leads to a procedure, known as a cubature rule, for approxima-
tion of a double integral. Given a bounded subset D of R?, a cubature rule
over D associates to an integrable function f: D — R the real number

n k
DO wif(sig,tig),

i=1 j=1

where n,k € N, w; j; € R and (s; j,t; ;) € Dfori=1,...,nand j=1,....,k.
The real numbers w; ; are known as the weights and the points (s; ;, t;, ) are
known as the nodes of this cubature rule.

In this section, we shall discuss two kinds of cubature rules: (i) product
rules and (ii) rules based on a triangulation of the region of integration.

Product Rules on Rectangles

A product cubature rule is obtained by constructing a “product” of two
quadrature rules as described below. Let us first assume that D := [a, b] x [¢, d]
and consider quadrature rules @ and R on [a, b] and on [c, d], respectively, that
associate to Riemann integrable functions ¢ : [a,b] — R and ¥ : [¢,d] — R
the real numbers

n k
¢) =Y wid(z;) and R(Y):=> vh(y;),
i=1 j=1

where uy,...,u, € Rjvy,..., 05 ER, 21,..., 2, € [a,b],and y1,...,yx € [c,d].
We define @ x R to be the cubature rule that associates to an integrable func-
tion f : [a,b] X [¢,d] — R the real number

n k
(@Q x R)(f) = ZZ 105 f (@i, y5)-

We may refer to @ x R as the product cubature rule on a rectangle
corresponding to the quadrature rules @ and R. The rule @ x R is obtained by
successive applications of the rules () and R to appropriate functions. To see
this, suppose f : [a,b] X [¢,d] — R is integrable and for each fixed x € [a, b],
the function v, : [¢,d] — R defined by 9, (y) := f(z,y) is Riemann integrable.
If ¢ : [a,b] — R defined by

k
d(x) == R(¢y) = Zv]wx Yj) Zvjf(x,yj) for x € [a,b]
j=1

is Riemann integrable on [a, b], then

(@ x R)(f) = Q).
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Likewise, if f : [a,b] x [¢,d] — R is integrable and for each fixed y € [c, d], the

function ¢, : [a,b] — R defined by ¢,(z) := f(x,y) is Riemann integrable,

and further, ¢ : [¢,d] — R defined by ¢ (y) := Q(¢,) is Riemann integrable

on [e,d], then (Q x R)(f) = R().

Examples 6.24. (i) For n,k € N, let P, 1, := {(2;,y;) : ¢ =0,1,...,n and
j=0,1,...,k} be a partition of [a,b] x [c,d]. Consider any s; € [x;_1, 2]
fori=1,....,n and t; € [y;_1,y,] for j = 1,..., k. Then the Riemann
double sum

n k

S(Poges ) =Y flsisty) @i — wi)(y; — yj—1)

i=1 j=1
gives a product cubature rule @,, x Ry, where

n

k
Qu(¢) =) (i —zi—1)d(si) and Ri(¥) =) (y; —yj-1)(t;)

i=1 7j=1

for integrable functions ¢ : [a,b] — R and ¢ : [¢,d] — R. Let kK = n and
assume that the mesh p(P, ) tends to 0 as n — oo. Then by Corollary
5.32, we see that

@)D= [[  fegdy)
[a,b]x[c,d]
for every integrable function f : [a,b] X [¢,d] — R.
(ii) Let n, k € N. Consider the partition {xg,z1,...,2,} of [a,b] into n equal
parts and the partition {yo,y1,...,yx} of [c,d] into k equal parts given by

zi=a+hyi, i=0,1,...,n, and y;:=c+hyj, j=0,1,... .k,

where h, := (b —a)/n and hj, := (d — ¢)/k. Let T,, and T}, denote the
Compound Trapezoidal Rules on [a,b] and on [c, d] respectively, that is,

n

hok
Tu(@) = " S olair) +ofa)] and T ’“Z V1) + ()

i=1

for integrable functions ¢ : [a,b] — R and ¢ : [c,d] — R. If f is an
integrable function on [a, b] X [¢,d], then (T}, x T})(f) is equal to

kZZ[ Ti—1,Yj-1 +f(xz 17yj)+f(xzay] 1)+f(xlvyj)}

=1 j=1

For computational purposes, it is convenient to rearrange the terms ap-
pearing in the above expression and obtain
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(T < 1) = [f(a, )+ o)+ 7 (b.6) + F.d)
k—
+22 (x4, ¢) + f(zi,d Z (a,y;) + f(b,y;))
n—1k—1 B
+4ZZf($i,yj)}~
i=1 j=1

As a check on our calculations, consider f :=1 on [a,b] X [¢,d]. Then

(T, x TL)(f) = h4h/ {4+4(n—1)+4(k—1)+4(n—1)(k—1)}
:(b_azl(j—c)[1+(n—1)+(k—1)+(n—1)(k—1)]
=(b—a)(d—c),

as expected. Reverting to the general case, let us note that each of the
double sums

n k
hyzh%ZZf(.ﬁi—l,yj—l), hn b ZZf Tio1,Y5),

i=1 j=1 i=1 j=1
n k n k
hall» Y f(xiyi-1),  hahid Y flwi,yy),
i=1 j=1 i=1 j=1

is a Riemann double sum for f. Letting & = n, it follows from Corollary
5.32 that for any integrable function f : [a, b] X [¢,d] — R, we have

! 1 = x x
(T = | (4 / /[a,b]x[c,d]f("’”’y)d(x’”) /[, S

In a similar manner, we can obtain the product cubature rules M,, x M,
and S, x Sy, where M,, and S,, are the compound Midpoint Rule and the
compound Simpson Rule on [a, b], respectively, and where Mj, and S}, are
the compound Midpoint Rule and the compound Simpson Rule on |[¢, d],
respectively. (See Exercises 26 and 27.) &

We now show that error estimates for quadrature rules can be used to
obtain error estimates for product cubature rules.

Proposition 6.25. Let Q x R be a product cubature rule on [a,b] x [c,d]
obtained from quadrature rules Q@ and R given by

n k
)=Zui¢><xi) and  R() ::Zw(yj),
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where ¢ : [a,b] — R and ¢ : [¢,d] — R are Riemann integrable functions,
TlyeeoyTp € [ab], y1,...,yk € [e,d], ur,...,un € R, and vq,...,0, € R
with 2521 lvj] < d—c. Let f: [a,b] x [c,d] — R be an integrable function
such that for every fized y € [c,d], the function ¢y : [a,b] — R defined by
oy(x) := f(z,y) is Riemann integrable on [a,b], and for every fized x € [a,b],
the function 1, : [c,d] — R defined by v, (y) := f(x,y) is Riemann integrable
n [e,d]. Assume that there are p € N, r € R with r > 0, and for each
y € [¢,d], a constant o(¢y) depending on ¢, such that
raldy) for all y € [e,d],
npb

b
/ by (2)dz — Q)| <

and that there are ¢ € N, s € R with s > 0, and for each x € [a,b], a constant
B(¢s) depending on 1, such that

o for all x € [a,b)].

b
/ Ge(y)dy — R(%s)| <

Finally, assume that there are o, Bo € R such that o(¢y) < ag for ally € [c, d]
and B(1z) < Bo for all x € [a,b]. Then

‘ / / F,y)d(,y) — (@ x R)(F)
la,b] x[c,d]

Proof. Consider the functions g, ¢ : [a,b] — R defined by

d—c)rag n (b—a)sﬂo.

<
- npP ka

/fxydy and  ¢(z Z’UJ (x,y;).

Note that g is well defined, since 1), is Riemann integrable [c,d]. for each
€ [a,b]. Also, by part (i) of Proposition 5.28, ¢ is Riemann integrable on

[a,b] and
//[ab]><cd (@, y)d(z,y) = /g( )dzx.

Moreover, since ¢ = Z =1 vj¢y,, the function ¢ is Riemann integrable on
[a, b]. Further, for each = € [a, b], we have

d k d s
o —| [ iy vgaop)| = | [ oy — RO < 500,
c j=1 c
Consequently,
( —a)s fo
R e By SRR
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On the other hand, we have

b
/ o(x)dz — (Q x R)(f)‘ -

k b n
> v (/ f(@,yj)dx — Zuif(wi,yj)> ‘
j=1 a i=1
k b n
<Yl | [ 0@ = 3 i, ()
j=1 @ i=1

k b
= lujl / by, (2)dz = Q (6,) |-
i=1 ¢

Hence using the hypothesis on ¢,, we obtain

k
Z|U]| ¢y7 S (d_C)rao'

npb

b
/ o(x)dz — (Q x R)(

By the Triangle Inequality, it follows that

/ / e, y)d(z,y) — (@ x R)(f)| <
la,b]x[c,d]

as desired. 0

(d—c)rag n (b—a)sPo

np ka ’

Example 6.26. Let T;, and T}, denote the Compound Trapezoidal Rules on
[a,b] and on [c,d] respectively. We know from one-variable calculus (for ex-
ample, part (i) of Proposition 8.23 of ACICARA) that if ¢ : [a,b] — R and
Y : [e,d] — R are twice differentiable and if their second derivatives are
bounded, then

b (b_a)g "
/ s()dr ~To()| < % a(g), where a(o) = sup{|6"(@)] : & € (a,5)}
d
d / (d—c)3 "
vy - 1) < 2 Bw), where 5() = sup("(0)] v € (e, d)}.

Now let f : [a,b] x [¢,d] — R be an integrable function such that the first-
and second-order partial derivatives of f exist and are bounded. Then letting
= (b—a)3/12, s := (d — ¢)3/12, and p = ¢ = 2 in Proposition 6.25, we have

—a —C _Clz()( _62
‘// bl x| d] T XTk)(f) (b )(d ) (b ) 0+(d )ﬁO

12 n? k2 ’
where ag := sup{|fsz(s,t)| : s € (a,b),t € [e,d]} and By := sup{|fyy(s,t)] :
s € [a,b],t € (e, d)}.

Error estimates for the product Midpoint Rule and the product Simpson
Rule are given in Exercises 28 and 29. <&

<
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Remark 6.27. If quadrature rules @ and R involve n and k nodes respec-
tively, then the product cubature rule @ x R involves nk nodes. Thus from the
point of view of numerical computation, a product cubature rule is far more
expensive as compared to the two individual quadrature rules. All the same,
Proposition 6.25 shows that if (@Q),,) and (R,) are sequences of quadrature
rules each involving n nodes and if @,,(¢) is an approximation of f; o(x)dx of
order O(1/nP) and R, (%) is an approximation of f; Y (x)dx of order O(1/n9),
then (Q, x R,)(f) is an approximation of ff[%b]x[c’d] f(x,y)d(z,y) only of
order O(1/n™{r.a}). Thus a product cubature rule is much less efficient in
approximating a double integral as compared to the approximation of a Rie-
mann integral by one of its component quadrature rules. This is an example
of what is often called the “curse of dimensionality.”

Product Rules over Elementary Regions

We shall now proceed to show how a product cubature rule on a rectangle
can be adapted to a rule over an elementary region. Let D be an elementary
region given by

D:={(x,y) eR*:a<z<band ¢1(z) <y < ¢2()},

where ¢1, ¢2 : [a,b] — R are Riemann integrable functions. Let f : D — R
be an integrable function such that for each fixed = € [a, b], the function from
[p1(2), p2(z)] to R given by y —— f(z,y) is continuous. Then by Fubini’s
Theorem for elementary regions (Proposition 5.36), we have

/[ s = | b ( /¢ i()) f<x,y>dy> ar.

Let @ and R be quadrature rules on [a, b] and on [c, d] respectively given by
n k
Q(6) =D uid(w:) and R(y) =3 v (y;)-
i=1 j=1

To obtain a cubature rule over D, we transform, for each = € [a,b], the

Riemann integral | (bf((f)) f(z,y)dy to a Riemann integral on [c,d] as follows.

For x € [a, b] with ¢1(x) < ¢2(z), consider the function v, : [¢,d] — R defined

by
()= B0~

Then v, ([c, d]) = [p1(x), ¢2(x)] and v, (t) = [p2(x) — ¢1(x)]/(d — ¢) # O for all
t € [e,d]. Hence using a suitable substitution in Riemann integrals (justified,
for example, by part (ii) of Proposition 6.26 of ACICARA), we obtain

(t—c)+ ¢1(z) forteed.
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$2(x) B ba(z) — 61 (2) d
/%(I) flx,y)dy = 7. /C f (2,7 (t))dt

This formula holds even for = € [a, b] with ¢ (x) = ¢2(x). Thus we have

/[ rewien - [ /W[c’d] F(a, yd(z,y),

where f : [a,b] X [¢,d] — R is defined by

$2(z) — ¢1 ()

f(xvy) = d—c

f(@,72 () for (,y) € [a,b] x [c, d].

Hence (Q x R)( f ) can be considered an approximation of the double integral
of f over D. But

(@ x R)(f ZZuzvjfxz,yJ

i=1 j=1
925 z;
=3y ) D )
=1 j=1
n k
= uii i f (@i yig),
i=1 j=1
where for i =1,...,nand j =1,...,k, we have put
i) — ¢1(xy x; x;
- b2 z;_fl( Z)Uj and gi; = b2 ( C)l_ih( )(yj—c)-i-(bl(l“i)-

Notice that if Z?:l v; = d — ¢, then 2?21 v;; = ¢2(x;) — ¢1(z;) for each
1=1,...,n. Now for any integrable function f over D, let us define

C(f) = (Q x R)(f).

This yields a cubature rule C for the elementary region D, which is referred
to as a product cubature rule over D and denoted by @ x R. Thus

(Q x R)(f) :=(Q x R)(f) for any integrable function f: D — R.

If D is an elementary domain given by

D:={(z,y) eR*:c <y <dand ¢1(y) <z <2(y)},

where 11,19 : [c,d] — R are integrable functions, then we can similarly

construct a product cubature rule é X R over D from the quadrature rules @
and R on [a,b] and on [c, d] respectively. (See Exercise 31.) <&
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Example 6.28. Let D := {(x,y) €ER?:0<z<land0<y<+V1- x2} and
for n € N, let T,, denote the Compound Trapezoidal Rule on [0,1] with n
nodes. In this case, we have « =0 = ¢ and b = 1 = d, while ¢1(z) = 0 and
¢2(z) = /1 — 22 for all z € [0,1], and so 7, (t) = tv/1 — 22 for t € [0, 1]. Given
an integrable function f : D — R, define f : [0,1] x [0,1] — R by

$2(x) — d1(x)

Floy)=""0

f @) = Vi-af (o, yv/1-a2).
Then as in Example 6.24 (ii),

(T5 fk)(f) = (T x Tk)(f)

. f(0,0)+f(0,1)+27§:1\/1—x% <f(xi,0)+f(xi,\/1—x%>)
+2Zf0 Yj) —|—4n§:1k§:1\/1—x f(acz, yj\/l—x )1

i=1 j=1

where z; =i/nfori=1,...,nandy; =j/kforj=1,... k. O

Triangular Prism Rules

A polygonal region is a subset of R? given by a connected union of finitely
many nonoverlapping triangular regions. Here, by nonoverlapping we mean
that whenever any two of these triangular regions intersect, the intersection
is either a common vertex or a common edge. (See Figure 6.13.) A polygonal
region D can be so partitioned in many different ways, and any such partition
of D is called a triangulation of D.

Fig. 6.13. Illustration of a polygonal region.

If D C R? is a polygonal region, then evaluation of double integrals over D
can be reduced to evaluation of finitely many double integrals over triangular
regions. Indeed, if we have a triangulation of D into p triangular regions
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Dy,....,Dp, and if f : D — R is an integrable function, then by Domain
Additivity (Proposition 5.51), we see that f is integrable on each D;, i =

1,...,p, and we have
P
=3[

Of course, evaluating the double integral of an arbitrary integrable function
over a triangular region may not be easy. However, we can always obtain
an approximate evaluation using the following simple idea. Subdivide the
triangular region further into several small triangular regions. On each of these
small pieces, approximate the given function by a simpler function, such as,
for example, a linear or a quadratic function, whose integral can be readily
evaluated. This leads to cubature rules over a triangular region and, in turn,
to cubature rules over a polygonal region.

To pursue the above-mentioned simple idea, we first prove a basic result
about integrals of linear and quadratic functions over triangular regions.

Proposition 6.29. For i = 1,2,3, let (z;,y;) be noncollinear points in R?
and D the triangular region in R? having these points as its vertices. Then

Area(D) = ; |(z2 — 1) (ys — y1) — (x5 — z1)(y2 — 1)/ -

Further, let A := Area(D) and let f : D — R be a polynomial function in two
variables of total degree m.
(i) If m < 1, then the double integral of f over D is equal to

A
3 [f(xl,y1) + f(w2,y2) + f($3,y3)]-

(ii) If m < 2, then the double integral of f over D is equal to
Al (x4 a2 y1+yz> <xz+x3 y2+y3> (:c3+x1 y3+y1>
3{f<2’2+f2’2+f2’2'
Proof. Consider the triangular region E in R? having (0,0), (1,0), and (0,1)
as its vertices, and the affine transformation ® : R — R? given by

D(u,v) = (xl + (22 —x)u+ (z3 — x1)v, y1 + (Y2 — y1)u + (ys — yl)v)'

Then ®(0,0) = (z1,y1), (1,0) = (22, y2), and ®(0,1) = (z3,ys). Since ®(E)
must be a triangular region, it follows that ®(E) = D. Also, it is easily
seen that J(®) = (z2 — x1)(ys — y1) — (z3 — x1)(y2 — y1). Further, since
Area(F) = 1/2, Proposition 5.58 shows that

Area(D) = [J(®)[Area(E) = ;I(xz —x1)(ys — 1) — (w3 — 21)(y2 — ).

Next, consider the function g := fo®. It is clear that ¢ is also a polynomial
function of total degree m. By Proposition 5.59, we have
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//m ) =960 ] tosonturn =24 ] stucontu

(i) Let m < 1. Then there are cg, 1,0, co,1 € R such that
g(u,v) :==co0+crou+corv forall (u,v) € E.

By Fubini’s Theorem (Proposition 5.36), we have

J[asaen= [ ([ a)a=,
//Eud(u,v)Z/o </o udv)du:/o u(l—u)du:é
//Eval(u,v)Z/o1 (/Ol_vvdu>dv:/olv(1_v)dv:(13.

Hence we see that

¢ c10+c 1
// g(u,v)d(u,v) = 02’0 4 Lo : 01 _ 6 [co.0 + (co,0 + c1,0) + (o0 + co,1)] -
E

Since ¢(0,0) = ¢9,0, 9(1,0) = co,0 + c1,0, and ¢(0,1) = co .0 + co,1, Wwe obtain

A
J[ 1@ =24 [[ gt = | 160,00+ 50,0 +90,1).

Since g = f o ®, we conclude that

J[[ f@ e =5 ) + o) + flese)].

(i) Let m < 2. Then there are g0, ¢1,0,¢0,1,¢2,0, 2,0, 1,1 € R such that
g(u,v) :==co0+ c1,0u+ co1v + c11uv + cz,0u2 + 0072112 for all (u,v) € E.

By Fubini’s Theorem, we have

//Euvd(u,v):/ol (/01 uuvdv)d ;/ (1—u)2du=214,
//Euzd(u,v) :/0 (/0 ) uzdv) :/ (1 —wu)d 112,
//Ev2d(u,v) :/0 (/0 UQdu> / (1 —-wv)d 112.

Hence we see that

1 1 1 1
//Eg(u,v)d(u,v) = 5C0.0 + 6(61,0 +co1) + 9g €11 + 12(62,0 + ¢co,2)-
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Since

(1 0) +1 +1 (0 1) +1 +1
= C C C = C C
g 9’ 0,0 9 1,0 4 2,0, g "9 0,0 9 0,1 4 0,25

g = C C C C C C
979 0,0 9 1,0 0,1 | 1,1 A 2,0 0,2) 5

we obtain

Sl =2 o= o) + 9 p) #9(03)]

Since g = f o ®, we conclude that the double integral of f over D is equal to

?{f<x1;rx27y1—2#yz>+f<xz+x3 yz;ry3>+f<x3+x1 ys;rzn)}’

as desired. O

Corollary 6.30. For i = 1,2,3, let (x;,y;) be noncollinear points in R? and
let D be the triangular region in R? having these points as its vertices. Then
the centroid (x, y) of D is given by

1 ta2tas N1t Y2tys
T = and Yy = .
3 3
Proof. Use part (i) of Proposition 6.29 with f(z,y) := z for (z,y) € D and
also with f(z,y) ==y for (z,y) € D. O

Remark 6.31. As a consequence of Corollary 6.30, we can obtain the cen-
troid of any polygonal region as follows. Suppose D is a polygonal region and
D = DyU---UD, is a partition of D into nonoverlapping triangular regions
D1, ...,D,. Let (z;,y,) denote the centroid of D; for i = 1,...,n. Then by
domain additivity (Proposition 5.51), we have Area(D) = Y. | Area(D;) and

//Dxd(x,y) = zj://Dixd(x,y) :iArea(Di)xi,
//pyd(x’y):zj://jjiyd(x,y)ziArea(D

Hence the the coordinates of the centroid of D are given by

ZZ 1 Area(D;)x; and  y— Zzl:l Area(D;)y;
i Area(D;) >oi . Area(D;)
For example, consider the quadrilateral D with (0,0), (1,0), (0,1), and (1,2)

as its vertices. We have D = D; U D5, where D; is the triangular region
with (0,0),(1,0), and (0,1) as its vertices, while Dy is the triangular region

T =
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with (1,0),(0,1), and (1,2) as its vertices. Evidently, Area(D;) = 1/2 and
Area(D3) = 1. By Corollary 6.30, the centroid of Dy is (1/3,1/3) and that
of Dy is (2/3,1). Hence the centroid of D is (5/9,7/9). This shows that in
contrast to the case of a parallelogram, the centroid (z,y) of a quadrilateral D
with vertices (z;,v;),7 = 1,...,4, may not be given by = (z;+z2+x3+x4)/4
and y = (y1 +y2 + Y3 + ya) /4. o

We shall now obtain some simple cubature rules over a triangular region D
by replacing a given integrable function by an appropriate polynomial function
(of two variables) of total degree 0, 1, or 2, and calculating the “signed volume”
of the corresponding surface. For reasons that shall soon become apparent,
these cubature rules are called Triangular Prism Rules, and they can be
viewed as analogues of quadrature rules (given, for example, in Section 8.6 of
ACICARA) for Riemann integrals.

Let D be a triangular region in R? with vertices (z1,y1), (22,y2), and
(z3,ys3). As we have seen in Proposition 6.29, the area of D is given by

Area(D) = (s — ) (s — 1) — (23— 22) 2 — 92)].

Consider an integrable function f: D — R.

1. Let us fix (s,t) € D, and replace the function f by the constant function
po, where pg = f(s,t). The “signed volume” under the surface given by z = po,
(xz,y) € D, is the “volume” of the triangular prism with base D and “height”
f(s,t). This gives a cubature rule that associates to f the real number

Area(D)f(s,t).

This is analogous to the Rectangular Rule for Riemann integrals.

(72,92)

Fig. 6.14. Illustration of a Triangular Prism Rule analogous to the Midpoint Rule.

In particular, if (s, t) is the centroid ((z1 + x2 +x3)/3, (y1 +y2 +y3)/3) of
D (as given in Corollary 6.30 and illustrated in Figure 6.14), then we obtain
the cubature rule that associates to f the real number
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C(f) = Area(D)f(an—l-ﬂ;z—l-x:s,yl +y32+y3).

This is analogous to the Midpoint Rule for Riemann integrals.

(5027 y2)

Fig. 6.15. Illustration of a Triangular Prism Rule analogous to the Trapezoidal
Rule.

2. Let us replace the function f by a polynomial function p; (of two vari-
ables) of total degree 1 whose value at (x;, y;) is equal to f(z;,y;) fori = 1,2, 3.
The “signed volume” under the surface given by z = p1(z,y), (z,y) € D, is the
“volume” of the obliquely cut triangular prism with base D, and the “lengths”
of the three parallel edges are equal to f(x1,y1), f(x2,y2), and f(xs,ys3). (See
Figure 6.15.) In view of part (i) of Proposition 6.29, this gives a cubature rule
that associates to f the real number

Area(D
T(p) = Aot
This is analogous to the Trapezoidal Rule for Riemann integrals.

f(z1,y1) + f(z2,y2) + f23,y3)].

(73,93)

(562, y2)

Fig. 6.16. Illustration of a Triangular Prism Rule analogous to Simpson’s Rule.

3. Let us replace the function f by a polynomial function ps (of two vari-
ables) of total degree 2 whose values at (z1,y1), (22,¥2), (3,y3), and at
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1+ T2 Y1+ Y2 T2+ X3 Y2 + Y3 and T3+ T1 Y3+
2 ’ 2 ’ 2 ’ 2 ’ 2 ’ 2

are equal to the values of f at the corresponding points. The “signed volume”
under the surface given by z = pa(z,y), (z,y) € D, is the “volume” of the
paraboloidal triangular prism with base D, the “lengths” of the three parallel
edges are equal to f(z1,v1), f(z2,92), f(23,y3), and the “heights” at the mid-
points of the sides of D are equal to the values of f at those midpoints. (See
Figure 6.16.) In view of part (ii) of Proposition 6.29, this gives a cubature
rule that associates to f the real number S(f) given by

Arez(D) lf(xl—;xg y1+y2>+f<x2+x3 y2+y3>+f<x3+x1 y3-2Fy1>

This is analogous to Simpson’s Rule for Riemann integrals.

As in the case of simple quadrature rules, the simple cubature rules given
above can be expected to yield only rough approximations of a double integral
of a function over a triangular region D. To obtain more precise approxima-
tions, we may partition the triangular region D into smaller triangular regions
and apply the above cubature rules to the function f restricted to each smaller
region and then sum up the “signed volumes” so obtained. It is often conve-
nient, and also efficient, to partition the triangular region D symmetrically in
the following manner. Joining the midpoints of the three sides of D, we may
construct four congruent triangular regions, the area of each being equal to
Area(D)/4. This procedure can be repeated for each of the four smaller tri-
angular regions. Continuing in this manner, after the nth step, we shall have
a symmetric triangulation of D consisting of 4™ triangular regions, each
of which has area equal to Area(D)/4". (See Figure 6.17.)

VAN
[N

Fig. 6.17. A symmetric triangulation of D into 4% = 16 triangular regions.

To obtain various compound cubature rules, fix n € N and let

D1, ..., Dyn be the congruent triangular subregions of D described above.
1. Let (c¢;,d;) denote the centroid of the triangular region D, for i =
1,...,4™. (See Figure 6.18 for the case n = 2.) Then we obtain a compound

cubature rule given by
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4qn

Colf) = Area Zf ci. d)

It is analogous to the Compound Midpoint Rule for Riemann integrals. The
number of evaluations needed for calculating C,, is 4™.

IS

Fig. 6.18. A triangulation of D with centroids (¢;, d;) marked by e.

2. The total number of vertices in the triangulation of D given by
Dy, ..., Dynis (271 +1) (2" +1). Let (g, 7;) denote a vertex that is on one
of the three sides of D, but is not a vertex of D itself, i = 1,...,m, where
m = 3(2" — 1). Also, let (s;,?;) denote a vertex that is in the interior of D,
i=1,...,k where k := (2" + 1)(2" + 1) = 3-2" = (2"~1 — 1)(2" - 1).
(See Figure 6.19 for the case n = 2.) Observe that (x;,y;) is a vertex of only
one of the triangular regions D1, ..., Dyn for i = 1,2,3. On the other hand,

(gi,7i) is a vertex of exactly three of the triangular regions D1, ..., Dyn for
i=1,...,m, whereas (s;, ;) is a vertex of exactly six of the triangular regions
D1,...,Dyn fori =1,... k. Thus we obtain a compound cubature rule given
by

Ar
Tolf) = 3ea4n fo,,y, +3Zf Giri +6Zfs“

It is analogous to the Compound Trapezoid Rule for Riemann integrals. The
number of evaluations needed for calculating T,, is (27~ + 1)(2" + 1).

3. The total number of sides in the triangulation of D given by D1, ..., Dyn
is 3-2"71(2" 4 1). Let (g;,7;) denote the midpoint of a side that is on one
of the three sides of D, i = 1,...,m, where m := 3 -2". Also, let (s;,t;)
denote the midpoint of a side that lies in the interior of D, i =1,...,k, where
ki=3-2"1(2" 1) —3.27 = 3.27-1(27 — 1). (See Figure 6.20 for the
case n = 2.) Observe that (g;, ;) is the midpoint of exactly one side of the
triangular regions Dy, ..., Dy fori = 1,...,m, whereas (s;, t;) is the midpoint
of exactly two sides of the triangular regions D1, ..., Dyn fori =1,..., k. Thus
we obtain a compound cubature rule given by
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Fig. 6.19. A triangulation of D with vertices (z;,y;) of D marked by B, interior
vertices (s;,t;) marked by O, and the remaining vertices (g, ;) marked by ®.

m k
. = et {Z fai ) + azﬂsi,ti)] .

DN
NN ANDN

Fig. 6.20. A triangulation of D with midpoints (gi,r;) on the sides of D marked
by ® and the other midpoints (s;,t;) marked by ©.

It is analogous to the Compound Simpson Rule (given, for example, in Section
8.6 of ACICARA) for Riemann integrable functions defined on an interval. The
number of evaluations needed for calculating S,, is 3 - 2"71(2" + 1).

We shall now prove that the compound cubature rules given above con-
verge to the double integral of an integrable function f defined on a triangu-
lar region. For simplicity, we first restrict to a triangular region with vertices
(0,0), (1,0), and (0,1), and comment later on how the general case can be
deduced from this.

Proposition 6.32. Let F := {(z,y) e R:0< 2z <1and0<y<1-—2z} and
g : E — R an integrable function. Then the sequences (C,,(g)),(Tn(g)), and
(Sn(g)) of compound cubature rules converge to fng(x,y)d(x,y) as n — o0o.

Proof. Let R :=10,1] x [0,1] and let g* : R — R be defined by

() = J9@y) i (xy) € E
9'(@y) {0 if (z,y) € E.
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Then ¢g* is integrable on R, and by Corollary 5.32, any sequence of Riemann
double sums converges to the double integral of g* on R, that is, to the double
integral of g over F/, provided the mesh of the corresponding partition tends
to zero. Since g is bounded on FE, there is a > 0 such that |g*(z,y)| < «
for all (z,y) € R. For n € N, let ; = y; = i/2" for i« = 0,1,...,2", and
consider the partition P, := {(x;,y;) : 4,7 = 0,...,2"} of R into 2™ x 2"
equal parts. Note that P, induces a symmetric triangulation of E consisting
of triangular regions F1, ..., E4n. Also, in view of Proposition 6.29, we have
Area(E) = 1/2. We shall now show, one by one, that each of the sequences
(Cn(9)),(Tn(g)), and (Sy(g)) of compound cubature rules corresponding to
the symmetric triangulation above converges to [, g(x,y)d(x,y).

1. Let (¢;,d;) be the centroid of E; for ¢ =1,...,4™. Then we have
1 &
Cun(g) = 9. 4n ;Q(Ci,di)~

Let E denote the complementary triangular region

E::{(m,y)€R2:0§xgland1—x§y§1}.

(0,1)
(0,0) (1,0)

Fig. 6.21. A symmetric triangulation of E with centroids (c;, d;) marked by e and
of the complementary triangular region F with centroids (¢;, d;) marked by o.

Consider the corresponding symmetric triangulation of E consisting of tri-

angular regions F1,...,E4n, and let (¢;,d;) denote the centroid of E; for

i=1,...,4" (See Figure 6.21.) Since g*(c;, d;) = g(ci,d;) and ¢*(é,d;) = 0
fori=1,...,4™, we see that

Cnlg) = .1 W D g7 (e di) + g7 (@, di)-
2. 4n 4

Now for each i,j = 1,...,2", exactly two of the points (c1,d1), ..., (can, dsn),
(€1,d1),. .., (€an,dsn) lie in the subrectangle [z;_1,x;] X [yj—1,y;] induced by
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the partition P, of R. Also, (z; — z;—1)(y; — yj—1) = 1/4" for each i,j =
1,...,2". Hence we have

Calo) = 5 [51(Prg) + $2(Pu.g")],

where Sl( ', g%) and Sy(P,, g*) are both Riemann double sums for the func-
tion ¢g* defined on R. Since the mesh w(Py) =1/2™ tends to 0 as n — oo, we
see that S;(P,,g*) — [[5 9" (x,y)d(z,y) for j = 1,2. Thus it follows that

- [y [ esmtes] - [ e

2. Note that the vertices of E are (0,0), (1,0), and (0, 1), whereas the other
vertices of any of the triangular regions Fi, ..., Fyn» that are on one of the
three sides of E are (0,y;), (z;,0), and (z;,yan_;) fori=1,...,2" — 1. Thus

1
Tul9) = ¢ 4n [9(0,0)+9(1,0) +4(0, 1)
2" —1 2" -2 2™ —j—1
+3Z ( (0, i) +g(1‘1,0)—|—g(1‘1, 2"—1)"’62 Z gxlayj)]'
i=1 j=1

Define T} (g*) to be equal to

. 4nZZ( (Tim1,9j-1) + 20" (wim1, y;) + 2™ (21, y5-1) + g* (%%))
=1 j=

(See Figure 6.22.) Since g*(xi,y;) = g(xi,y;) if (z5,y;) € E and ¢*(z;,y;) =0
if (z;,y;) € E, it can be seen that

Tole) = Talo) = 4 [g<1,o> IVURIEEDS g(xi,yzn_»].

i=1

(0,1) (0,1)

NNNAN

(0,0) (1,0) (0,0) (1,0)

Fig. 6.22. Number of times a node appears in T, (g) and in T;,(¢g*), where B, 0, @,
and O indicate that the node appears once, twice, thrice, and six times respectively.
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Hence |TX(g*) — Tn(g)] < (3(2") — 1) a/6 - 4™, which tends to 0 as n — oc.
Since the mesh p(P,) = 1/2™ tends to 0 as n — oo, we see that

sl [l [ [ = Lo
Thus it follows that
Tn(g)ﬁ//Rg*=//Eg

3. We have already identified the vertices of the triangular regions F1, ..., E4n
that lie on one of the three sides of F and also those that do not lie on any
of the sides of E. Considering their midpoints, we see that S,,(g) is equal to

n

2
1 Ti1 + x4 Ay Ti1 + 7 g
6 - 4n [Z (9( l 12 1’6)4‘9(@,% 12 yl) -1-9( ' 12 1,y2 ! ng z+1)>
i=1
2"—1 2" —4 1+ T, + x; . Ty ' Lo
+2Z Z < (x“ yJ)Jrg( 1_12 1»%‘) + g( 1_12 1»%_12 y]>)]

=1 j=1

Define S} (g*) to be equal to

L& yi1+y i1ty
j—1 J * j—1 J
G- 4nZZ( (e 2 )+ (e 2 )

i=1 j=1

o[ Tim1 T X4 o Tim1 T X4 [ Tim1 T+ X Yj—1+Y;
+g< ) ,yj—1>+g( ) ,yj>+2g( 5 j))

(See Figure 6.23.) Since ¢*(z,y) = g(x,y) if (z,y) € E and g*(z,y) = 0 if
(x,y) € E, it can be seen that

2n
SZ(Q*) _ S Z (‘rl 1+ xz Yon g +2y2"—z+1)'

(0,1) (0,1)

(1,0) (0,0) | (1,0)

(0,0)

Fig. 6.23. Number of times a node appears in S, (g) and in S;,(¢*), where ® and o
indicate that the node appears once and twice respectively.
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Hence |S%(9*) — Sn(g)] < 2"a/6 - 4™ = «/6 - 2™, which tends to 0 as n — oc.
Since the mesh u(P,) = 1/2™ tends to 0 as n — oo, we see that

. {//g+//g+//g+//g+2// :|://Rg
Thus it follows that 5.0 //R g = / /E 7.

as desired. O

Remark 6.33. Proposition 6.32 and its proof readily extend to the case in
which F is a triangular region with vertices (a,c), (b,c), and (a,d), where
a,b,c,d € R with a < b and ¢ < d. More generally, if D is any trian-
gular region whose vertices are noncollinear points (z;,y;), i = 1,2,3, and
f D — R is continuous, then the sequences (C,,(f)), (Tn(f)), and (S,.(f))
of compound cubature rules converge to [[,, f(z,y)d(z,y) as n — oo. To
see this, consider an affine transformation ® : R? — R? as in the proof of
Proposition 6.29 and let E be as in Proposition 6.32. Then ®(E) = D and
Area(D) = |J(®)|Area(E) = |J(®)|/2. Further, let g : E — R be defined by
g(u,v) := f(®(u,v)) for (u,v) € E. Now observe that the invertible affine
transformation ® preserves symmetric triangulations as well as the midpoints
of sides and the centroids of triangular subregions, and hence

Area(D) Area(D) Area(D) S

Calf) = Area(F) Area(FE) n(9), Salf) = Area(F) n(9).

Calg), Talf) =

On the other hand, g is continuous on E, and so by Proposition 5.59, we have

/ fla,y)d(z,y) = |J(P |// (u,v)d(u,v) _ Area(D // (u,v)d(u,v)
Area

Thus, the desired result follows from Proposition 6.32. &

Remark 6.34. Error estimates for the compound cubature rules considered
above can be obtained in analogy with those for compound quadrature rules.
We briefly indicate the key facts.

First, by the very method of our construction, the cubature rules C, T, and
S on a triangular region give exact values of the double integrals of polynomial
functions (in two variables) of total degree 0, 1, and 2 respectively. In fact, the
centroid rule C gives the exact value of the double integral of any polynomial
function (in two variables) of total degree 1. This follows by noting that if D
is a triangular region in R? and (z,y) denotes its centroid, then by definition

— Are;(D) //Dxd(x,y) and y= Are;(D) //Dyd(x,y)~

Using these facts and the Classical Version of the Bivariate Taylor Theorem
(Proposition 3.47), and noting that the diameter of each triangular region in
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the symmetric triangulation of D consisting of 4" congruent triangular regions

is d/2™, where d = diam(D), the following results can be proved.

1. Let f: D — R be a function whose partial derivatives of the second
order exist and are continuous on an open subset of R? containing D. Then
for all n € N, we have

fpemen-cufsa

[l oo <ol

where o = max{|fzz(s,t)|, | foy(s, 1), | fyy(s,t)] : (s,t) € D}, and ¢1,co are
constants independent of the function f and n € N.

and

2. Let f : D — R be a function whose partial derivatives of the fourth
order exist and are continuous on an open set containing D. Then for all

n € N, we have
[ st =suto] ss(3) s,

where

4
ﬁ:zmax{'ajiafyj(s,t)‘ : (s,t) € D and i,jZO,i+j=4},

and c3 is a constant independent of the function f and n € N.
The interested reader is referred to Theorem 5.1.3 and the discussion on
symmetric triangulations on pages 173-175 of [3]. &

Approximations of triple integrals can be constructed on the same lines as the
approximations we have constructed for double integrals. For example, if f is
an integrable function on a cuboid [a,b] X [¢,d] X [p, q], then triple Riemann
sums for f can be used for approximating the triple integral of f on [a,b] x
[e,d] X [p, q]. Further, a product rule can be defined using a quadrature rule on
each of the three intervals [a, b], [¢, d], [p, q], or using a quadrature rule on one
of them and a cubature rule on the product of the other two. Also, if f is an
integrable function on a tetrahedron D, then analogues of the Midpoint Rule,
the Trapezoidal Rule, and Simpson’s Rule can be obtained for approximating
the triple integral of f over D. (See Exercise 42.) If D is a polyhedron in R3,
then it can be partitioned into finitely many nonoverlapping tetrahedrons and
we can use domain additivity to develop approximate methods for calculating
a triple integral over D.
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Notes and Comments

A recurrent theme in the first three sections of this chapter is reconciliation. It
1s standard in courses on one-variable calculus to define and determine the ar-
eas of planar regions between two curves by means of Riemann integrals. Now
that we have a more general definition of area by means of double integrals,
it seems imperative to indicate that the two seemingly different definitions
are equivalent. We have shown this equivalence, in most cases, using Fubini’s
Theorem. Also, it is common in one-variable calculus to determine volumes of
solids of revolution using two distinct methods, known as the washer method
and the shell method. It is something of a mystery and a matter of faith why
the volume calculated by either of these methods turns out to be the same. We
have used Cavalieri’s Principle to relate the formulas given by these methods
to the general definition of volume in terms of triple integrals, thereby proving
the equivalence of the two methods. We have also carried out a similar exer-
cise for the more general variants of the washer method and the shell method,
namely the slice method and the method of slivering by coaxial cylinders, that
are sometimes discussed in one-variable calculus (for example, Section 8.2 of
ACICARA). It may be noted that even when these general variants are dis-
cussed, or when only the washer method and the shell method are discussed,
the treatment in one-variable calculus is restricted to the case in which the
axes of revolution are the coordinates axes, or at best, lines parallel to the
coordinate azxes. The reason, not normally revealed, is that the volume of a
solid obtained by revolving a region in R? about an arbitrary line not crossing
it can be reduced to a double integral as given in Proposition 6.10, and not a
Riemann integral. Moreover, we have also proved in Section 6.1 the invari-
ance of area of a planar region under rotations and translations (Proposition
6.4) and outlined how a similar result holds for the volume of a solid in R3.
The latter involves the so-called Euler angles, which appear to have been for-
gotten in books on calculus and analysis, but still seem to survive in books on
mechanics and robotics, such as [25] and [{1].

While defining the area of a surface, we have restricted to parametrically
defined piecewise smooth surfaces. Our discussion here runs parallel to our
discussion of the length of a parametrically defined piecewise smooth curve
giwen in Section 8.3 of ACICARA. The motivation for the definition of the area
of such a surface comes from considering the area of a parallelogram on the
tangent plane of the surface, the area being equal to the square root of the sum
of the squares of the areas of its projections on the three coordinate planes. An
alternative approach could have been based on considering the surface areas of
inscribed polyhedra formed of triangles. One expects that the sum of the areas
of these triangles would tend to a limit, which could then be defined as the area
of the surface. However, such a limit may not exist even for a simple-looking
surface such as a cylinder. The interested readers may see Appendiz A.J of
Chapter 4 in Courant and John [12, vol. II].
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The discussion of areas, volumes, and surface areas in the first two sections
of this chapter paves the way, in Section 6.3, for a definition of the centroid
of a far more general variety of planar regions, solids, and surfaces than what
18 usually done in one-variable calculus. Further, this enables us to prove a
theorem of Pappus for solids of revolution, thus extending a version of this
theorem proved in Section 8.5 of ACICARA in the special cases in which the
axis of revolution is the x-axis or the y-axis.

In the last section of this chapter, we have discussed a topic that is often
not covered in books on multivariable calculus, namely, methods for computing
double and triple integrals approximately. We restrict mainly to double inte-
grals and discuss two distinct ways for their approximate evaluations. One
way s to use “products” of the quadrature rules for Riemann integrals. The
other way is to develop approrimations on the same principle that was fol-
lowed in developing quadrature rules in Section 8.6 of ACICARA, which is to
approzimate the given function by a piecewise constant function, or a piece-
wise linear function, or a piecewise quadratic function. This leads us to three
types of so-called Triangular Prism Rules for approrimating the double in-
tegral of a function defined on a triangular region or, more generally, on a
polygonal region in R%. The three types are analogous to the Midpoint Rule,
the Trapezoidal Rule, and Simpson’s Rule for Riemann integrals. Error bounds
for all the cubature rules are also discussed, albeit briefly. We have also pointed
out the so-called curse of dimensionality, which makes approximating a dou-
ble integral by product quadrature rules much less efficient compared to the
approzimation of a Riemann integral by the constituent quadrature rules. In
any case, numerical methods for approximate evaluations of double and triple
integrals are still useful, since one often comes across integrals that cannot
be evaluated exactly. With this in view, the methods developed in the last sec-
tion complement the formulas for areas, volumes, surface areas, and centroids
given in the first three sections of this chapter. For more on the subject of ap-
proximations of multiple integrals, we refer to the books of Engles [17], Sobolev
[52], and Stroud [55] as well as the article of Lyness and Jesperson [37] and
the more advanced text of Sobolev and Vaskevich [53].

Exercises

Part A

1. Find the area of the region bounded by the curves in R? given by
(i) 2y+2=0,y+2x=0,and x +y =1,
(ii) = =y? and = = 2y — y?,
(iii) z+y=0and x =y — y>.

2. Let D denote the region in the first quadrant of the xy-plane bounded by
the hyperbolas given by zy = 1 and xy = 9 as well as the lines given by
y = x and y = 4x. Find the area of D by effecting a change of variables
given by x := u/v, y := uv, where v > 0.
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3. Find the area of the region enclosed by one petal of the rose given by the
polar equation r = cos 36.

4. Find the volume of the solid under the surface in R? given by z := z 4 4
and above the region in the zy-plane bounded by the parabola given by
y = 4 — 22 and the line given by y = 3.

5. Let a € R with a > 0. Find the volume of the solid
(i) under the surface in R? given by z := (22 +y?)/a and above the region

in the zy-plane bounded by the circle given by x? + y? = a2,
(ii) bounded by the sphere given by x2 +4% + 22 = 2a? and the paraboloid
given by az = 22 + 2.

6. Find the volume of the solid in the first octant bounded by the coordinate
planes, the cylinder given by 22 +%? = 4, and the plane given by z4+y = 3.

7. A hemispherical bowl of radius 5 cm is filled with water to within 3 cm
of the top. Find the volume of the water in the bowl.

8. Let @ € R with a > 0. Find the volume of the solid bounded by the
surfaces given, in spherical coordinates, by
(i) the sphere given by p = a and the planes given by 6 =0, § = /3,
(ii) the sphere given by p = a and the cone given by ¢ = 7/3,

(iii) the sphere given by p = a and the cones given by ¢ = 7/3, ¢ = 27/3,
(iv) the sphere given by p = 2 and the surface given by p = 1 + cos ¢.

9. Let D be the disk in R? given, in spherical coordinates, by the inequal-
ity p < 2sing and the equation # = 7/2. Find the volume of the solid
generated by revolving D about the z-axis. Verify your answer using the
Theorem of Pappus (Proposition 6.22).

10. Let P; := (4,¥:), i = 1,2,3, be three noncollinear points in R?, and
let E denote the triangular region in R? with P;, P», Ps as vertices. Fix
a,b,c € R with (a,b) # (0,0). Consider points Q; := (x;,¥;,2:), i =
1,2,3, in R? lying in the plane given by z = azx + by + c. If D denotes
the triangular region in R? with Q1,Q2, Q3 as vertices, then show that
Area(D) = /1 + a2 + b2Area(E).

11. Let a € R with a > 0. Find the surface area of the part of a paraboloid
given by 22 + 22 = 2ay that is cut out by a plane given by y = a.

12. Let a € R with a > 0. Find the area of the surface S; given, in cylindrical
coordinates, by r = a for 0 < 6 < /2, 0 < z < 0. Also, find the area
of the surface S given, in spherical coordinates, by p = a for 0 < ¢ <
/2, 0<6 < (7/2) — .

13. Let @ € R with @ > 0. Find the area of the surface in R?® given by
(asinpcosf, asinpsinb, acosyp), (¢,0) € [0, 7] x [0, 7].

14. Let a,b,h,p € R with 0 < b < a, h > 0 and ¢ > 0. Find the area of the
surfaces given by the following.

(i) (acost, asintcosf, asintsinf), (¢,0) € [0, 9] x [, 7.
(ii) (¢, atcosb, atsind), (t,0) € [0,h] x [—=, 7.
(iii) ((a + bcost)cos, bsint, (a + beost)sinb), (¢,0) € [—m, 7] X [—m, 7).
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15.

16.

17.

18.
19.

20.

21.

Let a,a, 3,7, 6 e Rwitha >0,0<a<f<mand -7 <~v<J <.

Show that the area of the surface given in spherical coordinates, by p = a,

(0,0) € [a, 8] x [,6], is equal to a®(cosa — cos B)(5 — 7).

Let D be a bounded subset of R?, f : D — R an integrable func-

tion, and w : D — R a nonnegative integrable function such that

[ w(z,y)d(x,y) # 0. Prove the following statements.

(i) Im :=inf{f(z,y) : (z,y) € D} and M := sup{f(z,y) : (z,y) € D},
then m < Av(f;w) < M.

(ii) If D is closed as well as path-connected and f is continuous on D,
then there is (2o, y0) € D such that Av(f;w) = f(xo,y0)-

Let D be a bounded subset of R? and f : D — R an integrable function.

Give examples to show that Av(f) need not be a value of f, where (i) f

is continuous but D is not path-connected, and (ii) D is path-connected,

but f is not continuous.

Find the centroid of each of the surfaces given in Exercises 11, 12, and 13.

Let a € R with a > 0. Find the centroid of the triangular region bounded

by the lines given by x =0, y =0, and x + y = a.

(Formula of Pappus) Let D be a bounded subset of R? and let Dy, Do

be subsets of D such that D = Dy U Dy and Dy N Dy, 0Dy, 0D4y are

of content zero, but neither D; nor D5 is of content zero. If (z,y) is the

centroid of D and (z;,y;) is the centroid of D; for i = 1,2, then show that

_ Area(Dy)xy + Area(D3)x2 nd v — Area(D)y, + Area(D2)ys
B Area(D) @ v= Area(D)

Deduce that (x,y) lies on the line joining (z1,y;) and (z2,y,). Use this
result to find the centroid of a quadrilateral whose vertices are (x1,y1),
(x2,v2), (x3,93), and (x4,y4). (Hint: Proposition 5.51)

For i = 1,...,4, let (z;,i,2;) be noncoplanar points in R® and let D
denote the tetrahedron having these points as its vertices. Show that the
volume Vol(D) of D is equal to |d|/6, where

T2 =21 Y2—Yr 22— 21

d:=det |x3—21 Yys—1y1 23—21

Ty —T1 Ysa—Y1 24— 21
Further, let f : D — R be a polynomial function in three variables of total
degree m, where m is a nonnegative integer, and let I denote the triple

integral of f over D. Prove the following results.
(i) If m < 1, then

Vol
Zf Liy Yi, Zz

(ii) If m < 2, then

4
I VOI [42 Z f(mT—;xj yT—;y] 2122])_Zf($1,y1’21)]

i=1 j=141 i=1
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22.

23.

24.

25.

26.

27.

28.
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(Hint: Consider the tetrahedron with (0,0, 0), (1,0,0), (0,1,0), and (0,0, 1)
as its vertices, and the affine transformation ® : R® — R3 given by ® :=
(¢1, P2, P3), where ¢ (u, v, w) := 1+ (v2 — x1)u+ (23 — x1)v+ (T4 — 21 )W,
and ¢, @3 are defined similarly with = replaced by vy, z respectively. Use
Exercise 24 of Chapter 5. Compare Proposition 6.29.)

Let D denote a tetrahedron in R?® with vertices (x;,v:,2:), i = 1,...,4.
Show that the centroid (z,y, z) of D is given by

1o 1o 1o
$:4;1‘1‘, y:4;yi, 224;2:1

Find the z-coordinate of the centroid of the solid bounded by the planes
given by z = 0, z = x + 2, and the elliptic cylinder given by 22 + 4y? = 4.
Let a € R with a > 0. Find the centroid of the solid bounded by the sphere
given by 2 + 3% + 22 = 2a? and the paraboloid given by az = 22 + y2.
(Hint: Use cylindrical coordinates.)

Let f : [a,b] X [¢,d] — R be an integrable function. For n,k € N, let
Poi={(@n ki Ynk;):1=0,1,...,nand j =0,1,...,k} be a partition
of [a,b] x [c,d] and let (spk,istnk,j) € [Tnkim1:Tn ki) X [Ynkj—15 Yn,k,j]
fori=1,...,nand j=1,..., k. Define

n k
Sn,k, = Z Z f(sn,k,,ia tn,k,j)(xn,k,i - xn,k,i—l)(yn,k,,j - yn,k,j—l)-

i=1 j=1

Suppose that for every e > 0, there is (ng, ko) € N? such that the mesh
(P 1) is less than € for all (n, k) > (no, ko). Show that for every e > 0,
there is (n1, k1) € N? such that

‘// flz,y)d(z,y) — Sni| <e forall (n,k) > (ny, k).
[a,b] X [c,d]

For n,k € N, let M,, and M, denote the Compound Midpoint Rules on
[a,b] and [c,d] respectively. Find the formula for the product cubature
rule M,, x M}, on [a,b] X [c,d].

For n,k € N, let S,, and S}, denote the Compound Simpson Rules on
[a,b] and [c,d] respectively. Find the formula for the product cubature
rule S,, x S}, on [a, b] x [c,d].

Let f: [a,b] X [¢,d] — R be a function satisfying the conditions given in
Example 6.26. Show that for n,k € N,

‘//[mb}x[c,d] f = (M x Ml/c)(f)

where o and 3 are defined as in Example 6.26.

(b—a)d—c) [(b—a)a  (d—c)’B
< 24 +

n? k2

i



Exercises 365

29.

30.

31.

32.

33.

State suitable conditions on a function f : [a,b] X [¢,d] — R under which
we have for n, k € N,

‘//[a,b]x[c,d] f = (Su x Sp)(f)

where a and (8 denote, respectively, the suprema of the sets

{[omts] s @, ee e ana {30 n]sscmilee )

<

(b—a)(d—c) [(b—a)’a  (d—0c)’f
180 [ w7 ] '

Let D := {(z,y) € R : 0 <z <1land0 <y < 1—z}. If T}, denotes
the Compound Trapezoidal Rule on [0,1] with n nodes, show that the
product cubature rule T}, x Tk over D associates to an integrable function
f: D — R the real number (T}, x T})(f) given by

4rlzk lf(0»0)+f(071)+2;(1—xi)(f(xi,o)‘Ff(xial—ﬂﬂi))
n—1k—1

+2Zf0yj +4ZZ ]-_xz xlv 1 xl)yj) s

=1 j=1

where x; =i/nfori=1,...,nandy; =j/kforj=1,... k. If f:=1o0n
D, check that (T, x T3,)(f) gives the area of the triangle D.

Let D :== {(z,y) € R? : ¢ < y < dand ¢1(y) < 2 < 1¥2(y)} be an ele-
mentary domain, where ¢,d € R with ¢ < d and 1,49 : [¢,d] — R are
integrable functions. For ¢ : [a,b] — R and v : [¢,d] — R, let quadrature
rules @ and R on [a,b] and on [c,d] be given by Q(¢) = i, wig(;)
and R(¢) = Z?Zl vj¥(y;) respectively. Construct a product cubature

rule @ x R over D by adapting the quadrature rule @ on [a,b] to func-
tions on the interval [¢1(y;),¢2(y;)] for each j = 1,..., k. Show that

(é XR)(f) =20, 25:1 wi jv; f (24,5, y;) for f:[a,b] X [¢c,d] — R, where

fori=1,...,nand j=1,... )k,
V2(y;) — 1 (y;) Va(y;) — 1 (y;)
ij = jb —a P - Jb . P (i — a)in(y5)-
(Compare the formula for the rule @ x R given in the text.)
Let D = {(z,y) e R?: 0 <y <land 0 <z <1-y}. If T,, denotes the
Trapezoidal Rule on [0, 1] with n nodes, construct a product cubature rule

T,, x Ty over D similar to the cubature rule 7T}, x Tk given in Exercise 30.

and ;=

Part B

Let a,b € R with 0 < a < b and let oy, as : [a,b] — [—m, 7] be continuous
functions such that a; < ag. Let D := {(rcosf, rsinf) € RZ:a<r<
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34.

35.

36.

37.
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band ay(r) < 6 < ay(r)} denote the region between the polar curves
given by 6 = «i1(r), 8 = as(r) and between the circles given, in polar
coordinates, by r = a, r = b. Show that Area(D) := f; rlaz(r) —aq(r)]dr.
(Hint: Use the argument given in the proof of Proposition 6.3. Let F :
{(r,0) e R : r > 0,—m < 6 < 7 and (rcosf,rsinf) € D}. Then
is closed and OF is of content zero: If Ey := {(r,0) € R? : a < r
band a1(r) < 0 < as(r)}, By == {(r,7) € R? : a < r < band a;(r)
—7}, and By := {(r,—7) € R? : a <7 < band as(r) = 7}, then £
EoUFE, U Es, provided (0, 0) € D, and F = EgUE; UEQU({O} X [—W,?T]),
provided (0,0) € D.)

Let a,b € R with 0 < a < b. Also, let E C [a,b] x R and let © be an open
subset of R? containing F, and a : 2 — R a function having continuous
first-order partial derivatives with that a(E) C [—m, 7). Show that if S is
the surface given, in cylindrical coordinates, by 6 = a(r,z), (r,z) € E,
then

A &=

Area(S) := //E V14 12(a2 + a2) d(r, 2).

Deduce that the surface area of the part of the spiral ramp in R3?
given, in cylindrical coordinates, by ¢ = «a(r,z), where a(r, z) := z for
(r,2) € [0,1] x [0, 7], is equal to [v/2 4+ In(1 + v/2)]7 /2.

Let a,b,a,8 € R with 0 < a < band —7 < a < § < m. Also, let
E C [a,b] x [a, ] and let ©Q be an open subset of R? containing E,
and h : 2 — R a function having continuous first-order partial deriva-
tives. Show that if S is the surface given, in cylindrical coordinates, by
z=h(r,0), (r,0) € E, then

Area(S) := //E \/r2(1 + h2) + h2d(r,0).

Deduce that the surface area of the part of the paraboloid in R? given,
in cylindrical coordinates, by z = h(r,0), where h(r,0) := r? for (r,0) €
[0,1] x [—, 7], is equal to 7(5v/5 — 1)/6.

Let a,b,a,0 € R with 0 < a < band — 7 < a < § < 7. Also, let
E C [a,b] x [, 3] and let © be an open subset of R? containing F, and
v : Q — R a function having continuous first-order partial derivatives
such that y(F) C [0, 7]. Show that if S is the surface given, in spherical
coordinates, by ¢ = v(p,0), (p,0) € E, then

Area(9) := //E p\/’yg + sin? y(1 + p?v3) d(p,0).

If wo,0 € R with 0 < @9 < 7/2 and ¢ > 0, and if E = [0,{] x [—7, 7],
then deduce that the surface area of a part of the cone given, in spherical
coordinates, by ¢ = v(p,0), where v(p,0) := @0, (p,0) € E, is equal to
702 sin .

Let a,b,v,6 € R with 0 < a < band —7m < 7 < § < 7. Also, let
E C [a,b] x [v,6] and let ©Q be an open subset of R? containing F, and
a : 2 — R a function having continuous first-order partial derivatives
such that a(F) C [—m,7]. Show that if S is the surface given, in spherical
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38.

39.

40.

41.

coordinates, by 6 = a(p, ¢), (p, ) € E, then
Area(S) := // p\/l + sin? p(a2 + p2a2) d(p, ).

Ifa € Rwitha > 0, ¢ € [0,75], and 0y € [—m, 7], and if E := [0, a] X [0, ¢o],
then deduce that the surface area of the sector of the disk given, in spher-
ical coordinates, by 0 = a(p, @), where a(p, p) := by, (p,p) € E, is equal
to a%pp/2.

Let C be a smooth curve in R? given by (z(t),y(t)), t € [, 3], and let
L be a line given by az + by + ¢ = 0, where a,b € R with a? + b? =
1 and az(t) + by(t) + ¢ > 0 for all t € [a,f]. Show that the surface
S obtained by revolving C about L is given by (£(¢t,6),n(t,0),((t,0)),
(t,0) € [, 0] x [=7, 7], where

&(t,0) := b(ba(t) — ay(t)) — ac + a(ax(t) + by(t) + c) cos,
n(t,0) == a(ay(t) — bz(t)) — be + bax(t) + by(t) + c) cos b,
C(t,0) := (ax(t) + by(t) + ¢)sind.

Further, show that (67 +n7 +(7)(t,0) = ' (t)*+y' (1), (65 +m5+C5)(t,0) =
(ax(t) +by(t) +c)? and (£:£0 +mme + (o) (¢, 0) = 0 for all (t,0) € [, §] x
[—7, w]. Deduce that

B
Area(S):27r/( x(t) + by(t) + )\ /' () t)2 dt.

[e3
Let D be a bounded, path-connected subset of R?, let f : D — R be a
continuous function, and w : D — R a nonnegative integrable function
such that [[, w(x,y)d(x,y) # 0. If D has an interior point at which w
is continuous and positive, then show that there is (zo,yo) € D such
that Av(f;w) = f(zo,yo). (Hint: Consider the cases m < Av(f,w) < M,
Av(f,w) =m, and Av(f,w) = M separately.)
Let D be a bounded subset of R? such that D is of content zero, but
D itself is not of content zero. If D is path-connected and f : D — R
is a continuous function, then show that there is (zg,y9) € D such that
Av(f) = f(zo,yo). (Hint: Exercise 39)
Let a,b € R with 0 < a < b and let ay, a9, f1, f2 : [a,b] — R be con-
tinuous functions such that —7 < a3 < as < 7 and f; < fo. Let D :=
{(xcos@,y,xsin&) ER3:a<2<b ar(r) <O<ax(x)and fr(x) <y <

.13)} Show that the volume of D is given by

b
Vol(D) = / tlon(z) — n (@)][fale) — i (2))da

and the centroid (z,y, z) of D is given by
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b
= Voll(D) / 22 [sin ag(z) — sinay (2)][fa(x) — fi(x)]dz
b
v 2V01(D) / zlog(x) — o (2)][f2(2)* — fi(z)?]dz,
b
B Voll(D) / a®[cos i (x) — cos ap(@)][fo(x) — f1(x)]dx

(Hint: For = € [a,b], consider E, := [aq(x), aa(z)] X [f1(x), f2(x)].)

42. Let D denote a tetrahedron in R? with four noncoplanar points (x;, i, 2;),
i=1,...,4, as its vertices, and let f : D — R be an integrable function.
Show that the analogues of the Midpoint Rule, the Trapezoidal Rule, and
Simpson’s Rule for approximating triple integrals over D are given by the
following rules.

4 4 4
. 1 1 1
(i) C(f) :=Vol(D)f(x,y, z), where z = 4 ;:1 Ti Y=, ;:1 i 2=, ;:1 2.

i) () = S fl ).

=1
3 4
Vol(D)
(111) S(f) = ( Z Z f xz,]ayz,jvzz,J) Zf(xiayivzi) , where
=1 j=i+1 i=1
ZX; X 2 2
Tisj 1= ; Ty i = yl;‘%, Zij = ; Tfor1<i<j<d

(Hint: Exercises 21 and 22.)

43. Let n € N and D C R"™ be as in Exercise 56 of Chapter 5. Further, let
f D — R be a polynomial function in n variables of total degree m,
where m is a nonnegative integer, and let I denote the n-fold integral of
f over D. Prove the following results.

(i) If m < 1, then
n+1

Vol .
eI N
(ii) If m < 2, then
Vol(D U +x§) ng)—i—xg)
_(n—i—l n—|—2 ;j;lf( Ty 2 )

n+1 )
~(n— 2>Zf<x§”,...,x£f)>].
=1

(Compare Exercise 21.)
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Double Series and Improper Double
Integrals

In this chapter, we shall develop the theory of double sequences, double series,
and improper double integrals. Our treatment will be analogous to the treat-
ment of sequences, series, and improper integrals of functions of one variable
given in Chapter 9 of ACICARA. Much of this chapter can be read indepen-
dently of the previous chapters of this book.

In the preamble to Chapter 2, we mentioned that the notion of sequences in
R, that is, functions from N to R, admits two generalizations in the setting of
two variables: pairs of sequences and double sequences, that is, functions from
N to R? and functions from N? to R. The former were discussed in Section 2.1
and we shall now take up a study of the latter. Thus, in Section 7.1 below, we
outline the theory of double sequences and the associated notions of conver-
gence, boundedness, monotonicity, etc. Double series and their convergence
is discussed in Section 7.2. Various tests for determining the convergence or
divergence of a double series are given in Section 7.3. In Section 7.4, double
power series are treated as a special case of double series, and Taylor dou-
ble series of infinitely differentiable functions are treated as a special case of
double power series. We then turn, in Section 7.5, to a “continuous” analogue
of double series, namely improper double integrals of functions defined on a
set of the form [a,00) X [¢,00), where a, ¢ € R. Tests for the convergence
of an improper double integral are given in Section 7.6. Finally, in Section
7.7, the process of double integration is extended to functions defined on an
unbounded subset of R%, and to unbounded functions defined on a bounded
subset of R?.

7.1 Double Sequences

This section on double sequences is meant as a preparation for the subsequent
sections on double series.

A double sequence (in R) is a real-valued function whose domain is the
set N2 := {(m,n) : m,n € N} of all pairs of positive integers. We shall denote

S.R. Ghorpade and B.V. Limaye, 4 Course in Multivariable Calculus and Analysis, 369
Undergraduate Texts in Mathematics, DOI 10.1007/978-1-4419-1621-1 7,
© Springer Science + Business Media, LLC 2010
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double sequences by (am.n), (bmn), and so on, or by (A n), (Bm.n), and so
on. The value of a double sequence (a, ) at (m,n) € N? is a,, , and this is
called the (m,n)th term of that double sequence.

We shall use the attributes “bounded above,” or “bounded below,” and
“bounded” for a double sequence just as we use them for a function of two
variables. We shall use the componentwise partial order on N2 given by

(mi,n1) < (M2, n2) <= my < mg and n; < no

for (my,n1) and (mg,n9) in N2
We say that a double sequence (G,) is convergent if there is a € R
satisfying the following condition: For every e > 0, there is (mg,ng) € N2
such that
|G, —al < e forall (m,n) > (mg, no).

In this case, we say that (a,,,,) converges to a and write an,,, — a (as
(m,n) — (00,00). It is easy to see that the real number a is then unique; it
is called the limit or the double limit of (@, ), and is denoted by

(m,n)—(c0,00) @m,n-

A double sequence that is not convergent is said to be divergent. In par-
ticular, if for every a € R, there is (mg,ng) € N? such that a,,, > « for
all (m,n) > (mo,no), then we say that (a,,,) diverges to co and we write
G, — 00. Similarly, (anm,») diverges to —oo if for every g € R, there is
(mo,no) € N? such that a,, , < 8 for all (m,n) > (mg,ng). For example, if
Amon = 1/(m+n), by := m+n, and ¢, = (=1)™F" for (m,n) € N2,
then @, — 0 and (by,,,) diverges to oo, while the double sequence (¢, 5) is
bounded, but divergent.

We recall that a convergent sequence is bounded. However, a convergent
double sequence may not be bounded. For example, let a,, , :=n if m =1,
G i=mif n =1, and a,,,, :=0if m # 1 and n # 1. Then a,, , — 0, since
am,n = 0 for all (m,n) > (2,2), but clearly (am,,) is not bounded.

As indicated by the above example, the convergence of a double sequence
(Gm,n) is not altered if some of the a,,,’s are changed, provided there is
(mg,ng) € N2 such that either m < mg or n < ng whenever a term G 18
changed. Let us write a double sequence (a,,,) schematically as follows:

aii1 ai2 a3 ...
a1 a2 azs ...
asi as2 a3s3 ...

Then some or all a,, ,,’s written in a finite number of rows and/or in a finite
number of columns can be changed without altering the convergence of (@, 1)
(Note that each row and each column contains an infinite number of a,, ,’s.)
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The Limit Theorem for double sequences says that if a,,, — a and
bm,n — b, then ap, p 4+ b — a + b, Ty, — ra for any r € R, am nbpmn —
ab, and if a # 0, then there is (mg,ng) € N? such that a,,, # 0 for all
(m,n) > (mo,no) and 1/a,, , — 1/a; further, if there is (mq,n1) € N2 such
that ampn < b,y for all (m,n) > (mq,n1), then a < b, and if ap,,, > 0 for
all (m,n) € N2, then a}qﬁl — a'/* for any k € N. Also, if Qm,n — G, then
|@m.n| — la], but the converse does not hold unless a = 0. Proofs of these
results are routine.

Another useful result is the Sandwich Theorem for double sequences: If
(@m.n); (bm.n), and (¢m,n) are double sequences such that . < cmon < by n,
and if ¢ € R is such that a,,, — ¢ and b,,,, — ¢, then ¢, — ¢ as well.
Again, the proof is routine.

A double sequence (an, ) is called a Cauchy double sequence if for

every € > 0, there is (mg,ng) € N? such that
|a‘m7n - aP7Q| <e€ fOI' all (m7n)7 (pvq) 2 (m07n0)'

The following result allows us to prove the convergence of a double sequence
without having to guess its limit beforehand.

Proposition 7.1 (Cauchy Criterion for Double Sequences). A double
sequence is convergent if and only if it is a Cauchy double sequence.

Proof. Tt is easy to see that a convergent double sequence is a Cauchy double
sequence. Conversely, let (a,,,) be a Cauchy double sequence and consider
the diagonal sequences (by,) defined by b, = a, , for n € N. Then clearly
(b,) is a Cauchy sequence, and by the Cauchy criterion for sequences given
in one-variable calculus (for example, Proposition 2.19 of ACICARA), (b,,) is
convergent. Let b, — b and let € > 0 be given. Then there is ng € N such that

|bn, — b| < ; for all n > ny.
Since (@m,n) is Cauchy, there is nq € N such that ny > ng and
@ =yl < o) for all (m,n), (p.q) > (n1,ma),
and consequently,
|@mn = b < |@m,n — Gnyong |+ by — D] < ; + ; =¢ forall (m,n)> (ni,n1).

Thus (@) converges to b. O

We shall now consider iterated limits of a double sequence. The following
result is similar to Exercise 28 of Chapter 2 on iterated limits of a function of
two real variables.
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Proposition 7.2 (Iterated Limits of Double Sequences). Suppose (1)
is a convergent double sequence and let an, , — a.

(1) If imy, o0 @ n ezists for each m € N, then the iterated limit

lim (lim am,n>
m—00 n—oo
exists and it is equal to a.
(ii) If imy,— oo Gm p exists for each n € N, then the iterated limit
lim ( lim am,n>
n—oo m—00
exists and it is equal to a.

(i) If the hypotheses in (1) and (ii) above hold, then the double sequence (am, »)
s bounded and

lim (lim am,n> =a= lim ( lim amm) .
m— 00 n—oo n—oo m— 00
Proof. Let € > 0 be given. Since a,, , — a, there is (mg,ng) € N? such that
€
|@m,n —a] < 5 for all (m,n) > (mo,no).

Assume that lim,, .o @, exists for each m € N and let us denote it by b,,.
Then for each fixed m € N, there is k,, € N such that

|G — | < ; for all n > k,,.

For m > my, if we let ny := max{ng, k., }, then

€

2

€
|bm - a| S |b7n - a7n,n1| + ‘awl,nl - a| < 2 + €.
Thus limy, o0 by, exists and it is equal to a. This proves (i). The proof of (ii)
is similar.
Suppose now that the hypotheses in (i) and (i) hold. Since |am, »| — |al,
there is (m1,n1) € N2 such that

|am.n| <14 la] for all (m,n) > (my,nq).

Also, for each fixed m with 1 < m < my, the sequence (a, ) is bounded since
lim;, oo @, exists. Thus there is o > 0 such that |ap, | < @ if 1 <m <my
and n € N. Similarly, there is 8 > 0 such that |am,| < §if m € N and
1 < n < ny. Hence |ay, | < max{1 + |a|,a, 3} for all (m,n) € N2. Thus
(@m,n) is bounded. The last part of (iii) follows from (i) and (ii). O

We give examples to show that if any of the hypotheses in the above
proposition is not satisfied, then the conclusion(s) may not hold.
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Examples 7.3. (i) Let ay,,, := (—1)™""(m +n)/mn for (m,n) € N2. Since
|amn| < (1/n)+ (1/m) for (m,n) € N2 we see that a,,, — 0. However,
limy,—.oc @m,n does not exist for any fixed m € N. Indeed,

—1)" —1)"
mpn = (—1)" [( ) + (=1) } for all (m,n) € N2
n m
and (—1)"/n — 0 as n — oo, while lim,,_,(—1)"/m does not exist.

(ii) Let @y, := mn/(m? + n?) for (m,n) € N2, Then for each fixed m € N,
lim,, 00 G, exists and it is equal to 0, since |ap, »| < m/n for all n € N.
Similarly, for each fixed n € N, lim,,_. am » exists and it is equal to 0.
However, (am, ) is not convergent, since a,, , = 1/2 if m = n and a,, , =
2/5 if m = 2n.

(iii) Let am,n := m/(m +n) for (m,n) € N2 Then for each fixed m € N,
limy, o0 @m,n = 0 and for each fixed n € N, limy, .o @m,n = 1. Hence
limy,, 00 (limy 00 Gimn) = 0, whereas lim,, o0 (limy,— 00 Gm,n) = 1. No-
tice that (am,,) is not convergent, since am,, = 1/2 if m = n and
m,n = 2/3 i m = 2n. O

Monotonicity and Bimonotonicity

We now consider monotonicity of a double sequence in analogy with the mono-
tonicity of real-valued functions defined on I x J, where I and J are intervals
in R. (See Section 1.2.) We say that a double sequence (a,, ) is monoton-
ically increasing if am n < i1 and amp < @y for all (m,n) € N2.
Likewise we say that it is monotonically decreasing if a,, ., > am+1,, and
Amon > Amont1 for all (m,n) € N2. Observe that a double sequence () is
monotonically increasing if and only if

Umn < apq forall (m,n), (p,q) € N* with (m,n) < (p,q).

Also, a double sequence (@, ) is monotonically increasing if and only if for
each fixed m € N, the sequence given by n +— @y, , is (monotonically)
increasing and for each fixed n € N, the sequence given by m — am
is (monotonically) increasing. Likewise for monotonically decreasing double
sequences. A double sequence is said to be monotonic if it is monotonically
increasing or monotonically decreasing.

We have noted earlier that a convergent double sequence may not be
bounded and a bounded double sequence may not be convergent. With this
in view, the following result is noteworthy.

Proposition 7.4. (i) A monotonically increasing double sequence (am ) is
convergent if and only if it is bounded above. In this case,

G — SUP{ampn : (M,n) € N2},

If (am n) is monotonically increasing, but not bounded above, then ay, , — 0.
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(ii) A monotonically decreasing double sequence (ap, ) is convergent if and
only if it is bounded below. In this case,

A — 0f{a@p, p : (m,n) € N2}
If (apm,n) is monotonically decreasing, but not bounded below, then ap, , — —00.

Proof. Let (am,n) be a monotonically increasing double sequence. Suppose it
is bounded above, and let a := sup{am » : (m,n) € N2}. Given € > 0, there
is (mo, no) € N2 such that a — € < ay,.n,- Hence

a—€<amyny < amn <a<a+e forall (m,n)> (mg,no).

Thus ap, ., — a.
Conversely, suppose (@, ) is convergent and @, , — a. Then there is
(mo, no) € N2 such that

amn < a+1 forall (m,n) > (mg,no).

Now given any (m,n) € N2, we have (m + mg,n + ng) > (m,n) as well as
(m 4+ mo,n +ng) > (mo,ng), and so

Gm,n S Am+mo,n+ng <a+ 1.

Thus (am,r) is bounded above by a + 1.

If (@) is not bounded above, then given a € R, there is (mq, ng) € N2
such that amg n, > a. But then ap, n > amg.n, > « for all (m,n) > (mo, no).
Thus ay,,, — oo. This completes the proof of (i).

A similar proof can be given for (ii). O

Corollary 7.5. A monotonic double sequence (am, ) is convergent if and only
if the sequence (ap p) of its diagonal terms is convergent. In this case,

lim mp = lim ap .
(m,n)—(00,00) p—00

Proof. Suppose (@) is a monotonically increasing sequence. If for any
(m,n) € N% we let p := max{m,n}, then a,,, < ap,. Consequently,
{@m.n : (m,n) € N?} is bounded above if and only if {a,,,, : p € N} is bounded
above, and in this case, sup{a,, » : (m,n) € N?} = sup{a,, : p € N}. Hence
Proposition 7.4 and its analogue for sequences (given, for example, in Propo-
sition 2.8 of ACICARA) yield the desired result. The case of when (an, ) is a
monotonically decreasing double sequence is proved similarly. O

Finally, we consider a bivariate version of monotonicity in analogy with
the bimonotonicity of real-valued functions defined on I x J, where I and .J
are intervals in R. (See Section 1.2.) This notion will be useful in treating
conditional convergence of a double series in Section 7.3.
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We say that a double sequence (ay, ) is bimonotonically increasing if
Ao+l + Cmt1n < Gmon + Q1,41 for all (m,n) € N2. Likewise we say that
it is bimonotonically decreasing if a,, n4+1 4 Gm+1,n > Gmon + Gmt1,n41 for
all (m,n) € N2, Observe that for any (m,n), (p,q) € N* with (m,n) < (p,q),

p—1g-—1
Un + Qg = Qg = Gpn = Y Y (@ij + Gig1j41 = Qijp1 — Gig1) s

i=m j=n
and so a double sequence (ayy, ) is bimonotonically increasing if and only if

g+ Gpn < Umpn +apq forall (m,n), (p,q) € N? with (m,n) < (p,q).

It is readily seen that a similar characterization holds for bimonotonically
decreasing sequences. A double sequence is said to be bimonotonic if it is
bimonotonically increasing or bimonotonically decreasing.

The following proposition is often useful for constructing several examples
of monotonic and bimonotonic double sequences.

Proposition 7.6. Given any sequences (cw,) and (3,) in R, consider the dou-
ble sequences (am,n) and (bp, ) defined by

U = O+ Bn and by p = amfBy  for (m,n) € N2.

The following results hold.

(i) (am,n) is monotonically increasing if and only if both (o) and (B,) are
mcereasing.

(ii) Assume that a,, > 0 and B, > 0 for alln € N, and also that oy, > 0 and
Bre > 0 for some mo,ng € N. Then (bp.n) is monotonically increasing if
and only if both (o) and (By) are increasing.

(iil) (@m,n) s always bimonotonically increasing as well as bimonotonically
decreasing.

(iv) If (o) and (By) are monotonic, then (bm. ) is bimonotonic. More specif-
ically, if (o) and (By) are both increasing or both decreasing, then (by, n)
is bimonotonically increasing, whereas if (o) is increasing and (B,) is
decreasing, or vice versa, then (by n) is bimonotonically decreasing.

Proof. Both (i) and (ii) are straightforward consequences of the definitions,
whereas (iil) and (iv) follow from noting that a, ¢ + am.n = Gm.q + ap,n and
bp.g+bmn—bm.g—bpn = (p — ) (By — Bn) for all (m,n), (p,q) € N2. O

Results similar to parts (i) and (ii) of Proposition 7.6 hold for monotoni-
cally decreasing double sequences.

Examples 7.7. (i) Let a,, n, := m+n and b, , := mn for (m,n) € N2, Then
both the double sequences (am,n) and (b, ,) are monotonically increasing
as well as bimonotonically increasing. On the other hand, if we let ¢, ,, :=
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m —n for (m,n) € N2, then the double sequence (¢, ,,) is bimonotonic,
but not monotonic, whereas if for (m,n) € N2, we let

d -1 ffm=1=n,
T A mn ifm>1orn > 1,

then the double sequence (dy, ) is monotonic, but not bimonotonic. In-
deed, (d,») is clearly monotonically increasing, but it is not bimonotonic
since di o+da1 =4 >3 =di1+dap and do 3+ds 2 = 12 < 13 = da 2+d3 3.
(ii) Let p € R and ay,, := (m + n)? for (m,n) € N2 Using the results in
Example 1.8 (iii), we can easily see that the double sequence (a, ) is
monotonically decreasing and bimonotonically increasing if p < 0, mono-
tonically increasing and bimonotonically decreasing if 0 < p < 1, and
both monotonically and bimonotonically increasing if p > 1. For another
example of this kind, see Exercise 9. O

In Exercises 52 and 53, we introduce the concepts of bounded variation
and bounded bivariation for a double sequence and explore their relation-
ships with monotonic and bimonotonic double sequences.

7.2 Convergence of Double Series

A double series of real numbers is an ordered pair ((a;@g), (Am,n)) of double
sequences of real numbers such that

n m

Apn = Z Zak,g for all (m,n) € N2
k=1 (=1

(We note that for each (m,n) € N2, the finite double sum given above is
independent of the order in which it is taken.) Equivalently, a double series
is an ordered pair ((ag,), (Am,n)) of double sequences of real numbers such
that

ape = App — Apo1 — Ap_10+ Ap_10-1 for all (k, £) € N2,

where Ao := 0 for all £ = 0,1,2,... and Ag, := 0 for all £ = 0,1,2,...
with the standard convention that an empty sum is equal to zero. The first
double sequence (ag,) is called the double sequence of terms, and the
second double sequence (A, ) is called the double sequence of partial
double sums of the double series ((a;@g), (Am,n)). The two double sequences
(ak,e) and (Ap,,,) determine each other uniquely. We shall use an informal
but suggestive notation »_ 3" , ak,e for the double series ((ar,e); (Amn))-
Sometimes it is convenient to allow the indices k and ¢ to take the values
k=ko,ko+1,...and £ = £y, ¢y +1,... for some fixed pair (ko, {y) of integers.
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We say that a double series 373 , ak is convergent if the double
sequence (A, ) of its partial double sums is convergent. If (A4,, ,) converges
to A, then the (unique) real number A is called the double sum of the double
series » >~ ¢) ak,e and it is denoted by the same symbol used to denote the
double series. Thus, when we write

Zzak,,f = A)

(k,£)

we mean that the double series on the left is convergent and its double sum is
the real number A. In this case, we may also say that 3>, ) ax, converges
to A. A double series that is not convergent is said to be divergent. In
particular, we say that the double series diverges to co or to —oo according
as the double sequence of its partial double sums tends to oo or to —oo. The
convergence of a double series is not affected if we change a finite number
of its terms, although its double sum may be altered by doing so. On the
other hand, if we change an infinite number of terms (even if they belong to
a single row or a single column) we may affect the convergence of the double
series. For example, if ay ¢ := 0 for all (k, £) € N2, then clearly > D (k) Qe 18
convergent. But if we let by 1 := 1 for k € N and by, o := 0 for all (k, ¢) > (1, 2),
then >3° ) b, diverges to oo. (This is in contrast to the effect on the
convergence of a double sequence when some of its terms are changed, as
discussed in Section 7.1.)

It may be noted that a (single) series ), as can be thought of as a double
series ZE(H) ap¢ if we define ag,; := ay for k € N and ap :=0 for k € N
and ¢ > 2. In this case, A, , = Zz;l ay for all (m,n) € N2. Consequently,
examples considered in the theory of (single) series work for double series as
well. As in the case of series, a quick and useful way to show that a double series
is divergent is to use the following result, which gives a necessary condition
for the convergence of a double series.

Proposition 7.8 ((k,{)th Term Test). If >_ > /) ak,e is convergent, then
ape — 0 as k,¢ — oo. In other words, if age # 0 as k,{ — oo, then

202 (kp) Wyt is divergent.

Proof. Let Y Z(k,e) ak,e be a convergent double series. If (A, ,,) is the double
sequence of its partial double sums and A is its double sum, then we have
ape=Ape — A1 —App1+Ap—10-1 2 A—A—-A+A=0. O

It will be seen in Example 7.10 (iii) below that the two series 3° 3 4 1/k¢
and 37> ) 1/(k+¢) diverge to oo even though their (k, £)th terms tend to 0
as (k, ) — (00, 00). Thus the converse of the (k,¢)th Term Test (Proposition
7.8) is not true. A variant of the (k,¢)th Term Test, which may be called
Abel’s (k,¢)th Term Test, is given in Exercise 10.

The following result gives a sufficient condition for the convergence of
certain “product series,” and is often helpful. A refined version of this result
is given in Exercise 8.
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Proposition 7.9. Let ), bi, and Y ,c¢ be series of real numbers and let
ag.e = byce for (k,0) € N2. Then the following results hold.

(i) If 325 bie and -, c¢ are both convergent, then the double series 33 . 4 ar.¢

is convergent and moreover, 373 o are = (35 br) (32, co)-

(i) If both _ by and 3, c; diverge to oo, then the double series 3 3 oy ke
diverges to oc.

(iii) If Y, bx converges to B and B # 0, while ), c¢ is divergent, then the
double series 33" ¢y bece is divergent.

Proof. Let (By,) and (C,,) denote the sequences of partial sums of the series
> bk and >, ¢, respectively. Also, let (A, ) denote the double sequence of
partial double sums of >33~ ; ) ax,e. Then

n

Apn = (é bk) (Z Cg) = B,,C,, for all (m,n) € N2

{=1

Consequently, if B,, — B and C,, — C for some B,C € R, then 4,, ,, — BC.
Also, if B, — oo and C,, — oo, then A,,, — oo. This proves (i) and (ii).
Moreover, if B,, — B with B # 0 and if the double sequence (A,, ,,) converges
to A, then (C,,) converges to A/B. This proves (iii). O

In the following examples as well as the rest of this chapter, we shall adopt
the convention that #° = 1 for any = € R (including = = 0).

Examples 7.10. (i) (Geometric Double Series) Let z,y € R. Define
Qo = xFy’ for nonnegative integers k,¢. Note that according to the con-
vention mentioned above, ago := 1, ag,0 = z¥, and aoe = y¢ for k, ¢ € N.
The double series > Z( o) Ok l where the index (k, £) varies over pairs of non-
negative integers, is called the geometric double series. Now recall that the
geometric series Y -, z¥ is convergent if and only if |z| < 1. (See, for instance,
Example 9.1 (i) of ACICARA.) Hence from part (i) of Proposition 7.9, we see
that the geometric double series is convergent if |z| < 1 and |y| < 1; moreover,

1
ZZaH: ZZ zFyt = (1—2)(1—y) for |x| <1 and |y| < 1.

(k,£) (k,£)=(0,0)

Further, if |z| > 1 and |y| > 1, then |z*y‘| = |2|¥|y|* > 1 for all nonnegative
integers k, £. Hence from the (k, £)th Term Test (Proposition 7.8), we see that
the geometric double series is divergent. Finally, since 1/(1 — z) is nonzero
whenever z € R with |z| < 1, it follows from part (iii) of Proposition 7.9
that if only one of |z| and |y| is less than 1, then the geometric double series
is divergent. Thus we see that the geometric double series 35 37 , #*y" is
convergent if and only if x| < 1 and |y| < 1.

(ii) (Exponential Double Series) Let x,y € R. Define ay = 2%y’ /k!0!
for nonnegative integers k, £. The double series > > (k,0) Okt where the index
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(k, ) varies over pairs of nonnegative integers, is called the exponential
double series. From part (i) of Proposition 7.9, we readily see that the
exponential double series is always convergent and

2kt
ZZ@;M = ZZ ¥ Z! = (expz)(expy) = exp(x +y) for z,y € R.

(k,0) (k,£)=(0,0)

(iii) (Harmonic Double Series and Their Variants) The double series
22 (ke /K and 3237 ) 1/(k + €) can be considered as analogues of the
harmonic series ), 1/k, and either of the two double series may be referred
to as a harmonic double series. We know from the theory of (single) series
that the harmonic series diverges to co. (See, for instance, Example 2.10 (iii) of
ACICARA). Hence by part (ii) of Proposition 7.9, we see that the double series
> Z(k,é) 1/E£ diverges to co. More generally, for any p € R, we know that the
series ), 1/kP is convergent for p > 1 (in which case, the sum will obviously
be nonzero) and it diverges to oo for p < 1. (See, for instance, Example 2.10
(v) of ACICARA). Thus, using parts (i), (ii), and (iii) of Proposition 7.9, we
see that for any p,q € R,

1.
Z( )Z Lp is convergent <= p > 1 and ¢ > 1.
k0

As for the other variant of the harmonic series, namely the double series
2= 2 (k0 1/(k 4+ £), we also find that it diverges to oo, since
m n

zm: kigzézzklﬁ for all (m,n) € N2

k=1/¢=1 k=1/¢=1

n

Let us now consider the double series 33" ,) 1/(k + 0)2. For n € N, let
Apn =2 1>y 1/(k+€)* Forn >3 and i = 2,...,n — 1, each of the
i—1summands 1/[1+(—1)]%,1/[24+(i—2))%, ..., 1/[(i—2)+2]%1/[(i—1)+1)?
of Ay, is equal to 1/4%, and so

71,—12._1 171,—1 1
An,nzg Z.2 22;2

Since Z?;; 1/i — oo as n — oo, we see that A, , — oo as n — oo. Thus
the double series >3 >°; 1/(k + 0)? diverges to co. This indicates that the
threshold for the convergence of }33°; ) 1/(k + €)F is not p = 1. Indeed, it
will be shown later in Examples 7.17 (i) and 7.58 that 3237,  1/(k+€)P is
convergent if and only if p > 2.

(iv) (Alternating Double Series) We know from the theory of (sin-
gle) series that if we alternate the signs of the terms of the harmonic series,
then the alternating series thus obtained, namely >, (—1)*~!/k, is conver-
gent. (See, for instance, Example 2.10 (iii) of ACICARA). Hence from part (i)
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of Proposition 7.9, we see that the corresponding alternating double series
> Z(kl)(—l)k“‘é/ké is convergent. More generally, let p € R. We know that
the series >, (—1)*~1/kP is convergent if and only if p > 0. (See, for instance,
Examples 9.7 (i) and 9.23 (i) of ACICARA). Furthermore, if for n € N, we
denote by A, the nth partial sum of the series Y, (—1)*~!/kP, then

1 - 1 1
Ao, = (1— 2p> + B,, where B, .—Z <(2k;—1)P - (Qk)l’)’

k=2

and since B,, > 0, we see that Ay, > (1 — 27P). Consequently, if p > 1, then
the sum of the series >°, (—1)*~1/kP is at least (1 —27P), and hence nonzero.
With this in view, it follows from parts (i) and (iii) of Proposition 7.9 together
with the (k,¢)th Term Test (Proposition 7.8) that for any p,q € R,

(_1)k+£
Z Z pfa is convergent <= p > 0 and ¢ > 0.
(k,0)

As for the other variant, it will be seen in Example 7.42 that the alternating
double series > Z(k’e)(—l)k“/(k + ¢)? is convergent if and only if p > 0. <

The following statements about the convergence of a double series follow
from the corresponding statements for the convergence of a double sequence
given in Section 7.1.

1. (Limit Theorem) Let > 3" ;) are=Aand 3°3 2 ) bre = B. Then

Z Z(ak,g +bre) =A+B and Z Z(TCL]“@) =rA for any r € R.
(kvi) (kvé)
Further, if aj ¢ < by for all (k,¢) € N% then A < B.

2. (Sandwich Theorem) If (ax ), (bx.¢), and (cx¢) are double sequences of
real numbers such that ag, < cx ¢ < by for each (k,¢) € N2, and further

22 () e = Aaswell as 3037 o) b = A, then 3537, ) cre = A.

3. (Cauchy Criterion) A double series 3" /) ak, is convergent if and
only if for every € > 0, there is (mg,ng) € N2 such that

m n P n m q
Z Z ak,€+z Z ak,e + Z Zak,g <e

k=p+1 t=q+1 k=1 f=q+1 k=p+1 ¢=1

for all (m,n) > (p,q) > (mo,no). (Compare Proposition 7.1 and note that
the three sums above together are equal to A,, ,—A, 4 for (m,n) > (p,q).)

We shall now relate the convergence of a double series 3 >, 4 ax,¢ to the
convergence of the two series >0 (30,2, akr) and >_,2; (O-p; ak,e). For
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this purpose and for later use, it is convenient to use the following terminology:
For each fixed k € N, the (single) series >, a ¢ is called a row-series, and
for cach fixed ¢ € N, the (single) series >, ax¢ is called a column-series
(corresponding to the double series 373", /) ak,¢). The following result may
be compared with Proposition 5.28.

Proposition 7.11 (Fubini’s Theorem for Double Series). Assume that
> Z(k ¢) Gkt 15 a convergent double series and let A denote its double sum.

(i) If each row-series is convergent, then the corresponding iterated series
Sorey (Ooie akye) is convergent and its sum is equal to A.
(ii) If each column-series is convergent, then the corresponding iterated
. o0 oo - . .
series Y =, (3, are) is convergent and its sum is equal to A.
(iii) If each row-series as well as each column-series is convergent, then the
double sequence of partial double sums of > Z(H) ag,¢ 15 bounded, and

£(Ee) e £(Ee)

(k, =1 \k=

Proof. Let (A, ) denote, as usual, the double sequence of partial double
sums of 3 > ) ak,e. By our assumption, (A, ;) converges to A.
Suppose each row-series is convergent. Then for each fixed m € N,

m n m n m oo
lim A,,, = lim E E OWES E lim E Qg | = E E A | -
n—oo n—oo n—o0

k=1¢=1 k=1 =1 k=1 \¢=1

Hence by Proposition 7.2, the iterated limit lim,, oo (lim,— oo Am,n) exists
and is equal to A, that is,

m oo

Jm > ( au) = 4.
k=1 \¢=1

Thus the iterated series Y ;7 | (32,2, ak,) converges and its sum equals A.

This proves (i). The proof of (ii) is similar.

Finally, suppose each row-series as well as each column-series is convergent.
Then for each fixed m € N, the limit lim,, .o Ay, exists, and for each fixed
n € N, the limit lim,,— oo A, exists. Hence by part (iii) of Proposition 7.2,
(As.n) is bounded. The last part of (iii) follows from (i) and (ii). O

Examples 7.12. (i) Even if a double series 3 > , ar¢ converges, both
the iterated series may diverge. For instance, consider a double sequence
(ar,¢) given schematically as follows:

1 1 1 1--
1 -3 -1 -1 -
1-1 0 0---

1r-1 0 0 -
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Then A, =n foralln € Nand A,, ;1 = m for all m € N, while A,, , =0
for all (m,n) > (2,2). Hence ZZ(M) ak,e = M 1) (00,00) Am,n = 0.
But >y ;a1¢=nforallneNand > )  asy = —n for all n > 2, while
Zz;l ax,1 = m for all m € N and Z;nzl ag,2 = —m for all m > 2. Hence
Z;’;l ar ¢ and 21?;1 ax,1 diverge to oo, whereas Z;’;l as,¢ and 21?;1 k.2
diverge to —oo. Clearly, none of the iterated series is even well defined.

(ii) Even if both iterated series > po; (3-po; ake) and > oo, (Yo7 ake)
converge and have the same sum, the double series may diverge. For in-
stance, consider a double sequence (a¢) given schematically as follows:

2 0-1 0 0--
o 2 0-1 0--
-1 0 2 0 -1---
0-1 0 2 0--

Then Y%, aky is equal to 1 if k = 1 or 2, and it is equal to 0 if k& > 3.
Similarly, >;7 | ax is equal to 1 if £ = 1 or 2, and it is equal to 0 if £ > 3.
Thus Y poy (O ake) =2 =30, (O pey ake). But Ay, = 4 for all
m > 2 and A,, ;-1 = 3 for all m > 3, so that the double sequence (A,, )
is divergent, that is, the double series }° 3 ; ) ax,¢ is divergent.

(iii) Even if both iterated series Y 7, (Do, are) and > ,2, (Yope | ake)
converge, their sums may be unequal. For instance, consider a double
sequence (ay ¢) given schematically as follows:

0o 1 0 0 O0---

-1 0 1 0 0 ---
0-1 0 1 0---
0 0-1 0 1

Then Z?il apye is equal to 1 if k& = 1 and it is equal to 0 if & > 2,
whereas 220:1 are is equal to —1 if £ = 1 and it is equal to 0 if £ > 2.
Hence Y07, (302, ake) = 1, while -2 (3522, ak,e) = —1. Of course,
> Z(H) ay,¢ is divergent, since A,, ,, = 0forallm € Nand A, ;-1 = —1
for all m > 2. &

Telescoping Double Series

If (bg,) is a double sequence of real numbers, then the double series
Z Z(bu —brt1,0 — brot1 + brt1,041)
(k,6)

is known as a telescoping double series. We have the following result re-
garding its convergence.
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Proposition 7.13. A telescoping double series Z(kl)(bk7g—bk+17e—bk,é+1+
bit1,041) s convergent if and only if the double sequence (bg1 + b1, — by ¢) is
convergent, and in this case

Z Z(bk’e —bhi1,e = bk or1 + ko) =bia— o lm o (b b —bre).
(k,0) (k,£)— (50,00)

Proof. Let (m,n) € N2. Then

n
E § (bk,e = bkr1,0 = b1 + Oki1,041) = 011 — bg1,1 — b1 g1 + b1 ng-
k=1 /=1

This yields the desired result. O

It may be noted that every double series can be written as a telescoping
double series. In fact, if A, , is the (m,n)th partial double sum of a double
series ZZ(,M) ak.e, then letting by o := Ap_1 -1 for all (k,£) > (1,1) with
the usual convention that Ag o, Ax,0, and Ag, are all equal to zero, we obtain
are = Ak — Ap—10 — Apo—1 + Ap—1,0-1 = bg1,041 — bror1 — brg1,e + big
for all (k,¢) € N2. However, Proposition 7.13 is particularly useful when it is
possible to write > > (k,¢) Ok,¢ a8 a telescoping double series without involving
its partial double sums. For example, consider the series ) Z( ko 0) @k, 5 where

S 1 (11 11
ROT ek +1)(0+1)  \k k+1)\e¢ e+1)"

If we let by o := 1/k( for all (k,¢) € N2 then ap¢ = brs — brr1.0 — broy1 +
bi+1,041 for all (k,¢) € N2. Since by = 1 and bg 1 + b1 ¢ — by ¢ — 0, it follows
from Proposition 7.13 that the double series 373" ,) 1/kl(k + 1)(€ + 1) is
convergent and its double sum is equal to 1 — 0 = 1.

Double Series with Nonnegative Terms

The following necessary and sufficient condition for the convergence of a dou-
ble series with nonnegative terms is very useful.

Proposition 7.14. Let (ay¢) be a double sequence such that axe > 0 for all
(k,0) € N2. Then Z(k,é) ay.¢ is convergent if and only if the double sequence
(Ap.n) of its partial double sums is bounded above, and in this case

Z Z e = sup{Apmn : (m,n) € N?}.

(k)

If (Am.n) is not bounded above, then 3> 3 o ak diverges to oo.
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Proof. Since ay¢ > 0 for all (k,¢) € N2, we have Ayi1n = Apn + Gmy11 +
ot Amtln > Am,n and Am,7l+1 = Am,n a1 pt1+- -+ 01041 > Am,n for all
(m,n) € N2. Hence the double sequence (A,, ) is monotonically increasing.
By part (i) of Proposition 7.4, we see that (A, ) is convergent if and only if

it is bounded above, and in this case

Z Z age = lim A = sup{Amn : (m,n) € Nz}.
.0 (m.n) )

— (00,00

Further, if (A,,,,) is not bounded above, then A,,, — oo, that is, the
double series >, /) ak,e diverges to oo. O

In view of the above result, when ay, > 0 for all (k,¢) € N2 we
write >, ) ak,e < oo if the double series >3~ ) ak,e is convergent and
2 2 (k0) @k,e = o0 if the double series 3737, /) ak, is divergent.

Proposition 7.14 shows that if a double series ZZ(M) ay,e with non-
negative terms is convergent and A is its double sum, then the double se-
quence (ag,¢) of its terms as well as the double sequence (A, ,) of its par-
tial double sums is bounded. This follows by observing that in this case,
0<ape<Ape<Aforall (k,¢) € N2

An interesting application of Proposition 7.14, known as Cauchy’s Con-
densation Test, is given in Exercise 17.

A result similar to Proposition 7.14 holds for double series with nonpositive
terms. More generally, when the terms ay ¢ have the same sign except possi-
bly for a finite number of them, then Z(k,é) ay,¢ is convergent if and only
if (Apm,n) is bounded. However, if infinitely many ag¢’s are positive and in-
finitely many ag ¢’s are negative, then > Z(k,é) ar¢ may diverge even though
(Am,n) is bounded, and (4,,,) may be unbounded even though > 3", 4 ax,¢
is convergent. These two statements are illustrated respectively by the double
series given schematically as follows:

100 1-100-
-1 .0 0 1-100-
100 and 1 -1 00 -
~1.0 0 1-100-

For double series with nonnegative terms, the following result is an im-
provement over Fubini’s Theorem for double series (Proposition 7.11).

Proposition 7.15 (Tonelli’s Theorem for Double Series). Let (ax.¢) be
a double sequence such that ax, > 0 for all (k,¢) € N2. Then the following
statements are equivalent.

(i) The double series 33 py ake is convergent.
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(ii) Each row-series is convergent and the iterated series Y oo (3,21 ake) is
convergent.

(iii) Each column-series is convergent and the iterated series y o | (3 pe | ak,c)
18 convergent.

In this case,

k=1 \¢=1 (kL) =1 \k=1

Proof. Suppose (i) holds. If A denotes the double sum of > 3" ;) @, then

in view of Proposition 7.14, >;_, ax¢ < Ay, < A for each fixed k € N and
all n € N. Thus each row-series is a (single) series with nonnegative terms
whose partial sums are bounded, and hence it convergent. By Fubini’s Theo-
rem (Proposition 7.11), it follows that the iterated series >~ (-2, ak,e) is
convergent and its sum is equal to A.

Suppose (ii) holds. Then for (m,n) € N2,

m

TR 0) DIV ol or'h) I of b o BV

k=1 ¢=1

Hence by Proposition 7.14, the double series > Z(H) ar.¢ is convergent.
This establishes the equivalence of the statements (i) and (ii). The proof
of the equivalence of the statements (i) and (iii) is similar. The equality of the
double sum and the sum of either of the two iterated series is also established
in this process. O

Examples 7.12 show that the nonnegativity of the terms of the double
series in Tonelli’s Theorem cannot be omitted.

The question of the convergence of a double series 3>, ;) ax,¢ with non-
negative terms can be reduced to the question of the convergence of each of
the following two (single) series, which correspond to summing the double
series ZE(,M) ap,e “by squares” or “by diagonals” as illustrated in Figure
7.1.

1. The (single) series Zoil b;, where for each j € N, b; is the sum of all those
terms ay, ¢ such that one of & and ¢ is equal to j and the other is at most 7,
that is, b; := ZZ 1 Gij —|—Zl 1 @ Thus by = a11, b = a1 o +aze+az;,
by = a1,3+ a3+ ass+as1+asz, and so on.

2. The (single) series Z;’;l ¢j, where for each j € N, ¢; is the sum of all
those terms ay ¢ such that k4 ¢ = j+1, that is, ¢; := 25:1 aj—i+1,:- Thus
€1 =a1,1, C2 = G2,1 + a1,2, C3 = a3, + a2 + a1,3, and so on.

The series Yo | ¢; is sometimes referred to as the diagonal series cor-
responding to the double series 373", o) ak,¢.
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a1 a2 a3
‘ ap 1 ay,2 a13
a5, a5 a3 - / /
‘ az 1 az 2
a3l as 2 az3
az1

Fig. 7.1. Summing a double series “by squares” and “by diagonals.”

Proposition 7.16. Let ZZ(,M) are be a double series with nonnegative
terms, and bj,c; be as above. Then the following statements are equivalent.

(i) (Summing by Rectangles) > 3", ;) ax, is convergent.
(ii) (Summing by Squares) Z;’;l b; is convergent.
(iii) (Summing by Diagonals) Z;’;l ¢; is convergent.

In this case,

ZZaM = ij = ch'
j=1 j=1

(k.£)

Proof. For (m,n) € N2, let Ay, := >}~ > /_, are as usual, and also let
B, = Z?:l bj. Then it is easy to see that B, = A, , for all n € N. Thus, in
view of Corollary 7.5, (i) and (ii) are equivalent, and in this case

ZZGW =sup{A,,: (m,n) € N*} =sup{B, : n € N} = ij.

(k,0) j=1

Next, for n € N, let C), := Z;’:l ¢j. Note that if (k,¢) € N? is such that
k4+¢ < n+1, then k < n and ¢ < n. This implies that C;, < A,, ,, for alln € N.
Also, if (k,¢) € N? and (k, ) < (m,n), then k+/ <m+n=(m+n—1)+1.
This implies that A, ,, < Chgn-1 for all (m,n) € N2 In view of these
relations, we see that (i) and (iii) are equivalent, and in this case

ZZCL;@@ =sup{A,.n:(m,n) € N2} = sup{C, : n € N} = ch,

(k,0) j=1
as desired. 0

Examples 7.17. (i) Let p > 0 and for (k,{) € N2 let ape = 1/(k + £)P.
Then ¢; = S0, 1/ + 1) = j/( + 1" for j € N. Since
1 j 1

< forall j €N
S N
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the series 250:1 ¢; is convergent if and only if p > 2. So by Proposition
7.16, we see that >33 ° ;. ) 1/(k + £)P is convergent if and only if p > 2.
(ii) Since A, , — A as (m,n) — (0o, 00) implies that A,, , — A as n — oo,
we see that in Proposition 7.16 the statement (i) implies the statement
(ii) irrespective of the sign of the terms of the double series. However,
the converse does not hold in general, as Example 7.12 (ii) shows. In this
example, A, , =4 for all n > 2, so that 250:1 b; = 4. However, the double
series does not converge. This follows by noting that A,, ,4+1 = 3 forn > 2.
(iii) Let a double sequence (ay ¢) be schematically given as follows:

0 1 1 1 1
1 -2 -1 -1 -1
0O o0 0 0 0
1 -1 0 0 O
0O o 0 0 O
1 -1 0 0 0

Here Ay, ; = 0 for all (m,n) > (2,2) and so >3 4 @k, is conver-
gent and its double sum is equal to 0. However, since ¢c; = 0, co = 2,
and ¢; = (—1)7 for j > 3, we see that Y .-, ¢; is divergent. On the
other hand, Example 7.12 (ii) shows that > i(k,é) ak,¢ may be divergent,
while Z;’il c¢j is convergent. In this example, we note that ¢; = 2 and
c; = 0 for all j > 2, so that Z;il ¢; = 2. It is also possible that both
2- 2 (k) Qe and 3 ¢; are convergent but the double sum is not equal to
the “sum by diagonals.” To illustrate this, consider the double sequence
(@n,i) schematically given as follows:

11 1 1 1-
1 -1 -1-1-1"-
1-1 0 0 O-
1-1 0 0 O-
1 -1 0 0 O-

Here A, ., = 2 for (m,n) # (1,1), and so the double sum is equal to 2.
But since ¢; = 1,c0 =2 ¢3 =1, ¢; =0 for all j > 4, we have Zj ¢ =4.

Absolute Convergence and Conditional Convergence

In this subsection we shall discuss the convergence and divergence of the
double series 373", ;) |ak,¢| formed by considering the absolute values of the
terms of a double series 3° 3 4 ar,. A double series 373", /) ak,e is said to
be absolutely convergent if the double series 3>}, , |ak,¢| is convergent.
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Proposition 7.18. An absolutely convergent double series is convergent.

Proof. Let > Z(H) ay,e be an absolutely convergent double series. For each
(k,¢) € N2, define

v el +age _ agel —any
Qg = 9 and Qg = 5 .

Let (Amn), (A% ,), (A,.,), and (Apm.n) denote the double sequences of

the partial double sums of >3>" /) anr, ZZ(k,e)g;e» 222 (k) Qg g a0d
ZZ(,M) |ak,e|, respectively. By Proposition 7.14, (A,.,) is bounded. Also,

0< a;‘,e < lak,e| and 0 < ay , < |ag,| for all (k,?) € N2 and so

0< At < gm,n and 0< A, < gmm for all (m,n) € N2,

m,n —

and therefore, the double sequences (4, ,,) and (A

m,n

m.n) are bounded. Using

Proposition 7.14 once again, we see that the double series ) Z(k,é) a:,e and
a, , are convergent. But ay ¢ = a; , —a, , for all (k,¢) € N°. Hence

(k.0) Ut gent. But ag, ;*1, r for all (k,0) e N2 H
the double series 37", ) ax,¢ is convergent. O

The converse of the above result does not hold, as can be seen by con-
sidering the double series » Z(k,e)(—l)ke/(kﬁ), which is convergent, but not
absolutely convergent. (See Example 7.10 (iv).) A convergent double series
that is not absolutely convergent is said to be conditionally convergent.

The notions of row-series and column-series introduced earlier can be used
to obtain the following useful characterization of absolute convergence.

Proposition 7.19. A double series ZZ(k ¢) Okt s absolutely convergent if
and only if the following conditions hold:

(i) There are (ko,%o) € N? and ag > 0 such that

m n

Z Z lake] < g for all (m,n) > (ko, o).

k=ko £=Lo
(ii) Each row-series as well as each column-series is absolutely convergent.

Proof. Suppose Z(H) ar.¢ is absolutely convergent. Since |ag¢| > 0 for all
(k,¢) € N2, Proposition 7.14 shows that condition (i) holds with (ko, {o) :=
(1,1), and Tonelli’s Theorem for Double Series (Proposition 7.15) shows that
condition (ii) also holds.

Conversely, suppose conditions (i) and (ii) hold. Let (ko,fo) and o be
as in (i). By (ii), we see that for each fixed & € N, there is 8; > 0 such
that >, |are| < Br and for each fixed ¢ € N, there is 7y > 0 such that
Dok lake] < ve. Let (ﬁmn) be the double sequence of partial double sums of
the double series -3~y ) |ax,¢|, and let py := max{ko, fo}. Then
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B P P p p po—1 p po—1 p
App =D D lawel = 30 D lawel + 3 D lawel + 3 D> la]
k=1 /(=1 k=po {=po k=1 (=1 =1 k=po

po—1 po—1
Sao+Zﬂk+Zw for p € N with p > po.
k=1 =1

This implies that the diagonal sequence (A, ,) is bounded, and therefore
by Corollary 7.5, the monotonically increasing double sequence (A, ) is

bounded. Hence by Proposition 7.14, (A, ) is convergent, that is, the double
series >3 4) @r,¢ is absolutely convergent. O

The above result will be used in Section 7.3 for obtaining several tests for
the absolute convergence of a double series.

Remark 7.20. Conditions (i) and (ii) in Proposition 7.19 are both needed
to characterize absolute convergence. For example, if we let a ; := 1 for all
k € N and ag := 0 for all (k,¢) > (1,2), then condition (i) is satisfied with
ko := 1 and fo := 2, but 3737 /) ake is not (absolutely) convergent, since
Ay = m for all (m,n) € N2, On the other hand, if we let ax ¢ := 1/(k+¢)? for
(k,¢) € N2, then condition (ii) is satisfied, but 2 (k.¢) @k,¢ s not (absolutely)
convergent, as is seen in Example 7.10 (iii). This shows also that none of the
conditions (i) and (ii) in Proposition 7.19 implies the other. &

We now show that several results for convergent double series with non-
negative terms remain valid for absolutely convergent double series.

Proposition 7.21. Let ZZ(,M) ar¢ be an absolutely convergent double se-
ries. Then the following hold.

(i) The double sequence (Am ) of partial double sums is bounded.
(i1) Each row-series as well as each column-series is absolutely convergent,

and
o0

£(E)- 555w

{=1 \k=

(iii) The corresponding diagonal series 250:1 cj s absolutely convergent, and

o0
D=0 e
Jj=1

(k,)

Proof. For (m,n) € N2 let A,, ,, and gm,n denote the (m,n)th partial double
sums of 3037 o) areand 3037 o) lake|, and let A and A denote their double
sums, respectively. N

Now (i) follows from Proposition 7.14, since |Apn| < Ap,, for all
(m,n) € N2, while (ii) follows from Proposition 7.19 and Fubini’s Theorem
(Proposition 7.11).
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To prove (iii), let 3372 ¢; and Y772, d; denote the diagonal series corre-
sponding to the double series 373 o) are and 33 ) |ak,e| respectively,
and for n € N, let C,, and D,, denote the corresponding nth partial sums. By
Proposition 7.16, it follows that D,, — A. But since |¢;| < d; for all j € N
and the sequence (D,,) is bounded, we see that the sequence (Z?Zl lcj]) is
bounded, and so the series Z;’;l c;j converges absolutely. Now it can be easily

seen that |4, , — Cp| < |Zn7" — D,,| for all n € N. Since an — A and also
D,, — A, we see that the sequences (A, ,) and (C,,) have the same limit, that

iS, Z;il cj - Z Z(k,ﬂ) ak,,e, as desired. 0

Example 7.12 (ii) shows that a double series may diverge even if the cor-
responding diagonal series is absolutely convergent. (Also, see Example 7.50
(ii) and Exercises 32, 63, 64.)

Unconditional Convergence

The notion of convergence of a double series developed in this chapter is
dependent on the order in which the terms are summed, or more precisely, on
the manner in which the partial double sums are formed. Roughly speaking,
we have been “summing by rectangles.” We have shown in Proposition 7.21
that for an absolutely convergent series, “summing by diagonals” also leads
to the same double sum. The notion of unconditional convergence defined
below is an extension of the idea that the existence of a double sum ought to
be independent of the manner in which the partial double sums are formed.
Some authors adopt this as the definition of convergence of a double series. It
will be seen, however, that this seemingly different notion is, in fact, equivalent
to absolute convergence.

For this purpose, we shall say that a sequence (S,) of subsets of N2 is
exhausting if S, is finite and S,, C S,,11 for each n € N, and Ule S, =N2.
For example, if we let S,, := {(k,¢) € N? : k <n and ¢ < n} for n € N, then
clearly (S,) is an exhausting sequence of subsets of N2. We say that a double
series Y Z(k,Z) ar¢ is unconditionally convergent if there is A € R such
that for every exhausting sequence (S,,) of subsets of N2, the limit

nh~>Holo Z Z k.t
(

k,£)eSn

exists and is equal to A. In this case A is called the unconditional double
sum of 303 4 e

It is easily seen that if 303" o) are and 3537 4 ) by,e are unconditionally
convergent double series, with A and B as their unconditional double sums,
then so are 737 o) (ak,e +bre) and 3537 ) (rak,e) for any r € R, and
moreover, their unconditional double sums are A + B and rA, respectively.

We show below that for a double series with nonnegative terms, the notions
of convergence and unconditional convergence are equivalent. This result may
be viewed as a generalization of Proposition 7.16.
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Proposition 7.22. A double series with nonnegative terms is unconditionally
convergent if and only if it is convergent. In this case, its double sum coincides
with its unconditional double sum.

Proof. Let ZE(M) ar¢ be a double series with ay ¢ > 0 for all (k,¢) € N2,
and for (m,n) € N2, let A, ,, denote its (m,n)th partial double sum.
Suppose Y Z(H) ay,¢ is unconditionally convergent and let A be its un-
conditional double sum. Consider S,, := {(k,f) € N?> : k <n and ¢ < n} and
Ap =32 (ko)es, ake for n € N. Since (Sy) is an exhausting sequence of
subsets of N2, we obtain A, — A as n — oco. Hence by Proposition 7.16, the
double series > E(k,é) ay,¢ is convergent and its double sum is A.
Conversely, suppose Y Z(k,é) aj,¢ is convergent and A is its double sum.
By Proposition 7.14, the double sequence (A, ) is bounded and moreover,
A = sup{Asn : (m,n) € N*}. Let (S,,) be any exhausting sequence of subsets
of N2, and let A4, := Y 2o (k.0)es, @k for n € N. Then the sequence (Ay) is
monotonically increasing. Moreover, since each S, is finite, A, < A, for
some (r,s) € N2, and therefore A, < A for all n € N. Consequently, (A,)
is convergent and limnﬂOO Ap = sup{A4, : p € N} < A. On the other hand,
since )~ Sp = = N2, for any (m,n) € N?, there is p € N such that (k, /) € S,
for all (k, €) € N? Wlth (k,¢) < (m,n), and therefore A,, , < A,. It follows
that sup{4, : p € N} = sup{A,,,, : (m,n) € N*} = A. Thus ZZ(M) ag,e 1s
unconditionally convergent and its unconditional double sum is A. O

To obtain an analogue of the characterization in Proposition 7.22 for dou-
ble series having terms of mixed signs, we require the following auxiliary result.

Lemma 7.23. Let ) E(k,f) ar¢ be an unconditionally convergent double se-
ries. Then there is o € R such that

ZZ lake| < a  for every finite subset S of N2.
(k,0)€S

Proof. First we show that there is 8 € R satisfying !ZZ(M)eS ak7g| < g
for every finite subset S of N2. Assume for a moment that this is not the
case. Since the set N2 is countable, we can find (ki, /1), (ka,fs),... in N2
such that N? = {(k;,¢;):j € N}. Let D, := {(kj,¢;) : j = 1,...,n} for
n € N. Set U; := D;. Then there is a finite subset 77 of N2 such that
!E Z(k’e)eTla;@g’ > 14 |ak, ¢, |, and for each n > 2, there is a finite subset T},
of N2 such that

’ZZ@H’>n+ZZ|aH| where U, := D, UTy U---UT,_1.

(k,0)ET, (k,0)EU,

Define S,, := T,, UU, for n € N. Then it is easily seen that (S,) is an
exhausting sequence of subsets of N2. If for n € N, we let V,, := S,, \ T},, then
V, C U, and
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’ZZaH’ = ’ZZ@M—FZZ@M‘ > ’ZZa“’—ZkaA > n.

(k,0)eS, k£)ET, (k,0)eV, k,0)ET,, (k,0)eU,

Hence lim,,_, ZZ(,M)G s, Gk, cannot exist, which is a contradiction. This
proves that there is § € R satisfying the inequality stated at the beginning of
the proof.

Now, given any finite subset S of N?, if we let ST := {(k,¢) € S : ay¢ > 0}
and S™ = {(k,¢) € S : ak,e < 0}, then

ZZ|ak,e| = ‘ ZZ ak,e’-F‘ZZ ak,é‘ <2

(k,0)es (k,0)es+ (k,0)esS—
We obtain the desired result upon letting o := 20. a

Proposition 7.24. A double series is unconditionally convergent if and only
if it is absolutely convergent.

Proof. Suppose > Z(k,é) ay,¢ is an unconditionally convergent double series.
By Lemma 7.23, the partial double sums of 3" ;) |ak,¢| are bounded, and
hence by Proposition 7.14, we see that 3>, ) |ak,| is convergent, that is,
22 2 (k,0) Qk,¢ is absolutely convergent.

Conversely, suppose »_ Z(H) ay,e is an absolutely convergent double se-
ries. For each (k,f) € N2, let a;e and a; , be as in the proof of Proposition
7.18. Then > 3" a;é and }- > ) ay,, are convergent double series with
nonnegative terms, and therefore by Proposition 7.22, both of them are un-
conditionally convergent. Since axl = a:,e —ay,, for all (k,£) € N2, it follows
that »° ", o) @k, is unconditionally convergent. O

In view of Propositions 7.18, 7.22, and 7.24, we see that an unconditionally
convergent double series is always convergent, and its unconditional double
sum is equal to its double sum. However, since there do exist conditionally
convergent series (Example 7.10 (iv)), we also see that a convergent double
series need not be unconditionally convergent.

7.3 Convergence Tests for Double Series

In this section, we discuss several practical tests for deciding the convergence
or divergence of a double series. We have already encountered the simplest
among these, namely the (k, ¢)th Term Test. In what follows we first consider
tests for absolute convergence and later, tests for conditional convergence.

Tests for Absolute Convergence

The following simple test is widely used for determining the absolute conver-
gence of a double series.
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Proposition 7.25 (Comparison Test for Double Series). Let ay¢ and
bi.e be real numbers such that |ag | < by for all (k,0) € N2 If Y Z(k,é) bie
is convergent, then ZZ(k,Z) ar¢ 1s absolutely convergent and

‘ Zzau‘ < Zzbk,é-
(k,0) (k,0)

Proof. Suppose »_ Z(k ¢) bk,¢ is convergent. For (m,n) € N2, we have

< ZZ lak,e| < Zzbk,€~

k=1/¢=1 k=1 ¢=1

m n

DD ane

k=1/¢=1

Since by, > 0 for all (k,¢) € N2, the double sequence of the partial double
sums of 3737, ) br,¢ is bounded above (Proposition 7.14). By the second of
the above inequalities, the same holds for 37, [ax,¢|- Also, since |ax,¢| = 0
for all (k,¢) € N2, it follows from Proposition 7.14 that 2 (k0 [k e] is con-
vergent, that is, > Z( o,0) Ok, is absolutely convergent. The above inequalities

also imply that ‘Z 2o (k0) ak,g’ <Dk kel £ 32350 Okt O

The above result can also be stated as follows: If |ag¢| < b, for all
(k,¢) € N? and if 22 2 (k,0) || diverges to oo, then so does 373 ) bie.
The geometric double series and the double series } 3" ;) 1/kP4?, where
p,q € R, are often useful in employing the Comparison Test for Double Series.

Examples 7.26. (i) For p € R and (k,¢) € N2 let ax, = 1/(kP + (7).
Assume that p > 2 and let by, = 1/2(k()P/2 for (k,f) € N2. Then
lak,e| < by for (k,£) € N? by the A.M.-G.M. inequality. Hence by the
Comparison Test, » Z(k,é) ay,¢ is convergent. Next, let p < 2 and define
bee = 1/(k + £)% for (k,¢) € N2. Then |ag,| > 1/(k® + %) > by for
(k,¢) € N2, Hence by the Comparison Test, 2 2 (ke) Wkt I8 divergent.
For a more general result along these lines, see Exercise 70.

(ii) For (k,?) € N2, let ak, = (285° + k%) /(3K7% + k3 + ¢*). Define by, :=
(2/3)k(5/7)¢ for (k,€) € N2. Since k¢? < 2F5¢ and k3 +¢* > 0, we see that

2F5¢ + 25"
3kt
Hence by the Comparison Test, Y Z(k,f) ar.¢ is convergent.

(iit) Let age := 1/(1 4+ k + £ + k€ + k3H'/2 for (k,£) € N2, Define by, :=

1/k3/202 for (k,¢) € N2. Then |ag | < by for all (k,¢) € N2, Hence by
the Comparison Test, >3 ;) ax,¢ is (absolutely) convergent. <&

lar,e| < = 2by, ¢ for all (k,¢) € N2,

We shall now consider analogues of the limit comparison test, the root
test, and the ratio test for double series. We first state some basic results in
the case of a (single) series for ease of reference. For proofs of these results,
see, for example, Corollary 9.12, and Propositions 9.15 and 9.16 of ACICARA.
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Fact 7.27. Let (ay) be a sequence of real numbers.

(i) Assume that ar, > 0 for all k € N. Let (b;) be a sequence of positive real
numbers such that a /by, — 1 as k — oo, where r € R with r # 0. Then the
series Y, ai is convergent if and only if the series )y, by is convergent.

(ii) If there is o € R with a < 1 such that |ax|*'* < a for all large k, then the
series Y., ay, is absolutely convergent. If |ax|'/* > 1 for infinitely many
k € N, then the series Zk ay, 1s divergent.

(iil) If there is o € R with o < 1 such that |ag41| < alag| for all large k, then
the series Y, ay is absolutely convergent. If |ary1| > |ar| > 0 for all large
k € N, then the series y_, ay is divergent.

The following result will lead us to the limit comparison test for double
series, which is often easier to use than the comparison test.

Proposition 7.28. Let (ay ) and (bi¢) be double sequences such that by, # 0
for all (k,¢) € N2. Suppose each row-series as well as each column-series
corresponding to both 373~ ;. oy ar.e and Y237 o) bie is absolutely convergent,
and ag.¢/bge — 1 as (k, ) — (00,00), where r € RU{zxoo}.
(i) If bge > O for all (k,¢) € N2, 22 2 (k,0) bie,e is convergent, and r € R, then
22D (k) Gkt 15 absolutely convergent.
(ii) If ake > 0 for all (k,¢) € N2, 3" Z(H) ag,¢ is convergent, and r # 0, then
2= 2 (k) br,e is absolutely convergent.

Proof. (i) Suppose by > 0 for all (k,/) € N2 and the double series
ZZ(,M) bi,e is convergent. Let r € R be such that Since ag /by ¢ — 7 as

(k,£) — (00,0). Then there is (ko, o) € N? such that for all (k,£) > (ko, 4o),
(r—1)bge < are < (r+1)bge andso |age| < max{|r —1|,|r+ 1|}bg.e.

Also, by Proposition 7.14, there is 4 > 0 such that ;" > by < 3 for
(m,n) € N2. Hence for all (m,n) > (ko, £o), we have

m n m n
Z Z lag,e] < max{|r — 1], |r + 1|} Z Z bi,e < max{|r — 1|, |r + 1|}5.
k=ko (=Lo k=Fko £=Lo

By Proposition 7.19, the double series ) Z(H) ay,e is absolutely convergent.

(ii) Suppose ag¢ > 0 for all (k,¢) € N? and r # 0. Then the limit of
bie/ake as (k,f) — (0c0,00) is 1/r or 0 according as r € R or r = £oo. By
interchanging ay ¢ and by ¢ in (i) above, the desired result follows. O

Corollary 7.29 (Limit Comparison Test for Double Series). Let (ax¢)
and (bg,e) be double sequences of positive real numbers. Suppose each row-
series as well as each column-series corresponding to both ZZ(,M) ape and

22 (k0 Dk, is convergent, and
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Qe

im =7, wherer € R and r # 0.
(k,0)—(oc0,00) br. ¢

Then
Z ag,e 18 convergent < Z br.¢ is convergent.
(k,€) (k,0)

Proof. The implication = follows from part (ii) of Proposition 7.28, while
the reverse implication <= follows from part (i) of Proposition 7.28. O

Remark 7.30. In the Limit Comparison Test for Double Series, the condition
r € R and r # 0 cannot be dropped. To see that » = 0 will not work, let

and by = for (k,¢) € N2,

1 1

W= p2p2 T (ke 0)2
Then limg_.oo(age/br,e) = 1/k? for each k € N and limg_.o0 (ag ¢/br,c) = 1/¢
for each ¢ € N. Hence by Fact 7.27 (i), we see that each row-series as well as
each column-series corresponding to both » 3" /) are and 3237 4 bee is
convergent. However, lim, 7). (00,00) (@k,¢/bk,¢) = 0, and as shown in Examples
7.10 (iii), the double series >3 /) ak,e converges, while the double series
ZZ(,M) bi,¢ diverges. By interchanging the definitions of ax ¢ and by ¢, we
see that » = oo will also not work. <

Examples 7.31. (i) Let ay, := sin(1/k*¢?) for all (k,¢) € N2. Consider
bpe = 1/k?¢? for all (k,f) € N2, and observe that (aj¢/bxe) — 1 as
(k,€) — (00,00). Since 3} > ; ) br.e is convergent, Corollary 7.29 shows
that > >~ o) ak,e is convergent.

(i) Let ag,¢ := sin (1/(k + €)?) for all (k,¢) € N2. Consider by :=1/(k + ()?
for all (k,¢) € N2, and observe that (ax¢/bk) — 1 as (k,£) — (00, 00).
Since }° " 4 o) br,e is divergent, Corollary 7.29 now shows >° 3", ) ak.
is divergent. &

The following result will lead us to Cauchy’s root test, or simply the root
test, which is one of the most basic tests to determine the absolute convergence
of a double series.

In what follows, we shall say that a statement holds whenever “both k
and ¢ are large” to mean that there is (ko, £p) € N? such that the statement
holds for all (k,¢) € N2 with (k, ) > (ko, (o).

Proposition 7.32. Let (ay¢) be a double sequence of real numbers.

(i) Suppose each row-series as well as each column-series corresponding to
> Z(k,é) ay,¢ 15 absolutely convergent. If there is o € R with o < 1 such
that |ak,g|1/(’“+€) < « whenever both k and ¢ are large, then > Z(k,é) Ak
15 absolutely convergent.

(ii) If for each (ko,ly) € N2, there is (k,¢) € N2 such that (k,0) > (ko, o)
and |ag |V 0 > 1, then 3 2 (k) Gkt B8 divergent.
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Proof. (i) Suppose there are a € R with o < 1 and (ko, £y) € N2 such that
lag |/ *+0 < o for all (k,€) > (ko, o). Then o > 0 and

m m

Z Xn: |ak.e| < ( Z ozk) ( Xn: o/) < (1 —1a)2 for (m,n) > (ko, £o).

k=kq £=0o k=ko 1=ty

Hence (i) follows from Proposition 7.19.

(ii) Suppose for each (ko,¢) € N2, there is (k,¢) € N2 such that
(k,0) > (ko,to) and |ak7g|1/(k+5) > 1, that is, |age| > 1. Hence ag,e # 0
as (k,f) — (00,00). By the (k,¢)th Term Test (Proposition 7.8), it follows
that >° >y ) ak,e is divergent.

O

Corollary 7.33 (Root Test for Double Series). Let (ax¢) be a double
sequence of real numbers such that |ag |/ *+9 — a as (k,£) — (00, 00), where
a € RU{oo}. If each row-series as well as each column-series corresponding to
2 2 (k0) @kt 15 absolutely convergent and a <1, then 373, 4 @k, is abso-
lutely convergent. On the other hand, if a > 1, then ) Z(k,e) ay,¢ s divergent,
and all but finitely many row-series and column-series are also divergent.

Proof. The first assertion follows from part (i) of Proposition 7.32 with
a = (1 + a)/2. Now suppose a > 1. Then there is (ko,fy) € N2 such that
lag |/ *+0 > 1 for all (k, £) > (ko, Lo). Part (ii) of Proposition 7.32 shows that
> Z(k,é) ay¢ is divergent. Also, for each fixed k > ko, we see that ar¢ /4 0
as £ — oo, and hence the row-series ), ax ¢ diverges. Similarly, for each fixed
£ > {y, the column-series >, aj, diverges. a

The following result will lead us to D’Alembert’s ratio test, or simply the
ratio test, which is another basic test to determine the absolute convergence
of a double series.

Proposition 7.34. Let (ai¢) be a double sequence of real numbers.

(i) Suppose each row-series as well as each column-series corresponding to the
double series E(k,f) ar.¢ is absolutely convergent. If there is o € R with
a < 1 such that either |ag 41| < alak,e| whenever both k and ¢ are large,
or |akt1,e| < alage| whenever both k and € are large, then 323" 4) ke
15 absolutely convergent.

(ii) If min{|ak e41]s |ar+1.¢|} > |ake] > 0 whenever both k and £ are large,
then ZZ(,M) ar¢ s diwergent, and all but finitely many row-series and
column-series are also divergent.

Proof. (i) Suppose there are a € R with o < 1 and (ko, £y) € N2 such that
|ak,e+1] < atlak,e| for all (k,€) > (ko, o). We may assume that o > 0. Now

lak.e] < alage—1] <--- < a£_£°|ak,go| for all (k,¢) > (ko, o).
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Since 0 < a < 1, we see that > ,_ o’ < 1/(1 — ) for all n € N. Also,
since the series ), ay¢, is absolutely convergent, there is 5 > 0 such that
S lak.e,| < B for all m € N. Consequently,

m n —lo
Z Z |ak.e| < O{_f for all (m,n) > (ko, £o).

k=ko £=Lo

Hence by Proposition 7.19, 373, ;) ax,¢ is absolutely convergent. A similar
argument holds if there are a € R with o < 1 and (ko, ¢y) € N2 such that
|ak+1.¢| < alag| for all (k,£€) > (ko, lo).

(ii) Suppose there is (ko,fp) € N? such that min{|ages1,apr1.0]} >
lag,e| > 0 for all (k,£) > (ko, o). Then

lak,el > lake—1] > -+ > lake,| = [ak—1,60] > -+ > |arg,e| >0

for all (k,¢) > (ko,{o). Since ak, ¢, # 0, we see that ap, /4 0 as (k,{) —
(00,00), and further, for each fixed k > ko, ag¢ # 0 as £ — oo and for each
fixed £ > £y, are # 0 as k — oo. The desired results now follow from the
(k, £)th Term Test for double series (Proposition 7.8) and the kth Term Test
for (single) series (given, for example, in Proposition 9.6 of ACICARA). O

Corollary 7.35 (Ratio Test for Double Series). Let (ay¢) be a dou-
ble sequence of nonzero real numbers such that either |ag +1|/|ake| — a or
lagt1,el/ake] — @ as (k,0) — (00,00), where a,a € RU {oco}. If each row-
series as well as each column-series corresponding to ZZ(H) ay,e s abso-
lutely convergent and a < 1 or a < 1, then ) Z(H) ay,e s absolutely conver-
gent. On the other hand, if a > 1, then > Z(k,é) ay¢ is divergent and all but
finitely many row-series are also divergent, while if a > 1, then ) Z(k,é) Q.0
is divergent and all but finitely many column-series are also divergent.

Proof. The first result is a consequence of part (i) of Proposition 7.34 with
a:=(l4+a)/20r a:=(1+a)/2 according as a < 1 or a < 1.

Now suppose a > 1. Then there are o € R with a > 1 and (ko,£o) € N2
such that |ax ¢+1|/|ake] > o for all (k, ) > (ko, o). Then

lak.e| > alake—1] > -+ > aé_é°|ak7go| for all (k,¢) > (ko, o).

Given any (k1,¢1) € N2 let k := max{ko, k1}. Since o > 1 and ay ¢, # 0, we
can find ¢ > max{{y, {1} such that ()é€7€0|ak7g0| > 1. Then k > ki, £ > £1, and
lak,e| > 1. This shows that ax,¢ /> 0 as (k,¢) — (00,00), and 80 3>, 4 @,
is divergent by the (k, ¢)th Term Test. Also, for each fixed k > ko, we have
lak.e| > a*=*lage,| > |ag.e,| > 0 for all £ > £y, and so age # 0 as £ — oo,
which implies that )", ax ¢ is divergent. Similar arguments hold if @ > 1. O

A variant of the comparison test involving ratios of successive terms of
two double series, called the ratio comparison test, for is given in Exercise 18.
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Applying this test to the double series 373" ;) 1/(k()?, where p > 0, one
can obtain an analogue of Raabe’s test (stated, for example, in Exercise 13
of Chapter 9 of ACICARA) for double series. It is particularly useful when
|ak.e+1]/|ak,e| — 1 and |aky1.e|/|ak,e] — 1as (k,£) — (00, 00). See Exercises 19
and 21. Finally, we remark that there is a very useful test for the convergence
for a double series of nonnegative terms, known as the integral test. It is based
on “improper double integrals” and will be given in Proposition 7.57.

Examples 7.36. (i) If the limit a in the Root Test (Corollary 7.33) is equal
to 1, then the double series 373", ;) ar¢ may converge absolutely or it
may diverge. The same holds if the limits ¢ and a in the Ratio Test
(Corollary 7.35) are equal to 1. For example, let ag, := 1/k*/* and
bee == 1/(k + €)% for (k,¢) € N2. Then it is easy to see that each row-
series as well as each column-series corresponding to both ) Z(k,é) )
and 0>, ) br,¢ is (absolutely) convergent and all the above-mentioned
limits are equal to 1 for both cases. However, as we have seen in Exam-
ple 7.10 (iii), X2 3" 4 ) ak,e is (absolutely) convergent, but >3-, ) bk, is
divergent.

(ii) Let p > 0 and for (k,£) € N2, let ay := (k + £)?/2¥3". It is easy to see
(using Fact 7.27 (iii), for example) that each row-series as well as each
column-series corresponding to Y Z(H) ar¢ is (absolutely) convergent.
Since |ag,e+1|/]ar,e] — 1/3 as (k, ) — (00, 00), Corollary 7.35 shows that

Z(k,é) ak,e is (absolutely) convergent. Alternatively, the same conclu-
sion follows by noting that |axt1.|/|ak.e] — 1/2 as (k,£) — (00, 00).

(iii) For (k,¢) € N2 let ar, = (k + £)!/2*3°. Since ak¢r1/are — oo as
(k,€) — (00,00), Corollary 7.35 shows that >3 ;) axe is divergent.
Alternatively, observe that ay, > (k!/2%)(0!/3%) > 1 for (k,¢) > (4,7),
and so the (k,¢)th Term Test shows that }> 3", /) ak, is divergent.

n

(iv) For (k, ) € N2, let apy := (k + )!/(k + £)*™*. Since (1 + (1/n))" — e
as n — 00, where e is the base of the natural logarithm, we see that
ake+1/ake — 1/e as (k,£) — (00,00). Also, for each fixed k € N,
we have limy_,o ag ¢41/are = 1/e, and for each fixed ¢ € N, we have
limy o0 Grt1,0/ake = 1/e. Since e > 1, Corollary 7.35 and Fact 7.27 (iii)
show that 33" ,) ak,e is (absolutely) convergent.

(v) For (k,¢) € N2, let

’ N if &K+ { is even,
Ak ¢ =

ke if k+ ¢ is odd.

Since |ak o+1|/|ak.e| = |ars1.el/|are] = 28+ /3FHFL < 4/27 if k4L is even,
and |ak’g+1|/|ak,g| = |ak+1,g|/|ak’g| = 3k+é/2k+£+1 > 27/16 if k+£ is Odd,
the Ratio test for Double Series (Corollary 7.35) is not applicable to this
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example. For the same reason, Proposition 7.34 is also not applicable.
Further, since the double sequence (|ag ¢|'/*+9) does not converge, the
Root Test for Double Series (Corollary 7.33) is not applicable. However,
since |ay¢|'/* and |ay ¢|'/* are less than or equal to 1/2 for all (k, £) € N2,
we see that each row-series as well as each column-series corresponding to
22 2 (k0) @k,e is (absolutely) convergent. Also, |ag, e[/ B0 < T < 1 for all
(k,?) € N2, and hence Proposition 7.32 is applicable. Thus > Z(k,f) Ak
is (absolutely) convergent. <&

Tests for Conditional Convergence

Now we turn to tests for conditional (that is, nonabsolute) convergence. They
are based on the following result, which may be compared with the well-known
partial summation formula, which states that if n € N with n > 2, a) and by
are real numbers for k = 1,...,n, and we let B, := ZZ:1 b, then

n n—1
Z akbk = CLan + Z(ak — CLk+1)Bk.
k=1 k=1

(See, for example, Proposition 9.19 of ACICARA.)

Proposition 7.37 (Partial Double Summation Formula). Consider
(m,n) € N2 with (m,n) > (2,2). Fork =1,...,m and £ = 1,...,n, let
a,e and by be real numbers, and let By, y, := > 01 > y_y bre. Then

n m—1n—1

m
g ak,ebk¢ = UmnBmon + E E (ke — Qrt1,0 — Ok o+1 + k+1,041)Broe
k=1 ¢=1 k=1 ¢=1

m—1 n—1
+ Z (ak,n - ak:Jrl,n)Bk,n + Z(am,é - am,€+1)Bm,€'
k=1 =1

Proof. Since by ¢ = B¢ — Bi—1.¢— Bre—1+ Br—1,0—1 (with the usual conven-
tion that Boo = 0,Bos =0, and By = 0 for (k, /) € N?), we obtain

n n n n n
E ag,ebre = E a0 Byo — E ageBr_1.0— E ag B o1+ E ageBr—1,0-1.
=1 =1 =1 =1 =1

Hence
m n m n m—1 n
g g ak,ebk,eZE E a0 By — g E Q41,08
k=1 (=1 h=1 =1 k=1 (=1

- Z ak 0418k + Z Z k11,041 Bk

m n—1 m—1n—1
=1 (=1 k=1 (=1
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Upon rewriting the double sum Y ;" | >}, ag¢By.e in the above equality as

m—1n—1 n—1

Am.n mn+ Z Zakéka‘i‘ Zakann‘f’ZamiBmia

k=1 (=1

and collating appropriate terms, we obtain the desired identity. a

We shall now consider an important test for conditional convergence of a
double series that is analogous to Dirichlet’s test for series, given, for example,
in Proposition 9.20 of ACICARA.

Proposition 7.38 (Dirichlet’s Test for Double Series). Let (ar¢) and
(br¢) be double sequences of real numbers such that

(1) (ake) is bimonotonic,

ii) for each fized ¢ € e sequence given — ag. ¢ s monotonic, an
(ii) fe h fized £ € N, the seq given by k L0 tonic, and

for each fized k € N, the sequence given by £ — ay, ¢ is monotonic,

i) limg oo @k ke, liMg oo a1, and limy_,o ay ¢ exist, and each is equal to

iii) li &, i 1, and li i ist, and each is equal to 0,
iv) the double sequence of partial double sums o ke s bounded.

iv) the doubl tial doubl (k,0) Dk,¢ s bounded

Then the double series » Z(k,Z) ag,eby.e is convergent and the double sequence
of its partial double sums is bounded.

Proof. First we show that ap, — 0 as (k,¢) — (00,00) and that (agr) is
bounded. Let € > 0 be given. By hypothesis (iii), there is ky € N such that

(k,0) € N2 with (k,€) > (ko, ko) = |ari| <€, |ari] <e, and |aj| <e.

Let us consider (k,¢) € N? with k > ko and ¢ < k. By hypothesis (ii), either
a1 < apye < Qg OF k1 > G > A k. Since both ay 1 and agf are in the
open interval (—e,€), we see that ay ¢ € (—¢,€). Similarly, if (k, ¢) € N? with
0 > ko and k < ¢, then agy € (—¢,¢€). Thus for all (k,¢) € N? with either
k> ko or £ > ko, we have |ax¢| < e. Since € > 0 is arbitrary, this implies that
ake — 0 as (k, ) — (00,00). Also, letting € := 1 and « := max{|ag¢| : 1 <
k.0 < ko}, we obtain |ay¢| < max{1, a}, showing that (ax,) is bounded.

We now examine each term on the right side of the Partial Double Summa-
tion Formula (Proposition 7.37). Recall that the first term is @y, 5, B, n, where
By = ka:1 22;1 by.e for (m,n) € N2. Since (By,.,,) is bounded, thanks to
hypothesis (iv), there is 3 > 0 such that |B,, | < 8 for all (m,n) € N2
Since amy — 0 as (m,n) — (00,00), it follows that an, nBmn, — 0 as
(m,n) — (00, 00).

As for the second term, note that by hypothesis (i), the double sequence
(ak,¢) is bimonotonic, and hence for all (m,n) > (2, 2),
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m—1n—1
[(ak,e — ry1.6 — Qkes1 + Glt1,041)Br g
k=1 (=1
m—1n—1
<p Z Z(ak,e — Akg1,0 — Qg1 + Qh1,041)
k=1 (=1

= Blai1 — tm,1 — @1, + Gmynl,

as we have seen in the proof of Proposition 7.13. Since the double sequence
(@m,n) is bounded, it follows from Proposition 7.14 that the double series
> Z(,M)(ak,g — Qg1 — Qo+1 + Qkt1.041)Br e is absolutely convergent. By
part (i) of Proposition 7.21, its partial double sums are bounded, and by
Proposition 7.18, it is convergent. Let C' denote its double sum.

As for the third term, note that since for each fixed n € N, the sequence
k — ay , is monotonic, it follows that for all (m,n) > (2,2),

m—
E ak:,n - ak:Jrl,n)

Since a1, — 0 as n — o0, and @, — 0 as (m,n) — (00, 00), we see that

m
Z ak:n _ak+1n Bkn > :ﬂ|a1,n _am,n|~

k=1

|15, — @m,n] — 0, and so Zm 1(ak7n — akt1,n)Brn — 0 as (m,n) — (00, 00).
Similarly, it follows that 24:1 (@m0 — @me+1)Bme — 0 as (m,n) — (00, 00).
By the Partial Double Summation Formula, we obtain

Zak,gbk,g —-04+C+0+0=C as(m,n) — (0c0,00).
14=1

Ms

El
Il

Thus the double series ZZ(M) ak,ebi,¢ is convergent. Also, since each of
the four terms on the right side of the Partial Double Summation Formula
is bounded, we see that the double sequence of the partial double sums of
> Z(k,é) a,ebk,¢ is bounded. m|

For a similar result, which is analogous to Abel’s test for series (given,
for example, in Exercise 17 of Chapter 9 of ACICARA), see Exercise 48. For
generalizations of both these results, which are analogous to Dedekind’s tests
for (single) series (given, for example, in Exercise 19 of Chapter 9 of ACICARA),
see Exercise 49.

Corollary 7.39 (Leibniz’s Test for Double Series). Let (ax¢) be a dou-
ble sequence of real numbers satisfying conditions (i), (ii), and (iii) given in
Proposition 7.58. Then the double series 323 (= )" ay o is convergent.

Proof. Define by, := (—1)*** for (k,€) € N? and By := Y ey > gy bie for
(m,n) € N2. Then

_ - Nk - _ye| _ J 0 if either m or n is even,
Brmun = (Z( b ) (Z( 1) ) o {1 if both m and n are odd.

k=1
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Hence the double sequence (B, ) is bounded. Now Proposition 7.38 shows
that the series Y- 35, ;) (—1)**ay ¢ is convergent. O

In the next corollary, we shall use the trigonometric identities

B¢ 1 B
sin ) ngl sin(A + jB) = sin (A + p; B) sin p2
and .
B 1 B
sin 5 g cos(A + jB) = cos (A + p—; B) sin p2 ,

j=1
where A, B € R and p € N. These can be easily derived by expressing the left
hand sides as telescoping sums.

Corollary 7.40 (Convergence Test for Trigonometric Double Series).
Let (ak¢) be a double sequence of real numbers satisfying conditions (i), (ii),
and (iii) of Proposition 7.38. Let 0 and ¢ be real numbers, neither of which is
an integral multiple of 2m. Then the double series

Z Z agesin(kd + lp) and Z Z a,¢ cos(kO + Lp)
(K,0) (K,€)
are convergent.

Proof. For (m,n) € N2, define

m n m n

By = Z Z sin(kf + lp) and Cp,., = Z Z cos(kO + Lp).

k=1t=1 k=1¢=1

Since neither of § and ¢ is an integral multiple of 27, we have sin(6/2) # 0 and
sin(p/2) # 0. Using the above-mentioned trigonometric identities, we obtain

T [ sin (k6 + "J1 ) sin " sin ¥ sin ("Slo + ™)) sin Y
Bpn = Z = .

P P 0
Pt sin ¥ sin ¥ sin
and
" [cos (kO + "§ ) sin Y sin ¥ cos ("$lo+ ™) sin Y
Crmun = sin ¥ T osin? in? '
Pt 4 4 sin

It follows that

Bl < 5 ., and [Conl< 5 for all (m,n) € N2
| sin 5 sin 7| | sin 5 sin 7|

Letting by ¢ := sin(kf + L) for (k,£) € N2 in Proposition 7.38, we see that
22 2 (k) ke Sin(kO + L) is convergent. Similarly, 37 o) ar,e cos(k8 + L)
is convergent. O
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We observe that Corollary 7.39 is a special case of Corollary 7.40 with
0=m=.

Remark 7.41. If both 6 and ¢ are integral multiples of 27, then sin(k0 +
lp) = 0 and cos(kf + £p) = 1 for all (k,¢) € N2, and so each term of the
double series D >, ) ak,e sin(k0+Lyp) is equal to zero, while the double series
22 2 (k) @k c08(KO + L) is just the double series 3~ 4 ak,e, which may
converge or diverge. Next, assume that one of  and ¢ is an integral multiple
of 27 but the other is not. Suppose 6 = 2pm for some p € Z and ¢ # 2qn for
any q € Z. Then sin(kf + lp) = sin(lp) and cos(kf + Lp) = cos(p) for all
(k,¢) € N2. Depending on the choice of the double sequence (ay, ) (satisfying
conditions (i), (ii), and (iii) given in Proposition 7.38) and on the choice
of ¢, the double series > 3" /) @k, si.n.(&p) and ZZ(W) ag.¢ cos(ly) may
converge absolutely, may converge conditionally, or may diverge. Examples of
these cases are given in Exercise 23. O

Example 7.42. Let p > 0 and ag ¢ := 1/(k + £)? for (k,¢) € N2. Then (a.r)
satisfies conditions (i), (ii), and (iii) of Proposition 7.38, thanks to Example
7.7 (ii). Hence by Leibniz’s Test, the double series

is convergent. In fact, by Example 7.17 (i), this double series is absolutely
convergent if p > 2 and it is conditionally convergent if 0 < p < 2. On the
other hand, the (k, £)th Term Test shows that it is divergent if p < 0.

Further, if # and ¢ are real numbers neither of which is an integral multiple
of 27, then Corollary 7.40 shows that the double series

sin(k0 + L) cos(kO + L)
and
22 (ke by 22 oy

are convergent. <O

7.4 Double Power Series

For nonnegative integers k and ¢, let ¢, € R. The double series

ZZ ck,gxkye, where (z,y) € R?,

(k,£)=(0,0)

is called a double power series (around (0,0)), and for (k,¢) > (0,0), the
real number ¢y, ¢ is called its (k, £)th coefficient. Henceforth when we consider
a double power series > E(k,é) crex®y’, it will be tacitly assumed that the



404 7 Double Series and Improper Double Integrals

index (k, £) varies over the set of all pairs of nonnegative integers (and not over
N?) and that the coefficients cg ¢ are in R. For (m,n) > (0,0), the (m,n)th
partial double sum of the double power series > Z(H) ck,gxkye is

mn‘ry chkéxy

k=0 £=0

It is clear that if (z,y) = (0,0), then for any choice of the coefficients cy ¢,
the double power series Y Z(H) ck,gackye is convergent and its double sum
is equal to cp0. Also, if z € R and y = 0, then the double power series is
convergent if and only if the (single) power series > - ckox” is convergent,
and likewise, if x = 0 and y € R, then the double power series is convergent if
and only if the (single) power series Y.~ coe y' is convergent. On the other
hand, if there is (ko, %) € N? such that ¢, = 0 whenever either k > ko or
¢ > (g, then the double power series is convergent for any (z,y) € R?, and its

double sum is equal to
ko 40

Z Z ijxkye.

k=0 £=0

More generally, if (9, yo) € R?, then the double series

S crulz — o) (y — o)

(k,£)=(0,0)

is called a double power series around (zg,yo). Its convergence can be
discussed by letting & = x — x¢p and ¥ = y — yo, and considering the double
power series 3 ;. ) cr TR gL

Typical sets of points (x,%) in R? for which a double power series is con-
vergent are illustrated by the following examples.

Examples 7.43. (i) Let cx ¢ := k"¢ for (k,£) > (0,0), and let (z,y) € R2. If
x # 0 and y # 0, then |ck,gacky€| > 1 for all (k,¢) € N2 satisfying k > 1/|z|
and ¢ > 1/|y|, and so by the (k,¢)th Term Test (Proposition 7.8), the
double power series Y > (k.0) crex®y® is divergent. Similarly, if 2 # 0 and
y = 0, then the series EZ’;O crox® is divergent, and if z = 0 and y # 0,
then the series Y2 co ¢ y is divergent. Thus we see that the double power
series Y 3" 4 Ck, gxkye is convergent if and only if (z,y) = (0,0).

(ii) Let ¢ := 1/k!! for (k,€) > (0,0). It follows from Example 7.10 (ii) that
the double power series > Z(k,é) crex®y* is convergent for all (x,y) € R2.

(iii) Let a and b be nonzero real numbers, and let ¢y, := a*b* for (k,¢) >
0,0). It follows from Example 7.10 (i) that the double power series
(0,0) p p
222 (k0 crex®y is convergent if and only if |az| < 1 and |by| < 1, that
is, || < 1/]al and |y| < 1/|b|.
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(~1,0) \ D> (1,0)
0,—1) Y

(0,-1)

Fig. 7.2. Illustration of sets of convergence: The horizontal strip and the y-axis, the
region bounded by rectangular hyperbolas, and the diamond-shaped region on which
the double power series in Examples 7.43 (iv), (v), and (vi) converge, respectively.

(iv) For (k,¢) > (0,0), let

1 ifk=1,
C =
PO o itk £

Then for (z,y) € R?, the partial double sums of the double power series
> Z(k,é) crerty® are Ag ., (7,y) := 0 for n > 0, and

Apon(x,y) = nyé for (m,n) > (1,0).
=0

Consequently, the double power series converges absolutely if z = 0 or
ly| < 1, while it diverges if  # 0 and |y| > 1. It follows that the set of
(x,y) € R? for which this double power series converges is the horizontal
strip R x (—1, 1) together with the y-axis, as shown in Figure 7.2. On this
set, the convergence is absolute.

(v) For (k,¢) > (0,0), let
{1 if k=0,
Ck =

0 if kL.

Then for (z,7) € R?, the partial double sums of the double power series
32 Yo (hyty Oy are

min{m,n}

Amn(@,y) == > (zy)’ for (m,n) > (0,0).

p=0

Using the fact that the geometric series > a” converges absolutely if |a| <
1, while it diverges if |a| > 1, we see that the double power series converges
absolutely if |ry| < 1, while it diverges if |xy| > 1. Thus the subset of
R? on which this double power series converges is precisely the region
{(z,y) € R? : =1 < zy < 1} bounded by the rectangular hyperbolas
zy = 1 and xy = —1, as shown in Figure 7.2. On this set, the convergence
is absolute.
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(vi) Let ¢y := (k + €)!1/k!! for (k, ) > (0,0), and let (x,y) € R As in the
proof of part (iii) of Proposition 7.16,

Ny SRSt |x| W FoNE ,
DD lewellalfylt < Y0 > =D (lal + 1yl
k=0 £=0 j=0 k=0 3=0
for (m,n) > (0,0), whereas
n n n _] .] x| |y| _k. n
S el et = 330 = 3 (al + lyly
k=0 £=0 =0 k=0 =0

for n > 0. Thus, in view of Example 7.10 (i), we see that the double power
series >3 o crox®y’ converges absolutely if and only if || + |y| < 1.
The subset of R? on which this double power series converges absolutely
is the diamond-shaped region {(z,y) € R? : |z| + |y| < 1}. It turns out
that the set on which the double series converges is this diamond-shaped
region together with the open line segment joining (—1,0) and (0, —1), as
shown in Figure 7.2. (Compare Example 7.50 (ii). See Exercise 57.) <

The above examples show that the set of all (x,y) € R? for which a
double power series > > (k,0) cr0x®y’ converges (absolutely) can be of a varied
nature. This is in contrast to the convergence of a (single) power series for
which the corresponding subset of R is always an interval. In this connection,
we recall following result (Lemma 9.25 of ACICARA) for (single) power series.

Fact 7.44 (Abel’s Lemma). Let 29 € R and let ¢, € R for k > 0. If the
set {ckxo k> O} s bounded, then the power series Zk 0 ek s absolutely
convergent for every x € R with |x| < |zo|.

This leads, as in Proposition 9.26 of ACICARA, to the following fundamental
result about the (absolute) convergence of a (single) power series.

Fact 7.45. FEither a power series Y cxx® converges absolutely for all x € R,

or there is a mnonnegative real number r such that it converges absolutely for
all z € R with |z| < r and diverges for all x € R with |x| > r.

The radius of convergence of the power series is defined to be oo in
the former case, and it is defined to be the unique nonnegative real number r
with the stated properties in the latter case. We shall now attempt to obtain
analogues of the above results for double power series.

Lemma 7.46 (Abel’s Lemma for Double Power Series). Let (zo,yo) be
in R? and let cp o € R for (k,€) > (0,0). If the set {coxiys : (k,0) > (0,0)}
is bounded, then the double power series EZ(k,Z) crex®y® is absolutely con-
vergent for every (x,y) € R? with |z| < |zo| and |y| < |yol.
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Proof. If xo = 0 or yg = 0, then there is nothing to prove. Suppose zy # 0 and
Yo # 0. Let a € R be such that |cg pzEy§| < o for all (k,£) > (0,0). Given any
(z,y) € R? with |z| < |zo| and |y| < |yol, let 3 := |z|/|zo| and 7 := |y|/|yo]-
Then

ek, ex™y| = [erexgyol 87" < affy* for all (k,€) > (0,0).

Since # < 1 and v < 1, the geometric double series ZZ(k 0 B*~* is con-
vergent. (See Example 7.10(i).) By the Comparison Test for Double Series, it
follows that Z(k 0 cr02®y’ is absolutely convergent. O

Proposition 7.47. FEither a double power series E(k,é) ck,gackyé converges

absolutely for all (x,y) € R2, or there are nonnegative real numbers r and s
such that it converges absolutely for all (z,y) € R? with |x| < r and |y| < s,
while the set {cy a™y" : (k,€) > (0,0)} is unbounded for all (z,y) € R? with
|z| > 7 and |y| > s.

Proof. For (z,y) € R?, let Cy == {cpez®y’ : (k,€) > (0,0)}. Consider E :=
{(z,y) € R? : Cy,, is bounded}. For (z,y) € R?, note that (z,y) € E if and
only if (|z|,|y|) € E. If E = R?, then given any (z,y) € R? we can find
(z0,y0) € E such that |2| < |zo| and |y| < |yo|. Since the set Cyy .y is
bounded, by Lemma 7.46, the double series ZZ(M) crex®yt is absolutely
convergent. Next, suppose E # R2. The set F is nonempty since (0,0) € E.
By Proposition 2.8, E has a boundary point (z*,4*) € R2. Define r := |z*|
and s := |y*|. Let (z,y) € R? with |z| < r and |y| < s. By the definition of a
boundary point, there is a sequence in E converging to (z*,y*), and so we can
find (x0,y0) € F such that |z| < |zo| and |y| < |yo|. Hence by Lemma 7.46,
> Z(k,f) crex®y* is absolutely convergent. On the other hand, let (z,y) € R?
with |z| > r and |y| > s. By the definition of a boundary point, there is a
sequence in R?\ E converging to (z*,y*), and so we may find (z1,y1) € R*\ E
such that |z1| < |z] and |y1]| < |y|. Now since the set Cg, ,, is unbounded,
it follows that the set Cy , is also unbounded. This proves the existence of
nonnegative real numbers r and s with the desired properties. O

If a double power series Z(k,é) c;“gxkye is absolutely convergent for all
(z,y) € R?, then we say that its biradius of convergence is (oo, 00); oth-
erwise, a pair (r,s) of nonnegative real numbers is said to be a biradius
of convergence of the double power series, provided the double series con-
verges absolutely for all (z,y) € R? with |z| < 7 and |y| < s, while the
set Cpy = {crez™y’ : (k,€) > (0,0)} is unbounded for all (z,y) € R? with
|#| > 7 and |y| > s. This phenomenon is illustrated in Figure 7.3. Proposition
7.47 says that every double power series has a biradius of convergence.

Remarks 7.48. (i) It is interesting to observe that if r is the radius of con-
vergence of a (single) power series, then the power series diverges for all x € R
with |x| > 7, whereas if (7, s) is a biradius of convergence of a double power
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(05  1x
0
= -

Fig. 7.3. When (r,s) is a biradius of convergence of a double power series, it
converges absolutely in the shaded rectangle, while the set of its terms is unbounded
in the four quadrangles marked by Xx.

series, then the set Cy, = {cpz"y" : (k,€) > (0,0)} is unbounded for all
(z,y) € R? with |z| > 7 and |y| > s. The unboundedness of the set C,,,, cannot
be replaced by the divergence of the double power series at (z,y), as the follow-
ing example shows. Let co o :=1, cp0 = cop:=1for all K, € N, ¢11 := —1,
cp1 = c1e = —1/2 for all k,£ > 2, and ¢ := 0 for all (k,¢) > (2,2). If
Ap (2, y) denotes the (m, n)th partial double sum of 353~ /) crox®y’, then
Ao,o(z,y) =1 and for (m,n) € N2, we have

m n

Am,O(‘rvy) = Z‘rk» AO,n(xvy) = Zyev

k=0 £=0

and . .
Apn(zy) =14+ (1 — y) Zxk + (1 — x) Zyk
2 k=1 2 =1

It is easy to see that the double power series converges absolutely for all
(z,y) € R? with |z| < 1 and |y| < 1, and it diverges to co for all (x,y) with
x> 1and y > 1 except for (z,y) = (2,2). At (2,2), a peculiar phenomenon
occurs: Since ¢ 02720 = 2k and 60,42026 = 2% for all (k,/) € N2, we see that
the set Cs o is unbounded, but since A, ,(2,2) = 1 for all (m,n) € N2, we see
that the double power series converges to 1 at (2,2). It follows that there are
no nonnegative numbers r and s such that the double power series converges
absolutely for all (z,y) € R? with |z| < r and |y| < s, and it diverges for all
(z,y) € R? with |z| > r and |y| > s.

(ii) The radius of convergence of a (single) power series is unique. However,
a double power series may have several biradii of convergence. For example,
let cpe :=1if k = £ and ¢ = 0 if k # ¢ for (k,¢) > (0,0). Then the
double power series ZZ(,M) cretyt = oo zFyF converges absolutely if
lzy| < 1. On the other hand, if |zy| > 1, then the set Cy , := {z*y* : k > 0}
is unbounded. It follows that (¢,1/t) is a biradius of convergence for each
positive real number ¢.
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It is therefore important to find all biradii of convergence, or failing this,
as many biradii of convergence as possible, in order to obtain a fuller picture
of the convergence behavior of a double power series. <&

If r is the radius of convergence of a (single) power series, then the set
(—r,r) is known as the interval of convergence of the power series. It is
the largest open subset of R in which the power series is absolutely convergent.
Analogously, the domain of convergence of a double power series is defined
to be the set of all (z,5) € R? such that the double power series converges
absolutely at every point in some open square centered at (z,y). Note that
if D is the domain of convergence of a double power series, then D is an
open subset of R? and moreover, (z,y) € D if and only if (|z|,|y|) € D
It follows from the Comparison Test and Lemma 7.46 that (xq,yo) € R?
belongs to the domain of convergence of > Z(k,f) crex®y® if and only if the
set {cp z*y : (k,€) > (0,0)} is bounded for every (z,y) in some open square
centered at (g, yo). It also follows that the domain of convergence of a double
power series is empty if and only if (0,0) is a biradius of convergence of that
double power series.

Let > Z(H) cr0x*y* be a double power series, and let D be its domain of
convergence. Assume that (0,0) € D, but D # R2. We show how to demarcate
the subset D of R?. For (z,y) € R?, let Cyyy := {ckex™y’ : (k,£) > (0,0)}. By
Lemma 7.46, for each 6 € (0,7/2), there is a unique point (z(0),y(0)) on the
ray Ly == {(z,y) € R? : 2 > 0, y > 0, and xsinf = ycosf} such that the
following two conditions hold: (i) double power series converges absolutely at
every (x,y) on the open line segment between (0,0) and (z(0),y(#)), and (ii)
the set Cy,, is unbounded for each (z,y) € Ly with x > x(0) and y > y(0).

. L(6p)
__________ o A
; (40 cot 6, o)
2 (CURIO)
: (20, xo tan b))
<N )

Fig. 7.4. Demarcation of a domain of convergence.

We show that the functions given by 6 —— x(f) and 6 — y(0) from
(0,7/2) to R are continuous. Let 0y € (0,7/2) and (zo,yo) := ((6o), y(0o))-
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Now the double power series converges absolutely at each (z,y) € R? satisfying
0 <z <zx9and 0 <y < yo, whereas the set C , is unbounded for each
(z,y) € R? satisfying * > x¢ and y > yo. Hence for any 6 € (0,7/2), the
point (z(0),y(0)) lies on the closed line segment between (¢, zotanf) and
(yo cot 8, yp). Since the functions tan and cot are continuous at 6y, and since
xotanfy = yo and yo cot @y = xg, it follows that x(0) — xo and y(0) — yo
as 8 — 6y. This proves the continuity at 6y. We thus obtain a continuous
curve demarcating the domain of convergence of the double power series in
the first quadrant. (See Figure 7.4.) By symmetry, we obtain similar curves
in the remaining three quadrants (excluding the z-axis and the y-axis).

In the following table we give the domains of convergence and biradii of
convergence of the double power series considered in Example 7.43.

Double Power Series Domain of Convergence Biradii of Convergence

Z Z k‘kékxkyk 0 (0,0)
(k.6

Z Z kglg!xkye R? (00, 00)

(K £)

1 1 1
ZZakbexkye {(x,y) ER?: |z| < (r, ) for0<r< =,
lal 0] lal

(k,€)

1 1 1
a#0,b#0 and|y|<|b} <|a|,s>f0r0<s<|b|
xzye {(z,y) e R?: |y| < 1} (r,1) for 0 <r < oo,

=0
[ee]
>ty {(z,y) eR?: [zy| <1} (t,1/t) for 0 <t < o0
k=0
k+0)!
Z( k'€') byt {(zy) Rz +Jy| <1} (t,1—t)for0<t<1
(k,0) o

The above examples are typical and exhibit the variety of shapes that a
domain of convergence of a double power series can have. The example in the
penultimate row of the above table shows that such a domain D need not be
a convex subset of R%. However, according to a result of Fabry (1902), the
domain of convergence of every double power series is log-convex, that is, it
is an open subset D of R? such that {(In|z|,In|y|) : (z,y) € D and zy # 0}
is a convex subset of R?. (See Exercise 59.)
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Taylor Double Series and Taylor Series

Let D C R?, (9,%0) be an interior point of D and let f : D — R be such that
all partial derivatives of f of all orders exist and are continuous on a square
neighborhood of (xg,yo). In analogy with the Taylor series of a function of
one variable, the double power series

Bka (x — x0) g (y— yo)e
2 kot TV gy 0
(k.0)

is called the Taylor double series of f around (x¢,yo). Note that the coef-
ficients of this double power series are

1ooFtf
Chp = K0 9kt (zo,y0) for (k,¢) > (0,0).
We observe that for n = 0,1,2,..., the nth partial sum of the diagonal series

> ¢j(@,y) corresponding to the above double series is

- r—x — ¢
;Cj(x y) ZZZ . é xo,yo)( o o) (y ggyO)

=0 k>0 £>0

which is in fact the nth bivariate Taylor polynomial P,(z,y) of f around
(20, 90)- (See Remark 3.48 (iii).) With this in view, the (single) series

o0
ch(x,y), where ¢;(z,y) ZZC“ x —x0)*(y — yo)* for j >0,

k>0 £>0
k+0=j

is called the Taylor series of f around (zg,yo). Thus the Taylor series of
a function of two variables is the diagonal series corresponding to its Taylor
double series.

An important question one would like to consider is whether the Taylor
double series and/or the Taylor series of f around (xg,yo) converges (abso-
lutely) at a given point (z,y) € R?, and if so, then whether the correspond-
ing double sum and/or the corresponding sum is equal to f(z,y), provided
(x,y) € D. If (z,y) := (x0,%0), then each partial double sum of the Taylor
double series of f around (xo,yo) as well as each partial sum of the Taylor
series of f around (g, yo) is obviously equal to f(zo,y0), and so our question
has an affirmative answer if (z,y) = (xo,yo). It is, however, possible that for
each (z,y) € D\{(xo,yo)}, both the Taylor double series and the Taylor series
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of f around (zg,o) converge but not to f(x,y). For instance, let f: R? — R
be defined by

_ [ e VEH S (2,y) # (0,0),
flw,y) = {o if (z,y) = (0,0).

By considering the function g : R — R given by ¢(0) := 0 and ¢(¢) := e’l/t2,
and noting that g(*)(0) = 0 for all k € N, it can be seen that

ak-‘réf

Doyt (0,0) =0 for all (k,¢) > (0,0).

Thus the Taylor double series of f around (0,0) as well as the Taylor series
of f around (0,0) is identically zero, and neither converges to f(z,y) at any
(z,y) # (0,0).

If the Taylor double series of f around (xg,yo) converges absolutely at
(z,y) € R2, then by part (iii) of Proposition 7.21, the Taylor series of f
around (zo, o) also converges absolutely at (z,y). But the converse is not
true, as we shall see in Example 7.50 (ii). (See also Exercises 32, 63, and 64.)

For (z,y) € D and n = 0,1,2,..., let R,(z,y) := f(z,y) — Py(z,y) and
note that the Taylor series of f around (xg, yo) converges to f(z,y) if and only
if R, (x,y) — 0 as n — oo. The following results give sufficient conditions for
the absolute convergence on R? of the Taylor double series of a function and
for deciding whether it converges to the function itself.

Proposition 7.49. Let D be an open subset of R?, and let (zo,y0) € D.
Suppose f: D — R has continuous partial derivatives of all orders on D, and
there are positive real numbers My, cg, and By such that

ak+€

Dk oyt (@0 90)| < Moags  for all (k,£) = (0,0).

Then the Taylor double series of f and the Taylor series of f around (z¢,yo)
converge absolutely for all (x,y) € R2. Moreover, both of these converge to
f(x,y), provided the line L joining (xo,yo) and (x,y) lies in D and there are
positive real numbers M, a, and 3 such that

ak+£ f

bty (z,g)( < MakBt for all (#,5) € L and all (k) > (0,0).

Proof. Since the exponential double series

ao(z — 20)]* [Bo(y — yo)]*
ZZ[ (k! )] [5(3/ Z/)]

0!
(k,£)

converges absolutely for all (z,y) € R?, the Comparison Test for Double Series
shows that the Taylor double series of f around (xg,yo) converges absolutely
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for all (z,y) € R?. Consequently, by part (iii) of Proposition 7.21, the corre-
sponding diagonal series, namely the Taylor series of f around (zg, o), also
converges absolutely for all (z,y) € R?.

Next, let (x,y) € D be such that the line L joining (zo, y0) and (x,y) lies
in D and there are positive real numbers M, «, and 3 such that

akJréf
‘arkﬁy (z, )’ < Ma*g" for all (%,9) € L and all (k,£) > (0,0).

Then by the Classical Version of the Bivariate Taylor Theorem (Proposi-
tion 3.47), there is (¢,d) € L such that

gn+l _ k _ 4
Ro(2,1) = f(,y) — ZZ kafe (z k!330) (y g!yO) ’

k>0 f>0
k+l=n+1

and consequently,

alr — zo))k — un)?
|Rn(z,y)| < ZZM( | . ol)¥ (Bly — wol)

k>0 £>0 ¢
k+l=n+1
n+1 n+l—k
_ MZ (ol — $0| (Bly — y0|)
(n+1—Fk)!
(alx — zo| + Bly — yo)" !

(n+1)!

This implies that R, (z,y) — 0 as n — oo. Hence the Taylor series of f about
(x0,yo) converges to f(x,y) at (z,y). Finally, the absolute convergence of the
Taylor double series of f around (xg,yo) at (x,y) implies that its double sum
is also equal to f(x,y), thanks to part (iii) of Proposition 7.21. O

Examples 7.50. (i) Let D := {(z,y) € R? : 2 < 1 and y < 1} and let
f: D — R be defined by f(z,y) :=1/(1 —z)(1 —y). It is easy to see that

ak+£ f

9k 0yt (0,0) = k!l¢!  for all (k,¢) > (0,0).

Hence the Taylor double series of f around (0,0) is the geometric double
series 337 o) zky. As we have seen in Example 7.10 (i), it converges
absolutely if |z| < 1 and |y| < 1, while it diverges otherwise; moreover, if
|z] < 1 and |y| < 1, then the double sum is 1/(1 — z)(1 —y) = f(x,y).
The Taylor series of f around (0,0) is

ch(x,y), where ¢;(z,y) Zm y =% for (z,y) € R2.
j= k=0
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By part (iii) of Proposition 7.21, it converges absolutely if |z| < 1 and
ly| < 1, and then its sum is equal to f(z,y). We show that it diverges if
|z] > 1 or |y| > 1. Assume that |z| > 1, and let v := y/x. Then

j
¢z, y) :szuj_k =z/(1+u+---+u) forj>0.
k=0

If u =1, then |cj(x,y)| = |z]?(j + 1) > j + 1, and if u # 1, then

2P Jud*t = 1] w1

for j > 0.
-1 = ju-1 7=

lcj(z,y)| =

It follows that ¢;(z,y) / 0 as j — oco. Hence the Taylor series of f around
(0,0) diverges if |z| > 1. Similarly, we see that it diverges if |y| > 1.

(ii) Let D := {(z,y) € R? : 2 +y < 1} and let f : D — R be defined by
flz,y):=1/(1 —x —y). It is easy to see that

8k7+1f '
dzk Ayt (0,0)=(k+0)! fork, =0,1,2,....

Hence the Taylor double series of f around (0,0) is

D) DR
kle! ’
(k,0)
As shown in Example 7.43 (vi), this double series converges absolutely if
and only if |x| + |y| < 1. The Taylor series of f around (0,0) is

00 J ]' xk i _oo i ;
;}(gk!(j—k)! v )‘Z( )’

=0

Clearly, this geometric series converges if and only if |z + y| < 1, and in
this case, the convergence is absolute and the sum of the series at (x,y) is
equal to 1/[1—(z+y)] = f(z,y). Thus if (z,y) € R? satisfies [z+y| <1 <
|z| + |y|, then the Taylor series of f around (0,0) converges absolutely at
(z,y), but the Taylor double series of f around (0,0) does not. Since the
Taylor series of f around (0, 0) is the diagonal series corresponding to the
Taylor double series of f around (0,0), it follows from Proposition 7.16
that if (z,y) € R? and |z| + |y| < 1, then the double sum of the Taylor
double series of f around (0,0) at (x,y) is equal to f(x,y). It can be shown
that this Taylor double series converges conditionally at (z,y) € R? if and
only if z € (—1,0) and x + y = —1, and then its double sum is equal to
1/2. (See Exercise 57.)
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(iii) Let D := R? and let f : D — R be defined by f(x,y) := sin(x + y).
Letting g(u) :=sinu for u € R, it is easy to see that for k,£=10,1,2,...,

ak+€f

0 if £+ /7 is even
(0,0) = g*+9(0) = { ’
Oxk Oyt

(—1)*+H=D/2if k4 0 s odd.
Hence the Taylor double series of f around (0,0) is

0 if k+ { is even,
ZZchgmkye, where ¢y, ¢ 1= (_1)(k+€—1)/2

*.0) 1] if £+ ¢ is odd.

The Taylor series of f around (0, 0) is

o0 J ko ik ()
4 , o GHmT Y _gY(0) j
jEZO ¢j(x,y), where ¢j(x,y) = ,;:09 7(0) BG-k) " (z +y),

that is, by Z;‘;O(—l)j (x + )21 /(25 + 1)L Tt follows from Proposition
7.49 that both the Taylor double series and the Taylor series of f around
(0,0) converge absolutely to f(z,y) at all (z,y) € R2.

(iv)Let D := R? and let f : D — R be defined by f(x,y) = e*TV.
Proceeding as in (iii) above, we see that both the Taylor double series
2220 xFyt /1 of f around (0,0) and the Taylor series Z;’;O(x—i—y)j/j!
of f around (0,0) converge absolutely to f(x,y) at all (z,y) € R2. O

For additional examples about the convergence of Taylor double series and
of Taylor series of functions of two variables, see Exercises 33, 63, 64, and 66.

Remark 7.51. Let D be an open subset of R and let f : D — R be such
that all partial derivatives of f of all orders exist and are continuous on D. If
for every (xo,y0) € D, there are 7 > 0 and s > 0 such that the Taylor double
series of f around (zg,yo) converges absolutely to f(z,y) for all (z,y) € D
with | —xo] < 7 and |y —yo| < s, then f is said to be real analytic on D. In
this case, by part (iii) of Proposition 7.21, the Taylor series of f around (xq, yo)
also converges absolutely to f(z,y) for all (z,y) € D with |z — x| < r and
|y —yo| < s. Clearly, polynomial functions in two variables are real analytic on
R?2. Also, using Proposition 7.49, it can be seen that the functions defined by
fi(z,y) :=sin(z +y) and fa(z,y) := 1Y for (x,y) € R? are real analytic on
R2. In fact, if D is the domain of convergence of a double power series and if
its double sum is denoted by f(x,y) for (z,y) € D, then the function f is real
analytic on D. (See, for example, 9.2.2 and 9.3.1 of [15].) On the other hand, a
function having continuous partial derivatives of all orders on an open subset
of R? need not be real analytic there. Indeed, as noted earlier, it suffices to
consider f : R? — R defined by f£(0,0) := 0 and f(z,y) := e /@ +v") for
(z,) # (0,0). o
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7.5 Convergence of Improper Double Integrals

In Chapter 5, we considered integration of a bounded function defined on
a bounded subset of R%. In this section, we shall extend the process of
integration to functions defined on unbounded subsets of R? of the form
[a,00) X [¢,00), where a, ¢ € R, provided that the functions are bounded
on [a,x] X [¢,y] for every (x,y) > (a,c). Our treatment will run parallel to
that of infinite double series given in Sections 7.2 and 7.3. It will also be
similar to the treatment of improper (single) integrals of functions defined on
[a,0), where a € R, that are bounded on [a,x] for every x > a (given, for
example, in Section 9.4 of ACICARA).

We shall first give a formal (and pedantic) definition of an improper double
integral and then adopt suitable conventions in order to simplify it.

Let a, ¢ € R. An improper double integral on [a,0) X [¢,00) is an
ordered pair (f, F) of real-valued functions f and F defined on [a, c0) X [¢, 00)
such that f is integrable on [a, x] X [¢,y] for every (z,y) > (a,c) and

F(x,y) = //[aw]x[c’y] f(s,t)d(s,t) for all (z,y) € [a,00) X [¢, 00).

For simplicity and brevity, we shall use the informal but suggestive notation

//[a,oo)x[c,oo) J(s,)d(s, 1)

for the improper double integral (f, F') on [a,c0) X [¢,00). The function F is
called the partial double integral of this improper double integral. Note
that F(z,c) = 0 = F(a,y) for all (z,y) € [a,00) X [¢,00), thanks to the
convention stated in Remark 5.11. In view of Proposition 5.19, under suitable
conditions on f and F' such as the continuity of f and the vanishing of F(z, ¢)
and F(a,y) for (z,y) € [a,00) X [¢,00), we see that

(f, F) is an improper double integral <= f = F,,,.

In particular, F' is uniquely determined by f, and if f is continuous, then f
is uniquely determined by F.

Let a,c € Rand let f : [a,00) X [¢,00) — R be such that f is integrable on
[a, z] X [e,y] for every (z,y) > (a,c). We say that the improper double integral
ff[a’oo)x[c’oo) f(s,t)d(s,t) is convergent if the limit

lim // f(s,t)d(s,t
(@,y)=(00,00) J J[a,2] x[c,y] (500l

exists. It is clear that if this limit exists, then it is unique, and we may denote
it by the same symbol ff[a,oo)x[cm) f(s,t)d(s,t) used to denote the improper
double integral. Usually, when we write
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//[avoo)X[c,oo) f(s,t)d(s,8) = 1,

we mean that I is a real number and the improper double integral on the
left side of the above equation is convergent and the limiting value is I. In
this case, we may also say that ff[am)x[cm) f(s,t)d(s,t) converges to I, or
that I is the improper double integral of f on [a,c0) X [¢,00). An improper
double integral that is not convergent is said to be divergent. In particular,
we say that the improper integral diverges to oo or to —oco according as
ff[a,w}x[c’y} f(s,t)d(s,t) tends to oo or to —oo as (z,y) — (o0, 00).

The convergence of an improper double integral ff[a’oo)x [e00) f(s,t)d(s,t)
is not affected if we change the function f on a bounded subset of [a, o) x
[¢, 00), although its limiting value may be altered by doing so. On the other
hand, if we change f on an unbounded subset of [a,00) X [¢,00), such as
an infinite strip, we may affect the convergence of ff[am)x[c’oo) f(s,t)d(s,t).
For example, if f(s,t) := 0 for all (s,t) € [0,00) X [0,00), then clearly
ff[opo)x[opo)f(s,t)d(s,t) is convergent. But if we let g(s,t) := 1 for all
(s,t) € [0,00) x [0,1], and g(s,t) := 0 for all (s,t) € [0,00) X (1,00), then
ff[O,oo)X[O,oo) g(s,t)d(s,t) is divergent.
Examples 7.52. (i) Let «, 8 be positive real numbers, and let us consider

ff[am)x[cﬁoo)asﬁtd(s,t). For any (z,y) in [a, 00) x [c, 00),

(O‘x_aa) (ﬁy_ﬁc) ifa#1andf#1,

In o

J[ wpaen=1"" ( n 3
[a,x]x[c,y] o —a® i
( o )(y—c) ifa#1land g=1,

(x —a)(y—c) ifa=1=2.
It follows that ff[a so) x[e00) @ B1d(s, 1) converges to a3/ (Ina)(In B) if
a < 1and <1, and diverges to co otherwise.

(ii) Let p,q € R, and let us consider ff[17m)x[1’m)(1/sptq)d(s, t). For any (z,y)
in [1,00) x [1,00),

ifa=1and §#1,

xlfp_l 1*q_1 .
( (1_p§E119_q) ) ifp#1andq#1,
(lnz)(y' = — 1) .
1 =
//[1 - ]sptqd(s,t)z 1 P1_1q1 ifp=1andq#1,
;T X1, —p
y (v 1_;(1119) ifp#landg=1,
(lnx)(lny) ifp=1=q.

It follows that ff[l soyx[1,00)(L/8711)d(s, t) converges to 1/(p —1)(q — 1) if
p>1and g > 1, and diverges to co otherwise. &
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It may be observed that there is a remarkable analogy between the defini-
tion of an infinite double series 33 ; ) ak,c and the definition of an improper
double integral ff[a,oo)x [e,00) f(s,t)d(s,t). The double sequence of terms (ay, ¢)
corresponds to the function f : [a,0) X [¢,00) — R, and a partial double sum
A n =>4ty S oy—y ke, where (m,n) € N2, corresponds to a partial double
integral F(z,y) = ff[(wc]x[gy] f(s,t)d(s,t), where (z,y) € [a,0) X [¢,00). The
conventions Ax g = 0 = Apy for all (k,£) > (0,0) correspond to the initial
conditions F(z,c¢) = 0 = F(a,y) for all (z,y) € [a,00) X [¢,00). Further, the
equation involving the difference quotient of partial double sums, namely

F— Apo— A1 — A1+ Ar_101
o le—(k=D]e—(—1)]

corresponds to the equation involving the mixed partial derivative of the par-
tial double integral F', namely

fs ) =lm <lim F(s,t) = F(s,v) = F(u,t) +F(u,v)> '

u—s § — U \v—t t—wv

This analogy will become even more apparent as we develop the theory of
improper double integrals further. However, this analogy may break down
occasionally. For instance, we shall show in Section 7.6 that a straightforward
analogue of the (k,¢)th Term Test for a double series fails to be true for
improper double integrals.

The following results follow from the corresponding results for limits of
functions of two real variables, just as similar results in the case of double
series followed from the corresponding results for limits of double sequences.
In what follows, we have let a,c € R and f, g, h denote real-valued functions
on [a,00) X [¢,00).

1. (Limit Theorem) Let ff[a’oo)x[c’oo) f=1and ff[a’oo)x[c’oo) g =J. Then
ff[%oo)x[cm)(f +g)=1+J, and for any r € R, ff[a,oo)x[cm)(rf) =rl.
Further, if f(s,t) < g(s,t) for all (s,t) € [a,00) X [¢,00), then I < J.

2. (Sandwich Theorem) If f(s,t) < h(s,t) < g(s,t) for all (s,t) € [a, 00) X
[¢,00), and the improper double integrals of both f and g converge to I,
then so does the improper double integral of h.

3. (Cauchy Criterion) An improper double integral (f, F') is convergent if
and only if for every e > 0, there is (zo,y0) € [a,00) X [¢,00) such that

|F(z,y) — F(u,v)] <e forall (x,y) > (u,v) > (z0, yo)-

To see this, note that by Corollary 5.10, F(z,y) — F(u,v) is the sum of
the double integrals of f on [a,u] x [v,y], [u,x] X [¢,v], and [u, 2] X [v,y],
and use the analogue of Proposition 2.54 for the case (z,y) — (00, 00).
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Remark 7.53. Our treatment of improper double integrals of real-valued
functions on subsets of R? of the form [a,) x [¢,00), where a,c € R, can
be readily used to discuss the convergence of improper double integrals of
functions on some other unbounded subsets of R?. This is outlined below.
First, suppose b, ¢ € R and f : (—00,b] X [c,00) — R is integrable on
[z,b] x [c,y] for all (z,y) € (—o0,b] x[c,00). Define f : [~b, 00) x [¢,00) — R by
fu,y) := f(—u,y). Then for every (z,y) € (—00,b] X [¢,00), we may apply
Proposition 5.59 to the transformation ® : [—b,—x] X [¢,y] — [z,b] X [¢, 9]
defined by ®(u,t) := (—u,t). Noting that |J(®)| = | — 1| = 1, we obtain

//[ﬂ,b]x[w] f(s,t)d(s,t) = //[—b,—ac}x[c,y] Flu, t)d(u,t).

With this in view, we say that ff(_oo b [e00) f(s,t)d(s,t) is convergent if
the improper double integral ff[_b 00) X [6,00) f(u,t)d(u,t) is convergent, that
is, if the limit

Jim / / Fud(w,t) = lim / / F(s,0)d(s,1)
(&y)—(00,0) J J[—b,€] x[c,y] (z,y)—(=00,90) J J[z,b] x [c,y]

exists. In this case, this limit will be denoted by ff(_oo7b]x[c7oo)f(s,t)d(s,t)
itself. Otherwise, we say that [f ;. (. ) f(s,1)d(s,t) is divergent.

Next, suppose ¢ € R and f : R x [¢,00) — R is integrable on [a, b] x [¢,y]
for all a,b,y € R with a < b and ¢ < y. We say that ffo[c,oo)f(s’t)d(S’t) is
convergent if both ff[o’oo)x[c’oo)f(s,t)d(s,t) and ff(ioo,olx[c’oo)f(s,t)d(s,t)
are convergent; in this case, their sum is denoted by ffRX[C’OO)f(s,t)d(s,t)
itself. If any one of these is divergent, then we say that ffRX[c,oo)f(S’ t)d(s,t)
is divergent.

Similar definitions can be given for the convergence and divergence of

/ / F(s,1)d(s, 1), / / F(s,)d(s. 1)
(—00,b] X (—00,d] [a,00) X (—00,d]
and of

//(_OO,b]XRf(s,t)d(S,t), //RX(_OQd]f(s,t)d(s,t), //[a,oo)xugf(s’t)d(s’t)'

Finally, suppose f : R? — R is integrable on [a, b] X [c, d] for all a, b, c,d € R
with a < b and ¢ < d. We say that [[p.f(s,t)d(s,t) is convergent if both
ffo[o,oo)f(sv t)d(s,t) and ffo(—oo,o}f(sv t)d(s,t) are convergent; in this case,
their sum is denoted by [[5. f (s, t)d(s, t) itself. If any one of these is divergent,
then we say that [[o,f(s,t)d(s,t) is divergent.

In view of the above, we shall restrict ourselves to improper double inte-
grals of functions on subsets of R? of the form [a, 00) X [¢, 00), where a, ¢ € R,
in this and the next section. Improper double integrals of functions on more
general unbounded subsets of R? are discussed in Section 7.7. &
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Improper Double Integrals of Mixed Partials

The following result is an analogue of the result about the convergence of a
telescoping double series (Proposition 7.13).

Proposition 7.54. Let g : [a,00) X [¢c,00) — R be such that g, and g, exist
on [a,00) X [¢,00), gg is continuous on [a,00) X [¢,00), and gz, is integrable
on la,b] x [c,d] for every (b,d) > (a,c). Then ff[am)x[c_oo) Gay(s,t)d(s,t) is
convergent if and only if lim, gy, (00,00)[9(b, €) + g(a,d) — g(b,d)] exists, and
in this case,

/] gry(5.0d(s.1) = glac) — 1l [g(b.c) +gla.d) — g(b,d)].
[a,00) % [¢,00) (b,d)—(00,00)
Proof. By part (i) of Proposition 5.20, for all (b, d) > (a, ¢), we have
/ /[ g e ) = 90, — 900,6) = gl ) + 90,0
a Xlc

Letting (b, d) — (00, 00), we obtain the desired result. O

It may be noted that if a function f : [a,00) X [¢,00) — R is continuous,
then the improper double integral ff[am)x fe,00) f(s,t)d(s,t) can be written as
ff[a so) x[e.00) Jzy (8, £)d(s, 1) for a suitable function g : [a,00) x [¢,00) — R. In
fact, 1f we define g : [a,00) X [¢,00) — R by

g(z,v) // (s,t)d(s,t),
aﬂc]x[cy]

that is, if ¢ is the partial double integral of ff[am)x[c’oo) f(s,t)d(s,t), then
by part (ii) of Proposition 5.20, g4, = f. But then determining the existence
of lim (g, 4)—(00,00)[9(2,¥) — g(x,¢) — g(a,y)] is the same as determining the
convergence c?f the given impropfzr .double'integral ff[am)x[c’?o) f(s, t).d(s,.t).
In some special cases, however, it is possible to find a function g satisfying
the above conditions without involving any double integral. In these cases,
we can easily determine the convergence of the improper double integral
ff[a,oo)x[cm) f(s,t)d(s,t) using Proposition 7.54. For example, consider the
improper double integral

// ste_(82+t2)d(s,t).
[0,00) % [0,00)

t) = e~ (") /4 for (s,t) € [0, 00) x [0, 00), then it is easy to sce
=ste _(q ) for all (s,t) € [0,00) x [0, 00). Further, since
e_bz n e_d2 B e_(b2+d2)

I b,0)+9(0,d)—g(b,d)] = i =0
v [9(0:0)+9(0,d)—g(b,d)) =~ Tm 4 )

If we let g(s,
that ggy(s,t)

it follows from Proposition 7.54 that the given improper double integral con-
verges to ¢(0,0) = 1/4. Examples 7.52 (i)—(ii) also illustrate this technique.
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Improper Double Integrals of Nonnegative Functions

The following result regarding the convergence of an improper double integral
of a nonnegative function is an analogue of the result about the convergence
of a double series of nonnegative terms (Proposition 7.14).

Proposition 7.55. Let f : [a,00) X [c,00) — R be a nonnegative function
that is integrable on [a,x] X [c,y] for every (x,y) > (a,c). Then the improper
double integral ff[am)x[c’oo) f(s,t)d(s,t) is convergent if and only if its partial
double integral F is bounded above, and in this case,

//[ vty [0l 1) = sUp{F () - (2:9) € [o, 00) x [ 00)}-

If F is not bounded above, then ff[a 00) X [e100) f(s,t)d(s,t) diverges to oo.

Proof. Let (x2,y2) > (z1,y1) > (a,¢). By Corollary 5.10, we have

Flaz) = [ fsdis. )+ [ 75, )d(s.1)
la,z1]x[c,y1] [z1,22] X [y1,y2]
—|—// f(s,t)d(s,t) + // f(s,t)d(s,t)
[a,z1] % [y1,y2] [z1,22] X [c,y1]

> / / f(s,t)d(s, )
[avajl] X [67:‘/1]
= F(xlv yl)»

since f(s,t) > 0 for all (s,t) > (a,c). Thus the function F' is monotonically
increasing. Hence by part (i) of Proposition 2.59 with b = d = oo, we obtain
the desired results. O

A result similar to Proposition 7.55 holds if f(s,t) < 0 for all (s,t) in
[a,00) X [¢,00). More generally, if there is a bounded subset E of [a,00) X
[c,0) such that f(s,¢) has the same sign for all (s,t) € [a,0) X [¢,00) that
are outside E, then ff[a,oo)x[cm) f(s,t)d(s,t) is convergent if and only if the
function F' is bounded. However, if there is no such bounded subset, then the
improper double integral ff[a‘oo)x[cm) f(s,t)d(s,t) may diverge, even though
the function F' is bounded. Moreover, the function F may be unbounded, even
though the improper double integral ff[a’oo)x[c’oo) f(s,t)d(s,t) is convergent.
These results are illustrated by the following examples.

Examples 7.56. (i) Let f:[1,00) X [1,00) — R be defined by

(-1 if 1<t <2,
,t) =
f(s,) {0 if t > 2,

where [s] denotes, as usual, the integral part of s € [1,00). For (x,y) in
[1,00) x [1,00), it can be easily checked that F(z,y) = g(x)h(y), where
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) —1+x—[z] if[z] is even, . B
g(z) == {—x + 2] if (2] s odd, and  Ah(y) ;= min{l,y — 1}.

Clearly, F' is bounded on [1,00) x [1,00), but since F/(2m —1,y) = 0 and
F(2m,y) = —1for allm € N and y > 2, the limit of F(z,y) as (z,y) tends
to (00, 00) does not exist, that is, ff[l soyx[1,00) f (8:8)d(s, ) is divergent.

(ii) Let f:[0,00) x [0,00) — R be defined by
1 ifo<t<l,

fls,t):={ -1 ifl<t<2.
0 if ¢ > 2.

It can be easily checked that for (z,y) € [0,00) x [0, c0),

Yy ifo<y<1,
Flz,y)=qz2-y) ifl<y<2,
0 if y > 2.

Clearly, F' is unbounded on [0, 00) X [0, 00), but since F(x,y) = 0 for all
(z,y) > (0,2), we see that ff[o 00 X[0,00) f(s,t)d(s,t) converges to 0. <

Analogues of the double series results “Summing by Squares” and “Sum-
ming by Diagonals” (Proposition 7.16) for improper double integrals are given
in Exercise 67.

We now attempt to relate the convergence of an improper double integral
ff[l’oo)x[l’oo) f(s,t)d(s,t) of a nonnegative function f to the convergence of
the double series 373 -, ) f(k, £). Let us first consider f : [1,00) x[1,00) — R
given by f(s,t) := 1if (s,t) € N2 and f(s,t) := 0 if (s,t) € N2. Then it is
easy to see that ff[lm)x[lm) f(s,)d(s,t) converges to 0, but 3337,y f(k,¢)
diverges to co. On the other hand, if we let g := 1— f, then it is easily seen that
ff[lm)x[lm) g(s,t)d(s,t) diverges to oo, but 3337, , g(k,¢) converges to 0.
Thus, in general, the convergence of ff[l,oo)x[l,oo) f(s,t)d(s,t) is independent
of the convergence of > 3", , f(k,{) for nonnegative functions. In view of
this, the following result is noteworthy.

Proposition 7.57 (Integral Test). Let f : [1,00) X [1,00) — R be a non-
negative monotonically decreasing function. Then the itmproper double inte-
gral ff[l’oo)x[l’oo)f(s,t)d(s,t) is convergent if and only if the double series
ZE(,M) f(k, ) is convergent, and in this case,

HIEY) Fs,0d(s,1) <3S £k, 0),

[1,00)x[1,00) k=1 ¢=1

or, equivalently,
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//[ : f(S,t)d(S,t)Siifké <f11+2fk1+2flg
1,00) x[1,00)

k=1 /=1 k=2 =2

+ //[1700)”1700)]0(3,15)(1(8,t).

Also, the improper double integral ff[l o)1 Cx))f(s,t)d(s,t) diverges to oo if
and only if the double series 5" o) f(k,€) diverges to oo.

Proof. Since f is monotonic, by part (i) of Proposition 5.12, f is integrable
n [1,z] x [1,y] for every (z,y) > (1,1). Define F : [1,00) X [1,00) — R by

)= ff[l,z)x[l,y)f(s’t)d(s’t)' Since f is nonnegative, by Corollary 5.10,

the function F' is monotonically increasing. Hence Proposition 7.55 implies
that the improper double integral ff[l’oo)x[l’oo)f(s,t)d(s,t) is convergent if
and only if the set {F(m,n) : (m,n) € N2} is bounded above, and in this case

//[1 - )f(s,t)d(s,t) =sup{F(z,y): (z,y) € [1,00) x [1,00)}
= sup {F(m,n) : (m,n) € N?}
(m,n)—(oc0,00)

The penultimate equality follows since F' is a monotonically increasing func-
tion, and the last equality follows from part (i) of Proposition 7.4. Similarly,

// f(s,t)d(s,t) diverges to oo <= F(m,n) — co as m,n — 0.
[1,00) X [1,00)

Define
g ¢ = // f(s,t)d(s,t) for (k,f) € N?
[, k1] X [€,641]
and .
Apn = Z Z are for (m,n) € N2
k=1 =1

Then by Domain Additivity of Double Integrals on Rectangles (Proposition
5.9), we have A, , = F(m+1,n+1) for all (m,n) € N2, Further, since ay ¢ > 0
for all (k,¢) € N2, it follows from Proposition 7.14 that the double series
22 2 (k,0) @kt is convergent if and only if the double sequence (F(m,n)) is
bounded above, that is, the improper double integral ff[1,oo)x[1,oo)f(37 t)d(s,t)
is convergent, and in this case, the sum of the double series is equal to the
improper double integral. Similarly, > Z(H) ay,¢ diverges to oo if and only
if the double sequence (F'(m,n)) is not bounded above, that is, the improper
double integral ff[l’oo)x[lﬁoo)f(s,t)d(s,t) diverges to oco.
Now since f is monotonically decreasing,
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flk+1,041) <age < f(k,0) forall (k ()€ N2.

Hence }2 3 4) ax,¢ is convergent if and only if 353~ o) f(k, ) is convergent,
and 3037, ) ak,e diverges to oo if and only if 373" /) f(k, ) diverges to oo
by the Comparison Test for Double Series (Proposition 7.25).

Finally, since

m—+1n+1 m m n m n
> D> flk Z f/f+1 CH1) <Y Y Tane <D f(k0)
k=2 (=2 k=1 /(=1 k=1/¢=1 k=1/¢=1

for all (m,n) € N2, and

m

hm Z Z ak.¢ lim Am,n = // f(S,t)d(S,t),
) [1,00)%[1,00)

os00) £ £ P (o) (o 00

we see that

¢ ¢
:zf(k, ) < //[1,oo)x[1,oo)f(s’t)d(s’t) <Nk

k=2 ¢ k=1 (=1
whenever ff[l so)x[1,00)f (8:1)d(s, 1) is convergent. 0

The above result can be useful in determining whether a double series or
an improper double integral is convergent, and in that case, to obtain lower
bounds and upper bounds for them. This is illustrated in the example below.

Example 7.58. Let f(s,t) := 1/(s +t)? for (s,t) € [1,00) x [1,00), where
p € R with p > 0. Then f is a nonnegative monotonically decreasing function.
We have seen in Example 7.17 (i) that the double series 3" o) f(k,{) is
convergent if and only if p > 2. Hence by the Integral Test, the improper
double integral ff[17oo)x[17oo)f(s, t)d(s,t) is convergent if and only if p > 2.

Alternatively, we can directly show that ff[l soyx[1,00)/ (8:)d(s, 1) is con-
vergent if and only if p > 2, and deduce that ZE(,M) f(k, ) is conver-
gent if and only if p > 2. Indeed, let (z,y) > (1,1), and let F(z,y) :=
ff[lx]x[l,y} d(s,t)/(s+t)P. Suppose p < 2. Then

F(z.9) //1a:]><1y 8+t)) _/106(/1?/ (sftﬁ)ds

1
_/1 (s—i—l S+y>ds_ln(x—l—l)—ln2—ln(x+y)+ln(1+y)

(z+1D(y+1)
r+y

=In —ln22—ln( ! + ! )—ln2.

r+1 y+1

Hence ff[l’oo)x[l’oo) 1/(s+1t)Pd(s,t) diverges to co. Next, suppose p > 2. Then
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1 x 1 1
Fay) =, _ 1/1 [(s+1>p1 T syt ™

B 1 [ O T
S p-Dp-2) (2772 (@412 (I+yp 2 (x4y)p?

Hence

1 1
d(s,t) = if p> 2.
//[1,oo)><[1,oo) (s+t)p (51) (p—1)(p—2)2r—2

When p > 2, Proposition 7.57 also allows us to estimate the double sum
2 2 (ke L/ (k4 O as follows:

1
- 1222 = 22

(k,0)=(1,1) (

< +Z - Lo !

= op (k+1)» “(1+£)P (p—1)(p—2)2r—2
_ p—3p—|—6 i

- 2°(p — — (k+1)p

For p = 4, this gives

5 - 1\ ot 97 3
*ZZ +é4*48+2 00 1T o1) Ty T ug 20
(k€)>(11)

The upper bound is obtained using the formula Y ;- 1/k* = 74/90. (See, for
example, Theorem 5.6.3 of Hijab’s book [30] for a proof of this formula and
in fact, a proof of the general formula for >~ 2, 1/k*".) <&

Absolute Convergence and Conditional Convergence

Recall that if a function f is integrable on a rectangle, then so is |f|. An
improper double integral ff[am)x[c_’oo) f(s,t)d(s,t) is said to be absolutely
convergent if the improper double integral ff[am)x[c_’oo) |f(s,t)|d(s,t) is con-
vergent. The following result is an analogue of Proposition 7.18.

Proposition 7.59. An absolutely convergent improper double integral is con-
vergent.

Proof. Let ff[a 00)X[6,00) f(s,t)d(s,t) be an absolutely convergent improper
double integral. Consider f*, f~ : [a,00) X [¢,00) — R defined by

[f(s, )] + f(s,1) [f(s,0)] = f(s,8)

F(s,t) = , ,

and 7 (s,t) =
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For each (z,y) € [a,00) X [¢,00), the functions f* and f~ are integrable
on [a,z] X [c,y]. For (z,y) € [a,00) X [¢,0), let F(z,y), F*(z,y), F~(z,y),
and F (x,y) denote the partial double integrals of the improper double in-
tegrals of f, f*, f~, and |f], respectively. Since the improper double in-
tegral [fi, iy (eoo) [f(5,)]d(s,?) is convergent, the function F' is bounded.

Also, 0 < Ft(z,y) < F(z,y) and 0 < F~(x,y) < F(z,y) for all (z,y) in
[a,0) X [¢,00). So by Proposition 7.55, both [ T(s,t)d(s,t) and

[a,00) X [c,00) f

ff[a 00) X [6,00) f (s, t) (s,t) are convergent. Since f = fT — f~, we see that
ff[a o) x| Cooj s,t)d(s,t) is convergent. 0

A convergent improper double integral that is not absolutely convergent
is said to be conditionally convergent.

Example 7.60. We give a general method for constructing conditionally con-
vergent improper double integrals. Let a,c € R, and consider ¢ : [a,00) — R
and ¥ : [¢,00) — R such that ¢ is Riemann integrable on [a,z] for every
x > a, and ¢ is Riemann integrable on [c,y] for every y > ¢, and more-
over, both the improper integrals f o(s)ds and f t)dt are conditionally
convergent. Define f : [a,00) X [¢c,00) — R by f(s, t) = ¢(s)(t). Let @
and ¥ denote the partial integrals of the improper integrals faoo ¢(s)ds and
fcoo Y (t)dt respectively, and let F' denote the partial double integral of the
improper double integral ff[am)x[c’oo) f(s,t)d(s,t). Then it follows from Fu-
bini’s Theorem on Rectangles (Proposition 5.28) that F'(z,y) = ®(z)¥(y) for
all (x,y) € [a,00) x [¢,00). Since f:o o(s)ds and fcoo 1 (t)dt are convergent, we
see that the improper double integral ff[am)x[cm) f(s,t)d(s,t) is convergent.
Similarly, let ® and \Tl denote the partial integrals of the improper integrals
L7 ¢(s)|ds and [7° [1(t)|dt respectively, and let F' denote the partial double
integral of the i 1mpr0per double integral ffam)x[c’oo) |f(s,t)|d(s,t). As before,
we have ﬁ(x y) = ®(x)U(y) for all (z,y) € [a,00) x [¢, 00). Since L e(s)|ds
and f (t)|dt diverge to oo, it follows that the improper double 1ntegra1

ff[am)x fe00) | (8, 8)]d(s,t) diverges to oo. Thus ff t)d(s,t) is
conditionally convergent.
As a concrete example, we observe that the improper double integral

// (cos s)(cos t)d(s,t)
[1,00) X [1,00) st

is conditionally convergent. This follows since the improper integral f
is conditionally convergent. (See, for instance, Example 9.38 of ACICARA. ) O

[a,00) X [c,00) f(

oo cos tdt

We shall now give a characterization for the absolute convergence of an
improper double integral. It may be compared with a similar characterization
given in the case of a double series (Proposition 7.19).
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Proposition 7.61. Let f : [a,00) X [c,00) — R be such that f is inte-
grable on [a,x] X [c,y] for each fized (z,y) > (a,c), the Riemann integral
[Z1f (s, t)|ds exists for each fived (x,t) > (a,c), and the Riemann integral
fcy |f(s,t)|dt exists for each fized (s,y) > (a,c). Then the improper double
integral ff[am)x[cpwf(s,t)d(s,t) is absolutely convergent if and only if the
following conditions hold:

(i) There are (so,t0) > (a,c) and ag > 0 such that
J[ ol <a0 for all (5.0) (soto)
[s0,2] % [to,y]

(ii) For each fized x > a, the improper integral [ ( [ |f(s,t)|ds)dt is conver-
gent, and for each fized y > ¢, the improper integral f;o (fcy |f(s, t)|dt) ds
18 convergent.

Proof. Since the function |f| is integrable on [a, z| X [¢,y], we may define
Fey= [[ 1560060 for (0) 2 00
a,x]X[c,y

By Fubini’s Theorem on Rectangles (Proposition 5.28),

Fa)= [ ([ 1 oias)a= [ ([ s olat)as tor o) = (@)

Suppose fﬁa’m)x[c’m)f(s,t)d(s,t) is absolutely convergent. Since |f(s,t)] >0
for all (s,t) > (a,c), Proposition 7.55 shows that the function F is bounded
above. Hence condition (i) holds with (so, o) := (a, ) and ag := sup{F(z, y) :
(x,y) > (a,c)}. Also, in view of the first equality displayed above, for each
fixed z > a, we have sup { fcy (fax |f(s,t)|ds)dt : y > ¢} < ap, so that the
improper integral fcoo ( faw |f(s, t)|ds) dt is convergent. Similarly, for each fixed
y > ¢, the improper integral faoo (fcy |f(s, t)|dt) ds is convergent.

Conversely, assume that conditions (i) and (ii) hold. Let (so, o) > (a,c)
and ag > 0 be such that [f;, 1., 1f(s,0)ld(s,t) < ag for all (z,y) > (so,t0)-
By Domain Additivity (Proposition 5.9),

F(z,y) // f(s,t)|d(s,t) + // f(s,t)]d(s,t)
[so,z ><[t0,y] la,s0 X[C’y

//[ i oral ) 2 (oot

Now since the improper integral fcoo (faso |f(s, t)|ds)dt is convergent, there is
Bo > 0 such that

//[a,solx[c,y]|f(8’t)|d(8’t> _ /y (/a |f(s,t)|ds)dt < By foraly>ec.



428 7 Double Series and Improper Double Integrals

Similarly, since the improper integral [ ( fcto |f(s,t)|dt)ds is convergent,
there is 79 > 0 such that

//[So,ﬂx[c,to]v(s’t)|d(87t) - /z (/to |f(s,t)|dt>ds < forall z > a.

S0 C

Hence ﬁ(x,y) < ap + Bo + o for all (z,y) > (so,to). This shows that the
monotonically increasing function F' is bounded on [a, 00) X [¢, 00). Thus, by
Proposition 7.55, ff[a so)x[c C>o>f(s, t)d(s,t) is absolutely convergent. 0

7.6 Convergence Tests for Improper Double
Integrals

In this section we shall consider several tests that enable us to conclude the
convergence or divergence of improper double integrals. For most part, these
are analogous to tests for double series. However, as remarked earlier, there
is no straightforward analogue of the (k, ¢)th Term Test for a double series.
For example, consider f : [0,00) x [0,00) — R defined by f(s,t) := 1 if
(s,t) = (k, k) for some k € N, and f(s,t) := 0 otherwise. Clearly, f is bounded
and the improper double integral of f on [0,00) x [0,00) converges to 0, but
f(s,t) 4 0 as (s,t) — (00,00). By modifying this function, it is possible to
find a continuous function of this kind, as the following example shows.

Fig. 7.5. Triangular regions D1, D2, D3, ... in Example 7.62 having one side parallel
to the line z + y = 1, centroids at (1,1),(2,2),(3,3),... and areas 1, |, J,. ...

Example 7.62. For k£ € N, let T}, denote the equilateral triangle having one
of its sides parallel to the line given by x +y = 1 such that the centroid of the
triangular region Dy enclosed by T} is at (k, k), and the area of Dy is 1/k2.
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(See Figure 7.5.) Fix any k € N. Let (ag, bx), (ck,dx), and (pg, gx) denote the
vertices of Tj. Then the bivariate linear polynomial

r y 1l k k1
A det |ag bx 1|, where Ap =det |ap br 11,
k Cl dk 1 Cl dk 1

defines a polynomial function in two variables of degree 1 on the triangular
subregion of Dy with vertices at (ag,br), (ck,dr), and (k, k) such that its
value at (ag,br) and (cg,di) is 0, while its value at (k,k) is 1. In a similar
way, we obtain polynomial functions in two variables of degree 1 on the other
two triangular subregions of Djy. Observe that the values of these functions
lie between 0 and 1, and they coincide on the lines joining the vertices of
Ty, to its centroid. Hence, by piecing together these functions, we obtain a
nonnegative, piecewise linear, continuous function f; : D — R such that
fr(k k) = 1, whereas fi(ar,bx) = fr(ck,dr) = fe(pr,qr) = 0. By Domain
Additivity (Corollary 5.52), the double integral of fi on Dy is the sum of
the double integrals of f;, on the three triangular subregions of Dy. If Ej
denotes one such subregion, say with vertices at (ag,bx), (cx,dr), and (k, k),
then Area(Ey) = jArea(Dy) = 1/3k?, and by part (i) of Proposition 6.29,

Area(F
JIL 5= () + el + 5i) = o

Consequently, fka fr = 3(1/9k?) = 1/3k?. Now let us vary k and consider
f:[0,00) x [0,00) — R given by

t if t D for s ke N
f(s,t) == fr(s ) if (s, )-e i for some k € N,
0 otherwise.

Since fj vanishes on the vertices of T}, and hence on the sides of T}, we see that
[ is a continuous function on [0, 00) x [0, 00). Moreover, since >~ (1/k?) is
convergent, and for any (z,y) € R?,

11
OS//[OQC]XO@/ <Z/ f_?’;kz,

we see that the improper double integral | f[o 50)x[0,00) f is convergent. But
since f(k,k) = 1for k € N, it is clear that f(s,t) /4 0 as (s,t) — (c0,00). <

By modifying the function in the above example, one can obtain a contin-
uous function f : [0, 00) x [0,00) — R such that ff[o so)x[0,00) /18 convergent,
but f(k; k) — oo as k — oo. Indeed, it suffices to replace Dy by a triangular
region Dy, with Area(Dy) = 1/k® and fj, by the function fj, := kfy for k € N.

Observe that the (k, £)th Term Test for double series (Proposition 7.8) can
be restated as follows. If a double series ((ak,¢), (Am,n)) is convergent, then
Ape—Apo—1—Ap—10+Ar—10-1 — 0 as (k, ) — (00,00). This formulation
has the following analogue for improper double integrals.
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Proposition 7.63. If an improper double integral (f, F) is convergent, then

/ / f(s,)d(5,8) = 0 as () — (00, 00).
[x—1,z]x[y—1,y]

Proof. Consider F\(2,y) = [[i, 11x[cy f(8:8)d(s,1) for (z,y) > (a,c). By Do-
main Additivity (PI‘OpOblthD 5.9), for all ( y) > (a+1,c+ 1), we obtain

//[ o 000 = Fasy)=Fay=1)=Fle—L ) +Fe—1y-1).

—lz]x[y—1,y]

If (f, F) is convergent, then there is I € R such that F(z,y) — I, and so the
right side of the above equality tends to 0 as (z,y) — (00, 00). O

Tests for Absolute Convergence
The following test is an analogue of the Comparison Test for double series.

Proposition 7.64 (Comparison Test for Improper Double Integrals).
Suppose a,c € R and f,g : [a,00) X [c,00) — R are such that both f and
g are integrable on [a,x] X [c,y] for every (z,y) > (a,c) and |f| < g. If
ff[am)x[cm)g(s,t)d(s,t) is convergent, then ff[am)x[c_’oo) f(s,t)d(s,t) is ab-

solutely convergent and
‘ /] fodis.n) < [ 9(s, )d(s, ).
la,00) x[¢,00) [a,00) x[c,00)
Proof. For (x,y) € [a,00) X [¢,00), let F(z,y) = ff[a,:c}x[cw}f(s,t)d(s,t),
G(J? y ff[a x]x[c y]g(s t)d(87t)7 and F(J),y) = ff[a,ac}x[c,y} |f(87t)|d(87t)
Assume that ff[a o0y x[e,00) 9 g(s,t)d(s,t) is convergent. Then the function G is

bounded above. Since |f| < g, we see that F < G, and hence the function F
is bounded above. Also, since |f| > 0, it follows from Proposition 7.55 that

ff[a 00) X [,00) [f(s,t)]d(s,t) is convergent, that is, ff[a 00) x[6,00) Fls,t)d(s, ) is
absolutely convergent. Further, since —f < |fl < g and fF<Ifl < g, we

have —F(z,y) < F(z,y) < G(z,y) and F(z,y) < F(z,y) < G(z,y) for all
(z,y) > (a,c). Letting (z,y) — (00, 00), we obtain

‘//[a,oo)x[c,oo) f(s,t)d(s,t)| < //[a’oo)x[c’oo)g(s,t)d(S,t)’

as desired. 0

The improper double integrals given in Examples 7.52 are useful in em-
ploying the Comparison Test for Improper Double Integrals.
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Examples 7.65. (i) Let f:[1,00) x [1,00) — R be defined by

2°5" + st?
t
fo1) = 357+ 83t

ooy /18 convergent, consider g : [1,00) X [1,00) = R

defined by g(s, ) (2/3)5(5/7)t. Then ff[l,oo)x[lm)g(s,t)d(s,t) is con-
vergent since 0 < :2,) < land 0 < ? < 1. Also, since st? < 2°5! and
s3+t+>0forallst>1,

255! 4 255t 2\° (5
[f(s,t)] < qat =2 <3) <7> for all (s,t) € [1,00) x [1,00).

Hence ff[lm)x[lm) f(s,t)d(s,t) is (absolutely) convergent by the Com-
parison Test for Improper Double Integrals.
(ii) Let f : [1,00) x [1,00) — R be defined by
1
(14 s+t+ st+ s3t4)1/2°

To see if ff[l

x[1,

f(s,t) :=

Consider g : [1,00) x [1,00) — R defined by g(s,t) := 1/5%/2¢2. Then
ff[l,oo)x[lm)g(s,t)d(s,t) is convergent since 5 > 1 and 2 > 1. Also,
s, 1) < s,t)| tor all (s,t) € 00) X o0). Hence the improper
[f(s,t)] < lg(s,0)| for all (s,t) € [1,00) x [1,00). H he improp
double integral ff[l,oo)x[lm) f(s,t)d(s,t) is (absolutely) convergent by the
Comparison Test for Improper Double Integrals. &

One can derive Limit Comparison Test and Root Test for improper double
integrals from Proposition 7.61. These tests involve the concept of uniform
convergence, which we have not introduced in this book. Hence we refrain
from discussing them here.

Tests for Conditional Convergence

We shall now consider some tests that give conditional convergence of an
improper double integral. They are based on the following result, which is
analogous to the Partial Double Summation Formula (Proposition 7.37).

Proposition 7.66 (Partial Double Integration Formula). Consider a
rectangle R = [a,b] x [¢,d] in R? and let f,g : R — R be such that f., f,,
and fa:y exist and are continuous on R, and that g is continuous on R. Define

G(z,y) ff[a 2x[e, y]g(s t)d(s,t) for (z,y) in R. Then

/ F(s,0g(s,)d(s,1) = f(b.d)G(b,d) + / Fry(5, G (s, D)d(s, )
R R

b d
—/ h(s,d)G(s,d)ds—/ fy(b,t)G(b, t)dt
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Proof. Since f, and f, are continuous on R, part (iil) of Proposition 3.3 shows
that f is continuous on R. Also, by Corollary 5.23, we see that G, Gy, and
Gy exist and are continuous, and in fact, G, = g on R. Carrying out double
integration by parts (Proposition 5.25), we obtain

//R fg= AEZ’Z;(JCG) - //R(szy + f,Ga + fuyG).

Moreover, A% (fG) = f(b,d)G(b,d), since G(a,c) = G(b,¢) = G(a,d) = 0.

(a,0)

Next, by Fubini’s Theorem on Rectangles (Proposition 5.28), we see that

//R foGy = /ab (/Cdfz(svt)Gy(S,t)dt>d5.

For each fixed s € [a, b], we may use the one-variable formula for integration
by parts (given, for example, in Proposition 6.25 of ACICARA) to obtain

d d
/fw(svt)Gy(svt)dt:(fa:G)(svd)_(wa)(svc)_/ (f)y(s, )G (s, t)dt.

Since G(s,c) =0 for all s € [a,b], it follows that

//Rf:cGyZ/abfx(s,d)G(S,d)ds—/ab(/Cdfxy(sjt)g(s’t)dt)ds.

In a similar manner, we have

//R JyGa :/Cd fy(b,t)G(b,t)dt—/cd (/ab fw(s,t)G(s,t)ds)dt,

By the Mixed Partials Theorem (Proposition 3.14), fy. = fzy on R. Now
Fubini’s Theorem on Rectangles yields

/ab(/Cdfw(s,t)G(s,t)dt)ds=//foyG=/cd(/abfw(s,t)g(s’t)ds)dt.

The desired result follows by adding appropriate equations stated above. O

Proposition 7.67 (Dirichlet’s Test for Improper Double Integrals).
Let f, g : [a,00) x [¢,00) — R be functions such that fy, fy, and f, exist and
are continuous, and g is continuous. Assume that

(i) f is bimonotonic,

(ii) for each fized t > c, the function given by s — f(s,t) is monotonic on
[a,00) and for each fized s > a, the function given by t — f(s,t) is
monotonic on [c, ),

(iil) lims—oo f(8,8), lims_—oo f(s,¢), and lim;_ f(a,t) exist and each equals 0,

(iv) the partial double integral of fﬁa’mlx[c’m]g(s,t)d(s,t) is bounded.
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Then the improper double integral ff[am)x[cm)f(s,t)g(s,t)d(s,t) is conver-
gent and its partial double integral is bounded.

Proof. As in the proof of Proposition 7.66, f is continuous on [a,o0) X [c, 00).
First we show that f(s,t) — 0 as (s,t) — (00, 00) and that f is bounded. Let
€ > 0 be given. By hypothesis (iii), there is s € [a, 00) such that

(s,t) > (s0,80) = |f(s,8)] <€, |f(s,0)] <e, and |[f(a,t)|<e.

Consider (s,t) > (a,c) with s > so and ¢t < s. By hypothesis (ii), either
f(s,e) < f(s,t) < f(s,s) or f(s,c) > f(s,t) > f(s,s). Since both f(s,c) and
f(s,s) are in (—e¢, €), we see that f(s,t) € (—¢,€). Similarly, if (s,t) > (a,c¢)
with ¢t > sp and s < ¢, then f(s,t) € (—¢,€). Thus for all (s,t) > (a,c) with
either s > sg or t > sp, we have |f(s,t)] < e. Since € > 0 is arbitrary, this
implies that f(s,t) — 0 as (s,t) — (00, 00). Also, considering € := 1 and « :=
sup{|f(s,t)] : a < s < sp and ¢ < t < 59}, we obtain |f(s,t)] < max{l,a},
which proves that f is bounded.

We now examine each term on the right side of the Partial Double Integra-
tion Formula (Proposition 7.66). Let G denote the partial double integral of
ff[a,oo}x[cﬁoo]g(s, t)d(s,t). Then G is bounded by hypothesis (iv), and so there
is § > 0 such that |G(b,d)| < @ for all (b,d) > (a,c). Since f(b,d) — 0 as
(b,d) — (00, 00), it follows that f(b,d)G(b,d) — 0 as (b,d) — (00, 0).

Also, by hypothesis (i), the function f is bimonotonic, and so Proposition
3.55 shows that fy, does not change sign on [a, c0) X [¢,00). Hence for every
(b,d) > (a,c), we have

zy(5,1)G (s, 1)ld(s, 1) < oy(s,t)d(s,
//[a,b}x[c,d] lf (3 t) (8 t)| (8 t) =0 ’//[a,b]x[c,d] / (3 t) (8 t)
b

iy / Fals.d) — fu(s, 0)]ds

= ﬁ|f(b’d) - f(b,C) - f(avd) +f(avc)|'

Since the function f is bounded, it follows by Proposition 7.55 that the
improper double integral ff[a’oo)x[c’oo) fay(s,t)G(s,t)d(s,t) is absolutely con-
vergent. By Proposition 7.55, its partial double integral is bounded, and by
Proposition 7.59, it converges to a real number J.

Next, since for each fixed ¢ € [¢, 00), the function s — f(s,t) is monotonic
on [a, 00), it follows that f, is of the same sign and hence for all (b,d) > (a, c),

b b
[ tls.aGs.ds| < 5| [ (s, d)ds| = 5170,  fla.d)].

Since f(a,d) — 0 as d — oo, and f(b,d) — 0 as (b,d) — (00, 00), we see that
|f(ba d) - f(a7d)| - 07 and so f; fﬂ(svd)G(svd)dS — 0 as (bad) - (00700)
Similarly, it follows that [ f, (b, £)G(b,t)dt — 0 as (b,d) — (o0, 50).
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By the Partial Double Integration Formula (Proposition 7.66), we obtain
// f(s,t)g(s,t)d(s,t) = 0+J+0+0=J as (b,d) — (c0,00).
la,b] x[c,d]

Thus the improper double integral ff[a 00) X [6,00) f(s,t)g(s,t)d(s,t) is conver-
gent. Also, its partial double integral is bounded, since each of the four terms
on the right side of the Partial Double Integration Formula is bounded. a

One can derive analogues of Abel’s Test and Dedekind’s Tests (Exercises
48 and 49) for improper double integrals. Since their proofs would involve
the concept of uniform convergence, we choose not to deal with these results.
The Leibniz Test for Double Series given in Corollary 7.39 has no straight-
forward analogue for improper double integrals, essentially since the function
g : [a,00) X [¢,00) — R defined by

_ J (=)t (s,1) € N2,
9(st) := { 0 otherwise,

is not continuous. The Convergence Test for Trigonometric Double Series given
in Corollary 7.40 admits the following analogue for the so-called Fourier
double integrals. The two improper double integrals in the corollary below
are sometimes called the Fourier sine double integral and the Fourier
cosine double integral, respectively.

Corollary 7.68 (Convergence Test for Fourier Double Integrals). Let
a,c € R and let f : [a,00) X [¢,00) — R be a function satisfying conditions (i),
(ii), and (iii) of Proposition 7.67. Let 0 and ¢ be nonzero real numbers. Then
the improper double integrals

//[ f(s,t)sin(s0+tp)d(s,t) and //[ f(s,t) cos(sO0+tp)d(s,t)

a,00) X [¢,00) a,00) X [¢,00)
are convergent.
Proof. Define g : [a,00) X [¢,00) — R by g(s,t) := sin(sf + ty). Clearly, g
is continuous. Consider the partial double integral G : [a,o0) X [¢,00) — R
defined by G(z,y) = ff[a 2)x[ey 9(5:1)d(s,1). Using Fubini’s Theorem on
Rectangles (Proposition 5.28) and noting that ¢ # 0 and 6 # 0, we obtain

1 xT
(Gl = || [ leos(s+ 0) — cos(s + yo)lds
1
= o] [6] || sin(x6 + cp) — sin(ab + cp) + sin(xb + yp) — sin(ad + yo)||
4
< .
lso] 16

Thus the function G is bounded. Hence by Proposition 7.67, the improper
double integral ff[a 00)x e OO)f(s, t)sin(sf + t@)d(s,t) is convergent. Similarly,

ff[a sy x[e,00)f (8:1) cos(st + tp)d(s, t) is also convergent. 0
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Remark 7.69.1If 0 = ¢ = 0, then sin(sf + tp) = 0 and cos(sf + tp) = 1
for all (s,t) € R?, and so the integrand of the Fourier sine double integral
ff[a’oo)x[c’ooy”(s,t) sin(sf + ty)d(s,t) is equal to zero, while the Fourier co-
sine double integral ff[am)x[cﬁoo}f(s, t) cos(sf +tp)d(s,t) is just the improper
double integral ff[a7oo)x[c7oo>f(s,t)d(s,t), which may or may not converge. If
one of 6 and ¢ is equal to 0, while the other is not equal to 0, then depending
upon the choice of the function f (satisfying conditions (i), (ii), and (iii) given
in Proposition 7.67), the corresponding Fourier double integrals may converge
absolutely, or may converge conditionally, or may diverge. Exercise 36 illus-
trates each of these cases. <

Example 7.70. Let f(s,t) := 1/(s + t)? for (s,t) € [1,00) X [1,00), where
p € R with p > 0. Then the function f clearly satisfies conditions (i) and
(ii) of Proposition 7.67. Further, we have seen in Example 1.8 (ii) that f is
bimonotonically increasing. Also, f(s,s) — 0 and f(s,1) — 0 as s — oo, and
f(1,t) — 0 as t — oo. Thus condition (iii) of Proposition 7.67 is also satisfied.
Hence if 6§ and ¢ are nonzero real numbers, then by Corollary 7.68, we see
that the improper double integrals

// sin(fs + pt) d(s,t) and // cos(0s + pt) d(s,1)
[1,00) % [1,00) (S + t)p [1,00)%x[1,00) (S + t)p

are convergent. In fact, in view of Exercise 7.58, both these improper double
integrals are absolutely convergent if p > 2. <O

7.7 Unconditional Convergence of Improper
Double Integrals

In Chapter 5, we developed the theory of double integrals of bounded functions
on bounded subsets of R2. When the function or the subset of R? on which it
is defined is unbounded, we are led to improper double integrals. In Sections
7.5 and 7.6, we discussed the theory of improper double integrals of functions
defined on an unbounded subset of R? of the form [a,o0) X [c,o0), where
a,c € R. We have also noted in Remark 7.53 that this can be used to suitably
define improper double integrals of functions defined on some other unbounded
subsets of R? such as (—o0, b] x[¢, 00), (—00, b] X (=00, d], etc., where b, ¢, d € R.
But what about functions defined on an arbitrary unbounded subset of R? or
unbounded functions defined on a bounded subset of R2? In these cases, there
is no straightforward analogue of partial double integrals whose limit can be
defined as the improper double integral. However, for a function f: D — R,
where D C R2, it seems most natural to consider a suitable sequence (D,,) of
bounded subsets of D such that f is integrable on each D,,, and then define
[J,, f as the limit of ffDn f asn — oo. But of course this limit should exist and
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should be independent of the choice of the sequence (D,,). We shall see that
this requirement leads to a more stringent notion of convergence even in the
case of improper double integrals of functions on familiar unbounded subsets
of R? such as [a,00) x [c,00). This notion, called unconditional convergence,
is discussed in this section. First, we shall consider the so-called improper
double integrals of the first kind, which correspond to the case of functions
on unbounded subsets of R?, and later we consider improper double integrals
of the second kind, which correspond to the case of unbounded functions on
bounded subsets of R2. Throughout, we shall restrict ourselves to continuous
functions for the sake of simplicity.

Functions on Unbounded Subsets

We begin with an example of an unbounded subset D of R? and a continuous
function f : D — R for which there are natural sequences (D,,) and (E,,) of
bounded subsets of D such that f is integrable on D,, as well as F,, for each
n €N, and lim,, o0 ffDn f exists but lim,,_, ffE" f does not.

Example 7.71. Let D := [0,00) X [0,00). Consider f : D — R defined by
f(s,t) :=sin(s? 4+ t?). Then f is continuous on D, and for (z,y) € D,

Fa)= [[ s
[0,2]x[0,y]
x y
/ [/ (sin 52 cost? + cos 82 sin t2) dt} ds
0 0

x Yy x Y
(/ sin 32ds) (/ cos tzdt) + (/ cos 32ds) (/ sin tzdt) .
0 0 0 0

The substitution u := s? shows that for z > 1, we have

2
z 1 /% sinu
/sins2ds: du.
1 2/ Vu

By the Convergence Test for Fourier Integrals based on Dirichlet’s Test (given,
for example, in Corollary 9.52 of ACICARA), we see that the improper integral
[ (sinu/y/u) du is convergent. Since [ sin s?ds = fol sin s?ds + [, sin s?ds
for all z > 1, it follows that the improper integral fooo sin s?ds is convergent.
Similarly, the improper integral fooo cos s2ds is convergent.! Consequently, we
conclude that im g, ). (00,00) F'(x,y) exists. In particular, if for n € N, we
let Dy, := {(s,t) € D : s <mnandt < n}, then limy oo [f, f(s,t)d(s,t) =
lim,, .o F'(n,n) exists (and is equal to 7/4).

! The improper integrals fooo sin s?ds and fooo cos s?ds are known as Fresnel inte-
grals. Each is equal to /7 /8. See, for example, page 473 of [12, vol. II].
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On the other hand, suppose E,, := {(s,t) €eD:s?+12< nﬂ'} for n € N.

Switching to polar coordinates s := rcosf, t := rsinf, we see that E, is
transformed to G,, := [0, \/n7] x [0,7/2], and so by Proposition 5.65,

/ fst (s,t) / f(rcosO,rsind)rd(r,0)

\/’I’LTK‘ /2
/ r sinr?dr / do
0 0

Z (1 —cosnm) = Z(l —(=1)").

It follows that limy, oo [[ f(s,t)d(s,t) does not exist. <&

In view of the above example, and in analogy with our discussion in Section
7.2 of unconditionally convergent double series, we first define an appropriate
class of sequences of bounded subsets of an unbounded set, and then we
introduce the notion of unconditional convergence.

Let D be an unbounded subset of R?. A sequence (D,,) of subsets of D is
said to be exhausting if it satisfies the following three conditions:

(i) D,, is bounded and 9D, is of content zero for each n € N,
(ii)) D, € Dy4q for each n € N, and
(iii) each bounded subset of D is contained in D,, for some n € N.

Observe that the sequences (D,,) and (E,,) of subsets of [0, 00) x [0, 00) consid-
ered in Example 7.71 are exhausting. In general, if D is an unbounded subset
of R?, and if for n € N, we let

D, :={(s,t) € D:|s| <mand |t| <n} and E, := {(s,t) € D: s*+t* < n?},

then (D,,) is exhausting, provided 0D, is of content zero for each n € N, and
(E,) is exhausting, provided 0F,, is of content zero for each n € N. On the
other hand, if D := Q2, then D does not admit any exhausting sequence of
subsets. To see this, observe that if a subset E of D contains the bounded
subset ([—1,1] x [-1,1])NQ? of D, then JE D [—1,1] x [~1,1], and therefore
OF cannot be of content zero.

Let D be an unbounded subset of R? that admits an exhausting sequence
of subsets and let f : D — R be a continuous function that is bounded on
each bounded subset of D. Then by Proposition 5.43, f is integrable on each
term of an exhausting sequence of subsets of D. We say that the improper
double integral [[,, f(s,t)d(s,t) is unconditionally convergent if there is
I € R such that for every exhausting sequence (D,,) of subsets of D, the limit

Jm [[gts s

exists and is equal to I. The hypothesis that D admits an exhausting sequence
of subsets ensures that the real number I, when it exists, is unique. In this
case, we write [[) f(s,t)d(s,t) = I, or simply [, f =
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It is easily seen that if the improper double integrals [[, f and [[, g are
unconditionally convergent, then so are [[,,(f+g) and [[,,(rf) for any r € R.

We give below a necessary and sufficient condition for the unconditional
convergence of an improper double integral of a nonnegative continuous func-
tion on an unbounded subset of R2. Its proof shows the importance of condi-
tions (ii) and (iil) in the definition of an exhausting sequence.

Proposition 7.72. Let D be an unbounded subset of R? that admits an ex-
hausting sequence of subsets, say (D), and let f : D — R be a nonnegative
continuous function that is bounded on each bounded subset of D. Then the im-
proper double integral ffD f is unconditionally convergent if and only if « € R
such that [[, f < a foralln €N, and in this case, [[, f =limu,—co [[, [

Proof. Suppose [}, f is unconditionally convergent. Then lim, .o [[, f
exists. Since a convergent sequence of real numbers is bounded, there is o € R
such that ffDn f<aforallneN.

Conversely, suppose there is a € R such that [, p. [ <aforalneN
For n € N, let I, := ffD" f. Since f is nonnegative, (I,) is a monotonically
increasing sequence of real numbers. Also, (I,,) is bounded above by «. Hence
(I) converges to I := sup{l, : n € N}. Next, let (E,) be any other exhausting
sequence of subsets of D, and let J, := [[, f for n € N. Then (J,) is
also a monotonically increasing sequence of real numbers. Now fix m € N.
Since E,, is a bounded subset of D, there is ng € N such that E,, C D,,,
and so J,, < I,, < I. This shows that the sequence (.J,,) is bounded and
J :=sup{J, : n € N} < I. Interchanging the roles of (D,,) and (E,), we see
that I < J. Hence the sequence (J,,) also converges to I. This proves that
[/, f is unconditionally convergent. 0

Example 7.71 shows that the nonnegativity of the function f cannot be
dropped from the above proposition. To obtain an analogue of the charac-
terization in Proposition 7.72 for functions that may change sign, we re-
quire the following auxiliary results. Let us recall that if S is a subset of
R? and f : S — R is a function, then f*,f~ : S — R are defined by
ft=(fl+f)/2and f~ :=(|f|— f)/2. Observe that f* and f~ are nonneg-
ative, f = f* — f~,and |f| = f = fT + f~. Further, f is continuous on S if
and only if both f* and f~ are continuous on S. Moreover, if S is bounded,
then f is integrable on S if and only if both f* and f~ are integrable on S.

Lemma 7.73. Let S be a bounded subset of R? and f : S — R an integrable
function. Given any v € R with v > 2, there is a subset T' of S such that 0T
18 of content zero, [ is integrable on T, and

//S|f|§v’//Tf‘-

Proof. Let 6 := [[¢|f|. If 6 = 0, we let T' := (). Suppose now that ¢ # 0. Since
6= [[gfT+ [[sf, we see that either [[o fT >6/20r [[of~ > /2. We
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assume without loss of generality that [[; f* > §/2. Let R be a rectangle
containing S and let g : R — R denote the function obtained by extending
the function f* to R as usual, that is, by setting it to be zero on R\ S. Note
that ¢ is nonnegative, and if g(x,y) > 0 for some (z,y) € R, then (z,y) € S.
Since v > 2 and 6 # 0,

sup {L(P,g) : P is a partition of R} = L(g // g > > >

Hence there is a partition P := {(z;,y;) : 4 =0,1,...,nand j =0, 1,...,k}
of R such that L(P,g) = Y1y 30—y mai(9) (@i — 2i1)(y; — yj-1) > /7,
where m; ;(g) = inf{g(z,y) : (z,y) € [wi—1, 2] X [yj_1,y,]} for i =0,1,...,n
and j =0,1,..., k. Let T denote the union of those subrectangles [z;_1, ;] X
[yj—1,y4] of R for which m; ;(g) > 0. Since g(z,y) > 0 for (z,y) € T, we see
that 7" C S. Also, 9T is of content zero, since it consists of finitely many line
segments. Further, by Corollary 5.50, f is integrable on T'. Now for (z,y) € T,
ST (z,y) = g(z,y) > 0 and so f(z,y) is positive and is equal to g(z,y). Thus

b= he

Next, let h: R — R be the extension of g|7 to R defined by h(z,y) := g(z,y)
if (z,y) € T and h(z,y) := 0 if (z,y) € R\ T. Note that 0 < h < g and
mi j(h) =m; j(g) for all i =0,1,...,nand j =0,1,..., k. Consequently,

o= ff = -sien ==

This yields v |[[ f| = [[s|f], as desired. 0

The above result is interesting because of the reversal of the inequality
sign in the basic inequality |[[g f| < [[s|f|. If the boundaries of the sets
St :={(z,y) € S: f(x,y) >0} and S~ := {(z,y) € S : f(x,y) < 0} are of
content zero, then we can let T := ST or T := S~ and replace v by 2 in the
above proposition. (See Exercise 13 of Chapter 5.)

Lemma 7.74. Let D be an unbounded subset of R? that admits an exhausting
sequence of subsets, and let f : D — R be a continuous function that is bounded
on each bounded subset of D. Let ffD f be unconditionally convergent. Then
there is o € R such that ffs lf| < « for every bounded subset S of D such
that 0S is of content zero.

Proof. First we show that there is 8 € R satisfying | Isf | < 3 for every
bounded subset S of D such that 95 is of content zero. Assume for a moment
that this is not the case. Let (D,,) be an exhausting sequence of subsets of
D, and set Uy := D;. Then there is a bounded subset T} of D such that 0T}
is of content zero and |ffT1 fl=1+ [y, |f], and for each n > 2, there is a
bounded subset T;, of D such that 0T, is of content zero and
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0
‘// f’zn—i—// |f|, where U, =D, UTyU---UT,_;.

Define S,, :=T,, U U, for n € N. Note that (S,,) is an exhausting sequence of
subsets of D. If for n € N, we let V,, := S,, \ T}, then V;, C U,, and 9V, is of
content zero. Thus, by Domain Additivity (Corollary 5.52), we see that

L A= [ AL A e

Hence lim,, . [], g, [ cannot exist, which is a contradiction. This proves that

there is § € R satisfying the inequality stated at the beginning of the proof.
Now, given any bounded subset S of D such that 05 is of content zero, by

Lemma 7.73 with « := 3, there is a subset T' of S such that 9T is of content

zero, f is integrable on T', and [[¢|f| < 3|[[, f|. Since |[[, f| < B, we
obtain the desired result upon letting o := 3. O

Proposition 7.75. Let D be an unbounded subset of R? that admits an ex-
hausting sequence of subsets, say (Dy), and let f : D — R be a continuous
function that is bounded on each bounded subset of D. Then ffD f is uncon-
ditionally convergent if and only if there is a € R such that ffDn lf| <« for
all n € N, and in this case, [[, [ = lim,—oc [[,, f. Equivalently, [[, f is

unconditionally convergent if and only if ffD | f| is unconditionally convergent.

Proof. Assume that [/ p f is unconditionally convergent. By Lemma 7.74,
there is a € R such that ffDn |f| < aforall n € N.

Conversely, suppose there is & € R such that [ D, [fl] < « for all n €
N. Since 0 < f* < [f| and 0 < f~ < |f], we obtain [[, f* < « and
ffD" f~ < afor all n € N. By Proposition 7.72 applied to the functions f*
and f~, we see that [[, f* and [[,, f~ are unconditionally convergent. Since
f=fT—f, it follows that [, f is unconditionally convergent. Moreover,
[fp f=1lim, ffD" f, since the same holds with f replaced by f+ and f~.

Finally, the last assertion follows from Proposition 7.72. O

Corollary 7.76 (Comparison Test for Improper Double Integrals of
First Kind). Let D be an unbounded subset of R? that admits an exhausting
sequence of subsets. Let f, g : D — R be continuous functions that are bounded
on each bounded subset of D and satisfy |f| < g. If fng s unconditionally
convergent, then so is [[, f.

Proof. Follows from Propositions 7.72 and 7.75. O

The corollary below may be compared with Proposition 7.24 concerning
an analogous result for double series.

Corollary 7.77. Let D := [a,0) X [¢,00), where a,c € R, and let f : D — R
be a continuous function. Then ffo is unconditionally convergent if and
only if it is absolutely convergent.
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Proof. For n € N, let D,, := [a,a+n] x [¢,c+n]. Then (D,,) is an exhausting
sequence of subsets of D. Since D is a closed set, the closure of every bounded
subset of D is contained in D. Hence Proposition 2.25 shows that f is bounded
on each bounded subset of D. Also, f is integrable on [a, z]| X [¢,y] for every
(z,y) € R? with 2 > a and y > c. Further, given (x,y) € R?, if we let
n := max{[z] + 1,[y] + 1}, then [a,z] x [c,y] C D,. Hence it follows from
Propositions 7.72 and 7.55 that [[, |f| is unconditionally convergent if and
only if [J p [ is absolutely convergent. Thus, by Proposition 7.75, I pfis
unconditionally convergent if and only if it is absolutely convergent. a

Examples 7.78. (i) Let D := {(s,t) € R?: 52 + 2 > 1} and let p € R with
p > 1. Consider f : D — R defined by f(s,t) := 1/(s® +t?)?. For n € N,
let D, := {(s,t) € D : s® + > < n?}; switching to polar coordinates, D,,
is transformed to G, := [1,n] x [, 7], and so by Proposition 5.65,

" 1
= —2p —9 1=2pg. T (g _ .
//an //Gnr : d(?“, 9) 7T/1 " dr p—1 ( n2p2)

Hence lim, oo [f,, f=m/(p—1). Since f is nonnegative, by Proposition
7.72, [[,, f is unconditionally convergent and is equal to m/(p — 1). Next,
consider g : D — R defined by g(s,t) := sin(s® + t2)/(s? + t2)P. Then
lg| < f, and so by Corollary 7.76, [/ p g is unconditionally convergent.
Note that the function g assumes both positive and negative values.

(ii) Let D := [0,00) x [0, 00). Deﬁne f:D = Rby f(s,t) = e "+ For
neN,let D, :={(s,t) € D:s?> +t> < n?}. As in Example 5.66 (iii),

// f— (1—e™) forneN.

Hence lim, . [[, f = m/4. Since f is nonnegative, Proposition 7.72
shows that [[ p [ is unconditionally (and hence by Corollary 7.77, abso-
lutely) convergent and is equal to w/4. Note that it is not possible to
evaluate the partial double integrals | f[o,x]x 0,5/ in terms of an elemen-
tary function of x and y. <

Concept of Area of an Unbounded Subset of R?

We extend the concept of area to certain unbounded subsets of R2. Let D
be an unbounded subset of R? that admits an exhausting sequence (D,,) of
subsets of D. Then Area(D,,) is well defined for each n € N. If the sequence
(Area(D,,)) is bounded, then applying Proposition 7.72 to the function 1p,
we see that lim,, ., Area(D,,) exists and is independent of the choice of an
exhausting sequence (D,,) of bounded subsets of D. We define the area of
the unbounded subset D of R? to be equal to this limit, and we denote it
by A(D). On the other hand, if the sequence (Area(D,,)) is unbounded, then
for every exhausting sequence (E,,) of subsets of D, the sequence (Area(F,,))
would be unbounded; in this case, we define A(D) := occ.
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Fig. 7.6. Illustration of the bounded subsets D,, of D in Example 7.79 (i).

Examples 7.79. (i) Let D := {(s,t) € R? : |t| < 1/(1 + s?)}. Define D,, :=
{(s,t) € D : |s| <n} for n € N. (See Figure 7.6.) It is clear that (D,,) is
an exhausting sequence of subsets of D. Also,

n 1/(145s2) nods
Area(Dn)IZ// 1Dn:/ (/ dt)ds = 4/ , = darctann.
D,, —n —1/(1+s2) 0 I+s

Thus A(D) := lim,, . Area(D,,) = 2.

(i) Let D := {(s,t) € R? : t > 0 and |s*> —t2| < 1}. Define D,, := {(s,t) € D :
|s| < n} for n € N. (See Figure 7.7.) It is clear that (D,,) is an exhausting
sequence of subsets of D. Also,

Area(D"):://D b, :4/01 (/Osdt)ds—i-ZL/ln (/;let)ds

:2+4/ (3—\/82—1)d822+4/ (1>ds=2+21nn.
1 1 2s

Thus the sequence (Area(D,,)) is unbounded, and so A(D) = cc. &
i
Q 1
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Y 1
\\\ : 82 — tz =-1
S 1
~ I
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Fig. 7.7. Nlustration of the bounded subsets D,, of D in Example 7.79 (ii).
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Unbounded Functions on Bounded Subsets

We begin with an example of a bounded subset D of R? and an unbounded
continuous function f : D — R for which there are natural sequences (D,,)
and (FE,) of subsets of D such that f is integrable on D,, as well as E,, for
each n € N, but the limits lim,_ ffDﬂ f and lim,, o ffE,ﬂ f are different.

Example 7.80. Let D :=[0,1] x [0,1]\ {(0,0)}. Consider f : D — R defined
by f(s,t) := (s2—t2)/(s2+t2)2. Then dD is of content zero and f is continuous
on D. For (z,y) # (0,0) in D, let

Fla,y) = //[x71]x[y71]f(s,t)d(s,t).

By Fubini’s Theorem on Rectangles (Proposition 5.28),
Tr el .2 42
s°—1
F(x,y) = dt|ds
= [ [ ot

1 t=1 1 1
t 1
e ST, . s°+1 . STty

If « € (0,1], then substituting s := x/u in the second integral above,

b S| b
(z,x) /:c 2l s+/1 14 u? u=0 an (z,0) /:c 21 s

Let D, := [1/n,1] x [1/n,1] and E,, := [1/n,1] x [0,1] for n € N. Then f is
bounded on D,, as well as F,, for each n € N, and

n n

// f(s,t)d(s,t) ZF(l, 1) =0 for eachn € N,
D,

whereas

1 o m
/E,Lf(s’t)d(s’“:F(n’O)*/0 oy b= asn—s O

In view of the above example, and in analogy with the notion of an ex-
hausting sequence, we now define an appropriate class of sequences of subsets
of a bounded set. Note that if the given set is bounded, then condition (iii)
in the definition of an exhausting sequence implies that all except finitely
many terms of the sequence coincide with the given set. With this in view, we
will require instead that the areas of the subsets that constitute the sequence
approach the area of the given set.

Let D be a bounded subset of R? such that D is of content zero. A
sequence (D,,) of subsets of D is said to be expanding if it satisfies the
following three conditions:
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(i) 0D, is of content zero for each n € N,
(ii) D,, € Dy for each n € N, and
(iii) Area(D,,) — Area(D) as n — oc.

Observe that the sequences (D,,) and (E,,) of subsets of [0,1] x [0, 1]\ {(0,0)}
considered in Example 7.80 are expanding. In contrast to exhausting sequences
of subsets of an unbounded set, every bounded subset D of R? whose bound-
ary is of content zero admits an expanding sequence; indeed, we can simply
consider the sequence (D,,) given by D,, := D for all n € N.

Let f : D — R be an unbounded continuous function that is bounded (and
hence integrable) on each term of some expanding sequence of subsets of D. We
say that the improper double integral [[, f(s,t)d(s,t) is unconditionally
convergent if there is I € R such that for every expanding sequence (D,,) of
subsets of D with the property that f is bounded on each D, the limit

Jim / F(s,)d(s,1)
n—00 D,
exists and is equal to I. The hypothesis that f is bounded on each term of
an expanding sequence of subsets of D ensures that the real number I, when
it exists, is unique. In this case, we write [[, f(s,t)d(s,t) = I, or simply
J fD f=1
It is easily seen that if the improper double integrals [[,, f and [[}, g are
unconditionally convergent, then so are [[,,(f+g) and [[,(rf) for any r € R.
We give below a necessary and sufficient condition for the unconditional
convergence of an improper double integral of a nonnegative unbounded con-
tinuous function on a bounded subset of R?. Its proof shows the importance
of conditions (ii) and (iii) in the definition of an expanding sequence.

Proposition 7.81. Let D be a bounded subset of R? such that OD is of con-
tent zero and let f: D — R be a nonnegative unbounded continuous function.
Suppose D admits an expanding sequence (D,,) of subsets of D such that f is
bounded on D, for each n € N. Then ffD f is unconditionally convergent if
and only if there is a € R such that [[, f < a for alln € N, and in this

case, [[ [ =limy,—oo [f [

Proof. Suppose [[, f is unconditionally convergent. Then lim, .o [f,, f
exists. Since a convergent sequence of real numbers is bounded, there is o € R
such that ffDn f<aforalncN.

Conversely, suppose there is a € R such that ffDﬂ f < aforalln e€N.
For n € N, let I,, := ffD" f. Since f is nonnegative, (I,,) is a monotonically
increasing sequence of real numbers. Also, it is bounded above by «. Hence
(I) converges to I := sup{l, : n € N}. Next, let (E,,) be any other expanding
sequence of subsets of D such that f is bounded on E,, for each n € N, and let
In =[] B, f for n € N. Then (J,,) is also a monotonically increasing sequence
of real numbers. Now fix m € N and let £, > 0 be such that f(s,t) < 3, for
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all (s,t) € E,,. Let € > 0 be given. Since Area(D,,) — Area(D) as n — oo,
there is ng € N such that Area(D) — Area(D,,) < €/8m. By Corollary 5.38,
O(D\ Dy,), O(Ep, \ Dy, ) and O(E,, N D,,) are of content zero. Also, Corollary
5.50 shows that f is integrable on O(E,, \ Dy,) and on d(E,, N D, ). Hence
by Domain Additivity (Corollary 5.52), we obtain

//Emf - //Emmeo U //E‘m\Dno !

But since Area(D\ D,,,) = Area(D)—Area(D,,) < €¢/m, the Basic Inequality
(Corollary 5.49) shows that

// f < BmArea(Ep \ Dyy) < BmArea(D \ Dy,) < Bm ¢ _.
Eu\Dhn, Bm

Jrefl sl et

m

Hence

Since the inequality [[ g,/ < 1+ eholds for every € > 0, it follows that
I = ffEnf < I. This shows that the sequence (J,) is bounded and J :=
sup{.J, : n € N} < I. Interchanging the roles of (D,,) and (E,), we see that
I < J. Hence the sequence (.J,) also converges to I. This proves that [[, f
is unconditionally convergent. O

Example 7.80 shows that the nonnegativity of the function f cannot be
dropped from the above proposition. To obtain an analogue of the character-
ization in Proposition 7.81 for functions that may change sign, we proceed
exactly as we did in the case of functions defined on unbounded subsets of R2.

Lemma 7.82. Let D be a bounded subset of R? such that 0D is of content
zero and let f : D — R be an unbounded continuous function. Suppose D
admits an expanding sequence (D,,) of subsets of D such that f is bounded on
D,, for each n € N. Let ffD f be unconditionally convergent. Then there is

o € R such that
//|f|§a
s

for every subset S of D such that S is of content zero and f is bounded on S.
Proof. Similar to the proof of Lemma 7.74. ad

Proposition 7.83. Let D be a bounded subset of R% such that 0D is of con-
tent zero and let f : D — R be an unbounded continuous function. Suppose
D admits an expanding sequence (D,,) of subsets of D such that f is bounded
on D,, for each n € N. Then ffD f is unconditionally convergent if and only
if there is a € R such that [[,, |f| < « for all n € N, and in this case,

[fp f=1im, ffD" f. Equivalently, [[, f is unconditionally convergent if
and only if [[,|f| is unconditionally convergent.
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Proof. Similar to the proof of Proposition 7.75. O

Corollary 7.84 (Comparison Test for Improper Double Integrals of
Second Kind). Let D be a bounded subset of R? such that OD is of content
zero and let f, g : D — R be unbounded continuous functions that satisfy
|f| < g. Suppose D admits an expanding sequence (D,,) of subsets of D such
that both f and g are bounded on D,, for each n € N. If fng s uncondition-
ally convergent, then so is [[,, f.

Proof. Follows from Propositions 7.81 and 7.83. O

Examples 7.85. Let D := {(s,t) € R? : 0 < s> + > < 1} and for n € N, let

D, == {(s,t) € D: (1/n?) < s? +t? < 1}. Then D is a bounded subset of R?,

0D is of content zero, and (D,,) is an expanding sequence of subsets of D.

(i) Let p € R with 0 < p < 1. Consider f : D — R defined by f(s,t) :=
1/(s? +t2)P. Then f is a nonnegative unbounded continuous function on
D, and f is bounded on D,, for each n € N. Using polar coordinates and
Proposition 5.65, we see that

// f= // =21 d(r, 0)
n [1/7’L,1}><[*7T,7T]
! 1
= 271'/ =g — 7 (1 9.9 ) :
1/n 1 -p ne—er

Hence lim,, . [[,, f=m/(1—p). Since f is nonnegative, Proposition 7.81
shows that [ pf is unconditionally convergent and is equal to /(1 — p).

(ii) Define g : D — R by g(s,t) := —In(s* + t?). Then g is a nonnegative
unbounded continuous function on D, and it is bounded on D,, for each
n € N. Using polar coordinates and Proposition 5.65, we see that

// g= -2 // (Inr)rd(r,0)
D, [1/n 1) x[—7,7]

1
= —471'/ r(lnr)dr
1/n

:w[ﬁ—2r2(1nr)]:/n:7r<1_ - )

Hence lim,, .o [[;, g = 7. Since f is nonnegative, Proposition 7.81 shows
that [f p 9 is unconditionally convergent and is equal to 7. &

Before we conclude this chapter, we remark that “triple integrals” of func-
tions defined on an unbounded subset of R? and of unbounded functions
defined on a bounded subset of R? can be treated on the lines of “double inte-
grals” treated in this section. For typical examples of such “triple integrals,”
see Exercise 71.
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Notes and Comments

The topics of double series and improper double integrals are treated rather
cursorily in most books on calculus. This is partly because these topics do not
appear in applications as frequently as the corresponding one-variable topics
of series and improper integrals, and partly because there is no universally ac-
cepted way of treating these two-variable topics. We have, however, given an
extensive treatment of these topics. In this attempt, we have been guided by the
analogy between one-variable topics and the corresponding two-variable topics
on the one hand, and also the analogy between the discrete case (such as se-
quences, series, and double series) and the continuous case (such as functions
defined on an interval, improper integrals, and improper double integrals) on
the other hand.

If the limit of a double sequence (ap, ) is equal to a, the real numbers
(@m,n) come close to the real number a when both m and n are independently
large. As a result, an interesting phenomenon occurs: a convergent double se-
quence need not be bounded, in contrast to the one-variable fact that a conver-
gent sequence is always bounded. We have used the product order, that is, the
componentwise partial order on N? to introduce monotonic and bimonotonic
double sequences of real numbers. These come in handy in discussing the con-
vergence of a double series of nonnegative terms and in describing Dirichlet’s
test for conditional convergence of a double series.

There are several ways of defining the convergence of a double series
ZE(,M) ar¢ depending on which finite sums of the terms ay, are consid-
ered. We have chosen to define the convergence of a double series in terms of
the convergence of the double sequence (A, ), where Ay, ,, is the sum of all
the terms ap e with 1 <k <m and 1 < ¢ < n. This definition was first given
by Pringsheim [42] in 1897 and has been adopted in the books of Hobson [32],
Bromuwich [7], and Buck [8]. For a double series of nonnegative terms, vari-
ous ways of summing (“by squares,” “by diagonals,” etc.) coincide. There is
yet another approach to the convergence of » Z(k,e) ar.¢ based on the concept
of “unordered sums” given, for example, in the books of Protter and Morrey
[44] and Ruiz [49]. We have given a version of this approach at the end of
Section 7.2 under the nomenclature “unconditional convergence” and shown
its equivalence to absolute convergence.

In analogy with a telescoping series, we have considered the concept of a
telescoping double series and shown how to find its double sum. This chapter
contains analogues of the limit comparison test, the root test, and the ratio
test for a double series. The analogue of the root test given here is sometimes
attributed to Pringsheim [42] and Daniell [13]. For the analogues of the limit
comparison test and the ratio test given in the text as well as for the analogues
of Cauchy’s condensation test, Abel’s kth term test, the ratio comparison test,
and Raabe’s test for double series given in the exercises, we refer to [36].
This paper also contains results about the convergence of the Cauchy product
of two double series introduced in Exercise 51. Another version of the ratio
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test and several other tests for the absolute convergence of a double series
can be found in [5]. An analogue of the partial summation formula leads to
a test for the conditional convergence of a double series that is analogous to
Dirichlet’s test for the conditional convergence of a single series. This result
is essentially in the paper [27] of Hardy; it can also be found on page 97 of
the book [7] of Bromwich. A variant of this test that is analogous to Abel’s
test, and a generalization of this test that is analogous to Dedekind’s test
for the conditional convergence of a single series are given in the exercises.
Dedekind’s test was considered by Hardy in [28]. A useful reference for similar
considerations is [26].

We have treated double power series as special cases of double series. It
is interesting to note that a double power series may have many biradii of
convergence, in contrast to the uniqueness of the radius of convergence of a
(single) power series. Also, the domain of convergence of a double power series
can have a variety of shapes, and it need not even be a convex subset of R%. A
result of Fabry on the log-convezity of the domain of convergence is given as
an exercise. We discuss the convergence of the so-called Taylor double series
of a function having continuous partial derivatives of all orders on a square
neighborhood of a point. We make a distinction between this double series and
the corresponding diagonal series, called the Taylor series, whose nth partial
sum is the nth bivariate Taylor polynomial of the function.

We define the improper double integral of a real-valued function f on a
subset of R? of the form [a,00) X [c,00) in analogy with the definition of a
double series of real numbers, and then develop the concepts of absolute and
conditional convergence. Several tests for absolute convergence and conditional
convergence are discussed. It may be worthwhile to note that the Integral Test
establishes a strong connection between the convergence of a double series of
nonnegative terms and that of an improper double integral of a nonnegative
function. Also, Dirichlet’s Test for improper double integrals of bimonotonic
functions is useful in establishing conditional convergence.

In the last section of this chapter, we consider improper double integrals of
continuous functions defined on an unbounded subset D of R? that are bounded
on each bounded subset of D, and of unbounded continuous functions defined
on a bounded subset of R%. The relevant notion here is that of unconditional
convergence. Qur development of this topic is partly based on the treatment
given in Section 4.5 of Buck [8] and Section 4.7 of Courant and John [12, vol.
II]. In particular, we prove a result stated by Buck [8, p. 223] that the uncon-
ditional convergence of the improper double integral of a continuous function
and that of its absolute value are equivalent. This brings out the distinction
between the notions of conditional and unconditional convergence of improper
integrals of functions on subsets of R? of the form [a, o) X [c,o0). In fact, for
improper integrals of such functions, unconditional convergence turns out to
be equivalent to absolute convergence.
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Exercises

Part A

1. Show that each of the the following double sequences converges to 1.

(i) ((k+OMEE), (i) ((RO)MF), (i) ((k+0)F), (i) ((kO)V D).

2. Let (by,) and (c,) be sequences in R. Define a double sequence (am, ») by
Amn = bm + ¢y, for (m,n) € N2, Show that (am, ,) is convergent if and
only if both (b,,) and (¢,) are convergent. (Hint: Cauchy Criterion)

3. Let b,c, 3,7 € R and define a,, , := 0™ + yc" for (m,n) in N2. Show
that (am,n) is convergent if and only if one of the following conditions
holds: (i) B=0=+, (ii) f =0and ¢ € (—1,1], (ili) y =0 and b € (—1,1],
(iv) b € (=1,1] and ¢ € (—1,1]. (Hint: Exercise 2)

4. Let (by,) and (cp) be sequences in R. Define a double sequence (am,n)
by @m.n = bmcy, for (m,n) € N2, Show that (ay, ) is convergent if and
only if one of the following conditions holds: (i) Both (b,,) and (c,) are
convergent. (ii) One of (b,,) and (¢, ) converges to zero and the other is
bounded. (iii) All but finitely many terms of either (b,,) or (¢,,) are equal
to zero. (Hint: In case (axe) is convergent, use the Cauchy Criterion to
prove that if (b,,) has infinitely many nonzero terms, then (¢,,) is bounded,
and if (b,,) does not converge to zero, then (¢,,) is convergent.)

5. Let b,c € R and define a, ,, := b™c" for (m,n) in N2. Show that (am )
is convergent if and only if one of the following conditions holds: (i) b = 0,
(if) ¢ =0, (ili) [b] <1 and || <1, (iv) [b] <1 and || < 1, (v) b€ (=1,1]
and ¢ € (—1,1]. (Hint: Exercise 4)

6. Let (bk) and (c;) be sequences in R. Show that >3~ 4 (br + c¢) is con-
vergent if and only if there are a € R and ng € N such that >, by = noa
and by = a for all k& > ng, and moreover, 2221 ¢y = —npa and ¢y = —a
for all £ > ng.

7. Let (ax) be a sequence of real numbers. Show that the double series
22 2 (ke) @kae is convergent if and only if the series ; ay is convergent.
(Hint: Exercise 4.)

8. Let (by) and (c¢) be sequences in R. Show that 33~ . ;) brce is convergent
if and only if one of the following conditions holds: (i) Both the series
> . br and ), ¢, are convergent. (ii) One of the series ), by and >, ¢y
converges to zero and the sequence of partial sums of the other series is
bounded. (iii) All but finitely many partial sums of either the series ), by
or the series >, ¢, are equal to zero. (Hint: Exercise 4)

9. Let p € R and ay,n = (In(m + n)?) for (m,n) € N2. Show that the
double sequence (@, ) is monotonically decreasing and bimonotonically
increasing if p < 0, and monotonically increasing and bimonotonically
decreasing if 0 < p <1+ In2. Also, show that (am, ) is bimonotonically
decreasing if p = 2, but it is not bimonotonic if p = 3. (Compare Exercise
17 of Chapter 1. Hint: Example 7.7 (ii))
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10.

11.

12.

13.

14.

15.

16.

17.
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(Abel’s (k,¢)th Term Test) Let (ax,) be a monotonically decreasing
double sequence of nonnegative real numbers. If 353" /) ax¢ is conver-
gent, then show that kfax, — 0 as (k,¢) — (0o, 00). Further, show that
the converse of this result does not hold. (Hint: Use Exercise 17. For the
converse, consider ag ¢ := 1/kl (Ink)(Int) for (k,¢) € N2))

If p and ¢ are positive real numbers such that (1/p)+(1/¢) > 1, then show
that the double series 3737 , 1/(k? + £7) is divergent. (Hint: Exercise
10 with £ := [kP/9] for k € N)

Let > Z( o,0) Ok, be a double series whose terms are schematically given by

1 2 4 3
1

- -1 =2 -4
1 1

T4 T2 -1 -2

11 1y

and let A, , denotes its (m,n)th partial double sum. Show that each
row-series is divergent, but each column-series converges to 0. Also, show
that Aym — 2 asm — 0. Is Y Z(k,f) ak,¢ convergent?
For (k,0) € N2 let aj:=1if £ =k and ap o := (1 —2%) /2% if L = k + 1,
while ag¢ == 0 if £ # k and ¢ # k + 1. Show that > ;2 axe = 1/2*
for each fixed k € N and Y7, ax, = 1/2¢7! for each fixed ¢ € N. De-
duce that Y-, (>, ar,e) =1, whereas >, (Y, are) =2.Is 3 D (k) Gyt
convergent?
Let (ax) and (be) be monotonically decreasing sequences in R such that
ar — 0 and by — 0. Show that Zz(kl)(—l)k"’eakbe is convergent and
the double sum is equal to the sum of each of the two iterated series.
Let (a;) be a sequence of nonnegative real numbers, and let r, s € [0, 00).
Show that the double series }_ 3" /) ak+e rkst /K0! is convergent if and
only if the series Z;io a;j(r—+s)7/;j!is convergent. (Hint: Proposition 7.16)
Let p and ¢ be real numbers. Test the double series ZZ(H) ay,¢ for
convergence if the (k, £)th term ay ¢ is equal to

In In 1
Q) (k(’i Z)?, (i) ¢ kp’;f), () (1 peye ¥ (0 # (1,1)
(Cauchy’s Condensation Test) Let (ax¢) be a monotonically decreas-
ing double sequence of nonnegative real numbers. Show that the double
series ZZ(H)Z(LU ay, is convergent if and only if the double series

> Z(M)Z(O,O) 2’“*%21«,2@ is convergent. Deduce that for p € R, the double
series >3 y>(1,1) 1/(k + €)F is convergent if and only if p > 2. (Hint:
Proposition 7.14 and the A.M.-G.M. inequality)
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18.

19.

20.

21.

(Ratio Comparison Test for Double Series) Let (ax¢) and (b ) be

double sequences with by ¢ > 0 for all (k,¢) € N2, Prove the following:

(i) Suppose |ax41,¢|br,e < |ak,e|bry1,e and |ag e41|bre < |ak,e|br,e+1 When-
ever both k and ¢ are large. If > Z(H) by, is convergent, and each
row-series and each column-series corresponding to 33 o ak.¢| is
convergent, then }- 3" ; ) |ak,| is convergent.

(ii) Suppose |agt1,e/br,e > |ake|br+1,¢ > 0 whenever k is large and ¢ € N,
and |ak,e+1|bk,e > |ak.elbre+1 > 0 whenever ¢ is large and k € N. If
2 2 (k0 br,e 1s divergent, then 3737,/ [ak,e| is divergent.

Let (a,¢) be a double sequence of nonnegative real numbers.

(i) If there is p € R with p > 1 such that

p p
ake41 < (1 - €>ak,£ and  apy1e < (1 - k)%,e,

whenever both k£ and ¢ are large, and further, if each row-series
and each column-series corresponding to > Z( k,0) @k,¢ aTe convergent,
then show that }° ", ,) ak is convergent.

(i) If there is k € N such that

1
g o+1 = (1 — e)ak,’g >0 for all large £ € N,
or if there is £ € N such that
1
k41,0 = (1 — k)ak,g >0 for all large k € N,

then show that 3" /) ak,e is divergent.

(Hint: If p > 1 and « € [0,1], then 1 —px < (1 —z)?. Use Exercise 18 with

bre == 1/(k£)? and Raabe’s test for single series stated, for example, in

Exercise 13 of Chapter 9 of ACICARA.)

(i) a1 :=1, apt11 = 2k — )ag1/(2k+2) for k € N, and ay 41 =
(20 — 1)ag.e/(2¢ +2) for all (k,¢) € N2, then show that > 2 (k) Gyt
converges.

(11) If a1 = 1, Aky1,1 = ka;ﬂ/(k + 1) for k € N, and Ao+l =
Cage/(0+1) for all (k,¢) € N2, then show that 2 (k0) Ok,¢ diverges.

(Hint: Exercise 19)

(Raabe’s Test for Double Series) Let (ax¢) be a double sequence of

nonzero real numbers. Use Exercise 19 to prove the following:

(i) Suppose each row-series and each column-series corresponding to
2= 2 (k) Gk, are absolutely convergent. If £(1 — |ag,e+1]/|akel) — a
and k(1 — |ax+1.0]/|ak,e]) — @ as (k,¢) — (00,00), where ¢ > 1 and
a>1, then 323" /) ar, is absolutely convergent.

(ii) If for some k € N, limy_.oc £(1 — |ag ¢+1|/|ak,e|) exists and is less than
1, or if for some ¢ € N, limp_,o0 k(1 — |agt1,¢|/|ar.¢|) exists and is less
than 1, then > Z(k,e) |ag,e| is divergent.
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22.

23.

24.

25.

26.

Let agy := 1/max{k,¢} and by, := 1/min{k, ¢} for all (k,) € N2.
Show that (ag,) and (by¢) are bimonotonic double sequences such that
age — 0 and byy — 0 as (k,f) — (00,00). Further, show that the
double series Zz(kj)(—l)k*eak,g is convergent, but the double series
> Z(k,e)(_l)k+ebk,€ is divergent. (Hint: Use Corollary 7.39 and the fact
that if ) Z(H) Ck¢ is convergent, then ¢, 1+ -+ m — 0 as m — 00.)
Let (ax,¢) be a double sequence satisfying conditions (i), (ii), and (iii) of
Dirichlet’s Test for Double Series (Proposition 7.38), and let 6 and ¢ be
real numbers. Consider the two double series

Z Z ag.¢sin(kf + Lp) and Z Z ag.¢ cos(kO + Ly).

(K,0) (k,£)

Assume that 0 is an integral multiple of 2.

(i) Suppose ¢ = 7. Show that the first double series converges absolutely.
Also, show that the second double series converges absolutely if ay ¢ :=
1/k%¢%, it converges conditionally if ay, := 1/k?¢, and it diverges if
age = 1/kl for (k,¢) € N2.

(ii) Suppose ¢ = /2. Show that both the double series converge abso-
lutely if ax := 1/k*¢?, they converge conditionally if aj ¢ := 1/k?,
and they diverge if ay ¢ := 1/k( for (k,¢) € N2.

(Hint: Dirichlet’s test for single/double series.)

Let p be a positive real number, and let 6 and ¢ be real numbers neither

of which is an integral multiple of 27. Show that the double series

sin k0+€g0 cos k0+€g0
SX M e SE R,

are convergent. Deduce that the double series

is convergent. (Hint: Corollary 7.40 and Exercise 9)

Let ZZ(,M) ar¢ be a convergent double series of nonnegative terms.
Show that ay, — 0 as k + ¢ — oo, that is, for every e > 0, there is
no € N such that ay ¢ < € for all (k,¢) € N2 with k + £ > no.

In each of the following, determine all (x,y) € R? for which (a) the double
power series » E(k,é) cr.ex®y* is absolutely convergent, (b) the set C, , :=
{crea®y® 2 (k,€) > (0,0)} is bounded, and (c) the double power series
222 (k0 crex®y’ is convergent.

(1) coe:=0for all £> 0 and ¢ :=1 for all (k,¢) > (1,0),

(ii) cro0 = coe:=0forall (k,¢) > (0,0) and cx ¢ := 1 for all (k,¢) > (1,1),
(iii) cxe:=0if0<k < ¥ whilecyy:=1if k>£¢>0.
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27.

28.

29.

30.

31.

32.

(iv) co0 =1, ko = coe == 1 for all (k,¢) > (1,1), c11 == —1, cxg1 =

c1,0:=—1/2 for all (k,£) > (2,2), and cx ¢ := 0 for all (k,£) > (2,2),
(v) exo:=1forall k>0, ¢y :=—1/2for all k> 0, and cx ¢ := 0 for all
(k. 0) > (0.2).
Let (71, s1) and (72, s2) be biradii of convergence of a double power series.
Show that if r; < 79, then s; > s9, and if s; < ss, then r; > ro. Further,
show that if s; = 0, then (r2,0) is also a biradius of convergence for every
ro > 11, and if r; = 0, then (0, s3) is also a biradius of convergence for
every sg > Si.
Find the domain of convergence and all biradii of convergence of the dou-
ble power series »> - crex®y’, where
() cre:=1ifb=Tand cpp:=0if L £ 1, (ii) e := kF, (iii) cp = ¥,
(iv) cre == 1/K!, (V) cre =1/, (Vi) cp = kF/0, (Vi) cge = 0¢/k\.
Let co0 == 1, ko = coe := 1 for all (k,£) > (1,1), and cg = kF¢¢ for
all (k,£) > (1,1). Show that the double power series > 3" /) cretyt is
convergent if and only if = 0 and |y| < 1, or y = 0 and |z| < 1. Find all
biradii of convergence of this double power series.

Let f,g: R? — R be defined by
671/w2 4 6*1/y2 if £ 0 and y # 0,
flz,y) = e /e ifz#0andy =0,
YT e if 2 =0 and y # 0,

and

(2,y) = e~l/a? =11y’ if x # 0 and y # 0,
gy = 0 ifr=0o0ry=0.

Find the Taylor double series and the Taylor series of f as well as of g
around (0,0). Find all (x,y) € R? at which they converge to the corre-
sponding functional values.

Let I and J be nonempty open intervals in R, and let ¢ : I — R and
1 : J — R be infinitely differentiable functions of one variable. Consider
frg9:IxJ — Rdefined by f(z,y) := ¢(x) +¢(y) and g(z,y) = ¢(x)(y).
Let ¢ € I and yg € J. Find the Taylor double series and the Taylor series
of f as well as of g around (o, yo) in terms of the coefficients of the Taylor
series of ¢ around zy and of ¢ around yy. Also, determine whether the
Taylor double series and the Taylor series of f as well as of g converge
absolutely, and whether they converge to the corresponding functional
values. (Hint: Example 3.50 (i))

Let D C R? and let (z0,y0) be an interior point of D. Suppose E C R
is such that © +y € F for all (z,y) € D. Let ¢ : E — R be in-
finitely differentiable at xo + yo. If f : D — R is defined by f(z,y) :=
g(z + y), then show that the Taylor double series of f around (zo, o) is
DI g0 (20 + yo)(z — 20)* (y — yo)¢/k!€! and the Taylor series of
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33.

34.

35.

36.
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[ around (z0,y0) is 372, g9 (20 + yo)(z — xo +y — o)’ /4!. Further, if r
is the radius of convergence of the Taylor series of g around ug := xg + yo,
then prove the following statements.

(i) The Taylor double series of f around (g, yo) converges absolutely at
all (z,y) € R? with |z — xo| + |y — yo| < 7, while it does not converge
absolutely at all (z,y) € R? with |z — x| + |y — yo| > r. Also, if
(x,y) € D with |x — zo| + |y — yo| < r, and further, if the Taylor series
of g around ug at u := x+y converges to g(u), then the Taylor double
series of f around (xg, o) at (x,y) converges to f(z,y).

(ii) The Taylor series of f around (g, yo) converges absolutely at all
(z,y) € R? with |u — ug| < r, while it diverges at all (z,y) € R? with
|u—wug| > r, where u := x+y. Also, if (z,y) € D with |[u—ug| < r, and
further, if the Taylor series of g around g at u converges to g(u), then
the Taylor series of f around (zg,yo) at (z,y) converges to f(x,y).

(Hint: Example 3.17 (iii), Example 3.50 (ii), and Exercise 15)

Let f : R? — R be defined by f(z,y) := cos(x +y). Show that the Taylor

double series of f around (0,0) is

ZZC z"y*,  where ¢p = 0 if £+ ¢ is odd,
(k.,6) H ’ e (—1)B+HEED/2if |4 £ is even,

and the Taylor series of f around (0,0) is

S B j@+y)¥
20 gy

Further, show that both converge absolutely to f(z,y) for all (z,y) € R2.
(Hint: Exercise 32)

Show that ff[O,oo)x[O,oo) d(s,t)/(1 + s*)(1 + t2) converges to 72/4, while
ff[O,oo)x[O,oo) d(s,t)/(1 + s + t2) diverges.

Consider f :[1,00) x [1,00) — R defined by (i), (ii), or (iii) below.

() f(s,t) := (coss)(sint)/st, (i) f(s,t) := (sins)(sint)/st,

(iil) f(s,t) :== (=1)**¢/kl for s € [k, k+1) and t € [(,£+ 1) with k,¢ € N.
Show that ff[l so)x[1,00) 4 (8, 1)d(s, 1) is conditionally convergent. Further,
show that ff[Qm)X[Qm)g(s,t)d(s,t) is conditionally convergent, where
g :]2,00) X [2,00) — R is defined by g(s,t) := (cos s)(sint)/(Ins)(Int).
Let 6,0 € R and let f : [1,00) x [1,00) — R be integrable on [1,z] x [1,y]
for every (z,y) > (1,1). Consider the Fourier sine double integral

// f(s,t)sin(sO + tp)d(s,t)
[1,00) %X [1,00)

and the Fourier cosine double integral

// f(s,t) cos(sl + to)d(s,t).
[1,00) % [1,00)
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37.

38.

39.

40.

41.

42.

43.

Prove the following statements.

(i) If f(s,t) := 1/s%*? for (s,t) € [1,00) x [1,00), then both the Fourier
double integrals are absolutely convergent.

(ii) If 0 = 0, # 0, and if f(s,t) := 1/s?t for (s,t) € [1,00) x [1,00), then
both the Fourier double integrals are conditionally convergent.

(iii) If 0 # 0, = 0, and if f(s,t) := 1/st? for (s,t) € [1,00) x [1, 00), then
both the Fourier double integrals are conditionally convergent.

(iv) If one of # and ¢ is equal to 0 and the other is equal to 7, and if
f(s,t) :=1/st for (s,t) € [1,00) X [1,00), then the Fourier sine double
integrals is divergent.

(v) If one of 6 and ¢ is equal to 0 and the other is equal to 7/2, and
if f(s,t) :=1/st for (s,t) € [1,00) X [1,00), then the Fourier cosine
double integrals is divergent.

Let D := {(s,t) € R? : ¢t > 0 and |s*—t*| < 1}. Show that D is unbounded

but A(D) is well defined and is at most 4. (Compare Example 7.79 (ii).)

Define f : [0,1] x [0,1] \ {(0,0)} — R by f(s,t) := (s* — t2)/(s® + t?)2.

Show that f is integrable on [0, 1] x [1/n, 1] for each n € N and

lim // f= "
n—o0 J Ji0,1]x[1/n,1] 4

(Compare Example 7.80.)

Let D := (0,1] x (0,1]. Define f, g : D — R by f(s,t) := s/y/t and
g(s,t) :=t/y/s. Show that the improper double integrals [[,, f and [[, g
are unconditionally convergent, and each is equal to 1.

Let D := (0,1] x (0,1] and p € R with p > 0. Define f : D — R by
f(s,t) == 1/(s + t)P. Show that the improper double integral [[,f is
unconditionally convergent if and only if p < 2. Further, show that it is
equal to 2In2 if p = 1, while it is equal to 2(2'77 — 1)/(1 — p)(2 — p) if
0 < |p—1| < 1. (Compare Exercise 68.)

Part B

Let (am,n) be a double sequence of real numbers and let £ € R. Show
that @, — ¢ as (m,n) — (oo0,00) if and only if a,,,,, — ¢ as n — oo
whenever (z,,) and (y,) are sequences of real numbers such that x,, — oo
and y, — oo as n — oo. (Compare the definition of f(x,y) — ¢ as
(,y) — (00,00) given in Section 2.3.)

Let (ak,¢) be a double sequence of nonnegative real numbers. For j € N, let
d;j denote the sum of ay, ¢, where (k, £) varies over elements of N2 satisfying
§2 < k?+ 0% < (j+1)2. Show that > 2 (k,0) @,e is convergent if and only
if 3772, d; is convergent, and in this case, 3037, ) ake = D252 d;.

Let (rj) be a sequence of positive real numbers. Show that the double
series » > o) Te+e/ (k +{) is convergent if and only if the series 3, r; is
convergent. (Hint: For n € N, the nth partial sum of the diagonal series
is 2201 jrj+1/(j +1). Use part (iii) of Proposition 7.16.)
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44. Let p € R. Show that both

1 1
22 1+ opm(h + o ™ //[1,oo>xu,oo> (s + 02[m(s + p 15D

k>16>1

diverge to oco. (Hint: Divergence of E;iz 1/j(Inj)?, as shown in Example
9.40 (ii) of ACICARA, Exercise 43, and Proposition 7.57)

45. Let p, o, 8,7 € R with o > 0, v > 0, and /oy + 3 > 0. Show that the
double series >3, 1/(ak?® + 2Bkl + v£%)P is convergent if and only if
p > 1. (Hint: If M := max{w, 3,7}, then 2(\/ay + B)kl < ak? + 20kl +
02 < M(k+¢)? for all (k,¢) € N2. Use Examples 7.10 (iii) and 7.17 (i).)

46. (Regularly Convergent Double Sequence) A double sequence (am, »)
is said to be regularly convergent if it satisfies the following three
conditions: (i) (am,n) is convergent, (ii) for each fixed m € N, the se-
quence (Gm.,,) is convergent, and (iii) for ecach fixed n € N, the se-
quence (am,n) is convergent. Let (am,,) be regularly convergent, and let
a = lim(y n)—(00,00) Am,ns Gm = liMy 00,y for each fixed m € N, and
ap, = limy, oo @m,n for each fixed n. Prove the following statements.

(i) The double sequence (G, ) is bounded, and limy, o0 a4 = a =
lim,, o0 G- (Compare Part (iii) of Proposition 7.2.)

(ii) For every € > 0, there is jo € N such that if either m > jo or n > jo,
then |ap.q — Gpn — Am,q + Gm,n| < € for all p > m and ¢ > n.

47. (Regularly Convergent Double Series) A double series is said to be
regularly convergent if the double sequence of its partial double sums
is regularly convergent. Prove the following statements.

(i) A double series is regularly convergent if and only if it is convergent,
each row-series is convergent, and each column-series is convergent.

(ii) If a double series is regularly convergent, then the double sequence
of its partial double sums is bounded, both the iterated series are
convergent, and their sums are equal to the double sum. (Compare
part (iii) of Proposition 7.11.)

(iii) If a double series 323" ; ) ak, is regularly convergent, then for every
e > 0, there is jo € N such that if either m > jy or n > jo, then
f IS Sy . akﬂ < ¢ for all p > m and ¢ > n. (Hint: For all p > m
and ¢ > n, we have Y7 _ >0 ap; = Apg— Apn-1 — Am_1,4 +
Ap—1,n—1. Use Exercise 46 (ii).)

(iv) An absolutely convergent double series is regularly convergent, but a
regularly convergent double series need not be absolutely convergent.

(v) If the hypotheses of Dirichlet’s Test (Proposition 7.38) is satisfied,
then the double series » Z(k,é) a,ebk,¢ is regularly convergent. (Hint:
Proof of Proposition 7.38 and Dirichlet’s Test for single series)

(vi) If a double power series » E(k,é) crex®y’ is regularly convergent at
(70,y0) € R?, then it is absolutely convergent at all (z,y) € R? with
|z| < |zo| and |y| < |yo|. (Hint: Part (ii) above and Lemma 7.46)
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48.

49.

50.

(Abel’s Test for Double Series) Let (ax ) and (bg ) be double se-
quences of real numbers satisfying the following four conditions.
(i) (ak,e) is bimonotonic,
(ii) for each fixed ¢ € N, the sequence given by k —— ay, is
monotonic, and for each fixed k € N, the sequence given by
¢ +— ay, ¢ is monotonic,

(ili) the sequences (ag), (ax,1), and (a1 ¢) are bounded, and

(iv) the double series } 5" 4 br.¢ is regularly convergent.

Show that the double series 3 Z(k,é) ay,¢br,¢ is regularly convergent.
(Hint: Proof of Proposition 7.38, Exercise 47, the equality aj , — agt1,n =
k1 — Qht1,1 — ZZ;ll(ak,é — Qp1,0 — Qo1 + Qryr,041) for (k,n) > (1,2),
and the convergence of the third summand in the Partial Double Summa-
tion Formula given in Proposition 7.37 to >, (ax — ap+1)Bx as (k,n) —
(00, 0), where ay, = limy, o0 ak,n and By := lim,, oo 2?21 Sr_1bje)
(Dedekind’s Test for Double Series) Let (ax¢) be a double sequence
of real numbers satisfying the following two conditions.
(i) > Z(k,f) |ak,e — Grt1,0 — Ak o4+1 + Qy1,04+1] 1S convergent,

(i) both Y~ |ak,1 — axt1,1] and >, |ai,e — a1,¢41| are convergent.
Show that the double series >~ > (k,¢) @k,¢bk,¢ is Tegularly convergent when-
ever the double series ) Z( ,0) by.¢ is regularly convergent. If, in addition,

(ili) limy— o0 ag,¢ = 0 for each fixed £ € N and lim—. ay¢ = 0 for

each fixed k € N,
is also satisfied, then show that the double series Z(H) aj,obi.¢ is reg-
ularly convergent whenever the partial double sums of > Z(H) by are
bounded. (Hint: Proof of Proposition 7.38 and Exercise 48)
[Note: As for the converse, Hardy [28, Theorem 12] has shown that the
following results hold: (1) If E(k,é) ay,eby.¢ is regularly convergent when-
ever - 3k ¢ bk, is regularly convergent, then (i) and (ii) above hold.
(2) It Z(k,é) ay,eby.¢ is regularly convergent whenever the partial double
sums of } - >~ o bk,¢ are bounded, then (i), (i), and (iii) above hold.]
Let (ar¢) be a double sequence of real numbers satisfying the following
three conditions.

(i) > Z(k,f) |ak,e — Grt1,0 — Ak o4+1 + Qky1,04+1] 1S convergent,
(i) both Y, |ar,1 — axt1,1] and >~ |a1,e — a1,¢41| are convergent,
(iii) there are a,a € R such that limy_.o ai ¢ = a for each fixed
¢ e N and lim/_, aj,¢ = a for each fixed k € N.

Show that the double series ZZ(,M) ay,eby,¢ is convergent and its par-
tial double sums are bounded whenever the double series > Z( ,0) Okt 18
convergent and its partial double sums are bounded. (Hint: Exercise 49)
[Note: As for the converse, Hamilton [26, p. 283] has shown that the follow-
ing result holds. If 303" /) ak bk, is convergent and its partial double
sums are bounded whenever ZZ(M) br.¢ is convergent and its partial
double sums are bounded, then (i), (ii), and (iii) above hold.]
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(Cauchy Product) Given any double sequences (ax,¢) and (bxe), let

k¢
Q0 * b]@g = Z Z a,;,jbk_i,g_j for (k‘,f) Z (0,0)

i=0 j=0

The double series > Z(k,é) ag,¢ * by ¢ is known as the Cauchy product
of the double series > 3" o) are and 3537 o) bre- I 3237 ) ake is
absolutely convergent and Y > (k. 0) by ¢ is regularly convergent, then show
that > Z(H) ag,0* by ¢ is regularly convergent and its double sum is equal
to the product of the double sums of > 3" /) are and 323 o bie.
Further, in contrast to the case of (single) series, show that there exist an
absolutely convergent double series and a convergent double series whose
Cauchy product is divergent. (Hint: Consider ag ¢ := 2% and ay,¢ = 0 for
(k,0) > (1,0), and by := 1, bg1 := —1, and by := 0 for (k,¢) > (0,2).)
[Note: As for the converse, it is shown in [36, Theorem 3.8 and Remark 3.9
(i)] that the following result holds. If the double series 373" . ;) @ by
is convergent and its partial double sums are bounded for every regularly
convergent double series 35 3~ . ) by,¢, then the double series 53, ) ak,e
is absolutely convergent.]

Let (a,) be a double sequence, and consider the set S of all finite sums
Z?:_ll |apiq; — pit1,git1 |, where n varies over N and (p1,q1), ..., (Pn:n)
vary over elements of N2 satisfying (p1,q1) < -+ < (Pn,qn). The double
sequence (ay,¢) is said to be of bounded variation if the set S is bounded
above. (Compare the definition of a function of bounded variation on
[a,b] x [c,d] given in Section 1.2.) Prove the following statements.

(1) If (ak,e) is of bounded variation, then it is bounded.

(ii) If both (ay¢) and (bge) are of bounded variation and r € R, then
(ke + ), (rag,e), and (ak.e by ¢) are of bounded variation.

(iii) If (ak,e) is bounded and monotonic, then (axe) is of bounded varia-
tion. In particular, if (aj¢) and (by¢) are bounded and monotonically
increasing, then (ay,s — bi.¢) is of bounded variation.

(iv) If (ag,e) is of bounded variation, then there are bounded and mono-
tonically increasing double sequences (by,¢) and (cg,¢) such that ay ¢ =
bi.e — k¢ for all (k,¢) € N2. (Hint: For (k,¢) € N2, let vy ¢ denote the
supremum of the set of all finite sums E?:_ll |ap;.q; = Opisy,gisn |, Where
n varies over N and (p1,q1), ..., (Dn, @) vary over elements of N2 sat-
isfying (p1,q1) < -+ < (Pnyqn) = (K, £). Define by ¢ := (vk¢ + ake)/2
and ¢ ¢ = (Vg — ake)/2.)

A double sequence (ag ) is said to be bibounded if the double sequence
(ajw) defined by aﬁw = ay—ag1—aye+ar for (k,¢) € N? is bounded.
Further, a double sequence (ag,¢) is said to be of bounded bivariation
if the double series

Z Z |ak, e + Qrt1,041 — Qo1 — kg1,
(k,£)
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54.

95.

56.

o7.

98.

is convergent. (Compare the definition of a function of bounded bivariation

on [a,b] X [¢,d] given in Section 1.2.) Prove the following statements.

(i) If (ag,e) is bounded, then it is bibounded, but the converse does not
hold. In fact, (ay) is bounded if and only if it is bibounded and the
sequences (ax,1) and (aq,¢) are bounded.

(ii) If (ag,e) is of bounded bivariation, then it is bibounded, and further,
the double sequence (a;c’e) is convergent. (Hint: Use telescoping sum-
mation as in the proof of Proposition 7.13.)

(iii) If both (ax,) and (b ) are of bounded bivariation and r € R, then
(ak,e+bg¢) and (rax.e) are of bounded bivariation, but (ak ¢ b, ¢) need
not be of bounded bivariation.

(iv) If (a,) is bibounded and bimonotonic, then (ax ) is of bounded bi-
variation. In particular, if (aj,¢) and (by ¢) are bibounded and bimono-
tonically increasing, then (ax¢ — by.¢) is of bounded bivariation.

(v) If (ag,) is of bounded bivariation, then there are bibounded and bi-
monotonically increasing double sequences (bg,¢) and (cx ¢) such that
Ap o = bk,(g — Ck,e for all (k,é) € N2. (Hint: For (k,é) € N2, con-
sider wy e = Zle Z§:1 lai—1,-1 + aij — ai—1,; — a; j—1|, where
ap,0 =0, arp := 0 for k € N and ap, := 0 for £ € N. and Define
bk,e = (’w/“g + ak,g)/Q and Ct = (’w/“g — ak,g)/Q.)

Suppose a double sequence (ay,¢) is of bounded bivariation and the se-

quences (ag,1) and (a1 ¢) are of bounded variation. Then show that (ax,¢)

is of bounded variation.

Find a double sequence that is of bounded variation, but not of bounded

bivariation. Also, find a double sequence that is of bounded bivariation,

but not of bounded variation.

Let cpe € R for (k,¢) > (0,0), and for (z,y) € R?, consider C,, =

{erex®y® 2 (k,€) > (0,0)} and E := {(z,y) € R? : C,, is a bounded set }.

If (z*,y*) is a boundary point of E, then show that (|z*|,|y*|) is a bi-

radius of convergence of the double power series ) Z(k,é) crex®y’. Con-

versely, if (r, s) € R? is a biradius of convergence of the double power series

222 (t) crex®y’, then show that (r,s), (=7, —s), (r, —s), and (-7, s) are

boundary points of E.

Let cpe = (k + 0)!/kW! for (k,£) > (0,0), and let (z,y) € R% Show

that the double series ) E(H) ck,gacky‘g is convergent if and only if either

|z]+]y] <1,0or —1 <z <0 and z+y = —1, and in that event, the double

sum is equal to 1/(1 —z —y). Show that the set {cx z*y’ : (k,£) > (0,0)}

is bounded if and only if |x| + |y| < 1. (Compare Example 7.43 (vi).)

(Hadamard’s Formula for Biradius of Convergence) Let (7, s) be a

biradius of convergence of a double power series » Z(H) ck,gackye, where

r and s are positive real numbers. Show that inf{M,, : n € N} = 1, where

M,, := sup {(|Cke| rkse)l/(k+€) : (k,0) >(0,0) and k+ £ > n} for n € N.

[Note: The above conclusion is sometimes written as
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lim sup(|ck7g|7‘ksé)1/(k+£) =1

k+f0—oc0

This may be compared with the formula lim sup,,_, . |ex|'/* = 1/r for the
radius of convergence r of a (single) power series Y - cxz”, where r is a
positive real number. See, for example, Proposition 9.27 of ACICARA.]

59. (Fabry’s Theorem) Let D denote the domain of convergence of a double
power series 5>, ) Cr,e 2*y. Show that for all (z1,y1), (x2,y2) € D and
t € R with 0 < ¢ <1, we have (Ja1[*|22|'", |y1]f|y2|*~*) € D. Deduce
that D is log-convex.

60. If D is the domain of convergence of a double power series, then show that
the set E := {(u,v) € R?: (¢",e") € D} is convex.

61. Sketch the subset {(In|z|,In|y|) : (z,y) € D and xy # 0} of R?, where D
is the domain of convergence of the double power series given in each of
Examples 7.43 (iii), (iv), (v), and (vi). (Hint: Exercise 60)

62. If D denotes the domain of convergence of a double power series and D
contains the set {(z,y) € R?: |z| < 1 or |y| < 1}, then show that D = R2.
(Hint: Exercise 60)

63. (Logarithmic Double Series) Let D := {(z,y) €e R? : z+y > —1} and
let f: D — R be defined by f(x,y) := In(1 +2z+y). Show that the Taylor
double series of f around (0,0) is

(k+¢— 1)
k+€+1 k ¢
> (= e TV

(k,0)#(0,0)

Also, show that this double series is absolutely convergent if and only if
|z]+]y| < 1, and in that event, its double sum is equal to f(z,y). Further,
show that the Taylor series of f around (0,0) is

1

o0
Z —1 (z +y).

Jj=1

Also, show that this series converges absolutely to f(z,y) if |z +y| < 1,
it converges conditionally to f(x,y) if z +y = 1, and it diverges if either
x+y<-1orz+y>1 (Hint: Exercises 15 and 32)

64. (Binomial Double Series) Let D := {(z,y) € R?: 2 +y > —1} and let
t € R\{0,1,2,...}. Consider f : D — R defined by f(z,y) := (1+z+y)".
Show that the Taylor double series of f around (0,0) is

k,yé
1+ ) ) tt—1)(t—k— €+1)k!a.

(k,£)#(0,0)

Also, show that it converges absolutely if and only if |z|+|y| < 1, provided
t > 0, and it converges absolutely if and only if |z| + |y| < 1, provided
t < 0, and whenever it is absolutely convergent, its double sum is equal
to f(x,y). Further show that the Taylor series of f around (0,0) is
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65.

66.

67.

1—|—§:t(t—1)-~-(t—j—|—1)(x;y)j.

Also, show that this series converges absolutely if and only if |z + y| < 1,
provided ¢ > 0, and it converges absolutely if and only if |z + y| < 1,
provided ¢t < 0, and whenever it is absolutely convergent, its sum is equal
to f(x,y). (Hint: Exercises 15 and 32)

Let D C R? be such that (0,0) is an interior point of D. Suppose E C R
is such that zy € FE for all (z,y) € D. Let ¢ : E — R be infinitely
differentiable at 0. If f: D — R is defined by f(z,y) := g(zy), then show
that the Taylor double series of f around (0,0) is

kKlg®)(0) ifk=¢
Z Z Ck,t xkyev where Clp i= 9 ( ) l ;
(k.£) 0 if k#£4¢,

and the Taylor series of f around (0,0) is

gY72(0)

ch(ac,y), where ¢;(z,y) = (j/2)!
3=0 0 if j is odd.

(zy)?/? if j is even,

Further, if r is the radius of convergence of the Taylor series of g around 0,

then prove the following statements.

(i) If (z,y) € R? with |zy| < r, then the Taylor double series of f and
the Taylor series of f around (0,0) both converge absolutely, while if
|xy| > r, then both diverge.

(i) If (z,y) € D with |zy| < r, and further, if the Taylor series of g around
0 at u := xy converges to g(u), then both the Taylor double series of
f and the Taylor series of f around (0,0) at (z,y) converge to f(z,y).

(Hint: Exercise 40 of Chapter 3.)

Find the Taylor double series and the Taylor series around (0,0) of the

following functions. In each case, find r such that both these converge

absolutely if |zy| < r and diverge if |zy| > r. Also, state whether these
converge to the corresponding functional values.

(i) f(x,y) :=sinzy for (x,y) € R?,

) Fla.y) = e for (z,y) € 2,

ii) f(z,y) :=In(1 + zy) for (z,y) € R? with xy > —1,

) f(z,y) = (1 +ay)! for (x,y) € R? with zy > —1 and t #0,1,. ..,

)

Example 7.43 (v).)
(Hint: Exercise 65)
(Integrating over Squares and Triangles) Let a,¢ € R and let
ff[am)x[cm)f(s,t)d(s,t) be an improper double integral with f(s,¢) > 0
for all (s,t) € [a,00) X [¢,00). For r > 0, let D, := [a,a + 7] X [¢,c+ 1],
E.:={(s,t)eR?:a<s, c<tand s+t <a+c+r}, and define
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70.
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//fst (s,8) and H(r //fst (5.1)

Show that ff[a 00 X[er00) f(s,t)d(s,t) is convergent if and only if either of
the two limits lim, o G(r) and lim,_, H(r) exists, and in this case

/ / F(s,8)d(s,t) = lim G(r) = Tim H(r).
[a OO)X[C OO) r—00 T—00
(Compare Proposition 7.16. Hint: Proposition 7.55)

Given any «, 3 € R with a > 0 and 8 > 1, consider

// d(s,t) 4 // d(s,t)
[1,00)x[1,00) (8 +1%)7 (0.1]x(0.1] (8 +19)°

Prove that the former is unconditionally convergent if and only if
a(B8—1) > 1, whereas the latter is unconditionally convergent if and only
if a(f—1) < 1. (Hint: Use Proposition 5.28 and integrate with respect to
s first. Compare Example 7.58.)

Given any p,q € R with p > 0 and ¢ > 0, consider

// dist) // d(s.t)
[1,00)x[1,00) 87 + 14 (0,1]x(0,1] 8P + 14

Prove that the former is unconditionally convergent if and only if
(1/p) + (1/q) < 1, whereas the latter is unconditionally convergent if
and only if (1/p) 4+ (1/¢) > 1. (Hint: Note that for all (s,¢) > (0,0),

1 P D
o <s+tq/p> <Pl <2 (s +tq/p>

Use Exercise 68 with «:==¢/p and 8 :=pif p>1.)

Given any p,q € R with p > 0 and ¢ > 0, show that the double series
22 (k) 1/ (kP + £9) is convergent if and only if (1/p) +(1/¢) < 1. (Hint:
Exercise 69 and Proposition 7.57)

Let p € R with p > 0 and let f : R®\ {(0,0,0)} — R be defined by
fls,tyu) :=1/(s2 +t2 +u?)P. If D == {(s,t,u) € R3: % + 2 +u? > 1},
then show that [[[, f(s,t,u)d(s,t,u) is unconditionally convergent if
and only if p > 3/2, and in this case, it is equal to 47/(2p — 3). Fur-
ther, if £ := {(s t yu) € R 1 0 < s2 + 12 +u? < 1}, then show
that [[[, f(s,t,u)d(s,t,u) is unconditionally convergent if and only if
p < 3/2, and in this case, it is equal to 47/(3 — 2p). (Hint: Consider
D, = {(s,t,u) e R®:n? > s> +t2+u? > 1} and E, := {(s,t,u) € R3:
(1/n?) < s? +t2 + u? < 1} for n € N; use spherical coordinates and part
(ii) of Proposition 5.72. Compare Examples 7.78 (i) and 7.85 (i).)
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