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Preface 

This text is intended as a one semester introduction to algebraic topology 
at the undergraduate and beginning graduate levels. Basically, it covers 
simplicial homology theory, the fundamental group, covering spaces, the 
higher homotopy groups and introductory singular homology theory. 

The text follows a broad historical outline and uses the proofs of the 
discoverers of the important theorems when this is consistent with the 
elementary level of the course. This method of presentation is intended to 
reduce the abstract nature of algebraic topology to a level that is palatable 
for the beginning student and to provide motivation and cohesion that are 
often lacking in abstact treatments. The text emphasizes the geometric 
approach to algebraic topology and attempts to show the importance of 
topological concepts by applying them to problems of geometry and 
analysis. 

The prerequisites for this course are calculus at the sophomore level, a 
one semester introduction to the theory of groups, a one semester introduc­
tion to point-set topology and some familiarity with vector spaces. Outlines 
of the prerequisite material can be found in the appendices at the end of 
the text. It is suggested that the reader not spend time initially working on 
the appendices, but rather that he read from the beginning of the text, 
referring to the appendices as his memory needs refreshing. The text is 
designed for use by college juniors of normal intelligence and does not 
require "mathematical maturity" beyond the junior level. 

The core of the course is the first four chapters—geometric complexes, 
simplicial homology groups, simplicial mappings, and the fundamental 
group. After completing Chapter 4, the reader may take the chapters in 
any order that suits him. Those particularly interested in the homology 
sequence and singular homology may choose, for example, to skip Chapter 
5 (covering spaces) and Chapter 6 (the higher homotopy groups) tempor­
arily and proceed directly to Chapter 7. There is not so much material 
here, however, that the instructor will have to pick and choose in order to 
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Preface 

cover something in every chapter. A normal class should complete the first 
six chapters and get well into Chapter 7. 

No one semester course can cover all areas of algebraic topology, and 
many important areas have been omitted from this text or passed over with 
only brief mention. There is a fairly extensive list of references that will 
point the student to more advanced aspects of the subject. There are, in 
addition, references of historical importance for those interested in tracing 
concepts to their origins. Conventional square brackets are used in refer­
ring to the numbered items in the bibliography. 

For internal reference, theorems and examples are numbered consecu­
tively within each chapter. For example, "Theorem IV.7" refers to Theo­
rem 7 of Chapter 4. In addition, important theorems are indicated by their 
names in the mathematical literature, usually a descriptive name (e.g., 
Theorem 5.4, The Covering Homotopy Property) or the name of the 
discoverer (e.g., Theorem 7.8, The Lefschetz Fixed Point Theorem.) 

A few advanced theorems, the Freudenthal Suspension Theorem, the 
Hopf Classification Theorem, and the Hurewicz Isomorphism Theorem, 
for example, are stated in the text without proof. Although the proofs of 
these results are too advanced for this course, the statements themselves 
and some of their applications are not. Students at the beginning level of 
algebraic topology can appreciate the beauty and power of these theorems, 
and seeing them without proof may stimulate the reader to pursue them at 
a more advanced level in the literature. References to reasonably accessible 
proofs are given in each case. 

The notation used in this text is fairly standard, and a real attempt has 
been made to keep it as simple as possible. A list of commonly used 
symbols with definitions and page references follows the table of contents. 
The end of each proof is indicated by a hollow square, Q 

There are many exercises of varying degrees of difficulty. Only the most 
extraordinary student could solve them all on first reading. Most of the 
problems give standard practice in using the text material or complete 
arguments outlined in the text. A few provide real extensions of the ideas 
covered in the text and represent worthy projects for undergraduate 
research and independent study beyond the scope of a normal course. 

I make no claim of originality for the concepts, theorems, or proofs 
presented in this text. I am indebted to Wayne Patty for introducing me to 
algebraic topology and to the many authors and research mathematicians 
whose work I have read and used. 

I am deeply grateful to Stephen Puckette and Paul Halmos for their 
help and encouragement during the preparation of this text. I am also 
indebted to Mrs. Barbara Hart for her patience and careful work in typing 
the manuscript. 

FRED H. CROOM 
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Geometric Complexes and Polyhedra 

1.1 Introduction 
Topology is an abstraction of geometry; it deals with sets having a structure 
which permits the definition of continuity for functions and a concept of 
"closeness" of points and sets. This structure, called the "topology" on the 
set, was originally determined from the properties of open sets in Euclidean 
spaces, particularly the Euclidean plane. 

It is assumed in this text that the reader has some familiarity with basic 
topology, including such concepts as open and closed sets, compactness, 
connectedness, metrizability, continuity, and homeomorphism. All of these 
are normally studied in what is called "point-set topology"; an outline of the 
prerequisite information is contained in Appendix 2. 

Point-set topology was strongly influenced by the general theory of sets 
developed by Georg Cantor around 1880, and it received its primary impetus 
from the introduction of general metric spaces by Maurice Frechet in 1906 
and the appearance of the book Grundzuge der Mengenlehre by Felix Haus-
dorffin 1912. 

Although the historical origins of algebraic topology were somewhat 
different, algebraic topology and point-set topology share a common goal: 
to determine the nature of topological spaces by means of properties which 
are invariant under homeomorphisms. Algebraic topology describes the 
structure of a topological space by associating with it an algebraic system, 
usually a group or a sequence of groups. For a space X, the associated group 
G(X) reflects the geometric structure of X, particularly the arrangement of 
the "holes" in the space. There is a natural interplay between continuous 
m a p s / : Z - > Ffrom one space to another and algebraic homomorphisms 
/ * : G(X) -> G( Y) on their associated groups. 
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1 Geometric Complexes and Polyhedra 

Consider, for example, the unit circle S1 in the Euclidean plane. The circle 
has one hole, and this is reflected in the fact that its associated group is 
generated by one element. The space composed of two tangent circles (a 
figure eight) has two holes, and its associated group requires two generating 
elements. 

The group associated with any space is a topological invariant of that 
space; in other words, homeomorphic spaces have isomorphic groups. The 
groups thus give a method of comparing spaces. In our example, the circle 
and figure eight are not homeomorphic since their associated groups are not 
isomorphic. 

Ideally, one would like to say that any topological spaces sharing a 
specified list of topological properties must be homeomorphic. Theorems of 
this type are called classification theorems because they divide topological 
spaces into classes of topologically equivalent members. This is the sort of 
theorem to which topology aspires, thus far with limited success. The reader 
should be warned that an isomorphism between groups does not, in general, 
guarantee that the associated spaces are homeomorphic. 

There are several methods by which groups can be associated with topo­
logical spaces, and we shall examine two of them, homology and homotopy, 
in this course. The purpose is the same in each case: to let the algebraic 
structure of the group reflect the topological and geometric structures of the 
underlying space. Once the groups have been defined and their basic proper­
ties established, many beautiful geometric theorems can be proved by alge­
braic arguments. The power of algebraic topology is derived from its use of 
algebraic machinery to solve problems in topology and geometry. 

The systematic study of algebraic topology was initiated by the French 
mathematician Henri Poincare (1854-1912) in a series of papers1 during the 
years 1895-1901. Algebraic topology, or analysis situs, did not develop as a 
branch of point-set topology. Poincare's original paper predated Frechet's 
introduction of general metric spaces by eleven years and Hausdorff's classic 
treatise on point-set topology, GrundziXge der Mengenlehre, by seventeen 
years. Moreover, the motivations behind the two subjects were different. 
Point-set topology developed as a general, abstract theory to deal with 
continuous functions in a wide variety of settings. Algebraic topology was 
motivated by specific geometric problems involving paths, surfaces, and 
geometry in Euclidean spaces. Unlike point-set topology, algebraic topology 
was not an outgrowth of Cantor's general theory of sets. Indeed, in an 
address to the International Mathematical Congress of 1908, Poincare 
referred to point-set theory as a "disease" from which future generations 
would recover. 

Poincare shared with David Hilbert (1862-1943) the distinction of being 
the leading mathematician of his time. As we shall see, Poincare's geometric 
1 The papers were Analysis Situs, Complement a VAnalysis Situs, Deuxieme Complement, 
and Cinquieme Complement. The other papers in this sequence, the third and fourth com­
plements, deal with algebraic geometry. 
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1.2 Examples 

insight was nothing short of phenomenal. He made significant contributions 
in differential equations (his original specialty), complex variables, algebra, 
algebraic geometry, celestial mechanics, mathematical physics, astronomy, 
and topology. He wrote thirty books and over five hundred papers on new 
mathematics. The volume of Poincare's mathematical works is surpassed 
only by that of Leonard Euler's. In addition, Poincare was a leading writer 
on popular science and philosophy of mathematics. 

In the remaining sections of this chapter we shall examine some of the 
types of problems that led to the introduction of algebraic topology and 
define polyhedra, the class of spaces to which homology groups will be 
applied in Chapter 2. 

1.2 Examples 

The following are offered as examples of the types of problems that led to 
the development of algebraic topology by Poincare. They are hard problems, 
but the reader who has not studied them before has no cause for alarm. We 
will use them only to illustrate the mathematical climate of the 1890's and to 
motivate Poincare's fundamental ideas. 

1.2.1 The Jordan Curve Theorem and Related Problems 

The French mathematician Camille Jordan (1858-1922) was first to point out 
that the following "intuitively obvious" fact required proof, and the 
resulting theorem has been named for him. 

Jordan Curve Theorem. A simple closed curve C {i.e., a homeomorphic image 
of a circle) in the Euclidean plane separates the plane into two open connected 
sets with C as their common boundary. Exactly one of these open connected 
sets {the "inner region") is bounded. 

Jordan proposed this problem in 1892, but it was not solved by him. That 
distinction belongs to Oswald Veblen (1880-1960), one of the guiding forces 
in the development of algebraic topology, who published the first correct 
solution in 1905 [55]. 

Lest the reader be misguided by his intuition, we present the following 
related conjecture which was also of interest at the turn of the century. 

Conjecture. Suppose D is a subset of the Euclidean plane U2 and is the boundary 
of each component of its complement U2\D. If U2\D has a bounded com­
ponent, then D is a simple closed curve. 

This conjecture was proved false by L. E. J. Brouwer (1881-1966) at about 
the same time that Veblen gave the first correct proof of the Jordan Curve 
Theorem. The following counterexample is due to the Japanese geometer 
Yoneyama (1917) and is known as the Lakes of Wada. 
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1 Geometric Complexes and Polyhedra 

^cean 

Figure 1.1 

Consider the double annulus in Figure 1.1 as an island with two lakes 
having water of distinct colors surrounded by the ocean. By constructing 
canals from the ocean and the lakes into the island, we shall define three 
connected open sets. First, canals are constructed bringing water from the 
sea and from each lake to within distance d = 1 of each dry point of the 
island. This process is repeated for d = \, J , . . . , (£) n , . . . , with no intersec­
tion of canals. The two lakes with their canal systems and the ocean with its 
canal form three regions in the plane with the remaining "dry land" D as 
common boundary. Since D separates the plane into three connected open 
sets instead of two, the Jordan Curve Theorem shows that D is not a simple 
closed curve. 

1.2.2 Integration on Surfaces and Multiply-connected Domains 

Consider the annulus in Figure 1.2 enclosed between the two circles H and K. 

Figure 1.2 

We are interested in evaluating curve integrals 

\ pdx + qdy 

where p = p(x, y) and q = q(x, y) are continuous functions of two variables 
whose partial derivatives are continuous and satisfy the relation 

dp _ dq 
dy dx 
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1.2 Examples 

Since mrve Cx can be continuously deformed to a point in the annulus, then 

p dx + q dy = 0. 

Thus Cx is considered to be negligible as far as curve integrals are concerned, 
and we say that Cx is "equivalent" to a constant path. 

Figure 1.3 

Green's Theorem insures that the integrals over curves C2 and C3 of 
Figure 1.3 are equal, so we can consider C2 and C3 to be "equivalent." 

How can we give a more precise meaning to this idea of equivalence of 
paths ? There are several possible ways, and two of them form the basic ideas 
of algebraic topology. First, we might consider C2 and C3 equivalent because 
each can be transformed continuously into the other within the annulus. 
This is the basic idea of homotopy theory, and we would say that C2 and C3 

are homotopic paths. Curve C1 is homotopic to a trivial (or constant) path 
since it can be shrunk to a point. Note that C2 and C1 are not homotopic 
paths since C2 cannot be pulled across the "hole" that it encloses. For the 
same reason, Ct is not homotopic to C3. 

Another approach is to say that C2 and C3 are equivalent because they 
form the boundary of a region enclosed in the annulus. This second idea is the 
basis of homology theory, and C2 and C3 would be called homologous paths. 
Curve Ci is homologous to zero since it is the entire boundary of a region 
enclosed in the annulus. Note that Cx is not homologous to either C2 or C3. 

The ideas of homology and homotopy were introduced by Poincare in his 
original paper Analysis Situs [49] in 1895. We shall consider both topics in 
some detail as the course progresses. 

1.2.3 Classification of Surfaces and Polyhedra 
Consider the problem of explaining the difference between a sphere S2 and a 
torus T as shewn in Figure 1.4. The difference, of course, is apparent: the 
sphere has one hole, and the torus has two. Moreover, the hole in the sphere 
is somehow different from those in the torus. The problem is to explain this 
difference in a mathematically rigorous way which can be applied to more 
complicated and less intuitive examples. 
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Sphere S2 Torus T 

Figure 1.4 

Consider the idea of homotopy. Any simple closed curve on the sphere can 
be continuously deformed to a point on the spherical surface. Meridian and 
parallel circles on the torus do not have this property. (These facts, like the 
Jordan Curve Theorem, are "intuitively obvious" but difficult to prove.) 

From the homology viewpoint, every simple closed curve on the sphere is 
the boundary of the portion of the spherical surface that it encloses and also 
the boundary of the complementary region. However, a meridian or parallel 
circle on the torus is not the boundary of two regions of the torus since such 
a circle does not separate the torus. Thus any simple closed curve on the 
sphere is homologous to zero, but meridian and parallel circles on the torus 
are not homologous to zero. 

The following intuitive example will make more precise this still vague 
idea of homology. It is based on the modulo 2 homology theory introduced 
by Heinrich Tietze in 1908. Consider the configuration shown in Figure 1.5 
consisting of triangles (abc}, (bed}, (abd}, and (acd}, edges <tfZ>>, <tfc>, 
(ad\ (bc\ <W>, <«/>, (df\ <&>, <<?/>, and </g>, and vertices <a>, <Z>>, <c>, 
<J>, <e>, </>, and <g>. The interior of the tetrahedron and the interior of 
triangle (defy are not included. This type of space is called a "polyhedron"; 
the definition of this term will be given in the next section. 

Figure 1.5 

A 2-chain is a formal linear combination of triangles with coefficients 
modulo 2. A l-chain is a formal linear combination of edges with coefficients 
modulo 2. The 0-chains are similarly defined for vertices. To simplify the 
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notation, we omit those terms with coefficient 0 and consider only those terms 
in a chain with coefficient 1. Thus we write 

(abc) + (abdy 

to denote the 2-chain 

1 • iabcy + 1 • (ab d} + 0 • (acdy + 0 • <Jbcd\ 

The boundary operator d is defined as follows for chains of length one and 
extended linearly: 

d(abc) = (aby + {ac} + <Z>c>, 

d(ab> = <a> + {b}. 

A p-chain cp (p = 1 or 2) is a boundary means that there is a (p + 1)-
chain cp + 1 with 

We think of this intuitively as indicating that the union of the members of 
cp forms the point-set boundary of the union of the members of cp + 1. For 
example, 

(ab} + {bey + (cdy + {day = d{(abcy + (acdy), 

since terms which occur twice cancel modulo 2. For any 2-chain c2, one easily 
observes that 

ddc2 = 0. 

A p-cycle (p = 1 or 2) is a ^-chain cp with dcp = 0. Since dd is the trivial 
operator, then every boundary is a cycle. Intuitively speaking, a cycle is a 
chain whose terms either close a "hole" or form the boundary of a chain of 
the next higher dimension. We investigate the "holes" in the polyhedron by 
determining the cycles which are not boundaries. 

Except for the 2-chain having all coefficients zero, 

(abcy + (Jbcdy + {acdy + iabdy 

is the only 2-cycle in our example, and it is nonbounding since the interior of 
the tetrahedron is not included. The reader should check to see that 

z = <#> + <fey + idey 

is a nonbounding 1-cycle and that any other 1-cycle is either a boundary or 
the sum of z and a boundary. Thus any 1-cycle is homologous to zero or 
homologous to the fundamental 1-cycle z. This indicates the presence of two 
holes in the polyhedron, one enclosed by the nonbounding 2-cycle and one 
enclosed by the nonbounding 1-cycle z. 

In Chapter 2 we shall make rigorous the notions of homology, chain, 
cycle, and boundary and use them to study the structure of general polyhedra. 
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1 Geometric Complexes and Polyhedra 

1.3 Geometric Complexes and Polyhedra 
We turn now to the problem of defining polyhedra, the subspaces of Euclidean 
«-space Un on which homology theory will be developed. Intuitively, a 
polyhedron is a subset of IRn composed of vertices, line segments, triangles, 
tetrahedra, and so on joined together as in the example of mod 2 homology 
in the preceding section. Naturally we must allow for higher dimensions and 
considerable generality in the definition. 

For each positive integer «, we shall consider ^-dimensional Euclidean 
space 

Un = {x = (xi, x 2 , . . . , xn): each xt is a real number} 

as a vector space over the field U of real numbers and use some basic ideas 
from the theory of vector spaces. The reader who has not studied vector 
spaces should consult Appendix 3 before proceeding. 

Definition. A set A = {a09 al9..., ak} of k + 1 points in Un is geometrically 
independent means that no hyperplane of dimension k — 1 contains all the 
points. 

Thus a set {a0, al9..., ak} is geometrically independent means that all the 
points are distinct, no three of them lie on a line, no four of them lie in a 
plane, and, in general, no p + 1 of them lie in a hyperplane of dimension 
p — 1 or less. 

Example 1.1. The set {a0, al9 a2} in Figure 1.6(a) is geometrically independent 
since the only hyperplane in U2 containing all the points is the entire plane. 
The set {b09 bl9 b2} in Figure 1.6(b) is not geometrically independent since all 
three points lie on a line, a hyperplane of dimension 1. 

Definition. Let {a09..., ak} be a set of geometrically independent points in Mn. 
The k-dimensional geometric simplex or k-simplex, ak

9 spanned by 

• a 

(b) 

Figure 1.6 

(a) 



1.3 Geometric Complexes and Polyhedra 

{a0,..., aJ is the set of all points x in Rn for which there exist nonnegative 
real numbers A0 , . . . , Afc such that 

k k 
x = 2 A'a" 2 A * = L 

i = 0 i = 0 

The numbers A0 , . . . , Afc are the barycentric coordinates of the point x. 
The points a0,..., ak are the vertices of ak. The set of all points x in ok 

with all barycentric coordinates positive is called the open geometric 
k-simplex spanned by {a0,..., ak}. 

Observe that a 0-simplex is simply a singleton set, a 1-simplex is a closed 
line segment, a 2-simplex is a triangle (interior and boundary), and a 3-
simplex is a tetrahedron (interior and boundary). An open 0-simplex is a 
singleton set, an open 1-simplex is a line segment with end points removed, 
an open 2-simplex is the interior of a triangle, and an open 3-simplex is the 
interior of a tetrahedron. 

Definition. A simplex ak is a face of a simplex an
9 k < n, means that each 

vertex of ak is a vertex of on. The faces of an other than an itself are called 
proper faces. 

If an is the simplex with vertices a0,..., an, we shall write 

an = <a0 . . .an>. 

Then the faces of the 2-simplex <ia0a1a2} are the 2-simplex itself, the 1-
simplexes <a0«i>> <«i«2>> and (a0a2}9 and the O-simplexes <a0>> <#i>> and 
<«2>. 

Definition. Two simplexes am and (jn are properly joined provided that they 
do not intersect or the intersection am n a11 is a face of both dm and an. 

(a) (b) (c) 

Figure 1.7 Examples of proper joining 

(a) (b) (c) 

Figure 1.8 Examples of improper joining 
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1 Geometric Complexes and Polyhedra 

Definition. A geometric complex (or simplicial complex or complex) is a finite 
family K of geometric simplexes which are properly joined and have the 
property that each face of a member of K is also a member of K. The 
dimension of Kis the largest positive integer r such that K has an r-simplex. 
The union of the members of K with the Euclidean subspace topology is 
denoted by |AT| and is called the geometric carrier of K or the polyhedron 
associated with K. 

We shall be concerned, for the purposes of homology, with geometric 
complexes and polyhedra composed of a finite number of simplexes as 
defined above. Greater generality, at the expense of greater complexity, can 
be obtained by allowing an infinite number of simplexes. The reader interested 
in this generalization should consult the text by Hocking and Young [9]. 

There are several reasons for restricting our initial considerations to 
polyhedra. They are easily visualized and are sufficiently general to allow 
meaningful applications. Poincare realized this and gave a definition of 
complex in his second paper on algebraic topology, Complement a VAnalysis 
Situs [50], in 1899. Furthermore, polyhedra are more general than they 
appear at first glance. A theorem of P. S. Alexandroff (1928) insures that 
every compact metric space can be indefinitely approximated by polyhedra. 
This allows us to carry over some topological theorems about polyhedra to 
compacta by suitable limiting processes. After a thorough introduction to 
homology theory of polyhedra, we shall look at one of its generalizations, 
singular homology theory, which applies to all topological spaces. 

Definition. Let J b e a topological space. If there is a geometric complex K 
whose geometric carrier | ^ | is homeomorphic to X, then JHs said to be a 
triangulable space, and the complex K is called a triangulation of X. 

Definition. The closure of a ^-simplex ak
9 Cl(<rfc), is the complex consisting of 

ok and all its faces. 

Definition. If K is a complex and r a positive integer, the r-skeleton of K is the 
complex consisting of all simplexes of K of dimension less than or equal 
to r. 

Example 1.2. (a) Consider a 3-simplex a3 = iaQa1a2a^). The 2-skeleton of 
the closure of a3 is the complex K whose simplexes are the proper faces of a3. 
The geometric carrier of K is the boundary of a tetrahedron and is therefore 
homeomorphic to the 2-sphere 

S2 = / f o , x29 x3) e U3 : J x? = l \ 

Thus S2 is triangulable with K as one triangulation. 
(b) The w-sphere 

( n+l ~\ 

Sn = < (Xl9 X29 • • •> Xn + l) e ^ : 2i, Xi = f 
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1.3 Geometric Complexes and Polyhedra 

is a triangulable space for n > 0. The w-skeleton of the closure of an (n + 1)-
simplex an + 1 is one triangulation of Sn. The reader should verify this by 
solving Exercise 12. 

(c) The Mobius strip is obtained by identifying two opposite ends of a 
rectangle after twisting it through 180 degrees. This can easily be done with 
a strip of paper. Figure 1.9 shows a triangulation of the Mobius strip. It is 
understood that the two vertices labeled a0 are identified, the two vertices 
labeled a3 are identified, corresponding points of the two segments {a0a3} 
are identified, and the resulting quotient space, the geometric carrier of the 
triangulation, is considered as a subspace of R3. 

Figure 1.9 

(d) A torus is obtained from a cylinder by identifying corresponding points 
of the circular ends with no twisting, as shown in Figure 1.10. 

d 
Figure 1.10 

Verify the fact that the following diagram, with proper identifications, 
gives a triangulation of the torus. 
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1 Geometric Complexes and Polyhedra 

1.4 Orientation of Geometric Complexes 
Definition. An oriented n-simplex, n > 1, is obtained from an /z-simplex 

a11 = <tf0 . . .an} by choosing an ordering for its vertices. The equivalence 
class of even permutations of the chosen ordering determines the positively 
oriented simplex + an while the equivalence class of odd permutations 
determines the negatively oriented simplex — on. An oriented geometric 
complex is obtained from a geometric complex by assigning an orientation 
to each of its simplexes. 

If vertices a0,..., ap of a complex Kare the vertices of a ̂ -simplex op, then 
the symbol + <a0 . . . ap} denotes the class of even permutations of the indicated 
order a0,...,ap and — (a0.. .ap} denotes the class of odd permutations. 
If we wanted the class of even permutations of this order to determine the 
positively oriented simplex, then we would write 

+ ap = <a0...tfp> 

or 

+ Gp = +<a 0 . . .ap}. 

Since ordering vertices requires more than one vertex, we need not worry 
about orienting O-simplexes. It will be convenient, however, to consider a 
0-simplex <«0> as positively oriented. 

Example 1.3. (a) In the 1-simplex a1 = <«0^i>? let us agree that the ordering 
is given by a0 < a±. Then 

H-CT1 = <tf0tfi>, - a 1 = <«!«0>-

If we imagine that the segment <aiay) is directed from at toward ah then 
<tf0tfi> and <«i«o> have opposite directions. 

(b) In the 2-simplex a2 = {a0a1a2), assign the order a0 < a± < a2. Then 
<tfotfi#2>> <tfi#2tfoX and <«2^o^i> all denote +<r2, while ia0a2a1y, <^2^i^o>? 

and <«i«o^2> all denote — a2. (See Figure 1.12.) Then 

+ <72 = +<« 0^1«2> ? -O2 = - < « 0 ^ 1 « 2 > = +<«0«2«1>-

(Here +{a0a2a1} denotes the class of even permutations of a0, a2, al9 and 
— <«0^i^2> denotes the class of odd permutations of a0, al9 and a2.) 

/3\ /r>\ 
dQ^- - * f l i a0«^- \a{ 

+ o2 -o2 

Figure 1.12 
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1.4 Orientation of Geometric Complexes 

One method of orienting a complex is to choose an ordering for all its 
vertices and to use this ordering to induce an ordering on the vertices of each 
simplex. This is not the only method, however. An orientation may be 
assigned to each simplex individually without regard to the manner in which 
the simplexes are joined. From this point on, we assume that each complex 
under consideration is assigned some orientation. 

Here is a word of comfort for those who suspect that different orientations 
will introduce great complexity into our considerations: they won't. We are 
developing a method of describing the topological structure of a polyhedron 
\K\ by determining the "holes" and "twisting" which occur in the associated 
complex K. In the final analysis, the determining factor is the topological 
structure of \K\ and not the particular triangulation nor the particular 
orientation. A triangulation is a convenient method of visualizing the 
polyhedron and converting it to a standard form. An orientation is simply a 
convenient vehicle for cataloguing the arrangement of the simplexes. Neither 
the particular triangulation nor the particular orientation makes any differ­
ence in the final outcome. 

Definition. Let K be an oriented geometric complex with simplexes op + 1 and 
GP whose dimensions differ by 1. We associate with each such pair 
(CTP + 1, ap) an incidence number [<JP + 1, op] defined as follows: If op is not a 
face of op + 1, then [op + 1, op] = 0. Suppose op is a face of ap + 1. Label the 
vertices a0,...,ap of op so that +op = +<tf0 • • •#?>• Let v denote the 
vertex of op + 1 which is not in ap. Then +op + 1 = ±{va0.. .ap}. If 
+ ap + 1= +<va0...ap}, then [o» + 1,o*]=l. If +op + 1 = -<va0...ap}, 
then [ap + \ ap] = - 1 . 

Example 1.4. (a) If +01 = <0o0i>, then [a1, <«0>] = - 1 and [a1, <«!>] = 1. 
(b) If +CT2 = + <a0a1a2), +01 = <tf0tfi> and +T1 = <a0a2}, then [a2, a1] 

= 1 and [a2, r1] = - 1 . 
Note that in Figure 1.12 the arrow indicating the orientation of a2 agrees 

with the orientation of a1 but disagrees with the orientation of T1. 

Theorem 1.1. Let K be an oriented complex, op an orientedp-simplex of K and 
Gp~2a(p - ly/ace ofap. Then 

2 [ < *p~1]["p~1 , <rp"2] = 0, op~1 eK. 

PROOF. Label the vertices v0,..., vp_2 of op~2 so that +ap~2 = (v0 .. .vp_2}. 
Then op has two additional vertices a and b, and we may assume that + ap = 
(abv0.. .£>p_2>. Nonzero terms occur in the sum for only two values of 
(TP_1, namely 

We must now treat four cases determined by the orientations of CT?_1 and 
G2 
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1 Geometric Complexes and Polyhedra 

Case I. Suppose that 

+ CT?-1 = +<CIV0 . . .!>p_2>, +CT2~1 = +(bv0 . . .!>p_2>. 

Then 
K a f - 1 ] ^ - 1 , [of-1-,o'-a]= +1, 
[<°p

2-
1]= + 1 , b I " 1 , ^ - 2 ] = + 1 , 

so that the sum of the indicated products is 0. 
Case II. Suppose that 

+ CTJ-i = +<tfi;0 . . .t;p_2>, H-al"1 = - < t o 0 . . .0p-2>. 

Then 

[a p , a f " 1 ]= " I , [ a f" 1 , o p " 2 ]= + 1 , 
K , a § - 1 ] = - 1 , [ o 5 - l , ^ - a ] = - 1 , 

so that the desired conclusion holds in this case also. 
The remaining cases are left as an exercise. • 

Definition. In the oriented complex K, let {affil1 and {of+ 1}St 1 denote the 
j!?-simplexes and (p + l)-simplexes of K, where ap and ap + 1 denote the 
numbers of simplexes of dimensions p and p + 1 respectively. The matrix 

where rj^fjj) = [af+ 1, of], is called the pth incidence matrix of K. 

Incidence matrices were used to describe the arrangement of simplexes in 
a complex during the early days of algebraic or "combinatorial" topology. 
They are less in vogue today because group theory has given a much more 
efficient method of describing the same property. The group theoretic 
formulation seems to have been suggested by the famous algebraist Emmy 
Noether (1882-1935) about 1925. As we shall see in Chapter 2, these groups 
follow quite naturally from Poincare's original description of homology 
theory. 

EXERCISES 

1. Fill in the details of the mod 2 homology example given in the text. 

2. Prove that a set of k + 1 points in lRn is geometrically independent if and 
only if no p + 1 of the points lie in a hyperplane of dimension less than or 
equal to^? — 1. 

3. Prove that a set A = {a0, au ..., ak} of points in lRn is geometrically indepen­
dent if and only if the set of vectors {ax — a0,..., ak — a0} is linearly 
independent. 

4. Show that the barycentric coordinates of each point in a simplex are unique. 
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1 Exercises 

5. A subset B of lRn is convex provided that B contains every line segment having 
two of its members as end points. 
(a) If a and b are points in Rn, show that the line segment L joining a and b 

consists of all points x of the form 

x = ta + (1 - t)b 

where / is a real number with 0 < f < 1. 
(b) Show that every simplex is a convex set. 
(c) Prove that a simplex a is the smallest convex set which contains all 

vertices of a. 

6. How many faces does an ^-simplex have? Prove that your answer is correct. 

7. Verify that the r-skeleton of a geometric complex is a geometric complex. 

8. The Klein Bottle is obtained from a cylinder by identifying the two circular 
ends with the orientation of the two circles reversed. (It cannot be constructed 
in 3-dimensional space without self-intersection.) Modify the triangulation of 
the torus given in the text to produce a triangulation of the Klein Bottle. 

9. Let K denote the closure of a 3-simplex CT3 = <a0tf itf2tf 3> with vertices ordered 
by 

a0 < #i < a2 < a3. 

Use this given order to induce an orientation on each simplex of K, and 
determine all incidence numbers associated with K. 

10. Complete the proof of Theorem 1. 

11. In the triangulation M of the Mobius strip in Figure 1.9, let us call a 1-simplex 
interior if it is a face of two 2-simplexes. For each interior simplex ah let 5̂  
and Of denote the two 2-simplexes of which at is a face. Show that it is not 
possible to orient M so that 

[au Oi] = - [cFi? ot] 

for each interior simplex at. (This result is sometimes expressed by saying 
that M is nonorientable or that it has no coherent orientation.) 

12. Let an + 1 = < a 0 . . . a n + i> be the (n + l)-simplex in Rn + 1 with vertices as 
follows: a0 is the origin and, for / > 1, at is the point with /th coordinate 1 
and all other coordinates 0. Let K denote the ^-skeleton of the closure of 
an + 1. Show that Sn is triangulable by exhibiting a homeomorphism between 
Sn and | ^ | . (Hint: If on+1 is considered as a subspace of lRn + 1, then |^T| is its 
point-set boundary.) 
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2 -—-*-

Having defined polyhedron, complex, and orientation for complexes in the 
preceding chapter, we are now ready for the precise definition of the homology 
groups. Intuitively speaking, the homology groups of a complex describe the 
arrangement of the simplexes in the complex thereby telling us about the 
"holes" in the associated polyhedron. 

Whether expressly stated or not, we assume that each complex under 
consideration has been assigned an orientation. 

2.1 Chains, Cycles, Boundaries, and Homology Groups 
Definition. Let K be an oriented simplicial complex. If p is a positive integer, 

a p-dimensional chain, or p-chain, is a function cp from the family of 
oriented ^-simplexes of K to the integers such that, for each ^-simplex <JP, 
cp( — op) = —cp( + op). A ^-dimensional chain or 0-chain is a function from 
the O-simplexes of K to the integers. With the operation of pointwise 
addition induced by the integers, the family of j?-chains forms a group 
called the p-dimensional chain group of K. This group is denoted by CP(K). 

An elementary p-chain is a /?-chain cp for which there is a j?-simplex ap 

such that cp{rp) = 0 for each ^-simplex rp distinct from op. Such an 
elementary /?-chain is denoted by g-op where g = cp{ + up). With this 
notation, an arbitrary /?-chain dp can be expressed as a formal finite sum 

of elementary j?-chains where the index / ranges over all /?-simplexes of K. 

The following facts should be observed from the definition of /?-chains: 

(a) If cp = 2 fi' Gf a n d dp = J^gi- of are two /?-chains on K, then 

cp + dp = ^ ( / i + & W . 
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2.1 Chains, Cycles, Boundaries, and Homology Groups 

(b) The additive inverse of the chain cp in the group CP(K) is the chain 
-cP = I -frof. 

(c) The chain group CP(K) is isomorphic to the direct sum of the group Z 
of integers over the family of /?-simplexes of K. That is, if K has ap 

/7-simplexes, then CP(K) is isomorphic to the direct sum of ap copies of Z. 
One isomorphism is given by the correspondence 

ccp 

ygi'°t++(gi,g2,>>.,g«P)> 

Algebraic systems other than the integers could be used as the coefficient 
set for the /?-chains. Any commutative group, commutative ring, or field 
could be used thus making CP(K) a commutative group, a module, or a 
vector space. With two exceptions, we shall use only the integers as the 
coefficient set for chains. Incidentally, Poincare's original definition was given 
in terms of integers. 

Definition. If g-ap is an elementary^-chain with/? > 1, the boundary of g a p , 
denoted by d(g-ap), is defined by 

Kg-°p) = 2 [< "T'te-or1, ^ r 1 ^ . 

The boundary operator d is extended by linearity to a homomorphism 

In other words, if cp = 2 gt •a? is an arbitrary /?-chain, then we define 

The boundary of a 0-chain is defined to be zero. 

Strictly speaking, we should say that there is a boundary homomorphism 
dv:CJ<K)-+Cv-1{K). 

This extra subscript is cumbersome, however, and we shall usually omit it 
since the dimension involved is indicated by the chain group CP(K). 

Theorem 2.1. If K is an oriented complex and p > 2, then the composition 
3d: CP(K) -> CP-2(K) in the diagram 

CP(K)UCP^(K)^CP^2(K) 

is the trivial homomorphism. 

PROOF. We must prove that dd(cp) = 0 for each /?-chain. To do this, it is 
sufficient to show that dd(g-ap) = 0 for each elementary ^-chain g-<jp. 

Observe that 

dd(g-a
p) = d(2 i^of^g-of1) = 2 0([°p>°r1]*-°r1) 

= 2 2 K.«r-1iW"1.«?-1]«-»?-'-
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2 Simplicial Homology Groups 

Reversing the order of summation and collecting coefficients of each simplex 
af-2 gives 

Since Theorem 1.1 insures that ^of-^K k*73, CTf _1] la? _1> CTy ~2] is 0 f° r e a c n 

af"2, it follows that dd(g-ap) = 0. El 

Definition. Let K be an oriented complex. If p is a positive integer, a p-
dimensional cycle on AT, or p-cycle, is a j?-chain zp such that #(zp) = 0. The 
family of ^-cycles is thus the kernel of the homomorphism d: Cp(K)-> 
CP-±(K) and is a subgroup of CP(K). This subgroup, denoted by ZP(K), 
is called the p-dimensional cycle group of K. Since we have defined the 
boundary of every 0-chain to be 0, we now define 0-cycle to be synonymous 
with 0-chain. Thus the group Z0(K) of 0-cycles is the group C0(K) of 
0-chains. 

If p > 0, a/?-chain bp is a p-dimensional boundary on K, or p-boundary, 
if there is a (p + l)-chain cp + 1 such that d(cp + 1) = bp. The family of 
^-boundaries is the homomorphic image d(Cp + 1(K)) and is a subgroup of 
CP(K). This subgroup is called the p-dimensional boundary group of K and 
is denoted by BP(K). 

If n is the dimension of K, then there are no ^-chains on Kforp > n. 
In this case we say that CP(K) is the trivial group {0}. In particular, there 
are no (n + l)-chains on K so that Cn + 1(K) = {0} and therefore 
Bn(K) = {0}. 

The proof of the following theorem is left as an exercise: 

Theorem 2.2. If K is an oriented complex, then BP{K) c: ZP(K) for each 
integer p such that 0 < p < n, where n is the dimension of K. 

We think intuitively of a /?-cycle as a linear combination of /?-simplexes 
which makes a complete circuit. The ^-cycles which enclose "holes" are the 
interesting cycles, and they are the ones which are not boundaries of (p + 1)-
chains. We restrict our attention to nonbounding cycles and weed out the 
bounding ones. A/?-cycle which is the boundary of a (p + l)-chain was said 
by Poincare to be homologous to zero. The separation of cycles into these 
categories is accomplished by the following definition. 

Definition. Two ^-cycles wp and zp on a complex K are homologous, written 
wp ~ zp, provided that there is a (p + l)-chain cp + 1 such that 

d(cp + 1) = wp - zp. 

If a/?-cycle tp is the boundary of a (p + l)-chain, we say that tp is homolo­
gous to zero and write tp ~ 0. 
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2.2 Examples of Homology Groups 

This relation of homology for /?-cycles is an equivalence relation and 
partitions ZP(K) into homology classes 

[zp] = {wp e ZP(K): wp ~ zp}. 

The homology class [zp] is actually the coset 

zp + BP(K) = {zp + d(cp + 1): d(cp + 1) e 2?p(tf)}. 

Hence the homology classes are actually the members of the quotient group 
ZP(K)/BP(K). We can use the quotient group structure to add homology 
classes. 

Definition. If K is an oriented complex and p a non-negative integer, the 
p-dimensional homology group of K is the quotient group 

HP(K) = Zp(K)jBp(K). 

2.2 Examples of Homology Groups 
The following examples are intended to clarify the preceding definitions: 

Example 2.1. Let K be the closure of a 2-simplex iaQa1a2y with orientation 
induced by the ordering a0 < a± < a2. Thus K has O-simplexes <#0>, <#i>> 
and <#2>, positively oriented 1-simplexes <tf0tfi>, <0i02>> and (a0a2} and 
positively oriented 2-simplex (jaQa1a2

s). 
A 0-chain on K is a sum of the form 

Co = go-<a0} + gi-<«i> + g2-<02> 

where g0, gl9 and g2 are integers. Hence C0(X) = Z0(K) is isomorphic to the 
direct sum Z © Z © Z of three copies of the group of integers. A 1-chain on 
K is a sum of the form 

Ci = V<tfo#i> + Ai-<«i«2> + h2-(a0a2y 

where A0, A1? and A2 are integers, so Ci(X) is isomorphic to Z © Z © Z. Also, 

d(c±) = (-h0 - h2)'(a0} + (ho - /*i)-<tfi> + (/*i + /*2Ktf2>. (1) 

Hence cx is a 1-cycle if and only if h0, hl9 and h2 satisfy the equations 

— h0 — h2 = 0, h0 — h± = 0, h± + h2 = 0. 

This system gives h0 = h± = —h2 so that the 1-cycles are chains of the form 

A-<tf0tfi> + h-(a±a2) - h-(a0a2) (2) 

where h is any integer. Thus Z±(K) is isomorphic to the group Z of integers. 
The only 2-simplex of K is (aoa^a^, so the only 2-chains are the elementary 

ones h • <tf0tf 1^2) where A is an integer. Thus C2(K) ^ Z. Since 

^(A-<fl0«i«2» = /z-<tfotfi> + /*-<0i02> - h-(a0a2}, (3) 

then 0(A- <a0«i«2» = 0 only when A = 0. Thus Z2(X) = {0}, so #2(iQ = {0}. 
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2 Simplicial Homology Groups 

From Equations (2) and (3), we observe that 1-cycles and 1-boundaries 
have precisely the same form so that ZX(K) = BX{K\ and hence H^K) = {0}. 

From Equation (1) we observe that a 0-cycle 

go • <a0> + g i • <01> + g 2 • <a2> (4) 

is a 0-boundary if and only if there are integers h0, hl9 and h2 such that 

-h0 - h2 = g0, h0 - hi = gl9 h± + h2 = g2. 

Then g0 + gx = -g2 so that, for 0-boundaries, two coefficients are arbitrary, 
and the third is determined by the first two. Thus B0(K) ~ Z © Z. Since 
Z0(K) ^ Z © Z © Z, we now suspect that H0(K) ~ Z. 

To complete the proof, observe that for any 0-cycle expressed in Equation 
(4), 

go * <0O> + g l • <01> + g 2 • <02> 

= ^(gl-<fl0«!> + g2-<^0^2>) + (go + g l + g2)-<«0>. 

This means that any 0-cycle is homologous to a 0-cycle of the form t-<jaQ\ 
t an integer. Hence each 0-homology class has a representative t- <a0> so that 
HQ(K) is isomorphic to Z. 

Summarizing the above calculations, we have H0(K) ^ Z, #i(X) = {0}, 
and H2(K) = {0}. The trivial groups #i(X) and H2(K) indicate the absence 
of holes in the polyhedron \K\. As we shall see later, the fact that H0(K) is 
isomorphic to Z indicates that \K\ has one component. 

Example 2.2. Let M denote the triangulation of the Mobius strip shown in 
Figure 2.1 with orientation induced by the ordering a0 < ax < a2 < a3 < 
a± < a5. 

a3 a4 a5 a0 

a0 fli a2 a3 

Figure 2.1 

There are no 3-simplexes in M, so B2(M) = {0}. Suppose that 
w = go-<«o^3«4> + gi-<«o«i«4> + g2'{a1a^aby + g3-<^i^2^5> 

+ g^-<a0a2a5y + g5-(a0a2a3} 

is a 2-cycle. When d(w) is computed, the coefficient that appears with <a3a4> 
is g0. In order to have d(w) = 0, it must be true that g0 = 0. Similar reasoning 
applied to the other horizontal 1-simplexes shows that each coefficient in w 
must be 0. Thus Z2(M) = {0}, so H2(M) = {0}. Using a bit of intuition, we 
suspect that the 1-chains 

z = l-<a0«i> + l-<«i«2> + l-<«2«3> - l'<a0a3>, 
z' = 1 • (a0a3y + 1 • <tf3a4> + 1 • <a4a5> - 1 • <a0a5> 
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2.2 Examples of Homology Groups 

are 1-cycles. (Both of these chains make complete circuits beginning at a0.) 
Direct computation verifies that z and z' are cycles. However, z — z' traverses 
the boundary of M, so z — zf should be the boundary of some 2-chain. A 
straightforward computation shows that 

— \'{axa^aby — \-ia0a^a^)) 
so that z ~ z'. 

A similar calculation verifies the fact that any 1-cycle is homologous to a 
multiple of z. Hence H±(M) = {[gz]: g is an integer}, so H±(M) ^ Z. This 
result indicates that the polyhedron \M\ has one hole bounded by 1-simplexes. 

To determine H0(M), observe that any twoeleme ntary 0-chains 1 • <^> 
and 1 -<tfy> (7,y range from 0 to 5) are homologous. For example, 

l - < 0 5 > ~ 1 •<«(>> = ^(l-<fl0«4> + l -< f l 4 «5» . 

Hence H0(M) = {[g'(a0}]: g is an integer}, so H0(M) ^ Z. As in the pre­
ceding example, this indicates that \M\ has only one component. 

Example 2.3. The projective plane is obtained from a finite disk by identifying 
each pair of diametrically opposite points. A triangulation P of the projective 
plane, with orientations indicated by the arrows, is shown in Figure 2.2. 

There are no 3-simplexes, so B2(P) = {0}. To compute Z2(P), observe that 
each 1-simplex a1 of P is a face of exactly two 2-simplexes a\ and CT|. Observe 
that when a1 is <#3#4>, <tf4#5>, or <tf5#3>, both incidence numbers [af, a1] 
and [a!> v1] are + 1 . For all other choices of a1, the two incidence numbers 
are negatives of each other. Let us call <#3#4>, <tf4#5>, and <#5a3> 1-simplexes 
of type I and the others 1-simplexes of type II. 
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Suppose that w is a 2-cycle. In order for the coefficients of the type II 
1-simplexes in d(w) to be 0, all the coefficients in w must have a common 
value, say g. But then 

d(w) = 2g-(a3a±) + 2g-(a±a5) + 2g-(a5a3) (5) 

since both incidence numbers for the type I 1-simplexes are + 1 . Hence w is 
a 2-cycle only when g = 0, so Z2(P) = {0} and H2(P) = {0}. 

Observe that any 1-cycle is homologous to a multiple of 

Z = l -<« 3«4> + l'<«4«5> + l'<«5«3>. 

Furthermore, Equation (5) shows that any even multiple of z is a boundary. 
Thus HX(P) ^ Z2, the group of integers modulo 2. This result indicates the 
twisting that occurs around the "hole" in the polyhedron \P\. (Recall, 
however, that the homology groups overlooked the twisted nature of the 
Mobius strip.) 

In the computation of homology groups, it is sometimes convenient to 
express an elementary chain in terms of a negatively oriented simplex. In 
order to be able to do this later, let us agree that the symbol g( — <JP) may be 
used to denote the elementary /?-chain — gop. In other words, if <#0 •. tfP> 
represents a positively or negatively oriented /7-simplex, then g-(a0 .. .ap} 
denotes the elementary /?-chain which assigns value g to the orientation 
determined by the class of even permutations of the given ordering and 
assigns value — g to the orientation determined by the class of odd permuta­
tions. Return to Example 2.3 for an illustration of this notation. In that 
example, (a5a3} denotes a positively oriented 1-simplex. The symbols 
g'(a5a3} and —g-(a3a5} now denote the same elementary 1-chain. An 
elementary 2-chain h • <Ka0a1a2y may be written in any of six ways: 

= —h'(aQa2a1
s) = —h-ia^a^). 

2.3 The Structure of Homology Groups 
What possibilities are there for the homology groups HP(K) of a complex K 
if we take our coefficient group to be the integers? The answer is provided by 
group theoretic considerations. 

Suppose that K has ap /?-simplexes. Then CP(K) is isomorphic to 
2 ©• • • © Z (ap summands). In other words, CP(K) is a free abelian group on 
ap generators. Since every subgroup of a free abelian group is a free abelian 
group, then ZP(K) and BP(K) are both free abelian groups. The quotient group 

HP(K) = ZP(K)/BP(K) 

may not be free, but its possibilities are given by the decomposition theorem 
for finitely generated abelian groups (Appendix 3): 

HP(K) = G©7\©...©rm 
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where G is a free abelian group and each T{ is a finite cyclic group. The direct 
sum Tx © • • • © Tm is called the torsion subgroup of HP(K). As in the example 
with the projective plane, the torsion subgroup describes the "twisting" in 
the polyhedron \K\. Additional examples of twisting will be found in the 
exercises at the end of the chapter. 

The existence of torsion subgroups explains why the integers modulo 2 
are not generally used for the coefficient set in homology theory. The finite 
cyclic groups Tl9..., Tm which compose the torsion subgroup are quotient 
groups of Z. If we used the group Z2 of integers modulo 2 rather than Z, 
there would be no way to recognize torsion since Z2 admits no proper sub­
groups. Note also that orientation is meaningless in the modulo 2 case. For 
problems in which orientation and the torsion subgroup are not important, 
the integers modulo 2 can be an effective choice for the coefficient group. In 
this regard, see the chapter on modulo 2 homology theory, including the 
Jordan Curve Theorem, in [15]. 

The next theorem shows that the homology groups of a complex are 
independent of the choice of orientation for its simplexes. 

Theorem 2.3. Let K be a geometric complex with two orientations, and let 
Kl9 K2 denote the resulting oriented geometric complexes. Then the homology 
groups HP{K^) and HP(K2) are isomorphic for each dimension p. 

PROOF. For a /?-simplex op of K, let iap denote the positive orientation of op 

in the complex Ki9 i = 1,2. Then there is a function a denned on the simplexes 
of K such that a(op) is ± 1 and 

lor* = a(op)2op. 

Define a sequence <p = {<pp} of homomorphisms 

<Pv\Cp(K1)-+Cp(KJ 

by 

where 2£r1{Tf represents a/?-chain on Kx. 

For an elementary /?-chain g^cP on Kx with p > 1, 

Vp-iKg'1**) = <PP-I( 2 gi1**,1**-1]-1**-1) 

= 2 a(aP ~ M 1 ^ , l f f P " ' ] •2ffP"1 

= 2 <°v~ 1)g<*(°p~"M^M2^, 2°p~1]-2op-1 

oP-ieK 

= <°p)g 2 t2cjP> 2°v"x] •2(jP ~1 = d(a(aP)g-2(jP) 
oP-i-eK 

= dVpig-1*")-
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2 Simplicial Homology Groups 

Thus the relation q>v-\d — d(pp holds in the diagram 

CP(K±) —p—> CP(K2) 

CP-i(Ki) 1> Cp-iiKz). 

(As we shall see later, this is a very important relation.) If zp e ZP{K^)9 then 

d<Pp(zP) = <pp-id(zp) = 9>p_i(0) = 0, 

so (pp(zp) eZp(K2). Hence cpp{Zv{K1)) is a subset of ZP{K2). 
If d(cp + 1)eBp(K1l then 

<pPd(cp + 1 ) = d<pp + 1(cp + 1), 

so 9P^(cp + 1) is in BP(K2). Thus <pp maps BP(K^) into BP(K2) and induces a 
homomorphism 9J from the quotient group Hp{Kt) = Zp{K^)jBv{K^) to 
HP(K2) = ZP(K2)IBP(K2) denned by 

9?(feJ) = fe>p(*p)l 

for each homology class [zp] in HP{K^). 
Reversing the roles of Kx and K2 yields a sequence 0 = {̂ p} of homo-

morphisms : 

such that cpp and ^p are inverses of each other for each p. This implies that 
I/J* is the inverse of 9?* and hence that 

<P*:HP(K1)-+HP(KJ 

is an isomorphism for each dimension p. • 

As remarked earlier, the structure of the zero dimensional homology group 
H0(K) indicates whether or not the polyhedron \K\ is connected. Actually the 
situation is quite simple; there is no torsion in dimension zero, and the rank 
of the free abelian group H0(K) is the number of components of the poly­
hedron \K\. Proving this is our next goal. 

Definition. Let K be a complex. Two simplexes sx and s2 are connected if 
either of the following conditions is satisfied: 

(a) s1ns2¥
: 0; 

(b) there is a sequence ol9..., <JP of 1-simplexes of K such that sx n ax is a 
vertex of sl9 s2 n ap is a vertex of s29 and, for 1 < i < /?, a{ n ai + 1 is a 
common vertex of a* and o-f+ 1. 

This concept of connectedness is an equivalence relation whose equiva­
lence classes are called the combinatorial components of K. The complex K 
is said to be connected if it has only one combinatorial component. 
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It is left as an exercise for the reader to show that the components of \K\ 
and the geometric carriers of the combinatorial components of K are identical. 

Theorem 2.4. Let K be a complex with r combinatorial components. Then 
H0(K) is isomorphic to the direct sum ofr copies of the group Z of integers. 

PROOF. Let K' be a combinatorial component of K and (a'} a 0-simplex in K'. 
Given any 0-simplex <6> in K\ there is a sequence of 1-simplexes 

(ba0}9 <tf0tfx>, <0itf2>, • • •, <aPa'> 

from b to a' such that each two successive 1-simplexes have a common 
vertex. If g is an integer, we define a 1-chain cx on the sequence of 1-simplexes 
by assigning either g or — g to each simplex (depending on orientation) so 
that d(Ci) is #•<&> — £•<#'> or g-(b} + #•<#'>. Hence any elementary 
0-chain g-(b} is homologous to one of the O-chains g-(a'} or — g-(a'}. It 
follows that any 0-chain on K' is homologous to an elementary 0-chain 
h • <#'> where h is some integer. 

Applying this result to each combinatorial component Kl9..., Kr of K9 

there is a vertex a{ ofKt such that any 0-cycle on Kt is homologous to a 0-chain 
of the form h{ • <#*> where ht is an integer. Then, given any 0-cycle c0 on K9 

there are integers hl9.. .,hr such that 

r 

i = 1 

Suppose that two such O-chains 2 h{ • <a*> and 2 gi' <#*> represent the same 
homology class. Then 

2(^-^)<^> = ^ i ) (6) 
for some 1-chain cx. Since a1 and #' belong to different combinatorial com­
ponents when / 7̂  j9 then Equation (6) is impossible unless gt = /i* for each /. 
Hence each homology class [c0] in H0(K) has a unique representative of the 
form 2 hi-(a1}. The function 

is the required isomorphism between H0(K) and the direct sum of r copies 
ofZ. • 

Corollary. If a polyhedron \K\ has r components and triangulation K9 then 
H0(K) is isomorphic to the direct sum ofr copies ofZ. 

2.4 The Euler-Poincare Theorem 
If \K\ is a rectilinear polyhedron homeomorphic to the 2-sphere S2 with V 
vertices, E edges, and F two dimensional faces, then 

V - E + F = 2. 
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This result was discovered in 1752 by Leonhard Euler (1707-1783). Poincare's 
first real application of homology theory was a generalization of Euler's 
formula to general polyhedra. That celebrated result, the Euler-Poincare 
Theorem, is proved in this section. 

Definition. Let Kbe an oriented complex. A family {z j , . . . , zr
p} of/?-cycles is 

linearly independent with respect to homology, or linearly independent 
mod BP(K)9 means that there do not exist integers gl9..., gr not all zero 
such that the chain 2 SA is homologous to 0. The largest integer r for 
which there exist r /?-cycles linearly independent with respect to homology 
is denoted by RP(K) and called the pth Betti number of the complex K. 

In the theorem that follows, we assume that the coefficient group has been 
chosen to be the rational numbers and not the integers. (This is one of two 
instances in which this change is made.) The reader should convince himself 
that linear independence with integral coefficients is equivalent to linear 
independence with rational coefficients and that this change does not alter 
the values of the Betti numbers. 

Theorem 2.5. (The Euler-Poincare Theorem). Let Kbe an oriented geometric 
complex of dimension n, and for p = 0, 1 , . . . , n let ap denote the number of 
p-simplexes of K. Then 

2 (-1)^ = 2 ( - i ) 'W 
p= 0 p = 0 

where RP(K) denotes the pth Betti number of K. 

PROOF. Since K is the only complex under consideration, the notation will be 
simplified by omitting reference to it in the group notations. Note that Cp9 

Zp, and Bp are vector spaces over the field of rational numbers. 
Let {dp} be a maximal set of/^-chains such that no proper linear combina­

tion of the dp is a cycle, and let Dp be the linear subspace of Cp spanned by 
{dp1}. Then Dp n Zp = {0} so that, as a vector space, Cp is the direct sum of 
Zp and Dp. Hence 

ap = dim Cp = dim Dp + dim ZP9 

dim Zp = ap — dim Dp, 1 < p < n, 

where the abbreviation "dim" denotes vector space dimension. 
For/? = 0 , . . . , « — 1, let bp = d(dp + 1). The set {bp} forms a basis for Bp. 

Let {zP}, i = 1 , . . . , RP9 be a maximal set of /?-cycles linearly independent 
mod Bp. These cycles span a subspace Gp of Zp, and 

Zp = Gp@Bp9 0 <p < n - 1. 
Thus 

dim Zp = dim Gp 4- dim Bp = Rp 4- dim Bp 

since Rp = dim Gp. Then 

Rp = dim Zp — dim Bp = ap — dim Dp — dim Bp, I < p < n — I. 
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Observe that Bp is spanned by the boundaries of elementary chains 

2(W + 1) = 2^</>W 
where (rjij(p)) = rj(p) is the pth incidence matrix. Thus dim Bp = rank r)(p). 
Since the number of di + 1 is the same as the number of bp, then 

dim Dp + 1 = dim Bp = rank rj(p)9 0 < p < n — 1. 

Then 

^> = <*P — dim Dp — dim Bp 

= ap — rank ^(/? — 1) — rank rj(p), 1 < p < n — 1. 

Note also that 

i?0 = dim Z0 — dim B0 = a0 — rank ^(0) 
Rn = dimZn = an — dim Z>n = an — rank 77(72 — 1). 

In the alternating sum 2 P = O (~l)pRP, all the terms rank r)(p) cancel, and we 
have 

p = 0 p = 0 

Definition. If K is a complex of dimension n, the number 

X{K) = ^ ( - I ^ P 
p = 0 

is called the .Cw/er characteristic of T̂. 

Chains, cycles, boundaries, the homology relation, and Betti numbers were 
defined by Poincare in his paper Analysis Situs [49] in 1895. As mentioned 
earlier, he did not define the homology groups. The proof of the Euler-
Poincare Theorem given in the text is essentially Poincare's original one. 
Complexes (in slightly different form) and incidence numbers were defined 
in Complement a VAnalysis Situs [50] in 1899. 

The Betti numbers were named for Enrico Betti (1823-1892) and generalize 
the connectivity numbers that he used in studying curves and surfaces. 
Poincare assumed, but did not prove, that the Betti numbers are topological 
invariants. In other words, he assumed that if the geometric carriers \K\ and 
\L\ are homeomorphic, then RP(K) = RP(L) in each dimension/?. The first 
rigorous proof of this fact was given by J. W. Alexander (1888-1971) in 1915. 
Topological invariance of the homology groups was proved by Oswald 
Yeblen in 1922. One can thus speak of HP(\K\), RP(\K\), and x(l^l) since 
these homology characters are independent of the triangulation of the poly­
hedron \K\. It is important to know that the homology characters are 
topologically invariant. The proofs are lengthy, however, and are omitted. 
Anyone interested in following this topic further should consult references 
[2] and [17]. 
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It is left as an exercise to show that the pth Betti number RP(K) of a com­
plex K is the rank of the free part of the pth homology group HP(K). The pth 
Betti number indicates the number of "/?-dimensional holes" in the 
polyhedron \K\. 

Definition. A rectilinear polyhedron in Euclidean 3-space IR3 is a solid bounded 
by properly joined convex polygons. The bounding polygons are called 
faces, the intersections of the faces are called edges, and the intersections 
of the edges are called vertices. A simple polyhedron is a rectilinear poly­
hedron whose boundary is homeomorphic to the 2-sphere S2. A regular 
polyhedron is a rectilinear polyhedron whose faces are regular plane 
polygons and whose polyhedral angles are congruent. 

In Exercise 6 at the end of the chapter, the reader will find that the Betti 
numbers of the 2-sphere S2 are 

R0(S
2) = 1, R±(S2) = 0, R2(S

2) = 1. 

Then S2 has Euler characteristic 

x(s2) = i i-iYRP(s2) = 1 - 0 + 1 = 2. 
p = 0 

Applying the Euler-Poincare Theorem to S2 produces the following 
corollary: 

Theorem 2.6 (Euler's Theorem). If S is a simple polyhedron with V vertices, 
E edges, and F faces, then V — E + F = 2. 

PROOF. Things are complicated slightly here by the fact that the faces of S 
need not be triangular. This situation is corrected as follows: Consider a face 
r of S having n0 vertices and n± edges. Computing vertices — edges + faces 
gives n0 — n± + 1 for the single face r. Choose a new vertex v in the interior 
of T, and join the new vertex to each of the original vertices by a line segment 
as illustrated in Figure 2.3. In the triangulation of r, one new vertex and n0 

T Triangulated 

Figure 2.3 
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new edges are added. In addition, the one face T is replaced by n0 new faces. 
Then 

vertices — edges + faces = (n0 + 1) — (n± 4- n0) + n0 = n0 — n± + 1 

so that the sum V — E + F is not changed in the triangulation process. Let 
ah i = 0, 1, 2, denote the number of /-simplexes in the triangulation of S 
obtained in this way. Then 

V — E + F = a0 — ax + a2 

by the above argument. The Euler-Poincare Theorem shows that 

a0 - a± + a2 = i?0(S2) - i*i(S2) + i?2(S
2) = 2. 

Hence 
F - E + F=2 

for any simple polyhedron. • 

Theorem 2.7. There are only five regular, simple polyhedra. 

PROOF. Suppose S is such a polyhedron with V vertices, E edges, and F faces. 
Let m denote the number of edges meeting at each vertex and n the number 
of edges of each face. Note that n > 3. Then 

mV= 2E = nF, 

V-E + F=2 

so that 

^ - f + F=2. 
m 2 

Hence 

F(2n — mn + 2m) = 4m, 

and it must be true that 

2n — mn + 2m > 0. 
Since n > 3, this gives 

2m > n(m — 2) > 3(m — 2) = 3m — 6, 

so m < 6. Thus m can only be 1, 2, 3, 4, or 5. 
The relations 

F(2n ~ mn -V 2m) ~ 4m, n > 3, m < 6 

produce the following possible values for (m, «, i7): (a) (3, 3, 4), (b) (3, 4, 6), 
(c) (4, 3, 8), (d) (3, 5, 12), and (e) (5, 3, 20). 

For example, m = 4 gives 

F(8 - 2n) = 16, 

allowing the possibility F = 8, n = 3. (The reader should solve the remaining 
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cases.) The five possibilities for (m, n, F) are realized in the tetrahedron, cube, 
octahedron, dodecahedron, and icosahedron shown in Figure 2.4. • 

Tetrahedron Cube Octahedron 

Dodecahedron Icosahedron 

Figure 2.4 

2.5 Pseudomanifolds and the Homology Groups of Sn 

Algebraic topology developed from problems in mathematical analysis and 
geometry in Euclidean spaces, particularly Poincare's work in the classifica­
tion of algebraic surfaces. The spaces of primary interest, called "manifolds", 
can be traced to the work of G. F. B. Riemann (1826-1866) on differentials 
and multivalued functions. A manifold is a generalization of an ordinary 
surface like a sphere or a torus; its primary characteristic is its "local" 
Euclidean structure. Here is the definition: 

Definition. An n-dimensional manifold, or n-manifold, is a compact, connected 
Hausdorif space each of whose points has a neighborhood homeomorphic 
to an open ball in Euclidean «-space Un. 

It should be noted that not all texts require that manifolds be compact and 
connected. Sometimes these conditions are omitted, and other properties, 
paracompactness and second countability, for example, are added. For many 
of the applications in this text, however, compactness and connectedness are 
required, and it will simplify matters to include them in the definition. 

Definition. An n-pseudomanifold is a complex K with the following properties: 

(a) Each simplex of K is a face of some w-simplex of K. 
(b) Each (n — l)-simplex is a face of exactly two «-simplexes of K. 
(c) Given a pair o\ and o\ of «-simplexes of K, there is a sequence of n-

simplexes beginning with aj and ending with o-g such that any two 
successive terms of the sequence have a common (n — l)-face. 
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Example 2.4. (a) The complex K consisting of all proper faces of a 3-simplex 
<a 0fl 1fl 2^3> (Figure 2.5) is a 2-pseudomanifold and is a triangulation of the 
2-sphere S2. 

a2 

Figure 2.5 

(b) The triangulation of the projective plane in Figure 2.2 is a 2-pseudo­
manifold. 

(c) The triangulation of the torus in Figure 1.11 is a 2-pseudomanifold. 
(d) The Klein Bottle is constructed from a cylinder by identifying opposite 

ends with the orientations of the circles reversed. A triangulation of the 
Klein Bottle as a 2-pseudomanifold is shown in Figure 2.6. 

a0 fli a2 ap 

^ ^ ^ ^ a l , ^ ^ ^ ^ as 

^ a4 
fl5i 

a0 ax a2 a0 

Figure 2.6 Triangulation of the Klein Bottle 

The Klein Bottle cannot be embedded in Euclidean 3-space without self-
intersection. Allowing self-intersection, it appears in the figure below. 

Figure 2.7 

Each space of Example 2.4 is a 2-manifold. The ^-sphere Sn, n > 1, is an 
^-manifold. Incidentally, this indicates why the unit sphere in Un + 1 is called 
the "^-sphere" and not the "(n + l)-sphere". The integer n refers to the 
local dimension as a manifold and not to the dimension of the containing 
Euclidean space. Note that each point of a circle has a neighborhood homeo­
morphic to an open interval in R; each point of S2 has a neighborhood 
homeomorphic to an open disk in U2; and so on. 
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The relation between manifold (a type of topological space) and pseudo-
manifold (a type of geometric complex) is simple to state: If X is a triangulable 
^-manifold, then each triangulation K of X is an ^-pseudomanifold. The 
homology groups of the pseudomanifold K reflect the connectivity, the 
"holes" and "twisting", of the associated manifold X. The computation of 
homology groups of pseudomanifolds is thus a worthwhile project. As we 
shall see in this section, these groups are often amenable to computation. 

If X is a space each of whose triangulations is a pseudomanifold, it is 
sometimes said that "Xis a pseudomanifold." Since a space and a triangula­
tion of the space are different, this is an abuse of language. It is permissible 
only in situations in which the distinction between space and complex is not 
important, as in the computation of homology groups. 

We shall restrict ourselves in this section to theorems and examples related 
to the homology groups of pseudomanifolds. Those interested in the fact 
that each triangulation of a triangulable ^-manifold is an ^-pseudomanifold 
can find the proof in many texts, for example [2]. 

Theorem 2.8. Let K be a 2-pseudomanifold with aQ vertices, <x± l-simplexes, and 
a2 2-simplexes. Then 

(a) 3a2 = 2al5 

(b) a, = 3(a0 - X(K% 
(c) a0 > K7 + V49 - 24X(K)). 

PROOF. Since each 1-simplex is a face of exactly two 2-simplexes, it follows 
that 3a2 = 2«! and hence that a2 = fc^. 

The Euler-Poincare Theorem guarantees that 

a0 - ax + a2 = X(K). 
Then 

<*o ~ <*i + t<*i = x(K% 
and hence 

«i = 3(«o - * (* ) ) . 

To prove (c), note that a0 > 4 and that 

«i < Cgo = |a0(a0 - 1) 

where C2° denotes the number of combinations of a0 vertices taken two at a 
time. By elementary algebra, 

6a2 = 4% 
2ax = 6cc1 ~ 6cc2 

ao(ao — 1) ^ 6ai — 6a2 
ao — ao — 6a0 ^ 6«! — 6a2 — 6a0 — ~^x(^) 

al - laQ > -6X(K) 

Aal - 28a0 + 49 > 49 - 24X(/Q 
(2a0 - If > 49 - 24x(iQ 

aQ > i(7 + V49 - 24X(K)). D 
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Theorem 2.8 is useful in determining the 2-pseudomanifold triangulation 
of a polyhedron having the minimum number of simplexes in each dimension. 
Computing homology groups is at best a tedious procedure; it is simplified 
by using a minimal triangulation (a triangulation with the smallest number 
of simplexes). 

Example 2.5. Consider, for example, the 2-sphere S2. Since x(£2) = 2, then 

«o > ¥7 + V49 - 24X(K)) = 4, 

«i = 3(a0 - x(K)) > 3(4 - 2) = 6, 

«2 = f<*i > f-6 = 4. 

Hence any triangulation of S2 must have at least four vertices, at least six 
1-simplexes, and at least four 2-simplexes. This minimal triangulation is 
achieved by the boundary complex of a tetrahedron (proper faces of a 3-
simplex) in Figure 2.5. 

Example 2.6. Consider the projective plane P, a 2-manifold. As shown earlier, 
H2(P) = {0} and HX(P) £ Z2. Since P is connected, Theorem 2.4 shows that 
H0(P) £ Z. Then 

R2(P) = R.iP) = 0, R0(P) = 1, X(P) = 1. 

This gives 
«o > i(7 + V49 - 24X(P)) = 6, 
«! > 3(6 - 1) = 15, 
a2 > f-15 = 10, 

so that any triangulation of P must have at least six vertices, fifteen 1 -simplexes, 
and ten 2-simplexes. The triangulation of P given in Figure 2.2 is thus minimal. 

Definition. Let Kbe an «-pseudomanifold. For each (n — l)-simplex a71-1 of 
K, let o\ and o\ denote the two w-simplexes of which an~l is a face. An 
orientation for K having the property 

for each (n — l)-simplex a11'1 of K is a coherent orientation. An n-
pseudomanifold is orientable if it can be assigned a coherent orientation. 
Otherwise it is nonorientable. 

The proof is lengthy, but it can be shown that orientability is a topological 
property of the underlying polyhedron \K\ and is not dependent on the 
particular triangulation K. We shall assume this without proof. It is left as an 
exercise for the reader to show that the projective plane and Klein Bottle are 
nonorientable while the 2-sphere and torus are orientable. 

Example 2.7. Let AT denote the ^-skeleton of the closure of an (n + l)-simplex 
an + 1 in IRn+1, n > 1. Then K is an «-pseudomanifold and is a triangulation of 
the H-sphere Sn. (Recall Exercise 12 in Chapter 1.) 
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The following notation will be helpful in determining a coherent orienta­
tion and is used only in this example. For an integer j with 0 < j < n + 1, let 

where the symbol a, indicates that the vertex a5 is deleted. The positively 
oriented simplex +<r; has the given ordering wheny is even and the opposite 
ordering (an odd permutation of the given ordering) when j is odd. The 
(n — 1)-simplex 

+ <rv = +<a0...di...dj...an+1y 

is then a face of the two «-simplexes at and a5. 
It is left as an exercise for the reader to show that this orientation for the 

«-simplexes and (n — l)-simplexes gives 

in each case. It follows that any «-chain of the form ^aieK g-ou g an integer, 
is an «-cycle. Furthermore, if 

a{€K 

is an «-cycle, then 

0 = d(z) = 2 V"u 
atj€K 

where h{j is either gt — gr or gj — gt. Hence z is an «-cycle if and only if all 
the coefficients gt have a common value g. Thus Zn(S

n) £ Z. Since Bn(S
n) = 

{0}, then #n(Sn) £ Z. 
A complete description of the homology groups of Sn is given by the 

following theorem: 

Theorem 2.9. The homology groups of the n-sphere, n > 1, are 

tfp = 0 or p = n 
Hp(S

n) -
{0} ifO < p < n. 

PROOF. Since Sn is connected, Theorem 2.4 implies that HQ(Sn) £ Z. The 
above example shows that Hn(S

n) £ Z. The following notation will be used 
in handling the case 0 < p < n: If +ap = <a0 . . .ap} and i; is a vertex for 
which the set {v, a0,..., ap} is geometrically independent, then the symbol 
vap denotes the positively oriented (p + l)-simplex +(vaQ.. .ap}. If 
c = 2gV°f is a/7-chain, then i;c denotes the (p + l)-chain 

Note that 
a(l-i;ap) = l-ap - Vd(l-ap). 

Now consider a particular vertex i; in the triangulation of Sn given in the 
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preceding example. Since any /7-simplex containing v can be expressed in the 
form vap~x, then any /?-cycle z can be written 

where simplexes in the second sum have v as a vertex and those in the first 
sum do not. Since z is a p-cyde, then 

0 = d(z) = 3(]>>af) + d(2hrvof-i) 

= B&gcot) + 2 v * r x - »(0 2 Ay-*?-1) 
so that 

8(2 w 1 ) = °> 3 ( 2 ^ C T < ) = - 2 v ^ r 1 -
This gives 

a(2 &**) = 2 & • <* - ^a(2 & * CT* ) 
= 2*«#af+ f?2*^°3f"1 = z-

Thus every /7-cycle on Sn is a boundary, so Hp(S
n) = {0} for 0 < p < n. • 

The next theorem explains the meaning of orientability in terms of homology 
groups. 

Theorem 2.10. An n-pseudomanifold Kis orientable if and only if the nth homol­
ogy group Hn(K) is not the trivial group. 

PROOF. Assume first that K is orientable and assign it a coherent orientation. 
Then if the (n — l)-simplex a11'1 is a face of <J\ and <T£, we have 

This implies that any «-chain of the form 

c = 2 Z'°n 

<Xn€K 

(g a fixed integer) is an «-cycle. Thus Zn(K) ^ {0}. Since Bn(K) = {0}, then 
Hn(K) / {0}. 

To complete the proof it must be shown that K is orientable if Hn(K) # {0}. 
Suppose that 

* = 2 *«•*? 
is a nonzero «-cycle. 

Since each pair of «-simplexes in K can be joined by a sequence of n-
simplexes (as specified in the definition of «-pseudomanifold) and each 
in — l)-simplex is a face of exactly two «-simplexes, it follows that any two 
coefficients in z can differ only in sign. That is to say, gt = ±g0 if d(z) = 0. 
By reorienting 0? if gt = —g0, we obtain an «-cycle 

2 go-<* = go(2 ^ V 
ofeK VfeJT ' 
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so it follows that 2 1*°? is an /z-cycle. But this means that each (n — 1)-
simplex must have positive incidence number with one of the «-simplexes 
of which it is a face and negative incidence number with the other. In other 
words, K is orientable. • 

Corollary. An n-pseudomanifold L is nonorientable if and only if Hn(L) = {0}. 

The question of whether or not every w-manifold has a triangulation was 
raised by Poincare. Here it was not required that manifolds be compact, and 
triangulations having an infinite number of simplexes were allowed. Under 
these conditions, Tibor Rado (1895-1965) proved in 1922 that every 2-
manifold has a triangulation, and Edwin Moise (1918- ) proved the corre­
sponding result for 3-manifolds in 1952. 

In 1969 R. C. Kirby (1938- ) and L. C. Siebenmann (1939- ), using a 
somewhat different definition of triangulability, showed the existence of 
manifolds in higher dimensions which are not triangulable in their sense 
of the term. This answered a related triangulation problem which had been of 
interest for many years. The results of Kirby and Siebenmann can be found 
in [44]. 

A 2-manifold is called a closed surface. The topological power of the 
homology groups is demonstrated by the following classification theorem 
for closed surfaces. 

Theorem 2.11. Two closed surfaces are homeomorphic if and only if they have 
the same Betti numbers in corresponding dimensions. 

The proof of Theorem 2.11 is omitted from this text because it would 
require a lengthy digression into the theory of closed surfaces and because, 
historically, the theorem preceded Poincare's formalization of algebraic 
topology. It was a motivating force behind Poincare's work, however, and 
served as a model of the type of theorem to which topology would aspire. 
More will be said on this point in Chapter 4. 

Theorem 2.11 was essentially known by about 1890 through the work of 
various mathematicians, notably Camille Jordan (1858-1922) and A. F. 
Mobius (1790-1860). Jordan is best known for his work in algebra and for 
proposing the Jordan Curve Theorem. Mobius invented the polyhedron that 
bears his name (the Mobius strip) and in so doing initiated the study of 
orientability. He used the term "one-sided" to mean nonorientable and 
" two-sided" to mean orientable for surfaces. The modern terms "orientable" 
and "nonorientable" were introduced by J. W. Alexander to generalize 
Mobius' concepts to higher dimensions. 

Those who wish to see a proof of Theorem 2.11 should consult the texts 
by Cairns [2] or Massey [16]. 
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2 Exercises 

EXERCISES 

1. Suppose that Kx and K2 are two triangulations of the same polyhedron. Are 
the chain groups Cp(#i) and CP(K2) isomorphic? Explain. 

2. Suppose that complexes K± and K2 have the same simplexes but different 
orientations. How are the chain groups Cp(iQ and CP(K2) related? 

3. Prove Theorem 2.2. 

4. Let zp be a p-cycle on a complex K. Explain why the homology class [zp] and 
the coset zp + BP(K) are identical. 

5. Let K denote the complex consisting of all proper faces of a 2-simplex 
<tfO0itf2> with orientation induced by the order a0 < ax < a2. Compute all 
homology groups of K. 

6. Compute the homology groups and Betti numbers of the 2-sphere S2. 

7. Compute the homology groups of the cylinder C triangulated in the accom­
panying figure. (Assign any orientation you like.) 

a± «3 a$ 

• a0 a4 

8. Compute the homology groups of the torus. 

9. Compute the homology groups of the Klein Bottle. 

10. Prove that linear independence with respect to homology for integral coeffi­
cients is equivalent to linear independence with respect to homology for 
rational coefficients. Explain in particular why the Betti numbers are not 
altered by the change to rational coefficients. 

11. Derive the possibilities for (m, «, F) referred to in the proof of Theorem 2.7. 
How do you rule out the cases m = 1 and m = 2? 

12. Fill in the details in the proof of Theorem 2.3. Explain in particular the rela­
tion between [xap, ^ P " 1 ] and [2ap, V - 1 ] . 

13. Prove that the geometric carriers of the combinatorial components of a 
complex K and the components of the polyhedron \K\ are identical. 

14. Prove that the ^th Betti number of a complex K is the rank of the free part of 
the /?th homology group HP(K). 

15. Find a minimal triangulation for the torus T. (Its homology groups are 
H0(T) £ Z, HX(T) £ Z 0 Z, and H2(T) ~ Z.) 

16. Let Z b e a complex and Kr its r-skeleton. Show that HP(K) and Hp(K
r) are 

isomorphic for 0 < p < r. How are Hr(K) and Hr(K
r) related? 

17. Why must an «-pseudomanifold have dimension nl 

37 



2 Simplicial Homology Groups 

18. Show explicitly that the torus is orientable and that the projective plane and 
Klein Bottle are nonorientable. 

19. Complete the proof in Example 2.7 that the w-sphere Sn is orientable. 

20. In the proof of Theorem 2.9, show that 

d(l'Vap) = l>op - v0(l-o?). 

21. Let K denote the closure of an ^-simplex. Prove that HP(K) = {0} for 
0 < p < n. Use this to show that Hp(S

n) = {0} for 0 < p < n. 

22. Show that an orientable «-pseudomanifold has exactly two coherent orienta­
tions for its «-simplexes. 

23. If K is an orientable «-pseudomanifold, prove that Hn(K) ~ Z. 

24. In the definition of «-pseudomanifold, replace (b) with (V): Each (n — 1)-
simplex is a face of at least one and at most two «-simplexes. The resulting 
conditions (a), (bO, and (c) define the term n-pseudomanifold with boundary. 
(i) Define orientability for «-pseudomanifolds with boundary in analogy 

with the definition of orientability for «-pseudomanifolds. 
(ii) Show that the Mobius strip is a nonorientable 2-pseudomanifold with 

boundary. 

25. If K is a 2-pseudomanifold, prove that x(K) ^ 2. How is this fact used in 
Theorem 2.8? 

26. Show that the projective plane P is the quotient space of the 2-sphere obtained 
by identifying each pair x, — x of diametrically opposite points. 

27. References [9] and [2] may be helpful for (b) and (c). 
(a) Define a 1-dimensional complex K in U3 for which \K\ is not homeo-

morphic to a subspace of (R2. 
(b) Prove that if .ST is a complex of dimension n, then \K\ can be rectilinearly 

imbedded in lR2n + 1. 
(c) Prove that every triangulation of an w-manifold is an «-pseudomanifold. 
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Simplicial Approximation 

3.1 Introduction 

We turn now to the problem of comparing polyhedra by means of their 
associated homology groups. Comparisons between two topological spaces 
are usually made on the basis of a continuous map, ideally a homeomorphism, 
from one space to another. Groups are compared by means of homomor-
phisms and isomorphisms. We shall show in this chapter that a continuous 
m a p / : \K\ -> \L\ induces for each non-negative integer/? a homomorphism 
f*: HP(K) -> HP(L) on the associated homology groups. This will allow 
topological comparisons between the polyhedra \K\ and \L\ on the basis of 
algebraic similarities between their associated homology groups. 

We have pointed out that if \K\ and \L\ are homeomorphic, then HP(K) 
and HP(L) are isomorphic in each dimension p. The reader should be warned 
that the converse is not true. Even if there is a continuous m a p / : \K\ -> \L\ 
for which f* is an isomorphism for each dimension p, it may not follow that 
\K\ and \L\ are homeomorphic. Thus we do not have the best possible 
situation in which a topological comparison is reduced to a purely algebraic 
one. However, as we shall see in this and later chapters, the method of 
comparing topological spaces through their homology groups is a very 
powerful tool. 

Suppose then that there is a continuous map / : \K\ -> \L\ from one 
polyhedron to another. How are the associated homomorphisms defined? 
The situation would be simple if/ took simplexes of Kto simplexes of L, i.e., 
i f /were a "simplicial map." We could then induce homomorphisms from 
CP(K) to CP(L) and use these to define the required homomorphisms on the 
homology groups. I f /does not take simplexes of K to simplexes of L, we 
replace/by a map which does as follows: Subdivide ^Tinto smaller simplexes 
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so tha t / "a lmost" maps each simplex of K into a simplex of L. We can then 
define explicitly a simplicial map which has the essential characteristics of/ 
and use this new map to induce homomorphisms on the homology groups. 
The process of subdividing K is called "barycentric subdivision," and the 
associated simplicial map is called a "simplicial approximation." This 
intuitive description will be made more precise as we proceed. The existence 
of simplicial approximations to any continuous m a p / : \K\ -> \L\ is the cen­
tral result of this chapter. 

3.2 Simplicial Approximation 

Definition. Let K&nd L be complexes and {q>p}o a sequence of homomorphisms 
cpp: CP(K) -> CP(L) such that 

% P = 9 P - I # > p > I. 

Then {cpp}o is called a chain mapping from K into L. 

In the preceding definition, the sequence {(pp}o is written as an infinite 
sequence simply to avoid mention of the dimensions of K and L. When p 
exceeds dim K and dim L, then CP(K) and CP(L) are zero groups and cpp must 
be the trivial homomorphism which takes 0 to 0. 

Theorem 3.1. A chain mapping {<pp}o from a complex K into a complex L 
induces homomorphisms 

^:HP(K)->HP(L) 

in each dimension p. 

PROOF. If bp = d(cp + 1) in BP(K), then 

<PP(bp) = (ppd(cp + 1) = d(pp + 1(cp + 1), 

so (pp(bp) is the boundary of the (p + l)-chain (pp + 1(cp + 1). Thus cpp maps 
BP(K) into BP(L). 

We shall now show that yp maps ZP(K) into ZP(L). This is true for p = 0 
since Z0(K) = C0(K) and Z0(L) = CQ(L). For p > 1, suppose that zp eZp(K). 
Note that 

d<PP(z
P) = <PP-id(Zp) = 9>P-I(°) = °> 

so (pp(zp) is a /?-cycle on L. 
Since 

# p (* ) = Zp(K)jBp(K\ HP(L) = Zp(L)jBp(L\ 

then the induced homomorphism 99J: HP(K) -> i/p(L) can be defined in the 
standard way: 

9J(zp + BP(K)) = <pp(zp) + 5P(L) 

or, equivalently, 

9j(fe]) = 1<PP(Z,)]. • 
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Definition. A simplicial mapping from a complex K into a complex L is a 
function 99 from the vertices of K into those of L such that if op = 
<0o...flp> is a simplex of T̂, then the vertices 99(1;*), 0 < i < p (not 
necessarily distinct) are the vertices of a simplex of L. If the vertices 99(1̂ ) 
are all distinct, then the ^-simplex ((p(vQ).. .(p(vp)} = (p(ap) is called the 
image of ap. If 99^) = cp{v}) for some / 7̂  j , then 99 is said to collapse ap. 

Definition. Let 99 be a simplicial mapping from K into L and p a non-negative 
integer. If g-ap is an elementary ^-chain on K, define 

fO if 99 collapses ap 

(pp(g'<jp) = < 
{g-<p(vp) if 99 does not collapse ap. 

The function 99p is extended by linearity to a homomorphism 99p: CP(K) -> 
CP(L). That is to say, if 2 gi • <*f is a /?-chain on ./£, then 

The sequence {<pp}o is called the chain mapping induced by 99. 

Theorem 3.2. If <p: K-+L is a simplicial mapping, then the sequence {(pp}o of 
homomorphisms in the preceding definition is actually a chain mapping. 

PROOF. Since each 99p is a homomorphism, then in order to show that 
dcpp = cpp-xd, it is sufficient to show that 

for each elementary ̂ -chain g-op,p > 1. Let g • ap be an elementary ̂ -chain on 
K where +op = +(v0.. .vp}. Suppose first that 99 does not collapse ap so 
that 

<PP(°P) = <<p(v0) • • .<p(vP)>. 

Let <rf be the (p — l)-face of ap obtained by deleting the ith vertex, and let 
99((jp)i be defined in the analogous manner. Then 

8<pP(g-°p) = d(g-<p(°p)) = 2 (-WSM^I = 2 (-m-vi*?) 

9 p - i ( i ( - i ) ^ ^ r ) = <pp-iKg-°p\ 

Suppose that 99 collapses op. Without loss of generality we may assume that 
99(̂ 0) = fpfyi). Then yp(g'°p) = 0, so d(pp(g-ap) = 0, and 

<Pp-i8(g'°p) = 9 P - I ( 1 i-iyg'ot) = 2 (- l)Vp-ite '^) . 
\ i = 0 / i = 0 

For i > 2, op contains v0 and vx. Since 99(̂ 0) = <p(vi), then 99 collapses <rf, 
/ > 2, and we have 

Vp-idig'**) = 2 ( - I ) V P - I ( ^ ^ ? ) = <PP-i(g'0$) - <pp-i(g'of). 
i = Q 
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But erg = (v±v2 •.. vpy, of = <v0v2 . . . vp} and cp(v0) = 9(1?!) so that 

<Pv-i(g-°l) = <PP-i(g-°i)-

Hence <pP-id(g'°p) = 0. Thus both <pP-id(g-vp) and 8q>p(g-ap) are 0 when 99 
collapses ap. Therefore dq>p = 9>p_id, so {̂ p}? is a chain mapping. D 

Question: The proof of Theorem 3.2 was given under the assumption that 
ap and its faces af have orientations induced by the ordering v0 < vx < • • • < vp. 
Why is it sufficient to consider only this orientation ? 

Definition. Let \K\ and \L\ be polyhedra with triangulations f̂ and L respec­
tively and let 9 be a simplicial mapping from the vertices of K into the 
vertices of L. Then 9 is extended to a function 9: \K\ -> \L\ as follows: 
If x e \K\, there is a simplex ar = <a0 . . .tfr> in K such that x e ar. Then 

r 

i = 0 

where the Af are the barycentric coordinates of x. Define 

r 

i = 0 

This extended function 9: |A |̂ -> |L| is called a simplicial mapping from 
(#1 into \L\. 

The proof of the following theorem is left as an exercise: 

Theorem 3.3. Every simplicial mapping 9: \K\ -> \L\ is continuous. 

Example 3.1. Let K denote the 2-skeleton of a 3-simplex and L the closure of 
a 2-simplex with orientations as indicated by the arrows in Figure 3.1. 

V2 a2 

/u\ 
v0 vx a0 a\ 

Figure 3.1 

Let 9 be the simplicial map from K to L defined for vertices by 

9(^0) = 9(03) = «o> 9(^1) = * i> 9(^2) = a2. 

The extension process for simplicial maps determines a simplicial mapping 
cp: \K\-+\L\ which 
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(a) maps <tWi>, ^ I ^ X and <̂ 2̂ o> linearly onto <tf0tfi>, < î̂ 2>» and <tf2tf0> 
respectively; 

(b) maps <i?ii?3> and (v2v3y linearly onto <tfitf0> and <a2tf0> respec­
tively; 

(c) collapses (v0v3} to the vertex a0; 
(d) collapses ( i ^ ^ ) and (v0viv3y; 
(e) maps each of (v0Viv2y and (v3vxv2y linearly onto {a0a1a2y. 

For the induced homomorphisms {cpp} on the chain groups we have the 
following: 

(0) 9>0: C0(K) -> C0(L) is denned by 

<Po(g'<vQ> + gi-<i;i> + g2-<v2y + g3'<v3» 

= (go + g3)'<a0} + gi-<«i> + g2<a2y. 

(1) 9 l : Ci(^) -> Ci(L) is denned by 

9i(Ai-<^o^i> + h2'<vxv2y + h3'(v0v2> + h^{vxv3y 

+ h-(v0v3y + hQ'(v2v3y) 
= (Ai - ^ K ^ i ) + h2-(axa2y + (Ae - h3)-(a2a0y. 

(2) 92: C2(X) -> C2(L) is denned by 

92(^1 * < > 0 ^ 2 > + k2'(V±V2V3y + fc3*<>0^3> + ^4*<^0^3^2» 

Definition. If a is a geometric simplex, the 0/?ew simplex 0(0) associated with a 
consists of those points in a all of whose barycentric coordinates are 
positive. If v is a vertex of a complex K, then the star of v, st(V), is the family 
of all simplexes a in K of which 1; is a vertex. Thus st(V) is a subset of f̂. 
The open star of 0, ost(V), is the union of all the open simplexes o(V) for 
which v is a vertex of a. Note that ost(V) is a subset of the polyhedron \K\. 

Example 3.2. If a is a vertex, o « a » = {a}. For a 1-simplex a1 = <a0tfi>> 
ofa1) is the open segment from a0 to a± (not including either a0 or a j . For a 
2-simplex a2, o(a2) is the interior of the triangle spanned by the three vertices. 

In Figure 3.2, st(i;0) consists of the simplexes <i;0>, OWiX ^0^2), <̂ ô 3>> 
{v0v^)9 and <i>0^2>-
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The open star of v0, ost(^0), is the set theoretic union of {v0}, the open 
segments from v0 to vl9 v0 to v2, v0 to v3, v0 to t;4, and the interior of <i;0^2>-
Note that ost(i;0) is not the interior of st(i;0) in any sense. The star of a vertex 
is a set of simplexes of K; the open star of a vertex is the union of certain 
point sets in the polyhedron \K\. 

Definition. Let \K\ and \L\ be polyhedra with triangulations Kaxid L respec­
tively and / : \K\ -> \L\ a continuous map. Then K is star related to L 
relative to f means that for each vertex p of K there is a vertex q of L such 
that 

/(ost(/>)) <= ostfo). 

Definition. Let X and Y be topological spaces and / , g continuous functions 
from X into Y. Then / i s homotopic to g means that there is a continuous 
function H: X x [0, l]-> Y from the product space X x [0, 1] into F 
such that, for all x e X, 

#(* ,0 ) = / ( * ) , tf(*,l) = g(*). 

The function if is called a homotopy between/and g. 

Note: In order to simplify notation involving homotopies, we shall use I 
to denote the closed unit interval [0, 1]. 

Example 3.3. Consider the functions / and g from the unit circle S1 into the 
plane given pictorially in Figure 3.3. Using the usual vector addition and 
scalar multiplication, a homotopy H between/and g is defined by 

HO, /) = ( ! - t)f(x) + tg{x\ xeS\ tel. 

The homotopy H essentially shows how to continuously "deform" f(x) 
into g(x). Observe that if the horizontal axis were removed from the range 
space, then the indicated functions would not be homotopic. 
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Definition, Let KandL be complexes and / : \K\ -> \L\ a continuous function. 
A simplicial mapping g: \K\ -> \L\ which is homotopic t o / i s called a 
simplicial approximation of/ 

Example 3.4. Let L be the closure of a /^-simplex <rp = (a0... #p>, and let 
Kbe an arbitrary complex. Then any continuous m a p / : |A |̂ -> |L[ has as 
a simplicial approximation the constant map g: \K\ -> |L| which collapses 
all of Â  to the vertex a0. 

As illustrated in Figure 3.4, proving that / i s homotopic to g requires only 
the convexity of \L\. We define a homotopy H:\K\ x / - > |L| by 

H(x, t) = (1 - t)f{x) + too, * G | ^ | , ' e £ 

Then H is continuous and 

H(x, 0) = / (*) , # (x , 1) = a0 = *(x), x G |tf|. 

This example illustrates one method by which homotopies will be defined in 
later applications. 

\K\ a0 j L j 

Figure 3.4 

Example 3.5. Let both Kand L be the 1-skeleton of the closure of a 2-simplex 
a2. Then the polyhedra \K\ and \L\ are both homeomorphic to the unit circle 
S1, so we may consider any function from \K\ to \L\ as a function from S 1 to 
itself. For our function / let us choose a rotation through a given angle a. 
Then, referring S1 to polar coordinates,/: S1 -> S1 is defined by 

/ ( l , 6) = (1,0 + a), (1, 0) 6 S\ 0 < 0 < 2TT. 

A homotopy / / between/and the identity map is defined by 

H((h 6), t) = (1, 0 + ta), ( M ) e 5 ^ e / . 

Thus / / agrees with the identity map when / = 0 and agrees with / when 
t = 1. At any "t ime" / between 0 and 1 the "/-level of the homotopy," 
H{-, f), performs a rotation of the circle through the angle ta. 

We are now ready to begin the process of replacing a continuous map 
/ : \K\ -> \L\ by a homotopic simplicial map g. Let us first consider the case 
in which K is star related to L relative to / The following lemma will be 
needed; its proof is left as an exercise. 
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Lemma. Vertices v0,.. .,vm in a complex K are vertices of a simplex ofK if 
and only if QfLo ost(t;i) is not empty. 

Theorem 3.4. Let K and L be polyhedra with triangulations K and L respectively 
and f: \K\ -> \L\ a continuous function such that K is star related to L 
relative to f Then f has a simplicial approximation g: \K\ ->\L\. 

PROOF. Since K is star related to L relative tof there exists for each vertex p 
of K a vertex g(p) of L such that 

/(ostOO) c ost(s(/>)). 

To see that this vertex mapg is simplicial, suppose that v0,.. .,vn are vertices 
of a simplex in K. According to the lemma, this is equivalent to saying that 
the intersection P|?=o ost(ty) is not empty. Hence 

0 * / ( n ostfa)) c: fVCostfa)) c p | o s t ( ^ ) ) , 
\ i = 0 / 1 = 0 t = 0 

so P|?=o ost(g(t;i)) is not empty. The lemma thus insures that g(v0),..., g(vn) 
are vertices of a simplex in L. Then g is a simplicial vertex map and has an 
extension to a simplicial map g: \K\ -> \L\. 

Let x e \K\ and let a be the simplex of K of smallest dimension which 
contains x. Let a be any vertex of a. Observe that/(x) ef(ost(a)) (why?) and 
that f(ost(a)) <= ost(g(a)). Also, g(#) e ost(g(a)) since the barycentric coor­
dinate of g(x) with respect to g(a) is greater than or equal to the (nonzero) 
barycentric coordinate of x with respect to a. 

Let a0,..., ak denote the vertices of a. According to the preceding para­
graph, both/(x) and g(x) belong to p|?=o ost(g(at)). Thus g(a0),.. .,g(ak) are 
vertices of a simplex T in L containing both/(x) and g(x). Since each simplex 
is a convex set, then the line segment joining f(x) and g(x) must lie entirely in 
\L\. The map H: \K\ x / - > \L\ defined by 

H(x, 0 = 0 - 0 / W + ^ W , xeK,teI, 

is then a homotopy between/and g, and g is a simplicial approximation of/. • 

Theorem 3.4 shows that if ATis star related to L relative t o / then there is a 
simplicial map homotopic t o / This is a big step toward our goal of replacing 
/ b y a simplicial approximation. But what if Kis not star related to L relative 
t o / ? That is, what if Khas some vertices b0,...,bn such that/(ost(6()) is not 
contained in the open star of any vertex in L? We then retriangulate K 
systematically to produce simplexes of smaller and smaller diameters thus 
reducing the size of ost(&f) and the size of/(ost(^)) to the point that the new 
complex obtained from K is star related to L relative to / This process of 
dividing a complex into smaller simplexes is called "barycentric subdivision." 
The precise definition follows. 

Definition. Let or = <a0 •. • #r> be a simplex in Un. The point dr in ar all of 
whose barycentric coordinates with respect to a0,..., ar are equal is called 
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the barycenter of ar. Note that if a0 is a 0-simplex, then d° is the vertex 
which determines a0. 

The collection {dfc: ak is a face of ar} of all barycenters of faces of vr are 
the vertices of a complex called the first barycentric subdivision of Cl(ar). 
A subset d0 , . . . , dp of the vertices &k are the vertices of a simplex in the 
first barycentric subdivision provided that a5 is a face of oj + 1 for 
7 = 0,. ..,p- 1. 

If Â  is a geometric complex, the preceding process is applied to each 
simplex of K to produce the first barycentric subdivision Ka) of K. For 
n > 1, the wth barycentric subdivision K(n) of Â  is the first barycentric 
subdivision of ^ ( n - 1 ) . 

The first barycentric subdivision of K is assigned an orientation con­
sistent with that of K as follows: Let (d^d1... dp> be a ^-simplex of 
Ka) which occurs in the barycentric subdivision of a ^-simplex ap of K. 
Then the vertices of op = (v0... vp} may be ordered so that d* is the 
barycenter of <t;0 • • .#i> for / = 0 , . . . , /? . We then consider <d° .. .dp> 
to be positively oriented if <t;0 • • .^P> is positively oriented and negatively 
oriented if (v0 . . . vpy is negatively oriented. There are other simplexes of 
Ka) whose orientations are not defined by this process, and they may 
be oriented arbitrarily. An orientation for Ka) defined in this way is said 
to be concordant with the orientation of K. The same process applies in­
ductively to higher barycentric subdivisions. 

We assume in the sequel that barycentric subdivisions are concordantly 
oriented. 

Example 3.6. Consider the complex K = Cl^1) consisting of a 1-simplex 
(j1 = <a0^i> and two 0-simplexes ag = <«0> and a? = <«i>. Then dg = a0, 
d? = al9 and d1 is the midpoint of a1, as indicated in Figure 3.5. Hence the 
first barycentric subdivision of K has vertices a0, al9 and d1. Since the only 
faces of (J1 are <«0> and <«i>, then the only 1-simplexes of Ka) are {aod1) and 
<a1a

1}. _ 
Consider a1 to be oriented by a0 < ax so that <«0^i> represents the positive 

orientation. Then (a^y occurs in the subdivision of the positively oriented 
simplex <«0^i>? a n d hence (ja^y is a positively oriented simplex in Ka\ On 
the other hand, (tfid1) is produced in the subdivision of the negatively 
oriented simplex <tfitf0>> so (a^1} has negative orientation. 

Figure 3.5 
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3 Simplicial Approximation 

Example 3.7. For the complex Cl(a2) in Figure 3.6(a), the barycenters of all 
simplexes are indicated in (b) and the first barycentric subdivision is shown 
in (c). The orientation for (^v0v3v^) is determined as follows: Vertex v3 is the 
barycenter of <^0^i>? and v± is the barycenter of ^v0v1v2y- Thus, following the 
definition of concordant orientation, ^v0v3v^) is assigned positive orientation 
since it is produced in the subdivision of the positively oriented simplex 
(v0v1v2y. Note in Figure 3.6 that some simplexes of the barycentric sub­
division are not assigned orientations by this process. 

^2 V2 

(a) (b) (c) 

Figure 3.6 

Definition. If K is a complex, the mesh of K is the maximum of the diameters 
of the simplexes of K. 

It should be obvious that the mesh of the first barycentric subdivision Ka) 

of a complex Kis less than the mesh of K. Hence it is reasonable to expect that 
the limiting value of mesh K(s) as s increases indefinitely is zero. Proving this 
requires some preliminary observations. 

Let us first recall the definition of the Euclidean norm. If x = (xu . . . , xn) 
is a point in !Rn, the norm of x is the number 

f n \ 1/2 

IMI ={£*?} • 
For x, y in Mn, the distance d(x, y) from x to y is simply \\x — y\\. Proofs of 
the following facts are left as exercises: 

(a) If x and y are points in a simplex a, then there is a vertex v of a such that 

\\x - y\\ < \\x - v\\. 

(b) The diameter of a simplex of positive dimension is the length of its longest 
1-face. Hence the mesh of a complex K of positive dimension is the length 
of its longest 1-simplex. (Any complex of dimension zero must, of course, 
have mesh zero.) 

Theorem 3.5. For any complex K, l imits «, mesh K(s) = 0. 
PROOF. Consider the first barycentric subdivision Ka) of K and let <df> be 
one of its 1-simplexes. Then a is a face of T. The definition of barycenter for 
the simplex r insures that 

r = (l/(p + 1)) 2 Vi 
i = 0 

where v0,..., vp are the vertices of T. 
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3.2 Simplicial Approximation 

By observation (a) above, there must be a vertex v of r such that 

|| f — CT || < || f — V\\. 

Then 

* < f (1/0? + 1)) {&«)-
= ki/(p +1)) 2 <p« - r> * o/o* + o) 2 IK - v\\ 

II i = 0 II i = 0 

^ 0 / 0 + 1)) mesh K. 

Letting n denote the dimension of K, we have p < n so 
|| f - <T|| < (nl(n + 1)) mesh K. 

Since the mesh of ^ ( 1 ) is the maximum value of ||f — d|j for all 1-simplexes 
<<7f> in Ka\ then 

mesh Kw < (/I/(/I + 1)) mesh K. 

The inductive definition of K(s) now insures that 

mesh K(s) < (n/(n + l))s mesh K. 

Recalling that limits x(nl(n 4- l))s = 0, we have the desired result. • 

We are now ready for the main result of this chapter. 

Theorem 3.6 (The Simplicial Approximation Theorem). Let \K\ and \L\ be 
polyhedra with triangulations K and L respectively and f: \K\->\L\ a 
continuous function. There is a barycentric subdivision K(k) of K and a 
continuous function g: \K\ —> \L\ such that 

(a) g is a simplicial map from K(k) into L, and 
(b) g is homotopic to f. 

PROOF. We shall apply Theorem 3.4 to obtain the simplicial approximation 
g once an integer k for which K(k) is star related to L relative to / is determined. 
This is done using a Lebesgue number argument. Since |L| is a compact 
metric space, the open cover {ost(i;): v is a vertex of L} has a Lebesgue number 
j] > 0. Since/is uniformly continuous (its domain is a compact metric space), 
there is a positive number 8 such that if \\x — y\\ < $ in \K\, then 
||/(*) — f(y)\\ < ^ in \L\. Thus, if the barycentric subdivision K(k) has mesh 
less than 8/2, then Km is star related to L relative t o / . 

The function g: \K\ -> \L\ determined by Theorem 3.4 has the required 
properties. D 

The study of simplicial approximations to continuous functions was 
initiated by L. E. J. Brouwer in 1912. The Simplicial Approximation Theorem 
was discovered by J. W. Alexander in 1926; the proofs given above for 
Theorems 3.4 and 3.6 are essentially his original ones [27]. 
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3 Simplicial Approximation 

After a long, difficult sequence of proofs, it may be comforting to know 
that the existence of simplicial approximations is the important thing. We 
will not have to perform tedious constructions of simplicial approximations; 
any simplicial approximation of the type guaranteed by the Simplicial 
Approximation Theorem will usually do quite nicely. 

3.3 Induced Homomorphisms on the Homology Groups 

Definition. Let \K\ and \L\ be polyhedra with triangulations K and L respec­
tively a n d / : \K\ —> \L\ a continuous map. By the Simplicial Approxima­
tion Theorem, there is a barycentric subdivision K(k) of K and a simplicial 
mapping g: \K\ -> \L\ which is homotopic to f Theorems 3.1 and 3.2 
insure that g induces homomorphisms gp: HP(K) -> HP(L) in each dimen­
sion p. This sequence of homomorphisms {gp} is called the sequence of 
homomorphisms induced by f 

The preceding definition raises a question about the uniqueness of the 
sequence of homomorphisms induced by / . It can be shown, however, that 
the sequence {gp} is unique and, in particular, does not depend on the 
admissible choices for the degree k of the barycentric subdivision or on the 
admissible choices for the simplicial map g. The sequence is thus usually 
written {fp} instead of {gp} since it is completely determined by/ . Showing 
that the sequence is unique requires some concepts that we have not yet 
developed. The proof will therefore be postponed until Section 1 of Chapter 7. 
Those who cannot wait to see the proof may read that section now. 

We shall illustrate the utility of induced homomorphisms by proving that 
two Euclidean spaces of different dimensions are not homeomorphic. This 
was first proved by L. E. J. Brouwer in 1911; it is, of course, not a surprising 
result. Any reader who feels that this is a trivial application, however, is 
invited to produce his own proof before reading further. 

The following lemma is left as an exercise: 

Lemma. If f: \K\ —> \L\ and h: \L\ —> \M\ are continuous maps on the 
indicated polyhedra, then (hf)p: HP(K) -> HP(M) is the composition 

h$f*:Hp(K)->Hp(M) 
in each dimension p. 

Theorem 3.7 (Invariance of Dimension). Ifm^n, then 

(a) Sm and Sn are not homeomorphic, and 
(b) Um and Un are not homeomorphic. 

PROOF, (a) Suppose to the contrary that there is ahomeomorphismh: Sm-^Sn 

from Sm onto Sn with inverse h'1: Sn->Sm. Then h~xh and W r 1 are the 
identity maps on Sm and Sn respectively. Note that the identity map i on a 
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3.3 Induced Homomorphisms on the Homology Groups 

polyhedron \K\ induces the identity isomorphism i*: HP(K) -> HP(K) in each 
dimension p. Then 

(hh-1^ = hth;1*: Hp(S
n)->Hp(S

n), 
(/r1/*)* = h;1*^: Hp(S

m)->Hp(S
m) 

are identity isomorphisms in each dimension, so h* is an isomorphism 
between Hp(S

m) and Hp(S
n). Comparison of homology groups (Theorem 2.9) 

reveals that this is impossible since m # n. Hence Sm and Sn are not homeo-
morphic when m ^ n. 

(b) Recall from point-set topology that Sn is the one point compactification 
of IRn. Thus if Um and Un are homeomorphic, it must be true that their one 
point compactifications Sm and Sn are homeomorphic too. This contradicts 
part (a) if m # n. • 

A special case of the definition of induced homomorphisms for maps on 
spheres will be of particular importance. 

Definition. Le t / : Sn -> Sn,n > 1, be a continuous function from the ^-sphere 
into itself. Let K be a triangulation of Sn. Since K is an orientable n-
pseudomanifold, Theorem 2.10 and its proof show that it is possible to 
orient K so that the fl-chain 

zn= 2 l-°n 

aneK 

is an fl-cycle whose homology class [zn] is a generator of the infinite cyclic 
group Hn(K). This homology class is called a fundamental class. If 
fn : Hn(K) -> Hn(K) is the homomorphism in dimension n induced by / , 
then there is an integer p such that 

fn([Zn]) = p[Znl 

The integer p is called the degree of the m a p / a n d is denoted deg(/). 

The degree of a map on Sn was originally defined by L. E. J. Brouwer. 
The above definition is a modern version equivalent to his original one which 
is stated here for comparison. The student should feel free to use whichever 
definition fits best in a particular situation since they are equivalent. 

Alternate Definition. Suppose tha t / : Sn -> Sn is a continuous map and Sn is 
triangulated by a complex K. Choose a barycentric subdivision K(k) of K 
for which there is a simplicial mapping <p: \Km\ -^\K\ homotopic t o / 
Let T be any positively oriented n-simplex in K. Let p be the number of 
positively oriented w-simplexes a in K(k) such that 99(1 o) = I T , and let q 
|?e the number of positively oriented 77-simplexes /x in K(k) such that 
99(1 /x) = — I T . Then the integer p — q is independent of the choice of r 
(the same integer p — q results for each ^-simplex of K) and is called the 
degree of the map / 

In Brouwer's definition it can be shown that the degree of/is independent 
of the admissible choices for K, K(k\ and 99 (see, for example, [9], section 6-14). 
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3 Simplicial Approximation 

Intuitively, the definition states that the degree of a map / : Sn -> Sn is the 
number of times tha t /"wraps the domain around the range." 

Theorem 3.8. (a) Iff: Sn -> Sn and g: Sn -> Sn are continuous maps, then 
deg(g/") = deg(g)deg(/). 
(b) The identity map i: Sn —> Sn has degree + 1. 
(c) A homeomorphism h: Sn —> Sn has degree ± 1. 

PROOF, (a) Choose a triangulation K of Sn with fundamental class [zn] and 
consider the induced homomorphisms 

f*: Hn(K) -> Hn(K), g*: Hn(K) -> Hn(K). 

Then 
(gfMzn]) = dcg(gf)-[znl 

gtmtn]) = g*(deg(/)-[zn]) = deg(g).deg(/)-[zn]. 

Since the lemma preceding Theorem 3.7 insures that (gf)* = gnfn, then 
deg(gf) = deg(g)deg(/). 

(b) In Brouwer's definition of degree, it is obvious that for the identity map 
i, p = 1 and q = 0 so deg(/) = 1 — 0 = 1 . 

(c) Letting h ~1 denote the inverse of h, we have 

1 = deg(7) = d e g ^ " 1 ) = deg(Z )̂ deg(^_1). 

Since deg(/z) must be an integer, then deg(/z) = ± 1. It also follows that h and 
h~x have the same degree. • 

The following theorem was proved by Brouwer in 1912: 

Theorem 3.9 (Brouwer's Degree Theorem). If two continuous mapsf g: Sn -> 
Sn are homotopic, then they have the same degree. 

PROOF. Let K be a triangulation of Sn and let h: Sn x / -> Sn be a homotopy 
such that 

h(x, 0) = f(x\ h(x, 1) = g(x\ x e Sn. 

For convenience in notation we let ht denote the restriction of h to Sn x {t}. 
Thus h0 = / a n d h± = g. 

Let e be a Lebesque number for the open cover {ost(Wj): w{ is a vertex of K}. 
Since h is uniformly continuous, there is a positive number 8 such that if A 
and B are subsets of Sn and / respectively with diameters diam(v4) < S and 
diam(i?) < 8, then diam(h(A x B)) < €. Let K(k) be a barycentric subdivision 
of K of mesh less than 8/2 so that if t; is a vertex of K(k\ then diam(ost(V)) < 8. 
Let 

0 = ?0 < h < ' ' • < tq — 1 

be a partition of / for which successive points differ by less than 8. Then each 
set /z(ost(^) x [/;_i, tj])9 vt a vertex of K{k) and fy_l5 ;̂ successive members of 
the partition, has diameter less than e and is therefore contained in ost(wi;) 
for some vertex wi; of K. 
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3.4 The Brouwer Fixed Point Theorem and Related Results 

Thus if tj_± < t < tj9 the value of the simplicial map <pt approximating ht 
given by the Simplicial Approximation Theorem may be defined by letting 
<Pt(vd — wij- We therefore conclude that all the maps ht for tj_1 < t < tj 
have the same degree. Since any two successive intervals [^_i, tj] and 
[tj9 tJ + 1] have tj in common, it follows that the degree of ht is constant for 
0 < t < 1. In particular, h0 = / a n d h± = g have the same degree. • 

The preceding method of proof can be extended to show that homotopic 
maps from one polyhedron to another induce identical sequences of homo-
morphisms on the homology groups. Along with the preceding theorem, 
Brouwer proved a partial converse: Iff and g are continuous maps on the 
2-sphere which have the same degree, then they are homotopic. This con­
clusion was extended to arbitrary dimension by Heinz Hopf (1894-1971) in 
1927. The combined results form the famous Hopf Classification Theorem, 
which is stated here without proof: 

Theorem 3.10 (The Hopf Classification Theorem). Two continuous maps f 
g from Sn to Sn are homotopic if and only if they have the same degree. 

Hopf extended Brouwer's definition of degree to maps from polyhedra 
into spheres and, in 1933, extended his classification theorem to such maps: 
If X is a polyhedron of dimension not exceeding n, then two maps f and g from 
X into Sn are homotopic if and only if they have the same degree. Proofs can 
be found in [20] and in Hopf's original paper [41]. 

3.4 The Brouwer Fixed Point Theorem and Related Results 
Definition. If / : X-> X is a continuous function from a space X into itself, 

then a point x0 in Xis a fixed point off means that/(x0) = x0. 

Theorems about fixed points have far reaching applications in mathe­
matics. The existence of a solution for a differential or integral equation, for 
example, is often equivalent to the existence of a fixed point of a linear 
operator on a function space. (In this connection see Picard's Theorem from 
differential equations.) In this section we shall prove the classic fixed point 
theorem of L. E. J. Brouwer and some related results about Sn. 

Definition. A continuous function g: X —> Y from a space X into a space Y 
which is homotopic to a constant map is said to be null-homotopic or 
inessential. 

Definition A space JHs contractible means that the identity function /: X —> X 
is null-homotopic. In other words, X is contractible if there is a point x0 

in X and a homotopy H: X x / - > X such that 

H(x, 0) = x, H(x, 1) = x0, xeX. 

The homotopy H is called a contraction of the space X. 
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3 Simplicial Approximation 

Example 3.8. The unit disk D = {x = (xl9 x2) e U2: x\ + x\ < 1} is con-
tractible. We let x0 = (0, 0) be the origin and define a contraction by 

H((xl9 x2)9 t) = ((1 - t)xl9 (1 - t)x2), (xl9 x2) eD9tel 

Imagining the disk as a sheet of rubber, the contraction essentially "squeezes" 
the disk to a single point. 

This intuitive idea of contractibility suggests that the circle is not con-
tractible. This is in fact true and is a consequence of the following theorem of 
L. E. J. Brouwer. 

Theorem 3.11 The n-sphere Sn is not contractible for any n > 0. 

PROOF. The identity map on Sn has degree 1 for n > 1, and any constant map 
has degree 0. Since homotopic maps have the same degree (Theorem 3.9), 
then the identity is not null-homotopic, and Sn is not contractible for n > 1. 

For the case n = 0, we observe that 

S° = {xeM:x2 = 1} = {-1, 1} 

is a discrete space and therefore not contractible. • 

Theorem 3.12 (The Brouwer No Retraction Theorem). There does not exist a 
continuous function from the (n + l)-ball 

Bn + 1 = {x = (x i , x 2 , . . . , *» + i ) e R B + 1:2*? ^ l} 

onto Sn which leaves each point of Sn fixed, n > 0. 

PROOF. Assuming that a m a p / : Bn+1 -> Sn such that/(x) = x for each x in 
Sn does exist, define a homotopy 

H:Sn x I^Sn 

by 
H(x, t) = / ( ( l - t)x), xeS\teL 

Here (1 — t)x denotes the usual scalar product (real number multiplied by a 
vector) in Rn. Then H is a contraction on Sn contradicting Theorem 3.11. 
Thus no such map/exists. • 

Theorem 3.13 (The Brouwer Fixed Point Theorem). If / : Bn+1 -> Bn+1 is 
continuous map from the (n + \)-ball into itself and n > 0, then f has at 
least one fixed point. 

PROOF. Suppose on the contrary that / has no fixed point. Then for each 
x e Bn + 1,f(x) and x are distinct points. For any x consider the half-line from 
f(x) through x, and let g(x) denote the intersection of this ray with Sn, as 
shown in Figure 3.7. 

Then g: Bn + 1 -> Sn is continuous, and g(x) = x for each x e Sn. This 
contradicts the preceding theorem, so we conclude that the assumption that 
/ h a s no fixed point must be false. • 
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3.4 The Brouwer Fixed Point Theorem and Related Results 

Figure 3.7 

The Brouwer Fixed Point Theorem was first proved by Brouwer in 1912. 
The proof given in the text is not his original one. 

Definition. For each integer i with 1 < / < n + 1, the map 

rt:S
n->Sn 

defined by 

rt(xl9 x2,..., xn+1) 

= (Xi, . . . , X|_i, — Xj, Xi + 1, . . . , Xn + i), \Xi, . . . , Xn + i) 6 o , 

(with obvious modifications when i = 1 or n + 1) is called the reflection 
of Sn with respect to the xt axis. 

Definition. The map r: Sn-> Sn defined by 

r(x) = — x, x eSn, 

is called the antipodal map on Sn. 

For x = .(xl9 x2,..., xn+1) e Sn, rt(x) and x differ only in the ith coordi­
nate, and the ith coordinate of rt(x) is the negative of the fth coordinate of x. 
The antipodal map r takes each point x in Sn to the diametrically opposite 
point r(x) = — x each of whose coordinates is the negative of the corre­
sponding coordinate of x. It should be clear that the antipodal map r is the 
composition r±r2.. .rn+1 of the reflections of Sn in the respective axes. 
The proof of the following lemma is left as an exercise. 

Lemma, (a) Each reflection rt on Sn has degree —1. 
(b) The antipodal map on Sn has degree ( —l)n+1. 

Definition. A continuous unit tangent vector field, or simply vector field, on Sn 

is a continuous function/: Sn -> Sn such that x and/(x) are perpendicular 
for each x in Sn. 
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3 Simplicial Approximation 

In order to get an intuitive picture of a vector field, let us first review the 
concept of perpendicular vectors. Recall from sophomore Calculus that two 
vectors x = (xl9 x2) and y = (yl9 y2) in the plane are perpendicular if and 
only if their dot product (or inner product) 

x-y = x1y1 + x2y2 = 0. 

Perpendicularity is extended to vectors of higher dimension by the following 
definition: Two vectors x = (xl9..., xn) and y = (yl9..., yn) in IRn are 
perpendicular if and only if their dot product (Appendix 2) 

x-y = *ij>i + x2y2 + • • • + xnyn = 0. 

A vector field f on Sn is then interpreted as follows: f is a continuous 
function which associates with vector x of unit length in Un+1 a unit vector 
f(x) in Un + 1 such that x and/(x) are perpendicular. If we imagine that/(x) 
is transposed so that it begins at point x on Sn, then/(x) must be tangent to 
the sphere Sn. This idea is illustrated in Figure 3.8. 

Figure 3.8 

It should be clear that the following scheme describes a vector field on S1. 
For each x in S1, let/(x) denote a vector of unit length beginning at point x 
and pointing in the clockwise direction tangent to S1. Having all vectors/(x) 
point in the counterclockwise direction also produces a vector field on S1. 
The requirement of continuity for / rules out the possibility of having/(x) in 
the clockwise direction for some values of x and in the counterclockwise 
direction for others. 

Theorem 3.14 (The Brouwer-Poincare Theorem). There is a vector field on 
Sn

9 n > 1, if and only ifn is odd. 

PROOF. If n is odd, a vector field/on Sn can be defined by 

j{xl9 x2, •.., xn+i) 
= (*2> ~~~Xl9 X±9 —X39 . . . , Xn + l9 — Xn)9 (Xl9 X2, . . . , Xn + 1) E Sn. 

It is clear tha t / i s a continuous function from Sn into Sn. The proof tha t / i s 
a vector field is completed by observing that, for each x in Sn

9 

X'JyX) = \XiX2 XiX2) + [XQXQ. XQX^) + • • • + \XnXnj(.x XnXn + i) = U. 
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Suppose now that g: Sn -> Sn is a vector field where n is an even integer. 
This assumption will lead to a contradiction. Define a homotopy 
h:Sn x I-+Sn by 

/?(*, 0 = X COS(fTr) + g ( x ) Sin(/7r), X E S n , / 6 / . 

Then 

J|/I(JC, / )H 2 = A(JC, / ) - A ( J C , / ) 

= ||xj|2 cos2(f7r) + 2x-g(x)cos(r7r)sin(/7r) + ||g(*)||2 sin2(r7r) 

= 12COS2(/TT) + (2)(0) COS(/TT) sin(fTr) + l2sin2(f7r) 

= 1, 

so h is a homotopy on Sn. But 

h(x, 0) = x, h(x, 1) = -x, x e Sn, 

so /? is a homotopy between the identity map and the antipodal map on Sn. 
However, the identity map has degree 1 and the antipodal map has degree 
( —l)n + 1 = —I since n is even. This contradicts Brouwer's Theorem on the 
degree of homotopic maps (Theorem 3.9). Thus Sn has a vector field if and 
only if n is odd. D 

The main part of the Brouwer-Poincare Theorem (there is no vector field 
on a sphere of even dimension) was conjectured by Poincare and first proved 
by Brouwer. For n = 2, the result can be visualized as follows: Imagine a 
2-sphere with a unit vector emanating from each point; think of each vector 
as a hair. Finding a vector field for S2 is equivalent to describing a method 
for "combing the hairs" so that each one is tangent to the sphere and so that 
their directions vary continuously. In other words, there must be no parts or 
whorls in the hairs. According to the Brouwer-Poincare Theorem, such a 
hairstyle is impossible for spheres of even dimension. Because of this analogy, 
the theorem is sometimes called the "Tennis Ball Theorem." 

EXERCISES 

1. Give an example of two polyhedra |A"| and \L\ for which HP(K) and HP(L) 
are isomorphic for each value of p, but |A"| and \L\ are not homeomorphic. 

2. Verify in the proof of Theorem 3.1 that 9$ is a homomorphism. Show in 
particular that if [zp] = [wp] in HP(K\ then [<pp(zp)] = [<pP(wp)] in HP(L). 

3. Prove Theorem 3.3. 

4. (a) For the simplicial map 9 of Example 3.1, describe the induced homo-
morphisms <p%: HP{K) -> Hp(L). 

(b) Prove that if L is replaced by its 1-skeleton, then the map/is not simplicial. 

5. Choose triangulations for the 2-sphere S2 and torus T, and let 9: S2 -> T be 
a simplicial map. Prove that the induced homomorphism 99J: HP(S2) -> HP{T) 
is trivial for p > 1. Show that this result does not hold if the roles of S2 and 
T are interchanged. 
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6. Let X and Y be topological spaces and let M denote the set of all continuous 
maps / from X into Y. For brevity let us agree that f ~ g means that / is 
homotopic to g. Prove that ~ is an equivalence relation on M. 

7. (a) Prove that every convex subset of Un is contractible. 
(b) Given that Y is contractible, prove that every continuous function from 

a space X into Y is null-homotopic. 

8. Prove that vertices i;0, vu . .., vm of a complex K are vertices of a simplex in 
K if and only if Hf= o ostfe) is not empty. 

9. Prove the following facts: 
(a) If x and y are points in a simplex cr, then there is a vertex v of a such that 

||* - y\\ < \\x - v\\. 
(b) The diameter of a simplex <jp,p > 1, is the maximum length of its 1-faces. 
(c) The mesh of a complex K is the maximum length of its 1-simplexes if K 

has positive dimension. 

10. Answer the following questions about the proof of Theorem 3.4: 
(a) If cr is the simplex of smallest dimension in K containing a given point x, 

why is x in ost(fli) for each vertex at of a ? 
(b) Why is the function H continuous ? 

11. Complete the details in the proof of Theorem 3.6 by proving the following: 
(a) If i? is a vertex of K, then the diameter of ost(i?) does not exceed twice the 

mesh of K. 
(b) If v is a vertex of K, then ost(V) is an open subset of |^T|. (Recall that \K\ 

has the Euclidean subspace topology.) 
(c) Prove that every polyhedron is a compact metric space. 
(d) Show that the function g in the proof of Theorem 3.6 has the required 

properties. 

12. Prove that the antipodal map on Sn has degree (—l)n + 1. 

13. (a) Prove the lemma preceding Theorem 3.7: If / : |^T| ~> |L| and 
h: \L\ -> \M\ are continuous maps, then (hf)% = h%ff in each dimension 

P-
(b) Prove that if two polyhedra |^T| and \L\ are homeomorphic, then 

HP(K) £ HP(L) in each dimension p. 

14. Prove the following fact about maps / , g: Sn -> Sn: If deg(/) = degO), then 
gS =tf:Hn(Sn)->Hn(Sn). 

15. Prove that a discrete space X is contractible if and only if X has only one 
point. 

16. Is every subspace of a contractible space contractible? Explain. 

17. Show that if \K\ is contractible, then HP(K) = {0} for/? > 1 and H0(K) £ Z. 

18. In the text the Brouwer Fixed Point Theorem was proved as a consequence 
of the Brouwer No Retraction Theorem. Reverse this process to show that 
the Fixed Point Theorem implies the No Retraction Theorem. 

19. Definition. Let X be a topological space and B a subspace of X. If there is a 
continuous m a p / : X-^ B which leaves each point of B fixed, then B is called 
a retract of X. The function / is a retraction of X onto B. 
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Let A and K be complexes for which A is a subset of K and \A\ is a retract 
of \K\. Prove that HP(K) has a subgroup isomorphic to HP(A) in each 
dimension /?. 

20. Prove the Brouwer No Retraction Theorem by comparing the homology 
groups of Sn and Bn + 1. (Hint: Assuming that there is a retraction/: Bn + x -> Sn, 
let i: S n -> £ n + 1 denote the inclusion map. Then fi: Sn -> S n is the identity 
map. Consider the homomorphism induced on Hn(Sn). 

21. Let / g be continuous maps from a space X into Sn such that /(JC) and g(x) 
are never antipodal points, i.e.,f(x) = —g(x) for no x. Prove t h a t / a n d g- are 
homotopic. 

22. Find an explicit formula for the vector field on S1 which produces tangent 
vectors with the clockwise orientation. Repeat for the counterclockwise 
orientation. 

23. Prove that every vector field on Sn (n odd) is homotopic to the identity map 
and to the antipodal map. 

24. Let n be an even positive integer and / : Sn -> En + 1 a continuous map such 
that x and / (x ) are perpendicular for each x e Sn. Prove that there is a point 
x in Sn for which f(x) = 0. 

25. Consider the circle S1 with multiplication given by the complex numbers. 
Prove that the map f(x) = xn, n a positive integer, has degree n. What is the 
degree of the map g(x) = 1/xl 

26. Let g: Sn-> Sn be a continuous map for which the range is a proper subset 
of Sn. Prove that g is null-homotopic and that deg(^) = 0. 

27. (a) Let g: Sn -> $n be a continuous map for which there is a continuous 
extension G: Bn + 1 -> Sn. Prove that g is null-homotopic. 

(b) Prove the converse: If g: Sn -> Sn is null-homotopic, then g has a 
continuous extension G: Bn + 1 -> 571. (Hint: Bn + 1 can be considered to be 
the quotient space of Sn x [0, 1] obtained by identifying Sn x {1} to a 
single point.) 

28. Let K,L, and M b e complexes a n d / : |^T| -> |L| and^ : \L\ -> | M | continuous 
functions. If K is star related to L relative to / and L is star related to M 
relative to g, prove that K is star related to M relative to gf. 

29. Show that every continuous function f:\K\-+\L\ from a polyhedron |^T| 
to a polyhedron \L\ can be arbitrarily approximated in terms of distance by 
a simplicial approximation. More precisely, prove the following: 

Theorem. Let f: \K\ -> \L\ be a continuous map on the indicatedpolyhedra and 
e a positive number. There are barycentric subdivisions K(i) and LU) and a 
continuous map g: \K\ -> \L\ such that 
(a) g is a simplicial map with respect to K(i) and Lu\ 
(b) g is homotopic to / and 
(c) the distance \\f(x) — g(x)\\ is less than e for all x in \K\. 

30. (a) Prove that every barycentric subdivision of an «-pseudomanifold is an 
H-pseudomanifold. 

(b) If K is an orientable pseudomanifold, is each barycentric subdivision of 
K orientable? Prove that your answer is correct. 

(c) Repeat part (b) for the nonorientable case. 
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4 The Fundamental Group 

4.1 Introduction 
We turn now to the investigation of the structure of a topological space by 
means of paths or curves in the space. Recall that in Chapter 1 we decided 
that two closed paths in a space are homotopic provided that each of them 
can be "continuously deformed into the other." In Figure 4.1, for example, 
paths C2 and C3 are homotopic to each other and C1 is homotopic to a 
constant path. Path C1 is not homotopic to either C2 or C3 since neither C2 

nor C3 can be pulled across the hole that they enclose. 
In this chapter we shall make precise this intuitive idea of homotopic 

paths. The basic idea is a special case of the homotopy relation for continuous 
functions which we considered in the proof of the Simplicial Approximation 
Theorem (Theorem 3.6). 

Figure 4.1 



4.2 Homotopic Paths and the Fundamental Group 

4.2 Homotopic Paths and the Fundamental Group 
Definition. A path in a topological space X is a continuous function a from 

the closed unit interval / = [0, 1] into X. The points a(0) and a(l) are the 
initial point and terminal point of a respectively. Paths a and j8 with common 
initial point a(0) =/3(G) and common terminal point a(l) =/3(1) are 
equivalent provided that there is a continuous function H: I x / - > Zsuch 
that 

#(f,0) = a(0, H(t9l)=P(t), tel9 

H(0, s) = a(0) = ]3(0), # ( 1 , J ) = a(l) = j3(l), sel. 

The function H is called a homotopy between a and j8. For a given value 
of s, the restriction of H to I x {s} is called the s-level of the homotopy 
and is denoted i /(- , s). 

Definition. A /oo^ in a topological space Z is a path a i n l with a(0) = a(l). 
The common value of the initial point and terminal point is referred to as 
the base point of the loop. Two loops a and j8 having common base point 
x0 are equivalent or homotopic modulo x0 provided that they are equivalent 
as paths. In other words, a and jS are homotopic modulo x0 (denoted 
a ~ XQ P) provided that there is a homotopy H: I x I-> X such that 

H(-,0) = a, H(>,l)=p, H(0,s) = H(l,s) = x0, sel. 

Since ^ ( 0 , s) and i / ( l , ^) always have value x0 regardless of the choice of 
s in [0, 1], it is sometimes said that the base point "stays fixed throughout 
the homotopy." 

Example 4.1. The paths a and j8 in Figure 4.2 are equivalent. A homotopy H 
demonstrating the equivalence is defined by 

H(t, s) = sP(t) + (1 - s)a(t), (s, t)el x I. 

The homotopy essentially "pulls a across to j8" without disturbing the end 
points. If the space had a "hole" between the ranges of a and j8, then the 
paths would not be equivalent. 

a(0) = |3(0) 

a ( l ) = |3(l) 

Figure 4.2 
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4 The Fundamental Group 

The following lemma from point-set topology will be used repeatedly in 
this chapter. Its proof is left as an exercise. 

The Continuity Lemma. Let X be a topological space with closed subsets A and 
B such that A u B = X. Let f: A -> Y and g: B -> Y be continuous maps 
to a space Y such that f{x) = g(x) for each x in A n B. Then the map 
h: X-> Y defined by 

(fix) ifxeA 

is continuous. 

KX)~ UW ifxeB 

Theorem 4.1. (a) Equivalence of paths is an equivalence relation on the set of 
paths in a space X. 

(b) Equivalence of loops is an equivalence relation on the set of loops in X 
with base point x0. 

PROOF. We shall prove (b) and leave to the reader the obvious modifications 
needed for a proof of (a). 

Consider the set of loops in X having base point x0. Any such loop a is 
equivalent to itself under the homotopy 

F(t,s) = a(0, (t,s)el x /. 

Thus the relation ~^0 is reflexive. 
Suppose a ~Xo p. Then there is a homotopy H\ I x / - > X satisfying 

H(-,0) = a, # ( - , l ) = j8, H(0, s) = H(l, s) = x0, sel. 

Then the homotopy 

H(t, s) = H(t, 1 - s), (s, t)el x /, 

shows that j8 ~^0 a and hence that equivalence of loops is a symmetric 
relation. 

Suppose now that for the loops a, j8, and y we have a ~Xo j8 and ft ~Xo y. 
Then there are homotopies H and K such that 

H(-,0) = cc, H(-,l) = P, H(0,s) = H(l,s) = x0, sel, 

K(-,0) = p, K(-9 1) = y, K(0,s) = K(l,s) = x0, sel. 

The required homotopy L between a and y is defined by 

(H(t,2s) i f O < ^ < i 
(t,s) - \ K ^ l s _ 2 ) {fi < s < L 

The continuity of L follows from the Continuity Lemma with A = I x [0, ^] 
and B = I x [|, 1]. Thus a ~XQ y, so ~*0 is an equivalence relation. • 
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4.2 Homotopic Paths and the Fundamental Group 

Definition. If a and ft are paths in X with a{\) = /3(0), then the path product 
a * p is the path defined by 

«*m = la{lt) tf0*'*i 
p v ; \j8(2f - 1) if i < t < 1. 

The continuity of a * ̂  is an immediate consequence of the Continuity 
Lemma. 

Thinking of the variable t as time, a path a in X can be visualized by the 
motion of a point beginning at a(0) and tracing a continuous route to a(l). 
A product a * j8 is then visualized as follows: The moving point begins at 
a(0) and follows path a at twice the normal rate, arriving at a(l) when t = \. 
The point then follows path j8 at twice the normal rate and arrives at /3(1) at 
time t = 1. Note that the condition a(l) = /3(0) is required for the product of 
paths in order to avoid discontinuities. 

We shall be primarily concerned with products of loops a and j8 having 
common base point x0. In this case the product a * j8 is also a loop with base 
point x0. The following lemma is left as an exercise: 

Lemma. Suppose that loops a, a', j8, j8' m a space X all have base point x0 and 
satisfy the relations a ^XQa and j8 ~XoP'. Then the products a * /3 a/id 
a' * £' are homotopic modulo x0. 

Definition. Consider the family of loops in X with base point x0. Homotopy 
modulo x0 is an equivalence relation on this family and therefore partitions 
it into disjoint equivalence classes, [a] denoting the equivalence class 
determined by loop a. The class [a] is called the homotopy class of a. The 
set of such homotopy classes is denoted by ?r1(Z, x0). If [a] and [/3] belong 
to 7T1(Z, x0), then the product [a] o [ft] is defined as follows: 

[a] o [fl = [a * PI 

Thus the product of two homotopy classes is the class determined by the 
path product of their representative elements. The preceding lemma 
insures that the product o is a well-defined operation on 7r1(l

r, x0). The 
set TT1(Z, *0) with the o operation is called the fundamental group of X at 
x0, the first homotopy group of X at x0, or the Poincare group of X at x0. 

Theorem 4.2. The set 7r1(Z, X0) is a group under the o operation. 

PROOF. TO show that ?r1(Z, x0) is a group, we must show that there is a loop c 
for which [c] is an identity element, that each homotopy class [a] has an 
inverse [a] = [a] - 1 , and that the multiplication o is associative. Let us prove 
each of these as a separate lemma. 

Lemma A. TT^X, X0) has an identity element [c] where c is the constant loop 
whose only value is x0. 
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4 The Fundamental Group 

c * a{i) = 

PROOF. The constant loop c is defined by 

c(t) = x0, t e I. 

If a is a loop in X based at x0, then 

(x0 if 0 < t < \ 

[a(2t - 1) if i < t < 1. 

To show that [c * a] = [a], we require a homotopy H: I x 1-^ X such that 

# ( . , 0 ) = C*a, # ( - , l ) = a, 

# ( 0 , J ) = #(1,.?) = x0, s e l 

These requirements are filled by defining 
[x0 ifO < t < (1 - j)/2 

#0, s) = {a(rH^) W-M*<*I. 
After checking to see that H has the required properties, we will see how 

it was obtained. Note that 

H(t, 0) = 
XQ if0<t<i 

a(lt - 1) if \ < t < 1 
= C * a(r), 

(x0 if0<t< 01 

H(0, s) = xo, #(1, s) = < * ( 2 ^ 7 l) = «0) = *o, 5 6 / . 

Continuity of H is assured by the Continuity Lemma since {It + s — 1) 
divided by (s 4- 1) is a continuous function of (r, .s) and the two parts of the 
definition of H agree when t = (I — s)/2. 

The homotopy H was obtained from the diagram shown in Figure 4.3 by 
the analysis that follows. To define a homotopy H on the unit square which 

( 0 , 1 ) 

(0, s) f 

( 1 / 2 , 0 ) ( 1 , 0 ) t 

Figure 4.3 
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4.2 Homotopic Paths and the Fundamental Group 

agrees with c * a on the bottom and with a on the top, let us intuitively 
assume that we will define the s-level / / ( - , s) to have value x0 at each point 
(t, s) from t = 0 out to the diagonal line L. Then we wish H(,s) to follow 
the route of a. Since L has equation t = (1 — s)/2 and the "t ime" remaining 
when t = (1 — s)/2 is 

(1 - ^) _ 1 + s 
2 2 ' 

the desired effect is accomplished by defining 

ifO < t < (1 - s)/2 
(1 " s)\ } ) - r b ) ff(i-*)/2£'*i-

This expression reduces to the formula for H given previously. 
We have now proved the following: If [a] e TT^X, X0), then 

[c] o [a] = [c * a] = [a] 

so that [c] is a left identity for TT1(Z, X0). 

In order to see that [c] is a right identity as well, we need to show that 
[a * c] = [a]. This is accomplished by the homotopy 

HV,s) = Hjh) * 0 £ r £ ( , + l)/2 
U0 if 0 + l)/2 < t < 1. 

The intuitive picture is left to the reader. 

Lemma B. For each homotopy class [a] in 7r1(Z, X0), the inverse of [a] with 
respect to the operation o and the identity element [c] is the class [a] where 
a(t) = a{\ - t), tel. 

PROOF. The path a(t) = a{\ — t) is commonly called the reverse of the path a. 
It begins at a(l) = x0 and traces the route of a backwards. We must prove 
that 

[a] o [a] = [a] o [a] = [c], 

[a] o [a] = [a * a], 

(a(2t) if 0 < t < \ 

Note that 

x(t) 
K J U(2 - 20 ifi < t < 1. 

The path a * a follows a and then follows the reverse of a to the starting 
point xQ. We shall define a homotopy J^for which the .s-level K(-, s) follows 
route a out to a(s) and then retraces its steps back to x0. This is accomplished 
by defining 

(a(2ts) if 0 < t < \ 
K^'S^ \a{2s- Its) i f i < t < 1. 
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4 The Fundamental Group 

It is easily observed that 

# ( • ,0 ) = C, K(-, 1) = a * a , 

K(0,s) = K(l,s) = x0, sel, 

and that K is continuous. 
Thus 

[a] o [a] = [a * a] = [c], 

so [a] is a right inverse for [a]. Since the reverse of the reverse of a is itself a 
(i.e., a = a), the same proof shows that 

[a] o [a] = [a] o [3] = [c], 

and hence [a] = [ a ] - 1 is a two-sided inverse for [a]. 

Lemma C. The multiplication o is associative. 

PROOF. Let [a], [/3], and [y] be members of TT1(Z, X0). We must prove that 

(M ° [ffl) ° M = M o m o [y]) 

or, equivalently, 

[(a * 0) * y] = [a * (0 * y)]. 

A little arithmetic shows that 

(a(4t) ifO < f < i 
(a*j3)*y(0 = ^j8(4f- 1) i f i < / < i 

[y(2f - 1) i f i < f < 1 
and 

(a(2t) if 0 < t < i 
a * (j3 * y)(0 = h(4t - 2) i f i < / < | 

[y(4f - 3) i ff < f < 1. 

The reader should apply the method illustrated in Lemma A to Figure 4.4, 
obtain the homotopy 

KHh) 
L(t, s) = < 

if 0 < t < (s + 1)4 

]8(4/ - 1 - s) if(s+ l)/4 < t < (s + 2)/4 

r(4t2-JS) if (-̂  + 2)/4 < / < 1 

and verify that it is a homotopy modulo x0 between (a * ff) * y and a * (j8 * y). 
This completes the proof that o is associative and the proof of Theorem 4.2. 

D 

The technique for obtaining the homotopies in the proof of Theorem 4.2 is 
extremely important in homotopy theory. The reader should be certain that 
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4.2 Homotopic Paths and the Fundamental Group 

Of / j3 / 7 

I (1/4,0) (1/2,0) OTO) t 

Figure 4.4 

he understands the method by solving the relevant exercises at the end of the 
chapter. 

Definition. A space X is path connected means that each pair of points in X 
can be joined by a path. In other words, if x0 and xx are points in X, then 
there is a path in X with initial point x0 and terminal point x±. 

Theorem 4.3. If a space X is path connected and x0, xx are points in X, then the 
fundamental groups IT^X, x0) and TT^X, X±) are isomorphic. 

PROOF. Let p: I-> X be a path such that 

p(0) = x0, p(l) = xx. 

If a is a loop based at x0, then (p * a) * p is a loop based at xx. Here p denotes 
the reverse of p: 

p(t) = p(l - t), 0 < t < 1. 

We define a function P: TT1(Z, X0) -> 7r1(l
r, Xi) by 

P([a])= [(p *«)*/>], W e ^ I , ^ ) . 

It should be clear that the image of [a] is independent of the choice of path in 
[a] so that P is well defined. 

Several observations are necessary before showing that P is an isomor­
phism. First, Lemma B with minor modifications shows that [p * p] and 
[p * p] are the identity elements of TT^X, X0) and TT^X, X±) respectively. 
Second, Lemma C can be easily modified to show that for any paths a, ($, y 
for which (a * j8) * y and a * (j8 * y) are defined, the indicated triple products 
are equivalent. Thus in [(p * a) * p]9 we may ignore the inner parentheses and 
simply write [p * a * p] since the equivalence class is the same regardless of 
the way in which the terms of the product are associated. 
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4 The Fundamental Group 

N o w consider [a], [ft] in Trx(X, x 0 ) . 

P([cc] o [f$]) = P([a * /3]) = [p * a * ft * p] = [p*a*p*p*[$*p] 

= [p * a * p] o [p * p * p] = ?([«]) o P([/3]). 

Thus P is a homomorphism. 
The function Q: ^ ( X , Xi) -> ^ ( X , x0) defined by 

2 ( H ) = [p * <* * p\, M e ^ i (X *i) 

is the inverse of P. To see this, observe that for [a] e TT1(Z, X0), 

G-P(H) = (?([p * a * i°]) = [p * P * a * P * p] 
= [p * p] o [a] o [p * p] = [«]. 

Thus <gP is the identity map on TT1(Z, X0) and, by symmetry, we observe that 
PQ must be the identity map on ^ ( X , XX). Thus the indicated fundamental 
groups are isomorphic. • 

Because of the preceding theorem, mention of a base point for the funda­
mental group of a path connected space is often omitted. We shall refer 
sometimes to "the fundamental group of X" and write ^ ( X ) , when Xis path 
connected, since the same abstract group will result regardless of the choice 
of the base point. This applies primarily to the process of computing the 
fundamental group of a given space. Theorem 4.3 does not guarantee, 
however, that the isomorphism between TT1(Z, X0) and TT1(Z, X±) is unique; 
quite often different paths lead to different isomorphisms. For this reason, 
there are many applications of the fundamental group in which the specifica­
tion of a base point is important. When comparing fundamental groups of 
two spaces Zand Yon the basis of a continuous m a p / : X-> Y, for example, 
it is usually necessary to specify a base point for each space. 

Definition. A path connected space X is simply connected provided that ^ ( X ) 
is the trivial group. 

Theorem 4.4. Every contractible space is simply connected. 

PROOF. Let Xbe a contractible space. There is a point x0 in Zand a homotopy 
H: X x 7 - > X such that 

H(x, 0) = x, • H(x, 1) = x0, x e X. 

It is easy to see that X is path connected. If x e X, the function 

ax = H(x, • ) : / - > X 

is a path from H(x, 0) = x to H(x, 1) = x0. Thus any two points x and y 
are joined by the path ax * ay where ay is the reverse of ay. 

Assume for a moment that H has the additional property 

H(x0, s) = x0, s e I. 
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4.3 The Covering Homotopy Property for S1 

For [a] e 7r1(l
r, xQ)9 define a homotopy h: I x / - > X by 

A(f, J ) - #(«(*), s). 
Then 

/fc(f, 0) = a(f), /*(*, 1) = x0, r e / 
/j(0, s) = A(l, s) = x0> ^ e /. 

Here we have used our additional assumption H(x0, s) = x0 to produce 
h(09 s) = h(l,s) = x0. Thus /z demonstrates that a is equivalent to c, the 
constant loop whose only value is x0. Then [a] = [c] and ir^X, x0) consists 
only of an identity element. 

But what happens if the path H(x0, • ) : / - » X is not constant? We must 
then modify each level of the homotopy h to produce at each level a loop 
based at x0. The procedure is illustrated in Figure 4.5, and the revised defini­
tion of h is left as an exercise for the reader. • 

Figure 4.5 

4.3 The Covering Homotopy Property for S1 

This section is devoted to determining the fundamental group of the circle. 
It will be convenient to consider the unit circle S1 as a subset of the complex 
plane; we thus consider U2 as the set of all complex numbers x = xx + ix2 

where / = V~^l. 
We shall refer several times to the function p: U -> S1 defined by 

p(t) = exp(2nit)9 t e R. 

Here exp denotes the exponential function on the complex plane. In particu­
lar, if t is in the set R of real numbers, then 

exp(2irit) = cos(27rr) + isinilwt). 

Note that p maps each integer n in U to 1 in S1 and wraps each interval 
[«, n + 1] exactly once around S1 in the counterclockwise direction. 
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Definition. If a\ / - > S1 is a path, then a path 6: / - > U such that pa = a is 
called a covering path of cr or a lifting of a to the real line U. IfF: I x / -> S1 

is a homotopy, then a homotopy F: I x / - > 1R such that;?/* = Fis called 
a covering homotopy or a lifting of i7. 

Theorem 4.5 (The Covering Path Property), Ifa.I-^S1 is a path in S1 with 
initial point 1, then there is a unique covering path &:I-+M with initial 
point 0. 

PROOF. Let U1 denote the open arc on S1 beginning at 1 and extending in the 
counterclockwise direction to —/, and let U2 denote the open arc from —1 
counterclockwise to /, as shown in Figure 4.6. Then U-i and U2 are open sets 
in S\ Ux u U2 = S1 and 

Figure 4.6 

Note that p maps each interval (n, n + f) homeomorphically onto U1 and 
maps each interval (n — %, n + J) homeomorphically onto U2. 

Here is the intuitive idea behind the proof. Subdivide the range of the 
path a into sections so that each section is contained either in Ux or in U2. 
If a particular section is contained in Ul9 we choose one of the intervals 
V = (n, n + | ) and consider the res t r ic t ion^ of p to this interval. Compos­
ing (plv)'1 with this section of the path "lifts" the section to a section of a 
path in U. The same method applies to sections lying in U2. To insure con­
tinuity we must be careful that the initial point of a given lifted section be 
the terminal point of the lifted section that precedes it. 

This method is applied inductively as follows. Let e be a Lebesgue number 
for the open cover {<J~1(U1), V~1(U2)} of I. Choose a sequence 

0 = t0 < f i < t2 < - • • < tn = 1 

of numbers in / with each successive pair differing by less than e. Then the 
image o([th ti + 1]) of any subinterval [ti9ti + 1\, 0 < / < n — 1, must be 
contained in either Ux or U2. 

Now, <j([t0, t^) must be contained in U2 since 

a(t0) = or(O) =HU,. 
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Let Vi = ( —i, i ) and define 5 on |70, *i] by 

Kt) = (/>k)-MO-
Proceeding inductively, suppose that a has been defined on the interval 
[t09 tk}. Then 

where U is either Ux or U2. Let Vk + 1 be the component of p~\U) to which 
5(tk) belongs. Note that Vk + 1 is one of the intervals (n, n + f) or 
(/? — i , /? + i ) . Then^jFfc + 1 is a homeomorphism, and the desired extension 
of a to [tk, tk + 1] is obtained by defining 

*(0 = 0 > k + i ) ~ M 0 , te[tk,tk + 1 ] . 

The continuity of a is guaranteed by the Continuity Lemma since the lifted 
sections agree at the endpoints tk. This inductive step extends the definition of 
<* to [t0, tn] = I. 

To prove that a is the only such covering path, suppose that a also satisfies 
the required properties pd = a and or'(O) = 0. Then the path a — a has 
initial point 0 and 

p(a(t) - o'(t)) = po{t)lpa\t) = o(t)Kt) = 1, tel, 

so a — o' is a covering path of the constant path whose only value is 1. Since 
p maps only integers to 1, then a — a must have only integral values. Thus, 
since / is connected, a — a can have only one integral value. This one value 
must be the initial value, 0. Therefore a — a' = 0, so d = d. The required 
lifting a is therefore unique. • 

Corollary (The Generalized Covering Path Property). If a is a path in S1 and 
r is a real number such that p(r) = or(0), then there is a unique covering path 
a of a with initial point r. 

PROOF. The path or/or(0) is a path in S1 with initial point or(0)/or(0) = l and 
therefore has a unique covering path rj with initial point 0. The path &: / - > U 
defined by 

a(t) = r + rj(t), t e I, 

is the required covering path of a with initial point r. The uniqueness of 5 
follows from that of rj. • 

Theorem 4.6 (The Covering Homotopy Property). If F: I x I-+S1 is a 
homotopy such that F(0, 0) = 1, then there is a unique covering homotopy 
F.I x / - > R such that F(0, 0) = 0. 

PROOF. The proof is similar to that of the Covering Path Property; in fact, 
we use the same open sets Ul9 U2 in S1. By a Lebesgue number argument, 
there must exist numbers 

0 = t0 < t1 < - • • < tn = 1, 0 = s0 < s1 < - - - < sm = I 
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such that F maps any rectangle [ti9 ti + 1] x [sk, sk + 1] into either £/x or £/2. 
Since 

F(0, 0) = 1 £ £/1? 

then Ffl/o, fi] x D?o><Si]) must be contained in U2. Let F,. = ( — •£,£) and 
define /* on [f0, *i] x [̂ o, ^i] by 

F(r , j ) = (p|V l)-1F(r, j) . 

Now extend the definition of F over the rectangles [tt, ti + 1] x [j0, sx] in 
succession as in the proof of the Covering Path Property, being careful that 
the definitions agree on common edges of adjacent rectangles. This defines F 
on the strip / x [s0, s^. 

Proceeding inductively, suppose that Fhas been defined on (/ x [s0, sk]) u 
([t0, ti] x [sk, sk + 1]). We wish to extend the domain to include [tt, ti + 1] x 
I A , sk + 1], as shown in Figure 4.7. Let 

A = {(x, y) e [ti9 ti + 1] x [sk, sk + 1]: x = t{ or y = sk} 

be the common boundary of the present domain of F and [th ti + 1] x 
[SkiSjc + x]. Now, F([thti + 1] x [sk,sk + 1]) is contained in either U1 or U2. 
Denote this containing set by U, and let V be the component of p~\U) 
which contains F(A). Define F on [ti9 tt + 1] x [sk, sk+1] by 

F(t9S) = (p\y)-1F(t,S). 

1 (tl+ i , s* + i ) 

I 
1 , 

J..!:....',..,..... ..t....':: :i:. • '''•' ...J 
~W u ti+1 i 

Figure 4.7 

The continuity of F follows from the Continuity Lemma since the old and 
new definitions of F agree on the closed set A. This induction extends the 
domain of F to [t0, tn] x [s0, sm] = I x L 

To see that F is the only covering homotopy of F with F(Q, 0) = 0, 
suppose that F' is another one. Then the homotopy F — F' has the properties 

(F - F')(0, 0) = F(0, 0) - F'(0, 0) = 0, 

p(F - F')(t, s) = pF(t, s)lPF\U s) = F(t, s)/F(t9 s) = 1, 

Sk + 1 

sk 
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for all (t, s) in / x /. Thus, as in the case of covering paths, F — F' can have 
only one integral value, namely 0. Then F = F' and the covering homotopy 
is unique. D 

Definition. Let a be a loop in S1 with base point 1. The Covering Path Property 
insures that there is exactly one covering path a of a with initial point 0. 
Since 

1 = «(1) = pa(\) = exp(27r/a(l)), 

then a(l) must be an integer. This integer is called the degree of the loop a. 

Theorem 4.7. Two loops a and fi in S1 with base point 1 are equivalent if and 
only if they have the same degree. 

PROOF. Let a and /? denote the covering paths of a and j8 respectively having 
initial point 0 in U. 

Suppose first that a and ft have the same degree so that a{\) = /3(1). Define 
a homotopy H\ I x / - > U by 

H(t, s) = (1 - s)a{t) + sfi(t), (t, s)el x /. 

Then H demonstrates the equivalence of a and j5 as paths in U. Note in 
particular that H(l, s) is the common degree of a and j8 for each s in /. The 
homotopy 

pH\I x I-+S1 

shows the equivalence of a and. j8 as loops in S1. 
Suppose now that a and j8 are equivalent loops in S1 and that K:I x / -> 5 1 

is a homotopy such that 

K(0,s) = K(l,s) = 1, s e / . 

By the Covering Homotopy Property, there is a covering homotopy 
K: I x / - > R such that 

^(0 , 0) = 0, pK= K. 
Then 

pK(0,s) = K(0,s) = 1 , ^ e / , 

so K(0, s) must be an integer for each value of s. Since / is connected, 
K(0, •) must have only the value K(0, 0) = 0. A similar argument shows that 
K(l, •) is also a constant function. 

Since 

PK(.,0) = K(,0) = a, pK(., 1) = K{-9 1) = fi, 

then ^ ( - , 0 ) = a and K(-, 1) = j5 are the unique covering paths of a and j8 
respectively with initial point 0. Thus 

degree a = 5(1) = K(l, 0) = K(\, 1) = 0(1) = degree ft 

so a and j8 must have the same degree. • 
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Corollary. The fundamental group TT^S1) is isomorphic to the group Z of 
integers under addition. 

PROOF. Consider TT^S1, 1), and define a function 

d e g ^ S 1 , 1 ) -*Z 
by 

deg[a] = degree a. 

The preceding theorem insures that deg is well-defined and one-to-one. 
To see that deg maps ^ ( S 1 , 1) onto Z, let n be an integer. The loop y in 

S1 defined by 
y(t) = exp(2irint) 

is covered by the path 
t->nt, t e I, 

and therefore has degree n. Thus deg[y] = n. 
Suppose now that [a] and \fi] are in ir^S1, 1). We must show that 

deg([«] o [£]) = deg[«] + deg[j8]. 

If a and j5 are the unique covering paths of a and j8 which begin at 0, then the 
p a t h / : / - > R defined by 

„ , ffi(2r) if0 < / < i 
/ l j U(l) + 0(2* - 1) ifi < r < 1 

is the covering path of a * j8 with initial point 0. Thus degree(a * ]8) = 
/ ( l ) = a(l) + j5(l) = degree a + degree/?. Then 

deg([a] © [j8]) = degree(a * j8) = degree a + degree j8 

= deg[a] + deg[j8]. D 

The most important topic of this section has been the Covering Homotopy 
Property. We shall see it again in a more general form in Chapter 5, and those 
who take additional courses in algebraic topology will find that it is one of 
the most useful concepts in homotopy theory. 

4.4 Examples of Fundamental Groups 
We now know that the fundamental group of a circle is the group of integers 
and that the fundamental group of any contractible space is trivial. The 
observant reader has probably surmised that the fundamental group is 
difficult to compute, even for simple spaces. 

Homeomorphic spaces have isomorphic fundamental groups. The proof 
of this fact is left as an exercise. In this section we shall present less stringent 
conditions which insure that two spaces have isomorphic fundamental groups. 
This will allow us to determine the fundamental groups of several spaces 
similar to S1. In the latter part of the section we shall prove a theorem which 
shows that the fundamental group of the ^-sphere Sn is trivial for n > 1. 
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Definition. Let X be a space and A a subspace of X. Then A is a deformation 
retract of X means that there is a homotopy H: X x I-> X such that 

# 0 , 0) = x, # 0 , 1) e ^ , X G I , 

//(a, 0 = 0> ae A, t e I. 

The homotopy if is called a deformation retraction. 

Theorem 4.8. f/^ w a deformation retract of a space X and x0 is a point of A, 
then TT^X, x0) is isomorphic to TT^A, X0). 

PROOF. Let H: X x 7 - > I b e a deformation retraction of X onto A. Then 
if a is a loop in Z with base point x0, if («(•), 1) is a loop in 4̂ with base point 
xQ. We therefore define h: TT^X, x0) -> TT^A, X0) by 

For [a], [jS] in TTX(X, *<>), 

«[«] ° W) = K[« * j3]) = [//(a * £(.), 1)] = [//(«(•), 1) * #(/?(•), 1)] 

so h is a homomorphism. 
The fact that #(«(•), 1) is equivalent to H(a(-), 0) = a as loops in X 

insures that h is one-to-one. If [y] is in ̂ ( / i , x0), then y determines a homotopy 
class (still called [y]) in 7r1(A

r, X0). Since if leaves each point of A fixed, then 

K[y}) = H(y(-l 1) = [y], 

so /* maps 7r1(l
r, x0) onto ^ ( / i , X0). This completes the proof that h is an 

isomorphism. D 

Example 4.2. Consider the punctured plane R2\{/?} consisting of all points in 
U2 except a particular point p. Let A be a circle with center /? as shown in 
Figure 4.8. 

Figure 4.8 

For x e U2\{p}, the half line from p through x intersects the circle A at a 
point r(x). This function r is clearly a retraction of R2\{/?} onto A. Define a 
homotopy H: (U2\{p}) x i - > R2\{/?} by 

if(x, 0 = tr(x) + (1 - f)x, * E ^2 \0>}> ' e ^ 
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It is easy to see that H is a deformation retraction, so A is a deformation 
retract of U2\{p}. Thus 

TT.iU^p}) ~ 7 ^ ) - Z. 

Example 4.3. Consider an annulus X in the plane. Both the inner and outer 
circles of X are deformation retracts, so TT^X) is the group of integers. 

Example 4.4. Each of the following spaces is contractible, so each has 
fundamental group {0}: 

(a) a single point, 
(b) an interval on the real line, 
(c) the real line, 
(d) Euclidean w-space Un, 
(e) any convex set in Un. 

Theorem 4.9. Let X and Y be spaces with points x0 in X and y0 in Y. Then 

ir±(X x Y, (x0, j0)) ~ w^X, x0) ® 7rx( Y, jo). 

PROOF. Let p± and p2 denote the projections of the product space X x Y 
on X and Y respectively : 

Pi(x, y) = x, p2(x, y) = y, (x, y) e X x Y. 

Any loop a in X x Y based at (x0, y0) determines loops 

ai = Pia> a2 = Pia 

in X and Y based at x0 and y0 respectively. Conversely, any pair of loops ax 

and a2 in X and Y based at x0 and y0 respectively determines a loop a = 
(«i» "2) i n l x F based at (x0, j 0 ) - The function 

h: TT^Z x Y, (x0, jo)) -> *i(X, *o) © TT^ F, y0) 
defined by 

h([a]) = ( K ] , [a2]), [a] G ^ ( X X Y, (x0, y0)), 

is the required isomorphism. • 

Example 4.5. The torus Tis homeomorphic to the product S1 x S1. Hence 

TT^T) £ rr^S1) © Tr.iS1) S Z 0 Z. 

Example 4.6. An n-dimensional torus Tn is the product of « unit circles. 
Hence 7r1(r

n) is isomorphic to the direct sum of n copies of the group of 
integers. 

Example 4.7. A closed cylinder C is the product of a circle S1 and a closed 
interval [a, b]. Thus 

*i(C) = ^ ( S 1 ) 0 *i([*, *]) = ^ 0 {0} £ / • 
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Theorem 4.10. Let X be a space for which there is an open cover {Vt} of X 
such that 

(a) f| ^ , # 0 , 
(b) each Vt is simply connected, and 
(c) for i T£ j , Vi n Vj is path connected. Then X is simply connected. 

PROOF. Since each of the open sets Vt is path connected and their intersection 
is not empty, it follows easily that X is path connected. Let x0 be a point in 
Pi Vt. We must show that TT^X, x0) is the trivial group. 

Let [a] be a member of ^(X, x0). Then a: I-> Xis & continuous map, so 
the set of all inverse images {a"1(Fi)} is an open cover of the unit interval /. 
Since / is compact, this open cover has a Lebesgue number e. Then there is a 
partition 

0 = t0 < t± < t2 < • • • < tn = 1 

of / such that if 0 < j < n — 1, then a([tj9 tj + 1]) is a subset of some Vt. (We 
need only require that successive terms of the partition differ by less than e.) 

Let us alter the notation of the open cover {Vt}, if necessary, so that 

«([ '* ' / + !])<= Vi9 0 <j <n- 1. 
Letting 

aj(s) = a ( ( l - S)tj + Stj + 1), SEl, 

we have a sequence {«;}y "o1 of paths in X such that a / / ) is a subset of the 
simply connected set Vj9 and 

[a] = [aQ * a-L * a2 *• • •* 0£n-i]-

This process is illustrated for n = 4 in Figure 4.9. 

ot(Q) = oi(t4) = x0 

Figure 4.9 

Since Vj_1 n Fy is path connected, there is a path py from x0 to a(fy), 
1 < j < n — 1, lying entirely in Fy_i n F,-. (Note that a(/y) is the terminal 
point of a i_1 and the initial point of ay.) Since the product p}- * py of /o;- and 
its reverse is equivalent to the constant loop at x0, then 

[a] = [a0 * p ! * px * a± * p 2 * p 2 * a 2 *• • •* p , ^ * p n _ ! * a n _ i ] 

= K * Pi] ° [Pi * <*1 * P2] °* * -° [Pn-2 * <*n-2 * P n - l ] ° [Pn-1 * «n~l ] -
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The term in this product determined by a3- is the homotopy class of a loop 
lying in the simply connected set Vj. Hence each term of the product represents 
the identity class, so [a] must be the identity class as well. Thus -rr^X) = {0}, 
and X is simply connected. • 

Example 4.8. It is left as an exercise for the reader to show that Sn, n > 1, 
has an open cover with two members satisfying the requirements of Theorem 
4.10. It then follows that TT^S71) = {0} for n > 1. 

4.5 The Relation between HX(K) and ^(jjq) 
The fundamental group is defined for every topological space, and we have 
defined homology groups for polyhedra. If | A'| is a polyhedron with triangula-
tion K, how are the groups H^K) and ^((Al) related? For our examples 
thus far (interval, circle, torus, cylinder, annulus, and /7-sphere), ^(jAD and 
H^K) are isomorphic. This is not true in general. The precise answer is given 
by Theorem 4.11 which is stated here with only an outline of the proof. 
Complete proofs can be found in [2], Section 8-3 and in [6], Section 12. 

Theorem 4.11. If K is a connected complex, then H^K) is isomorphic to the 
quotient group ^(lK\)jF where F is the commutator subgroup of TT^KI). 
Thus whenever TT^KD is abelian, TT^KD and HX(K) are isomorphic. 

OUTLINE OF PROOF. Choose a vertex v of K as the base point for the funda­
mental group. For each oriented 1-simplex o{ of K, let at denote a linear 
homeomorphism from [0, 1 ] onto o{; the at are called elementary edge paths. 
An edge loop is a product of elementary edge paths with v as initial point and 
terminal point. Note that an edge loop ax * a2 * • • • * an corresponds in a 
natural way to a 1-cycle 1 -o-i + 1 -o2 + • • • + 1 -on. 

Although we shall not go into the lengthy details, it is true that (a) if an 
edge loop is equivalent to the constant loop at v, then the corresponding 1-
cycle is a boundary; (b) if two edge loops are equivalent, then their corre­
sponding 1-cycles are homologous; and (c) each loop in \K\ with base point 
v is equivalent to an edge loop. 

A homomorphism. 
/ : 7^(1*1,10-•#!(*) 

may now be defined as follows: For [a] e TT^KI, V), let a = ax * a2 *• • • * ccn 

be an edge loop equivalent to a. Define the value /([«]) to be the homology 
class determined by the 1-cycle which corresponds to a. Then / i s a homo­
morphism from TT-LQKIIV) onto H^K) whose kernel is the commutator 
subgroup F. It follows from the First Homomorphism Theorem (Appendix 3) 
that the quotient group ^ ( l ^ l , v)jF is isomorphic to H^K). • 

The fundamental group was defined by Poincare in Analysis Situs, the 
same paper in which he introduced homology theory, and the relation 
between homology and homotopy given in Theorem 4.11 was known to him. 
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Poincare did not prove the relation, but he stated in Analysis Situs that 
"fundamental equivalence" of paths in the homotopy sense corresponded 
precisely to homological equivalence of 1-chains except for commutativity. 
Since the commutator subgroup F of a group G is the smallest subgroup for 
which GjF is abelian, it is sometimes said that H^K) is " ^ ( l ^ l ) made 
abelian." 

Both the homology and homotopy relations investigate the structure of a 
topological space by examining the connectivity or "holes in the space." 
Note that homotopy is more easily defined and conceptually simpler. It does 
not require elaborate explanations of chains, boundaries, cycles, or quotient 
groups. Homotopy applies immediately to general topological spaces and 
does not require the special polyhedral structure that we used for homology. 
Thus homotopy has some real advantages over homology. 

Taking the other point of view, homology is in some ways preferable to 
homotopy. The fundamental group is difficult to determine rigorously, even 
for simple spaces. Recall, for example, our computation of TT-^S1) and the 
proof of Theorem 4.4 showing that each contractible space is simply con­
nected. We found in Chapter 2 that homology groups are effectively calculable, 
for pseudomanifolds at least, because of the simplicial structure of the 
underlying complexes. Note also that the fundamental group overlooks the 
existence of higher dimensional holes in Sn, n > 1. To describe higher 
dimensional connectivity by the homotopy concept, we need a generalization 
of the fundamental group to higher dimensions. That is to say, we need 
homotopy analogues of the higher dimensional homology groups. After 
giving some applications of the fundamental group in Chapter 5, we shall 
study the higher homotopy groups in Chapter 6. 

In defining the homology and homotopy relations, Poincare hoped to give 
an algebraic system of topological invariants that could be used to classify 
topological spaces, especially manifolds. Ideally, one would hope for a 
sequence of groups which are reasonably amenable to computation and have 
the property that two spaces are homeomorphic if and only if their corre­
sponding groups are isomorphic. As pointed out earlier (Theorem 2.11), the 
homology characters, and thus the homology groups, provide such a classifi­
cation for 2-manifolds. Poincare's hope that the homology groups would 
provide a similar classification for 3-manifolds was not fulfilled. Poincare 
himself showed in 1904 that two 3-manifolds may have isomorphic homology 
groups and not be homeomorphic. More specifically, he found a 3-manifold 
whose homology groups are isomorphic to those of the 3-sphere S3 but which 
is not simply connected, and therefore not homeomorphic to S3. 

Poincare was greatly preoccupied with the classification problem. He 
hoped that the fundamental group would overcome the deficiencies of 
homology theory in the classification of 3-manifolds. It does not, however, 
for J. W. Alexander showed in 1919, seven years after Poincare's death, that 
there exist nonhomeomorphic 3-manifolds having isomorphic homology 
groups and isomorphic fundamental groups [26]. Alexander's examples 
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involved fundamental groups of order five and left unanswered the famous 
Poincare Conjecture: 

The Poincare Conjecture. Every simply connected 3-manifold is homeomorphic 
to the 3-sphere. 

The classification problem, even for 3-manifolds, and the Poincare Con­
jecture remain unsolved. Nonetheless, the fundamental group has been a 
powerful tool and a great stimulus for research in algebraic topology. It seems 
to lie at the very base of many difficult mathematical problems. We shall see 
some of its power as we study an important class of spaces, the covering 
spaces, in Chapter 5. 

EXERCISES 

1. Prove the Continuity Lemma. 

2. Show that multiplication in 7r1(A
r, xQ) is well defined. In other words, show 

that if a ~ *0 a' and jS ~ xo j8', then 

3. Complete the details in the proofs of Lemmas A and C 

4. Given a space X and loops a, jS, y, and 8 with base point x0 in X, exhibit a 
homotopy which shows that 

(a * p) * (y * 8) ~ XQ a * ((jS * y) * 8). 

5. Let a and j8 be paths in a space X both having initial point xQ and terminal 
point x-i. Prove that a is equivalent to jS if and only if the product a * j8 of a 
and the reverse of jS is equivalent to the constant loop at x0. 

6. Let p be a loop in X with base point xQ. Prove that the induced homomorphism 
given by the proof of Theorem 4.3, 

P: TTI(X, x0) -> in(X9 x0), 

is the identity isomorphism if and only if the homotopy class [/>] belongs to 
the center of ir^X, x0). 

7. Let p and p be paths in a space X both having initial point x0 and terminal 
point xx. Give a necessary and sufficient condition that the homomorphisms 
induced by p and p in the proof of Theorem 4.3 be identical. Prove that your 
condition is correct. 

8. Complete the proof of Theorem 4.4. 

9. Give an example of a simply connected space which is not contractible. 

10. Give an example of a contractible space X and a point x0 in Xfor which there 
is no contraction of X to x0 which leaves x0 fixed throughout the contracting 
homotopy. 

11. In analogy with the Generalized Covering Path Property, state and prove a 
''Generalized Covering Homotopy Property" for S1. 
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12. Prove that a path connected space is simply connected if and only if every 
pair of paths in X having common initial point and common terminal point 
are equivalent. 

13. L e t / : X'-> F b e a continuous function. Prove that the function/*: TT^X, X0) 
->7T1(y,/(x0)) defined by 

is a homomorphism. Show in particular that /* is well-defined. 

14. Prove that homeomorphic spaces have isomorphic fundamental groups. 

15. In the proof of Theorem 4.5, explain why the covering path a has initial 
point 0. 

16. Explain why the loop yn: I-^ S1 defined by 

yn(t) = Qxp(27rint), t e I, 

has degree n for each integral value of n. 

17. Determine the fundamental group of the Mobius strip. 

18. Prove that every deformation retract of a space X is a rectract of X. Show 
by example that the converse is false. 

19. Let X be a space consisting of two 2-spheres joined at a point. Prove that 
^(X) = {0}. 

20. Let X be a space consisting of two circles joined at a point. Prove that TTX(X) 
is a free group on two generators and hence that there are nonabelian 
fundamental groups. 

21. Show that the function h in the proof of Theorem 4.9 is an isomorphism. 

22. Show that the /x-sphere Sn, n > 1, satisfies the hypotheses of Theorem 4.10 
and that ir^S*) = {0}. 

23. Prove that each of the following spaces is contractible: 
(a) the real line, 
(b) a convex set in Un, 
(c) the upper hemisphere H of Sn: H = {(xl9..., xn + 1) e Sn: xn + 1 > 0}, 
(d) Sn\{p} where p is a particular point in Sn. 

24. Let p be a point in S1. Prove that S1 x {p} is a retract but not a deformation 
retract of S1 x S 1 . 

25. Prove that the fundamental group of punctured /t-space Kn\{i?} is trivial for 
n > 2. 

26. Let G be a topological group with identity element e. If a, ]8 are loops in G 
with base point e, we can define a new product • by 

a-P(t) = «( /#( / ) 

where juxtaposition of a(r) and j8(7) indicates their group product in G. 
(a) Prove that the operation • on loops based at e induces a group operation 

on TT^G, e). 
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(b) Show that the operation induced by • is exactly the same as the usual 
product o on rr^G, e). (Hint: Prove that (a * c)(c * ft) = a * j8 where c 
is the constant loop at e.) 

(c) Prove that 7ri(G, e) is abelian. (/ft/if: Compare (a *c) •(£*/?) and 
(c * a)«(j5 * c). 

27. If # is a complex with combinatorial components Kl9..., Kr, how is HX(K) 
related to the groups T T I ( | # I | ) , . . . , T ^ O ^ I ) ? 

28. Give an intuitive explanation of each of the following statements: 
(a) The degree of a loop a in Sx is the number of times that a wraps the 

interval / around the circle. 
(b) The circle has one "ho l e " so its fundamental group is the group Z of 

integers. 
(c) The fundamental groups of a torus and a figure eight (two circles joined 

at a point) are not isomorphic. 

29. (a) Show that a loop in a space X may be considered a continuous map from 
S1 into X. (Hint: Consider the quotient space of/obtained by identifying 
0 and 1 to a single point.) 

(b) Let a be a loop in S1. Explain the relation between the degree of a in the 
homotopy sense and its degree in the homology sense. 

30. Let X be a space consisting of two spheres Sm and Sn, where m, n > 2, 
tangent at a point. Prove that 7r±(X) = {0}. 
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Covering Spaces 

This chapter is designed to show the power of the fundamental group. We 
shall consider a class of mappings p: E-> B, called "covering projections," 
from a "covering space" E to a "base space" B to which we can extend the 
Covering Homotopy Property discussed in Chapter 4. Precise definitions are 
given in the next section. 

The fundamental group is instrumental in determining and classifying 
the topological spaces that can be covering spaces of a given base space B. 
For a large class of spaces, the possible covering spaces of B are determined 
by the subgroups of TT^B). In addition, the theory of covering spaces will 
allow us to determine the fundamental groups of several rather complicated 
spaces. 

5.1 The Definition and Some Examples 
Recall from Chapter 4 that a space X is path connected provided that each 
pair of points in X can be joined by a path in X. A space that satisfies this 
property locally is called "locally path connected." 

Definition. A topological space X is locally path connected means that X has 
a basis of path connected open sets. In other words, if x e Zand O is an 
open set containing x, then there exists an open set U containing x and 
contained in O such that U is path connected. 

Definition. A maximal path connected subset of a space X is called a path 
component. Thus A is a path component of X means that A is path con­
nected and is not a proper subset of any path connected subset of X. The 
path components of a subset B of X are the path components of B in its 
subspace topology. 
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It is assumed throughout this chapter that all spaces considered are path 
connected and locally path connected unless stated otherwise. 

Definition. Let E and B be spaces and p: E -> B a continuous map. Then the 
pair (E, p) is a covering space of B means that for each point x in B there 
is a path connected open set U <= B such that x e U and /? maps each path 
component of p~\U) homeomorphically onto U. Such an open set U is 
called an admissible neighborhood or an elementary neighborhood. The 
space B is the base space and p is a covering projection. 

In cases where the covering projection is clearly understood, one sometimes 
refers to E as the covering space. We shall, however, try to avoid ambiguity 
by referring to the covering space properly as (E, p). 

Example 5.1. Consider the map/?: IR -> S1 from the real line to the unit circle 
defined in Chapter 4: 

p(t) = e2nlt = COS(2TT0 + /sin(27rf), t e R. 

Then p is a covering projection. Any proper open interval or arc on S1 can 
serve as an elementary neighborhood. For the particular point 1 in S1, let 
U denote the right hand open interval on S1 from —i to /. Then 

P~\U)= 0 (»-*>» + *), 
7 1 = - 00 

and the path components of p~x{U) are the real intervals (n — J, n + J). 
Note that /? maps each of these homeomorphically onto U, as illustrated in 
Figure 5.1. 

Figure 5.1 

Example 5.2. For any positive integer n, let qn: S1 -> S1 be the map defined by 

qn(z) = z\ zeS\ 

where zn is the «th power of the complex number z. Then (S1, qn) is a covering 
space of S1. Representing the circle in polar coordinates, the action of qn is 
described as follows: qn takes any point (1, 6) to (1, nO). Let U be an open 
interval on S1 subtended by an angle 6,0 < 6 < 2?r, and containing a point x. 
Then^ - 1((7) consists of n open intervals each determining an angle djn and 
each containing one nth root of x. These « intervals are the path components 

84 



5.1 The Definition and Some Examples 

of p 1(U), and each is mapped by p homeomorphically onto U. Thus any 
proper open interval in S1 is an admissible neighborhood. 

A repetition of Example 5.2 for negative values of n is left as an exercise. 

Example 5.3. If X is a space (which, according to our assumption, must be 
path connected and locally path connected), then the identity map /: Z - > X 
is a covering projection, so (X, i) is a covering space of X. 

Example 5.4. Let P denote the projective plane, and let p: S2 ->P be the 
natural map which identifies each pair of antipodal or diametrically opposite 
points, as in Exercise 26 of Chapter 2. To show the existence of admissible 
neighborhoods, let w be a point in P which is the image of two antipodal 
points x and — x. Let O be a path connected open set in S2 containing x such 
that O does not contain any pair of antipodal points. (A small disc centered at 
x will do nicely.) Then p(0) is an open set containing w, and/?_1/?(0) has path 
components O and the set of points antipodal to points in O. Note that/? maps 
each of these path components homeomorphically onto p(0), so p(0) is an 
admissible neighborhood. Thus (S2, p) is a covering space of P. 

Example 5.5. Consider the map r: U2 -> S 1 x S1 from the plane to the torus 
defined by 

r(tu t2) = (e2jllti, e2nit2), (tl912) e U2. 

Then (U2, r) is a covering space of S1 x S1. This example is essentially a 
generalization of the covering projection p: U -> S1 of Example 1. For any 
point (zi, z2) in S1 x S1, let U denote a small open rectangle formed by the 
product of two proper open intervals in S1 containing zx and z2 respectively. 
Then U is an admissible neighborhood whose inverse image consists of a 
countably infinite family of open rectangles in the plane. 

Example 5.6. Let Q denote an infinite spiral, and let q: Q-> S1 denote the 
projection described pictorially in Figure 5.2. Each point on the spiral is 
projected to the point on the circle directly beneath it. 

Figure 5.2 
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It is easy to see that (Q, q) is a covering space of S1. In this example it is 
important that the spiral be infinite; a finite spiral projected in the same 
manner is not a covering space. By examining Figure 5.3, one can see that the 
points p(x0) and/?(*!) lying under the ends of the spiral do not have admissible 
neighborhoods. 

p(x±) 

Figure 5.3 

p(x0) 

Example 5.7. The following is not an example of a covering space. Let R be a 
rectangle which is mapped by the projection onto the first coordinate to an 
interval A, as shown in Figure 5.4. If U is an open interval in A, then/?_1((7) 
is a strip in R consisting of all points above U. This strip cannot be mapped 
homeomorphically onto U, so this situation does not allow admissible 
neighborhoods. 

p~1(U) I •(ajj) 

p(a, b) = a 

Figure 5.4 

5.2 Basic Properties of Covering Spaces 
In this section we shall prove some basic properties of covering spaces from 
the definition. The most important of these is the Covering Homotopy 
Property. 

The following characterization of local path connectedness is left as an 
exercise: 

Lemma. A space Xis locally path connected if and only if each path component 
of each open subset of X is open. 
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Theorem 5.1. Every covering projection is an open mapping. 

PROOF. Let p: £ - > 5 b e a covering projection. We must show that for each 
open set Fin E,p(V) is open in B. Let x ep(V), let x be a point of Fsuch that 
p(x) = x, and let U be an admissible neighborhood for x. Let W be the path 
component of p~\U) which contains x. Since E is locally path connected, 
the preceding lemma implies that W is open in E. Since p maps W homeo-
morphically onto U, then p maps the open set W n V to an open subset 
p(W c\ V) in B. Thus x ep(Wn V) and p(W n V) is an open set contained 
inp(V). Since x was an arbitrary point ofp(V), it follows th&tp(V) is a union 
of open sets and is, therefore, an open set. Thus p is an open mapping. • 

Theorem 5.2. Let (E, p) be a covering space of B and X a space. If f and g are 
continuous maps from X into E for which pf = pg, then the set of points at 
which fand g agree is an open and closed subset of X. (We do not assume in 
this theorem that X is path connected or locally path connected.) 

PROOF. Let A = {x e X:f(x) = g(x)} be the set of points at which/and g 
agree. To see that A is open, let x be a member of A and U an admissible 
neighborhood of pf(x). The path component V of p~\U) to which/(x) 
belongs is an open set in E, and hence/ _ 1 (F) and g _ 1(F) are open in X. 
Since/(x) e Fand/ (x) = g(x), then x belongs iof~\V) n g~\V). We shall 
show t h a t / - 1 ( F ) H g _ 1 ( F ) is a subset of A and conclude that A is open 
since it contains a neighborhood of each of its points. 

Let t e / _ 1 ( F ) n g~1(F). Then/(7) and g(t) are in V and are mapped by 
p to the common point pf(t) = pg(t). Since p maps V homeomorphically 
onto U, it must be true that f(t) = g(t). Then t e A, and it follows that A is 
an open set. 

Suppose that A is not closed, and let y be a limit point of A not in A. Then 
f(y) "£ g(y)- The point pf(y) = pg(y) has an elementary neighborhood IV, 
and f(y) and g(y) must belong to distinct path components V0 and Vx of 
p~\W). (Why?) Since y belongs to the open set f~\V^) n g~\V^), then 
f~1(Vo)rsg~1(Vi) must contain a point t e A. But this is a contradiction 
since the point f(t) = g(t) would have to belong to the disjoint sets V0 and 
V-L. Thus A contains all its limit points and is a closed set. • 

Corollary. Let (E,p) be a covering space of B, and let f g be continuous maps 
from a connected space X into E such that pf = pg. Iff and g agree at a 
point of X, then f = g. 

PROOF. In a connected space X, the only sets that are both open and closed 
are X and the empty set 0 . Thus A = X or A — 0 , so / and g must be pre­
cisely equal or must disagree at every point. Note that the corollary requires 
only that X be connected, not path connected or locally path connected. • 

Here is a situation that arises often in mathematics, particularly in topology. 
Suppose that spaces E and B are to be compared using a continuous map 
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p: F -> B and that there is given another m a p / : C -> B from a space C into 
B. Then a m a p / : C -> E for which the diagram below is commutative, that is 
for which pf = / is called a lifting or covering off 

E 

In this section we shall be interested in lifting two kinds of maps: paths and 
homotopies between paths. Theorem 5.2 and its corollary will be useful in 
showing the uniqueness of liftings. 

Definition. Let (E,p) be a covering space of B, and let a: / - > B be a path. 
A path a: / -> E such that j?a = a is called a lifting or covering path of a. 
If F: / x / - > B is a homotopy, then a homotopy F: / x / - > E for which 
J?JP = F is called a lifting or covering homotopy of F 

We are now ready to extend the Covering Path Property and Covering 
Homotopy Property that were proved earlier for the circle to covering spaces. 
The proofs of these important properties are merely generalizations of the 
proofs used in Chapter 4. 

Theorem 5.3 (The Covering Path Property). Let (E, p) be a covering space of 
B and a: I-> B a path in B beginning at a point b0. Ife0 is a point in E with 
p(e0) = b0, then there is a unique covering path of a beginning at e0. 

PROOF. Here is the basic idea of the proof: Subdivide the range of the path a 
into sections so that each section lies in an admissible neighborhood. If U is 
one of these admissible neighborhoods, then p maps each path component 
ofp~\U) homeomorphically onto U. We can then choose a path component 
V of i?"1(t/) and consider the restriction p\v of p to V, a homeomorphism 
from V onto U. Composing with Q?|y)_1 "lifts" one section of a to E. 

This method is applied inductively. Let {Uj} be an open cover of B by 
admissible neighborhoods, and let e be a Lebesgue number for the corre­
sponding open cover {a-1(£/y)} of I. Choose a sequence 

0 = t0 < f i < • • • < tn = 1 

of numbers in / with each successive pair differing by less than e. Then each 
subinterval [ti9 ti + 1], 0 < i < n — 1, is mapped by a into an admissible 
neighborhood Ui + 1. 

First consider a([t0, t^), which is contained in C/i. Let Vx denote the path 
component of p~\U^) to which the desired initial point e0 belongs. Then, for 
t E Uo, h], define 

5(0 = 0>k)~la(0-
Proceeding inductively, suppose that a has been defined on the interval 
[t09 tk]. Then 

«(['*» *k+i]) ^ Uk + 1, 
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so we let Vk + 1 be the path component of p~1(Uk + 1) to which d(tk) belongs. 
Since p\Vk+1 -is a homeomorphism, the desired extension of a to [tk, tk + 1] is 
obtained by defining 

«(0 = Cpk + i )~ l a (0 , t e [tk, tk + 1]. 

The continuity of a follows from the Continuity Lemma since the lifted 
sections match properly at the end points. 

The uniqueness of the covering path a can be proved from the uniqueness 
of each lifted section. However, it is simpler to apply the Corollary to 
Theorem 5.2. If a is another covering path of a with a(0) = e0, then a and 
a agree at 0 and hence must be identical. • 

Theorem 5.4 (The Covering Homotopy Property). Let (E,p) be a covering 
space of B and F: I x I-> B a homotopy such that F(0, 0) = b0. If e0 is a 
point of E with p(e0) = b0, then there is a unique covering homotopy 
F: I x / - > E such that F(0, 0) = e0. 

Having seen this property proved for a special case in Chapter 4, and 
having seen the proof of the Covering Path Property for covering spaces, the 
reader should be able to prove Theorem 5.4 for himself. A proof can be 
modeled after the proof of Theorem 5.3 by subdividing / x / into rectangles 
in the way that / was subdivided into intervals. 

The Covering Homotopy Property has many important applications. One 
of the most important is the following criterion for determining when two 
paths in a covering space are equivalent. 

Theorem 5.5 (The Monodromy Theorem). Let (E, p) be a covering space ofB, 
and suppose that a and ft are paths in E with common initial point e0. Then 
a and ft are equivalent if and only if pa and p ft are equivalent paths in B. In 
particular, if pa and pft are equivalent, then a and ft must have common 
terminal point. 

PROOF. If a and ft are equivalent by a homotopy G then the homotopy pG 
demonstrates the equivalence of pa and pft. 

For a proof of the other half of the theorem, let b0 and b± denote the 
common initial point and common terminal point respectively of pa and pft. 
Let H: I x / - > B be a homotopy demonstrating the equivalence of pd and 
pft: 

H(0,t) = b0, H(l,t) = bl9 tel. 

By the Covering Homotopy Property, there is a covering homotopy H of 
H with //(0, 0) = e0. Both a and the initial level / / ( • , 0) are covering paths 
of pd, and they have common value e0 at 0. Thus H(,0) = a by the Corol­
lary to Theorem 5.2. Similarly, we conclude that /?(•, 1) = ft. 

It remains to be seen that /?(0, •) and 3(1, •) are constant paths. But 
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i?(0, •) is a lifting of the constant path H(0, •) with # (0 , 0) = e0. Since the 
unique lifting of a constant path is obviously a constant path, then H(0, •) 
must be the constant path whose only value is e0. The same argument shows 
that 3(1, •) must be the constant path whose only value is 

a(l) = 3(1,0) = 3(1,1) = p(l). 

Thus 3 is a homotopy that demonstrates the equivalence of a and j5. • 

Theorem 5.6. If(E, p) is a covering space ofB, then all the sets p'1^), be B, 
have the same cardinal number. 

PROOF. Let b0 and bx be points in B. We must define a one-to-one correspon­
dence betweenp~1(b0) and^_1(Z?i). This is accomplished as follows: Let a be 
a path in B from b0 to b±. For x ep~1(b0), let ax denote the unique covering 
path of a beginning at x. Then the terminal point ax(l) is a point in i?-1(^i). 
This associates with each x in p~1(b0) a point 

/ (*) = *x(l) 

mp'1^-^). By considering the reverse path from bx to b0, one can define in the 
same manner a function 

g-.p-KbJ^p-KK). 
The functions/and g are easily shown to be inverses of each other, so p~1(b0) 
and i?-1(^i) must have the same cardinal number. • 

Definition. If (E, p) is a covering space of B, the common cardinal number of 
the sets p~\b), b e B, is called the number of sheets of the covering. A 
covering of n sheets is called an n-fold covering. 

Consider, for example, the covering projection p: S2 -> P of Example 5.4. 
Since p identifies pairs of antipodal points, the number of sheets of this 
covering is two. Thus (S2,p) is referred to as the "double covering" of the 
projective plane. 

The covering projection p: U -> S1 of Example 5.1 maps each integer and 
only the integers to 1 e S1. Thus the number of sheets of this covering is 
countably infinite. 

We close this section with a result relating the fundamental groups of E 
and B where (E, p) is a covering space of B. Choose base points e0 in E and 
b0 = p(e0) in B. Then if a is a loop in E based at e0, the composition pa is a 
loop in B with base point b0. Thus p induces a function 

p*: 77i(J£, e0) - > 77i(£, b0) 

defined by 

P*([<*]) = [P<*1 W e *i(E, e0). 

This function p* is a group homomorphism and is called the homomorphism 
induced by p. 
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Theorem 5.7. If(E, p) is a covering space ofB, then the induced homomorphism 
p*: 77i(is, e0) -> ^i{B, b0) is one-to-one. 

The proof, an easy application of the Monodromy Theorem (Theorem 
5.5), is left as an exercise. 

5.3 Classification of Covering Spaces 
The fundamental group of the base space B provides a criterion for determin­
ing when two covering spaces of B are equivalent. Each covering space 
determines a collection of subgroups, a conjugacy class of subgroups, of 
TT^B). We shall see that two covering spaces are homeomorphic if and only 
if they determine the same collection of subgroups. 

Here is the terminology used in comparing covering spaces: 

Definition. Let (E1,p1) and (E2,p2) be covering spaces of the same space B. 
A homomorphism from (El9 p±) to (E2, p2) is a continuous map h\E1->E2 

for which p2h = plm In other words, this diagram must be commutative 
for h to be a homomorphism. 

E1 —_> £2 

B 

A homomorphism h: E±-> E2 of covering spaces which is also a homeo-
morphism is called an isomorphism. If there is an isomorphism from one 
covering space to another, the two covering spaces are called isomorphic. 

It is left as an exercise for the reader to prove that a homomorphism of 
covering spaces is actually a covering projection; i.e., if h:E1->E2 is a 
homomorphism, then (El9 h) is a covering space of E2. 

Theorem 5.8. Let (E, p) be a covering space of B. If b0e B, then the groups 
P^TT^E, e), as e varies over p~1(b0), form a conjugacy class of subgroups of 
ni(B, b0). 

PROOF. Recall that subgroups H and K of a group G are conjugate subgroups 
if and only if 

H = x^Kx 

for some xeG. The theorem then makes two assertions: (a) for any e0, ex in 
p~1(b0), the subgroupsp^n^E, e0) andp^n^E, ex) are conjugate, and (b) any 
subgroup of ir^B, b0) conjugate to p^-n-^E, e0) must equal P*TTI(E, e) for some 
einp-^bo). 

To prove (a), consider two points e0 and ex in p~1(b0). Let p: / - > E be a 
path from e0 to e±. According to Theorem 4.3, the function P: TT-^E, e0) -> 
TT^E, ex) defined by 

J°(M) = [p * « * p], [«] e *i(E> eo), 
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is an isomorphism. In particular, 

ir^E, e±) = PTT^E, e0), 

so 
P^TT^E, e±) = P^PTT^E, e0). 

It follows from the definition of P, however, that 

P^PTT^E, e0) = [pp]-1 o ^(E, e0) ° [pp], 

sop^TT^E, e0) andp^TT^E, ex) are conjugate subgroups of TT^B, b0). Note that 
we are using the fact that [pp] is an element of TT^B, b0). 

To prove (b), suppose that H is a subgroup conjugate to p^^E, e0) by 
some element [8] in -n^B, b0): 

H= [8]-1oP^1(E,e0)o[8l 

Let B be the unique covering path of 8 beginning at e0. Then B has a terminal 
point e G/?~1(Z?0), and the argument for part (a) shows that 

p+ir^E, e) = [pi]"1 op^n^E, e0) o [PB] = [S]"1 op^E, e0) ° [S] = # . 

Thus 
P*TTX{E, e) = # , 

and the set {p^n^E, e): e e p ~ 1(Z?0)} is precisely a conjugacy class of subgroups 
ofTT^bo). D 

Definition. The conjugacy class of subgroups {p*iri(E,e):eep~1(b0)} de­
scribed in the preceding theorem is called the conjugacy class determined 
by the covering space (E, p). 

The main result of this section comes next. Two covering spaces of a 
space B are isomorphic if and only if they determine the same conjugacy 
class of the fundamental group of B. We must specify a base point b0 in B to 
make the representation 7TX(B) = n^B, b0) concrete. However, according to 
Theorem 4.3, the choice of base point does not affect the structure of the 
fundamental group. 

Theorem 5.9. Let B be a space with base point b0. Covering spaces (El9 px) and 
(E2, p2) ofB are isomorphic if and only if they determine the same conjugacy 
class of subgroups of TTX{B, b0). 

PROOF. The "only if" part of the proof is left as an exercise. For the "if" 
part, assume that the conjugacy classes of the two covering spaces are 
identical. Then there must be points ex epi\bQ) and e2 ep^Kbo) such that 

PiwFiiEu ei) = P2*?TI(E2, e2). 

The covering space isomorphism h: Ex-> E2 is defined by the following 
scheme: For x e El9 let a be a path in Ex from ex to x. Then pxa is a path in 
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B from b0 to Pxipc). This path has a unique covering path pxa in E2 beginning 
at e2 and ending at some point y in E2. We then define h(x) = y. This definition 
is illustrated in Figure 5.5. 

Figure 5.5 

Can this h possibly be well-defined in view of the myriad choices for the 
path a ? Does it have any chance of being continuous ? The answer to both 
questions is "yes"; the function h is, in fact, a homeomorphism. 

To show that h is well-defined, let j8 be another path in Ex from ex to x. 
Since a and j8 both begin at ex and terminate at x, the product path a * j5 
is a loop in Ex based at ex. Thus 

/?i*([a * #1) = l>i« *PiP] ePi**i(Ei, *i). 

But /?i*77"i(^i, eO and p2^n{E2, e2) are equal, so there is a member [y] e 
TT^EQ, e2) such that 

Thus the loops pxa * pxp &ndp2y are equivalent loops in B. Using the Covering 
Homotopy Property (Theorem 5.4) to lift a homotopy between pxa * pxp and 
p2y to E2, we obtain a loop y in £"2 based at e2 for which 

/^y' = Pi<* * />i£ 

Divide y' into the product of two paths a and /5' as follows: 

«'(0 = y'('/2), £'(0 = y'((2 - 0/2), f e / . 

It is a simple matter to observe that 

p2a' = /?!«, p2? = / ?^ . 

Since a' and p' have initial point e2, they are the unique covering paths of 
pxa and/?xjS with respect to the covering (E2,p2); i.e., 

«' = Pi<*> F = PiP> 
Then 

fiftl) = «'(1) = y'(i), £&!) = /S'd) = y'(i), 
so the same value h(x) = y'(i) results regardless of the choice of the path 
from ex to x. This concludes the proof that h is well-defined. 
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In showing that h is continuous we shall use the fact that the admissible 
neighborhoods form a basis for the topology of B. The proof of this is left as 
an exercise. 

Let O be an open set in E2 and x a member of h~x(0). It must be shown 
that there is an open set V in Ex for which xe V and h(V) <= O. Since the 
definition of h requires that p2h = px and since p2 is an open mapping 
(Theorem 5.1), thcnp^x) belongs to the open set p2{0) in B. Since the admis­
sible neighborhoods form a basis for B9 there is an admissible neighborhood 
U such that 

Pl(x)eU9 Uczp2(0). 

Let Wht the path component of/?J1(t/) to which h{x) belongs. Then h(x) 
belongs to the open set O' = O n W9 and the restriction 

f = p2\0':0'->p2(0') 

is a homeomorphism. Since p2(0') is open in B9 t hen / ?^ 1 ^^ ' ) is open in Ex. 
Let V be a path connected open set in Ex which contains x and is contained 
mp^p2{0'). 

To see that h(V) <= 09 let t e V. Let a be a path in Ex from ex to x and /? a 
path in V from x to f. Then 

h{x) = £S(1), A(0 = px* * /?^(1). 

But s i n c e / = p2\0' is a homeomorphism, the covering path of pxa *pxfi is 
p^cc *f~1p1fi. Thus 

Kt) = f^PiKi) = f-'Piit). 
This point is in O' because p±(t) ep2(0') and / i s a homeomorphism between 
O' and p2(O

f). Since 0 ' <= (9, it follows that h(t) e O and hence that 
h(V) a O. 

The proof thus far has shown that there is a covering space homomorphism 
h from Ex to E2. By looking at constant paths, it is easy to see that h{e^) = e2. 
The reader may be tiring at this point, especially in view of the fact that the 
existence of a continuous inverse for h must be shown. However, the proof 
thus far has essentially done that. Reversing the roles of Ex and E2, there 
must exist a continuous map g: E2-> Ex such that 

Pig = Pz> g(e2) = ex. 

Consider the composite map gh from Ex to Ex: 

Pigh = p2h = Pih, 

where ix is the identity map on Ex. Since gh and z'i agree at el9 the Corollary 
to Theorem 5.2 implies that gh is the identity map on Ex. By symmetry, hg 
must be the identity map on E2, and h is an isomorphism between (El9 px) 
and (E29 p2). • 

Notation: It is often necessary to make the statement "/ is a function from 
space X to space Y which maps a particular point x0 in X to the point y0 in 
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y." We shall shorten this cumbersome expression by referring to / as a 
function from the "pair" (X, x0) to the pair (Y, y0) and writing 
f:(X,x0)->(Zy0). 

Minor modifications in the proof of Theorem 5.9 establish the following 
result. Details of the proof are left as an exercise. 

Theorem 5.10. Let E, B, and X be spaces with base points e0, b09 and x0 respec­
tively, and suppose that (E, p) is a covering space of B with p(e0) = b0. If 
f: (X, x0) -> (B, b0) is a continuous map for which 

f ^ X , x0) C P^TT^E, e0), 

then there is a continuous map/: (X, x0) -> (E, e0) for which pf = / . 

In proving Theorem 5.10, keep in mind our agreement that all spaces 
considered in this chapter are path connected and locally path connected. 
Actually, Theorem 5.10 remains valid if the requirement on Xis reduced to 
connectedness. 

Let us return to our original examples of covering spaces to find the 
conjugacy class determined by each one. Note that the fundamental group of 
each base space in these examples is abelian, so each conjugacy class has 
only one member. 

Example 5.8. For the covering (U9p) over S1, the fundamental group of U is 
trivial so 

/>i**i(R) = {0}, 

and the conjugacy class consists of only the trivial subgroup of ^(S1). 

Example 5.9. The map qn: S1 -> S1 defined by 

qn(z) = zn, ze S1, 

wraps S1 around itself n times. Thus if [a] e 7r1(*S'1), the loop qna has degree 

deg(#na) = n deg a. 

Representing TT^S1) as the group of integers, it follows that qn^iiS1, 1) is 
the subgroup of Z consisting of all multiples of the integer n. 

Example 5.10. Ifi:X->Xis the identity map, then 

so the conjugacy class in this case contains only the fundamental group of X. 

Example 5.11. Consider the double covering (S2,p) over the projective plane P. 
The 2-sphere is simply connected, so the conjugacy class contains only the 
trivial subgroup. 
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Example 5.12. The plane is simply connected, so the conjugacy class of 
(M2, r) over the torus also contains only the trivial subgroup. 

Example 5.13. The infinite spiral Q is contractible and thus has trivial funda­
mental group. Then (Q, q) determines the conjugacy class of TT^S1) consisting 
of only the trivial subgroup. This is the conjugacy class determined in 
Example 5.8, so Theorem 5.9 shows that (Q,q) and (U,p) are isomorphic 
covering spaces of S1. 

The only subgroups of TT^S1) = Z are the groups Wn of all multiples of 
the non-negative integer n. Since Z is abelian, each singleton set {Wn} is a 
conjugacy class. The subgroup W0 = {0} corresponds to the covering space 
(U,p) of Example 5.8, and Wn corresponds to the covering (S1, qn) of 
Example 5.9, n = 1,2, By the classification of covering spaces given in 
Theorems 5.8 and 5.9, any covering space of S1 must be isomorphic either 
to (IR, p) or to one of the coverings (S1, qn). The next section and the exercises 
at the end of the chapter provide additional examples of base spaces for 
which all possible covering spaces can be listed. 

5.4 Universal Covering Spaces 

If B is a topological space, there is always a covering space corresponding to 
the conjugacy class of the entire fundamental group, namely (B, i) where / is 
the identity map on B. This covering space is of little interest for obvious 
reasons. At the other extreme, the covering space corresponding to the 
conjugacy class of the trivial subgroup {0} of TTX(B) is the most interesting. 
This covering space, if it exists for a particular base space, is called the 
"universal covering space." This section will examine the relation between 
a base space B and its universal covering space. 

Definition. Let J? be a space. A covering space (U, q) of B for which U is 
simply connected is called the universal covering space of B. 

The appropriateness of the appellation "the universal covering space" 
is explained by the next theorem. 

Theorem 5.11. (a) Any two universal covering spaces of a base space B are 
isomorphic. 

(b) If(U,q) is the universal covering space of B and (E, p) is a covering 
space of B, then there is a continuous map r: U-> E such that (U, r) is a 
covering space of E. 

PROOF. Statement (a) follows immediately from Theorem 5.9 since any 
universal covering space determines the conjugacy class of the trivial 
subgroup. 
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5.4 Universal Covering Spaces 

For part (b), consider the diagram 

E 

U —> B 
Q 

and choose base points t/0, e0, and b0 in U, E, and B respectively for which 

?Oo) = P(e0) = K 
Since ?r1(C/) is trivial, then 

q*-"i(U, u0) c P^TT^E, e0), 

and Theorem 5.10 guarantees the existence of a continuous map q: (U, q0) -> 
(E, e0) for which pq = q. This means that r = q is a covering space homo-
morphism, and therefore a covering projection, for U over E. • 

Definition. Let (E, p) be a covering space of J?. An isomorphism from (E, p) 
to itself is called an automorphism. Under the operation of composition, the 
set of automorphisms of (E, p) forms a group. This group is called the 
group of automorphisms of (E,p) and is denoted by A(E,p). 

Proofs of the following remarks are left as exercises: 

(a) Iff and g are automorphisms of (E,p) and/(x) = g(x) for some x, then 

/=g-
(b) The only member of A(E, p) that has a fixed point is the identity map. 

Theorem 5.12. If(U, q) is the universal covering space of B, then A(U, q) is iso­
morphic to TT^B). The order ofw^B) is the number of sheets of the universal 
covering space. 

PROOF. Choose a base point b0 in B and a point u0 in U for which q(u0) = b0. 
We shall first define a function T: A(U, q) -> ^(B). 

Forfe A(U, q),f(u0) is a point in U. Let y be a path in C/from u0 to f(u0). 
Since qf = q, then/(t/0) e q~\bQ), and hence qy is a loop in B with base point 
b0. We thus define T by 

n / )=[<77L feA(U9q). 

Since £/ is simply connected, the choice of path y from u0 to /(t/0) does not 
affect the homotopy class [qy]. Thus Tis well-defined. 

To see that Tis a homomorphism, le t / i , / 2 e MJJ> q) and let y1? y2 denote 
paths in C/from u0 to/i(t/0) and/2(i/0) respectively. Then 

n/ i ) = [9vi], n/2) = [flvd. 
The product path yx */iy2 is a path from u0 to/i/2(w0). Thus 

^C/1/2) = [tf(7i */iV2)] = [#7i * #/i72] = [^7i * 472] 

= [<77i] o [472] = r ( / i ) o T( / 2 ) , 

so T is a homomorphism. 
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5 Covering Spaces 

To see that T is one-to-one, suppose that T(f1) — T(f2). Thus the loops 
qy1 and qy2 determined byf± and/2 are equivalent. The Monodromy Theorem 
(Theorem 5.5) then implies that/^i/o) = /2(w0). Thus/ i = f2, since distinct 
automorphisms must disagree at every point. 

It remains to be shown that T maps A(U,q) onto n^B, b0). Let 
[a] e TT^B, b0), and let a denote the unique covering path of a beginning at 
u0. Since U is simply connected, we can apply Theorem 5.10 to the diagram 

y \q 

(U, u0) ~^ (B, b0) 

to obtain a continuous lifting h of q such that h(u0) = a(l). Since commuta-
tivity of the diagram requires qh = q, then h is a homomorphism. Reversing 
the roles of a(l) and u0 determines a homomorphism k on (£/, #) such that 
fc(a(l)) = u0. But then /zfc and kh are the identity map on U since they are 
homomorphisms which agree with the identity at some point. Thus k = h'1, 
h is an automorphism, and 

T(h) = [qa] = [a]. 

This completes the proof that A(U, q) and n^B) are isomorphic. 
The proof that the order of ^(B) is the number of sheets of the universal 

covering space can be gleaned from what has already been done. The fact 
that Tis one-to-one establishes a one-to-one correspondence between q~\bQ) 
and a subset of n^B, b0). In proving that T is onto, we showed that every 
homotopy class [a] in n^B, b0) corresponds to a point a(l) in q~\b0). Thus 
the cardinal number of ^_1(Z?0), which is the number of sheets of (U, q), must 
equal the order of TT^B). • 

The real line is simply connected, so the covering space (R, p) of Example 
5.8 is the universal covering space of the unit circle. Since the plane is simply 
connected, then the covering space (IR2, r) of Example 5.12 is the universal 
covering space of the torus. 

Example 5.14. Consider the double covering (S2, p) of the projective plane P 
defined in Example 5.4. Since ^ ( S 2 ) = {0}, then (S2,p) is the universal 
covering space of P. Moreover, Theorem 5.12 allows us to determine ^ ( P ) 
by determining A(S2, p). Since p identifies pairs of antipodal points, then 
(S2,p) has two automorphisms, the identity map and the antipodal map. 
Thus A(S2, p) is the cyclic group of order two, and n^P) is the same group. 
Thus n^P) is essentially the group of integers modulo 2. 

This example generalizes to higher dimensions as follows: 

Definition. Let Pn denote the quotient space of the w-sphere Sn obtained by 
identifying each pair of antipodal points x and —x. Then Pn is called 
projective n-space. 
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The quotient map p: Sn ->Pn is a covering projection. By repeating the 
reasoning of Example 5.14, the reader can show that the fundamental group 
of each projective space Pn, n > 2, is isomorphic to the group of integers 
modulo 2. A moment's reflection will show that P1 is homeomorphic to S1 and 
hence that ^ ( P 1 ) is not the group of integers mod 2. 

The classification of covering spaces given in Theorem 5.9 shows that two 
covering spaces of a space B are isomorphic if and only if they determine the 
same conjugacy class of subgroups of n^B). This leaves open the question of 
the existence of covering spaces. Given a conjugacy class in n^B), is there a 
covering space that determines this class? In particular, does every space 
have a universal covering space ? The answer is negative for both questions. 
Two of the exercises for this chapter give examples of spaces that have no 
universal covering space. Necessary and sufficient conditions for the existence 
of a universal covering space are known, but presenting them would take us 
rather far afield. Readers interested in pursuing this topic should consult 
references [16] and [20]. 

5.5 Applications 
This section gives two illustrations of the interplay between covering spaces 
and fundamental groups. The first elucidates the structure of a particular 
fundamental group, and the second proves part of the famous Borsuk-Ulam 
Theorem. 

Example 5.15. Thus far, all our examples of fundamental groups have been 
abelian. We shall use covering spaces to provide an example of a nonabelian 
one. 

Let the base space B consist of two tangent circles, 

B = {(z, w) e S1 x S1: z = 1 or w = 1}, 
and let 

E = {(x, y) G IR2: x or y is an integer}. 

Then the map p: E-+B defined by 

p(x9 y) = (e2nix, e2ni% (x, y) e IR2, 

is a covering projection. Referring to Figure 5.6, p maps each horizontal 
segment of a square of E once around the left hand circle and each vertical 
segment of a square of E once around the right hand circle of B. 

(0, 1) 

< 

(0,0) 

r 

(1, 1) 

k 

(1,0) 

Figure 5.6 
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5 Covering Spaces 

Let y denote the loop in E based at (0, 0) indicated by the arrows, and let 
[a] and [/?] denote generators of the fundamental groups of the left and right 
circles of B respectively. Then [y] is not the identity of TT^E), SO 

is not the identity in n^B) since p* is one-to-one (Theorem 5.7). But if n^B) 
were abelian, the commutator [a] o [/?] o [a] ~1 o [f3] -1 would be the identity 
element of TT^B). Thus ir^B) is not abelian. Those readers familiar with 
free groups may want to prove that TT^B) is the free group generated by [a] 
and [£]. 

The following theorem was conjectured by S. Ulam and proved by 
K. Borsukin 1933: 

Theorem 5.13 (The Borsuk-Ulam Theorem). There is no continuous map 
f: Sn -> 5 n " V ^ which f(-x) = -f(x)for all x e Sn, n > 1. 

The theorem states that there is no continuous map from Sn to a sphere 
of lower dimension which maps antipodal points to antipodal points. Such a 
map would be said to "preserve antipodal points" and would be called 
"antipode preserving." Since S° is a discrete space of two points and there­
fore not connected, the result is clear for the case n = 1. We shall use a 
covering space argument for the case n = 2. A proof for the entire theorem 
can be found in [20]. 

Proceeding with the case n = 2 by contradiction, suppose tha t / : S2 -> S1 

is a continuous map for which f( — x) = —f(x) for all x e S2. Consider the 
diagram 

S2 -U S1 

where (S2, p) and (S1, q) denote the double coverings of the projective spaces 
P2 and P1. Even though p'1 is not single valued, the fact that /preserves 
antipodal points guarantees that 

h =qfp-1:P2-*P1 

is well-defined and continuous. Note also that the diagram is commutative. 
Since ^ ( P 2 ) is cyclic of order 2 and ^ ( P 1 ) ^ ^ ( S 1 ) is infinite and cyclic, the 
induced homomorphism 

must be trivial. Let y0 be a point of S2, and let b0 = qf(y0) be the base point 
of P1. If a is a path in S2 from y0 to — y0, then qfa is a loop in P1. This loop 
is not equivalent to the constant loop c at b0 for the following reason: If 
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qfa ~bQ c, the Monodromy Theorem (Theorem 5.5) guarantees that fa is 
equivalent to the constant loop based at / (y0) . Since / preserves antipodal 
points, then 

Mi)=A-y0)= -f(yo), 

sofa is not a loop, and hence cannot possibly be equivalent to a loop. Thus 

[qfa] * [c]. 
Then 

A*(l>«])'= [*P«] = WP~^P"\ = [qfa] 

is not the identity ofir^B, b0), and h* is not the trivial homomorphism. This 
is a contradiction showing that our original assumption that such a map as 
/exists must be false. 

Corollary 1. Let g: S2 -> IR2 be a continuous map such that g( — x) = ~g(x) 
for all x in S2. Then g(x) = Ofor some x in S2. 

PROOF. Suppose on the contrary that g(x) is never 0. Then the map / : S2 -> S1 

defined by 
fix) = g(x)l\\g(x)\\, xeS2, 

contradicts the Borsuk-Ulam Theorem for the case n = 2. • 

Corollary 2. Let h: S2 -> IR2 be a continuous map. Then there is at least one 
pair x, —x of antipodal points for which h(x) = h(—x). 

PROOF. Assume to the contrary that h(x) = h(~x) for no x in S2. Then the 
function g: S2 -> IR2 defined by 

g(x) = h(x) - h(-x\ xeS2, 

contradicts Corollary 1. • 

The last corollary has an interesting physical interpretation. Imagine the 
surface of the earth to be a 2-dimensional sphere, and suppose that the 
functions a(x) and t(x) which measure the atmospheric pressure and tempera­
ture at x are continuous. Then the map h: S2 -> IR2 defined by 

h(x) = (a(x\ t(x))9 x G £2 , 

is continuous. Corollary 2 guarantees that there is at least one pair of antipodal 
points on the surface of the earth having identical atmospheric pressures and 
identical temperatures! 

The theory of covering spaces developed during the late nineteenth and 
early twentieth centuries from the theory of Riemann surfaces. Covering 
spaces were studied, in fact, before the introduction of the fundamental group. 
Poincare introduced universal covering spaces in 1883 to prove a theorem 
about analytic functions [53]. He considered the universal covering space 
(U, q) of a space B to be the "strongest" covering space of J? in the following 
sense: A curve y in U is closed if and only if for every covering space (E, p) 
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of J? and every curve y in £Tor which py' = qy, y is a closed curve. Exercises 
at the end of the chapter show that this condition is satisfied if U is simply 
connected and that (U, q) is indeed the "strongest" covering space of B in 
the sense of Theorem 5.11. 

Covering spaces provided the first example of the power of the funda­
mental group in classifying topological spaces. We have seen in Theorem 5.9 
that the fundamental group accomplishes for covering spaces the type of 
classification that the homology groups provide for closed surfaces (Theorem 
2.11). In addition, the theory of covering spaces was the precursor of the 
general fiber spaces of Witold Hurewicz and J. P. Serre which are crucial in 
any advanced course in algebraic topology. 

We shall not return in this book to the important and difficult problem of 
determining fundamental groups. Those interested in this problem should 
proceed to Van Kampen's Theorem which shows that, under the proper 
conditions, ?r1(Z) can be determined from the fundamental groups of certain 
subspaces of X. This theorem and related results can be found in [16] and [19]. 

EXERCISES 

1. (a) Give an example of a space that is path connected but not locally path 
connected, 

(b) Give an example of a space that is locally path connected but not path 
connected. 

2. Prove that a space X is locally path connected if and only if each path 
component of each open subset of X is open. 

3. Is each component of a space contained in a path component, or is it the 
other away around ? Prove your answer, and give an example to show that 
components and path components may not be identical 

4. Show that the projection of a "hairpin" onto an interval, as indicated in 
Figure 5.7, is not a covering projection. 

y 

I ' . BE 

I' " 
• • B 

p(y) P(X) 

Figure 5.7 

5. Definition. A function/: X-> Fis a local homeomorphism provided that each 
point x m X has an open neighborhood U such that / maps U homeomor-
phically onto f(U). 
(a) Prove that every covering projection is a local homeomorphism. 
(b) Give an example to show that a local homeomorphism may fail to be a 

covering projection. 

6. Let (E,p) be a covering space of B. Show that the family of admissible 
neighborhoods is a basis for the topology of B. 
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7. Repeat Example 5.2 in the case n is a negative integer. 

8. Prove the Covering Homotopy Property (Theorem 5.4). 

9. Prove the following generalizations of the Covering Homotopy Property: 

(a) Theorem. Let (E, p) be a covering space of B, X a simply connected space, 
f:X->Ea continuous map, and H: X x I ~-> B a homotopy such that 
H(-, 0) = pf. Then there is a covering homotopy H: X x / —> E of H 
such that H(,0) = / . 

(b) Prove the preceding theorem under the assumption that X is a compact 
Hausdorff space that is not necessarily simply connected. 

10. Complete the details in the proof of Theorem 5.6. 

11. Prove Theorem 5.7. 

12. Prove that a homomorphism of covering spaces is a covering projection. 

13. Show that isomorphism of covering spaces is an equivalence relation. 

14. Complete the proof of Theorem 5.9. 

15. Prove Theorem 5.10. 

16. Determine all covering spaces of the torus and exhibit a representative 
covering space from each isomorphism class. 

17. If B is a simply connected space and (F, p) is a covering space of B, prove that 
p is a homeomorphism from E onto B. 

18. Show that the map p: E —> B of Example 5.15 is a covering projection. 

19. (a) Prove that the set A(E, p) of all automorphisms of a covering space (F, p) 
is a group. 

(b) Prove that members/, g of A(E, p) must be identical or must agree at no 
point of E. 

(c) Prove that the identity map is the only member of A(E, p) that has a 
fixed point. 

20. Prove that if B is simply connected, then (B, i) is the universal covering space 
of B. (Here i denotes the identity map.) 

21. Prove that the fundamental group ^ (P* ) of projective n-space P n is iso­
morphic to the group of integers modulo 2 for n > 2. What about n = 1 ? 

22. Prove that any continuous map / : F n -> S1 , n > 2, from projective n-space 
to the unit circle is null-homotopic. 

23. If (F, p) is a covering space of B and (F, a) is a covering space of C, prove that 
(F x F, p x q) is a covering space of B x C, where p x q denotes the 
natural product map. 

24. Use Theorem 5.12 to prove that w^S1) £ Z and TT^S1 X S1) S Z © Z. 

25. Let G and G be path connected and locally path connected topological groups 
and p: G -> G a, group homomorphism for which (G, p) is a covering space 
of G. Prove that the kernel of p is isomorphic to A(G,p). 
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26. Prove that an infinite product of circles has no universal covering space. 

27. Let X be the subset of the plane consisting of the circumferences of circles 
having radius 1/n and center at (1/n, 0) for n = 1,2, Show that Jf has no 
universal covering space. 

28. Let (E, p) be a covering space of B, and let e0, b0 be points of E and B respec­
tively with p(e0) = b0. 
(a) Show that there is a one-to-one correspondence between p ~ H&o) and the 

set of left cosets 771(2?, ZJOV/^ICE', e0). 
(b) Definition. The covering space (E, p) is called regular if p^w^E, e0) is a 

normal subgroup of rr^B, b0). 
Show that regularity is not dependent on the choice of base point e0 in 

P'^bo)- (Hint: Use conjugacy classes.) 
(c) Prove that the automorphism group A(E, p) is isomorphic to the quotient 

group 7Ti(Z?, b0)lpxiTiiE, e0) if (£", p) is regular. Deduce Theorem 5.12 as 
a corollary. 

29. Let us say that a covering space (U, q) of B satisfies Property P if it is the 
"strongest" covering space of B in the sense of Poincare: A curve y in U is 
closed if and only if for every covering space (E, p) of B and every curve y' 
in E for which py = qy, y' is a closed curve. 

Prove: 
(a) If U is simply connected, then (U, q) satisfies Property P. 
(b) Any two covering spaces of B which satisfy Property P are isomorphic. 
(c) If (£/, q) satisfies Property P and (E, p) is any covering space of B, then 

there is a homomorphism r: U —> E for which (U9 r) is a covering space 
of E. 
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The Higher Homotopy Groups 

6.1 Introduction 
The fundamental group of a connected polyhedron provides more informa­
tion than does its first homology group. This is evident from Theorem 4.11 
since the first homology group is completely determined by the fundamental 
group. For this reason, the need for higher dimensional analogues of the 
fundamental group was recognized early in the development of algebraic 
topology. Definitions of these "higher homotopy groups" were given in the 
years 1932-1935 by Eduard tech (1893-1960) and Witold Hurewicz (1904-
1956). It was Hurewicz who gave the most satisfactory definition and proved 
the fundamental properties. 

Let us consider in an intuitive way the possible methods of defining the 
second homotopy group TT2(X, X0) of a space Xat a point x0 in X. Recall that 
TT-L(X9 x0) is the set of homotopy classes of loops in X based at x0. Our first 
problem is to define what one might call a "2-dimensional loop." 

A "1-dimensional loop" is a continuous map a:I-> X for which the 
boundary points 0 and 1 have image x0. We might then define a 2-dimensional 
loop to be a continuous map /?: I x I-> Xfrom the unit square into X which 
maps the boundary of the square to x0. 

From a slightly different point of view, we can consider a loop a in X as a 
continuous map from S1 to X which takes 1 to x0. This follows from the 
observation that the quotient space of the unit interval / obtained by identify­
ing 0 and 1 to a single point is simply S1. Thus another possible definition of 
2-dimensional loop is a continuous map from the 2-sphere S2 into X. Note 
that both of these definitions of 2-dimensional loop generalize to higher 
dimensions by considering higher dimensional cubes and spheres. 

There is a third possibility. Perhaps a 2-dimensional loop should be a 
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"loop of loops." That is to say, perhaps a 2-dimensional loop should be a 
function p having domain /with each value P(t) a loop in X9 and having the 
additional property P(0) = P(l). This idea is the point of genius in Hurewicz' 
approach. Carrying it out will involve defining a topology for the set 0(X, x0) 
of loops in Zwith base point x0. Once this topology is determined, one can 
define TT2(X9 X0) to be the fundamental group of 0(Z, x0). 

It is remarkable that all three approaches lead to the same group TT2(X9 X0). 

The next section presents the definitions based on these three ideas and shows 
that the same group is determined in each case. 

6.2 Equivalent Definitions of 7rn(X, x0) 

We shall take the three definitions in the order in which they have been 
discussed. If n is a positive integer, the symbol In denotes the unit n-cube 

/* = {t = (tl9t29..., tn) e Un: 0 < ti < 1 for each i) 

and dln
9 called the boundary of In

9 denotes its point set boundary 

dln = {t = Oi, t29..., tn) E In: some tt is 0 or 1}. 

Note that the boundary symbol d must not be confused with the boundary 
operator of homology theory. 

Definition A. Let Zbe a space and x0 & point of X. For a given positive integer 
n, consider the set Fn(X9 x0) of all continuous maps a from the unit /z-cube 
In into X for which a(dln) = x0. Define an equivalence relation ~Xo on 
Fn(X9 x0) as follows: For a and ft in Fn(X, x0), a is equivalent modulo x0 to 
P, written a ~Xo p, if there is a homotopy H: In x / - > X such that 

H(tu...,tn,0) = a(tu...,tn), 

H(tl9 . . ., tn, 1) = P(tl9 . . ., tn\ (tl9 . . ., tn) E I\ 

and 
H(tl9 ...9tn9s) = x09 (tl9 ...,tn)E dln

9 SEL 

In shorter form the requirements on the homotopy H are 

H(.90) = a9 # ( . , l ) = j8, 
H(3In x I) = x0. 

Under this equivalence relation on Fn(X9 x0)9 the equivalence class deter­
mined by a is denoted [a] and called the homotopy class of a modulo x0 or 
simply the homotopy class of a. 

Define an operation * on Fn(X9 x0) as follows: For a, ft in Fn(X9 x0)9 

Mf f \ - Ia(2tu **>-•>*») if 0 < ^ < i 
^ ( 2 ^ - l9t29...9tn) if i < h < l. 

Note that the * operation is completely determined by the first coordinate 
of the variable point (tl9..., tn) and that the continuity of a * p follows 
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from the Continuity Lemma. The * operation induces an operation o on 
the set of homotopy classes of Fn(X, x0): 

[a] o \fi] = [a * PI 

With this operation, the set of equivalence classes of Fn(X, x0) is a group. 
This group is called the nth homotopy group of X at x0 and is denoted by 
7Tn(X, X0). 

As in the case of the fundamental group, the definition requires that some 
details be verified: 

(1) The relation ~Xo is an equivalence relation on Fn(X, x0). 
(2) The operation * determines the operation © completely. In other words, 

if a ~xo a and p ~Xo ft', then a * p ~xo a' * p'. 
(3) With the © operation, irn{X, x0) is actually a group. Its identity is the class 

[c] determined by the constant map c(In) = x0. The inverse [a ] - 1 of [a] 
is the class [a] where a, called the reverse of a, is defined by 

a(tl9 t29...9 tn) = a(l - tl9129..., tn)9 (tl9129..., tn) e In. 

Since the definition of 7rn(X, x0) is completely analogous to that of TT^X, X0) 
except for the extra coordinates, the proofs of these details are left as exercises. 

The quotient space of In obtained by identifying dln to a point is homeo-
morphic to the /z-sphere Sn . Let us assume that the point of identification is 
the point 1 = (1, 0 , . . . , 0) of Sn having first coordinate unity and all other 
coordinates zero. Then -nn{X9 x0) can be defined in terms of maps from 
(Sn

9 1) to (X, x0) as follows: 

Definition B. For a given positive integer n, consider the set Gn(X, x0) of all 
continuous maps a from Sn to X such that a(l) = x0. Define an equiva­
lence relation on Gn(X, x0) in the following way: For a, p in Gn(X, x0), a 
is equivalent modulo x0 to P, written a ~Xo p, if there is a homotopy 
H:Sn x I->X such that 

H(.,0) = a, H(.,l) = p, 
H(l,s) = x09 SE I. 

The equivalence class [a] determined by a is called the homotopy class of a. 
The set of homotopy classes is denoted by irn{X9 x0). 

In view of the discussion preceding Definition B, it should be clear that 
there is a natural one-to-one correspondence between Fn(X, x0) and Gn(X, x0) 
under which a map a in Gn(X, x0) corresponds to the map a = aq where q 
is the map from In to Sn which identifies dln to the point 1. Also, two mem­
bers a and p in Gn(X, x0) are equivalent modulo x0 if and only if their counter­
parts a and P' are equivalent in Fn(X, x0). Thus Definitions A and B give 
equivalent definitions of the set irn(X9 x0). The elements [a] are usually more 
easily visualized in terms of Definition B. 
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The o operation for Definition B is defined in terms of the identification of 
In to Sn. Let a, j8 G Gn(X, x0). The identification map q takes the sets 

A = {(t1,...,tn)eln:t1 < i), 

B = {(tl9...9tn)eln:t1 > 1} 

to hemispheres A' and B' respectively of Sn whose intersection 

A' n B' = q(A n B) 

if homeomorphic to S11"1. Imagine that A' n B' is identified to the base point 
1 by an identification map r. The resulting space consists of two /z-spheres 
tangent at their common base point as in Figure 6.1. The product a * f$ is 
now defined by 

(ar(x) if x e A' 
a * 8(x) = , 

HK J |j8r(jc) i f x e 5 r . 

The group operation o is defined by 

[a]o[)8] = [a*)8]. 

Observe that the operation for Definition B has been designed expressly to 
show that Definitions A and B describe isomorphic groups. 

Figure 6.1 

The third description of the nth homotopy group requires a topology for 
the set of loops in X based at x0. 

Definition. Let F be a collection of continuous functions from a space Y into 
a space Z. If K is a compact subset of Y and U an open subset of Z, let 

W(K, U) = {a e F: a(K) <= U}. 

The family of all such sets W(K, U), as K ranges over the compact sets in 
Y and U ranges over the open sets in Z, is a subbase for a topology for F. 

This topology is called the compact-open topology for F. 

Since we shall apply the compact-open topology only to the set of loops 
in a space X, we repeat the definition for this case. 
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Definition. Let X be a space and x0 a point of X. Consider the set Q(X, x0) 
of all loops in X with base point x0. If K is a compact subset of / and U 
is open in X, let 

W(K, U) = {a e Q(X, x0): cc(K) <= U}. 

The family of all such sets W{K9 U), where K is compact in / and U is 
open in X, is a subbase for a topology for Q(x, x0). This topology is the 
compact-open topology for Q(X, x0). Note that basic open sets in the 
compact-open topology have the form 

i = l 

where Kl9..., Kr are compact sets in / and Ul9..., Ur are open in X. A 
loop a belongs to this basic open set if and only if a{K{) <= Jji for each 
/ = 1,2, . . . , r . 

Theorem 6A. If X is a metric space, the compact-open topology for Q(X, x0) w 
£/ze t̂frne #£ to topology of uniform convergence. 

PROOF. Let d denote the metric on X. Recall that the topology of uniform 
convergence on Q(X, x0) is determined by the metric p defined as follows: If 
a and j8 are in Q(X, x0)9 then p(a, /?) is the supremum (or least upper bound) 
of the distances from a(t) to p(t) for t in / : 

p(«,)8) = sup{J(a(0 , i8(0) :^ /} . 

Then the topology of uniform convergence has as a basis the set of all 
spherical neighborhoods 

S(a, r) = {pe Q(X, x0): d(a9 ft < r} 

where a e Q(X, x0) and r is a positive number. 
Let T and r ' denote respectively the compact-open topology and the 

topology of uniform convergence for Q(X, x0). To see that T <= T'9 let 
W(K, U) be a subbasic open set in T9 where T̂ is compact in / and U is open 
in X. Let a e W(X, £/). Since the compact set a(X) is contained in U, there is 
a positive number e such that any point of X at a distance less than € from 
a(X) is also in U. Consider the basic open set S(a, e) in T'. If /? G S(a, e), then 
for each / in K, d(a(t)9 /3(t)) < e. Thus fi(t) must be in U since its distance 
from a point of «(.£) is less than e. Hence fi(K) <= £/, so j8 e FF(tf, £/). We 
now have 

a G Sf(a, e) c ^ ( ^ , £/), 

so ^ ( ^ , (7) must be open in T'. Then r <= T' since r ' contains a subbase 
for T. 

To see that 7" <= j ; let S(y, r) with center y and radius r > 0 be a basic 
open set in 7". To prove that S(y9 r) is in T9 it is sufficient to find a member of 
Twhich contains y and is contained in S(y9 r). (Why?) Let {Uj} be a cover of 
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X by open sets having diameters less than r, and let rj be a Lebesgue number 
for the open cover {y~1(t/y)} of/. Let 

0 = t0 < h < • • • < tn = 1 

be a subdivision of/with successive points differing by less than rj. Then for 
i = 1, 2 , . . . , rc, y maps each of the compact sets Kx = [^_i, tt] into one of 
the open sets of the cover {Uj}. Choose such an open set, say Ui9 for each / 
so that 

yOKQ <=£/., i = l , 2 , . . . , w . 

Then 

y G p | JF(Ai, Ut), 
i=l 

and this set is open in T. If ft e n?=i H^C î, £/*), then p(y, /?) cannot exceed 
the maximum of the diameters of Uu ..., Un. Thus p(y, /?) < r, so f$ e S(y, r). 
Then S(y, r) is open in T, and T contains T' since it contains a basis for T'. 
Since it has been shown that T ^ T' and V <= r , then T = T'. Q 

Definition C. Let X be a space with x0 e Z, and consider the set Q(Z, x0) of 
loops in X based at x0 with the compact-open topology. If n > 2, the rcth 
homotopy group of X at x0 is the (« — l)th homotopy group of 0(Z, x0) at 
c, where e is the constant loop at x0. Thus 

7T2(X, X0) = 7Tl(0(Z, X0), C\ . . . 

7rn(Z, x0) = ^ . ^ ( J T , x0), c). 

Definition C for the higher homotopy groups was given by Witold 
Hurewicz in 1935. His definition was originally applied only to metric spaces, 
and Q(X, x0) was assigned the topology of uniform convergence. The compact-
open topology, which permitted the extension of Hurewicz' definition to 
arbitrary spaces, was introduced by R. H. Fox (1913-1973) in 1944. The 
inductive definition expresses each homotopy group ultimately as a funda­
mental group of a space of loops. This will be helpful in our applications later. 
This definition has one obvious disadvantage, however. It does not lend 
itself easily to intuitive considerations. How, for example, can one imagine 
TT3(X, x0) as the fundamental group of the iterated loop space of XI 

Each of the three definitions of the higher homotopy groups has advan­
tages and shortcomings. To understand homotopy theory, one must know all 
three and must be able to apply the one that fits best in a given situation. 

The three definitions A, B, and C of the higher homotopy groups are all 
equivalent. We have discussed the equivalence of A and B and now turn to 
a comparison of A with C. This discussion will be for the case n = 2 since 
the extension to higher values of n requires little more than writing additional 
coordinates. 

Suppose then that a is a member of F2(X, x0); i.e., a is a continuous map 
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from the unit square P to X which takes dp to x0. Then a determines & 
member a of Q(Q(X, x0)9 c) defined by 

a('i)(*2) = a 0 i > ^2), *i, '2 e J. 

Each value a(^) is a continuous function from / into X because a is con­
tinuous. Note that 

afoXO) = ^0(1) = *o 
since (tl9 0) and (^, 1) are in 3P. Thus a(^) G Q(X, X0), and obviously 
a(0) = a(l) is the constant loop c whose only value is x0. But is a continuous 
as a function from / in to Q(X, x0)l To see that it is, let W(K9 U) be a sub-
basic open set in Q(X, x0). As usual, K is compact in / and U is open in X. 
Ldtt1e&-1(W(K9U)).Th&i 

Since Ĵ f is compact, there is an open set O in I such that t1eO and 

a(0 x JT) c u. 

Thus 

^ o c a - 1 ^* , to), 
so a~\W(K9 U)) is an open set and a is continuous. Thus each member of 
F2(X9 x0) determines in a natural way a member of 0(Q(Z, x0), c). 

Suppose that we reverse the process and begin with a member a of 
C1(Q.(X9 x0), c). Then a determines a function a: P -> X defined by 

<tl9t2) = afaXfe), {h,t2)eP. 
It is an easy exercise to see that a e ^ ( Z , x0). We have thus established a 
one-to-one correspondence between F2(X9 x0) and 0(0(Z, x0), c). 

Suppose that H: P x / - > Xis a homotopy demonstrating the equivalence 
of a and ft as prescribed in Definition A. Then the homotopy 

H:I x 7->Q(Z,x 0) 
defined by 

H(tl9 s)(t2) = H(tl9 t29 s), tl9129 sel9 

demonstrates the equivalence of the loops a and ft. Reversing the argument 
shows that a equivalent to ft implies a equivalent to ft. Thus there is a one-to-
one correspondence between homotopy classes [a] of Definition A and 
homotopy classes [a] of Definition C. Since the * operation in Definition A 
is completely determined in the first coordinate, it follows that for any 
a, ft e F2(X9 x0)9 [a * ft] corresponds to [a * ft] and hence that the two defini­
tions of TT2(X9 x0) lead to isomorphic groups. 

6.3 Basic Properties and Examples 
Many theorems about the fundamental group generalize to the higher 
homotopy groups. The following three results can be proved by methods very 
similar to those used to prove their analogues in Chapter 4. 
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Theorem 6.2. If the space X is path connected and x0 and xx are points of X, 
then Trn(X, x0) is isomorphic to Trn(X, x±) for each n > 1. 

As in the case of the fundamental group, we shall sometimes omit reference 
to the base point and refer to the "nth homotopy group of X" 7rn(X), when 
X is path connected and we are concerned only with the algebraic structure 
of the group. 

Theorem 6.3. If X is contractible by a homotopy that leaves x0 fixed, then 
7rn(X, x0) = {0}for each n > 1. 

Theorem 6.4. Let X and Y be spaces with points x0 in X and y0 in Y. Then 

7rn(X x Y, Oo, y0)) ~ Trn(X, x0) © 7rn(7, y0), n > 1. 

Example 6.1. The following spaces are contractible, so each has nth homotopy 
group {0} for each value of n: 

(a) the real line, 
(b) Euclidean space of any dimension, 
(c) an interval, 
(d) a convex figure in Euclidean space. 

We saw in Chapter 4 that the fundamental group is usually difficult to 
determine. This is doubly true of the higher homotopy groups. The homotopy 
groups Trk(S

n) of the ^-sphere, for example, have never been completely 
determined. (The hard part is the case k > n.) Finding the homotopy groups 
of Sn is one of the major unsolved problems of algebraic topology. The 
groups Trk(S

n) for k < n are computed in the following examples. 

Example 6.2. For k < n, the A:th homotopy group Trk(S
n) is the trivial group. 

To see this, let [a] be a member of irk(S
n), and consider a as a continuous map 

from (Sk, 1) to (Sn, 1). Represent Sk and Sn as the boundary complexes of 
simplexes of dimensions k + 1 and n + 1 respectively. By the Simplicial 
Approximation Theorem (Theorem 3.6), a has a simplicial approximation 
a:Sk-> Sn for which [a] = [a]. But since a simplicial map cannot map a 
simplex onto a simplex of higher dimension, then a is not onto. Let p be a 
point in Sn which is not in the range of a. Then Sn\{p} is contractible since 
it is homeomorphic to IRn, and hence a, a map whose range is contained in a 
contractible space, is null-homotopic. Thus 

[a] = [«'] = [C], 

so rrk(S
n) is the trivial group whose only member is the class [c] determined 

by the constant map. 

Example 6.3. For n > 1, the nth homotopy group irn(S
n) is isomorphic to the 

group Z of integers. (The case n = 1 was considered in some detail in 
Chapter 4.) 
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Consider irn(S
n)9 n > 2, as the set of homotopy classes of maps 

a: (Sn, 1) -> (Sn, 1) as in Definition B. Define P: 7rn(S
n) -> Z by 

p([a]) = degree of a, [a] e 7rn(S
n). 

Brouwer's Degree Theorem (Theorem 3.9) insures that p is well-defined, and 
the Hopf Classification Theorem (Theorem 3.10), which was stated without 
proof in Chapter 3, shows that it is one-to-one. The identity map 
i'.(Sn, 1) -> (Sn, 1) has degree 1, and the description of the * operation in 
Definition B shows that the map 

ik = / * / * • • • * / (k terms) 

has degree k. Thus [i] is a generator of 7rn(S
n), and 

p(U]k) = k, p([/]-fc) = -k 

for any positive integer k. It follows easily that p is an isomorphism. 

Example 5.15 shows that the fundamental group of a space may fail to be 
abelian. The higher homotopy groups are all abelian, as we shall see shortly. 
This property is the result of the * operation in Q(Z, x0). The next theorem 
illustrates the method of proof and serves as an introduction to the more 
complicated proof of the commutativity of rrn{X, x0) for n > 2. 

Theorem 6.5. Let Gbea topological group with identity element e. Then 7r1(G
!, e) 

is abelian. 

PROOF. The operation on G induces an operation • on the set £l(G, e) of loops 
in G based at e defined by 

a • p(t) = cc(t)p(t), a, p e Q(G, e), t e /, 

where the juxtaposition of a(t) and fi(t) indicates their product in G. This 
operation induces an operation n on 7r1(G

!, e): 

Let c denote the constant loop at e, and let [a] and [jS] be members of TT1(G
!, e). 

Observe that 

a(2t)e = a(2t) if 0 < t < \ 
ep(2t - 1) = P(2t - 1) if \ < t < 1, 

ep(2t) = P(2t) if 0 < t < \ 

a(2t - l)e = a(2t - 1) if \ < t < 1. 

(a * c) • (c * P)(t) = 

(C*a)>(fi*c)(t) = 

This gives 
(a * c) - (c * jS) = a * j8, (c * a) • (jS * c) = jS * a. 

Then 
[a] o [jS] = [a * jS] = [(a * c) • (c * jS)] = [a * c] a [c * jS] 

= [c * a ] a [jS * c] = [(c * a) • (j8 * c)] = [jS * a] = [jS] o [a], 

so TT1(G, ^) is abelian. 
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Here is an additional curious fact. The operations o and ° are precisely 
equal: 

[a] o [£] = [ « * £ ] = [(a *c)-(c* j8)] = [a * c] * [c * j3] = [a] a [£]. Q 

Not all of the group properties were used in the proof of Theorem 6.5. 
The existence of a multiplication with identity element e is sufficient, and 
even that assumption can be weakened. The following definition describes 
the property that makes the proof work. 

Definition. An H-space or Hopf space is a topological space 7 with a con­
tinuous multiplication (indicated by juxtaposition) and a point j 0 in 7 for 
which the map defined by multiplying on the left by j 0 and the map defined 
by multiplying on the right by j 0 are both homotopic to the identity map 
on Y by homotopies that leave y0 fixed. In other words, there exist 
homotopies L and R from Y x I into Y such that 

L(y, 0) = j o J , L(y, i) = y, L(y0, 0 = Jo, 
R(y, 0) = j jo , R(y, i) = J , *(jo, 0 = Jo 

for all j in 7 and t in /. The point j 0 is called the homotopy unit of 7. 

Note that any topological group is an //-space, //-spaces were first 
considered by Heinz Hopf, and they are named in his honor. 

Example 6.4. If X is a space and x0 SL point of X, then the loop space 0(Z, x0) 
with the compact-open topology is an //-space. The multiplication is the * 
operation, and the homotopy unit is the constant map c. The required 
homotopies L and R are defined for a in Q(Z, x0) and s in / by 

U", s)(t) = 
(x0 ifO < t < (1 - s)jl 

^ wx M ^ T - T ) ifO < / < ( ^ + l)/2 

Uo if (AT + l)/2 < r < 1. 

The reader is left the exercise of proving that the multiplication * and the 
homotopies L and R are continuous with respect to the compact-open 
topology. 

Theorem 6.6. If Y is an H-space with homotopy unit j 0 , then 7r1( Y, J 0 ) is 
abelian. 

PROOF. The operation on Y induces an operation • on 0( 7, j 0 ) as in the 
proof of Theorem 6.5: 

a • 0 ( 0 = a(t)P(t)9 a, ]3 G 0 ( 7, J 0 ) , / e / . 
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This operation likewise induces an operation • on TT1( 7, j 0 ) : 

M°D3] = [«-]8], H , [ffle ^ ( 7 , j 0 ) . 

Letting c denote the constant loop at j 0 , 

( w OVA ( a(2Ojo i f O < f < i 
lj>o£(2f - 1) if i < t < 1, 

^a(2f — l ) j 0 if i < •* < 1. 

Since multiplication on the left by y0 and multiplication on the right by y0 are 
both homotopic to the identity map on Y, then 

[ («*c) . (c* jS) ] = [«* j8] , 

[(c * a) • (j8 * c)] = [jS * a]. 

Thus 

[a] ° M = [« * P] = K« * C)'(C * j8)] = [(c * a).(j8 * c)] 

= D3 * a] = D3] o [a]. 

It follows as in the proof of Theorem 6.5 that the operations o and • are equal. 
D 

Theorem 6.7. The higher homotopy groups rrn{X, x0), n > 2, of any space X 
are abelian. 

PROOF. The second homotopy group 

ir2(X9 X0) = TTii&iX, X0X C) 

is abelian since Q(X, x0) is an if-space with the constant loop c as homotopy 
unit. Proceeding inductively, suppose that the (n — l)th homotopy group 
7rn_1(r, jo) is abelian for every space Y. Then 

7rn(X, X0) = *rn_:L(Q(jr, X0)9 C) 

must be abelian, and the proof is complete. • 

Definition. Let / : (X, x0)-> (Y, j 0 ) be a continuous map on the indicated 
pairs. If [a] e 7Tn(X, x0), n > 1, then the composition fa: In-> Y is a 
continuous map which takes dln to j 0 , so/a represents an element [fa] in 
7rn(y, jo). Thus/induces a function 

/ * • TB(X *<>) -> Tn( ^ Jo) 
defined by 

/*([«]) = [/"«], He7Tn(Z,x0). 

The function/* is called the homomorphism induced by / i n dimension n. 

To be very precise we should refer to /*, indicating the dimension n, but 
this notation is cumbersome, and we shall avoid it. The dimension in question 
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will always be known from the subscripts on the homotopy groups involved. 
The reader is left the exercise of showing that / * is actually a well-defined 
homomorphism. 

Theorem 6.8. (a) If f: (X, x0) -> (7 , y0) and g: (Y,y0)->(Z, z0) are con­
tinuous maps on the indicated pairs, then the induced homomorphism (gf)* 
is the composite map 

g*f* • T B ( ^ *o) -> nn(Z> Zo) 

in each dimension n. 
(b)Ifh: {X, xQ) -> (7 , y0) is a homeomorphism, then the homomorphism 

h* induced by h is an isomorphism for each value ofn. 

PROOF, (a) If [a] e irn(X, x0), then 

(&)*([«]) = igM = g*([f"D = **/*([«]), 
so 

(«/")* = g*f*' 

(b) Suppose that h'1: (7 , y0) -> (X, x0) is the inverse of h. Then for [a] in 
7Tn(X, X 0 ) , 

(h-%h^[a]) = [h-*ha] = [a], 

so (/2-1)*/** is the identity map on 7rn(X, x0). By symmetry it follows that 
/**(/*-1)* is the identity map on 7rn(7, y0), so /** is an isomorphism. • 

It was proved in Chapter 5 that a covering projection p: E-> B induces a 
monomorphism (i.e., a one-to-one homomorphism)/?*: TTX(E)->TT-^B). The 
next theorem, discovered by Hurewicz, shows that the induced homo­
morphism for the higher homotopy groups is even better. 

Theorem 6.9. Let (E, p) be a covering space of B, and let e0 in E and b0 in B be 
points such that p(e0) = b0. Then the induced homomorphism 

p*: 7rn(E, e0) -> 7rn(£, b0) 

is an isomorphism for n > 2. 

PROOF. TO see that p* is onto, consider an element [a] in 7rn(B, b0). Think of 
a as a continuous map from (Sn, T) to (B, b0). (The symbol T is used here as 
the base point of Sn to avoid confusion with the number 1 which will also 
play an important role in this proof.) Since n > 2, the fundamental group 
ir^S*, I) is trivial, and hence 

a^1(S
n

9 I) = {0} cz /vnOE, e0) 

where a* is the homomorphism induced by a on the fundamental group. 
Thus Theorem 5.10 shows that a has a continuous lifting 

a:(S\ I ) -> (£ ,e 0 ) 
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such that pa = a. Then a determines a member [a] in irn(E, e0) for which 

/>*([«]) = [P&] = [«], 

so p* maps irn(i?, e0) onto 7rn(£, Z>0). 
To see that/7* is one-to-one, suppose that [jS] belongs to its kernel; i.e., 

/>*([£]) = W] = [c] 

where c is the constant map c(Sn) = b0. As maps from (Sn, I) to (B, b0), pfi 
and c are equivalent, so there is a homotopy # : Sn x / - > i? satisfying 

if (t, 0) = ^ ( 0 , # 0 , 1) = b09 te Sn, 
H(T,s) = b0, sel 

The fundamental group 7r1(*Sn x 7, (T, 0)) is trivial since n > 2, so Theorem 
5.10 applies again to show the existence of a lifting 

H:Sn x I->E 
such that 

pH = H, i?(I, 0) = e0. 

The lifted homotopy J? is a homotopy between j8 and the constant map 
rf(Srn) = e0- To see this, observe first that 

pff(;0)=PP, #(I, 0) = /?(!). 

The Corollary to Theorem 5.2 insures that H(-, 0) = j8 since *Sn is connected. 
The same argument shows that /?(-, 1) = d. It remains to be seen that 
H(l, s) = e0 for each s in 7. The path 

# ( I , • ) : / - > £ 

has initial point e0 and covers the constant path c = H(l, •)• Since the unique 
covering path of c which begins at e0 is the constant path at e0, then 

H(J9 s) = e09 s e I. 

Thus H: Sn x I-> E is a homotopy such that 

# ( . , 0 ) = j8, # ( . , 1 ) = </, 

so [j8] = [J] is the identity element of irn(E, e0). Thus the kernel of/?* contains 
only the identity element of irn(E9 e0), so p* is one-to-one. D 

Example 6.5. Consider the universal covering space (R9 p) of the unit circle 
S1. By Theorem 6.9, 

is an isomorphism for n > 2. But all the homotopy groups of the contractible 
space R are trivial, so 

^ (S 1 ) = {0}, n > 2. 
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Example 6.6. Consider the double covering (Sn, p) over projective rc-space Pn. 
Theorem 6.9 insures that 

w^P") ~ 7rk(S% k>2,n>2. 

Recalling Example 6.3, we have 

7Tn(P
n) £ Z, W > 2. 

6.4 Homotopy Equivalence 
This section examines an equivalence relation for topological spaces which 
was introduced by Hurewicz in 1936. The relation is weaker than homeo-
morphism but strong enough to insure that equivalent spaces have isomorphic 
homotopy groups in corresponding dimensions. 

Definition. Let X and Y be topological spaces. Then X and Y are homotopy 
equivalent or have the same homotopy type provided that there exist con­
tinuous m a p s / : X-> Yand g: Y-> Xfor which the composite maps gf 
and fg are homotopic to the identity maps on X and Y respectively. The 
map / is called a homotopy equivalence, and g is a homotopy inverse for / . 

It should be clear that homeomorphic spaces are homotopy equivalent. 

Theorem 6.10. The relation "X is homotopy equivalent to Y" is an equivalence 
relation for topological spaces. 

PROOF. The relation is reflexive since the identity map on any space X is a 
homotopy equivalence. The symmetric property is implicit in the definition; 
note that both/and g are homotopy equivalences and that each is a homotopy 
inverse for the other. 

To see that the relation is transitive, le t / : X-> Yand h: Y-> Z be homo­
topy equivalences with homotopy inverses g: Y-> X and k:Z->Y respec­
tively. We must show that X and Z are homotopy equivalent. The most likely 
candidate for a homotopy equivalence between X and Z is A/with gk as the 
leading contender for homotopy inverse. Let L: Y x / - > Y be a homotopy 
such that L(-, 0) = kh and L(-, 1) is the identity map on Y. Then the map 
M:X x I-+X defined by 

M(x, t) = gUf(x), 0, (*, 0 e X x /, 

is a homotopy such that 

M(-,0)=gL(f(),0) = (gk)(hf), 

M(-,l)=gL(f(-),l)=gf, 

so (gk)(hf) is homotopic to gf and hence homotopic to the identity map on X. 
A completely analogous argument shows that (hf)(gk) is homotopic to the 
identity on Z, so X and Z are homotopy equivalent. • 
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Example 6.7. A circle and an annulus are homotopy equivalent. To see this, 
consider the unit circle S1 and the annulus A = {y e M2: 1 < |y\ < 2} shown 
in Figure 6.2. 

Figure 6.2 

A homotopy equivalence/: S1 -> A and homotopy inverse g: A -> S1 are 
defined by 

f(x) = x9 xeS1, 

g(y) = yl\y\, yeA-
Then gf is the identity map on S1, and 

The required homotopy between fg and the identity on A is given by 

H(y,t) = ty + (1 -t)yl\y\. 

Theorem 6,11. A space X is contractible if and only if it has the homotopy type 
of a one point space. 

PROOF. Suppose X is contractible with homotopy H: X x I-> X and point 
x0 in X such that 

H(x, 0) = x, H(x, 1) = x0, xe X. 

Then X is homotopy equivalent to the singleton space {x0} by homotopy 
equivalence/: X—> {x0} and homotopy inverse g: {x0} -> X defined by 

f(x) = x09 g(x0) = x09 xe X. 

Suppose now t h a t / : X->{a} is a homotopy equivalence between X and 
the one point space {a} with homotopy inverse g: {«}-> X. Then there is a 
homotopy ^ between g/and the identity map on X: 

K(x, 0) = x, K(x, 1) = g/(x) = g(al xeX. 

The homotopy T̂ is thus a contraction, and X is contractible. • 

Example 6.7 is a special case of the next result. 

Theorem 6.12. If X is a space and D a deformation retract of X, then D and X 
are homotopy equivalent. 
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6 The Higher Homotopy Groups 

PROOF. There is a homotopy H: X x i - > X such that 

H(x, 0) = x, if (x, 1) e A x e X, 

if (a, 0 = a, aeD, tel. 

L e t / : D -> X denote the inclusion map f(a) = a, and define g: X—> D by 

g(x) = # (x , 1), x e l 

Then gf is the identity map on Z>, and if is a homotopy between/* and the 
identity on X; thus/is a homotopy equivalence with homotopy inverse g. • 

Definition. Let X and 7 be spaces with points x0 in X and j>0
 m ^- Then the 

pairs (X, x0) and (Y, y0) are homotopy equivalent or have the same homotopy 
type means that there exist continuous maps / : (X, x0) -> (Y, y0) and 
g: (Y, y0) -> (X, x0) for which the composite maps gf 'and fg are homotopic 
to the identity maps on X and Y respectively by homotopies that leave the 
base points fixed. In other words, it is required that there exist homotopies 
H:X x I->X and K: Y x i - > Y such that 

H(x, 0) = gf(x\ H(x, 1) = x, if (x0, 0 = x09 xeX,te I, 

K(y, 0) = fg(y\ K(y, 1) = y, K(y0, t) = y0, y e Y, t e L 

The m a p / i s called a homotopy equivalence with homotopy inverse g. 

The proof of the next theorem is similar to the proof of Theorem 6.10 and 
is left as an exercise. 

Theorem 6.13. Homotopy equivalence between pairs is an equivalence relation. 

Theorem 6.14. If the map f: (X, x0) -> (Y, y0) is a homotopy equivalence be-
tween the indicated pairs, then the induced homomorphism 

/ * : 7rn(X, x0) -> 7rn( Y, y0) 

is an isomorphism for each positive integer n. 

PROOF. Let g: (7 , y0) -> (X, x0) be a homotopy inverse for /and H a homo­
topy between gf and the identity map on X which leaves x0 fixed. Let 
[a] e 7rn(X, x0), and consider a as a function from In to X such that a(dln) = 
x0. Define a homotopy K: In x i - > X by 

K(t, s) = H(«(*), s\ teln,sel. 

Then 

K(;0)=gfa, ^ ( . , l ) = a, 
^(a/» x i ) = if ({x0} x / ) = x0 

so that 
[g/a] = [a]. 
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6.5 Homotopy Groups of Spheres 

This means that 

so g* is a left inverse for/*. Since/is a homotopy inverse for g, we conclude 
by symmetry that g* is also a right inverse for/*, so/* is an isomorphism. • 

Actually, Theorem 6.14 can be strengthened to show that a homotopy 
equivalence / : X-> Y with f(x0) = y0 induces an isomorphism between 
7rn(X, x0) and ?rn( Y, j>0) for each «. The proof is more complicated because 
the homotopies may not leave the base points fixed. The reader might like to 
try proving this stronger result. 

6.5 Homotopy Groups of Spheres 
As mentioned earlier, the homotopy groups 7rk(S

n) are not completely known. 
Previous examples have shown that 

MS") = {0}, k<n9 

TT.iS1) = {0}, k>l, 

?rn(Sn) £ Z. 

It may seem natural to conjecture that 7rk(S
n) is trivial for k > n since the 

corresponding result holds for the homology groups. This would simply 
mean that every continuous m a p / : Sk -> Sn where k > n is homotopic to a 
constant map. This is in fact not true. The first example of such an essential, 
or non-null-homotopic, map was given by H. Hopf in 1931. The spheres 
involved were of dimensions three and two, and Hopf's example showed that 
TT3(S

2) is not trivial. Actually, TT3(S
2) is isomorphic to the group of integers. 

Many other results are known about 7rk(S
n), but no one has yet succeeded in 

determining 7rk(S
n) in all possible cases. In this section we shall examine 

Hopf's examples and the results of H. Freudenthal (1905- ) on which much 
of the knowledge of the higher homotopy groups of spheres is based. 

Example 6.8. The Hopf map p: S3 -> S2. 
Let C denote the field of complex numbers. Consider S3, the unit sphere 

in Euclidean 4-space, as a set of ordered pairs of complex numbers, each pair 
having length 1: 

S3 = {(z1,z2)eC x C:\Zl\*+ \z2\
2 = 1}. 

Define an equivalence relation = on S3 by 

(zl9 z2) = (z'x, z2) 

if and only if there is a complex number A of length 1 such that 

Oi, z2) = (Az'x, Xz2). 

For (zl9 z2) in S3, let <zl9 z2> denote the equivalence class determined by 
(zx, z2), let 

T={<z1,z2):(z1,z2)eS3} 
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6 The Higher Homotopy Groups 

be the set of equivalence classes, and let /?: S3 -> T be the projection map 

p(zl9 z2) = <z1? z2>, (zl9 z2) e S3. 

Assign 7* the quotient topology determined by/?; a set O is open in Tprovided 
that p~\0) is open in S3. For <zx, z2> in r , the inverse imagep~\(z l9 z2», 
called the fiber over <zx, z2>, is a circle in S3. 

We shall show that Tis homeomorphic to S2, use the homeomorphism to 
replace Thy S2, and obtain the Hopf map/?: S3 -> *S2. Strictly speaking, the 
Hopf map is the map hp: S3 -> *S2 where h: T-> S2 is the homeomorphism 
whose existence we must now show. 

Let 
D = {z e C : \z\ < 1} 

denote the unit disc in C. The 2-sphere is the quotient space of D obtained by 
identifying the boundary of D to a point. To see that T satisfies the same 
description, consider the m a p / : D-> Tdefined by 

/(z) = <Vl - |z|2,z>, zeD. 

Then / i s a closed, continuous map. For <zx, z2> in T, 

f-x«zl9 z 2 » = {z e />: <zx, z2> = < V I ^ T P , z>} 

= {z e i ) : V l — |z|2 = Xzl9 z = Az2 for some A e S1}. 

If zx 7̂  0, the equations 

Vl - \z\2 = Azx, z = Az2, |zx|2 + |z2|2 = 1 
imply 

Azx = IzJ, A = Izil/Zi. 

T h u s / " 1 ^ ! , z 2 » is a single point if zx ^ 0. If zx = 0, then 

f-\(zl9 z 2 » = / -H<0, z2>) 

= { z e D : V l - |z|2 = 0, z = A for some A e S1} = S\ 

s o / _ 1 « 0 , z 2 » is the boundary of D. Hence, using/as quotient map, Tis the 
quotient space of D obtained by identifying the boundary S1 to a point. 
Then T is homeomorphic to *S2, so we replace T by S2 and have the Hopf 
map/?: S3 -> S2. 

Showing that /? is not nomotopic to a constant map requires more back­
ground than we have had, but here is a sketch of the basic idea. Suppose to 
the contrary that H: S3 x / - > S2 is a homotopy between p and a constant 
map. Although the Hopf map is not a covering projection, it is close enough 
to permit a covering homotopy H: S3 x / - > S2 as shown in this diagram. 

^* , 

>' i" 
S3 x I —+ S2 
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The map H is a homotopy between the identity map on S3 and a constant 
map. But this implies that S3 is contractible, an obvious contradiction. Thus 
p is not homotopic to a constant map, so TT3(S

2) # {0}. 

Example 6.9. The Hopf maps S7 -> S 4 and S15 -> S8. 
Think for a minute about the construction of the Hopf map p: S3 -> S2. 

The construction was made possible by representing S3 as ordered pairs of 
complex numbers. Using the division ring Q of quaternions, we represent S7, 
the unit sphere in Euclidean 8-space, as ordered pairs of members of Q: 

S7 = {(zl9z2)eQ:\\z1\\
2+ ||z2||2 = 1}. 

The quotient space T in this case is the quotient space of the unit disc 

D = {zeQ: \\z\\ < 1} 

obtained by identifying the boundary of D to a single point. Since D has real 
dimension four, this quotient space is homeomorphic to S4. The Hopf map 
p: S7 -> S* with fiber S3 is then defined as in Example 6.8. This map shows 
that <rr7(S*) ¥= {0}. 

In E16, one can perform a similar construction by representing the unit 
sphere S15 as ordered pairs of Cayley numbers. This produces the Hopf map 
p:S15-> S8 with fiber S7 and shows that TT15(S

8) # {0}. 

There is for each pair k, n of positive integers a natural homomorphism 

E:7rk(S
n)->7rk + 1(S

n + 1) 

called the suspension homomorphism. To define this ingenious function, 
consider 7rk(S

n) as homotopy classes of maps from (Sk, 1) to (Sn, 1) where we 
denote the base point of each sphere by 1. Consider Sn as the subspace of 
Sn + 1 consisting of all points of Sn + 1 having last coordinate 0. In this identifi­
cation, Sn is usually called the "equator" of Sn + 1. Continuing this geo­
graphical metaphor, call the points ( 0 , . . . , 0, 1) and ( 0 , . . . , 0, — 1) of Sn + 1 

the "north pole" and "south pole" respectively. 
Suppose now that [a] e 7rk(S

n). Then a is a continuous map from Sk to Sn. 
Extend a to a continuous map a: Sk+1 -> Sn + 1 as follows: a\sk is just a, and 
it maps the equator of Sk + 1 to the equator of Sn + 1. We require that a map 
the north pole of Sk + 1 to the north pole of Sn + 1 and the south pole of Sk + 1 

to the south pole of Sn + 1. The function is then extended radially as shown in 
Figure 6.3. The arc from the north pole to a point x in Sk is mapped linearly 
onto the arc from the north pole of Sn + 1 to a(x). This defines a on the 
"northern hemisphere," and the "southern hemisphere" is treated the same 
way. The extended map a is called the suspension of a. 

The suspension homomorphism E, called the " Einhangung" by Freudenthal, 
is denned by 

E([a])=[&], [«]e%(S»). 
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6 The Higher Homotopy Groups 

Figure 6.3 

The reader is left the exercise of showing that E is a homomorphism. Freu-
denthal defined the suspension homomorphism and proved the following 
theorem in 1937. Proofs can be found in [11] and in Freudenthal's original 
paper [37]. 

Theorem 6.15 (The Freudenthal Suspension Theorem). The suspension homo­
morphism 

E:7rk(S
n)->7rk + 1(S

n + 1) 

is an isomorphism for k < In — 1 and is onto for k < 2n — 1. 

Although we shall not prove the Freudenthal Suspension Theorem, we 
illustrate its utility with two corollaries. These results have already been 
derived in Examples 6.2 and 6.3. 

Corollary. The homotopy groups 7rk(S
n) are trivial for k < n. 

PROOF. For any positive integer r < k, we have k + r + 1 < 2n, and hence 

k - r < 2(n - r) - 1. 
Then 

Since n — k 4- 1 > 1 for k < n, then 7r1(S
n~k + 1) and its isomorphic image 

7Tk(S
n) are both trivial groups. • 

Corollary. The homotopy groups 7rn(S
n), n > 1, are all isomorphic to the group 

Z of integers. 

PROOF. We rely on our previous arguments to show that 

TT.iS1) - 7T2(S
2) S Z. 

If n > 2, then n < 2n — 1 and the Freudenthal Suspension Theorem shows 
that 

7T2(S
2) - 7T3(S

3) £ 7T4(S4) - • • • S ?rn(Sn). • 

6.6 The Relation Between #n(X) and 7rn(|A:|) 
The last theorem of this chapter extends Theorem 4.11 to show a relationship 
between the homology groups and the homotopy groups of polyhedra. Proofs 
can be found in [20] and [5] 
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Theorem 6.16 (The Hurewicz Isomorphism Theorem). Let K be a connected 
complex andn > 2 a positive integer. If the first n — 1 homotopy groups of 
\K\ are trivial, then Hn(K) and 7rn(\K\) are isomorphic. 

For an application of the Hurewicz Isomorphism Theorem, let us again 
consider 7rn(S

n). 

Example 6.10. Consider the ^-sphere Sn for n > 2. Since 7rk(S
n) = {0} 

for k < n, the Hurewicz Isomorphism Theorem implies that 

7rn(S
n) s Hn(S

n) s Z. 

The pioneering work on the higher homotopy groups was done by Witold 
Hurewicz in a sequence of four papers, his famous "Four Notes," published 
in 1935-1936 [42j. These papers contain definitions of the higher homotopy 
groups, the relation between irn(E) and 7rn(B) for covering spaces (Theorem 
6.9), the homotopy equivalence relation, the proof that homotopy equivalent 
spaces have isomorphic homotopy groups (Theorem 6.14), and the Hurewicz 
Isomorphism Theorem (Theorem 6.16). 

The homotopy groups do not provide for general topological spaces the 
type of classification given for 2-manifolds by Theorem 2.11 and for covering 
spaces by Theorem 5.9. The reader is asked in one of the exercises for this 
chapter to find an example of spaces X and Y which have isomorphic homo­
topy groups in each dimension but which are not homotopy equivalent (and 
therefore not homeomorphic). The induced homomorphism 

/*:7r n (X)->7r n (7) 

has been successful in classifying the homotopy type of spaces known as 
"CW-complexes." These spaces can be used to approximate arbitrary 
topological spaces. The reader interested in pursuing CW-complexes should 
consult [20] or the work of their inventor, J. H. C. Whitehead (1904-1960) 
[57]. 

Although the homotopy groups have not been completely successful in 
showing when spaces are homeomorphic, they are extremely useful in showing 
when spaces are not homeomorphic. This is, in fact, the way in which alge­
braic topology has been most successful. To show that X and Y are not 
homeomorphic, compute the homotopy groups irn(X) and 7rn(Y). If 7rn(X) 
is not isomorphic to -rrn(Y) for some n, then Zand Tare not homeomorphic. 
The same method can be used with the homology groups. 

Recall from Chapter 4 that the Poincare Conjecture asserts that every 
simply connected 3-manifold is homeomorphic to S3. Our work on homotopy 
groups shows that the corresponding conjecture in dimension four is false. 
The 4-manifold S2 x S2 is simply connected, but it is not homeomorphic to 
S 4 since 

TT2(S
2 x S2) - Z 0 Z and TT2(S4) = {0}. 
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6 The Higher Homotopy Groups 

Hurewicz' introduction of homotopy type led to the following extension 
of the Poincare Conjecture : 

Generalized Poincare Conjecture. Every n-manifold which is homotopy equiva­
lent to Sn is homeomorphic to Sn. 

This conjecture was proved to be true for n > 4 by S. Smale (1930- ) in 
1960 [54]. It is still unresolved in the cases n = 3 and n = 4. 

EXERCISES 

1. Complete the details in Definition A of the higher homotopy groups: 
(a) The relation ~ XQ is an equivalence relation. 
(b) If a ~ XQ a and ft ~ XQ ft', then a * /? ~ Xo a * f}'. 
(c) 7Tn(X, Xo) is a group under the operation o. 

2. Complete the details in the discussion of the equivalence of Definitions A 
and C of the higher homotopy groups. 

3. (a) Prove Theorem 6.2. 
(b) Prove Theorem 6.3. 
(c) Prove Theorem 6.4. 

4. Let/ : X-> Sn be a continuous map such that/(X) is a proper subset of Sn. 
Prove that / is null-homotopic. 

5. Use homotopy groups to prove the Brouwer No Retraction Theorem 
(Theorem 3.12). 

6. Show that the sets W(K, U) in the definition of the compact-open topology 
form a subbase. 

7. (a) Show that the space 0(X, x0) with its compact-open topology is an H~ 
space for any space X. 

(b) Show that the homotopy classes [a] of -rr^X, x0) are precisely the path 
components of 0(X, x0). 

8. Show that the function /*: 7rn(X, x0) -> 7rn( Y, y0) induced by a continuous 
map / : (X, x0) -> (Y, y0) is a homomorphism. 

9. Prove that the operation a in Theorems 6.5 and 6.6 is well-defined. 

10. If / : X —> Y is a homotopy equivalence, prove that any two homotopy 
inverses of/are homotopic. 

11. Definition. If / : X-> Y is a continuous map, a continuous map g: Y-> X 
is a left homotopy inverse for / provided that gf is homotopic to the identity 
map on X. Right homotopy inverse is defined analogously. 

Prove that if/: X-> Y has left homotopy inverse g and right homotopy 
inverse h, then/is a homotopy equivalence. 

12. Definition. Continuous maps / and g from (X, x0) to (Y, y0) are homotopic 
modulo base points provided that there is a homotopy H: X x / -> Y such 
that 

#(• ,0) = / HO, 1) = g, H({x0) x /) * yQ. 

Prove that maps which are homotopic modulo base points induce identical 
homomorphisms from 7Tn(X, x0) to 7rn( Y, y0). 
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13. Prove that the m a p / o f Example 6.8 is closed and continuous. 

14. If JHs homotopy equivalent to X' and Fis homotopy equivalent to Y\ prove 
that I x F i s homotopy equivalent to X' x F ' . 

15. Show that if the pairs (X, x0) and (Y, y0) are homotopy equivalent, then the 
loop spaces &(X, x0) and 0( Y, y0) are homotopy equivalent. 

16. Let (E, p) and (F, q) be covering spaces of base space B, and let h: E -> F be 
a covering space homomorphism such that h(e0) = / 0 , where e0 and / 0 are 
the base points of E and F respectively. Show that the induced homomorphism 

h*: 7rn(E, e0) -> 7rn(F, /0) 

is an isomorphism for n > 2. What can be said about A* if w = 1 ? 

17. Show that the Freudenthal map 

E:7rk(S
n)->7rk + 1(S

n + 1) 
is a homomorphism. 

18. Definition. Let / : X-> Y be a continuous map. The quotient space of the 
disjoint union (X x I)KJ Y obtained by identifying (x, 1) with f(x), x e X, 
is called the mapping cylinder off. 

Show that the mapping cylinder of/: X-> Fis homotopy equivalent to F. 

19. Show that the unit sphere 5 n _ 1 and punctured «-space [Rn\{/?} have the same 
homotopy type. 

20. Here are some homotopy groups of spheres. Use them to determine other 
homotopy groups of spheres. (The symbol Zp denotes the group of integers 
modulo p). 
(a) TT1 2(57) = {0}. 

(b) TT1 4(58) s Z. 

(c) TT1 6(59) £ Z240 . 
(d) TT1 8(51 0) s Z2 0 Z2. 

21. Prove that homotopy equivalence for pairs is an equivalence relation. 

22. Give an example of spaces X and F having isomorphic homotopy groups in 
each dimension which do not have the same homotopy type. 
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The preceding chapters have introduced homology groups for polyhedra and 
homotopy groups for arbitrary spaces. The homotopy groups are more 
general since they apply to more spaces. The process of extending homology 
to spaces more general than polyhedra began in the years 1921-1933 and has 
continued to the present day. The pioneers in this work were Oswald Veblen, 
Solomon Lefschetz, Leopold Vietoris, and Eduard Cech. In this chapter we 
shall examine some additional theory and applications of simplicial homology 
groups, notably the famous fixed point theorem and relative homology groups 
discovered by Lefschetz, and the singular homology groups, also due to 
Lefschetz, which extend homology theory to arbitrary spaces. 

7.1 Chain Derivation 
Chain mappings were introduced in Chapter 3 for the purpose of defining 
induced homomorphisms on the homology groups. We turn now to a particu­
lar chain mapping, the "chain derivation" <p = {<pp: CP{K) -^ Cp(K

a))}, from 
the chain groups of a complex K to those of its first barycentric subdivision 
Ka\ This will allow us to see that HP(K) ~ HP(K(1)), a problem that was 
glossed over in Chapter 3, and to establish the machinery necessary for a 
proof of Lefschetz' celebrated fixed point theorem. 

Notation: If ap = <i?0.. .vp} is a /^-simplex and v a vertex for which 
{v, v0,..., vp} is geometrically independent, then the symbol vap denotes the 
(p + l)-simplex 

mp = (vv0.. .vpy. 

If c = 2 gt'vf is a/7-chain, then vc denotes the (p + l)-chain 
vc = 2^'^ 
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This notation was used in Theorem 2.9. 
The proof of the following lemma is left as an exercise: 

Lemma. Let c be ap-chain on a complex Kand v a vertex for which the (p + 1)-
chain vc is defined. Then 

d(vc) = c — vdc. 

Definition. Let K be a complex. A chain mapping 

<P = {<PP:Cp(K)^Cp(K
a))} 

is defined inductively as follows: Each 0-simplex a0 of K is a 0-simplex of 
the barycentric subdivision Ka\ so we may consider CQ{K) as a subgroup 
of C0(K

a)). Define q>0: C0{K) -» C0{Ka)) to be the inclusion map: 

<p0(c) = c, c e C0(K). 

For an elementary /?-chain 1 • ap on K, define 

9 p ( l . ( 7 p ) = d p 9 p _ 1 a ( l . ( 7 p ) , 

where ap denotes the barycenter of ap, and extend cpp by linearity to a 
homomorphism <pp: CP{K) -^ Cp(K

a)): 

?p(2 & *a?) = 2 **(& *<*)> 2 *«' <* 6 Cp^' 
The sequence <p = {<pp} of homomorphisms defined in this way is the first 
chain derivation on K. For n > 1, the «th c/*a/« derivation on Â  is the com­
position of 9?(n~1), the (« — l)th chain derivation on K, with the first chain 
derivation of the (n — l)th barycentric subdivision A"(n_1). Thus the nth 
chain derivation on K is a chain mapping <p(n) = {g#°: CP(X) ->- Cp{K(n))}. 

Example 7.1. Let us examine the first chain derivation of the complex 
K = Cl((j2), the closure of a 2-simplex a2 = +(v0v1v2}, shown with the 
barycentric subdivision Ka) in Figure 7.1. 

Figure 7.1 

In the figure, the additional vertices i?3, i?4, i?5, and v6 denote the barycenters 
of <i?o0i>> < ô̂ 2>? < î̂ 2>? and <^0^i^2> respectively. Then (p0:C0(K)-> 
C0(K

a)) is the inclusion map, and 

9>l(l"<0O01» = »390^(1 '<»0»1» = »3(1"<»1> 

= l'<v3v±y - l-<v3v0>; 
l-<»o» 
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= l '<»4»2> - 1"<04»O>; 

9 l ( l " < » l » 2 » = »590^(1 '<»1»2» = V5(l'<V2> ~ 1 -<»1» 

= i-<»5»2> - i -<05»i>; 

92( l -<»o» i»2» = » e 9 i ^ ( l - < » o » i » 2 » = * W i ( l ' O i ^ 2 > - l '<»o»2> + l - O o ^ i ) ) 

= l-<l?el?5l?2> - l-<»e»5»i> - 1"<06»402> + l"<»e»4»o> 

+ 1 • <l?el?3l?i> - l-<l?el?3l?o>. 

Theorem 7.1. Each chain derivation is a chain mapping. 

PROOF. Since the composition of chain mappings is a chain mapping, it is 
sufficient to show that the first chain derivation is a chain mapping. Let 
(p = {<pp: CP{K) -^ Cp(K

a))} be a chain derivation in the notation of the 
definition. It must be shown that the diagram 

'I I' 
C^iK) ^ l C^K™) 

is commutative for/? > 1. Thus it is sufficient to show that 

d<pp(l-<7p) = <pp„1d(l.o*) 

for each elementary/?-chain \-ap. For/? = 1, 

fyiO-or1) = d(dVod(l-a1)) = cp0d{\-a1) - d^o^ l -c r 1 ) 

= podCl-"1) - a ^ l - a 1 ) = p o ^ l - " 1 ) . 
These equalities follow, in order, from the definition of <pl9 the lemma #(i?c) = 
c — vdc, the fact that <pQ is the inclusion map, and dd = 0. Thus dyx = <p0d, 
so the desired conclusion holds for/? = 1. Proceeding inductively, let 1 •op be 
an elementary /?-chain on K. Then 

The next to last equality uses the inductive assumption d(pp_1 = (pp-2d. Thus 
d(pp = tpp-xd for elementary/?-chains and hence for all /?-chains. D 

Theorem 7.2. Let Kbe a complex with first chain derivation <p = {cpp}. There is 
a chain mapping 

4> = {^:CP(K^)^CP{K)} 

such that ijjpcpp is the identity map on CP(K) for each p > 0. 

PROOF. Such a chain mapping ^ is called a left inverse for <p. Let /be any sim-
plicial map from Ka) to Shaving this property: If d is a vertex of Ka\ then 
/(d) is a vertex of the simplex a of which d is the barycenter. Let iff = {if*p} be 

130 



7.1 Chain Derivation 

the chain mapping induced by/. Observe that if rp is a/?-simplex of Ka\ then 

0,(1-T*) = ^ p , 

where rj is 0, 1 or — 1 and ap is the /7-simplex of Â  which produces TP in its 
barycentric subdivision. 

Clearly ^09o is the identity map on C0(K). Suppose that if/p-^-^. 
Cp_i(A:)-^Cp_i(A:) is the identity, and consider i/jpcpp: CP(K) -» CP{K). If 
1 • ap is an elementary p-chmn on K, then 

</WP(1-*P) = W ^ P - I ^ I - ^ ) ) = m-op 

for some integer m. But 

a(m-a^) = # p 9 p ( l -c7 p ) = 0p_i09>p(l.o") = ^ - ^ p - i ^ l - o ' ) = d(Vap), 

SO 

ma(i.ap) = a(m-(jp) = a ( i - o , 
and hence m = 1. Thus 

l/,p<Pp(l-o
p) = 1 ^ , 

so ^p9?p is the identity map on CP{K). • 

Example 7.2. The preceding theorem is not as complicated as it may appear. 
Consider the chain derivation <p = {cpp}l of Example 7.1. We may define the 
simplicial map / from Ka) to K, the closure of the 2-simplex (,v0v1v2y, in 
any manner consistent with having/(i?4) a vertex of the simplex of which vt is 
the barycenter. Thus we must have 

f(v0) = v0, /(i?i) = vl9 f(v2) = v2. 

One possible definition f o r / o n the remaining vertices is 

f(v3) = /(»*) = 0o, / (» 5 ) = »i, /(^e) = 02-

Let ^ = {̂ p}§ be the chain mapping induced b y / as in the proof of Theorem 
7.2. Then 

Ml-<v0» = 0o(l-<t>3» = « l - < ^ » = l-<»o>; 

0o(i-<»i» = 0o(i-<»6» = i •<»!>; 
0o(l-<»2» = 0o(l-<0e» = l'<»2>. 

0 i ( l • <0o04» = 0; 0 i ( l • <v0v6}) = 1 • <t?o02>; etc. 

02(1 • <030i06» = 1 • <v0v1v2
s); 02(1 • <0O0406» = 0; etc. 

Consider, for example, 

0i9>l(l"<0O01» = 0l(l"<03»l> - 1"<03»O» = 1"<»0»1> ~ 0 = l-<0O0i>. 

Let us compute ^ ^ ( I ' ^ o ^ i ^ ) ) ? where 92(l-<i?o0i02» is expressed as in 
Example 7 .1: 

9>2(1"<0O0102» = 1 * < * W 2 > - 1"<»6»5»1> - 1"<»6»4»2> 

+ l -<0 e 0 4 0 o > + l * < * V ^ i > - l-<»e»3»o>-
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Since/collapses all 2-simplexes except ^VQVQVX}, then 

^ 2 ( 1 *<^o^i^2» = 02(l"<»e»3»i» = l"<020o»i> = l'<v0v1v2y-

Definition. A pair 9 = {<pp}o and /x = {fj<p}o of chain mappings from a com­
plex K to a complex L are c/*a/« homotopic means that there is a sequence 
S = {Z)p}-i of homomorphisms Z)p: C p (£ ) -* CP + 1(L) such that 

di)p + DP_J = <pp - fMp, / ) _ ! = 0. 

The sequence @ is called a deformation operator or a c/jtfw homotopy. 

The chain homotopy relation was designed explicitly to produce the next 
theorem. 

Theorem 7.3. Ify and /x are chain homotopic chain mappings from complex K 
to complex L, then the induced homomorphisms 9* and /xj from HP(K) to 
HP(L) are equal, p > 0. 

PROOF. Since 9 and /x are chain homotopic, there is a deformation operator 
@ = (A>}-i as specified in the definition. For [zp] e HP(K), 

9>?(feJ) " f4([zp\) = l<Pp(Zp) - lh(Zp)] = PA>(*p) + A> - I (&P )1 = 0* 

The final equality follows because dzp = 0 for any cycle and dDp{zp) is a 
boundary. Thus 9* = fi* for each value of/?. • 

Definition. Complexes K and L are c/za/ft equivalent means that there are chain 
mappings 9 from K to L and ^ from L to K such that the composite chain 
mappings ^9 = {̂ p<pp} and qxf/ = {<pp̂ p} are chain homotopic to the 
identity chain mappings on K and L respectively. 

It is left to the reader to show that chain homotopy is an equivalence 
relation for chain mappings and that chain equivalence is an equivalence 
relation for complexes. 

Theorem 7.4. Chain equivalent complexes K and L have isomorphic homology 
groups in corresponding dimensions. 

PROOF. If 9 and ^ are the chain mappings required by the definition of chain 
equivalence, then Theorem 7.3 insures that 

<p*+*:Hp(L)-^Hp(L) 

are the identity maps, so 9* is an isomorphism for each value of p. • 

One objective of this section is to prove that the homology groups of a 
complex KSLTC isomorphic to those of its barycentric subdivision Ka\ In view 
of Theorem 7.4, it is sufficient to show that K and Ka) are chain equivalent. 
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For this we need chain mappings <p from K to Ka) and \fj from Ka) to K for 
which i/s<p and cp?/f are chain nomotopic to the appropriate identity chain maps. 
We have 99, the first chain derivation of K; we also have ^, the left inverse 
provided by Theorem 7.2. We know that ^9 is the identity chain map on K, 
and we must show that cpifj is chain homotopic to the identity chain map on 
Ka). This is a rather large assignment; it is accomplished by the next proof. 

Theorem 7.5. A complex K and its first barycentric subdivision are chain 
equivalent. 

PROOF. In view of the preceding discussion, it is sufficient to show that cpifj is 
chain homotopic to the identity map on Ka\ This requires a deformation 
operator 2 = {Dp: Cp{Ka)) -» Cp+1(K

a))} such that D_x *= 0 and, for each 
elementary /?-chain 1 • rp on Ka\ 

1-1* - 9 P « 1 - T P ) = dDp(l.i*) + Z ^ a a - T " ) . 

We must have D_1 = 0. To define D0, let w be a vertex of Ka\ Then 

^0(1-<W»= l.<!>> 

where v is a vertex of some simplex a of K of which w is the barycenter. Then 

9o0o(l • < » ) = <Po(l • <0» = 1 • <v>-

Thus 

l-<w> - 9oWl-<w» = l-<w> - l.<»> = 0(l-<iw», 

so we define 
^o(l-<w» = l-<i>w>. 

The function Z)0 is defined by this procedure for every elementary 0-chain 
l<w> and extended by linearity to a homomorphism D0: C0(K

a)) -+ 
Ci(A^(1)). Proceeding inductively, suppose that D0,..., Dp_x have all been 
defined, and let 1 • rp be an elementary /?-chain on Ka\ Then, for every 
(p — l)-chain c, 

so 

Consider 

Then 

c - p p . ^ p _!(<?) = 0/>p_i(c) + Dp_2d(c), 

dDp-i(c) = c ~ (pp.^.^c) ~ Dp_2dc. 

dz = d(l-r») - dtpjfrpQ-i*) ~ dDp_1d{\T*) 
= a ( i . ^ ) - 9 p _ 1 ^ _ 1 a ( i . r - ) 

- (0(1-T") - 9>p-i0p-i0a-T*) - Dp_2dd(l-T*)) = 0. 

This means that z is a cycle on A"(1). An argument analogous to that used in 
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the proof of Theorem 2.9 shows that z is the boundary of a (p + l)-chain 
cp + 1 on Ka\ We then define 

Z>P(1-T*) = cp + 1 

and extend by linearity. This completes the definition of the deformation 
operator @ and shows that K and Ka) are chain equivalent. • 

Theorem 7.6. 77*e homology groups HP{K) and Hp(K
(n)) are isomorphic for all 

integers p > 0, n > 1, and each complex K. 

PROOF. The inductive definition of K(n) and Theorem 7.5 show that K and 
K(n) are chain equivalent for n > 1. Theorem 7.4 then shows that HP(K) ~ 
HP(K™), p>0. • 

Deformation operators were invented by Solomon Lefschetz (1884-1972). 
The proof of Theorem 7.5 given above is due to Lefschetz [13, 15]. 

Let \K\ and \L\ be polyhedra with triangulations K&nd L respectively and 
/ : \K\ -> \L\ a continuous map. We now have the machinery necessary to 
prove that the induced homomorphisms f*: HP{K) -^ HP{L) are uniquely 
determined by / . Recall that this problem was postponed in Chapter 3. 
According to the Simplicial Approximation Theorem (Theorem 3.6), there is 
a barycentric subdivision K(k) of K and a simplicial mapping g from Kik) to L 
such that, as functions from \K\to |L | , / and g are homotopic. There is some 
freedom in the choices of g and the degree k of the barycentric subdivision. 
From the proof of Theorem 3.6, k must be large enough so that K(k) is star 
related to L relative to / . The simplicial map g is given by the proof of Theorem 
3.4; for a vertex u of K(k\ g(u) may be any vertex of L satisfying 

/(ost(w)) c ost(g(u)). 

To show that the sequence of homomorphisms is independent of the 
admissible choices for g, it is sufficient to prove that any admissible change in 
the value of g at one vertex does not alter the induced homomorphisms 
gp: Hp(K

(k))-> HP(L). Any simplicial map satisfying the requirements of 
Theorem 3.4 can be obtained from any other one by a finite sequence of such 
changes at single vertices. Suppose then that g and h are two simplicial 
mappings from Kik) into L which have identical values at each vertex of 
Kik) except for one vertex v and that, for this vertex, ost(g(t;)) and 
ost(h(v)) both contain f(ost(v)). We shall show that the chain mappings 
{gp: Cp(K

ik)) -> CP(L)} and {hp: Cp(K
(k)) -> CP(L)} are chain homotopic and 

conclude from Theorem 7.3 that the induced homomorphisms gp and hp from 
Hp(K

ik)) to HP{L) are identical for each value of p. 
For our deformation operator @ = {Dp: Cp{Km) -> Cp + i(L)}_i, we must 

have / ) _ ! = 0. For any vertex u of Km with u j=- v, define DQ{\ -<w» = 0, 
and define 

A>(1 •<!>» = l<Kv)g(v)}. 

Now extend D0 by linearity to a homomorphism from C0(K
(k)) to Ci(L). 
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Note that 

3Z>o(l.<!>» + 0- i0( l •<*» = V(l<Kv)g(v)» = l<g(v)} - l-<%)> 

= go( l -<»»-*o( l -<»» . 
If w is a vertex of Km different from v, then 

g0(l • <*» = h0(l • <i/», Z)0(l • <«>) = 0, 

so the desired relation 

dDp + Dv-Xd = gp - hp 

holds for p = 0. 
For the general case, let 1 • <JP be an elementary /?-chain in Cp{Km). If i? is 

not a vertex of ap, then we define Dp(la
p) = 0 in Cp + i(L). If i? is a vertex of 

cjp? then ap = vop~1 for some (p — l)-simplex a*-1, and we define 

Dp(la
p)= lh(v)g(v)r 

where r is the (/? — l)-simplex in L which is the image of GP~1 under both g 
and /*. As usual, Dp is extended linearly to a homomorphism from Cp(K

(k)) to 
Cp + i(L). Then for the case in which v is a vertex of ap, 

dDp(la
p) + Z)p_ ^( l .a*) 

= l-g(f?)T - A(f?)a(l.g(f?)T) + JDp.^l CT -̂1 - ttfO-O*"1)) 

= l-g(i;)T - %)[l-r - g(v)d(lr)] - D^vdil-o*-1)) 
= lg(v)r - lh(v)r + h(v)g(v)d(lr) - h(v)g(v)d(l • r) 

= gp(l W " 1 ) - Ap(l ^ " 1 ) = g p ( l a p ) - Ap(l-o"). 

Thus 
dDp + i ) ^ = gp - hp, p> 0, 

and the chain mappings induced by g and h must be chain homotopic. 
Theorem 7.3 now guarantees that gp = hp, so we conclude that the induced 
homomorphism f* is independent of the allowable choices of the simplicial 
mapg. 

Question: Where did we use the assumption that ost(g(v)) and ost(h(v)) 
both contain /(ost(V»? 

The homomorphism fp\ HP{K) -> HP{L) is actually the composition g*/xj 
from the diagram 

HP{K) -^-> //p(iT
(fc)) -^-> HP{L) 

where /x* is the isomorphism induced by chain derivation. For a barycentric 
subdivision K(r) of higher degree, let 0*: HP{K) -> Hp(K

(r)) be the isomor­
phism induced by chain derivation and j * : Hp(K

(r)) -+ HP(L) the homo­
morphism induced by an admissible simplicial map. It is left as an exercise 
for the reader to show that gpfxp = J'PI[JP and hence that/p* is also independent 
of the allowable choices for the degree of the barycentric subdivision Km. 
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7.2 The Lefschetz Fixed Point Theorem 
This section is devoted to the most famous of all the theorems about fixed 
points of continuous maps. Lefschetz introduced in 1926 a number A(/) 
associated with each continuous m a p / : \K\ -> \K\ from a polyhedron into 
itself. If the Lefschetz number A(/) is not zero, then / has at least one fixed 
point. (The Lefschetz number does not specify the number of fixed points.) 
Brouwer's Fixed Point Theorem (Theorem 3.13) can be proved as a simple 
corollary. 

In this section we assume that rational numbers rather than integers are 
used as the coefficient group for chains. Thus the/?th chain group CP(K) of a 
complex K is considered a vector space over the field of rational numbers. 

Definition. Let K be a complex with {af} its set ofp-simplexes, and let <p = {<pp} 
be a chain mapping on K. For a j?-simplex af of K, 

9 P ( W ) = 2 atrof 

for some rational numbers afj9 one for each ̂ -simplex af of K. Then af is a 
fixed simplex of 9 provided that afi9 the coefficient of af in the expansion of 
9P(1 -af), is not zero. The number ( —l)pag is called the weight of the fixed 
simplex af. Let 

Av = (afj) 

be the matrix whose entry in row / and column j is av
{j. Since the trace of a 

square matrix is the sum of its diagonal elements, then 

trace Ap = 2 au> 
and the number 

A(?) = 2 ( - l ) * t r a c e d ) 
p 

is the sum of the weights of all the fixed simplexes of 99. The number \(<p) 
is called the Lefschetz number of 99. (Note that if A(<p) ^ 0, then 9 must 
have at least one fixed simplex in some dimension p.) 

The matrix Ap = (af/) is the matrix of cpp as a linear transformation from 
the vector space CP(K) into itself relative to the basis of elementary /7-chains 
{1 -of}. Since the trace of the matrix of a linear transformation is not affected 
by a change of basis, the Lefschetz number X(<p) is the same regardless of the 
choice of basis for CP(K). 

Example 7.3. Let yp: CP{K) -> CP(K) be the identity map on CP{K) for some 
complex K, p > 0. Then 

afi= 1, af3=0 f o r / # 7 , 

and each simplex is a fixed simplex. Thus 

K?) = 2 (-IT trace Ap = J ( "1) P S = x(K) 
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where ap is the number of simplexes of dimension p and x(X) is the Euler 
characteristic of K. Thus the Lefschetz number is a generalization of the 
Euler characteristic. 

Theorem 7.7. Let <p = {cpp} be a chain mapping on a complex K. The Lefschetz 
number A(<p) is completely determined by the induced homomorphisms 
cpp : HP(K) -> HP(K) on the homology groups. 

PROOF. The proof is similar to the proof of the Euler-Poincare Theorem 
(Theorem 2.5), and we use the same notation. Then {zp} u {bP} is a basis for 
the cycle vector space Zp, {bP} is a basis for the boundary space Bp, {dP} is a 
basis for Dp, bp = ddl

p + 1, and n is the dimension of K, as in the proof of 
Theorem 2.5. Note that {bP} u {zp} u {dP} is a basis for Cp. For any bp, 

9P(bP) = J^afM, 0 <p <n- 1, 

for some rational coefficients afj since the linear transformation cpp takes Bp 

into i?p. For any zp,0 < p < n, (pp(zp) must be a cycle, so there are coefficients 
dt

P, evij such that 

For any dP, 1 < p < n, there are coefficients a*/, et'f, gft such that 

y y y 

Then 
n 

A(9>) = y (-l)p(trace Ap + trace Ep + trace Gp) 
i = 0 

where 

Ap = (eg), £ p = (e&), Gp = (gf,), 

and An = G0 is the zero matrix. Now 

fy>* + i(<# + i ) = 9pd(dp + i) = 9P(bp) = ^afjbp. 

Also, 

Then 

<# = «fy+1, *̂> = Gp + 1, 0 < /> < n - 1, 
and the sum 

n 

A(<p) = 2 ( —l)p(trace ^4P + trace Ep + trace Gp) 
t = 0 

telescopes to give 

K¥) = J ( - l ) p t r a c e d 
i = 0 
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This means that the Lefschetz number A(<p) is completely determined by the 
action of the maps cpp on the generating cycles zp of HP(K). The coefficients 
efj are determined by the induced homomorphisms <p*: HP(K) -> HP(K) 
because the homology classes [zp] generate HP(K): 

9>?([4D = ]>>&[4]-
3 

Thus the induced homomorphisms completely determine the coefficients eft 
which completely determine A(<p), so the theorem follows. • 

Thus far we have defined the Lefschetz number for chain mappings. This 
definition must be extended to continuous mappings. 

Definition. Let Abe a complex a n d / : \K\ -> \K\ a continuous function. Let 
K(s) be a barycentric subdivision of K and g a simplicial map from K(s) to 
K which is a simplicial approximation off (Theorem 3.6). Then g induces 
a chain mapping {gp: CP(K<») -> CP(K)}. Let /* = {/*p: CP(K) -> CP(A<S>)} 
be the sth chain derivation on A'. The Lefschetz number X(f) off is the 
Lefschetz number of the composite chain mapping {gp^p: CP(K) -> CP(A)}. 

It appears that the Lefschetz number is influenced by the possible choices 
for g and s. The number is independent of these choices, however, since it is 
completely determined by the induced homomorphisms 

f* = g*V*:Hp(lC)'+Hp(lC) 

and/p* is independent of the allowable choices for g and s. 

Theorem 7.8 (The Lefschetz Fixed Point Theorem). Let K be a complex and 
f: \K\ -> \K\ a continuous map. If the Lefschetz number \(f) is not 0, then 
fhas a fixed point. 

PROOF. Suppose to the contrary that/has no fixed point. Since |K\ is compact, 
there is a number e > 0 such that if x e \K\, then the distance \\f(x) — x\\ > e. 
By replacing K with a suitable barycentric subdivision if necessary, we may 
assume that mesh K < e/3. According to the proof of the Simplicial Approxi­
mation Theorem (Theorem 3.6), there is a positive integer s and a simplicial 
map g from K(s) to ^nomotopic to/such that, for each x in |K\,f(x) and g(x) 
lie in a common simplex of K. Then \f(x) — g(x)\ < e/3 for all x £ \K\. 

Suppose that some simplex a of K contains a point x such that g(x) is also 
in a. Then 

\\f(x) - x\\ < \\f(x) - g(x)\\ + \\g(x) - *|| < 2e/3, 

which contradicts the fact that \\f(x) — x\\ > e. Thus a and g(a) are disjoint 
for all a in K. Consider the sth chain derivation /x = {/xp: CP(K) -> CP(K(S))} 
and the chain mapping {gp: CP(K(S) -> CP(K)} induced by g. If ap is a p-
simplex of K, then /xp(l av) is a chain on K(s) all of whose simplexes with 
nonzero coefficient are contained in ap. Since ap and g(op) are disjoint, then 
gp/xp(l • a

p) is ap-chain on K none of whose simplexes with nonzero coefficient 

138 



7.3 Relative Homology Groups 

intersects a. Thus gv[iv has no fixed simplex, and the Lefschetz number of the 
chain mapping {gp^p} is zero. But this is the Lefschetz number off, contra­
dicting the hypothesis A(/) ̂  0. • 

Corollary (The Brouwer Fixed Point Theorem). If an is an n-simplex, n a 
positive integer, andf: an -> an a continuous map, then f has a fixed point. 

PROOF. Let K = Cl(an). Then H0(K) ^ I, HP(K) = {0} for;? > 0. Let v be a 
vertex of an so that the homology class [1 • <i;>] may be considered a generator 
of H0(K) (Theorem 2.4). Then 

fo*([l<v>]) = [l<v>], 

and the coefficient matrix E0 of Theorem 7.7 has trace 1. (Why?) Each matrix 
Ep for p > 0 has only zero entries, and hence 

A(/) = ]> (-1)* trace £ p = L 

Thus A(/) ̂  0, so /must have a fixed point. • 

Corollary. Every continuous map from Sn to Sn,n > 1, whose degree is not 1 
or —I has a fixed point. 

PROOF. Recall from Theorem 2.9 that H0(S
n) ^ Hn(S

n) ^ Z and Hp(S
n) = 

{0} otherwise. If [1 -<i;>] and [zn] are generators of H0(S
n) and Hn(S

n) respec­
tively, then 

/o*([l-<»>]) = [!•<»>], 

/n*([zj) = d[Zn] 

where d is the degree of/. Then 

ACQ = i + (-iyd, 
so X(f) ^ 0 if d is not 1 or - 1 . • 

Corollary. Iff: Sn -> *Sn is the antipodal map, then the degree off is ( — l)n + 1. 

PROOF. Since/has no fixed point, then A(/) = 0. Hence 

0 = 1 + ( - l ) V 

where d is the degree of/ This gives d = ( — l)n + 1. • 

The Lefschetz Fixed Point Theorem was discovered by Lefschetz in 1926 
[47, 48]. A simpler proof, the one used in this book, was published by H. Hopf 
in 1928 [40]. 

7.3 Relative Homology Groups 
Suppose that K is a complex and L is a complex contained in K. It often 
happens that one knows the homology groups of either K of L and needs to 
know the homology groups of the other. The groups HP(K) and HP(L) can 

139 



7 Further Developments in Homology 

be compared using the "relative homology groups" Hp{KjL) to which this 
section is devoted. The intuitive idea is to "remove" all chains on L by 
considering quotient groups. The groups HP(K), HP(L), and Hp{KjL) form 
a sequence of groups and homomorphisms called the "homology sequence." 
Using this sequence, one can often compute any one of the groups HP(K), 
HP(L), or HP(K/L) provided that enough information is known about the 
others. 

Definition. A subcomplex of a complex K is a complex L with the property 
that each simplex of L is a simplex of K. 

Note that not every subset of a complex is a subcomplex; the subset must 
be a complex in its own right. The ^-skeleton of a complex is one type of 
subcomplex. Note also that the empty set 0 is a subcomplex of each complex 
K; the relative homology groups HP(K/L) will reduce to HP(K) when L = 0. 

Definition. Let K be a complex with subcomplex L. By assigning value 0 to 
each simplex of the complement K\L, each chain on L can be considered a 
chain on K, and we can consider CP(L) as a subgroup of CP(K), p > 0. The 
relative p-dimensional chain group of K modulo L, or relative p-chain group 
(with integer coefficients), is the quotient group 

CP(K/L) = CP(K)/CP(L). 

Thus each member of CP(K/L) is a coset cp + CP(L) where cp e CP(K). 
For p > 1, the relative boundary operator 

d.C^KIQ^C^KIL) 
is defined by 

d(cp + CP(L)) = dcp + C ^ L ) , (cp + CP(L)) e CP{K\L\ 

where dcp denotes the usual boundary of the p-chain cp. It is easily observed 
that the relative boundary operator is a homomorphism. 

The group of relative p-dimensional cycles on K modulo L, denoted by 
ZP(K/L), is the kernel of the relative boundary operator 

d:Cp(K/L)-+Cp-1(KIL)9 p > 1. 

We define Z0(K/L) to be the chain group C0(K/L). 
Forp > 0, the group of relative p-dimensional boundaries on K modulo L, 

denoted by BP(K/L), is the image d(Cp + 1(K/L)) of CP + 1(K/L) under the 
relative boundary homomorphism. 

The relative p-dimensional simplicial homology group of K modulo L is 
the quotient group 

In order for the homology group HP(K/L) to make sense, every relative 
^-boundary must be a relatives-cycle. In other words, we must have BP(K/L) 
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<= Zp{KjL) for the quotient group to be defined. The verification of this fact 
is left as an easy exercise 

The members of HP(K/L) are denoted [zp + CP(L)] where zp + CP(L) is a 
relative /?-cycle. It is required that dzp be a (j? — l)-chain on L, not that zp 

be an actual cycle. However, if zp is a cycle, then zp + CP(L) is certainly a 
relative cycle. 

Example 7.4. Let i£ be the 1-skeleton of a 2-simplex <i?o#i#2> and L the sub-
complex determined by the vertex v0. Let us determine H0(K/L) and H^K/L). 
For the case p = 0, 

C0(tf) = Z0(tf) ^ Z 0 Z 0 Z, 
C0(L) = Z0(L) £ Z, CoWL) = ZoWL) ^ Z 0 Z. 

The members of Z0(K/L) are chains of the form 

z = gi' <*>i> + g2 • <v2> + C0(L), gl9 g2 e Z, 

where 
C0(L) = {g'(v0}:g is an integer}. 

But 

0(gi-Oo0i> + gvOWa)) = gi •<*>!> + ^2-<^2> + (~gi - g2)-<»oX 

so 

0(gl-<*Wl> + #2'<W2> + Ci(L)) = gi-<Wi> + g2'<^2> + C0(L). 

Thus every relative 0-cycle is a relative 0-boundary. This means that 

Z0(K/L) = B0(K/L), H0(K/L) = {0}. 

Now suppose p = 1. Let 

w = Ai-<i>0fli> + h2-iv1v^ + h3-(v0v2y + Ci(L) 

be a relative 1-chain. (Since Ci(L) = {0}, 1-chains and relative 1-chains are 
essentially the same.) Then 

dw = (/*! - h2)'<kv1y + (h2 + A3)-<t>2> + C0(L). 

Then w is a relative 1-cycle if and only if hx = h2 = —h3. Hence Z^K/L) ^ Z. 
Since ^ has no 2-simplexes, then B^K/L) = {0} and H^K/L) ~ Z. Since 
there are no simplexes of dimension 2 or higher, then HP(K/L) = {0}, p > 2. 

Example 7.5. Let K denote the closure of a 2-simplex a2 = ^v0v1v2y and L its 
1-skeleton. Since ^ a n d L have precisely the same 0-simplexes and 1-simplexes, 
then 

C0(K) = C0(L), C0(K/L) = {0}, H0(K/L) = {0}, 

Cl(K) = d ( L ) , d ( ^ / L ) = {0}, # ! (* /£ ) = {0}. 

Since L has no simplexes of dimension two or higher, it might appear at first 
that HP{K) and Hp{KjL) are isomorphic for;? > 2. This is true for;? > 3 but 
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not for p = 2. Although L has no simplexes of dimension two, it does affect 
Z2(K/L). The reason is that the boundary of a 2-chain is a 1-chain; if the 
1-chain has nonzero coefficients only for simplexes of L, then the 2-chain is a 
relative cycle. In this case, the elementary relative 2-chain 

u = g-<iv^2> + C2(L), gel, 

has relative boundary 

du = g-<v±v2> - g-<v0v2) + g-<iv>i> + C^L) = 0 

because all 1-simplexes of K are in L. Thus the subcomplex L produces 
relative 2-cycles, and Z2(K/L) ^ Z. Since B2(K/L) = {0}, then H2(K/L) ~ Z. 
Note in particular that H2(K) = {0}, so H2(K/L) is not isomorphic to H2(K). 

Our next objective is to show that there is a special sequence 

• • A HP(L)^ HP(K)J^ HP(K/L)d-^ Hp^iL)^- • A H0(K)^> H0(K/L) 

where /*, j * 9 and d* are homomorphisms. Strictly speaking, each homo-
morphism should be marked by;?, indicating the dimension, but this notation 
is cumbersome. The dimension will always be known from the subscripts on 
the homology groups. 

Definition. Let K be a complex with subcomplex L. The inclusion map / from 
L into K is simplicial and induces a homomorphism /*: HP(L) -> HP(K) 
for each p > 0. The effect of this homomorphism is easily described: If 
[zp] e HP(L) is represented by the p-cycle zp on L, then zp can be considered 
a p-cycle on K. Then zp determines a homology class /*([zp]) = [zp] in 

wo. 
Let j : CP(K) -> CP(K/L) be the homomorphism defined by 

7 ( 0 = cp+ CP(L), cp e CP(X). 

Then j induces a homomorphism j * : Hp(K)-> HP(K/L), p > 0. If 
[zp] e HP(K), then zp + CP(L) is a relatives-cycle and determines a member 
[zp + CP(L)] of Hp{KjL). The homomorphism^* takes [zp] to [zp + CP(L)]. 

The definition of a*: HP(K/L) -> HP^{L) comes next. If [zp + C„(L)] e 
HP(K/L),p > 1, then zp + CP(L) is a relatives-cycle. This means that dzp 

is in Cp_i(I/). Since ddzp = 0, then dzp is a (j? — l)-cycle on L and deter­
mines a member [dzp] of Hp.-^L). We define 

3*([zp + CP(L)]) = [dzp], [zp + CP(L)] E W I ) . 

The homology sequence of the pair (X, L) is the sequence of groups and 
homomorphisms 
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The reader is asked to verify that /*, j * , and d* are well-defined homo-
morphisms. The homology sequence has a nice algebraic structure whose 
basic properties are developed in the next definition and the two theorems 
that follow it. 

Definition. A sequence 

frp + l ^ hP ^ n ftp - 1 h2 n hx 
. . > (jp _> (Jp_1 > • . > CJ1 > CJ0 

of groups G09Gl9... and homomorphisms hl9 h2,,.. is exact provided 
that the kernel ofAp_i equals the image hp(Gp) for;? > 2 and that h1 maps 
G1 onto GQ. (Requiring that h1 be onto is equivalent to requiring that G0 

be followed by the trivial group.) 

There are many theorems that compare the groups of an exact sequence. 
The following is the simplest. 

Theorem 7.9. Suppose that an exact sequence has a section of four groups 

{0}UAUB^{0} 

where {0} denotes the trivial group. Then g is an isomorphism from A onto B. 

PROOF. The image /({0}) = {0} contains only the identity element of A. 
Exactness then guarantees that g has kernel {0}, so g is one-to-one. The kernel 
of h is all of B, and this must be the image g(A). Thus g is an isomorphism as 
claimed. • 

Theorem 7.10. Suppose that an exact sequence has a section of five groups 

{0}-+AI>B^C-+{0}, 

there is a homomorphism h: C-> B such that gh is the identity map on C, 
and B is abelian. Then B ~ A ® C. 

It is left as an exercise for the reader to show that T: A © C -> B defined by 

T(a, c) = f(a)• h(c), (a, c)eA®C, 

is the required isomorphism. 

Theorem 7.11. IfKis a complex with subcomplexL, then the homology sequence 
of(K, L) is exact. 

PROOF. In the homology sequence 

• • A HP(L) ^> HP(K) ^ HP(K/L) ' 4 H^L) ^ • • - ^ H0(K) ^ H0(K/L), 

we must show that the last homomorphism j * maps H0(K) onto H0(K/L) and 
that the kernel of each homomorphism is the image of the one that precedes it. 
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To see that j * is onto, let [z0 + C0(L)] e HQ{KjL). Then z0 is a 0-chain on K, 
and 

j*[z0] = [zo + C0(L)], 
so j * is onto. 

The remainder of the proof breaks naturally into six parts: 

(1) image f* <= kernel j * , 
(2) kernel j * <= image /*, 
(3) image y* <= kernel 5*, 
(4) kernel d* c imagey*, 
(5) image d* <= kernel f *, 
(6) kerenel /* <= image d*. 

To prove (1), let i*([zp]) be in the image of /* where zp is a p-cycle on L. 
Then 

./*/*([*„]) = [zp + CP(L)] = [0 + CP(L)] = 0 

since zp e CP(L). Thus image f* <= kernel7*. 
For part (2), let [wp] e HP(K) be an element of the kernel of7* ;y*([wp]) = 0 

in HP(K/L). We must find an element [zp] in i/p(L) such that i*([zp]) = [wp]. 
Since 

y*(Ki) = [wp + cp(i)] = o, 

then wp + CP(L) is the relative boundary of a relative (p + l)-chain 

dcp + 1 + CP(L) = wp + CP(L), 

so Wp — dcp + 1 is in CP(L). Since both wp and dcp + i are cycles on K9 then 
wp — dcp + 1 is also a cycle and determines a member [wp — dcp + 1] of HP(L). 
Note that 

z*([wp - acp + 1]) = [wp - dcp + 1] = [wp] 

since wp and wp — dcp + 1 are homolgous cycles on K. Thus kernel 7* <= 
image /*. 

For part (3), let j*([zp]) = [zp + CP(L)] be a member of the image of j * 
where zp is a /?-cycle on i£. Then 

d*j*([zp]) = d*([zp + CP(L)]) = [dzp] = 0 

since dzp = 0. Thus image j * <= kernel d*. 
Proceeding to (4), let [xp + CP(L)] be in the kernel of d* where xp + CP(L) 

is a relative /?-cycle. Then 

d*([*P + CP(L)]) = [dxp] = 0 

in Hp-^L). This means that 
d*p = djp 

for some /?-chain yv on L. Then xp — yp is a /?-cycle on ^ and determines a 
member [xp — j p ] of HP(K). Note that 

./*([** ~ yPJ) = [xP ~yP + CP(L)] = [xp + CP(L)] 
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since yp e CP{L). Thus [xp + CP(L)] is in the image of 7"*, so kernel d* c 
image 7*. 

Parts (5) and (6) are left to the reader. • 

Example 7.6. Let K denote the closure of an w-simplex and L its (n — 1)-
skeleton, n > 2. We shall use the homology sequence to compute Hp(KjL) 
thus generalizing Example 7.5. 

Since n > 2, ^Tand L have the same 0-chains and the same 1-chains, and 

H0(KIL) = H1(KIL) = {0}. 

For p > 1, consider the homology sequence 

• • •-> # , ( * ) -> W I ) -> ^p-i(L) -> # p - i ( * ) ->• ' ' 
Since H^K) = HP(K) = {0}, Theorem 7.9 shows that Hp{KjL) ^ HP^(L\ 
p > 1. Since |L| is homeomorphic to 5'n"1, then 

tfn(tf/L) ^ H^iS*-1) z Z, 

and HP(K/L) = {0} if p ^ n. 

Example 7.7. Let X be the union of two w-spheres tangent at a point. Then X 
has as triangulation the ^-skeleton of the closure of two (n + l)-simplexes 
joined at a common vertex. Denote this triangulation by K, and let L denote 
the w-skeleton of one of the two (n + l)-simplexes. The section 

Hn + 1(K/L) ^ Hn(L) ^> Hn{K) ^ Hn(KjL) ^ H^L) 

of the homology sequence of (K, L) satisfies the hypotheses of Theorem 7.10 
so that 

Hn(K)^Hn(K/L)®Hn(L). 

The reader should show that 

HriKjL) ~ Hn(L) ^ Z 
and 

//n(i) = w ^ z e z . 
The relative homology groups were defined by Lefschetz [46] in 1927, and 

the homology sequence was introduced by Hurewicz [43] in 1941. The six 
parts of the exactness argument (Theorem 7.11) had been used separately for 
many years before Hurewicz' formalization of the homology sequence, 
however. 

7.4 Singular Homology Theory 
There are several methods of extending homology groups to spaces other than 
polyhedra. Probably the most useful one is the singular homology theory, 
which is discussed briefly in this section. Instead of insisting that the space X 
be built from properly joined simplexes, one considers continuous maps from 
standard simplexes into X. These maps are called "singular simplexes." There 
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are natural definitions of chains, cycles, and boundaries paralleling those of 
simplicial homology. In fact, the singular and simplicial theories produce 
isomorphic homology groups when applied to polyhedra. The singular 
approach, however, applies to all topological spaces, not just polyhedra. 

First we define the standard simplexes which will be the domains of our 
singular simplexes. For notational reasons, points of IRn + 1 will be written 
(x0, xl9..., xn) with zeroth coordinate x0, first coordinate xl9 etc. Thus the 
coordinates are numbered 0 through n. 

Definition.The unit n-simplex, n > 0, in Un + x is the set 

An = {(x0, xl9..., JC„) £ Rn + 1 : ^x( = l,xt > 0,0 < i < n.} 

The point v{ with /th coordinate 1 and all other coordinates 0 is called the 
zth vertex of An. The subset 

An(z) = {(x0, xl9..., xn) e An: Xi = 0} 

is called the fth face of An or the face opposite the ith vertex. The map 

di: An _! -> An defined by 

di{x0,..., xn-i) = {x0,..., Xi-i, 0, x,,..., xn-i) 

is the ith inclusion map. 

Note that An is simply the simplex in Rn + 1 whose vertices are the points 
v0 = (1, 0 , . . . , 0), Vl = (0, 1, 0 , . . . , 0 ) , . . . , vn = ( 0 , . . . , 0, 1). The ith inclu­
sion map d{ maps An_1 onto the fth face of An. For the inclusion maps in 
the diagram 

A n _ 2 ^ A n _ 1 ^ A n 

A n _ 2 —>A n _ x —>A n , j < i, 

we have dxdj = dJdi_1. The proof of this is left as an exercise. 

Definition. Let Xbe a space and n a non-negative integer. A singular n-simplex 
in Zis a continuous function sn: An -> X. The set of all singular w-simplexes 
in X is denoted Sn(X). For n > 0 and 0 < i < n, the composite map 

*t
n = sndt:An.1-+X 

is a singular (n — l)-simplex called the ith face of sn. The function from 
Sn(X) to Sn-xiX) which takes a singular ^-simplex to its fth face is called 
the ith face operator on Sn(X). The singular complex of Xis the set 

s(x) = 0 5„(J0 
n = 0 

together with its family of face operators. It is usually denoted by S(X). 

Theorem 7.12. Let sn be a singular n-simplex in a space X, n > 1. Then 

sfj = sli-l9 0 <j < i < n. 

PROOF. In the notation of the preceding definitions, 

s?j = sfdj = sndidj = sndjdi_1 = s^di_1 = s^.^ • 
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7.4 Singular Homology Theory 

Definition. A p-dimensional singular chain, or singular p-chain, p a non-negative 
integer, is a function cp: SP(X) -> Z from the set of singular /?-simplexes of 
X into the integers such that cp(s

p) = 0 for all but finitely many singular 
/7-simplexes. Under the pointwise operation of addition induced by the 
integers, the set CP(X) of all singular /7-chains on X forms a group. This 
group is the p-dimensional singular chain group of X. 

As in the simplicial theory, a singular /?-chain can be expressed as a formal 
linear combination 

r 

cp = %grs(iY 
i=0 

where gt represents the value of cp at the singulars-simplex s(i)p and cp has 
value zero for all /?-simplexes not appearing in the sum. Since simplicial 
complexes have only finitely many simplexes, the "finitely nonzero" property 
of ^-chains holds automatically in the simplicial theory. As in the simplicial 
theory, algebraic systems other than the integers can be used as the set of 
coefficients. 

Definition. The singular boundary homomorphism 

d:Cp(X)->Cp.1(X) 

is defined for an elementary singular /?-chain g-sp
9 p > 1, by 

f = 0 

This function is extended by linearity to a homomorphism d from CP(X) 
into Cp-x(X). The boundary of each singular 0-chain is defined to be 0. 

Theorem 7.13. If X is a space and p > 2, then the composition dd: CP(X) -> 
Cp„2(X) in the diagram 

is the trivial homomorphism. 

PROOF. Since each p-chain is a linear combination of elementary ^-chains, it is 
sufficient to prove that dd(gs) = 0 for each elementary p-chmn g-s. Note 
that 

dd(g.s) = d(%(-iyg.s\ = 2 (-iyP2(-iyg'SU 
\i = 0 / i = 0 }=0 

v v-i 

= 2 2 (-»,+'gsu 
i=o y = o 

= 2 (-!) i+^-^+ 2 (-i),+'s-'u 

= 2 (-i),+^-^,i-i + 2 (-vi+,g-su. 
0<.j<i<.p 0<.i^j<.p-l 

In the left sum on the preceding line, replace / — 1 by j and j by / and the two 
sums will cancel completely. Thus dd = 0. • 
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Definition. If X is a space and p a positive integer, a p-dimensional singular 
cycle on X, or singular p-cycle, is a singular /?-chain zp such that d(zp) = 0. 
The set of singular /7-cycles is thus the kernel of the homomorphism 
d: CP(X)->CP-1(X) and is a subgroup of CP(X). This subgroup is 
denoted ZP(X) and called the p-dimensional singular cycle group of X. 
Since the boundary of each singular 0-chain is 0, we define singular 0-cycle 
to be synonymous with singular 0-chain. Then the group Z0(X) of singular 
0-cycles is the group C0(X). 

If p > 0, a singular/7-chain bp is a, p-dimensional singular boundary, or 
singular p-boundary, if there is a singular (p + l)-chain cp + 1 such that 
d(cp + 1) = bp. The set BP(X) of singular ^-boundaries is then the image 
d(Cp + 1(X)) and is a subgroup of CP(X). This subgroup is called the 
p-dimensional singular boundary group of X. Since dd: CP(X) -> Cp _ 2(X) 
is the trivial homomorphism, then BP(X) is a subgroup of ZP(Z), /? > 0. 
The quotient group 

HP(X) = ZP(X)/BP(X) 

is the p-dimensional singular homology group of X. 

Many similarities in the definitions of the simplicial and singular homology 
groups should be obvious. Note, however, that no mention of orientation 
was made in the singular case. This was taken care of implicitly in the defini­
tion of the boundary operator: 

i = 0 

The definition in effect requires that the standard ^-simplex An be assigned the 
orientation induced by the ordering v0 < vx < • • • < vn. This orientation is 
then preserved in each singular ^-simplex. 

Definition. Let X and Y be spaces and / : I - > 7 a continuous map. If 
s e SP(X), the composition/? belongs to SP(Y). Hence/induces a homo­
morphism 

fp:Cp(X)^Cp(Y) 
defined by 

fP( 2 Srs(i)p) = J grfsW, 2 grs(i)p e CP(X). 
\ i = 0 / i = 0 i = 0 

One easily observes that the diagram 

CP(X) - ^ CP(Y) 

is commutative, so/ p maps ZP(X) into Zp( Y) and BP(X) into Bp( Y). (Com­
pare with Theorem 3.1.) Thus/induces for each p a homomorphism 

f*:Hp(X)^Hp(Y) 
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defined by 

f*{zp + BP{X)) = fp(zp) + Bp( Y\ (zp + BP(X)) E HP(X\ 

The sequence {f*} is the sequence of homomorphisms induced by f 

The invention of singular homology theory is usually attributed to Solomon 
Lefschetz who introduced the singular homology groups in 1933 [45]. The 
basic idea can be found, however, in the classic book Analysis Situs [21] 
written by Oswald Veblen twelve years earlier. The important simplification 
obtained by using the ordered simplex An is due to Samuel Eilenberg. 

Singular homology has two great advantages over simplicial homology: 
(1) The singular theory applies to all topological spaces, not just polyhedra. 
(2) The induced homomorphisms are defined more easily in the singular 
theory. Recall that in the simplicial theory a continuous map between two 
polyhedra must be replaced by a simplicial approximation in order to define 
the induced homomorphisms. This presents problems of uniqueness which 
are completely avoided by the singular approach. As mentioned earlier, the 
singular and simplicial homology groups are isomorphic for polyhedra. 

The singular homology theory presented in this section is the barest of 
introductions. The theory has developed extensively and contains theorems 
paralleling those of simplicial homology. There are, for example, exact 
homology sequences and relative homology groups for singular homology. 
Anyone interested in learning more about singular homology should consult 
references [10] and [20]. 

7.5 Axioms for Homology Theory 

There are homology theories other than the original simplicial theory of 
Poincare and the singular theory. For example, homology groups for compact 
metric spaces were defined by Leopold Vietoris [56] in 1927 and for compact 
Hausdorff spaces by Eduard Cech [32] in 1932. The similarities of all these 
theories led Samuel Eilenberg (1913- ) and Norman Steenrod (1910-1971) 
to define the general term "homology theory." 

The definition applies to various categories of pairs (X, A), where X is a 
space with subspace A, and continuous functions on such pairs. A homology 
theory consists of three functions H, *, and d having the following properties: 

(1) Wassigns to each pair (X, A) under consideration and each integer/? an 
abelian group HP(X, A). This group is the p-dimensional relative homology 
group of X modulo A. If A = 0 then HP(X, 0) = HP{X) is the p-
dimensional homology group of X. 

(2) If (X, A) and (7, B) are pairs a n d / : JSf-» F with/04) <= B an admissible 
map, then the function * determines for each integer p a homomorphism 

fp*:Hp(X,A)-+Hp(Y,B) 

called the homomorphism induced by fin dimension/?. 
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(3) The function d assigns to each pair (X, A) and each integer p a homo-
morphism 

d:Hp(X,A)-+Hp_1(A) 

called the boundary operator on HP(X, A). 

The functions H, *, and d are required to satisfy the following seven 
conditions: 

The Eilenberg-Steenrod Axioms 

I (The Identity Axiom). If i: (X, A) -» (X, A) is the identity map, then the 

induced homomorphism 

i*:Hp(X,A)-+Hp(X,A) 

is the identity isomorphism for each integer p. 

II (The Composition Axiom). / / / : (X, A)-+(Y, B) and g:(Y,B)-+ (Z, C) 
are admissible maps, then 

(if)t = g*f* • HP{X, A) - HP(Z, C) 

for each integer p. 

III (The Commutativity Axiom). Iff: (X, A)-+(Y, B) is an admissible map 
and g: A -> B is the restriction off then the diagram 

HP(X,A) A > HP(Y,B) 

Y g* Y 

Hp-M) " ^ H^iB) 

is commutative for each integer p. 

IV (The Exactness Axiom). Ifi:A-^X and j : (X,0)-+ (X, A) are inclusion 
maps, then the homology sequence 

• • -+HP(A) ^ HV(X) ^ HP(X, A) ^ Hp-M) ->• • • 
is exact. 

V (The Homotopy Axiom). If the maps f g: (X, A)-+(Y, B) are homotopic, 
then the induced homomorphisms f* and gp are equal for each integer p. 

VI (The Excision Axiom). If U is an open subset of X with U <=• A, then the 
inclusion map 

e:(X\U,A\U)-+(X,A) 

induces an isomorphism 

e*: HP(X\U, A\U) -* HP(X, A) 

for each integer p. (The map e is called the excision of U.) 
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VII (The Dimension Axiom). If X is a space with only one point, then 

HP(X) = {0} 

for each nonzero value of p. 

Simplicial homology theory as presented in this book applies to the 
category of pairs (X, A) where Z a n d A have triangulations ^ a n d L for which 
L is a subcomplex of K. The singular homology theory applies to all pairs 
(X, A) where X is a topological space with subspace A. For a survey of 
homology theory from the axiomatic point of view, see the classic book 
Foundations of Algebraic Topology by Eilenberg and Steenrod [4]. 

EXERCISES 

1. Let c be a /?-chain on a complex K and v a vertex for which vc is defined. 
Prove that 

d(vc) = c — v dc. 

2. In the proof of Theorem 7.2, show that i/fP(r
p) = ^•crp where 77 is 0, 1, or —1. 

3. Show that chain homotopy is an equivalence relation for chain mappings. 

4. Show that chain equivalence is an equivalence relation for complexes. 
5. Definition. Let K be a complex and v a vertex not in K such that if <i?0 . . . i?P> 

is a simplex of K, then the set {v, v0,..., vp} is geometrically independent. 
The complex vK consisting of all simplexes of K, the vertex v, and all simplexes 
of the form (VVQ . . ,vp>, where <j>0 . . ,vp> is in K, is called the cone complex 
of K with respect to v. 
(a) If vK is a cone complex, prove that 

H0(vK) ^ Z, Hp(vK) = {0}, p > 0. 

(b) Show that the geometric carrier of each cone complex is contractible. 

6. Complete the details in the proof of Theorem 7.5. 

7. Prove the following facts about Sn: 
(a) If n is even, then every continuous map on Sn of positive degree has a 

fixed point. 
(b) If n is odd, then every continuous map on Sn of negative degree has a 

fixed point. 

8. Prove that every continuous map from the projective plane into itself has a 
fixed point. 

9. Let |jRT| be a contractible polyhedron. Prove that every continuous map on 
\K\ has a fixed point. 

10. Prove or disprove: If \K\ is a polyhedron a n d / , g are homotopic maps on 
\K\, t h e n / h a s a fixed point if and only if ^ has a fixed point. 

11. Give an example of a continuous map on a polyhedron that has no fixed 
point. Prove from the definition that the map has Lefschetz number 0. 
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12. Prove that Hp(K/0) ^ Hp(K) for each complex K, p > 0. 

13. Show that BP(K/L) C ZP(K/L) for each subcomplex L of a complex JT. 

14. Let .fiT be a complex and v a vertex of K. Determine the relative homology 
groups Hp(KKv», p>0. 

15. Let K be a complex of dimension « and L a subcomplex of dimension r. 
Prove that 

HP(K/L) z HP(K)9 p > r + 2. 

Is there any relation between Hr + 1(K/L) and Hr + 1{K)1 

16. Show that the functions /*, /*, and d* in the homology sequence of a pair 
(X, L) are well-defined homomorphisms. Explain why i* may not be one-to-
one even though /: L -> K is the inclusion map. 

17. Prove Theorem 7.10. 

18. Complete the proof of Theorem 7.11. 

19. Complete the details of Example 7.7. 

20. Suppose that a complex K is the union of two subcomplexes K± and K2 having 
a single vertex in common. Determine the homology groups of K in terms of 
those of K± and K2. 

21. Show that if j < i, then d{dj = djdi-x for the inclusion maps in the diagram 

An-2 ~ ^ - > An_! - ^ - > An 

An-2 > An_i > An. 

22. Definition*^ subset M of a complex K is an 0/?e« subcomplex of .fiT means that 
K\M is a subcomplex of K. 

Prove the Excision Theorem for simplicial homology: Let K be a complex, 
L a subcomplex of Kand Man open subcomplex ofL. Ife: |^T\M| —> \K\ is the 
inclusion map, then the induced homomorphism 

is an isomorphism for each integer p. 

23. (a) Define the term "chain mapping" for singular homology theory. 
(b) Show that a continuous map f: X -* Y induces a chain mapping on the 

associated chain groups. 
(c) Define the induced homomorphisms on the singular homology groups in 

terms of chain mappings. 

24. (a) Define the term "deformation operator" for singular homology theory, 
(b) Prove that homotopic maps/ , g: X'-» Yinduce the same homomorphism 

in the singular homology theory. 
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A Note About the Appendices 

The three appendices give basic definitions and theorems about set theory, 
point-set topology, and algebra assumed in the text. These facts are intended 
to refresh the reader's memory. The appendices are not complete treatments 
in any sense; proofs are not included. More complete expositions and proofs 
for the theorems listed here can be found in many standard texts. For example, 
see the text by Dugundji [3] or the text by Munkres [18] for set theory and 
point-set topology and the text by Jacobson [12] for algebra. 
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APPENDIX 1 

Set Theory 

The symbol " e " indicates set membership, and " <=• " indicates set inclusion. 
Thus a e A means that a is a member or an element of set A; A <=• B means 
that set A is contained in set B or that A is a subset of B. The notation 
{x e A:...} denotes the set of all members of A satisfying the statement...; 
for example, if A is the set of real members, then {x e A: 0 < x < 4} denotes 
the set of real numbers from 0 to 4 inclusive. Subsets of A other than A itself 
and the empty set 0 are called proper subsets. 

Definition. If A and B are sets, the union A\J B and intersection A n B are 
defined by 

A u B = {x: x e A or x e B}, 

A r\ B = {x: x e A and x e B}. 

Unions and intersections of arbitrary families of sets are similarly defined. 
If A <=• X, then the complement of A with respect to X is the set X\A of 
members of X which do not belong to A: 

X\A = {x E X: x $ A}. 

Definition. The Cartesian product of two sets A and B is the set 

A x B = {(a, b):aeA and beB}. 

The Cartesian product of a finite collection {Ai}*=1, where each At is a set, 
is defined analogously: 

A1 x A2 x • • • x An = {(al9 a2,...,«»): flf e ^,, 1 < i < n}. 

The point af is called the ith coordinate of (a1? a 2 , . . . , tfn). 
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Products can be defined for arbitrary families of sets; this must be post­
poned, however, until the concept of function from one set to another has 
been introduced. 

Definition. A relation from set A to set J? is a subset ~ of the Cartesian 
product A x B. It is customary and simpler to write a ~ b to mean 
(a, b) e ~. A relation ~ from A to itself is an equivalence relation means 
that the following three properties are satisfied: 

(1) The Reflexive Property: x ~ x for all x e A. 
(2) The Symmetric Property: If x ~ y then y ~ x. 
(3) The Transitive Property: If x ~ y and y ~ z, then x ~ z. 

The equivalence class of x is the set 

[x] = {yeA:x ~ y}. 

If ~ is an equivalence relation on A, then each element of A belongs to 
exactly one equivalence class. 

Definition. A function f: A —>• B is a relation from set 4̂ to set B such that if 
ae A there is only one b e B for which o/Z>. It is customary to write 
f(a) = b and to call b the image of a under/. Set A is the domain off and 
the range off is the set 

/(,4) = {b eB: b = /(a) for some a e A}. 

Definition. Iff: A-^ B and g: B -> C are functions on the indicated sets, then 
the composite function gf: A -> C is defined by 

gfta) = g(f(a))9 aeA. 

Definition. The identity function on a set A is the function i: A-^ A such that 
f(0) = a for all a e A. 

Definition. A function/: A -> J? is one-to-one if no two members of 4̂ have 
the same image;/is o/ito if/04) = B. A function which is both one-to-one 
and onto is called a one-to-one correspondence. Thus a one-to-one corre­
spondence is a function from A to B for which each point of B is the 
image of exactly one point of A. In this case there is an inverse function 
f-x:B-+A defined by: a = f~\b) if and only if b = f(a). 

Iff: A -> B is a one-to-one correspondence, then the composite functions 
/ " V a n d / T " 1 are the identity functions on A and J? respectively. 

Definition. If there is a one-to-one correspondence between sets A and B, then 
4̂ and J? are said to have the same cardinal number. 
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Definition. Iff: A -> B is a function and C <^ A, the restriction f\c: C-^ B of 
/ t o C is the function with domain C defined by 

Equivalently,/is called an extension of/|c. 

Definition. If {Aj) is a family of sets indexed by a set / (i.e., if Aj is a set for 
each j in a given set / ) , then the product of the sets A3- is the set flye/ ^y 
composed of all functions/: J-^{J Aj such that / ( j ) 6 A5 for each/ e / . 

The finite product ^ x ^42 x • • • x An is a special case of the preceding 
definition. Let / be the set of integers 1, 2 , . . . , n, and identify the sequence 
(al9 a2,..., an) with the function/: J -^ Uy=i ^y whose value at j is a5. Then 

^ ! x ^42 x • • • x An = Y\ A5. 

Definition. Le t / : X x F-> Z be a function from the product set X x Finto 
Z. If x0 is a point of X then the symbol f(x0, •) denotes the function from 
Y into Z defined by 

/(*o, - )O0= / (*o , ; 0 , yeY 

Fory0 in ^ the symbol/(-, y0) denotes the function from Xio Z defined by 

f(-, yo)(x) = f(x, y0), xeX. 
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Point-set Topology 

Definition. A topology for a set X is a family T of subsets of X satisfying the 
following three properties : 

(1) The set X and the empty set 0 are in T. 
(2) The union of any family of members of T is in T. 
(3) The intersection of any finite family of members of T is in T. 

The members of T are called open sets. A topological space, or simply 
space, is a pair (X, T) where X\s a set and Tis a topology for X. One often 
refers to a topological space JJf, omitting mention of the topology, when 
the name of the topology is not important. 

A base or basis for a topology Tis a subset BofT such that each member 
of T is a union of members of B. A subbase or subbasis for T is a subset S 
of T such that the family of all finite intersections of members of S is a 
basis for T. 

If X is a space, a subset C of X is closed means that its complement 
X\C = ( x e l : x ^ C} is open. A neighborhood of a point x in JHs an open 
set containing x. 

A point x is a limit point of a subset 4̂ of X means that every neighbor­
hood of x contains a point of A distinct from x. The closure of a set A is 
the set A, the union of 4̂ with its set of limit points. The boundary of A is 
the intersection of A with X\A. 

Proposition. A subset A of a space X is closed if and only if A contains all its 
limit points. A subset O ofXis open if and only ifO contains a neighborhood 
of each of its points. The closure of each subset of X is a closed set. 

Definition. A space JHs a Hausdorjf space or a T2-space provided that for each 
pair xl9 x2 of distinct points of X there exist disjoint neighborhoods Ox 

and 02 of xx and x2 respectively. 
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Definition. The subspace topology for a subset A of a space X consists of all 
subsets of the form O n A where O is open in X. The set A with its subspace 
topology is a subspace of X 

Definition. A covering ̂  of a space Z is a family of subsets of X whose union 
is X. A subcovering of # is a covering each of whose members is a member 
of ^ . A covering each of whose members is an open set is called an open 
covering. 

Definition. A space JHs compact provided that every open covering of JJfhas a 
finite subcovering. A compact subset of X is a subset which is compact in 
its subspace topology. A space is locally compact means that for each 
point x there is a neighborhood U of x and a compact set A with U <=• A. 

Proposition, (a) In a Hausdorff space, compact sets are closed. 
(b) A closed subset of a compact space is compact. 
(c) If X is a locally compact Hausdorjf space and x e X, then for each 

neighborhood V of x there is a neighborhood Oofx such that O <= V and O 
is compact. 

Definition. A space X is connected means that X is not the union of two dis­
joint, nonempty open sets. A connected subset of X is a subset which is 
connected in its subspace topology. A component is a connected subset 
which is not a proper subset of any connected subset of X. 

Definition. A metric or distance function for a set JJfis a function d from the 
Cartesian product I x I t o the non-negative real numbers such that, for 
all. x, y9 z in X, 

(l)d(x9y) = d(y,x)9 

(2) d(x, y) = 0 if and only if x = y, 
(3) d(x, y) 4- d(y, z) > d(x, z). 

For xe Xand r > 0 the set 

S(x,r) = {yeX:d(x,y) < r} 

is called the spherical neighborhood with center x and radius r. The set of all 
such spherical neighborhoods is a basis for a topology for X, the metric 
topology determined by d. A set with the topology determined by a metric 
is called a metric space. The diameter of a subset A of a metric space is the 
least upper bound of the distances between points of A: 

diam A = lub{d(x, y): x9 y e A}. 

A set with finite diameter is called bounded. 
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Definition. A function/: X-> Ffrom a space J t o a space F is continuous 
provided that for each open set U in Y the inverse image 

r\U) = {xeX:f{x)eU) 

is open in X. A one-to-one correspondence/: X-> Y for which b o t h / 
and the inverse function/"1 are continuous is called a homeomorphism; in 
this case X and Y are said to be homeomorphic. A function g: X-> Y is 
c>pe« provided that g(<7) is open in Y for each open subset O of X Closed 
function is defined analogously. 

Proposition. The composition of continuous functions is continuous. 

Proposition. The properties of being compact or connected are preserved by 
continuous functions. 

Proposition. Letf: X-> Ybe a function on the indicated spaces. The following 
statements are equivalent: 

(a) / is continuous. 
(b) For each closed subset C of Y,f'\C) is closed in X. 
(c) There is a basis B for Y such thatf~\U) is open for each U eB. 
(d) There is a subbasis S for Y such thatf~\U) is open for each Ue S. 

Proposition. If X and Y are metric spaces with metrics dandd' respectively and 
f: X-> Yis a function, then f is continuous if and only if for each x0 e X and 
e > 0, there is a number 8 > 0 such that ifd(x0, x) < 8, then d{f{x0),f{x)) 
< €. 

Definition. Let X and Y be metric spaces with metrics d, d' respectively. A 
function f\X~> Y is uniformly continuous means that for each e > 0, 
there is a number 8 > 0 such that if x and x' are points of X with 
d(x, x') < 8, then d{f(x\f{x')) < c 

Proposition. If X and Y are metric spaces, X is compact, and f: X-> Y is 
continuous, then f is uniformly continuous. 

Proposition. If °tt is an open covering of a compact metric space X, then there 
is a positive number 7? such that each subset of X of diameter less than rj is 
contained in a member of°U. {The number J] is called a Lebesgue number/or 
the open covering %.) 

Definition. Let X and Ybe spaces. The product space I x Fis the Cartesian 
product of X and Y with the product topology which has as a basis the 
family of all sets of the form U1 x U2 where U1 is open in X and U2 is 
open in Y. 
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If {Xa} is a family of spaces indexed by a set A, then the product space 
TlcceA Xa is the product of the sets Xa with the product topology which has 
as a subbasis all sets of the f o r m ^ 1(U0)9 p e A. Here/v. Yla€A Xa ->• X$ is 
the projection on A^ defined by 

PM)=W, M l * 
cceA 

and Up represents an arbitrary open set in X0. 

Proposition, (a) A product of compact spaces is compact. 
(b) A product of connected spaces is connected. 
(c) If xQe X and yQ e Y9 then the subspaces X x {y0} and {x0} x Y of 

X x Y are homeomorphic to X and Y respectively. 

Definition. Let X be a space and S an equivalence relation on X. Then S 
partitions Zinto a family XjS of equivalence classes. The quotient topology 
for XjS is defined by the following condition: A set U of equivalence 
classes in XjS is open if and only if the union of the members of U is open 
in X. The quotient space of X modulo S is the set XjS with the quotient 
topology. 

As an important special case we have the quotient space XjA where A 
is a subset of X. This is the quotient space of Xdetermined by the relation: 
xSy if and only if x = y or x and y are both in A. The points of XjA are 
the points of X\A and an additional single point A. 

Iff: X-> Yis a function from a space Zonto a set Y, then the quotient 
topology for Y consists of all sets U <=• Y for which f~\U) is open in X. 
The function / determines an equivalence relation R on X defined by 
xxRx2 if and only if f(x±) = f(x2). The quotient space XjR is homeo­
morphic to the space Y with the quotient topology determined by/ . 

Proposition. Letf: X-> Ybe a continuous function from space Xonto space Y. 
Iff is either open or closed, then Yhas the quotient topology determined by f. 

Definition. Euclidean n-dimensional space Un, n a positive integer, is the set 

Un = {x = (xl9..., xn): xt is a real number, 1 < / < n} 

with the topology determined by the Euclidean metric: 
( n \ 1/2 

d(x,y) = l[2i(xl-yty
tj 

where x = (xl9..., xn) and y = (yl9..., yn) are members of Un. The 
members of Un are referred to as points or vectors. The norm or length \\x\\ 
of a vector x in Rn is the distance from x to the origin 0 = ( 0 , . . . , 0): 

( n \ 1/2 
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Note that R1 is simply the real number line: IR1 = U. 
For x9 y in Un, the inner product or dot product of x and y is the number 

x-y = x±y± + x 2 j 2 + • • • + xnyn. 

The vectors x and y are perpendicular or orthogonal if x - j = 0. This 
definition extends the common concept of perpendicularity in two and 
three dimensions to higher dimensions. 

The unit n-sphere Sn is the set of all points in Un + 1 of unit length: 

Sn = {x = (xl9..., jcn + 1) e Rn + 1 : ||JC|| = 1}, n> 0. 

Note that Sn is a subspace of IRn + 1, not of Un. We may consider Un as the 
subspace of IRn + 1 consisting of all points having final coordinate 0. 

Proposition, (a) Euclidean n-space is homeomorphic to the product of n copies 
of the space of real numbers. 

(b) A subspace of Un is compact if and only if it is closed and bounded. 

Definition. The unit n-ball Bn is the set of all points in Un of length not 
exceeding 1 : 

Bn = {x = (JCI, . . . , JCW) e Un: \\x\\ < 1}, n > 1. 

Note that the boundary of Bn is the unit (n — l)-sphere S71"1. 
The unit n-cube In is the set 

/» = {* = (tl9..., tn) e Un: 0 < t{ < 1 for each /}. 

Thus I1 = / is the closed unit interval [0, 1], P is a square, and P is a 
3-dimensional cube. The boundary of 7n, denoted dp, is the set of all 
points of P having some coordinate equal to 0 or 1. 

Proposition, (a) The quotient space of Bn obtained by identifying its boundary 
*Sn_1 to a single point is homeomorphic to Sn. 

(b) The quotient space ofP obtained by identifying its boundary DP to a 
single point is homeomorphic to Sn. 

Definition. Let X be a Hausdorff space which is not compact and oo a point 
not in X. The one-point compactification X* of X is the set 

I * = l u {oo} 

with the topology determined by the basis composed of all open sets in X 
together with all subsets U of X* for which X*\U is a closed, compact 
subset of X. 

Proposition. The one-point compactification X* of a Hausdorff space X is a 
compact space; X* is Hausdorff if and only if X is locally compact. 

Proposition. The one-point compactification of Euclidean n-space Un is homeo­
morphic to Sn. 
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Algebra 

Definition. A binary operation on a set A is a function/: A x A -> A. For 
a, be A, f(a, b) is often expressed ab or a-b (multiplicative notation) or 
a 4- b (additive notation). 

Definition. A group is a set G together with a binary operation on G satisfying 
the following three properties: 

(1) a(bc) = (ab)c for all a, b, c e G. 
(2) There is an element e, the identity element of G, such that ae = ea = a 

for all a in G. 
(3) For each a in G, there is an element a'1, the inverse of a, such that 

tfar1 = a~Ya = e. 

In the additive group notation, the identity element is denoted by 0 and 
the inverse of a by — a. A group whose only element is the identity is the 
trivial group {0}. 

A subset A of a group G is a subgroup of G provided that 4̂ is a group 
under the operation of G. If A is a subgroup and geG, then 

g,4 = {gaiaeA} 

is called the fe/if coset of A by g. In the additive notation, we would write 
g + A instead of gA. Right cosets are defined similarly. 

Proposition. Left cosets gA and hA of a subgroup A are either disjoint or 
identical. 

Definition. A group G is commutative or abelian means that ab = ba for all 
a,beG. 
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Definition. A homomorphism f: G-> H from a group G into a group H is a 
function such that 

f(ab)=f(a)f(b), a,beG. 
The set 

K e r / = {a e G:/(a) = identity of H} 

is the kernel of / . An isomorphism is a homomorphism which is also a 
one-to-one correspondence between G and / / ; in this case the groups are 
called isomorphic, and we write G ^ H. 

Definition. A subgroup A of a group G is normal means that g~xag e A for all 
g eG, ae A. 

Proposition. The kernel of a homomorphism f:G->Hisa normal subgroup 
ofG. The homomorphism is one-to-one if and only if the kernel off contains 
only the identity of G. 

Proposition. If A is a normal subgroup ofG, then each left coset gA equals the 
corresponding right coset Ag. The family G\A of all left cosets of A is a group 
under the operation 

gA-hA = ghA. 

(The group GjA is called the quotient group of G modulo A.) 

Proposition (The First Homomorphism Theorem). Letf: G-> H be a homo­
morphism from group G onto group H with kernel K. Then H is isomorphic 
to the quotient group G/K. 

Definition. A commutator in a group G is an element of the form aba~1b~1. 
The commutator subgroup of G is the smallest subgroup containing all 
commutators of G. Equivalently, the commutator subgroup consists of all 
finite products of commutators of G. 

Proposition, (a) The commutator subgroup F of a group G is normal. 
(b) The commutator subgroup is the smallest subgroup of G for which G/F 

is abelian. 

Definition. If g is a member of a group G, the set of all powers g, g ~ 1
9 gg = g2, 

g-ig-i = g~2
9... forms a subgroup 

[g] = {gU: n is an integer} 

called the subgroup generated by g. If G has an element g for which [g] = G, 
then G is a cyclic group with generator g. 

The most common cyclic group is the group Z of integers. Both 1 and — 1 
are generators. 
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Definition. A set of generators for a group G is a subset S of G such that each 
member of G is a product of powers of members of S. A group which has 
a finite set of generators is called finitely generated. 

Definition. The direct sum G © H of groups G and # is the set G x H with 
operation 0 defined by 

(gi> h) © (g*> h) = {g1 + g29 h± + h2) 

for all gl9 g2 e G, hl9 h2 e H. (Here we are using additive notation.) 

Definition. A group which is isomorphic to a finite direct sum of copies of the 
group Z of integers is called a. free abelian group. Thus a free abelian group 
on n generators is isomorphic to the direct sum Z © Z 0 • • • © Z (n 
summands). The integer n is called the rank of the group. 

Proposition. Every subgroup of a free abelian group is a free abelian group. 

Proposition (The Decomposition Theorem for Finitely Generated Abelian 
Groups). Each finitely generated abelian group is a direct sum of a free 
abelian group G and a finite subgroup. The finite subgroup (called the torsion 
subgroup) is composed of the identity element alone or is a direct sum of 
cyclic groups of prime power orders. The rank of G and the orders of the 
cyclic subgroups (with their multiplicities) are uniquely determined. 

Definition. A permutation on a finite set V is a one-to-one function from V 
onto itself. The set of all permutations on a set of n distinct objects forms a 
group, the symmetric group on n objects, under the operation of composi­
tion. A transposition on V is a permutation which interchanges precisely 
two members of V and acts as the identity map for the other members. 

Proposition. Every permutation is a product of transpositions. 

If a permutation is the product of an even number of transpositions, then 
it is called an even permutation. Although it is not obvious, it is true that if a 
given permutation can be represented as a product of an even number of 
transpositions, then every representation of it as a product of transpositions 
requires an even number. A permutation which is not even is called an odd 
permutation. 

Example. To illustrate the way even and odd permutations are used in the 
text, consider a set V = {vl9 v29 v3} of three elements with a definite order 
#IJ v2, v3. The arrangement vl9 v3, v2 represents an odd permutation of the 
given order since it was produced by transposing one pair of elements. 
Likewise, the ordering v29 vl9 v3 represents an odd permutation. On the other 
hand, v29 v39 vx represents an even permutation since it is produced from the 
original order by two transpositions: beginning with vl9 v29 v3 transpose v1 

and v2 to produce v29 vl9 v3; now transpose vx and v3 to produce v29 v3, vx. 

165 



Appendix 3 

Definition. A topological group is a group G with a topology under which the 
operation of G is a continuous map from G x G to G and the function 
g ^ g - i is a homeomorphism from G onto G. 

Definition. A ring is a trple (R, + , •), where i? is a set with operations + and 
• (indicated by juxtaposition), such that 

(1) (R, + ) is an abelian group, 
(2) (ab)c = A(AC), 

(3) a(b + c) = ab + ac9 

(4) (6 + c)a = ba + ca, a9 b9 c e R. 

The operation + is called addition, and • is called multiplication. The 
additive identity element is denoted by 0. If there is an identity element 1 
for multiplication, then R is a ring with unity. A ring is commutative if 
ab = ba for all a, b e R. 

Definition. A field is a commutative" ring with unity in which the nonzero 
elements form a group under multiplication. 

The most common fields are the real numbers, the rational numbers, and 
the complex numbers. 

Definition. A vector space over a field F is a set V with two operations, an 
addition + under which V forms an abelian group, and scalar multiplica­
tion which associates with each v e V and a e F a member av in V. The 
following conditions must be satisfied for all a, b e F and all u9 v e V: 

(1) (ab)v = a(bv), 
(2) a(u + v) = au + av, (a + b)v = av + Zw, 
( 3 ) 1 -17 = 17. 

The members of a vector space F are called vectors. 

Definition. A set {vl9..., vk} of members of a vector space V is linearly 
dependent if there exist elements al9..., ak of the field i7 such that 

a1v1 + • • • + akvk = 0 

and not all the at are 0. A set of vectors is linearly independent if it is not 
linearly dependent. A set of vectors {vl9..., vk} is said to span V if each 
element v e V can be represented as a linear combination 

v = bxvx + h bkvk 

for some bl9...,bk in F. A base or Z ^ ^ for Fis a linearly independent set 
which spans V. If V has a finite basis, then F is called finite dimensional. 

Proposition. Any two bases for a finite dimensional vector space Vhave the same 
number of elements. (This number is the dimension of V.) 
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The most common vector spaces are the Euclidean spaces Rn over the field 
of real numbers. Vector addition and scalar multiplication are defined by 

(xl9..., xn) + O i , . . . , yn) = Oi + yl9 • • >,xn + yn), 
a(xl9...9xn) = (axl9...9axn). 

It is sometimes said that these operations are defined "componentwise" by 
addition and multiplication of real numbers. The vector space dimension of 
Un is n. 

Definition. A subspace A of a vector space V is a subset of V which is a 
vector space under the addition and scalar multiplication of V. A hyper-
plane is a translation of a subspace: H is a hyperplane provided that there 
is a subspace A and a vector v e V such that 

H = {v + a: ae A}. 

Definition. The sum A + B of subspaces A and i? of a vector space V is the 
subspace 

A + B = {a + b: a e A9 b e B}. 

If each element v in A + B has a unique representation v = a + b for 
ae A and A e 5 , then A + Bis written A ® B and called a af/rert sww. 

Proposition, (a) The sum A + B is a direct sum if and only if A n B = {0}. 
(b) i/"̂ 4 n 5 = {0} tf/zflf {#!, . . . , vk} and {wl9..., Wj] are bases for A and 

B respectively, then {vl9..., vk9 wl9..., w3} is a basis for A 0 B. In particu­
lar, the dimension of A © B is the sum of the dimensions of A and B. 

Definition. If V and W are vector spaces over a common field F9 a function 
/ : V~> W satisfying 

f(u + v) = f(u) + f(v), 

f(au) = af(u)9 a e F9 u9 v e V9 

is called a homomorphism or a linear transformation. A one-to-one linear 
transformation from V onto W is an isomorphism. 

Definition. If m and n are positive integers, an m x n matrix over a field F is 
a rectangular array 

J alxa12 -" aln 

A / \ I #21^22 * ' ' a2n 

A = (atj) = I . 

l_amlam2 ' ' ' dmn_ 

of w/z members of F. The element ai5 in row / and column j is called the 
(/, j)th component of A. If B = (Z?0) is another m x n matrix, then the 
matrix sum A + B is defined by 

A + B = ( % + ftw). 
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The matrix product AC is defined for any matrix C = (ckj) of n rows by 

AC = ( 4 ) 

where dtj = 22=1 aucCkr The elements ell9 e229 • • •, enn of an n x n matrix 
E = (etj) are called its diagonal elements. The frace of E is the sum of its 
diagonal elements : 

n 

trace E = ^5 eu. 
t = i 

Proposition. Ler V be a finite dimensional vector space over F with basis 
{vl9..., #n}. 77ze« ^Aere w a one-to-one correspondence between the set of 
linear transformations f: V"-> V and the set ofnxn matrices over F. The 
matrix corresponding to f is the matrix Af = (%) where 

n 

f(Vi) = 2 aUV*' 

The composition of two linear maps corresponds to the product of their 
associated matrices. 

Proposition. Let f: V-^V be a linear transformation. If matrices B and C 
represent f relative to different bases, then B and C have the same trace. 

Definition. Let F be a field, and let Vn denote the vector space of all /z-tuples 
of members of F with operations defined by 

Ox , . . . , xn) + O i , . . . , yn) = Oi + y±, • • • ,xn + yn)9 

a(xl9 ...9xn) = (axl9...9 axn). 

If A = (tfy) is an w x n matrix over F9 then each row 

« i l « W "Gin 

of y4 can be considered a member 

of Vn. In this context, the rows of A are called row vectors. The ra«fc of A, 
rank(^f), is the dimension of the subspace of Vn spanned by the row 
vectors of A. 
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Algebraic Topology: An Introduction 
by W. S. Massey 
(Graduate Texts in Mathematics, Vol. 56) 
1977. xxi, 261p. 61 illus. cloth 

Here is a lucid examination of algebraic topology, designed to introduce advanced 
undergraduate or beginning graduate students to the subject as painlessly as 
possible. Algebraic Topology: An Introduction is the first textbook to offer a 
straight-forward treatment of "standard" topics such as 2-dimensional manifolds, 
the fundamental group, and covering spaces. The author's exposition of these 
topics is stripped of unnecessary definitions and terminology and complemented by 
a wealth of examples and exercises. 

Algebraic Topology: An Introduction evolved from lectures given at Yale University 
to graduate and undergraduate students over a period of several years. The author 
has incorporated the questions, criticisms and suggestions of his students in 
developing the text. The prerequisites for its study are minimal: some group theory, 
such as that normally contained in an undergraduate algebra course on the 
junior-senior level, and a one-semester undergraduate course in general topology. 

Lectures on Algebraic Topology 
by A. Dold 
(Grundlehren der mathematischen Wissenschaften, Vol. 200) 
1972. xi, 377p. 10 illus. cloth 

Lectures on Algebraic Topology presents a comprehensive examination of singular 
homology and cohomology, with special emphasis on products and manifolds. The 
book also contains chapters on chain complexes and homological algebra, applica­
tions of homology to the geometry of euclidean space, and CW-spaces. 

Developed from a one-year course on algebraic topology, Lectures on Algebraic 
Topology will serve admirably as a text for the same. Its appendix contains the 
presentation of Kan- and Cech-extensions of functors as a vital tool in algebraic 
topology. In addition, the book features a set of exercises designed to provide 
practice in the concepts advanced in the main text, as well as to point out further 
results and developments. 

From the reviews: 

"This is a thoroughly modern book on algebraic topology, well suited to serve as a 
text for university courses, and highly to be recommended to any serious student of 
modern algebraic topology." 
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