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Preface

The theory of Boolean algebras was created in 1847 by the English mathe-
matician George Boole. He conceived it as a calculus (or arithmetic) suitable
for a mathematical analysis of logic. The form of his calculus was rather
different from the modern version, which came into being during the pe-
riod 1864-1895 through the contributions of William Stanley Jevons, Augus-
tus De Morgan, Charles Sanders Peirce, and Ernst Schroder. A foundation
of the calculus as an abstract algebraic discipline, axiomatized by a set of
equations, and admitting many different interpretations, was carried out by
Edward Huntington in 1904.

Only with the work of Marshall Stone and Alfred Tarski in the 1930s,
however, did Boolean algebra free itself completely from the bonds of logic
and become a modern mathematical discipline, with deep theorems and im-
portant connections to several other branches of mathematics, including alge-
bra, analysis, logic, measure theory, probability and statistics, set theory, and
topology. For instance, in logic, beyond its close connection to propositional
logic, Boolean algebra has found applications in such diverse areas as the
proof of the completeness theorem for first-order logic, the proof of the Los
conjecture for countable first-order theories categorical in power, and proofs
of the independence of the axiom of choice and the continuum hypothesis
in set theory. In analysis, Stone’s discoveries of the Stone-Cech compacti-
fication and the Stone—Weierstrass approximation theorem were intimately
connected to his study of Boolean algebras. Countably complete Boolean
algebras (also called o-algebras) and countably complete fields of sets (also
called o-fields) play a key role in the foundations of measure theory. Out-
side the realm of mathematics, Boolean algebra has found applications in
such diverse areas as anthropology, biology, chemistry, ecology, economics,
sociology, and especially computer science and philosophy. For example, in
computer science, Boolean algebra is used in electronic circuit design (gating
networks), programming languages, databases, and complexity theory.



X Introduction to Boolean Algebras

Most books on Boolean algebra fall into one of two categories. There
are elementary texts that emphasize the arithmetic aspects of the subject
(in particular, the laws that can be expressed and proved in the theory),
and that often explore applications to propositional logic, philosophy, and
electronic circuit design. There are also advanced treatises that present the
deeper mathematical aspects of the theory at a level appropriate for gradu-
ate students and professional mathematicians (in terms of the mathematical
background and level of sophistication required for understanding the pre-
sentation).

This book, a substantially revised version of the second author’s Lectures
on Boolean Algebras, tries to steer a middle course. It is aimed at undergrad-
uates who have studied, say, two years of college-level mathematics, and have
gained enough mathematical maturity to be able to read and write proofs. It
does not assume the usual background in algebra, set theory, and topology
that is required by more advanced texts. It does attempt to guide readers to
some of the deeper aspects of the subject, and in particular to some of the im-
portant interconnections with topology. Those parts of algebra and topology
that are needed to understand the presentation are developed within the text
itself. There is a separate appendix that covers the basic notions, notations,
and theorems from set theory that are occasionally needed.

The first part of the book, through Chapter 28, emphasizes the arithmeti-
cal and algebraic aspects of Boolean algebra. It requires no topology, and
little set theory beyond what is learned in the first two years of college-level
mathematics, with two important exceptions. First, two of the proofs use
a form of mathematical induction that extends beyond the natural numbers
to what are sometimes called “transfinite ordinal numbers”. Transfinite or-
dinals and transfinite induction are discussed in Appendix A, but the key
ideas of the two proofs can already be grasped in the context of the natural
numbers and standard mathematical induction. Second, Chapter 10 presents
an important example of a Boolean algebra that is based on topological no-
tions. These notions are discussed in Chapter 9. The example itself, and the
requisite topology, are not needed to understand the remaining chapters of
the first part of the book. (Some of the more advanced exercises in the chap-
ters do require an understanding of this material, but these exercises may be
ignored by readers who wish to skip Chapters 9 and 10.) The second part
of the book, in particular Chapters 29, 34-41, and 43, emphasizes the inter-
connections between Boolean algebra and topology, and consequently does
make extensive use of topological ideas and results. The necessary topological
background is provided in Chapters 9, 29, 32, and 33.
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Some of the important results discussed in the first part of the book are
the normal form theorem (which gives a description of the Boolean subalgebra
generated by a set of elements, Chapter 11), and its analogue for Boolean ide-
als (Chapter 18); the homomorphism extension theorem (Chapter 13) and its
application to the proofs of the isomorphism theorem for countable, atomless
Boolean algebras (Chapter 16) and the existence theorem for free algebras
(Chapter 28); the representation theorem for atomic Boolean algebras (every
atomic Boolean algebra can be mapped isomorphically to a field of sets in a
way that preserves all existing suprema as unions, Chapter 14); the maximal
ideal theorem (every proper ideal can be extended to a maximal ideal, Chap-
ter 20), and its application to the celebrated representation theorem (every
Boolean algebra is isomorphic to a field of sets, Chapter 22); the existence
and uniqueness theorems for completions (every Boolean algebra has a mini-
mal complete extension that is unique up to isomorphisms, Chapter 25); the
isomorphism of factors theorem (two countably complete Boolean algebras
that are factors of one another must be isomorphic) and the counterexamples
demonstrating that the theorem cannot be extended to all Boolean algebras,
or even to all countable Boolean algebras (Chapters 27 and 45).

Many of the highlights of the second part of the book center on the
fundamental duality theorems for Boolean algebras and Boolean spaces: to
every Boolean algebra there corresponds a Boolean space that is uniquely
determined up to homeomorphism, and, conversely, to every Boolean space
there corresponds a Boolean algebra that is uniquely determined up to iso-
morphism (Chapter 34). These theorems imply that every notion or theorem
concerning Boolean algebras has a “dual” topological counterpart concerning
Boolean spaces, and conversely. For instance, ideals correspond to open sets
(Chapter 35), homomorphisms to continuous functions (Chapter 36), quo-
tient algebras to closed subspaces and subalgebras to Boolean quotient spaces
(Chapter 37), direct products of Boolean algebras to Stone-Cech compact-
ifications of unions of Boolean spaces (Chapter 43), and complete Boolean
algebras to extremally disconnected spaces (Chapter 38). A related result,
discussed in Chapter 40, is the representation theorem for o-algebras (ev-
ery o-algebra is isomorphic to a o-field of sets modulo a o-ideal).

It is not necessary to read all the chapters in the order in which they
appear, since there is a fair degree of independence among them. The dia-
gram at the end of the preface shows the main chapter dependencies. Three
examples may serve to demonstrate how the diagram is to be understood.
First, Chapter 28 depends on Chapters 1-8 and 11-13. Second, Chapter 24
depends on Chapters 1-8, 11-12, and 17-19. Finally, Chapter 31 depends
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on Chapters 1-12, 17-18, and 29-30. These remarks do not apply to the
exercises, some of which depend on earlier chapters for which no dependency
is indicated in the diagram. Also, minor references to earlier chapters are
not indicated in the diagram. For instance, an application in Chapter 36 of
the principal result of that chapter depends on the definition of a free alge-
bra (given in Chapter 28), but not on any of the results about free algebras.
Similarly, a corollary at the end of Chapter 21 depends on the notion of a
maximal ideal and the easily comprehended statement of the maximal ideal
theorem (given in Chapter 20).

A large number of exercises of varying levels of difficulty have been in-
cluded in the text. There are routine problems that help readers understand
the basic definitions and theorems; intermediate problems that extend or en-
rich material developed in the text; and difficult problems that often present
important results not covered in the text. The harder exercises are labeled
as such, and hints for their solutions are given in Appendix B. Some of the
exercises are formulated, not as assertions, but as questions that readers are
invited to ponder.

There is an instructor’s manual that contains complete solutions to the
exercises. It may serve as a guide to instructors, and in particular it may help
them select problems at an appropriate level of difficulty for their students.
Instructors may also wish to assign the solutions of some of the more difficult
problems to individual students or groups of students for independent study
or as class projects.

Historical remarks are sprinkled throughout the text. We are indebted to
Don Monk for his help in tracking down the authorship of some of the main
results. Regrettably, it has not been feasible to determine the origin of every
theorem.

The book can serve as a basis for a variety of courses. A one-semester
course that focuses on the algebraic material might cover some subset of
Chapters 1-28, for instance Chapters 1-8, 11-14, and 17-27. A one-semester
course that includes some of the interconnections with topology might cover
Chapters 1-8, 11-12, 14, 17-22, parts of 9 and 29, and 32-36. Most of the
text could be covered in a one-year course.

A quick word about terminology. In this book, the phrase “just in case”
is used as a variant of the phrase “in this case, and only in this case”. In
other words, it is a synonym for “if and only if”.

This revision of Halmos’s book was planned and initially executed by both



Preface xiii

authors. Due to declining health, however, Halmos was not able to review
the later versions of the manuscript. He died on October 2, 2006. Whatever
imperfections remain in the text are my sole responsibility.

Steven Givant
San Francisco, California
August, 2007
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Chapter 1

Boolean Rings

A ring is an abstract version of arithmetic, the kind of thing you studied in
school. The prototype is the ring of integers. It consists of a universe — the
set of integers — and three operations on the universe: the binary operations
of addition and multiplication, and the unary operation of negation (forming
negatives). There are also two distinguished integers, zero and one. The
ring of integers satisfies a number of basic laws that are familiar from school
mathematics: the associative laws for addition and multiplication,

(1) p+(g+r)=@+q+m,
(2) p(qg-r)=(p-q) -,

the commutative laws for addition and multiplication,

(3) Ptq=q+p,

the identity laws for addition and multiplication,

(5) p+0=np,
the inverse law for addition,
(7) p+(=p) =0,

and the distributive laws for multiplication over addition,

(8) p-(g+r)=p-q+p-r,

S. Givant, P. Halmos, Introduction to Boolean Algebras, 1
Undergraduate Texts in Mathematics, DOI: 10.1007/978-0-387-68436-9_1,
(© Springer Science+Business Media, LLC 2009
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9) (g+r)-p=q-p+r-p.

The difference between the ring of integers and an arbitrary ring is that,
in the latter, the universe may be an arbitrary non-empty set of elements,
not just a set of numbers, and the operations take their arguments and values
from this set. The associative, commutative, identity, and inverse laws for
addition, the associative law for multiplication, and the distributive laws
are required to hold: they are the ring axioms. The commutative law for
multiplication is not required to hold in an arbitrary ring; if it does, the ring
is said to be commutative. Also, a ring is not always required to have a unit,
an element 1 satisfying (6); if it does, it is called a ring with unit.

There are other natural examples of rings besides the integers. The most
trivial is the ring with just one element in its universe: zero. It is called the
degenerate ring. The simplest non-degenerate ring with unit has just two
elements, zero and one. The operations of addition and multiplication are
described by the arithmetic tables

+ 1011 - 101
01071 and 0]0
11110 1101

An examination of the tables shows that the two-element ring has several
special properties. First of all, every element is its own additive inverse:

(10) p+p=0.

Therefore, the operation of negation is superfluous: every element is its own
negative. Rings satisfying condition (10) are said to have characteristic 2.
Second, every element is its own square:

(11) p-p=p

Elements with this property are called idempotent. When every element is
idempotent, the ring itself is said to be idempotent.

A Boolean ring is an idempotent ring with unit. (Warning: some authors
define a Boolean ring to be just an idempotent ring, which may or may not
have a unit. They call the concept we have defined a “Boolean ring with
unit”.) The two-element ring is the simplest non-degenerate example of a
Boolean ring. It will be denoted throughout by the same symbol as the ordi-
nary integer 2. The notation is not commonly used, but it is very convenient.
It is in accordance with von Neumann’s definition of the ordinal numbers (un-
der which the ordinal number 2 coincides with the set {0,1}), with sound
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general principles of notational economy, and (in logical expressions such as
“two-valued”) with idiomatic linguistic usage.

The condition of idempotence in the definition of a Boolean ring has quite
a strong influence on the structure of such rings. Two of its most surprising
consequences are that (a) a Boolean ring always has characteristic 2 and (b)
a Boolean ring is always commutative. For the proof, compute (p + ¢)?, and
use idempotence to conclude that

(12) 0=q-p+p-q
In more detail,

pta=@p+q9*=p*+q-p+p-qg+F=p+q-p+p-q+gq,

by the distributive and idempotent laws. Add the inverse of p to the left
sides of the first and last terms, add the inverse of ¢ to the right sides, and
use the laws governing addition, in particular the inverse and identity laws,
to arrive at (12).

This result implies the two assertions, one after another, as follows.
Put p = ¢ in (12) and use idempotence to get (a):

0=p*+p*=p+p
Assertion (a) implies that every element is equal to its own negative, so

(13) pqg=—(-q.

Add the left and right sides of (13) to the left and right sides of (12) respec-
tively, and apply the inverse and identity laws for addition to obtain (b):

pq=q-ptpqg+—(p-a)=q¢p+0=q-p

Since, as we now know, negation in Boolean rings is the identity operation,
it is never necessary to use the minus sign for additive inverses, and we shall
never again do so. (A little later we shall meet another natural use for it.)
Only a slight modification in the set of axioms is needed: the identity (7)
should be replaced by (10). From now on, the official axioms for a Boolean
ring are (1)—(3), (5), (6), and (8)—(11).

Boolean rings are the only rings that will be considered in this book, so it
is worth looking at another example. The universe of this example consists
of ordered pairs (p, q) of elements from 2. In other words, it consists of the
four ordered pairs

(0,0), (0,1), (1,0), (1,1).
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This set will be denoted by 22, in agreement with the notation R? that is
used to denote the set of ordered pairs of real numbers. To add or multiply
two pairs in 22, just add or multiply the corresponding coordinates in 2:

(po,p1) + (90, 1) = (Po + qo, p1 + q1)

and

(po,p1) - (20, q1) = (Po - o, P1 - q1)-

These equations make sense: their right sides refer to the elements and op-
erations of 2. The zero and unit of the ring are the pairs (0,0) and (1,1).

It is a simple matter to check that the axioms for Boolean rings are true
in 22. In each case, the verification of an axiom reduces to its validity in 2.
For example, here is the verification of the commutative law for addition:

(Po,p1) + (q0,q1) = (Po + qo,p1 + 1)
= (qo + po, 1 + 1) = (90, q1) + (po, p1)-

The first and last equalities use the definition of addition of ordered pairs,
and the middle equality uses the commutative law for addition in 2.

The preceding example can easily be generalized to each positive inte-
ger n. The universe of the ring is the set 2" of n-termed sequences

(va ... 7pn—1)

of elements from 2. The sum and product of two such n-tuples are defined
coordinatewise, just as in the case of ordered pairs:

(p07 R 7pn—1) + (q07 ceey Qn—l) = (pO +4qo,---yPn—1+ qn—l)

and

(P0y -+ sPn—1) - (q0s -+ sqn—1) = (P0 - 0y - -y Pr—1 * Gn—1)-

The zero and unit are the n-tuples (0,...,0) and (1,...,1). Verifying the
axioms for Boolean rings is no more difficult in this example than it is in the
example 22.

To generalize the example still further, it is helpful to look at the set 2"
another way, namely, as the set of functions with domain {0,...,n — 1} and
with values in 2, that is, with possible values 0 and 1. Let X be an arbitrary
set, and 2% the set of all functions from X into 2. The elements of 2%
will be called 2-valued functions on X. The distinguished elements and the
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operations of 2% are defined pointwise. This means that 0 and 1 in 2% are
the constant functions defined, for each x in X, by

0(x)=0 and 1(z) =1,

and if p and ¢ are 2-valued functions on X, then the functions p+q and p- ¢
are defined by

(p+q)(z)=p)+q(x) and  (p-q)(z)=p(z)- q(x).

Again, these equations make sense; their right sides refer to elements and
operations of 2.

Verifying that 2% is a Boolean ring is conceptually the same as verifying
that 22 is a Boolean ring, but notationally it looks a bit different. Consider,
as an example, the verification of the distributive law (8). In the context
of 2%, the left and right sides of (8) denote functions from X into 2. It must
be shown that these two functions are equal. They obviously have the same
domain X, so it suffices to check that the values of the two functions at each
element z in the domain agree, that is,

(14) (p-(a+m)(@) =P qg+p-r))
The left and right sides of (14) evaluate to
(15) p(@)-(q(z) +r(x))  and  p(z)-q(z)+p(x) - r(z)

respectively, by the definitions of addition and multiplication in 2%. Each of
these terms denotes an element of 2. Since the distributive law holds in 2,
the two terms in (15) are equal. Therefore, equation (14) is true. The other
Boolean ring axioms are verified for 2% in a similar fashion.

For another example of a Boolean ring let A be the set of all idempotent
elements in a commutative (!) ring R with unit, with addition redefined
so that the new sum of p and ¢ in A is p + ¢ — 2pg. The distinguished
elements of A are the same as those of R, and multiplication in A is just the
restriction of multiplication in R. The verification that A becomes a Boolean
ring in this way is an amusing exercise in ring axiomatics. Commutativity
is used repeatedly; it is needed, for instance, to prove that A is closed under
multiplication.

Exercises

1. Verify that 2 satisfies ring axioms (1)—(9).
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. Verify that 23 satisfies ring axioms (1)-(9).

. Verify that 2% satisfies ring axioms (1)—(9) for any set X. What ring
do you get when X is the empty set?

. Essentially, what ring is 2¥ when X is a set consisting of just one
element? Can you make this statement precise?

. A group is a non-empty set, together with a binary operation + (on
the set), a unary operation —, and a distinguished element 0, such that
the associative law (1), the identity laws

p+0=p and 0+p=np,
and the inverse laws
p+-p=0 and —-p+p=0

are all valid. Show that in a group the cancellation laws hold: if

ptqg=p+r or q+p=r+p,
then ¢ = r. Conclude that in a group, the inverse element is unique:
if p4+¢ =0, then ¢ = —p.
. Prove that in an arbitrary ring,

p-0=0-p=0 and  p-(=¢)=(-p)-¢=—(p-9)

for all elements p and q.

. Let A be the set of all idempotent elements in a commutative ring R
with unit. Define the sum p & ¢ of two elements p and ¢ in A by

p®qg=p+q—2pq,

where the right-hand term is computed in R (and pg means p-q). The
distinguished elements of A are the same as those of R, and multipli-
cation in A is the restriction of multiplication in R. Show that A is a
Boolean ring.

. A Boolean group is a group in which every element has order two (in
other words, the law (10) is valid). Show that every Boolean group is
commutative (that is, the commutative law (3) is valid).
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9.

10.

11.

12.

13.

14.

A zero-divisor in a ring is a non-zero element p such that p-q = 0 for
some non-zero element gq. Prove that a Boolean ring (with or without a
unit) with more than two elements has zero-divisors. (This observation
is due to Stone [66].)

(Harder.) Prove that every Boolean ring without a unit can be ex-
tended to a Boolean ring with a unit. To what extent is this extension
procedure unique? (This result is due to Stone [66].)

(Harder.) Does every finite Boolean ring have a unit? (The answer to
this question is due to Stone [66].)

Give an example of a Boolean ring that has no unit. Exercise 10 implies
that your example can be extended to a Boolean ring with unit; describe
the elements of that extension.

(Harder.) Can every non-degenerate Boolean ring with unit be obtained
by adjoining a unit to a Boolean ring without a unit?

(Harder.) Is every Boolean group the additive group of some Boolean
ring?



Chapter 2

Boolean Algebras

Let X be an arbitrary set and let P(X) be the class of all subsets of X
(the power set of X). Three natural set-theoretic operations on P(X) are
the binary operations of union and intersection, and the unary operation of
complementation. The union P UQ of two subsets P and (@ is, by definition,
the set of elements that are either in P or in @), the intersection P N Q is
the set of elements that are in both P and @, and the complement P’ is
the set of elements (of X) that are not in P. There are also two distin-
guished subsets: the empty set &, which has no elements, and the universal
set X. The class P(X), together with the operations of union, intersection,
and complementation, and the distinguished subsets @ and X, is called the
Boolean algebra (or field) of all subsets of X, or the power set algebra on X.
The arithmetic of this algebra bears a striking resemblance to the arith-
metic of Boolean rings. Some of the most familiar and useful identities include
the laws for forming the complements of the empty and the universal sets,

(1) o' =X, X' =g,

the laws for forming an intersection with the empty set and a union with the
universal set,

(2) Pno =0, PUX =X,

the identity laws,

(3) PNnX =P, PU@ =P,

the complement laws,

(4) PNnP =g, PUP =X,

S. Givant, P. Halmos, Introduction to Boolean Algebras, 8

Undergraduate Texts in Mathematics, DOI: 10.1007/978-0-387-68436-9_2,
(© Springer Science+Business Media, LLC 2009
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the double complement law,

(5) (P")' =P,

the idempotent law,

(6) PNP=P, PUP =P,

the De Morgan laws,

(7) (PNQ) =P UQ, (PUQ) =P'NQ’,

the commutative laws,

(8) PNQ=QnNP, PUQ=QUP,

the associative laws,

9) PN(@NR)=(PNQ)NR, PU(QUR)=(PUQR)UR,

and the distributive laws,

(10) PN(QUR)=(PNQ)U(PNR),
PU(QNR)=(PUQ)N(PUR).

Each of these identities can be verified by an easy set-theoretic argument
based on the definitions of the operations involved. Consider, for example,
the verification of the first De Morgan law. It must be shown that each
element = of X belongs to (PN Q)’ just in case it belongs to P/ U Q’. The
argument goes as follows:

re(PNQ) ifand only if ¢ PNQ,
if and only if rg PorxzdQ@,
if and only if reP orzeq’,
if and only if reP'UuQ’.

The first and third equivalences use the definition of complementation, the
second uses the definition of intersection, and the last uses the definition of
union.

While (1)—-(10) bear a close resemblance to laws that are true in Boolean
rings, there are important differences. Negation in Boolean rings is the iden-
tity operation, whereas complementation is not. Addition in Boolean rings
is not an idempotent operation, whereas union is. The distributive law for
addition over multiplication fails in Boolean rings, whereas the distributive
law for union over intersections holds.
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Boolean rings are an abstraction of the ring 2. The corresponding ab-
straction of P(X) is called a Boolean algebra. Specifically, a Boolean algebra
is a non-empty set A, together with two binary operations A and V (on A),
a unary operation ’, and two distinguished elements 0 and 1, satisfying the
following axioms, the analogues of identities (1)—(10):

(11) 0'=1, 1" =0,

(12) pAO=0, pvl=1,

(13) pAl=p, pVO0=p,

(14) pAp =0, pVp' =1,

(15) (") =p,

(16) PApP=Dp, pVp=p,

(17) (pAg) =p"Vd, (pVa) =p"Adg,

(18) PAG=qAD, pVqg=qVp,

(19)  pA(@gAr)={@Ag AT, pVigVvr)=(pVaqVr,

(200 pA(gVvr)=mAQV(pAT), pVigAT)=([@PVa A(VT).

This set of axioms is wastefully large, more than strong enough for the
purpose. The problem of selecting small subsets of this set of conditions that
are strong enough to imply them all is one of dull axiomatics. For the sake
of the record: one solution of the problem, essentially due to Huntington [28],
is given by the identity laws (13), the complement laws (14), the commutative
laws (18), and the distributive laws (20). To prove that these four pairs imply
all the other conditions, and, in particular, to prove that they imply the De
Morgan laws (17) and the associative laws (19), involves some non-trivial
trickery.

There are several possible widely adopted names for the operations A, V,
and /. We shall call them meet, join, and complement (or complementation),
respectively. The distinguished elements 0 and 1 are called zero and one.
One is also known as the unit.

Equations (1)—(10) imply that the class of all subsets of an arbitrary set X
is an example of a Boolean algebra. When the underlying set X is empty, the
resulting algebra is degenerate in the sense that it has just one element. In
this case, the operations of join, meet, and complementation are all constant,
and 0 = 1. The simplest non-degenerate Boolean algebra is the class of all
subsets of a one-element set. It has just two elements, 0 (the empty set)
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and 1 (the one-element set). The operations of join and meet are described
by the arithmetic tables

vi0|1 A0 |1
001 and 010101,
1111 1101

and complementation is the unary operation that maps 0 to 1, and conversely.
We shall see in a moment that this algebra and the two-element Boolean ring
are interdefinable. For that reason, the same symbol 2 is used to denote both
structures.

Here is a comment on notation, inspired by the associative laws (19). It
is an elementary consequence of those laws that if pq, ..., p, are elements of a
Boolean algebra, then p; V- - -V p,, makes sense. The point is, of course, that
since such joins are independent of how they are bracketed, it is not necessary
to indicate any bracketing at all. The element p; V- - -V p, may alternatively
be denoted by \/i__, p;, or, in case no confusion is possible, simply by \/, p;.

If we make simultaneous use of both the commutative and the associative
laws, we can derive a slight but useful generalization of the preceding com-
ment. If F is a non-empty finite subset of a Boolean algebra, then the set F
has a uniquely determined join, independent of any order or bracketing that
may be used in writing it down. (In case E is a singleton, it is natural to
identify that join with the unique element in E.) We shall denote the join
of E by \ E.

Both the preceding comments apply to meets as well as to joins. The
corresponding symbols are, of course,

n
/\pi, or /\pi, and /\E
i=1 i

The conventions regarding the order of performing different operations
in the absence of any brackets are the following: complements take priority
over meets and joins, while meets take priority over joins. Example: the
expression p’V g A p should be read as (p’ )V (¢ Ap). It is convenient to write
successive applications of complement without any bracketing, for instance p”
instead of (p”)’.

Exercises

1. Verify that the identities (1)-(10) are true in every Boolean algebra of
all subsets of a set.
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. (Harder.) Show that the identities in (13), (14), (18), and (20) together

form a set of axioms for the theory of Boolean algebras. In other
words, show that they imply the identities in (11), (12), (15), (16),
(17), and (19). (This result is essentially due to Huntington [30].)

. Prove directly that the two-element structure 2 defined in the chapter

is a Boolean algebra, by showing that axioms (13), (14), (18), and (20)
are all valid in 2.

. In analogy with the construction, for each set X, of the Boolean ring 2%

in Chapter 1, define operations of join, meet, and complementation
on 2%, and distinguished constants zero and one, and prove that the
resulting structure is a Boolean algebra.

. (Harder.) A member of a set of axioms is said to be independent of

the remaining axioms if it is not derivable from them. One technique
for demonstrating the independence of a given axiom is to construct a
model in which that axiom fails while the remaining axioms hold. The
given axiom cannot then be derivable from the remaining ones, since
if it were, it would have to hold in the model as well. The four pairs
of identities (13), (14), (18), and (20) constitute a set of eight axioms
for Boolean algebras.

(a) Show that the distributive law for join over meet in (20) is inde-
pendent of the remaining seven axioms.

(b) Show that the distributive law for meet over join in (20) is inde-
pendent of the remaining seven axioms.

(c) Show that each of the complement laws in (14) is independent of
the remaining seven axioms.

(These proofs of independence are due to Huntington [28].)

. (Harder.) A set of axioms is said to be independent if no one of the

axioms can be derived from the remaining ones. Do the four pairs
of identities (13), (14), (18), and (20) constitute an independent set of
axioms for Boolean algebras?

. (Harder.) The operation of meet and the distinguished elements zero

and one can be defined in terms of join and complement by the equa-
tions
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10.

11.

pAa=(p'Vve), 0=(vp), 1=pvp
A Boolean algebra may therefore be thought of as a non-empty set
together with two operations: join and complement. Prove that the
following identities constitute a set of axioms for this conception of
Boolean algebras: the commutative and associative laws for join, and
(H) ('Vva')' Vip'vae) =p
(This axiomatization, and the proof of its equivalence to the set of

axioms (13), (14), (18), and (20), is due to Huntington [30]. In fact, (H)
is often called Huntington’s axiom.)

(Harder) Prove that the three axioms in Exercise 7 are independent.
(The proof of independence is due to Huntington [30].)
(

Harder.) Prove that the following identities constitute a set of axioms
for Boolean algebras:

p'=p, pVi(eVva) =p, pVigvr)=(q"Vvp) V(' vp))
(This axiomatization, and the proof of its equivalence with the axiom

set in Exercise 7, is due to Huntington [30].)

(Harder.) Prove that the three axioms in Exercise 9 are independent.
(The proof of independence is due to Huntington [30].)

(Harder.) Prove that the commutative and associative laws for join,
and the equivalence
pVqg =rvr’ if and only if pVq=np,

together constitute a set of axioms for Boolean algebras. (This ax-
iomatization, and the proof of its equivalence with the axiom set in
Exercise 7, is due to Byrne [11].)



Chapter 3

Boolean Algebras Versus
Rings

The theories of Boolean algebras and Boolean rings are very closely related;
in fact, they are just different ways of looking at the same subject. More
precisely, every Boolean algebra can be turned into a Boolean ring by defining
appropriate operations of addition and multiplication, and, conversely, every
Boolean ring can be turned into a Boolean algebra by defining appropriate
operations of join, meet, and complement. The precise way of accomplishing
this can be elucidated by comparing the Boolean algebra P(X) of all subsets
of X and the Boolean ring 2% of all 2-valued functions on X. Each subset P
of X is naturally associated with a function p from X into 2, namely the
characteristic function of P, defined for each z in X by

1 ifxeP,
p(x) = .
0 ifzégP.

The correspondence that maps each subset to its characteristic function is a
bijection (a one-to-one, onto function) from P(X) to 2%. The inverse corre-
spondence maps each function ¢ in 2% to its support, the set of elements x
in X for which ¢(z) = 1.

How should the operations of addition and multiplication, and the distin-
guished elements zero and the unit, be defined in P(X) so that it becomes a
Boolean ring? To answer this question, it is helpful to analyze more closely
the definitions of the ring operations in 2%, and to translate these definitions
(via the bijective correspondence) into the language of P(X). Suppose P
and () are subsets of X, and let p and ¢ be their characteristic functions.
S. Givant, P. Halmos, Introduction to Boolean Algebras, 14
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The sum p + g and the product p - ¢ are defined pointwise: for any = in X,

1 if p(z) # q(z),

(p+a)(z) =p(x) +q(z) = {0 if p(x) =q(z)

and

L if pz) =q(2) =1,
0 otherwise,

(p-q)(z) =p(z)-q(x) = {

as is clear from the arithmetic tables for the ring 2. The values p(x) and ¢(z)
are different just in case one of them is 1 and the other is 0, that is to say,
just in case z is in P but not in @, or vice versa. The values p(z) and ¢(x)
are both 1 just in case x is in both P and ). These observations suggest the
following definitions of ring addition and multiplication in P(X):

(1) P+Q=(PnNnQ")U(P'NnQ) and P-Q=PnNQ.

(The Boolean sum P + @ is usually called the symmetric difference of P
and @).) A similar analysis suggests the definitions

(2) 0=0 and 1=X

for the distinguished ring elements zero and one in P(X).

With these operations and distinguished elements, the set P(X) becomes
a Boolean ring: it satisfies axioms (1.1)—(1.3), (1.5), (1.6), and (1.8)—(1.11).
In fact, the correspondence h that takes each function in 2% to its support
is what is usually called an isomorphism between the two rings: it maps 2%
one-to-one onto P(X), and it preserves the ring operations and distinguished
elements in the sense that

h(p+4q) = h(p) + h(q), h(p-q)=h(p)-h(g), h(0)=0, h(1)=1

The operations and distinguished elements on the left sides of the equations
are those of the ring 2%, while the ones on the right are those of the ring P(X).
These equations just express, in a slightly different form, the definitions in (1)
and (2) of the ring operations and distinguished elements for P(X). The
whole state of affairs can be summarized by saying that the Boolean rings 2%
and P(X) are isomorphic via the correspondence that takes each function
in 2% to its support. The two rings are structurally the same (which is what
really matters); they differ only in the “shape” of their elements.

It is also possible to turn the ring 2% into a Boolean algebra. To un-
derstand how the Boolean operations and distinguished elements should be
defined in 2%, it is helpful to analyze the definitions of these operations
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in P(X) and to translate these definitions into the language of 2%. Sup-
pose once more that P and @ are subsets of X, and that p and ¢ are their
characteristic functions. Then

re PUQ if and only if r€Porzxeq
if and only if  p(z)=1orq(z)=1
if and only if  p(z) # q(x) or p(z) = q(x) =1
if and only if  p(x) +q(z) +p(x) - q(z) =1
if and only if ~ (p+q+p-q)(z) =1.

The first equivalence uses the definition of union, the second uses the defini-
tions of the characteristic functions, the third uses the fact that 2 has just two
elements, the fourth uses the arithmetic of 2, and the last uses the definitions
of the ring operations of 2X. Similarly,

re P! if and only if x ¢ P
if and only if  p(x) #1
if and only if  p(x) # 1(x)
if and only if  p(z)+1(z) =1
if and only if (p+1)(x) =1.

The occurrence of the symbol “1” in the second equivalence, and its right-
most occurrence in the fourth and fifth equivalences, denote the unit of 2;
its occurrence in the third equivalence, and its leftmost occurrences in the
fourth and fifth equivalences, denote the unit function of 2¥. To justify
the equivalences, use the definition of complementation, the definition of the
characteristic function, the definition of the unit function, the arithmetic of 2,
and the definition of addition in the ring 2.

The preceding observations suggest the following definitions for the op-
erations of join and complement in 2%:

pVg=p+q+p-q and p'=p+1.

A similar but simpler analysis implies that the distinguished Boolean ele-
ments zero and one should coincide with the distinguished ring elements zero
and one, and that meet should coincide with ring multiplication. With these
operations and distinguished elements, the set 2% becomes a Boolean algebra:
it satisfies axioms (2.11)—(2.20). In fact, the Boolean algebras P(X) and 2%
are isomorphic via the correspondence g that takes each subset of X to its
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characteristic function. In more detail, the correspondence g maps P(X) one-
to-one onto 2%, and it preserves the Boolean operations and distinguished
elements in the sense that

g(PuUQ)=g(P)Vg(Q), g(PNQ)=g(P)Ag(Q),
g(P") =g(P)’, 9(2) =0, g(X) = 1.

Motivated by this set-theoretic example, we can introduce into every
Boolean algebra A operations of addition and multiplication very much like
symmetric difference and intersection; just define

(3) p+a=@Ad )V 'Aq) and p-g=pAq

Under these operations, together with 0 and 1 (the zero and unit of the
Boolean algebra), A becomes a Boolean ring. Conversely, every Boolean ring
can be turned into a Boolean algebra with the same zero and unit; just define
operations of join, meet, and complement by

(4) pVg=p+q+p-q, pPAg=Dp-q, p'=p+1.

Start with a Boolean algebra, turn it into a Boolean ring (with the same zero
and unit) using the definitions in (3), and then convert the ring into a Boolean
algebra using the definitions in (4); the result is the original Boolean algebra.
Conversely, start with a Boolean ring, convert it into a Boolean algebra using
the definitions in (4), and then convert the Boolean algebra into a Boolean
ring using the definitions in (3); the result is the original ring.

The customary succinct way of summarizing the preceding discussion is to
say that the theories of Boolean algebras and Boolean rings are definitionally
equivalent. The precise way of proving this statement is to derive the Boolean
algebra axioms (2.11)—(2.20) and the definitions in (3) from the Boolean ring
axioms (1.1)—(1.3), (1.5), (1.6), (1.8)—(1.11), and the definitions in (4), and,
conversely, to derive the Boolean ring axioms and the definitions in (4) from
the Boolean algebra axioms and the definitions in (3). In this book we shall
use the two terms “Boolean ring” and “Boolean algebra” almost as if they
were synonymous, selecting on each occasion the one that seems intuitively
more appropriate. Since our motivation comes from set theory, we shall speak
of Boolean algebras much more often than of Boolean rings.

The point of view of Boolean algebras makes it possible to give a simple
and natural description of an example (due to Sheffer [54]) that would be
quite awkward to treat from the point of view of Boolean rings. Let m be
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a positive integer, and let A be the set of all positive integral divisors of m.
Define the Boolean structure of A by the equations

0=1,
1 =m,
p A q=ged{p, q},
pVq=lem{p,q},
p'=m/p.

It turns out that, with the distinguished elements and operations so de-
fined, A forms a Boolean algebra if and only if m is square-free (that is, m
is not divisible by the square of any prime). Query: what are the number-
theoretic expressions of the ring operations in this Boolean algebra? And,
while we are on the subject, what are the expressions for the Boolean op-
erations in the Boolean ring A consisting of the idempotent elements of an
arbitrary commutative ring R with unit? (See Chapter 1.) The answer to
this question is slightly different from (4); those equations give the answer in
terms of the ring operations in A, and what is wanted is an answer in terms
of the ring operations in R.

The theory of Boolean algebras was created by Boole in the 1840s, and
subsequently refined by De Morgan, Jevons, Schroder, Whitehead, and oth-
ers. The name “Boolean algebra” was suggested by Sheffer [53] in 1913. It
was Stone who realized, in the mid-1930s, that Boolean algebras could be
treated as rings in which the operation of multiplication is idempotent. He
introduced in [66] the notion of a Boolean ring, and developed the basic alge-
braic theory of such rings. In particular, he proved that the class of Boolean
rings is definitionally equivalent to the class of Boolean algebras.

Exercises

1. Prove that the Boolean algebras P(X) and 2% are isomorphic via the
mapping that takes each subset of X to its characteristic function.

2. The purpose of this exercise is to demonstrate the definitional equiva-
lence of the theories of Boolean algebras and Boolean rings.

(a) Show that every Boolean algebra becomes a Boolean ring with the
same zero and unit under the operations defined by the equations
in (3).
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(b) Show that, conversely, every Boolean ring becomes a Boolean al-
gebra with the same zero and unit under the operations defined
by the equations in (4).

(c¢) If a Boolean algebra is converted into a Boolean ring using the
definitions in (3), and if that Boolean ring is then converted into a
Boolean algebra using the definitions in (4), prove that the result
is just the original Boolean algebra.

(d) If a Boolean ring is converted into a Boolean algebra using the
definitions in (4), and if that Boolean algebra is then converted
into a Boolean ring using the definitions in (3), prove that the
result is just the original Boolean ring.

3. Prove that the set of positive integral divisors of a positive integer m
is a Boolean algebra (under the operations defined at the end of the
chapter) just in case m is square-free. What are the number-theoretic
expressions of the ring operations in this algebra?

4. What are the expressions for the Boolean operations in the Boolean ring
consisting of the idempotent elements of an arbitrary commutative ring
(Exercise 1.7)7?

5. (Harder.) Prove that every law of Boolean algebra in which the unit
and complement do not occur is valid for Boolean rings without unit
when meet and join in the ring are defined by

PAq=p-q and pVg=p+q+p-q.



Chapter 4

The Principle of Duality

Every Boolean polynomial has a dual: it is defined to be the polynomial that
results from interchanging 0 and 1, and at the same time interchanging A
and V. For example, the polynomials

PV )NP'VI)AOD  and  (pAg )V (P'AO)V1

are duals of one another. (The definition of Boolean polynomials is the same
as that of ordinary polynomials, except that the admissible operations are not
addition and multiplication but meet, join, and complement.) Every Boolean
equation also has a dual, obtained by forming the duals of the polynomials
on each side of the equation. The identities

pAp =0 and pVp =1
are duals of one another, as are the identities

pA(gVr)=({@AgV(pAr) and pV(gAT)=(VgA(VT).

A technical reason for preferring the language of Boolean algebras to that
of Boolean rings is the so-called principle of duality.

The principle consists in observing that the axioms (2.11)-(2.20) for
Boolean algebras come in dual pairs. It follows that the same is true for
all the consequences of those axioms: the general theorems about Boolean
algebras, and, for that matter, their proofs also, come in dual pairs.

The absorption laws

(1) pA(Vg)=p and  pV(pAq) =p,

and their derivations, may serve as an example. Here is a proof of the first law,
using (in order) the second identity in (2.13), the second identity in (2.20),
S. Givant, P. Halmos, Introduction to Boolean Algebras, 20
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the first identity in (2.18), the first identity in (2.12), and the second identity
in (2.13):

(2) pA(PVe=@VO)APVe=pV(0Aqg =pV(gA0)=pV0=np.

The dual derivation is

3) pvpAg={@A)V(pAg=pA(1lVg=pA(gV])=pAl=p.

The axioms used in this derivation are, step by step, the duals of the axioms
used in the derivation of (2). The identity that is proved by (3) is just the
second law in (1), which is the dual of the first law.

A practical consequence of the principle of duality, often exploited in what
follows, is that in the theory of Boolean algebras it is sufficient to state and
to prove only half the theorems; the other half come gratis from the principle.

A slight misunderstanding can arise about the meaning of duality, and
often does. It is well worthwhile to clear it up once and for all, especially since
the clarification is quite amusing in its own right. If an experienced Boolean
algebraist is asked for the dual of a Boolean polynomial, such as say pV g, his
answer might be pAq one day and p’ Aq’ another day; the answer p’Vq’ is less
likely but not impossible. What is needed here is some careful terminological
distinction. Let us restrict attention to the completely typical case of a
polynomial f(p, q) in two variables. The complement of f(p, q) is by definition
(f(p,q))’, abbreviated f'(p, q); the dual of f(p,q)is f'(p’,q"); the contradual
of f(p,q) is f(p',q").

The polynomial

(4) pA(gV(p'A0O))

may serve as an example. Its complement is formed by applying the opera-
tion ” to the entire expression, and then simplifying the result with the help
of the De Morgan laws and the double complement law:

P’V (g ApVI)).
The contradual is formed by replacing p and ¢ in (4) with their complements,
and then simplifying:
p' A"V (pA0)).
The dual is the complement of the contradual, appropriately simplified:
pV(gA(p'V1).

What goes on here is that there is a group (see Exercise 1.5) acting on
the set of polynomials, and it is not the two-element group, but a group
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with four elements. In more detail, there are four functions mapping the set
of Boolean polynomials one-to-one onto itself: the identity function (taking
each polynomial to itself), the complement function (taking each polynomial
to its complement), the contradual function, and the dual function. The set
of these functions is closed under composition. For instance, the composition
of the complement and contradual functions is the dual function, while the
composition of the contradual and dual functions is the complement function.
There is an identity element — the identity function — and each function is
its own inverse with respect to composition. Consequently, the four functions
form a group under composition, and in fact a Boolean group that is often
called the Klein four-group (see Exercise 1.8).

This comment was made by Gottschalk [18], who describes the situation
by speaking of the principle of quaternality.

A word of warning: the word “duality” is frequently used in contexts
startlingly different from one other and from the one we met above. This
is true even within the theory of Boolean algebras, where, for instance, a
topological duality theory turns out to play a much more important role
than the elementary algebraic one just described. If the context alone is not
sufficient to indicate the intended meaning, great care must be exercised to
avoid confusion.

Exercises

1. Form the duals of the following polynomials.
(@) (pAg)'V(OAL)V(q"Vp').
(b) (pA(gvr)V(pAp")Vr).
2. Form the duals of the following equations.
(@) pA(P'Va) =pAg
(b) kv A'Ad")=@AB'AN))V (0" A" N)).

3. Form the complements, the contraduals, and the complements of the
contraduals of the following polynomials, and simplify the results using
the De Morgan laws and the double complement law.

(@) (pA(gvr)Vv(lpAp")Vr).
(b) (A (@' Ag")) V(P A(d" Ng)).
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4. Derive the identity
PA(P'Va) =pAq
from axioms (2.13), (2.14), (2.18), and (2.20). Write out the dual form
of the derivation. What identity does the dual derivation prove?

5. Let ¢, k, and d denote the functions on the set of Boolean polynomials
of forming the complement, the contradual, and the dual. Denote the
identity function on the set by i. Complete the following table for
composing these operations:

el k| d

(¢]

SHESIE RS
)




Chapter 5

Fields of Sets

To form P(X) is not the only natural way to make a Boolean algebra out of a
non-empty set X. A more general way is to consider an arbitrary non-empty
subclass A of P(X) that is closed under intersection, union, and complement;
in other words, if P and @Q are in A, then so are PNQ, PUQ, and P’. Since A
contains at least one element, it follows that A contains @ and X (cf. (2.4)),
and hence that A is a Boolean algebra. Every Boolean algebra obtained in
this way is called a field (of sets). There is usually no danger in denoting a
field of sets by the same symbol as the class of sets that go to make it up.
This does not, however, justify the conclusion (it is false) that set-theoretic
intersection, union, and complement are the only possible operations that
convert a class of sets into a Boolean algebra.

To show that a class A of subsets of a set X is a field, it suffices to
show that A is non-empty and closed under union and complement. In fact,
if A is closed under these two operations, then it must also be closed under
intersection, since

PNnQ=(PuQ")
for any two subsets P and @) of X. Dually, A is a field whenever it is non-
empty and closed under intersection and complement.

A subset P of a set X is cofinite (in X) if its complement P’ is finite; in
other words, P is cofinite if it can be obtained from X by removing finitely
many elements. For instance, the set of integers greater than 1000 or less
than —10 is cofinite (in the set of all integers), and so is the set of all integers
with the numbers 2, —75, and 1037 removed; the set of even integers is not
cofinite. The class A of all those subsets of a non-empty set X that are either
finite or cofinite is a field of subsets of X. The proof is a simple cardinality
S. Givant, P. Halmos, Introduction to Boolean Algebras, 24
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argument. The union of two finite subsets is finite, while the union of a
cofinite subset with any subset is cofinite; also, the complement of a finite
subset is cofinite, and conversely. If the set X itself is finite, then A is
simply P(X); if X is infinite, then A is a new example of a Boolean algebra
and is called the finite—cofinite algebra (or field) of X.

The preceding construction can be generalized. Call a subset P of X
cocountable (in X) if its complement P’ is countable. For example, the
set of irrational numbers is cocountable in the set of real numbers, since
the set of rational numbers is countable. Also, any cofinite subset of reals
is cocountable, since any finite subset is countable. The class of all those
subsets of X that are either countable or cocountable is a field of subsets
of X, the so-called countable—cocountable algebra (or field) of X. Different
description of the same field: the class of all those subsets P of X for which
the cardinal number of either P or P’ is less than or equal to X¢ (the first
infinite cardinal). A further generalization is obtained by using an arbitrary
infinite cardinal number in place of V.

Let X be the set of all integers (positive, negative, or zero), and let m be
an arbitrary integer. A subset P of X is periodic of period m if it coincides
with the set obtained by adding m to each of its elements. The class A of all
periodic sets of period m is a field of subsets of X. If m = 0, then A is
simply P(X). If m = 1, then A consists of just the two sets @ and X. In all
other cases A is a new example of a Boolean algebra. For example, if m = 3,
then A consists of eight sets, namely the eight possible unions that can be
formed using one, two, three, or none of the sets

{3n:ne X}, {3n+1:ne X}, and {3n+2:ne X}

It is obvious in this case that A is closed under the operation of union, and
almost obvious that A is closed under complementation. Consequently, A is
a field of sets. Warning: a period of a periodic set is not unique; for example,
the sets of integers of period 3 also have period 6 and period 12; in fact they
have infinitely many periods.

Let X be the set of all real numbers. A left half-closed interval (or
for brevity, since this is the only kind we shall consider for the moment, a
half-closed interval) is a set of one of the forms

[a,0) ={zr € X :a <z <b},
[a,00) ={z € X :a <z},
( )—{xeX x < b},

00) =
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where, of course, a and b themselves are real numbers and a < b. The class A
of all finite unions of half-closed intervals is a field of subsets of X. Here is
the proof. The empty set is the union of the empty family of half-closed
intervals, so it belongs to A. The closure of A under union is obvious: the
union of two finite unions of half-closed intervals is itself a finite union of
half-closed intervals.

To establish the closure of A under complement, it is helpful to make two
observations. First, the intersection of two half-closed intervals is either a
half-closed interval or empty. For instance, if a; < by and a9 < b1, then

[al, bl) N [CLQ, b2) = [C, d) and [al, bl) N (*OO, b2) = [al,d),
where
¢ = max{ay,az} and  d=min{by,ba}.

(The diagram illustrates the three possibilities in this case.) The intersection

al bl al bl al b]
— 5 — —
—— —— o ——— o
0/2 b2 a/2 b2 0/2 b2
—o —— o —o
c d c d c d

of the intervals is empty if the relevant inequalities fail. The second observa-
tion is that the complement of a half-closed interval is the union of at most
two half-closed intervals. For instance, the complement of the interval [a, b)
is the union

(—00,a) U [b,+00),
while the complement of the interval [a, +00) is (—o0, a).

If P is a finite union of half-closed intervals, then P’ is a finite intersection
of complements of half-closed intervals, by the De Morgan laws (2.7). Each
of these complements is the union of at most two half-closed intervals, by the
second observation, so P’ is the intersection of a finite family of sets, each
of which is the union of at most two half-closed intervals. The distributive
laws (2.10) therefore imply that P’ may be written as a finite union of finite
intersections of half-closed intervals. Each of the latter intersections is again
a half-closed interval or else empty, by the first observation, so P’ may be
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written as a finite union of half-closed intervals. The class A is thus closed
under complementation.

Any (linearly) ordered set can be used instead of the set of real numbers,
though some details of the construction may require slight modification. For
instance, a useful variant uses the closed unit interval [0, 1] in the role of X. In
this case it is convenient to stretch the terminology so as to include the closed
intervals [a, 1] and the degenerate interval {1} among half-closed intervals.
(The elements of this field are just the intersections with [0, 1] of the finite
unions of half-closed intervals discussed in the preceding paragraph. Notice,
in this connection, that

(1] =[a,6)N[0,1]  and {1} =[1,b)N][0,1]

whenever 0 < a < 1 < b.) The field of sets constructed from an ordered
set in the manner illustrated by these two examples is usually called the
interval algebra of the ordered set. (Interval algebras were first introduced
by Mostowski and Tarski in [46].)

Valuable examples of fields of sets can be defined in the unit square (the
set of ordered pairs (z,y) with 0 < z,y < 1), as follows. Call a subset P
of the square vertical if along with each point in P, every point of the vertical
segment through that point also belongs to P. In other words, P is vertical
if the presence of (x0, o) in P implies the presence in P of (zg,y) for every y
in [0,1]. If A is any field of subsets of the square, then the class of all
vertical sets in A is another, and in particular the class of all vertical sets
is a field of sets. Indeed, A contains the empty set, and is closed under
union and complement, so it suffices to check that the empty set is a vertical
set (this is vacuously true), and that the union of two vertical sets and the
complement of a vertical set are again vertical sets. Let P and @ be vertical
sets, and suppose that a point (z,yo) belongs to their union. If the point
belongs to P, then every point on the vertical segment through (xg,yo) also
belongs to P (since P is vertical); consequently, every such point belongs to
the union P U Q. An analogous argument applies if (xg,yo) belongs to Q. It
follows that PUQ) is a vertical set. Suppose, next, that a point (z¢, yo) belongs
to the complement of P. No point on the vertical segment through (zg, yo)
can then belong to P, for the presence of one such point in P implies the
presence of every such point in P (since P is vertical), and in particular
it implies that (xg,yp) is in P. It follows that every point on the vertical
segment through (¢, yo) belongs to P’, so that P’ is a vertical set.

Here are two comments that are trivial but sometimes useful: (1) the
horizontal sets (whose definition may safely be left to the reader) constitute
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just as good a field as the vertical sets, and (2) the Cartesian product of any
two non-empty sets is, for these purposes, just as good as the unit square.

Exercises

1.

Prove that the class of all sets of integers that are either finite sets of
even integers, or else cofinite sets that contain all odd integers, is a field
of sets.

Prove that the class of all sets of real numbers that are either countable
or cocountable is a field of sets.

. Prove that the class of all periodic sets of integers of period 2 is a field

of sets. How many sets are in this class? Describe them all. Do the
same for the class of all period sets of integers of period 3.

. Prove that the class of all periodic sets of integers of period m is a field

of sets. How many sets are in this class? Describe them all.

. (Harder.) If m is a positive integer, and if A is the class of all those

sets of integers that are periodic of some period greater than m, is A a
field of sets?

. The precise formulation and proof of the assertion that the intersection

of two half-closed intervals is either half-closed or empty can be simpli-
fied by introducing some unusual but useful notation. Extend the natu-
ral linear ordering of the set X of real numbers to the set X U{—o00, 00}
of extended real numbers by requiring

—o0o<a<oo
for every real number a, and —oco < oo. Thus, for example,
max{—o0o0,a} =a  and min{—oo, a} = —o0.
Extend the notation for half-closed intervals by defining
[—00,a) = (—o00,a) ={be X :b<a}
for any a in X U {oo}. In particular,
[—00,00) = (—00,00) = X.

Also, extend the notation [a, b) to the case a > b by writing
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10.

[a,b) ={r € R:a<z<b}=0a.

The notation [a,b) thus makes sense for any two extended real num-
bers a and b. The assertion that the intersection of two half-closed
intervals is either half-closed or empty can be expressed in this nota-
tion by the following simple statement that avoids case distinctions:

[ah bl) N [CLQ, b2) - [67 d)7
where
¢ = max{aj,as} and d = min{by, by };

moreover, this intersection is non-empty if and only if a1,as < by, bo.
Prove the simple statement.

. This exercise continues with the notation for extended real numbers in-

troduced in Exercise 6. Prove that every set P in the interval algebra A
of the real numbers can be written in exactly one way in the form

P = [ab bl) U [CZQ, b2) U---u [ana bn))
where n is a non-negative integer and
a; < by <ag <by < <ap <bp.

(The case n = 0 is to be interpreted as the empty family of half-closed
intervals.) Show that if P has this form, then

P’ =[-00,a1) U [by,a2) U+ Ulby_1,an) U [bp, +0);

the first interval is empty (and hence should be omitted) if a; = —oc;
the second interval is empty (and hence should be omitted) if b,, = +oc.

. Prove that the class of all finite unions of left half-closed intervals of

rational numbers is a countable field of sets.

. Prove that the class of all finite unions of left half-closed subintervals

of the interval [0,1] is a field of sets (where the intervals [a, 1], for
0 < a <1, are considered left half-closed).

Let X be the set of real numbers. A right half-closed interval of real

numbers is a set of one of the forms

(—00,b] ={x € X : x < b},
(a,b] ={zr € X :a <x <b},
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11.

12.

13.
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(a,400)={zr € X :a<x},
(_OO’ +OO) = Xa
where ¢ and b are real numbers and a < b. Show that the class of all

finite unions of right half-closed intervals is a field of subsets of the set
of real numbers.

An interval of real numbers is a set P of real numbers with the property
that whenever ¢ and d are P, then so is every number between ¢ and d.
In other words, an interval is a set of one of the forms

(—OO,G), (—OO,CL], (CL, +OO>7 [av +OO), (_OO7+OO)7
(a,b), (a, 0], a,b), [a, b], o,
where ¢ and b are real numbers and a < b. Prove that the class of all

finite unions of intervals is a field of sets.

Define the notion of a horizontal set for the unit square, and prove that
the class of all such sets is a field of sets.

Give an example of a Boolean algebra whose elements are subsets of a
set, but whose operations are not the usual set-theoretic ones.



Chapter 6

Elementary Relations

The least profound among the properties of an algebraic system are usually
the relations among its elements (as opposed to the relations among subsets
of it and functions on it). In this chapter we shall discuss some of the ele-
mentary relations that hold in Boolean algebras. Since we shall later meet
a powerful tool (namely, the representation theorem for Boolean algebras)
the use of which reduces all elementary relations to set-theoretic trivialities,
the purpose of the present discussion is more to illustrate than to exhaust
the subject. An incidental purpose is to establish some notation that will be
used freely throughout the sequel.

Throughout this chapter p, ¢, r, ... are elements of an arbitrary but fixed
Boolean algebra A.

Lemma 1. IfpVq = p for all p, then ¢ = 0; if pAq = p for all p, then ¢ = 1.

Proof. To prove the first assertion, put p = 0, and use (2.18) and (2.13); the
second assertion is the dual of the first.

Lemma 2. Ifp and q are such that pANq=0 and pV q =1, then ¢ =p’.

Proof. The assertion follows from (2.13), (2.14), (2.20), and the assumptions
of the lemma, together with some implicit applications of (2.18):

g=1Aqg=@Vp' )Ag=mAqV(p'Nq)
=0V (' Ag)=@" Ap) V(P Na)
=p'AlpVqg)=p' Al=p".

S. Givant, P. Halmos, Introduction to Boolean Algebras, 31
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(© Springer Science+Business Media, LLC 2009
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These two lemmas can be expressed by saying that (2.13) uniquely de-
termines 0 and 1, and (2.14) uniquely determines p’. In a less precise but
more natural phrasing we may simply say that 0 and 1 are unique, and so
are complements.

Lemma 3. For all p and q,
pV(pAg)=p and  pA(pVq)=p.
Proof. Use (2.13), (2.20), and (2.12) (together with an implicit application
of (2.18)):
pVpAg)={@AL)V(pAg)=pA(AVg)=pAl=p.
The second equation is the dual of the first.

The identities of Lemma 3 are called the laws of absorption.

Often the most concise and intuitive way to state an elementary prop-
erty of Boolean algebras is to introduce a new operation. The difference
of two sets P and @ is the set of elements in P that are not in @; these
set-theoretic considerations suggest an operation of subtraction in arbitrary
Boolean algebras. We write
(1) p—a=pAq.

The “symmetrized” version of the difference p — q is the Boolean sum:
(2) pta=(@—q) V(g—p);

it is the analogue, for Boolean algebras, of the symmetric difference of two
sets (see (3.1) and (3.3)). As a sample of the sort of easily proved relations
that the notation suggests, consider the distributive laws

pA(@—r)=({@Aq) —(pAT)

and

(qvr)—p=(qg—p)V(r—p).

One reason why Boolean algebras have something to do with logic is that
the familiar sentential connectives and, or, and not have properties similar to
the Boolean connectives A, V, and ’. Instead of meet, join, and complement,
the logical terminology uses conjunction, disjunction, and negation. Moti-
vated by the analogy, we now introduce into the study of Boolean algebra
the operations suggested by logical implication,
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(3) p=q=p'Vyg,

and biconditional,

(4) peqg=p@=q9N(q=Dp).

The source of these operations suggests an unintelligent error that it is im-
portant to avoid. The result of the operation = on the elements p and ¢ of
the Boolean algebra A is another element of A; it is not an assertion about
or a relation between the given elements p and ¢. (The same is true of <)
It is for this reason that logicians sometimes warn against reading p = ¢ as
“p implies ¢” and suggest instead the reading “if p, then ¢”. Observe inci-
dentally that if V is read as “or”, the disjunction pV ¢ must be interpreted in
the non-exclusive sense (either p, or ¢, or both). The exclusive “or” (either p,
or ¢, but not both) corresponds to the Boolean sum p + g.

The operations = and < would arise in any systematic study of Boolean
algebra even without any motivation from logic. The reason is duality: the
dual of p — q is ¢ = p, and the dual of p + ¢ is p & ¢. The next well-known
Boolean operation that deserves mention here could not have been discovered
through considerations of duality alone. It is called stroke, or Sheffer stroke
(because it was introduced by Sheffer in [53]), and it is defined by

(5) pla=p"Nq'

In logical contexts this operation is known as binary rejection (neither p
nor q), and among computer scientists it is often referred to as nor.

The chief theoretical application of the Sheffer stroke is the remark (due
to Sheffer [53], but anticipated 33 years earlier by Peirce in the unpublished
paper [49]) that a single operation, namely the stroke, is enough to define
Boolean algebras. To establish this remark, it is sufficient to show that
complement, meet, and join can be expressed in terms of the stroke, and
indeed,

(6) p'=plp

(7) pAg=(|p)|(q]a),
(8) pVa=(la| |-
Exercises

1. Prove that the following distributive laws hold in all Boolean algebras.
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(a) (qAr)—p=I(q—p)A(r—p)

(b) (qvr)—p=(¢—p)V(r—p)

() pAlg—r)=(Aq) —(pAT).
2. For each of the following identities, either prove that it is true in all
Boolean algebras (by deriving it from the Boolean laws that have been

established so far) or show that it fails to hold in the two-element
Boolean algebra.

(&) pA(g—r)=mAq) —(gAT).
(b) pV(g—r)=(pVa) —(qgVr).

() p—(g—r)=(—9q) —r

(d) pAg=p—(p—q)

(e) pVg=pV(q—p)

) p—(@-r)=@-9VPArgAT).
(&) pta=p"+4q

3. Prove that the seven elements

i) p—(qvr), (@) g¢g—(pvr), (i) r—(pVq),
(iv) (wAq) =7 (v) (gA7r)—p, (Vi) (pAT)—q,
(vil) pAgAT

are mutually disjoint (the meet of any two of them is 0) and the join
of all of them is pV ¢ V r (see the diagram). Write each of

p—4q, q—D, p—-r, r—mnp, q—r, r—dq

as a join of elements (i)—(vi). Then write each of
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P+q, p+r, q+r

as a join of elements (i)—(vi).
4. Prove that ¢ = p and p < ¢ are the duals of p—q and p+¢q, respectively.

5. Derive the following identities.

(P =p=pVa
6. Derive the following identities.
(@) pea=@Ag V(' A ).
(b) pea=(+aq
Give geometric interpretations of these identities for fields of sets.

7. Derive the following identities concerning Boolean addition and bicon-
ditional.

d) (peq) =p' +4q"

Notice that the last two identities express an analogue, for Boolean
addition and the biconditional, of the De Morgan laws.

8. Prove that the set of elements in a Boolean algebra, under the oper-
ation <, is a Boolean group with the identity element 1. In other
words, derive the following laws.

(a) pe(ger)=(peq) e

(b) pe1=np.

(c) pep=1
(The function that maps each element of the Boolean algebra to its

complement is actually an isomorphism from the Boolean group with
the operation + to the Boolean group with the operation < .)
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9.

10.

11.

12.

13.

14.

15.
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The distributive law

pA(g+r)=({@Ag)+(AT)

holds automatically in all Boolean algebras; it is just the distributive
law (1.8) for Boolean rings. Prove the following related law:

p'A(g+r)=(@Va+(pVr).
Conclude that the elements
(pvVe+(@vr) and  (pAg+(pAT)
are disjoint, and join to q + r.
Prove that the theory of Boolean algebras is definitionally equivalent to

the theory of the binary operation stroke, axiomatized by the following
three identities:

(plp)|(plp)=p,
(rl(gl(qgla))=rlp,
(@l @l@lr)=~UglaIp) | ((r]r)]p)

(This theorem is due to Sheffer [53].

~—

Enumerate all possible binary operations on 2 = {0, 1} (that is, enumer-
ate all mappings from 2 x 2 into 2). Identify each of these 16 operations
in terms of operations introduced in the chapter.

Show that all binary operations on 2 are definable in terms of the
operations A, V, and ’. Conclude that they are definable in terms of
the operations A and ’ alone.

(Harder.) Show that not all binary operations on 2 are definable in
terms of the operation <.

Show that all binary operations on 2 are definable in terms of stroke.
Is there another binary operation on 2 besides stroke in terms of which
the other binary operations are all definable?

A ternary operation on 2 is a mapping from 2 x 2 x 2 into 2. Such an
operation is conveniently represented by a table in which the arguments
are listed on the left, and the corresponding values on the right. For
example, the ternary operation f(p,q,r) described by the table below
maps the triples (0,1,0), (1,0,1), and (1,1,1) to 1, and maps all other
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16.

17.

18.

19.

triples to 0. It is not difficult to verify that f is definable in terms of
meet, join, and complement. In fact,
fo,q,m) =@ ANgAr" YNV (oA Ar)V(DAgAT).

Prove that every ternary operation on 2 is definable in terms of meet,
join, and complement.

el il el k=l k===l ks
el e B=l Rl R B Hen) Nenl IR
—lo|lr|ol—lol~lol=
H‘o‘»—\‘o‘o‘)—t‘o‘o‘%

Prove that every operation on 2 with n arguments is definable in terms
of meet, join, and complement, for any positive integer n. (This result
is due to Post [50].)

The form used in Exercise 15 to write the operation f in terms of meet,
join, and complement is called, in the context of logic, disjunctive nor-
mal form because the expression on the right side is a join (disjunction)
of meets of arguments and their complements. Show that f can also
be written in conjunctive normal form, that is, as a meet of joins of
arguments and their complements.

Prove that every ternary operation on 2 can be written in conjunctive
normal form.

(Harder.) Show that if a ternary Boolean operation g is defined by
9.q;r) =A@V (gAT)V(rAp),

then that operation, together with complement and one, are enough
to define Boolean algebras. Exhibit a set of axioms stated in terms

of g and complement. (This approach to Boolean algebra is due to
Grau [19].)
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Order

We continue to work with an arbitrary but fixed Boolean algebra A.
Lemma 1. pAg=p if and only if pV q = q.

Proof. If p A q=p, then pV ¢ = (pAq) V q, and the conclusion follows from
the appropriate law of absorption. The converse implication is obtained from
this one by interchanging the roles of p and ¢ and forming duals.

For sets, either one of the equations
PN@R="P and PUQ=Q

is equivalent to the inclusion P C (). This observation motivates the intro-
duction of a binary relation < in every Boolean algebra; we write

P=q or q=p

in case p A ¢ = p, or, equivalently, pV ¢ = ¢q. A convenient way of expressing
the relation p < ¢ in words is to say that p is below ¢, and that ¢ is above p,
or that ¢ dominates p.

The relation of inclusion between sets is a partial order. In other words,
the relation is reflerive in the sense that the inclusion P C P always holds;
it is antisymmetric in the sense that the inclusions P € @ and Q C P
imply P = @Q; and it is transitive in the sense that the inclusions P C Q)
and @ C R imply P C R. The next lemma says that the same thing is true
of the relation < in an arbitrary Boolean algebra.

Lemma 2. The relation < 1is a partial order.

S. Givant, P. Halmos, Introduction to Boolean Algebras, 38
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(© Springer Science+Business Media, LLC 2009
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Proof. Reflexivity follows from the idempotent law (2.16): p A p = p, and
therefore p < p. Antisymmetry follows from the commutative law (2.18):
if p < g and g < p, then

p=pAqg=qAp=q.
Transitivity follows from the associative law (2.19): if p < g and ¢ < r, then
pAGg=Tp and qgNT =4q,
and consequently

pAT=@PAQ AT =pA(gAT)=pANqg=D.

It is sound mathematical practice to re-examine every part of a structure
in the light of each new feature soon after the novelty is introduced. Here
is the result of an examination of the structure of a Boolean algebra in the
light of the properties of order.

Lemma 3. (1) 0<pandp<1.

(2) Ifp<qandr <s,thenpAr<qgAsandpVr<qVs.
(3) If p < gq, then q' < p’.

(4) p<qifand only if p—q =0, or, equivalently, p = q = 1.

The proofs of all these assertions are automatic. It is equally automatic
to discover the dual of <; according to any reasonable interpretation of the
phrase it is >. The inequalities in (2) are called the monotony laws..

If F is any subset of a partially ordered set such as our Boolean algebra A,
we can consider the set F' of all upper bounds of E and ask whether I’ has a
smallest element. In other words: an element ¢ belongs to F in case p < ¢ for
every p in E; to say that I’ has a smallest element means that there exists
an element ¢ in F' such that ¢; < ¢ for every ¢ in F'. A smallest element
in F, if it exists, is obviously unique: if ¢; and ¢o both have this property,
then q; < ¢o and ¢2 < q1, so that ¢ = g2, by antisymmetry. We shall call
the smallest upper bound of the set E (if it has one) the least upper bound,
or the supremum, of E. All these considerations have their obvious duals.
The greatest lower bound of F is also called the infimum of E.

If the set E is empty, then every element of A is vacuously an upper
bound of E (p in E implies p < ¢ for each ¢ in A), and, consequently, E
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has a supremum, namely 0. Similarly (dually), if E is empty, then F has an
infimum, namely 1.

Consider next the case of a singleton, say {p}. Since p itself is an upper
bound of this set, it follows that the set has a supremum, namely p, and,
similarly, that it has an infimum, namely p again.

The situation becomes less trivial when we pass to sets of two elements.

Lemma 4. For each p and q, the set {p,q} has the supremum pV q and the
infimum p A q.

Proof. The element pV ¢ dominates both p and ¢, by the absorption laws, so
it is one of the upper bounds of {p, ¢}. It remains to prove that p V ¢ is the
least upper bound, or, in other words, that if both p and ¢ are dominated by
some element 7, then p vV ¢ < r. This is easy; by (2) and idempotence,

pVqg<rvVvr=r.

The assertion about the infimum follows by duality.

Lemma 4 generalizes immediately to arbitrary non-empty finite sets (in-
stead of sets with only two elements). We may therefore conclude that if E
is a non-empty finite subset of A, then E has both a supremum and an infi-
mum, namely \/ E and /\ E respectively. Motivated by these facts we hereby
extend the interpretation of the symbols used for joins and meets to sets that
may be empty or infinite. If a subset E of A has a supremum, we shall denote
that supremum by \/ E regardless of the size of F, and, similarly, we shall
use A E for all infima. In this notation what we know about very small sets
can be expressed as follows:

Ve=0, Ae=1  \Vr=Ab=»

The notation used earlier for the join or meet of a finite sequence of elements is
also extendable to the infinite case. Thus if {p;} is an infinite sequence with a
supremum (properly speaking, if the range of the sequence has a supremum),
then that supremum is denoted by \/;2, p;. If, more generally, {p;} is an
arbitrary family with a supremum, indexed by the elements 7 of a set I, the
supremum is denoted by \/,; p;, or, in case no confusion is possible, simply
by \/z pi-

The perspective of Boolean algebras as partially ordered sets goes back
to Jevons [31] and suggests a natural generalization. A lattice is a partially
ordered set in which, for any elements p and ¢, the set {p,q} has both a
supremum and an infimum. Two binary operations called join and meet
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may be introduced into a lattice as follows: the join of elements p and g,
written p V ¢, is defined to be the supremum of the set {p, ¢}, and the meet
of p and ¢, written p A ¢, is the infimum of {p, ¢}. The two operations satisfy
the idempotent laws (2.16), the commutative laws (2.18), the associative
laws (2.19), and the absorption laws (4.1). Consequently, the analogue of
Lemma 1 also holds for lattices, and one can easily show that p < ¢ if and
only if p A ¢ = p, or, equivalently, if and only if p VvV ¢ = p.

There is an alternative approach to lattices: they may be defined as al-
gebraic structures consisting of a non-empty set and two binary operations
— denoted by V and A — that satisfy the idempotent, commutative, as-
sociative, and absorption laws. A binary relation < may then be defined
in exactly the same way as it is defined for Boolean algebras, and the ana-
logues of Lemmas 2 and 4 may be proved. The situation may be summarized
by saying that the two conceptions of a lattice are definitionally equivalent.
Notice that the axioms for lattices in this alternative approach come in dual
pairs. Consequently, there is a principle of duality for lattices that is the
exact analogue of the principle of duality for Boolean algebras (Chapter 4).

A lattice may or may not have a smallest or a greatest element. The
smallest element, if it exists, is called the zero of the lattice and is usually
denoted by 0; the largest element, if it exists, is called the one, or the unit,
of the lattice and is denoted by 1. It is easy to check that the zero and unit
of a lattice (if they exist) satisfy the identities in (2.12) and (2.13). The
distributive laws in (2.20) may fail in a lattice; however, if one of them does
hold, then so does the other, and the lattice is said to be distributive.

A lattice in which every subset has an infimum and a supremum is said
to be complete. The infimum and supremum of a set E, if they exist, are
denoted by A E and \/ F respectively. A complete lattice automatically has
a least and a greatest element, namely, the infimum and the supremum of
the set of all elements in the lattice.

Every Boolean algebra, under the operations of join and meet, is a lattice,
and in fact a distributive lattice. The converse is not necessarily true. For
instance, the set of natural numbers under the standard ordering relation is
a distributive lattice, but it is not a Boolean algebra.

The reason for mentioning lattices in this book is that they naturally
arise in the study of Boolean algebras. We shall encounter some important
examples later.
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Exercises

L

. Prove that a Boolean algebra is degenerate if and only if 1 = 0.

Prove Lemma 3.
Prove the converse to part (3) of Lemma 3: if ¢’ < p’, then p <g¢.

Prove that p > ¢ is the dual of p < q.

5. If p<qand p # 0, prove that ¢ — p # q.

10.

11.

12.

13.

. The concept of divisibility makes sense in every ring: p is divisible by ¢

in case p = ¢ - r for some r. Show that in a Boolean ring an element p
is divisible by ¢ if and only if p < q.

. True or false: if p < ¢ and r < s, then

p+r<qg+s and per<qgss.

. Prove that p —r < (p — q) V (¢ — r), and equality holds if r < ¢ < p.

. Derive the following inequalities.

(&) p+r<(p+q)V(g+r).
(b) (pVq)+(rvs)<(p+r)V(g+s).

Derive the following inequalities.
(@) (p=a)N(g=r)<p=r.
(b) p=r)A(g=5) < (pAqg)= (rAs)
Derive the following inequalities.
(a) (pe g N(ger)<per.
(b) per)Alges) <(pAg < (rAs).

Give a precise definition of the notion of the infimum of a set F in a
Boolean algebra.

Prove that in every lattice, conceived as a partially ordered set, the de-
fined operations of join and meet satisfy the idempotent, commutative,
associative, and absorption laws. Use these laws to show that Lemma 1
and part (2) of Lemma 3 hold for lattices and that p < ¢ if and only if

pPAq=Dp.
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14.

15.

16.

17.

18.

Suppose lattices are conceived as algebraic structures with two binary
operations satisfying the idempotent, commutative, associative, and
absorption laws. Prove that the binary relation < defined by

p<q if and only if PAG=D

is a partial order and the monotony laws (part (2) of Lemma 3) hold.
Show further that Lemma 4 remains true. (Exercises 13 and 14 say,
together, that the conceptions of a lattice as a partially ordered set,
and as a structure with two binary operations satisfying the idempo-
tent, commutative, associative, and absorption laws, are definitionally
equivalent.)

Show that in a lattice with zero and one, the laws (2.12) and (2.13) are
valid.

Show, conversely, that if a lattice has elements 0 and 1 satisfying the
laws in (2.12), or else the laws in (2.13), then 0 is the least element,
and 1 is the greatest element, in the lattice. (Exercises 15 and 16 say,
together, that the two conceptions of a lattice with zero and one —
the first as a partially ordered set with a greatest and a least element,
the second as a structure with two binary operations satisfying the
idempotent, commutative, associative, absorption, and either (2.12) or
the identity laws — are definitionally equivalent.)

Prove that a part of each of the distributive laws, namely the inequal-
ities

(pAgV(pAT)<pA(gVr) and (pVag) A(pVr)>pV(gAr),

holds in every lattice.
p\q/ r
0

The preceding diagram determines a five-element lattice in which

1
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19.

20.

21.

22.

23.
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pVgq=pVr=qVr=1 and pAg=pAr=qgAr=0.
Show that both distributive laws fail in this lattice.

Prove that in every lattice the validity of one of the two distributive
laws

pA(qVr)={@AqgV(pAr) and pV(gAT)= (Ve A(VT)

implies the validity of the other.

In a lattice with zero and one, a complement of an element p is an
element ¢ such that

pAqg=0 and pVqg=1.

Prove that in a distributive lattice with zero and one, a complement of
an element, if it exists, is unique.

Show that any linearly ordered set with a least and a greatest element,
and with more than two elements, is an example of a distributive lattice
with zero and one that is not a Boolean algebra.

A lattice with zero and one is said to be complemented if every element
has a complement (see Exercise 20). Interpret and prove the assertion
that complemented distributive lattices are the same thing as Boolean
algebras.

Prove that a lattice in which every set of elements has a least upper
bound is complete.



Chapter 8

Infinite Operations

An infinite subset of a Boolean algebra may fail to have a supremum. For
example, let A be the finite—cofinite algebra of integers, and consider the set E
of singletons of even integers. If P is an upper bound for E in A, then P
is infinite, and therefore cofinite. The set obtained from P by removing a
single odd integer is a proper subset that is still an upper bound for F, so P
cannot be the least upper bound of F.

A Boolean algebra with the property that every subset of it has both a
supremum and an infimum is called a complete (Boolean) algebra. Similarly,
a field of sets with the property that both the union and the intersection
of every class of sets in the field are again in the field is called a complete
field of sets. The simplest example of a complete field of sets (and hence of a
complete algebra) is the field of all subsets of a set.

Many laws about union, intersection, and complement have infinite ver-
sions. For example,

(1) (Nr) =U~r. (Ur) =N~
and

@ po(Ue)=Urne). Pu(Ne)=NEua).

(2

)

are infinite versions of the De Morgan laws (2.7) and distributive laws (2.10)
for sets. The formulations of analogous laws for arbitrary Boolean algebras
must always come with some sort of proviso, since the suprema and infima
of infinite sets of elements may not exist. Here are the infinite versions of the
De Morgan laws.

S. Givant, P. Halmos, Introduction to Boolean Algebras, 45
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Lemma 1. If {p;} is a family of elements in a Boolean algebra, then
(/\Pi)IZ\/p{ and (\/Pz'>/=/\17i/-

The equations are to be interpreted in the sense that if either term in either
equation exists, then so does the other term of that equation, and the two
terms are equal.

Proof. To prove the second equation, suppose p = \/;p;. Since p; < p for
every i, it follows that p’ < p/ for every i, by Lemma 7.3(3). In other
words, p’ is a lower bound for the family {p/}. To prove that it is the
greatest lower bound, assume ¢ < p/ for every i. The assumption implies that
p; < q' for every i, and hence, from the definition of supremum, that p < ¢’.
Consequently, ¢ < p’. A dual argument justifies the passage from the left
side of the first equation to the right. To justify the reverse passages in both
equations, apply the results already proved to the families of complements.

Corollary 1. If every subset of a Boolean algebra has a supremum (or else
if every subset has an infimum), then that algebra is complete.

Proof. Suppose every subset of a Boolean algebra A has a supremum. To
show that every subset also has an infimum, consider an arbitrary family
of elements {p;} in A. The supremum ¢ of the family {p/} exists in A, by
assumption. Write p = ¢’. Then

p=q = (\/p{)'= N\p! = \pi-

The third equality uses Lemma 1, and the fourth equality uses the double
complement law. Thus, p is the infimum of the family {p;}.

It will usually not be sufficient to know merely that certain infinite su-
prema exist; the algebraic properties of those suprema (such as commutativ-
ity, associativity, and distributivity) are also needed.

It is almost meaningless to speak of infinite commutative laws. An infinite
supremum is something associated with a set of elements, and, by definition,
it is independent of any possible ordering of that set.

A reasonable verbal formulation of an infinite associative law might go
like this. Form each of several suprema and then form their supremum; the
result should be equal to the supremum of all the elements that originally
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contributed to each separate supremum. It is worthwhile to state and prove
this in a more easily quotable form.

Lemma 2. If {I;} is a family of sets with union I, and if p;, for each i in I,
s an element of a Boolean algebra, then

\/(\/pz) :\/pi-

Jj i€l el
The equation is to be interpreted in the sense that if the suprema on the left
side exist, then so does the supremum on the right, and the two are equal.

Proof. Write ¢; = \/z‘elj p; and g = \/j g;. We are to prove that ¢ is an upper
bound of the family {p; : i € I}, and that, in fact, it is the least upper bound.
Since each i in I belongs to at least one [}, it follows that for each ¢ there is
a j with p; < g;; since, moreover, ¢; < ¢, it follows that ¢ is indeed an upper
bound. Suppose now that p; < r for every 7. Since, in particular, p; < r for
every ¢ in [;, it follows from the definition of supremum that ¢; < r. Since
this is true for every j, we may conclude, similarly, that ¢ < r, and this
completes the proof.

The preceding comments on infinite commutativity and associativity were
made for suprema; it should go without saying that the corresponding (dual)
comments for infima are just as true. The most interesting infinite laws are
the ones in which suprema and infima occur simultaneously. These are the
distributive laws, to which we now turn. They too come in dual pairs; we
shall take advantage of the principle of duality and restrict our attention
to only one member of each such pair. We begin with the simplest infinite
distributive law.

Lemma 3. If p is an element and {q;} a family of elements in a Boolean

algebra, then
pA\ @ =\pAa)

1
The equation is to be interpreted in the sense that if the supremum on the

left side exists, then so does the one on the right, and the two are equal.

Proof. Write ¢ = \/; ¢;. The meet p A ¢ is clearly an upper bound for the
family {p A ¢;}, since

PAG <pAg
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for every i, by monotony. To show that p A ¢ is the least upper bound, it
must be proved that if p A ¢; < r for every i, then p A ¢ < r. Observe that

G =1Nq=@Vp' ) Na;=@ANa)V (' Na) <7V
the last step uses monotony. Hence, by the definition of a supremum,
g<rvp'

Form the meet of both sides of this inequality with p, and apply the distribu-
tive, complement, identity, and monotony laws, to get

pAG<pA(rVp )=@AT)VAD ) =@AT)VO=pAT<T.

Corollary 2. If {p;} and {q;} are families of elements in a Boolean algebra,

then
(\/m) A (\/%‘) =\ (i rg)).
( J 2]
The equation is to be interpreted in the sense that if the suprema on the left

side exist, then so does the supremum on the right, and the two are equal.

To motivate the most restrictive distributive law, consider a long infimum
of long suprema, such as

(P11 VP12V p13a V) A(par Vpaa Vpas Vo)A
(P31 Vp3saVpss Vo) Avee .

Algebraic experience suggests that this ought to be equal to a very long
supremum, each of whose terms is a long infimum like p1o A pag A p31 A - -.
The way to get all possible infima of this kind is to pick one term from each
original supremum in all possible ways. The picking is done by a function
that associates with each value of the first index some value of the second
index; the “very long” supremum has one term corresponding to each such
function.

We are now ready for a formal definition. Suppose that I and J are two
index sets and that p(i, j) is an element of a Boolean algebra A whenever i
isin I and j in J. Let J! be the set of all functions from I to J. We say
that the family {p(i,7)} satisfies the complete distributive law in case

3) A Vi) =\ Apta@).

icl jeJ acJ! i€l
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The assertion of the equation is intended here to imply, in particular, the
existence of the suprema and infima that occur in it. The algebra A is
called completely distributive if it has the following property: whenever all of
the suprema \/;c; p(i,7) and infima A, p(i,a(i)) exist for any given fam-
ily {p(,7)}, then the existence of the left side of (3) implies that the right
side also exists and that the two are equal.

There is a special case of (3) that is often quite useful. When the index
sets I and J are finite, the suprema and infima that occur in the equation
always exist; in this case, (3) holds without any additional hypotheses, by
the distributive laws (2.20).

The field of all subsets of a set is always completely distributive, and so is
every complete field of sets. However, a complete Boolean algebra need not
be completely distributive. We shall encounter an example in a moment.

Exercises
1. Prove (1) and (2).

2. Suppose that {/;} is a family of sets with union I, and that P;, for
each 7 in I, is a subset of a fixed set X. Show that

J(ur)-ur

j o iel; iel

3. Suppose that I and J are two index sets and that P(7,j) is a subset
of a fixed set X for each i in I and j in J. Let J! be the set of all
functions from I to J. Prove that

N UPGH=U PG a@)

i€l jedJ acJl i€l

and

U NreH= ) UPGaG).

i€l jeJ acJl i€l

4. Write a complete proof of Lemma 1, supplying all missing details.

5. Prove that if every subset of a Boolean algebra has an infimum, then
the algebra is complete.
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6.

10.

11.

12.

13.

14.

15.

16.

17.

18.
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There is another possible interpretation of the equation in Lemma 2:
if the suprema \/,.;p; and \/ielj p;, for each j, exist, then the su-

premum \/; (Vie I pi) exists and

\/ ( \/ pz‘) = \/pz‘-

j el icl
Prove that under this interpretation of the equation the lemma remains
true of all Boolean algebras.

. Discuss another possible interpretation of the equation in Lemma 3

besides the one stated there.

. Formulate and prove the dual of Lemma 2.

. Formulate and prove the dual of Exercise 6.

Formulate and prove the dual of Lemma 3.
Prove Corollary 2.
Formulate and prove the dual of Corollary 2.

Formulate and prove a general version of the finite distributive law for
meet over join.

Is a complete field of subsets of a set X the same as the field of all
subsets of X7

(Harder.) Give an example of a field of sets that happens to be a
complete Boolean algebra but not a complete field of sets.

If a Boolean algebra is such that every subset of it has either a su-
premum or an infimum, is it necessarily complete?

Interpret and prove the equation

pv\/ pi=\ Vp)

%

Interpret and prove the equation

(Vi) (V) =V v
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19.

20.

21.

22.

23.

24.

25.

Interpret and prove the following assertion: if for every ¢ there is a j

such that p; < ¢;, then
VsV
( J

Interpret and prove the following assertion: if I C J then

\/piS\/pz‘-

iel icJ

Let {p;} be a (finite or infinite) sequence of elements in a Boolean
algebra (indexed by positive integers), and write ¢; = p1 V --- V p;.

Prove that
Vai=\pi
j i

The equation is to be interpreted in the sense that if either of the two
suprema exists, then both suprema exist, and the two are equal.

Formulate and prove the dual of Exercise 21.

Suppose a sequence {p,} of elements in a Boolean algebra has a su-
premum. Prove that the sequence {g,} defined by
Gn =Pn— (P1V P2V VPp1),

for n > 1, consists of mutually disjoint elements and has the same
supremum as {p,}. (Notice that ¢; = p1, since the supremum of the
empty sequence is 0.)

Suppose a sequence {py} of elements in a Boolean algebra is increasing
(in the sense that p,, < p,41 for all n) and has a supremum. Prove that
the sequence {¢,} defined by

qu=p1, and  ¢n=Pp —Pp-1
for n > 2, consists of mutually disjoint elements and has the same

supremum as {pp }.

Interpret and prove the following laws:

(a) q_/\ipi :\/i(q_pi)a
(b) ¢ =V, pi = Ni(qa— i),
(©) (Vipi) —a= Vi —a),
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26.

27.

28.

29.
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(d) (A;pi) —a= Nilpi — ).

Prove that (\/Z pi) + ( Vi, qi) < V,(pi+@). The inequality is to be inter-
preted in the sense that if all three suprema exist, then the inequality
holds.

(Harder.) Let p1, p2, ps, ..., be a sequence of elements in a Boolean
algebra with the property that p; > ps > p3 > - -+, and write

n = Pn — Pn+1 = Pn /\p;L_H

for n =1,2,3,.... Prove that if the infimum of the family {p,} exists
— call it gp — then the elements qq, q1, ¢2,. . . are mutually disjoint and
have p; as their supremum. (See the diagram.)

9=n -7 —7

R4S

6

Prove that the interval algebra of the real numbers is not a complete
field of sets. In fact, show that there is a family of elements in the alge-
bra that possesses an infimum, but that infimum is not the intersection
of the family.

(Harder.) Prove that the interval algebra of the real numbers is not a
complete Boolean algebra.



Chapter 9

Topology

Valuable examples of Boolean algebras, and in particular of complete Boolean
algebras, can be constructed using topological spaces. The purpose of this
chapter is to go over some of the basic topological notions that will be needed
in the construction of these algebras.

A topology is a very general kind of geometry that is suitable for studying
continuous functions. The basic notion is that of an open set, an abstrac-
tion and generalization of the notion of an open interval of real numbers.
A topological space is a set X, together with a class 7 of subsets of X that
satisfies three conditions: first, @ and X are in 7; second, 7 is closed under
finite intersections in the sense that the intersection of any finite family of
sets from 7 is again in 7; third, 7 is closed under arbitrary unions in the
sense that the union of an arbitrary family of sets from 7 is again in 7. The
elements of X are called points, and the members of 7 are called open sets.
An open set containing a point x is called a neighborhood of x. The set X is
often called the space, and the class 7 the topology of the space. The three
conditions on 7 say that @ and X are open sets, that the intersection of
finitely many open sets is open, and that the union of an arbitrary family of
open sets is open.

The classical example of a topological space is the n-dimensional Fu-
clidean space R™. Its points are the n-termed sequences of real numbers.
The topology of the space is defined in terms of the notion of distance. The
distance between two points

x=(r1,...,2) and Y= (Y1,---,Yn)

is the length of the line segment between them:

S. Givant, P. Halmos, Introduction to Boolean Algebras, 53
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d(z,y) = V(21— y1)? + (@2 — 12)2 + - + (20 — yn)?

For a given positive real number € and a point x, the (open) ball with radius e
and center x is defined to be the set of all points whose distance from x is
less than e:
{y e R" : d(z,y) < €}.

In two-dimensional Euclidean space, this is just the interior of the circle of
radius € centered at z, and in three-dimensional Euclidean space it is the
interior of the sphere of radius € centered at z. A subset P of R" is defined
to be open if for every point x in P, some open ball centered at x is included
in P.

The empty set vacuously satisfies the condition for being open. The whole
space R" satisfies the condition for being open because it includes every open
ball. It is easy to check that the union of an arbitrary family of open sets in R"
is open, as is the intersection of a finite family of open sets. For the proof,
consider such a family {P;} of open sets. If a point z is in the union of the
family, then z is in one of the sets P;, by the definition of union. Consequently,
some open ball centered at x is included in P; (because P; is open) and that
same open ball must be included in the union of the family {F;}. It follows
that this union is an open set. If the family is finite, and if a point x is in
the intersection of the family, then = belongs to each set P;. Consequently,
for each index ¢ there is a positive real number ¢; such that the open ball
of radius ¢; centered at x is included in P;. Let ¢ be the minimum of the
(finitely many) radii ¢;. The open ball of radius e centered at z is included in
each set P, so it is included in the intersection of the family {F;}. It follows
that this intersection is an open set. Conclusion: the class of open subsets
of R™ is a topology on R™.

In the special case of dimension one, the points of the Euclidean space
are identified with real numbers. The open balls are the open intervals

(—o0,a) ={z e R:z < a}, (a,00) ={z € R:z > a},
(a,b) ={reR:a<z<b}, (—00,00)=R,

where a and b are real numbers with a < b. It is not difficult to see that a
set is open in this space if and only if it can be written as a countable union
of mutually disjoint open intervals. Examples of open sets in R? are also
easy to manufacture: the entire space with finitely many points removed is
an example of an open set, and so is the set obtained from R? by removing
any straight line (the set is the union of two open half-planes).
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To generalize the notion of a Euclidean space, we must introduce the
notion of a metric. A metric on a set X is a real-valued function d of two
arguments such that for all x, y, and z in X,

d(xz,y) > 0, and d(x,y) = 0 if and only if z = y (strict positivity),

d(z,y) = d(y,z) (symmetry),
d(z,z) < d(x,y) + d(y, z) (triangle inequality).

A metric space is a set X together with a metric d on X. (The prototypical
examples are the Euclidean spaces R™ with their distance functions.) For
each positive real number €, and each point x in X, the open ball of radius
centered at x is defined to be the set of points

{y € X :d(z,y) < €}.

A subset P of X is defined to be open if for every point  in P, some open ball
centered at x is included in P. The resulting class of open sets constitutes
a topology called the metric topology (induced by d) on X. The proof that
the conditions for being a topology really are satisfied by this class of sets is
virtually the same as in the case of Euclidean spaces.

Some types of topologies can be defined on arbitrary sets X. One example
is the discrete topology: every subset of X is declared to be open. Under this
topology, X is called a discrete space. Another example is the indiscrete
or trivial topology: the only sets declared to be open are, by definition, @
and X. A third example is the cofinite topology: a subset of X is defined
to be open if it is empty or the complement of a finite set. (It is a simple
matter to check that finite intersections and arbitrary unions of cofinite sets
are cofinite.) The discrete and cofinite topologies on X coincide when X is
finite, but they are obviously different when X is infinite.

A subset Y of a topological space X may be endowed with the inherited
topology by declaring a subset P of Y to be open ife it can be written in the
form

P=YNAQ
for some open subset Q) of X. It is easy to check that under this definition the
empty set and Y are both open, and that finite intersections and arbitrary
unions of open sets are open. (The proof that arbitrary unions of open sets
are open uses the infinite distributive law (8.2).) The resulting space Y is
said to be a subspace of X.
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For a concrete example, let X be the space of real numbers and Y the
closed interval [0,1]. The open intervals of Y, under the inherited topology,
are the subintervals

[0,a), (a,b), (a,1], and [0, 1]

with 0 < a < b < 1. The open subsets of Y turn out to be the countable
unions of pairwise disjoint open intervals. Notice that some of these sets are
not open in the topology of X.

The dual of the notion of an open set is that of a closed set. A set of
points in a topological space is said to be closed if it is the complement
of an open set. The intersection of an arbitrary family of closed sets is
closed. Indeed, if {Q;} is a family of closed sets, then the complements @)/
are open, by definition, and therefore the union of the family of complements
is open. It follows that the complement of this union is a closed set; since
that complement is just the intersection of the family {Q;},

OQz‘ = (L)Qi’)lv

the intersection of the family is closed. An analogous argument shows that
a finite union of closed sets is closed. It is an elementary theorem of analysis
that a subset P of a metric space (but not a subset of an arbitrary topological
space) is closed just in case the limit of a convergent sequence of points from P
always belongs to P. More precisely, if {x, } is an infinite sequence of points
in P that converges to a limit x in the metric space, then x belongs to P.

As in the case of open sets, it is helpful to gain a sense of what closed
sets may look like. In R, the intervals

(—o0,a) ={r eR:x <a}, [a,00) ={z e R:x > a},
[a,b) ={z e R:a <z <b}, (—o00,0) =R

are closed, as is any finite union of them (where a and b are real numbers
with @ < b). In particular, the sets [a,a] — which are just the singletons {a}
— are closed. Consequently, any finite set of real numbers is closed (every
finite set is the union of a finite class of singletons). The set of positive
integers is closed, but the set of the reciprocals of positive integers is not
closed; it becomes closed when the integer 0 is adjoined. In R?, the line
segment {(x,0) : 0 < z < 1} is neither open nor closed, but the segment
{(2,0) : 0 <z < 1} is closed. Every subset of a discrete space is of course
closed. A subset of a space with the cofinite topology is closed if and only if
it is finite or the whole space.
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Sets that are both open and closed are called clopen. The whole space
and the empty set are always clopen. Every subset of a discrete space is
clopen.

In what follows, let P be an arbitrary subset of a topological space. The
interior of P is defined to be the union of the open sets that are included
in P. This interior is clearly an open set, and in fact it is the largest open
set that is included in P. We shall denote it by P°. Examples: in R, the
interior of the closed interval [0, 1] is the open interval (0,1) and the interior
of the set of rational numbers is the empty set; in R?, the interior of the unit
square is the unit square with its perimeter removed, while the interior of the
line segment {(x,0) : 0 < z < 1} is the empty set. In a discrete space every
subset coincides with its own interior. In a space with the cofinite topology,
the interior of a cofinite subset is itself, and the interior of every other subset
is empty.

The dual of the notion of an interior is that of a closure: the closure
of P is defined to be the intersection of all closed sets that include P. This
closure is of course a closed set, and in fact it is the smallest closed set
that includes P. It is denoted by P~ (not P) for typographic reasons. The
closure of P can be characterized as the set of points x such that every
neighborhood of x has a non-empty intersection with P. For the proof in one
direction, suppose some neighborhood of z, say @, is disjoint from P. The
complement @’ is a closed set that includes P, so it belongs to the family
of closed sets whose intersection is P~. Since the point x is not in Q’, it
cannot belong to this intersection, and therefore it cannot belong to P~.
To establish the reverse implication, suppose every neighborhood of x has
a non-empty intersection P. If @) is a closed set that includes P, then Q'
is an open set that is disjoint from P, so @’ cannot contain z. It follows
that = is in Q. In other words, x belongs to every closed set that includes P;
therefore £ must belong to the intersection of all such closed sets, and this
intersection is just P~. The closure of set P in a metric space (but not in a
arbitrary topological space) can be characterized as the set of all limit points
of convergent infinite sequences of points from P.

Here are some examples of closures. In R, the closure of the set of rational
points is the entire space, and the closure of the set

P ={1/n:nis a positive integer}

is the set PU{0}. In R2, the closure of an open disk is the open disk together
with its perimeter, and the closure of the set of points

Q={(x,y):y=sin(l/z) and 0 < z < 1}
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is the union of () with the set

{(0,9): —1<y <1}

In a discrete space, every subset is its own closure. In a space with the
cofinite topology, the closure of a finite subset is itself, and the closure of an
infinite subset is the whole space.

It is not difficult to see that the closure of a set P is the complement of
the interior of the complement of P. In other words,

(1) p-=p".

Indeed, P’° is an open set that is included in P’, by the definition of the
interior of a set. Form the complements of both sets to conclude that P”
— which is just P — is included in the closed set P’®’. Since P~ is the
smallest closed set that includes P, it follows that P~ is a subset of P’%.
To establish the reverse inclusion, consider any closed set () that includes P.
The complement @’ is an open set that is included in P’. Since P’° is the
largest open set that is included in P’, it follows that @’ is included in P’°.
Form the complements of both sets to conclude that Q" — which is just Q
— includes P’®’. This argument shows that every closed set that includes P
also includes P’°’. In particular, the closure P~ includes P’°’.

Replace P by P’ in (1), and form the complement of both sides to con-
clude that the interior of P is equal to the complement of the closure of the
complement of P, that is,

(2) P =p'.

We shall need two properties about the closure operator. First, it pre-
serves inclusion:

(3) PCQ implies P CQ.

This is immediately evident from the definition of closure. Second, it pre-
serves union:

(4) (PUQ) =P UQ".

The inclusion from right to left follows from (3): the sets P and @ are both
included in P U @, so their closures are included in (P U Q)~. The reverse
inclusion follows from the simple observation that P~ U Q™ is a closed set

and it includes PUQ, so it must include the smallest closed set that includes
PUQ, namely (PUQ)".
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A set P is said to be dense if its closure is the entire space. This means
that every non-empty open set contains points of P. More generally, a set P
is said to be dense in an open set @ if the closure of P includes ). For
instance, the set of points in R? with rational coordinates is dense, while the
set of points with positive rational coordinates is dense in the first quadrant
of R?, but not in all of R%. In a discrete space, no proper subset of the space
is dense. In an infinite space with cofinite topology, every infinite subset of
the space is dense.

The opposite of being dense is being nowhere dense. A set P is defined to
be nowhere dense if it is not dense in any non-empty open set. This means
that the interior of the closure of P is empty, or what amounts to the same
thing, no non-empty open set is included in the closure of P. To say that no
non-empty open set is included in P~ is equivalent to saying that every non-
empty open set has a non-empty intersection with P~/. Thus, P is nowhere
dense if and only if P~ is dense.

Examples of nowhere dense sets are not hard to manufacture. Every finite
set of points is nowhere dense in R”. The integers are nowhere dense in R,
and any straight line is nowhere dense in R?. In a discrete space only the
empty set is nowhere dense. In an infinite space with the cofinite topology,
a set is nowhere dense just in case it is finite.

A finite union of nowhere dense sets is again nowhere dense, but a count-
able union of such sets may in fact be dense. For example, the set of points
with rational coordinates is dense in R™, and yet it is a countable union of
nowhere dense sets, namely the singletons of points with rational coordinates.
A set is said to be meager if it is the countable union of nowhere dense sets.
(In classically clumsy nomenclature, meager sets are also called sets of the
first category.) An important result in analysis known as the Baire category
theorem says that the interior of a meager set of points in R" is always empty.
(See Theorem 28 for one version of this theorem.) In a discrete space only
the empty set is meager. In an infinite space with the cofinite topology, a set
is meager just in case it is countable. In particular, if the space is countably
infinite, then every subset is meager.

A point z is a boundary point of a set P if every neighborhood of x
contains points of P and points of P’. In other words, z is a boundary point
of P just in case it belongs to the closure of both P and P’. The boundary
of P is the set of its boundary points, that is to say, it is the set P~ N P’

The boundary of a set is always closed, because it is the intersection of
two closed sets. In a metric space (but not in an arbitrary topological space),
a point z is in the boundary of a set P just in case there is a sequence of points
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in P that converges to x and a sequence of points in P’ that converges to x.
If a set P is open, then its complement P’ is closed, and therefore P'~ = P’;
in this case, the boundary of P is just the set-theoretic difference P~ — P.

Here are some examples. The boundary of an open ball in R? of radius e
and center x is the set of points whose distance from z is exactly €. The
boundary of the set of points

P ={(1/n,1/n) : n is a positive integer}

in R? is the set P U {(0,0)}. More generally, the boundary of any nowhere
dense set P in a topological space is just the closure P~. Indeed, in this
case the set P~ is dense; since P~' C P’, the set P’ must also be dense, so
that P’~ is the whole space, and therefore P~ N P~ = P~. In a discrete
space every set of points has an empty boundary. In an infinite space with
the cofinite topology, the boundary of a finite set is itself, the boundary of
a cofinite set is its complement, and the boundary of an infinite set with an
infinite complement is the whole space.

The closure of a set P ought to be, and is, the union of P with its
boundary. To prove this assertion, write Q = P~ N P~/ for the boundary.
Obviously, P and @) are both included in P, and therefore so is P U Q. To
establish the reverse inclusion, consider a point z in P~. If x is in P, then
certainly z is in the union P U Q. If z is not in P, then it is in P’. In this
case, every neighborhood of x contains a point in P’, namely z, and also a
point in P, since x is in the closure of P. It follows that = belongs to the
boundary @, by definition, and therefore it belongs to P U Q.

An open set is said to be regular if it coincides with the interior of its
own closure. In other words, P is regular if and only if

p=p'

by (2). It is convenient, in this connection, to write P+ = P~/; in these
terms, P is regular if and only if

p=ptt

(where P11 denotes (P+)%). Every open ball in R” is regular. So is the
open unit square in R2.

To construct an example of an open set that is not regular, start with
a non-empty, nowhere dense set P in a topological space X, and form P-=.
Certainly P is open, for it is the complement of a closed set. Since P~
is not empty, its complement Pt cannot be the whole space X. To prove
that P+ is not regular, it therefore suffices to show that
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(5) (PHyH = X.

The assumption that P is nowhere dense implies that the complement of its
closure, which is just the set Pt is dense. Consequently, the closure of P+
is X, and this directly implies (5):

(PJ_)J_J_ — (PJ_)f/f/ — (Pj_f)/f/ — X/f/ — @7/ — @/ - X.

This example reveals the intuition behind regular open sets: they are the
open sets without “cracks”. Concrete examples of open sets that are not
regular can be obtained by taking for P in the preceding construction any
finite set of points or any straight line in R™ (n > 2); the closure P~ then
coincides with P, so that Pt is the space R? with finitely many points, or
with a straight line, removed. In a discrete space, every set of points is a
regular open set. In an infinite space with the cofinite topology, there are
only two regular open sets: the empty set and the whole space.

Note incidentally that a set P is open (nothing is said about regularity
here) if and only if it has the form Q* for some set Q. Indeed, if P = Q*,
then P is the complement of the closed set (7, and so it must be open.
Conversely, if P is open, and if @) is the complement of P, then @ is closed
and therefore

QJ_:Qfle/:PI/:P'

Exercises

1. Prove that a subset P of a topological space is open just in case every
point in P belongs to an open set that is included in P.

2. Prove, using the definition of an open set in the space R", that if finitely
many points are removed from R, the resulting set is open.

3. Prove, using the definition of an open set in the space R", that if all
the points on some straight line are removed from R"”, the resulting set
is open.

4. Show that in a topological space, a finite union of closed sets is always
closed.

5. Prove that the class of clopen sets in a topological space is a field of
sets.
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10.

11.

12.

13.

14.

15.
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. Show that the inherited topology on a subset Y of a topological space X

is in fact a topology. In other words, show that the class of sets of the
form Y N U, where U ranges over the open subsets of X, satisfies the
three defining conditions for a topology. Show further that a subset P
of Y is closed in the inherited topology if and only if there is a closed
subset @ of X such that P =Y NQ.

. Suppose Y is an open subset of a topological space X, and P an arbi-

trary subset of Y. Prove that P is open in the inherited topology on Y
(Exercise 6) just in case it is open in X.

. Formulate and prove a version of Exercise 7 for closed sets.

. Suppose Y is a subspace of a topological space X. Show that if P is

a subset of Y, then the closure of P in Y is equal to the intersection
with Y of the closure of P in X.

(Harder.) Show that the distance function defined on R" satisfies the
three conditions for being a metric.

Show that the class of open sets in a metric space satisfies the conditions
for being a topology.

Show that a subset of a metric space is open if and only if it is a union
of open balls.

Let P and @Q be subsets of a topological space. Prove the following
assertions.

(a) If P C @, then P° C Q°.
(b) (PNQY = PN Q-
(©) (PUQ) = PN Q"

(d) PNnQ™ C(PNQ)" whenever P is open.
() PNQ™ = (PNQ)” whenever P is clopen.
Give a direct proof of equation (2), without using (1).

If P and @ are open sets, is the equation
(PNQ)” =P NQ~

true?
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16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.
28.

29.

30.

(Harder.) If P and @ are open sets, is the equation
(PN " =F nNQ)°

true?
Prove that every subset of a discrete space has an empty boundary.

In an infinite space with the cofinite topology, prove that the boundary
of a finite set is the set itself, the boundary of a cofinite set is the
complement of the set, and the boundary of an infinite set with an
infinite complement is the whole space.

Prove that a set of points and its complement always have the same
boundary.

Prove that the boundary of a nowhere dense set is just the closure of
the set.

Prove that the boundary of the union of two sets of points is included
in the union of the boundaries of the two sets.

Prove that the complement of the boundary of an open set P is equal
to PU P+,

Prove that in a topological space, the class of sets with countable
boundaries is a field of sets.

Prove that a finite union of nowhere dense sets is nowhere dense.
Prove that a subset of a nowhere dense set is nowhere dense.

Prove that in a topological space, the class of sets with nowhere dense
boundaries is a field of sets. (This example of a field of sets is due to
Stone [67].)

Prove that a subset of a meager set is meager.
Prove that the union of a countable sequence of meager sets is meager.

Prove that in a topological space, the sets with meager boundaries form
a field.

Prove that every clopen set in a topological space is a regular open set.
Conclude that every subset of a discrete space is a regular open set.
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31.

32.

33.

34.

35.

36.
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Prove that in an infinite space with the cofinite topology only the empty
set and the whole space are regular open sets.

Let X be a set of uncountable cardinality. Define a subset of X to be
open if it is empty or the complement of a countable set.

(a) Prove that the class of open sets so defined satisfies the three
conditions for being a topology on X. (It is called the cocountable

topology.)
Describe the closed sets.
Describe the interior of each set.

Describe the closure of each set.

Describe the meager sets.

)
)
)
e) Describe the nowhere dense sets.
)
) Describe the boundary of each set.
)

Describe the regular open sets.

A linear order (also called a total order) on a set X is a partial order <
on X (Chapter 7) such that any two elements x and y in X are com-
parable: either z < y or y < x. (The set X itself is said to be linearly
ordered or totally ordered.) Write x < y to mean that z < y and x # y.

Given a linear order < on a set X, define the open intervals of X to
be the subsets

(—o0,a) ={r € X :x <a}, (a,00) ={z € X : 2> a},
(a,b) ={reX:a<zx<b}, (—o0,00)=2X,
for a,bin X, and define the open sets of X to be the unions of arbitrary

families of open intervals. Prove that the class of sets so defined is a
topology for X. (It is called the order topology on X.)

Prove that a subset of the (Euclidean) space of real numbers is open if
and only if it can be written as a countable union of mutually disjoint
open intervals.

(Harder.) Prove that there are 280 open sets in the space of real num-
bers.

Let @ be an open ball in R™ and P a non-empty, nowhere dense subset
of Q. Prove that the set Q N P+ = Q — P~ is open, but not regular.
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37.

38.

39.

40.

Can every open set in R” be written as the union of a family of regular
open sets?

Can every open set in an arbitrary topological space be written as the
union of a family of regular open sets?

For every subset P of a topological space, prove that P+ is the largest
open set that is disjoint from P. Conclude that P is a regular open set
if and only if it is the largest open set that is disjoint from the largest
open set that is disjoint from P.

(Harder.) What is the largest number of distinct sets obtainable from a
subset of R™ by repeated applications of closure and complementation?
Construct an example for which this largest number is attained. (The
question and its answer are both due to Kuratowski [36].)



Chapter 10

Regular Open Sets

The purpose of this chapter is to discuss one more example of a Boolean
algebra. This example, the most intricate of all the ones so far, is one in
which the elements of the Boolean algebra are subsets of a set. However, the
operations are not the usual set-theoretic ones, so the Boolean algebra is not
a field of sets. Artificial examples of this kind are not hard to manufacture;
the example that follows arises rather naturally and plays an important role
in the general theory of Boolean algebras.

Recall (Chapter 9) that an open set in a topological space X is regular
if it coincides with the interior of its own closure. The next theorem (due to
MacNeille [43] and Tarski [75]) asserts that the regular open sets constitute
a complete Boolean algebra of sets, the regular open algebra of X.

Theorem 1. The class of all reqular open sets of a topological space X is a
complete Boolean algebra with respect to the distinguished Boolean elements
and operations defined by

(1) 0=0,

(2) 1=X,

(3) PANQ=PNQ,
(4) PvQ@=(PUQ),
(5) P’ =Pt

The infimum and the supremum of a family {P;} of regular open sets are,

respectively,
1L 1L
((]B) and (LJH) .

S. Givant, P. Halmos, Introduction to Boolean Algebras, 66
Undergraduate Texts in Mathematics, DOI: 10.1007/978-0-387-68436-9_10,
(© Springer Science+Business Media, LLC 2009
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The proof of the theorem depends on several small lemmas of some inde-
pendent interest. The first thing to prove is that the right sides of (1)—(5) are
regular open sets. For (1) and (2) this is obvious, but for (3), for instance, it
is not. To say that the intersection of two regular open sets is regular may
sound plausible (this is what is involved in (3)), and it is true. It is, however,
just as plausible to say that the union of two regular open sets is regular,
but that is false. Example: let P and @ be disjoint open half-planes in R?
separated by a line (a nowhere dense set), say P consists of the points to the
right of the y-axis, and ) consists of the points to the left; then P U @ is
open, but not regular, since

(PUQ)* =R2

In intuitive terms, an open set is regular if there are no cracks in it; the
trouble with the union of two regular open sets is that there might be a crack
between them. This example helps to explain the necessity for the possibly
surprising definition (4). It is obvious that something unusual, such as (5)
for instance, is needed in the definition of complementation; the set-theoretic
complement of an open set (regular or not) is quite unlikely to be open.

Lemma 1. If P C Q, then Q+ C P+.
Proof. Closure preserves inclusions and complementation reverses them.
Lemma 2. If P is open, then P C P+,

Proof. Since P C P, it follows, by complementation, that P~ C P’. Now
apply closure: since P’ is closed, it follows that P+~ C P’, and this is the
complemented version of what is wanted.

Lemma 3. If P is open, then P+ = P+L,

Proof. Apply Lemma 1 to the conclusion of Lemma 2 to get P+++ C Pt
and apply Lemma 2 to the open set P+ (in place of P) to get the reverse
inclusion.

It is an immediate consequence of Lemma 3 that if P is open, and all the
more if P is regular, then P is regular; this proves that the right side of (5)
belongs to the class of regular open sets. Since (P U Q)" is always open, the
same thing is true for (4). To settle (3), one more argument is needed.

Lemma 4. If P and Q are open, then (PN Q) = PH-nQ+t.
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Proof. The set PN Q is included in P and in @, so the set (P N Q)+ is
included in P+ and in Q*, by two applications of Lemma 1. Consequently,

(PNQ)-t Cc P ngtt.

The reverse inclusion depends on the general topological fact that if P is

open, then

PNQ™C(PNQ)
(It must be checked that every neighborhood U of a point  in P N Q™ has
a non-empty intersection with P N Q. The point x is in ~, by assumption,
and U N P is a neighborhood of x, so U N P must intersect () in some point.
Of course, U meets P N @ in the same point.) Complementing this relation,
we get

(PNQ)* C P'UQ™

Apply the operations of closure and complement to arrive at
(P'uQh)” c(Pn@)*.

Closure distributes over unions, and P’ is closed (whence P'~" = P” = P),
so the preceding inclusion may be written in the form

(6) PN C (PN,

An application of (6) with P1+ in place of P, followed by an application
of (6) with the roles of P and @ interchanged, yields

PJ_J_ N QJ_J_ C (PJ_J_ N Q)J_J_ C (P N Q)J_J_J_J_‘

The desired conclusion follows from Lemma 3.

Lemma 4 implies immediately that the intersection of two regular open
sets is regular, and hence that the right side of (3) belongs to the class of
regular open sets.

So far it has been shown that the class of regular open sets of a topological
space X is closed under the operations defined by (1)—(5). To complete
the proof of the first assertion of Theorem 1, it must now be shown that
these operations satisfy some system of axioms for Boolean algebras. It
is less trouble to verify every one of the conditions (2.11)-(2.20) than to
prove that some small subset of them is sufficient to imply the rest. In
the verifications of (2.11), (2.12), (2.13), (2.15), (2.16), (2.17), (2.18), and
(2.19), nothing is needed beyond the definitions and some straightforward
computations involving Lemma 3 and the equation
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(7) (PUQ)t =P nQ*

(valid for any two sets P and Q). The proof of (7) is quite easy. Closure
distributes over union, by (9.3), so

(PUQ) =P UQ".

Form the complement of both sides of this equation to arrive at (7).

The validity of the distributive axioms (2.20) in the algebra of regular
open sets depends on Lemma 4. Here is the verification of the first of these
axioms:

PA(QVR)=PN(QUR)™ =P n(QUR)™*
= (PN(QUR)™ = ((PNQ)U(PNR))*
—(PAQ)V(PAR).

The first and last equalities follow from definitions (3) and (4), the second
from the assumed regularity of P, the third from Lemma 4, and the fourth
from the distributive law (2.10) for intersection over union.

It remains to verify the complement laws (2.14); this amounts to showing
that

PNPt=2 and (PUPHH =X
The first identity is obvious, since P~ C P’. The second one is not; one

way to proceed is by means of a little topological lemma that has other
applications also.

Lemma 5. The boundary of an open set is a nowhere dense closed set.

Proof. The boundary of an open set P is the set P~ N P’ (see p. 60). If the
boundary of P included a non-empty open set, then that open set would have
a non-empty intersection (namely itself) with P~ and, at the same time, it
would be disjoint from P (because it is included in P’). This contradicts the
fundamental property of closure (often used as the definition — see p. 57).

Lemma 5 implies that if P is open, and all the more if it is regular, then
the complement of the boundary of P, that is, PUP™, is a dense open set. It
follows that (PUP+)* = & and hence that (PUP+)++ = X. This completes
the proof of the first assertion of Theorem 1. The second assertion of the
theorem follows from the next lemma and its dual.

Lemma 6. The supremum of a family {P;} of reqular open sets is (|J; P+t
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Proof. Write P = (J; P;)**. Each of the sets P, is included in their union, so
Lemma 2 implies that P; C P for every i. (Since the meet of two regular open
sets is the same as their intersection, the Boolean order relation for regular
open sets is the same as ordinary set-theoretic inclusion.) To prove that the
upper bound P is the least possible one, suppose @) is a regular open set
such that P; C @ for every i. The proof that then P C (@ is quite easy: just
observe that | J; P; € @ and apply Lemma 1 twice to obtain P C Q- =qQ.

It is worth pointing out again that the Boolean algebra of regular open
sets is not a field of sets, much less a complete field of sets. The example
preceding Lemma 1 shows that the join of two regular open sets may be
different from their union.

It is also worth mentioning that, in general, this algebra fails to be com-
pletely distributive. Consider, for instance, the regular open algebra of the
open unit interval (0,1). (Warning to the would-be expert. Compactness, or
its absence, has nothing to do with this example; the endpoints were omitted
for notational convenience only.) Let I be the set of non-negative integers and
let J be the set consisting of the two numbers +1 and —1. To define P(i, j),
split the interval into 2¢ open intervals of length 27%; let P(i, —1) be the union
of the open left halves of these intervals and let P(i,+1) be the union of their
open right halves.

For example, when i = 1, the interval (0,1) is split into the two open
intervals (0,1/2) and (1/2,1) of length 1/2. The open left halves of these
intervals are (0,1/4) and (1/2,3/4), and the open right halves are (1/4,1/2)
and (3/4,1). The regular open sets P(1,—1) and P(1,+1) are defined by

P(1,—1) = (0,1/4) U (1/2,3/4) and P(1,+1) = (1/4,1/2) U (3/4,1).

The union of these two sets is the entire space (0, 1) with the points 1/4, 1/2,
and 3/4 removed. Consequently, the join of the two sets is the entire space.

In general, the union of the two sets P(i,—1) and P(i,+1) is the entire
space with the points of the form k/2'"! removed for 0 < k < 2!*!. These
latter points form a nowhere dense subset of the space, so the join

P(i,~1) V P(i,+1)

is equal to the entire space (0,1) for each i. It follows that the left side of
equation (8.3) is the unit element of the algebra under consideration.

For each function a in J7, the intersection (), P(i,a(i)) coincides with
the intersection of a nested sequence of open intervals whose lengths go to
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zero; consequently, the intersection contains at most one point, whatever the
function a may be. In fact, the only point that can be in the intersection is
the real number whose binary representation has 0 or 1 in the (i + 1)th place
according as a(i) is —1 or +1. It follows that the infimum A; P(i, a()) is the
zero element of our algebra for every function a; hence, so is the right side of
equation (8.3).

This last argument can be clarified with an example. Suppose a is a
function from I to J whose first four values are

a(0)=-1, a(l)=+1, a(2)=+1, and a(3)=-1.

Then,
P(0,a(0)) = (0,1/2),
P(1,a(1)) = (1/4,2/4) U (3/4,4/4),
P(2,a(2)) = (1/8,2/8) U (3/8,4/8) U (5/8,6/8) U (7/8,8/8),
P(3,a(3)) = (0/16,1/16) U (2/16,3/16) U --- U (14/16, 15/16),

The intersection of these sets coincides with the intersection of the open
intervals

0,1/2),  (1/4,2/4),  (3/8,4/8),  (6/16,7/16),

If there is a point in this intersection, it can only be the real number whose
binary representation begins with .0110... . Consequently, the infimum of
the family {P(i,a(i))} is the empty set.

Exercises

1. Prove that a subset ) of a topological space is regular and open if and
only if Q@ = P+ for some set P.

2. Prove, for an arbitrary subset P of a topological space, that
pl—— plil—
3. Show that Boolean axioms (2.11), (2.12), (2.13), (2.15), (2.16), and

(2.18) are valid in the algebra of regular open sets.

4. Show that the De Morgan laws (2.17) are valid in the algebra of regular
open sets.
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10.

11.
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. Show that the associative laws (2.19) are valid in the algebra of regular

open sets.

. Show that the distributive law for join over meet in (2.20) is valid in

the algebra of regular open sets.

. Describe the Boolean algebra of regular open subsets of a discrete space.

. Describe the Boolean algebra of regular open subsets of an infinite space

with the cofinite topology.

(Harder.) A closed subset P of a topological space X is called regular
if it is equal to the closure of its interior: P = P °~. Define operations
of join, meet, and complement on the class of regular closed subsets of
X, and prove that the resulting algebra is a complete Boolean algebra.
(This dual formulation of the regular open algebra is due to Tarski [75].)

(Harder.) Prove, using the last assertion of Theorem 1 and the infinite
version of the De Morgan laws (Lemma 8.1), that if {P;} is a family of
regular open sets, then

()= ()

Show that this is not necessarily true for arbitrary open sets, and give
a direct topological proof for regular open sets.

This exercise refers to the notation introduced in the final example
of the chapter. Consider the function a from the set of non-negative
integers into the set {—1,+1} defined by

. +1 if 7 is even,
a(i) = L
-1 if 7 is odd.

(a) Write out explicitly the sets P(0,a(0)), P(1,a(1)), P(2,a(2)), and
P(3,a(3)).

(b) The intersection of the family {P(i,a(i))} coincides with the in-
tersection of which family of open intervals?

(¢) What is the binary representation of the only real number that
can be in this intersection?

(d) Is that real number in the intersection?
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12. Repeat the preceding exercise for the function a defined by

. +1 if >0,
a(i) = o
-1 if 1=0.

73



Chapter 11

Subalgebras

A (Boolean) subalgebra of a Boolean algebra A is a subset B of A such that B,
together with the distinguished elements and operations of A (restricted to

the set B), is a Boolean algebra. The algebra A is called a (Boolean) extension
of B.

Warning: the distinguished elements 0 and 1 are essential parts of the
structure of a Boolean algebra. A subring of a ring with unit may or may
not have a unit, and if it has one, its unit may or may not be the same as the
unit of the whole ring. For Boolean algebras this indeterminacy is defined
away: a subalgebra must contain the element 1. The insistence on the role
of 1 is not an arbitrary convention, but a theorem. Since complementation
is indubitably an essential part of the structure of a Boolean algebra, the
presence of 1 in every subalgebra can be proved. Proof: a subalgebra con-
tains, along with each element p, the complement p’ and the join p V p’.
The latter element is just 1. This proof made implicit use of the fact that
a subalgebra is not empty. If 0 and 1 are not built into the definition of a
Boolean subalgebra, then non-emptiness must be explicitly assumed.

To illustrate the situation, let Y be a non-empty subset of a set X.
Both P(X) and P(Y) are Boolean algebras in a natural way (Chapter 2),
and clearly every element of P(Y') is an element of P(X). Since, however, the
unit of P(X) is X, whereas the unit of P(Y) is Y, it is not true that P(Y)
is a Boolean subalgebra of P(X). Another reason why it is not true is, of
course, that complementation in P(Y’) is not the restriction of complemen-
tation in P(X).

There is another possible source of misunderstanding, but one that is
less likely to lead to error. (Reason: it is not special to Boolean algebras,
S. Givant, P. Halmos, Introduction to Boolean Algebras, 74
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11 Subalgebras 75

but has its analogue in almost every algebraic system.) To be a Boolean
subalgebra it is not enough to be a subset that is a Boolean algebra in its
own right, however natural the Boolean operations may appear. The Boolean
operations of a subalgebra, by definition, must be the restrictions of the
Boolean operations of the whole algebra. The situation is illuminated by the
regular open algebra A of a topological space X (Chapter 10). Clearly A
is a subclass of the field P(X), but, equally clearly, A is not a subalgebra
of P(X): the join and complement operations of A are not union and set-
theoretic complementation.

Every non-degenerate Boolean algebra A includes a trivial subalgebra,
namely 2; all other subalgebras of A will be called non-trivial. Every Boolean
algebra A includes an improper subalgebra, namely A; all other subalgebras
will be called proper.

The definition of a field of subsets of a set X may be formulated by
saying that it is a Boolean subalgebra of the special field P(X). In general
a Boolean subalgebra of a field of sets is called a subfield. Here are three
examples of subalgebras (and in fact of subfields): the finite—cofinite algebra
of a set X is a subalgebra of the countable—cocountable algebra of X; the
algebra of (periodic) sets of integers of period 3 is a subalgebra of the algebra
of sets of integers of period 6; and the interval algebra of finite unions of
left half-closed intervals (of real numbers) with endpoints that are rational
(or +00) is a subalgebra of the interval algebra of finite unions of arbitrary
left half-closed intervals of real numbers.

If a non-empty subset B of a Boolean algebra A is closed under some
Boolean operations, and if there are enough of those operations that all other
Boolean operations can be defined by them, then B is a subalgebra of A.
Example: if B is closed under joins and complements, then B is a subalgebra,
since meet is definable in terms of join and complement; alternatively, if B
is closed under the Sheffer stroke, then B is a subalgebra.

A moment’s thought shows that the intersection of every family {B;} of
subalgebras of a Boolean algebra A is again a subalgebra of A. (The inter-
section of the empty family is, by convention, the improper subalgebra A.)
For the proof, suppose p and ¢ are elements of the intersection (), B;. These
elements then belong to every subalgebra B;. Since subalgebras are closed
under the operations of join, meet, and complement, the elements

/

pAg, pVq, and P

must belong to every subalgebra B;, and therefore they must belong to the
intersection of these subalgebras. The intersection is not empty, because it
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contains 0.

It follows that if F is an arbitrary subset of A, then the intersection of all
those subalgebras that happen to include F is a subalgebra. (There is always
at least one subalgebra that includes E, namely the improper subalgebra A.)
That intersection, say B, is the smallest subalgebra of A that includes F;
in other words, B is included in every subalgebra that includes E. The
subalgebra B is said to be generated by E, and F is called a set of generators
of B.

Here is a trivial example: if E is empty and A is not degenerate, then the
subalgebra generated by F is the smallest possible subalgebra of A, namely 2.
As a less trivial example, consider the field A of finite and cofinite subsets of
a set X. We shall prove that it is generated in P(X) by the set E of one-
element (that is, singleton) subsets of X. Let B be the subalgebra of P(X)
generated by E. It is to be shown that B coincides with A. A singleton
is a finite set, and therefore is an element of A; the set F is thus included
in A. It follows that B (the smallest subalgebra that includes E) must also
be included in A. To establish the reverse inclusion, notice that a finite
subset of X is a finite union of singletons, and therefore must belong to every
subalgebra that includes E. It follows that every finite subset of X belongs
to B, and hence so does the complement of every finite subset. This proves
that A is included in B.

A simple but useful remark for subsets £ and F' of a Boolean algebra A is
that if F'is included in E, then the subalgebra generated by F' is included (as
a subalgebra) in the subalgebra generated by E. This follows directly from
the definition of generation, since every subalgebra that includes £ must also
include F'.

The relation of one Boolean algebra being a subalgebra of another is a
partial order on the class of all Boolean algebras. In other words, it is a re-
flexive, antisymmetric, transitive (binary) relation between Boolean algebras.
Reflexivity means, in this case, that every Boolean algebra is a subalgebra
of itself. Antisymmetry means that if two Boolean algebras are subalgebras
of one another, then they are equal. Transitivity means that, for any three
Boolean algebras A, B, and C, if C' is a subalgebra of B, and B a subalgebra
of A, then C'is a subalgebra of A. These properties all follow easily from the
definition of a subalgebra.

It is an interesting and occasionally useful observation that the class of all
subalgebras of a Boolean algebra A is a complete lattice under the relation
of being a subalgebra. The infimum of any family {B;} of subalgebras of A
is the intersection of the family; it is the largest subalgebra of A that is a
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subalgebra of B; for every i. The supremum of the family is the subalgebra
generated by the union of the family, that is to say, it is the intersection of
those subalgebras of A that include every B;; it is the smallest subalgebra of A
that includes B; as a subalgebra for every i. (There is always one subalgebra
that includes every B; as a subalgebra, namely the improper subalgebra A.)

The supremum of a family { B;} of subalgebras is in general not the union
of the family, because that union is usually not a subalgebra. There is an
exception, however. The family is said to be directed if any two members B;
and Bj of the family are always subalgebras of some third member Bj,.

Lemma 1. The union of a non-empty, directed family of subalgebras is again
a subalgebra.

Proof. Let {B;} be a non-empty, directed family of subalgebras of a Boolean
algebra A. It is to be demonstrated that the union B of this family is also a
subalgebra of A. Certainly, B is not empty, since the family is non-empty. To
prove that B is closed under the operations of A, consider any two elements,
say p and ¢, in B. Each of these elements belongs to some subalgebra of the
family, by the definition of a union; say p is in B; and ¢ in Bj. The two
subalgebras are included in some third subalgebra By of the family, by the
assumption that the family is directed. The elements p and g are then both
in By, so their join, meet, and complements are also in Bg. It follows that
their join, meet, and complements are also in B, as desired.

The lemma applies, in particular, to non-empty families of subalgebras
that are linearly ordered by inclusion. Such families are called chains. More
precisely, a family {B;} of subalgebras is a chain if for any two members B;
and Bj of the family, either B; is a subalgebra of Bj, or vice versa.

A subalgebra of A is said to be finitely generated if it is generated by
a finite subset of A. One consequence of the lemma is that every Boolean
algebra is the directed union of its finitely generated subalgebras. In fact, a
stronger statement is true.

Corollary 1. Let A be a Boolean algebra generated by a set E, and for each
finite subset F' of E, let Br be the subalgebra of A generated by F'. The family

{Bp : F CFE and F 1is finite}
1s directed, and its union is A.

Proof. 1t is easy to see that the given family of subalgebras is directed: if F}
and Fy are finite subsets of E, then so is F3 = F} U Fb; since I} and Fy are
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included in Fj, the subalgebras generated by F; and F5 are included in the
subalgebra generated by F3. It now follows from Lemma 1 that the union of
this directed family — call it B — is a subalgebra of A.

Since A is generated by the set E, the subalgebras Br generated by the
finite subsets F' of F must be included in A; consequently, the union B of
these subalgebras is included in A. On the other hand, each element p in FE
is contained in the subalgebra generated by the finite subset F' = {p}, so p
must belong to the union B. It follows that F is included in B, and therefore
so is the subalgebra generated by E, namely A. Conclusion: A = B.

For any Boolean algebra A, apply the preceding corollary to the set £ = A
to conclude that every Boolean algebra is the (directed) union of its finitely
generated subalgebras.

The definition of the subalgebra generated by a set is “top-down” and
non-constructive. One advantage of this approach is that it generalizes, prac-
tically without change, to arbitrary algebraic structures. A disadvantage is
that it gives no hint which elements belong to the subalgebra. There is a
“bottom-up” approach that gives precise information about the elements in
the subalgebra.

Let’s begin with a description of the subalgebra generated by a finite
subset E of a Boolean algebra A. It is convenient to introduce some notation
that will prove useful in other situations as well. For each element i in A and
each j in 2 = {0, 1}, write

1,7) =
P i i j=0.

Finally, write 27 for the set of 2-valued functions on E, that is to say, the set
of functions from E to 2. Given such a function a, the value of p(i,a(7)), for
each ¢ in F, is either ¢ or i’; denote the meet of these values by p,, so that

pa = J\ pli,a(i)).

i€ER
For example, suppose E = {q,r, s}. If a(¢) = a(s) =1 and a(r) = 0, then
pa = p(q,a(q)) A p(r;a(r)) Ap(s,a(s))
=p(g,1) Ap(r,0) Ap(s,1) =g Ar'As,
and if a(q) = a(r) = a(s) = 0, then

Pa =p(q,0) Ap(r,0) Ap(s,0) =q" Ar' As'.
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We first show that the elements p, are mutually disjoint in the sense that
the meet of p, and py, for a # b, is always 0, and that the join of all these
elements is 1. If a and b are distinct, then they differ on some index i: one
of a(i) and b(7) is 1 and the other is 0. Consequently,

(1) paApy <iNi' =0.

On the other hand,

(2) 1:/\1\/1 \//\ (1,a(i \/pa,
i€k ac2E icE ac2F

by the distributive law (8.3). (That law is applicable because F is finite.)
Take K to be the set of those functions a in 2¥ such that p, # 0, and for
each subset X of K, write

(3) px =\ pa
acX

These joins are elements of A, and they obey the following laws:

(4) pe =0,

(5) pr =1,

(6) px APy = Dpxny,
(7) px Vpy = pxuy,
(8) P = pxr

where X’ denotes the (set-theoretic) complement of X in K. Equation (4)
holds because the supremum of the empty set is 0, equation (5) is a direct
consequence of (2) and the definition of K, and equation (7) follows im-
mediately from definition (3). The proof of equation (6) involves an easy
computation:

prpyz(\/pa>A<\/pb>: \/ (pa A 1b)

acX bey acX

bey
= \/ (pa /\pa = \/ Pa = PXnNY -
acXNY acXNY

The first and last equalities use definition (3), while the second equality uses
the distributive law in the form of Corollary 8.2, the third equality uses (1),
and the fourth equality uses the idempotent law for meet in (2.16). To prove
equation (8), observe that

px ANpx' =pxnx’ =pg =0 and px Vpx: =pxux’ =Pk =1,
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by (4)—(7). These equations imply that px: is the complement of px, by
Lemma 6.2.

Take C' to be the set of all elements of A of the form pyx, for some
subset X of K. Equations (4)—(8) imply that C is a subalgebra of A: it is
non-empty, by (4), and it is closed under the operations of A, by (6)—(8).
Definition (3) and equations (4) and (6) imply that the elements p, (for a
in K') are minimal non-zero elements in C. Such elements are usually called
atoms. Every element of C' can be written in exactly one way as a join of
these atoms. Indeed, suppose px = py. A simple computation, using (4)—(8)
and the definition of Boolean addition in (3.3), shows that

0=px +px =px +Py = Ppx+v,

where X +Y is the symmetric difference of the sets X and Y. This symmetric
difference must be empty, for otherwise px 1y would be a non-empty join of
non-zero elements, and hence would be different from 0. It follows that
X=Y.

Consider an arbitrary subset F' of F, and an arbitrary 2-valued function b
on F'. In analogy with the notation introduced above, write

i€EF
We shall show that pj is in C' by proving that
(9) Dy = \/{pa :a € K and a extends b}.

(A function a in K extends b if a(i) = b(i) for each i in F'.) Let L be the set
of functions in K that extend b. If a is in L, then a(i) = b(7), and therefore

p(i, b<Z)) = p(i, CL(Z)),
for every 7 in F'; consequently,
{p(i,b(7)) : i € F} C{p(i,a(i)):i € E}.

It follows that
po = /\ p(i,b(i)) > N pli,a(i)) = pa.

i€F i€E
In other words,

(10) Db A\ Pa = Da when ac L.
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On the other hand, if @ is not in L, then a and b must disagree on some
argument ¢ in F'. One of p(i,a(i)) and p(i,b(7)) is therefore 7, and the other
is 7/. Consequently,

Py Apa < p(i,b(0)) A p(i,a(i)) =i Ai" = 0.
Thus,
(11) Py A po =0 when ace K—L.

The demonstration of (9) is now straightforward:

Py =Py N1 =py Apr = pp A \/pa
aceK

- \/ (P A pa) = \/(Pb/\pa) = \/pa.

aceK a€Ll acl

The first equality uses the identity law for meet in (2.13), the second equality
uses (5), the third uses (3) and the definition of K, the fourth uses the
distributive law in Lemma 8.3, the fifth uses (11), and the sixth uses (10).

Let B be the subalgebra of A generated by E. We shall show that B = C.
To prove that B is included in C, consider an arbitrary element ¢ in F; if b
is the function from {i} to 2 defined by b(i) = 1, then

po = p(i,b(i)) =1,
so that ¢ is in C, by (9). This argument proves that E is included in C,
so the subalgebra generated by E, namely B, is included in C. To prove
that C is included in B, recall that each atom p, in C' is the (finite) meet of
elements and complements of elements in F; consequently, p, belongs to the
subalgebra B generated by E. Every element px in C is the (finite) join of
such atoms, and is therefore also in B.

The following normal form theorem summarizes what has been proved so
far.

Theorem 2. Let B be the subalgebra generated by a finite subset E of a
Boolean algebra. The atoms of B are the non-zero elements of the form

Pa = /\ p(i, a(i))7
i€l
and the elements of B are the joins of these atoms. Every element of B can

be written in one and only one way as a join of atoms. The distinguished
elements and operations of B are determined by equations (4)—(8).
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How big can a finitely generated Boolean algebra A be? If a generating
set E has n elements, then there are 2" functions from E to the set {0,1}. As
a result, there can be at most 2" atoms, by the preceding theorem. Suppose A
has m atoms, where m < 2". The join of every set of atoms is an element
of A, and every element of A can be written in exactly one way as the join
of a set of atoms, by the preceding theorem. There are 2" subsets of the set
of atoms, so there must be 2™ elements in A.

Corollary 2. Every finitely generated Boolean algebra A is finite, and the
number of its elements is 2™, where m is the number of atoms in A. If a
generating set of A has n elements, then A has at most 2™ atoms, and hence
it has at most 22" elements.

The description of the subalgebra generated by an arbitrary subset of a
Boolean algebra A is obtained rather easily from the normal form theorem
and Corollary 1. Suppose E is a (possibly infinite) subset of A. For each
finite subset F' of E, let Br be the subalgebra of A generated by F', and
let K be the set of 2-valued functions b on F' such that the meet

po = /\ p(i,b(i)

i€l

is not zero. The elements of B are precisely the joins

px =\ P,

beX

where X ranges over the subsets of K, by Theorem 2. The subalgebra B
generated by the set E is the directed union of the finitely generated sub-
algebras Bp, by Corollary 1. Conclusion: the elements of B are just the
elements px, for various finite subsets F' of E, and various subsets X of Kp.
These remarks establish the following theorem.

Theorem 3. An element of a Boolean algebra is in the subalgebra generated
by a set E if and only if it can be written as a finite join of finite meets of
elements and complements of elements from E.

Equations (4)—(8) may still be used to describe the distinguished elements
and operations of the subalgebra B generated by a set E, but some caution
is needed. Equations (6) and (7) do not say that

X, /\ng = PX1NnXs and PX; \/ng = PX1UXo>
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whenever X is a subset of K, and X5 a subset of Kf,. In fact, the domains
of the functions in X; and in X9 (namely, the finite subsets I} and F» of E)
are in general not equal.

To overcome this obstacle, write F' = F1UF3, and take Y7, respectively Ya,
to be the set of functions in K that extend some function in X7, respec-
tively Xo. Then

px, =DPy; and px, = Dy,,

by (9), so that

le /\ng - le /\pYQ - leﬂYQ and pX1 vaQ - le vaQ - pY1UY27

by (6) and (7).

It should be pointed out that an element of the form py is not, in general,
an atom of B, even though it is an atom of the subalgebra Br when F' is the
domain of b. Indeed, if G is a finite subset of F that properly includes F,
and if @ is a 2-valued function on G that extends b, then it may well happen
that

0 < pa < pp-
An important special case of the preceding theorem, the subalgebra ex-

tension lemma, describes how to extend a subalgebra by adjoining a single
element.

Lemma 2. Let B be a Boolean subalgebra of A, and r an element in A. The
subalgebra generated by B U {r} consists of the elements in A that can be
written in the form

(pAT)V(gAT")
for some p and q in B.

Proof. The elements of the subalgebra C' generated by the set B U {r} are
the finite joins of finite meets of elements and complements of elements
from BU{r}, by the preceding theorem. Meets of elements and complements
of elements from B are again elements in B, because B is a subalgebra. The
elements of C' are therefore the finite joins of elements of B, elements of the
form p A r, with p in B, and elements of the form ¢ A r/, with ¢ in B. The
form

(12) (pAT)VI(gAT"),

with p and ¢ in B, comprehends each of the other forms as special cases:
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pAr=(@Ar)V(0Ar"),
ghr'=(0AT)V(gAT"),
p=@AT)V(pAT"),

where p and ¢ are elements of B. Consequently, the elements of C' are finite
joins of elements of the form (12). The join of two elements of the form (12)
(and hence the join of any finite number of such elements) is again an element
of the form (12), as a simple computation shows:

(13) [k AT)V (@ ATV (P2 Ar)V (g2 Ar')]
=1 AT)V (2 ATV (@ Ar") V(g2 Ar')]
=1 Vp2) ArIV (@1 V g2) Ar'],

where p; V ps and q1 V g2 are elements of B. Conclusion: the elements of C'
are just the elements of the form (12). The proof of the lemma is complete.

The lemma can also be proved directly, without recourse to Theorem 3.
The set D of all elements of the form (12) is certainly included in the sub-
algebra of A generated by B and r, so it suffices to show that D is itself a
subalgebra of A. The closure of D under join follows from (13), while closure
under meet and complement follows from the identities

(14) [(pr Ar) V(g Ar ) A2 Ar) V(g2 Ar')]
=[(pr Ap2) ATV [(q1 Aga) Ar']

and

(15) [(pAT)V(gAr")] =@ Ar) V(g Arh).

The definition of a Boolean subalgebra B says nothing about the infinite
suprema and infima that may be formable in the whole algebra A. Anything
can happen: suprema or infima can be gained or lost or change value as we
pass back and forth between A and B. Everything that can happen can be
illustrated in the theory of complete Boolean algebras. If B is a subalgebra
of a complete algebra A, and if the supremum (in A) of every subset of B
belongs to B, we say that B is a complete subalgebra of A. (Warning: this
is stronger than requiring merely that B be a complete Boolean algebra in
its own right.) Note that a complete subalgebra B of A contains the infima
(in A) of all its subsets as well as their suprema. Indeed, if E is a subset
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of B, then so is {p’ : p € E}; the supremum of the latter subset is in B, by
assumption, so the complement of this supremum, namely the infimum

NE = (\/{p':peE})/,

is also in B. In the case of fields we speak of complete subfields. For complete
algebras the concept of a generated complete subalgebra is defined the same
way as when completeness was not yet mentioned; all that is necessary is to
replace “subalgebra” by “complete subalgebra” throughout the discussion.

There is an intermediate notion, stronger than “subalgebra” but weaker
than “complete subalgebra”, that is sometimes useful. It does not require the
algebra A to be complete. A regular subalgebra of A is a subalgebra B with
the additional property that whenever a subset F of B has a supremum p
in B, then p is the supremum of F in A also. (Warning: a subset of B may
have a supremum in A without having a supremum in B; the definition says
nothing about such subsets.)

A necessary and sufficient condition for a subalgebra B of A to be regular
is that whenever E is a subset of B with \/ £ = 1 in B, then \/ E =1
in A. The necessity of the condition is obvious; it is part of the definition of
regularity. To prove sufficiency, suppose the condition is satisfied, and let Ej
be an arbitrary subset of B that has a supremum p in B. It is to be proved
that p is the supremum of Fy in A. The supremum of the set E = {p'} U Ej
in B is 1, as the computation

1=p'vp=p'V\/Eo=\/({p}UE)=\/E

demonstrates. It follows from the assumed condition that 1 is also the su-
premum of E in A. Form the meet (in A) of p with the first and last terms
of the preceding string of equalities to arrive at the desired conclusion:

p=pA1=pA\/E=pA\/({p'}UE)
=Ap)v \ ra)=0v \/ ¢=\/E0

q< ko qeEy

The fourth equality uses the distributive law from Lemma 8.3. The fifth
equality uses the fact that, for each ¢ in Fy, the inequality ¢ < p holds in B,
and therefore also in A.
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Exercises

1. Show that the field of periodic sets of integers of period 3 (see Chap-
ter 5) is a subfield of the field of periodic sets of integers of period 6.

2. Suppose that B and A are fields of periodic sets of integers of peri-
ods m and n respectively. Formulate and prove a theorem characteriz-
ing when B is a subfield of A.

3. Show that the relation of being a subalgebra is a partial ordering on
the class of all Boolean algebras.

4. Show that a subring of a Boolean ring need not be a Boolean subalgebra.
What if the subring contains 17

5. Every subset of a partially ordered set inherits a partial order from the
whole set. If a non-empty subset of a Boolean algebra is construed
as a partially ordered set in this way, and if it turns out that with
respect to this partial order it is a complemented distributive lattice,
does it follow that it is a Boolean subalgebra of the original algebra?
(See Exercise 7.22.)

6. If a subset B of a Boolean algebra A contains 0 and 1 and is closed under
the formation of meets and joins, does it follow that B is a subalgebra

of A?

7. Suppose E = {q,r, s} is a subset of a Boolean algebra. For each i in F,

i i j=1,
p(m)z{.,

write

1 if j=0.
There are eight 2-valued functions a on E. Write out the eight corre-
sponding meets

pa = [\ p(i, al(i)).

el

8. Formulate the dual version of Theorem 2. Prove this dual directly,
without using Theorem 2.

9. Formulate and prove the dual version of Theorem 3.
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10.

11.

12.

13.

14.

15.

16.

17.

Prove identities (14) and (15), and then use them to give a direct proof
of Lemma 2.

Let A be the interval algebra of finite unions of left half-closed intervals
of real numbers, and let F be the subset of A consisting of the inter-
vals [n,n + 1), where n ranges over the integers. Describe the elements
of the subalgebra of A generated by F.

Prove directly, without using Lemma 1, that the union of a non-empty
chain of Boolean subalgebras is again a Boolean subalgebra.

A family of Boolean algebras { B;} (not necessarily subalgebras of some
fixed Boolean algebra) is called a (subalgebra) chain if for any two
algebras B; and B; in the family, one of them is a subalgebra of the
other. Let B be the union of such a chain. For any two elements p
and ¢ in B, there must be an algebra B; in the chain that contains
both of them. (Why?) Define the join and meet of p and ¢ in B to
be their join and meet in B;, and define the complement of p in B to
be its complement in B;. Prove that these operations are well defined
in the sense that they do not depend on the particular choice of the
algebra B; to which p and ¢ both belong. Prove also that under these
operations the union B is a Boolean algebra.

A family {B;} of Boolean algebras (not necessarily subalgebras of some
fixed Boolean algebra) is said to be directed if for any two algebras B;
and Bj in the family, there is always a third algebra Bj, in the family
such that B; and B; are both subalgebras of Bj. Define operations of
join, meet, and complement in the union of the directed family, and
show that these operations are well defined. Prove that the union of
the family, under these operations, is a Boolean algebra.

Give an example of a subalgebra B of a complete Boolean algebra A
and of a subset F of B such that the supremum of E in A does not
belong to B, and in fact E has no supremum in B.

(Harder.) Give an example of a subalgebra B of a Boolean algebra A
and of a subset F of B such that E has a supremum in B but not in A.

(Harder.) Give an example of a complete Boolean algebra A and a
subalgebra B of A such that some subset of B has a supremum in B
and a supremum in A, but these two suprema are different.



88

18

19.

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.

Introduction to Boolean Algebras

. (Harder.) Give an example of complete Boolean algebras A and B such
that B is a subalgebra, but not a complete subalgebra, of A.

Prove that an infinite Boolean algebra with m generators has m ele-
ments.

Let B be a subalgebra of A. If a family {p;} in B has a supremum p
in A, and if p belongs to B, prove that p is also the supremum of {p;}
in B.

Prove that a subalgebra B of a Boolean algebra A is a regular subalge-
bra if and only if every subset of B that has an infimum in B has the
same infimum in A.

Prove that a necessary and sufficient condition for a subalgebra B of a
Boolean algebra A to be regular is that whenever E is a subset of B
with

/\E =0 in B, then also /\E =0 in A.

Is every finite subalgebra a regular subalgebra?

Is the field of finite and cofinite sets of integers a regular subalgebra of
the field of all sets of integers?

Suppose A is a complete Boolean algebra. Is a complete subalgebra
of A necessarily a regular subalgebra? Is a regular subalgebra of A
necessarily a complete subalgebra?

Suppose A is a complete Boolean algebra. If a regular subalgebra of A
happens to be complete (considered as an algebra in its own right), is
it necessarily a complete subalgebra of A?

Show that the relation of being a regular subalgebra is a partial order on
the class of Boolean algebras. In other words, show that it is reflexive,
antisymmetric, and transitive.

Suppose C' is a (Boolean) subalgebra of B, and B a subalgebra of A.
If C is a regular subalgebra of A, must C also be a regular subalgebra
of B?

Prove that a regular subalgebra of a completely distributive Boolean
algebra is completely distributive.



Chapter 12

Homomorphisms

A Boolean homomorphism is a mapping f from a Boolean algebra B, say, to
a Boolean algebra A such that

(1) flong) = fp) A fla),
(2) fleva)=fp)V fla),
(3) fo") = (f),

whenever p and ¢ are in B. In a somewhat loose but brief and suggestive
phrase, a homomorphism is a structure-preserving mapping between Boolean
algebras. A convenient synonym for “homomorphism from B to A” is “A-
valued homomorphism on B”. Such expressions will be used most frequently
in case A = 2. A word about notation: we shall usually write f(p)’ instead
of (£(p))".

When a homomorphism f maps B onto A (in the sense that every el-
ement in A is equal to f(p) for some p in B), the stipulation that A be a
Boolean algebra is unnecessary; it is a consequence of identities (1)—(3) and
the assumption that B is a Boolean algebra. To prove this assertion, let A be
an arbitrary algebraic structure with two binary operations A and V, and a
unary operation . Suppose f is a mapping from a Boolean algebra B onto A
that satisfies identities (1)—(3). It must be checked that the Boolean algebra
axioms (2.11)—(2.20) are true of A when zero and one are interpreted as f(0)
and f(1) respectively. As an example, here is the verification of the distribu-
tive law for meet over join in (2.20). Let u, v, and w be elements of A. The
assumption that the range of f is A implies that there are elements p, ¢,
and r in B such that

fp) =, f(g) =, and flr) =w.

S. Givant, P. Halmos, Introduction to Boolean Algebras, 89
Undergraduate Texts in Mathematics, DOI: 10.1007/978-0-387-68436-9_12,
(© Springer Science+Business Media, LLC 2009



90 Introduction to Boolean Algebras

A straightforward computation using identities (1) and (2), and the validity
of the distributive law in B, now yields the desired result:

u A (vVw) = f(p)A(flg)V f(r))
(P) A flgVvr)
(pA(gVr))
(
(

(pAg)V(pAT))
pPAQV f(pAT)
(p) A (@) V (f(p) A f())

= (uAv)V (uAw).

f
f
f
f
=(f

In most situations, the algebra A that constitutes the range of a Boolean
homomorphism is known a priori to be a Boolean algebra. In those cases in
which this is not known, the previous argument can be used to prove it. We
shall see an example in a moment.

The distinguished elements 0 and 1 play a special role for homomor-
phisms, just as they do for subalgebras. Indeed, if f is a Boolean homomor-
phism (between Boolean algebras) and p is an element in its domain (p = 0
will do), then

fonp')=fo)Afp),

and therefore

(4) £(0) = 0.

This much would be expected by a student of ring theory. What is important
is that the dual argument proves the dual fact,

(5) f1)=1.

The mapping that sends every element of one non-degenerate Boolean algebra
onto the zero element of another is simply not a Boolean homomorphism;
between non-degenerate Boolean algebras there is no such thing as a “trivial”
homomorphism.

Equations (4) and (5) imply that 0 and 1 belong to the range of every
homomorphism; a glance at equations (1)—(3) is sufficient to convince oneself
that the range of every homomorphism, from B into A say, is closed under
the meet, join, and complement operations of A, and is therefore a Boolean
subalgebra of A. The range of a homomorphism with domain B is called a
homomorphic image of B.
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Since every Boolean operation (e.g., + and =) can be defined in terms
of A, V, and ’/, it follows that a Boolean homomorphism preserves all such
operations. For instance, if f is a Boolean homomorphism and if p and ¢ are
elements of its domain, then

fo+q) =ferd" )V (' Ng)
A

=flpAg" )V f(p'Ng)
=(f)Af@) V(") A fa)
=(f)Af@)") Vv (flp)' A Fla)
= f(p) + f(9)

and

fo=q =f'vVg)=Ff")V I =rfp)VIq=_7Fp)=flq).

It follows, in particular, that every Boolean homomorphism is a ring homo-
morphism, and also that every Boolean homomorphism is order-preserving.
The last assertion means that if p < g, then f(p) < f(q).

The crucial fact in the preceding paragraph was the definability of
Boolean operations and relations in terms of meet, join, and complement.
Thus, more generally, if a mapping f from a Boolean algebra B to a Boolean
algebra A preserves enough Boolean operations so that all others are definable
in terms of them, then f is a homomorphism. Example: if f preserves V and ’
(that is, if f satisfies the identities (2) and (3)), then f is a homomorphism;
alternatively, if f preserves the Sheffer stroke, then f is a homomorphism.

We proceed to consider some examples of Boolean homomorphisms. For
the first example let B be an arbitrary Boolean algebra, and let pg be an
arbitrary element of B. Take A to be the set of all subelements of pg, that
is, the set of elements p with p < pg, or, equivalently, the set of all elements
of the form p A pg. Define elements and operations for A as follows: 0, meet,
and join in A are the same as in B, but 1 and p’ in A are defined to be the
elements py and pg — p of B. The mapping f defined by

f(p) =pApo

is a homomorphism from B onto A. The proof consists of a series of compu-
tations verifying conditions (1)—(3). Let p and ¢ be elements of B. Then

foNg)=pNagApo=pApoANqgApo=f(p) A flq),

by the definition of f and the idempotent and commutative laws;

flova)=®Vaq) Apo=(@Apo)V(gApo) = f(p)V fla),
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by the definition of f and the distributive laws; and

F@")=p"Apo=moADP )VO=(poAD")V (PoApy)=poA(p' VD))
/

=poA(PApo) =po—(pApo) = fp),

by the definition of f, the identity and commutative laws, the complement
laws, the distributive laws, the De Morgan laws, the definition of subtraction,
and the definition of complementation in A. The algebra A is the image of
the Boolean algebra B under the homomorphism f, and is therefore itself a
Boolean algebra with zero and unit

f(0)=0Apo=0 and  f(1) =1Apo=po.

It is called the relativization of B to po, and will be denoted by B(po); the
function f is called the relativizing homomorphism (induced by po).

For a concrete example of a relativization, consider an arbitrary set X.
If Y is a subset of X, then Y is an element of the field P(X), and the rel-
ativization of P(X) to Y is just the field P(Y). The relativizing homomor-
phism is the correspondence that takes each set P in P(X) to the set PNY.

For the next example, consider a field B of subsets of a set X, and let ¢ be
an arbitrary point of X. For each set P in B, let f(P) be 1 or 0 according as z
is, or is not, in P. To prove that the mapping f is a 2-valued homomorphism
on B, it suffices to verify identities (1) and (3). The definition of f, and the
definitions of the Boolean operations in a field of sets and in the Boolean
algebra 2, justify the following equivalences:

f(PNQ)=1 if and only if xo € PNQ,
if and only if xo9 € P and xg € Q,
if and only if  f(P)=1and f(Q) =1,
if and only if f(P)A f(Q) =1,
SO
F(PNQ)=f(P)Af(Q).
Similarly,
f(P)y=1 if and only if — xp € P/,
if and only if xg &€ P,
if and only if f(P)=0,
if and only if f(p) =1;

SO
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fP") = f(p)".
Observe that f(P) is equal to the value of the characteristic function of P
at xg.

For one more example, let ¢ be an arbitrary mapping from a non-empty
set X into a set Y, and let A and B be fields of subsets of X and Y respec-
tively. Write f = ¢!, or, more explicitly, for each P in B, let f(P) be the
inverse image of P under ¢:

f(P)={x€ X : ¢(x) € P}.

In general, the set f(P) will not belong to the field A. If f(P) isin A
whenever P is in B, then f is an A-valued homomorphism on B. The proof
is very similar to the one just given; it depends on the fact that intersections
and complements are preserved under the formation of inverse images. Here
are the details:

x e f(PNQ) if and only if  ¢(x) € PNQ,
if and only if  ¢(z) € P and ¢(x) € Q,
if and only if  z € f(P) and z € f(Q),
if and only if = € f(P)N f(Q);

SO
f(PNQ) = f(P)Nf(Q).
Similarly,
xe f(P") if and only if o(z) € P/,

if and only if  ¢(x) € P,

if and only if  z & f(P),

if and only if — z € f(P)’;
SO

f(P") = f(P)".

For purposes of reference we shall call the homomorphisms described in these
three examples the homomorphisms induced by pg, xo, and ¢, respectively.

Special kinds of Boolean homomorphisms may be described in the same
words as are used elsewhere in algebra. A monomorphism, also called an
embedding, is a homomorphism that is one-to-one: if f(p) = f(q), then p = q.
An epimorphism is a homomorphism that is onto: every element of A is equal
to f(p) for some p in B. A homomorphism that is a bijection, that is to say,
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it is both one-to-one and onto, is called an isomorphism. If there is an
isomorphism from one Boolean algebra onto another, the two algebras are
said to be isomorphic. An isomorphism from a Boolean algebra onto itself is
called an automorphism.

The existence of an isomorphism between Boolean algebras implies that
the algebras are structurally identical; they differ only in the “shape” of their
elements. For example, consider two sets X and Y with the same number
of elements; no assumptions are made about what the elements in X and Y
look like. The hypothesis implies the existence of a one-to-one mapping ¢
from X onto Y. The homomorphism induced by ¢ is an isomorphism from
the field P(Y) onto the field P(X); it maps each subset @ of Y to the subset

Q) ={re X ¢(z) € Q}

of X. Occasionally, it is more natural to use the inverse function ¢! in-
stead of ¢. In this case, since ¢~ maps Y one-to-one onto X, the induced
isomorphism maps P(X) onto P(Y), and takes each subset P of X to the
subset

¢(P) ={o(z) : z € P}
of Y. Conclusion: if two sets X and Y have the same number of elements, the
corresponding fields P(X) and P(Y') are isomorphic. The fact that the fields
are structurally identical is intuitively obvious; the intuition is substantiated
by the construction of a concrete isomorphism.

Here is another example of an isomorphism between Boolean algebras,
one that is at first glance perhaps less obvious. Consider the field of periodic
sets of integers of period 2. It has four elements, all but one of which are
infinite sets: the set E of even integers, the set O of odd integers, the set X
of all integers, and the empty set @. The arithmetic of this algebra is given
by the following tables for union, intersection, and complement:

Uleg|FEF|O|X N|lo|EFE|0|X !
g|lo | E|O|X o|\o|o|o| o o | X
E|E|E|X|X|, E|o|E|o|E|, E|O
O|0|X |0 |X O|lo|a|0|0 O | FE
X | X | X | X | X X o | EFE|O|X X | o

The field of all subsets of the two-element set {0, 1} also has four elements,
all of them finite sets: the singletons {0} and {1}, the pair {0,1}, and the
empty set . Its arithmetic is given by the tables
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U @ {oy | {1} 1{0,1}
Z Z {oy | {1} [{0,1}
for | {oy | {0}y [{0,1} |{0,1} | ,
(| {1y {01y | {1} [{0,1}
{0,1} | {0,1} | {0,1} | {0,1} | {0,1}

{o} | {1} | {o,1} '
1%} @ o] o] {0,1}
{oy| @ | {op |, {o} | {1}
o | {1} | {1} {1} | {o}
{o} | {1} | {0,1} {0,1} | @

{0}
{1}
{0,1}

OIENIRNIRNIRN

The forms of the elements of the two Boolean algebras are certainly quite
different. A comparison of the arithmetic tables, however, reveals that from
a structural point of view the two algebras are identical. More precisely, the
correspondence

g — O, E — {0}, O — {1}, X —{0,1}

transforms the tables of the first algebra into the tables of the second algebra;
it is therefore an isomorphism between the two algebras.

Isomorphisms preserve all structural properties of algebras. To show that
two Boolean algebras are not isomorphic, it suffices to find a structural prop-
erty of one of the algebras that is not shared by the other. For instance,
the field of finite and cofinite sets of rational numbers is not isomorphic to
the field of all subsets of the rational numbers because the first algebra is
countable, while the second has the power of the continuum. For a less triv-
ial example, consider the field of finite and cofinite subsets of the rational
numbers, and the interval algebra of the rational numbers. Both algebras
are countably infinite, but they are not isomorphic: the first algebra has an
infinite number of atoms, while the second algebra has none.

If B is a subalgebra of an algebra A, then the identity mapping — that
is, the mapping f defined for every p in B by f(p) = p — is a monomorphism
from B into A, and in particular the identity mapping on A is an automor-
phism of A. There is a natural way to define the product of (some) pairs of
homomorphisms, and it turns out that the identity mappings just mentioned
indeed act as multiplicative identities. The product (or composition) f o g
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of two homomorphisms f and g is defined in case A, B, and C are Boolean
algebras, f maps B into A, and g maps C into B; the value of f o g at each
element p of C' is given by

(fog)p) = f(9(p)).

If, moreover, h is a homomorphism from D, say, to C, then

folgoh)=(fog)oh,

that is, the operation of composition is associative.
If f is a Boolean isomorphism f from B to A, then its inverse, the func-
tion f~! from A to B defined by

fYr)y=p ifandonlyif  f(p)=r

for every r in A, is a Boolean isomorphism from A to B. For instance, to
show that f~! preserves meet, let r and s be two elements in A. There are
unique elements p and ¢ in B such that f(p) = r and f(q) = s. Consequently,

Froens) = A F@) = (Fona) =pAa= 1) A Fs).

The second equality holds because f preserves meet; the third and fourth
hold by the definition of the inverse of f. The arguments that f~! preserves
join and complement are similar.

Occasionally, one would like to show that a given Boolean algebra By
can be extended to a Boolean algebra B with certain desirable properties.
The actual construction, however, may not yield an extension of By, but
rather something weaker: a Boolean algebra A with the desired properties
and an isomorphism fy from By onto a subalgebra of A. The isomorphism
shows that By is structurally identical to its image Ay = fo(Bp). One would
therefore like to effect an “exchange”, by replacing Ag with By, so as to
obtain an actual extension of By with the desired properties. A difficulty
arises, however, because By may contain elements that also occur in A in a
structurally different and conflicting way. This obstacle may be overcome by
first replacing the elements of A— Ag with new elements having nothing to do
with By, and then effecting the exchange. The result is a Boolean algebra B
that contains By as a subalgebra and that is isomorphic to A via a mapping
that extends fp. The assertion that all of this works out as expected is called
the exchange principle.

Here are the details. Let A be the set of elements that are in A but not
in Ap. Choose a set (any set) B; with the same number of elements as A;
and with no elements in common with By. The assumption that By and A;
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have the same size means that there is a bijection f; from By to A;. (See
the diagram.) Take B to be the union of the sets By and Bj, and define a
mapping f from B to A by

_Jfolp) if peBo,
f(p)_{fl(p) it peB.

Then f is a well-defined bijection from B to A; the easy proof depends on the
facts that fy and f are bijections, and the sets By and B; are disjoint, as are
the sets Ap and A;. Turn B into a Boolean algebra by defining operations
of meet, join, and complement that are the counterparts, under f~!, of the
operations of meet, join, and complement in A. More precisely, to form the
meet, join, and complements of two elements p and ¢ in B, translate these
elements to A using the mapping f, form the meet, join, and complements
of the translations in A, and then translate the results back to B using f~!:

pAa= "1 fp) A f(9),
pVa=f"1(fp)V f(9),
p'= D))
The operations on the right sides of the equations are those of A, while the
ones on the left are the operations that are being defined on B. Under these

definitions, f automatically becomes a Boolean isomorphism from B to A.
For instance, f preserves meet because

fong) = F(F(fp) A F(0) = fp) A fq)
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The first equality holds by the definition of meet in B. The arguments that f
preserves join and complement are similar. It follows at once that B is the
inverse image of A under the isomorphism f~', and is therefore a Boolean
algebra with the same structural properties as A.

There is another matter to check: the operations of B, when restricted
to the elements of By, should coincide with the operations of By. In other
words, By should be a subalgebra of B. Consider, for instance, the opera-
tion of meet. Let p and ¢ be elements in By, and form their meet in B; a
straightforward calculation shows that this meet coincides with the meet of
the two elements in By:

pAg= 1) A (@) = fo (folp) A fola) = fo ' (folp A @) =p Ad.

(The first meet is formed in B, the second in A, the third in Ap, and the
fourth and fifth in By.) The first step uses the definition of meet in B; the
second step uses the fact that on elements of By, the mapping f coincides
with fy, and on elements of Ay, the mapping f~! coincides with fo L. and
the third step uses the isomorphism properties of fy. Join and complement
are handled in a similar fashion.

The function f maps B isomorphically to A. Its restriction to the sub-
algebra By coincides with fp, and therefore maps By isomorphically to Ag.
The discussion of the exchange principle is now complete.

An isomorphism between Boolean algebras preserves every infinite su-
premum and infimum that happens to exist, but in general a mere homo-
morphism will not do so. A homomorphism f is called complete in case it
preserves all suprema (and, consequently, all infima) that happen to exist.
This means that if {p;} is a family of elements in the domain of f with su-
premum p, then the family {f(p;)} has a supremum and that supremum is
equal to f(p). There is an interesting connection between complete monomor-
phisms and regular subalgebras: a monomorphism is complete if and only if
its range is a regular subalgebra. For later use, here is a more precise formu-
lation.

Lemma 1. A Boolean monomorphism f from B into A is complete if and
only if the image of B under f is a reqular subalgebra of A.

Proof. The image of B under the monomorphism f is certainly a subalgebra
of A; denote it by C. It is to be shown that C' is a regular subalgebra of A
just in case f is complete.

Assume first that C' is a regular subalgebra of A. To prove that f is com-
plete, consider an arbitrary family {p;} of elements in B with a supremum p.
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The mapping f is an isomorphism from B to C, so f(p) is certainly the su-
premum of {f(p;)} in C. It follows that f(p) is also the supremum of { f(p;)}
in A, since C' is a regular subalgebra of A.

For the reverse implication, suppose f is complete. To prove that C' is
a regular subalgebra of A, consider a family {¢;} of elements in C with a
supremum ¢ in C'; it is to be shown that ¢ is also the supremum of the family
in A. Since f is one-to-one, there are uniquely determined elements p; and p
in B such that

fpi)=a¢ and  f(p)=gq
The element p is the supremum of the family {p;} in B, because f is an
isomorphism from B to C. The completeness of f ensures that f(p) is the
supremum of { f(p;)} in A, and this directly implies the desired conclusion.

Exercises

1. Let f be the mapping from the Boolean algebra of finite and cofinite
subsets of an infinite set into 2 that takes each finite set to 0 and each
cofinite set to 1. Verify that f is a Boolean homomorphism.

2. Let f be a Boolean homomorphism from B into A, and suppose C is
a Boolean subalgebra of B. Prove that the restriction of f to C' is a
homomorphism from C into A.

3. Let f be a mapping from a Boolean algebra B onto an algebraic struc-
ture A with binary operations A and V, and a unary operation /. Com-
plete the proof that if f satisfies the identities (1)—(3), then A must be
a Boolean algebra with zero element f(0) and unit f(1).

4. Prove that if f is a Boolean homomorphism, then f(1) = 1.

5. Prove that a degenerate Boolean algebra cannot be mapped homomor-
phically into a non-degenerate one.

6. Prove that a mapping between Boolean algebras that preserves join and
complement is a Boolean homomorphism.

7. Prove that a mapping between Boolean algebras that preserves the
Sheffer stroke is a Boolean homomorphism.
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10.

11.

12.

13.

14.
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. Is every ring homomorphism between Boolean algebras a Boolean ho-

momorphism? What if it preserves 17

. If a mapping f between Boolean algebras preserves 0, 1, A, and V, is it

necessarily a Boolean homomorphism?

If a mapping f between Boolean algebras preserves order, is it neces-
sarily a Boolean homomorphism?

If a bijection f between Boolean algebras satisfies the order-preserving
equivalence

p<q ifandonlyif  f(p)< f(q)
for all p and ¢ in its domain, is f necessarily a Boolean isomorphism?

A dual isomorphism between Boolean algebras is a bijection f between
the algebras that satisfies the following conditions for all p and ¢ in its
domain:

fong) =fo)V @), fleve)=rf)Afl@, f')=Ffp)"

Prove that a bijection f is a dual isomorphism if and only if it satisfies
the order-reversing equivalence

p<gq if and only if f(p) > flq)

for all p and ¢ in its domain.
Suppose f is a bijection between two lattices. Show that the following
conditions on f are equivalent:
(a) f(pAq) = f(p)A f(q) for all p and ¢q in the domain of f;
(b) f(pVaq) = f(p)V f(q) for all p and ¢ in the domain of f;
(¢) p < ¢ if and only if f(p) < f(q) for all p and ¢ in the domain
of f.

A bijection satisfying one of these three conditions is called a (lattice)
isomorphism.

Suppose f is a bijection between two lattices. Show that the following
conditions on f are equivalent:

(a) f(pAq) = f(p)V f(q) for all p and ¢q in the domain of f;
(b) f(pVq)= f(p)A f(q) for all p and ¢ in the domain of f;
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15.

16.

17.

18.

19.

20.

21.

22.

(c) p < ¢ if and only if f(p) > f(g) for all p and ¢ in the domain
of f.

A Dbijection satisfying one of these three conditions is called a dual
(lattice) isomorphism.

If A, B, and C are lattices, and if f and g are (lattice) isomorphisms
from B to A, and from C' to B, respectively, then the composition fog is
an isomorphism from C' to A. What can be said when f and g are dual
isomorphisms (Exercise 14)? What if one of them is an isomorphism
and the other a dual isomorphism?

Suppose that both f and g are A-valued homomorphisms on B. Define
a mapping f V g from B into A by

(fVg)p) = f(p)V a(p)
Is fV g a homomorphism? What about f + g (defined similarly)?

If A is a relativization of a Boolean algebra B, prove that a subset of A
has a supremum in B if and only if it has a supremum in A, and if these
suprema exist, then they are equal. Conclude that a relativization of a
complete Boolean algebra is necessarily complete.

If A is a relativization of a Boolean algebra B, prove that an element
from A is an atom in A if and only if it is an atom in B.

The notion of a relativization of a Boolean algebra can be somewhat
extended. If B is a subalgebra of a Boolean algebra A, and if pg is
an element of A that is not necessarily in B, define the notion of the
relativization of B to pp. Show that this relativization is a homomorphic
image of B and a subalgebra of the relativization of A to pg.

Prove that a Boolean isomorphism maps every atom in the domain to
an atom in the range. Is the same true of a Boolean monomorphism?

Prove that the Boolean algebra of periodic sets of integers of period
three is isomorphic to the Boolean algebra of subsets of {0, 1,2}.

If sets X and Y have the same number of elements, prove that the field
of finite and cofinite subsets of X is isomorphic to the field of finite and
cofinite subsets of Y.
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23.

24.

25.

26.

27.

28.

29.

30.

Introduction to Boolean Algebras

Let A be the interval algebra of the real numbers, and let E be the
subset of A consisting of the intervals [n,n+1), where n ranges over the
integers. Prove that the subalgebra of A generated by £ is isomorphic
to the field of finite and cofinite sets of integers. (See Exercise 11.14.)

Let A be the field of finite and cofinite sets of integers, and B the
subfield of A consisting of the finite sets of even integers and their
complements. Are A and B isomorphic?

Are the field of all sets of real numbers and the Boolean algebra of
regular open sets of real numbers isomorphic?

Consider a Boolean homomorphism f from B into A. Prove that if By
is a subalgebra of B, then the image

f(Bo) ={f(p) : p € Bo}

is a subalgebra of A. Prove also that if Ay is a subalgebra of A, then
the inverse image

F 1 (Ao)={peB: fp) € Ao}

is a subalgebra of B. Conclude that if f is an epimorphism, then a
subset Ag of A is a subalgebra if and only if there is a subalgebra By
of B such that

Ao = f(Bo)-

Consider a Boolean isomorphism f from B into A, an arbitrary ele-
ment go in B, and the image element py = f(qo) in A. Prove that the
appropriate restriction of f maps the relativization B(qp) isomorphi-
cally to the relativization A(po).

Prove that if the range of an A-valued homomorphism f includes a set
of generators of A, then f is an epimorphism.

If f is a Boolean epimorphism from B to A, and if E' is a set of gener-
ators of B, prove that {f(p) : p € E} is a set of generators of A.

Prove that if E generates B, and if f and ¢ are A-valued homomor-
phisms on B such that f(p) = g(p) whenever p is in E, then f = g.
What if B is the complete algebra generated by E, and f and g are
complete homomorphisms?
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31.

32.

33.

34.

35.

36.
37.

38.

39.
40.

41.

Prove that if E generates B, and if pg is an arbitrary element of B,
then the set

F={qNpy:q€FE}
generates the relativization of B to py.

Prove that a necessary and sufficient condition for an arbitrary map-
ping f from a set B to a set A, and an arbitrary mapping ¢ from A
to B, to be bijections and inverses of one another is that the composi-
tions fog and go f be the identity functions on A and B respectively.

If f is a Boolean homomorphism from B to A, and g a Boolean homo-
morphism from C to B, prove that the composition f o ¢ is a Boolean
homomorphism from C to A.

Let f be a Boolean homomorphism. If a family {p;} of elements in the
domain of f has a supremum p, show that f(p) is an upper bound for
the family {f(p;)}. Conclude that if \/, f(p;) exists, then

\/ F(pi) < f(p).

Prove that a Boolean isomorphism preserves all suprema and infima
that happen to exist.

Prove that a complete homomorphism preserves all infima that exist.

If a Boolean homomorphism preserves all infima that happen to exist,
prove that the homomorphism must be complete.

Prove that the following condition is necessary and sufficient for a
Boolean homomorphism f to be complete: whenever a family {p;} of
elements in the domain of f has the infimum 0, then the family {f(p;)}
in the range of f has the infimum 0. (Compare this exercise with Ex-
ercise 11.22.)

Formulate and prove the dual to Exercise 38.

(Harder.) Give an example of an incomplete homomorphism between
complete Boolean algebras. Can such an example be a monomorphism?
An epimorphism?

Prove that a subalgebra B of a Boolean algebra A is regular if and only
if the identity mapping of B into A is a complete homomorphism.
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42.

43.

44.

Introduction to Boolean Algebras

Prove that if a subalgebra B of a complete Boolean algebra A happens
to be complete (considered as an algebra in its own right), then a
necessary and sufficient condition that B be a complete subalgebra of A
is that the identity mapping of B into A be a complete homomorphism.

(Harder.) Show that if a complete homomorphism has a complete do-
main, then its range is a regular subalgebra. What if the domain is not
complete?

(Harder.) Can Lemma 1 be generalized to arbitrary homomorphisms?
In other words, is the range of a homomorphism a regular subalgebra
if and only if the homomorphism is a complete homomorphism?



Chapter 13

Extensions of
Homomorphisms

A Boolean homomorphism f is called an extension of a Boolean homomor-
phism g if the domain of g is a subalgebra of the domain of f, and if

f(p) =9g(p)

for every p in the domain of g. If f is an extension of every member of a
family of homomorphisms, then f is said to be a common extension of the
family. A family of Boolean homomorphisms does not, in general, have a
common extension; there is, however, a special case when such an extension
does exist. Call a family {f;} of A-valued homomorphisms directed if any
two homomorphisms f; and f; in the family have a common extension fj in
the family.

Lemma 1. A directed family of A-valued homomorphisms always has a com-
mon extension to an A-valued homomorphism. If the homomorphisms in the
family are one-to-one, then so is the common extension.

Proof. Let {fi} be a directed family of A-valued homomorphisms. The do-
mains of these homomorphisms form a directed family of Boolean algebras,
by the assumption that any two homomorphisms in the family {f;} have a
common extension in the family. The union B of the domains is a Boolean
algebra, and each domain is a subalgebra of B (see Exercise 11.14). Define a
mapping f on B by

f(p) = fi(p)

S. Givant, P. Halmos, Introduction to Boolean Algebras, 105
Undergraduate Texts in Mathematics, DOI: 10.1007/978-0-387-68436-9_13,
(© Springer Science+Business Media, LLC 2009



106 Introduction to Boolean Algebras

whenever p is in the domain of f;. The mapping f is well defined in the sense
that it does not depend on the particular choice of the homomorphism f;.
Indeed, suppose p is also in the domain of f;. The two homomorphisms f;
and f; have a common extension fj, by assumption, so

fip) = fr(p) = fi(p).

It is easy to verify that f is a homomorphism from B into A. If p and ¢ are
elements in B, then p is in the domain of some f;, and ¢ is in the domain of
some f;j. The two mappings have a common extension f, by assumption; the
elements p and ¢, together with their join, are in the domain of the common
extension, and

floVva) = filpVaq) = filp) V fxla) = f(p) V fla),

by the definition of f and the homomorphism properties of fr. The verifica-
tion that f preserves complement is similar, but easier (there is no need to
pass to a common extension f):

f") = filp") = filp)' = f(p)".

An analogous argument shows that f is one-to-one whenever each map-
ping f; is one-to-one.

The lemma applies, in particular, to families of homomorphisms that are
linearly ordered by the relation of being an extension. Such families are called
chains. More precisely, a family {f;} of A-valued homomorphisms is called a
(homomorphism) chain if for any two members f; and f; of the family, one
of them is an extension of the other.

The action of a homomorphism on a Boolean algebra is completely de-
termined by its action on a generating set, as the following lemma shows.

Lemma 2. If two A-valued homomorphisms on a Boolean algebra B agree
on the elements of a generating set, they agree on all of B.

Proof. Suppose B is generated by a set E. Let f and g be A-valued homo-
morphisms on B that agree on E; in other words,

f(p) =g(p)

for every element p in E. Define C to be the set of elements in B on which f
and g agree. The set F is included in C, by assumption. Furthermore, if p
and ¢ belong to C, then so do p V ¢ and p’, since

flova)=fp)V fla) =9(p) Valg) =glpVa),
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and

f@")=f®) =9 =90"),

by the definition of C' and the homomorphism properties of f and g. Conclu-
sion: C'is a subalgebra of B that includes . The algebra B is, by assump-
tion, the smallest subalgebra of itself that includes F, so B must coincide
with C. It follows that f and g agree on all of B.

The preceding lemma suggests the problem of finding necessary and suffi-
cient conditions for an A-valued function on a set of generators of a Boolean
algebra to have an extension to an A-valued homomorphism. The solution
to the problem is usually called the homomorphism extension criterion, and
is due to Roman Sikorski [63]. (It generalizes an earlier result of Kuratowski
and Posament, given in Corollary 1 below.) The formulation of the criterion
requires some notation that was introduced before. For each element i of a

Boolean algebra, write
L 1 if 7=1,
p(i,j) = {

1/ if j=0.

Theorem 4. A mapping g from a generating set E of a Boolean algebra B
into a Boolean algebra A can be extended to a homomorphism from B into A
just in case for every 2-valued function a on a finite subset F' of E,

A pi,a(i) =0 implies  /\ p(g(i), a(i)) = 0.

i€F i€F
Proof. Assume that a mapping ¢ from E into A satisfies the extension crite-
rion formulated in the theorem. It must be shown that g can be extended to
an A-valued homomorphism on B. Consider, first, the case when E is finite.
The algebra B is then finite, its atoms are the non-zero elements of the form

Pa = /\ p(i, a(i))7
i€l
every atom of B can be written in exactly one way as such a meet, and every
element in B is the join of a uniquely determined set of atoms, by Theorem 2
(p. 81). Completely analogous remarks apply to the subalgebra C of A
generated by the set
9(E) ={9(q) : q € E}.

This generating set is finite, so C is finite, its atoms are the non-zero elements
of the form
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Ga = /\ p(g(i), (I(i)),
S
every atom of C' can be written in exactly one way as such a meet, and every
element in C' is the join of a uniquely determined set of atoms.
Let K be the set of 2-valued mappings a on F such that p, is non-zero.
Each element r in B can be written in the form

r= \/ Pa
acX

for a uniquely determined subset X of K, by Theorem 2. Define a function f
from B into C' by writing
= \/ qa-

acX
In other words, f takes \/,cx Pa to \,cx qu for each subset X of K.

If
r:\/pa and s:\/pa,
aceX acY
then
rVvs= \/ Pas
acXUY

by Theorem 2 (see, in particular, equation (11.7)), and therefore
feve) =\ a=(V a)v(Va)=rmvie.
aEXUY aeX acy

This argument shows that f preserves join.

The argument that f preserves complement is similar, but it makes use
of the extension criterion. Let X be a subset of K, and write X’ for the
complement of X with respect to K. It follows from Theorem 2 (see, in
particular, equation (11.8)) that the two elements

\/ pa and \ pa

acX ae X'

are complements of one another. An analogous argument shows that

\/ da and \/ da

aeX aeX’
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are complements of one another. Technically, the notation X’ in the final
join refers to the complement of X with respect to the set L of all 2-valued
mappings a on E such that g, is not zero. The key point, however, is that L is
a subset of K, by the extension criterion, and g, = 0 whenever a is not in L,
by the definition of L. Consequently, the last two joins remain complements
of one another when X' is interpreted as referring to the complement of X

in K. If
r= \/ Das then r’ = \/ Pa,
acX acX’
and therefore
F0) =V aa=(\ @) =F0)",
aceX’ aceX

by the preceding observations. In other words, f preserves complement.
Conclusion: f is a homomorphism from B into C, and therefore into A.

It remains to demonstrate that f agrees with g on £. An element r in F
can be written as

r = p(r,b(r)),
where b is the function from {r} into 2 that maps r to 1. The proof of
Theorem 2 (equation (11.9) with F' = {r}) shows that

r= \/{Pa :a € K and a extends b} = \/{pa ca€ K and a(r) =1}

Similarly, the element ¢(r) is in g(F) and

An analogous argument shows that
g(r) = \/{qa :a € K and a extends b} = \/{qa ca € K and a(r) = 1}.

(Technically, equation (11.9) yields the preceding identities for g(r) with the
set L — described in the preceding paragraph — in place of K. However, L
is a subset of K, and ¢, = 0 for a in K — L, so L may be replaced by K
without affecting the validity of the identities.) These observations combine
with the definition of f to give

f(r)= \/{qa ca € K and a(r) =1} = g(r).

The proof that g can be extended to an A-valued homomorphism when the
generating set F is finite is thus complete.
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Consider, next, the case of an arbitrary generating set E. For each finite
subset F' of E, let Bp be the subalgebra of B generated by F, and let gp
be the restriction of the mapping g to F. Because g satisfies the extension
criterion, its restriction gp must satisfy a restricted extension criterion in
which the set E is replaced by F. The first part of the proof shows that
there is an A-valued homomorphism fr on B that extends gp. The family
of homomorphisms

{fF : F is a finite subset of E'}
is directed. Indeed, consider two finite subsets F' and G of E. Their union
H=FUG

is also a finite subset of E. The subalgebra By includes Bp, because its
generating set H includes the generating set ' of Br. In other words, the
domain of f includes the domain of fr. Both fg and frp agree with g on
the elements of F', so fr and the restriction of fy to Br must be equal, by
Lemma 2. This just means that fz; extends fr. The proof that ff; extends fa
is similar.

Every directed family of homomorphisms has a common extension, by
Lemma 1. There is consequently a homomorphism f that extends each of the
homomorphisms fr. The domain of f is the union, over all finite subsets F
of E, of the directed family of subalgebras Bp. This union is a subalgebra
of B, by Lemma 11.1, and it includes the generating set E, because it in-
cludes each finite subset of E. The union must therefore coincide with B.
Conclusion: f is an A-valued homomorphism on B that agrees with g on
each finite subset of E, and therefore agrees with g on all of E.

The converse implication of the theorem is easier to establish. Suppose a
mapping ¢ from E into A can be extended to an A-valued homomorphism f
on B. It is to be shown that g necessarily satisfies the extension criterion. A
simple example should suffice to illustrate the general argument. Suppose F'
consists of three elements in F, say r, s, and ¢, and suppose a is the 2-valued
function on F' that assigns the value 1 to s, and the value 0 to both r and ¢.
Then

/\ p(iya(i)) =r"AsAt

el

and
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The homomorphism properties of f, and the fact that f extends g, imply
fFa'nsnt')y=Ffr) Af(s)AFE) =g(r) Agls) Ag(t)'.
If, therefore,
r'"AsAt' =0, then  g(r)' Ag(s)Ag(t) =0,

since f(0) = 0.
In the case of an arbitrary finite subset F' of F, and an arbitrary 2-valued
function a on F, write

Pa = /\ p(i, a(l)) and da = /\ p(g(i), a(z))
i€F i€l

An argument similar to the one in the preceding paragraph shows that

f(pa) = da-

When p, = 0, the homomorphism properties of f imply ¢, = 0, so that the
extension criterion is satisfied.

A minor addition to the preceding argument yields a monomorphism ex-
tension criterion that, in its application to fields of sets, goes back to Kura-
towski and Posament [39].

Corollary 1. A mapping g from a generating set £ of a Boolean algebra B
into a Boolean algebra A can be extended to a monomorphism from B into A
just in case, for every 2-valued function on a finite subset F' of I,

A pli,a@)) =0 if and only if — /\ p(g(i),a(i)) = 0.

icF i€l
Proof. Assume the monomorphism extension criterion is satisfied, and con-
sider first the case when the generating set E is finite. Recall from the
preceding proof that K is the set of 2-valued functions a on F such that

Pa = /\ p(lv CL(Z))
1€ER
is not zero. Every element in B can be written in one and only one way as a
join of elements (and actually atoms) p, with a from K, by the definition of K.
The monomorphism criterion implies that K is also the set of functions a such
that

Ga = /\ p(g(i), a(Z))

)
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is not zero, and consequently that every element in the subalgebra of A
generated by ¢g(FE) can be written in one and only one way as a join of
elements (and actually atoms) g, with a in K. In other words, for subsets X
and Y of K,

\/ Qo = \/ Qa if and only if X=Y,
acX acY

if and only if \/ Pa = \/ Pa-
acX acY

The extension homomorphism f is defined to map \/,c x Pa t0 V¢ x a; SO it
must be one-to-one.

Consider now the case of an arbitrary generating set . The preceding
argument shows that for each finite subset F' of E, the extension homomor-
phism fp from Bp (the subalgebra of B generated by F') into A is one-to-one.
Since the common extension of a directed family of one-to-one homomor-
phisms is one-to-one, by Lemma 1, the common extension f of the directed
family of monomorphisms {fr} must be one-to-one.

To prove the converse direction of the corollary, assume f is a monomor-
phism from B into A that extends the mapping g. We saw in the preceding
proof that f(ps) = g, for each 2-valued function a on a finite subset of E.
Because f(0) = 0, it follows from the one-to-oneness of f that p, = 0 if and
only if ¢, = 0. In other words, the monomorphism extension criterion is
satisfied.

Suppose C' is a Boolean subalgebra of B. It is natural to look for condi-
tions under which a homomorphism ¢ from C' into A can be extended to a
homomorphism from B into A. One such condition is very easy to formulate:
it suffices that the Boolean algebra A be complete. To prove this assertion
it is helpful to establish first a special case. Call B a one-step (Boolean)
extension of C' if B is generated by C' U {r} for some element r. (The case
when r is in C' is not excluded, and in this case B = C.)

Lemma 3. A Boolean homomorphism into a complete Boolean algebra can
be extended to any one-step extension of its domain.

Proof. Let g be a homomorphism from a Boolean algebra C' into a complete
Boolean algebra A, and suppose B is a one-step extension of C' generated, say,
by CU{r}. The goal is to find an element s in A such that the homomorphism
extension criterion is satisfied when s is taken for g(r) and E = CU{r}. The
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set C' is closed under complements and meets, so the extension criterion can
be formulated more simply: for all elements p in C,

pAr =0 implies g(p)As=0
and

pAr' =0 implies g(p)As' =0.

The first implication says that » < p’ implies s < g(p’); because C is closed
under complement, this is equivalent to saying that r» < ¢ implies s < g(q).
(Recall, in this connection, that g(p)’ = g(p’), by the homomorphism prop-
erties of g.) The second implication says that p < r implies g(p) < s. We are
therefore looking for an element s in A such that

(1) p<r<gq implies g9(p) < s<glq)

for all p and ¢ in C.
Write

P={g(p):peCandp<r} and Q={g(q):q€Candr <gq}.

The supremum s; of P, and the infimum so of ), both exist in the com-
plete algebra A. The homomorphism properties of g imply that g(p) < g(q)
whenever p and ¢ are elements of C' with p < r < ¢. Every element of @)
is therefore an upper bound of P. The element s; is the least upper bound
of P, so it is below every element of (). In other words, s; is a lower bound
of Q). The greatest lower bound of @ is s2, so 51 < so. Take s to be any
element in A satisfying s1 < s < s5. Then

g(p) < s1 <5< s2<9(q)

whenever p and ¢ are elements in C' satisfying the hypothesis of (1).

The desired element s has been found. The discussion in the first para-
graph of the proof shows that the homomorphism extension criterion is sat-
isfied. Theorem 4 now guarantees the existence of a homomorphism f from
B into A that agrees with g on C' and maps r to s.

Each choice of an element s in A satisfying condition (1) determines a
homomorphism from B into A that extends g and maps r to s. Different
choices for s lead to different extensions, so the extension homomorphism f
is in general not unique.

The next theorem, due to Sikorski [58], is usually called the homomor-
phism extension theorem. It says that homomorphisms into complete Boolean
algebras can always be extended.
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Theorem 5. A Boolean homomorphism into a complete Boolean algebra can
be extended to any Boolean extension of its domain.

Proof. Let g be a homomorphism from a Boolean algebra C' into a complete
Boolean algebra A, and let B be a Boolean extension of C'. Enumerate the
elements of B in a (possibly) transfinite sequence {p;}i<, indexed by the
set of ordinals less than a given ordinal number «. Define a corresponding
transfinite sequence { f;}i<o of A-valued homomorphisms with the following
properties: (1) fo = g; (2) f; is an extension of f; whenever j > i; (3) p; is
in the domain of f;; 1. We shall write B; for the domain of f;.

The definition of the sequence of homomorphisms proceeds by transfinite
induction on ordinals. The base case is completely determined by condi-
tion (1): put fo = g; then fj is an A-valued homomorphism, by assumption,
and conditions (2) and (3) hold vacuously. For the induction step, consider
an ordinal k& < «, and suppose A-valued homomorphisms f; have been de-
fined for i < k so that the family { f;};<x satisfies conditions (1)—(3). When k
is a successor ordinal, say k = i + 1, take Bj to be the one-step extension
of B; generated by B; U {p;}. The homomorphism f; from B; into A can be
extended to a homomorphism fj, from By into A, by Lemma 3. When k is a
limit ordinal, invoke Lemma 1 (for chains) to obtain an A-valued homomor-
phism fj that is a common extension of the homomorphisms f; for ¢ < k.
The domain of fj is the union of family of domains {B;};<; (this union is
a subalgebra of B, by Lemma 11.1); fj is defined at each element p in its
domain by

fr(p) = fi(p)
whenever p is in B;. This completes the construction of the family { f;}i<a-
The algebra B coincides with the domain of f,. Indeed, if p is any
element of B, then p = p; for some ordinal ¢, so p is in the domain of f;11, by
condition (3). Consequently, p is in the domain of f,, by condition (2). The
mapping f, is a homomorphism of B, into A, by construction. It extends
each homomorphism f;, by condition (2), so it extends g, by condition (1).

Exercises

1. Prove that the common extension of a directed family of one-to-one A-
valued homomorphisms is one-to-one.
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2. Prove directly, without using Lemma 1, that a chain of A-valued homo-
morphisms has a common extension to an A-valued homomorphism.

3. Suppose the set E in Theorem 4 consists of just two elements, say u
and v. Use the definition of the function f in the proof of the theorem
to show directly that

fu) =g(u),  flunv)=glu)Aglv),  fluVv)=g(u)Vg),
f)=g), flurv')=gu)Ag), fluve')=g(u)Vg),
f')y=g@)', fu'Av)=g(u) Agv), flu'Vvv)=g(u)Vg(v),
f") =g@)', flu' Av") =g(u) Ag)', flu' V') =g(u)Vg(v)

4. Let g be a mapping from a subset E of a Boolean algebra B into a
Boolean algebra A. Prove that when the set E is finite, the homomor-
phism extension criterion,

A pli,a@) =0 implies A p(g(i),a(i)) =0

el 1€l
for all finite subsets F' of E, is equivalent to a restricted version in
which the implication is assumed to hold only for the set F' = E:

A\ pli,a(@) =0 implies A p(g(i), a(i)) = 0.
ick ick
5. Let g be a mapping from a subset F of a Boolean algebra B into a

Boolean algebra A. Prove that when the set FE is finite, the monomor-
phism extension criterion,

/\ p(i,a(i)) =0 if and only if /\ p(g(i),a(i)) =0

1€l S
for all finite subsets F' of E, is equivalent to a restricted version in
which the equivalence is assumed to hold only for the set F' = E:

A pli,a@) =0 ifandonlyif  /\ p(g(i),a(i)) = 0.
icE icE
6. Let E = {p1,p2,p3,...} be a countably infinite subset of a Boolean
algebra B, and g a mapping from E into a Boolean algebra A. Write
E’rl - {p17p27 cee 7pn}

for each positive integer n. Prove that the homomorphism extension
criterion is equivalent to a restricted version in which the equivalence
is assumed to hold only for the sets F' = E,:
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A\ p(i.a(i)) =0  implies N p(9(i), a(i)) =0

i€Ep i€Ey

for all positive integers n.

Formulate and prove the analogue of Exercise 6 for the monomorphism
extension criterion.

(Harder.) Construct the homomorphism f in the proof of Lemma 3 di-
rectly, without using the homomorphism extension criterion and with-
out making implicit use of the directed family construction from The-
orem 4.



Chapter 14

Atoms

The most natural field of subsets of a set is the field of all its subsets. Does
that field have a simple algebraic characterization? The answer is yes; the
purpose of this chapter is to exhibit such a characterization.

An atom of a Boolean algebra is an element that has no non-trivial proper
subelements. Better: ¢ is an atom if ¢ # 0 and if there are only two elements p
such that p < ¢, namely 0 and ¢. A typical example of an atom is a singleton
in a field of sets. In the Boolean algebra 2%, the atoms are the characteristic
functions of singletons — the functions that map a single element of X to 1
and the remaining elements of X to 0.

There are a number of characterizations of atoms. Here are some of the
more useful ones.

Lemma 1. The following conditions on an element q in a Boolean algebra
are equivalent:

1) q is an atom,;

2) for every element p, either ¢ < p or ¢ A p =0, but not both;

4

(1)

(2)

(3) for every element p, either ¢ < p or g < p’, but not both;
(4) ¢ #0, and if q is below a join p\V r, then ¢ <p or q <r;
(5)

5) q # 0, and if q is below the supremum of a family {p;}, then q is below p;
for some 1.

Proof. The proofs of most implications are automatic. To see, for example,
that (2) implies (5), argue by contraposition. Let p be the supremum of a
S. Givant, P. Halmos, Introduction to Boolean Algebras, 117
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family {p;}, and suppose ¢ is not below any element p;. Then ¢ A p; = 0 for
each index ¢, by condition (2), so ¢ Ap = 0, by Lemma 8.3. In other words,
either ¢ = 0 or ¢ is not below p.

An element in a Boolean algebra may not be the supremum of a set of
atoms, but if it is, that set is uniquely determined.

Lemma 2. If an element p in a Boolean algebra is the supremum of a set of
atoms E, then E s the set of all atoms below p.

Proof. Assume p is the supremum of a set of atoms E. Certainly, every
element in E is below p, by the definition of a supremum. If r is an arbitrary
atom below p, then r is below some atom ¢ in F, by Lemma 1. It follows
from the minimality of atoms that r = ¢, and therefore that r is in E.

A Boolean algebra is said to be atomic if every non-zero element domi-
nates at least one atom. A Boolean algebra is atomless if it has no atoms.
(Note that these two concepts are not just the negations of one another.) A
field of sets is usually (but not always) atomic: the field of all subsets, or
the finite—cofinite algebra, of a set are obvious examples. A counterexample
is the interval algebra of the real numbers; it is atomless. The regular open
algebra of a topological space X is quite likely to be atomless; the absence of
separation axioms and the presence of isolated points is likely to introduce
atoms (see, for example, Exercise 29.31).

The next lemma essentially goes back to Tarski [71].

Lemma 3. The following conditions on a Boolean algebra are equivalent.
(1) The algebra is atomic.
(2) Every element is the supremum of the atoms it dominates.
(3) The unit is the supremum of the set of all atoms.

Proof. The statement in (2) is intended to convey the information that the
supremum in question always exists (without any assumption of complete-
ness). Observe also that even the zero element does not have to be excluded
from the statement. Now for the proof that (1) implies (2): begin with the
trivial comment that each element p is an upper bound of the set, say E, of
the atoms that it dominates. It is to be proved that if r is an arbitrary upper
bound of E, then p < r. Assume that, on the contrary, p — r # 0. It follows
from the assumption of atomicity that there exists an atom ¢ with ¢ < p—r.



14 Atoms 119

Since p — r < p, the atom ¢ belongs to E, and is therefore below r. Conse-
quently,

g<(p—r)Ar=pAr' Ar=0,
and this contradicts the fact that ¢ is an atom.
The implication from (2) to (3) is trivial. To prove that (3) implies (1),
let £ be the set of all atoms, and p an arbitrary non-zero element, of the
Boolean algebra. Then

p=pAl=pA\/E=\/{prq:qeE},

by Lemma 8.3. Because the element p is not zero, the preceding equalities
show that there is at least one atom ¢ in F for which p A ¢ # 0. For such an
atom ¢, we must have p A ¢ = ¢, by the minimality of atoms, and therefore

q<p.

The axioms of Boolean algebra were selected in order to capture the basic
properties of fields of sets. Do they fulfill this task? There are a number of
ways to answer this question. One way is to answer another question, the
so-called representation problem: is every Boolean algebra isomorphic to a
field of sets? An isomorphism from a Boolean algebra A to a field of sets
is called a representation of A. Equivalently, a representation of A (over a
set X) is an embedding of A into the field P(X). A representation that
preserves all existing suprema as unions (and hence all existing infima as
intersections) is said to be complete. In other words, a representation f is
complete if whenever {p;} is a family of elements with a supremum p, then

1) =

In the case when f represents A over a set X, the preceding condition is
equivalent to saying that f is a complete monomorphism of A into P(X).

We shall see later that the representation problem has a positive solu-
tion. For now, we prove a special representation theorem (essentially due to
Tarski [71]) for atomic Boolean algebras.

Theorem 6. Let A be an atomic Boolean algebra, and X its set of atoms.
The correspondence

p—{geX:q<p}
is a complete representation of A over X.
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Proof. Let f be the mapping on A that takes each element p to the set of
atoms below p. It is easy to see that f is one-to-one: if f(p) = f(r), then p
and r dominate the same set of atoms, say F, and consequently

p:\/E:r,

by Lemma 3.

The proof that f preserves arbitrary suprema is only slightly more in-
volved. Let {p;} be a family of elements in A with supremum p. It is to be
shown that f(p) is the union of the sets f(p;). For an arbitrary atom ¢ in A,

g€ f(p) ifandonlyif g¢<p,
if and only if q < p; forsome 1,

if and only if ¢ € f(p;) for some i,
if and only if g €| f(py).

The first and third equivalences use the definition of f, the second equivalence
uses Lemma 1, and the last equivalence uses the definition of the union of a
family of sets. Since f(p) and J, f(p;) are sets of atoms, it follows that

£0) = U 1)

as desired.

The preceding argument establishes, in particular, that f preserves the
join of any two elements. A similar argument shows that f preserves com-
plement: for any atom ¢ in A,

g€ f(p') ifandonlyif ¢<p/

if and only if q £ p,

if and only if q¢ f(p),
if and only if qe f(p).

The first and third equivalences use the definition of f, the second equivalence
uses Lemma, 1, and the last equivalence uses the definition of the complement
of a set. Since f(p’) and f(p)’ are sets of atoms, it follows that
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The preceding theorem can be used to give an algebraic characterization
(due to Tarski [71]) of the Boolean algebras that are isomorphic to a field of
all subsets of some set.

Corollary 1. A necessary and sufficient condition that a Boolean algebra A
be isomorphic to the field of all subset of some set is that A be complete and
atomic.

Proof. The necessity of the conditions is obvious: every field of all subsets of
a set is complete and atomic, and so is every isomorphic copy of such a field.
Suppose now that A is a complete and atomic Boolean algebra, and let X
be the set of all atoms of A. The mapping f that takes each element in A to
the set of atoms it dominates is a complete monomorphism of A into P(X),
by the preceding theorem. It remains to check that f maps A onto P(X).
If ' is an arbitrary subset of X, then the assumed completeness of A implies
that F has a supremum p in A. Since F is a set of atoms with supremum p, it
must be the set of all atoms below p, by Lemma 2. Consequently, f(p) = E,
by the definition of f.

A closer examination of the proof of Theorem 6 and its corollary reveals
that only two properties of the Boolean algebra A and the field P(X) are
used to establish their isomorphism: they are complete, and they have the
same number of atoms. Thus, a more general theorem is actually true.

Corollary 2. Two complete, atomic Boolean algebras with the same number
of atoms are isomorphic. In fact, every bijection between the sets of atoms
extends to an isomorphism between the algebras.

Proof. Let A and B be complete and atomic Boolean algebras with sets of
atoms X and Y respectively. Then A is isomorphic to the field P(X) via the
mapping f that takes each element of A to the set of atoms it dominates.
Similarly, B is isomorphic to the field P(Y') via the mapping g that takes each
element of B to the set of atoms it dominates. Suppose that the two algebras
have the same number of atoms, so that X and Y have the same cardinality.
Let ¢ be any bijection from X to Y, and take h to be the isomorphism
from P(Y) to P(X) induced by ¢ (see Chapter 12):

h(Q) =971 (Q)={pe X : 4(p) € Q}
for each subset @ of Y. The composition
k=g loh™tof
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is an isomorphism from A to B:

AL px)y L pyy L B

For each atom ¢ of A,

ka) =g (0 (f(@) =97 (0 ({a}) = g7 ({(a)}) = ¢(a),
by the definition of f, h, and g. Therefore, k extends the bijection ¢.

It is occasionally useful to have a more direct formulation of the definition
of the isomorphism k from the preceding proof. The isomorphism f maps
each element p in A to the set P of atoms below p, and the isomorphism g
maps each element ¢ in B to the set () of atoms below ¢. The inverse
isomorphism ¢! therefore maps the set of atoms @ in B to its supremum:

9@ =\Q=q¢

The isomorphism h~! maps the set P of atoms in A to the corresponding set
in B, under the bijection ¢:

h 1 (P) = ¢(P) = {¢(r) : 7 € P} = {¢(r) :  is an atom in A and r < p}.

These observations lead easily to an explicit formula for k(p):

k(p) =g~ (W71 (f(p) = g~ (W71 (P)) = g~ (&(P))
= \/qﬁ(P) = \/{(b(r) : 7 is an atom in A and r < p}.

In words, £ maps each element p to the supremum of the images, under the
bijection ¢, of the atoms below p.

In general, an infinite Boolean algebra is neither complete, nor completely
distributive. An exception is provided by the field of all subsets of an infinite
set, which has both properties. In fact, these two properties actually charac-
terize the Boolean algebras that are isomorphic to the field of all subsets of
some set. (The characterization is due to Tarski [71].)

Theorem 7. A Boolean algebra is isomorphic to the field of all subsets of a
set if and only if it is complete and completely distributive.

Proof. The field of all subsets of a set is complete and completely distributive,
so every isomorphic copy of such a field has the same properties. To prove the
converse, let A be a complete and completely distributive Boolean algebra.
By Corollary 1, it suffices to prove that A is atomic. The proof is a kind of
infinitary version of part of the proof of Theorem 2.
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Take I to be A, and write
o 1 if j=1,
Z’ =
p(i.J) {i/ if =0,
for each 7 in I. Since

\/ p(i,5) = p(i, 1) v p(i,0) =i vi' =1
Jje2
for every 1, it follows that

/\ \/p(lvj) =1,

icl je2

/' Aplia(i) =1,

ae2! i€l

and consequently that

by the assumed complete distributivity (8.3) of A. The proof will be com-
pleted by demonstrating that each non-zero element of the form A, ; p(i, a(i))
is an atom; the preceding equation then implies that the unit is a sum of
atoms, so A is atomic, by Lemma 3.

Suppose, accordingly, that

q= /\p(ia CL(’L)) # 0.

el
Notice that ¢ is a well-determined element, by the assumption that A is
complete. Let 7 be an arbitrary element of A. If a(r) = 1, then

p(?“, CL(’I")) = p(?”, 1) =r
and therefore ¢ < r. If a(r) = 0, then

p(T, CL(T)) = p(T‘, O) =7

and therefore ¢ < r’. Both inequalities cannot hold simultaneously, since g
is not zero. It now follows from Lemma 1 that ¢ is an atom.

Theorem 7 and Corollary 1 together yield the following conclusion (due
to Lindenbaum and Tarski; see [71]).

Corollary 3. A complete Boolean algebra is atomic if and only if it is com-
pletely distributive.
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A subalgebra of an atomic Boolean algebra need not be atomic. For
example, the interval algebra of the real numbers is a subfield of the field of
all sets of reals numbers, but it is not atomic. This situation cannot arise
when the subalgebra in question is a regular subalgebra (as was observed by
Hirsch and Hodkinson [26]).

Lemma 4. A regqular subalgebra of an atomic Boolean algebra is atomic.

Proof. Let A be an atomic Boolean algebra, and B a regular subalgebra of A.
It is to be shown that for every non-zero element p in B, there is an atom
in B below p. The algebra A is atomic, by assumption, so it contains an
atom ¢ that is below p. Write

E={reB:q<r (in A)}.

The set E contains p, since ¢ < p. Furthermore, for each element r in B,
exactly one of r and r’ is in E; indeed, ¢ is an atom, so it is below exactly
one of r and 7/, by Lemma 1. Finally, and most importantly, the set F has
a non-zero lower bound in B. To see this, assume to the contrary that no
such lower bound exists. The element 0 is clearly a lower bound of E, so it
must be the greatest lower bound of ' in B. Consequently, 0 is the greatest
lower bound of F in A, by the assumption that B is a regular subalgebra
of A. This contradicts the fact that ¢ is a non-zero lower bound of F in A.

Let s be a non-zero lower bound of E in B. For each element r of B,
exactly one of r and r’ is in E, and therefore exactly one of these two elements
is above s, by the definition of £. Thus, s is an atom of B, by Lemma 1.
Also, s is below p, since p is in F.

Theorem 6 guarantees that an atomic Boolean algebra — complete or not
— always has a complete representation. The converse (due to Hirsch and
Hodkinson [25]) is also true.

Theorem 8. A Boolean algebra with a complete representation is necessarily
atomic.

Proof. Let A be a Boolean algebra, and suppose f is a complete representa-
tion of A, say over the set X. This means that f is a complete monomorphism
of A into the field P(X). Write B for the range of A under f. The assump-
tion that f is complete implies that B is a regular subalgebra of P(X), by
Lemma 12.1. The field P(X) is obviously atomic, so the regular subalge-
bra B must be atomic, by the preceding lemma. Since A is isomorphic to B
via the mapping f, it must also be atomic.
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Does every Boolean algebra have a complete representation? The pre-
ceding theorem implies that the answer is, in general, negative. An algebra
with such a representation would have to be atomic, and as we have already
seen, there are many Boolean algebras that are very far from being atomic.
In fact, the Boolean algebra of regular open subsets of R™ and the interval
algebra of the real line are both atomless.

The notion of an atom was first introduced by Schréder in §47 of [52],
under the name “Individuum”. The term “atom” appears to be due to
Tarski [71].

Exercises

1. What are the atoms of the field of sets of integers of period four (see
Chapter 5, and in particular Exercise 5.3)7 Show directly that every
element in this field is a join of atoms.

2. Write out a complete proof of Lemma 1.

3. Prove that a field of all subsets of a set is complete and completely
distributive.

4. Prove that a Boolean algebra is atomless if and only if for each non-zero
element g, there is a non-zero element p that is strictly below ¢ (in the
sense that p < ¢ and p # q).

5. Prove directly (without using Corollary 3 or the results of Chapter 11)
that every finite Boolean algebra is atomic. (This theorem is due to
Huntington [28]. Since a finite algebra is obviously complete and com-
pletely distributive, Corollary 3 would yield the desired conclusion at
once. The conclusion is too elementary, however, to deserve such a
relatively high-powered treatment.)

6. Prove directly (without using either Theorem 6 and its corollaries, or
the results of Chapter 11) that the total number of elements in every
finite Boolean algebra is a power of 2, and that two finite Boolean
algebras with the same number of elements must be isomorphic. (This
theorem is due to Huntington [28].)

7. (Harder.) Prove that if p is a non-zero element of an atomic Boolean
algebra A, then there exists a 2-valued homomorphism f on A such

that f(p) = 1.
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10.

11.
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(Harder.) Characterize the topological spaces whose regular open alge-
bras are (1) atomic, (2) atomless.

(Harder.) Does the set of all atoms in a Boolean algebra always have
a supremum?

(Harder.) Show that the hypothesis of completeness in Corollary 3 is
superfluous. In other words, show that an arbitrary Boolean algebra is
atomic if and only if it is completely distributive. (This improvement
is pointed out in Horn and Tarski [27], which refers to the proof of
Theorem 7 given in Birkhoff [7].)

Use Exercise 12 to give another proof of Theorem 8. Conclude that
the following conditions are equivalent in a Boolean algebra A: (1) A
is atomic; (2) A is completely distributive; (3) A is completely repre-
sentable.
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Finite Boolean Algebras

The observations of the previous chapter yield a complete description (due to
Huntington [28]) of all finite Boolean algebras. In formulating this description
it is helpful to use the von Neumann definition of the natural number n as
the set {0,1,...,n—1}.

Lemma 1. A finite Boolean algebra is atomic.

Proof. Tt is to be shown that every non-zero element p is above an atom.
If p itself is an atom, we are done. If not, then there must be a non-zero
element p; strictly below p. If p; is an atom, then again we are done. If not,
there must be a non-zero element p, strictly below p;, and so on. Eventually
this process must lead to an atom below p; otherwise, the Boolean algebra
would have an infinite, strictly descending chain of elements, contradicting
the assumption that the algebra is finite.

The number of atoms in a finite Boolean algebra uniquely determines the
isomorphism type of the algebra.

Corollary 1. Every finite Boolean algebra A is isomorphic to the field P(n),
or, equivalently, to the Boolean algebra 2", for some non-negative integer n.
In fact, n is the number of atoms in A.

Proof. A finite Boolean algebra A is atomic, by the preceding lemma, and it
is obviously complete. Let n be the number of atoms in A. The field P(n)
is also atomic with the same number of atoms — its atoms are the single-
tons {0},...,{n — 1} — and it is also complete. Two complete, atomic
Boolean algebras with the same number of atoms are isomorphic, by Corol-
lary 14.2. Consequently, A and P(n) are isomorphic; in fact, any bijection
S. Givant, P. Halmos, Introduction to Boolean Algebras, 127
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between the sets of atoms extends to an isomorphism between the two alge-
bras. The assertion that A and 2" are isomorphic follows from the observation
(Chapter 3) that P(n) and 2" are isomorphic via the mapping that takes each
subset of n to its characteristic function.

How many Boolean algebras are there of a given finite size? If the size
is not a power of two, the answer is zero, by the preceding corollary. If the
size is a power of two, the answer is one, provided that isomorphic Boolean
algebras are treated as being the same. Certainly, there is a Boolean algebra
of size 2", namely the Boolean algebra 2". That there is only one such
algebra, up to isomorphic copies, follows from the next corollary.

Corollary 2. Two finite Boolean algebras with the same number of elements
are isomorphic.

Proof. Consider two finite Boolean algebras A and B with the same number
of elements. Both algebras are atomic, by Lemma 1; say A has m atoms
and B has n atoms. It follows from Corollary 1 that A is isomorphic to the
Boolean algebra 2™, and B is isomorphic to the Boolean algebra 2. The
two algebras are assumed to have the same size, so we must have m = n.
Consequently, A and B are isomorphic to the same Boolean algebra, so they
are isomorphic to each other.

Simply put, the finite Boolean algebras are, up to isomorphic copies,
precisely the algebras 2°, 2!, 22, 23 ... These algebras can be thought of as
forming a subalgebra chain, since the algebra 2" can be embedded into the
algebra 2" whenever m < n. The proof of this last observation is perhaps
easiest to grasp if one considers the fields P(m) and P(n) instead of the
corresponding powers of 2. Let ¢ be the mapping from n to m defined by

) i if 0<i<m,
1) =
9 (i) {m—l if m<i<n.

Then ¢ induces a homomorphism from P(m) to P(n), namely the function f
determined by

P if m—1&P,

f(P):¢_1(P):{Pu{m...n—1} if m—1eP

for each set P in P(m) (see Chapter 12). Notice that
f(P)nm=P.
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Consequently, if f(P) = f(Q), then
P=f(P)Nnm=f(Q)Nm=Q,

which proves that f is one-to-one, and hence a monomorphism.

Axioms (2.11)—(2.20) were intended to axiomatize the laws true in fields
of sets. It is natural to ask whether they actually accomplish this task. In
other words, is an identity that is true in all fields of sets necessarily derivable
from the axioms? The answer is affirmative; in fact, the axioms of Boolean
algebra are strong enough to imply all the laws that are true in the two-
element Boolean algebra.

Theorem 9. A Boolean identity is derivable from axioms (2.11)—(2.20) if
and only if the identity is true in the Boolean algebra 2.

Proof. Before starting the proof proper, it will be helpful to make some pre-
liminary observations.

A Boolean term is an expression built up from variables and the constant
symbols 0 and 1 using the symbols V, A, and ’ that denote the operations
of join, meet, and complement, and using parentheses. Every Boolean term
is provably equivalent to a term p of the form

(1) (pa V- Vo) Alp21 V-V pang) A= Apm1 VeV Py,

where each term p;; is either one of the constants 0, 1, or a variable, or the
complement of a variable. In other words, for each Boolean term ¢ one can
construct a Boolean term p of the form (1) such that the identity o = p is
derivable from the axioms of Boolean algebra.

To construct p from o, first apply the De Morgan laws (2.17) repeat-
edly to move all occurrences of the complement symbol in ¢ inward to the
variables and constants; use the double complement law (2.15) to cancel two
occurrences of complement that are next to each other; and use (2.11) to get
rid of any occurrence of a complement symbol that is next to a constant. In
this manner, we arrive at an intermediate term ¢ that is built up from the
constant symbols 0 and 1, from variables, and from complements of variables,
using only the symbols V and A and parentheses (but not complement), and
such that the equation ¢ = § is derivable (from the Boolean axioms). Next,
apply repeatedly the distributive laws (2.20) to § (as well as the commuta-
tive laws (2.18), and associative laws (2.19)) to write all joins of meets as
meets of joins, and in this way arrive at a term p of the form (1) such that
the equation § = p is derivable. It follows that the equation o = p is also
derivable.
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Consider now a term p of the form (1). Suppose first that in every subterm
of p of the form

either one of the terms p;; is 1, or else one of the terms p;; is a variable and
another of the terms, say p;, is the complement of that same variable. Then
each equation

pia V-V pin, =1
is derivable with the help of (2.12) and the complement laws (2.14); therefore,
the equation p = 1 is derivable, using also the identity laws (2.13).

On the other hand, if in some subterm of p of the form (2) there is no
occurrence of the constant 1, and there are also no terms p;; and p; such
that p;; is a variable and p; is the complement of that variable, then it is
possible to find an assignment of the values 0 and 1 to the variables of p
that makes the given subterm (2), and hence also p, evaluate to 0 in the
algebra 2; whenever p;; is a variable of the given subterm, assign to that
variable the value 0 everywhere in p, and whenever p;; is the complement of
a variable in the given subterm, assign to that variable the value 1 everywhere
in p. Since a variable and its complement do not occur simultaneously in (2),
by assumption, this prescription does not lead to conflicting assignments.
Assign to all other variables occurring in p (the ones that do not occur in the
given subterm) one of the values 0 and 1 (it does not matter which). Under
this assignment, the given subterm (2) evaluates to 0 (in the algebra 2), by
the laws (2.11) and (2.13). Consequently, p itself, under this assignment,
evaluates to 0, by the laws (2.12).

It has been shown that, for every term p of the form (1), either the equa-
tion p = 1 is derivable from the Boolean axioms, or there is an assignment of
the values 0 and 1 to its variables that makes p evaluate to 0 in the algebra 2.
Suppose now that an arbitrary Boolean identity is given. It is an equation
of the form ¢ = 7, where ¢ and 7 are Boolean terms. It is easy to show
that o = 7 is provably equivalent to the identity

(cAT)V(c'AT ) =1

in the sense that each identity is derivable from the other one on the basis of
the Boolean axioms. The term (o A7)V (6/ A7") is provably equivalent to a
term p of the form (1), so the given identity o = 7 is provably equivalent to
the identity p = 1. We have seen that the identity p = 1 is either derivable
from the axioms or else there is an assignment of values 0 and 1 to its variables
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that makes p evaluate to 0, and consequently that makes the identity p = 1
fail, in the algebra 2. It follows that the original identity ¢ = 7 is either
provable from the axioms, or there is an assignment of values 0 and 1 to its
variables that makes it fail in 2.

For an illustration of how the preceding theorem may be applied, consider
the equation

p'V(d"A(a"Vp)=(Na)
Straightforward computations, using the definitions of the operations of join,
meet, and complement in the Boolean algebra 2, show that this equation is
true in 2 for all possible values of p and ¢ (see the table below); consequently,
the equation must be derivable from axioms (2.11)—(2.20), by the theorem.

plalp' V@Al Vp)| (prg)!
11 0 0
10 1 1
01 1 1
00 1 1

Theorem 9 is a Boolean algebraic version of the completeness theorem
for propositional logic, due to Post [50]. It implies that an identity is true
in one non-degenerate Boolean algebra if and only if it is true in every other
non-degenerate Boolean algebra; hence, the same identities are true of all
non-degenerate Boolean algebras. (The degenerate algebra must be excluded
from consideration, because every identity is trivially true in it.)

Corollary 3. The same set of identities is true in every non-degenerate
Boolean algebra.

Proof. Let A be an arbitrary non-degenerate Boolean algebra. The corollary
will follow if it can be shown that an identity is true in A if and only if
it is true in 2. An identity is a universal assertion about the elements and
operations of a Boolean algebra; if it holds in the algebra A, then it must
hold in every subalgebra B, since the elements of B are among the elements
of A, and the operations of B are restrictions of the operations of A. Since A
is assumed to be non-degenerate, it includes (a copy of) 2 as a subalgebra.
Consequently, every identity true in A is also true in 2. Conversely, if an
identity is true in 2, then it is derivable from the Boolean axioms, by the
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previous theorem, and therefore it must be true in every Boolean algebra,
including A.

Theorem 9 and its corollary yield the following surprising conclusion: if
an identity is true in some (any) non-degenerate Boolean algebra — and in
particular if it is true in some non-degenerate field of sets — then it is true in
the Boolean algebra 2, and therefore it is derivable from axioms (2.11)—(2.20).

Exercises

1.

Prove directly that 2™ is embeddable into 2". In other words, define
an appropriate mapping from 2™ into 2", and prove that the mapping
is an embedding.

For each Boolean term o below, use the algorithm described in the
proof of Theorem 9 to find a term p of the form (1) such that o = p is
derivable from axioms (2.11)-(2.20). Show that in each case the term
is provably equal to 1 or else there is an assignment of the values 0
and 1 to the variables so that the term evaluates to 0 in the Boolean
algebra 2.

(a) (pVg AN(rvOovg)'.
(b) [((0"Vvp)Ag) Vv (p'VO0O)].
(c) (pAgAT")Y V(' AV (DAT).

. Determine whether the equation

[pA@AP)IVIP'AAD) =P
is derivable from axioms (2.11)—(2.20) by checking the validity of the

equation in the Boolean algebra 2.

(Harder.) Let m and n be natural numbers with m < n. Describe all
of the embeddings of P(m) into P(n).

. (Harder.) If a bijection f between two finite Boolean algebras preserves

order in the sense that

p<q implies  f(p) < f(q),

is f necessarily an isomorphism? (Compare this exercise with Exer-
cises 12.10 and 12.11.)
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6. Show that the Boolean identities ¢ = 7 and
(cAT)V(ec'AT)=1

are provably equivalent. In other words, show that the first identity is
derivable from the second, and the second is derivable from the first,
on the basis of the Boolean axioms.

7. Theorem 9 has a dual proof. First, one shows that every Boolean term
is provably equivalent to a term p of the form

(Pll/\"'/\le)v(Pﬂ/\"'/\P2nz)\/"'v(pml/\"'/\l)mnm)7

where each term p;; is either one of the constants 0, 1, or a variable, or
the complement of a variable. Second, one shows that if p has this form,
then either the equation p = 0 is derivable from the Boolean axioms,
or else there is an assignment of the values 0 and 1 to its variables
that makes p evaluate to 1 in the algebra 2. Third, one shows that an
arbitrary Boolean identity ¢ = 7 is provably equivalent to the identity

(AT )V (c'AT)=0.

Finally, one argues that the identity ¢ = 7 is either derivable from
the axioms, or there is some assignment of values to its variables that
makes it false in 2. Write out the details of this proof.
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Atomless Boolean Algebras

The discussion in Chapter 14 focused on atomic Boolean algebras. At the
other extreme lie the atomless Boolean algebras, which have no atoms at all.
The degenerate (one-element) Boolean algebra is vacuously atomless (and
vacuously atomic); it has no atoms because it has no non-zero elements.
Interval algebras provide examples of non-degenerate atomless Boolean alge-
bras. For instance, the interval algebra of the real numbers is atomless, and
S0 is its subalgebra consisting of the finite unions of left half-closed intervals
with endpoints that are rational numbers (or £o00). Notice that this last
algebra is countable. Quite surprisingly, it is the only possible example of
a countable atomless Boolean algebra that is not degenerate, at least up to
isomorphic copies. The purpose of the present chapter is to present a proof
(apparently due to Tarski — see [84], footnote 21) of this assertion.

The technique employed in the proof is a back-and-forth argument that
finds applications in more advanced parts of the theory of Boolean algebras,
and in other areas of mathematics as well. It goes back to Cantor [13],
with a refinement by Huntington [29], and was used by them to prove that,
up to isomorphic copies, the rational numbers are the only example of a
denumerable dense linear order without endpoints.

Every atomless Boolean algebra with more than one element must be
infinite. Indeed, the unit 1 is different from zero, so there is a non-zero
element p; strictly below 1; otherwise, 1 would be an atom. Because p; is
not zero, there must be a non-zero element po strictly below pq; otherwise, p;
would be an atom. Continue in this fashion to produce an infinite, strictly
decreasing sequence of elements 1 > p; > pg > ---.

S. Givant, P. Halmos, Introduction to Boolean Algebras, 134
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Theorem 10. Any two countable, atomless Boolean algebras with more than
one element are isomorphic.

Proof. Let A and B be countable, atomless Boolean algebras with more than
one element. The assumption of countability implies that the elements of each
algebra can be enumerated in a sequence indexed by the positive integers (or,
equivalently, by any infinite subset of the positive integers). It will simplify
the notation of the back-and-forth argument to enumerate the elements of A
using even indices, and the elements of B using odd indices, say, ps, p4, Pé, - - -
and q1,93,q5, - - -

A bit of auxiliary notation will be needed. As usual, for each element i
of a Boolean algebra write

(i) i it j=1,
L) = . .
PR 1/ if j=0.
Also, put

I,={1,2,...,n}
for every positive integer n.

The principal part of the proof involves the construction of elements p,
in A, for odd n, and elements ¢, in B, for even n, such that the correspon-

dence taking p; to ¢; for ¢ = 1,...,n satisfies an equivalent version of the
monomorphism extension criterion, namely
(1) /\ p(pi,a(i)) =0 if and only if /\ p(gi,a(i)) =0

i€l iel,

for all positive integers n and all 2-valued functions a on I, (see Exercise 13.7).
Once this construction is accomplished, Corollary 13.1 may be applied to ob-
tain an isomorphism g from the subalgebra of A generated by the family {p,}
to the subalgebra of B generated by the family {g,} such that

g(pn) = dn

for each n. The former family includes, in particular, the elements p,, with
even indices n, so it includes every element of A. Similarly, the latter family
includes the elements ¢, with odd indices n, so it includes every element of B.
It follows that g is an isomorphism from A to B, as desired.

The construction of the elements p,, for odd n, and ¢, for even n, uses a
back-and-forth argument. Let gg be the isomorphism from the trivial subalge-
bra of A to the trivial subalgebra of B. For n = 1, the element ¢; is assumed
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to be in B, and an element p; in A is to be defined so that criterion (1) is
satisfied. In this case, the criterion involves two conditions:

p1 =0 if and only if ¢ =0,
and
p{ =0 if and only if Q1/ = 0.

If ¢1 is zero or the unit, take p; = gy '(¢1); the criterion is obviously satisfied
because gy is an isomorphism. If ¢; is not zero or the unit, take p; to be
any element of A different from zero and the unit; the criterion is vacuously
satisfied, because neither p; nor ¢; is 0 or 1. The mapping that takes p; to ¢;
can therefore be extended to an isomorphism g; from the subalgebra of A
generated by p; to the subalgebra of B generated by ¢p, by Corollary 13.1.

Next, suppose n = 2. The element py in A is given, and an element ¢
in B must be chosen so that criterion (1) is satisfied. In the present case, the
criterion involves four conditions:

prApy=0 if and only if G ANg =0,
piApy=0 ifand only if ¢ Agj =0,
prAp2=0 if and only if ¢ Aga =0,
piApy=0 ifandonlyif  gf Agj=0.

Choose an element x < ¢; as follows: if the meet p; A py is generated (in A)
by p1, take x = g1(p1 A p2); otherwise, take x to be any non-zero element
strictly below ¢i. Such a selection is always possible: if the meet is not
generated by p1, then the meet cannot be zero, and therefore p; cannot be
zero; this implies (by the argument of the previous paragraph) that ¢ is
not zero, so the assumption that B is atomless ensures the existence of the
required element z. Choose an element y < ¢ in a completely analogous
way: if p; A po is generated by p1, take y = g1(p] A p2); otherwise, take y to
be any non-zero element strictly below ¢{. Again, the assumption that B is
atomless ensures the existence of such a y.
It is not difficult to check that

z=0 if and only if p1 Apa =0,
T =q if and only if p1 Aphy =0,
y=20 if and only if pi Ape =0,
y=q if and only if p1 Aph=0.
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The first equivalence follows readily from the isomorphism properties of g1
and the definition of x. In more detail, if x is zero, then the definition of x
implies that

g1(p1 A p2) =z =0;
therefore p; A ps is zero, by the isomorphism properties of g;. On the other
hand, if p; A po is zero, then it is certainly generated by pi, and therefore

r = g1(p1 A p2) = g1(0) =0,

by the definition of x and the isomorphism properties of g;.

The proof of the second equivalence is similar, but slightly more involved.
If 2 = q1, then = must have been defined by the clause z = gi(p1 A p2);
since q1 = g1(p1), it follows that

g1(p1) = @1 = = = g1(p1 A p2),

and therefore that p; = p1 A p2 (because g; is one-to-one). On the other
hand, if this last equation holds, then p; A py is certainly generated by py,
and therefore

z = gi(p1 Ap2) = g1(p1) = q1.
Thus,
Tr=q if and only if p1 A pe = p1.
The equation on the right is equivalent to the inequality p; < ps2, and hence
to the equation

p1Apy = 0.
The third and fourth equivalences are established in a completely analogous
way.
Write ¢2 = x V y, and observe that

G NgG =2, NG =q Az

4 Ag =y, aAa=a Ay
For instance,

GAR=gN@Vy) = (@A z)V(gAy)=0Vy=y,
since < ¢1 and y < ¢{. Similarly,
GAG=aN@Vy) =g iz’ Ny =q Y

since x < ¢q1, and therefore ¢; < z’.
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It is not difficult to verify (1), using the observations of the preceding
paragraphs. For example,
pi Ap2 =0 if and only if y =0,
if and only if q AN gz =0.
Similarly,
pi Aps=0 if and only if y=q,
if and only if g ANy =0,
if and only if q ANgy=0.
The second equivalence holds because y < ¢.
The construction of the elements p,, for even n, and ¢, for odd n, in the

general case is very similar to the preceding construction. Assume, as the
induction hypothesis, that the sequences

P1,P2y- -3 Pn—-1 and 91,4925 - - -, 4n—1

have been defined so that criterion (1) holds with n — 1 in place of n. Corol-
lary 13.1 then implies the existence of an isomorphism g¢,_1 from the subal-
gebra of A generated by the first sequence to the subalgebra of B generated
by the second sequence such that g,—1(p;) = ¢ fori=1,...,n— 1.

Suppose n is even. An element ¢, in B must be selected so that (1) is
satisfied. Let K be the set of 2-valued functions on I,_;. Each 2-valued
function a on I, is the extension of a unique function b in K, namely the
restriction of a to I,—;. Conversely, each function in K has exactly two
extensions to a 2-valued function on I,; one extension maps n to 1, and the
other maps n to 0. Criterion (1) may therefore be reformulated in terms of
functions in K. Write

po=/\ ppib@) and  g= A plab()).

i€ln_1 icl, 1
In terms of this notation, (1) says that

Py Apn =0 if and only if qp N gn=0,
and

Py Ay, =0 if and only if ¢, Agq.=0,
for each function b in K. Notice that

In—1 (pb) = 4b,
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by the isomorphism properties of g, 1.

Associate with each b in K an element x; < ¢ as follows: if py A p, is
generated by py, write

b = gn—1(Po A\ Pn);

otherwise, take for x; any non-zero element strictly below g,. Such a selection
is always possible: if py A p, is not zero, then neither is py; the element g is
therefore also not zero (since the isomorphism g, 1 maps py to gp), so the as-
sumption that B is atomless ensures the existence of the required element xy,.

It is not difficult to show that

=0 if and only if Do A\ prn =0,
and

Ty = qp if and only if oy Ap,, =0.

The argument is nearly identical to the one given above in the case n = 2.

Write
dn = \/ L,
ceK

and observe that
b N\ Gn = Tp and a N gy = qp Az,

To prove this, recall that the elements ¢, and ¢. are disjoint for distinct
functions b and ¢ in K. (The functions b and ¢ differ on some index i, so g is
below one of the elements g; and ¢/, while g, is below the other.) Also, each
element z. is below ¢., and therefore

WA Te < gy Nge=0.
It follows that

B Aan=a A\ we=\ (@ Axe) =@ N wp = .
ceK ceK

Similarly, ¢, is disjoint from z., and therefore below x., for ¢ # b. Conse-
quently, g, Az, = qp. It follows that

%Aqq’l:qm(\/xc)’:qw N zl= N\ (wnrz)=aq A
ceK ceK ceK

The verification of (1), using the observations of the preceding para-
graphs, is routine. For instance,
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Py App =0 if and only if xp =0,
if and only if a N qn = 0.
Similarly,

ppAp, =0  if and only if Ty = b,
if and only if q A xp =0,
if and only if @ A g, =0.

The second equivalence holds because xp < gp.

When n is even, an element p, in A must be selected so that (1) holds.
The argument that such an element exists is symmetric to the preceding
argument, and is left to the reader. This completes the proof of the theorem.

Exercises

1.

Prove that the interval algebra of the real numbers is atomless. What
is its cardinality?

. Prove that the interval algebra of the rational numbers is atomless and

countable.

. For each non-negative integer n, let A, be the field of periodic sets

of integers of period 2" (see Chapter 5). Show that the union of the
fields A, is a countable, atomless Boolean algebra.

Prove that the regular open algebra of the space of real numbers is
atomless. What is its cardinality?

Find two atomless Boolean algebras that are not isomorphic. Can they
have the same cardinality?

. The proof of Theorem 10, in the case n = 2, asserts that

y=q if and only if pi Aphy =0,

and that
QNG =z and QNG =qANz'
Prove these assertions, and show that

p1Aps =0 if and only if g Nqa =0,
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and
prApy=0 if and only if a1 Ags=0.

7. Give the details of the construction of the element ps in the proof of
Theorem 10, and the verification of criterion (1) for the case n = 3.

8. Give the details of the construction of the element p,, in the proof of
Theorem 10, and the verification of criterion (1) for the case of an
arbitrary positive odd integer n.



Chapter 17

Congruences and Quotients

Congruences on algebras are a way of gluing elements of the algebra together
to form structurally similar, but simpler algebras. The prototypical example
is that of a modular congruence on the ring of integers. Define two integers p
and ¢ to be congruent modulo a fixed positive integer n if they have the same
remainder upon division by n, or, what amounts to the same thing, if their
difference p — ¢ is divisible by n. The notation

p=gqg modn

is usually used to express this relation.
Congruence modulo n is a binary relation on the set of integers that is
reflexive,

p=p modn for all integers p,
symmetric,
if p=¢q modn, then ¢g=p mod n,

and transitive,
if p=q modn and ¢g=7r modn, then ¢=r modn.

A convenient way to express these three properties is to say that congruence
modulo n is an equivalence relation on the set of integers. The relation has
two further properties that are quite important: it preserves addition and
multiplication. In more detail, whenever

p=r modn and q=s mod n,

we also have

S. Givant, P. Halmos, Introduction to Boolean Algebras, 142
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p+q=r+s modn and p-q=r-s mod n.

Congruence modulo n partitions the set of integers into n mutually dis-
joint subsets called equivalence classes: two integers are put into the same
equivalence class just in case they are congruent modulo n. For instance,
congruence modulo 2 partitions the integers into two equivalence classes, the
even integers and the odd integers. Congruence modulo 3 partitions the
integers into three equivalence classes, namely the sets of integers whose re-
mainder upon division by 3 is 0, 1, or 2 respectively. Write [p], for the
equivalence class of an integer p modulo n, so that

[pln={q¢:p=q modn}.

The preservation conditions make it possible to define operations of addi-
tion and multiplication on the set of equivalence classes: for any two equiv-
alence classes [p], and [q],, define their sum and product by

[pln+aln=1[p+qln and  [plu-[q)n=1[P"q]n-

(The operations on the right sides of these equations are addition and mul-
tiplication of integers.) The set of equivalence classes under these operations
is easily seen to form a ring, the ring of integers modulo n. When n = 2, we
get an isomorphic copy of the Boolean ring 2.

The preceding construction, suitably modified, works for any algebraic
structure, and in particular for Boolean algebras. A Boolean congruence
(relation) is defined to be an equivalence relation on a Boolean algebra B
that preserves the operations of meet, join, and complement. In other words,
it is a binary relation © on B that is reflexive, symmetric, and transitive in
the sense that

(1) p=p mod O for all integers p,
(2) if p=qg mod©O, then ¢=p mod O,
(3) if p=q mod® and ¢g=r mod O, then ¢=r mod 0O,

and such that whenever

(4) p=r mod O and ¢g=s mod O,
we also have

(5) pAg=rAs mod O,

(6) pVg=rVs mod O,

(7) p'=7r" mod ©.
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Other Boolean operations such as + and = are definable in terms of
meet, join, and complement, so they are also preserved by Boolean congru-
ences. In other words, if © is a Boolean congruence on B, and if (4) holds,
then

p+qg=r+s mod© and p=q=r=s mod O.

The proofs are easy computations based on (5)—(7). For example, to show
that = is preserved, use first (7) and then (6) (with p and r replaced by p’
and r) to arrive at
p'Vg=r'Vs mod O,

which, in view of the definition of = in (6.3), is just the desired result.

The important property in the preceding argument was the definability
of the Boolean operations in terms of meet, join, and complement. If an
equivalence relation © on a Boolean algebra preserves enough Boolean oper-
ations so that all others are definable in terms of them, then © is a Boolean
congruence. For instance, if © preserves join and complement (that is, if it
satisfies (6) and (7)), then © also preserves meet and is therefore a Boolean
congruence.

The equivalence classes of a congruence © on a Boolean algebra B are
the sets of the form

p/©={q:p=q mod O}.
The properties of reflexivity, symmetry, and transitivity imply that

(8) p/© =q/O if and only if  p=g¢ mod O.

An easy consequence of this observation is that two equivalence classes of ©
are always either equal or disjoint.

Preservation conditions (5)—(7) make it possible to define operations A,
V, and ’ on the set of all equivalence classes of © in the following way:

9) (p/©) A (q/©) =(pNq)/O,
(10) (p/©)V(¢/©) =(pVq)/O,
(11) (p/©)" = (p")/®©.

(The operations on the right sides of the equations are those of the Boolean
algebra B.) To show that these operations are well defined, it must be checked
that the definitions do not depend on the particular choice of the elements
in the equivalence classes that are being used to define the operations. For
instance, to verify that A is well defined, suppose
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p/© =1r/O and q/0 = s/0O.

In view of (8), these two equations, when translated into the language of
congruences, say that the conditions in (4) hold. It follows that condition (5)
also holds, by the definition of a Boolean congruence. The translation of (5)
into the language of equivalence classes says, by (8), that

(pNg)/©=(rNs)/O.

Conclusion: in definition (9) it does not matter whether p or r is used as a
representative of the first equivalence class, nor does it matter whether g or s
is used as a representative of the second equivalence class; all choices yield
the same result.

The set of all equivalence classes of O is denoted by B/©. Under the
operations defined by (9)-(11), this set becomes a Boolean algebra, the so-
called quotient of B modulo ©. A direct verification of this fact is not difficult;
the validity of axioms (2.11)—(2.20) in B must be checked. To verify the
commutative law for meet, for example, let p and ¢ be elements of B. Then

(p/©) N (q/©) =(pNq)/O = (qAp)/O = (q/O)A(p/O);

the first and last equalities follow from the definition of meet in the quotient,
while the middle equality follows from the validity of the commutative law
in B. The other axioms are verified in a similar fashion.

There is another, more efficient way of proving that the quotient B/© is a
Boolean algebra: it suffices to show that B/O is a homomorphic image of B,
by the remarks in the second paragraph of Chapter 12. Define a mapping f
from B onto B/© by

f(p) =p/0O.

Simple computations show that f satisfies conditions (12.1) and (12.3), and
is therefore an epimorphism:

flong) =(ANq)/O = (p/©)A(q/O) = f(p) A f(q)

and

f")=@")/e= (/) =fp"

The mapping f is called the canonical homomorphism, or the projection,
from B onto B/O.

Here are two examples of Boolean congruences. For the first, let pg be an
arbitrary element of a Boolean algebra B. Define a binary relation © on B
as follows: two elements p and ¢ in B are congruent modulo © if
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(12) P Apo=qADpo.

It is easy to check that © is an equivalence relation on B. Indeed, equa-
tion (12) obviously holds when p = ¢, so O is reflexive. If (12) holds for p
and ¢, then it holds with p and ¢ interchanged, so © is symmetric. Finally,
if p and ¢ are congruent modulo ©, and also ¢ and r, then

pApo=qApy and  gApo=rApo,
and consequently
pApo=1ADpo.

It follows that p and r are congruent modulo O, so that © is transitive.
To show that © preserves meet and complement, assume (4) holds. Then

pApo=71Apy and  qApo=sApo.
An application of the idempotent law for meet gives
PAGAPo=pPAPoNqAPy=1Apo/NSApo=1ASADo.

Thus (5) holds, by the definition of ©. The elements p A pg and r A py belong
to the relativization B(pg). Their assumed equality implies the equality of
their complements in the relativization; in other words,

p' Apo=r"Apo.

Thus, (7) holds.

For the second example of a Boolean congruence, let B be a field of
subsets of some set X. Define two sets P and ) in B to be congruent if they
differ by at most finitely many elements, that is, if they contain exactly the
same elements with at most finitely many exceptions. In still other words, P
and @Q are defined to be congruent if their symmetric difference P + @ is
finite. The binary relation © defined in this way is easily seen to be reflexive
and symmetric. It is reflexive because the set P 4+ P is empty and therefore
finite. It is symmetric because the sets P 4+ @) and ) + P are equal (so one
is finite just in case the other is). The transitivity of © follows from the
inclusion

P+RC(P+QU(Q+R)
(Exercise 7.9(a)): if P+ @ and @ + R are finite, then so is their union, and
hence also P + R, by the inequality. Similarly, the preservation condition for
join follows from the inclusion

(PUQ)+ (RUS)C(P+R)U(Q+S)
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(Exercise 7.9(b)): if P+ R and @ + S are finite, then so is their union, and
hence also (PU Q) + (RUS), by the inequality. The preservation condition
for complement follows at once from the equation

Pl + Q/ — P+ Q
(Exercise 6.2(g)).

Exercises

1. Let © be an equivalence relation on a set B. Prove that
p/© =q/O if and only if p=g¢ mod O.
Conclude that two equivalence classes of © are either equal or disjoint.

2. Prove that congruence modulo n is a congruence relation on the set of
integers, that is, it is an equivalence relation that preserves addition
and multiplication.

3. Verify that the operations of addition and multiplication defined on
the set of equivalence classes of the integers modulo n are in fact well
defined.

4. Prove that the operations of join and complement defined in (10) and
(11) on the set of equivalence classes of a Boolean congruence © are
well defined.

5. A congruence on a Boolean ring is an equivalence relation on the ring
that preserves (Boolean) addition and multiplication. Is every congru-
ence on a Boolean algebra also a congruence on the associated Boolean
ring?

6. Is every congruence on a Boolean ring also a congruence on the associ-
ated Boolean algebra?

7. Give a precise definition of the notion of a congruence relation on an
arbitrary ring. Define operations of addition and multiplication on
the set of equivalence classes of the congruence, and show that these
operations are well defined. Prove that the set of equivalence classes
under these operations is a ring.

8. Let © be a congruence on a ring R. Define the projection f from R to
the quotient R/O, and prove that f is an epimorphism.



148

10.

11.

12.

Introduction to Boolean Algebras

. Let B be a field of subsets of a set X, and zg a fixed element of X.

Define two sets P and ) in B to be congruent if either both sets con-
tain g or else neither set contains xy. Prove that this is a congruence
relation on B. Describe the elements and operations of the quotient
algebra.

Let B be a field of subsets of a set X. Define two sets P and () in B to
be congruent if they differ on at most countably many elements, that
is, if their symmetric difference

P+Q=(PnQ"HU(P' NQ)

is countable. Prove that this relation is a congruence on B. If X is a
countable set, what is the resulting quotient algebra?

Define two elements p and ¢ in a Boolean algebra B to be congruent
if their sum p + ¢ can be written as the join of finitely many atoms.
Prove that the relation so defined is a congruence on B.

Define two elements p and ¢ in Boolean algebra B to be congruent if
there are no atoms below p 4 ¢. Prove that the relation so defined is a
congruence on B.



Chapter 18

Ideals and Filters

A Boolean congruence © obviously determines each of its equivalence classes,
and in particular it determines the equivalence class of 0, which is called the
kernel of ©. It is a happy state of affairs that, conversely, © is completely
determined by its kernel via the equivalence

(1) p=g¢q mod© if and only if p+q¢=0 mod O.

In other words, to check whether two elements p and ¢ are congruent, it is
necessary and sufficient to check whether their Boolean sum is in the ker-
nel. For the proof, suppose first that p and ¢ are congruent (modulo ©).
The element g is congruent to itself, by reflexivity, and congruences preserve
Boolean addition. Therefore, the sums p + g and g + ¢ are congruent. Since

(2) q+q=0,

the sum p+ ¢ is congruent to 0, and is therefore in the kernel. For the reverse
implication, suppose that p 4+ ¢ is congruent to 0. Then p + ¢+ ¢ and 0 + ¢
are congruent; the first element is p, by (2), and the second is q.

Under what conditions is a subset of a Boolean algebra B the kernel of
some congruence © on B? Three properties of the kernel of ©® are immediately
evident:

(3) 0=0 mod O,

(4) if p=0 mod©® and ¢=0 mod®, then pVg=0 mod©O,
(5) if p=0 mod® and g€ B, then pAg¢g=0 mod O.

Motivated by these properties, we make the following definition: a (Bool-
ean) ideal in a Boolean algebra B is a subset M of B such that
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(6) 0€ M,
(7) ifpe M and g € M, then pVgqge M,
(8) ifpe M and g€ B, then pAge M.

Observe that condition (6) in the definition can be replaced by the superfi-
cially less restrictive condition that M be not empty, without changing the
concept of ideal. Indeed, if M is not empty, say p € M, and if M satisfies (8),
then p A 0 (that is, 0) is in M.

Two further properties of an ideal M are quite useful:

(9) ifpe M and g€ M, then p+qe€ M,
(10) ifpe M and g € B, then p-qg€ M.

Indeed, if p and ¢ are in M, then so are p A ¢/ and p’ A ¢, by condition (8).
Therefore, the join (p A ¢") V (p’ A q) — that is to say, the sum p + g —
is in M, by condition (7). Equation (10) is an immediate consequence of
condition (8), since multiplication in a Boolean algebra is defined to be meet.

The kernel of every congruence on B is an ideal, as is evident from prop-
erties (3)—(5). The converse is also true: every ideal M in B uniquely deter-
mines a congruence of which it is the kernel. The equivalence in (1) suggests
how the congruence should be defined: it is the binary relation © on B
determined by

(11) p=q mod © if and only if p+qgeM

for every pair of elements p and ¢ in B. It is not difficult to show that © is
a congruence. The reflexivity of © is a direct consequence of the identity (2)
and condition (6). Symmetry is a consequence of the commutative law for
Boolean addition: if p = ¢ mod O, then p + ¢ is in M; since

g+p=p+gq,

it follows that g + p is in M, and therefore (by (11)) ¢ = p mod ©. To
establish the transitivity of ©, assume

p=¢q mod O and q=r mod ©.

The sums p + ¢ and g 4+ r are then both in M, by (11), so the sum of these
two sums is in M, by (9). Since

ptr=(@+q) +(qg+r),

by (2), it may be concluded that p =7 mod ©.
To verify that © preserves meet, assume
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p=r mod © and qg=s mod O.

This means that the sums p+r and g + s are in M. The products (p+7)-q
and (g + s) - r are then both in M, by (10), and therefore the Boolean sum
of these two products is in M, by (9). This sum is just p-q+1r - s:

(p+7r)-qg+(g+s) r=@qg+r-q+(@qr+s-r)
=p-q+(r-qg+r-q)+r-s=p-q+0+r-s=p-qg+r-s,

by the distributive law (1.9), the associative law (1.1), the commutative law
(1.4), the identity law (1.5), and (2). Invoke (11) to arrive at

p-q=r-s mod 6.

In view of the definition of multiplication in a Boolean algebra (see (3.3)), it
may be concluded that

pAg=rAs mod 0.

The proof that © preserves complement is similar, but simpler, and uses the
identity

p'+d =p+q
from Exercise 6.7(a). If p = ¢ mod O, then p 4 ¢ is in M. It follows from
the given identity that p’ + ¢’ is then in M, so

"=¢’ mod 6.

The kernel of a congruence is the set of elements congruent to 0. The
kernel of the congruence © defined in (11) is therefore the set of elements p
such that p + 0 belongs to M. This set is of course just M. Conclusion: the
kernel of © is M. In view of (1), every congruence is completely determined
by its kernel, so © is the only congruence on B with kernel M. This completes
the proof that every ideal in B uniquely determines a congruence of which it
is the kernel.

The equivalence classes of any congruence © can be computed directly
from the kernel M of the congruence. For an arbitrary element p of B, the
equivalence class p/© coincides with the coset

p+M={p+r:rec M}

The proof of this assertion amounts to checking that the sets in question have
the same elements. If ¢ is in B, then

q€p/O if and only if  p=g¢ mod O,
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if and only if p+qe M,
if and only if qE€p+ M.
The first step uses the definition of an equivalence class, and the second step
uses (1), which is equivalent to (11). For the third step, observe that if p+ ¢
belongs to M, and if r = p + ¢, then p + r belongs to p + M since
q=0+qg=p+tp+qg=p+r,
it follows that ¢ is in p+ M. On the other hand, if ¢ belongs to p + M, then
q = p + r for some element r in M; since
ptg=p+tp+r=0+r=r,

it follows that p + ¢ belongs to M.
Definitions (17.9)—(17.11) of the Boolean algebraic operations of the quo-
tient algebra B/© can be expressed in terms of cosets in the following manner:

(12) (p+M)N(g+M)=(pAq)+ M,
(13) (p+M)V(g+M)=(pVq) + M,
(14) (p+M) =(p")+ M.

The zero and unit of the quotient algebra are the cosets 0 + M — which
coincides with M — and 1 + M. The Boolean algebra of cosets under the
operations defined by (12)—(14) is identical to the Boolean algebra of equiva-
lence classes of ©. It is called the quotient algebra of B modulo the ideal M.
It is helpful to adopt a notation for this quotient that is reminiscent of the no-
tation used in the case of congruences. For that reason, we shall write B/M
for the quotient, we shall usually write p/M for the coset p+ M, and we shall
write

p=gq mod M instead of p=¢q mod O.

The characterization given in (17.8) of when two equivalence classes mod-
ulo © are equal can also be rephrased in terms of the ideal M:

(15) p/M = q/M if and only if p=gq mod M,
if and only if p+qge M.
The second equivalence follows from (11).
The canonical homomorphism that maps each element of B to its equiv-

alence class modulo © can also be expressed in terms of cosets; it is the
function f from B to B/M defined by

f(p) =p/M.
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The kernel of f is, by definition, the set of elements that are mapped to the
zero element of B/M. It is easy to check that this set is just M:

f(p) =0/M if and only if p/M =0/M,
if and only if p=0 mod M,
if and only if pe M,

the first equality uses the definition of f, the second uses (17.8) (formulated
in the notation introduced in the previous paragraph), and the third uses
the fact that M is the kernel of the congruence determined by it. The kernel
of the homomorphism f and the kernel of the congruence © are thus equal;
they are both M.

A consequence of the preceding discussion is that in the study of Boolean
algebras, congruences can be dispensed with entirely; they can be replaced by
ideals, and congruence classes can be replaced by cosets — in fact, they are
cosets. The quotient of a Boolean algebra modulo a congruence is identical
to the quotient of the Boolean algebra modulo the ideal that is the kernel of
the congruence.

A similar situation exists in the theory of rings. Motivated by the example
of congruence modulo n on the ring of integers, we define a congruence on a
ring R to be an equivalence relation © on R that preserves the ring operations
of addition, multiplication, and formation of negatives (additive inverses).
Operations of addition, multiplication, and formation of negatives are defined
on the set of equivalence classes of © as follows: the sum and product of
equivalence classes p/© and ¢/O are the equivalence classes (p + ¢)/© and
(p-q)/O, and the negative of p/© is (—p)/O. The preservation conditions
ensure that these operations are well defined. The set of all equivalence
classes, under the operations just defined, is a ring, the quotient ring of R
modulo ©. The projection mapping that takes each element of R to the
corresponding equivalence class of © is an epimorphism from R to R/©O.

An ideal in a ring is defined to be an arbitrary subset M of the ring that
satisfies conditions (6), (9), (10), and

(16) ifpe M, then —peM,
(17) ifpe M and g€ B, then ¢q-pe M,
where +, -, and — are the ring operations of addition, multiplication, and

formation of negatives, and 0 is the zero element of the ring. Condition (16)
is needed for rings without unit; for rings with unit, it is a consequence
of (10). Similarly, condition (17) is needed for non-commutative rings; for
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commutative rings, it is a consequence of (10). The kernel of a ring congru-
ence — the equivalence class of 0 — is always an ideal. Conversely, an ideal
M uniquely determines a ring congruence of which it is the kernel, namely
the binary relation © determined by

p=¢q mod O if and only if p—qeM

(where p — ¢ is the sum of p and the additive inverse of ¢). The equivalence
classes of © coincide with the cosets of M, the sets of the form p + M. The
ring operations on the equivalence classes may be written as operations on
cosets in the following way:

p+M)+(q@+M)=p+qg+M and (p+M)-(¢g+M)=(p-q)+ M.

Conclusion: in the study of rings, congruence relations can be, and almost
always are, replaced by ideals, and one speaks of the quotient of a ring modulo
an ideal instead of the quotient of a ring modulo a congruence.

Every Boolean algebra is (or, better, can be turned into) a Boolean ring,
and conversely. What is the relationship between the corresponding notions
of ideal? It turns out that ideals are ideals, or, to put it more precisely, a
subset M of a Boolean algebra B is a Boolean ideal if and only if it is an ideal
in the corresponding Boolean ring. Indeed, every Boolean ideal M is a ring
ideal, since conditions (7) and (8) imply conditions (9) and (10). To prove the
converse, suppose M is an ideal in the sense of ring theory. Condition (10)
at once implies condition (8), since meet is defined as ring multiplication. To
verify condition (7), let p and ¢ be elements of M. The join of these two
elements is defined by

pVqg=p+q+p-q
(see (3.4)), and the sum on the right side of this equation belongs to M, by
conditions (9) and (10). Consequently, p V ¢ is in M.

The concept of a Boolean ideal can also be defined in order-theoretic
terms, but the language of order does not have much to contribute to ideal
theory. This much can be said: condition (8) can be replaced by

(18) ifpe M and g <p, then ¢qe€ M,

without changing the concept of ideal. The proof is elementary.

Every example of a Boolean congruence (such as the ones in Chapter 17)
gives rise to an example of an ideal, namely its kernel. Thus, if a congruence ©
on a Boolean algebra B is defined in terms of a fixed element py in B by

p=g mod©O if and only if pApy=qApg,
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then the corresponding ideal consists of those elements p for which pApy = 0,
or, equivalently, p < po’. If a congruence O is defined on the field of all subsets
of a set X by

P=@Q modO if and only if P + @ is finite,

then the corresponding ideal consists of all finite sets in the field. More
generally, the class of all those finite sets that happen to belong to some
particular field is an ideal in that field. A similar generalization is available
for each of the following two examples. The class of all countable sets is an
ideal in the field of all subsets of an arbitrary set; and the class of all nowhere
dense sets is an ideal in the field of all subsets of a topological space.

Every Boolean algebra B has a trivial ideal, namely the set {0} consisting
of 0 alone; all other ideals of B will be called non-trivial. Every Boolean
algebra B has an improper ideal, namely B itself; all other ideals will be
called proper. Observe that an ideal is proper if and only if it does not
contain 1. (This follows at once from condition (18).)

The intersection of every family of ideals in a Boolean algebra B is again
an ideal of B. (The intersection of the empty family is, by convention, the
improper ideal B.) The proof consists in verifying that conditions (6)—(8)
hold in the intersection. For instance, to verify condition (7), let p and ¢ be
elements in the intersection of a family of ideals. Every ideal in the family
must contain both p and ¢, and therefore must also contain the join p V g
(by condition (7) applied to each ideal in the family). It follows that pV ¢ is
in the intersection of the family. The other two conditions are verified in a
completely analogous fashion.

One consequence of the preceding remark is that if F is an arbitrary
subset of B, then the intersection of all those ideals that happen to include E
is an ideal. (There is always at least one ideal that includes F, namely the
improper ideal B.) That intersection, say M, is the smallest ideal in B that
includes E; in other words, M is included in every ideal that includes E. The
ideal M is called the ideal generated by E.

The definition just given is top-down and non-constructive; it does not
describe the elements in the ideal generated by E. (An advantage of the
definition is that with minimal changes, it applies to every algebraic structure
in which there is a suitable analogue of the notion of an ideal.) Fortunately,
it is possible to give a more explicit description (due to Stone [66]) of the
elements of the ideal.

Theorem 11. An element p of a Boolean algebra is in the ideal generated
by a set E if and only if there is a finite subset F' of E such that p <\/ F.
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Proof. Let M be the ideal generated by a subset E of a Boolean algebra B,
and let NV be the set of elements p in B such that p is below the join of some
finite subset of E. It is to be proved that M and N are equal. Every join
of a finite subset of E is certainly in M, by condition (7), and consequently
every element below such a join is in M, by condition (18). Thus, N is a
subset of M. To establish the reverse inclusion, it suffices to prove that IV is
an ideal. Since N obviously includes FE, it then follows that N must include
the smallest ideal that includes E, namely M.

The empty set is a finite subset of F, and its join is 0; hence, 0 belongs
to N. If p and ¢ are elements of N, then there are finite subsets F' and G
of E such that

p < \/ F and q < \/ G.

The set H = F UG is a finite subset of FE, and p V ¢ is below \/ H, by
monotony; consequently, p V ¢ is in N. Finally, if p is an element of N,
say p is below the join of a finite subset F' of F, then any element ¢ that
is below p is also below \/ F', and therefore belongs to N, by the definition
of N. Conclusion: N satisfies the three conditions (6), (7), and (18) that
characterize ideals, so it is an ideal in B.

The ideal generated by the empty set is the smallest possible ideal of B,
namely the trivial ideal {0}. An ideal generated by a singleton {p} is called
a principal ideal; it consists of all the subelements of p, by Theorem 11, and
it is usually denoted by (p). Both the trivial ideal {0} and the improper
ideal B are principal; the former consists of the subelements of 0, and the
latter of the subelements of 1. An ideal is said to be finitely generated if it is
generated by a finite set of elements.

Corollary 1. Every finitely generated ideal in a Boolean algebra is principal.

Proof. Suppose E is a finite subset of a Boolean algebra B. An element p
in B will be below the join of some finite subset of E just in case it is below
the join \/ E. The ideal generated by E therefore coincides with the ideal
generated by the single element \/ E, by the preceding theorem.

Theorem 11 can also be used to characterize when the set of atoms of a
Boolean algebra generates a proper ideal.

Corollary 2. The ideal generated by the set of all atoms in a Boolean algebra
is a proper ideal if and only if the Boolean algebra is infinite.
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Proof. Let E be the set of all atoms in a Boolean algebra B, and let M
be the ideal generated by E. The argument proceeds by contraposition.
If B is finite, then it is atomic, by Lemma 15.1. In this case 1 = \/ E, by
Lemma 14.3. Because F is also finite, the unit 1 must be in M, so M is the
improper ideal.

Now assume that M is improper. By Theorem 11, there must be a finite
subset F' of E such that 1 < \/ F, and therefore 1 = \/ F'. In other words,
the unit must be the supremum of a finite set F' of atoms. This implies
(Lemmas 14.3 and 14.2) that B is atomic and that F' is the set of all of its
atoms. An atomic Boolean algebra with finitely many atoms is perforce finite
(see, for instance, Theorem 6, p. 119).

An important special case of Theorem 11, the ideal extension lemma,
describes how to extend an ideal by adjoining a single element.

Lemma 1. Let M be an ideal, and pg an element, in a Boolean algebra. The
ideal generated by M U {po} is the set

N={pVq:p<poandqe M}.

Proof. Put E = M U {pp}, and invoke Theorem 11. An element r of the
Boolean algebra is in the ideal generated by E just in case there is a finite
subset F' of E such that r <\/ F. No generality is lost by assuming that the
element py is in F' (adding this element to F' can only make the join bigger).
Also, the elements of F' that are in M may be combined into a single element,
since M is closed under join. Thus, 7 is in the ideal generated by F if and
only if there is an element s in M such that r < sV pg. This last inequality
holds just in case

r=rA(sVpy) = (rAs)V(rAp).

The element ¢ = r A s is again a member of M, and the element p = r A pg
is below pg. Therefore, r is in the ideal generated by E just in case

r=q\Vp

for some ¢ in M and some p < py.

The lemma yields a simple criterion for determining when the extension
of a proper ideal by a new element is again a proper ideal.

Corollary 3. Let M be an ideal, and py an element, in a Boolean algebra.
If p{ is not in M, then the ideal generated by M U {poy} is proper.
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Proof. The argument proceeds by contraposition. Let N be the ideal gen-
erated by M U {po}, and assume N is improper. It is to be shown that p
belongs to M. Since N is improper, it certainly contains pj. There must
therefore be elements p < py and ¢ in M such that pj = pV ¢, by Lemma 1.
A simple computation shows that p) < ¢:

po=piAps=pi APV a) = (pjAp)V (PiAq)
< (pgApo)V(pgANg) =0V (psAq) =psAqg<aq.

Therefore, p) is in M, by condition (18).

The concepts of subalgebra and homomorphism are in a certain obvious
sense self-dual; the concept of ideal is not. The dual concept is defined as
follows. A (Boolean) filter in a Boolean algebra B is a subset N of B such
that

(19) 1€N,
(20) ifpe Nand g€ N, then pAgé€e N,
(21) ifpe Nand g€ B, then pVgqge N.

Condition (19) can be replaced by the condition that N be non-empty. Con-
dition (21) can be replaced by

(22) ifpe Nand p<gq, then ¢¢€ N.

Neither of these replacements will alter the concept being defined. The filter
generated by a subset of B, and in particular a principal filter, are defined
by an obvious dualization of the corresponding definitions for ideals. In more
detail, the intersection of any family of filters in B is again a filter in B. The
filter generated by a subset E of B is defined to be the intersection of the
filters that include E. (There is always one such filter, namely B.) In other
words, it is the smallest filter that includes E. A filter N is principal if it is
generated by a single element p. It is not difficult to show that in this case

N={¢eB:p<gq}

The relation between filters and ideals is a very close one. The fact
is that filters and ideals come in dual pairs. This means that there is a
one-to-one correspondence that pairs each ideal to a filter, its dual, and by
means of which every statement about ideals is immediately translatable to a
statement about filters. The pairing is easy to describe. If M is an ideal, write
N ={p:p’ € M}, and, in reverse, if N is a filter, write M = {p: p’ € N}.
It is trivial to verify that this construction does indeed convert an ideal into
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a filter, and vice versa, since the conditions (6)—(8) and (19)—(21) are dual
to one another. We shall have more to say about this subject in the next
chapter.

Exercises

1. Let M be an ideal of a ring R, and let © be the binary relation on R
determined by

p=q mod O if and only if p—qgeM

(where p—q is the sum of p and the additive inverse of ¢). Prove that ©
is a congruence relation on R with kernel M, and that the equivalence
class p/© coincides with the coset

p+M={p+q:qe M}

2. Prove that condition (8) in the definition of a (Boolean) ideal can equiv-
alently be replaced by condition (18).

3. Prove that the class of finite sets of integers, the class of finite sets of
even integers, and the class of finite sets of odd integers are all ideals
in the Boolean algebra of all subsets of the set of integers.

4. Prove that in any field of sets, the countable sets form an ideal.

5. Prove that the nowhere dense sets form an ideal in the field of all subsets
of a topological space.

6. Let E be a subset of a Boolean ring B with or without a unit. The
annihilator of E is the set of all elements p in B such that p-r = 0 for
all » in E. Prove that the annihilator of a set is always a ring ideal.
(This observation is due to Stone [66]. The notion of an annihilator of
a set, and the proof that the annihilator of a set is an ideal, hold in the
more general setting of commutative rings.)

7. Prove that the intersection of two ideals M and N in a Boolean ring
(with or without a unit) is the trivial ideal if and only if N is included
in the annihilator of M (Exercise 6).

8. A subset of a Boolean ring B (with or without a unit) is called dense if
every non-zero element in B is above a non-zero element of the subset.
Prove that an ideal M in B is dense if and only if M has a non-trivial
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11.

12.

13.

14.

15.

16.

17.

18.

Introduction to Boolean Algebras

intersection with every non-trivial ideal in B. Conclude that M is dense
if and only if its annihilator (Exercise 6) is the trivial ideal.

(Harder.) Prove that the class of all sets of measure zero is an ideal in
the field of all measurable subsets of a measure space.

It has been shown that a subset of a Boolean algebra is a Boolean ideal
if and only if it is a ring ideal. Prove an analogous result for Boolean
rings without unit. In other words, prove that a subset M of a Boolean
ring without unit satisfies conditions (6)—(8) if and only if it satisfies
conditions (6), (9), and (10), where the meet and join operations in the
ring are defined by equations

PAqG=p-q and pVg=p+q+p-q.

Complete the proof that the intersection of every family of ideals in a
Boolean algebra B is again an ideal in B.

Show that Theorem 11 also holds for Boolean rings without unit.

In general, homomorphisms do not preserve all structural properties of
a Boolean algebra. The following example demonstrates this in a dra-
matic way. Let X be the set of integers, and M the ideal of finite subsets
of X. The field P(X) is atomic. Prove that the quotient P(X)/M is
atomless. Conclude that an epimorphism need not preserve the prop-
erty of an element being an atom, nor the property of an algebra being
atomic.

Describe the ideal generated by the set of all atoms in a Boolean algebra.

Prove that a subset IV of a Boolean algebra is a filter if and only if it
is non-empty and satisfies conditions (20) and (22).

Prove that the intersection of a family of filters in a Boolean algebra is
again a filter.

Formulate and prove the analogue of Theorem 11 for filters.

Prove that the following conditions on an ideal M are equivalent: (1) M
is improper; (2) there is an element p such that p and p’ are both in M;
(3) 1isin M.
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19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

A subset I of a Boolean algebra is said to have the finite join property
if the unit is not the supremum (join) of any finite subset of E. Prove
that the ideal generated by a set E is proper if and only if E has the
finite join property.

Formulate and prove the dual of Exercise 19.

Show that a set F generates an ideal in a Boolean algebra if and only
if the set E/ = {p’ : p € E} generates the dual filter.

Formulate and prove, for filters, the analogue of the assertion that every
finitely generated ideal is principal.

Prove that the join of two elements p and ¢ in a Boolean algebra belongs
to an ideal M if and only if both p and ¢ belong to M.

Formulate and prove, for filters, the analogue of Exercise 23.

Suppose B is a Boolean subalgebra of A. Prove that if M is an ideal
in A, then the intersection N = M N B is an ideal in B. Prove further
that N is a proper ideal in B just in case M is a proper ideal in A.

Suppose f is a Boolean homomorphism from B to A. Prove that if M
is an ideal in A, then its inverse image under f, the set

fH(M)={peB: f(p) e M},

is an ideal in B. Prove also that if f is an epimorphism, then the image
under f of an ideal N in B, the set

f(N)={f(p) :p € N},

is an ideal in A.

The intersection of a family {M;} of ideals in a Boolean algebra B is
an ideal. In fact, it is the largest ideal that is included in each M;. In
other words, under the partial ordering of inclusion, it is the infimum
of the family {M;}. Define an appropriate notion of the supremum of
the family {M;} so that this supremum is again an ideal. Prove that
under these notions of supremum and infimum, the set of all ideals of B
is a complete distributive lattice. (See Chapter 7.)

Prove the following assertions about ideals and filters in a Boolean
algebra B.
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(a) If M is an ideal, then the set N = {p’ : p € M} is a filter. It is
called the dual filter of M.

(b) If N is a filter, then the set M = {p’ : p € N} is an ideal. It is
called the dual ideal of N.

(¢) If M is an ideal and N its dual filter, then the dual ideal of N is
just M.

(d) If N is a filter and M its dual ideal, then the dual filter of M is
just N.

(e) An ideal M; is included in an ideal My if and only if the dual filter
of Mj is included in the dual filter of M.

(f) The correspondence that takes each ideal to its dual filter maps
the class of ideals in B bijectively to the class of filters in B, and
is a lattice isomorphism.

Prove that if M is an ideal in a Boolean algebra and if IV is its dual
filter, then the set-theoretic union M U N is a subalgebra.

If an ideal M in a Boolean algebra is countably generated, show that
there must be a (countable) ascending chain

Pr<p2<- - <pp <
of generators in M such that an element p of the Boolean algebra

belongs to M if and only if p < p,, for some positive integer n.

It was proved in this chapter that congruences can equivalently be
replaced by ideals. The purpose of this exercise is to show that congru-
ences can equivalently be replaced by filters.

(a) Prove that the cokernel of a congruence — the equivalence class
of 1 — is always a filter.
(b) Prove that a congruence is uniquely determined by its cokernel.

(c) Prove that every filter uniquely determines a congruence of which
it is the cokernel.

(d) Describe the equivalence classes of a congruence in terms of the
“cosets” of its cokernel.

(e) Describe the operations of the quotient algebra in terms of the
“cosets” of the cokernel.



18 Ideals and Filters 163

(f) Describe the canonical homomorphism in terms of the “cosets” of
the cokernel.

32. Let B be a Boolean subalgebra of A, and py an arbitrary element in A.
Show that the set M of elements in B that are disjoint from pg is an
ideal in B, and that the relativization of B to py,

B(po) = {pApo:p€ B}

(Exercise 12.19), is isomorphic to the quotient B/M via the correspon-
dence defined by

foApo) =p/M
for each p in B.



Chapter 19

Lattices of Ideals

The class of all ideals in a Boolean algebra B is partially ordered by the
relation of set-theoretic inclusion — the relation of one ideal being a subset
of another. Under this partial order, a family {M;} of ideals always has an
infimum; it is just the intersection (), M; of the ideals in the family. The
family also has a supremum, but in general the supremum is not the union
of the ideals in the family, since that union is rarely an ideal; rather, the
supremum is the ideal generated by the union (J; M;. In other words, the
supremum of the family {M/;} is the intersection of the class of those ideals
in B that include every ideal M;. (This class is not empty, because it always
contains B.) All of this may be summarized by saying that the class of
ideals of a Boolean algebra B is a complete lattice under the partial order
of inclusion; the infimum of an arbitrary family of ideals is the intersection
of the family, and the supremum is the ideal generated by the union of the
family.

The special case when a family of ideals is empty is worth discussing for a
moment, if only to avoid later confusion. The improper ideal B is vacuously
included in every ideal in the empty family (there is no ideal in the empty
family that does not include B). Clearly, then, B is the largest ideal that is
included in every ideal in the empty family, so it is, by definition, the infimum
of that family. Similarly, the trivial ideal {0} vacuously includes every ideal
in the empty family (there is no ideal in the empty family that is not included
in {0}). Since {0} is obviously the smallest ideal that includes every ideal in
the empty family, it must be the supremum of that family.

It is worthwhile formulating a simple but quite useful alternative descrip-
tion of the join and meet of two ideals (which goes back to Stone [66]).

S. Givant, P. Halmos, Introduction to Boolean Algebras, 164
Undergraduate Texts in Mathematics, DOI: 10.1007/978-0-387-68436-9_19,
(© Springer Science+Business Media, LLC 2009



19 Lattices of Ideals 165

Lemma 1. If M and N are ideals in a Boolean algebra, then
MVN={pVg:peM andqe N}
and
MAN={pANqg:pe M and q € N}.
Proof. To establish the first identity, write
L={pVg:pe M and g€ N}.

It must be shown that
L=MVN.

If p and g are elements of M and N respectively, then both elements are
in MV N, and therefore so is their join. Consequently, L is included in MV N,
by the definition of L. To establish the reverse inclusion, suppose r is an
element of M V N. There must then exist finite subsets £ of M, and F' of NV,
such that r is below the join of EUF, by Theorem 11 (p. 155). The ideals M
and NN are closed under finite joins, so the elements

s = \/ E and t= \/ F
belong to M and N respectively, and r < sV t. It follows that the elements
P=TNS and g=rAt
are also in M and N respectively, by condition (18.8). Since
r=rA(sVt)=(rAs)V(rAt)=pVyg,

the element r belongs to L, by the definition of L.
The proof of the second identity is similar, but easier. Write

L={pANqg:pe M and q € N}.

It must be shown that
L=MAN.

An element r in M A N belongs to both M and N. The meet of r with
itself — which is just » — is therefore in L, by the definition of L. It follows
that M A N is included in L. For the reverse inclusion, consider an arbitrary
element r in L; it has the form r = p A ¢ for some p in M and some ¢ in N.
Since r is below each of p and ¢, it belongs to both M and N, by condition
(18.18), and consequently it belongs to M A N. Thus, each element of L is
in M A N. The proof of the lemma is complete.
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The formulas in the preceding lemma assume a particularly perspicuous
form when applied to principal ideals.

Corollary 1. Let p and q be elements in a Boolean algebra. Then
(p)V(g) = (Ve and  (p)A(q) = (PN

Proof. The previous lemma, applied to the principal ideals (p) and (g), asserts
that (p) V (q) = L, where

(1) L={rvs:r<pands<gqg}.

To obtain the first identity of the corollary, then, it suffices to check that
L = (pVq). The inclusion of L in (pV ¢) is an immediate consequence of (1)
and the monotony laws:

r<p and s<gq implies rVs<pVg.

The reverse inclusion follows from the simple observation that p V ¢ is in L;
since L is an ideal, every element below p V ¢ must also be in L.
The second identity is established in a completely analogous fashion.

The lattice of ideals is not only complete, it is also distributive in the sense
that the laws (2.20) hold identically in it. The proof is a direct application
of Lemma 1. Let L, M, and N be three ideals in a Boolean algebra. Then

(2) LV(MAN)={pV(gAs):peL,ge M, and s€ N}
and
(3) (LVM)AN(LVN)={(pVvr)A(qVs):p,qe L,re M, and s € N},
by the lemma. Since

pV(gAs)=(@VaAr(pVs),
by the distributive laws for Boolean algebras, every element in the ideal (2)
is also in the ideal (3). To demonstrate the reverse inclusion, let ¢t be an
element in the ideal (3), say,

t=@{@Vr)A(gVs),

where p and ¢ are in L, and r and s in M and N respectively. Apply the
distributive and monotony laws to obtain
t=@Vr)AlgVs)={@AqVPAS)V(rAgV(rAs)
<pVpVaV(rAs)=(@VqgV(rns).
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The join pV ¢ is in L, and the meet r A s is in M A N, so the element
(pVq)V(rAs)isin the ideal (2), by Lemma 1. Consequently, the element ¢
is also in that ideal, by condition (18.18).

It has been demonstrated that

LV(MAN)=(LVM)N(LVN)

for all ideals L, M, and N of a Boolean algebra. The dual distributive law
can be established in a similar fashion, or it can be derived directly from the
preceding law. (Each version of the distributive law is derivable from its dual
in all lattices; see Exercise 7.19.)

The ideals of a Boolean algebra form a complete, distributive lattice, but
they do not, in general, form a Boolean algebra. To give an example, it is
helpful to introduce some terminology. An ideal is maximal if it is a proper
ideal that is not properly included in any other proper ideal. We shall see in
the next chapter that an infinite Boolean algebra B always has at least one
maximal ideal that is not principal. Assume this result for the moment. A
“complement” of such an ideal M in the lattice of ideals of B would be an
ideal N with the property that

MAN={0} and MVN=B.

Suppose the first equality holds. If ¢ is any element in N, then p A ¢ = 0,
and therefore p < ¢’ for every element p in M, by Lemma 1. In other words,
the ideal M is included in the principal ideal (¢’). The two ideals must
be distinct, since M is not principal. This forces (¢’) to equal B, by the
maximality of M. In other words, ¢/ = 1, and therefore ¢ = 0. What has
been shown is that the meet M A N can be the trivial ideal only if NV itself is
trivial. In this case, of course, M V N is M, not B. Conclusion: a maximal,
non-principal ideal does not have a complement in the lattice of ideals.

This is not to say that no ideal has a complement; some do. For example,
each principal ideal (p) has the complement (p’), since

PV )=@p@vp)=(1)=B

and

() A (") =(@np") =(0)={0},

by Corollary 1.

Let’s return for a moment to the question of the supremum of a family of
ideals. As was mentioned earlier, the union of a family of ideals usually fails
to be an ideal. There is, however, an important exception. A family {M;} of
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ideals is said to be directed if any two ideals of the family are always included
in some ideal of the family; in other words, whenever M; and M; are ideals
in the family, there is an ideal M}, in the family such that

M; C My, and Mj C M.

Lemma 2. The union of a non-empty directed family of ideals in a Boolean
algebra is again an ideal. The ideal is proper if and only if each ideal in the
family is proper.

Proof. Let {M;} be a non-empty directed family of ideals in a Boolean al-
gebra, and let M be the union of this family. It is to be shown that M
satisfies the defining conditions (18.6)—(18.8) for ideals. The family contains
at least one ideal, by assumption, and 0 is in that ideal. Therefore, 0 is in the
union M. If p and ¢ are elements in M, then there must be ideals M; and M;
in the family that contain p and ¢ respectively. Since the family is directed,
one of its ideals, say My, includes both M; and M;. The elements p and ¢
then both belong to My, so their join p V ¢ is in M}, as well. Consequently,
this join is also in M. Finally, an element p in M must belong to one of
the ideals M; of the family. For each element ¢ in the Boolean algebra, the
meet pAq belongs to M; and therefore also to M. Conclusion: M is an ideal.

The ideal M is improper just in case it contains 1. Since M is the union of
a directed family of ideals, it contains 1 just in case some ideal in the family
contains 1, that is to say, just in case some ideal in the family is improper.
The second conclusion is now immediate: M is proper just in case every ideal
in the family is proper.

The lemma applies, in particular, to non-empty families of ideals that
are linearly ordered by inclusion in the sense that for any two members M;
and M; of the family, either M; C M; or M; C M;. Such families are called
chains.

Everything that has been said about ideals can be repeated almost verba-
tim for filters. The class of all filters in a Boolean algebra is partially ordered
by the relation of set-theoretic inclusion, and under this partial order the
class becomes a complete lattice. The infimum of a family of filters is the
intersection of the family, and the supremum is the filter generated by the
union of the family (namely, the intersection of all filters that include each
member in the family). The lattice is distributive, but in general it is not
complemented; that is to say, it is not a Boolean algebra.

Actually, even more is true. The canonical mapping f that takes every
ideal M of a Boolean algebra B to its dual filter N = {p’ : p € M} is
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an isomorphism between the lattice of ideals and the lattice of filters in B,
and its inverse is the mapping g that takes each filter N to its dual ideal
M ={p’:p e N} (see Exercise 12.13). Indeed,

g(f(M)) =g({p":peM})={p" :pe M} =M
for every ideal M, and, similarly,
flg(N)) =N

for every filter V. It follows from these equations that f maps the lattice
of ideals one-to-one onto the lattice of filters, and that its inverse mapping
is g. If an ideal M; is included in an ideal Ms, then obviously the filter
Ny ={p’:p € M} is included in the filter No = {p’ : p € M5}, and dually.
In other words, the correspondence f preserves the partial ordering of the
lattices in the strong sense that

M1 - M2 if and only if f(Ml) - f(MQ)

Conclusion: f is a lattice isomorphism.
The observation that the class of ideals in a Boolean algebra forms a
complete distributive lattice was first made by Stone [66] and Tarski [74].

Exercises

1. Fill in the details of the following alternative proof of Lemma 1. The
set
L={pVvqg:pe M and g N}

is an ideal that includes M and N, and that is included in M V N;
consequently, L = M VvV N. Similarly, the set

K={pANqg:pe M and q € N}

is an ideal that includes M A N and that is included in both M and N;
consequently, K = M A N.

2. Derive the second identity in Corollary 1.
3. Extend Lemma 1 to Boolean rings without unit.

4. Show by a direct argument that the ideals of a Boolean algebra satisfy
the distributive law

LAMVN)=(LAM)V(LAN).
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10.

11.

12.
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. Show that the mapping from a Boolean algebra B into the lattice of

ideals of B that takes each element p to the principal ideal (p) is a lattice
monomorphism (a one-to-one mapping that preserves the operations of
join and meet).

. Prove directly (without using Lemma 2) that the union of a non-empty

chain of ideals in a Boolean algebra is again an ideal, and that the ideal
is proper if and only if each ideal in the chain is proper.

. Prove directly that the class of filters in a Boolean algebra is a complete

lattice under the relation of set-theoretic inclusion.

. Formulate and prove the analogue of Lemma 1 for filters.

. Show by a direct argument that the lattice of filters is distributive.

Define what it means for a family of filters in a Boolean algebra to be
directed, and prove that the union of a non-empty directed family of
filters is again a filter.

Verify that the dual of a principal ideal is a principal filter, and con-
versely. Conclude that the canonical isomorphism between the lattice of
ideals and the lattice of filters of a Boolean algebra maps the sublattice
of principal ideals onto the sublattice of principal filters.

The class of all congruences on a Boolean algebra B is also a complete
lattice under the partial ordering of set-theoretic inclusion. The infi-
mum of any family of congruences on B is the intersection of the family;
the supremum is the congruence generated by the union of the family,
that is to say, it is the intersection of all those congruences on B that
include every congruence in the given family. Prove that the correspon-
dence that maps each ideal M in B to the congruence on B determined
by M is a lattice isomorphism.



Chapter 20

Maximal Ideals

An ideal is maximal if it is a proper ideal that is not properly included in
any other proper ideal. Equivalently, to say that M is a maximal ideal in B
means that M # B, and, moreover, if N is an ideal such that M C N,
then either N = M or N = B. Thus, the maximal ideals in B are just the
maximal elements in the lattice of ideals of B. Examples: the trivial ideal
is maximal in 2; the ideals, in fields of sets, defined by the exclusion of one
point are maximal (see Exercise 2).
Maximal ideals are characterized by a curious algebraic property.

Lemma 1. An ideal M in a Boolean algebra B is maximal if and only if
either p is in M or p’ is in M, but not both, for each p in B.

Proof. Assume first that for some p in B, neither p nor p’ is in M. If N is
the ideal generated by M U {p}, then N is a proper ideal, by Corollary 18.3,
and it properly includes M because it contains p. Consequently, M is not
maximal.

For the converse, assume that always either p or p’ is in M, and suppose
that N is an ideal properly including M; it is to be proved that N = B.
Since N # M, there is an element p in N that does not belong to M. The
assumption implies that the element p’ is in M, and therefore also in N;
since N is an ideal, it follows that p V p’ is in N. Therefore, N coincides
with B.

There is another characterization of maximal ideals, due to Stone [66],
that is quite useful. A Boolean ideal M is said to be prime if it is proper
and if the presence of p A ¢ in M always implies that at least one of p and ¢
isin M.
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Corollary 1. A Boolean ideal M is maximal if and only if it is prime.

Proof. Assume that M is a maximal ideal, and argue by contraposition that
it is prime. If neither p nor ¢ is in M, then both p’ and ¢’ are in M, by
Lemma 1, and consequently so is the join p’ V ¢’. Since this join may be
written as (p A ¢)’, by the De Morgan laws, M cannot contain p A ¢, by the
lemma.

Now suppose M is a prime ideal. Since 0 is in M, and 0 = pAp’, at least
one of the elements p and p’ must belong to M, by the assumption that M
is prime. Both of them cannot belong to M, for then M would contain the
join p V p’, and would consequently be an improper ideal. It follows from
Lemma 1 that M is maximal.

Corollary 2. A principal ideal (p) is maximal if and only if p’ is an atom.

Proof. Maximality for a principal ideal (p) is equivalent to the conditions
that p # 1 and that ¢ < p or ¢/ < p for every element ¢, by Lemma 1.
Reformulated in terms of p’, these conditions say that p’ # 0 and that p’ < ¢’
or p’ < g for every element g. This reformulation just expresses the fact
that p’ is an atom, by Lemma 14.1.

So far, we do not know that maximal ideals exist. The next theorem
guarantees that they exist in abundance. It is usually called the mazimal
ideal theorem, and is due to Stone [66] and (for fields of sets) Tarski [70].

Theorem 12. Every proper ideal in a Boolean algebra is included in a maz-
imal ideal.

Proof. Let M be a proper ideal in a Boolean algebra B. Enumerate the
elements of B in a (possibly) transfinite sequence {p; };< indexed by the set of
ordinals less than some ordinal «. Define a corresponding sequence {M;}i<q
of proper ideals in B with the following properties: (1) My = M; (2) M; C M;
whenever i < j < «; (3) either p; or p/ is in M;4; for each i < a. The
definition of the sequence proceeds by induction on ordinal numbers.

Put My = M. Then M is a proper ideal by assumption, and condition (1)
is satisfied automatically, while conditions (2) and (3) (with « replaced by 0)
hold vacuously for the family {M;}i<o. For the induction step, consider an
ordinal £ < «, and suppose proper ideals M; have been defined for each
ordinal ¢ < k so that the family {M,};< satisfies conditions (1), (2), and (3)
(with « replaced by k, with j < k in condition (2), and with i + 1 < k in
condition (3)). When k is a successor ordinal, say k = i + 1, the definition
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of My splits into two cases. If either p; or p/ is in M;, put My = M;;
otherwise, define M} to be the ideal generated by the set M; U {p;}. The
ideal My, is proper, either by the induction hypothesis (in the first case) or
by Corollary 18.3 (in the second case). When k is a limit ordinal, put

M, = U M;.
i<k

This union is a proper ideal, by Lemma 19.2. It is a simple matter to check
that conditions (1)-(3) (with « replaced by k) hold for the family {M;};<s.

The ideal M, is the desired maximal extension of M. It is a proper
ideal, by construction, and it extends M, by conditions (1) and (2). To
verify maximality, consider an arbitrary element p in B. This element occurs
somewhere in the enumeration of the elements of B, say p = p;. Either p;
or p/ is in M; 1, by condition (3), so either p or p’ is in My, by condition (2).
Both elements cannot belong to M, for that would force M, to be improper.
The maximality of M, now follows by Lemma 1.

The following somewhat sharper formulation of the maximal ideal theo-
rem is frequently useful.

Corollary 3. For every proper ideal M in a Boolean algebra B, and for
every element p in B that does not belong M, there exists a maximal ideal
that includes M and does mot contain p.

Proof. The ideal N generated by MU{p’} is proper, by Corollary 18.3. Apply
the maximal ideal theorem to obtain a maximal ideal that includes N, and
therefore also includes M. Since that maximal ideal contains p’, it does not
contain p.

The maximal ideal theorem can be used to prove the existence, in every
infinite Boolean algebra B, of maximal ideals that are not principal. (For
fields of sets, this result goes back to Tarski [70].) Notice, first of all, that
the unit of an infinite Boolean algebra cannot be written as a join of finitely
many atoms; for otherwise the algebra would be atomic with finitely many
atoms, by Lemmas 14.2 and 14.3, and would therefore be finite, by Theorem 6
(p. 119). Consider now the ideal M generated by the set of all atoms in B;
it consists of those elements of B that can be written as joins of finite sets
of atoms (Exercise 18.14). The unit cannot be written as such a join, so the
ideal M is proper; consequently, M can be extended to a maximal ideal IV,
by the maximal ideal theorem. Since N is a proper ideal and contains every
atom, it cannot contain the complement of any atom. Consequently, it cannot
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be a principal ideal, by the characterization of maximal principal ideals in
Corollary 2.

Corollary 4. FEwvery infinite Boolean algebra has mazximal ideals that are
non-principal.

The dual of the notion of a maximal ideal plays an important role in
Boolean algebra and in other areas of mathematics. A mazimal filter, or an
ultrafilter as it is often called, is a proper filter that is not properly included
in any other proper filter. Thanks to the isomorphism between the lattice
of ideals and the lattice of filters of a Boolean algebra, we can immediately
conclude from the maximal ideal theorem and its corollary that every proper
filter can be extended to an ultrafilter, and that every infinite Boolean algebra
has a non-principal ultrafilter.

Exercises

1. Prove that a subset M of a Boolean algebra B is a maximal ideal if
and only if it contains 0, is closed under join, and contains exactly one
of p and p’, for every element p in B.

2. Let B be a field of subsets of a set X, and x¢ an element of X. Prove
that the class of all sets in B that do not contain zg is a maximal ideal
in B.

3. Prove that every ideal in a Boolean algebra is the intersection of the
maximal ideals that include it. (This theorem is due to Stone [66] and
Tarski — see [73] and [74].)

4. Suppose B is a Boolean subalgebra of A. If M is a maximal ideal in A,
prove that the intersection M N B is a maximal ideal in B.

5. Suppose f is a Boolean homomorphism from B into A. If M is a
maximal ideal in A, prove that the inverse image of M under f, the set

N={peB: f(p) € M},
is a maximal ideal in B.
6. Use induction on the ordinals k£ < « to prove that the family {M;};<, of
proper ideals defined in the proof of the maximal ideal theorem satisfies

conditions (1)—(3) of that proof (with « replaced by k in conditions (2)
and (3)).
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. Formulate and prove a characterization of ultrafilters that is analogous

to Lemma 1.

. Formulate and prove the dual of Corollary 1, for filters.

. Formulate and prove the dual of Corollary 2, for filters. In other words,

characterize when a principal filter is maximal.

Prove directly, without using the maximal ideal theorem, that every
proper filter is contained in an ultrafilter.

Prove directly that every infinite Boolean algebra has a non-principal
ultrafilter.

A subset I of a Boolean algebra is said to have the finite meet property,
or the finite intersection property in the case of a field of sets, if the
meet of every finite subset of E is non-zero. Prove that every subset
with the finite meet property is included in an ultrafilter.

Formulate and prove the dual of Exercise 12.

Let B be the field of finite and cofinite subsets of the natural numbers.
Describe the maximal ideals and the maximal filters in B.

(Harder.) Prove that if B is a proper Boolean subalgebra of A, then
there is a maximal ideal in B that has at least two different extensions
to a maximal ideal in A.

(Harder.) Give an example of an incomplete epimorphism between two
complete Boolean algebras.

(Harder.) Suppose p is an element in a Boolean algebra A, and B is
the relativization of A to p. Prove that every maximal ideal in B has
a unique extension to a maximal ideal in A that does not contain p.
Conversely, show that every maximal ideal in A that does not contain p
is the extension of a uniquely determined maximal ideal in B.

Show that every ideal (and in particular every maximal ideal) in a
Boolean algebra B is a Boolean ring (possibly without unit) under the
ring operations of B.

(Harder.) Prove that every Boolean ring A (possibly without unit) is a
maximal ideal in some Boolean algebra B such that the ring operations
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20.

21.

22.

23.

24.

25.

26.
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of A coincide with the ring operations of B, restricted to A. To what
extent is the extension B unique? (This result is due to Stone [66].
Together with Exercise 18, it shows that the study of Boolean rings
— possibly without units — is essentially the same as the study of
maximal ideals in Boolean algebras, or, equivalently, in Boolean rings
with unit.)

Prove that every non-degenerate Boolean ring with unit can be obtained
by adjoining a new unit to a Boolean ring that may or may not have a
unit. (See Exercise 1.10.)

Prove that a Boolean ring without unit is necessarily infinite. (This
theorem is due to Stone [66]. Compare Exercise 1.12.)

A maximal ideal M in a Boolean algebra B is a Boolean ring (possibly
without a unit) under the restricted ring operations of B, by Exer-
cise 18. Prove that every ring homomorphism from M into a Boolean
algebra A — including the trivial homomorphism — can be extended
in one and only one way to a Boolean homomorphism from B into A,
and every Boolean homomorphism from B into A is the extension of a
ring homomorphism from M into A.

(Harder.) An ideal in a commutative ring is said to be prime if it is
proper and satisfies the following condition: for any elements p and ¢ in
the ring, if p- ¢ is in the ideal then at least one of p and ¢ is in the ideal.
Prove that even when a Boolean ring does not have a unit, an ideal is
prime if and only if it is maximal. (This theorem is due to Stone [66].)

Prove that an ideal M in a Boolean ring B (with or without a unit)
is prime if and only if the quotient B/M is non-degenerate and has no
zero-divisors. (This observation is due to Stone [66]. An element is a
zero-divisor if it is non-zero and its product with some other non-zero
element is zero; see Exercise 1.12.)

(Harder.) A version of Corollary 3 applies to Boolean rings without
unit. Prove that if M is an ideal in a Boolean ring B without unit, and
if p an element of B that is not in M, then there is a maximal ideal
in B that includes M and does not contain p. (This theorem is due to
Stone [66].)

Formulate and prove the analogue of Exercise 3 for Boolean rings with-
out unit. (This result is due to Stone [66].)
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27. (Harder.) A version of Corollary 3 also applies to distributive lattices.
A subset M of a lattice B is called an ideal if it is non-empty and
satisfies conditions (18.7) and (18.8). The ideal is said to be prime if it
is proper (it does not equal B) and, for any elements p and ¢ in B, the
presence of p A ¢ in M implies that either p or ¢ must be in M. Prove
that if M is an ideal in a distributive lattice B, and if p is an element
of B that is not in M, then there is a prime ideal in B that includes M
and does not contain p.

28. Formulate and prove the analogue of Exercise 3 for distributive lattices.



Chapter 21

Homomorphism
and Isomorphism Theorems

The kernel of a homomorphism f from a Boolean algebra B to a Boolean
algebra A is the set of those elements in B that f maps onto 0 in A. In
symbols, the kernel M of f is defined by

M= f"'({0}) ={pe B: f(p) =0}

The kernel of a homomorphism is always an ideal. The proof is a straight-
forward verification that conditions (18.6)—(18.8) are satisfied. Suppose M
is the kernel of f. Certainly 0 is in M, since f(0) = 0. If p and ¢ are in M,
then

flova)=flp)V flg) =0v0=0,
so that pVgisin M. If pisin M, and if ¢ is an arbitrary element of B, then

flong) =f)Afl@) =0 f(g) =0,

so that p A q is in M.

Every example of a homomorphism (such as the ones we saw in Chap-
ter 12) gives rise to an example of an ideal, namely its kernel. Thus, if f is the
relativizing homomorphism defined by f(p) = pApg for every element p, then
the corresponding ideal consists of all those elements p for which p A pg = 0,
or, equivalently, p < po’. In other words, it is the principal ideal (p} ). If f is
defined on a field of subsets of X so that f(P) is the value of the character-
istic function of P at some particular point xg of X, then the corresponding
ideal consists of all those sets P in the field that do not contain x. If, finally,
the homomorphism f is induced by a mapping ¢ from a set X into a set
S. Givant, P. Halmos, Introduction to Boolean Algebras, 178
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Y, then the corresponding ideal consists of all those subsets P of Y that are
disjoint from the range of ¢.

Here is a general and useful remark about homomorphisms and their
kernels: a necessary and sufficient condition that a homomorphism be a
monomorphism (one-to-one) is that its kernel be {0}. Proof of necessity: if f
is one-to-one and f(p) = 0, then f(p) = f(0), and therefore p = 0. Proof of
sufficiency: if the kernel of f is {0} and if f(p) = f(g), then

flo+q) = fp)+ flg) = f(p) + f(p) =0,

so that p + ¢ = 0, and this means that p = q.

The definition of ideals was formulated so as to guarantee that the kernel
of every homomorphism is an ideal. It is natural and important to raise the
converse question: is every ideal the kernel of some homomorphism? The
answer is easily seen to be yes: if M is an ideal of a Boolean algebra B,
then the projection f of B onto the quotient B/M is an epimorphism with
kernel M. This proves the following result, known as the homomorphism
theorem.

Theorem 13. Fvery ideal is the kernel of some epimorphism, namely the
projection onto the corresponding quotient algebra.

What do the homomorphic images of a Boolean algebra B look like? A
quotient of B modulo an ideal is always a homomorphic image of B. The
next theorem says that, up to isomorphism, these are the only homomorphic
images of B. The result is usually called the first isomorphism theorem.

Theorem 14. If f is a Boolean homomorphism from B onto A, and if M
is the kernel of f, then B/M is isomorphic to A via the mapping

p/M — f(p).
Proof. Let p and ¢ be elements of B. A short computation shows that
f(p)=f(¢) ifandonlyif  p/M = q/M.

Indeed,

f(p)=flg) ifandonlyif  f(p)+ f(q) =0,
if and only if flp+q) =0,
if and only if p+qe M,
if and only if  p/M = q/M.
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The first equivalence uses the observation from (1.10) that every element is its
own inverse under the operation of Boolean addition. The second equivalence
uses the homomorphism properties of f, the third uses the definition of the
kernel of f, and the fourth uses the characterization of congruence classes
given in (18.15).

B

projection p
B/M

Let h be the mapping from B/M into A that takes each coset p/M to
the image f(p). (See the diagram above.) The preceding computation shows
that h is well defined and maps B/M one-to-one into A; it maps B/M onto A
because f maps B onto A. The proof that h preserves meet and complement
makes use of the definitions of meet and complement in B/M, the definition
of h, and the homomorphism properties of f:

h((p/M) A (q/M)) =h((pAq)/M) = f(pAq)
= f(p) A f(q) = h(p/M) A h(q/M),

and

h((p/M)") =h(p'/M) = f(p") = f(p)' = h(p/M)’".

This completes the proof that A is an isomorphism from B onto A.

It is occasionally helpful to view the first isomorphism theorem as an
assertion about factoring homomorphisms. From this perspective it says
that every homomorphism on a Boolean algebra can be factored into the
composition of a uniquely determined monomorphism and an appropriate
projection.

Corollary 1. Let fy be a Boolean homomorphism from B into Ag with ker-
nel M, and f the projection from B to B/M. There is a unique monomor-
phism g from B/M into Ay such that fo =go f.

Proof. Let A be the image of B under fy. The quotient B/M is isomorphic
to A via an isomorphism ¢ that maps each coset p/M to fo(p), by the first
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By
B ,Ao
f
l, g
B/M

isomorphism theorem. (See the diagram above.) Obviously, g is a monomor-
phism of B/M into Ay. The composition g o f coincides with fy because it
maps each element p in B to the element

g(f(p)) = glp/M) = fo(p).

If h is any homomorphism from B/M into Aq for which the composition ho f
coincides with fy, then

h(p/M) = h(f(p)) = fo(p)

for each coset p/M, by the definition of f(p) and the assumed equality. Con-
sequently, h coincides with g.

Associated with the isomorphism theorem there is a cluster of results of
the universal algebraic kind, some of which we now proceed to state.

Suppose that M is a proper ideal in a Boolean algebra B. Write [M, B] for
the class, or interval, of ideals N in B such that M C N C B. This interval
forms a sublattice, and in fact a complete sublattice, of the lattice of ideals
in B: the infimum (the intersection) and supremum (the ideal generated by
the union) of a family of ideals in the interval is again an ideal in the interval.
It turns out that this sublattice is isomorphic to the lattice of ideals of the
quotient B/M in a natural way.

Write A = B/M, and let f be the projection from B to A. The projection
associates with every ideal N in the interval [M, B] an ideal in A, namely
the image set

P=f(N)={f(p) :peN}.
The argument that P really is an ideal is straightforward. The zero element
of A is the image, under f, of the zero element of B; since the zero of B is in
the ideal N, the zero of A isin P. If r and s are elements in P, then they are
images, under f, of elements p and ¢ in N. The join pV ¢ isin N (because N
is an ideal), and the image of this join under f is
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flova) =fp)V flg) =rVs;

consequently, r V s is in P. If,| finally, » and s are elements in P and A
respectively, then they are images, under f, of elements p in NV and ¢ in B
respectively (s is the image of an element ¢ in B because f maps B onto,
and not just into, A). The meet p A ¢ is in the ideal N, and the image of this
meet under f is

fenag) =f) A flg) =7rAs;
consequently, r A s is in P. Thus, P satisfies the conditions for being an ideal
in A. A common notation for this ideal is N/M (or sometimes N + M),
because

P=f(N)={f(p):peN}={p/M:pe N} ={p+M:pe N}
Conclusion: the correspondence induced by f,
(1) N — f(N) = N/M,

is a mapping from the sublattice [M, B] into the lattice of ideals in A.
An argument analogous to the proceeding one shows that if P is an arbi-
trary ideal in A, then its inverse image

f'(P)y={peB: fp) e P}

is an ideal in B that includes M. In other words, it is an ideal in the
sublattice [M, B]. What is its image under f? And what is the inverse image
of f(N) when N is an ideal in B? It is not difficult to check that

(2) FUUP) =P and  FUFN) =N

for every ideal P in A and every ideal N in B. Here is the proof of the
second identity. Every element p in N is contained in f~1(f(p)), and therefore
in f~1(f(V)), by the definition of the inverse image of a set under a function.
Thus, N is included in f~!(f(INV)). To establish the reverse inclusion, consider
an arbitrary element p in f~'(f(N)). The image f(p) belongs to f(N), by
the definition of the inverse image of f(/V) under f, so there must be an
element ¢ in N such that f(p) = f(¢). It follows from the homomorphism
properties of f and from (1.10) that

fp+q) = f(p)+ flq) = 0.

The Boolean sum p + ¢ therefore belongs to the kernel of f, which is M.
The ideal N includes M, by assumption, so it contains p + ¢q. The element ¢
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also belongs to N, and ideals are closed under Boolean addition, by condi-
tion (18.9), so the sum (p + ¢) + ¢ must be in N. This last sum is just p;
consequently, p is in N. A similar but simpler argument establishes the first
identity.

The identities in (2) imply that the correspondence (1) maps the inter-
val [M, B] bijectively to the lattice of ideals in A. Indeed, if P is an ideal
in A, then N = f~1(P) is an ideal in [M, B], and P is the image of N un-
der f, by the first identity in (2). In other words, correspondence (1) is onto.
If N7 and Ny are two ideals in [M, B] such that

f(N1) = f(N2),
then
Ni = fH(f(N1) = FH(f(N2)) = Na,

by the second identity in (2). Consequently, correspondence (1) is one-to-one.
A similar argument shows that correspondence (1) preserves the lattice order-
ing of inclusion. If Ny C Ny, then obviously f(N1) C f(N3). If, conversely,
the latter inclusion holds, then

FTHAND) € FHf(N2)),

so that Ny C N, by the second identity in (2). Because the correspon-
dence (1) preserves the lattice ordering, it is a lattice isomorphism.

The formal statement of the preceding observations is usually called the
correspondence theorem.

Theorem 15. For every ideal M in a Boolean algebra B, the correspondence
N — N/M

is an isomorphism from the sublattice of ideals in B that include M to the
lattice of ideals in B/M.

The relationship between the ideals of a quotient B/M and the ideals
of B that extend M goes beyond what is expressed in the correspondence
theorem. Quotients of B/M by quotient ideals N/M are in fact isomorphic to
quotients of B. It is therefore unnecessary to consider quotients of quotient
Boolean algebras, quotients of quotients of quotient Boolean algebras, and
so on. Each such quotient essentially reduces to a quotient of the original
Boolean algebra. A precise formulation of this fact is contained in the second
1somorphism theorem.
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Theorem 16. Let M and N be ideals in a Boolean algebra B, with M C N.
The quotient of B/M by the ideal N/M is isomorphic to the quotient B/N
via the mapping

(p/M)/(N/M) — p/N.
Proof. Write
A=B/M and C=(B/M)/(N/M).

The projection f from B onto A, and the projection ¢ from A onto C, are
both epimorphisms, so the composition h = g o f is an epimorphism from B
onto C. The kernel of h is N, as can be verified in two steps: the kernel of g
is the ideal N/M, by the observations following (18.12)—(18.14); and the set
of elements of B that are mapped into N/M by f is just

fTHIN/M) = [THf(N)) = N,

by the second identity in (2).

The first isomorphism theorem, applied to the epimorphism h, says that
the quotient B/N is isomorphic to C' via the mapping that takes each coset
p/N to h(p). The proof is completed by observing that

h(p) = g(f(p)) = g(p/M) = (p/M)/(N/M).

The second isomorphism theorem may also be formulated as an assertion
about “factoring” homomorphisms fy. The corollary to the first isomor-
phism theorem assumes that the kernel of fy coincides with the ideal M,
and concludes that fy can be factored into the composition of a uniquely
determined monomorphism and the projection f from B to B/M. The next
corollary assumes only that the kernel of fy includes the ideal M, and con-
cludes that fy can be factored into the composition of a uniquely determined
homomorphism and the projection f.

Corollary 2. Let fo be a Boolean homomorphism from B into Ao, and sup-
pose that its kernel includes the ideal M. There is then a unique homomor-
phism g from B/M into Ao such that fo = go f, where f is the projection
from B to B/M.

Proof. Let A be the image of B under fy, and My the kernel of fy. It is
assumed that M C My. The quotient B/Mj is isomorphic to A via the
function gp that maps each coset p/My to fo(p), by the first isomorphism
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theorem. Of course, gg is a monomorphism of B/Mj into Ag. The projec-
tion f of B onto B/M is an epimorphism, as is the projection go of B/M
onto (B/M)/(My/M). The latter quotient is isomorphic to B/My via the
function g1 that maps (p/M)/(Moy/M) to p/My for each p, by the second
isomorphism theorem. The composition

g=90°9g1°392

is a homomorphism from B/M into Ay with the property that fo = go f
(see the diagram). Indeed, an easy computation shows that g maps each
element p/M to fo(p):

g(p/M) = go(g1(92(p/M))) = go(g1((p/M)/(Mo/M))) = go(p/Mo) = fo(p);

therefore, the composition g o f maps each element p in B to fy(p).

fo
B Ay

f 9o

95 9,

(B/M) (B/M)/(My/M)

B/M,

To prove the uniqueness of g, consider any homomorphism A from B/M
into Ag with the property that fo = h o f. The definition of f and the
assumed equality imply that

h(p/M) = h(f(p)) = fo(p)
for each coset p/M. Consequently, h coincides with g.

A Boolean algebra is called simple if it is not degenerate and has no
non-trivial proper ideals. The underlying intuition is that a simple Boolean
algebra B cannot be “simplified” by passing to a quotient B/M: each such
quotient is either degenerate, or else isomorphic to B via the projection
homomorphism. The former happens when M is improper (M = B) and
the latter when M is trivial (M = {0}). Simplicity is a universal algebraic
concept, but, as it turns out, in the context of Boolean algebras it is not a
fruitful one. The reason is that there is just one simple algebra, namely 2.
Clearly 2 is simple, since it has just two ideals: the trivial ideal {0} and the
improper ideal {0, 1}. Assume now that B is any simple Boolean algebra, and
consider an arbitrary non-zero element p in B. The principal ideal generated
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by p is non-trivial (it contains p), and therefore must be improper, by the
assumed simplicity of B. This can happen only if p = 1. Thus, any element
in B different from 0 must equal 1, and consequently B = 2.

The correspondence between the ideals of a quotient algebra and the ide-
als of its “numerator” (formulated in the correspondence theorem) shows that
the quotient algebra is simple if and only if its “denominator” (the ideal) is
maximal. Indeed, a Boolean quotient B/M is not simple and not degenerate
if and only if it has a proper, non-trivial ideal. By the correspondence theo-
rem, this happens if and only if there is an ideal N in B that is between M
and B, but different from both. Such an ideal N exists in B if and only if
the ideal M is proper but not maximal, by the maximal ideal theorem.

Corollary 3. An ideal in a non-degenerate Boolean algebra B is maximal if
and only if B/M is isomorphic to 2.

The first systematic study of ideals in Boolean algebras was carried out
by Stone in [66], which contains, in particular, formulations of the homo-
morphism theorem, the first isomorphism theorem, a version of the corre-
spondence theorem, and Corollary 3 for Boolean rings with or without unit.
(These theorems were already well known in the context of groups and com-
mutative rings.)

Exercises

1. The cokernel of a Boolean homomorphism f from B to A is the set of
those elements in B that f maps to 1. Prove that f is one-to-one if
and only if its cokernel is {1}.

2. Prove that the kernel of a Boolean homomorphism from B into A is a
proper ideal in B if and only if A is not degenerate.

3. Prove that every non-degenerate Boolean algebra can be mapped ho-
momorphically to 2.

4. Prove that distinct elements in a Boolean algebra can always be dis-
tinguished by a 2-valued homomorphism. More precisely, show that
if p and ¢ are distinct elements in a Boolean algebra B, then there is
a 2-valued homomorphism f on B such that f(p) # f(q).

5. If X is an infinite set, show that there is a homomorphism from P(X)
to 2 that maps the finite subsets of X to 0 and the cofinite subsets to 1.
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10.

11.

. Let M be an ideal in a Boolean algebra B, and f the projection from B

onto B/M. Show that if P is an ideal in B/M, then f~!(P) is an ideal
in B, and

fFF=H(P) = P.

. Formulate and prove the analogue of the correspondence theorem for

filters. (See Exercise 18.31.)

. Prove that if two epimorphisms on a Boolean algebra have the same

kernel, then the image algebras are isomorphic.

. Suppose M and N are ideals in a Boolean algebra B, and M C N.

Set-theoretically, a coset p/M is the set of translations by p of elements
of the ideal M:

p+M={p+q:qc M}
The quotient ideal N/M in B/M is the class of cosets corresponding
to elements of N:

N/M ={p/M :pe N} ={p+M:pe N}
={{p+q:qe M}:pe N}.
Set-theoretically, what are the cosets p/N and (p/M)/(N/M)? Are
they identical?

(Harder.) Prove that if B is a proper Boolean subalgebra of A, then
there is a 2-valued homomorphism on B that can be extended in two
different ways to a 2-valued homomorphism on A.

(Harder.) Formulate and prove an analogue of Corollary 3 for Boolean
rings without a unit. (This result is due to Stone [66].)



Chapter 22

The Representation Theorem

The representation problem asks whether every Boolean algebra is isomor-
phic to a field of sets. In other words, given Boolean algebra A, does there
always exist a set X such that A is isomorphic to a subalgebra of P(X)?
Each point z in a set X can be used to define a 2-valued homomorphism on
the field P(X): the homomorphism takes the value 1 on the subsets of X that
contain xg, and the value 0 on the subsets that do not contain xy (see Chap-
ter 12). This comment suggests that if we start with a Boolean algebra A and
seek to represent it as a field over some set X, a reasonable place to conduct
the search for points suitable to make up X is among the 2-valued homomor-
phisms of A. The suggestion would be impractical if it turned out that A has
no 2-valued homomorphisms. Our first result along these lines is that there
is nothing to fear; there is always a plethora of 2-valued homomorphisms.

Lemma 1. For every non-zero element p of every Boolean algebra A there
is a 2-valued homomorphism x on A such that x(p) = 1.

Proof. Let p be a non-zero element in a Boolean algebra A, and consider the
principal ideal N generated by the complement p’. The elements in N are just
the elements of A that are below p’. Since p is not 0, its complement is not 1,
and therefore 1 is not in V. It follows that IV is a proper ideal. Extend NN to a
maximal ideal M, by the maximal ideal theorem (p. 172), and observe that p
does not belong to M, since M contains p’ (Lemma 20.1). The quotient A/M
is a two-element Boolean algebra, by Corollary 21.3. If z is the projection
from A to A/M that maps each element ¢ to the coset ¢/M, and if y is the
(unique) isomorphism from A/M to 2 that maps 0/M to 0, and 1/M to 1,
then the composition z = y o z is the desired 2-valued homomorphism on A.
Indeed,

S. Givant, P. Halmos, Introduction to Boolean Algebras, 188
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(© Springer Science+Business Media, LLC 2009
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x(q) = y(2(q)) = y(a/M) = {(1) i Z Z%

In particular, z(p) = 1, since p is not in M.

The following assertion (due to Stone [67]) is known as the (Stone) repre-
sentation theorem, and is one of the most fundamental results about Boolean
algebras.

Theorem 17. Let X be the set of 2-valued homomorphisms on a Boolean
algebra A. Then A is embeddable into P(X) via the mapping defined by

flp) ={z e X :2(p) =1}
for each p in A.

Proof. The verification that f is a homomorphism is purely mechanical. For
instance, if p and q are elements in A, then

fovg ={reX:z(pVq) =1}

={reX:alp) V(g =1}
={re X :z(p)=1orz(q =1}
={zeX:z(p)=1}U{r e X :2(q) =1}
= f) v f(a).

The first and last equalities use the definition of f, the second uses the ho-
momorphism properties of the mappings x in X, the third uses the definition
of join in 2, and the fourth uses the definition of union. Similarly,

fo')={zeX a(p') =1}
={reX:z(p) =1}
={zr e X :x(p) =0}
={zeX:ap) =1}
= f(p)".
In order to demonstrate that f is one-to-one, it suffices to show that its
kernel contains only 0. If p # 0, then there is a 2-valued homomorphism x
on A such that z(p) = 1, by Lemma 1; consequently, the set f(p) is not

empty. Thus, each non-zero element p in A is mapped by f to a non-empty
set, so p cannot be in the kernel of f.

The mapping f of the theorem is often called the canonical embedding
of A.
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Corollary 1. Every Boolean algebra is isomorphic to a field of sets.

There are at least two variations of the representation f in Theorem 17.
Instead of the set X of 2-valued homomorphisms on A, one can use the set Y
of kernels of these homomorphisms. The kernel of a 2-valued homomorphism
on A is a maximal ideal in A, and conversely, every maximal ideal in A is
the kernel of a 2-valued homomorphism on A (Corollary 21.3). The set Y is
therefore just the collection of maximal ideals in A. The mapping g that one
uses to embed A into P(Y) is defined by

gp)={M €Y :pg M}

for p in A.

One can prove directly that g is a monomorphism. An alternative proof,
using the monomorphism properties of the representation f in Theorem 17,
goes as follows. The function ¢ that takes each 2-valued homomorphism on A
to its kernel is a bijection of X to Y. This bijection induces an isomorphism k
from P(Y) to P(X) that maps each set of maximal ideals in A to the cor-
responding set of 2-valued homomorphisms on A (see p. 94). The composite
monomorphism k~! o f coincides with g, since

KN ) =k ({r e X ra(p) =1})
— (€ X : a(p) £0))
={¢(z) : x € X and z(p) # 0}
={MecY:pgM}

=g(p)-

The second variation of the representation f is the dual of the first. In-
stead of the set Y of maximal ideals in A, one uses the set Z of ultrafilters
(maximal filters) in A. The corresponding embedding of A into P(Z) — call
it h — is defined by

hip)={Ne€Z:pe N}
for all p in A. There are several psychological advantages to using the set
of ultrafilters instead of the set of maximal ideals. First, the definition of
the embedding h has a positive form, whereas the definition of g involves
a negation (“p & M”). Second, there is a simple intuition underlying the
representation when one uses ultrafilters. Recall that every atomic Boolean
algebra is isomorphic to a field of subsets of the set of its atoms (Theo-
rem 6, p. 119). To represent A, it therefore suffices to construct an extension
of A in which there is an atom below each non-zero element. A set E of
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elements in A generates a proper filter if and only if E has the finite meet
property, that is to say, if and only if the meet of any finite subset of F
is not zero (Exercise 18.20). Ultrafilters are just the maximal subsets of A
that have the finite meet property, and it is not difficult to prove that every
subset of A with the finite meet property can be extended to an ultrafilter
(Exercise 20.12). The intuition underlying the definition of h is that each
ultrafilter in A should determine a unique atom ¢, and in fact ¢ should be
the infimum of the elements of N. The atoms of the field P(Z) are the sin-
gletons of ultrafilters N, and for each element p in A, the atom {N} is below
the set h(p) in P(Z) just in case N is an element of h(p), or, equivalently,
just in case p is in N. If each element p in A is identified with its isomorphic
image h(p), then the atom {N} can be thought of as the infimum, in P(Z),
of the set of elements in N. We shall have more to say about this in the next
chapter, in Lemma 23.1.

There is still another formulation of the representation theorem that is
useful and that offers its own insights. The field of sets P(X) is isomorphic
to the Boolean algebra 2% via the mapping that takes each subset of X to its
characteristic function (see Chapter 3). The composition of this isomorphism
with the monomorphism f from Theorem 17 is therefore an embedding of A
into 2X. The embedding takes each element p in A to the characteristic
function (on X) of the set of those 2-valued homomorphisms (on A) that
map p to 1.

Corollary 2. Every Boolean algebra is embeddable into a power of 2.

Exercises

1. Let Y be the set of maximal ideals in a Boolean algebra A. Prove
directly that the mapping ¢g defined on A by

g(p) ={M eY:pg M}
is an embedding of A into P(Y).

2. Let Z be the set of ultrafilters in a Boolean algebra A. Prove directly
that the mapping h defined on A by

hip)={Ne€Z:pe N}
is an embedding of A into P(Z).
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. Let B = 2 x 2 x 2. Describe the set Z of ultrafilters in B and the

canonical embedding of B into P(Z).

(Harder.) A relativization of a Boolean algebra is not a subalgebra,
but it constitutes a Boolean algebra in a natural way (see Chapter 12).
Is that Boolean algebra necessarily isomorphic to a subalgebra of the
whole algebra?

. Is every complete Boolean algebra isomorphic to a complete field of

sets?

. Is every Boolean algebra isomorphic to a subalgebra of a complete al-

gebra?

(Harder.) Prove that every distributive lattice is isomorphic to a lattice
of sets under the operations of intersection and union. (This theorem
is due to Birkhoff [5].)



Chapter 23

Canonical Extensions

If A is a Boolean algebra and if X is the set of 2-valued homomorphisms
on A, then A is mapped isomorphically to a subalgebra of P(X) via the
canonical embedding f that takes each element p in A to the set of 2-valued
homomorphisms on A that map p to 1 (see Theorem 17, p. 189). The alge-
bra P(X) can therefore be viewed as a Boolean extension of A. The purpose
of this chapter is to characterize this extension algebraically.

The most obvious properties of P(X) are that it is complete and atomic,
and that it contains an isomorphic copy of A as a subalgebra. In order to
describe other properties in the most perspicuous way, it is convenient to
identify each element p in A with its image f(p) in P(X). In terms of this
identification, another, less obvious property, can be formulated as follows:
any two (distinct) atoms ¢ and r in P(X) are separated by some element p
in A in the sense that ¢ < p and r < p’. Indeed, the atoms must have the
form ¢ = {z} and r = {y} for some distinct 2-valued homomorphisms z
and y on A. The distinctness of the homomorphisms implies the existence of
an element p in A such that

z(p)=1 and  y(p)=0.

It follows that x belongs to the set f(p), and y to f(p’), by the definition
of f. In other words,

g={z} C f(p) and r={y} C f(p’).

When p is identified with f(p), these inclusions say that ¢ < p and r < p’.
Yet another property of P(X) is its compactness with respect to A: if a
subset E of A has, as its supremum in P(X), an element ¢ in A, then a finite
subset of E must already have ¢ as its supremum (in A and in P(X)). The
S. Givant, P. Halmos, Introduction to Boolean Algebras, 193
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proof of this assertion begins with the special case in which the supremum
in question is 1, and the argument in that case proceeds by contraposition.
Consider an arbitrary subset E of A, and suppose that no finite subset of F
has 1 as its supremum (in A). It is to be shown that 1 is not the supremum
of E in P(X). The ideal generated by E in A is the set

{pEA:pS\/FforsomeﬁnitngE}

(Theorem 11, p. 155), and it does not contain 1, by assumption. Conse-
quently, this ideal is proper and can therefore be extended to a maximal
ideal M in A, by the maximal ideal theorem. The maximality of M im-
plies the existence of a 2-valued homomorphism z on A with kernel M
(Theorem 14, p. 179, and Corollary 21.3). For each element p in M, we
have z(p) = 0, so z cannot belong to f(p). It follows that = does not belong
to the union (J,c 5, f(p). On the other hand, = does belong to f(1), because 1
is not in M and therefore (1) = 1. These observations (and the fact that M
includes E) show that

U ) < U £ # £(1).

peEE peM

Since suprema are unions in P(X), the set f(1) cannot be the supremum of
the set
f(E)={f(p):pc E}

in P(X). When the elements of A are identified with their images under f,
this conclusion says that 1 cannot be the supremum of the set £ in P(X).

To prove the general case of the compactness property, consider an arbi-
trary subset F of A, and suppose that an element ¢ from A is the supremum
of E in P(X). The set EU{q’} is also a subset of A (since ¢ belongs to A),
and its supremum in P(X) is 1, since

VEU{)=¢dVVE=¢Vvqe=1
consequently, there must be a finite subset F' of E such that
1=¢q'V \/ F,
by the observations of the previous paragraph. Form the meet of both sides

of this equation with ¢, and use the fact that ¢ is an upper bound of F, to
conclude that

g=qAl=qA(@'V\/F)=(rd)Vgrn\/F)=0v\/F=\/F.
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In other words, ¢ is the supremum of a finite subset F' of E.

The properties discussed above can be formulated in an abstract setting.
An extension of a Boolean algebra A is said to have the atom separation
property with respect to A if any two atoms ¢ and r in the extension are
separated by some element p in A in the sense that ¢ < p and r < p’.
The extension is said to have the compactness property with respect to A
provided that whenever a subset E of A has a supremum in the extension,
and that supremum — say ¢ — belongs to A, then some finite subset of F
already has ¢ as its supremum (in A and in the extension). The argument
of the preceding paragraph shows that the general compactness property is
equivalent to the special case in which ¢ = 1. A complete and atomic Boolean
extension of A that has the atom separation and the compactness properties
is called a canonical extension, or a perfect extension, of A.

If A is an arbitrary Boolean algebra, and if f is the canonical embedding
of A into P(X) (where X is the set of 2-valued homomorphisms on A),
then the argument above shows that P(X) is a canonical extension of the
subalgebra that is an isomorphic copy of A under f. An application of the
exchange principle (Chapter 12) leads to the conclusion that A itself has a
canonical extension. This proves the following existence theorem for canonical
extensions.

Theorem 18. Fvery Boolean algebra has a canonical extension.

In particular, every Boolean algebra has a complete and atomic extension.
Happily, a Boolean algebra has just one canonical extension, up to isomorphic
copies. The key step in the proof of this assertion is formulated in the next
lemma, and is closely related to the intuition underlying the proof of the
representation theorem that was discussed at the end of Chapter 22.

Lemma 1. If B is a canonical extension of a Boolean algebra A, then the
distinct atoms in B are precisely the infima of the distinct ultrafilters in A.

Proof. Every atom in B is the infimum of a uniquely determined ultrafilter
in A. For the proof, consider an atom ¢ in B. The principal filter generated
by ¢ in B, the set

{peB:qg<p}
is an ultrafilter, by the dual of Corollary 20.2, and consequently the intersec-
tion of this ultrafilter with A, the set

(1) N={peA:q<p},
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is an ultrafilter in A, by the dual of Exercise 20.4. The infimum of the
set N exists in B, by the assumed completeness of B; call it s. It is to be
shown that ¢ = s. The atom ¢ is obviously a lower bound of N, and s is by
definition the greatest lower bound of N; consequently, ¢ < s. In order to
establish equality, it suffices to show that ¢ is the only atom below s, because
every element in an atomic Boolean algebra — and in particular, s — is the
supremum of the set of atoms that it dominates (Lemma 14.3). Consider
any atom 7 in B that is different from ¢. There must be an element p in A
such that ¢ < p and r < p’, by the atom separation property. The element p
belongs to N, by (1), and therefore s < p, since s is the infimum of N. It
follows that r and s are disjoint, since

sAr<pAp =0.

Thus, no atom different from ¢ can be below s.

Consider now an arbitrary ultrafilter M in A. We shall show that the
infimum of M in B — call it s — is an atom in B. The assumption that s =0
leads to a contradiction. Indeed, some finite subset of M would then have
infimum 0, by the dual of the compactness property. Since M is closed under
finite meets, this would imply that 0 is in M, and therefore that M is an
improper filter. But M is an ultrafilter, so it must be proper. Thus, s # 0.
The algebra B is atomic, and s is not zero, so there is at least one atom ¢
below s. The set N defined by (1) is an ultrafilter in A, and its infimum is ¢,
by the observations of the first paragraph. Moreover, N includes M because
every element in M is above s, by assumption, and therefore also above q.
The assumed maximality of M now implies that M = N. Consequently, the
infimum of M coincides with the infimum of N. In other words, ¢ = s, so
that s is an atom.

The correspondence that takes each atom ¢ in B to the ultrafilter NV in A
defined by (1) is a one-to-one mapping, since the atom ¢ uniquely determines,
and is uniquely determined by, the ultrafilter N. The correspondence maps
the set of atoms in B onto the set of ultrafilters in A, because the infimum of
an arbitrary ultrafilter N in A is an atom ¢ such that N is the ultrafilter de-
fined by (1). Conclusion: the set of atoms in B is in bijective correspondence
with the set of ultrafilters in A.

Two canonical extensions, say B and C, of a Boolean algebra A have the
same number of atoms, because the number of atoms is equal to the number
of ultrafilters in A, by Lemma 1. The two extensions are also complete, so any
bijection between the sets of atoms extends to an isomorphism between B
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and C, by Corollary 14.2. It follows that B and C are isomorphic. It is
actually possible to construct an isomorphism that is the identity mapping
on A, but some care must be exercised in selecting the bijection between the
two sets of atoms. Here are the details.

Lemma 1 says that each ultrafilter in A uniquely determines an atom in B
and an atom in C, namely the atom that is the infimum of the ultrafilter;
conversely, each atom in each of the two algebras is uniquely determined by
some ultrafilter in A. Let ¢ be the function that for each ultrafilter N in A,
maps the atom in B determined by N (namely, the infimum of N in B) to
the atom in C' determined by N (namely, the infimum of N in C). The
mapping ¢ is a bijection from the set of atoms in B to the set of atoms in C,
by Lemma 1. The isomorphism f from B to C induced by this bijection is
defined by

f(p) = \/{#(q) : ¢ is an atom in B and ¢ < p},

by the remarks following Corollary 14.2. What is the value of f on an el-
ement p in A7 An atom ¢ in B is below p just in case p belongs to the
ultrafilter N determined by ¢ in A (see (1) in the proof of Lemma 1). The
image atom ¢(g) in C' determines the same ultrafilter N, by the definition
of ¢, so ¢(q) is below p just in case p belongs to N. It follows that ¢ maps
the set of atoms in B that are below p onto the set of atoms in C' that are
below p. Of course, p is the supremum of the set of atoms it dominates in
each algebra, by Lemma 14.3. The definition of f therefore yields

f(p) = \/{gb(q) : ¢ is an atom in B and ¢ < p}
:\/{r:risanatominCandrSp}Zp.

In other words, f maps each element in A to itself. The following uniqueness
theorem for canonical extensions has been proved.

Theorem 19. Any two canonical extensions of a Boolean algebra A are
isomorphic via a mapping that is the identity on A.

The theorem may be viewed as a justification for the common practice of
referring to the canonical extension of a Boolean algebra.

What is the size of the canonical extension of a Boolean algebra A, com-
pared to the size of A7 A finite Boolean algebra is its own canonical extension,
so there is no increase in size. Suppose A has an infinite number m of ele-
ments. It can be shown that the number of ultrafilters in A is between m
and 2™. Each ultrafilter determines, and is determined by, a unique atom
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in the canonical extension, and each element in the canonical extension de-
termines, and is determined by, a unique set of atoms. There are therefore
as many elements in the canonical extension as there are subsets of the set
of ultrafilters in A. Conclusion: the canonical extension has between 2"
and 22" elements.

The algebraic characterization of the canonical extension discussed in this
chapter is due to Jénsson and Tarski [32].

Exercises

1. Prove that a finite Boolean algebra is its own canonical extension.

2. Prove that the canonical extension of a Boolean algebra A possesses
the following dual compactness property: if an element p in A is the
infimum in B of a subset F of A, then p is the infimum of some finite
subset of F.

3. (Harder.) Give an example of complete and atomic Boolean algebras A
and B such that B is a subalgebra, but not a complete subalgebra,
of A.

4. If two Boolean algebras are isomorphic via a mapping g, prove that their
canonical extensions are isomorphic via a mapping that extends g.

5. Give an example of an incomplete monomorphism between complete
Boolean algebras.

6. Prove that every homomorphism between Boolean algebras can be ex-
tended to a homomorphism between the corresponding canonical ex-
tensions.

7. (Harder.) Prove that, in fact, every homomorphism between Boolean
algebras can be extended to a complete homomorphism between the
corresponding canonical extensions. More precisely, let A and B be
Boolean algebras, and A; and Bj the corresponding canonical exten-
sions. Take E to be the set of infima in B of subsets of B:

E:{TEBlzr:/\FforsomngB}.

Prove that if g is a homomorphism from B to A, then the mapping f
from By to Ay defined by
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f(p)Z\/{/\{g(S):8€Bandq§8}:q€Eandq§p}

for p in Bj is a complete homomorphism that extends g. Show further
that if g is one-to-one or onto, then so is f. (This is a special case of a
much more general theorem due to Jénsson and Tarski [32].)

8. Prove that if B is a Boolean subalgebra of A, then the canonical ex-
tension of B is (up to an isomorphism that is the identity on A) a
complete subalgebra of the canonical extension of A, and in fact it is
the complete subalgebra generated by B.



Chapter 24

Complete Homomorphisms
and Complete Ideals

A homomorphism between Boolean algebras preserves suprema and infima of
finite sets, but in general it will not preserve suprema and infima of infinite
sets. A Boolean homomorphism f from B to A is said to be complete if
it preserves all suprema that do exist. This means that if a family {p;} of
elements in B has a supremum p, then the family {f(p;)} has a supremum
in A, and that supremum is f(p).

A complete homomorphism f automatically preserves all infima that hap-
pen to exist. For the proof, suppose a family {p;} of elements has an infimum,
say p. The supremum of the family {p/} is then p’, because

p' = (/i\pi)/Z\i/p{,

by Lemma 8.1. The homomorphism f is assumed to preserve all existing
suprema, so

1w) =" = 1\ o) =\ 1)) =\ 1) = (N F@0)"
Form the complements of the first and last terms to conclude that

1®) = \ ).

There is a simple and useful criterion for completeness: a Boolean homo-
morphism f from B into A is complete if and only if whenever a family {p;}
in B has the unit as its supremum, then the family { f(p;)} in A also has the
S. Givant, P. Halmos, Introduction to Boolean Algebras, 200
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unit as its supremum. The necessity of the condition is obvious; it follows
directly from the definition of a complete homomorphism. To demonstrate
the sufficiency of the condition, assume that f satisfies the condition, and
consider an arbitrary family {p;} in B with supremum p. The element f(p)
is certainly an upper bound of the family {f(p;)} in A, since p; < p, and
therefore f(p;) < f(p), for each i. Also, the family obtained by adjoining p’
to {p;} clearly has the supremum 1 in B, since

1=p'vp=p"v\/p
i
The assumed condition on f therefore implies that the family obtained by
adjoining f(p)’ to {f(pi)} has the supremum 1 in A:

1=f(1)=f(p'V \/p» =f')Vv \/ fpi) = f(p)' v \/f(p».

If ¢ is any upper bound of {f(p;)} in A, then ¢’ A f(p;) = 0 for each i, and
therefore

g =qd' Nl=q A(f(p) V\/f(pz-))
=(q'Af(p)) V\/(Q’Af(pi)) =(¢'Af(p))VO=q"Af(p).

It follows that

q" < f(p)",
or, equivalently, that f(p) < ¢. Consequently, f(p) is the least upper bound
of the family {f(p;)}.

We have already encountered several examples of complete homomor-
phisms. One is the relativizing homomorphism on a Boolean algebra induced
by an element pg: it maps each p in the algebra to the meet p A pg. Another
is the homomorphism on a complete field of sets induced by a point zg: it
maps each set P in the field to 1 or 0 according as xg is, or is not, in P. Not
all homomorphisms are complete, however. For instance, let X be the set of
non-negative integers, and consider the field B consisting of the finite sets of
positive integers and the complements of such sets in X, namely the cofinite
subsets of X that contain the integer 0. The identity function f on B is
certainly a monomorphism from B into the field A of all subsets of X, but it
is not complete. To see this, write P; = {i} for each positive integer i. The
family {P;} has X as its supremum in B, and X — {0} as its supremum in A.
Consequently, the monomorphism f does not map the supremum of {P;}
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in B to the supremum of {F;} in A. The field B is of course not a complete
Boolean algebra. However, there even exist incomplete homomorphisms be-
tween complete Boolean algebras (see Exercise 23.5).

The kernels of homomorphisms on a Boolean algebra B are just the ideals
in B, by the homomorphism theorem. Is there an analogous theorem for
complete homomorphisms? The first step in answering this question is to
introduce an appropriate modification of the notion of an ideal. Define a
complete ideal in a Boolean algebra B to be a subset M of B such that

(1) 0€e M,
(2)  if {p;} is a family in M with a supremum p in B, then p € M,
(3) ifpe M and g € B, then pAq € M.

In other words, a complete ideal is an ideal that satisfies condition (2) for
infinite families of elements.

It is not difficult to check that kernels of complete homomorphisms are
complete ideals. Indeed, if M is the kernel of a complete homomorphism f,
then M is certainly an ideal (Chapter 21), so it suffices to check that M also
satisfies condition (2). Consider a family {p;} of elements in M, and suppose
that the supremum of the family exists in B, say it is p. The completeness
of f implies that

£0) = 10\ p) =\ £(p0) = 0

therefore, p belongs to M.

It is natural to ask about the converse: is every complete ideal the kernel
of a complete homomorphism? Consider a complete ideal M in a Boolean
algebra B. The projection f of B onto the quotient B/M, which maps
each element p to the coset p/M, has M as its kernel. The question just
posed will be answered positively if it can be shown that f is complete as
a homomorphism. Let {p;} be a family of elements in B with supremum 1.
It is to be shown that f(1) is the supremum of the family {f(p;)} in the
quotient B/M. In other words, it is to be shown that 1/M is the supremum
of the family {p;/M}. Certainly, 1/M is an upper bound of the family:
the inequality p; < 1 implies that p;/M < 1/M. Consider now any upper
bound ¢/M of the family. Since p;/M < q/M, by assumption, we have

(pi Nq')/M = (pi/M) A (¢/M)" =0/M.

In other words, p; A ¢’ is in the ideal M for each i. The supremum of the
family {p; A ¢’} in B is ¢, because
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¢ =g A= AN\pi=\(rp)=\irg)
% i 7
by Lemma 8.3. It follows from the assumed completeness of M that M
contains ¢’. In other words, ¢'/M = 0/M, and therefore q/M = 1/M.
Conclusion: 1/M is the least upper bound of the family {p;/M}.
The preceding argument proves the natural analogue, for complete ideals,

of the homomorphism theorem.

Theorem 20. FEvery complete ideal is the kernel of some complete epimor-
phism, namely the corresponding projection.

Principal ideals are examples of complete ideals. Indeed, if M is the ideal
generated by an element p in a Boolean algebra, and if F is any subset of M,
then p is certainly an upper bound of E. Consequently, the supremum of F,
if it exists, must be below p and hence in M.

The intersection of an arbitrary family of complete ideals in a Boolean
algebra is again a complete ideal. For the proof, consider such a family {M,},
and let M be its intersection. Certainly, M is an ideal, by the remarks in
Chapter 18. To verify that M also satisfies condition (2), let {p;} be a
family of elements in M, and suppose that the supremum of this family
exists, say it is p. Each ideal M; is assumed to be complete and to contain
every element in the family {p;}, so M; must contain the supremum p of the
family, by condition (2) (applied to M;). Consequently, the intersection M
also contains p.

It follows from the observations of the preceding paragraph that if F
is an arbitrary subset of a Boolean algebra B, then the intersection of the
complete ideals in B that include F is itself a complete ideal. (There is at
least one complete ideal that includes E, namely the improper ideal B.) That
intersection, say M, is the smallest complete ideal that includes E; in other
words, every complete ideal that includes F also includes M. The ideal M
is called the complete ideal generated by E. Warning: the complete ideal
generated by a set F is not the same as the ideal generated by E; the latter
is always included in the former, but the reverse inclusion generally fails.

The definition just given is non-constructive. It gives no idea of the ele-
ments of B that actually belong to the complete ideal generated by E. There
is a description of these elements that is somewhat analogous to the descrip-
tion of the elements belonging to the ideal generated by E (Theorem 11,
p. 155). To formulate it, we introduce some notation. Let E¢ be the set of
elements in B that are below some element of F,
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(4) EY={pe B:p<qforsome q € E}.
The set E¢ is called the downward closure of E (in B).

Lemma 1. An element p of a Boolean algebra is in the complete ideal gen-
erated by a set E if and only if it is the supremum of some subset of E.

Proof. Let M be the complete ideal generated by a set E in a Boolean al-
gebra B, and let N be the set of elements in B that are suprema of subsets
of E?. It is to be proved that M and N are equal. The first step is verifying
that N is a complete ideal that includes E. An element p in E is always the
supremum of a subset of £¢, namely the subset {p}. Therefore, E is included
in N. Clearly, N contains 0, since 0 is the supremum of the empty set. To
verify condition (2), consider a family {p;} of elements in N, and suppose
that this family has a supremum, say p, in B. Each p; is the supremum of
some subset F; of E¢, by the definition of N. The union F of these subsets
is itself a subset of £, and its supremum is p, since

p=\n=V(VE)=VE
K3 K] (] (]

by Lemma 8.2. Therefore, p is in N, by the definition of N. To check

condition (3), suppose p is in N and ¢ in B. The definition of N implies that

p is the supremum of a subset F' of E?. Each element r in F is below some

element s in E, by definition (4). Since

rTAqg=T< s,
the meet 7 A ¢ must also belong to E?. Thus, the set of these meets,
G={rNq:reF},

is a subset of E%. The supremum of G is p A g, because

pAqg= (\/F)/\q:\/{r/\q:reF}:\/G,

by Lemma 8.3. It now follows from the definition of N that p A ¢ belongs
to N. Conclusion: N is a complete ideal that includes E.

The set M is the smallest complete ideal that includes E, and N is a
complete ideal that includes F, so M must be included in N. On the other
hand, every element of E? certainly belongs to M, by condition (18.18).
The completeness of M therefore implies that whenever a subset of E¢ has a
supremum in B, that supremum must be in M. It follows (from the definition
of N) that N is included in M. Thus, M = N, as desired.
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There is another description of the complete ideal generated by a set E
in a Boolean algebra that is worth formulating. Recall that the set of upper
bounds of FE is, by definition, the set U of elements in the Boolean algebra
that are above every element of E. The set of lower bounds of U is the set L
of elements in the Boolean algebra that are below every element in U. It
turns out that L is the complete ideal generated by E.

Lemma 2. The complete ideal generated by a set E in a Boolean algebra is
the set of lower bounds of the set of upper bounds of E.

Proof. Let M be the complete ideal generated by a set E in a Boolean alge-
bra B, let U be the set of upper bounds of E (in B), and let L be the set of
lower bounds of U. It is to be shown that M and L coincide. The first step
is verifying that L is a complete ideal that includes E. Each element in E
is a lower bound of U, by the definition of U, so F is included in L, by the
definition of L. It is equally obvious that 0 is in L: the set U is not empty
(it contains 1), and 0 is below every element in U. To verify that L satisfies
condition (2), consider an arbitrary family {p;} of elements in L, and suppose
the family has a supremum p in B. The elements of U are upper bounds for
the set L, by the definition of L, so they are upper bounds of the family {p;}.
It follows that they are all above the least upper bound p. Hence, p is in L,
by the definition of L. Condition (3) is also easy to check. If p is in L and ¢
in B, then p is below every element of U, and consequently so is p A q. It
follows that p A ¢ is in L, by the definition of L.

The set M is, by assumption, the smallest complete ideal that includes E.
It has just been shown that L is also a complete ideal that includes FE.
Consequently, M is included in L. To establish the reverse inclusion, consider
an arbitrary element p in L, and let F' be the set of elements in E? that are
below p. It will be shown that p is the supremum of F' in B. It then follows
from the previous lemma that p is in M, and therefore that L is included
in M.

The element p is certainly an upper bound of F, by the definition of F.
Consider any other upper bound of F, say ¢. It must be proved that p < ¢.
The first step is to prove that every element of E is below ¢ V p’. For each r
in £, the meet 7 A p is below p and belongs to E%, by (4), so it is in F', by the
definition of F. Every element of F' is below ¢, by assumption, so r A p < q.
A straightforward computation yields

r=rAl=rA(pVp )=>FAp)VAp)<qVvp
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It has been shown that ¢V p’ is an upper bound of E, so this join belongs to
the set U of upper bounds of E. The element p belongs to the set L of lower
bounds of U, by assumption, so p < q V p’ and consequently

p=pAgVp)=@AQ VAP )=p@AgVO=pAg

In other words, p < ¢, as was to be shown.

There is a close connection between complete ideals and the “cuts” that
play a crucial role in Dedekind’s classical construction of the real numbers
from the rational numbers (see [15]). A Dedekind cut in the set of rational
numbers is a pair (P, @) of non-empty sets that partition the rational numbers
(every rational number is in exactly one of the two sets) and such that every
number in P is less than every number in ). The set P has the characteristic
property that it is downward closed: if p is in P, and if ¢ is less than p, then ¢
is in P. Similarly, the set Q) is upward closed: if p is in @), and if ¢ is greater
than p, then ¢ is in ). The set ) can of course be reconstructed from the
set P; it is just the complement of P in the set of rational numbers. Thus,
one could define a Dedekind cut to be simply a non-empty, downward closed
set of rational numbers that is different from the set of all rational numbers.

Consider now a subset E of a Boolean algebra B. The set U of upper
bounds of E is upward closed, and the set L of lower bounds of U is downward
closed, and the two sets L and U have at most one element in common. The
pair (L,U) is therefore a kind of Dedekind cut in the partial ordering of B.
(The fact that L and U may have one element in common — namely, the
supremum of the set E, if it exists — is of no real significance.) The set U
can, of course, be reconstructed from the set L — it is just the set of upper
bounds of L — so one can consider L itself to be a Dedekind cut in the
partial ordering of B. In view of the preceding lemma, we may conclude that
complete ideals are the analogues, for Boolean algebras, of Dedekind cuts of
rational numbers.

The class of complete ideals in a Boolean algebra B forms a complete
lattice.  The infimum of any family {M;} of complete ideals in B is just
the intersection of the family. The supremum of {M/;} is the complete ideal
generated by the union of the ideals in the family, or, in different words, it is
the intersection of the complete ideals that include each M;. (There is always
one such complete ideal, namely the improper ideal B.)

The lattice of complete ideals in B is not a sublattice of the lattice of all
ideals of B. The (binary) operation of meet is the same in both lattices, since
the meet of two complete ideals is just their intersection. The operation of
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join, however, is not the same. In the lattice of all ideals, the join of two
complete ideals M and N is the intersection of all ideals that include M U N;
in the lattice of complete ideals it is the intersection of all complete ideals
that include M U N.

The difference can be illustrated by an example. Let B be the Boolean
algebra of finite and cofinite subsets of integers, let M be the ideal of all finite
sets of even integers, and let N the ideal of all finite sets of odd integers. It
is easy to check that these two ideals are complete for a trivial reason: no
infinite subset of M or N has a supremum in B. Indeed, suppose E is an
infinite subset of M, and consider any upper bound P of F in B. The union
of F is an infinite set of even integers, so the set P must be infinite, and hence
cofinite. This means that it contains infinitely many odd integers; removing
any one of them produces a proper subset of P that is still an upper bound
of E in B. The proof that N is complete is analogous.

The join of the ideals M and N in the lattice of all ideals of B is the class
of sets of the form P U @, where P is a finite set of even integers and @ a
finite set of odd integers, by Lemma 19.1. Every finite set of integers can be
written in this form, so the join of the two ideals is really just the ideal of all
finite sets of integers. On the other hand, the join of M and N in the lattice
of complete ideals of B is the improper ideal B. To see this, write P; = {i}
for each integer ¢. Every set P; is in M or in N, and is therefore in the
complete ideal L generated by M U N. The supremum of the family {P;} is
the unit of B, the set of all integers. This supremum must be in L, by the
definition of a complete ideal, so L contains the unit element. This forces L
to coincide with B (the ideal generated by the unit).

The same example shows that the identity

(5) MVN={pVqg:pe M and g € N}

fails to be true in the lattice of complete ideals of a Boolean algebra. The
identity does hold, however, when the two complete ideals are principal,
because

)V (a) = (pVa),
by Corollary 19.2, and the principal ideal (p V q) is complete.

The lattice of complete ideals is not only complete (as a lattice), it is
also distributive. The proof of this assertion is necessarily different from the
proof of the analogous result for the lattice of all ideals, since the identity (5)
no longer holds. Consider three complete ideals L, M, and N in a Boolean
algebra. It is to be shown that in the lattice of complete ideals
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(6) LANMVN)=(LAM)V(LAN)
and
(7) LV(MAN)=(LVM)A(LVN).

Begin with the proof of (6). The complete ideals LAM and LAN are certainly
included in the left side of (6), since M and N are included in M VvV N. It
follows that the complete ideal generated by the union of L A M and L A N
is also included in the left side of (6). In other words, the ideal on the right
side of (6) is included in the ideal on the left side. To establish the reverse
inclusion, consider an arbitrary element p in the left-hand ideal. Since p
is in the complete ideal generated by M U N, and since M and N coincide
with their downward closures, by condition (18.18), there must be subsets E
of M, and Es of N, such that p is the supremum of E; U Fy, by Lemma 1.
The element p is also in L, by assumption, so the sets E7 and F5 are included
in L, by condition (18.18). It follows that E; is a subset of L A M, and E3 a
subset of L A N. The union Ej U Es is therefore a subset of the right-hand
ideal. The supremum p of this union must also be in the right-hand ideal,
because that ideal is complete.

The dual distributive law (7) can be established by a similar argument.
Alternatively, it can be derived directly from (6), because each of the two
distributive laws for lattices is derivable from its dual. (See Exercise 7.19.)

There is another, quite surprising difference between the lattice of ideals
and the lattice of complete ideals of a Boolean algebra. In the lattice of ideals,
certain ideals may fail to have a complement. In the lattice of complete ideals,
this never happens: every complete ideal has a complement. For the proof,
consider a complete ideal M in a Boolean algebra B. The annihilator of M
is the set N defined by

N={peB:pAqg=0forall g M}.

(See Exercise 18.6.) It is easy to check that N is a complete ideal in B. For
instance, to verify condition (2), consider any family {p;} of elements in N
that has a supremum p in B. For each element ¢ in M,

pPAg= (\/m)Aq:\/(mAq):O,

7

by Lemma 8.3. Consequently, the supremum p also belongs to the annihila-
tor .
The claim is that NV is the complement of M in the sense that
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(8) M AN ={0} and MV N = B.

The first identity is almost immediate: if p is in M and simultaneously in IV,
then pAp = 0, by the definition of NV, and therefore p = 0, by the idempotent
law for meet. The second identity in (8) is equivalent to the assertion that
the unit 1 belongs to the complete ideal generated by the set M U N. The
unit will be in this ideal if and only if it is the supremum of the set M U N,
by Lemma 1. Obviously, the unit is an upper bound of this union. Consider
any other upper bound p of the union. Each element ¢ in M is below p, and
therefore p’ Aq = 0. In other words, p’ belongs to the annihilator N. Since p
is also an upper bound of N, we conclude that p’ < p, which can happen only
if p=1. It follows that the unit is the least upper bound of the set M U N,
as desired.

The remarks in the preceding paragraphs lead to the conclusion (due to
Stone [66], [68] and Tarski [75]) that the class of complete ideals in a Boolean
algebra is itself a complete Boolean algebra.

Theorem 21. The class of all complete ideals in a Boolean algebra B is itself
a complete Boolean algebra with respect to the distinguished Boolean elements
and operations defined by

(1) 0= {0},

2) =B

(3) MAN=MNON,

4 MVN = ﬂ{L : L is a complete ideal in B and M UN C L},
(5) M'={peB:pANq=0 for all g € M}.

The infimum and the supremum of a family of complete ideals are, respec-
tively, the intersection of the family and the complete ideal generated by the
union of the family.

Proof. The proof of the theorem amounts to showing that the identity laws
(2.13), the complement laws (2.14), the commutative laws (2.18), and the
distributive laws (2.20) are all valid in the algebra of complete ideals (see Ex-
ercise 2.2). The identity and commutative laws follow immediately from defi-
nitions (1)—(4). The complement and distributive laws were verified above.

Every principal ideal in a Boolean algebra is complete. What kind of
structure, if any, does the class of these ideals possess? Here is one answer
to this question.
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Corollary 1. The principal ideals in a Boolean algebra B form a regular
subalgebra of the Boolean algebra of all complete ideals in B. The supremum
of a family of principal ideals {(p;)} exists in the subalgebra just in case the
supremum of the family of elements {p;} exists in B; in fact,

V) =@  fandonlyif  p=\/ps

(2

Proof. Let A be the Boolean algebra of all complete ideals in B, and C
the class of all principal ideals in B. Certainly, the zero ideal (0) is in C.
Suppose p and q are elements in B. The principal ideals generated by these
elements satisfy the equations

(p) V(g) =(pVa), (p) A (g) = (pAq), (»)' ="

in the lattice of all ideals in B, by Corollary 19.1 and the subsequent remarks.
(The operations on the left sides of these equations are performed in the
lattice of ideals, whereas those on the right are performed in B.) All the
ideals in these equations are principal, so the equations also hold in A. (Keep
in mind, though, that the operations of join in A and in the lattice of all ideals
are in general not the same.) The class C' is thus a subalgebra of A.

Turn now to the proof of the final assertion of the corollary, and assume
first that the supremum of a family {(p;)} of principal ideals exists in C, say
it is (p). Each ideal (p;) is included in (p), so p; < p. In other words, p is an
upper bound (in B) of the family of elements {p;}. If ¢ is any other upper
bound of this family of elements, then p; < ¢, and therefore (p;) must be
included in (gq), for each i. The ideal (p) is assumed to be the supremum of
the given family of ideals, so (p) must be included in (q). It follows that p < q.
This proves that p is the supremum of the family {p;} in B.

To prove the converse, assume that the supremum of a family {p;} of
elements in B exists, say it is p. Then p; < p for each ¢, by the definition of
supremum, so each ideal (p;) is included in (p). In other words, (p) is an upper
bound of the family of ideals {(p;)} in C. If (¢) is any other upper bound
in C of this family of ideals, then (p;) is included in (¢), and therefore p; < g,
for each i. The element p is assumed to be the supremum of the family {p;},
so p < q. It follows that (p) is included in (¢q). Thus, (p) is the supremum of
the family {(p;)} in C.

It remains to show that C is a regular subalgebra of A. Consider an
arbitrary family {(p;)} of ideals in C, and suppose it has a supremum (p)
in C. It must be shown that (p) is also the supremum in A of the given
family of ideals. It is certainly an upper bound in A, since the ideal (p;) is
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included in (p) for each i. To see that (p) is the least upper bound in A,
consider any other complete ideal M that is an upper bound of {(p;)} in A.
Each of the ideals (p;) is included in M, by assumption, so the elements p;
all belong to M. The element p is the supremum of the family {p;} in B, by
the observations of the second paragraph of the proof. Because the ideal M
is assumed to be complete, the element p must also belong to M, by the
definition of a complete ideal. It follows that (p) is included in M. Thus, (p)
is the supremum of the family {(p;)} in A.

We close this chapter with a warning. There are other notions of a com-
plete ideal that exist in the literature. For instance, some authors define an
ideal to be complete if each subset of the ideal has a supremum and that
supremum is in the ideal. This stronger notion of a complete ideal does not
play a large role. The reason is that every such ideal is principal. Proof:
if M is such an ideal, then \/ M is in M.

Exercises

1. Prove that the relativizing homomorphism induced on a Boolean alge-
bra by an element is complete.

2. Prove that the homomorphism induced on a complete field of sets by a
point is complete.

3. Define the notion of a complete filter, and prove that an ideal is com-
plete if and only if its dual filter is complete.

4. Prove that the class of complete filters in a Boolean algebra B is itself
a complete Boolean algebra with respect to the distinguished Boolean
elements and operations defined by

(1) 0={1},

(2) 1=B,

(3) MANN=MnNN,

(4) MVN = m{L : L is a complete filter in B and M UN C L},
(5) M'={peB:pVvqg=1forall ge M},

for all complete filters M and N in B. Show further that the Boolean
algebras of complete ideals and of complete filters in B are isomorphic
via the mapping that takes each complete ideal to its dual filter.
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. Prove that every complete filter is the cokernel of some complete epi-

morphism.

. Prove that the complete ideal generated by a set £ and the complete

filter generated by the set E/ = {p’ : p € E} are the duals of one
another.

Formulate and prove the analogue of Lemma 1 for complete filters.

. Formulate and prove the analogue of Lemma 2 for complete filters.

. If a Boolean homomorphism preserves all infima that happen to exist,

prove that the homomorphism is complete.

Prove that a Boolean homomorphism f from B into A is complete if
and only if whenever 0 is the infimum of a family {p;} in B, then 0 is
the infimum of the family {f(p;)} in A.

Prove that a complete ideal in a complete Boolean algebra is closed
under joins of arbitrary subsets of the ideal. Conclude that such an
ideal is always principal.

Prove that the quotient of a complete Boolean algebra by a complete
ideal is complete.

Prove that in the Boolean algebra of finite and cofinite sets of integers,
the ideal of all finite sets of integers is not complete.

Prove that the collection of finite sets of integers of the form 3m for
some integer m (in other words, the finite sets of multiples of 3) is a
complete ideal in the Boolean algebra B of finite and cofinite sets of
integers. Show that the same is true for the collection of finite sets of
integers of the form 3m + 1, and also for the collection of finite sets of
integers of the form 3m 4+ 2. What is the join of these three ideals in
the lattice of all ideals of B? What is the join of the three ideals in the
lattice of all complete ideals of B? Generalize this example.

Define the annihilator of an arbitrary subset E (not necessarily an
ideal) of a Boolean algebra to be the set of elements p such that pAg =0
for all ¢ in E. Prove that the annihilator of F is a complete ideal.

Prove that the annihilator of a subset F of a Boolean algebra (Exer-
cise 15) coincides with the set of complements of upper bounds of E.
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17.

18.

19.

20.

21.

22.

23.

Prove that the annihilator of a subset E of a Boolean algebra (Exer-
cise 15) coincides with the annihilator of the complete ideal generated
by E.

Prove that the annihilator of an ideal M is the largest ideal N with the
property that

MnNN ={0}.

Prove that an ideal M is complete if and only if it is the annihilator of
the annihilator of M. In other words, in the notation of Theorem 21,
prove that M is complete if and only if M = M".

Prove that the complete ideal generated by a subset F in a Boolean
algebra is just E”, the annihilator of the annihilator of E.

Give a direct proof that the distributive law (7) holds in the lattice of
complete ideals of a Boolean algebra.

Verify directly, without appealing to Theorem 21, that the Boolean
axioms (2.11), (2.12), (2.15), and (2.17) hold in the lattice of complete
ideals of a Boolean algebra.

Define a correspondence f from a Boolean algebra B into its Boolean
algebra of complete ideals by f(p) = (p). In other words, f(p) is defined
to be the complete ideal generated by p. Prove that f is a complete
Boolean monomorphism.



Chapter 25

Completions

The Stone representation theorem implies that every Boolean algebra is a
subalgebra of a complete Boolean algebra, namely its canonical extension.
One advantage of this extension is that it is atomic. A fundamental drawback
is that all of the infinite joins that exist in the original algebra are changed in
the passage to the canonical extension. More precisely, if an infinite subset
of a Boolean algebra A has a supremum p in A, and if p is not already the
supremum of a finite subset of F, then the supremum of F in the canonical
extension of A is definitely not p, by the compactness property. For many
purposes, therefore, the canonical extension is not good enough.

What is needed is a complete extension in which missing suprema are
“filled in”, while the existing suprema are all left intact. A completion of a
Boolean algebra A is a Boolean algebra B with the following properties: (1) A
is a subalgebra of B; (2) every subset of A has a supremum in B; (3) every
element in B is the supremum (in B) of some subset of A. Condition (3) is
equivalent to the assertion that A is a dense subset of B in the sense that
every non-zero element in B is above a non-zero element in A. One direction
of this equivalence is obvious: if condition (3) holds, then every non-zero
element of B, being the supremum of a subset of A, must be above some
non-zero element of A. To prove the reverse direction of the equivalence,
assume A is dense in B. Consider an arbitrary element p in B, and let E be
the set of all elements in A that are below p. We shall show that p is the
supremum of E in B. Clearly, p is an upper bound of F in B. Assume, for
contradiction, that ¢ is a strictly smaller upper bound of F in B. Then p—g¢q
is non-zero, and hence (by density) is above a non-zero element r in A. The
definition of E implies that r is in F, since r < p. The element ¢ is an upper
S. Givant, P. Halmos, Introduction to Boolean Algebras, 214
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bound of E, so r < ¢q. This last inequality contradicts the fact that r < ¢’.
Conclusion: a Boolean algebra B is a completion of a Boolean algebra A
if and only if A is a dense subalgebra of B and every subset of A has a
supremum in B.

The argument just given shows that every element in a completion of a
Boolean algebra A is the supremum of the set of all elements in A that are
below it. A similar argument shows that a dense subalgebra of an arbitrary
Boolean algebra is automatically a regular subalgebra. In other words, all
infinite suprema that exist in the subalgebra are left intact. Suppose, indeed,
that A is a dense subalgebra of B, and let E be a subset of A that has a
supremum in A, say p. Certainly, p is an upper bound of F in B. If ¢ were
a strictly smaller upper bound of E in B, then p — ¢ would be a non-zero
element of B, and therefore above a non-zero element r of A, by density.
The difference p — r would then be an upper bound of F in A that is strictly
smaller than p, contradicting the assumption that p is the supremum of F
in A.

We have yet to see that a completion B of a Boolean algebra A is in
fact complete. Consider an arbitrary family {p;} of elements in B. Each p;
is the supremum (in B) of some subset E; of A, by condition (3). The
union F = |J, E; is a subset of A, and therefore has a supremum p in B,
by condition (2). The generalized associative law formulated in Exercise 8.6
implies that p is the supremum of the family {p;}, since

p=VE=V(VE)=\np
(2 7

A consequence of this observation is that a Boolean algebra B is a completion

of A if and only if B is complete and includes A as a dense subalgebra.

It is not obvious that there are any completions at all, but fortunately
every Boolean algebra does have a completion, and even more fortunately,
that completion is unique, up to isomorphic copies. We first prove the ez-
istence theorem for completions (discovered independently by MacNeille [43]
and Tarski [75] — see footnote 21 in [75]). Recall from Chapter 24 that an
ideal M in a Boolean algebra A is said to be complete provided that when-
ever the supremum of a set of elements in M exists in A, that supremum
belongs to M. The class of all complete ideals in A is a complete Boolean
algebra: the meet of an arbitrary family of ideals is the intersection of the
ideals in the family, the join of the family is the complete ideal generated by
the union of the ideals in the family, and the complement of a complete ideal
is the annihilator of the ideal (see Theorem 21, p. 209). It turns out that this
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algebra of complete ideals is a completion of A, provided that one identifies
the principal ideals with the elements of A.

Theorem 22. Every Boolean algebra A has a completion, namely (an iso-
morphic copy of) the Boolean algebra of complete ideals in A.

Proof. Let A be a Boolean algebra, and B the class of complete ideals in A.
Then B is a complete Boolean algebra, by Theorem 21. For each element p
in A, the principal ideal (p) generated by p is a complete ideal, and therefore
an element of B (see the remark following Theorem 20, p. 203). Define a
mapping f from A into B by

f(p) = (p).

We shall show that f is a complete embedding of A into B. If p and ¢
are elements of A, then

flpva)=mVae =) V(g=[f(lp)V (g
and

fe")=0")=0m"=fr"
(Compare the displayed equations in the proof of Corollary 24.1, or see Corol-
lary 19.1 and the remarks preceding Lemma 19.2.) Consequently, f is a ho-
momorphism. If f(p) = f(q), that is, if (p) = (¢), then p = ¢, since the
generator of a principal ideal is the largest element in the ideal. Therefore, f
is one-to-one. The range of f is the set of all principal ideals in A. This set
is a regular subalgebra of B, by Corollary 24.1. It follows from Lemma 12.1
that f is a complete monomorphism from A into B.

Every non-zero complete ideal M in A obviously includes a non-zero prin-
cipal ideal: if an element p in M is not zero, then (p) is a non-zero ideal
included in M. The range of f — the image f(A) — is therefore a dense
subalgebra of B. Combine this observation with those of the preceding para-
graphs to conclude that f(A) is a (regular) dense subalgebra of the complete
algebra B. In other words, B is a completion of f(A). The exchange principle
(see Chapter 12) now ensures that A itself has a completion.

A Boolean algebra A has many complete extensions, complete Boolean
algebras that contain A as a subalgebra. For instance, when A is infinite, the
canonical extension of A, the canonical extension of the canonical extension
of A, and so on, are all distinct complete extensions of A. (They increase
in size at an exponential rate, at the very least; see the remarks at the end
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of Chapter 23.) A completion of A distinguishes itself from other complete
extensions of A by its minimality. There are several possible interpretations
of this assertion, and they all turn out to be true.

Lemma 1. Suppose B is a completion of a Boolean algebra A. The only em-
bedding of B into itself that is the identity on A is the identity automorphism
of B.

Proof. Let f be an embedding of B into itself that is the identity mapping
on A. For an arbitrary element ¢ in B, the set of elements in A that are
below ¢ coincides with the set of elements in A that are below f(gq). Indeed,
if an element p in A is below ¢, then

p=f(p) < f(a),

by the homomorphism properties of f and the fact that f is the identity
mapping on A. Conversely, if p < f(q), then

p=F""p) < (f@) =q¢

Since every element in B is the supremum of the set of elements in A that it
dominates, by condition (2) in the definition of a completion, it now follows
that ¢ = f(q). In other words, f is the identity mapping on B.

The next theorem, due independently to MacNeille [43] and Tarski [75],
says that a completion of A is minimal in the sense that, up to isomorphism,
it is a subalgebra of every other complete extension of A.

Theorem 23. A completion of a Boolean algebra A can be embedded into
any complete extension of A via a mapping that is the identity on A.

Proof. Let B be a completion of A, and consider any complete extension C
of A. The identity function f on A is a monomorphism of A into C. It can
be extended to a homomorphism ¢ from B into C, by the homomorphism
extension theorem (Theorem 5, p. 114). To prove that g is one-to-one, it
suffices to check that its kernel is trivial. Suppose g(¢) = 0. Every element
in B below ¢ is then also mapped to 0, by the homomorphism properties
of g. In particular, every element p in A with p < ¢ is mapped to 0 by g.
But such elements p are mapped to themselves, since g extends the identity
function on A. Conclusion: zero is the only element in A below ¢. Since ¢ is
the supremum (in B) of a set of elements in A, it follows that ¢ is zero.

Another interpretation of minimality, given in the next corollary, says
that a completion of A is a smallest complete extension of A.
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Corollary 1. A Boolean algebra B is a completion of a Boolean algebra A if
and only if B is a complete extension of A, and no complete extension of A
s a proper subalgebra of B.

Proof. Suppose, first, that B is a completion of A. Consider any subalge-
bra C' of B that is a complete extension of A. There is an embedding g
of B into C' that is the identity mapping on A, by the preceding theorem.
Since C' is a subalgebra of B, the mapping g may be viewed as an embed-
ding of B into itself. Lemma 1 implies that ¢ must be the identity mapping
on B. In particular, the range of ¢ is B, so B is also a subalgebra of C.
Consequently, B = C'. Conclusion: no complete extension of A is a proper
subalgebra of B.

Consider now a complete extension B of A, and assume that no proper
subalgebra of B is a complete extension of A. A completion C' of A exists,
by the existence theorem for completions, and there is an embedding g of C'
into B that is the identity mapping on A, by Theorem 23. The image g(C)
is a complete extension of A that is a subalgebra of B, so the assumption
about B implies that g(C') = B. In other words, B is the isomorphic image of
a completion of A via a mapping that is the identity on A. It follows that B
must also be a completion of A.

We are ready to prove the uniqueness theorem for completions. It is an
easy consequence of preceding observations.

Theorem 24. Any two completions of a Boolean algebra A are isomorphic
via a mapping that is the identity on A.

Proof. Suppose B and C' are completions of A. Then B can be embedded
into C' via a mapping g that is the identity on A, by Theorem 23. The
image g(B) is a complete extension of A that is a subalgebra of C, so it is
equal to C by the preceding corollary. Thus, ¢ is an isomorphism from B
to C' that is the identity on A.

The isomorphism ¢ in the preceding proof is constructed indirectly, via
the homomorphism extension theorem (see the proof of Theorem 23). It
is useful to have a direct construction of g. FEach element ¢ in B is the
supremum of a subset of A, namely the set I of all elements in A that are
below ¢. Since g is an isomorphism that is the identity on A, it must map ¢
to the supremum of F in C. Thus, g is the correspondence from B to C' that
for each subset F of A, maps the supremum of F in B to the supremum of
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in C. This argument also shows that ¢ is the only isomorphism from B to C
that is the identity on A.

The uniqueness theorem provides a justification for the common practice
of referring to the completion of a Boolean algebra.

Dedekind [15] constructed the real numbers as a kind of order completion
of the rational numbers, using subsets of rational numbers called Dedekind
cuts (see the remarks following the proof of Lemma 24.2). MacNeille [43]
extended Dedekind’s methods to construct completions of partial orderings,
and in particular completions of Boolean algebras. For this reason, the com-
pletion of a Boolean algebra A is sometimes called the MacNeille completion
of A or even the Dedekind-MacNeille completion of A.

Exercises

1. Prove that every complete Boolean algebra is its own completion. Con-
clude that every finite Boolean algebra is its own completion.

2. Suppose B is the completion of a Boolean algebra A. Prove that an
element in B is an atom if and only if it is already an atom in A.

3. Prove that the completion of a Boolean algebra A is atomic if and only
if A is atomic. (This theorem is due to Tarski [75].) Conclude that if A
is atomic, then its completion is isomorphic to the field of all subsets
of the set of atoms of A.

4. Let A be the field of finite and cofinite subsets of an infinite set X.
Prove that P(X) is the completion of A.

5. Prove that two atomic Boolean algebras with the same number of atoms
have isomorphic completions.

6. Prove that the completion of an atomless algebra is atomless.

7. Prove that there is at most one isomorphism between two completions
of a Boolean algebra A that is the identity on A.

8. Suppose B and C are both completions of a Boolean algebra A. Let ¢
be the correspondence from B to C' that, for each subset E of A, maps
the supremum of F in B to the supremum of E in C. Prove directly
that ¢ is a well-defined isomorphism from B to C that is the identity
mapping on A.
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. The completion of a Boolean algebra A has the property that every

element is the supremum of the set of elements in A that it dominates.
Does any other complete extension of A have this property?

Prove that every homomorphism between Boolean algebras can be ex-
tended to a homomorphism between the corresponding completions.

Show that not every homomorphism between Boolean algebras can
be extended to a complete homomorphism between the corresponding
completions. (Compare this with Exercise 23.7.)

Prove that every complete homomorphism between Boolean algebras
can be extended to a complete homomorphism between the correspond-
ing completions. More precisely, let A and B be Boolean algebras,
and A; and B; the corresponding completions. Prove that if g is a
homomorphism from B into A, then the mapping f from B; to A;
defined by

1) = \/{g(s) : s € Band s < p}

for p in Bj is a complete homomorphism that extends g. Show further
that if g is one-to-one or onto, then so is f. (This is a special case of a
much more general theorem due to Monk [44].)

If A and B are Boolean algebras, and if B is a regular subalgebra of A,
prove that the completion of B is (up to an isomorphism that is the
identity on A) a complete subalgebra of the completion of A, and in
fact it is the complete subalgebra generated by B.



Chapter 26

Products of Algebras

A familiar way of making one new structure out of two old ones is to form
their Cartesian product and, in case the structure involves some algebraic op-
erations, to define the requisite operations coordinatewise. Boolean algebras
furnish an instance of this procedure. The (direct) product of two Boolean
algebras B and C' is the algebra

A=Bx(C

whose universe, the Cartesian product of the sets B and C, consists of the
pairs (p,q) with p in B and ¢ in C. The meet and join of two pairs in A is
formed coordinatewise:

(p,g) A(rys)=(Ar,gNs) and  (p,q)V(r,s)=(pVrqVs),

where p A7 and p V r are the meet and join of p and r in B, while ¢ A s
and ¢ V s are the meet and join of ¢ and s in C. The complement of a pair
in A is likewise formed coordinatewise:

(p,q)' =@ q"),

where p’ and ¢’ are the complements of p and ¢ in B and C respectively.
Under these operations, the product A is a Boolean algebra with zero (0,0)
and unit (1,1). In fact, it is easy to verify that the Boolean axioms (2.11)—
(2.20) hold in A. For instance, here is the proof that the commutative law
for join holds in A:

(p,q) vV (r;s)=(Vr,qVs)=(rVpsVg) =(rs)V(paq)).

The first and last equalities hold by the definition of join in A, while the
middle equality holds because the commutative law for join is valid in the
S. Givant, P. Halmos, Introduction to Boolean Algebras, 221
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Boolean algebras B and C. The algebras B and C are called the factors of
the product A.

The algebra 2 x 2 furnishes a concrete example of a product. Its universe
consists of the four ordered pairs (0,0), (0,1), (1,0), and (1,1). Its opera-
tions, defined coordinatewise in terms of the operations of 2, are given in the
following tables:

A (0,0) | (0,1) | (1,0) | (1,1)
(0,0) | (0,0) | (0,0) | (0,0) | (0,0)
(0,1) | (0,0) | (0,1) | (0,0) | (0,1) | ,
(1,0) | (0,0) | (0,0) | (1,0) | (1,0)
(1,1) | (0,0) | (0,1) | (1,0) | (1,1)

v (0,0) | (0,1) | (1,0) | (1,1)
(0,0) | (0,0) | (0,1) | (1,0) | (1,1)
0,1) | (01) ] (0,1) | (1,1) | (L,1) | ,
(1,0) | (1,0) | (1,1) | (1,0) | (1,1)
(1,1) | (1,1) | (1,1) | (1,1) | (1,1)

/ (0,0)
(0,0) | (1,1)
(0,1) | (1,0
(1,0) | (0,1)
(1,1) | (0,0)

In case B and C' are fields of subsets of disjoint sets Y and Z respec-
tively, their product A represents itself naturally as a field of subsets of the
union X = Y UZ. The proof is based on some simple observations about the
field of all subsets of X, and depends essentially on the assumption that Y
and Z are disjoint. Every subset S of X can be written in one and only one
way as a union S = P U (@ of a subset P of Y and a subset ) of Z. Indeed,

P=5SnY and Q=SNZ.
Furthermore, if S; and S are subsets of X, say

S1=PUQ and Sy = P, U Qq,
then
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(1) S1NSy=(PiNP)U(QiNQ2),
(2) S1USy = (PLUP)U(Q1UQ2),
(3) S| =P uQ.

The representation f of the product A as a field of subsets of X maps each
pair (P, Q) in A to the union P U Q. Since every subset of X can be written
in only one way as such a union, the mapping f is one-to-one. In more detail,
if
JF((P1, Q1)) = (P2, Q2)),
then
PLUQ1 =P UQs;

intersect both sides of this equation with Y to obtain P; = P», and intersect

both sides with Z to obtain ()1 = Q2. The proof that f preserves meet, join,
and complement depends on the identities (1)—(3). For instance,

f((P1, Q1) A (P2,Q2)) = f((P1N P2,Q1 N Q2))
= (PN P)U(Q1NQ2)
=(PLUQ)N(PUQ2)
= [((P1, Q1)) N f((P2, Q2)).

The first equality uses the definition of meet in A, the second and fourth
use the definition of the representation f, and the third equality uses (1). It
follows that f preserves meet. The arguments for join and complement are
similar.

It is natural to try to extend the preceding idea to more general classes
of Boolean algebras. A Boolean algebra D is called an internal product of
two Boolean algebras B and C' if it includes B and C' as subsets and has the
following properties. First, every element s in D can be written in exactly
one way as a join s = pV q of elements p in B and ¢ in C. Second, the
operations of D obey the following identities for all elements p; and ps in B,
and ¢g; and ¢ in C":

(4) (PL1Va) NP2V a) = (p1 Ap2) V(a1 A q2),
(5) (M Va)V(p2Va)=(p1Vp2) V(g Va),
(6) (V) =pi Vi,

where the meet p; A pa, the join p; V pa, and the complement p{ on the
right sides of the equations are formed in B, while the meet ¢; A g2, the
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join ¢1 V ¢2, and the complement ¢{ are formed in C, and all other operations
are performed in D. The algebras B and C' are called the (internal) factors
of D.

There is a canonical isomorphism from the product A of two Boolean
algebras B and C' to an internal product D of the two algebras: it is the
function f defined by

f((p.q) =pVa
The function is one-to-one because every element of D can be written in
at most one way as the join of an element of B and an element of C:
it f((p1,q1)) = f((p2,q2)), then p1 V g1 = p2 V g2, and therefore p; = ¢
and py = ¢2. The function maps A onto D because every element of D can
be written in at least one way as a join of elements of B and C": if s is in D,
then there are elements p in B and ¢ in C such that s = p V ¢ and therefore

flp,q) =pVaqg=s.

Finally, the function preserves the operations of meet, join, and complement
because of conditions (4)—(6). For instance,

f((p1sq1) A (p2:q2)) = f((p1 Ap2, 1 A q2))
= (p1Ap2) V(01 A g2)
=(P1Vaq)A(p2Vag)
= f((p1, 1)) A f((p2, g2))-

The first equality uses the definition of meet in A, the second and fourth
equalities use the definition of the mapping f, and the third equality uses (4).
It follows that f preserves meet. The arguments for join and complement
are similar.

The relativizations of the product A = B x C to the elements (1,0)
and (0, 1) are the Boolean algebras

By=Bx {0} ={(p,0):pe B} and Cy={0}xC ={(0,q):q€C}.

The canonical isomorphism f from A to the internal product D maps By iso-
morphically to B, and Cj isomorphically to C; in fact, f maps the pair (p,0)
to the element p, and the pair (0, ¢) to the element g. A number of properties
of D can be deduced immediately from this observation. The algebras A, By,
and C( have the same zero element, namely the pair (0,0), so D, B, and C
must all have the same zero. The algebras By and Cy are disjoint, except
for the common zero, so the algebras B and C are disjoint, except for the
common zero. The units of By and Cy — the pairs (1,0) and (0,1) — are the
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complements of one another in A, so the units of B and C' are complements of
one another in D. The relativization of A to the unit of By is just By, so the
relativization of D to the unit of B is just B, and similarly, the relativization
of D to the unit of C is just C.

Two internal products D and Ds of Boolean algebras B and C' are always
isomorphic via a mapping that is the identity on B and on C. In fact, if f;
and fy are the canonical isomorphisms from the product A = B x C to Dy
and Dy respectively, then the composition

g=frofi'
maps D; isomorphically to Ds (see the diagram). Furthermore, g maps each
element p in B to itself, since

9(p) = f2(f7 () = f2((p,0)) = p.

Similarly, g maps each element in C to itself. These observations justify
speaking of the internal product of B and C. We shall denote it by B ® C.

A
N
1T T Tt T > Dz

9

When does the internal product of two Boolean algebras B and C' exist?
Certainly, the two algebras must be disjoint, except for a common zero el-
ement. As it turns out, this is the only condition that is needed. For the
proof, suppose B and C have the same zero element and are otherwise dis-
joint. Let A be the direct product of the two algebras, and let By and Cj
be the relativizations of A defined above. Take h; to be the isomorphism
from B to By, and hg the isomorphism from C' to Cy, defined by

hi(p) = (p,0)  and  ha(q) = (0,q).

Notice that these two isomorphisms agree on the common zero element of B
and C, and they map the rest of B and C' to disjoint sets. An argument very
similar to the exchange principle allows us to exchange By for B, and ()
for C, provided that the elements of A that are not in By or in C{ are first
replaced by new elements that do not occur in B or C'. The result is an
algebra D that is the internal product of B and C.

The restriction of the internal product construction to pairs of Boolean
algebras that have only zero in common is not severe. Given any pair of
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Boolean algebras, one can always pass to a pair of isomorphic algebras that
have zero, and no other element, in common.

An internal decomposition of a Boolean algebra D is a pair of Boolean
algebras B and C' such that

D=B®C.

There is a very close connection between the internal decompositions of D
and the relativizations of D. Recall (from Chapter 12) that the relativization
of D to an element r in D is the set

D(r)={pAr:peD}={p:peDandp<r}

under the join and meet operations of D, restricted to D(r); the complement
of an element p in the relativization is defined to be p’ A r.

Lemma 1. A Boolean algebra D s the internal product of the relativiza-
tions D(r) and D(r") for each element r in D.

Proof. Write
B = D(r) and C=D(r").
Consider an arbitrary element s in D. The meets
pP=SAT and g=sAr’
are in B and C respectively, and
s=sANl=sA(rvr')=(sAr)V(sAr')=pVq.
If p1 and ¢ are any other elements of B and C such that s = p; V ¢1, then

p=sAr=MmVqa)Ar={@iAr)V (g Ar)=p V0=np,

and, similarly, ¢ = ¢q1. The fourth inequality holds because p; is below r,
while ¢; is below r’ and therefore disjoint from r. The argument just given
shows that every element of D can be written in exactly one way as the join
of an element in B and an element in C.

It remains to verify identities (4)—(6) in D. Suppose p; and po are ele-
ments in B, and ¢; and ¢ elements in C'. Then

(01 V1) A(p2Va2) = [(p1 Ap2) V(1 Ap2)] V [(p1 A g2) V (g1 A g2)]
= [(p1 Ap2) VO] VOV (g1 A g2)]
=P Ap2) V(g1 Ag).
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The first equality uses the distributive law from Corollary 8.2, and the third
uses the identity law for join. The second equality holds because p; and po
are below r, and therefore disjoint from ¢; and g (which are below r’). The
verifications of identities (5) and (6) are similar.

There is a trivial instance of the preceding lemma that is worth pointing
out, namely when r is 0 or 1. The lemma then asserts that D is the internal
product of the degenerate algebra {0} = D(0) and D = D(1) itself.

The lemma describes one method for decomposing a Boolean algebra
into the internal product of two factors. As it turns out, there are no other
possibilities.

Corollary 1. A Boolean algebra D is the internal product of Boolean algebras
B and C if and only if there is an element r in D such that

B = D(r) and C=D(r").

Proof. If there is an element r in D for which the preceding equations hold,
then D is certainly the internal product of B and C, by the previous lemma.
Suppose, conversely, that D is the internal product of the two algebras B
and C'. The units of B and C are the complements of one another in D,
and the relativizations of D to these units are just B and C, by the remarks
preceding Lemma 1. Thus, if r is the unit of B, then the given equations
hold.

Products play an important role in the study of algebraic structures. If
a complicated algebra — a ring or a group, for example — can be written
as the product of more basic factor algebras, then the analysis of the com-
plicated algebra reduces to the analysis of these factors. The next corollary
provides an example of this phenomenon. It asserts that every complete
Boolean algebra is the internal product of a complete, atomic Boolean alge-
bra and a complete, atomless Boolean algebra. Complete, atomic Boolean
algebras are isomorphic to fields of all subsets of some set, by Corollary 14.1,
so these algebras are in some sense fairly well understood. The analysis
of complete Boolean algebras therefore reduces to the analysis of complete,
atomless Boolean algebras.

Corollary 2. Every complete Boolean algebra is the internal product of a
complete, atomic Boolean algebra and a complete, atomless Boolean algebra.
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Proof. Let D be a complete Boolean algebra. The supremum 7 of the set of
atoms exists in D, by the assumption that D is complete. Write

B = D(r) and C=D(r").

Then D is the internal product of B and C, by Lemma 1. It remains to show
that B is complete and atomic, and that C' is complete and atomless.

The atoms of B coincide with the atoms of D, by the definition of 7,
and the unit of B — the element r — is the supremum of the set of atoms
(in B as well as in D); consequently, B is atomic, by Lemma 14.3. To show
that B is complete, consider an arbitrary family {p;} of elements in B. The
supremum p of this family certainly exists in D, by the assumption that D is
complete. Each element p; is in B, and is therefore below the unit r of B. In
other words, r is an upper bound of the family {p;} (in B and in D). Since p
is the least upper bound of this family in D, it follows that p < r and hence
that p is in B. Thus, p is the supremum of the family {p;} in B.

It is easy to check that an atom in C' must also be an atom in D. Since
every atom in D is below r, it follows that the algebra C' must be atomless.
The proof that C' is complete is similar to the proof that B is complete.

From the point of view of products, the most basic algebras are those
that cannot be decomposed further by means of products. Of course, every
Boolean algebra is isomorphic to the product of itself and the degenerate
(one-element) Boolean algebra. Such trivial decompositions are totally unin-
teresting. A Boolean algebra is said to be directly indecomposable if it is not
degenerate and not isomorphic to the product of two non-degenerate Boolean
algebras. As it turns out, there is just one directly indecomposable Boolean
algebra (up to isomorphic copies), namely 2. (This observation is due to
Stone [66].) An elementary cardinality argument shows that 2 is directly
indecomposable. (The number 2 cannot be written as the product of two
numbers both of which are greater than 1.) On the other hand, a Boolean
algebra with more than two elements cannot be directly indecomposable. In-
deed, such an algebra, say D, must contain an element r that is different
from 0 and 1. The relativizations of D to r and to r’ each have at least two
elements, and

D =D(r)®D(r'),

by Lemma 1; consequently, D is the product of two non-degenerate Boolean
algebras.
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We have looked at the product of two Boolean algebras from an external
perspective, as a Cartesian product, and from an internal perspective, as an
internal product. There is yet another perspective, a functional one that
comes from category theory. If A is the (direct) product of B and C, then
there are natural epimorphisms from A to the factor algebras, namely the
(left and right) projections fp and fo defined by

fB((p,g))=p and  fo((p,q)) =q

The verification that these mappings are epimorphisms is a simple exercise
involving the definition of A. For instance, to verify that fp preserves join
and complement, consider two elements r; and ro in A, say

1= (p1,q1) and 1o = (p2,q2).

Then
rVre=(p1Vp,qVe) and 1= (plqi),
so that
fB(r1) = p1, fB(r2) = p2, fB(r1Vre) =p1Vpa, fB(ry) = p1,

and therefore

fB(riVre) = fp(ri)V fe(r2)  and  fp(r]) = fs(r1)".

The product A and the pair of projections (fg, fc) satisfy the following
lifting condition: if D is any Boolean algebra, and if gp and gc are any
homomorphisms from D to B and C', then there is a unique homomorphism g
from D to A such that
(7) fpog=gs and  fcog=gc

(see the diagram). The existence of g is straightforward to prove. Write

(8) g(p) = (98(p), 9c(p))-

The homomorphism properties of gg and go imply that g is a homomorphism.
For instance, g preserves meet because

gpNq) = (g(p N q),9c(p A q) = (98(p) A 9B(a), 9c(p) A gc(q))
= (98(p), 9c(p)) A (9B(9), 9¢(q)) = 9(p) A 9(q);

the first and last equalities use the definition of g, the second equality uses
the homomorphism properties of g and g¢, and the third equality uses the
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definition of meet in A. The identities in (7) follow at once from (8) and the
definitions of the projections fp and fo; for instance,

fe(9(p)) = fB((98(P); 9c(p))) = 9B(P).

The uniqueness of g is equally easy to establish. Consider an arbitrary ho-
momorphism A from D into A that satisfies (7) (with the function g replaced
by h). If h maps the element p in D to the pair (r,s) in A, then

r=f5((r,s)) = fo(h(p)) = g5(p)

and

s = fc((r,s)) = fe(h(p)) = 9c(p),
by the definitions of the projections and condition (7), so that

h(p) = (r,s) = (98(p), 9c(p))-

Consequently, h coincides with the homomorphism ¢ defined in (8).

The Boolean algebra A and the pair of mappings (fp, fc) are uniquely
determined, up to isomorphic copies, by the lifting condition: if a Boolean
algebra D and a pair of homomorphisms (gp, gc) also satisfy the lifting con-
dition, then there is an isomorphism g from D to A such that (7) holds.
Indeed, the algebra A and the pair of projections (fp, fo) satisfy the lift-
ing condition (in particular, with respect to the algebra D and the pair of
mappings (¢p,9c)), by the observations of the preceding paragraph, so there
is a unique homomorphism ¢ from D into A with the properties (7). It is
assumed that the algebra D and the pair of mappings (¢p, gc) also satisfy
the lifting condition (in particular, with respect to the algebra A and the pair
of mappings (fp, fc)), so there is a unique homomorphism f from A into D
with the properties

9) gpof=fB and  gocof= fc.
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Equations (7) and (9) combine to yield

(10) ggofog=ygnp, gcofog=gyc,
and
(11) fBogof=/fa, fcogo f=fc.

Since the algebra D and the pair of mappings (g5, gc) satisfy the lifting
condition (in particular, with respect to themselves), there must be a unique
homomorphism A from D into itself with the properties

gpoh=gp and gocoh=gc.

These equations are obviously satisfied if h is the identity automorphism
on D, and they are also satisfied if h is the composition f o g, by (10).
The assumed uniqueness of the homomorphism A implies that f o g must
be the identity automorphism on D. A similar argument, using (11), shows
that g o f is the identity automorphism on A. It follows that g and f are
bijections and inverses of one another, so that g is an isomorphism from D
to A with properties (7), as desired (see Exercise 12.32 or the section on
bijections in Appendix A).

Almost everything that has been said so far can be generalized. By the
(direct) product of a family {A4;};c; of Boolean algebras we shall understand
their Cartesian product

A=]]4,

el
construed as a Boolean algebra with respect to the coordinatewise operations.
The universe of the product consists of the functions p with domain I such
that p(i) — or p; as we shall usually write — is an element of A; for each index
1. The meet and join of two functions p and ¢ in A are the functions p A ¢
and p V q on I defined by

(PA@)i=piNg  and  (pVq)i=piVa,
while the complement of p is the function p’ on I defined by
(p/ )l = pi,'

The right sides of these equations are computed in the Boolean algebra A;
for each 7. The zero and unit of the product are the functions 0 and 1 on [
defined by

0,=0 and 1, =1,
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where the elements on the right sides of these equations are the zero and unit
of A; for each . The algebras A; are the factors of the product A.

The verification that the product of a family of Boolean algebras is again
a Boolean algebra is quite similar to the verification of the analogous result
for the product of two Boolean algebras, but the details have a superficially
different appearance. For instance, to verify the commutative axiom (2.18)
for join, consider two elements p and ¢ in the product. Both pV ¢ and q V p
are functions on the index set I, so they will be equal just in case they agree
on each index i. A simple computation based on the definition of join in the
product and the commutative law in A; yields

(PVa)i=piVa=aqVpi=I(qVp).

The index set I is allowed to be empty. In this case there is just one
function with domain I, namely the empty function, so the product of the
family is the degenerate (one-element) Boolean algebra.

We shall indicate the products of finite and infinite sequences of Boolean
algebras by such obvious and customary modifications of the symbolism
as [ [, A; and [];2, A;. When all the factors are equal to the same Boolean
algebra B, the product [],.; A; is called a power of B, or, more precisely,
the Ith power of B, and is usually written as B!. For instance, if A; = 2 for
each 4, then J[,.; A; is just the Boolean algebra 2! discussed in Chapter 3
(where the symbol X was used instead of I). This power of 2 is isomorphic
to the field P(I) of all subsets of I, as was shown in Chapter 3.

If each member of a family {A;} of Boolean algebras is a field of subsets of
a set X;, and if the sets X; are mutually disjoint, then the product A =[], 4;
is naturally represented as a field of subsets of the union X = J; X; via the
mapping that assigns to each element P in A the subset |, P; of X. (Recall
that P is a function on I, and P; is a subset of X; for each i.) Actually,
the product A is isomorphic to a field of sets even when the sets X; are not
mutually disjoint. In this case, however, a modification in the argument is
required. The set X must be taken to be, not the union of the sets X;, but
rather the union of disjoint copies of the sets X;. For instance, put

X = U{(az,z) cx € X}

(The whole point of considering ordered pairs here is to force disjointness
by means of the second coordinate.) The natural monomorphism from A
into P(X) is the mapping that takes each element P of A to the set
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The representation of a product of fields of sets as a field of sets is a special
case of a more general internal product construction. A Boolean algebra D is
called the internal product of a family { A;} of Boolean algebras provided that
it includes each set A; as a subset, and has the following properties. First,
if p; is an element of A; for each i, then the supremum of the family {p;}
exists in D. Second, every element s in D can be written in one and only
one way as a supremum s = \/, p;, where p; belongs to A; for each i. Third,
the operations of D satisfy the following identities whenever {p;} and {¢;}
are families of elements such that p; and ¢; are in A; for each i:

(12) (\/1%) A <\/QZ> =\ (i ra),

i .

(13) (\/1%) v <\/QZ> = \/(pz' V),

i .

(14) (\/p) "=\/®)),

(2

where the meet p; A g;, the join p; V ¢;, and the complement p; on the right
sides of equations (12)—(14) are formed in the Boolean algebra A; for each i.
The algebras A; are the (internal) factors of D.

There is a canonical isomorphism f from the (direct) product A of a
family {A;} of Boolean algebras to an internal product D of the family {A;}
that is defined by

f(p) :\/pi

for each element p in A. The mapping is well defined because the supremum
on the right exists in D for each element p in A, by the first condition in the
definition of an internal product. The proof that the mapping is a bijection
and preserves the Boolean operations is completely analogous to the proof in
the case of the internal product of two algebras.

An internal product of a family of Boolean algebras exists if and only if
the algebras in the family are pairwise disjoint, except for a common zero
element. Moreover, two internal products of the family are always isomorphic
via a mapping that is the identity on each of the factors; this justifies speaking
of the internal product of the family. The proofs of these observations are
again completely analogous to the proofs in the case of two algebras.
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There is a close connection between the internal decompositions of a
Boolean algebra D and the relativizations of D induced by partitions of the
unit. A family {r;} of elements in D is called a partition of the unit provided
that the elements of the family are pairwise disjoint — that is, r; Ar; = 0
for i # j — and the supremum of the family is 1. We shall say that such
a partition has the supremum property if for every family {p;} of elements
in D satisfying p; < r; for each i, the supremum of {p;} exists in D.

Lemma 2. Let D be a Boolean algebra, and {r;} a partition of the unit
with the supremum property. Then D is the internal product of the family of
relativizations {D(r;)}.

Proof. Let {r;} be a family of elements in D satisfying the hypotheses of the
lemma, and write A; = D(r;). It is to be shown that D satisfies the defining
conditions for being the internal product of the family {A;}. If {p;} is a
family of elements in D with p; in A; for each ¢, then p; < r; for each i, by
the definition of A;, and therefore the supremum of the family exists in D,
by the supremum property.

Consider, next, an arbitrary element s in D, and write

Pi=SN\T;
for each i. Then p; is in A;, by the definition of A;, and

\/pz—\/s/\n)—s/\\/n—s/\l—s
7

If {¢;} is any other family with ¢; in A; for each 4, and such that s =/, ¢;,
then

pj:pj/\rj:\/(pl/\rj (\/pl)/\rj—s/\rj

7
= (\/%‘) nri=\(gi Ar) =g Ary = ;.
(2 (2
The first and last equalities hold because p; and g; are below ;. The second
and seventh equalities holds because r; and r; are disjoint for distinct indices 7
and j, and the elements p; and ¢; are below r;; consequently,

piNTj=qi Nr; <1r; Arj=0.

The third and sixth equalities hold by the distributive law in Lemma 8.3.
This argument shows that every element in D can be written in one and only
one way as the supremum of a family {p;}, with p; in A; for each 1.
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The validity of (12) follows easily from the distributive law formulated in

Corollary 8.2:
(Vo)A (V) =Vwing) =\ @ina).
i j :

i 7

For the last step, observe that
pi N\ g §7“Z'/\7“j =0

when i # j. The validity of (13) is an immediate consequence of the gener-
alized associative law in Lemma 8.2. To verify (14), let p; be an element of
the Boolean algebra A; for each 4, and let p/ denote its complement in A,.
Then

piAp; =0 —and  p;Vp] =7
The suprema \/, p; and \/, p/ exist, by the supremum property. Moreover,

(\/pi) (\/pz) \/pzAp, 2\/0:0
and

(\Z/pl> (\/p2> \/pl\/pl Z\i/m-:l,

by (12) and (13). The preceding equations show that \/, p; is the complement
of \/, pi, by Lemma 6.2. In other words, (14) holds. The proof of the lemma
is complete.

The lemma describes one method for decomposing a Boolean algebra into
the internal product of a family of factors. As it turns out, there are no other
possibilities.

Corollary 3. A Boolean algebra D is the internal product of a family of
Boolean algebras {A;} if and only if there is a partition {r;} of the unit in D
that has the supremum property and such that A; = D(r;) for each i.

Proof. If a partition of the unit of D with the stated properties exists, then D
is the internal product of the family of corresponding relativizations, by the
preceding lemma.

To prove the converse, assume that D is the internal product of a fam-
ily {A;} of Boolean algebras, and write r; for the unit of A;. It must be
shown that the family {r;} has the stated properties. Let A be the (direct)
product of the family, and for each i, let s; be the element in A defined by
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7 if :'7
silh) = T if k=1
0 if k#1,

for k in I. The elements s; are pairwise disjoint. Indeed, if ¢ # j, then for
each index k at least one of s;(k) and s;j(k) is zero, so that the meet

Sz(l{?) A Sj(k‘)

is zero in Aj. In other words, s; A s; assumes the value zero at each ar-
gument k, so it is the zero element of A. Similarly, the supremum of the
family {s;} is the unit of A. For the proof, suppose that ¢ is any upper
bound of this family in A. The inequality s; < g implies that s;(k) < g for
each index k, and in particular

ri = 8;(i) < gi.

Thus, ¢; must be the unit of A; for each i, and therefore ¢ is the unit of A,
by the definition of a (direct) product. Conclusion: {s;} is a partition of the
unit in A.

The definition of the product implies that the family {s;} has the su-
premum property in A. Indeed, suppose, for each i, that p; is an element
in A below s;. Then

pi(k) < si(k)
for each k. In particular, p;(k) = 0 for each k # i, by the definition of s;.
The supremum of the family {p;} in A is therefore the element p in A defined
by

p(i) = pi(i)
for each 1.

Let f be the canonical isomorphism from A to D. Recall that f maps
each element ¢ in A to the supremum \/, ¢(k) in D. In particular,

F(si) =\ si(k) = si(i) = r;.
k
Since {s;} is a partition of the unit in A with the supremum property, it
follows that the image of this family under f, namely {r;}, must be a partition
of the unit in D with the supremum property. Furthermore, f must map the
set of elements in A below s; bijectively to the set of elements in D below 7,
so that the image of the relativization A(s;) under f is D(r;). On the other
hand, the elements in A(s;) are just the elements ¢ in A that are below s;; in
other words, they are the functions ¢ on the index set such that ¢(i) belongs
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to A; and q(k) = 0 for k # i, by the definition of s;. The image of A(s;)
under f is therefore just A;, by the definition of f, so that
Ai = f(A(si)) = D(rs).
The proof of the corollary is complete.
If A is the product of a family {A;} of Boolean algebras, then for each 4

there is a natural epimorphism from A to A;, namely the projection f; defined
by fi(p) = p;. If, moreover, D is an arbitrary Boolean algebra, and if, for

g
CEE T B
x /
A,

each i, there is a homomorphism g¢; from D to A;, then there is a unique
homomorphism ¢ from D to A such that f;0g = g; for all i (see the diagram).
In fact, g takes each element p in D to the element in A whose ith coordinate
is gi(p), that is,

g(p) =q if and only if ¢ = gi(p)

for each i.

As in the case of the products of two algebras, one can describe this situ-
ation by saying that the product A and the family of projections { f;} satisfy
the lifting condition. Moreover, A and the family {f;} are uniquely deter-
mined to within isomorphism by the lifting condition: if a Boolean algebra D
and a family of homomorphisms {g;} also satisfy the lifting condition, then
there is an isomorphism ¢ from D to A such that f; o ¢ = g;. The proof is
similar to the proof in the case of the product of two algebras.

Exercises

1. Prove that the Boolean algebra 2 x 2 is isomorphic to the field of all
subsets of a two-element set.

2. If Y and Z are disjoint sets, prove that every subset S of their union
can be written in one and only one way as the union of a subset of Y
with a subset of Z, and verify equations (1)—(3).
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. Suppose B and C' are fields of subsets of disjoint sets Y and Z. Prove

that the function f defined on the product A = B x C by
f(PQ)=PUQ

preserves join and complement. Prove, further, that if B and C are the
fields of all subsets of Y and Z respectively, then f maps A onto the
field of all subsets of Y U Z.

. Suppose Y and Z are disjoint sets, and Z is finite. If B is the field

of finite and cofinite subsets of Y, and C' the field of all subsets of Z,
prove that B x C'is isomorphic to the field of finite and cofinite subsets
of the set Y U Z.

. Suppose A = Ay x As. Prove that B = Bj x By is a subalgebra

of A whenever B; and Bj are subalgebras of Ay and As respectively.
Is the converse true? In other words, can every subalgebra of A be
decomposed into the product of a subalgebra of A; and a subalgebra
of Ay?

. Suppose A = B x C. If M and N are ideals in B and C respectively,

prove that L = M x N is an ideal in A. Can every ideal in A be written
as the product of an ideal in B with an ideal in C?

Characterize the maximal ideals in a product A = B x C.

. Let B be the field of finite and cofinite sets of natural numbers. Describe

the maximal ideals in B x B.

Let f; be a (Boolean) homomorphism from B; into A;, and f2 a ho-
momorphism from Bs into As. Define a mapping f from B = By X By
into A = Ay X As by

f((p1,p2)) = (fi(p1), f2(p2))

for all p; in By and ps in Bs. Prove that f is a homomorphism. Prove
further that f is one-to-one, or onto, if and only if f; and fs are both
one-to-one, or both onto. Conclude that if B; and By are isomorphic
to Ay and As respectively, then B is isomorphic to A.

Can every Boolean homomorphism from a product B; x By into a
product A7 x As be decomposed as in Exercise 97 In other words, for
each such homomorphism f, do there always exist homomorphisms f;
from By into Ai, and fs from By into As, such that
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13.

14.

15.

16.

17.

18.

19.

f((p1,p2)) = (fi(p1), fa(p2))
for all p1 in By and pg in By?

Prove directly (without using Lemma 1) that if A = B x C, then A is
the internal product of the algebras

By =B x {0} and  Cy={0} xC.

Let D be the internal product, and A the (direct) product of two
Boolean algebras B and C'. Prove that the mapping f from A to D
defined by

f(p,a)) =pVa
preserves join and complement.

Suppose B and C' are Boolean algebras that are disjoint except for a
common zero element. Give a careful proof, along the lines of the proof
of the exchange principle (see Chapter 11), that the internal product
of B and (' exists.

Let B be a Boolean subalgebra of A, and r an element of A. Prove that
the subalgebra of A generated by BU{r} is just the internal product of
the relativizations B(r) and B(r’), formed in A. (See Exercise 12.19.)

Formulate and prove a version of Exercise 9 for internal products.

Prove that the set of atoms in the internal product of two Boolean
algebras B and C' is the union of the set of atoms in B with the set of
atoms in C. Conclude that the internal product is atomic if and only
if each of the two factors is atomic. Draw a similar conclusion for the
direct product of B and C, and describe the set of atoms in this direct
product.

Prove that the internal product of two Boolean algebras is complete if
and only if each of the factor algebras is complete. Conclude that the
same is true of the direct product of the two algebras.

If the supremum of the set of all atoms in a Boolean algebra exists,
prove that the algebra can be decomposed into the internal product of
an atomic Boolean algebra and an atomless Boolean algebra.

Prove that two countably infinite Boolean algebras with finitely many
atoms are isomorphic if and only if they have the same number of atoms.
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. Are two countably infinite Boolean algebras with infinitely many atoms
necessarily isomorphic?

Show, for every finite Boolean algebra A, that A x 2 and A are not
isomorphic.

Find an infinite Boolean algebra A such that Ax2 and A are isomorphic.
Can A be countable?

Find an infinite Boolean algebra A such that A x 2 and A are not
isomorphic. Can A be countable?

Verify that the product of a family of Boolean algebras is a Boolean
algebra.

Suppose D is the internal product of a family { A;} of Boolean algebras.
Show that the set of atoms in D is just the union of the sets of atoms
in the individual factors A;. Conclude that D is atomic if and only if
each factor is atomic. Draw a similar conclusion for the direct product
of the family {4;}, and describe the set of atoms in this direct product.
(This generalizes Exericise 16.)

Let {A;} be a family of Boolean algebras, and A its product. For each
element ¢ in A and each index ¢, write ¢; for the i¢th coordinate of ¢.
Prove that an element p in A is the supremum of a set F in A if and
only if p; is the supremum of the set

Ei={qi:q€ E}

in A; for each 1.

Prove that the product of a family of Boolean algebras is complete if and
only if each of the factors is complete. (This generalizes Exercise 17.)

Consider two Boolean products

with the same index set, and suppose f; is a Boolean homomorphism
from B; into A; for each 7. Define a mapping f from B into A as follows:
ifuisin A, and p in B, then

fp)=u if and only if u; = fi(pi)
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for each i. Prove that f is a Boolean homomorphism. Prove further
that f is one-to-one, or onto, if and only if every homomorphism f; is
one-to-one, or onto. Conclude that if B; is isomorphic to A; for each i,
then B is isomorphic to A.

Suppose each algebra A; in a family of Boolean algebras is a field of sub-
sets of a set X;. Suppose further that the sets X; are mutually disjoint,
and X = J; X;. Prove that the product A =[], A; can be embedded
into the field P(X) via the function that maps each element P in the
product to the union (J; P;.

Suppose D is the internal product, and A the (direct) product, of a
family {4;} of Boolean algebras. Prove that the mapping f from A
to D defined by

f) =\ pi
for each p in A is an isomorphism from A to D.

Prove that an internal product of a family of Boolean algebras exists if
and only if the algebras in the family are mutually disjoint, except for
a common zero element.

Prove that two internal products of a family of Boolean algebras are
isomorphic via a mapping that is the identity on each of the factors.

Formulate and prove the analogue of Exercise 28 for internal products.

Prove that if A =[], A; is a Boolean product, then for each index i,
the projection from A to A; is an epimorphism.

Show that a Boolean product A = [], A; and the associated family { f;}
of projections satisfy the lifting condition. In other words, if D is an
arbitrary Boolean algebra and if g; a homomorphism from D into A;
for each i, then there is a unique homomorphism ¢ from D to A such
that f; o g = g; for each i.

Prove that the lifting condition characterizes the product A =[], 4;
and the family {f;} of projections, up to isomorphic copies.

A product A = []; A; includes two subalgebras, each of which might
deserve some consideration as a kind of weak product of the family { 4;}.
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One subalgebra — call it B — consists of those elements p for which p;
is in 2 for all but a finite set of indices 7; the other, smaller, subalgebra
— call it C' — consists of those elements p for which either p; = 0 for
all but a finite set of indices i or else p; = 1 for all but a finite set of
indices i. Prove that B and C are subalgebras of A. Give an example
for which all three algebras are distinct.

If D is the internal product of an infinite family {A;} of Boolean al-
gebras, what subalgebra of D does the union E = |J, A; of the factors
generate?

Exercise 37 can be generalized in several different ways when the factor
algebras are all equal, that is, when A = D for some Boolean algebra D
and some set I. One subalgebra (of A) — call it B — consists of those
elements p that have a finite range, that is, the set {p; : i € I} is
finite. Another, smaller, subalgebra — call it C' — consists of those
elements p that are constant on a cofinite subset of I, that is, there
exists an element w in D such that p; = wu for all but a finite set
of indices i. Prove that B and C are subalgebras of A. Give other
generalizations of Exercise 37 when the factor algebras are all equal.

Prove that if A is the product of two Boolean algebras B and C, then
the canonical extension of A is the product of the canonical extensions
of B and C.

Extend Exercise 40 to products of finite families of Boolean algebras.

Given an example to show that the result in Exercise 40 cannot be
extended to infinite families of Boolean algebras.

Prove that if A is the product of an arbitrary family {A;} of Boolean
algebras, then the completion of A is the product of the completions of
the factor algebras A;. (Contrast this result with those in Exercises 40
and 42.)



Chapter 27

Isomorphisms of Factors

To what extent do the laws of multiplication and exponentiation, familiar
from the arithmetic of positive integers, carry over to products and powers
of Boolean algebras? Many interesting problems arise from this question.
For instance, if two positive integers divide one another, they must be equal.
Does a form of this law hold for Boolean algebras? If, in other words, two
Boolean algebras A and D are factors of one another, may it be concluded
that A and D are isomorphic? The two algebras are factors of one another
provided that

D=AxDB and A=DxC

for some Boolean algebras B and C'. (For typographical convenience we shall
use the sign of equality in this and related contexts to denote isomorphism.)
The question may therefore be reformulated in the following equivalent way:
does A = Ax B x C imply A = A x B? What if we restrict the ques-
tion by assuming B = C7 What if we restrict the question still further by
assuming B = C' = 27

For grammatical convenience, these four problems may be expressed as
statements rather than questions; the task is then to decide which statements
are true and which ones false.

1 fD=AxBand A=D x C, then A= D.
fA=AxBxC,then A= AXxB.
If A=Ax Bx B, then A=A x B.

IfA=Ax2x2 then A=A Xx2.

~~ I~~~
\)
—_— —— ~— ~—

S. Givant, P. Halmos, Introduction to Boolean Algebras, 243
Undergraduate Texts in Mathematics, DOI: 10.1007/978-0-387-68436-9_27,
(© Springer Science+Business Media, LLC 2009
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As we have just seen, (1) and (2) are equivalent, (2) implies (3), and (3)
implies (4)). It was Tarski who first raised the problem of determining which
of these assertions are true; he proved in [76]and [77] that (1) — and therefore
each of the four assertions — holds when the algebras in question possess
a certain degree of completeness. In general, however, the answers to the
questions are negative, for Hanf gave an example in [24] to show that (4) is
false. The main purpose of this chapter is to present Tarski’s theorem and
Hanf’s example.

To prove (1), it must be assumed that the algebras A and D are countably
complete, or o-complete, in the sense that the supremum and infimum of
every countably infinite subset of A exist. We shall have much more to say
about such algebras in Chapter 29. The proof of the next lemma (due to
Sikorski [56] and Tarski [76], [77]) contains the heart of the argument; it is a
Boolean-algebraic analogue of the proof of the Schréoder—Bernstein theorem
from set theory (see Appendix A, p. 463, and Exercises 1-4).

Lemma 1. If a o-complete Boolean algebra A is isomorphic to one of its rela-
tiizations A(p), then it is isomorphic to every relativization A(q) with ¢ > p.

Proof. Let f be an isomorphism from A to one of its relativizations A(p).
Notice that f maps A into itself. Given an arbitrary element ¢ > p, it
therefore makes sense to define two sequences {p,} and {¢,} by induction
on n as follows:

pr=1 and  puy1 = f(pn),
q =4q and gn+1 = f(CIn>

In other words, p,+1 and g,+1 are the result of applying n times the map-
ping f to the elements 1 and ¢ respectively. The definitions of these two
sequences, and the fact that f maps the unit of A to the unit of A(p), imply
that

pe=f(m)=f1)=p and p<g=q<1l=p.
In particular,

P2 < q1 < 1.

Apply the isomorphism f to each of these elements to obtain

f(p2) < fla1) < f(p),

or, in other words,

p3 < q2 < po.
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Iterate this process repeatedly to arrive at

Pn+1 < qn < Dp.

The inequalities combine to give

l=p1r>q>2p2>q@>p3>q3>---.

The infimum r of this sequence exists, by the assumption of o-completeness,
and the preceding inequalities imply that

r:/\pn :/\Qn'
n n

The elements

p1Aqi, @ APy, p2Ags, @ ADPy, ...,

together with r, form a countable partition of the unit 1 (see the diagram
and see also Exercise 8.27), and this partition has the supremum property, by
the assumption of o-completeness. Consequently, A is the internal product
of the corresponding sequence of relativizations, by Lemma 26.2. In more
detail, if B; and C' are the internal products of the families

{Alpp Nql):in=1,23,...} and {A(gn Apjyq) :n=1,2,3,... 1,

respectively, then
A=B1®C® A(r).

Similarly, the elements

q1 /\péa pQ/\Qé7 q2 /\pé’ P3/\Q?§7 ey

together with r, form a countable partition of ¢ with the supremum property
(see the diagram). Consequently, A(q) is the internal product of the corre-
sponding relativizations. In other words, if By is the internal product of the
family
{Alpn Nq)) :n=2,3,4,...},
then
A(q) =By ® C® A(r).

The isomorphism f maps the element p, A ), to the element p,11Aq, 1,

so it maps the relativization A(p, A g,,) isomorphically to the relativization

A(pn+1 AN gy 4q)- It therefore maps the internal product B; isomorphically to
the internal product Bs. The identity function g on A obviously maps the
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‘
P

1

<

internal product C' ® A(r) isomorphically to itself. The function h defined
on A by

h(sVt) = f(s)Vg(t),
for every s in By and every t in C'® A(r), is the desired isomorphism from A
onto A(q) (see Exercises 26.9 and 26.15).

Tarski’s theorem follows readily from the lemma.

Theorem 25. If two o-complete Boolean algebras are factors of one another,
then they are isomorphic.

Proof. Suppose two o-complete Boolean algebras A and D are factors of one
another. Since A is a factor of D, there must be a Boolean algebra B such
that

D =Ax B.
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The remarks in Chapter 26, in particular Corollary 26.1, imply the existence
of an element pg in D such that A is isomorphic to D(pg) (and B to D(p()).
Similarly, the assumption that D is a factor of A implies the existence of an
element ¢ in A such that D is isomorphic to A(q).

Let f be an isomorphism from A to D(pp), and g an isomorphism from D
to A(q), and write p = g(pp). The appropriate restriction of g maps D(pg)
isomorphically to A(p) (Exercise 12.27), and therefore the composition g o f
maps A isomorphically to A(p), since

g(f(1)) = g(po) = p-

The function g maps the unit of D to the element ¢, and therefore maps pg
to an element below ¢. In other words, p < q. Invoke Lemma 1 to obtain
an isomorphism h from A to A(q). The composition g~! o h is the desired
isomorphism from A to D.

We now present Hanf’s example of two Boolean algebras that are factors
of one another, but not isomorphic. The exposition is strongly influenced
by several inspiring conversations with Dana Scott. Let {a,} and {b,} be
two countable sets, disjoint from each other, and let X be their union. A
bijection 6 of X is defined by writing

O(ay) = by and 0(by) = an,

forn =1,2,3,.... Asubset P of X is invariant under 6 if (P) = P. In other
words, the set P is invariant provided it contains a,, whenever it contains b,,,
and it contains b, whenever it contains a,,. Every set I of positive integers
gives rise to, or induces, a uniquely determined invariant set, namely the set

{an :nel}U{b, :nel}

of elements in X with indices in I. Conversely, every invariant set P is
induced by a uniquely determined set of positive integers, namely the set of
indices of elements that occur in P.

The class of all those subsets of X that are invariant under 6 is a complete
field of subsets of X. The field is atomic, and its atoms are the couples
(unordered pairs) {an,b,} forn =1,2,3,....

Every subset R of X can obviously be written in a unique way as a union

R=PUQ

of an invariant set P and a set () that is disjoint from P and that includes
no non-empty invariant subset. (In other words, for no positive integer n
are both a, and b, in Q.) Call P the invariant part, and @Q the variant
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part, of R. A subset of X is said to be almost invariant if its variant part is
finite, or, equivalently, if it differs from an invariant set by a finite set. Every
triple (I, J, K) of sets of positive integers, with J and K finite and all three
sets mutually disjoint, gives rise to an almost invariant set, namely

R={a,:neluJ}tu{b,:nelUK}

moreover, every almost invariant set can be written in this form for a unique
triple (1, J, K) satisfying the given conditions. The invariant part of R is the
invariant set

P={a,:nel}U{b, :nel}
induced by I, and the variant part of R is the set
Q={a,:neJtU{b, :ne K}

The class A of all almost invariant sets is a field. This field is atomic,
and its atoms are the singletons of X, that is, the singletons {a, } and {b,}.
Note that every infinite almost invariant set (that is, every infinite set in A)
includes an infinite invariant subset.

Lemma 2. The relativization of A to any infinite invariant set is isomorphic
to A.

Proof. Suppose Y is the invariant set induced by an infinite set I of positive
integers. Let ¢ be any bijection from I to the set of all positive integers, and
let ¢ be the corresponding bijection from Y to X:

(b(an) = aw(n) and (Z)(bn) = b¢(n)

for n in I. The bijection ¢ induces an isomorphism f from the field P(X) to
the field P(Y") that is defined by

F(P) = ¢ (P)

for each subset P of X (see Chapter 12, p. 94). The isomorphism clearly
maps invariant subsets of X to invariant subsets of Y, and finite subsets
of X to finite sets of Y. It therefore maps almost invariant subsets of X to
almost invariant subsets of Y. In other words, it maps A to the relativization
of AtoY.

Corollary 1. The algebra A is isomorphic to A x A, and also to A x 2F for
every positive even integer k.
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Proof. Consider the invariant set Y induced by the set of positive even in-
tegers. Its complement Y’ in X is the invariant set induced by the set of
positive odd integers. The relativization of A to Y and the relativization
of Ato Y’ — call them B and C respectively — are both isomorphic to A,
by the preceding lemma, so that

BxC=AxA

(see Exercise 26.9). On the other hand, the algebra A is the internal product
of the two relativizations, by Lemma 26.1, so that

A=BxC.

It follows that A is isomorphic to A x A.

The proof of the second assertion is similar. Suppose k = 2n, where n is
a positive integer. Take Y to be the invariant set induced by the set of inte-
gers greater than n. The complement Y’ is an invariant set with exactly k
elements. Every subset of Y’ is finite, and therefore almost invariant. Con-
sequently, the relativization of A to Y’ — call it C'— coincides with the field
of all subsets of Y. It follows that C is isomorphic to 2¥ (see Chapter 3).
On the other hand, the relativization of A to Y — call it B — is isomorphic
to A, by the preceding lemma. Therefore,

Bx(C=Ax?2"

Since A is the internal product of the two relativizations, by Lemma 26.1,
we may conclude that A is isomorphic to A x 2*.

The corollary shows that the Boolean algebras A and A x 2 x 2 are
isomorphic. It remains to prove that A is not isomorphic to A x 2. The
algebra A x 2 can be described, up to isomorphism, as follows. Let ¢ be a
new point not in X. The Boolean algebra 2 is isomorphic to the field P({c}),
and therefore A X 2 is isomorphic to the internal product of A and P({c}).
This internal product consists of two classes of sets: the sets in A and the
sets in A with the element ¢ adjoined. We may therefore think of A x 2 itself
as consisting of the sets P and the sets P U {c}, where P ranges over the
almost invariant subsets of X. Under this conception, the atoms of A x 2 are
the singletons of the elements in the set X U{c}. For notational convenience,
we identify these singletons with the elements themselves, that is, we treat
an, by, and c¢ as the atoms of A x 2.

The algebra A x 2 has an automorphism of period two that leaves exactly
one atom fixed. In other words, there is an automorphism g of A x 2 such
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that g o g is the identity automorphism, and such that exactly one atom
of A x 2 is mapped to itself by g. Indeed, just extend 6 to a bijection of the
set X U {c} by requiring that the element ¢ be mapped to itself, and take g
to be an appropriate restriction of the automorphism of P(X U {c}) induced
by 6 (see Chapter 12, p. 94). On the atoms of A x 2, we have

g(an) = e(an) = by, g(bn) = Q(bn) = Qn, g(C) = ¢,

and on arbitrary sets P in A x 2 we have

9(P) ={g(p):pe P} ={0(p) : p € P}.
Notice that g o g is the identity mapping on X U {c}:

9(g(an)) = g(bn) = an, g(g(bn)) = glan) = bn, g(g(c)) = g(c) = c.
Consequently, g o g is the identity on all of A x 2:

9(9(P)) ={9(g(p)) :pe P} ={p:pe P} =P.
Also, the only atom left fixed by g is c.

/////

L y?LZ y?L3 y7L1

To prove that A is not isomorphic to A x 2, we shall show that A has no
such automorphism. Assume that, on the contrary, A has an automorphism g
with period two that leaves exactly one atom fixed. Some terminology will
be helpful: call the atoms a,, and b,, associates of one another. The atom
left fixed by g is either a,, or b,, for some index n; denote it by x,,. The
associate of x,, — call it y,, — cannot be mapped to itself, since g fixes
no atom different from z,,, and y,, cannot be mapped to z,,, since z,,
is mapped to itself. Consequently, y,, must be mapped to an atom with
an index ngy different from n; — either a,, or b,,. Call this atom x,,. Its
associate y,, cannot be mapped to any of x,,,, yy,, and x,,, and it cannot be
mapped to itself, so it must be mapped to an atom with an index ng different
from n; and ng — either a,, or b,,. Call this atom x,,. By applying this
argument repeatedly, we obtain two infinite sequences {z,, } and {y,, } with
two properties. First, the atoms x,, and y,, are associates, that is,
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{l‘nk s ynk} = {anky bnk}7

and the indices nj are mutually distinct for distinct k. Second,

g(.%'nl) = xnlv g(ynk) = xnk+1a g(xnk+1) = ynk
for k = 1,2,3,... (see the diagram above). Let I be the set of indices ny
such that k£ has remainder 2 when divided by 3,
I = {ng, ns, Ng, N1ty - - - },

and let P be the invariant set induced by I,

P = {an2abnzaan5vbn5aan8abnsv .- } = {xngayn2y$n579n5a$ngaynga ce }

The set P, being invariant, is in A. Its image under the automorphism ¢ is
the set

Q = {ynl’xnﬁ’yn47xn67yn77$n9’ cee }’

and this set is clearly not in A; no two elements of () have the same index,
so () is an infinite set with no invariant subset. Conclusion: A cannot be
closed under g, in contradiction to the assumption that ¢ is an automorphism
of A. This contradiction proves that the assumption of the existence of g is
untenable.

A concrete illustration of the above construction may serve to elucidate
the argument. Suppose the atom x,, is always a,,. Then y,, is always by, .
The argument constructs the infinite sequence {ay,, } to have the properties

g(an1) = Qny, g(bnk) = Qnyyqs g(ank+1) = bﬂk

for k =1,2,3,... (see the diagram below).

Canl a7l2 allg a?L1 a?LB
b'!la b'!l4 b715

The image of the invariant set

a/ L] . .
ng

bnl bn2 bnG ¢

P = {an27bnzaan5>bn57an87bng> .- }

under g is the set
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Q = {bn17an37bn47an67bn77an97 <o }

The set (Q cannot be in A, since no two of its elements have the same index.
Hanf’s counterexample to (4) is a large algebra (it has the power of the
continuum); is there a countable one? The answer is negative, for Vaught
proved that (4) holds whenever A is countable (see [24] and Exercise 30).
Tarski asked whether there are countable counterexamples to (3). Such a
counterexample was eventually devised by Hanf (see Chapter 45).

The square root law for positive integers says that squares of distinct
positive integers are distinct. Is the same true of Boolean algebras? In other
words, does A? = B? imply A = B? Hanf’s example was used by Tarski to
show that this question (also due to Tarski) has a negative answer (see [24]
and Exercise 21). Is the implication true of countable Boolean algebras?
Again, the answer is negative (see Chapter 45).

Here is a final example of a well-known problem regarding powers of
Boolean algebras. It is not difficult to prove that

when X is an infinite set and n an arbitrary positive integer (see Exercise 14).
Does A3 = A imply A2 = A for arbitrary Boolean algebras A? What if A is
countable? The answer in both cases is no. An uncountable counterexam-
ple can be constructed using Hanf’s counterexample (see Exercise 22). The
question for countable algebras A was known as Tarski’s cube problem, and
was open for many years. It was finally solved negatively by Ketonen [34],
using a difficult structure theorem for countable Boolean algebras.

Exercises

1. Prove the following analogue, for Boolean algebras, of the Schroder—
Bernstein theorem (Appendix A, p. 463): if each of two o-complete
Boolean algebras is isomorphic to a relativization of the other, then
the two algebras are themselves isomorphic. (This theorem is due to
Sikorski [56] and Tarski [77].)

2. Show that the analogue of the Schroder—Bernstein theorem for Boolean
algebras (Exercise 1) implies Theorem 25.

3. Show that, conversely, Theorem 25 implies the analogue of the Schro-
der—Bernstein theorem for Boolean algebras (Exercise 1).
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10.

. Derive the Schroder—Bernstein theorem for sets (Appendix A, p. 463)

from Theorem 25.

. Show that the associative law

Ax (BxC)=(AxB)xC

holds for products. (Interpret the equal sign in this and related contexts
below to mean isomorphism.)

. Verify the commutative law

AxB=BxA

for products.

Let X and Y be sets with the same number of elements, and B an
arbitrary Boolean algebra. Prove that BX = BY.

. The law for multiplying exponential terms with the same base, in the

context of Boolean algebras, asserts that if X and Y are disjoint sets,
and if B is an arbitrary Boolean algebra, then

BY x BY = B,

Does this law hold in general?

. The law for raising an exponential term to a power, in the context of

Boolean algebras, asserts that if X and Y are arbitrary sets, and if B
is an arbitrary Boolean algebra, then

(BX)Y — BXXY
where X X Y denotes the ordinary Cartesian product of sets,
XxY={(z,y):x e Xandy e Y}

Does this law hold in general?

The law for multiplying exponential terms with the same exponent, in
the context of Boolean algebras, asserts that if X is an arbitrary set,
and if B and C are arbitrary Boolean algebras, then

BX x X = (B x C)*.

Does this law hold in general?
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12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Introduction to Boolean Algebras

The cancellation law for products of Boolean algebras asserts that
AxB=AxC implies B=C.

Does this law hold in general?

Is the cancellation law for products (Exercise 11) true when the algebras
are all countable?

Is the cancellation law for products (Exercise 11) true when the algebras
are all finite?

Prove that if X is an infinite set, then
P(X)" =P(X)
for every positive integer n.

Does A=A x B x C imply A=A x B when A is finite?

Prove that the class of invariant sets (under the bijection € defined in
the chapter) is a complete field of sets.

Prove that the class of almost invariant sets (defined in the chapter) is
a field of sets.

Prove that the field of almost invariant sets is not a complete Boolean
algebra.

Prove that the mapping ¢ defined in the chapter is an automorphism
of A x 2.

For a positive integer n, the nth root law for Boolean algebras asserts
that

A" = B" implies A=B8B.
Does this law hold for finite Boolean algebras? Does it hold for o-

complete Boolean algebras? (The answer to this last question is due to
Tarski [76], [77].)

Prove that the square root law (Exercise 20) fails for infinite Boolean
algebras. In other words, find two Boolean algebras A and B such that

Ax A=BxB,
but A # B. (This result is due to Tarski; see [24].)
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22

23.

24.

25.

26.
27.
28.

29.

30.

Find a Boolean algebra B such that B= B x B x B, but B # B x B.

(Harder.) Find a Boolean algebra A such that A = A x 2 X 2 x 2,
but A # Ax2and A # Ax2x2. (This example and its generalizations
— see Exercise 25 below — are due to Hanf [24].)

Find Boolean algebras Ay and A, such that A; x Ay = A; X Ay X 2 but
A17£A1><2andA27éA2><2.

(Harder.) Find a Boolean algebra A such that A = A x 2 x 2 x 2 x 2,
but AZAx2 and A#£Ax2x2, and A# AX2x2x2.

Prove that if A x 2 = A, then A must have infinitely many atoms.
Formulate and prove a generalization of Exercise 26.

(Harder.) Prove that if A is a countable Boolean algebra with infinitely
many atoms, then A = Ax2. (This theorem is due to Vaught; see [24].)

Prove that if A is a countable Boolean algebra with infinitely many
atoms, and if B is a finite Boolean algebra, then A = A x B. (This
theorem is due to Vaught; see [24].)

Prove that if A is a countable Boolean algebra, and if B and C' are
finite Boolean algebras such that A = A x B x C, then A = A x B.
(This theorem is due to Vaught; see [24].)



Chapter 28

Free Algebras

The elements of every subset of every Boolean algebra satisfy various alge-
braic conditions (such as the distributive laws, for example) just by virtue of
belonging to the same Boolean algebra. If the elements of some particular
set F satisfy no conditions except these necessary universal ones, it is natural
to describe E by some such word as “free.” A crude but suggestive way to
express the fact that the elements of E satisfy no special conditions is to say
that the elements of E can be transferred to an arbitrary Boolean algebra in
a completely arbitrary way with no danger of encountering a contradiction.
In what follows we shall make these heuristic considerations precise. We shall
restrict attention to sets that generate the entire algebra; from the practical
point of view the loss of generality involved in doing so is negligible.

A set E of generators of a Boolean algebra B is called free if every mapping
from FE to an arbitrary Boolean algebra A can be extended to an A-valued
homomorphism on B. In more detail: FE is free in case for every Boolean
algebra A and for every mapping ¢g from F into A there exists an A-valued
homomorphism f on B such that f(p) = g(p) for every p in E. Equivalent
expressions: “FE freely generates B”, or even “B is free on E”. A Boolean
algebra is called free if it has a free set of generators.

The definition is conveniently summarized by the subjoined diagram. The
diagram is to be interpreted as follows. The arrow h is the identity mapping
from E to B, expressing the fact that F is a subset of B. The arrow g is
an arbitrary mapping from E to an arbitrary algebra A. The arrow f is, of
course, the homomorphic extension required by the definition; it is dotted
to indicate that it comes last, as a construction based on h and g. It is
understood that the diagram is “commutative” in the sense that
S. Givant, P. Halmos, Introduction to Boolean Algebras, 256
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S
~

S

(foh)(p)=g(p)

for every p in F.

The arrow diagram does not express the fact that F generates B. The
most useful way in which that fact affects the mappings under consideration
is to guarantee uniqueness: there can be only one A-valued homomorphism f
on B that agrees with g on F, by Lemma 13.2. One way of expressing this
latter fact is to say that f is uniquely determined by ¢ and h.

There is another and even more important uniqueness assertion that can
be made here. If B; and By are Boolean algebras, free on subsets £ and Fo,
respectively, and if E; and Fs have the same number of elements, then B;
and By are isomorphic, via an isomorphism that interchanges E; and Fjs.
This says, roughly speaking, that B is uniquely determined (to within iso-
morphism) by the number of elements in E. It is therefore legitimate to speak
of the free Boolean algebra on m generators, for any cardinal number m.

The proof is summarized by the following diagrams. Here g; is a bijec-

&
IS

—

Q
(3]
s
o
- -=>
—
o
S
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tion from F7 to Fs, and go is its inverse. The arrows h; and ho are the
identity mappings from Fj into Bi, and from Fs into Bs, respectively. The
assumption of free generation guarantees the existence of a homomorphism f;
from Bj into Bs that extends g1, and also the existence of a homomorphism fo
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from Bs into By that extends go. The composition fyo f7 is an endomorphism
of B; (a homomorphism of By into itself) that extends g2 0g;. Since gaog; is
the identity mapping on E7, the identity automorphism of Bj is also an endo-
morphism that extends gs o g;. The assumption that Fy freely generates By
means, in particular, that g» 0 g1 has only one extension to an endomorphism
of By. Conclusion: fo o fi is the identity automorphism on By. A similar
argument shows that the composition f; o fo is the identity automorphism
on Bs. It follows that f; is a bijection mapping B isomorphically to Bo,
and fo is its inverse (see Exercise 12.32 or the section on bijections in Ap-
pendix A).

It is quite useful to have an intrinsic characterization of a set of free
generators, one that is formulated in terms of the elements of the set alone,
and not in terms of homomorphisms that extend mappings on the set. The
next lemma gives such a characterization. The proof of the lemma is based
on the homomorphism extension criterion formulated in Theorem 4 (p. 107).

For each 7 in B write
o 7 if j7=1,
p(zhj) = {./

i if j=0.

Lemma 1. A necessary and sufficient condition for a set E of generators of
a Boolean algebra B to be free is that whenever a is a 2-valued function on
some finite subset F' of E, then

/\ pli,a(i)) # 0.

iEF
Proof. The lemma holds vacuously when B is a degenerate Boolean algebra:
no set of generators freely generates B, and no set of generators satisfies
the condition of the lemma. It may therefore be assumed that B is non-
degenerate.

The homomorphism extension criterion says that a function g from E to

a Boolean algebra A can be extended to a homomorphism from B to A if
and only if

(1) A\ pi,a@) =0 implies A p(g(i),a(i)) =0
el Sy
for every finite subset F' of F and every 2-valued function a on F. If the

condition of the lemma is satisfied, then the antecedent of (1) is never true,
independently of the choice of a, and therefore the entire implication in (1) is
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always true, independently of the choice of @ and g. It follows from Theorem 4
that every function g from E to a Boolean algebra A can be extended to a
homomorphism from B into A, so that E freely generates B.

Assume now that F freely generates B. To show that the condition
formulated in the lemma holds, consider an arbitrary 2-valued function a on
a finite subset F' of E. Let g be any 2-valued function on E that agrees
with a on F’; for concreteness, g may be taken to be the function defined by

a(i) if i€eF,
0 if icE—F.

A direct computation shows that if 4 is in F', then

p(g(i), a(i)) = 1.

In more detail, if a(i) = 1, then

Consequently,

(2) N plg(i), a(i)) = 1.

i€F
The assumption that E freely generates B implies that g can be extended to
a 2-valued homomorphism on B. The implication in (1) must therefore be
satisfied for g, by Theorem 4. The consequent of the implication is different
from zero, by (2), so the antecedent must be different from zero, as desired.

There is one big gap in what we have seen so far of the theory of freely
generated algebras. We may know all about uniqueness, but we know nothing
about existence. The main thing to be known here is that for each cardinal
number there actually exists a Boolean algebra that is free on a set having
exactly that many elements. Let I be an arbitrary set of a given cardinality,
and write S = 2/. The elements of S are functions from I into 2, that is,
they are functions x with arguments ¢ in I and values x(i) = z; that are
either 0 or 1. Consider the (direct) power 2° of the two-element Boolean
algebra. With each index ¢ in I, there is a naturally associated projection,
the function p; from S into 2 defined by
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pi(r) = ;

for each x in S. The existence theorem for free Boolean algebras asserts that
the set of these projections freely generates a subalgebra of 2°.

Theorem 26. For each set I, the Boolean subalgebra of 22! generated by the
set of projections E = {p; : i € I} is freely generated by E.

Proof. Let B be the Boolean subalgebra of 22! generated by the set E. To
prove that E freely generates B, it suffices to show that the condition formu-
lated in Lemma 1 is satisfied. In verifying the condition, it simplifies notation
to consider 2-valued functions on finite subsets of I instead of on finite subsets
of E. (A similar remark applies in other, related contexts below.)

Suppose a is a 2-valued function on a finite subset F' of I. Let x be any
element in 27 that extends a (for instance, take x; = 0 when i is in [ — F).
A straightforward computation shows that

p(pi,a(i))(z) =1
for each ¢ in F'. Indeed, if a(i) = 1, then

p(pi, a(i))(z) = p(pi, 1)(z) = pi(z) = =(i) = a(i) =1,
and if a(i) = 0, then
p(pi, a(i)) (@) = p(pi, 0)(z) = pi(z) = pi(z)" = 2(i)" = a(i)’ = 0" = 1.
Write
pa = [\ p(pi,a(i)).
el
The preceding argument shows that

pa(x) = /\ p(pi, a(i)) () = 1;
i€l
in particular, p, is not the zero element of B (the function on 27 with constant
value 0). Consequently, the set E satisfies the hypotheses of Lemma 1, so
the subalgebra generated by E is in fact freely generated by E.

A description of the finitely generated free algebras can be obtained rather
easily from the preceding existence theorem. Assume, in accordance with von
Neumann’s definition of the natural numbers, that each natural number m
coincides with the set of its predecessors, m = {0,1,...,m — 1} (see the
section on natural and ordinal numbers in Appendix A).
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Corollary 1. For every natural number m, the Boolean algebra 22" is free
on m generators.

Proof. Write S = 2™ and A = 25. The set
E={p;:iem}

of the projections p; from S to 2 has cardinality m and freely generates
a subalgebra of A, by Theorem 26. It must be shown that the generated
subalgebra coincides with A.

For each a in S, write

pa= /\ p(pi, a(i)),
icm
where p(p;,a(i)) is either p; or p/, according as a(i) is 1 or 0. (This infimum
exists because m is finite.) The element p, is obviously generated by FE,
because it is a (finite) meet of elements and complements of elements from E.
An easy computation shows that
(1) pa(z) =1 if and only if  z=a,

for each z in S. Indeed, p,(z) is the meet (in the Boolean algebra 2) of the
elements p(p;,a(i))(x), and is therefore 1 just in case p(p;,a(i))(z) = 1 for
each 7 in m. The definition of p implies that

p(pi,a(i))(z) =pi(z) =2;  or  p(pi,a(i))(@) = pi(z) = =,
according as a(i) is 1 or 0. Consequently, for p,(x) to be 1, we must have
x; = 1 when a(i) = 1, and x; = 0 when a(i) = 0. This proves (1).
For every subset X of S, put
pPx = \/ Pa-
acX

(This supremum exists because X is finite.) Again, it is clear that px is
generated by the elements p,, and therefore by the set E. It follows from (1)
that for each x in S,

px(xz) =1 if and only if z € X.

An arbitrary element ¢ in A is a 2-valued function on S, and is therefore
completely determined by the set of those x in S for which ¢(x) = 1. If that
set is X, then

g(z) =1 ifand only if € X,
if and only if  px(z) =1,
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so that ¢ = px. Consequently, every element ¢ in A coincides with px for
some subset X of S, and therefore ¢ is generated by F, as was to be shown.

It is unreasonable to expect the corollary to be true for infinite cardinal
numbers. When m is infinite, the free algebra on m generators has cardinal-
ity m, while 22" has cardinality greater than m.

A combinatorial proof of the existence of free Boolean algebras is also
available. Omne of its main virtues is that it shows how Boolean algebras
(and, in particular, free Boolean algebras) arise in considerations of logic.
We shall sketch a bare outline of this proof. (The construction dates back to
Huntington [30] and Tarski [72].)

A general theory of the usual sentential connectives — conjunction (and),
disjunction (or), negation (not), implication (if then), etc. — should be ap-
plicable to every conceivable collection of sentences. This implies that its
basic constituents (generators) should be as unrestricted (free) as possible.
Suppose now that we want to construct a theory equipped to deal with, say,
at least m sentences simultaneously, where m is a cardinal number. The
thing to do then is to take a set F of cardinality m — the set of propo-
sitional variables — and to consider all the formal expressions obtained by
combining the elements of £/ and the sentential connectives in an intelligent
manner. Ultimately the elements of E are to be replaced (or, at any rate
replaceable) by sentences. All this can be done, and, incidentally, it is im-
portant that in the doing of it the cardinal number m should be allowed
to be infinite. Even if a mathematician or logician wishes to consider only
finite combinations of sentences, it seems both practically and theoretically
undesirable to place a fixed upper bound on the number of sentences that
may be combined. The only way to make one theory elastic enough to deal
with all finite combinations is to provide it with an infinite supply of things
that it may combine.

To achieve the desired end, a logician will usually begin by selecting
enough sentential connectives so that all others are definable in terms of
them; we know, for instance, that V (or) and ' (not) will do. Next, given the
set F, the logician will proceed to form all finite sequences whose terms are
the selected connectives, or elements of F, or parentheses, put together in
the usual and obvious manner. Precisely speaking, the admissible sequences
consist of the one-term sequences whose term belongs to F; the sequences
obtained by inserting V between two others already admitted and enclosing
the result in parentheses; the sequences obtained by following an already
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admitted sequence by ' and enclosing the result in parentheses; and no oth-
ers. The reason for the insistence on parentheses is caution. The distinction
between (pV (¢")) and ((pV q)’) is obvious, whereas the customary decision
that p V ¢/ means the former and not the latter is the result of quite an
arbitrary and frequently unformulated convention. One other word of su-
percaution deserves mention: it must be assumed that neither the selected
connectives nor the parentheses that are used occur as elements of F.

If the sequences so obtained are to form a part of a general theory of
sentences, it is clear that certain identifications will have to be made. The
sequence (pV q) is different from (g V p), but if p and g are sentences, then
“por q” and “q or p” are, in some sense, the same sentence. The customary
way to specify the identifications that sound logical intuition and practice
demand is first to define a special class of admissible sequences (called tau-
tologies) and then to say that two admissible sequences are to be identified
just in case a certain easily describable combination of them is a tautology.
The procedure is similar to the formation of quotient Boolean algebras: first
we select an ideal and then we say that two elements of the given Boolean
algebra are congruent modulo the selected ideal just in case their Boolean
sum belongs to the ideal.

To define the set of tautologies we first define certain quite natural ab-
breviations, then, using these, we describe some tautologies, and finally we
obtain all tautologies by describing a simple operation that makes new tau-
tologies out of old. The abbreviations are these: if S and T are admissible
sequences, we write SAT for ((S")V (T(T"))’, we write S = T for (S’)VT,
and we write S < T for (S = T) A (T = S). The initial set of tautologies
consists of all the sequences of one of the four forms

((SvS)=09),
(S=(SVvT)),
(SvT)=(TVS)),
(S=T)=(R=S)=(R=1))),

where R, S, and T are admissible sequences. (Each sequence of each of these
forms is called an aziom.) The way to make new tautologies out of old is this:
if S is a tautology and if (S = T') is a tautology, then T is a tautology. (This
operation is a rule of inference, namely, in classical terms, modus ponens.) A
tautology is, by definition, a sequence that is either an axiom or obtainable
from the axioms by a finite number of applications of modus ponens.

Two sequences S and T are called logically equivalent in case (S < T) is
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a tautology.

The structure outlined in this way, that is, the structure consisting of the
set of all admissible sequences, the subset of tautologies, and the relation of
logical equivalence, is known as the propositional calculus. The connection
between the propositional calculus (based, as above, on a set of power m,
say) and the theory of Boolean algebras is this: logical equivalence is an
equivalence relation, the set of equivalence classes has in a natural way the
structure of a Boolean algebra, and, in fact, that Boolean algebra is freely
generated by m generators.

The involved construction of the propositional calculus outlined above
is similar to, but definitely not identical with, a well-known construction of
free groups (via “words” and equivalence classes). That familiar construc-
tion could also be adapted to the construction of free Boolean algebras; the
result would be about equally painful with what we have already seen. It
is unimportant but amusing to know that the cross-fertilization between the
two theories is complete: the “axiom-rule” approach can be adapted to the
construction of free groups.

In a subsequent chapter, we shall see yet another proof of the existence of
free Boolean algebras. It is more economical than the proofs discussed above,
because it is based on some powerful techniques that will be introduced later.
The insights provided by the later proof are different from those provided by
the proofs in this chapter, and are less algebraic in nature.

Infinite free Boolean algebras possess a number of interesting properties.
Here is one example.

Corollary 2. An infinite free Boolean algebra is atomless.

Proof. A finitely generated Boolean algebra must be finite, by Corollary 11.2,
so an infinite free Boolean algebra has an infinite set of free generators. Recall
from the proof of Theorem 26 that if I is an infinite set with m elements,
then the free Boolean algebra with m generators is (up to isomorphic copies)
the subalgebra B of 22" that is generated by the set of projections

E={p:iecl}.

The algebra B is the union of the directed family of subalgebras B generated
by the finite subsets of projections

EF:{pZZEF}v
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where F' ranges over the finite subsets of I (Corollary 11.1). Each algebra Bp,
being finitely generated, is finite and therefore atomic; its atoms are the
elements of the form

pa= /\ p(pi,a(i)),
i€EF
where a is a function from F' into 2; see Theorem 2, p. 81. (The elements p,
are non-zero, by Lemma 1.) To prove the corollary, it suffices to show that
below each atom p, of Br there are two disjoint, non-zero elements in B
(which of course do not belong to Bp); for then p, cannot be an atom in B.
Let 79 be any index in I that is not in F'. The function a has two extensions,
say b and ¢, to functions from FU{ig} into 2; they are determined by requiring

b(lg) =1 and C(io) =0.
The elements

=\ pib@) and  pe= N\ ppici)

iEFU{io} iEFU{iU}

in B are obviously below p,, since b and ¢ extend a, and they are non-zero
by Lemma 1. They are disjoint because

Py A Pe < P(Pig» bi0)) A p(Pig- c(i0)) = P(Pigs 1) A P(Pig> 0) = pig A pj, = 0.

One surprising consequence of the preceding corollary and Theorem 10
(p. 134) is that the field of finite unions of left half-closed intervals of rational
numbers is a free Boolean algebra on R (free) generators. The reader might
find intriguing the problem of giving an explicit set of free generators for this
algebra. (See Exercise 13.)

The early part of the theory of free Boolean algebras extends with no
profound conceptual change to the class of complete algebras. The defini-
tion reads just as before except that all the Boolean algebras that enter into
it, and all the homomorphisms also, are now required to be complete. The
uniqueness theorems are proved just as before. The situation of the principal
existence theorem, however, is startlingly different. Both Gaifman [17] and
Hales [21] proved that for each cardinal number m there exists a countably
generated complete Boolean algebra with m or more elements. (Generation
is to be interpreted here in the sense appropriate to the class of complete
Boolean algebras: the complete subalgebra generated by a set E is the in-
tersection of all complete subalgebras that include E.) This result implies
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that the class of complete Boolean algebras does not contain a free algebra B
on Ng generators, for then every countably generated algebra in the class,
being a complete homomorphic image of B, would have to have cardinality
at most that of B.

Exercises

1.
2.

10.
11.

12.

What is the Boolean algebra freely generated by the empty set?

Prove that a generating set of a degenerate Boolean algebra is never
free and never satisfies the condition of Lemma 1.

. For which finite sets X is the algebra P(X) free? Examine especially

sets X of cardinality 1, 2, 3, and 4.

. If X is an infinite set, can P(X) be free?

. Find a set of free generators for the algebra P(X) when X = {0, 1,2, 3}.

Do the same when the set is X = {0,1,2,3,4,5,6,7}. Can these results
be generalized?

(Harder.) Give a direct proof of the existence theorem for free Boolean
algebras, without using Lemma 1 and the homomorphism extension
criterion (Theorem 4, p. 107).

. Theorem 26 follows rather easily from Lemma 1, as its proof shows.

Prove that, conversely, Lemma 1 follows rather easily from Theorem 26.

. If F is a set of free generators of a Boolean algebra, prove that every

subset of F is a set of free generators of the subalgebra it generates.

. Is every subalgebra of a free Boolean algebra free?

Is every infinite subalgebra of an infinite free Boolean algebra free?

Prove that every Boolean algebra is isomorphic to a quotient of a free
one.

Prove that the following conditions on a subset E of a Boolean alge-
bra B are equivalent: (1) E is a set of generators of B; (2) every 2-valued
mapping on E has at most one extension to a 2-valued homomorphism
on B; (3) every mapping from E into an arbitrary Boolean algebra A
has at most one extension to an A-valued homomorphism on B.
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13. (Harder.) Prove, without using Theorem 10, that a countable atomless
Boolean algebra with more than one element is free. Conclude that all
countable atomless Boolean algebras with more than one element are

isomorphic.



Chapter 29

Boolean o-algebras

Between Boolean algebras and complete Boolean algebras there is room for
many intermediate concepts. The most important one is that of a Boolean o-
algebra; this means, by definition, a Boolean algebra in which every countable
set has a supremum (and therefore, of course, an infimum). Similarly, a field
of sets is a o-field if it is closed under the formation of countable unions (and
therefore under the formation of countable intersections).

It is a routine matter to imitate the entire algebraic theory developed
so far for the two extremes (Boolean algebras and complete algebras) in the
intermediate case of g-algebras. Thus, a o-subalgebra of a o-algebra A is a
subalgebra B of A that is closed under the formation of countable suprema
(and hence under the formation of countable infima); more precisely, when-
ever p is the supremum in A of a countable family of elements in B, then p
belongs to B. A o-subalgebra of a o-field of sets is called a o-subfield. The in-
tersection of a family of o-subalgebras (of A) is of course itself a o-subalgebra.
(The intersection of the empty family of o-subalgebras is, by convention, the
improper o-subalgebra A.) The o-subalgebra generated by a subset E is, by
definition, the intersection of the family of o-subalgebras that include E as
a subset. (Notice that this family is not empty, since it always contains A.)
When more clarity is needed, E' may be called a set of o-generators.

Continuing in the same spirit, we define a g-homomorphism as a homo-
morphism that preserves all the countable suprema (that is, the suprema of
all the countable sets) that happen to exist. A free o-algebra is defined the
same way as a free Boolean algebra except that all the algebras and homo-
morphisms that enter the definition are now required to be o-algebras and
o-homomorphisms. (The problem of the existence of o-algebras free on sets
S. Givant, P. Halmos, Introduction to Boolean Algebras, 268
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of generators of arbitrary cardinality will be attacked later.)

A o-ideal is, by definition, an ideal closed under the formation of count-
able suprema. The kernel of a o-homomorphism on a g-algebra is a o-ideal.
Indeed, if M is the kernel of a o-homomorphism f, then M is certainly an
ideal. To prove that it is a o-ideal, consider a sequence {g,} of elements
in M, and let ¢ be the supremum of the sequence in B. Then f(g,) = 0 for
every n, by the definition of a kernel, and consequently

F@) =\ fan) =0,

by the definition of a o-homomorphism. It follows that ¢ is in M.

Conversely, every o-ideal is the kernel of a g-epimorphism. For the proof,
suppose that B is a o-algebra and M a o-ideal in B. Form the quotient
A = B/M, let f be the projection of B onto A, and recall that M is the
kernel of f. We shall prove that A is a g-algebra and f is a o-homomorphism.
The two assertions can be treated simultaneously by proving that if {g,} is a
sequence of elements in B with supremum ¢, then the sequence {f(g,)} has
a supremum in A, and, in fact,

\/ fa) = 1.

Write

flan) =pn  and  f(q) =p.
The inequality ¢, < ¢ implies that p,, < p, for each n, by the homomorphism
properties of f. It is to be proved that if p,, < s for all n, then p <'s. Let ¢ be
an element of B such that f(t) = s. (The element ¢ exists because f maps B
onto A.) Since

flan) =pn < 5= f(t)
for all n, we have
flan —1) = flgn) — f(t) = 0.
In other words, ¢, — t is in the kernel M. Because M is a o-ideal, by as-
sumption, the join \/, (¢, —t) must also be in M. The equalities

\/(qn—t)Z(\n/qn)—tzq—t

n

(Exercise 8.25(c)) therefore imply that ¢ — ¢ belongs to the kernel M. Con-
sequently,
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0=flg—1t)=flg)— ft),
and therefore f(q) < f(t). In other words, p < s, as promised. The following
theorem (which dates back to Tarski [75]) has been proved. It contains, in
particular, the analogue for g-algebras of the homomorphism theorem (see
Chapter 21).

Theorem 27. The quotient of a o-algebra by a o-ideal is a o-algebra. The
corresponding projection is a o-homomorphism, and its kernel is the given o-
1deal.

The simplest way to be a o-algebra is to be complete. There are other
ways. The countable—cocountable algebra of every set is a o-algebra that is
not complete, unless the underlying set is countable. (Observe, by the way,
that the class of all countable sets in this algebra is a non-trivial maximal
ideal.) The most famous and useful incomplete o-algebras arise in topological
spaces. A Borel set in a topological space X is, by definition, a set belonging
to the o-field generated by the class of all open sets (or, equivalently, by the
class of all closed sets). For instance, countable unions of closed sets and
countable intersections of open sets are Borel; they are usually called F-sets
and Gg-sets (or simply Fy’s and Gs’s) respectively. Here are some concrete
examples. In the Euclidean space R", every set consisting of just one point
is closed, and the whole space with just one point removed is open, so every
countable set is an F,, and every cocountable set is a G5. In the space R,
the open interval (a,b) is the union of the closed intervals [a + 1/n,b — 1/n]
for n = 1,2,..., and the closed interval [a,b] is the intersection of the open
intervals (a — 1/n,b+ 1/n) for n = 1,2,..., so every open interval in R is
an F,, and every closed interval is a GGs. Countable intersections of F,-sets
and countable unions of G§-sets are also Borel; they are usually called F,5-sets
and Gg,-sets respectively. One can continue in this fashion to define Fjg, -
sets, Gsy5-sets, and so on, and all of these sets are Borel.

There is also an interesting o-ideal that can be defined in topological
terms. A subset of a topological space is called nowhere dense if the closure
of its interior is empty, and it is called meager if it is the union of countably
many nowhere dense sets (see Chapter 9). In any topological space, the empty
set is meager (it is nowhere dense), the intersection of an arbitrary set with a
meager set P is meager (a subset of a meager set is meager, by Exercise 9.27),
and the union of a sequence of meager sets is meager (Exercise 9.28). This
argument shows that the class of all meager subsets of a topological space X
is a o-ideal in P(X). Similarly, the class of all meager Borel sets is a o-ideal
in the o-field of all Borel sets.
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Compact topological spaces play a very important role in the theory of
Boolean algebras. To define them, it is helpful to introduce an auxiliary
notion. An open cover of a topological space is a family of open sets whose
union is the whole space. A topological space is said to be compact if every
open cover has a finite subcover; in other words, whenever the space is equal
to the union of a family {U;} of open sets, it is already equal to the union of
some finite subfamily {U;,, Ui,, ..., U;, }. The contrapositive of this definition
runs as follows: if {U;} is a family of open sets, and if no finite subfamily
covers the whole space, then {U;} cannot cover the whole space.

There is a very useful characterization of compactness. A family of sets
in a topological space has the finite intersection property if the intersection
of every finite subfamily is non-empty. It turns out that a topological space
is compact if and only if each family of closed sets with the finite intersection
property has a non-empty intersection. For the proof, suppose that X is
a compact space, and let {F;} be a family of closed sets with the finite
intersection property. Then {F}} is a family of open sets such that no finite
subfamily covers X, by the De Morgan laws (2.7). The (contrapositive of
the) definition of compactness implies that the union of {F/} is not all of X;
consequently, the intersection of the family {F;} is not empty, by the infinite
De Morgan laws (8.1). The reverse implication is established by a completely
analogous argument.

A subset @ of a topological space X is said to be compact if it is a compact
space under the inherited topology. In other words, @) is compact if each open
cover of ) (each family of open sets in X whose union includes Q) has a finite
subcover. A closed and bounded subset of R™ is always compact; this is just
the content of the celebrated Heine—Borel theorem. In particular, every finite
interval [a, b] in the space of real numbers is compact. On the other hand, it
is easy to check that the set of all real numbers is not compact. For instance,
the family of intervals {(n,n + 2)}, where n ranges over the integers, is an
open cover of R, but it has no finite subcover.

A topological space is said to be Hausdorff if any two points can be
separated by open sets. This means that for any two points x and y in the
space, there are disjoint open sets U and V such that z is in U and y in V.
The Euclidean spaces R™ are Hausdorff: if  and y are two points in R", and
if § is the distance between these two points, then the open balls of radius 6/2
centered at x and at y are disjoint and contain x and y respectively.

Every closed set in a compact space is compact. Proof: if @) is closed, and
if {U;} is an open cover of @, then the family {Q'} U {U;} is an open cover
of the whole space. There must be a finite subcover of the whole space, say
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so {Ui,,Ui,, ..., U;, } must cover Q. The converse is not in general true, but
it is true for Hausdorff spaces.

Lemma 1. If Q is a compact set in a Hausdorff space, and if x is a point
of the space that is not in Q, then x and @QQ can be separated by open sets.
Consequently, each compact set is closed.

Proof. Each point y in () can be separated from x by open sets, because the
space is Hausdorff. In other words, there are disjoint open sets V,, and W,
such that z is in V}, and y is in W,,. The family {W}},cq is an open cover
of @, so it must have a finite subcover {Wy,, W,,,..., Wy, }. The sets

n n
V=V, ad W=[JW,

i=1 i=1
are both open. (A finite intersection of open sets is open, as is an arbitrary
union of open sets.) They are also disjoint: if a point belongs to V, then it
belongs to each set V,,; consequently it cannot belong to any of the sets W,
(the sets V,,, and W), being disjoint), and therefore it cannot belong to W.
Finally, z belongs to V' (because z is in each set V), and @ is included in W
(because the sets W, form a finite subcover of Q).

One consequence of the observations of the preceding paragraph is that
for every point = not in @, there is an open set U, (the set V above) that
contains z and is disjoint from . The union of the family {U,},cq is
therefore an open set that is disjoint from @ and contains every point in Q.
Consequently, this union must coincide with Q’. Conclusion: Q' is open,
and therefore @ is closed.

Corollary 1. For every open set U in a compact Hausdorff space, and every
point x wn U, there is an open set V' containing x such that the closure V'~
is included in U.

Proof. Suppose U is an open set, and = a point in U. The complement U’ is
closed, by definition, and therefore compact, since the whole space is assumed
to be compact. Apply the lemma to obtain disjoint open sets V' and W such
that = belongs to V, and U’ is included in W. The set W' is then closed,
and
VW' CU.

The closure of V must therefore be included in the closed set W', and hence
also in U.



29 Boolean o-algebras 273

Corollary 2. Any two points in a compact Hausdorff space are separated by
open sets with disjoint closures.

Proof. Given two points x and y in a compact Hausdorff space, there exist
(by definition) disjoint open sets U and W such that z is in U and y in W.
The complement U’ is closed and includes W, so it includes the closure W ™.
There is an open set V containing x such that V'~ is included in U, by
Corollary 1. The open sets V and W contain x and y respectively, and have
disjoint closures, since V'~ is included in U, and W~ in U"’.

The following celebrated result, known as the Baire category theorem (see
Baire [2]), is needed on most occasions when meager sets occur. It says that
no non-empty open set can be meager in a compact Hausdorff space.

Theorem 28. A meager open set in a compact Hausdorff space is empty.

Proof. Suppose that U is a non-empty open set and that {S,} is a sequence
of nowhere dense sets. We shall show that U contains at least one point that
does not belong to any S,,. It follows that U cannot equal the union of the
sets Sp,. In other words, U cannot be meager.

Write Uy = U. Let Vi be a non-empty open set with the property
that Vi~ C Up; such a set exists by Corollary 1. The closed set S| has
an empty interior, by the assumption that S; is nowhere dense. Its comple-
ment, the open set S, therefore has a non-empty intersection with every
non-empty open set. In particular, it has a non-empty intersection with Vj.
The set

Uy=Vin Sf/
is a non-empty open subset of V; (it is open because it is the intersection of
two open sets), and U; N S1 = &, because U is disjoint from S| .

Repeat this argument with U; in place of Uy to obtain a non-empty open
set V5 such that V,” C Uy, and to conclude that the set

U2 - V2 ﬂS{l

is a non-empty open subset of V5 with the property that Us N .Sy = &.
Continue this argument inductively: for each positive integer n, there is a
non-empty open set V;, such that V,,” C U,_1, and the set

Up,=V,NS, '

is a non-empty open subset of V,, with the property that U, N .S, = .



274 Introduction to Boolean Algebras

The last equation implies that the intersection [, U}, is disjoint from each
set S,,. The inclusions

imply that

k k
The family of non-empty closed sets {V,} is decreasing, and therefore has
the finite intersection property:

VNV, NNV =V £

The topological space is assumed to be compact, so the family {V,”} has a
non-empty intersection. This means that (), Uy is non-empty. Any point in
this intersection has the desired properties: it belongs to U = Up, and it does
not belong to any of the sets 5,,.

The ideal of meager sets makes contact with an earlier construction in
a somewhat surprising way: Borel sets are almost regular open sets in the
sense that each Borel set differs symmetrically from a uniquely determined
regular open set by a meager set. It is helpful to formulate this result another
way, using the notion of congruence modulo an ideal that was discussed in
Chapter 18. Recall that two elements p and ¢ of a Boolean algebra are defined
to be congruent modulo an ideal M if the Boolean sum p+ ¢ is in M, and in
this case we write p = ¢ mod M, or just p = ¢ when the intended ideal M
is clearly understood.

Lemma 2. FEvery Borel set in a compact Hausdorff space is congruent to a
unique reqular open set modulo the o-ideal of meager Borel sets.

Proof. A subset S of a compact Hausdorff space X is said to have the Baire
property if it is congruent to some open set, where “congruent” in the course
of this proof means congruent modulo the o-ideal M of meager Borel sets
in X. The first step in the proof is to show that the class of sets with the
Baire property is a o-field that includes the open sets. Clearly every open
set U has the Baire property: U = U, since U + U = & and the empty
set is meager. Suppose {S,} is a sequence of sets with the Baire property,
say {U,} is a sequence of open sets such that S, = U, for each n. The
sums S, + U, are in M, by the definition of congruence, so their union is
also in M, because M is a o-ideal. The sum of the unions J,, S, and {J,, U,
is included in the union of the sums,
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(Usn) + (Uun) cUiSa+0n)
by Exercise 8.26, so it, too, belongs to M, by (18.18). It follows that
(Us:) = (Ur)

Since the union of the family {U,} of open sets is open, the set (J,, Sy has
the Baire property.

It remains to prove that the complement of a set with the Baire property
also has the Baire property. Notice, first of all, that every open set U is
congruent to its closure: U = U~. Indeed, the sum U + U~ coincides with
the difference U~ — U (since U — U™ = @), which in turn is included in the
boundary of U; consequently, the sum is nowhere dense, and hence meager,
by Lemma 10.5 and Exercise 9.25. Suppose now that S = U, where U is
open. Since U = U, it follows that S = U~. Boolean congruences preserve
complementation, so S’ = UL. This shows that the set S’ has the Baire
property, since U~ is open (it is the complement of the closed set U ™).

It has been shown that the class of sets with the Baire property is a o-
field that includes all open sets. The class of Borel sets is, by definition, the
smallest o-field that includes the open sets. Conclusion: every Borel set has
the Baire property.

The next step is to prove that every open set U is congruent to a regular
open set, and in fact to U, The assumption that U is open implies

Ucuttcutt-=u".

The first inclusion is a consequence of Lemma 10.2. For the last equality,
observe that
U =yt = gttt — gl

by the definition of 1 and Lemma 10.3; form the complements of the first
and last terms to obtain the desired equality. The difference U~ — U is
included in the boundary of U, which is nowhere dense and therefore meager.
The preceding string of inclusions implies that the difference U+ — U is
also included in U~ — U, and is therefore also meager. The sum U + U+
coincides with U+ — U (because U — U+ = @), so it, too, is meager. In
other words, U = U++.

Every Borel set is congruent to an open set, and every open set is con-
gruent to a regular open set, so every Borel set is congruent to a regular
open set. To demonstrate that this regular open set is uniquely determined,
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it suffices to prove that two congruent regular open sets are in fact equal.
Suppose U and V are regular open sets, and U = V. Since

U=U" and V=Vv—,
it follows from the transitivity of = that
U =V and uv=Vv-.

Both U~ + V and U + V'~ are therefore meager sets, and hence so are their
subsets V — U~ and U — V™. Since these subsets are also open, the Baire
category theorem implies that they are empty. In other words, V C U~
and U C V~. These two inclusions imply that U~ = V' ~; consequently,

U = UJ_J_ _ U—I—l _ V—/—/ _ VJ_J_ =V

The proof of the lemma is complete.

In view of the preceding lemma, the function f that takes each Borel
set S to the regular open subset f(S) such that S = f(S) is a well-defined
mapping from the o-field B of Borel sets into the complete Boolean algebra A
of regular open sets. The function maps B onto A because every regular open
set S is Borel, and f(S) = S. We have seen above that if S = U, where U is
open, then S’ = U'; in particular,

F(8") = f(S)*.

We have also seen that if S,, = U,, for n =1,2,..., where again the U,,’s are

open, then
US EUU = (UUn)LL;

in particular,
1(Usn) = (Ussn)

These two assertions mean just that f is a c-homomorphism, by the definition
of complement and join in A (see Theorem 1, p. 66). The kernel of f is the
class of Borel sets that are congruent to the empty set modulo the o-ideal M,
and this is just M itself. The mapping f is thus a o-homomorphism from B
onto A with kernel M, so that A is isomorphic to B/M. We summarize what
has been accomplished in the following theorem.
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Theorem 29. Suppose B is the o-field of Borel sets, and M the o-ideal of
meager Borel sets, in a compact Hausdorff space X. The correspondence f
that takes each Borel set S to the regular open set f(S) determined by

S=f(S) mod M

is a o-homomorphism from B onto the complete algebra A of all regular open
sets in X. The kernel of f is M, so that A is isomorphic to B/M.

One surprising aspect of the theorem is that the quotient of a g-algebra by
a o-ideal, which is necessarily a o-algebra itself, turns out to be a complete
algebra (since A is complete). This is a special dividend; it is not to be
expected in every case. (The fact that the quotient B/M in the preceding
theorem is a complete Boolean algebra was first stated in [75] by Tarski, who
refers to earlier work of Szpilrajn-Marczewski; it was independently observed
by Birkhoff and Ulam in [6].)

It is tempting, but not particularly profitable, to define classes of Boolean
algebras depending on other cardinal numbers the same way as o-algebras
depend on Ny. The situation is analogous to the various generalizations
of compactness depending on cardinal numbers. The questions undeniably
exist, the answers are sometimes easy and sometimes not, and the answers
are sometimes the same as for the ungeneralized concepts and sometimes
not. In all cases, however, and in Boolean algebra as well as in topology,
the generalized theory has much more the flavor of cardinal number theory
than of the subject proper. The interested reader should have no trouble in
reconstructing the basic theory. The problem is, given an infinite cardinal m,
to define and to study m-algebras, m-fields, m-subalgebras, m-subfields, m-
homomorphisms, free m-algebras, m-ideals, m-filters, etc. For complicated
historical reasons the symbol N is always replaced by ¢ in such contexts, so
that, for instance, Ng-algebras are the same as the o-algebras that constituted
the main subject of this chapter.

Exercises

1. Prove that a Boolean algebra is a o-algebra if and only if every count-
able set has an infimum.

2. Prove that a subalgebra B of a o-algebra A is a o-subalgebra if and only
if the infimum (in A) of every countable set of elements in B belongs
to B.
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10.

11.

12.

13.
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. Show that the intersection of a family of o-subalgebras (of a given o-

algebra) is always a o-subalgebra.

. Give some examples of incomplete o-fields.

A family {B;};cs of Boolean subalgebras is said to be countably directed
if for every countable subset J of indices, there is an index ¢ in I such
that B; is a subalgebra of B; for each j in J. Prove that the union of
a countably directed family of o-subalgebras (of a given o-algebra) is
a o-subalgebra.

. Prove that if A is a o-algebra, and if p is an element of the o-subalgebra

generated by a subset F of A, then E has a countable subset D such
that p belongs to the o-subalgebra generated by D.

. Show that a homomorphism on a Boolean algebra is a o-homomorphism

if and only if it preserves all countable infima (that is, the infima of all
countable sets) that happen to exist.

Define what it means for a family of A-valued homomorphisms to be
countably directed. Prove that a countably directed family of A-valued
o-homomorphisms always has a common extension to an A-valued o-
homomorphism. If the homomorphisms in the family are one-to-one,
show that the common extension is also one-to-one.

. Formulate and prove the analogue of Exercise 12.26 for o-homomorph-

isms between o-algebras.

Formulate and prove the analogue of Exercise 12.29 for g-epimorphisms
between o-algebras.

Prove that if two A-valued o-homomorphisms on a o-algebra B agree
on the elements of a set of o-generators of B, then they agree on all
of B.

Formulate and prove the analogue for o-algebras of the first isomor-
phism theorem.

Give a precise definition of the notion of a set E freely o-generating
a o-algebra B. Prove that if two o-algebras By and Bsy are freely o-
generated by sets Fq and Fo of the same cardinality, then By and Bs
are isomorphic via a mapping that interchanges F; and FEs.
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14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Suppose A, B, and C are o-algebras. If f is a c-homomorphism from B
to A, and g a o-homomorphism from C to B, prove that the composi-
tion f o g is a o-homomorphism from C to A.

Prove that the intersection of a family of o-ideals (in a given o-algebra)
is always a o-ideal.

Define the notion of a o-filter, and prove that the cokernel of a o-
homomorphism is a o-filter.

If A is the field of all subsets of an infinite set X, prove that the o-sub-
field of A generated by the set of singleton (that is, one-element) subsets
of X coincides with the field of countable and cocountable subsets of X .

Prove that the class of all countable sets in the o-field of countable and
cocountable subsets of an uncountable set is a o-ideal that is maximal
(as an ideal, and therefore as a o-ideal).

Prove that the class of F,-sets is closed under finite intersections and
under countable unions. Formulate and prove an analogous result
for Ggs-sets.

What kind of set is the complement of an F,?

(Harder.) Prove that in a metric space every closed set is a Gs and
every open set is an Fj,.

(Harder.) Prove that there are continuum many Borel sets of real
numbers.

Complete the proof that a topological space is compact if and only if
each family of closed sets with the finite intersection property has a
non-empty intersection.

Prove that a topological space is compact just in case it satisfies the
following condition: if the intersection of a family of closed sets is in-
cluded in an open set, then the intersection of some finite subfamily of
the closed sets is included in the open set.

Show that the family of intervals (—n,n), where n ranges over the
positive integers, is an open cover of R that has no finite subcover.

Show that the two-dimensional Euclidean space R? is not compact.
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27

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.
38.

39.
40.
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Prove that in an arbitrary topological space, a closed subset of a com-
pact set is compact.

Suppose Y is a subspace of a topological space X, and P is a subset
of Y. Prove that P is compact in Y if and only if it is compact in X.

Suppose an infinite set X is endowed with the discrete topology (Chap-
ter 9). Is the resulting space compact? Is it Hausdorff? What are the
answers to these questions when X is endowed with the cofinite topol-

ogy?
Show that in a Hausdorff space, singletons of points are closed sets.

Show that the atoms of the regular open algebra of a Hausdorff space
are precisely the singletons of isolated points. (A point x is called
isolated if {x} is an open set.)

Show that a subset of a Hausdorff space, under the inherited topology,
is a Hausdorff space.

Prove that in a compact Hausdorff space, two disjoint closed sets can
always be separated by (disjoint) open sets.

(Harder.) Prove that a linearly ordered set endowed with the order
topology (Exercise 9.33) is always a Hausdorff space. Prove further
that the space is compact if and only if the ordering is complete in the
sense that every subset has a supremum (see Exercise 7.23).

Define the notion of a o-regular subalgebra, in analogy with the notion
of a regular subalgebra that was introduced in Chapter 11. Investigate
whether the results of Exercises 11.22 and 11.25 extend to this concept.

(Harder.) Is every set with the Baire property a Borel set?
(Harder.) Can the ideal of meager sets be maximal?

(Harder.) A topological space is called locally compact if for every
point z, there is a compact set whose interior contains x. Prove the
Baire category theorem for locally compact Hausdorff spaces.

Is the homomorphism f described in Theorem 29 complete?

Formulate and prove a version of Theorem 11 (p. 155) that applies
to o-ideals in o-algebras.
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41.

42.

43.

44.

Formulate and prove a version of Exercise 18.26 that applies to o-ideals
in o-algebras.

Generalize Exercise 18.32 to o-algebras.

Given a o-algebra A generated by a set E, define by (transfinite) in-
duction a transfinite sequence {E;}, indexed by the set of countable
ordinals, as follows: (1) Ey = Ej; (2) if k is a countable successor ordi-
nal, say k =i + 1, then Ej is the set of suprema (in A) of countable
sets of elements and complements of elements from E;; (3) if &k is a
countable limit ordinal, then Ej = |J;_;, £;. Prove that the sequence is
increasing (¢ < j implies E; C Ej) and that its union is A. (The natu-
ral generalization of Theorem 3, p. 82, to g-algebras fails because the
infinite distributive laws may fail. This exercise provides an alternative
that is adequate for many purposes.)

Formulate and prove the analogue of Exercise 12.31 for o-algebras.



Chapter 30

The Countable Chain
Condition

The algebraic behavior of the regular open algebra of a topological space
reflects, at least in part, the topological properties of the space. One par-
ticular topological property, namely the possession of a countable base, has
important algebraic repercussions. A base for a topology is a class S of open
sets such that every open set in the topology is a union of sets in S. The
space is said to have a countable base if at least one of its bases is countable.
Here are some examples. The class of open intervals (a,b) constitutes a base
for the Euclidean topology of the real numbers, and so does the class of open
intervals with rational endpoints. The latter base is countable, so R (un-
der the Euclidean topology) has a countable base. More generally, the open
balls form a base for the Euclidean topology of R”, and so do the open balls
for which the radii and the coordinates of the centers are rational numbers.
Therefore, R™ has a countable base.

A Boolean algebra A is said to satisfy the countable chain condition if
every disjoint set of non-zero elements of A is countable. (Recall that two
elements p and ¢ of a Boolean algebra are disjoint if p A ¢ = 0; a set F is
disjoint if every two distinct elements of E are disjoint.) The regular open
algebra of a space with a countable base does satisfy the countable chain
condition. Proof: select a countable base, and, given a disjoint class of non-
empty regular open sets, find in each one a non-empty set of the base. An
algebra satisfying the countable chain condition is sometimes called countably
decomposable.

Lemma 1. A Boolean algebra A satisfies the countable chain condition if

S. Givant, P. Halmos, Introduction to Boolean Algebras, 282
Undergraduate Texts in Mathematics, DOI: 10.1007/978-0-387-68436-9_30,
(© Springer Science+Business Media, LLC 2009
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and only if every subset E of A has a countable subset D such that D and E
have the same set of upper bounds.

Proof. We begin with a preliminary observation: if E is a disjoint set of non-
zero elements in A, then no proper subset of F¥ can have the same set of upper
bounds as E. For the proof, consider a proper subset D of E, and let p be
an element in F that is not in D. Since p is disjoint from each element in D,
its complement p’ is an upper bound for D (p A g = 0 implies ¢ < p’); but p’
is certainly not an upper bound for F, since p is not zero, and therefore not
below p’.

Assume now that the condition formulated in the lemma is satisfied, and
suppose that F is a disjoint set of non-zero elements of A. Let D be a
countable subset of ' with the same set of upper bounds. Then D = E, by
the remarks of the preceding paragraph, so E is countable.

To prove the converse, assume that the countable chain condition is sat-
isfied, and consider an arbitrary subset E of A. Let M be the ideal generated
by F; the elements of M are just those elements of A that are dominated by
the supremum of some finite subset of F, by Theorem 11. It follows that M
and E have the same set of upper bounds: any upper bound of F is certainly
an upper bound of the set of suprema of finite subsets of ', and must there-
fore be an upper bound of M; on the other hand, an upper bound of M is
obviously an upper bound of F, since E is a subset of M.

Construct a maximal disjoint set of non-zero elements in M as follows.
Let {p;}i<a be an enumeration of the non-zero elements of M, indexed by
the set of ordinals less than some ordinal number «. Define a corresponding
transfinite sequence {F;};<, of disjoint sets of non-zero elements in M such
that (1) Fy = @; (2) F; C Fj whenever i < j; (3) the element p; is in Fjq just
in case it is disjoint from every element in F;. The definition of the sequence
proceeds by transfinite induction on ordinal numbers.

Put Fy = @. Obviously this set is disjoint, and condition (1) holds by
definition, while conditions (2) and (3) hold vacuously. For the induction
step, consider an ordinal £ < «, and suppose disjoint sets F; have been
defined for each ordinal i < k so that the family {F;};~) satisfies conditions
(1)=(3) (with j < kin (2), and i+1 < k in (3)). When £ is a successor ordinal,
say k =1+ 1, the definition of Fj, splits into two cases: if p; is disjoint from
every element of F;, put F, = F;U{p;}; otherwise, put Fj, = F;. Clearly, F}, is
a disjoint set in this case, by its very definition and the induction hypothesis
that F; is disjoint. When & is a limit ordinal, put Fj, = |J, < Fi. To check
that this union is disjoint, consider any two of its elements p and q. There
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must be ordinals 4,5 < k such that p is in F; and ¢ is in F;. One of the
two ordinals is below the other, say « < j. Then p and ¢ are in F}, by
condition (2), so p A ¢ = 0, by the induction hypothesis that F}; is a disjoint
set. Conditions (1)—(3) (with j < k in (2), and i + 1 < k in (3)) are easily
seen to hold for the family {F;}i<x.

The desired maximal set is F,. We have already seen that this set is
disjoint and consists of non-zero elements of M. To verify maximality, con-
sider an arbitrary non-zero element p in M; it occurs somewhere in the given
enumeration of M, say p = p;. If p; is not in Fy, then it is not in Fj;1, by
conditions (2) and (3), and consequently it must have a non-zero meet with
some element ¢ in F;. Of course, ¢ is in F,, by condition (2), so that p;, that
is to say p, cannot be adjoined to F,, to obtain a larger disjoint set.

Write F' = F,. Reasoning as in the first paragraph of the proof, we infer
that F' and M have the same set of upper bounds. Indeed, assume p is not
an upper bound of M, with the goal of showing that p is not an upper bound
of F'. The assumption implies the existence of an element ¢ in M that is not
below p, so g Ap’ # 0. The meet ¢ A p’ is in the ideal M. If it is also in F,
then p cannot be an upper bound of F', since p is not above g Ap’. If ¢ A p’
is not in F, then there must be an element r in F' such that r A ¢ Ap’ # 0,
by the maximality of F'. In this case, 7 AgAp’ is not below p, so obviously r
cannot be below p. It follows that p is not an upper bound of F'. Conclusion:
every upper bound of F'is an upper bound of M. The reverse implication is
obvious, since F' is a subset of M.

The countable chain condition is assumed to hold, so the set F'is count-
able. Each element p in F is in the ideal M generated by E, and is therefore
dominated by the supremum of some finite subset F}, of F, by Theorem 11

(p. 155). Write
D=]JF,

pel
The set D is a countable union of finite sets, so it is a countable subset of E.
If ¢ is an upper bound of D, then ¢ is an upper bound of F', since

p<\/F<q

for every p in F'; therefore ¢ is also an upper bound of M and F, since the
sets F', M, and E all have the same upper bounds. On the other hand,
every upper bound of F is an upper bound of D, since D is a subset of F.
Thus, D and F have the same set of upper bounds. The proof of the lemma
is complete.
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The following consequence of Lemma 1 is due to Tarski [75].

Corollary 1. A Boolean o-algebra that satisfies the countable chain condition
1s complete.

Proof. Every countable supremum is formable by definition; by Lemma 1
every conceivable supremum coincides with some countable one.

The countable chain condition got its name from its close relation to a
condition in which ascending chains do explicitly occur. An ascending well-
ordered chain in a Boolean algebra A is a family {p;};<, of elements in A,
indexed by the set of all ordinals less than a particular ordinal «, with the
property that p; < p; whenever ¢ < j < a. The chain is strictly ascending
if p; # p; whenever i < j, and the chain is called countable in case the set of
indices is countable.

Lemma 2. If a Boolean algebra A satisfies the countable chain condition,
then every strictly ascending well-ordered chain in A is countable.

Proof. Suppose that {p;}i<q is a strictly ascending well-ordered chain in A.
Write

i = Pi+1 — Di
whenever ¢ + 1 < «, and let E be the set of ¢;’s. The cardinality of E is the
same as that of a. The elements of E are distinct from 0, since p;11 # p;.
Ifi <jand j+1<a,then p;y1 < pj;, and therefore

¢ Ng; = (pis1 Api' ) A (pjs1 Ap;") < piy1 Ap;’ =0.

In other words, F is a disjoint set of non-zero elements and therefore count-
able; it follows that the given chain is countable.

In a Boolean o-algebra the converse of Lemma 2 is also true.

Lemma 3. If every strictly ascending well-ordered chain in a Boolean o-
algebra A is countable, then A satisfies the countable chain condition.

Proof. If the conclusion is false, then there exists a disjoint set E of car-
dinality N; (the first uncountable cardinal number) consisting of non-zero
elements of A. Establish a one-to-one correspondence between E and the set
of all ordinal numbers less than w; (the first uncountable ordinal number).
Let p; be the element of E corresponding to ¢ (where i < wj). Since the

number of predecessors of i is countable, it makes sense to write ¢; = \/ j<iDi
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for each i. Since {¢;} is a strictly ascending well-ordered chain (strictness
follows from the disjointness of F), the hypothesis of the lemma leads to the
contradictory conclusion that w; is countable.

Exercises

1.

Prove that the open circles for which the radii and the coordinates of
the centers are rational numbers form a countable base for the topol-
ogy of R?. Conclude that the o-field of Borel sets in R? is countably
generated (as a o-algebra).

. Formulate and prove an extension of Exercise 1 to the spaces R".

Let = (x1,22) be any point in R?, and e any positive real number.
The open square (in R?) with center x and side e is defined to be the
set of points

{(y1,y2) 121 —€/2 <y1 <x1+¢€/2 and g — €/2 < Y2 < x2 + €/2}.

Prove that the open squares for which the sides and the coordinates of
the centers are rational numbers form a countable base for the topology
of R%. Conclude that the o-field of Borel sets in R? is generated (as
a o-algebra) by the class of these open squares.

. Does an infinite set endowed with the discrete topology have a countable

base?

. Does an infinite set endowed with the cofinite topology have a countable

base?

. If a Boolean algebra satisfies the countable chain condition, must every

subalgebra satisfy the countable chain condition?

Suppose a Boolean algebra B satisfies the countable chain condition.
Prove that a homomorphism on B that preserves countable suprema
must preserve arbitrary suprema.

Suppose X is a countable set. Prove that every subfield of P(X) satis-
fies the countable chain condition. What if X is uncountable?

Prove that if A is the field of finite and cofinite subsets of an arbitrary
set, then every strictly ascending well-ordered chain in A is countable.
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10.

11.

12.

13.

If the regular open algebra of a topological space satisfies the countable
chain condition, does it follow that the space has a countable base?

Show that the converse of Lemma 2 is false.

(Harder.) Show that the countable chain condition is not preserved by
homomorphisms. (The main idea behind the solution to this exercise
goes back to Sierpinski [55].)

Prove that a Boolean algebra A satisfies the countable chain condition
if and only if every subset E of A that has a supremum has a countable
subset D such that D has a supremum, and in fact \/ D =\/ E.



Chapter 31

Measure Algebras

Intuitively speaking, a measure is an assignment of “magnitude” or “size” to
a collection of objects, real or conceptual. The lengths of lines (straight or
curved), the areas of surfaces, and the volumes of solids are all examples of
measures. It is sometimes not possible to assign a measure — a “size” — to
every conceivable object of a certain type, but the class of objects that can be
measured is usually closed under such operations as union, intersection, and
complementation: if we know the length of a subset of the unit interval, then
we know the length of its complement (with respect to the unit interval); if
we know the lengths of two such subsets, and if we know how the subsets are
related to one another, then we should be able to determine the lengths of
their union and intersection. In analysis it is often important to be able to
compute the measure of the union of an infinite sequence of sets, if we know
the measures of the individual sets and if we know how the sets are related
to one another. These considerations lead naturally to the study of abstract
measures on Boolean algebras and o-algebras.

A measure on a Boolean algebra A is a non-negative real-valued function p
on A — a function from A into the set of non-negative real numbers — such
that whenever {p,,} is a disjoint sequence of elements of A with a supremum p
in A, then pu(p) = >, u(pn). The principal condition that this definition
imposes is called countable additivity, so that a measure can be described as
a non-negative and countably additive function on a Boolean algebra.

The concept just defined is the most useful one of a large collection of
related concepts. Sometimes the word “measure” is applied to countably
additive functions whose values are arbitrary real numbers, or complex num-
bers, or elements of much more general algebraic structures. Sometimes the
S. Givant, P. Halmos, Introduction to Boolean Algebras, 288
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condition of countable additivity is relaxed to finite additivity: if p1,pa, ..., pn
is any finite disjoint sequence of elements (in A) with supremum p, then

1(p) = p(pr) + plp2) + - - + plpn).-
Note that p is finitely additive if and only if

w(p Vv q) = p(p) + u(q)

whenever p and ¢ are disjoint. If ever we need to make use of such general-
ized concepts we shall refer to them by appropriately qualifying “measure”.
(Thus, for instance, we may speak of a complex-valued finitely additive mea-
sure.)

Examples of measures are easy to obtain. For a combinatorial example
consider the field P(X) of all subsets of a finite set X and, for each P in P(X),
define p(P) to be the number of points in P. A degenerate example is the zero
measure: it assigns the value 0 to every element of a Boolean algebra. Many
examples occur in analysis; perhaps the simplest is Lebesgue measure on the
algebra of Lebesgue measurable subsets of the closed unit interval [0, 1]. The
precise details of the definition need not concern us here, but it is helpful
to know some of the more important properties of Lebesgue measure. The
measure is not defined on all subsets of the unit interval, but the class of
subsets on which it is defined is a o-algebra. The sets in this algebra are
said to be (Lebesgue) measurable. Every subinterval of [0, 1], whether open,
closed, or half-open, is measurable, and its measure is just the length of the
interval. Every open set in the unit interval is a countable (disjoint) union
of open intervals, so every open set is measurable, and consequently every
Borel set is measurable. The converse is not true; there exist measurable
sets that are not Borel. Each singleton {a} can be written in the form [a, a],
so the measure of a singleton is 0. Every countable set, finite or infinite, is
the union of a sequence of singletons, and is therefore measurable; countable
additivity implies that its measure is zero. In general, a subset P of the unit
interval has measure zero if and only if for every € > 0, there is a sequence
of intervals {I,} covering P (that is, the union of the intervals includes P)
such that > u(l,) <e.

There are some basic properties that all measures possess. Consider a
measure 4 on a Boolean algebra. The most basic property is that u(0) = 0.
(The first “0” refers to the zero of the Boolean algebra, while the second
refers to the real number zero.) The proof is easy: use finite additivity to
write

1(0) = (0 vV 0) = p(0) + p(0),
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and then use the cancellation law for real numbers to conclude that p(0) = 0.
The subtraction property says that

n(p —q) = pp) — n(p A q);
it is a direct consequence of finite additivity and the fact that p is the join of
the disjoint elements p — ¢ and p A ¢:
u(p) =pw(lp—a)vVpAg) =pnp—a) +ppAag.

The third property is monotony: if ¢ < p, then u(q) < u(p). It is a direct
consequence of the subtraction property, since ¢ < p implies that p A ¢ = ¢
and therefore

n(p —q) = pp) — m9);
the term on the left side is a non-negative number, so the desired inequality
follows.
The join property says that
u(p Vv q) = pp) + plq) — p(p A q).-

For the proof, observe that the elements p — q, ¢ — p, and p A ¢ are disjoint
and join to p V ¢q. Finite additivity therefore implies that

wpVq) = pulp—q) +uplg—p)+ppAq).

Combine this identity with the subtraction property to arrive at the desired
result. An analogous argument yields the addition property:

wp+q) =ppVq) —ulpAq)

(where p+ ¢ is the Boolean sum of p and ¢). The last property is sometimes
called countable subadditivity: if {p,} is an arbitrary sequence of elements
(not necessarily disjoint), and if that sequence has a supremum p, then

u(p) <> plpn)-

For the proof, recall (Exercise 8.23) that the sequence {g,} defined by

Gn=Pn— P1VD2V---VDyr_1)

is disjoint and has the same supremum as {p,}. Notice that g, < p,, so
that u(gn) < u(pp). Countable additivity and monotony imply

p(p) = plan) <D ulpn).
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Notice that the derivations of most of the preceding properties require only
finite additivity, but the derivation of countable subadditivity requires the
full strength of countable additivity.

The preceding properties easily imply that if g is a measure on a o-
algebra A, then the set of all elements of measure zero, that is, the set

M ={pe A:pu(p) =0},

is a o-ideal, and this ideal is proper if and only if i is not the zero measure.
The element 0 is in M because p(0) = 0. If p is in M, and if ¢ < p, then

0 < u(q) < pu(p) =0,

by monotony, and consequently u(q) = 0; hence, ¢ is in M. To demon-
strate the closure of M under the formation of countable suprema, consider
a sequence {p,} of elements in M. The supremum p of the sequence exists
because A is a g-algebra. Each element p,, has measure zero, by the definition
of M, so

0<pu(p) <Y nlpa) =0,

by countable subadditivity. It follows that p(p) = 0, and therefore that p
isin M. If p is the zero measure on A, then of course the unit 1 is in M,
so the ideal is improper. If y is not the zero measure, then u(1) # 0, and
therefore 1 is not in M; in this case the ideal is proper.

A sufficient condition for two elements p and ¢ in a Boolean algebra to
have the same measure is that the sum p + ¢ be in the ideal of elements of
measure zero. Indeed, if p+¢ is in that ideal, then p(p+q) = 0, by definition.
The differences p — ¢ and ¢ — p are both below p + ¢, so

n(p—q) = plg—p) =0.
The subtraction property implies that

pp) =pulp—q)+ppAg) =0+ulpAq) =ppAqg),
and, similarly, that

1(q) = p(g Ap).
Consequently, u(p) = u(q), as desired.

A measure p is normalized if p(1) = 1. (Again, the occurrence of 1
on the left side of the equation denotes the unit of the Boolean algebra A,
while the occurrence on the right side denotes the real number.) Every non-
zero measure on a Boolean algebra can be normalized as follows. The value



292 Introduction to Boolean Algebras

(1) = t is not zero, since the measure is non-zero; define a real-valued
function v on A by

v(p) = (1/t) - u(p)
for each p in A. It is a simple matter to check that v is a normalized measure
on A. The original measure i can of course be regained from v by writing

u(p) =t-v(p)

for each p. For most purposes, then, it suffices to consider normalized mea-
sures.

A measure p is positive if 0 is the only element at which u takes the
value 0. It takes a bit more work to turn a non-zero measure into a positive
measure: one must identify two elements that differ (symmetrically) by an
element of measure zero. From the measure-theoretic point of view, two
such elements have the same properties, so there is no harm in making the
identification. The formal way of doing this is to pass to the quotient algebra
modulo the ideal of elements of measure zero.

Lemma 1. Let v be a normalized measure on a Boolean o-algebra B, and
let M be the o-ideal of elements of measure zero. If A= B/M and if f is the
projection of B onto A, then there exists a unique measure u on A such that

n(f(q) =v(q)

for all q in B; the measure v is normalized and positive.

Proof. Given an element p in A, find ¢ in B with f(q) = p and write

u(p) = v(q).

The definition of p is unambiguous; it does not depend on the choice of ¢.
Indeed, if f(q1) = f(g2), then

fla1+q2) = f(q1) + flq2) =0,

so that g1 + ¢2 is in M, and therefore v(q1) = v(g2).

The quotient A is a o-algebra, and the projection f from B to A is a
o-homomorphism, by Theorem 27 (p. 270). To prove that u is countably
additive, consider a disjoint sequence {p,} in A, say with supremum p, and
let {g,} be a sequence in B such that f(g,) = p,. If ¢ is the supremum of {q, }
in B, then f(q) = p, because f is a o-homomorphism. The sequence {g,}
may not be disjoint, but it can be disjointed. More precisely, there exists a
disjoint sequence {ry,} with f(r,) = pp, obtained as follows:
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1L = q1,

2 =42 —q1,

r3=q3— (@1 V q2),
ra=qs— (@1 VqVags),

The sequence so defined is disjoint, and has the same supremum as {g,},
namely ¢, by Exercise 8.23. A routine computation using the homomorphism
properties of f shows that

frn) =g — (@ V- Van-1)) = flan) = (f(@) V-V f(gn-1))
=pn—(P1V - Vpp_1)
The elements p1,p2, ..., pr_1 are disjoint from p,, and hence so is their join.

Consequently, f(r,) = p,. The countable additivity of u is now an easy
consequence of the corresponding property of v:

p(p) = n(f(@) = v(@) =D vlra) = u(f(rn) = 1(pn)-
The second and fourth equalities use the definition of u, while the third uses
the countable additivity of v.

It is obvious that u is normalized: f(1) = 1, and therefore

u(1) = (1) = 1.
To prove that u is positive, suppose u(p) = 0 for some p in A. Let ¢ be an
element of B such that f(q) = p. Then v(q) = 0, by the definition of u, so ¢

is in the kernel M of f. It follows that p = q/M is the zero element of A, as
desired.

Lemma 1 says that under certain conditions measures can be transferred
to quotient algebras. The reverse always works; a measure on a quotient can
always be lifted to its numerator.

Lemma 2. Let f be a Boolean o-epimorphism from a o-algebra B to a o-
algebra A, and let p be a normalized measure on A. If

v(q) = n(f(q))

for every q in B, then v is a normalized measure on B. The kernel of f is
included in the set of all those elements q of B for which v(q) = 0; the kernel
coincides with that set if and only if the measure p is positive.



294 Introduction to Boolean Algebras

Proof. Obviously, v is a non-negative real-valued function. To check that
it is countably additive, and therefore a measure on B, consider an arbi-
trary disjoint sequence {g,} of elements in B, say with supremum ¢g. The
family {f(gn)} is disjoint and has supremum f(q) in A, because f is a o-
homomorphism. The definition of v and the countable additivity of p imply
that
v(g) = n(f(@) =Y nlfan) = _ v(an),
n n

as desired. Finally, v is normalized because p is normalized:

If ¢ is in the kernel of f, then v(q) = 0, since
v(q) = u(f(q)) = n(0) = 0.

Assume that p is a positive measure. If v(q) = 0, then ¢ is in the kernel of f,
since the equations

0=v(q) = n(f(q9)
and the positivity of p imply that f(¢) = 0. The kernel of f therefore
coincides with the set of elements in B of measure zero (under v). On the
other hand, if p is not positive, then there exists a non-zero element p in A
such that p(p) = 0. Let g be an element in B such that f(¢) = p. Then ¢ is
clearly not in the kernel of f, but

v(q) = u(f(q)) = p(p) = 0.

This shows that the kernel of f does not coincide with the set of elements
in B of measure zero in this case.

It is sometimes useful to consider a measure as an intrinsic part of the
Boolean algebra it is defined on. The appropriate definition is that of a
measure algebra, defined as a Boolean o-algebra A together with a positive,
normalized measure p on A. If A is not required to be a g-algebra, but just
a Boolean algebra, and if, correspondingly, u is required to be only finitely
additive, we may speak of a finitely additive measure algebra.

The theory of measure algebras has several points of contact, in both form
and content, with the topological and algebraic results of the preceding two
sections. Countability, for instance, enters through the essential countability
properties of real numbers, as follows.
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Lemma 3. FEvery finitely additive measure algebra satisfies the countable
chain condition.

Proof. Consider a disjoint set E of non-zero elements in a Boolean algebra
with a finitely additive measure p. Define E,, to be the set of elements in £
of measure at least 1/n. The union of the sequence {E,,} is E, because every
element p in F is non-zero, and therefore has positive measure; if n is any
positive integer such that 1/n < u(p), then p is in E,. The set E, has at
most n elements. In fact, the assumption that pi,p2,...,pny1 are distinct
elements in F),, leads to the contradictory conclusion that

L=pu(1) > pu(p1Vpa V-V pni1)
= u(p1) + p(p2) + -+ pPnt1) = (n+1)/n > 1,

because the elements of F,, are disjoint, and g is finitely additive. The
argument just given shows that F is a countable union of finite sets, so it
must be countable.

Corollary 1. Every measure algebra is complete.

Proof. Apply the preceding lemma and Corollary 30.1.

The reduced Borel algebra (Borel sets modulo meager Borel sets) and the
reduced measure algebra (Borel sets modulo Borel sets of measure zero) of the
unit interval have much in common. Both algebras are obtained by reducing
an incomplete o-field modulo a o-ideal; both algebras satisfy the countable
chain condition and therefore (Corollary 30.1) both algebras are complete;
and, incidentally, both algebras are atomless. (The proof of the last asser-
tion is a trivial consequence of Theorem 29 (p. 277) for the reduced Borel
algebra, since the algebra of regular open sets of the unit interval is atomless;
for the reduced measure algebra it requires an elementary measure-theoretic
argument.) No property of Boolean algebras that we have encountered so
far is sharp enough to tell these two algebras apart; for all we know they
are isomorphic. We conclude this chapter by showing that they are not: the
reduced measure algebra has a non-zero measure, whereas the reduced Borel
algebra does not. (This theorem is due to Birkhoff and Ulam; see [6].) It
should be mentioned in passing that Borel sets modulo Borel sets of mea-
sure zero and Lebesgue measurable sets modulo Lebesgue measurable sets of
measure zero are the same. This depends on the fact that every Lebesgue
measurable set differs from some Borel set in a set of measure zero only.



296 Introduction to Boolean Algebras

Lemma 4. FEvery measure on the reduced Borel algebra of the closed unit
interval is identically zero.

Proof. Let B be the o-field of Borel sets in [0, 1], and let M be the o-ideal
of meager sets in B. Write A = B/M, and let f be the projection of B
onto A. If there is a non-zero measure p on A, then we may assume, with no
loss of generality, that p is normalized. An application of Lemma 2 yields a
normalized measure v on B that vanishes on every meager Borel set.

We now show that there must be open intervals in B of arbitrarily small
measure that contain any given rational number ¢ (in [0,1]). To see this,
construct an infinite descending sequence P, D P» D P3 D --- of open
intervals containing ¢ such that the intersection of the intervals is {t}; for
instance, P,11 can be chosen so that its length is half that of P,. Write

Qn:Pn_Pn—l—l and Q(]:mpn:{t}
n
The sets Qo, Q1,Q2,... are mutually disjoint and their union is P;. (See
Exercise 8.27 for an abstract version of this construction.) The countable
additivity of v implies

(o]
v(P) = v(Qn).
n=0
In particular, the series ) v(Q,) converges; so for any real number € > 0,
there must be a positive integer k such that

oo

> (@) <e

n=k

The set Qo is nowhere dense (it contains only ¢), and hence it belongs to the
ideal M. It is therefore mapped by the projection f to the zero element of A.
The definition of v implies that

v(Qo) = u(f(Qo)) = p(0) = 0.

The sequence of the sets Qo, Qr, Qr+1, Qr+2,... is disjoint, and its union
is Py, by Exercise 8.27. Invoke countable additivity again to conclude that

v(Pe) =v(Qo)+ Y _v(Qn) =0+ v(Qn) <e

The set P is thus an open interval in B that contains ¢ and that has measure
less than e.
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Enumerate the rational numbers of the unit interval in an infinite se-
quence {t,}. Given a positive real number ¢, choose, for each positive inte-
ger n, an open interval U,, containing ¢, such that

v(Up) < €/2";

the intervals exist by the observations of the preceding paragraph. The union
U=Jun
n

is an open set that contains all of the rational numbers. Its measure is less
than e, since

v(U) <D v(Un) <D e/2" =k,
n=1 n=1

by countable subadditivity. The complement of the open set U is a closed set
that is nowhere dense. Indeed, every non-empty open set contains a rational
number, and therefore has a non-empty intersection with U. Consequently,
no non-empty open set can be included in U’, so that the interior of U’ is
empty, as claimed.

It has been shown that for each € > 0, there is an open set in B of measure
less than e with a nowhere dense complement. For each positive integer n,
let T;, be such a set of measure less than 1/n. Write

T=(T, and S=T'=[]JT,.

The sets S and T are both Borel. The measure of 1" is zero, since
v(T) <v(T,) <1/n

for every positive integer n. The set S, being a countable union of nowhere
dense sets, is meager and hence an element of the ideal M. It is therefore
mapped by the projection f to the zero element of A, so that

v(S) = u(f(S)) = n(0) = 0.

In other words, the unit interval is the disjoint union of two Borel sets, both
of measure zero. This contradicts the fact that the measure v is normalized:
and let M be the o-ideal of meager sets

([0,1]) = (SUT) = () + (T) =0+ 0 =0 # 1.
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Exercises

1. Prove that a real-valued function p on a Boolean algebra is finitely
additive if and only if

n(p VvV q) = p(p) + u(q)

whenever p and ¢ are disjoint elements of the algebra.

2. Suppose pu is a measure on a Boolean algebra A. Show that for every
positive real number ¢, the function v defined on A by

v(p) =t u(p)
is also a measure on A.

3. Formulate and prove the analogues of Lemmas 1 and 2 for finitely
additive measures.

4. Suppose p is a finitely additive measure on a Boolean algebra A. Prove
that p(p’) = (1) — p(p).

5. Suppose 4 is a measure on a Boolean algebra A. Prove that if {p,} is
an increasing sequence of elements with a supremum p, then

lim i(pn) = p(p)-
n—oo
6. Formulate and prove a dual to Exercise 5.

7. Suppose p is a finitely additive measure on a Boolean algebra A. Prove
that for all elements p, ¢, and 7 in A,

wlg+r)=p(lpVae) +@Vr)+ul(pAg) +(AT)).

(The first, second, and fourth occurrences of the symbol + denote
Boolean addition, while the third denotes addition of real numbers.)

8. (Harder.) Suppose A is a measure algebra with measure p. Define a
real-valued function d of two arguments on A by

d(p,q) = p(p + q).

Prove that d is a metric on A, and that A is complete as a metric
space. (This theorem goes back to Nikodym [48]. A metric space is
said to be complete if every Cauchy sequence converges. A sequence of
points {p,} in a metric space is Cauchy if for every € > 0, there is a
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10.

positive integer ng such that d(py,, pn) < € for m,n > ng. The sequence
is said to converge if there is a point p in the space with the property
that for every e > 0, there is a positive integer ng such that d(p, p,) < €
for n > nyg.)

. Is the product of two measure algebras a measure algebra?

(Harder.) Suppose that {A4;} is a family of non-degenerate Boolean
algebras such that for each ¢, there exists a positive normalized measure
on A;. Under what conditions does it follow that there exists a positive
normalized measure on [[, 4;7



Chapter 32

Boolean Spaces

There is a topological formulation of the Stone representation theorem (The-
orem 17, p. 189) that establishes a fundamental connection between the class
of Boolean algebras and a rather special class of topological spaces. The
purpose of this chapter is to describe those spaces.

A Boolean space is a totally disconnected compact Hausdorff space. There
are several possible definitions of total disconnectedness, but, as it turns out,
they are all equivalent for compact Hausdorff spaces. The most convenient
definition for our algebraic purposes is the one that demands that the clopen
sets constitute a base. Explicitly: a Boolean space is a compact Hausdorff
space with the property that every open set is the union of those simultane-
ously closed and open sets that it happens to include.

It is easy to see that the clopen subsets of a Boolean space X separate
points. Indeed, for distinct points z and y in X, there must be an open
set U that contains x but not y, because X is Hausdorff. The clopen sets
form a base, so there is a clopen set P that contains z and is included in U.
The set P and its complement are disjoint clopen sets that contain z and y
respectively.

For Boolean spaces, as for every topological space, it is true that the class
of all clopen sets is a field. The field of all clopen sets in a Boolean space X
is called the dual algebra of X.

The simplest Boolean spaces are the finite discrete spaces. Recall that
a space is discrete if every subset is open. Every subset of a discrete space
is automatically closed (since its complement is open), and therefore clopen.
The separation property holds trivially: two points x and y are separated by
the disjoint open sets {z} and {y}. When the space is finite, compactness
S. Givant, P. Halmos, Introduction to Boolean Algebras, 300
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also holds trivially, because there are only finitely many open sets. Since each
subset of a finite discrete space X is clopen, the dual algebra of the space
is the field of all subsets of X. Every finite Boolean algebra is isomorphic
to the field of all subsets of some (necessarily finite) set, namely the set of
its atoms (see Theorem 6, p. 119, or Corollary 15.1), so every finite Boolean
algebra is isomorphic to the dual algebra of some finite Boolean space.

A less trivial collection of examples consists of the one-point compacti-
fications of infinite discrete spaces. Explicitly, suppose a set X with a dis-
tinguished point x( is topologized as follows: a subset of X that does not
contain the point {z¢} is always open, and a subset that contains xg is open
if and only if it is cofinite. It is easy to verify that the space X so defined
is Boolean. For instance, a subset of X is clopen if and only if it is either a
finite subset (of X) that does not contain {zg} or else a cofinite subset that
contains xg; indeed, a subset and its complement are both open just in case
one of them (the one that contains x() is cofinite. The clopen sets form a
base for the topology because every open set that contains xg is clopen, while
every open set that does not contain x( is the union of its finite subsets. The
singletons of points in X — {xg} are clopen, so it is easy to verify the sepa-
ration property: two points x and y different from x( are separated by the
clopen sets {z} and {y}, while x and x( are separated by the clopen sets {z}
and X — {z}. An open cover of X must contain a cofinite set P (namely,
any open set in the cover that contains x); the remaining (finite number
of) points in X — P can be covered by finitely many of the open sets in the
cover. The dual algebra of X — the field of clopen sets — is isomorphic to
the finite—cofinite algebra of X — {x¢}. In fact, the mapping f defined on the
field of clopen sets by

P if P is finite,
o=

P —{x0} if P is cofinite,

is the desired isomorphism.

The set 2 is a Boolean algebra; from now on it will be convenient to
construe it as a topological space as well, endowed with the discrete topology.
For an arbitrary set I, the set 2! of all functions from I into 2 (equivalently,
the Cartesian product of copies of 2, one for each element of I) is a topological
space under the product topology (due to Tychonoff [78], [79]), which we now
define. Denote the value of a function z in 2! at an element i of I by ;. The
product topology can be described succinctly by saying that the class of sets

(1) {ze2l z;=0) and {ze2l ax =1},
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where 7 ranges over I, constitutes a subbase for the topology; this means
that the collection of finite intersections of sets in this class is a base for the
topology. In other words, every open set is the union of a family of finite
intersections of subbase sets. In the sequel, the spaces 2! endowed with the
product topology will be called Cantor spaces.

The sets in (1) are complements of one another, so they are also closed
and therefore clopen. Finite intersections of sets of type (1) are clopen (finite
intersections of clopen sets are always clopen); we shall call them basic clopen
sets because they constitute a base for the product topology. The open sets
in the product topology are the subsets of 2! that can be written as unions
of basic clopen sets.

level 0

level 1

level 2

level 3

Basic clopen sets are easy to describe directly: they have the form
Us={ze2l:az; =9 foriGS}:ﬂ{xGQI:xi:cSi},
€S

where S ranges over the finite subsets of I, and J ranges over the functions
from S into 2. For a concrete example, take I to be the set of non-negative
integers, take S = {0,1,2}, and take ¢ to be the function that maps the
integers 0 and 2 to Boolean unit 1, and the integer 1 to the Boolean zero 0.
The corresponding clopen set is

ng{xGQI:xozl, and 1 =0, and zg = 1}.
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It can be visualized by picturing each function z in 2! as an infinite branch in
an infinite binary tree. At the ith level, the branch forks to the left if x; = 0,
and it forks to the right if x; = 1. The clopen set Us consists of all functions
in 27 that begin by forking to the right, then fork to the left, and then fork
to the right again (see the adjoining diagram).

Theorem 30. Fvery Cantor space is a Boolean space.

Proof. Parts of the theorem are quite easy to prove. The clopen sets form
a base for the product topology of 2!, by definition. The space is Hausdorff
because distinct points y and z in 27 differ at some argument i in I, and are
therefore separated by the (disjoint) clopen sets

Up={zxec2! 2, =0} and Uy ={zxe2lz;=1}.

The main task is to prove that the space is compact. Consider a fam-
ily {Fj} of closed sets with the finite intersection property, that is to say,
with the property that every finite subfamily has a non-empty intersection.
It is to be shown that the intersection of the entire family is non-empty (see
Chapter 29). Each set F} is the complement of an open set, and therefore
must be the intersection of a class K; of clopen sets (since every open set is
the union of clopen sets). The class

K =|JE,
j

of all the clopen sets that are used to form the sets F} has the finite in-
tersection property, because the family {F}} has this property. Extend K
to an ultrafilter N in the Boolean algebra of all clopen subsets of 2/ (Exer-
cise 20.12).

Consider an element 4 in I, and let ¢; be the ith projection from 27 to 2;
thus, ¢;(x) = x; for each x in 2/. The image

$:(U) = {z; : x € U}

of an arbitrary clopen set U in N is a subset of 2, and is therefore automat-
ically clopen in the discrete topology of 2. The class of images

{6:i(U): U € N}

has the finite intersection property. To see this, let Uj,...,U, be a finite
sequence of sets in V. The intersection of this sequence is an element of N
(N is a filter), and is therefore non-empty (N is proper); consequently, the
image of the intersection under ¢; cannot empty. Since
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@ #oi(Urn---NUp) Cos(Ur)N--- N i (Uy),

it follows that the sequence ¢;(Uy),...,®;(U,) of images has a non-empty
intersection, as claimed. Invoke the compactness of the discrete space 2 to
conclude that the intersection of the entire class of images is non-empty.

The observations of the preceding paragraph show that for each 7 in I, it
is possible to choose an element y; in the intersection

) (V).

UeN

These choices determine a function y in 2. We proceed to show that y is in
every set of N. For each index 7, the basic clopen set

V;:{a:GQI:JJi:yi}

has a non-empty intersection with every set in N, and therefore must itself
belong to N. In more detail, suppose U is in N. Then y; belongs to ¢;(U),
by the choice of y;. This means that there is an element z in U for which

¢i(2) = 2 = yi.

The element z is also V;, by the definition of V;, so the intersection of V;
with U contains z and is therefore not empty. Since N is closed under
finite intersections, it follows that any finite family of sets from the class
N U{V;} has a non-empty intersection; in other words, N U {V;} has the
finite intersection property. The maximality of the filter N now implies
that V; belongs to N.

Consider next an arbitrary basic clopen set Us containing y, where § is
some function from a finite subset S of I into 2. The assumption that y is
in Us means that §; = y; for each i in S. The sets V; are all in N, so the
finite intersections of these sets are also in N. Since

Us= (Vi
€S

it follows that Us is in V. Conclusion: every basic clopen set containing y
is in N. This means, by the finite intersection property, that every basic
clopen set containing y has a non-empty intersection with every set in V.
Put somewhat differently, any given set in /N has a non-empty intersection
with every basic clopen set that contains y, and therefore with every open set
that contains y. In other words, y belongs to the closure of every set in V.
But the sets in N are all closed (and in fact clopen), so y belongs to every
set in IV, as claimed.
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Every set I} in the given family of closed sets is an intersection of sets
in N, so y must belong to each F}, and therefore it must belong to the
intersection of the family {F}}. It follows that this intersection is non-empty,
as desired. The proof that 2! is compact is complete.

The preceding theorem seems to have been first observed by Stone [67].
The main assertion of the theorem — that 2 is compact — is a special case
of the much more general theorem (due to Tychonoff) that the product of
an arbitrary family of compact spaces is compact. The proof given above is
a special case of Bourbaki’s proof of Tychonoff’s theorem.

The dual algebra of a Cantor space is not difficult to describe: it is the
class A of all possible finite unions of basic clopen sets. For the proof, recall
that a finite union of basic clopen sets is clopen (the clopen sets form a field).
In particular, every set in A is clopen. To prove the converse, consider an
arbitrary clopen set U. As an open set, U is the union of a family {U;}
of basic clopen sets, by the definition of the product topology. As a closed
subset of a compact space, U is compact (see Chapter 29), and is therefore
covered by some finite subfamily of {U;}. It follows that U is the union of
finitely many basic clopen sets, so it belongs to A.

A field A of clopen sets in a topological space is called a separating field if
any two points in the space can be separated by sets in A. This is equivalent
to saying that for every pair of distinct points x and y in the space, there
exists a set P in A such that x isin P and y is in P’. The following somewhat
technical result is useful in the study of Boolean spaces.

Lemma 1. If X is a compact space and if A is a separating field of clopen
subsets of X, then X is a Boolean space and A is the field of all clopen subsets
of X.

Proof. The fact that A separates points clearly implies that X is Hausdorff. It
also implies that A separates points and closed sets. This involves a standard
compactness argument. Suppose, indeed, that F' is a closed set and x is a
point not in F. Notice that F', as a closed subset of a compact space, is
compact. Separate each point y of F' from z by a suitable set P, in A that
contains y but not z. The family { P, },c is an open cover of F.. Compactness
yields a finite cover of F' by sets Py, ..., P, in A, none of which contains ;
their union is a set in A that separates F' from z. (The union belongs to A
because A is a field.)

The result of the preceding paragraph implies that A is a base for X, and
this already implies that X is Bo