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Preface

The theory of Boolean algebras was created in 1847 by the English mathe-
matician George Boole. He conceived it as a calculus (or arithmetic) suitable
for a mathematical analysis of logic. The form of his calculus was rather
different from the modern version, which came into being during the pe-
riod 1864–1895 through the contributions of William Stanley Jevons, Augus-
tus De Morgan, Charles Sanders Peirce, and Ernst Schröder. A foundation
of the calculus as an abstract algebraic discipline, axiomatized by a set of
equations, and admitting many different interpretations, was carried out by
Edward Huntington in 1904.

Only with the work of Marshall Stone and Alfred Tarski in the 1930s,
however, did Boolean algebra free itself completely from the bonds of logic
and become a modern mathematical discipline, with deep theorems and im-
portant connections to several other branches of mathematics, including alge-
bra, analysis, logic, measure theory, probability and statistics, set theory, and
topology. For instance, in logic, beyond its close connection to propositional
logic, Boolean algebra has found applications in such diverse areas as the
proof of the completeness theorem for first-order logic, the proof of the �Loś
conjecture for countable first-order theories categorical in power, and proofs
of the independence of the axiom of choice and the continuum hypothesis
in set theory. In analysis, Stone’s discoveries of the Stone–Čech compacti-
fication and the Stone–Weierstrass approximation theorem were intimately
connected to his study of Boolean algebras. Countably complete Boolean
algebras (also called σ-algebras) and countably complete fields of sets (also
called σ-fields) play a key role in the foundations of measure theory. Out-
side the realm of mathematics, Boolean algebra has found applications in
such diverse areas as anthropology, biology, chemistry, ecology, economics,
sociology, and especially computer science and philosophy. For example, in
computer science, Boolean algebra is used in electronic circuit design (gating
networks), programming languages, databases, and complexity theory.

ix



x Introduction to Boolean Algebras

Most books on Boolean algebra fall into one of two categories. There
are elementary texts that emphasize the arithmetic aspects of the subject
(in particular, the laws that can be expressed and proved in the theory),
and that often explore applications to propositional logic, philosophy, and
electronic circuit design. There are also advanced treatises that present the
deeper mathematical aspects of the theory at a level appropriate for gradu-
ate students and professional mathematicians (in terms of the mathematical
background and level of sophistication required for understanding the pre-
sentation).

This book, a substantially revised version of the second author’s Lectures
on Boolean Algebras, tries to steer a middle course. It is aimed at undergrad-
uates who have studied, say, two years of college-level mathematics, and have
gained enough mathematical maturity to be able to read and write proofs. It
does not assume the usual background in algebra, set theory, and topology
that is required by more advanced texts. It does attempt to guide readers to
some of the deeper aspects of the subject, and in particular to some of the im-
portant interconnections with topology. Those parts of algebra and topology
that are needed to understand the presentation are developed within the text
itself. There is a separate appendix that covers the basic notions, notations,
and theorems from set theory that are occasionally needed.

The first part of the book, through Chapter 28, emphasizes the arithmeti-
cal and algebraic aspects of Boolean algebra. It requires no topology, and
little set theory beyond what is learned in the first two years of college-level
mathematics, with two important exceptions. First, two of the proofs use
a form of mathematical induction that extends beyond the natural numbers
to what are sometimes called “transfinite ordinal numbers”. Transfinite or-
dinals and transfinite induction are discussed in Appendix A, but the key
ideas of the two proofs can already be grasped in the context of the natural
numbers and standard mathematical induction. Second, Chapter 10 presents
an important example of a Boolean algebra that is based on topological no-
tions. These notions are discussed in Chapter 9. The example itself, and the
requisite topology, are not needed to understand the remaining chapters of
the first part of the book. (Some of the more advanced exercises in the chap-
ters do require an understanding of this material, but these exercises may be
ignored by readers who wish to skip Chapters 9 and 10.) The second part
of the book, in particular Chapters 29, 34–41, and 43, emphasizes the inter-
connections between Boolean algebra and topology, and consequently does
make extensive use of topological ideas and results. The necessary topological
background is provided in Chapters 9, 29, 32, and 33.
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Some of the important results discussed in the first part of the book are
the normal form theorem (which gives a description of the Boolean subalgebra
generated by a set of elements, Chapter 11), and its analogue for Boolean ide-
als (Chapter 18); the homomorphism extension theorem (Chapter 13) and its
application to the proofs of the isomorphism theorem for countable, atomless
Boolean algebras (Chapter 16) and the existence theorem for free algebras
(Chapter 28); the representation theorem for atomic Boolean algebras (every
atomic Boolean algebra can be mapped isomorphically to a field of sets in a
way that preserves all existing suprema as unions, Chapter 14); the maximal
ideal theorem (every proper ideal can be extended to a maximal ideal, Chap-
ter 20), and its application to the celebrated representation theorem (every
Boolean algebra is isomorphic to a field of sets, Chapter 22); the existence
and uniqueness theorems for completions (every Boolean algebra has a mini-
mal complete extension that is unique up to isomorphisms, Chapter 25); the
isomorphism of factors theorem (two countably complete Boolean algebras
that are factors of one another must be isomorphic) and the counterexamples
demonstrating that the theorem cannot be extended to all Boolean algebras,
or even to all countable Boolean algebras (Chapters 27 and 45).

Many of the highlights of the second part of the book center on the
fundamental duality theorems for Boolean algebras and Boolean spaces: to
every Boolean algebra there corresponds a Boolean space that is uniquely
determined up to homeomorphism, and, conversely, to every Boolean space
there corresponds a Boolean algebra that is uniquely determined up to iso-
morphism (Chapter 34). These theorems imply that every notion or theorem
concerning Boolean algebras has a “dual” topological counterpart concerning
Boolean spaces, and conversely. For instance, ideals correspond to open sets
(Chapter 35), homomorphisms to continuous functions (Chapter 36), quo-
tient algebras to closed subspaces and subalgebras to Boolean quotient spaces
(Chapter 37), direct products of Boolean algebras to Stone–Čech compact-
ifications of unions of Boolean spaces (Chapter 43), and complete Boolean
algebras to extremally disconnected spaces (Chapter 38). A related result,
discussed in Chapter 40, is the representation theorem for σ-algebras (ev-
ery σ-algebra is isomorphic to a σ-field of sets modulo a σ-ideal).

It is not necessary to read all the chapters in the order in which they
appear, since there is a fair degree of independence among them. The dia-
gram at the end of the preface shows the main chapter dependencies. Three
examples may serve to demonstrate how the diagram is to be understood.
First, Chapter 28 depends on Chapters 1–8 and 11–13. Second, Chapter 24
depends on Chapters 1–8, 11–12, and 17–19. Finally, Chapter 31 depends
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on Chapters 1–12, 17–18, and 29–30. These remarks do not apply to the
exercises, some of which depend on earlier chapters for which no dependency
is indicated in the diagram. Also, minor references to earlier chapters are
not indicated in the diagram. For instance, an application in Chapter 36 of
the principal result of that chapter depends on the definition of a free alge-
bra (given in Chapter 28), but not on any of the results about free algebras.
Similarly, a corollary at the end of Chapter 21 depends on the notion of a
maximal ideal and the easily comprehended statement of the maximal ideal
theorem (given in Chapter 20).

A large number of exercises of varying levels of difficulty have been in-
cluded in the text. There are routine problems that help readers understand
the basic definitions and theorems; intermediate problems that extend or en-
rich material developed in the text; and difficult problems that often present
important results not covered in the text. The harder exercises are labeled
as such, and hints for their solutions are given in Appendix B. Some of the
exercises are formulated, not as assertions, but as questions that readers are
invited to ponder.

There is an instructor’s manual that contains complete solutions to the
exercises. It may serve as a guide to instructors, and in particular it may help
them select problems at an appropriate level of difficulty for their students.
Instructors may also wish to assign the solutions of some of the more difficult
problems to individual students or groups of students for independent study
or as class projects.

Historical remarks are sprinkled throughout the text. We are indebted to
Don Monk for his help in tracking down the authorship of some of the main
results. Regrettably, it has not been feasible to determine the origin of every
theorem.

The book can serve as a basis for a variety of courses. A one-semester
course that focuses on the algebraic material might cover some subset of
Chapters 1–28, for instance Chapters 1–8, 11–14, and 17–27. A one-semester
course that includes some of the interconnections with topology might cover
Chapters 1–8, 11–12, 14, 17–22, parts of 9 and 29, and 32–36. Most of the
text could be covered in a one-year course.

A quick word about terminology. In this book, the phrase “just in case”
is used as a variant of the phrase “in this case, and only in this case”. In
other words, it is a synonym for “if and only if ”.

This revision of Halmos’s book was planned and initially executed by both
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authors. Due to declining health, however, Halmos was not able to review
the later versions of the manuscript. He died on October 2, 2006. Whatever
imperfections remain in the text are my sole responsibility.

Steven Givant
San Francisco, California
August, 2007
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Chapter 1

Boolean Rings

A ring is an abstract version of arithmetic, the kind of thing you studied in
school. The prototype is the ring of integers. It consists of a universe — the
set of integers — and three operations on the universe: the binary operations
of addition and multiplication, and the unary operation of negation (forming
negatives). There are also two distinguished integers, zero and one. The
ring of integers satisfies a number of basic laws that are familiar from school
mathematics: the associative laws for addition and multiplication,

p + (q + r) = (p + q) + r,(1)
p · (q · r) = (p · q) · r,(2)

the commutative laws for addition and multiplication,

p + q = q + p,(3)
p · q = q · p,(4)

the identity laws for addition and multiplication,

p + 0 = p,(5)
p · 1 = p,(6)

the inverse law for addition,

p + (−p) = 0,(7)

and the distributive laws for multiplication over addition,

p · (q + r) = p · q + p · r,(8)

S. Givant, P. Halmos, Introduction to Boolean Algebras, 1
Undergraduate Texts in Mathematics, DOI: 10.1007/978-0-387-68436-9 1,
c© Springer Science+Business Media, LLC 2009



2 Introduction to Boolean Algebras

(q + r) · p = q · p + r · p.(9)

The difference between the ring of integers and an arbitrary ring is that,
in the latter, the universe may be an arbitrary non-empty set of elements,
not just a set of numbers, and the operations take their arguments and values
from this set. The associative, commutative, identity, and inverse laws for
addition, the associative law for multiplication, and the distributive laws
are required to hold: they are the ring axioms. The commutative law for
multiplication is not required to hold in an arbitrary ring; if it does, the ring
is said to be commutative. Also, a ring is not always required to have a unit,
an element 1 satisfying (6); if it does, it is called a ring with unit.

There are other natural examples of rings besides the integers. The most
trivial is the ring with just one element in its universe: zero. It is called the
degenerate ring. The simplest non-degenerate ring with unit has just two
elements, zero and one. The operations of addition and multiplication are
described by the arithmetic tables

+ 0 1
0 0 1
1 1 0

and
· 0 1
0 0 0
1 0 1

.

An examination of the tables shows that the two-element ring has several
special properties. First of all, every element is its own additive inverse:

(10) p + p = 0.

Therefore, the operation of negation is superfluous: every element is its own
negative. Rings satisfying condition (10) are said to have characteristic 2.
Second, every element is its own square:

(11) p · p = p.

Elements with this property are called idempotent. When every element is
idempotent, the ring itself is said to be idempotent.

A Boolean ring is an idempotent ring with unit. (Warning: some authors
define a Boolean ring to be just an idempotent ring, which may or may not
have a unit. They call the concept we have defined a “Boolean ring with
unit”.) The two-element ring is the simplest non-degenerate example of a
Boolean ring. It will be denoted throughout by the same symbol as the ordi-
nary integer 2. The notation is not commonly used, but it is very convenient.
It is in accordance with von Neumann’s definition of the ordinal numbers (un-
der which the ordinal number 2 coincides with the set {0, 1}), with sound
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general principles of notational economy, and (in logical expressions such as
“two-valued”) with idiomatic linguistic usage.

The condition of idempotence in the definition of a Boolean ring has quite
a strong influence on the structure of such rings. Two of its most surprising
consequences are that (a) a Boolean ring always has characteristic 2 and (b)
a Boolean ring is always commutative. For the proof, compute (p + q)2, and
use idempotence to conclude that

(12) 0 = q · p + p · q.

In more detail,

p + q = (p + q)2 = p2 + q · p + p · q + q2 = p + q · p + p · q + q,

by the distributive and idempotent laws. Add the inverse of p to the left
sides of the first and last terms, add the inverse of q to the right sides, and
use the laws governing addition, in particular the inverse and identity laws,
to arrive at (12).

This result implies the two assertions, one after another, as follows.
Put p = q in (12) and use idempotence to get (a):

0 = p2 + p2 = p + p.

Assertion (a) implies that every element is equal to its own negative, so

(13) p · q = −(p · q).

Add the left and right sides of (13) to the left and right sides of (12) respec-
tively, and apply the inverse and identity laws for addition to obtain (b):

p · q = q · p + p · q + −(p · q) = q · p + 0 = q · p.

Since, as we now know, negation in Boolean rings is the identity operation,
it is never necessary to use the minus sign for additive inverses, and we shall
never again do so. (A little later we shall meet another natural use for it.)
Only a slight modification in the set of axioms is needed: the identity (7)
should be replaced by (10). From now on, the official axioms for a Boolean
ring are (1)–(3), (5), (6), and (8)–(11).

Boolean rings are the only rings that will be considered in this book, so it
is worth looking at another example. The universe of this example consists
of ordered pairs (p, q) of elements from 2. In other words, it consists of the
four ordered pairs

(0, 0), (0, 1), (1, 0), (1, 1).
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This set will be denoted by 22, in agreement with the notation R
2 that is

used to denote the set of ordered pairs of real numbers. To add or multiply
two pairs in 22, just add or multiply the corresponding coordinates in 2:

(p0, p1) + (q0, q1) = (p0 + q0, p1 + q1)

and

(p0, p1) · (q0, q1) = (p0 · q0, p1 · q1).

These equations make sense: their right sides refer to the elements and op-
erations of 2. The zero and unit of the ring are the pairs (0, 0) and (1, 1).

It is a simple matter to check that the axioms for Boolean rings are true
in 22. In each case, the verification of an axiom reduces to its validity in 2.
For example, here is the verification of the commutative law for addition:

(p0, p1) + (q0, q1) = (p0 + q0, p1 + q1)
= (q0 + p0, q1 + p1) = (q0, q1) + (p0, p1).

The first and last equalities use the definition of addition of ordered pairs,
and the middle equality uses the commutative law for addition in 2.

The preceding example can easily be generalized to each positive inte-
ger n. The universe of the ring is the set 2n of n-termed sequences

(p0, . . . , pn−1)

of elements from 2. The sum and product of two such n-tuples are defined
coordinatewise, just as in the case of ordered pairs:

(p0, . . . , pn−1) + (q0, . . . , qn−1) = (p0 + q0, . . . , pn−1 + qn−1)

and

(p0, . . . , pn−1) · (q0, . . . , qn−1) = (p0 · q0, . . . , pn−1 · qn−1).

The zero and unit are the n-tuples (0, . . . , 0) and (1, . . . , 1). Verifying the
axioms for Boolean rings is no more difficult in this example than it is in the
example 22.

To generalize the example still further, it is helpful to look at the set 2n

another way, namely, as the set of functions with domain {0, . . . , n − 1} and
with values in 2, that is, with possible values 0 and 1. Let X be an arbitrary
set, and 2X the set of all functions from X into 2. The elements of 2X

will be called 2-valued functions on X. The distinguished elements and the
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operations of 2X are defined pointwise. This means that 0 and 1 in 2X are
the constant functions defined, for each x in X, by

0(x) = 0 and 1(x) = 1,

and if p and q are 2-valued functions on X, then the functions p + q and p · q
are defined by

(p + q)(x) = p(x) + q(x) and (p · q)(x) = p(x) · q(x).

Again, these equations make sense; their right sides refer to elements and
operations of 2.

Verifying that 2X is a Boolean ring is conceptually the same as verifying
that 22 is a Boolean ring, but notationally it looks a bit different. Consider,
as an example, the verification of the distributive law (8). In the context
of 2X , the left and right sides of (8) denote functions from X into 2. It must
be shown that these two functions are equal. They obviously have the same
domain X, so it suffices to check that the values of the two functions at each
element x in the domain agree, that is,

(14)
(
p · (q + r)

)
(x) =

(
p · q + p · r

)
(x).

The left and right sides of (14) evaluate to

(15) p(x) · (q(x) + r(x)) and p(x) · q(x) + p(x) · r(x)

respectively, by the definitions of addition and multiplication in 2X . Each of
these terms denotes an element of 2. Since the distributive law holds in 2,
the two terms in (15) are equal. Therefore, equation (14) is true. The other
Boolean ring axioms are verified for 2X in a similar fashion.

For another example of a Boolean ring let A be the set of all idempotent
elements in a commutative (!) ring R with unit, with addition redefined
so that the new sum of p and q in A is p + q − 2pq. The distinguished
elements of A are the same as those of R, and multiplication in A is just the
restriction of multiplication in R. The verification that A becomes a Boolean
ring in this way is an amusing exercise in ring axiomatics. Commutativity
is used repeatedly; it is needed, for instance, to prove that A is closed under
multiplication.

Exercises

1. Verify that 2 satisfies ring axioms (1)–(9).
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2. Verify that 23 satisfies ring axioms (1)–(9).

3. Verify that 2X satisfies ring axioms (1)–(9) for any set X. What ring
do you get when X is the empty set?

4. Essentially, what ring is 2X when X is a set consisting of just one
element? Can you make this statement precise?

5. A group is a non-empty set, together with a binary operation + (on
the set), a unary operation −, and a distinguished element 0, such that
the associative law (1), the identity laws

p + 0 = p and 0 + p = p,

and the inverse laws

p + −p = 0 and − p + p = 0

are all valid. Show that in a group the cancellation laws hold: if

p + q = p + r or q + p = r + p,

then q = r. Conclude that in a group, the inverse element is unique:
if p + q = 0, then q = −p.

6. Prove that in an arbitrary ring,

p · 0 = 0 · p = 0 and p · (−q) = (−p) · q = −(p · q)

for all elements p and q.

7. Let A be the set of all idempotent elements in a commutative ring R
with unit. Define the sum p ⊕ q of two elements p and q in A by

p ⊕ q = p + q − 2pq,

where the right-hand term is computed in R (and pq means p · q). The
distinguished elements of A are the same as those of R, and multipli-
cation in A is the restriction of multiplication in R. Show that A is a
Boolean ring.

8. A Boolean group is a group in which every element has order two (in
other words, the law (10) is valid). Show that every Boolean group is
commutative (that is, the commutative law (3) is valid).
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9. A zero-divisor in a ring is a non-zero element p such that p · q = 0 for
some non-zero element q. Prove that a Boolean ring (with or without a
unit) with more than two elements has zero-divisors. (This observation
is due to Stone [66].)

10. (Harder.) Prove that every Boolean ring without a unit can be ex-
tended to a Boolean ring with a unit. To what extent is this extension
procedure unique? (This result is due to Stone [66].)

11. (Harder.) Does every finite Boolean ring have a unit? (The answer to
this question is due to Stone [66].)

12. Give an example of a Boolean ring that has no unit. Exercise 10 implies
that your example can be extended to a Boolean ring with unit; describe
the elements of that extension.

13. (Harder.) Can every non-degenerate Boolean ring with unit be obtained
by adjoining a unit to a Boolean ring without a unit?

14. (Harder.) Is every Boolean group the additive group of some Boolean
ring?



Chapter 2

Boolean Algebras

Let X be an arbitrary set and let P(X) be the class of all subsets of X
(the power set of X). Three natural set-theoretic operations on P(X) are
the binary operations of union and intersection, and the unary operation of
complementation. The union P ∪Q of two subsets P and Q is, by definition,
the set of elements that are either in P or in Q, the intersection P ∩ Q is
the set of elements that are in both P and Q, and the complement P ′ is
the set of elements (of X) that are not in P . There are also two distin-
guished subsets: the empty set ∅, which has no elements, and the universal
set X. The class P(X), together with the operations of union, intersection,
and complementation, and the distinguished subsets ∅ and X, is called the
Boolean algebra (or field) of all subsets of X, or the power set algebra on X.

The arithmetic of this algebra bears a striking resemblance to the arith-
metic of Boolean rings. Some of the most familiar and useful identities include
the laws for forming the complements of the empty and the universal sets,

(1) ∅
′ = X, X ′ = ∅,

the laws for forming an intersection with the empty set and a union with the
universal set,

(2) P ∩ ∅ = ∅, P ∪ X = X,

the identity laws,

(3) P ∩ X = P, P ∪ ∅ = P,

the complement laws,

(4) P ∩ P ′ = ∅, P ∪ P ′ = X,

S. Givant, P. Halmos, Introduction to Boolean Algebras, 8
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the double complement law,

(5) (P ′ ) ′ = P,

the idempotent law,

(6) P ∩ P = P, P ∪ P = P,

the De Morgan laws,

(7) (P ∩ Q) ′ = P ′ ∪ Q ′, (P ∪ Q) ′ = P ′ ∩ Q ′,

the commutative laws,

(8) P ∩ Q = Q ∩ P, P ∪ Q = Q ∪ P,

the associative laws,

(9) P ∩ (Q ∩ R) = (P ∩ Q) ∩ R, P ∪ (Q ∪ R) = (P ∪ Q) ∪ R,

and the distributive laws,

(10) P ∩ (Q ∪ R) = (P ∩ Q) ∪ (P ∩ R),
P ∪ (Q ∩ R) = (P ∪ Q) ∩ (P ∪ R).

Each of these identities can be verified by an easy set-theoretic argument
based on the definitions of the operations involved. Consider, for example,
the verification of the first De Morgan law. It must be shown that each
element x of X belongs to (P ∩ Q) ′ just in case it belongs to P ′ ∪ Q ′. The
argument goes as follows:

x ∈ (P ∩ Q) ′ if and only if x �∈ P ∩ Q,

if and only if x �∈ P or x �∈ Q,

if and only if x ∈ P ′ or x ∈ Q ′,

if and only if x ∈ P ′ ∪ Q ′.

The first and third equivalences use the definition of complementation, the
second uses the definition of intersection, and the last uses the definition of
union.

While (1)–(10) bear a close resemblance to laws that are true in Boolean
rings, there are important differences. Negation in Boolean rings is the iden-
tity operation, whereas complementation is not. Addition in Boolean rings
is not an idempotent operation, whereas union is. The distributive law for
addition over multiplication fails in Boolean rings, whereas the distributive
law for union over intersections holds.
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Boolean rings are an abstraction of the ring 2. The corresponding ab-
straction of P(X) is called a Boolean algebra. Specifically, a Boolean algebra
is a non-empty set A, together with two binary operations ∧ and ∨ (on A),
a unary operation ′, and two distinguished elements 0 and 1, satisfying the
following axioms, the analogues of identities (1)–(10):

0 ′ = 1, 1 ′ = 0,(11)
p ∧ 0 = 0, p ∨ 1 = 1,(12)
p ∧ 1 = p, p ∨ 0 = p,(13)

p ∧ p ′ = 0, p ∨ p ′ = 1,(14)
(p ′ ) ′ = p,(15)

p ∧ p = p, p ∨ p = p,(16)

(p ∧ q) ′ = p ′ ∨ q ′, (p ∨ q) ′ = p ′ ∧ q ′,(17)
p ∧ q = q ∧ p, p ∨ q = q ∨ p,(18)

p ∧ (q ∧ r) = (p ∧ q) ∧ r, p ∨ (q ∨ r) = (p ∨ q) ∨ r,(19)
p ∧ (q ∨ r) = (p ∧ q) ∨ (p ∧ r), p ∨ (q ∧ r) = (p ∨ q) ∧ (p ∨ r).(20)

This set of axioms is wastefully large, more than strong enough for the
purpose. The problem of selecting small subsets of this set of conditions that
are strong enough to imply them all is one of dull axiomatics. For the sake
of the record: one solution of the problem, essentially due to Huntington [28],
is given by the identity laws (13), the complement laws (14), the commutative
laws (18), and the distributive laws (20). To prove that these four pairs imply
all the other conditions, and, in particular, to prove that they imply the De
Morgan laws (17) and the associative laws (19), involves some non-trivial
trickery.

There are several possible widely adopted names for the operations ∧, ∨,
and ′. We shall call them meet, join, and complement (or complementation),
respectively. The distinguished elements 0 and 1 are called zero and one.
One is also known as the unit.

Equations (1)–(10) imply that the class of all subsets of an arbitrary set X
is an example of a Boolean algebra. When the underlying set X is empty, the
resulting algebra is degenerate in the sense that it has just one element. In
this case, the operations of join, meet, and complementation are all constant,
and 0 = 1. The simplest non-degenerate Boolean algebra is the class of all
subsets of a one-element set. It has just two elements, 0 (the empty set)
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and 1 (the one-element set). The operations of join and meet are described
by the arithmetic tables

∨ 0 1
0 0 1
1 1 1

and
∧ 0 1
0 0 0
1 0 1

,

and complementation is the unary operation that maps 0 to 1, and conversely.
We shall see in a moment that this algebra and the two-element Boolean ring
are interdefinable. For that reason, the same symbol 2 is used to denote both
structures.

Here is a comment on notation, inspired by the associative laws (19). It
is an elementary consequence of those laws that if p1, . . . , pn are elements of a
Boolean algebra, then p1∨· · ·∨pn, makes sense. The point is, of course, that
since such joins are independent of how they are bracketed, it is not necessary
to indicate any bracketing at all. The element p1 ∨ · · · ∨ pn may alternatively
be denoted by

∨n
i=1 pi, or, in case no confusion is possible, simply by

∨
i pi.

If we make simultaneous use of both the commutative and the associative
laws, we can derive a slight but useful generalization of the preceding com-
ment. If E is a non-empty finite subset of a Boolean algebra, then the set E
has a uniquely determined join, independent of any order or bracketing that
may be used in writing it down. (In case E is a singleton, it is natural to
identify that join with the unique element in E.) We shall denote the join
of E by

∨
E.

Both the preceding comments apply to meets as well as to joins. The
corresponding symbols are, of course,

n∧

i=1

pi, or
∧

i

pi, and
∧

E.

The conventions regarding the order of performing different operations
in the absence of any brackets are the following: complements take priority
over meets and joins, while meets take priority over joins. Example: the
expression p ′∨ q∧p should be read as (p ′ )∨ (q∧p). It is convenient to write
successive applications of complement without any bracketing, for instance p′′

instead of (p ′ ) ′.

Exercises

1. Verify that the identities (1)–(10) are true in every Boolean algebra of
all subsets of a set.
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2. (Harder.) Show that the identities in (13), (14), (18), and (20) together
form a set of axioms for the theory of Boolean algebras. In other
words, show that they imply the identities in (11), (12), (15), (16),
(17), and (19). (This result is essentially due to Huntington [30].)

3. Prove directly that the two-element structure 2 defined in the chapter
is a Boolean algebra, by showing that axioms (13), (14), (18), and (20)
are all valid in 2.

4. In analogy with the construction, for each set X, of the Boolean ring 2X

in Chapter 1, define operations of join, meet, and complementation
on 2X , and distinguished constants zero and one, and prove that the
resulting structure is a Boolean algebra.

5. (Harder.) A member of a set of axioms is said to be independent of
the remaining axioms if it is not derivable from them. One technique
for demonstrating the independence of a given axiom is to construct a
model in which that axiom fails while the remaining axioms hold. The
given axiom cannot then be derivable from the remaining ones, since
if it were, it would have to hold in the model as well. The four pairs
of identities (13), (14), (18), and (20) constitute a set of eight axioms
for Boolean algebras.

(a) Show that the distributive law for join over meet in (20) is inde-
pendent of the remaining seven axioms.

(b) Show that the distributive law for meet over join in (20) is inde-
pendent of the remaining seven axioms.

(c) Show that each of the complement laws in (14) is independent of
the remaining seven axioms.

(These proofs of independence are due to Huntington [28].)

6. (Harder.) A set of axioms is said to be independent if no one of the
axioms can be derived from the remaining ones. Do the four pairs
of identities (13), (14), (18), and (20) constitute an independent set of
axioms for Boolean algebras?

7. (Harder.) The operation of meet and the distinguished elements zero
and one can be defined in terms of join and complement by the equa-
tions
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p ∧ q = (p ′ ∨ q ′ ) ′, 0 = (p ∨ p ′ ) ′, 1 = p ∨ p ′.

A Boolean algebra may therefore be thought of as a non-empty set
together with two operations: join and complement. Prove that the
following identities constitute a set of axioms for this conception of
Boolean algebras: the commutative and associative laws for join, and

(H) (p ′ ∨ q ′ ) ′ ∨ (p ′ ∨ q) ′ = p.

(This axiomatization, and the proof of its equivalence to the set of
axioms (13), (14), (18), and (20), is due to Huntington [30]. In fact, (H)
is often called Huntington’s axiom.)

8. (Harder) Prove that the three axioms in Exercise 7 are independent.
(The proof of independence is due to Huntington [30].)

9. (Harder.) Prove that the following identities constitute a set of axioms
for Boolean algebras:

p′′ = p, p ∨ (q ∨ q ′) ′ = p, p ∨ (q ∨ r) ′ = ((q ′ ∨ p) ′ ∨ (r ′ ∨ p) ′) ′.

(This axiomatization, and the proof of its equivalence with the axiom
set in Exercise 7, is due to Huntington [30].)

10. (Harder.) Prove that the three axioms in Exercise 9 are independent.
(The proof of independence is due to Huntington [30].)

11. (Harder.) Prove that the commutative and associative laws for join,
and the equivalence

p ∨ q ′ = r ∨ r ′ if and only if p ∨ q = p,

together constitute a set of axioms for Boolean algebras. (This ax-
iomatization, and the proof of its equivalence with the axiom set in
Exercise 7, is due to Byrne [11].)



Chapter 3

Boolean Algebras Versus
Rings

The theories of Boolean algebras and Boolean rings are very closely related;
in fact, they are just different ways of looking at the same subject. More
precisely, every Boolean algebra can be turned into a Boolean ring by defining
appropriate operations of addition and multiplication, and, conversely, every
Boolean ring can be turned into a Boolean algebra by defining appropriate
operations of join, meet, and complement. The precise way of accomplishing
this can be elucidated by comparing the Boolean algebra P(X) of all subsets
of X and the Boolean ring 2X of all 2-valued functions on X. Each subset P
of X is naturally associated with a function p from X into 2, namely the
characteristic function of P , defined for each x in X by

p(x) =

{
1 if x ∈ P,

0 if x �∈ P.

The correspondence that maps each subset to its characteristic function is a
bijection (a one-to-one, onto function) from P(X) to 2X . The inverse corre-
spondence maps each function q in 2X to its support, the set of elements x
in X for which q(x) = 1.

How should the operations of addition and multiplication, and the distin-
guished elements zero and the unit, be defined in P(X) so that it becomes a
Boolean ring? To answer this question, it is helpful to analyze more closely
the definitions of the ring operations in 2X , and to translate these definitions
(via the bijective correspondence) into the language of P(X). Suppose P
and Q are subsets of X, and let p and q be their characteristic functions.

S. Givant, P. Halmos, Introduction to Boolean Algebras, 14
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The sum p + q and the product p · q are defined pointwise: for any x in X,

(p + q)(x) = p(x) + q(x) =

{
1 if p(x) �= q(x),
0 if p(x) = q(x),

and

(p · q)(x) = p(x) · q(x) =

{
1 if p(x) = q(x) = 1,

0 otherwise,

as is clear from the arithmetic tables for the ring 2. The values p(x) and q(x)
are different just in case one of them is 1 and the other is 0, that is to say,
just in case x is in P but not in Q, or vice versa. The values p(x) and q(x)
are both 1 just in case x is in both P and Q. These observations suggest the
following definitions of ring addition and multiplication in P(X):

(1) P + Q = (P ∩ Q ′ ) ∪ (P ′ ∩ Q) and P · Q = P ∩ Q.

(The Boolean sum P + Q is usually called the symmetric difference of P
and Q.) A similar analysis suggests the definitions

(2) 0 = ∅ and 1 = X

for the distinguished ring elements zero and one in P(X).
With these operations and distinguished elements, the set P(X) becomes

a Boolean ring: it satisfies axioms (1.1)–(1.3), (1.5), (1.6), and (1.8)–(1.11).
In fact, the correspondence h that takes each function in 2X to its support
is what is usually called an isomorphism between the two rings: it maps 2X

one-to-one onto P(X), and it preserves the ring operations and distinguished
elements in the sense that

h(p + q) = h(p) + h(q), h(p · q) = h(p) · h(q), h(0) = 0, h(1) = 1.

The operations and distinguished elements on the left sides of the equations
are those of the ring 2X , while the ones on the right are those of the ring P(X).
These equations just express, in a slightly different form, the definitions in (1)
and (2) of the ring operations and distinguished elements for P(X). The
whole state of affairs can be summarized by saying that the Boolean rings 2X

and P(X) are isomorphic via the correspondence that takes each function
in 2X to its support. The two rings are structurally the same (which is what
really matters); they differ only in the “shape” of their elements.

It is also possible to turn the ring 2X into a Boolean algebra. To un-
derstand how the Boolean operations and distinguished elements should be
defined in 2X , it is helpful to analyze the definitions of these operations
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in P(X) and to translate these definitions into the language of 2X . Sup-
pose once more that P and Q are subsets of X, and that p and q are their
characteristic functions. Then

x ∈ P ∪ Q if and only if x ∈ P or x ∈ Q

if and only if p(x) = 1 or q(x) = 1
if and only if p(x) �= q(x) or p(x) = q(x) = 1
if and only if p(x) + q(x) + p(x) · q(x) = 1
if and only if (p + q + p · q)(x) = 1.

The first equivalence uses the definition of union, the second uses the defini-
tions of the characteristic functions, the third uses the fact that 2 has just two
elements, the fourth uses the arithmetic of 2, and the last uses the definitions
of the ring operations of 2X . Similarly,

x ∈ P ′ if and only if x �∈ P

if and only if p(x) �= 1
if and only if p(x) �= 1(x)
if and only if p(x) + 1(x) = 1
if and only if (p + 1)(x) = 1.

The occurrence of the symbol “1” in the second equivalence, and its right-
most occurrence in the fourth and fifth equivalences, denote the unit of 2;
its occurrence in the third equivalence, and its leftmost occurrences in the
fourth and fifth equivalences, denote the unit function of 2X . To justify
the equivalences, use the definition of complementation, the definition of the
characteristic function, the definition of the unit function, the arithmetic of 2,
and the definition of addition in the ring 2X .

The preceding observations suggest the following definitions for the op-
erations of join and complement in 2X :

p ∨ q = p + q + p · q and p ′ = p + 1.

A similar but simpler analysis implies that the distinguished Boolean ele-
ments zero and one should coincide with the distinguished ring elements zero
and one, and that meet should coincide with ring multiplication. With these
operations and distinguished elements, the set 2X becomes a Boolean algebra:
it satisfies axioms (2.11)–(2.20). In fact, the Boolean algebras P(X) and 2X

are isomorphic via the correspondence g that takes each subset of X to its
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characteristic function. In more detail, the correspondence g maps P(X) one-
to-one onto 2X , and it preserves the Boolean operations and distinguished
elements in the sense that

g(P ∪ Q) = g(P ) ∨ g(Q), g(P ∩ Q) = g(P ) ∧ g(Q),
g(P ′ ) = g(P ) ′, g(∅) = 0, g(X) = 1.

Motivated by this set-theoretic example, we can introduce into every
Boolean algebra A operations of addition and multiplication very much like
symmetric difference and intersection; just define

(3) p + q = (p ∧ q ′ ) ∨ (p ′ ∧ q) and p · q = p ∧ q.

Under these operations, together with 0 and 1 (the zero and unit of the
Boolean algebra), A becomes a Boolean ring. Conversely, every Boolean ring
can be turned into a Boolean algebra with the same zero and unit; just define
operations of join, meet, and complement by

(4) p ∨ q = p + q + p · q, p ∧ q = p · q, p ′ = p + 1.

Start with a Boolean algebra, turn it into a Boolean ring (with the same zero
and unit) using the definitions in (3), and then convert the ring into a Boolean
algebra using the definitions in (4); the result is the original Boolean algebra.
Conversely, start with a Boolean ring, convert it into a Boolean algebra using
the definitions in (4), and then convert the Boolean algebra into a Boolean
ring using the definitions in (3); the result is the original ring.

The customary succinct way of summarizing the preceding discussion is to
say that the theories of Boolean algebras and Boolean rings are definitionally
equivalent. The precise way of proving this statement is to derive the Boolean
algebra axioms (2.11)–(2.20) and the definitions in (3) from the Boolean ring
axioms (1.1)–(1.3), (1.5), (1.6), (1.8)–(1.11), and the definitions in (4), and,
conversely, to derive the Boolean ring axioms and the definitions in (4) from
the Boolean algebra axioms and the definitions in (3). In this book we shall
use the two terms “Boolean ring” and “Boolean algebra” almost as if they
were synonymous, selecting on each occasion the one that seems intuitively
more appropriate. Since our motivation comes from set theory, we shall speak
of Boolean algebras much more often than of Boolean rings.

The point of view of Boolean algebras makes it possible to give a simple
and natural description of an example (due to Sheffer [54]) that would be
quite awkward to treat from the point of view of Boolean rings. Let m be
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a positive integer, and let A be the set of all positive integral divisors of m.
Define the Boolean structure of A by the equations

0 = 1,

1 = m,

p ∧ q = gcd{p, q},
p ∨ q = lcm{p, q},

p ′ = m/p.

It turns out that, with the distinguished elements and operations so de-
fined, A forms a Boolean algebra if and only if m is square-free (that is, m
is not divisible by the square of any prime). Query: what are the number-
theoretic expressions of the ring operations in this Boolean algebra? And,
while we are on the subject, what are the expressions for the Boolean op-
erations in the Boolean ring A consisting of the idempotent elements of an
arbitrary commutative ring R with unit? (See Chapter 1.) The answer to
this question is slightly different from (4); those equations give the answer in
terms of the ring operations in A, and what is wanted is an answer in terms
of the ring operations in R.

The theory of Boolean algebras was created by Boole in the 1840s, and
subsequently refined by De Morgan, Jevons, Schröder, Whitehead, and oth-
ers. The name “Boolean algebra” was suggested by Sheffer [53] in 1913. It
was Stone who realized, in the mid-1930s, that Boolean algebras could be
treated as rings in which the operation of multiplication is idempotent. He
introduced in [66] the notion of a Boolean ring, and developed the basic alge-
braic theory of such rings. In particular, he proved that the class of Boolean
rings is definitionally equivalent to the class of Boolean algebras.

Exercises

1. Prove that the Boolean algebras P(X) and 2X are isomorphic via the
mapping that takes each subset of X to its characteristic function.

2. The purpose of this exercise is to demonstrate the definitional equiva-
lence of the theories of Boolean algebras and Boolean rings.

(a) Show that every Boolean algebra becomes a Boolean ring with the
same zero and unit under the operations defined by the equations
in (3).
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(b) Show that, conversely, every Boolean ring becomes a Boolean al-
gebra with the same zero and unit under the operations defined
by the equations in (4).

(c) If a Boolean algebra is converted into a Boolean ring using the
definitions in (3), and if that Boolean ring is then converted into a
Boolean algebra using the definitions in (4), prove that the result
is just the original Boolean algebra.

(d) If a Boolean ring is converted into a Boolean algebra using the
definitions in (4), and if that Boolean algebra is then converted
into a Boolean ring using the definitions in (3), prove that the
result is just the original Boolean ring.

3. Prove that the set of positive integral divisors of a positive integer m
is a Boolean algebra (under the operations defined at the end of the
chapter) just in case m is square-free. What are the number-theoretic
expressions of the ring operations in this algebra?

4. What are the expressions for the Boolean operations in the Boolean ring
consisting of the idempotent elements of an arbitrary commutative ring
(Exercise 1.7)?

5. (Harder.) Prove that every law of Boolean algebra in which the unit
and complement do not occur is valid for Boolean rings without unit
when meet and join in the ring are defined by

p ∧ q = p · q and p ∨ q = p + q + p · q.



Chapter 4

The Principle of Duality

Every Boolean polynomial has a dual : it is defined to be the polynomial that
results from interchanging 0 and 1, and at the same time interchanging ∧
and ∨. For example, the polynomials

(p ∨ q ′ ) ∧ (p ′ ∨ 1) ∧ 0 and (p ∧ q ′ ) ∨ (p ′ ∧ 0) ∨ 1

are duals of one another. (The definition of Boolean polynomials is the same
as that of ordinary polynomials, except that the admissible operations are not
addition and multiplication but meet, join, and complement.) Every Boolean
equation also has a dual, obtained by forming the duals of the polynomials
on each side of the equation. The identities

p ∧ p ′ = 0 and p ∨ p ′ = 1

are duals of one another, as are the identities

p ∧ (q ∨ r) = (p ∧ q) ∨ (p ∧ r) and p ∨ (q ∧ r) = (p ∨ q) ∧ (p ∨ r).

A technical reason for preferring the language of Boolean algebras to that
of Boolean rings is the so-called principle of duality .

The principle consists in observing that the axioms (2.11)–(2.20) for
Boolean algebras come in dual pairs. It follows that the same is true for
all the consequences of those axioms: the general theorems about Boolean
algebras, and, for that matter, their proofs also, come in dual pairs.

The absorption laws

(1) p ∧ (p ∨ q) = p and p ∨ (p ∧ q) = p,

and their derivations, may serve as an example. Here is a proof of the first law,
using (in order) the second identity in (2.13), the second identity in (2.20),
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the first identity in (2.18), the first identity in (2.12), and the second identity
in (2.13):

(2) p ∧ (p ∨ q) = (p ∨ 0) ∧ (p ∨ q) = p ∨ (0 ∧ q) = p ∨ (q ∧ 0) = p ∨ 0 = p.

The dual derivation is

(3) p ∨ (p ∧ q) = (p ∧ 1) ∨ (p ∧ q) = p ∧ (1 ∨ q) = p ∧ (q ∨ 1) = p ∧ 1 = p.

The axioms used in this derivation are, step by step, the duals of the axioms
used in the derivation of (2). The identity that is proved by (3) is just the
second law in (1), which is the dual of the first law.

A practical consequence of the principle of duality, often exploited in what
follows, is that in the theory of Boolean algebras it is sufficient to state and
to prove only half the theorems; the other half come gratis from the principle.

A slight misunderstanding can arise about the meaning of duality, and
often does. It is well worthwhile to clear it up once and for all, especially since
the clarification is quite amusing in its own right. If an experienced Boolean
algebraist is asked for the dual of a Boolean polynomial, such as say p∨q, his
answer might be p∧q one day and p ′∧q ′ another day; the answer p ′∨q ′ is less
likely but not impossible. What is needed here is some careful terminological
distinction. Let us restrict attention to the completely typical case of a
polynomial f(p, q) in two variables. The complement of f(p, q) is by definition
(f(p, q)) ′, abbreviated f ′(p, q); the dual of f(p, q) is f ′(p ′, q ′ ); the contradual
of f(p, q) is f(p ′, q ′ ).

The polynomial

(4) p ∧ (q ∨ (p ′ ∧ 0))

may serve as an example. Its complement is formed by applying the opera-
tion ′ to the entire expression, and then simplifying the result with the help
of the De Morgan laws and the double complement law:

p ′ ∨ (q ′ ∧ (p ∨ 1)).

The contradual is formed by replacing p and q in (4) with their complements,
and then simplifying:

p ′ ∧ (q ′ ∨ (p ∧ 0)).
The dual is the complement of the contradual, appropriately simplified:

p ∨ (q ∧ (p ′ ∨ 1)).

What goes on here is that there is a group (see Exercise 1.5) acting on
the set of polynomials, and it is not the two-element group, but a group
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with four elements. In more detail, there are four functions mapping the set
of Boolean polynomials one-to-one onto itself: the identity function (taking
each polynomial to itself), the complement function (taking each polynomial
to its complement), the contradual function, and the dual function. The set
of these functions is closed under composition. For instance, the composition
of the complement and contradual functions is the dual function, while the
composition of the contradual and dual functions is the complement function.
There is an identity element — the identity function — and each function is
its own inverse with respect to composition. Consequently, the four functions
form a group under composition, and in fact a Boolean group that is often
called the Klein four-group (see Exercise 1.8).

This comment was made by Gottschalk [18], who describes the situation
by speaking of the principle of quaternality.

A word of warning: the word “duality” is frequently used in contexts
startlingly different from one other and from the one we met above. This
is true even within the theory of Boolean algebras, where, for instance, a
topological duality theory turns out to play a much more important role
than the elementary algebraic one just described. If the context alone is not
sufficient to indicate the intended meaning, great care must be exercised to
avoid confusion.

Exercises

1. Form the duals of the following polynomials.

(a) (p ∧ q) ′ ∨ (0 ∧ 1) ∨ (q ′ ∨ p ′ ).

(b) (p ∧ (q ∨ r)) ∨ ((p ∧ p ′ ) ∨ r).

2. Form the duals of the following equations.

(a) p ∧ (p ′ ∨ q) = p ∧ q.

(b) (p ∨ q) ∧ (p ′ ∧ q ′ ) = (p ∧ (p ′ ∧ q ′ )) ∨ (p ′ ∧ (q ′ ∧ q)).

3. Form the complements, the contraduals, and the complements of the
contraduals of the following polynomials, and simplify the results using
the De Morgan laws and the double complement law.

(a) (p ∧ (q ∨ r)) ∨ ((p ∧ p ′ ) ∨ r).

(b) (p ∧ (p ′ ∧ q ′ )) ∨ (p ′ ∧ (q ′ ∧ q)).
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4. Derive the identity
p ∧ (p ′ ∨ q) = p ∧ q

from axioms (2.13), (2.14), (2.18), and (2.20). Write out the dual form
of the derivation. What identity does the dual derivation prove?

5. Let c, k, and d denote the functions on the set of Boolean polynomials
of forming the complement, the contradual, and the dual. Denote the
identity function on the set by i. Complete the following table for
composing these operations:

◦ i c k d

i

c d

k c

d

.



Chapter 5

Fields of Sets

To form P(X) is not the only natural way to make a Boolean algebra out of a
non-empty set X. A more general way is to consider an arbitrary non-empty
subclass A of P(X) that is closed under intersection, union, and complement;
in other words, if P and Q are in A, then so are P ∩Q, P ∪Q, and P ′. Since A
contains at least one element, it follows that A contains ∅ and X (cf. (2.4)),
and hence that A is a Boolean algebra. Every Boolean algebra obtained in
this way is called a field (of sets). There is usually no danger in denoting a
field of sets by the same symbol as the class of sets that go to make it up.
This does not, however, justify the conclusion (it is false) that set-theoretic
intersection, union, and complement are the only possible operations that
convert a class of sets into a Boolean algebra.

To show that a class A of subsets of a set X is a field, it suffices to
show that A is non-empty and closed under union and complement. In fact,
if A is closed under these two operations, then it must also be closed under
intersection, since

P ∩ Q = (P ′ ∪ Q ′ ) ′

for any two subsets P and Q of X. Dually, A is a field whenever it is non-
empty and closed under intersection and complement.

A subset P of a set X is cofinite (in X) if its complement P ′ is finite; in
other words, P is cofinite if it can be obtained from X by removing finitely
many elements. For instance, the set of integers greater than 1000 or less
than −10 is cofinite (in the set of all integers), and so is the set of all integers
with the numbers 2, −75, and 1037 removed; the set of even integers is not
cofinite. The class A of all those subsets of a non-empty set X that are either
finite or cofinite is a field of subsets of X. The proof is a simple cardinality
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argument. The union of two finite subsets is finite, while the union of a
cofinite subset with any subset is cofinite; also, the complement of a finite
subset is cofinite, and conversely. If the set X itself is finite, then A is
simply P(X); if X is infinite, then A is a new example of a Boolean algebra
and is called the finite–cofinite algebra (or field) of X.

The preceding construction can be generalized. Call a subset P of X
cocountable (in X) if its complement P ′ is countable. For example, the
set of irrational numbers is cocountable in the set of real numbers, since
the set of rational numbers is countable. Also, any cofinite subset of reals
is cocountable, since any finite subset is countable. The class of all those
subsets of X that are either countable or cocountable is a field of subsets
of X, the so-called countable–cocountable algebra (or field) of X. Different
description of the same field: the class of all those subsets P of X for which
the cardinal number of either P or P ′ is less than or equal to ℵ0 (the first
infinite cardinal). A further generalization is obtained by using an arbitrary
infinite cardinal number in place of ℵ0.

Let X be the set of all integers (positive, negative, or zero), and let m be
an arbitrary integer. A subset P of X is periodic of period m if it coincides
with the set obtained by adding m to each of its elements. The class A of all
periodic sets of period m is a field of subsets of X. If m = 0, then A is
simply P(X). If m = 1, then A consists of just the two sets ∅ and X. In all
other cases A is a new example of a Boolean algebra. For example, if m = 3,
then A consists of eight sets, namely the eight possible unions that can be
formed using one, two, three, or none of the sets

{3n : n ∈ X}, {3n + 1 : n ∈ X}, and {3n + 2 : n ∈ X}.
It is obvious in this case that A is closed under the operation of union, and
almost obvious that A is closed under complementation. Consequently, A is
a field of sets. Warning: a period of a periodic set is not unique; for example,
the sets of integers of period 3 also have period 6 and period 12; in fact they
have infinitely many periods.

Let X be the set of all real numbers. A left half-closed interval (or,
for brevity, since this is the only kind we shall consider for the moment, a
half-closed interval) is a set of one of the forms

[a, b) = {x ∈ X : a ≤ x < b},
[a,∞) = {x ∈ X : a ≤ x},

(−∞, b) = {x ∈ X : x < b},
(−∞,∞) = X,
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where, of course, a and b themselves are real numbers and a < b. The class A
of all finite unions of half-closed intervals is a field of subsets of X. Here is
the proof. The empty set is the union of the empty family of half-closed
intervals, so it belongs to A. The closure of A under union is obvious: the
union of two finite unions of half-closed intervals is itself a finite union of
half-closed intervals.

To establish the closure of A under complement, it is helpful to make two
observations. First, the intersection of two half-closed intervals is either a
half-closed interval or empty. For instance, if a1 < b2 and a2 < b1, then

[a1, b1) ∩ [a2, b2) = [c, d) and [a1, b1) ∩ (−∞, b2) = [a1, d),

where

c = max{a1, a2} and d = min{b1, b2}.

(The diagram illustrates the three possibilities in this case.) The intersection

1 1 1 1 1 1

2 2 2 2 2 2aaa

aaa

bbb

bbb

c cc d dd

of the intervals is empty if the relevant inequalities fail. The second observa-
tion is that the complement of a half-closed interval is the union of at most
two half-closed intervals. For instance, the complement of the interval [a, b)
is the union

(−∞, a) ∪ [b, +∞),
while the complement of the interval [a, +∞) is (−∞, a).

If P is a finite union of half-closed intervals, then P ′ is a finite intersection
of complements of half-closed intervals, by the De Morgan laws (2.7). Each
of these complements is the union of at most two half-closed intervals, by the
second observation, so P ′ is the intersection of a finite family of sets, each
of which is the union of at most two half-closed intervals. The distributive
laws (2.10) therefore imply that P ′ may be written as a finite union of finite
intersections of half-closed intervals. Each of the latter intersections is again
a half-closed interval or else empty, by the first observation, so P ′ may be
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written as a finite union of half-closed intervals. The class A is thus closed
under complementation.

Any (linearly) ordered set can be used instead of the set of real numbers,
though some details of the construction may require slight modification. For
instance, a useful variant uses the closed unit interval [0, 1] in the role of X. In
this case it is convenient to stretch the terminology so as to include the closed
intervals [a, 1] and the degenerate interval {1} among half-closed intervals.
(The elements of this field are just the intersections with [0, 1] of the finite
unions of half-closed intervals discussed in the preceding paragraph. Notice,
in this connection, that

[a, 1] = [a, b) ∩ [0, 1] and {1} = [1, b) ∩ [0, 1]

whenever 0 ≤ a ≤ 1 < b.) The field of sets constructed from an ordered
set in the manner illustrated by these two examples is usually called the
interval algebra of the ordered set. (Interval algebras were first introduced
by Mostowski and Tarski in [46].)

Valuable examples of fields of sets can be defined in the unit square (the
set of ordered pairs (x, y) with 0 ≤ x, y ≤ 1), as follows. Call a subset P
of the square vertical if along with each point in P , every point of the vertical
segment through that point also belongs to P . In other words, P is vertical
if the presence of (x0, y0) in P implies the presence in P of (x0, y) for every y
in [0, 1]. If A is any field of subsets of the square, then the class of all
vertical sets in A is another, and in particular the class of all vertical sets
is a field of sets. Indeed, A contains the empty set, and is closed under
union and complement, so it suffices to check that the empty set is a vertical
set (this is vacuously true), and that the union of two vertical sets and the
complement of a vertical set are again vertical sets. Let P and Q be vertical
sets, and suppose that a point (x0, y0) belongs to their union. If the point
belongs to P , then every point on the vertical segment through (x0, y0) also
belongs to P (since P is vertical); consequently, every such point belongs to
the union P ∪Q. An analogous argument applies if (x0, y0) belongs to Q. It
follows that P∪Q is a vertical set. Suppose, next, that a point (x0, y0) belongs
to the complement of P . No point on the vertical segment through (x0, y0)
can then belong to P , for the presence of one such point in P implies the
presence of every such point in P (since P is vertical), and in particular
it implies that (x0, y0) is in P . It follows that every point on the vertical
segment through (x0, y0) belongs to P ′, so that P ′ is a vertical set.

Here are two comments that are trivial but sometimes useful: (1) the
horizontal sets (whose definition may safely be left to the reader) constitute
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just as good a field as the vertical sets, and (2) the Cartesian product of any
two non-empty sets is, for these purposes, just as good as the unit square.

Exercises

1. Prove that the class of all sets of integers that are either finite sets of
even integers, or else cofinite sets that contain all odd integers, is a field
of sets.

2. Prove that the class of all sets of real numbers that are either countable
or cocountable is a field of sets.

3. Prove that the class of all periodic sets of integers of period 2 is a field
of sets. How many sets are in this class? Describe them all. Do the
same for the class of all period sets of integers of period 3.

4. Prove that the class of all periodic sets of integers of period m is a field
of sets. How many sets are in this class? Describe them all.

5. (Harder.) If m is a positive integer, and if A is the class of all those
sets of integers that are periodic of some period greater than m, is A a
field of sets?

6. The precise formulation and proof of the assertion that the intersection
of two half-closed intervals is either half-closed or empty can be simpli-
fied by introducing some unusual but useful notation. Extend the natu-
ral linear ordering of the set X of real numbers to the set X∪{−∞,∞}
of extended real numbers by requiring

−∞ < a < ∞

for every real number a, and −∞ < ∞. Thus, for example,

max{−∞, a} = a and min{−∞, a} = −∞.

Extend the notation for half-closed intervals by defining

[−∞, a) = (−∞, a) = {b ∈ X : b < a}

for any a in X ∪ {∞}. In particular,

[−∞,∞) = (−∞,∞) = X.

Also, extend the notation [a, b) to the case a ≥ b by writing
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[a, b) = {x ∈ R : a ≤ x < b} = ∅.

The notation [a, b) thus makes sense for any two extended real num-
bers a and b. The assertion that the intersection of two half-closed
intervals is either half-closed or empty can be expressed in this nota-
tion by the following simple statement that avoids case distinctions:

[a1, b1) ∩ [a2, b2) = [c, d),

where

c = max{a1, a2} and d = min{b1, b2};

moreover, this intersection is non-empty if and only if a1, a2 < b1, b2.
Prove the simple statement.

7. This exercise continues with the notation for extended real numbers in-
troduced in Exercise 6. Prove that every set P in the interval algebra A
of the real numbers can be written in exactly one way in the form

P = [a1, b1) ∪ [a2, b2) ∪ · · · ∪ [an, bn),

where n is a non-negative integer and

a1 < b1 < a2 < b2 < · · · < an < bn.

(The case n = 0 is to be interpreted as the empty family of half-closed
intervals.) Show that if P has this form, then

P ′ = [−∞, a1) ∪ [b1, a2) ∪ · · · ∪ [bn−1, an) ∪ [bn, +∞);

the first interval is empty (and hence should be omitted) if a1 = −∞;
the second interval is empty (and hence should be omitted) if bn = +∞.

8. Prove that the class of all finite unions of left half-closed intervals of
rational numbers is a countable field of sets.

9. Prove that the class of all finite unions of left half-closed subintervals
of the interval [0, 1] is a field of sets (where the intervals [a, 1], for
0 ≤ a ≤ 1, are considered left half-closed).

10. Let X be the set of real numbers. A right half-closed interval of real
numbers is a set of one of the forms

(−∞, b] = {x ∈ X : x ≤ b},
(a, b] = {x ∈ X : a < x ≤ b},
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(a, +∞) = {x ∈ X : a < x},
(−∞, +∞) = X,

where a and b are real numbers and a < b. Show that the class of all
finite unions of right half-closed intervals is a field of subsets of the set
of real numbers.

11. An interval of real numbers is a set P of real numbers with the property
that whenever c and d are P , then so is every number between c and d.
In other words, an interval is a set of one of the forms

(−∞, a), (−∞, a], (a, +∞), [a, +∞), (−∞, + ∞),
(a, b), (a, b], [a, b), [a, b], ∅,

where a and b are real numbers and a < b. Prove that the class of all
finite unions of intervals is a field of sets.

12. Define the notion of a horizontal set for the unit square, and prove that
the class of all such sets is a field of sets.

13. Give an example of a Boolean algebra whose elements are subsets of a
set, but whose operations are not the usual set-theoretic ones.



Chapter 6

Elementary Relations

The least profound among the properties of an algebraic system are usually
the relations among its elements (as opposed to the relations among subsets
of it and functions on it). In this chapter we shall discuss some of the ele-
mentary relations that hold in Boolean algebras. Since we shall later meet
a powerful tool (namely, the representation theorem for Boolean algebras)
the use of which reduces all elementary relations to set-theoretic trivialities,
the purpose of the present discussion is more to illustrate than to exhaust
the subject. An incidental purpose is to establish some notation that will be
used freely throughout the sequel.

Throughout this chapter p, q, r, . . . are elements of an arbitrary but fixed
Boolean algebra A.

Lemma 1. If p∨q = p for all p, then q = 0; if p∧q = p for all p, then q = 1.

Proof. To prove the first assertion, put p = 0, and use (2.18) and (2.13); the
second assertion is the dual of the first.

Lemma 2. If p and q are such that p ∧ q = 0 and p ∨ q = 1, then q = p ′.

Proof. The assertion follows from (2.13), (2.14), (2.20), and the assumptions
of the lemma, together with some implicit applications of (2.18):

q = 1 ∧ q = (p ∨ p ′ ) ∧ q = (p ∧ q) ∨ (p ′ ∧ q)
= 0 ∨ (p ′ ∧ q) = (p ′ ∧ p) ∨ (p ′ ∧ q)

= p ′ ∧ (p ∨ q) = p ′ ∧ 1 = p ′.
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These two lemmas can be expressed by saying that (2.13) uniquely de-
termines 0 and 1, and (2.14) uniquely determines p ′. In a less precise but
more natural phrasing we may simply say that 0 and 1 are unique, and so
are complements.

Lemma 3. For all p and q,

p ∨ (p ∧ q) = p and p ∧ (p ∨ q) = p.

Proof. Use (2.13), (2.20), and (2.12) (together with an implicit application
of (2.18)):

p ∨ (p ∧ q) = (p ∧ 1) ∨ (p ∧ q) = p ∧ (1 ∨ q) = p ∧ 1 = p.

The second equation is the dual of the first.

The identities of Lemma 3 are called the laws of absorption.
Often the most concise and intuitive way to state an elementary prop-

erty of Boolean algebras is to introduce a new operation. The difference
of two sets P and Q is the set of elements in P that are not in Q; these
set-theoretic considerations suggest an operation of subtraction in arbitrary
Boolean algebras. We write

(1) p − q = p ∧ q ′.

The “symmetrized” version of the difference p − q is the Boolean sum:

(2) p + q = (p − q) ∨ (q − p);

it is the analogue, for Boolean algebras, of the symmetric difference of two
sets (see (3.1) and (3.3)). As a sample of the sort of easily proved relations
that the notation suggests, consider the distributive laws

p ∧ (q − r) = (p ∧ q) − (p ∧ r)

and

(q ∨ r) − p = (q − p) ∨ (r − p).

One reason why Boolean algebras have something to do with logic is that
the familiar sentential connectives and , or , and not have properties similar to
the Boolean connectives ∧, ∨, and ′. Instead of meet, join, and complement,
the logical terminology uses conjunction, disjunction, and negation. Moti-
vated by the analogy, we now introduce into the study of Boolean algebra
the operations suggested by logical implication,
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p ⇒ q = p ′ ∨ q,(3)

and biconditional ,

p ⇔ q = (p ⇒ q) ∧ (q ⇒ p).(4)

The source of these operations suggests an unintelligent error that it is im-
portant to avoid. The result of the operation ⇒ on the elements p and q of
the Boolean algebra A is another element of A; it is not an assertion about
or a relation between the given elements p and q. (The same is true of ⇔.)
It is for this reason that logicians sometimes warn against reading p ⇒ q as
“p implies q” and suggest instead the reading “if p, then q”. Observe inci-
dentally that if ∨ is read as “or”, the disjunction p∨ q must be interpreted in
the non-exclusive sense (either p, or q, or both). The exclusive “or” (either p,
or q, but not both) corresponds to the Boolean sum p + q.

The operations ⇒ and ⇔ would arise in any systematic study of Boolean
algebra even without any motivation from logic. The reason is duality: the
dual of p − q is q ⇒ p, and the dual of p + q is p ⇔ q. The next well-known
Boolean operation that deserves mention here could not have been discovered
through considerations of duality alone. It is called stroke, or Sheffer stroke
(because it was introduced by Sheffer in [53]), and it is defined by

(5) p | q = p ′ ∧ q ′.

In logical contexts this operation is known as binary rejection (neither p
nor q), and among computer scientists it is often referred to as nor.

The chief theoretical application of the Sheffer stroke is the remark (due
to Sheffer [53], but anticipated 33 years earlier by Peirce in the unpublished
paper [49]) that a single operation, namely the stroke, is enough to define
Boolean algebras. To establish this remark, it is sufficient to show that
complement, meet, and join can be expressed in terms of the stroke, and
indeed,

p ′ = p | p,(6)
p ∧ q = (p | p) | (q | q),(7)
p ∨ q = (p | q) | (p | q).(8)

Exercises

1. Prove that the following distributive laws hold in all Boolean algebras.
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(a) (q ∧ r) − p = (q − p) ∧ (r − p).

(b) (q ∨ r) − p = (q − p) ∨ (r − p).

(c) p ∧ (q − r) = (p ∧ q) − (p ∧ r).

2. For each of the following identities, either prove that it is true in all
Boolean algebras (by deriving it from the Boolean laws that have been
established so far) or show that it fails to hold in the two-element
Boolean algebra.

(a) p ∧ (q − r) = (p ∧ q) − (q ∧ r).

(b) p ∨ (q − r) = (p ∨ q) − (q ∨ r).

(c) p − (q − r) = (p − q) − r.

(d) p ∧ q = p − (p − q).

(e) p ∨ q = p ∨ (q − p).

(f) p − (q − r) = (p − q) ∨ (p ∧ q ∧ r).

(g) p + q = p ′ + q ′.

(i) (ii)(iv)

(v)

(iii)

(vi)
(vii)

p q

r

3. Prove that the seven elements

(i) p − (q ∨ r), (ii) q − (p ∨ r), (iii) r − (p ∨ q),
(iv) (p ∧ q) − r, (v) (q ∧ r) − p, (vi) (p ∧ r) − q,

(vii) p ∧ q ∧ r

are mutually disjoint (the meet of any two of them is 0) and the join
of all of them is p ∨ q ∨ r (see the diagram). Write each of

p − q, q − p, p − r, r − p, q − r, r − q

as a join of elements (i)–(vi). Then write each of
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p + q, p + r, q + r

as a join of elements (i)–(vi).

4. Prove that q ⇒ p and p ⇔ q are the duals of p−q and p+q, respectively.

5. Derive the following identities.

(a) p ⇒ p = 1.

(b) p ⇒ q = q ′ ⇒ p ′.

(c) p ⇒ (p ⇔ q) = p ⇒ q.

(d) (p ⇔ q) ⇒ p = p ∨ q.

6. Derive the following identities.

(a) p ⇔ q = (p ∧ q) ∨ (p ′ ∧ q ′ ).

(b) p ⇔ q = (p + q) ′.

Give geometric interpretations of these identities for fields of sets.

7. Derive the following identities concerning Boolean addition and bicon-
ditional.

(a) p ′ + q ′ = p + q.

(b) p ′ ⇔ q ′ = p ⇔ q.

(c) (p + q) ′ = p ′ ⇔ q ′.

(d) (p ⇔ q) ′ = p ′ + q ′.

Notice that the last two identities express an analogue, for Boolean
addition and the biconditional, of the De Morgan laws.

8. Prove that the set of elements in a Boolean algebra, under the oper-
ation ⇔ , is a Boolean group with the identity element 1. In other
words, derive the following laws.

(a) p ⇔ (q ⇔ r) = (p ⇔ q) ⇔ r.

(b) p ⇔ 1 = p.

(c) p ⇔ p = 1.

(The function that maps each element of the Boolean algebra to its
complement is actually an isomorphism from the Boolean group with
the operation + to the Boolean group with the operation ⇔ .)
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9. The distributive law

p ∧ (q + r) = (p ∧ q) + (p ∧ r)

holds automatically in all Boolean algebras; it is just the distributive
law (1.8) for Boolean rings. Prove the following related law:

p ′ ∧ (q + r) = (p ∨ q) + (p ∨ r).

Conclude that the elements

(p ∨ q) + (p ∨ r) and (p ∧ q) + (p ∧ r)

are disjoint, and join to q + r.

10. Prove that the theory of Boolean algebras is definitionally equivalent to
the theory of the binary operation stroke, axiomatized by the following
three identities:

(p | p) | (p | p) = p,

(p | (q | (q | q))) = p | p,

(p | (q | r)) | (p | (q | r)) = ((q | q) | p) | ((r | r) | p).

(This theorem is due to Sheffer [53].)

11. Enumerate all possible binary operations on 2 = {0, 1} (that is, enumer-
ate all mappings from 2×2 into 2). Identify each of these 16 operations
in terms of operations introduced in the chapter.

12. Show that all binary operations on 2 are definable in terms of the
operations ∧, ∨, and ′. Conclude that they are definable in terms of
the operations ∧ and ′ alone.

13. (Harder.) Show that not all binary operations on 2 are definable in
terms of the operation ⇔.

14. Show that all binary operations on 2 are definable in terms of stroke.
Is there another binary operation on 2 besides stroke in terms of which
the other binary operations are all definable?

15. A ternary operation on 2 is a mapping from 2 × 2 × 2 into 2. Such an
operation is conveniently represented by a table in which the arguments
are listed on the left, and the corresponding values on the right. For
example, the ternary operation f(p, q, r) described by the table below
maps the triples (0, 1, 0), (1, 0, 1), and (1, 1, 1) to 1, and maps all other
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triples to 0. It is not difficult to verify that f is definable in terms of
meet, join, and complement. In fact,

f(p, q, r) = (p ′ ∧ q ∧ r ′ ) ∨ (p ∧ q ′ ∧ r) ∨ (p ∧ q ∧ r).

Prove that every ternary operation on 2 is definable in terms of meet,
join, and complement.

p q r f

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

16. Prove that every operation on 2 with n arguments is definable in terms
of meet, join, and complement, for any positive integer n. (This result
is due to Post [50].)

17. The form used in Exercise 15 to write the operation f in terms of meet,
join, and complement is called, in the context of logic, disjunctive nor-
mal form because the expression on the right side is a join (disjunction)
of meets of arguments and their complements. Show that f can also
be written in conjunctive normal form, that is, as a meet of joins of
arguments and their complements.

18. Prove that every ternary operation on 2 can be written in conjunctive
normal form.

19. (Harder.) Show that if a ternary Boolean operation g is defined by

g(p, q, r) = (p ∧ q) ∨ (q ∧ r) ∨ (r ∧ p),

then that operation, together with complement and one, are enough
to define Boolean algebras. Exhibit a set of axioms stated in terms
of g and complement. (This approach to Boolean algebra is due to
Grau [19].)
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Order

We continue to work with an arbitrary but fixed Boolean algebra A.

Lemma 1. p ∧ q = p if and only if p ∨ q = q.

Proof. If p ∧ q = p, then p ∨ q = (p ∧ q) ∨ q, and the conclusion follows from
the appropriate law of absorption. The converse implication is obtained from
this one by interchanging the roles of p and q and forming duals.

For sets, either one of the equations

P ∩ Q = P and P ∪ Q = Q

is equivalent to the inclusion P ⊆ Q. This observation motivates the intro-
duction of a binary relation ≤ in every Boolean algebra; we write

p ≤ q or q ≥ p

in case p ∧ q = p, or, equivalently, p ∨ q = q. A convenient way of expressing
the relation p ≤ q in words is to say that p is below q, and that q is above p,
or that q dominates p.

The relation of inclusion between sets is a partial order. In other words,
the relation is reflexive in the sense that the inclusion P ⊆ P always holds;
it is antisymmetric in the sense that the inclusions P ⊆ Q and Q ⊆ P
imply P = Q; and it is transitive in the sense that the inclusions P ⊆ Q
and Q ⊆ R imply P ⊆ R. The next lemma says that the same thing is true
of the relation ≤ in an arbitrary Boolean algebra.

Lemma 2. The relation ≤ is a partial order.
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Undergraduate Texts in Mathematics, DOI: 10.1007/978-0-387-68436-9 7,
c© Springer Science+Business Media, LLC 2009



7 Order 39

Proof. Reflexivity follows from the idempotent law (2.16): p ∧ p = p, and
therefore p ≤ p. Antisymmetry follows from the commutative law (2.18):
if p ≤ q and q ≤ p, then

p = p ∧ q = q ∧ p = q.

Transitivity follows from the associative law (2.19): if p ≤ q and q ≤ r, then

p ∧ q = p and q ∧ r = q,

and consequently

p ∧ r = (p ∧ q) ∧ r = p ∧ (q ∧ r) = p ∧ q = p.

It is sound mathematical practice to re-examine every part of a structure
in the light of each new feature soon after the novelty is introduced. Here
is the result of an examination of the structure of a Boolean algebra in the
light of the properties of order.

Lemma 3. (1) 0 ≤ p and p ≤ 1.

(2) If p ≤ q and r ≤ s, then p ∧ r ≤ q ∧ s and p ∨ r ≤ q ∨ s.

(3) If p ≤ q, then q ′ ≤ p ′.

(4) p ≤ q if and only if p − q = 0, or, equivalently, p ⇒ q = 1.

The proofs of all these assertions are automatic. It is equally automatic
to discover the dual of ≤ ; according to any reasonable interpretation of the
phrase it is ≥. The inequalities in (2) are called the monotony laws..

If E is any subset of a partially ordered set such as our Boolean algebra A,
we can consider the set F of all upper bounds of E and ask whether F has a
smallest element. In other words: an element q belongs to F in case p ≤ q for
every p in E; to say that F has a smallest element means that there exists
an element q1 in F such that q1 ≤ q for every q in F . A smallest element
in F , if it exists, is obviously unique: if q1 and q2 both have this property,
then q1 ≤ q2 and q2 ≤ q1, so that q1 = q2, by antisymmetry. We shall call
the smallest upper bound of the set E (if it has one) the least upper bound,
or the supremum, of E. All these considerations have their obvious duals.
The greatest lower bound of E is also called the infimum of E.

If the set E is empty, then every element of A is vacuously an upper
bound of E (p in E implies p ≤ q for each q in A), and, consequently, E
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has a supremum, namely 0. Similarly (dually), if E is empty, then E has an
infimum, namely 1.

Consider next the case of a singleton, say {p}. Since p itself is an upper
bound of this set, it follows that the set has a supremum, namely p, and,
similarly, that it has an infimum, namely p again.

The situation becomes less trivial when we pass to sets of two elements.

Lemma 4. For each p and q, the set {p, q} has the supremum p∨ q and the
infimum p ∧ q.

Proof. The element p∨ q dominates both p and q, by the absorption laws, so
it is one of the upper bounds of {p, q}. It remains to prove that p ∨ q is the
least upper bound, or, in other words, that if both p and q are dominated by
some element r, then p ∨ q ≤ r. This is easy; by (2) and idempotence,

p ∨ q ≤ r ∨ r = r.

The assertion about the infimum follows by duality.

Lemma 4 generalizes immediately to arbitrary non-empty finite sets (in-
stead of sets with only two elements). We may therefore conclude that if E
is a non-empty finite subset of A, then E has both a supremum and an infi-
mum, namely

∨
E and

∧
E respectively. Motivated by these facts we hereby

extend the interpretation of the symbols used for joins and meets to sets that
may be empty or infinite. If a subset E of A has a supremum, we shall denote
that supremum by

∨
E regardless of the size of E, and, similarly, we shall

use
∧

E for all infima. In this notation what we know about very small sets
can be expressed as follows:

∨
∅ = 0,

∧
∅ = 1,

∨
{p} =

∧
{p} = p.

The notation used earlier for the join or meet of a finite sequence of elements is
also extendable to the infinite case. Thus if {pi} is an infinite sequence with a
supremum (properly speaking, if the range of the sequence has a supremum),
then that supremum is denoted by

∨∞
i=1 pi. If, more generally, {pi} is an

arbitrary family with a supremum, indexed by the elements i of a set I, the
supremum is denoted by

∨
i∈I pi, or, in case no confusion is possible, simply

by
∨

i pi.
The perspective of Boolean algebras as partially ordered sets goes back

to Jevons [31] and suggests a natural generalization. A lattice is a partially
ordered set in which, for any elements p and q, the set {p, q} has both a
supremum and an infimum. Two binary operations called join and meet
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may be introduced into a lattice as follows: the join of elements p and q,
written p ∨ q, is defined to be the supremum of the set {p, q}, and the meet
of p and q, written p∧ q, is the infimum of {p, q}. The two operations satisfy
the idempotent laws (2.16), the commutative laws (2.18), the associative
laws (2.19), and the absorption laws (4.1). Consequently, the analogue of
Lemma 1 also holds for lattices, and one can easily show that p ≤ q if and
only if p ∧ q = p, or, equivalently, if and only if p ∨ q = p.

There is an alternative approach to lattices: they may be defined as al-
gebraic structures consisting of a non-empty set and two binary operations
— denoted by ∨ and ∧ — that satisfy the idempotent, commutative, as-
sociative, and absorption laws. A binary relation ≤ may then be defined
in exactly the same way as it is defined for Boolean algebras, and the ana-
logues of Lemmas 2 and 4 may be proved. The situation may be summarized
by saying that the two conceptions of a lattice are definitionally equivalent.
Notice that the axioms for lattices in this alternative approach come in dual
pairs. Consequently, there is a principle of duality for lattices that is the
exact analogue of the principle of duality for Boolean algebras (Chapter 4).

A lattice may or may not have a smallest or a greatest element. The
smallest element, if it exists, is called the zero of the lattice and is usually
denoted by 0; the largest element, if it exists, is called the one, or the unit,
of the lattice and is denoted by 1. It is easy to check that the zero and unit
of a lattice (if they exist) satisfy the identities in (2.12) and (2.13). The
distributive laws in (2.20) may fail in a lattice; however, if one of them does
hold, then so does the other, and the lattice is said to be distributive.

A lattice in which every subset has an infimum and a supremum is said
to be complete. The infimum and supremum of a set E, if they exist, are
denoted by

∧
E and

∨
E respectively. A complete lattice automatically has

a least and a greatest element, namely, the infimum and the supremum of
the set of all elements in the lattice.

Every Boolean algebra, under the operations of join and meet, is a lattice,
and in fact a distributive lattice. The converse is not necessarily true. For
instance, the set of natural numbers under the standard ordering relation is
a distributive lattice, but it is not a Boolean algebra.

The reason for mentioning lattices in this book is that they naturally
arise in the study of Boolean algebras. We shall encounter some important
examples later.
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Exercises

1. Prove that a Boolean algebra is degenerate if and only if 1 = 0.

2. Prove Lemma 3.

3. Prove the converse to part (3) of Lemma 3: if q ′ ≤ p ′, then p ≤ q.

4. Prove that p ≥ q is the dual of p ≤ q.

5. If p ≤ q and p �= 0, prove that q − p �= q.

6. The concept of divisibility makes sense in every ring: p is divisible by q
in case p = q · r for some r. Show that in a Boolean ring an element p
is divisible by q if and only if p ≤ q.

7. True or false: if p ≤ q and r ≤ s, then

p + r ≤ q + s and p ⇔ r ≤ q ⇔ s.

8. Prove that p − r ≤ (p − q) ∨ (q − r), and equality holds if r ≤ q ≤ p.

9. Derive the following inequalities.

(a) p + r ≤ (p + q) ∨ (q + r).

(b) (p ∨ q) + (r ∨ s) ≤ (p + r) ∨ (q + s).

10. Derive the following inequalities.

(a) (p ⇒ q) ∧ (q ⇒ r) ≤ p ⇒ r.

(b) (p ⇒ r) ∧ (q ⇒ s) ≤ (p ∧ q) ⇒ (r ∧ s).

11. Derive the following inequalities.

(a) (p ⇔ q) ∧ (q ⇔ r) ≤ p ⇔ r.

(b) (p ⇔ r) ∧ (q ⇔ s) ≤ (p ∧ q) ⇔ (r ∧ s).

12. Give a precise definition of the notion of the infimum of a set E in a
Boolean algebra.

13. Prove that in every lattice, conceived as a partially ordered set, the de-
fined operations of join and meet satisfy the idempotent, commutative,
associative, and absorption laws. Use these laws to show that Lemma 1
and part (2) of Lemma 3 hold for lattices and that p ≤ q if and only if
p ∧ q = p.
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14. Suppose lattices are conceived as algebraic structures with two binary
operations satisfying the idempotent, commutative, associative, and
absorption laws. Prove that the binary relation ≤ defined by

p ≤ q if and only if p ∧ q = p

is a partial order and the monotony laws (part (2) of Lemma 3) hold.
Show further that Lemma 4 remains true. (Exercises 13 and 14 say,
together, that the conceptions of a lattice as a partially ordered set,
and as a structure with two binary operations satisfying the idempo-
tent, commutative, associative, and absorption laws, are definitionally
equivalent.)

15. Show that in a lattice with zero and one, the laws (2.12) and (2.13) are
valid.

16. Show, conversely, that if a lattice has elements 0 and 1 satisfying the
laws in (2.12), or else the laws in (2.13), then 0 is the least element,
and 1 is the greatest element, in the lattice. (Exercises 15 and 16 say,
together, that the two conceptions of a lattice with zero and one —
the first as a partially ordered set with a greatest and a least element,
the second as a structure with two binary operations satisfying the
idempotent, commutative, associative, absorption, and either (2.12) or
the identity laws — are definitionally equivalent.)

17. Prove that a part of each of the distributive laws, namely the inequal-
ities

(p ∧ q) ∨ (p ∧ r) ≤ p ∧ (q ∨ r) and (p ∨ q) ∧ (p ∨ r) ≥ p ∨ (q ∧ r),

holds in every lattice.

p q r

0

1

18. The preceding diagram determines a five-element lattice in which
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p ∨ q = p ∨ r = q ∨ r = 1 and p ∧ q = p ∧ r = q ∧ r = 0.

Show that both distributive laws fail in this lattice.

19. Prove that in every lattice the validity of one of the two distributive
laws

p ∧ (q ∨ r) = (p ∧ q) ∨ (p ∧ r) and p ∨ (q ∧ r) = (p ∨ q) ∧ (p ∨ r)

implies the validity of the other.

20. In a lattice with zero and one, a complement of an element p is an
element q such that

p ∧ q = 0 and p ∨ q = 1.

Prove that in a distributive lattice with zero and one, a complement of
an element, if it exists, is unique.

21. Show that any linearly ordered set with a least and a greatest element,
and with more than two elements, is an example of a distributive lattice
with zero and one that is not a Boolean algebra.

22. A lattice with zero and one is said to be complemented if every element
has a complement (see Exercise 20). Interpret and prove the assertion
that complemented distributive lattices are the same thing as Boolean
algebras.

23. Prove that a lattice in which every set of elements has a least upper
bound is complete.



Chapter 8

Infinite Operations

An infinite subset of a Boolean algebra may fail to have a supremum. For
example, let A be the finite–cofinite algebra of integers, and consider the set E
of singletons of even integers. If P is an upper bound for E in A, then P
is infinite, and therefore cofinite. The set obtained from P by removing a
single odd integer is a proper subset that is still an upper bound for E, so P
cannot be the least upper bound of E.

A Boolean algebra with the property that every subset of it has both a
supremum and an infimum is called a complete (Boolean) algebra. Similarly,
a field of sets with the property that both the union and the intersection
of every class of sets in the field are again in the field is called a complete
field of sets. The simplest example of a complete field of sets (and hence of a
complete algebra) is the field of all subsets of a set.

Many laws about union, intersection, and complement have infinite ver-
sions. For example,

( ⋂

i

Pi

)
′ =
⋃

i

P ′
i ,

( ⋃

i

Pi

)
′ =
⋂

i

P ′
i ,(1)

and

P ∩
( ⋃

i

Qi

)
=
⋃

i

(P ∩ Qi), P ∪
( ⋂

i

Qi

)
=
⋂

i

(P ∪ Qi),(2)

are infinite versions of the De Morgan laws (2.7) and distributive laws (2.10)
for sets. The formulations of analogous laws for arbitrary Boolean algebras
must always come with some sort of proviso, since the suprema and infima
of infinite sets of elements may not exist. Here are the infinite versions of the
De Morgan laws.
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Lemma 1. If {pi} is a family of elements in a Boolean algebra, then
(∧

i

pi

)
′ =
∨

i

p ′
i and

(∨

i

pi

)
′ =
∧

i

p ′
i .

The equations are to be interpreted in the sense that if either term in either
equation exists, then so does the other term of that equation, and the two
terms are equal.

Proof. To prove the second equation, suppose p =
∨

i pi. Since pi ≤ p for
every i, it follows that p ′ ≤ p ′

i for every i, by Lemma 7.3(3). In other
words, p ′ is a lower bound for the family {p ′

i }. To prove that it is the
greatest lower bound, assume q ≤ p ′

i for every i. The assumption implies that
pi ≤ q ′ for every i, and hence, from the definition of supremum, that p ≤ q ′.
Consequently, q ≤ p ′. A dual argument justifies the passage from the left
side of the first equation to the right. To justify the reverse passages in both
equations, apply the results already proved to the families of complements.

Corollary 1. If every subset of a Boolean algebra has a supremum (or else
if every subset has an infimum), then that algebra is complete.

Proof. Suppose every subset of a Boolean algebra A has a supremum. To
show that every subset also has an infimum, consider an arbitrary family
of elements {pi} in A. The supremum q of the family {p ′

i } exists in A, by
assumption. Write p = q ′. Then

p = q ′ =
(∨

i

p ′
i

)
′ =
∧

i

p ′′
i =
∧

i

pi.

The third equality uses Lemma 1, and the fourth equality uses the double
complement law. Thus, p is the infimum of the family {pi}.

It will usually not be sufficient to know merely that certain infinite su-
prema exist; the algebraic properties of those suprema (such as commutativ-
ity, associativity, and distributivity) are also needed.

It is almost meaningless to speak of infinite commutative laws. An infinite
supremum is something associated with a set of elements, and, by definition,
it is independent of any possible ordering of that set.

A reasonable verbal formulation of an infinite associative law might go
like this. Form each of several suprema and then form their supremum; the
result should be equal to the supremum of all the elements that originally
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contributed to each separate supremum. It is worthwhile to state and prove
this in a more easily quotable form.

Lemma 2. If {Ij} is a family of sets with union I, and if pi, for each i in I,
is an element of a Boolean algebra, then

∨

j

( ∨

i∈Ij

pi

)
=
∨

i∈I

pi.

The equation is to be interpreted in the sense that if the suprema on the left
side exist, then so does the supremum on the right, and the two are equal.

Proof. Write qj =
∨

i∈Ij
pi and q =

∨
j qj . We are to prove that q is an upper

bound of the family {pi : i ∈ I}, and that, in fact, it is the least upper bound.
Since each i in I belongs to at least one Ij , it follows that for each i there is
a j with pi ≤ qj ; since, moreover, qj ≤ q, it follows that q is indeed an upper
bound. Suppose now that pi ≤ r for every i. Since, in particular, pi ≤ r for
every i in Ij , it follows from the definition of supremum that qj ≤ r. Since
this is true for every j, we may conclude, similarly, that q ≤ r, and this
completes the proof.

The preceding comments on infinite commutativity and associativity were
made for suprema; it should go without saying that the corresponding (dual)
comments for infima are just as true. The most interesting infinite laws are
the ones in which suprema and infima occur simultaneously. These are the
distributive laws, to which we now turn. They too come in dual pairs; we
shall take advantage of the principle of duality and restrict our attention
to only one member of each such pair. We begin with the simplest infinite
distributive law.

Lemma 3. If p is an element and {qi} a family of elements in a Boolean
algebra, then

p ∧
∨

i

qi =
∨

i

(p ∧ qi).

The equation is to be interpreted in the sense that if the supremum on the
left side exists, then so does the one on the right, and the two are equal.

Proof. Write q =
∨

i qi. The meet p ∧ q is clearly an upper bound for the
family {p ∧ qi}, since

p ∧ qi ≤ p ∧ q
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for every i, by monotony. To show that p ∧ q is the least upper bound, it
must be proved that if p ∧ qi ≤ r for every i, then p ∧ q ≤ r. Observe that

qi = 1 ∧ qi = (p ∨ p ′ ) ∧ qi = (p ∧ qi) ∨ (p ′ ∧ qi) ≤ r ∨ p ′;

the last step uses monotony. Hence, by the definition of a supremum,

q ≤ r ∨ p ′.

Form the meet of both sides of this inequality with p, and apply the distribu-
tive, complement, identity, and monotony laws, to get

p ∧ q ≤ p ∧ (r ∨ p ′ ) = (p ∧ r) ∨ (p ∧ p ′ ) = (p ∧ r) ∨ 0 = p ∧ r ≤ r.

Corollary 2. If {pi} and {qj} are families of elements in a Boolean algebra,
then (∨

i

pi

)
∧
(∨

j

qj

)
=
∨

i,j

(pi ∧ qj).

The equation is to be interpreted in the sense that if the suprema on the left
side exist, then so does the supremum on the right, and the two are equal.

To motivate the most restrictive distributive law, consider a long infimum
of long suprema, such as

(p11 ∨ p12 ∨ p13 ∨ · · · ) ∧ (p21 ∨ p22 ∨ p23 ∨ · · · )∧
(p31 ∨ p32 ∨ p33 ∨ · · · ) ∧ · · · .

Algebraic experience suggests that this ought to be equal to a very long
supremum, each of whose terms is a long infimum like p12 ∧ p23 ∧ p31 ∧ · · · .
The way to get all possible infima of this kind is to pick one term from each
original supremum in all possible ways. The picking is done by a function
that associates with each value of the first index some value of the second
index; the “very long” supremum has one term corresponding to each such
function.

We are now ready for a formal definition. Suppose that I and J are two
index sets and that p(i, j) is an element of a Boolean algebra A whenever i
is in I and j in J . Let JI be the set of all functions from I to J . We say
that the family {p(i, j)} satisfies the complete distributive law in case

(3)
∧

i∈I

∨

j∈J

p(i, j) =
∨

a∈JI

∧

i∈I

p(i, a(i)).
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The assertion of the equation is intended here to imply, in particular, the
existence of the suprema and infima that occur in it. The algebra A is
called completely distributive if it has the following property: whenever all of
the suprema

∨
j∈J p(i, j) and infima

∧
i∈I p(i, a(i)) exist for any given fam-

ily {p(i, j)}, then the existence of the left side of (3) implies that the right
side also exists and that the two are equal.

There is a special case of (3) that is often quite useful. When the index
sets I and J are finite, the suprema and infima that occur in the equation
always exist; in this case, (3) holds without any additional hypotheses, by
the distributive laws (2.20).

The field of all subsets of a set is always completely distributive, and so is
every complete field of sets. However, a complete Boolean algebra need not
be completely distributive. We shall encounter an example in a moment.

Exercises

1. Prove (1) and (2).

2. Suppose that {Ij} is a family of sets with union I, and that Pi, for
each i in I, is a subset of a fixed set X. Show that

⋃

j

( ⋃

i∈Ij

Pi

)
=
⋃

i∈I

Pi.

3. Suppose that I and J are two index sets and that P (i, j) is a subset
of a fixed set X for each i in I and j in J . Let JI be the set of all
functions from I to J . Prove that

⋂

i∈I

⋃

j∈J

P (i, j) =
⋃

a∈JI

⋂

i∈I

P (i, a(i))

and
⋃

i∈I

⋂

j∈J

P (i, j) =
⋂

a∈JI

⋃

i∈I

P (i, a(i)).

4. Write a complete proof of Lemma 1, supplying all missing details.

5. Prove that if every subset of a Boolean algebra has an infimum, then
the algebra is complete.
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6. There is another possible interpretation of the equation in Lemma 2:
if the suprema

∨
i∈I pi and

∨
i∈Ij

pi, for each j, exist, then the su-
premum

∨
j

(∨
i∈Ij

pi

)
exists and
∨

j

( ∨

i∈Ij

pi

)
=
∨

i∈I

pi.

Prove that under this interpretation of the equation the lemma remains
true of all Boolean algebras.

7. Discuss another possible interpretation of the equation in Lemma 3
besides the one stated there.

8. Formulate and prove the dual of Lemma 2.

9. Formulate and prove the dual of Exercise 6.

10. Formulate and prove the dual of Lemma 3.

11. Prove Corollary 2.

12. Formulate and prove the dual of Corollary 2.

13. Formulate and prove a general version of the finite distributive law for
meet over join.

14. Is a complete field of subsets of a set X the same as the field of all
subsets of X?

15. (Harder.) Give an example of a field of sets that happens to be a
complete Boolean algebra but not a complete field of sets.

16. If a Boolean algebra is such that every subset of it has either a su-
premum or an infimum, is it necessarily complete?

17. Interpret and prove the equation

p ∨
∨

i

pi =
∨

i

(p ∨ pi).

18. Interpret and prove the equation
(∨

i

pi

)
∨
(∨

i

qi

)
=
∨

i

(pi ∨ qi).
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19. Interpret and prove the following assertion: if for every i there is a j
such that pi ≤ qj , then

∨

i

pi ≤
∨

j

qj .

20. Interpret and prove the following assertion: if I ⊆ J then
∨

i∈I

pi ≤
∨

i∈J

pi.

21. Let {pi} be a (finite or infinite) sequence of elements in a Boolean
algebra (indexed by positive integers), and write qj = p1 ∨ · · · ∨ pj .
Prove that ∨

j

qj =
∨

i

pi.

The equation is to be interpreted in the sense that if either of the two
suprema exists, then both suprema exist, and the two are equal.

22. Formulate and prove the dual of Exercise 21.

23. Suppose a sequence {pn} of elements in a Boolean algebra has a su-
premum. Prove that the sequence {qn} defined by

qn = pn − (p1 ∨ p2 ∨ · · · ∨ pn−1),

for n ≥ 1, consists of mutually disjoint elements and has the same
supremum as {pn}. (Notice that q1 = p1, since the supremum of the
empty sequence is 0.)

24. Suppose a sequence {pn} of elements in a Boolean algebra is increasing
(in the sense that pn ≤ pn+1 for all n) and has a supremum. Prove that
the sequence {qn} defined by

q1 = p1, and qn = pn − pn−1

for n ≥ 2, consists of mutually disjoint elements and has the same
supremum as {pn}.

25. Interpret and prove the following laws:

(a) q −
∧

i pi =
∨

i(q − pi),

(b) q −
∨

i pi =
∧

i(q − pi),

(c)
(∨

i pi

)
− q =

∨
i(pi − q),
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(d)
(∧

i pi

)
− q =

∧
i(pi − q).

26. Prove that
(∨

i pi

)
+
(∨

i qi

)
≤
∨

i(pi+qi). The inequality is to be inter-
preted in the sense that if all three suprema exist, then the inequality
holds.

27. (Harder.) Let p1, p2, p3, . . . , be a sequence of elements in a Boolean
algebra with the property that p1 ≥ p2 ≥ p3 ≥ · · · , and write

qn = pn − pn+1 = pn ∧ p ′
n+1

for n = 1, 2, 3, . . . . Prove that if the infimum of the family {pn} exists
— call it q0 — then the elements q0, q1, q2,. . . are mutually disjoint and
have p1 as their supremum. (See the diagram.)
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1 2
_ = 
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28. Prove that the interval algebra of the real numbers is not a complete
field of sets. In fact, show that there is a family of elements in the alge-
bra that possesses an infimum, but that infimum is not the intersection
of the family.

29. (Harder.) Prove that the interval algebra of the real numbers is not a
complete Boolean algebra.



Chapter 9

Topology

Valuable examples of Boolean algebras, and in particular of complete Boolean
algebras, can be constructed using topological spaces. The purpose of this
chapter is to go over some of the basic topological notions that will be needed
in the construction of these algebras.

A topology is a very general kind of geometry that is suitable for studying
continuous functions. The basic notion is that of an open set, an abstrac-
tion and generalization of the notion of an open interval of real numbers.
A topological space is a set X, together with a class T of subsets of X that
satisfies three conditions: first, ∅ and X are in T ; second, T is closed under
finite intersections in the sense that the intersection of any finite family of
sets from T is again in T ; third, T is closed under arbitrary unions in the
sense that the union of an arbitrary family of sets from T is again in T . The
elements of X are called points, and the members of T are called open sets.
An open set containing a point x is called a neighborhood of x. The set X is
often called the space, and the class T the topology of the space. The three
conditions on T say that ∅ and X are open sets, that the intersection of
finitely many open sets is open, and that the union of an arbitrary family of
open sets is open.

The classical example of a topological space is the n-dimensional Eu-
clidean space R

n. Its points are the n-termed sequences of real numbers.
The topology of the space is defined in terms of the notion of distance. The
distance between two points

x = (x1, . . . , xn) and y = (y1, . . . , yn)

is the length of the line segment between them:
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d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2 + · · · + (xn − yn)2.

For a given positive real number ε and a point x, the (open) ball with radius ε
and center x is defined to be the set of all points whose distance from x is
less than ε:

{y ∈ R
n : d(x, y) < ε}.

In two-dimensional Euclidean space, this is just the interior of the circle of
radius ε centered at x, and in three-dimensional Euclidean space it is the
interior of the sphere of radius ε centered at x. A subset P of R

n is defined
to be open if for every point x in P , some open ball centered at x is included
in P .

The empty set vacuously satisfies the condition for being open. The whole
space R

n satisfies the condition for being open because it includes every open
ball. It is easy to check that the union of an arbitrary family of open sets in R

n

is open, as is the intersection of a finite family of open sets. For the proof,
consider such a family {Pi} of open sets. If a point x is in the union of the
family, then x is in one of the sets Pi, by the definition of union. Consequently,
some open ball centered at x is included in Pi (because Pi is open) and that
same open ball must be included in the union of the family {Pi}. It follows
that this union is an open set. If the family is finite, and if a point x is in
the intersection of the family, then x belongs to each set Pi. Consequently,
for each index i there is a positive real number εi such that the open ball
of radius εi centered at x is included in Pi. Let ε be the minimum of the
(finitely many) radii εi. The open ball of radius ε centered at x is included in
each set Pi, so it is included in the intersection of the family {Pi}. It follows
that this intersection is an open set. Conclusion: the class of open subsets
of R

n is a topology on R
n.

In the special case of dimension one, the points of the Euclidean space
are identified with real numbers. The open balls are the open intervals

(−∞, a) = {x ∈ R : x < a}, (a,∞) = {x ∈ R : x > a},
(a, b) = {x ∈ R : a < x < b}, (−∞,∞) = R,

where a and b are real numbers with a < b. It is not difficult to see that a
set is open in this space if and only if it can be written as a countable union
of mutually disjoint open intervals. Examples of open sets in R

2 are also
easy to manufacture: the entire space with finitely many points removed is
an example of an open set, and so is the set obtained from R

2 by removing
any straight line (the set is the union of two open half-planes).
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To generalize the notion of a Euclidean space, we must introduce the
notion of a metric. A metric on a set X is a real-valued function d of two
arguments such that for all x, y, and z in X,

d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y (strict positivity),

d(x, y) = d(y, x) (symmetry),

d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

A metric space is a set X together with a metric d on X. (The prototypical
examples are the Euclidean spaces R

n with their distance functions.) For
each positive real number ε, and each point x in X, the open ball of radius ε
centered at x is defined to be the set of points

{y ∈ X : d(x, y) < ε}.

A subset P of X is defined to be open if for every point x in P , some open ball
centered at x is included in P . The resulting class of open sets constitutes
a topology called the metric topology (induced by d) on X. The proof that
the conditions for being a topology really are satisfied by this class of sets is
virtually the same as in the case of Euclidean spaces.

Some types of topologies can be defined on arbitrary sets X. One example
is the discrete topology : every subset of X is declared to be open. Under this
topology, X is called a discrete space. Another example is the indiscrete
or trivial topology : the only sets declared to be open are, by definition, ∅

and X. A third example is the cofinite topology : a subset of X is defined
to be open if it is empty or the complement of a finite set. (It is a simple
matter to check that finite intersections and arbitrary unions of cofinite sets
are cofinite.) The discrete and cofinite topologies on X coincide when X is
finite, but they are obviously different when X is infinite.

A subset Y of a topological space X may be endowed with the inherited
topology by declaring a subset P of Y to be open ife it can be written in the
form

P = Y ∩ Q

for some open subset Q of X. It is easy to check that under this definition the
empty set and Y are both open, and that finite intersections and arbitrary
unions of open sets are open. (The proof that arbitrary unions of open sets
are open uses the infinite distributive law (8.2).) The resulting space Y is
said to be a subspace of X.
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For a concrete example, let X be the space of real numbers and Y the
closed interval [0, 1]. The open intervals of Y , under the inherited topology,
are the subintervals

[0, a), (a, b), (a, 1], and [0, 1]

with 0 ≤ a < b ≤ 1. The open subsets of Y turn out to be the countable
unions of pairwise disjoint open intervals. Notice that some of these sets are
not open in the topology of X.

The dual of the notion of an open set is that of a closed set. A set of
points in a topological space is said to be closed if it is the complement
of an open set. The intersection of an arbitrary family of closed sets is
closed. Indeed, if {Qi} is a family of closed sets, then the complements Q ′

i

are open, by definition, and therefore the union of the family of complements
is open. It follows that the complement of this union is a closed set; since
that complement is just the intersection of the family {Qi},

⋂

i

Qi =
(⋃

i

Q ′
i

)
′,

the intersection of the family is closed. An analogous argument shows that
a finite union of closed sets is closed. It is an elementary theorem of analysis
that a subset P of a metric space (but not a subset of an arbitrary topological
space) is closed just in case the limit of a convergent sequence of points from P
always belongs to P . More precisely, if {xn} is an infinite sequence of points
in P that converges to a limit x in the metric space, then x belongs to P .

As in the case of open sets, it is helpful to gain a sense of what closed
sets may look like. In R, the intervals

(−∞, a] = {x ∈ R : x ≤ a}, [a,∞) = {x ∈ R : x ≥ a},
[a, b] = {x ∈ R : a ≤ x ≤ b}, (−∞,∞) = R

are closed, as is any finite union of them (where a and b are real numbers
with a ≤ b). In particular, the sets [a, a] — which are just the singletons {a}
— are closed. Consequently, any finite set of real numbers is closed (every
finite set is the union of a finite class of singletons). The set of positive
integers is closed, but the set of the reciprocals of positive integers is not
closed; it becomes closed when the integer 0 is adjoined. In R

2, the line
segment {(x, 0) : 0 < x < 1} is neither open nor closed, but the segment
{(x, 0) : 0 ≤ x ≤ 1} is closed. Every subset of a discrete space is of course
closed. A subset of a space with the cofinite topology is closed if and only if
it is finite or the whole space.
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Sets that are both open and closed are called clopen. The whole space
and the empty set are always clopen. Every subset of a discrete space is
clopen.

In what follows, let P be an arbitrary subset of a topological space. The
interior of P is defined to be the union of the open sets that are included
in P . This interior is clearly an open set, and in fact it is the largest open
set that is included in P . We shall denote it by P ◦. Examples: in R, the
interior of the closed interval [0, 1] is the open interval (0, 1) and the interior
of the set of rational numbers is the empty set; in R

2, the interior of the unit
square is the unit square with its perimeter removed, while the interior of the
line segment {(x, 0) : 0 ≤ x ≤ 1} is the empty set. In a discrete space every
subset coincides with its own interior. In a space with the cofinite topology,
the interior of a cofinite subset is itself, and the interior of every other subset
is empty.

The dual of the notion of an interior is that of a closure: the closure
of P is defined to be the intersection of all closed sets that include P . This
closure is of course a closed set, and in fact it is the smallest closed set
that includes P . It is denoted by P− (not P ) for typographic reasons. The
closure of P can be characterized as the set of points x such that every
neighborhood of x has a non-empty intersection with P . For the proof in one
direction, suppose some neighborhood of x, say Q, is disjoint from P . The
complement Q ′ is a closed set that includes P , so it belongs to the family
of closed sets whose intersection is P−. Since the point x is not in Q ′, it
cannot belong to this intersection, and therefore it cannot belong to P−.
To establish the reverse implication, suppose every neighborhood of x has
a non-empty intersection P . If Q is a closed set that includes P , then Q ′

is an open set that is disjoint from P , so Q ′ cannot contain x. It follows
that x is in Q. In other words, x belongs to every closed set that includes P ;
therefore x must belong to the intersection of all such closed sets, and this
intersection is just P−. The closure of set P in a metric space (but not in a
arbitrary topological space) can be characterized as the set of all limit points
of convergent infinite sequences of points from P .

Here are some examples of closures. In R, the closure of the set of rational
points is the entire space, and the closure of the set

P = {1/n : n is a positive integer}
is the set P ∪{0}. In R

2, the closure of an open disk is the open disk together
with its perimeter, and the closure of the set of points

Q = {(x, y) : y = sin(1/x) and 0 < x ≤ 1}
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is the union of Q with the set

{(0, y) : −1 ≤ y ≤ 1}.

In a discrete space, every subset is its own closure. In a space with the
cofinite topology, the closure of a finite subset is itself, and the closure of an
infinite subset is the whole space.

It is not difficult to see that the closure of a set P is the complement of
the interior of the complement of P . In other words,

(1) P− = P ′◦′.

Indeed, P ′◦ is an open set that is included in P ′, by the definition of the
interior of a set. Form the complements of both sets to conclude that P ′′

— which is just P — is included in the closed set P ′◦′. Since P− is the
smallest closed set that includes P , it follows that P− is a subset of P ′◦′.
To establish the reverse inclusion, consider any closed set Q that includes P .
The complement Q ′ is an open set that is included in P ′. Since P ′◦ is the
largest open set that is included in P ′, it follows that Q ′ is included in P ′◦.
Form the complements of both sets to conclude that Q′′ — which is just Q
— includes P ′◦′. This argument shows that every closed set that includes P
also includes P ′◦′. In particular, the closure P− includes P ′◦′.

Replace P by P ′ in (1), and form the complement of both sides to con-
clude that the interior of P is equal to the complement of the closure of the
complement of P , that is,

(2) P ◦ = P ′−′.

We shall need two properties about the closure operator. First, it pre-
serves inclusion:

(3) P ⊆ Q implies P− ⊆ Q−.

This is immediately evident from the definition of closure. Second, it pre-
serves union:

(4) (P ∪ Q)− = P− ∪ Q−.

The inclusion from right to left follows from (3): the sets P and Q are both
included in P ∪ Q, so their closures are included in (P ∪ Q)−. The reverse
inclusion follows from the simple observation that P− ∪ Q− is a closed set
and it includes P ∪Q, so it must include the smallest closed set that includes
P ∪ Q, namely (P ∪ Q)−.
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A set P is said to be dense if its closure is the entire space. This means
that every non-empty open set contains points of P . More generally, a set P
is said to be dense in an open set Q if the closure of P includes Q. For
instance, the set of points in R

2 with rational coordinates is dense, while the
set of points with positive rational coordinates is dense in the first quadrant
of R

2, but not in all of R
2. In a discrete space, no proper subset of the space

is dense. In an infinite space with cofinite topology, every infinite subset of
the space is dense.

The opposite of being dense is being nowhere dense. A set P is defined to
be nowhere dense if it is not dense in any non-empty open set. This means
that the interior of the closure of P is empty, or what amounts to the same
thing, no non-empty open set is included in the closure of P . To say that no
non-empty open set is included in P− is equivalent to saying that every non-
empty open set has a non-empty intersection with P−′. Thus, P is nowhere
dense if and only if P−′ is dense.

Examples of nowhere dense sets are not hard to manufacture. Every finite
set of points is nowhere dense in R

n. The integers are nowhere dense in R,
and any straight line is nowhere dense in R

2. In a discrete space only the
empty set is nowhere dense. In an infinite space with the cofinite topology,
a set is nowhere dense just in case it is finite.

A finite union of nowhere dense sets is again nowhere dense, but a count-
able union of such sets may in fact be dense. For example, the set of points
with rational coordinates is dense in R

n, and yet it is a countable union of
nowhere dense sets, namely the singletons of points with rational coordinates.
A set is said to be meager if it is the countable union of nowhere dense sets.
(In classically clumsy nomenclature, meager sets are also called sets of the
first category.) An important result in analysis known as the Baire category
theorem says that the interior of a meager set of points in R

n is always empty.
(See Theorem 28 for one version of this theorem.) In a discrete space only
the empty set is meager. In an infinite space with the cofinite topology, a set
is meager just in case it is countable. In particular, if the space is countably
infinite, then every subset is meager.

A point x is a boundary point of a set P if every neighborhood of x
contains points of P and points of P ′. In other words, x is a boundary point
of P just in case it belongs to the closure of both P and P ′. The boundary
of P is the set of its boundary points, that is to say, it is the set P− ∩ P ′−.

The boundary of a set is always closed, because it is the intersection of
two closed sets. In a metric space (but not in an arbitrary topological space),
a point x is in the boundary of a set P just in case there is a sequence of points
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in P that converges to x and a sequence of points in P ′ that converges to x.
If a set P is open, then its complement P ′ is closed, and therefore P ′− = P ′;
in this case, the boundary of P is just the set-theoretic difference P− − P .

Here are some examples. The boundary of an open ball in R
3 of radius ε

and center x is the set of points whose distance from x is exactly ε. The
boundary of the set of points

P = {(1/n, 1/n) : n is a positive integer}
in R

2 is the set P ∪ {(0, 0)}. More generally, the boundary of any nowhere
dense set P in a topological space is just the closure P−. Indeed, in this
case the set P−′ is dense; since P−′ ⊆ P ′, the set P ′ must also be dense, so
that P ′− is the whole space, and therefore P− ∩ P ′− = P−. In a discrete
space every set of points has an empty boundary. In an infinite space with
the cofinite topology, the boundary of a finite set is itself, the boundary of
a cofinite set is its complement, and the boundary of an infinite set with an
infinite complement is the whole space.

The closure of a set P ought to be, and is, the union of P with its
boundary. To prove this assertion, write Q = P− ∩ P−′ for the boundary.
Obviously, P and Q are both included in P−, and therefore so is P ∪ Q. To
establish the reverse inclusion, consider a point x in P−. If x is in P , then
certainly x is in the union P ∪ Q. If x is not in P , then it is in P ′. In this
case, every neighborhood of x contains a point in P ′, namely x, and also a
point in P , since x is in the closure of P . It follows that x belongs to the
boundary Q, by definition, and therefore it belongs to P ∪ Q.

An open set is said to be regular if it coincides with the interior of its
own closure. In other words, P is regular if and only if

P = P−′−′,

by (2). It is convenient, in this connection, to write P⊥ = P−′; in these
terms, P is regular if and only if

P = P⊥⊥

(where P⊥⊥ denotes (P⊥)⊥). Every open ball in R
n is regular. So is the

open unit square in R
2.

To construct an example of an open set that is not regular, start with
a non-empty, nowhere dense set P in a topological space X, and form P⊥.
Certainly P⊥ is open, for it is the complement of a closed set. Since P−

is not empty, its complement P⊥ cannot be the whole space X. To prove
that P⊥ is not regular, it therefore suffices to show that



9 Topology 61

(5) (P⊥)⊥⊥ = X.

The assumption that P is nowhere dense implies that the complement of its
closure, which is just the set P⊥, is dense. Consequently, the closure of P⊥

is X, and this directly implies (5):

(P⊥)⊥⊥ = (P⊥)−′−′ = (P⊥−) ′−′ = X ′−′ = ∅
−′ = ∅

′ = X.

This example reveals the intuition behind regular open sets: they are the
open sets without “cracks”. Concrete examples of open sets that are not
regular can be obtained by taking for P in the preceding construction any
finite set of points or any straight line in R

n (n ≥ 2); the closure P− then
coincides with P , so that P⊥ is the space R

2 with finitely many points, or
with a straight line, removed. In a discrete space, every set of points is a
regular open set. In an infinite space with the cofinite topology, there are
only two regular open sets: the empty set and the whole space.

Note incidentally that a set P is open (nothing is said about regularity
here) if and only if it has the form Q⊥ for some set Q. Indeed, if P = Q⊥,
then P is the complement of the closed set Q−, and so it must be open.
Conversely, if P is open, and if Q is the complement of P , then Q is closed
and therefore

Q⊥ = Q−′ = Q ′ = P ′′ = P.

Exercises

1. Prove that a subset P of a topological space is open just in case every
point in P belongs to an open set that is included in P .

2. Prove, using the definition of an open set in the space R
n, that if finitely

many points are removed from R
n, the resulting set is open.

3. Prove, using the definition of an open set in the space R
n, that if all

the points on some straight line are removed from R
n, the resulting set

is open.

4. Show that in a topological space, a finite union of closed sets is always
closed.

5. Prove that the class of clopen sets in a topological space is a field of
sets.
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6. Show that the inherited topology on a subset Y of a topological space X
is in fact a topology. In other words, show that the class of sets of the
form Y ∩ U , where U ranges over the open subsets of X, satisfies the
three defining conditions for a topology. Show further that a subset P
of Y is closed in the inherited topology if and only if there is a closed
subset Q of X such that P = Y ∩ Q.

7. Suppose Y is an open subset of a topological space X, and P an arbi-
trary subset of Y . Prove that P is open in the inherited topology on Y
(Exercise 6) just in case it is open in X.

8. Formulate and prove a version of Exercise 7 for closed sets.

9. Suppose Y is a subspace of a topological space X. Show that if P is
a subset of Y , then the closure of P in Y is equal to the intersection
with Y of the closure of P in X.

10. (Harder.) Show that the distance function defined on R
n satisfies the

three conditions for being a metric.

11. Show that the class of open sets in a metric space satisfies the conditions
for being a topology.

12. Show that a subset of a metric space is open if and only if it is a union
of open balls.

13. Let P and Q be subsets of a topological space. Prove the following
assertions.

(a) If P ⊆ Q, then P ◦ ⊆ Q◦.

(b) (P ∩ Q)◦ = P ◦ ∩ Q◦.

(c) (P ∪ Q)⊥ = P⊥ ∩ Q⊥.

(d) P ∩ Q− ⊆ (P ∩ Q)− whenever P is open.

(e) P ∩ Q− = (P ∩ Q)− whenever P is clopen.

14. Give a direct proof of equation (2), without using (1).

15. If P and Q are open sets, is the equation

(P ∩ Q)− = P− ∩ Q−

true?
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16. (Harder.) If P and Q are open sets, is the equation

(P ∩ Q)−◦ = (P− ∩ Q−)◦

true?

17. Prove that every subset of a discrete space has an empty boundary.

18. In an infinite space with the cofinite topology, prove that the boundary
of a finite set is the set itself, the boundary of a cofinite set is the
complement of the set, and the boundary of an infinite set with an
infinite complement is the whole space.

19. Prove that a set of points and its complement always have the same
boundary.

20. Prove that the boundary of a nowhere dense set is just the closure of
the set.

21. Prove that the boundary of the union of two sets of points is included
in the union of the boundaries of the two sets.

22. Prove that the complement of the boundary of an open set P is equal
to P ∪ P⊥.

23. Prove that in a topological space, the class of sets with countable
boundaries is a field of sets.

24. Prove that a finite union of nowhere dense sets is nowhere dense.

25. Prove that a subset of a nowhere dense set is nowhere dense.

26. Prove that in a topological space, the class of sets with nowhere dense
boundaries is a field of sets. (This example of a field of sets is due to
Stone [67].)

27. Prove that a subset of a meager set is meager.

28. Prove that the union of a countable sequence of meager sets is meager.

29. Prove that in a topological space, the sets with meager boundaries form
a field.

30. Prove that every clopen set in a topological space is a regular open set.
Conclude that every subset of a discrete space is a regular open set.
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31. Prove that in an infinite space with the cofinite topology only the empty
set and the whole space are regular open sets.

32. Let X be a set of uncountable cardinality. Define a subset of X to be
open if it is empty or the complement of a countable set.

(a) Prove that the class of open sets so defined satisfies the three
conditions for being a topology on X. (It is called the cocountable
topology.)

(b) Describe the closed sets.

(c) Describe the interior of each set.

(d) Describe the closure of each set.

(e) Describe the nowhere dense sets.

(f) Describe the meager sets.

(g) Describe the boundary of each set.

(h) Describe the regular open sets.

33. A linear order (also called a total order) on a set X is a partial order ≤
on X (Chapter 7) such that any two elements x and y in X are com-
parable: either x ≤ y or y ≤ x. (The set X itself is said to be linearly
ordered or totally ordered.) Write x < y to mean that x ≤ y and x �= y.

Given a linear order ≤ on a set X, define the open intervals of X to
be the subsets

(−∞, a) = {x ∈ X : x < a}, (a,∞) = {x ∈ X : x > a},
(a, b) = {x ∈ X : a < x < b}, (−∞,∞) = X,

for a, b in X, and define the open sets of X to be the unions of arbitrary
families of open intervals. Prove that the class of sets so defined is a
topology for X. (It is called the order topology on X.)

34. Prove that a subset of the (Euclidean) space of real numbers is open if
and only if it can be written as a countable union of mutually disjoint
open intervals.

35. (Harder.) Prove that there are 2ℵ0 open sets in the space of real num-
bers.

36. Let Q be an open ball in R
n and P a non-empty, nowhere dense subset

of Q. Prove that the set Q ∩ P⊥ = Q − P− is open, but not regular.
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37. Can every open set in R
n be written as the union of a family of regular

open sets?

38. Can every open set in an arbitrary topological space be written as the
union of a family of regular open sets?

39. For every subset P of a topological space, prove that P⊥ is the largest
open set that is disjoint from P . Conclude that P is a regular open set
if and only if it is the largest open set that is disjoint from the largest
open set that is disjoint from P .

40. (Harder.) What is the largest number of distinct sets obtainable from a
subset of R

n by repeated applications of closure and complementation?
Construct an example for which this largest number is attained. (The
question and its answer are both due to Kuratowski [36].)



Chapter 10

Regular Open Sets

The purpose of this chapter is to discuss one more example of a Boolean
algebra. This example, the most intricate of all the ones so far, is one in
which the elements of the Boolean algebra are subsets of a set. However, the
operations are not the usual set-theoretic ones, so the Boolean algebra is not
a field of sets. Artificial examples of this kind are not hard to manufacture;
the example that follows arises rather naturally and plays an important role
in the general theory of Boolean algebras.

Recall (Chapter 9) that an open set in a topological space X is regular
if it coincides with the interior of its own closure. The next theorem (due to
MacNeille [43] and Tarski [75]) asserts that the regular open sets constitute
a complete Boolean algebra of sets, the regular open algebra of X.

Theorem 1. The class of all regular open sets of a topological space X is a
complete Boolean algebra with respect to the distinguished Boolean elements
and operations defined by

0 = ∅,(1)
1 = X,(2)

P ∧ Q = P ∩ Q,(3)

P ∨ Q = (P ∪ Q)⊥⊥,(4)

P ′ = P⊥.(5)

The infimum and the supremum of a family {Pi} of regular open sets are,
respectively,

(⋂

i

Pi

)⊥⊥
and

(⋃

i

Pi

)⊥⊥
.
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The proof of the theorem depends on several small lemmas of some inde-
pendent interest. The first thing to prove is that the right sides of (1)–(5) are
regular open sets. For (1) and (2) this is obvious, but for (3), for instance, it
is not. To say that the intersection of two regular open sets is regular may
sound plausible (this is what is involved in (3)), and it is true. It is, however,
just as plausible to say that the union of two regular open sets is regular,
but that is false. Example: let P and Q be disjoint open half-planes in R

2

separated by a line (a nowhere dense set), say P consists of the points to the
right of the y-axis, and Q consists of the points to the left; then P ∪ Q is
open, but not regular, since

(P ∪ Q)⊥⊥ = R
2.

In intuitive terms, an open set is regular if there are no cracks in it; the
trouble with the union of two regular open sets is that there might be a crack
between them. This example helps to explain the necessity for the possibly
surprising definition (4). It is obvious that something unusual, such as (5)
for instance, is needed in the definition of complementation; the set-theoretic
complement of an open set (regular or not) is quite unlikely to be open.

Lemma 1. If P ⊆ Q, then Q⊥ ⊆ P⊥.

Proof. Closure preserves inclusions and complementation reverses them.

Lemma 2. If P is open, then P ⊆ P⊥⊥.

Proof. Since P ⊆ P−, it follows, by complementation, that P⊥ ⊆ P ′. Now
apply closure: since P ′ is closed, it follows that P⊥− ⊆ P ′, and this is the
complemented version of what is wanted.

Lemma 3. If P is open, then P⊥ = P⊥⊥⊥.

Proof. Apply Lemma 1 to the conclusion of Lemma 2 to get P⊥⊥⊥ ⊆ P⊥,
and apply Lemma 2 to the open set P⊥ (in place of P ) to get the reverse
inclusion.

It is an immediate consequence of Lemma 3 that if P is open, and all the
more if P is regular, then P⊥ is regular; this proves that the right side of (5)
belongs to the class of regular open sets. Since (P ∪Q)⊥ is always open, the
same thing is true for (4). To settle (3), one more argument is needed.

Lemma 4. If P and Q are open, then (P ∩ Q)⊥⊥ = P⊥⊥ ∩ Q⊥⊥.
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Proof. The set P ∩ Q is included in P and in Q, so the set (P ∩ Q)⊥⊥ is
included in P⊥⊥ and in Q⊥⊥, by two applications of Lemma 1. Consequently,

(P ∩ Q)⊥⊥ ⊆ P⊥⊥ ∩ Q⊥⊥.

The reverse inclusion depends on the general topological fact that if P is
open, then

P ∩ Q− ⊆ (P ∩ Q)−.

(It must be checked that every neighborhood U of a point x in P ∩ Q− has
a non-empty intersection with P ∩ Q. The point x is in Q−, by assumption,
and U ∩ P is a neighborhood of x, so U ∩ P must intersect Q in some point.
Of course, U meets P ∩ Q in the same point.) Complementing this relation,
we get

(P ∩ Q)⊥ ⊆ P ′ ∪ Q⊥.

Apply the operations of closure and complement to arrive at

(P ′ ∪ Q⊥)−′ ⊆ (P ∩ Q)⊥⊥.

Closure distributes over unions, and P ′ is closed (whence P ′−′ = P ′′ = P ),
so the preceding inclusion may be written in the form

(6) P ∩ Q⊥⊥ ⊆ (P ∩ Q)⊥⊥.

An application of (6) with P⊥⊥ in place of P , followed by an application
of (6) with the roles of P and Q interchanged, yields

P⊥⊥ ∩ Q⊥⊥ ⊆ (P⊥⊥ ∩ Q)⊥⊥ ⊆ (P ∩ Q)⊥⊥⊥⊥.

The desired conclusion follows from Lemma 3.

Lemma 4 implies immediately that the intersection of two regular open
sets is regular, and hence that the right side of (3) belongs to the class of
regular open sets.

So far it has been shown that the class of regular open sets of a topological
space X is closed under the operations defined by (1)–(5). To complete
the proof of the first assertion of Theorem 1, it must now be shown that
these operations satisfy some system of axioms for Boolean algebras. It
is less trouble to verify every one of the conditions (2.11)–(2.20) than to
prove that some small subset of them is sufficient to imply the rest. In
the verifications of (2.11), (2.12), (2.13), (2.15), (2.16), (2.17), (2.18), and
(2.19), nothing is needed beyond the definitions and some straightforward
computations involving Lemma 3 and the equation
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(7) (P ∪ Q)⊥ = P⊥ ∩ Q⊥

(valid for any two sets P and Q). The proof of (7) is quite easy. Closure
distributes over union, by (9.3), so

(P ∪ Q)− = P− ∪ Q−.

Form the complement of both sides of this equation to arrive at (7).
The validity of the distributive axioms (2.20) in the algebra of regular

open sets depends on Lemma 4. Here is the verification of the first of these
axioms:

P ∧ (Q ∨ R) = P ∩ (Q ∪ R)⊥⊥ = P⊥⊥ ∩ (Q ∪ R)⊥⊥

= (P ∩ (Q ∪ R))⊥⊥ = ((P ∩ Q) ∪ (P ∩ R))⊥⊥

= (P ∧ Q) ∨ (P ∧ R).

The first and last equalities follow from definitions (3) and (4), the second
from the assumed regularity of P , the third from Lemma 4, and the fourth
from the distributive law (2.10) for intersection over union.

It remains to verify the complement laws (2.14); this amounts to showing
that

P ∩ P⊥ = ∅ and (P ∪ P⊥)⊥⊥ = X.

The first identity is obvious, since P⊥ ⊆ P ′. The second one is not; one
way to proceed is by means of a little topological lemma that has other
applications also.

Lemma 5. The boundary of an open set is a nowhere dense closed set.

Proof. The boundary of an open set P is the set P− ∩ P ′ (see p. 60). If the
boundary of P included a non-empty open set, then that open set would have
a non-empty intersection (namely itself) with P−, and, at the same time, it
would be disjoint from P (because it is included in P ′ ). This contradicts the
fundamental property of closure (often used as the definition — see p. 57).

Lemma 5 implies that if P is open, and all the more if it is regular, then
the complement of the boundary of P , that is, P ∪P⊥, is a dense open set. It
follows that (P ∪P⊥)⊥ = ∅ and hence that (P ∪P⊥)⊥⊥ = X. This completes
the proof of the first assertion of Theorem 1. The second assertion of the
theorem follows from the next lemma and its dual.

Lemma 6. The supremum of a family {Pi} of regular open sets is (
⋃

i Pi)⊥⊥.
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Proof. Write P = (
⋃

i Pi)⊥⊥. Each of the sets Pi is included in their union, so
Lemma 2 implies that Pi ⊆ P for every i. (Since the meet of two regular open
sets is the same as their intersection, the Boolean order relation for regular
open sets is the same as ordinary set-theoretic inclusion.) To prove that the
upper bound P is the least possible one, suppose Q is a regular open set
such that Pi ⊆ Q for every i. The proof that then P ⊆ Q is quite easy: just
observe that

⋃
i Pi ⊆ Q and apply Lemma 1 twice to obtain P ⊆ Q⊥⊥ = Q.

It is worth pointing out again that the Boolean algebra of regular open
sets is not a field of sets, much less a complete field of sets. The example
preceding Lemma 1 shows that the join of two regular open sets may be
different from their union.

It is also worth mentioning that, in general, this algebra fails to be com-
pletely distributive. Consider, for instance, the regular open algebra of the
open unit interval (0, 1). (Warning to the would-be expert. Compactness, or
its absence, has nothing to do with this example; the endpoints were omitted
for notational convenience only.) Let I be the set of non-negative integers and
let J be the set consisting of the two numbers +1 and −1. To define P (i, j),
split the interval into 2i open intervals of length 2−i; let P (i,−1) be the union
of the open left halves of these intervals and let P (i,+1) be the union of their
open right halves.

For example, when i = 1, the interval (0, 1) is split into the two open
intervals (0, 1/2) and (1/2, 1) of length 1/2. The open left halves of these
intervals are (0, 1/4) and (1/2, 3/4), and the open right halves are (1/4, 1/2)
and (3/4, 1). The regular open sets P (1,−1) and P (1, +1) are defined by

P (1,−1) = (0, 1/4) ∪ (1/2, 3/4) and P (1, +1) = (1/4, 1/2) ∪ (3/4, 1).

The union of these two sets is the entire space (0, 1) with the points 1/4, 1/2,
and 3/4 removed. Consequently, the join of the two sets is the entire space.

In general, the union of the two sets P (i,−1) and P (i,+1) is the entire
space with the points of the form k/2i+1 removed for 0 < k < 2i+1. These
latter points form a nowhere dense subset of the space, so the join

P (i,−1) ∨ P (i,+1)

is equal to the entire space (0, 1) for each i. It follows that the left side of
equation (8.3) is the unit element of the algebra under consideration.

For each function a in JI , the intersection
⋂

i P (i, a(i)) coincides with
the intersection of a nested sequence of open intervals whose lengths go to
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zero; consequently, the intersection contains at most one point, whatever the
function a may be. In fact, the only point that can be in the intersection is
the real number whose binary representation has 0 or 1 in the (i+1)th place
according as a(i) is −1 or +1. It follows that the infimum

∧
i P (i, a(i)) is the

zero element of our algebra for every function a; hence, so is the right side of
equation (8.3).

This last argument can be clarified with an example. Suppose a is a
function from I to J whose first four values are

a(0) = −1, a(1) = +1, a(2) = +1, and a(3) = −1.

Then,

P (0, a(0)) = (0, 1/2),
P (1, a(1)) = (1/4, 2/4) ∪ (3/4, 4/4),
P (2, a(2)) = (1/8, 2/8) ∪ (3/8, 4/8) ∪ (5/8, 6/8) ∪ (7/8, 8/8),
P (3, a(3)) = (0/16, 1/16) ∪ (2/16, 3/16) ∪ · · · ∪ (14/16, 15/16),

...

The intersection of these sets coincides with the intersection of the open
intervals

(0, 1/2), (1/4, 2/4), (3/8, 4/8), (6/16, 7/16), . . . .

If there is a point in this intersection, it can only be the real number whose
binary representation begins with .0110 . . . . Consequently, the infimum of
the family {P (i, a(i))} is the empty set.

Exercises

1. Prove that a subset Q of a topological space is regular and open if and
only if Q = P⊥⊥ for some set P .

2. Prove, for an arbitrary subset P of a topological space, that

P⊥− = P⊥⊥⊥−.

3. Show that Boolean axioms (2.11), (2.12), (2.13), (2.15), (2.16), and
(2.18) are valid in the algebra of regular open sets.

4. Show that the De Morgan laws (2.17) are valid in the algebra of regular
open sets.
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5. Show that the associative laws (2.19) are valid in the algebra of regular
open sets.

6. Show that the distributive law for join over meet in (2.20) is valid in
the algebra of regular open sets.

7. Describe the Boolean algebra of regular open subsets of a discrete space.

8. Describe the Boolean algebra of regular open subsets of an infinite space
with the cofinite topology.

9. (Harder.) A closed subset P of a topological space X is called regular
if it is equal to the closure of its interior: P = P ◦−. Define operations
of join, meet, and complement on the class of regular closed subsets of
X, and prove that the resulting algebra is a complete Boolean algebra.
(This dual formulation of the regular open algebra is due to Tarski [75].)

10. (Harder.) Prove, using the last assertion of Theorem 1 and the infinite
version of the De Morgan laws (Lemma 8.1), that if {Pi} is a family of
regular open sets, then

(⋂

i

Pi

)
−′−′ =

(⋂

i

P−
i

)
′−′.

Show that this is not necessarily true for arbitrary open sets, and give
a direct topological proof for regular open sets.

11. This exercise refers to the notation introduced in the final example
of the chapter. Consider the function a from the set of non-negative
integers into the set {−1, +1} defined by

a(i) =

{
+1 if i is even,

−1 if i is odd.

(a) Write out explicitly the sets P (0, a(0)), P (1, a(1)), P (2, a(2)), and
P (3, a(3)).

(b) The intersection of the family {P (i, a(i))} coincides with the in-
tersection of which family of open intervals?

(c) What is the binary representation of the only real number that
can be in this intersection?

(d) Is that real number in the intersection?
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12. Repeat the preceding exercise for the function a defined by

a(i) =

{
+1 if i > 0,

−1 if i = 0.



Chapter 11

Subalgebras

A (Boolean) subalgebra of a Boolean algebra A is a subset B of A such that B,
together with the distinguished elements and operations of A (restricted to
the set B), is a Boolean algebra. The algebra A is called a (Boolean) extension
of B.

Warning: the distinguished elements 0 and 1 are essential parts of the
structure of a Boolean algebra. A subring of a ring with unit may or may
not have a unit, and if it has one, its unit may or may not be the same as the
unit of the whole ring. For Boolean algebras this indeterminacy is defined
away: a subalgebra must contain the element 1. The insistence on the role
of 1 is not an arbitrary convention, but a theorem. Since complementation
is indubitably an essential part of the structure of a Boolean algebra, the
presence of 1 in every subalgebra can be proved. Proof: a subalgebra con-
tains, along with each element p, the complement p ′ and the join p ∨ p ′.
The latter element is just 1. This proof made implicit use of the fact that
a subalgebra is not empty. If 0 and 1 are not built into the definition of a
Boolean subalgebra, then non-emptiness must be explicitly assumed.

To illustrate the situation, let Y be a non-empty subset of a set X.
Both P(X) and P(Y ) are Boolean algebras in a natural way (Chapter 2),
and clearly every element of P(Y ) is an element of P(X). Since, however, the
unit of P(X) is X, whereas the unit of P(Y ) is Y , it is not true that P(Y )
is a Boolean subalgebra of P(X). Another reason why it is not true is, of
course, that complementation in P(Y ) is not the restriction of complemen-
tation in P(X).

There is another possible source of misunderstanding, but one that is
less likely to lead to error. (Reason: it is not special to Boolean algebras,
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but has its analogue in almost every algebraic system.) To be a Boolean
subalgebra it is not enough to be a subset that is a Boolean algebra in its
own right, however natural the Boolean operations may appear. The Boolean
operations of a subalgebra, by definition, must be the restrictions of the
Boolean operations of the whole algebra. The situation is illuminated by the
regular open algebra A of a topological space X (Chapter 10). Clearly A
is a subclass of the field P(X), but, equally clearly, A is not a subalgebra
of P(X): the join and complement operations of A are not union and set-
theoretic complementation.

Every non-degenerate Boolean algebra A includes a trivial subalgebra,
namely 2; all other subalgebras of A will be called non-trivial . Every Boolean
algebra A includes an improper subalgebra, namely A; all other subalgebras
will be called proper.

The definition of a field of subsets of a set X may be formulated by
saying that it is a Boolean subalgebra of the special field P(X). In general
a Boolean subalgebra of a field of sets is called a subfield . Here are three
examples of subalgebras (and in fact of subfields): the finite–cofinite algebra
of a set X is a subalgebra of the countable–cocountable algebra of X; the
algebra of (periodic) sets of integers of period 3 is a subalgebra of the algebra
of sets of integers of period 6; and the interval algebra of finite unions of
left half-closed intervals (of real numbers) with endpoints that are rational
(or ±∞) is a subalgebra of the interval algebra of finite unions of arbitrary
left half-closed intervals of real numbers.

If a non-empty subset B of a Boolean algebra A is closed under some
Boolean operations, and if there are enough of those operations that all other
Boolean operations can be defined by them, then B is a subalgebra of A.
Example: if B is closed under joins and complements, then B is a subalgebra,
since meet is definable in terms of join and complement; alternatively, if B
is closed under the Sheffer stroke, then B is a subalgebra.

A moment’s thought shows that the intersection of every family {Bi} of
subalgebras of a Boolean algebra A is again a subalgebra of A. (The inter-
section of the empty family is, by convention, the improper subalgebra A.)
For the proof, suppose p and q are elements of the intersection

⋂
i Bi. These

elements then belong to every subalgebra Bi. Since subalgebras are closed
under the operations of join, meet, and complement, the elements

p ∧ q, p ∨ q, and p ′

must belong to every subalgebra Bi, and therefore they must belong to the
intersection of these subalgebras. The intersection is not empty, because it
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contains 0.
It follows that if E is an arbitrary subset of A, then the intersection of all

those subalgebras that happen to include E is a subalgebra. (There is always
at least one subalgebra that includes E, namely the improper subalgebra A.)
That intersection, say B, is the smallest subalgebra of A that includes E;
in other words, B is included in every subalgebra that includes E. The
subalgebra B is said to be generated by E, and E is called a set of generators
of B.

Here is a trivial example: if E is empty and A is not degenerate, then the
subalgebra generated by E is the smallest possible subalgebra of A, namely 2.
As a less trivial example, consider the field A of finite and cofinite subsets of
a set X. We shall prove that it is generated in P(X) by the set E of one-
element (that is, singleton) subsets of X. Let B be the subalgebra of P(X)
generated by E. It is to be shown that B coincides with A. A singleton
is a finite set, and therefore is an element of A; the set E is thus included
in A. It follows that B (the smallest subalgebra that includes E) must also
be included in A. To establish the reverse inclusion, notice that a finite
subset of X is a finite union of singletons, and therefore must belong to every
subalgebra that includes E. It follows that every finite subset of X belongs
to B, and hence so does the complement of every finite subset. This proves
that A is included in B.

A simple but useful remark for subsets E and F of a Boolean algebra A is
that if F is included in E, then the subalgebra generated by F is included (as
a subalgebra) in the subalgebra generated by E. This follows directly from
the definition of generation, since every subalgebra that includes E must also
include F .

The relation of one Boolean algebra being a subalgebra of another is a
partial order on the class of all Boolean algebras. In other words, it is a re-
flexive, antisymmetric, transitive (binary) relation between Boolean algebras.
Reflexivity means, in this case, that every Boolean algebra is a subalgebra
of itself. Antisymmetry means that if two Boolean algebras are subalgebras
of one another, then they are equal. Transitivity means that, for any three
Boolean algebras A, B, and C, if C is a subalgebra of B, and B a subalgebra
of A, then C is a subalgebra of A. These properties all follow easily from the
definition of a subalgebra.

It is an interesting and occasionally useful observation that the class of all
subalgebras of a Boolean algebra A is a complete lattice under the relation
of being a subalgebra. The infimum of any family {Bi} of subalgebras of A
is the intersection of the family; it is the largest subalgebra of A that is a
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subalgebra of Bi for every i. The supremum of the family is the subalgebra
generated by the union of the family, that is to say, it is the intersection of
those subalgebras of A that include every Bi; it is the smallest subalgebra of A
that includes Bi as a subalgebra for every i. (There is always one subalgebra
that includes every Bi as a subalgebra, namely the improper subalgebra A.)

The supremum of a family {Bi} of subalgebras is in general not the union
of the family, because that union is usually not a subalgebra. There is an
exception, however. The family is said to be directed if any two members Bi

and Bj of the family are always subalgebras of some third member Bk.

Lemma 1. The union of a non-empty, directed family of subalgebras is again
a subalgebra.

Proof. Let {Bi} be a non-empty, directed family of subalgebras of a Boolean
algebra A. It is to be demonstrated that the union B of this family is also a
subalgebra of A. Certainly, B is not empty, since the family is non-empty. To
prove that B is closed under the operations of A, consider any two elements,
say p and q, in B. Each of these elements belongs to some subalgebra of the
family, by the definition of a union; say p is in Bi and q in Bj . The two
subalgebras are included in some third subalgebra Bk of the family, by the
assumption that the family is directed. The elements p and q are then both
in Bk, so their join, meet, and complements are also in Bk. It follows that
their join, meet, and complements are also in B, as desired.

The lemma applies, in particular, to non-empty families of subalgebras
that are linearly ordered by inclusion. Such families are called chains. More
precisely, a family {Bi} of subalgebras is a chain if for any two members Bi

and Bj of the family, either Bi is a subalgebra of Bj , or vice versa.
A subalgebra of A is said to be finitely generated if it is generated by

a finite subset of A. One consequence of the lemma is that every Boolean
algebra is the directed union of its finitely generated subalgebras. In fact, a
stronger statement is true.

Corollary 1. Let A be a Boolean algebra generated by a set E, and for each
finite subset F of E, let BF be the subalgebra of A generated by F . The family

{BF : F ⊆ E and F is finite}
is directed, and its union is A.

Proof. It is easy to see that the given family of subalgebras is directed: if F1

and F2 are finite subsets of E, then so is F3 = F1 ∪ F2; since F1 and F2 are
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included in F3, the subalgebras generated by F1 and F2 are included in the
subalgebra generated by F3. It now follows from Lemma 1 that the union of
this directed family — call it B — is a subalgebra of A.

Since A is generated by the set E, the subalgebras BF generated by the
finite subsets F of E must be included in A; consequently, the union B of
these subalgebras is included in A. On the other hand, each element p in E
is contained in the subalgebra generated by the finite subset F = {p}, so p
must belong to the union B. It follows that E is included in B, and therefore
so is the subalgebra generated by E, namely A. Conclusion: A = B.

For any Boolean algebra A, apply the preceding corollary to the set E = A
to conclude that every Boolean algebra is the (directed) union of its finitely
generated subalgebras.

The definition of the subalgebra generated by a set is “top-down” and
non-constructive. One advantage of this approach is that it generalizes, prac-
tically without change, to arbitrary algebraic structures. A disadvantage is
that it gives no hint which elements belong to the subalgebra. There is a
“bottom-up” approach that gives precise information about the elements in
the subalgebra.

Let’s begin with a description of the subalgebra generated by a finite
subset E of a Boolean algebra A. It is convenient to introduce some notation
that will prove useful in other situations as well. For each element i in A and
each j in 2 = {0, 1}, write

p(i, j) =

{
i if j = 1,

i ′ if j = 0.

Finally, write 2E for the set of 2-valued functions on E, that is to say, the set
of functions from E to 2. Given such a function a, the value of p(i, a(i)), for
each i in E, is either i or i ′; denote the meet of these values by pa, so that

pa =
∧

i∈E

p(i, a(i)).

For example, suppose E = {q, r, s}. If a(q) = a(s) = 1 and a(r) = 0, then

pa = p(q, a(q)) ∧ p(r, a(r)) ∧ p(s, a(s))
= p(q, 1) ∧ p(r, 0) ∧ p(s, 1) = q ∧ r ′ ∧ s,

and if a(q) = a(r) = a(s) = 0, then

pa = p(q, 0) ∧ p(r, 0) ∧ p(s, 0) = q ′ ∧ r ′ ∧ s ′.
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We first show that the elements pa are mutually disjoint in the sense that
the meet of pa and pb, for a �= b, is always 0, and that the join of all these
elements is 1. If a and b are distinct, then they differ on some index i: one
of a(i) and b(i) is 1 and the other is 0. Consequently,

(1) pa ∧ pb ≤ i ∧ i ′ = 0.

On the other hand,

(2) 1 =
∧

i∈E

(i ∨ i ′ ) =
∨

a∈2E

∧

i∈E

p(i, a(i)) =
∨

a∈2E

pa,

by the distributive law (8.3). (That law is applicable because E is finite.)
Take K to be the set of those functions a in 2E such that pa �= 0, and for

each subset X of K, write

(3) pX =
∨

a∈X

pa.

These joins are elements of A, and they obey the following laws:

p∅ = 0,(4)
pK = 1,(5)

pX ∧ pY = pX∩Y ,(6)
pX ∨ pY = pX∪Y ,(7)

p ′
X = pX ′ ,(8)

where X ′ denotes the (set-theoretic) complement of X in K. Equation (4)
holds because the supremum of the empty set is 0, equation (5) is a direct
consequence of (2) and the definition of K, and equation (7) follows im-
mediately from definition (3). The proof of equation (6) involves an easy
computation:

pX ∧ pY =
( ∨

a∈X

pa

)
∧
( ∨

b∈Y

pb

)
=
∨

a∈X
b∈Y

(pa ∧ pb)

=
∨

a∈X∩Y

(pa ∧ pa) =
∨

a∈X∩Y

pa = pX∩Y .

The first and last equalities use definition (3), while the second equality uses
the distributive law in the form of Corollary 8.2, the third equality uses (1),
and the fourth equality uses the idempotent law for meet in (2.16). To prove
equation (8), observe that

pX ∧ pX ′ = pX∩X ′ = p∅ = 0 and pX ∨ pX ′ = pX∪X ′ = pK = 1,
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by (4)–(7). These equations imply that pX ′ is the complement of pX , by
Lemma 6.2.

Take C to be the set of all elements of A of the form pX , for some
subset X of K. Equations (4)–(8) imply that C is a subalgebra of A: it is
non-empty, by (4), and it is closed under the operations of A, by (6)–(8).
Definition (3) and equations (4) and (6) imply that the elements pa (for a
in K) are minimal non-zero elements in C. Such elements are usually called
atoms. Every element of C can be written in exactly one way as a join of
these atoms. Indeed, suppose pX = pY . A simple computation, using (4)–(8)
and the definition of Boolean addition in (3.3), shows that

0 = pX + pX = pX + pY = pX+Y ,

where X+Y is the symmetric difference of the sets X and Y . This symmetric
difference must be empty, for otherwise pX+Y would be a non-empty join of
non-zero elements, and hence would be different from 0. It follows that
X = Y .

Consider an arbitrary subset F of E, and an arbitrary 2-valued function b
on F . In analogy with the notation introduced above, write

pb =
∧

i∈F

p(i, b(i)).

We shall show that pb is in C by proving that

(9) pb =
∨

{pa : a ∈ K and a extends b}.

(A function a in K extends b if a(i) = b(i) for each i in F .) Let L be the set
of functions in K that extend b. If a is in L, then a(i) = b(i), and therefore

p(i, b(i)) = p(i, a(i)),

for every i in F ; consequently,

{p(i, b(i)) : i ∈ F} ⊆ {p(i, a(i)) : i ∈ E}.

It follows that
pb =

∧

i∈F

p(i, b(i)) ≥
∧

i∈E

p(i, a(i)) = pa.

In other words,

(10) pb ∧ pa = pa when a ∈ L.
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On the other hand, if a is not in L, then a and b must disagree on some
argument i in F . One of p(i, a(i)) and p(i, b(i)) is therefore i, and the other
is i ′. Consequently,

pb ∧ pa ≤ p(i, b(i)) ∧ p(i, a(i)) = i ∧ i ′ = 0.

Thus,

(11) pb ∧ pa = 0 when a ∈ K − L.

The demonstration of (9) is now straightforward:

pb = pb ∧ 1 = pb ∧ pK = pb ∧
∨

a∈K

pa

=
∨

a∈K

(pb ∧ pa) =
∨

a∈L

(pb ∧ pa) =
∨

a∈L

pa.

The first equality uses the identity law for meet in (2.13), the second equality
uses (5), the third uses (3) and the definition of K, the fourth uses the
distributive law in Lemma 8.3, the fifth uses (11), and the sixth uses (10).

Let B be the subalgebra of A generated by E. We shall show that B = C.
To prove that B is included in C, consider an arbitrary element i in E; if b
is the function from {i} to 2 defined by b(i) = 1, then

pb = p(i, b(i)) = i,

so that i is in C, by (9). This argument proves that E is included in C,
so the subalgebra generated by E, namely B, is included in C. To prove
that C is included in B, recall that each atom pa in C is the (finite) meet of
elements and complements of elements in E; consequently, pa belongs to the
subalgebra B generated by E. Every element pX in C is the (finite) join of
such atoms, and is therefore also in B.

The following normal form theorem summarizes what has been proved so
far.

Theorem 2. Let B be the subalgebra generated by a finite subset E of a
Boolean algebra. The atoms of B are the non-zero elements of the form

pa =
∧

i∈E

p(i, a(i)),

and the elements of B are the joins of these atoms. Every element of B can
be written in one and only one way as a join of atoms. The distinguished
elements and operations of B are determined by equations (4)–(8).
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How big can a finitely generated Boolean algebra A be? If a generating
set E has n elements, then there are 2n functions from E to the set {0, 1}. As
a result, there can be at most 2n atoms, by the preceding theorem. Suppose A
has m atoms, where m ≤ 2n. The join of every set of atoms is an element
of A, and every element of A can be written in exactly one way as the join
of a set of atoms, by the preceding theorem. There are 2m subsets of the set
of atoms, so there must be 2m elements in A.

Corollary 2. Every finitely generated Boolean algebra A is finite, and the
number of its elements is 2m, where m is the number of atoms in A. If a
generating set of A has n elements, then A has at most 2n atoms, and hence
it has at most 22n

elements.

The description of the subalgebra generated by an arbitrary subset of a
Boolean algebra A is obtained rather easily from the normal form theorem
and Corollary 1. Suppose E is a (possibly infinite) subset of A. For each
finite subset F of E, let BF be the subalgebra of A generated by F , and
let KF be the set of 2-valued functions b on F such that the meet

pb =
∧

i∈F

p(i, b(i))

is not zero. The elements of BF are precisely the joins

pX =
∨

b∈X

pb,

where X ranges over the subsets of KF , by Theorem 2. The subalgebra B
generated by the set E is the directed union of the finitely generated sub-
algebras BF , by Corollary 1. Conclusion: the elements of B are just the
elements pX , for various finite subsets F of E, and various subsets X of KF .
These remarks establish the following theorem.

Theorem 3. An element of a Boolean algebra is in the subalgebra generated
by a set E if and only if it can be written as a finite join of finite meets of
elements and complements of elements from E.

Equations (4)–(8) may still be used to describe the distinguished elements
and operations of the subalgebra B generated by a set E, but some caution
is needed. Equations (6) and (7) do not say that

pX1 ∧ pX2 = pX1∩X2 and pX1 ∨ pX2 = pX1∪X2 ,
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whenever X1 is a subset of KF1 and X2 a subset of KF2 . In fact, the domains
of the functions in X1 and in X2 (namely, the finite subsets F1 and F2 of E)
are in general not equal.

To overcome this obstacle, write F = F1∪F2, and take Y1, respectively Y2,
to be the set of functions in KF that extend some function in X1, respec-
tively X2. Then

pX1 = pY1 and pX2 = pY2 ,

by (9), so that

pX1 ∧ pX2 = pY1 ∧ pY2 = pY1∩Y2 and pX1 ∨ pX2 = pY1 ∨ pY2 = pY1∪Y2 ,

by (6) and (7).
It should be pointed out that an element of the form pb is not, in general,

an atom of B, even though it is an atom of the subalgebra BF when F is the
domain of b. Indeed, if G is a finite subset of E that properly includes F ,
and if a is a 2-valued function on G that extends b, then it may well happen
that

0 < pa < pb.

An important special case of the preceding theorem, the subalgebra ex-
tension lemma, describes how to extend a subalgebra by adjoining a single
element.

Lemma 2. Let B be a Boolean subalgebra of A, and r an element in A. The
subalgebra generated by B ∪ {r} consists of the elements in A that can be
written in the form

(p ∧ r) ∨ (q ∧ r ′ )
for some p and q in B.

Proof. The elements of the subalgebra C generated by the set B ∪ {r} are
the finite joins of finite meets of elements and complements of elements
from B∪{r}, by the preceding theorem. Meets of elements and complements
of elements from B are again elements in B, because B is a subalgebra. The
elements of C are therefore the finite joins of elements of B, elements of the
form p ∧ r, with p in B, and elements of the form q ∧ r ′, with q in B. The
form

(12) (p ∧ r) ∨ (q ∧ r ′ ),

with p and q in B, comprehends each of the other forms as special cases:
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p ∧ r = (p ∧ r) ∨ (0 ∧ r ′ ),
q ∧ r ′ = (0 ∧ r) ∨ (q ∧ r ′ ),

p = (p ∧ r) ∨ (p ∧ r ′ ),

where p and q are elements of B. Consequently, the elements of C are finite
joins of elements of the form (12). The join of two elements of the form (12)
(and hence the join of any finite number of such elements) is again an element
of the form (12), as a simple computation shows:

(13) [(p1 ∧ r) ∨ (q1 ∧ r ′ )] ∨ [(p2 ∧ r) ∨ (q2 ∧ r ′ )]
= [(p1 ∧ r) ∨ (p2 ∧ r)] ∨ [(q1 ∧ r ′ ) ∨ (q2 ∧ r ′ )]

= [(p1 ∨ p2) ∧ r] ∨ [(q1 ∨ q2) ∧ r ′ ],

where p1 ∨ p2 and q1 ∨ q2 are elements of B. Conclusion: the elements of C
are just the elements of the form (12). The proof of the lemma is complete.

The lemma can also be proved directly, without recourse to Theorem 3.
The set D of all elements of the form (12) is certainly included in the sub-
algebra of A generated by B and r, so it suffices to show that D is itself a
subalgebra of A. The closure of D under join follows from (13), while closure
under meet and complement follows from the identities

(14) [(p1 ∧ r) ∨ (q1 ∧ r ′ )] ∧ [(p2 ∧ r) ∨ (q2 ∧ r ′ )]
= [(p1 ∧ p2) ∧ r] ∨ [(q1 ∧ q2) ∧ r ′ ]

and

(15) [(p ∧ r) ∨ (q ∧ r ′ )] ′ = (p ′ ∧ r) ∨ (q ′ ∧ r ′ ).

The definition of a Boolean subalgebra B says nothing about the infinite
suprema and infima that may be formable in the whole algebra A. Anything
can happen: suprema or infima can be gained or lost or change value as we
pass back and forth between A and B. Everything that can happen can be
illustrated in the theory of complete Boolean algebras. If B is a subalgebra
of a complete algebra A, and if the supremum (in A) of every subset of B
belongs to B, we say that B is a complete subalgebra of A. (Warning: this
is stronger than requiring merely that B be a complete Boolean algebra in
its own right.) Note that a complete subalgebra B of A contains the infima
(in A) of all its subsets as well as their suprema. Indeed, if E is a subset
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of B, then so is {p ′ : p ∈ E}; the supremum of the latter subset is in B, by
assumption, so the complement of this supremum, namely the infimum

∧
E =

(∨
{p ′ : p ∈ E}

)
′,

is also in B. In the case of fields we speak of complete subfields. For complete
algebras the concept of a generated complete subalgebra is defined the same
way as when completeness was not yet mentioned; all that is necessary is to
replace “subalgebra” by “complete subalgebra” throughout the discussion.

There is an intermediate notion, stronger than “subalgebra” but weaker
than “complete subalgebra”, that is sometimes useful. It does not require the
algebra A to be complete. A regular subalgebra of A is a subalgebra B with
the additional property that whenever a subset E of B has a supremum p
in B, then p is the supremum of E in A also. (Warning: a subset of B may
have a supremum in A without having a supremum in B; the definition says
nothing about such subsets.)

A necessary and sufficient condition for a subalgebra B of A to be regular
is that whenever E is a subset of B with

∨
E = 1 in B, then

∨
E = 1

in A. The necessity of the condition is obvious; it is part of the definition of
regularity. To prove sufficiency, suppose the condition is satisfied, and let E0

be an arbitrary subset of B that has a supremum p in B. It is to be proved
that p is the supremum of E0 in A. The supremum of the set E = {p ′} ∪E0

in B is 1, as the computation

1 = p ′ ∨ p = p ′ ∨
∨

E0 =
∨

({p ′} ∪ E0) =
∨

E

demonstrates. It follows from the assumed condition that 1 is also the su-
premum of E in A. Form the meet (in A) of p with the first and last terms
of the preceding string of equalities to arrive at the desired conclusion:

p = p ∧ 1 = p ∧
∨

E = p ∧
∨

({p ′} ∪ E0)

= (p ∧ p ′ ) ∨
∨

q∈E0

(p ∧ q) = 0 ∨
∨

q∈E0

q =
∨

E0.

The fourth equality uses the distributive law from Lemma 8.3. The fifth
equality uses the fact that, for each q in E0, the inequality q ≤ p holds in B,
and therefore also in A.
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Exercises

1. Show that the field of periodic sets of integers of period 3 (see Chap-
ter 5) is a subfield of the field of periodic sets of integers of period 6.

2. Suppose that B and A are fields of periodic sets of integers of peri-
ods m and n respectively. Formulate and prove a theorem characteriz-
ing when B is a subfield of A.

3. Show that the relation of being a subalgebra is a partial ordering on
the class of all Boolean algebras.

4. Show that a subring of a Boolean ring need not be a Boolean subalgebra.
What if the subring contains 1?

5. Every subset of a partially ordered set inherits a partial order from the
whole set. If a non-empty subset of a Boolean algebra is construed
as a partially ordered set in this way, and if it turns out that with
respect to this partial order it is a complemented distributive lattice,
does it follow that it is a Boolean subalgebra of the original algebra?
(See Exercise 7.22.)

6. If a subset B of a Boolean algebra A contains 0 and 1 and is closed under
the formation of meets and joins, does it follow that B is a subalgebra
of A?

7. Suppose E = {q, r, s} is a subset of a Boolean algebra. For each i in E,
write

p(i, j) =

{
i if j = 1 ,

i ′ if j = 0.

There are eight 2-valued functions a on E. Write out the eight corre-
sponding meets

pa =
∧

i∈E

p(i, a(i)).

8. Formulate the dual version of Theorem 2. Prove this dual directly,
without using Theorem 2.

9. Formulate and prove the dual version of Theorem 3.
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10. Prove identities (14) and (15), and then use them to give a direct proof
of Lemma 2.

11. Let A be the interval algebra of finite unions of left half-closed intervals
of real numbers, and let E be the subset of A consisting of the inter-
vals [n, n + 1), where n ranges over the integers. Describe the elements
of the subalgebra of A generated by E.

12. Prove directly, without using Lemma 1, that the union of a non-empty
chain of Boolean subalgebras is again a Boolean subalgebra.

13. A family of Boolean algebras {Bi} (not necessarily subalgebras of some
fixed Boolean algebra) is called a (subalgebra) chain if for any two
algebras Bi and Bj in the family, one of them is a subalgebra of the
other. Let B be the union of such a chain. For any two elements p
and q in B, there must be an algebra Bi in the chain that contains
both of them. (Why?) Define the join and meet of p and q in B to
be their join and meet in Bi, and define the complement of p in B to
be its complement in Bi. Prove that these operations are well defined
in the sense that they do not depend on the particular choice of the
algebra Bi to which p and q both belong. Prove also that under these
operations the union B is a Boolean algebra.

14. A family {Bi} of Boolean algebras (not necessarily subalgebras of some
fixed Boolean algebra) is said to be directed if for any two algebras Bi

and Bj in the family, there is always a third algebra Bk in the family
such that Bi and Bj are both subalgebras of Bk. Define operations of
join, meet, and complement in the union of the directed family, and
show that these operations are well defined. Prove that the union of
the family, under these operations, is a Boolean algebra.

15. Give an example of a subalgebra B of a complete Boolean algebra A
and of a subset E of B such that the supremum of E in A does not
belong to B, and in fact E has no supremum in B.

16. (Harder.) Give an example of a subalgebra B of a Boolean algebra A
and of a subset E of B such that E has a supremum in B but not in A.

17. (Harder.) Give an example of a complete Boolean algebra A and a
subalgebra B of A such that some subset of B has a supremum in B
and a supremum in A, but these two suprema are different.
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18. (Harder.) Give an example of complete Boolean algebras A and B such
that B is a subalgebra, but not a complete subalgebra, of A.

19. Prove that an infinite Boolean algebra with m generators has m ele-
ments.

20. Let B be a subalgebra of A. If a family {pi} in B has a supremum p
in A, and if p belongs to B, prove that p is also the supremum of {pi}
in B.

21. Prove that a subalgebra B of a Boolean algebra A is a regular subalge-
bra if and only if every subset of B that has an infimum in B has the
same infimum in A.

22. Prove that a necessary and sufficient condition for a subalgebra B of a
Boolean algebra A to be regular is that whenever E is a subset of B
with ∧

E = 0 in B, then also
∧

E = 0 in A.

23. Is every finite subalgebra a regular subalgebra?

24. Is the field of finite and cofinite sets of integers a regular subalgebra of
the field of all sets of integers?

25. Suppose A is a complete Boolean algebra. Is a complete subalgebra
of A necessarily a regular subalgebra? Is a regular subalgebra of A
necessarily a complete subalgebra?

26. Suppose A is a complete Boolean algebra. If a regular subalgebra of A
happens to be complete (considered as an algebra in its own right), is
it necessarily a complete subalgebra of A?

27. Show that the relation of being a regular subalgebra is a partial order on
the class of Boolean algebras. In other words, show that it is reflexive,
antisymmetric, and transitive.

28. Suppose C is a (Boolean) subalgebra of B, and B a subalgebra of A.
If C is a regular subalgebra of A, must C also be a regular subalgebra
of B?

29. Prove that a regular subalgebra of a completely distributive Boolean
algebra is completely distributive.



Chapter 12

Homomorphisms

A Boolean homomorphism is a mapping f from a Boolean algebra B, say, to
a Boolean algebra A such that

f(p ∧ q) = f(p) ∧ f(q),(1)
f(p ∨ q) = f(p) ∨ f(q),(2)

f(p ′ ) = (f(p)) ′,(3)

whenever p and q are in B. In a somewhat loose but brief and suggestive
phrase, a homomorphism is a structure-preserving mapping between Boolean
algebras. A convenient synonym for “homomorphism from B to A” is “A-
valued homomorphism on B”. Such expressions will be used most frequently
in case A = 2. A word about notation: we shall usually write f(p) ′ instead
of (f(p)) ′.

When a homomorphism f maps B onto A (in the sense that every el-
ement in A is equal to f(p) for some p in B), the stipulation that A be a
Boolean algebra is unnecessary; it is a consequence of identities (1)–(3) and
the assumption that B is a Boolean algebra. To prove this assertion, let A be
an arbitrary algebraic structure with two binary operations ∧ and ∨, and a
unary operation ′. Suppose f is a mapping from a Boolean algebra B onto A
that satisfies identities (1)–(3). It must be checked that the Boolean algebra
axioms (2.11)–(2.20) are true of A when zero and one are interpreted as f(0)
and f(1) respectively. As an example, here is the verification of the distribu-
tive law for meet over join in (2.20). Let u, v, and w be elements of A. The
assumption that the range of f is A implies that there are elements p, q,
and r in B such that

f(p) = u, f(q) = v, and f(r) = w.

S. Givant, P. Halmos, Introduction to Boolean Algebras, 89
Undergraduate Texts in Mathematics, DOI: 10.1007/978-0-387-68436-9 12,
c© Springer Science+Business Media, LLC 2009
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A straightforward computation using identities (1) and (2), and the validity
of the distributive law in B, now yields the desired result:

u ∧ (v ∨ w) = f(p) ∧ (f(q) ∨ f(r))
= f(p) ∧ f(q ∨ r)
= f(p ∧ (q ∨ r))
= f((p ∧ q) ∨ (p ∧ r))
= f(p ∧ q) ∨ f(p ∧ r)
= (f(p) ∧ f(q)) ∨ (f(p) ∧ f(r))
= (u ∧ v) ∨ (u ∧ w).

In most situations, the algebra A that constitutes the range of a Boolean
homomorphism is known a priori to be a Boolean algebra. In those cases in
which this is not known, the previous argument can be used to prove it. We
shall see an example in a moment.

The distinguished elements 0 and 1 play a special role for homomor-
phisms, just as they do for subalgebras. Indeed, if f is a Boolean homomor-
phism (between Boolean algebras) and p is an element in its domain (p = 0
will do), then

f(p ∧ p ′ ) = f(p) ∧ f(p) ′,
and therefore

(4) f(0) = 0.

This much would be expected by a student of ring theory. What is important
is that the dual argument proves the dual fact,

(5) f(1) = 1.

The mapping that sends every element of one non-degenerate Boolean algebra
onto the zero element of another is simply not a Boolean homomorphism;
between non-degenerate Boolean algebras there is no such thing as a “trivial”
homomorphism.

Equations (4) and (5) imply that 0 and 1 belong to the range of every
homomorphism; a glance at equations (1)–(3) is sufficient to convince oneself
that the range of every homomorphism, from B into A say, is closed under
the meet, join, and complement operations of A, and is therefore a Boolean
subalgebra of A. The range of a homomorphism with domain B is called a
homomorphic image of B.
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Since every Boolean operation (e.g., + and ⇒) can be defined in terms
of ∧, ∨, and ′, it follows that a Boolean homomorphism preserves all such
operations. For instance, if f is a Boolean homomorphism and if p and q are
elements of its domain, then

f(p + q) = f((p ∧ q ′ ) ∨ (p ′ ∧ q))
= f(p ∧ q ′ ) ∨ f(p ′ ∧ q)
= (f(p) ∧ f(q ′ )) ∨ (f(p ′ ) ∧ f(q))
= (f(p) ∧ f(q) ′ ) ∨ (f(p) ′ ∧ f(q))
= f(p) + f(q)

and

f(p ⇒ q) = f(p ′ ∨ q) = f(p ′ ) ∨ f(q) = f(p) ′ ∨ f(q) = f(p) ⇒ f(q).

It follows, in particular, that every Boolean homomorphism is a ring homo-
morphism, and also that every Boolean homomorphism is order-preserving.
The last assertion means that if p ≤ q, then f(p) ≤ f(q).

The crucial fact in the preceding paragraph was the definability of
Boolean operations and relations in terms of meet, join, and complement.
Thus, more generally, if a mapping f from a Boolean algebra B to a Boolean
algebra A preserves enough Boolean operations so that all others are definable
in terms of them, then f is a homomorphism. Example: if f preserves ∨ and ′

(that is, if f satisfies the identities (2) and (3)), then f is a homomorphism;
alternatively, if f preserves the Sheffer stroke, then f is a homomorphism.

We proceed to consider some examples of Boolean homomorphisms. For
the first example let B be an arbitrary Boolean algebra, and let p0 be an
arbitrary element of B. Take A to be the set of all subelements of p0, that
is, the set of elements p with p ≤ p0, or, equivalently, the set of all elements
of the form p∧ p0. Define elements and operations for A as follows: 0, meet,
and join in A are the same as in B, but 1 and p ′ in A are defined to be the
elements p0 and p0 − p of B. The mapping f defined by

f(p) = p ∧ p0

is a homomorphism from B onto A. The proof consists of a series of compu-
tations verifying conditions (1)–(3). Let p and q be elements of B. Then

f(p ∧ q) = p ∧ q ∧ p0 = p ∧ p0 ∧ q ∧ p0 = f(p) ∧ f(q),

by the definition of f and the idempotent and commutative laws;

f(p ∨ q) = (p ∨ q) ∧ p0 = (p ∧ p0) ∨ (q ∧ p0) = f(p) ∨ f(q),
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by the definition of f and the distributive laws; and

f(p ′ ) = p ′ ∧ p0 = (p0 ∧ p ′ ) ∨ 0 = (p0 ∧ p ′ ) ∨ (p0 ∧ p ′
0 ) = p0 ∧ (p ′ ∨ p ′

0 )
= p0 ∧ (p ∧ p0) ′ = p0 − (p ∧ p0) = f(p) ′,

by the definition of f , the identity and commutative laws, the complement
laws, the distributive laws, the De Morgan laws, the definition of subtraction,
and the definition of complementation in A. The algebra A is the image of
the Boolean algebra B under the homomorphism f , and is therefore itself a
Boolean algebra with zero and unit

f(0) = 0 ∧ p0 = 0 and f(1) = 1 ∧ p0 = p0.

It is called the relativization of B to p0, and will be denoted by B(p0); the
function f is called the relativizing homomorphism (induced by p0).

For a concrete example of a relativization, consider an arbitrary set X.
If Y is a subset of X, then Y is an element of the field P(X), and the rel-
ativization of P(X) to Y is just the field P(Y ). The relativizing homomor-
phism is the correspondence that takes each set P in P(X) to the set P ∩Y .

For the next example, consider a field B of subsets of a set X, and let x0 be
an arbitrary point of X. For each set P in B, let f(P ) be 1 or 0 according as x0

is, or is not, in P . To prove that the mapping f is a 2-valued homomorphism
on B, it suffices to verify identities (1) and (3). The definition of f , and the
definitions of the Boolean operations in a field of sets and in the Boolean
algebra 2, justify the following equivalences:

f(P ∩ Q) = 1 if and only if x0 ∈ P ∩ Q,

if and only if x0 ∈ P and x0 ∈ Q,

if and only if f(P ) = 1 and f(Q) = 1,

if and only if f(P ) ∧ f(Q) = 1;

so
f(P ∩ Q) = f(P ) ∧ f(Q).

Similarly,

f(P ′ ) = 1 if and only if x0 ∈ P ′,

if and only if x0 �∈ P,

if and only if f(P ) = 0,

if and only if f(P ) ′ = 1;

so
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f(P ′ ) = f(P ) ′.
Observe that f(P ) is equal to the value of the characteristic function of P
at x0.

For one more example, let φ be an arbitrary mapping from a non-empty
set X into a set Y , and let A and B be fields of subsets of X and Y respec-
tively. Write f = φ−1, or, more explicitly, for each P in B, let f(P ) be the
inverse image of P under φ:

f(P ) = {x ∈ X : φ(x) ∈ P}.

In general, the set f(P ) will not belong to the field A. If f(P ) is in A
whenever P is in B, then f is an A-valued homomorphism on B. The proof
is very similar to the one just given; it depends on the fact that intersections
and complements are preserved under the formation of inverse images. Here
are the details:

x ∈ f(P ∩ Q) if and only if φ(x) ∈ P ∩ Q,

if and only if φ(x) ∈ P and φ(x) ∈ Q,

if and only if x ∈ f(P ) and x ∈ f(Q),
if and only if x ∈ f(P ) ∩ f(Q);

so
f(P ∩ Q) = f(P ) ∩ f(Q).

Similarly,

x ∈ f(P ′ ) if and only if φ(x) ∈ P ′,

if and only if φ(x) �∈ P,

if and only if x �∈ f(P ),
if and only if x ∈ f(P ) ′;

so
f(P ′ ) = f(P ) ′.

For purposes of reference we shall call the homomorphisms described in these
three examples the homomorphisms induced by p0, x0, and φ, respectively.

Special kinds of Boolean homomorphisms may be described in the same
words as are used elsewhere in algebra. A monomorphism, also called an
embedding, is a homomorphism that is one-to-one: if f(p) = f(q), then p = q.
An epimorphism is a homomorphism that is onto: every element of A is equal
to f(p) for some p in B. A homomorphism that is a bijection, that is to say,
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it is both one-to-one and onto, is called an isomorphism. If there is an
isomorphism from one Boolean algebra onto another, the two algebras are
said to be isomorphic. An isomorphism from a Boolean algebra onto itself is
called an automorphism.

The existence of an isomorphism between Boolean algebras implies that
the algebras are structurally identical; they differ only in the “shape” of their
elements. For example, consider two sets X and Y with the same number
of elements; no assumptions are made about what the elements in X and Y
look like. The hypothesis implies the existence of a one-to-one mapping φ
from X onto Y . The homomorphism induced by φ is an isomorphism from
the field P(Y ) onto the field P(X); it maps each subset Q of Y to the subset

φ−1(Q) = {x ∈ X : φ(x) ∈ Q}

of X. Occasionally, it is more natural to use the inverse function φ−1 in-
stead of φ. In this case, since φ−1 maps Y one-to-one onto X, the induced
isomorphism maps P(X) onto P(Y ), and takes each subset P of X to the
subset

φ(P ) = {φ(x) : x ∈ P}
of Y . Conclusion: if two sets X and Y have the same number of elements, the
corresponding fields P(X) and P(Y ) are isomorphic. The fact that the fields
are structurally identical is intuitively obvious; the intuition is substantiated
by the construction of a concrete isomorphism.

Here is another example of an isomorphism between Boolean algebras,
one that is at first glance perhaps less obvious. Consider the field of periodic
sets of integers of period 2. It has four elements, all but one of which are
infinite sets: the set E of even integers, the set O of odd integers, the set X
of all integers, and the empty set ∅. The arithmetic of this algebra is given
by the following tables for union, intersection, and complement:

∪ ∅ E O X

∅ ∅ E O X

E E E X X

O O X O X

X X X X X

,

∩ ∅ E O X

∅ ∅ ∅ ∅ ∅

E ∅ E ∅ E

O ∅ ∅ O O

X ∅ E O X

,

′

∅ X

E O

O E

X ∅

.

The field of all subsets of the two-element set {0, 1} also has four elements,
all of them finite sets: the singletons {0} and {1}, the pair {0, 1}, and the
empty set ∅. Its arithmetic is given by the tables
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∪ ∅ {0} {1} {0, 1}
∅ ∅ {0} {1} {0, 1}
{0} {0} {0} {0, 1} {0, 1}
{1} {1} {0, 1} {1} {0, 1}
{0, 1} {0, 1} {0, 1} {0, 1} {0, 1}

,

∩ ∅ {0} {1} {0, 1}
∅ ∅ ∅ ∅ ∅

{0} ∅ {0} ∅ {0}
{1} ∅ ∅ {1} {1}
{0, 1} ∅ {0} {1} {0, 1}

,

′

∅ {0, 1}
{0} {1}
{1} {0}
{0, 1} ∅

.

The forms of the elements of the two Boolean algebras are certainly quite
different. A comparison of the arithmetic tables, however, reveals that from
a structural point of view the two algebras are identical. More precisely, the
correspondence

∅ → ∅, E → {0}, O → {1}, X → {0, 1}

transforms the tables of the first algebra into the tables of the second algebra;
it is therefore an isomorphism between the two algebras.

Isomorphisms preserve all structural properties of algebras. To show that
two Boolean algebras are not isomorphic, it suffices to find a structural prop-
erty of one of the algebras that is not shared by the other. For instance,
the field of finite and cofinite sets of rational numbers is not isomorphic to
the field of all subsets of the rational numbers because the first algebra is
countable, while the second has the power of the continuum. For a less triv-
ial example, consider the field of finite and cofinite subsets of the rational
numbers, and the interval algebra of the rational numbers. Both algebras
are countably infinite, but they are not isomorphic: the first algebra has an
infinite number of atoms, while the second algebra has none.

If B is a subalgebra of an algebra A, then the identity mapping — that
is, the mapping f defined for every p in B by f(p) = p — is a monomorphism
from B into A, and in particular the identity mapping on A is an automor-
phism of A. There is a natural way to define the product of (some) pairs of
homomorphisms, and it turns out that the identity mappings just mentioned
indeed act as multiplicative identities. The product (or composition) f ◦ g



96 Introduction to Boolean Algebras

of two homomorphisms f and g is defined in case A, B, and C are Boolean
algebras, f maps B into A, and g maps C into B; the value of f ◦ g at each
element p of C is given by

(f ◦ g)(p) = f
(
g(p)
)
.

If, moreover, h is a homomorphism from D, say, to C, then

f ◦ (g ◦ h) = (f ◦ g) ◦ h,

that is, the operation of composition is associative.
If f is a Boolean isomorphism f from B to A, then its inverse, the func-

tion f−1 from A to B defined by

f−1(r) = p if and only if f(p) = r

for every r in A, is a Boolean isomorphism from A to B. For instance, to
show that f−1 preserves meet, let r and s be two elements in A. There are
unique elements p and q in B such that f(p) = r and f(q) = s. Consequently,

f−1(r ∧ s) = f−1(f(p) ∧ f(q)) = f−1(f(p ∧ q)) = p ∧ q = f−1(r) ∧ f−1(s).

The second equality holds because f preserves meet; the third and fourth
hold by the definition of the inverse of f . The arguments that f−1 preserves
join and complement are similar.

Occasionally, one would like to show that a given Boolean algebra B0

can be extended to a Boolean algebra B with certain desirable properties.
The actual construction, however, may not yield an extension of B0, but
rather something weaker: a Boolean algebra A with the desired properties
and an isomorphism f0 from B0 onto a subalgebra of A. The isomorphism
shows that B0 is structurally identical to its image A0 = f0(B0). One would
therefore like to effect an “exchange”, by replacing A0 with B0, so as to
obtain an actual extension of B0 with the desired properties. A difficulty
arises, however, because B0 may contain elements that also occur in A in a
structurally different and conflicting way. This obstacle may be overcome by
first replacing the elements of A−A0 with new elements having nothing to do
with B0, and then effecting the exchange. The result is a Boolean algebra B
that contains B0 as a subalgebra and that is isomorphic to A via a mapping
that extends f0. The assertion that all of this works out as expected is called
the exchange principle.

Here are the details. Let A1 be the set of elements that are in A but not
in A0. Choose a set (any set) B1 with the same number of elements as A1

and with no elements in common with B0. The assumption that B1 and A1
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0

1

0

1

0

1

A

A

A

B

B

B

f

f

have the same size means that there is a bijection f1 from B1 to A1. (See
the diagram.) Take B to be the union of the sets B0 and B1, and define a
mapping f from B to A by

f(p) =

{
f0(p) if p ∈ B0 ,

f1(p) if p ∈ B1 .

Then f is a well-defined bijection from B to A; the easy proof depends on the
facts that f0 and f1 are bijections, and the sets B0 and B1 are disjoint, as are
the sets A0 and A1. Turn B into a Boolean algebra by defining operations
of meet, join, and complement that are the counterparts, under f−1, of the
operations of meet, join, and complement in A. More precisely, to form the
meet, join, and complements of two elements p and q in B, translate these
elements to A using the mapping f , form the meet, join, and complements
of the translations in A, and then translate the results back to B using f−1:

p ∧ q = f−1(f(p) ∧ f(q)),

p ∨ q = f−1(f(p) ∨ f(q)),

p ′ = f−1(f(p) ′ ).

The operations on the right sides of the equations are those of A, while the
ones on the left are the operations that are being defined on B. Under these
definitions, f automatically becomes a Boolean isomorphism from B to A.
For instance, f preserves meet because

f(p ∧ q) = f(f−1(f(p) ∧ f(q))) = f(p) ∧ f(q).
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The first equality holds by the definition of meet in B. The arguments that f
preserves join and complement are similar. It follows at once that B is the
inverse image of A under the isomorphism f−1, and is therefore a Boolean
algebra with the same structural properties as A.

There is another matter to check: the operations of B, when restricted
to the elements of B0, should coincide with the operations of B0. In other
words, B0 should be a subalgebra of B. Consider, for instance, the opera-
tion of meet. Let p and q be elements in B0, and form their meet in B; a
straightforward calculation shows that this meet coincides with the meet of
the two elements in B0:

p ∧ q = f−1(f(p) ∧ f(q)) = f−1
0 (f0(p) ∧ f0(q)) = f−1

0 (f0(p ∧ q)) = p ∧ q.

(The first meet is formed in B, the second in A, the third in A0, and the
fourth and fifth in B0.) The first step uses the definition of meet in B; the
second step uses the fact that on elements of B0, the mapping f coincides
with f0, and on elements of A0, the mapping f−1 coincides with f−1

0 ; and
the third step uses the isomorphism properties of f0. Join and complement
are handled in a similar fashion.

The function f maps B isomorphically to A. Its restriction to the sub-
algebra B0 coincides with f0, and therefore maps B0 isomorphically to A0.
The discussion of the exchange principle is now complete.

An isomorphism between Boolean algebras preserves every infinite su-
premum and infimum that happens to exist, but in general a mere homo-
morphism will not do so. A homomorphism f is called complete in case it
preserves all suprema (and, consequently, all infima) that happen to exist.
This means that if {pi} is a family of elements in the domain of f with su-
premum p, then the family {f(pi)} has a supremum and that supremum is
equal to f(p). There is an interesting connection between complete monomor-
phisms and regular subalgebras: a monomorphism is complete if and only if
its range is a regular subalgebra. For later use, here is a more precise formu-
lation.

Lemma 1. A Boolean monomorphism f from B into A is complete if and
only if the image of B under f is a regular subalgebra of A.

Proof. The image of B under the monomorphism f is certainly a subalgebra
of A; denote it by C. It is to be shown that C is a regular subalgebra of A
just in case f is complete.

Assume first that C is a regular subalgebra of A. To prove that f is com-
plete, consider an arbitrary family {pi} of elements in B with a supremum p.
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The mapping f is an isomorphism from B to C, so f(p) is certainly the su-
premum of {f(pi)} in C. It follows that f(p) is also the supremum of {f(pi)}
in A, since C is a regular subalgebra of A.

For the reverse implication, suppose f is complete. To prove that C is
a regular subalgebra of A, consider a family {qi} of elements in C with a
supremum q in C; it is to be shown that q is also the supremum of the family
in A. Since f is one-to-one, there are uniquely determined elements pi and p
in B such that

f(pi) = qi and f(p) = q.

The element p is the supremum of the family {pi} in B, because f is an
isomorphism from B to C. The completeness of f ensures that f(p) is the
supremum of {f(pi)} in A, and this directly implies the desired conclusion.

Exercises

1. Let f be the mapping from the Boolean algebra of finite and cofinite
subsets of an infinite set into 2 that takes each finite set to 0 and each
cofinite set to 1. Verify that f is a Boolean homomorphism.

2. Let f be a Boolean homomorphism from B into A, and suppose C is
a Boolean subalgebra of B. Prove that the restriction of f to C is a
homomorphism from C into A.

3. Let f be a mapping from a Boolean algebra B onto an algebraic struc-
ture A with binary operations ∧ and ∨, and a unary operation ′. Com-
plete the proof that if f satisfies the identities (1)–(3), then A must be
a Boolean algebra with zero element f(0) and unit f(1).

4. Prove that if f is a Boolean homomorphism, then f(1) = 1.

5. Prove that a degenerate Boolean algebra cannot be mapped homomor-
phically into a non-degenerate one.

6. Prove that a mapping between Boolean algebras that preserves join and
complement is a Boolean homomorphism.

7. Prove that a mapping between Boolean algebras that preserves the
Sheffer stroke is a Boolean homomorphism.
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8. Is every ring homomorphism between Boolean algebras a Boolean ho-
momorphism? What if it preserves 1?

9. If a mapping f between Boolean algebras preserves 0, 1, ∧, and ∨, is it
necessarily a Boolean homomorphism?

10. If a mapping f between Boolean algebras preserves order, is it neces-
sarily a Boolean homomorphism?

11. If a bijection f between Boolean algebras satisfies the order-preserving
equivalence

p ≤ q if and only if f(p) ≤ f(q)
for all p and q in its domain, is f necessarily a Boolean isomorphism?

12. A dual isomorphism between Boolean algebras is a bijection f between
the algebras that satisfies the following conditions for all p and q in its
domain:

f(p ∧ q) = f(p) ∨ f(q), f(p ∨ q) = f(p) ∧ f(q), f(p ′ ) = f(p) ′.

Prove that a bijection f is a dual isomorphism if and only if it satisfies
the order-reversing equivalence

p ≤ q if and only if f(p) ≥ f(q)

for all p and q in its domain.

13. Suppose f is a bijection between two lattices. Show that the following
conditions on f are equivalent:

(a) f(p ∧ q) = f(p) ∧ f(q) for all p and q in the domain of f ;

(b) f(p ∨ q) = f(p) ∨ f(q) for all p and q in the domain of f ;

(c) p ≤ q if and only if f(p) ≤ f(q) for all p and q in the domain
of f .

A bijection satisfying one of these three conditions is called a (lattice)
isomorphism.

14. Suppose f is a bijection between two lattices. Show that the following
conditions on f are equivalent:

(a) f(p ∧ q) = f(p) ∨ f(q) for all p and q in the domain of f ;

(b) f(p ∨ q) = f(p) ∧ f(q) for all p and q in the domain of f ;
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(c) p ≤ q if and only if f(p) ≥ f(q) for all p and q in the domain
of f .

A bijection satisfying one of these three conditions is called a dual
(lattice) isomorphism.

15. If A, B, and C are lattices, and if f and g are (lattice) isomorphisms
from B to A, and from C to B, respectively, then the composition f◦g is
an isomorphism from C to A. What can be said when f and g are dual
isomorphisms (Exercise 14)? What if one of them is an isomorphism
and the other a dual isomorphism?

16. Suppose that both f and g are A-valued homomorphisms on B. Define
a mapping f ∨ g from B into A by

(f ∨ g)(p) = f(p) ∨ g(p).

Is f ∨ g a homomorphism? What about f + g (defined similarly)?

17. If A is a relativization of a Boolean algebra B, prove that a subset of A
has a supremum in B if and only if it has a supremum in A, and if these
suprema exist, then they are equal. Conclude that a relativization of a
complete Boolean algebra is necessarily complete.

18. If A is a relativization of a Boolean algebra B, prove that an element
from A is an atom in A if and only if it is an atom in B.

19. The notion of a relativization of a Boolean algebra can be somewhat
extended. If B is a subalgebra of a Boolean algebra A, and if p0 is
an element of A that is not necessarily in B, define the notion of the
relativization of B to p0. Show that this relativization is a homomorphic
image of B and a subalgebra of the relativization of A to p0.

20. Prove that a Boolean isomorphism maps every atom in the domain to
an atom in the range. Is the same true of a Boolean monomorphism?

21. Prove that the Boolean algebra of periodic sets of integers of period
three is isomorphic to the Boolean algebra of subsets of {0, 1, 2}.

22. If sets X and Y have the same number of elements, prove that the field
of finite and cofinite subsets of X is isomorphic to the field of finite and
cofinite subsets of Y .
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23. Let A be the interval algebra of the real numbers, and let E be the
subset of A consisting of the intervals [n, n+1), where n ranges over the
integers. Prove that the subalgebra of A generated by E is isomorphic
to the field of finite and cofinite sets of integers. (See Exercise 11.14.)

24. Let A be the field of finite and cofinite sets of integers, and B the
subfield of A consisting of the finite sets of even integers and their
complements. Are A and B isomorphic?

25. Are the field of all sets of real numbers and the Boolean algebra of
regular open sets of real numbers isomorphic?

26. Consider a Boolean homomorphism f from B into A. Prove that if B0

is a subalgebra of B, then the image

f(B0) = {f(p) : p ∈ B0}

is a subalgebra of A. Prove also that if A0 is a subalgebra of A, then
the inverse image

f−1(A0) = {p ∈ B : f(p) ∈ A0}

is a subalgebra of B. Conclude that if f is an epimorphism, then a
subset A0 of A is a subalgebra if and only if there is a subalgebra B0

of B such that
A0 = f(B0).

27. Consider a Boolean isomorphism f from B into A, an arbitrary ele-
ment q0 in B, and the image element p0 = f(q0) in A. Prove that the
appropriate restriction of f maps the relativization B(q0) isomorphi-
cally to the relativization A(p0).

28. Prove that if the range of an A-valued homomorphism f includes a set
of generators of A, then f is an epimorphism.

29. If f is a Boolean epimorphism from B to A, and if E is a set of gener-
ators of B, prove that {f(p) : p ∈ E} is a set of generators of A.

30. Prove that if E generates B, and if f and g are A-valued homomor-
phisms on B such that f(p) = g(p) whenever p is in E, then f = g.
What if B is the complete algebra generated by E, and f and g are
complete homomorphisms?
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31. Prove that if E generates B, and if p0 is an arbitrary element of B,
then the set

F = {q ∧ p0 : q ∈ E}
generates the relativization of B to p0.

32. Prove that a necessary and sufficient condition for an arbitrary map-
ping f from a set B to a set A, and an arbitrary mapping g from A
to B, to be bijections and inverses of one another is that the composi-
tions f ◦ g and g ◦ f be the identity functions on A and B respectively.

33. If f is a Boolean homomorphism from B to A, and g a Boolean homo-
morphism from C to B, prove that the composition f ◦ g is a Boolean
homomorphism from C to A.

34. Let f be a Boolean homomorphism. If a family {pi} of elements in the
domain of f has a supremum p, show that f(p) is an upper bound for
the family {f(pi)}. Conclude that if

∨
i f(pi) exists, then

∨

i

f(pi) ≤ f(p).

35. Prove that a Boolean isomorphism preserves all suprema and infima
that happen to exist.

36. Prove that a complete homomorphism preserves all infima that exist.

37. If a Boolean homomorphism preserves all infima that happen to exist,
prove that the homomorphism must be complete.

38. Prove that the following condition is necessary and sufficient for a
Boolean homomorphism f to be complete: whenever a family {pi} of
elements in the domain of f has the infimum 0, then the family {f(pi)}
in the range of f has the infimum 0. (Compare this exercise with Ex-
ercise 11.22.)

39. Formulate and prove the dual to Exercise 38.

40. (Harder.) Give an example of an incomplete homomorphism between
complete Boolean algebras. Can such an example be a monomorphism?
An epimorphism?

41. Prove that a subalgebra B of a Boolean algebra A is regular if and only
if the identity mapping of B into A is a complete homomorphism.
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42. Prove that if a subalgebra B of a complete Boolean algebra A happens
to be complete (considered as an algebra in its own right), then a
necessary and sufficient condition that B be a complete subalgebra of A
is that the identity mapping of B into A be a complete homomorphism.

43. (Harder.) Show that if a complete homomorphism has a complete do-
main, then its range is a regular subalgebra. What if the domain is not
complete?

44. (Harder.) Can Lemma 1 be generalized to arbitrary homomorphisms?
In other words, is the range of a homomorphism a regular subalgebra
if and only if the homomorphism is a complete homomorphism?



Chapter 13

Extensions of
Homomorphisms

A Boolean homomorphism f is called an extension of a Boolean homomor-
phism g if the domain of g is a subalgebra of the domain of f , and if

f(p) = g(p)

for every p in the domain of g. If f is an extension of every member of a
family of homomorphisms, then f is said to be a common extension of the
family. A family of Boolean homomorphisms does not, in general, have a
common extension; there is, however, a special case when such an extension
does exist. Call a family {fi} of A-valued homomorphisms directed if any
two homomorphisms fi and fj in the family have a common extension fk in
the family.

Lemma 1. A directed family of A-valued homomorphisms always has a com-
mon extension to an A-valued homomorphism. If the homomorphisms in the
family are one-to-one, then so is the common extension.

Proof. Let {fi} be a directed family of A-valued homomorphisms. The do-
mains of these homomorphisms form a directed family of Boolean algebras,
by the assumption that any two homomorphisms in the family {fi} have a
common extension in the family. The union B of the domains is a Boolean
algebra, and each domain is a subalgebra of B (see Exercise 11.14). Define a
mapping f on B by

f(p) = fi(p)

S. Givant, P. Halmos, Introduction to Boolean Algebras, 105
Undergraduate Texts in Mathematics, DOI: 10.1007/978-0-387-68436-9 13,
c© Springer Science+Business Media, LLC 2009
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whenever p is in the domain of fi. The mapping f is well defined in the sense
that it does not depend on the particular choice of the homomorphism fi.
Indeed, suppose p is also in the domain of fj . The two homomorphisms fi

and fj have a common extension fk, by assumption, so

fi(p) = fk(p) = fj(p).

It is easy to verify that f is a homomorphism from B into A. If p and q are
elements in B, then p is in the domain of some fi, and q is in the domain of
some fj . The two mappings have a common extension fk, by assumption; the
elements p and q, together with their join, are in the domain of the common
extension, and

f(p ∨ q) = fk(p ∨ q) = fk(p) ∨ fk(q) = f(p) ∨ f(q),

by the definition of f and the homomorphism properties of fk. The verifica-
tion that f preserves complement is similar, but easier (there is no need to
pass to a common extension fk):

f(p ′ ) = fi(p ′ ) = fi(p) ′ = f(p) ′.

An analogous argument shows that f is one-to-one whenever each map-
ping fi is one-to-one.

The lemma applies, in particular, to families of homomorphisms that are
linearly ordered by the relation of being an extension. Such families are called
chains. More precisely, a family {fi} of A-valued homomorphisms is called a
(homomorphism) chain if for any two members fi and fj of the family, one
of them is an extension of the other.

The action of a homomorphism on a Boolean algebra is completely de-
termined by its action on a generating set, as the following lemma shows.

Lemma 2. If two A-valued homomorphisms on a Boolean algebra B agree
on the elements of a generating set, they agree on all of B.

Proof. Suppose B is generated by a set E. Let f and g be A-valued homo-
morphisms on B that agree on E; in other words,

f(p) = g(p)

for every element p in E. Define C to be the set of elements in B on which f
and g agree. The set E is included in C, by assumption. Furthermore, if p
and q belong to C, then so do p ∨ q and p ′, since

f(p ∨ q) = f(p) ∨ f(q) = g(p) ∨ g(q) = g(p ∨ q),
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and

f(p ′ ) = f(p) ′ = g(p) ′ = g(p ′ ),

by the definition of C and the homomorphism properties of f and g. Conclu-
sion: C is a subalgebra of B that includes E. The algebra B is, by assump-
tion, the smallest subalgebra of itself that includes E, so B must coincide
with C. It follows that f and g agree on all of B.

The preceding lemma suggests the problem of finding necessary and suffi-
cient conditions for an A-valued function on a set of generators of a Boolean
algebra to have an extension to an A-valued homomorphism. The solution
to the problem is usually called the homomorphism extension criterion, and
is due to Roman Sikorski [63]. (It generalizes an earlier result of Kuratowski
and Posament, given in Corollary 1 below.) The formulation of the criterion
requires some notation that was introduced before. For each element i of a
Boolean algebra, write

p(i, j) =

{
i if j = 1 ,

i ′ if j = 0.

Theorem 4. A mapping g from a generating set E of a Boolean algebra B
into a Boolean algebra A can be extended to a homomorphism from B into A
just in case for every 2-valued function a on a finite subset F of E,

∧

i∈F

p(i, a(i)) = 0 implies
∧

i∈F

p(g(i), a(i)) = 0.

Proof. Assume that a mapping g from E into A satisfies the extension crite-
rion formulated in the theorem. It must be shown that g can be extended to
an A-valued homomorphism on B. Consider, first, the case when E is finite.
The algebra B is then finite, its atoms are the non-zero elements of the form

pa =
∧

i∈E

p(i, a(i)),

every atom of B can be written in exactly one way as such a meet, and every
element in B is the join of a uniquely determined set of atoms, by Theorem 2
(p. 81). Completely analogous remarks apply to the subalgebra C of A
generated by the set

g(E) = {g(q) : q ∈ E}.
This generating set is finite, so C is finite, its atoms are the non-zero elements
of the form
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qa =
∧

i∈E

p(g(i), a(i)),

every atom of C can be written in exactly one way as such a meet, and every
element in C is the join of a uniquely determined set of atoms.

Let K be the set of 2-valued mappings a on E such that pa is non-zero.
Each element r in B can be written in the form

r =
∨

a∈X

pa

for a uniquely determined subset X of K, by Theorem 2. Define a function f
from B into C by writing

f(r) =
∨

a∈X

qa.

In other words, f takes
∨

a∈X pa to
∨

a∈X qa for each subset X of K.
If

r =
∨

a∈X

pa and s =
∨

a∈Y

pa,

then

r ∨ s =
∨

a∈X∪Y

pa,

by Theorem 2 (see, in particular, equation (11.7)), and therefore

f(r ∨ s) =
∨

a∈X∪Y

qa =
( ∨

a∈X

qa

)
∨
( ∨

a∈Y

qa

)
= f(r) ∨ f(s).

This argument shows that f preserves join.
The argument that f preserves complement is similar, but it makes use

of the extension criterion. Let X be a subset of K, and write X ′ for the
complement of X with respect to K. It follows from Theorem 2 (see, in
particular, equation (11.8)) that the two elements

∨

a∈X

pa and
∨

a∈X ′

pa

are complements of one another. An analogous argument shows that
∨

a∈X

qa and
∨

a∈X′

qa
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are complements of one another. Technically, the notation X ′ in the final
join refers to the complement of X with respect to the set L of all 2-valued
mappings a on E such that qa is not zero. The key point, however, is that L is
a subset of K, by the extension criterion, and qa = 0 whenever a is not in L,
by the definition of L. Consequently, the last two joins remain complements
of one another when X ′ is interpreted as referring to the complement of X
in K. If

r =
∨

a∈X

pa, then r ′ =
∨

a∈X′

pa,

and therefore

f(r ′ ) =
∨

a∈X′

qa =
( ∨

a∈X

qa

)
′ = f(r) ′,

by the preceding observations. In other words, f preserves complement.
Conclusion: f is a homomorphism from B into C, and therefore into A.

It remains to demonstrate that f agrees with g on E. An element r in E
can be written as

r = p(r, b(r)),

where b is the function from {r} into 2 that maps r to 1. The proof of
Theorem 2 (equation (11.9) with F = {r}) shows that

r =
∨

{pa : a ∈ K and a extends b} =
∨

{pa : a ∈ K and a(r) = 1}.

Similarly, the element g(r) is in g(E) and

g(r) = p(g(r), b(r)).

An analogous argument shows that

g(r) =
∨

{qa : a ∈ K and a extends b} =
∨

{qa : a ∈ K and a(r) = 1}.

(Technically, equation (11.9) yields the preceding identities for g(r) with the
set L — described in the preceding paragraph — in place of K. However, L
is a subset of K, and qa = 0 for a in K − L, so L may be replaced by K
without affecting the validity of the identities.) These observations combine
with the definition of f to give

f(r) =
∨

{qa : a ∈ K and a(r) = 1} = g(r).

The proof that g can be extended to an A-valued homomorphism when the
generating set E is finite is thus complete.



110 Introduction to Boolean Algebras

Consider, next, the case of an arbitrary generating set E. For each finite
subset F of E, let BF be the subalgebra of B generated by F , and let gF

be the restriction of the mapping g to F . Because g satisfies the extension
criterion, its restriction gF must satisfy a restricted extension criterion in
which the set E is replaced by F . The first part of the proof shows that
there is an A-valued homomorphism fF on BF that extends gF . The family
of homomorphisms

{fF : F is a finite subset of E}
is directed. Indeed, consider two finite subsets F and G of E. Their union

H = F ∪ G

is also a finite subset of E. The subalgebra BH includes BF , because its
generating set H includes the generating set F of BF . In other words, the
domain of fH includes the domain of fF . Both fH and fF agree with g on
the elements of F , so fF and the restriction of fH to BF must be equal, by
Lemma 2. This just means that fH extends fF . The proof that fH extends fG

is similar.
Every directed family of homomorphisms has a common extension, by

Lemma 1. There is consequently a homomorphism f that extends each of the
homomorphisms fF . The domain of f is the union, over all finite subsets F
of E, of the directed family of subalgebras BF . This union is a subalgebra
of B, by Lemma 11.1, and it includes the generating set E, because it in-
cludes each finite subset of E. The union must therefore coincide with B.
Conclusion: f is an A-valued homomorphism on B that agrees with g on
each finite subset of E, and therefore agrees with g on all of E.

The converse implication of the theorem is easier to establish. Suppose a
mapping g from E into A can be extended to an A-valued homomorphism f
on B. It is to be shown that g necessarily satisfies the extension criterion. A
simple example should suffice to illustrate the general argument. Suppose F
consists of three elements in E, say r, s, and t, and suppose a is the 2-valued
function on F that assigns the value 1 to s, and the value 0 to both r and t.
Then

∧

i∈F

p(i, a(i)) = r ′ ∧ s ∧ t ′

and
∧

i∈F

p(g(i), a(i)) = g(r) ′ ∧ g(s) ∧ g(t) ′.
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The homomorphism properties of f , and the fact that f extends g, imply

f(r ′ ∧ s ∧ t ′ ) = f(r) ′ ∧ f(s) ∧ f(t) ′ = g(r) ′ ∧ g(s) ∧ g(t) ′.

If, therefore,

r ′ ∧ s ∧ t ′ = 0, then g(r) ′ ∧ g(s) ∧ g(t) ′ = 0,

since f(0) = 0.
In the case of an arbitrary finite subset F of E, and an arbitrary 2-valued

function a on F , write

pa =
∧

i∈F

p(i, a(i)) and qa =
∧

i∈F

p(g(i), a(i)).

An argument similar to the one in the preceding paragraph shows that

f(pa) = qa.

When pa = 0, the homomorphism properties of f imply qa = 0, so that the
extension criterion is satisfied.

A minor addition to the preceding argument yields a monomorphism ex-
tension criterion that, in its application to fields of sets, goes back to Kura-
towski and Posament [39].

Corollary 1. A mapping g from a generating set E of a Boolean algebra B
into a Boolean algebra A can be extended to a monomorphism from B into A
just in case, for every 2-valued function on a finite subset F of E,

∧

i∈F

p(i, a(i)) = 0 if and only if
∧

i∈F

p(g(i), a(i)) = 0.

Proof. Assume the monomorphism extension criterion is satisfied, and con-
sider first the case when the generating set E is finite. Recall from the
preceding proof that K is the set of 2-valued functions a on E such that

pa =
∧

i∈E

p(i, a(i))

is not zero. Every element in B can be written in one and only one way as a
join of elements (and actually atoms) pa with a from K, by the definition of K.
The monomorphism criterion implies that K is also the set of functions a such
that

qa =
∧

i∈E

p(g(i), a(i))
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is not zero, and consequently that every element in the subalgebra of A
generated by g(E) can be written in one and only one way as a join of
elements (and actually atoms) qa with a in K. In other words, for subsets X
and Y of K,

∨

a∈X

qa =
∨

a∈Y

qa if and only if X = Y,

if and only if
∨

a∈X

pa =
∨

a∈Y

pa.

The extension homomorphism f is defined to map
∨

a∈X pa to
∨

a∈X qa, so it
must be one-to-one.

Consider now the case of an arbitrary generating set E. The preceding
argument shows that for each finite subset F of E, the extension homomor-
phism fF from BF (the subalgebra of B generated by F ) into A is one-to-one.
Since the common extension of a directed family of one-to-one homomor-
phisms is one-to-one, by Lemma 1, the common extension f of the directed
family of monomorphisms {fF } must be one-to-one.

To prove the converse direction of the corollary, assume f is a monomor-
phism from B into A that extends the mapping g. We saw in the preceding
proof that f(pa) = qa for each 2-valued function a on a finite subset of E.
Because f(0) = 0, it follows from the one-to-oneness of f that pa = 0 if and
only if qa = 0. In other words, the monomorphism extension criterion is
satisfied.

Suppose C is a Boolean subalgebra of B. It is natural to look for condi-
tions under which a homomorphism g from C into A can be extended to a
homomorphism from B into A. One such condition is very easy to formulate:
it suffices that the Boolean algebra A be complete. To prove this assertion
it is helpful to establish first a special case. Call B a one-step (Boolean)
extension of C if B is generated by C ∪ {r} for some element r. (The case
when r is in C is not excluded, and in this case B = C.)

Lemma 3. A Boolean homomorphism into a complete Boolean algebra can
be extended to any one-step extension of its domain.

Proof. Let g be a homomorphism from a Boolean algebra C into a complete
Boolean algebra A, and suppose B is a one-step extension of C generated, say,
by C∪{r}. The goal is to find an element s in A such that the homomorphism
extension criterion is satisfied when s is taken for g(r) and E = C ∪{r}. The
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set C is closed under complements and meets, so the extension criterion can
be formulated more simply: for all elements p in C,

p ∧ r = 0 implies g(p) ∧ s = 0

and

p ∧ r ′ = 0 implies g(p) ∧ s ′ = 0.

The first implication says that r ≤ p ′ implies s ≤ g(p ′ ); because C is closed
under complement, this is equivalent to saying that r ≤ q implies s ≤ g(q).
(Recall, in this connection, that g(p) ′ = g(p ′ ), by the homomorphism prop-
erties of g.) The second implication says that p ≤ r implies g(p) ≤ s. We are
therefore looking for an element s in A such that

(1) p ≤ r ≤ q implies g(p) ≤ s ≤ g(q)

for all p and q in C.
Write

P = {g(p) : p ∈ C and p ≤ r} and Q = {g(q) : q ∈ C and r ≤ q}.
The supremum s1 of P , and the infimum s2 of Q, both exist in the com-
plete algebra A. The homomorphism properties of g imply that g(p) ≤ g(q)
whenever p and q are elements of C with p ≤ r ≤ q. Every element of Q
is therefore an upper bound of P . The element s1 is the least upper bound
of P , so it is below every element of Q. In other words, s1 is a lower bound
of Q. The greatest lower bound of Q is s2, so s1 ≤ s2. Take s to be any
element in A satisfying s1 ≤ s ≤ s2. Then

g(p) ≤ s1 ≤ s ≤ s2 ≤ g(q)

whenever p and q are elements in C satisfying the hypothesis of (1).
The desired element s has been found. The discussion in the first para-

graph of the proof shows that the homomorphism extension criterion is sat-
isfied. Theorem 4 now guarantees the existence of a homomorphism f from
B into A that agrees with g on C and maps r to s.

Each choice of an element s in A satisfying condition (1) determines a
homomorphism from B into A that extends g and maps r to s. Different
choices for s lead to different extensions, so the extension homomorphism f
is in general not unique.

The next theorem, due to Sikorski [58], is usually called the homomor-
phism extension theorem. It says that homomorphisms into complete Boolean
algebras can always be extended.
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Theorem 5. A Boolean homomorphism into a complete Boolean algebra can
be extended to any Boolean extension of its domain.

Proof. Let g be a homomorphism from a Boolean algebra C into a complete
Boolean algebra A, and let B be a Boolean extension of C. Enumerate the
elements of B in a (possibly) transfinite sequence {pi}i<α indexed by the
set of ordinals less than a given ordinal number α. Define a corresponding
transfinite sequence {fi}i≤α of A-valued homomorphisms with the following
properties: (1) f0 = g; (2) fj is an extension of fi whenever j ≥ i; (3) pi is
in the domain of fi+1. We shall write Bi for the domain of fi.

The definition of the sequence of homomorphisms proceeds by transfinite
induction on ordinals. The base case is completely determined by condi-
tion (1): put f0 = g; then f0 is an A-valued homomorphism, by assumption,
and conditions (2) and (3) hold vacuously. For the induction step, consider
an ordinal k ≤ α, and suppose A-valued homomorphisms fi have been de-
fined for i < k so that the family {fi}i<k satisfies conditions (1)–(3). When k
is a successor ordinal, say k = i + 1, take Bk to be the one-step extension
of Bi generated by Bi ∪ {pi}. The homomorphism fi from Bi into A can be
extended to a homomorphism fk from Bk into A, by Lemma 3. When k is a
limit ordinal, invoke Lemma 1 (for chains) to obtain an A-valued homomor-
phism fk that is a common extension of the homomorphisms fi for i < k.
The domain of fk is the union of family of domains {Bi}i<k (this union is
a subalgebra of B, by Lemma 11.1); fk is defined at each element p in its
domain by

fk(p) = fi(p)

whenever p is in Bi. This completes the construction of the family {fi}i≤α.
The algebra B coincides with the domain of fα. Indeed, if p is any

element of B, then p = pi for some ordinal i, so p is in the domain of fi+1, by
condition (3). Consequently, p is in the domain of fα, by condition (2). The
mapping fα is a homomorphism of Bα into A, by construction. It extends
each homomorphism fi, by condition (2), so it extends g, by condition (1).

Exercises

1. Prove that the common extension of a directed family of one-to-one A-
valued homomorphisms is one-to-one.
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2. Prove directly, without using Lemma 1, that a chain of A-valued homo-
morphisms has a common extension to an A-valued homomorphism.

3. Suppose the set E in Theorem 4 consists of just two elements, say u
and v. Use the definition of the function f in the proof of the theorem
to show directly that

f(u) = g(u), f(u ∧ v) = g(u) ∧ g(v), f(u ∨ v) = g(u) ∨ g(v),
f(v) = g(v), f(u ∧ v ′ ) = g(u) ∧ g(v) ′, f(u ∨ v ′ ) = g(u) ∨ g(v) ′,

f(u ′ ) = g(u) ′, f(u ′ ∧ v) = g(u) ′ ∧ g(v), f(u ′ ∨ v) = g(u) ′ ∨ g(v),
f(v ′ ) = g(v) ′, f(u ′ ∧ v ′ ) = g(u) ′ ∧ g(v) ′, f(u ′ ∨ v ′ ) = g(u) ′ ∨ g(v) ′.

4. Let g be a mapping from a subset E of a Boolean algebra B into a
Boolean algebra A. Prove that when the set E is finite, the homomor-
phism extension criterion,

∧

i∈F

p(i, a(i)) = 0 implies
∧

i∈F

p(g(i), a(i)) = 0

for all finite subsets F of E, is equivalent to a restricted version in
which the implication is assumed to hold only for the set F = E:

∧

i∈E

p(i, a(i)) = 0 implies
∧

i∈E

p(g(i), a(i)) = 0.

5. Let g be a mapping from a subset E of a Boolean algebra B into a
Boolean algebra A. Prove that when the set E is finite, the monomor-
phism extension criterion,

∧

i∈F

p(i, a(i)) = 0 if and only if
∧

i∈F

p(g(i), a(i)) = 0

for all finite subsets F of E, is equivalent to a restricted version in
which the equivalence is assumed to hold only for the set F = E:

∧

i∈E

p(i, a(i)) = 0 if and only if
∧

i∈E

p(g(i), a(i)) = 0.

6. Let E = {p1, p2, p3, . . . } be a countably infinite subset of a Boolean
algebra B, and g a mapping from E into a Boolean algebra A. Write

En = {p1, p2, . . . , pn}
for each positive integer n. Prove that the homomorphism extension
criterion is equivalent to a restricted version in which the equivalence
is assumed to hold only for the sets F = En:
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∧

i∈En

p(i, a(i)) = 0 implies
∧

i∈En

p(g(i), a(i)) = 0

for all positive integers n.

7. Formulate and prove the analogue of Exercise 6 for the monomorphism
extension criterion.

8. (Harder.) Construct the homomorphism f in the proof of Lemma 3 di-
rectly, without using the homomorphism extension criterion and with-
out making implicit use of the directed family construction from The-
orem 4.



Chapter 14

Atoms

The most natural field of subsets of a set is the field of all its subsets. Does
that field have a simple algebraic characterization? The answer is yes; the
purpose of this chapter is to exhibit such a characterization.

An atom of a Boolean algebra is an element that has no non-trivial proper
subelements. Better: q is an atom if q �= 0 and if there are only two elements p
such that p ≤ q, namely 0 and q. A typical example of an atom is a singleton
in a field of sets. In the Boolean algebra 2X , the atoms are the characteristic
functions of singletons — the functions that map a single element of X to 1
and the remaining elements of X to 0.

There are a number of characterizations of atoms. Here are some of the
more useful ones.

Lemma 1. The following conditions on an element q in a Boolean algebra
are equivalent :

(1) q is an atom;

(2) for every element p, either q ≤ p or q ∧ p = 0, but not both;

(3) for every element p, either q ≤ p or q ≤ p ′, but not both;

(4) q �= 0, and if q is below a join p ∨ r, then q ≤ p or q ≤ r;

(5) q �= 0, and if q is below the supremum of a family {pi}, then q is below pi

for some i.

Proof. The proofs of most implications are automatic. To see, for example,
that (2) implies (5), argue by contraposition. Let p be the supremum of a
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family {pi}, and suppose q is not below any element pi. Then q ∧ pi = 0 for
each index i, by condition (2), so q ∧ p = 0, by Lemma 8.3. In other words,
either q = 0 or q is not below p.

An element in a Boolean algebra may not be the supremum of a set of
atoms, but if it is, that set is uniquely determined.

Lemma 2. If an element p in a Boolean algebra is the supremum of a set of
atoms E, then E is the set of all atoms below p.

Proof. Assume p is the supremum of a set of atoms E. Certainly, every
element in E is below p, by the definition of a supremum. If r is an arbitrary
atom below p, then r is below some atom q in E, by Lemma 1. It follows
from the minimality of atoms that r = q, and therefore that r is in E.

A Boolean algebra is said to be atomic if every non-zero element domi-
nates at least one atom. A Boolean algebra is atomless if it has no atoms.
(Note that these two concepts are not just the negations of one another.) A
field of sets is usually (but not always) atomic: the field of all subsets, or
the finite–cofinite algebra, of a set are obvious examples. A counterexample
is the interval algebra of the real numbers; it is atomless. The regular open
algebra of a topological space X is quite likely to be atomless; the absence of
separation axioms and the presence of isolated points is likely to introduce
atoms (see, for example, Exercise 29.31).

The next lemma essentially goes back to Tarski [71].

Lemma 3. The following conditions on a Boolean algebra are equivalent.

(1) The algebra is atomic.

(2) Every element is the supremum of the atoms it dominates.

(3) The unit is the supremum of the set of all atoms.

Proof. The statement in (2) is intended to convey the information that the
supremum in question always exists (without any assumption of complete-
ness). Observe also that even the zero element does not have to be excluded
from the statement. Now for the proof that (1) implies (2): begin with the
trivial comment that each element p is an upper bound of the set, say E, of
the atoms that it dominates. It is to be proved that if r is an arbitrary upper
bound of E, then p ≤ r. Assume that, on the contrary, p − r �= 0. It follows
from the assumption of atomicity that there exists an atom q with q ≤ p− r.
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Since p − r ≤ p, the atom q belongs to E, and is therefore below r. Conse-
quently,

q ≤ (p − r) ∧ r = p ∧ r ′ ∧ r = 0,

and this contradicts the fact that q is an atom.
The implication from (2) to (3) is trivial. To prove that (3) implies (1),

let E be the set of all atoms, and p an arbitrary non-zero element, of the
Boolean algebra. Then

p = p ∧ 1 = p ∧
∨

E =
∨

{p ∧ q : q ∈ E},

by Lemma 8.3. Because the element p is not zero, the preceding equalities
show that there is at least one atom q in E for which p ∧ q �= 0. For such an
atom q, we must have p ∧ q = q, by the minimality of atoms, and therefore
q ≤ p.

The axioms of Boolean algebra were selected in order to capture the basic
properties of fields of sets. Do they fulfill this task? There are a number of
ways to answer this question. One way is to answer another question, the
so-called representation problem: is every Boolean algebra isomorphic to a
field of sets? An isomorphism from a Boolean algebra A to a field of sets
is called a representation of A. Equivalently, a representation of A (over a
set X) is an embedding of A into the field P(X). A representation that
preserves all existing suprema as unions (and hence all existing infima as
intersections) is said to be complete. In other words, a representation f is
complete if whenever {pi} is a family of elements with a supremum p, then

f(p) =
⋃

i

f(pi).

In the case when f represents A over a set X, the preceding condition is
equivalent to saying that f is a complete monomorphism of A into P(X).

We shall see later that the representation problem has a positive solu-
tion. For now, we prove a special representation theorem (essentially due to
Tarski [71]) for atomic Boolean algebras.

Theorem 6. Let A be an atomic Boolean algebra, and X its set of atoms.
The correspondence

p → {q ∈ X : q ≤ p}
is a complete representation of A over X.
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Proof. Let f be the mapping on A that takes each element p to the set of
atoms below p. It is easy to see that f is one-to-one: if f(p) = f(r), then p
and r dominate the same set of atoms, say E, and consequently

p =
∨

E = r,

by Lemma 3.
The proof that f preserves arbitrary suprema is only slightly more in-

volved. Let {pi} be a family of elements in A with supremum p. It is to be
shown that f(p) is the union of the sets f(pi). For an arbitrary atom q in A,

q ∈ f(p) if and only if q ≤ p,

if and only if q ≤ pi for some i,

if and only if q ∈ f(pi) for some i,

if and only if q ∈
⋃

i

f(pi).

The first and third equivalences use the definition of f , the second equivalence
uses Lemma 1, and the last equivalence uses the definition of the union of a
family of sets. Since f(p) and

⋃
i f(pi) are sets of atoms, it follows that

f(p) =
⋃

i

f(pi),

as desired.
The preceding argument establishes, in particular, that f preserves the

join of any two elements. A similar argument shows that f preserves com-
plement: for any atom q in A,

q ∈ f(p ′ ) if and only if q ≤ p ′,

if and only if q �≤ p,

if and only if q �∈ f(p),
if and only if q ∈ f(p) ′.

The first and third equivalences use the definition of f , the second equivalence
uses Lemma 1, and the last equivalence uses the definition of the complement
of a set. Since f(p ′ ) and f(p) ′ are sets of atoms, it follows that

f(p ′ ) = f(p) ′.
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The preceding theorem can be used to give an algebraic characterization
(due to Tarski [71]) of the Boolean algebras that are isomorphic to a field of
all subsets of some set.

Corollary 1. A necessary and sufficient condition that a Boolean algebra A
be isomorphic to the field of all subset of some set is that A be complete and
atomic.

Proof. The necessity of the conditions is obvious: every field of all subsets of
a set is complete and atomic, and so is every isomorphic copy of such a field.
Suppose now that A is a complete and atomic Boolean algebra, and let X
be the set of all atoms of A. The mapping f that takes each element in A to
the set of atoms it dominates is a complete monomorphism of A into P(X),
by the preceding theorem. It remains to check that f maps A onto P(X).
If E is an arbitrary subset of X, then the assumed completeness of A implies
that E has a supremum p in A. Since E is a set of atoms with supremum p, it
must be the set of all atoms below p, by Lemma 2. Consequently, f(p) = E,
by the definition of f .

A closer examination of the proof of Theorem 6 and its corollary reveals
that only two properties of the Boolean algebra A and the field P(X) are
used to establish their isomorphism: they are complete, and they have the
same number of atoms. Thus, a more general theorem is actually true.

Corollary 2. Two complete, atomic Boolean algebras with the same number
of atoms are isomorphic. In fact, every bijection between the sets of atoms
extends to an isomorphism between the algebras.

Proof. Let A and B be complete and atomic Boolean algebras with sets of
atoms X and Y respectively. Then A is isomorphic to the field P(X) via the
mapping f that takes each element of A to the set of atoms it dominates.
Similarly, B is isomorphic to the field P(Y ) via the mapping g that takes each
element of B to the set of atoms it dominates. Suppose that the two algebras
have the same number of atoms, so that X and Y have the same cardinality.
Let φ be any bijection from X to Y , and take h to be the isomorphism
from P(Y ) to P(X) induced by φ (see Chapter 12):

h(Q) = φ−1(Q) = {p ∈ X : φ(p) ∈ Q}

for each subset Q of Y . The composition

k = g−1 ◦ h−1 ◦ f
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is an isomorphism from A to B:

A
f−−−−→ P(X) h←−−−− P(Y )

g←−−−− B.

For each atom q of A,

k(q) = g−1(h−1(f(q))) = g−1(h−1({q}) = g−1({φ(q)}) = φ(q),

by the definition of f , h, and g. Therefore, k extends the bijection φ.

It is occasionally useful to have a more direct formulation of the definition
of the isomorphism k from the preceding proof. The isomorphism f maps
each element p in A to the set P of atoms below p, and the isomorphism g
maps each element q in B to the set Q of atoms below q. The inverse
isomorphism g−1 therefore maps the set of atoms Q in B to its supremum:

g−1(Q) =
∨

Q = q.

The isomorphism h−1 maps the set P of atoms in A to the corresponding set
in B, under the bijection φ:

h−1(P ) = φ(P ) = {φ(r) : r ∈ P} = {φ(r) : r is an atom in A and r ≤ p}.

These observations lead easily to an explicit formula for k(p):

k(p) = g−1(h−1(f(p))) = g−1(h−1(P )) = g−1(φ(P ))

=
∨

φ(P ) =
∨

{φ(r) : r is an atom in A and r ≤ p}.

In words, k maps each element p to the supremum of the images, under the
bijection φ, of the atoms below p.

In general, an infinite Boolean algebra is neither complete, nor completely
distributive. An exception is provided by the field of all subsets of an infinite
set, which has both properties. In fact, these two properties actually charac-
terize the Boolean algebras that are isomorphic to the field of all subsets of
some set. (The characterization is due to Tarski [71].)

Theorem 7. A Boolean algebra is isomorphic to the field of all subsets of a
set if and only if it is complete and completely distributive.

Proof. The field of all subsets of a set is complete and completely distributive,
so every isomorphic copy of such a field has the same properties. To prove the
converse, let A be a complete and completely distributive Boolean algebra.
By Corollary 1, it suffices to prove that A is atomic. The proof is a kind of
infinitary version of part of the proof of Theorem 2.
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Take I to be A, and write

p(i, j) =

{
i if j = 1 ,

i ′ if j = 0,

for each i in I. Since
∨

j∈2

p(i, j) = p(i, 1) ∨ p(i, 0) = i ∨ i ′ = 1

for every i, it follows that
∧

i∈I

∨

j∈2

p(i, j) = 1,

and consequently that
∨

a∈2I

∧

i∈I

p(i, a(i)) = 1,

by the assumed complete distributivity (8.3) of A. The proof will be com-
pleted by demonstrating that each non-zero element of the form

∧
i∈I p(i, a(i))

is an atom; the preceding equation then implies that the unit is a sum of
atoms, so A is atomic, by Lemma 3.

Suppose, accordingly, that

q =
∧

i∈I

p(i, a(i)) �= 0.

Notice that q is a well-determined element, by the assumption that A is
complete. Let r be an arbitrary element of A. If a(r) = 1, then

p(r, a(r)) = p(r, 1) = r

and therefore q ≤ r. If a(r) = 0, then

p(r, a(r)) = p(r, 0) = r ′

and therefore q ≤ r ′. Both inequalities cannot hold simultaneously, since q
is not zero. It now follows from Lemma 1 that q is an atom.

Theorem 7 and Corollary 1 together yield the following conclusion (due
to Lindenbaum and Tarski; see [71]).

Corollary 3. A complete Boolean algebra is atomic if and only if it is com-
pletely distributive.
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A subalgebra of an atomic Boolean algebra need not be atomic. For
example, the interval algebra of the real numbers is a subfield of the field of
all sets of reals numbers, but it is not atomic. This situation cannot arise
when the subalgebra in question is a regular subalgebra (as was observed by
Hirsch and Hodkinson [26]).

Lemma 4. A regular subalgebra of an atomic Boolean algebra is atomic.

Proof. Let A be an atomic Boolean algebra, and B a regular subalgebra of A.
It is to be shown that for every non-zero element p in B, there is an atom
in B below p. The algebra A is atomic, by assumption, so it contains an
atom q that is below p. Write

E = {r ∈ B : q ≤ r (in A)}.
The set E contains p, since q ≤ p. Furthermore, for each element r in B,
exactly one of r and r ′ is in E; indeed, q is an atom, so it is below exactly
one of r and r ′, by Lemma 1. Finally, and most importantly, the set E has
a non-zero lower bound in B. To see this, assume to the contrary that no
such lower bound exists. The element 0 is clearly a lower bound of E, so it
must be the greatest lower bound of E in B. Consequently, 0 is the greatest
lower bound of E in A, by the assumption that B is a regular subalgebra
of A. This contradicts the fact that q is a non-zero lower bound of E in A.

Let s be a non-zero lower bound of E in B. For each element r of B,
exactly one of r and r ′ is in E, and therefore exactly one of these two elements
is above s, by the definition of E. Thus, s is an atom of B, by Lemma 1.
Also, s is below p, since p is in E.

Theorem 6 guarantees that an atomic Boolean algebra — complete or not
— always has a complete representation. The converse (due to Hirsch and
Hodkinson [25]) is also true.

Theorem 8. A Boolean algebra with a complete representation is necessarily
atomic.

Proof. Let A be a Boolean algebra, and suppose f is a complete representa-
tion of A, say over the set X. This means that f is a complete monomorphism
of A into the field P(X). Write B for the range of A under f . The assump-
tion that f is complete implies that B is a regular subalgebra of P(X), by
Lemma 12.1. The field P(X) is obviously atomic, so the regular subalge-
bra B must be atomic, by the preceding lemma. Since A is isomorphic to B
via the mapping f , it must also be atomic.
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Does every Boolean algebra have a complete representation? The pre-
ceding theorem implies that the answer is, in general, negative. An algebra
with such a representation would have to be atomic, and as we have already
seen, there are many Boolean algebras that are very far from being atomic.
In fact, the Boolean algebra of regular open subsets of R

n and the interval
algebra of the real line are both atomless.

The notion of an atom was first introduced by Schröder in §47 of [52],
under the name “Individuum”. The term “atom” appears to be due to
Tarski [71].

Exercises

1. What are the atoms of the field of sets of integers of period four (see
Chapter 5, and in particular Exercise 5.3)? Show directly that every
element in this field is a join of atoms.

2. Write out a complete proof of Lemma 1.

3. Prove that a field of all subsets of a set is complete and completely
distributive.

4. Prove that a Boolean algebra is atomless if and only if for each non-zero
element q, there is a non-zero element p that is strictly below q (in the
sense that p ≤ q and p �= q).

5. Prove directly (without using Corollary 3 or the results of Chapter 11)
that every finite Boolean algebra is atomic. (This theorem is due to
Huntington [28]. Since a finite algebra is obviously complete and com-
pletely distributive, Corollary 3 would yield the desired conclusion at
once. The conclusion is too elementary, however, to deserve such a
relatively high-powered treatment.)

6. Prove directly (without using either Theorem 6 and its corollaries, or
the results of Chapter 11) that the total number of elements in every
finite Boolean algebra is a power of 2, and that two finite Boolean
algebras with the same number of elements must be isomorphic. (This
theorem is due to Huntington [28].)

7. (Harder.) Prove that if p is a non-zero element of an atomic Boolean
algebra A, then there exists a 2-valued homomorphism f on A such
that f(p) = 1.



126 Introduction to Boolean Algebras

8. (Harder.) Characterize the topological spaces whose regular open alge-
bras are (1) atomic, (2) atomless.

9. (Harder.) Does the set of all atoms in a Boolean algebra always have
a supremum?

10. (Harder.) Show that the hypothesis of completeness in Corollary 3 is
superfluous. In other words, show that an arbitrary Boolean algebra is
atomic if and only if it is completely distributive. (This improvement
is pointed out in Horn and Tarski [27], which refers to the proof of
Theorem 7 given in Birkhoff [7].)

11. Use Exercise 12 to give another proof of Theorem 8. Conclude that
the following conditions are equivalent in a Boolean algebra A: (1) A
is atomic; (2) A is completely distributive; (3) A is completely repre-
sentable.
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Finite Boolean Algebras

The observations of the previous chapter yield a complete description (due to
Huntington [28]) of all finite Boolean algebras. In formulating this description
it is helpful to use the von Neumann definition of the natural number n as
the set {0, 1, . . . , n − 1}.

Lemma 1. A finite Boolean algebra is atomic.

Proof. It is to be shown that every non-zero element p is above an atom.
If p itself is an atom, we are done. If not, then there must be a non-zero
element p1 strictly below p. If p1 is an atom, then again we are done. If not,
there must be a non-zero element p2 strictly below p1, and so on. Eventually
this process must lead to an atom below p; otherwise, the Boolean algebra
would have an infinite, strictly descending chain of elements, contradicting
the assumption that the algebra is finite.

The number of atoms in a finite Boolean algebra uniquely determines the
isomorphism type of the algebra.

Corollary 1. Every finite Boolean algebra A is isomorphic to the field P(n),
or, equivalently, to the Boolean algebra 2n, for some non-negative integer n.
In fact, n is the number of atoms in A.

Proof. A finite Boolean algebra A is atomic, by the preceding lemma, and it
is obviously complete. Let n be the number of atoms in A. The field P(n)
is also atomic with the same number of atoms — its atoms are the single-
tons {0}, . . . , {n − 1} — and it is also complete. Two complete, atomic
Boolean algebras with the same number of atoms are isomorphic, by Corol-
lary 14.2. Consequently, A and P(n) are isomorphic; in fact, any bijection
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between the sets of atoms extends to an isomorphism between the two alge-
bras. The assertion that A and 2n are isomorphic follows from the observation
(Chapter 3) that P(n) and 2n are isomorphic via the mapping that takes each
subset of n to its characteristic function.

How many Boolean algebras are there of a given finite size? If the size
is not a power of two, the answer is zero, by the preceding corollary. If the
size is a power of two, the answer is one, provided that isomorphic Boolean
algebras are treated as being the same. Certainly, there is a Boolean algebra
of size 2n, namely the Boolean algebra 2n. That there is only one such
algebra, up to isomorphic copies, follows from the next corollary.

Corollary 2. Two finite Boolean algebras with the same number of elements
are isomorphic.

Proof. Consider two finite Boolean algebras A and B with the same number
of elements. Both algebras are atomic, by Lemma 1; say A has m atoms
and B has n atoms. It follows from Corollary 1 that A is isomorphic to the
Boolean algebra 2m, and B is isomorphic to the Boolean algebra 2n. The
two algebras are assumed to have the same size, so we must have m = n.
Consequently, A and B are isomorphic to the same Boolean algebra, so they
are isomorphic to each other.

Simply put, the finite Boolean algebras are, up to isomorphic copies,
precisely the algebras 20, 21, 22, 23,. . . . These algebras can be thought of as
forming a subalgebra chain, since the algebra 2m can be embedded into the
algebra 2n whenever m ≤ n. The proof of this last observation is perhaps
easiest to grasp if one considers the fields P(m) and P(n) instead of the
corresponding powers of 2. Let φ be the mapping from n to m defined by

φ(i) =

{
i if 0 ≤ i < m,

m − 1 if m ≤ i < n.

Then φ induces a homomorphism from P(m) to P(n), namely the function f
determined by

f(P ) = φ−1(P ) =

{
P if m − 1 �∈ P ,

P ∪ {m, . . . , n − 1} if m − 1 ∈ P ,

for each set P in P(m) (see Chapter 12). Notice that

f(P ) ∩ m = P.
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Consequently, if f(P ) = f(Q), then

P = f(P ) ∩ m = f(Q) ∩ m = Q,

which proves that f is one-to-one, and hence a monomorphism.
Axioms (2.11)–(2.20) were intended to axiomatize the laws true in fields

of sets. It is natural to ask whether they actually accomplish this task. In
other words, is an identity that is true in all fields of sets necessarily derivable
from the axioms? The answer is affirmative; in fact, the axioms of Boolean
algebra are strong enough to imply all the laws that are true in the two-
element Boolean algebra.

Theorem 9. A Boolean identity is derivable from axioms (2.11)–(2.20) if
and only if the identity is true in the Boolean algebra 2.

Proof. Before starting the proof proper, it will be helpful to make some pre-
liminary observations.

A Boolean term is an expression built up from variables and the constant
symbols 0 and 1 using the symbols ∨ , ∧ , and ′ that denote the operations
of join, meet, and complement, and using parentheses. Every Boolean term
is provably equivalent to a term ρ of the form

(1) (ρ11 ∨ · · · ∨ ρ1n1) ∧ (ρ21 ∨ · · · ∨ ρ2n2) ∧ · · · ∧ (ρm1 ∨ · · · ∨ ρmnm),

where each term ρij is either one of the constants 0, 1, or a variable, or the
complement of a variable. In other words, for each Boolean term σ one can
construct a Boolean term ρ of the form (1) such that the identity σ = ρ is
derivable from the axioms of Boolean algebra.

To construct ρ from σ, first apply the De Morgan laws (2.17) repeat-
edly to move all occurrences of the complement symbol in σ inward to the
variables and constants; use the double complement law (2.15) to cancel two
occurrences of complement that are next to each other; and use (2.11) to get
rid of any occurrence of a complement symbol that is next to a constant. In
this manner, we arrive at an intermediate term δ that is built up from the
constant symbols 0 and 1, from variables, and from complements of variables,
using only the symbols ∨ and ∧ and parentheses (but not complement), and
such that the equation σ = δ is derivable (from the Boolean axioms). Next,
apply repeatedly the distributive laws (2.20) to δ (as well as the commuta-
tive laws (2.18), and associative laws (2.19)) to write all joins of meets as
meets of joins, and in this way arrive at a term ρ of the form (1) such that
the equation δ = ρ is derivable. It follows that the equation σ = ρ is also
derivable.
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Consider now a term ρ of the form (1). Suppose first that in every subterm
of ρ of the form

(2) ρi1 ∨ · · · ∨ ρini

either one of the terms ρij is 1, or else one of the terms ρij is a variable and
another of the terms, say ρik, is the complement of that same variable. Then
each equation

ρi1 ∨ · · · ∨ ρini = 1
is derivable with the help of (2.12) and the complement laws (2.14); therefore,
the equation ρ = 1 is derivable, using also the identity laws (2.13).

On the other hand, if in some subterm of ρ of the form (2) there is no
occurrence of the constant 1, and there are also no terms ρij and ρik such
that ρij is a variable and ρik is the complement of that variable, then it is
possible to find an assignment of the values 0 and 1 to the variables of ρ
that makes the given subterm (2), and hence also ρ, evaluate to 0 in the
algebra 2; whenever ρij is a variable of the given subterm, assign to that
variable the value 0 everywhere in ρ, and whenever ρij is the complement of
a variable in the given subterm, assign to that variable the value 1 everywhere
in ρ. Since a variable and its complement do not occur simultaneously in (2),
by assumption, this prescription does not lead to conflicting assignments.
Assign to all other variables occurring in ρ (the ones that do not occur in the
given subterm) one of the values 0 and 1 (it does not matter which). Under
this assignment, the given subterm (2) evaluates to 0 (in the algebra 2), by
the laws (2.11) and (2.13). Consequently, ρ itself, under this assignment,
evaluates to 0, by the laws (2.12).

It has been shown that, for every term ρ of the form (1), either the equa-
tion ρ = 1 is derivable from the Boolean axioms, or there is an assignment of
the values 0 and 1 to its variables that makes ρ evaluate to 0 in the algebra 2.
Suppose now that an arbitrary Boolean identity is given. It is an equation
of the form σ = τ , where σ and τ are Boolean terms. It is easy to show
that σ = τ is provably equivalent to the identity

(σ ∧ τ) ∨ (σ ′ ∧ τ ′ ) = 1

in the sense that each identity is derivable from the other one on the basis of
the Boolean axioms. The term (σ ∧ τ)∨ (σ ′ ∧ τ ′ ) is provably equivalent to a
term ρ of the form (1), so the given identity σ = τ is provably equivalent to
the identity ρ = 1. We have seen that the identity ρ = 1 is either derivable
from the axioms or else there is an assignment of values 0 and 1 to its variables
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that makes ρ evaluate to 0, and consequently that makes the identity ρ = 1
fail, in the algebra 2. It follows that the original identity σ = τ is either
provable from the axioms, or there is an assignment of values 0 and 1 to its
variables that makes it fail in 2.

For an illustration of how the preceding theorem may be applied, consider
the equation

p ′ ∨ (q ′ ∧ (q ′ ∨ p)) = (p ∧ q) ′.
Straightforward computations, using the definitions of the operations of join,
meet, and complement in the Boolean algebra 2, show that this equation is
true in 2 for all possible values of p and q (see the table below); consequently,
the equation must be derivable from axioms (2.11)–(2.20), by the theorem.

p q p ′ ∨ (q ′ ∧ (q ′ ∨ p)) (p ∧ q) ′

1 1 0 0
1 0 1 1
0 1 1 1
0 0 1 1

Theorem 9 is a Boolean algebraic version of the completeness theorem
for propositional logic, due to Post [50]. It implies that an identity is true
in one non-degenerate Boolean algebra if and only if it is true in every other
non-degenerate Boolean algebra; hence, the same identities are true of all
non-degenerate Boolean algebras. (The degenerate algebra must be excluded
from consideration, because every identity is trivially true in it.)

Corollary 3. The same set of identities is true in every non-degenerate
Boolean algebra.

Proof. Let A be an arbitrary non-degenerate Boolean algebra. The corollary
will follow if it can be shown that an identity is true in A if and only if
it is true in 2. An identity is a universal assertion about the elements and
operations of a Boolean algebra; if it holds in the algebra A, then it must
hold in every subalgebra B, since the elements of B are among the elements
of A, and the operations of B are restrictions of the operations of A. Since A
is assumed to be non-degenerate, it includes (a copy of) 2 as a subalgebra.
Consequently, every identity true in A is also true in 2. Conversely, if an
identity is true in 2, then it is derivable from the Boolean axioms, by the
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previous theorem, and therefore it must be true in every Boolean algebra,
including A.

Theorem 9 and its corollary yield the following surprising conclusion: if
an identity is true in some (any) non-degenerate Boolean algebra — and in
particular if it is true in some non-degenerate field of sets — then it is true in
the Boolean algebra 2, and therefore it is derivable from axioms (2.11)–(2.20).

Exercises

1. Prove directly that 2m is embeddable into 2n. In other words, define
an appropriate mapping from 2m into 2n, and prove that the mapping
is an embedding.

2. For each Boolean term σ below, use the algorithm described in the
proof of Theorem 9 to find a term ρ of the form (1) such that σ = ρ is
derivable from axioms (2.11)–(2.20). Show that in each case the term
is provably equal to 1 or else there is an assignment of the values 0
and 1 to the variables so that the term evaluates to 0 in the Boolean
algebra 2.

(a) (p ∨ q) ∧ (r ∨ 0 ∨ q ′ ) ′.

(b) [((0 ′ ∨ p) ∧ q) ′ ∨ (p ′ ∨ 0) ′ ] ′.

(c) (p ∧ q ∧ r ′ ) ′ ∨ (p ′ ∧ q) ∨ (p ∧ r ′ ).

3. Determine whether the equation

[p ∧ (p ∧ p ′ )] ∨ [p ′ ∧ (p ∧ p ′ ) ′ ] = p ′

is derivable from axioms (2.11)–(2.20) by checking the validity of the
equation in the Boolean algebra 2.

4. (Harder.) Let m and n be natural numbers with m ≤ n. Describe all
of the embeddings of P(m) into P(n).

5. (Harder.) If a bijection f between two finite Boolean algebras preserves
order in the sense that

p ≤ q implies f(p) ≤ f(q),

is f necessarily an isomorphism? (Compare this exercise with Exer-
cises 12.10 and 12.11.)



15 Finite Boolean Algebras 133

6. Show that the Boolean identities σ = τ and

(σ ∧ τ) ∨ (σ ′ ∧ τ ′ ) = 1

are provably equivalent. In other words, show that the first identity is
derivable from the second, and the second is derivable from the first,
on the basis of the Boolean axioms.

7. Theorem 9 has a dual proof. First, one shows that every Boolean term
is provably equivalent to a term ρ of the form

(ρ11 ∧ · · · ∧ ρ1n1) ∨ (ρ21 ∧ · · · ∧ ρ2n2) ∨ · · · ∨ (ρm1 ∧ · · · ∧ ρmnm),

where each term ρij is either one of the constants 0, 1, or a variable, or
the complement of a variable. Second, one shows that if ρ has this form,
then either the equation ρ = 0 is derivable from the Boolean axioms,
or else there is an assignment of the values 0 and 1 to its variables
that makes ρ evaluate to 1 in the algebra 2. Third, one shows that an
arbitrary Boolean identity σ = τ is provably equivalent to the identity

(σ ∧ τ ′ ) ∨ (σ ′ ∧ τ) = 0.

Finally, one argues that the identity σ = τ is either derivable from
the axioms, or there is some assignment of values to its variables that
makes it false in 2. Write out the details of this proof.



Chapter 16

Atomless Boolean Algebras

The discussion in Chapter 14 focused on atomic Boolean algebras. At the
other extreme lie the atomless Boolean algebras, which have no atoms at all.
The degenerate (one-element) Boolean algebra is vacuously atomless (and
vacuously atomic); it has no atoms because it has no non-zero elements.
Interval algebras provide examples of non-degenerate atomless Boolean alge-
bras. For instance, the interval algebra of the real numbers is atomless, and
so is its subalgebra consisting of the finite unions of left half-closed intervals
with endpoints that are rational numbers (or ±∞). Notice that this last
algebra is countable. Quite surprisingly, it is the only possible example of
a countable atomless Boolean algebra that is not degenerate, at least up to
isomorphic copies. The purpose of the present chapter is to present a proof
(apparently due to Tarski — see [84], footnote 21) of this assertion.

The technique employed in the proof is a back-and-forth argument that
finds applications in more advanced parts of the theory of Boolean algebras,
and in other areas of mathematics as well. It goes back to Cantor [13],
with a refinement by Huntington [29], and was used by them to prove that,
up to isomorphic copies, the rational numbers are the only example of a
denumerable dense linear order without endpoints.

Every atomless Boolean algebra with more than one element must be
infinite. Indeed, the unit 1 is different from zero, so there is a non-zero
element p1 strictly below 1; otherwise, 1 would be an atom. Because p1 is
not zero, there must be a non-zero element p2 strictly below p1; otherwise, p1

would be an atom. Continue in this fashion to produce an infinite, strictly
decreasing sequence of elements 1 > p1 > p2 > · · · .
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Theorem 10. Any two countable, atomless Boolean algebras with more than
one element are isomorphic.

Proof. Let A and B be countable, atomless Boolean algebras with more than
one element. The assumption of countability implies that the elements of each
algebra can be enumerated in a sequence indexed by the positive integers (or,
equivalently, by any infinite subset of the positive integers). It will simplify
the notation of the back-and-forth argument to enumerate the elements of A
using even indices, and the elements of B using odd indices, say, p2, p4, p6, . . .
and q1, q3, q5, . . . .

A bit of auxiliary notation will be needed. As usual, for each element i
of a Boolean algebra write

p(i, j) =

{
i if j = 1 ,

i ′ if j = 0.

Also, put
In = {1, 2, . . . , n}

for every positive integer n.
The principal part of the proof involves the construction of elements pn

in A, for odd n, and elements qn in B, for even n, such that the correspon-
dence taking pi to qi for i = 1, . . . , n satisfies an equivalent version of the
monomorphism extension criterion, namely

(1)
∧

i∈In

p(pi, a(i)) = 0 if and only if
∧

i∈In

p(qi, a(i)) = 0

for all positive integers n and all 2-valued functions a on In (see Exercise 13.7).
Once this construction is accomplished, Corollary 13.1 may be applied to ob-
tain an isomorphism g from the subalgebra of A generated by the family {pn}
to the subalgebra of B generated by the family {qn} such that

g(pn) = qn

for each n. The former family includes, in particular, the elements pn with
even indices n, so it includes every element of A. Similarly, the latter family
includes the elements qn with odd indices n, so it includes every element of B.
It follows that g is an isomorphism from A to B, as desired.

The construction of the elements pn for odd n, and qn for even n, uses a
back-and-forth argument. Let g0 be the isomorphism from the trivial subalge-
bra of A to the trivial subalgebra of B. For n = 1, the element q1 is assumed
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to be in B, and an element p1 in A is to be defined so that criterion (1) is
satisfied. In this case, the criterion involves two conditions:

p1 = 0 if and only if q1 = 0,

and

p ′
1 = 0 if and only if q ′

1 = 0.

If q1 is zero or the unit, take p1 = g−1
0 (q1); the criterion is obviously satisfied

because g0 is an isomorphism. If q1 is not zero or the unit, take p1 to be
any element of A different from zero and the unit; the criterion is vacuously
satisfied, because neither p1 nor q1 is 0 or 1. The mapping that takes p1 to q1

can therefore be extended to an isomorphism g1 from the subalgebra of A
generated by p1 to the subalgebra of B generated by q1, by Corollary 13.1.

Next, suppose n = 2. The element p2 in A is given, and an element q2

in B must be chosen so that criterion (1) is satisfied. In the present case, the
criterion involves four conditions:

p1 ∧ p2 = 0 if and only if q1 ∧ q2 = 0,

p1 ∧ p ′
2 = 0 if and only if q1 ∧ q ′

2 = 0,

p ′
1 ∧ p2 = 0 if and only if q ′

1 ∧ q2 = 0,

p ′
1 ∧ p ′

2 = 0 if and only if q ′
1 ∧ q ′

2 = 0.

Choose an element x ≤ q1 as follows: if the meet p1 ∧ p2 is generated (in A)
by p1, take x = g1(p1 ∧ p2); otherwise, take x to be any non-zero element
strictly below q1. Such a selection is always possible: if the meet is not
generated by p1, then the meet cannot be zero, and therefore p1 cannot be
zero; this implies (by the argument of the previous paragraph) that q1 is
not zero, so the assumption that B is atomless ensures the existence of the
required element x. Choose an element y ≤ q ′

1 in a completely analogous
way: if p ′

1 ∧ p2 is generated by p1, take y = g1(p ′
1 ∧ p2); otherwise, take y to

be any non-zero element strictly below q ′
1. Again, the assumption that B is

atomless ensures the existence of such a y.
It is not difficult to check that

x = 0 if and only if p1 ∧ p2 = 0,

x = q1 if and only if p1 ∧ p ′
2 = 0,

y = 0 if and only if p ′
1 ∧ p2 = 0,

y = q ′
1 if and only if p ′

1 ∧ p ′
2 = 0.
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The first equivalence follows readily from the isomorphism properties of g1

and the definition of x. In more detail, if x is zero, then the definition of x
implies that

g1(p1 ∧ p2) = x = 0;
therefore p1 ∧ p2 is zero, by the isomorphism properties of g1. On the other
hand, if p1 ∧ p2 is zero, then it is certainly generated by p1, and therefore

x = g1(p1 ∧ p2) = g1(0) = 0,

by the definition of x and the isomorphism properties of g1.
The proof of the second equivalence is similar, but slightly more involved.

If x = q1, then x must have been defined by the clause x = g1(p1 ∧ p2);
since q1 = g1(p1), it follows that

g1(p1) = q1 = x = g1(p1 ∧ p2),

and therefore that p1 = p1 ∧ p2 (because g1 is one-to-one). On the other
hand, if this last equation holds, then p1 ∧ p2 is certainly generated by p1,
and therefore

x = g1(p1 ∧ p2) = g1(p1) = q1.

Thus,
x = q1 if and only if p1 ∧ p2 = p1.

The equation on the right is equivalent to the inequality p1 ≤ p2, and hence
to the equation

p1 ∧ p ′
2 = 0.

The third and fourth equivalences are established in a completely analogous
way.

Write q2 = x ∨ y, and observe that

q1 ∧ q2 = x, q1 ∧ q ′
2 = q1 ∧ x ′,

q ′
1 ∧ q2 = y, q ′

1 ∧ q ′
2 = q ′

1 ∧ y ′.

For instance,

q ′
1 ∧ q2 = q ′

1 ∧ (x ∨ y) = (q ′
1 ∧ x) ∨ (q ′

1 ∧ y) = 0 ∨ y = y,

since x ≤ q1 and y ≤ q ′
1. Similarly,

q ′
1 ∧ q ′

2 = q ′
1 ∧ (x ∨ y) ′ = q ′

1 ∧ x ′ ∧ y ′ = q ′
1 ∧ y ′,

since x ≤ q1, and therefore q ′
1 ≤ x ′.
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It is not difficult to verify (1), using the observations of the preceding
paragraphs. For example,

p ′
1 ∧ p2 = 0 if and only if y = 0,

if and only if q ′
1 ∧ q2 = 0.

Similarly,

p ′
1 ∧ p ′

2 = 0 if and only if y = q ′
1,

if and only if q ′
1 ∧ y ′ = 0,

if and only if q ′
1 ∧ q ′

2 = 0.

The second equivalence holds because y ≤ q ′
1.

The construction of the elements pn for even n, and qn for odd n, in the
general case is very similar to the preceding construction. Assume, as the
induction hypothesis, that the sequences

p1, p2, . . . , pn−1 and q1, q2, . . . , qn−1

have been defined so that criterion (1) holds with n− 1 in place of n. Corol-
lary 13.1 then implies the existence of an isomorphism gn−1 from the subal-
gebra of A generated by the first sequence to the subalgebra of B generated
by the second sequence such that gn−1(pi) = qi for i = 1, . . . , n − 1.

Suppose n is even. An element qn in B must be selected so that (1) is
satisfied. Let K be the set of 2-valued functions on In−1. Each 2-valued
function a on In is the extension of a unique function b in K, namely the
restriction of a to In−1. Conversely, each function in K has exactly two
extensions to a 2-valued function on In; one extension maps n to 1, and the
other maps n to 0. Criterion (1) may therefore be reformulated in terms of
functions in K. Write

pb =
∧

i∈In−1

p(pi, b(i)) and qb =
∧

i∈In−1

p(qi, b(i)).

In terms of this notation, (1) says that

pb ∧ pn = 0 if and only if qb ∧ qn= 0,

and

pb ∧ p ′
n = 0 if and only if qb ∧ q ′

n= 0,

for each function b in K. Notice that

gn−1(pb) = qb,
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by the isomorphism properties of gn−1.
Associate with each b in K an element xb ≤ qb as follows: if pb ∧ pn is

generated by pb, write
xb = gn−1(pb ∧ pn);

otherwise, take for xb any non-zero element strictly below qb. Such a selection
is always possible: if pb ∧ pn is not zero, then neither is pb; the element qb is
therefore also not zero (since the isomorphism gn−1 maps pb to qb), so the as-
sumption that B is atomless ensures the existence of the required element xb.

It is not difficult to show that

xb = 0 if and only if pb ∧ pn = 0,

and

xb = qb if and only if pb ∧ p ′
n = 0.

The argument is nearly identical to the one given above in the case n = 2.
Write

qn =
∨

c∈K

xc,

and observe that

qb ∧ qn = xb and qb ∧ q ′
n = qb ∧ x ′

b.

To prove this, recall that the elements qb and qc are disjoint for distinct
functions b and c in K. (The functions b and c differ on some index i, so qb is
below one of the elements qi and q ′

i , while qc is below the other.) Also, each
element xc is below qc, and therefore

qb ∧ xc ≤ qb ∧ qc = 0.

It follows that

qb ∧ qn = qb ∧
∨

c∈K

xc =
∨

c∈K

(qb ∧ xc) = qb ∧ xb = xb.

Similarly, qb is disjoint from xc, and therefore below x ′
c, for c �= b. Conse-

quently, qb ∧ x ′
c = qb. It follows that

qb ∧ q ′
n = qb ∧

( ∨

c∈K

xc

)
′ = qb ∧

∧

c∈K

x ′
c =
∧

c∈K

(qb ∧ x ′
c) = qb ∧ x ′

b.

The verification of (1), using the observations of the preceding para-
graphs, is routine. For instance,
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pb ∧ pn = 0 if and only if xb = 0,

if and only if qb ∧ qn = 0.

Similarly,

pb ∧ p ′
n = 0 if and only if xb = qb,

if and only if qb ∧ x ′
b = 0,

if and only if qb ∧ q ′
n = 0.

The second equivalence holds because xb ≤ qb.
When n is even, an element pn in A must be selected so that (1) holds.

The argument that such an element exists is symmetric to the preceding
argument, and is left to the reader. This completes the proof of the theorem.

Exercises

1. Prove that the interval algebra of the real numbers is atomless. What
is its cardinality?

2. Prove that the interval algebra of the rational numbers is atomless and
countable.

3. For each non-negative integer n, let An be the field of periodic sets
of integers of period 2n (see Chapter 5). Show that the union of the
fields An is a countable, atomless Boolean algebra.

4. Prove that the regular open algebra of the space of real numbers is
atomless. What is its cardinality?

5. Find two atomless Boolean algebras that are not isomorphic. Can they
have the same cardinality?

6. The proof of Theorem 10, in the case n = 2, asserts that

y = q ′
1 if and only if p ′

1 ∧ p ′
2 = 0,

and that
q1 ∧ q2 = x and q1 ∧ q ′

2 = q1 ∧ x ′.

Prove these assertions, and show that

p1 ∧ p2 = 0 if and only if q1 ∧ q2 = 0,
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and

p1 ∧ p ′
2 = 0 if and only if q1 ∧ q ′

2 = 0.

7. Give the details of the construction of the element p3 in the proof of
Theorem 10, and the verification of criterion (1) for the case n = 3.

8. Give the details of the construction of the element pn in the proof of
Theorem 10, and the verification of criterion (1) for the case of an
arbitrary positive odd integer n.



Chapter 17

Congruences and Quotients

Congruences on algebras are a way of gluing elements of the algebra together
to form structurally similar, but simpler algebras. The prototypical example
is that of a modular congruence on the ring of integers. Define two integers p
and q to be congruent modulo a fixed positive integer n if they have the same
remainder upon division by n, or, what amounts to the same thing, if their
difference p − q is divisible by n. The notation

p ≡ q mod n

is usually used to express this relation.
Congruence modulo n is a binary relation on the set of integers that is

reflexive,

p ≡ p mod n for all integers p,

symmetric,

if p ≡ q mod n, then q ≡ p mod n,

and transitive,

if p ≡ q mod n and q ≡ r mod n, then q ≡ r mod n.

A convenient way to express these three properties is to say that congruence
modulo n is an equivalence relation on the set of integers. The relation has
two further properties that are quite important: it preserves addition and
multiplication. In more detail, whenever

p ≡ r mod n and q ≡ s mod n,

we also have
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p + q ≡ r + s mod n and p · q ≡ r · s mod n.

Congruence modulo n partitions the set of integers into n mutually dis-
joint subsets called equivalence classes: two integers are put into the same
equivalence class just in case they are congruent modulo n. For instance,
congruence modulo 2 partitions the integers into two equivalence classes, the
even integers and the odd integers. Congruence modulo 3 partitions the
integers into three equivalence classes, namely the sets of integers whose re-
mainder upon division by 3 is 0, 1, or 2 respectively. Write [ p ]n for the
equivalence class of an integer p modulo n, so that

[ p ]n = {q : p ≡ q mod n}.

The preservation conditions make it possible to define operations of addi-
tion and multiplication on the set of equivalence classes: for any two equiv-
alence classes [ p ]n and [ q ]n, define their sum and product by

[ p ]n + [ q ]n = [ p + q ]n and [ p ]n · [ q ]n = [ p · q ]n.

(The operations on the right sides of these equations are addition and mul-
tiplication of integers.) The set of equivalence classes under these operations
is easily seen to form a ring, the ring of integers modulo n. When n = 2, we
get an isomorphic copy of the Boolean ring 2.

The preceding construction, suitably modified, works for any algebraic
structure, and in particular for Boolean algebras. A Boolean congruence
(relation) is defined to be an equivalence relation on a Boolean algebra B
that preserves the operations of meet, join, and complement. In other words,
it is a binary relation Θ on B that is reflexive, symmetric, and transitive in
the sense that

p ≡ p mod Θ for all integers p,(1)
if p ≡ q mod Θ, then q ≡ p mod Θ,(2)
if p ≡ q mod Θ and q ≡ r mod Θ, then q ≡ r mod Θ,(3)

and such that whenever

(4) p ≡ r mod Θ and q ≡ s mod Θ,

we also have

p ∧ q ≡ r ∧ s mod Θ,(5)
p ∨ q ≡ r ∨ s mod Θ,(6)

p ′ ≡ r ′ mod Θ.(7)
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Other Boolean operations such as + and ⇒ are definable in terms of
meet, join, and complement, so they are also preserved by Boolean congru-
ences. In other words, if Θ is a Boolean congruence on B, and if (4) holds,
then

p + q ≡ r + s mod Θ and p ⇒ q ≡ r ⇒ s mod Θ.

The proofs are easy computations based on (5)–(7). For example, to show
that ⇒ is preserved, use first (7) and then (6) (with p and r replaced by p ′

and r ′ ) to arrive at
p ′ ∨ q ≡ r ′ ∨ s mod Θ,

which, in view of the definition of ⇒ in (6.3), is just the desired result.
The important property in the preceding argument was the definability

of the Boolean operations in terms of meet, join, and complement. If an
equivalence relation Θ on a Boolean algebra preserves enough Boolean oper-
ations so that all others are definable in terms of them, then Θ is a Boolean
congruence. For instance, if Θ preserves join and complement (that is, if it
satisfies (6) and (7)), then Θ also preserves meet and is therefore a Boolean
congruence.

The equivalence classes of a congruence Θ on a Boolean algebra B are
the sets of the form

p/Θ = {q : p ≡ q mod Θ}.
The properties of reflexivity, symmetry, and transitivity imply that

(8) p/Θ = q/Θ if and only if p ≡ q mod Θ.

An easy consequence of this observation is that two equivalence classes of Θ
are always either equal or disjoint.

Preservation conditions (5)–(7) make it possible to define operations ∧,
∨, and ′ on the set of all equivalence classes of Θ in the following way:

(p/Θ) ∧ (q/Θ) = (p ∧ q)/Θ,(9)
(p/Θ) ∨ (q/Θ) = (p ∨ q)/Θ,(10)

(p/Θ) ′ = (p ′ )/Θ.(11)

(The operations on the right sides of the equations are those of the Boolean
algebra B.) To show that these operations are well defined, it must be checked
that the definitions do not depend on the particular choice of the elements
in the equivalence classes that are being used to define the operations. For
instance, to verify that ∧ is well defined, suppose
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p/Θ = r/Θ and q/Θ = s/Θ.

In view of (8), these two equations, when translated into the language of
congruences, say that the conditions in (4) hold. It follows that condition (5)
also holds, by the definition of a Boolean congruence. The translation of (5)
into the language of equivalence classes says, by (8), that

(p ∧ q)/Θ = (r ∧ s)/Θ.

Conclusion: in definition (9) it does not matter whether p or r is used as a
representative of the first equivalence class, nor does it matter whether q or s
is used as a representative of the second equivalence class; all choices yield
the same result.

The set of all equivalence classes of Θ is denoted by B/Θ. Under the
operations defined by (9)–(11), this set becomes a Boolean algebra, the so-
called quotient of B modulo Θ. A direct verification of this fact is not difficult;
the validity of axioms (2.11)–(2.20) in B must be checked. To verify the
commutative law for meet, for example, let p and q be elements of B. Then

(p/Θ) ∧ (q/Θ) = (p ∧ q)/Θ = (q ∧ p)/Θ = (q/Θ) ∧ (p/Θ);

the first and last equalities follow from the definition of meet in the quotient,
while the middle equality follows from the validity of the commutative law
in B. The other axioms are verified in a similar fashion.

There is another, more efficient way of proving that the quotient B/Θ is a
Boolean algebra: it suffices to show that B/Θ is a homomorphic image of B,
by the remarks in the second paragraph of Chapter 12. Define a mapping f
from B onto B/Θ by

f(p) = p/Θ.

Simple computations show that f satisfies conditions (12.1) and (12.3), and
is therefore an epimorphism:

f(p ∧ q) = (p ∧ q)/Θ = (p/Θ) ∧ (q/Θ) = f(p) ∧ f(q)

and

f(p ′ ) = (p ′ )/Θ = (p/Θ) ′ = f(p) ′.

The mapping f is called the canonical homomorphism, or the projection,
from B onto B/Θ.

Here are two examples of Boolean congruences. For the first, let p0 be an
arbitrary element of a Boolean algebra B. Define a binary relation Θ on B
as follows: two elements p and q in B are congruent modulo Θ if
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(12) p ∧ p0 = q ∧ p0.

It is easy to check that Θ is an equivalence relation on B. Indeed, equa-
tion (12) obviously holds when p = q, so Θ is reflexive. If (12) holds for p
and q, then it holds with p and q interchanged, so Θ is symmetric. Finally,
if p and q are congruent modulo Θ, and also q and r, then

p ∧ p0 = q ∧ p0 and q ∧ p0 = r ∧ p0,

and consequently
p ∧ p0 = r ∧ p0.

It follows that p and r are congruent modulo Θ, so that Θ is transitive.
To show that Θ preserves meet and complement, assume (4) holds. Then

p ∧ p0 = r ∧ p0 and q ∧ p0 = s ∧ p0.

An application of the idempotent law for meet gives

p ∧ q ∧ p0 = p ∧ p0 ∧ q ∧ p0 = r ∧ p0 ∧ s ∧ p0 = r ∧ s ∧ p0.

Thus (5) holds, by the definition of Θ. The elements p∧ p0 and r∧ p0 belong
to the relativization B(p0). Their assumed equality implies the equality of
their complements in the relativization; in other words,

p ′ ∧ p0 = r ′ ∧ p0.

Thus, (7) holds.
For the second example of a Boolean congruence, let B be a field of

subsets of some set X. Define two sets P and Q in B to be congruent if they
differ by at most finitely many elements, that is, if they contain exactly the
same elements with at most finitely many exceptions. In still other words, P
and Q are defined to be congruent if their symmetric difference P + Q is
finite. The binary relation Θ defined in this way is easily seen to be reflexive
and symmetric. It is reflexive because the set P + P is empty and therefore
finite. It is symmetric because the sets P + Q and Q + P are equal (so one
is finite just in case the other is). The transitivity of Θ follows from the
inclusion

P + R ⊆ (P + Q) ∪ (Q + R)
(Exercise 7.9(a)): if P + Q and Q + R are finite, then so is their union, and
hence also P +R, by the inequality. Similarly, the preservation condition for
join follows from the inclusion

(P ∪ Q) + (R ∪ S) ⊆ (P + R) ∪ (Q + S)
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(Exercise 7.9(b)): if P + R and Q + S are finite, then so is their union, and
hence also (P ∪ Q) + (R ∪ S), by the inequality. The preservation condition
for complement follows at once from the equation

P ′ + Q ′ = P + Q

(Exercise 6.2(g)).

Exercises

1. Let Θ be an equivalence relation on a set B. Prove that

p/Θ = q/Θ if and only if p ≡ q mod Θ.

Conclude that two equivalence classes of Θ are either equal or disjoint.

2. Prove that congruence modulo n is a congruence relation on the set of
integers, that is, it is an equivalence relation that preserves addition
and multiplication.

3. Verify that the operations of addition and multiplication defined on
the set of equivalence classes of the integers modulo n are in fact well
defined.

4. Prove that the operations of join and complement defined in (10) and
(11) on the set of equivalence classes of a Boolean congruence Θ are
well defined.

5. A congruence on a Boolean ring is an equivalence relation on the ring
that preserves (Boolean) addition and multiplication. Is every congru-
ence on a Boolean algebra also a congruence on the associated Boolean
ring?

6. Is every congruence on a Boolean ring also a congruence on the associ-
ated Boolean algebra?

7. Give a precise definition of the notion of a congruence relation on an
arbitrary ring. Define operations of addition and multiplication on
the set of equivalence classes of the congruence, and show that these
operations are well defined. Prove that the set of equivalence classes
under these operations is a ring.

8. Let Θ be a congruence on a ring R. Define the projection f from R to
the quotient R/Θ, and prove that f is an epimorphism.
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9. Let B be a field of subsets of a set X, and x0 a fixed element of X.
Define two sets P and Q in B to be congruent if either both sets con-
tain x0 or else neither set contains x0. Prove that this is a congruence
relation on B. Describe the elements and operations of the quotient
algebra.

10. Let B be a field of subsets of a set X. Define two sets P and Q in B to
be congruent if they differ on at most countably many elements, that
is, if their symmetric difference

P + Q = (P ∩ Q ′ ) ∪ (P ′ ∩ Q)

is countable. Prove that this relation is a congruence on B. If X is a
countable set, what is the resulting quotient algebra?

11. Define two elements p and q in a Boolean algebra B to be congruent
if their sum p + q can be written as the join of finitely many atoms.
Prove that the relation so defined is a congruence on B.

12. Define two elements p and q in Boolean algebra B to be congruent if
there are no atoms below p + q. Prove that the relation so defined is a
congruence on B.



Chapter 18

Ideals and Filters

A Boolean congruence Θ obviously determines each of its equivalence classes,
and in particular it determines the equivalence class of 0, which is called the
kernel of Θ. It is a happy state of affairs that, conversely, Θ is completely
determined by its kernel via the equivalence

(1) p ≡ q mod Θ if and only if p + q ≡ 0 mod Θ.

In other words, to check whether two elements p and q are congruent, it is
necessary and sufficient to check whether their Boolean sum is in the ker-
nel. For the proof, suppose first that p and q are congruent (modulo Θ).
The element q is congruent to itself, by reflexivity, and congruences preserve
Boolean addition. Therefore, the sums p + q and q + q are congruent. Since

(2) q + q = 0,

the sum p+q is congruent to 0, and is therefore in the kernel. For the reverse
implication, suppose that p + q is congruent to 0. Then p + q + q and 0 + q
are congruent; the first element is p, by (2), and the second is q.

Under what conditions is a subset of a Boolean algebra B the kernel of
some congruence Θ on B? Three properties of the kernel of Θ are immediately
evident:

(3) 0 ≡ 0 mod Θ,

if p ≡ 0 mod Θ and q ≡ 0 mod Θ, then p ∨ q ≡ 0 mod Θ,(4)
if p ≡ 0 mod Θ and q ∈ B, then p ∧ q ≡ 0 mod Θ.(5)

Motivated by these properties, we make the following definition: a (Bool-
ean) ideal in a Boolean algebra B is a subset M of B such that
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(6) 0 ∈ M,

if p ∈ M and q ∈ M, then p ∨ q ∈ M,(7)
if p ∈ M and q ∈ B, then p ∧ q ∈ M.(8)

Observe that condition (6) in the definition can be replaced by the superfi-
cially less restrictive condition that M be not empty, without changing the
concept of ideal. Indeed, if M is not empty, say p ∈ M , and if M satisfies (8),
then p ∧ 0 (that is, 0) is in M .

Two further properties of an ideal M are quite useful:

if p ∈ M and q ∈ M, then p + q ∈ M,(9)
if p ∈ M and q ∈ B, then p · q ∈ M.(10)

Indeed, if p and q are in M , then so are p ∧ q ′ and p ′ ∧ q, by condition (8).
Therefore, the join (p ∧ q ′ ) ∨ (p ′ ∧ q) — that is to say, the sum p + q —
is in M , by condition (7). Equation (10) is an immediate consequence of
condition (8), since multiplication in a Boolean algebra is defined to be meet.

The kernel of every congruence on B is an ideal, as is evident from prop-
erties (3)–(5). The converse is also true: every ideal M in B uniquely deter-
mines a congruence of which it is the kernel. The equivalence in (1) suggests
how the congruence should be defined: it is the binary relation Θ on B
determined by

(11) p ≡ q mod Θ if and only if p + q ∈ M

for every pair of elements p and q in B. It is not difficult to show that Θ is
a congruence. The reflexivity of Θ is a direct consequence of the identity (2)
and condition (6). Symmetry is a consequence of the commutative law for
Boolean addition: if p ≡ q mod Θ, then p + q is in M ; since

q + p = p + q,

it follows that q + p is in M , and therefore (by (11)) q ≡ p mod Θ. To
establish the transitivity of Θ, assume

p ≡ q mod Θ and q ≡ r mod Θ.

The sums p + q and q + r are then both in M , by (11), so the sum of these
two sums is in M , by (9). Since

p + r = (p + q) + (q + r),

by (2), it may be concluded that p ≡ r mod Θ.
To verify that Θ preserves meet, assume
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p ≡ r mod Θ and q ≡ s mod Θ.

This means that the sums p + r and q + s are in M . The products (p + r) · q
and (q + s) · r are then both in M , by (10), and therefore the Boolean sum
of these two products is in M , by (9). This sum is just p · q + r · s:

(p + r) · q + (q + s) · r = (p · q + r · q) + (q · r + s · r)
= p · q + (r · q + r · q) + r · s = p · q + 0 + r · s = p · q + r · s,

by the distributive law (1.9), the associative law (1.1), the commutative law
(1.4), the identity law (1.5), and (2). Invoke (11) to arrive at

p · q ≡ r · s mod Θ.

In view of the definition of multiplication in a Boolean algebra (see (3.3)), it
may be concluded that

p ∧ q ≡ r ∧ s mod Θ.

The proof that Θ preserves complement is similar, but simpler, and uses the
identity

p ′ + q ′ = p + q

from Exercise 6.7(a). If p ≡ q mod Θ, then p + q is in M . It follows from
the given identity that p ′ + q ′ is then in M , so

p ′ ≡ q ′ mod Θ.

The kernel of a congruence is the set of elements congruent to 0. The
kernel of the congruence Θ defined in (11) is therefore the set of elements p
such that p + 0 belongs to M . This set is of course just M . Conclusion: the
kernel of Θ is M . In view of (1), every congruence is completely determined
by its kernel, so Θ is the only congruence on B with kernel M . This completes
the proof that every ideal in B uniquely determines a congruence of which it
is the kernel.

The equivalence classes of any congruence Θ can be computed directly
from the kernel M of the congruence. For an arbitrary element p of B, the
equivalence class p/Θ coincides with the coset

p + M = {p + r : r ∈ M}.

The proof of this assertion amounts to checking that the sets in question have
the same elements. If q is in B, then

q ∈ p/Θ if and only if p ≡ q mod Θ,
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if and only if p + q ∈ M,

if and only if q ∈ p + M.

The first step uses the definition of an equivalence class, and the second step
uses (1), which is equivalent to (11). For the third step, observe that if p + q
belongs to M , and if r = p + q, then p + r belongs to p + M ; since

q = 0 + q = p + p + q = p + r,

it follows that q is in p + M . On the other hand, if q belongs to p + M , then
q = p + r for some element r in M ; since

p + q = p + p + r = 0 + r = r,

it follows that p + q belongs to M .
Definitions (17.9)–(17.11) of the Boolean algebraic operations of the quo-

tient algebra B/Θ can be expressed in terms of cosets in the following manner:

(p + M) ∧ (q + M) = (p ∧ q) + M,(12)
(p + M) ∨ (q + M) = (p ∨ q) + M,(13)

(p + M) ′ = (p ′ ) + M.(14)

The zero and unit of the quotient algebra are the cosets 0 + M — which
coincides with M — and 1 + M . The Boolean algebra of cosets under the
operations defined by (12)–(14) is identical to the Boolean algebra of equiva-
lence classes of Θ. It is called the quotient algebra of B modulo the ideal M .
It is helpful to adopt a notation for this quotient that is reminiscent of the no-
tation used in the case of congruences. For that reason, we shall write B/M
for the quotient, we shall usually write p/M for the coset p+M , and we shall
write

p ≡ q mod M instead of p ≡ q mod Θ.

The characterization given in (17.8) of when two equivalence classes mod-
ulo Θ are equal can also be rephrased in terms of the ideal M :

p/M = q/M if and only if p ≡ q mod M,(15)
if and only if p + q ∈ M.

The second equivalence follows from (11).
The canonical homomorphism that maps each element of B to its equiv-

alence class modulo Θ can also be expressed in terms of cosets; it is the
function f from B to B/M defined by

f(p) = p/M.
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The kernel of f is, by definition, the set of elements that are mapped to the
zero element of B/M . It is easy to check that this set is just M :

f(p) = 0/M if and only if p/M = 0/M,

if and only if p ≡ 0 mod M,

if and only if p ∈ M ;

the first equality uses the definition of f , the second uses (17.8) (formulated
in the notation introduced in the previous paragraph), and the third uses
the fact that M is the kernel of the congruence determined by it. The kernel
of the homomorphism f and the kernel of the congruence Θ are thus equal;
they are both M .

A consequence of the preceding discussion is that in the study of Boolean
algebras, congruences can be dispensed with entirely; they can be replaced by
ideals, and congruence classes can be replaced by cosets — in fact, they are
cosets. The quotient of a Boolean algebra modulo a congruence is identical
to the quotient of the Boolean algebra modulo the ideal that is the kernel of
the congruence.

A similar situation exists in the theory of rings. Motivated by the example
of congruence modulo n on the ring of integers, we define a congruence on a
ring R to be an equivalence relation Θ on R that preserves the ring operations
of addition, multiplication, and formation of negatives (additive inverses).
Operations of addition, multiplication, and formation of negatives are defined
on the set of equivalence classes of Θ as follows: the sum and product of
equivalence classes p/Θ and q/Θ are the equivalence classes (p + q)/Θ and
(p · q)/Θ, and the negative of p/Θ is (−p)/Θ. The preservation conditions
ensure that these operations are well defined. The set of all equivalence
classes, under the operations just defined, is a ring, the quotient ring of R
modulo Θ. The projection mapping that takes each element of R to the
corresponding equivalence class of Θ is an epimorphism from R to R/Θ.

An ideal in a ring is defined to be an arbitrary subset M of the ring that
satisfies conditions (6), (9), (10), and

if p ∈ M, then − p ∈ M,(16)
if p ∈ M and q ∈ B, then q · p ∈ M,(17)

where + , · , and − are the ring operations of addition, multiplication, and
formation of negatives, and 0 is the zero element of the ring. Condition (16)
is needed for rings without unit; for rings with unit, it is a consequence
of (10). Similarly, condition (17) is needed for non-commutative rings; for
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commutative rings, it is a consequence of (10). The kernel of a ring congru-
ence — the equivalence class of 0 — is always an ideal. Conversely, an ideal
M uniquely determines a ring congruence of which it is the kernel, namely
the binary relation Θ determined by

p ≡ q mod Θ if and only if p − q ∈ M

(where p − q is the sum of p and the additive inverse of q). The equivalence
classes of Θ coincide with the cosets of M , the sets of the form p + M . The
ring operations on the equivalence classes may be written as operations on
cosets in the following way:

(p + M) + (q + M) = (p + q) + M and (p + M) · (q + M) = (p · q) + M.

Conclusion: in the study of rings, congruence relations can be, and almost
always are, replaced by ideals, and one speaks of the quotient of a ring modulo
an ideal instead of the quotient of a ring modulo a congruence.

Every Boolean algebra is (or, better, can be turned into) a Boolean ring,
and conversely. What is the relationship between the corresponding notions
of ideal? It turns out that ideals are ideals, or, to put it more precisely, a
subset M of a Boolean algebra B is a Boolean ideal if and only if it is an ideal
in the corresponding Boolean ring. Indeed, every Boolean ideal M is a ring
ideal, since conditions (7) and (8) imply conditions (9) and (10). To prove the
converse, suppose M is an ideal in the sense of ring theory. Condition (10)
at once implies condition (8), since meet is defined as ring multiplication. To
verify condition (7), let p and q be elements of M . The join of these two
elements is defined by

p ∨ q = p + q + p · q
(see (3.4)), and the sum on the right side of this equation belongs to M , by
conditions (9) and (10). Consequently, p ∨ q is in M .

The concept of a Boolean ideal can also be defined in order-theoretic
terms, but the language of order does not have much to contribute to ideal
theory. This much can be said: condition (8) can be replaced by

(18) if p ∈ M and q ≤ p, then q ∈ M,

without changing the concept of ideal. The proof is elementary.
Every example of a Boolean congruence (such as the ones in Chapter 17)

gives rise to an example of an ideal, namely its kernel. Thus, if a congruence Θ
on a Boolean algebra B is defined in terms of a fixed element p0 in B by

p ≡ q mod Θ if and only if p ∧ p0 = q ∧ p0,
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then the corresponding ideal consists of those elements p for which p∧p0 = 0,
or, equivalently, p ≤ p0

′. If a congruence Θ is defined on the field of all subsets
of a set X by

P ≡ Q mod Θ if and only if P + Q is finite,

then the corresponding ideal consists of all finite sets in the field. More
generally, the class of all those finite sets that happen to belong to some
particular field is an ideal in that field. A similar generalization is available
for each of the following two examples. The class of all countable sets is an
ideal in the field of all subsets of an arbitrary set; and the class of all nowhere
dense sets is an ideal in the field of all subsets of a topological space.

Every Boolean algebra B has a trivial ideal, namely the set {0} consisting
of 0 alone; all other ideals of B will be called non-trivial . Every Boolean
algebra B has an improper ideal, namely B itself; all other ideals will be
called proper . Observe that an ideal is proper if and only if it does not
contain 1. (This follows at once from condition (18).)

The intersection of every family of ideals in a Boolean algebra B is again
an ideal of B. (The intersection of the empty family is, by convention, the
improper ideal B.) The proof consists in verifying that conditions (6)–(8)
hold in the intersection. For instance, to verify condition (7), let p and q be
elements in the intersection of a family of ideals. Every ideal in the family
must contain both p and q, and therefore must also contain the join p ∨ q
(by condition (7) applied to each ideal in the family). It follows that p∨ q is
in the intersection of the family. The other two conditions are verified in a
completely analogous fashion.

One consequence of the preceding remark is that if E is an arbitrary
subset of B, then the intersection of all those ideals that happen to include E
is an ideal. (There is always at least one ideal that includes E, namely the
improper ideal B.) That intersection, say M , is the smallest ideal in B that
includes E; in other words, M is included in every ideal that includes E. The
ideal M is called the ideal generated by E.

The definition just given is top-down and non-constructive; it does not
describe the elements in the ideal generated by E. (An advantage of the
definition is that with minimal changes, it applies to every algebraic structure
in which there is a suitable analogue of the notion of an ideal.) Fortunately,
it is possible to give a more explicit description (due to Stone [66]) of the
elements of the ideal.

Theorem 11. An element p of a Boolean algebra is in the ideal generated
by a set E if and only if there is a finite subset F of E such that p ≤

∨
F .
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Proof. Let M be the ideal generated by a subset E of a Boolean algebra B,
and let N be the set of elements p in B such that p is below the join of some
finite subset of E. It is to be proved that M and N are equal. Every join
of a finite subset of E is certainly in M , by condition (7), and consequently
every element below such a join is in M , by condition (18). Thus, N is a
subset of M . To establish the reverse inclusion, it suffices to prove that N is
an ideal. Since N obviously includes E, it then follows that N must include
the smallest ideal that includes E, namely M .

The empty set is a finite subset of E, and its join is 0; hence, 0 belongs
to N . If p and q are elements of N , then there are finite subsets F and G
of E such that

p ≤
∨

F and q ≤
∨

G.

The set H = F ∪ G is a finite subset of E, and p ∨ q is below
∨

H, by
monotony; consequently, p ∨ q is in N . Finally, if p is an element of N ,
say p is below the join of a finite subset F of E, then any element q that
is below p is also below

∨
F , and therefore belongs to N , by the definition

of N . Conclusion: N satisfies the three conditions (6), (7), and (18) that
characterize ideals, so it is an ideal in B.

The ideal generated by the empty set is the smallest possible ideal of B,
namely the trivial ideal {0}. An ideal generated by a singleton {p} is called
a principal ideal ; it consists of all the subelements of p, by Theorem 11, and
it is usually denoted by (p). Both the trivial ideal {0} and the improper
ideal B are principal; the former consists of the subelements of 0, and the
latter of the subelements of 1. An ideal is said to be finitely generated if it is
generated by a finite set of elements.

Corollary 1. Every finitely generated ideal in a Boolean algebra is principal.

Proof. Suppose E is a finite subset of a Boolean algebra B. An element p
in B will be below the join of some finite subset of E just in case it is below
the join

∨
E. The ideal generated by E therefore coincides with the ideal

generated by the single element
∨

E, by the preceding theorem.

Theorem 11 can also be used to characterize when the set of atoms of a
Boolean algebra generates a proper ideal.

Corollary 2. The ideal generated by the set of all atoms in a Boolean algebra
is a proper ideal if and only if the Boolean algebra is infinite.
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Proof. Let E be the set of all atoms in a Boolean algebra B, and let M
be the ideal generated by E. The argument proceeds by contraposition.
If B is finite, then it is atomic, by Lemma 15.1. In this case 1 =

∨
E, by

Lemma 14.3. Because E is also finite, the unit 1 must be in M , so M is the
improper ideal.

Now assume that M is improper. By Theorem 11, there must be a finite
subset F of E such that 1 ≤

∨
F , and therefore 1 =

∨
F . In other words,

the unit must be the supremum of a finite set F of atoms. This implies
(Lemmas 14.3 and 14.2) that B is atomic and that F is the set of all of its
atoms. An atomic Boolean algebra with finitely many atoms is perforce finite
(see, for instance, Theorem 6, p. 119).

An important special case of Theorem 11, the ideal extension lemma,
describes how to extend an ideal by adjoining a single element.

Lemma 1. Let M be an ideal, and p0 an element, in a Boolean algebra. The
ideal generated by M ∪ {p0} is the set

N = {p ∨ q : p ≤ p0 and q ∈ M}.

Proof. Put E = M ∪ {p0}, and invoke Theorem 11. An element r of the
Boolean algebra is in the ideal generated by E just in case there is a finite
subset F of E such that r ≤

∨
F . No generality is lost by assuming that the

element p0 is in F (adding this element to F can only make the join bigger).
Also, the elements of F that are in M may be combined into a single element,
since M is closed under join. Thus, r is in the ideal generated by E if and
only if there is an element s in M such that r ≤ s ∨ p0. This last inequality
holds just in case

r = r ∧ (s ∨ p0) = (r ∧ s) ∨ (r ∧ p0).

The element q = r ∧ s is again a member of M , and the element p = r ∧ p0

is below p0. Therefore, r is in the ideal generated by E just in case

r = q ∨ p

for some q in M and some p ≤ p0.

The lemma yields a simple criterion for determining when the extension
of a proper ideal by a new element is again a proper ideal.

Corollary 3. Let M be an ideal, and p0 an element, in a Boolean algebra.
If p ′

0 is not in M , then the ideal generated by M ∪ {p0} is proper.
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Proof. The argument proceeds by contraposition. Let N be the ideal gen-
erated by M ∪ {p0}, and assume N is improper. It is to be shown that p ′

0

belongs to M . Since N is improper, it certainly contains p ′
0. There must

therefore be elements p ≤ p0 and q in M such that p ′
0 = p ∨ q, by Lemma 1.

A simple computation shows that p ′
0 ≤ q:

p ′
0 = p ′

0 ∧ p ′
0 = p ′

0 ∧ (p ∨ q) = (p ′
0 ∧ p) ∨ (p ′

0 ∧ q)
≤ (p ′

0 ∧ p0) ∨ (p ′
0 ∧ q) = 0 ∨ (p ′

0 ∧ q) = p ′
0 ∧ q ≤ q.

Therefore, p ′
0 is in M , by condition (18).

The concepts of subalgebra and homomorphism are in a certain obvious
sense self-dual; the concept of ideal is not. The dual concept is defined as
follows. A (Boolean) filter in a Boolean algebra B is a subset N of B such
that

1 ∈ N,(19)
if p ∈ N and q ∈ N, then p ∧ q ∈ N,(20)
if p ∈ N and q ∈ B, then p ∨ q ∈ N.(21)

Condition (19) can be replaced by the condition that N be non-empty. Con-
dition (21) can be replaced by

(22) if p ∈ N and p ≤ q, then q ∈ N.

Neither of these replacements will alter the concept being defined. The filter
generated by a subset of B, and in particular a principal filter, are defined
by an obvious dualization of the corresponding definitions for ideals. In more
detail, the intersection of any family of filters in B is again a filter in B. The
filter generated by a subset E of B is defined to be the intersection of the
filters that include E. (There is always one such filter, namely B.) In other
words, it is the smallest filter that includes E. A filter N is principal if it is
generated by a single element p. It is not difficult to show that in this case

N = {q ∈ B : p ≤ q}.
The relation between filters and ideals is a very close one. The fact

is that filters and ideals come in dual pairs. This means that there is a
one-to-one correspondence that pairs each ideal to a filter, its dual, and by
means of which every statement about ideals is immediately translatable to a
statement about filters. The pairing is easy to describe. If M is an ideal, write
N = {p : p ′ ∈ M}, and, in reverse, if N is a filter, write M = {p : p ′ ∈ N}.
It is trivial to verify that this construction does indeed convert an ideal into
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a filter, and vice versa, since the conditions (6)–(8) and (19)–(21) are dual
to one another. We shall have more to say about this subject in the next
chapter.

Exercises

1. Let M be an ideal of a ring R, and let Θ be the binary relation on R
determined by

p ≡ q mod Θ if and only if p − q ∈ M

(where p−q is the sum of p and the additive inverse of q). Prove that Θ
is a congruence relation on R with kernel M , and that the equivalence
class p/Θ coincides with the coset

p + M = {p + q : q ∈ M}.

2. Prove that condition (8) in the definition of a (Boolean) ideal can equiv-
alently be replaced by condition (18).

3. Prove that the class of finite sets of integers, the class of finite sets of
even integers, and the class of finite sets of odd integers are all ideals
in the Boolean algebra of all subsets of the set of integers.

4. Prove that in any field of sets, the countable sets form an ideal.

5. Prove that the nowhere dense sets form an ideal in the field of all subsets
of a topological space.

6. Let E be a subset of a Boolean ring B with or without a unit. The
annihilator of E is the set of all elements p in B such that p · r = 0 for
all r in E. Prove that the annihilator of a set is always a ring ideal.
(This observation is due to Stone [66]. The notion of an annihilator of
a set, and the proof that the annihilator of a set is an ideal, hold in the
more general setting of commutative rings.)

7. Prove that the intersection of two ideals M and N in a Boolean ring
(with or without a unit) is the trivial ideal if and only if N is included
in the annihilator of M (Exercise 6).

8. A subset of a Boolean ring B (with or without a unit) is called dense if
every non-zero element in B is above a non-zero element of the subset.
Prove that an ideal M in B is dense if and only if M has a non-trivial
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intersection with every non-trivial ideal in B. Conclude that M is dense
if and only if its annihilator (Exercise 6) is the trivial ideal.

9. (Harder.) Prove that the class of all sets of measure zero is an ideal in
the field of all measurable subsets of a measure space.

10. It has been shown that a subset of a Boolean algebra is a Boolean ideal
if and only if it is a ring ideal. Prove an analogous result for Boolean
rings without unit. In other words, prove that a subset M of a Boolean
ring without unit satisfies conditions (6)–(8) if and only if it satisfies
conditions (6), (9), and (10), where the meet and join operations in the
ring are defined by equations

p ∧ q = p · q and p ∨ q = p + q + p · q.

11. Complete the proof that the intersection of every family of ideals in a
Boolean algebra B is again an ideal in B.

12. Show that Theorem 11 also holds for Boolean rings without unit.

13. In general, homomorphisms do not preserve all structural properties of
a Boolean algebra. The following example demonstrates this in a dra-
matic way. Let X be the set of integers, and M the ideal of finite subsets
of X. The field P(X) is atomic. Prove that the quotient P(X)/M is
atomless. Conclude that an epimorphism need not preserve the prop-
erty of an element being an atom, nor the property of an algebra being
atomic.

14. Describe the ideal generated by the set of all atoms in a Boolean algebra.

15. Prove that a subset N of a Boolean algebra is a filter if and only if it
is non-empty and satisfies conditions (20) and (22).

16. Prove that the intersection of a family of filters in a Boolean algebra is
again a filter.

17. Formulate and prove the analogue of Theorem 11 for filters.

18. Prove that the following conditions on an ideal M are equivalent: (1) M
is improper; (2) there is an element p such that p and p ′ are both in M ;
(3) 1 is in M .
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19. A subset E of a Boolean algebra is said to have the finite join property
if the unit is not the supremum (join) of any finite subset of E. Prove
that the ideal generated by a set E is proper if and only if E has the
finite join property.

20. Formulate and prove the dual of Exercise 19.

21. Show that a set E generates an ideal in a Boolean algebra if and only
if the set E ′ = {p ′ : p ∈ E} generates the dual filter.

22. Formulate and prove, for filters, the analogue of the assertion that every
finitely generated ideal is principal.

23. Prove that the join of two elements p and q in a Boolean algebra belongs
to an ideal M if and only if both p and q belong to M .

24. Formulate and prove, for filters, the analogue of Exercise 23.

25. Suppose B is a Boolean subalgebra of A. Prove that if M is an ideal
in A, then the intersection N = M ∩ B is an ideal in B. Prove further
that N is a proper ideal in B just in case M is a proper ideal in A.

26. Suppose f is a Boolean homomorphism from B to A. Prove that if M
is an ideal in A, then its inverse image under f , the set

f−1(M) = {p ∈ B : f(p) ∈ M},

is an ideal in B. Prove also that if f is an epimorphism, then the image
under f of an ideal N in B, the set

f(N) = {f(p) : p ∈ N},

is an ideal in A.

27. The intersection of a family {Mi} of ideals in a Boolean algebra B is
an ideal. In fact, it is the largest ideal that is included in each Mi. In
other words, under the partial ordering of inclusion, it is the infimum
of the family {Mi}. Define an appropriate notion of the supremum of
the family {Mi} so that this supremum is again an ideal. Prove that
under these notions of supremum and infimum, the set of all ideals of B
is a complete distributive lattice. (See Chapter 7.)

28. Prove the following assertions about ideals and filters in a Boolean
algebra B.
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(a) If M is an ideal, then the set N = {p ′ : p ∈ M} is a filter. It is
called the dual filter of M .

(b) If N is a filter, then the set M = {p ′ : p ∈ N} is an ideal. It is
called the dual ideal of N .

(c) If M is an ideal and N its dual filter, then the dual ideal of N is
just M .

(d) If N is a filter and M its dual ideal, then the dual filter of M is
just N .

(e) An ideal M1 is included in an ideal M2 if and only if the dual filter
of M1 is included in the dual filter of M2.

(f) The correspondence that takes each ideal to its dual filter maps
the class of ideals in B bijectively to the class of filters in B, and
is a lattice isomorphism.

29. Prove that if M is an ideal in a Boolean algebra and if N is its dual
filter, then the set-theoretic union M ∪ N is a subalgebra.

30. If an ideal M in a Boolean algebra is countably generated, show that
there must be a (countable) ascending chain

p1 ≤ p2 ≤ · · · ≤ pn ≤ · · · ,

of generators in M such that an element p of the Boolean algebra
belongs to M if and only if p ≤ pn for some positive integer n.

31. It was proved in this chapter that congruences can equivalently be
replaced by ideals. The purpose of this exercise is to show that congru-
ences can equivalently be replaced by filters.

(a) Prove that the cokernel of a congruence — the equivalence class
of 1 — is always a filter.

(b) Prove that a congruence is uniquely determined by its cokernel.

(c) Prove that every filter uniquely determines a congruence of which
it is the cokernel.

(d) Describe the equivalence classes of a congruence in terms of the
“cosets” of its cokernel.

(e) Describe the operations of the quotient algebra in terms of the
“cosets” of the cokernel.
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(f) Describe the canonical homomorphism in terms of the “cosets” of
the cokernel.

32. Let B be a Boolean subalgebra of A, and p0 an arbitrary element in A.
Show that the set M of elements in B that are disjoint from p0 is an
ideal in B, and that the relativization of B to p0,

B(p0) = {p ∧ p0 : p ∈ B}
(Exercise 12.19), is isomorphic to the quotient B/M via the correspon-
dence defined by

f(p ∧ p0) = p/M

for each p in B.



Chapter 19

Lattices of Ideals

The class of all ideals in a Boolean algebra B is partially ordered by the
relation of set-theoretic inclusion — the relation of one ideal being a subset
of another. Under this partial order, a family {Mi} of ideals always has an
infimum; it is just the intersection

⋂
i Mi of the ideals in the family. The

family also has a supremum, but in general the supremum is not the union
of the ideals in the family, since that union is rarely an ideal; rather, the
supremum is the ideal generated by the union

⋃
i Mi. In other words, the

supremum of the family {Mi} is the intersection of the class of those ideals
in B that include every ideal Mi. (This class is not empty, because it always
contains B.) All of this may be summarized by saying that the class of
ideals of a Boolean algebra B is a complete lattice under the partial order
of inclusion; the infimum of an arbitrary family of ideals is the intersection
of the family, and the supremum is the ideal generated by the union of the
family.

The special case when a family of ideals is empty is worth discussing for a
moment, if only to avoid later confusion. The improper ideal B is vacuously
included in every ideal in the empty family (there is no ideal in the empty
family that does not include B). Clearly, then, B is the largest ideal that is
included in every ideal in the empty family, so it is, by definition, the infimum
of that family. Similarly, the trivial ideal {0} vacuously includes every ideal
in the empty family (there is no ideal in the empty family that is not included
in {0}). Since {0} is obviously the smallest ideal that includes every ideal in
the empty family, it must be the supremum of that family.

It is worthwhile formulating a simple but quite useful alternative descrip-
tion of the join and meet of two ideals (which goes back to Stone [66]).
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Lemma 1. If M and N are ideals in a Boolean algebra, then

M ∨ N = {p ∨ q : p ∈ M and q ∈ N}

and

M ∧ N = {p ∧ q : p ∈ M and q ∈ N}.

Proof. To establish the first identity, write

L = {p ∨ q : p ∈ M and q ∈ N}.

It must be shown that
L = M ∨ N.

If p and q are elements of M and N respectively, then both elements are
in M∨N , and therefore so is their join. Consequently, L is included in M∨N ,
by the definition of L. To establish the reverse inclusion, suppose r is an
element of M ∨N . There must then exist finite subsets E of M , and F of N ,
such that r is below the join of E∪F , by Theorem 11 (p. 155). The ideals M
and N are closed under finite joins, so the elements

s =
∨

E and t =
∨

F

belong to M and N respectively, and r ≤ s ∨ t. It follows that the elements

p = r ∧ s and q = r ∧ t

are also in M and N respectively, by condition (18.8). Since

r = r ∧ (s ∨ t) = (r ∧ s) ∨ (r ∧ t) = p ∨ q,

the element r belongs to L, by the definition of L.
The proof of the second identity is similar, but easier. Write

L = {p ∧ q : p ∈ M and q ∈ N}.

It must be shown that
L = M ∧ N.

An element r in M ∧ N belongs to both M and N . The meet of r with
itself — which is just r — is therefore in L, by the definition of L. It follows
that M ∧N is included in L. For the reverse inclusion, consider an arbitrary
element r in L; it has the form r = p ∧ q for some p in M and some q in N .
Since r is below each of p and q, it belongs to both M and N , by condition
(18.18), and consequently it belongs to M ∧ N . Thus, each element of L is
in M ∧ N . The proof of the lemma is complete.
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The formulas in the preceding lemma assume a particularly perspicuous
form when applied to principal ideals.

Corollary 1. Let p and q be elements in a Boolean algebra. Then

(p) ∨ (q) = (p ∨ q) and (p) ∧ (q) = (p ∧ q).

Proof. The previous lemma, applied to the principal ideals (p) and (q), asserts
that (p) ∨ (q) = L, where

(1) L = {r ∨ s : r ≤ p and s ≤ q}.
To obtain the first identity of the corollary, then, it suffices to check that
L = (p∨ q). The inclusion of L in (p∨ q) is an immediate consequence of (1)
and the monotony laws:

r ≤ p and s ≤ q implies r ∨ s ≤ p ∨ q.

The reverse inclusion follows from the simple observation that p ∨ q is in L;
since L is an ideal, every element below p ∨ q must also be in L.

The second identity is established in a completely analogous fashion.

The lattice of ideals is not only complete, it is also distributive in the sense
that the laws (2.20) hold identically in it. The proof is a direct application
of Lemma 1. Let L, M , and N be three ideals in a Boolean algebra. Then

L ∨ (M ∧ N) = {p ∨ (q ∧ s) : p ∈ L, q ∈ M, and s ∈ N}(2)

and

(L ∨ M) ∧ (L ∨ N) = {(p ∨ r) ∧ (q ∨ s) : p, q ∈ L, r ∈ M, and s ∈ N},(3)

by the lemma. Since

p ∨ (q ∧ s) = (p ∨ q) ∧ (p ∨ s),

by the distributive laws for Boolean algebras, every element in the ideal (2)
is also in the ideal (3). To demonstrate the reverse inclusion, let t be an
element in the ideal (3), say,

t = (p ∨ r) ∧ (q ∨ s),

where p and q are in L, and r and s in M and N respectively. Apply the
distributive and monotony laws to obtain

t = (p ∨ r) ∧ (q ∨ s) = (p ∧ q) ∨ (p ∧ s) ∨ (r ∧ q) ∨ (r ∧ s)
≤ p ∨ p ∨ q ∨ (r ∧ s) = (p ∨ q) ∨ (r ∧ s).
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The join p ∨ q is in L, and the meet r ∧ s is in M ∧ N , so the element
(p∨ q)∨ (r ∧ s) is in the ideal (2), by Lemma 1. Consequently, the element t
is also in that ideal, by condition (18.18).

It has been demonstrated that

L ∨ (M ∧ N) = (L ∨ M) ∧ (L ∨ N)

for all ideals L, M , and N of a Boolean algebra. The dual distributive law
can be established in a similar fashion, or it can be derived directly from the
preceding law. (Each version of the distributive law is derivable from its dual
in all lattices; see Exercise 7.19.)

The ideals of a Boolean algebra form a complete, distributive lattice, but
they do not, in general, form a Boolean algebra. To give an example, it is
helpful to introduce some terminology. An ideal is maximal if it is a proper
ideal that is not properly included in any other proper ideal. We shall see in
the next chapter that an infinite Boolean algebra B always has at least one
maximal ideal that is not principal. Assume this result for the moment. A
“complement” of such an ideal M in the lattice of ideals of B would be an
ideal N with the property that

M ∧ N = {0} and M ∨ N = B.

Suppose the first equality holds. If q is any element in N , then p ∧ q = 0,
and therefore p ≤ q ′, for every element p in M , by Lemma 1. In other words,
the ideal M is included in the principal ideal (q ′ ). The two ideals must
be distinct, since M is not principal. This forces (q ′) to equal B, by the
maximality of M . In other words, q ′ = 1, and therefore q = 0. What has
been shown is that the meet M ∧N can be the trivial ideal only if N itself is
trivial. In this case, of course, M ∨ N is M , not B. Conclusion: a maximal,
non-principal ideal does not have a complement in the lattice of ideals.

This is not to say that no ideal has a complement; some do. For example,
each principal ideal (p) has the complement (p ′ ), since

(p) ∨ (p ′ ) = (p ∨ p ′ ) = (1) = B

and

(p) ∧ (p ′ ) = (p ∧ p ′ ) = (0) = {0},
by Corollary 1.

Let’s return for a moment to the question of the supremum of a family of
ideals. As was mentioned earlier, the union of a family of ideals usually fails
to be an ideal. There is, however, an important exception. A family {Mi} of
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ideals is said to be directed if any two ideals of the family are always included
in some ideal of the family; in other words, whenever Mi and Mj are ideals
in the family, there is an ideal Mk in the family such that

Mi ⊆ Mk and Mj ⊆ Mk.

Lemma 2. The union of a non-empty directed family of ideals in a Boolean
algebra is again an ideal. The ideal is proper if and only if each ideal in the
family is proper.

Proof. Let {Mi} be a non-empty directed family of ideals in a Boolean al-
gebra, and let M be the union of this family. It is to be shown that M
satisfies the defining conditions (18.6)–(18.8) for ideals. The family contains
at least one ideal, by assumption, and 0 is in that ideal. Therefore, 0 is in the
union M . If p and q are elements in M , then there must be ideals Mi and Mj

in the family that contain p and q respectively. Since the family is directed,
one of its ideals, say Mk, includes both Mi and Mj . The elements p and q
then both belong to Mk, so their join p ∨ q is in Mk as well. Consequently,
this join is also in M . Finally, an element p in M must belong to one of
the ideals Mi of the family. For each element q in the Boolean algebra, the
meet p∧q belongs to Mi and therefore also to M . Conclusion: M is an ideal.

The ideal M is improper just in case it contains 1. Since M is the union of
a directed family of ideals, it contains 1 just in case some ideal in the family
contains 1, that is to say, just in case some ideal in the family is improper.
The second conclusion is now immediate: M is proper just in case every ideal
in the family is proper.

The lemma applies, in particular, to non-empty families of ideals that
are linearly ordered by inclusion in the sense that for any two members Mi

and Mj of the family, either Mi ⊆ Mj or Mj ⊆ Mi. Such families are called
chains.

Everything that has been said about ideals can be repeated almost verba-
tim for filters. The class of all filters in a Boolean algebra is partially ordered
by the relation of set-theoretic inclusion, and under this partial order the
class becomes a complete lattice. The infimum of a family of filters is the
intersection of the family, and the supremum is the filter generated by the
union of the family (namely, the intersection of all filters that include each
member in the family). The lattice is distributive, but in general it is not
complemented; that is to say, it is not a Boolean algebra.

Actually, even more is true. The canonical mapping f that takes every
ideal M of a Boolean algebra B to its dual filter N = {p ′ : p ∈ M} is
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an isomorphism between the lattice of ideals and the lattice of filters in B,
and its inverse is the mapping g that takes each filter N to its dual ideal
M = {p ′ : p ∈ N} (see Exercise 12.13). Indeed,

g(f(M)) = g({p ′ : p ∈ M}) = {p′′ : p ∈ M} = M

for every ideal M , and, similarly,

f(g(N)) = N

for every filter N . It follows from these equations that f maps the lattice
of ideals one-to-one onto the lattice of filters, and that its inverse mapping
is g. If an ideal M1 is included in an ideal M2, then obviously the filter
N1 = {p ′ : p ∈ M1} is included in the filter N2 = {p ′ : p ∈ M2}, and dually.
In other words, the correspondence f preserves the partial ordering of the
lattices in the strong sense that

M1 ⊆ M2 if and only if f(M1) ⊆ f(M2).

Conclusion: f is a lattice isomorphism.
The observation that the class of ideals in a Boolean algebra forms a

complete distributive lattice was first made by Stone [66] and Tarski [74].

Exercises

1. Fill in the details of the following alternative proof of Lemma 1. The
set

L = {p ∨ q : p ∈ M and q ∈ N}

is an ideal that includes M and N , and that is included in M ∨ N ;
consequently, L = M ∨ N . Similarly, the set

K = {p ∧ q : p ∈ M and q ∈ N}
is an ideal that includes M ∧N and that is included in both M and N ;
consequently, K = M ∧ N .

2. Derive the second identity in Corollary 1.

3. Extend Lemma 1 to Boolean rings without unit.

4. Show by a direct argument that the ideals of a Boolean algebra satisfy
the distributive law

L ∧ (M ∨ N) = (L ∧ M) ∨ (L ∧ N).
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5. Show that the mapping from a Boolean algebra B into the lattice of
ideals of B that takes each element p to the principal ideal (p) is a lattice
monomorphism (a one-to-one mapping that preserves the operations of
join and meet).

6. Prove directly (without using Lemma 2) that the union of a non-empty
chain of ideals in a Boolean algebra is again an ideal, and that the ideal
is proper if and only if each ideal in the chain is proper.

7. Prove directly that the class of filters in a Boolean algebra is a complete
lattice under the relation of set-theoretic inclusion.

8. Formulate and prove the analogue of Lemma 1 for filters.

9. Show by a direct argument that the lattice of filters is distributive.

10. Define what it means for a family of filters in a Boolean algebra to be
directed, and prove that the union of a non-empty directed family of
filters is again a filter.

11. Verify that the dual of a principal ideal is a principal filter, and con-
versely. Conclude that the canonical isomorphism between the lattice of
ideals and the lattice of filters of a Boolean algebra maps the sublattice
of principal ideals onto the sublattice of principal filters.

12. The class of all congruences on a Boolean algebra B is also a complete
lattice under the partial ordering of set-theoretic inclusion. The infi-
mum of any family of congruences on B is the intersection of the family;
the supremum is the congruence generated by the union of the family,
that is to say, it is the intersection of all those congruences on B that
include every congruence in the given family. Prove that the correspon-
dence that maps each ideal M in B to the congruence on B determined
by M is a lattice isomorphism.
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Maximal Ideals

An ideal is maximal if it is a proper ideal that is not properly included in
any other proper ideal. Equivalently, to say that M is a maximal ideal in B
means that M �= B, and, moreover, if N is an ideal such that M ⊆ N ,
then either N = M or N = B. Thus, the maximal ideals in B are just the
maximal elements in the lattice of ideals of B. Examples: the trivial ideal
is maximal in 2; the ideals, in fields of sets, defined by the exclusion of one
point are maximal (see Exercise 2).

Maximal ideals are characterized by a curious algebraic property.

Lemma 1. An ideal M in a Boolean algebra B is maximal if and only if
either p is in M or p ′ is in M , but not both, for each p in B.

Proof. Assume first that for some p in B, neither p nor p ′ is in M . If N is
the ideal generated by M ∪ {p}, then N is a proper ideal, by Corollary 18.3,
and it properly includes M because it contains p. Consequently, M is not
maximal.

For the converse, assume that always either p or p ′ is in M , and suppose
that N is an ideal properly including M ; it is to be proved that N = B.
Since N �= M , there is an element p in N that does not belong to M . The
assumption implies that the element p ′ is in M , and therefore also in N ;
since N is an ideal, it follows that p ∨ p ′ is in N . Therefore, N coincides
with B.

There is another characterization of maximal ideals, due to Stone [66],
that is quite useful. A Boolean ideal M is said to be prime if it is proper
and if the presence of p ∧ q in M always implies that at least one of p and q
is in M .
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Corollary 1. A Boolean ideal M is maximal if and only if it is prime.

Proof. Assume that M is a maximal ideal, and argue by contraposition that
it is prime. If neither p nor q is in M , then both p ′ and q ′ are in M , by
Lemma 1, and consequently so is the join p ′ ∨ q ′. Since this join may be
written as (p ∧ q) ′, by the De Morgan laws, M cannot contain p ∧ q, by the
lemma.

Now suppose M is a prime ideal. Since 0 is in M , and 0 = p∧ p ′, at least
one of the elements p and p ′ must belong to M , by the assumption that M
is prime. Both of them cannot belong to M , for then M would contain the
join p ∨ p ′, and would consequently be an improper ideal. It follows from
Lemma 1 that M is maximal.

Corollary 2. A principal ideal (p) is maximal if and only if p ′ is an atom.

Proof. Maximality for a principal ideal (p) is equivalent to the conditions
that p �= 1 and that q ≤ p or q ′ ≤ p for every element q, by Lemma 1.
Reformulated in terms of p ′, these conditions say that p ′ �= 0 and that p ′ ≤ q ′

or p ′ ≤ q for every element q. This reformulation just expresses the fact
that p ′ is an atom, by Lemma 14.1.

So far, we do not know that maximal ideals exist. The next theorem
guarantees that they exist in abundance. It is usually called the maximal
ideal theorem, and is due to Stone [66] and (for fields of sets) Tarski [70].

Theorem 12. Every proper ideal in a Boolean algebra is included in a max-
imal ideal.

Proof. Let M be a proper ideal in a Boolean algebra B. Enumerate the
elements of B in a (possibly) transfinite sequence {pi}i<α indexed by the set of
ordinals less than some ordinal α. Define a corresponding sequence {Mi}i≤α

of proper ideals in B with the following properties: (1) M0 = M ; (2) Mi ⊆ Mj

whenever i ≤ j ≤ α; (3) either pi or p ′
i is in Mi+1 for each i < α. The

definition of the sequence proceeds by induction on ordinal numbers.
Put M0 = M . Then M0 is a proper ideal by assumption, and condition (1)

is satisfied automatically, while conditions (2) and (3) (with α replaced by 0)
hold vacuously for the family {Mi}i≤0. For the induction step, consider an
ordinal k ≤ α, and suppose proper ideals Mi have been defined for each
ordinal i < k so that the family {Mi}i<k satisfies conditions (1), (2), and (3)
(with α replaced by k, with j < k in condition (2), and with i + 1 < k in
condition (3)). When k is a successor ordinal, say k = i + 1, the definition
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of Mk splits into two cases. If either pi or p ′
i is in Mi, put Mk = Mi;

otherwise, define Mk to be the ideal generated by the set Mi ∪ {pi}. The
ideal Mk is proper, either by the induction hypothesis (in the first case) or
by Corollary 18.3 (in the second case). When k is a limit ordinal, put

Mk =
⋃

i<k

Mi.

This union is a proper ideal, by Lemma 19.2. It is a simple matter to check
that conditions (1)–(3) (with α replaced by k) hold for the family {Mi}i≤k.

The ideal Mα is the desired maximal extension of M . It is a proper
ideal, by construction, and it extends M , by conditions (1) and (2). To
verify maximality, consider an arbitrary element p in B. This element occurs
somewhere in the enumeration of the elements of B, say p = pi. Either pi

or p ′
i is in Mi+1, by condition (3), so either p or p ′ is in Mα, by condition (2).

Both elements cannot belong to Mα, for that would force Mα to be improper.
The maximality of Mα now follows by Lemma 1.

The following somewhat sharper formulation of the maximal ideal theo-
rem is frequently useful.

Corollary 3. For every proper ideal M in a Boolean algebra B, and for
every element p in B that does not belong M , there exists a maximal ideal
that includes M and does not contain p.

Proof. The ideal N generated by M∪{p ′} is proper, by Corollary 18.3. Apply
the maximal ideal theorem to obtain a maximal ideal that includes N , and
therefore also includes M . Since that maximal ideal contains p ′, it does not
contain p.

The maximal ideal theorem can be used to prove the existence, in every
infinite Boolean algebra B, of maximal ideals that are not principal. (For
fields of sets, this result goes back to Tarski [70].) Notice, first of all, that
the unit of an infinite Boolean algebra cannot be written as a join of finitely
many atoms; for otherwise the algebra would be atomic with finitely many
atoms, by Lemmas 14.2 and 14.3, and would therefore be finite, by Theorem 6
(p. 119). Consider now the ideal M generated by the set of all atoms in B;
it consists of those elements of B that can be written as joins of finite sets
of atoms (Exercise 18.14). The unit cannot be written as such a join, so the
ideal M is proper; consequently, M can be extended to a maximal ideal N ,
by the maximal ideal theorem. Since N is a proper ideal and contains every
atom, it cannot contain the complement of any atom. Consequently, it cannot
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be a principal ideal, by the characterization of maximal principal ideals in
Corollary 2.

Corollary 4. Every infinite Boolean algebra has maximal ideals that are
non-principal.

The dual of the notion of a maximal ideal plays an important role in
Boolean algebra and in other areas of mathematics. A maximal filter, or an
ultrafilter as it is often called, is a proper filter that is not properly included
in any other proper filter. Thanks to the isomorphism between the lattice
of ideals and the lattice of filters of a Boolean algebra, we can immediately
conclude from the maximal ideal theorem and its corollary that every proper
filter can be extended to an ultrafilter, and that every infinite Boolean algebra
has a non-principal ultrafilter.

Exercises

1. Prove that a subset M of a Boolean algebra B is a maximal ideal if
and only if it contains 0, is closed under join, and contains exactly one
of p and p ′, for every element p in B.

2. Let B be a field of subsets of a set X, and x0 an element of X. Prove
that the class of all sets in B that do not contain x0 is a maximal ideal
in B.

3. Prove that every ideal in a Boolean algebra is the intersection of the
maximal ideals that include it. (This theorem is due to Stone [66] and
Tarski — see [73] and [74].)

4. Suppose B is a Boolean subalgebra of A. If M is a maximal ideal in A,
prove that the intersection M ∩ B is a maximal ideal in B.

5. Suppose f is a Boolean homomorphism from B into A. If M is a
maximal ideal in A, prove that the inverse image of M under f , the set

N = {p ∈ B : f(p) ∈ M},
is a maximal ideal in B.

6. Use induction on the ordinals k ≤ α to prove that the family {Mi}i≤k of
proper ideals defined in the proof of the maximal ideal theorem satisfies
conditions (1)–(3) of that proof (with α replaced by k in conditions (2)
and (3)).
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7. Formulate and prove a characterization of ultrafilters that is analogous
to Lemma 1.

8. Formulate and prove the dual of Corollary 1, for filters.

9. Formulate and prove the dual of Corollary 2, for filters. In other words,
characterize when a principal filter is maximal.

10. Prove directly, without using the maximal ideal theorem, that every
proper filter is contained in an ultrafilter.

11. Prove directly that every infinite Boolean algebra has a non-principal
ultrafilter.

12. A subset E of a Boolean algebra is said to have the finite meet property,
or the finite intersection property in the case of a field of sets, if the
meet of every finite subset of E is non-zero. Prove that every subset
with the finite meet property is included in an ultrafilter.

13. Formulate and prove the dual of Exercise 12.

14. Let B be the field of finite and cofinite subsets of the natural numbers.
Describe the maximal ideals and the maximal filters in B.

15. (Harder.) Prove that if B is a proper Boolean subalgebra of A, then
there is a maximal ideal in B that has at least two different extensions
to a maximal ideal in A.

16. (Harder.) Give an example of an incomplete epimorphism between two
complete Boolean algebras.

17. (Harder.) Suppose p is an element in a Boolean algebra A, and B is
the relativization of A to p. Prove that every maximal ideal in B has
a unique extension to a maximal ideal in A that does not contain p.
Conversely, show that every maximal ideal in A that does not contain p
is the extension of a uniquely determined maximal ideal in B.

18. Show that every ideal (and in particular every maximal ideal) in a
Boolean algebra B is a Boolean ring (possibly without unit) under the
ring operations of B.

19. (Harder.) Prove that every Boolean ring A (possibly without unit) is a
maximal ideal in some Boolean algebra B such that the ring operations
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of A coincide with the ring operations of B, restricted to A. To what
extent is the extension B unique? (This result is due to Stone [66].
Together with Exercise 18, it shows that the study of Boolean rings
— possibly without units — is essentially the same as the study of
maximal ideals in Boolean algebras, or, equivalently, in Boolean rings
with unit.)

20. Prove that every non-degenerate Boolean ring with unit can be obtained
by adjoining a new unit to a Boolean ring that may or may not have a
unit. (See Exercise 1.10.)

21. Prove that a Boolean ring without unit is necessarily infinite. (This
theorem is due to Stone [66]. Compare Exercise 1.12.)

22. A maximal ideal M in a Boolean algebra B is a Boolean ring (possibly
without a unit) under the restricted ring operations of B, by Exer-
cise 18. Prove that every ring homomorphism from M into a Boolean
algebra A — including the trivial homomorphism — can be extended
in one and only one way to a Boolean homomorphism from B into A,
and every Boolean homomorphism from B into A is the extension of a
ring homomorphism from M into A.

23. (Harder.) An ideal in a commutative ring is said to be prime if it is
proper and satisfies the following condition: for any elements p and q in
the ring, if p ·q is in the ideal then at least one of p and q is in the ideal.
Prove that even when a Boolean ring does not have a unit, an ideal is
prime if and only if it is maximal. (This theorem is due to Stone [66].)

24. Prove that an ideal M in a Boolean ring B (with or without a unit)
is prime if and only if the quotient B/M is non-degenerate and has no
zero-divisors. (This observation is due to Stone [66]. An element is a
zero-divisor if it is non-zero and its product with some other non-zero
element is zero; see Exercise 1.12.)

25. (Harder.) A version of Corollary 3 applies to Boolean rings without
unit. Prove that if M is an ideal in a Boolean ring B without unit, and
if p an element of B that is not in M , then there is a maximal ideal
in B that includes M and does not contain p. (This theorem is due to
Stone [66].)

26. Formulate and prove the analogue of Exercise 3 for Boolean rings with-
out unit. (This result is due to Stone [66].)
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27. (Harder.) A version of Corollary 3 also applies to distributive lattices.
A subset M of a lattice B is called an ideal if it is non-empty and
satisfies conditions (18.7) and (18.8). The ideal is said to be prime if it
is proper (it does not equal B) and, for any elements p and q in B, the
presence of p ∧ q in M implies that either p or q must be in M . Prove
that if M is an ideal in a distributive lattice B, and if p is an element
of B that is not in M , then there is a prime ideal in B that includes M
and does not contain p.

28. Formulate and prove the analogue of Exercise 3 for distributive lattices.



Chapter 21

Homomorphism
and Isomorphism Theorems

The kernel of a homomorphism f from a Boolean algebra B to a Boolean
algebra A is the set of those elements in B that f maps onto 0 in A. In
symbols, the kernel M of f is defined by

M = f−1({0}) = {p ∈ B : f(p) = 0}.

The kernel of a homomorphism is always an ideal. The proof is a straight-
forward verification that conditions (18.6)–(18.8) are satisfied. Suppose M
is the kernel of f . Certainly 0 is in M , since f(0) = 0. If p and q are in M ,
then

f(p ∨ q) = f(p) ∨ f(q) = 0 ∨ 0 = 0,

so that p∨ q is in M . If p is in M , and if q is an arbitrary element of B, then

f(p ∧ q) = f(p) ∧ f(q) = 0 ∧ f(q) = 0,

so that p ∧ q is in M .
Every example of a homomorphism (such as the ones we saw in Chap-

ter 12) gives rise to an example of an ideal, namely its kernel. Thus, if f is the
relativizing homomorphism defined by f(p) = p∧p0 for every element p, then
the corresponding ideal consists of all those elements p for which p ∧ p0 = 0,
or, equivalently, p ≤ p0

′. In other words, it is the principal ideal (p ′
0 ). If f is

defined on a field of subsets of X so that f(P ) is the value of the character-
istic function of P at some particular point x0 of X, then the corresponding
ideal consists of all those sets P in the field that do not contain x0. If, finally,
the homomorphism f is induced by a mapping φ from a set X into a set
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Y , then the corresponding ideal consists of all those subsets P of Y that are
disjoint from the range of φ.

Here is a general and useful remark about homomorphisms and their
kernels: a necessary and sufficient condition that a homomorphism be a
monomorphism (one-to-one) is that its kernel be {0}. Proof of necessity: if f
is one-to-one and f(p) = 0, then f(p) = f(0), and therefore p = 0. Proof of
sufficiency: if the kernel of f is {0} and if f(p) = f(q), then

f(p + q) = f(p) + f(q) = f(p) + f(p) = 0,

so that p + q = 0, and this means that p = q.
The definition of ideals was formulated so as to guarantee that the kernel

of every homomorphism is an ideal. It is natural and important to raise the
converse question: is every ideal the kernel of some homomorphism? The
answer is easily seen to be yes: if M is an ideal of a Boolean algebra B,
then the projection f of B onto the quotient B/M is an epimorphism with
kernel M . This proves the following result, known as the homomorphism
theorem.

Theorem 13. Every ideal is the kernel of some epimorphism, namely the
projection onto the corresponding quotient algebra.

What do the homomorphic images of a Boolean algebra B look like? A
quotient of B modulo an ideal is always a homomorphic image of B. The
next theorem says that, up to isomorphism, these are the only homomorphic
images of B. The result is usually called the first isomorphism theorem.

Theorem 14. If f is a Boolean homomorphism from B onto A, and if M
is the kernel of f , then B/M is isomorphic to A via the mapping

p/M → f(p).

Proof. Let p and q be elements of B. A short computation shows that

f(p) = f(q) if and only if p/M = q/M.

Indeed,

f(p) = f(q) if and only if f(p) + f(q) = 0,

if and only if f(p + q) = 0,

if and only if p + q ∈ M,

if and only if p/M = q/M.
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The first equivalence uses the observation from (1.10) that every element is its
own inverse under the operation of Boolean addition. The second equivalence
uses the homomorphism properties of f , the third uses the definition of the
kernel of f , and the fourth uses the characterization of congruence classes
given in (18.15).

/

A

B

B
f

M

h
projection

Let h be the mapping from B/M into A that takes each coset p/M to
the image f(p). (See the diagram above.) The preceding computation shows
that h is well defined and maps B/M one-to-one into A; it maps B/M onto A
because f maps B onto A. The proof that h preserves meet and complement
makes use of the definitions of meet and complement in B/M , the definition
of h, and the homomorphism properties of f :

h((p/M) ∧ (q/M)) = h((p ∧ q)/M) = f(p ∧ q)
= f(p) ∧ f(q) = h(p/M) ∧ h(q/M),

and
h((p/M) ′ ) = h(p ′/M) = f(p ′ ) = f(p) ′ = h(p/M) ′.

This completes the proof that h is an isomorphism from B onto A.

It is occasionally helpful to view the first isomorphism theorem as an
assertion about factoring homomorphisms. From this perspective it says
that every homomorphism on a Boolean algebra can be factored into the
composition of a uniquely determined monomorphism and an appropriate
projection.

Corollary 1. Let f0 be a Boolean homomorphism from B into A0 with ker-
nel M , and f the projection from B to B/M . There is a unique monomor-
phism g from B/M into A0 such that f0 = g ◦ f .

Proof. Let A be the image of B under f0. The quotient B/M is isomorphic
to A via an isomorphism g that maps each coset p/M to f0(p), by the first
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/

0
0

A

B

B

f

f

M

g

isomorphism theorem. (See the diagram above.) Obviously, g is a monomor-
phism of B/M into A0. The composition g ◦ f coincides with f0 because it
maps each element p in B to the element

g(f(p)) = g(p/M) = f0(p).

If h is any homomorphism from B/M into A0 for which the composition h◦f
coincides with f0, then

h(p/M) = h(f(p)) = f0(p)

for each coset p/M , by the definition of f(p) and the assumed equality. Con-
sequently, h coincides with g.

Associated with the isomorphism theorem there is a cluster of results of
the universal algebraic kind, some of which we now proceed to state.

Suppose that M is a proper ideal in a Boolean algebra B. Write [M, B] for
the class, or interval, of ideals N in B such that M ⊆ N ⊆ B. This interval
forms a sublattice, and in fact a complete sublattice, of the lattice of ideals
in B: the infimum (the intersection) and supremum (the ideal generated by
the union) of a family of ideals in the interval is again an ideal in the interval.
It turns out that this sublattice is isomorphic to the lattice of ideals of the
quotient B/M in a natural way.

Write A = B/M , and let f be the projection from B to A. The projection
associates with every ideal N in the interval [M, B] an ideal in A, namely
the image set

P = f(N) = {f(p) : p ∈ N}.
The argument that P really is an ideal is straightforward. The zero element
of A is the image, under f , of the zero element of B; since the zero of B is in
the ideal N , the zero of A is in P . If r and s are elements in P , then they are
images, under f , of elements p and q in N . The join p∨ q is in N (because N
is an ideal), and the image of this join under f is
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f(p ∨ q) = f(p) ∨ f(q) = r ∨ s;

consequently, r ∨ s is in P . If, finally, r and s are elements in P and A
respectively, then they are images, under f , of elements p in N and q in B
respectively (s is the image of an element q in B because f maps B onto,
and not just into, A). The meet p∧ q is in the ideal N , and the image of this
meet under f is

f(p ∧ q) = f(p) ∧ f(q) = r ∧ s;
consequently, r∧s is in P . Thus, P satisfies the conditions for being an ideal
in A. A common notation for this ideal is N/M (or sometimes N + M),
because

P = f(N) = {f(p) : p ∈ N} = {p/M : p ∈ N} = {p + M : p ∈ N}.

Conclusion: the correspondence induced by f ,

(1) N → f(N) = N/M,

is a mapping from the sublattice [M, B] into the lattice of ideals in A.
An argument analogous to the proceeding one shows that if P is an arbi-

trary ideal in A, then its inverse image

f−1(P ) = {p ∈ B : f(p) ∈ P}

is an ideal in B that includes M . In other words, it is an ideal in the
sublattice [M, B]. What is its image under f? And what is the inverse image
of f(N) when N is an ideal in B? It is not difficult to check that

(2) f(f−1(P )) = P and f−1(f(N)) = N

for every ideal P in A and every ideal N in B. Here is the proof of the
second identity. Every element p in N is contained in f−1(f(p)), and therefore
in f−1(f(N)), by the definition of the inverse image of a set under a function.
Thus, N is included in f−1(f(N)). To establish the reverse inclusion, consider
an arbitrary element p in f−1(f(N)). The image f(p) belongs to f(N), by
the definition of the inverse image of f(N) under f , so there must be an
element q in N such that f(p) = f(q). It follows from the homomorphism
properties of f and from (1.10) that

f(p + q) = f(p) + f(q) = 0.

The Boolean sum p + q therefore belongs to the kernel of f , which is M .
The ideal N includes M , by assumption, so it contains p + q. The element q
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also belongs to N , and ideals are closed under Boolean addition, by condi-
tion (18.9), so the sum (p + q) + q must be in N . This last sum is just p;
consequently, p is in N . A similar but simpler argument establishes the first
identity.

The identities in (2) imply that the correspondence (1) maps the inter-
val [M, B] bijectively to the lattice of ideals in A. Indeed, if P is an ideal
in A, then N = f−1(P ) is an ideal in [M, B], and P is the image of N un-
der f , by the first identity in (2). In other words, correspondence (1) is onto.
If N1 and N2 are two ideals in [M, B] such that

f(N1) = f(N2),

then

N1 = f−1(f(N1)) = f−1(f(N2)) = N2,

by the second identity in (2). Consequently, correspondence (1) is one-to-one.
A similar argument shows that correspondence (1) preserves the lattice order-
ing of inclusion. If N1 ⊆ N2, then obviously f(N1) ⊆ f(N2). If, conversely,
the latter inclusion holds, then

f−1(f(N1)) ⊆ f−1(f(N2)),

so that N1 ⊆ N2, by the second identity in (2). Because the correspon-
dence (1) preserves the lattice ordering, it is a lattice isomorphism.

The formal statement of the preceding observations is usually called the
correspondence theorem.

Theorem 15. For every ideal M in a Boolean algebra B, the correspondence

N → N/M

is an isomorphism from the sublattice of ideals in B that include M to the
lattice of ideals in B/M .

The relationship between the ideals of a quotient B/M and the ideals
of B that extend M goes beyond what is expressed in the correspondence
theorem. Quotients of B/M by quotient ideals N/M are in fact isomorphic to
quotients of B. It is therefore unnecessary to consider quotients of quotient
Boolean algebras, quotients of quotients of quotient Boolean algebras, and
so on. Each such quotient essentially reduces to a quotient of the original
Boolean algebra. A precise formulation of this fact is contained in the second
isomorphism theorem.
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Theorem 16. Let M and N be ideals in a Boolean algebra B, with M ⊆ N .
The quotient of B/M by the ideal N/M is isomorphic to the quotient B/N
via the mapping

(p/M)/(N/M) → p/N.

Proof. Write

A = B/M and C = (B/M)/(N/M).

The projection f from B onto A, and the projection g from A onto C, are
both epimorphisms, so the composition h = g ◦ f is an epimorphism from B
onto C. The kernel of h is N , as can be verified in two steps: the kernel of g
is the ideal N/M , by the observations following (18.12)–(18.14); and the set
of elements of B that are mapped into N/M by f is just

f−1(N/M) = f−1(f(N)) = N,

by the second identity in (2).
The first isomorphism theorem, applied to the epimorphism h, says that

the quotient B/N is isomorphic to C via the mapping that takes each coset
p/N to h(p). The proof is completed by observing that

h(p) = g(f(p)) = g(p/M) = (p/M)/(N/M).

The second isomorphism theorem may also be formulated as an assertion
about “factoring” homomorphisms f0. The corollary to the first isomor-
phism theorem assumes that the kernel of f0 coincides with the ideal M ,
and concludes that f0 can be factored into the composition of a uniquely
determined monomorphism and the projection f from B to B/M . The next
corollary assumes only that the kernel of f0 includes the ideal M , and con-
cludes that f0 can be factored into the composition of a uniquely determined
homomorphism and the projection f .

Corollary 2. Let f0 be a Boolean homomorphism from B into A0, and sup-
pose that its kernel includes the ideal M . There is then a unique homomor-
phism g from B/M into A0 such that f0 = g ◦ f , where f is the projection
from B to B/M .

Proof. Let A be the image of B under f0, and M0 the kernel of f0. It is
assumed that M ⊆ M0. The quotient B/M0 is isomorphic to A via the
function g0 that maps each coset p/M0 to f0(p), by the first isomorphism
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theorem. Of course, g0 is a monomorphism of B/M0 into A0. The projec-
tion f of B onto B/M is an epimorphism, as is the projection g2 of B/M
onto (B/M)/(M0/M). The latter quotient is isomorphic to B/M0 via the
function g1 that maps (p/M)/(M0/M) to p/M0 for each p, by the second
isomorphism theorem. The composition

g = g0 ◦ g1 ◦ g2

is a homomorphism from B/M into A0 with the property that f0 = g ◦ f
(see the diagram). Indeed, an easy computation shows that g maps each
element p/M to f0(p):

g(p/M) = g0(g1(g2(p/M))) = g0(g1((p/M)/(M0/M))) = g0(p/M0) = f0(p);

therefore, the composition g ◦ f maps each element p in B to f0(p).
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To prove the uniqueness of g, consider any homomorphism h from B/M
into A0 with the property that f0 = h ◦ f . The definition of f and the
assumed equality imply that

h(p/M) = h(f(p)) = f0(p)

for each coset p/M . Consequently, h coincides with g.

A Boolean algebra is called simple if it is not degenerate and has no
non-trivial proper ideals. The underlying intuition is that a simple Boolean
algebra B cannot be “simplified” by passing to a quotient B/M : each such
quotient is either degenerate, or else isomorphic to B via the projection
homomorphism. The former happens when M is improper (M = B) and
the latter when M is trivial (M = {0}). Simplicity is a universal algebraic
concept, but, as it turns out, in the context of Boolean algebras it is not a
fruitful one. The reason is that there is just one simple algebra, namely 2.
Clearly 2 is simple, since it has just two ideals: the trivial ideal {0} and the
improper ideal {0, 1}. Assume now that B is any simple Boolean algebra, and
consider an arbitrary non-zero element p in B. The principal ideal generated
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by p is non-trivial (it contains p), and therefore must be improper, by the
assumed simplicity of B. This can happen only if p = 1. Thus, any element
in B different from 0 must equal 1, and consequently B = 2.

The correspondence between the ideals of a quotient algebra and the ide-
als of its “numerator” (formulated in the correspondence theorem) shows that
the quotient algebra is simple if and only if its “denominator” (the ideal) is
maximal. Indeed, a Boolean quotient B/M is not simple and not degenerate
if and only if it has a proper, non-trivial ideal. By the correspondence theo-
rem, this happens if and only if there is an ideal N in B that is between M
and B, but different from both. Such an ideal N exists in B if and only if
the ideal M is proper but not maximal, by the maximal ideal theorem.

Corollary 3. An ideal in a non-degenerate Boolean algebra B is maximal if
and only if B/M is isomorphic to 2.

The first systematic study of ideals in Boolean algebras was carried out
by Stone in [66], which contains, in particular, formulations of the homo-
morphism theorem, the first isomorphism theorem, a version of the corre-
spondence theorem, and Corollary 3 for Boolean rings with or without unit.
(These theorems were already well known in the context of groups and com-
mutative rings.)

Exercises

1. The cokernel of a Boolean homomorphism f from B to A is the set of
those elements in B that f maps to 1. Prove that f is one-to-one if
and only if its cokernel is {1}.

2. Prove that the kernel of a Boolean homomorphism from B into A is a
proper ideal in B if and only if A is not degenerate.

3. Prove that every non-degenerate Boolean algebra can be mapped ho-
momorphically to 2.

4. Prove that distinct elements in a Boolean algebra can always be dis-
tinguished by a 2-valued homomorphism. More precisely, show that
if p and q are distinct elements in a Boolean algebra B, then there is
a 2-valued homomorphism f on B such that f(p) �= f(q).

5. If X is an infinite set, show that there is a homomorphism from P(X)
to 2 that maps the finite subsets of X to 0 and the cofinite subsets to 1.
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6. Let M be an ideal in a Boolean algebra B, and f the projection from B
onto B/M . Show that if P is an ideal in B/M , then f−1(P ) is an ideal
in B, and

f(f−1(P )) = P.

7. Formulate and prove the analogue of the correspondence theorem for
filters. (See Exercise 18.31.)

8. Prove that if two epimorphisms on a Boolean algebra have the same
kernel, then the image algebras are isomorphic.

9. Suppose M and N are ideals in a Boolean algebra B, and M ⊆ N .
Set-theoretically, a coset p/M is the set of translations by p of elements
of the ideal M :

p + M = {p + q : q ∈ M}.
The quotient ideal N/M in B/M is the class of cosets corresponding
to elements of N :

N/M = {p/M : p ∈ N} = {p + M : p ∈ N}
= {{p + q : q ∈ M} : p ∈ N}.

Set-theoretically, what are the cosets p/N and (p/M)/(N/M)? Are
they identical?

10. (Harder.) Prove that if B is a proper Boolean subalgebra of A, then
there is a 2-valued homomorphism on B that can be extended in two
different ways to a 2-valued homomorphism on A.

11. (Harder.) Formulate and prove an analogue of Corollary 3 for Boolean
rings without a unit. (This result is due to Stone [66].)



Chapter 22

The Representation Theorem

The representation problem asks whether every Boolean algebra is isomor-
phic to a field of sets. In other words, given Boolean algebra A, does there
always exist a set X such that A is isomorphic to a subalgebra of P(X)?
Each point x0 in a set X can be used to define a 2-valued homomorphism on
the field P(X): the homomorphism takes the value 1 on the subsets of X that
contain x0, and the value 0 on the subsets that do not contain x0 (see Chap-
ter 12). This comment suggests that if we start with a Boolean algebra A and
seek to represent it as a field over some set X, a reasonable place to conduct
the search for points suitable to make up X is among the 2-valued homomor-
phisms of A. The suggestion would be impractical if it turned out that A has
no 2-valued homomorphisms. Our first result along these lines is that there
is nothing to fear; there is always a plethora of 2-valued homomorphisms.

Lemma 1. For every non-zero element p of every Boolean algebra A there
is a 2-valued homomorphism x on A such that x(p) = 1.

Proof. Let p be a non-zero element in a Boolean algebra A, and consider the
principal ideal N generated by the complement p ′. The elements in N are just
the elements of A that are below p ′. Since p is not 0, its complement is not 1,
and therefore 1 is not in N . It follows that N is a proper ideal. Extend N to a
maximal ideal M , by the maximal ideal theorem (p. 172), and observe that p
does not belong to M , since M contains p ′ (Lemma 20.1). The quotient A/M
is a two-element Boolean algebra, by Corollary 21.3. If z is the projection
from A to A/M that maps each element q to the coset q/M , and if y is the
(unique) isomorphism from A/M to 2 that maps 0/M to 0, and 1/M to 1,
then the composition x = y ◦ z is the desired 2-valued homomorphism on A.
Indeed,

S. Givant, P. Halmos, Introduction to Boolean Algebras, 188
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x(q) = y(z(q)) = y(q/M) =

{
0 if q ∈ M,

1 if q �∈ M.

In particular, x(p) = 1, since p is not in M .

The following assertion (due to Stone [67]) is known as the (Stone) repre-
sentation theorem, and is one of the most fundamental results about Boolean
algebras.

Theorem 17. Let X be the set of 2-valued homomorphisms on a Boolean
algebra A. Then A is embeddable into P(X) via the mapping defined by

f(p) = {x ∈ X : x(p) = 1}
for each p in A.

Proof. The verification that f is a homomorphism is purely mechanical. For
instance, if p and q are elements in A, then

f(p ∨ q) = {x ∈ X : x(p ∨ q) = 1}
= {x ∈ X : x(p) ∨ x(q) = 1}
= {x ∈ X : x(p) = 1 or x(q) = 1}
= {x ∈ X : x(p) = 1} ∪ {x ∈ X : x(q) = 1}
= f(p) ∪ f(q).

The first and last equalities use the definition of f , the second uses the ho-
momorphism properties of the mappings x in X, the third uses the definition
of join in 2, and the fourth uses the definition of union. Similarly,

f(p ′ ) = {x ∈ X : x(p ′ ) = 1}
= {x ∈ X : x(p) ′ = 1}
= {x ∈ X : x(p) = 0}
= {x ∈ X : x(p) = 1} ′

= f(p) ′.

In order to demonstrate that f is one-to-one, it suffices to show that its
kernel contains only 0. If p �= 0, then there is a 2-valued homomorphism x
on A such that x(p) = 1, by Lemma 1; consequently, the set f(p) is not
empty. Thus, each non-zero element p in A is mapped by f to a non-empty
set, so p cannot be in the kernel of f .

The mapping f of the theorem is often called the canonical embedding
of A.
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Corollary 1. Every Boolean algebra is isomorphic to a field of sets.

There are at least two variations of the representation f in Theorem 17.
Instead of the set X of 2-valued homomorphisms on A, one can use the set Y
of kernels of these homomorphisms. The kernel of a 2-valued homomorphism
on A is a maximal ideal in A, and conversely, every maximal ideal in A is
the kernel of a 2-valued homomorphism on A (Corollary 21.3). The set Y is
therefore just the collection of maximal ideals in A. The mapping g that one
uses to embed A into P(Y ) is defined by

g(p) = {M ∈ Y : p �∈ M}

for p in A.
One can prove directly that g is a monomorphism. An alternative proof,

using the monomorphism properties of the representation f in Theorem 17,
goes as follows. The function φ that takes each 2-valued homomorphism on A
to its kernel is a bijection of X to Y . This bijection induces an isomorphism k
from P(Y ) to P(X) that maps each set of maximal ideals in A to the cor-
responding set of 2-valued homomorphisms on A (see p. 94). The composite
monomorphism k−1 ◦ f coincides with g, since

k−1(f(p)) = k−1({x ∈ X : x(p) = 1})
= k−1({x ∈ X : x(p) �= 0})
= {φ(x) : x ∈ X and x(p) �= 0}
= {M ∈ Y : p �∈ M}
= g(p).

The second variation of the representation f is the dual of the first. In-
stead of the set Y of maximal ideals in A, one uses the set Z of ultrafilters
(maximal filters) in A. The corresponding embedding of A into P(Z) — call
it h — is defined by

h(p) = {N ∈ Z : p ∈ N}
for all p in A. There are several psychological advantages to using the set
of ultrafilters instead of the set of maximal ideals. First, the definition of
the embedding h has a positive form, whereas the definition of g involves
a negation (“p �∈ M”). Second, there is a simple intuition underlying the
representation when one uses ultrafilters. Recall that every atomic Boolean
algebra is isomorphic to a field of subsets of the set of its atoms (Theo-
rem 6, p. 119). To represent A, it therefore suffices to construct an extension
of A in which there is an atom below each non-zero element. A set E of
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elements in A generates a proper filter if and only if E has the finite meet
property, that is to say, if and only if the meet of any finite subset of E
is not zero (Exercise 18.20). Ultrafilters are just the maximal subsets of A
that have the finite meet property, and it is not difficult to prove that every
subset of A with the finite meet property can be extended to an ultrafilter
(Exercise 20.12). The intuition underlying the definition of h is that each
ultrafilter in A should determine a unique atom q, and in fact q should be
the infimum of the elements of N . The atoms of the field P(Z) are the sin-
gletons of ultrafilters N , and for each element p in A, the atom {N} is below
the set h(p) in P(Z) just in case N is an element of h(p), or, equivalently,
just in case p is in N . If each element p in A is identified with its isomorphic
image h(p), then the atom {N} can be thought of as the infimum, in P(Z),
of the set of elements in N . We shall have more to say about this in the next
chapter, in Lemma 23.1.

There is still another formulation of the representation theorem that is
useful and that offers its own insights. The field of sets P(X) is isomorphic
to the Boolean algebra 2X via the mapping that takes each subset of X to its
characteristic function (see Chapter 3). The composition of this isomorphism
with the monomorphism f from Theorem 17 is therefore an embedding of A
into 2X . The embedding takes each element p in A to the characteristic
function (on X) of the set of those 2-valued homomorphisms (on A) that
map p to 1.

Corollary 2. Every Boolean algebra is embeddable into a power of 2.

Exercises

1. Let Y be the set of maximal ideals in a Boolean algebra A. Prove
directly that the mapping g defined on A by

g(p) = {M ∈ Y : p �∈ M}

is an embedding of A into P(Y ).

2. Let Z be the set of ultrafilters in a Boolean algebra A. Prove directly
that the mapping h defined on A by

h(p) = {N ∈ Z : p ∈ N}

is an embedding of A into P(Z).
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3. Let B = 2 × 2 × 2. Describe the set Z of ultrafilters in B and the
canonical embedding of B into P(Z).

4. (Harder.) A relativization of a Boolean algebra is not a subalgebra,
but it constitutes a Boolean algebra in a natural way (see Chapter 12).
Is that Boolean algebra necessarily isomorphic to a subalgebra of the
whole algebra?

5. Is every complete Boolean algebra isomorphic to a complete field of
sets?

6. Is every Boolean algebra isomorphic to a subalgebra of a complete al-
gebra?

7. (Harder.) Prove that every distributive lattice is isomorphic to a lattice
of sets under the operations of intersection and union. (This theorem
is due to Birkhoff [5].)



Chapter 23

Canonical Extensions

If A is a Boolean algebra and if X is the set of 2-valued homomorphisms
on A, then A is mapped isomorphically to a subalgebra of P(X) via the
canonical embedding f that takes each element p in A to the set of 2-valued
homomorphisms on A that map p to 1 (see Theorem 17, p. 189). The alge-
bra P(X) can therefore be viewed as a Boolean extension of A. The purpose
of this chapter is to characterize this extension algebraically.

The most obvious properties of P(X) are that it is complete and atomic,
and that it contains an isomorphic copy of A as a subalgebra. In order to
describe other properties in the most perspicuous way, it is convenient to
identify each element p in A with its image f(p) in P(X). In terms of this
identification, another, less obvious property, can be formulated as follows:
any two (distinct) atoms q and r in P(X) are separated by some element p
in A in the sense that q ≤ p and r ≤ p ′. Indeed, the atoms must have the
form q = {x} and r = {y} for some distinct 2-valued homomorphisms x
and y on A. The distinctness of the homomorphisms implies the existence of
an element p in A such that

x(p) = 1 and y(p) = 0.

It follows that x belongs to the set f(p), and y to f(p ′ ), by the definition
of f . In other words,

q = {x} ⊆ f(p) and r = {y} ⊆ f(p ′ ).

When p is identified with f(p), these inclusions say that q ≤ p and r ≤ p ′.
Yet another property of P(X) is its compactness with respect to A: if a

subset E of A has, as its supremum in P(X), an element q in A, then a finite
subset of E must already have q as its supremum (in A and in P(X)). The
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proof of this assertion begins with the special case in which the supremum
in question is 1, and the argument in that case proceeds by contraposition.
Consider an arbitrary subset E of A, and suppose that no finite subset of E
has 1 as its supremum (in A). It is to be shown that 1 is not the supremum
of E in P(X). The ideal generated by E in A is the set

{p ∈ A : p ≤
∨

F for some finite F ⊆ E}

(Theorem 11, p. 155), and it does not contain 1, by assumption. Conse-
quently, this ideal is proper and can therefore be extended to a maximal
ideal M in A, by the maximal ideal theorem. The maximality of M im-
plies the existence of a 2-valued homomorphism x on A with kernel M
(Theorem 14, p. 179, and Corollary 21.3). For each element p in M , we
have x(p) = 0, so x cannot belong to f(p). It follows that x does not belong
to the union

⋃
p∈M f(p). On the other hand, x does belong to f(1), because 1

is not in M and therefore x(1) = 1. These observations (and the fact that M
includes E) show that

⋃

p∈E

f(p) ⊆
⋃

p∈M

f(p) �= f(1).

Since suprema are unions in P(X), the set f(1) cannot be the supremum of
the set

f(E) = {f(p) : p ∈ E}
in P(X). When the elements of A are identified with their images under f ,
this conclusion says that 1 cannot be the supremum of the set E in P(X).

To prove the general case of the compactness property, consider an arbi-
trary subset E of A, and suppose that an element q from A is the supremum
of E in P(X). The set E ∪ {q ′ } is also a subset of A (since q belongs to A),
and its supremum in P(X) is 1, since

∨
(E ∪ {q ′ }) = q ′ ∨

∨
E = q ′ ∨ q = 1;

consequently, there must be a finite subset F of E such that

1 = q ′ ∨
∨

F,

by the observations of the previous paragraph. Form the meet of both sides
of this equation with q, and use the fact that q is an upper bound of F , to
conclude that

q = q ∧ 1 = q ∧ (q ′ ∨
∨

F ) = (q ∧ q ′ ) ∨ (q ∧
∨

F ) = 0 ∨
∨

F =
∨

F.
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In other words, q is the supremum of a finite subset F of E.
The properties discussed above can be formulated in an abstract setting.

An extension of a Boolean algebra A is said to have the atom separation
property with respect to A if any two atoms q and r in the extension are
separated by some element p in A in the sense that q ≤ p and r ≤ p ′.
The extension is said to have the compactness property with respect to A
provided that whenever a subset E of A has a supremum in the extension,
and that supremum — say q — belongs to A, then some finite subset of E
already has q as its supremum (in A and in the extension). The argument
of the preceding paragraph shows that the general compactness property is
equivalent to the special case in which q = 1. A complete and atomic Boolean
extension of A that has the atom separation and the compactness properties
is called a canonical extension, or a perfect extension, of A.

If A is an arbitrary Boolean algebra, and if f is the canonical embedding
of A into P(X) (where X is the set of 2-valued homomorphisms on A),
then the argument above shows that P(X) is a canonical extension of the
subalgebra that is an isomorphic copy of A under f . An application of the
exchange principle (Chapter 12) leads to the conclusion that A itself has a
canonical extension. This proves the following existence theorem for canonical
extensions.

Theorem 18. Every Boolean algebra has a canonical extension.

In particular, every Boolean algebra has a complete and atomic extension.
Happily, a Boolean algebra has just one canonical extension, up to isomorphic
copies. The key step in the proof of this assertion is formulated in the next
lemma, and is closely related to the intuition underlying the proof of the
representation theorem that was discussed at the end of Chapter 22.

Lemma 1. If B is a canonical extension of a Boolean algebra A, then the
distinct atoms in B are precisely the infima of the distinct ultrafilters in A.

Proof. Every atom in B is the infimum of a uniquely determined ultrafilter
in A. For the proof, consider an atom q in B. The principal filter generated
by q in B, the set

{p ∈ B : q ≤ p},
is an ultrafilter, by the dual of Corollary 20.2, and consequently the intersec-
tion of this ultrafilter with A, the set

(1) N = {p ∈ A : q ≤ p},
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is an ultrafilter in A, by the dual of Exercise 20.4. The infimum of the
set N exists in B, by the assumed completeness of B; call it s. It is to be
shown that q = s. The atom q is obviously a lower bound of N , and s is by
definition the greatest lower bound of N ; consequently, q ≤ s. In order to
establish equality, it suffices to show that q is the only atom below s, because
every element in an atomic Boolean algebra — and in particular, s — is the
supremum of the set of atoms that it dominates (Lemma 14.3). Consider
any atom r in B that is different from q. There must be an element p in A
such that q ≤ p and r ≤ p ′, by the atom separation property. The element p
belongs to N , by (1), and therefore s ≤ p, since s is the infimum of N . It
follows that r and s are disjoint, since

s ∧ r ≤ p ∧ p ′ = 0.

Thus, no atom different from q can be below s.
Consider now an arbitrary ultrafilter M in A. We shall show that the

infimum of M in B — call it s — is an atom in B. The assumption that s = 0
leads to a contradiction. Indeed, some finite subset of M would then have
infimum 0, by the dual of the compactness property. Since M is closed under
finite meets, this would imply that 0 is in M , and therefore that M is an
improper filter. But M is an ultrafilter, so it must be proper. Thus, s �= 0.
The algebra B is atomic, and s is not zero, so there is at least one atom q
below s. The set N defined by (1) is an ultrafilter in A, and its infimum is q,
by the observations of the first paragraph. Moreover, N includes M because
every element in M is above s, by assumption, and therefore also above q.
The assumed maximality of M now implies that M = N . Consequently, the
infimum of M coincides with the infimum of N . In other words, q = s, so
that s is an atom.

The correspondence that takes each atom q in B to the ultrafilter N in A
defined by (1) is a one-to-one mapping, since the atom q uniquely determines,
and is uniquely determined by, the ultrafilter N . The correspondence maps
the set of atoms in B onto the set of ultrafilters in A, because the infimum of
an arbitrary ultrafilter N in A is an atom q such that N is the ultrafilter de-
fined by (1). Conclusion: the set of atoms in B is in bijective correspondence
with the set of ultrafilters in A.

Two canonical extensions, say B and C, of a Boolean algebra A have the
same number of atoms, because the number of atoms is equal to the number
of ultrafilters in A, by Lemma 1. The two extensions are also complete, so any
bijection between the sets of atoms extends to an isomorphism between B
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and C, by Corollary 14.2. It follows that B and C are isomorphic. It is
actually possible to construct an isomorphism that is the identity mapping
on A, but some care must be exercised in selecting the bijection between the
two sets of atoms. Here are the details.

Lemma 1 says that each ultrafilter in A uniquely determines an atom in B
and an atom in C, namely the atom that is the infimum of the ultrafilter;
conversely, each atom in each of the two algebras is uniquely determined by
some ultrafilter in A. Let φ be the function that for each ultrafilter N in A,
maps the atom in B determined by N (namely, the infimum of N in B) to
the atom in C determined by N (namely, the infimum of N in C). The
mapping φ is a bijection from the set of atoms in B to the set of atoms in C,
by Lemma 1. The isomorphism f from B to C induced by this bijection is
defined by

f(p) =
∨

{φ(q) : q is an atom in B and q ≤ p},

by the remarks following Corollary 14.2. What is the value of f on an el-
ement p in A? An atom q in B is below p just in case p belongs to the
ultrafilter N determined by q in A (see (1) in the proof of Lemma 1). The
image atom φ(q) in C determines the same ultrafilter N , by the definition
of φ, so φ(q) is below p just in case p belongs to N . It follows that φ maps
the set of atoms in B that are below p onto the set of atoms in C that are
below p. Of course, p is the supremum of the set of atoms it dominates in
each algebra, by Lemma 14.3. The definition of f therefore yields

f(p) =
∨

{φ(q) : q is an atom in B and q ≤ p}

=
∨

{r : r is an atom in C and r ≤ p} = p.

In other words, f maps each element in A to itself. The following uniqueness
theorem for canonical extensions has been proved.

Theorem 19. Any two canonical extensions of a Boolean algebra A are
isomorphic via a mapping that is the identity on A.

The theorem may be viewed as a justification for the common practice of
referring to the canonical extension of a Boolean algebra.

What is the size of the canonical extension of a Boolean algebra A, com-
pared to the size of A? A finite Boolean algebra is its own canonical extension,
so there is no increase in size. Suppose A has an infinite number m of ele-
ments. It can be shown that the number of ultrafilters in A is between m
and 2m. Each ultrafilter determines, and is determined by, a unique atom
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in the canonical extension, and each element in the canonical extension de-
termines, and is determined by, a unique set of atoms. There are therefore
as many elements in the canonical extension as there are subsets of the set
of ultrafilters in A. Conclusion: the canonical extension has between 2m

and 22m
elements.

The algebraic characterization of the canonical extension discussed in this
chapter is due to Jónsson and Tarski [32].

Exercises

1. Prove that a finite Boolean algebra is its own canonical extension.

2. Prove that the canonical extension of a Boolean algebra A possesses
the following dual compactness property : if an element p in A is the
infimum in B of a subset E of A, then p is the infimum of some finite
subset of E.

3. (Harder.) Give an example of complete and atomic Boolean algebras A
and B such that B is a subalgebra, but not a complete subalgebra,
of A.

4. If two Boolean algebras are isomorphic via a mapping g, prove that their
canonical extensions are isomorphic via a mapping that extends g.

5. Give an example of an incomplete monomorphism between complete
Boolean algebras.

6. Prove that every homomorphism between Boolean algebras can be ex-
tended to a homomorphism between the corresponding canonical ex-
tensions.

7. (Harder.) Prove that, in fact, every homomorphism between Boolean
algebras can be extended to a complete homomorphism between the
corresponding canonical extensions. More precisely, let A and B be
Boolean algebras, and A1 and B1 the corresponding canonical exten-
sions. Take E to be the set of infima in B1 of subsets of B:

E = {r ∈ B1 : r =
∧

F for some F ⊆ B}.

Prove that if g is a homomorphism from B to A, then the mapping f
from B1 to A1 defined by
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f(p) =
∨{∧

{g(s) : s ∈ B and q ≤ s} : q ∈ E and q ≤ p
}

for p in B1 is a complete homomorphism that extends g. Show further
that if g is one-to-one or onto, then so is f . (This is a special case of a
much more general theorem due to Jónsson and Tarski [32].)

8. Prove that if B is a Boolean subalgebra of A, then the canonical ex-
tension of B is (up to an isomorphism that is the identity on A) a
complete subalgebra of the canonical extension of A, and in fact it is
the complete subalgebra generated by B.



Chapter 24

Complete Homomorphisms
and Complete Ideals

A homomorphism between Boolean algebras preserves suprema and infima of
finite sets, but in general it will not preserve suprema and infima of infinite
sets. A Boolean homomorphism f from B to A is said to be complete if
it preserves all suprema that do exist. This means that if a family {pi} of
elements in B has a supremum p, then the family {f(pi)} has a supremum
in A, and that supremum is f(p).

A complete homomorphism f automatically preserves all infima that hap-
pen to exist. For the proof, suppose a family {pi} of elements has an infimum,
say p. The supremum of the family {p ′

i } is then p ′, because

p ′ =
(∧

i

pi

)
′ =
∨

i

p ′
i ,

by Lemma 8.1. The homomorphism f is assumed to preserve all existing
suprema, so

f(p) ′ = f(p ′ ) = f(
∨

i

p ′
i ) =

∨

i

f(p ′
i ) =

∨

i

f(pi) ′ =
(∧

i

f(pi)
)
′.

Form the complements of the first and last terms to conclude that

f(p) =
∧

i

f(pi).

There is a simple and useful criterion for completeness: a Boolean homo-
morphism f from B into A is complete if and only if whenever a family {pi}
in B has the unit as its supremum, then the family {f(pi)} in A also has the
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unit as its supremum. The necessity of the condition is obvious; it follows
directly from the definition of a complete homomorphism. To demonstrate
the sufficiency of the condition, assume that f satisfies the condition, and
consider an arbitrary family {pi} in B with supremum p. The element f(p)
is certainly an upper bound of the family {f(pi)} in A, since pi ≤ p, and
therefore f(pi) ≤ f(p), for each i. Also, the family obtained by adjoining p ′

to {pi} clearly has the supremum 1 in B, since

1 = p ′ ∨ p = p ′ ∨
∨

i

pi.

The assumed condition on f therefore implies that the family obtained by
adjoining f(p) ′ to {f(pi)} has the supremum 1 in A:

1 = f(1) = f(p ′ ∨
∨

i

pi) = f(p ′ ) ∨
∨

i

f(pi) = f(p) ′ ∨
∨

i

f(pi).

If q is any upper bound of {f(pi)} in A, then q ′ ∧ f(pi) = 0 for each i, and
therefore

q ′ = q ′ ∧ 1 = q ′ ∧ (f(p) ′ ∨
∨

i

f(pi))

= (q ′ ∧ f(p) ′ ) ∨
∨

i

(q ′ ∧ f(pi)) = (q ′ ∧ f(p) ′ ) ∨ 0 = q ′ ∧ f(p) ′.

It follows that
q ′ ≤ f(p) ′,

or, equivalently, that f(p) ≤ q. Consequently, f(p) is the least upper bound
of the family {f(pi)}.

We have already encountered several examples of complete homomor-
phisms. One is the relativizing homomorphism on a Boolean algebra induced
by an element p0: it maps each p in the algebra to the meet p∧ p0. Another
is the homomorphism on a complete field of sets induced by a point x0: it
maps each set P in the field to 1 or 0 according as x0 is, or is not, in P . Not
all homomorphisms are complete, however. For instance, let X be the set of
non-negative integers, and consider the field B consisting of the finite sets of
positive integers and the complements of such sets in X, namely the cofinite
subsets of X that contain the integer 0. The identity function f on B is
certainly a monomorphism from B into the field A of all subsets of X, but it
is not complete. To see this, write Pi = {i} for each positive integer i. The
family {Pi} has X as its supremum in B, and X −{0} as its supremum in A.
Consequently, the monomorphism f does not map the supremum of {Pi}
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in B to the supremum of {Pi} in A. The field B is of course not a complete
Boolean algebra. However, there even exist incomplete homomorphisms be-
tween complete Boolean algebras (see Exercise 23.5).

The kernels of homomorphisms on a Boolean algebra B are just the ideals
in B, by the homomorphism theorem. Is there an analogous theorem for
complete homomorphisms? The first step in answering this question is to
introduce an appropriate modification of the notion of an ideal. Define a
complete ideal in a Boolean algebra B to be a subset M of B such that

0 ∈ M,(1)
if {pi} is a family in M with a supremum p in B, then p ∈ M,(2)

if p ∈ M and q ∈ B, then p ∧ q ∈ M.(3)

In other words, a complete ideal is an ideal that satisfies condition (2) for
infinite families of elements.

It is not difficult to check that kernels of complete homomorphisms are
complete ideals. Indeed, if M is the kernel of a complete homomorphism f ,
then M is certainly an ideal (Chapter 21), so it suffices to check that M also
satisfies condition (2). Consider a family {pi} of elements in M , and suppose
that the supremum of the family exists in B, say it is p. The completeness
of f implies that

f(p) = f(
∨

i

pi) =
∨

i

f(pi) = 0;

therefore, p belongs to M .
It is natural to ask about the converse: is every complete ideal the kernel

of a complete homomorphism? Consider a complete ideal M in a Boolean
algebra B. The projection f of B onto the quotient B/M , which maps
each element p to the coset p/M , has M as its kernel. The question just
posed will be answered positively if it can be shown that f is complete as
a homomorphism. Let {pi} be a family of elements in B with supremum 1.
It is to be shown that f(1) is the supremum of the family {f(pi)} in the
quotient B/M . In other words, it is to be shown that 1/M is the supremum
of the family {pi/M}. Certainly, 1/M is an upper bound of the family:
the inequality pi ≤ 1 implies that pi/M ≤ 1/M . Consider now any upper
bound q/M of the family. Since pi/M ≤ q/M , by assumption, we have

(pi ∧ q ′ )/M = (pi/M) ∧ (q/M) ′ = 0/M.

In other words, pi ∧ q ′ is in the ideal M for each i. The supremum of the
family {pi ∧ q ′} in B is q ′, because
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q ′ = q ′ ∧ 1 = q ′ ∧
∨

i

pi =
∨

i

(q ′ ∧ pi) =
∨

i

(pi ∧ q ′ ),

by Lemma 8.3. It follows from the assumed completeness of M that M
contains q ′. In other words, q ′/M = 0/M , and therefore q/M = 1/M .
Conclusion: 1/M is the least upper bound of the family {pi/M}.

The preceding argument proves the natural analogue, for complete ideals,
of the homomorphism theorem.

Theorem 20. Every complete ideal is the kernel of some complete epimor-
phism, namely the corresponding projection.

Principal ideals are examples of complete ideals. Indeed, if M is the ideal
generated by an element p in a Boolean algebra, and if E is any subset of M ,
then p is certainly an upper bound of E. Consequently, the supremum of E,
if it exists, must be below p and hence in M .

The intersection of an arbitrary family of complete ideals in a Boolean
algebra is again a complete ideal. For the proof, consider such a family {Mi},
and let M be its intersection. Certainly, M is an ideal, by the remarks in
Chapter 18. To verify that M also satisfies condition (2), let {pi} be a
family of elements in M , and suppose that the supremum of this family
exists, say it is p. Each ideal Mi is assumed to be complete and to contain
every element in the family {pi}, so Mi must contain the supremum p of the
family, by condition (2) (applied to Mi). Consequently, the intersection M
also contains p.

It follows from the observations of the preceding paragraph that if E
is an arbitrary subset of a Boolean algebra B, then the intersection of the
complete ideals in B that include E is itself a complete ideal. (There is at
least one complete ideal that includes E, namely the improper ideal B.) That
intersection, say M , is the smallest complete ideal that includes E; in other
words, every complete ideal that includes E also includes M . The ideal M
is called the complete ideal generated by E. Warning: the complete ideal
generated by a set E is not the same as the ideal generated by E; the latter
is always included in the former, but the reverse inclusion generally fails.

The definition just given is non-constructive. It gives no idea of the ele-
ments of B that actually belong to the complete ideal generated by E. There
is a description of these elements that is somewhat analogous to the descrip-
tion of the elements belonging to the ideal generated by E (Theorem 11,
p. 155). To formulate it, we introduce some notation. Let Ed be the set of
elements in B that are below some element of E,
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(4) Ed = {p ∈ B : p ≤ q for some q ∈ E}.

The set Ed is called the downward closure of E (in B).

Lemma 1. An element p of a Boolean algebra is in the complete ideal gen-
erated by a set E if and only if it is the supremum of some subset of Ed.

Proof. Let M be the complete ideal generated by a set E in a Boolean al-
gebra B, and let N be the set of elements in B that are suprema of subsets
of Ed. It is to be proved that M and N are equal. The first step is verifying
that N is a complete ideal that includes E. An element p in E is always the
supremum of a subset of Ed, namely the subset {p}. Therefore, E is included
in N . Clearly, N contains 0, since 0 is the supremum of the empty set. To
verify condition (2), consider a family {pi} of elements in N , and suppose
that this family has a supremum, say p, in B. Each pi is the supremum of
some subset Fi of Ed, by the definition of N . The union F of these subsets
is itself a subset of Ed, and its supremum is p, since

p =
∨

i

pi =
∨

i

(∨

i

Fi

)
=
∨

i

F,

by Lemma 8.2. Therefore, p is in N , by the definition of N . To check
condition (3), suppose p is in N and q in B. The definition of N implies that
p is the supremum of a subset F of Ed. Each element r in F is below some
element s in E, by definition (4). Since

r ∧ q ≤ r ≤ s,

the meet r ∧ q must also belong to Ed. Thus, the set of these meets,

G = {r ∧ q : r ∈ F},

is a subset of Ed. The supremum of G is p ∧ q, because

p ∧ q =
(∨

F
)
∧ q =

∨
{r ∧ q : r ∈ F} =

∨
G,

by Lemma 8.3. It now follows from the definition of N that p ∧ q belongs
to N . Conclusion: N is a complete ideal that includes E.

The set M is the smallest complete ideal that includes E, and N is a
complete ideal that includes E, so M must be included in N . On the other
hand, every element of Ed certainly belongs to M , by condition (18.18).
The completeness of M therefore implies that whenever a subset of Ed has a
supremum in B, that supremum must be in M . It follows (from the definition
of N) that N is included in M . Thus, M = N , as desired.
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There is another description of the complete ideal generated by a set E
in a Boolean algebra that is worth formulating. Recall that the set of upper
bounds of E is, by definition, the set U of elements in the Boolean algebra
that are above every element of E. The set of lower bounds of U is the set L
of elements in the Boolean algebra that are below every element in U . It
turns out that L is the complete ideal generated by E.

Lemma 2. The complete ideal generated by a set E in a Boolean algebra is
the set of lower bounds of the set of upper bounds of E.

Proof. Let M be the complete ideal generated by a set E in a Boolean alge-
bra B, let U be the set of upper bounds of E (in B), and let L be the set of
lower bounds of U . It is to be shown that M and L coincide. The first step
is verifying that L is a complete ideal that includes E. Each element in E
is a lower bound of U , by the definition of U , so E is included in L, by the
definition of L. It is equally obvious that 0 is in L: the set U is not empty
(it contains 1), and 0 is below every element in U . To verify that L satisfies
condition (2), consider an arbitrary family {pi} of elements in L, and suppose
the family has a supremum p in B. The elements of U are upper bounds for
the set L, by the definition of L, so they are upper bounds of the family {pi}.
It follows that they are all above the least upper bound p. Hence, p is in L,
by the definition of L. Condition (3) is also easy to check. If p is in L and q
in B, then p is below every element of U , and consequently so is p ∧ q. It
follows that p ∧ q is in L, by the definition of L.

The set M is, by assumption, the smallest complete ideal that includes E.
It has just been shown that L is also a complete ideal that includes E.
Consequently, M is included in L. To establish the reverse inclusion, consider
an arbitrary element p in L, and let F be the set of elements in Ed that are
below p. It will be shown that p is the supremum of F in B. It then follows
from the previous lemma that p is in M , and therefore that L is included
in M .

The element p is certainly an upper bound of F , by the definition of F .
Consider any other upper bound of F , say q. It must be proved that p ≤ q.
The first step is to prove that every element of E is below q ∨ p ′. For each r
in E, the meet r∧p is below p and belongs to Ed, by (4), so it is in F , by the
definition of F . Every element of F is below q, by assumption, so r ∧ p ≤ q.
A straightforward computation yields

r = r ∧ 1 = r ∧ (p ∨ p ′ ) = (r ∧ p) ∨ (r ∧ p ′ ) ≤ q ∨ p ′.
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It has been shown that q ∨ p ′ is an upper bound of E, so this join belongs to
the set U of upper bounds of E. The element p belongs to the set L of lower
bounds of U , by assumption, so p ≤ q ∨ p ′ and consequently

p = p ∧ (q ∨ p ′ ) = (p ∧ q) ∨ (p ∧ p ′ ) = (p ∧ q) ∨ 0 = p ∧ q.

In other words, p ≤ q, as was to be shown.

There is a close connection between complete ideals and the “cuts” that
play a crucial role in Dedekind’s classical construction of the real numbers
from the rational numbers (see [15]). A Dedekind cut in the set of rational
numbers is a pair (P, Q) of non-empty sets that partition the rational numbers
(every rational number is in exactly one of the two sets) and such that every
number in P is less than every number in Q. The set P has the characteristic
property that it is downward closed : if p is in P , and if q is less than p, then q
is in P . Similarly, the set Q is upward closed : if p is in Q, and if q is greater
than p, then q is in Q. The set Q can of course be reconstructed from the
set P ; it is just the complement of P in the set of rational numbers. Thus,
one could define a Dedekind cut to be simply a non-empty, downward closed
set of rational numbers that is different from the set of all rational numbers.

Consider now a subset E of a Boolean algebra B. The set U of upper
bounds of E is upward closed, and the set L of lower bounds of U is downward
closed, and the two sets L and U have at most one element in common. The
pair (L, U) is therefore a kind of Dedekind cut in the partial ordering of B.
(The fact that L and U may have one element in common — namely, the
supremum of the set E, if it exists — is of no real significance.) The set U
can, of course, be reconstructed from the set L — it is just the set of upper
bounds of L — so one can consider L itself to be a Dedekind cut in the
partial ordering of B. In view of the preceding lemma, we may conclude that
complete ideals are the analogues, for Boolean algebras, of Dedekind cuts of
rational numbers.

The class of complete ideals in a Boolean algebra B forms a complete
lattice. The infimum of any family {Mi} of complete ideals in B is just
the intersection of the family. The supremum of {Mi} is the complete ideal
generated by the union of the ideals in the family, or, in different words, it is
the intersection of the complete ideals that include each Mi. (There is always
one such complete ideal, namely the improper ideal B.)

The lattice of complete ideals in B is not a sublattice of the lattice of all
ideals of B. The (binary) operation of meet is the same in both lattices, since
the meet of two complete ideals is just their intersection. The operation of
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join, however, is not the same. In the lattice of all ideals, the join of two
complete ideals M and N is the intersection of all ideals that include M ∪N ;
in the lattice of complete ideals it is the intersection of all complete ideals
that include M ∪ N .

The difference can be illustrated by an example. Let B be the Boolean
algebra of finite and cofinite subsets of integers, let M be the ideal of all finite
sets of even integers, and let N the ideal of all finite sets of odd integers. It
is easy to check that these two ideals are complete for a trivial reason: no
infinite subset of M or N has a supremum in B. Indeed, suppose E is an
infinite subset of M , and consider any upper bound P of E in B. The union
of E is an infinite set of even integers, so the set P must be infinite, and hence
cofinite. This means that it contains infinitely many odd integers; removing
any one of them produces a proper subset of P that is still an upper bound
of E in B. The proof that N is complete is analogous.

The join of the ideals M and N in the lattice of all ideals of B is the class
of sets of the form P ∪ Q, where P is a finite set of even integers and Q a
finite set of odd integers, by Lemma 19.1. Every finite set of integers can be
written in this form, so the join of the two ideals is really just the ideal of all
finite sets of integers. On the other hand, the join of M and N in the lattice
of complete ideals of B is the improper ideal B. To see this, write Pi = {i}
for each integer i. Every set Pi is in M or in N , and is therefore in the
complete ideal L generated by M ∪ N . The supremum of the family {Pi} is
the unit of B, the set of all integers. This supremum must be in L, by the
definition of a complete ideal, so L contains the unit element. This forces L
to coincide with B (the ideal generated by the unit).

The same example shows that the identity

(5) M ∨ N = {p ∨ q : p ∈ M and q ∈ N}

fails to be true in the lattice of complete ideals of a Boolean algebra. The
identity does hold, however, when the two complete ideals are principal,
because

(p) ∨ (q) = (p ∨ q),

by Corollary 19.2, and the principal ideal (p ∨ q) is complete.
The lattice of complete ideals is not only complete (as a lattice), it is

also distributive. The proof of this assertion is necessarily different from the
proof of the analogous result for the lattice of all ideals, since the identity (5)
no longer holds. Consider three complete ideals L, M , and N in a Boolean
algebra. It is to be shown that in the lattice of complete ideals
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L ∧ (M ∨ N) = (L ∧ M) ∨ (L ∧ N)(6)

and

L ∨ (M ∧ N) = (L ∨ M) ∧ (L ∨ N).(7)

Begin with the proof of (6). The complete ideals L∧M and L∧N are certainly
included in the left side of (6), since M and N are included in M ∨ N . It
follows that the complete ideal generated by the union of L ∧ M and L ∧ N
is also included in the left side of (6). In other words, the ideal on the right
side of (6) is included in the ideal on the left side. To establish the reverse
inclusion, consider an arbitrary element p in the left-hand ideal. Since p
is in the complete ideal generated by M ∪ N , and since M and N coincide
with their downward closures, by condition (18.18), there must be subsets E1

of M , and E2 of N , such that p is the supremum of E1 ∪ E2, by Lemma 1.
The element p is also in L, by assumption, so the sets E1 and E2 are included
in L, by condition (18.18). It follows that E1 is a subset of L∧M , and E2 a
subset of L ∧ N . The union E1 ∪ E2 is therefore a subset of the right-hand
ideal. The supremum p of this union must also be in the right-hand ideal,
because that ideal is complete.

The dual distributive law (7) can be established by a similar argument.
Alternatively, it can be derived directly from (6), because each of the two
distributive laws for lattices is derivable from its dual. (See Exercise 7.19.)

There is another, quite surprising difference between the lattice of ideals
and the lattice of complete ideals of a Boolean algebra. In the lattice of ideals,
certain ideals may fail to have a complement. In the lattice of complete ideals,
this never happens: every complete ideal has a complement. For the proof,
consider a complete ideal M in a Boolean algebra B. The annihilator of M
is the set N defined by

N = {p ∈ B : p ∧ q = 0 for all q ∈ M}.

(See Exercise 18.6.) It is easy to check that N is a complete ideal in B. For
instance, to verify condition (2), consider any family {pi} of elements in N
that has a supremum p in B. For each element q in M ,

p ∧ q =
(∨

i

pi

)
∧ q =

∨

i

(pi ∧ q) = 0,

by Lemma 8.3. Consequently, the supremum p also belongs to the annihila-
tor N .

The claim is that N is the complement of M in the sense that



24 Complete Homomorphisms and Complete Ideals 209

(8) M ∧ N = {0} and M ∨ N = B.

The first identity is almost immediate: if p is in M and simultaneously in N ,
then p∧p = 0, by the definition of N , and therefore p = 0, by the idempotent
law for meet. The second identity in (8) is equivalent to the assertion that
the unit 1 belongs to the complete ideal generated by the set M ∪ N . The
unit will be in this ideal if and only if it is the supremum of the set M ∪ N ,
by Lemma 1. Obviously, the unit is an upper bound of this union. Consider
any other upper bound p of the union. Each element q in M is below p, and
therefore p ′∧ q = 0. In other words, p ′ belongs to the annihilator N . Since p
is also an upper bound of N , we conclude that p ′ ≤ p, which can happen only
if p = 1. It follows that the unit is the least upper bound of the set M ∪ N ,
as desired.

The remarks in the preceding paragraphs lead to the conclusion (due to
Stone [66], [68] and Tarski [75]) that the class of complete ideals in a Boolean
algebra is itself a complete Boolean algebra.

Theorem 21. The class of all complete ideals in a Boolean algebra B is itself
a complete Boolean algebra with respect to the distinguished Boolean elements
and operations defined by

0 = {0},(1)
1 = B,(2)

M ∧ N = M ∩ N,(3)

M ∨ N =
⋂

{L : L is a complete ideal in B and M ∪ N ⊆ L},(4)

M ′ = {p ∈ B : p ∧ q = 0 for all q ∈ M}.(5)

The infimum and the supremum of a family of complete ideals are, respec-
tively, the intersection of the family and the complete ideal generated by the
union of the family.

Proof. The proof of the theorem amounts to showing that the identity laws
(2.13), the complement laws (2.14), the commutative laws (2.18), and the
distributive laws (2.20) are all valid in the algebra of complete ideals (see Ex-
ercise 2.2). The identity and commutative laws follow immediately from defi-
nitions (1)–(4). The complement and distributive laws were verified above.

Every principal ideal in a Boolean algebra is complete. What kind of
structure, if any, does the class of these ideals possess? Here is one answer
to this question.
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Corollary 1. The principal ideals in a Boolean algebra B form a regular
subalgebra of the Boolean algebra of all complete ideals in B. The supremum
of a family of principal ideals {(pi)} exists in the subalgebra just in case the
supremum of the family of elements {pi} exists in B; in fact,

∨

i

(pi) = (p) if and only if p =
∨

i

pi.

Proof. Let A be the Boolean algebra of all complete ideals in B, and C
the class of all principal ideals in B. Certainly, the zero ideal (0) is in C.
Suppose p and q are elements in B. The principal ideals generated by these
elements satisfy the equations

(p) ∨ (q) = (p ∨ q), (p) ∧ (q) = (p ∧ q), (p) ′ = (p ′ )

in the lattice of all ideals in B, by Corollary 19.1 and the subsequent remarks.
(The operations on the left sides of these equations are performed in the
lattice of ideals, whereas those on the right are performed in B.) All the
ideals in these equations are principal, so the equations also hold in A. (Keep
in mind, though, that the operations of join in A and in the lattice of all ideals
are in general not the same.) The class C is thus a subalgebra of A.

Turn now to the proof of the final assertion of the corollary, and assume
first that the supremum of a family {(pi)} of principal ideals exists in C, say
it is (p). Each ideal (pi) is included in (p), so pi ≤ p. In other words, p is an
upper bound (in B) of the family of elements {pi}. If q is any other upper
bound of this family of elements, then pi ≤ q, and therefore (pi) must be
included in (q), for each i. The ideal (p) is assumed to be the supremum of
the given family of ideals, so (p) must be included in (q). It follows that p ≤ q.
This proves that p is the supremum of the family {pi} in B.

To prove the converse, assume that the supremum of a family {pi} of
elements in B exists, say it is p. Then pi ≤ p for each i, by the definition of
supremum, so each ideal (pi) is included in (p). In other words, (p) is an upper
bound of the family of ideals {(pi)} in C. If (q) is any other upper bound
in C of this family of ideals, then (pi) is included in (q), and therefore pi ≤ q,
for each i. The element p is assumed to be the supremum of the family {pi},
so p ≤ q. It follows that (p) is included in (q). Thus, (p) is the supremum of
the family {(pi)} in C.

It remains to show that C is a regular subalgebra of A. Consider an
arbitrary family {(pi)} of ideals in C, and suppose it has a supremum (p)
in C. It must be shown that (p) is also the supremum in A of the given
family of ideals. It is certainly an upper bound in A, since the ideal (pi) is
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included in (p) for each i. To see that (p) is the least upper bound in A,
consider any other complete ideal M that is an upper bound of {(pi)} in A.
Each of the ideals (pi) is included in M , by assumption, so the elements pi

all belong to M . The element p is the supremum of the family {pi} in B, by
the observations of the second paragraph of the proof. Because the ideal M
is assumed to be complete, the element p must also belong to M , by the
definition of a complete ideal. It follows that (p) is included in M . Thus, (p)
is the supremum of the family {(pi)} in A.

We close this chapter with a warning. There are other notions of a com-
plete ideal that exist in the literature. For instance, some authors define an
ideal to be complete if each subset of the ideal has a supremum and that
supremum is in the ideal. This stronger notion of a complete ideal does not
play a large role. The reason is that every such ideal is principal. Proof:
if M is such an ideal, then

∨
M is in M .

Exercises

1. Prove that the relativizing homomorphism induced on a Boolean alge-
bra by an element is complete.

2. Prove that the homomorphism induced on a complete field of sets by a
point is complete.

3. Define the notion of a complete filter, and prove that an ideal is com-
plete if and only if its dual filter is complete.

4. Prove that the class of complete filters in a Boolean algebra B is itself
a complete Boolean algebra with respect to the distinguished Boolean
elements and operations defined by

0 = {1},(1)
1 = B,(2)

M ∧ N = M ∩ N,(3)

M ∨ N =
⋂

{L : L is a complete filter in B and M ∪ N ⊆ L},(4)

M ′ = {p ∈ B : p ∨ q = 1 for all q ∈ M},(5)

for all complete filters M and N in B. Show further that the Boolean
algebras of complete ideals and of complete filters in B are isomorphic
via the mapping that takes each complete ideal to its dual filter.
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5. Prove that every complete filter is the cokernel of some complete epi-
morphism.

6. Prove that the complete ideal generated by a set E and the complete
filter generated by the set E ′ = {p ′ : p ∈ E} are the duals of one
another.

7. Formulate and prove the analogue of Lemma 1 for complete filters.

8. Formulate and prove the analogue of Lemma 2 for complete filters.

9. If a Boolean homomorphism preserves all infima that happen to exist,
prove that the homomorphism is complete.

10. Prove that a Boolean homomorphism f from B into A is complete if
and only if whenever 0 is the infimum of a family {pi} in B, then 0 is
the infimum of the family {f(pi)} in A.

11. Prove that a complete ideal in a complete Boolean algebra is closed
under joins of arbitrary subsets of the ideal. Conclude that such an
ideal is always principal.

12. Prove that the quotient of a complete Boolean algebra by a complete
ideal is complete.

13. Prove that in the Boolean algebra of finite and cofinite sets of integers,
the ideal of all finite sets of integers is not complete.

14. Prove that the collection of finite sets of integers of the form 3m for
some integer m (in other words, the finite sets of multiples of 3) is a
complete ideal in the Boolean algebra B of finite and cofinite sets of
integers. Show that the same is true for the collection of finite sets of
integers of the form 3m + 1, and also for the collection of finite sets of
integers of the form 3m + 2. What is the join of these three ideals in
the lattice of all ideals of B? What is the join of the three ideals in the
lattice of all complete ideals of B? Generalize this example.

15. Define the annihilator of an arbitrary subset E (not necessarily an
ideal) of a Boolean algebra to be the set of elements p such that p∧q = 0
for all q in E. Prove that the annihilator of E is a complete ideal.

16. Prove that the annihilator of a subset E of a Boolean algebra (Exer-
cise 15) coincides with the set of complements of upper bounds of E.
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17. Prove that the annihilator of a subset E of a Boolean algebra (Exer-
cise 15) coincides with the annihilator of the complete ideal generated
by E.

18. Prove that the annihilator of an ideal M is the largest ideal N with the
property that

M ∩ N = {0}.

19. Prove that an ideal M is complete if and only if it is the annihilator of
the annihilator of M . In other words, in the notation of Theorem 21,
prove that M is complete if and only if M = M ′′.

20. Prove that the complete ideal generated by a subset E in a Boolean
algebra is just E ′′, the annihilator of the annihilator of E.

21. Give a direct proof that the distributive law (7) holds in the lattice of
complete ideals of a Boolean algebra.

22. Verify directly, without appealing to Theorem 21, that the Boolean
axioms (2.11), (2.12), (2.15), and (2.17) hold in the lattice of complete
ideals of a Boolean algebra.

23. Define a correspondence f from a Boolean algebra B into its Boolean
algebra of complete ideals by f(p) = (p). In other words, f(p) is defined
to be the complete ideal generated by p. Prove that f is a complete
Boolean monomorphism.



Chapter 25

Completions

The Stone representation theorem implies that every Boolean algebra is a
subalgebra of a complete Boolean algebra, namely its canonical extension.
One advantage of this extension is that it is atomic. A fundamental drawback
is that all of the infinite joins that exist in the original algebra are changed in
the passage to the canonical extension. More precisely, if an infinite subset E
of a Boolean algebra A has a supremum p in A, and if p is not already the
supremum of a finite subset of E, then the supremum of E in the canonical
extension of A is definitely not p, by the compactness property. For many
purposes, therefore, the canonical extension is not good enough.

What is needed is a complete extension in which missing suprema are
“filled in”, while the existing suprema are all left intact. A completion of a
Boolean algebra A is a Boolean algebra B with the following properties: (1) A
is a subalgebra of B; (2) every subset of A has a supremum in B; (3) every
element in B is the supremum (in B) of some subset of A. Condition (3) is
equivalent to the assertion that A is a dense subset of B in the sense that
every non-zero element in B is above a non-zero element in A. One direction
of this equivalence is obvious: if condition (3) holds, then every non-zero
element of B, being the supremum of a subset of A, must be above some
non-zero element of A. To prove the reverse direction of the equivalence,
assume A is dense in B. Consider an arbitrary element p in B, and let E be
the set of all elements in A that are below p. We shall show that p is the
supremum of E in B. Clearly, p is an upper bound of E in B. Assume, for
contradiction, that q is a strictly smaller upper bound of E in B. Then p− q
is non-zero, and hence (by density) is above a non-zero element r in A. The
definition of E implies that r is in E, since r ≤ p. The element q is an upper
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bound of E, so r ≤ q. This last inequality contradicts the fact that r ≤ q ′.
Conclusion: a Boolean algebra B is a completion of a Boolean algebra A
if and only if A is a dense subalgebra of B and every subset of A has a
supremum in B.

The argument just given shows that every element in a completion of a
Boolean algebra A is the supremum of the set of all elements in A that are
below it. A similar argument shows that a dense subalgebra of an arbitrary
Boolean algebra is automatically a regular subalgebra. In other words, all
infinite suprema that exist in the subalgebra are left intact. Suppose, indeed,
that A is a dense subalgebra of B, and let E be a subset of A that has a
supremum in A, say p. Certainly, p is an upper bound of E in B. If q were
a strictly smaller upper bound of E in B, then p − q would be a non-zero
element of B, and therefore above a non-zero element r of A, by density.
The difference p− r would then be an upper bound of E in A that is strictly
smaller than p, contradicting the assumption that p is the supremum of E
in A.

We have yet to see that a completion B of a Boolean algebra A is in
fact complete. Consider an arbitrary family {pi} of elements in B. Each pi

is the supremum (in B) of some subset Ei of A, by condition (3). The
union E =

⋃
i Ei is a subset of A, and therefore has a supremum p in B,

by condition (2). The generalized associative law formulated in Exercise 8.6
implies that p is the supremum of the family {pi}, since

p =
∨

E =
∨

i

(∨
Ei

)
=
∨

i

pi.

A consequence of this observation is that a Boolean algebra B is a completion
of A if and only if B is complete and includes A as a dense subalgebra.

It is not obvious that there are any completions at all, but fortunately
every Boolean algebra does have a completion, and even more fortunately,
that completion is unique, up to isomorphic copies. We first prove the ex-
istence theorem for completions (discovered independently by MacNeille [43]
and Tarski [75] — see footnote 21 in [75]). Recall from Chapter 24 that an
ideal M in a Boolean algebra A is said to be complete provided that when-
ever the supremum of a set of elements in M exists in A, that supremum
belongs to M . The class of all complete ideals in A is a complete Boolean
algebra: the meet of an arbitrary family of ideals is the intersection of the
ideals in the family, the join of the family is the complete ideal generated by
the union of the ideals in the family, and the complement of a complete ideal
is the annihilator of the ideal (see Theorem 21, p. 209). It turns out that this
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algebra of complete ideals is a completion of A, provided that one identifies
the principal ideals with the elements of A.

Theorem 22. Every Boolean algebra A has a completion, namely (an iso-
morphic copy of ) the Boolean algebra of complete ideals in A.

Proof. Let A be a Boolean algebra, and B the class of complete ideals in A.
Then B is a complete Boolean algebra, by Theorem 21. For each element p
in A, the principal ideal (p) generated by p is a complete ideal, and therefore
an element of B (see the remark following Theorem 20, p. 203). Define a
mapping f from A into B by

f(p) = (p).

We shall show that f is a complete embedding of A into B. If p and q
are elements of A, then

f(p ∨ q) = (p ∨ q) = (p) ∨ (q) = f(p) ∨ f(q)

and
f(p ′ ) = (p ′ ) = (p) ′ = f(p) ′.

(Compare the displayed equations in the proof of Corollary 24.1, or see Corol-
lary 19.1 and the remarks preceding Lemma 19.2.) Consequently, f is a ho-
momorphism. If f(p) = f(q), that is, if (p) = (q), then p = q, since the
generator of a principal ideal is the largest element in the ideal. Therefore, f
is one-to-one. The range of f is the set of all principal ideals in A. This set
is a regular subalgebra of B, by Corollary 24.1. It follows from Lemma 12.1
that f is a complete monomorphism from A into B.

Every non-zero complete ideal M in A obviously includes a non-zero prin-
cipal ideal: if an element p in M is not zero, then (p) is a non-zero ideal
included in M . The range of f — the image f(A) — is therefore a dense
subalgebra of B. Combine this observation with those of the preceding para-
graphs to conclude that f(A) is a (regular) dense subalgebra of the complete
algebra B. In other words, B is a completion of f(A). The exchange principle
(see Chapter 12) now ensures that A itself has a completion.

A Boolean algebra A has many complete extensions, complete Boolean
algebras that contain A as a subalgebra. For instance, when A is infinite, the
canonical extension of A, the canonical extension of the canonical extension
of A, and so on, are all distinct complete extensions of A. (They increase
in size at an exponential rate, at the very least; see the remarks at the end
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of Chapter 23.) A completion of A distinguishes itself from other complete
extensions of A by its minimality. There are several possible interpretations
of this assertion, and they all turn out to be true.

Lemma 1. Suppose B is a completion of a Boolean algebra A. The only em-
bedding of B into itself that is the identity on A is the identity automorphism
of B.

Proof. Let f be an embedding of B into itself that is the identity mapping
on A. For an arbitrary element q in B, the set of elements in A that are
below q coincides with the set of elements in A that are below f(q). Indeed,
if an element p in A is below q, then

p = f(p) ≤ f(q),

by the homomorphism properties of f and the fact that f is the identity
mapping on A. Conversely, if p ≤ f(q), then

p = f−1(p) ≤ f−1(f(q)) = q.

Since every element in B is the supremum of the set of elements in A that it
dominates, by condition (2) in the definition of a completion, it now follows
that q = f(q). In other words, f is the identity mapping on B.

The next theorem, due independently to MacNeille [43] and Tarski [75],
says that a completion of A is minimal in the sense that, up to isomorphism,
it is a subalgebra of every other complete extension of A.

Theorem 23. A completion of a Boolean algebra A can be embedded into
any complete extension of A via a mapping that is the identity on A.

Proof. Let B be a completion of A, and consider any complete extension C
of A. The identity function f on A is a monomorphism of A into C. It can
be extended to a homomorphism g from B into C, by the homomorphism
extension theorem (Theorem 5, p. 114). To prove that g is one-to-one, it
suffices to check that its kernel is trivial. Suppose g(q) = 0. Every element
in B below q is then also mapped to 0, by the homomorphism properties
of g. In particular, every element p in A with p ≤ q is mapped to 0 by g.
But such elements p are mapped to themselves, since g extends the identity
function on A. Conclusion: zero is the only element in A below q. Since q is
the supremum (in B) of a set of elements in A, it follows that q is zero.

Another interpretation of minimality, given in the next corollary, says
that a completion of A is a smallest complete extension of A.
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Corollary 1. A Boolean algebra B is a completion of a Boolean algebra A if
and only if B is a complete extension of A, and no complete extension of A
is a proper subalgebra of B.

Proof. Suppose, first, that B is a completion of A. Consider any subalge-
bra C of B that is a complete extension of A. There is an embedding g
of B into C that is the identity mapping on A, by the preceding theorem.
Since C is a subalgebra of B, the mapping g may be viewed as an embed-
ding of B into itself. Lemma 1 implies that g must be the identity mapping
on B. In particular, the range of g is B, so B is also a subalgebra of C.
Consequently, B = C. Conclusion: no complete extension of A is a proper
subalgebra of B.

Consider now a complete extension B of A, and assume that no proper
subalgebra of B is a complete extension of A. A completion C of A exists,
by the existence theorem for completions, and there is an embedding g of C
into B that is the identity mapping on A, by Theorem 23. The image g(C)
is a complete extension of A that is a subalgebra of B, so the assumption
about B implies that g(C) = B. In other words, B is the isomorphic image of
a completion of A via a mapping that is the identity on A. It follows that B
must also be a completion of A.

We are ready to prove the uniqueness theorem for completions. It is an
easy consequence of preceding observations.

Theorem 24. Any two completions of a Boolean algebra A are isomorphic
via a mapping that is the identity on A.

Proof. Suppose B and C are completions of A. Then B can be embedded
into C via a mapping g that is the identity on A, by Theorem 23. The
image g(B) is a complete extension of A that is a subalgebra of C, so it is
equal to C by the preceding corollary. Thus, g is an isomorphism from B
to C that is the identity on A.

The isomorphism g in the preceding proof is constructed indirectly, via
the homomorphism extension theorem (see the proof of Theorem 23). It
is useful to have a direct construction of g. Each element q in B is the
supremum of a subset of A, namely the set E of all elements in A that are
below q. Since g is an isomorphism that is the identity on A, it must map q
to the supremum of E in C. Thus, g is the correspondence from B to C that
for each subset E of A, maps the supremum of E in B to the supremum of E
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in C. This argument also shows that g is the only isomorphism from B to C
that is the identity on A.

The uniqueness theorem provides a justification for the common practice
of referring to the completion of a Boolean algebra.

Dedekind [15] constructed the real numbers as a kind of order completion
of the rational numbers, using subsets of rational numbers called Dedekind
cuts (see the remarks following the proof of Lemma 24.2). MacNeille [43]
extended Dedekind’s methods to construct completions of partial orderings,
and in particular completions of Boolean algebras. For this reason, the com-
pletion of a Boolean algebra A is sometimes called the MacNeille completion
of A or even the Dedekind–MacNeille completion of A.

Exercises

1. Prove that every complete Boolean algebra is its own completion. Con-
clude that every finite Boolean algebra is its own completion.

2. Suppose B is the completion of a Boolean algebra A. Prove that an
element in B is an atom if and only if it is already an atom in A.

3. Prove that the completion of a Boolean algebra A is atomic if and only
if A is atomic. (This theorem is due to Tarski [75].) Conclude that if A
is atomic, then its completion is isomorphic to the field of all subsets
of the set of atoms of A.

4. Let A be the field of finite and cofinite subsets of an infinite set X.
Prove that P(X) is the completion of A.

5. Prove that two atomic Boolean algebras with the same number of atoms
have isomorphic completions.

6. Prove that the completion of an atomless algebra is atomless.

7. Prove that there is at most one isomorphism between two completions
of a Boolean algebra A that is the identity on A.

8. Suppose B and C are both completions of a Boolean algebra A. Let g
be the correspondence from B to C that, for each subset E of A, maps
the supremum of E in B to the supremum of E in C. Prove directly
that g is a well-defined isomorphism from B to C that is the identity
mapping on A.
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9. The completion of a Boolean algebra A has the property that every
element is the supremum of the set of elements in A that it dominates.
Does any other complete extension of A have this property?

10. Prove that every homomorphism between Boolean algebras can be ex-
tended to a homomorphism between the corresponding completions.

11. Show that not every homomorphism between Boolean algebras can
be extended to a complete homomorphism between the corresponding
completions. (Compare this with Exercise 23.7.)

12. Prove that every complete homomorphism between Boolean algebras
can be extended to a complete homomorphism between the correspond-
ing completions. More precisely, let A and B be Boolean algebras,
and A1 and B1 the corresponding completions. Prove that if g is a
homomorphism from B into A, then the mapping f from B1 to A1

defined by
f(p) =

∨
{g(s) : s ∈ B and s ≤ p}

for p in B1 is a complete homomorphism that extends g. Show further
that if g is one-to-one or onto, then so is f . (This is a special case of a
much more general theorem due to Monk [44].)

13. If A and B are Boolean algebras, and if B is a regular subalgebra of A,
prove that the completion of B is (up to an isomorphism that is the
identity on A) a complete subalgebra of the completion of A, and in
fact it is the complete subalgebra generated by B.
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Products of Algebras

A familiar way of making one new structure out of two old ones is to form
their Cartesian product and, in case the structure involves some algebraic op-
erations, to define the requisite operations coordinatewise. Boolean algebras
furnish an instance of this procedure. The (direct) product of two Boolean
algebras B and C is the algebra

A = B × C

whose universe, the Cartesian product of the sets B and C, consists of the
pairs (p, q) with p in B and q in C. The meet and join of two pairs in A is
formed coordinatewise:

(p, q) ∧ (r, s) = (p ∧ r, q ∧ s) and (p, q) ∨ (r, s) = (p ∨ r, q ∨ s),

where p ∧ r and p ∨ r are the meet and join of p and r in B, while q ∧ s
and q ∨ s are the meet and join of q and s in C. The complement of a pair
in A is likewise formed coordinatewise:

(p, q) ′ = (p ′, q ′ ),

where p ′ and q ′ are the complements of p and q in B and C respectively.
Under these operations, the product A is a Boolean algebra with zero (0, 0)
and unit (1, 1). In fact, it is easy to verify that the Boolean axioms (2.11)–
(2.20) hold in A. For instance, here is the proof that the commutative law
for join holds in A:

(p, q) ∨ (r, s) = (p ∨ r, q ∨ s) = (r ∨ p, s ∨ q) = (r, s) ∨ (p, q).

The first and last equalities hold by the definition of join in A, while the
middle equality holds because the commutative law for join is valid in the
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Boolean algebras B and C. The algebras B and C are called the factors of
the product A.

The algebra 2× 2 furnishes a concrete example of a product. Its universe
consists of the four ordered pairs (0,0), (0,1), (1,0), and (1,1). Its opera-
tions, defined coordinatewise in terms of the operations of 2, are given in the
following tables:

∧ (0, 0) (0, 1) (1, 0) (1, 1)
(0, 0) (0,0) (0,0) (0,0) (0,0)
(0, 1) (0,0) (0,1) (0, 0) (0,1)
(1, 0) (0,0) (0,0) (1,0) (1, 0)
(1, 1) (0,0) (0, 1) (1, 0) (1, 1)

,

∨ (0, 0) (0, 1) (1, 0) (1, 1)
(0, 0) (0, 0) (0, 1) (1, 0) (1, 1)
(0, 1) (0,1) (0,1) (1, 1) (1,1)
(1, 0) (1,0) (1,1) (1,0) (1, 1)
(1, 1) (1,1) (1, 1) (1, 1) (1, 1)

,

′ (0, 0)
(0, 0) (1, 1)
(0, 1) (1,0)
(1, 0) (0,1)
(1, 1) (0,0)

.

In case B and C are fields of subsets of disjoint sets Y and Z respec-
tively, their product A represents itself naturally as a field of subsets of the
union X = Y ∪Z. The proof is based on some simple observations about the
field of all subsets of X, and depends essentially on the assumption that Y
and Z are disjoint. Every subset S of X can be written in one and only one
way as a union S = P ∪ Q of a subset P of Y and a subset Q of Z. Indeed,

P = S ∩ Y and Q = S ∩ Z.

Furthermore, if S1 and S2 are subsets of X, say

S1 = P1 ∪ Q1 and S2 = P2 ∪ Q2,

then
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S1 ∩ S2 = (P1 ∩ P2) ∪ (Q1 ∩ Q2),(1)
S1 ∪ S2 = (P1 ∪ P2) ∪ (Q1 ∪ Q2),(2)

S ′
1 = P ′

1 ∪ Q ′
1.(3)

The representation f of the product A as a field of subsets of X maps each
pair (P, Q) in A to the union P ∪Q. Since every subset of X can be written
in only one way as such a union, the mapping f is one-to-one. In more detail,
if

f((P1, Q1)) = f((P2, Q2)),

then

P1 ∪ Q1 = P2 ∪ Q2;

intersect both sides of this equation with Y to obtain P1 = P2, and intersect
both sides with Z to obtain Q1 = Q2. The proof that f preserves meet, join,
and complement depends on the identities (1)–(3). For instance,

f((P1, Q1) ∧ (P2, Q2)) = f((P1 ∩ P2, Q1 ∩ Q2))
= (P1 ∩ P2) ∪ (Q1 ∩ Q2)
= (P1 ∪ Q1) ∩ (P2 ∪ Q2)
= f((P1, Q1)) ∩ f((P2, Q2)).

The first equality uses the definition of meet in A, the second and fourth
use the definition of the representation f , and the third equality uses (1). It
follows that f preserves meet. The arguments for join and complement are
similar.

It is natural to try to extend the preceding idea to more general classes
of Boolean algebras. A Boolean algebra D is called an internal product of
two Boolean algebras B and C if it includes B and C as subsets and has the
following properties. First, every element s in D can be written in exactly
one way as a join s = p ∨ q of elements p in B and q in C. Second, the
operations of D obey the following identities for all elements p1 and p2 in B,
and q1 and q2 in C:

(p1 ∨ q1) ∧ (p2 ∨ q2) = (p1 ∧ p2) ∨ (q1 ∧ q2),(4)
(p1 ∨ q1) ∨ (p2 ∨ q2) = (p1 ∨ p2) ∨ (q1 ∨ q2),(5)

(p1 ∨ q1) ′ = p ′
1 ∨ q ′

1,(6)

where the meet p1 ∧ p2, the join p1 ∨ p2, and the complement p ′
1 on the

right sides of the equations are formed in B, while the meet q1 ∧ q2, the
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join q1∨q2, and the complement q ′
1 are formed in C, and all other operations

are performed in D. The algebras B and C are called the (internal) factors
of D.

There is a canonical isomorphism from the product A of two Boolean
algebras B and C to an internal product D of the two algebras: it is the
function f defined by

f((p, q)) = p ∨ q.

The function is one-to-one because every element of D can be written in
at most one way as the join of an element of B and an element of C:
if f((p1, q1)) = f((p2, q2)), then p1 ∨ q1 = p2 ∨ q2, and therefore p1 = q1

and p2 = q2. The function maps A onto D because every element of D can
be written in at least one way as a join of elements of B and C: if s is in D,
then there are elements p in B and q in C such that s = p ∨ q and therefore

f((p, q)) = p ∨ q = s.

Finally, the function preserves the operations of meet, join, and complement
because of conditions (4)–(6). For instance,

f((p1, q1) ∧ (p2, q2)) = f((p1 ∧ p2, q1 ∧ q2))
= (p1 ∧ p2) ∨ (q1 ∧ q2)
= (p1 ∨ q1) ∧ (p2 ∨ q2)
= f((p1, q1)) ∧ f((p2, q2)).

The first equality uses the definition of meet in A, the second and fourth
equalities use the definition of the mapping f , and the third equality uses (4).
It follows that f preserves meet. The arguments for join and complement
are similar.

The relativizations of the product A = B × C to the elements (1, 0)
and (0, 1) are the Boolean algebras

B0 = B × {0} = {(p, 0) : p ∈ B} and C0 = {0} × C = {(0, q) : q ∈ C}.

The canonical isomorphism f from A to the internal product D maps B0 iso-
morphically to B, and C0 isomorphically to C; in fact, f maps the pair (p, 0)
to the element p, and the pair (0, q) to the element q. A number of properties
of D can be deduced immediately from this observation. The algebras A, B0,
and C0 have the same zero element, namely the pair (0, 0), so D, B, and C
must all have the same zero. The algebras B0 and C0 are disjoint, except
for the common zero, so the algebras B and C are disjoint, except for the
common zero. The units of B0 and C0 — the pairs (1, 0) and (0, 1) — are the
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complements of one another in A, so the units of B and C are complements of
one another in D. The relativization of A to the unit of B0 is just B0, so the
relativization of D to the unit of B is just B, and similarly, the relativization
of D to the unit of C is just C.

Two internal products D1 and D2 of Boolean algebras B and C are always
isomorphic via a mapping that is the identity on B and on C. In fact, if f1

and f2 are the canonical isomorphisms from the product A = B × C to D1

and D2 respectively, then the composition

g = f2 ◦ f−1
1

maps D1 isomorphically to D2 (see the diagram). Furthermore, g maps each
element p in B to itself, since

g(p) = f2(f−1
1 (p)) = f2((p, 0)) = p.

Similarly, g maps each element in C to itself. These observations justify
speaking of the internal product of B and C. We shall denote it by B ⊗ C.

1 2

21

A

DD

ff

g

When does the internal product of two Boolean algebras B and C exist?
Certainly, the two algebras must be disjoint, except for a common zero el-
ement. As it turns out, this is the only condition that is needed. For the
proof, suppose B and C have the same zero element and are otherwise dis-
joint. Let A be the direct product of the two algebras, and let B0 and C0

be the relativizations of A defined above. Take h1 to be the isomorphism
from B to B0, and h2 the isomorphism from C to C0, defined by

h1(p) = (p, 0) and h2(q) = (0, q).

Notice that these two isomorphisms agree on the common zero element of B
and C, and they map the rest of B and C to disjoint sets. An argument very
similar to the exchange principle allows us to exchange B0 for B, and C0

for C, provided that the elements of A that are not in B0 or in C0 are first
replaced by new elements that do not occur in B or C. The result is an
algebra D that is the internal product of B and C.

The restriction of the internal product construction to pairs of Boolean
algebras that have only zero in common is not severe. Given any pair of
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Boolean algebras, one can always pass to a pair of isomorphic algebras that
have zero, and no other element, in common.

An internal decomposition of a Boolean algebra D is a pair of Boolean
algebras B and C such that

D = B ⊗ C.

There is a very close connection between the internal decompositions of D
and the relativizations of D. Recall (from Chapter 12) that the relativization
of D to an element r in D is the set

D(r) = {p ∧ r : p ∈ D} = {p : p ∈ D and p ≤ r}

under the join and meet operations of D, restricted to D(r); the complement
of an element p in the relativization is defined to be p ′ ∧ r.

Lemma 1. A Boolean algebra D is the internal product of the relativiza-
tions D(r) and D(r ′ ) for each element r in D.

Proof. Write

B = D(r) and C = D(r ′ ).

Consider an arbitrary element s in D. The meets

p = s ∧ r and q = s ∧ r ′

are in B and C respectively, and

s = s ∧ 1 = s ∧ (r ∨ r ′ ) = (s ∧ r) ∨ (s ∧ r ′ ) = p ∨ q.

If p1 and q1 are any other elements of B and C such that s = p1 ∨ q1, then

p = s ∧ r = (p1 ∨ q1) ∧ r = (p1 ∧ r) ∨ (q1 ∧ r) = p1 ∨ 0 = p1,

and, similarly, q = q1. The fourth inequality holds because p1 is below r,
while q1 is below r ′ and therefore disjoint from r. The argument just given
shows that every element of D can be written in exactly one way as the join
of an element in B and an element in C.

It remains to verify identities (4)–(6) in D. Suppose p1 and p2 are ele-
ments in B, and q1 and q2 elements in C. Then

(p1 ∨ q1) ∧ (p2 ∨ q2) = [(p1 ∧ p2) ∨ (q1 ∧ p2)] ∨ [(p1 ∧ q2) ∨ (q1 ∧ q2)]
= [(p1 ∧ p2) ∨ 0] ∨ [0 ∨ (q1 ∧ q2)]
= (p1 ∧ p2) ∨ (q1 ∧ q2).
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The first equality uses the distributive law from Corollary 8.2, and the third
uses the identity law for join. The second equality holds because p1 and p2

are below r, and therefore disjoint from q1 and q2 (which are below r ′ ). The
verifications of identities (5) and (6) are similar.

There is a trivial instance of the preceding lemma that is worth pointing
out, namely when r is 0 or 1. The lemma then asserts that D is the internal
product of the degenerate algebra {0} = D(0) and D = D(1) itself.

The lemma describes one method for decomposing a Boolean algebra
into the internal product of two factors. As it turns out, there are no other
possibilities.

Corollary 1. A Boolean algebra D is the internal product of Boolean algebras
B and C if and only if there is an element r in D such that

B = D(r) and C = D(r ′ ).

Proof. If there is an element r in D for which the preceding equations hold,
then D is certainly the internal product of B and C, by the previous lemma.
Suppose, conversely, that D is the internal product of the two algebras B
and C. The units of B and C are the complements of one another in D,
and the relativizations of D to these units are just B and C, by the remarks
preceding Lemma 1. Thus, if r is the unit of B, then the given equations
hold.

Products play an important role in the study of algebraic structures. If
a complicated algebra — a ring or a group, for example — can be written
as the product of more basic factor algebras, then the analysis of the com-
plicated algebra reduces to the analysis of these factors. The next corollary
provides an example of this phenomenon. It asserts that every complete
Boolean algebra is the internal product of a complete, atomic Boolean alge-
bra and a complete, atomless Boolean algebra. Complete, atomic Boolean
algebras are isomorphic to fields of all subsets of some set, by Corollary 14.1,
so these algebras are in some sense fairly well understood. The analysis
of complete Boolean algebras therefore reduces to the analysis of complete,
atomless Boolean algebras.

Corollary 2. Every complete Boolean algebra is the internal product of a
complete, atomic Boolean algebra and a complete, atomless Boolean algebra.
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Proof. Let D be a complete Boolean algebra. The supremum r of the set of
atoms exists in D, by the assumption that D is complete. Write

B = D(r) and C = D(r ′ ).

Then D is the internal product of B and C, by Lemma 1. It remains to show
that B is complete and atomic, and that C is complete and atomless.

The atoms of B coincide with the atoms of D, by the definition of r,
and the unit of B — the element r — is the supremum of the set of atoms
(in B as well as in D); consequently, B is atomic, by Lemma 14.3. To show
that B is complete, consider an arbitrary family {pi} of elements in B. The
supremum p of this family certainly exists in D, by the assumption that D is
complete. Each element pi is in B, and is therefore below the unit r of B. In
other words, r is an upper bound of the family {pi} (in B and in D). Since p
is the least upper bound of this family in D, it follows that p ≤ r and hence
that p is in B. Thus, p is the supremum of the family {pi} in B.

It is easy to check that an atom in C must also be an atom in D. Since
every atom in D is below r, it follows that the algebra C must be atomless.
The proof that C is complete is similar to the proof that B is complete.

From the point of view of products, the most basic algebras are those
that cannot be decomposed further by means of products. Of course, every
Boolean algebra is isomorphic to the product of itself and the degenerate
(one-element) Boolean algebra. Such trivial decompositions are totally unin-
teresting. A Boolean algebra is said to be directly indecomposable if it is not
degenerate and not isomorphic to the product of two non-degenerate Boolean
algebras. As it turns out, there is just one directly indecomposable Boolean
algebra (up to isomorphic copies), namely 2. (This observation is due to
Stone [66].) An elementary cardinality argument shows that 2 is directly
indecomposable. (The number 2 cannot be written as the product of two
numbers both of which are greater than 1.) On the other hand, a Boolean
algebra with more than two elements cannot be directly indecomposable. In-
deed, such an algebra, say D, must contain an element r that is different
from 0 and 1. The relativizations of D to r and to r ′ each have at least two
elements, and

D = D(r) ⊗ D(r ′ ),

by Lemma 1; consequently, D is the product of two non-degenerate Boolean
algebras.
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We have looked at the product of two Boolean algebras from an external
perspective, as a Cartesian product, and from an internal perspective, as an
internal product. There is yet another perspective, a functional one that
comes from category theory. If A is the (direct) product of B and C, then
there are natural epimorphisms from A to the factor algebras, namely the
(left and right) projections fB and fC defined by

fB((p, q)) = p and fC((p, q)) = q.

The verification that these mappings are epimorphisms is a simple exercise
involving the definition of A. For instance, to verify that fB preserves join
and complement, consider two elements r1 and r2 in A, say

r1 = (p1, q1) and r2 = (p2, q2).

Then

r1 ∨ r2 = (p1 ∨ p2, q1 ∨ q2) and r ′
1 = (p ′

1, q
′
1 ),

so that

fB(r1) = p1, fB(r2) = p2, fB(r1 ∨ r2) = p1 ∨ p2, fB(r ′
1 ) = p ′

1,

and therefore

fB(r1 ∨ r2) = fB(r1) ∨ fB(r2) and fB(r ′
1 ) = fB(r1) ′.

The product A and the pair of projections (fB, fC) satisfy the following
lifting condition: if D is any Boolean algebra, and if gB and gC are any
homomorphisms from D to B and C, then there is a unique homomorphism g
from D to A such that

(7) fB ◦ g = gB and fC ◦ g = gC

(see the diagram). The existence of g is straightforward to prove. Write

(8) g(p) = (gB(p), gC(p)).

The homomorphism properties of gB and gC imply that g is a homomorphism.
For instance, g preserves meet because

g(p ∧ q) = (gB(p ∧ q), gC(p ∧ q)) = (gB(p) ∧ gB(q), gC(p) ∧ gC(q))
= (gB(p), gC(p)) ∧ (gB(q), gC(q)) = g(p) ∧ g(q);

the first and last equalities use the definition of g, the second equality uses
the homomorphism properties of gB and gC , and the third equality uses the
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B C

B C

A

B C

D

ff

g

g

g

definition of meet in A. The identities in (7) follow at once from (8) and the
definitions of the projections fB and fC ; for instance,

fB(g(p)) = fB((gB(p), gC(p))) = gB(p).

The uniqueness of g is equally easy to establish. Consider an arbitrary ho-
momorphism h from D into A that satisfies (7) (with the function g replaced
by h). If h maps the element p in D to the pair (r, s) in A, then

r = fB((r, s)) = fB(h(p)) = gB(p)

and

s = fC((r, s)) = fC(h(p)) = gC(p),

by the definitions of the projections and condition (7), so that

h(p) = (r, s) = (gB(p), gC(p)).

Consequently, h coincides with the homomorphism g defined in (8).
The Boolean algebra A and the pair of mappings (fB, fC) are uniquely

determined, up to isomorphic copies, by the lifting condition: if a Boolean
algebra D and a pair of homomorphisms (gB, gC) also satisfy the lifting con-
dition, then there is an isomorphism g from D to A such that (7) holds.
Indeed, the algebra A and the pair of projections (fB, fC) satisfy the lift-
ing condition (in particular, with respect to the algebra D and the pair of
mappings (gB, gC)), by the observations of the preceding paragraph, so there
is a unique homomorphism g from D into A with the properties (7). It is
assumed that the algebra D and the pair of mappings (gB, gC) also satisfy
the lifting condition (in particular, with respect to the algebra A and the pair
of mappings (fB, fC)), so there is a unique homomorphism f from A into D
with the properties

gB ◦ f = fB and gC ◦ f = fC .(9)
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Equations (7) and (9) combine to yield

gB ◦ f ◦ g = gB , gC ◦ f ◦ g = gC ,(10)

and

fB ◦ g ◦ f = fB, fC ◦ g ◦ f = fC .(11)

Since the algebra D and the pair of mappings (gB, gC) satisfy the lifting
condition (in particular, with respect to themselves), there must be a unique
homomorphism h from D into itself with the properties

gB ◦ h = gB and gC ◦ h = gC .

These equations are obviously satisfied if h is the identity automorphism
on D, and they are also satisfied if h is the composition f ◦ g, by (10).
The assumed uniqueness of the homomorphism h implies that f ◦ g must
be the identity automorphism on D. A similar argument, using (11), shows
that g ◦ f is the identity automorphism on A. It follows that g and f are
bijections and inverses of one another, so that g is an isomorphism from D
to A with properties (7), as desired (see Exercise 12.32 or the section on
bijections in Appendix A).

Almost everything that has been said so far can be generalized. By the
(direct) product of a family {Ai}i∈I of Boolean algebras we shall understand
their Cartesian product

A =
∏

i∈I

Ai,

construed as a Boolean algebra with respect to the coordinatewise operations.
The universe of the product consists of the functions p with domain I such
that p(i) — or pi as we shall usually write — is an element of Ai for each index
i. The meet and join of two functions p and q in A are the functions p ∧ q
and p ∨ q on I defined by

(p ∧ q)i = pi ∧ qi and (p ∨ q)i = pi ∨ qi,

while the complement of p is the function p ′ on I defined by

(p ′ )i = p ′
i .

The right sides of these equations are computed in the Boolean algebra Ai

for each i. The zero and unit of the product are the functions 0 and 1 on I
defined by

0i = 0 and 1i = 1,
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where the elements on the right sides of these equations are the zero and unit
of Ai for each i. The algebras Ai are the factors of the product A.

The verification that the product of a family of Boolean algebras is again
a Boolean algebra is quite similar to the verification of the analogous result
for the product of two Boolean algebras, but the details have a superficially
different appearance. For instance, to verify the commutative axiom (2.18)
for join, consider two elements p and q in the product. Both p ∨ q and q ∨ p
are functions on the index set I, so they will be equal just in case they agree
on each index i. A simple computation based on the definition of join in the
product and the commutative law in Ai yields

(p ∨ q)i = pi ∨ qi = qi ∨ pi = (q ∨ p)i.

The index set I is allowed to be empty. In this case there is just one
function with domain I, namely the empty function, so the product of the
family is the degenerate (one-element) Boolean algebra.

We shall indicate the products of finite and infinite sequences of Boolean
algebras by such obvious and customary modifications of the symbolism
as
∏n

i=1 Ai and
∏∞

i=1 Ai. When all the factors are equal to the same Boolean
algebra B, the product

∏
i∈I Ai is called a power of B, or, more precisely,

the Ith power of B, and is usually written as BI . For instance, if Ai = 2 for
each i, then

∏
i∈I Ai is just the Boolean algebra 2I discussed in Chapter 3

(where the symbol X was used instead of I). This power of 2 is isomorphic
to the field P(I) of all subsets of I, as was shown in Chapter 3.

If each member of a family {Ai} of Boolean algebras is a field of subsets of
a set Xi, and if the sets Xi are mutually disjoint, then the product A =

∏
i Ai

is naturally represented as a field of subsets of the union X =
⋃

i Xi via the
mapping that assigns to each element P in A the subset

⋃
i Pi of X. (Recall

that P is a function on I, and Pi is a subset of Xi for each i.) Actually,
the product A is isomorphic to a field of sets even when the sets Xi are not
mutually disjoint. In this case, however, a modification in the argument is
required. The set X must be taken to be, not the union of the sets Xi, but
rather the union of disjoint copies of the sets Xi. For instance, put

X =
⋃

i

{(x, i) : x ∈ Xi}.

(The whole point of considering ordered pairs here is to force disjointness
by means of the second coordinate.) The natural monomorphism from A
into P(X) is the mapping that takes each element P of A to the set
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⋃

i

{(x, i) : x ∈ Pi}.

The representation of a product of fields of sets as a field of sets is a special
case of a more general internal product construction. A Boolean algebra D is
called the internal product of a family {Ai} of Boolean algebras provided that
it includes each set Ai as a subset, and has the following properties. First,
if pi is an element of Ai for each i, then the supremum of the family {pi}
exists in D. Second, every element s in D can be written in one and only
one way as a supremum s =

∨
i pi, where pi belongs to Ai for each i. Third,

the operations of D satisfy the following identities whenever {pi} and {qi}
are families of elements such that pi and qi are in Ai for each i:

(∨

i

pi

)
∧
(∨

i

qi

)
=
∨

i

(pi ∧ qi),(12)

(∨

i

pi

)
∨
(∨

i

qi

)
=
∨

i

(pi ∨ qi),(13)

(∨

i

pi

)
′ =
∨

i

(p ′
i ),(14)

where the meet pi ∧ qi, the join pi ∨ qi, and the complement p ′
i on the right

sides of equations (12)–(14) are formed in the Boolean algebra Ai for each i.
The algebras Ai are the (internal) factors of D.

There is a canonical isomorphism f from the (direct) product A of a
family {Ai} of Boolean algebras to an internal product D of the family {Ai}
that is defined by

f(p) =
∨

i

pi

for each element p in A. The mapping is well defined because the supremum
on the right exists in D for each element p in A, by the first condition in the
definition of an internal product. The proof that the mapping is a bijection
and preserves the Boolean operations is completely analogous to the proof in
the case of the internal product of two algebras.

An internal product of a family of Boolean algebras exists if and only if
the algebras in the family are pairwise disjoint, except for a common zero
element. Moreover, two internal products of the family are always isomorphic
via a mapping that is the identity on each of the factors; this justifies speaking
of the internal product of the family. The proofs of these observations are
again completely analogous to the proofs in the case of two algebras.
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There is a close connection between the internal decompositions of a
Boolean algebra D and the relativizations of D induced by partitions of the
unit. A family {ri} of elements in D is called a partition of the unit provided
that the elements of the family are pairwise disjoint — that is, ri ∧ rj = 0
for i �= j — and the supremum of the family is 1. We shall say that such
a partition has the supremum property if for every family {pi} of elements
in D satisfying pi ≤ ri for each i, the supremum of {pi} exists in D.

Lemma 2. Let D be a Boolean algebra, and {ri} a partition of the unit
with the supremum property. Then D is the internal product of the family of
relativizations {D(ri)}.

Proof. Let {ri} be a family of elements in D satisfying the hypotheses of the
lemma, and write Ai = D(ri). It is to be shown that D satisfies the defining
conditions for being the internal product of the family {Ai}. If {pi} is a
family of elements in D with pi in Ai for each i, then pi ≤ ri for each i, by
the definition of Ai, and therefore the supremum of the family exists in D,
by the supremum property.

Consider, next, an arbitrary element s in D, and write

pi = s ∧ ri

for each i. Then pi is in Ai, by the definition of Ai, and
∨

i

pi =
∨

i

(s ∧ ri) = s ∧
∨

i

ri = s ∧ 1 = s.

If {qi} is any other family with qi in Ai for each i, and such that s =
∨

i qi,
then

pj = pj ∧ rj =
∨

i

(pi ∧ rj) =
(∨

i

pi

)
∧ rj = s ∧ rj

=
(∨

i

qi

)
∧ rj =

∨

i

(qi ∧ rj) = qj ∧ rj = qj .

The first and last equalities hold because pj and qj are below rj . The second
and seventh equalities holds because ri and rj are disjoint for distinct indices i
and j, and the elements pi and qi are below ri; consequently,

pi ∧ rj = qi ∧ rj ≤ ri ∧ rj = 0.

The third and sixth equalities hold by the distributive law in Lemma 8.3.
This argument shows that every element in D can be written in one and only
one way as the supremum of a family {pi}, with pi in Ai for each i.
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The validity of (12) follows easily from the distributive law formulated in
Corollary 8.2:

(∨

i

pi

)
∧
(∨

j

qj

)
=
∨

ij

(pi ∧ qj) =
∨

i

(pi ∧ qi).

For the last step, observe that

pi ∧ qj ≤ ri ∧ rj = 0

when i �= j. The validity of (13) is an immediate consequence of the gener-
alized associative law in Lemma 8.2. To verify (14), let pi be an element of
the Boolean algebra Ai for each i, and let p ′

i denote its complement in Ai.
Then

pi ∧ p ′
i = 0 and pi ∨ p ′

i = ri.

The suprema
∨

i pi and
∨

i p
′
i exist, by the supremum property. Moreover,

(∨

i

pi

)
∧
(∨

i

p ′
i

)
=
∨

i

(pi ∧ p ′
i ) =

∨

i

0 = 0

and
(∨

i

pi

)
∨
(∨

i

p ′
i

)
=
∨

i

(pi ∨ p ′
i ) =

∨

i

ri = 1,

by (12) and (13). The preceding equations show that
∨

i p
′
i is the complement

of
∨

i pi, by Lemma 6.2. In other words, (14) holds. The proof of the lemma
is complete.

The lemma describes one method for decomposing a Boolean algebra into
the internal product of a family of factors. As it turns out, there are no other
possibilities.

Corollary 3. A Boolean algebra D is the internal product of a family of
Boolean algebras {Ai} if and only if there is a partition {ri} of the unit in D
that has the supremum property and such that Ai = D(ri) for each i.

Proof. If a partition of the unit of D with the stated properties exists, then D
is the internal product of the family of corresponding relativizations, by the
preceding lemma.

To prove the converse, assume that D is the internal product of a fam-
ily {Ai} of Boolean algebras, and write ri for the unit of Ai. It must be
shown that the family {ri} has the stated properties. Let A be the (direct)
product of the family, and for each i, let si be the element in A defined by
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si(k) =

{
ri if k = i,

0 if k �= i,

for k in I. The elements si are pairwise disjoint. Indeed, if i �= j, then for
each index k at least one of si(k) and sj(k) is zero, so that the meet

si(k) ∧ sj(k)

is zero in Ak. In other words, si ∧ sj assumes the value zero at each ar-
gument k, so it is the zero element of A. Similarly, the supremum of the
family {si} is the unit of A. For the proof, suppose that q is any upper
bound of this family in A. The inequality si ≤ q implies that si(k) ≤ qk for
each index k, and in particular

ri = si(i) ≤ qi.

Thus, qi must be the unit of Ai for each i, and therefore q is the unit of A,
by the definition of a (direct) product. Conclusion: {si} is a partition of the
unit in A.

The definition of the product implies that the family {si} has the su-
premum property in A. Indeed, suppose, for each i, that pi is an element
in A below si. Then

pi(k) ≤ si(k)
for each k. In particular, pi(k) = 0 for each k �= i, by the definition of si.
The supremum of the family {pi} in A is therefore the element p in A defined
by

p(i) = pi(i)
for each i.

Let f be the canonical isomorphism from A to D. Recall that f maps
each element q in A to the supremum

∨
k q(k) in D. In particular,

f(si) =
∨

k

si(k) = si(i) = ri.

Since {si} is a partition of the unit in A with the supremum property, it
follows that the image of this family under f , namely {ri}, must be a partition
of the unit in D with the supremum property. Furthermore, f must map the
set of elements in A below si bijectively to the set of elements in D below ri,
so that the image of the relativization A(si) under f is D(ri). On the other
hand, the elements in A(si) are just the elements q in A that are below si; in
other words, they are the functions q on the index set such that q(i) belongs
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to Ai and q(k) = 0 for k �= i, by the definition of si. The image of A(si)
under f is therefore just Ai, by the definition of f , so that

Ai = f(A(si)) = D(ri).

The proof of the corollary is complete.

If A is the product of a family {Ai} of Boolean algebras, then for each i
there is a natural epimorphism from A to Ai, namely the projection fi defined
by fi(p) = pi. If, moreover, D is an arbitrary Boolean algebra, and if, for

i

ii
f

B

A

A
g

g

each i, there is a homomorphism gi from D to Ai, then there is a unique
homomorphism g from D to A such that fi◦g = gi for all i (see the diagram).
In fact, g takes each element p in D to the element in A whose ith coordinate
is gi(p), that is,

g(p) = q if and only if qi = gi(p)

for each i.
As in the case of the products of two algebras, one can describe this situ-

ation by saying that the product A and the family of projections {fi} satisfy
the lifting condition. Moreover, A and the family {fi} are uniquely deter-
mined to within isomorphism by the lifting condition: if a Boolean algebra D
and a family of homomorphisms {gi} also satisfy the lifting condition, then
there is an isomorphism g from D to A such that fi ◦ g = gi. The proof is
similar to the proof in the case of the product of two algebras.

Exercises

1. Prove that the Boolean algebra 2 × 2 is isomorphic to the field of all
subsets of a two-element set.

2. If Y and Z are disjoint sets, prove that every subset S of their union
can be written in one and only one way as the union of a subset of Y
with a subset of Z, and verify equations (1)–(3).
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3. Suppose B and C are fields of subsets of disjoint sets Y and Z. Prove
that the function f defined on the product A = B × C by

f((P, Q)) = P ∪ Q

preserves join and complement. Prove, further, that if B and C are the
fields of all subsets of Y and Z respectively, then f maps A onto the
field of all subsets of Y ∪ Z.

4. Suppose Y and Z are disjoint sets, and Z is finite. If B is the field
of finite and cofinite subsets of Y , and C the field of all subsets of Z,
prove that B×C is isomorphic to the field of finite and cofinite subsets
of the set Y ∪ Z.

5. Suppose A = A1 × A2. Prove that B = B1 × B2 is a subalgebra
of A whenever B1 and B2 are subalgebras of A1 and A2 respectively.
Is the converse true? In other words, can every subalgebra of A be
decomposed into the product of a subalgebra of A1 and a subalgebra
of A2?

6. Suppose A = B × C. If M and N are ideals in B and C respectively,
prove that L = M ×N is an ideal in A. Can every ideal in A be written
as the product of an ideal in B with an ideal in C?

7. Characterize the maximal ideals in a product A = B × C.

8. Let B be the field of finite and cofinite sets of natural numbers. Describe
the maximal ideals in B × B.

9. Let f1 be a (Boolean) homomorphism from B1 into A1, and f2 a ho-
momorphism from B2 into A2. Define a mapping f from B = B1 ×B2

into A = A1 × A2 by

f((p1, p2)) = (f1(p1), f2(p2))

for all p1 in B1 and p2 in B2. Prove that f is a homomorphism. Prove
further that f is one-to-one, or onto, if and only if f1 and f2 are both
one-to-one, or both onto. Conclude that if B1 and B2 are isomorphic
to A1 and A2 respectively, then B is isomorphic to A.

10. Can every Boolean homomorphism from a product B1 × B2 into a
product A1 × A2 be decomposed as in Exercise 9? In other words, for
each such homomorphism f , do there always exist homomorphisms f1

from B1 into A1, and f2 from B2 into A2, such that
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f((p1, p2)) = (f1(p1), f2(p2))

for all p1 in B1 and p2 in B2?

11. Prove directly (without using Lemma 1) that if A = B × C, then A is
the internal product of the algebras

B0 = B × {0} and C0 = {0} × C.

12. Let D be the internal product, and A the (direct) product of two
Boolean algebras B and C. Prove that the mapping f from A to D
defined by

f((p, q)) = p ∨ q

preserves join and complement.

13. Suppose B and C are Boolean algebras that are disjoint except for a
common zero element. Give a careful proof, along the lines of the proof
of the exchange principle (see Chapter 11), that the internal product
of B and C exists.

14. Let B be a Boolean subalgebra of A, and r an element of A. Prove that
the subalgebra of A generated by B∪{r} is just the internal product of
the relativizations B(r) and B(r ′ ), formed in A. (See Exercise 12.19.)

15. Formulate and prove a version of Exercise 9 for internal products.

16. Prove that the set of atoms in the internal product of two Boolean
algebras B and C is the union of the set of atoms in B with the set of
atoms in C. Conclude that the internal product is atomic if and only
if each of the two factors is atomic. Draw a similar conclusion for the
direct product of B and C, and describe the set of atoms in this direct
product.

17. Prove that the internal product of two Boolean algebras is complete if
and only if each of the factor algebras is complete. Conclude that the
same is true of the direct product of the two algebras.

18. If the supremum of the set of all atoms in a Boolean algebra exists,
prove that the algebra can be decomposed into the internal product of
an atomic Boolean algebra and an atomless Boolean algebra.

19. Prove that two countably infinite Boolean algebras with finitely many
atoms are isomorphic if and only if they have the same number of atoms.
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20. Are two countably infinite Boolean algebras with infinitely many atoms
necessarily isomorphic?

21. Show, for every finite Boolean algebra A, that A × 2 and A are not
isomorphic.

22. Find an infinite Boolean algebra A such that A×2 and A are isomorphic.
Can A be countable?

23. Find an infinite Boolean algebra A such that A × 2 and A are not
isomorphic. Can A be countable?

24. Verify that the product of a family of Boolean algebras is a Boolean
algebra.

25. Suppose D is the internal product of a family {Ai} of Boolean algebras.
Show that the set of atoms in D is just the union of the sets of atoms
in the individual factors Ai. Conclude that D is atomic if and only if
each factor is atomic. Draw a similar conclusion for the direct product
of the family {Ai}, and describe the set of atoms in this direct product.
(This generalizes Exericise 16.)

26. Let {Ai} be a family of Boolean algebras, and A its product. For each
element q in A and each index i, write qi for the ith coordinate of q.
Prove that an element p in A is the supremum of a set E in A if and
only if pi is the supremum of the set

Ei = {qi : q ∈ E}

in Ai for each i.

27. Prove that the product of a family of Boolean algebras is complete if and
only if each of the factors is complete. (This generalizes Exercise 17.)

28. Consider two Boolean products

A =
∏

i

Ai and B =
∏

i

Bi

with the same index set, and suppose fi is a Boolean homomorphism
from Bi into Ai for each i. Define a mapping f from B into A as follows:
if u is in A, and p in B, then

f(p) = u if and only if ui = fi(pi)
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for each i. Prove that f is a Boolean homomorphism. Prove further
that f is one-to-one, or onto, if and only if every homomorphism fi is
one-to-one, or onto. Conclude that if Bi is isomorphic to Ai for each i,
then B is isomorphic to A.

29. Suppose each algebra Ai in a family of Boolean algebras is a field of sub-
sets of a set Xi. Suppose further that the sets Xi are mutually disjoint,
and X =

⋃
i Xi. Prove that the product A =

∏
i Ai can be embedded

into the field P(X) via the function that maps each element P in the
product to the union

⋃
i Pi.

30. Suppose D is the internal product, and A the (direct) product, of a
family {Ai} of Boolean algebras. Prove that the mapping f from A
to D defined by

f(p) =
∨

i

pi

for each p in A is an isomorphism from A to D.

31. Prove that an internal product of a family of Boolean algebras exists if
and only if the algebras in the family are mutually disjoint, except for
a common zero element.

32. Prove that two internal products of a family of Boolean algebras are
isomorphic via a mapping that is the identity on each of the factors.

33. Formulate and prove the analogue of Exercise 28 for internal products.

34. Prove that if A =
∏

i Ai is a Boolean product, then for each index i,
the projection from A to Ai is an epimorphism.

35. Show that a Boolean product A =
∏

i Ai and the associated family {fi}
of projections satisfy the lifting condition. In other words, if D is an
arbitrary Boolean algebra and if gi a homomorphism from D into Ai

for each i, then there is a unique homomorphism g from D to A such
that fi ◦ g = gi for each i.

36. Prove that the lifting condition characterizes the product A =
∏

i Ai

and the family {fi} of projections, up to isomorphic copies.

37. A product A =
∏

i Ai includes two subalgebras, each of which might
deserve some consideration as a kind of weak product of the family {Ai}.
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One subalgebra — call it B — consists of those elements p for which pi

is in 2 for all but a finite set of indices i; the other, smaller, subalgebra
— call it C — consists of those elements p for which either pi = 0 for
all but a finite set of indices i or else pi = 1 for all but a finite set of
indices i. Prove that B and C are subalgebras of A. Give an example
for which all three algebras are distinct.

38. If D is the internal product of an infinite family {Ai} of Boolean al-
gebras, what subalgebra of D does the union E =

⋃
i Ai of the factors

generate?

39. Exercise 37 can be generalized in several different ways when the factor
algebras are all equal, that is, when A = DI for some Boolean algebra D
and some set I. One subalgebra (of A) — call it B — consists of those
elements p that have a finite range, that is, the set {pi : i ∈ I} is
finite. Another, smaller, subalgebra — call it C — consists of those
elements p that are constant on a cofinite subset of I, that is, there
exists an element u in D such that pi = u for all but a finite set
of indices i. Prove that B and C are subalgebras of A. Give other
generalizations of Exercise 37 when the factor algebras are all equal.

40. Prove that if A is the product of two Boolean algebras B and C, then
the canonical extension of A is the product of the canonical extensions
of B and C.

41. Extend Exercise 40 to products of finite families of Boolean algebras.

42. Given an example to show that the result in Exercise 40 cannot be
extended to infinite families of Boolean algebras.

43. Prove that if A is the product of an arbitrary family {Ai} of Boolean
algebras, then the completion of A is the product of the completions of
the factor algebras Ai. (Contrast this result with those in Exercises 40
and 42.)



Chapter 27

Isomorphisms of Factors

To what extent do the laws of multiplication and exponentiation, familiar
from the arithmetic of positive integers, carry over to products and powers
of Boolean algebras? Many interesting problems arise from this question.
For instance, if two positive integers divide one another, they must be equal.
Does a form of this law hold for Boolean algebras? If, in other words, two
Boolean algebras A and D are factors of one another, may it be concluded
that A and D are isomorphic? The two algebras are factors of one another
provided that

D = A × B and A = D × C

for some Boolean algebras B and C. (For typographical convenience we shall
use the sign of equality in this and related contexts to denote isomorphism.)
The question may therefore be reformulated in the following equivalent way:
does A = A × B × C imply A = A × B? What if we restrict the ques-
tion by assuming B = C? What if we restrict the question still further by
assuming B = C = 2?

For grammatical convenience, these four problems may be expressed as
statements rather than questions; the task is then to decide which statements
are true and which ones false.

If D = A × B and A = D × C, then A = D.(1)
If A = A × B × C, then A = A × B.(2)
If A = A × B × B, then A = A × B.(3)
If A = A × 2 × 2, then A = A × 2.(4)

S. Givant, P. Halmos, Introduction to Boolean Algebras, 243
Undergraduate Texts in Mathematics, DOI: 10.1007/978-0-387-68436-9 27,
c© Springer Science+Business Media, LLC 2009
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As we have just seen, (1) and (2) are equivalent, (2) implies (3), and (3)
implies (4)). It was Tarski who first raised the problem of determining which
of these assertions are true; he proved in [76]and [77] that (1) — and therefore
each of the four assertions — holds when the algebras in question possess
a certain degree of completeness. In general, however, the answers to the
questions are negative, for Hanf gave an example in [24] to show that (4) is
false. The main purpose of this chapter is to present Tarski’s theorem and
Hanf’s example.

To prove (1), it must be assumed that the algebras A and D are countably
complete, or σ-complete, in the sense that the supremum and infimum of
every countably infinite subset of A exist. We shall have much more to say
about such algebras in Chapter 29. The proof of the next lemma (due to
Sikorski [56] and Tarski [76], [77]) contains the heart of the argument; it is a
Boolean-algebraic analogue of the proof of the Schröder–Bernstein theorem
from set theory (see Appendix A, p. 463, and Exercises 1–4).

Lemma 1. If a σ-complete Boolean algebra A is isomorphic to one of its rela-
tivizations A(p), then it is isomorphic to every relativization A(q) with q ≥ p.

Proof. Let f be an isomorphism from A to one of its relativizations A(p).
Notice that f maps A into itself. Given an arbitrary element q ≥ p, it
therefore makes sense to define two sequences {pn} and {qn} by induction
on n as follows:

p1 = 1 and pn+1 = f(pn),
q1 = q and qn+1 = f(qn).

In other words, pn+1 and qn+1 are the result of applying n times the map-
ping f to the elements 1 and q respectively. The definitions of these two
sequences, and the fact that f maps the unit of A to the unit of A(p), imply
that

p2 = f(p1) = f(1) = p and p ≤ q = q1 ≤ 1 = p1.

In particular,
p2 ≤ q1 ≤ p1.

Apply the isomorphism f to each of these elements to obtain

f(p2) ≤ f(q1) ≤ f(p1),

or, in other words,
p3 ≤ q2 ≤ p2.
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Iterate this process repeatedly to arrive at

pn+1 ≤ qn ≤ pn.

The inequalities combine to give

1 = p1 ≥ q1 ≥ p2 ≥ q2 ≥ p3 ≥ q3 ≥ · · · .

The infimum r of this sequence exists, by the assumption of σ-completeness,
and the preceding inequalities imply that

r =
∧

n

pn =
∧

n

qn.

The elements

p1 ∧ q ′
1, q1 ∧ p ′

2, p2 ∧ q ′
2, q2 ∧ p ′

3, . . . ,

together with r, form a countable partition of the unit 1 (see the diagram
and see also Exercise 8.27), and this partition has the supremum property, by
the assumption of σ-completeness. Consequently, A is the internal product
of the corresponding sequence of relativizations, by Lemma 26.2. In more
detail, if B1 and C are the internal products of the families

{A(pn ∧ q ′
n) : n = 1, 2, 3, . . . } and {A(qn ∧ p ′

n+1) : n = 1, 2, 3, . . . },

respectively, then
A = B1 ⊗ C ⊗ A(r).

Similarly, the elements

q1 ∧ p ′
2, p2 ∧ q ′

2, q2 ∧ p ′
3, p3 ∧ q ′

3, . . . ,

together with r, form a countable partition of q with the supremum property
(see the diagram). Consequently, A(q) is the internal product of the corre-
sponding relativizations. In other words, if B2 is the internal product of the
family

{A(pn ∧ q ′
n) : n = 2, 3, 4, . . . },

then
A(q) = B2 ⊗ C ⊗ A(r).

The isomorphism f maps the element pn ∧ q ′
n to the element pn+1 ∧ q ′

n+1,
so it maps the relativization A(pn ∧ q ′

n) isomorphically to the relativization
A(pn+1 ∧ q ′

n+1). It therefore maps the internal product B1 isomorphically to
the internal product B2. The identity function g on A obviously maps the
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internal product C ⊗ A(r) isomorphically to itself. The function h defined
on A by

h(s ∨ t) = f(s) ∨ g(t),
for every s in B1 and every t in C ⊗A(r), is the desired isomorphism from A
onto A(q) (see Exercises 26.9 and 26.15).

Tarski’s theorem follows readily from the lemma.

Theorem 25. If two σ-complete Boolean algebras are factors of one another,
then they are isomorphic.

Proof. Suppose two σ-complete Boolean algebras A and D are factors of one
another. Since A is a factor of D, there must be a Boolean algebra B such
that

D = A × B.
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The remarks in Chapter 26, in particular Corollary 26.1, imply the existence
of an element p0 in D such that A is isomorphic to D(p0) (and B to D(p ′

0)).
Similarly, the assumption that D is a factor of A implies the existence of an
element q in A such that D is isomorphic to A(q).

Let f be an isomorphism from A to D(p0), and g an isomorphism from D
to A(q), and write p = g(p0). The appropriate restriction of g maps D(p0)
isomorphically to A(p) (Exercise 12.27), and therefore the composition g ◦ f
maps A isomorphically to A(p), since

g(f(1)) = g(p0) = p.

The function g maps the unit of D to the element q, and therefore maps p0

to an element below q. In other words, p ≤ q. Invoke Lemma 1 to obtain
an isomorphism h from A to A(q). The composition g−1 ◦ h is the desired
isomorphism from A to D.

We now present Hanf’s example of two Boolean algebras that are factors
of one another, but not isomorphic. The exposition is strongly influenced
by several inspiring conversations with Dana Scott. Let {an} and {bn} be
two countable sets, disjoint from each other, and let X be their union. A
bijection θ of X is defined by writing

θ(an) = bn and θ(bn) = an,

for n = 1, 2, 3, . . . . A subset P of X is invariant under θ if θ(P ) = P . In other
words, the set P is invariant provided it contains an whenever it contains bn,
and it contains bn whenever it contains an. Every set I of positive integers
gives rise to, or induces, a uniquely determined invariant set, namely the set

{an : n ∈ I} ∪ {bn : n ∈ I}
of elements in X with indices in I. Conversely, every invariant set P is
induced by a uniquely determined set of positive integers, namely the set of
indices of elements that occur in P .

The class of all those subsets of X that are invariant under θ is a complete
field of subsets of X. The field is atomic, and its atoms are the couples
(unordered pairs) {an, bn} for n = 1, 2, 3, . . . .

Every subset R of X can obviously be written in a unique way as a union

R = P ∪ Q

of an invariant set P and a set Q that is disjoint from P and that includes
no non-empty invariant subset. (In other words, for no positive integer n
are both an and bn in Q.) Call P the invariant part, and Q the variant
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part, of R. A subset of X is said to be almost invariant if its variant part is
finite, or, equivalently, if it differs from an invariant set by a finite set. Every
triple (I, J, K) of sets of positive integers, with J and K finite and all three
sets mutually disjoint, gives rise to an almost invariant set, namely

R = {an : n ∈ I ∪ J} ∪ {bn : n ∈ I ∪ K};

moreover, every almost invariant set can be written in this form for a unique
triple (I, J, K) satisfying the given conditions. The invariant part of R is the
invariant set

P = {an : n ∈ I} ∪ {bn : n ∈ I}

induced by I, and the variant part of R is the set

Q = {an : n ∈ J} ∪ {bn : n ∈ K}.

The class A of all almost invariant sets is a field. This field is atomic,
and its atoms are the singletons of X, that is, the singletons {an} and {bn}.
Note that every infinite almost invariant set (that is, every infinite set in A)
includes an infinite invariant subset.

Lemma 2. The relativization of A to any infinite invariant set is isomorphic
to A.

Proof. Suppose Y is the invariant set induced by an infinite set I of positive
integers. Let ψ be any bijection from I to the set of all positive integers, and
let φ be the corresponding bijection from Y to X:

φ(an) = aψ(n) and φ(bn) = bψ(n)

for n in I. The bijection φ induces an isomorphism f from the field P(X) to
the field P(Y ) that is defined by

f(P ) = φ−1(P )

for each subset P of X (see Chapter 12, p. 94). The isomorphism clearly
maps invariant subsets of X to invariant subsets of Y , and finite subsets
of X to finite sets of Y . It therefore maps almost invariant subsets of X to
almost invariant subsets of Y . In other words, it maps A to the relativization
of A to Y .

Corollary 1. The algebra A is isomorphic to A×A, and also to A× 2k for
every positive even integer k.
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Proof. Consider the invariant set Y induced by the set of positive even in-
tegers. Its complement Y ′ in X is the invariant set induced by the set of
positive odd integers. The relativization of A to Y and the relativization
of A to Y ′ — call them B and C respectively — are both isomorphic to A,
by the preceding lemma, so that

B × C = A × A

(see Exercise 26.9). On the other hand, the algebra A is the internal product
of the two relativizations, by Lemma 26.1, so that

A = B × C.

It follows that A is isomorphic to A × A.
The proof of the second assertion is similar. Suppose k = 2n, where n is

a positive integer. Take Y to be the invariant set induced by the set of inte-
gers greater than n. The complement Y ′ is an invariant set with exactly k
elements. Every subset of Y ′ is finite, and therefore almost invariant. Con-
sequently, the relativization of A to Y ′ — call it C — coincides with the field
of all subsets of Y ′. It follows that C is isomorphic to 2k (see Chapter 3).
On the other hand, the relativization of A to Y — call it B — is isomorphic
to A, by the preceding lemma. Therefore,

B × C = A × 2k.

Since A is the internal product of the two relativizations, by Lemma 26.1,
we may conclude that A is isomorphic to A × 2k.

The corollary shows that the Boolean algebras A and A × 2 × 2 are
isomorphic. It remains to prove that A is not isomorphic to A × 2. The
algebra A × 2 can be described, up to isomorphism, as follows. Let c be a
new point not in X. The Boolean algebra 2 is isomorphic to the field P({c}),
and therefore A × 2 is isomorphic to the internal product of A and P({c}).
This internal product consists of two classes of sets: the sets in A and the
sets in A with the element c adjoined. We may therefore think of A× 2 itself
as consisting of the sets P and the sets P ∪ {c}, where P ranges over the
almost invariant subsets of X. Under this conception, the atoms of A×2 are
the singletons of the elements in the set X ∪{c}. For notational convenience,
we identify these singletons with the elements themselves, that is, we treat
an, bn, and c as the atoms of A × 2.

The algebra A×2 has an automorphism of period two that leaves exactly
one atom fixed. In other words, there is an automorphism g of A × 2 such
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that g ◦ g is the identity automorphism, and such that exactly one atom
of A × 2 is mapped to itself by g. Indeed, just extend θ to a bijection of the
set X ∪ {c} by requiring that the element c be mapped to itself, and take g
to be an appropriate restriction of the automorphism of P(X ∪ {c}) induced
by θ (see Chapter 12, p. 94). On the atoms of A × 2, we have

g(an) = θ(an) = bn, g(bn) = θ(bn) = an, g(c) = c,

and on arbitrary sets P in A × 2 we have

g(P ) = {g(p) : p ∈ P} = {θ(p) : p ∈ P}.

Notice that g ◦ g is the identity mapping on X ∪ {c}:

g(g(an)) = g(bn) = an, g(g(bn)) = g(an) = bn, g(g(c)) = g(c) = c.

Consequently, g ◦ g is the identity on all of A × 2:

g(g(P )) = {g(g(p)) : p ∈ P} = {p : p ∈ P} = P.

Also, the only atom left fixed by g is c.

n1 n2 n6n5n4n3

n1 n5n4n3n2 n6

. . .

. . .

x x x xxx

yy y y yy

To prove that A is not isomorphic to A× 2, we shall show that A has no
such automorphism. Assume that, on the contrary, A has an automorphism g
with period two that leaves exactly one atom fixed. Some terminology will
be helpful: call the atoms an and bn associates of one another. The atom
left fixed by g is either an1 or bn1 for some index n1; denote it by xn1 . The
associate of xn1 — call it yn1 — cannot be mapped to itself, since g fixes
no atom different from xn1 , and yn1 cannot be mapped to xn1 , since xn1

is mapped to itself. Consequently, yn1 must be mapped to an atom with
an index n2 different from n1 — either an2 or bn2 . Call this atom xn2 . Its
associate yn2 cannot be mapped to any of xn1 , yn1 , and xn2 , and it cannot be
mapped to itself, so it must be mapped to an atom with an index n3 different
from n1 and n2 — either an3 or bn3 . Call this atom xn3 . By applying this
argument repeatedly, we obtain two infinite sequences {xnk

} and {ynk
} with

two properties. First, the atoms xnk
and ynk

are associates, that is,
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{xnk
, ynk

} = {ank
, bnk

},

and the indices nk are mutually distinct for distinct k. Second,

g(xn1) = xn1 , g(ynk
) = xnk+1

, g(xnk+1
) = ynk

for k = 1, 2, 3, . . . (see the diagram above). Let I be the set of indices nk

such that k has remainder 2 when divided by 3,

I = {n2, n5, n8, n11, . . . },

and let P be the invariant set induced by I,

P = {an2 , bn2 , an5 , bn5 , an8 , bn8 , . . . } = {xn2 , yn2 , xn5 , yn5 , xn8 , yn8 , . . . }.

The set P , being invariant, is in A. Its image under the automorphism g is
the set

Q = {yn1 , xn3 , yn4 , xn6 , yn7 , xn9 , . . . },
and this set is clearly not in A; no two elements of Q have the same index,
so Q is an infinite set with no invariant subset. Conclusion: A cannot be
closed under g, in contradiction to the assumption that g is an automorphism
of A. This contradiction proves that the assumption of the existence of g is
untenable.

A concrete illustration of the above construction may serve to elucidate
the argument. Suppose the atom xnk

is always ank
. Then ynk

is always bnk
.

The argument constructs the infinite sequence {ank
} to have the properties

g(an1) = an1 , g(bnk
) = ank+1

, g(ank+1
) = bnk

for k = 1, 2, 3, . . . (see the diagram below).

n1

n1

n2

n5

n6

n4

n5

n3

n4

n2

n3

n6

. . .

. . .

a a a aaa

bb b b bb

The image of the invariant set

P = {an2 , bn2 , an5 , bn5 , an8 , bn8 , . . . }

under g is the set
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Q = {bn1 , an3 , bn4 , an6 , bn7 , an9 , . . . }.

The set Q cannot be in A, since no two of its elements have the same index.
Hanf’s counterexample to (4) is a large algebra (it has the power of the

continuum); is there a countable one? The answer is negative, for Vaught
proved that (4) holds whenever A is countable (see [24] and Exercise 30).
Tarski asked whether there are countable counterexamples to (3). Such a
counterexample was eventually devised by Hanf (see Chapter 45).

The square root law for positive integers says that squares of distinct
positive integers are distinct. Is the same true of Boolean algebras? In other
words, does A2 = B2 imply A = B? Hanf’s example was used by Tarski to
show that this question (also due to Tarski) has a negative answer (see [24]
and Exercise 21). Is the implication true of countable Boolean algebras?
Again, the answer is negative (see Chapter 45).

Here is a final example of a well-known problem regarding powers of
Boolean algebras. It is not difficult to prove that

P(X)n = P(X)

when X is an infinite set and n an arbitrary positive integer (see Exercise 14).
Does A3 = A imply A2 = A for arbitrary Boolean algebras A? What if A is
countable? The answer in both cases is no. An uncountable counterexam-
ple can be constructed using Hanf’s counterexample (see Exercise 22). The
question for countable algebras A was known as Tarski’s cube problem, and
was open for many years. It was finally solved negatively by Ketonen [34],
using a difficult structure theorem for countable Boolean algebras.

Exercises

1. Prove the following analogue, for Boolean algebras, of the Schröder–
Bernstein theorem (Appendix A, p. 463): if each of two σ-complete
Boolean algebras is isomorphic to a relativization of the other, then
the two algebras are themselves isomorphic. (This theorem is due to
Sikorski [56] and Tarski [77].)

2. Show that the analogue of the Schröder–Bernstein theorem for Boolean
algebras (Exercise 1) implies Theorem 25.

3. Show that, conversely, Theorem 25 implies the analogue of the Schrö-
der–Bernstein theorem for Boolean algebras (Exercise 1).
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4. Derive the Schröder–Bernstein theorem for sets (Appendix A, p. 463)
from Theorem 25.

5. Show that the associative law

A × (B × C) = (A × B) × C

holds for products. (Interpret the equal sign in this and related contexts
below to mean isomorphism.)

6. Verify the commutative law

A × B = B × A

for products.

7. Let X and Y be sets with the same number of elements, and B an
arbitrary Boolean algebra. Prove that BX = BY .

8. The law for multiplying exponential terms with the same base, in the
context of Boolean algebras, asserts that if X and Y are disjoint sets,
and if B is an arbitrary Boolean algebra, then

BX × BY = BX∪Y .

Does this law hold in general?

9. The law for raising an exponential term to a power, in the context of
Boolean algebras, asserts that if X and Y are arbitrary sets, and if B
is an arbitrary Boolean algebra, then

(BX)Y = BX×Y ,

where X × Y denotes the ordinary Cartesian product of sets,

X × Y = {(x, y) : x ∈ X and y ∈ Y }.

Does this law hold in general?

10. The law for multiplying exponential terms with the same exponent, in
the context of Boolean algebras, asserts that if X is an arbitrary set,
and if B and C are arbitrary Boolean algebras, then

BX × CX = (B × C)X .

Does this law hold in general?
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11. The cancellation law for products of Boolean algebras asserts that

A × B = A × C implies B = C.

Does this law hold in general?

12. Is the cancellation law for products (Exercise 11) true when the algebras
are all countable?

13. Is the cancellation law for products (Exercise 11) true when the algebras
are all finite?

14. Prove that if X is an infinite set, then

P(X)n = P(X)

for every positive integer n.

15. Does A = A × B × C imply A = A × B when A is finite?

16. Prove that the class of invariant sets (under the bijection θ defined in
the chapter) is a complete field of sets.

17. Prove that the class of almost invariant sets (defined in the chapter) is
a field of sets.

18. Prove that the field of almost invariant sets is not a complete Boolean
algebra.

19. Prove that the mapping g defined in the chapter is an automorphism
of A × 2.

20. For a positive integer n, the nth root law for Boolean algebras asserts
that

An = Bn implies A = B.

Does this law hold for finite Boolean algebras? Does it hold for σ-
complete Boolean algebras? (The answer to this last question is due to
Tarski [76], [77].)

21. Prove that the square root law (Exercise 20) fails for infinite Boolean
algebras. In other words, find two Boolean algebras A and B such that

A × A = B × B,

but A �= B. (This result is due to Tarski; see [24].)
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22. Find a Boolean algebra B such that B = B × B × B, but B �= B × B.

23. (Harder.) Find a Boolean algebra A such that A = A × 2 × 2 × 2,
but A �= A×2 and A �= A×2×2. (This example and its generalizations
— see Exercise 25 below — are due to Hanf [24].)

24. Find Boolean algebras A1 and A2 such that A1×A2 = A1×A2×2 but
A1 �= A1 × 2 and A2 �= A2 × 2.

25. (Harder.) Find a Boolean algebra A such that A = A × 2 × 2 × 2 × 2,
but A �= A × 2, and A �= A × 2 × 2, and A �= A × 2 × 2 × 2.

26. Prove that if A × 2 = A, then A must have infinitely many atoms.

27. Formulate and prove a generalization of Exercise 26.

28. (Harder.) Prove that if A is a countable Boolean algebra with infinitely
many atoms, then A = A×2. (This theorem is due to Vaught; see [24].)

29. Prove that if A is a countable Boolean algebra with infinitely many
atoms, and if B is a finite Boolean algebra, then A = A × B. (This
theorem is due to Vaught; see [24].)

30. Prove that if A is a countable Boolean algebra, and if B and C are
finite Boolean algebras such that A = A × B × C, then A = A × B.
(This theorem is due to Vaught; see [24].)



Chapter 28

Free Algebras

The elements of every subset of every Boolean algebra satisfy various alge-
braic conditions (such as the distributive laws, for example) just by virtue of
belonging to the same Boolean algebra. If the elements of some particular
set E satisfy no conditions except these necessary universal ones, it is natural
to describe E by some such word as “free.” A crude but suggestive way to
express the fact that the elements of E satisfy no special conditions is to say
that the elements of E can be transferred to an arbitrary Boolean algebra in
a completely arbitrary way with no danger of encountering a contradiction.
In what follows we shall make these heuristic considerations precise. We shall
restrict attention to sets that generate the entire algebra; from the practical
point of view the loss of generality involved in doing so is negligible.

A set E of generators of a Boolean algebra B is called free if every mapping
from E to an arbitrary Boolean algebra A can be extended to an A-valued
homomorphism on B. In more detail: E is free in case for every Boolean
algebra A and for every mapping g from E into A there exists an A-valued
homomorphism f on B such that f(p) = g(p) for every p in E. Equivalent
expressions: “E freely generates B”, or even “B is free on E”. A Boolean
algebra is called free if it has a free set of generators.

The definition is conveniently summarized by the subjoined diagram. The
diagram is to be interpreted as follows. The arrow h is the identity mapping
from E to B, expressing the fact that E is a subset of B. The arrow g is
an arbitrary mapping from E to an arbitrary algebra A. The arrow f is, of
course, the homomorphic extension required by the definition; it is dotted
to indicate that it comes last, as a construction based on h and g. It is
understood that the diagram is “commutative” in the sense that

S. Givant, P. Halmos, Introduction to Boolean Algebras, 256
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E B

A

fg

h

(f ◦ h)(p) = g(p)

for every p in E.
The arrow diagram does not express the fact that E generates B. The

most useful way in which that fact affects the mappings under consideration
is to guarantee uniqueness: there can be only one A-valued homomorphism f
on B that agrees with g on E, by Lemma 13.2. One way of expressing this
latter fact is to say that f is uniquely determined by g and h.

There is another and even more important uniqueness assertion that can
be made here. If B1 and B2 are Boolean algebras, free on subsets E1 and E2,
respectively, and if E1 and E2 have the same number of elements, then B1

and B2 are isomorphic, via an isomorphism that interchanges E1 and E2.
This says, roughly speaking, that B is uniquely determined (to within iso-
morphism) by the number of elements in E. It is therefore legitimate to speak
of the free Boolean algebra on m generators, for any cardinal number m.

The proof is summarized by the following diagrams. Here g1 is a bijec-

12

2

1 1 1 1

2 2 1

1 1

1212 12

E

E

E

B

B

B

B

f f f fg gg g

h

h

h

tion from E1 to E2, and g2 is its inverse. The arrows h1 and h2 are the
identity mappings from E1 into B1, and from E2 into B2, respectively. The
assumption of free generation guarantees the existence of a homomorphism f1

from B1 into B2 that extends g1, and also the existence of a homomorphism f2
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from B2 into B1 that extends g2. The composition f2◦f1 is an endomorphism
of B1 (a homomorphism of B1 into itself) that extends g2 ◦g1. Since g2 ◦g1 is
the identity mapping on E1, the identity automorphism of B1 is also an endo-
morphism that extends g2 ◦ g1. The assumption that E1 freely generates B1

means, in particular, that g2 ◦g1 has only one extension to an endomorphism
of B1. Conclusion: f2 ◦ f1 is the identity automorphism on B1. A similar
argument shows that the composition f1 ◦ f2 is the identity automorphism
on B2. It follows that f1 is a bijection mapping B1 isomorphically to B2,
and f2 is its inverse (see Exercise 12.32 or the section on bijections in Ap-
pendix A).

It is quite useful to have an intrinsic characterization of a set of free
generators, one that is formulated in terms of the elements of the set alone,
and not in terms of homomorphisms that extend mappings on the set. The
next lemma gives such a characterization. The proof of the lemma is based
on the homomorphism extension criterion formulated in Theorem 4 (p. 107).
For each i in B write

p(i, j) =

{
i if j = 1,

i ′ if j = 0.

Lemma 1. A necessary and sufficient condition for a set E of generators of
a Boolean algebra B to be free is that whenever a is a 2-valued function on
some finite subset F of E, then

∧

i∈F

p(i, a(i)) �= 0.

Proof. The lemma holds vacuously when B is a degenerate Boolean algebra:
no set of generators freely generates B, and no set of generators satisfies
the condition of the lemma. It may therefore be assumed that B is non-
degenerate.

The homomorphism extension criterion says that a function g from E to
a Boolean algebra A can be extended to a homomorphism from B to A if
and only if

(1)
∧

i∈F

p(i, a(i)) = 0 implies
∧

i∈F

p(g(i), a(i)) = 0

for every finite subset F of E and every 2-valued function a on F . If the
condition of the lemma is satisfied, then the antecedent of (1) is never true,
independently of the choice of a, and therefore the entire implication in (1) is
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always true, independently of the choice of a and g. It follows from Theorem 4
that every function g from E to a Boolean algebra A can be extended to a
homomorphism from B into A, so that E freely generates B.

Assume now that E freely generates B. To show that the condition
formulated in the lemma holds, consider an arbitrary 2-valued function a on
a finite subset F of E. Let g be any 2-valued function on E that agrees
with a on F ; for concreteness, g may be taken to be the function defined by

g(i) =

{
a(i) if i ∈ F ,

0 if i ∈ E − F .

A direct computation shows that if i is in F , then

p(g(i), a(i)) = 1.

In more detail, if a(i) = 1, then

p(g(i), a(i)) = p(g(i), 1) = g(i) = a(i) = 1,

and if a(i) = 0, then

p(g(i), a(i)) = p(g(i), 0) = g(i) ′ = a(i) ′ = 0 ′ = 1.

Consequently,

(2)
∧

i∈F

p(g(i), a(i)) = 1.

The assumption that E freely generates B implies that g can be extended to
a 2-valued homomorphism on B. The implication in (1) must therefore be
satisfied for g, by Theorem 4. The consequent of the implication is different
from zero, by (2), so the antecedent must be different from zero, as desired.

There is one big gap in what we have seen so far of the theory of freely
generated algebras. We may know all about uniqueness, but we know nothing
about existence. The main thing to be known here is that for each cardinal
number there actually exists a Boolean algebra that is free on a set having
exactly that many elements. Let I be an arbitrary set of a given cardinality,
and write S = 2I . The elements of S are functions from I into 2, that is,
they are functions x with arguments i in I and values x(i) = xi that are
either 0 or 1. Consider the (direct) power 2S of the two-element Boolean
algebra. With each index i in I, there is a naturally associated projection,
the function pi from S into 2 defined by
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pi(x) = xi

for each x in S. The existence theorem for free Boolean algebras asserts that
the set of these projections freely generates a subalgebra of 2S .

Theorem 26. For each set I, the Boolean subalgebra of 22I
generated by the

set of projections E = {pi : i ∈ I} is freely generated by E.

Proof. Let B be the Boolean subalgebra of 22I
generated by the set E. To

prove that E freely generates B, it suffices to show that the condition formu-
lated in Lemma 1 is satisfied. In verifying the condition, it simplifies notation
to consider 2-valued functions on finite subsets of I instead of on finite subsets
of E. (A similar remark applies in other, related contexts below.)

Suppose a is a 2-valued function on a finite subset F of I. Let x be any
element in 2I that extends a (for instance, take xi = 0 when i is in I − F ).
A straightforward computation shows that

p(pi, a(i))(x) = 1

for each i in F . Indeed, if a(i) = 1, then

p(pi, a(i))(x) = p(pi, 1)(x) = pi(x) = x(i) = a(i) = 1,

and if a(i) = 0, then

p(pi, a(i))(x) = p(pi, 0)(x) = p ′
i(x) = pi(x) ′ = x(i) ′ = a(i) ′ = 0 ′ = 1.

Write
pa =

∧

i∈F

p(pi, a(i)).

The preceding argument shows that

pa(x) =
∧

i∈F

p(pi, a(i))(x) = 1;

in particular, pa is not the zero element of B (the function on 2I with constant
value 0). Consequently, the set E satisfies the hypotheses of Lemma 1, so
the subalgebra generated by E is in fact freely generated by E.

A description of the finitely generated free algebras can be obtained rather
easily from the preceding existence theorem. Assume, in accordance with von
Neumann’s definition of the natural numbers, that each natural number m
coincides with the set of its predecessors, m = {0, 1, . . . , m − 1} (see the
section on natural and ordinal numbers in Appendix A).
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Corollary 1. For every natural number m, the Boolean algebra 22m
is free

on m generators.

Proof. Write S = 2m and A = 2S . The set

E = {pi : i ∈ m}
of the projections pi from S to 2 has cardinality m and freely generates
a subalgebra of A, by Theorem 26. It must be shown that the generated
subalgebra coincides with A.

For each a in S, write

pa =
∧

i∈m

p(pi, a(i)),

where p(pi, a(i)) is either pi or p ′
i, according as a(i) is 1 or 0. (This infimum

exists because m is finite.) The element pa is obviously generated by E,
because it is a (finite) meet of elements and complements of elements from E.
An easy computation shows that

(1) pa(x) = 1 if and only if x = a,

for each x in S. Indeed, pa(x) is the meet (in the Boolean algebra 2) of the
elements p(pi, a(i))(x), and is therefore 1 just in case p(pi, a(i))(x) = 1 for
each i in m. The definition of p implies that

p(pi, a(i))(x) = pi(x) = xi or p(pi, a(i))(x) = p ′
i(x) = x ′

i,

according as a(i) is 1 or 0. Consequently, for pa(x) to be 1, we must have
xi = 1 when a(i) = 1, and xi = 0 when a(i) = 0. This proves (1).

For every subset X of S, put

pX =
∨

a∈X

pa.

(This supremum exists because X is finite.) Again, it is clear that pX is
generated by the elements pa, and therefore by the set E. It follows from (1)
that for each x in S,

pX(x) = 1 if and only if x ∈ X.

An arbitrary element q in A is a 2-valued function on S, and is therefore
completely determined by the set of those x in S for which q(x) = 1. If that
set is X, then

q(x) = 1 if and only if x ∈ X,

if and only if pX(x) = 1,
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so that q = pX . Consequently, every element q in A coincides with pX for
some subset X of S, and therefore q is generated by E, as was to be shown.

It is unreasonable to expect the corollary to be true for infinite cardinal
numbers. When m is infinite, the free algebra on m generators has cardinal-
ity m, while 22m

has cardinality greater than m.
A combinatorial proof of the existence of free Boolean algebras is also

available. One of its main virtues is that it shows how Boolean algebras
(and, in particular, free Boolean algebras) arise in considerations of logic.
We shall sketch a bare outline of this proof. (The construction dates back to
Huntington [30] and Tarski [72].)

A general theory of the usual sentential connectives — conjunction (and),
disjunction (or), negation (not), implication (if then), etc. — should be ap-
plicable to every conceivable collection of sentences. This implies that its
basic constituents (generators) should be as unrestricted (free) as possible.
Suppose now that we want to construct a theory equipped to deal with, say,
at least m sentences simultaneously, where m is a cardinal number. The
thing to do then is to take a set E of cardinality m — the set of propo-
sitional variables — and to consider all the formal expressions obtained by
combining the elements of E and the sentential connectives in an intelligent
manner. Ultimately the elements of E are to be replaced (or, at any rate
replaceable) by sentences. All this can be done, and, incidentally, it is im-
portant that in the doing of it the cardinal number m should be allowed
to be infinite. Even if a mathematician or logician wishes to consider only
finite combinations of sentences, it seems both practically and theoretically
undesirable to place a fixed upper bound on the number of sentences that
may be combined. The only way to make one theory elastic enough to deal
with all finite combinations is to provide it with an infinite supply of things
that it may combine.

To achieve the desired end, a logician will usually begin by selecting
enough sentential connectives so that all others are definable in terms of
them; we know, for instance, that ∨ (or) and ′ (not) will do. Next, given the
set E, the logician will proceed to form all finite sequences whose terms are
the selected connectives, or elements of E, or parentheses, put together in
the usual and obvious manner. Precisely speaking, the admissible sequences
consist of the one-term sequences whose term belongs to E; the sequences
obtained by inserting ∨ between two others already admitted and enclosing
the result in parentheses; the sequences obtained by following an already
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admitted sequence by ′ and enclosing the result in parentheses; and no oth-
ers. The reason for the insistence on parentheses is caution. The distinction
between (p ∨ (q ′)) and ((p ∨ q) ′) is obvious, whereas the customary decision
that p ∨ q ′ means the former and not the latter is the result of quite an
arbitrary and frequently unformulated convention. One other word of su-
percaution deserves mention: it must be assumed that neither the selected
connectives nor the parentheses that are used occur as elements of E.

If the sequences so obtained are to form a part of a general theory of
sentences, it is clear that certain identifications will have to be made. The
sequence (p ∨ q) is different from (q ∨ p), but if p and q are sentences, then
“p or q” and “q or p” are, in some sense, the same sentence. The customary
way to specify the identifications that sound logical intuition and practice
demand is first to define a special class of admissible sequences (called tau-
tologies) and then to say that two admissible sequences are to be identified
just in case a certain easily describable combination of them is a tautology.
The procedure is similar to the formation of quotient Boolean algebras: first
we select an ideal and then we say that two elements of the given Boolean
algebra are congruent modulo the selected ideal just in case their Boolean
sum belongs to the ideal.

To define the set of tautologies we first define certain quite natural ab-
breviations, then, using these, we describe some tautologies, and finally we
obtain all tautologies by describing a simple operation that makes new tau-
tologies out of old. The abbreviations are these: if S and T are admissible
sequences, we write S ∧T for ((S ′ )∨ (T (T ′)) ′, we write S ⇒ T for (S ′)∨T ,
and we write S ⇔ T for (S ⇒ T ) ∧ (T ⇒ S). The initial set of tautologies
consists of all the sequences of one of the four forms

((S ∨ S) ⇒ S),
(S ⇒ (S ∨ T )),

((S ∨ T ) ⇒ (T ∨ S)),
((S ⇒ T ) ⇒ ((R ⇒ S) ⇒ (R ⇒ T ))),

where R, S, and T are admissible sequences. (Each sequence of each of these
forms is called an axiom.) The way to make new tautologies out of old is this:
if S is a tautology and if (S ⇒ T ) is a tautology, then T is a tautology. (This
operation is a rule of inference, namely, in classical terms, modus ponens.) A
tautology is, by definition, a sequence that is either an axiom or obtainable
from the axioms by a finite number of applications of modus ponens.

Two sequences S and T are called logically equivalent in case (S ⇔ T ) is
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a tautology.
The structure outlined in this way, that is, the structure consisting of the

set of all admissible sequences, the subset of tautologies, and the relation of
logical equivalence, is known as the propositional calculus. The connection
between the propositional calculus (based, as above, on a set of power m,
say) and the theory of Boolean algebras is this: logical equivalence is an
equivalence relation, the set of equivalence classes has in a natural way the
structure of a Boolean algebra, and, in fact, that Boolean algebra is freely
generated by m generators.

The involved construction of the propositional calculus outlined above
is similar to, but definitely not identical with, a well-known construction of
free groups (via “words” and equivalence classes). That familiar construc-
tion could also be adapted to the construction of free Boolean algebras; the
result would be about equally painful with what we have already seen. It
is unimportant but amusing to know that the cross-fertilization between the
two theories is complete: the “axiom–rule” approach can be adapted to the
construction of free groups.

In a subsequent chapter, we shall see yet another proof of the existence of
free Boolean algebras. It is more economical than the proofs discussed above,
because it is based on some powerful techniques that will be introduced later.
The insights provided by the later proof are different from those provided by
the proofs in this chapter, and are less algebraic in nature.

Infinite free Boolean algebras possess a number of interesting properties.
Here is one example.

Corollary 2. An infinite free Boolean algebra is atomless.

Proof. A finitely generated Boolean algebra must be finite, by Corollary 11.2,
so an infinite free Boolean algebra has an infinite set of free generators. Recall
from the proof of Theorem 26 that if I is an infinite set with m elements,
then the free Boolean algebra with m generators is (up to isomorphic copies)
the subalgebra B of 22I

that is generated by the set of projections

E = {pi : i ∈ I}.

The algebra B is the union of the directed family of subalgebras BF generated
by the finite subsets of projections

EF = {pi : i ∈ F},
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where F ranges over the finite subsets of I (Corollary 11.1). Each algebra BF ,
being finitely generated, is finite and therefore atomic; its atoms are the
elements of the form

pa =
∧

i∈F

p(pi, a(i)),

where a is a function from F into 2; see Theorem 2, p. 81. (The elements pa

are non-zero, by Lemma 1.) To prove the corollary, it suffices to show that
below each atom pa of BF there are two disjoint, non-zero elements in B
(which of course do not belong to BF ); for then pa cannot be an atom in B.
Let i0 be any index in I that is not in F . The function a has two extensions,
say b and c, to functions from F∪{i0} into 2; they are determined by requiring

b(i0) = 1 and c(i0) = 0.

The elements

pb =
∧

i∈F∪{i0}
p(pi, b(i)) and pc =

∧

i∈F∪{i0}
p(pi, c(i)

in B are obviously below pa, since b and c extend a, and they are non-zero
by Lemma 1. They are disjoint because

pb ∧ pc ≤ p(pi0 , b(i0)) ∧ p(pi0 , c(i0)) = p(pi0 , 1) ∧ p(pi0 , 0) = pi0 ∧ p ′
i0 = 0.

One surprising consequence of the preceding corollary and Theorem 10
(p. 134) is that the field of finite unions of left half-closed intervals of rational
numbers is a free Boolean algebra on ℵ0 (free) generators. The reader might
find intriguing the problem of giving an explicit set of free generators for this
algebra. (See Exercise 13.)

The early part of the theory of free Boolean algebras extends with no
profound conceptual change to the class of complete algebras. The defini-
tion reads just as before except that all the Boolean algebras that enter into
it, and all the homomorphisms also, are now required to be complete. The
uniqueness theorems are proved just as before. The situation of the principal
existence theorem, however, is startlingly different. Both Gaifman [17] and
Hales [21] proved that for each cardinal number m there exists a countably
generated complete Boolean algebra with m or more elements. (Generation
is to be interpreted here in the sense appropriate to the class of complete
Boolean algebras: the complete subalgebra generated by a set E is the in-
tersection of all complete subalgebras that include E.) This result implies
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that the class of complete Boolean algebras does not contain a free algebra B
on ℵ0 generators, for then every countably generated algebra in the class,
being a complete homomorphic image of B, would have to have cardinality
at most that of B.

Exercises

1. What is the Boolean algebra freely generated by the empty set?

2. Prove that a generating set of a degenerate Boolean algebra is never
free and never satisfies the condition of Lemma 1.

3. For which finite sets X is the algebra P(X) free? Examine especially
sets X of cardinality 1, 2, 3, and 4.

4. If X is an infinite set, can P(X) be free?

5. Find a set of free generators for the algebra P(X) when X = {0, 1, 2, 3}.
Do the same when the set is X = {0, 1, 2, 3, 4, 5, 6, 7}. Can these results
be generalized?

6. (Harder.) Give a direct proof of the existence theorem for free Boolean
algebras, without using Lemma 1 and the homomorphism extension
criterion (Theorem 4, p. 107).

7. Theorem 26 follows rather easily from Lemma 1, as its proof shows.
Prove that, conversely, Lemma 1 follows rather easily from Theorem 26.

8. If E is a set of free generators of a Boolean algebra, prove that every
subset of E is a set of free generators of the subalgebra it generates.

9. Is every subalgebra of a free Boolean algebra free?

10. Is every infinite subalgebra of an infinite free Boolean algebra free?

11. Prove that every Boolean algebra is isomorphic to a quotient of a free
one.

12. Prove that the following conditions on a subset E of a Boolean alge-
bra B are equivalent: (1) E is a set of generators of B; (2) every 2-valued
mapping on E has at most one extension to a 2-valued homomorphism
on B; (3) every mapping from E into an arbitrary Boolean algebra A
has at most one extension to an A-valued homomorphism on B.
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13. (Harder.) Prove, without using Theorem 10, that a countable atomless
Boolean algebra with more than one element is free. Conclude that all
countable atomless Boolean algebras with more than one element are
isomorphic.



Chapter 29

Boolean σ-algebras

Between Boolean algebras and complete Boolean algebras there is room for
many intermediate concepts. The most important one is that of a Boolean σ-
algebra; this means, by definition, a Boolean algebra in which every countable
set has a supremum (and therefore, of course, an infimum). Similarly, a field
of sets is a σ-field if it is closed under the formation of countable unions (and
therefore under the formation of countable intersections).

It is a routine matter to imitate the entire algebraic theory developed
so far for the two extremes (Boolean algebras and complete algebras) in the
intermediate case of σ-algebras. Thus, a σ-subalgebra of a σ-algebra A is a
subalgebra B of A that is closed under the formation of countable suprema
(and hence under the formation of countable infima); more precisely, when-
ever p is the supremum in A of a countable family of elements in B, then p
belongs to B. A σ-subalgebra of a σ-field of sets is called a σ-subfield . The in-
tersection of a family of σ-subalgebras (of A) is of course itself a σ-subalgebra.
(The intersection of the empty family of σ-subalgebras is, by convention, the
improper σ-subalgebra A.) The σ-subalgebra generated by a subset E is, by
definition, the intersection of the family of σ-subalgebras that include E as
a subset. (Notice that this family is not empty, since it always contains A.)
When more clarity is needed, E may be called a set of σ-generators.

Continuing in the same spirit, we define a σ-homomorphism as a homo-
morphism that preserves all the countable suprema (that is, the suprema of
all the countable sets) that happen to exist. A free σ-algebra is defined the
same way as a free Boolean algebra except that all the algebras and homo-
morphisms that enter the definition are now required to be σ-algebras and
σ-homomorphisms. (The problem of the existence of σ-algebras free on sets
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of generators of arbitrary cardinality will be attacked later.)
A σ-ideal is, by definition, an ideal closed under the formation of count-

able suprema. The kernel of a σ-homomorphism on a σ-algebra is a σ-ideal.
Indeed, if M is the kernel of a σ-homomorphism f , then M is certainly an
ideal. To prove that it is a σ-ideal, consider a sequence {qn} of elements
in M , and let q be the supremum of the sequence in B. Then f(qn) = 0 for
every n, by the definition of a kernel, and consequently

f(q) =
∨

n

f(qn) = 0,

by the definition of a σ-homomorphism. It follows that q is in M .
Conversely, every σ-ideal is the kernel of a σ-epimorphism. For the proof,

suppose that B is a σ-algebra and M a σ-ideal in B. Form the quotient
A = B/M , let f be the projection of B onto A, and recall that M is the
kernel of f . We shall prove that A is a σ-algebra and f is a σ-homomorphism.
The two assertions can be treated simultaneously by proving that if {qn} is a
sequence of elements in B with supremum q, then the sequence {f(qn)} has
a supremum in A, and, in fact,

∨

n

f(qn) = f(q).

Write

f(qn) = pn and f(q) = p.

The inequality qn ≤ q implies that pn ≤ p, for each n, by the homomorphism
properties of f . It is to be proved that if pn ≤ s for all n, then p ≤ s. Let t be
an element of B such that f(t) = s. (The element t exists because f maps B
onto A.) Since

f(qn) = pn ≤ s = f(t)

for all n, we have

f(qn − t) = f(qn) − f(t) = 0.

In other words, qn − t is in the kernel M . Because M is a σ-ideal, by as-
sumption, the join

∨
n(qn − t) must also be in M . The equalities
∨

n

(qn − t) =
(∨

n

qn

)
− t = q − t

(Exercise 8.25(c)) therefore imply that q − t belongs to the kernel M . Con-
sequently,
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0 = f(q − t) = f(q) − f(t),
and therefore f(q) ≤ f(t). In other words, p ≤ s, as promised. The following
theorem (which dates back to Tarski [75]) has been proved. It contains, in
particular, the analogue for σ-algebras of the homomorphism theorem (see
Chapter 21).

Theorem 27. The quotient of a σ-algebra by a σ-ideal is a σ-algebra. The
corresponding projection is a σ-homomorphism, and its kernel is the given σ-
ideal.

The simplest way to be a σ-algebra is to be complete. There are other
ways. The countable–cocountable algebra of every set is a σ-algebra that is
not complete, unless the underlying set is countable. (Observe, by the way,
that the class of all countable sets in this algebra is a non-trivial maximal
ideal.) The most famous and useful incomplete σ-algebras arise in topological
spaces. A Borel set in a topological space X is, by definition, a set belonging
to the σ-field generated by the class of all open sets (or, equivalently, by the
class of all closed sets). For instance, countable unions of closed sets and
countable intersections of open sets are Borel; they are usually called Fσ-sets
and Gδ-sets (or simply Fσ’s and Gδ’s) respectively. Here are some concrete
examples. In the Euclidean space R

n, every set consisting of just one point
is closed, and the whole space with just one point removed is open, so every
countable set is an Fσ, and every cocountable set is a Gδ. In the space R,
the open interval (a, b) is the union of the closed intervals [a + 1/n, b − 1/n]
for n = 1, 2, . . . , and the closed interval [a, b] is the intersection of the open
intervals (a − 1/n, b + 1/n) for n = 1, 2, . . . , so every open interval in R is
an Fσ, and every closed interval is a Gδ. Countable intersections of Fσ-sets
and countable unions of Gδ-sets are also Borel; they are usually called Fσδ-sets
and Gδσ-sets respectively. One can continue in this fashion to define Fσδσ-
sets, Gδσδ-sets, and so on, and all of these sets are Borel.

There is also an interesting σ-ideal that can be defined in topological
terms. A subset of a topological space is called nowhere dense if the closure
of its interior is empty, and it is called meager if it is the union of countably
many nowhere dense sets (see Chapter 9). In any topological space, the empty
set is meager (it is nowhere dense), the intersection of an arbitrary set with a
meager set P is meager (a subset of a meager set is meager, by Exercise 9.27),
and the union of a sequence of meager sets is meager (Exercise 9.28). This
argument shows that the class of all meager subsets of a topological space X
is a σ-ideal in P(X). Similarly, the class of all meager Borel sets is a σ-ideal
in the σ-field of all Borel sets.
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Compact topological spaces play a very important role in the theory of
Boolean algebras. To define them, it is helpful to introduce an auxiliary
notion. An open cover of a topological space is a family of open sets whose
union is the whole space. A topological space is said to be compact if every
open cover has a finite subcover; in other words, whenever the space is equal
to the union of a family {Ui} of open sets, it is already equal to the union of
some finite subfamily {Ui1 , Ui2 , . . . , Uin}. The contrapositive of this definition
runs as follows: if {Ui} is a family of open sets, and if no finite subfamily
covers the whole space, then {Ui} cannot cover the whole space.

There is a very useful characterization of compactness. A family of sets
in a topological space has the finite intersection property if the intersection
of every finite subfamily is non-empty. It turns out that a topological space
is compact if and only if each family of closed sets with the finite intersection
property has a non-empty intersection. For the proof, suppose that X is
a compact space, and let {Fi} be a family of closed sets with the finite
intersection property. Then {F ′

i } is a family of open sets such that no finite
subfamily covers X, by the De Morgan laws (2.7). The (contrapositive of
the) definition of compactness implies that the union of {F ′

i } is not all of X;
consequently, the intersection of the family {Fi} is not empty, by the infinite
De Morgan laws (8.1). The reverse implication is established by a completely
analogous argument.

A subset Q of a topological space X is said to be compact if it is a compact
space under the inherited topology. In other words, Q is compact if each open
cover of Q (each family of open sets in X whose union includes Q) has a finite
subcover. A closed and bounded subset of R

n is always compact; this is just
the content of the celebrated Heine–Borel theorem. In particular, every finite
interval [a, b] in the space of real numbers is compact. On the other hand, it
is easy to check that the set of all real numbers is not compact. For instance,
the family of intervals {(n, n + 2)}, where n ranges over the integers, is an
open cover of R, but it has no finite subcover.

A topological space is said to be Hausdorff if any two points can be
separated by open sets. This means that for any two points x and y in the
space, there are disjoint open sets U and V such that x is in U and y in V .
The Euclidean spaces R

n are Hausdorff: if x and y are two points in R
n, and

if δ is the distance between these two points, then the open balls of radius δ/2
centered at x and at y are disjoint and contain x and y respectively.

Every closed set in a compact space is compact. Proof: if Q is closed, and
if {Ui} is an open cover of Q, then the family {Q ′} ∪ {Ui} is an open cover
of the whole space. There must be a finite subcover of the whole space, say
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{Q ′, Ui1 , Ui2 , . . . , Uin},
so {Ui1 , Ui2 , . . . , Uin} must cover Q. The converse is not in general true, but
it is true for Hausdorff spaces.

Lemma 1. If Q is a compact set in a Hausdorff space, and if x is a point
of the space that is not in Q, then x and Q can be separated by open sets.
Consequently, each compact set is closed.

Proof. Each point y in Q can be separated from x by open sets, because the
space is Hausdorff. In other words, there are disjoint open sets Vy and Wy

such that x is in Vy, and y is in Wy. The family {Wy}y∈Q is an open cover
of Q, so it must have a finite subcover {Wy1 , Wy2 , . . . , Wyn}. The sets

V =
n⋂

i=1

Vyi and W =
n⋃

i=1

Wyi

are both open. (A finite intersection of open sets is open, as is an arbitrary
union of open sets.) They are also disjoint: if a point belongs to V , then it
belongs to each set Vyi ; consequently it cannot belong to any of the sets Wyi

(the sets Vyi and Wyi being disjoint), and therefore it cannot belong to W .
Finally, x belongs to V (because x is in each set Vyi), and Q is included in W
(because the sets Wyi form a finite subcover of Q).

One consequence of the observations of the preceding paragraph is that
for every point x not in Q, there is an open set Ux (the set V above) that
contains x and is disjoint from Q. The union of the family {Ux}x∈Q ′ is
therefore an open set that is disjoint from Q and contains every point in Q ′.
Consequently, this union must coincide with Q ′. Conclusion: Q ′ is open,
and therefore Q is closed.

Corollary 1. For every open set U in a compact Hausdorff space, and every
point x in U , there is an open set V containing x such that the closure V −

is included in U .

Proof. Suppose U is an open set, and x a point in U . The complement U ′ is
closed, by definition, and therefore compact, since the whole space is assumed
to be compact. Apply the lemma to obtain disjoint open sets V and W such
that x belongs to V , and U ′ is included in W . The set W ′ is then closed,
and

V ⊆ W ′ ⊆ U.

The closure of V must therefore be included in the closed set W ′, and hence
also in U .
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Corollary 2. Any two points in a compact Hausdorff space are separated by
open sets with disjoint closures.

Proof. Given two points x and y in a compact Hausdorff space, there exist
(by definition) disjoint open sets U and W such that x is in U and y in W .
The complement U ′ is closed and includes W , so it includes the closure W−.
There is an open set V containing x such that V − is included in U , by
Corollary 1. The open sets V and W contain x and y respectively, and have
disjoint closures, since V − is included in U , and W− in U ′.

The following celebrated result, known as the Baire category theorem (see
Baire [2]), is needed on most occasions when meager sets occur. It says that
no non-empty open set can be meager in a compact Hausdorff space.

Theorem 28. A meager open set in a compact Hausdorff space is empty.

Proof. Suppose that U is a non-empty open set and that {Sn} is a sequence
of nowhere dense sets. We shall show that U contains at least one point that
does not belong to any Sn. It follows that U cannot equal the union of the
sets Sn. In other words, U cannot be meager.

Write U0 = U . Let V1 be a non-empty open set with the property
that V −

1 ⊆ U0; such a set exists by Corollary 1. The closed set S −
1 has

an empty interior, by the assumption that S1 is nowhere dense. Its comple-
ment, the open set S − ′

1 , therefore has a non-empty intersection with every
non-empty open set. In particular, it has a non-empty intersection with V1.
The set

U1 = V1 ∩ S − ′
1

is a non-empty open subset of V1 (it is open because it is the intersection of
two open sets), and U1 ∩ S1 = ∅, because U1 is disjoint from S −

1 .
Repeat this argument with U1 in place of U0 to obtain a non-empty open

set V2 such that V −
2 ⊆ U1, and to conclude that the set

U2 = V2 ∩ S − ′
2

is a non-empty open subset of V2 with the property that U2 ∩ S2 = ∅.
Continue this argument inductively: for each positive integer n, there is a
non-empty open set Vn such that V −

n ⊆ Un−1, and the set

Un = Vn ∩ S − ′
n

is a non-empty open subset of Vn with the property that Un ∩ Sn = ∅.
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The last equation implies that the intersection
⋂

k Uk is disjoint from each
set Sn. The inclusions

Un ⊆ Vn ⊆ V −
n ⊆ Un−1

imply that ⋂

k

Uk =
⋂

k

V −
k .

The family of non-empty closed sets {V −
k } is decreasing, and therefore has

the finite intersection property:

V −
1 ∩ V −

2 ∩ · · · ∩ V −
n = V −

n �= ∅.

The topological space is assumed to be compact, so the family {V −
k } has a

non-empty intersection. This means that
⋂

k Uk is non-empty. Any point in
this intersection has the desired properties: it belongs to U = U0, and it does
not belong to any of the sets Sn.

The ideal of meager sets makes contact with an earlier construction in
a somewhat surprising way: Borel sets are almost regular open sets in the
sense that each Borel set differs symmetrically from a uniquely determined
regular open set by a meager set. It is helpful to formulate this result another
way, using the notion of congruence modulo an ideal that was discussed in
Chapter 18. Recall that two elements p and q of a Boolean algebra are defined
to be congruent modulo an ideal M if the Boolean sum p + q is in M , and in
this case we write p ≡ q mod M , or just p ≡ q when the intended ideal M
is clearly understood.

Lemma 2. Every Borel set in a compact Hausdorff space is congruent to a
unique regular open set modulo the σ-ideal of meager Borel sets.

Proof. A subset S of a compact Hausdorff space X is said to have the Baire
property if it is congruent to some open set, where “congruent” in the course
of this proof means congruent modulo the σ-ideal M of meager Borel sets
in X. The first step in the proof is to show that the class of sets with the
Baire property is a σ-field that includes the open sets. Clearly every open
set U has the Baire property: U ≡ U , since U + U = ∅ and the empty
set is meager. Suppose {Sn} is a sequence of sets with the Baire property,
say {Un} is a sequence of open sets such that Sn ≡ Un for each n. The
sums Sn + Un are in M , by the definition of congruence, so their union is
also in M , because M is a σ-ideal. The sum of the unions

⋃
n Sn and

⋃
n Un

is included in the union of the sums,
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(⋃

n

Sn

)
+
(⋃

n

Un

)
⊆
⋃

n

(Sn + Un),

by Exercise 8.26, so it, too, belongs to M , by (18.18). It follows that
(⋃

n

Sn

)
≡
(⋃

n

Un

)
.

Since the union of the family {Un} of open sets is open, the set
⋃

n Sn has
the Baire property.

It remains to prove that the complement of a set with the Baire property
also has the Baire property. Notice, first of all, that every open set U is
congruent to its closure: U ≡ U−. Indeed, the sum U + U− coincides with
the difference U− − U (since U − U− = ∅), which in turn is included in the
boundary of U ; consequently, the sum is nowhere dense, and hence meager,
by Lemma 10.5 and Exercise 9.25. Suppose now that S ≡ U , where U is
open. Since U ≡ U−, it follows that S ≡ U−. Boolean congruences preserve
complementation, so S ′ ≡ U⊥. This shows that the set S ′ has the Baire
property, since U⊥ is open (it is the complement of the closed set U−).

It has been shown that the class of sets with the Baire property is a σ-
field that includes all open sets. The class of Borel sets is, by definition, the
smallest σ-field that includes the open sets. Conclusion: every Borel set has
the Baire property.

The next step is to prove that every open set U is congruent to a regular
open set, and in fact to U⊥⊥. The assumption that U is open implies

U ⊆ U⊥⊥ ⊆ U⊥⊥− = U−.

The first inclusion is a consequence of Lemma 10.2. For the last equality,
observe that

U−′ = U⊥ = U⊥⊥⊥ = U⊥⊥−′,

by the definition of ⊥ and Lemma 10.3; form the complements of the first
and last terms to obtain the desired equality. The difference U− − U is
included in the boundary of U , which is nowhere dense and therefore meager.
The preceding string of inclusions implies that the difference U⊥⊥ − U is
also included in U− − U , and is therefore also meager. The sum U + U⊥⊥

coincides with U⊥⊥ − U (because U − U⊥⊥ = ∅), so it, too, is meager. In
other words, U ≡ U⊥⊥.

Every Borel set is congruent to an open set, and every open set is con-
gruent to a regular open set, so every Borel set is congruent to a regular
open set. To demonstrate that this regular open set is uniquely determined,
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it suffices to prove that two congruent regular open sets are in fact equal.
Suppose U and V are regular open sets, and U ≡ V . Since

U ≡ U− and V ≡ V −,

it follows from the transitivity of ≡ that

U− ≡ V and U ≡ V −.

Both U− + V and U + V − are therefore meager sets, and hence so are their
subsets V − U− and U − V −. Since these subsets are also open, the Baire
category theorem implies that they are empty. In other words, V ⊆ U−

and U ⊆ V −. These two inclusions imply that U− = V −; consequently,

U = U⊥⊥ = U−′−′ = V −′−′ = V ⊥⊥ = V.

The proof of the lemma is complete.

In view of the preceding lemma, the function f that takes each Borel
set S to the regular open subset f(S) such that S ≡ f(S) is a well-defined
mapping from the σ-field B of Borel sets into the complete Boolean algebra A
of regular open sets. The function maps B onto A because every regular open
set S is Borel, and f(S) = S. We have seen above that if S ≡ U , where U is
open, then S ′ ≡ U⊥; in particular,

f(S ′ ) = f(S)⊥.

We have also seen that if Sn ≡ Un for n = 1, 2, . . . , where again the Un’s are
open, then

⋃

n

Sn ≡
⋃

n

Un ≡
(⋃

n

Un

)⊥⊥
;

in particular,

f
(⋃

n

Sn

)
=
(⋃

n

f(Sn)
)⊥⊥

.

These two assertions mean just that f is a σ-homomorphism, by the definition
of complement and join in A (see Theorem 1, p. 66). The kernel of f is the
class of Borel sets that are congruent to the empty set modulo the σ-ideal M ,
and this is just M itself. The mapping f is thus a σ-homomorphism from B
onto A with kernel M , so that A is isomorphic to B/M . We summarize what
has been accomplished in the following theorem.
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Theorem 29. Suppose B is the σ-field of Borel sets, and M the σ-ideal of
meager Borel sets, in a compact Hausdorff space X. The correspondence f
that takes each Borel set S to the regular open set f(S) determined by

S ≡ f(S) mod M

is a σ-homomorphism from B onto the complete algebra A of all regular open
sets in X. The kernel of f is M , so that A is isomorphic to B/M .

One surprising aspect of the theorem is that the quotient of a σ-algebra by
a σ-ideal, which is necessarily a σ-algebra itself, turns out to be a complete
algebra (since A is complete). This is a special dividend; it is not to be
expected in every case. (The fact that the quotient B/M in the preceding
theorem is a complete Boolean algebra was first stated in [75] by Tarski, who
refers to earlier work of Szpilrajn-Marczewski; it was independently observed
by Birkhoff and Ulam in [6].)

It is tempting, but not particularly profitable, to define classes of Boolean
algebras depending on other cardinal numbers the same way as σ-algebras
depend on ℵ0. The situation is analogous to the various generalizations
of compactness depending on cardinal numbers. The questions undeniably
exist, the answers are sometimes easy and sometimes not, and the answers
are sometimes the same as for the ungeneralized concepts and sometimes
not. In all cases, however, and in Boolean algebra as well as in topology,
the generalized theory has much more the flavor of cardinal number theory
than of the subject proper. The interested reader should have no trouble in
reconstructing the basic theory. The problem is, given an infinite cardinal m,
to define and to study m-algebras, m-fields, m-subalgebras, m-subfields, m-
homomorphisms, free m-algebras, m-ideals, m-filters, etc. For complicated
historical reasons the symbol ℵ0 is always replaced by σ in such contexts, so
that, for instance, ℵ0-algebras are the same as the σ-algebras that constituted
the main subject of this chapter.

Exercises

1. Prove that a Boolean algebra is a σ-algebra if and only if every count-
able set has an infimum.

2. Prove that a subalgebra B of a σ-algebra A is a σ-subalgebra if and only
if the infimum (in A) of every countable set of elements in B belongs
to B.
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3. Show that the intersection of a family of σ-subalgebras (of a given σ-
algebra) is always a σ-subalgebra.

4. Give some examples of incomplete σ-fields.

5. A family {Bi}i∈I of Boolean subalgebras is said to be countably directed
if for every countable subset J of indices, there is an index i in I such
that Bj is a subalgebra of Bi for each j in J . Prove that the union of
a countably directed family of σ-subalgebras (of a given σ-algebra) is
a σ-subalgebra.

6. Prove that if A is a σ-algebra, and if p is an element of the σ-subalgebra
generated by a subset E of A, then E has a countable subset D such
that p belongs to the σ-subalgebra generated by D.

7. Show that a homomorphism on a Boolean algebra is a σ-homomorphism
if and only if it preserves all countable infima (that is, the infima of all
countable sets) that happen to exist.

8. Define what it means for a family of A-valued homomorphisms to be
countably directed. Prove that a countably directed family of A-valued
σ-homomorphisms always has a common extension to an A-valued σ-
homomorphism. If the homomorphisms in the family are one-to-one,
show that the common extension is also one-to-one.

9. Formulate and prove the analogue of Exercise 12.26 for σ-homomorph-
isms between σ-algebras.

10. Formulate and prove the analogue of Exercise 12.29 for σ-epimorphisms
between σ-algebras.

11. Prove that if two A-valued σ-homomorphisms on a σ-algebra B agree
on the elements of a set of σ-generators of B, then they agree on all
of B.

12. Formulate and prove the analogue for σ-algebras of the first isomor-
phism theorem.

13. Give a precise definition of the notion of a set E freely σ-generating
a σ-algebra B. Prove that if two σ-algebras B1 and B2 are freely σ-
generated by sets E1 and E2 of the same cardinality, then B1 and B2

are isomorphic via a mapping that interchanges E1 and E2.
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14. Suppose A, B, and C are σ-algebras. If f is a σ-homomorphism from B
to A, and g a σ-homomorphism from C to B, prove that the composi-
tion f ◦ g is a σ-homomorphism from C to A.

15. Prove that the intersection of a family of σ-ideals (in a given σ-algebra)
is always a σ-ideal.

16. Define the notion of a σ-filter, and prove that the cokernel of a σ-
homomorphism is a σ-filter.

17. If A is the field of all subsets of an infinite set X, prove that the σ-sub-
field of A generated by the set of singleton (that is, one-element) subsets
of X coincides with the field of countable and cocountable subsets of X.

18. Prove that the class of all countable sets in the σ-field of countable and
cocountable subsets of an uncountable set is a σ-ideal that is maximal
(as an ideal, and therefore as a σ-ideal).

19. Prove that the class of Fσ-sets is closed under finite intersections and
under countable unions. Formulate and prove an analogous result
for Gδ-sets.

20. What kind of set is the complement of an Fσ?

21. (Harder.) Prove that in a metric space every closed set is a Gδ and
every open set is an Fσ.

22. (Harder.) Prove that there are continuum many Borel sets of real
numbers.

23. Complete the proof that a topological space is compact if and only if
each family of closed sets with the finite intersection property has a
non-empty intersection.

24. Prove that a topological space is compact just in case it satisfies the
following condition: if the intersection of a family of closed sets is in-
cluded in an open set, then the intersection of some finite subfamily of
the closed sets is included in the open set.

25. Show that the family of intervals (−n, n), where n ranges over the
positive integers, is an open cover of R that has no finite subcover.

26. Show that the two-dimensional Euclidean space R
2 is not compact.
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27. Prove that in an arbitrary topological space, a closed subset of a com-
pact set is compact.

28. Suppose Y is a subspace of a topological space X, and P is a subset
of Y . Prove that P is compact in Y if and only if it is compact in X.

29. Suppose an infinite set X is endowed with the discrete topology (Chap-
ter 9). Is the resulting space compact? Is it Hausdorff? What are the
answers to these questions when X is endowed with the cofinite topol-
ogy?

30. Show that in a Hausdorff space, singletons of points are closed sets.

31. Show that the atoms of the regular open algebra of a Hausdorff space
are precisely the singletons of isolated points. (A point x is called
isolated if {x} is an open set.)

32. Show that a subset of a Hausdorff space, under the inherited topology,
is a Hausdorff space.

33. Prove that in a compact Hausdorff space, two disjoint closed sets can
always be separated by (disjoint) open sets.

34. (Harder.) Prove that a linearly ordered set endowed with the order
topology (Exercise 9.33) is always a Hausdorff space. Prove further
that the space is compact if and only if the ordering is complete in the
sense that every subset has a supremum (see Exercise 7.23).

35. Define the notion of a σ-regular subalgebra, in analogy with the notion
of a regular subalgebra that was introduced in Chapter 11. Investigate
whether the results of Exercises 11.22 and 11.25 extend to this concept.

36. (Harder.) Is every set with the Baire property a Borel set?

37. (Harder.) Can the ideal of meager sets be maximal?

38. (Harder.) A topological space is called locally compact if for every
point x, there is a compact set whose interior contains x. Prove the
Baire category theorem for locally compact Hausdorff spaces.

39. Is the homomorphism f described in Theorem 29 complete?

40. Formulate and prove a version of Theorem 11 (p. 155) that applies
to σ-ideals in σ-algebras.
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41. Formulate and prove a version of Exercise 18.26 that applies to σ-ideals
in σ-algebras.

42. Generalize Exercise 18.32 to σ-algebras.

43. Given a σ-algebra A generated by a set E, define by (transfinite) in-
duction a transfinite sequence {Ei}, indexed by the set of countable
ordinals, as follows: (1) E0 = E; (2) if k is a countable successor ordi-
nal, say k = i + 1, then Ek is the set of suprema (in A) of countable
sets of elements and complements of elements from Ei; (3) if k is a
countable limit ordinal, then Ek =

⋃
i<k Ei. Prove that the sequence is

increasing (i ≤ j implies Ei ⊆ Ej) and that its union is A. (The natu-
ral generalization of Theorem 3, p. 82, to σ-algebras fails because the
infinite distributive laws may fail. This exercise provides an alternative
that is adequate for many purposes.)

44. Formulate and prove the analogue of Exercise 12.31 for σ-algebras.



Chapter 30

The Countable Chain
Condition

The algebraic behavior of the regular open algebra of a topological space
reflects, at least in part, the topological properties of the space. One par-
ticular topological property, namely the possession of a countable base, has
important algebraic repercussions. A base for a topology is a class S of open
sets such that every open set in the topology is a union of sets in S. The
space is said to have a countable base if at least one of its bases is countable.
Here are some examples. The class of open intervals (a, b) constitutes a base
for the Euclidean topology of the real numbers, and so does the class of open
intervals with rational endpoints. The latter base is countable, so R (un-
der the Euclidean topology) has a countable base. More generally, the open
balls form a base for the Euclidean topology of R

n, and so do the open balls
for which the radii and the coordinates of the centers are rational numbers.
Therefore, R

n has a countable base.
A Boolean algebra A is said to satisfy the countable chain condition if

every disjoint set of non-zero elements of A is countable. (Recall that two
elements p and q of a Boolean algebra are disjoint if p ∧ q = 0; a set E is
disjoint if every two distinct elements of E are disjoint.) The regular open
algebra of a space with a countable base does satisfy the countable chain
condition. Proof: select a countable base, and, given a disjoint class of non-
empty regular open sets, find in each one a non-empty set of the base. An
algebra satisfying the countable chain condition is sometimes called countably
decomposable.

Lemma 1. A Boolean algebra A satisfies the countable chain condition if
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and only if every subset E of A has a countable subset D such that D and E
have the same set of upper bounds.

Proof. We begin with a preliminary observation: if E is a disjoint set of non-
zero elements in A, then no proper subset of E can have the same set of upper
bounds as E. For the proof, consider a proper subset D of E, and let p be
an element in E that is not in D. Since p is disjoint from each element in D,
its complement p ′ is an upper bound for D (p∧ q = 0 implies q ≤ p ′ ); but p ′

is certainly not an upper bound for E, since p is not zero, and therefore not
below p ′.

Assume now that the condition formulated in the lemma is satisfied, and
suppose that E is a disjoint set of non-zero elements of A. Let D be a
countable subset of E with the same set of upper bounds. Then D = E, by
the remarks of the preceding paragraph, so E is countable.

To prove the converse, assume that the countable chain condition is sat-
isfied, and consider an arbitrary subset E of A. Let M be the ideal generated
by E; the elements of M are just those elements of A that are dominated by
the supremum of some finite subset of E, by Theorem 11. It follows that M
and E have the same set of upper bounds: any upper bound of E is certainly
an upper bound of the set of suprema of finite subsets of E, and must there-
fore be an upper bound of M ; on the other hand, an upper bound of M is
obviously an upper bound of E, since E is a subset of M .

Construct a maximal disjoint set of non-zero elements in M as follows.
Let {pi}i<α be an enumeration of the non-zero elements of M , indexed by
the set of ordinals less than some ordinal number α. Define a corresponding
transfinite sequence {Fi}i≤α of disjoint sets of non-zero elements in M such
that (1) F0 = ∅; (2) Fi ⊆ Fj whenever i ≤ j; (3) the element pi is in Fi+1 just
in case it is disjoint from every element in Fi. The definition of the sequence
proceeds by transfinite induction on ordinal numbers.

Put F0 = ∅. Obviously this set is disjoint, and condition (1) holds by
definition, while conditions (2) and (3) hold vacuously. For the induction
step, consider an ordinal k ≤ α, and suppose disjoint sets Fi have been
defined for each ordinal i < k so that the family {Fi}i<k satisfies conditions
(1)–(3) (with j < k in (2), and i+1 < k in (3)). When k is a successor ordinal,
say k = i + 1, the definition of Fk splits into two cases: if pi is disjoint from
every element of Fi, put Fk = Fi∪{pi}; otherwise, put Fk = Fi. Clearly, Fk is
a disjoint set in this case, by its very definition and the induction hypothesis
that Fi is disjoint. When k is a limit ordinal, put Fk =

⋃
i<k Fi. To check

that this union is disjoint, consider any two of its elements p and q. There
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must be ordinals i, j < k such that p is in Fi and q is in Fj . One of the
two ordinals is below the other, say i ≤ j. Then p and q are in Fj , by
condition (2), so p ∧ q = 0, by the induction hypothesis that Fj is a disjoint
set. Conditions (1)–(3) (with j ≤ k in (2), and i + 1 ≤ k in (3)) are easily
seen to hold for the family {Fi}i≤k.

The desired maximal set is Fα. We have already seen that this set is
disjoint and consists of non-zero elements of M . To verify maximality, con-
sider an arbitrary non-zero element p in M ; it occurs somewhere in the given
enumeration of M , say p = pi. If pi is not in Fα, then it is not in Fi+1, by
conditions (2) and (3), and consequently it must have a non-zero meet with
some element q in Fi. Of course, q is in Fα, by condition (2), so that pi, that
is to say p, cannot be adjoined to Fα to obtain a larger disjoint set.

Write F = Fα. Reasoning as in the first paragraph of the proof, we infer
that F and M have the same set of upper bounds. Indeed, assume p is not
an upper bound of M , with the goal of showing that p is not an upper bound
of F . The assumption implies the existence of an element q in M that is not
below p, so q ∧ p ′ �= 0. The meet q ∧ p ′ is in the ideal M . If it is also in F ,
then p cannot be an upper bound of F , since p is not above q ∧ p ′. If q ∧ p ′

is not in F , then there must be an element r in F such that r ∧ q ∧ p ′ �= 0,
by the maximality of F . In this case, r∧ q ∧ p ′ is not below p, so obviously r
cannot be below p. It follows that p is not an upper bound of F . Conclusion:
every upper bound of F is an upper bound of M . The reverse implication is
obvious, since F is a subset of M .

The countable chain condition is assumed to hold, so the set F is count-
able. Each element p in F is in the ideal M generated by E, and is therefore
dominated by the supremum of some finite subset Fp of E, by Theorem 11
(p. 155). Write

D =
⋃

p∈F

Fp.

The set D is a countable union of finite sets, so it is a countable subset of E.
If q is an upper bound of D, then q is an upper bound of F , since

p ≤
∨

Fp ≤ q

for every p in F ; therefore q is also an upper bound of M and E, since the
sets F , M , and E all have the same upper bounds. On the other hand,
every upper bound of E is an upper bound of D, since D is a subset of E.
Thus, D and E have the same set of upper bounds. The proof of the lemma
is complete.
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The following consequence of Lemma 1 is due to Tarski [75].

Corollary 1. A Boolean σ-algebra that satisfies the countable chain condition
is complete.

Proof. Every countable supremum is formable by definition; by Lemma 1
every conceivable supremum coincides with some countable one.

The countable chain condition got its name from its close relation to a
condition in which ascending chains do explicitly occur. An ascending well-
ordered chain in a Boolean algebra A is a family {pi}i<α of elements in A,
indexed by the set of all ordinals less than a particular ordinal α, with the
property that pi ≤ pj whenever i ≤ j < α. The chain is strictly ascending
if pi �= pj whenever i < j, and the chain is called countable in case the set of
indices is countable.

Lemma 2. If a Boolean algebra A satisfies the countable chain condition,
then every strictly ascending well-ordered chain in A is countable.

Proof. Suppose that {pi}i<α is a strictly ascending well-ordered chain in A.
Write

qi = pi+1 − pi

whenever i + 1 < α, and let E be the set of qi’s. The cardinality of E is the
same as that of α. The elements of E are distinct from 0, since pi+1 �= pi.
If i < j and j + 1 < α, then pi+1 ≤ pj , and therefore

qi ∧ qj = (pi+1 ∧ pi
′ ) ∧ (pj+1 ∧ pj

′ ) ≤ pi+1 ∧ pj
′ = 0.

In other words, E is a disjoint set of non-zero elements and therefore count-
able; it follows that the given chain is countable.

In a Boolean σ-algebra the converse of Lemma 2 is also true.

Lemma 3. If every strictly ascending well-ordered chain in a Boolean σ-
algebra A is countable, then A satisfies the countable chain condition.

Proof. If the conclusion is false, then there exists a disjoint set E of car-
dinality ℵ1 (the first uncountable cardinal number) consisting of non-zero
elements of A. Establish a one-to-one correspondence between E and the set
of all ordinal numbers less than ω1 (the first uncountable ordinal number).
Let pi be the element of E corresponding to i (where i < ω1). Since the
number of predecessors of i is countable, it makes sense to write qi =

∨
j<i pi
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for each i. Since {qi} is a strictly ascending well-ordered chain (strictness
follows from the disjointness of E), the hypothesis of the lemma leads to the
contradictory conclusion that ω1 is countable.

Exercises

1. Prove that the open circles for which the radii and the coordinates of
the centers are rational numbers form a countable base for the topol-
ogy of R

2. Conclude that the σ-field of Borel sets in R
2 is countably

generated (as a σ-algebra).

2. Formulate and prove an extension of Exercise 1 to the spaces R
n.

3. Let x = (x1, x2) be any point in R
2, and ε any positive real number.

The open square (in R
2) with center x and side ε is defined to be the

set of points

{(y1, y2) : x1 − ε/2 < y1 < x1 + ε/2 and x2 − ε/2 < y2 < x2 + ε/2}.

Prove that the open squares for which the sides and the coordinates of
the centers are rational numbers form a countable base for the topology
of R

2. Conclude that the σ-field of Borel sets in R
2 is generated (as

a σ-algebra) by the class of these open squares.

4. Does an infinite set endowed with the discrete topology have a countable
base?

5. Does an infinite set endowed with the cofinite topology have a countable
base?

6. If a Boolean algebra satisfies the countable chain condition, must every
subalgebra satisfy the countable chain condition?

7. Suppose a Boolean algebra B satisfies the countable chain condition.
Prove that a homomorphism on B that preserves countable suprema
must preserve arbitrary suprema.

8. Suppose X is a countable set. Prove that every subfield of P(X) satis-
fies the countable chain condition. What if X is uncountable?

9. Prove that if A is the field of finite and cofinite subsets of an arbitrary
set, then every strictly ascending well-ordered chain in A is countable.
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10. If the regular open algebra of a topological space satisfies the countable
chain condition, does it follow that the space has a countable base?

11. Show that the converse of Lemma 2 is false.

12. (Harder.) Show that the countable chain condition is not preserved by
homomorphisms. (The main idea behind the solution to this exercise
goes back to Sierpiński [55].)

13. Prove that a Boolean algebra A satisfies the countable chain condition
if and only if every subset E of A that has a supremum has a countable
subset D such that D has a supremum, and in fact

∨
D =

∨
E.



Chapter 31

Measure Algebras

Intuitively speaking, a measure is an assignment of “magnitude” or “size” to
a collection of objects, real or conceptual. The lengths of lines (straight or
curved), the areas of surfaces, and the volumes of solids are all examples of
measures. It is sometimes not possible to assign a measure — a “size” — to
every conceivable object of a certain type, but the class of objects that can be
measured is usually closed under such operations as union, intersection, and
complementation: if we know the length of a subset of the unit interval, then
we know the length of its complement (with respect to the unit interval); if
we know the lengths of two such subsets, and if we know how the subsets are
related to one another, then we should be able to determine the lengths of
their union and intersection. In analysis it is often important to be able to
compute the measure of the union of an infinite sequence of sets, if we know
the measures of the individual sets and if we know how the sets are related
to one another. These considerations lead naturally to the study of abstract
measures on Boolean algebras and σ-algebras.

A measure on a Boolean algebra A is a non-negative real-valued function μ
on A — a function from A into the set of non-negative real numbers — such
that whenever {pn} is a disjoint sequence of elements of A with a supremum p
in A, then μ(p) =

∑
n μ(pn). The principal condition that this definition

imposes is called countable additivity, so that a measure can be described as
a non-negative and countably additive function on a Boolean algebra.

The concept just defined is the most useful one of a large collection of
related concepts. Sometimes the word “measure” is applied to countably
additive functions whose values are arbitrary real numbers, or complex num-
bers, or elements of much more general algebraic structures. Sometimes the
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condition of countable additivity is relaxed to finite additivity : if p1, p2, . . . , pn

is any finite disjoint sequence of elements (in A) with supremum p, then

μ(p) = μ(p1) + μ(p2) + · · · + μ(pn).

Note that μ is finitely additive if and only if

μ(p ∨ q) = μ(p) + μ(q)

whenever p and q are disjoint. If ever we need to make use of such general-
ized concepts we shall refer to them by appropriately qualifying “measure”.
(Thus, for instance, we may speak of a complex-valued finitely additive mea-
sure.)

Examples of measures are easy to obtain. For a combinatorial example
consider the field P(X) of all subsets of a finite set X and, for each P in P(X),
define μ(P ) to be the number of points in P . A degenerate example is the zero
measure: it assigns the value 0 to every element of a Boolean algebra. Many
examples occur in analysis; perhaps the simplest is Lebesgue measure on the
algebra of Lebesgue measurable subsets of the closed unit interval [0, 1]. The
precise details of the definition need not concern us here, but it is helpful
to know some of the more important properties of Lebesgue measure. The
measure is not defined on all subsets of the unit interval, but the class of
subsets on which it is defined is a σ-algebra. The sets in this algebra are
said to be (Lebesgue) measurable. Every subinterval of [0, 1], whether open,
closed, or half-open, is measurable, and its measure is just the length of the
interval. Every open set in the unit interval is a countable (disjoint) union
of open intervals, so every open set is measurable, and consequently every
Borel set is measurable. The converse is not true; there exist measurable
sets that are not Borel. Each singleton {a} can be written in the form [a, a],
so the measure of a singleton is 0. Every countable set, finite or infinite, is
the union of a sequence of singletons, and is therefore measurable; countable
additivity implies that its measure is zero. In general, a subset P of the unit
interval has measure zero if and only if for every ε > 0, there is a sequence
of intervals {In} covering P (that is, the union of the intervals includes P )
such that

∑
n μ(In) < ε.

There are some basic properties that all measures possess. Consider a
measure μ on a Boolean algebra. The most basic property is that μ(0) = 0.
(The first “0” refers to the zero of the Boolean algebra, while the second
refers to the real number zero.) The proof is easy: use finite additivity to
write

μ(0) = μ(0 ∨ 0) = μ(0) + μ(0),
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and then use the cancellation law for real numbers to conclude that μ(0) = 0.
The subtraction property says that

μ(p − q) = μ(p) − μ(p ∧ q);

it is a direct consequence of finite additivity and the fact that p is the join of
the disjoint elements p − q and p ∧ q:

μ(p) = μ((p − q) ∨ (p ∧ q)) = μ(p − q) + μ(p ∧ q).

The third property is monotony : if q ≤ p, then μ(q) ≤ μ(p). It is a direct
consequence of the subtraction property, since q ≤ p implies that p ∧ q = q
and therefore

μ(p − q) = μ(p) − μ(q);
the term on the left side is a non-negative number, so the desired inequality
follows.

The join property says that

μ(p ∨ q) = μ(p) + μ(q) − μ(p ∧ q).

For the proof, observe that the elements p − q, q − p, and p ∧ q are disjoint
and join to p ∨ q. Finite additivity therefore implies that

μ(p ∨ q) = μ(p − q) + μ(q − p) + μ(p ∧ q).

Combine this identity with the subtraction property to arrive at the desired
result. An analogous argument yields the addition property :

μ(p + q) = μ(p ∨ q) − μ(p ∧ q)

(where p + q is the Boolean sum of p and q). The last property is sometimes
called countable subadditivity : if {pn} is an arbitrary sequence of elements
(not necessarily disjoint), and if that sequence has a supremum p, then

μ(p) ≤
∑

n

μ(pn).

For the proof, recall (Exercise 8.23) that the sequence {qn} defined by

qn = pn − (p1 ∨ p2 ∨ · · · ∨ pn−1)

is disjoint and has the same supremum as {pn}. Notice that qn ≤ pn, so
that μ(qn) ≤ μ(pn). Countable additivity and monotony imply

μ(p) =
∑

n

μ(qn) ≤
∑

n

μ(pn).
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Notice that the derivations of most of the preceding properties require only
finite additivity, but the derivation of countable subadditivity requires the
full strength of countable additivity.

The preceding properties easily imply that if μ is a measure on a σ-
algebra A, then the set of all elements of measure zero, that is, the set

M = {p ∈ A : μ(p) = 0},

is a σ-ideal, and this ideal is proper if and only if μ is not the zero measure.
The element 0 is in M because μ(0) = 0. If p is in M , and if q ≤ p, then

0 ≤ μ(q) ≤ μ(p) = 0,

by monotony, and consequently μ(q) = 0; hence, q is in M . To demon-
strate the closure of M under the formation of countable suprema, consider
a sequence {pn} of elements in M . The supremum p of the sequence exists
because A is a σ-algebra. Each element pn has measure zero, by the definition
of M , so

0 ≤ μ(p) ≤
∑

n

μ(pn) = 0,

by countable subadditivity. It follows that μ(p) = 0, and therefore that p
is in M . If μ is the zero measure on A, then of course the unit 1 is in M ,
so the ideal is improper. If μ is not the zero measure, then μ(1) �= 0, and
therefore 1 is not in M ; in this case the ideal is proper.

A sufficient condition for two elements p and q in a Boolean algebra to
have the same measure is that the sum p + q be in the ideal of elements of
measure zero. Indeed, if p+q is in that ideal, then μ(p+q) = 0, by definition.
The differences p − q and q − p are both below p + q, so

μ(p − q) = μ(q − p) = 0.

The subtraction property implies that

μ(p) = μ(p − q) + μ(p ∧ q) = 0 + μ(p ∧ q) = μ(p ∧ q),

and, similarly, that
μ(q) = μ(q ∧ p).

Consequently, μ(p) = μ(q), as desired.
A measure μ is normalized if μ(1) = 1. (Again, the occurrence of 1

on the left side of the equation denotes the unit of the Boolean algebra A,
while the occurrence on the right side denotes the real number.) Every non-
zero measure on a Boolean algebra can be normalized as follows. The value
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μ(1) = t is not zero, since the measure is non-zero; define a real-valued
function ν on A by

ν(p) = (1/t) · μ(p)
for each p in A. It is a simple matter to check that ν is a normalized measure
on A. The original measure μ can of course be regained from ν by writing

μ(p) = t · ν(p)

for each p. For most purposes, then, it suffices to consider normalized mea-
sures.

A measure μ is positive if 0 is the only element at which μ takes the
value 0. It takes a bit more work to turn a non-zero measure into a positive
measure: one must identify two elements that differ (symmetrically) by an
element of measure zero. From the measure-theoretic point of view, two
such elements have the same properties, so there is no harm in making the
identification. The formal way of doing this is to pass to the quotient algebra
modulo the ideal of elements of measure zero.

Lemma 1. Let ν be a normalized measure on a Boolean σ-algebra B, and
let M be the σ-ideal of elements of measure zero. If A = B/M and if f is the
projection of B onto A, then there exists a unique measure μ on A such that

μ(f(q)) = ν(q)

for all q in B; the measure μ is normalized and positive.

Proof. Given an element p in A, find q in B with f(q) = p and write

μ(p) = ν(q).

The definition of μ is unambiguous; it does not depend on the choice of q.
Indeed, if f(q1) = f(q2), then

f(q1 + q2) = f(q1) + f(q2) = 0,

so that q1 + q2 is in M , and therefore ν(q1) = ν(q2).
The quotient A is a σ-algebra, and the projection f from B to A is a

σ-homomorphism, by Theorem 27 (p. 270). To prove that μ is countably
additive, consider a disjoint sequence {pn} in A, say with supremum p, and
let {qn} be a sequence in B such that f(qn) = pn. If q is the supremum of {qn}
in B, then f(q) = p, because f is a σ-homomorphism. The sequence {qn}
may not be disjoint, but it can be disjointed. More precisely, there exists a
disjoint sequence {rn} with f(rn) = pn, obtained as follows:



31 Measure Algebras 293

r1 = q1,

r2 = q2 − q1,

r3 = q3 − (q1 ∨ q2),
r4 = q4 − (q1 ∨ q2 ∨ q3),

. . . .

The sequence so defined is disjoint, and has the same supremum as {qn},
namely q, by Exercise 8.23. A routine computation using the homomorphism
properties of f shows that

f(rn) = f(qn − (q1 ∨ · · · ∨ qn−1)) = f(qn) − (f(q1) ∨ · · · ∨ f(qn−1))
= pn − (p1 ∨ · · · ∨ pn−1).

The elements p1, p2, . . . , pn−1 are disjoint from pn, and hence so is their join.
Consequently, f(rn) = pn. The countable additivity of μ is now an easy
consequence of the corresponding property of ν:

μ(p) = μ(f(q)) = ν(q) =
∑

n

ν(rn) =
∑

n

μ(f(rn)) =
∑

n

μ(pn).

The second and fourth equalities use the definition of μ, while the third uses
the countable additivity of ν.

It is obvious that μ is normalized: f(1) = 1, and therefore

μ(1) = ν(1) = 1.

To prove that μ is positive, suppose μ(p) = 0 for some p in A. Let q be an
element of B such that f(q) = p. Then ν(q) = 0, by the definition of μ, so q
is in the kernel M of f . It follows that p = q/M is the zero element of A, as
desired.

Lemma 1 says that under certain conditions measures can be transferred
to quotient algebras. The reverse always works; a measure on a quotient can
always be lifted to its numerator.

Lemma 2. Let f be a Boolean σ-epimorphism from a σ-algebra B to a σ-
algebra A, and let μ be a normalized measure on A. If

ν(q) = μ(f(q))

for every q in B, then ν is a normalized measure on B. The kernel of f is
included in the set of all those elements q of B for which ν(q) = 0; the kernel
coincides with that set if and only if the measure μ is positive.
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Proof. Obviously, ν is a non-negative real-valued function. To check that
it is countably additive, and therefore a measure on B, consider an arbi-
trary disjoint sequence {qn} of elements in B, say with supremum q. The
family {f(qn)} is disjoint and has supremum f(q) in A, because f is a σ-
homomorphism. The definition of ν and the countable additivity of μ imply
that

ν(q) = μ(f(q)) =
∑

n

μ(f(qn)) =
∑

n

ν(qn),

as desired. Finally, ν is normalized because μ is normalized:

ν(1) = μ(f(1)) = 1.

If q is in the kernel of f , then ν(q) = 0, since

ν(q) = μ(f(q)) = μ(0) = 0.

Assume that μ is a positive measure. If ν(q) = 0, then q is in the kernel of f ,
since the equations

0 = ν(q) = μ(f(q))

and the positivity of μ imply that f(q) = 0. The kernel of f therefore
coincides with the set of elements in B of measure zero (under ν). On the
other hand, if μ is not positive, then there exists a non-zero element p in A
such that μ(p) = 0. Let q be an element in B such that f(q) = p. Then q is
clearly not in the kernel of f , but

ν(q) = μ(f(q)) = μ(p) = 0.

This shows that the kernel of f does not coincide with the set of elements
in B of measure zero in this case.

It is sometimes useful to consider a measure as an intrinsic part of the
Boolean algebra it is defined on. The appropriate definition is that of a
measure algebra, defined as a Boolean σ-algebra A together with a positive,
normalized measure μ on A. If A is not required to be a σ-algebra, but just
a Boolean algebra, and if, correspondingly, μ is required to be only finitely
additive, we may speak of a finitely additive measure algebra.

The theory of measure algebras has several points of contact, in both form
and content, with the topological and algebraic results of the preceding two
sections. Countability, for instance, enters through the essential countability
properties of real numbers, as follows.
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Lemma 3. Every finitely additive measure algebra satisfies the countable
chain condition.

Proof. Consider a disjoint set E of non-zero elements in a Boolean algebra
with a finitely additive measure μ. Define En to be the set of elements in E
of measure at least 1/n. The union of the sequence {En} is E, because every
element p in E is non-zero, and therefore has positive measure; if n is any
positive integer such that 1/n < μ(p), then p is in En. The set En has at
most n elements. In fact, the assumption that p1, p2, . . . , pn+1 are distinct
elements in En leads to the contradictory conclusion that

1 = μ(1) ≥ μ(p1 ∨ p2 ∨ · · · ∨ pn+1)
= μ(p1) + μ(p2) + · · · + μ(pn+1) ≥ (n + 1)/n > 1,

because the elements of En are disjoint, and μ is finitely additive. The
argument just given shows that E is a countable union of finite sets, so it
must be countable.

Corollary 1. Every measure algebra is complete.

Proof. Apply the preceding lemma and Corollary 30.1.

The reduced Borel algebra (Borel sets modulo meager Borel sets) and the
reduced measure algebra (Borel sets modulo Borel sets of measure zero) of the
unit interval have much in common. Both algebras are obtained by reducing
an incomplete σ-field modulo a σ-ideal; both algebras satisfy the countable
chain condition and therefore (Corollary 30.1) both algebras are complete;
and, incidentally, both algebras are atomless. (The proof of the last asser-
tion is a trivial consequence of Theorem 29 (p. 277) for the reduced Borel
algebra, since the algebra of regular open sets of the unit interval is atomless;
for the reduced measure algebra it requires an elementary measure-theoretic
argument.) No property of Boolean algebras that we have encountered so
far is sharp enough to tell these two algebras apart; for all we know they
are isomorphic. We conclude this chapter by showing that they are not: the
reduced measure algebra has a non-zero measure, whereas the reduced Borel
algebra does not. (This theorem is due to Birkhoff and Ulam; see [6].) It
should be mentioned in passing that Borel sets modulo Borel sets of mea-
sure zero and Lebesgue measurable sets modulo Lebesgue measurable sets of
measure zero are the same. This depends on the fact that every Lebesgue
measurable set differs from some Borel set in a set of measure zero only.
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Lemma 4. Every measure on the reduced Borel algebra of the closed unit
interval is identically zero.

Proof. Let B be the σ-field of Borel sets in [0, 1], and let M be the σ-ideal
of meager sets in B. Write A = B/M , and let f be the projection of B
onto A. If there is a non-zero measure μ on A, then we may assume, with no
loss of generality, that μ is normalized. An application of Lemma 2 yields a
normalized measure ν on B that vanishes on every meager Borel set.

We now show that there must be open intervals in B of arbitrarily small
measure that contain any given rational number t (in [0, 1]). To see this,
construct an infinite descending sequence P1 ⊃ P2 ⊃ P3 ⊃ · · · of open
intervals containing t such that the intersection of the intervals is {t}; for
instance, Pn+1 can be chosen so that its length is half that of Pn. Write

Qn = Pn − Pn+1 and Q0 =
⋂

n

Pn = {t}.

The sets Q0, Q1, Q2, . . . are mutually disjoint and their union is P1. (See
Exercise 8.27 for an abstract version of this construction.) The countable
additivity of ν implies

ν(P1) =
∞∑

n=0

ν(Qn).

In particular, the series
∑

n ν(Qn) converges; so for any real number ε > 0,
there must be a positive integer k such that

∞∑

n=k

ν(Qn) < ε.

The set Q0 is nowhere dense (it contains only t), and hence it belongs to the
ideal M . It is therefore mapped by the projection f to the zero element of A.
The definition of ν implies that

ν(Q0) = μ(f(Q0)) = μ(0) = 0.

The sequence of the sets Q0, Qk, Qk+1, Qk+2, . . . is disjoint, and its union
is Pk, by Exercise 8.27. Invoke countable additivity again to conclude that

ν(Pk) = ν(Q0) +
∞∑

n=k

ν(Qn) = 0 +
∞∑

n=k

ν(Qn) < ε.

The set Pk is thus an open interval in B that contains t and that has measure
less than ε.
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Enumerate the rational numbers of the unit interval in an infinite se-
quence {tn}. Given a positive real number ε, choose, for each positive inte-
ger n, an open interval Un containing tn such that

ν(Un) < ε/2n;

the intervals exist by the observations of the preceding paragraph. The union

U =
⋃

n

Un

is an open set that contains all of the rational numbers. Its measure is less
than ε, since

ν(U) ≤
∞∑

n=1

ν(Un) <
∞∑

n=1

ε/2n = ε,

by countable subadditivity. The complement of the open set U is a closed set
that is nowhere dense. Indeed, every non-empty open set contains a rational
number, and therefore has a non-empty intersection with U . Consequently,
no non-empty open set can be included in U ′, so that the interior of U ′ is
empty, as claimed.

It has been shown that for each ε > 0, there is an open set in B of measure
less than ε with a nowhere dense complement. For each positive integer n,
let Tn be such a set of measure less than 1/n. Write

T =
⋂

n

Tn and S = T ′ =
⋃

n

T ′
n.

The sets S and T are both Borel. The measure of T is zero, since

ν(T ) ≤ ν(Tn) < 1/n

for every positive integer n. The set S, being a countable union of nowhere
dense sets, is meager and hence an element of the ideal M . It is therefore
mapped by the projection f to the zero element of A, so that

ν(S) = μ(f(S)) = μ(0) = 0.

In other words, the unit interval is the disjoint union of two Borel sets, both
of measure zero. This contradicts the fact that the measure ν is normalized:
and let M be the σ-ideal of meager sets

ν([0, 1]) = ν(S ∪ T ) = ν(S) + ν(T ) = 0 + 0 = 0 �= 1.
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Exercises

1. Prove that a real-valued function μ on a Boolean algebra is finitely
additive if and only if

μ(p ∨ q) = μ(p) + μ(q)

whenever p and q are disjoint elements of the algebra.

2. Suppose μ is a measure on a Boolean algebra A. Show that for every
positive real number t, the function ν defined on A by

ν(p) = t · μ(p)

is also a measure on A.

3. Formulate and prove the analogues of Lemmas 1 and 2 for finitely
additive measures.

4. Suppose μ is a finitely additive measure on a Boolean algebra A. Prove
that μ(p ′ ) = μ(1) − μ(p).

5. Suppose μ is a measure on a Boolean algebra A. Prove that if {pn} is
an increasing sequence of elements with a supremum p, then

lim
n→∞

μ(pn) = μ(p).

6. Formulate and prove a dual to Exercise 5.

7. Suppose μ is a finitely additive measure on a Boolean algebra A. Prove
that for all elements p, q, and r in A,

μ(q + r) = μ((p ∨ q) + (p ∨ r)) + μ((p ∧ q) + (p ∧ r)).

(The first, second, and fourth occurrences of the symbol + denote
Boolean addition, while the third denotes addition of real numbers.)

8. (Harder.) Suppose A is a measure algebra with measure μ. Define a
real-valued function d of two arguments on A by

d(p, q) = μ(p + q).

Prove that d is a metric on A, and that A is complete as a metric
space. (This theorem goes back to Nikodym [48]. A metric space is
said to be complete if every Cauchy sequence converges. A sequence of
points {pn} in a metric space is Cauchy if for every ε > 0, there is a
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positive integer n0 such that d(pm, pn) < ε for m, n ≥ n0. The sequence
is said to converge if there is a point p in the space with the property
that for every ε > 0, there is a positive integer n0 such that d(p, pn) < ε
for n ≥ n0.)

9. Is the product of two measure algebras a measure algebra?

10. (Harder.) Suppose that {Ai} is a family of non-degenerate Boolean
algebras such that for each i, there exists a positive normalized measure
on Ai. Under what conditions does it follow that there exists a positive
normalized measure on

∏
i Ai?



Chapter 32

Boolean Spaces

There is a topological formulation of the Stone representation theorem (The-
orem 17, p. 189) that establishes a fundamental connection between the class
of Boolean algebras and a rather special class of topological spaces. The
purpose of this chapter is to describe those spaces.

A Boolean space is a totally disconnected compact Hausdorff space. There
are several possible definitions of total disconnectedness, but, as it turns out,
they are all equivalent for compact Hausdorff spaces. The most convenient
definition for our algebraic purposes is the one that demands that the clopen
sets constitute a base. Explicitly: a Boolean space is a compact Hausdorff
space with the property that every open set is the union of those simultane-
ously closed and open sets that it happens to include.

It is easy to see that the clopen subsets of a Boolean space X separate
points. Indeed, for distinct points x and y in X, there must be an open
set U that contains x but not y, because X is Hausdorff. The clopen sets
form a base, so there is a clopen set P that contains x and is included in U .
The set P and its complement are disjoint clopen sets that contain x and y
respectively.

For Boolean spaces, as for every topological space, it is true that the class
of all clopen sets is a field. The field of all clopen sets in a Boolean space X
is called the dual algebra of X.

The simplest Boolean spaces are the finite discrete spaces. Recall that
a space is discrete if every subset is open. Every subset of a discrete space
is automatically closed (since its complement is open), and therefore clopen.
The separation property holds trivially: two points x and y are separated by
the disjoint open sets {x} and {y}. When the space is finite, compactness
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also holds trivially, because there are only finitely many open sets. Since each
subset of a finite discrete space X is clopen, the dual algebra of the space
is the field of all subsets of X. Every finite Boolean algebra is isomorphic
to the field of all subsets of some (necessarily finite) set, namely the set of
its atoms (see Theorem 6, p. 119, or Corollary 15.1), so every finite Boolean
algebra is isomorphic to the dual algebra of some finite Boolean space.

A less trivial collection of examples consists of the one-point compacti-
fications of infinite discrete spaces. Explicitly, suppose a set X with a dis-
tinguished point x0 is topologized as follows: a subset of X that does not
contain the point {x0} is always open, and a subset that contains x0 is open
if and only if it is cofinite. It is easy to verify that the space X so defined
is Boolean. For instance, a subset of X is clopen if and only if it is either a
finite subset (of X) that does not contain {x0} or else a cofinite subset that
contains x0; indeed, a subset and its complement are both open just in case
one of them (the one that contains x0) is cofinite. The clopen sets form a
base for the topology because every open set that contains x0 is clopen, while
every open set that does not contain x0 is the union of its finite subsets. The
singletons of points in X − {x0} are clopen, so it is easy to verify the sepa-
ration property: two points x and y different from x0 are separated by the
clopen sets {x} and {y}, while x and x0 are separated by the clopen sets {x}
and X − {x}. An open cover of X must contain a cofinite set P (namely,
any open set in the cover that contains x0); the remaining (finite number
of) points in X − P can be covered by finitely many of the open sets in the
cover. The dual algebra of X — the field of clopen sets — is isomorphic to
the finite–cofinite algebra of X −{x0}. In fact, the mapping f defined on the
field of clopen sets by

f(P ) =

{
P if P is finite,
P − {x0} if P is cofinite,

is the desired isomorphism.
The set 2 is a Boolean algebra; from now on it will be convenient to

construe it as a topological space as well, endowed with the discrete topology.
For an arbitrary set I, the set 2I of all functions from I into 2 (equivalently,
the Cartesian product of copies of 2, one for each element of I) is a topological
space under the product topology (due to Tychonoff [78], [79]), which we now
define. Denote the value of a function x in 2I at an element i of I by xi. The
product topology can be described succinctly by saying that the class of sets

(1) {x ∈ 2I : xi = 0} and {x ∈ 2I : xi = 1},
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where i ranges over I, constitutes a subbase for the topology; this means
that the collection of finite intersections of sets in this class is a base for the
topology. In other words, every open set is the union of a family of finite
intersections of subbase sets. In the sequel, the spaces 2I endowed with the
product topology will be called Cantor spaces.

The sets in (1) are complements of one another, so they are also closed
and therefore clopen. Finite intersections of sets of type (1) are clopen (finite
intersections of clopen sets are always clopen); we shall call them basic clopen
sets because they constitute a base for the product topology. The open sets
in the product topology are the subsets of 2I that can be written as unions
of basic clopen sets.
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Basic clopen sets are easy to describe directly: they have the form

Uδ = {x ∈ 2I : xi = δi for i ∈ S} =
⋂

i∈S

{x ∈ 2I : xi = δi},

where S ranges over the finite subsets of I, and δ ranges over the functions
from S into 2. For a concrete example, take I to be the set of non-negative
integers, take S = {0, 1, 2}, and take δ to be the function that maps the
integers 0 and 2 to Boolean unit 1, and the integer 1 to the Boolean zero 0.
The corresponding clopen set is

Uδ = {x ∈ 2I : x0 = 1, and x1 = 0, and x2 = 1}.
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It can be visualized by picturing each function x in 2I as an infinite branch in
an infinite binary tree. At the ith level, the branch forks to the left if xi = 0,
and it forks to the right if xi = 1. The clopen set Uδ consists of all functions
in 2I that begin by forking to the right, then fork to the left, and then fork
to the right again (see the adjoining diagram).

Theorem 30. Every Cantor space is a Boolean space.

Proof. Parts of the theorem are quite easy to prove. The clopen sets form
a base for the product topology of 2I , by definition. The space is Hausdorff
because distinct points y and z in 2I differ at some argument i in I, and are
therefore separated by the (disjoint) clopen sets

U0 = {x ∈ 2I : xi = 0} and U1 = {x ∈ 2I : xi = 1}.

The main task is to prove that the space is compact. Consider a fam-
ily {Fj} of closed sets with the finite intersection property, that is to say,
with the property that every finite subfamily has a non-empty intersection.
It is to be shown that the intersection of the entire family is non-empty (see
Chapter 29). Each set Fj is the complement of an open set, and therefore
must be the intersection of a class Kj of clopen sets (since every open set is
the union of clopen sets). The class

K =
⋃

j

Kj

of all the clopen sets that are used to form the sets Fj has the finite in-
tersection property, because the family {Fj} has this property. Extend K
to an ultrafilter N in the Boolean algebra of all clopen subsets of 2I (Exer-
cise 20.12).

Consider an element i in I, and let φi be the ith projection from 2I to 2;
thus, φi(x) = xi for each x in 2I . The image

φi(U) = {xi : x ∈ U}

of an arbitrary clopen set U in N is a subset of 2, and is therefore automat-
ically clopen in the discrete topology of 2. The class of images

{φi(U) : U ∈ N}

has the finite intersection property. To see this, let U1, . . . , Un be a finite
sequence of sets in N . The intersection of this sequence is an element of N
(N is a filter), and is therefore non-empty (N is proper); consequently, the
image of the intersection under φi cannot empty. Since
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∅ �= φi(U1 ∩ · · · ∩ Un) ⊆ φi(U1) ∩ · · · ∩ φi(Un),

it follows that the sequence φi(U1), . . . , φi(Un) of images has a non-empty
intersection, as claimed. Invoke the compactness of the discrete space 2 to
conclude that the intersection of the entire class of images is non-empty.

The observations of the preceding paragraph show that for each i in I, it
is possible to choose an element yi in the intersection

⋂

U∈N

φi(U).

These choices determine a function y in 2I . We proceed to show that y is in
every set of N . For each index i, the basic clopen set

Vi = {x ∈ 2I : xi = yi}

has a non-empty intersection with every set in N , and therefore must itself
belong to N . In more detail, suppose U is in N . Then yi belongs to φi(U),
by the choice of yi. This means that there is an element z in U for which

φi(z) = zi = yi.

The element z is also Vi, by the definition of Vi, so the intersection of Vi

with U contains z and is therefore not empty. Since N is closed under
finite intersections, it follows that any finite family of sets from the class
N ∪ {Vi} has a non-empty intersection; in other words, N ∪ {Vi} has the
finite intersection property. The maximality of the filter N now implies
that Vi belongs to N .

Consider next an arbitrary basic clopen set Uδ containing y, where δ is
some function from a finite subset S of I into 2. The assumption that y is
in Uδ means that δi = yi for each i in S. The sets Vi are all in N , so the
finite intersections of these sets are also in N . Since

Uδ =
⋂

i∈S

Vi,

it follows that Uδ is in N . Conclusion: every basic clopen set containing y
is in N . This means, by the finite intersection property, that every basic
clopen set containing y has a non-empty intersection with every set in N .
Put somewhat differently, any given set in N has a non-empty intersection
with every basic clopen set that contains y, and therefore with every open set
that contains y. In other words, y belongs to the closure of every set in N .
But the sets in N are all closed (and in fact clopen), so y belongs to every
set in N , as claimed.
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Every set Fj in the given family of closed sets is an intersection of sets
in N , so y must belong to each Fj , and therefore it must belong to the
intersection of the family {Fj}. It follows that this intersection is non-empty,
as desired. The proof that 2I is compact is complete.

The preceding theorem seems to have been first observed by Stone [67].
The main assertion of the theorem — that 2I is compact — is a special case
of the much more general theorem (due to Tychonoff) that the product of
an arbitrary family of compact spaces is compact. The proof given above is
a special case of Bourbaki’s proof of Tychonoff’s theorem.

The dual algebra of a Cantor space is not difficult to describe: it is the
class A of all possible finite unions of basic clopen sets. For the proof, recall
that a finite union of basic clopen sets is clopen (the clopen sets form a field).
In particular, every set in A is clopen. To prove the converse, consider an
arbitrary clopen set U . As an open set, U is the union of a family {Ui}
of basic clopen sets, by the definition of the product topology. As a closed
subset of a compact space, U is compact (see Chapter 29), and is therefore
covered by some finite subfamily of {Ui}. It follows that U is the union of
finitely many basic clopen sets, so it belongs to A.

A field A of clopen sets in a topological space is called a separating field if
any two points in the space can be separated by sets in A. This is equivalent
to saying that for every pair of distinct points x and y in the space, there
exists a set P in A such that x is in P and y is in P ′. The following somewhat
technical result is useful in the study of Boolean spaces.

Lemma 1. If X is a compact space and if A is a separating field of clopen
subsets of X, then X is a Boolean space and A is the field of all clopen subsets
of X.

Proof. The fact that A separates points clearly implies that X is Hausdorff. It
also implies that A separates points and closed sets. This involves a standard
compactness argument. Suppose, indeed, that F is a closed set and x is a
point not in F . Notice that F , as a closed subset of a compact space, is
compact. Separate each point y of F from x by a suitable set Py in A that
contains y but not x. The family {Py}y∈F is an open cover of F . Compactness
yields a finite cover of F by sets Py1 , . . . , Pyn in A, none of which contains x;
their union is a set in A that separates F from x. (The union belongs to A
because A is a field.)

The result of the preceding paragraph implies that A is a base for X, and
this already implies that X is Boolean. In more detail, consider an arbitrary
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open subset U of X. For each point x in U , choose a clopen set Qx in A that
includes U ′ and does not contain x; such a set exists, by the observations of
the preceding paragraph. The complement Q ′

x is also in A (A is closed under
complementation), it contains x, and it is included in U . Consequently, the
union of the family {Q ′

x}x∈U contains every point in U , and is therefore equal
to U . This shows that U is a union of sets in A, so A is indeed a base for X.

It follows that every clopen set P in X is a finite union of sets in A, and
is therefore itself a set in A. In more detail, P is a union of a family of sets
in A because P is open and A is a base; P is the union of a finite subfamily
because P is closed, and therefore compact. Since A is closed under the
formation of finite unions, P must belong to A. It follows that A is the field
of all clopen sets in X. The proof of the lemma is complete.

Corollary 1. If a field of clopen subsets of a compact Hausdorff space is a
base, then the space is Boolean and the field contains all clopen sets.

Proof. Suppose a field A of clopen sets in a compact Hausdorff space X is a
base for the topology of X. Distinct points x and y in X are separated by
(disjoint) open sets U and V . There are sets U0 and V0 in A such that

x ∈ U0 ⊆ U and y ∈ V0 ⊆ V,

because A is a base. Since the sets U0 and V0 must be disjoint, A is a
separating field. The desired conclusion now follows from the previous lemma.

Lemma 2. Every closed subset Y of a Boolean space X is a Boolean space
with respect to the topology it inherits from X. Every clopen set in Y is the
intersection of Y with some clopen subset of X.

Proof. The proof of the first assertion is straightforward. For instance, if
the clopen sets form a base for the topology of X, then their intersections
with Y form a base for the topology of Y . In more detail, if V is an open set
in Y , then there is an open set U in X such that V = U ∩ Y ; consequently,
if U =

⋃
i Pi, where the sets Pi are clopen in X, then

V =
⋃

i

(Pi ∩ Y ),

and the sets Pi ∩ Y are clopen in Y . It is equally easy to check that Y is a
compact Hausdorff space whenever X is (see Exercises 29.27 and 29.32).

If Q is clopen in Y , then it is open in Y , so there exists an open set U
in X for which Q = Y ∩ U . The set Q is also closed in Y , and Y is closed
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in X, so Q must be closed in X (Exercise 9.8), and therefore compact. The
open set U is a union of clopen subsets of X, because X is a Boolean space.
These clopen sets cover Q, so by compactness there exists a finite collection
of clopen subsets of U whose union, say P , covers Q. Since

Q ⊆ P ⊆ U and Y ∩ U = Q,

it follows that Y ∩ P = Q. Thus, every clopen set in Y is the intersection
with Y of a clopen set in X.

Exercises

1. Prove that the topology of a finite Hausdorff space must be discrete.

2. Prove that a discrete space is compact if and only if it is finite.

3. Show that a compact Hausdorff space has the discrete topology if and
only if it is finite.

4. Suppose X is the one point compactification, with respect to a point x0

in X, of an infinite discrete space X − {x0}. Let f be the mapping
defined on the field of clopen sets by

f(P ) =

{
P if P is finite,
P − {x0} if P is cofinite.

Prove that f is an isomorphism from the field of clopen subsets of X
to the algebra of finite and cofinite subsets of X − {x0}.

5. Prove that in a Boolean space, two disjoint closed sets are separated
by a clopen set, that is to say, there is a clopen set that includes one
of the closed sets and is disjoint from the other.

6. Prove that the class of open sets in a Cantor space is a topology.

7. Is the complement of a basic clopen set in a Cantor space always a
basic clopen set?

8. Suppose the set Y = {0, 1} is given the Sierpiński topology : the open
sets are ∅, {0}, and Y . Let I be an arbitrary set, and write X = Y I .
A basic open set in X is defined to be a set of the form

{x ∈ X : xi = 0 for i ∈ S},
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where S ranges over the finite subsets of I. Open sets are defined as
arbitrary unions of basic open sets. Show that the class of open sets
is a topology for X. (It is the product topology on X induced by the
topology of Y .) Prove that the space X is compact under this topology.
Is it Hausdorff?

9. Suppose the set 3 = {0, 1, 2} is given the discrete topology. For an
arbitrary set I, define the product topology on the power 3I . Prove
directly that the resulting topological space is compact and Hausdorff.
Conclude that the space is Boolean.

10. Suppose I is the set of positive integers. Define the norm or absolute
value of an element x in 2I to be the real number

|x| =
∞∑

n=1

x(n)
2n

.

(The right side of this equation is to be understood as an infinite series
of real numbers.) Prove that this norm satisfies the following norm
properties for all x and y in 2I .

(a) |x| ≥ 0, and |x| = 0 if and only if x is the zero function (strict
positivity).

(b) |x + y| ≤ |x| + |y| (triangle inequality),

where the sum x + y is computed in the Boolean ring 2I . Show also
that every element in 2I has norm at most 1.

11. Suppose I is the set of positive integers. Define a real-valued function d
of two arguments on the set 2I by

d(x, y) = |x + y| =
∞∑

n=1

x(n) + y(n)
2n

,

where |x + y| is the norm (defined in Exercise 10) of the Boolean sum
x + y. (The Boolean sum x(n) + y(n) is computed, for each n, in the
ring 2.) Prove that d is a metric, and show that the distance between
any two points under this metric is at most 1.

12. (Harder.) The metric defined in Exercise 11 can be used to define
a topology on 2I . For each point x in 2I and each real number ε
with 0 < ε ≤ 1, define the open ball of radius ε and center x to be the
set
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{y ∈ 2I : d(x, y) < ε}.
These open balls form the base for the metric topology on 2I ; the open
sets are, by definition, the arbitrary unions of open balls. Prove that
this topology coincides with the product topology on 2I .

13. (Harder.) A topological space is called separable if it has a countable,
dense subset. Show that if I is countable, then the Cantor space 2I is
separable.

14. (Harder.) Prove that a Boolean space with a countable base has a
countable base consisting of clopen sets. Conclude that the field of
clopen sets must be countable.

15. (Harder.) Let X be the set of all ordinal numbers up to and including
some particular one. The set X is ordered (by magnitude), and, as such,
has a natural topology, namely the one for which the open intervals
constitute a base (see Exercise 9.33). Prove that X is a Boolean space.

16. Let X be the set of all ordinals up to and including the first infinite
ordinal, and endow X with the order topology (see Exercise 15). Char-
acterize the topology of X and describe its dual algebra.

17. (Harder.) Let X be the perimeter of a circle in the Cartesian plane.
Order X as follows: (x1, x2) precedes (y1, y2) if x1 < y1 or (in case
x1 = y1) x2 < y2. (This is known as the lexicographic ordering.) En-
dow X with the order topology (as defined in a similar situation in
Exercise 9.33). Prove that X is a Boolean space whose dual algebra is
the field of finite unions of half-closed intervals in the half-closed unit
interval [0, 1) (see Chapter 5).

18. (Harder.) A subset S of a topological space X is said to be connected
if it cannot be split by open sets; more precisely, there do not exist
open sets U and V in X such that U ∩ S and V ∩ S are non-empty
and disjoint, and their union is S. A component of X is defined to be a
maximal connected subset of X, that is to say, a connected subset that
is not properly included in any other connected subset of X. Prove
that a compact Hausdorff space is a Boolean space if and only if all its
components are singletons. (Topological spaces with this last property
are said to be totally disconnected.)
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19. (Harder.) If I is an infinite set, of power m, say, what is the cardinal
number of the dual algebra of the Cantor space 2I?

20. Let {Xi}i∈I be a family of Boolean spaces, and let X be the Cartesian
product of the family. The elements of X are functions x with domain I
such that for each i in I, the value x(i) — or xi, as we shall usually
write — is in Xi. The product topology on X is defined in the following
way. The simplest open sets are those of the form

U = {x ∈ X : xi ∈ P}

for some index i and some clopen subset P of Xi. Notice that the
complement of such a set has the same form, since P ′ is clopen:

U ′ = {x ∈ X : xi �∈ P} = {x ∈ X : xi ∈ P ′}.

Sets of this form are therefore clopen in the product topology on X.
Call them (temporarily) simple clopen sets. A basic clopen set is defined
to be a finite intersection of simple clopen sets. In other words, a subset
of X is a basic clopen set just in case it has the form

UP = {x ∈ X : xi ∈ Pi for each i ∈ S}

for some finite subset S of I, and some function P with domain S such
that Pi is a clopen subset of Xi for each i in S. The basic clopen sets
form a base for the product topology on X in the sense that a subset
of X is declared to be open in the product topology if it can be written
as a union of basic clopen sets. (Notice that the simple clopen sets form
a subbase for the product topology.)

(a) Prove that the class of open sets so defined really is a topology
for X.

(b) Prove that for each index i and each open subset Q of Xi, the set

V = {x ∈ X : xi ∈ Q}

is open in the product topology. Call such a set a simple open set.

(c) Define a basic open set to be a set of the form

VQ = {x ∈ X : xi ∈ Qi for each i ∈ S}

for some finite subset S of I, and some function Q with domain S
such that Qi is an open subset of Xi for each i in S. Define a
subset of X to be open if it can be written as a union of basic
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open sets. Prove that the topology just defined coincides with the
product topology defined above.

Note. For products of arbitrary families of topological spaces, the prod-
uct topology must be defined as in (c), since the clopen sets do not in
general form bases for the topologies of the component spaces.

21. (Harder.) Is the Cartesian product of a family of Boolean spaces a
Boolean space with respect to the product topology defined in the pre-
ceding exercise?



Chapter 33

Continuous Functions

Continuous functions play a central role in topology, analogous to the role
played by homomorphisms in algebra. The standard calculus definition of
a continuous function cannot be extended to arbitrary topological spaces
because there is no way of measuring the distance between points in such
spaces. From a topological point of view, the most important property of
the continuous functions one meets in calculus is that the inverse images of
open sets under such mappings are always open. This property is taken as
a definition in topology: a function φ mapping a topological space X into
a topological space Y is called continuous if for every open set P in Y , the
inverse image

φ−1(P ) = {x ∈ X : φ(x) ∈ P}
is an open set in X. If X and Y are metric spaces, this definition is equiva-
lent to the usual ε, δ-definition from calculus, formulated in terms of metrics
(Exercise 10).

The condition that the inverse image of every open set in Y be open in X
is equivalent to the requirement that the inverse image of every closed set in Y
be a closed set in X. The equivalence follows easily from the set-theoretic
identity

(1) φ−1(Y − P ) = X − φ−1(P ),

which holds for any function φ mapping X into Y and any subset P of Y (see
Exercise 1(c)). For the proof of the equivalence in one direction, suppose that
the inverse image of every open set is open, and consider a closed subset P
of Y . The complement Y − P is open in Y , so its inverse image φ−1(Y − P )
is open in X, by the assumption. This inverse image is just the complement
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of φ−1(P ) in X, by (1), so the set φ−1(P ) must be closed in X. The same
argument, with the words “open” and “closed” interchanged, establishes the
reverse implication.

In order to show that a mapping φ from X to Y is continuous, it suffices
to prove that the inverse image of every set in some subbase for the topology
of Y is open in X.

Lemma 1. Suppose φ is a function from a topological space X to a topological
space Y . If for every set P in some subbase for Y , the inverse image φ−1(P )
is open in X, then φ is continuous.

Proof. The class of finite intersections of sets in the subbase constitutes a
base for Y , by the definition of a subbase. If Q belongs to this base, say

Q = P1 ∩ · · · ∩ Pn,

where the sets Pi are elements of the subbase, then

φ−1(Q) = φ−1(P1 ∩ · · · ∩ Pn) = φ−1(P1) ∩ · · · ∩ φ−1(Pn)

(see Exercise 1(b)). The sets φ−1(Pi) are open by assumption, and a finite
intersection of open sets is open; consequently, the set φ−1(Q) is open.

Now consider an arbitrary open set U in Y . There must be a family {Qi}
of base sets such that U =

⋃
i Qi. It is easy to check that

φ−1(U) =
⋃

i

φ−1(Qi)

(see Exercise 5(a)). The sets φ−1(Qi) are open, by the argument of the
preceding paragraph, so their union φ−1(U) must be open as well. Thus, the
inverse image of each open set is open, so φ is continuous.

Just as the composition of homomorphisms is a homomorphism, so too the
composition of continuous functions is a continuous function. More explicitly,
suppose X, Y , and Z are topological spaces, and φ a mapping from X to Y ,
and ψ a mapping from Y to Z. The composition ψ◦φ is the mapping from X
to Z whose value at each point x in X is given by

(ψ ◦ φ)(x) = ψ(φ(x)).

For every subset P of Z,

(ψ ◦ φ)−1(P ) = φ−1(ψ−1(P )).
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If φ and ψ are continuous, and if P is open in Z, then ψ−1(P ) is open in Y ,
and therefore φ−1(ψ−1(P )) is open in X; consequently, the composition ψ ◦φ
is continuous.

The class of 2-valued continuous functions on a Boolean space X plays
a particularly important role in Boolean algebra. For each clopen subset P
of X, the characteristic function of P is defined by

φ(x) =

{
1 if x ∈ P ,

0 if x �∈ P .

The clopen sets {0} and {1} form a base for the discrete topology of 2, and
the inverse images of these sets under φ are the clopen subsets

φ−1({1}) = P and φ−1({0}) = P ′

of X. Consequently, φ is a continuous function from X to 2. More is true:
every 2-valued continuous function on X is the characteristic function of some
clopen set. Indeed, if φ maps X continuously into 2, then the inverse image
of the clopen set {1} under φ must be a clopen subset P of X. The elements
of P and P ′ are mapped by φ to 1 and 0 respectively, so φ coincides with the
characteristic function of P . We formulate these observations as a lemma.

Lemma 2. The correspondence that takes each clopen subset of a Boolean
space X to its characteristic function is a bijection from the class of clopen
subsets of X to the class of 2-valued continuous functions on X.

Continuous functions preserve a number of important topological prop-
erties, for example compactness.

Lemma 3. The image of a compact set under a continuous mapping is com-
pact.

Proof. Let φ be a continuous mapping from a space X to a space Y , and
let P be a compact subset of X. Consider an open cover {Ui} of φ(P ) in Y .
The family {φ−1(Ui)} of inverse images is an open cover of P , because φ is
continuous. The assumed compactness of P implies the existence of a finite
subcover φ−1(Ui1), . . . , φ

−1(Uin) of P . The sets Ui1 , . . . , Uin must therefore
cover φ(P ).

Certain topological properties that are generally not preserved by con-
tinuous functions are preserved when the underlying spaces satisfy special
hypotheses. Here is an example.
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Corollary 1. A continuous function from a compact space to a Hausdorff
space maps closed sets to closed sets.

Proof. Suppose φ is a continuous mapping from a compact space X to a
Hausdorff space Y . If P is any closed subset of X, then P is necessarily
compact; the image φ(P ) is therefore compact in Y , by Lemma 3, and con-
sequently it is closed in Y , by Lemma 29.1 and the assumption that Y is
Hausdorff.

The conclusion of the corollary is not true when the domain space is not
compact or the range space is not Hausdorff (see Exercise 14). The next
lemma presents a somewhat specialized result that will be needed later.

Lemma 4. If two continuous functions map a topological space into a Haus-
dorff space, then the set of points on which the functions agree is closed.

Proof. Suppose φ and ψ are continuous functions from a topological space X
into a Hausdorff space Y . It suffices to show that the set of points x in X
such that φ(x) �= ψ(x) is open. The complement of this set is then closed,
and this complement is precisely the set of points on which φ and ψ agree.

If U and V are open subsets of Y , then the inverse images φ−1(U)
and ψ−1(V ) are open subsets of X, because the mappings are assumed to be
continuous; the intersection of the two inverse images,

SUV = φ−1(U) ∩ ψ−1(V ),

is therefore open. Let S be the union of the sets SUV , where U, V range over
the pairs of disjoint open sets in Y . Clearly, S is open in X. We shall show
that S is just the set of points in X on which φ and ψ disagree.

Consider an arbitrary point x in X. If x belongs to S, then it belongs to
one of the sets SUV , and therefore φ(x) is in U , and ψ(x) is in V . Since U
and V are disjoint, the points φ(x) and ψ(x) must be distinct. For the
converse, suppose φ and ψ do not agree on x. The space Y is assumed to be
Hausdorff, so there are disjoint open sets U and V in Y that contain φ(x)
and ψ(x) respectively. The element x is in each of the inverse images φ−1(U)
and ψ−1(V ), so it is in SUV , and therefore also in S.

Corollary 2. If two continuous functions from a topological space X into a
Hausdorff space agree on a dense subset of X, then they agree on all of X.

Proof. Suppose two continuous functions φ and ψ from X into a Hausdorff
space agree on a dense subset S of X. The set of all points on which φ and ψ
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agree is closed in X, by the previous lemma, and it includes S by assumption,
so it must include the closure of S. It therefore coincides with X.

As a simple application of the corollary, suppose a continuous mapping φ
from a Boolean space X into itself is the identity function on a dense subset
of X. The identity function on X is continuous, and it agrees with φ on the
dense subset, so it agrees with φ on X. Conclusion: φ is the identity function
on all of X.

The topological analogue of an isomorphism is a homeomorphism, a con-
tinuous bijection from one topological space to another, with a continuous
inverse. More explicitly, a homeomorphism is a bijection φ from a space X to
a space Y with the property that φ−1(P ) is an open subset of X if and only
if P is an open subset of Y , or, equivalently, with the property that φ(P ) is
an open subset of Y if and only if P is an open subset of X. Thus, a home-
omorphism carries the class of open subsets of its domain bijectively to the
class of open subsets of its range. Two spaces are said to be homeomorphic
if there exists a homeomorphism between them.

It is a simple observation that a bijection φ from a space X to a space Y
maps open sets to open sets if and only if it maps closed sets to closed
sets. Assume, for instance, that φ maps closed sets to closed sets. If P is
open, then P ′ is closed, and therefore φ(P ′ ) is closed. It follows from the
set-theoretic identity

(2) φ(P ′ ) = φ(P ) ′

(which is valid for all bijections — see Exercise 4) that φ(P ) is open, as de-
sired. The proof when φ maps open sets to open sets is completely analogous.

The criterion for being a homeomorphism may simplify when the under-
lying spaces satisfy some stronger conditions.

Lemma 5. A bijection from a compact space to a Hausdorff space is a home-
omorphism just in case it is continuous.

Proof. A continuous bijection φ from a compact space X to a Hausdorff
space Y maps closed subsets of X to closed subsets of Y , by Corollary 1. It
therefore maps open sets to open sets, by the remark preceding the lemma.
This just means that φ−1 is a continuous function.

Corollary 3. A bijection between compact Hausdorff spaces is a homeomor-
phism just in case it maps open sets to open sets or, equivalently, just in
case it maps closed sets to closed sets. A bijection from a Boolean space to
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a compact Hausdorff space is a homeomorphism just in case it maps clopen
sets to clopen sets.

Proof. Suppose φ is a bijection from a compact Hausdorff space X to a
compact Hausdorff space Y . If φ maps open sets to open sets, then φ−1 is a
continuous function from Y to X (see the preceding proof). It follows from
the lemma that φ−1 is a homeomorphism, and consequently so is φ. If φ
maps closed sets to closed sets, then it must also map open sets to open sets,
so it is a homeomorphism, by the preceding observations. The final assertion
of the corollary follows from the preceding argument and Lemma 1, since the
clopen sets form a base for the topology of a Boolean space.

Two homeomorphic spaces have the same topological structure, just as
isomorphic algebras have the same algebraic structure. This means that any
property of spaces that is defined in terms of the topology will hold for one
of the two spaces if and only if it holds for the other. For instance, if one
of the spaces is compact, or Hausdorff, or Boolean, then so is the other. To
demonstrate that two spaces are not homeomorphic, it suffices to exhibit a
topological property that is possessed by one of the spaces, but not by the
other. For example, suppose I is the set of positive integers. The Cantor
space 2I has the same cardinality as the one-dimensional Euclidean space of
real numbers, so there are certainly bijections between the two spaces. They
cannot be homeomorphic, however, because the Cantor space is compact,
while the one-dimensional Euclidian space is not.

Examples of homeomorphisms are not hard to come by. If the topologies
of two spaces are defined in a similar fashion in terms of cardinality, then any
bijection between the spaces is a homeomorphism. For a concrete example,
suppose two spaces of the same cardinality are endowed with the cofinite
topology (or the discrete topology). The image of every cofinite set (or every
singleton) under a bijection between the spaces is again a cofinite set (or
a singleton), so the bijection and its inverse are continuous mappings. For
another simple example, suppose Y is a discrete space with two points. For
each set I, the product space Y I is homeomorphic to the Cantor space 2I ; in
fact, if ψ is any bijection from 2 to Y , then the mapping φ that takes each
function x in 2I to the function φ(x) in Y I defined by

φ(x)i = ψ(xi)

is a homeomorphism.
As a more sophisticated illustration of these ideas, we proceed to show

that the Cantor set (to be defined in a moment) is homeomorphic to the
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Cantor space 2I when I is the set of positive integers. (This observation is
due to Stone [67].) To construct the Cantor set, start with the unit interval,
and define an infinite descending sequence of sets

K0 ⊇ K1 ⊇ K2 ⊇ · · ·

as follows. The initial set is K0 = [0, 1]. The set K1 is obtained by removing
the open middle third interval (1

3 , 2
3) of K0:

K1 = [0, 1
3 ] ∪ [23 , 1].

The set K2 is obtained by removing the open middle thirds (1
9 , 2

9) and (7
9 , 8

9)
of the two intervals that make up K1:

K2 = [0, 1
9 ] ∪ [29 , 3

9 ] ∪ [69 , 7
9 ] ∪ [89 , 1].

Remove the open middle thirds from the four intervals that make up K2 to

1
3- -23

-19 -29 -39 -69 -79 -89

0

1

2

3K

K

K

K

0

0

0

0

1

1

1

1

obtain K3, and so on. (See the diagram.) The Cantor (middle third) set is
defined to be the intersection of the sets Kn:

K =
∞⋂

n=0

Kn.

Each of the sets Kn is a finite union of closed intervals, and is therefore
a closed subset of the real line. It follows that the intersection K is a closed
subset of the real line; because K is included in the compact interval [0, 1], it
is also compact. Thus, K is a compact Hausdorff space under the topology
inherited from the real line.

To describe the real numbers in K, it is helpful to use the ternary ana-
logue of the decimal representations of real numbers. Each number x in the
interval [0, 1] may be written as an infinite series in the form

x =
a1

3
+

a2

32
+

a3

33
+ · · · + an

3n
+ · · · ,
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where each an is one of the digits 0, 1, and 2. In analogy with the decimal
representation of a real number, the ternary representation of x is defined to
be

x = .a1a2a3 . . . an . . . .

For instance, 1 = .22222 . . . , since
∞∑

n=0

1/3n = 3/2, and therefore
∞∑

n=1

2/3n = 2(3/2) − 2) = 1.

Similar calculations show that

2/3 = .200000 . . . = .122222 . . . , 19/27 = .20100000 . . . = .20022222 . . . ,

7/9 = .210000 . . . = .202222 . . . , 104/243 = .10212000 . . . = .10211222 . . . .

As these examples indicate, every non-zero number x in the interval [0, 1]
that has a finite ternary representation — a representation with only finitely
many non-zero digits — also has an infinite ternary representation that is
obtained from the finite representation by decreasing the rightmost non-zero
digit by 1, and following it with a repeating infinite sequence of 2’s. To
obtain a unique representation of x in these cases, we make the following
convention: if the rightmost non-zero digit in the finite representation of x
is 2, use the finite representation; if the rightmost non-zero digit is 1, use the
representation in which that occurrence of 1 is converted to 0, and followed
by repeating 2’s. This convention can also be formulated in the following
way. The first digit a1 in the ternary representation of x is determined by

a1 =

⎧
⎪⎨

⎪⎩

0 if 0 ≤ x ≤ 1
3 ,

1 if 1
3 < x < 2

3 ,

2 if 2
3 ≤ x ≤ 1 .

Thus, x is in K1 if and only if a1 �= 1. The second digit a2 in the ternary
representation of x is determined by

a2 =

⎧
⎪⎨

⎪⎩

0 if 0 ≤ x ≤ 1
9 , or 3

9 < x ≤ 4
9 , or 6

9 ≤ x ≤ 7
9 ,

1 if 1
9 < x < 2

9 , or 4
9 < x < 5

9 , or 7
9 < x < 8

9 ,

2 if 2
9 ≤ x ≤ 3

9 , or 5
9 ≤ x < 6

9 , or 8
9 ≤ x ≤ 1 .

Thus, x is in K2 if and only if a1 �= 1 and a2 �= 1. More generally, x is in Kn

just in case the first n digits in its ternary expansion (under the convention
made above) are all different from 1. It follows that x is in K if and only
if the digit 1 does not occur in its ternary representation. (It is essentially
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this description of K that Cantor first published as a short note at the end
of [12].)

Endow the set {0, 2} with the discrete topology, and form the product
space

X = {0, 2}I .

Each point x in X may be viewed as a sequence of 0’s and 2’s. Define φ(x)
to be the number in K whose ternary representation is given by x:

φ(x) = . x1 x2 x3 . . . .

For example, if x has the value 2 at odd positive integers, and the value 0 at
even positive integers, then

φ(x) = .202020202 . . . = 3
4 .

The function φ so defined is a bijection from X to K. We shall show that φ
is a homeomorphism.

Let ρ be any function from {1, 2, . . . , n} into {0, 2}, and consider the basic
clopen subset

(3) Uρ = {x ∈ X : xi = ρi for i = 1, 2, . . . , n}

of X. The image φ(Uρ) is the set of real numbers whose ternary representa-
tion begins with .ρ1ρ2 . . . ρn. If

a = .ρ1ρ2 . . . ρn000 . . . and b = .ρ1ρ2 . . . ρn222 . . . ,

then obviously

(4) φ(Uρ) = [a, b] ∩ K,

so that φ(Uρ) is a closed subset of K.
An arbitrary basic clopen subset of X has the form

Uδ = {x ∈ X : xi = δi for i ∈ S}

for some finite subset S of I and some function δ from S into {0, 2}. Such
a set can be written as a finite union of sets of the form (3): just take n to
be the largest integer in S, and let ρ1, . . . , ρm be a list of the finitely many
functions from {1, . . . , n} into {0, 2} that agree with δ on S (there are 2k

such functions, where k is the size of {1, . . . , n} − S); then

Uδ = Uρ1 ∪ · · · ∪ Uρm .

The image of Uδ under φ can therefore be written as a finite union of closed
sets of the form (4):
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φ(Uδ) = φ(Uρ1) ∪ · · · ∪ φ(Uρm).

Since a finite union of closed sets is closed, the set φ(Uδ) must be closed in K.
In other words, the image under φ of an arbitrary basic clopen set in X is a
closed set in K.

Every clopen set in X is a finite union of basic clopen sets; an argument
similar to the one just given shows that the image under φ of an arbitrary
clopen set in X is closed in K. Since the clopen sets form a field, the image
under φ of every clopen set in X must also be open, and therefore clopen,
in K. In more detail, if P is a clopen set in X, then its complement P ′

is also clopen, so that the images φ(P ) and φ(P ′ ) must both be closed
in K; since φ(P ′ ) coincides with φ(P ) ′, by equation (2), it follows that the
image φ(P ) must also be open, and therefore clopen, in K. Conclusion: the
bijection φ from X to the compact Hausdorff space K maps clopen sets to
clopen sets, so it must be a homeomorphism, by Corollary 3.

The Cantor space 2I is easily seen to be homeomorphic to X; in fact,
the bijection from {0, 1} to {0, 2} that takes 1 to 2, and 0 to itself, induces
a homeomorphism ψ from 2I to X. The composition φ ◦ ψ is the desired
homeomorphism from the Cantor space 2I to the Cantor set K.

Exercises

1. Let φ be a mapping from a set X into a set Y . Show that the following
set-theoretic identities are valid for any subsets P and Q of Y .

(a) φ−1(P ∪ Q) = φ−1(P ) ∪ φ−1(Q).

(b) φ−1(P ∩ Q) = φ−1(P ) ∩ φ−1(Q).

(c) φ−1(Y − P ) = X − φ−1(P ).

2. If φ is any mapping from X into Y , and if P is any subset of X, and Q
any subset of Y , show that

Q ∩ φ(P ) �= ∅ if and only if φ−1(Q) ∩ P �= ∅.

3. Let φ be a mapping from a set X into a set Y . Which of the following
set-theoretic identities are valid for any subsets P and Q of X?

(a) φ(P ∪ Q) = φ(P ) ∪ φ(Q).

(b) φ(P ∩ Q) = φ(P ) ∩ φ(Q).

(c) φ(X − P ) = φ(X) − φ(P ).
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(d) φ(X − P ) = Y − φ(P ).

4. Which of the set-theoretic identities in Exercise 3 holds when φ is one-
to-one? When φ is a bijection?

5. Let φ be a mapping from a set X into a set Y , and let {Pi} be an arbi-
trary family of subsets of Y . Verify the following set-theoretic identities.

(a) φ−1(
⋃

i Pi) =
⋃

i φ
−1(Pi).

(b) φ−1(
⋂

i Pi) =
⋂

i φ
−1(Pi).

6. Let φ be a mapping from a set X to a set Y , and let {Pi} be an arbitrary
family of subsets of X. Show that the identity

(a) φ(
⋃

i Pi) =
⋃

i φ(Pi)

always holds. Show that, in general, the identity

(b) φ(
⋂

i Pi) =
⋂

i φ(Pi)

fails, but it holds when φ is one-to-one.

7. Let X be the product of a family {Xi} of Boolean spaces, under the
product topology (Exercise 32.20), and let φi be the projection from X
to Xi defined by φi(x) = xi for each x in X. Prove that φi is continuous
and maps open sets to open sets.

8. Prove that a real-valued function φ on a topological space X is contin-
uous if and only if for every real number ε > 0 and every point x0 in X,
there is a neighborhood U of x0 such that

|φ(x) − φ(x0)| < ε

for every x in U .

9. Prove that for functions φ from R to R, the topological definition of
continuity is equivalent to the standard ε, δ-definition from calculus: for
every ε > 0 and every point x0 in R, there is a δ > 0 such that

|x − x0| < δ implies |φ(x) − φ(x0)| < ε.

10. Show that for metric spaces, the definition of continuity given in the
text is equivalent to the standard ε, δ-definition from calculus (formu-
lated in terms of the metrics).
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11. A function φ from a metric space X to a metric space Y is said to be
sequentially continuous provided that whenever a sequence {xn} con-
verges to a point x in X, the corresponding sequence {φ(xn)} converges
to the point φ(x) in Y . Prove that the sequential continuity of φ implies
its continuity.

12. Recall (Chapter 29) that a subset of a topological space is a Gδ (set)
if it is a countable intersection of open sets, and an Fσ (set) if it is a
countable union of closed sets. Is the inverse image of a Gδ under a
continuous mapping always a Gδ? What about an Fσ?

13. Is the continuous image of a separable space separable? (A space is
separable if it has a countable dense subset.)

14. Show that a continuous mapping from one topological space to another
need not map closed sets to closed sets if the domain space is not
compact or the range space is not Hausdorff, and this remains true
even when the mapping is one-to-one.

15. (Harder.) Show that a continuous mapping from a compact Hausdorff
space to a compact Hausdorff space need not map open sets to open
sets, even when the mapping is one-to-one.

16. Suppose the set Y = {0, 1} is given the Sierpiński topology: the open
sets are ∅, {0}, and Y . Let I be some infinite set, and endow Y I

with the product topology (see Exercise 32.8). Prove that the Cantor
space 2I and the space Y I are not homeomorphic.

17. Prove that the image of a connected set (Exercise 32.18) under a con-
tinuous mapping is connected.

18. (Harder.) Are the Euclidean spaces R and R
2 homeomorphic?

19. Prove that any closed interval [a, b] with a < b, under the topology
inherited from R, is homeomorphic to the interval [0, 1].

20. Are the intervals [0, 1] and (0, 1) (under the inherited topology) home-
omorphic? Is either of these intervals homeomorphic to [0, 1)?

21. Formulate and prove a topological version of the exchange principle
discussed in Chapter 12.
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22. Let W be a discrete space with two points. Prove that for any set I,
the product spaces 2I and W I are homeomorphic. In fact, show that
if ψ is any bijection from the discrete space 2 = {0, 1} to W , then the
mapping φ that takes each function x in 2I to the function φ(x) in W I

defined by
φ(x)i = ψ(xi),

for i in I, is a homeomorphism from 2I to W I .

23. Prove that the Cantor set has Lebesgue measure zero (see Chapter 31,
p. 289).

24. Prove that the Cantor set is nowhere dense.

25. Prove that the Cantor set has the cardinality of the continuum.

26. Prove that
3
4 = .202020202 . . . and 1

4 = .020202020 . . . .

27. Let S be the set of points y in the Cantor set K such that the ternary
expansion of y has only finitely many occurrences of the digit 2. Prove
that every point in K is the limit of a strictly increasing or a strictly
decreasing sequence of points from S. Conclude that K, under the
topology inherited from the real line, is a separable space in the sense
that it has a countable dense subset.

28. A variant of the Cantor set may be constructed as follows. Divide the
interval [0, 1] into four intervals of equal length, and remove the open
third fourth (2

4 , 3
4); divide each of the three remaining intervals into

four intervals of equal length, and remove the open third fourths from
them; and so on. Show that the intersection of the resulting sequence
of sets, as a subspace of [0, 1], is homeomorphic to the space 3I under
the product topology, where 3 = {0, 1, 2} is given the discrete topology,
and I is the set of positive integers.

29. Suppose I is the set of positive integers. Use the homeomorphism
between the Cantor space 2I and the Cantor set to show that 2I is a
metric space. (Compare this exercise with Exercises 32.11 and 32.12.)

30. Suppose I is the set of positive integers. Use the homeomorphism
between the Cantor space 2I and the Cantor set to show that 2I is
separable. (Compare this exercise with Exercise 32.13.)
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31. (Harder.) The Stone–Čech compactification of a Hausdorff space X is
a compact Hausdorff space Y such that X is a dense subspace of Y
and every continuous mapping from X to a compact Hausdorff space Z
can be extended to a continuous mapping from Y to Z. (This notion
is due independently to Stone [67] and Čech [14].) Prove that if Y is
the Stone–Čech compactification of an infinite discrete space X, then
the field of all clopen sets in Y is isomorphic to the field P(X). (It will
be seen in Exercise 34.19 that Y is a Boolean space.)

32. (Harder.) Prove that the dual algebra of every Cantor space satisfies
the countable chain condition.

33. (Harder.) Imitating the definition of a free Boolean algebra, define the
concept of a free Boolean space, and prove existence and uniqueness
theorems for free Boolean spaces.

34. (Harder.) If P and Q are disjoint closed subsets of a compact Hausdorff
space X, prove that there is a continuous mapping from X into the
interval [0, 1] of real numbers that assumes the value 0 at every point
in P and the value 1 at every point in Q. (This is a special case of a
result due Urysohn [81], known as Urysohn’s lemma.)

35. (Harder.) If P is a closed Gδ-set in a compact Hausdorff space X, prove
that there is a continuous mapping φ from X into the interval [0, 1] of
real numbers such that

φ(x) = 0 if and only if x ∈ P.

(This is a special case of a theorem due to Vedenisov [85].)



Chapter 34

Boolean Algebras
and Boolean Spaces

The Stone representation theorem (Theorem 17, p. 189) describes a repre-
sentation of an arbitrary Boolean algebra A as a field of subsets of the set X
of all 2-valued homomorphisms on A. There is a natural topology on X,
namely the one inherited from the Cantor space 2A, and under this topol-
ogy X becomes a Boolean space. It turns out that the field representing A
in Theorem 17 is just the dual algebra of the space X.

Lemma 1. The set of all 2-valued homomorphisms on a Boolean algebra A
is a closed subset of the Cantor space 2A of all 2-valued functions on A.

Proof. For each element p in A, the 2-valued functions φ and ψ on 2A defined
by

φ(x) = x(p ′ ) and ψ(x) = x(p) ′,
for x in 2A, are continuous. For instance, the inverse images

φ−1({0}) = {x ∈ 2A : x(p ′ ) = 0}

and

φ−1({1}) = {x ∈ 2A : x(p ′ ) = 1}

are clopen in 2A, and so are the inverse images

ψ−1({0}) = {x ∈ 2A : x(p) ′ = 0} = {x ∈ 2A : x(p) = 1}

and
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ψ−1({1}) = {x ∈ 2A : x(p) ′ = 1} = {x ∈ 2A : x(p) = 0},
by the definition of the topology on 2A. Since the set of points where the
two continuous functions φ and ψ are equal is always closed (Lemma 33.4),
it follows that the set

{x ∈ 2A : x(p ′ ) = x(p) ′}
is closed in 2A for each p in A. Consequently, the intersection of these sets,
over all p in A, is a closed subset of 2A, and it consists of just those 2-
valued functions on A that preserve complementation. A similar argument
involving 2-valued functions φ and ψ on 2A defined by

φ(x) = x(p ∨ q) and ψ(x) = x(p) ∨ x(q)

(for p and q in A), and sets such as

{x ∈ 2A : x(p ∨ q) = x(p) ∨ x(q)},
justifies the same conclusion for the set of join-preserving functions. The set
of 2-valued homomorphisms on A is the intersection of these two closed sets,
so it is closed as well.

The preceding observation and Lemma 32.2 imply that the set X of all 2-
valued homomorphisms on a Boolean algebra A has the structure of a Boolean
space in a natural way; we shall call it the dual space of A. The description
of the topology that X inherits from 2A admits some simplifications. The
basic clopen subsets of X are defined to be the intersections with X of the
basic clopen subsets of 2A; they have the form

Uδ = {x ∈ X : x(p) = δ(p) for p ∈ S},
where S ranges over the finite subsets of A, and δ ranges over the 2-valued
functions on S. Suppose an element p and its complement p ′ are both in S.
If the set Uδ is not empty — say it contains a homomorphism x — then the
definition of Uδ and the homomorphism properties of x imply that

δ(p) ′ = x(p) ′ = x(p ′ ) = δ(p ′ ).

It is therefore unnecessary to use both of the conditions

x(p) = δ(p) and x(p ′ ) = δ(p ′ )

in defining Uδ, for each condition implies the other. Said differently, Uδ can
be defined as the set of x in X that agree with δ on S − {p ′}. It may be
assumed, then, that the subsets S of A used to define the basic clopen sets
in X do not contain both an element and its complement.
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A condition of the form x(p) = 0 can always be replaced by the equivalent
condition x(p ′ ) = 1, so it may also be assumed that δ always has the constant
value 1 on S. Furthermore, the homomorphism properties of x imply that the
conjunction of the conditions x(p) = 1, for p in S, is equivalent to the single
condition x(q) = 1 when q is the meet of the elements in S. It may therefore
be assumed that S contains just one element. The preceding observations
may be summarized by saying that the basic clopen subsets of X have the
form

(1) Up = {x ∈ X : x(p) = 1},

where p ranges over the elements in A. (To obtain the empty set take p = 0.)
An arbitrary clopen subset of X is a finite union of basic clopen sets, and

therefore has the form

V = {x ∈ X : x(p) = 1 for some p ∈ S}

for some finite subset S of A. The disjunction of the conditions x(p) = 1 is
equivalent to the single condition x(q) = 1 when q is the join of the elements
in S. Conclusion: the clopen subsets of X are precisely the sets of the
form (1), and the open subsets of X are the arbitrary unions of sets of the
form (1).

Given a Boolean algebra A, we may form the dual space X of 2-valued
homomorphisms on A. The field of clopen subsets of X is the dual algebra
of X; it shall be called the second dual of A. The Stone representation
theorem just says that every Boolean algebra is isomorphic to its second dual.
Indeed, the canonical embedding f of A into P(X) defined in Theorem 17 is
the correspondence that takes each element p in A to the clopen set Up. The
remarks of the preceding paragraphs show that f maps A onto the algebra
of clopen subsets of X. The Stone representation theorem may therefore be
reformulated as a result — the most fundamental result — about the relation
between Boolean algebras and Boolean spaces.

Theorem 31. The second dual of every Boolean algebra A is isomorphic
to A. More explicitly, if B is the dual algebra of the dual space X of A, and
if

f(p) = Up = {x ∈ X : x(p) = 1}
for each p in A, then f is an isomorphism from A onto B.

As was mentioned in Chapter 22, the set X of 2-valued homomorphisms
on A may be replaced in Theorem 17 by the set Z of ultrafilters in A. The
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mapping ψ that takes each homomorphism x in X to its cokernel is a bijection
from X to Z. It is natural to endow Z with a topology that turns ψ into a
homeomorphism: the clopen subsets of Z are defined to be the sets

Vp = {N ∈ Z : p ∈ N},
for p in A; in other words, they are the images under ψ of the clopen subsets
of X, given in (1). The open subsets of Z are defined to be the arbitrary
unions of clopen sets. It is common in expositions of the theory of Boolean
algebras to define the dual space of a Boolean algebra to be the space of
ultrafilters instead of the space of 2-valued homomorphisms.

Theorem 31 also has a topological analogue. Given a Boolean space X,
form its dual algebra A of clopen subsets of X. The set of 2-valued homomor-
phisms on A, endowed with the topology inherited from the Cantor space 2A,
is the dual space of A; it is called the second dual of X.

Theorem 32. The second dual of every Boolean space X is homeomorphic
to X. More explicitly, if Y is the dual space of the dual algebra A of X, and
if φ(x) is the 2-valued homomorphism that sends each element P of A to 1
or 0 according as x is, or is not, in P , then φ is a homeomorphism from X
onto Y .

Proof. The function φ(x) that sends each element P of A to 1 or 0 accord-
ing as x is, or is not, in P is a 2-valued homomorphism; in fact, it is the
homomorphism on A induced by x (see Chapter 12). Consequently, φ is a
well-defined mapping of X into Y . To prove that φ is one-to-one, assume
that x1 and x2 are distinct points in X. There must then be a clopen set P
that contains x1, but not x2, since the clopen sets separate points in X. The
definition of φ implies that

φ(x1)(P ) = 1 �= 0 = φ(x2)(P ),

so that φ(x1) �= φ(x2).
For the proof that φ maps X onto Y , consider an arbitrary point y in Y .

By definition, y is a 2-valued homomorphism on the algebra A of clopen
subsets of X. The cokernel of y, say N — the class of elements mapped to 1
by y — is an ultrafilter in A, and is therefore a maximal class of clopen sets
in X with the finite intersection property (that is to say, with the property
that the intersection of any finite family of sets in N is non-empty). The
space X is compact, so the intersection of the (clopen) sets in N must be
non-empty, say x is a point in that intersection. The image φ(x) is, by
definition, the 2-valued homomorphism on A determined by
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φ(x)(P ) = 1 if and only if x ∈ P

for each P in A. Since x is an element of every set in N , the cokernel
of φ(x) contains every set in N , and must therefore coincide with N , by the
maximality of N . In other words, the homomorphisms φ(x) and y have the
same cokernel. Every 2-valued homomorphism on A is uniquely determined
by its cokernel, so we must have φ(x) = y.

To prove that the bijection φ is a homeomorphism, it suffices to establish
its continuity (Lemma 33.5), and in fact it suffices to show that the inverse
image of every clopen subset of Y is clopen in X (Lemma 33.1). A clopen
subset of Y has the form

(2) {y ∈ Y : y(P ) = 1}

for some element P in A (see the discussion following Lemma 1). The equal-
ity φ(x) = y is equivalent to the assertion that x is in P if and only if P is in
the cokernel of y, by the observations of the preceding paragraph; in other
words, it is equivalent to the assertion that x is in P if and only if y(P ) = 1.
The inverse image of (2) is therefore the set

{x ∈ X : x ∈ P};

that is to say, it is exactly the clopen set P . The proof of the theorem is
complete.

It is sometimes convenient to indicate the relation between Boolean al-
gebras and Boolean spaces by some special terminology and notation. By
a pairing of a Boolean algebra A and a Boolean space X we shall mean a
function that associates with every pair (p, x), where p is in A and x is in X,
an element of 2 in a certain particular way. If the value of the function is
denoted by 〈p, x〉, then the requirements on the function can be expressed
by the following two pairing conditions: (1) for every element p in A, the
correspondence that takes each element x to 〈p, x〉 is a 2-valued continuous
function on X, and, by suitable choice of p, every 2-valued continuous func-
tion on X has this form; (2) for every element x in X, the correspondence
that takes each element p to 〈p, x〉 is a 2-valued homomorphism on A, and,
by suitable choice of x, every 2-valued homomorphism on A has this form.

Here is a typical example of a pairing. Let X be the dual space of a
Boolean algebra A — the space of 2-valued homomorphisms on A — and
write

(3) 〈p, x〉 = x(p).
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The requirements in pairing condition (2) are automatically satisfied: for
each point x in X, the correspondence that takes every p to 〈p, x〉 is just x,
which is a 2-valued homomorphism on A; and if y is any 2-valued homo-
morphism on A, then y is in X, by definition. The verification of pairing
condition (1) takes a bit more work. For a given element p in A, write ψp for
the correspondence that takes every x in X to 〈p, x〉. The set

Up = {x ∈ X : x(p) = 1}
is a clopen subset of X (see (1)), and ψp is its characteristic function:

ψp(x) = 1 if and only if 〈p, x〉 = 1,

if and only if x(p) = 1,

if and only if x ∈ Up.

Therefore, ψp is a 2-valued continuous function on X, by Lemma 33.2. Con-
versely, every 2-valued continuous function on X is the characteristic function
of some clopen subset of X, by the same lemma, and every clopen subset of X
has the form Up for some p in A (see, for instance, Theorem 31). Therefore,
every 2-valued continuous function on X coincides with ψp for some p. The
requirements of pairing condition (1) are thus satisfied.

Here is another typical example of a pairing. Let A be the dual algebra
of a Boolean space X; write

(4) 〈P, x〉 =

{
1 if x ∈ P ,

0 if x �∈ P .

Each element P in A is a clopen subset of X. The correspondence that
takes every x to 〈P, x〉 is the characteristic function of P , by the definition
of 〈P, x〉, so this correspondence is a 2-valued continuous function on X, by
Lemma 33.2. An arbitrary 2-valued continuous function on X is necessar-
ily the characteristic function of some clopen subset P of X, by the same
lemma, so it must be the correspondence that takes every x to 〈P, x〉. The
requirements of pairing condition (1) are thus seen to hold. For each x in X,
the correspondence that takes every clopen set P to 〈P, x〉 is precisely the 2-
valued homomorphism on A induced by x (see Chapter 12); in fact it is the
homomorphism φ(x) from Theorem 32. If y is any 2-valued homomorphism
on A, then y is an element of the dual space Y of A, by the definition of that
space. By Theorem 32, there must be an element x in X such that φ(x) = y.
It follows from the preceding remarks that y is the homomorphism on A
induced by x; consequently, y maps every clopen set P in A to 〈P, x〉, as
desired. This completes the verification of pairing condition (2).
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The next lemma says that in some sense the two examples of pairings
just described are the only possible ones.

Lemma 2. If a Boolean algebra A and a Boolean space X are paired, then A
is isomorphic to the dual algebra of X, and X is homeomorphic to the dual
space of A.

Proof. Suppose A and X are paired via a function that takes each pair (p, x)
to 〈p, x〉. Let Y be the dual space of A — the space of all 2-valued homomor-
phisms on A. The goal is to construct a homeomorphism ψ from X to Y .
For each x in X, write ψ(x) for the function on A that maps every element p
to 〈p, x〉:
(5) ψ(x)(p) = 〈p, x〉.
The first part of pairing condition (2) ensures that ψ(x) is a 2-valued homo-
morphism on A, and therefore an element of Y . The second part of condi-
tion (2) ensures that for every element y in Y — that is, for every 2-valued
homomorphism on A — there is an element x in X such that ψ(x) = y.
Consequently ψ maps X onto Y .

To show that ψ is one-to-one, consider distinct points x1 and x2 in X.
The space X is Boolean, so there is a clopen subset P of X that separates
the two points, say x1 is in P and x2 is in P ′. The characteristic function
of P — call it θ — is a 2-valued continuous function on X, by Lemma 33.2;
the second part of pairing condition (1) ensures the existence of an element p
in A such that

(6) θ(x) = 〈p, x〉
for every x in X. Since θ maps x1 to 1 and x2 to 0, we must have

〈p, x1〉 = 1 and 〈p, x2〉 = 0.

But then

ψ(x1)(p) = 〈p, x1〉 = 1 and ψ(x2)(p) = 〈p, x2〉 = 0,

by (5). It follows that the homomorphisms ψ(x1) and ψ(x2) disagree on the
element p, and are therefore distinct. Consequently, ψ is one-to-one.

It remains to prove that ψ is continuous. Consider an arbitrary clopen
subset of Y ; it has the form

Up = {y ∈ Y : y(p) = 1}
for some element p in A, by the definition of the topology of a dual space and
the remarks following Lemma 1. The inverse image under ψ of this set is
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ψ−1(Up) = {x ∈ X : ψ(x)(p) = 1} = {x ∈ X : 〈p, x〉 = 1}.

The first part of pairing condition (1) ensures that the correspondence θ
defined by (6) (for the specific p in question) is a 2-valued continuous function
on X. The inverse image under θ of the clopen set {1} (in the discrete space 2)
is therefore a clopen subset of X. Since this inverse image is just

{x ∈ X : 〈p, x〉 = 1},

it follows that ψ−1(Up) is a clopen subset of X. It has been shown that the
inverse image under ψ of every clopen subset of Y is a clopen subset of X,
so ψ is a homeomorphism, by Lemmas 33.1 and 33.5. The second assertion
of the lemma has been proved.

To establish the first assertion of the lemma, let B be the dual algebra
of X. Since X and Y are homeomorphic, by the first part of the proof, their
dual algebras are isomorphic (see Exercise 8). Consequently, B is isomorphic
to the dual algebra of Y . The dual algebra of Y is, in turn, isomorphic to
A, by Theorem 31. It follows that A and B are isomorphic, as was to be
shown.

Notice that the pairing 〈p, x〉 of the lemma satisfies (5), and is therefore
essentially of the form (3), modulo the homeomorphism ψ. A direct proof of
the first assertion of the lemma proceeds by constructing an isomorphism f
from A to the dual algebra B of X with the property

〈p, x〉 =

{
1 if x ∈ f(p),
0 if x �∈ f(p).

The pairing of the lemma is therefore essentially also of the form (4), modulo
the isomorphism f (see Exercise 10).

It follows from the proof of the lemma that the element x required in the
second part of pairing condition (2) is unique: if

〈p, x1〉 = 〈p, x2〉

holds identically for all p in A, then ψ(x1) = ψ(x2) and therefore x1 = x2.
Similarly, the element p required in the second part of pairing condition (1)
is unique: if

〈p1, x〉 = 〈p2, x〉

holds identically for all x in X, then f(p1) = f(p2) and therefore p1 = p2.
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The fundamental duality between Boolean algebras and Boolean spaces
was discovered by Stone. Theorems 31 and 32 are from [67]. The notion of
a pairing of a Boolean algebra and a Boolean space is from Halmos [23].

Exercises

1. Complete the proof of Lemma 1 by showing that the set of 2-valued
functions on A that preserve join is a closed subset of the space 2A.

2. Prove Lemma 1 directly, without using Lemma 33.4.

3. Describe explicitly the dual and the second dual of the four-element
Boolean algebra. Prove directly (without using the Stone representa-
tion theorem) that this algebra and its second dual are isomorphic.

4. Let Z be the set of ultrafilters in a Boolean algebra A. The basic open
subsets of Z are, by definition, the sets of the form

Vp = {N ∈ Z : p ∈ N},
and the open sets are, by definition, the unions of basic open sets. Prove
directly that every basic open set is also closed, and therefore clopen.
Conclude that a subset of Z is clopen if and only if it is a basic open
set.

5. Describe explicitly the dual and the second dual of the field of finite
and cofinite sets of the natural numbers. Prove directly (without using
the Stone representation theorem) that this field and its second dual
are isomorphic.

6. The set 3I , endowed with the product topology, is a Boolean space
(Exercise 32.9). Is it (up to homeomorphism) a subspace of a Cantor
space?

7. Is every Boolean space a subspace of a Cantor space? (The answer to
this question is due to Stone [67].)

8. Prove that the dual algebras of homeomorphic Boolean spaces are iso-
morphic. (The observations in this and the next exercise are due to
Stone [67].)

9. Prove that the dual spaces of isomorphic Boolean algebras are homeo-
morphic.
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10. Prove directly (without using Theorem 31) that if a Boolean algebra A
and a Boolean space X are paired, then A is isomorphic to the dual
algebra of X.

11. A theory of duality between Boolean rings without units and locally
compact Boolean spaces (analogous to the theory of duality between
Boolean algebras and Boolean spaces) was developed by Stone in [67].
The purpose of the next few exercises is to give some indication of
this theory. A topological space is locally compact if for every point x,
there is a compact set K whose interior contains x. A locally compact
Hausdorff space in which the clopen sets form a base is called a locally
compact Boolean space. Prove that in such a space the compact clopen
sets form a base for the topology, and every compact open set is clopen.

12. Prove that the class of compact clopen subsets of a topological space is
a Boolean ring (possibly without a unit) under the set-theoretic oper-
ations of symmetric difference and intersection.

13. The ring of all compact clopen subsets of a locally compact Boolean
space X is called the dual ring of X. Prove that this dual ring has a
unit if and only if X is compact.

14. (Harder.) Let A be a Boolean ring without a unit, and let X be the set
of non-trivial 2-valued homomorphisms on A. (A ring homomorphism
is trivial if it maps all elements to zero.)

(a) Show that the class of sets of the form

Up = {x ∈ X : x(p) = 1},

where p ranges over the elements of A, is closed under the (set-
theoretic) operations of symmetric difference, intersection, and
union. In fact, if p and q are in A, then

Up + Uq = Up+q, Up ∩ Uq = Up·q, Up ∪ Uq = Up∨q.

(b) Show that the class of all possible unions of sets of the form Up,
with p in A, is a topology for X. Prove that a set is open in this
topology if and only if it can be written in the form

UM = {x ∈ X : x(p) = 1 for some p ∈ M}

for some ideal M in A.
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(c) Show that if M is an ideal in A, and p an element of A, then

Up ⊆ UM if and only if p ∈ M.

Conclude that for ideals M and N in A,

UM ⊆ UN if and only if M ⊆ N.

(d) Prove that the correspondence taking each ideal M to the open
set UM is an isomorphism from the lattice of ideals of A to the
lattice of open subsets of X.

(e) Prove that X is a Hausdorff space under the defined topology.

(f) Prove that each set Up is compact. Conclude that each such set
is clopen.

(g) Show, conversely, that every compact open subset of X is equal
to Up for some p in A.

(h) Prove that X is a locally compact Boolean space under the defined
topology.

(i) Conclude that the topology defined on X in (b) is just the topol-
ogy X inherits as a subset of the Cantor space 2A. We shall call X
the dual space of the ring A.
The reader may wonder why we did not immediately define the
topology on X to be the one inherited from the Cantor space 2A.
The reason is that the sets Up, though obviously open in the in-
herited topology, are not obviously closed. This only follows once
we know that these sets are compact.
It is worth making one more observation. Lemma 1 continues to
hold for Boolean rings without unit, but it seems to be of little use.
The dual space of a Boolean ring A without unit does not consist
of all 2-valued homomorphisms on A, since it does not contain
the trivial homomorphism. In fact, the dual space is not a closed
subset of 2A; if it were closed, it would be compact (because 2A is
compact), and therefore A would have a unit, by Exercise 13.

15. (Harder.) Formulate and prove the analogue of Theorem 31 for Boolean
rings without a unit.

16. (Harder.) Formulate and prove the analogue of Theorem 32 for locally
compact Boolean spaces.
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17. Prove that the dual space of a countable Boolean algebra is separable
in the sense that it has a countable dense subset.

18. Prove that every countable Boolean algebra is isomorphic to a field of
subsets of a countable set.

19. (Harder.) Prove that the Stone–Čech compactification (Exercise 33.31)
of an infinite discrete space X is a Boolean space that is homeomorphic
to the dual space of the field P(X).



Chapter 35

Duality for Ideals

The topological duality theory of Boolean algebras, introduced in the preced-
ing chapter, pervades and enriches the entire subject. Each of the two halves
of the theory (algebras and spaces) suggests interesting questions about the
other half. By means of the theory it is in principle possible to dualize every
fact and every concept, converting algebraic facts and concepts into topolog-
ical ones, and vice versa. In almost every case the dualization is worthwhile;
it is often useful and illuminating, and, at the very least, it is amusing.

The following example serves to illustrate the meaning of topological du-
ality. Question: what can be said about the dual of a finite Boolean algebra?
Answer: a Boolean algebra is finite if and only if its dual space is finite, or
what amounts to the same thing, if and only if its dual space is discrete.
Reason: a finite Boolean algebra has only finitely many 2-valued homomor-
phisms, so its dual space is finite; conversely, a finite Boolean space has only
finitely many clopen sets, so its dual algebra is finite. For compact Hausdorff
spaces, discreteness is the same as finiteness (Exercise 32.3).

Finite Boolean algebras are atomic. A natural generalization of the prob-
lem of dualizing finiteness, and one that is somewhat less trivial, is the prob-
lem of dualizing atomicity. If, as before, X is a Boolean space and A is its
dual algebra, then, by definition, an atom of A is a non-empty clopen subset
of X that does not include any properly smaller non-empty clopen set. No
clopen set U containing at least two points can be an atom: if x and y are
distinct points in U , take V to be a clopen set that contains x but not y; the
intersection U ∩ V is a non-empty clopen set that is properly included in U .
This implies that the atoms of A are precisely the clopen subsets of X that
are singletons. A point x in a topological space is said to be isolated if {x}
S. Givant, P. Halmos, Introduction to Boolean Algebras, 338
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is an open set. Using this terminology, we may describe the atoms of A as
the singletons of isolated points of X. To say that A is atomic is to say that
every clopen subset of X contains an isolated point. Since the clopen sets
form a base, it follows that A is atomic if and only if the isolated points are
dense in X (in the sense that every open set contains an isolated point). The
other extreme has an equally satisfactory dual: A is atomless if and only if X
is perfect in the sense that it has no isolated points.

The concept of countability has an interesting dual: the dual algebra A
of a Boolean space X is countable if and only if X is metrizable in the sense
that its topology comes from some metric. (More precisely, a topological
space X is metrizable if it is possible to define a metric on X such that the
topology of the metric space coincides with the topology of X.) For Boolean
spaces, and more generally for compact Hausdorff spaces, metrizability is the
same as the possession of a countable base (Exercises 13 and 14), so it suffices
to prove that A is countable if and only if X has a countable base.

If A is countable, then the sets in A — the clopen subsets of X — con-
stitute a countable base for X. Suppose, conversely, that X has a countable
base, say V1, V2, V3, . . . . It is to be shown that X has only countably many
clopen subsets. We begin by showing that each set Vn is the union of a
countable family of clopen sets. The clopen sets form a base for the topology
of X, by the definition of a Boolean space, so Vn is certainly the union of a
family of clopen sets, say

Vn =
⋃

i∈I

Ui.

Similarly, the family {Vj} is a base for the topology of X, so each of the
clopen sets Ui is the union of some of these base sets, say

Ui =
⋃

j∈Ji

Vj .

The union of the index sets Ji, over all i in I, is a set J of positive integers,
and ⋃

j∈J

Vj =
⋃

i∈I

⋃

j∈Ji

Vj =
⋃

i∈I

Ui = Vn.

For each integer j in J , there is at least one index i in I such that j belongs
to Ji; select one such index i, and observe that Vj ⊆ Ui. If I0 is the set of
selected indices, then I0 is countable (because J is countable), and

Vn =
⋃

j∈J

Vj ⊆
⋃

i∈I0

Ui ⊆ Vn.
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Thus, Vn is the union of the countable family {Ui}i∈I0 of clopen sets.
Apply this argument to every base set Vn to arrive at a countable family

of clopen sets with the property that every set Vn can be written as a union
of some of the clopen sets in the family. It follows that the clopen sets in
the family form a countable base for the topology of X. The field generated
by this base is still countable (Exercise 11.19), and it coincides with A, by
Corollary 32.1.

The duality theory for subsets of a Boolean algebra (for example, ideals
and filters) is both more interesting and more useful than the duality theory
for elements. The following definitions are the basic ones. Suppose X is a
Boolean space with dual algebra A. If M is an ideal in A, then the union
of the clopen sets belonging to M (equally correctly and more simply, the
union of M) is an open subset of X; it is called the dual of M .

Conversely, if U is an open subset of X, then the class M of clopen subsets
that are included in U is an ideal in A; it is called the dual of U . The proof
that M is an ideal is easy. The empty set is obviously a clopen subset of X
that is included in U , so it is an element of M . The union of two clopen
sets that are included in U is again a clopen set that is included in U , so M
is closed under union. The intersection of an arbitrary clopen set with a
clopen set that is included in U is a clopen set that is included in U , so the
intersection of an arbitrary element in A with an element in M is again an
element in M .

Suppose M is the dual of an open set U . The dual of M is its union, and
this union is just U , since every open subset of X is the union of the clopen
sets that are included in it. Conclusion: the second dual of every open set
is itself. Conversely, if U is the dual of an ideal M in A, then the dual of U
coincides with M . Indeed, every clopen set in M is obviously included in U ,
because U is the union of M ; consequently, M is included in the dual of U .
Consider now an element P in the dual of U . As a clopen, and hence closed,
subset of a compact space, P is compact. Also, P is included in U , and the
union of M is equal to U , so M is an open cover of P . Compactness implies
that P is covered by finitely many of the sets in M . It follows that P belongs
to the ideal M , by Theorem 11 (p. 155).

If M and N are ideals in A, and if U and V are their respective duals,
then

M ⊆ N if and only if U ⊆ V.

Indeed, if M is included in N , then obviously the union of M is included in
the union of N ; in other words, U is included in V . On the other hand, if U
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is included in V , then every clopen set that is included in U is also included
in V ; in other words, M is included in N .

These principal facts about the duality between ideals and open sets,
which essentially go back to Stone [67], are summarized in the following
duality theorem for ideals.

Theorem 33. The dual of every open subset of a Boolean space X is an
ideal in the dual algebra A, and the dual of every ideal in A is an open subset
of X. The second dual of every ideal and of every open set is itself. Duality
between ideals and open sets is an isomorphism between the lattice of ideals
in A and the lattice of open sets in X.

It is easy to examine the duals of various special concepts in ideal theory.
The dual of the trivial ideal is ∅, and the dual of the improper ideal is X.
Thus, all the ideals of A are either trivial or improper if and only if all the
open subsets of X are either ∅ or X. In other words, the unique simple
algebra 2 is the dual of a singleton set endowed with the discrete topology.
The dual of a principal ideal is a clopen set, namely the generator (the largest
clopen set in the ideal). The dual of a maximal ideal is a maximal open set,
that is, the complement of a singleton. If M and N are ideals with duals U
and V , respectively, then the dual of M ∩ N is U ∩ V . If, for each i in a
certain index set, Mi is an ideal with dual Ui, then the union

⋃
i Ui is the dual

of the ideal generated by
⋃

i Mi. Indeed, the ideal generated by the union of
the ideals is the smallest ideal that includes each Mi, and it is mapped by
the lattice isomorphism to the smallest open set that includes each Ui. That
open set is clearly just the union of the sets Ui.

If M is an ideal in A, then {p : p ′ ∈ M} is a filter in A; if U is an open set
in X, then U ′ is a closed set in X. It follows that the duality between ideals
and open sets induces a similar duality between filters and closed sets. The
open duality is order-preserving; the closed duality is order-reversing. Thus,
for example, the closed set corresponding to a maximal filter is a minimal
closed set, that is, a singleton.

It is illuminating to look at the duality between ideals and open sets
from the perspective of an arbitrary Boolean algebra A and its dual space X
(instead of from the perspective of an arbitrary Boolean space X and its dual
algebra A). Every element p in A is identified, via the canonical isomorphism
from Theorem 31 (p. 328) with an element in the second dual of A, namely
the clopen set

Up = {x ∈ X : x(p) = 1}.
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Every ideal M in A is consequently identified with the ideal of clopen sets

M0 = {Up : p ∈ M}

in the second dual. The ideal M in A determines an open subset of the dual
space X, namely the union

UM =
⋃

{Up : p ∈ M} = {x ∈ X : x(p) = 1 for some p ∈ M}

of the clopen sets belonging to M0. Furthermore, every open subset V in X
has the form V = UM for some ideal M in A. Indeed, the class M0 of clopen
subsets of V is an ideal in the dual algebra of X, and the union of the sets
in M0 is just the open set V , by the preceding theorem. If M is the ideal
in A that corresponds to M0 (under the canonical isomorphism), then

V =
⋃

M0 =
⋃

{Up : p ∈ M} = UM .

Conclusion: the open sets in X are precisely the sets UM , where M ranges
over the ideals of A.

The canonical isomorphism from A to its second dual obviously induces
an isomorphism between the corresponding lattices of ideals. The lattice of
ideals of the second dual is isomorphic to the lattice of open subsets of X, by
Theorem 33. Conclusion: the correspondence that takes each ideal M in A
to the open set UM in X is an isomorphism from the lattice of ideals in A
to the lattice of open sets in X. In this formulation of the duality between
ideals and open sets, the assertion that the second dual of every ideal is itself
is not literally true; one must first identify the algebra A with its second dual
before the assertion becomes true.

Exercises

1. Suppose A is a Boolean algebra and X its dual space. Prove directly
(without using Theorem 33) that the opens sets in X are precisely the
sets

UM =
⋃

{Up : p ∈ M} = {x ∈ X : x(p) = 1 for some p ∈ M},

where M ranges over the ideals in A.

2. Suppose A is a Boolean algebra and X is its dual space. Prove di-
rectly (without using Theorem 33) that the correspondence taking each
ideal M in A to the open set



35 Duality for Ideals 343

UM =
⋃

{Up : p ∈ M}

is an isomorphism from the lattice of ideals in A to the lattice of open
subsets of X.

3. Suppose A is a Boolean algebra and X its dual space. Prove directly
(without using Theorem 33 or Exercises 1 and 2) that every filter N
in A determines a closed subset of X, namely the set

VN =
⋂

{Up : p ∈ N} = {x ∈ X : x(p) = 1 for all p ∈ N},

and that every closed subset of X is determined by a filter in just this
manner. Show also that for filters M and N in A,

M ⊆ N if and only if VN ⊆ VM .

Conclude that the correspondence taking each filter N to the closed
set VN is a dual isomorphism (Exercise 12.14) from the lattice of filters
in A to lattice of closed subsets of X.

4. Let M be an ideal and N = {p ′ : p ∈ M} its dual filter in a Boolean
algebra A, and let X be the dual space of A. Prove that the closed set

VN = {x ∈ X : x(p) = 1 for all p ∈ N} =
⋂

{Up : p ∈ N}

is the complement of the open set

UM = {x ∈ X : x(p) = 1 for some p ∈ M} =
⋃

{Up : p ∈ M}.

Use this result to derive the assertions in Exercise 3 from those of
Exercises 1 and 2.

5. Prove directly that if X is a Boolean space with dual algebra A, then
the dual of every ultrafilter is a closed set with just one point (namely,
the unique point that belongs to every set in the ultrafilter), and the
dual of a closed set with just one point is an ultrafilter (namely, the
class of all clopen sets that contain the point). Show that the second
dual of every ultrafilter is itself, and the second dual of every closed set
with just one point is itself.

6. Let X be a Boolean space and A its dual algebra. Prove that the dual
of every clopen set in X is the principal ideal in A generated by this
clopen set. Prove further that every principal ideal in A is the dual of
the clopen set that generates the ideal.
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7. Formulate and prove the version of Exercise 6 that applies to a Boolean
algebra A and its dual space X.

8. (Harder.) If “compact” is replaced by “locally compact” in the defi-
nition of Boolean spaces, most of the theory remains true. The dual
of a locally compact but not compact Boolean space is a Boolean ring
without unit, and conversely (Exercises 34.15 and 34.16). A typical
example of a locally compact Boolean space is obtained by omitting
one point from a compact one (Exercise 43.17). Prove that the act of
restoring such an omitted point, that is, the one-point compactifica-
tion, is the dual of the process of adjoining a unit (see Exercise 1.10
and Exercises 20.18–20.20). (This theorem is due to Stone [67].) One
consequence of this observation is that the dual of the empty Boolean
space is the one-element (zero) Boolean ring (without a unit). (If Y is
a topological space, and if X is obtained from Y by adjoining a single
point x0, then the one-point compactification of Y is the set X with the
following topology: the open subsets of X are defined to be the open
subsets of Y and the complements in X of the closed compact subsets
of Y . Note that in Hausdorff spaces, compact sets are automatically
closed, but this is not true in arbitrary topological spaces.)

9. The duality theory of ideals rests ultimately on the two relatively deep
theorems of Chapter 34. This explains the fact that dualization can
sometimes convert a non-trivial assertion into a complete triviality. For
an example, dualize the maximal ideal theorem (Theorem 12, p. 172).

10. Give a topological proof of the theorem (Exercise 20.3) that every ideal
in a Boolean algebra is the intersection of the maximal ideals that
include it.

11. The nowhere dense closed sets are of interest in a Boolean space, and
so therefore are their complements, the dense open sets. (Recall that
an open set U is dense if its closure is the entire space, or, equivalently,
if every non-empty open set has a non-empty intersection with U .)
Prove that the dual of a dense open set is a dense ideal, defined as in
Exercise 18.8.

12. Prove that if a topological space has a countable base, then every family
of open sets that is a base for the topology has a countable subfamily
that is also a base.
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13. (Harder.) Prove that every Boolean space X with a countable base
is metrizable. In other words, there is a metric on X such that the
resulting metric topology coincides with the original topology. (This
result is a special case of a more general theorem, due to Urysohn [82],
according to which every compact Hausdorff space with a countable
base is metrizable.)

14. (Harder.) Prove that a compact metric space is separable (that is, it
has a countable, dense subset) and has a countable base.

15. (Harder.) The dual algebra of a Boolean space with a countable base
and no isolated points is a countable, atomless Boolean algebra, by the
remarks in this chapter. Since two such algebras are always isomorphic
(Theorem 10, p. 134), it follows (Exercise 34.9 and Theorem 32, p. 329)
that two such spaces are always homeomorphic. Prove this topological
theorem directly, and use it to give a topological proof that two count-
able, atomless Boolean algebras are always isomorphic. (The topolog-
ical theorem is a special case of a more general result due to Kura-
towski [37]. Urysohn [83] showed earlier that every zero-dimensional
space is homeomorphic to a subspace of the Cantor middle-third set.)

16. (Harder.) What is the algebraic dual of separability?

17. (Harder.) The first countability axiom requires of a topological space
that there be a countable local base at each point. This means that
for each point x in the space, there is a countable family of open sets
containing x with the property that every open set containing x includes
at least one of the sets from the family. What is the algebraic dual of
this axiom in the case of Boolean spaces?

18. (Harder.) What is the topological dual of a complete ideal? (The an-
swer is due to Stone [67]. Complete ideals are discussed in Chapter 24.)

19. Let X be a Boolean space and P a clopen subset of X. Prove that the
dual algebra of the subspace P (under the inherited topology) is just
the relativization of the dual algebra of X to P .

20. Let A be a Boolean algebra and X its dual space. The algebraic dual
of Exercise 19 says that if p is any element in A, then the dual space
of the relativization A(p) is homeomorphic to the subspace

Up = {x ∈ X : xp = 1}
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of X (under the inherited topology). Derive this assertion as a corollary
to Exercise 19.

21. Give a direct proof of the assertion in Exercise 20, without using Ex-
ercise 19.



Chapter 36

Duality for Homomorphisms

There is a dual correspondence between structure-preserving mappings of
Boolean algebras and Boolean spaces, that is, between homomorphisms and
continuous functions. Consider two Boolean spaces X and Y , and their
respective dual algebras A and B. The correspondence takes each continuous
mapping φ from X to Y to a homomorphism f from B to A, and is determined
by the equivalence

(1) φ(x) ∈ Q if and only if x ∈ f(Q)

for all clopen sets Q in B and all elements x in X. Since φ(x) belongs to Q
just in case x belongs to φ−1(Q), the equivalence in (1) may be rewritten in
the form

x ∈ φ−1(Q) if and only if x ∈ f(Q),
and may therefore be equivalently expressed by the identity

(2) f(Q) = φ−1(Q)

for all Q in B.
Here are the details. If φ is a continuous function from X into Y , then

for each clopen subset Q of Y the inverse image φ−1(Q) is a clopen subset
of X. The function f defined by (2) therefore maps B into A. It is easy to
check that f is a homomorphism: if Q1 and Q2 are clopen subsets of Y , then

f(Q1 ∩ Q2) = φ−1(Q1 ∩ Q2) = φ−1(Q1) ∩ φ−1(Q2) = f(Q1) ∩ f(Q2)

and

f(Q ′
1) = φ−1(Q ′

1) = φ−1(Q1) ′ = f(Q1) ′

S. Givant, P. Halmos, Introduction to Boolean Algebras, 347
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(see Exercise 33.1). Each continuous function from X to Y thus induces a
dual homomorphism from B to A via definition (2).

The converse is also true: if f is a homomorphism from B into A, then
the equivalence in (1) uniquely determines a continuous function φ from X
into Y . Indeed, for each element x in X, the right side of (1) determines
an ultrafilter in B, and there is a unique point y in Y that belongs to every
set in this ultrafilter; consequently, there is just one way to define φ(x) so
that (1) holds, namely

φ(x) = y.

In more detail, the class of sets in A that contain x is an ultrafilter M in A
(by the dual of Exercise 20.2), and the inverse image of M under f , the set

N = {Q ∈ B : f(Q) ∈ M} = {Q ∈ B : x ∈ f(Q)},

is an ultrafilter in B (by the dual of Exercise 20.5). The sets in any ultrafilter
in A or in B have exactly one point in common (see Exercise 35.5 or the
remarks at the end of Chapter 35). For M that point is clearly x, and for N
it is some point y in Y ; define φ(x) to be this point y. It is easy to verify
that condition (1) is satisfied: if Q is any clopen set in Y , then φ(x) is in Q
just in case Q belongs to N , by the definition of φ(x), so that

{Q ∈ B : φ(x) ∈ Q} = N = {Q ∈ B : x ∈ f(Q)}.

To establish the continuity of φ, it suffices to prove that the inverse image
under φ of any clopen set in Y is clopen in X. A clopen set Q in Y belongs
to B, so its image f(Q) is an element of A and hence a clopen set in X;
consequently, φ−1(Q) is a clopen set in X, by (2). Every homomorphism
from B to A thus determines via condition (1) a unique dual continuous
function from X to Y .

If f is a homomorphism from B into A with dual φ, then φ and f satisfy
condition (1), and hence also condition (2), by the remark at the end of the
preceding paragraph. The dual of φ is the function g from B to A defined
by condition (2), with g in place of f . Consequently,

g(Q) = φ−1(Q) = f(Q)

for every Q in B, so that f and g are equal. Thus, f is its own second dual.
Similarly, if φ is a continuous function from X to Y with dual f , then φ

and f satisfy condition (1). The dual of f is the unique continuous function ψ
from X to Y that satisfies condition (1), with ψ in place of φ. Consequently,

φ(x) ∈ Q if and only if ψ(x) ∈ Q
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for every Q in B and every x in X. The space Y is Boolean, so distinct points
can be separated by clopen sets. It follows that φ(x) and ψ(x) must be equal
for every x in X, so that φ and ψ are equal. Thus, φ is its own second dual.

A straightforward argument based on the preceding paragraphs shows
that the correspondence that takes each continuous function to its dual maps
the class of continuous functions from X to Y bijectively to the class of ho-
momorphisms from B to A. The correspondence carries one-to-one functions
to onto functions, and conversely. To prove this last assertion, consider a
continuous mapping φ from X to Y , and let f be its dual. We formulate
five assertions, each of which will be shown to be equivalent to its neighbors:
(1) φ maps X onto Y ; (2) Y −φ(X) = ∅; (3) every clopen subset of Y −φ(X)
is empty; (4) if a clopen subset Q of Y is such that φ−1(Q) = ∅, then Q = ∅;
(5) f is one-to-one. It is obvious that (1) is equivalent to (2), and it is equally
obvious that (2) implies (3). To see that (3) implies (2), notice that φ(X) is
a compact, and hence a closed, subset of Y , by Lemmas 33.3 and 29.1. The
set Y − φ(X) is therefore open, so it is the union of its clopen subsets. If
each of these subsets is empty, then so is their union. Assertion (4) is really
just a rephrasing of (3): to say of a subset Q (of Y ) that φ−1(Q) is empty
is to say that Q does not contain any elements in the range of φ, or, what
amounts to the same thing, that Q is a subset of Y − φ(X). As regards the
equivalence of (4) and (5), recall that a Boolean homomorphism is one-to-one
just in case its kernel contains only zero. The kernel of f is the class of clopen
subsets Q such that φ−1(Q) is empty, by the definition of f as the dual of φ.
Therefore, f is one-to-one just in case assertion (4) holds. The equivalence of
the five assertions, and in particular of (1) and (5), has now been established.

Consider, finally, the following four assertions: (1) φ is one-to-one; (2) the
inverse images under φ of clopen subsets of Y separate points in X; (3) every
clopen subset of X is the inverse image under φ of some clopen subset of Y ;
(4) f maps B onto A. Each assertion is equivalent to its neighbors. To
establish the equivalence of (1) and (2), let x and y be distinct points in X.
If (1) holds, then φ(x) and φ(y) are distinct points in Y . The clopen subsets
of Y separate points (since Y is a Boolean space), so there is a clopen subset Q
containing φ(x), but not φ(y). The inverse image φ−1(Q) contains x, but
not y. If (2) holds, then there is a clopen subset Q of Y such that φ−1(Q)
contains x, but not y. It follows that Q contains φ(x), but not φ(y), so
these two points must be distinct. To go from (2) to (3) recall that the
inverse images under φ of the clopen subsets of Y constitute a field of subsets
of X (Exercise 33.1); it must be the field of all clopen sets in X, by (2) and
Lemma 32.1. The reverse implication is an obvious consequence of the fact
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that the clopen subsets of X separate points (since X is a Boolean space).
Finally, the equivalence of (3) and (4) follows directly from the definition of f
as the dual of φ, and from the fact that the elements of A and B are just the
clopen subsets of X and Y respectively.

The following fundamental duality theorem for homomorphisms has been
proved.

Theorem 34. Let X and Y be Boolean spaces, and A and B their respec-
tive dual algebras. There is a bijective correspondence between all continuous
functions φ from X into Y and all homomorphisms f from B into A such
that the equivalence

φ(x) ∈ Q if and only if x ∈ f(Q)

holds for all Q in B and all x in X. Each of φ and f is its own second dual.
The homomorphism f is one-to-one if and only if φ maps X onto Y ; the
continuous function φ is one-to-one if and only if f maps B onto A.

As was pointed out in the preceding argument, the complement of φ(X)
(in Y ) is an open set, and as such it is the union of its clopen subsets. A
clopen set Q (in Y ) is included in this complement just in case φ−1(Q) is
empty, that is, just in case Q belongs to the kernel of f . The kernel of f is an
ideal, and its dual is, by definition, the union of the clopen sets that belong to
the ideal. Conclusion: the dual of the kernel of f is the complement of φ(X).

Corollary 1. If φ is a continuous mapping from a Boolean space X into a
Boolean space Y , and if f is the dual homomorphism of φ, then the dual of
the kernel of f is the complement of the range of φ.

In loose language the corollary can be expressed as follows: to divide an
algebra by an ideal is the same as to discard an open set from a space.

The duality between homomorphisms and continuous functions preserves
the operation of composition between functions: the composition of duals is
the dual of compositions.

Corollary 2. Let X, Y , and Z be Boolean spaces, and suppose φ is a con-
tinuous mapping from X to Y , and ψ a continuous mapping from Y to Z.
The dual homomorphism of the composition ψ ◦ φ is the composition of the
dual of φ with the dual of ψ.

Proof. Suppose A, B, and C are the dual algebras of the spaces X, Y , and Z
respectively. The dual of φ is the homomorphism f from B to A defined by
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f(Q) = φ−1(Q)

for all Q in B, and the dual of ψ is the homomorphism g from C to B defined
by

g(P ) = ψ−1(P )
for all P in C. The composition f ◦ g is a homomorphism from C to A, and

(f ◦ g)(P ) = f(g(P )) = φ−1(ψ−1(P )) = (ψ ◦ φ)−1(P )

for all P in C. Consequently, f ◦ g is the dual of ψ ◦ φ, by the definition of
that dual.

Thus far, we have looked at the duality between homomorphisms and
continuous functions from the perspective of Boolean spaces and their dual
algebras. It is also illuminating to look at this duality from the perspective
of Boolean algebras and their dual spaces. Suppose A and B are Boolean
algebras with dual spaces X and Y . If f is a homomorphism from B to A,
and if x is a 2-valued homomorphism on A — that is, an element of X —
then the composition x ◦ f is a 2-valued homomorphism on B — that is, an
element of Y . The dual of f is the function φ from X to Y defined by

(3) φ(x) = x ◦ f,

and it is easily seen to be continuous. It suffices to check that the inverse
image under φ of a clopen set is clopen. If Q is a clopen subset of Y , then

Q = {y ∈ Y : y(q) = 1}

for some element q in B. Write p = f(q); a straightforward calculation gives

φ−1(Q) = {x ∈ X : φ(x) ∈ Q} = {x ∈ X : x ◦ f ∈ Q}
= {x ∈ X : (x ◦ f)(q) = 1} = {x ∈ X : x(p) = 1},

so φ−1(Q) is a clopen subset of X.
The close relationship between definitions (2) and (3) can be made more

apparent if for the dual spaces X and Y , we take the spaces of ultrafilters
instead of the spaces of 2-valued homomorphisms. In this case, the 2-valued
homomorphisms x on A and x ◦ f on B are replaced by their cokernels.
If M is the cokernel of x, then f−1(M) is the cokernel of x ◦ f . Proof: an
element q is in f−1(M) just in case f(q) is in M , and the latter happens
exactly when x(f(q)) = 1, that is to say, it happens exactly when q is in
the cokernel of x ◦ f . In the notation of ultrafilters, condition (3) therefore
assumes the form
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φ(M) = f−1(M)

for every M in X.
In discussing the duality between continuous mappings on Boolean spaces

and homomorphisms on Boolean algebras, a good way to stay neutral and
avoid giving preferential treatment to either is to use the concept of a pairing
introduced in Chapter 34. Suppose, accordingly, that A is a Boolean algebra
and X is a Boolean space, and suppose that 〈p, x〉 represents all continuous 2-
valued functions on X and all 2-valued homomorphisms on A. Suppose,
moreover, that B and Y are a similarly paired pair.

Fix a continuous function φ from X to Y , and consider 〈q, φ(x)〉. As
a function of q, for fixed x, it is a 2-valued homomorphism on B, by pair-
ing condition (2) in Chapter 34. (Thus, it corresponds to an element of Y ,
namely φ(x).) This yields nothing new. The novelty comes from consid-
ering 〈q, φ(x)〉 as a function of x for fixed q. Since it is the composite of
the continuous function x → φ(x) from X to Y , and the continuous func-
tion y → 〈q, y〉 from Y to 2, it is a continuous 2-valued function on X. (The
function y → 〈q, y〉 is continuous by pairing condition (1).) As such, it is
given by a unique element p of A, by pairing condition (1) and the remarks
at the end of Chapter 34, so that

〈
q, φ(x)

〉
= 〈p, x〉

identically in x. Denote the passage from q to p by f , that is, write p = f(q).
The proof that f is a Boolean homomorphism is a mechanical computation.
Here, for instance, is the proof that f preserves complementation:

〈
f(q ′ ), x

〉
=
〈
q ′, φ(x)

〉
=
〈
q, φ(x)

〉 ′ =
〈
f(q), x

〉 ′ =
〈
f(q) ′, x

〉
.

The first and third steps use the definition of f ; the second and fourth steps
use the fact that 〈p, x〉 and 〈q, φ(x)〉, as functions of p and q (for fixed x),
are 2-valued homomorphisms on A and B respectively, by pairing condi-
tion (2), and therefore preserve complementation. Since these equations hold
for all x in X, we conclude that f(q ′ ) = f(q) ′, by the remarks at the end of
Chapter 34. The homomorphism f is the dual of φ.

Now fix a homomorphism f from B to A, and consider 〈f(q), x〉. As a
function of x, for fixed q, it is a continuous 2-valued function on X, by pairing
condition (1). (Thus, it corresponds to an element of A, namely f(q).) In
particular, it determines the clopen set

{x ∈ X : 〈f(q), x〉 = 1}
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in X. This yields nothing new. The novelty comes from considering 〈f(q), x〉
as a function of q for fixed x. Since it is the composite of the homomor-
phism q → f(q) from B to A, and the homomorphism p → 〈p, x〉 from A
to 2, it is a 2-valued homomorphism on B. (The function p → 〈p, x〉 is a
homomorphism by pairing condition (2).) As such, it is given by a unique
element y of Y , by pairing condition (2) and the remarks at the end of Chap-
ter 34, so that

〈
f(q), x

〉
= 〈q, y〉

identically in q. Denote the passage from x to y by φ, that is, write y = φ(x).
The definition of φ implies that

φ−1
(
{y : 〈q, y〉 = 1}

)
=
{
x :
〈
q, φ(x)

〉
= 1
}

=
{
x :
〈
f(q), x

〉
= 1
}
.

Every clopen subset Q of Y is given by some element q in B in the sense that

Q = {y ∈ Y : 〈q, y〉 = 1};

indeed, every clopen subset of Y is given by a unique 2-valued continuous
function on Y (Lemma 33.2) and every continuous 2-valued function on Y is
given by some q in B (pairing condition (1)). It follows from the preceding
equations that the inverse image under φ of every clopen set in Y is a clopen
set in X, and hence that φ is continuous. The mapping φ is the dual of f .

If f is the dual of φ, and ψ is the dual of f , then

〈q, φ(x)〉 = 〈f(q), x〉 = 〈q, ψ(x)〉

holds identically for x in X and q in B, by the definitions of these duals. Since
the equations hold identically in q, it follows that φ(x) = ψ(x) for every x
in X. In other words, φ is the dual of f , and is therefore its own second dual.
If, finally, φ is the dual of f , and g is the dual of φ, then

〈
f(q), x

〉
=
〈
q, φ(x)

〉
=
〈
g(q), x

〉

holds identically. Since these equations hold identically in x, it follows
that f(q) = g(q) for every q in B. In other words, f is the dual of φ,
and is therefore its own second dual.

It follows from the preceding remarks that the duality theorem for homo-
morphisms may be formulated in terms of pairings in the following way.

Theorem 35. There is a bijective correspondence between all continuous
functions φ from X into Y and all homomorphisms f from B into A such
that
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〈
q, φ(x)

〉
=
〈
f(q), x

〉

identically for all q in B and all x in X. Each of φ and f is its own second
dual. The homomorphism f is one-to-one if and only if φ maps X onto Y ;
the function φ is one-to-one if and only if f maps B onto A.

To see a non-trivial application of the duality theorem for homomor-
phisms, we consider an alternative construction (due to Stone [67]) of free
Boolean algebras (see Chapter 28).

Theorem 36. For every set I, the dual algebra of the Cantor space 2I is
freely generated by the family of clopen sets of the form

Pi = {y ∈ 2I : yi = 1}
for i in I (and this family has the same power as I).

Proof. Write Y = 2I , and let B be the dual algebra of Y . The clopen sets Pi,
for i in I, are distinct, so the family of these clopen sets,

E = {Pi : i ∈ I},
has the same power as I. The field generated by E — the class of finite
unions of finite intersections of sets in E and their complements (Theorem 3,
p. 82) — is a base for the topology of Y (by the definition of that topology)
and therefore E generates B (Corollary 32.1). We shall prove that B is free
on E.

0

identity
E B

AA

g

h

f

x

2

Consider an arbitrary Boolean algebra A0, and an arbitrary mapping g
from E into A0 (see the diagram). Write pi = g(Pi). If X is the dual space
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of A0 (the set of 2-valued homomorphisms on A0), and if A is the dual algebra
of X (the algebra of clopen subsets of X), then A0 and A are isomorphic via
the mapping h given by

h(p) = {x ∈ X : x(p) = 1}

(Theorem 31, p. 328). For each x in X, define a function φ(x) from I to 2 by

φ(x)i = x(g(Pi)) = x(pi).

Clearly, φ maps X into Y , because φ(x) is an element of Y for each x. The
inverse image under φ of the clopen set Pi is a clopen subset of X:

φ−1(Pi) = {x ∈ X : φ(x) ∈ Pi}
= {x ∈ X : φ(x)i = 1} = {x ∈ X : x(pi) = 1}.

The same is true for the inverse image of the complement of Pi, by Exer-
cise 33.1(c). Since the elements of E and their complements form a subbase
for the topology of Y , it follows that φ is continuous, by Lemma 33.1.

Let f be the dual homomorphism from B to A. This means that

f(Q) = φ−1(Q)

for every Q in B. In particular,

f(Pi) = φ−1(Pi) = {x ∈ X : x(pi) = 1} = h(pi) = h(g(Pi))

for each i in I. In other words, f is a homomorphism from B into A that
agrees with h ◦ g on E. Consequently, h−1 ◦ f is the desired homomorphism
from B into A0 that agrees with g on E. The proof of the theorem is complete.

An explicit statement of the duality between Boolean homomorphisms
and continuous mappings seems to have appeared for the first time in Sikor-
ski’s book [64]. It is derived there as a corollary of a theorem (due to
Sikorski [60]) to the effect that every homomorphism between certain fields
of subsets of sets X and Y is induced (in the sense of Chapter 12) by a
mapping from Y to X. The formulation of the homomorphism–continuous-
function duality in terms of a pairing of a Boolean algebra and a Boolean
space (Theorem 35) goes back to Halmos [23].
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Exercises

1. Suppose that X and Y are Boolean spaces with dual algebras A and B.
Show that the correspondence given in Theorem 34 between continuous
functions φ from X to Y and homomorphisms f from B to A is a
bijection.

2. Suppose A and B are Boolean algebras with dual spaces X and Y .
Show that for each continuous function φ from X into Y , there is a
homomorphism f from B to A such that

φ(x) = x ◦ f

for every x in X (cf. condition (3) in this chapter).

3. If X is a Boolean space and A its dual algebra, then the 2-valued
function 〈P, x〉 defined for all P in A and all x in X by

〈P, x〉 =

{
1 if x ∈ P ,

0 if x �∈ P ,

is a pairing of A and X (see Chapter 34). Assume that a pairing of a
Boolean space Y and its dual algebra B is also defined in an analogous
fashion. According to Theorem 35, the dual of a continuous function φ
from X to Y is the unique function f from B to A satisfying the pairing
equation

〈
Q, φ(x)

〉
=
〈
f(Q), x

〉

for all Q in B and all x in X. Similarly, the dual of a homomorphism f
from B to A is the unique function φ from X to Y satisfying the
pairing equation. Show that these definitions are equivalent to the
ones determined by the equivalence

φ(x) ∈ Q if and only if x ∈ f(Q)

in Theorem 34.

4. If A is a Boolean algebra and X its dual space, then the 2-valued
function 〈p, x〉 defined for all p in A and all x in X by

〈p, x〉 = x(p)

is a pairing of A and X (see Chapter 34). Assume that a pairing of a
Boolean algebra B and its dual space Y is also defined in an analogous
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fashion. According to Theorem 35, the dual of a homomorphism f
from B to A is the unique function φ from X to Y satisfying the pairing
equation

〈
q, φ(x)

〉
=
〈
f(q), x

〉

for all q in B and all x in X. Show that this definition is equivalent to
the one given by the equation

φ(x) = x ◦ f

(cf. condition (3) in this chapter).

5. Formulate and prove the version of Corollary 2 that applies to the
notion of pairings of Boolean algebras with Boolean spaces.

6. Let A be a Boolean algebra and X its dual space. Use the results in this
chapter to give another proof of the theorem (Exercise 35.20) that the
dual space of the relativization of A to an element p is homeomorphic
to the subspace

Up = {x ∈ X : xp = 1}
of X.

7. Give a topological proof of the fact (Corollary 28.1) that a finite Boolean
algebra is free if and only if the number of its atoms is a (finite) power
of 2, or, equivalently, if and only if it has 22m

elements for some natural
number m.

8. Prove that every free algebra satisfies the countable chain condition.

9. Use Exercises 8 to give another solution to Exercise 30.12.

10. Use Theorem 36 to give another proof of the fact (Corollary 28.2) that
every infinite free algebra is atomless.

11. Derive Theorem 36 from Lemma 28.1.

12. Prove that Theorem 36 implies Lemma 28.1.

13. Prove that the group of automorphisms of a Boolean algebra is isomor-
phic to the group of homeomorphisms mapping the dual space to itself.
(This theorem is due to Stone [67].)
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14. (Harder.) Use Theorem 34 to prove that a Boolean space is separable
if and only if its dual algebra is embeddable in the field of all subsets
of the set of positive integers.

15. (Harder.) Give a topological solution of Exercise 22.4.



Chapter 37

Duality for Subalgebras

The epi–mono duality for structure-preserving maps implies a useful sub–
quotient duality for the structures themselves. One half of this duality is a
bijective correspondence between the closed subspaces of a Boolean space Y
and the quotients of its dual algebra B. Consider first a closed subset X of
the space Y . Under the inherited topology, X is a Boolean space, and its
dual algebra A consists of the intersections with X of the clopen subsets of Y
(Lemma 32.2). There is a natural mapping φ (namely the identity) from X
into Y . Since φ is one-to-one, the dual homomorphism f (defined by

f(Q) = X ∩ Q

for every clopen subset Q of Y ) maps B onto A, by Theorem 34. As a
homomorphic image, A is isomorphic to a quotient of B, and in fact it is
isomorphic to the quotient B/M , where M is the kernel of f , by the first
isomorphism theorem (Theorem 14, p. 179). It follows (Exercise 34.9) that X
is homeomorphic to the dual space of B/M . The dual of the ideal M is the
complement of the range of φ, by Corollary 36.1, that is to say, it is the open
set

X ′ = Y − X = Y − φ(X).
Thus, the closed subspace X corresponds to — and in fact is homeomorphic
to the dual space of — the quotient B/M , where M is the ideal that is the
dual of X ′.

Consider now an arbitrary quotient of the algebra B, determined say by
an ideal M . The dual of M is an open subset of Y , so the complement of
this dual, say X, is a closed subset of Y ; as such, it is a Boolean space under
the inherited topology. The dual algebra of X — call it A — is isomorphic

S. Givant, P. Halmos, Introduction to Boolean Algebras, 359
Undergraduate Texts in Mathematics, DOI: 10.1007/978-0-387-68436-9 37,
c© Springer Science+Business Media, LLC 2009



360 Introduction to Boolean Algebras

to the quotient B/M . Indeed, the projection mapping of B to B/M is an
epimorphism, so its dual is a one-to-one continuous function φ from the dual
space of B/M into Y , by Theorem 34. The range of φ is the complement of
the dual of the kernel of the epimorphism (Corollary 36.1). Since the kernel
of the projection is M , the range of φ is X. In other words, φ maps the
dual space of B/M homeomorphically onto X. It follows (Exercise 34.8)
that B/M is isomorphic to the dual algebra of X, which is just A. Thus,
the quotient algebra B/M corresponds to — and in fact is isomorphic to the
dual algebra of — the subspace X that is the complement of the dual of the
ideal M . The preceding discussion is summarized in the following duality
theorem for quotient algebras (due to Stone [67]).

Theorem 37. There is a bijective correspondence between the closed sub-
spaces of a Boolean space Y and the quotients of its dual algebra B. If M
is an ideal in B, then the dual space of the quotient B/M is homeomorphic
to the closed subspace X, where X ′ is the open set that is the dual of M .
Inversely, if X is a closed subspace of Y , then the dual algebra of X is iso-
morphic to the quotient B/M , where M is the ideal that is the dual of X ′.

The second half of the sub–quotient duality is more complicated to for-
mulate precisely, but here is an intuitive description. Suppose A and B are
Boolean algebras with dual spaces X and Y respectively. If B is a subalgebra
of A, then there is a natural homomorphism f (namely the identity) from B
into A. Since f is one-to-one, the dual mapping φ maps X onto Y , so that Y
is isomorphic to a certain quotient space of X. Inversely, every quotient of X
of a certain type determines a subalgebra of A.

To make the preceding intuitive description precise, it is first necessary
to clarify what is meant by a quotient of a topological space X. If φ is a
function from X onto a set Y , then a topology can be defined on Y that
makes φ continuous: declare a subset of Y to be open just in case its inverse
image under φ is an open set in X. The resulting class of open sets is called
the quotient topology on Y (with respect to the space X and the mapping φ),
and it is clear that under this topology, φ becomes a continuous function
from X to Y .

For a concrete example, consider any equivalence relation Θ on X, and
let Y be the set of equivalence classes of Θ. The projection φ maps each
element in X to its equivalence class modulo Θ. A subset V of Y is, by
definition, open in the quotient topology (with respect to φ) if φ−1(V ) is an
open subset of X. Since φ−1(V ) is the union of the equivalence classes in V
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(equally correctly, it is the union of V ), the set V is open in the quotient
topology just in case

⋃
V is an open set in X. The space Y is called the

quotient of X modulo Θ, and we shall denote it by

Y = X/Θ.

The example in the preceding paragraph typifies the general situation.
Given an arbitrary mapping φ from X onto a set Y , define an equivalence
relation Θ on X by requiring two elements x and y in X to be equivalent
modulo Θ if they have the same image under φ:

x ≡ y mod Θ if and only if φ(x) = φ(y).

The topological analogue of the first isomorphism theorem says that Y , en-
dowed with the quotient topology, is homeomorphic to the quotient space
X/Θ, and in fact the correspondence that takes each equivalence class x/Θ
to the element φ(x) in Y is a well-defined homeomorphism from X/Θ to Y .

A quotient of a compact space is always compact (Lemma 33.3). A quo-
tient of a Hausdorff space or a Boolean space, however, need not be Hausdorff
or Boolean (Exercises 5 and 6). In order to establish a duality between the
subalgebras of a Boolean algebra and the quotients of its dual space, it is
important to characterize the equivalence relations on the dual space that
lead to quotients that are Boolean spaces.

Consider an equivalence relation Θ on a Boolean space X. A subset P
of X is said to be compatible with Θ if it is a union of equivalence classes
of Θ; in other words, if an element x is in P , then the entire equivalence class
of x (modulo Θ) is included in P . The relation Θ is called Boolean if for any
two equivalence classes of Θ, there is a clopen subset of X that is compatible
with Θ and that includes one of the equivalence classes, but not the other.

To understand the significance of this definition, let Θ be an equivalence
relation on X, and consider the class B of all those clopen subsets of X that
are compatible with Θ. It is easy to check that B is a subalgebra of the dual
algebra of X (Exercise 8). For each set P in B, the quotient set

P/Θ = {x/Θ : x ∈ P}

is a subset of the quotient space Y = X/Θ. The inverse image of this subset
under the projection (that is, the union of the equivalence classes in P/Θ)
is just P , because P is assumed to be compatible with Θ. Since P is clopen
in X (it belongs to B), the set P/Θ must be clopen in Y , by the definition
of the quotient topology (Exercise 7). Thus, the quotient of every set in B
is clopen in the quotient space.
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If P and Q are sets in B, then

(P/Θ) ∪ (Q/Θ) = {x/Θ : x ∈ P ∪ Q} = (P ∪ Q)/Θ(1)

and

(P/Θ) ′ = {x/Θ : x �∈ P} = {x/Θ : x ∈ P ′} = (P ′ )/Θ.(2)

It follows from these equations, and from the closure of B under union and
complement, that the class

BΘ = {P/Θ : P ∈ B}
is closed under union and complement. The class obviously contains the
empty set, so it is a field of clopen subsets of Y . The mapping that takes
each set P in B to its quotient P/Θ is a homomorphism from B onto BΘ,
by equations (1) and (2). The kernel of this homomorphism is the class of
sets P such that P/Θ is empty, so the kernel contains only the empty set.
The homomorphism is therefore an isomorphism from B to BΘ.

The condition that the relation Θ be Boolean simply means that BΘ is
a separating field of clopen subsets of the quotient space Y . It follows from
Lemma 32.1 that if Θ is a Boolean relation, then Y is a Boolean space and BΘ

is the field of all clopen subsets of Y . Conversely, if Y is a Boolean space,
then the clopen sets in Y separate points. Since the union of a clopen set
in Y is a clopen set in X that is compatible with Θ , the fact that the clopen
sets in Y separate points just means that the relation Θ is Boolean. The
following lemma has been proved.

Lemma 1. Let X be a Boolean space and Θ an equivalence relation on X.
The quotient space X/Θ is Boolean if and only if the relation Θ is Boolean.
If Θ is Boolean, and if B is the field of all clopen subsets of X that are
compatible with Θ, then BΘ is the dual algebra of the quotient space X/Θ,
and B is isomorphic to BΘ.

Each Boolean relation Θ on a Boolean space X determines a subalgebra
of the dual algebra of X, namely the algebra B of clopen subsets of X that
are compatible with Θ. The algebra B is called the dual of Θ because it is
isomorphic to the dual algebra of the quotient space X/Θ (Lemma 1).

Inversely, each subalgebra B of the dual algebra of X determines a dual
Boolean relation Θ on X such that the quotient space X/Θ is homeomorphic
to the dual space of B. The relation Θ is defined by requiring

x ≡ y mod Θ
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just in case x and y belong to the same clopen sets in B, that is, just in case,
for every P in B,

x ∈ P if and only if y ∈ P.

The proof that Θ is a Boolean relation is not difficult. First, each set P
in B is compatible with Θ: if x is a point in X, then the definition of Θ
implies that the equivalence class of x is either entirely included in, or entirely
disjoint from, P . Second, if x and y are points in X that are not equivalent
modulo Θ, then the definition of Θ implies that there must be a set P in B
that separates the points, say P contains x but not y. The equivalence
class of x is then entirely included in P , while that of y is disjoint from P ,
because P is compatible with Θ.

The subalgebra B is its own second dual, that is to say, if Θ is the dual
relation of B, and if C is the dual algebra of Θ — the field of all clopen subsets
of X that are compatible with Θ — then B = C. For the proof, recall from
the preceding paragraph that Θ is a Boolean relation on X, so that the
quotient Y = X/Θ is a Boolean space with dual algebra CΘ (Lemma 1). On
the other hand, the final remarks of the preceding paragraph imply that BΘ

is a separating field of clopen sets in Y , so it must be the field of all clopen
sets in Y (Lemma 32.1). Thus,

(3) BΘ = CΘ.

Each set P in B or in C is the union of the equivalence classes in P/Θ, so
equation (3) implies that B = C, as required. One consequence of these
observations is that B, as the dual of Θ, is isomorphic to the dual algebra
of Y , by Lemma 1. The dual space of B is therefore homeomorphic to Y
(Exercise 34.9).

Each Boolean relation on the space X is also equal to its second dual.
For the proof, suppose B is the dual algebra of a Boolean relation Θ on X,
and assume Ψ is the dual relation of B. It is to be shown that Θ = Ψ. If
two points x and y in X are equivalent modulo Θ, then they must belong
to the same clopen sets that are compatible with Θ, by the definition of
compatibility. Since the dual algebra B consists of all clopen sets that are
compatible with Θ, the points x and y belong to the same sets in B, and
are therefore equivalent modulo Ψ, by the definition of Ψ. If the two points
are not equivalent modulo Θ, then there is a clopen subset P of X that is
compatible with Θ and that contains x, but not y, by the assumption that Θ
is a Boolean relation. The set P belongs to B, by the definition of B, so
the points x and y do not belong to precisely the same sets in B, and are
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therefore not equivalent modulo Ψ, by the definition of Ψ. Thus, two points
in X are equivalent modulo Θ if and only if they are equivalent modulo Ψ.

If X is a Boolean space with dual algebra A, then the correspondence f
that takes each subalgebra of A to the dual relation on X is a bijection from
the lattice of subalgebras of A to the lattice of Boolean relations on X. The
mapping f is one-to-one because each subalgebra is its own second dual,
and f is onto because each Boolean relation is its own second dual. In more
detail, if

f(B) = Θ = f(C),
then the dual of Θ is the second dual of both B and C, so that B = C.
Consequently, f is one-to-one. If Θ is an arbitrary Boolean relation on X,
and if B is its dual algebra, then f(B) is the dual relation of B and therefore
the second dual of Θ, so that f(B) = Θ. Hence, f is onto.

The correspondence f is similar in nature to a lattice isomorphism, except
that it reverses inclusions (and therefore it maps meets to joins, and joins to
meets — cf. Exercise 12.12). To see this, let B and C be subalgebras of A
with dual relations Θ and Ψ respectively. Suppose first that C is a subalgebra
of B. If two points x and y from X belong to the same sets in B, then they
certainly belong to the same sets in C. In other words,

x ≡ y mod Θ implies x ≡ y mod Ψ,

so that Θ is included in Ψ. Conversely, if Θ is included in Ψ, then every
equivalence class of Ψ is a union of equivalence classes of Θ. Consequently,
every clopen set in X that is compatible with Ψ is also compatible with Θ. It
follows that C must be included in B. An order-reversing bijection between
lattices is called a dual (lattice) isomorphism.

Here, finally, is the precise statement of the second half of the sub–
quotient duality, the duality theorem for subalgebras.

Theorem 38. Let X be a Boolean space and A its dual algebra. The corre-
spondence that takes each subalgebra of A to its dual relation is a dual isomor-
phism from the lattice of subalgebras of A to the lattice of Boolean relations
on X. The second dual of every subalgebra and of every Boolean relation is
itself. If a relation Θ is the dual of a subalgebra B, then B is isomorphic to
the dual algebra of the quotient space X/Θ, and X/Θ is homeomorphic to the
dual space of B.

The duality between subalgebras of a Boolean algebra and quotients of
the dual space that are Boolean spaces was first observed by Stone [67]. The
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characterization of the equivalence relations on the dual space that lead to
quotients that are Boolean spaces is from [45].

Exercises

1. Suppose X is a topological space, and φ a function from X onto a set Y .
Prove that the quotient topology on Y is in fact a topology, and the
mapping φ is continuous under this topology.

2. Suppose X is a topological space, and φ a function from X onto a set Y .
Prove that the quotient topology on Y is the largest topology under
which φ becomes continuous. In other words, prove that if T is any
topology on Y under which φ is continuous, then every open set in T
is also open in the quotient topology.

3. Prove the topological analogue of the first isomorphism theorem (see
p. 361).

4. Show directly (without using Lemma 33.3) that the quotient of a com-
pact space is compact.

5. Give an example to show that the quotient of a Hausdorff space need
not be Hausdorff.

6. Give an example to show that the quotient of a Boolean space need not
be Boolean.

7. Suppose X is a topological space, and φ a mapping from X onto a
set Y . Prove that a subset of Y is clopen in the quotient topology if
and only if its inverse image under φ is clopen in X.

8. Prove that the clopen sets in a Boolean space X that are compatible
with a given equivalence relation on X form a subfield of the dual
algebra of X.

9. Prove that the class of Boolean relations on a Boolean space is a com-
plete lattice under the partial ordering of set-theoretic inclusion.

10. (Harder.) Suppose X is a Boolean space and A its dual algebra. If B is
a subalgebra of A, and if Θ is the corresponding Boolean relation on X,
then the dual space of B is homeomorphic to the quotient space X/Θ,
by Theorem 38. Show that if the dual space of B is taken to be the
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space of ultrafilters in B (see the remarks following Theorem 31, p. 328),
then the function that maps each ultrafilter N to the intersection of the
sets in N is such a homeomorphism.

11. (Harder.) Let X be a Boolean space and A its dual algebra. If M is an
ideal in A, and if B is a subalgebra of A with dual Boolean relation Θ,
what is the dual of the ideal M ∩ B (of B) in the space X/Θ? (Recall
that X/Θ is a homeomorphic copy of the dual space of B.)

12. Suppose X is Boolean space, Y a non-empty clopen subset of X, and y0

a point in Y . Show that the mapping φ from X onto Y defined by

φ(x) =

{
x if x ∈ Y ,

y0 if x �∈ Y ,

is continuous, and prove directly that the equivalence relation Θ on X
defined by

x ≡ z mod Θ if and only if φ(x) = φ(z)

is Boolean.

13. The formulation of the sub–epi duality in Theorem 37 is not exactly
parallel to that of Theorem 38. It makes no mention of a dual lattice
isomorphism or of second duals. Formulate a version of Theorem 37
that is parallel to Theorem 38.

14. A pseudo-metric on a set X is a non-negative real-valued function d of
two arguments that satisfies all the conditions for being a metric (see
Chapter 9, p. 55) except for strict positivity; the condition of strict
positivity,

d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y,

is replaced by the weaker condition

d(x, y) ≥ 0 and d(x, x) = 0.

A pseudo-metric space is a set together with a pseudo-metric. In terms
of the pseudo-metric, a topology may be defined in exactly the same
way as for metric spaces (see Chapter 9).

Suppose d is a pseudo-metric on X. Prove that the binary relation Θ
defined by

x ≡ y mod Θ if and only if d(x, y) = 0



37 Duality for Subalgebras 367

is an equivalence relation on X. On the set X/Θ of equivalence classes,
define a non-negative real-valued function e of two arguments by writing

e(u, v) = d(x, y)

whenever x is in u, and y in v. Show that e is a well-defined metric
on X/Θ, and that under this metric the projection from X to X/Θ is
a continuous function.



Chapter 38

Duality for Completeness

By now we have seen the dual of almost every significant finite algebraic
concept that was introduced before; it is time to turn to the infinite ones.
What topological property, for instance, characterizes a Boolean space whose
dual algebra is known to be complete? The answer is a weird but interesting
part of pathological topology.

A Boolean space is called complete if the closure of every open set is
open. (It is not difficult to show that every compact Hausdorff space with this
property is automatically a Boolean space; see Exercise 1.) Complete Boolean
spaces are sometimes called extremally disconnected spaces. Completeness is
a self-dual property: a space is complete if and only if the interior of every
closed set is closed (see Exercise 2). At first glance it is not at all obvious
that non-trivial (that is, non-discrete) complete spaces exist. It turns out,
however, that they exist in profusion; there are as many of them as there are
complete Boolean algebras.

The brunt of the major theorem in this direction is carried by an auxiliary
result that has other applications also. It is in effect a topological charac-
terization of the suprema that happen to be formable in a not necessarily
complete Boolean algebra.

Lemma 1. If {Pi} is a family of elements (clopen sets) in the dual algebra A
of a Boolean space X, and if U =

⋃
i Pi, then a necessary and sufficient

condition that {Pi} have a supremum in A is that U− be open. If the condition
is satisfied, then ∨

i

Pi = U−;

that is, the algebraic supremum is the closure of the set-theoretic union.
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Proof. Assume first that P =
∨

i Pi. Since P is closed (it belongs to A, by
assumption) and includes each Pi, it must include the union U , and therefore
also the closure U−. Since P is open, the set P − U− is open. If P − U−

is not empty, then it includes a non-empty clopen set Q. The set P − Q is
clopen, it is properly included in P (because Q is not empty), and it includes
all the sets Pi, because

U− = P ∩ U− = P − (P − U−) ⊆ P − Q

(see Exercise 6.2(d)). This contradicts the assumption that P is the su-
premum (least upper bound) of the family {Pi}. It follows that U− = P ,
and hence that U− is open.

If, conversely, U− is open, then it is clopen, and of course it includes all
the sets Pi. If P is any clopen set that includes each Pi, then P includes U
and therefore also U−, since P is closed. This implies that the family {Pi}
does have a supremum in A, namely U−.

Corollary 1. If a family of elements in the dual algebra of a Boolean space
has a supremum, then that supremum differs from the set-theoretic union by
a nowhere dense set.

Proof. Suppose U is the union of a given family of elements in the dual
algebra. If the family has a supremum, then that supremum is U−, by
Lemma 1. The difference U− − U is exactly the boundary of U , since U is
open (see Chapter 9). Apply Lemma 10.5 to conclude that this boundary is
nowhere dense.

Theorem 39. The dual algebra A of a Boolean space X is complete if and
only if X is complete.

Proof. Assume A is complete. If U is an arbitrary open set in X, and if {Pi}
is the family of its clopen subsets, then U =

⋃
i Pi (because the clopen sets

form a base for the topology of X) and {Pi} has a supremum in A, by the
assumed completeness of A. Apply Lemma 1 to conclude that U− is open.
It follows that the space X is complete.

Suppose now that X is complete, and consider an arbitrary family {Pi}
of elements of A. The union U of this family is an open set, so its closure U−

is also open, by the assumed completeness of X. Apply Lemma 1 to conclude
that U− is the supremum of {Pi} in A. It follows that A is complete.
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Recall (Chapter 25) that the completion of a Boolean algebra A is a
Boolean algebra B with the following properties: A is a subalgebra of B that
is dense in B (every non-zero element in B is above a non-zero element in A),
and every family of elements in A has a supremum in B. The existence of
the completion was established in Chapter 25 using algebraic methods. It
is also possible to established this existence using topological methods, by
combining two steps each of which separately is familiar by now. Use duality
to associate A with a topological space, and then use some general topology
to associate with that space the algebra of regular open sets; the result is, in
a natural way, the completion of A.

Theorem 40. If A is the dual algebra of a Boolean space X, and if B is the
algebra of regular open sets in X, then B is the completion of A.

Proof. Observe, first of all, that a clopen set P is always regular:

P⊥⊥ = P−′−′ = P ′−′ = P ′′ = P.

(The second and third equalities use the fact that P and its complement are
closed.) Consequently, every element in A belongs to B. To verify that A is a
subalgebra of B, we need merely to observe that, for clopen sets, the Boolean
operations of B reduce to the ordinary set-theoretic operations. For example,
if P and Q are elements in A, then their union is clopen and therefore

(P ∪ Q)⊥⊥ = P ∪ Q.

The left side of this equation is just the join of P in Q in B, by Theorem 1
(p. 66), while the right side is their join in A.

The clopen sets form a base for the topology of X, so every non-empty
regular open set includes a non-zero element of A. Thus, A is dense in B. Fi-
nally, a family {Pi} of elements in A always has a supremum in B, because B
is complete, by Theorem 1.

It was shown in Chapter 25 that a dense subalgebra of a Boolean algebra
is always a regular subalgebra. It is interesting to see a direct proof of this
fact for the algebras A and B in the previous theorem. Suppose {Pi} is a
family of elements in A. The supremum of this family in B is the set U⊥⊥,
where U =

⋃
i Pi, by Theorem 1. If the family also has a supremum in A,

then that supremum is U−, and U− is an open set, by Lemma 1. In this case

U⊥⊥ = U−′−′ = U −′′ = U−,

since the complement of U− is closed; the two suprema are therefore equal.
It follows that the suprema formable in A stay the same in B.
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We conclude this discussion with some historical and motivational re-
marks. The completion of a Boolean algebra A is (to within isomorphism)
the Boolean algebra of complete ideals in A, by Theorem 22 (p. 216). The
topological dual of a complete ideal in A is a regular open set in the dual
space of A, as was noted by Stone [67] (see Exercise 35.18). The Boolean
algebra of complete ideals in A should therefore be mapped isomorphically
to the Boolean algebra of regular open sets in the dual space by the function
that takes each ideal to its dual open set; see Theorem 33 (p. 341). This
isomorphism does not, however, follow immediately from that theorem, be-
cause the operations of the two Boolean algebras do not, in general, coincide
with the operations of the two lattices in Theorem 33 (the lattice of ideals
and the lattice of open sets).

It should be noted that Theorem 39 is due to Stone [68].

Exercises

1. Show that a complete and compact Hausdorff space must be Boolean.

2. Prove that a topological space is complete if and only if the interior of
every closed set is closed.

3. Formulate the dual of Lemma 1 for infima, and prove it directly, without
using the lemma.

4. Prove that the dual of a complete Boolean space X coincides with
the regular open algebra of X. Conclude that every complete Boolean
algebra is isomorphic to the regular open algebra of some compact
Hausdorff space. (This conclusion is due to Tarski [75]; a related result
can be found in Stone [68]. The conclusion can be viewed as a kind of
representation theorem for complete Boolean algebras.)

5. If the regular open sets of a Boolean space constitute a field of sets,
does it follow that the space is complete?

6. Show that if I is infinite and if X is the Cantor space 2I , then P(X) is
not a completion of the dual algebra of X.

7. Let A be the Boolean algebra generated by the left half-closed intervals
in [0, 1], let B be the quotient of the algebra of Lebesgue measurable
sets in [0, 1] modulo the ideal of sets of measure zero, and let C be the
quotient of the algebra of Borel sets in [0, 1] modulo the ideal of meager
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sets. Prove that there is a complete embedding f of A into B, and a
complete embedding g of A into C, such that the images f(A) and g(A)
completely generate B and C respectively. (The algebras B and C are
not isomorphic; see Chapter 31. Consequently, at least one of these
algebras is not the completion of A. It follows that condition (3) in the
definition of a completion (p. 214) cannot be weakened to say that A
completely generates B.)

8. Does the completion of an algebra satisfying the countable chain con-
dition satisfy that condition also?



Chapter 39

Boolean σ-spaces

A Baire set in a Boolean space is a set belonging to the σ-field generated by
the class of all clopen sets. Clearly, every Baire set in a Boolean space is a
Borel set; the converse is not true in general. A trivial way to manufacture
open Baire sets is to form the union of a countable class of clopen sets. The
converse is true but not trivial. The converse implies that every open Baire
set is an Fσ (that is, the union of a countable class of closed sets), and, conse-
quently, every closed Baire set is a Gδ (that is, the intersection of a countable
class of open sets). We shall prove the main result about the structure of
open Baire sets by proving first that every closed Baire set is a Gδ. Observe
that in a metric space every closed set is a Gδ (Exercise 29.21); in a gen-
eral topological space this not so. The proof of the following auxiliary result
uses the fact about metric spaces just mentioned; the trick is to construct a
suitable metric space associated with each given closed Baire set.

Lemma 1. Every closed Baire set is a Gδ.

Proof. Let F be a closed Baire set in the Boolean space X, and let {Pn} be a
sequence of clopen sets such that F belongs to the σ-field generated by {Pn}
(see Exercise 29.6). Let pn be the characteristic function of Pn and write

d(x, y) =
∞∑

n=1

1
2n

∣
∣pn(x) − pn(y)

∣
∣

for all x and y in X. The function d is a metric except perhaps for strict
positivity (see Exercise 2). If, in other words, two points x and y are defined
to be equivalent, x ≡ y, in case d(x, y) = 0, then the equivalence classes
may be more than singletons. (It is trivial that the relation so defined is an
equivalence.)
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For any given point x in X, every set of the form

(1) W = {y ∈ X : d(x, y) < ε}

is open in the topology of X. To see this, consider a point y in W , and write
ρ = d(x, y). Since ρ < ε, there is a positive integer m such that 1/2m < ε−ρ.
For each integer n with 1 ≤ n ≤ m, put

Qn =

{
Pn if y ∈ Pn,

P ′
n if y �∈ Pn.

Each set Qn is clopen and contains y, so the intersection

Q =
m⋂

n=1

Qn

is clopen and contains y. If z is in Q, then

pn(y) − pn(z) = 0

for n = 1, 2, . . . , m, and therefore

d(y, z) ≤
∞∑

n=m+1

1/2n = 1/2m.

It follows that

d(x, z) ≤ d(x, y) + d(y, z) ≤ ρ + 1/2m < ε,

so that z is in W . Conclusion: the clopen set Q contains y and is included
in W , so every point in W belongs to a clopen set that is included in W .
Consequently, W is open.

If x1 ≡ x2 and y1 ≡ y2, then

d(x1, y1) ≤ d(x1, x2) + d(x2, y2) + d(y2, y1) = 0 + d(x2, y2) + 0 = d(x2, y2),

and, by symmetry, the reverse inequality is also true, so that

(2) d(x1, y1) = d(x2, y2).

This implies that writing

(3) e(u, v) = d(x, y),

whenever u and v are the equivalence classes of x and y respectively, un-
ambiguously defines a metric e on the set U of equivalence classes (Exer-
cise 37.14).
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Let φ be the projection from X onto U : for each x in X, the value
of φ(x) is the equivalence class of x. If u is the equivalence class of x, and ε
any positive real number, then the inverse image of the open ball

{v ∈ U : e(u, v) < ε}

in U is the open set (1) in X, by (2) and (3). The open balls form a base for
the metric topology on U , so the function φ is continuous, by Lemma 33.1.

The inverse image (under φ) of an arbitrary subset V of U is the union of
a set of equivalence classes, namely the set of equivalence classes that belong
to V ; conversely, every subset Y of X that is a union of equivalence classes
is the inverse image of a subset of U , namely the subset consisting of those
equivalence classes that are included in Y . The class of subsets of X that are
unions of equivalence classes is a σ-field. (In fact, it is a complete field.) It is
not difficult to check that each set Pn belongs to this σ-field. Indeed, if x ≡ y,
that is, if d(x, y) = 0, then pn(x) = pn(y) for all n, so that x and y belong to
the same sets Pn. Thus, an equivalence class is either entirely included in Pn

or disjoint from it, so that Pn is a union of equivalence classes.
The set F belongs to the σ-field generated by the family {Pn}, so it must

belong to the σ-field of unions of equivalence classes, by the observations of
the preceding paragraph and the definition of the generated σ-field. It follows
that F = φ−1(V ) for some subset V of U . The set F is closed, and hence
compact. Since

φ(F ) = φ(φ−1(V )) = V,

and since the continuous image of a compact set is compact (Lemma 33.3), we
infer that V is compact and therefore closed (Lemma 29.1). Conclusion: V is
a closed subset of the metric space U . It follows from the remarks preceding
the lemma that V is a Gδ. The inverse images, under φ, of a countable class
of open sets whose intersection is V form a countable class of open sets whose
intersection is F (Exercise 33.12); consequently, F is also a Gδ.

Corollary 1. Every open Baire set in a Boolean space is the union of a
countable class of clopen sets.

Proof. Let G be an open Baire set. Its complement is a closed Baire set and is
therefore the intersection of a countable class of open sets, by Lemma 1. Form
complements to conclude that G is the union of a countable class of closed
sets, say G =

⋃
n Fn. Since the clopen sets form a base, each Fn is covered by

the clopen sets that are included in G, and hence, by compactness, each Fn

is covered by a finite number of such clopen sets. The class that consists,
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for each n, of a finite collection of clopen subsets of G that cover Fn is a
countable collection of clopen sets, and its union is G.

We shall say that a Boolean space is a σ-space in case the closure of
every open Baire set is open. The role of Boolean σ-spaces in the theory
of σ-algebras is the same as the role of complete spaces in the theory of
complete algebras.

Theorem 41. The dual algebra A of a Boolean space X is a σ-algebra if and
only if X is a σ-space.

Proof. (Compare Theorem 39, p. 369.) Assume first that A is a σ-algebra.
If U is an open Baire set in X, then (by Corollary 1) U is the union of
a countable class of clopen sets; since this class has a supremum in A, by
assumption, it follows (Lemma 38.1) that U− is open. Thus, X is a σ-space.

Assume now that X is a σ-space. If {Pn} is any countable class of ele-
ments (clopen sets) in A, then

⋃
n Pn is an open Baire set in X; since the

closure of that set is open, by assumption, it follows (Lemma 38.1) that {Pn}
has a supremum in A. Consequently, A is a σ-algebra.

It is important to distinguish between the dual algebra A of clopen sets
and the σ-field B of Baire sets in a σ-space X. Both are σ-algebras and
both contain all clopen sets (in X). In particular, A is a subfield of B, but
it is not in general a σ-subfield. In B, the supremum of a sequence {Pn} of
clopen sets is the union of the sequence; in A it is the closure of that union
(Lemma 38.1).

Exercises

1. Let I be an uncountable discrete space; give examples of open sets that
are not Baire sets in the one-point compactification of I and in the
Cantor space 2I .

2. Let {Pn} be any sequence of subsets of a set X, and let pn be the
characteristic function of Pn. Prove that the function defined by

d(x, y) =
∞∑

n=1

1
2n

∣
∣pn(x) − pn(y)

∣
∣

for all x and y in X is a pseudo-metric; see Exercise 37.14. (The
pseudo-metric just defined is very similar to the metric defined in Ex-
ercise 32.11. To see this, observe that the value of

∣
∣pn(x) − pn(y)

∣
∣
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is exactly the same as the value of the sum of pn(x) + pn(y) in the
two-element Boolean ring.)

3. Prove that a subset of a Boolean space is a Baire set if and only if it
belongs to the σ-field generated by the class of all open Fσ-sets. (This
last condition is used to define the notion of a Baire set in topological
spaces that are not Boolean spaces.)

4. Prove that in a Boolean space with a countable base, every Borel set
is a Baire set.

5. Prove that in a metric space with a countable base, every Borel set is
a Baire set in the sense of Exercise 3.

6. Is it true that in every topological space with a countable base, every
Borel set is a Baire set (in the sense of Exercise 3)?

7. Is Lemma 1 true in arbitrary compact Hausdorff spaces? (See Exercise 3
for the appropriate definition of a Baire set.)

8. (Harder.) Prove that the closure of a Baire set in a Boolean space need
not be a Baire set. What if the space is a σ-space?



Chapter 40

The Representation
of σ-algebras

We know that every Boolean algebra is isomorphic to a field, whereas a
complete Boolean algebra need not be isomorphic to a complete field (since,
for instance, it need not be atomic). It is natural to ask the intermediate
question: is every σ-algebra isomorphic to a σ-field? The answer (due to
Tarski [75]) is no. We shall see, in fact, that if A is an atomless σ-algebra
satisfying the countable chain condition, then A cannot be isomorphic to
a σ-field. For an example of such an algebra consider the regular open alge-
bra of any Hausdorff space (such as R

n) with no isolated points and with a
countable base (see Exercise 29.31 and the remarks preceding Lemma 30.1).
Alternatively, consider either the reduced Borel algebra or the reduced mea-
sure algebra of the unit interval (see the remarks preceding Lemma 31.4).

To prove the negative result promised above, suppose that A is an atom-
less σ-algebra satisfying the countable chain condition. We shall make use
of the fact (Corollary 30.1) that A is complete. Assume, for contradiction,
that A is isomorphic to a σ-field; we may as well assume that A is a σ-field
of subsets of a set X. Select a point x of X and consider the class E of all
those sets in A that contain x. Since A is complete, E has an infimum in A,
say P ; since A satisfies the countable chain condition, E has a countable
subclass {Pn} such that P =

∧
n Pn, by the dual of Lemma 30.1. The fact

that A is a σ-field implies that P =
⋂

n Pn; since each Pn contains x, it follows
that P �= 0. As a non-zero element of the atomless algebra A, the set P has
a non-empty proper subset Q in A. Either Q or P − Q contains x; we may
assume that Q does. This means that Q is in E, and implies therefore that P
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is included in Q (recall that P =
∧

E). This in turn implies that P = Q,
and, since Q was supposed to be a proper subset of P , the contradiction has
arrived.

If a class of Boolean algebras is not large enough to represent every algebra
of a certain kind, the next best thing to hope is that the homomorphic images
of the algebras of the class will suffice for the purpose. We have just seen
that the class of σ-fields is not large enough to represent every σ-algebra;
next we shall see that the class of homomorphic images of σ-fields (and, in
fact, σ-homomorphic images) is quite large enough. The theorem we shall
prove resembles Theorem 29 (p. 277) in many details, in both statement and
proof. It is almost certain that the two results are special cases of a common
generalization; it is far from certain whether the formulation and proof of
such a generalization would yield any new information or save any time.

The class of Baire sets of a σ-space is a σ-algebra, by definition. The
subclass of meager Baire sets is naturally a σ-ideal in that algebra. It turns
out that Baire sets are almost clopen sets in the sense that each Baire set
differs symmetrically from a uniquely determined clopen set by a meager
Baire set. It is helpful to formulate this result another way, using the notion
of congruence modulo an ideal that was discussed in Chapter 18, so as to
underscore the connection with Lemma 29.2.

Lemma 1. Every Baire set in a Boolean σ-space is congruent to a unique
clopen set modulo the σ-ideal of meager Baire sets.

Proof. Let X be a Boolean σ-space and M the σ-ideal of meager Baire sets.
Write S ≡ U to mean that the sets S and U are congruent modulo M , that
is, the symmetric difference S + U is an element of M . Consider the class of
all those subsets of X that are congruent (modulo M) to a clopen set. The
first step is to show that this class is a σ-field that includes the clopen sets.
Every clopen set U is in the class because U +U = ∅, and the empty set is a
meager Baire set. Suppose {Sn} is a sequence of sets in the class, say {Un}
is a sequence of clopen sets such that Sn ≡ Un for all n. Each sum Sn + Un

is then in M , and M is a σ-ideal, so the union of the sums is in M . Write

S =
⋃

n

Sn and U =
⋃

n

Un.

The sum S+U is included in the union of the sums Sn+Un, by Exercise 8.26,
so it, too, belongs to M , by (18.18). It follows that S ≡ U . As a union of a
countable sequence of clopen sets, U is an open Baire set. Since the space X
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is assumed to be Boolean, the closure of each open Baire set is open, and
therefore clopen; in particular, U− is clopen. The difference

U− + U = U− − U

is a nowhere dense set (Lemma 10.5), so it is meager. It follows that U ≡ U−,
and therefore that S ≡ U−. Conclusion: S is congruent to a clopen set, so it
is in the class.

The proof that the class is closed under complements is easy. If S is in the
class, say S ≡ U and U is clopen, then S ′ ≡ U ′ (because S ′ + U ′ = S + U ,
by Exercise 6.2(g)) and U ′ is clopen. Consequently, S ′ is in the class.

It has been shown that the class of subsets of X congruent to clopen sets
is a σ-field that contains all clopen sets. The class must therefore contain all
Baire sets, since the clopen sets generate the σ-field of Baire sets. To establish
the uniqueness assertion of the lemma, suppose a Baire set is congruent to
clopen sets U and V . The sets U and V are then congruent to each other,
so their sum

U + V = (U ∩ V ′ ) ∪ (U ′ ∩ V )
is meager. This sum is also clopen (because U and V are clopen), so the
Baire category theorem (Theorem 28, p. 273) implies that the sum is empty,
and consequently that U = V . The proof of the lemma is complete.

In view of the preceding lemma, the function f that takes each Baire
set S to the unique clopen set f(S) such that S ≡ f(S) is a well-defined
mapping from the σ-field B of Baire sets into dual algebra A of clopen sets
of the σ-space X. The function maps B onto A because every clopen set
is mapped to itself. It has been shown (see the proof of the lemma) that
if S ≡ U and U is clopen, then S ′ ≡ U ′; in other words,

f(S ′ ) = f(S) ′.

It has also been shown that if Sn ≡ Un for every n, if

S =
⋃

n

Sn and U =
⋃

n

Un,

and if each set Un is clopen, then

S ≡ U−.

The set U− is the join of the family {Un} in A, by Lemma 38.1 and Theo-
rem 41 (p. 376). Therefore,
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f(S) = U− =
∨

n

Un =
∨

n

f(Sn).

These assertions together imply that f is a σ-homomorphism from B onto A.
Its kernel consists of the Baire sets that are congruent to the empty set, and
this is just the ideal M of meager Baire sets. The quotient B/M is therefore
isomorphic to A, by the first isomorphism theorem (Theorem 14, p. 179). We
summarize what has been accomplished in the following theorem.

Theorem 42. Suppose that B is the σ-field of Baire sets and M is the σ-
ideal of meager Baire sets in a Boolean σ-space X. The correspondence f
that takes each Baire set S to the clopen set f(S) such that

S ≡ f(S) mod M

is a σ-homomorphism from B onto the dual algebra A of X, with kernel M ,
so that A is isomorphic to B/M .

The following corollary is known as the Loomis–Sikorski theorem, after
its discoverers, Loomis [40] and Sikorski [59].

Corollary 1. Every σ-algebra is isomorphic to some σ-field modulo a σ-ideal.

Proof. Every σ-algebra is isomorphic to the dual algebra of some σ-space,
by Theorem 41 (p. 376) and the Stone representation theorem (p. 328). The
dual of a σ-space is, in turn, isomorphic to the quotient of a σ-field modulo
a σ-ideal, by the preceding theorem.

For σ-algebras, just as for plain Boolean algebras, the representation and
duality theory yields an elegant proof of the existence and representation of
free algebras. (The existence of free σ-algebras was proved by Rieger [51].)

Theorem 43. For every set I, there exists a free σ-algebra generated by I,
and, in fact, that algebra is isomorphic to the σ-field of all Baire sets in the
Cantor space 2I .

Proof. Write Y = 2I , let B be the dual algebra of clopen sets in Y , and
let B∗ be the σ-field of Baire sets in Y . We have seen (Theorem 36, p. 354)
that B is the free Boolean algebra generated by the set E of clopen sets

Pi = {y ∈ Y : yi = 1},
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for i in I. We are to prove that B∗ is the free σ-algebra generated by E. For
this purpose we need to prove that every mapping g from E to an arbitrary σ-
algebra A can be extended to a σ-homomorphism from B∗ to A. We may
and do assume (Theorem 41) that A is the dual algebra of a σ-space X.

Let A∗ be the σ-field of Baire sets in X. Notice that A is a subalgebra
(but not in general a σ-subalgebra) of A∗. By Theorem 42, there is a σ-
epimorphism, say h, from A∗ to A, and it maps every element of A (every
clopen set) to itself. Since B is free on E, there exists a Boolean homomor-
phism f from B to A that agrees with g on E. The homomorphism f is the
dual of a continuous mapping φ from X into Y ; this implies that

f(Q) = φ−1(Q)

for every Q in B (see Theorem 34, p. 350, and (36.2)). Let f∗ be the mapping
from B∗ into A∗ defined by

f∗(S) = φ−1(S)

for every S in B∗. (See the diagram.) Observe that f∗ agrees with f on B,
and consequently agrees with g on E. It is easy to check (with the help
of Exercise 33.5) that f∗ is a σ-homomorphism. The promised extension is
the composition h ◦ f∗. Indeed, this composition is a σ-homomorphism, by
Exercise 29.14, and

h(f∗(Pi)) = h(g(Pi)) = g(Pi).

The first equality holds because f∗ agrees with g on E, while the second
holds because g(Pi) is clopen (it belongs to A), and h maps clopen sets to
themselves.
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Exercises

1. Prove that the class of meager Baire sets is a σ-ideal in the σ-algebra
of all Baire sets of a Boolean space.

2. Prove that every σ-algebra is the homomorphic image of a free σ-
algebra.

3. Let X and Y be Boolean spaces, and A∗ and B∗ the σ-fields of Baire
sets in X and Y respectively. If φ is a continuous mapping of X into Y ,
prove that the function f∗ from B∗ to A∗ defined by

f∗(S) = φ−1(S)

for every S in B∗ is a σ-homomorphism.

4. Derive the Loomis–Sikorski theorem from Theorem 43.

5. (Harder.) Is the natural generalization of the homomorphism extension
criterion (Theorem 4, p. 107) to a σ-homomorphism extension criterion
(for σ-algebras) true? (The answer is due to Sikorski [59].)

6. (Harder.) Is the generalization of Lemma 28.1 to free σ-algebras true?

7. (Harder.) Find an example of an m-algebra (for some infinite cardi-
nal m) that is not isomorphic to any m-field modulo an m-ideal. (The
existence of such algebras was first observed by Tarski [75].)



Chapter 41

Boolean Measure Spaces

A Boolean measure space is a Boolean σ-space X, together with a normalized
measure on the σ-field of Borel sets in X, such that non-empty open sets
have positive measure and nowhere dense Borel sets have measure zero. The
last condition is a very strange one. At first glance it might seem that
since a nowhere dense set is topologically small and a set of measure zero is
measure-theoretically small, it is fitting and proper that the one should imply
the other. A little measure-theoretic experience (with Lebesgue measure in
Euclidean spaces, for instance) shows, however, that the implication is not at
all likely to hold. The results of this chapter will show that Boolean measure
spaces, in which the implication is assumed to hold, have rather pathological
and almost paradoxical properties. The reason for considering them anyway
is that measure algebras are important, and, as it turns out, Boolean measure
spaces are exactly the duals of measure algebras.

We proceed to establish the notation that will be used in this chapter.
Let X be a Boolean σ-space with dual algebra A (which is, therefore, a σ-
algebra; see Theorem 41, p. 376). Let B be the σ-field of Borel sets in X,
let M be the σ-ideal of meager Borel sets, and let f be the natural σ-
epimorphism (Theorem 29, p. 277) from B onto the regular open algebra
of X with kernel M .

Lemma 1. If ν is a normalized measure on B such that non-empty open
sets have positive measure and nowhere dense Borel sets have measure zero,
and if μ is the restriction of ν to A, then μ is a positive, normalized measure
on A (so that A together with μ is a measure algebra).

Proof. The only thing that needs proof is that μ is countably additive on A.
(The countable additivity of μ does not follow automatically from that of ν
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because the supremum of an infinite sequence of elements in A is not, in
general, the same as the supremum (union) of the sequence in B.) Suppose
that {Pn} is a disjoint sequence of elements of A (clopen sets in X); write

U =
∞⋃

n=1

Pn and P =
∞∨

n=1

Pn.

Then P = U−, by Lemma 38.1. The difference U− −U is nowhere dense, by
Lemma 10.5, and therefore

ν(U− − U) = 0,

by assumption. Consequently,

μ(P ) = ν(P ) = ν(U−) = ν(U) + ν(U− − U)

= ν(U) =
∞∑

n=1

ν(Pn) =
∞∑

n=1

μ(Pn).

The first and last equalities follow from the definition of μ, while the third
and fifth equalities use the additivity and the countable additivity of ν re-
spectively. It follows that μ is countably additive.

Lemma 2. If μ is a positive, normalized measure on A, then f maps B
onto A. If

ν(S) = μ(f(S))
for every S in B, then ν is a normalized measure on B such that non-empty
open sets have positive measure and such that the sets of measure zero are
exactly the meager sets. The restriction of ν to A coincides with μ.

Proof. The algebra A together with the measure μ is a measure algebra, by
assumption, and therefore A is a complete Boolean algebra, by Corollary 31.1.
It follows that the space X is a complete Boolean space, by Theorem 39
(p. 369), and hence that A coincides with the algebra of regular open sets
in X, by Exercise 38.4. The function f maps B onto the regular open algebra
of X, by definition, so it maps B onto A. This proves the first sentence of the
lemma. The second sentence is an immediate consequence of Lemma 31.2.
The third sentence follows from the fact that f maps all regular open sets
(and hence all clopen sets) to themselves.

Corollary 1. The dual algebra A of a Boolean space X is a measure algebra
if and only if X is a Boolean measure space.
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Proof. Assume first that X is a Boolean measure space, say ν is a normalized
measure on the σ-field of Borel sets in X such that non-empty open sets have
positive measure and nowhere dense Borel sets have measure zero. The dual
algebra A, together with the restriction of ν to A, is a measure algebra, by
Lemma 1.

Now suppose that A is a measure algebra, say μ is a positive normalized
measure on A. Since A is, by definition, a σ-algebra, the space X must be
a σ-space (Theorem 41, p. 376). The function ν defined on the σ-field of
Borel sets by

ν(S) = μ(f(S))
for every Borel set S is a normalized measure such that non-empty open sets
have positive measure and such that the sets of measure zero are exactly the
meager sets, by Lemma 2. Thus, X together with the measure ν is a Boolean
measure space.

In the rest of the chapter we shall assume that X and A have not only the
topological and algebraic properties originally required, but also the measure-
theoretic structure (the measures ν and μ) described in Lemmas 1 and 2. In
particular, the algebra A is complete and satisfies the countable chain con-
dition, and the space X is complete. The additional structure has profound
and surprising effects on the topology of X. Thus, for instance, every open
set is included in a clopen set of the same measure (namely its own clo-
sure). In other words, every open set is almost clopen; next we shall see that
something like this is true for arbitrary Borel sets also.

Consider, indeed, those Borel sets whose measure can be approximated
arbitrarily closely by clopen sets, from both inside and outside. More pre-
cisely, we shall say (temporarily) that a Borel set S is regular in case

sup μ(P ) = ν(S),

where the supremum is extended over all clopen sets P included in S, and

inf μ(Q) = ν(S),

where the infimum is extended over all clopen sets Q including S.

Lemma 3. Every Borel set is regular.

Proof. We have already noted that an open set U has the same measure as its
closure U− (the boundary U−−U is nowhere dense and therefore has measure
zero), and U− is clopen (because the space X is complete). Consequently,
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inf μ(Q) = μ(U−) = ν(U−) = ν(U)

(where Q ranges over the clopen sets that include U). The first equality holds
because U− is the smallest clopen set that includes U : if Q is clopen, then

U ⊆ Q implies U− ⊆ Q.

The second equality follows from the final assertion of Lemma 2.
To approximate U from below, consider the class of all clopen sets in-

cluded in U . Since A is complete, the class has a supremum in A and that
supremum is U−, by Lemma 38.1. Since A satisfies the countable chain condi-
tion, there is a countable subclass with the same supremum, by Lemma 30.1;
consequently, there is an increasing sequence {Pn} of clopen subsets of U
with the same supremum U−, by Exercise 8.21. It follows from Exercise 31.5
that

lim
n→∞

μ(Pn) = μ(U−),

and therefore
sup μ(P ) = μ(U−) = ν(U−) = ν(U).

The preceding argument shows that every open set is regular. The self-
dual character of the definition of regularity implies that the complement of a
regular Borel set is regular, so that, in particular, every closed set is regular.

Next, we show that a meager Borel set S is included in a clopen set of
small measure, say less than a given real number ε > 0. The set S is, by
definition, the union of a sequence {Sn} of nowhere dense sets (indexed by
the set of positive integers). The closures S−

n are also nowhere dense (by the
definition of a nowhere dense set) and they are Borel (they are closed), so
they have measure zero, by the assumptions on ν. For each n, let Qn be a
clopen set including S−

n with the property that

μ(Qn) < ε/2n;

such a set exists by the observations of the previous paragraph. Take U to
be the union of these clopen sets. Since

S =
⋃

n

Sn ⊆
⋃

n

S−
n ⊆

⋃

n

Qn = U,

it follows from the monotony and countable subadditivity of ν (see Chap-
ter 31), and from the final assertion of Lemma 2, that

ν(S) ≤ ν(U) ≤
∑

n

ν(Qn) =
∑

n

μ(Qn) <
∑

n

ε/2n = ε.
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The closure U− is a clopen set with the same measure as U , since U is open
(see the remarks at the beginning of the proof). Consequently, U− is a clopen
set including S that has measure less than ε. The argument also shows that
each meager Borel set S has measure zero, since its measure is less than ε for
each ε > 0.

Every Borel set S is congruent modulo a meager set to some clopen set P ,
by Lemma 29.2 and Exercise 38.4. The sets S and P have the same measure:

ν(S) = ν(S − P ) + ν(S ∩ P ) = 0 + ν(S ∩ P ) = ν(S ∩ P )

and

ν(P ) = ν(P − S) + ν(P ∩ S) = 0 + ν(P ∩ S) = ν(P ∩ S).

Suppose Q is a clopen set of small measure that includes the meager set S+P .
The union P ∪ Q is a clopen set that approximates S from above:

S ⊆ P ∪ (S + P ) ⊆ P ∪ Q,

so that

μ(P ∪ Q) = ν(P ∪ Q) ≥ ν(S),

and

μ(P ∪ Q) − ν(S) = ν(P ∪ Q) − ν(S)
≤ ν(P ) + ν(Q) − ν(S) = ν(Q) = μ(Q).

The same argument applied to S ′ yields a clopen set that approximates S ′

from above; the complement of that clopen set is a clopen set approximating S
from below. The proof of the lemma is complete.

Lemma 3 says something very strong about the measure ν; the property
it ascribes to ν is considerably stronger than the standard measure-theoretic
properties of regularity and completion regularity.

Lemma 4. Every Borel set has the same measure as its closure.

Proof. If S is a Borel set, then, by Lemma 3, there exist clopen sets Qn

including S such that ν(Qn − S) < 1/n for n = 1, 2, 3, . . . . The intersection
of these clopen sets is a closed set that includes S and has the same measure
as S.

Lemma 5. A Borel set of measure zero is nowhere dense.
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Proof. If S is a Borel set with the property that ν(S) = 0, then ν(S−) = 0, by
Lemma 4. This implies that S− includes no non-empty open set, since such
sets are assumed to have positive measure (and the measure ν is monotone).
Thus, S is nowhere dense.

Lemma 6. Every meager set is nowhere dense.

Proof. Suppose S =
⋃

n Sn, where each Sn is nowhere dense. The closed
set S−

n is nowhere dense (by the definition of a nowhere dense set), so
it has measure zero (by the assumptions about the measure space). The
union

⋃
n S−

n is a Borel set of measure zero (by countable subadditivity), and
therefore nowhere dense, by Lemma 5. Since S is included in this union, it,
too, is nowhere dense.

The reason for forming S−
n in the preceding proof is that Sn is not known

to be measurable (and neither is S).

Exercises

1. Fill in the details of the proof that in a Boolean measure space, every
open set is included in a clopen set with the same measure (namely its
closure).

2. Justify the claim, made at the end of the proof of Lemma 3, that if the
complement of a Borel set S is approximated by a clopen set Q from
above, then S is approximated by the clopen set Q ′ from below.

3. Use the regularity of open sets and algebraic duality to prove that a
closed set in a Boolean measure space is regular. Then give a (longer)
direct proof of this same fact that does not make use of the regularity
of open sets.

4. Prove that in a Boolean measure space the boundary of every Borel set
has measure zero.

5. Prove that the dual space of the reduced measure algebra of [0, 1] is
not separable.

6. Use Exercise 5 to show that the reduced measure algebra and the re-
duced Borel algebra of the interval [0, 1] are not isomorphic by showing
that the dual space of the latter is separable.
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Incomplete Algebras

The quotient of a Boolean algebra modulo an ideal may turn out to have
a higher degree of completeness than one has a right to expect. Thus, for
instance, the reduced Borel algebra and the reduced measure algebra of the
unit interval are not only σ-algebras, which is all that the general theory
can predict, but even complete. A few observations of this kind are likely
to tip the balance of expectations too far over to the optimistic side. The
purpose of this chapter is to provide a counterbalance in the form of some
counterexamples. In other words, we shall obtain a few negative results: we
shall see that certain quotient algebras are not complete.

The natural questions in this direction are obtained from the ones already
answered by changing either the algebra or the ideal. The Borel sets modulo
meager Borel sets in [0, 1] constitute a complete Boolean algebra; what about
the Borel sets modulo countable sets, and what about all sets modulo meager
sets? In deriving some of the answers we shall make use of the continuum
hypothesis. This is sometimes avoidable; since, however, it simplifies and
shortens the argument in any case, and especially since the purpose of the
discussion is not to build the theory but merely to give warning of some
danger spots, the effort of avoidance is not worth the trouble.

A typical result is that if X is an uncountable set, then the field B of all
subsets of X modulo the ideal M of countable sets in X is not a complete
Boolean algebra. To illustrate the argument, consider the special case in
which X is the Cartesian plane. The proof exhibits a concrete subset E
of B/M that has no supremum. Let f be the projection from B to B/M ;
let E be the set of all those elements of B/M that have the form f(S) for
some vertical line S. The best way to prove that E has no supremum is to
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show that to every upper bound of E there corresponds a strictly smaller
upper bound. Suppose, accordingly, that f(S) ≤ p for all vertical lines S.
Since f maps B onto B/M , there exists a subset P of X such that p = f(P ).
To say f(S) ≤ f(P ), or, equivalently, f(S − P ) = 0, means that S − P
belongs to M (Exercise 1), and therefore P contains all but countably many
of the points of S. Since each S under consideration is uncountable, it follows
that P contains at least one point in each S. Let Q be a subset of P that
contains exactly one point in each S; then P − Q contains all but countably
many of the points in each S (it contains every point of S that is in P , with
one exception), so S − (P − Q) is in the ideal M , and therefore

f(S) ≤ f(P − Q),

for each S. In other words, f(P − Q) is an upper bound of E. Since,
however, Q is uncountable (there are uncountably many vertical lines, one
for each real number, and these lines are disjoint), it follows that f(Q) �= 0
and hence (Exercise 7.5) that

f(P ) − f(Q) �= f(P ).

Thus, f(P − Q) is an upper bound of E that is strictly smaller than p.
The proof proves more than the statement states. Clearly the plane has

nothing to do with the matter; any set in a one-to-one correspondence with
the plane would do as well. The exact cardinality of X is also immaterial;
all that matters is that X be uncountable. Indeed, since m2 = m for ev-
ery infinite cardinal number m, there is always a one-to-one correspondence
between X and X2 (provided only that X is infinite), and the proof works
again. Still another glance at the proof shows that the countability of the
sets in the ideal M did not play a very great role; what mattered was that
singletons belong to M and sets in one-to-one correspondence with X do
not. On the basis of this last observation even the assumption that X is
uncountable can be dropped; here is what remains.

Lemma 1. If B is the field of all subsets of an infinite set X, and if M is an
ideal in B containing all singletons and not containing any set in one-to-one
correspondence with X, then the algebra B/M is not complete.

The lemma includes the statement we started with as a special case; as
another special case it contains the statement that the algebra of all subsets
of an infinite set modulo the ideal of finite sets is never complete, not even if
the basic set is merely countable.
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Lemma 1 is a relatively crude result, but its proof contains, in skeletal
form, the two constructions that yield the more delicate results obtainable
along these lines. The first step is to construct the set of vertical lines; in
abstract terms, the problem is to construct a large disjoint class of sets none
of which belongs to the prescribed ideal. The second step is to cut across the
vertical lines; here the problem is to construct a large set whose intersection
with each of the sets constructed before does belong to the ideal. The first
of these constructions is the harder one; it is based on the following result of
Ulam [80].

Lemma 2. If X is the set of all ordinal numbers less than the first uncount-
able ordinal number ω1, then, corresponding to each natural number n and to
each ordinal number α less than ω1, there exists a subset S(n, α) in X such
that the sets in each row of the array

S(0, 0), S(0, 1), S(0, 2), . . . , S(0, ω), . . . , S(0, α), . . .
S(1, 0), S(1, 1), S(1, 2), . . . , S(1, ω), . . . , S(1, α), . . .
S(2, 0), S(2, 1), S(2, 2), . . . , S(2, ω), . . . , S(2, α), . . .

...
...

...
...

...
S(n, 0), S(n, 1), S(n, 2), . . . , S(n, ω), . . . , S(n, α), . . .

...
...

...
...

...

are pairwise disjoint, and the union of the sets in each column is cocountable.

Proof. For each β in X select a sequence {k(α, β)} of type β (that is, indexed
by the ordinals α < β) whose terms are distinct natural numbers; this is
possible because β is a countable ordinal. These sequences can be laid out
in a triangular array, as follows.

0 1 2 . . . α . . .
0
1 k(0, 1),
2 k(0, 2), k(1, 2),
3 k(0, 3), k(1, 3), k(2, 3),
...

...
...

...
β k(0, β), k(1, β), k(2, β), . . . , k(a, β), . . .
...

...
...

...
...
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Let S(n, α) be the set of all those β for which k(α, β) = n. For example, to
get S(5, 2), consider the column labeled 2, and collect all those elements β
for which the β entry in that column has the value 5. If β is in S(n, α),
then k(α, β) = n; since k(α1, β) �= k(α2, β) unless α1 = α2, it follows that for
each n, the sets S(n, α) are indeed pairwise disjoint. If α < β, then

β ∈ S(k(α, β), α) ⊆
⋃

n

S(n, α),

so that the union
⋃

n S(n, α) contains every β greater than α; it follows that
each such union is indeed cocountable.

To apply Lemma 2 we assume the continuum hypothesis.

Corollary 1. The unit interval is the union of a disjoint class of power ℵ1

consisting of sets none of which is meager.

Proof. The continuum hypothesis implies that there is a bijective correspon-
dence between [0, 1] and the set of all ordinal numbers less than ω1. Thus,
we may and do assume that the sets S(n, α) described in Lemma 2 are sub-
sets of [0, 1]. Each column of the square array of S’s consists of countably
many sets whose union is cocountable in [0, 1]; that is, the union contains
all but countably many of the numbers in [0, 1], and is therefore not meager.
Since a countable union of meager sets is meager, it follows that at least
one of the sets in each column must not be meager. There are uncountably
many columns but only countably many rows, so some row must contain un-
countably many non-meager sets, and those sets, by Lemma 2, are pairwise
disjoint. In case the union of the non-meager sets so obtained is not the
entire interval, adjoin the complement of that union to one of the sets.

Corollary 2. The unit interval is the union of a disjoint class of power ℵ1

consisting of sets none of which has measure zero.

Proof. Same as for Corollary 1; just interpret the word “meager” to mean
“having measure zero”.

We are now ready to imitate the argument (vertical lines) that led to
Lemma 1. This time let X be the unit interval, let B be the field of all
subsets of X, and let M be the ideal of meager sets. By Corollary 1 there
exists a disjoint family {Si} of power ℵ1 consisting of sets not in M . Let f be
the projection from B to B/M ; let E be the set of all those elements of B/M
that have the form f(Si) for some i. We shall show that the set E has no
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supremum by showing that to every upper bound of E there corresponds a
strictly smaller upper bound.

The preceding paragraph has the analogues of the vertical lines; the next
problem is to cut across them. The technique here is based on the fact that
every meager set is included in some meager Fσ. (Proof: a meager set S
is the union of a sequence {Sn} of nowhere dense sets; the closures S−

n are
nowhere dense, and their union is a meager Fσ that includes S.) Since an
easy argument shows that the cardinal number of the class of Fσ-sets is the
power of the continuum (see Exercise 3), and since we have already assumed
the continuum hypothesis, we may assume that all meager Fσ-sets occur as
the terms of a family {Ri} with the same set of indices as the family {Si}.

Suppose now that p is an upper bound of E. Since f maps B onto B/M ,
there is a subset P of X such that f(P ) = p. To say f(Si) ≤ f(P ), or,
equivalently, f(Si−P ) = 0, means that Si−P belongs to M , and therefore P
includes all but a meager subset of Si. Since Ri is meager but Si is not, it
follows that P contains at least one point in each Si −Ri. Let Q be a subset
of P that contains exactly one point in each Si − Ri; then P − Q includes
all but a meager subset of Si (it contains every point of Si that is in P , with
one exception), so Si − (P − Q) is in the ideal M , and therefore

f(Si) ≤ f(P − Q),

for each i. In other words, f(P−Q) is an upper bound of E. Since, however, Q
is not included in any Ri (because it contains a point in Si − Ri), and since
every meager set is included in at least one of the Ri, the set Q cannot be
meager. Consequently, f(Q) �= 0 and hence

f(P ) − f(Q) �= f(P ).

Thus, f(P − Q) is an upper bound of E that is strictly smaller than p.
The proof is over; the time has come to see what it proves. The following

statement (due to Sikorski [61]) is a suitably general formulation of what the
technique can be made to yield.

Lemma 3. Suppose that B is the field of all subsets of a set X, that M is an
ideal containing all singletons, and that {Ri} is a family of sets in M with the
property that every set in M is included in some Ri. If there exists a disjoint
family {Si}, with the same set of indices, consisting of sets not in M , then
the algebra B/M is not complete.

A special case of the lemma, different from the one proved above, is that
the algebra of all subsets of [0, 1] modulo the ideal of sets of measure zero
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is not complete. To deduce this conclusion from the lemma, let {Ri} be the
family of Gδ-sets of measure zero.

Exercises

1. Let f be the projection from a Boolean algebra B to a quotient B/M .
Prove that for any elements p and q in B, the following statements are
equivalent: (a) f(p) ≤ f(q); (b) f(p − q) = 0; (c) p − q ∈ M .

2. Write out a detailed proof of Lemma 1.

3. Prove that the number of Fσ-sets in the unit interval is 2ℵ0 . Conclude
that the number of meager Fσ-sets is also 2ℵ0 .

4. Prove that the number of Gδ-sets in the unit interval is 2ℵ0 . Conclude
that the number of Gδ-sets of measure zero is also 2ℵ0 .

5. (Harder.) Prove Corollary 2 without assuming the continuum hypoth-
esis. (This result is due to Lusin and Sierpiński [42].)

6. Prove Lemma 3.

7. Give a detailed proof that the algebra of all subsets of [0, 1] modulo the
ideal of sets of measure zero is not complete.

8. (Harder.) Let B be the field of all subsets of [0, 1] and let M be the ideal
of countable sets. Is there a normalized measure on the algebra B/M?
(The answer to this question, under the assumption of the continuum
hypothesis, dates back to Banach and Kuratowski [3].)



Chapter 43

Duality for Products

There is a dual correspondence between certain subalgebras of products of
Boolean algebras and the compactifications of unions of Boolean spaces. For
instance, the dual space of the product of two Boolean algebras is homeo-
morphic to the disjoint union of the dual spaces of the algebras. Since this
special case is useful and easier to describe than the general case, we treat it
first.

Consider two disjoint topological spaces Y and Z, and write

X = Y ∪ Z.

Every subset S of X can be written in a unique way as the union of a subset
of Y with a subset of Z (see Chapter 26); in fact,

S = P ∪ Q,

where
P = S ∩ Y and Q = S ∩ Z.

Call P and Q the components of S, and define S to be open in X if its
components are open in Y and Z respectively. It is easy to see that the
resulting class of open sets is a topology for X. For instance, if {Si} is a
family of open sets in X, say Si has the open components Pi and Qi, then

⋃

i

Si =
(⋃

i

Pi

)
∪
(⋃

i

Qi

)
;

since a union of open sets in Y is again open, and similarly for Z, it follows
that

⋃
i Si is open in X. The space X is called the sum (or the union) of the

spaces Y and Z. Motivated by the additive terminology, we write
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X = Y + Z.

To form the sum of topological spaces that are not disjoint, pass first to
disjoint copies of the spaces and then form the sum of these copies.

The complement of a set S = P ∪ Q in the sum space X is formed
componentwise:

S ′ = P ′ ∪ Q ′

(because the underlying component spaces Y and Z are disjoint). It follows
that S is closed in X just in case P and Q are closed in Y and Z respectively.
In particular, S is clopen just in case P and Q are clopen. It is not difficult
to check that X is a Boolean space just in case Y and Z are Boolean spaces.
For example, if X is compact, then the clopen subsets Y and Z are certainly
compact, because they are closed subsets of a compact space. Conversely,
if Y and Z are compact, then any open cover {Si} of X decomposes into
component open covers {Pi} of Y and {Qi} of Z, each of which has a finite
subcover. If {Pi}i∈J1 is a finite subcover of Y , and {Qi}i∈J2 is a finite subcover
of Z, and if J = J1 ∪ J2, then {Si}i∈J is a finite subcover of X.

Theorem 44. The dual algebra of the sum of disjoint Boolean spaces Y
and Z is the internal product of the dual algebras of Y and Z.

Proof. Assume X is the sum of two disjoint Boolean spaces Y and Z, and
let A, B, and C be the respective dual algebras. It is to be shown that A is
the internal product of B and C. Recall from Chapter 26 that this internal
product consists of those elements S that can be written in the form

S = P ∪ Q

for some P in B and some Q in C. The operations of the internal product
are performed componentwise; for example, if

S1 = P1 ∪ Q1 and S2 = P2 ∪ Q2,

then

(1) S1 ∩ S2 = (P1 ∩ P2) ∪ (Q1 ∩ Q2) and S ′
1 = P ′

1 ∪ Q ′
1,

where the component operations of intersection and complement on the right
sides of the equations are performed in B and in C.

The elements of A are the clopen subsets of X, and these are just the
unions of clopen subsets of Y with clopen subsets of Z, by the remarks pre-
ceding the theorem. The universe of A therefore coincides with the universe
of the internal product. The operations of A are the set-theoretic operations
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of union, intersection, and complement inherited from the field of all subsets
of X. Since X is the disjoint union of Y and Z, these set-theoretic opera-
tions are performed componentwise, just as in (1) (see Chapter 26). It follows
that A is the internal product of B and C, as desired.

The algebraic version of the preceding theorem (which dates back to the
1959 notes of Halmos [23]) says that the dual space of the product of two
Boolean algebras B and C is homeomorphic to the (disjoint) sum of the dual
spaces of B and C (see Exercises 7 and 8).

Everything that has been said about the union of two Boolean spaces
carries over easily to the union of finitely many Boolean spaces (see Exer-
cises 5 and 6). The case of infinitely many spaces is somewhat more intricate.
Consider an infinite disjoint family {Xi} of topological spaces, and let X be
the union of the sets Xi. As in the finite case, each subset P of X can be
written in a unique way as the union of the components Pi = P ∩ Xi. The
set P is declared to be open in X just in case each component Pi is open
in Xi. A straightforward argument shows that the class of open sets so de-
fined constitutes a topology on X (see Exercise 1). The space X is called the
(disjoint) union of the family {Xi}.

Suppose each of the component spaces Xi is Boolean. It is an easy matter
to check that the union space X is Hausdorff, and that each subset of Xi is
open, closed, clopen, or compact in the topology of X just in case it is open,
closed, clopen, or compact in the topology of Xi (see Exercises 2 and 3).
Consequently, X has a base consisting of clopen sets, namely the class of
clopen subsets of the various component spaces. Furthermore, X is locally
compact in the sense that each of its points belongs to the interior of some
compact subset of X; in fact, if x is any point in X, then x belongs to Xi for
some i, and Xi is a compact open subset of X. The property of compactness,
however, is not inherited by the union: if each of the component spaces
is non-empty, then the family {Xi} is itself an open cover of X that has no
finite subcover (and in fact no proper subcover at all). To arrive at a Boolean
space, it is necessary to pass to a compactification of X.

A compactification of a locally compact Hausdorff space X is a compact
Hausdorff space Y such that X is a dense subspace of Y . In particular, the
open subsets of X are precisely the intersections with X of the open subsets
of Y , and every non-empty open subset of Y has a non-empty intersection
with X. A Boolean compactification of X is a compactification of X that
is simultaneously a Boolean space. (The terminology zero-dimensional com-
pactification is also frequently employed.)
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A simple example is the one-point compactification of a locally compact,
but not compact, Hausdorff space X (due to Alexandroff — see [1]). This is
a topological space Y that is obtained by adjoining a single new point to X
and declaring a subset of Y to be open just in case it is either an open subset
of X or else the complement in Y of a closed compact subset of X. Notice
that X is itself an open subset of Y .

In general, a locally compact Hausdorff space is open in any of its com-
pactifications; this statement is an easy corollary of the following lemma.

Lemma 1. If X is a locally compact subspace of a Hausdorff space Y , then
there is an open set U and a closed set F in Y such that X = U ∩ F .

Proof. Each point x in X belongs to some open set Vx that has a compact
closure in X, by the assumption that X is locally compact (see Exercise 13).
Write Wx for that compact closure in X, and write V −

x for the closure of Vx

in Y . It follows (by Exercise 9.9 applied to the set Vx) that

Wx = X ∩ V −
x .

The set Wx is also compact in Y (by Exercise 29.28), and is therefore closed
in Y , by Lemma 29.1.

The set Vx is open in X, so there is an open subset Ux of Y such that

Vx = X ∩ Ux,

by the definition of the inherited topology. The union

U =
⋃

x∈X

Ux

is an open set in Y that includes X.
It is easy to see that Vx is closed in the space Ux (under the topology

inherited by Ux from Y ): the set Wx is closed in Y , and

Vx = Vx ∩ Wx = (X ∩ Ux) ∩ (X ∩ V −
x ) = Ux ∩ X ∩ V −

x = Ux ∩ Wx.

Consequently, the set Ux −Vx is open in Ux; since Ux is open in Y , it follows
that Ux − Vx must also be open in Y (Exercise 9.7). The union

⋃

x∈X

(Ux − Vx)

is therefore an open subset of Y . The difference Ux − Vx can be written in
the form

Ux − Vx = Ux − (X ∩ Ux) = Ux − X,
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so that ⋃

x∈X

(Ux − Vx) =
⋃

x∈X

(Ux − X) = U − X.

Conclusion: U −X is an open subset of Y . If F is the complement of U −X
in Y , then F is closed in Y , and

U ∩ F = U ∩ (U − X) ′ = U ∩ (U ′ ∪ X)
= (U ∩ U ′ ) ∪ (U ∩ X) = U ∩ X = X,

as desired.

Corollary 1. A dense locally compact subspace of a Hausdorff space Y is
open in Y .

Proof. Suppose X is a dense, locally compact subspace of Y . There is then
an open set U and a closed set F in Y such that X = U ∩F , by the preceding
lemma. Since X is included in F , and F is closed, the closure of X (in Y )
must also be included in F . The assumption that X is dense implies that its
closure coincides with Y , so F = Y and therefore X = U .

The next task is to describe the relationship between compactifications
of infinite unions of Boolean spaces and subalgebras of infinite products of
Boolean algebras. We proceed to establish the notation that will be used
in this description. Let {Xi} be a disjoint family of Boolean spaces with
union X, and let Ai be the dual algebra of Xi. The internal product A of
the family {Ai} is the field of subsets of X of the form P =

⋃
i Pi, where

each Pi is an element in Ai, that is, a clopen subset of Xi (see Chapter 26).
The operations of A are performed coordinatewise: if

P =
⋃

i

Pi and Q =
⋃

i

Qi

are elements of A, then

P ∪ Q =
⋃

i

(Pi ∪ Qi), P ∩ Q =
⋃

i

(Pi ∩ Qi), P ′ =
⋃

i

(Xi − Pi).

There is a subalgebra of A that plays a special role in the discussion,
namely the one generated by the union

⋃
i Ai. (Recall from Chapter 26 that

each factor Ai is the relativization of A to Xi. In particular, each Ai, as a set,
is included in A, so that it makes sense to speak of the subalgebra generated
by the union of these factors.) The elements of this subalgebra are precisely
those sets P =

⋃
i Pi in A such that either Pi = ∅ for all but finitely many i,
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or else Pi = Xi for all but finitely many i (see Exercise 27). We denote this
subalgebra by D and call it the weak internal product of the family {Ai}.

The goal is to establish a correspondence between the Boolean compactifi-
cations of the space X and the Boolean algebras that lie between the internal
product A and the weak internal product D (in the sense of being subalge-
bras of A that include D). The following observation will be useful: if B is a
subalgebra of A, then B includes D (so that D ⊆ B ⊆ A) if and only if for
each i, the set Xi belongs to B and the relativization of B to Xi is Ai. The
implication from right to left is immediate: if B contains each set Xi, and
if the relativization of B to Xi is Ai, then B includes the set of generators
of D, and consequently it includes D as a subalgebra. On the other hand,
if B includes D, then it certainly includes the set of generators of D, namely
the union of the factors Ai. In particular, B contains each set Xi (since Xi

belongs to Ai), and the relativization of B to Xi equals Ai, since

Ai ⊆ B(Xi) ⊆ A(Xi) = Ai.

The next lemma says that the dual algebra of each compactification of X
is isomorphic to an algebra between the internal product A and the weak
internal product D.

Lemma 2. If B is the dual algebra of a Boolean compactification of X,
then the relativization of B to X is an algebra between A and D, and B is
isomorphic to this relativization via the relativizing mapping induced by X.

Proof. Suppose Y is a Boolean compactification of X, and B is the dual
algebra of Y . The mapping g defined by

g(P ) = P ∩ X

for each subset P of Y is a homomorphism from the field P(Y ) of all subsets
of Y onto the field P(X) of all subsets of X. In fact, g is the relativizing
homomorphism induced by X, and P(X) is the relativization of P(Y ) to X
(see Chapter 12, p. 92). The dual algebra B is a subfield of P(Y ), so g maps B
homomorphically onto some subfield of P(X), namely the relativization of B
to X. (Note that X need not be an element of B in order for this relativization
to be formed; see Exercise 12.19.) Write B0 for this relativization.

The first step is to show that B0 is a subalgebra of A. Both algebras are
subfields of P(X), so it suffices to prove that every element in B0 — every
image under g of an element in B — belongs to A. Consider a set P in B,
and write

Pi = P ∩ Xi.
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The set Pi is clopen in Xi (it is the intersection of the clopen subset P of Y
with Xi — see Exercise 9.6), so it is an element of Ai. Since

g(P ) = P ∩ X = P ∩
(⋃

i

Xi

)
=
⋃

i

(P ∩ Xi) =
⋃

i

Pi,

it follows that g(P ) is an element of A, as desired.
The next step is to show that D is a subalgebra of B0. Observe that a

subset P of Xi is clopen in Y just in case it is clopen in Xi. One direction
of this assertion is obvious: if P is clopen in Y , then it must be clopen in Xi

(by the definition of the inherited topology), since

P = P ∩ Xi.

To prove the converse, assume that P is clopen in Xi. Since P is open in Xi,
and Xi is open in X (Exercise 2), and X is open in Y (Corollary 1), it follows
(Exercise 9.7) that P must be open in Y . Since P is closed in Xi, it is compact
in Xi, and therefore compact in Y (Exercise 29.28); hence (Lemma 29.1) P
is closed in Y .

Another way of phrasing the preceding observation is that a subset of Xi

belongs to B (the dual algebra of Y , and hence the field of clopen subsets
of Y ) if and only if it belongs to Ai (the dual algebra of Xi, and hence the
field of clopen subsets of Xi). In particular, Xi belongs to B (since Xi is
clopen in itself) and the relativization of B to Xi is just Ai. If P is in Ai,
then

g(P ) = P ∩ X = P,

so that g is the identity function on Ai. Thus, Ai is also included in the
image algebra B0 for each i. The subalgebra D is generated by the union of
the sets Ai, so it too must be included in B0.

It remains to prove that the mapping g is one-to-one on B. Suppose P
and Q are elements in B. Observe that

(P ∩ X)− = P and (Q ∩ X)− = Q,

where these closures are formed in Y . For instance,

(P ∩ X)− = P ∩ X− = P ∩ Y = P ;

the first equality follows from Exercise 9.13(e), and the second from the
density of X in Y . If

g(P ) = g(Q)
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then

P ∩ X = Q ∩ X

by the definition of g, and therefore

P = (P ∩ X)− = (Q ∩ X)− = Q,

as required. The proof of the lemma is complete.

The next task is to determine how subalgebras that correspond to various
compactifications of the union space X relate to one another.

Lemma 3. Suppose Y and Z are Boolean compactifications of X, with dual
algebras B and C respectively. The relativization of C to X is a subalgebra
of the relativization of B to X if and only if there is a continuous mapping
from Y onto Z that is the identity on X.

Proof. Let B0 be the relativization of B to X, and g the relativizing mapping
from B to B0 defined by

g(P ) = P ∩ X

for each P in B. Similarly, let C0 be the relativization of C to X, and h the
relativizing mapping from C to C0 defined by

h(P ) = P ∩ X

for each P in C. The mappings g and h are isomorphisms, by the preceding
lemma.

0 0

φ f

g h

k

Y Z B

B

C

C

Consider first a continuous function φ from Y onto Z that maps each ele-
ment in X to itself (see the diagram). The dual of φ is the monomorphism f
from C into B that is defined by
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f(P ) = φ−1(P )

for every P in C, by Theorem 34 (p. 350). The composition

k = g ◦ f ◦ h−1

is therefore a monomorphism from C0 into B0. We proceed to show that k
is the identity mapping on C0, from which it follows that C0 is a subalgebra
of B0, as desired. For each Q in C0, there is a P in C such that

h(P ) = P ∩ X = Q.

A simple computation yields

k(Q) = g(f(h−1(Q))) = g(f(P )) = g(φ−1(P ))

= φ−1(P ) ∩ X = P ∩ X = Q.

The first equality follows from the definition of k, the second and fourth
from the definitions of h and g as relativizing mappings, and the third from
the definition of f as the dual of φ. For the fifth equality, observe that an
element x is in the intersection φ−1(P )∩X just in case φ(x) is in P and x is
in X, and this happens exactly when x is in P ∩X, because φ is the identity
on X.

To prove the converse direction of the lemma, suppose C0 is a subalgebra
of B0, and let k be the identity mapping from C0 into B0. The composition

f = g−1 ◦ k ◦ h

is a monomorphism from C into B. If P is an element in any one of the
factor algebras Ai, then P is a subset of X, so that

g(P ) = P ∩ X = P and h(P ) = P ∩ X = P,

and therefore

f(P ) = g−1(k(h(P ))) = g−1(k(P )) = g−1(P ) = P.

In other words, f is the identity mapping on Ai for each i.
The dual of f is the continuous function φ from Y onto Z determined by

the condition

φ(x) ∈ P if and only if x ∈ f(P ),

where P ranges over the elements of C — the clopen subsets of Z (Theo-
rem 34). It must be shown that φ maps every element of X to itself. A
point x in X necessarily belongs to one of the spaces Xi, and the function f
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is the identity on the dual algebra of Xi, by the observations of the preceding
paragraph. The equivalence determining φ therefore assumes the form

φ(x) ∈ P if and only if x ∈ P

for sets P that are in Ai. The class N of all sets in Ai that contain x is an
ultrafilter in Ai, and x is the only point that belongs to each of those sets (see
Exercise 35.5 or the remarks following Theorem 33, p. 341). Since the sets
in N also contain φ(x), by the preceding equivalence, it follows that φ(x) = x,
as desired.

Notice that the argument in the final paragraph proves a somewhat
stronger assertion: if the dual of a continuous function φ from Y to Z is
the identity mapping on Ai for each i, then φ is the identity mapping on X.

Corollary 2. Suppose Y and Z are Boolean compactifications of X, with
dual algebras B and C respectively. The spaces Y and Z are homeomorphic
via a mapping that is the identity on X if and only if the relativizations of B
and C to X are equal, or, equivalently, if and only if B and C are isomorphic
via a mapping that is the identity on each field Ai.

Proof. Let B0 and C0 be the relativizations of B and C to the set X. If there
is a homeomorphism from Y to Z that is the identity mapping on X, then B0

and C0 are subalgebras of one another, and hence equal, by Lemma 3. On
the other hand, if B0 and C0 are equal, then there are continuous mappings φ
from Y onto Z, and ψ from Z onto Y , that are the identity on X, again by
Lemma 3. The composition ψ ◦φ is a continuous function from Y onto itself
that is the identity on the dense subset X. It follows from Corollary 33.2 and
the subsequent remark that ψ ◦ φ is the identity mapping on Y . A similar
argument shows that φ ◦ψ is the identity mapping on Z. Consequently, φ is
a bijection from Y to Z, and ψ is its inverse (see Exercise 12.32 or the section
on bijections in Appendix A). Since both functions are continuous, φ must
be a homeomorphism from Y to Z.

To establish the second equivalence, suppose first that C is isomorphic
to B via a mapping that is the identity on each field Ai. The dual of the
isomorphism is a homeomorphism from Y to Z, by Theorem 34, and it is the
identity on X by the remark preceding the corollary.

Assume now that Y and Z are homeomorphic via a mapping that is the
identity on X. The relativizations B0 and C0 are then equal, by the observa-
tions of the first paragraph. The relativizing mapping g from B to B0 is an
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isomorphism, as is the relativizing mapping h from C to C0, by Lemma 2.
The composition

f = g−1 ◦ h

is therefore an isomorphism from B to C, and it is easy to check that f is
the identity on each field Ai. Indeed, an element P in Ai is a subset of Xi,
and thus also a subset of X. Consequently,

g(P ) = P ∩ X = P and h(P ) = P ∩ X = P,

so that

f(P ) = g−1(h(P )) = g−1(P ) = P.

The final lemma says that every algebra between A and D comes from
the dual of some Boolean compactification of X.

Lemma 4. Every algebra between A and D is the relativization to X of the
dual algebra of some Boolean compactification of X.

Proof. We begin with a sketch of the main ideas of the proof. Consider an
algebra C between D and A. Its dual space Y will be shown to be a Boolean
compactification of a topological space V that is a homeomorphic image
of X under a certain mapping φ. The mapping φ induces an isomorphism
from C (which is a field of subsets of X) to a field C0 of subsets of V . The
relativization to V of the dual algebra of Y coincides with C0. If each point
in X is identified with its image point in V (using a topological version of the
exchange principle), the dual space Y becomes a Boolean compactification
of X, and the intermediate algebra C coincides with C0. Consequently, the
relativization to X of the dual algebra of Y coincides with C.

Here are the details of the proof. The space X is the topological union
of the disjoint component spaces Xi. We proceed to construct a subspace V
of Y by forming a homeomorphic image in Y of each Xi, and then taking
the (disjoint) union of these images. Each space Xi is homeomorphic to its
second dual — the dual space of the dual algebra Ai — via the mapping that
takes each point x in Xi to the 2-valued homomorphism zx on Ai defined by

zx(P ) =

{
1 if x ∈ P ,

0 if x �∈ P ,
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for every P in Ai, by Theorem 32 (p. 329). The dual space of Ai is, in turn,
homeomorphic to the clopen subspace of Y determined by Xi, namely the
subspace

Vi = {y ∈ Y : y(Xi) = 1}.

This last assertion is a direct consequence of Exercise 35.20, since the as-
sumption that D is a subalgebra of C implies that the factor Ai is equal to
the relativization of C to Xi (see the remarks preceding Lemma 2). In fact,
if yx is the 2-valued homomorphism on C defined by

yx(P ) =

{
1 if x ∈ P ,

0 if x �∈ P ,

for every P in C, then the correspondence that takes zx to yx for each x
in Xi is a homeomorphism from the dual space of Ai to the space Vi (Ex-
ercise 35.21). The composite function φi that maps each x in Xi to yx is
therefore a homeomorphism from Xi to Vi.

Take V to be the union of the family of subspaces {Vi}, endowed with
the topology inherited from Y . We proceed to show that X is homeomorphic
to V , and that V is a dense subspace of Y . The argument uses the properties
of the canonical isomorphism from C to its second dual — the dual algebra
of Y . Recall from Theorem 31 (p. 328) that this isomorphism maps each
set P in C to the clopen subset

UP = {y ∈ Y : y(P ) = 1}

of Y .
The family of homeomorphisms {φi} has a common extension to a func-

tion φ from X to V that is defined by

φ(x) = yx

for x in X. Notice that φ is well defined because the sets Xi are assumed
to be mutually disjoint; it is onto because each φi maps Xi onto Vi; and
it is one-to-one because the mappings φi are one-to-one and the sets Vi are
mutually disjoint. (The image of each Xi under the canonical isomorphism
is just the set

UXi = Vi,

and images of disjoint sets under an isomorphism are always disjoint.) To
prove that φ is continuous, it must be shown that the inverse image under φ
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of each open set in V is open in X. An open set in V has the form W ∩ V
for some open set W in Y . Of course,

W ∩ V = W ∩
(⋃

i

Vi

)
=
⋃

i

(W ∩ Vi),

and therefore

φ−1(W ∩ V ) =
⋃

i

φ−1(W ∩ Vi) =
⋃

i

φ−1
i (W ∩ Vi),

by Exercise 33.5 and the definition of φ. The set W ∩ Vi is open in the
subspace topology of Vi (because W is open in Y ), and therefore its inverse
image φ−1

i (W ∩Vi) is open in Xi, by the continuity of φi. This inverse image
is the component of φ−1(W ∩ V ) in the component space Xi (because the
domain of φi is Xi), so each of the components of φ−1(W ∩ V ) is open in its
component space. Consequently, φ−1(W ∩V ) is open in X, by the definition
of the union topology. Conclusion (Lemma 33.5): φ is a homeomorphism
from X to V .

To prove that V is dense in Y , it must be shown that every non-empty
clopen set in Y has a non-empty intersection with V . For any such clopen
set Q, there is a non-empty set P in C such that Q = UP (since the canonical
isomorphism maps C onto the dual algebra of Y ). An easy computation yields

Q ∩ V = Q ∩
(⋃

i

Vi

)
=
⋃

i

(Q ∩ Vi) =
⋃

i

(UP ∩ UXi) =
⋃

i

UP∩Xi .

(The final equality holds because the canonical isomorphism preserves inter-
section.) Since P is a non-empty subset of X, it must have a non-empty
intersection with one of the sets Xi. The corresponding set UP∩Xi is then a
non-empty clopen subset of Q ∩ V , as desired. (Here, use is being made of
the fact that the image of a non-empty set under the canonical isomorphism
is non-empty.) Conclusion: V is a dense subspace of the Boolean space Y ,
and therefore Y is a Boolean compactification of V .

The homeomorphism φ naturally induces a bijection between the class of
subsets of X and the class of subsets of V : each subset P of X is mapped to
the subset

φ(P ) = {φ(x) : x ∈ P}
of V . Consequently, every field of subsets of X is mapped isomorphically to
a corresponding field of subsets of V . In particular, C is mapped to the field

C0 = {φ(P ) : P ∈ C}.
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Consider now the dual algebra of Y — call it B. It is the second dual
of C and the image of C under the canonical isomorphism (Theorem 31). We
proceed to demonstrate that the relativization of B to V is just the field C0.
First, a preliminary observation:

(1) UP ∩ φ(X) = φ(P )

for each set P in C. To prove (1), let y be any point in φ(X), say

y = φ(x) = yx,

where x is in X. If y is in UP , then

1 = y(P ) = yx(P ),

by the definition of UP ; hence, x is in P , by the definition of yx, and there-
fore y is in φ(P ), by the definition of φ. On the other hand, if y is in φ(P ),
so that x is in P , then

1 = yx(P ) = y(P ),
by the definition of yx; hence, y is in UP , by the definition of UP . This
argument shows that the two sets UP and φ(P ) have the same intersection
with φ(X). But φ(P ) is included in φ(X), since P is included in X, so we
arrive at (1).

As B is the second dual of C, each element Q in B may be written one
and only one way in the form Q = UP for some P in C. If g is the relativizing
homomorphism that maps every set in B to its intersection with V , then

g(Q) = Q ∩ V = UP ∩ φ(X) = φ(P );

the first equality uses the definition of g, and the last uses (1). The corre-
spondence between the sets P in C and the sets Q = UP in B is bijective,
as is the correspondence between the sets P in C and the sets φ(P ) in C0.
The preceding string of equalities therefore implies that the relativizing ho-
momorphism g is a bijection, and hence an isomorphism, from B to C0. In
particular, the relativization of B to V is C0.

Here is a summary of what has been accomplished so far. First, X has
been shown to be homeomorphic, under a mapping φ, to a dense subspace V
of Y (where Y is the dual space of the given intermediate algebra C). In
particular, Y is a Boolean compactification of V . Second, φ induces an iso-
morphism between C and a field C0 of subsets of V , and B (the dual algebra
of Y ), when relativized to V , coincides with C0. (In fact, the relativizing
mapping that takes each Q in B to the set Q∩ V is an isomorphism from B
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onto C0.) All that is needed to complete the proof is to identify X with V ,
and specifically to identify each point x in X with its image φ(x). Under
this identification, the space Y becomes a Boolean compactification of X;
the algebra C coincides with C0; the dual algebra B, when relativized to X,
coincides with C; and the relativizing homomorphism that maps each ele-
ment Q in B to the set Q ∩ X is an isomorphism from B to C.

The technical tool for carrying out this identification is a topological ver-
sion of the exchange principle described in Chapter 12. In brief, a homeomor-
phic copy of the space Y is created in the following manner: the elements in V
are replaced by the corresponding elements in X, and the elements in Y −V
are replaced by new elements that do not occur in X. This leads to a set Y ∗

that includes X, and to a bijection ψ from Y ∗ to Y that coincides with φ on
the elements in X. A subset of Y ∗ is declared to be open just in case it is the
inverse image under ψ of an open set in Y . The resulting space Y ∗ is home-
omorphic to Y via the mapping ψ. The subspace V is dense in Y , and ψ−1

extends the homeomorphism φ−1 that maps V to X; consequently, X, under
its own topology, is a dense subspace of Y ∗. In other words, Y ∗ is a Boolean
compactification of X. (See Exercise 33.21.)

If B∗ is the dual algebra of Y ∗, and B the dual algebra of Y , then B∗ is
obtained from B by replacing each set in B — each clopen subset of Y —
with its inverse image under ψ. The restriction of ψ−1 to V is just φ−1, so
each set in the relativization of B to V — that is to say, each set in C0 — is
replaced by its inverse image under φ. It is obvious from the definition of C0

that the resulting algebra is just C. Consequently, C is the relativization
of B∗ to X. The proof of the lemma is complete.

Lemmas 2 and 4 describe a correspondence between the class of Boolean
compactifications of the space X and the class of algebras intermediate be-
tween D and A. In general, the correspondence is not one-to-one, as Corol-
lary 2 makes clear; distinct compactifications may correspond to the same
intermediate algebra. Such compactifications do not differ from one another
in any material way, and it is natural to identify them by grouping them
all together into one class. Motivated by these considerations, we define two
Boolean compactifications of X to be equivalent if there is a homeomorphism
between them that maps each element of X identically to itself. It is easy to
check that this defines an equivalence relation on the class of all Boolean com-
pactifications of X. Equivalent compactifications have dual algebras that are
isomorphic via a mapping that is the identity on the elements of each set Ai,
by Corollary 2; one may therefore speak, with some justification, of the dual
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algebra of the equivalence class.
Two Boolean compactifications of X are equivalent if and only if the rel-

ativizations (to X) of their dual algebras are equal, by Corollary 2. (Keep in
mind that these relativizations are natural isomorphic copies of the dual al-
gebras, copies that lie between D and A; see Lemma 2.) The correspondence
that maps the equivalence class of such a compactification to the relativiza-
tion of its dual algebra is therefore a well-defined bijection from the set of
equivalence classes of Boolean compactifications of X to the set of algebras
between D and A. As it turns out, this bijection is actually a lattice isomor-
phism.

The set of algebras between D and A is partially ordered by the relation
of being a subalgebra, and under this ordering the set becomes a complete
lattice with zero D and unit A. The meet of a family of such algebras is their
intersection, and the join is the subalgebra generated by their union.

1 2

1 2

ZZ

YY
φ

ψ

θ

The partial ordering on the set of equivalence classes of Boolean com-
pactifications is more complicated to describe, but it is equally natural. We
begin by defining a binary relation ≤ between Boolean compactifications
of X. For two such compactifications Y and Z, write

Y ≤ Z

just in case there is a continuous mapping from Z onto Y that is the identity
on X. This relation is preserved by equivalence in the following sense: if Y1

and Y2 are equivalent, and also Z1 and Z2, then

Y1 ≤ Z1 implies Y2 ≤ Z2.

For the proof, suppose φ is a homeomorphism from Y1 to Y2, and ψ a home-
omorphism from Z1 to Z2, and θ a continuous function from Z1 onto Y1; and
assume that all three functions are the identity on X. The composition

φ ◦ θ ◦ ψ−1
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is then a continuous function from Z2 onto Y2 that is the identity on X (see
the diagram).

We shall say that the equivalence class of Y is less than or equal to the
equivalence class of Z if Y ≤ Z. The remarks of the preceding paragraph
imply that the relation so defined does not depend on any particular choice
of the representatives of the equivalence classes concerned. In other words,
the relation is well defined. It is not difficult to prove that the relation is
actually a partial ordering. The only non-trivial part is showing that it is
antisymmetric. Suppose, accordingly, that Y ≤ Z and Z ≤ Y , say φ maps Z
continuously onto Y , and ψ maps Y continuously onto Z, and both functions
are the identity on X. The composition φ ◦ ψ maps Y continuously onto
itself and is the identity on the dense subset X. The composition is therefore
the identity function on Y , by Corollary 33.2 and the subsequent remark.
Similarly, the composition ψ ◦ φ is the identity function on Z. It follows
that φ is a bijection from Z to Y with ψ as its inverse (see Exercise 12.32 or
the section on bijections in Appendix A), so φ must be a homeomorphism.
The compactifications Y and Z are therefore equivalent, so their equivalence
classes are equal.

We have seen that the set of equivalence classes of Boolean compactifica-
tions of X is partially ordered by the relation just defined, and that the set
of algebras between D and A is a complete lattice under the partial ordering
of being a subalgebra. We have also seen that the correspondence mapping
each equivalence class to the relativization of its dual algebra is a bijection
between the two classes, and it is a direct consequence of Lemma 3 that
this bijection preserves the partial orderings in both directions (in the sense
that it satisfies the order-preserving equivalence of Exercise 12.13)(c)). It
follows that the set of equivalence classes must be a lattice under its partial
ordering, and that the correspondence between the two lattices is a lattice
isomorphism. The following theorem summarizes what has been proved.

Theorem 45. Let X be the union of a disjoint family {Xi} of Boolean
spaces, and for each i, let Ai be the dual algebra of Xi. Equivalent Boolean
compactifications of X have the same dual algebra (up to isomorphisms that
are the identity on the sets Ai), and that dual algebra is isomorphic (via rela-
tivization) to an algebra between the internal product A and the weak internal
product D of the family {Ai}. The function that maps each equivalence class
of Boolean compactifications of X to the corresponding algebra between A
and D is a lattice isomorphism.

The preceding theorem implies that the dual space of the product ΠiAi
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is, up to homeomorphic copies, the maximum element in the class of Boolean
compactifications of X. We proceed to show that it is the Stone–Čech com-
pactification of X. It is not important to know the precise details of the
construction of the Stone–Čech compactification in order to prove this asser-
tion. All that is needed is the definition: a compactification Y of a locally
compact Hausdorff space X is a Stone–Čech compactification of X if every
continuous mapping from X into a compact Hausdorff space Z can be ex-
tended to a continuous mapping from Y into Z. Two such compactifications
are necessarily equivalent (Exercise 25), so one may justifiably speak of the
Stone–Čech compactification of X. In keeping with the preceding develop-
ment, we prove the dual version of the asserted theorem.

Theorem 46. Let X be the union of a disjoint family {Xi} of Boolean spaces,
and for each i, let Ai be the dual algebra of Xi. The Stone–Čech compactifi-
cation of X exists and is a Boolean space. Its dual algebra is isomorphic to
the internal product of the family {Ai} (via the relativizing mapping).

Proof. There is, by Lemma 4, a Boolean compactification of X — call it Y —
whose dual algebra is isomorphic to the internal product of the family {Ai}
via the relativizing mapping. We shall show that Y is the Stone–Čech com-
pactification of X.

The proof makes use of the following preliminary observation: two disjoint
closed subsets of X, say F1 and F2, are always separated by a clopen subset
of Y . Indeed, for each index i, the intersections

F1 ∩ Xi and F2 ∩ Xi

are disjoint closed subsets of Xi, by the definition of the topology of X. A
rather straightforward compactness argument, using the fact that Xi is a
Boolean space, produces a clopen subset Pi of Xi such that

F1 ∩ Xi ⊆ Pi and F2 ∩ Pi = ∅

(Exercise 32.5). For each i, the set Pi belongs to the dual algebra Ai, so
the family {Pi} has a supremum in the internal product of the family {Ai},
by the definition of an internal product (see p. 233). The dual algebra of Y
— call it B — is isomorphic to the internal product via a mapping that is
the identity on the sets Ai, by Theorem 45, so the family {Pi} also has a
supremum in B. In fact, if P is the union of the family {Pi}, and if P− is
the closure of P in Y , then P− is a clopen subset of Y and

P− =
∨

i

Pi



414 Introduction to Boolean Algebras

in B, by Lemma 38.1. An easy computation shows that P− separates F1

and F2:

F1 = F1 ∩ X = F1 ∩
(⋃

i

Xi

)
=
⋃

i

(F1 ∩ Xi) ⊆
⋃

i

Pi = P ⊆ P−

and

F2 ∩ P− = F2 ∩
(∨

i

Pi

)
=
∨

i

(F2 ∩ Pi) =
∨

i

∅ = ∅.

(Notice that the existence of this separating clopen set depends on the fact
that B is isomorphic to the internal product of the family {Ai} via a mapping
that is the identity on the sets Ai.)

In order to prove that Y is the Stone–Čech compactification of X, consider
an arbitrary continuous function φ from X into a compact Hausdorff space Z.
It is to be shown that φ can be extended to a continuous function ψ from Y
into Z. Every point in Y is completely determined by the clopen subsets
of Y that contain it. In other words, if y is in Y , and if Ny is the class of
clopen subsets of Y that contain y, then Ny is an ultrafilter (in B) and the
intersection of the sets in Ny contains exactly one point, namely y. (Recall
that clopen sets separate points in Y ; see also Exercise 35.5.) It is natural to
define ψ(y) to be a point in the intersection of the class of image sets φ(P ),
for P in Ny. Two difficulties arise. First, φ is defined only on points in X, so
it is necessary to use φ(P ∩ X) instead of φ(P ). Second, the sets φ(P ∩ X)
may not be closed, so there is no assurance that the intersection of all these
sets is non-empty. The solution is to pass to the closures of these sets. Given
any point y in Y , let Ky be the class of non-empty closed subsets of Z defined
by

Ky = {φ(P ∩ X)− : P ∈ Ny}.

We shall prove that the intersection of the sets in Ky contains exactly one
point.

To show that this intersection is not empty, it suffices to prove that Ky

has the finite intersection property; the desired conclusion then follows by
compactness. The finite intersection property is a direct consequence of two
observations. First, the sets in Ky are non-empty: if P is in Ny, then P ∩X
is non-empty, because X is dense, and P is clopen, in Y ; hence, the closure
of the image φ(P ∩ X) is not empty. Second, the intersection of any finite
sequence of sets from Ky includes a set from Ky and is therefore not empty.
For the proof, consider a finite sequence {Pn} of sets in Ny, and write P
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for the intersection of the sequence. The set P is clopen and contains y,
so it belongs to Ny. Consequently, the set φ(P ∩ X)− belongs to Ky; it is
obviously included in the intersection of the sets φ(Pn ∩ X)−, because P is
included in each Pn.

To show that the intersection of the sets in Ky cannot contain two points,
argue by contradiction: assume z1 and z2 are distinct points that belong to
every set in Ky. Since Z is a compact Hausdorff space, there exist open
sets U1 and U2 in Z, containing z1 and z2 respectively, such that the clo-
sures U−

1 and U−
2 are disjoint (Corollary 29.2). The inverse images φ−1(U−

1 )
and φ−1(U−

2 ) are closed subsets of X, by the continuity of φ, and they are
obviously disjoint, since U−

1 and U−
2 are disjoint. The preliminary observa-

tion made at the beginning of the proof now implies that these inverse images
are separated by a clopen set P in Y , say P includes φ−1(U−

1 ) and is disjoint
from φ−1(U−

2 ). The point y is in exactly one of the sets P and P ′; assume it
is in P . In this case, P belongs to Ny; consequently, the set φ(P ∩ X)− be-
longs to Ky, so it contains both z1 and z2. Because z2 belongs to the closure
of φ(P ∩X), and also to the open set U2, the intersection of U2 with φ(P ∩X)
is not empty, by a basic fact about closures (see p. 57). It follows that the
intersection of φ−1(U2) with P is not empty (Exercise 33.2), which contra-
dicts the disjointness of these two sets. The argument when y is in P ′ is
completely analogous.

Define ψ(y) to be the unique point that belongs to every set in Ky. To
prove that ψ is an extension of φ, assume y is in X. Then y is in the
intersection P ∩X for every P in Ny, so φ(y) belongs to every set in Ky, by
the definition of Ky. It follows from the definition of ψ that ψ(y) = φ(y).

It remains to demonstrate that ψ is continuous. Let U be an open set
in Z. To show that the inverse image ψ−1(U) is open in Y , it suffices to
show that for each point y in the inverse image, there is a clopen subset of Y
that contains y and is included in ψ−1(U). By definition, ψ(y) is the only
point that belongs to the intersection of the sets in the class Ky. Since ψ(y)
belongs to U , the intersection of the sets in Ky is included in U . A rather
straightforward compactness argument (Exercise 29.24) shows that the in-
tersection of some finite family of sets in Ky is already included in U . Every
such intersection includes a set from Ky (see the earlier remarks concern-
ing the finite intersection property), so there is a clopen set P in Ny such
that φ(P ∩ X)− is included in U . The point y belongs to P , by the definition
of Ny. To prove that P is included in ψ−1(U), consider any point w in P .
The set P belongs to Nw, by definition, and therefore φ(P ∩ X)− is in Kw.
It follows that the intersection of the sets in Kw is included in φ(P ∩ X)−,
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and hence also in U . The point ψ(w) is, by definition, the unique element in
this intersection, so ψ(w) is in U ; consequently, w is in ψ−1(U). The proof
of the theorem is complete.

In the preceding theorem, the existence of the Stone–Čech compactifi-
cation of the space X is not assumed; it is proved. However, even if its
existence were assumed, the statement that this compactification is home-
omorphic to the dual space of the product

∏
i Ai would still not be an im-

mediate consequence of Theorem 45. One would have to demonstrate first
that the compactification has a base consisting of clopen sets and is therefore
a Boolean space. This difficulty is circumvented in the preceding proof by
starting, instead, with the dual space of the product — which is automati-
cally a Boolean space — and showing that it possesses the defining properties
of the Stone–Čech compactification of (a copy of) X.

For an application of the theorem, consider an infinite disjoint fam-
ily {Xi} of one-point spaces (singletons). The union of this family is an
infinite space X endowed with the discrete topology. The dual algebra of
each space Xi is a two-element Boolean algebra Ai, and the internal product
of the family {Ai} is isomorphic to the power 2X and also to the field P(X)
of all subsets of X. The preceding theorem says, in this case, that the dual
spaces of the algebras 2X and P(X) are (homeomorphic to) the Stone–Čech
compactification of X (see Exercises 33.31 and 34.19). This shows, in par-
ticular, that an infinite product of even the simplest non-degenerate Boolean
algebras has something as unruly as the Stone–Čech compactification of an
infinite discrete space as its dual.

As we have seen, if {Xi} is a family of Boolean spaces, and if Y is the
Stone–Čech compactification of the disjoint union of the spaces, then Y is
(to within a homeomorphism) the dual space of the product of the family of
dual algebras. In the case of a finite family of spaces, Y is just the disjoint
union of the family and is therefore called the sum of the spaces. It seems
reasonable to extend the additive terminology and notation to the infinite
case as well, and in all cases to call Y the sum of the family {Xi}, and to
write

Y =
∑

i

Xi.

We close with some historical remarks. Dwinger [16] proved that the
dual space of a (direct) product A of Boolean algebras is homeomorphic
to the Stone–Čech compactification of the (disjoint) union X of the dual
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spaces of the factor algebras. Bernardi [4] proved that the dual algebra of
every Boolean compactification of X is isomorphic to a subalgebra of A that
includes the weak (direct) product, and, conversely, the dual space of every
subalgebra of A that includes the weak product is homeomorphic to a Boolean
compactification of X. (The weak product is the subalgebra of A consisting
of those elements p such that pi = 0 for all but finitely many i, or else pi = 1
for all but finitely many i.) Our presentation differs from Dwinger’s and
Bernardi’s, and has been inspired by the presentation in [45].

Exercises

1. Prove that the “union topology”, defined on the union of an arbitrary
family of disjoint topological spaces, really is a topology.

2. Suppose X is the union of a family {Xi} of disjoint spaces. Prove that
a subset P of X is closed or clopen in X just in case P ∩Xi is closed or
clopen in Xi for each i. Conclude that a subset of Xi is open, closed,
or clopen in the topology of X just in case it is open, closed, or clopen
in the topology of Xi.

3. Prove that the union of a family of disjoint spaces is Hausdorff if and
only if each component space is Hausdorff.

4. Prove that the union of a family of disjoint spaces has a base consisting
of clopen sets if and only if each component space has a base consisting
of clopen sets.

5. Prove that the union of a finite family of disjoint spaces is compact if
and only if each component space is compact. Conclude that the union
of the family is a Boolean space if and only if each component space is
Boolean.

6. Formulate and prove the generalization of Theorem 44 to any finite
disjoint family of Boolean spaces.

7. Use Theorem 44 to derive its dual (algebraic) version: if B and C
are Boolean algebras, and if A = B × C, then the dual space of A is
homeomorphic to the (disjoint) sum of the dual spaces of B and C.

8. Prove the dual (algebraic) version of Theorem 44 directly, without using
Theorem 44.
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9. Let X be the space of all ordinals up to and including the second limit
ordinal ω2, under the order topology (see Exercise 32.15). Suppose

X0 = ω ∪ {ω} = {0, 1, 2, . . . , } ∪ {ω}

is the space of all ordinals up to and including the first infinite ordinal,
under the order topology, and

X1 = {ω + 1, ω + 2, . . . } ∪ {ω2}

is the space of the remaining ordinals in X, again under the order
topology. (Thus, X0 is the one-point compactification of the space of
finite ordinals with the discrete topology, while X1 is the one-point
compactification of the space Y = {ω + 1, ω + 2, . . . } with the discrete
topology (see Exercise 32.16). The two spaces X0 and X1 are obviously
homeomorphic via the function that maps n to ω+n+1 for each natural
number n, and that maps ω to ω2.) Prove that X = X0+X1. Conclude
that if A is the field of finite and cofinite subsets of the natural numbers,
then the dual algebra of X is isomorphic to A × A.

10. Generalize the results of the preceding problem.

11. Let A be the field of finite and cofinite sets of natural numbers. Give a
topological proof that A × A is not isomorphic to A.

12. (Harder.) Prove directly (without using duality and Exercise 26.34)
that if X is a Boolean space with a countable base and infinitely many
isolated points, and if 1 = {0} is the one-point space, then

X = X + 1

(where the equality sign is to be interpreted as asserting that the two
spaces are homeomorphic). Use this result to give a topological proof
of the theorem (Exercise 26.34) that if A is a countable Boolean algebra
with infinitely many atoms, then A is isomorphic to A × 2.

13. Prove that a Hausdorff space is locally compact if and only if each point
belongs to some open set whose closure is compact.

14. Prove the following converse to Lemma 1: if Y is a compact Hausdorff
space, then for every open set U and every closed set F , the intersec-
tion X = U ∩ F is a locally compact subspace of Y .
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15. Suppose X is a topological space and Y a one-point compactification
of X. Prove that the class of open sets in Y really is a topology, that Y
is compact under this topology, and that X is a subspace of Y . (The
results of this and the next exercise are due to Alexandroff — see [1].)

16. Prove that two one-point compactifications of a topological space X are
homeomorphic via a mapping that is the identity on X. (This justifies
speaking of the one-point compactification of X.)

17. Prove that the subspace of a compact Hausdorff space obtained by
removing any single point is locally compact and Hausdorff.

18. Prove that the one-point compactification of a locally compact Haus-
dorff space is Hausdorff. Conclude that the one-point compactification
of a space X is Hausdorff if and only if X is locally compact and Haus-
dorff.

19. Prove that the one-point compactification of a topological space X is
a Boolean space if and only if X is a locally compact Boolean space.

20. Suppose X is a locally compact Hausdorff space, and Y is its one-point
compactification. Prove that the following statements are equivalent:
(1) X is not compact; (2) X is dense in Y ; (3) the point in Y − X is
not isolated.

21. Prove the following stronger version of Exercise 16 for Hausdorff spaces.
If Y and Z are any two compact Hausdorff spaces that include X as a
subspace, and if Y − X and Z − X each have just one point, then Y
and Z are homeomorphic via a mapping that is the identity on X.

22. Prove that the relation of equivalence between Boolean compactifica-
tions of a space X is an equivalence relation.

23. Suppose Y and Z are compactifications of a locally compact Hausdorff
space X. Prove that any continuous mapping of Y into Z that is the
identity function on X must map Y onto Z.

24. If Y is a Stone–Čech compactification of a locally compact Hausdorff
space X, prove that Y is the largest compactification of X in the sense
that for any compactification Z of X, there is a continuous mapping
from Y onto Z that is the identity on X.
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25. Show that two Stone–Čech compactifications of a locally compact Haus-
dorff space X are equivalent in the sense that they are homeomorphic
via a mapping that is the identity on X. (This justifies speaking of the
Stone–Čech compactification of X.)

26. Show that [0, 1] is the one-point compactification of (0, 1], but it is not
the Stone–Čech compactification of (0, 1].

27. Let X be the union of a disjoint family of sets {Xi}. Suppose Ai is a
field of subsets of Xi for each i, and A is the internal product of the
family {Ai}. Prove that the class of all sets P in A such that P∩Xi = ∅

for all but finitely many i, or else P∩Xi = Xi for all but finitely many i,
is a subfield of A. Prove further that this subfield is generated by the
union

⋃
i Ai, that is, it is generated by the class of all elements of the

various factor algebras.

28. Let X be the union of an infinite family {Xi} of non-empty disjoint
Boolean spaces. Prove that the one-point compactification of X is
the smallest Boolean compactification of X in the sense of the partial
ordering on Boolean compactifications of X introduced in the chapter.
Conclude that the dual algebra of the one-point compactification of X
is (isomorphic to) the weak internal product of the dual algebras of the
spaces Xi.

29. If X is the union of an infinite family {Xi} of non-empty disjoint
Boolean spaces, prove directly (without using Theorem 45) that the
dual algebra of the one-point compactification of X is (isomorphic to)
the weak internal product of the dual algebras of the spaces Xi.

30. Let X be an infinite set endowed with the discrete topology. Use Exer-
cise 28 to give another proof that the field of finite and cofinite subsets
of X is (up to isomorphic copies) the dual algebra of the one-point
compactification of X. (Compare Exercise 32.16.)

31. If Y is the space of ordinals up to and including ω2, under the order
topology, what is the dual algebra of Y ?

32. As was pointed out in Exercise 26.37, the product
∏

i Ai of an infinite
family of non-degenerate Boolean algebras includes two subalgebras,
each of which might deserve some consideration as a kind of weak prod-
uct of the family {Ai}. One subalgebra consists of those elements p for
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which pi is in 2 for all but finitely many i; the other, smaller, subalgebra
consists of those elements p for which either pi = 0 for all but finitely
many i or else pi = 1 for all but finitely many i. What can be said
about the duals of these algebras?



Chapter 44

Sums of Algebras

The arrow diagram characterizing products in Chapter 26 says that when-
ever {Ai} is a family of Boolean algebras, there exists a Boolean algebra A
(the product) and, for each i, there exists an epimorphism fi from A to Ai

(the projection) such that if B is an arbitrary Boolean algebra, and if, for
each i, there is a homomorphism gi from B to Ai, then there is a unique ho-
momorphism g from B to A satisfying fi ◦ g = gi for all i (see the diagram).

i

ii
f

B
g

g

A

A

There are two ways to dualize such arrow diagrams. What, for instance,
does the diagram for products of algebras imply about the corresponding dual
spaces? That is the first question; the answer — a consequence of the duality
between homomorphisms and continuous functions (Theorem 34, p. 350, and
Corollary 36.2) — is given by a corresponding diagram for sums of spaces that
says: whenever {Xi} is a family of Boolean spaces, there exists a Boolean
space X (the Stone–Čech compactification of the disjoint union), and, for
each i, there exists a continuous one-to-one mapping φi from Xi into X (the
identity), such that if Y is any Boolean space, and if, for each i, there exists
a continuous mapping ψi from Xi to Y , then there exists a unique continuous
mapping ψ from X to Y satisfying ψ ◦ φi = ψi for all i (see the diagram).

S. Givant, P. Halmos, Introduction to Boolean Algebras, 422
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An equally natural question is this: What does the diagram for products
of algebras become if the algebras and homomorphisms involved in it are
replaced by spaces and continuous mappings? Two similar questions can be
asked about the dualization of the diagram for sums of spaces. One of them
leads back to products of algebras, and the other is the algebraic dual of the
space question just asked. The purpose of the present chapter is to answer
the two as yet unanswered questions.

We proceed to the precise formulations. Suppose that {Xi} is a family of
Boolean spaces. Does there exist a Boolean space X, and does there exist,
for each i, a continuous mapping φi from X into Xi such that the requisite
lifting condition is satisfied? The lifting condition says that if Y is a Boolean

i

i iφ

X

X

ψ

ψ
Y

space and if, for each i, there exists a continuous mapping ψi from Y to Xi,
then there exists a unique continuous mapping ψ from Y to X such that

(1) φi ◦ ψ = ψi

for all i. The answer is yes; if X is the Cartesian product of the family {Xi},
with the product topology (Exercise 32.20), and if the φi are the usual pro-
jections from a product space to its factors, then all the requirements are
fulfilled. The proof that X is a Boolean space parallels the proof that Cantor
spaces are Boolean (see Chapter 32 and Exercise 32.21). The continuity of
the projections is an almost immediate consequence of the definition of the
product topology (see Exercise 33.7). To verify the lifting condition, sup-
pose Y is a Boolean space such that for each index i there is a continuous
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mapping ψi from Y to Xi. Take ψ to be the mapping from Y to X defined
by

ψ(y)i = ψi(y)

for every i. In other words, ψ(y) is that element of X whose ith coordinate
is ψi(y), for each i. This definition just says that equation (1) holds for
every i. Consequently, there can be only one function ψ that satisfies this
equation for every i.

An argument similar to the one that proved the uniqueness of the product
of Boolean algebras (to within an isomorphism) proves that there is a unique
Boolean space (to within a homeomorphism) that, together with a suitable
family of mappings, satisfies the lifting condition. Here are the details. Sup-
pose that Y is a Boolean space and that, for each i, there is a continuous
mapping ψi from Y into Xi such that the lifting condition is satisfied. It is
to be shown that there is a homeomorphism ψ from Y to X satisfying the
condition

(2) φi ◦ ψ = ψi

for all i. Since the space X and the projections φi satisfy the lifting con-
dition (in particular, with respect to the space Y and the mappings ψi),
by the observations of the preceding paragraph, there is a unique continu-
ous mapping ψ from Y into X such that (2) holds. The space Y and the
mappings ψi also satisfy the lifting condition (in particular, with respect to
the space X and the projections φi), by assumption, so there is a unique
continuous mapping φ from X into Y satisfying

(3) ψi ◦ φ = φi

for all i.
Equations (2) and (3) combine to give

(4) ψi ◦ φ ◦ ψ = ψi and φi ◦ ψ ◦ φ = φi

for each i. Since the space Y and mappings ψi satisfy the lifting condition (in
particular, with respect to themselves), there must be a unique continuous
mapping θ from Y into itself such that

ψi ◦ θ = ψi

for each i. This system of equations is obviously satisfied if θ is taken to be
the identity homeomorphism on Y , and it is also satisfied if θ is taken to be
the composition φ ◦ ψ, by the first system of equations in (4). The assumed
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uniqueness of θ implies that φ ◦ ψ must be the identity homeomorphism
on Y . A similar argument, using the second system of equations in (4),
shows that ψ ◦ φ is the identity homeomorphism on X. It follows that φ
and ψ are bijections and inverses of one another (see Exercise 12.32 or the
section on bijections in Appendix A); thus, ψ is a homeomorphism from Y
to X that satisfies condition (2), as desired.

It is natural to call the space we constructed the product of the given
family of spaces and to use the multiplicative notation (

∏
i Xi, X1×X2, etc.)

that this terminology suggests.
One consequence of the uniqueness of product spaces is that when the

factor spaces Xi are all non-empty, the continuous functions φi in the def-
inition of the product X must map X onto, and not just into, Xi. This is
certainly the case when X is the Cartesian product of the family {Xi} and
the mappings φi are the projections. It follows from uniqueness, and in par-
ticular from equation (2), that it must be the case for every Boolean space
and family of continuous mappings that satisfies the lifting condition for the
family {Xi}.

Suppose next that {Ai} is a family of Boolean algebras. Does there exist
a Boolean algebra A, and does there exist, for each i, a homomorphism fi

from Ai to A such that the transfer condition is satisfied? By the transfer
condition we mean that if B is a Boolean algebra and if, for each i, there exists
a homomorphism gi from Ai to B, then there exists a unique homomorphism g
from A to B such that g◦fi = gi for all i. The answer by now is obviously yes;
just dualize the theory of products of Boolean spaces. To be more precise,
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let Xi be the dual space of Ai, and identify Ai with its second dual (via the
canonical isomorphism from Ai to the dual algebra of Xi). In this way, Ai

may be thought of as the dual algebra of Xi. The product space

X =
∏

i

Xi

and the projections φi from X to Xi satisfy the lifting condition, by the
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argument presented in the preceding paragraphs. Take A to be the dual
algebra of X, and for each i, take fi to be the dual of φi. Then fi is a
homomorphism from Ai into A, by Theorem 34 (p. 350). To verify that
the transfer condition is satisfied, consider a Boolean algebra B such that,
for each i, there is a homomorphism gi from Ai into B. Take Y to be the
dual space of B, and for each i take ψi to be the dual of gi. Thus, ψi is a
continuous mapping of Y into Xi, by the dual version of Theorem 34 (see
Theorem 35, p. 350). The space X and the mappings φi together satisfy the
lifting condition, so there is a unique continuous mapping ψ from Y into X
such that φi◦ψ = ψi for all i. Identify B with its second dual via the canonical
isomorphism, and take g to be the dual of ψ. Then g is a homomorphism
from B into A, by Theorem 34, and g ◦ fi = gi for all i, by Corollary 36.2.
No other homomorphism from B to A can satisfy this system of equations,
for the dual of such a homomorphism would present a counterexample to
uniqueness of the continuous mapping ψ.
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An explicit definition of the homomorphism fi from Ai to A may be ob-
tained from the definition of the dual of a continuous mapping and from the
definition of the canonical isomorphism from Ai to its second dual (Theo-
rem 31, p. 328). The dual space Xi consists of the 2-valued homomorphisms
on Ai, and the points of the product space X are families {xi} of such homo-
morphisms, where xi is in Xi for each i. The homomorphism fi is the dual
of the projection φi, after Ai has been identified with its second dual via the
canonical isomorphism. The canonical isomorphism maps each point p in Ai

to the set

Up = {y ∈ Xi : y(p) = 1},
so

fi(p) = φ−1
i (Up) = {x ∈ X : φi(x) ∈ Up}

= {x ∈ X : xi ∈ Up} = {x ∈ X : xi(p) = 1}.
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The first equality uses (36.2), the second uses the definition of an inverse
image, the third uses the definition of the projections, and the fourth uses
the definition of Up.

In analogy with the use of the term “sum” to denote the dual space of
a product of Boolean algebras, we may call A (which is the dual algebra
of a product of Boolean spaces) the (direct) sum of the given family of al-
gebras, and we may use the additive notation (

∑
i Ai, A1 + A2, etc.) that

this terminology suggests. An argument similar to the one given in the pre-
ceding paragraphs, based on duality and on the uniqueness of the product
of Boolean spaces (to within a homeomorphism), proves that the transfer
condition uniquely determines the sum of a family of algebras, to within an
isomorphism. (Alternatively, one can prove this uniqueness directly, using
the standard argument.)

It follows from uniqueness that if each algebra Ai in a family of Boolean
algebras is non-degenerate, then the homomorphisms fi in the definition
of the sum of the family are actually monomorphisms. Indeed, the dual
spaces Xi are non-empty (since the algebras Ai are non-degenerate), so the
projections φi map the product space X onto (and not just into) the factor
spaces Xi. Consequently, the dual homomorphisms fi must in fact be one-to-
one (Theorem 34). An application of uniqueness now shows that this remains
true for every Boolean algebra and family of homomorphisms that satisfy the
transfer condition for the family {Ai}.

An important insight into the intuition behind the sum construction can
be gained by identifying each algebra Ai with its image under fi (so that fi

becomes the identity homomorphism on Ai). The sum of the family {Ai} is
then an algebra A with the following properties: first, each Ai is a subalgebra
of A; second, if B is any Boolean algebra such that for each i, there is a
homomorphism gi from Ai into B, then there is a unique homomorphism g
from A into B that is a common extension of the gi. We shall refer to A as
the internal sum of the family {Ai}.

The requirement in the definition of an internal sum that the extension
homomorphism be unique is equivalent to the condition that the union

⋃
i Ai

generates A. One direction of this assertion is clear. If the union of the sets Ai

generates A, then two homomorphisms from A to B that agree with gi on Ai

for each i, agree with each other on a generating set of A, and consequently
agree with each other on all of A, by Lemma 13.2. To prove the converse
direction of the assertion, argue by contraposition. Suppose the union of
the sets Ai generates a proper subalgebra C of A. There is then a 2-valued
homomorphism g on C that can be extended in two different ways to a
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2-valued homomorphism on A, by Exercise 21.10. For each i, take gi to be the
restriction of g to Ai. The extension of the family {gi} to a homomorphism
from A into 2 is not unique, so the uniqueness condition is not satisfied.
An analogous remark applies to the general definition of the sum of Boolean
algebras: the condition that the required homomorphism g from A to B
satisfying the equations g ◦ fi = gi be unique is equivalent to the condition
that the union

⋃
i fi(Ai) generate A.

The preceding observations imply that a Boolean algebra A is the internal
sum of a family {Ai} of subalgebras just in case the union of the subalgebras
generates A, and the following simplified version of the transfer condition
is satisfied: whenever B is a Boolean algebra such that for each i, there
is a homomorphism gi from Ai into B, then there is a homomorphism g
from A into B that extends each of the mappings gi. An informal way of
expressing this transfer condition is to say that every interaction in A between
elements of distinct subalgebras Ai (that is, any equation that holds between
such elements) can be transferred (or copied) via a homomorphism g to any
Boolean algebra B in which there are homomorphic copies of the algebras Ai

(the images of the Ai under the homomorphisms gi). In other words, the
interactions in A between the elements of distinct subalgebras Ai are as free
as possible.

This remark suggests a connection between sums and free algebras (Chap-
ter 28). Recall that an algebra A is freely generated by a subset E if any
interaction in A between distinct elements of E (that is, any equation that
holds between such elements) can be transferred (via an extension homomor-
phism) to any Boolean algebra B in which a (not necessarily one-to-one) copy
of E has been made. In an internal sum, the elements of the free generating
set E are replaced by subalgebras Ai, and the function mapping the elements
of E into a Boolean algebra B is replaced by a family of structure-preserving
functions (homomorphisms) that map the subalgebras Ai to subalgebras of B.
The analogy between sums of Boolean algebras and free Boolean algebras is
the reason why the sums are often called free products.

The characterization given in Lemma 28.1 of sets that freely generate
a Boolean algebra can be modified to give a characterization of families of
subalgebras that generate an internal sum.

Lemma 1. A Boolean algebra A is the internal sum of a family {Ai} of
its subalgebras just in case the union of these subalgebras generates A, and
whenever J is a finite, non-empty subset of the indices, and pi is a non-zero
element in Ai for each i in J , then
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∧

i∈J

pi �= 0.

Proof. Suppose first that A is the internal sum of the family {Ai} of sub-
algebras. The union of the sets Ai generates A, by the remarks preceding
the lemma. Consider a finite, non-empty family {pi}i∈J of non-zero elements
in A such that pi is in Ai for each i in J , and let p be the infimum of the
family. It is to be shown that p is not zero.

The given family of elements is non-empty, so it contains at least one non-
zero element. Consequently, A and each of its subalgebras is non-degenerate.
For each index i in J , the element pi is not zero, so Corollary 20.3 guar-
antees the existence of a maximal ideal Mi in Ai that does not contain pi.
For each index i not in J , take Mi to be any maximal ideal in Ai; such an
ideal exists, by the maximal ideal theorem (Theorem 12, p. 172), because Ai

is not degenerate. Let gi be the 2-valued homomorphism on Ai with ker-
nel Mi, and observe that if i is in J , then gi(pi) = 1. The transfer condition,
applied to the Boolean algebra 2 and the homomorphisms gi, implies the
existence of a homomorphism g from A into 2 that extends gi for each i. In
particular, g(pi) = 1 for every i in J , and therefore

g(p) =
∧

i∈J

g(pi) = 1.

Since g is a homomorphism, the element p must be different from zero, as
was to be shown.

Assume now that {Ai} is a family of subalgebras in A whose union gen-
erates A and for which the condition formulated in the lemma holds. It must
be shown that the transfer condition is satisfied. Notice first that if i �= j,
then the subalgebras Ai and Aj have only the elements 0 and 1 in common.
Indeed, if they contained a common element q different from 0 and 1, then
by putting pi = q and pj = q ′, we would arrive at a finite family {pi, pj} of
non-zero elements whose infimum is zero, in contradiction to the condition
of the lemma.

Let B be any Boolean algebra such that for each i, there is a homomor-
phism gi from Ai into B. Write

E =
⋃

i

Ai,

and define a function g from E into B by

g(p) = gi(p) if p ∈ Ai.
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Since an element p in E cannot occur in different subalgebras of the family
unless it is 0 or 1, and since the homomorphisms gi all agree on 0 and 1, the
mapping g is well defined.

The next step is to show that g satisfies the homomorphism extension
criterion formulated in Theorem 4 (p. 107). Suppose a is a 2-valued function
on some finite subset F of E such that

(1)
∧

q∈F

p(q, a(q)) = 0

(where, as usual, p(q, j) is q or q ′, according as j is 1 or 0). Let Fi be that
part of F that is included in Ai,

Fi = F ∩ Ai,

and let J be a finite set of indices i such that

F =
⋃

i∈J

Fi.

(The set J exists because F is finite.) The element

(2) pi =
∧

q∈Fi

p(q, a(q))

belongs to Ai, for each i in J , because Ai is a subalgebra of A. The preceding
definitions and (1) imply that

∧

i∈J

pi =
∧

q∈F

p(q, a(q)) = 0.

Consequently, pi = 0 for some i in J , by the assumed condition of the lemma.
For such an i, we have gi(pi) = 0, and therefore

∧

q∈Fi

p(gi(q), a(q)) = 0,

by (2) and the homomorphism properties of gi. It follows from this equation
and from the definition of g that

∧

q∈F

p(g(q), a(q)) =
∧

i∈J

∧

q∈Fi

p(gi(q), a(q)) = 0,

so the homomorphism criterion is satisfied.
Invoke Theorem 4 to conclude that g can be extended to a homomorphism

from A into B. Since that homomorphism extends g, it extends gi for each i.
The proof of the lemma is complete.
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If A is the internal sum of a family of subalgebras, then these subalgebras
are mutually disjoint, except for 0 and 1, by the remarks in the proof of
the preceding lemma. In the general sum construction, the algebras Ai may
have many elements in common. The homomorphisms fi (which are always
monomorphisms when each of the algebras Ai is non-degenerate) are needed
in order to pass to copies of these algebras that are mutually disjoint, except
for 0 and 1. The homomorphisms may be dispensed with if one assumes that
the intersection of two members of the family {Ai} (with different indices)
is always just the subalgebra {0, 1}. Under this additional assumption, the
internal sum of the family always exists (by the general existence proof given
above, and a suitable version of the exchange principal), and it is unique to
within an isomorphism that is the identity on each Ai (by the corresponding
uniqueness argument — see Exercise 2).

The relationship between sums and internal sums is akin to the relation-
ship between products and internal products. The product of an arbitrary
family of Boolean algebras always exists, while the internal product exists
only when the algebras are mutually disjoint except for a common zero. Sim-
ilarly, the sum of an arbitrary family of Boolean algebras always exists, while
the internal sum exists only when the algebras are mutually disjoint except
for a common zero and unit. In restricting oneself to internal sums, no real
generality is lost: every sum is isomorphic to an internal one. The advantage
of internal sums is that they involve less notation, so that it is easier to un-
derstand the formulations and proofs of theorems. Once the essential ideas
are understood in the context of internal sums, the formulations and proofs
of the analogous results for arbitrary sums is rather straightforward. As an
example, here is the formulation of Lemma 1 for arbitrary sums.

Corollary 1. A Boolean algebra A is the sum of a family of Boolean al-
gebras {Ai} just in case there are homomorphisms fi from Ai into A such
that the union

⋃
i fi(Ai) generates A, and whenever J is a finite, non-empty

subset of the indices, and pi is an element in Ai such that fi(pi) �= 0, for each
i in J , then

∧

i∈J

fi(pi) �= 0.

If the algebra A in the preceding corollary is non-degenerate, then the word
“homomorphisms” may be replaced by the word “monomorphisms”, and the
condition fi(pi) �= 0 may be replaced by the condition pi �= 0, in the formu-
lation of the corollary.
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So far, our view of sums has been rather abstract. If A is the (internal)
sum of a family of Boolean algebras {Ai}, what do the elements in A look
like? According to Theorem 3 (p. 82), they are the finite joins of finite meets
of elements and complements of elements from the generating set

E =
⋃

i

Ai.

The set E is closed under complementation: if p is in Ai, then so is p ′. Also,
the meet of a finite family of elements from one of the subalgebras Ai is again
an element in that subalgebra. Consequently, the elements in A are just the
finite joins of meets of the form

∧

i∈J

pi,

where J is some finite subset of the index set and, for each i in J , the
element pi is in Ai. Two such meets are always distinct as long as the
elements pi are different from 0 and 1. More precisely, if pj is an element
in Aj and pj �= 0, 1 for each j in a finite subset J of indices, and if qk is an
element in Ak and qk �= 0, 1 for each k in a finite subset K of indices, then

∧

j∈J

pj =
∧

k∈K

qk

implies that J = K and pj = qj for each j in J (see Exercise 17).
Two examples may serve to illustrate the sum construction. In the first,

let A be a Boolean algebra freely generated by a set E, and let {Ei} be a
partition of E, that is, a family of mutually disjoint subsets whose union
is E. For each i, take Ai to be the subalgebra of A generated by Ei. It is
not difficult to see that the algebra A is the internal sum of the family {Ai}.
For the proof, consider an arbitrary Boolean algebra B such that for each i,
there is a homomorphism gi from Ai into B. Define a function h from E
into B by putting

h(p) = gi(p)
if p is in Ei. Since E freely generates A, the mapping h can be extended
to a homomorphism g from A into B. The homomorphisms g and gi agree
with h on the set Ei, so they must agree with each other on the generated
subalgebra Ai, by Lemma 13.2.

The preceding example underscores the close connection between sums of
families of Boolean algebras and free Boolean algebras. The next example is
more generic and therefore more illuminating; it gives an explicit construction
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of the sum of two arbitrary fields of sets. Suppose A1 and A2 are fields of
subsets of sets X1 and X2 respectively. Form the Cartesian product X1 ×X2

of the two sets, and write h1 and h2 for the left and right projections on this
product:

h1(x1, x2) = x1 and h2(x1, x2) = x2

for all x1 in X1 and all x2 in X2. Define mappings f1 and f2 from A1 and A2

into the field P(X1 × X2) of all subsets of X1 × X2 by writing

f1(P ) = h−1
1 (P ) = P × X2 and f2(Q) = h−1

2 (Q) = X1 × Q

for all P in A1 and all Q in A2. It is an easy matter to check that f1 and f2 are
homomorphisms (see Exercise 33.1), and actually monomorphisms when the
underlying sets X1 and X2 are non-empty. The sum of the algebras A1 and A2

is just the subfield of P(X1 × X2) generated by the union f1(A1) ∪ f2(A2).
Indeed, if P is in A1, and Q in A2, then

f1(P ) ∩ f2(Q) = (P × X2) ∩ (X1 × Q) = P × Q,

and this set is non-empty whenever P and Q are nonempty; thus, the condi-
tions of Corollary 1 are satisfied. The elements in the sum are precisely the
finite unions of rectangles P × Q with sides P in A1 and Q in A2, by the
remarks preceding the examples. Notice, in particular, that the elements in
the image algebra f1(A1) are the rectangles of the form P ×X2, for P in A1,
and, similarly, the elements in f2(A2) are the rectangles of the form X1 ×Q,
for Q in A2.

The example just given is more general than might appear at first glance:
it can be modified to give a concrete description of the sum of two arbitrary
Boolean algebras A1 and A2. In fact, by the Stone representation theorem
(Theorem 17, p. 189), A1 is isomorphic to a subfield of P(X1) for some set X1,
and A2 is isomorphic to a subfield of P(X2) for some set X2. Suppose the
isomorphisms involved are k1 and k2 respectively. The mappings f1 and f2

from A1 and A2 into P(X1 × X2) defined by

f1(p) = h−1
1 (k1(p)) = k1(p) × X2 and f2(q) = h−1

2 (k2(q)) = X1 × k2(q)

are homomorphisms, and the sum of A1 and A2 is, to within an isomorphism,
just the subfield of P(X1 × X2) generated by the union f1(A1) ∪ f2(A2).

The example may be generalized still further. Consider an arbitrary fam-
ily {Ai} of Boolean algebras. Each algebra Ai can be represented as a field
of subsets of some set Xi via an isomorphism ki. Take X to be the Cartesian
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product of the family of sets {Xi}, and let hi be the projection from X to Xi.
The mapping fi defined by

fi(p) = h−1
i (ki(p))

for each p in Ai is a homomorphism from Ai into P(X). The sum of the
family {Ai} is just the subalgebra of P(X) generated by the union

⋃
i fi(Ai).

When the underlying sets Xi are non-empty, this observation follows readily
from Corollary 1. This construction gives another proof of the existence of
the sum of an arbitrary family of Boolean algebras.

Sum and product constructions similar to the Boolean ones introduced
above are useful for every known mathematical category, and, almost as a
consequence of their universality, they are called by many different names.
The terminology adopted above clashes head-on with some terms in common
usage, but even so it is as nearly consistent with all existing terminologies as
any systematic usage could possibly be. No one will argue about products
of topological spaces; that terminology is universally accepted. Products of
algebras are almost as good (but not quite); the terminology is in harmony
with accepted usage for groups, modules, and rings. Instead of “product” a
group-theorist would perhaps say “direct product”, or, in the infinite case,
“strong direct product”, but that is close enough. Disagreements begin when
group-theorists speak of “direct sum” or “strong direct sum”. Even our
“product” of Boolean algebras is sometimes called “direct sum”, or, worse
yet, “direct union”. Our “sum” of Boolean spaces is not in common usage,
but it does not seriously conflict with anything either; its sole competitor is
“disjoint union”, and that in the finite case only. The most radical departure
is our “sum” of algebras. The word is in harmony with “weak direct sum”
for modules, which, however, has also been called “weak direct product”.
The word is completely out of harmony with the usage in non-abelian group
theory; the corresponding concept there is called “free product”, and this
terminology is also frequently used in Boolean algebra. Whether the word
has the right intuitive connotations is perhaps arguable; at the very least a
good case can be made for it.

The notion of the sum of a family of Boolean algebras goes back to Sikor-
ski [62] (though the terminology and definition he used are different from
what has been used in this chapter). He proved the existence and uniqueness
of the sum of any family of Boolean algebras. (His existence proof uses the
method described two paragraphs above.) Corollary 1 is also due to him, and
shows the equivalence of his definition with the one given in this chapter.
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Exercises

1. Suppose X is the sum of a family {Xi} of Boolean spaces. Prove that X,
together with a family of continuous mappings φi from Xi into X that
satisfies the transfer condition, is unique to within a homeomorphism.
The transfer condition says that if Y is any Boolean space, and if, for
each i, there is a continuous mapping ψi from Xi into Y , then there is
a unique continuous mapping ψ from X into Y such that ψ ◦ φi = ψi

for all i.

2. Suppose A is the sum of a family {Ai} of Boolean algebras. Prove
that A, together with a family of homomorphisms fi from Ai into A
that satisfies the transfer condition, is unique to within an isomorphism.
The transfer condition says that if B is any Boolean algebra, and if,
for each i, there is a homomorphism gi from Ai into B, then there is a
unique homomorphism g from A into B such that g ◦ fi = gi for all i.

3. Prove that the requirement, in the definition of the sum of a family of
Boolean algebras, that the homomorphism g in the transfer condition
be unique is equivalent to the requirement that the union

⋃
i fi(Ai)

generate A.

4. Prove that the sum of a family of Boolean algebras is degenerate if and
only if one of the algebras in the family is degenerate.

5. Prove that the sum of the empty family of Boolean algebras is the
two-element Boolean algebra.

6. Prove that a Boolean algebra A is the sum of a family {Ai} of Boolean
algebras with respect to homomorphisms fi from Ai into A if and only
if A is the internal sum of the family {fi(Ai)} of image algebras.

7. Prove Corollary 1.

8. Prove the observation made after Corollary 1 that if the algebra A (in
the corollary) is non-degenerate, then the word “homomorphisms” may
be replaced by “monomorphisms”, and the condition fi(pi) �= 0 may be
replaced by the condition pi �= 0. Why is it necessary to require that A
be non-degenerate?

9. Formulate and prove simplified versions of Lemma 1 and Corollary 1
that apply to finite, non-empty families of Boolean algebras.
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10. Prove that a Boolean algebra A is the internal sum of a family {Ai}i∈I

of subalgebras if and only if A is generated by the union of the family
and, for each finite, non-empty subset J of the indices, the subalgebra
generated by the union of the subfamily {Ai}i∈J is the internal sum
of this subfamily. (This exercise says that, in essence, the sum of an
infinite family of Boolean algebras is the union of the sums of the finite
subfamilies.)

11. Formulate and prove an appropriate version of Exercise 10 for infinite
sequences of subalgebras.

12. Suppose A is the internal sum of subalgebras A1 and A2. Prove directly,
without using Theorem 3, that the elements of A are precisely the finite
joins of elements of the form p ∧ q, with p in A1 and q in A2.

13. Suppose A is the internal sum of a finite sequence A1, A2, . . . , An of
subalgebras. Describe the elements of A.

14. Use Exercise 12 to give a description of the elements in the sum of two
arbitrary Boolean algebras.

15. Suppose A is the sum of an arbitrary family {Ai} of Boolean algebras.
Describe the elements of A.

16. Suppose A is the internal sum of subalgebras A1 and A2. Show that
the following equivalences hold for all non-zero elements p1, q1 in A1,
and p2, q2 in A2.

(a) p1 ∧ p2 ≤ q1 ∧ q2 if and only if p1 ≤ q1 and p2 ≤ q2.

(b) p1 ∧ p2 = q1 ∧ q2 if and only if p1 = q1 and p2 = q2.

17. Suppose A is the internal sum of a family of subalgebras {Ai}, and let J
and K be finite subsets of the set of indices. Show that the following
equivalences hold whenever {pi}i∈J and {qi}i∈K are families of non-zero
elements in A such that pi, respectively qi, is in Ai for every i in J ,
respectively K.

(a)
∧

i∈J pi ≤
∧

i∈K qi if and only if pi ≤ qi for i in J ∩ K, and
qi = 1 for i in K − J .

(b)
∧

i∈J pi =
∧

i∈K qi if and only if pi = qi for i in J ∩ K, while
qi = 1 for i in K − J , and pi = 1 for i in J − K.
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18. If Ai = 2 for every element i in a set I, what is
∑

i Ai?

19. Prove that if Ai = 2×2 for every element i in a set I, then
∑

i Ai is iso-
morphic to the free algebra on m generators, where m is the cardinality
of I.

20. Prove that
A + (B × C) = (A + B) × (A + C).

(The equality sign here should be interpreted to mean isomorphism.)

21. For an arbitrary Boolean algebra B, what is B + 2?

22. For an arbitrary Boolean algebra B, and any natural number n, what
is B + 2n?

23. If B is a finite Boolean algebra, and I an arbitrary set, what is B +2I?

24. If B is an arbitrary Boolean algebra, and I an arbitrary set, what
is B + 2I?

25. Suppose B is an arbitrary Boolean algebra, I an arbitrary set, and C
the subalgebra of 2I consisting of those elements x such that x(i) = 1
for all but finitely many i, or else x(i) = 0 for all but finitely many i.
(See Exercise 26.37.) What is B + C?

26. Suppose Boolean algebras A1 and A2 are isomorphic to fields of subsets
of X1 and X2 via mappings k1 and k2 respectively. Let h1 and h2 be
the left and right projections of X1 × X2 to X1 and X2, and define
mappings f1 and f2 from A1 and A2 into P(X1 × X2) by

f1(p) = h−1
1 (k1(p)) = k1(p) × X2,

f2(q) = h−1
2 (k2(q)) = X1 × k2(q),

for p in A1 and q in A2. Show that these mappings are homomorphisms,
and prove that the sum A1 + A2 is the subalgebra of P(X1 × X2)
generated by the union f1(A1) ∪ f2(A2).

27. Characterize the atoms of a sum A1 + A2 in terms of the atoms of A1

and A2.

28. When is the sum of two non-degenerate Boolean algebras atomic?
When is it atomless?
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29. If, in an infinite family of non-degenerate Boolean algebras, there are
infinitely many algebras of cardinality greater than two, prove that the
sum of the family is always atomless.

30. Show that a sum of complete Boolean algebras need not be complete.
What about a finite sum? What about σ-algebras?

31. (Harder.) A Boolean σ-algebra A is called the σ-sum of a family {Ai}
of σ-algebras if for each i, there is a σ-homomorphism fi from Ai to A
such that the transfer condition for σ-algebras is satisfied. This transfer
condition says that if B is a σ-algebra and if, for each i, there exists
a σ-homomorphism gi from Ai to B, then there exists a unique σ-
homomorphism g from A to B such that g ◦ fi = gi for all i. Is the
natural generalization of Corollary 1 to σ-sums of σ-algebras true? (The
answer is due to Sikorski [59].)



Chapter 45

Isomorphisms of Countable
Factors

The purpose of this chapter is to show (following Hanf [24], as simplified,
orally, by Dana Scott) that there exist countable Boolean algebras A and B
such that

A = A × B × B, but A �= A × B.

The method of attack is topological; in fact, we shall construct Boolean
spaces X and Y , each with a countable base, such that

X = X + Y + Y, but X �= X + Y.

(The equal sign denotes homeomorphism here.) The countability of the bases
implies that the corresponding fields of clopen sets — the dual algebras of X
and Y — are countable (see p. 339). Take A and B to be these dual algebras;
the topological result then implies the algebraic one, by Theorem 44 (p. 397)
and Exercises 34.8 and 34.9.

We begin by constructing for each natural number n (= 0, 1, 2, . . . ) a
Boolean space Un with a countable base, and a distinguished point un of Un,
such that no neighborhood of un is homeomorphic to any neighborhood of
any other point in any Um (not even in Un itself). Here is one way to do this:
let Un consist of a sequence of type ωn in [−1, 0] converging to 0, together
with the Cantor set in [0, 1], under the topology inherited from the space of
real numbers.

In more detail, let U0 be the Cantor set (see Chapter 33). To construct
the set U1, define inductively a sequence {xn} of points in [−1, 0] by repeated

S. Givant, P. Halmos, Introduction to Boolean Algebras, 439
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(right-hand) bisection of the interval [−1, 0]: put x0 = −1, take x1 to be the
midpoint of [−1, 0], and in general take xn+1 to be the midpoint of [xn, 0] (see
the diagram). Obviously, xn = −1/2n. The sequence so defined is said to be
of type ω; it is strictly increasing and converges to 0. The set U1 consists of
the points xn and the points in the Cantor set. The isolated points in U1 are
just the points xn.

The construction of the set U2 is analogous, but uses a sequence of type ω2

in the interval [−1, 0] instead of a sequence of type ω. In other words, it
uses a strictly increasing sequence {yα} of real numbers between −1 and 0,
indexed by the ordinals α < ω2, with the property that whenever {αn}n is a
strictly increasing sequence of ordinals (less than ω2) with supremum α, the
subsequence {yαn}n converges to yα, or to 0, according as α is less than, or
equal to, ω2. In particular, the subsequence {yωn+m}m converges to yω(n+1),
and the subsequence {yωn}n converges to 0. To construct such a sequence,
apply the method of bisection to each of the intervals [xn, xn+1] (where {xn}
is the sequence of type ω defined in the preceding paragraph): put yωn = xn,
take yωn+1 to be the midpoint of [xn, xn+1], and in general take yωn+m+1 to
be the midpoint of [yωn+m, xn+1] (see the diagram). The set U2 consists of
the points in this sequence and the points in the Cantor set. The isolated
points in U2 are the points yα for non-limit ordinals α.
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The construction of U3 uses a sequence of type ω3 in [−1, 0] that has 0
as the supremum of its limit points. One way to define such a sequence is to
use the method of bisection to create, for each α < ω2, a strictly increasing
sequence of type ω in the interval [yα, yα+1] that starts at yα and has yα+1

as its limit point. (Alternatively, in each of the intervals [xn, xn+1] construct
a sequence of type ω2 that starts at xn and has xn+1 as the supremum of its
limit points.) The set U3 consists of the points in this sequence and the points
in the Cantor set. Continue in the fashion to define each of the sets Un.

Take un to be the point 0 in Un. The proof that no neighborhood of un

is homeomorphic to a neighborhood of any other point in any Um uses the
notion of the derivative of a set S of real numbers. The derivative of S
is, by definition, the set of real numbers that are limit points of one-to-one
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sequences of points (numbers) in S. Equivalently, it is the set S with the
isolated points of S removed. The second derivative of S is defined to be the
derivative of the derivative of S, the third derivative of S is the derivative of
the second derivative of S, and so on. The 0th derivative of S is defined to
be S itself.

The derivative of the set U0 is itself, since every point in the Cantor
set is the limit of a strictly increasing or strictly decreasing sequence (Ex-
ercise 33.27); consequently, for every natural number n, the set U0 is its
own nth derivative. The derivative of U1 is the set U0, since the points xn

are all isolated in U1. The nth derivative of U1 is therefore equal to U0 for
all n > 0. The derivative of U2 is the set U1 − {x0}, since, for each positive
integer n, a strictly increasing sequence of isolated points converging to xn

was adjoined to U1 to obtain the set U2. The nth derivative of U2 is equal
to U0 for every n > 1. In other words, the zeroth, first, and second derivatives
of U2 are distinct from each other, and all higher-order derivatives coincide
with the second derivative. In general, the zeroth through the nth derivatives
of Un form a strictly decreasing sequence of sets (in the sense of inclusion),
and all derivatives of order greater than n coincide with the nth derivative,
which is U0.

The argument just given also applies to arbitrary neighborhoods of the
point un = 0 in the space Un: the derivatives of order less than n of every
neighborhood of un contain isolated points, whereas the nth derivative is
perfect in the sense that it contains no isolated points. No other point in any
of the spaces under consideration can make that claim.

Next, we form the union of a disjoint class consisting of exactly one copy
of each of the spaces Uk with k ≥ n; let Yn be the one-point compactification,
by y, of that union. The neighborhoods of y are, by definition, the comple-
ments of closed compact subsets of the union. Since a closed subset of the
union is compact just in case it has a non-empty intersection with only finitely
many of the component spaces Uk, each neighborhood of y must include all
but finitely many of the component spaces of the union. Schematically, Yn

may be represented in the form

n, n + 1, n + 2, · · · −→ y,

where, for the sake of brevity, we have used the symbol for the integer n to
denote the space Un. As the one-point compactification of a countable union
of Boolean spaces with countable bases, each space Yn is Boolean and has a
countable basis (Exercise 43.19).

We form also the union of a disjoint class consisting of exactly two copies
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of each of the spaces Uk with k ≥ n; let Zn be the one-point compactification,
by z, of that union. Each neighborhood of z includes all but finitely many of
the component spaces from the union. Again, Zn is a Boolean space with a
countable base; it may be represented schematically in the form

n, n + 1, n + 2, · · · −→ z ←− · · · , n + 2, n + 1, n.

We go on to form the union of a countably infinite disjoint class consisting
of copies of Z0, and compactify it by one point z∗. The result is a Boolean
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space with a countable base; it is represented schematically by the part of
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the subjoined diagram that lies above the unbroken dividing line.
The part of the diagram below that line is a schematic representation of

the union of a disjoint class consisting of exactly one copy of each Zn and
of exactly two copies of each Yn, all compactified by one point y∗; it, too, is
a Boolean space with a countable base. Let X be the disjoint union of the
two grand unions formed before, so that the whole diagram represents X.
Clearly, X is a Boolean space with a countable base.

Each copy of each un in X has a neighborhood that contains no other
copy of that un or of any other. (Take the copy of Un to which the given
copy of un belongs.) The un’s are the only points of X with this property.

Every neighborhood of each copy of y in X contains a copy of almost all
the u’s (that is, all but a finite number), and some neighborhood of each y
contains exactly one copy of each u. (Take the copy of Yn to which the given
copy of y belongs, and form its union with one copy of each of the sets Uk

for k = 0, . . . , n − 1, taken, say, from some copy of Y0. Since the sets Uk are
open, the union of these sets with the copy of Yn is a neighborhood of y.)
The y’s are the only points in X with this property.

Every neighborhood of each copy of z in X contains at least two copies
of almost all the u’s, and some neighborhood of each z contains exactly
two copies of each u. (Take the copy of Zn to which the given copy of z
belongs, and form its union with two distinct copies of each of the sets Uk

for k = 0, . . . , n− 1, taken, say, from some copy of Z0.) The z’s are the only
points in X with this property.

Every neighborhood of y∗ contains almost all y’s and infinitely many z’s.
The point y∗ is the only point in X with this property.

Every neighborhood of z∗ contains infinitely many z’s, and some neigh-
borhood of z∗ contains no y’s. (Take the part of the diagram that lies above
the unbroken dividing line.) The point z∗ is the only point in X with this
property.

The preceding paragraphs imply that for each n, the set U∗
n of all un’s

(in X) is definable in topological terms. Similarly, the set Y ∗ of all y’s,
the set Z∗ of all z’s, and the points y∗ and z∗ are all definable in purely
topological terms. It follows that if φ is a homeomorphism of X onto X,
then the points y∗ and z∗ are invariant under φ in the sense that they are
mapped to themselves by φ, and the sets Y ∗, Z∗, and U∗

n (for all n) are also
invariant under φ in the sense that each of these sets is mapped to itself by φ.

Let the space Y be the Y0 already defined above. We are to prove that
two copies of Y can be adjoined to X with impunity; we shall prove the
equivalent assertion that two copies of Y can be discarded from X with
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impunity. Suppose, indeed, that the bottom row of the diagram is erased, and
write X̃ for the resulting space. To reconstruct the space X, take the 0’s from
the lowest Z0 and give them to Y1 to make a copy of Y0, take the 1’s from Z1

and give them to Y2 to make a copy of Y1, and so on, as indicated by the
long dashed vertical arrows in the diagram; leave all other parts of X alone.
(More precisely, map each Y1 in the deleted space X̃ to the corresponding
part of Y0 in X, and map the 0’s from the lowest Z0 in X̃ to the 0’s of the
corresponding Y0 in X. Map each Y2 in X̃ to the corresponding part of Y1

in X, and map the 1’s from Z1 in X̃ to the 1’s of the corresponding Y1 in X.
Continue in this fashion. Then map the remaining part of the lowest Z0

in X̃ to Z1 in X, map the remaining part of Z1 in X̃ to Z2 in X, and so
on. Finally, map each Z0 above the unbroken dividing line in X̃ to the Z0

directly below it in X. The points y∗ and z∗ are mapped to themselves.) The
transformation so defined is a homeomorphism from the deleted space X̃ to
the original X. Indeed, since the transformation is obviously a bijection,
the proof that it is a homeomorphism amounts to establishing its continuity
(Lemma 33.5). A Boolean space with a countable base is naturally a metric
space (Exercise 35.13); a proof of continuity therefore reduces to a proof of
sequential continuity (Exercises 33.10 and 33.11). The verification of the
latter is routine. The only excitement can come from a sequence chosen from
the moving parts and converging to y∗; the construction guarantees that the
transform of such a sequence still converges to the (fixed) point y∗.

The next and last thing to prove is that the adjunction of one copy of Y
to X makes a difference; we shall prove the equivalent assertion that if X is
diminished by discarding one copy of Y , say the right half of the bottom line,
then the resulting space X̃ is topologically distinguishable from X. Indeed, X
has an involution that leaves fixed each point of the definable subset

(1) Z∗ ∪ {y∗} ∪ {z∗}

of X, and nothing else; just reflect the diagram about the central vertical axis.
(By an involution of X is meant a homeomorphism of X to X such that the
composition of the homeomorphism with itself is the identity function on X.)
We shall prove that X̃ has no such homeomorphism. Suppose that, on the
contrary, φ is an involution of X̃ whose set of fixed points is exactly the
definable subset (1) of X̃. Our remaining task is to derive a contradiction
from this supposition.

The involution φ fixes the point z∗, and therefore must map the sub-
space X̃ − {z∗} homeomorphically to itself. This subspace is not compact:
if V is the part of X̃ represented by the part of the diagram below the un-
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broken horizontal line (with the bottom-right copy of Y removed), then V
and the different copies of Z0 represented in the part of the diagram above
the unbroken horizontal line constitute together an infinite open cover of the
subspace that has no proper subcover at all, much less a finite one. The sub-
space V itself is compact (it is the one-point compactification of a disjoint
union of Boolean spaces) and so are the different copies of Z0; the union of V
with finitely many of the copies of Z0 is therefore compact (Exercise 43.5).

Since V is a compact subspace of X̃ − {z∗}, the same is true of φ(V ).
This implies that there exists a dotted horizontal line above finitely many of
the copies of Z0 (as indicated) such that φ(V ) is below it. (The linguistic
identification of parts of the diagram with corresponding parts of the space X̃
is obvious and harmless.) The involution φ maps U∗

0 into itself, and by
assumption it leaves no copy of u0 fixed; it therefore induces a pairing of
the various copies of u0. Below the dotted line there are an odd number
of 0’s: two in each of the finitely many copies of Z0 and one in the unique
copy of Y0. One of those 0’s (or, to be a little more precise, the copy of u0

belonging to one of those 0’s) is therefore mapped above the dotted line.
The 0 (or 0’s) to which this happens cannot be in V (since φ(V ) is below the
dotted line). Conclusion: one of the 0’s between the two horizontal lines gets
mapped above the dotted line. There are also an odd number of 1’s below
the dotted line: two in each copy of Z0, two in the unique copy of Z1, one in
each of the two copies of Y1, and one in the single copy of Y0. As in the case
of 0, one of the 1’s between the two horizontal lines must get mapped above
the dotted line. What was just argued about the 0’s and the 1’s is just as
true about the 2’s, the 3’s, etc. Since there are only a finite number of rows
between the two horizontal lines, it follows that there is at least one such
row with the property that infinitely many of its parts get mapped above the
dotted line. Since from those parts a sequence of points converging to some z
(between the lines) can be selected, the continuity of φ implies that φ moves
some z from between the lines to above the dotted line. The contradiction
has arrived: the z’s are assumed to be fixed under φ.

Exercises

1. (Harder.) Prove that each of the spaces Un is Boolean and has a count-
able basis.

2. It is proved in this chapter that if two copies of Y are removed from
the space X, the resulting space is homeomorphic to X. Show that this
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implies X + Y + Y = X.

3. Prove that there exist countable Boolean algebras A and B such that

A = A × B × B × B,

but
A �= A × B and A �= A × B × B.

(This result is due to Hanf [24].)

4. Generalize Exercise 3.

5. Show that a topological version of the Schröder–Bernstein theorem fails,
even when the spaces in question are Boolean spaces with countable
bases. More precisely, show that there exist two Boolean spaces with
countable bases such that each space is homeomorphic to an (open)
subspace of the other, but the two spaces are not homeomorphic to one
another. (This theorem is due to Kinoshita [33] and predates Hanf’s
result. It improves an earlier theorem of Kuratowski [38].)



Epilogue

There is much more to Boolean algebras than is covered in this volume. The
reader who wants to learn more should consult the comprehensive three-
volume Handbook of Boolean Algebras [45], edited by Monk and Bonnet, or
Sikorski’s scholarly book [65]. Both works have excellent bibliographies.
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Appendix A

Set Theory

In parts of this book, familiarity with some of the basic notions and theorems
of set theory is needed. The purpose of this appendix is to present the
requisite material.

Sets and Subsets

Intuitively speaking, a set is a collection of objects, and these objects are
called the elements of the set. A line, for instance, is a set of points, and the
points are the elements of the line; the set of lines in a plane is an example
of a set of sets. The principal concept of set theory is that of belonging, or
being an element of. If x belongs to X, we write

x ∈ X.

Other phrases used to express this notion are, for instance, “x is an element
of X”, and “x is a member of X”, and “x is contained in X”.

If X and Y are sets, and if every element of Y is an element of X, we say
that Y is a subset of X, or that Y is included in X, or that X includes Y ,
and we write

Y ⊆ X or X ⊇ Y.

For example, the points inside the unit circle in the Cartesian plane are a
subset of the set of all points in the plane. Two sets X and Y are equal if
they have the same elements, that is, if

X ⊆ Y and Y ⊆ X.

A subset of X that is not equal to X is said to be a proper subset.
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A subset of a given set X is often described by specifying a defining
property of its elements. For instance, if X is the set of real numbers, then
the subset

Y = {x ∈ X : |x| ≤ 1}
is the closed interval of all real numbers between −1 and 1:

Y = {x ∈ X : −1 ≤ x ≤ 1} = [−1, 1].

The subset

Z = {x ∈ X : |x| = 1}
consists of just two numbers, −1 and 1.

Unordered Pairs and their Relatives

A set with just two elements, say x and y, is called an (unordered) pair and
is denoted by

{x, y}.
Analogously, a set with exactly three elements, say x, y, and z, is called an
(unordered) triple and is denoted by

{x, y, z},

and so on. A set with exactly one element, say x, is called a singleton and is
denoted by

{x}.
The (unique) set with no elements is called the empty set, and is denoted

by ∅. The sets ∅ and {∅} are not the same; the first has no elements, while
the second has exactly one element, namely ∅. The sets

{∅}, {{∅}}, {{{∅}}}

are all singletons, but they are different from one another; the first is the
singleton of ∅, the second the singleton of {∅}, and the third the singleton
of {{∅}}.
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Operations on Sets

Given two sets X and Y , we can form their union, the set of those elements
that belong either to X or to Y (see the diagram):

X ∪ Y = {x : x ∈ X or x ∈ Y };

we can also form their intersection, the set of those elements that belong
both to X and to Y (see the diagram):

X ∩ Y = {x : x ∈ X and x ∈ Y }.
For example, the union of the intervals [−1, 1] and [0, 2] (of real numbers) is

∪ ∩YY

Y Y

XX

X X

the interval [−1, 2], while the intersection of the two intervals is [0, 1]. The
union of a set X of sets is the set of those elements that belong to at least
one of the sets in X, in symbols

⋃
X = {x : x ∈ P for some P ∈ X}.

When X is non-empty, the intersection of X is the set of those elements that
belong to all of the sets in X, in symbols

⋂
X = {x : x ∈ P for all P ∈ X}.

For example, if X is the set of intervals [n, n + 1], for n = 0, 1, 2, 3, . . . , then
the union of X is the interval [0,∞) of all non-negative real numbers. If X
is the set of intervals [−1/n, 1/n], for n = 1, 2, 3, . . . , then the intersection
of X is the singleton {0}.

The difference of two sets X and Y , often called the complement of Y
in X (or the complement of Y with respect to X), is the set of elements that
belong to X, but not to Y (see the diagram below):

X − Y = {x ∈ X : x �∈ Y }.



A: Set Theory 451

If all sets under discussion are subsets of a given set X, then the complement

−

� YY Y

Y

X

X

X

of Y in X is usually written as Y ′.
The symmetric difference of two sets X and Y is the set of elements that

are in one of the two sets, but not in the other (see the diagram below):

X + Y = (X − Y ) ∪ (Y − X) = (X ∪ Y ) − (X ∩ Y ).

For example, the difference of the intervals [−1, 1] and [0, 2] is the half-closed

+

Y

Y

X

X

interval

[−1, 0) = {x : −1 ≤ x < 0},

while the symmetric difference of the two intervals is the union

[−1, 0) ∪ (1, 2] = {x : −1 ≤ x < 0 or 1 < x ≤ 2}.

The power set of a set X is the set of all subsets of X, and is denoted
by P(X). For instance, the power set of the pair {x, y} consists of the four
subsets

∅, {x}, {y}, {x, y}.
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Similarly, if a set has three elements, then its power set has eight elements,
and in general if a set has n elements, then its power set has 2n elements.

Ordered Pairs

Given two elements x and y, we can form the ordered pair (x, y). Its char-
acteristic property is that both the elements and their order are uniquely
determined: if

(x, y) = (z, w),
then x = z and y = w. The elements x and y are respectively called the first
and second coordinates of the pair. There are several ways of defining this
notion in set theory so as to achieve the desired property. The most common
definition (due to Kuratowski [35]) is to put

(x, y) = {{x}, {x, y}}.

The notions of an ordered triple, an ordered quadruple, and so on can be
defined in terms of the notion of an ordered pair. For instance, the ordered
triple (x, y, z) can be defined as the pair ((x, y), z).

The (Cartesian) product of two sets X and Y is the set of ordered pairs
with the first coordinate in X and the second coordinate in Y :

X × Y = {(x, y) : x ∈ X and y ∈ Y }.

For example, the Cartesian plane is usually defined as the set R×R (where R

denotes the set of all real numbers), so that points in the plane are just
ordered pairs of real numbers.

Relations

A (binary) relation is, by definition, a set of ordered pairs. For example, from
a set-theoretic point of view the relation between people of “being a parent
of” is the set of pairs (x, y) such that x and y are human beings, and x is a
parent of y. The domain and range of a relation Θ are, respectively, the sets

X = {x : (x, y) ∈ Θ for some y} and Y = {y : (x, y) ∈ Θ for some x}.

Notice that Θ is a subset of the product X ×Y . In fact, this product is itself
a relation with domain X and range Y .

A subset of X×X is said to be relation on the set X. Such a relation Θ is
said to be reflexive if (x, x) is in Θ for every x in X, symmetric if the presence
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of (x, y) in Θ implies that (y, x) is in Θ, antisymmetric if the presence of (x, y)
and (y, x) in Θ implies that x = y, and transitive if the presence of (x, y)
and (y, z) in Θ implies that (x, z) is in Θ.

Equivalence Relations

A relation on X that is reflexive, symmetric, and transitive is called an
equivalence relation on X. If Θ is such a relation, and if (x, y) is in Θ, then
we say that x and y are equivalent modulo Θ and write

x ≡ y mod Θ.

The set
x/Θ = {y ∈ X : x ≡ y mod Θ}

(the set of elements that are equivalent to x modulo Θ) is called the equiva-
lence class of x (modulo Θ).

Equivalent elements have the same equivalence class and conversely:

x/Θ = y/Θ if and only if x ≡ y mod Θ.

For the proof, assume first that the left side of the equivalence holds. The re-
flexivity of Θ implies that y is in y/Θ and therefore also in x/Θ; consequently,
the right side of the equivalence holds, by the definition of the equivalence
class of x. Now suppose that the right side of the equivalence holds. If z is
in y/Θ, then y ≡ z mod Θ, by the definition of the equivalence class of y,
and therefore x ≡ z mod Θ, by the transitivity of Θ; hence, z is in x/Θ, by
the definition of the equivalence class of x. This argument shows that y/Θ is
included in x/Θ. An analogous argument, using also y ≡ x mod Θ (which
holds by symmetry) shows that x/Θ is included in y/Θ, so that the two
equivalence classes are equal, as desired.

An easy consequence of the preceding observation is that two equivalence
classes of Θ are either equal or disjoint. Indeed, suppose that x/Θ and y/Θ
have at least one element in common, say z. Then

x ≡ z mod Θ and y ≡ z mod Θ,

by the definition of an equivalence class. An application of symmetry and
transitivity yields x ≡ y mod Θ, so that the equivalence classes x/Θ and y/Θ
are equal, by the observations of the preceding paragraph. Conclusion: an
equivalence relation on a set X induces a natural partition of X into equiv-
alence classes; this means that the equivalence classes are disjoint (distinct
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classes have no elements in common), and that the union of the classes is all
of X.

Conversely, every partition of X induces an equivalence relation Θ on X
the equivalence classes of which are precisely the sets of the given partition;
just define Θ to be the set of pairs (x, y) such that x and y belong to the
same set of the partition.

Functions

A function from a set X to (or into) a set Y is a relation f with domain X,
and range included in Y , such that for each x in X, there is a unique y for
which the pair (x, y) is in f . In other words, f is a subset of X × Y with the
property that

(x, y) ∈ f and (x, z) ∈ f implies y = z.

It is customary to write
f(x) = y

instead of (x, y) ∈ f . The element y is called the value that f assumes (or
takes on) at the argument x; we often say that f maps, or sends, or takes x
to y. The word mapping is used as a synonym for the word function, and
if f is a function from X to Y , we say that f maps X to Y .

The domain of f is all of X, but the range may not be all of Y (though
it is certainly included in Y ). If it is all of Y , that is to say, if for each y
in Y there is a least one x in X such that f(x) = y, then f is said to map X
onto Y . If each value of f corresponds to exactly one argument, that is to
say, if for each y in Y there is at most one x in X such that f(x) = y, then f
is said to be one-to-one. Another way of phrasing this definition is to say
that f is one-to-one if f(x1) = f(x2) always implies that x1 = x2.

If f is a function from X to Y , and if g is a function from Y to Z, then
a function h from X to Z may be defined by

h(x) = g(f(x)).

The function h is called the composite, or the composition, of f and g, and
is denoted by g ◦ f . It is easy to verify that if f and g are both one-to-
one, or both onto, then their composition g ◦ f is also one-to-one, or onto,
accordingly. For instance, assume that both functions are one-to-one. If

(g ◦ f)(x1) = (g ◦ f)(x2),
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then f(x1) = f(x2), because g is one-to-one, and therefore x1 = x2, because f
is one-to-one. Consequently, g◦f is one-to-one. To prove the second assertion,
assume that both functions are onto. Given any z in Z, there is a y in Y such
that g(y) = z, because g is onto. There is also an x in X such that f(x) = y,
because f is onto. Obviously,

(g ◦ f)(x) = g(f(x)) = g(y) = z.

Consequently, g ◦ f is onto.
If f is a function from X to Y , and if P is a subset of X, then there is a

natural way of constructing a function g from P to Y : define

g(x) = f(x)

for every x in P . The function g is called the restriction of f to P , and f is
called an extension of g to X.

Bijections

A one-to-one function from X onto Y is called a bijection from X to Y . The
identity function on X is an example of a bijection from X to X; it is defined
by

f(x) = x

for all x in X. If f is a bijection from X to Y , then a bijection g from Y
to X is defined by requiring

g(y) = x if and only if f(x) = y.

The function g is called the inverse of f , and is denoted by f−1.
If f is a bijection from X to Y , then the composition f−1◦f is the identity

function on X, and f ◦ f−1 is the identity function on Y . This observation
has a useful converse. Suppose f is a function from X to Y , and g a function
from Y to X. If g ◦ f is the identity function on X, and if f ◦ g is the
identity function on Y , then f is a bijection and g is its inverse. The proof
is not difficult. To show that f is onto, consider any element y in Y ; the
value x = g(y) is an element of X, and

f(x) = f(g(y)) = (f ◦ g)(y) = y,

by the assumption that f ◦ g is the identity function on Y . To show that f
is one-to-one, assume f(x1) = f(x2); then

x1 = (g ◦ f)(x1) = g(f(x1)) = g(f(x2)) = (g ◦ f)(x2) = x2,
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by the assumption that g ◦ f is the identity function on X. Consequently, f
is a bijection. If g(y) = x, then

f(x) = f(g(y)) = (f ◦ g)(y) = y;

conversely, if f(x) = y, then

g(y) = g(f(x)) = (g ◦ f)(x) = x.

Thus, g satisfies the condition for being the inverse of f .

Images and Inverse Images

Suppose f is a function from X to Y . For each subset P of X, the image
of P under f is defined to be the set of values of f at arguments in P , in
symbols

f(P ) = {f(x) : x ∈ P}.
The use of the suggestive notation f(P ) to denote the image set should not
cause any confusion, even though the same notation is also used to denote
the value of f at an argument; it will always be clear whether P is subset of
the domain of f (in which case the image interpretation of the notation is
intended) or an element of the domain (in which case the value interpretation
is intended).

Analogously, for each subset Q of Y , the inverse image of Q under f is
defined to be the set of arguments that are mapped into Q by f , in symbols

f−1(Q) = {x ∈ X : f(x) ∈ Q}.

Notice that this notation makes sense even when f is not a bijection and
the inverse function of f does not exist. The double use of the notation f−1

should not cause the reader any confusion; it will always be clear whether Q
is a subset of the set Y (in which case the inverse image interpretation of the
notation is intended) or an element of Y (in which case the inverse function
interpretation is intended).

Families

There are occasions when the range of a function is deemed to be more
important than the function itself, and in this case a different terminology is
employed. Suppose, for instance, that x is a function from a set I to a set X.
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An element of I is called an index, I is called the index set, the function x
itself is called a family indexed by I, and the value of x at an index i is
called a term of the family and is denoted by xi. It is common to speak of
the family {xi} in X; when necessary, the index set I is indicated by some
notational device such as

{xi}i∈I or {xi : i ∈ I},

or by some parenthetical phrase such as “(i in I)”.
If {Pi} is a family of sets, then the union of the range of the family is

called the union of the family {Pi}, or the union of the sets Pi; the standard
notation for this union is

⋃

i∈I

Pi or
⋃

i

Pi,

according as it is or is not important to emphasize the index set I. An
element x belongs to this union if and only if x belongs to Pi for at least one i.
An empty union makes sense (and is empty), but an empty intersection does
not make sense. Except for this triviality, the terminology and notation for
intersections parallels that for unions in every respect. Thus, if {Pi} is a
non-empty family of sets, then the intersection of the range of the family is
called the intersection of the family {Pi}, or the intersection of the sets Pi;
the standard notation for this intersection is

⋂

i∈I

Pi or
⋂

i

Pi.

(By a “non-empty family” is meant a family whose domain I is not empty.)
A necessary and sufficient condition that an element x belong to this inter-
section is that x belong to Pi for all i.

The Cartesian product of a family {Pi} of sets is, by definition, the set of
functions

x = {xi}
with domain I such that xi belongs to Pi for each index i. The notation

∏

i∈I

Pi or
∏

i

Pi

is commonly employed. If x is an element of this product, then xi is called
the ith coordinate of x. When all the terms Pi of the family are equal to the
same set, say Q, the product of the family is denoted by

QI
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and is called the Ith power of Q. It makes sense to form the product of an
empty family of sets, and this product is not empty; it consists of the unique
function with an empty domain, namely the empty set.

Order

The theory of order plays an important role throughout mathematics. A
partial order (or a partial ordering) on a set X is a binary relation on X that
is reflexive, antisymmetric, and transitive. Usually, the symbol ≤ , or some
relative of it, is used to denote a partial order. In terms of this symbol, the
definition of a partial order on X assumes the following form: for all x, y,
and z in X, we have x ≤ x (reflexivity), x ≤ y and y ≤ x implies x = y
(antisymmetry), and x ≤ y and y ≤ z implies x ≤ z (transitivity).

A partial order on X is said to be total, or linear, if for every x and y in X,
either x ≤ y or y ≤ x. The standard ordering of the natural numbers is an
example of a total order. The inclusion relation on the power set of a set X
is an example of a partial ordering that is, in general, not total (unless X is
empty or has just one element). A totally ordered set is frequently called a
chain.

A totally ordered set is said to be well ordered (and its ordering is called
a well ordering) if every non-empty subset has a smallest element. The set of
natural numbers is well ordered by its standard ordering; the set of integers,
the set of rational numbers, and the set of real numbers are not.

Natural and Ordinal Numbers

It is occasionally useful to have a concrete set-theoretic definition of the
natural numbers. One definition (due to von Neumann [47]) identifies each
natural number with the set of its predecessors, so that

0 = ∅,

1 = 0 ∪ {0} = {0},
2 = 1 ∪ {1} = {0, 1},
3 = 2 ∪ {2} = {0, 1, 2},
4 = 3 ∪ {3} = {0, 1, 2, 3},

and in general

n + 1 = n ∪ {n} = {0, 1, 2, . . . , n}.
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The set of all natural numbers is denoted by ω, so that

ω = {0, 1, 2, . . . , n, . . . }.
This set may itself be viewed as a number, an infinite number that coincides
with the set of its predecessors. The process can then be continued indefi-
nitely to define what are called the ordinal numbers. The successor of ω is
defined to be the set

ω + 1 = ω ∪ {ω} = {0, 1, 2, . . . , ω},

the successor of ω + 1 is defined to be the set

ω + 2 = (ω + 1) ∪ {ω + 1} = {0, 1, 2, . . . , ω, ω + 1},
and in general

ω + (n + 1) = (ω + n) ∪ {ω + n} = {0, 1, 2, . . . , ω, ω + 1, ω + 2, . . . , ω + n}.
The process does not stop here. We can define ω + ω (or ω2) to be the set
consisting of the natural numbers and the number of the form ω+n, where n
ranges over the natural numbers:

ω2 = {0, 1, 2, . . . , ω, ω + 1, ω + 2, . . . }.
Next come

ω2 + 1 = ω2 ∪ {ω2} = {0, 1, 2, . . . , ω, ω + 1, ω + 2, . . . , ω2},
ω2 + 2 = (ω2 + 1) ∪ {ω2 + 1} = {0, 1, 2, . . . , ω, ω + 1, ω + 2, . . . , ω2, ω2 + 1},
and so on. After that comes ω + ω + ω = ω3; it is the set of all the ordinals
defined so far. In other words, it consists of the ordinal numbers of the form

n (= ω0 + n), ω + n (= ω1 + n), ω2 + n,

where n ranges over the natural numbers. Next come

ω3 + 1, ω3 + 2, ω3 + 3, . . . ,

and after them comes ω4. In this fashion the ordinals of the form ωm+n are
defined for all natural numbers m and n. The next ordinal is ωω = ω2; it is
defined as the set of all preceding ordinals, that is to say, the set of ordinals
of the form ωm + n. After that, the whole thing starts all over again:

ω2 + 1, ω2 + 2, . . . , ω2 + ω, ω2 + ω + 1, ω2 + ω + 2, . . . ,

ω2 + ω2, ω2 + ω2 + 1, . . . , ω2 + ω3, . . . , ω2 + ω4, . . . ,

ω22, . . . , ω23, . . . , ω24, . . . , ω3, . . . , ω4, . . . ,
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ωω, . . . , ω(ωω), . . . , ω(ω(ωω)), . . . .

In general, an ordinal number is defined as a well-ordered set α such that
each element β in α is equal to the set of it predecessors in α:

β = {ξ ∈ α : ξ < β}.

The ordinal numbers explicitly mentioned above are just the tip of the ordinal
iceberg.

Some ordinals are finite; they are just the natural numbers. The other
ordinals are called transfinite. The smallest of these is ω. Each ordinal α
has an immediate successor, namely α + 1 = α ∪ {α}. Each non-zero finite
ordinal n also has an immediate predecessor, namely the ordinal m such
that n = m + 1. This is not always true of the transfinite ordinals. A
transfinite ordinal that has an immediate predecessor is called a successor
ordinal ; the others are called limit ordinals. The numbers ω, ω5, ω2, and
ω3 + ω4 are all examples of limit ordinals, while ω + 5, ω5 + 9, ω2 + 1,
and ω3 + ω4 + 12 are examples of successor ordinals.

Sequences

A family indexed by a natural number n (conceived as the set of its prede-
cessors), or by the set ω of all natural numbers, is called a sequence (finite or
infinite, respectively). It is also common in mathematics to start sequences
at 1 instead of 0, and in this case an n-termed sequence ends at n instead
of n−1. For example, if {Pi} is an n-termed sequence of sets, then the union
of this sequence is written as

n−1⋃

i=0

Pi = P0 ∪ P1 ∪ · · · ∪ Pn−1

if the sequence is indexed by the natural number n (the set of natural num-
bers 0, 1, . . . , n − 1), and it is written as

n⋃

i=1

Pi = P1 ∪ P2 ∪ · · · ∪ Pn,

if the sequence is indexed by the set of natural numbers 1, 2, . . . , n. If the
sequence is infinite, the notation employed is
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∞⋃

i=0

Pi = P0 ∪ P1 ∪ P2 ∪ · · ·

or
∞⋃

i=1

Pi = P1 ∪ P2 ∪ P3 ∪ · · · ,

according as the sequence begins at 0 or at 1.
Similar notation is used for the intersection and the Cartesian product

of a (finite or infinite) sequence of sets. For instance, for the product of an
infinite sequence of sets {Pi} we write

∞∏

i=0

Pi = P0 × P1 × P2 × · · ·

or
∞∏

i=1

Pi = P1 × P2 × P3 × · · · ,

according as the sequence begins at 0 or 1.
It is occasionally useful to consider sequences (families) indexed by arbi-

trary ordinal numbers instead of just the natural numbers and ω. When the
ordinal is greater than ω, the sequence is said to be transfinite.

Induction

The principle of (mathematical) induction says that if a set S of natural
numbers contains 0, and if it contains n + 1 whenever it contains n, then S
must coincide with the set ω of all natural numbers. Usually, S is the set of
all natural numbers that satisfy some specific property. For that reason, the
principle of induction can be paraphrased informally in terms of properties:
if a property of natural numbers holds for 0, and if it holds for n+1 whenever
it holds for n, then it holds for all natural numbers.

There are several variants of the principle of induction. First of all, in-
duction can start at 1 (or any natural number k) instead of 0. In this case
the conclusion is that the set S coincides with the set of all positive natural
numbers (or the set of all natural numbers greater than or equal to k).

Second, there is a principle of induction not only for ω, but for each
ordinal α. It says that if a subset S of α has the property that it contains
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an ordinal β (in α) whenever it contains all ordinals less than β, then S
must coincide with α itself. (Notice that this condition forces S to contain 0
when α ≥ 1, since the ordinals less than 0 — there are none — are vacuously
contained in S.) For ordinals α greater than ω, the principle is called the
principle of transfinite induction. As in the case of induction over the natural
numbers, transfinite induction is usually phrased in terms of properties. A
proof by transfinite induction on ordinals less than a given ordinal α often
takes the following concrete form. First, it is shown that 0 has the desired
property. This is called the base case of the proof. The argument concerning
ordinals β such that 0 < β < α breaks into two cases: in the first case, β is
a successor ordinal, say β = ξ + 1, and it is assumed that ξ has the desired
property; in the second case, β is a limit ordinal and it is assumed that all
ordinals less than β have the desired property. In each case one then proves
that β has the desired property; this is called the induction step of the proof.
The text and the exercises contain several examples of proofs by transfinite
induction.

There are also definitions that proceed by induction. To define an infi-
nite sequence {xn} by induction, one first defines x0 or x1, according as the
induction starts at 0 or 1, and then one defines xn+1 in terms of xn. For
example, the sequence {xn} defined inductively by

x0 = ∅, and xn+1 = P(xn)

for every natural number n, has, as its first four terms,

x0 = ∅,

x1 = P(x0) = P(∅) = {∅},
x2 = P(x1) = P({∅}) = {∅, {∅}},
x3 = P(x2) = P({∅, {∅}}) = {∅, {∅}, {{∅}}, {∅, {∅}}}.

To define by transfinite induction a sequence {xβ} indexed by an ordinal α
(that is to say, indexed by the set of ordinals less than α), one defines each xβ

(for β < α) in terms of the xξ for ξ < β. Often, such definitions take the
following concrete form. First, x0 is defined. This is called the base case of
the definition. The definition of xβ for 0 < β < α breaks into two cases: in
the first case, β is a successor ordinal, say β = ξ + 1, and xβ is defined in
terms of xξ; in the second case, β is a limit ordinal, and xβ is defined in terms
of the xξ for ξ < β. This is called the induction step of the definition. The
text and the exercises contain several examples of definitions by transfinite
induction.
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Cardinality

A set X is said to have the same cardinality (or the same power) as a set Y
if there is a bijection from X to Y . Intuitively, this means that the two sets
have the same number of elements, the same “size”. Every set X has of
course the same cardinality as itself, because the identity function on X is a
bijection; if X has the same cardinality as Y , then Y has the same cardinality
as X, because the inverse of a bijection from X to Y is a bijection from Y
to X; if X has the same cardinality as Y , and if Y has the same cardinality
as Z, then X has the same cardinality as Z, because the composition of a
bijection from X to Y with a bijection from Y to Z is a bijection from X
to Z. This situation can be summarized by saying that the notion of two
sets having the same cardinality possesses the three defining properties of an
equivalence relation: it is reflexive, symmetric, and transitive.

The cardinality of X is said to be at most that of Y if X has the same
cardinality as some subset of Y , that is to say, if there is a one-to-one map-
ping from X into Y . The Schröder–Bernstein theorem says that if X has
cardinality at most that of Y , and if Y has cardinality at most that of X,
then X and Y have the same cardinality. The following lemma contains the
heart of the argument.

Lemma 1. If there is a bijection from a set X to one of its subsets P , then
for any set Q such that P ⊆ Q ⊆ X, there is a bijection from X to Q.

Proof. Let f be a bijection from X to P , and suppose Q is a subset of X
that includes P . Define two sequences of sets, {Pn} and {Qn}, by induction
on n as follows:

P1 = X and Pn+1 = f(Pn),
Q1 = Q and Qn+1 = f(Qn)

(where f(Pn) and f(Qn) are the respective images of the sets Pn and Qn

under the mapping f). In other words, the sets Pn+1 and Qn+1 are the result
of applying n times the function f to the sets X and Q respectively. The
definitions of these two sequences imply that

P2 = f(P1) = f(X) = P ⊆ Q = Q1 ⊆ X = P1.

In particular,
P2 ⊆ Q1 ⊆ P1.

Apply f to each of these sets to obtain
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f(P2) ⊆ f(Q1) ⊆ f(P1),

or, in other words,
P3 ⊆ Q2 ⊆ P2.

Iterate this process repeatedly to arrive at

Pn+1 ⊆ Qn ⊆ Pn.

The preceding inclusions combine to give

X = P1 ⊇ Q1 ⊇ P2 ⊇ Q2 ⊇ P3 ⊇ Q3 ⊇ · · · .

If R is the intersection of this sequence of sets, then

R =
⋂

n

Pn =
⋂

n

Qn.

The sets

∩

∩

∩

∩

.

..

1
 1' ∩

1
 2' 

2
 3' 

2
 2' 

3
 3' 

2

3

= 1

= 1

2

f

f

identity

identity

identity

P

P

P

P

P

P

P

P
X

Q

QQ

Q

Q

Q

Q

Q

R

P1 ∩ Q ′
1, Q1 ∩ P ′

2 , P2 ∩ Q ′
2, Q2 ∩ P ′

3 , . . . ,

together with R, partition X (see the diagram). Similarly, the sets
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Q1 ∩ P ′
2 , P2 ∩ Q ′

2, Q2 ∩ P ′
3 , . . . ,

together with R, partition Q (see the diagram). For each n, the function f
maps the sets Pn and Qn bijectively to the sets Pn+1 and Qn+1 respectively,
by the definition of these sets; since

Qn+1 ⊆ Pn+1 ⊆ Qn ⊆ Pn,

it follows that f maps Pn ∩ Q ′
n bijectively to Pn+1 ∩ Q ′

n+1. The identity
function on X maps each set Qn ∩ P ′

n+1, and also R, bijectively to itself.
Combine these four observations to conclude that the function h defined, for
each x in X, by

h(x) =

{
f(x) if x ∈ Pn ∩ Q ′

n for some n,

x if x ∈ Qn ∩ P ′
n+1 for some n, or else x ∈ R,

is a bijection from X to Q.

To derive the Schröder–Bernstein theorem from the lemma, assume that f
maps X one-to-one into Y , and g maps Y one-to-one into X. Write

P0 = f(X), P = g(P0), Q = g(Y ).

The composition g ◦ f maps the set X bijectively to its subset P , and

P = g(P0) ⊆ g(Y ) = Q ⊆ X.

Apply the lemma (with “f” replaced by “g ◦ f”) to conclude that there is a
bijection h from X to Q. The composition g−1 ◦ h is the desired bijection
from X to Y ,

X
h−−−−→ Q

g−1

−−−−→ Y.
If a set Y can be mapped onto X, then X always has cardinality at most

that of Y . For the proof, consider such an onto mapping g. For each x in X,
the inverse image under g of the singleton subset {x} is not empty, because g
is onto, so we can choose an element (any element) yx in this inverse image.
Define a mapping f from X into Y by

f(x) = yx

for each x in X. Since the inverse images under g of distinct singletons are
disjoint sets, the function f maps X one-to-one into Y , as desired.

The converse statement is also true in all but the trivial case: if there is
a one-to-one function from X into Y , and if X is not empty, then Y can be
mapped onto X. For the proof, consider such a one-to-one function f , and
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define a mapping g from Y to X as follows: fix any element z in X (this is
where the non-emptiness of X is used), and write

g(y) =

{
x if y is in the range of f and f(x) = y,

z otherwise.

The function g is well defined because f is one-to-one, and it is onto because
every element in X is mapped by f to some element in Y .

When the cardinality of a set X is at most that of a set Y , but the two sets
do not have the same cardinality, then X is said to have smaller cardinality
than Y (and Y has larger cardinality than X). Equivalently, X has smaller
cardinality than Y if there exists a one-to-one mapping of X into Y , but
there does not exist any mapping of X onto Y .

A set is called finite if it has the same cardinality as some natural number,
and infinite otherwise. The ordinal number ω is an example of an infinite
set. A family of sets is said to be finite or infinite according as the index set
is finite or infinite. It is easy to check that the union of a finite family of
finite sets is finite. Also, any subset of a finite set is finite.

Countable Sets

A set is said to be countable (or denumerable) if it has cardinality at most
that of ω. In other words, a set is countable if has the same cardinality as
some natural number or else the same cardinality as ω. If it has the same
cardinality as ω, then the set is said to be countably infinite (or denumerably
infinite). Notice that a non-empty set is countable just in case ω (or any
countably infinite set) can be mapped onto it.

A proper subset of an infinite set can have the same cardinality as the
original set. For example, the set of even natural numbers has the same
cardinality as the set of all natural numbers (the requisite bijection maps
every even number n to the quotient n/2), and the same is true of the set
of odd natural numbers (in this case, the requisite bijection maps every odd
number n to (n − 1)/2). This observation implies the somewhat surprising
fact that the union of two countable sets is always countable. If one of the
two sets is empty, then the claim is trivially true. If both sets, say X1 and X2,
are countable and non-empty, then there must be a mapping g1 of the set of
even natural numbers onto X1, and a mapping g2 of the set of odd natural
numbers onto X2. The function f defined by
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f(n) =

{
g1(n) if n is even,

g2(n) if n is odd,

maps ω onto X1 ∪ X2, so that this union must also be countable. A simple
argument by mathematical induction now proves that the union of any finite
family of countable sets is always countable. (A more general result is actually
true: if each member of a finite family of sets has cardinality at most that of
a given infinite set Y , then the union of the family has cardinality at most
that of Y .)

A consequence of the preceding observations is that the set of integers
(the natural numbers and their negatives) has the same cardinality as the set
of natural numbers. In other words, the set of integers is countably infinite.

(0,0) (1,0) (2,0) (3,0) (4,0)

(0,1) (1,1) (2,1) (3,1) (4,1)

(0,2) (1,2) (2,2) (3,2) (4,2)

(0,3) (1,3) (2,3) (3,3) (4,3)

(0,4) (1,4) (2,4) (3,4) (4,4)

14

13 19

12 18 25

11 17 24 32

10 16 23 31 40
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An even more surprising fact is that the Cartesian product ω × ω is
countably infinite. One way to see this is to identify ω × ω with the set of
those points in the Cartesian plane that have natural numbers as coordinates,
and then to enumerate these points by counting down the diagonals (see the
diagram). The bijection f from ω × ω to ω implied by this diagram can be
defined by an explicit formula:

f(m, n) = [1 + 2 + · · · + (m + n)] + m = 1
2 [(m + n)2 + 3m + n].

An argument by mathematical induction now proves that the product of any
finite family of countable sets is always countable. In particular, the set ωn

of all n-termed sequences of natural numbers is countable. (A more general
result is actually true: for any infinite set X, the Cartesian product X × X,
and the set Xn of all n-termed sequences of elements in X, have the same
cardinality as X.)
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The observation of the preceding paragraph has a number of surprising
and important consequences. The first is that the union of a countably
infinite family of countable sets is always countable. Suppose, for the proof,
that {Xi} is a family of countable sets, indexed by a countably infinite set.
Without loss of generality, it may be assumed that the index set is ω, and
that none of the sets in the family is empty. For each index i in ω, there
is a mapping gi from ω onto Xi. Define a function f from ω × ω to the
union

⋃
i Xi by

f(i, j) = gi(j)
for all natural numbers i and j. The function f is onto, so the union has
cardinality at most that of ω × ω, and hence (by the observation of the
preceding paragraph) at most that of ω. (A more general result is true: if
each member of a family of sets has cardinality at most that of a given infinite
set X, and if the index set of the family also has cardinality at most that
of X, then the union of the family has cardinality at most that of X.)

The second consequence is that the set of all rational numbers (the num-
bers of the form m/n, where m and n are integers, and n �= 0) is countable.
Indeed, for each positive natural number n, the set

Xn = {m/n : m = 0,±1,±2, . . . }

is clearly countable, since the set of integers is countable. The union of the
family {Xn} is a countable union of countable sets, so it too is countable.
Since the union coincides with the set of all rational numbers, that set must
be countable.

The third consequence is that the set S of all finite sequences of natural
numbers is countable. The proof is not difficult. It was already observed
that for each natural number n, the set ωn of n-termed sequences of natural
numbers is countable. Since S is the union of the countable family {ωn}n of
these sets, it, too, must be countable. (More generally, the set of all finite
sequences of elements from an infinite set X has the same cardinality as X.)

Cantor’s Theorem

Not all infinite sets are countable, however. In fact, Cantor’s theorem as-
serts that for every set X, the power set P(X) has cardinality strictly larger
than X. The cardinality of X is certainly at most that of P(X), because the
function that maps each element x in X to the singleton {x} is a one-to-one
function from X into P(X). On the other hand, no function can map X
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onto P(X), so the two sets do not have the same cardinality. Indeed, con-
sider any function g from X into P(X); the value of g at each x in X is, by
definition, a subset of X. The set P defined by

P = {x ∈ X : x �∈ g(x)}

is certainly a subset of X. However, P cannot be in the range of g. Suppose,
to the contrary, that P = g(x) for some x in X. Either x is in P , or it is not.
If x is in P , then x is in g(x), and therefore x is not in P , by the definition
of P . If, however, x is not in P , then x is not in g(x), and therefore x is in P ,
again by the definition of P . Both possibilities lead to a contraction, so the
assumption that P = g(x) is impossible. Conclusion: g is not onto.

It follows from Cantor’s theorem that there are infinite sets that are not
countable. In fact, there is a whole hierarchy of ever bigger infinite sets: P(ω)
has larger cardinality than ω, and P(P(ω)) has larger cardinality than P(ω),
and so on. Such sets are said to be uncountable (or non-denumerable).

Every subset P of a given set X uniquely determines a natural function
from X to 2 called the characteristic function of P ; it is the mapping φ
defined by

φ(x) =

{
1 if x ∈ P ,

0 if x ∈ X − P .

Conversely, every mapping φ from X to 2 uniquely determines a subset of X
called the support of φ; it is the set P defined by

P = {x ∈ X : φ(x) = 1}.

The correspondence that maps each subset of X to its characteristic function
is a bijection from P(X) to the set 2X of all functions from X into 2; the
inverse of this bijection maps each function in 2X to its support. Conclusion:
the sets P(X) and 2X have the same cardinality. In particular, the cardinality
of 2X is larger than the cardinality of X.

It is natural to believe that the set (2X)X must have cardinality larger
than 2X , but for infinite sets X this belief is incorrect. An element in (2X)X

is a function x from X to 2X . In other words, for each i in X, the value x(i)
is a function with domain X such that for each j in X, the value x(i)(j)
is an element of 2. For every x in (2X)X define a corresponding function y
in 2X×X by

y(i, j) = x(i)(j)
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for all i and j in X. The mapping that assigns to each function x in (2X)X its
corresponding function y is a bijection from (2X)X to 2X×X ; consequently,
these two sets have the same cardinality. The sets X and X×X have the same
cardinality whenever X is infinite, as was previously observed; therefore, 2X

and 2X×X must also have the same cardinality. It follows that 2X and (2X)X

have the same cardinality whenever X is infinite. (Notice, in passing, that
the cardinality of 2(2X) is strictly larger than that of 2X , by the remarks of
the preceding paragraph.)

The Continuum

Every real number x in the interval [0, 1] has a binary expansion (or a binary
representation) of the form

x =
∞∑

n=1

an/2n,

where each coefficient an is either 0 or 1. Usually, this expansion is written
in the binary analogue of decimal notation:

x = 0.a1a2a3 . . . .

For example, it follows from the rule for summing an infinite geometric series
that

1/3 = .010101 . . . .

Indeed,
∞∑

n=0

(1/4)n = 1/(1 − 1/4) = 4/3,

and therefore

.010101 . . . =
∞∑

n=1

(1/2)2n =
∞∑

n=1

(1/4)n

= (1/4) ·
∞∑

n=0

(1/4)n = (1/4) · (4/3) = 1/3.

Most numbers in the interval [0, 1] have a unique binary expansion. How-
ever, the rational numbers strictly between 0 and 1 with denominators that
are a power of 2 have two such expansions. For example, the number 1/16
obviously has the representation
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1/16 = .0001000 . . . ;

it also has the representation

1/16 = .0000111 . . . ,

since
∞∑

n=5

(1/2)n = (1/32) ·
∞∑

n=0

(1/2)n = (1/32) · [1/(1 − 1/2)] = (1/32) · 2 = 1/16.

For another example, the number 13/16 has the two representations

13/16 = .1101000 . . . and 13/16 = .1100111 . . . .

Let X be the set of positive natural numbers. Define a function f from
the set 2X to the interval [0, 1] as follows: for each x in X, the value f(x)
is the real number with the binary expansion .x1x2x3 . . . . The discussion of
the preceding paragraph implies that the mapping f is onto and that it is
almost one-to-one. The countably many exceptions to one-to-oneness are the
rational numbers strictly between 0 and 1 with denominators that are some
power of 2; in these cases, f maps two elements in 2X to one real number.
The cardinality of the interval [0, 1] is therefore equal to the cardinality of
the set 2X minus a countable subset. Since 2X has uncountable cardinality,
it follows from the earlier remarks about the cardinality of the union of two
infinite sets that [0, 1] and 2X have the same cardinality. The set ω of natural
numbers has the same cardinality as X, so of course 2ω and 2X also have
the same cardinality. Hence, 2ω and [0, 1] have the same cardinality. In
particular, the interval [0, 1] is uncountable.

The open interval
(0, 1) = {x : 0 < x < 1}

is obtained from the closed interval [0, 1] by removing the two endpoints, so
these two intervals also have the same cardinality. The interval (0, 1) is easily
seen to have the same cardinality as the set R of all real numbers. In fact,
the function

f(x) = tan(π(2x − 1)/2)
maps the interval (0, 1) bijectively to the set R. Conclusion: the sets

(0, 1), [0, 1, ], R, 2ω, and (2ω)ω

all have the same uncountable cardinality. It is called the cardinality (or the
power) of the continuum, because the set R is sometimes referred to as the
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continuum. A set with the same cardinality as R is said to have continuum
many elements.

Cardinal Numbers

We have explained when two sets have the same cardinality, and when one
set has cardinality at most that of another, but we have not yet said what the
cardinality of a set actually is. There are several possible answers; the one
we shall give has become standard in most modern expositions of set theory.

It is a consequence of one of the basic axioms of set theory (the so-called
axiom of choice) that every set can be put into bijective correspondence with
some ordinal number. The intuitive idea of the proof goes as follows. Suppose
a set X is given. Choose an element in X (if X is not empty) and denote it
by x0. Next, choose an element in X −{x0}, if possible, and denote it by x1.
Then choose an element in X − {x0, x1}, if possible, and denote it by x2.
Continue on in this fashion until all of the elements of X have been used up.
In this way, each element in X is associated with an ordinal number. The
domain of the resulting function x is an ordinal number α, and x maps α
bijectively to X.

A set X can be put into bijective correspondence with many ordinals.
For example, a countably infinite set can be put into bijective correspon-
dence with ω, with ω2, and with ω2 (to name just a few). The only ordinal
in bijective correspondence with X that seems to clamor for attention is the
smallest one (in the sense of the natural ordering of the ordinals). We there-
fore define a cardinal number to be an ordinal α with the property that if β is
any ordinal that can be put into bijective correspondence with α, then α ≤ β.
The cardinality of a set X is defined to be the smallest ordinal that can be
put into bijective correspondence with X.

The fact that cardinal numbers are special ordinal numbers introduces the
possibility of some confusion with regard to the notation for the arithmetic
operations on cardinal and ordinal numbers. If α and β are cardinal numbers,
then they are also ordinal numbers, and the notation α + β has two possible
meanings: the cardinal sum or the ordinal sum of α and β. In general, these
two sums are not the same. Similarly, the cardinal and ordinal products of α
and β are generally different from one another, and so are the cardinal and
ordinal powers. For example, the ordinal number ωω is countable, while the
cardinal number ωω is uncountable.

In practice it is easy to avoid confusion by introducing special symbols for
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the infinite cardinal numbers. One symbol that is frequently employed is ℵ
(aleph, the first letter of the Hebrew alphabet), followed by an appropriate
subscript. For instance, the smallest transfinite ordinal is ω; it is also the first
infinite cardinal number, and as such it is denoted by ℵ0. The next infinite
cardinal number is the least uncountable ordinal; it is denoted by ℵ1. Then
comes ℵ2 (the least uncountable ordinal that cannot be put into bijective
correspondence with ℵ1), and so on.

The notation 2ℵ0 is used to denote the cardinality of the continuum,
the smallest ordinal that can be put into bijective correspondence with R.
Since 2ℵ0 is uncountable (by Cantor’s theorem), it is clear that

ℵ1 ≤ 2ℵ0 .

Is the inequality strict? The celebrated continuum hypothesis asserts that
the answer is no; in other words, it asserts that

ℵ1 = 2ℵ0 .

It is known that this assertion is independent of the standard axioms of set
theory: neither the continuum hypothesis nor its negation can be proved on
the basis of those axioms.



Appendix B

Hints to Selected Exercises

Chapter 1

9. The Boolean ring is assumed to have more than two elements, so there are
distinct non-zero elements p and q. If p · q = 0, then p and q are zero-divisors.
If p · q �= 0, then p · q and p + q have zero as their product, and are therefore
zero-divisors.

10. To motivate the construction, let A be a Boolean ring (with or without a unit),
and consider a Boolean ring B with a unit 1 that is not in A. Assume that
B extends A in the sense that the operations of addition and multiplication
in A are the restrictions of the corresponding operations of B, and both rings
have the same zero. (The technical way of describing this situation is to say
that A is a subring of B.)
If p and q are distinct elements of A, then 1+p and 1+q are distinct elements
of B, by the cancellation law, and neither one of them is in A. Indeed, if
r = 1 + p were in A, then p + r would be in A, because of the closure of A
under addition; it would then follow that 1 is in A, since

p + r = p + 1 + p = p + p + 1 = 0 + 1 = 1,

and this would contradict the assumption that 1 is not in A.
Easy computations show how to add elements of the form 1 + p (for p in A)
to other elements of this form and to elements of A:

(1 + p) + (1 + q) = p + q,

(1 + p) + q = p + (1 + q).

A similar remark applies to multiplication:

(1 + p) · (1 + q) = 1 + p + q + p · q,

474
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(1 + p) · q = q + p · q, and p · (1 + q) = p + p · q.

The above motivation suggests the following procedure. Let A be an arbitrary
Boolean ring with or without a unit. With each element p in A, associate a
new element p̄ that is not in A in such a manner that p �= q implies p̄ �= q̄.
The new element p̄ is the analogue of the element 1 + p above. Take B to be
the set of elements in A together with the set of new elements. Operations ⊕
and � of addition and multiplication must be defined in B so that it becomes
a Boolean ring with unit that extends A. The above calculations suggest how
the operations should be defined. For instance, if p and q are in A, then define

p ⊕ q = p + q,

p ⊕ q̄ = p + q,

p̄ ⊕ q = p + q,

p̄ ⊕ q̄ = p + q.

Here, the operation on the right side is the operation of addition in A, whereas
the operation on the left is the operation of addition that is being defined in
B. The element p + q is the new element that is associated with the element
p+q in A. The operation of multiplication in B is defined in a similar fashion.
It must be checked that B is a Boolean ring (with unit) under the operations
so defined, and that the operations of B, when restricted to the elements of
A, coincide with the operations of A.

11. The symmetric functions of the n arguments v1, v2, . . . , vn are defined in any
ring by

s1 = v1 + v2 + · · · + vn =
n∑

i=1

vi,

s2 =
∑

i<j

vi · vj ,

s3 =
∑

i<j<k

vi · vj · vk,

...
sn = v1 · v2 · · · · · vn.

Let tn = tn(v1, . . . , vn) be the sum of the symmetric functions of n arguments:

tn = s1 + s2 + · · · + sn.

Derive the identity
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tn(v1, v2, . . . , vn) = vk + tn−1(v1, . . . , vk−1, vk+1, . . . , vn)
+ vk · tn−1(v1, . . . , vk−1, vk+1, . . . , vn)

for each positive integer k ≤ n. Given a finite Boolean ring A with n elements,
say p1, p2, . . . , pn, use the preceding identity to show that

pk · tn(p1, p2, . . . , pn) = pk

for k = 1, 2, . . . , n. Conclude that tn(p1, p2, . . . , pn) is the unit of A.

12. Let X be an infinite set, and consider the class of functions in 2X that assume
the value 1 on at most finitely many arguments.

13. The answer is negative if one interprets the question as asking whether every
non-degenerate Boolean ring with unit is an extension of some Boolean ring
that has no unit whatsoever. The answer is positive if one interprets the
question as asking whether every non-degenerate Boolean ring with unit is an
extension of a Boolean ring that either does not have a unit, or else does not
have the same unit.

14. View the group as a vector space over the two-element field 2. As such, it
has a (possibly infinite) vector space basis, say I, and the elements of the
group are the finite sums of the basis elements. Identify each element p in the
group with the function in the Boolean ring 2I that assumes the value 1 at
an argument i (in I) just in case i appears in the basis representation of p.
Use the ring multiplication in 2I to define a ring multiplication in the Boolean
group.

Chapter 2

2. (a) Derive (11) from (13), (14), and (18).

(b) Derive (16) from (13), (14), and (20).

(c) Derive (12) from (13), (14), (18), and (20). Begin with the equations

0 = p ∧ p ′ = p ∧ (p ′ ∨ 0).

(d) Derive the absorption laws,

p ∧ (p ∨ q) = p and p ∨ (p ∧ q) = p,

from (12), (13), (18), and (20). Begin with the equation

p ∧ (p ∨ q) = (p ∨ 0) ∧ (p ∨ q).
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(e) Show, using (13), (14), (18), and (20), that complements are unique: if

p ∧ q = 0 and p ∨ q = 1,

then q = p ′. Use the fact that

q = q ∧ 1 = q ∧ (p ∨ p ′ ) and p ′ = p ′ ∧ 1 = p ′ ∧ (p ∨ q).

As a consequence, derive the double complement law (15).
(f) Derive the following cancellation law for meet from (13), (14), and (20):

q ∧ p = r ∧ p and q ∧ p ′ = r ∧ p ′

imply q = r. Use the fact that

q = q ∧ (p ∨ p ′ ).

Formulate and derive an analogous law for join.

(g) Derive (19) from (13), (14), (18), and (20). By the cancellation law, it
suffices to derive the equations

(p ∨ (q ∨ r)) ∧ p = ((p ∨ q) ∨ r) ∧ p

and

(p ∨ (q ∨ r)) ∧ p ′ = ((p ∨ q) ∨ r) ∧ p ′

in order to establish the associative law for join. The first equation
can be derived by reducing both sides of the equation to p, using the
absorption and distributive laws. The second equation can be derived
by reducing both sides of the equation to p ′ ∧ (q ∨ r), using mainly the
distributive laws.

(h) Derive the De Morgan laws (17) from (13), (14), (18), and (20). By the
uniqueness of complements, the second De Morgan law is a consequence
of the equations

(p ∨ q) ∧ (p ′ ∧ q ′ ) = 0 and (p ∨ q) ∨ (p ′ ∧ q ′ ) = 1.

The form of these equations suggests using the distributive laws.

5. (a) As a model, take the two-element Boolean ring. Interpret join and meet
as ring addition and multiplication respectively, interpret complement
as the unary operation that interchanges 0 and 1, and interpret zero and
one as 0 and 1 respectively. Show that all the identities in (13), (14), and
(18), and the first identity in (20), are true in this model, but that the
second identity in (20) fails. Why should this model be an “obvious”
choice to show the independence of the distributive law for join over
meet?
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(b) As in part (a), take the model to be the two-element Boolean ring, but
interpret join as ring multiplication, interpret meet as ring addition,
interpret complement as before, interpret zero as 1, and interpret one as
0.

(c) Modify the two-element Boolean algebra by redefining the complement
operation to be constantly zero or constantly one.

6. Show that each of the identity laws is derivable from the remaining seven
axioms. Use part (c) of the hint for Exercise 2.

7. It is easy to check that the axioms and the definitions (of meet, zero, and one)
formulated in the exercise are derivable from (13), (14), (18), and (20). It must
be demonstrated that, conversely, the axioms and definitions formulated in the
exercise entail (13), (14), (18), and (20). The derivations of these equations
seem to require the derivation of nearly every equation in (11)–(20). A broad
outline of the proof is sketched in a series of steps below.
It is helpful to gather together various instances of Huntington’s axiom (H).

(p ′ ∨ p ′′′ ) ′ ∨ (p ′ ∨ p′′ ) ′ = p.(a)
(p′′ ∨ p ′′′ ) ′ ∨ (p′′ ∨ p′′ ) ′ = p ′.(b)
(p′′ ∨ p′′ ) ′ ∨ (p′′ ∨ p ′ ) ′ = p ′.(c)

(p ′′′ ∨ p′′ ) ′ ∨ (p ′′′ ∨ p ′ ) ′ = p′′.(d)
(p ′ ∨ q ′′ ) ′ ∨ (p ′ ∨ q ′ ) ′ = p.(e)

(p′′ ∨ q ′′ ) ′ ∨ (p′′ ∨ q ′ ) ′ = p ′.(f)
(q ′ ∨ p′′ ) ′ ∨ (q ′ ∨ p ′ ) ′ = q.(g)

(q ′′ ∨ p′′ ) ′ ∨ (q ′′ ∨ p ′ ) ′ = q ′.(h)
(p ′ ∨ p ′ ) ′ ∨ (p ′ ∨ p) ′ = p.(i)

(p′′ ∨ p ′ ) ′ ∨ (p′′ ∨ p) ′ = p ′.(j)

The first goal is the derivation of the double complement law in (15), because
many of the equations in (11)–(20) follow easily from it. Begin with the
preliminary step

(k) p ∨ p ′ = p ′ ∨ p′′.

Use (a) and (b) to expand p ∨ p ′, and (c) and (d) to expand p ′ ∨ p′′. The
identities (a), (d), and (k) entail the double complement law. One corollary
of this law is that complementation is a one-to-one function:

(l) p ′ = q ′ implies p = q.

With the help of the double complement law and the definition of meet, it
is easy to derive the commutative and associative laws for meet, and the De
Morgan laws.
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Before applying the definitions of zero and one, it must be shown that these
constants are well defined, that is to say, it must be shown that the definitions
do not depend on the particular choice of the element p:

p ∨ p ′ = q ∨ q ′.

Use (e) and (f) to expand p ∨ p ′, and (g) and (h) to expand q ∨ q ′.
The definition of zero and one, and the double complement law, immediately
imply the complement laws for zero and one in (11). It is almost as easy to
derive the complement laws for meet and join in (14).
The next task is to derive the identity laws in (13). First, justify the following
steps:

(1′′ ∨ 1′′ ) ′ ∨ (1′′ ∨ 1 ′ ) ′ = 1 ′,

1 = 1′′ ∨ 1 ′,

1′′ ∨ 1′′ = 1 ∨ 1,

(1 ∨ 1) ′ ∨ 1 ′ = 1 ′,

1 = 1 ∨ 1 ′ = 1 ∨ [(1 ∨ 1) ′ ∨ 1 ′ ] = (1 ∨ 1 ′ ) ∨ (1 ∨ 1) ′ = 1 ∨ (1 ∨ 1) ′,
1 ∨ 1 = 1 ∨ [1 ∨ (1 ∨ 1) ′ ] = (1 ∨ 1) ∨ (1 ∨ 1) ′ = 1,

1 ′ = (1 ∨ 1) ′ ∨ 1 ′ = 1 ′ ∨ 1 ′,

(p ′ ∨ p) ′ = (p ′ ∨ p) ′ ∨ (p ′ ∨ p) ′.

Then begin as follows:

p ∨ 0 = p ∨ 1 ′ = p ∨ (p ′ ∨ p) ′ = · · · ,

and use (i).
At this point one can show that complements are unique. A preliminary
observation sets up the strategy:

(m) p ′ ∨ q = 1 and q ′ ∨ p = 1 imply p = q.

Use (H) and the definition of 1 to expand p. Obtain a similar expansion of q,
and prove that the two expansions are equal.
The uniqueness of complements is formulated as follows:

p ∨ q = 1 and p ∧ q = 0 imply q = p ′.

In the derivation, use the definition of meet and the double complement law.
Now derive the idempotent laws in (16), using the identity laws, the commu-
tative laws, the definition of zero, the double complement law, and (j). The
laws in (12) follow easily from the idempotent laws.
Before proceeding further, it is helpful to write (H) in a form that shows some
relationship with the distributive laws:
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(n) (p ∧ q) ∨ (p ∧ q ′ ) = p.

The derivation of the distributive law for meet over join in (20) is more in-
volved, and requires several intermediate steps. (The distributive law for join
over meet follows from the distributive law for meet over join in the usual
way.) The strategy is to show that

[(p ∧ q) ∨ (p ∧ r)] ∨ [p ∧ (q ∨ r)] ′ = 1(o)

and

[(p ∧ q) ∨ (p ∧ r)] ∧ [p ∧ (q ∨ r)] ′ = 0.(p)

The uniqueness of complements then implies that

[p ∧ (q ∨ r)] ′ = [(p ∧ q) ∨ (p ∧ r)] ′.

The distributive law is an immediate consequence of this equation and (l).

For notational convenience, write

s111 = p ∧ q ∧ r, s110 = p ∧ q ∧ r ′,

s101 = p ∧ q ′ ∧ r, s100 = p ∧ q ′ ∧ r ′,

s011 = p ′ ∧ q ∧ r, s010 = p ′ ∧ q ∧ r ′,

s001 = p ′ ∧ q ′ ∧ r, s000 = p ′ ∧ q ′ ∧ r ′.

Show that the meet of any two of these terms is zero, and that the join of all
of these terms is one,

(q) s111 ∨ s110 ∨ s101 ∨ s100 ∨ s011 ∨ s010 ∨ s001 ∨ s000 = 1.

To prove (q), use (n) to expand p, and then use (n) again to expand both p∧q
and p ∧ q ′.

The identity (n) is also used to prove that the two sides of the distributive law
can be written as joins of terms of the form sijk. In connection with writing
the complement of the left side of the distributive law as such a join, it is
helpful to recall that

(q ∨ r) ′ = (q ′′ ∨ r ′′ ) ′ = q ′ ∧ r ′.

What is the connection between the terms sijk and the distributive law? The
right side of the distributive law is equal to the join of the first three of these
terms,

(p ∧ q) ∨ (p ∧ r) = s111 ∨ s110 ∨ s101,
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and the complement of the left side of the distributive law is equal to the join
of the last five terms sijk,

[p ∧ (q ∨ r)] ′ = s100 ∨ s011 ∨ s010 ∨ s001 ∨ s000.

In view of these remarks, (q) shows that equation (o) is satisfied. One more
observation — a special case of the distributive law — is needed before deriving
(p):

(r) p ∧ q = 0 and p ∧ r = 0 imply p ∧ (q ∨ r) = 0.

Show that the hypotheses of (r) imply (p ∧ q) ∨ (p ∧ r) = 0, and use this to
draw the desired conclusion of (r) from (o).

As was already observed,

s111 ∧ s100 = 0 and s111 ∧ s011 = 0.

An application of (r) gives

s111 ∧ (s100 ∨ s011) = 0.

Continue in this fashion to obtain

(s111 ∨ s110 ∨ s101) ∧ (s100 ∨ s011 ∨ s010 ∨ s001 ∨ s000) = 0.

8. The independence of the commutative law can be demonstrated in a model
with the universe {0, 1, 2, 3, 4, 5} and the arithmetic tables

∨ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 1 1 1 1 1
2 2 1 2 1 1 2
3 3 1 1 3 3 1
4 4 1 1 4 4 1
5 5 1 5 1 1 5

and

′

0 1
1 0
2 3
3 2
4 5
5 4

.

Consider the instance of the commutative law in which p = 5 and q = 2.

The independence of the associative law can be demonstrated in a model with
the universe {0, 1, 2, 3} and the arithmetic tables

∨ 0 1 2 3
0 0 1 2 3
1 1 1 2 0
2 2 2 2 1
3 3 0 1 3

and

′

0 1
1 0
2 3
3 2

.
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Consider the instance of the associative law in which p = 2, q = 1, and r = 3.
The independence of Huntington’s axiom (H) can be demonstrated in a model
with the universe {0, 1, 2, 3, 4, 5} and the arithmetic tables

∨ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 1 1 1 1 1
2 2 1 2 1 1 1
3 3 1 1 3 1 1
4 4 1 1 1 4 1
5 5 1 1 1 1 5

and

′

0 1
1 0
2 3
3 2
4 5
5 4

.

Consider the instance of (H) in which p = 3 and q = 5.

9. It is not difficult to show that each of the identities

p′′ = p,(a)
p ∨ (q ∨ q ′ ) ′ = p,(b)

p ∨ (q ∨ r) ′ = ((q ′ ∨ p) ′ ∨ (r ′ ∨ p) ′) ′,(c)

is derivable from the set of Huntington axioms described in Exercise 7, since
the Huntington axioms imply all of the laws in (11)–(20).
It requires more work to show that each of the Huntington axioms is derivable
from (a)–(c). In terms of join and complement, define an operation of meet,
and constants 0 and 1, in the usual way. In order to derive the Huntington
axioms, it is helpful to derive first most of the laws in (11)–(20). Begin with
the idempotent laws in (16). Justify the derivation

q ′ = q ′ ∨ (q ∨ q ′ ) ′ = ((q ′ ∨ q ′ ) ′ ∨ (q ′′ ∨ q ′ ) ′ ) ′

= ((q ′ ∨ q ′ ) ′ ∨ (q ∨ q ′ ) ′ ) ′ = ((q ′ ∨ q ′ ) ′ ) ′ = q ′ ∨ q ′,

and use it to arrive at the idempotent law for join. The idempotent law for
meet follows from the definition of meet, the idempotent law for join, and the
double complement law.
Justify the following derivation of the commutative law for join:

p ∨ q = p ∨ (q ′ ) ′ = p ∨ (q ′ ∨ q ′ ) ′ = ((q ′′ ∨ p) ′ ∨ (q ′′ ∨ p) ′ ) ′

= ((q ∨ p) ′ ∨ (q ∨ p) ′ ) ′ = ((q ∨ p) ′ ) ′ = q ∨ p.

The commutative law for meet is a consequence of the commutative law for
join and the definition of meet.
Huntington’s axiom

(d) (p ′ ∨ q ′ ) ′ ∨ (p ′ ∨ q) ′ = p
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can now be established. Begin with the string of equations

p ′ = p ′ ∨ (q ∨ q ′ ) ′ = ((q ′ ∨ p ′ ) ′ ∨ (q ′′ ∨ p ′ ) ′ ) ′

= ((q ′ ∨ p ′ ) ′ ∨ (q ∨ p ′ ) ′ ) ′ = ((p ′ ∨ q ′ ) ′ ∨ (p ′ ∨ q) ′ ) ′.

Derive the identity
p ∨ p ′ = q ∨ q ′,

using (b), to show that the constants 0 and 1 are well defined. Here are the
first few steps in the derivation:

(p ∨ p ′ ) ′ = (p ∨ p ′ ) ′ ∨ (q ∨ q ′ ) ′ = (q ∨ q ′ ) ′ ∨ (p ∨ p ′ ) ′ = (q ∨ q ′ ) ′.

Derive the complement law for meet, using the definition of meet, the defini-
tion of 0, and the preceding identity.
The identity law for join is just a reformulation of (b), while the identity law
for meet follows from the definitions of meet, zero, and one, and the identity
law for join.
Derive the identity

p ∨ q = (p ′ ∧ q ′ ) ′

(an analogue for join of the definition of meet) with the help of the definition
of meet and the double complement law. This identity and the definition of
meet imply the De Morgan laws.
The derivation of the distributive law for join over meet uses the definition of
meet and (c), and begins as follows:

p ∨ (q ∧ r) = p ∨ (q ′ ∨ r ′ ) ′ = ((q ′′ ∨ p) ′ ∨ (r ′′ ∨ p) ′ ) ′ = · · · .

The distributive law for meet over join is a consequence of the distributive
law for join over meet, the definition of meet, and the De Morgan laws.
The key steps in the derivation of the second law in (12) are

1 ∨ p = ((1′′ ∨ p) ′ ) ′ = ((1′′ ∨ p) ′ ∨ 0) ′

= ((1′′ ∨ p) ′ ∨ (p ′ ∨ p) ′ ) ′ = p ∨ (1 ′ ∨ p) ′.

The corresponding law for meet is a consequence of the law for join.
The absorption laws (part (d) of the solution to Exercise 2) are consequences of
the distributive and identity laws, and the second law in (12). The derivation
of the absorption law for join begins as follows:

p ∨ (p ∧ q) = (p ∧ 1) ∨ (p ∧ q) = · · · .
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The absorption law for meet is a consequence of the distributive law for meet
over join, and the absorption law for join.
The next observation is used to establish the uniqueness of complements:

p ′ ∨ q = 1 and q ′ ∨ p = 1 imply p = q.

The derivation proceeds by using (d) and the definition of meet to show that
p = p ∧ q. An analogous argument shows that q = q ∧ p.
The uniqueness of complements may be formulated as follows:

(e) p ∧ q = 0 and p ∨ q = 1 imply q = p ′.

To establish (e), argue that p′′ ∨ q = 1 and q ′ ∨ p ′ = 1, and conclude (with
the help of the preceding observation) that q = p ′.
Turn now to the derivation of the associative law for join. Write

s = (p ∨ q) ∨ r and t = p ∨ (q ∨ r).

It is to be shown that s = t. The proof involves three intermediate steps, the
first of which is concerned with the derivation of the three identities

(f) p ∧ s = p, q ∧ s = q, r ∧ s = r.

The derivations use the definition of s, and the distributive and absorption
laws.
The second intermediate step is concerned with the derivation of the three
identities

(g) p ∧ s ′ = 0, q ∧ s ′ = 0, r ∧ s ′ = 0.

All three derivations are similar. The derivation of the first identity uses the
first equation in (f) and begins as follows:

p ′ ∨ s = 1 ∧ (p ′ ∨ s) = (p ′ ∨ p) ∧ (p ′ ∨ s) = p ′ ∨ (p ∧ s) = · · · .

The third intermediate step is concerned with the derivation of the three
identities

(h) p ′ ∨ t = 1, q ′ ∨ t = 1, r ′ ∨ t = 1.

Again, all three derivations are similar; they use the definition of t and the
third identity in (g) (with r replaced by p, and with the three variables p, q, and
r that are involved in the definition of s replaced by q, r, and p respectively).
To derive the associative law, show that the hypotheses of (e) are satisfied
when p and q are replaced by t and s ′. The derivation of the equation t∧s ′ = 0
uses the definition of t, the identities in (g), and several applications of the
distributive law for meet over join. The derivation of the equation t ∨ s ′ = 1
uses the definition of s, the De Morgan laws, the distributive law for join over
meet, and the three identities in (h).
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10. The independence of the double complement law can be demonstrated in a
model with the universe {0, 1, 2, 3, 4, 5} and the arithmetic tables

∨ 0 1 2 3 4 5
0 0 1 4 5 2 3
1 1 1 1 1 1 1
2 2 1 0 1 2 1
3 3 1 1 0 1 3
4 4 1 4 1 0 1
5 5 1 1 5 1 0

and

′

0 1
1 0
2 3
3 4
4 5
5 2

.

Consider the instance of the double complement law in which p = 2.

The independence of the identity law for zero can be demonstrated in a model
with the universe {0, 1, 2} and the arithmetic tables

∨ 0 1 2
0 0 1 2
1 1 1 1
2 2 1 2

and

′

0 1
1 0
2 2

.

Consider the instance of the identity law in which p = 0 and q = 2.

The independence of the last law can be demonstrated in a model with the
universe {0, 1, 2} and the arithmetic tables

∨ 0 1 2
0 0 2 1
1 1 1 0
2 2 0 2

and

′

0 0
1 2
2 1

.

Consider the instance of the law in which p = 1, q = 1, and r = 2.

11. Show that the associative and commutative laws for join, together with the
equivalence

(a) p ∨ q ′ = r ∨ r ′ if and only if p ∨ q = p,

imply each of the Huntington axioms described in Exercise 7, and conversely.
The most involved part of the proof is the derivation of the third axiom,

(b) (p ′ ∨ q ′ ) ′ ∨ (p ′ ∨ q) = p,

from (a) and the associative and commutative laws.

It is helpful to establish first some auxiliary laws about join. The idempotent
law (for join) in (13) is a consequence of (a) and the fact that p∨ p ′ = p∨ p ′.
The law
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(c) p ∨ p ′ = q ∨ q ′

is a consequence of (a) and the idempotent law.

The implication

(d) p ∨ q = p and q ∨ r = q imply p ∨ r = p

follows from the associative law; begin the proof with the equation

p ∨ r = (p ∨ q) ∨ r.

The most involved derivation concerns the double complement law. Use the
equation

p′′ ∨ p ′ = r ∨ r ′

(which follows from (c)), and apply (a) to conclude that

(e) p′′ ∨ p = p′′.

The equations

(f) p ′′′ ∨ p ′ = p ′′′ and p ′′′′ ∨ p′′ = p ′′′′

are both instances of (e). The second equation in (f) and the equation in (e)
together yield

p ′′′′ ∨ p = p ′′′′,

by (d). Invoke (a), with p and q replaced by p ′′′′ and p, to conclude that

p ′′′′ ∨ p ′ = r ∨ r ′.

Apply (a) one more time (with p and q replaced by p ′ and p ′′′) to arrive at

p ′ ∨ p ′′′ = p ′.

Combine the preceding equation with the first equation in (f) to see that

p ′′′ = p ′.

In the equation
p ∨ p ′ = r ∨ r ′,

replace p ′ by p ′′′ to get
p ∨ p ′′′ = r ∨ r ′.
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Apply (a), with q replaced by p′′, to conclude that

p ∨ p′′ = p.

Combine this last equation with (e) to arrive at the desired conclusion.
The identity

(g) p ∨ (q ∨ q ′ ) = q ∨ q ′

is an easy consequence of (c) and the associative and idempotent laws. Next,
derive the identity

(h) p ∨ (p ′ ∨ q) ′ = p;

first show, with the help of (g) and (c), that

p ∨ (p ′ ∨ q)′′ = r ∨ r ′,

and then invoke (a).
Now comes an identity,

(i) p ∨ (p ∨ q) ′ = p ∨ q ′,

with a more involved derivation. First, prove that

(p ∨ (p ∨ q) ′ ) ∨ q ′′ = r ∨ r ′,

using the double complement law and (c) (with p and q replaced by p∨ q and
r). Apply (a) (with p replaced by p ∨ (p ∨ q) ′, and q by q ′) to arrive at

(p ∨ (p ∨ q) ′ ) ∨ q ′ = p ∨ (p ∨ q) ′,

which is equivalent to

(j) (p ∨ q ′ ) ∨ (p ∨ q) ′ = p ∨ (p ∨ q) ′.

Observe that
q ′ ∨ (p ∨ q) ′ = q ′ ∨ (q ′′ ∨ p) ′ = q ′,

by (h), and therefore

(p ∨ q ′ ) ∨ (p ∨ q) ′ = p ∨ q ′.

Equation (i) follows from this equation and from (j).
Derive (b) as follows. By (h),

p ∨ (p ′ ∨ q) ′ = p and p ∨ (p ′ ∨ q ′ ) ′ = p,
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so that

(k) p ∨ (p ′ ∨ q ′ ) ′ ∨ (p ′ ∨ q) ′ = p.

The identity (i) (with p and q replaced by p ′ and q ′) and the double comple-
ment law together yield

p ′ ∨ (p ′ ∨ q ′ ) ′ = p ′ ∨ q.

Form the join of both sides with (p ′ ∨ q) ′, and use (c), to obtain

p ′ ∨ (p ′ ∨ q ′ ) ′ ∨ (p ′ ∨ q) ′ = r ∨ r ′.

Apply (a) (with p and q replaced by (p ′ ∨ q ′ ) ′ ∨ (p ′ ∨ q) ′ and p) to arrive at

p ∨ (p ′ ∨ q ′ ) ′ ∨ (p ′ ∨ q) ′ = (p ′ ∨ q ′ ) ′ ∨ (p ′ ∨ q).

This equation and (k) together imply (b).

Chapter 3

2. (a) This amounts to proving that the Boolean ring axioms (1.1)–(1.3), (1.5),
(1.6), and (1.8)–(1.11) can be derived from the Boolean algebra axioms
(2.11)–(2.20) using the definitions in (3). The derivations of the associa-
tive law (1.1) and the distributive laws (1.8) and (1.9) are more involved
than the other derivations.

(b) This amounts to proving that the Boolean algebra axioms can be derived
from the Boolean ring axioms using the definitions in (4). It is sufficient
to derive the pairs of axioms (2.13), (2.14), (2.18), and (2.20), since they
imply the remaining ones. Only the derivation of the distributive law
for joins over meets presents any difficulties.

(c) This amounts to showing that the definitions in (4) can be derived from
the Boolean algebra axioms and the definitions in (3).

(d) This amounts to showing that the definitions in (3) can be derived from
the Boolean algebra axioms and the definitions in (4).

4. The expressions for meet, join, and complement are

p ∧ q = pq, p ∨ q = p + q − pq, and p ′ = 1 − p.

5. Use Exercise 1.10.
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Chapter 5

3. There are four periodic sets of integers of period two, namely the empty set,
the set of even integers, the set of odd integers, and the set of all integers.
There are eight periodic sets of integers of period three; they are just the
various possible unions of the sets

P0 = {3n : n ∈ X}, P1 = {3n + 1 : n ∈ X}, P2 = {3n + 2 : n ∈ X}.

4. Fix a positive integer m, and for each integer k = 0, 1, . . . ,m − 1, let Pk be
the set of those integers that when divided by m, leave remainder k:

Pk = {mn + k : n ∈ X}.

There are 2m periodic sets of integers of period m, namely the sets

PK =
⋃

k∈K

Pk,

where K ranges over the subsets of the set

M = {0, 1, . . . ,m − 1}.

Show that these sets satisfy the equations

PK ∪ PL = PK∪L, PK ∩ PL = PK∩L, P ′
K = PM−K .

5. Show that if P and Q are periodic sets of integers of periods m and n, then
P ∩ Q is a periodic set of period k, where k is the least common multiple of
m and n.

7. Prove the following lemma about the union of two left half-closed inter-
vals [c1, d1) and [c2, d2), where c1, c2, d1, and d2 are extended real num-
bers satisfying c1 < d1 and c2 < d2. If there is a real number e such that
c1, c2 ≤ e ≤ d1, d2, then

[c1, d1) ∪ [c2, d2) = [a, b),

where

a = min{c1, c2} and b = max{d1, d2}.

If no such number e exists, then

c1 < d1 < c2 < d2 or c2 < d2 < c1 < d1.

Given an element of the interval algebra of real numbers, use the lemma to
combine left half-closed intervals that satisfy the condition of the hypothesis
of the lemma.
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Chapter 6

10. On the basis of the definition of complement in (6), the three axioms for stroke
and the definitions of meet and join in (7) and (8) may be rewritten in the
following form:

p ′ | p ′ = p,(a)
p | (q | q ′ ) = p ′,(b)

(p | (q | r)) ′ = (q ′ | p) | (r ′ | p).(c)
p ∧ q = p ′ | q ′,(d)
p ∨ q = (p | q) ′.(e)

Use (6) and (a) to derive the double complement law. Use the double com-
plement law, (c), and the definition of complement in (6) to prove that stroke
is commutative. The commutativity of stroke implies that of meet and join.

Derive the identity
p | p ′ = q | q ′,

and then define constants 0 and 1 by

0 = p | p ′ and 1 = (p | p ′ ) ′ = 0 ′.

The identity and complement laws follow readily.

To establish the distributive law for join over meet, justify the following steps:

p ∨ (q ∧ r) = (p | (q ∧ r)) ′ = (p | (q ′ | r ′ )) ′ = (q ′′ | p) | (r ′′ | p)
= (q | p) | (r | p) = (p | q) | (p | r) = (p | q)′′ | (p | r)′′

= (p ∨ q) ′ | (p ∨ r) ′ = (p ∨ q) ∧ (p ∨ r).

The derivation of the distributive law for meet over join is similar. The identity
in (5) is a consequence of (d).

In the second part of the proof, it must be shown that the axioms for stroke
and the identities (6)–(8) are derivable from the axioms for Boolean algebra
on the basis of the definition of stroke in (5). The identity in (6) follows from
(5) and the idempotent law for meet. The identity in (7) is a consequence of
(6), (5), and the double complement law. The identity in (8) is a consequence
of (6), the De Morgan laws, and the double complement law.

The first axiom for stroke follows from (7) and the idempotent law for meet.
The derivation of the second axiom for stroke uses (5) (with q replaced by
q | (q | q)), (6), (3), the complement law for join, and the identity law for
meet.

To derive the third axiom for stroke, justify the following steps:
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((q | q) | p) | ((r | r) | p) = ((q | q) | p′′ ) | ((r | r) | p′′ )
= ((q | q) | (p ′ | p ′ )) | ((r | r) | (p ′ | p ′ ))
= (q ∧ p ′ ) | (r ∧ p ′ )
= (p ′ ∧ q) | (p ′ ∧ r)
= (p ′ ∧ q) ′ ∧ (p ′ ∧ r) ′

= ((p ′ ∧ q) ∨ (p ′ ∧ r)) ′

= (p ′ ∧ (q ∨ r)) ′

= (p ′ ∧ (q | r) ′ ) ′

= (p | (q | r)) ′

= (p | (q | r)) | (p | (q | r)).

13. Every operation on 2 that is definable in terms of ⇔ alone assumes the value
1 when all arguments are 1. Not all operations on 2 have this property.

17. Experiment with the case of binary operations on 2 first.

19. If g is regarded as defining a binary operation for each q, by, say,

p(q)r = g(p, q, r),

then p(0)r = p∧ r and p(1)r = p∨ r. Boolean algebras can be axiomatized in
terms of the operations g and ′ by the equations

g(p, q, g(r, s, t)) = g(g(p, q, r), s, g(p, q, t)),(b)
g(p, q, q) = q,(c1)
g(q, q, p) = q,(c2)

g(p, q, q ′ ) = p,(d1)
g(q ′, q, p) = p.(d2)

The following variants of (c1), (c2), and (d1), (d2), follow readily from axiom
(b) (with the help of the other axioms):

g(q, p, q) = q,(c3)
g(p, q ′, q) = p,(d3)
g(q, p, q ′ ) = p.(d4)

The derivation of (c3) begins as follows:

g(q, p, q) = g(g(q, p, p ′ ), p, g(q, p, p ′ )) = · · · .

The two identities

g(p, q, r) = g(p, r, q),
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g(p, q, r) = g(q, r, p),

also follow readily from (b), and they can be used to show that the operation g
is totally commutative in the sense that

g(p, q, r) = g(σ(p), σ(r), σ(q))

for every permutation σ of {p, q, r}.
Given a model A of the preceding axioms, and an arbitrary element u in A,
define

1 = u, 0 = u ′,

p ∨ q = g(p, 1, q) = g(p, u, q), p ∧ q = g(p, 0, q) = g(p, u ′, q).

Under these operations, A becomes a Boolean algebra. To demonstrate this,
it suffices to verify the identity laws (2.13), the complement laws (2.14), the
commutative laws (2.18), and the distributive laws (2.20) (see Exercise 2.2).
The identity laws follow from (d3) and (d1), the complement laws from (d4),
and the commutative laws from the total commutativity of the operation g.
The distributive laws are particular instances of (b), and, in fact, (b) can be
thought of as a general distributive law.

Chapter 7

1. Use part (1) of Lemma 3.

7. Both implications are false.

9. Use Exercise 8.

11. Use Exercise 10.

19. Assume that the first distributive law holds identically in a lattice. Use the
first distributive law, the commutative laws, the absorption laws, and the
associative laws to derive the second distributive law. Begin with the equation

(p ∨ q) ∧ (p ∨ r) = [(p ∨ q) ∧ p] ∨ [(p ∨ q) ∧ r].

Chapter 8

14. Consider a finite field of subsets of an infinite set.

15. Chapter 10 presents an example.

16. Consider the Boolean algebra of finite and cofinite sets of integers.

23. Use Exercise 6.2(e) and induction.
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24. Use Exercise 23.

28. Consider the family of half-closed intervals [0, 1/n), for n = 1, 2, 3, . . . .

29. Prove that the sequence of intervals Pn = [2n, 2n + 1), for n = 1, 2, 3, . . . , has
no supremum.

Chapter 9

10. The key is to establish the Cauchy–Schwarz inequality for finite sums of real
numbers:

( n∑

i=1

xiyi

)2

≤
( n∑

i=1

x2
i

)( n∑

i=1

y2
i

)
.

Write

r =
n∑

i=1

xiyi, s =
n∑

i=1

x2
i , t =

n∑

i=1

y2
i ,

and prove that r2 ≤ st.

For each n-termed sequence x = (x1, . . . , xn) of real numbers, define the norm
of x to be

‖x‖ =
√

x2
1 + · · · + x2

n.

In terms of the norm, the Cauchy–Schwarz inequality may be rewritten in the
form ∣

∣
∣
∑

i

xiyi

∣
∣
∣ ≤ ‖x‖‖y‖.

This inequality implies the triangle inequality for the norm:

‖x + y‖ ≤ ‖x‖ + ‖y‖.

The distance function d in R
n may be defined in terms of the norm as follows:

d(x, y) = ‖x − y‖ =
√

(x1 − y1)2 + · · · + (xn − yn)2.

13. Use the definitions of the closure and interior operations.

15. Consider the open intervals P = (0, 1) and Q = (1, 2) in the space of all real
numbers.

16. Imitate the proof of Lemma 10.4
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24. Observe that a set P in a topological space X is nowhere dense just in case

P −′− = X.

Use this observation and Exercise 13(d) to prove that

Q−′ = P −′− ∩ Q−′ ⊆ (P ∪ Q)−′−.

Conclude that the union of two nowhere dense sets is nowhere dense.

25. Use (3), Exercise 13(b), and the definition of a nowhere dense set.

26. Use Exercises 19, 21, 24, and 25.

27. Use Exercise 25.

29. Use Exercises 19, 21, 27, and 28.

34. Define an equivalence relation between the points of an open set U as follows:
points x and y in U are equivalent if every point on the segment connecting
x and y is in U . Show that the equivalence classes of this relation are open
intervals. Use the fact that the set of rational numbers is countable and dense
to conclude that there are only countably many equivalence classes.

35. Use Exercise 34, together with the identity

(2ℵ0)ℵ0 = 2ℵ0

from cardinal arithmetic. The identity means that if a set X has the power of
the continuum, then there are continuum many (countable) sequences whose
terms belong to X.

36. Prove that the set Q ∩ P⊥ is open, and that

(Q ∩ P⊥)⊥⊥ = Q and Q �= Q ∩ P⊥.

To establish the equality, show that

X = ∅
′ = P⊥−,

and therefore
Q = Q ∩ P⊥− ⊆ (Q ∩ P⊥)− ⊆ Q−.

Conclude that
Q− = (Q ∩ P⊥)−,

and consequently
Q = Q⊥⊥ = (Q ∩ P⊥)⊥⊥.
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37. Open balls are regular open sets.

38. Consider an infinite space endowed with the cofinite topology.

40. The largest number of distinct sets obtainable from a subset of R
n by repeated

applications of closure and complementation is 14. To prove that 14 is an
upper bound, write

P � = P ′−,

and establish the analogues of Lemmas 1–3 in Chapter 10. To prove that the
number 14 can actually be achieved, let Q be the set of rational numbers and
consider the set

P = [0, 1) ∪ (1, 2] ∪ {3} ∪ [4, 5] ∪ (Q ∩ (6, 7))

in the space of real numbers.

Chapter 10

4. For the first De Morgan law, use the assumption that P and Q are regular,
and use equation (7). For the second De Morgan law, use the definition of
join, together with (7).

5. Reduce the verification of the associative law for join to that of meet, using
(7) and Lemma 3.

9. It is convenient to write P � = P ◦−. Observe that P is a regular closed set
just in case

P = P ��.

If P and Q are regular closed sets, define

P ∧ Q = (P ∩ Q)��, P ∨ Q = P ∪ Q, and P ′ = P �.

10. To demonstrate that the given equation may fail when {Pi} is a family of open
sets that are not regular, take X to be the set of integers endowed with the
cofinite topology, and put

Pi = X − {i}

for each integer i in X. Show that

(⋂

i

Pi

)
−′−′ = ∅ and

(⋂

i

P−
i

)
′−′ = X.
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Chapter 11

2. The field B is a subfield of A if and only if m divides n.

4. Consider the field P(X) of all subsets of an infinite set X and the class of all
finite subsets of X.

5. Consider the Boolean algebra of all subsets of R
n and the class of regular open

subsets of R
n.

6. Consider the class of all finite subsets of the natural numbers, with the set of
natural numbers adjoined as the unit.

8. Dualize the formulation and proof of Theorem 2. For each 2-valued function
a on E, put

pa =
∨

i∈E

p(i, a(i)),

and let K be the set of functions a such that pa �= 1. For every subset X of
K, write

pX =
∧

a∈X

pa.

Formulate and prove the duals of equations (4)–(9).

15. Consider the field of all subsets of an infinite set X and the subfield of the
finite and cofinite subsets of X.

16. Consider the field A of finite and cofinite sets of integers, and the class B of
those subsets of integers that are either finite sets of even integers, or else the
complements of such sets.

17. Consider the field of all sets of non-negative integers, and the subfield of all
finite subsets of positive integers and the complements of these subsets (with
respect to the set of non-negative integers).

18. Take B to be any complete Boolean algebra — for instance the field of all
subsets of an infinite set — and take A to be the canonical extension of B
(see Chapter 23). Both algebras are complete, but every infinite join of B is
“broken” in A.

19. Can m be finite? How many meets of finite subsets are there? How many
finite joins of such meets are there? Use Theorem 3 and a counting argument.

22. Use Exercise 21 and Lemma 8.1 to prove that the stated condition is equivalent
to the condition formulated in the final paragraph of the chapter.
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24. The answer is affirmative. Show that if a family {Pi} has a supremum in the
field of finite and cofinite sets of integers, then that supremum must be the
union P =

⋃
i Pi. Consider three cases: P is finite; P is cofinite; and P is

infinite but not cofinite.

25. Use the definitions involved and Exercise 20 to prove that a complete subal-
gebra is a regular subalgebra. A regular subalgebra need not be a complete
subalgebra; see Exercise 24.

26. Use the definitions involved to prove that if B is a regular subalgebra of A
that happens to be complete, then B must be a complete subalgebra of A.

28. Use Exercise 20 and the condition formulated in the final paragraph of the
chapter to show that the answer is affirmative.

Chapter 12

1. Argue by cases to show that f preserves the fundamental operations. For in-
stance, to prove that f preserves join, consider two cases: in the first case both
arguments are finite, while in the second case at least one of the arguments is
cofinite.

8. To answer the first question, consider the function that maps every element to
zero. To answer the second question, use the equations of (3.4) in Chapter 3.

16. Neither f ∨ g nor f + g is a homomorphism.

20. For a Boolean monomorphism from B to A, the image of an atom in B may
not be an atom in A. Consider any set X with more than one element, and
let f be the function from the Boolean algebra 2 into the field of sets P(X)
that maps 0 to the empty set and 1 to the set X.

24. Prove that the answer is affirmative. Let O be the set of odd integers, and
consider the function f from A to B that is defined by

f(P ) =

{
{2n : n ∈ P} if P is finite,
{2n : n ∈ P} ∪ O if P is cofinite.

25. The first algebra is atomic and the second algebra has no atoms whatsoever.

30. For the first part, use Theorem 3. Alternatively, let C be the set of elements p
in B such that f(p) = g(p). Prove that C is a subalgebra of B that includes E.
For the second part, the assumption is that B is a complete Boolean algebra,
and in fact the smallest complete subalgebra of itself that includes the set
E. An analogue of Theorem 3 is not available for the proof. However, the
alternative approach works: show that C is a complete subalgebra of B.
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31. One possibility is to use Theorem 3. Alternatively, consider the set B0 of
those elements q in B such that the meet q ∧ p0 is generated by F in the
relativization B(p0); prove that B0 = B.

35. Consider an arbitrary family {pi} of elements in B with a supremum p. Show
that the family {f(pi)} has a supremum in A, and that supremum is f(p).

40. For the first and third parts of the exercise, let X be an infinite set and
consider a 2-valued homomorphism f on the field P(X) of all subsets of X
that maps all finite sets to 0. For the second part of the exercise, let B be a
complete Boolean algebra that is a subalgebra, but not a regular subalgebra,
of a complete Boolean algebra A (see Exercises 11.18 and 11.26). Take f to
be the identity mapping on B and use Lemma 1.

41. Use Lemma 1.

42. Use Lemma 1 (or Exercise 41) and Exercises 11.25 and 11.26.

44. Consider the 2-valued homomorphism on the finite–cofinite algebra of the
integers that maps each finite set to zero.

Chapter 13

4. Use the following consequences of (11.9):
∧

i∈F

p(i, a(i)) =
∨

b∈L

∧

i∈E

p(i, b(i))

and

∧

i∈F

p(g(i), a(i)) =
∨

b∈L

∧

i∈E

p(g(i), b(i)),

where L is set of 2-valued functions b on E that extend a.

Chapter 14

6. Use Exercise 5 and Lemmas 1–3.

7. Choose an atom q below p, and consider the set E of all those elements in
A that are above q. Define a 2-valued function f on A as follows: f maps
the elements in E to 1 and the elements not in E to 0. Show that f is a
homomorphism.

8. Call two points in a topological space regularly separable if there is a regular
open set that contains one of the points, but not the other. The regular open
algebra of a topological space is atomless if and only if every non-empty regular
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open set contains two points that are regularly separable. The regular open
algebra is atomic if and only if every non-empty regular open set includes a
regular open subset in which no two points are regularly separable.

9. The answer is negative. Notice that a counterexample cannot be atomic (in
an atomic Boolean algebra the unit is the supremum of all atoms), but it must
have infinitely many atoms. Let Y be the set of negative real numbers, and
B the interval algebra of Y . Let Z be the set of positive integers, and C the
algebra of finite and cofinite subsets of Z. Write X = Y ∪Z, and consider the
subalgebra A of P(X) generated by the class of singletons of positive integers
together with the class of subintervals of Y of finite length. This subalgebra
consists of the sets S = P ∪ Q such that P is in B, and Q is in C, and either
P has finite length (as a set of real numbers) and Q is finite, or else P has
infinite length and Q is cofinite.

10. To prove the implication from right to left, imitate the proof of Theorem 7.
It must be shown, in addition, that for each function a from I to 2, the set
{p(i, a(i)) : i ∈ I} always has an infimum, and that infimum is either zero
or an atom. To prove the implication from left to right, use Theorem 6,
Lemma 12.1, and Exercises 8.3 and 11.29.

11. Use Lemma 12.1 and Exercises 8.3 and 11.29 for the first part of the exercise.
Use the first part of the exercise, Theorem 6, and Exercise 10 for the second
part of the exercise.

Chapter 15

1. For each 2-valued function x on m, define a 2-valued function zx on n by

zx(i) =

{
x(i) if i < m,

x(m − 1) if m ≤ i < n.

The correspondence that maps the function x to the function zx for each x in
2m is a monomorphism from 2m into 2n.

4. If a function φ maps the set Y onto the set X, then the homomorphism
induced by φ, that is to say, the mapping f from P(X) into P(Y ) defined by

f(P ) = φ−1(P )

for every subset P of X, is a monomorphism. Given an arbitrary monomor-
phism f of P(X) into P(Y ), define a function φ from Y into X by

φ(y) = x if and only if y ∈ f({x}).

Show that φ is a well-defined mapping of Y onto X, and f is the monomor-
phism induced by φ.
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5. Corollary 2 and the assumptions on f imply that algebras A and B are iso-
morphic. Corollary 1 implies that we may assume

A = P(X) and B = P(Y ),

where X and Y are sets of cardinality n, the number of atoms in each algebra.
In this context, the assumptions on f imply that, for two subsets P and Q of
Y , if P is a proper subset of Q, then f(P ) is a proper subset of f(Q). Use this
to prove that P and f(P ) always have the same cardinality. Define a function
φ from X into Y by

φ(x) = y if and only if f({y}) = {x},

for each x in X. Show that φ is a bijection and that f is the isomorphism
induced by φ.

Chapter 16

5. For the first part, use Exercises 1 and 2. For the second part, use Exercises 1
and 4.

Chapter 17

3. Use Exercises 1 and 2.

5. The fundamental ring operations are definable in terms of the Boolean oper-
ations.

6. The fundamental Boolean operations are definable in terms of the ring oper-
ations.

11. Imitate the argument in the last example in the chapter, using Exercises 7.9(a),
(b) and 6.2(g).

12. The argument is very similar to that for Exercise 11.

Chapter 18

5. Use Exercises 9.24 and 9.25.

8. To prove that an ideal M is dense if and only if its annihilator is trivial, use
the first assertion of the exercise, together with Exercises 6 and 7.
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9. Use the following properties of a measure μ (see Chapter 31): (1) μ is a non-
negative real-valued function on a field of sets A; (2) μ(∅) = 0; (3) if P and
Q are sets in A, then

μ(P ∪ Q) ≤ μ(P ) + μ(Q);

(4) if P and Q are sets in A such that Q ⊆ P , then μ(Q) ≤ μ(P ).

10. Use the fact that the idempotent laws (2.16), the commutative laws (2.18),
the associative laws (2.19), the distributive laws (2.20), and the absorption
laws in Lemma 6.3 are true in a Boolean ring without unit, when meet and
join are defined as in the exercise. These laws are easy to derive directly, but
their validity also follows from the fact that every Boolean ring without unit
can be extended to a Boolean ring with unit. See Exercises 1.10 and 3.5.

14. The ideal consists of those elements that can be written as finite joins of atoms.

17. The analogue of Theorem 11 for filters says that an element p of a Boolean
algebra is in the filter generated by a set E if and only if there is a finite subset
F of E such that

∧
F ≤ p. One way to prove this analogue is to dualize the

proof of Theorem 11.

21. Use Theorem 11 and Exercise 17.

22. Use Exercise 21.

23. Use conditions (7) and (18).

25. For the second part, use Exercise 18.

27. The supremum of a family {Mi} of ideals is the intersection of all ideals that
include the set

⋃
i Mi. See Chapter 19 for the proof that the set of all ideals

in a Boolean algebra is a distributive lattice.

28. See Chapter 19.

30. Assume that M is generated by a countable set

E = {q1, q2, q3, . . . }.

For each positive integer n, put

pn =
n∨

m=1

qm ,

and use Theorem 11.

31. Use the identities established in Exercises 6.7, 6.8, and 7.11. For part (b), if
N is the cokernel of a congruence Θ, then Θ can be defined in terms of N by
means of the equivalence
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p ≡ q mod Θ if and only if p ⇔ q ∈ N.

For part (c), if N is any Boolean filter, define a binary relation Θ by the
preceding equivalence, and prove that Θ is a congruence relation with cokernel
N . For part (d), the equivalence class p/Θ coincides with the “cokernel coset”

p ⇔ N = {p ⇔ q : q ∈ N}.

Chapter 19

3. Use Exercises 18.10 and 18.12.

5. Use the definition of f and Corollary 1.

8. If M and N are filters in a Boolean algebra, then

M ∨ N = {p ∧ q : p ∈ M and q ∈ N}

and

M ∧ N = {p ∨ q : p ∈ M and q ∈ N}.

The proof is the dual of the proof of Lemma 1.

9. The argument is the dual of the proof that the lattice of ideals is distributive.
It uses Exercise 8 instead of Lemma 1.

Chapter 20

1. To prove the non-trivial direction of the assertion, assume that M satisfies
the stated conditions and show that it is an ideal satisfying the criterion of
Lemma 1. The key step is showing that M is downward closed: if p is in M ,
and if q ≤ p, then q is in M . One of q and q ′ is in M , so it suffices to prove
that q ′ cannot be in M . Argue by contradiction.

2. Show that the class of all sets in B that do not contain x0 is an ideal that
satisfies the criterion of Lemma 1.

3. Use Corollary 3.

4. Use Exercise 18.25 and Lemma 1.

5. Use Exercise 18.26 and Lemma 1.

8. The dual of Corollary 1 asserts that a filter is maximal if and only if it is prime
in the sense that the presence of p∨ q in the filter always implies the presence
of at least one of p and q. One way to prove this assertion is to dualize the
proof of Corollary 1. Another way is to use the isomorphism between the
lattice of ideals and the lattice of filters that is discussed in Chapter 19.
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9. The dual of Corollary 2 asserts that a principal filter generated by an element
p is maximal if and only if p is an atom. One way to prove this assertion is to
dualize the proof of Corollary 2, and another way is to use the isomorphism
between the lattice of ideals and the lattice of filters that is discussed in
Chapter 19.

10. Use Exercise 19.10 and Exercise 7.

11. Dualize the proof of Corollary 4, using Exercises 9 and 10. Alternatively, use
Corollary 4, Exercise 19.11, and the isomorphism between the lattice of ideals
and the lattice of filters.

12. Use Exercises 18.20 and Exercise 10.

13. A subset E of a Boolean algebra B has the finite join property if the join of
every finite subset of E is different from the unit. Prove that if E has the
finite join property, then it is included in a maximal ideal of B.

15. Show that if q is an element in A that is not in B, then the set

{p ∈ B : p ≤ q} ∪ {p ∈ B : p ≤ q ′}

has the finite join property, and consequently can be extended to a maximal
ideal N in B (Exercise 13). Extend

N ∪ {q} and N ∪ {q ′}

to (distinct) maximal ideals in A.

16. Let X be any infinite set and write B = P(X). Take M to be a non-principal,
maximal ideal in B, and put A = B/M . The canonical epimorphism f from
B onto A is not complete: it maps each atom in B to the zero element of A,
but it maps the unit of B — which is the supremum of the set of atoms in B
— to the unit of A.

17. For each ideal M in B write

N = {q ∈ A : q ∧ p ∈ M}.

Prove that N is an ideal in A, and in fact that it is the ideal generated by
M ∪ {p ′}. Show that N is maximal (in A) just in case M is maximal (in B).

19. To prove the existence of the desired extension B use Exercise 1.10. The
extension B is unique in the following sense: if C is a Boolean algebra that
includes A as a maximal ideal, then there is an isomorphism from B to C that
maps each element p in A to itself and maps the complement of p in B to the
complement of p in C (see Exercise 22).

20. Use Exercise 1.10 and Exercises 18 and 19.
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21. Use Exercise 1.10 and Exercise 19 to show that if the ring is finite, then it
must have a unit.

22. Consider a ring homomorphism g from M into a Boolean algebra A, and define
a mapping f from B into A by

f(p) =

{
g(p) if p ∈ M,

g(p ′ ) ′ if p ∈ B − M.

Show that f is a Boolean homomorphism. (The argument proceeds by cases.)

25. Follow the lines of the proof of Theorem 12, but with the following modifica-
tions. First, add pi to Mi+1 just in case the ideal generated by Mi ∪{pi} does
not contain p. Second, show that the annihilator of p — the set of elements q
in B such that p · q = 0 — is included in Mα. Finally, prove that the element
q + p · q is in the annihilator of p for every q in B. Use this to show that if N
is an ideal that includes Mα, then N = B when p is in N , and N = Mα when
p is not in N .

26. Apply Exercise 25.

27. Follow the lines of the proof of Theorem 12, but with the following modifica-
tions. First, add pi to Mi+1 just in case the ideal generated by Mi ∪{pi} does
not contain p. Second, use the distributive law to show that if q ∧ r belongs
to Mα, then one of q and r must belong to Mα. It is helpful to use a version
of Lemma 18.1 that applies to distributive lattices.

28. Use the notion of a prime ideal (instead of a maximal ideal) in the formulation,
and apply Exercise 27.

Chapter 21

1. Use Exercise 6.8.

3. Use the maximal ideal theorem and Corollary 3.

4. Use Corollary 20.3 to get a maximal ideal that does not contain p + q.

5. Use the maximal ideal theorem to get a maximal ideal that contains all finite
subsets of X.

7. To formulate the correspondence theorem for filters, replace the word “ideal”
by the word “filter” everywhere in the correspondence theorem for ideals. To
prove the theorem, either imitate the proof of the correspondence theorem for
ideals, or else derive it as a corollary of that theorem, using Exercise 18.31
and the isomorphism between the lattice of ideals and the lattice of filters.

9. The two cosets are not equal. The first is a set of elements in B, while the
second is a set of subsets of B.
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10. Use Exercise 20.15.

11. Use Exercises 20.23, 20.24, and 1.9.

Chapter 22

1. Use Exercise 18.23, Lemma 20.1, and Corollary 20.3.

2. Use Exercises 18.24 and 20.7, together with Corollary 20.3.

4. Suppose A is a Boolean algebra, and p0 a non-zero element in A. Let x be
any 2-valued homomorphism on the relativization A(p0), and in terms of x
define a mapping f from A(p0) into A by

f(p) =

{
p ∨ p ′

0 if x(p) = 1,

p if x(p) = 0,

for every p ≤ p0. Show that f is a monomorphism. Notice that when p0 is
zero and A is not degenerate, no such monomorphism can exist.

5. A complete field of sets is necessarily atomic (Theorem 8, p. 124) and com-
pletely distributive (see, for example, Corollary 14.3, p. 123). However, not
all complete Boolean algebras are atomic.

7. Imitate the proof of Theorem 17. To show that the homomorphism f is one-
to-one, use Exercise 20.27 to obtain a prime ideal N that contains one of two
given points, but not the other, and then show that N determines a 2-valued
homomorphism of which it is the kernel.

Chapter 23

1. Show that a finite Boolean algebra satisfies the defining criteria for being a
canonical extension of itself.

3. Consider any infinite complete and atomic Boolean algebra and its canonical
extension.

4. Use the exchange principle and the uniqueness theorem for canonical exten-
sions.

5. Use Exercise 3.

7. First, observe that

f(p) =
∧

{g(s) : s ∈ B and p ≤ s}

for elements p in E, and
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f(p) =
∨

{f(q) : q ∈ E and q ≤ p}

for arbitrary elements p in B. Use these equations to check that f is order-
preserving on elements in E and therefore also on elements in B. Next, prove
the following lemma: for every element p in B1 and every atom q in A1,
if q ≤ f(p), then there is an atom r in B1 such that r ≤ p and q ≤ f(r).
Argue that the set {s ∈ B : q ≤ g(s)} is an ultrafilter in B, and that the
infimum of this ultrafilter is the desired atom r. Use this lemma, the order-
preserving property of f , and the atomicity of A1 to show that f preserves
arbitrary joins. Finally, prove that if p and q are elements in E, then

f(p) ∧ f(q) ≤ f(p ∧ q).

Argue that an atom that is not below the right side of this inequality cannot be
below the left side. The proof involves the compactness property of canonical
extensions. Use this inequality, the lemma, and the atomicity of A1 to prove
that f preserves meet. Conclude with the help of Exercise 12.9 that f is a
complete homomorphism.

8. Apply Exercise 7 with the identity monomorphism on B as the homomor-
phism g, and use Lemma 12.1 and Exercise 11.26.

Chapter 24

4. One approach is to show that the function mapping each complete ideal to
its dual filter is a bijection that preserves the constants zero and one, and the
operations of meet, join, and complement. (See the remarks in the second
paragraph of Chapter 12.) Use the appropriate restriction of the function f
that maps each ideal to its dual filter (Chapter 19). Apply Exercise 3 and
properties of f . Special attention must be given to the operations of join and
complement. To prove that complement is preserved, show that if M is a
complete ideal, and N is its dual filter, then the dual of the annihilator of M
is just the annihilator of N .

5. Use Exercise 3 and Theorem 20.

6. Use Exercise 4.

7. One approach is to use Exercise 6 to obtain the desired result as a consequence
of Lemma 1.

8. One approach is to use Exercise 6 to obtain the desired result as a consequence
of Lemma 2.

12. Use Theorem 20.

13. For each integer i, let Pi be the singleton {i}. The family {Pi} has a su-
premum, but that supremum does not belong to the ideal.
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14. The join of the three ideals in the lattice of ideals of B is the ideal of the finite
sets of integers. The join in the lattice of complete ideals of B is B itself.

17. One approach is to use Exercise 16 to prove that if p is in the annihilator of
the set E, then p ′ is an upper bound of E, and hence also an upper bound of
Ed and of the set of suprema of subsets of Ed. Apply Lemma 1.

19. Use Exercise 15 and Theorem 21.

20. Use Exercises 15 and 19, together with the fact that for subsets F and E of a
Boolean algebra, if F is included in E, then the annihilator of E is included
in the annihilator of F .

22. Use Exercise 16 and Lemma 2 to verify the double complement law in (2.15).
Use Exercise 17 to verify the second De Morgan law in (2.17). The first De
Morgan law in (2.17) follows from the second and the double complement law.

23. Use Corollary 1 and Lemma 12.1.

Chapter 25

1. Use Corollary 1.

2. Use the fact that each element in B is the supremum of the set of elements in
A that it dominates.

3. Use Exercise 2 and Corollary 14.1.

5. Use Exercise 3.

6. Use Exercise 2.

7. Use Lemma 1.

9. The answer is negative; a Boolean algebra B is the completion of A if and
only if B is complete and includes A as a dense subalgebra. (See the remarks
in the first few paragraphs of the chapter.)

11. Use Exercise 23.5.

12. The key step is the following lemma: if p is the supremum in B1 of a subset E
of B, then

f(p) =
∨

{g(s) : s ∈ E}.
To prove the lemma one shows for every s in B with s ≤ p that

s =
∨

{s ∧ q : q ∈ E}

and therefore

g(s) =
∨

{g(s ∧ q) : q ∈ E} ≤
∨

{g(q) : q ∈ E}.

It then follows that f(p) ≤
∨
{g(q) : q ∈ E}.
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13. Apply Exercise 12 with the identity monomorphism as the homomorphism g,
and use Lemma 12.1 and Exercise 11.26.

Chapter 26

4. Use Exercise 3.

5. For the second part of the problem, show that the subalgebra

B = {(0, 0), (1, 1)}

of A is not the product of subalgebras of A1 and A2.

6. For the second part of the problem, assume that L is an ideal in A, and show
that the sets

M = {p : (p, 0) ∈ L} and N = {q : (0, q) ∈ L}

are ideals in A with the property that L = M × N .

7. An ideal L in A is maximal if and only if it can be written in the form L =
M × N , where M and N are ideals in B and C respectively, and one of the
ideals M and N is maximal, while the other is improper.

8. Use Exercise 7 and Exercise 20.14.

10. Let C be a non-trivial Boolean algebra, and consider the endomorphism f of
C × C defined by

f((p1, p2)) = (p1, p1)

for each pair (p1, p2). More generally, for each homomorphism h from a
Boolean algebra B1 into C, and for each non-trivial Boolean algebra B2, con-
sider the homomorphism f from B1 × B2 into C × C defined by

f((p1, p2)) = (h(p1), h(p1)).

14. Use Exercise 12.19, an internal product version of Exercise 5, and Lemma 1 to
show that the internal product of B(r) and B(r ′ ) is a subalgebra of A. The
internal product includes the set B∪{r}, and each of its elements is generated
by this set.

16. Use Corollary 1 and Exercise 12.18.

17. Use Corollary 1 and Exercise 12.17.

18. Imitate part of the proof of Corollary 2.
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19. If A and B are two Boolean algebras that satisfy the hypotheses of the exercise,
and if p and q are the suprema of the sets of all atoms in A and B respectively,
then

A = A(p) × A(p ′ ) and B = B(q) × B(q ′ ).

Use Corollary 15.1 and Theorem 10 to prove that A(p) and B(q) are isomor-
phic, as are A(p ′ ) and B(q ′ ).

20. Let B be a countably infinite atomic Boolean algebra, and C a countably
infinite atomless Boolean algebra. Consider the algebra B and the product
A = B × C.

22. Take A to be the field of all subsets of an infinite set Y , or just the field of
finite and cofinite subsets of Y . Use Exercise 3 (or 4) and the remarks in
Chapter 12, p. 94 (or Exercise 12.22).

23. Take A to be any infinite, atomless Boolean algebra.

27. Use Exercise 26.

37. To show that the three algebras may be distinct, let I be the set of natural
numbers, and take Ai = 2 × 2 for each i in I. Consider the elements p and q
in A defined by

pi =

{
(1, 0) if i is even,

(0, 1) if i is odd,
and qi =

{
(0, 0) if i is even,

(1, 1) if i is odd.

38. Use Exercises 30 and 37.

40. Verify that the product of the canonical extensions is a complete, atomic ex-
tension of A that satisfies the atom separation and the compactness properties
with respect to A.

43. Show that if B is the product of the completions of the factor algebras, then A
is a dense subalgebra of B, and every subset of A has a supremum in B.

Chapter 27

1. Use Lemma 1 and some of the ideas from the proof of Theorem 25.

2. Use Corollary 26.1.

3. Use Corollary 26.1.

4. A one-to-one mapping f from a set X to a set Y induces an isomorphism from
the field of all subsets of X to a relativization of the field of all subsets of Y ,
namely the relativization to the set
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f(X) = {f(x) : x ∈ X}.

The isomorphism maps each subset P of X to the set

f(P ) = {f(x) : x ∈ P}.

Use Lemma 26.1 to conclude that the field of all subsets of X is a factor of
the field of all subsets of Y .

5. The mapping f from A × (B × C) to (A × B) × C defined by

f((p, (q, r))) = ((p, q), r)

for all p in A, q in B, and r in C is an isomorphism.

6. The mapping f from A × B to B × A defined by

f((p, q)) = (q, p)

for all p in A and q in B is an isomorphism.

8. The law is true. The required isomorphism maps each pair of functions (p, q)
in BX × BY to their union, that is, to the function r from X ∪ Y into B
defined by

r(x) =

{
p(x) if x ∈ X ,

q(x) if x ∈ Y .

9. The law is true. Each element p in (BX)Y is a function with domain Y such
that for each y in Y , the value p(y) is a function from X into B. The required
isomorphism maps p to the function r in BX×Y that is defined by

r(x, y) = p(y)(x).

11. Let X be an infinite set, and consider the algebras

A = 2X , B = 22, and C = 2.

12. Consider the field A of finite and cofinite subsets of an infinite set X, the
field B of all subsets of a two-element set, and the field C of all subsets of a
one-element set. Use Exercises 12.22 and 26.4.

13. Use a cardinality argument and Corollary 15.2 to show that the answer is
positive.

20. For the first part, use a cardinality argument and Corollary 15.2 to show that
the answer is positive. For the second part, use Theorem 25.
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21. Let A be the Boolean algebra constructed in Hanf’s counterexample, and
put B = A × 2.

22. Let A be the Boolean algebra constructed in Hanf’s counterexample, and put
B = A × 2.

24. Let A and B be the Boolean algebras constructed in Hanf’s counterexample
and in Exercise 23 respectively, and put

A1 = A × 2 and A2 = B × 2 × 2.

26. Show that if A has at least n atoms, and if A × 2 = A, then A must have at
least n + 1 atoms.

27. If A×B = A for some finite, non-degenerate Boolean algebra B, then A must
have infinitely many atoms.

28. The proof involves a back-and-forth argument. Its general structure is similar
to that of the proof of Theorem 10, p. 134 (which asserts that two countable,
atomless Boolean algebras with more than one element are isomorphic). Write
B = A × 2. Define sequences

p1, p2, . . . , pn and q1, q2, . . . , qn

in A and B respectively such that for every 2-valued function b on In =
{1, . . . , n},

B(qb) = A(pb) or B(qb) = A(pb) × 2,

and in the latter case there are infinitely many atoms below pb, where

pb =
∧

i∈In

p(pi, b(i)) and qb =
∧

i∈In

p(qi, b(i)).

29. Use Exercise 28 and the fact that every finite Boolean algebra is isomorphic
to a finite power of 2.

30. Use Exercises 27 and 29.

Chapter 28

2. Use Exercise 12.5.

3. Use Corollary 1 and the isomorphism between the Boolean algebras P(X) and
2X .

4. Use Corollary 2.

5. Use Theorem 26 and Corollary 1.
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6. Use ideas from the proof of Corollary 1 and from the proof of Theorem 4
(p. 107).

7. The subalgebra generated by the set

E = {pi : i ∈ I}

of projections is freely generated by E, by Theorem 26. The proof of the
theorem shows that E does satisfy the criterion of Lemma 1.

9. The answer is negative. For example, consider the free Boolean algebra 24

and a subalgebra isomorphic to 23.

10. The answer is negative. Use Corollary 2 and the subsequent remark, together
with Exercise 12.23.

12. Use Lemma 13.2 and Exercise 21.10.

13. Use an argument similar to the proof of Theorem 10, but without the back-
and-forth component, to construct an infinite sequence of elements that gen-
erates the given atomless Boolean algebra and that satisfies the condition of
Lemma 1.

Chapter 29

5. Imitate the proof of Lemma 11.1.

6. Imitate the proof of Corollary 11.1, using Exercise 5.

8. Use Lemma 13.1 and Exercise 11.20.

11. Imitate the proof of Lemma 13.2.

13. Imitate the proof of the analogous result for free Boolean algebras.

17. Imitate the argument in Chapter 11 that the subfield of A generated by the set
of singleton subsets of X coincides with the field of finite and cofinite subsets
of X.

18. Use Lemma 20.1.

19. Use an infinite distributive law for the intersection of two unions, and use an
infinite associative law for unions.

21. For each positive integer n, let Un be the union of the class of open balls of
radius 1/n whose center is in the given closed set, and form the intersection
of the family {Un}.

22. Use Exercise 9.35 and the set-theoretic fact that (2ℵ0)ℵ0 = 2ℵ0 ; the latter im-
plies that if a set X has the power of the continuum, then there are continuum
many (countable) sequences whose terms are all in X.
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31. Use Exercises 30 and Exercise 9.30 to show that the singleton of any isolated
point is a regular open set. If U is a non-empty regular open set that is not
a singleton, then it must contain distinct points x and y. Use open sets that
separate these two points (and Exercise 9.14 and Lemma 10.2) to construct
a regular open set that contains x but not y. Conclude that U cannot be an
atom.

33. Use Lemma 1 and imitate part of its proof.

34. If a linear ordering on a set X is complete, then there is a smallest element 0
(the supremum of the empty set) and a largest element 1 (the supremum of
X). To demonstrate the compactness of X, consider an open covering {Ui},
and let P be the set of points x such that the interval [0, x] is covered by a
finite subfamily of the open covering. Form the supremum y of the set P .
There must be an open interval that contains y and is included in one of the
sets Ui. Use this interval to show that there is a finite subcover of the interval
[0, y], and consequently there is a finite subcover of X.

If the ordering of X is incomplete, then there is a subset P of X that has
no supremum. For each element x in P let Ux be the open interval (−∞, x),
and for each element x in the set Q of upper bounds of P , let Ux be the open
interval (x,∞). Show that the family {Ux}x∈P∪Q is an open cover of X that
has no finite subcover.

36. The existence of a set that has the Baire property and is not Borel can be
shown by using the fact that there exists a nowhere dense set of real numbers
with continuum many elements (for instance, the Cantor middle third set —
see p. 318). Apply Exercise 9.25 to conclude that there are 22ℵ0 nowhere
dense sets of real numbers. On the other hand, there are 2ℵ0 Borel sets of real
numbers, by Exercise 22. The desired conclusion follows from the cardinal
arithmetic inequality 22ℵ0

> 2ℵ0 .

37. Consider the ideal of meager sets in the σ-algebra of Borel sets of an uncount-
able set endowed with the cocountable topology (see Exercise 9.32).

38. It suffices to extend Corollary 1 to locally compact Hausdorff spaces.

39. Consider the Euclidean space X = R
n. The function f maps each singleton

subset of X to the empty set, but it maps the improper subset X to itself.

43. Show that the union of the sets Ei is a σ-subalgebra of A that includes E.

44. One possibility is to use Exercise 43. Alternatively, consider the set A0 of
those elements q in A such that the meet q ∧ p0 is σ-generated by F in the
relativization of A to p0. Prove that A0 is a σ-subalgebra of A that includes
E, so it must coincide with A.
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Chapter 30

4. Any base for the discrete topology must include all singleton subsets of the
space.

5. The intersection of a countable family of cofinite subsets of an uncountable
set is not empty. Any non-empty, proper subset of that intersection cannot
be written as a union of sets in the family.

7. Use Lemma 1.

10. Use Exercise 9.32(h) and Exercise 5 to show that the answer is negative.

11. Use Exercises 9 and 8.

12. Consider the algebra of all subsets of a countable set modulo the ideal of all
finite sets. For ease in manipulation, let the countable set be the set of all
rational numbers, and for each real number x, find an infinite set of rational
numbers that has x as its unique limit point.

13. Every disjoint set of non-zero elements can be extended to a maximal set of
that kind, and that maximal set necessarily has a supremum, namely 1.

Chapter 31

5. Use Exercise 8.24.

6. Apply Exercise 5 to the sequence {p ′
n}, and then use Exercise 4.

7. Use Exercise 6.9.

8. Use Exercise 6.3 to prove the triangle inequality. If {pn} is a Cauchy sequence,
then there is a subsequence {pnk

} such that

d(pnk
, pnk+1) < 1/2k

for each k. Put

ri =
∞∨

k=i

pnk
and p =

∞∧

i=1

ri,

and show that the sequence {pnk
} converges to p. Conclude that the original

sequence {pn} converges to p. It may be helpful to establish the following
auxiliary properties of the metric:

d(p, q) = μ(p ∨ q) − μ(p ∧ q),
d(p, q) = d(r ∨ p, r ∨ q) + d(r ∧ p, r ∧ q).

They follow from the addition property of the measure and Exercise 7.
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10. A positive normalized measure exists on the product A if and only if there are
only countably many factor algebras. For the implication from right to left,
assume that there are countably many factor algebras, indexed, say, by the
set of positive integers. If μi is a positive normalized measure on Ai for each
index i, show that the function μ defined on A by

μ(p) =
∑

i

μi(pi)/2i

for each p = {pi} in A is a positive normalized measure on A.
For the implication from left to right, assume that there is a positive nor-
malized measure on the product A, and observe that if a disjoint subset E of
A consists entirely of elements with measure greater than 1/n, then E must
have cardinality less than n. This implies that the number of factors must be
countable.

Chapter 32

3. Use Exercises 1 and 2.

5. Use a compactness argument with clopen sets (see, for instance, the proof of
Lemma 1).

6. First, show that the empty set and the whole space are open. Next, show that
the union of an arbitrary family of open sets is open by using Exercise 8.2.
Finally, characterize the intersection of two basic clopen sets; there are two
cases to consider. Use this characterization and Exercise 8.3 to show that the
intersection of two open sets is open.

8. To prove that X is compact, observe that the constant function x in X whose
value at each index i is the unit of Y belongs to every non-empty closed
set. Consequently, the intersection of a class of closed sets with the finite
intersection property cannot be empty. The space is not Hausdorff, since the
constant function x cannot be separated from any other point in X by open
sets.

11. The metric properties of d can be derived directly from the properties of the
norm (see Exercise 10), without using the definition of that norm.

12. It suffices to prove that every basic open set in the product topology is an
open set in the metric topology, and every open ball in the metric topology is
an open set in the product topology.

13. Show that the class of characteristic functions of finite subsets of I is a count-
able, dense subset of 2I .

15. Use Exercise 29.34.
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16. The topology of the space X is the one-point compactification of the space of
finite ordinals with the discrete topology.

18. Prove that in a compact Hausdorff space, the intersection of the clopen sets
that contain a given point is a connected set.

19. The dual algebra of the Cantor space 2I has cardinal number m. There are
m sets of the form (1) and hence m basic clopen sets. Consequently, there are
m clopen sets. The proofs of these assertions use some basic facts about the
arithmetic of cardinal numbers (see Appendix A).

21. The answer is affirmative. Proceed as in the proof of Theorem 30. The main
difficulty is the proof of Tychonoff’s theorem that the product of the spaces
is compact under the product topology.

Chapter 33

3. Use the function φ(x) = sinx to show that the identities in (b)–(d) fail.

4. The identities (a)–(c) hold when φ is one-to-one, and all of the identities hold
when φ is a bijection.

7. Use Lemma 1 to show that the projection φi is continuous. To show that it
maps open set to open sets, it suffices to show that it maps basic clopen sets
to clopen sets. If

U = {x ∈ X : xj ∈ Pj for all j ∈ S}

is a non-empty basic clopen set in X, show that

φi(U) = Pi or φi(U) = Xi,

according as i is, or is not, in S.

9. Use Exercise 8.

10. Let X and Y be metric spaces with metrics d and e respectively, and consider
a function φ from X to Y . The standard ε, δ-definition of continuity, applied
to φ, says that for every point x0 in X and for ε > 0, there is a δ > 0 such
that

d(x0, x) < δ implies e(φ(x0), φ(x)) < ε

for every x in X. The class of open balls in each space constitutes a base
for the topology of the space, so it suffices to restrict one’s attention to open
balls.
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11. Argue by contraposition: assume that φ is not continuous at a point x in X,
and construct a sequence {xn} that converges to x, with the property that
{φ(xn)} does not converge to φ(x). Use the characterization of continuity
given in Exercise 10.

14. The function φ(x) = ex maps the (closed) set of all real numbers to an open
interval. The identity function on the set X = {0, 1} is a continuous mapping
of the space X under the discrete topology to the space X under the Sierpiński
topology. The former space is Hausdorff, but the latter is not.

15. Consider the sets X = [0, 1] ∪ {2} and Y = [0, 1], endowed with the topology
inherited from the real line, and the function φ(x) = 1

2x.

17. Argue by contraposition. Assume that φ is a continuous mapping between
topological spaces. Show that if the image φ(P ) of some subset P of the
domain can be split by open sets V1 and V2, then P can be split by the open
sets φ−1(V1) and φ−1(V2). Use Exercise 2.

18. Consider the subsets of the spaces R and R
2 obtained by removing a single

point from each space, and use Exercise 17.

20. Use Exercise 17.

23. The set Kn has measure (2/3)n, and the Cantor set K is included in this
set Kn for each n.

26. The geometric series
∞∑

n=0
( 1
3 )n sums to 3

2 .

30. Use Exercise 27.

31. The mapping f that takes each clopen subset P of Y to the set P ∩ X is
the desired isomorphism. Use Exercise 9.13(e) to show that f is one-to-one.
Use the characteristic functions of subsets of X to show that f is onto. (The
characteristic functions are continuous because X is a discrete space.)

32. Regard the Cantor space as a topological group and use Haar measure (see
[20] or [22]) and Lemma 31.3.

33. To prove the existence of free Boolean spaces, use the Stone–Čech compacti-
fication of discrete spaces.

34. Let R be the set of dyadic fractions of the form

r = k/2n,

where k and n are non-negative integers and k ≤ 2n. Construct, by induction
on the exponent n of the dyadic fraction r, a family {Ur} of open sets in X
such that

P ⊆ U0 and Q ∩ U1 = ∅,
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and
r < s implies U−

r ⊆ Us

for all r and s in R. Define a mapping φ from X to [0, 1] by

φ(x) = inf{r : x ∈ Ur}

if x �∈ Q, and φ(x) = 1 if x ∈ Q, and prove, using Exercise 8, that φ is
continuous.

35. If P is the intersection of a sequence {Un} of open sets, then P is disjoint
from each of the closed sets U ′

n. Invoke Exercise 34 to obtain a continuous
function φn from X into the interval [0, 1] that assumes the value 0 on P , and
the value 1 on U ′

n. Define the mapping φ by

φ(x) =
∞∑

n=1

1
2n

φn(x),

and show (with the help of Exercise 8) that φ is continuous.

Chapter 34

5. It may be easier to work with the dual space of ultrafilters in A instead
of the dual space of 2-valued homomorphisms on A; see Exercise 4. Use
Exercise 20.14. The dual space is essentially the one-point compactification
of the space of natural numbers under the discrete topology.

7. The answer is affirmative; use Theorem 32.

8. Let φ be a homeomorphism from a Boolean space X to a Boolean space Y ,
and consider the function that maps each clopen set P in X to its image
φ(P ) = {φ(x) : x ∈ P} in Y .

9. Let f be a Boolean isomorphism from A to B, and consider the function that
maps each 2-valued homomorphism x on A to the 2-valued homomorphism
x ◦ f−1 on B.

10. Construct an isomorphism f from A to the dual algebra B of X with the
property that

〈p, x〉 =

{
1 if x ∈ f(p),
0 if x �∈ f(p).

12. The union of two compact sets is compact, and so is a closed subset of a
compact set.
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14. For part (b) use part (a) and Exercise 18.12; for part (c) use Exercise 20.25;
for part (d) use parts (b) and (c); for part (f) use parts (b)–(e), Exercise 18.12,
and Lemma 29.1; and for part (h) use parts (e) and (f). In parts (b) and (e),
the fact that X consists of non-trivial homomorphisms plays a role.

15. Imitate the proof of Theorem 31, and use Exercises 12 and 14, as well as
Exercise 20.25.

16. Follow the lines of the proof of Theorem 32, and use Exercise 14 and Exer-
cise 21.11.

17. The number of clopen subsets of the dual space is countable. Choose one
point in each of these subsets, and consider the set of chosen points.

18. If X is the dual space of a countable Boolean algebra A, then X has a countable
dense subset Y , by Exercise 17. Consider the function that maps each element
p in A to the subset

Up ∩ Y = {y ∈ Y : y(p) = 1}

of Y .

19. It is helpful to think of the dual of the field P(X) as the space Y of all
ultrafilters in P(X). Show that the subspace X̃ of principal ultrafilters is dense
in Y and homeomorphic to X. Consider an arbitrary function φ from X into a
compact Hausdorff space Z. For each point N in Y , show that there is exactly
one point that is common to all of the sets in the class {φ(S)− : S ∈ N}, and
define ψ(N) to be that point. Show that ψ is a continuous function from Y
into Z, and that the value of ψ at the ultrafilter generated by a point x in X
is just φ(x).

Chapter 35

1. Use the definition of the topology of X and Theorem 11 (p. 155).

2. In view of Exercise 1, it suffices to prove for any ideals M and N in A that

M ⊆ N if and only if UM ⊆ UN

(see Exercise 12.13). To establish the implication from right to left, argue by
contraposition and use Corollary 20.3.

8. Consider a Boolean ring B without unit. Extend B to a Boolean ring A with
unit such that B is a maximal ideal in A (Exercise 20.19). The dual of A is
the space X of all 2-valued homomorphisms on A, and the dual of B (as a
Boolean ring) is the space Y of all non-trivial 2-valued homomorphisms on B
(Exercise 34.14). Every 2-valued homomorphism y on B (including the trivial
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homomorphism) can be extended in a unique way to a 2-valued homomor-
phism y∗ on A, and every 2-valued homomorphism on A is the extension of
a unique such homomorphism on B (Exercise 20.22). The correspondence
that takes y to y∗, for each y in Y , is therefore a one-to-one function from Y
to X, and the only element in X that is not in the range of this function is
the 2-valued homomorphism on A with kernel B (the extension to A of the
trivial homomorphism on B). Endow Y ∗ with the topology induced by this
correspondence, so that the spaces Y and Y ∗ become homeomorphic. Show
that Y ∗ is a subspace of X, and X is the one-point compactification of Y ∗.
(It may be helpful to use Exercise 43.21.)

11. Use the isomorphism between the lattice of ideals and the lattice of open sets,
and apply Exercise 18.8.

12. Imitate the proof that a Boolean space with a countable base has a countable
dual algebra.

13. Let {Pn} be a base of clopen sets for the topology of X, indexed by the set of
positive integers, and for each positive integer n, let pn be the characteristic
function of the set Pn. Define a real-valued function d on pairs of points in X
by

d(x, y) =
∞∑

n=1

|pn(x) − pn(y)|
2n

for all x and y in X. Prove that d is a metric on X, and that the open
subsets of X under this metric are open sets in the original topology of X and
conversely. (The function d provides a way of encoding the base sets that two
points of X have in common.)

14. For each positive integer n, the family of all open balls of radius 1/n cover
the space. Compactness implies the existence of a finite subcover; take Sn to
be the (finite) set of centers of the balls in this finite subcover. The union of
the sets Sn, over all n, is a countable dense subset of the space. The class of
balls of center x and radius 1/n, for all points x in S and all positive integers
n, is a countable base for the metric topology of the space.

15. Let X be a Boolean space without isolated points and with a countable base
(which may be assumed to consist of clopen sets — see Exercise 32.14). Use
Exercise 28.13 (or a parallel argument) to construct a sequence of clopen sets
Q1, Q2, Q3, . . . in X that together generate all of the clopen sets and that
have the following additional property: for every positive integer m and every
2-valued function a on the set {1, . . . , m},

m⋂

n=1

p(Qn, a(n)) �= ∅,
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where

p(i, j) =

{
i if j = 1,

i ′ if j = 0.

For each point x in X, let φ(x) be the function on the set I of positive integers
such that the value of φ(x) at each n in I is either 1 or 0 according as x is, or
is not, in Qn. Show that φ is a homeomorphism from X to 2I .
To draw the desired conclusion about countable, atomless Boolean algebras,
use duality and Exercise 34.8.

16. A Boolean space is separable just in case its dual algebra has a countable
sequence of maximal ideals with a trivial intersection (that is, with an inter-
section that contains just zero). Alternatively, the space is separable just in
case the dual algebra can be embedded into 2I , where I is the set of positive
integers.

17. A Boolean space satisfies the first countability axiom just in case every maxi-
mal ideal in its dual algebra is countably generated. For the proof it is helpful
to use Theorem 11 (p. 155) and Exercise 18.30.

18. The topological dual of a complete ideal is a regular open set. For the proof,
use Exercise 9.39 and Exercises 24.18 and 24.19.

21. Use Exercise 20.17.

Chapter 36

1. Use the fact that the second dual of each mapping is itself.

2. For each element q in B, the set

Q = {y ∈ Y : y(q) = 1}

is clopen in Y , so the inverse image

P = φ−1(Q)

is clopen in X. Consequently, there is a unique element p in A such that

P = {x ∈ X : x(p) = 1}.

Define a function f from B to A by

f(q) = p.

Show that φ(x) = x ◦ f , and conclude, using the homomorphism properties of
x and φ(x), that f is a homomorphism.
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6. The relativizing homomorphism f on A defined by

f(q) = q ∧ p,

for each q in A, maps A onto the relativization A(p). Its dual is a one-to-one
continuous function φ from the dual space of A(p) onto a subspace of X. Use
Corollary 1 to show that this subspace is just Up.

7. Use Theorem 36.

8. Use Theorem 36 and Exercise 33.32.

9. Start with any Boolean algebra A that does not satisfy the countable chain
condition. The dual algebra of the Cantor space 2A is free (Theorem 36) and
therefore satisfies the countable chain condition (Exercise 8). Show that A is
a homomorphic image of this dual algebra.

12. Let I be a set of generators of a Boolean algebra A. The dual algebra B of
the Cantor space 2I is freely generated by the family E of clopen sets

Pi = {y ∈ 2I : yi = 1},

for i in I (Theorem 36). The set E is easily seen to satisfy the criterion of
Lemma 28.1. Define a bijection g from E into I by

g(Pi) = i,

for i in I, and extend g to an epimorphism f from B to A. Show that the
following statements are equivalent: (1) I freely generates A; (2) f is one-
to-one and therefore an isomorphism; (3) the kernel of f is trivial; (4) the
condition formulated in Lemma 28.1 holds.

13. Use Theorem 34 and Corollary 2.

14. Let P be the set of positive integers, endowed with the discrete topology. The
dual space X of the field of all subsets of P is the Stone–Čech compactification
of the discrete space P (Exercise 34.19). Consequently, every continuous func-
tion from P to a compact Hausdorff space Y can be extended to a continuous
function from X to Y . Use Theorem 34.

15. Let X be a Boolean space with dual algebra A. Given a non-degenerate
relativization A(P0), fix a point y0 in P0 and show that the function φ from
X onto P0 defined by

φ(x) =

{
x if x ∈ P0,

y0 if x ∈ P ′
0 ,

is continuous. Apply Exercise 35.19 and Theorem 34 to obtain a monomor-
phism from A(P0) into A.
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Chapter 37

5. Find a Hausdorff space X such that some quotient of X is homeomorphic to
the Sierpiński space (see Exercise 32.8).

6. Find a Boolean space X such that some quotient of X is homeomorphic to
the Sierpiński space (see Exercise 32.8).

10. If the points of the dual space of B are the ultrafilters in B, prove that the
intersection of the sets in such an ultrafilter is an equivalence class of Θ,
and every equivalence class of Θ is the intersection of a uniquely determined
ultrafilter in B. Conclude that the correspondence φ mapping each ultrafilter
N in B to its intersection QN is a bijection from Y to X/Θ. Show that φ
maps clopen sets in Y to clopen sets in X/Θ, and consequently is continuous.

11. Use Exercise 10 to prove that the dual of the ideal M ∩ B in the quotient
space X/Θ is the quotient modulo Θ of the open set

⋃
(M ∩ B).

Chapter 38

1. Use Corollary 29.1.

2. Use the identity (9.1).

4. In every topological space, clopen sets are regular open sets; in a complete
Boolean space, the converse is true.

5. If the regular open sets of a Boolean space X constitute a field of sets, then
every regular open set is clopen, and consequently the field of regular open
sets is just the dual algebra of A. Apply Theorem 1 (p. 66) and Theorem 39.

6. Use Theorem 36 (p. 354), Corollary 28.2, and Exercise 25.6.

7. It may be assumed that B = D/M , where D is the σ-field of Borel sets in the
interval [0, 1), and M is the σ-ideal of Borel sets in A of measure zero. (See
the remark preceding Lemma 31.4.) The quotient B is a measure algebra
(Lemma 31.1), so the countable chain condition holds in it. The interval
algebra A is a subfield of D that generates D as a σ-algebra. The projection
f of D onto B is a σ-epimorphism, and its restriction to A is one-to-one.
Consequently, A satisfies the countable chain condition (Exercise 30.6).

To prove that the restriction of f to A is a complete monomorphism, it suffices
to show (Exercise 30.7) that f preserves all countable suprema in A that
happen to exist. Consider a sequence {Pn} of sets in A with a supremum, say
P , in A. The union Q =

⋃
n Pn is the supremum of {Pn} in D. Prove that

the difference P − Q is countable and therefore has measure zero. Conclude
that f(P ) = f(Q) =

∨
n f(Pn).
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Chapter 39

1. In the one-point compactification of the discrete space I, the Baire sets are
just the countable and the cocountable sets. A subset of I that is neither
countable nor cocountable is an example of an open set that is not a Baire
set. In the Cantor space X = 2I , every Baire set P has countable support
in the sense that there is a countable subset J of I such that for all points x
and y in X, if x is in P and if y agrees with x on J , then y is in P . For any
point x in X, the set X −{x} is an example of an open set that does not have
countable support.

4. The dual algebra of a Boolean space with a countable base is countable, so
the space has only countably may clopen sets. Consequently, every open set
is a union of countably many clopen sets and is therefore a Baire set. (See
Chapter 35.)

5. Use Exercise 35.12 to prove that the space has a countable base consisting of
open balls, and show that every open ball is an Fσ.

6. What are the Baire sets and the Borel sets in the Sierpiński space? (See
Exercise 32.8.)

7. Use the fact (Exercise 33.35) that for every closed subset P of a compact
Hausdorff space X, there is a continuous function from X into the interval
[0, 1] (of real numbers) that assumes the value 0 at x if and only if x is in P .
Suitably chosen functions of this type can replace the characteristic functions
pn in the proof of Lemma 1.

8. Let X1 be a copy of the set of all ordinals up to and including the first infinite
ordinal, with the standard ordering. Let X2 be a copy of the set of all ordinals
up to and including the first uncountable ordinal, but with the ordering of its
elements reversed. (Thus, the copy of zero is the largest element, and the
copy of the first uncountable ordinal is the smallest element, in X2.) Assume
that the two orderings are disjoint, except that the largest element of X1 (the
copy of the first infinite ordinal) coincides with the smallest element of X2

(the copy of first uncountable ordinal); call this common element w. The set
X = X1 ∪ X2 is linearly ordered, provided we assume that the elements in
X1 that are less than w precede the elements in X2 that are greater than w.
Under the order topology (Exercise 9.33), X becomes a Boolean space. Show
that the interval

U = (−∞, w)

is an open Baire set in X and that its closure,

U− = (−∞, w],

is a closed set that is not a Gδ, and consequently not a Baire set.
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Chapter 40

5. The natural generalization of the homomorphism extension criterion says that
a mapping g from a generating set E of a σ-algebra B into a σ-algebra A can
be extended to a σ-homomorphism from B into A just in case

(1)
∧

i∈F

p(i, a(i)) = 0 implies
∧

i∈F

p(g(i), a(i)) = 0

for every countable subset F of E, and every 2-valued function a on F . This
condition is obviously necessary, but it is not sufficient. Consider, for example,
the Cantor space X = 2I , where I is some countably infinite set. Take D to
be the dual algebra of X and take C to be the σ-field of Baire sets in X, that
is to say, the σ-field generated by D. Choose a Baire set P0 in C that is not a
Gδ-set, and let M be the σ-ideal in C generated by the closed sets in C that
are disjoint from P0. Show that the relativization C(P0) is a σ-algebra that
is σ-generated by the relativization D(P0).

The mapping g from D(P0) to the quotient C/M defined by

g(P ∩ P0) = P/M

for all P in D is a well-defined monomorphism that satisfies condition (1)
when D(P0) is taken for the set E, and C(P0) for the σ-algebra B, and C/M
for the σ-algebra A. (To show that (1) holds, it suffices to verify that

⋂

i

(Pi ∩ P0) = ∅ implies
∧

i

g(Pi ∩ P0) = ∅

for every countable family {Pi} of sets in D.) However, g cannot be extended
to a σ-homomorphism from C(P0) into C/M . Assume, to the contrary, that f
is such an extension. Let f1 be the σ-homomorphism from C to C/M defined
by

f1(P ) = f(P ∩ P0)

for each P in C, and let f2 be the σ-homomorphism that projects C onto
C/M . Show that f1 and f2 agree on the generating set D, but they do not
agree on all of C; in fact, f1(P ′

0 ) �= f2(P ′
0 ).

7. Suppose that B is an m-field, M an m-ideal in B, and f the projection of B
onto B/M , where m is greater than or equal to the power of the continuum.
Prove that if I = {1, 2, 3, . . . }, then the equation

∨

a∈2I

∧

i∈I

p(pi, a(i)) = 1

holds for every sequence {pi} of elements of B/M , where
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p(pi, j) =

{
pi if j = 1,

p ′
i if j = 0.

The idea is that the above equation does hold in B, and it is preserved by f ,
so it must hold in every quotient of B modulo an m-ideal. The regular open
algebra of the interval (0, 1) of real numbers, on the other hand, is an example
of an m-algebra that does not satisfy the above equation (see the remarks at
the end of Chapter 10); consequently, it cannot be isomorphic to the quotient
of an m-field modulo an m-ideal.

Chapter 41

1. Use Corollary 1, Corollary 31.1, and Theorem 39.

3. The direct proof uses Exercises 38.2 and 38.3, and the duals of Lemma 30.1
and Exercises 8.21 and 31.5.

5. Use Lemma 4 or Lemma 6. Use also the fact that the algebra is atomless, so
its dual space has no isolated points; consequently, each singleton subset is
nowhere dense.

6. Let A be the regular open algebra of the interval [0, 1]. The reduced Borel
algebra of [0, 1] is isomorphic to A (Theorem 29), so it suffices to show that
the dual space of A — call it X — is separable. For each real number t in [0, 1]
define a proper filter Nt in A by

U ∈ Nt if and only if t ∈ U.

Since every proper filter is included in some ultrafilter, there exists a 2-valued
homomorphism xt on A such that if U ∈ Nt, then xt(U) = 1. If f is the
canonical isomorphism from A to its second dual (the dual algebra of X),
then for every set U in A (that is, for every regular open set in X) and for
every number t in U , the homomorphism xt belongs to f(U). The set of
rational numbers in [0, 1] is a countable dense subset of the interval, so the
set of homomorphisms xt, with t rational, is a countable dense subset of X.

Chapter 42

3. There are continuum many open subsets of [0, 1], and hence continuum many
closed subsets. It follows from the cardinal arithmetic identity

(2ℵ0)ℵ0 = 2ℵ0

that there are continuum many Fσ-sets. Every singleton subset is a meager
Fσ, so there must be continuum many meager Fσ-sets.
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4. Use Exercise 3 and the fact that every singleton subset of [0, 1] is a Gδ of
measure zero.

5. Enumerate the non-empty perfect subsets of [0, 1] in a transfinite sequence

P0, P1, P2, . . . , Pβ , . . .

(indexed by the set X of ordinals of power less than 2ℵ0) in such a way that
each non-empty perfect set occurs 2ℵ0 times in the sequence. For each β in X,
define a transfinite sequence {k(α, β)} in [0, 1] of type β (that is, indexed by
the ordinals α < β) with the properties that k(α, β) belongs to Pβ whenever
α < β (and β is in X), and k, as a function of the two arguments α and β, is
one-to-one.
For each α in X, define Sα to be the set of those numbers k(α, β) with β > α.
Show that the sets so defined all have cardinality 2ℵ0 , are mutually disjoint,
and have the unit interval as their union. Show further that each set Sα has
a non-empty intersection with every non-empty perfect set. (If P is any non-
empty perfect set, then there is a β > α such that P = Pβ ; the number k(α, β)
belongs to Pβ and to Sα.) Use this last property to conclude that the outer
measure of each set Sα is one, and therefore Sα cannot have measure zero.
(Assume, to the contrary, that Sα has outer measure less than one. There is
then a countable sequence of open subintervals of [0, 1] such that the sum of
the lengths of these subintervals is less than one, and Sα is included in their
union. The complement of this union is a closed set of positive measure, so it
includes a non-empty perfect subset. This contradicts the fact that Sα has a
non-empty intersection with every perfect set.)

8. Assume the continuum hypothesis, and observe that the proof of Corollary 2
goes through for any normalized measure that assigns measure zero to single-
tons. Use Lemma 31.2 to show that the existence of a normalized measure on
B/M implies the existence of such a measure on B that assigns measure zero
to singletons. This contradicts (the generalized version of) Corollary 2. (If E
is an uncountable disjoint class of sets in B with non-zero measure, then each
set in E must have positive measure, because the measure is defined on all
subsets of [0, 1]. If En is the class of sets in E with measure at least 1/n, then
En cannot be finite for every n; otherwise, E would be countable. At least
one of the classes En is therefore infinite, and this leads to a contradiction.)

Chapter 43

7. Let Y and Z be disjoint topological spaces that are homeomorphic to the
dual spaces of B and C, respectively, and write X = Y + Z. Use Theorem 44
(together with Theorem 31, p. 328, and Exercises 34.8 and 26.9) to show that
the dual algebra of X is isomorphic to A. The second dual of X is then
homeomorphic to the dual of A.
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8. Suppose A = B × C. If p = (1, 0), then B and C are isomorphic to the
relativizations A(p) and A(p ′) respectively, and A is the internal product of
A(p) and A(p ′). The dual spaces of A(p) and A(p ′) are the disjoint subspaces

Up = {x ∈ X : x(p) = 1} and Up ′ = {x ∈ X : x(p ′) = 1}

respectively (Exercise 35.20). Prove that the dual space of A, say X, is the
sum of Up and Up ′ , and then use Exercise 34.9.

9. The spaces X0 and X1 are homeomorphic. The dual algebra of X0 is the field
A of finite and cofinite subsets of natural numbers (Exercise 32.16). The dual
algebra of the sum space

X = X0 + X1

must therefore be isomorphic to A × A.

11. Dualize and use Exercise 9. The dual space of A has one isolated point, while
the dual space of A × A has two.

12. The proof involves a back-and-forth argument, and is similar in structure to
the proof of Theorem 10 (p. 134). Write Y = X + 1. Enumerate the clopen
subsets of X and Y , using respectively the positive even and odd integers, say

P2, P4, P6 . . . and Q1, Q3, Q5 . . . .

Define clopen sets Pn in X for odd n, and Qn in Y for even n, so that, for
every 2-valued function a on In = {1, . . . , n}, the sets

Pa =
⋂

i∈In

p(Pi, a(i)) and Qa =
⋂

i∈In

p(Qi, a(i))

are either both empty or both non-empty (where p(S, j) is S or S ′ according
as j is 1 or 0). The construction is carried out by induction on n, using the
induction hypothesis that

Qa = Pa or Qa = Pa + 1,

and in the latter case there are infinitely many isolated points in Pa.
Once this construction is accomplished, a homeomorphism φ from X to Y
can be defined as follows. Every point x in X uniquely determines a 2-valued
function a on the set of positive integers that is defined by

a(i) =

{
1 if x ∈ Pi,

0 if x �∈ Pi.

The intersections
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⋂

i

p(Pi, a(i)) and
⋂

i

p(Qi, a(i))

each contain exactly one point; the first one contains x, and the second one
contains some point y in Y . Write φ(x) = y.

14. Given a point x, use Corollary 29.1 to find an open set V containing x such
that the closure V − is included in U . Show that V − ∩ F is a compact set
whose interior contains x.

15. Let Y be the one-point compactification of X obtained by adjoining a new
point y. Notice that if a set U is open in Y , then the sets

U ∩ X and X − U

are respectively open and closed in X. The proof that the union of a family of
open sets is open splits into two cases, according to whether the union does, or
does not, contain the point y. Similarly, the proof that the intersection of two
open sets is open splits into two cases, according to whether the intersection
does, or does not, contain the point y.

17. Let X be the subspace obtained from a compact Hausdorff space Y by remov-
ing a single point y. To prove that X is locally compact, consider any one of
its points x and argue that x and y can be separated (in Y ) by open sets with
disjoint closures (Corollary 29.2).

18. Use Lemma 29.1 and Exercise 17.

23. Use Corollary 33.1.

24. Use Exercise 23.

25. Use Exercise 24.

26. To prove the second assertion, consider the function sin(1/x) from the interval
(0, 1] to the interval [−1, 1].

28. Use Exercises 19 and 20 to prove that if Y is the one-point compactification
of X, say by the point y, then Y is a Boolean compactification of X. To
prove that Y is the smallest such compactification, consider any other Boolean
compactification Z of X. The function φ defined by

φ(x) =

{
x if x ∈ X,

y if x ∈ Z − X,

maps Z continuously onto Y . To derive the final conclusion of the exercise,
apply Theorem 45.
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29. Let Y be the dual space of the weak internal product of the dual algebras of
the spaces Xi. It was shown in the first part of the proof of Lemma 4 that
each space Xi is homeomorphic to the subspace

Vi = UXi
= {y ∈ Y : y(Xi) = 1}

of Y via a mapping φi. It was also shown that if V is the union space of
the family {Vi}, then V is a dense subspace of Y (so that Y is a Boolean
compactification of V ), and X is homeomorphic to V via a mapping that
extends φi for each i. It therefore suffices to prove that Y − V contains
just one point (Exercise 21). The set N of those elements in the internal
product whose ith coordinate is Xi for all but a finite number of indices i is
an ultrafilter. The 2-valued homomorphism y with cokernel N is a point in Y
that does not belong to V . If x is any other point in Y , then its cokernel must
be an ultrafilter M that is different from N . Consequently, there must be an
element P in M whose ith coordinate Pi is the empty set for all but finitely
many indices i. This forces Pi to belong to M for some i, and consequently it
forces x to belong to UXi

, and hence also to V .

30. For each element i in X, let Xi be the discrete space with i as its only point.
The union of the family of Boolean spaces {Xi} is just X.

31. If A is the field of finite and cofinite sets of natural numbers, and if I is the
set of natural numbers, then the dual algebra of Y is the weak direct power
of A with exponent I. The proof is based on Exercise 32.16 and Exercise 28.

Chapter 44

3. The implication from right to left uses Lemma 13.2. To prove the reverse
implication, argue by contraposition. Suppose the union of the images fi(Ai)
generates a proper subalgebra C of A. Use Exercise 21.10 to get a 2-valued
homomorphism f on C that can be extended in two different ways to a 2-
valued homomorphism on A. The mappings gi defined by

gi = f ◦ fi

are homomorphisms from Ai into 2. The family of these mappings can be
extended in two different ways to a homomorphism from A into 2 that satisfies
the transfer condition (except for the assertion of uniqueness).

4. Use Exercise 12.5.

6. Suppose A is the internal sum of the family {fi(Ai)}. Let B be a Boolean
algebra such that for each i there is a homomorphism gi from Ai into B.
Define a homomorphism hi from fi(Ai) into B by

hi(fi(p)) = gi(p)
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for each p in Ai. Use the simplified transfer condition to conclude that A is
the sum of the family {Ai} with respect to the homomorphisms fi.

For the reverse implication, assume that A is the sum of the family {Ai} with
respect to homomorphisms fi from Ai into A. Let B be a Boolean algebra
such that for each i there is a homomorphism gi from fi(Ai) into B. The
composition hi = gi ◦ fi is a homomorphism from Ai into B for each i. Use
the transfer condition to conclude that A is the internal sum of the family
{fi(Ai)}.

7. Use Exercise 6.

9. A Boolean algebra A is the internal sum of a finite, non-empty family {Ai}i∈I

of subalgebras just in case the union of these subalgebras generates A, and
whenever pi is a non-zero element in Ai for each i in the index set I, then

∧

i∈I

pi �= 0.

10. Use Exercise 9 or Lemma 1.

11. A Boolean algebra A is the internal sum of an infinite sequence {Ai}∞i=1 of
subalgebras if and only if the union of the sequence generates A and, for each
positive integer n, the subalgebra generated by the union of the subsequence
{Ai}n

i=1 is the internal sum of this subsequence.

13. The elements of A are the finite joins of meets of the form

p1 ∧ p2 ∧ · · · ∧ pn,

where pi is in Ai for each i. One proof of this assertion proceeds by induction
on n, and uses Exercises 9 and 12.

18. The sum is just 2.

20. Let X, Y , and Z be the dual spaces of A, B, and C respectively. Prove that

X × (Y + Z) = (X × Y ) + (X × Z),

and then use Exercise 34.8 and Theorem 44 (p. 397) to arrive at the desired
conclusion.

22. Use Exercises 20 and 21, and proceed by induction on n.

24. The sum is the subalgebra of BI consisting of those functions from I to B
that have a finite range.

25. The sum is the subalgebra of BI consisting of those functions from I to B
that are constant on a cofinite subset of I.
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27. If A is the sum of Boolean algebras A1 and A2 via homomorphisms f1 and
f2, then the atoms of A are the elements of the form

r = f1(p) ∧ f2(q)

for some atoms p in A1 and q in A2. For the proof, use Exercise 12 or 14.

28. The sum is atomic if and only if both summands are atomic, and it is atomless
if and only if at least one of the summands is atomless. For the proof, use
Exercises 16 and 27.

30. Let X be the set of natural numbers, and take A1 = A2 = P(X) (the field
of all sets of natural numbers). The sum of A1 and A2 is the subfield A of
P(X × X) consisting of all finite unions of rectangles S × T , where S and T
are subsets of X. The one-point rectangle

Pn = {n} × {n} = {(n, n)}

belongs to A for each n in X; the family of these rectangles has no supremum
in A.

31. The natural generalization of Corollary 1 to σ-sums of σ-algebras asserts that
a σ-algebra A is the σ-sum of a family {Ai} of σ-algebras with respect to σ-
homomorphisms fi from Ai into A just in case the union

⋃
i fi(Ai) generates

A as a σ-algebra, and whenever J is a countable, non-empty subset of the
indices, and pi is an element in Ai such that fi(pi) �= 0, for each i in J , then

(1)
∧

i∈J

fi(pi) �= 0.

This generalization is false, even when the family consists of just two σ-
algebras.
Let X be an analytic set that is not Borel, and write

X1 = R − X and X2 = R.

Take A2 to be the σ-field of all Borel sets in R; take A1 to be the relativization
of A2 to X1; take B to be the σ-field of Borel sets in R

2; and take A to be the
relativization of B to X1 ×X2. The σ-field B is generated by the (countable)
class E of open sets P × Q, where P and Q are open intervals in R with
rational endpoints (Exercise 30.3), and the relativization A is generated (as
a σ-algebra) by the class

{(P × Q) ∩ (X1 × X2) : P × Q ∈ E}

(Exercise 29.44). It follows that A is generated by the class of sets of the form

(P ∩ X1) × Q,
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where P and Q are Borel sets in R.
Define mappings f1 and f2 from A1 and A2 respectively into A, by

f1(P ∩ X1) = h−1
1 (P ∩ X1) = (P ∩ X1) × X2

and

f2(Q) = h−1
2 (Q) = X1 × Q

for all Borel sets P and Q in R (where h1 and h2 are the left and right
projections of the Cartesian product X1×X2). Both functions are easily seen
to be σ-monomorphisms. Observe that if P and Q are Borel sets in R, then

f1(P ∩ X1) ∩ f2(Q) = (P ∩ X1) × Q.

Combine this remark with the observations of the preceding paragraph to
conclude that A is generated (as a σ-algebra) by the union of the image
algebras f1(A1) ∪ f2(A2) and A satisfies condition (1).
The strategy for showing that A is not the σ-sum of the σ-algebras A1 and A2

with respect to the σ-homomorphisms f1 and f2 is to construct a σ-ideal M
in B, and σ-monomorphisms g1 and g2 from A1 and A2 respectively into the
quotient B/M such that no σ-homomorphism g from A into B/M satisfies
the transfer condition

g ◦ f1 = g1 and g ◦ f2 = g2.

Let N be the σ-ideal of Borel subsets of R that are disjoint from X1, and
define M to be the σ-ideal in B generated by

{P × R : P ∈ N}.

Check that
M = {S ∈ B : S ⊆ P × R for some P ∈ N}.

Define the mappings g1 and g2 from A1 and A2 respectively into B/M , by

g1(P ∩ X1) = (P × R)/M and g2(Q) = (R × Q)/M

for all Borel sets P and Q in R, and show that g1 and g2 are well-defined σ-
monomorphisms.
The proof that there is no σ-homomorphism g from A to B/M satisfying the
transfer condition proceeds by contradiction. Assume, to the contrary, that
such a σ-homomorphism g exists. Prove that

g(S ∩ (X1 × X2)) = S/M
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for every set S in B. The idea is that the class of sets S in B for which this
equation holds is a σ-subfield of B that includes a set of generators of B, and
hence must coincide with B.

As an analytic set, X must be the left projection of some Gδ-subset T of R
2.

As a Borel set, T belongs to B, so its intersection with X1 × X2 belongs to
A. Consequently,

g(T ∩ (X1 × X2)) = T/M.

Argue that T is included in X × R, so

T ∩ (X1 × X2) = ∅,

and therefore
T/M = g(T ∩ (X1 × X2)) = ∅.

Thus, T belongs to the ideal M , and therefore

T ⊆ P × R

for some Borel subset P of R that is disjoint from X1 (the complement of X).
The left-projection of T is included in the left-projection of P × R, and this
forces X = P , which contradicts the assumption that X is not a Borel set.

Chapter 45

1. The key point is showing that there is a countable basis of clopen sets for the
topology of Un. Call a real number b in Un right-clopen if every right-closed
interval in Un with (right) endpoint b is also right-open in the sense that there
is a d > b such that

(a, b] ∩ Un = (a, d) ∩ Un and [a, b] ∩ Un = [a, d) ∩ Un

for every a < b. (The numbers a and d need not be in Un.) Similarly, call
a number a in Un left-clopen if every left-closed interval in Un with (left)
endpoint a is also left-open; in other words, there is a c < a such that

[a, b) ∩ Un = (c, b) ∩ Un and [a, b] ∩ Un = (c, b] ∩ Un

for every b > a. (The numbers b and c need not be in Un.) If a is left-clopen
and b is right-clopen, then the interval [a, b] ∩Un is a clopen subset of Un, by
the definition of the inherited topology, since

[a, b] ∩ Un = [a, d) ∩ Un = (c, d) ∩ Un
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for some c < a and some d > b.
Examples of right-clopen numbers include every number in the distinguished
ωn-sequence in Un, and every number in the Cantor set whose ternary repre-
sentation (in the sense of Chapter 33) has only finitely many occurrences of
the digit 0 (and of course no occurrences of the digit 1). Let Sr be the set
of right-clopen numbers of these two types, and observe that Sr is countable.
Examples of left-closed numbers include every number in the distinguished
ωn-sequence in Un whose index is not a limit ordinal, and every non-zero
number in the Cantor set whose ternary representation has only finitely many
occurrences of the digit 2. Let S� be the set of left-clopen numbers of these
two types, and observe that S� is countable.
Every open set in Un is the union of a class of (relativized) intervals of the
form (a, b) ∩ Un for some real numbers a and b. It suffices therefore to show
that each such interval is the union of a family of clopen sets,

(a, b) ∩ Un =
⋃

k

(
[ak, bk] ∩ Un

)
,

with endpoints ak in S� and bk in Sr. The construction of the sequence {bk}
depends only on b, while that of {ak} depends only on a.

3. Show that there are Boolean spaces X and Y such that

X = X + Y + Y + Y,

but
X �= X + Y and X �= X + Y + Y.

The definitions of X and Y are analogous to those in the chapter, but “two”
is replaced at all appropriate places by “three”. More precisely, conjoin three
copies of each of the spaces Uk (for k ≥ n) when creating the space Zn, and
conjoin three copies of each of the spaces Yn when creating the space X.

5. Show that each of the spaces X and X + Y constructed in the chapter is
homeomorphic to an open subspace of the other, but the two spaces are not
homeomorphic to one another.
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[41] Lusin, N., Leçons sur les ensembles analytiques et leurs applications, Gaut-
hier-Villars, Paris, 1930.
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wskiego, Wydzia�l III Nauk Matematyczno-fizycznych (=Comptes Rendus des
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[79] Tychonoff, A., Über einen Funktionenraum, Mathematische Annalen, vol.
111 (1935), pp. 762–766.

[80] Ulam, S., Zur Maßtheorie in der allgemeinen Mengenlehre, Fundamenta
Mathematicae, vol. 16 (1930), pp. 140–150.
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ℵ0, 277, 473
ℵ1, 285, 393, 473
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ωω, 472
ω1, 285, 392
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352–353
function, 4, 78, 107–112
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valued function
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336, 352–353, 406–407, 426

2-valued functions
Boolean algebra of, see Boolean al-

gebra of 2-valued functions
Boolean ring of, see Boolean ring of

2-valued functions
2X , 4, 128, 232
2ℵ0 , 395, 473
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function, 107
homomorphism, 89, 107

above, 38
absolute value, see norm
absorption laws, 20, 32, 38, 41–43, 476
addition

Boolean, see Boolean addition
in a Boolean ring, 9
in a ring, 1
modulo n, 143
property of a measure, 290

additivity
countable, see countable additivity
finite, see finite additivity

aleph, 473
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algebra

countable–cocountable, see
countable–cocountable algebra

finite–cofinite, see finite–cofinite al-
gebra

interval, see interval algebra
measure, see measure algebra
of sets, see Boolean algebra of sets

almost invariant set, 248–249, 254
and (logical), see conjunction
annihilator

of a set, 159–160, 208–209, 212–213
of an element, 504

antisymmetric relation, 38, 76, 412, 453,
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applications of Boolean algebra, v
arithmetic, 1
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arrow diagram, 180, 181, 185, 225, 230,
237, 257, 354, 382, 403, 411,
422–426

ascending chain, 162, 285–286
associate atom, 250–251
associative

law for composition, 96
law for products, 253
laws, 1, 9–12, 39, 41–43, 72, 129,

151, 215, 235, 477
infinite, 46, 50

atom, 80–82, 101, 107–108, 117–128, 148,
156–157, 160, 172, 190, 193–
198, 219, 228, 239–240, 247–
251, 255, 265, 338–339, 357,
418, 437

associate, see associate atom
characterization of, see characteriza-

tion of atoms
history of the notion, 125
separation property, 193–196

atomic Boolean algebra, 118–128, 157,
160, 190, 214, 219, 227–228,
239, 247–251, 265, 338–339, 437

representation theorem for, see rep-
resentation theorem for atomic
Boolean algebras

atomless Boolean algebra, 118, 125–126,
134–141, 160, 219, 227–228,
239, 264–267, 295, 339, 345,
357, 378–379, 438

isomorphism theorem for, see iso-
morphism theorem for count-
able atomless Boolean algebras

automorphism, 94–95, 217, 231, 249–254,
258, 357

group, 357
axiom

first countability, see first countabil-
ity axiom

Huntington’s, see Huntington’s
axiom

independent, see independent axiom
of choice, 472

axioms
for Boolean algebras, 10–13, 33, 36,

68, 71, 89, 119, 129–132, 213
for Boolean rings, 3
for lattices, 41
for rings, 2
for set theory, 473
for stroke, 33, 36
for the propositional calculus, 263
independent set of, see independent

set of axioms

back-and-forth argument, 134, 140, 511
Baire

category theorem, 59, 273–274, 280,
380

property, 274–275, 280
René-Louis, 273, 536
set, 373–383

ball, open, see open ball
Banach, Stefan, 395, 536
base

case of a definition by induction, 462
case of a proof by induction, 462
countable, see countable base for a

topology
for a topology, 282, 354, 369, 417
local, see local base for a topology

basic
clopen set, 302–307, 310, 320–321,

327–328
open set, 308, 310, 334

below, 38
Bernardi, Claudio, 417, 536
Bernstein, Felix, 463
biconditional (logical), 32
bijection, 14, 94, 444, 455–456, 463–473
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bijective correspondence, see bijection
binary

expansion of a real number, see bi-
nary representation of a real
number

operation, 1
on 2, see operation on 2

rejection, 33
relation, see relation
representation of a real number,

470–471
Birkhoff, Garrett, 126, 192, 277, 295, 536
bisection method, 440
Bonnet, Robert, 447, 539
Boole, George, v, 18, 536
Boolean

addition, 17, 32, 148–149, 155, 182,
308

dual of, see dual of Boolean addi-
tion

automorphism, see automorphism
axioms, see axioms for Boolean al-

gebras
compactification, 398, 401–413

equivalent, see equivalent Boolean
compactifications

congruence, see congruence
embedding, see embedding; mono-

morphism
epimorphism, see epimorphism
extension, see extension of a Bool-

ean algebra
filter, see filter
group, 6, 22, 35
homomorphism, see homomorphism
ideal, see ideal
isomorphism, see isomorphism
measure space, 384–389
monomorphism, see embedding;

monomorphism
multiplication, 17, 150–151

one, see unit in a Boolean algebra
polynomial, see polynomial

complement of, see complement of
a polynomial

contradual of, see contradual of a
polynomial

dual of, see dual of a polynomial
relation, 361–366

dual of, see dual of a Boolean re-
lation

second dual of, see second dual of
a Boolean relation

subalgebra, see subalgebra
sum, see Boolean addition
term, 129
unit, see unit in a Boolean algebra
zero, see zero in a Boolean algebra

Boolean algebra
applications of, see applications of

Boolean algebra
as a name, 18
atomic, see atomic Boolean algebra
atomless, see atomless Boolean alge-

bra
complete, see complete Boolean al-

gebra
atomic, see complete atomic Bool-

ean algebra
completely distributive, see com-

pletely distributive Boolean al-
gebra

completion of, see completion
countably decomposable, see count-

ably decomposable Boolean al-
gebra

definition of, 10
degenerate, see degenerate Boolean

algebra
dual of, see dual space
filter of, see filter
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finite, see finite Boolean algebra
finitely generated, see finitely gener-

ated Boolean algebra
free, see free Boolean algebra
generators of, see set of generators

of a Boolean algebra
homomorphic image of, see homo-

morphic image
homomorphism on, see homomor-

phism
ideal of, see ideal
laws of, see laws of Boolean algebra
non-degenerate, see non-degenerate

Boolean algebra
of 2-valued functions, 15–17, 232
of complete filters, 211
of complete ideals, 206–216, 371
of integral divisors of m, 19
of principal ideals, 216
of regular closed sets, see regular

closed algebra
of regular open sets, see regular open

algebra
of sets, 66
power of, see power of a Boolean al-

gebra
quotient of, see quotient algebra
relativization of, see relativization
representation of, see representation
second dual of, see second dual of a

Boolean algebra
simple, see simple Boolean algebra
subalgebra of, see subalgebra
ternary, see ternary Boolean algebra
two-element, see two-element Bool-

ean algebra
Boolean algebras

arithmetic of, see arithmetic of
Boolean algebras

axioms for, see axioms for Boolean
algebras

chain of, see chain of Boolean alge-
bras

directed family of, see directed fam-
ily of Boolean algebras

duality principle for, see principle of
duality

isomorphic, see isomorphic Boolean
algebras

product of, see product
representation theorem for, see rep-

resentation theorem for Bool-
ean algebras

Boolean ring, 2, 17, 147, 308
axioms, see axioms for Boolean rings
of 2-valued functions, 4
of idempotent elements in a commu-

tative ring, 18
with unit, 2
without unit, 19, 160, 169, 175–176,

186–187, 335–336, 344, 501
dual space of, see dual space of a

Boolean ring without unit
Boolean rings versus Boolean algebras,

see definitional equivalence of
Boolean algebras and Boolean
rings

Boolean space, 300–311, 314, 317, 326–
377, 396–426, 435, 439–446

dual of, see dual algebra
free, see free Boolean space
locally compact, see locally compact

space
second dual of, see second dual of a

Boolean space
Boolean spaces, representation theorem

for, see representation theorem
for Boolean spaces

Borel
Félix Édouard Justin Émile, 270
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reduced algebra, see reduced
Borel algebra

set, 270, 274–280, 289, 296–297, 373,
377, 384–390, see also σ-field of
Borel sets

regular, see regular Borel set
boundary

of a set, 59–60, 63–64, 69, 369, 389
point of a set, 59

Bourbaki, Nicolas, 305
brackets, conventions for omitting, see

conventions for the order of op-
erations

Byrne, Lee, 13, 536

calculus, propositional, see propositional
calculus

cancellation law
for meet, 477
for products, 254

canonical
embedding, 189–195, 328
extension, 195–199, 214, 216, 242

existence of, see existence theo-
rem for canonical extensions

uniqueness of, see uniqueness the-
orem for canonical extensions

homomorphism, see projection
isomorphism, 341–342, 407–409,

425–426
for products, 224–225, 233, 236–

237, 241
ring homomorphism, see projection

on a ring
Cantor

Georg, 134, 320, 468, 536–537
middle third set, see Cantor set
set, 318–321, 324, 345, 439–441
space, 302–310, 317–318, 321–327,

334–336, 354, 371, 376, 381, 423
Cantor’s theorem, 468–469, 473

cardinal number, 472–473
cardinality

as an ordering, 466
equal, see equal cardinality
of a set, 463–472
of the continuum, 472–473

Cartesian
plane, 390–391, 452, 467
product, see product

of sets, see product of sets
Cauchy

–Schwarz inequality, 493
Augustin Louis, 493
sequence, 298

Čech, Eduard, 325, 537
center of an open ball, 54
chain, 458

ascending, see ascending chain
ascending well-ordered, see ascend-

ing chain
countable condition, see count-

able chain condition
of Boolean algebras, 87
of homomorphisms, 106, 114–115
of ideals, 168–170
of subalgebras, 77, 87, 128

characteristic
function, 14, 93, 128, 191, 314, 331–

332, 373, 469
of a ring element, 2

characterization
of atoms, 117
of maximal ideals, 171–174
of ultrafilters, 175
theorem

for σ-ideals, 280
for finitely generated subalgebras,

see normal form theorem
for ideals, 155

choice, axiom of, see axiom of choice
class, equivalence, see equivalence class



Index 547

clopen set, 57, 61–63, 300–311, 326–
334, 347–355, 359–382, 385–
389, 397–417

basic, see basic clopen set
simple, see simple clopen set

closed
interval, 56, 449
set, 56, 270–277, 326–327, 368, 371–

375, 387, 397–400, 413–417
regular, see regular closed set

subspace, 359–360
closed sets, lattice of, see lattice of closed

sets
closure

-complement problem, see Ku-
ratowski’s closure-complement
problem

of a set, 57–63, 272–276, 368–371,
386–389, 399, 413–416

operator, 58
cocountable

set, 25, 392–393
topology, 64

cofinite
set, 24, 301
topology, 55–63, 72, 280, 286, 317

cokernel
of a congruence, 162–163
of a homomorphism, 186, 212, 279,

329–330, 351
common extension of a family

of homeomorphisms, 407
of homomorphisms, 105–114

commutative
diagram, 256
group, 6
law for products, 253
laws, 1, 9–12, 39–43, 129, 150–151,

209, 232
infinite, 46

operation, 492
ring, 2, 5, 154

compact

locally, see locally compact space
set, 271, 280, 314, 335–336, 375, 399,

444–445
space, 271, 279–280, 300–311, 315–

317, 323–325, 338–340, 345,
361, 365, 368, 371, 377, 397–
398, 413–415, 419

compactification
Boolean, see Boolean compactifica-

tion
of a topological space, 398–399, 418–

420
one-point, see one-point compactifi-

cation
Stone–Čech, see Stone–Čech com-

pactification
zero-dimensional, see Boolean com-

pactification
compactness

local, see locally compact space
property, 375, 413–414, 515

dual of, see dual compactness
property for Boolean algebras

for Boolean algebras, 193–196,
214

comparable elements, 64
compatible set, 361–364
complement, 8–10, 450

in a lattice, 44
in the Boolean algebra of complete

ideals, 208
laws, 8–12, 69, 130, 209, 477
of a polynomial, 21
of an ideal, 167
uniqueness of, see uniqueness of

complement
complementation, see complement
complemented lattice, 44, 86, 168
complete

atomic Boolean algebra, 121–122,
193–198

Boolean algebra, 45–46, 66, 87–
88, 112–114, 122–124, 192,214–
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220, 227–228, 239–240, 265–
266, 285, 295, 368–372, 378,
385–386, 438, see also Bool-
ean algebra of complete ideals;
Boolean algebra of complete fil-
ters

representation theorem for, see
representation theorem for
complete Boolean algebras

distributive laws, see distributive
laws, complete

embedding, see complete monomor-
phism

extension, 193, 214–217, 220

minimal, see completion

field of sets, 45, 192, 247, 254

filter, 211–212

generated by a set, 212

filters, Boolean algebra of, see Bool-
ean algebra of complete filters

homomorphism, 98–99, 102–104,
198, 200–203, 212, 220, 265,
280, 286

kernel of, see kernel of a complete
homomorphism

theorem, 203

ideal, 202–216, 345

generated by a set, 203, 212–213

set of generators of, see set of gen-
erators of a complete ideal

ideals, Boolean algebra of, see Bool-
ean algebra of complete ideals

lattice, 41, 44, 164, 168, 411, see
also lattice of closed sets; lattice
of complete ideals; lattice of fil-
ters; lattice of ideals; lattice of
open sets; lattice of subalgebras

metric space, 298

monomorphism, 98, 119, 213, 216

ordering, 280
representation, 119–121, 124–125
space, 368–372, 385–386
subalgebra, 84, 88, 199, 220
subfield, 85

completely distributive Boolean algebra,
49, 70, 122–124, 126

completeness theorem
for Boolean algebras, 129–131
for propositional logic, 131

completion, 214–220, 242, 370–372
Dedekind–MacNeille, see comple-

tion
existence of, see existence theorem

for completions
MacNeille, see completion
minimality of, see minimality theo-

rem for completions
of a partial ordering, 219
uniqueness of, see uniqueness theo-

rem for completions
component, 396–398

of a topological space, 309
composite function, 454
composition

associativity of, see associative law
for composition

dual of, see dual of a composition
of σ-homomorphisms, 279
of continuous functions, 313
of dual isomorphisms, 101
of functions, 454, 463–465
of homomorphisms, 95, 103

congruence, 142–154
cokernel of, see cokernel of a congru-

ence
kernel of, see kernel of a congruence
modulo n, 142–143, 147
modulo an ideal, 150–151, 379–381
on a ring, 147, 153–154
relation, see congruence
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congruences, lattice of, see lattice of con-
gruences

conjunction, 32, 262
conjunctive normal form, 37
connected set, 309, 323, 517
continuity, sequential, see sequential con-

tinuity
continuous function, 312–325, 347–360,

375, 383, 403–416, 419, 422–
426, 435, 444, see also 2-valued
continuous function

dual of, see dual of a continuous
function

second dual of, see second dual of a
continuous function

continuum, 472
cardinality of, see cardinality of the

continuum
hypothesis, 390, 393–395, 473

contradual of a polynomial, 21
conventions for the order of operations,

11
convergent sequence, 298–299
coordinate, i-th, 457
coordinates of an ordered pair, 452
correspondence theorem, 183, 186

for filters, 187
coset, 151–154, 159, 162–163, 179–187,

202–203, see also equivalence
class

countable
–cocountable

algebra, 25, 75, 270, 279
field, see countable–cocountable

algebra
additivity, 288, 293, 296, 384–385
atomless Boolean algebra, see atom-

less Boolean algebra
base for a topology, 282, 286–287,

309, 339–340, 344–345, 378,
418, 446

Boolean algebra, 239–240, 337, 418,
439, see also atomless Boolean
algebra; finite Bool-ean algebra

chain condition, 282–287, 295, 325,
357, 372, 378–379, 386–387

ordinal, 392
set, 25, 390–391, 466–468
subadditivity property of a measure,

290, 297
countably

complete Boolean algebra, see σ-
algebra

decomposable Boolean algebra, 282
directed family

of σ-homomorphisms, 278
of σ-subalgebras, 278

generated Boolean algebra, 286
generated ideal, 162
infinite set, 466–468, 472

cover, open, see open cover
cut, Dedekind, see Dedekind cut

De Morgan
Augustus, v, 18
laws, 9–12, 21–22, 26, 35, 71, 129,

271, 477
infinite, 45, 72

decomposition
internal, see internal decomposition
trivial, see trivial decomposition

Dedekind
–MacNeille completion, see comple-

tion
cut, 206, 219
Julius Wilhelm Richard, 206, 219,

537
definition by induction, 439, 462
definitional equivalence

of Boolean algebras and algebras
with Sheffer stroke, 36

of Boolean algebras and Boolean
rings, 14–19
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of Boolean algebras and comple-
mented, distributive lattices, 44

of Boolean algebras and ternary
Boolean algebras, 37

of lattice structures, 41–43
with zero and one, 43

degenerate
Boolean algebra, 10, 99, 131, 134,

232, 258, 266, 435
ring, 2

dense
ideal, 159, 344
in an open set, 59
linear order without endpoints, 134
open set, 344
set, 59, 315–316, 323–325, 337–339,

419
in a Boolean algebra, 214–216
in a Boolean ring, 159

subalgebra, 370
subspace, 398, 402, 407–408

denumerable set, see countable set
denumerably infinite set, see countably

infinite set
derivative of a set, 441
diagram, arrow, see arrow diagram
difference

of elements, 32
of sets, 32, 450
symmetric, see symmetric difference

direct
product, see product
sum, see sum of Boolean algebras

directed family
of filters, 170
of ideals, 168
of σ-homomorphisms, see count-

ably directed family of σ-
homomorphisms

of σ-subalgebras, see countably di-
rected family of σ-subalgebras

of Boolean algebras, 87
of homomorphisms, 105–114
of subalgebras, 77, 264

directly indecomposable algebra, 228
discrete

space, 55–63, 72, 300–301, 307, 324–
325, 337, 376

topology, 55, 280, 286, 317, 320,
416–420

disjoint
elements, 34, 79, 282
set of elements, 282–284
sets, 392–393, 454

disjunction, 32, 262
disjunctive normal form, 37
distance in a Euclidean space, 53
distributive

lattice, 41, 44, 166–168, 177, 192, see
also Boolean algebra of com-
plete ideals; lattice of ideals

laws, 1, 9–12, 26, 33, 36, 41–44, 50,
69, 72, 129, 151, 166, 169, 207–
209, 213, 234

complete, 48–49, 88
infinite, 45–50, 55

divisibility in a ring, 42
domain of a relation, 452
dominates, 38
double complement law, 9, 12, 21–22,

129, 477
downward

closed set, 206
closure of a set, 204

dual
algebra, 300–301, 305, 309–310,

326–335, 338–372, 376, 380–
386, 397–398, 401–420, 425–
427, 439

of an equivalence class of Boolean
spaces, 411

compactness property for Boolean
algebras, 198
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continuous function, see dual of a
homomorphism

filter, 158, 161–162, 168, 211–212,
343

ideal, 158, 162
isomorphism, 100–101, 343, 364
isomorphisms, compositions of, see

composition of dual isomor-
phisms

of a Boolean relation, 362
of a Boolean ring without unit, 344
of a Boolean space with a countable

base, 345
of a clopen set, 341, 343
of a clopen subspace, 345
of a closed set, 341, 343
of a closed subspace, 359–360
of a complete Boolean algebra, 369
of a complete Boolean space, 369–

371
of a complete ideal, 345, 371
of a composition, 350–351
of a continuous function, 348–355,

359, 382–383, 403, 426–427
of a countable Boolean algebra, 339
of a dense open set, 344
of a filter, 341, 343
of a finite Boolean algebra, 338
of a homomorphism, 348–355, 360,

404, 426
of a locally compact Boolean space,

344
of a maximal ideal, 341
of a one-point compactification, 344
of a one-point set, 343
of a one-to-one continuous function,

349–350
of a one-to-one homomorphism,

349–350

of a polynomial, 20–21
of a principal ideal, 341–343
of a product of Boolean algebras,

397–398, 413–416
of a quotient algebra, 360
of a relativization, 345–346
of a Stone–Čech compactification,

413–416
of a subalgebra, 362
of a sum of Boolean spaces, 397–398
of a trivial ideal, 341
of adjunction of a unit, 344
of an atomic Boolean algebra, 338–

339
of an atomless Boolean algebra, 339
of an ideal, 340–343, 350, 359–360
of an improper ideal, 341
of an onto continuous function, 349–

350
of an onto homomorphism, 349–350
of an open set, 340–343, 350
of an ultrafilter, 341, 343
of Boolean addition, 33
of separability, 345
of subtraction, 33
of the degenerate ring, 344
of the empty space, 344
of the first countability axiom for

Boolean spaces, 345
of the kernel of a homomorphism,

350
of the maximal ideal theorem, 344
of the two-element algebra, 341
ring, 335–336
second, see second dual
space, 327–334, 337–338, 341–345,

351–357, 363–365, 389, 396–
398, 417, 422, 425–427

of a Boolean ring without unit,
336
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duality
between σ-algebras and Boolean σ-

spaces, 376
between complete Boolean algebras

and complete Boolean spaces,
368

between filters and closed sets, 341–
343

between homomorphisms and con-
tinuous functions, 347–358, 422

between ideals and open sets, 340–
343

between measure algebras and Bool-
ean measure spaces, 384–386

between quotient algebras and
closed subspaces, 359–360

between relativizations and clopen
sets, 345–346, 357

between subalgebras and Boolean
relations, 364

between subalgebras and quotient
spaces, 360–364

between subproducts and compacti-
fications, 396–416

principle, see principle of duality
principle for lattices, see principle of

duality for lattices
theorem

for homomorphisms, 350
for σ-algebras, 376
for complete Boolean algebras,

vii, 369
for homomorphisms, vii, 353
for ideals, vii, 341
for measure algebras, 386
for products, vii, 397, 412
for quotient algebras, vii, 360, 366
for subalgebras, vii, 364

Dwinger, Philip, 416, 537
dyadic fraction, 517

Ed, 203–204
element of a set, 448
embedding, 132, 189–192, 217–218, see

also monomorphism
canonical, see canonical embedding

empty set, 8, 449
epimorphism, 93, 102, 145, 179
equal cardinality, 463
equality of sets, 448
equivalence

class, 143–154, 162, 264, 360–367,
373–375, 411–412, 453–454, see
also coset

order-preserving, see order-
preserving equivalence

order-reversing, see order-reversing
equivalence

relation, 142–143, 147, 360–361,
365–367, 373, 410, 419, 453–
454, 463

equivalent Boolean compactifications,
410–412, 419

Euclidean space, 53, 282, 317, 323
exchange principle, 96–98, 195, 216, 225,

239, 431
topological, see topological ex-

change principle
existence theorem

for canonical extensions, 195
for completions, vii, 215, 218
for free σ-algebras, 381–383
for free Boolean algebras, vii, 259–

264
for internal products, 225, 233, 241
for sums of Boolean algebras, 425–

427
expansion, binary, see binary representa-

tion of a real number
exponential laws for direct powers, 253
extension

canonical, see canonical extension
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criterion
for homomorphism, see homomor-

phism extension criterion
for monomorphism, see monomor-

phism extension criterion
lemma for subalgebras, see subalge-

bra extension lemma
of a Boolean algebra, 74, 193–198
of a function, 80, 455
of a homomorphism, 105–116, 176,

187, 427–432
of a maximal ideal, 175
one-step, see one-step extension
perfect, see canonical extension
theorem for homomorphism, see

homomorphism extension theo-
rem

extremally disconnected space, see com-
plete space

Fσ-set, 270, 279, 323, 373, 377, 394–395
Fσδ-set, 270
Fσδσ-set, 270
factor, 222, 232, 243–255, see also inter-

nal factor
factoring homomorphisms, 180, 184
family, 457

(Cartesian) product of, see product
finite, see finite family
infinite, see infinite family
intersection of, see intersection
union of, see union

field
countable–cocountable, see

countable–cocountable algebra
finite–cofinite, see finite–cofinite al-

gebra

of all subsets of a set, 8, 49–50, 74,
94–95, 102, 117–118, 121–129,
155, 159–160, 201, 219, 222,
232, 237–238, 301, 358, 390–
395, 401–416

of clopen sets, 61, 362, see also dual
algebra

of horizontal sets, 28–30
of periodic sets of integers, 25, 28,

75, 86, 94, 101, 125, 140
of sets, 24–30, 75, 190, 222–223, 227,

232, 241, 254, 433–434, 437
complete, see complete field of

sets
of vertical sets, 27
separating, see separating field

filter, 158–162, 168, 175, 341–343
σ-, see σ-filter
complete, see complete filter
dual of, see dual ideal; dual of a filter
generated by a set, 158
maximal, see ultrafilter
principal, see principal filter
proper, see proper filter
set of generators of, see set of gener-

ators of a filter
filters

directed family of, see directed fam-
ily of filters

lattice of, see lattice of filters
finite

–cofinite
algebra, 25, 45, 75–76, 95, 99,

101–102, 118, 175, 207, 212,
219, 238, 286, 301, 307, 334,
418–420

field, see finite–cofinite algebra
additivity, 289–291
Boolean algebra, 125–133, 197–198,

219, 240, 254, 357
family, 466
intersection property, 161, 175,

271–274, 279, 303–304, 329,
414–415
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join property, 161, 503
meet property, 161, 175, 191
ordinal, 460
sequence, 460, 468
set, 24, 466
subcover, 397–398, 445

finitely
additive measure, 298
additive measure algebra, 294–295
generated

Boolean algebra, 77, 82, 264–265
filter, 161
free Boolean algebra, 260–262
ideal, 156
subalgebra, 77–82

first
-category set, see meager set
coordinate of a pair, see coordinates

of an ordered pair
countability axiom, 345
isomorphism theorem, 179–181,

184–186, 359, 381
for topological spaces, 361, 365

fixed point of a function, see invariant
point

fraction, dyadic, see dyadic fraction
free

m-algebra, 277
σ-algebra, 268, 381–383

existence of, see existence theo-
rem for free σ-algebras

uniqueness of, see uniqueness the-
orem for free σ-algebras

Boolean algebra, 256–267, 325, 354–
357, 428, 432, 437

existence of, see existence theo-
rem for free Boolean algebras

finitely generated, see finitely gen-
erated free Boolean algebra

uniqueness of, see uniqueness the-
orem for free Boolean algebras

Boolean space, 325

complete Boolean algebra, 265–266

generators, see free set of generators

group, 264

product, 428, 434

set of generators, 256–266, 354–355,
428, 432

of a σ-algebra, 278, 381–382

function, 454–457

2-valued, see 2-valued function

A-valued, see A-valued function

characteristic, see characteristic
function

continuous, see continuous function

extension of, see extension of a func-
tion

identity, see identity function

image of set under, see image of a
set under a function

inverse, see inverse function

inverse image of set under, see in-
verse image of a set under a
function

one-to-one, see one-to-one function

onto, see onto function

order-preserving, see order-
preserving function

restriction of, see restriction of a
function

support of, see support of a 2-valued
function

symmetric, see symmetric function

functional notation, 454

functions, composition of, see composi-
tion of functions
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Gδ-set, 270, 279, 323–325, 373–375, 395
Gδσ-set, 270
Gδσδ-set, 270
Gaifman, Haim, 265, 537
gcd, see greatest common divisor
generated

filter, see filter generated by a set
ideal, see ideal generated by a set
subalgebra, see subalgebra gener-

ated by a set
generators

free, see free set of generators
of a Boolean algebra, see set of gen-

erators
of a subalgebra, see set of generators

of a subalgebra
geometric series, 319, 324, 470
Gottschalk, Walter Helbig, 22, 537
Grau, Albert A., 37, 537
greatest

common divisor, 18
lower bound, see infimum

group, 6, 21, 434
Boolean, see Boolean group
commutative, see commutative

group
isomorphism, 35
Klein, see Klein four-group
of automorphisms, see automor-

phism group
of homeomorphisms, see homeomor-

phism group
quaternality, see quaternality group

Haar
Alfréd, 517, 537
measure, 517

Hales, Alfred Washington, 265, 537
half-closed interval, see left half-closed

interval; right half-closed inter-
val

Halmos, Paul Richard, 334, 398, 537

Hanf, William Porter, 244, 247, 252, 255,
439, 446, 537

Hausdorff
Felix, 271
space, 271–277, 280, 300–311, 315–

317, 323–325, 336–338, 361,
365, 371, 378, 398–400, 417–420

Heine
–Borel theorem, 271
Heinrich Eduard, 271

Hirsch, Robin David, 124, 537
Hodkinson, Ian Martin, 124, 537
homeomorphic

Boolean spaces, 329–334, 337, 345,
398, 405

spaces, 316–324, 359–366, 406–410,
419–420, 439–446

homeomorphism, 316–321, 329–333,
424–425, 443–445

group, 357
homomorphic image, 90, 101, 379, 383
homomorphism, 89–116, 178–187, 238,

256–259, 287, 347–357, 422–
435, 438

2-valued, see 2-valued homomor-
phism

A-valued, see A-valued homomor-
phism

σ-, see σ-homomorphism
canonical, see projection
canonical ring, see projection on a

ring
cokernel of, see cokernel of a homo-

morphism
complete, see complete homomor-

phism
dual, see dual of a continuous func-

tion
extension

criterion, 107–116, 258–259, 266,
383, 430

theorem, vii, 113–114, 217–218
extension of, see extension of a ho-

momorphism
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from B to A, 89
incomplete, see incomplete homo-

morphism
induced by

a mapping, 93, 179, 190
a point, 93, 178, 201, 211
an element, see relativizing homo-

morphism
kernel of, see kernel of a homomor-

phism
onto, see onto homomorphism
relativizing, see relativizing homo-

morphism
ring, see ring homomorphism
second dual of, see second dual of a

homomorphism
theorem, 179, 186, 202

for σ-algebras, 270
trivial, see trivial homomorphism

homomorphisms
chain of, see chain of homomor-

phisms
composition of, see composition of

homomorphisms
directed family of, see directed fam-

ily of homomorphisms
factoring, see factoring homomor-

phisms
product of, see composition of ho-

momorphisms
Hopf, Heinz, 399, 419, 536
horizontal set, 27, 30
Horn, Alfred, 126, 537
Huntington’s

axiom, 13
axioms for Boolean algebra, see ax-

ioms for Boolean algebra
Huntington, Edward Vermilye, v, 10–13,

125–127, 134, 538

Ith power of a Boolean algebra, see
power of a Boolean algebra

ith coordinate, see coordinate, i-th

ideal, 149–187, 202, 238, 340–344, 359,
390–395

σ-, see σ-ideal
annihilator, see annihilator of a set
characterization theorem, see char-

acterization theorem for ideals
complete, see complete ideal
complete generated by a set, see

complete ideal generated by a
set

countably generated, see countably
generated ideal

dense, see dense ideal
dual of, see dual filter; dual of an

ideal
extension lemma, 157
finitely generated, see finitely gener-

ated ideal
generated by a set, 155
generated by the set of atoms, 160
improper, see improper ideal
in a Boolean ring without unit, 160
in a lattice, 177
in a ring, 153–154, 159, 335–336
in a subalgebra, 161
maximal, see maximal ideal
non-trivial, see non-trivial ideal
of countable sets, see σ-ideal of

countable sets
of finite sets, 155, 159–160, 212, 391
of meager Borel sets, see σ-ideal of

meager Borel sets
of meager sets, see σ-ideal of meager

sets
of nowhere dense sets, 155, 159
of sets of measure zero, see σ-ideal

of sets of measure zero
prime, see prime ideal; prime ideal

in a lattice
principal, see principal ideal
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proper, see proper ideal
quotient, see quotient ideal
set of generators of, see set of gener-

ators of an ideal
trivial, see trivial ideal

ideals
chain of, see chain of ideals
directed family of, see directed fam-

ily of ideals
infimum of, see infimum of a family

of ideals
interval of, see interval of ideals
lattice of, see lattice of ideals
supremum of, see supremum of a

family of ideals
idempotent

element, 2, 6, 18
laws, 9, 12, 39, 41–43, 476
operation, 18
ring, 2

identity
function, 95, 422, 455, 463–465
homeomorphism, 425
homomorphism, 427
laws, 1, 8–12, 41, 130, 151, 209

image
homomorphic, see homomorphic im-

age
inverse, see inverse image of a set

under a function
of a set under a function, 456, 463
of a subalgebra under a homomor-

phism, 102
of an ideal under an epimorphism,

161, 181–184
immediate

predecessor, see predecessor ordinal
successor, see successor ordinal

implication (logical), 32, 262
implies, 33
improper

ideal, 155, 160, 164, 341
subalgebra, 75

inclusion relation
between sets, 448, 458
between subalgebras, 76

incomplete
homomorphism, 103, 175, 201–202
monomorphism, 103, 198
quotient algebra, 390–395

independent
axiom, 12, 473
set of axioms, 12–13

index, 457
set, 457

indiscrete topology, 55
induced

homomorphism, see homomorphism
induced by

invariant set, 247
induction, 244, 461–463, 467

definition by, see definition by in-
duction

principle of, see induction
step of a definition by induction, 462
step of a proof by induction, 462
transfinite, see transfinite induction

inequality
Cauchy–Schwarz, see Cauchy–

Schwarz inequality
triangle, see triangle inequality

infimum, 39–40
of a family of complete ideals, 206
of a family of filters, 168
of a family of ideals, 161, 164
of a family of subalgebras, 77
of the empty set, 40

infinite
associative laws, see associative

laws, infinite
cardinal, 25
commutative laws, see commutative

laws, infinite
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countably set, see countably in-
finite set

De Morgan laws, see De Morgan
laws, infinite

denumerably set, see countably
infinite set

distributive laws, see distributive
laws, infinite

family, 466
monotony laws, see monotony laws,

infinite
operations, 45–52
sequence, 460–462
set, 466

inherited topology, 55, 62, 306–307, 323,
326–328, 336, 359

integer, 467
square-free, see square-free integer

interior of a set, 57–58, 368, 371
internal

decomposition, 226–228
factor, 224, 233
product, 223–228, 233–242, 245–

246, 397–416, 420, 431
existence theorem for, see exis-

tence theorem for internal prod-
ucts

uniqueness theorem for, see
uniqueness theorem for internal
products

sum, 427–432, 435–436
intersection, 8, 335, 450, 461

of a family
of σ-algebras, 278
of σ-ideals, 279
of complete ideals, 203
of filters, 158
of ideals, 155
of sets, 457
of subalgebras, 75

property, see finite intersection
property

interval, 30

algebra, 26–29, 52, 75, 87, 95, 102,
118, 125, 134, 140, 265, 371

closed, see closed interval
left half-closed, see left half-closed

interval
of ideals, 181
open, see open interval
right half-closed, see right half-

closed interval
invariant

part of a set, 248
point, 443–445
set, 247–251, 254, 443

inverse
function, 96, 455, 463, 469
image of

a set under a function, 93, 312–
316, 326–327, 347–355, 375,
382, 407–410, 456, 465

a subalgebra under a homomor-
phism, 102

an ideal under a homomorphism,
161, 174, 182–187

isomorphism, 96
law, 1

involution, 444–445
isolated point, 118, 280, 338–339, 418–

419, 440–441
isomorphic

Boolean algebras, 17–18, 94, 121–
123, 127–129, 188–192, 218–
219, 243, 328, 332–334, 362–
364, 401–406, 412

rings, 15
isomorphism, 15, 18, 94–98, 103, 132,

328, 333, 401–412, 433
canonical for products, see

canonical isomorphism for
products

dual, see dual isomorphism
group, see group isomorphism
inverse of, see inverse isomorphism
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lattice, see lattice isomorphism
of factors theorem, vii, 244–247, 253
theorem, see first isomorphism the-

orem; second isomorphism the-
orem

for complete atomic Boolean alge-
bras, 121

for countable atomless Boolean al-
gebras, vii, 135–141, 267, 345

Jónsson, Bjarni, 198–199, 538
Jevons, William Stanley, v, 18, 40, 538
join

finite property, see finite join
property

in a Boolean algebra, 10
in a lattice, 40
of a finite set of elements, 11, 40
of an infinite set of elements, see su-

premum
property of a measure, 290

kernel
of a σ-homomorphism, 269, 276–

277, 293
of a complete homomorphism, 202–

203
of a congruence, 149–154
of a homomorphism, 153, 178–180,

190, 202, 350, 360, 384
Ketonen, Jussi A., 252, 538
Kinoshita, Shin’ichi, 446, 538
Klein four-group, 22
Kuratowski’s closure-complement prob-

lem, 65
Kuratowski, Kazimierz, 65, 107, 111,

345, 395, 446, 452, 536–538

larger cardinality, 466–470
lattice, 40

complemented, see complemented
lattice

complete, see complete lattice
distributive, see distributive lattice
dual isomorphism, see dual iso-

morphism
duality principle for, see principle of

duality for lattices
ideal, see ideal in a lattice
isomorphism, 100–101, 162, 168,

174, 336, 341–343, 411–412
monomorphism, 170
of Boolean relations, 364–365
of closed sets, 341–343
of complete ideals, see Boolean alge-

bra of complete ideals
of congruences, 170
of filters, 168–170, 174, 343
of ideals, 161, 164–171, 174, 181–

183, 206–212, 336, 341–343, 371
of open sets, 336, 341–343, 371
of sets, 192
of subalgebras, 76, 364
one, see unit in a lattice
prime ideal, see prime ideal in a lat-

tice
unit, see unit in a lattice
zero, see zero in a lattice

lattices, axioms for, see axioms for lat-
tices

law, inverse, see inverse law
laws

absorption, see absorption laws
associative, see associative laws
commutative, see commutative laws
complement, see complement laws
complete distributive, see distribu-

tive laws, complete
De Morgan, see De Morgan laws
distributive, see distributive laws
idempotent, see idempotent laws
identity, see identity laws
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monotony, see monotony laws
of Boolean algebra, 10, 19–21, 31–

52, 129–133
lcm, see least common multiple
least

common multiple, 18
upper bound, see supremum

Lebesgue
Henri Léon, 289
measure, 289, 384

left half-closed interval, 25
lemma

ideal extension, see ideal extension
lemma

subalgebra extension, see subalge-
bra extension lemma

lexicographic ordering, 309
lifting condition, 229–231, 237, 241, 423–

426
limit

of a sequence, 56–57, 60
ordinal, 418, 460

Lindenbaum, Adolf, 123
line, vertical, see vertical line
linear order, 64, 106, 458

dense, see dense linear order without
endpoints

linearly ordered set, 64
local

base for a topology, 345
compactness, see locally compact

space
locally compact space, 280, 335–336, 344,

398–400, 418–420
logic, sentential, see propositional calcu-

lus
logical

and, see conjunction
biconditional, see biconditional
equivalence, 263
implication, see implication
nor, see nor
not, see negation
or, see disjunction

Loomis
–Sikorski theorem, see representa-

tion theorem for σ-algebras
Lynn Harold, 381, 538

�Loś, Jerzy, v
lower bound, 39, 205–206
Lusin, Nikolai Nikolayevich, 395, 538

m-algebra, 277, 383
free, see free m-algebra

m-field, 277, 383
m-filter, 277
m-homomorphism, 277
m-ideal, 277, 383
m-subalgebra, 277
m-subfield, 277
MacNeille

completion, see completion
Holbrook Mann, 66, 215–219, 539

mapping, see function
maximal

filter, see ultrafilter
ideal, 167, 171–177, 187–191, 194,

270, 341, 344, 429
characterization of, see character-

ization of maximal ideals
extension of, see extension of a

maximal ideal
non-principal, see non-principal

maximal ideal
principal, see principal maximal

ideal
theorem, vii, 172–174, 186–188,

194, 344, 429
open set, 341

meager
Baire set, 379–383, see also σ-ideal

of meager Baire sets
Borel set, 296–297, 385–390, see also

σ-ideal of meager Borel sets
set, 59, 63–64, 270, 273–277, 297,

389–390, 393–395, see also σ-
ideal of meager sets
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measurable set, 289
measure, 160, 288–299

algebra, 294–295, 298–299, 384–386
finitely additive, see finitely addi-

tive measure algebra
algebras, duality theorem for, see

duality theorem for measure al-
gebras

Haar, see Haar measure
Lebesgue, see Lebesgue measure
normalized, see normalized measure
outer, see outer measure
positive, see positive measure
properties of, see properties of a

measure
space, see Boolean measure space
zero, see set of measure zero

meet
in a Boolean algebra, 10
in a lattice, 40
of a finite set of elements, 11, 40
of an infinite set of elements, see in-

fimum
membership relation, 448
method of bisection, see bisection

method
metric, 55, 62, 298, 308–309, 339, 366–

367, 374–376
properties, see properties of a metric
space, 55, 62, 298, 322–324, 339,

345, 373–377, 444
complete, see complete metric

space
strict positivity property for, see

strict positivity property for a
metric

symmetry property for, see symme-
try property for a metric

topology, 55, 309
triangle inequality for, see triangle

inequality for a metric

metrizable space, 339, 345
metrization theorem, 345
middle third set, see Cantor set
minimal

closed set, 341
complete extension, see completion

minimality theorem for completions,
217–218

module, 434
modus ponens, 263
Monk, James Donald, 447, 539
monomorphism, 93, 111, 179, 184–185,

403–405, 427, 431–433
extension criterion, 111–112, 115–

116, 135
incomplete, see incomplete mono-

morphism
monotony

laws, 39, 43
infinite, 50

property for a measure, 290
Mostowski, Andrzej, 27, 539
multiplication

Boolean, see Boolean multiplication
in a ring, 1
modulo n, 143

nth root law, 254
natural number, 127, 260, 392–393, 458–

462, 467
negation, 2, 32, 262

in a Boolean ring, 9
in a ring, 1

neighborhood, 53, 439–443, see also open
set

Nikodym, Otton, 298
non-commutative ring, 153
non-degenerate Boolean algebra, 10, 90,

131–132, 186, 427, 431, 435–438
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non-denumerable set, see uncountable
set

non-existence of free complete Boolean
algebras, 266

non-isomorphic Boolean algebras, 95
non-principal

maximal ideal, 173–174
ultrafilter, 174

non-trivial
ideal, 155
subalgebra, 75

nor (logical), 33
norm, 308

of a sequence of real numbers, 493
normal form

conjunctive, see conjunctive normal
form

disjunctive, see disjunctive normal
form

theorem, vii, 81–82, 86, 107–109
normalized measure, 291–299, 384–386,

395
not (logical), see negation
nowhere dense set, 59, 63–64, 69, 270,

273, 296–297, 324, 344, 369,
380, 384–389, 394, see also ideal
of nowhere dense sets

number
cardinal, see cardinal number
integer, see integer
natural, see natural number
ordinal, see ordinal number
rational, see rational number
real, see real number

one
in a Boolean algebra, see unit in a

Boolean algebra
in a lattice, see unit in a lattice
in a ring, see unit in a ring
preservation by a homomorphism,

see preservation of zero and one
by a homomorphism

uniqueness of, see uniqueness of one
one-point compactification, 301, 307,

344, 376, 399, 418–420, 441–443
one-step extension, 112–114
one-to-one

function, 105–106, 112–114, 454–
456, 465–468, see also dual of
an onto continuous function;
dual of an onto homomorphism

homomorphism, 238, 241
onto

function, 454–456, 465–469, see also
dual of a one-to-one continuous
function; dual of a one-to-one
homomorphism

homomorphism, 89, 238, 241
open

Baire set, 379
ball, 54–55, 308
circle, 286
cover, 271–272, 279, 314, 340, 397–

398, 445
interval, 54–56, 64
mapping, 322
set, 53, 64, 270–277, 289, 335–

336, 340–343, 368–371, 374–
375, 384–389, 396–419, see also
neighborhood

dense, see dense open set
dual of, see dual of an open set
in R

n, 54–55
regular, see regular open set
simple, see simple open set

square, 286
operation

binary, see binary operation
of negation, see negation
of subtraction, see subtraction
on 2, 36–37
totally commutative, see commuta-

tive operation
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or (logical), see disjunction
order, 38, 458

in a Boolean algebra, 38–44
linear, see linear order
of an element in a group, 6
partial, see partial order
topology, 64, 280, 309, 418–420
total, see linear order

order-preserving
equivalence, 100, 412
function, 91, 100, 132

order-reversing equivalence, 100, 343
ordered

pair, 3, 452
quadruple, 452
triple, 452

ordering
complete, see complete ordering
lexicographic, see lexicographic or-

dering
linear, see linear order
partial, see partial order

ordinal
finite, see finite ordinal
limit, see limit ordinal
number, 3, 309, 392–393, 418–420,

440, 459–462, 472–473
predecessor, see predecessor ordinal
successor, see successor ordinal
transfinite, see transfinite ordinal
uncountable, see uncountable ordi-

nal
outer measure, 527

P(X), 94, 119–122, 127–129, 188–195,
219, 232, 252–254, 266, 270,
337, 371, 401, 416, 433–434, 451

P (i, j), 49, 70–72
p(i, j), 48, 78, 86, 107, 123, 135, 258–262
pair

coordinates of, see coordinates of an
ordered pair

ordered, see ordered pair
unordered, see unordered pair

pairing, 330–335, 352–357
conditions, 330–334, 352–353

partial
order, 38–43, 64, 76, 86, 154, 164,

168, 206, 411–412, 420, 458
ordering, see partial order

partially ordered set, 39–43, 86
partition

of a set, 454, 464
of a unit, 234–237, 245

Peirce, Charles Sanders, v, 33, 539
perfect

extension, see canonical extension
set, 339, 441, 527

period of a set of integers, 25
periodic set of integers, 25, 28
point

boundary, see boundary point of a
set

in a topological space, 53
isolated, see isolated point

polynomial, 20–23
Posament, T., 107, 111, 538
positive measure, 292–294, 299, 384–385
positivity

property for a norm, 308
strict, see strict positivity property

for a metric
Post, Emil Leon, 37, 131, 539
power

of a Boolean algebra, 232, 242, 253–
254, 259, 416

of a set, 458, see also cardinality of
a set

of the continuum, see cardinality of
the continuum

set, 8, 451
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set algebra, see field of all subsets of
a set

predecessor ordinal, 260, 285, 458–460
preservation

of operations
by a congruence, 142–145, 150
by a function, 15–17, 67, 96–100,

106–108
by a homomorphism, 91–93, 98,

119, 286–287
of order by a homomorphism, 91
of properties

by a continuous functions, 314–
315, 323

by a homomorphism, 160
of relations, 58
of zero and one by a homomorphism,

90
prime

ideal, 171, 176
in a commutative ring, 176
in a lattice, 177

principal
filter, 158, 161, 170
ideal, 156, 166–167, 170, 185, 203,

207–212, 216, 341
maximal ideal, 172

principle
exchange for topological spaces,

see topological exchange princi-
ple

of transfinite induction, see trans-
finite induction

of duality, 20
for lattices, 41

of mathematical induction, see in-
duction

of quaternality, 22
product, 221–255, 299, 396–422, 431,

439–446
Cartesian, see product
free, see free product
internal, see internal product
of a family, 457, 461

of homomorphisms, see composition
of homomorphisms

of sets, 28, 433–434, 452, 467
space, 301, 305, 311, 320–324, 423–

427
topology, 301–305, 308–311, 322–

324, 334, 423
weak, see weak product
weak internal, see weak internal

product
products

canonical isomorphism for, see
canonical isomorphism for
products

duality for, see duality between sub-
products and compactifications

duality theorem for, see duality the-
orem for products

projection, 145, 152–153, 163, 179, 187,
202–203, 229–231, 237, 259–
261, 264, 269–270, 292–293,
296–297, 303, 322, 360–361,
367, 375, 390–395, 422–427,
433–434, 437

on a ring, 147
proof by induction, 462
proper

filter, 174–175, 191
ideal, 155–161, 168, 186
subalgebra, 75
subset, 448

properties
of a metric, 55
of a measure, 289–291
of a norm, 308

property
addition, see addition property for a

measure
Baire, see Baire property
compactness, see compactness prop-

erty
countable additivity, see countable

additivity property for a mea-
sure
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countable subadditivity, see count-
able subadditivity property for
a measure

finite intersection, see finite intersec-
tion property

finite join, see finite join property
finite meet, see finite meet property
join, see join property for a measure
monotony, see monotony property

for a measure
of atom separation, see atom sepa-

ration property
of compactness for Boolean algebras,

see compactness property for
Boolean algebras

positivity for a norm, see posi-
tivity property for a norm

separation for topological spaces,
see separation property for
topological spaces

subtraction, see subtraction prop-
erty for a measure

supremum, see supremum property
triangle inequality for a norm,

see triangle inequality for a
norm

propositional
calculus, 262–264

axioms of, see axioms for the
propositional calculus

variable, 262
pseudo-metric, 366, 373–377

space, 366, 377
topology, 366

quadruple, ordered, see ordered quadru-
ple

quaternality
group, 23

principle, see principle of quaternal-
ity

quotient
algebra, 145, 152–153, 162–163,

179–187, 212, 266, 269–270,
276–277, 292–293, 359–360,
381–383, 390–395

incomplete, see incomplete quo-
tient algebra

ideal, 183
ring, 153
space, 360–366
topology, 360–361, 365

radius of an open ball, 54
range of a relation, 452
rational number, 206, 468
real number, 219, 470–471
rectangle, 433
reduced

Borel algebra, 295–297, 372, 378,
389–390

measure algebra, 295, 371, 378, 389–
390

reflexive relation, 38, 76, 142–143, 452–
453, 458

regular
Borel set, 386–389
closed

algebra, 72
set, 72

open
algebra, 66–72, 75, 102, 118, 125–

126, 140, 276–277, 282, 295,
370–371, 378, 384–385

set, 60, 63–72, 274, 370–371
subalgebra, 85, 88, 98–99, 103–104,

124–125, 210–211, 215–216, 370
rejection, binary, see binary rejection
relation, 452–454

antisymmetric, see antisymmetric
relation

Boolean, see Boolean relation
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domain of, see domain of a relation
equivalence, see equivalence relation
of being an element of, see member-

ship relation
of belonging, see membership rela-

tion
of divisibility in a ring, see divisibil-

ity in a ring
on a set, 452
range of, see range of a relation
reflexive, see reflexive relation
symmetric, see symmetric relation
transitive, see transitive relation

relativization, 92, 101–103, 146, 163, 175,
192, 224–228, 234–239, 244–
247, 345–346, 357, 400–412

relativizing homomorphism, 92, 101, 178,
201, 211, 401–412

representation, 119, 190, 223, 233, 241
binary, see binary representation of

a real number
problem, 119, 188
theorem

for σ-algebras, vii, 381, 383
for atomic Boolean algebras, vii,

119, 190
for Boolean algebras, vii, 189, 195,

214, 300, 326–329, 381, 433
for Boolean spaces, vii, 329–330
for complete Boolean algebras,

371
for finite Boolean algebras, 127

restriction of a function, 455
Rieger, Ladislav Svante, 381, 539
right half-closed interval, 29–30
ring, 1–2, 143, 434

axioms, see axioms for rings
Boolean, see Boolean ring

without unit, see Boolean ring
without unit

characteristic of, see characteristic
of a ring

commutative, see commutative ring
congruence, see congruence on a

ring
degenerate, see degenerate ring
dual, see dual ring
homomorphism, 91, 100
ideal, see ideal in a ring
idempotent, see idempotent ring
isomorphism, 15
of 2-valued functions, see Boolean

ring of 2-valued functions
of integers, 1
of integers modulo n, 143
quotient of, see quotient ring
two-element, see two-element ring
with unit, 2, 153, see also Boolean

ring
without unit, 153, see also Boolean

ring without unit
rings, isomorphic, see isomorphic rings
rule of inference, see modus ponens

σ-algebra, 244–247, 252–254, 268–281,
285–286, 292–294, 376–384, 438

free, see free σ-algebra
generated by a set, 268

σ-algebras
duality theorem for, see duality the-

orem for σ-algebras
homomorphism theorem for, see ho-

momorphism theorem for σ-
algebras

transfer condition for, see transfer
condition for σ-algebras
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σ-complete Boolean algebra, see σ-
algebra

σ-field, 268, 378–389
generated by a set, 373–377
of Baire sets, 373, 376, 379–383
of Borel sets, 270, 286, 296–297,

384–386, see also reduced Borel
algebra

σ-filter, 279
σ-generators, see set of σ-generators
σ-homomorphism, 268–270, 276–279,

286, 292, 381–383, 438
kernel of, see kernel of a σ-

homomorphism
σ-homomorphisms, countably di-

rect family of, see count-
ably directed family of σ-
homomorphisms

σ-ideal, 269–270, 280–281
of countable sets, 155, 159, 270, 279,

390–391, 395
of meager Baire sets, 379–383
of meager Borel sets, 270, 274–277,

295–297, 384, see also reduced
Borel algebra

of meager sets, 270, 280, 393–394
of sets of measure zero, 160, 291–

295, 395, see also reduced mea-
sure algebra

σ-regular subalgebra, 280
σ-space, 376–384
σ-subalgebra, 268, 277–278
σ-subfield, 268
σ-sum of σ-algebras, 438
Schröder

–Bernstein theorem, 244, 253, 463
for Boolean algebras, 252
for topological spaces, 446

Ernst, v, 18, 125, 463, 539
Schwarz, Hermann Amandus, 493
Scott, Dana Stewart, 247, 439
second

coordinate of a pair, see coordinates
of an ordered pair

dual of
a Boolean algebra, 328–329, 334,

409–410, 425–426
a Boolean relation, 363
a Boolean space, 329–330, 406
a closed set, 343
a continuous function, 349, 353
a filter, 343
a homomorphism, 348, 353–354
a subalgebra, 363
an ideal, 340–342
an open set, 340–342

isomorphism theorem, 183–185, 188
sentence, 262–264
sentential

connective, 32, 262–263
logic, see propositional calculus

separable space, 309, 323–324, 337, 345,
358, 389

separating field, 305–306, 362
separation

axiom, 118
property

for atoms, see atom separation
property

for topological spaces, 271, 280,
300–301, 307, 413–415

sequence, 460
Cauchy, see Cauchy sequence
convergent, see convergent sequence
finite, see finite sequence
infinite, see infinite sequence
of type ωn, 439–440
transfinite, see transfinite sequence

sequential continuity, 323, 444
set, 448–473

Fσ-, see Fσ-set
Gδ-, see Gδ-set
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annihilator of, see annihilator of a
set

Baire, see Baire set
basic clopen, see basic clopen set
Borel, see Borel set
boundary of, see boundary of a set
cardinality of, see cardinality of a set
clopen, see clopen set
closed, see closed set
closure of, see closure of a set
cocountable, see cocountable set
cofinite, see cofinite set
compatible, see compatible set
connected, see connected set
countable, see countable set
countably infinite, see countably in-

finite set
dense, see dense set
denumerable, see countable set
denumerably infinite, see countably

infinite set
derivative of, see derivative of a set
downward closed, see downward

closed set
downward closure of, see downward

closure of a set
empty, see empty set
finite, see finite set
horizontal, see horizontal set
inclusion, see inclusion relation be-

tween sets
index, see index set
infinite, see infinite set
interior of, see interior of a set
invariant, see invariant set
meager, see meager set
meager Baire, see meager Baire set
meager Borel, see meager Borel set

non-denumerable, see uncountable
set

nowhere dense, see nowhere dense
set

of σ-free generators, see free set of
generators of a σ-algebra

of σ-generators, 268, 278
of all subsets, see power set
of continuum cardinality, 472
of free generator, see free set of gen-

erators
of generators, 76, 88, 102–103, 106–

116, 262, 266, 427–434
of a complete ideal, 203
of a complete subalgebra, 85, 372
of a filter, 158
of a subalgebra, 76
of an ideal, 155

of measure zero, 289, 297, 324, 384–
389, 393–395, see also σ-ideal of
sets of measure zero

of the first category, see meager set
open, see open set
partition of, see partition of a set
perfect, see perfect set
power, see power set
power of, see power of a set
regular Borel, see regular Borel set
regular closed, see regular closed set
regular open, see regular open set
specification, 449
theory, 448–473
uncountable, see uncountable set
upward closed, see upward closed set
vertical, see vertical set
well-ordered, see well-ordered set

sets
difference of, see difference of sets
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disjoint, see disjoint sets
equality of, see equality of sets
intersection of, see intersection
symmetric difference of, see sym-

metric difference
union of, see union

Sheffer
Henry Maurice, 17–18, 33, 36, 539
stroke, see stroke (Sheffer)

side of a rectangle, 433
Sierpiński

topology, 307, 323, 377, 524
Wac�law, 287, 395, 538–539

Sikorski
Loomis– theorem, see representa-

tion theorem for σ-algebras
Roman, 107, 113, 244, 252, 381–383,

394, 434, 438, 447, 539–540
simple

Boolean algebra, 185
clopen set, 310
open set, 310

singleton, 56, 76, 117, 248, 280, 449
smaller cardinality, 466
space, see also topological space

σ-, see σ-space
Boolean, see Boolean space
Cantor, see Cantor space
compact, see compact space
complete, see complete space
component of, see component of a

topological space
discrete, see discrete space
dual, see dual space
Euclidean, see Euclidean space
extremally disconnected, see com-

plete space
Hausdorff, see Hausdorff space
locally compact, see locally compact

space
metric, see metric space

metrizable, see metrizable space
of ultrafilters, 329, 351–352, 366
one-point compactification of, see

one-point compactification
product, see product space
pseudo-metric, see pseudo-metric

space
quotient of, see quotient space
separable, see separable space
Stone–Čech compactification of, see

Stone–Čech compactification
totally disconnected, see totally dis-

connected space
uncountable, see uncountable space

spaces
disjoint union of, see union of topo-

logical spaces
homeomorphic, see homeomorphic

spaces
product of, see product space
union of, see union of topological

spaces
specification of a set, see set specification
square

open, see open square
root law, 252

for Boolean algebras, 252–254
square-free integer, 19
Stone

–Weierstrass approximation theo-
rem, v

–Čech compactification, v–vii, 325,
337, 413–416, 419–422

Marshall Harvey, v, 7, 18, 63, 155,
159, 164, 169–176, 186–189,
209, 277, 305, 318, 325, 334–
335, 341, 344–345, 354, 357,
360, 371, 540

representation theorem, see repre-
sentation theorem for Boolean
algebras
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strict positivity property for a metric, 55,
366

strictly ascending chain, see ascending
chain

stroke (Sheffer), 33, 36, 75, 91, 99
sub–quotient duality, 364
subalgebra, 74–88, 162, 174, 192, 238,

266, 286, 360–364, 401–412,
420, 427–437

σ-, see σ-subalgebra
complete, see complete subalgebra
dual of, see dual of a subalgebra
extension lemma, 83
finitely generated, see finitely gener-

ated subalgebra
generated by a set, 76–84, 420, 433–

437
generators of, see set of generators

of a subalgebra
improper, see improper subalgebra
non-trivial, see non-trivial subalge-

bra
proper, see proper subalgebra
regular, see regular subalgebra
second dual of, see second dual of a

subalgebra
trivial, see trivial subalgebra

subalgebras
chain of, see chain of subalgebras
lattice of, see lattice of subalgebras

subbase for a topology, 302, 310, 313
subelement, 91, 117
subfield, 75

complete, see complete subfield
subring, 74, 86, 474
subset, 448

proper, see proper subset
subspace, 55, 345–346, 357

closed, see closed subspace
subtraction, 32

dual of, see dual of subtraction

property for a measure, 290
successor ordinal, 459–460
sum

Boolean, see Boolean addition
direct, see sum of Boolean algebras
internal, see internal sum
of Boolean algebras, 427–438

existence of, see existence theo-
rem for sums of Boolean alge-
bras

uniqueness of, see uniqueness the-
orem for sums of Boolean alge-
bras

of topological spaces, 396–398, 416–
417, 422

support of a 2-valued function, 14, 469
supremum, 39–40

of a family of complete ideals, 206
of a family of filters, 168
of a family of ideals, 161, 164, 167–

168
of a family of subalgebras, 77
of the empty set, 40
property, 234–237, 245

symmetric
difference, 15, 32, 80, 146–148, 155,

335, 451, see also Boolean ad-
dition

function (elementary), 475
relation, 142–143, 453

symmetry property for a metric, 55
Szpilrajn-Marczewski, Edward, 277

Tarski’s cube problem, 252
Tarski, Alfred, v, 27, 66, 118–122, 126,

134, 169, 172–174, 198–199,
209, 215–219, 244–246, 252–
254, 270, 277, 285, 371, 378,
383, 537–541

tautology, 263
term

Boolean, see Boolean term
of a family, 457
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ternary
Boolean algebra, 37
operation on 2, see operation on 2
representation of a real number,

319–320
theorem

Baire category, see Baire category
theorem

Cantor’s, see Cantor’s theorem
characterization for σ-ideals, see

characterization theorem for σ-
ideals

characterization for finitely gen-
erated subalgebras, see normal
form theorem

characterization for ideals, see
characterization theorem for
ideals

complete homomorphism, see com-
plete homomorphism theorem

completeness for propositional
logic, see completeness theorem
for propositional logic

correspondence, see correspondence
theorem

duality for σ-algebras, see dual-
ity theorem for σ-algebras

duality for homomorphisms, see
duality theorem for homomor-
phisms

duality for ideals, see duality
theorem for ideals

duality for measure algebras, see
duality theorem for measure al-
gebras

duality for products, see duality
theorem for products

duality for quotient algebras, see
duality theorem for quotient al-
gebras

duality for subalgebras, see du-
ality theorem for subalgebras

existence for ultrafilters, see ul-
trafilter theorem

existence for canonical exten-
sions, see existence theorem for
canonical extensions

existence for completions, see ex-
istence theorem for completions

existence for free σ-algebras, see
existence theorem for free σ-
algebras

existence for free Boolean alge-
bras, see existence theorem for
free Boolean algebras

existence for internal products,
see existence theorem for inter-
nal products

existence for maximal ideals, see
maximal ideal theorem

existence for sums of Boolean
algebras, see existence theorem
for sums of Boolean algebras

first isomorphism, see first isomor-
phism theorem

first isomorphism for topological
spaces, see first isomorphism
theorem for topological spaces

Heine–Borel, see Heine–Borel theo-
rem

homomorphism, see homomorphism
theorem

homomorphism for σ-algebras,
see homomorphism theorem for
σ-algebras

homomorphism extension, see ho-
momorphism extension theo-
rem

isomorphism for complete
atomic Boolean algebras, see
isomorphism theorem for com-
plete atomic Boolean algebras
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isomorphism for countable atom-
less Boolean algebras, see iso-
morphism theorem for count-
able atomless Boolean algebras

isomorphism of factors, see isomor-
phism of factors theorem

Loomis–Sikorski, see representation
theorem for σ-algebras

metrization, see metrization theo-
rem

minimality for completions, see
minimality theorem for comple-
tions

non-existence for free com-
plete Boolean algebras, see non-
existence of free complete Bool-
ean algebras

normal form, see normal form theo-
rem

representation for atomic Bool-
ean algebras, see representation
theorem for atomic Boolean al-
gebras

representation for Boolean alge-
bras, see representation theo-
rem for Boolean algebras

representation for Boolean
spaces, see representation
theorem for Boolean spaces

representation for complete
Boolean algebras, see repre-
sentation theorem for complete
Boolean algebras

representation for finite Bool-
ean algebras, see representation
theorem for finite Boolean alge-
bras

Schröder–Bernstein, see Schröder–
Bernstein theorem

second isomorphism, see second iso-
morphism theorem

Stone representation, see represen-
tation theorem for Boolean al-
gebras

Stone–Weierstrass approxima-
tion, see Stone-Weierstrass
approximation theorem

Tychonoff’s, see Tychonoff’s theo-
rem

ultrafilter, see ultrafilter theorem
uniqueness for canonical exten-

sions, see uniqueness theorem
for canonical extensions

uniqueness for completions, see
uniqueness theorem for comple-
tions

uniqueness for free σ-algebras,
see uniqueness theorem for free
σ-algebras

uniqueness for free Boolean al-
gebras, see uniqueness theorem
for free Boolean algebras

uniqueness for internal products,
see uniqueness theorem for in-
ternal products

uniqueness for sums of Boolean
algebras, see uniqueness theo-
rem for sums of Boolean alge-
bras

topological
characterization of suprema, 368–

369
duality theory, 328–389, 396–427
exchange principle, 323, 406, 410
space, 53–65, see also space; spaces

topology, 53–65, 335
base for, see base for a topology
cocountable, see cocountable topol-

ogy
cofinite, see cofinite topology
countable base for, see countable

base for a topology
discrete, see discrete topology
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indiscrete, see indiscrete topology
inherited, see inherited topology
metric, see metric topology
order, see order topology
product, see product topology
pseudo-metric, see pseudo-metric

topology
quotient, see quotient topology
Sierpiński, see Sierpiński topology
subbase for, see subbase for a topol-

ogy
trivial, see indiscrete topology

total order, see linear order
totally

commutative operation, see commu-
tative operation

disconnected space, 300, 309
ordered set, see linearly ordered set

transfer condition, 425–430, 435
for σ-algebras, 438

transfinite
induction, 114, 172, 281–284, 462
ordinal, 460
sequence, 114, 172, 281–284, 439–

441, 461–462
transitive relation, 38, 76, 142–143, 453,

458
triangle inequality

for a metric, 55
for a norm, 308, 493

triple
ordered, see ordered triple
unordered, see unordered triple

trivial
decomposition, 228
homomorphism, 90, 335–336
ideal, 155–156, 159–160, 164, 341
subalgebra, 75–76
topology, see indiscrete topology

two-element
Boolean algebra, 10, 34, 129–132,

185–188, 240, 259, 343, 416, 435
ring, 2

Tychonoff’s theorem, 305, 516
Tychonoff, Andrey Nikolayevich, 301,

305, 516, 541
type of a sequence, see sequence of type

ωn

Ulam, Stanis�law Marcin, 277, 295, 392,
541

ultrafilter, 174, 190–192, 195–198, 328–
330, 341, 348, 405

characterization of, see characteriza-
tion of ultrafilters

dual of, see dual of an ultrafilter
theorem, 174–175

ultrafilters, space of, see space of ultra-
filters

uncountable
ordinal, 392
set, 64, 390–393, 469
space, 376

union, 8, 335, 450, 460, 466–468
of a family, 457
of topological spaces, 396–398, 417,

441–443, see also sum of topo-
logical spaces

space, see union of topological
spaces

uniqueness
of complement, 32, 44
of one, 32
of zero, 32
theorem

for canonical extensions, 197
for completions, vii, 218–219
for free σ-algebras, 278
for free Boolean algebras, 257–258
for internal products, 225, 233,

241
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for sums of Boolean algebras, 427
unit

in a Boolean algebra, 10
in a lattice, 41
in a ring, 1–2
interval, 393–395
partition of, see partition of a unit
square, 27

universal set, 8
unordered

pair, 247, 449
triple, 449

upper bound, 39, 205–206, 212
upward closed set, 206
Urysohn’s

lemma, 325
metrization theorem, see metriza-

tion theorem
Urysohn, Pavel Samuilovich, 325, 345,

541

variable, propositional, see propositional
variable

variant part of a set, 248
Vaught, Robert Lawson, 252, 255, 418,

541

Vedenisov, Nikolai Borisovich, 325, 541
vertical

line, 390–392
set, 27

von Neumann, John, 3, 260, 458, 539

weak
internal product, 401, 420
product, 241–242, 417, 420

well ordering, 458
well-ordered set, 458
Whitehead, Alfred North, 18
word, 264

zero
-dimensional compactification, see

Boolean compactification
-divisor in a ring, 7, 176
in a Boolean algebra, 10
in a lattice, 41
in a ring, 1
measure, 289, 296
preservation by a homomorphism,

see preservation of zero and one
by a homomorphism

uniqueness of, see uniqueness of zero
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