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Prefacé

This text is intended as a one semester introduction to algebraic topology
at the undergraduate and beginning graduate levels. Basically, it covers
simplicial homology theory, the fundamental group, covering spaces, the
higher homotopy groups and introductory singular homology theory.

The text follows a broad historical outline and uses the proofs of the
discoverers of the important theorems when this is consistent with the
elementary level of the course. This method of presentation is intended to
reduce the abstract nature of algebraic topology to a level that is palatable
for the beginning student and to provide motivation and cohesion that are
often lacking in abstact treatments. The text emphasizes the geometric
approach to algebraic topology and attempts to show the importance of
topological concepts by applying them to problems of geometry and
analysis. :

The prerequisites for this course are calculus at the sophomore level, a
one semester introduction to the theory of groups, a one semester introduc-
tion to point-set topology and some familiarity with vector spaces. Outlines
of the prerequisite material can be found in the appendices at the end of
the text. It is suggested that the reader not spend time initially working on
the appendices, but rather that he read from the beginning of the text,
referring to the appendices as his memory needs refreshing. The text is
designed for use by college juniors of normal intelligence and does not
require “mathematical maturity” beyond the junior level.

The core of the course is the first four chapters—geometric complexes,
simplicial homology groups, simplicial mappings, and the fundamental
group. After completing Chapter 4, the reader may take the chapters in
any order that suits him. Those particularly interested in the homology
sequence and singular homology may choose, for example, to skip Chapter
5 (covering spaces) and Chapter 6 (the higher homotopy groups) tempor-
arily and proceed directly to Chapter 7. There is not so much material
here, however, that the instructor will have to pick and choose in order to
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Preface

cover something in every chapter. A normal class should complete the first
six chapters and get well into Chapter 7.

No one semester course can cover all areas of algebraic topology, and
many important areas have been omitted from this text or passed over with
only brief mention. There is a fairly extensive list of references that will
point the student to more advanced aspects of the subject. There are, in
addition, references of historical importance for those interested in tracing
concepts to their origins. Conventional square brackets are used in refer-
ring to the numbered items in the bibliography.

For internal reference, theorems and examples are numbered consecu-
tively within each chapter. For example, “Theorem IV.7” refers to Theo-
rem 7 of Chapter 4. In addition, important theorems are indicated by their
names in the mathematical literature, usually a descriptive name (e.g.,
Theorem 5.4, The Covering Homotopy Property) or the name of the
discoverer (e.g., Theorem 7.8, The Lefschetz Fixed Point Theorem.)

A few advanced theorems, the Freudenthal Suspension Theorem, the
Hopf Classification Theorem, and the Hurewicz Isomorphism Theorem,
for example, are stated in the text without proof. Although the proofs of
these results are too advanced for this course, the statements themselves
and some of their applications are not. Students at the beginning level of
algebraic topology can appreciate the beauty and power of these theorems,
and seeing them without proof may stimulate the reader to pursue them at
a more advanced level in the literature. References to reasonably accessible
proofs are given in each case.

The notation used in this text is fairly standard, and a real attempt has
been made to keep it as simple as possible. A list of commonly used
symbols with definitions and page references follows the table of contents.
The end of each proof is indicated by a hollow square, [].

There are many exercises of varying degrees of difficulty. Only the most
extraordinary student could solve them all on first reading. Most of the
problems give standard practice in using the text material or complete
arguments outlined in the text. A few provide real extensions of the ideas
covered in the text and represent worthy projects for undergraduate
research and independent study beyond the scope of a normal course.

I make no claim of originality for the concepts, theorems, or proofs
presented in this text. I am indebted to Wayne Patty for introducing me to
algebraic topology and to the many authors and research mathematicians
whose work I have read and used.

I am deeply grateful to Stephen Puckette and Paul Halmos for their
help and encouragement during the preparation of this text. I am also
indebted to Mrs. Barbara Hart for her patience and careful work in typing
the manuscript.

Frep H. CrooM
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Geometric Complexes and Polyhedra

1.1 Introduction

Topology is an abstraction of geometry; it deals with sets having a structure
which permits the definition of continuity for functions and a concept of
“closeness” of points and sets. This structure, called the “topology” on the
set, was originally determined from the properties of open sets in Euclidean
spaces, particularly the Euclidean plane.

It is assumed in this text that the reader has some familiarity with basic
topology, including such concepts as open and closed sets, compactness,
connectedness, metrizability, continuity, and homeomorphism. All of these
are normally studied in what is called ““point-set topology”’; an outline of the
prerequisite information is contained in Appendix 2.

Point-set topology was strongly influenced by the general theory of sets
developed by Georg Cantor around 1880, and it received its primary impetus
from the introduction of general metric spaces by Maurice Frechet in 1906
and the appearance of the book Grundziige der Mengenlehre by Felix Haus-
dorff in 1912.

Although the historical origins of algebraic topology were somewhat
different, algebraic topology and point-set topology share a common goal:
to determine the nature of topological spaces by means of properties which
are invariant under homeomorphisms. Algebraic topology describes the
structure of a topological space by associating with it an algebraic system,
usually a group or a sequence of groups. For a space X, the associated group
G(X) reflects the geometric structure of X, particularly the arrangement of
the “holes” in the space. There is a natural interplay between continuous
maps f: X — Y from one space to another and algebraic homomorphisms
f*: G(X) — G(Y) on their associated groups.



1 Geometric Complexes and Polyhedra

Consider, for example, the unit circle S* in the Euclidean plane. The circle
has one hole, and this is reflected in the fact that its associated group is
generated by one element. The space composed of two tangent circles (a
figure eight) has two holes, and its associated group requires two generating
elements.

The group associated with any space is a topological invariant of that
space; in other words, homeomorphic spaces have isomorphic groups. The
groups thus give a method of comparing spaces. In our example, the circle
and figure eight are not homeomorphic since their associated groups are not
isomorphic.

Ideally, one would like to say that any topological spaces sharing a
specified list of topological properties must be homeomorphic. Theorems of
this type are called classification theorems because they divide topological
spaces into classes of topologically equivalent members. This is the sort of
theorem to which topology aspires, thus far with limited success. The reader
should be warned that an isomorphism between groups does not, in general,
guarantee that the associated spaces are homeomorphic.

There are several methods by which groups can be associated with topo-
logical spaces, and we shall examine two of them, homology and homotopy,
in this course. The purpose is the same in each case: to let the algebraic
structure of the group reflect the topological and geometric structures of the
underlying space. Once the groups have been defined and their basic proper-
ties established, many beautiful geometric theorems can be proved by alge-
braic arguments. The power of algebraic topology is derived from its use of
algebraic machinery to solve problems in topology and geometry.

The systematic study of algebraic topology was initiated by the French
mathematician Henri Poincaré (1854-1912) in a series of papers! during the
years 1895-1901. Algebraic topology, or analysis situs, did not develop as a
branch of point-set topology. Poincaré’s original paper predated Frechet’s
introduction of general metric spaces by eleven years and Hausdorff’s classic
treatise on point-set topology, Grundziige der Mengenlehre, by seventeen
years. Moreover, the motivations behind the two subjects were different.
Point-set topology developed as a general, abstract theory to deal with
continuous functions in a wide variety of settings. Algebraic topology was
motivated by specific geometric problems involving paths, surfaces, and
geometry in Euclidean spaces. Unlike point-set topology, algebraic topology
was not an outgrowth of Cantor’s general theory of sets. Indeed, in an
address to the International Mathematical Congress of 1908, Poincaré
referred to point-set theory as a ““disease” from which future generations
would recover.

Poincaré shared with David Hilbert (1862-1943) the distinction of being
the leading mathematician of his time. As we shall see, Poincaré’s geometric

1 The papers were Analysis Situs, Complément a I’ Analysis Situs, Deuxiéme Complément,
and Cinquiéme Complément. The other papers in this sequence, the third and fourth com-
plements, deal with algebraic geometry.

2



1.2 Examples

insight was nothing short of phenomenal. He made significant contributions
in differential equations (his original specialty), complex variables, algebra,
algebraic geometry, celestial mechanics, mathematical physics, astronomy,
and topology. He wrote thirty books and over five hundred papers on new
mathematics. The volume of Poincaré’s mathematical works is surpassed
only by that of Leonard Euler’s. In addition, Poincaré was a leading writer
on popular science and philosophy of mathematics.

In the remaining sections of this chapter we shall examine some of the
types of problems that led to the introduction of algebraic topology and
define polyhedra, the class of spaces to which homology groups will be
applied in Chapter 2.

1.2 Examples

The following are offered as examples of the types of problems that led to
the development of algebraic topology by Poincaré. They are hard problems,
but the reader who has not studied them before has no cause for alarm. We
will use them only to illustrate the mathematical climate of the 1890’s and to
motivate Poincaré’s fundamental ideas.

1.2.1 The Jordan Curve Theorem and Related Problems

The French mathematician Camille Jordan (1858-1922) was first to point out
that the following ‘intuitively obvious” fact required proof, and the
resulting theorem has been named for him.

Jordan Curve Theorem. 4 simple closed curve C (i.e., a homeomorphic image
of a circle) in the Euclidean plane separates the plane into two open connected
sets with C as their common boundary. Exactly one of these open connected
sets (the “‘inner region”) is bounded.

Jordan proposed this problem in 1892, but it was not solved by him. That
distinction belongs to Oswald Veblen (1880-1960), one of the guiding forces
in the development of algebraic topology, who published the first correct
solution in 1905 [55].

Lest the reader be misguided by his intuition, we present the following
related conjecture which was also of interest at the turn of the century.

Conjecture. Suppose D is a subset of the Euclidean plane R? and is the boundary
of each component of its complement R*\D. If R2\D has a bounded com-
ponent, then D is a simple closed curve.

This conjecture was proved false by L. E. J. Brouwer (1881-1966) at about
the same time that Veblen gave the first correct proof of the Jordan Curve
Theorem. The following counterexample is due to the Japanese geometer
Yoneyama (1917) and is known as the Lakes of Wada.



1 Geometric Complexes and Polyhedra

~~~Qcean

Figure 1.1

Consider the double annulus in Figure 1.1 as an island with two lakes
having water of distinct colors surrounded by the ocean. By constructing
canals from the ocean and the lakes into the island, we shall define three
connected open sets. First, canals are constructed bringing water from the
sea and from each lake to within distance d = 1 of each dry point of the
island. This process is repeated for d = %, %, ..., ($)" ..., with no intersec-
tion of canals. The two lakes with their canal systems and the ocean with its
canal form three regions in the plane with the remaining “dry land™ D as
common boundary. Since D separates the plane into three connected open
sets instead of two, the Jordan Curve Theorem shows that D is not a simple
closed curve.

1.2.2 Integration on Surfaces and Multiply-connected Domains
Consider the annulus in Figure 1.2 enclosed between the two circles H and K.

Figure 1.2

We are interested in evaluating curve integrals
J- pdx +qdy
C

where p = p(x, y) and g = q(x, y) are continuous functions of two variables
whose partial derivatives are continuous and satisfy the relation

P»_ 9
dy  Ox



1.2 Examples

Since surve C; can be continuously deformed to a point in the annulus, then
pdx +qdy =0.
C1
Thus C; is considered to be negligible as far as curve integrals are concerned,
and we say that C, is “equivalent” to a constant path.

Figure 1.3

Green’s Theorem insures that the integrals over curves C, and C; of
Figure 1.3 are equal, so we can consider C, and Cj to be “equivalent.”

How can we give a more precise meaning to this idea of equivalence of
paths ? There are several possible ways, and two of them form the basic ideas
of algebraic topology. First, we might consider C, and C; equivalent because
each can be transformed continuously into the other within the annulus.
This is the basic idea of homotopy theory, and we would say that C, and C;
are homotopic paths. Curve C; is homotopic to a trivial (or constant) path
since it can be shrunk to a point. Note that C, and C, are not homotopic
paths since C, cannot be pulled across the “hole” that it encloses. For the
same reason, C, is not homotopic to Cs.

Another approach is to say that C, and Cs; are equivalent because they
form the boundary of a region enclosed in the annulus. This second idea is the
basis of homology theory, and C, and C; would be called homologous paths.
Curve C, is homologous to zero since it is the entire boundary of a region
enclosed in the annulus. Note that C, is not homologous to either C, or Cs.

The ideas of homology and homotopy were introduced by Poincaré in his
original paper Analysis Situs [49] in 1895. We shall consider both topics in
some detail as the course progresses.

1.2.3 Classification of Surfaces and Polyhedra

Consider the problem of explaining the difference between a sphere S* and a
torus T as shewn in Figure 1.4. The difference, of course, is apparent: the
sphere has one hole, and the torus has two. Moreover, the hole in the sphere
is somehow different from those in the torus. The problem is to explain this
difference in a mathematically rigorous way which can be applied to more
complicated and less intuitive examples.



1 Geometric Complexes and Polyhedra

Sphere s2 Torus T

Figure 1.4

Consider the idea of homotopy. Any simple closed curve on the sphere can
be continuously deformed to a point on the spherical surface. Meridian and
parallel circles on the torus do not have this property. (These facts, like the
Jordan Curve Theorem, are ““intuitively obvious” but difficult to prove.)

From the homology viewpoint, every simple closed curve on the sphere is
the boundary of the portion of the spherical surface that it encloses and also
the boundary of the complementary region. However, a meridian or parallel
circle on the torus is not the boundary of two regions of the torus since such
a circle does not separate the torus. Thus any simple closed curve on the
sphere is homologous to zero, but meridian and parallel circles on the torus
are not homologous to zero.

The following intuitive example will make more precise this still vague
idea of homology. It is based on the modulo 2 homology theory introduced
by Heinrich Tietze in 1908. Consider the configuration shown in Figure 1.5
consisting of triangles {abc), {bcd), {abd), and <acd), edges <{ab), {ac),
Lad), {bc), <bd>,<cd), {df ), {de>,<ef >, and {fg), and vertices {a), {(b>, {c),
{d>, Ke>, {f>, and {g). The interior of the tetrahedron and the interior of
triangle {def’» are not included. This type of space is called a ““polyhedron”’;
the definition of this term will be given in the next section.

b

d
Figure 1.5

A 2-chain is a formal linear combination of triangles with coefficients
modulo 2. A 1-chain is a formal linear combination of edges with coefficients
modulo 2. The O-chains are similarly defined for vertices. To simplify the

6
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notation, we omit those terms with coefficient 0 and consider only those terms
in a chain with coefficient 1. Thus we write

labcy + {abd)
to denote the 2-chain

1-<abcy + 1-<{abd> + 0-Lacd> + 0-<{bcd>.

The boundary operator 0 is defined as follows for chains of length one and
extended linearly:

olabcy = <ab) + {ac) + <{bc),
olab)y = {a) + <b).

A p-chain ¢, (p = 1 or 2) is a boundary means that there is a (p + 1)-
chain ¢, ,; with

3Cp+1 = cp.

We think of this intuitively as indicating that the union of the members of
¢, forms the point-set boundary of the union of the members of ¢,.;. For
example,

laby + <{bcy + Lcedy + {da) = 0(Kabc) + <acd)),

since terms which occur twice cancel modulo 2. For any 2-chain ¢,, one easily
observes that
6602 = 0.

A p-cycle (p = 1 or 2) is a p-chain ¢, with dc, = 0. Since 00 is the trivial
operator, then every boundary is a cycle. Intuitively speaking, a cycle is a
chain whose terms either close a ““hole” or form the boundary of a chain of
the next higher dimension. We investigate the ““holes” in the polyhedron by
determining the cycles which are not boundaries.

Except for the 2-chain having all coefficients zero,

{abc) + <{bed) + {acd) + <abd)

is the only 2-cycle in our example, and it is nonbounding since the interior of
the tetrahedron is not included. The reader should check to see that

z =<df) + {fe) + {de)

is a nonbounding 1-cycle and that any other 1-cycle is either a boundary or
the sum of z and a boundary. Thus any 1-cycle is homologous to zero or
homologous to the fundamental 1-cycle z. This indicates the presence of two
holes in the polyhedron, one enclosed by the nonbounding 2-cycle and one
enclosed by the nonbounding 1-cycle z.

In Chapter 2 we shall make rigorous the notions of homology, chain,
cycle, and boundary and use them to study the structure of general polyhedra.

7



1 Geometric Complexes and Polyhedra

1.3 Geometric Complexes and Polyhedra

We turn now to the problem of defining polyhedra, the subspaces of Euclidean
n-space R™ on which homology theory will be developed. Intuitively, a
polyhedron is a subset of R* composed of vertices, line segments, triangles,
tetrahedra, and so on joined together as in the example of mod 2 homology
in the preceding section. Naturally we must allow for higher dimensions and
considerable generality in the definition.

For each positive integer n, we shall consider n-dimensional Euclidean
space

R* = {x = (x4, X3, . .., X,): €ach x; is a real number}

as a vector space over the field R of real numbers and use some basic ideas
from the theory of vector spaces. The reader who has not studied vector
spaces should consult Appendix 3 before proceeding.

Definition. A set 4 = {ay, ay, ..., a,} of kK + 1 points in R" is geometrically
independent means that no hyperplane of dimension k& — 1 contains all the
points.

Thus a set {ao, a1, . . ., @} is geometrically independent means that all the
points are distinct, no three of them lie on a line, no four of them lie in a
plane, and, in general, no p + 1 of them lie in a hyperplane of dimension
p — 1 or less.

Example 1.1. The set {a,, a;, a;} in Figure 1.6(a) is geometrically independent
since the only hyperplane in R? containing all the points is the entire plane.
The set {b,, b, by} in Figure 1.6(b) is not geometrically independent since all
three points lie on a line, a hyperplane of dimension 1.

Definition. Let {a,, . . ., a;} be a set of geometrically independent points in R™.
The k-dimensional geometric simplex or k-simplex, o*, spanned by

e dq b2
0d

by

b

(a) (b)
Figure 1.6
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{aq, . . ., a;} is the set of all points x in R for which there exist nonnegative
real numbers A, . . ., A, such that

k k
x= >N, > A=1
i=0 i=0

The numbers A, ..., A, are the barycentric coordinates of the point x.
The points a, ..., a, are the vertices of o*. The set of all points x in o*
with all barycentric coordinates positive is called the open geometric
k-simplex spanned by {aq, . . ., ay}.

Observe that a 0-simplex is simply a singleton set, a 1-simplex is a closed
line segment, a 2-simplex is a triangle (interior and boundary), and a 3-
simplex is a tetrahedron (interior and boundary). An open O-simplex is a
singleton set, an open 1-simplex is a line segment with end points removed,
an open 2-simplex is the interior of a triangle, and an open 3-simplex is the
interior of a tetrahedron.

Definition. A simplex o* is a face of a simplex ¢", k < n, means that each
vertex of o* is a vertex of o The faces of o® other than o™ itself are called
proper faces.

If o™ is the simplex with vertices aq, . . ., a,, we shall write
o =<{aqy...a,).

Then the faces of the 2-simplex <aya,a,> are the 2-simplex itself, the 1-
simplexes <{aoa;», <a,as), and <{aya,), and the O-simplexes <{aoy, <a,», and

{az).

Definition. Two simplexes o™ and o™ are properly joined provided that they
do not intersect or the intersection ¢™ N o™ is a face of both ¢™ and o™

(a) (b) (c)
Figure 1.7 Examples of proper joining

(a) (b) (c)
Figure 1.8 Examples of improper joining



1 Geometric Complexes and Polyhedra

Definition. A geometric complex (or simplicial complex or complex) is a finite
family K of geometric simplexes which are properly joined and have the
property that each face of a member of K is also a member of K. The
dimension of K is the largest positive integer r such that K has an r-simplex.
The union of the members of K with the Euclidean subspace topology is
denoted by |K| and is called the geometric carrier of K or the polyhedron
associated with K.

We shall be concerned, for the purposes of homology, with geometric
complexes and polyhedra composed of a finite number of simplexes as
defined above. Greater generality, at the expense of greater complexity, can
be obtained by allowing an infinite number of simplexes. The reader interested
in this generalization should consult the text by Hocking and Young [9].

There are several reasons for restricting our initial considerations to
polyhedra. They are easily visualized and are sufficiently general to allow
meaningful applications. Poincaré realized this and gave a definition of
complex in his second paper on algebraic topology, Complément a I’ Analysis
Situs [50], in 1899. Furthermore, polyhedra are more general than they
appear at first glance. A theorem of P. S. Alexandroff (1928) insures that
every compact metric space can be indefinitely approximated by polyhedra.
This allows us to carry over some topological theorems about polyhedra to
compacta by suitable limiting processes. After a thorough introduction to
homology theory of polyhedra, we shall look at one of its generalizations,
singular homology theory, which applies to all topological spaces.

Definition. Let X be a topological space. If there is a geometric complex K
whose geometric carrier |K| is homeomorphic to X, then X is said to be a
triangulable space, and the complex K is called a triangulation of X.

Definition. The closure of a k-simplex o, Cl(c¥), is the complex consisting of
o* and all its faces.

Definition. If K is a complex and r a positive integer, the r-skeleton of K is the
complex consisting of all simplexes of K of dimension less than or equal
tor.

Example 1.2. (a) Consider a 3-simplex ¢® = {@oa;a,a;>. The 2-skeleton of
the closure of ¢® is the complex K whose simplexes are the proper faces of ¢°.
The geometric carrier of K is the boundary of a tetrahedron and is therefore
homeomorphic to the 2-sphere

3
S2 = {(xl, Xg, X3) € R3: z xZ = 1}.
i=1

Thus S? is triangulable with K as one triangulation.
(b) The n-sphere

n+1l
sm = {(xl, Xayooos Xprp) ERPFL > xP = 1}
i=1

10



1.3 Geometric Complexes and Polyhedra

is a triangulable space for n > 0. The n-skeleton of the closure of an (n + 1)-
simplex ¢"*! is one triangulation of S™ The reader should verify this by
solving Exercise 12.

(c) The Mdébius strip is obtained by identifying two opposite ends of a
rectangle after twisting it through 180 degrees. This can easily be done with
a strip of paper. Figure 1.9 shows a triangulation of the Mobius strip. It is
understood that the two vertices labeled a, are identified, the two vertices
labeled ag are identified, corresponding points of the two segments {aqas)
are identified, and the resulting quotient space, the geometric carrier of the
triangulation, is considered as a subspace of R3.

as as as ap

ao ap az as

Figure 1.9

(d) A torusis obtained from a cylinder by identifying corresponding points
of the circular ends with no twisting, as shown in Figure 1.10.

1
O { B —— —-
\ ]

Figure 1.10

Verify the fact that the following diagram, with proper identifications,
gives a triangulation of the torus.

ap as as ap
a
a2 as as
ay
@ ar ag
ag as as ap -

Figure 1.11
11



1 Geometric. Complexes and Polyhedra

1.4 Orientation of Geometric Complexes

Definition. An oriented n-simplex, n > 1, is obtained from an »-simplex
" = {ay . . .a,y by choosing an ordering for its vertices. The equivalence
class of even permutations of the chosen ordering determines the positively
oriented simplex +o" while the equivalence class of odd permutations
determines the negatively oriented simplex —o™. An oriented geometric
complex is obtained from a geometric complex by assigning an orientation
to each of its simplexes.

If vertices ay, . . ., a, of a complex K are the vertices of a p-simplex ¢®, then
the symbol +<qay . . . a,y denotes the class of even permutations of the indicated
order ay,...,a, and —<a,...a,y denotes the class of odd permutations.
If we wanted the class of even permutations of this order to determine the
positively oriented simplex, then we would write

+0’p = <a0...ap>
or
+0'p= +<a0...ap>.

Since ordering vertices requires more than one vertex, we need not worry
about orienting O-simplexes. It will be convenient, however, to consider a
0-simplex <{a,» as positively oriented.

Example 1.3. (a) In the 1-simplex o' = <{aqa;), let us agree that the ordering
is given by a, < a;. Then

+at = <ama, —at = {aa,).

If we imagine that the segment <{a;a;> is directed from g; toward a;, then
{aqsa;y and {a,a,y have opposite directions.

(b) In the 2-simplex 0% = {aya,a,y, assign the order a, < a; < a,. Then
{apa,as), {aa,aq>, and {asaya,> all denote + o2, while {aga.a,>, {a.a,a,>,
and <a;aqa,) all denote —o?. (See Figure 1.12.) Then

+0? = +{ayma), —0? = —{ao@az) = +<aoasa;).

(Here + {apaza;) denotes the class of even permutations of ay, a,, a;, and
—<aya,a,y denotes the class of odd permutations of a,, a;, and a,.)

a a,

% 72

ag ay ag ay

2
+o? I

Figure 1.12

12



1.4 Orientation of Geometric Complexes

One method of orienting a complex is to choose an ordering for all its
vertices and to use this ordering to induce an ordering on the vertices of each
simplex. This is not the only method, however. An orientation may be
assigned to each simplex individually without regard to the manner in which
the simplexes are joined. From this point on, we assume that each complex
under consideration is assigned some orientation.

Here is a word of comfort for those who suspect that different orientations
will introduce great complexity into our considerations: they won’t. We are
developing a method of describing the topological structure of a polyhedron
| K| by determining the “holes”” and “‘twisting” which occur in the associated
complex K. In the final analysis, the determining factor is the topological
structure of |K| and not the particular triangulation nor the particular
orientation. A triangulation is a convenient method of visualizing the
polyhedron and converting it to a standard form. An orientation is simply a
convenient vehicle for cataloguing the arrangement of the simplexes. Neither
the particular triangulation nor the particular orientation makes any differ-
ence in the final outcome.

Definition. Let K be an oriented geometric complex with simplexes ¢?** and
o® whose dimensions differ by 1. We associate with each such pair
(o?*1, o) an incidence number [o**+1, o¥] defined as follows: If ¢” is not a
face of o?*1, then [¢”*?, 6”] = 0. Suppose o is a face of o?*1. Label the
vertices dy, ..., a, of o® so that +o” = +<{a,...a,>. Let v denote the
vertex of o?*! which is not in o®. Then +o?*! = +{va,...a,). If
+0?*l = +{vay...a,y, then [6?%1,6?] = 1. If +0?*! = —(va,...a,),
then [o?*1, 0] = —1.

Example 1.4. (a) If +0' = <{aoa,), then [o?, (ao>] = —1 and [, <a;)>] = 1.
(b) If +0? = +<{apa,as), +0* = {apa,) and +7! = {aya,), then [o?, o]
= 1and [¢% 7] = —1.
Note that in Figure 1.12 the arrow indicating the orientation of o* agrees
with the orientation of ¢! but disagrees with the orientation of 7!.

Theorem 1.1. Let K be an oriented complex, o® an oriented p-simplex of K and
o~ 2 a (p — 2)-face of o®. Then
Z[a'p, o?~1[e?~1, 67~2] = 0, o’ le K.

Proor. Label the vertices vy, . . ., v, _5 Of 6?72 so that +0?72 = {vy...v,_5).
Then o has two additional vertices @ and b, and we may assume that +o? =
{abv, ...v,_5>. Nonzero terms occur in the sum for only two values of
¢?~1, namely

o?~l =<avy...v,_5), o871t = <(boy .. .Vp_o).

We must now treat four cases determined by the orientations of o~ and

p-1
ob ™

13



1 Geometric Complexes and Polyhedra

Case I. Suppose that
+of™t = +<avy .. .vp_2), +087t = +<bvgy .. .Vp_2).
Then
07,017 ] = =1,  [o17%, 0" 7% = +1,

[o?, 0'12’_1] = +1, [03_1’ ap_2] = +1,

so that the sum of the indicated products is 0.
Case II. Suppose that

+of™t = +<avo .. .vp_2), +o57t = —<bvg .. .vp_9).

Then
[Up, 01{_1] = —1, [ai’_l, o,p—2] = +1,

[Up, 02_1] = _1, [0127_1, ap_z] = -1,

so that the desired conclusion holds in this case also.
The remaining cases are left as an exercise. O

Definition. In the oriented complex K, let {o?};2, and {o? *1};2%1! denote the
p-simplexes and (p + 1)-simplexes of K, where o, and «,,; denote the
numbers of simplexes of dimensions p and p + 1 respectively. The matrix

7(p) = (mu(P)),

where ;,(p) = [o?*1, oF], is called the pth incidence matrix of K.

Incidence matrices were used to describe the arrangement of simplexes in
a complex during the early days of algebraic or ““combinatorial” topology.
They are less in vogue today because group theory has given a much more
efficient method of describing the same property. The group theoretic
formulation seems to have been suggested by the famous algebraist Emmy
Noether (1882-1935) about 1925. As we shall see in Chapter 2, these groups
follow quite naturally from Poincaré’s original description of homology
theory.

EXERCISES
1. Fill in the details of the mod 2 homology example given in the text.

2. Prove that a set of k£ + 1 points in R" is geometrically independent if and
only if no p + 1 of the points lie in a hyperplane of dimension less than or
equal top — 1.

3. Prove that a set 4 = {ao, a1, . . ., ax} of points in R" is geometrically indepen-
dent if and only if the set of vectors {a; — ao,...,ax — ao} is linearly
independent.

4. Show that the barycentric coordinates of each point in a simplex are unique.

14



5.

10
11

12.

1 Exercises

A subset B of R" is convex provided that B contains every line segment having

two of its members as end points.

(a) If a and b are points in R*, show that the line segment L joining a and b
consists of all points x of the form

x=ta+ (1 - 1)
where ¢ is a real number with 0 < ¢ < 1.
(b) Show that every simplex is a convex set.
(c) Prove that a simplex o is the smallest convex set which contains all
vertices of o.

How many faces does an n-simplex have ? Prove that your answer is correct.
Verify that the r-skeleton of a geometric complex is a geometric complex.

The Klein Bottle is obtained from a cylinder by identifying the two circular
ends with the orientation of the two circles reversed. (It cannot be constructed
in 3-dimensional space without self-intersection.) Modify the triangulation of
the torus given in the text to produce a triangulation of the Klein Bottle.

Let K denote the closure of a 3-simplex ¢® = <apaiazas) with vertices ordered
by

Ao < a; < ag < as.
Use this given order to induce an orientation on each simplex of K, and
determine all incidence numbers associated with K.

Complete the proof of Theorem 1.

In the triangulation M of the Mbius strip in Figure 1.9, let us call a 1-simplex
interior if it is a face of two 2-simplexes. For each interior simplex o;, let G;
and &; denote the two 2-simplexes of which o; is a face. Show that it is not
possible to orient M so that

[6,0i] = — [g'i, a]
for each interior simplex o;. (This result is sometimes expressed by saying
that M is nonorientable or that it has no coherent orientation.)

Let 0"*! = {ag...a,+1» be the (n + 1)-simplex in R**! with vertices as
follows: a, is the origin and, for i = 1, a, is the point with ith coordinate 1
and all other coordinates 0. Let K denote the n-skeleton of the closure of
o™*1 Show that S™ is triangulable by exhibiting a homeomorphism between
S™and |K|. (Hint: If 6" ** is considered as a subspace of R***, then | K] is its
point-set boundary.)

15



Simplicial Homology Groups

Having defined polyhedron, complex, and orientation for complexes in the
preceding chapter, we are now ready for the precise definition of the homology
groups. Intuitively speaking, the homology groups of a complex describe the
arrangement of the simplexes in the complex thereby telling us about the
“holes” in the associated polyhedron.

Whether expressly stated or not, we assume that each complex under
consideration has been assigned an orientation.

2.1 Chains, Cycles, Boundaries, and Homology Groups

Definition. Let K be an oriented simplicial complex. If p is a positive integer,
a p-dimensional chain, or p-chain, is a function ¢, from the family of
oriented p-simplexes of K to the integers such that, for each p-simplex o?,
cp(—0a?) = —c,(+07). A O-dimensional chain or O-chain is a function from
the O-simplexes of K to the integers. With the operation of pointwise
addition induced by the integers, the family of p-chains forms a group
called the p-dimensional chain group of K. This group is denoted by C,(K).

An elementary p-chain is a p-chain c, for which there is a p-simplex o?
such that c,(7*) = 0 for each p-simplex +* distinct from o”. Such an
elementary p-chain is denoted by g-o® where g = c,(+07). With this
notation, an arbitrary p-chain d, can be expressed as a formal finite sum

d, = z 8i-of
of elementary p-chains where the index i ranges over all p-simplexes of K.

The following facts should be observed from the definition of p-chains:
(@) If ¢, = > fi-of and d, = > g;-o? are two p-chains on K, then
e+ dp = z(ﬁ + &)-of.

16



2.1 Chains, Cycles, Boundaries, and Homology Groups

(b) The additive inverse of the chain ¢, in the group C,(K) is the chain
—cp = 2 —fi-of.

(¢) The chain group C,(K) is isomorphic to the direct sum of the group Z
of integers over the family of p-simplexes of K. That is, if K has «,
p-simplexes, then C,(K) is isomorphic to the direct sum of o, copies of Z.
One isomorphism is given by the correspondence

Zp
D 8ol (81,82 - - -5 8ay):
i=1

Algebraic systems other than the integers could be used as the coefficient
set for the p-chains. Any commutative group, commutative ring, or field
could be used thus making C,(K) a commutative group, a module, or a
vector space. With two exceptions, we shall use only the integers as the
coefficient set for chains. Incidentally, Poincaré’s original definition was given
in terms of integers.

Definition. If g-o” is an elementary p-chain with p > 1, the boundary of g-o®,
denoted by 0(g-o?), is defined by

o(g-o?) = > [o”, of"g-ab~t,  oP teK.
The boundary operator 0 is extended by linearity to a homomorphism
0: C(K) — C,_1(K).
In other words, if ¢, = 2 g;-o? is an arbitrary p-chain, then we define
oey) = > ogi-ob).
The boundary of a 0-chain is defined to be zero.

Strictly speaking, we should say that there is a boundary homomorphism
0p: Cp(K) — C,_1(K).

This extra subscript is cumbersome, however, and we shall usually omit it
since the dimension involved is indicated by the chain group C,(K).

Theorem 2.1. If K is an oriented complex and p > 2, then the composition
00: Cy(K) — C,_o(K) in the diagram
Co(K) &> Cp_1(K) 2> Cy—5(K)
is the trivial homomorphism.
Proor. We must prove that 9d(c,) = 0 for each p-chain. To do this, it is

sufficient to show that 99(g-o”) = O for each elementary p-chain g-o?.
Observe that

g0 = o 3 lonot igat) = 3 allon ot lgeot ™)
of ~lek

P~ leg

= > 2 %ot [of, o g0 2

oP~lek of~Z%ek

17



2 Simplicial Homology Groups

Reversing the order of summation and collecting coefficients of each simplex
o? 2 gives
g = 3 (3 [onor 1o o g o)
o7 ~2%eK \oP~lek
Since Theorem 1.1 insures that 3 ,p-1cx [0?, of ~*][0? 71, 07 ~?] is O for each
o772, it follows that 99(g-o®) = 0. O

Definition. Let K be an oriented complex. If p is a positive integer, a p-
dimensional cycle on K, or p-cycle, is a p-chain z, such that d(z,) = 0. The
family of p-cycles is thus the kernel of the homomorphism o: C(K) —
C,-1(K) and is a subgroup of C,(K). This subgroup, denoted by Z,(K),
is called the p-dimensional cycle group of K. Since we have defined the
boundary of every 0-chain to be 0, we now define 0-cycle to be synonymous
with O-chain. Thus the group Zy(K) of O-cycles is the group Co(K) of
0-chains.

If p = 0, a p-chain b, is a p-dimensional boundary on K, or p-boundary,
if there is a (p + 1)-chain ¢,,; such that d(c,+,) = b,. The family of
p-boundaries is the homomorphic image d(C, , ;(K)) and is a subgroup of
C,(K). This subgroup is called the p-dimensional boundary group of K and
is denoted by B,(K).

If n is the dimension of K, then there are no p-chains on K for p > n.
In this case we say that C,(K) is the trivial group {0}. In particular, there
are no (n + 1)-chains on K so that C,.,(K) = {0} and therefore
B,(K) = {0}

The proof of the following theorem is left as an exercise:

Theorem 2.2. If K is an oriented complex, then By(K) < Z,(K) for each
integer p such that 0 < p < n, where n is the dimension of K.

We think intuitively of a p-cycle as a linear combination of p-simplexes
which makes a complete circuit. The p-cycles which enclose ““holes’ are the
interesting cycles, and they are the ones which are not boundaries of (p + 1)-
chains. We restrict our attention to nonbounding cycles and weed out the
bounding ones. A p-cycle which is the boundary of a (p + 1)-chain was said
by Poincaré to be homologous to zero. The separation of cycles into these
categories is accomplished by the following definition.

Definition. Two p-cycles w, and z, on a complex K are homologous, written
Wp ~ Z,, provided that there is a (p + 1)-chain ¢, ,; such that
0(Cpi1) = Wp — Zp.

If a p-cycle ¢, is the boundary of a (p + 1)-chain, we say that ¢, is homolo-
gous to zero and write ¢, ~ 0.

18



2.2 Examples of Homology Groups

This relation of homology for p-cycles is an equivalence relation and
partitions Z,(K) into homology classes

[zp] = {Wp EZP(K): Wp ~ Zp}-

The homology class [z,] is actually the coset
zp + By(K) = {z, + 9(cp+1): cps1) € Bo(K)}.

Hence the homology classes are actually the members of the quotient group
Z,(K)/B,(K). We can use the quotient group structure to add homology
classes.

Definition. If K is an oriented complex and p a non-negative integer, the
p-dimensional homology group of K is the quotient group

Hy(K) = Z,(K)/By(K).

2.2 Examples of Homology Groups

The following examples are intended to clarify the preceding definitions:
Example 2.1. Let K be the closure of a 2-simplex <{a,a;a,> with orientation
induced by the ordering a, < a, < a,. Thus K has O-simplexes <{a,), <a;),
and <{a,), positively oriented 1-simplexes {a,a;>, <{a;a,y, and {a,a,> and

positively oriented 2-simplex <{aya;a,).
A 0-chain on K is a sum of the form

Co = go-Kaoy + g1-<ayy + g2-<ax>

where g, g,, and g, are integers. Hence Co(K) = Zy(K) is isomorphic to the
direct sum Z @ Z @ Z of three copies of the group of integers. A 1-chain on
K is a sum of the form

¢; = ho-<aoa,y + hy-{ayas) + hy-<acas)
where hg, hy, and h, are integers, so C,(K) is isomorphicto Z @ Z @ Z. Also,
o(c;) = (—ho — ha)-<ao> + (ho — h1)-<ar) + (1 + hg)-<az>. (1)
Hence ¢, is a 1-cycle if and only if Ay, k;, and A, satisfy the equations
—hy — hy =0, ho — hy =0, hy + hy = 0.
This system gives h, = h; = —h, so that the 1-cycles are chains of the form
h-{agay + h-{a,a,y — h-{a,asy 2)

where A is any integer. Thus Z,(K) is isomorphic to the group Z of integers.
The only 2-simplex of K is {a,a,a,), so the only 2-chains are the elementary
ones h-{aya,a,y> where his an integer. Thus Co(K) =~ Z. Since

o(h-{apayaz)) = h-{apa;) + h-{a1a;) — h-{acas), 3
then o(h-{aya,asy) = 0 only when A = 0. Thus Zy(K) = {0}, so Hy(K) = {0}.
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2 Simplicial Homology Groups

From Equations (2) and (3), we observe that 1-cycles and 1-boundaries
have precisely the same form so that Z,(K) = B,(K), and hence H,(K) = {0}.
From Equation (1) we observe that a 0-cycle

8o-<ao) + g1-<a) + ga-<ayy “4)

is a 0-boundary if and only if there are integers k,, A;, and A, such that
—ho — hy = go, ho — hy = g1, hy + hy = g,.
Then g, + g; = —g, so that, for 0-boundaries, two coefficients are arbitrary,
and the third is determined by the first two. Thus By(K) =~ Z @ Z. Since
Zy(K) ¥ Z ®Z D Z, we now suspect that Hy(K) ~ Z.
To complete the proof, observe that for any 0-cycle expressed in Equation

@,
80-<aoy + g1-<a1) + ga-<asz)

= 0(81-<a0a1) + 82-a0a3)) + (g0 + &1 + g2)-<ao).

This means that any O-cycle is homologous to a O-cycle of the form 7-<a,>,
¢ an integer. Hence each 0-homology class has a representative ¢-{a,) so that
Hy(K) is isomorphic to Z.

Summarizing the above calculations, we have Hy(K) ~ Z, H,(K) = {0},
and Hy(K) = {0}. The trivial groups H;(K) and Hy(K) indicate the absence
of holes in the polyhedron [K|. As we shall see later, the fact that Hy(K) is
isomorphic to Z indicates that |K| has one component.

Example 2.2. Let M denote the triangulation of the Mé&bius strip shown in
Figure 2.1 with orientation induced by the ordering a, < a; < a, < a; <
a, < as.

as ay as ao

ap a; a as

Figure 2.1

There are no 3-simplexes in M, so By(M) = {0}. Suppose that
W = 8o-<aod3as) + &1-<A0a1as) + g2-<a184a5) + g3-<a1a2a5)
+ 84-<aoaqas) + gs-{aoaq.as)

is a 2-cycle. When &(w) is computed, the coefficient that appears with {asa,>
is go. In order to have &(w) = 0, it must be true that g, = 0. Similar reasoning
applied to the other horizontal 1-simplexes shows that each coefficient in w
must be 0. Thus Z,(M) = {0}, so Hy(M) = {0}. Using a bit of intuition, we
suspect that the 1-chains

z = 1-<aoar) + 1-{a1ay) + 1-{azaz) — 1-<aqas),

7' = 1-{aoasy + 1-<azas) + 1-{awasy — 1-{apasy
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2.2 Examples of Homology Groups

are 1-cycles. (Both of these chains make complete circuits beginning at a,.)
Direct computation verifies that z and z’ are cycles. However, z — z’ traverses
the boundary of M, so z — z’ should be the boundary of some 2-chain. A
straightforward computation shows that

z — 2/ = 0(1-apaasy + 1-{a1a:a5) + 1-{aoaxasy — 1-{aazasy

— 1-<a1a4as) — 1:{aoasas))
so that z ~ z".

A similar calculation verifies the fact that any 1-cycle is homologous to a
multiple of z. Hence H,(M) = {[gz]: g is an integer}, so H,(M) =~ Z. This
result indicates that the polyhedron |M | has one hole bounded by 1-simplexes.

To determine Hy(M), observe that any twoeleme ntary O-chains 1-<{a;>
and 1-<{a;,> (i, j range from O to 5) are homologous. For example,

1-<asy — 1-<apy = 9(1-<aoasy + 1-<asas)).

Hence Hy(M) = {[g-<a,>]: g is an integer}, so Hy(M) =~ Z. As in the pre-
ceding example, this indicates that |M | has only one component.

Example 2.3. The projective plane is obtained from a finite disk by identifying

each pair of diametrically opposite points. A triangulation P of the projective
plane, with orientations indicated by the arrows, is shown in Figure 2.2.

as

as

N
| c ad

Figure 2.2

a4

There are no 3-simplexes, so By(P) = {0}. To compute Z,(P), observe that
each 1-simplex o* of P is a face of exactly two 2-simplexes o? and o2. Observe
that when o' is <{asa,), <{a.as), or {asaz», both incidence numbers [0¢%, o']
and [o%, ¢'] are + 1. For all other choices of ¢!, the two incidence numbers
are negatives of each other. Let us call {aza,y, {a.as), and {asas> 1-simplexes
of type I and the others 1-simplexes of type II.
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2 Simplicial Homology Groups

Suppose that w is a 2-cycle. In order for the coefficients of the type II
1-simplexes in d(w) to be 0, all the coefficients in w must have a common
value, say g. But then

o(w) = 2g-<asasy + 2g-{asasy + 2g-<{asas) (5)

since both incidence numbers for the type I 1-simplexes are + 1. Hence w is
a 2-cycle only when g = 0, so Z,(P) = {0} and H,(P) = {0}.
Observe that any 1-cycle is homologous to a multiple of

z = 1-{asa,y + 1-{asasy + 1-{asas).

Furthermore, Equation (5) shows that any even multiple of z is a boundary.
Thus H,(P) =~ Z,, the group of integers modulo 2. This result indicates the
twisting that occurs around the “hole” in the polyhedron |P|. (Recall,
however, that the homology groups overlooked the twisted nature of the
Mobius strip.)

In the computation of homology groups, it is sometimes convenient to
express an elementary chain in terms of a negatively oriented simplex. In
order to be able to do this later, let us agree that the symbol g-(—o?) may be
used to denote the elementary p-chain —g-o”. In other words, if <ay...a,)
represents a positively or negatively oriented p-simplex, then g-<aq...a,)
denotes the elementary p-chain which assigns value g to the orientation
determined by the class of even permutations of the given ordering and
assigns value —g to the orientation determined by the class of odd permuta-
tions. Return to Example 2.3 for an illustration of this notation. In that
example, {asas> denotes a positively oriented 1-simplex. The symbols
g-<asasy and —g-{asasy now denote the same elementary 1-chain. An
elementary 2-chain 4-<{a,a,a,y may be written in any of six ways:

h-{agaiasy = h-{a,a.a0) = h-{axa,a,y = —h-{a,a0,a,)
= —h-<aea:a,) = —h-<{aa,a,.

2.3 The Structure of Homology Groups

What possibilities are there for the homology groups H,(K) of a complex K
if we take our coefficient group to be the integers ? The answer is provided by
group theoretic considerations.

Suppose that K has o, p-simplexes. Then C,(K) is isomorphic to
Z @@ Z (x, summands). In other words, C,(K) is a free abelian group on
o, generators. Since every subgroup of a free abelian group is a free abelian
group, then Z,(K) and B,(K) are both free abelian groups. The quotient group

Hp(K) = Zp(K)/Bp(K)

may not be free, but its possibilities are given by the decomposition theorem
for finitely generated abelian groups (Appendix 3):

H(K) = GOT, @D Tn
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2.3 The Structure of Homology Groups

where G is a free abelian group and each T; is a finite cyclic group. The direct
sum T, @- - - @ Ty is called the torsion subgroup of H,(K). As in the example
with the projective plane, the torsion subgroup describes the “twisting” in
the polyhedron |K|. Additional examples of twisting will be found in the
exercises at the end of the chapter.

The existence of torsion subgroups explains why the integers modulo 2
are not generally used for the coefficient set in homology theory. The finite
cyclic groups T4, ..., T, which compose the torsion subgroup are quotient
groups of Z. If we used the group Z, of integers modulo 2 rather than Z,
there would be no way to recognize torsion since Z, admits no proper sub-
groups. Note also that orientation is meaningless in the modulo 2 case. For
problems in which orientation and the torsion subgroup are not important,
the integers modulo 2 can be an effective choice for the coefficient group. In
this regard, see the chapter on modulo 2 homology theory, including the
Jordan Curve Theorem, in [15].

The next theorem shows that the homology groups of a complex are
independent of the choice of orientation for its simplexes.

Theorem 2.3. Let K be a geometric complex with two orientations, and let
K, K, denote the resulting oriented geometric complexes. Then the homology
groups H,(K;) and H,(K,) are isomorphic for each dimension p.

Proor. For a p-simplex o” of K, let ‘o® denote the positive orientation of o®
in the complex Kj, i = 1, 2. Then there is a function « defined on the simplexes
of K such that «(¢?) is +1 and
167 = ofo?)20P.
Define a sequence ¢ = {p,} of homomorphisms
@p: Cp(Ky) — Cp(K3)
by
Pp (z 8 10?) = z (o?)g;- 2o}

where > g;-1o? represents a p-chain on Kj.
For an elementary p-chain g-!o” on K; with p > 1,

prosl(g 10 = gpes 3 glion, ) )

oP —lek

- Z a(o? 1) g[le®, 1P ~1]- 2071

oP—lek
= 3 «o" Y ga(o? Ve(o?)[%?, %0771 2071
o? ~lek
=do?)g > [%” %1%t = d(efo”)g %)
oP-lek
= Op,(g-'a”).
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2 Simplicial Homology Groups

Thus the relation ¢,_,0 = 0¢, holds in the diagram

Cp(Kl) lz,—) Cp(K2)

P
Cp_1(Ky) 222 €, 1 (Ko).

(As we shall see later, this is a very important relation.) If z, € Z,(K}), then

8(]71,(21,) = (Pp—la(zp) = (pp—l(o) = 0)

$0 ¢,(z,) € Z,(K5). Hence ¢,(Z,(K3)) is a subset of Z,(Ky).
If 0(c, +1) € By(K7), then

(Ppa(cp+1) = a‘Pp+1(cp+1):

$0 @,0(cp+1) 18 in By(K,). Thus ¢, maps B,(K;) into B,(K,) and induces a
homomorphism ¢¥ from the quotient group H,(K;) = Z,(K;)/B,(K;) to
H,(K2) = Z,(K;)|B,(K,) defined by

‘P:([Zp]) = [‘Pp(zp)]

for each homology class [z,] in H,(K;).
Reversing the roles of K; and K, yields a sequence ¢ = {i,} of homo-
morphisms:

‘/’p: Cp(K2) - Cp(Kl)

such that ¢, and ¢, are inverses of each other for each p. This implies that
¥ is the inverse of ¢} and hence that

oF: H(Ky) — Hy(Ky)

is an isomorphism for each dimension p. O

As remarked earlier, the structure of the zero dimensional homology group
Hy(K) indicates whether or not the polyhedron | K| is connected. Actually the
situation is quite simple; there is no torsion in dimension zero, and the rank
of the free abelian group Hy(K) is the number of components of the poly-
hedron |K|. Proving this is our next goal.

Definition. Let K be a complex. Two simplexes s; and s, are connected if
either of the following conditions is satisfied:
@ s;Nsy, # 3
(b) there is a sequence oy, . . ., o, of 1-simplexes of K such thats; N o; isa
vertex of sy, s, N o, is a vertex of s,, and, for 1 < i < p,0;,No;, 052
common vertex of o; and oy ;.

This concept of connectedness is an equivalence relation whose equiva-
lence classes are called the combinatorial components of K. The complex K
is said to be connected if it has only one combinatorial component.
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2.4 The Euler-Poincaré Theorem

It is left as an exercise for the reader to show that the components of |K]|
and the geometric carriers of the combinatorial components of K are identical.

Theorem 2.4. Let K be a complex with r combinatorial components. Then
Hy(K) is isomorphic to the direct sum of r copies of the group Z of integers.

ProoF. Let K’ be a combinatorial component of K and {a’) a 0-simplex in K.
Given any O-simplex <b) in K’, there is a sequence of 1-simplexes

<bao>, <a0a1>9 <a1a2>’ D] <apal>

from b to a’ such that each two successive 1-simplexes have a common
vertex. If g is an integer, we define a 1-chain ¢; on the sequence of 1-simplexes
by assigning either g or —g to each simplex (depending on orientation) so
that d(cy) is g-<b> — g-<a’> or g-<b> + g-<{a’>. Hence any elementary
O-chain g-<b) is homologous to one of the 0-chains g-<{a’> or —g-<{a’>. It
follows that any O-chain on K’ is homologous to an elementary 0-chain
h-<{a"y where h is some integer.

Applying this result to each combinatorial component K, ..., K, of K,
there is a vertex a' of K; such that any 0-cycle on K; is homologous to a 0-chain
of the form A;-{a’) where h; is an integer. Then, given any O-cycle ¢, on K,
there are integers A, . . ., i, such that

o~ i h;-<a*y.
i=1

Suppose that two such 0-chains > A;-{a’> and > g;-<{a') represent the same
homology class. Then

> (& — h)Xa = d(cy) (6)

for some 1-chain ¢,. Since a' and @’ belong to different combinatorial com-
ponents when i # j, then Equation (6) is impossible unless g; = A; for each i.
Hence each homology class [¢,] in Ho(K) has a unique representative of the
form 3 h;-<a'). The function

Z hi'<ai>g - (h19~ B} hr)
is the required isomorphism between Hy(K) and the direct sum of r copies

of Z. 5

Corollary. If a polyhedron |K| has r components and triangulation K, then
H(K) is isomorphic to the direct sum of r copies of Z.

2.4 The Euler—Poincaré Theorem

If |K]| is a rectilinear polyhedron homeomorphic to the 2-sphere S2 with V'
vertices, E edges, and F two dimensional faces, then

V—-E+F=2.
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2 Simplicial Homology Groups

This result was discovered in 1752 by Leonhard Euler (1707-1783). Poincaré’s
first real application of homology theory was a generalization of Euler’s
formula to general polyhedra. That celebrated result, the Euler-Poincaré
Theorem, is proved in this section.

Definition. Let K be an oriented complex. A family {zI, ..., z7} of p-cycles is
linearly independent with respect to homology, or linearly independent
mod B,(K), means that there do not exist integers g, ..., g, not all zero
such that the chain Y gz} is homologous to 0. The largest integer r for
which there exist r p-cycles linearly independent with respect to homology
is denoted by R,(K) and called the pth Betti number of the complex K.

In the theorem that follows, we assume that the coefficient group has been
chosen to be the rational numbers and not the integers. (This is one of two
instances in which this change is made.) The reader should convince himself
that linear independence with integral coefficients is equivalent to linear
independence with rational coefficients and that this change does not alter
the values of the Betti numbers.

Theorem 2.5. (The Euler-Poincaré Theorem). Let K be an oriented geometric
complex of dimension n, and for p = 0, 1, . .., n let o, denote the number of
p-simplexes of K. Then

2 (=P, = > (~1?Ry(K)
p=0 p=0
where R,(K) denotes the pth Betti number of K.

ProOF. Since K is the only complex under consideration, the notation will be
simplified by omitting reference to it in the group notations. Note that C,,
Z,, and B, are vector spaces over the field of rational numbers.

Let {d;} be a maximal set of p-chains such that no proper linear combina-
tion of the d} is a cycle, and let D, be the linear subspace of C, spanned by
{d}}. Then D, N Z, = {0} so that, as a vector space, C, is the direct sum of
Z, and D,. Hence

o, = dim C, = dim D, + dim Z,,
dimZ, = «, — dim D,, 1 <p<n,

where the abbreviation “dim” denotes vector space dimension.

Forp=0,...,n— 1,let b, = d(d},,). The set {b} forms a basis for B,.
Let {zi}, i = 1,..., R,, be a maximal set of p-cycles linearly independent
mod B,. These cycles span a subspace G, of Z,, and

Z,=G,®B, 0O<p<n-1
Thus
dim Z, = dim G, + dim B, = R, + dim B,

since R, = dim G,. Then

R, =dimZ, — dim B, = «, — dim D, — dim B, l<p<n-1
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2.4 The Euler-Poincaré Theorem

Observe that B, is spanned by the boundaries of elementary chains

o(1-07*1) = > my(p)-of

where (;;(p)) = n(p) is the pth incidence matrix. Thus dim B, = rank »(p).
Since the number of d/, , is the same as the number of 4%, then

dim D,,; = dim B, = rank »(p), O<p<n-1
Then
R, = o, — dim D, — dim B,
= a, — rank 5(p — 1) — rank 5(p), l<p<n-1
Note also that

Ry = dim Z, — dim B, = «, — rank 5(0)
R, =dimZ, = «, — dim D, = «, — rank 9(n — 1).

In the alternating sum >%_, (—1)”R,, all the terms rank 5(p) cancel, and we
have

n n
2 (=1PR, = > (=1)a, m
p=0 p=0
Definition. If K is a complex of dimension n, the number

x(K) = > (—-1PR,
=0
is called the Euler characteristic of K.

Chains, cycles, boundaries, the homology relation, and Betti numbers were
defined by Poincaré in his paper Analysis Situs [49] in 1895. As mentioned
earlier, he did not define the homology groups. The proof of the Euler—
Poincaré Theorem given in the text is essentially Poincaré’s original one.
Complexes (in slightly different form) and incidence numbers were defined
in Complément a I’ Analysis Situs [50] in 1899.

The Betti numbers were named for Enrico Betti (1823-1892) and generalize
the connectivity numbers that he used in studying curves and surfaces.
Poincaré assumed, but did not prove, that the Betti numbers are topological
invariants. In other words, he assumed that if the geometric carriers | K| and
|L| are homeomorphic, then R,(K) = R,(L) in each dimension p. The first
rigorous proof of this fact was given by J. W. Alexander (1888-1971) in 1915.
Topological invariance of the homology groups was proved by Oswald
Veblen in 1922. One can thus speak of H,(|K|), R,(]K|), and x(|K|) since
these homology characters are independent of the triangulation of the poly-
hedron |K|. It is important to know that the homology characters are
topologically invariant. The proofs are lengthy, however, and are omitted.
Anyone interested in following this topic further should consult references
[2] and [17].
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2 Simplicial Homology Groups

It is left as an exercise to show that the pth Betti number R,(K) of a com-
plex K is the rank of the free part of the pth homology group H,(K). The pth
Betti number indicates the number of “p-dimensional holes” in the
polyhedron |K|.

Definition. A rectilinear polyhedron in Euclidean 3-space R? is a solid bounded
by properly joined convex polygons. The bounding polygons are called
faces, the intersections of the faces are called edges, and the intersections
of the edges are called vertices. A simple polyhedron is a rectilinear poly-
hedron whose boundary is homeomorphic to the 2-sphere S2. A regular
polyhedron is a rectilinear polyhedron whose faces are regular plane
polygons and whose polyhedral angles are congruent.

In Exercise 6 at the end of the chapter, the reader will find that the Betti
numbers of the 2-sphere S2 are

RO(SZ) = 15 RI(SZ) = 0, RZ(SZ) = 1'

Then S? has Euler characteristic
2

X(8%) = D (~1PR(S) =1-0+1=2.
p=0
Applying the Euler-Poincaré Theorem to S2? produces the following
corollary:

Theorem 2.6 (Euler’s Theorem). If S is a simple polyhedron with V vertices,
E edges, and F faces, then V. — E + F = 2.

Proor. Things are complicated slightly here by the fact that the faces of .S
need not be triangular. This situation is corrected as follows: Consider a face
7 of S having n, vertices and n, edges. Computing vertices — edges + faces
gives no — n, + 1 for the single face . Choose a new vertex v in the interior
of 7, and join the new vertex to each of the original vertices by a line segment
as illustrated in Figure 2.3. In the triangulation of =, one new vertex and n,

T 7 Triangulated

Figure 2.3
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2.4 The Euler-Poincaré Theorem

new edges are added. In addition, the one face 7 is replaced by n, new faces.
Then

vertices — edges + faces = (ng + 1) — (n, + ng) + ng = ny — n; + 1

so that the sum ¥V — E + Fis not changed in the triangulation process. Let
o, i = 0,1, 2, denote the number of i-simplexes in the triangulation of S
obtained in this way. Then

V—-—E+F=a0—a1+a2
by the above argument. The Euler-Poincaré Theorem shows that
oy — oy + ay = Ry(S?%) — Ri(S?) + Ry(S?) = 2.
Hence
V—-—E+ F=2
for any simple polyhedron. O

Theorem 2.7. There are only five regular, simple polyhedra.

ProOF. Suppose S'is such a polyhedron with V vertices, E edges, and F faces.
Let m denote the number of edges meeting at each vertex and » the number
of edges of each face. Note that n > 3. Then

mV = 2E = nF,

V—FE+F=2
so that .

i F=2
Hence

F@2n — mn + 2m) = 4m,
and it must be iruc that
2n — mn + 2m > 0.
Since n > 3, this gives
2m > nim — 2) = 3(m — 2) = 3m — 6,

som < 6. Thus m can only be 1, 2, 3, 4, or 5.
The relations

FQ2n — mn + 2m) = 4m, n>3m<6

produce the following possible values for (m, n, F): (a) (3, 3, 4), (b) (3, 4, 6),
(©) (4, 3, 8), (d) (3, 5, 12), and (¢) (5, 3, 20).
For example, m = 4 gives

F(@8 — 2n) = 16,
allowing the possibility F = 8, n = 3. (The reader should solve the remaining
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2 Simplicial Homology Groups

cases.) The five possibilities for (m, n, F) are realized in the tetrahedron, cube,

octahedron, dodecahedron, and icosahedron shown in Figure 2.4. O
Tetrahedron Cube Octahedron
Dodecahedron Icosahedron
Figure 2.4

2.5 Pseudomanifolds and the Homology Groups of S”

Algebraic topology developed from problems in mathematical analysis and
geometry in Euclidean spaces, particularly Poincaré’s work in the classifica-
tion of algebraic surfaces. The spaces of primary interest, called ‘“manifolds ™,
can be traced to the work of G. F. B. Riemann (1826-1866) on differentials
and multivalued functions. A manifold is a generalization of an ordinary
surface like a sphere or a torus; its primary characteristic is its “local”
Euclidean structure. Here is the definition:

Definition. An n-dimensional manifold, or n-manifold, is a compact, connected
Hausdorff space each of whose points has a neighborhood homeomorphic
to an open ball in Euclidean n-space R™

It should be noted that not all texts require that manifolds be compact and
connected. Sometimes these conditions are omitted, and other properties,
paracompactness and second countability, for example, are added. For many
of the applications in this text, however, compactness and connectedness are
required, and it will simplify matters to include them in the definition.

Definition. An n-pseudomanifold is a complex K with the following properties:

(a) Each simplex of K is a face of some n-simplex of K.

(b) Each (n — 1)-simplex is a face of exactly two n-simplexes of K.

(c) Given a pair ¢} and o} of n-simplexes of K, there is a sequence of n-
simplexes beginning with o} and ending with o} such that any two
successive terms of the sequence have a common (n — 1)-face.
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2.5 Pseudomanifolds and the Homology Groups of S

Example 2.4. (a) The complex K consisting of all proper faces of a 3-simplex
{apa,azasy (Figure 2.5) is a 2-pseudomanifold and is a triangulation of the
2-sphere S2.

Figure 2.5

(b) The triangulation of the projective plane in Figure 2.2 is a 2-pseudo-
manifold.

(c) The triangulation of the torus in Figure 1.11 is a 2-pseudomanifold.

(d) The Klein Bottle is constructed from a cylinder by identifying opposite
ends with the orientations of the circles reversed. A triangulation of the
Klein Bottle as a 2-pseudomanifold is shown in Figure 2.6.

agp ai aj ap
ar ag
ag as
a as
as 2 ag
agp a az o

Figure 2.6 Triangulation of the Klein Bottle

The Klein Bottle cannot be embedded in Euclidean 3-space without self-
intersection. Allowing self-intersection, it appears in the figure below.

Figure 2.7

Each space of Example 2.4 is a 2-manifold. The n-sphere S™, n > 1, is an
n-manifold. Incidentally, this indicates why the unit sphere in R™*? is called
the “n-sphere” and not the “(n + 1)-sphere”. The integer n refers to the
local dimension as a manifold and not to the dimension of the containing
Euclidean space. Note that each point of a circle has a neighborhood homeo-
morphic to an open interval in R; each point of S2 has a neighborhood
homeomorphic to an open disk in R?; and so on.
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2 Simplicial Homology Groups

The relation between manifold (a type of topological space) and pseudo-
manifold (a type of geometric complex) is simple to state: If X is a triangulable
n-manifold, then each triangulation K of X is an n-pseudomanifold. The
homology groups of the pseudomanifold K reflect the connectivity, the
“holes” and ““twisting”’, of the associated manifold X. The computation of
homology groups of pseudomanifolds is thus a worthwhile project. As we
shall see in this section, these groups are often amenable to computation.

If X is a space each of whose triangulations is a pseudomanifold, it is
sometimes said that “ X is a pseudomanifold.”” Since a space and a triangula-
tion of the space are different, this is an abuse of language. It is permissible
only in situations in which the distinction between space and complex is not
important, as in the computation of homology groups.

We shall restrict ourselves in this section to theorems and examples related
to the homology groups of pseudomanifolds. Those interested in the fact
that each triangulation of a triangulable n-manifold is an n-pseudomanifold
can find the proof in many texts, for example [2].

Theorem 2.8. Let K be a 2-pseudomanifold with o, vertices, «; 1-simplexes, and
oy 2-simplexes. Then

(@) 3oy = 20y,
(b) & = 3(ep — x(K)),
(©) % = T + V49 — 24x(K)).
Proor. Since each 1-simplex is a face of exactly two 2-simplexes, it follows
that 3e, = 204, and hence that oy = %«;.
The Euler—Poincaré Theorem guarantees that
ay — a; + oy = y(K).
Then
ap — oy + Jouq = x(K),
and hence
ay = 3(ao — x(K)).
To prove (c), note that «, > 4 and that
ay < Cho = Jag(eg — 1)
where C%o denotes the number of combinations of «, vertices taken two at a
time. By elementary algebra,
60(2 = 4(11
20, = 60y — 60y
ogleg — 1) = 60y — 6ag
o« — @y — 6ag = 6oy — 60y — 60y = —6x(K)
of — Tag = —6x(K)
40f — 280y + 49 = 49 — 24x(K)
Qe — 7)2 > 49 — 24x(K)
LT + V49 — 24x(K)). O

vV v

g

32
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Theorem 2.8 is useful in determining the 2-pseudomanifold triangulation
of a polyhedron having the minimum number of simplexes in each dimension.
Computing homology groups is at best a tedious procedure; it is simplified
by using a minimal triangulation (a triangulation with the smallest number
of simplexes).

Example 2.5. Consider, for example, the 2-sphere S2. Since y(S2) = 2, then

17 + V49 — 24x(K)) = 4,
3o — x(K)) = 34 — 2) = 6,
oy = %al > %—~6 = 4.

1\

%
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Hence any triangulation of S2 must have at least four vertices, at least six
I-simplexes, and at least four 2-simplexes. This minimal triangulation is
achieved by the boundary complex of a tetrahedron (proper faces of a 3-
simplex) in Figure 2.5.

Example 2.6. Consider the projective plane P, a 2-manifold. As shown earlier,
H,(P) = {0} and H,(P) ~ Z,. Since P is connected, Theorem 2.4 shows that
Hy(P) ~ Z. Then

Rz(P) = RI(P) = 0, Ro(P) = 1, X(P) = l.
This gives

@ > HT + V49 — 24x(P)) = 6,
@ > 3(6 — 1) = 15,
a > 215 = 10,

so that any triangulation of P must have at least six vertices, fifteen 1-simplexes,
and ten 2-simplexes. The triangulation of P given in Figure 2.2 is thus minimal.

Definition. Let K be an n-pseudomanifold. For each (n — 1)-simplex ¢"~* of
K, let % and o} denote the two n-simplexes of which ¢"~! is a face. An
orientation for K having the property

[¢%, 0*1] = —[d}, 0]
for each (n — 1)-simplex o™~ of K is a coherent orientation. An n-

pseudomanifold is orientable if it can be assigned a coherent orientation.
Otherwise it is nonorientable.

The proof is lengthy, but it can be shown that orientability is a topological
property of the underlying polyhedron |K| and is not dependent on the
particular triangulation K. We shall assume this without proof. It is left as an
exercise for the reader to show that the projective plane and Klein Bottle are
nonorientable while the 2-sphere and torus are orientable.

Example 2.7. Let K denote the n-skeleton of the closure of an (n + 1)-simplex
o"*1in R**1, n > 1. Then K is an n-pseudomanifold and is a triangulation of
the n-sphere S™. (Recall Exercise 12 in Chapter 1.)
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The following notation will be helpful in determining a coherent orienta-
tion and is used only in this example. For an integer jwith0 < j < n + 1, let

o, =<ay...dj...0n41)

where the symbol 4; indicates that the vertex a; is deleted. The positively
oriented simplex +o; has the given ordering when j is even and the opposite
ordering (an odd permutation of the given ordering) when j is odd. The
(n — 1)-simplex

+oij = +<ao . d, . .dj~ . -an+1>

is then a face of the two n-simplexes o; and o;.
It is left as an exercise for the reader to show that this orientation for the
n-simplexes and (n — 1)-simplexes gives

[os, Ui;'] = - [0;'» Uij]

in each case. It follows that any n-chain of the form >, .« g-0;, g an integer,
is an n-cycle. Furthermore, if
z= Z 8i*0i

2134
is an n-cycle, then
0=20(2) = Z hi;- oy
oK

where h;; is either g; — g; or g; — g;. Hence z is an n-cycle if and only if all
the coeflicients g; have a common value g. Thus Z,(S") ~ Z. Since B,(S") =
{0}, then H,(S™) ~ Z.

A complete description of the homology groups of S™ is given by the
following theorem:

Theorem 2.9. The homology groups of the n-sphere, n > 1, are

Z ifp=0orp=n

Hy(S™) = {{0} if0 <p<n

PRrOOF. Since S™ is connected, Theorem 2.4 implies that Hy(S™) =~ Z. The
above example shows that H,(S™) ~ Z. The following notation will be used
in handling the case 0 < p < n: If +0” = {a,...a,) and v is a vertex for
which the set {v, ay, . .., a,} is geometrically independent, then the symbol
vo® denotes the positively oriented (p + 1)-simplex +<{va,...a,). If
¢ = 2 g;-of is a p-chain, then vc denotes the (p + 1)-chain

ve = Zg,--vc{’.
Note that
0(1-ve?) = 1-6® — vo(1-0%).

Now consider a particular vertex v in the triangulation of S™ given in the
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preceding example. Since any p-simplex containing v can be expressed in the
form vo?~1, then any p-cycle z can be written

z = Zg,~af + Zh,%)o}"l

where simplexes in the second sum have v as a vertex and those in the first
sum do not. Since z is a p-cycle, then

0 =a(z) = (> gi-of) + 8(3 hy-vo?~Y)

=93> gof) + > hyopt — (0> hy-ofY)
A(Shor) =0, S geot) = 3 oo

thva, Zg, -0} — vo Zg, oi)
=>gol +vy hroft =z

Thus every p-cycle on S™ is a boundary, so H,(S™) = {0} for0 < p <n. [

so that

This gives

The next theorem explains the meaning of orientability intermsof homology
groups.

Theorem 2.10. An n-pseudomanifold K is orientable if and only if the nth homol-
ogy group H,(K) is not the trivial group.

Proor. Assume first that K is orientable and assign it a coherent orientation.
Then if the (n — 1)-simplex o™~ is a face of o} and o3, we have

[o}, 0" 1] = —[o3, 0" '].

This implies that any n-chain of the form

Cc = z g.an
oneK
(g a fixed integer) is an n-cycle. Thus Z,(K) # {0}. Since B,(K) = {0}, then
H,(K) # {0}
To complete the proof it must be shown that K is orientable if H,(K) # {0}.
Suppose that
z= Z 8ot

o"eK
is a nonzero n-cycle.

Since each pair of n-simplexes in K can be joined by a sequence of n-
simplexes (as specified in the definition of n-pseudomanifold) and each
(n — 1)-simplex is a face of exactly two n-simplexes, it follows that any two
coeflicients in z can differ only in sign. That is to say, g; = +g, if a(z) = 0.

By reorienting o if g, = —g,, we obtain an n-cycle
Z 8o} = go( z 1‘0?),
ofek olekK
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so it follows that > 1-67 is an n-cycle. But this means that each (n — 1)-
simplex must have positive incidence number with one of the n-simplexes
of which it is a face and negative incidence number with the other. In other
words, K is orientable. O

Corollary. An n-pseudomanifold L is nonorientable if and only if H,(L) = {0}.

The question of whether or not every n-manifold has a triangulation was
raised by Poincaré. Here it was not required that manifolds be compact, and
triangulations having an infinite number of simplexes were allowed. Under
these conditions, Tibor Rado (1895-1965) proved in 1922 that every 2-
manifold has a triangulation, and Edwin Moise (1918- ) proved the corre-
sponding result for 3-manifolds in 1952.

In 1969 R. C. Kirby (1938- ) and L. C. Siebenmann (1939~ ), using a
somewhat different definition of triangulability, showed the existence of
manifolds in higher dimensions which are not triangulable in their sense
of the term. This answered a related triangulation problem which had been of
interest for many years. The results of Kirby and Siebenmann can be found
in [44].

A 2-manifold is called a closed surface. The topological power of the
homology groups is demonstrated by the following classification theorem
for closed surfaces.

Theorem 2.11. Two closed surfaces are homeomorphic if and only if they have
the same Betti numbers in corresponding dimensions.

The proof of Theorem 2.11 is omitted from this text because it would
require a lengthy digression into the theory of closed surfaces and because,
historically, the theorem preceded Poincaré’s formalization of algebraic
topology. It was a motivating force behind Poincaré’s work, however, and
served as a model of the type of theorem to which topology would aspire.
More will be said on this point in Chapter 4.

Theorem 2.11 was essentially known by about 1890 through the work of
various mathematicians, notably Camille Jordan (1858-1922) and A. F.
Moébius (1790-1860). Jordan is best known for his work in algebra and for
proposing the Jordan Curve Theorem. Mébius invented the polyhedron that
bears his name (the M&bius strip) and in so doing initiated the study of
orientability. He used the term ‘one-sided” to mean nonorientable and
“two-sided ” to mean orientable for surfaces. The modern terms ““orientable”
and ‘“nonorientable” were introduced by J. W. Alexander to generalize
Mobius’ concepts to higher dimensions.

Those who wish to see a proof of Theorem 2.11 should consult the texts
by Cairns [2] or Massey [16].
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2 Exercises

EXERCISES

1.

&

b

10.

11.

12

13.

14

b

15.

16.

17.

Suppose that K; and K, are two triangulations of the same polyhedron. Are
the chain groups C,(X;) and C,(K;) isomorphic? Explain.

Suppose that complexes K; and K, have the same simplexes but different
orientations. How are the chain groups C,(K;) and C,(Ks) related ?

3. Prove Theorem 2.2.

4. Let z, be a p-cycle on a complex K. Explain why the homology class [z,] and

the coset z, + B,(K) are identical.

Let K denote the complex consisting of all proper faces of a 2-simplex
{aoaiaz»> with orientation induced by the order a, < a; < a,. Compute all
homology groups of K.

. Compute the homology groups and Betti numbers of the 2-sphere S2.

Compute the homology groups of the cylinder C triangulated in the accom-
panying figure. (Assign any orientation you like.)

ay as as ai

ag aj ay ap

8. Compute the homology groups of the torus.

Compute the homology groups of the Klein Bottle.

Prove that linear independence with respect to homology for integrai coeffi-
cients is equivalent to linear independence with respect to homology for
rational coefficients. Explain in particular why the Betti numbers are not
altered by the change to rational coefficients.

Derive the possibilities for (m, n, F) referred to in the proof of Theorem 2.7.
How do you rule out the cases m = 1 and m = 27

Fill in the details in the proof of Theorem 2.3. Explain in particular the rela-
tion between [*o?, '6? 1] and [?0?, 207 1].

Prove that the geometric carriers of the combinatorial components of a
complex K and the components of the polyhedron |K| are identical.

Prove that the pth Betti number of a complex K is the rank of the free part of
the pth homology group H,(K).

Find a minimal triangulation for the torus 7. (Its homology groups are
H(T)2Z, H(T) 2 Z ®Z,and HA(T) = Z.)

Let K be a complex and K7 its r-skeleton. Show that H,(K) and H,(K") are
isomorphic for 0 < p < r. How are H,(K) and H,(K") related ?

Why must an n-pseudomanifold have dimension »?
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2 Simplicial Homology Groups

18.

19.
20.

21.

22,

23.
24.

25

26.

27.
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Show explicitly that the torus is orientable and that the projective plane and
Klein Bottle are nonorientable.

Complete the proof in Example 2.7 that the n-sphere S™ is orientable.

In the proof of Theorem 2.9, show that
o(1-vo?) = 1.0 — v 9(1-0%).

Let K denote the closure of an n-simplex. Prove that H,(K) = {0} for
0 < p =< n. Use this to show that H,(S™) = {0} for 0 < p < n.

Show that an orientable z-pseudomanifold has exactly two coherent orienta-
tions for its n-simplexes.

If K is an orientable n-pseudomanifold, prove that H,(K) ~ Z.

In the definition of n-pseudomanifold, replace (b) with (b"): Each (n — 1)-

simplex is a face of at least one and at most two n-simplexes. The resulting

conditions (a), (b’), and (c) define the term n-pseudomanifold with boundary.

(i) Define orientability for n-pseudomanifolds with boundary in analogy
with the definition of orientability for n-pseudomanifolds.

(ii) Show that the Mdobius strip is a nonorientable 2-pseudomanifold with
boundary.

If K is a 2-pseudomanifold, prove that y(K) < 2. How is this fact used in
Theorem 2.8?

Show that the projective plane P is the quotient space of the 2-sphere obtained
by identifying each pair x, —x of diametrically opposite points.

References [9] and [2] may be helpful for (b) and (c).

(a) Define a 1-dimensional complex K in R® for which |K| is not homeo-
morphic to a subspace of R2.

(b) Prove that if K is a complex of dimension n, then | K| can be rectilinearly
imbedded in R2"7+1,

(c) Prove that every triangulation of an n-manifold is an n-pseudomanifold.



Simplicial Approximation

3.1 Introduction

We turn now to the problem of comparing polyhedra by means of their
associated homology groups. Comparisons between two topological spaces
are usually made on the basis of a continuous map, ideally a homeomorphism,
from one space to another. Groups are compared by means of homomor-
phisms and isomorphisms. We shall show in this chapter that a continuous
map f: |K| — | L| induces for each non-negative integer p a homomorphism
f¥: H(K)—> H,(L) on the associated homology groups. This will allow
topological comparisons between the polyhedra |K| and |L| on the basis of
algebraic similarities between their associated homology groups.

We have pointed out that if |[K| and |L| are homeomorphic, then H,(K)
and H,(L) are isomorphic in each dimension p. The reader should be warned
that the converse is not true. Even if there is a continuous map f: |K| — | L|
for which f;¥ is an isomorphism for each dimension p, it may not follow that
|K| and |L| are homeomorphic. Thus we do not have the best possible
situation in which a topological comparison is reduced to a purely algebraic
one. However, as we shall see in this and later chapters, the method of
comparing topological spaces through their homology groups is a very
powerful tool.

Suppose then that there is a continuous map f: |K|— |L| from one
polyhedron to another. How are the associated homomorphisms defined?
The situation would be simple if f took simplexes of K to simplexes of L, i.e.,
if f were a “simplicial map.” We could then induce homomorphisms from
C,(K) to C,(L) and use these to define the required homomorphisms on the
homology groups. If f does not take simplexes of K to simplexes of L, we
replace ' by a map which does as follows: Subdivide K into smaller simplexes
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3 Simplicial Approximation

so that f “‘almost” maps each simplex of K into a simplex of L. We can then
define explicitly a simplicial map which has the essential characteristics of f
and use this new map to induce homomorphisms on the homology groups.
The process of subdividing K is called “barycentric subdivision,” and the
associated simplicial map is called a “simplicial approximation.” This
intuitive description will be made more precise as we proceed. The existence
of simplicial approximations to any continuous map f: |K| — | L| is the cen-
tral result of this chapter.

3.2 Simplicial Approximation

Definition. Let Kand L be complexes and {g,}§ a sequence of homomorphisms
@, C(K) — C,(L) such that
0Py = Pp-10, p=1l
Then {p,}§ is called a chain mapping from K into L.

In the preceding definition, the sequence {@,}¢ is written as an infinite
sequence simply to avoid mention of the dimensions of K and L. When p
exceeds dim K and dim L, then C,(K) and C,(L) are zero groups and ¢, must
be the trivial homomorphism which takes 0 to O.

Theorem 3.1. A chain mapping {p,}& from a complex K into a complex L
induces homomorphisms

@5 Hy(K) — Hy(L)
in each dimension p.

Proor. If b, = 9(c,+1) in B,(K), then

o(by) = @p0(Cpr1) = a‘;"zﬂrl(czvrl)’

so ¢,(b,) is the boundary of the (p + 1)-chain ¢,,:(c,+;). Thus ¢, maps
B,(K) into B,(L).

We shall now show that ¢, maps Z,(K) into Z,(L). This is true forp = 0
since Zo(K) = Co(K)and Zo(L) = Co(L). Forp = 1, suppose that z, € Z,(K).
Note that

3(})1,(2,,) = ‘Pp—la(zp) = ‘Pp—l(O) =0,
$0 @,(z,) is a p-cycle on L.
Since
Hp(K) = Zp(K)/Bp(K)> Hp(L) = Zp(L)/Bp(L),

then the induced homomorphism ¢¥: H,(K) — H,(L) can be defined in the
standard way:

<P;!:(Zp + Bp(K)) = ‘Pp(zp) + Bp(L)
or, equivalently,

‘Pﬁ([zp]) = [‘Pp(zp)]- O
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3.2 Simplicial Approximation

Definition. A simplicial mapping from a complex K into a complex L is a
function ¢ from the vertices of K into those of L such that if o® =
{vo...vpy is a simplex of K, then the vertices ¢(v;), 0 < i < p (not
necessarily distinct) are the vertices of a simplex of L. If the vertices ¢(v;)
are all distinct, then the p-simplex {g(vo)...¢(v,)> = p(o?) is called the
image of o®. If (v;) = ¢(v,) for some i # j, then ¢ is said to collapse o®.

Definition. Let ¢ be a simplicial mapping from K into L and p a non-negative
integer. If g-o” is an elementary p-chain on K, define

0 if @ collapses o”

g-9(c?) if ¢ does not collapse o?.

Pp(g-0") = {

The function ¢, is extended by linearity to a homomorphism ¢,: C,(K) —
C,(L). That is to say, if > g;-o? is a p-chain on K, then

‘Pp(z gi'of) = Z‘Pp(gi'c?)-

The sequence {p,}& is called the chain mapping induced by .

Theorem 3.2. If ¢: K — L is a simplicial mapping, then the sequence {p,}§ of
homomorphisms in the preceding definition is actually a chain mapping.

Proor. Since each ¢, is a homomorphism, then in order to show that
dp, = @,_10, it is sufficient to show that

Opy(g-0%) = ¢,_10(g" ")
for each elementary p-chain g-¢?, p > 1. Let g- o” be an elementary p-chain on
K where +0° = +<v,...0,). Suppose first that ¢ does not collapse ¢” so
that

@p(07) = {p(vo) . - . @(vp)).

Let of be the (p — 1)-face of o® obtained by deleting the ith vertex, and let
¢(co”); be defined in the analogous manner. Then

ton(g-0¥) = &g 9(0”) = 2(—1)ig-¢(ap)i - Z (~1Yg-g(a?)

Pos( S (=15 o?) = gporig-o9).
(20w

Suppose that ¢ collapses o®. Without loss of generality we may assume that
o(vo) = @(vy). Then ¢,(g-0?) = 0, so dp,(g-o?) = 0, and

#po10(g ") = %-1(2<—1)fg-of) - Z(—l)f%-l(gvz’).

For i > 2, o7 contains v, and v;. Since ¢(v,) = ¢(v;), then ¢ collapses o?,
i > 2, and we have

P R .
Pp-10(g-0") = z (=Dipp-1(g-07) = @p-1(g-08) — @p-1(g-0?).
=0
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3 Simplicial Approximation

But 6§ = <v105...0,0, 68 = {Vg0s . ..U,y and @(ve) = @(v,) so that
‘Pp—l(g'o'g) = ‘Pp—l(g'o'i))-

Hence ¢,_;0(g-0?) = 0. Thus both ¢,_,9(g-o”) and dp,(g- o) are 0 when ¢
collapses o®. Therefore dp, = ¢, _,0, so {g,}5 is a chain mapping. O

Question: The proof of Theorem 3.2 was given under the assumption that
o? and its faces of have orientations induced by the orderingv, < v; <--- < v,
Why is it sufficient to consider only this orientation ?

Definition. Let |K| and | L| be polyhedra with triangulations K and L respec-
tively and let ¢ be a simplicial mapping from the vertices of K into the
vertices of L. Then g is extended to a function ¢: |K| — |L| as follows:
If x € | K|, there is a simplex 0" = <a, .. .a,» in K such that x € ¢". Then

X = Z /\,ai
i=0
where the A; are the barycentric coordinates of x. Define
9(x) = > Aol@).
i=0

This extended function ¢: |K| — |L| is called a simplicial mapping from
|K| into |L|.

The proof of the following theorem is left as an exercise:
Theorem 3.3. Every simplicial mapping ¢: |K| — | L| is continuous.

Example 3.1. Let K denote the 2-skeleton of a 3-simplex and L the closure of
a 2-simplex with orientations as indicated by the arrows in Figure 3.1.

v a

Figure 3.1

Let ¢ be the simplicial map from K to L defined for vertices by
Pvo) = p(vs) = ao,  @(v1) = a1,  P(v2) = aa.

The extension process for simplicial maps determines a simplicial mapping
@: |K| — |L| which
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3.2 Simplicial Approximation

(a) maps <vov,), {105y, and {vyv,) linearly onto {a,a;>, {a,a,), and {asa,)
respectively;

(b) maps <v,v3> and <vyvgy linearly onto <aia,> and <a.a,) respec-
tively;

(c) collapses {vovs) to the vertex ao;

(d) collapses <vovsv» and {vov,03);

(e) maps each of <{vov,v,> and <{vgv,v,) linearly onto {aya;a,).

For the induced homomorphisms {@,} on the chain groups we have the
following:

(0) @o: Co(K) — Co(L) is defined by

Po(g-<voy + g1°<01> + g2+ <) + ga-{v3))
= (8o + 83)<aoy + g1-<ay> + g2-<az).
(1) @;: C1(K) — Cy(L) is defined by

@1(h1-{0ov1> + hg-{0102) + hg-<vo2) + hy- {0105
+ hs-{vovsy + hg-<v203))
= (hy — hs)<aoa,> + hy-<a1a5) + (he — ha)-<{aza0)-
(2) @i Co(K) — Cy(L) is defined by

@alky - vov102) + ko {010203) + k3 {vo103) + ky- {oV3V5))
= (ky + k2)-<aoa;as).

Definition. If o is a geometric simplex, the open simplex o(c) associated with o
consists of those points in ¢ all of whose barycentric coordinates are
positive. If v is a vertex of a complex K, then the star of v, st(v), is the family
of all simplexes o in K of which v is a vertex. Thus st(v) is a subset of K.
The open star of v, ost(v), is the union of all the open simplexes o(c) for
which v is a vertex of . Note that ost(v) is a subset of the polyhedron |K]|.

Example 3.2. If a is a vertex, o(<a)) = {a}. For a l-simplex o' = <{aea;),
o(c?) is the open segment from a, to a, (not including either a, or @,). For a
2-simplex o2, o(o?) is the interior of the triangle spanned by the three vertices.

In Figure 3.2, st(v,) consists of the simplexes <vo), (vVov; ), {VoVs), {VoVs),
{vov4), and {vev;0).

v3

U4

K

Figure 3.2
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3 Simplicial Approximation

The open star of v, ost(v,), is the set theoretic union of {v,}, the open
segments from v, to vy, v, 1O vy, Vg tO V3, Uy tO ¥4, and the interior of {vyv,v,).
Note that ost(v,) is not the interior of st(v,) in any sense. The star of a vertex
is a set of simplexes of K; the open star of a vertex is the union of certain
point sets in the polyhedron |K]|.

Definition. Let | K| and | L| be polyhedra with triangulations K and L respec-
tively and f: |K| — |L| a continuous map. Then K is star related to L
relative to f means that for each vertex p of K there is a vertex g of L such
that

S(ost(p)) = ost(g).

Definition. Let X and Y be topological spaces and f, g continuous functions
from X into Y. Then fis homotopic to g means that there is a continuous
function H: X x [0, 1]— Y from the product space X x [0, 1] into Y
such that, for all x € X,

H(x,0) = f(x), H(x, 1) = gx).
The function H is called a homotopy between f and g.

Note: In order to simplify notation involving homotopies, we shall use I
to denote the closed unit interval [0, 1].

Example 3.3. Consider the functions f and g from the unit circle S* into the
plane given pictorially in Figure 3.3. Using the usual vector addition and
scalar multiplication, a homotopy H between f and g is defined by

H(x,t) = (1 — 0)f(x) + tg(x), xeStel

/ 77
/
/
lf'H(x, 1/2)

/
/
g(x)

\g_‘/

Figure 3.3

Sl

The homotopy H essentially shows how to continuously “deform” f(x)
into g(x). Observe that if the horizontal axis were removed from the range
space, then the indicated functions would not be homotopic.

44



3.2 Simplicial Approximation

Definition. Let K and L be complexes and f: |K| — | L| a continuous function.
A simplicial mapping g: |[K| — |L| which is homotopic to f is called a
simplicial approximation of f.

Example 3.4. Let L be the closure of a p-simplex ¢” = <a,...a,), and let
K be an arbitrary complex. Then any continuous map f: |K|— |L| has as
a simplicial approximation the constant map g: |K| — |L| which collapses
all of K to the vertex a,.

As illustrated in Figure 3.4, proving that fis homotopic to g requires only
the convexity of |L|. We define a homotopy H: |K| x I — |L| by

H(x,t) = (1 — t)f(x) + ta,, xe|K|, tel
Then H is continuous and
H(X, 0) =f(x)a H(X, 1) = aO = g(x)s X € IK{

This example illustrates one method by which homotopies will be defined in
later applications.

as

1K |

[ L]
Figure 3.4

Example 3.5. Let both K and L be the 1-skeleton of the closure of a 2-simplex
o?. Then the polyhedra |K| and |L| are both homeomorphic to the unit circle
S?, so we may consider any function from |K| to | L| as a function from S* to
itself. For our function f, let us choose a rotation through a given angle «.
Then, referring S* to polar coordinates, f: S* — S* is defined by

1,6 =(1,0 + o), 1,0)eSH,0< 0 < 2m.
A homotopy H between f and the identity map is defined by
H((,0),1) = (1, 6 + ta), (1, 0)eS tel
Thus H agrees with the identity map when ¢ = 0 and agrees with f when

t = 1. At any “time” ¢ between O and 1 the ‘“z-level of the homotopy,”
H(-, t), performs a rotation of the circle through the angle fc.

We are now ready to begin the process of replacing a continuous map
f:|K| — |L| by a homotopic simplicial map g. Let us first consider the case
in which K is star related to L relative to f. The following lemma will be
needed; its proof is left as an exercise.
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3 Simplicial Approximation

Lemma. Vertices vy, . .., v, in a complex K are vertices of a simplex of K if
and only if (i, ost(v;) is not empty.

Theorem 3.4. Let K and L be polyhedra with triangulations K and L respectively
and f: |K| — |L| a continuous function such that K is star related to L
relative to f. Then f has a simplicial approximation g: |K| — | L|.

Proor. Since K is star related to L relative to f] there exists for each vertex p
of K a vertex g(p) of L such that

Slost(p)) = ost(g(p))-

To see that this vertex map g is simplicial, suppose that v, . . ., v, are vertices
of a simplex in K. According to the lemma, this is equivalent to saying that
the intersection ()=, ost(v;) is not empty. Hence

o] ?éf(ﬁ Ost(vl)) c df(ost(vi)) < (ﬁ ost(g(vy)),

$0 (=, ost(g(v;)) is not empty. The lemma thus insures that g(v,), . . ., g(v,)
are vertices of a simplex in L. Then g is a simplicial vertex map and has an
extension to a simplicial map g: |K| — |L]|.

Let x € |K| and let o be the simplex of K of smallest dimension which
contains x. Let a be any vertex of ¢. Observe that f(x) € f(ost(a)) (why ?) and
that f(ost(a)) < ost(g(a)). Also, g(x) € ost(g(a)) since the barycentric coor-
dinate of g(x) with respect to g(a) is greater than or equal to the (nonzero)
barycentric coordinate of x with respect to a.

Let ay, . .., a, denote the vertices of 6. According to the preceding para-
graph, both f(x) and g(x) belong to (M¥-, ost(g(a;)). Thus g(ay), . - ., g(a,) are
vertices of a simplex 7 in L containing both f(x) and g(x). Since each simplex
is a convex set, then the line segment joining f(x) and g(x) must lie entirely in
|L]. The map H: |K| x I— |L| defined by

H(x,t) = (1 — )f(x) + tg(x), xekK, tel

is then a homotopy between fand g, and g is a simplicial approximation of /. [J

Theorem 3.4 shows that if K is star related to L relative to f, then there is a
simplicial map homotopic to f. This is a big step toward our goal of replacing
/by a simplicial approximation. But what if K is not star related to L relative
to f? That is, what if K has some vertices by, . . ., b, such that f(ost(4;)) is not
contained in the open star of any vertex in L? We then retriangulate K
systematically to produce simplexes of smaller and smaller diameters thus
reducing the size of ost(;) and the size of f(ost(b;)) to the point that the new
complex obtained from K is star related to L relative to f. This process of
dividing a complex into smaller simplexes is called ““barycentric subdivision.”
The precise definition follows.

Definition. Let o” = <{a,...a,y be a simplex in R*. The point ¢" in ¢ all of
whose barycentric coordinates with respect to aq, . . ., a, are equal is called
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3.2 Simplicial Approximation

the barycenter of o’. Note that if ¢° is a O-simplex, then 6° is the vertex
which determines ¢°.

The collection {¢*: o* is a face of ¢} of all barycenters of faces of ¢” are
the vertices of a complex called the first barycentric subdivision of Cl(c").
A subset 6y, ..., ¢, of the vertices ¢* are the vertices of a simplex in the
first barycentric subdivision provided that o; is a face of o;,; for
j=0,...,p— 1.

If K is a geometric complex, the preceding process is applied to each
simplex of K to produce the first barycentric subdivision K@ of K. For
n > 1, the nth barycentric subdivision K™ of K is the first barycentric
subdivision of K™~1,

The first barycentric subdivision of K is assigned an orientation con-
sistent with that of K as follows: Let (¢%?'...5"> be a p-simplex of
K® which occurs in the barycentric subdivision of a p-simplex o® of K.
Then the vertices of ¢” = (v,...v,» may be ordered so that &' is the
barycenter of {vy...v;> for i =0,...,p. We then consider {¢°...6">
to be positively oriented if <{v, .. .v,) is positively oriented and negatively
oriented if <v,...v,y is negatively oriented. There are other simplexes of
K® whose orientations are not defined by this process, and they may
be oriented arbitrarily. An orientation for K defined in this way is said
to be concordant with the orientation of K. The same process applies in-
ductively to higher barycentric subdivisions.

We assume in the sequel that barycentric subdivisions are concordantly
oriented.

Example 3.6. Consider the complex K = Cl(¢') consisting of a 1-simplex
ol = {aya,) and two O-simplexes of = {a,> and o9 = {a;». Then ¢3 = a,,
69 = a,, and ¢* is the midpoint of ¢, as indicated in Figure 3.5. Hence the
first barycentric subdivision of K has vertices a,, a,, and &*. Since the only
faces of ¢! are <a,» and <a; ), then the only 1-simplexes of K> are {(a,é*) and
{a6*>.

Consider o! to be oriented by a, < a, so that {aya, ) represents the positive
orientation. Then <{ayé') occurs in the subdivision of the positively oriented
simplex <{aya, ), and hence {a,6*) is a positively oriented simplex in K. On
the other hand, <{a,6') is produced in the subdivision of the negatively
oriented simplex {a,a,», so {a,6') has negative orientation.

a
a
K K®

dy o

Figure 3.5
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3 Simplicial Approximation

Example 3.7. For the complex Cl(o?) in Figure 3.6(a), the barycenters of all
simplexes are indicated in (b) and the first barycentric subdivision is shown
in (c). The orientation for {vyvsv,y is determined as follows: Vertex vg is the
barycenter of {vov;), and v, is the barycenter of {vov,v,). Thus, following the
definition of concordant orientation, {vovsv,> is assigned positive orientation
since it is produced in the subdivision of the positively oriented simplex
{vov105y. Note in Figure 3.6 that some simplexes of the barycentric sub-
division are not assigned orientations by this process.

Ug Ug

Vo U3 3%
(a) (b) (c)
Figure 3.6

Definition. If K is a complex, the mesh of K is the maximum of the diameters
of the simplexes of K.

It should be obvious that the mesh of the first barycentric subdivision KV
of a complex K is less than the mesh of K. Hence it is reasonable to expect that
the limiting value of mesh K© as s increases indefinitely is zero. Proving this
requires some preliminary observations.

Let us first recall the definition of the Euclidean norm. If x = (x4, ..., X,)
is a point in R", the norm of x is the number

n 1/2
= {3}
i=1

For x, y in R, the distance d(x, y) from x to y is simply |x — y||. Proofs of

the following facts are left as exercises:

(a) If x and y are points in a simplex o, then there is a vertex v of o such that

Ix =yl < lx = ol.

(b) The diameter of a simplex of positive dimension is the length of its longest
1-face. Hence the mesh of a complex K of positive dimension is the length
of its longest 1-simplex. (Any complex of dimension zero must, of course,
have mesh zero.)

Theorem 3.5. For any complex K, limit,_, , mesh K® = 0.

Proor. Consider the first barycentric subdivision K of K and let {¢+)> be
one of its 1-simplexes. Then o is a face of 7. The definition of barycenter for
the simplex = insures that

F= Qo+ 1) o

where vy, . . ., v, are the vertices of .
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3.2 Simplicial Approximation

By observation (a) above, there must be a vertex v of = such that

I+ =l < [+ — 0|
Then

I+ =6 < I+ =0 = ”(1/(” * 1))(,20 vi) -

H(l/(p + 1)) Z @ — v)

(p/(p + 1)) mesh K.
Letting n denote the dimension of K, we have p < n so

|+ — ¢ < (n/(n + 1)) mesh K.

< WG+ 1) 3 o - ol

IA

Since the mesh of KV is the maximum value of |+ — ¢| for all 1-simplexes
(61> in KD, then
mesh K© < (n/(n + 1)) mesh K.

The inductive definition of X now insures that
mesh K® < (n/(n + 1)) mesh K.

Recalling that limit,_, ,(r/(r + 1))* = 0, we have the desired result. |
We are now ready for the main result of this chapter.

Theorem 3.6 (The Simplicial Approximation Theorem). Let |K| and |L| be
polyhedra with triangulations K and L respectively and f: |K| — |L| a
continuous function. There is a barycentric subdivision K® of K and a
continuous function g: |K| — | L| such that

(a) g is a simplicial map from K® into L, and
(b) g is homotopic to f.

ProoF. We shall apply Theorem 3.4 to obtain the simplicial approximation
g once an integer k for which K® is star related to L relative to fis determined.
This is done using a Lebesgue number argument. Since |L| is a compact
metric space, the open cover {ost(v): v is a vertex of L} has a Lebesgue number
n > 0. Since f'is uniformly continuous (its domain is a compact metric space),
there is a positive number 8 such that if |x — y| < & in |K|, then
|/(x) = f(»)|| < nin |L]. Thus, if the barycentric subdivision K® has mesh
less than 8/2, then K™ is star related to L relative to f.

The function g: |K| — |L| determined by Theorem 3.4 has the required
properties. O

The study of simplicial approximations to continuous functions was
initiated by L. E. J. Brouwer in 1912. The Simplicial Approximation Theorem .
was discovered by J. W. Alexander in 1926; the proofs given above for
Theorems 3.4 and 3.6 are essentially his original ones [27].
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After a long, difficult sequence of proofs, it may be comforting to know
that the existence of simplicial approximations is the important thing. We
will not have to perform tedious constructions of simplicial approximations;
any simplicial approximation of the type guaranteed by the Simplicial
Approximation Theorem will usually do quite nicely.

3.3 Induced Homomorphisms on the Homology Groups

Definition. Let |K| and | L| be polyhedra with triangulations K and L respec-
tively and f: |K| — | L| a continuous map. By the Simplicial Approxima-
tion Theorem, there is a barycentric subdivision K® of K and a simplicial
mapping g: |K| — |L| which is homotopic to f. Theorems 3.1 and 3.2
insure that g induces homomorphisms g¥: H,(K) — H,(L) in each dimen-
sion p. This sequence of homomorphisms {g¥} is called the sequence of
homomorphisms induced by f.

The preceding definition raises a question about the uniqueness of the
sequence of homomorphisms induced by f. It can be shown, however, that
the sequence {g#} is unique and, in particular, does not depend on the
admissible choices for the degree k of the barycentric subdivision or on the
admissible choices for the simplicial map g. The sequence is thus usually
written {f;¥} instead of {g¥} since it is completely determined by f. Showing
that the sequence is unique requires some concepts that we have not yet
developed. The proof will therefore be postponed until Section 1 of Chapter 7.
Those who cannot wait to see the proof may read that section now.

We shall illustrate the utility of induced homomorphisms by proving that
two Euclidean spaces of different dimensions are not homeomorphic. This
was first proved by L. E. J. Brouwer in 1911; it is, of course, not a surprising
result. Any reader who feels that this is a trivial application, however, is
invited to produce his own proof before reading further.

The following lemma is left as an exercise:

Lemma. If f:|K|— |L| and h:|L| — |M| are continuous maps on the
indicated polyhedra, then (hf)%: H,(K) — H(M) is the composition
hyfs': Hy(K) — H,(M)
in each dimension p.
Theorem 3.7 (Invariance of Dimension). If m # n, then

(a) S™ and S™ are not homeomorphic, and
(b) R™ and R™ are not homeomorphic.

PRrOOF. (a) Suppose to the contrary that there is a homeomorphism 4: S™— S™*
from S™ onto S™ with inverse A~1: §" — S™ Then h~'h and hh~! are the
identity maps on S™ and S™ respectively. Note that the identity map i on a
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polyhedron |K| induces the identity isomorphism i,*: H,(K) — H,(K) in each
dimension p. Then

(hh™)3 = h3hy **: Hy(S™) — Hy(S™),

(h=*h)y = hy Y*h5: Hy(S™) — H,(S™)
are identity isomorphisms in each dimension, so A} is an isomorphism
between H,(S™) and H,(S™). Comparison of homology groups (Theorem 2.9)
reveals that this is impossible since m # n. Hence S™ and S™ are not homeo-
morphic when m # n.

(b) Recall from point-set topology that S™ is the one point compactification
of R™ Thus if R™ and R" are homeomorphic, it must be true that their one
point compactifications S™ and S™ are homeomorphic too. This contradicts
part (a) if m # n. |

A special case of the definition of induced homomorphisms for maps on
spheres will be of particular importance.

Definition. Let f: S™ — S", n > 1, be a continuous function from the n-sphere
into itself. Let K be a triangulation of S™ Since K is an orientable n-
pseudomanifold, Theorem 2.10 and its proof show that it is possible to
orient K so that the n-chain

Z, = Z 1-0™
oneK
is an n-cycle whose homology class [z,] is a generator of the infinite cyclic
-group H,(K). This homology class is called a fundamental class. 1f
f¥. H(K) — H,(K) is the homomorphism in dimension n induced by f,
then there is an integer p such that

fr:k([zn]) = plz,].
The integer p is called the degree of the map fand is denoted deg(f).

The degree of a map on S™ was originally defined by L. E. J. Brouwer.
The above definition is a modern version equivalent to his original one which
is stated here for comparison. The student should feel free to use whichever
definition fits best in a particular situation since they are equivalent.

Alternate Definition. Suppose that f: S™ — S™ is a continuous map and S™ is
triangulated by a complex K. Choose a barycentric subdivision K® of K
for which there is a simplicial mapping ¢: |K*| — |K| homotopic to f.
Let = be any positively oriented n-simplex in K. Let p be the number of
positively oriented n-simplexes o in K® such that ¢(1-6) = 1-7, and let g
be the number of positively oriented n-simplexes p in K*® such that
¢(1-x) = —1-7. Then the integer p — q is independent of the choice of =
(the same integer p — ¢ results for each n-simplex of K) and is called the
degree of the map f.

In Brouwer’s definition it can be shown that the degree of fis independent
of the admissible choices for K, K®, and ¢ (see, for example, [9], section 6-14).
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3 Simplicial Approximation

Intuitively, the definition states that the degree of a map f: S™ — S™ is the
number of times that f “wraps the domain around the range.”

Theorem 3.8. (a) If f: S™— S™ and g: S™ — S™ are continuous maps, then
deg(gf) = deg(g)-deg(/).
(b) The identity map i: S™ — S™ has degree +1.
(c) A homeomorphism h: S™ — S™ has degree +1.

Proor. (a) Choose a triangulation K of S™ with fundamental class [z,] and
consider the induced homomorphisms

S Hy(K)— H(K), g Hy(K) — Hy(K).
Then
(&)i((z,]) = deg(gf)-[z),
grfi([z.)) = gx(deg(f)-[z,]) = deg(g)-deg(f)-[z.].

Since the lemma preceding Theorem 3.7 insures that (gf)f = g¥f¥, then
deg(gf) = deg(g)-deg(f).

(b) In Brouwer’s definition of degree, it is obvious that for the identity map
i,p=1landgq =0sodegi)=1-0=1.

(c) Letting 2~ denote the inverse of 4, we have

1 = deg(i) = deg(hh~1) = deg(h) deg(h™?).

Since deg(h) must be an integer, then deg(k) = =+ 1. It also follows that 4 and
h~?* have the same degree. O

The following theorem was proved by Brouwer in 1912:

Theorem 3.9 (Brouwer’s Degree Theorem). If two continuous maps f, g: S™ —
S™ are homotopic, then they have the same degree.

PROOF. Let K be a triangulation of S™ and let 4: S™ x I — S™ be a homotopy
such that
h(x, 0) = f(x), h(x, 1) = g(x), xeS"

For convenience in notation we let 4, denote the restriction of Ato S™ x {t}.
Thus A, = fand h; = g.

Let € be a Lebesque number for the open cover {ost(w;): w; is a vertex of K}.
Since 4 is uniformly continuous, there is a positive number & such that if 4
and B are subsets of S™ and I respectively with diameters diam(4) < & and
diam(B) < §, then diam(h(4 x B)) < e. Let K be a barycentric subdivision
of K of mesh less than 8/2 so that if v is a vertex of K™, then diam(ost(v)) < 8.
Let

O=to<ty < ---<t;=1

be a partition of I for which successive points differ by less than 8. Then each
set h(ost(v;) x [t,_1, 1;]), v; a vertex of K® and ¢,_,, t; successive members of
the partition, has diameter less than e and is therefore contained in ost(w;,)
for some vertex w;; of K.
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Thus if #;,_; < t < t,, the value of the simplicial map ¢, approximating #;
given by the Simplicial Approximation Theorem may be defined by letting
edv)) = w;;. We therefore conclude that all the maps A, for t,_; <t < ¢,
have the same degree. Since any two successive intervals [¢;_;, 7] and
[t;, t;+1] have ¢; in common, it follows that the degree of A, is constant for
0 < t < 1. In particular, i, = fand h; = g have the same degree. 0

The preceding method of proof can be extended to show that homotopic
maps from one polyhedron to another induce identical sequences of homo-
morphisms on the homology groups. Along with the preceding theorem,
Brouwer proved a partial converse: If f and g are continuous maps on the
2-sphere which have the same degree, then they are homotopic. This con-
clusion was extended to arbitrary dimension by Heinz Hopf (1894-1971) in
1927. The combined results form the famous Hopf Classification Theorem,
which is stated here without proof:

Theorem 3.10 (The Hopf Classification Theorem). Two continuous maps f,
g from S™ to S™ are homotopic if and only if they have the same degree.

Hopf extended Brouwer’s definition of degree to maps from polyhedra
into spheres and, in 1933, extended his classification theorem to such maps:
If X is a polyhedron of dimension not exceeding n, then two maps f and g from
X into S™ are homotopic if and only if they have the same degree. Proofs can
be found in [20] and in Hopf’s original paper [41].

3.4 The Brouwer Fixed Point Theorem and Related Results

Definition. If /: X — X is a continuous function from a space X into itself,
then a point x, in X is a fixed point of f means that f(x,) = x,.

Theorems about fixed points have far reaching applications in mathe-
matics. The existence of a solution for a differential or integral equation, for
example, is often equivalent to the existence of a fixed point of a linear
operator on a function space. (In this connection see Picard’s Theorem from
differential equations.) In this section we shall prove the classic fixed point
theorem of L. E. J. Brouwer and some related results about S™.

Definition. A continuous function g: X — Y from a space X into a space Y
which is homotopic to a constant map is said to be null-homotopic or
inessential.

Definition A space X is contractible means that the identity function i: X — X
is null-homotopic. In other words, X is contractible if there is a point x,
in X and a homotopy H: X x I — X such that

H(x,0) = x, H(x, 1) = x,, xeX.
The homotopy H is called a contraction of the space X.
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3 Simplicial Approximation

tractible. We let x, = (0, 0) be the origin and define a contraction by
H((xlv Xg), t) = ((1 - t)xla (1 - t)x2)9 (x19 xz) € D5 tel

Imagining the disk as a sheet of rubber, the contraction essentially *““squeezes”
the disk to a single point.

Example 3.8. The unit disk D = {x = (x1, x,) e R?: x? + xZ < 1} is con-

This intuitive idea of contractibility suggests that the circle is not con-
tractible. This is in fact true and is a consequence of the following theorem of
L. E. J. Brouwer.

Theorem 3.11 The n-sphere S™ is not contractible for any n > 0.

PrOOF. The identity map on S™ has degree 1 for n > 1, and any constant map

has degree 0. Since homotopic maps have the same degree (Theorem 3.9),

then the identity is not null-homotopic, and S™ is not contractible for n > 1.
For the case n = 0, we observe that

S={xeR:x%2=1}={-1,1}

is a discrete space and therefore not contractible. O

Theorem 3.12 (The Brouwer No Retraction Theorem). There does not exist a
continuous function from the (n + 1)-ball

Bt = {x = (o 2o, X)) €RVL Y aP < 1)
onto S™ which leaves each point of S™ fixed, n > 0.

PRrROOF. Assuming that a map f: B"** — S™ such that f(x) = x for each x in
S™ does exist, define a homotopy
H:S" x [— 8"
by
H(x,t) = f((1 — t)x), xeS™ tel

Here (1 — t)x denotes the usual scalar product (real number multiplied by a
vector) in R™. Then H is a contraction on S™ contradicting Theorem 3.11.
Thus no such map f exists. O

Theorem 3.13 (The Brouwer Fixed Point Theorem). If f: B**! — B"*1 js
continuous map from the (n + 1)-ball into itself and n > 0, then f has at
least one fixed point.

PrOOF. Suppose on the contrary that f has no fixed point. Then for each
x € B**1, f(x) and x are distinct points. For any x consider the half-line from
f(x) through x, and let g(x) denote the intersection of this ray with S, as
shown in Figure 3.7.

Then g: B*** — S™ is continuous, and g(x) = x for each x € S*. This
contradicts the preceding theorem, so we conclude that the assumption that
f has no fixed point must be false. O
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3.4 The Brouwer Fixed Point Theorem and Related Results

Figure 3.7

The Brouwer Fixed Point Theorem was first proved by Brouwer in 1912.
The proof given in the text is not his original one.

Definition. For each integer i with 1 < i < n + 1, the map

ri: §*— S*
defined by

rX1, Xg, + o5 Xn41)
= (xl, e Xim1, — X Xig15- 00, xn+1)a (xl, ey xn+1) € Sn,

(with obvious modifications when i = 1 or n + 1) is called the reflection
of S™ with respect to the x; axis.

Definition. The map r: S™ — S™ defined by
r(x) = —x, xeS"

is called the antipodal map on S™.

For x = (X1, Xa, ..., Xn11) € 8™, ri(x) and x differ only in the ith coordi-
nate, and the ith coordinate of r(x) is the negative of the ith coordinate of x.
The antipodal map r takes each point x in S™ to the diametrically opposite
point r(x) = —x each of whose coordinates is the negative of the corre-
sponding coordinate of x. It should be clear that the antipodal map r is the
composition ryr,...r,.; of the reflections of S™ in the respective axes.
The proof of the following lemma is left as an exercise.

Lemma. (a) Each reflection r; on S™ has degree —1.
(b) The antipodal map on S™ has degree (—1)"*1.

Definition. A continuous unit tangent vector field, or simply vector field, on S™
is a continuous function f: ™ — S™ such that x and f(x) are perpendicular
for each x in S™
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In order to get an intuitive picture of a vector field, let us first review the
concept of perpendicular vectors. Recall from sophomore Calculus that two
vectors x = (X, x;) and y = (y4, ;) in the plane are perpendicular if and
only if their dot product (or inner product)

Xy =x1y1 + Xoy, = 0.

Perpendicularity is extended to vectors of higher dimension by the following
definition: Two vectors x = (x,..., x,;) and y = (y1,...,y,) in R" are
perpendicular if and only if their dot product (Appendix 2)

Xy =X1y1 + Xa¥p + oo+ Xpyn = 0.

A vector field f on S™ is then interpreted as follows: fis a continuous
function which associates with vector x of unit length in R"*! a unit vector
f(x) in R**? such that x and f(x) are perpendicular. If we imagine that f(x)
is transposed so that it begins at point x on S*, then f(x) must be tangent to
the sphere S™. This idea is illustrated in Figure 3.8.

1)

1)

Figure 3.8

It should be clear that the following scheme describes a vector field on S*.
For each x in S?, let f(x) denote a vector of unit length beginning at point x
and pointing in the clockwise direction tangent to S*. Having all vectors f(x)
point in the counterclockwise direction also produces a vector field on S*.
The requirement of continuity for frules out the possibility of having f(x) in
the clockwise direction for some values of x and in the counterclockwise
direction for others.

Theorem 3.14 (The Brouwer-Poincaré Theorem). There is a vector field on
S™ n > 1, if and only if n is odd.
Proor. If n is odd, a vector field f on S™ can be defined by

f(xb X2y v us x1|+1)
= (x23 — X1, X4y — X35+ -5 Xnt1, _xn)’ (x1’ Xy o0 ey xn+1) eSs™

It is clear that f'is a continuous function from S* into S™. The proof that f'is
a vector field is completed by observing that, for each x in S*,

X f(x) = (x1x3 — X1X3) + (X3Xs — X3Xg) + -+ + (XnXns1 — XaXps1) = 0.
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Suppose now that g: S™ — S™ is a vector field where » is an even integer.
This assumption will lead to a contradiction. Define a homotopy
h: S™ x I— S™ by

h(x, t) = x cos(tm) + g(x) sin(tm), xeS"tel
Then

IACx, 2

h(x, t)-h(x, 1)
[x[2 cos®(tm) + 2x-g(x) cos(rm) sin(tm) + || g(x)|? sin®(tm)
12 cos?(tm) + (2)(0) cos(tm) sin(tw) + 12 sin?(rm)

=l’

so h is a homotopy on S™. But
h(x,0) = x, hix, 1) = —x, xesSn",

so h is a homotopy between the identity map and the antipodal map on S™.
However, the identity map has degree 1 and the antipodal map has degree

(=D**! = —i since n is even. This contradicts Brouwer’s Theorem on the
degree of homotopic maps (Theorem 3.9). Thus S™ has a vector field if and
only if n is odd. O

The main part of the Brouwer—Poincaré Theorem (there is no vector field
on a sphere of even dimension) was conjectured by Poincaré and first proved
by Brouwer. For n = 2, the result can be visualized as follows: Imagine a
2-sphere with a unit vector emanating from each point; think of each vector
as a hair. Finding a vector field for S2 is equivalent to describing a method
for “combing the hairs” so that each one is tangent to the sphere and so that
their directions vary continuously. In other words, there must be no parts or
whorls in the hairs. According to the Brouwer-Poincaré Theorem, such a
hairstyle is impossible for spheres of even dimension. Because of this analogy,
the theorem is sometimes called the ““ Tennis Ball Theorem.”

EXERCISES

1. Give an example of two polyhedra |K| and |L| for which H,(K) and H,(L)
are isomorphic for each value of p, but |K| and |L| are not homeomorphic.

2. Verify in the proof of Theorem 3.1 that ¢# is a homomorphism. Show in
particular that if [z,] = [w,] in Hp(K), then [py(z,)] = [pp(wp)] in Hy(L).

3. Prove Theorem 3.3.

4. (a) For the simplicial map ¢ of Example 3.1, describe the induced homo-

morphisms ¢%: Hy(K) — H,(L).
(b) Prove that if L is replaced by its 1-skeleton, then the map fis not simplicial.

5. Choose triangulations for the 2-sphere S2 and torus 7, and let ¢: $2 — T be
a simplicial map. Prove that the induced homomorphism ¢} : H,(S?) — H,(T)
is trivial for p > 1. Show that this result does not hold if the roles of $2 and
T are interchanged.
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6.

10.

11.

12.
13.

14.

15.

16.
17
18.

.

19.
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Let X and Y be topological spaces and let M denote the set of all continuous
maps f from X into Y. For brevity let us agree that f ~ g means that f is
homotopic to g. Prove that ~ is an equivalence relation on M.

. (a) Prove that every convex subset of R" is contractible.

(b) Given that Y is contractible, prove that every continuous function from
a space X into Y is null-homotopic.

. Prove that vertices vy, vy, ..., vm of a complex K are vertices of a simplex in

K if and only if M-, ost(v;) is not empty.

. Prove the following facts:

(a) If x and y are points in a simplex o, then there is a vertex v of ¢ such that
[x =yl < [x - of.

(b) The diameter of a simplex o, p = 1, is the maximum length of its 1-faces.

(c) The mesh of a complex K is the maximum length of its 1-simplexes if K
has positive dimension.

Answer the following questions about the proof of Theorem 3.4:

(a) If o is the simplex of smallest dimension in K containing a given point x,
why is x in ost(a;) for each vertex a; of ¢?

(b) Why is the function H continuous?

Complete the details in the proof of Theorem 3.6 by proving the following:

(a) If v is a vertex of K, then the diameter of ost(v) does not exceed twice the
mesh of K.

(b) If v is a vertex of K, then ost(v) is an open subset of |K|. (Recall that | K|
has the Euclidean subspace topology.)

(c) Prove that every polyhedron is a compact metric space.

(d) Show that the function g in the proof of Theorem 3.6 has the required
properties.

Prove that the antipodal map on S™ has degree (—1)**+1,

(a) Prove the lemma preceding Theorem 3.7: If f:|K|-—|L| and
h: |L| — | M| are continuous maps, then (hf)¥ = h¥fs* in each dimension

p.

(b) Prove that if two polyhedra |K| and |L| are homeomorphic, then
H,(K) ~ Hy(L) in each dimension p.

Prove the following fact about maps f, g: S™ — S™: If deg(f) = deg(g), then

g# = f'f H"(Sn) g Hn(S")-

Prove that a discrete space X is contractible if and only if X has only one

point.

Is every subspace of a contractible space contractible? Explain.

Show that if | K| is contractible, then H,(K) = {0} for p = 1 and Ho(K) = Z.

In the text the Brouwer Fixed Point Theorem was proved as a consequence

of the Brouwer No Retraction Theorem. Reverse this process to show that
the Fixed Point Theorem implies the No Retraction Theorem.

Definition. Let X be a topological space and B a subspace of X. If there is a
continuous map f: X — B which leaves each point of B fixed, then B is called
a retract of X. The function f is a retraction of X onto B.
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Let A and K be complexes for which A4 is a subset of K and |A4| is a retract
of |K|. Prove that H,(K) has a subgroup isomorphic to H,(A4) in each
dimension p.

20. Prove the Brouwer No Retraction Theorem by comparing the homology
groups of S™and B™**. (Hint: Assuming that there is a retractionf: B**1— S",
let i: S™ — B"*! denote the inclusion map. Then fi: S® — S* is the identity
map. Consider the homomorphism induced on H,(S™).

21. Let f, g be continuous maps from a space X into S* such that f(x) and g(x)
are never antipodal points, i.e., f(x) = —g(x) for no x. Prove that fand g are
homotopic.

22. Find an explicit formula for the vector field on S* which produces tangent
vectors with the clockwise orientation. Repeat for the counterclockwise
orientation.

23. Prove that every vector field on S™ (n odd) is homotopic to the identity map
and to the antipodal map.

24. Let n be an even positive integer and f: S — E"*! a continuous map such
that x and f(x) are perpendicular for each x € S™. Prove that there is a point
x in S* for which f(x) = 0.

Consider the circle S* with multiplication given by the complex numbers.
Prove that the map f(x) = x™, n a positive integer, has degree n. What is the
degree of the map g(x) = 1/x?

25

26. Let g: S™ — S™ be a continuous map for which the range is a proper subset
of S™. Prove that g is null-homotopic and that deg(g) = 0.

27. (a) Let g: S®— S™ be a continuous map for which there is a continuous
extension G: B"*! — S™. Prove that g is null-homotopic.
(b) Prove the converse: If g: S"™ — S™ is null-homotopic, then g has a
continuous extension G: B**! — S™ (Hint: B*** can be considered to be
the quotient space of S™ x [0, 1] obtained by identifying S* x {1} to a
single point.)
28. Let K, L, and M be complexes and f: |K| — |L| and g: |L| — | M| continuous
functions. If K is star related to L relative to f and L is star related to M
relative to g, prove that K is star related to M relative to gf.

29, Show that every continuous function f: |K| — |L| from a polyhedron |K]|
to a polyhedron |L| can be arbitrarily approximated in terms of distance by

a simplicial approximation. More precisely, prove the following:

Theorem. Let f: |K| — | L| be a continuous map on the indicated polyhedra and
€ a positive number. There are barycentric subdivisions K® and L? and a
continuous map g: |K| — | L| such that
(a) g is a simplicial map with respect to K and L?,

(b) g is homotopic to f, and
(¢) the distance ||f(x) — g(x)| is less than € for all x in |K|.

30. (a) Prove that every barycentric subdivision of an n-pseudomanifold is an
n-pseudomanifold.
(b) If K is an orientable pseudomanifold, is each barycentric subdivision of
K orientable? Prove that your answer is correct.
(c) Repeat part (b) for the nonorientable case.
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The Fundamental Group

4.1 Introduction

We turn now to the investigation of the structure of a topological space by
means of paths or curves in the space. Recall that in Chapter 1 we decided
that two closed paths in a space are homotopic provided that each of them
can be ‘““continuously deformed into the other.” In Figure 4.1, for example,
paths C,; and C; are homotopic to each other and C,; is homotopic to a
constant path. Path C; is not homotopic to either C, or Cj; since neither C,
nor C; can be pulled across the hole that they enclose.

In this chapter we shall make precise this intuitive idea of homotopic
paths. The basic idea is a special case of the homotopy relation for continuous
functions which we considered in the proof of the Simplicial Approximation
Theorem (Theorem 3.6).

Figure 4.1
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4.2 Homotopic Paths and the Fundamental Group

Definition. A path in a topological space X is a continuous function « from
the closed unit interval I = [0, 1] into X. The points «(0) and «(1) are the
initial point and terminal point of « respectively. Paths « and g with common
initial point «(0) = B(0) and common terminal point «(1) = B(1) are
equivalent provided that there is a continuous function H: I x I— X such
that

H(1,0) = «t), H(, 1) = B(), tel,
H(0, s) = «(0) = B(0), H(1l,s) = o(l) = B(1), sel

The function H is called a homotopy between « and B. For a given value
of s, the restriction of H to I x {s} is called the s-/evel of the homotopy
and is denoted H(-, ).

Definition. A Joop in a topological space X is a path « in X with «(0) = «(1).
The common value of the initial point and terminal point is referred to as
the base point of the loop. Two loops « and B8 having common base point
X, are equivalent or homotopic modulo x, provided that they are equivalent
as paths. In other words, « and 8 are homotopic modulo x, (denoted
a ~,, B) provided that there is a homotopy H: I x I— X such that

H(-,0) = ¢, H(-,1) =8, H(,s) = H(1,s) = x,, sel

Since H(0, s) and H(1, s) always have value x, regardless of the choice of
s in [0, 1], it is sometimes said that the base point ““stays fixed throughout
the homotopy.”

Example 4.1. The paths « and B in Figure 4.2 are equivalent. A homotopy H
demonstrating the equivalence is defined by

H(t,s) = sB(t) + (1 — s)f2), (s,t)el x L

The homotopy essentially “pulls « across to 8’ without disturbing the end
points. If the space had a ““hole” between the ranges of « and B, then the
paths would not be equivalent.

»
«(0) = B(0)

a(l) = p(1)

Figure 4.2
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4 The Fundamental Group

The following lemma from point-set topology will be used repeatedly in
this chapter. Its proof is left as an exercise.

The Continuity Lemma. Let X be a topological space with closed subsets A and
B such that AU B = X. Let f: A— Y and g: B— Y be continuous maps
to a space Y such that f(x) = g(x) for each x in A N\ B. Then the map
h: X — Y defined by

h(x) = f(x) z:fxeA
g(x) ifxeB
is continuous.

Theorem 4.1. (a) Equivalence of paths is an equivalence relation on the set of
paths in a space X.
(b) Equivalence of loops is an equivalence relation on the set of loops in X
with base point x,.

Proor. We shall prove (b) and leave to the reader the obvious modifications

needed for a proof of (a).
Consider the set of loops in X having base point x,. Any such loop « is
equivalent to itself under the homotopy

F(1,s5) = oft), (t,s)el x I

Thus the relation ~,, is reflexive.
Suppose « ~,, 8. Then there is a homotopy H: I x I— X satistying

H(,0)=«a  H(,1)=8 - HOs)=H(,s)=x, sel
Then the homotopy
H(t,s) = H(t, 1 —5), (s,0)elx I,

shows that 8 ~, o and hence that equivalence of loops is a symmetric
relation.

Suppose now that for the loops «, 8, and y we have « ~, B and § ~, y.
Then there are homotopies H and K such that

H(-,0) = q, H(-,1)=8, HO,s) = H(1, s) = x,, sel
K(9O) = Ba K(a 1) =% K(Oa S) = K(la S) = Xo, sel

The required homotopy L between « and y is defined by

_ [H(,25) ifo<s<i
L(t,s) = {K(t, 25— 1) ify<s<l.

The continuity of L follows from the Continuity Lemma with 4 = I x [0, 1]
and B = I x [4, 1]. Thus « ~,, y, s0 ~, is an equivalence relation. O
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4.2 Homotopic Paths and the Fundamental Group

Definition. If « and B are paths in X with «(1) = B(0), then the path product
o % f is the path defined by

o(2t) if0 <t
B2t —-1) ify<t

1
2

«x80) = { b

<
<

The continuity of « * 8 is an immediate consequence of the Continuity
Lemma.

Thinking of the variable ¢ as time, a path « in X can be visualized by the
motion of a point beginning at «(0) and tracing a continuous route to «(1).
A product o * § is then visualized as follows: The moving point begins at
«(0) and follows path « at twice the normal rate, arriving at «(1) when ¢ = 3.
The point then follows path B8 at twice the normal rate and arrives at (1) at
time ¢ = 1. Note that the condition «(1) = B(0) is required for the product of
paths in order to avoid discontinuities.

We shall be primarily concerned with products of loops « and B having
common base point x,. In this case the product « * S is also a loop with base
point x,. The following lemma is left as an exercise:

Lemma. Suppose that loops o, o', B, B’ in a space X all have base point x, and
satisfy the relations o« ~, o and B ~, B'. Then the products « B and
o' x 8" are homotopic modulo x,.

Definition. Consider the family of loops in X with base point x,. Homotopy
modulo x, is an equivalence relation on this family and therefore partitions
it into disjoint equivalence classes, [«] denoting the equivalence class
determined by loop «. The class [«] is called the homotopy class of «. The
set of such homotopy classes is denoted by 7,(X, x,). If [«] and [B] belong
to m1(X, x,), then the product [«] o [B] is defined as follows:

[e] o [B] = [ = B].

Thus the product of two homotopy classes is the class determined by the
path product of their representative elements. The preceding lemma
insures that the product o is a well-defined operation on (X, x,). The
set m (X, x,) with the o operation is called the fundamental group of X at
Xo, the first homotopy group of X at x,, or the Poincaré group of X at x,.

Theorem 4.2. The set m(X, x,) is a group under the o operation.

Proor. To show that =,(X, x,) is a group, we must show that there is a loop ¢
for which [c] is an identity element, that each homotopy class [«] has an
inverse [@] = [«]™%, and that the multiplication o is associative. Let us prove
each of these as a separate lemma.

Lemma A. 7,(X, x,) has an identity element [c] where c is the constant loop
whose only value is x,.
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4 The Fundamental Group

ProOF. The constant loop c is defined by
c(t) = xo, tel

If « is a loop in X based at x,, then

(t_{xo fo<r<i
exell) =@ -1 ify<t<l.

To show that [c¢ * «] = [«], we require a homotopy H: I x I— X such that
H(-,0) =c*q, H(-,1) =0,
HO,s) = H(l,s) = x,, sel

These requirements are filled by defining

Xo if0<r<(l—s)2
H(t, s) = 2t —1
(t5) a(—:f—l) if(1—s)2<t<l.

After checking to see that H has the required properties, we will see how
it was obtained. Note that
if0<r<4%
Yo 1 2= % ot),
a2t — 1) fi<t=<l1

xo f0<t<0) o
ot) fO<t<1f

H@@:{

IAIA

H(t 1) = {

24+s5—1

H(0, s) = x,, H(l,s)=a( T

) = 1) = x,, sel
Continuity of H is assured by the Continuity Lemma since (2 + s — 1)
divided by (s + 1) is a continuous function of (7, s) and the two parts of the
definition of H agree when ¢t = (1 — s)/2.

The homotopy H was obtained from the diagram shown in Figure 4.3 by
the analysis that follows. To define a homotopy H on the unit square which

0, 1)

0, 5) $—2 = (1,5)
L X X,ﬁ o .
(1/2,0) (1,0) 1
Figure 4.3
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4.2 Homotopic Paths and the Fundamental Group

agrees with ¢ * « on the bottom and with « on the top, let us intuitively
assume that we will define the s-level H(-, 5) to have value x, at each point
(¢, s) from ¢t = 0 out to the diagonal line L. Then we wish H(-, s) to follow
the route of «. Since L has equation ¢t = (1 — s)/2 and the ‘““‘time’’ remaining
when ¢t = (1 — 5)/2 is

1_(1—s)=1+s

B

2 2

the desired effect is accomplished by defining
Xo fo<t<(1-—y9)2

H(t,s)={ ( _(l—s)). 2 ) .
oz(t ) ) fa-spsist

This expression reduces to the formula for H given previously.
We have now proved the following: If [«] € 7,(X, X,), then

[c]o[o] = [c*ea] = {e]

so that [c] is a left identity for =, (X, x,).
In order to see that [c] is a right identity as well, we need to show that
[e * ¢] = [«]. This is accomplished by the homotopy

2%\
) = {a(m) if0<t<(s+ 12
%o f+D2<t<l.

The intuitive picture is left to the reader.

Lemma B. For each homotopy class [«] in (X, X,), the inverse of [«] with
respect to the operation o and the identity element [c] is the class [&] where
at)=ol — 1), tel

Proor. The path &(t) = «(1 — t) is commonly called the reverse of the path «.

It begins at «(1) = x, and traces the route of o backwards. We must prove

that

[o] o [a] = [&] o [o] = [c].
Note that
[o] o [@] = [o*a],
o(2t) if0 <t

e 3
o * (1) —{oc(2 —2) ifi<t

1.

IAIA

The path « * & follows « and then follows the reverse of « to the starting
point x,. We shall define a homotopy K for which the s-level K(-, s) follows
route « out to «(s) and then retraces its steps back to x,. This is accomplished
by defining

Kt s) = {a(2ts) TfO <t<}3
a2s — 2ts) ify<t<1.
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4 The Fundamental Group

It is easily observed that
K(',0)=C, K(',1)=OC*&,
K(0,s) = K(1,5) = x,, sel,
and that K is continuous.

Thus
[e] o [&] = [e*a] = [c],

so [a] is a right inverse for [«]. Since the reverse of the reverse of « is itself «
(i.e., & = «), the same proof shows that

[@] e [«] = [&] - [&] = [c],

and hence [a] = [«] ! is a two-sided inverse for [«].

Lemma C. The multiplication o is associative.
Proor. Let [«], [B], and [y] be members of (X, x,). We must prove that
([e] o [BD o [¥] = [e] = ([B] = [¥])
or, equivalently,
[(e*p)*y] = [ex* (B*p)]
A little arithmetic shows that
o(4t) if 0

(axp)*y(t) = {B(4t -1 if}
»2t — 1) if}

~

NN IA
~ o~

IAIA A
b— R

and
o(2t) if 0
ax(Bxy)t) = {B(4t -2 if}
y(dt — 3) if §

The reader should apply the method illustrated in Lemma A to Figure 4.4,
obtain the homotopy

~

1.

IAIAIA
IAIAIA

4t .

Lt,s) ={B@at — 1 —s) if(s+ Djd<t<(s+2)d

IA

y(4"—2—s‘s) f+2d<t<l

2 —

and verify that it is a homotopy modulo x, between (e * 8) * y and « * (B * y)-
This completes the proof that o is associative and the proof of Theorem 4.2.

O

The technique for obtaining the homotopies in the proof of Theorem 4.2 is
extremely important in homotopy theory. The reader should be certain that
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4.2 Homotopic Paths and the Fundamental Group

O, 1

o 8 Y
(1/4,0) (1/2,0) (1,0) t

Figure 4.4

he understands the method by solving the relevant exercises at the end of the
chapter.

Definition. A space X is path connected means that each pair of points in X
can be joined by a path. In other words, if x, and x; are points in X, then
there is a path in X with initial point x, and terminal point x;.

Theorem 4.3. If a space X is path connected and x,, x, are points in X, then the
Sfundamental groups (X, x,) and = (X, x,) are isomorphic.

Proor. Let p: I — X be a path such that
p(0) = x5, p(1) = x1.

If « is a loop based at x,, then (p * o) * p is a loop based at x,. Here p denotes
the reverse of p:

pt) = p(1 — 1), 0<tr<l.
We define a function P: 7,(X, x,) — 7 (X, x;) by
P(e]) = [(pxa)xpl,  [o] €mi(X, Xo).

It should be clear that the image of [«] is independent of the choice of path in
[«] so that P is well defined.

Several observations are necessary before showing that P is an isomor-
phism. First, Lemma B with minor modifications shows that [p * p] and
[p * p] are the identity elements of m (X, x,) and =, (X, x,) respectively.
Second, Lemma C can be easily modified to show that for any paths o, 8, y
for which (« % ) % y and « * (B * y) are defined, the indicated triple products
are equivalent. Thus in [(p * «) * p], we may ignore the inner parentheses and
simply write [p * « * p] since the equivalence class is the same regardless of
the way in which the terms of the product are associated.
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4 The Fundamental Group

Now consider [«], [8] in 7,(X, xo).

P([e] o [B) = P([e % B]) = [pxaxBxp] = [pxaxp*pxf*p]
= [pxaxplo[p*p*p] =P(]) P(BD.

Thus P is a homomorphism.
The function Q: 7 (X, x;) — 7,(X, x,) defined by

O(o]) = [pxoxpl, [o]em(X,x)

is the inverse of P. To see this, observe that for [«] € 7, (X, x,),

OP([o]) = Qp * «* p]) = [p* p* ax pxp]
= [p*plolalo[p*p] = [a]

Thus QP is the identity map on (X, x,) and, by symmetry, we observe that
PQ must be the identity map on 7,(X, x;). Thus the indicated fundamental
groups are isomorphic. O

Because of the preceding theorem, mention of a base point for the funda-
mental group of a path connected space is often omitted. We shall refer
sometimes to ““the fundamental group of X and write =;(X), when X is path
connected, since the same abstract group will result regardless of the choice
of the base point. This applies primarily to the process of computing the
fundamental group of a given space. Theorem 4.3 does not guarantee,
however, that the isomorphism between =,(X, x,) and =(X, x;) is unique;
quite often different paths lead to different isomorphisms. For this reason,
there are many applications of the fundamental group in which the specifica-
tion of a base point is important. When comparing fundamental groups of
two spaces X and Y on the basis of a continuous map f: X — Y, for example,
it is usually necessary to specify a base point for each space.

Definition. A path connected space X is simply connected provided that =, (X)
is the trivial group.

Theorem 4.4. Every contractible space is simply connected.

PRrOOF. Let X be a contractible space. There is a point x, in X and a homotopy
H: X x I— X such that

H(x, 0) = x, H(x, 1) = x,, xeX.
It is easy to see that X is path connected. If x € X, the function
o, =H(x,  ): =X

is a path from H(x,0) = x to H(x, 1) = x,. Thus any two points x and y
are joined by the path «, * a, where a, is the reverse of «,.
Assume for a moment that H has the additional property

H(x,, 8) = Xo, sel
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For [«] € m1(X, x,), define a homotopy A: I x I— X by

h(t, s) = H((t), s).
Then
h(t, 0) = of2), h(t, 1) = x,, tel
(0, s) = h(1, s) = x,, sel

Here we have used our additional assumption H(x,, s) = x, to produce
h(0, s) = A(1,s) = x,. Thus # demonstrates that « is equivalent to ¢, the
constant loop whose only value is x,. Then [«¢] = [¢] and 7, (X, x,) consists
only of an identity element.

But what happens if the path H(x,, -): /- X is not constant? We must
then modify each level of the homotopy % to produce at each level a loop
based at x,. The procedure is illustrated in Figure 4.5, and the revised defini-
tion of A is left as an exercise for the reader. O

Figure 4.5

4.3 The Covering Homotopy Property for S*

This section is devoted to determining the fundamental group of the circle.
It will be convenient to consider the unit circle S* as a subset of the complex
plane; we thus consider R? as the set of all complex numbers x = x; + ix,

where i = VvV —1.

We shall refer several times to the function p: R — S defined by
p(t) = exp(2mit), teR.

Here exp denotes the exponential function on the complex plane. In particu-
lar, if ¢ is in the set R of real numbers, then

exp(2nit) = cos(2nt) + isin(2nt).

Note that p maps each integer » in R to 1 in S* and wraps each interval
[n, n + 1] exactly once around S* in the counterclockwise direction.
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4 The Fundamental Group

Definition. If ¢: [ — S is a path, then a path é: I — R such that pé = o is
called a covering path of o or a lifting of o to the real line R. If F: I x [— S*
is a homotopy, then a homotopy F: I x I — R such that pF = Fis called
a covering homotopy or a lifting of F.

Theorem 4.5 (The Covering Path Property). If o: I — S is a path in S* with
initial point 1, then there is a unique covering path &:1— R with initial
point 0.

ProoFr. Let U, denote the open arc on S* beginning at 1 and extending in the
counterclockwise direction to —i, and let U, denote the open arc from —1
counterclockwise to 7, as shown in Figure 4.6. Then U, and U, are open sets
in S, U, U U, = S*and

8

p~N(Uy) = (n,n+ 3),
n=—w
P U= =% n+d.
i
U, 1 —1 U,
—I
Figure 4.6

Note that p maps each interval (n, n + 3) homeomorphically onto U; and
maps each interval (n — %, n + 1) homeomorphically onto Us,.

Here is the intuitive idea behind the proof. Subdivide the range of the
path o into sections so that each section is contained either in U; or in U,.
If a particular section is contained in U,, we choose one of the intervals
V = (n,n + %) and consider the restriction p| of p to this interval. Compos-
ing (p|y)~! with this section of the path “lifts” the section to a section of a
path in R. The same method applies to sections lying in U,. To insure con-
tinuity we must be careful that the initial point of a given lifted section be
the terminal point of the lifted section that precedes it.

This method is applied inductively as follows. Let € be a Lebesgue number
for the open cover {o~*(U,), o~ *(Us)} of 1. Choose a sequence

O=t <t <tg<---<t,=1

of numbers in I with each successive pair differing by less than e. Then the
image o[, t;.,]) of any subinterval [z, #.,], 0 <i <n — 1, must be
contained in either U, or U,.

Now, o([#,, t;]) must be contained in U, since

o(ty) = o(0) = 1¢ UL.
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4.3 The Covering Homotopy Property for S*

Let ¥V, = (—1, 1) and define & on [z, t;,] by
(1) = (plv,) "*o(®).

Proceeding inductively, suppose that o has been defined on the interval
[%o, t]. Then
o([ty, tesa) = U

where U is either U, or U,. Let V., be the component of p~1(U) to which
&(t,) belongs. Note that V,,., is one of the intervals (n,n + ) or
(n — %, n + ). Then p|y, ,, is a homeomorphism, and the desired extension
of & to [#, t,.1] is obtained by defining

&(t) = (plv.,) to(?), telty, tiil

The continuity of & is guaranteed by the Continuity Lemma since the lifted
sections agree at the endpoints #,. This inductive step extends the definition of
G to [ty, t,] = L

To prove that & is the only such covering path, suppose that ¢’ also satisfies
the required properties pe’ = ¢ and ¢’(0) = 0. Then the path & — ¢’ has
initial point O and

p((t) — o'(t)) = p&(t)[pe’(t) = o()fe(t) =1,  tel,

so & — ¢’ is a covering path of the constant path whose only value is 1. Since
p maps only integers to 1, then 6 — ¢ must have only integral values. Thus,
since I is connected, ¢ — o’ can have only one integral value. This one value
must be the initial value, 0. Therefore ¢ — ¢’ = 0, so ¢ = o’. The required
lifting & is therefore unique. O

Corollary (The Generalized Covering Path Property). If o is a path in S* and
r is a real number such that p(r) = o(0), then there is a unique covering path
& of o with initial point r.
PrOOF. The path ¢/o(0) is a path in S?! with initial point ¢(0)/o(0) = 1 and
therefore has a unique covering path n with initial point 0. The path 6: I — R
defined by
&(t) =r + n(2), tel,
is the required covering path of ¢ with initial point r. The uniqueness of &
follows from that of 7. O

Theorem 4.6 (The Covering Homotopy Property). If F: I x I— S* is a
homotopy such that F(0,0) = 1, then there is a unique covering homotopy
F: I x I— R such that F(0,0) = 0.

ProoF. The proof is similar to that of the Covering Path Property; in fact,
we use the same open sets U;, U, in S'. By a Lebesgue number argument,
there must exist numbers

=t <th<---<t,=1, O=so<s;< " <sp,=1
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4 The Fundamental Group

such that F maps any rectangle [t;, t;,,] X [S, Sk+1] into either U; or Us,.
Since
F(0,0) =1¢ U,

then F([to, t1] X [So, 51]) must be contained in U,. Let V; = (—%, %) and
define F on [t,, t,] X [So, 51] by

F(t,s) = (plv,)"F(, ).

Now extend the definition of F over the rectangles [t #;.1] X [So, $1] in
succession as in the proof of the Covering Path Property, being careful that
the definitions agree on common edges of adjacent rectangles. This defines F
on the strip I x [so, 51]-

Proceeding inductively, suppose that F has been defined on (I x [so, S]) U
([to, t.] % [Sks Sk+1]). We wish to extend the domain to include [z, #;,,] X
[Sks Sk +1), as shown in Figure 4.7. Let

A={(x,y)elt;, tis1] X [55, Sk+1]: X = tior y = 54}

be the common boundary of the present domain of F and [t #,,] X
[Sks Sk +1]). Now, F([t;, t;+1] X [Sk, Sx+1]) 1s contained in either U, or U,.
Denote this containing set by U, and let ¥ be the component of p~1(U)
which contains F(A). Define F on [t;, #;,1] X [8k Sk+1] by

F(t,5) = (ply)"1F(t, s).

=== i+ 155k + 1)
|
|

0 t; i+ 1 1
Figure 4.7

The continuity of F follows from the Continuity Lemma since the old and
new definitions of F agree on the closed set 4. This induction extends the
domain of Fto [to, t,] X [So» Spu] = I % L.

To see that F is the only covering homotopy of F with F(0,0) = 0,
suppose that F’ is another one. Then the homotopy F — F’ has the properties

(F = F')(0,0) = F(0,0) — F'(0,0) = 0,
PF — F)t,5) = pF(t, 5)|pF'(t,5) = F(t, )[F(t, 5) = 1,
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4.3 The Covering Homotopy Property for S*

for all (¢, s) in I x I. Thus, as in the case of covering paths, F — F’ can have
only one integral value, namely 0. Then F = F’ and the covering homotopy
is unique. O

Definition. Let « be a loop in S with base point 1. The Covering Path Property
insures that there is exactly one covering path & of « with initial point 0.
Since

1 = 1) = pa(l) = exp(mia(l)),

then &(1) must be an integer. This integer is called the degree of the loop «.

Theorem 4.7. Two loops « and B in S with base point 1 are equivalent if and
only if they have the same degree.

PROOF. Let & and f denote the covering paths of « and B respectively having
initial point 0 in R.

Suppose first that o« and B have the same degree so that &1) = B(1). Define
a homotopy H: I x I— R by

H(t,s) =0 — s)a&t) + sp@t), (t,s)el x L

Then H demonstrates the equivalence of & and f as paths in R. Note in
particular that H(1, s) is the common degree of « and B for each s in 1. The
homotopy
pH: I x [—S*
shows the equivalence of « and 8 as loops in S*.
Suppose now that « and B are equivalent loops in S*and that K: I x I— S*
is a homotopy such that

K(-,0)=«a  K(,1)=5
K(@©,s) = K(1,s) =1, sel
By the Covering Homotopy Property, there is a covering homotopy
K:I x I— R such that
K@©0,00=0, pK=K.
Then
pR(,s) = K@©0,s) =1, sel,

so K(0, s) must be an integer for each value of s. Since I is connected,
K(0, -) must have only the value K(0, 0) = 0. A similar argument shows that
K(1, -) is also a constant function.

Since

p]z(,O):K(,O):(X, PK(, 1)=K(91)=ﬁ,

then K(-,0) = @ and K(-, 1) = f are the unique covering paths of «and g
respectively with initial point 0. Thus

degree o = &(1) = K(1,0) = K1, 1) = B(1) = degree B,

so « and 8 must have the same degree. O
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4 The Fundamental Group

Corollary. The fundamental group m (S*') is isomorphic to the group Z of
integers under addition.

Proor. Consider 7,(S?, 1), and define a function

deg: m (S, 1)—>2Z
by
deg[e] = degree .

The preceding theorem insures that deg is well-defined and one-to-one.
To see that deg maps =,(S?, 1) onto Z, let n be an integer. The loop y in
St defined by
¥(t) = exp(2wint)
is covered by the path
t — nt, tel,

and therefore has degree n. Thus deg[y] = n.
Suppose now that [«] and [B] are in 7,(S?, 1). We must show that

deg([«] = [B]) = deg[e] + degB].

If & and B are the unique covering paths of « and 8 which begin at 0, then the
path f: I — R defined by
a(2t) if0 <t
0={20, T
al)+pBRt—-1) fi<t
is the covering path of «x f with initial point 0. Thus degree(« * 8) =
(1) = &1) + B(1) = degree « + degree B. Then
deg([«] o [B]) = degree(« * B) = degree o + degree B
= deg[«] + deg[B]. O
The most important topic of this section has been the Covering Homotopy
Property. We shall see it again in a more general form in Chapter 5, and those
who take additional courses in algebraic topology will find that it is one of
the most useful concepts in homotopy theory.

1
2
1

AN IA

4.4 Examples of Fundamental Groups

We now know that the fundamental group of a circle is the group of integers
and that the fundamental group of any contractible space is trivial. The
observant reader has probably surmised that the fundamental group is
difficult to compute, even for simple spaces.

Homeomorphic spaces have isomorphic fundamental groups. The proof
of this fact is left as an exercise. In this section we shall present less stringent
conditions which insure that two spaces have isomorphic fundamental groups.
This will allow us to determine the fundamental groups of several spaces
similar to S*. In the latter part of the section we shall prove a theorem which
shows that the fundamental group of the n-sphere S™ is trivial for n > 1.
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4.4 Examples of Fundamental Groups

Definition. Let X be a space and A4 a subspace of X. Then 4 is a deformation
retract of X means that there is a homotopy H: X x I— X such that
H(x, 0) = x, H(x,1)e A, xe X,
H(a,t) = a, aceA,tel

The homotopy H is called a deformation retraction.
Theorem 4.8. If A is a deformation retract of a space X and x, is a point of A,
then m(X, x,) is isomorphic to m (A, x,).

PrOOF. Let H: X x I— X be a deformation retraction of X onto A. Then
if « is a loop in X with base point x,, H(«(-), 1) is a loop in 4 with base point
Xo. We therefore define A: m (X, xo) — m,(4, x,) by

h([e]) = [H((-), D].
For [«], [8] in (X, Xo),

h([e] o [B]) = h([e * B]) = [H (e * B(-), D] = [H((-), 1) * H(B(-), 1)]
= h([«]) ~ A([B),
so h is a homomorphism.
The fact that H(«(-), 1) is equivalent to H(«(-), 0) = « as loops in X

insures that 4 is one-to-one. If [y] is in 7,(4, x,), then y determines a homotopy
class (still called [y]) in 7 (X, x,). Since H leaves each point of 4 fixed, then

h(lyD) = Hi(-), 1) = [y],

so h maps 7, (X, x,) onto m(4, xo). This completes the proof that 4 is an
isomorphism. O

Example 4.2. Consider the punctured plane R2?\{p} consisting of all points in
R? except a particular point p. Let 4 be a circle with center p as shown in
Figure 4.8.

Figure 4.8

For x € R%\{p}, the half line from p through x intersects the circle 4 at a
point r(x). This function r is clearly a retraction of R2\{p} onto A. Define a
homotopy H: (R:\{p}) x I— R?\{p} by

H(x,t) = tr(x) + (1 — ?)x, xeR2\{p}, tel
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4 The Fundamental Group

It is easy to see that H is a deformation retraction, so A is a deformation
retract of R2\{p}. Thus

m(R2\{p}) = m(4) = Z.

Example 4.3. Consider an annulus X in the plane. Both the inner and outer
circles of X are deformation retracts, so 7,(X) is the group of integers.

Example 4.4. Each of the following spaces is contractible, so each has
fundamental group {0}:

(a) a single point,

(b) an interval on the real line,
(c) the real line,

(d) Euclidean n-space R",

(e) any convex set in R™.

Theorem 4.9. Let X and Y be spaces with points x, in X and y, in Y. Then

77'1(X X Y, (x09 J’o)) = 77'1(1Y9 xO) (‘B 771( Ys yO)

Proor. Let p, and p, denote the projections of the product space X x Y
on X and Y respectively:

pxy)=x,  px,y)=y (x,y)eX x Y.
Any loop «in X x Y based at (x,, y,) determines loops
o« = ploc, Uy = pzoc
in X and Y based at x, and y, respectively. Conversely, any pair of loops «;

and o, in X and Y based at x, and y, respectively determines a loop « =
(ay, @) in X x Y based at (xo, ¥o). The function

h:m (X x Y, (X0, ¥o)) = m(X, X0) @ m(Y, yo)
defined by

h(e]) = ([ea], [e2]),  [e] € m(X x Y, (xo, ¥o)),
is the required isomorphism. O

Example 4.5. The torus 7'is homeomorphic to the product S x S*. Hence
mT) =z m@EHOmESH=ZDZ
Example 4.6. An n-dimensional torus T" is the product of »n unit circles.

Hence =,(T™) is isomorphic to the direct sum of n copies of the group of
integers.

Example 4.7. A closed cylinder C is the product of a circle S* and a closed
interval [a, b]. Thus

m(C) = m(SY) @ m(le, ) = Z®{0} = Z.
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4.4 Examples of Fundamental Groups

Theorem 4.10. Let X be a space for which there is an open cover {V} of X
such that

@ NV+#o,
(b) each V; is simply connected, and
(¢) fori# j, VN V;is path connected. Then X is simply connected.

ProOF. Since each of the open sets ¥ is path connected and their intersection
is not empty, it follows easily that X is path connected. Let x, be a point in
(M Vi. We must show that =;(X, x,) is the trivial group.

Let [«] be a member of 7,(X, x,). Then «: [ — X is a continuous map, so
the set of all inverse images {«~1(¥;)} is an open cover of the unit interval 1.
Since I is compact, this open cover has a Lebesgue number . Then there is a
partition

O=t<ti<tyg<---<t,=1

of I'such thatif 0 < j < n — 1, then o([t;, #;,1]) is a subset of some V;. (We
need only require that successive terms of the partition differ by less than e.)
Let us alter the notation of the open cover {V}}, if necessary, so that

o[ty t41]) < Vi, O0<j<n-1
Letting
oi(s) = (1 — $)t; + stj.1), sel,

we have a sequence {c;}}2¢ of paths in X such that «,(J) is a subset of the
simply connected set V;, and
[0] = [eg * 0ty * 0 %= -kt _1].

This process is illustrated for n = 4 in Figure 4.9.

o

alty)

a(0) = alty) = xo

Figure 4.9

Since V,_; N V; is path connected, there is a path p, from x, to a(t;),
1 <j < n— 1, lying entirely in ¥;_; N V,;. (Note that «(z,) is the terminal
point of ;_; and the initial point of «;.) Since the product p; * p; of p; and
its reverse is equivalent to the constant loop at x,, then

[0] = [og * py % py * 0ty % P % ok ctg %+ % Ppr_y % pp_y ¥ ey _q]

= [ao* prlolpr*xay*palo--ofppo*an_o*pp_1]ofpa_y* oy q].
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4 The Fundamental Group

The term in this product determined by «; is the homotopy class of a loop
lying in the simply connected set V/;. Hence each term of the product represents
the identity class, so [«] must be the identity class as well. Thus 7,(X) = {0},
and X is simply connected. O

Example 4.8. It is left as an exercise for the reader to show that S™, n > 1,
has an open cover with two members satisfying the requirements of Theorem
4.10. It then follows that = (S™) = {0} for n > 1.

4.5 The Relation between H,(K) and =,(|K|)

The fundamental group is defined for every topological space, and we have
defined homology groups for polyhedra. If | K| is a polyhedron with triangula-
tion K, how are the groups H,(K) and =,(|K|) related? For our examples
thus far (interval, circle, torus, cylinder, annulus, and n-sphere), =, (|K|) and
H,(K) are isomorphic. This is not true in general. The precise answer is given
by Theorem 4.11 which is stated here with only an outline of the proof.
Complete proofs can be found in [2], Section 8-3 and in [6], Section 12.

Theorem 4.11. If K is a connected complex, then H,(K) is isomorphic to the
quotient group m (|K|)/F where F is the commutator subgroup of = (|K|).
Thus whenever m,(|K|) is abelian, = (|K|) and H,(K) are isomorphic.

OUTLINE OF PROOF. Choose a vertex v of K as the base point for the funda-
mental group. For each oriented 1-simplex o; of K, let «; denote a linear
homeomorphism from [0, 1] onto o;; the «; are called elementary edge paths.
An edge loop is a product of elementary edge paths with » as initial point and
terminal point. Note that an edge loop «; * oy *- - -% «, corresponds in a
natural way to a l-cycle 1-0; + 1:05 +---+ 1-0,.

Although we shall not go into the lengthy details, it is true that (a) if an
edge loop is equivalent to the constant loop at v, then the corresponding 1-
cycle is a boundary; (b) if two edge loops are equivalent, then their corre-
sponding 1-cycles are homologous; and (c) each loop in |K| with base point
v is equivalent to an edge loop.

A homomorphism.

Sim(|K], ) — Hy(K)

may now be defined as follows: For [a] € m (| K|, v), let & = o3 % o % - %
be an edge loop equivalent to «. Define the value f([«]) to be the homology
class determined by the 1-cycle which corresponds to & Then fis a homo-
morphism from m(|K|,v) onto H;(K) whose kernel is the commutator
subgroup F. It follows from the First Homomorphism Theorem (Appendix 3)
that the quotient group =, (| K|, v)/F is isomorphic to H,(K). O

The fundamental group was defined by Poincaré in Analysis Situs, the
same paper in which he introduced homology theory, and the relation
between homology and homotopy given in Theorem 4.11 was known to him.
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4.5 The Relation between Hy(K) and my(|K|)

Poincaré did not prove the relation, but he stated in Analysis Situs that
“fundamental equivalence” of paths in the homotopy sense corresponded
precisely to homological equivalence of 1-chains except for commutativity.
Since the commutator subgroup F of a group G is the smallest subgroup for
which G/F is abelian, it is sometimes said that H,(K) is “m(|K|) made
abelian.”

Both the homology and homotopy relations investigate the structure of a
topological space by examining the connectivity or “holes in the space.”
Note that homotopy is more easily defined and conceptually simpler. It does
not require elaborate explanations of chains, boundaries, cycles, or quotient
groups. Homotopy applies immediately to general topological spaces and
does not require the special polyhedral structure that we used for homology.
Thus homotopy has some real advantages over homology.

Taking the other point of view, homology is in some ways preferable to
homotopy. The fundamental group is difficult to determine rigorously, even
for simple spaces. Recall, for example, our computation of 7,(S*) and the
proof of Theorem 4.4 showing that each contractible space is simply con-
nected. We found in Chapter 2 that homology groups are effectively calculable,
for pseudomanifolds at least, because of the simplicial structure of the
underlying complexes. Note also that the fundamental group overlooks the
existence of higher dimensional holes in S", n > 1. To describe higher
dimensional connectivity by the homotopy concept, we need a generalization
of the fundamental group to higher dimensions. That is to say, we need
homotopy analogues of the higher dimensional homology groups. After
giving some applications of the fundamental group in Chapter 5, we shall
study the higher homotopy groups in Chapter 6.

In defining the homology and homotopy relations, Poincaré hoped to give
an algebraic system of topological invariants that could be used to classify
topological spaces, especially manifolds. Ideally, one would hope for a
sequence of groups which are reasonably amenable to computation and have
the property that two spaces are homeomorphic if and only if their corre-
sponding groups are isomorphic. As pointed out earlier (Theorem 2.11), the
homology characters, and thus the homology groups, provide such a classifi-
cation for 2-manifolds. Poincaré’s hope that the homology groups would
provide a similar classification for 3-manifolds was not fulfilled. Poincaré
himself showed in 1904 that two 3-manifolds may have isomorphic homology
groups and not be homeomorphic. More specifically, he found a 3-manifold
whose homology groups are isomorphic to those of the 3-sphere S but which
is not simply connected, and therefore not homeomorphic to S@.

Poincaré was greatly preoccupied with the classification problem. He
hoped that the fundamental group would overcome the deficiencies of
homology theory in the classification of 3-manifolds. It does not, however,
for J. W. Alexander showed in 1919, seven years after Poincaré’s death, that
there exist nonhomeomorphic 3-manifolds having isomorphic homology
groups and isomorphic fundamental groups [26]. Alexander’s examples
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4 The Fundamental Group

involved fundamental groups of order five and left unanswered the famous
Poincaré Conjecture:

The Poincaré Conjecture. Every simply connected 3-manifold is homeomorphic
to the 3-sphere.

The classification problem, even for 3-manifolds, and the Poincaré Con-
jecture remain unsolved. Nonetheless, the fundamental group has been a
powerful tool and a great stimulus for research in algebraic topology. It seems
to lie at the very base of many difficult mathematical problems. We shall see
some of its power as we study an important class of spaces, the covering
spaces, in Chapter 5.

EXERCISES
1. Prove the Continuity Lemma.
2. Show that multiplication in 7,(X, x,) is well defined. In other words, show
that if & ~ ., o’ and B ~ ., ', then
a*f o~y o x5
3. Complete the details in the proofs of Lemmas A and C.

4. Given a space X and loops «, 3, v, and 8 with base point x, in X, exhibit a
homotopy which shows that

(axB) * (y *8) ~uox((Bxy)=d).

5. Let « and B be paths in a space X both having initial point x, and terminal
point x;. Prove that « is equivalent to 8 if and only if the product « * B of «
and the reverse of 8 is equivalent to the constant loop at x,.

6. Let p be aloop in X with base peint x,. Prove that the induced homomorphism
given by the proof of Theorem 4.3,
P: (X, xo0) — mi(X, Xo),

is the identity isomorphism if and only if the homotopy class [p] belongs to
the center of 7;(X, xo).

7. Let p and p’ be paths in a space X both having initial point x, and terminal
point x;. Give a necessary and sufficient condition that the homomorphisms
induced by p and p’ in the proof of Theorem 4.3 be identical. Prove that your
condition is correct.

8. Complete the proof of Theorem 4.4.
9. Give an example of a simply connected space which is not contractible.

10. Give an example of a contractible space X and a point x, in X for which there
is no contraction of X to x, which leaves x, fixed throughout the contracting
homotopy.

11. In analogy with the Generalized Covering Path Property, state and prove a
“Generalized Covering Homotopy Property”’ for S*.
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12.

13.

14
15.

16.

17.
18.

19.

20.

21.

22.

23

24.

25

26.

4 Exercises

Prove that a path connected space is simply connected if and only if every
pair of paths in X having common initial point and common terminal point
are equivalent.

Let f: X — Y be a continuous function. Prove that the function £, : 71(X, x,)
— m1(Y, f(xo)) defined by

fe(le]) = [fe], [a] € m1(X, x0),
is a homomorphism. Show in particular that f, is well-defined.
Prove that homeomorphic spaces have isomorphic fundamental groups.

In the proof of Theorem 4.5, explain why the covering path & has initial
point 0.

Explain why the 1oop y,: I — S* defined by

vn(t) = exp(2mint), tel,
has degree n for each integral value of n.
Determine the fundamental group of the Mobius strip.

Prove that every deformation retract of a space X is a rectract of X. Show
by example that the converse is false.

Let X be a space consisting of two 2-spheres joined at a point. Prove that
m(X) = {0}

Let X be a space consisting of two circles joined at a point. Prove that ,(X)
is a free group on two generators and hence that there are nonabelian
fundamental groups.

Show that the function % in the proof of Theorem 4.9 is an isomorphism.

Show that the n-sphere S™, n > 1, satisfies the hypotheses of Theorem 4.10
and that =,(S™) = {0}.

Prove that each of the following spaces is contractible:

(a) the real line,

(b) a convex set in R",

(c) the upper hemisphere H of S™: H = {(x1,..., Xp+1) € S™: Xp,+1 = 0},
(d) S™\{p} where p is a particular point in S™.

Let p be a point in S*. Prove that S x {p} is a retract but not a deformation
retract of S* x S*.

Prove that the fundamental group of punctured n-space R™\{p} is trivial for
n> 2.

Let G be a topological group with identity element e. If «, B are loops in G
with base point e, we can define a new product - by

a-B(t) = a(t)B(r)

where juxtaposition of «(¢) and B(¢) indicates their group product in G.
(a) Prove that the operation - on loops based at e induces a group operation
on m1(G, e).
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27.

28.

29.

30.

82

(b) Show that the operation induced by - is exactly the same as the usual
product o on (G, €). (Hint: Prove that (« * ¢)-(c * §) = « * B where ¢
is the constant loop at e.)

(c) Prove that m(G,e) is abelian. (Hint: Compare (c*c)-(c*f) and
(c*a)-(B*o0).

If X is a complex with combinatorial components Kj, ..., K, how is H,(K)
related to the groups m1(| K1), . . ., mi(| K:])?

Give an intuitive explanation of each of the following statements:

(a) The degree of a loop « in S*! is the number of times that « wraps the
interval I around the circle.

(b) The circle has one ‘“‘hole”’ so its fundamental group is the group Z of
integers.

(c) The fundamental groups of a torus and a figure eight (two circles joined
at a point) are not isomorphic.

(a) Show that a loop in a space X may be considered a continuous map from
S*into X. (Hint: Consider the quotient space of I obtained by identifying
0 and 1 to a single point.)

(b) Let « be a loop in S*. Explain the relation between the degree of « in the
homotopy sense and its degree in the homology sense.

Let X be a space consisting of two spheres S™ and S", where m, n = 2,
tangent at a point. Prove that =;(X) = {0}.



Covering Spaces

This chapter is designed to show the power of the fundamental group. We
shall consider a class of mappings p: E — B, called ““covering projections,”
from a ‘““covering space” E to a ““base space” B to which we can extend the
Covering Homotopy Property discussed in Chapter 4. Precise definitions are
given in the next section.

The fundamental group is instrumental in determining and classifying
the topological spaces that can be covering spaces of a given base space B.
For a large class of spaces, the possible covering spaces of B are determined
by the subgroups of =,(B). In addition, the theory of covering spaces will
allow us to determine the fundamental groups of several rather complicated
spaces.

5.1 The Definition and Some Examples

Recall from Chapter 4 that a space X is path connected provided that each
pair of points in X can be joined by a path in X. A space that satisfies this
property locally is called “locally path connected.”

Definition. A topological space X is locally path connected means that X has
a basis of path connected open sets. In other words, if x € X'and O is an
open set containing x, then there exists an open set U containing x and
contained in O such that U is path connected.

Definition. A maximal path connected subset of a space X is called a path
component. Thus A is a path component of X means that A is path con-
nected and is not a proper subset of any path connected subset of X. The
path components of a subset B of X are the path components of B in its
subspace topology.
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5 Covering Spaces

It is assumed throughout this chapter that all spaces considered are path
connected and locally path connected unless stated otherwise.

Definition. Let £ and B be spaces and p: £ — B a continuous map. Then the
pair (E, p) is a covering space of B means that for each point x in B there
is a path connected open set U < B such that x € U and p maps each path
component of p~*(U) homeomorphically onto U. Such an open set U is
called an admissible neighborhood or an elementary neighborhood. The
space B is the base space and p is a covering projection.

In cases where the covering projection is clearly understood, one sometimes
refers to E as the covering space. We shall, however, try to avoid ambiguity
by referring to the covering space properly as (E, p).

Example 5.1. Consider the map p: R — S from the real line to the unit circle
defined in Chapter 4:

p(t) = e?™ = cos(2nt) + isin(2nt), teR.
Then p is a covering projection. Any proper open interval or arc on S* can

serve as an elementary neighborhood. For the particular point 1 in S?, let
U denote the right hand open interval on S* from —i to i. Then

p'(U) = O (n—4n+9),

and the path components of p~*(U) are the real intervals (n — L, n + 1).
Note that p maps each of these homeomorphically onto U, as illustrated in
Figure 5.1.

VAR W { 1 ) Ll | 3}
T T 1

\ U \
—1 —1/4 0 1/4 1

Figure 5.1

Example 5.2. For any positive integer , letg,: S* — S* be the map defined by

where z" is the nth power of the complex number z. Then (S, ¢,) is a covering
space of S!. Representing the circle in polar coordinates, the action of g, is
described as follows: ¢, takes any point (1, 6) to (1, nf). Let U be an open
interval on S* subtended by an angle 6,0 < 6 < 2=, and containing a point x.
Then p~*(U) consists of n open intervals each determining an angle 6/n and
each containing one nth root of x. These » intervals are the path components
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of p~}(U), and each is mapped by p homeomorphically onto U. Thus any
proper open interval in S* is an admissible neighborhood.

A repetition of Example 5.2 for negative values of # is left as an exercise.

Example 5.3. If X is a space (which, according to our assumption, must be
path connected and locally path connected), then the identity map i: X — X
is a covering projection, so (X, i) is a covering space of X.

Example 5.4. Let P denote the projective plane, and let p: S2— P be the
natural map which identifies each pair of antipodal or diametrically opposite
points, as in Exercise 26 of Chapter 2. To show the existence of admissible
neighborhoods, let w be a point in P which is the image of two antipodal
points x and —x. Let O be a path connected open set in S? containing x such
that O does not contain any pair of antipodal points. (A small disc centered at
x will do nicely.) Then p(O) is an open set containing w, and p~p(O) has path
components O and the set of points antipodal to points in O. Note that p maps
each of these path components homeomorphically onto p(O), so p(O) is an
admissible neighborhood. Thus (S2, p) is a covering space of P.

Example 5.5. Consider the map r: R2 — S§! x S from the plane to the torus
defined by
r(ty, ty) = (€2™h, g2mity), (11, t) € R2.

Then (R?, r) is a covering space of S* x S*. This example is essentially a
generalization of the covering projection p: R — S* of Example 1. For any
point (z, z5) in §* x S, let U denote a small open rectangle formed by the
product of two proper open intervals in S* containing z; and z, respectively.
Then U is an admissible neighborhood whose inverse image consists of a
countably infinite family of open rectangles in the plane.

Example 5.6. Let Q denote an infinite spiral, and let g: Q — S* denote the
projection described pictorially in Figure 5.2. Each point on the spiral is
projected to the point on the circle directly beneath it.
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It is easy to see that (Q, ¢) is a covering space of S*. In this example it is
important that the spiral be infinite; a finite spiral projected in the same
manner is not a covering space. By examining Figure 5.3, one can see that the
points p(x,) and p(x;) lying under the ends of the spiral do not have admissible
neighborhoods.

Xo

X1

p(Xo)

Figure 5.3

Example 5.7. The following is not an example of a covering space. Let R be a
rectangle which is mapped by the projection onto the first coordinate to an
interval A, as shown in Figure 5.4. If U is an open interval in 4, then p~1(U)
is a strip in R consisting of all points above U. This strip cannot be mapped
homeomorphically onto U, so this situation does not allow admissible
neighborhoods.

=
-

»~ ) ®(a.b)
pla,b)=a
A t 7 }
Figure 5.4

5.2 Basic Properties of Covering Spaces

In this section we shall prove some basic properties of covering spaces from
the definition. The most important of these is the Covering Homotopy
Property.

The following characterization of local path connectedness is left as an
exercise:

Lemma. A space X is locally path connected if and only if each path component
of each open subset of X is open.
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Theorem 5.1. Every covering projection is an open mapping.

ProoF. Let p: E— B be a covering projection. We must show that for each
open set Vin E, p(V) is open in B. Let x € p(V), let X be a point of ¥ such that
p(%) = x, and let U be an admissible neighborhood for x. Let W be the path
component of p~1(U) which contains %. Since E is locally path connected,
the preceding lemma implies that W is open in E. Since p maps W homeo-
morphically onto U, then p maps the open set W N V to an open subset
p(W N V)in B. Thus x € p(W N V) and p(W N V) is an open set contained
in p(¥). Since x was an arbitrary point of p(¥), it follows that p(V) is a union
of open sets and is, therefore, an open set. Thus p is an open mapping. []

Theorem 5.2. Let (E, p) be a covering space of B and X a space. If f and g are
continuous maps from X into E for which pf = pg, then the set of points at
which f and g agree is an open and closed subset of X. (We do not assume in
this theorem that X is path connected or locally path connected.)

PrOOF. Let 4 = {x € X: f(x) = g(x)} be the set of points at which fand g
agree. To see that A is open, let x be a member of 4 and U an admissible
neighborhood of pf(x). The path component V of p~}(U) to which f(x)
belongs is an open set in E, and hence f~(¥) and g~ *(V) are open in X.
Since f(x) € V and f(x) = g(x), then x belongs to (V) N g~ (V). We shall
show that f~1(V) N g=%(V) is a subset of 4 and conclude that 4 is open
since it contains a neighborhood of each of its points.

Let tef~Y(V) N g=Y(V). Then f(¢) and g(¢) are in V and are mapped by
p to the common point pf(¢) = pg(¢). Since p maps ¥V homeomorphically
onto U, it must be true that f(¢) = g(¢). Then t € A4, and it follows that A is
an open set.

Suppose that 4 is not closed, and let y be a limit point of 4 not in 4. Then
f(y) # g(»). The point pf(y) = pg(y) has an elementary neighborhood W,
and f(y) and g(y) must belong to distinct path components ¥, and V; of
p~Y(W). (Why?) Since y belongs to the open set f~1(V,) N g~%(V,), then
f7Y(Vo) N g=X(Vy) must contain a point ¢t € 4. But this is a contradiction
since the point f(¢) = g(¢) would have to belong to the disjoint sets V, and
V;. Thus A contains all its limit points and is a closed set. O

Corollary. Let (E, p) be a covering space of B, and let f, g be continuous maps
from a connected space X into E such that pf = pg. If f and g agree at a
point of X, then f = g.

PrOOF. In a connected space X, the only sets that are both open and closed
are X and the empty set @. Thus 4 = X or 4 = &, so f and g must be pre-
cisely equal or must disagree at every point. Note that the corollary requires
only that X be connected, not path connected or locally path connected. []

Here is a situation that arises often in mathematics, particularly in topology.
Suppose that spaces E and B are to be compared using a continuous map

87



5 Covering Spaces

p: E— B and that there is given another map f: C — B from a space C into
B. Then a map f: C — E for which the diagram below is commutative, that is
for which pf = f, is called a lifting or covering of f.

1E
);// \!/P
C,_f_) B
In this section we shall be interested in lifting two kinds of maps: paths and

homotopies between paths. Theorem 5.2 and its corollary will be useful in
showing the uniqueness of liftings.

Definition. Let (£, p) be a covering space of B, and let «: I — B be a path.
A path @: I — FE such that pa = « is called a lifting or covering path of «.
If F: I x I— Bis a homotopy, then a homotopy F: I x I— E for which
pF = Fis called a lifting or covering homotopy of F.

We are now ready to extend the Covering Path Property and Covering
Homotopy Property that were proved earlier for the circle to covering spaces.
The proofs of these important properties are merely generalizations of the
proofs used in Chapter 4.

Theorem 5.3 (The Covering Path Property). Let (E, p) be a covering space of
B and o: I — B a path in B beginning at a point b,. If e, is a point in E with
pleg) = by, then there is a unique covering path of « beginning at e,.

Proor. Here is the basic idea of the proof: Subdivide the range of the path o
into sections so that each section lies in an admissible neighborhood. If U is
one of these admissible neighborhoods, then p maps each path component
of p~}(U) homeomorphically onto U. We can then choose a path component
V of p~Y(U) and consider the restriction p|, of p to ¥, a homeomorphism
from ¥ onto U. Composing with (p|,)~* “lifts” one section of « to E.

This method is applied inductively. Let {U;} be an open cover of B by
admissible neighborhoods, and let € be a Lebesgue number for the corre-
sponding open cover {«~1(U,)} of I. Choose a sequence

O=ty<t;<---<t,=1
of numbers in 1 with each successive pair differing by less than e. Then each
subinterval [t;, #;,1], 0 < i < n — 1, is mapped by « into an admissible
neighborhood U, ;.

First consider «([¢t,, t,]), which is contained in U;. Let V; denote the path
component of p~!(U;) to which the desired initial point e, belongs. Then, for
t € [t,, t,], define

&) = (ply,)"te(t).
Proceeding inductively, suppose that & has been defined on the interval
[to, tc]. Then

o[ty tr+1]) < Ugrns
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5.2 Basic Properties of Covering Spaces

so we let V., be the path component of p~1(U,. ) to which &(t,) belongs.
Since ply, ., is @ homeomorphism, the desired extension of & to [tx, tx+1] is
obtained by defining

a(t) = (Plvg.,) " tel?), t € [ty, tee1l

The continuity of & follows from the Continuity Lemma since the lifted
sections match properly at the end points.

The uniqueness of the covering path & can be proved from the uniqueness
of each lifted section. However, it is simpler to apply the Corollary to
Theorem 5.2. If o is another covering path of o with «'(0) = e,, then & and
o' agree at 0 and hence must be identical. O

Theorem 5.4 (The Covering Homotopy Property). Let (E, p) be a covering
space of B and F: I x I— B a homotopy such that F(0,0) = by. If ey is a
point of E with p(ey,) = by, then there is a unique covering homotopy
F: I x I— E such that F(0,0) = e,.

Having seen this property proved for a special case in Chapter 4, and
having seen the proof of the Covering Path Property for covering spaces, the
reader should be able to prove Theorem 5.4 for himself. A proof can be
modeled after the proof of Theorem 5.3 by subdividing / x I into rectangles
in the way that I was subdivided into intervals.

The Covering Homotopy Property has many important applications. One
of the most important is the following criterion for determining when two
paths in a covering space are equivalent.

Theorem 5.5 (The Monodromy Theorem). Let (E, p) be a covering space of B,
and suppose that & and B are paths in E with common initial point ey. Then
& and B are equivalent if and only if p& and pB are equivalent paths in B. In
particular, if pa and pB are equivalent, then & and B must have common
terminal point.

Proor. If @ and 8 are equivalent by a homotopy G then the homotopy pG
demonstrates the equivalence of pa and pp.

For a proof of the other half of the theorem, let b, and b, denote the
common initial point and common terminal point respectively of pa and pf.
Let H: I x I— B be a homotopy demonstrating the equivalence of pa and
PB: -

H(90)=p&a H(a 1)=P/g=
H(, t) = b,, H(,t) = by, tel

By the Covering Homotopy Property, there is a covering homotopy A of
H with H(0,0) = e,. Both & and the initial level H(-, 0) are covering paths
of p&, and they have common value e, at 0. Thus H(-, 0) = & by the Corol-
lary to Theorem 5.2. Similarly, we conclude that A(-, 1) = .

It remains to be seen that H(0, -) and H(l, -) are constant paths. But
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H(0, -) is a lifting of the constant path H(0, -) with H(0, 0) = e,. Since the
unique lifting of a constant path is obviously a constant path, then H(O, -)
must be the constant path whose only value is e,. The same argument shows
that A(1, -) must be the constant path whose only value is

&l) = H(1,0) = A1, 1) = BQ).

Thus A is a homotopy that demonstrates the equivalence of & and f. O

Theorem 5.6. If (E, p) is a covering space of B, then all the sets p~(b), b € B,
have the same cardinal number.

PrOOF. Let b, and b, be points in B. We must define a one-to-one correspon-
dence between p~1(b,) and p~1(b;). This is accomplished as follows: Let « be
a path in B from b, to b,. For x € p~1(b,), let &, denote the unique covering
path of « beginning at x. Then the terminal point &,(1) is a point in p ~*(b,).
This associates with each x in p~*(b,) a point

Sx) = (1)

in p~1(b,). By considering the reverse path from b, to b,, one can define in the
same manner a function

g:p (b)) = p~1(by).

The functions f'and g are easily shown to be inverses of each other, so p~*(b,)
and p~1(b,) must have the same cardinal number. O

Definition. If (E, p) is a covering space of B, the common cardinal number of
the sets p~1(b), b € B, is called the number of sheets of the covering. A
covering of n sheets is called an n-fold covering.

Consider, for example, the covering projection p: S2 — P of Example 5.4.
Since p identifies pairs of antipodal points, the number of sheets of this
covering is two. Thus (S?, p) is referred to as the “double covering” of the
projective plane.

The covering projection p: R — S* of Example 5.1 maps each integer and
only the integers to 1€ S*. Thus the number of sheets of this covering is
countably infinite.

We close this section with a result relating the fundamental groups of E
and B where (E, p) is a covering space of B. Choose base points ¢, in E and
b, = p(ey) in B. Then if « is a loop in E based at e,, the composition pe is a
loop in B with base point b,. Thus p induces a function

D« m(E, eq) = m1(B, by)
defined by
P*([“]) = [P“]a [a] € '”1(Ea eO)'

This function py is a group homomorphism and is called the homomorphism
induced by p.

90



5.3 Classification of Covering Spaces

Theorem 5.7. If (E, p) is a covering space of B, then the induced homomorphism
P+ m(E, eq) — m1(B, by) is one-to-one.

The proof, an easy application of the Monodromy Theorem (Theorem
5.5), is left as an exercise.

5.3 Classification of Covering Spaces

The fundamental group of the base space B provides a criterion for determin-
ing when two covering spaces of B are equivalent. Each covering space
determines a collection of subgroups, a conjugacy class of subgroups, of
m1(B). We shall see that two covering spaces are homeomorphic if and only
if they determine the same collection of subgroups.

Here is the terminology used in comparing covering spaces:

Definition. Let (E;, p,) and (E,, p,) be covering spaces of the same space B.
A homomorphism from (Ey, p,) to (E,, p,) is a continuous map h: E;, — E,
for which p,h = p,. In other words, this diagram must be commutative
for h to be a homomorphism.

E, 5 E,

AL

A homomorphism 4: E; — E, of covering spaces which is also a homeo-
morphism is called an isomorphism. If there is an isomorphism from one
covering space to another, the two covering spaces are called isomorphic.

It is left as an exercise for the reader to prove that a homomorphism of
covering spaces is actually a covering projection; i.e., if h: E; — E, is a
homomorphism, then (E;, k) is a covering space of E,.

Theorem 5.8. Let (E, p) be a covering space of B. If b, € B, then the groups
ps«mi(E, e), as e varies over p~(b,), form a conjugacy class of subgroups of
77'1(B ) b 0)'

Proor. Recall that subgroups H and K of a group G are conjugate subgroups
if and only if
H = x"'Kx

for some x € G. The theorem then makes two assertions: (a) for any e, e; in
p~(by), the subgroups p.m(E, e,) and p.m (E, e,) are conjugate, and (b) any
subgroup of m,(B, b,) conjugate to p,m;(E, e,) must equal p,m;(E, e) for some
e in p~1(by).

To prove (a), consider two points e, and e; in p~1(d,y). Let p: I— Ebe a
path from e, to e;. According to Theorem 4.3, the function P: m;(E, ey) —
m (E, e,) defined by

P([e]) = [p*axpl,  [e]em(E, e,
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is an isomorphism. In particular,
7T1(E, el) = P7Tl(E, eo),
SO
Pxmi(E, e1) = pyPmi(E, ).
It follows from the definition of P, however, that

p*P‘n'l(E, eO) = [PP]-_1 ° 77'l(E', eO) ° [pp]9

so pymi(E, ey) and p,m,(E, e,) are conjugate subgroups of 7,(B, b,). Note that
we are using the fact that [pp] is an element of (B, b,).

To prove (b), suppose that H is a subgroup conjugate to p,m (E, ;) by
some element [8] in (B, by):

H = [8]71 o pymi(E, e) o [8].

Let & be the unique covering path of § beginning at e,. Then § has a terminal
point e € p~1(b,), and the argument for part (a) shows that

psmi(E, ) = [p8]~* o pymi(E, €;) o [p8] = [8]7 o pumi(E, €o) o [8] = H.

Thus
p*”l(E’ e) = H,

and the set {p,m(E, e): e € p~1(by)} is precisely a conjugacy class of subgroups
of (B, by). O

Definition. The conjugacy class of subgroups {p,m(E, e): e € p~1(by)} de-
scribed in the preceding theorem is called the conjugacy class determined
by the covering space (E, p).

The main result of this section comes next. Two covering spaces of a
space B are isomorphic if and only if they determine the same conjugacy
class of the fundamental group of B. We must specify a base point b, in B to
make the representation ,(B) = =(B, b,) concrete. However, according to
Theorem 4.3, the choice of base point does not affect the structure of the
fundamental group.

Theorem 5.9. Let B be a space with base point b,. Covering spaces (E,, p;) and
(Es, ps) of B are isomorphic if and only if they determine the same conjugacy
class of subgroups of m (B, b,).

Proor. The “only if” part of the proof is left as an exercise. For the “if”
part, assume that the conjugacy classes of the two covering spaces are
identical. Then there must be points e; € py (b,) and e, € p5 *(b,) such that

P1xm1(E1, €1) = pagmi(Eg, ey).

The covering space isomorphism 4: E; — E, is defined by the following
scheme: For x € Ej, let « be a path in E; from e; to x. Then p,« is a path in
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5.3 Classification of Covering Spaces

B from b, to p;(x). This path has a unique covering path p,« in E, beginning
at e, and ending at some point y in E,. We then define 4(x) = y. This definition
is illustrated in Figure 5.5.

\ 1
P

bo ~ ——a_  P1X)
Figure 5.5

Can this & possibly be well-defined in view of the myriad choices for the
path «? Does it have any chance of being continuous ? The answer to both
questions is “yes’’; the function 4 is, in fact, a homeomorphism.

To show that % is well-defined, let B be another path in E; from e; to x.
Since o and B8 both begin at e, and terminate at x, the product path o *
is a loop in E; based at e;. Thus

Prs([ee * B]) = [p10 * p1f] € prami(Ey, €;).

But pixmi(E, e,) and pg,mi(E,, ;) are equal, so there is a member [y] e
m,(E,, e;) such that

[p1e *Plﬁ] = [pay]l.

Thus the loops p,« * p,B and p,y are equivalent loops in B. Using the Covering
Homotopy Property (Theorem 5.4) to lift a homotopy between p,« * p, 5 and
pay to E,, we obtain a loop y’ in E, based at e, for which

P2y’ = pree % p1P.
Divide 9’ into the product of two paths o’ and B’ as follows:
(1) =y'(t2), B@)=y(2-10/2), tel
It is a simple matter to observe that
P2’ = pye, Pof’ = piP.

Since o’ and B’ have initial point e,, they are the unique covering paths of
pie and p, B with respect to the covering (Es, ps); i.e.,

< =p% B =pb
Then
pl) = (1) =y'3),  pBA) = (1) = Y@,
so the same value A(x) = 9'(}) results regardless of the choice of the path
from e; to x. This concludes the proof that 4 is well-defined.
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5 Covering Spaces

In showing that 4 is continuous we shall use the fact that the admissible
neighborhoods form a basis for the topology of B. The proof of this is left as
an exercise.

Let O be an open set in E; and x a member of A~%(0). It must be shown
that there is an open set ¥ in E, for which x € ¥ and A(V) < O. Since the
definition of 4 requires that p,s = p, and since p, is an open mapping
(Theorem 5.1), then p,(x) belongs to the open set p,(O) in B. Since the admis-
sible neighborhoods form a basis for B, there is an admissible neighborhood
U such that

nx)el, U< py0).

Let W be the path component of p;(U) to which A(x) belongs. Then A(x)
belongs to the open set O’ = O N W, and the restriction

J=ps|0": 0" — py(0)

is a homeomorphism. Since p,(0’) is open in B, then p; 'p,(0’) is open in Ej.
Let ¥ be a path connected open set in E; which contains x and is contained
in p7'px(0"). ‘

To see that (V) < O, let t e V. Let « be a path in E; from e; to x and S a
path in ¥ from x to ¢. Then

~ —~
h(x) = pia(1),  h(t) = pro* piB(1).
But since f = p,|O’ is a homeomorphism, the covering path of p,o * p;8 is
i % f~p,B. Thus
h(t) = f~'pB(1) = fp().

This point is in O’ because p;(¢) € p,(0’) and fis a homeomorphism between
O’ and py(0O’). Since O’ < O, it follows that A(¢) e O and hence that
V) < 0.

The proof thus far has shown that there is a covering space homomorphism
h from E; to E,. By looking at constant paths, it is easy to see that A(e;) = e,.
The reader may be tiring at this point, especially in view of the fact that the
existence of a continuous inverse for 4 must be shown. However, the proof
thus far has essentially done that. Reversing the roles of E; and E,, there
must exist a continuous map g: E, — E; such that

pig =pz  ge) = e
Consider the composite map gh from E; to E;:
P18h = psh = piis,
where 7, is the identity map on E;. Since gh and 7, agree at e,, the Corollary
to Theorem 5.2 implies that gk is the identity map on E;. By symmetry, hg

must be the identity map on E,, and 4 is an isomorphism between (E;, p;)
and (E,, ps). O

Notation: It is often necessary to make the statement ““f’is a function from
space X to space Y which maps a particular point x, in X to the point y, in
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Y.” We shall shorten this cumbersome expression by referring to f as a
function from the “pair” (X,x,) to the pair (Y,y,) and writing

[ (X, x0) = (Y, yo).

Minor modifications in the proof of Theorem 5.9 establish the following
result. Details of the proof are left as an exercise.

Theorem 5.10. Let E, B, and X be spaces with base points ey, b,, and x, respec-
tively, and suppose that (E, p) is a covering space of B with p(ey) = b,. If
[ (X, xo) = (B, by) is a continuous map for which

Semi(X, x0) < pami(E, eo),

then there is a continuous map f: (X, x,) — (E, e,) for which pf = f.

In proving Theorem 5.10, keep in mind our agreement that all spaces
considered in this chapter are path connected and locally path connected.
Actually, Theorem 5.10 remains valid if the requirement on X is reduced to
connectedness.

Let us return to our original examples of covering spaces to find the
conjugacy class determined by each one. Note that the fundamental group of

each base space in these examples is abelian, so each conjugacy class has
only one member.

Example 5.8. For the covering (R, p) over S, the fundamental group of R is
trivial so
P1xmi(R) = {0},

and the conjugacy class consists of only the trivial subgroup of = (S?).
Example 5.9. The map ¢,: S* — S* defined by
gu(z) = 2",  z€eS%,

wraps S*! around itself # times. Thus if [«] € 7,(S?), the loop g, has degree

deg(g,«) = n deg c.
Representing m;(S?t) as the group of integers, it follows that g7 (S*, 1) is
the subgroup of Z consisting of all multiples of the integer n.
Example 5.10. If i: X — X is the identity map, then

iymi(X) = m(X),
so the conjugacy class in this case contains only the fundamental group of X.
Example 5.11. Consider the double covering (S?, p) over the projective plane P.

The 2-sphere is simply connected, so the conjugacy class contains only the
trivial subgroup.
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Example 5.12. The plane is simply connected, so the conjugacy class of
(R?, r) over the torus also contains only the trivial subgroup.

Example 5.13. The infinite spiral Q is contractible and thus has trivial funda-
mental group. Then (Q, g) determines the conjugacy class of ,(S*) consisting
of only the trivial subgroup. This is the conjugacy class determined in
Example 5.8, so Theorem 5.9 shows that (Q, g) and (R, p) are isomorphic
covering spaces of S

The only subgroups of 7,(S') = Z are the groups W, of all multiples of
the non-negative integer n. Since Z is abelian, each singleton set {W,} is a
conjugacy class. The subgroup W, = {0} corresponds to the covering space
(R, p) of Example 5.8, and W, corresponds to the covering (S?,g,) of
Example 5.9, n = 1, 2, .... By the classification of covering spaces given in
Theorems 5.8 and 5.9, any covering space of S must be isomorphic either
to (R, p) or to one of the coverings (S*, ¢,). The next section and the exercises
at the end of the chapter provide additional examples of base spaces for
which all possible covering spaces can be listed.

5.4 Universal Covering Spaces

If Bis a topological space, there is always a covering space corresponding to
the conjugacy class of the entire fundamental group, namely (B, i) where i is
the identity map on B. This covering space is of little interest for obvious
reasons. At the other extreme, the covering space corresponding to the
conjugacy class of the trivial subgroup {0} of =;(B) is the most interesting.
This covering space, if it exists for a particular base space, is called the
“universal covering space.” This section will examine the relation between
a base space B and its universal covering space.

Definition. Let B be a space. A covering space (U, q) of B for which U is
simply connected is called the universal covering space of B.

The appropriateness of the appellation “the universal covering space”
is explained by the next theorem.

Theorem 5.11. (a) Any two universal covering spaces of a base space B are
isomorphic.
(b) If (U, q) is the universal covering space of B and (E, p) is a covering
space of B, then there is a continuous map r: U — E such that (U, r) is a
covering space of E.

Proor. Statement (a) follows immediately from Theorem 5.9 since any
universal covering space determines the conjugacy class of the trivial
subgroup.

96



5.4 Universal Covering Spaces

For part (b), consider the diagram
E
-~ /1
. |»
U /—-> B
q
and choose base points u,, e, and b, in U, E, and B respectively for which

q(uo) = p(eo) = bo.
Since ,(U) is trivial, then

gsm1(U, uo) < pymi(E, €o),
and Theorem 5.10 guarantees the existence of a continuous map §: (U, q,) —
(E, ey) for which p§ = gq. This means that r = § is a covering space homo-
morphism, and therefore a covering projection, for U over E. O

Definition. Let (E, p) be a covering space of B. An isomorphism from (E, p)
to itself is called an automorphism. Under the operation of composition, the
set of automorphisms of (E, p) forms a group. This group is called the
group of automorphisms of (E, p) and is denoted by A(E, p).

Proofs of the following remarks are left as exercises:

(a) If fand g are automorphisms of (E, p) and f(x) = g(x) for some x, then

f=g
(b) The only member of A(E, p) that has a fixed point is the identity map.

Theorem 5.12. If (U, q) is the universal covering space of B, then A(U, q) is iso-
morphic to m(B). The order of w,(B) is the number of sheets of the universal
covering space.

Proor. Choose a base point b, in B and a point u, in U for which q(u,) = b,.
We shall first define a function T: A(U, q) — m(B).

For fe A(U, q), f(u,) is a point in U. Let y be a path in U from u, to f(u,).
Since gf = ¢, then f(u,) € g~ *(b,), and hence gy is a loop in B with base point
bo. We thus define T by

T(f) =lal, [feAU, 9.

Since U is simply connected, the choice of path y from u, to f(u,) does not
affect the homotopy class [gy]. Thus T is well-defined.

To see that T is a homomorphism, let f3, f; € A(U, q) and let y,, v, denote
paths in U from u, to f1(u,) and f5(u,) respectively. Then

T(f) = lgril T(f2) = [gys]
The product path y; * fiy, is a path from u, to f; f2(u4,). Thus

T(f1f2) = [a(yy * fiv2)] = [gy1 * qfiv2] = [ay1 * qy2]
= [gyi] o [gva] = T(f1) - T(f2),

so T is a homomorphism.
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To see that T is one-to-one, suppose that T(f;) = T(f;). Thus the loops
gy, and gy, determined by f; and f; are equivalent. The Monodromy Theorem
(Theorem 5.5) then implies that f(u,) = fa(uo). Thus f; = f;, since distinct
automorphisms must disagree at every point.

It remains to be shown that T maps A(U,q) onto (B, b,). Let
[«] € 71(B, by), and let @ denote the unique covering path of « beginning at
u,. Since U is simply connected, we can apply Theorem 5.10 to the diagram

(U, &)

7
h q

(U, uo) —> (B, bo)

to obtain a continuous lifting / of ¢ such that A(u,) = &(1). Since commuta-
tivity of the diagram requires gh = ¢, then 4 is a homomorphism. Reversing
the roles of &(1) and u, determines a homomorphism k on (U, q) such that
k(&(1)) = u,. But then hk and kh are the identity map on U since they are
homomorphisms which agree with the identity at some point. Thus &k = A~1,
h is an automorphism, and

T(h) = [ga] = [«].

This completes the proof that 4(U, q) and =,(B) are isomorphic.

The proof that the order of #,(B) is the number of sheets of the universal
covering space can be gleaned from what has already been done. The fact
that T is one-to-one establishes a one-to-one correspondence between g~ (b,)
and a subset of 7,(B, by). In proving that T is onto, we showed that every
homotopy class [«] in (B, b,) corresponds to a point &1) in g~(b,). Thus
the cardinal number of ¢~(b,), which is the number of sheets of (U, q), must
equal the order of =, (B). O

The real line is simply connected, so the covering space (R, p) of Example
5.8 is the universal covering space of the unit circle. Since the plane is simply
connected, then the covering space (RZ, r) of Example 5.12 is the universal
covering space of the torus.

Example 5.14. Consider the double covering (S2, p) of the projective plane P
defined in Example 5.4. Since 7,(S?) = {0}, then (S2, p) is the universal
covering space of P. Moreover, Theorem 5.12 allows us to determine m;(P)
by determining A(S?, p). Since p identifies pairs of antipodal points, then
(S?, p) has two automorphisms, the identity map and the antipodal map.
Thus A(S?, p) is the cyclic group of order two, and =,(P) is the same group.
Thus =, (P) is essentially the group of integers modulo 2.

This example generalizes to higher dimensions as follows:

Definition. Let P* denote the quotient space of the n-sphere S™ obtained by
identifying each pair of antipodal points x and —x. Then P" is called
projective n-space.
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The quotient map p: S™ — P™ is a covering projection. By repeating the
reasoning of Example 5.14, the reader can show that the fundamental group
of each projective space P*, n > 2, is isomorphic to the group of integers
modulo 2. A moment’s reflection will show that P! is homeomorphicto S* and
hence that «,(P*) is not the group of integers mod 2.

The classification of covering spaces given in Theorem 5.9 shows that two
covering spaces of a space B are isomorphic if and only if they determine the
same conjugacy class of subgroups of «;(B). This leaves open the question of
the existence of covering spaces. Given a conjugacy class in 7(B), is there a
covering space that determines this class? In particular, does every space
have a universal covering space? The answer is negative for both questions.
Two of the exercises for this chapter give examples of spaces that have no
universal covering space. Necessary and sufficient conditions for the existence
of a universal covering space are known, but presenting them would take us
rather far afield. Readers interested in pursuing this topic should consult
references [16] and [20].

5.5 Applications

This section gives two illustrations of the interplay between covering spaces
and fundamental groups. The first elucidates the structure of a particular
fundamental group, and the second proves part of the famous Borsuk-Ulam
Theorem.

Example 5.15. Thus far, all our examples of fundamental groups have been
abelian. We shall use covering spaces to provide an example of a nonabelian
one.
Let the base space B consist of two tangent circles,
B={z,weS'x St:z=1lorw=1},
and let
E = {(x, y) € R%: x or y is an integer}.
Then the map p: E — B defined by

p(xa y) = (eZnix’ ezmy)’ (x’ )7) € Rz,
is a covering projection. Referring to Figure 5.6, p maps each horizontal
segment of a square of E once around the left hand circle and each vertical
segment of a square of E once around the right hand circle of B.

O, 1 (1, 1)

©,0]  ](1,0) P

Figure 5.6
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5 Covering Spaces

Let v denote the loop in E based at (0, 0) indicated by the arrows, and let
[«] and [B] denote generators of the fundamental groups of the left and right
circles of B respectively. Then [y] is not the identity of =,(E), so

(YD) = [e] e [Bl o [«] "t =[]}

is not the identity in =,(B) since p, is one-to-one (Theorem 5.7). But if =,(B)
were abelian, the commutator [«] o [8] o [«] ! o [8]~* would be the identity
element of m(B). Thus =;(B) is not abelian. Those readers familiar with
free groups may want to prove that =,(B) is the free group generated by [«]

and [B].

The following theorem was conjectured by S. Ulam and proved by
K. Borsuk in 1933:

Theorem 5.13 (The Borsuk-Ulam Theorem). There is no continuous map
f:8"— S~ for which f(—x) = —f(x) for all xe S™, n > 1.

The theorem states that there is no continuous map from S™ to a sphere
of lower dimension which maps antipodal points to antipodal points. Such a
map would be said to “preserve antipodal points” and would be called
“antipode preserving.” Since S° is a discrete space of two points and there-
fore not connected, the result is clear for the case n = 1. We shall use a
covering space argument for the case n = 2. A proof for the entire theorem
can be found in [20].

Proceeding with the case n = 2 by contradiction, suppose that f: §% — S*
is a continuous map for which f(—x) = —f(x) for all x € S2. Consider the
diagram

sz Ly st

Pl

p2_t i p1

where (S2, p) and (S?, q) denote the double coverings of the projective spaces
P2 and P'. Even though p~1! is not single valued, the fact that f preserves
antipodal points guarantees that

h=gqfp~t:P2— P!

is well-defined and continuous. Note also that the diagram is commutative.
Since 1 (P?) is cyclic of order 2 and #,(P*) =~ =,(S?) is infinite and cyclic, the
induced homomorphism

hy: m(P?) — m(PY)

must be trivial. Let y, be a point of S2, and let b, = gf(y,) be the base point
of P, If « is a path in S from y, to — y,, then gf« is a loop in P*. This loop
is not equivalent to the constant loop ¢ at b, for the following reason: If
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gfa ~p, ¢, the Monodromy Theorem (Theorem 5.5) guarantees that fu is
equivalent to the constant loop based at f(,). Since f preserves antipodal
points, then

Je(1) = f(=yo) = =f(yo),

so f« is not a loop, and hence cannot possibly be equivalent to a loop. Thus

lgfe] # [c].
hy([pa]) = [hpe] = [qfp~*pa] = [qfe]

is not the identity of 7,(B, b,), and A, is not the trivial homomorphism. This
is a contradiction showing that our original assumption that such a map as
fexists must be false.

Then

Corollary 1. Let g: S? — R? be a continuous map such that g(—x) = —g(x)
for all x in S2. Then g(x) = 0 for some x in S2.

PROOF. Suppose on the contrary that g(x) is never 0. Then the map f: $% — S?
defined by

f&x) = g@)/llex)], xeS3

contradicts the Borsuk—Ulam Theorem for the case n = 2. O

Corollary 2. Let h: S? — R? be a continuous map. Then there is at least one
pair x, —x of antipodal points for which h(x) = h(—x).

PrOOF. Assume to the contrary that A(x) = A(—x) for no x in S2. Then the
function g: S2? — R? defined by

g(x) = h(x) — h(—x), x€8?
contradicts Corollary 1. O

The last corollary has an interesting physical interpretation. Imagine the
surface of the earth to be a 2-dimensional sphere, and suppose that the
functions a(x) and #(x) which measure the atmospheric pressure and tempera-
ture at x are continuous. Then the map 4: S — R? defined by

h(x) = (a(x), 1(x)),  xeS§?

is continuous. Corollary 2 guarantees that there is at least one pair of antipodal
points on the surface of the earth having identical atmospheric pressures and
identical temperatures!

The theory of covering spaces developed during the late nineteenth and
early twentieth centuries from the theory of Riemann surfaces. Covering
spaces were studied, in fact, before the introduction of the fundamental group.
Poincaré introduced universal covering spaces in 1883 to prove a theorem
about analytic functions [53]. He considered the universal covering space
(U, q) of a space B to be the “strongest’ covering space of B in the following
sense: A curve y in U is closed if and only if for every covering space (E, p)
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5 Covering Spaces

of Band every curve y’ in E for which py’ = gy, ¥ is a closed curve. Exercises
at the end of the chapter show that this condition is satisfied if U is simply
connected and that (U, q) is indeed the ““strongest” covering space of B in
the sense of Theorem 5.11.

Covering spaces provided the first example of the power of the funda-
mental group in classifying topological spaces. We have seen in Theorem 5.9
that the fundamental group accomplishes for covering spaces the type of
classification that the homology groups provide for closed surfaces (Theorem
2.11). In addition, the theory of covering spaces was the precursor of the
general fiber spaces of Witold Hurewicz and J. P. Serre which are crucial in
any advanced course in algebraic topology.

We shall not return in this book to the important and difficult problem of
determining fundamental groups. Those interested in this problem should
proceed to Van Kampen’s Theorem which shows that, under the proper
conditions, ,(X) can be determined from the fundamental groups of certain
subspaces of X. This theorem and related results can be found in [16] and [19].

EXERCISES

1. (a) Give an example of a space that is path connected but not locally path
connected.

(b) Give an example of a space that is locally path connected but not path
connected .

2. Prove that a space X is locally path connected if and only if each path
component of each open subset of X is open.

3. Is each component of a space contained in a path component, or is it the
other away around? Prove your answer, and give an example to show that
components and path components may not be identical.

4. Show that the projection of a “hairpin”’ onto an interval, as indicated in
Figure 5.7, is not a covering projection.

X
lp
r(») p(x)
Figure 5.7

y

5. Definition. A function f: X — Y is a local homeomorphism provided that each
point x in X has an open neighborhood U such that f maps U homeomor-
phically onto f(U).

(a) Prove that every covering projection is a local homeomorphism.
(b) Give an example to show that a local homeomorphism may fail to be a
covering projection.

6. Let (E, p) be a covering space of B. Show that the family of admissible
neighborhoods is a basis for the topology of B.
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10.
11.
12.
13.
14.
15.
16.

17.

18.
19.

20

.

21

.

22.

23

24.
25.

5 Exercises

Repeat Example 5.2 in the case 7 is a negative integer.
Prove the Covering Homotopy Property (Theorem 5.4).

Prove the following generalizations of the Covering Homotopy Property:

(a) Theorem. Let (E, p) be a covering space of B, X a simply connected space,
f: X— E a continuous map, and H: X x I — B a homotopy such that
H(-,0) = pf. Then there is a covering homotopy H: X x I - E of H
such that H(-,0) = f.

(b) Prove the preceding theorem under the assumption that X is a compact
Hausdorff space that is not necessarily simply connected.

Complete the details in the proof of Theorem 5.6.

Prove Theorem 5.7.

Prove that a homomorphism of covering spaces is a covering projection.
Show that isomorphism of covering spaces is an equivalence relation.
Complete the proof of Theorem 5.9.

Prove Theorem 5.10.

Determine all covering spaces of the torus and exhibit a representative
covering space from each isomorphism class.

If B is a simply connected space and (E, p) is a covering space of B, prove that
p is a homeomorphism from E onto B.

Show that the map p: E — B of Example 5.15 is a covering projection.

(a) Prove that the set A(E, p) of all automorphisms of a covering space (E, p)
is a group.

(b) Prove that members f, g of A(E, p) must be identical or must agree at no
point of E.

(c) Prove that the identity map is the only member of A(E, p) that has a
fixed point.

Prove that if B is simply connected, then (B, i) is the universal covering space
of B. (Here i denotes the identity map.)

Prove that the fundamental group = (P") of projective n-space P™ is iso-
morphic to the group of integers modulo 2 for » > 2. What about n = 1?

Prove that any continuous map f: P* — S*, n = 2, from projective n-space
to the unit circle is null-homotopic.

If (E, p) is a covering space of B and (F, q) is a covering space of C, prove that
(E x F,p x q) is a covering space of B x C, where p x g denotes the
natural product map.

Use Theorem 5.12 to prove that 71(S') ~ Z and =(S* x S}) ~Z @ Z.

Let G and G be path connected and locally path connected topological groups
and p: 6 — G a group homomorphism for which (G, p) is a covering space
of G. Prove that the kernel of p is isomorphic to A(G, p).
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26.
27.

28.

29.
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Prove that an infinite product of circles has no universal covering space.

Let X be the subset of the plane consisting of the circumferences of circles
having radius 1/n and center at (1/n, 0) for n = 1, 2,.... Show that X has no
universal covering space.

Let (E, p) be a covering space of B, and let e,, by be points of E and B respec-

tively with p(eq) = bo.

(a) Show that there is a one-to-one correspondence between p~*(b,) and the
set of left cosets (B, bo)/ psmi(E, eo).

(b) Definition. The covering space (E, p) is called regular if pymi(E, e,) is a
normal subgroup of (B, bo).

Show that regularity is not dependent on the choice of base point e, in

p~(bo). (Hint: Use conjugacy classes.)

(c) Prove that the automorphism group A(E, p) is isomorphic to the quotient
group (B, bo)/ pxm1(E, eo) if (E, p) is regular. Deduce Theorem 5.12 as
a corollary.

Let us say that a covering space (U, q) of B satisfies Property P if it is the
“strongest”’ covering space of B in the sense of Poincaré: A curvey in U is
closed if and only if for every covering space (E, p) of B and every curve y’
in E for which py’ = gy, v’ is a closed curve.
Prove:
(a) If U is simply connected, then (U, g) satisfies Property P.
(b) Any two covering spaces of B which satisfy Property P are isomorphic.
(c) If (U, g) satisfies Property P and (E, p) is any covering space of B, then
there is a homomorphism r: U — E for which (U, r) is a covering space
of E.



The Higher Homotopy Groups

6.1 Introduction

The fundamental group of a connected polyhedron provides more informa-
tion than does its first homology group. This is evident from Theorem 4.11
since the first homology group is completely determined by the fundamental
group. For this reason, the need for higher dimensional analogues of the
fundamental group was recognized early in the development of algebraic
topology. Definitions of these “higher homotopy groups” were given in the
years 1932-1935 by Eduard Cech (1893-1960) and Witold Hurewicz (1904—
1956). It was Hurewicz who gave the most satisfactory definition and proved
the fundamental properties.

Let us consider in an intuitive way the possible methods of defining the
second homotopy group mo(X, x,) of a space X at a point x, in X. Recall that
m1(X, X,) is the set of homotopy classes of loops in X based at x,. Our first
problem is to define what one might call a ““2-dimensional loop.”

A ““l-dimensional loop” is a continuous map «:I— X for which the
boundary points 0 and 1 have image x,. We might then define a 2-dimensional
loop to be a continuous map B: I x I— X from the unit square into X which
maps the boundary of the square to x,.

From a slightly different point of view, we can consider a loop «in X as a
continuous map from S* to X which takes 1 to x,. This follows from the
observation that the quotient space of the unit interval I obtained by identify-
ing 0 and 1 to a single point is simply S*. Thus another possible definition of
2-dimensional loop is a continuous map from the 2-sphere S2 into X. Note
that both of these definitions of 2-dimensional loop generalize to higher
dimensions by considering higher dimensional cubes and spheres.

There is a third possibility. Perhaps a 2-dimensional loop should be a
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6 The Higher Homotopy Groups

“loop of loops.” That is to say, perhaps a 2-dimensional loop should be a
function B having domain I with each value B(¢) a loop in X, and having the
additional property B(0) = B(1). This idea is the point of genius in Hurewicz’
approach. Carrying it out will involve defining a topology for the set Q(X, x,)
of loops in X with base point x,. Once this topology is determined, one can
define m5(X, x,) to be the fundamental group of Q(X, x,).

It is remarkable that all three approaches lead to the same group =o( X, x,).
The next section presents the definitions based on these three ideas and shows
that the same group is determined in each case.

6.2 Equivalent Definitions of =,(X, x,)

We shall take the three definitions in the order in which they have been
discussed. If n is a positive integer, the symbol I™ denotes the unit n-cube
I"={t=(t,t,...,t,)€R": 0 < ¢, < 1 for each i}
and oI, called the boundary of I", denotes its point set boundary
oI" = {t = (t;, ty,..., t,) €I™: some ¢;is 0 or 1}.

Note that the boundary symbol 0 must not be confused with the boundary
operator of homology theory.

Definition A. Let X be a space and x, a point of X. For a given positive integer
n, consider the set F,(X, x,) of all continuous maps « from the unit n-cube
I" into X for which «(dI™) = x,. Define an equivalence relation ~,, on
F.(X, x,) as follows: For « and B in F,(X, x,), « is equivalent modulo x, to
B, written « ~ B, if there is a homotopy H: I" x I— X such that

H(tb s tna 0) = 0‘(2‘17 R tn)a

H(tl, ce ey tna 1) = B(tl, ce ey tn), (tl’ ey tn) eIn,
and

H(ty, ..., t,, §) = Xo, (ty,...,ty)eodl, sel
In shorter form the requirements on the homotopy H are
H(3O)=aa H(; 1)=I3,
H(a]n X I) = xO.
Under this equivalence relation on F,(X, x,), the equivalence class deter-
mined by « is denoted [«] and called the homotopy class of « modulo x, or
simply the homotopy class of «.
Define an operation * on F,(X, x,) as follows: For «, 8 in F,(X, x,),

o2ty toy . ..y ty) fo<t <3

ot = T
@ xPlty, s ) {,8(2t1—1,t2,...,tn) ifli<t <

—

Note that the * operation is completely determined by the first coordinate
of the variable point (¢, ..., ;) and that the continuity of o x 8 follows
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from the Continuity Lemma. The * operation induces an operation o on
the set of homotopy classes of F,(X, x,):

[e] o [B] = [ = B].
With this operation, the set of equivalence classes of F,(X, x,) is a group.

This group is called the nth homotopy group of X at x, and is denoted by
77‘n(‘Xv s xO)'

As in the case of the fundamental group, the definition requires that some
details be verified:

(1) The relation ~, is an equivalence relation on F,(X, x,).

(2) The operation * determines the operation o completely. In other words,
ifo~, o andf~, B,thena*f ~, o .

(3) With the o operation, (X, x,) is actually a group. Its identity is the class
[c] determined by the constant map ¢(I™) = x,. The inverse [a]~! of [«]
is the class [@] where &, called the reverse of «, is defined by

C_t(tl, tz, e ey tn) = OC(I - tl’ t2, ceey tn); (tla t2, ceey tn) el

Since the definition of =,(X, x,) is completely analogous to that of =,(X, x,)
except for the extra coordinates, the proofs of these details are left as exercises.

The quotient space of I™ obtained by identifying 01" to a point is homeo-
morphic to the n-sphere S™. Let us assume that the point of identification is
the point 1 = (1, 0, ..., 0) of S™ having first coordinate unity and all other
coordinates zero. Then m,(X, x,) can be defined in terms of maps from
(S™, 1) to (X, x,) as follows:

Definition B. For a given positive integer n, consider the set G,(X, x,) of all
continuous maps « from S" to X such that «(1) = x,. Define an equiva-
lence relation on G,(X, x,) in the following way: For «, B in G,(X, xo), «
is equivalent modulo x, to B, written « ~, B, if there is a homotopy
H:S™ x I— X such that

H(-,0) =« H(,1)=8,
H(1,s) = x, sel

The equivalence class [«] determined by « is called the homotopy class of c.
The set of homotopy classes is denoted by ,(X, x,).

In view of the discussion preceding Definition B, it should be clear that
there is a natural one-to-one correspondence between F,(X, x,) and G,(X, xo)
under which a map « in G,(X, x,) corresponds to the map o' = ag where ¢
is the map from I™ to S™ which identifies 61" to the point 1. Also, two mem-
bers « and B8 in G,(X, x,) are equivalent modulo X, if and only if their counter-
parts ¢’ and B8’ are equivalent in F,(X, x,). Thus Definitions A and B give
equivalent definitions of the set 7,(X, x,). The elements [«] are usually more
easily visualized in terms of Definition B.
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The o operation for Definition B is defined in terms of the identification of
I"to 8™ Let o, B € G,(X, x,). The identification map q takes the sets

4= {(tla' CE) t")EI"Z L=< %},
B={t,..,t,)el":t; > L}

to hemispheres A’ and B’ respectively of S™ whose intersection
A" N B = g(4 N B)

if homeomorphic to S™~*. Imagine that A’ N B’ is identified to the base point
1 by an identification map r. The resulting space consists of two n-spheres
tangent at their common base point as in Figure 6.1. The product « % j is
now defined by

ar(x) ifxed

“*BX) = \g(x) ifxcB

The group operation o is defined by
le] o [B] = [« = B].

Observe that the operation for Definition B has been designed expressly to
show that Definitions A and B describe isomorphic groups.

o XX
-
N

Figure 6.1

The third description of the nth homotopy group requires a topology for
the set of loops in X based at x,.

Definition. Let F be a collection of continuous functions from a space Y into
a space Z. If Kis a compact subset of Y and U an open subset of Z, let
W(K,U) = {eeF: «(K) < U}

The family of all such sets W (K, U), as K ranges over the compact sets in
Y and U ranges over the open sets in Z, is a subbase for a topology for F.
This topology is called the compact-open topology for F.

Since we shall apply the compact-open topology only to the set of loops
in a space X, we repeat the definition for this case.
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6.2 Equivalent Definitions of m,(X, x,)

Definition. Let X be a space and x, a point of X. Consider the set Q(X, x,)
of all loops in X with base point x,. If K is a compact subset of I and U
is open in X, let

W(K, U) = {a € Q(X, x,): «K) = U}.

The family of all such sets W(K, U), where K is compact in [ and U is
open in X, is a subbase for a topology for Q(x, x,). This topology is the
compact-open topology for Q(X, x,). Note that basic open sets in the
compact-open topology have the form

m W(Kiy Ut)
i=1

where K, ..., K, are compact sets in [/ and Uy, ..., U, are open in X. A
loop « belongs to this basic open set if and only if «(K;) < U, for each
i=1,2,...,r.

Theorem 6.1. If X is a metric space, the compact-open topology for Q(X, x,) is
the same as its topology of uniform convergence.

ProoF. Let d denote the metric on X. Recall that the topology of uniform
convergence on Q(X, x,) is determined by the metric p defined as follows: If
o and B are in Q(X, x,), then p(e, B) is the supremum (or least upper bound)
of the distances from «(z) to B(¢) for ¢ in I:

p(e, B) = sup{d(«(), B(1)): t e I}.

Then the topology of uniform convergence has as a basis the set of all
spherical neighborhoods

S(a, r) = {B€QX, xo): d(«, B) < r}

where « € Q(X, x,) and r is a positive number.

Let T and 7’ denote respectively the compact-open topology and the
topology of uniform convergence for Q(X, x,). To see that 7 < T, let
W(K, U) be a subbasic open set in 7, where K is compact in I and U is open
in X. Let « € W(K, U). Since the compact set «(K) is contained in U, there is
a positive number e such that any point of X at a distance less than ¢ from
«(K) is also in U. Consider the basic open set S(c, €) in 7". If 8 € S(«, €), then
for each ¢ in K, d(«(t), B(t)) < e. Thus B(¢) must be in U since its distance
from a point of «(K) is less than e. Hence B(K) < U, so B e W(K, U). We
now have

€ S(e, €) = W(K, U),

so W(K, U) must be open in 7. Then 7 < T’ since T’ contains a subbase
for T. ;
To see that 7' < T, let S(y, r) with center y and radius » > 0 be a basic
open set in 7". To prove that S(y, r) is in T, it is sufficient to find a member of
T which contains y and is contained in S(y, r). (Why?) Let {U,} be a cover of
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X by open sets having diameters less than r, and let » be a Lebesgue number
for the open cover {y ~(U,)} of I. Let

O=tfy<ti <---<t,=1

be a subdivision of I with successive points differing by less than 7. Then for
i=1,2,...,n, y maps each of the compact sets K; = [t;_4, #;] into one of
the open sets of the cover {U;}. Choose such an open set, say U,, for each i
so that
»K) < U, i=12,...,n
Then
ye () WK, U,
i=1

and this set is open in T. If 8 € (M=, W(K,, U,), then p(y, B) cannot exceed
the maximum of the diameters of U, .. ., U,. Thus p(y, 8) < r,soB € S(y, r).
Then S(y, r) is open in T, and T contains 7" since it contains a basis for 7.
Since it has been shown that 7 < 7' and 7' < T, then T = T". O

Definition C. Let X be a space with x, € X, and consider the set Q(X, x,) of
loops in X based at x, with the compact-open topology. If » > 2, the nth
homotopy group of X at x, is the (n — 1)th homotopy group of Q(X, x,) at
¢, where ¢ is the constant loop at x,. Thus

mo( X, Xo) = 7 (QX, Xo), ©), . ..
"n(X’ xO) = ﬂn—l(Q(X9 x0)9 C).

Definition C for the higher homotopy groups was given by Witold
Hurewicz in 1935. His definition was originally applied only to metric spaces,
and Q(X, x,) was assigned the topology of uniform convergence. The compact-
open topology, which permitted the extension of Hurewicz’ definition to
arbitrary spaces, was introduced by R. H. Fox (1913-1973) in 1944. The
inductive definition expresses each homotopy group ultimately as a funda-
mental group of a space of loops. This will be helpful in our applications later.
This definition has one obvious disadvantage, however. It does not lend
itself easily to intuitive considerations. How, for example, can one imagine
m3(X, X,) as the fundamental group of the iterated loop space of X?

Each of the three definitions of the higher homotopy groups has advan-
tages and shortcomings. To understand homotopy theory, one must know all
three and must be able to apply the one that fits best in a given situation.

The three definitions A, B, and C of the higher homotopy groups are all
equivalent. We have discussed the equivalence of A and B and now turn to
a comparison of A with C. This discussion will be for the case n = 2 since
the extension to higher values of n requires little more than writing additional
coordinates.

Suppose then that « is a member of Fy(X, x,); i.e., « is a continuous map
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from the unit square /2 to X which takes 912 to x,. Then « determines a
member & of Q(Q(X, x,), ¢) defined by
&(11)(ty) = olty, to), t,t,el
Each value &(¢,) is a continuous function from 7 into X because « is con-
tinuous. Note that
&(,)(0) = &(t,)(1) = x,

since (¢,,0) and (¢3,1) are in 0I2 Thus &) € Q(X, x,), and obviously
&(0) = &(1) is the constant loop ¢ whose only value is x,. But is & continuous
as a function from I into Q(X, x,)? To see that it is, let W(K, U) be a sub-

basic open set in Q(X, x,). As usual, K is compact in / and U is open in X.
Let ¢, e &~ Y(W(K, U)). Then
&(t,)(K) = e(ft:} x K) < U.
Since K is compact, there is an open set O in [ such that #, € O and
o0 x K) = U.
Thus
tbe0 < &Y (W(K, U)),
so &~ Y(W(K, U)) is an open set and & is continuous. Thus each member of
Fy(X, x,) determines in a natural way a member of Q(Q(X, x,), ¢).

Suppose that we reverse the process and begin with a member & of
Q(Q(X, x,), ¢). Then & determines a function «: I? — X defined by

alty, 1) = &(1,)(22), (t1, 1) e I2.
It is an easy exercise to see that « € Fyo(X, x,). We have thus established a
one-to-one correspondence between F,(X, x,) and Q(Q(X, x,), ©).
Suppose that H: I? x I — X is a homotopy demonstrating the equivalence
of « and B as prescribed in Definition A. Then the homotopy

B:1x I— Q(X, x,)
defined by
ﬁ(tly S)(t2) = H(tb t2, S), tl; t25 s EIy

demonstrates the equivalence of the loops & and B. Reversing the argument
shows that & equivalent to B implies « equivalent to 8. Thus there is a one-to-
one correspondence between homotopy classes [«] of Definition A and
homotopy classes [&] of Definition C. Since the * operation in Definition A
is completely determined in the first coordinate, it follows that for any
a, B € Fy(X, x,), [ * B] corresponds to [& * B] and hence that the two defini-
tions of 7,(X, x,) lead to isomorphic groups.

6.3 Basic Properties and Examples

Many theorems about the fundamental group generalize to the higher
homotopy groups. The following three results can be proved by methods very
similar to those used to prove their analogues in Chapter 4.
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Theorem 6.2. If the space X is path connected and x, and x, are points of X,
then m,(X, x,) is isomorphic to =, (X, x,) for eachn > 1.

As in the case of the fundamental group, we shall sometimes omit reference
to the base point and refer to the “nth homotopy group of X,” =,(X), when
X is path connected and we are concerned only with the algebraic structure
of the group.

Theorem 6.3. If X is contractible by a homotopy that leaves x, fixed, then
(X, xo) = {0} for eachn > 1.

Theorem 6.4. Let X and Y be spaces with points x, in X and y, in Y. Then
7"’n(Alx Ya (x05y0)) = Wn(XaxO)@”n(Y:yO)a n = 1

Example 6.1. The following spaces are contractible, so each has nth homotopy
group {0} for each value of n:

(a) the real line,

(b) Euclidean space of any dimension,
(¢) an interval,

(d) a convex figure in Euclidean space.

We saw in Chapter 4 that the fundamental group is usually difficult to
determine. This is doubly true of the higher homotopy groups. The homotopy
groups m,(S™) of the n-sphere, for example, have never been completely
determined. (The hard part is the case £ > n.) Finding the homotopy groups
of S™ is one of the major unsolved problems of algebraic topology. The
groups m(S™) for k < n are computed in the following examples.

Example 6.2. For k < n, the kth homotopy group =,(S™") is the trivial group.
To see this, let [«] be a member of 7,(S™), and consider « as a continuous map
from (S*, 1) to (S™, 1). Represent S* and S™ as the boundary complexes of
simplexes of dimensions k£ + 1 and n + 1 respectively. By the Simplicial
Approximation Theorem (Theorem 3.6), « has a simplicial approximation
o' §¥ — §" for which [«] = [«']. But since a simplicial map cannot map a
simplex onto a simplex of higher dimension, then «  is not onto. Let p be a
point in S™ which is not in the range of «’. Then S™\{p} is contractible since
it is homeomorphic to R, and hence «’, a map whose range is contained in a
contractible space, is null-homotopic. Thus

[e] = [o'] = [e],

so m,(S™) is the trivial group whose only member is the class [c] determined
by the constant map.

Example 6.3. For n > 1, the nth homotopy group 7,(S™) is isomorphic to the
group Z of integers. (The case n = 1 was considered in some detail in
Chapter 4.)
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Consider =,(S™), n > 2, as the set of homotopy classes of maps
a: (8", 1) — (S™, 1) as in Definition B. Define p: 7,(S™) — Z by

p([e]) = degree of «, [e] € m(S™).

Brouwer’s Degree Theorem (Theorem 3.9) insures that p is well-defined, and
the Hopf Classification Theorem (Theorem 3.10), which was stated without
proof in Chapter 3, shows that it is one-to-one. The identity map
i:(S" 1)—(S™ 1) has degree 1, and the description of the % operation in
Definition B shows that the map

i =dxix %] (k terms)
has degree k. Thus [i] is a generator of =,(S™), and

p((iT) =k, p(i]™*) = —k

for any positive integer k. It follows easily that p is an isomorphism.

Example 5.15 shows that the fundamental group of a space may fail to be
abelian. The higher homotopy groups are all abelian, as we shall see shortly.
This property is the result of the * operation in Q(X, x,). The next theorem
illustrates the method of proof and serves as an introduction to the more
complicated proof of the commutativity of (X, x,) for n > 2.

Theorem 6.5. Let G be a topological group with identity element e. Then 7,(G, €)
is abelian.

Proor. The operation on G induces an operation - on the set Q(G, e) of loops
in G based at e defined by

aBt) = t)B(t), o, BeAG,e),tel,
where the juxtaposition of «(z) and B(¢) indicates their product in G. This
operation induces an operation @ on 7,(G, e):

[e] o [B] = [-B],  [e], [Blem(G,e).

Let ¢ denote the constant loop at e, and let [«] and [5] be members of 7,(G, e).
Observe that

a(2t)e = a(2t) fo0<t<i
(x0)-@x B =\ pgar — 1) = gt —1) ify<t<1,
_ [ep2t) = B21) ifo<t<1i
(exa)-(Bxo)t) = {oc(Zt —De=a@—1) ifl<t<l.
This gives
(axc)(c*xPB)=axp, (c*xa)-(Bxc)=B*a.
Then

[e] o [B] = [ % B] = [(a % ¢)-(c * B)] = [exc] o [cxp]
=lexa]o[Bxc] =[(cxa)-(Bxc)] = [Bxa] = [B]°[a],

so m,(G, e) is abelian.
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Here is an additional curious fact. The operations o and o are precisely
equal:

[e]o[B] = [a* Bl = [(¢xc)-(cxB)] = [axclefcxpl =[o]=[f]. O

Not all of the group properties were used in the proof of Theorem 6.5.
The existence of a multiplication with identity element e is sufficient, and
even that assumption can be weakened. The following definition describes
the property that makes the proof work.

Definition. An H-space or Hopf space is a topological space Y with a con-
tinuous multiplication (indicated by juxtaposition) and a point y, in Y for
which the map defined by multiplying on the left by y, and the map defined
by multiplying on the right by y, are both homotopic to the identity map
on Y by homotopies that leave y, fixed. In other words, there exist
homotopies L and R from Y x [ into Y such that

L(J’,O) =y0y7 L(J’, l)=y, L(yOa t) =y0a
R(y, 0) = yy,, R(y,1) =y, R(ot) = o

for all y in Y and ¢ in I. The point y, is called the homotopy unit of Y.

Note that any topological group is an H-space. H-spaces were first
considered by Heinz Hopf, and they are named in his honor.

Example 6.4. If X is a space and x, a point of X, then the loop space Q(X, x,)
with the compact-open topology is an H-space. The multiplication is the
operation, and the homotopy unit is the constant map c¢. The required
homotopies L and R are defined for « in Q(X, x,) and s in 7 by

X fo<t<(1—y9)2

Le, 3(0) = a(z—t — 1) ifl-s2=<r<l,
a( 2t
R(e, s)(1) =4 \s +1
Xo f(s+1)2<t<l.

) fOo<t<(s+ D)2

The reader is left the exercise of proving that the multiplication * and the
homotopies L and R are continuous with respect to the compact-open
topology.

Theorem 6.6. If Y is an H-space with homotopy unit y,, then (Y, y,) is
abelian.

ProoF. The operation on Y induces an operation - on Q(Y, y,) as in the
proof of Theorem 6.5:

ap(t) = t)B(t), o BeY,y) tel
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This operation likewise induces an operation o on (Y, y,):

[e]o [B] = [¢-Bl,  [e], [B] € m(Y, yo).

Letting ¢ denote the constant loop at y,,

«(26) o ifo<r<i
(xxc)-(cxp)t) = {yoB(ZI -1 ifi<r<l,

 [90BC0) ifo<t<i
(cxa)-Bxc)t) = {a(2t — Dy, fi<t=<l.

Since multiplication on the left by y, and multiplication on the right by y, are
both homotopic to the identity map on Y, then

[(e*c)-(c*B)] = [o*B],
[cxa)-(B* )] = [B*c]
Thus
[e] o [B] = [a* B] = [(a* c)-(c* B)] = [(c* a)-(B*0)]
= [B*a] = [B] > [«].
It follows as in the proof of Theorem 6.5 that the operations o and o are equal.

d

Theorem 6.7. The higher homotopy groups m,(X, x,), n = 2, of any space X
are abelian.

Proor. The second homotopy group
772(X’ xO) = WI(Q(Xa xO)’ C)

is abelian since Q(X, x,) is an H-space with the constant loop ¢ as homotopy
unit. Proceeding inductively, suppose that the (» — 1)th homotopy group
m.-1(Y, ¥o) is abelian for every space Y. Then

"n(X7 xO) = 77'n—l(Q(‘Xa xo), C)

must be abelian, and the proof is complete. O

Definition. Let f: (X, xo) — (Y, y,) be a continuous map on the indicated
pairs. If [«] € m (X, x,), n > 1, then the composition fe:I"— Y is a
continuous map which takes dI™ to y,, so fo represents an element [ f«] in
m.(Y, ¥o). Thus finduces a function

St (X, Xo) = ma( Y, yo)
defined by
Si([e]) = [fe], [o] € mo(X, xo).

The function f is called the homomorphism induced by f in dimension n.

To be very precise we should refer to fy, indicating the dimension n, but
this notation is cumbersome, and we shall avoid it. The dimension in question
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will always be known from the subscripts on the homotopy groups involved.
The reader is left the exercise of showing that f, is actually a well-defined
homomorphism.

Theorem 6.8. (a) If f: (X, xo) = (Y, yo) and g: (Y, yo) = (Z, z,) are con-
tinuous maps on the indicated pairs, then the induced homomorphism (gf)x
is the composite map

g*f*: "n(X9 XO) - 7Tn(Za ZO)

in each dimension n.
(b) If h: (X, xo) — (Y, yo) is a homeomorphism, then the homomorphism
hy. induced by h is an isomorphism for each value of n.

Proor. (a) If [«] € 7,(X, Xx,), then
(8)«([e]) = [gfe] = g«([fe]) = gufi([e]),

$O
(&)« = gxf-
(b) Suppose that 271: (Y, y,) — (X, x,) is the inverse of 4. Then for [«] in
(X, Xo),
(h=)shs([o]) = [h™*he] = [«],

so (h™Y)4hy is the identity map on 7,(X, x,). By symmetry it follows that
hy(h™1), is the identity map on m,(Y, y,), so h, is an isomorphism. O

It was proved in Chapter 5 that a covering projection p: E — B induces a
monomorphism (i.e., a one-to-one homomorphism) p,: 7 (E) — 7,(B). The
next theorem, discovered by Hurewicz, shows that the induced homo-
morphism for the higher homotopy groups is even better.

Theorem 6.9. Let (E, p) be a covering space of B, and let ey in E and b, in B be
points such that p(ey) = bo. Then the induced homomorphism

P m(E, ) — (B, bo)
is an isomorphism for n > 2.

Proor. To see that p, is onto, consider an element [«] in 7,(B, b,). Think of
o as a continuous map from (S*, 1) to (B, b,). (The symbol T is used here as
the base point of S™ to avoid confusion with the number 1 which will also
play an important role in this proof.) Since n > 2, the fundamental group
m(S™, 1) is trivial, and hence
axmy (S, 1) = {0} < pymi(E, e,)

where o, is the homomorphism induced by « on the fundamental group.
Thus Theorem 5.10 shows that « has a continuous lifting

a: (8™, 1) — (E, e,)
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such that pé@ = «. Then & determines a member [&] in 7,(E, e,) for which
p«le]) = [pa] = [«],
SO py maps m,(E, e,) onto (B, b,).
To see that p, is one-to-one, suppose that [8] belongs to its kernel; i.e.,

p«([B]) = [pB] = [c]

where ¢ is the constant map ¢(S") = b,. As maps from (S*, 1) to (B, b,), pB
and c are equivalent, so there is a homotopy H: S™ x I — B satisfying

H(t, 0) = pB(z), H(t, 1) = by, teSn,
H{d,s)=b,, sel

The fundamental group =(S™ x I, (1, 0)) is trivial since n > 2, so Theorem
5.10 applies again to show the existence of a lifting

B:8"x I E
such that
pﬁ = H, H~(I, 0) = €.

The lifted homotopy H is a homotopy between 8 and the constant map
d(S™) = e,. To see this, observe first that

The Corollary to Theorem 5.2 insures that H(-, 0) = 8 since S™ is connected.
The same argument shows that H(-, 1) = 4. It remains to be seen that
H(, s) = e, for each s in I. The path

H{d, ): I E

has initial point e, and covers the constant path ¢ = H(I, -). Since the unique
covering path of ¢ which begins at e, is the constant path at e,, then

H{d,s) =e, sel
Thus A: §* x I— E is a homotopy such that
ﬁ('30)=lga H('71)=d7
H{d,5) =e, sel,

so [B] = [d] s the identity element of 7,(E, e,). Thus the kernel of p, contains
only the identity element of =,(E, e;), s0 p4 is one-to-one. O

Example 6.5. Consider the universal covering space (R, p) of the unit circle
S*. By Theorem 6.9,
Dx: "n(R) — (S 1)
is an isomorphism for n > 2. But all the homotopy groups of the contractible
space R are trivial, so
m(S1) = {0}, n> 2.
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Example 6.6. Consider the double covering (S™, p) over projective n-space P™.
Theorem 6.9 insures that

m(P™) = m(S™), k>2n>2.
Recalling Example 6.3, we have

m(P™) = Z, nx=2.

6.4 Homotopy Equivalence

This section examines an equivalence relation for topological spaces which
was introduced by Hurewicz in 1936. The relation is weaker than homeo-
morphism but strong enough to insure that equivalent spaces have isomorphic
homotopy groups in corresponding dimensions.

Definition. Let X and Y be topological spaces. Then X and Y are homotopy
equivalent or have the same homotopy type provided that there exist con-
tinuous maps f: X — Y and g: Y — X for which the composite maps gf’
and fg are homotopic to the identity maps on X and Y respectively. The
map fis called a homotopy equivalence, and g is a homotopy inverse for f.

It should be clear that homeomorphic spaces are homotopy equivalent.

Theorem 6.10. The relation X is homotopy equivalent to Y’ is an equivalence
relation for topological spaces.

Proor. The relation is reflexive since the identity map on any space X is a
homotopy equivalence. The symmetric property is implicit in the definition;
note that both fand g are homotopy equivalences and that each is a homotopy
inverse for the other.

To see that the relation is transitive, let f: X — Y and 4: Y — Z be homo-
topy equivalences with homotopy inverses g: Y — X and k: Z — Y respec-
tively. We must show that X and Z are homotopy equivalent. The most likely
candidate for a homotopy equivalence between X and Z is Af with gk as the
leading contender for homotopy inverse. Let L: ¥ x I — Y be a homotopy
such that L(-,0) = kh and L(-, 1) is the identity map on Y. Then the map
M: X x I— X defined by

M(x, 1) = gL(f(x), 1), (x,0)eX x I,
is a homotopy such that

M(-, 0) = gL(f(-), 0) = (gk)(Hf),
M(-, 1) = gL(f(-), 1) = gf,
so (gk)(hf) is homotopic to gfand hence homotopic to the identity map on X.

A completely analogous argument shows that (4f)(gk) is homotopic to the
identity on Z, so X and Z are homotopy equivalent. O
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Example 6.7. A circle and an annulus are homotopy equivalent. To see this,
consider the unit circle S* and the annulus 4 = {y e R?: 1 < |y| < 2} shown
in Figure 6.2.

g f
—_—

Figure 6.2

A homotopy equivalence f: S* — 4 and homotopy inverse g: 4 — S* are
defined by
J(x) = x, xe S,
g =ylyl, yed
Then gfis the identity map on S, and
128 =yllyl,  yed.
The required homotopy between fg and the identity on A is given by

H(y, 1) =ty + (1 = O)y/|yl.
Theorem 6.11. 4 space X is contractible if and only if it has the homotopy type
of a one point space.

PrOOF. Suppose X is contractible with homotopy H: X x I— X and point
X, in X such that

H(x,0) = x, H(x, 1) = x,, xeX.

Then X is homotopy equivalent to the singleton space {x,} by homotopy
equivalence f: X — {x,} and homotopy inverse g: {x,} — X defined by

S(x) = xo, 8(xo) = Xo, xeX.
Suppose now that f: X — {a} is a homotopy equivalence between X and
the one point space {a} with homotopy inverse g: {a} — X. Then there is a
homotopy K between gf and the identity map on X:

K(X, 0) = X, K(xa l) = gf(x) = g(a)a xeX.
The homotopy K is thus a contraction, and X is contractible. O

Example 6.7 is a special case of the next result.

Theorem 6.12. If X is a space and D a deformation retract of X, then D and X
are homotopy equivalent.
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PRrROOF. There is a homotopy H: X x I— X such that
H(x,0) = x, H(x,1)e D, xeX,
H(@a,t) = a, aeD,tel
Let f: D — X denote the inclusion map f(a) = a, and define g: X — D by
gx) = H(x, 1), xeX.

Then gf'is the identity map on D, and H is a homotopy between fg and the
identity on X; thus fis a homotopy equivalence with homotopy inverse g. [

Definition. Let X and Y be spaces with points X, :n X and y, in Y. Then the
pairs (X, x,) and (Y, y,) are homotopy equivalent or have the same homotopy
type means that there exist continuous maps f: (X, x,) = (Y, y,) and
g: (Y, yo) = (X, xo) for which the composite maps gfand fg are homotopic
to the identity maps on X and Y respectively by homotopies that leave the
base points fixed. In other words, it is required that there exist homotopies
H: X x I— Xand K: Y x I— Y such that

H(x,0) = gf(x), H(x, 1) = x, H(xo, 1) = xo, xeX, tel,
K(y,0)=/fg(y), K»nD=y, K@ot)=y, yel tel

The map f'is called a homotopy equivalence with homotopy inverse g.

The proof of the next theorem is similar to the proof of Theorem 6.10 and
is left as an exercise.

Theorem 6.13. Homotopy equivalence between pairs is an equivalence relation.

Theorem 6.14. If the map f: (X, x,) — (Y, ¥o) is a homotopy equivalence be-
tween the indicated pairs, then the induced homomorphism

Sa: Wn(X’ Xo) = '”'n( Y, yo)
is an isomorphism for each positive integer n.
Proor. Let g: (Y, yo) — (X, x,) be a homotopy inverse for f and H a homo-
topy between gf and the identity map on X which leaves x, fixed. Let
[«] € m,(X, x,), and consider « as a function from /™ to X such that «(0I™") =
Xo. Define a homotopy K: I" x I— X by
K(t,s) = H(1), s), tel", sel

Then

K(-,0) =gfe, K(-,1)=g0,

K@I" x I) = H({xo} x I) = x,
so that

[gfe] = [o].
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This means that
gxfxle] = [o],

SO gy is a left inverse for f,. Since f'is a homotopy inverse for g, we conclude
by symmetry that g, is also a right inverse for f, so f is an isomorphism. []

Actually, Theorem 6.14 can be strengthened to show that a homotopy
equivalence f: X — Y with f(x,) = y, induces an isomorphism between
(X, xo) and m,(Y, y,) for each n. The proof is more complicated because
the homotopies may not leave the base points fixed. The reader might like to
try proving this stronger result.

6.5 Homotopy Groups of Spheres

As mentioned earlier, the homotopy groups ,(S™) are not completely known.
Previous examples have shown that

Wk(Sn) = {0}5 k < n,
™S =10}, k>1,
m(S™) ~ Z.

It may seem natural to conjecture that 7,(S™) is trivial for £ > n since the
corresponding result holds for the homology groups. This would simply
mean that every continuous map f: S* — S™ where k > n is homotopic to a
constant map. This is in fact not true. The first example of such an essential,
or non-null-homotopic, map was given by H. Hopf in 1931. The spheres
involved were of dimensions three and two, and Hopf’s example showed that
m3(S?) is not trivial. Actually, 75(S?) is isomorphic to the group of integers.
Many other results are known about =,(S™), but no one has yet succeeded in
determining 7(S™) in all possible cases. In this section we shall examine
Hopf’s examples and the results of H. Freudenthal (1905~ ) on which much
of the knowledge of the higher homotopy groups of spheres is based.

Example 6.8. The Hopf map p: S® — S2.

Let C denote the field of complex numbers. Consider S?, the unit sphere
in Euclidean 4-space, as a set of ordered pairs of complex numbers, each pair
having length 1:

S% ={(z1,25) €C x C:|z,|% + |25]%2 = 1}
Define an equivalence relation = on S?® by
(21, 25) = (24, 23)
if and only if there is a complex number A of length 1 such that
(z1, z0) = (Azy, Azd).

For (zy, z;) in S8, let {zy, z,» denote the equivalence class determined by

(z4, 25), let
T = {{z1, 22): (21, 22) € $3}
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be the set of equivalence classes, and let p: §® — T be the projection map

P(z1, 25) = <231, Z2), (21, z2) € S°.

Assign T the quotient topology determined by p; a set O is open in T provided
that p~*(0) is open in S®. For {zy, z,) in T, the inverse image p ~*({zy, z5)),
called the fiber over <z, z,), is a circle in S®.

We shall show that T is homeomorphic to S2, use the homeomorphism to
replace T by S2, and obtain the Hopf map p: S® — S2. Strictly speaking, the
Hopf map is the map Ap: S® — S2 where h: T — S2 is the homeomorphism
whose existence we must now show.

Let

D={zeC:|z] < 1}

denote the unit disc in C. The 2-sphere is the quotient space of D obtained by
identifying the boundary of D to a point. To see that T satisfies the same
description, consider the map f: D — T defined by

f@ =VT=Tz%2, zeD.
Then f'is a closed, continuous map. For <{z;, z,) in T,

f-1(<219 Z2>) = {ZG D: <Zl, 22> = <'\/1 - |Z]2’ Z>}

={zeD:V1 — |z|2 = Az;, z = Az, for some A € S}

If z, # 0, the equations
VI—zP =), z=12, |zuP+|znP=1

imply
Az, = |z4], A = |z4]/z;.

Thus f~1({zy, z,)) is a single point if z; # 0. If z; = 0, then

S Kz, 220) = 71O, z))
={zeD:V1 = |z|2 = 0,z = X for some A€ S} = S*,

50 f~1(K0, z5)) is the boundary of D. Hence, using f'as quotient map, 7 is the
quotient space of D obtained by identifying the boundary S* to a point.
Then T is homeomorphic to S2, so we replace T by S2? and have the Hopf
map p: S — S2

Showing that p is not homotopic to a constant map requires more back-
ground than we have had, but here is a sketch of the basic idea. Suppose to
the contrary that H: S® x I— S?is a homotopy between p and a constant
map. Although the Hopf map is not a covering projection, it is close enough
to permit a covering homotopy H: S® x I— S2 as shown in this diagram.

S3

x

1/7/’/ lp
s’y 2
S X IT) S
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The map H is a homotopy between the identity map on S and a constant
map. But this implies that S® is contractible, an obvious contradiction. Thus
p is not homotopic to a constant map, so w3(S?%) # {0}.

Example 6.9. The Hopf maps S7 — S* and S'® — S8,

Think for a minute about the construction of the Hopf map p: S® — S2.
The construction was made possible by representing S as ordered pairs of
complex numbers. Using the division ring @ of quaternions, we represent S7,
the unit sphere in Euclidean 8-space, as ordered pairs of members of Q:

S = {(z1,22) € Q: ||z,|% + |z]% = 1}.
The quotient space T in this case is the quotient space of the unit disc
D={ze@:[z] < 1}

obtained by identifying the boundary of D to a single point. Since D has real
dimension four, this quotient space is homeomorphic to S*. The Hopf map
p: S”— S* with fiber S° is then defined as in Example 6.8. This map shows
that 7,(S*) # {0}.

In E*S, one can perform a similar construction by representing the unit
sphere S*° as ordered pairs of Cayley numbers. This produces the Hopf map
p: S5 — S® with fiber S” and shows that 7,5(S?®) # {0}.

There is for each pair k, n of positive integers a natural homomorphism
E: m(S™) = 41 (S™Y)

called the suspension homomorphism. To define this ingenious function,
consider m,(S™) as homotopy classes of maps from (S*, 1) to (S™, 1) where we
denote the base point of each sphere by 1. Consider S™ as the subspace of
S™*1 consisting of all points of S®*+* having last coordinate 0. In this identifi-
cation, S™ is usually called the “equator” of S™*!. Continuing this geo-
graphical metaphor, call the points (0,...,0, 1) and (0,...,0, —1) of S™*!?
the ““north pole” and ““south pole” respectively.

Suppose now that [«] € 7,(S™). Then « is a continuous map from S* to S™.
Extend « to a continuous map &: S¥*+* — S™** as follows: &|s* is just «, and
it maps the equator of S***! to the equator of S**+!. We require that & map
the north pole of $¥*?* to the north pole of S™*! and the south pole of S**?
to the south pole of S™*1. The function is then extended radially as shown in
Figure 6.3. The arc from the north pole to a point x in S* is mapped linearly
onto the arc from the north pole of S"*! to «(x). This defines & on the
“northern hemisphere,”” and the ‘“southern hemisphere” is treated the same
way. The extended map & is called the suspension of c.

The suspension homomorphism E, called the * Einhdngung” by Freudenthal,
is defined by

E([e]) = [a],  [o] em(S™).
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Sk + 1 Sn + 1
Figure 6.3

The reader is left the exercise of showing that E is a homomorphism. Freu-
denthal defined the suspension homomorphism and proved the following
theorem in 1937. Proofs can be found in [11] and in Freudenthal’s original
paper [37].

Theorem 6.15 (The Freudenthal Suspension Theorem). The suspension homo-

morphism
E: m(S™) — m 41 (S™H)

is an isomorphism for k < 2n — 1 and is onto for k < 2n — 1.
Although we shall not prove the Freudenthal Suspension Theorem, we

illustrate its utility with two corollaries. These results have already been
derived in Examples 6.2 and 6.3.

Corollary. The homotopy groups m,(S™) are trivial for k < n.
Proor. For any positive integer r < k, we have k + r + 1 < 2n, and hence

k—r<2mn-—r)—1
Then
m(S™) = me 1 (S*T) - m(STTEY).

Since n — k + 1 > 1 for k < n, then 7,(S™"~**1) and its isomorphic image
m(S™) are both trivial groups. O

Corollary. The homotopy groups m,(S™), n > 1, are all isomorphic to the group
Z of integers.

PrOOF. We rely on our previous arguments to show that
m(S?) @ m(S?) = Z.

If n > 2, then n < 2n — 1 and the Freudenthal Suspension Theorem shows
that
mo(S?) = me(S7) = m(SH) = -+ = m(ST). O

6.6 The Relation Between H,(K) and =,(|K]|)

The last theorem of this chapter extends Theorem 4.11 to show a relationship
between the homology groups and the homotopy groups of polyhedra. Proofs
can be found in [20] and [5]
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6.6 The Relation Between H,(K) and m,(|K|)

Theorem 6.16 (The Hurewicz Isomorphism Theorem). Let K be a connected
complex and n > 2 a positive integer. If the first n — 1 homotopy groups of
|K| are trivial, then H,(K) and =,(|K|) are isomorphic.

For an application of the Hurewicz Isomorphism Theorem, let us again
consider ,(S™).

Example 6.10. Consider the n-sphere S™ for n > 2. Since m,(S™) = {0}
for k < n, the Hurewicz Isomorphism Theorem implies that

T (S™) = Hn(S™) = Z.

The pioneering work on the higher homotopy groups was done by Witold
Hurewicz in a sequence of four papers, his famous  Four Notes,” published
in 1935-1936 [42]. These papers contain definitions of the higher homotopy
groups, the relation between =,(E) and m,(B) for covering spaces (Theorem
6.9), the homotopy equivalence relation, the proof that homotopy equivalent
spaces have isomorphic homotopy groups (Theorem 6.14), and the Hurewicz
Isomorphism Theorem (Theorem 6.16).

The homotopy groups do not provide for general topological spaces the
type of classification given for 2-manifolds by Theorem 2.11 and for covering
spaces by Theorem 5.9. The reader is asked in one of the exercises for this
chapter to find an example of spaces X and Y which have isomorphic homo-
topy groups in each dimension but which are not homotopy equivalent (and
therefore not homeomorphic). The induced homomorphism

f*:'”n(X)_)'”n(Y)

has been successful in classifying the homotopy type of spaces known as
“CW-complexes.” These spaces can be used to approximate arbitrary
topological spaces. The reader interested in pursuing CW-complexes should
consult [20] or the work of their inventor, J. H. C. Whitehead (1904-1960)
[571.

Although the homotopy groups have not been completely successful in
showing when spaces are homeomorphic, they are extremely useful in showing
when spaces are not homeomorphic. This is, in fact, the way in which alge-
braic topology has been most successful. To show that X and Y are not
homeomorphic, compute the homotopy groups 7,(X) and =, (Y). If 7, (X)
is not isomorphic to m,(Y) for some n, then X and Y are not homeomorphic.
The same method can be used with the homology groups.

Recall from Chapter 4 that the Poincaré Conjecture asserts that every
simply connected 3-manifold is homeomorphic to S3. Our work on homotopy
groups shows that the corresponding conjecture in dimension four is false.
The 4-manifold §2 x S§2 is simply connected, but it is not homeomorphic to
S'* since

(S22 X S 2 ZPDZ and w,(S*) = {0}.
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6 The Higher Homotopy Groups

Hurewicz’ introduction of homotopy type led to the following extension
of the Poincaré Conjecture:

Generalized Poincaré Conjecture. Fvery n-manifold which is homotopy equiva-
lent to S™ is homeomorphic to S™.

This conjecture was proved to be true for » > 4 by S. Smale (1930- ) in
1960 [54]. It is still unresolved in the cases n = 3 and n = 4.

EXERCISES

1. Complete the details in Definition A of the higher homotopy groups:
(a) The relation ~ ., is an equivalence relation.
®) Ifa~y,o and B ~ 4, B, thena % B ~ o * B,
(c) ma(X, x0) is a group under the operation o,

N

Complete the details in the discussion of the equivalence of Definitions A
and C of the higher homotopy groups.

w

(a) Prove Theorem 6.2.
(b) Prove Theorem 6.3.
(c) Prove Theorem 6.4.

4. Let f: X — S™ be a continuous map such that f(X) is a proper subset of S™.
Prove that fis null-homotopic.

5. Use homotopy groups to prove the Brouwer No Retraction Theorem
(Theorem 3.12).

6. Show that the sets W(K, U) in the definition of the compact-open topology
form a subbase.

7. (a) Show that the space Q(X, x,) with its compact-open topology is an H-
space for any space X.
(b) Show that the homotopy classes [«] of 7;(X, x,) are precisely the path
components of Q(X, x,).

8. Show that the function fy: m,(X, x0) — m.(7Y, »o) induced by a continuous
map f: (X, xo) — (Y, yo) is a homomorphism.
9. Prove that the operation o in Theorems 6.5 and 6.6 is well-defined.
10. If f: X— Y is a homotopy equivalence, prove that any two homotopy
inverses of f are homotopic.

11. Definition. If f: X — Y is a continuous map, a continuous map g: ¥ — X
is a left homotopy inverse for f provided that gf is homotopic to the identity
map on X. Right homotopy inverse is defined analogously.

Prove that if f: X — Y has left homotopy inverse g and right homotopy
inverse A, then fis a homotopy equivalence.

12. Definition. Continuous maps f and g from (X, x,) to (Y, yo) are homotopic
modulo base points provided that there is a homotopy H: X x I— Y such
that

H(-,00=f  H(,1)=g  H(xo} x I) = y,.
Prove that maps which are homotopic modulo base points induce identical
homomorphisms from 7,(X, x,) to m,(Y, yo).
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13.
14.

15.

16.

17.

18.

19

20.

21.
22.

6 Exercises

Prove that the map f of Example 6.8 is closed and continuous.

If X is homotopy equivalent to X’ and Y is homotopy equivalent to Y’, prove
that X x Y is homotopy equivalent to X’ x Y.

Show that if the pairs (X, x,) and (Y, y,) are homotopy equivalent, then the
loop spaces Q(X, x,) and Q(Y, y,) are homotopy equivalent.

Let (E, p) and (F, q) be covering spaces of base space B, and let #: E — F be

a covering space homomorphism such that A(e,) = fo, where e, and f;, are

the base points of E and F respectively. Show that the induced homomorphism
hy: 7o(E, eo) — m(F, fo)

is an isomorphism for » = 2. What can be said about Ay if n = 1?

Show that the Freudenthal map

E: m(S™) — w4 1(S™ 1Y)
is a homomorphism.

Definition. Let f: X — Y be a continuous map. The quotient space of the
disjoint union (X x I) U Y obtained by identifying (x, 1) with f(x), x € X,
is called the mapping cylinder of f.

Show that the mapping cylinder of f: X — Y 'is homotopy equivalent to Y.

Show that the unit sphere S™~! and punctured n-space R™\{p} have the same
homotopy type.

Here are some homotopy groups of spheres. Use them to determine other
homotopy groups of spheres. (The symbol Z, denotes the group of integers
modulo p).

(@) m2(ST) = {0}.

(b) m4(S®) =~ Z.

() 716(S®) = Zsgo.

(d) m15(S*°) = Z; @ Zo.

Prove that homotopy equivalence for pairs is an equivalence relation.

Give an example of spaces X and Y having isomorphic homotopy groups in
each dimension which do not have the same homotopy type.
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Further Developments in Homology

The preceding chapters have introduced homology groups for polyhedra and
homotopy groups for arbitrary spaces. The homotopy groups are more
general since they apply to more spaces. The process of extending homology
to spaces more general than polyhedra began in the years 1921-1933 and has
continued to the present day. The pioneers in this work were Oswald Veblen,
Solomon Lefschetz, Leopold Vietoris, and Eduard Cech. In this chapter we
shall examine some additional theory and applications of simplicial homology
groups, notably the famous fixed point theorem and relative homology groups
discovered by Lefschetz, and the singular homology groups, also due to
Lefschetz, which extend homology theory to arbitrary spaces.

7.1 Chain Derivation

Chain mappings were introduced in Chapter 3 for the purpose of defining
induced homomorphisms on the homology groups. We turn now to a particu-
lar chain mapping, the “chain derivation” ¢ = {p,: C,(K) = C,(K?V)}, from
the chain groups of a complex K to those of its first barycentric subdivision
K®. This will allow us to see that H,(K) ~ H,(K?¥), a problem that was
glossed over in Chapter 3, and to establish the machinery necessary for a
proof of Lefschetz’ celebrated fixed point theorem.

Notation: If ¢ = (v,...v,)> is a p-simplex and v a vertex for which
{v, v, . . ., Uy} is geometrically independent, then the symbol vo? denotes the
(p + 1)-simplex

vo? = (vvy ...V,
If ¢ = > g;-of is a p-chain, then vc denotes the (p + 1)-chain
ve = Z g;-va?
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7.1 Chain Derivation

This notation was used in Theorem 2.9.
The proof of the following lemma is left as an exercise:

Lemma. Let ¢ be a p-chain on a complex K and v a vertex for which the (p + 1)-
chain vc is defined. Then
d(vc) = ¢ — vac.
Definition. Let K be a complex. A chain mapping
¢ = {py: Cy(K) = C(KD)}
is defined inductively as follows: Each 0-simplex o° of K is a 0-simplex of

the barycentric subdivision K¥, so we may consider Co(K) as a subgroup
of Co(K™®). Define py: Co(K) — Co( K?P) to be the inclusion map:

po(0) = ¢,  ce CyK).
For an elementary p-chain 1-o® on K, define
‘Pp(l -a?) = ¢%p,_,0(1-0%),

where 6”7 denotes the barycenter of ¢?, and extend ¢, by linearity to a
homomorphism ¢,: C,(K) — C,(K®):

Po(D &00) = D ongirob), D girof € Cy(K).

The sequence ¢ = {p,} of homomorphisms defined in this way is the first
chain derivation on K. For n > 1, the nth chain derivation on K is the com-
position of ™~V the (n — 1)th chain derivation on X, with the first chain
derivation of the (n — 1)th barycentric subdivision K™=V, Thus the nth
chain derivation on K is a chain mapping ¢™ = {¢\®: C,(K) — C,(K™)}.

Example 7.1. Let us examine the first chain derivation of the complex
K = Cl(¢?), the closure of a 2-simplex o2 = +<vov,05>, shown with the
barycentric subdivision K@ in Figure 7.1.

v2 v2
K v4 vs K(')

7 LT

Vo vy Vo v3 vy

Figure 7.1

In the figure, the additional vertices vg, v4, s, and vg denote the barycenters
of (vov1), {Vovs), {v1v2), and <{vevivy) respectively. Then ¢y: Co(K) —
Co(KD) is the inclusion map, and

@1(1-<vov1)) = v39e0(1-<vov1)) = va(1-<v1> — 1-<ve))
= 1-{vgv1) — 1-<vgve);
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7 Further Developments in Homology

P1(1-<vov2)) = v4900(1-{Vov2)) = v4(1-{v2> — 1-<wo))

1-{vgvg) — 104005

@1(1-<v102)) = v5ped(1-<V109)) = v5(1-<vg) — 1:<v1))

1-{vsve) — 1-<vs01);

@a(1-{0o0102)) = Vep19(1-{Vo102)) = Ve@1(1-<V102) — 1-{Vovg) + 1-<vov1))
1-{vgvsvgy — 1-<v6vs01)> — 1-<{vea0s) + 1-{06Vs00)

+ 1-<vgvav;) — 1-{vgb300).

Theorem 7.1. Each chain derivation is a chain mapping.

Proor. Since the composition of chain mappings is a chain mapping, it is
sufficient to show that the first chain derivation is a chain mapping. Let
@ = {p,: C(K) > C,(KV)} be a chain derivation in the notation of the
definition. It must be shown that the diagram

CAK) 2> CyK™)
al la
Cp_1(K) 253 Cp_y(K®)

is commutative for p > 1. Thus it is sufficient to show that

Opp(1-0") = p,_10(1-07)

for each elementary p-chain 1-6”. Forp = 1,

0p1(1-0%) = 8(6*pod(1-0%)) = @od(1-0*) — 6'0pyd(1-0%)

= god(1-a') — ¢'00(1-0%) = @oo(1-a?).
These equalities follow, in order, from the definition of ¢,, the lemma o(vc) =
¢ — voc, the fact that ¢, is the inclusion map, and 99 = 0. Thus dp; = @40,
so the desired conclusion holds for p = 1. Proceeding inductively, let 1-o” be
an elementary p-chain on K. Then
opy(1-0") = (67, _10(1-0%)) = @_19(1-0") — 6"0p,_10(1 ")
= @p-10(1-0") — 67p,_500(1-0%) = @,_,0(1-0").

The next to last equality uses the inductive assumption dgp,_; = ¢,_50. Thus
dp, = @,_,0 for elementary p-chains and hence for all p-chains. O

Theorem 7.2. Let K be a complex with first chain derivation ¢ = {p,}. There is
a chain mapping
= {ih: C(KD) = Cy(K)}
such that Y, is the identity map on C,(K) for each p > 0.
ProOF. Such a chain mapping ¢ is called a left inverse for ¢. Let f be any sim-

plicial map from K® to K having this property: If ¢ is a vertex of K, then
f(6) is a vertex of the simplex o of which ¢ is the barycenter. Let ¢ = {i,,} be
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7.1 Chain Derivation

the chain mapping induced by f. Observe that if 77 is a p-simplex of KV, then
h(1-7) = -0,

where 5 is 0, 1 or —1 and o® is the p-simplex of K which produces 77 in its
barycentric subdivision.

Clearly $op, is the identity map on Cy(K). Suppose that i, _ip,_;:
C,_1(K) — C,_1(K) is the identity, and consider ¢,p,: C,(K) = C,(K). If
1-0” is an elementary p-chain on K, then

Pppp(1-07) = P (6"p, _10(1-0)) = m-o®

for some integer m. But

9(m-o®) = opy(1-0") = iy, _10@,(1-07) = tf,_19,_10(1-0%) = 8(1-0"),
$0
mo(1l-o*) = d(m-o®) = d(1-0?),
and hence m = 1. Thus
Pppp(1-07) =107,
SO P, is the identity map on Cy(K). O

Example 7.2. The preceding theorem is not as complicated as it may appear.
Consider the chain derivation ¢ = {p,}3 of Example 7.1. We may define the
simplicial map f from K to K, the closure of the 2-simplex {vov,v5), in
any manner consistent with having f(v;) a vertex of the simplex of which v; is
the barycenter. Thus we must have

Jwo) = w0,  flv) =01,  fv)) = v

One possible definition for f on the remaining vertices is

S(vs) = f(vy) = vo, S(vs) = vy, S(ve) = v,.

Let ¢ = {¢:,}2 be the chain mapping induced by £, as in the proof of Theorem
7.2. Then

Po(1-<v0)) = Po(1-<vsD) = Po(1-<vy) = 1-<vo);
Po(1-<v1)) = Po(1-<vs)) = 1-<v1p;
Po(1-<v2)) = Po(1-<vep) = 1-<v5).
$i(1-{oovey) = 05 Pa(1-<vove)) = 1-<wovgy;  etc.
Po(1-<vgv106)) = 1-<vo0105); Pa(1-{voveve)) = 0;  etc.

Consider, for example,
P1¢1(1-<0ov1>) = $1(1-<v301)> — 1:-<v300)) = 1:<vev1)> — 0 = 1-{vevy).

Let us compute opq(1-{vov102)), Where q(1-<{vov102)) is expressed as in
Example 7.1:

@2(1-<vov102)) = 1-<0eVs02) — 1-<veUs01> — 1-<Ve04V2)
+ 1‘<UGU4U()> + 1‘<Uevavl> - 1‘(176123110).
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Since f collapses all 2-simplexes except {vevsv; >, then
Papa(l-<0o0102)) = Po(1-<vev301>) = 1-<va0ov1) = 1-{vo0102).

Definition. A pair ¢ = {p,}¢ and u = {u,}5 of chain mappings from a com-
plex K to a complex L are chain homotopic means that there is a sequence
2 = {D,}*; of homomorphisms D,: C,(K) — C,,1(L) such that

0D, + Dy_10 = @p — pip, D_, =

The sequence 2 is called a deformation operator or a chain homotopy.

The chain homotopy relation was designed explicitly to produce the next
theorem.

Theorem 7.3. If ¢ and p are chain homotopic chain mappings from complex K
to complex L, then the induced homomorphisms ¢y and pf from H(K) to
H,(L) are equal, p > 0.

ProOOF. Since ¢ and p are chain homotopic, there is a deformation operator
2 = {D,}*, as specified in the definition. For [z,] € H,(K),

?’t([zp]) - :“':([Zp]) = [‘Pp(zp) - I"p(zp)] = [aDp(Zp) + Dp—l(azp)] = 0:

The final equality follows because 9z, = 0 for any cycle and @D,(z,) is a
boundary. Thus ¢} = u* for each value of p. |

Definition. Complexes K and L are chain equivalent means that there are chain
mappings ¢ from K to L and ¢ from L to K such that the composite chain
mappings ¢ = {Y,,} and ¢ = {¥,} are chain homotopic to the
identity chain mappings on K and L respectively.

It is left to the reader to show that chain homotopy is an equivalence
relation for chain mappings and that chain equivalence is an equivalence
relation for complexes.

Theorem 7.4. Chain equivalent complexes K and L have isomorphic homology
groups in corresponding dimensions.

PrOOF. If ¢ and ¢ are the chain mappings required by the definition of chain
equivalence, then Theorem 7.3 insures that

Yoo Hy(K) — Hy(K),

Pryy: Hy(L) — Hy(L)
are the identity maps, so ¢y is an isomorphism for each value of p. O

One objective of this section is to prove that the homology groups of a
complex K are isomorphic to those of its barycentric subdivision K®. In view
of Theorem 7.4, it is sufficient to show that K and K® are chain equivalent.
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7.1 Chain Derivation

For this we need chain mappings ¢ from K to K® and ¢ from K@ to K for
which e and ¢ are chain homotopic to the appropriate identity chain maps.
We have ¢, the first chain derivation of K; we also have i, the left inverse
provided by Theorem 7.2. We know that g is the identity chain map on K,
and we must show that g is chain homotopic to the identity chain map on
K@, This is a rather large assignment; it is accomplished by the next proof.

Theorem 7.5. A complex K and its first barycentric subdivision are chain
equivalent.

Proor. In view of the preceding discussion, it is sufficient to show that @i is
chain homotopic to the identity map on K®. This requires a deformation
operator @ = {D,: C,(K®) — C,,(K?)} such that D_, = 0 and, for each
elementary p-chain 1-7? on K@,

1.7 — ‘Pp‘l’p(l -7P) = aDp(I -7P) + Dp—la(l -7P),
We must have D_; = 0. To define D,, let w be a vertex of K©. Then

Po(1-<wp) = 1-<vp
where v is a vertex of some simplex ¢ of K of which w is the barycenter. Then
Poo(1- <)) = @o(1-<v)) = 1-<v).
Thus
L-{w)y — poipo(1-<wp) = 1wy — 1-<vp = a(1-<{ow)),

so we define

Do(1-<wp) = 1-<ow).

The function D, is defined by this procedure for every elementary O-chain
1-<w)> and extended by linearity to a homomorphism Dy: Co(K®) —
C1(K?). Proceeding inductively, suppose that D, ..., D,_, have all been
defined, and let 1-77 be an elementary p-chain on K. Then, for every
(p — 1)-chain c,

¢ — @p_1¥p_1(c) = 9D, _1(c) + D,_50(c),

SO

0D, _1(c) = ¢ — @p_1¥p-1(c) — D,_s0c.
Consider

z=1-77 — pf(1-77) — D, _10(1- 7).
Then

0z = 9(1-77) — dph,(1-77) — 9D, _,9(1-77)
= o(l-77) — ‘Pp—l‘)l'p—1a(1 -7P)
—(@(1-7°) — @p_1p,_10(1-7%) — D, _,00(1-77)) = 0.

This means that z is a cycle on K. . An argument analogous to that used in
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the proof of Theorem 2.9 shows that z is the boundary of a (p + 1)-chain
¢p+1 0N KD, We then define

Dp(l . Tp) = Cp+1

and extend by linearity. This completes the definition of the deformation
operator £ and shows that K and K@ are chain equivalent. Od

Theorem 7.6. The homology groups H,(K) and H,(K™) are isomorphic for all
integers p > 0, n > 1, and each complex K.

Proor. The inductive definition of K™ and Theorem 7.5 show that K and
K™ are chain equivalent for n > 1. Theorem 7.4 then shows that H,(K) ~
H,(K™),p = 0. O

Deformation operators were invented by Solomon Lefschetz (1884-1972).
The proof of Theorem 7.5 given above is due to Lefschetz [13, 15].

Let |K| and | L| be polyhedra with triangulations K and L respectively and
f:|K|—|L| a continuous map. We now have the machinery necessary to
prove that the induced homomorphisms f;*: H,(K) — H,(L) are uniquely
determined by f. Recall that this problem was postponed in Chapter 3.
According to the Simplicial Approximation Theorem (Theorem 3.6), there is
a barycentric subdivision K of K and a simplicial mapping g from K*® to L
such that, as functions from |K| to | L|, fand g are homotopic. There is some
freedom in the choices of g and the degree k of the barycentric subdivision.
From the proof of Theorem 3.6, k must be large enough so that K® is star
related to L relative to f. The simplicial map g is given by the proof of Theorem
3.4; for a vertex u of K®, g(u) may be any vertex of L satisfying

Slost(u)) = ost(gw)).

To show that the sequence of homomorphisms is independent of the
admissible choices for g, it is sufficient to prove that any admissible change in
the value of g at one vertex does not alter the induced homomorphisms
g¥: H(K%) — H,(L). Any simplicial map satisfying the requirements of
Theorem 3.4 can be obtained from any other one by a finite sequence of such
changes at single vertices. Suppose then that g and 4 are two simplicial
mappings from K® into L which have identical values at each vertex of
K™ except for one vertex v and that, for this vertex, ost(g(v)) and
ost(h(v)) both contain f(ost(v)). We shall show that the chain mappings
{gp: Co(K™®) — Cp(L)} and {h,: C,(K®) — C,(L)} are chain homotopic and
conclude from Theorem 7.3 that the induced homomorphisms g and 4 from
H,(K®) to H,(L) are identical for each value of p.

For our deformation operator Z = {D,: C,(K®) — C, (L)}, we must
have D_, = 0. For any vertex u of K® with u # v, define Dy(1-{u)) = 0,
and define

Dy(1-<vp) = 1-<h(v)g(v)).

Now extend D, by linearity to a homomorphism from Cyo(K®) to C,(L).
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Note that

0Dy(1-<vp) + D_,0(1-<vp) = o(1-<{h(v)g(v))) = 1-{g®)y — 1-<h(v)>
= go(1-<vD) — ho(1-{v)).

If u is a vertex of K® different from v, then

go(1-<wp) = ho(1-<wp),  Do(1-<wp) =0,
so the desired relation
oD, + D,_,0 =g, — h,
holds for p = 0.

For the general case, let 1-6” be an elementary p-chain in C,(K®). If v is
not a vertex of o®, then we define D,(1-07) = 0in C,,,(L). If v is a vertex of
o?, then o = vo®?~?! for some (p — 1)-simplex 0”1, and we define

Dy(1-0%) = 1-h(v)g(v)7

where 7 is the (p — 1)-simplex in L which is the image of o ~! under both g
and h. As usual, D, is extended linearly to a homomorphism from C,(K®) to
C, +1(L). Then for the case in which v is a vertex of o?,

0D,(1-6%?) + D,_,0(1-0")

= 9(1-h(v)g(v)r) + D,_10(1-v0?~1)
1-g(w)r — h(w)o(1-g(v)7) + D,_;(1-0°"* — vd(1-0771))
1-g@)r — h@)[1-7 — g@)a(1-7)] — D,_1(vo(1-0"~1))
= 1-glv)r — 1-h(v)T + h(v)g)o(1-7) — h(v)g(w)o(1-7)
= gp(1-v0”71) — hy(1-v0"71) = g,(1-0%) — hy(1-0").

Thus
oD, + D,_,0 = & — hp’ p= 0,

and the chain mappings induced by g and % must be chain homotopic.
Theorem 7.3 now guarantees that g¥ = ¥, so we conclude that the induced
homomorphism £, is independent of the allowable choices of the simplicial

map g.

Question: Where did we use the assumption that ost(g(v)) and ost(k(v))
both contain f(ost(v))?

The homomorphism f;}: H(K) — H,(L) is actually the composition g7n%
from the diagram

* *
H,(K) 2> H(K®) 25 H,(L)

where u¥ is the isomorphism induced by chain derivation. For a barycentric
subdivision K™ of higher degree, let ¢f: H,(K) — H,(K™) be the isomor-
phism induced by chain derivation and j*: H,(K") — H,(L) the homo-
morphism induced by an admissible simplicial map. It is left as an exercise
for the reader to show that gfuf = j*¢* and hence that f;} is also independent
of the allowable choices for the degree of the barycentric subdivision K*.
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7.2 The Lefschetz Fixed Point Theorem

This section is devoted to the most famous of all the theorems about fixed
points of continuous maps. Lefschetz introduced in 1926 a number A(f)
associated with each continuous map f: |K| — |K| from a polyhedron into
itself. If the Lefschetz number A(f) is not zero, then f has at least one fixed
point. (The Lefschetz number does not specify the number of fixed points.)
Brouwer’s Fixed Point Theorem (Theorem 3.13) can be proved as a simple
corollary.

In this section we assume that rational numbers rather than integers are
used as the coefficient group for chains. Thus the pth chain group C,(K) of a
complex K is considered a vector space over the field of rational numbers.

Definition. Let K be a complex with {o}} its set of p-simplexes, and let ¢ = {p,}
be a chain mapping on K. For a p-simplex o} of K,
(l-?) = > abyof
oj €K
for some rational numbers af;, one for each p-simplex o7 of K. Then o} is a
fixed simplex of ¢ provided that af, the coefficient of ¢} in the expansion of
@,(1-a?), is not zero. The number (—1)a}; is called the weight of the fixed
simplex of. Let
4, = (afy)

be the matrix whose entry in row i and column j is af}. Since the trace of a
square matrix is the sum of its diagonal elements, then

trace 4, = z afi,
and the number

M) = > (—1)? trace(4,)

4

is the sum of the weights of all the fixed simplexes of . The number A(p)
is called the Lefschetz number of ¢. (Note that if A(p) # 0, then ¢ must
have at least one fixed simplex in some dimension p.)

The matrix 4, = (a%) is the matrix of ¢, as a linear transformation from
the vector space C,(K) into itself relative to the basis of elementary p-chains
{1-0?7}. Since the trace of the matrix of a linear transformation is not affected
by a change of basis, the Lefschetz number A(p) is the same regardless of the
choice of basis for C,(K).

Example 7.3. Let ¢,: C,(K) — C,(K) be the identity map on C,(K) for some
complex K, p > 0. Then

af =1, al; =0 foris#j,
and each simplex is a fixed simplex. Thus

M) = Z(—l)” trace 4, = Z (—1)a, = x(K)
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7.2 The Lefschetz Fixed Point Theorem

where o, is the number of simplexes of dimension p and y(K) is the Euler
characteristic of K. Thus the Lefschetz number is a generalization of the
Euler characteristic.

Theorem 7.7. Let ¢ = {p,} be a chain mapping on a complex K. The Lefschetz
number XNe) is completely determined by the induced homomorphisms
or: Hy(K) — H,(K) on the homology groups.

ProoF. The proof is similar to the proof of the Euler-Poincaré Theorem
(Theorem 2.5), and we use the same notation. Then {z} U {b.} is a basis for
the cycle vector space Z,, {b}} is a basis for the boundary space B,, {d}} is a
basis for D,, b, = 0d},,, and n is the dimension of K, as in the proof of
Theorem 2.5. Note that {bi} U {zL} U {d}} is a basis for C,. For any b5,

opbh) = D apbh, 0<ps<n—1,
H

for some rational coefficients af; since the linear transformation ¢, takes B,
into B,. Forany z,0 < p < n, ¢,(z) must be a cycle, so there are coefficients
ai, e¥; such that

Polzh) = > aitby + > ebizh.
7 7
For any d!, 1 < p < n, there are coefficients a7, e;?, gf; such that
po(ds) = D difbh + > eifz) + > ghdi.
7 7 7
Then
n
M) = Z (—1)*(trace 4, + trace E, + trace G,)
i=0

where
Ap = (aip})’ Ep = (efj)a Gp = (gff),

and 4, = G, is the zero matrix. Now

Opp+1(dp+1) = @p(dy 1) = @p(b}) = Z apb.

Also,
0pp+1(dp+1) = 3(2 af i), + Zdﬁ-’“lfm + Zg%Jrldzjwl)
= D ghtrod) ) = D ghtibh.
Then
al; = ghtt, Ap = Gpyq, O<p=<n-—1,

and the sum

n

Mo) = Z (—1)*(trace 4, + trace E, + trace G,)
i=0

telescopes to give
n
Ng) = > (—1) trace E,.
i=0
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7 Further Developments in Homology

This means that the Lefschetz number A(gp) is completely determined by the
action of the maps ¢, on the generating cycles z& of H,(K). The coefficients
ef; are determined by the induced homomorphisms ¢}: H,(K) — Hy(K)
because the homology classes [z5] generate H,(K):

er(zs]) = 2 eblzj).

Thus the induced homomorphisms completely determine the coefficients e
which completely determine A(p), so the theorem follows. O

Thus far we have defined the Lefschetz number for chain mappings. This
definition must be extended to continuous mappings.

Definition. Let K be a complex and f: |K| — |K| a continuous function. Let
K® be a barycentric subdivision of K and g a simplicial map from K to
K which is a simplicial approximation of f (Theorem 3.6). Then g induces
a chain mapping {g,: C,(K®) — C,(K)}. Let u = {u,: Cp)(K) = C,(K®)}
be the sth chain derivation on K. The Lefschetz number A(f) of f is the
Lefschetz number of the composite chain mapping {gpu,: Co(K) — Co(K)}.

It appears that the Lefschetz number is influenced by the possible choices
for g and s. The number is independent of these choices, however, since it is
completely determined by the induced homomorphisms

f;:* = gz’ok:“*:: Hp(K) - Hp(K)
and f;¥ is independent of the allowable choices for g and s.

Theorem 7.8 (The Lefschetz Fixed Point Theorem). Let K be a complex and
[ |K| — |K| a continuous map. If the Lefschetz number A(f) is not 0, then
f has a fixed point.

PROOF. Suppose to the contrary that f'has no fixed point. Since | K| is compact,
there is a number ¢ > O such that if x € | K|, then the distance | f(x) — x| > e.
By replacing K with a suitable barycentric subdivision if necessary, we may
assume that mesh K < €/3. According to the proof of the Simplicial Approxi-
mation Theorem (Theorem 3.6), there is a positive integer s and a simplicial
map g from K to K homotopic to f'such that, for each x in |K|, f(x) and g(x)
lie in a common simplex of K. Then || f(x) — g(x)| < €/3 for all x € |K]|.

Suppose that some simplex o of K contains a point x such that g(x) is also
in 6. Then

/G — x| < |f(x) — gx)| + [g(x) — x| < 2¢/3,
which contradicts the fact that | f(x) — x| > e. Thus ¢ and g(o) are disjoint
for all o in K. Consider the sth chain derivation p = {u,: C,(K) — C,(K®)}
and the chain mapping {g,: C,(K® — C,(K)} induced by g. If o? is a p-
simplex of K, then u,(1-6”) is a chain on K® all of whose simplexes with
nonzero coefficient are contained in o®. Since o” and g(o®) are disjoint, then
goitp(1-07) is a p-chain on K none of whose simplexes with nonzero coefficient
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intersects o. Thus g,u, has no fixed simplex, and the Lefschetz number of the
chain mapping {g,u,} is zero. But this is the Lefschetz number of f, contra-
dicting the hypothesis A(f) # 0. O

Corollary (The Brouwer Fixed Point Theorem). If o" is an n-simplex, n a
positive integer, and f: o™ — o™ a continuous map, then f has a fixed point.

Proor. Let K = Cl(¢"). Then Hy(K) = Z, H)(K) = {0} forp > 0. Let v be a
vertex of 6" so that the homology class [1-<v>] may be considered a generator
of Hy(K) (Theorem 2.4). Then

fEIL-<D = [1-<w],

and the coefficient matrix E, of Theorem 7.7 has trace 1. (Why ?) Each matrix
E, for p > 0 has only zero entries, and hence

Nf) = D (~1y trace E, = 1.
Thus A(f) # 0, so f must have a fixed point. O

Corollary. Every continuous map from S™ to S™, n > 1, whose degree is not 1
or —1 has a fixed point.

Proor. Recall from Theorem 2.9 that Hy(S™) ~ H,(S™) ~ Z and H,(S") =
{0} otherwise. If [1-<v)>] and [z,] are generators of Hy(S™) and H,(S™) respec-
tively, then

S([1-<»)) = [1 v,
S ([z.]) = dlz,]
where d is the degree of /. Then
Af) =1+ (=1)d,
soAM(f)# 0ifdisnot 1 or —1. O
Corollary. If f: S™ — S™ is the antipodal map, then the degree of fis (—1)"*+1.
Proor. Since f has no fixed point, then A(f) = 0. Hence
0=1+ (-1
where d is the degree of f. This gives d = (—1)"*. O
The Lefschetz Fixed Point Theorem was discovered by Lefschetz in 1926

[47, 48]. A simpler proof, the one used in this book, was published by H. Hopf
in 1928 [40].

7.3 Relative Homology Groups

Suppose that K is a complex and L is a complex contained in K. It often
happens that one knows the homology groups of either X of L and needs to
know the homology groups of the other. The groups H,(K) and H,(L) can
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7 Further Developments in Homology

be compared using the “relative homology groups” H,(K/L) to which this
section is devoted. The intuitive idea is to “remove” all chains on L by
considering quotient groups. The groups H,(K), H,(L), and H,(K/L) form
a sequence of groups and homomorphisms called the “homology sequence.”
Using this sequence, one can often compute any one of the groups H,(K),
H,(L), or H(K/L) provided that enough information is known about the
others.

Definition. A subcomplex of a complex K is a complex L with the property
that each simplex of L is a simplex of K.

Note that not every subset of a complex is a subcomplex; the subset must
be a complex in its own right. The p-skeleton of a complex is one type of
subcomplex. Note also that the empty set @ is a subcomplex of each complex
K; the relative homology groups H,(K/L) will reduce to H,(K) when L = &.

Definition. Let K be a complex with subcomplex L. By assigning value 0 to
each simplex of the complement K\ L, each chain on L can be considered a
chain on K, and we can consider C,(L) as a subgroup of C,(K), p > 0. The
relative p-dimensional chain group of K modulo L, or relative p-chain group
(with integer coefficients), is the quotient group

Co(K/L) = Cy(K)/Cy(L).

Thus each member of C,(K/L) is a coset ¢, + C,(L) where ¢, € C,(K).
For p > 1, the relative boundary operator

0: C)(K/L)—~ C,_1(K/L)
is defined by

e, + Cy(L)) = ¢, + Cp_1(L), (e, + Co(L)) € C(K/L),

where dc, denotes the usual boundary of the p-chain c,. It is easily observed
that the relative boundary operator is a homomorphism.

The group of relative p-dimensional cycles on K modulo L, denoted by
Z(K/L), is the kernel of the relative boundary operator

0: C(K/L)— C,_(K/L), p=>1.

We define Z,(K/L) to be the chain group Co(K/L).

For p > 0, the group of relative p-dimensional boundaries on K modulo L,
denoted by B,(K/L), is the image 9(C,.,(K/L)) of C,,1(K/L) under the
relative boundary homomorphism.

The relative p-dimensional simplicial homology group of K modulo L is
the quotient group

ZKID

H(K[|L) = B,(K/L) D=

In order for the homology group H,(K/L) to make sense, every relative
p-boundary must be a relative p-cycle. In other words, we must have B,(K/L)
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7.3 Relative Homology Groups

< Z,(K|L) for the quotient group to be defined. The verification of this fact
is left as an easy exercise

The members of H,(K/L) are denoted [z, + C,(L)] where z, + C,(L) is a
relative p-cycle. It is required that 9z, be a (p — 1)-chain on L, not that z,
be an actual cycle. However, if z, is a cycle, then z, + C,(L) is certainly a
relative cycle.

Example 7.4. Let K be the 1-skeleton of a 2-simplex {vov,v,» and L the sub-
complex determined by the vertex v,. Let us determine Hy(K/L) and H,(K/L).
For the case p = 0,

Co(K) =Zy(K) 2 ZDZ DL,
Co(L) =Zy(L) = Z, CyK|L)=Z(K/L)=ZDL.
The members of Z,(K/L) are chains of the form
z = g1-<v1) + g2<va) + Co(L), 81,8:2€1,
where
Co(L) = {g-<{voy: g is an integer}.
But
0(81-<vov1) + g2-<Vov2)) = 81-<V1) + g2:<V2) + (—&1 — &2)-<Vo)s
SO
0(g1-<vov1) + g2-<vov2) + Ci(L)) = g1-<v1) + g2-<v2> + Co(L).
Thus every relative O-cycle is a relative 0-boundary. This means that
Zo(K|L) = Bo(K/L),  Ho(K/L) = {0}.
Now suppose p = 1. Let
w = hy - vov1) + ha-{0103) + h3-<{vov2) + Ci(L)

be a relative 1-chain. (Since C;(L) = {0}, 1-chains and relative 1-chains are
essentially the same.) Then

ow = (hy — hg)-<v) + (hy + h3)-<{v2) + Co(L).
Then w is a relative 1-cycle if and only if A, = h, = —h;. Hence Z,(K/L) ~ Z.

Since K has no 2-simplexes, then By(K/L) = {0} and H,(K/L) ~ Z. Since
there are no simplexes of dimension 2 or higher, then H,(K/L) = {0}, p = 2.

Example 7.5. Let K denote the closure of a 2-simplex 0% = {vv,0,) and L its
1-skeleton. Since K and L have precisely the same O-simplexes and 1-simplexes,
then

Co(K) = Co(L),  Co(K/L) ={0},  HoK/L) = {0},

CuK) = Ci(L), Cu(K/L)={0},  Hy(K/L)= {0}
Since L has no simplexes of dimension two or higher, it might appear at first
that H,(K) and H,(K/L) are isomorphic for p > 2. This is true for p > 3 but
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not for p = 2. Although L has no simplexes of dimension two, it does affect
Z,(K/L). The reason is that the boundary of a 2-chain is a 1-chain; if the
1-chain has nonzero coefficients only for simplexes of L, then the 2-chain is a
relative cycle. In this case, the elementary relative 2-chain

u = g- vy + Co(L), g€z,

has relative boundary
ou = g-{v103) — g-<{ovsy + g-<vov1) + Cy(L) =0

because all 1-simplexes of K are in L. Thus the subcomplex L produces
relative 2-cycles, and Zy(K /L) ~ Z. Since By(K/L) = {0}, then Hy(K/L) ~ Z.
Note in particular that Hy(K) = {0}, so Hy(K/L) is not isomorphic to Hy(K).

Our next objective is to show that there is a special sequence
T Hy(L) > Hy(K) ™ Hy(K|L) ™ Hy (L) ™= H{(K) ™ Ho(K/L)

where i*, j* and 0* are homomorphisms. Strictly speaking, each homo-
morphism should be marked by p, indicating the dimension, but this notation
is cumbersome. The dimension will always be known from the subscripts on
the homology groups.

Definition. Let K be a complex with subcomplex L. The inclusion map i from
L into K is simplicial and induces a homomorphism i*: H,(L) — H,(K)
for each p > 0. The effect of this homomorphism is easily described: If
[z,] € Hy(L) is represented by the p-cycle z, on L, then z, can be considered
a p-cycle on K. Then z, determines a homology class i*([z,]) = [z,] in
H(K).

Let j: C,(K) — C,(K/L) be the homomorphism defined by

j(cp) =Cp + Cp(L)’ Cp € Cp(K)~

Then j induces a homomorphism j*: Hy(K)— H(K/L), p = 0. If
[z,] € Hy(K), then z, + C,(L) s a relative p-cycle and determines a member
[z, + Co(L)] of Hy(K/L). The homomorphism j* takes [z,]to [z, + C,(L)].

The definition of &*: H,(K/L) — H,_,(L) comes next. If [z, + C,(L)] e
H,(K/L),p > 1, then z, + C,(L) is a relative p-cycle. This means that oz,
is in C,_;(L). Since 99z, = 0, then 9z, is a (p — 1)-cycle on L and deter-
mines a member [0z,] of H,_;(L). We define

0*([z, + Co(D)]) = [0z,], [z, + Cp(L)] € H(K/L).

The homology sequence of the pair (K, L) is the sequence of groups and
homomorphisms

B HD) S HK) B HK D B H,_ (D) % - -S> Hy(K) > Hy(K/ L).
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The reader is asked to verify that i*, j* and 0* are well-defined homo-
morphisms. The homology sequence has a nice algebraic structure whose
basic properties are developed in the next definition and the two theorems
that follow it.

Definition. A sequence

h h hp - h h
- p+1 Gp P Gp—l p-1 . 2 G1 1 Go
of groups Gy, Gy, ... and homomorphisms 4, A, ... is exact provided

that the kernel of 4, _; equals the image 4,(G,) for p > 2 and that 4; maps
G, onto G,. (Requiring that 4, be onto is equivalent to requiring that G,
be followed by the trivial group.)

There are many theorems that compare the groups of an exact sequence.
The following is the simplest.

Theorem 7.9. Suppose that an exact sequence has a section of four groups
HOYENYENY. L)
where {0} denotes the trivial group. Then g is an isomorphism from A onto B.

Proor. The image f({0}) = {0} contains only the identity element of A.
Exactness then guarantees that g has kernel {0}, so g is one-to-one. The kernel
of h is all of B, and this must be the image g(A4). Thus g is an isomorphism as
claimed. U
Theorem 7.10. Suppose that an exact sequence has a section of five groups
0> AL BS c {0,

there is a homomorphism h: C — B such that gh is the identity map on C,

and B is abelian. Then B ~ A @ C.

It is left as an exercise for the reader to show that T: A @ C — B defined by

T(a,¢) = fla)-h(c), (a,0)eADC,

is the required isomorphism.

Theorem 7.11. If K is a complex with subcomplex L, then the homology sequence
of (K, L) is exact.

Proor. In the homology sequence
5 H(D) S HK) ™ HAKILD) S H,_ (L) "> -5 Hy(K) ™ Hy(K/L),

we must show that the last homomorphism j* maps Hy(K) onto Hy(K/L) and
that the kernel of each homomorphism is the image of the one that precedes it.
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To see that j* is onto, let [z, + Co(L)] € Ho(K/L). Then z, is a 0-chain on K,
and
J*[z0] = [z0 + Co(L)],

so j* is onto.

The remainder of the proof breaks naturally into six parts:
(1) image i* < kernel j*,
(2) kernel j* < image i*,
(3) image j* < kernel 0%,
(4) kernel 0* < image j*,
(5) image 0* < kernel i*,
(6) kerenel i* < image 0*.

To prove (1), let i*([z,]) be in the image of i* where z, is a p-cycle on L.
Then

J¥i*([z,]) = [z, + C(L)] = [0 + C(L)] =0

since z, € Cp(L). Thus image i* < kernel j*.

For part (2), let [w,] € H,(K) be an element of the kernel of j*; j*([w,]) = 0
in H,(K/L). We must find an element [z,] in H,(L) such that i*([z,]) = [w,].

Since
j*([wp]) = [Wp + Cp(L)] =0,
then w, + C,(L) is the relative boundary of a relative (p + 1)-chain
Cpr1 + Cpia(L):
0cpy1 + Co(L) = wy + Cp(L),
SO W, — 9cp 4 is in Cp(L). Since both w, and dc,,, are cycles on K, then
W, — 0cy41 15 also a cycle and determines a member [w, — dc, 1] of H,(L).
Note that
i*([wp - acp-rl]) = [Wp - acp+1] = [Wp]
since w, and w, — dc,,,; are homolgous cycles on K. Thus kernel j* <
image i*.
For part (3), let j*([z,]) = [z, + C,(L)] be a member of the image of j*
where z, is a p-cycle on K. Then
*j*([z,]) = 9*([z, + C(L))) = [02,] = 0
since 9z, = 0. Thus image j* < kernel 0*.
Proceeding to (4), let [x, + C,(L)] be in the kernel of 0* where x, + C,(L)
is a relative p-cycle. Then

3*([xp + Cp(L)]) = [axp] =0

in H,_,(L). This means that
0x, = 0y,

for some p-chain y, on L. Then x, — y, is a p-cycle on K and determines a
member [x, — y,] of H,(K). Note that

j*([xp - yp]) = [xp — ¥+ CP(L)] = [xp + Cp(L)]
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since y, € Cp(L). Thus [x, + C,(L)] is in the image of j*, so kernel o* =
image j*.
Parts (5) and (6) are left to the reader. d

Example 7.6. Let K denote the closure of an n-simplex and L its (n — 1)-
skeleton, n > 2. We shall use the homology sequence to compute H,(K/L)
thus generalizing Example 7.5.

Since n > 2, K and L have the same 0-chains and the same 1-chains, and

Ho(K/L) = Hy(K/L) = {0}
For p > 1, consider the homology sequence
coo—> H(K)—> Hy(K|L)— H,_(L) — H,_(K) —>- - -
Since H,_1(K) = H,(K) = {0}, Theorem 7.9 shows that H,(K/L) ~ H,_,(L),
p > 1. Since |L| is homeomorphic to S™~%, then
H(K|L) = H,_(S""") = Z,
and H(K/L) = {0} if p # n.

Example 7.7. Let X be the union of two n-spheres tangent at a point. Then X
has as triangulation the n-skeleton of the closure of two (n + 1)-simplexes
joined at a common vertex. Denote this triangulation by K, and let L denote
the n-skeleton of one of the two (n + 1)-simplexes. The section

H, (KD S H(D) D> H(K) D> H(K/L) S H, (L)

of the homology sequence of (K, L) satisfies the hypotheses of Theorem 7.10
so that
H\(K) = H(K/L) ® Hi(L).
The reader should show that
H(K|L) =~ H(L) =~ Z

and
H,(X)=H(K)~ZDL.

The relative homology groups were defined by Lefschetz [46] in 1927, and
the homology sequence was introduced by Hurewicz [43] in 1941. The six
parts of the exactness argument (Theorem 7.11) had been used separately for
many years before Hurewicz’ formalization of the homology sequence,
however.

7.4 Singular Homology Theory

There are several methods of extending homology groups to spaces other than
polyhedra. Probably the most useful one is the singular homology theory,
which is discussed briefly in this section. Instead of insisting that the space X
be built from properly joined simplexes, one considers continuous maps from
standard simplexes into X. These maps are called “singular simplexes.” There
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are natural definitions of chains, cycles, and boundaries paralleling those of
simplicial homology. In fact, the singular and simplicial theories produce
isomorphic homology groups when applied to polyhedra. The singular
approach, however, applies to all topological spaces, not just polyhedra.

First we define the standard simplexes which will be the domains of our
singular simplexes. For notational reasons, points of R"*! will be written
(%o, X1, . . ., x,) With zeroth coordinate x,, first coordinate x,, etc. Thus the
coordinates are numbered 0 through ».

Definition.The unit n-simplex, n > 0, in R*** is the set
A, = {(xo,xl,..‘,x,,)eR"“:Zx,- =1,x=200<ix< n.}
The point v; with ith coordinate 1 and all other coordinates 0 is called the
ith vertex of A,. The subset
A (D) = {(x0, X1, - .., Xp) EAL: x; = 0}
is called the ith face of A, or the face opposite the ith vertex. The map
d;: A, _, — A, defined by
di(xo, BREY xn—l) = (xO’ e Xi—1, Oa Xy ooy xn—l)

is the ith inclusion map.

Note that A, is simply the simplex in R"*! whose vertices are the points
vo=(1,0,...,0),v;, =(0,1,0,...,0),...,0, = (0,...,0,1). The ith inclu-

sion map d; maps A,_; onto the ith face of A,. For the inclusion maps in

the diagram

dy dg
An—z > An—l > An

As 25N 2, j<i
we have did; = d;d;_,. The proof of this is left as an exercise.
Definition. Let X be a space and » a non-negative integer. A singular n-simplex
in X is a continuous function s™: A, — X. The set of all singular #-simplexes
in X is denoted S,(X). Forn > 0 and 0 < i < n, the composite map

sP=s"d A, — X

is a singular (n — 1)-simplex called the ith face of s™. The function from
Sn(X) to S,_1(X) which takes a singular n-simplex to its ith face is called
the ith face operator on S,(X). The singular complex of X is the set

S(x) = | Su(X)
n=0
together with its family of face operators. It is usually denoted by S(X).

Theorem 7.12. Let s™ be a singular n-simplex in a space X, n > 1. Then
S?,j=s}l'i_1, OSj<iSn.
Proor. In the notation of the preceding definitions,

sty = sid; = s"dd; = s"dyd;_, = sidi_y = 71 O
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Definition. A p-dimensional singular chain, or singular p-chain, p a non-negative
integer, is a function ¢,: S,(X) — Z from the set of singular p-simplexes of
X into the integers such that c,(s?) = O for all but finitely many singular
p-simplexes. Under the pointwise operation of addition induced by the
integers, the set C,(X) of all singular p-chains on X forms a group. This
group is the p-dimensional singular chain group of X.

As in the simplicial theory, a singular p-chain can be expressed as a formal
linear combination

T
Cp = Z & s()
i=0

where g; represents the value of ¢, at the singular p-simplex s(i)* and ¢, has
value zero for all p-simplexes not appearing in the sum. Since simplicial
complexes have only finitely many simplexes, the ““finitely nonzero” property
of p-chains holds automatically in the simplicial theory. As in the simplicial
theory, algebraic systems other than the integers can be used as the set of
coeflicients.

Definition. The singular boundary homomorphism
0: Cp(X) = Cp_1(X)
is defined for an elementary singular p-chain g-s?, p > 1, by

o(g-s?) = i_i (=Dg'-sf

This function is extended by linearity to a homomorphism & from C,(X)
into C,_;(X). The boundary of each singular 0-chain is defined to be 0.

Theorem 7.13. If X is a space and p > 2, then the composition 90: Cp(X) —
C,_o(X) in the diagram
8 8
Co(X) = Cp_1(X) = Cp_5(X)
is the trivial homomorphism.

PRrOOF. Since each p-chain is a linear combination of elementary p-chains, it is
sufficient to prove that 99(g-s) = O for each elementary p-chain g-s. Note
that

P p—1
(—1)fg's,) SDNCINC Y
1

LJ ; ;
= 2> 2 (=D*gs,

i=0 j=0

00(g-s) = 3(

p
i=0
p—

<.

(—D*g-s; + > (=1)*ges

i<p 0<i<j<p-1

0=

= (=Di*geson+ > (=Ditges,

0<j<i=<p 0<i<j<p-1

<,
A

In the left sum on the preceding line, replace i — 1 by j and j by i and the two
sums will cancel completely. Thus 90 = 0. O
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Definition. If X is a space and p a positive integer, a p-dimensional singular
cycle on X, or singular p-cycle, is a singular p-chain z, such that d(z,) = 0.
The set of singular p-cycles is thus the kernel of the homomorphism
0: Cy(X)— C,_1(X) and is a subgroup of C,(X). This subgroup is
denoted Z,(X) and called the p-dimensional singular cycle group of X.
Since the boundary of each singular 0-chain is 0, we define singular O-cycle
to be synonymous with singular O-chain. Then the group Z,(X) of singular
0-cycles is the group Co(X).

If p = 0, a singular p-chain b, is a p-dimensional singular boundary, or
singular p-boundary, if there is a singular (p + 1)-chain c,,; such that
(cp41) = by. The set B,(X) of singular p-boundaries is then the image
9(Cy+1(X)) and is a subgroup of C,(X). This subgroup is called the
p-dimensional singular boundary group of X. Since 99: Cy(X) — C,_4(X)
is the trivial homomorphism, then B,(X) is a subgroup of Z,(X), p > 0.
The quotient group

Hy(X) = Z,(X)/By(X)

is the p-dimensional singular homology group of X.

Many similarities in the definitions of the simplicial and singular homology
groups should be obvious. Note, however, that no mention of orientation
was made in the singular case. This was taken care of implicitly in the defini-
tion of the boundary operator:

o(g-s™) = 2:0 (—1)'g-st.

The definition in effect requires that the standard n-simplex A, be assigned the
orientation induced by the ordering v, < v; <:--< v,. This orientation is
then preserved in each singular n-simplex.

Definition. Let X and Y be spaces and f: X — Y a continuous map. If
s € S,(X), the composition f5 belongs to S,(Y). Hence finduces a homo-
morphism

Joi C(X) = Cy(Y)
defined by

fp(ié,) gi-s(i)f’) = ig g f5(i)?, 12) gi-5(0)? € C,(X).

One easily observes that the diagram
fp

Cp(X) — Cp( Y)
B 8
fo-
Cp—l(X) P_1> p—l(Y)
is commutative, so f, maps Z,(X) into Z,(Y) and B,(X) into B,(Y). (Com-
pare with Theorem 3.1.) Thus f induces for each p a homomorphism

f;k: H,(X)— Hy(Y)
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defined by
3z + By(X)) = folz,) + B(Y), (2, + By(X)) € Hy(X).

The sequence {f;¥} is the sequence of homomorphisms induced by f.

The invention of singular homology theory is usually attributed to Solomon
Lefschetz who introduced the singular homology groups in 1933 [45]. The
basic idea can be found, however, in the classic book Analysis Situs [21]
written by Oswald Veblen twelve years earlier. The important simplification
obtained by using the ordered simplex A, is due to Samuel Eilenberg.

Singular homology has two great advantages over simplicial homology:
(1) The singular theory applies to all topological spaces, not just polyhedra.
(2) The induced homomorphisms are defined more easily in the singular
theory. Recall that in the simplicial theory a continuous map between two
polyhedra must be replaced by a simplicial approximation in order to define
the induced homomorphisms. This presents problems of uniqueness which
are completely avoided by the singular approach. As mentioned earlier, the
singular and simplicial homology groups are isomorphic for polyhedra.

The singular homology theory presented in this section is the barest of
introductions. The theory has developed extensively and contains theorems
paralleling those of simplicial homology. There are, for example, exact
homology sequences and relative homology groups for singular homology.
Anyone interested in learning more about singular homology should consult
references [10] and [20].

7.5 Axioms for Homology Theory

There are homology theories other than the original simplicial theory of
Poincaré and the singular theory. For example, homology groups for compact
metric spaces were defined by Leopold Vietoris [56] in 1927 and for compact
Hausdorff spaces by Eduard Cech [32] in 1932. The similarities of all these
theories led Samuel Eilenberg (1913- ) and Norman Steenrod (1910-1971)
to define the general term ‘““homology theory.”

The definition applies to various categories of pairs (X, A), where X is a
space with subspace 4, and continuous functions on such pairs. A homology
theory consists of three functions H, *, and ¢ having the following properties:

(1) H assigns to each pair (X, 4) under consideration and each integer p an
abelian group H,(X, A). This group is the p-dimensional relative homology
group of X modulo A. If A = @ then H,(X, @) = Hy(X) is the p-
dimensional homology group of X.

(2) If (X, 4) and (Y, B) are pairs and /: X — Y with f(4) < B an admissible
map, then the function * determines for each integer p a homomorphism

f¥: HX, 4)— H,(Y, B)

called the homomorphism induced by f in dimension p.
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7 Further Developments in Homology

(3) The function @ assigns to each pair (X, 4) and each integer p a homo-
morphism
0: Hy(X, A) — H,_(A)

called the boundary operator on H,(X, A).
The functions H, *, and ¢ are required to satisfy the following seven

conditions:

The Eilenberg—Steenrod Axioms

I (The Identity Axiom). If i: (X, A) — (X, A) is the identity map, then the
induced homomorphism

iy Hy(X, A) — Hy(X, 4)
is the identity isomorphism for each integer p.

II (The Composition Axiom). If f: (X, A) — (Y, B) and g: (Y, B) — (Z, C)
are admissible maps, then

(gf);l: = g: ;‘: Hy(X, A) — H,(Z, C)
for each integer p.

III (The Commutativity Axiom). If f: (X, A) — (Y, B) is an admissible map
and g: A — B is the restriction of f, then the diagram

3
H,(X, A) —> H,(Y, B)
8 2
%
Hp-l(A) —_—> Hp—l(B)
is commutative for each integer p.
IV (The Exactness Axiom). If i: A — X and j: (X, @) — (X, A) are inclusion
maps, then the homology sequence
o Ho(A) D Hy(X) D Hy(X, 4) > Hy y(4) > -

is exact.

V (The Homotopy Axiom). If the maps f, g: (X, A) — (Y, B) are homotopic,
then the induced homomorphisms ff and gif are equal for each integer p.

VI (The Excision Axiom). If U is an open subset of X with U < A, then the

inclusion map
e: (X\U, A\U) — (X, A)

induces an isomorphism
e H(X\U, A\U) — H, (X, A)

Jor each integer p. (The map e is called the excision of U.)
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7.5 Axioms for Homology Theory

VII (The Dimension Axiom). If X is a space with only one point, then

Hy(X) = {0}

for each nonzero value of p.

Simplicial homology theory as presented in this book applies to the

category of pairs (X, 4) where X and A4 have triangulations K and L for which
L is a subcomplex of K. The singular homology theory applies to all pairs
(X, A) where X is a topological space with subspace A. For a survey of
homology theory from the axiomatic point of view, see the classic book
Foundations of Algebraic Topology by Eilenberg and Steenrod [4].

EXERCISES

1.

Bt A W N

10

.

11.

Let ¢ be a p-chain on a complex K and v a vertex for which vc is defined.

Prove that
d(ve) = ¢ — v de.

. In the proof of Theorem 7.2, show that ¢,(+") = n-o” where n is 0, 1, or —1.
. Show that chain homotopy is an equivalence relation for chain mappings.
. Show that chain equivalence is an equivalence relation for complexes.

. Definition. Let K be a complex and v a vertex not in K such that if <v,...v,>

is a simplex of K, then the set {v, v,, ..., vp} is geometrically independent.
The complex vK consisting of all simplexes of K, the vertex v, and all simplexes
of the form <{wv, .. .v,>, where <v,...vp) is in K, is called the cone complex
of K with respect to v.
(a) If vK is a cone complex, prove that

HowK) ~Z,  HywK)={0}, p>0.
(b) Show that the geometric carrier of each cone complex is contractible.

Complete the details in the proof of Theorem 7.5.

. Prove the following facts about S™:

(a) If n is even, then every continuous map on S™ of positive degree has a
fixed point.

(b) If n is odd, then every continuous map on S™ of negative degree has a
fixed point.

-Prove that every continuous map from the projective plane into itself has a

fixed point.

Let |K| be a contractible polyhedron. Prove that every continuous map on
|K| has a fixed point.

Prove or disprove: If |K| is a polyhedron and f, g are homotopic maps on
|K|, then f has a fixed point if and only if g has a fixed point.

Give an example of a continuous map on a polyhedron that has no fixed
point. Prove from the definition that the map has Lefschetz number 0.
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12.
13.
14.

15.

16.

17.
18.
19
20.

21.

22

.

23.

24.
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Prove that H,(K/2) ~ H,(K) for each complex K, p = 0.
Show that B,(K/L) C Z,(K/L) for each subcomplex L of a complex K.

Let K be a complex and v a vertex of K. Determine the relative homology
groups Hy(K/<v>), p = 0.

Let K be a complex of dimension » and L a subcomplex of dimension r.
Prove that
H,(K/L) ~ Hy(K), p=r+ 2.

Is there any relation between H, ,(K/L) and H,,,(K)?
Show that the functions i*, j*, and 0* in the homology sequence of a pair

(K, L) are well-defined homomorphisms. Explain why /* may not be one-to-
one even though i: L — K is the inclusion map.

Prove Theorem 7.10.
Complete the proof of Theorem 7.11.
Complete the details of Example 7.7.

Suppose that a complex K is the union of two subcomplexes K; and K, having
a single vertex in common. Determine the homology groups of K in terms of
those of K; and K.

Show that if j < i, then did; = d;d;—, for the inclusion maps in the diagram
A2 L) Apoy i’ An
An—2 d_i__l_). An—1—21—> An‘

Definition. A subset M of a complex K is an open subcomplex of K means that
K\M is a subcomplex of K.

Prove the Excision Theorem for simplicial homology: Let K be a complex,
L a subcomplex of K and M an open subcomplex of L. If e: |K\M| — | K| is the
inclusion map, then the induced homomorphism

0 528) ()

is an isomorphism for each integer p.

(a) Define the term ‘‘chain mapping’’ for singular homology theory.

(b) Show that a continuous map f: X — Y induces a chain mapping on the
associated chain groups.

(c) Define the induced homomorphisms on the singular homology groups in
terms of chain mappings.

(a) Define the term ‘‘deformation operator’’ for singular homology theory.
(b) Prove that homotopic maps f, g: X — Y induce the same homomorphism
fp* = g;‘: Hy(X) — H,(Y)

in the singular homology theory.



A Note About the Appendices

The three appendices give basic definitions and theorems about set theory,
point-set topology, and algebra assumed in the text. These facts are intended
to refresh the reader’s memory. The appendices are not complete treatments
in any sense; proofs are not included. More complete expositions and proofs
for the theorems listed here can be found in many standard texts. For example,
see the text by Dugundji [3] or the text by Munkres [18] for set theory and
point-set topology and the text by Jacobson [12] for algebra.
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APPENDIX 1
Set Theory

The symbol “e” indicates set membership, and ““ = indicates set inclusion.
Thus a € 4 means that ¢ is a member or an element of set 4; 4 < B means
that set 4 is contained in set B or that A4 is a subset of B. The notation
{x € 4:...} denotes the set of all members of A satisfying the statement. . .;
for example, if A4 is the set of real members, then {x € 4: 0 < x < 4} denotes
the set of real numbers from 0 to 4 inclusive. Subsets of 4 other than A itself
and the empty set @ are called proper subsets.

Definition. If 4 and B are sets, the union A U B and intersection A N B are
defined by

AUB={x:xeAdorxeB}
ANB={x:xeA4and xe B}.

Unions and intersections of arbitrary families of sets are similarly defined.
If A < X, then the complement of A with respect to X is the set X\A4 of
members of X which do not belong to 4:

X\A={xeX:x¢A}
Definition. The Cartesian product of two sets 4 and B is the set
A x B={(a,b):ac Aand be B}.

The Cartesian product of a finite collection {4;}7—,, where each 4; is a set,
is defined analogously:

Ay X Ay X+ x A, ={(ay, as,...,a,):a,€ A;, 1 <0 < n}.

The point g; is called the ith coordinate of (a;, a,, . . ., a,).
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Products can be defined for arbitrary families of sets; this must be post-
poned, however, until the concept of function from one set to another has
been introduced.

Definition. A relation from set 4 to set B is a subset ~ of the Cartesian
product A x B. It is customary and simpler to write a ~ b to mean
(a, b) € ~. A relation ~ from A4 to itself is an equivalence relation means
that the following three properties are satisfied:

(1) The Reflexive Property: x ~ x for all x € A.
(2) The Symmetric Property: If x ~ ythen y ~ x.
(3) The Transitive Property: If x ~ yand y ~ z, then x ~ z.

The equivalence class of x is the set

[x] ={yed:x ~y}.

If ~ is an equivalence relation on A, then each element of 4 belongs to
exactly one equivalence class.

Definition. A function f: A — B is a relation from set A to set B such that if
ac€ A there is only one be B for which afb. It is customary to write
f(a) = b and to call b the image of a under f. Set A is the domain of f, and
the range of fis the set

f(A) = {be B: b = f(a) for some a € A}.

Definition. If /: A — Band g: B—> C are functions on the indicated sets, then
the composite function gf: A — C is defined by

gfla) = g(f(@), ac4

Definition. The identity function on a set 4 is the function i: 4 — A4 such that
i(@) = aforall ae A.

Definition. A function f: A — B is one-to-one if no two members of 4 have
the same image; f'is onto if f(A) = B. A function which is both one-to-one
and onto is called a one-to-one correspondence. Thus a one-to-one corre-
spondence is a function from A to B for which each point of B is the
image of exactly one point of 4. In this case there is an inverse function
f~1: B— A defined by: a = f~(b) if and only if b = f(a).

If f: A — B is a one-to-one correspondence, then the composite functions
f~*f and ff~* are the identity functions on 4 and B respectively.

Definition. If there is a one-to-one correspondence between sets 4 and B, then
A and B are said to have the same cardinal number.
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Definition. If f: 4 — B s a function and C < 4, the restriction f|c: C — B of
fto C is the function with domain C defined by

flex) =f(x), xeC.

Equivalently, f is called an extension of f/.

Definition. If {4,} is a family of sets indexed by a set J (i.e., if 4; is a set for
each j in a given set J), then the product of the sets 4; is the set [ ;; 4,
composed of all functions f: J— | 4, such that f(j) € 4, for each j e J.

The finite product 4; x A, % --- x A, is a special case of the preceding
definition. Let J be the set of integers 1, 2,.. ., n, and identify the sequence
(ay, as, . . ., a,) with the function f: J — (J}-; 4, whose value at j is a,. Then

Ay x Ay x---x A, =] ] 4,

jeJ

Definition. Let /: X x Y — Z be a function from the product set X x Y into
Z. If x, is a point of X, then the symbol f(x,, -) denotes the function from
Y into Z defined by

fxo, ) = flx0,5), yeY.
For y,in Y, the symbol f(-, y,) denotes the function from X to Z defined by

f('aJ’o)(x) =f(X,yo), xeX.
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APPENDIX 2

Point-set Topology

Definition. A topology for a set X is a family T of subsets of X satisfying the
following three properties:

(1) The set X and the empty set & are in 7.
(2) The union of any family of members of T is in 7.
(3) The intersection of any finite family of members of T is in T.

The members of T are called open sets. A topological space, or simply
space, is a pair (X, T) where X is a set and T'is a topology for X. One often
refers to a topological space X, omitting mention of the topology, when
the name of the topology is not important.

A base or basis for a topology T 'is a subset B of T such that each member
of T is a union of members of B. A subbase or subbasis for T is a subset S
of T such that the family of all finite intersections of members of S is a
basis for T.

If X is a space, a subset C of X is closed means that its complement
X\C = {x € X: x ¢ C}is open. A neighborhood of a point x in X is an open
set containing x.

A point x is a limit point of a subset A of X means that every neighbor-
hood of x contains a point of A distinct from x. The closure of a set A4 is
the set A, the union of 4 with its set of limit points. The boundary of A is
the intersection of 4 with X\ 4.

Proposition. A subset A of a space X is closed if and only if A contains all its
limit points. A subset O of X is open if and only if O contains a neighborhood
of each of its points. The closure of each subset of X is a closed set.

Definition. A space X is a Hausdorff space or a T,-space provided that for each
pair x,, x, of distinct points of X there exist disjoint neighborhoods O,
and O, of x; and x, respectively.
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Definition. The subspace topology for a subset 4 of a space X consists of all
subsets of the form O N 4 where O is open in X. The set 4 with its subspace
topology is a subspace of X.

Definition. A covering € of a space X is a family of subsets of X whose union
is X. A subcovering of € is a covering each of whose members is a member
of €. A covering each of whose members is an open set is called an open
covering.

Definition. A space X is compact provided that every open covering of X has a
finite subcovering. A compact subset of X is a subset which is compact in
its subspace topology. A space is locally compact means that for each
point x there is a neighborhood U of x and a compact set 4 with U < A.

Proposition. (a) In a Hausdorff space, compact sets are closed.
(b) A4 closed subset of a compact space is compact.
(c) If X is a locally compact Hausdorff space and x € X, then for each
neighborhood V of x there is a neighborhood O of x such that O < V and O
is compact.

Definition. A space X is connected means that X is not the union of two dis-
joint, nonempty open sets. A connected subset of X is a subset which is
connected in its subspace topology. A component is a connected subset
which is not a proper subset of any connected subset of X.

Definition. A metric or distance function for a set X is a function d from the
Cartesian product X x X to the non-negative real numbers such that, for
all x, y,zin X,

(1) d(x,y) = d(y, x),
(2) d(x, y) = 0 if and only if x = y,
(3) d(x,y) + d(y,2) = d(x, 2).

For x € X and r > 0 the set
Sx,r)={yeX:dx,y) <r}

is called the spherical neighborhood with center x and radius r. The set of all
such spherical neighborhoods is a basis for a topology for X, the metric
topology determined by d. A set with the topology determined by a metric
is called a metric space. The diameter of a subset A of a metric space is the
least upper bound of the distances between points of A:

diam 4 = lub{d(x, y): x, y € 4}.
A set with finite diameter is called bounded.
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Definition. A function f: X — Y from a space X to a space Y is continuous
provided that for each open set U in Y the inverse image

S7HU) = {xe X:f(x) e U}

is open in X. A one-to-one correspondence f: X — Y for which both f
and the inverse function f~! are continuous is called a homeomorphism; in
this case X and Y are said to be homeomorphic. A function g: X — Y is
open provided that g(O) is open in Y for each open subset O of X. Closed
Sunction is defined analogously.

Proposition. The composition of continuous functions is continuous.

Proposition. The properties of being compact or connected are preserved by
continuous functions. '

Proposition. Let f: X — Y be a function on the indicated spaces. The following
statements are equivalent:

(a) f is continuous.

(b) For each closed subset C of Y, f~*(C) is closed in X.

(c) There is a basis B for Y such that f~(U) is open for each U € B.
(d) There is a subbasis S for Y such that f~*(U) is open for each U € S.

Proposition. If X and Y are metric spaces with metrics d and d' respectively and
[ X — Yis afunction, then fis continuous if and only if for each x, € X and
€ > 0, there is a number 8 > 0 such that if d(x,, x) < 8, then d(f(x,), f(x))
< e

Definition. Let X and Y be metric spaces with metrics d, d’ respectively. A
function f: X — Y is uniformly continuous means that for each ¢ > 0,
there is a number 8 > 0 such that if x and x’ are points of X with
d(x, x') < 8, then d(f(x), f(x)) < e.

Proposition. If X and Y are metric spaces, X is compact, and f: X — Y is
continuous, then f is uniformly continuous.

Proposition. If % is an open covering of a compact metric space X, then there
is a positive number v such that each subset of X of diameter less than 7 is
contained in a member of U. (The number v is called a Lebesgue number for
the open covering %.)

Definition. Let X and Y be spaces. The product space X x Y is the Cartesian
~product of X and Y with the product topology which has as a basis the
family of all sets of the form U; x U, where Uj; is open in X and U, is
open in Y.
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If {X,} is a family of spaces indexed by a set A4, then the product space
[ Taea X, is the product of the sets X, with the product topology which has
as a subbasis all sets of the form p; *(U,), B € 4. Here pg: [ Tuea Xo — Xpis
the projection on X, defined by
pe(N) =/B), fellx

a€A

and U, represents an arbitrary open set in Xj.

Proposition. (a) 4 product of compact spaces is compact.
(b) A product of connected spaces is connected.
(©) If xo € X and y, € Y, then the subspaces X x {y,} and {x,} x Y of
X x Y are homeomorphic to X and Y respectively.

Definition. Let X be a space and S an equivalence relation on X. Then S
partitions X into a family X'/S of equivalence classes. The quotient topology
for X/S is defined by the following condition: A set U of equivalence
classes in X/S is open if and only if the union of the members of U is open
in X. The quotient space of X modulo S is the set X/S with the quotient
topology.

As an important special case we have the quotient space X /4 where 4
is a subset of X. This is the quotient space of X determined by the relation:
xSy if and only if x = y or x and y are both in 4. The points of X/A4 are
the points of X\4 and an additional single point A.

If f: X — Yis a function from a space X onto a set Y, then the quotient
topology for Y consists of all sets U = Y for which f~*(U) is open in X.
The function f determines an equivalence relation R on X defined by
x1Rx, if and only if f(x,) = f(x,). The quotient space X/R is homeo-
morphic to the space Y with the quotient topology determined by f.

Proposition. Let f: X — Y be a continuous function from space X onto space Y.
If f'is either open or closed, then Y has the quotient topology determined by f.
Definition. Euclidean n-dimensional space R", n a positive integer, is the set
={x = (X1,..., X,): X; is a real number, 1 < i < n}

with the topology determined by the Euclidean metric:

n 1/2
d(x, y) = {Z (o — yi)z}

where x = (x,...,x,) and y = (y4,..., y,) are members of R". The
members of R" are referred to as points or vectors. The norm or length | x||
of a vector x in R" is the distance from x to the origin 0 = (0,.. ., 0):

= {Z)
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Note that R? is simply the real number line: R! = R.
For x, y in R, the inner product or dot product of x and y is the number

Xy =X1Y1+ XgYg +-+ Xy Yn.

The vectors x and y are perpendicular or orthogonal if x-y = 0. This
definition extends the common concept of perpendicularity in two and
three dimensions to higher dimensions.

The unit n-sphere S™ is the set of all points in R**?* of unit length:

S"={x=(x,..., %) R x| =1}, n=0.

Note that S™is a subspace of R"*1, not of R*. We may consider R™ as the
subspace of R"*! consisting of all points having final coordinate 0.

Proposition. (a) Euclidean n-space is homeomorphic to the product of n copies
of the space of real numbers.
(b) A subspace of R™ is compact if and only if it is closed and bounded.

Definition. The wunit n-ball B™ is the set of all points in R" of length not
exceeding 1:
B*={x=(x3,..,x)eR™ x| <1}, n=x=1L
Note that the boundary of B™ is the unit (» — 1)-sphere S™~1.
The unit n-cube I™ is the set
I'={t=(y,...,t,)eR":0 < t; < 1 for each i}.
Thus I* = I is the closed unit interval [0, 1], I? is a square, and I® is a

3-dimensional cube. The boundary of I", denoted oI", is the set of all
points of I™ having some coordinate equal to O or 1.

Proposition. (a) The quotient space of B™ obtained by identifying its boundary
S~ to a single point is homeomorphic to S™.
(b) The quotient space of I™ obtained by identifying its boundary oI to a
single point is homeomorphic to S™.

Definition. Let X be a Hausdorff space which is not compact and co a point
not in X. The one-point compactification X* of X is the set

X* = XU {o0}

with the topology determined by the basis composed of all open sets in X
together with all subsets U of X* for which X*\U is a closed, compact
subset of X.

Proposition. The one-point compactification X* of a Hausdorff space X is a
compact space; X* is Hausdorff if and only if X is locally compact.

Proposition. The one-point compactification of Euclidean n-space R™ is homeo-
morphic to S™.
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APPENDIX 3
Algebra

Definition. A binary operation on a set A is a function f: 4 x A— A. For

a,be A, f(a, b) is often expressed ab or a-b (multiplicative notation) or
a + b (additive notation).

Definition. A group is a set G together with a binary operation on G satisfying

the following three properties:

(1) a(bc) = (ab)c for all a, b, c € G.

(2) There is an element e, the identity element of G, such that ae = ea = a
for all ¢ in G.

(3) For each a in G, there is an element a~1, the inverse of a, such that
aa"' =a'a=e.

In the additive group notation, the identity element is denoted by 0 and
the inverse of @ by —a. A group whose only element is the identity is the
trivial group {0}.

A subset 4 of a group G is a subgroup of G provided that 4 is a group
under the operation of G. If 4 is a subgroup and g € G, then

gA = {ga:aec 4}

is called the left coset of A by g. In the additive notation, we would write
g + A instead of gA. Right cosets are defined similarly.

Proposition. Left cosets gA and hA of a subgroup A are either disjoint or

identical.

Definition. A group G is commutative or abelian means that ab = ba for all

a,bedG.
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Definition. A homomorphism f: G — H from a group G into a group H is a
function such that
f(ab) = f(a)f(b), a,bed.
The set
Ker f = {a e G: f(a) = identity of H}

is the kernel of f. An isomorphism is a homomorphism which is also a
one-to-one correspondence between G and H; in this case the groups are
called isomorphic, and we write G ~ H.

Definition. A subgroup A of a group G is normal means that g~*ag € A for all
geG,acA.

Proposition. The kernel of a homomorphism f: G — H is a normal subgroup
of G. The homomorphism is one-to-one if and only if the kernel of f contains
only the identity of G.

Proposition. If A is a normal subgroup of G, then each left coset gA equals the
corresponding right coset Ag. The family G|A of all left cosets of A is a group
under the operation

gA-hA = ghA.

(The group G/A is called the quotient group of G modulo A4.)

Proposition (The First Homomorphism Theorem). Let f: G — H be a homo-
morphism from group G onto group H with kernel K. Then H is isomorphic
to the quotient group G|K.

Definition. A commutator in a group G is an element of the form aba~'b-1.
The commutator subgroup of G is the smallest subgroup containing all
commutators of G. Equivalently, the commutator subgroup consists of all
finite products of commutators of G.

Proposition. (a) The commutator subgroup F of a group G is normal.
(b) The commutator subgroup is the smallest subgroup of G for which G|F
is abelian.

Definition. If g is a member of a group G, the set of all powers g, g7 3, gg = g2,
g g™t = g2 ... forms a subgroup
[g] = {g": nis an integer}
called the subgroup generated by g. If G has an element g for which [g] = G,

then G is a cyclic group with generator g.

The most common cyclic group is the group Z of integers. Both 1 and —1
are generators.
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Definition. A set of generators for a group G is a subset S of G such that each
member of G is a product of powers of members of S. A group which has
a finite set of generators is called finitely generated.

Definition. The direct sum G @ H of groups G and H is the set G x H with
operation @ defined by

(81, h1) D (g2, ha) = (g1 + g2, 11 + ho)
for all gy, g5 € G, hy, h, € H. (Here we are using additive notation.)

Definition. A group which is isomorphic to a finite direct sum of copies of the
group Z of integers is called a free abelian group. Thus a free abelian group
on n generators is isomorphic to the direct sum ZPZ P--- P Z (n
summands). The integer # is called the rank of the group.

Proposition. Every subgroup of a free abelian group is a free abelian group.

Proposition (The Decomposition Theorem for Finitely Generated Abelian
Groups). Each finitely generated abelian group is a direct sum of a free
abelian group G and a finite subgroup. The finite subgroup (called the torsion
subgroup) is composed of the identity element alone or is a direct sum of
cyclic groups of prime power orders. The rank of G and the orders of the
cyclic subgroups (with their multiplicities) are uniquely determined.

Definition. A permutation on a finite set ¥ is a one-to-one function from ¥V
onto itself. The set of all permutations on a set of # distinct objects forms a
group, the symmetric group on n objects, under the operation of composi-
tion. A transposition on V is a permutation which interchanges precisely
two members of 7 and acts as the identity map for the other members.

Proposition. Every permutation is a product of transpositions.

If a permutation is the product of an even number of transpositions, then
it is called an even permutation. Although it is not obvious, it is true that if a
given permutation can be represented as a product of an even number of
transpositions, then every representation of it as a product of transpositions
requires an even number. A permutation which is not even is called an odd
permutation.

Example. To illustrate the way even and odd permutations are used in the
text, consider a set V = {vy, vy, v3} Of three elements with a definite order
vy, Ug, Ug. The arrangement v,, vg, v, represents an odd permutation of the
given order since it was produced by transposing one pair of elements.
Likewise, the ordering v,, v,, vg represents an odd permutation. On the other
hand, v,, vs, v; represents an even permutation since it is produced from the
original order by two transpositions: beginning with vy, v,, v; transpose v,
and v, to produce v, v;, v3; now transpose v; and vz to produce vy, v, v;.
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Definition. A topological group is a group G with a topology under which the
operation of G is a continuous map from G x G to G and the function
g — g~ ! is a homeomorphism from G onto G.

Definition. A ring is a triple (R, +, -), where R is a set with operations + and
- (indicated by juxtaposition), such that

(1) (R, +) is an abelian group,

(2) (ab)c = a(be),

3) a(d + ¢) = ab + ac,

4) (b + c)a = ba + ca, a,b,ceR.

The operation + is called addition, and - is called multiplication. The
additive identity element is denoted by 0. If there is an identity element 1

for multiplication, then R is a ring with unity. A ring is commutative if
ab = ba for all a, b € R.

Definition. A field is a commutativé ring with unity in which the nonzero
elements form a group under multiplication.

The most common fields are the real numbers, the rational numbers, and
the complex numbers.

Definition. A vector space over a field F is a set V with two operations, an
addition + under which ¥ forms an abelian group, and scalar multiplica-
tion which associates with each v € V and a € F a member av in V. The
following conditions must be satisfied for all a, b€ Fand all u,ve V:

(1) (ab)v = a(bv),
2) a(u + v) = au + av, (a + b)v = av + b,
3) 1-v=n0

The members of a vector space V are called vectors.
Definition. A set {v,,..., v} of members of a vector space V is linearly
dependent if there exist elements a,, . . ., @, of the field F such that
a, v, +"‘+akvk=0

and not all the a; are 0. A set of vectors is /inearly independent if it is not
linearly dependent. A set of vectors {vy, ..., v;} is said to span V if each
element v € V' can be represented as a linear combination

U= b]_U]_ +"'+ bkvk
for some by, ..., b, in F. A base or basis for V is a linearly independent set
which spans V. If V' has a finite basis, then V is called finite dimensional.

Proposition. Any two bases for a finite dimensional vector space V have the same
number of elements. (This number is the dimension of V.)
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The most common vector spaces are the Euclidean spaces R" over the field
of real numbers. Vector addition and scalar multiplication are defined by

(X1, e 5 %) + (P15 ¥0) = (K51 + Yiseeos Xn F Vi),
a(xXy, ..., X,) = (axy, ..., ax,).
It is sometimes said that these operations are defined ““componentwise” by
addition and multiplication of real numbers. The vector space dimension of
R" is n.

Definition. A subspace A of a vector space V is a subset of ¥ which is a
vector space under the addition and scalar multiplication of V. A hyper-
Dlane is a translation of a subspace: H is a hyperplane provided that there
is a subspace A and a vector v € ¥ such that

H=1{v+ a acA}

Definition. The sum A + B of subspaces 4 and B of a vector space V is the
subspace
A+ B=1{a+ b:acA,beB}.
If each element v in 4 + B has a unique representation v = a + b for
ac Aand be B, then A + Bis written A @ B and called a direct sum.

Proposition. (a) The sum A + B is a direct sum if and only if A N B = {0}.
®)If AN B = {0} and {vy, ..., v} and {w, . .., w;} are bases for A and
B respectively, then {v, . . ., Uy, Wy, . . ., w;} is a basis for A @ B. In particu-
lar, the dimension of A @ B is the sum of the dimensions of A and B.

Definition. If " and W are vector spaces over a common field F, a function
[V — W satisfying
Sl +v) = flu) + (),
flau) = af(u), acF,uveVl,
is called a homomorphism or a linear transformation. A one-to-one linear
transformation from ¥ onto W is an isomorphism.

Definition. If m and » are positive integers, an m x n matrix over a field Fis
a rectangular array

Q1112 - Qiq

Q21009 - -+ Qg
A= (ay) = .

An18pma *** Qmn

of mn members of F. The element a;; in row i and column j is called the
(i, j)th component of A. If B = (b;;) is another m x n matrix, then the
matrix sum A + B is defined by

A + B = (au + bij)’
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The matrix product AC is defined for any matrix C = (c;;) of n rows by
AC = (dy)

where d;; = Dh_1 aicy;- The elements ey, e, . . ., €,, of an n X n matrix
E = (e;;) are called its diagonal elements. The trace of E is the sum of its
diagonal elements:

n
trace £ = Z [
i=1

Proposition. Let V be a finite dimensional vector space over F with basis
{1, ..., s}. Then there is a one-to-one correspondence between the set of
linear transformations f: V — V and the set of n x n matrices over F. The
matrix corresponding to f is the matrix A; = (a;;) where

f) = jil a;;v;.

The composition of two linear maps corresponds to the product of their
associated matrices.

Proposition. Let f: V— V be a linear transformation. If matrices B and C
represent f relative to different bases, then B and C have the same trace.

Definition. Let F be a field, and let ¥, denote the vector space of all n-tuples
of members of F with operations defined by

(x17” ~7xn) + (}’1,~ . 'ayn) = (xl + Yis-0 5 X + yn),
a(xy, ..., x,) = (axy, ..., ax,).

If A = (a;;) is an m x n matrix over F, then each row
A1z - - Aip
of A can be considered a member
(@1, Qiay - - -5 Qi)

of V,. In this context, the rows of A4 are called row vectors. The rank of A,
rank(A4), is the dimension of the subspace of V, spanned by the row
vectors of A.
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Algebraic Topology: An Introduction
by W. S. Massey

(Graduate Texts in Mathematics, Vol. 56)

1977. xxi, 261p. 61 illus. cloth

Here is a lucid examination of algebraic topology, designed to introduce advanced
undergraduate or beginning graduate students to the subject as painlessly as
possible. Algebraic Topology: An Introduction is the first textbook to offer a
straight-forward treatment of “standard” topics such as 2-dimensional manifolds,
the fundamental group, and covering spaces. The author’s exposition of these
topics is stripped of unnecessary definitions and terminology and complemented by
a wealth of examples and exercises.

Algebraic Topology: An Introduction evolved from lectures given at Yale University
to graduate and undergraduate students over a period of several years. The author
has incorporated the questions, criticisms and suggestions of his students in
developing the text. The prerequisites for its study are minimal: some group theory,
such as that normally contained in an undergraduate algebra course on the
junior-senior level, and a one-semester undergraduate course in general topology.

Lectures on Algebraic Topology

by A. Dold

(Grundlehren der mathematischen Wissenschaften, Vol. 200)
1972. xi, 377p. 10 illus. cloth

Lectures on Algebraic Topology presents a comprehensive examination of singular
homology and cohomology, with special emphasis on products and manifolds. The
book also contains chapters on chain complexes and homological algebra, applica-
tions of homology to the geometry of euclidean space, and CW-spaces.

Developed from a one-year course on algebraic topology, Lectures on Algebraic
Topology will serve admirably as a text for the same. Its appendix contains the
presentation of Kan- and Cech-extensions of functors as a vital tool in algebraic
topology. In addition, the book features a set of exercises designed to provide
practice in the concepts advanced in the main text, as well as to point out further
results and developments.

From the reviews:

“This is a thoroughly modern book on algebraic topology, well suited to serve as a
text for university courses, and highly to be recommended to any serious student of
modern algebraic topology.”

Publicationes Mathematicae
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