Undergraduate Texts in Mathematics

Abboett: Understanding Analysis.

Anglin: Mathematics: A Concise History
and Philosophy.

Readings in Mathematics.

Anglin/Lambek: The Heritage of
Thales.

Readings in Mathematics.

Apostol: Introduction to Analytic
Number Theory. Second edition.

Armstrong: Basic Topology.

Armstrong: Groups and Symmetry.

Axler: Linear Algebra Done Right.
Second edition.

Beardon: Limits: A New Approach to
Real Analysis.

Bak/Newman: Complex Analysis.
Second edition.

Banchoff/Wermer: Linear Algebra
Through Geometry. Second edition.

Berberian: A First Course in Real
Analysis.

Bix: Conics and Cubics: A
Concrete Introduction to Algebraic
Curves.

Brémaud: An Introduction to
Probabilistic Modeling.

Bressoud: Factorization and Primality
Testing.

Bressoud: Second Year Calculus.
Readings in Mathematics.

Brickman: Mathematical Introduction
to Linear Programming and Game
Theory.

Browder: Mathematical Analysis:

An Introduction.

Buchmann: Introduction to
Cryptography.

Buskes/van Rooij: Topological Spaces:
From Distance to Neighborhood.
Callahan: The Geometry of Spacetime:
An Introduction to Special and General

Relavitity.

Carter/van Brunt: The Lebesgue—
Stieltjes Integral: A Practical
Introduction.

Cederberg: A Course in Modern
Geometries. Second edition.

Childs: A Concrete Introduction to
Higher Algebra. Second edition.

Chung: Elementary Probability Theory
with Stochastic Processes. Third
edition.

Cox/Little/O'Shea: Ideals, Varieties,
and Algorithms. Second edition.

Croom: Basic Concepts of Algebraic
Topology.

Curtis: Linear Algebra: An Introductory
Approach. Fourth edition.

Devlin: The Joy of Sets: Fundamentals
of Contemporary Set Theory.
Second edition.

Dixmier: General Topology.

Driver: Why Math?

Ebbinghaus/Flum/Thomas:
Mathematical Logic. Second edition.

Edgar: Measure, Topology, and Fractal
Geometry.

Elaydi: An Introduction to Difference
Equations. Second edition.

Exner: An Accompaniment to Higher
Mathematics.

Exner: Inside Calculus.

Fine/Rosenberger: The Fundamental
Theory of Algebra.

Fischer: Intermediate Real Analysis.

Flanigan/Kazdan: Calculus Two: Linear
and Nonlinear Functions. Second
edition.

Fleming: Functions of Several Variables.
Second edition.

Foulds: Combinatorial Optimization for
Undergraduates.

Foulds: Optimization Techniques: An
Introduction.

Franklin: Methods of Mathematical
Economics.

Frazier: An Introduction to Wavelets
Through Linear Algebra.

Gamelin: Complex Analysis.

Gordon: Discrete Probability.

Hairer/Wanner: Analysis by Its History.
Readings in Mathematics.

fcontinued after index)

Johannes A. Buchmann

Introduction to
Cryptography

Springer

UNIVERZITS <AR. VA v PRAZE
Johannes A. Buchmann Knihovrs mat ryz fakulty
Department of Computer Science it AL
Iti:chni(cial Univer::ioty, Darmstadt prry =
exanderstrasse]
64283 Darmstadt %’/f;f-’-/;&)[{;’
Germany

buchmann@cdc.informatik.tu-darmstadt.de

Editorial Board

S. Axler F.W. Gehring K.A. Ribet

Mathematics Department Mathematics Department Mathematics Department

San Francisco State East Hall University of California
University University of Michigan at Berkeley

San Francisco, CA 94132 Ann Arbor, MI 48109 Berkeley, CA 94720-3840

USA USA USA

Cover: Author photograph by Almut Knaak.
With 7 figures.

Mathematics Subject Classification (2000): 11T71, 14G50, 94A60, 68P25

Library of Congress Cataloging-in-Publication Data
Buchmann, Johannes A.
Introduction to cryptography / Johannes A. Buchmann.
p. cm. — (Undergraduate texts in mathematics)
Includes bibliographical references and index.
ISBN 0-387-95034-6 (hc: alk. paper)
1. Coding theory. 2. Cryptography. I. Title. II. Series.
QA268.B83 2000
003'—dc21 00-030465

Printed on acid-free paper.

German edition: Einfiihrung in die Kryptographie © Springer-Verlag, Heidelberg, 1999.
© 2001 Springer-Verlag New York, Inc.

All rights reserved. This work may not be translated or copied in whole or in part
without the written permission of the publisher (Springer-Verlag New York, Inc., 175
Fifth Avenue, New York, NY 10010, USA), except for brief excerpts in connection with
reviews or scholarly analysis. Use in connection with any form of information stor-
age and retrieval, electronic adaptation, computer software, or by similar or dissimi-
lar methodology now known or hereafter developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this publica-
tion, even if the former are not especially identified, is not to be taken as a sign that
such names, as understood by the Trade Marks and Merchandise Marks Act, may
accordingly be used freely by anyone.

Production managed by A. Orrantia; manufacturing supervised by Joe Quatela.
Typeset by The Bartlett Press, Inc., Marietta, GA.

Printed and bound by Edwards Brothers, Inc., Ann Arbor, MI,

Printed in the United States of America.

98765432 (Corrected second printing, 2002)
ISBN 0-387-95034-6 SPIN 10877904

Springer-Verlag New York Berlin Heidelberg
A member of BertelsmannSpringer Science+Business Media GmbH

Preface

Cryptography is a key technology in electronic security systems.
Modern cryptograpic techniques have many uses, such as to digitally
sign documents, for access control, to implement electronic money,
and for copyright protection. Because of these important uses it is
necessary that users be able to estimate the efficiency and security
of cryptographic techniques. It is not sufficient for them to know
only how the techniques work.

This book is written for readers who want to learn about mod-
ern cryptographic algorithms and their mathematical foundation
but who do not have the necessary mathematical background. It
is my goal to explain the basic techniques of modern cryptography,
including the necessary mathematical results from linear algebra,
algebra, number theory, and probability theory. I assume only basic
mathematical knowledge.

The book is based on courses in cryptography that I have
been teaching at the Technical University, Darmstadt, since 1996.
I thank all students who attended the courses and who read the
manuscript carefully for their interest and support. In particular, I
would like to thank Harald Baier, Gabi Barking, Manuel Breuning, Sa-
fuat Hamdy, Birgit Henhapl, Michael Jacobson (who also corrected
my English), Andreas Kottig, Markus Maurer, Andreas Meyer, Stefan

Vi Preface

Neis, Sachar Paulus, Thomas Pfahler, Marita Skrobic, Edlyn Teske,
Patrick Theobald, and Ralf-Philipp Weinmann. I also thank the staff
at Springer-Verlag, in particular Martin Peters, Agnes Herrmann,
Claudia Kehl, Ina Lindemann, and Terry Kornak, for their support
in the preparation of this book.

Darmstadt, Germany Johannes A. Buchmann
September 2000

Preface

Contents

1 Integers

1.1
1.2
1.3
1.4
1.5

1.6
1.7
1.8
19
1.10
1.11
1.12

BasiCs! ¢ s s v v v a2 08 % % 5 S 4 BV & 2 6 BUW 4
Divisibility
Representation of Integers
O-and Q-Notation
Cost of Addition, Multiplication, and

Division with Remainder
Polynomial TIMe : s vssamsssiwuon pa s
Greatest Common Divisor
Euclidean Algorithm
Extended Euclidean Algorithm
Analysis of the Extended Euclidean Algorithm . . .
Factoring into Primes
Exercises

2 Congruences and Residue Class Rings

2.1
2.2
2.3

CONEIUBIICES » o v o % s 2 9% s @ % o 50 of 8 5 8 0 8
Semigroups e e
GIOUPS o v o 5w s v m 5o & @ mows & 5 5 %0 5 & % & e g

[< T C R

12
16
18
21
24

29
29
32
34

Vll] Contents

24 ResidueClassRings 35
25 Fields 36
2.6 Division in the Residue Class Ring 36
2.7 Analysis of Operations in the Residue Class Ring . . . 38
2.8 Multiplicative Group of Residues 39
29 OrderofGroupElements 41
2.10 Subgroups 42
2.11 Fermat's Little Theorem 4+
2.12 Fast Exponentiation 45
2.13 Fast Evaluation of Power Products 48
2.14 Computation of Element Orders 49
2.15 The Chinese Remainder Theorem 51
2.16 Decomposition of the Residue Class Ring 54
2.17 A Formula for the Euler ¢-Function 55
2.18 Polynomials, 57
2.19 PolynomialsoverFields. 59
2.20 Structure of the Unit Group of Finite Fields 62
2.21 Structure of the Multiplicative Group of Residues .
mod a Prime Number 63
2.22 EXEICISES v v v v v i i e e e 64
3 Encryption 69
3.1 Encryption Schemes 69
3.2 Symmetric and Asymmetric Cryptosystems 71
3.3 Cryptanaly8isl . .« w v v v moe v oo s nowow 6w om e e e 71
3.4 Alphabetsand Words 73
3.5 Permutations : & « v v o n wa v v s mw o s m o v s e 75
3.6 Block Ciphers 77
3.7 Multiple Encryption 78
3.8 Use of Block Ciphers 79
3.9 Stream Ciphers 88
3.10 AfANeCipHer & v siuiw s & @5 8@ % % 8 o % wos 89
3.11 Matrices and Linear Maps 91
3.12 Affine Linear Block Ciphers 96
3.13 Vigenere, Hill, and Permutation Ciphers 97
3.14 Cryptanalysis of Affine Linear Block Ciphers 98
3.15 EXerCises . ¢ s m s i iiio 856 oM E 88§84 @ 99

Contents

X

Probability and Perfect Secrecy

4.1 Probability v s csv s s nnom e n s moan e w8 e 5w 6o
4.2 Conditional Probability
4.8 Bitthday Pafadox. «. . « s s w vw 5 5w a9 @ e 0@ e
44 PerfectSecrecy.
4.5 VernamOne-TimePad
46 Random Numbers
4.7 Pseudorandom Numbers
4.8 EXEICISES . . . v v v v v v e e e e e e e e e
DES

5.1 FeistelCiphers :0 ov v wi v vawe vv
52 DESAlgorithm
53 AnExample :: e aivam i e n i d o s e s e
54 Security of DES
55 EXErCiSes = ; v i 5 o0 w i st EensnEnsan
Prime Number Generation

6.1 Trial DIVASION « « < wvw o 5w on v 55 8 oo 66 o 8 meim 5 o
6.2 FermatTest.
6.3 Carmichael Numbers
6.4 Miller-RabinTest.
6.5 Random Primes
6.6 Exercises
Public-Key Encryption

Tl JAd8& . cowocovm wov i mo won s om0 o e TSGR R E
7.2 RSA Cryptosystem
7.3 Rabin Encryption
7.4 Diffie-Hellman Key Exchange
7.5 ElGamal Encryption
7.6 EXErciSes o v v i i e e e
Factoring

81 THalDivision: : iz ¢ s s m s u @ 6656 855 %
B.2 P=—=1Method . . .« c voumw s smsnsmnms o
8.3 QuadraticSieve oo va e e i e e e
8.4 Analysis of the Quadratic Sieve

115
115
116
123
124
125

127
127
129
130
132
135
136

139
139
141
153
158
162
167

X Contents

8.5 Efficiency of Other Factoring Algorithms
86 EXEICISEE s s wnmswmisn e 9 o mm v oo @ o s e«

9 Discrete Logarithms
9.1 DLProblem
92 Enumeration : ::iwsiis@ssimidssaiassy
9.3 Shanks Baby-Step Giant-Step Algorithm
9.4 Pollard p-Algorithm
9.5 Pohlig-Hellman Algorithm
96 MIndex Caleilis . < o v oo w o vos w5 omw g e @ @
9.7 Other Algorithms
9.8 Generalization of the Index Calculus Algorithm
9.9 EXErCiSes i i i

10 Cryptographic Hash Functions
10.1 Hash Functions and Compression Functions
102 Bitthday-ABEK « o vv s s s e aw s @ e e
10.3 Compression Functions from Encryption Functions .
10.4 Hash Functions from Compression Functions
10.5 Efficient Hash Functions
10.6 An Arithmetic Compression Function
10.7 Message Authentication Codes
10:8 EXCTCISES vv: s v v 5 55 6 s s miti € % % oot @ 8 9 & b 8 % % 50 e

11 Digital Signatures
133 TAEA o 5 5 ose v 5 o soner 35 & i & & 5 50w w o B A E N S e
11.2 RSASignatures
11.3 Signatures from Public-Key Systems
11.4 ElGamal Signature
11.5 Digital Signature Algorithm (DSA)
116 EXBICISeE i v mowovow o5 5 e 6 w % 5 90 % 0 was % & = b

12 Other Groups
121 Finte FielA8 » o vow o moowr o oo om0 6 0 is s a0 o o
12.2 EllipticCurves e
12.3 QuadraticForms
124 EXETCISES . . . v v v v v i v v e e e e e e e e

185
185
186
186
189
193
198
202

. 203

203

205
205
208
209

. 209

212
213
214
215

217
217
218
222
223
228
231

Contents

X1

13 Identification
13.1 Passwords
13.2 One-Time

13.3 Challenge-

13.4 Exercises

PasSWOTAS = o oo o 5 e v o o ssome w0 @1 s oo 80 8
Response Identification

14 Public-Key Infrastructures
14.1 Personal Security Environments
14.2 Certification Authorities
14.3 Certificate Chains

References

Solutions to the Exercises

Index

241
242
243
243
247

249
249
251
256
257
261

277

Integers

CHAPTER

Integers play a fundamental role in cryptography. In this chapter we
present important properties of integers and describe fundamental
algorithmes.

1.1 Basics

As usual, N = {1,2,3,4,5,...} is the set of positive integers and
7 = {0,+1,+2,43,...} is the set of integers. The rational numbers
are denoted by @@ and the real numbers by R.

Clearly, we have N Cc Z Cc Q C R. Real numbers (including
integers and rational numbers) can be added and multiplied. We
assume that this is known.

We use the following rules.

If the product of two real numbers is zero, then at least one factor
is zero so it is impossible that both factors are nonzero but the product
is zero.

Real numbers can be compared. For example, /2 is less than
2 but greater than 1. If a real number « is less than another real
number B, then we write @ < B. If « is less than or equal to B, we

1

2 1. Integers

write @ < B. If « is greater than B, we write @ > B. If « is greater
than or equal to g we write & > B. If y is another real number, then
a < Bimplies @ + y < B+ y. Analogous statements hold for <, >,
and >.If0 < ¢and 0 < B, then 0 < af.

A set M of real numbers is called bounded from below if there
is a real number y such that all elements of M are greater than y.
We also say that M is bounded from below by y. For example, the
set of positive integers is bounded from below by 0, but the set of
even integers is not bounded from below. An important property
of the integers is the fact that every set of integers that is bounded
from below contains a smallest element. For example, the smallest
positive integer is 1. In an analogous way one defines sets of real
numbers that are bounded from above. Every set of integers that is
bounded from above contains a greatest element.

For any real number «, we write

la) = max{beZ:b <a}.

Hence, || is the greatest integer, which is less than or equal to «.
This number exists because the set {b € Z : b < a} is bounded from
above.

Example 1.1.1
We have |3.43] =3 and |—3.43] = —4.

Finally, we need induction: If a statement, which depends on a
positive integer n, is true for n = 1 and if the truth for any integer
m with 1 < m < n (or just for n) implies the truth for n+1, then the
statement is true for any positive integer n.

In this chapter, lower case italic letters denote integers.

1.2 Divisibility

Definition 1.2.1
We say that a divides n if there is an integer b with n = ab.

1.2. Divisibility 3

If a divides n, then a is called a divisor of n, n is called a multiple
of a, and we write a | n. We also say that n is divisible by a. If a is not
a divisor of n, then we write a {n.

Example 1.2.2

We have 13 | 182 because 182 = 14 % 13. Likewise, we have —5 | 30
because 30 = (—6) * (—5). The divisors of 30 are +1, &2, £3, &5,
+6, +10, +15, £30.

Any integer a divides 0 because 0 = a * 0. The only integer that
is divisible by 0 is 0 because a = 0 x b implies a = 0.
We prove a few simple rules.

Theorem 1.2.3

1. Ifa|bandb |c, thena | c.

Ifa | b, then ac | be for all c.

Ifc|aandc|b, thenc | da+ eb for all d and e.
Ifa|bandb # 0, then |a| < |b|.

Ifa|bandb | a, then |a| = |b|.

SANE R

Proof. 1.1fa | bandb |c, then there are f, g with b = af and ¢ = bg.
This implies ¢ = bg = (af)g = a(fg). 2. If a | b, then there is f with
b = af.Hence, bc = (af)c = f(ac).3.1fc | aandc | b, thenthereisf, g
with a = fc and b = ge. This implies da + eb = dfc +egc = (df +eg)c.
4. 1fa | b and b # 0, then there is f # 0 with b = af. This implies
|b| = |af| > |al. 5. Suppose thata | band b | a. Ifa =0, then b = 0
and vice versa, If a # 0 and b # 0, then 4. implies |a| < |b| and
|b| < |al, and hence |a| = |b|. O

The following result is very important. It shows that division with
remainder of integers is possible.

Theorem 1.2.4

Ifa and b are integers, b > 0, then there are uniquely determined integers
q and r such that a = gb +r and 0 < r < b, namely q = |a/b] and
r=a-—bgq.

Proof. 1fa=gb+rand0 <r < b,then0 <r/b=a/b—q < 1. This
implies a/b—1 < q < a/b; hence q = |a/b]. Conversely, q = |a/b]
and r = a — bq satisfy the assertion.]

4 1. Integers

In the situation of Theorem 1.2.4, the integer g is called the (in-
tegral) quotient and r the remainder of the division of a by b. We
write r = @ mod b. If a is replaced by a mod b, then we say that a is
reduced modulo b.

Example 1.2.5
Ifa=133and b = 21, theng = 6 and r = 7, s0 133 mod 21 = 7.

Likewise, we have —50 mod 8 = 6.

1.3 Representation of Integers

In books, integers are written in decimal expansion. On computers,
the binary expansion is used. More generally, integers can be rep-
resented using the so-called g-adic expansion, which is explained in
this section. For an integer g > 1 and a positive real number «, de-
note by log, « the logarithm for base g of a. For a set M, let M* be
the set of all sequences of length k with entries from M.

Example 1.3.1 ,
We have log, 8 = 3 because 2° = 8. Also, logg 8 = 1 because 8' = 8.

Example 1.3.2)
The sequence (0,1,1,1,0) is an element of {0,1}°. Also {1,2}* =

{(1,1),(1,2),(2,1),(2,2)}

Theorem 1.3.3 |
Let g be an integer, g > 1. For each positive integer a, there is a uniquely
determined positive integer k and a uniquely determined sequence

(a,...,a) €{0,...,g — 1}*
with a; # 0 and

k
a:Zafgk_’. (1.1)

i=1

In addition, k = |log,a] + 1, and a; = |(a - Z;;i ag") /" | for
1<i<k

1.3. Representation of Integers 5

Proof. Let a be a positive integer. If @;, 1 < i < k, is chosen as
in the theorem, then (1.1) is satisfied. We prove the uniqueness. If
a can be represented as in (1.1), then g"! < a = Y% agf <
(g —])E:":lg"'_‘ = g8 -1 < gF Hence, k = llog, @] + 1. This
proves the uniqueness of k. We prove the uniqueness of the sequence
(aj, ..., ax) by induction on k.

For k = 1, we have a; = a and there is no other choice for a;.

Let k > 1. If there is a representation as in (1.1), then 0 < a —
ag"' < g5 ! and therefore 0 < a/g"~' — a; < 1. Therefore, a
is the integral quotient of a divided by g"~! and is hence uniquely
determined. Seta’ = a—a; g5 = Zf:z a;g"*. Either we have a’ = 0,
in whichcase a;, = 0,2 <i<norad = Zf‘:z a,g""" is the uniquely
determined representation of @’ by the induction hypothesis. o

Definition 1.3.4

The sequence (a,...,ax) from Theorem 1.3.3 is called the g-adic
expansion of a. Its elements are called digits. Its length isk = |log, a]+
1. If g = 2, the sequence is called the binary expansion of a. 1f g = 16,
then the sequence is called the hexadecimal expansion of a.

The g-adic expansion of a positive integer is only uniquely de-
termined if its first digit is nonzero. Instead of (a,, ..., ax), we also
write a,a; . . . ag.

Example 1.3.5

The sequence 10101 is the binary expansion of 2* + 22 4 2° = 21.
When writing the hexadecimal expansion, we use instead of the dig-
its 10,11, ..., 15 the letters A, B, C, D, E, F, so A1C is the hexadecimal
expansion of 10 * 16° + 16 + 12 = 2588,

Theorem 1.3.3 contains a procedure for computing the g-adic
expansion of a positive integer. This is applied in the next example.

Example 1.3.6

We determine the binary expansion of 105. Since 64 = 2° < 105 <
128 = 27, it is of length 7. We find the following: a; = [105/64] = 1;
105 — 64 = 41; a, = |41/32] = 1; 41 — 32 =9; a; = |9/16] = 0;
a, = 19/8) =1;,9—8 = 1. as = as = 0;a; = 1. Hence, the binary
expansion of 105 is the sequence 1101001.

6 1. Integers

The transformation of hexadecimal expansions to binary expan-
sions is particularly simple. Let (hy, hy, ..., hx) be the hexadecimal
expansion of a positive integer n. For 1 <1 < k, let (by 4, b2, baj, ba,i)
be the bitstring of length 4, which represents h; (i.e., hy = b 2%+
bzllz +b3‘,2+b4r1) Then (b]_] ; b2|1 ' b3.1 " b4|| : b1.2, bqj) is the bmary
expansion of n.

Example 1.3.7

Consider the hexadecimal number n = 6EF. The length 4 normal-
ized binary expansions of the digits are 6 = 0110, E = 1110, F' = 1111.
Therefore, 011011101111 is the binary expansion of n.

The length of the binary expansion of a positive integer is also
referred to as its binary length. The binary length of 0 is defined to be
1. The binary length of an integer is defined to be the binary length
of its absolute value. It is denoted by size (a) or size a.

1.4 O- and Q-Notation

When designing a cryptographic algorithm, it is necessary to esti-
mate how much computing time and how much storage it requires.
To simplify such estimates, we introduce the O- and the Q2-notation.

Let k be a positive integer, X, Y C N*and f : X — R>o,8: Y —
R, functions. We write f = O(g) if there are positive integers B
and C such that for all (ny,...,n) € N withn; > B, 1 <i < k the
following is true:

1. (ny,...,nx) € X NY; thatis, f(n,...,nx) and g(m, ..., nk) are
defined,

2. f(ny,...,mx) < Cglm, .-, Nk)

This means that almost always f(n,...,n) < Cg(m, ..., nk). We

also write g = Q(f). If g is constant, then we write f = O(1).

Example 1.4.1 _
We have 2n? +n+1 = O(n%) because 2n’ +n+1 < 4n* foralln > 1.
Also, 2n? + n+ 1 = Q(n?) because 2n? + n+1 > 2n* for all n > 1.

1.5. Cost of Addition, Multiplication, and Division 7

Example 1.4.2

If g is an integer, g > 2, and if f(n) denotes the length of the g-adic
expansion of a positive integer n, then f(n) = O(log n), where logn
is the natural logarithm of n. In fact, this length is [log,n| +1 <
log,n+1 =logn/logg +1.1f n > 3, then logn > 1 and therefore
logn/logg +1 < (1/logg + 1)logn.

1.5 Cost of Addition, Multiplication,
and Division with Remainder

In many cryptographic applications, multiprecision integers must
be added, multiplied, and divided with remainder. To estimate the
running time of such applications, we must study how long such
operations take. To do so, one has to choose a model of computation
that is as similar as possible to real computers. This is described in
detail in [3]and [4]. Here, we only use a naive model, which, however,
yields reasonable estimates.

Let a and b be positive integers, which are given by their binary
representations. Let m be the binary length of a and let n be the
binary length of m. To compute a + b, we use the school method,
which adds bit by bit with carry.

Example 1.5.1
Let a = 10101, b = 111. We compute a + b.

1 0 1 0 1

+ 1 1 1
carry |

1 1 1 0 O

We assume that the addition of two bits takes time O(1). Then the
whole addition requires time O(max{m, n}). Analogously, one can
show that the difference b—a can be computed in time O(max{m, n}).

We use the school method also for multiplication.

Example 1.5.2
Let a = 10101, b = 101. We compute a * b.

8 1. Integers
1 01 01 * 1 0 1
1 01 0 1
+ 1 1 0
carry 1 1
1 1.0 1 0 0 1

We scan b from right to left. For each 1, we write a such that
the rightmost bit of a is below the current 1. Then this a is added
to the previous result. Any such addition takes time O(m), and O(n)
additions are necessary. The computation takes time O(mn). In 3],
the algorithm of Schénhage and Strassen is explained, which can
multiply two n-bit numbers in time O(nlognloglogn). In practice,
this algorithm is less efficient than the school method for operands
that have fewer than 10,000 bits.

We also use the school method to divide a by b with remainder.

Example 1.5.3
Let a = 10101, b = 101. We divide a with remainder by b.

1 0 1 01 =101 %= 1 00 + 1
- 1 0 1
0 0 O
— 0 0 O
0 0 1
— 0 0 O

1

When analyzing the algorithm, we see the following. Let k be
the binary length of the quotient. Then one has to subtract at most
k times two numbers of binary length < n + 1. This takes time
O(kn). We therefore obtain the following bounds, which will be used

henceforth:
Let a and b be integers.

1. Adding a and b requires time O(max{size a, size b}).
2. Multiplying a and b requires time O((size a)(size b)).

3. Dividing a with remainder by b requires time O((size b)(size q)),
where ¢ is the quotient.

All algorithms require space O(size a + size b).

1.7. Greatest Common Divisor 9

1.6 Polynomial Time

When analyzing a cryptographic algorithm, we must show that it
works efficiently but is difficult to break. We make the notion of
“efficiency” more precise.

Suppose an algorithm receives as input integers z,,. . .,z,. We say
that the algorithm has polynomial running time if there are nonneg-
ative integers e, .. ., €, such that the running time of the algorithm
is

O((size z1) (size 2)* - - - (size 2,)™).

An algorithm is considered to be efficient if it has polynomial run-
ning time. Observe, however, that in order for the algorithm to be
efficient in practice, the exponents ¢; and the O-constant must be
small.

1.7 Greatest Common Divisor

We define the greatest common divisor of two integers.

Definition 1.7.1
A common divisor of a and b is an integer that divides both a and b.

Theorem 1.7.2

Among all common divisors of two integers a and b, which are not both
zero, there is exactly one greatest (with respect to <). It is called the greatest
common divisor (ged) of a and b.

Proof. Leta # 0. By Theorem 1.2.3, all divisors of a are bounded
by |a|. Therefore, among the common divisors of a and b there is a
unique greatest. O

For completeness, we set the greatest common divisor of 0 and 0
to 0 (i.e., ged(0, 0) = 0). Hence, the greatest common divisor of two
numbers is never negative.

10 1. Integers

Example 1.7.3

The greatest common divisor of 18 and 30 is 6. The greatest common
divisor of —10 and 20 is 10. The greatest common divisor of —20 and
—14 is 2. The greatest common divisor of 12 and 0 is 12.

The greatest common divisor of integers aj,...,ax, k = 1
is defined as follows. If at least one of the a; is nonzero, then
ged(ay, . .., ax) is the greatest positive integer that divides all the
a;. I all the a; are zero, then we set gcd(ay, ..., ax) = 0.

Next, we present an important way of representing a greatest
common divisor. We need the following notation.

If ay, ..., are real numbers, then we write ;

O Z+...+ax = {ayzy + ... + A2k - 2 eZ,1 <1<k}
This is the set of all integer linear combinations of the «;.

Example 1.7.4
The set of all integer linear combinations of 3 and 4 is 37 + 4Z.

It contains 1 = 3 * (—1) + 4. It therefore also contains all integer
multiples of 1. Hence, this set is Z.

The next theorem shows that the result in the previous example
was not an accident.
Theorem 1.7.5
The set of all integer linear combinations of a and b is the set of all integer
multiples of gcd(a, b), i.e.,
aZ + bZ = ged(a, b)Z.

Proof. For a = b = 0, the assertion is obviously correct, so let a or

b be nonzero.
Set

Let g be the smallest positive integer in I. We claim that I = gZ.
To see this, choose a nonzero element ¢ in I. We must show that
¢ = qg for some q. By Theorem 1.2.4, there are gq,r withc =qg +7r
and 0 < r < g. Therefore, r = ¢ — qg belongs to I. But since g is the
smallest positive integer in I, we must have r = 0 and ¢ = gg.

1.7. Greatest Common Divisor 11

It remains to be shown that g = gcd(a, b). Since a, b € I, it follows
from I = gZ that g is a common divisor of a and b. Moreover, since
g € I there are x,y with g = xa + yb. Therefore, if d is a common
divisor of a and b, then d is also a divisor of g. Theorem 1.2.3 implies
|d| < g. This shows that g = gcd(a, b). (]

We could have obtained the result of Example 1.7.4 directly from
Theorem 1.7.5. Since gcd(3, 4) = 1, it follows that 3Z+47Z = 1Z = Z.
Theorem 1.7.5 has important implications.

Corollary 1.7.6

For all a, b, n the equation ax + by = n is solvable in integers x and y if
and only if gcd(a, b) divides n.

Proof. 1If there are x and y with n = ax + by, then n € aZ + bZ
and by Theorem 1.7.5 n € gcd(a, b)Z. Therefore, we can write n =
cged(a, b), which implies that n is a multiple of gcd(a, b).
Conversely, if n is a multiple of gcd(a, b), then n is an element of
gcd(a, b)Z. By Theorem 1.7.5, we also have n € aZ + bZ. Therefore
there are integers x and y with n = ax + by. E;

Corollary 1.7.6 tells us that the equation
3x+4y =123

has a solution, because gcd(3,4) = 1. But so far, we have not ex-
plained an efficient method for finding a solution x and y. This can
be done using the euclidean algorithm, which is explained in the
next section.

Corollary 1.7.7
There are integers x and y with ax + by = ged(a, b).

Proof. Since gcd(a, b) divides itself, the assertion follows immedi-
ately from Corollary 1.7.6. O

We present another useful characterization of the greatest
common divisor. It is frequently used to define the gcd.

Corollary 1.7.8

T‘h?rfj is exactly one nonnegative common divisor of a and b, which is
divisible by all other common divisors of a and b, namely the greatest
common divisor of a and b.

1 z 1. Integers

Proof. The greatest common divisor of a and b is a nonnegative
common divisor of a and b. Moreover, by Corollary 1.7.7 there are
integers x and y with ax + by = ged(a, b). Therefore, every common
divisor of a and b is a divisor of gcd(a, b). This shows that there exists
a common divisor of a and b that is divisble by any common divisor
of a and b.

Conversely, let g be a nonnegative divisor of a and b that is di-
visible by every common divisor of a and b. If a = b = 0, then
g = 0 since 0 is only divisible by 0. If a or b is nonzero,\ then by
Theorem 1.2.3 every common divisor of a and b is < g. Therefore,
g = ged(a, b). O

The question remains how to compute ged(a, b) and integers x
and y with ax + by = gcd(a, b). The fact that both problems admit
efficient solutions is crucial for many cryptographic systems. In the
next sections we present and analyze the euclidean algorithm, which
solves both problems.

1.8 Euclidean Algorithm

The euclidean algorithm determines the greatest common divisor of
two integers very efficiently. It is based on the following theorem.

Theorem 1.8.1
1. Ifb =0, then gcd(a, b) = |al.
2. If b # 0, then ged(a, b) = ged(|bl, a mod |b|).

Proof. The first assertion is obviously correct. We prove the sec-
ond assertion. By Theorem 1.2.4, there is an integer g with a =
q|b| + (a mod |b|). Therefore, the greatest common divisor of a and
b divides the greatest common divisor of |b| and a mod || and vice
versa. Since both greatest common divisors are nonnegative, the
assertion follows from Theorem 1.2.3. O

We explain the euclidean algorithm in an example.

1.8. Euclidean Algorithm 13

Example 1.8.2

We want to compute ged(100, 35). From Theorem 1.8.1, we obtain
ged(100, 35) = ged(35, 100 mod 35) = ged(35,30) = ged(30,5) =
gcd(5, 0) = 5. |

First, the euclidean algorithm replaces a by |a| and b by |b|. This
has no effect in our example. As long as b is nonzero, the algorithm
replaces a by b and b by a mod b. As soon as b = 0, the algorithm
returns a. We show what the euclidean algorithm looks like as a
C+ +program. We use the class bigint from the C+ +library LiDIA
[22], which implements multiprecision integers. Our algorithm uses
the method n.abs (), which yields the absolute value of n.

bigint euclid(bigint a, bigint b) {
bigint r;
a.abs();

b.abs();

while (b !'= 0) {

r = a}b;
a = b;
b =r;
}
return a;

We prove the correctness of the euclidean algorithm.

Theorem 1.8.3

The euclidean algorithm computes the greatest common divisor of a
and b.

Proof. To prove that the euclidean algorithm terminates and yields

ged(a, b), we introduce some notation that will also be used later. We
set

ro = lal,r = |b| (1.2)
and fork > 1 and r, # 0

Y41 = Tk—1 mod Y. [13)

14 1. Integers

Then ry, 73, ... is the sequence of remainders that are computed
in the while-loop of the euclidean algorithm. Also, after the kth
iteration of the while-loop, we have

a =T, b-——?’k+].

It follows from Theorem 1.8.1 that the greatest common divisor of
a and b is not changed in the algorithm, so we only need to prove
that there is k such that rx = 0. But this follows from thg fact that by
(1.3) the sequence (7i)x=1 is strictly decreasing. This concludes the
correctness proof for the euclidean algorithm. a

The euclidean algorithm computes gcd(a, b) very efficiently.
This is important for cryptographic applications. To prove the ef-
ficiency, we estimate the number of iterations required by the
euclidean algorithm. For simplicity, we assume

a>b>0.

This is no restriction, since the euclidean algorithm requires one
step to determine gcd(a, b) (if b = 0) or to produce this situation.

Let r,, be the last nonzero remainder in the sequence (7). Thenn
is the number of iterations, which the euclidean algorithm requires
to compute ged(a, b). Furthermore, let

gk = re-1/1x), 1<k=n (1.4)
Then gy is the quotient of r;_; divided by 7%, and we have
Tk—1 = qxTx + Tk41- (1.5)

Example 1.8.4
If a = 100 and b = 35, then we obtain the remainder sequence

kK[0 1 2 3 4]
re | 100 35 30 5 0
qx 2 1 6

To estimate the number n of iterations, we prove the following
auxiliary result. Here we assume a > b > 0.

Lemma 1.8.5
We have qx > 1 for 1 <k<n-1andg, = 2

1.8. Euclidean Algorithm 15

Proof. Since rx—; > 1y > riyq, it follows from (1.5) that gx > 1 for

1 < k < n.Suppose g, = 1. Thenr,—; = ry, and this is impossible be-
cause the sequence of remainders is strictly decreasing. Therefore,
4n = 2. o

Theorem 1.8.6
In the euclidean algorithm, let a > b > 0. Also, let © = (1 + /5)/2.

Then the number of iterations in the euclidean algorithm is at most
(logb)/(log ®) + 1.

Proof. By Exercise 1.12.19, we may assume that gcd(a, b) = r, = 1.
We prove

n>0"% 0<k<n (1.6)
Then
b=r >0" 1,
Taking logarithms, we obtain
n < (logh)/(log®) + 1,

as asserted.
We now prove (1.6) by induction. First, we have

m=1l= e°
and by Lemma 1.8.5
Tn—1 =qntn =Gn > 2 > ©.

Let n — 2 > k > 0, and assume that the assertion is true for k¥’ > k.
Then Lemma 1.8.5 implies

Tk = Qk+17k+1 + Tht2 = Viet1 + T2

> @nuk—l = Q—_)n—k—z - @n—wk—i (I + l) = @)n-—k
(C)] '

so (1.6) and the theorem are proved. =]

16 1. Integers

1.9 Extended Euclidean Algorithm

In the previous section, we have seen how tl;e greatest common
divisor of two integers can be computed. Corollary 1.7.7 tells us
that there are integers x,y with gcd(a,b) = ax + by. In this sec-
tion, we extend the euclidean algorithm in such a way that it also
determines such coefficients x and y. As in Section 1.8, we denote

by 70, ..., Tns1 the sequence of remainders and by q;, . .., g the se-
quence of quotients that are computed in the course of the euclidean
algorithm.

We now explain the construction of two sequences (xx) and
(yx), such that x = (—=1)"x, and y = (—1)"*'y, are the required
coefficients.

We set

Furthermore, we let
Xet1 = GXk + X1, Yot = Gk + Yk, 1 <k=n (1.7)
We assume that a and b are nonnegative.

Theorem 1.9.1
We have 1y = (—=1)xa+ (=) yxb for0 <k <n+1.

Proof. 'We note first that
ro=a=1%a—0%xb=xy%a—yox*b.
Moreover,
n=b=-0%a+1%xb=—xxa+y xb.
Now let k > 2 and suppose that the assertion is true for k' < k. Then

Tk = Tk—2 — Gk—1"k-1
= (1) Zaza+ (1) yroab—grr (1) tm18+ (1) Yk b)
= (=D*a(xk-2 + Gr-1%k-1) + (=1 D(Yr-2 + Gr-19x-1)
= (-D*xa + (-1)"'yb,

so our theorem is proved.]

1.9. Extended Euclidean Algorithm 17

We see that in particular
h = (_IJ”xna & (—1)"“9“}3.

so we have represented the greatest common divisor of @ and b as a
linear combination of @ and b.

Example 1.9.2
Choose a = 100 and b = 35. Then the values 1, gx, xx, and y; are
listed in the following table.

k 0 1 2 3 4
e | 100 35 30 5 0
ik 2 1 6
Xy 1 0 1 1 7
| 0 1 2 3 20
We find therefore that n = 3 and gcd(100, 35) = 5 = —1 %100+ 3% 35.

The extended euclidean algorithm also computes the coefficients

X = (._Unxn- y= (_I_}nﬂyn-

This is done in the next C+ + program. It stores x and y as x[0] and
y[0].

bigint xeuclid(bigint a, bigint b, bigint x[], bigint y[])
{
bigint q, r, xx, yy, sign;

// Initializes the coefficients

x[0] = 1; x[1] = 0;
ylol = 0; yl[1] = 1;
sign = 1;

// As long as b != 0 we replace a by b and b by a%b.
// We also update the coefficients x and y.

while (b !'= 0) {
r = ajb;
q = a/b;

1 8 1. Integers

a = b;
b =r;
x[1];
yy = y[11; ’
x[1] = g*x[1] + x[0];
y[1] = g*xy[1] + y[0];
x[0] = xx;
y[0] = yy;
sign = -sign;
}

// Final computation of the coefficients.

XX

[}

x[0]
y[0]

sign*x[0];
-sign*y[0];

I}

// Return gcd(a,b)

return a;

1.10 Analysis of the Extended
Euclidean Algorithm

First, we estimate the size of the coefficients x and y. We use the

matrices
— qk 1 < <
Ex = (1 0), 1<k<n,
=(yk yk—i)' l<k<n+1
Xk Xk—1
We have

Tys1 = TkEx, 1<k =<n,
and since Ty is the identity matrix, we have

Tp+1 = E1E3 -« - Ep.

1.10. Analysis of the Extended Euclidean Algorithm 19

If we set
Sk = Ex41Ek42--En, 0 <k =<n,
where S, is the identity matrix, then
So = Tht1-

We use the matrix S, to estimate x, and y,. If we write

U Uk
S = , 0<k=n,
Uk41 Uk

then because of
Sk—1 = ExSx, 1<k =n,
we obtain the recursions
Uk—1 = Gk + Uk41, Vk—1 = Gklk + Uk, 1<k =<n (1.8)

The remainders ry satisfy the same recursion.
Now we estimate the entries vy of the matrices Sj.

Lemma 1.10.1
We have 0 < v < r/(2gcd(a, b)) for 0 <k < n.

Proof. Note that 0 = v, < r,/(2gcd(a, b)), g, = 2 by Lemma 1.8.5,
and v,_; = 1. Therefore, r,_; = gnrn = 2gcd(a, b) = 2gcd(a, b)vy-;.
Suppose that the assertion is true for k¥’ > k > 0. Then vy_, =
GrVk + Vk41 < (qx7rx + 1x41)/ (2 ged(a, b)) = -1/ (2 ged(a, b)), so the
asserted estimate is proved. O

From Lemma 1.10.1, we can deduce the estimates for the
coefficients x; and y;.

Corollary 1.10.2
We have x; < b/(2gcd(a, b)) and yx < a/(2gcd(a, b)) for1 <k <n.

Proof. It follows from Sy = T4, thatx, = v, and y,, = vy. Therefore,
we obtain the asserted estimate for k = n from Lemma, 1.10.1. But
since (Xx)k=1 and (yx)k=0 are increasing sequences, the assertion is
proved for 1 < k < n. O

For the coefficients x and y, which are computed by the extended
euclidean algorithm, we obtain the following estimate.

20 1. Integers

Corollary 1.10.3
We have |x| < b/(2gcd(a, b)) and |y| < a/(2%cd(a, b)).

We are also able to determine the coefficients x4, and Y, 41.

Lemma 1.10.4
We have x4, = b/ ged(a, b) and yn41 = a/ ged(a, b).

We leave the proof to the reader.

We will now estimate the running time of the euclidean algo-
rithm. It turns out that this running time is of the same order of
magnitude as the running time for multiplying two integers. This is
quite surprising because the euclidean algorithm looks much more
difficult than the multiplication algorithm.

Theorem 1.10.5
The extended euclidean algorithm uses time O((size a)(size b)) to
compute gcd(a, b) including a representation ged(a, b) = xa + yb.

Proof. We assume that a > b > 0. We have already seen that the
euclidean algorithm requires one iteration to compute gcd(a, b) or
to generate this situation. The running time for this one iteration is
O(size (a)size (b)).

The euclidean algorithm computes the remainder sequence
(rk)2<k<n+1 and the quotient sequence (gi)i<k<n- The number rj4
is the remainder of the division of r,_; by rx for 1 < k < n.
As explained in Section 1.5, the computation of rx4; requires time
O(size (rx)size (gx)), where gy is the quotient of this division.

We know that r, < b, hence size (r;) < size(b) for 1 =<
n + 1. Moreover, we know that size (qx) < log(qx) + 1 for 1 <k
Therefore, the euclidean algorithm takes time

T(a,b) =0 (size (b) (n + log q;.-)) ; (1.9)
k=1

By Theorem 1.8.6, we have
n = O(size b). (1.10)

k
=

=
n.

Also,
a=ro=qn +r=qn =q(qzr:+r3)

=gzt > ... = Q192 On-

1.11. Factoring into Primes 21

This implies

> loggi = O(size a). (1.11)
k=1

If we use (1.10) and (1.11) in (1.9), then the running time of the
simple euclidean algorithm is proven.

We also estimate the time that the extended euclidean algorithm
needs to compute the coefficients x and y. In the first iteration, we
have

X=qx+x =1 Y=q% +Yo=4aq.
This takes time O(size (g,)) = O(size (a)). Then,

Xk+1 = GkXk + Xk—1, Yk+1 = GkYk + Yr—

is computed for 2 < k < n. By Lemma 1.10.2, we have x;, yr = O(a)
for 0 < k < n. The time to compute x and y is therefore

Ty(a,b) =0 (size (a) (1 -+ i size (Qk)))
k=2

=0 (size (a) (n +) log qk)) i (1.12)
k=2

As above, it is easy to see that

n
[Tax <. (1.13)
k=2
If this is used in (1.12), then the assertion is proved. O

1.11 Factoring into Primes

A central notion of elementary number theory is that of a prime
number. Prime numbers are used in many cryptographic algorithms.
In this section, we introduce prime numbers and prove that every
positive integer is a product of primes in which the factors are unique
up to permutation.

22 1. Integers

Definition 1.11.1
Anintegerp > 1is called a prime number if it has exactly two positive
divisors, namely 1 and p.

Instead of “prime number” we also simply say “prime". The first
nine prime numbers are 2, 3,5,7,11,13,17,19, 23. We denote the set
of all primes by P. An integer a > 1 that is not a prime is called
composite . If the prime p divides the integer a, then p is called prime
divisor of a.

Theorem 1.11.2
Every integer a > 1 has a prime divisor.

Proof. The integer a has a divisor that is greater than 1, namely a.
Among all divisors of a that are greater than 1, let p be the smallest.
Then p must be prime. Otherwise, p would have a divisor b with

l<b<p=a

This contradicts the assumption that p is the smallest divisor of a
that is greater than 1. O

The following result is crucial for the proof of the decomposition
theorem.

Lemma 1.11.3
If a prime number divides the product of two integers, then it divides at
least one factor.

Proof. Suppose the prime number p divides ab but not a. Since p
is a prime number, we must have gcd(a,p) = 1. By Corollary 1.7.7,
there are x, y with 1 = ax + py. This implies

b = abx + pby.

Since p divides abx and pby, Theorem 1.2.3 implies that p is a divisor
of b. -

Corollary 1.11.4
If a prime number p divides a product]_[:;] g of prime numbers, then p
is equal to one of the factors qi,qz, - - -, Gk-

Proof The proof uses induction on k. If k = 1, then p is a divisor
of g, which is greater than 1, hence p = q;. If k > 1, then p divides

1.11. Factoring into Primes 23

q1(q2 -+ qx). By Lemma 1.11.3, the prime p divides g, or gz - - - gx. Be-
cause both products have fewer than k factors, the assertion follows
from the induction hypothesis. O

Now we prove the main theorem of elementary number theory.

Theorem 1.11.5
Every integer a > 1 can be written as the product of prime numbers. Up
to permutation, the factors in this product are uniquely determined.

Proof. The theorem is proved by induction on a. For a = 2, the the-
orem is true. Let @ > 2. By Theorem 1.11.2, there is a prime divisor
pofa.lfa/p =1, then a = p and the assertion holds. Let a/p > 1.
By the induction hypothesis, a/p is a product of primes. Therefore,
a is also a product of primes. This proves the existence of the prime
factor decomposition of a. We must still show the uniqueness, so let
a=p,-prand a = q; - -- q be factorizations of a into prime num-
bers. By Corollary 1.11.4, the prime p, is equal to one of the primes
q1, .. .,qx. By permuting the g;, we can make sure that p; = g;. But
by the induction hypothesis, the factorization of a/p, = a/q, into
prime numbers is unique. Hence, k = land g; = p; for1 <i < k
after an appropriate permutation of the g;. a

The prime factorization of an integer a is the representation of |a|
as the product of prime numbers. The problem of finding the prime
factorization of an integer a is referred to as the integer factorization
problem. Efficient algorithms for solving the integer factorization
problem are not known. This fact is the basis of the security of the
RSA cryptosystem and other important cryptographic schemes. But
we have no proof that the integer factorization problem is difficult.
It is therefore quite possible that in the future someone will invent
an efficient integer factoring algorithm. The cryptographic schemes
based on the difficulty of integer factorization are insecure and must
be replaced by others.

Example 1.11.6
The French mathematician Pierre de Fermat (1601 to 1665) thought
that all of the so-called Fermat numbers

F,=2" 41

24 1. Integers

are primes. In fact, Fp = 3, Fi = 5, I, = 17, F3 = 257, and F4 =
65537 are prime numbers. However, in 1732 Euler discovered that
Fs = 641 % 6700417 is composite. Both factors in this decomposition
are primes. Fg, F5, Fy, and Fy are also composite. The factorization of
F; was found in 1880 by Landry and Le Lasseur. The factorization of
F, was found in 1970 by Brillhart and Morrison. The factorization of
Fy was computed in 1980 by Brent and Pollard and Fy was factored in
1990 by Lenstra, Lenstra, Manasse, and Pollard. This shows the the
difficulty of the factoring problem. But on the other hand, we also
see that there is considerable progress. It took until 1970 to factor
the 39-digit number F7, but only 20 years later the 155-digit number
Fy was factored.

1.12 Exercises

Exercise 1.12.1
Let « be a real number. Show that |«] is the uniquely determined
integer zwith0 <o —2z < 1.

Exercise 1.12.2
Determine the number of divisors of 2", n € Zxo.

Exercise 1.12.3
Determine all divisors of 195.

Exercise 1.12.4

Prove the following modification of division with remainder: If a, b
are integers, b > 0, then there are uniquely determined integers g
and r such that a = gb + r and —b/2 < r < b/2. Write a program
that determines the remainder r.

Exercise 1.12.5
Compute 1243 mod 45 and —1243 mod 45.

Exercise 1.12.6
Find an integer a witha mod 2 =1, a mod 3 =1, and a mod 5 = 1.

1.12. Exercises 25

Exercise 1.12.7

Let m be a positive integer and let a, b be integers. Prove that a mod
m = b mod m if and only if m divides the difference b — a.

Exercise 1.12.8

Determine the binary length of the nth Fermat number 22" + 1,
n € Zsy.

Exercise 1.12.9

Determine the binary expansion and the hexadecimal expansion of
2285,

Exercise 1.12.10

Write a program that computes the g-adic expansion of a positive
integer n for any integer g > 1.

Exercise 1.12.11
Let f(n) = asX? + aq_1 X' 4+ ... + ap be a polynomial with real
coefficients and let a; > 0. Prove that f(n) = O(n).

Exercise 1.12.12
Letk € Nand X ¢ NF. Assumethatf, g, F,G : X — Rso withf = O(F)
and g = O(G). Prove that f + g = O(F + G) and fg = O(FG).

Exercise 1.12.13
Let ay, ..., ax be integers. Prove the following assertions:

1. ged(ay, ..., ax) = ged(ay, ged(ay, . . ., ax)).
2. mZ+ ... +aZ = ged(ay, ..., ar)2.

3. The equation x,a, +. ..+ xxa; = n has integer solutions xy, ..., x;
if and only if ged(a;, .. ., ax) divides n.

4, There are integersxy, ..., x; withax;+. . +arxy=gcd(a,, ..., ax).

5. The greatest common divisor of ay, ..., a; is the uniquely de-
termined nonnegative common divisor of ay,...,a; which is
divisible by all common divisors of ay, . .., ax.

Exercise 1.12.14

Show that the euclidean algorithm also works if the division with
remainder is modified as in Exercise 1.12.4.

26 1. Integers

Exercise 1.12.15
Use the euclidean algorithm to compute ged(235, 124) including its
representation.

Exercise 1.12.16

Use the modified euclidean algorithm from Exercise 1.12.14 to
compute gcd(235,124) including its representation. Compare this
computation with the computation in Exercise 1.12.15.

Exercise 1.12.17
Prove Lemma 1.10.4.

Exercise 1.12.18
Let a > b > 0. Prove that the modified euclidean algorithm from
Exercise 1.12.14 requires O(log b) iterations to compute gcd(a, b).

Exercise 1.12.19
Leta > b > 0. Prove that the number of iterations that the euclidean
algorithm needs to compute gcd(a, b) depends only on the ratio a/b.

Exercise 1.12.20
Find a sequence (a;);>; of positive integers such that the euclidean
algorithm needs exactly i iterations to compute gcd(ai+1, a;).

Exercise 1.12.21
Prove that gcd(a, m) = 1 and ged(b, m) = 1 implies ged(ab, m) = 1.

Exercise 1.12.22
Compute the prime factorization of 37800.

Exercise 1.12.23
Prove that a composite integer n, n > 1 has a prime divisor p with

p < /n.

Exercise 1.12.24
The sieve of Eratosthenes determines all prime numbers p below
a given bound C. It works as follows. Write the list of integers

1.12. Exercises 27

2,3,4,5,...,|C]. Then iterate the following procedure for i =
2,3,...,[+/C]. If i is still in the list, delete all proper multiples
21,31, 4i,... in the list. The numbers remaining in the list are the
prime numbers < C. Prove the correctness of this algorithm. Write
a program that implements it.

~ Congruences
~ and Residue
CHAPTER ClaSS Rings

In this chapter, we show how to compute in residue class rings
and prime residue class groups. We also discuss algorithms for fi-
nite abelian groups. These techniques are of great importance in
cryptographic algorithms.

In this chapter, m is a positive integer and lowercase italic letters
denote integers.

2.1 Congruences

Definition 2.1.1
We say that a is congruent to b modulo m, and we write a = b mod
m, if m divides b — a.

Example 2.1.2
We have —2 = 19 mod 21, 10 = 0 mod 2.

It can be easily verified that congruence modulo m is an
equivalence relation on the integers. This means that

1. any integer is congruent to itself modulo m (reflexivity),

29

30 2. Congruences and Residue Class Rings

2. a = b mod m implies b = a mod m (symmetry),

3.a = bmodm and b = cmodm implies a = c¢modm
(transitivity).

Moreover, we have the following characterizations.

Lemma 2.1.3

The following statements are equivalent:

1. a=b mod m.

2. Thereis k € Z with a = b+ km.

3. When divided by m, both a and b leave the same remainder.

The equivalence class of a consists of all integers that are obtained
from a by adding integer multiples of m; i.e.,

{b:b=amodm}=a+mZ.
This equivalence class is called the residue class of a mod m.

Example 2.1.4

The residue class of 1 mod 4isthe set {1,144, 1£2x4, 1£3%4,...} =
{1,-3,5,—7,9,—11,13,...}. The residue class of 0 mod 2 is the set
of all even integers. The residue class of 1 mod 2 is the set of all odd
integers. The residue classes mod 4 are 0+4Z, 1+4Z, 2+4Z, 3+4Z.

The set of residue classes mod m is denoted by Z/mZ. It has m
elements, since 0,1, 2,...,m — 1 are the possible remainders of the
division by m. A set of representatives for those residue classes is a set
of integers that contains exactly one element of each residue class
mod m.

Example 2.1.5

A set of representatives mod 3 contains an element of each of the
residue classes 3Z, 1437, 2+3Z. Hence, {0, 1, 2}, {3, —2, 5}, {9, 16, 14}
are such sets.

One set of representatives mod m is the set {0,1,..., m — 1}. Its
elements are called the least nonnegative residues mod m. This set is
denoted by Z,,. Likewise, {1, 2, ..., m} is a set of representatives mod
m. Its elements are called the least positive residues mod m. Finally,
(n+1,n+2,..., n+m} with n = —[m/2] is a set of representatives
mod m.

2.1. Congruences 31

Example 2.1.6
{0,1,2,3,4,5,6,7,8,9,10, 11,12}
is the set of least nonnegative residues mod 13.

We need a few rules for computing with congruences. They will
later allow us to define a ring structure on the residue classes mod
m.

Theorem 2.1.7
a=bmodm and ¢ = d mod m implies —a = —bmodm, a + ¢ =
b+ d mod m, and ac = bd mod m.

Proof. Since m divides a — b, m also divides —a + b. Therefore,
—a = —b mod m. Since m divides a — b and ¢ — d, m also divides
a—b+c—d=(a+c)— (b+d). Therefore, a + ¢ = b+ d mod m.
To show that ac = bd mod m, we write a = b+ Im and ¢ = d + km.
Then we obtain ac = bd + m(ld + kb + lkm), as asserted. O

Example 2.1.8

We apply Theorem 2.1.7 to prove that the fifth Fermat number 2%’ +1
is divisible by 641. First,

641 = 64041 =5%2" +1.
This implies
5% 2’ = —1 mod 641.

From Theorem 2.1.7, we deduce that this congruence remains valid
if both sides are raised to the fourth power; i.e.,

5* % 2% = 1 mod 641. (2.1)
On the other hand,
641 = 625+ 16 = 5% + 2°.
This implies
5% = —2% mod 641.
If we use this congruence in (2.1), we obtain

—2* =1 mod 641;

32 2. Congruences and Residue Class Rings

hence,
2*2 41 = 0 mod 641.
This proves that 641 is a divisor of the fifth Fermat number.

We want to prove that the residue classes modulo m form a ring.
In the following sections, we review a few basic notions of algebra.

2.2 Semigroups

Definition 2.2.1
If X is a set, a map o : X x X — X which sends a pair (x, xz) of
elements from X to the element x; o x, is called an operation on X.

Example 2.2.2
On the set of real numbers, we already know the operations addition

and multiplication.

On the set Z/mZ of residue classes mod m, we introduce two
operations, addition and multiplication.

Definition 2.2.3
The sum of the residue classes a + mZ and b + mZ is (a + mZ) +
(b+ mZ) = (a+b)+ mZ. The product of the residue classes a + mZ

and b+ mZis (a + mZ) - (b + mZ) = (a - b) + mZ.

Observe that the sum and product of residue classes mod-
ulo m are defined using representatives. From Theorem 2.1.7, it
follows, however, that these definitions are independent of the
representatives. In practice, the residue classes are represented us-
ing fixed representatives. The computations are done with those
representatives.

Example 2.2.4

We use the least nonnegative representatives mod m = 5. We obtain
3+ 5Z) + (24 5Z) = (5+ 5Z) = 5Z and (3 + 5Z)(2 + 5Z) =
6 + 5Z = 1 + 5Z. We can also write this computation in the form
34+2=0mod5and3%2=1mod>5.

2.2. Semigroups 33

Definition 2.2.5

Let o be an operation on the set X. It is called associative if (aob)oc =
ao(boc)holds foralla, b, ¢ € X. It is called commutative ifaob = boa
foralla, b e X.

Example 2.2.6

Addition and multiplication on the set of real numbers are as-
sociative and commutative. The same is true for addition and
multiplication in Z/mZ.

Definition 2.2.7

A pair (H, o) consisting of a set H and an associative operation o
on H is called a semigroup. The semigroup is called commutative or
abelian if the operation o is commutative.

Example 2.2.8
Commutative semigroups are (Z, +), (Z,), (Z/mZ,+), (Z/mZ,-).

Let (H, o) be a semigroup, and set a' = a and a"*! = a o a" for
a € H and n € N. Then the following are true:
a"oa" =a"", (@)"=a™, aeHnmeN. (2.2)
Ifa,be Handaob = boa, then
(aob)"=a"ob". (2.3)
If the semigroup is commutative, then (2.3) is true in general.
Definition 2.2.9
A neutral element of the semigroup (H, o) is an element e € H which

satisfieseoa = aoe = a for all a € H. If the semigroup contains a
neutral element, then it is called monoid.

A semigroup has at most one neutral element (see Exercise
2.22.3).

Definition 2.2.10

If e is the neutral element of the semigroup (H, o) and ifa € H, then
b € H is called an inverse of aifaob = boa = e. If a has an inverse,
then a is called invertible in the semigroup H.

In a monoid, each element has at most one inverse (see Exercise
2.22.5).

34 2. Congruences and Residue Class Rings

Example 2.2.11

1. The neutral element of the semigroup (Z, +) is 0. The inverse of
ais —a.

2. The neutral element of the semigroup (Z,-) is 1. The only
invertible elements are 1 and —1.

3. The neutral element of the semigroup (Z/mZ, +) is the residue
class mZ.The inverse of a + mZ is —a + mZ.

4. The neutral element of the semigroup (Z/mZ,-) is 1 + mZ. The
invertible elements will be determined later.

2.3 Groups

Definition 2.3.1
A group is a monoid in which any element is invertible. The group
is called commutative or abelian if the monoid is commutative.

Example 2.3.2

1. The monoid (Z, +) is an abelian group.

2. The monoid (Z, -) is not a group because not every element is
invertible.

3. The monoid (Z/mZ, +) is an abelian group.

Let (G, -) be a group. Denote by a~! the inverse of a € G, and
set a~" = (a~!)" for each positive integer n. Then (2.2) holds for all
integral exponents. If the group is abelian, then (2.3) is true for all

integers n. .
In a group, the following cancellation rules can be easily verified.

Theorem 2.3.3
Let (G,) be a group and a, b, ¢ € G. Then ca = cb implies a = b and
ac = bc implies a = b.

Definition 2.3.4
The order of a group or a semigroup is the number of its elements.

Example 2.3.5
The additive group Z has infinite order. The additive group Z/mZ

has order m.

2.4. Residue Class Rings 35

2.4 Residue Class Rings

Definition 2.4.1

A ring is a triplet (R, +, -) such that (R, +) is an abelian group and
(R,-) is a semigroup. In addition, x - (y +2) = (x - y) + (x - z) and
x+y)-z=(x-2)+(y-2) for all x,y,z € R. The ring is called
commutative if the semigroup (R, -) is commutative. A unit element of
the ring is a neutral element of the semigroup (R, -).

Example 2.4.2

The triplet (Z, +, -) is a commutative ring with unit element 1. This
implies that (Z/mZ, +, -) is a commutative ring with unit element
1 + mZ. The latter ring is called the residue class ring modulo m.

Instead of writing (R, +, -) for a ring, we also write R if it is clear
which operations are meant. For example, we write Z/mZ for the
residue class ring modulo m.

Definition 2.4.3

Let R be a ring with unit element. An element a of R is called invert-
ible or a unit if it is invertible in the multiplicative semigroup of R.
The element a is called a zero divisor if it is nonzero and there is a
nonzero b € R with ab = 0 or ba = 0.

In Exercise 2.22.9, it is shown that the units of a commutative
ring R form a group. It is called the unit group of R and is denoted
by R*.

Example 2.4.4
The ring of integers contains no zero divisors.

The zero divisors of the residue class ring Z/mZ are the residue
classes a + mZ with 1 < ged(a, m) < m. In fact, if a + mZ is a zero
divisor of Z/mZ, then there is an integer b with ab = 0 mod m but
neither a = 0 mod m nor b = 0 mod m. Hence, m is a divisor of
ab but neither of a nor of b. This means that 1 < gcd(a, m) < m.
If, conversely, 1 < gcd(a,m) < m and b = m/ ged(a, m), then a #
0 mod m, ab = 0 mod m, and b # 0 mod m. Therefore, a + mZ is a
zero divisor of Z/mZ.

If m is a prime, then Z/mZ contains no zero divisors.

36 2. Congruences and Residue Class Rings

2.5 Fields

Definition 2.5.1
A field is a commutative ring in which every nonzero element is

invertible.

Example 2.5.2

The set of integers is not a field because most integers are not in-
vertible, but it is contained in the field of rational numbers. Also,
the real and complex numbers form a field. As we will see later, the
residue class ring modulo a prime number is a field.

2.6 Division in the Residue Class Ring

Divisibility in rings is defined as divisibility in Z. To explain this in
more detail, we let R be a ring and let a, n € R.

Definition 2.6.1
We say that a divides n if there is a b € R such that n = ab.

If the ring element a divides n, then a is called a divisor of n and
n is called a multiple of a, and we write a|ln. We also say that n is
divisible by a. 1f a is not a divisor of n, then we write a fn.

We study which elements of the residue class ring mod m are

invertible.
First, we note that the residue class a +mZ is invertible in Z/mZ
if and only if the congruence

ax =1 mod m (2.4)

is solvable. The next theorem answers the question when this is the
case.

Theorem 2.6.2

The residue class a + mZ is invertible in Z/mZ (i.e., the congruence
(2.4) is solvable) if and only if gcd(a, m) = 1. If ged(a, m) = 1, then the
inverse of a + mZ is uniquely determined (i.e., the solution x of (2.4) is
uniquely determined mod m).

2.6. Division in the Residue Class Ring 37

Proof. Let g = gcd(a, m) and let x be a solution of (2.4). Then g is
a divisor of m and therefore it is a divisor of ax — 1. But g is also a
divisor of a. Hence, g is a divisor of 1 (i.e., g = 1 because g, being
a ged, is positive). Conversely, let g = 1. Then by Corollary 1.7.7
there are numbers x, y with ax + my = 1 (i.e., ax — 1 = —my). This
shows that x is a solution of the congruence (2.4) and that x + mZ is
an inverse of a + mZ in Z/mZ.

To prove the uniqueness, let v + mZ be another inverse of a +
mZ. Then ax = av mod m. Therefore, m divides a(x — v). Because
gcd(a, m) = 1, this implies that m is a divisor of x — v. This proves
x = v mod m. O

A residue class a + mZ with gcd(a, m) = 1 is called an invertible
residue class modulo m. Theorem 2.6.2 implies that a residue class
a+ mZ with 1 < a < m is either a zero divisor or an invertible
residue class (i.e., a unit in the residue class ring mod m).

In the proof of Theorem 2.6.2, we have shown that we can
solve the congruence ax = 1 mod m with the extended euclidean
algorithm (see Section 1.9) since it computes the representation
1 = ax + my. In fact, we only need the coefficient x. By Theorem
1.10.5, the solution of the congruence can be computed efficiently.

Example 2.6.3

Let m = 12. The residue class a + 12Z is invertible in Z/12Z if
ged(a, 12) = 1. The invertible residue classes mod 12 are therefore
14+127Z,5+12Z,7 +12Z, 11 +12Z. To find the inverse of 5+ 127Z, we
use the extended euclidean algorithm. We obtain 5% 5 = 1 mod 12.
Analogously, we have 77 =1 mod 12 and 11 * 11 = 1 mod 12.

We also introduce the residue class field modulo a prime number,
which is frequently used in cryptography.

Theorem 2.6.4
The residue class ring ZZ/mZis a field if and only if m is a prime number.

Proof. By Theorem 2.6.2, the ring Z/mZ is a field if and only if
ged(k, m) = 1 for all k with 1 < k < m. This is true if and only if m
is a prime number. O

38 2. Congruences and Residue Class Rings

2.7 Analysis of Operations in the
Residue Class Ring

In all algorithms of public-key cryptography, computing in residue
class rings is very time-consuming. Frequently, those computations
must be carried out on smart cards. It is therefore important to
know how efficiently those computations can be carried out. This is
described in this section.

We assume that the elements of the residue class ring Z/mZ are
represented by their smallest nonnegative representatives. Under
this assumption, we estimate the running time of the operations in
the residue class ring.

Leta, b e {0,1,..., m—1}.

To compute (a + mZ) + (b + mZ), we must determine (a +
b) mod m. First, we compute ¢ = a +b. The required sum is ¢ + mZ,
but ¢ may be the wrong representative since we only know that
0 <c < 2m. If0 < ¢ < m, then ¢ is the correct representative.
If m < ¢ < 2m, then the correct representative is ¢ — m because
0 < ¢—m < m. In this case, we replace ¢ by ¢ — m. Likewise,
(a + mZ) — (b + mZ) is computed. We determine ¢ = a — b. Then
—m < ¢ < m. If 0 < ¢ < m, then c is the correct representative
of the difference. If —m < ¢ < 0, then the correct representative is
¢+ m. Hence, ¢ must be replaced by ¢ +m. The results in Section 1.5
imply that the sum and difference of two residue classes modulo m
can be computed in time O(size m).

Now we wish to compute (a+mZ)(b+mZ). We determine ¢ = ab.
Then 0 < ¢ < m?. We divide ¢ with remainder by m and replace c
by the remainder of this division. For the quotient g of this division,
we have 0 < g < m. By the results of Section 1.5, we can perform
the multiplication and the division in time O((size m)*). Hence, two
residue classes mod m can be multiplied in time O((size m)?).

Finally, we discuss how to invert a + mZ. Using the extended
euclidean algorithm, we compute g = ged(a, m) and x with ax =
g mod m and 0 < x < m. By Corollary 1.10.3, we have [x| < m/(2g).
Possibly, the algorithm yields a negative x. Then x is replaced
by x+ m. By Theorem 1.10.5, this computation requires time
O((size m)?). The residue class a+mZis invertible ifand only ifg=1.

2.8. Multiplicative Group of Residues 39

In this case, x is the least nonnegative representative of the inverse
class. The total computing time is O((size m)?%). This implies that the
division by an invertible residue class mod m takes time O((size m)?).

In all algorithms, only constantly many numbers of size
O(size m) must be stored. Therefore, the algorithms require space
O(size m). We remark that there are algorithms for multiplying and
dividing residue classes that are asymptotically more efficient. They
require time O(log m(log log m)?) (see [3]). For numbers of the sizes
relevant in cryptography, these algorithms are, however, slower
than the ones that we have analyzed here. In many situations, the
O((size m)*) algorithms admit optimizations. An overview can be
found in [24].

We have proved the following theorem.

Theorem 2.7.1

Suppose the residue classes modulo m are represented by their least non-
negative representatives. Then two residue classes mod m can be added
and subtracted using time and space O(size m). They can be multiplied
and divided using time O((size m)*) and space O(size m).

2.8 Multiplicative Group of Residues

The following result is of crucial importance in cryptography.

Theorem 2.8.1
The set of all invertible residue classes modulo m is a finite abelian group
with respect to multiplication.

Proof. By Theorem 2.6.2, this set is the unit group of the residue
class rings mod m. O

The group of invertible residue classes modulo m is called the
multiplicative group of residues modulo m and is written (Z/mZ)*. Its
order is denoted by ¢(m). The function

N—- N, me ¢(m)

is called the Euler ¢-function. Observe that ¢(m) is the number of
integersa in {1, 2,..., m} with ged(a, m) = 1. In particular, ¢(1) = 1.

40 2. Congruences and Residue Class Rings

TABLE 2.1 Values of the Euler ¢-function.

m|1l 2
1

5
¢(m) | 1 4

9 10 11 12 13 14 15
6 4 10 4 12 6 8

6 7
2 6

€= 00

3 4
2 2

Example 2.8.2
The multiplicative group of residues mod 12 is (Z/12Z)* = {1 +

12Z,5 + 12Z,7 + 12Z, 11 + 12Z}. Hence, ¢(12) = 4.

A few values of the Euler g-function can be found in Table 2.1.

In this table, we see that ¢(p) = p — 1 for the prime numbers p.
This is in general true for any prime numbers p because all numbers
a between 1 and p — 1 are prime to p. This proves the following

theorem.

Theorem 2.8.3 v
If p is a prime number, then o(p) =p — 1.

The Euler g-function has the following useful property.

Theorem 2.8.4

> ed)y=m.

dm,d>0

Proof. We have

Z o(d) = Z p(m/d)

dlm,d>0 dlm,d=0

because the set of positive divisors of m is {m/d : dim,d > 0}.
Now ¢(m/d) is the number of integers a in the set {1,..., m/d}
with ged(a, m/d) = 1. Hence, g(m/d) is the number of integers b
in {1, 2, ..., m} with gcd(b, m) = d. Therefore,

Y ed= Y Iib:1<b<mwithgedh,m)=djl.

dim,d>0 dm,d>0
But
{1,2,...,m} =Ugmasolb : 1 <b < m with gcd(b, m) = d}.

This implies the assertion. O

2.9. Order of Group Elements 41

2.9 Order of Group Elements

Next, we introduce element orders and their properties. Let G be a
group that is multiplicatively written with neutral element 1.

Definition 2.9.1

Let g € G. If there is a positive integer e with g° = 1, then the
smallest such integer is called the order of g in G. Otherwise, we say
that the order of g in G is infinite. The order of g in G is denoted by
ordergg. If it is clear which group we mean, we also write order g.

Theorem 2.9.2
Letg € Gande € Z. Then g° = 1 if and only if e is divisible by the order
of ginG.

Proof. Letn = order g. If e = kn, then
glt =gk:i = (gn}k —]k 1.
Conversely, let g° =1 and ¢ = gn + r with 0 < r < n. Then

gr = gqun i gc(gn)—q =1.

Because n is the least positive integer with g" = 1, and since 0 <
r < n, we have r = 0 and therefore ¢ = gn. Hence, n is a divisor of
e, as asserted. O

Corollary 2.9.3
Let g € G and let k,1 be integers. Then g' = g~ if and only if | =
k mod order g.

Proof. Set e =1— k and apply Theorem 2.9.2. i

Example 2.9.4
We determine the order of 2+ 13Z in (Z/13Z)*. For this purpose, we
use the following table:

k 01 2 3 45 6 7 8 9 10 11 12
2*mod13|1 2 4 8 3 6 12 11 9 5 10 7 1

We see that the order of 2 + 137Z is 12. This order is equal to the
group order of (Z/13Z)*, but this is not true for any group element.
For example, the order of 4 + 137 is 6.

We determine the order of powers.

472 2. Congruences and Residue Class Rings

Theorem 2.9.5
If g € G is of finite order e and if n is an integer, then order g" =
e/ ged(e, n).

Proof. We have

(gn)cfg(:d(c.u) = (gt:)m’gnd[c,n) =1,

so Theorem 2.9.2 implies that e/gcd(e, n) is a multiple of the order
of g". Suppose

1 = (grr)k = gnk.

Then Theorem 2.9.2 implies that e is a divisor of nk. Therefore,
e/gcd(e, n) is a divisor of k, which implies the assertion. O

2.10 Subgroups

We introduce subgroups. By G we denote a group.

Definition 2.10.1
A subset U of G is called a subgroup of G if U together with the group
operation of G is a group.

Example 2.10.2
For all g € G, the set {g" : k € Z} is a subgroup of G. It is called the
subgroup generated by g and is denoted by (g).

If g has finite order ¢, then (g) = {g" : 0 < k < ¢}. In fact, for any
integer x we have g* = g* mod ¢ by Corollary 2.9.3. Corollary 2.9.3
also implies that ¢ is the order of (g).

Example 2.10.3

By Example 2.9.4, the subgroup generated by 2 + 137 in (Z/13Z)*
is the full group (Z/13Z)*. The subgroup generated by 4 + 13Z has
order 6. Itis {(k+13Z: k=1,4,3,12,9, 10}.

Definition 2.10.4 A
If G = (g) for some g € G, then G is called cyclic and g is called a
generator of G.

r

2.10. Subgroups 43

Example 2.10.5
The additive group Z is cyclic. It has two generators, namely 1 and
—1.

Theorem 2.10.6
If G is finite and cyclic, then G has exactly ¢(|G|) generators and they
are all of order |G|.

Proof. Let g € G be an element of order e. Then the subgroup
generated by g has order e. Hence, an element of G is a generator
of G if and only if it is of order |G|. We determine the number of
elements of order |G| in G. Let g be a generator of G. Then G = {g* :
0 < k < |G|}. By Theorem 2.9.5 an element of this set is of order
|G| if and only if ged(k, |G|) = 1. This means that the number of
generators of G is exactly ¢(|G]). O

Example 2.10.7

Since the order of 2 + 13Z in (Z/13Z)* is 12, the group (Z/13Z)*
is cyclic. We will prove later that (Z/pZ)* is always cyclic if p is a
prime number. By Example 2.9.4, the generators of this group are
the residue classes a + 13Z with a € {2,6,7,11}.

To prove the next result, we need a few notions. Amap f : X —
Y is called injective if f(x) = f(y) implies x = y for all x,y € X.
This means that two different elements of X can never have the
same image under f. The map is called surjective if for any y € Y
there is x € X with f(x) = y. The map is called bijective if it is
injective and surjective. A bijective map is also called a bijection. 1f
there is a bijection between two finite sets, then the sets have the
same number of elements.

Example 2.10.8
Consider the map f : N - N, n > f(n) = n. This map is obviously
bijective.

Consider the map f : N — N, n — f(n) = n?. Since positive inte-
gers have pairwise distinct squares, the map is injective. But since 3
is not the square of a positive integer, the map is not surjective.

Consider the map f : {1,2,3,4,56} — {0,1,2,3,4,5}, n >
f(n) = n mod 6. Since both sets are sets of representatives modulo
6, the map is bijective.

44 2. Congruences and Residue Class Rings

We prove a theorem of Lagrange.

Theorem 2.10.9
If G is a finite group, then the order of each subgroup of G divides the
order of G.

Proof. Let H be a subgroup of G. We say that two elements a and
b of G are equivalent if a/b = ab™! belongs to H. This is an equiva-
lence relation. In fact, a/a = 1 € H; hence the relation is reflexive.
Since a/b € H, the inverse b/a also belongs to H, so the relation
is symmetric. Finally, since a/b € H and b/c € H, it follows that
a/c = (a/b)(b/c) € H. This proves the transitivity of the relation.

We show that all the equivalence classes have the same cardinal-
ity. The equivalence class of a € G is {ha : h € H}. Let a, b be two
elements of G. Consider the map

{ha:he H} — {hb: h € H}, ha — hb.

The map is injective because in the group G cancellation is possible.
Moreover, the map is surjective since an inverse image of g € G is
ga/b. Therefore, all equivalence classes have the same number of
elements. Since G is the disjoint union of all the equivalence classes,
the number of elements in one equivalence class must divide |G]|.
But the equivalence class of 1 is H; hence |H| divides |G]|. O

Definition 2.10.10
If H is a subgroup of G, then the positive integer |G|/|H| is called
the index of H in G.

2.11 Fermat’s Little Theorem

We formulate the famous theorem of Fermat.

Theorem 2.11.1
If ged(a, m) = 1, then a*"™ = 1 mod m.

If gcd(a, m) = 1, then by Theorem 2.11.1 we have

a?™~! . g =1 mod m.

2.12. Fast Exponentiation 45

This implies that a?™~! 4 mZ is the inverse residue class of a + mZ.
Hence, we have a new method for computing inverses mod m. If we
apply fast exponentiation as explained in Section 2.12, this method
can compete with the algorithm that is based on the extended
euclidean algorithm.

We prove Fermat's little theorem in a more general context. Let G
be a finite group of order |G|, multiplicatively written, with neutral
element 1.

Theorem 2.11.2
The order of every group element divides the group order.

Proof. The order of a group element g is the order of the sub-
group generated by g. Therefore, the assertion follows from Theorem
2.10.9. a

From this result, we deduce the following general version of
Fermat's little theorem.

Corollary 2.11.3
We have g°! =1 forall g € G.

Proof. The assertion follows from Theorem 2.11.2 and Theorem
2.9.2. O

Since (Z/mZ)* is a finite abelian group of order ¢(m), Theorem
2.11.1 follows from Corollary 2.11.3.

2.12 Fast Exponentiation

Theorem 2.11.1 shows that an integer x with x = a*"™~! mod m
solves the congruence (2.4). In order for this new method of solving
(2.4) to be efficient, we must be able to compute quickly powers mod
m.

We now describe an efficient algorithm for computing powers in
amonoid G. This algorithm and its variants are central ingredients of
many cryptographic protocols. Let g € G and e be a positive integer.

46 2. Congruences and Residue Class Rings

Let
k

€= Z 8['2I
1=0
be the binary expansion of e. Observe that the coefficients ¢; are
either 0 or 1. Therefore,

- k
g”=gﬁ=v"'2‘=]'£(g2')”'= M ¢
=

0<i<ke=1
From this formula, we obtain the following idea:
1. Compute the successive squares g%, 0 <i < k.
2. Determine g° as the product of those g% for which ¢; = 1.

Observe that
t+1]
g =)
Therefore, g"' can be computed from g% by one squaring. Before
we explain the algorithm in more detail, we give an example to show
that this method is much faster than the naive one.

Example 2.12.1
We determine 67 mod 100. We write the binary expansion of the
exponent:

73=1425438

Then we determine the successive squares of 6, 6> = 36, 62 =
367 = —4 mod 100, 62 = 16 mod 100, 62' = 16> = 56 mod 100,
6°" = 56% = 36 mod 100, 6* = —4 mod 100. Hence, 673 = 6 * 6% *
6% =616 (—4) = 16 mod 100. We have only computed 6 squares
and two products (Z/mZ)* to obtain the result. If we would have
computed 6”° mod 100 as 6 * 6 * - - - * 6 mod 100, 72 multiplications
modulo 100 would have been necessary.

Here is a C+ + implementation of the algorithm. It uses
the LiDIA types bigmod and bigint. The class bigmod imple-
ments the residue class ring Z/mZ. The class bigint implements
multiprecision integers.

2.12. Fast Exponentiation 47

bigmod pow(bigmod base, bigint exponent) {
bigmod result = 1;

while (exponent > 0) {
if (lexponent.is_even())
result = result * base;
square(base, base);
exponent = exponent/2;
}

return result;

This program works as follows. The variable result contains the
current value of the result. The variable base contains the successive
squares. The new square is obtained by squaring the old one. The
result is multiplied by that square if the corresponding bit in the
exponent is 1. The following theorem states the complexity of the
fast exponentiation algorithm.

Theorem 2.12.2
pow computes base using at most size exponent—1 squarings and
multiplications. pow only stores a constant number of group elements.

exponent

From Theorem 2.12.2 and Theorem 2.7.1, we obtain an estimate
for the time necessary to compute powers in the multiplicative group
of residues mod m.

Corollary 2.12.3

If e is an integer and a € {0,...,m — 1}, then the computation
of a® mod m requires time O((size e)(size m)®) and space O(size e +
size m).

We see that exponentiation in the multiplicative group of
residues is possible in polynomial time. Variants of the fast exponen-
tiation algorithm are described in [24]. Under certain circumstances,
they may be more efficient than the basic variant.

48 2. Congruences and Residue Class Rings

2.13 Fast Evaluation of Power Products

Let G be a finite abelian group, gi,..., gk be elements of G, and
e,..., e be nonnegative integers. We want to evaluate the power
product

k
A= ngf'.
i=1
We need the binary expansion of the exponents ¢. They are
normalized to equal length. Let
bin-1bin-2...bip, 1<i<k

be the binary expansion of ¢;. For at least one i, let b, ,—, be nonzero.
For1 <i < kand 0 <j < n, let ¢; be the integer with binary
expansion b;,_1bin—z...b;;. Moreover, let ¢;,, = 0 for 1 < i < k.
Then e; = ¢;p for 1 <i < k. Finally, set

€y

k
A;:l_[g] , O0<j<n.
i=1

Then A, = A is the required power product. We compute
An, Ay, ..., Ap = A iteratively. Observe that

€ij = 2*6,'”,4.] +b|"}i, 1 < i = k,O E] < N.

Therefore,
k
Aj=AZ, ng?”, 0<j<n
i=1
For all b = (by, ..., by) € {0, 1)%, we determine
X
G;=[]s"
i=1
Then

2 .
A‘r = AJ‘+|GIle....,kaL}, 0 S} < n.

We analyze this algorithm. The computation of the Gy, be {0, 1}
requires 2¥ — 2 multiplications in G. Then the computation of A

2.14. Computation of Element Orders 49

requires n — 1 squarings and multiplications in G. Therefore, the
following result is proved.

Theorem 2.13.1

Letk e N, g € G, ¢ € Z=o, 1 <i <k, and let n be the maximal binary
length of the e;. Then the power product r[:;] g can be computed using
2K + n — 3 mudtiplications and n — 1 squarings in G.

For the case k = 1, the algorithm just described is an alternative
method for fast exponentiation. Wheras in the method from Section
2.12 the binary expansion of the exponents is scanned from right to
left, here we work from left to right.

2.14 Computation of Element Orders

In cryptographic protocols, group elements of large order are fre-
quently used. In this section, we discuss the problem of finding the
order of an element g of a finite group G or to check whether a given
positive integer is the order of g.
The following theorem shows how to compute the order of g if
the prime factorization
6l=[]r®

plIGI
of the order of G is known. If this prime factorization is unknown,
then it is not easy to find the order of g. However, in public-key
cryptography, the group order and its factorization typically are
known.

Theorem 2.14.1
For a prime divisor p of |G|, let f(p) be the greatest integer such that
gloP" =1, Then

order g = I—[p@-f@), (2.5)

rlG|

Proof. Exercise 2.22.22. D

50 2. Congruences and Residue Class Rings

Theorem 2.14.1 yields an algorithm that computes the order of
an element g € G.

Example 2.14.2
Let G be the multiplicative group of residues modulo 101. Its order
is 100 = 22 % 5%. Hence,

e(2) = e(5) = 2.

We compute the order of 2 4+ 101Z. First, we compute the numbers
f(p) from Theorem 2.14.1. We obtain

225" = 2% = _1 mod 101.
Hence, f(2) = 0. Moreover,
2745 = 22 = _6 mod 101.

Hence, f(5) = 0, so the order of 2 + 101Z is 100. This means that
Z/101Z is cyclic and 2 4 101Z is a generator of this group.

The algorithm for computing the order of g determines the num-
bers f(p) for all prime divisors p of |G|. Then it determines the
element order. The implementation details are left to the reader.

Next, we discuss the problem of testing whether a given number
is the order of g € G. This is necessary if we want to find a gen-
erator of a cyclic group. We need the following result, which is an
immediate consequence of Theorem 2.14.1.

Corollary 2.14.3
Letn € N. Ifg" = 1 and g"'? # 1 for each prime divisor p of n, then n
is the order of g.

We illustrate the verification algorithm in an example.

Example 2.14.4

We claim that 25 is the order of the residue class 5 + 101Z in the
multiplicative group of residues modulo 101. In fact, 5*° = 1 mod 101
and 5° = —6 mod 101. Hence, the assertion follows from Corollary
2.14.3.

2.15. The Chinese Remainder Theorem 51

2.15 The Chinese Remainder Theorem

Let my,...,m, be positive integers that are pairwise coprime.
Let ay,...,a, be integers. We explain how to solve the following
simultaneous congruence:

x=aymodm;, x=a;modm; ..., x=a,modm, (2.6)
Set
n
m = l—[m,-, M,=m/m;, 1<i<n.
i=1
We will see that the solution of the congruence (2.6) is unique
modulo m. Since the m; are pairwise coprime, we have
ged (m;, M;))=1, 1<i<n.

We use the extended euclidean algorithm to compute numbers y; €
Z,1 <1< nwith

yMi=1modm;, 1<i<n, (2.7)

Then we set

x= (;a,y,M.) mod m. (2.8)

We show that x is a solution of the simultaneous congruence (2.6).
From (2.7), we obtain

ayiMi=a, modm;, 1<i<n, (2.9)
and because for j # i the integer m; is a divisor of M;, we have
ayM;=0modm;, 1<ij<ni#]j (2.10)

From (2.8), (2.9), and (2.10), we deduce

n
X = ayiM; + Z ayiM;=a;modm;, 1<i<n. (2.11)
J=1)#

Hence, x solves the congruence (2.6).

52 2. Congruences and Residue Class Rings

Example 2.15.1
We solve the simultaneous congruence

x=2mod4, x=1mod3, x=0mod?5.

We have m; =4, my =3, my =5, a, = 2, a, = 1, ay = 0. Therefore,
m = 60, M; = 60/4 = 15, My = 60/3 = 20, My = 60/5 = 12. We
solve yyM;, = 1 mod m, (i.e., —y; = 1 mod 4). A solution is y, =
—1. We solve y,M; = 1 mod m; (i.e., —y, = 1 mod 3). A solution is
Y2 = —1. Finally, we solve y;M; = 1 mod m; (i.e., 2y; = 1 mod 5).
A solution is y3 = 3. Therefore, x = —2 % 1520 = 10 mod 60 (i.e.,
x = 10 is a solution of the simultaneous congruence).

Observe that in the algorithm just described, the numbers y; and
M; do not depend on the a;. Therefore, if the integers y; and M, are
precomputed, then (2.8) can be used to solve (2.6) for any selection
of the a;.

Here is a C+ + program for solving simultaneous congruences
that uses the preceding ideas. The function xgcd _left (inverse,M,m)
computes the inverse of M mod m.

bigint crtPrecomputation(bigint moduli(],

bigint multiplier[], int number)
{

int i;

bigint modulus = 1;

bigint m;

bigint M;

bigint inverse;

for(i = 0; i < number; i++) modulus=modulus*modulil[i];

for(i = 0; i < number; i++) {
m = moduli[i];
M = modulus/m;
xgcd_left(inverse,M,m) ;
multiplier[i] = inversexM)modulus;
}

return modulus;

2.15. The Chinese Remainder Theorem 53

bigint crt(bigint moduli[], bigint x[], int number) {

bigint multiplier [number];

bigint result = 0;

bigint modulus = crtPrecomputation(moduli, multiplier,
number) ;

int i;

for(i = 0; i < number; i++)
result = (result + multiplier[i]*x[i])%modulus;

return result;

Now we formulate the Chinese remainder theorem.

Theorem 2.15.2

Letmy, ..., m, be pairwise coprime positive integersand let a,, . . ., a, be
integers. Then the simultaneous congruence (2.6) has a solution x which
is unique mod m = ['_, m.

Proof. The existence has been proved in (2.11). Hence, we must
prove the uniqueness. Let x and x’ be two such solutions. Then x =
x' mod m;, 1 <1 < n. Because the numbers m; are pairwise coprime,
it follows that x = ¥’ mod m. o

The following theorem estimates the effort that is necessary to
construct a solution of a simultaneous congruence.

Theorem 2.15.3
The algorithm for solving the simultaneous congruence (2.6) requires time
O((size m)*) and space O(size m).

Proof. By the results of Section 1.5, the computation of m requires
time O(sizem Y[, size m;) = O((size m)?). The computation of all
M, and y; and of x takes the same time. This follows from the results
of Section 1.5 and from Theorem 1.10.5. The upper bound for the
space is easy to verify. O

54 2. Congruences and Residue Class Rings

2.16 Decomposition of the Residue
Class Ring

We use the Chinese remainder theorem to decompose the residue
class ring Z/mZ. Using this decomposition, we can reduce compu-
tations in a large residue class ring Z/mZ to computations in many
small residue class rings Z/m;Z. Frequently, this is more efficient.
This method can, for example, be used to speed up decryption in the
RSA cryptosystem.

We define the product of rings.

Definition 2.16.1

Let Ry, Ry, ..., R, be rings. Their direct product [|_, R; is the set of all
tuples (ry,72,...,74) € Ry X --- x R, together with component-wise
addition and multiplication.

It is easy to verify that R = []_, R; is a ring. If the R; are commu-
tative rings with unit elementse¢;, 1 < i < n, then R is a commutative
ring with unit element (e, ..., €,).

The direct product of groups is defined analogously.

Example 2.16.2

Let Ry = Z/2Z and R, = Z/9Z. Then R = R, x R; consists of all
pairs (a+2Z,b+9Z),0 <a < 2,0 < b < 9. Hence, R = R} X R; has
exactly 18 elements. The unit element in R is (1 + 27Z, 1 + 9Z).

We also need the notion of a homomorphism and an isomor-
phism.

Definition 2.16.3

Let (X, Ly,..., L) and (Y, Ty,..., T,) be sets with n operations. A
map f : X — Y is called a homomorphism if f(aLlb) = f(a)Tf(b)
foralla,b € X and 1 < i < n. If the map is bijective, it is called an
isomorphism.

If we know an isomorphism between two rings which can be
efficiently computed in both directions, then computational tasks in
the one ring can be solved in the other ring. This may result in a
more efficient algorithm.

2.17. A Formula for the Euler ¢g-Function 55

Example 2.16.4
If m is a positive integer, then the map Z — Z/mZ, a — a + mZis
a ring homomorphism.

If G is a cyclic group of order n with generator g, then Z/nZ — G,
e+ nZ > g is an isomorphism of groups (see Exercise 2.22.24).

Theorem 2.16.5
Let my, ..., my be pairwise coprime integers and let m = mymy - - - m,,.
Then the map

Z/mZ —

Z/'miZL, a+mZwr (a+mZ,...,a+m,Z) (2.12)
1

n

is an isomorphism of rings.

Proof. First, we note that (2.12) is well defined. In fact, if a =
bmodm, then a = bmodm; for 1 < i < n. It is easy to ver-
ify that (2.12) is a homomorphism of rings. To prove surjectivity,
let (a) + mZ,...,a, + myZ) € [|-, Z/m;Z. Then Theorem 2.15.2
implies that this tuple has an inverse image under (2.12). The
injectivity follows from the uniqueness in Theorem 2.15.2. O

Theorem 2.16.5 shows that computations in Z/mZ can be re-
duced to computations in []_, Z/mZ. For a residue class mod m,
the corresponding tuple of residue classes mod m; is determined.
The computation is carried out using those tuples, and the Chinese
remainder theorem is used to compute the residue class mod m that
corresponds to the result of the computation.

2.17 A Formula for the Euler
¢-Function

We prove a formula for the Euler g-function.

Theorem 2.17.1
Let my, ..., my, be pairwise coprime positive integers and m =]_[:':1 m.
Then @(m) = @(my)p(mz) - - - 9(My).

56 2. Congruences and Residue Class Rings

Proof. Theorem 2.16.5 implies that the map

n
(Z/mZ)* — n(Z/miZ)*,aerZ = (a+mZ, ... a+m,7Z) (2.13)

is an isomorphism of groups. In particular, this map is bijective.
Therefore, the number ¢(m) of the elements of (Z/mZ)* is equal to
the number [, ¢(m,) of elements of [|_,(Z/miZ)*. 0

Theorem 2.17.2
Let m be a positive integer and m = [, p°¥ its prime factorization.
Then

o) = [T - p® = m [T

pim plm p

Proof. By Theorem 2.17.1,

o(m) = [T o).

plm

Hence, we only need to compute ¢(p°) for a prime number p and a
positive integer e. By Theorem 1.3.3, anya € {0,1,2,...,p°—1} can
be uniquely written as

a=a,+a.p+ ac—sz Rl B o a]pe—l
witha; € {0,1,...,p—1}, 1 <1 < e. Moreover, gcd(a, p°) = 1 if and

only if a, # 0. This implies

: ; 1
e(p)=@—-1p" =p° (1 - ;)

so the assertion is proved. O

Example 2.17.3
We have ¢(2™) = 2™7! ¢(100) = ¢(2% x 5%) = 2 * 4 * 5 = 40.

If the factorization of m is known, then ¢(m) can be computed
using Theorem 2.17.2 in time O((size m)?).

2.18. Polynomials 57

2.18 Polynomials

In Section 2.21, we want to prove that for any prime number p the
multiplicative group of residues (Z/pZ)* is cyclic of order p — 1.
For this purpose, we need polynomials, which we introduce in this
section. We also need polynomials to introduce finite fields.

Let R be a commutative ring with unit element 1 # 0. A
polynomial in one variable over R is an expression

f(%) = anx™ + an_ 12" + - + @ x + ay,

where x is the variable and the coefficients aq, .. ., a, of the polyno-
mial are elements of R. The set of all polynomials over R in the
variable x is denoted by R[x].

Let a, # 0. Then n is called the degree of the polynomial. We
write n = deg f. Moreover, a, is called the leading coefficient of f. If
all coefficients except for the leading one are zero, then f is called a
monomial.

Example 2.18.1

The polynomials 2x* + x + 1, x, 1 are elements of Z[x]. The first
polynomial has degree 3, the second has degree 1, and the third has
degree 0.

If r € R, then
f=ay"+---+ap
is the value of f at r. If f(r) = 0, then r is called zero of f.

Example 2.18.2
The value of the polynomial 2x* + x + 1 € Z[x] at —1 is —2.

Example 2.18.3
Denote the elements of Z/2Z by 0 and 1. Then x* + 1 € (Z/2Z)|x).
This polynomial has the zero 1.

Let

gX)=bux" +---+ by

58 2. Congruences and Residue Class Rings

be another polynomial over R and let n > m. If we set the missing
coefficients to zero, we can write

8(x) = bpx" + - - - + by.
The sum of the polynomials f and g is
(f +8)(®) = (an + bu)¥" + - -+ + (a0 + bo)
and is a polynomial.

Example 2.18.4
Ifg(x) = x* +x+1 € Z[x] and f(x) = x* + 2x* + x + 2 € Z[x], then
(f + 8)(x) = x¥* + 3x* + 2x + 3.

The addition of f and g requires O(max{deg f deg g} + 1)
additions in R.
The product of the polynomials f and g is

(fe)(x) = Cn+mxn+m g e Y

where

k
Ck=zaibk—h 0<k=n+m
i=0

In this formula, the undefined coefficients a; and b, are set to 0.

Example 2.18.5

Let f(x) = ¥+ x+1 € Z[x] and g(x) = x* 4+ 2x* + x + 2 € Z[x]. Then
)X =F+x+)P +23 +x+2) =2+ 2+ D'+ (1 +2+
D+ (24+1+2)x% 4+ (24 1)x+2 = 2° + 3x* + 42> + 5x* + 3x + 2.

We estimate the number of operations necessary for the multi-
plication of f and g. We compute the products a;b;, 0 < i < degf,
0 < j < deg g. There are (deg f + 1)(deg g + 1) many of those
products. The sum of all products a;b; for which i + j has the same
value is the coefficient of x'*/. Since every product appears in ex-
actly one sum, those coefficients can be computed using at most
(deg f+1)(deg g+1) additions. In total, the multiplication of f and g
requires O((deg f+1)(deg g+1)) additions and multiplications in R.
Faster polynomial operations based on fast Fourier transformations
are described in [3]. See also [15].

L 4

2.19. Polynomials over Fields 59

It is easy to see that (R[], +, -) is a commutative ring with unit
element 1.

2.19 Polynomials over Fields

Let K be a field. Then the ring K[x] of polynomials over K contains
no zero divisors. The following lemma is easy to prove.

Lemma 2.19.1
Iff,g € K[x], f,g # 0, then deg (fg) = deg f + deg g.

Asin the ring of integers, also in the polynomial ring K[x] division
with remainder is possible.

Theorem 2.19.2
Let f, g € K[x], g # 0. Then there are uniquely determined polynomials
q,v € K[x)withf =qg+randr = 0ordeg r < deg g.

Proof. Iff = 0, then set g = r = 0. Assume that f # 0. If deg g >
deg f, then set g = 0 and r = f. We now also assume that deg g <

deg f.
We prove the existence of ¢ and r by induction on the degree of
¥

If deg f = 0, then deg g = 0. Hence, f,g € K and we can set
g=f/gandr = 0.
Assume thatdeg f =n > 0,deg g = m, n > m, and

f(x) = an X" +---+ay, g(X)=bux™+---+by.
Set
fi=f—ay/bux"""g.

Then either f; = 0 or deg fi < deg f. By the induction hypothesis,
there are polynomials g, and r with f{ = q1g +r and r = 0 or
deg r < deg g. This implies

f=(an/bnx"™™ +q1)g +.

The polynomials g = a,/b,x"~™ + q, and r from earlier satisfy the
assertion.

60 2. Congruences and Residue Class Rings

We prove uniqueness. Let f = gg+r = q'g+7r' be two representa-
tions as described in the theorem. Then (qq")g = v’ —r. If r =/, then
q = ¢ because g # 0 and K[x] contains no zero divisors. If r # r/,
then gq' # 0 and since deg g > deg r and deg g > deg r’, Lemma
2.19.1 implies deg (¢ — q')g > deg(r'r). This is impossible because

(a—q)g=r—r. =

In the situation of Theorem 2.19.2, we call g the quotient and r
the remainder of the division of f by g, and we write r = f mod g.

From the proof of Theorem 2.19.2, we obtain an algorithm for
dividing a polynomial f by another polynomial g with remainder.
First, we set r = f and g = 0. While r # 0 and deg r > degg, we set
h(x) = (a/b)x%8 9% & where a is the leading coefficient of r, and b
is the leading coefficient of g. Then r is replaced by r — hg and g by
g+ h. Assoon asr = 0 or degr < deg g, the algorithm returns the
quotient g and the remainder r. This is illustrated in the following
example.

Example 2.19.3
Let K = Z/2Zbe the residue class ring mod 2. This ring is a field. The
elements are represented by their least nonnegative representatives,
so we write Z/27Z = {0, 1}.

Let

fER)=x+x+1, gx)=x"+x

We divide f with remainder by g. We first set r = f and g = 0.
Then we eliminate x* in r. We set h(x) = x and replace r by r — hg =
X 4x+1x(x*+x) = x*+x+1 and gby g+h = x. Then deg r = deg g.
Hence, the algorithm requires another iteration. Again, we eliminate
the leading coefficient in r. We set h(x) = 1, and we replace r by
r—hg=1landgbyg+h=x+1. Now 0 = deg r < deg g = 2,
so we are finished and have found the quotient ¢ = x + 1 and the
remainder r = 1.

We estimate how many operations in K are necessary to divide
f by g with remainder. The computation of the monomials h re-
quires one operation in K. The number of monomials h is at most
deg g + 1 because their degree is strictly decreasing. Every time h
is computed, r — hg is also determined. The computation of hg re-

-

2.19. Polynomials over Fields 61

quires deg g+ 1 multiplications in K. The degree of the polynomials
r and hg is the same, and the number of nonzero coefficients in hg is
at most deg g + 1. Therefore, the computation of r — hg requires at
most deg g + 1 additions in K. In total, the division with remainder
requires O((deg g + 1)(deg g + 1)) operations in K.

Theorem 2.19.4

If f,g € K[x] with g # 0, then the division with remainder of f by g
requires O((deg g + 1)(deg q + 1)) operations in K, where q is the
quotient of the division.

Theorem 2.19.2 implies the following.

Corollary 2.19.5
Iff is a nonzero polynomial in K[x] and if a is a zero of f, then f = (x—a)q
with q € K[x] (i.e., f is divisible by the polynomial x — a).

Proof. By Theorem 2.19.2, there are polynomials g,r € K[x] with
f=x—-a)q+randr =0ordeg r < 1. This implies 0 = f(a) = r;
hence f = (x — a)q. O

Example 2.19.6
The polynomial x* + 1 € (Z/2Z)[x| has the zero 1 and therefore
¥+1=(@x-1)7>~

Corollary 2.19.7
A polynomial f € K[x], f # 0, has at most deg f zeros.

Proof. We prove the assertion by induction on n = deg f. Forn = 0,
the assertion holds because f € K and f # 0. Let n > 0. If f has no
zeros, then the assertion is true. If f has a zero a, Corollary 2.19.5
implies f = (x—a)q and deg g = n— 1. By the induction hypothesis,
g has at most n — 1 zeros. Therefore, f has at most n zeros. O

In the following example, we show that the upper bound in
Corollary 2.19.7 is not always sharp.

Example 2.19.8
The polynomial x* + x € (Z/2Z)[x] has the zeros 0 and 1 in Z/27. By
Corollary 2.19.7, it cannot have more zeros.

The polynomial x* + 1 € (Z/2Z)[x] has the only zero 1 in Z/27.
By Corollary 2.19.7, it could have at most two zeros.

62 2. Congruences and Residue Class Rings

The polynomial x* + x + 1 € (Z/2Z)[x] has no zeros in Z/2Z. By
Corollary 2.19.7, it could also have at most two zeros.

2.20 Structure of the Unit Group of
Finite Fields

We now study the structure of the unit group of a finite field (i.e., of
the multiplicative group of nonzero elements in a field with finitely
many elements). We prove that this group is always cyclic. This is
particularly interesting for cryptography because in cryptography
groups with elements of high order are used. We already know the
finite field Z/pZ for a prime number p. Its unit group is of order
p — 1. Later, we will also construct other finite fields.

In general, the unit group K* of a field K with g elements has
order g — 1 because all nonzero elements in K are units in K. We
prove a more general result.

Theorem 2.20.1
Let K be a finite field with g elements. Then for any divisor d of g — 1
there are exactly ¢(d) elements of order d in the unit group K*.

Proof. Let d be a divisor of g — 1. Denote by y/(d) the number of
elements of order d in F.

Assuming that ¥(d) > 0, we prove that ¥(d) = ¢(d). Later, we
will show that in fact y(d) > 0. Let a be an element of order d in K*.
The powers a®, 0 < e < d, are pairwise distinct and are all zeros of
the polynomial ¢ — 1. By Corollary 2.19.7, there are at most d zeros
of this polynomial in F. Hence, that polynomial has exactly d zeros
and they are all powers of a. Now each element of F of order d is
a zero of ¥ — 1 and is therefore a power of a. By Theorem 2.9.5, a
power a’ is of order d if and only if gcd(d, €) = 1. Hence, we have
shown that y/(d) > 0 implies ¥/(d) = ¢(d).

We will now show that y/(d) > 0. Suppose ¥(d) = 0 for a divisor
dofqg—1. Then

g-1=) ¥(d) <) ¢d).

dlg—1 dlg—1

w

2.21. Structure of the Multiplicative Group of Residues 63

This contradicts Theorem 2.8.4. O

Example 2.20.2

Consider the field Z/13Z. Its unit group is of order 12. In this group,
there is one element of order 1, one element of order 2, two elements
of order 3, two elements of order 4, two elements of order 6, and four
elements of order 12. In particular, this group is cyclic and has four
generators.

If K is a finite field with g elements, then by Theorem 2.20.1 it
contains exactly ¢(q — 1) elements of order g — 1. This implies the
following.

Corollary 2.20.3
If K is a finite field with q elements, then its unit group K* is cyclic of
order g — 1. It has exactly ¢(q — 1) generators.

2.21 Structure of the Multiplicative
Group of Residues mod a Prime
Number

Let p be a prime number. Corollary 2.20.3 implies the following
result.

Corollary 2.21.1
The multiplicative group of residues mod p is cyclic of order p — 1.

An integer a for which the residue class a + pZ generates the
multiplicative group of residues (Z/pZ)* is called a primitive root
mod p.

Example 2.21.2

Forp = 13, we have p—1 = 12. Theorem 2.17.2 implies that ¢(12) =
4. Therefore, there are four primitive roots mod 13, namely 2, 6, 7,
and 11.

We describe how primitive roots modulo a prime number p can
be computed. We have seen in Theorem 2.20.3 that there are p(p—1)

64 2. Congruences and Residue Class Rings

primitive roots mod p. Now
¢(n) = n/(6loglogn)

for any positive integer n > 5 (see [29]). The proof of this inequality
is beyond the scope of this book. Hence, the number of generators of
a cyclic group of order n is at least [n/(61loglogn)]. If n = 2 x q with
a prime number g, then the number of generators is g — 1. Hence,
almost half of all group elements generate the group. If we randomly
choose an integer g with 1 < g < p—1, then we have a good chance
that g is a primitive root mod p. We only need to check whether
g is in fact a primitive root mod p. If we know the factorization of
p — 1, then Corollary 2.14.3 can be used efficiently to carry out this
test. If p — 1 = 2q with a prime number g, then we only need to
check whether g2 = 1 mod p or g = 1 mod p. If neither of these
congruences is satisfied, then g is a primitive root mod p.

Example 2.21.3
Let p = 23. Then p — 1 = 22 = 11 * 2. To check whether an integer

g is a primitive root modulo 23, we must verify that g* mod 23 # 1
and that g'' mod 23 # 1. Here is a table with the corresponding
remainders for the prime numbers between 2 and 17.

g 2|35 |7 |1n]|13]|17
g‘mod23 [4|9|2 |3 |6 [8 |13
g'"mod23 (1|1 (|-1|-1]-1]1 |-]

It follows that 5, 7, 11, and 17 are primitive roots mod 23 and that 2,
3, and 13 are not primitive roots mod 23.

2.22 Exercises

Exercise 2.22.1
Prove (2.2) and (2.3).

Exercise 2.22.2
Determine all semigroups that are obtained by defining an operation

on {0, 1}.

w

2.22. Exercises 65

Exercise 2.22.3
Prove that in a semigroup there is at most one neutral element.

Exercise 2.22.4
Which of the semigroups of Exercise 2.22.2 are monoids? Which are
groups?

Exercise 2.22.5
Prove that in a monoid each element can have at most one inverse.

Exercise 2.22.6

Let n be a positive divisor of the positive integer m. Prove that
the map Z/mZ — Z/nZ, a + mZ +— a + nZ is a surjective
homomorphism of rings.

Exercise 2.22.7
Construct an example which shows that in the semigroup (Z/mZ, -)
cancellation is in general not possible.

Exercise 2.22.8
Determine the unit group and the zero divisors of Z/16Z.

Exercise 2.22.9
Prove that the invertible elements of a commutative ring with unit
element form a group.

Exercise 2.22.10
Solve 122x = 1 mod 343.

Exercise 2.22.11
Prove that the congruence ax = b mod m is solvable if and only if
ged(a, m) is a divisor of b. When solvable, determine all solutions.

Exercise 2.22.12

Letdyd; . .. dy be the decimal expansion of a positive integer d. Prove
that d is divisible by 11 if and only if ZLI di(—1)*" is divisible by
11.

Exercise 2.22.13
Determine all invertible residue classes modulo 25, and compute
their inverses.

66 2. Congruences and Residue Class Rings

Exercise 2.22.14

The least common multiple of two nonzero integers a, b is the least
positive integer k that is a multiple of a and a multiple of b. It is
denoted by lcm (a, b).

1. Prove the existence and uniqueness of lem (&, b).

2. How can lem (a, b) be computed using the euclidean algorithm?

Exercise 2.22.15
Let X and Y be finite sets and f : X — Y a bijection. Prove that the
number of elements in X and Y is equal.

Exercise 2.22.16
Compute the subgroup generated by 2 + 17Z in (Z/17Z)*.

Exercise 2.22.17
Compute the order of 2 mod 1237.

Exercise 2.22.18
Determine the order of all elements in (Z/15Z)*.

Exercise 2.22.19
Compute 2%° mod 7.

Exercise 2.22.20
Let G be a finite cyclic group. Prove that for every divisor d of |G|
there is exactly one subgroup of G of order d.

Exercise 2.22.21

Let p be a prime number, p = 3 mod 4. Let a be an integer which is
a square mod p (i.e., the congruence a = b* mod p has a solution).
Show that a?*1/4 is a square root of a mod p.

Exercise 2.22.22
Prove Theorem 2.14.1.

Exercise 2.22.23
Construct an element of order 103 in the multiplicative group of
residues mod 1237.

Exercise 2.22.24
Let G be a cyclic group of order n with generator g. Prove that
Z/nZ — G, e +nZ > g° is an isomorphism of groups.

ur

2.22. Exercises 67

Exercise 2.22.25

Solve the simultaneous congruence x = 1modp for all p €
(2,3,5,7).

Exercise 2.22.26

For g = 2,3,5,7,11 determine a prime number p > g such that g is
a primitive root mod p.

Exercise 2.22.27

Find all multiplicative groups of residues that have four elements.

Encryption

CHAPTER

The traditional topic of cryptography is encryption. Encryption
schemes are used to keep messages or stored data secret. In this
chapter, we introduce fundamental notions that we need to describe
encryption schemes. As a first example, we present affine linear
ciphers and their cryptanalysis.

3.1 Encryption Schemes

We define encryption schemes.

Definition 3.1.1

An encryption scheme or cryptosystem is a tuple

(P,C, K, &€, D) with the following properties:

1. P is a set. It is called the plaintext space. Its elements are called
plaintexts.

2. Cis a set. It is called the ciphertext space. Its elements are called
ciphertexts.

3. K is a set. Is is called the key space. Its elements are called keys.

69

70 3. Encryption

TABLE 3.1 Correspondence between letters and numbers.

Al Bl C|D| E| F| G| H I J| K| LI M
0 1 21 3| 4 5 6 71 81 9110 11|12
N|O| P Q| R| S| T|U| V|W| X| Y| Z
13114 | 15|16 |17 |18 |19 | 20 | 21 | 22 | 23 | 24 | 25

4. £ = |Ex : k € K} is a family of functions E; : P — C. Its elements
are called encryption functions.

5. D = {Dy : k € K}isafamily of functions Dy : C — P. Its elements
are called decryption functions.

6. For each e € K, there is d € K such that Dy(E.(p)) = p for all
pEeP.

As a first example of an encryption scheme, we describe the
Caesar cipher.

The plaintext space, ciphertext space, and key space are ¥ =
(A, B, ..., Z}. We identify the letters A, B, ..., Z according to Table
3.1 with the numbers 0, 1, ..., 25. This enables us to compute with
letters. For e € Zyg, the encryption function E, is

E.: X — X, x> (x+€)mod 26.
Analogously, for d € Z,s decryption function Dj is
Dj: X2 — %, x> (x—d)mod 26.

The decryption key for the encryption key e is d = e. This is,
however, not true for every cryptosystem.

The Caesar cipher can easily be modified such that the plaintext
space and the ciphertext space are the set of all sequences w =
(wy, wy, ..., wy) with w; € X, 1 <i < n. Again, the key space is Zy.
The encryption function E, replaces each letter w; by w; +¢ mod 26,
1 <i < n. This also is called the Caesar cipher.

Example 3.1.2
If we apply the Caesar cipher with key 5 to the word CRYPTOGRA-
PHY, then we obtain HWDUYTLWFUMD.

The Caesar cipher uses only 26 keys. It is therefore very easy
to determine the plaintext from the ciphertext by trying all possible
keys and checking which plaintext makes sense. In this way, we also
obtain the key that was used.

\ 4

3.3. Cryptanalysis 71

3.2 Symmetric and Asymmetric
Cryptosystems

We briefly explain the difference between symmetric and asymmet-
ric cryptosystems.

If Alice wants to send an encrypted message to Bob, then she uses
an encryption key e and Bob uses the corresponding decryption key
to recover the plaintext.

If in a cryptosystem the encryption key e is always equal to the
decryption key d, or if d can be easily computed from e, then the
cryptosystem is called symmetric. If Alice and Bob use a symmetric
cryptosystem, they must exchange the secret key e before they start
their communication. Secure key exchange is a major problem. The
key e must be kept secret since anybody who knows e can deter-
mine the corresponding decryption key d. The Caesar cipher is an
example of a symmetric cryptosystem. The keys for encryption and
decryption are equal in this system.

In asymmetric cryptosystems, the keys d and e are distinct, and
the computation of d from e is infeasible. In such systems, the en-
cryption key can be made public. If Bob wants to receive encrypted
messages, he publishes an encryption key e and keeps the corre-
sponding decryption key d secret. Anybody can use e to encrypt
messages for Bob. Therefore, ¢ is called the public key. But only Bob
can decrypt the messages, so d is called the private key. Asymmetric
cryptosystems are also called public-key cryptosystems.

In public-key cryptosystems, it is frequently useful to introduce
two different key spaces since the public and the private keys have
different shapes. This changes the definition of cryptosystems only
slightly.

In this chapter, we only describe symmetric encryption schemes.
Public-key cryptosystems will be described in Chapter 7.

3.3 Cryptanalysis

Cryptanalysis deals with the attacks on cryptosystems. In this
section, we classify those attacks.

72 3. Encryption

To make attacks on cryptosystems more difficult, one can keep
the cryptosystem secret. However, it is not clear how much security
is really gained in this way because an attacker has many ways of
finding out which cryptosystem is used. He can try to tell from in-
tercepted ciphertexts which system is used. He can also try to get
information from people who have information about the encryption
scheme in use.

Modern cryptanalysis therefore assumes that an attacker knows
which cryptosystem is used. Only the (private) keys and the plain-
texts are assumed to be secret. The attacker tries to recover plaintexts
from ciphertexts or even tries to find out which keys are used.

There are the following types of attacks:

e Ciphertext-only attack. The attacker knows ciphertexts and tries
to recover the corresponding plaintexts or the key.

e Known-plaintext attack. The attacker knows a plaintext and the
corresponding ciphertext or several such pairs. He tries to find
the key used or to decrypt other ciphertexts.

e Chosen-plaintext attack. The attacker is able to encrypt plaintexts
but does not know the key. He tries to find the key used or to
decrypt other ciphertexts.

e Adaptive chosen-plaintext attack. The attacker is able to encrypt
plaintexts. He is able to choose new plaintexts as a function of
the ciphertexts obtained but does not know the key. He tries to
find the key used or to decrypt other ciphertexts.

e Chosen-ciphertext attack. The attacker can decrypt but does not
know the key. He tries to find the key.

There are many ways to mount these attacks. A simple
ciphertext-only attack consists of decrypting the ciphertext with all
possible keys. This attack is called exhaustive search. The correct
plaintext is among the few sensible texts that the attacker obtains.
Given the speed of modern computers, this attack is successful for
many cryptosystems. It works, for example, for the DES system,
which until recently was the U.S. encryption standard. The DES is
described in Chapter 5.

A known-plaintext attack may use the statistical properties of
the plaintext language. For example, if we apply the Caesar cipher,

o

3.4. Alphabets and Words 73

then for a fixed key any plaintext symbol is replaced by the same
ciphertext symbol. The most frequent plaintext symbol is encrypted
to the most frequent ciphertext symbol. Since we know the most
frequent symbol of the plaintext language, we have a good guess
how to decrypt the most frequent ciphertext symbol. Analogously,
the frequency of other individual symbols, of pairs, triplets, etc., in
the plaintext may be reflected in the ciphertext and can be used to
decrypt the ciphertext or to recover the key. A number of examples
can be found in [32], and [5]. We will see later how affine linear
ciphers can be broken by a known-plaintext attack.

3.4 Alphabets and Words

To write texts, we need symbols from an alphabet. By an alphabet
we mean a finite nonempty set X. The length of ¥ is the number of
elements in X. The elements of X are called symbols or letters.

Example 3.4.1
A common alphabet is

£={A,B,C,D,E,F,G,H,1J K LMN,OPQ,R,STUV,WKX,Y,Z).
It has length 26.

Example 3.4.2
In computing, we use the alphabet {0, 1}. It has length 2.

Example 3.4.3

A frequently used alphabet is the set of ASCII symbols. This set,
including its encoding by the numbers between 0 and 127, can be
found in Table 3.2.

Because alphabets are finite sets, their symbols can be identified
with nonnegative integers. If an alphabet has length m, then its sym-
bols are identified with the numbers in Z,, = {0,1,...,m — 1}. For
the alphabet {A, B, ..., Z} and the ASCII symbols, we have shown
this in Tables 3.1 and 3.2. We will mostly use the alphabet Z,,, where
m is a positive integer.

74 3. Encryption

TABLE 3.2 The ASCII symbols.

0 | NUL| 1 SOH | 2 STX | 3 ETX
4 EOT | 5 |ENQ| 6 | ACK| 7 BEL
8 BS 9 HT | 10 NL 11 vT
12 NP 13 CR | 14 SO 15 SI
16 | DLE| 17 | DC1 | 18 | DC2 | 19 | DC3
20 | DC4 | 21 | NAK | 22 | SYN | 23 | ETB
24 | CAN | 25 EM | 26 | SUB | 27 | ESC
28 FS 29 GS 30 RS 31 us
32 SP 33 ! 34 ! 35 #
36 $ 37 % 38 & 39 '
40 (41) 42 * 43 +
44 , 45 - 46 ; 47 /
48 0 49 1 50 2 51 3
52 4 53 5 54 6 55 7
56 8 57) 58 : 59 ;
60 i 61 = 62 é 63 ?
64 @ 65 A 66 B 67 C
68 D 69 E 70 F 71 G
72 H 73 1 74 J 75 K
76 L 77 M 78 N 79 (@]
80 P 81 Q 82 R 83 S
84 T 85 U 86 \' 87 W
88 X 89 Y 90 Z 91 [
92 93 | 94 : 95 =
96 ! 97 a 98 b 99 [
100 d 101 e 102 f 103 g
104 h 105 i 106 B 107 k
108 1 109 m 110 n 111 o
112 p 113 q 114 r 115 s
116 t 117 u 118 v 119 w
120 X 121 y 122 7 123 {
124 - 125 } 126 h 127 | DEL

In the following definition, we need finite sequences, which we
briefly recall. An example of a finite sequence is

(2,3,1,2.3).

nr

3.5. Permutations 75

It has five components. The first component is 2, the second is 3,
etc. We also write this sequence as

23123.
For formal reasons, we also need (). It has zero components.

Definition 3.4.4

Let X be an alphabet.

1. A word or string over X is a finite sequence of symbols from
¥ including the empty sequence, which is denoted by ¢ and is
called the empty string.

2. The length of a word w over ¥ is the number of its components.
It is denoted by |i|. The empty word has length 0.

3. The set of all words over X including the empty string is denoted
by £*.

4. If b, w € T*, then U0 = D o W is the string that is obtained by
concatenating v and w. It is called the concatenation of v and w.
In particular, we have voe =¢0 1 = 1.

5. If n is a nonnegative integer, then " is the set of all words of
length n over .

In Exercise 3.15.5, it is shown that (£* 0) is a monoid whose
neutral element is the empty word.

Example 3.4.5

A word over the alphabet from Example 3.4.1 is COLA. It has length
four. Another word over £ is COCA. The concatenation of COCA
and COLA is COCACOLA.

3.5 Permutations

To characterize a very general class of encryption schemes, called
the block ciphers (see the following), we need the notion of a
permutation.

Definition 3.5.1
Let X be a set. A permutation of X is a bijective map f : X — X. The
set of all permutations of X is denoted by S(X).

76 3. Encryption

Example 3.5.2

Let X = {0,1,...,5}. We obtain a permutation of X if we map an
element of X in the first row of the following matrix to the number
below that element in the second row:

0 1 23 4 5
1 2 43 5 0)°
Using this method, permutations can always be represented.

The set S(X) of all permutations of X together with composition
is a group that, in general, is not commutative.

If n is a positive integer, then S, denotes the group of
permutations of the set {1,2,..., n}.

Example 3.5.3
The group S; has the elements

1 2 1 2
1 2)'\2 1)
Theorem 3.5.4

The group S, has order n! = 1 % 2% 3% -+ % n.

Proof. We prove the assertion by induction on n. Clearly, S; has
order 1. Suppose S,—; has order (n — 1)!. Consider the permutations

of the set {1, ..., n}. We count the number of permutations that send
1 to a fixed number x. In such permutations, the numbers 2,...,n
are bijectively mapped to the numbers 1,2,...,x =1, x+1,..., n.

By the induction hypothesis, there are (n — 1)! such bijections. But
since there are n possibilities to map 1 to a number, the order of S,
isn(n—1)! =nl. =

Let X = {0, 1}" be the set of all bitstrings of length n. A permuta-
tion of X in which just the positions of the bits are permuted is called
a bit permutation. To formally describe such a bit permutation, we
choose 7 € §,,. Then we set

f:{0,1)" > {0,1)", by...bp > baqry. .. Bag).

This is in fact a bit permutation, and every bit permutation
can be uniquely written in this way. Therefore, there are n! bit
permutations of bitstrings of length n.

3.6. Block Ciphers T7

Special bit permutations are circular left- or rightshifts. A circu-

lar leftshift of i positions maps the bitstring (bg, by, ..., bp—1) to
(bi'nlﬂditr b(H-l)modm v b(i+n-—l)m0dn)- Circular rlghtShl&S are defined
analogously.

3.6 Block Ciphers

We now introduce block ciphers. They encrypt blocks of fixed
length as blocks of the same length. Later, we show how to encrypt
messages of arbitrary length using block ciphers.

Definition 3.6.1

A cryptosystem is called a block cipher if its plaintext space and its
ciphertext space are the set £" of words of a fixed length n over an
alphabet . The block length n is a positive integer.

A simple example of a block cipher is the Caesar cipher. It has
block length 1. In general, block ciphers with block length 1 are
called substitution ciphers.

Theorem 3.6.2
The encryption functions of a block cipher are permutations.

Proof. Since for each encryption function there is a correspond-
ing decryption function, the encryption functions are injective. An
injective map £" — X" is bijective. m]

Theorem 3.6.2 implies that the most general block cipher can be
described as follows. Fix the block length n and an alphabet . As
plaintext space and ciphertext space use P = C = Z". The key space
is the set S(X"™) of all permutations of X". The encryption function
for a key wr € §(X") is

E.:Z"= X", v (V).
The corresponding decryption function is
Dy:T"> T U n (D)

The key space of this scheme is very large. It contains (|XZ|™)!
elements. Therefore, the scheme seems quite secure. It is, however,

78 3. Encryption

rather inefficient since it is not clear how to represent and evaluate
an arbitrary 7 € (|Z|™)! efficiently. Therefore, it makes sense to use
as the key space only a subset of all possible permutations of X".
Those permutations should be easy to represent and evaluate.

It is, for example, possible to use the permutation cipher. It uses
only permutations that permute the positions of the symbols. If £ =
{0, 1}, then those are the bit permutations. The key space is the
permutations group S,. For w € §,, set

E,, i D 2", {Ul,...,b’ﬂjl—) (U;r{_]],...Umn}).
The corresponding decryption function is
Dy :Z" = X", (%1,...,%1) P> (X101}, - - - Xx1(m))-

The key space has n! elements. Each key can be encoded as a
sequence of n integers in {0,1,...,n — 1}.

A method to study the security of block ciphers consists in
studying their algebraic properties. Each encryption function is an
element of a permutation group. If its order is small, the decryption
can be effected by iterating the encryption function a few times.

3.7 Multiple Encryption

To increase the security of a block cipher, it is possible to apply
it a few times. Frequently, the E-D-E triple encryption is used. A
plaintext p is encrypted as

¢ = Eg, (Dr,(Ex, (P)))-

Here, k;, 1 <1 < 3 are three keys, Ej, is the encryption function, and
Dy, is the decryption function for key k;, 1 < i < 3. This results in
a considerably larger key space. If we only want to double the key
length, we use k; = kj.

3.8. Use of Block Ciphers 79

Encryption Decryption

FIGURE 3.1 ECB mode.

3.8 Use of Block Ciphers

Before explaining classical examples for block ciphers, we discuss
the use of block ciphers for encrypting arbitrarily long documents.

3.8.1 ECB mode

In this section, we use a block cipher with alphabet £ and block
length n. Let K be the key space. Let Ej be the encryption function
and let Dy be the decryption function for key k € K.

First, we explain the electronic codebook mode (ECB mode; see Fig.
3.1). An arbitrarily long plaintext is decomposed into blocks of length
n. If necessary, the plaintext is supplemented such that its length
is divisible by n. This supplement can consist of randomly chosen
symbols. If the encryption key e is used, then each block of length
n is encrypted using the encryption function E.. The ciphertext is
the sequence of the cipher texts. The ciphertext is decrypted by
applying the decryption function D; with decryption key d, which
corresponds to the encryption key e.

Example 3.8.1

We consider the block cipher that applies bit permutations to bit
vectors of length 4 (i.e, the permutation cipher with alphabet ¥ =
{0, 1} and block length 4). Then K = S, and the encryption function

80 3. Encryption

for key w € S, is
Er :{0,1)* > {0,1}*, bibybsbs > ba(1)ba(2)br(s)Prs)-
We encrypt the plaintext
m = 101100010100101.

It is decomposed into blocks of length four. The last block has length
three. Itis supplemented to length four by adding one zero. We obtain

m = 1011 0001 0100 1010;
hence the blocks
m; = 1011, wmyp = 0001, wmy = 0100, my = 1010.

(1 2 3 4
T=\2 3 4 1)
The blocks are encrypted separately. We obtain ¢, = E(m;) =

0111, ¢; = Ex(my) = 0010, ¢; = Er(m3) = 1000, ¢; = E;(my) = 0101.
The ciphertext is

We use the key

¢ = 0111001010000101.

ECB mode can also be used with an encryption algorithm that
maps blocks of length n to blocks of greater length. This is, for
example, true for the RSA system (see Section 7.2.2).

When using ECB mode, equal plaintext blocks are encrypted into
equal ciphertext blocks. It is therefore possible to recognize patterns
ofthe plaintext in the ciphertext. This makes statistical attacks easier.
Also, if ECB mode is used, then an attacker can substitute ciphertext
blocks with other ciphertext blocks that have been encrypted under
the same key. This manipulation of the ciphertext is hard to detect
by the receiver. For those reasons, ECB mode should not be used for
the encryption of large plaintexts.

The security of ECB mode can be increased if a certain part of
each block is random and the remaining part comes from the plain-
text. But then many random bits must be generated, and more blocks
must be encrypted. This reduces the efficiency of the ECB mode.

3.8. Use of Block Ciphers 81

3.8.2 CBC mode

The cipherblock chaining mode (CBC mode; see Fig. 3.2) avoids the
problems of ECB mode. In this mode, the encryption of a block
not only depends on the key but also on the previous blocks. En-
cryption is context-dependent. Equal blocks in different contexts
are encrypted differently. The receiver can tell that the ciphertext
has been changed because decryption of a manipulated ciphertext
does not work.

We now explain CBC mode in detail. We use a block cipher with al-
phabet £ = {0, 1}, block length n, key space K, encryption functions
Ej, and decryption functions Dy, k € K.

We need the following definition.

Definition 3.8.2
The map

@:{0,1¥* > {0,1},(b,c)— b c
is defined by the following table:

blec|bdc
010 0
11]0 1
0|1 1
11 0

It is called the exclusive or of two bits or, in shortened form, XOR.
Forke N, b= (b, b, ..., by),andc = (¢1,¢3,...,cx) € {0,1}%, we
setb®c= (b1 @c;, b, ®Bcy, ..., bdcy).
If the elements of Z/27Z are represented by their least non-

negative representatives 0 and 1, then exclusive or is addition in
Z/27.

Example 3.8.3
If b = 0100 and ¢ = 1101, then b & ¢ = 1001.

CBC mode uses a fixed initialization vector
IV e &7,

which can be made public. As in ECB mode, the plaintext is de-
composed into blocks of length n. If Alice encrypts the sequence

82 3. Encryption

Co = 1V,

L %
— ?

(o]
]

Y

Encryption Decryption

FIGURE 3.2 CBC mode.

my, ..., m, of plaintext blocks of length n using the key ¢, then she
sets

cop =1V, cj = Ee(cj—l 2] m}-), l1<j<t
She obtains the ciphertext
c=¢C...C.

To decrypt this ciphertext, Bob uses the decryption key d, which
satisfies D;(E,(w)) = w for all plaintext blocks w. Then he computes

co=1V, mi=c¢_1®Da(c), 1<j<t (3.1)

In fact, he obtains ¢y @ D4(c;) = ¢y @ ¢y & m; = m,. Analogously, it
can be shown that all other plaintexts are correct.

Example 3.8.4
We use the same block cipher, the same plaintext, and the same key
as in Example 3.8.1. The plaintext blocks are

my; = 1011, wmy = 0001, m3 = 0100, wmy = 1010.

3.8. Use of Block Ciphers 83

The key is

1 2 3 4
T=\z 3 4 1)
As initialization vector, we use

IV = 1010.

Then ¢y = 1010, ¢; = Ex(co ® m;) = Ex(0001) = 0010, ¢; = Ex(c: ®
my) = E(0011) = 0110, ¢z = Eq(c; ® m3) = E.(0010) = 0100, ¢4 =
Eq(c3 @ my) = EL(1110) = 1101. Also, the ciphertext is

¢ = 0010011001001101.

We decrypt this ciphertext and obtain m; = ¢y ® E;'(¢;) = 1010 &
0001 = 1011, my = ¢; & E;'(¢cz) = 0010 & 0011 = 0001, m3 = ¢, &
E;'(c3) = 011060010 = 0100, my = c3BE; ' (¢c4) = 010061110 = 1010.

In general, CBC mode encrypts the same plaintext differently
with different initialization vectors. Moreover, the encryption of a
plaintext block depends on the preceding plaintext blocks. There-
fore, if the order of the ciphertext blocks is changed or if ciphertext
blocks are replaced, then decryption becomes impossible. This is an
advantage over the ECB mode.

We study the effect of transmission errors. In (3.1), the plain-
text block m; is computed from the ciphertext blocks ¢; and ¢;—;.
Therefore, if ciphertext block ¢; is transmitted incorrectly, then
the plaintext blocks m; and mj;, may be incorrect. But the follow-
ing plaintext blocks mj4,, mj43, ... are not influenced. They can be
determined correctly.

3.8.3 CFB mode

CBC mode is well suited for the encryption of large messages. In real-
time applications (i.e., if Bob wants to decrypt the ciphertext while
receiving it), however he may have efficiency problems. Real-time
encryption and decryption are, for example, necessary for secure
telephone communication. To generate a ciphertext, Alice applies
the encryption function. After the encryption is finished, Alice sends

84 3. Encryption

the block to Bob, who applies the decryption function. This means
that the encryption function and the decryption function must be
used sequentially. Those functions may be expensive to compute.
Therefore, there may be a considerable time difference between
encryption and decryption.

In cipher feedback mode (CFB mode; see Fig. 3.3), this is different.
To explain this mode, we use the same block cipher as in the CBC
mode.

In CFB mode, the encryption function is not used directly for
encrypting plaintext blocks but for generating a sequence of key
blocks. The plaintext is encrypted by adding those key blocks mod
2. The ciphertext is decrypted by adding the same key blocks mod
2. The key blocks can be simultaneously generated by the sender,
Alice, and the receiver, Bob. Only the addition mod 2 must be done
sequentially, as follows.

Again, we need an initialization vector IV € {0, 1}"*. We also need
a positive integer r, 1 < r < n. The plaintext is decomposed into
blocks of length r. To encrypt the sequence m;y, ..., m, of plaintexts,
Alice sets

L =1V,
andforl <j <u:
1. 0) = Ex(l)),
2. Set t; to the string, which consists of the first r bits of O;,
3. ¢, =mdt,
4. Ij;, = 2'I;+ ¢; mod 2", so Ij4, is generated by deleting the first »
bits in I; and appending c;.
The ciphertext is the sequence ¢, ¢z, ..., Cp.
Decryption works similarly. Bob sets
L =1V,
and then for 1 <j < u:
1. O; = Ex(I)),
2. Set t; to the string, which consists of the first r bits of O;,
3. mj=c¢ Dt
4. Iy = 2'I; 4+ ¢; mod 2".

3.8. Use of Block Ciphers 85

r-bit shift r-bit shift
- -—
I =1V " 1
I J - b -
-
A'n cj-l
Y Y
k —9 Ek AT Ek +-l— k
4 n
Y Y
r bits Oj Oj
:
m, - - - - m
i 7T\ & j
r J
Encryption Decryption

FIGURE 3.3 CFB mode.

Both Alice and Bob can compute the string t;4, as soon as they
know the ciphertext block ¢;. Therefore, the key block t; can be
computed by Alice and Bob simultaneously. Then Alice generates
the ciphertextblock ¢, = m,®t, and sends it to Bob. The computation
of ¢, is fast since it only requires an XOR. Then Alice and Bob can
simultaneously compute the key block ¢, etc.

Example 3.8.5
We use the block cipher, plaintext, and key from Example 3.8.1 as
well as the block length r = 3. The plaintext blocks are

my =101, my =100, m3 =010, my =100, ms=101.

The key is
(1 2 3 4
T=\2 3 4 1)
As initialization vector, we use

IV = 1010.

86 3. Encryption

CFB encryption is shown in the following table.

I; O, £ m C
1010 | 0101 | 010 | 101 | 111
0111 | 1110 | 111 | 100 | 011
1011 | 0111 | 011 | 010 | OO1
1001 | 0011 | 001 | 100 | 101
1101 | 1011 | 101 | 101 | 00O

(62 TNV NI % I S Tl L

In CFB mode, transmission errors spoil decryption as long as
parts of the wrong ciphertext block are in the vector I;. Note that
CFB mode cannot be used with public-key cryptosystems because
both sender and receiver use the same key e.

3.8.4 OFB mode

Output feedback mode (OFB mode; see Fig. 3.4) is very similar to
CFB mode. As in CFB mode, the OFB mode uses a block cipher
with block length n, another block length r with 1 < r < n, and an
initialization vector I;. If Alice encrypts a plaintext using key e, then
she decomposes it into blocks of length r as in CFB mode. Then she
setsforl <j < u:

1. O; = Ex(1)),

2. Set t; to the string, which consists of the first r bits of O},
3.¢,=mdt,

4. Ijyy = O;.

Again, decryption works analogously. Step 3 is replaced by m; =
ci bt

If a bit of the ciphertext is transmitted incorrectly, then the plain-
text will be wrong in exactly the same position. The wrong bit has
no other influence.

The key block t; only depends on the initialization vector I and
on the key k. They can be computed by the sender and the receiver
simultaneously. This is even better than in CFB mode. However,
the encryption of a plaintext block in OFB mode does not depend
on the previous plaintext blocks but only on its position. Therefore,

3.8. Use of Block Ciphers 87

051 0j.
I =1V
| ']
Ij [j
n
Y Y
Kk —=¢ E, i E ¢=qxk
Y |
r bits q] {5
r
m g1\ e P -
Ji = =t
r r]
Encryption Decryption

FIGURE 3.4 OFB mode.

manipulation of the ciphertext is easier in OFB mode than in CFB
mode.

Example 3.8.6
We use the block cipher, plaintext, and key from Example 3.8.1.
Moreover, we use r = 3. The plaintext blocks are

my =101, wmy; =100, wm3 =010, my =100, ms = 101.
The key is
e (1 Z 3 4)
“\2 3 4 1)
As initialization vector, we use

IV = 1010.

Encryption is shown in the following table.

88 3. Encryption

I O L1 m G
1010 | 0101 | 010 | 101 111
0101 | 1010 | 101 | 100 | 001
1010 | 0101 | 010 | 010 | DOO
0101 | 1010 | 101 | 100 | 001
1010 | 0101 | 010 | 101 | 111

U o W

If the same key k is used for encrypting two plaintexts, then the
initialization vector must be changed. Otherwise, the same sequence
of key blocks ¢ is generated, and from two ciphertext blocks ¢; =
m; @ t; and ¢, = m; @ t; the attacker, Oscar, obtains ¢; @ ¢; = m; & m;.
Hence, he can determine m; if he knows m;.

3.9 Stream Ciphers

We have explained how block ciphers can be used to encrypt
arbitrarily long plaintexts such that the encryption of the individ-
ual plaintext blocks depends on their context. This principle is
generalized in stream ciphers.

We only give an example for a stream cipher. A well-known
stream cipher works as follows. The alphabet is ¥ = {0,1}. The
plaintext- and ciphertext space is £*. The key space is " for a pos-
itive integer n. Words in £* are encrypted bit by bit. This works as

follows. Let k = (ky, ..., ky) be a key and w = 0, ...0,;, a word of
length m in £*. Alice generates a key stream zy, 2, . . ., Z,. She sets
zi=k, 1<i<n (3.2)

and form > n

n
z=) gaymod2, n<is<m, (3.3)
=1
where ¢, ...,c, are fixed coefficients. Such an equation is called

linear recursion of degree n. The encryption function Ej and the
decryption function Dy are defined by

Ex(w)=01®2z1,...,0m D 2m, Dr(W) =01D 21,...,0m D 2Znm.

3.10. Affine Cipher 89

A x

Livl |=—| Zis2 |=—| Zis3

FIGURE 3.5 Linear shift register.

Example 3.9.1
Let n = 4. The key stream is generated by the recursion

Ziya = Zi D Zi4,

so we have chosenc¢;, =¢; =0,¢3 =¢; = 1. Letk = (1,0, 0, 0) be the
key. Then we obtain the key stream

1,0001,001,1,0,1,0,1,1,1,1,0,0,0, - --.

] L L} '

This key stream is periodic with period length 15.

The stream cipher that was just described can be implemented
in hardware using linear shift registers. Figure 3.5 shows such a shift
register. The registers contain the last four values of the key stream.
In each step, the key from the first register is used for encryption,
the contents of the second, third, and fourth registers are shifted by
one to the left, and the fourth key is computed by adding those bits
for which the coefficient ¢; is 1.

We do not discuss stream ciphers in more detail but refer to [30].

3.10 Affine Cipher

Let m be a positive integer. The affine cipher with plaintext alphabet
Zy, is a block cipher with block length n = 1. The key space consists
of all pairs (a,b) € Z2, for which m is prime to a. The encryption
function E; for key k = (a, b) is

Ex:Z— Z, x> ax+ b modm.
The decryption function for key k = (a’, b) is

Dy:E— %, x> d(x—b)modm.

90 3. Encryption

To compute the decryption key that corresponds to the encryption
key (a, b) we solve the congruence aa’ = 1 mod m with the extended
euclidian algorithm. Then this key is (a’, b).

Example 3.10.1
If Alice chooses m = 26, (a,b) = (7, 3), and encrypts the German
word BALD with the affine cipher in ECB mode, then she obtains

B A L D
1 0 11 3
10 3 2 24
K D C Y

Bob computes the corresponding decryption function. He deter-

mines an integer @' with 7a’ = 1 mod 26. Using the extended
euclidean algorithm, he obtains 4’ = 15. Hence, the decryption
function maps a symbol o to 15(0 —3) mod 26. In fact, Bob computes
K B € ¥
10 3 2 24
1 0 11 3
B A L D
The key space of the affine cipher with m = 26 contains

®(26) x 26 = 312 elements. Hence, if this block cipher is used in
ECB mode, it can be broken with a ciphertext-only attack by an ex-
haustive key search. If a known plaintext attack is used and two
symbols, together with their encryption, are known, then the affine
cipher can be broken using an easy linear algebra computation, as
the next example shows.

Example 3.10.2

The alphabet (A, B, ..., Z} is identified with Z,s in the usual way. If
the attacker, Oscar, knows that an application of the affine cipher
with a fixed key (a, b) maps the letter E to R and S to H, then he
obtains the following congruences:

4a+b=17 mod 26, 18a+ b =7 mod 26.

From the first congruence, he obtains b = 17 — 4a mod 26. If he
uses this in the second congruence, then he obtains 18a + 17 —
4a = 7 mod 26 and therefore 14a = 16 mod 26. This implies 7a =

. 4

3.11. Matrices and Linear Maps 91

8 mod 13. He multiplies this congruence by the inverse 2 of 7 mod
13 and obtains @ = 3 mod 13, so he can compute @ = 3 and b = 5.

3.11 Matrices and Linear Maps

In order to generalize affine ciphers, we review a few basic results of
linear algebra over rings without proving them. For details, we refer
the reader to [26].

Let R be a commutative ring with unit element 1. For example,
R = Z/mZ for some positive integer m.

3.11.1 Matrices over rings

A k x n matrix over R is a rectangular scheme

a, iz ot A

a1 4z - dan
A=

axy Qkz2 -+ Qgn

We also write
A= (au)‘

If n = k, then the matrix is called a square matrix. The ith row of A is
the vector (a;1,...,ain), 1 <i < k. The jth column of A is the vector
(arj,---,ax;), 1 <j <n.The entry in row i and column j is a;;. The
set of all k x n matrices over R is denoted by R*"),

Example 3.11.1
Let R = Z. For example,

1 2 3
4 5 6

is a matrix over Z. It has two rows, namely (1, 2, 3) and (4, 5, 6), and
three columns, namely (1, 4), (2,5), and (3, 6).

92 3. Encryption

3.11.2 Product of matrices and vectors
IfA = (a;) € R* and ¥ = (vy, ..., v,) € R", then the product Av is
defined as the vector w = (wy, wy, ..., wx) with

"
w; = Za,-,;v,-, l1<i<k
J=1

Example 3.11.2

1 2\ . 2
LetA = (2 3), v = (1, 2). Then Av = (5, 8).

3.11.3 Sum and product of matrices

Letn e Nand A, B € R"™" A = (a;;), B = (bij). The sum of A and B
is

A+ B = (aij + by).
The product of A and Bis A - B= AB = (¢;;) with

n
Cij = 5_ a; kby ;.
k=1

Example 3.11.3

1. 2 4 5 5 7
Let A = (2 3),3 = (6 7). Then A + B = (8 10),

16 19 14 23 G s e ; :
AB = (26 31), BA = (20 33). Multiplication of matrices is,

in general, not commutative.

3.11.4 The ring of matrices
The n x n identity matrix over R is E, = (e;;) with

1 fori=j

“ =10 fori#j.

The n x n zero matrix over R is the n x n matrix all of whose
entries are zero.

3.11. Matrices and Linear Maps 93

Example 3.11.4
1 0
The 2 x 2 identity matrix over Z is (0]) The 2 x 2 zero matrix

. 0 0
over Z is (0 0).

Together with addition and multiplication, the set R"" is a ring
with unit element E,,. In general, this ring is not commutative. The
neutral element with respect to addition is the zero matrix.

3.11.5 Determinants

The determinant det A of a matrix A € R"" can be defined recur-
sively. For n = 1, A = (a), we have detA = a. Let n > 1. For
1, €{1,2,...n}, denote by A,; the matrix that is obtained from A by
deleting the ith row and jth column. Fix i € {1,2,...,n}. Then the
determinant of A is

n
detA = Z(—l)’”a,-rj detA;;.
J=1

This value is independent of the choice of i. Also, for all j €
{1,2,...,n}, we have

detA =) (—1)Va;;detA;;.
=1
Example 3.11.5
My
Let A = ' “). Then Ay, = (az22),A12 = (a21),Az; =
(az,: az,z) b (@22), A1z = (a21), Az

(a1,2), Az2 = (a1,)). Therefore, det A = ay az, — ay2a;,.

3.11.6 Inverse of matrices

A matrix A € R"" has a multiplicative inverse if and only if det A
is a unit in R. Here is a formula for this inverse. If n = 1, then (afll)
is the inverse of A. Let n > 1 and A,; as defined earlier. The adjoint

94 3. Encryption

of A is an n x n matrix defined by
adjA = ((—1) "V det A;)).
The inverse of A is
A7 = (det A)'adj A.

Example 3.11.6
a a : a —a
Let A = (i]’2). Then adj A = (A]'2).

azi1 az2 —dz1 A
Let A = (a;;), B= (bi;) € Z™™ and m € N. We write
A =Bmodm

ifa,j=bjmodmforl <i,j<n.
As an application of the results described in this section, we
explain how to solve the congruence

AA' = E, mod m. (3.4)
First, we give an example.

Example 3.11.7
1 2
Let A = (3 4). We want to solve the congruence

AA’ = E; mod 11 (3.5)

for A’ € Z(%. Denote by A the matrix that is obtained from A by
replacing its entries with their residue classes mod m. Solving the
congruence (3.5) means finding the inverse A’ of A. It exists if the
determinant of A is a unit in Z/11Z. This is true if and only if det A
is prime to 11. Now det A = —2, and hence prime to 11. Moreover,
(—2)(—6) = 1 mod 11. If we set

; _ 4 -2 (91
A =(—6)*ademod11—5*(_3 1)modll_(7 5),
then a solution of (3.5) is found.

We generalize the result of the preceding example. Let A € Z™"
and m > 1. The congruence (3.4) is solvable if and only if det A and

3.11. Matrices and Linear Maps 95

m are coprime. If this is true and if a is an inverse of det A mod m
(i.e., adet A = 1 mod m), then

A’ = aadjA mod m

is a solution of the congruence (3.4). This solution is unique mod m.
The matrix A’ can be computed in polynomial time.

3.11.7 Affine linear functions

We define affine linear functions. They can be used to construct
simple block ciphers.

Definition 3.11.8
A function f : R" — _.R’ is called affine linear if there is a matrix
A € R and a vector b € R! such that

f(@)=Ab+b
for all b € R". If b = 0, then this function is called linear.
Affine linear functions Z), — Z), are defined analogously.

Definition 3.11.9
A function f : Z — Z! is called affine linear if there is a matrix
A € Z™ and a vector b € Z! such that

f(©) = (AD + b) mod m
for all v € Z7,. If b = 0 mod m, then this function is called linear.

Theorem 3.11.10
The affine linear map from Definition 3.11.8 is bijective if and only if
| =n and det A is a unit in R.

Analogously, the map from Definition 3.11.9 is bijective if and
only if I = n and det A is prime to m.

Example 3.11.11
Consider the map f : {0, 1}* — {0, 1}?, which is defined by

f(0,0) = (0,0),f(1,0) = (1,1),f(0,1) = (1,0), f(1,1) = (0, 1).

96 3. Encryption

- 1 1\. o
This map is linear because f(?) = (1 0) v for all v € {0, 1}%.

We characterize linear and affine linear functions.

Theorem 3.11.12
A function f : R" — R" is linear if and only if

f(ad + bw) = af (V) + bf (w)

for all v,w € R" and all a,b € R. It is affine linear if and only if the

function R" — R" v f(v) = f 0) is linear
)

3.12 Affine Linear Block Ciphers

We introduce affine linear block ciphers. They are generalizations of
the affine cipher. We discuss those ciphers on the one hand for his-
torical reasons. On the other hand, we want to show that affine linear
ciphers can be quite easily attacked. This leads to an important de-
sign principle for block ciphers: Secure block ciphers must not be
linear or easy to approximate by linear functions.

To define linear block ciphers, we need a positive integer n, the
block length, and a positive integer m, m > 2.

Definition 3.12.1

A block cipher with block length n and plaintext- and ciphertext
space Z,, is called affine linear if all of its encryption functions are
affine linear. It is called linear if all of its encryption functions are
linear.

We describe affine linear block ciphers explicitly. The encryption
functions are affine linear, and hence of the form

E:Z' > 7', ¥+ Ab+bmodm

with A € Z"" and b € Z". Moreover, by Theorem 3.6.2, the function
E isbijective. Therefore, det A is prime to m by Theorem 3.11.10. The
encryption function is uniquely determined by the pair (A, b) We
can use this pair as the key. By the results of Section 3.11.6, the

| 4

3.13. Vigenére, Hill, and Permutation Ciphers 97

corresponding decryption function is

D:Z" — Z", ¥+ A'(D—b)modm,

?il'l !

where A" = (a’adjA) mod m and a’ is an inverse of det A mod m.

3.13 Vigenere, Hill, and Permutation
Ciphers

We give two examples of affine linear ciphers.
The Vigenere cipher is named after Blaise de Vigenére, who lived
in the 16th century. The key space is K = Z . If k € Z", then

m?
ZN — Z?i

U U+ kmod m

and

22y, —> 70, V> U—kmodm.

The encryption and de(;ryptlon functions are obviously affine linear.
The number of elements in the key space is m".

The Hill cipher is another classical cryptosystem. It was invented
in 1929 by Lester S. Hill. The key space K is the set of all matrices
A € Z9" with ged(det A, m) = 1. The encryption function for key
AeKis

ALy, — Zy, V> Avmod m. (3.6)

Hence, the Hill cipher is the most general linear block cipher.

Finally, we show that the permutation cipher is linear. Let & € S,
and denote by é;, 1 < i < n, the row vectors of the identity matrix.
They are called unit vectors. Moreover, let E, be the n x n matrix
whose ith row vector is €,(;), 1 < i < n. This matrix is obtained from
the n x n identity matrix by permuting its rows according to the
permutatioil 7. The jth column of E, is the unit vector E,,—LU-,. For
any vector v = (vy,...,v,) € X", we have

(V=) - - -+ Vn(ny) = EqD.

Therefore, the permutation cipher is a linear cipher (i.e., a special
case of the Hill cipher).

98 3. Encryption

3.14 Cryptanalysis of Affine Linear
Block Ciphers

We explain how an affine linear cipher with alphabet Z,, and block
length n can be broken by means of a known plaintext attack.
Suppose that Alice and Bob use an affine linear cipher and have

agreed on a key. The encryption function is
E:Z), —> 7, > AD+ b mod m

m!

with A € Z™" and b € Z". The attacker, Oscar, wants to determine
the key (A, b). Oscar uses n + 1 plaintexts w;, 0 < i < n and the
corresponding cipher texts ¢; = Aw; +b, 0 <i < n. Then
E[= E(; —; A(fb, - L-(‘)(;) mod m.
If W is the matrix
W = (L-l'}[— L_f:a'(], Sevars I-J‘:a'" — L_q‘..,r'u) mod m,

whose columns are the differences (w; — wy) mod m, 1 <i < n and
if C is the matrix

C:{E] —En,...,Er,—E()) mod m

whose columns are the differences (¢; — ¢o) mod m, 1 <i < n, then
we have

AW = C mod m.
If det W is coprime to m, then
A = C(w'adj W) mod m,
where w' is the inverse of det W mod m. Moreover, we have
b= Co — Alp.

Thus, the key has been determined from n + 1 plaintext-ciphertext
pairs. If the cipher is linear, then Oscar can set Wwy=¢=b=0.

Example 3.14.1

We show how to break a Hill cipher with block length 2. Suppose that
we know that the encryption of HAND is FOOT. Then the encryption
of i, = (7,0) is & = (5, 20) and that of w, = (13, 3) is ¢; = (18, 18).

3.15. Exercises 99

we abtain w — (7 3 angc— (5 18
copRIMW =\o: 3]2 =Nae 18

coprime to 26. The inverse of 21 mod 26 is 5. This implies

. 5 18\ /3 13 23 19
A= 5C(adj W) mod 26 = 5% mod 26 = 2
20 18/\0 7 14 6

. Now det W = 21 is

In fact, we have AW = C.

3.15 Exercises

Exercise 3.15.1
The ciphertext VHFUHW hasbeen generated with the Caesar cipher.
Determine the key and the plaintext.

Exercise 3.15.2
Show that the following procedure defines a cryptosystem.

Let w be a string over {A,B, ..., Z}. Choose two Caesar cipher
keys k; and k;. Encrypt the elements of w having odd numbers with
k, and those having even numbers with k,. Then reverse the order
of the encrypted string.

Determine the plaintext space, the ciphertext space, and the key
space.

Exercise 3.15.3
Show that the encryption function of a cryptosystem is always
injective.

Exercise 3.15.4
Determine the number of strings of length n over an alphabet X that
do not change if they are reversed.

Exercise 3.15.5
Let ¥ be an alphabet. Show that the set X* together with
concatenation is a monoid. Is this monoid a group?

Exercise 3.15.6
Determine the number of block ciphers over the alphabet {0.1}
whose ciphertexts have the same number of ones as the plain texts.

100 _3. Encryption

Exercise 3.15.7

Which of the following schemes is a cryptosystem? What is the plain-

text space, the ciphertext space, and the key space? We always let

x= Zzﬁ.

1. Each letter o € X is replaced by ko mod 26, k € {1, 2,..., 26}.

2. Each letter o € X is replaced by ko mod 26, k € {1,2,...,26},
ged(k, 26) = 1.

Exercise 3.15.8
Give an example for a cryptosystem with encryption functions that
are injective but not surjective.

Exercise 3.15.9
Determine the number of bit permutations of the set {0,1}", n € N
and the number of circular right shifts of {0, 1}".

Exercise 3.15.10

A transposition is a permutation that interchanges two elements and
maps all other elements to themselves. Prove that every permutation
can be obtained as a composition of transpositions.

Exercise 3.15.11
Find a permutation of {0, 1}" that is not a bit permutation.

Exercise 3.15.12
Find a permutation of {0, 1}" that is not affine linear.

Exercise 3.15.13

Let X be a set. Show that the set S(X) of permutations of X is a group
with respect to composition and that this group is, in general, not
commutative.

Exercise 3.15.14
Decrypt the plaintext 111111111111 using ECB mode, CBC mode, CFB
mode, and OFB mode. Use the permutation cipher with block length

3 and key
1 2 3
o=} B 5.

The initialization vector is 000. For the OFB and CFB modes, use
r=2.

3.15. Exercises]_0]_

Exercise 3.15.15
Encrypt the plaintext 101010101010 using ECB mode, CBC mode, CFB
mode, and OFB mode. Use the permutation cipher with block length

3 and key
1 2 3
k:(z 1 3)'

The initialization vector is 000. For OFB and CFB modes, use r = 2.

Exercise 3.15.16
Let k = 1010101, ¢ = 1110011, w = 1110001 1110001 1110001. Encrypt
w using the stream cipher from Section 3.9.

Exercise 3.15.17
Determine the determinant of the matrix

1 2 3

Exercise 3.15.18
Find a closed formula for the determinant of a 3 x 3 matrix.

Exercise 3.15.19
Find an injective affine linear map (Z/2Z)* — (Z/2Z)* that sends
(1,1,1) to (0,0, 0).

Exercise 3.15.20

Determine the inverse of the matrix
1 1 1
1 1 0

1 0 0

mod 2.

Exercise 3.15.21
Find a key for the affine linear cipher with alphabet {A,B,C,...,Z}
and block length three that encrypts “RED” as “ONE".

~ Probability
~ and Perfect
CHAPTER Secrecy

In the previous chapter, we have described a number of historical
cryptosystems. It turned out that they were all affine linear and
therefore insecure. Are there cryptosystems that are provably se-
cure? In 1949, Claude Shannon was able to describe such systems.
Unfortunately, those systems are not very efficient. In this chapter,
we present Shannon'’s theory. At the same time, we will introduce a
few notions and results of elementary probability theory.

4.1 Probability

Let S be a finite nonempty set. We call it the sample space. 1ts el-
ements are called elementary events. The elementary events model
outcomes of experiments.

Example 4.1.1
If we flip a coin, we either obtain heads H or tails T. The sample
space is S = {H,T}.

If we throw a die, then we obtain a number in {1, 2, 3, 4, 5, 6}.
Therefore, the sample space is § = {1, 2, 3, 4, 5, 6}.

103

104 _ 4. Probability and Perfect Secrecy

An event (for S) is a subset of the sample space S. The certain event
is the set § itself. The null event is the empty set). We say that two
events A and B are mutually exclusive if their intersection is empty.
The set of all events is the power set P(S) of S.

Example 4.1.2

An event is, for example, to obtain an even number when throwing
a die. Formally, this event is {2, 4, 6}. It excludes the event {1, 3, 5}
to obtain an odd number.

A probability distribution on S is a map Pr that sends an event to
a real number, namely

Pr: P(S) — R,

and has the following properties:
1. Pr(A) > 0 for all events A,
2. Pr(§) =1,

3. Pr(A UB) = Pr(A) + Pr(B) for two events A and B, which are
mutually exclusive.

If A is an event, then Pr(A) is the probability of this event. The
probability of an elementary event a € S is Pr(a) = Pr({a}).

It is easy to see that Pr(¥) = 0. Moreover, A C B implies
Pr(A) < Pr(B). Therefore, 0 < Pr(A) < 1 for all A € P(S). Moreover,
Pr(S\ A)=1—Pr(A). If A,, ..., A, are pairwise mutually exclusive
events, then Pr(UL,A;) =)i, Pr(A)).

Since S is a finite set, it suffices to define the probability dis-
tribution on elementary events. In fact, if A is an event, then

Pr(A) =Y ,c4 Pr(a).

Example 4.1.3

The probability distribution on the set {1, 2, 3, 4, 5, 6}, which models
throwing a die, maps each elementary event to 1/6. The probability
of the event “even result” is Pr({2, 4, 6}) = Pr(2) + Pr(4) + Pr(6) =
1/6 +1/64+1/6 =1/2.

The probability distribution that maps each elementary eventa €
S to the probability Pr(a) = 1/|8| is called the uniform distribution.

Y"

4.2. Conditional Probability 105

4.2 Conditional Probability

Let S be a sample space, and let Pr be a probability distribution on
S. We explain conditional probability in an example.

Example 4.2.1

Again, we model throwing a die. The sample space is {1, 2, 3, 4, 5, 6},
and Pr sends any elementary event to 1/6. Suppose Claus has thrown
one of the numbers 4, 5, 6, so we know that the event B = {4, 5, 6)
has happened. Under this assumption, we want to determine the
probability that Claus has thrown an even number. Each elementary
event in Bis equally probable. Therefore, each elementary event in B
has probability 1/3. Since two numbers in B are even, the probability
that Claus has thrown an even number is 2/3.

Definition 4.2.2
Let A and B be events and Pr(B) > 0. The conditional probability of
“A given that B occurs” is defined to be

Pr(A N B)

Pr(A|B) = —

This definition can be understood as follows. We want to know
the probability of A if B is certain to occur (i.e., the sum of the prob-
abilities of all elementary events x in A N B). Such an elementary
event has probability Pr(x)/ Pr(B) because Pr(B) = 1. Therefore, the
event A N B has probability Pr(A N B)/ Pr(B).

Two events A and B are called independent if

Pr(A N B) = Pr(A) Pr(B).
This condition is equivalent to
Pr(A|B) = Pr(A).
If the events are not independent, we call them dependent.

Example 4.2.3

If we flip two coins, then the event “the first coin comes up tails” is
independent from the event “the second coin comes up tails”. The
probability that both events occur is 1/4. The probability of each
individual event is 1/2.

106 _4. Probability and Perfect Secrecy

If the coins are welded together such that they either both fall
heads or both tails, then the probability of two tails is 1/2 # 1/2x1/2.
Hence, the events “the first coin comes up tails” and “the second coin
comes up tails” are dependent.

We formulate and prove the theorem of Bayes.

Theorem 4.2.4
If A and B are events with Pr(A) > 0 and Pr(B) > 0, then

Pr(B) Pr(A|B) = Pr(A) Pr(B|A).

Proof. By definition, we have Pr(A|B)Pr(B) = Pr(A N B) and
Pr(B|A) Pr(A) = Pr(A N B). This implies the assertion. O

4.3 Birthday Paradox

A good example for reasoning in probability theory is the birthday
paradox. The problem is the following. Suppose a group of people
are in a room. What is the probability that two of them have the same
birthday? This probability is astonishingly large.

We will make a slightly more general analysis. Suppose that there
are n birthdays and that there are k people in the room. An elemen-
tary event is a tuple (by, ..., bx) € {1,2,..., n}*. If it occurs, then the
birthday of the ith person is b;, 1 < i < k, so we have n* elemen-
tary events. We assume that those elementary events are equally
probable. Then the probability of an elementary event is 1/n*.

We want to compute the probability that two people in the room
have the same birthday. Denote this probability by p. Then with
probability g = 1 — p any two people have different birthdays. We
estimate this probability. The event in which we are interested is
the set E of all vectors (g, ...,8) € {1,2,...,n}* whose entries are
pairwise different. Since the probability of an elementary event is
1/, the probability of E is the number of elements in E divided
by n*. The number of elements in E is the number of vectors in
{1, ..., n}* with pairwise different entries. This number is computed
now. The first entry can be any of the n possibilities. If the first entry

4.4. Perfect Secrecy 1()7

is fixed, then there are n — 1 possibilities for the second entry, and
so on. Hence, we obtain

k-1
El =[]t -9

=0

and

k—1 k—1 :
q=%l‘[(n—i)=ﬂ(1—i). (41
n" i=o i=1 B
Now 1 + x < €* holds for all real numbers. Therefore, from (4.1) we
obtain
k—1 :
q< l—Ie—:‘m — ¢~ Limt V/n _ g=k(k=1)/(2n) (4.2)
i=1

If

k>(1++/1+8nlog2)/2, (4.3)

then (4.2) implies that g < 1/2. Hence the probability p = 1 — g that
two people have the same birthday is at least 1/2. For n = 365, the
choice k = 23 is sufficient for g < 1/2. In other words, if 23 people
are in a room, then the probability that two of them have the same
birthday is at least 1/2.

4.4 Perfect Secrecy

Following Shannon, we will now introduce perfect secrecy. We as-
sume the following scenario. Alice uses a cryptosystem to send
encrypted messages to Bob. If she sends such an encrypted message
to Bob, the attacker, Oscar, can read the ciphertext. Oscar tries to
obtain information concerning the plaintext from the ciphertext. A
cryptosystem has perfect secrecy if Oscar learns nothing about the
plaintext from the ciphertext. We want to formalize this property
mathematically.

The cryptosystem has a finite plaintext space P, a finite cipher-
text space C, and a finite key space K. The encryption functions are
Ex, k € K and the decryption functions are Dy, k € K.

108 _ 4. Probability and Perfect Secrecy

We assume that the probability of a plaintext p is Prp(p). The
function Prp is a probability distribution on the plaintext space. It de-
pends, for example, on the language that is used. For the encryption
of a new plaintext, Alice chooses a new key which is independent of
the plaintext to be encrypted. The probability for a key k is Pry (k).
The function Prx is a probability distribution on the key space. The
probability that a plaintext p occurs and is encrypted with key k is

Pr(p, k) = Prp(p) Pric(k). (4.4)

This defines a probability distribution Pr on the sample space P x K.
We will now consider this sample space only. If p is a plaintext, then
we also denote by p the event {(p, k) : k € K} that p is encrypted.
Clearly, we have

Pr(p) = Prp(p).

Also, for a key k € K we denote by k the event {(p, k) : p € P} that
the key k is chosen for encryption. Clearly, we have

Pr(k) = Pri(k).

By (4.4), the events p and k are independent. For a ciphertext ¢ € C,
we denote by ¢ the event {(p, k) : Ex(p) = c} that the result of the
encryption is c.

Oscar knows the probability distribution Prp on the plaintexts
because he knows, for example, the language that Alice and Bob
use. Now Oscar sees a ciphertext ¢. If the fact that ¢ has occurred
makes some plaintexts more likely than they are according to the
probability distribution Prp and others less likely, then Oscar learns
something from observing c¢. Otherwise, if the probability for each
plaintext remains the same, then Oscar learns nothing. This mo-
tivates Shannon’s definition of perfect secrecy, which we present
now.

Definition 4.4.1

The cryptosystem of this section has perfect secrecy if the events that
a particular ciphertext occurs and that a particular plaintext has been
encrypted are independent (i.e., Pr(p|c) = Pr(p) for all plaintexts p
and all ciphertexts c).

*

4.4. Perfect Secrecy 1()9

Example 4.4.2

Let P = {0,1}, Pr(0) = 1/4, Pr(1) = 3/4. Also, let K = {A, B},
Pr(A) = 1/4, Pr(B) = 3/4. Finally, let C = {a, b}. Then the prob-
ability that the plaintext 1 occurs and is encrypted with key B is
Pr(1) Pr(B) = 9/16. The encryption function Ex works as follows:

EA(0) = a, Ex(1) = b, E5(0) = b, Eg(1) = a.

The probability of the ciphertext a is Pr(a) = Pr(0,A) + Pr(1,B) =
1/16 + 9/16 = 5/8. The probability of the ciphertext b is Pr(b) =
Pr(1,A)+ Pr(0,B) =3/16 + 3/16 = 3/8.

We now compute the conditional probability Pr(p|c) for all plain-
texts p and all ciphertexts c. It is Pr(0la) = 1/10, Pr(1|a) = 9/10,
Pr(0|b) = 1/2, Pr(1|b) = 1/2. Those results show that the cryp-
tosystem described does not have perfect secrecy. If Oscar receives
the ciphertext a he can be reasonably sure that the corresponding
plaintext is 1.

We formulate and prove the famous theorem of Shannon.

Theorem 4.4.3

Let |C| = |K| and Pr(p) > 0 for any plaintext p. Our cryptosystem has
perfect secrecy if and only if the probability distribution on the key space
is the uniform distribution and if for any plaintext p and any ciphertext
c there is exactly one key k with Ex(p) = c.

Proof. Suppose that the cryptosystem has perfect secrecy. Let p be
a plaintext. If there is a ciphertext ¢ for which there is no key k with
Ex(p) = ¢, then Pr(p) # Pr(p|c) = 0 since Pr(p) > 0 by assumption.
This contradicts the perfect secrecy. Hence, for any ciphertext ¢
there is a key k with Ex(p) = c. But the number of keys is equal to
the number of ciphertexts. Therefore, for each ciphertext ¢ there is
exactly one key k with Eix(p) = c¢. This proves the second assertion.
To prove the first assertion, we fix a ciphertext ¢. For a plaintext p,
let k(p) be the key with Ey,(p) = c. It follows from Theorem 4.2.4
that

Pr(clp) Pr(p) _ Pr(k(p)) Pr(p)

Pr(c) Pr(c)

Pr(plc) = (4.5)

for each plaintext p. Since the cryptosystem has perfect secrecy, we
have Pr(p|c) = Pr(p). Also, (4.5) implies Pr(k(p)) = Pr(c). Hence,

110 __4. Probability and Perfect Secrecy

the probability Pr(k(p) is the same for each plaintext p. But any key
k is equal to k(p) for some plaintext p. Therefore, the probability for
all keys is the same, which means that the probability distribution
on the key space is the uniform distribution.

Now we prove the converse. Assume that the probability distri-
bution on the key space is the uniform distribution and that for any
plaintext p and any ciphertext c there is exactly one key k = k(p, c)
with Ex(p) = ¢. Then

Pr(p) Pr(clp) _ _ Pr(p) Pr(k(p, ¢))
Pr(c) 2_qep Pr(q) Pr(k(q, ©))
Now Pr(k(p, ¢)) = 1/|K| since all keys are equally probable. Hence,

4 Pr(q 1
Z Pr(q) Pr(k(g, c¢)) = % = m

qeP

Pr(plc) = (4.6)

If we use this equation in (4.6), then we obtain Pr(p|c) = Pr(p), as
asserted. m]

Example 4.4.4
Theorem 4.4.3 implies that the cryptosystem from example 4.4.2 has
perfect secrecy if we set Pr(A) = Pr(B) = 1/2.

4.5 Vernam One-Time Pad

The most famous cryptosystem that has perfect secrecy is the Ver-
nam one-time pad, which is explained in this section. Let n be
a positive integer. The Vernam one-time pad encrypts bitstrings
of length n. Plaintext space, ciphertext space, and key space are
P =C =K = {0,1}". The encryption function for key k € {0,1}" is

Ex:{0,1}" = {0,1}", prp®k

The decryption function for key k is the same.

To encrypt a plaintext p € {0, 1}", Alice chooses a key k randomly
with uniform distribution from the set {0, 1}". She computes the ci-
phertext ¢ = p @ k. By Theorem 4.4.3, this cryptosystem has perfect
secrecy because the uniform distribution is used on the key space

4.6. Random Numbers 111

and for each plaintext p and each ciphertext ¢ there is exactly one
key k withc =p @ k, namely k =p ® c.

This cryptosystem was invented and patented in 1917 by Gilbert
Vernam. However, it was not until 1949 that Shannon proved that
the Vernam one-time pad has perfect secrecy.

Unfortunately, the one-time pad is not very efficient. To secretly
communicate a plaintext of length n, Alice and Bob must randomly
generate and exchange a key of length n. This is the reason for the
name “one-time pad” Each key can be used only once.

If a key is used to encrypt several plaintexts, the one-time pad
loses its perfect secrecy. Oscar can determine the key in a known
plaintext attack. Suppose he knows a plaintext p and the correspond-
ing ciphertext ¢. Then the key can be determined as p@c = p@p®k =
k.

4.6 Random Numbers

If Alice and Bob want to use the Vernam one-time pad, then they
need a source for uniformly distributed random bits. It is a philosoph-
ical question whether such a source can exist or whether anything
that happens is predetermined. In practice, random-bit generators
are used which are software or hardware-based. Such generators are
devices that use, for example, the randomness of radioactive decay
or the time between two keyboard strokes. An overview can be found
in [1].

If random-bit generators are used in cryptography, then it is im-
portant that an attacker has no way of predicting the bits that it
outputs. Therefore, those generators are typically secure hardware
devices.

In the following, we assume that we are given a random-bit
generator that generates random bits according to the uniform dis-
tribution. We explain how such a device is used to generate random
numbers.

We want to generate uniformly distributed random numbers in
the set {0,1,..., m}, m € N. We set n = sizem = [logm] + 1. Then
we generate n random bits by, . . ., b,. If the numbera =)", h;2"™

112 _ 4. Probability and Perfect Secrecy

is greater than m, then we forget it and generate a new one in the
same way. Otherwise, a is the random number. It is easy to verify
that the numbers a that are generated in this way are uniformly

distributed random numbers in the set {0, 1, ..., m}.
If we want to generate uniformly distributed random n-bit num-
bers, n € N, then we generate n — 1 random bits by, ..., b, and set

b, =1and outputa = Y i, hi2" ™.

4.7 Pseudorandom Numbers

If it is too time-consuming to generate true random numbers, then
pseudorandom number generators are used. A pseudorandom num-
ber generator is an algorithm that, given a short sequence of random
bits, produces a long sequence of bits that “looks” random. This
means that the output sequence cannot be distinguished in poly-
nomial time from a true random sequence. A detailed description
of the corresponding theory can be found in [14]. Pseudorandom
number generators that are used in practice can be found in [24].

4.8 Exercises

Exercise 4.8.1

Let S be a finite set and Pr a probability distribution on 8. Prove the
following:

1. Pr(#) = 0.

2. A C B C Simplies Pr(A) < Pr(B).

Exercise 4.8.2
In an experiment, m is chosen with uniform distribution from

{1,2,...,1000}. Determine the following probabilities:

1. for choosing a square;
2. for choosing a number with i prime factors, 1 > 1.

4.8. Exercises 11 3

Exercise 4.8.3

Find the sample space and probability distribution that model the
experiment of flipping two coins. Describe the event “at least one
coin comes up heads” formally and compute its probability.

Exercise 4.8.4
Determine the probability that a randomly chosen block cipher with
alphabet {0, 1} and block length 2 is affine linear.

Exercise 4.8.5

We throw two dice. Determine the probability that they both show
different numbers under the condition that the sum of both numbers
is even.

Exercise 4.8.6
Determine n such that the probability for two of n people having the
same birthday is at least 9/10.

Exercise 4.8.7

Suppose that four-digit PINs are randomly distributed. How many
people must be in a room such that the probability that two of them
have the same PIN is at least 1/2?

Exercise 4.8.8
Prove that the Caesar cipher does not have perfect secrecy.

Exercise 4.8.9

Consider the linear block cipher with block length n and alphabet
{0,1}". On the key space of matrices A € {0, 1} with det(A) =
1 mod 2, choose the uniform distribution. Does this cryptosystem
have perfect secrecy?

DES

CHAPTER

In Chapter 3, we defined cryptosystems and described some his-
torical examples. All of the cryptosystems in Chapter 3 could be
broken because they are affine linear. A cryptosystem with perfect
secrecy, the Vernam one-time pad, was presented in Chapter 4, but
it turned out to be very inefficient. In this chapter, we describe the
Data Encryption Standard (DES). For many years, this cryptosystem
was the encryption standard in the U.S. and was used worldwide.
Today, DES is no longer secure. In October 2000 the US Secretary
of Commerce announced the nation’s proposed new Advanced En-
ryption Standard. He named the Rijndael data encryption formula
as the winner of a three-year competition (see [28]). Nevertheless,
there are secure variants of DES (see Section 3.7), and most of the
suggested successors to DES are similar to DES. Therefore, DES is
still an important cryptosystem and we describe it here.

5.1 Feistel Ciphers

The DES algorithm is a so-called Feistel cipher. In this section, we
explain Feistel ciphers.

115

116 5. DES

We use a block cipher with alphabet {0,1}. Let t be its block
length. Let fx be the encryption function for the key K. The Feistel
cipher that is constructed from these ingredients is a block cipher
with block length 2t and alphabet {0, 1}. We fix a number r > 1 of
rounds, a key space K, and a method that, from any key k € K, gen-
erates a sequence K, ..., K, of round keys that belong to the key
space of the underlying block cipher.

The encryption function Ej of the Feistel cipher for key k € K
works as follows. Let p be a plaintext of length 2t. We split it into two
halves of length t; that is, we write p = (Lo, Ro), where Ly is the left
half and R, is the right half. Then the sequence

(Li, R) = (Ri=1, Li-1 ® fx(Ri-1)), 1=<i=7 (5.1)
is constructed, and we set
Ey(Lo, Ro) = (Ry, Ly).

Clearly, the security of the Feistel cipher depends on the security
of the internal block cipher. This security is increased by iterated

application.
We explain the decryption of the Feistel cipher. From (5.1), we

immediately obtain
(Rr'—l yLi1) = (Ln R, @ jK. [L,‘]), liZr (52]

Using this equation in r rounds with the reverse key sequence
(Ky,Ky—1, ..., K1), the plaintext pair (Rq, Lo) is reconstructed from
the ciphertext (R,, L,). Hence, for the Feistel cipher, encryption and
decryption are the same except that the key sequence is reversed.

5.2 DES Algorithm

The DES cryptosystem is a slightly modified Feistel cipher with al-
phabet {0, 1} and block length 64. In this section, we explain in detail
how DES works.

. a8

5.2. DES Algorithm 117

TABLE 5.1 Valid DES key.

0O 0o 01 0 0 1 1
0O o1 1 0 1 0 0
0O 1 0 1 0 1 1 1
O 1 1 1 1 0 0 1
I 0 0 1 1 0 1 1
1 01 1 1 1 0 0
110 1 1 1 1 1
1 1.1 1 0 0 0 1

5.2.1 Plaintext and ciphertext space

The plaintext and ciphertext spaces of DES are P = C = {0, 1}%%. The
DES keys are all bitstrings of length 64 with the following property.
If a 64-bit DES key is divided into eight bytes, then the sum of the
eight bits of each byte is odd. This means that seven of the eight bits
determine the value of the eighth bit. Transmission errors of one bit
can be corrected. Therefore, the key space is

8
K= l(bl,...,bﬁ.;)e {0,1,64izb3k-+, =1 mod 2.
i=1

The number of DES keys is 2°° ~ 7.2 x 10'°,

Example 5.2.1
A valid hexadecimal DES key is

133457799BBCDFF1.

Its binary expansion can be found in Table 5.1.

5.2.2 Initial permutation

Given a plaintext p, DES works in three steps.

Prior to the Feistel encryption, DES applies an initial permutation
(IP) to p. This is a bit permutation on bit vectors of length 64 that is
independent of the chosen key. The permutation IP and its inverse
are shown in Table 5.2. Table 5.2 is read as follows: If p € {0,1}%,

P = PiP2Ps - - - Pea, then IP(p) = psgpsopaz - . . p7.

118 _ 5. DES

TABLE 5.2 The initial permutation, IP.

P
58 50 42 34 26 18 10
60 52 44 36 28 20 12
62 54 46 38 30 22 14
64 56 48 40 32 24 16
57 49 41 33 25 17 9
59 51 43 35 27 19 11
61 53 45 37 29 21 13
63 55 47 39 31 23 15
P71

N W e e N

40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30
37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 125

A 16-round Feistel cipher is applied to the permuted plaintext.
Finally, the ciphertext is constructed using the inverse permutation
Pt

¢ = IP "'(RysLie).

5.2.3 Internal block cipher

We describe the block cipher on which the DES Feistel cipher is
based. Its alphabet is {0, 1}, its block length is 32, and its key space
is {0, 1}*8. We explain the encryption function fx : {0, 1}* — {0, 1}*?
for a key K € {0, 1}*® (see Figure 5.1).

The argument R € {0, 1}* is expanded by the expansion function
E :{0,1}** = {0,1}*%. This function is shown in Table 5.3. If R =
R] Rz o R;;z, the.n E{R) = R32R1 Rz T Rng] '

Next, E(R) @ K is computed, and the result is divided into eight
blocks B;, 1 < i < 8 of length 6, namely,

E(R) ® K = B, B,B3B4BsBsB7Bg (5.3)

5.2. DES Algorithm 119

l " 32 Bit = 48 Bit |
- : E_

L]
(E.) expansion function

l ER) 48 Hﬂ P

FIGURE 5.1 The f-function of DES.

is computed with B; € {0,1}°, 1 <i < 8. In the next step, functions
§:{0,1)* = {0,1)!, 1<i<8

are used (the so-called S-boxes). They are described below. Using
those functions, the string

C= C] CzC3C4C§CEC763

is determined, where C; = §;(B;), 1 < i < 8. It has length 32. The
permutation P from Table 5.3 is applied to this string. The result is
fx(R).

5.2.4 S-boxes

Now we describe the S-boxes §;, 1 < i < 8. They are the heart of DES
because they are highly nonlinear (see Exercise 5.5.6). They are
shown in Table 5.4. Each S-box is represented by a table with four
rows and 16 columns. For each string B = b;b,b3b,bsbs, the value
Si(B) is computed as follows. The integer with binary expansion b, bs
is used as the row index. The integer with binary expansion b,b3b,bs
is used as the column index. The entry of the S-box in this row and

120 5. DES

TABLE 5.3 The functions E and P.

E P

32 1 2 3 e 5 16 7 20 21

4 5 6 7 8 9 29 12 28 17

8 9 10 1 12 13 1 15 23 26
12 13 14 15 16 17 5 18 31 10
16 17 18 19 20 21 2 8 24 14
20 21 22 23 24 25 32 27 3 9
24 25 26 27 28 29 19 13 30 6
28 29 30 31 32 1 22 11 4 25

column is written in binary expansion. This expansion is padded
with leading zeros such that its length is four. The result is S;(B).

Example 5.2.2
We compute 8, (001011). The first bit is 0 and the last bit is 1. There-

fore, the row index is the integer with binary expansion 01 (i.e., 1).
The four middle bits are 0101. This is the binary expansion of 5.
Therefore, the column index is 5. The entry in row 1 and column
5 of the first S-box is 2. The binary expansion of 2 is 10. Therefore,
$,(001011) = 0010.

5.2.5 Keys

Finally, we explain how the round keys are computed. Letk € {0, 1
be a DES key. We generate the round keys K;, 1 < i < 16, of length
48. We define the values v;, 1 <i < 16, as follows.

}64

1 forie{1,2,9, 16}
Vi=1 2 otherwise.

The round keys are computed by the following algorithm using the
functions

PCI : {0,1)% — {0,1)2x{0,1}?, PC2:{0,1}*x{0,1}*®* - {0,1}*,

which are described later.

5.2. DES Algorithm

121

TABLE 5.4 S-boxes of DES.

i Column
OO EHEEIE e e o 2 (3] 4] 15]
S
[ojf14| 4]13| 1] 2[15| 11| 8] 3[10] 6] 12] 5] 9] o] 7
(1] of1s| 7| 414 2[13]| 1[10] 6] 12]] 9| 5] 3] &
[2]] 4| 1|14] 8[13| 6| 2| 11|15]|12 9 7 31 10 5 0
[3] 15(12 8| 2] 4| 9] 1 5111 3| 14 10 0 6] 13
S,
ojf15] 1| 8[14] 6[1| 3] 4] o] 7] 2] 13] 12] o[5] 10
(1] 3|13| 4| 7|15 2| 8|14|12| 0 11 10 6 9| 11 5
2] of14| 7| nnfro| af13] 1] 5] 8| 12] 6] 9| 3| 2] 15
[3]f13| 8|10| 1| 3|15| 4| 2{11| 6 7| 12 0 5| 14 9
S;
[jf10] o] 9f{14] 6] 3[15] 5] 1]13] 12] 7] u| 4] 2] 8
nf13] 7] o] 9f 3| 4] 6]10] 2| 8| 5| 14] 12] 1| 15[1
[(2]]13| 6] 4| 9| 8[15] 3| ofn| 1 21 12 5| 10| 14 7
[3] 1110(13] Of 6| 9| 8| 7| 4|15]| 14 3 11 5 2| 12
Sy
[0] 7113114 3| 0] 6] 910 1 2 8 5| 11 12 41 15
(1f13] 8| 1| 50 6[15] o] 3] 4] 7| 2| 12] 1] 10] 14| 9
(2110 6| 9] of12(11| 7|13]15] 1 3| 14] 5 2 8 B
B]] 3[15] of s6f10] 1[13] 8] 9] 4] 5| u| 12| 7| 2] 14
Ss
[01] 2(12| 4| 1f{ 7|10| 11| 6| 8| 5 3| 15] 13 0| 14 9
(fra)] 2]12] 4| 7[13] 1] 5] o[15] 10] 3] 9] 8| 6
2] 4] 2] 1[nfwf13] 7| 8f15] 9] 12] 5] 6| 3| o] 14
By 812 7] 1|14f 2|13] 6/15] o 9f 10| 4] 5] 3
Sq
D_] 121 11015 9| 2| 6] 8] 0]13 3 41 14 7 5 11
[11j10]15]| 4| 2| 7[12] 9| 5] 6| 1| 13] 14] of u| 3| 8
[2]] 9|14|15| 5| 2| 8|12| 3| 7| O 41 10 1 13| 11 6
B)] 4] 3| 2[12] 9f 5[15[1w|nuf1a] 1| 7] 6] o 8| 13
S,
0] 4| 11| 2[{14]15[o 8|13} 3[|12] 9] 7| 5[10] 6] 1
[]] 13| O 11 71 4] 9] 1]10)14] 3 5| 12 21 15 8 6
[2]] 1| 4| 13f12] 3] 7|14|10[15] 6] 8] o] 5| 9| 2
[3]] 61113 8| 1| 4|10| 7| 9| 5 0| 15] 14 2 3| 12
Sy
|(J] 13 2| 8| 4] 6]15]| 11 1j10| 9 30 14 5 o 12 7
[l] 1115|113 810 3| 7| 4)12| 5 6] 11 0| 14 9 2
[2]] 7] 11| 4| 1] 9f12][14] 2] o 6] 10| 13| 15] 3| 5| 8
[3]] 2| 1|14 7| 4|10| 8|1315]|12 9 0 3 5 6 11

122 5. DES

TABLE 5.5 The functions PC1 and PC2.

PCl PC2
57 149 | 41 |33 | 25|17 | 9 14 | 17 | 11 | 24 1 5
1158|5042 |34 26|18 3128 |15 6| 21 | 10
10 2|59 |51 |43 | 35| 27 23119 | 12 4| 26 8
19 | 11 3160|5244 | 36 16 7271|2013 2
63 | 55|47 [39|31 | 23|15 41 | 52 | 31 | 37 | 47 | 55
7|62 | 54|46 |38 | 30 | 22 30 |40 | 51 | 45 | 33 | 48
14 6|61 53|45 | 37| 29 44 | 49 | 39 [56 | 34 | 53
21 | 13 5128 |20|12| 4 46 | 42 | 50 | 36 | 29 | 32

1. Set (Cy, Do) = PC1(k).
2. For 1 <i < 16, do the following:

(a) Let C; be the string that is obtained from C;—, by a circular
left shift of v; positions.

(b) Let D; be the string that is obtained from D;_, by a circular
left shift of v; positions.

(c) Determine K; = PC2(C;, Dy).

The function PC1 maps a bitstring k of length 64 to two bitstrings
C and D of length 28. This is done according to Table 5.5. The upper
half of the table describes C. If k = kyk; . . . ks, then C = kszkyg . . . k3g.
The lower half of the table represents D, so D = kgskss ... ks. The
function PC2 maps a pair (C, D) of bitstrings of length 28 (i.e., a
bitstring of length 56) to a bitstring of length 48. The function is
shown in Table 5.5. The value PC2(b .. .bsg) is biaby7 ... bs,.

This concludes the description of the DES encryption algorithm.

5.2.6 Decryption

To decrypt a ciphertext, DES is applied with the reverse key
sequence.

5.3. An Example 123

5.3 An Example

We illustrate the DES algorithm by way of an example.
We encrypt the plaintext p = 0123456789ABCDEF. Its binary
expansion is

0 0 0 0 0 0 0 1
0 061 0 0 0 1 1
01 0 0 0 1 0 1
0O 1 1 0 0 1 1 1
1 0 0 01 0 0 17
1 01 0 1 0 1 1
1 1.0 0 1 1 0 1
11 1 0 1 1 1 1
The application of IP yields
1 1.0 0 1 1 0 0
0O 0 0 0 0 0 0 0
110 0 1 1 0 0
11 1 1 1 1 1 1
1 1.1 1 0 0 0 0F
1 o0 1 0 1 0 1 0
r 111 0 0 0 0
1 01 0 1 0 1 0

sO we obtain

Ly = 11001100000000001100110011111111,
Ry = 11110000101010101111000010101010.

We use the DES key from Example 5.2.1,
133457799BBCDFF'1,

whose binary expansion is

1 24 5. DES
0o 0 0 1 0 0 1 1
0 01101 00
01 01 0 1 1 1
01 1 1 1 0 0 1
1 0 01 1 0 1 1
1 01 1.1 1 0 0
1 10 1 1 1 1 1
1 1. 1.1 0 0 0 1

We compute the first round key. We have

Cy = 1111000011001100101010101111,
Dy = 0101010101100110011110001111
C; = 1110000110011001010101011111,
Dy = 1010101011001100111100011110

and therefore
K, = 000110110000001011101111111111000111000001110010.
Using this key, we obtain
E(Rp) @ K, = 011000010001011110111010100001100110010100100111,

fk,(Ro) = 00100011010010101010100110111011,
and finally
Ry = 11101111010010100110010101000100.

The other rounds are computed analogously.

5.4 Security of DES

Since its invention, the security of DES has been studied very
intensively. Special techniques such as differential and linear crypt-
analysis have been invented to attack DES (see [24] and [32]), but
the most successful attack has been an exhaustive search of the key
space. With special hardware or large networks of workstations, it

5.5. Exercises]25

is now possible to decrypt DES ciphertexts in a few days or even
hours.

Today, DES can only be considered secure if triple encryption as
described in Section 3.7 is used. In this context, it is important to
know that DES is not a group. This means that for two DES keys k;
and k; there is, in general, not a third DES key k3 such that Des i, o
Des, = Desy,. If DES were a group, then multiple encryption
would not lead to increased security. In fact, the subgroup that the
DES encryption permutations generate in the permutation group
Ssar is at least of order 104 (see[24]).

5.5 Exercises

Exercise 5.5.1
Verify the example from Section 5.3 and compute the second round.

Exercise 5.5.2
Compute the third round of the encryption in Section 5.3.

Exercise 5.5.3
Prove that Des (m, k) = Des (m, k) holds for any m, k € {0, 1}%.

Exercise 5.5.4
Show that C;s and D4 are obtained from C, and D, by a circular
right shift of one position.

Exercise 5.5.5

1. Suppose that K; = K, = ... = K;4. Show that all bits in C, are
equal as well as all bits of D;.

2. Conclude that there are exactly four DES keys for which all round
keys are the same. They are called weak DES keys.

3. Determine the four weak DES keys.

Exercise 5.5.6
Which of the functions IP, E(R)®K, §;, 1 <i < 8, P, PC1, and PC2 are
linear for a fixed key? Prove the linearity or give a counterexample.

- Prime Number
~ Generation

CHAPTER

In many public-key cryptosystems, large random prime numbers

are used. They are produced by generating random numbers of the

right size and by testing whether those random numbers are prime.

In this chapter, we explain how we can efficiently decide whether

a given positive integer is a prime number. All algorithms that are

presented in this chapter are implemented in the library LIDIA [22].
By small Roman letters we denote integers.

6.1 Trial Division

Let n be a positive integer. We want to know whether n is a prime
number. A simple algorithm is based on the following theorem.

Theorem 6.1.1
If n is a composite positive integer, then n has a prime divisor p which
is less than or equal to \/n.

Proof. Since n is composite, we can write n = ab with a > 1 and
b > 1. Now we have a < \/n or b < /n, since otherwise n = ab >
J/ny/n = n. Suppose that a < /n. By Theorem 1.11.2, a has a prime

127

128 6. Prime Number Generation

divisor p. That prime divisor also divides n and p < a < n. This
proves the assertion. O

Theorem 6.1.1 suggests the following algorithm to test whether n
is prime. The algorithm checks, for all prime numbers p that are less
than or equal to /n, whether they divide n. If a prime divisor of n is
found, then n is composite. Otherwise, n is prime. The prime num-
bers p < /n can either be generated by the sieve of Eratosthenes
(see[4]) or be obtained from a precomputed table. It is also possible
to test whether n is divisible by any odd, positive integer m < /n.
This procedure is called trial division.

Example 6.1.2

We use trial division to decide whether n = 15413 is prime. We have
[v/n] = 124. Hence, we must test whether one of the prime numbers
p < 124 divides n. The odd primes p < 124 are 3, 5, 7, 11, 13, 17,
19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101,
103, 107, 109, 113. None of them divides n. Therefore, n is a prime
number.

Trial division can also be used to find the prime factorization of
n. If a prime factor p is found, then n is replaced by n/p and trial
division is applied again. This is repeated until n is proven prime.

Example 6.1.3

We factor 476 by trial division. The first prime divisor that we find is
2 and 476/2 = 238. The next prime factor is again 2 and 238/2 = 119.
The next prime factor is 7 and 119/7 = 17. The number 17 is prime.
Hence, the prime factorization of 476 is 476 = 2> * 7 x 17.

If n is large, then trial division becomes very inefficient. In fac-
toring algorithms, trial division is typically used to find all prime
factors that are less than 10°.

To estimate the running time of trial division, we need an esti-
mate for the number of primes below a given bound. We use the
following notation.

Definition 6.1.4
If x is a positive real number, then 7(x) denotes the number of primes
that are less than or equal to x.

N 2

6.2. Fermat Test 129

Example 6.1.5
We have n(1) = 0, n(4) = 2. As we have seen in Example 6.1.2, we
also have m(124) = 30.

The following theorem is presented without proof. For the proof,
see [29].

Theorem 6.1.6
1. For x > 17, we have m(x) > x/ logx.
2. Forx > 1, we have n(x) < 1.25506(x/ log x).

It follows from Theorem 6.1.6 that at least [/n/log./n] di-
visions are necessary to prove n prime by trial division. For the
RSA cryptosystem, we need primes that are greater then 107°. To
prove the primality of such a number by trial division, more than
1072/10g 107%"% > 0.36 % 10%® divisions are necessary. This is impos-
sible. In the following sections, we describe more efficient primality
tests.

6.2 Fermat Test

It is expensive to prove that a given positive integer is prime. But
there are very efficient algorithms that prove the primality of a
positive integer with high probability. Such algorithms are called
primality tests.

A first example of a primality test is the Fermat test. It is based
on Fermat's theorem (2.11.1) in the following version.

Theorem 6.2.1 (Fermat’s theorem)
If n is a prime number, then @' = 1 mod n for all a € Z with
ged(a,n) = 1.

This theorem can be used to determine that a positive integer is
composite. We choose a positive integera € {1,2,...,n—1}. We use
fast exponentiation from Section 2.12 to compute y = a"~' mod n.
If y # 1, then n is composite by Theorem 6.2.1. If y = 1, then we do
not know whether n is prime or composite, as the following example
shows.

130 6. Prime Number Generation

Example 6.2.2
Consider n = 341 = 11 % 31. We have

2349 = 1 mod 341,

although n is composite. Therefore, if we use the Fermat test with
n = 341 and a = 2, then we obtain y = 1, which proves nothing. On
the other hand, we have

3% = 56 mod 341.

If we use the Fermat test with n = 341 and a = 3, then n is proven
composite.

If the Fermat test proves that n is composite, it does not find a
divisor of n. It only shows that n lacks a property that all prime num-
bers have. Therefore, the Fermat test cannot be used as a factoring
algorithm.

The Fermat test is implemented in the LIDIA method bool
fermat (const bigint & a), which belongs to the class bigint.

6.3 Carmichael Numbers

The Fermat test can prove that a positive integer n is composite, but
it cannot prove that n is prime. However, if the Fermat test was not
able to find a proof for the compositeness of n for many bases a, then
it seems likely that n is prime. Unfortunately, there are composite
integers that cannot be proven composite by the Fermat test with
any basis. They are called Carmichael numbers and we discuss them
now.

We need two definitions. If n is an odd composite number and if
a is an integer that satisfies

a" ' =1 modn,

then n is called a pseudoprime to the base a. If n is a pseudo-
prime to the base a for all integers a with gcd(a,n) = 1, then n
is called a Carmichael number. The smallest Carmichael number is
561 = 3-11 - 17. It has been shown that there are infinitely many
Carmichael numbers. Because of the existence of Carmichael num-
bers, the Fermat test is not optimal for practical use. A better choice

R 23

6.3. Carmichael Numbers]3]

is the Miller-Rabin test, which will be described shortly. For the anal-
ysis of the Miller-Rabin test, we need the following characterization
of Carmichael numbers.

Theorem 6.3.1

An odd composite number n > 3 is a Carmichael number if and only
if it is square free (i.e., it has no multiple prime divisors), and for each
prime divisor p of n the integer p — 1 divides n — 1.

Proof. Letn > 3 be a Carmichael number. Then
a"'=1modn (6.1)

for any integer a that is prime to n. Let p be a prime divisor of n,
and let a be a primitive root mod p that is prime to n. Such a primi-
tive root can be constructed using the Chinese remainder theorem.
Then(6.1) implies

a" ' =1 mod p.

By Theorem 2.9.2, p—1, the order of a mod p, divides n—1. It remains
to be shown that p* does not divide n. Suppose that p? divides n.
Then p(p — 1) divides ¢(n). By Exercise 2.22.20, there is a subgroup
of (Z/nZ)* of order p and hence an integer a which is prime to n
and whose order mod n is p. It follows from (6.1) and Theorem 2.9.2
that p divides n — 1 this is impossible since p divides n.

Conversely, let n be square-free and assume that p — 1 divides
n — 1 for all prime divisors p of n. Let a be an integer that is prime
to n and let p be a prime divisor of n. Then

a’'=1modp
by Fermat's little theorem, and therefore

a" ' =1 mod p,
since n — 1 is a multiple of p — 1. This implies

a"'=1modn

because the prime divisors of n are pairwise distinct. O

132 _6. Prime Number Generation

6.4 Miller-Rabin Test

In this section, we describe the Miller-Rabin test. Contrary to the
Fermat test, the Miller-Rabin test can prove the compositeness of
any composite positive integer. In other words, there is no analog of
Carmichael numbers for the Miller-Rabin test.

The Miller-Rabin test is based on a modification of Fermat's little
theorem. The situation is the following. Let n be an odd, positive
integer and let

s = max{r € N: 2" divides n — 1},
so 2° is the largest power of 2 that divides n — 1. Set
d=(n-1)/2"
Then d is odd.

Theorem 6.4.1
If nis a prime and if a is an integer that is prime to n, then with the
previous notation we have either

a’=1modn (6.2)
or there exists v in the set {0,1,...,8 — 1} with
a’? = —1 mod n. (6.3)

Proof. Letabe an integer that is prime to n. The order of the multi-
plicative group of residues mod n is n — 1 = 2°d because n is a prime
number. By Theorem 2.9.5, the order k of the residue class a’ + nZ
is a power of 2. If this order is k = 1 = 2", then

a® =1 modd.

If k > 1, then k = 2! with 1 <1 < s. By Theorem 2.9.5, the residue
class a? ' + nZ has order 2. By Exercise 2.22.20, the only element
of order 2 in (Z/nZ)* is —1 + nZ. This implies

rd _

a —1 mod n

forr=1—1. Note that0 <r < s. O

*

6.4. Miller-Rabin Test 133

If n is a prime, then at least one of the conditions from Theorem
6.4.1 holds. Therefore, if we find an integer a that is prime to n and
that satisfies neither (6.2) nor (6.3) for some r € {0,...,s — 1}, then
n is proven composite. Such an integer is called a witness for the
compositeness of n.

Example 6.4.2

Let n = 561. Since n is a Carmichael number, the Fermat test cannot
prove its compositeness. But a = 2 is a witness for the compos-
iteness of n, as we will now show. We have s = 4, d = 35 and
2% = 263 mod 561, 22** = 166 mod 561, 2% = 67 mod 561,
2935 = 1 mod 561. Therefore, Theorem 6.4.1 proves that 561 is
composite.

For the efficiency of the Miller-Rabin test, it is important that
there are sufficiently many witnesses for the compositeness of a
composite number. This is shown in the next theorem.

Theorem 6.4.3

If n > 3 is an odd composite number, then the set {1, ..., n— 1} contains
at most (n — 1)/4 numbers that are prime to n and not witnesses for the
compositeness of n.

Proof. Letn > 3 be an odd, composite positive integer.
We want to estimate the number of elementsa € {1,2,...,n—1}
with ged(a, n) =1 and

a” =1mod n (6.4)

or
a*? = —1mod n (6.5)
forsomer € {0,1,...,s—1}. If such an a does not exist, then we are

finished. Suppose such a nonwitness a exists. Then there is one for
which(6.5) holds. In fact, if a satisfies (6.4), —a satisfies(6.5). Let k
be the maximum value of r in {0,1,...,s — 1} for which there is an
integer a that satisfies gcd(a, n) = 1 and(6.5). We set

m = 2%d.

134 6. Prime Number Generation

Let

i l—[pc[P)

pin

be the prime factorization of n. We define the following subgroups
of (Z/nZ)*:

] ={a+nZ:gcd(a,n)=1,a"" =1 mod n},

K = {a+nZ: ged(a,n) = 1,a™ = £1 mod p°?) for all p|n},
L ={a+nZ:gcd(a,n)=1,a" = £1 mod n},
M = {a+nZ: gcd(a,n) = 1,a™ =1 mod n}.

We have
MCLCKC]J C(Z/nZ)".

For each a that is prime to n and is not a witness for the compos-
iteness of n, the residue class a + nZ belongs to L. We will prove the
assertion of the theorem by proving that the index of L in (Z/nZ)*
is at least four.

The index of M in K is a power of 2 because the square of each
element of K belongs to M. Therefore, the index of L in K is also a
power of 2, say 2. If j > 2, then we are finished.

Ifj = 1, then n has two prime divisors. It follows from Exercise
6.6.5 that n is not a Carmichael number. This implies that] is a
proper subgroup of (Z/nZ)* and the index of] in (Z/nZ)* is at least
2. By definition of m, the index of L in K is also 2. Therefore, the
index of L in (Z/nZ)* is at least 4.

Finally, letj = 0. Then n is a prime power. In this case, it can be
verified that J has precisely p — 1 elements, namely the elements of
the subgroup of order p — 1 of the cyclic group (Z/p°Z)*. Therefore,
the index of J in (Z/nZ)* is at least 4 unless we have n = 9. For
n = 9, the assertion can be verified directly. a

Example 6.4.4

We determine all witnesses for the compositeness of n = 15. We
have n — 1 = 14 = 2% 7. Therefore, s = 1 and d = 7. An integer
a, which is prime to 15, is a witness for the compositeness of n if

6.5. Random Primes 135

and only if a’ mod 15 # 1 and a” mod 15 # —1. The following table
contains the corresponding residues:

a 1 2 4 7 8 11 13 14
a’modl5|[1 8 4 13 2 11 7 14

The only nonwitness is 1.

To apply the Miller-Rabin test to an odd, positive integer n, we
choose a random numbera € (2,3,...,n—1}. If gcd(a, n) > 1, then
n is composite. Otherwise, we compute a, a®, . . ., a* ' If we find
a witness for the compositeness of n, then we have proved that n
is composite. By Theorem 6.4.3, the probability that n is composite
and we do not find a witness is at most 1/4. If we repeat the Miller-
Rabin test t times and if n is composite, then the probability of not
finding a witness is at most (1/4)". For t = 10, this probability is at
most 1/2% ~ 1/10°. This is very unlikely. A more detailed analysis
of the Miller-Rabin test has shown that the error probability is in fact
even smaller.

The Miller-Rabin test with n iterations is implemented in the
LIDIA method bool is_prime(const bigint & a, int n) in the
class bigint.

6.5 Random Primes

In many public-key systems, random primes of a fixed bit length are
required. We describe the construction of such random primes.

We want to generate a random prime of bit length k. We generate
a random odd k-bit number (see Section 4.6). For this purpose, we
set the first and last bit of n to 1, and the remaining k — 2 bits are
chosen randomly with uniform distribution. Then we test whether
n is prime. First, we check whether n is divisible by a prime num-
ber below a predefined bound B, typically B = 10°. If no prime
divisor of n is found, then we apply the Miller-Rabin test t times.
The choice t = 3 suffices to make the error probability less than
(1/2)* if k > 1000. If this test finds no witness for the compos-
iteness of n, then n is considered prime. If trial division is much

R 2

1 36 6. Prime Number Generation

more efficient than the Miller-Rabin test, then a larger B can be
chosen.

6.6 Exercises

Exercise 6.6.1
Use the Fermat test to show that 1111 is not a prime number.

Exercise 6.6.2
Determine m(100). Compare your result with the bounds from
Theorem 6.1.6.

Exercise 6.6.3
Determine the smallest pseudoprime to the base 2.

Exercise 6.6.4 _
Use the Fermat test to prove that the fifth Fermat number Fs = 2% +1
is composite. Prove that any Fermat number is a pseudoprime to the
base 2.

Exercise 6.6.5
Prove that a Carmichael number has at least three different prime
factors.

Exercise 6.6.6

Use the Miller-Rabin test to prove that the fifth Fermat number F5 =
22 +1is composite. Compare the efficiency of the test with the
efficiency of the Fermat test (see Exercise 6.6.4).

Exercise 6.6.7

Use the Miller-Rabin test to prove that the pseudoprime n from Ex-
ercise 6.6.3 is composite. Determine the smallest witness for the
compositeness of n.

6.6. Exercises 137

Exercise 6.6.8
Determine the number of Miller-Rabin witnesses for the composite-

ness of 221 in {1, 2, ..., 220}. Compare your result with the bound in
Theorem 6.4.3.

Exercise 6.6.9

Write a LIDIA program that implements the Miller-Rabin test and
use it to determine the smallest 512-bit prime.

Public-Key
- Encryption

CHAPTER

7.1 Idea

A key problem of the symmetric cryptosystems that we have de-
scribed so far is key distribution and key management. When Alice
and Bob use such a system, they must exchange a secret key before
they can secretly communicate. For the key-exchange, they need,
for example, a secure channel or a courier. The key-exchange prob-
lem becomes even more difficult if many people want to exchange
encrypted messages, for example on the Internet. If a communica-
tion network has n users and any two of them exchange a key, then
n(n — 1)/2 secret key exchanges are necessary and all those keys
have to be stored securely. For n = 1000, there are 499, 500 keys.
Another possibility for organizing the key exchange is to use a key
center, in which every user exchanges a secret key with this key
center. If Alice wants to send a message to Bob, then she encrypts
the message using her secret key and sends it to the key center. The
center, knowing all secret keys, decrypts the message using Alice’s
key, encrypts it with Bob’s key, and sends it to Bob. In this way, the
number of key exchanges for n users is reduced to n. However, the
key center gets to know all secret messages, and it must store all n
keys securely.

139

140 _7. Public-Key Encryption

In public-key systems, key-management is much simpler. Such
systems have already been introduced in Section 3.2. In a public-key
system, only the decryption keys must be kept secret. A decryption
key is therefore called a secret key or a private key. The corresponding
encryption key can be published. It is called a public key. Comput-
ing private keys from their corresponding public keys is infeasible.
This is the key property of public-key cryptosystems. A simple key-
management scheme works as follows. In a public directory, each
user is listed with his or her public key. If Bob wants to send a mes-
sage to Alice, he obtains Alice’s public key from the key directory.
Then he uses this public key to encrypt the message and sends the
encrypted message to Alice. Alice is then able to decrypt the message
with her private key.

Example 7.1.1
A directory of public keys may look like this:

Name Public Key

Buchmann | 13121311235912753192375134123
Maurer 84228349645098236102631135768
Alice 54628291982624638121025032510

In public-key systems, no key exchange between users is nec-
essary. Encryption keys are listed in public directories. Although
everybody may read those directories, they must be protected from
unauthorized writing. If the attacker, Oscar, is able to replace Al-
ice’s public encryption key with his own, then he can decrypt the
messages that are sent to Alice. This problem and its solution are
discussed in Chapter 14.

Public-key cryptosystems not only simplify key management but
can also be used to generate digital signatures. This will be shown
in Chapter 11.

Unfortunately, the known public-key systems are not as efficient
as many symmetric cryptosystems. Therefore, in practice, combi-
nations of public-key systems and symmetric systems are used, for
example as follows. Alice wants to send a message m in encrypted
form to Bob. She generates a session key for an efficient symmetric
cryptosystem. Then she encrypts the message m using that session

7.2. RSA Cryptosystem]4]

key and the symmetric system, obtaining the ciphertext ¢. This en-
cryption is fast because an efficient symmetric cryptosystem has
been used. Alice also encrypts the session key with Bob’s public key,
which she obtains from a public directory. Since the session key is
small, this encryption is also fast, although the encryption function
of the public-key system may notbe very efficient. Then Alice sends
the ciphertext ¢ and the encrypted session key to Bob. Bob decrypts
the session key using his private key. Then he decrypts the cipher-
text ¢ with the session key, obtaining the original message m. Here,
the public-key system is only used for the exchange of the session
key. This combines the elegant key management of the public-key
system with the efficiency of the symmetric cryptosystem.

In this chapter, we will describe some important public-key
systems.

7.2 RSA Cryptosystem

The RSA system, named after its inventors Ron Rivest, Adi Shamir,
and Len Adleman, was the first public-key cryptosystem and is still
the most important. Its security is closely related to the difficulty of
finding the factorization of a composite positive integer that is the
product of two large primes. We first explain how the RSA system
works and then we discuss its security and efficiency.

7.2.1 Key generation

We explain how Bob generates his private and public RSA keys.
Bob generates randomly and independently two large (odd)
prime numbers p and q (see Section 6.5) and computes the product

R'=D4.
Bob also chooses an integer e with

l<e<gn=({p- 1)(q—1)and ged (¢,(p—1)(g—1)) = 1.

142 7. Public-Key Encryption

Note that e is always odd since p—1 is even. Bob computes an integer
d with

l<d<(p—1)g—1)andde=1mod (p —1)(g—1). (7.1)

Since gcd (e, (p — 1)(g — 1)) = 1, such a number d exists. It can be
computed by the extended euclidean algorithm (see Section 2.6).

Bob's public key is the pair (n,). His private key is d. The number
n is called the RSA modulus, e is called the encryption exponent, and
d is called the decryption exponent. Note that the secret key d can be
computed from the encryption exponent ¢ if the prime factors p and
g of n are known. Therefore, if the attacker, Oscar, is able to find the
prime factorization of n, then he can easily find Bob's secret key d.
We will discuss in Section 7.2.4 how the factors p and g have to be
chosen in order to make the factorization of n infeasible.

Example 7.2.1

Bob chooses the prime factors p = 11 and g = 23. Then n = 253 and
(p—1)(g—1) = 10%22 = 4-5-11. The smallest possible ¢ is ¢ = 3 since
gcd(3, 220) = 1. The extended euclidean algorithm yields d = 147.

7.2.2 Encryption

We first explain how to encrypt numbers with the RSA system. Then
we show how RSA can be used as a block cipher.

In the first variant, the plaintext space consists of all integers m
with

0<m<n.
A plaintext m is encrypted by computing
¢ = m° mod n. (7.2)

The ciphertext is ¢. If Alice knows the public key (n, €), she can en-
crypt. To make encryption efficient, Alice uses fast exponentiation
(see Section 2.12).

Y’

7.2. RSA Cryptosystem 1473

Example 7.2.2

As in Example 7.2.1, let n = 253 and ¢ = 3. Then the plaintext
space is {0, 1,...,252}. Encrypting the integer m = 165, we obtain
165* mod 253 = 110.

Now we show how to use RSA encryption as a block cipher. We
use the alphabet ¥ = Zy = {0, 1, ..., N—1} for some positive integer
N. We let

k = |logy nJ. (7.3)

A word m; ... my € E¥ corresponds to the integer

k
m = Z m,-Nk_'.
=l

Note that the choice of k in (7.3) implies

k
0<m<(N-1)) N =N'-1<n
=1
We will identify the blocks in £ with their corresponding integers.
The block m is encrypted by computing ¢ = m® mod n. The integer
¢ is written in base N. Since 0 < ¢ < n < N**! the N-adic expansion
of ¢ has length at most k + 1. We can therefore write

k
E= ZCINF‘_", ceEX0<i<k

1=0

The ciphertext block is
C=CpCy...Ck.

In this way, RSA maps blocks of length k injectively to blocks of
length k+1. This is not a block cipher in the sense of Definition 3.6.1
because this definition requires the plaintext and ciphertext blocks to
be of equal length. Nevertheless, the block version of RSA described
here can be used to implement slightly modified versions of ECB
mode and CBC mode (see Sections 3.8.1 and 3.8.2). It is, however,
impossible to use CFB mode or OFB mode because they both use the
block encryption function for both encryption and decryption. The
block encryption function is public, so everybody would be able to
decrypt.

144 7. Public-Key Encryption

Example 7.2.3
We continue Example 7.2.1. Let £ = {0, a, b, ¢} with the identification

Ola|b]|c
01213

With the RSA modulus n = 253, we obtain k = |log, 253] = 3. This
is the length of the plaintext blocks. The length of the ciphertext
blocks is 4. We encrypt the block abb. It corresponds to the block
122, which, in turn, corresponds to the integer

m=1x%4>+2x%4"+2%4° = 26.
This integer is encrypted as
¢ = 26° mod 253 = 119.
We write ¢ in base 4 and obtain
c=1%4"4+3x4>+1%4+3%1.
The ciphertext block is

acac.

7.2.3 Decryption
The decryption of RSA is based on the following theorem.
Theorem 7.2.4

Let (n,) be a public RSA key and d the corresponding private RSA key.

Then
(m%)? mod n =m
for any integer m with 0 < m < n.
Proof. Since ed = 1 mod (p — 1)(q — 1), there is an integer I with
ed=1+I(p—1)(g—1).

Therefore

~1)(g- ~1)(g=1)y!
(m*’-)d = m = ! He-NE-1) — m(m®~DE-hy

7.2. RSA Cryptosystem 145

It follows that
(rnc)r.i = m(m”’“‘”)f‘f_”! = m mod p.

If p is not a divisor of m, then this congruence follows from Fermat's
little theorem (Theorem 2.11.1). Otherwise, the assertion is trivial
because both sides of the congruence are 0 mod p. Analogously, we
see that

(m*)? = m mod gq.
Because p and g are distinct prime numbers, we obtain
(m“)* = m mod n.
The assertion follows from the fact that 0 < m < n.]

If the ciphertext ¢ has been computed as in (7.2), then by
Theorem 7.2.4 the plaintext m can be reconstructed as

m = ¢? mod n.

This shows that the RSA system is, in fact, a cryptosystem. For each
encryption function, there is a decryption function.

Example 7.2.5

We conclude Examples 7.2.1 and 7.2.3. There, we have chosen
n = 253, ¢ = 3, and d = 147. Moreover, we have computed the
ciphertext ¢ = 110. We obtain 110'Y mod 253 = 26, which is the
original plaintext.

7.2.4 Security of the secret key

We have claimed that RSA is a public key system. Therefore, we must
show that it is infeasible to compute the secret key d from the public
key (n, €). In this section, we show that computing d from (n, e) is as
difficult as finding the prime factors p and g of n. This does not prove
the difficulty of computing the secret key directly, but it reduces this
difficulty to that of a famous mathematical problem, the factoring
problem for integers. This problem will be discussed in Chapter 8.
There is no proof that factoring RSA modules is difficult. However,

146 _ 7. Public-Key Encryption

if the factors p and g of the RSA module n are sufficiently large, then
nobody yet knows how to factor n.

There is another advantage to basing the security of a cryp-
tosystem on a famous mathematical problem. Since many mathe-
maticians work on this problem independently of its cryptographic
relevance, significant progress in solving this problem may be dif-
ficult to keep secret. New discoveries are made in many places in
the world and not only by the secret services. In this case, nobody
can take advantage of RSA being broken. But this is clearly pure
speculation and it may very well be that someone already knows an
efficient factoring algorithm and that RSA is insecure.

Now we prove the equivalence of factoring and computing the
secret RSA key from the public RSA key. Suppose that the attacker,
Oscar, knows the prime factors p and g of the RSA modulus n. Then
he can compute the secret RSA key d by solving the congruence
de =1 mod (p — 1)(q — 1), as we have explained in Section 7.2.1.

We show that the converse is also true (i.e., that it is possible to
compute the prime factors p and g of n from n, ¢, d). Let

s = max{t € N : 2 divides ed — 1}
and
k = (ed — 1)/2°.
For computing the factorization of n, we need the following lemma.
Lemma 7.2.6
For all integers a that are prime to n, the order of the residue class a*+nZ

in the group (Z/nZ)* isin {2' : 0 < i < s}.

Proof. Let a be an integer that is prime to n. By Theorem 7.2.4,

we have a®~! = 1 mod n. Since ed — 1 = k2%, this implies (a*)* =
1 mod n. Hence, by Theorem 2.9.2 the order of a* + nZ is a divisor
of 2°. O

The algorithm that factors n using e and d is based on the
following theorem.

7.2. RSA Cryptosystem 147

Theorem 7.2.7
Let a be an integer that is prime to n. If a has a different order mod p and
mod q, then 1 < ged(a®* —1,n) < n forsomet € {0,1,2,...,s—1}.

Proof. By Lemma 7.2.6 and Theorem 2.9.2, the order of a* mod p
and a* mod g is in {2' : 0 < i < s}. Without loss of generality assume
that the order of a* mod p is greater than the order of a* mod q.
Let the order of a* mod g be 2'. Then t < s, a?* = 1 mod g but
a** # 1 mod p. Therefore, ged(a** — 1,n) = q. O

To factor n, we proceed as follows:

1. Choose at random an integer a in the set {1,...,n —1}.

2. Compute g = ged(a, n).

3. If g = 1, then compute g = ged(a?* mod n,n) fort =s—1,s —
2,...untilg > 1ort=0.

4. If g > 1, then g = p or g = q. Hence, the factorization of n is

found and the algorithm terminates. Otherwise, the algorithm
was unsuccessful with the chosen base a.

If the algorithm was not successful with the chosen a, then we
run it again. We will now show that the probability of the algorithm
being successful is at least 1/2. Therefore, the probability of success
after r iterations is at least 1 — 1/2".

Theorem 7.2.8
The number of integers a prime to n in the set {1, 2, ..., n— 1} for which
a* has a different order mod p and mod q is at least (p — 1)(q — 1)/2.

Proof. Let g be a primitive root mod p and mod q. It exists by the
Chinese remainder theorem 2.15.2.

First, we assume that the order of g* mod p is greater than the
order of g* mod q. By Lemma 7.2.6, those orders are powers of 2. Let
xbe an odd integerin {1,...,p—1}andlety € {0,1,...,9 — 2}. Let
a be the least nonnegative solution of the simultaneous congruence

a=g"modp, a=g’modyg. (7.4)

Thena € {1,2,...,n—1}. By Theorem 2.9.5, the order of a* mod p
is the same as the order of g¥ mod p, since the order of g mod p is a
power of 2 and x is odd. But the order of a* mod q is at most the order
of " mod g and hence smaller than the order of a* mod p. Also, the

148 7. Public-Key Encryption

solutions of (7.4) are pairwise distinct because g is a primitive root
mod p and mod q. Therefore, we have found (p—1)(qg—1)/2 integers
ain {1,2,...,n — 1} that are pairwise distinct, prime to n, and for
which the order of a* mod p and mod g are distinct.

If the order of g¥ mod g is greater than the order of g&¥ mod p,
then the proof is analogous.

Finally, assume that the orders of g* mod p and mod g are equal.
Since p—1 and g — 1 are both even, k is odd, and g is a primitive root
mod p and mod g, this order is at least 2. We determine the required
integers a as solutions of the simultaneous congruence (7.4). This
time, the exponent pairs (x, y) consist of one even and one odd num-
ber. We leave it to the reader as an exercise that in this way we can
find (p — 1)(g — 1)/2 solutions a with the desired properties. O

Theorem 7.2.8 implies that the probability of success of our
factoring algorithm is at least 1/2.

Example 7.2.9

In Example 7.2.1, we have n = 253, ¢ = 3, and d = 147. Hence,
ed — 1 = 440. If we use a = 2, then we obtain ged(2%° — 1,253) =
ged (210 — 1, 253) = 253. But ged(2% — 1, 253) = 23.

7.2.5 RSA and factoring

In the previous section, we have shown that factoring the RSA mod-
ulus is as difficult as finding the secret RSA key. But finding the
secret key is not the only possible goal of an attacker. He may also
try to determine the plaintext that corresponds to a given cipher-
text that was encrypted with Bob’s public key. Clearly, he can do
this if he knows Bob'’s secret key or the factorization of Bob's RSA
modulus, but it is an open problem whether being able to decrypt
individual RSA ciphertexts implies the ability to factor n efficiently.
In other words, it is not known whether breaking RSA is as difficult
as factoring integers.

But even if this were known, it would not mean that RSA is secure,
since it is not known whether factoring is difficult. Therefore, it is
very dangerous to implement public-key applications based only on
RSA.

*’

7.2. RSA Cryptosystem 149

7.2.6 Choice of p and q

In order to make the factorization of the RSA modulus infeasible,
its prime factors p and g must be chosen appropriately. Given the
strength of the currently known factoring algorithms, p and g should
both be of almost equal length and at least of binary length 512.

It is a common belief that p and g should be random primes of a
given bit length. However, there are factoring algorithms that work
better if the number n to be factored or one of its prime factors p is
of a special form. For example, if p — 1 has only small prime factors,
then the p — 1 factoring method is successful (see Chapter 8). The
question is whether n and its prime factors p and g should be tested
for those special properties. It seems that this is unnecessary. The
probability of n or its random prime factors being of special form is
negligible, at least for the known factoring algorithms. Hence, if the
random choice works properly, n, p, or g will never have this form.

7.2.7 Choice of ¢ and d

The public key e is chosen to be as small as possible to make en-
cryption efficient. The choice e = 2 is impossible since ¢(n) =
(p —1)(qg — 1) is even and we must have ged(e, (p — 1)(g — 1)) = 1.
The least possible encryption exponent is e = 3. If this is used, then
encryption requires one squaring and one multiplication mod n.

Example 7.2.10

Let n = 253, ¢ = 3, and m = 165. To compute m® mod n we first
determine m? mod n = 154 and then m® mod n = ((m? mod n) *
m) mod n = 154 % 165 mod 253 = 110.

However, using small encryption exponents such as ¢ = 3 may
be dangerous because an attacker can use the low-exponent attack.
This attack works if the same message m is encrypted e times with
encryption exponent ¢ and e pairwise coprime RSA moduli n;, 1 <
i < e. The smaller e is, the more likely this is to happen. For example,
a bank may send the same message to many of its customers using
their different public keys. Because of their construction as products
of large random primes, those different RSA moduli are pairwise

7. Public-Key Encryption

150

coprime. We show how the attack works. Let ¢, = m® mod n;, 1 <
i < e be the corresponding RSA ciphertexts. Then the attacker uses
the following algorithm:

1. Compute an integer ¢ withc=¢; modn;, 1 <i<eand0 <c¢ <
[Ti=, n using the Chinese remainder theorem (see Section 2.15).

2. Determine the message m as the eth root of ¢ in Z.

The following theorem shows that this algorithm is correct.

Theorem 7.2.11

Let e € N, ny,ny,...,n, € N be pairwise coprime and m € N with
0O<m<nforl <i<e Letce Nwithc=m*mod n;, 1 <i <eand
0=<¢ < T[] % Thén c=m’.

Proof. The integer ¢’ = m° satisfies the simultaneous congruence
¢ =mmodn;, 1 <i<e andwehave0 <c < [[_, n, because 0 <
m < n;, 1 <1i < e. Onthe other hand, the integer ¢ from the theorem
satisfies the same congruence and also satisfies 0 < ¢ < []i_, n;i. By
Theorem 2.15.2 (the Chinese remainder theorem), the solution of
this congruence is uniquely determined mod [];_, n;. Therefore, we
have ¢ = ¢/ = m*. O

The eth root of the eth power ¢ can be determined very effi-
ciently, for example by a cut and choose technique. Therefore, the
low-exponent attack can be mounted efficiently.

Example 7.2.12

Lete = 3, n; = 143, n, = 391, ny = 899, m = 135. Then ¢, = 60, ¢y =
203, ¢3 = 711. To use the Chinese remainder theorem, we compute
integers x;, X3, X3 with xyn;n3 = 1 mod n;, nyx;n; = 1 mod n, and
ninzx; = 1 mod n3. We obtain x; = —19, x; = —62, x3 = 262. Then
c = (eixinang + comazng + canynaxs) mod nynyng = 2460375 and
m = 24603753 = 135.

The low-exponent attack cannot be mounted if the encrypted
messages are pairwise different. This can be achieved by choosing
a few bits in the plaintext blocks at random. We can also choose a
larger encryption exponent; for example, ¢ = 2!° + 1 is a popular
choice (see Exercise 7.6.7).

. 2

7.2. RSA Cryptosystem

151

7.2.8 Efficiency

RSA encryption requires one exponentiation modulo n. The smaller
the encryption exponent, is the more efficiently encryption works.
As we have explained in the previous section, however, small en-
cryption exponents open the possibility of a low-exponent attack,
and special countermeasures are necessary.

RSA decryption also requires one exponentiation mod n, but the
decryption exponent must be as large as n. Small decryption expo-
nents d can be efficiently computed from the corresponding public
key (n, €). Suppose that the RSA modulus n is a k-bit number. Then,
typically, d is also a k-bit number and k/2 bits are 1. Hence, using the
fast exponentiation technique from Section 2.12, decryption requires
k squarings and k/2 multiplications mod n. If the RSA modulus is
a 1024-bit number, these are 1024 squarings and 512 multiplications
mod n. Compared to DES decryption, this is very slow, in particular
if a smart card is used for decryption.

RSA decryption can be hastened if the Chinese remainder the-
orem is used. This works as follows. Alice wants to decrypt the
ciphertext ¢. Her private RSA key is d. She computes

m, = cdmc'dp—] mod », dmodg—1

my=¢ mod q.
She computes an integer m € {0, 1, ..., n — 1} such that
m=m, modp, m=mymodgq.

This m is the plaintext that was encrypted. To find m, she uses the
extended euclidean algorithm to find integers y,, and y, with

Ypp tYqq = 1.
Then
m = (MpYeq + Myypp) mod n.

Note that the coefficients y,p mod n and y,q mod n are independent
of the ciphertext. They can be precomputed.

Example 7.2.13
To hasten the decryption in Example 7.2.5, Alice computes

m, =119’ mod 11 =4, m, = 119" mod 23 = 3,

152 7. Public-Key Encryption

and y, = =2, y, = 1. Then
m = (4%23—3%2x11) mod 253 = 26.

We show that RSA decryption with the Chinese remainder theo-
rem is more efficient than the standard decryption method. Suppose
that the RSA modulus is a k-bit number and so is d. Its prime factors
p and q are k/2-bit numbers. The multiplication of two integers of
binary length < r takes time < Cr?, where C is a constant. Like-
wise, the division with remainder of an integer of length < r by
another integer of length < r requires time < Cr?. The computation
of m = ¢? mod n takes time < 2Ck®. The computation of m, and
m, requires time Ck*/2. We ignore the time for the precomputation
of ypp mod n and y,q mod n since it requires only one application
of the extended euclidean algorithm, which has quadratic running
time. The computation m = m,y,q + myy,p mod m requires only
two multiplications and one addition mod n, so decryption with the
Chinese remainder theorem is almost four times as fast as standard
decryption.

7.2.9 Multiplicativity

Let (n,e) be a a public RSA key. If two messages m; and m; are
encrypted under this key, then we obtain

¢t =mimodn, ¢, =m;mod n.
The product of the ciphertexts is
¢ = ci¢; mod n = (m;m;)° mod n.

Anyone who knows the ciphertexts ¢; and ¢, can compute the en-
cryption of m = m;m; without knowing this plaintext. This is a form
of existential forgery.

In order for the receiver to notice the forgery, the plaintext space
must be reduced. Only plaintexts of a certain form are accepted. For
example, one can require the first and last bytes in the plaintext to
be identical. It is then extremely unlikely that the product m;m; of

7.3. Rabin Encryption 1573

two legal plaintexts has this property. Therefore, if Alice receives
the encryption of m = m;m,, then she rejects the plaintext m.

7.2.10 Generalization

We explain how the RSA cryptosystem can be generalized. The public
key consists of a finite group G and an encryption exponent ¢, which
is prime to the order o of G. In the case of RSA, this group is (Z/nZ)*,
where n is an RSA modulus. The secret key is an integer d with
ed = 1 mod o. Clearly, the order o of the group G must also be kept
secret since otherwise the secret key d can be determined by solving
the congruence ed = 1 mod 0. Messages must be embedded into the
group G. The encryption of m € G is ¢ = m°. Since de = 1 mod o,
it follows from Corollary 2.11.3 that ¢ = m* = m. This shows that
decryption works by raising ¢ to the dth power.

Finding groups G of which the order can be kept secret although
everyone can compute in G seems to be difficult. Variants of RSA
are known, but they all become insecure if factoring integers turns
out to be easy. Hence, the factoring problem for integers is so far the
only mathematical problem on which RSA-type cryptosystems are
based. It is an interesting question whether there are alternatives.

7.3 Rabin Encryption

It is considered advantageous if the security of a cryptosystem is
based on the difficulty of a mathematical problem that is also of
interest outside of cryptography. The security of the RSA system,
for example, is related to the difficulty of factoring integers. It is,
however, not known if breaking RSA is as difficult as factoring inte-
gers (i.e., if being able to break RSA implies the ability of factoring
integers; see Section 7.2.4).

The security of the Rabin system, which is explained in this
section, is also based on the difficulty of factoring integers. But in
contrast to RSA, it can be shown that anyone who can break the
Rabin system efficiently can also efficiently factor integers.

154 _ 7. Public-Key Encryption

7.3.1 Key generation

Alice chooses randomly two large prime numbers p and g with p =
q = 3 mod 4. The prime generation works as explained in Section
7.2.6, except for the additional congruence property. This property
makes decryption more efficient. But, as we will see below, the Rabin
system also works without it. Alice computes n = pq. Her public key
is n. Her private key is the pair (p, q).

7.3.2 Encryption

As in the RSA system, the plaintext space is the set {0,...,n—1}. To
encrypt the plaintext m € {0,...,n — 1}, Bob uses the public key n
of Alice and computes

¢ =m? mod n.
The ciphertext is c.
Like RSA, the Rabin system can be used to implement a kind of
block cipher. This works as explained in Section 7.2.2.

7.3.3 Decryption

Alice computes the plaintext m from the ciphertext ¢ by extracting
square roots. She proceeds as follows. She computes

g+1)/4

my =cPV* modp, m, =l mod q.

Then ®m, + pZ are the two square roots of ¢ + pZ in Z/pZ, and
+m, + gZ are the two square roots of ¢ + qZ in Z/qZ (see Exercise
2.22.21). This method of computing the square roots of ¢ mod p and
g only works because p and g are both congruent to 3 mod 4. If
this is not true, then computing those square roots is more difficult,
although still possible in polynomial time. Now Alice can compute
the four square roots of ¢ +nZ in Z/nZ using the Chinese remainder
theorem. This is analogous to the RSA decryption using the Chinese
remainder theorem as explained in Section 7.2.8. Using the extended

7.3. Rabin Encryption]55

euclidean algorithm, Alice determines coefficients y,, y, € Z with

Ypp +Ygq = 1.

Then she computes

L (Lgrppmrf + yqqmp) modn, s= (Yppmy — Yaqmyp) mod n.

It is easy to verify that +r, £s are the four square roots of ¢ mod
n in the set {0,1,...,n — 1}. One of those square roots must be the
original message m.

Example 7.3.1
Alice uses the prime numbers p = 11 and g = 23. Then n = 253.
Bob encrypts the message m = 158. He computes

¢ =m? mod n = 170.

Alice determines y, = —2 and y, = 1 as in Example 7.2.13. She
obtains the square roots

my, = c?*V4 mod p = ¢®* mod p = 4,

m, = ¢4 mod g = ¢® mod q = 3.
She determines
¥ = (YppMy + Ygqmy) mod n = —2 % 11 % 3 + 23 * 4 mod n = 26,
and
s = (Yppmy — Yqqmp) mod n = —2 % 11 * 3 — 23 x 4 mod n = 95.

The square roots of 170 mod 253 in {1,..., 252} are 26, 95,158, 227.
One of those square roots is the original plaintext.

There are various methods of choosing the original plaintext
from the four square roots of ¢ mod n. Alice can choose the mes-
sage that looks most meaningful, but this might not always work;
for example, if an encryption key for a symmetric system is the en-
crypted message. It is also possible to encrypt only messages of a
special form. For example, messages are only encrypted if the first
and the last 64 bits are equal. Then it is very unlikely that more than
one of the square roots of the ciphertext has this form, so Alice can

156 __7- Public-Key Encryption

choose this particular plaintext. If this method is chosen for mak-
ing the plaintext recoverable, however, the proof of the equivalence
between factoring and breaking the Rabin system no longer works.

7.3.4 Efficiency

In the Rabin system, encryption only requires one squaring, so Ra-
bin encryption is more efficient than RSA encryption, even with
the smallest possible RSA encryption exponent 3. Decryption in the
Rabin system is as expensive as RSA decryption with the Chinese
remainder theorem. It requires one exponentiation mod p, one mod
g, and one application of the Chinese remainder theorem.

7.3.5 Security

We show that breaking the Rabin system is as difficult as factoring the
Rabin modulus. Clearly, everyone who can factor the Rabin modulus
can also break the Rabin system. We prove that the converse is also
true.

Suppose the attacker, Oscar, can break the Rabin system. Let n be
the public RSA modulus and let p, g be its prime factors. Let R be the
algorithm that breaks the Rabin system. Givenc € {0,1,...,n — 1}
such that ¢ + nZ is a square in (Z/nZ)*, it computes m = R(c) €
{0,1,...,n — 1}, which is the original plaintext. The residue class
m + nZ is a square root of ¢ + nZ. In other words, given a square ¢
mod n the algorithm R determines a square root m of ¢ mod n. We
explain how the algorithm R can be used to factor n. Oscar chooses
at random an integer x € {1,...,n — 1}. If gcd(x,n) # 1, then this
gcd is equal to one of the prime factors of n. Hence, the factorization
of n is found. Otherwise, Oscar computes

¢ = x* mod n and m = R(c).

The residue class m + nZ is a square root of ¢ + nZ. It is not neces-
sarily equal to x 4+ nZ, but m satisfies one of the following pairs of

7.3. Rabin Encryption 157

congruences:
m = x mod p and m = x mod g, (7.5)

= —xmod p and m = —x mod g, (7.6)

m = x mod p and m = —x mod g, (7.7)

m = —x mod p and m = x mod q. (7.8)

In case (7.5), we have m = x, and hence gcd(m — x, n) = n. In case
(7.6), we have m = n—x, and hence gcd(m —x, n) = 1. In case (7.7),
we have gcd(m — x,n) = p. In case (7.8), we have gcd(m — x,n) =
g. Since x has been chosen at random with equidistribution, each
of those cases has the same probability. Therefore, this procedure
factors n with probability 1/2. After k applications of this procedure,
n is factored with probability 1 — (1/2)F.

Example 7.3.2

As in Example 7.3.1, we let n = 253. Suppose Oscar is able to
compute square roots modulo 253 with algorithm R. He chooses
x = 17 and obtains gcd(17,253) = 1. Then he computes ¢ =
172 mod 253 = 36. The square roots of 36 mod 253 are 6, 17, 236, 247.
Now gcd(6 — 17, n) = 11 and ged(247 — 17, 253) = 23. If R yields one
of those square roots, then Oscar has found the factorization of n.

In the factoring algorithm just described, we have assumed that
the plaintext space consists of all numbers in the set {0,1,..., n—1}.
Now suppose that we use only plaintexts of a special form. As ex-
plained in Section 7.3.3, this helps avoid the ambiguity in Rabin
decryption, but then the factoring algorithm no longer works. The
decryption algorithm R can only decrypt ciphertexts that are encryp-
tions of plaintexts of the special form. Hence, when Oscar wants to
use this decryption algorithm to factor n as just described, he must
make sure that one of the square roots of ¢ = x* mod n is of the
special form. But it is unclear how this can be done unless x itself is
of the special form. Then no other square root is likely to be of the
special form and R will always return the square root x, which does
not lead to a factorization.

158 _ 7. Public-Key Encryption

7.3.6 A chosen ciphertext attack

We have seen that Oscar can factor n if he can break the Rabin
system. This seems to be advantageous for the security of the Rabin
system. On the other hand, a chosen ciphertext attack can be based
on this fact.

Suppose that Oscar can decrypt ciphertexts of his choice. Then
he can factor the Rabin modulus as described in the previous section
and can determine the secret key.

To make this attack impossible, the plaintext space can be re-
duced to plaintexts of a special form, as described in Section 7.3.3.
But then, as we have seen in Section 7.3.5, the equivalence between
breaking the Rabin system and factoring the RSA modulus is lost.

Some attacks on the RSA system can be modified such that they
work for the Rabin system; for example, the low-exponent attack and
the attack that uses the multiplicativity of RSA (see Exercise 7.6.17).

7.4 Diffie-Hellman Key Exchange

In this section, we describe the protocol of Diffie and Hellman for
exchanging secret keys over insecure channels. This protocol itself
is not a public-key cryptosystem, but it is the basis for the ElGamal
system, which is described in the next section.

The situation is the following. Alice and Bob wish to use a sym-
metric encryption system to keep their communication over an
insecure channel secret. Initially, Alice and Bob must exchange a
secret key. The Diffie Hellman key-exchange system enables Alice
and Bob to use their insecure channel for this key exchange. Every-
body can listen to the key exchange but the information obtained
cannot be used to construct the secret key. The protocol of Diffie
and Hellman is a milestone in public-key cryptography.

The security of the Diffie-Hellman key exchange is not based
on the factoring problem for integers but on the discrete logarithm
problem (DLP), which is introduced in the next section.

7.4. Diffie-Hellman Key Exchange 159

7.4.1 Discrete logarithms

Let p be a prime number. We know from Corollary 2.21.1 that the
group (Z/pZ)* is cyclic of order p — 1. Let g be a primitive root mod
p- Then for any integer A € {1,2,...,p — 1} there is an exponent
a€{0,1,2,...,p— 2} with

A = g“" mod p.

This exponent a is called the discrete logarithm of A to the base g. We
write a = dlog,A. The computation of discrete logarithms is consid-
ered to be difficult. No efficient algorithm for solving this problem
is known. But on the other hand, there is no proof that this prob-
lem is in fact difficult. Algorithms for solving the discrete logarithm
problem are discussed in Chapter 9.

Example 7.4.1
Let p = 13. A primitive root modulo 13 is 2. In the following table,

the discrete logarithms of all integers in {1, 2, ...,12} to the base 2
are listed.
All 2 3 4 5 6 7 8 9 10 11 12
dlog,A |0 1 4 2 9 5 11 3 8 10 7 6

Discrete logarithms can be defined in arbitrary cyclic groups. Let
G be a cyclic group of order n with generator g, and let A be a group
element. Then there is an exponent a € {0,1,...,n — 1} with

A=g“.

This exponent a is called the discrete logarithm of A to the base g. We
will see in Section 7.5.8 that the Diffie-Hellman key exchange can
be implemented in all cyclic groups in which the discrete logarithm
problem is difficult.

Example 7.4.2

Consider the additive group Z/nZ for a positive integer n. It is cyclic
of order n. A generator of this group is the residue class 1 + nZ. Let
A €{0,1,...,n—1}. The discrete logarithm a of A + nZ to the base
1 + nZ satisfies the congruence

A = a mod n.

16(0 __7. Public-Key Encryption

Hence, a = A. The other generators of Z/nZ are the residue classes
g + nZ with ged(g, n) = 1. The discrete logarithm a of A + nZ to the
base g + nZ satisfies the congruence

A = ga mod n.

This congruence can be solved with the extended euclidean algo-
rithm. Therefore, in Z/nZ, discrete logarithms can be computed very
efficiently. This group cannot be used for implementing a secure
Diffie-Hellman key-exchange protocol.

7.4.2 Key exchange

The Diffie-Hellman protocol works as follows. Alice and Bob wish
to agree on a common secret key. They can communicate only over
an insecure channel. First, they agree on a large prime number p
and a primitive root g mod p with 2 < g < p — 2 (see Section 2.21).
The prime p and the primitive root g can be publicly known. Hence,
Bob and Alice can use their insecure communication channel for

this agreement.
Now Alice chooses an integera € {0, 1, ..., p — 2} randomly. She

computes
A =g“mod p

and sends the result A to Bob, but she keeps the exponent a secret.
Bob chooses an integer b € {0, 1, ..., p — 2} randomly. He computes

B=g"modp

and sends the result to Alice. He also keeps his exponent b secret.
To obtain the common secret key, Alice computes

B* mod p = g* mod p
and Bob computes

A mod p = g* mod p.
Then the common key is

K = g*” mod p.

*

7.4. Diffie-Hellman Key Exchange 161

Example 7.4.3

Letp = 17 and g = 3. Alice chooses a = 7, computes g* mod p = 11,
and sends the result A = 11 to Bob. Bob chooses b = 4, computes
g” mod p = 13, and sends the result B = 13 to Alice. Alice computes
B” mod p = 4. Bob computes A” mod p = 4. The common key is 4.

7.4.3 Security

The eavesdropper, Oscar, learns the integers p, g, A, and B but not
the discrete logarithm a of A and b of B to the base g. He wants to
determine the secret key K = g*’ mod p from p, g, A, and B. This
is called the Diffie-Hellman problem. 1f Oscar can compute discrete
logarithms mod p, he can also solve the Diffie-Hellman problem. He
determines the discrete logarithm b of B to the base g and computes
the key K = A” mod p. This is the only known method for breaking
the Diffie-Hellman protocol. So far, nobody has been able to prove
that if Oscar can break the Diffie-Hellman problem he can also effi-
ciently compute discrete logarithms mod p. It is an important open
problem of public-key cryptography to find such a proof.

As long as the Diffie-Hellman problem is difficult to solve, no
eavesdropper can determine the secret key from the publicly known
information. But this is not the only possible attack on the Diffie-
Hellman protocol.

In the man in the middle attack, Oscar exploits the fact that Alice
cannot verify that the messages that she receives really come from
Bob, and the same is true for Bob. Oscar intercepts all messages
between Alice and Bob. He impersonates Bob and exchanges a key
with Alice. He also impersonates Alice and exchanges a key with Bob.
Whenever Bob sends an encrypted message to Alice, he uses the key
that he has previously exchanged with Oscar. But he thinks that this
is the key for the communication with Alice. Oscar intercepts that
message and decrypts it. Then he changes the message and sends it
to Alice.

To prevent this attack, digital signatures can be used. They are
described in Chapter 11.

162 _ 7. Public-Key Encryption

7.4.4 Other groups

A secure and efficient Diffie-Hellman key-exchange protocol can
be implemented in all cyclic groups in which the Diffie-Hellman
problem is difficult to solve and for which the group operations can
be efficiently implemented. In Chapter 12, we will discuss examples
for such groups. Here we only describe how the implementation of
the Diffie-Hellman protocol in such groups works in principle.

Alice and Bob agree on a finite cyclic group G and a generator
g of G. Let n be the order of G. Alice chooses randomly an integer
a€f{l,2,...,n—1}. She computes

Azgﬂ

and sends the result A to Bob. Bob chooses randomly an integer
be{l,2,...,n—1}. He computes

B=g"

and sends the result to Alice. Alice determines

Ba = gab
and Bob determines

Ab . gﬂb
The common secret key is

K — gab.

7.5 ElGamal Encryption

The ElGamal cryptosystem is closely connected to the Diffie-
Hellman key exchange. Its security is also based on the difficulty
of solving the Diffie-Hellman problem in (Z/pZ)*.

7.5. ElGamal Encryption 163

7.5.1 Key generation

Alice chooses a prime number p and, as explained in Section 2.21,
a primitive root g mod p. Then she chooses a random exponent
a €{0,...,p— 2} and computes

A = g“ mod p.

The public key of Alice is (p, g, A). Her secret key is the exponent a.
The integer A is Alice’s key part from the Diffie-Hellman protocol.
This key part is fixed in the ElGamal cryptosystem.

7.5.2 Encryption

The plaintext space is the set {0,1, ..., p— 1}. To encrypt a plaintext
m, Bob gets the authentic public key (p, g, A) of Alice. He chooses a
random exponent b € {0,1, ..., p — 2} and computes

B =g’ mod p.

The number B is Bob’s key part from the Diffie-Hellman system. Bob
determines

¢ = A"m mod p.

In other words, Bob encrypts the message m by multiplying it mod p
by the Diffie-Hellman key. The complete ElGamal ciphertext is the
pair (B, c).

7.5.3 Decryption

Alice has obtained the ciphertext (B,). She knows her secret key a.
To reconstruct the plaintext m, she divides ¢ by the Diffie-Hellman
key B* mod p. In order to avoid inversions mod p, she determines the
exponentx =p—1—a.Sincel <a<p-2 wehavel <x <p-—2.
Then she computes m = B*c mod p. This is, in fact, the original
plaintext, as the following computation shows:

B'c = g"P 19 Abm = (g7 Y%y P APm = A~ A%m = m mod p.

164 7. Public-Key Encryption

Example 7.5.1

Alice choosesp = 23,g = 7, a = 6, and computes A = g“ mod p = 4.
Her public key is (p = 23,g = 7, A = 4). Her secret key isa = 6. Bob
encryptsm = 7. He chooses b = 3, and computes B = g” mod p = 21
and ¢ = A’m mod p = 11. The ciphertext is (B, ¢) = (21, 11). Alice
recovers m by computing B’ ' ®c mod p = 7 = m.

7.5.4 Efficiency

ElGamal decryption like RSA decryption, requires one modular ex-
ponentiation. We will see that the moduli must be of equal size in
both systems. The Chinese remainder theorem, however, does not
speed up ElGamal decryption.

ElGamal encryption requires two modular exponentiations: the
computation of A” mod p and B = g” mod p. RSA encryption re-
quires only one modular exponentiation. But the exponentiations
for the ElGamal encryption are independent of the plaintext that
is actually encrypted. Therefore, those exponentiations can be car-
ried out as precomputations. Then the actual encryption requires
only one modular multiplication and is therefore much more effi-
cient than RSA encryption. But the precomputed values must be
kept secret, and must be securely stored, such as on a smart card.

Example 7.5.2

As in Example 7.5.1, the public key of Alice is (p = 23,8 =7,A = 4).
Her secret key is a = 6. As a precomputation, Bob chooses b = 3 and
computes B = g” mod p = 21 and K = A” mod p = 18. Later, Bob
encrypts m = 7. Then he simply computes ¢ = K * m mod 23 = 11.
The ciphertext is (B, ¢) = (21, 11). Again, Alice recovers the plaintext
by computing B” ' ¢ mod p =7 = m.

In the ElGamal cryptosystem, the ciphertext is twice as long as
the plaintext. This is called message expansion and is a disadvantage
of this cryptosystem. On the other hand, the ElGamal system is a
randomized cryptosystem, which can be regarded as an advantage
(see Section 7.5.7).

The length of the public key in the ElGamal cryptosystem can be
reduced if the same prime number p is used in all public keys. How-

T

7.5. ElGamal Encryption 165

ever, if it turns out that computing discrete logarithms modulo this
specific prime number p is easy, then the whole system is insecure.

7.5.5 ElGamal and Diffie-Hellman

If the attacker, Oscar, can compute discrete logarithms mod p, then
he can break the ElGamal system. He just determines Alice’s secret
key a as the discrete logarithm of A to the base g. Then he computes
the plaintext by the formula m = B’~'~“¢ mod p. It is, however, not
known whether being able to break ElGamal implies the ability to
compute efficiently discrete logarithms mod p.

We will now show, however, that breaking the ElGamal cryp-
tosystem and breaking the Diffie-Hellman key-exchange protocol
are equally difficult. Suppose Oscar can break the Diffie-Hellman
key-exchange system (i.e., he can construct the secret key g mod p
from p, g, A, and B). Oscar wants to decrypt an ElGamal ciphertext
(B, c). He also knows the corresponding public key (p, g, A). Since
he can break the Diffie-Hellman system, he can determine the key
K = g*” mod p and can reconstruct the message m = K~'¢ mod p.

Conversely, assume that Oscar can break the ElGamal cryptosys-
tem. Then he can recover any encrypted plaintext m from p, g, A, B,
and c. Suppose Oscar wants to determine the Diffie-Hellman key
g from p, g, A, B. He applies the decryption algorithm with in-
put p,g, A,B,c = 1 and obtains a plaintext m. He knows that
1 = g®m mod p. Therefore, he can determine the Diffie-Hellman
key as g% = m~! mod p.

7.5.6 Choice of parameters

To prevent the application of the known DL algorithms (see Chapter
9), the prime number p must be at least of binary length 768. Fur-
thermore, to prevent the application of DL algorithms such as the
Pohlig-Hellman algorithm or the number field sieve, which work
efficiently for prime numbers of a special form, such primes must
be avoided. It appears best to choose the prime p randomly with
equidistribution from all primes of a certain length.

166 __7- Public-Key Encryption

For each new ElGamal encryption, a new exponent b must be
chosen. If Bob chooses the same exponent b for the encryption of
the plaintexts m and m’, then he obtains

¢ = APm mod p and ¢’ = A”’m’ mod p.

Therefore,

1

cdecl =m'm™!

mod p.

An attacker who knows the plaintext m can recover the plaintext m’
using the formula

r

m’ = c'¢”'m mod p.

7.5.7 ElGamal as a randomized cryptosystem

ElGamal encryption is randomized by the random choice of the ex-
ponent b. This means the following. If the plaintext m is encrypted
twice, then two different random exponents b and b’ are chosen.
Hence, the two ciphertexts are (B = g” mod p, ¢ = A”m mod p) and
(B' = g"” mod p, ¢ = A¥m mod p). Since the exponent b is a random
number, the ciphertexts (B, ¢) are random numbers in {0, ..., p — 2},
and the ciphertexts (B, ¢) are random pairs in {0,...,p — 1}* pro-
vided that A is a primitive root mod p (i.e., gcd(a,p — 1) = 1). This
randomization makes cryptanalysis, in particular the application of
statistical methods, much more difficult.

7.5.8 Generalization

An important advantage of the ElGamal system is the fact that it can
be implemented in any cyclic group. The only requirements are that
computation in that group be efficient and that the Diffie-Hellman
problem be difficult. In particular, computing discrete logarithms in
that group must be infeasible since otherwise the Diffie-Hellman
problem would be easy to solve.

Examples of groups in which a secure ElGamal cryptosystem can
be implemented are given in Chapter 12. It is very important that the

7.6. Exercises 167

ElGamal system can also be implemented in other groups because
nobody knows whether the discrete logarithm problem in (Z/pZ)*
is difficult. If someone finds an efficient DL algorithm for (Z/pZ)*,
then one can switch to another group in which the DL problem is
still infeasible.

7.6 Exercises

Exercise 7.6.1
Show that in the RSA cryptosystem the decryption exponent d can
be chosen such that de = 1 mod lecm (p —1,q — 1).

Exercise 7.6.2

Determine all possible encryption exponents for the RSA modulus
n = 437. Also, give a formula for the number of possible encryption
exponents for a given RSA modulus n = pq.

Exercise 7.6.3

Generate two 8-bit prime numbers p and g such that the RSA mod-
ulus n = pq is a 16-bit number and the public RSA key e = 5 can be
used. Compute the corresponding private key d. Encrypt the string
110100110110111 with the public exponent 5.

Exercise 7.6.4
Alice encrypts a message m with Bob’s public RSA key (899, 11). The
ciphertext is 468. Determine the plaintext.

Exercise 7.6.5

Describe a polynomial time algorithm which given positive integers
¢ and e decides whether ¢ is an eth power in Z and extracts the eth
root of ¢ if this is the case. Prove that the algorithm has polynomial
running time.

Exercise 7.6.6
Implement the algorithm from Exercise 7.6.5.

Exercise 7.6.7
How many operations are required for an RSA encryption with
encryption exponent e = 2'% 4 1?

168 _ 7. Public-Key Encryption

Exercise 7.6.8

The same message m is encrypted by the RSA system using the
public keys (391, 3), (55, 3), and (87, 3). The ciphertexts are 208, 38,
and 32. Use the low-exponent attack to find m.

Exercise 7.6.9 (Common modulus attack)

If a plaintext is encrypted twice with the RSA system using two public
RSA keys (n,e) and (n,f) and if ged(e, f) = 1, then the plaintext
m can be recovered from the two ciphertexts ¢, = m® mod n and
of = m/ mod n. How?

Exercise 7.6.10

The message m is encrypted by the RSA system using the public
keys (493, 3) and (493, 5). The ciphertexts are 293 and 421. Use the
common modulus attack to find m.

Exercise 7.6.11

Let n = 1591. Alice’s public RSA key is (n, €) with minimal e. Alice
receives the encrypted message ¢ = 1292. Decrypt this message
using the Chinese remainder theorem.

Exercise 7.6.12

Suppose that the RSA modulus is n = 493, the encryption exponent
is e = 11, and the decryption exponent is d = 163. Use the method
of Section 7.2.4 to factor n.

Exercise 7.6.13 (Cycling attack)
Let (n,) be a public RSA key. For a plaintext m € {0,1,...,n — 1},
let ¢ = m® mod n be the corresponding ciphertext. Prove that there
is a positive integer k with

m® = m mod n.

For such an integer k, prove that

¢ =mmod n.

Is this dangerous for RSA?

Exercise 7.6.14
Let n = 493 and ¢ = 3. Determine the smallest value of k for which
the cycling attack from Exercise 7.6.13 works.

Y’

7.6. Exercises 169

Exercise 7.6.15

Bob uses the Rabin cryptosystem with the same parameters as in
Example 7.3.1 to send encrypted messages to Alice. The plaintexts
are blocks in {0, 1}? in which the first and the last two bits are equal.
Can Alice uniquely decrypt all possible plaintexts?

Exercise 7.6.16

Let n = 713 be a Rabin modulus and let ¢ = 289 be a ciphertext that
is obtained by Rabin encryption using this modulus. Determine all
possible plaintexts.

Exercise 7.6.17
Explain the low-exponent attack and the multiplicativity attack for
the Rabin system. How can those attacks be prevented?

Exercise 7.6.18

Let n = 713 be the public Rabin key and let ¢ = 200 be a ciphertext
that was obtained by Rabin encryption with this key. Determine the
corresponding plaintext.

Exercise 7.6.19

How can two ElGamal ciphertexts be used to generate a third El-
Gamal ciphertext of an unknown plaintext? How can this attack be
prevented?

Exercise 7.6.20
Alice receives the ElGamal ciphertext (B = 30,¢ = 7). Her public
key is (p = 43, g = 3). Determine the corresponding plaintext.

Exercise 7.6.21

Let p = 53, g = 2, A = 30 be Bob’s public ElGamal key. Alice uses
it to generate the ciphertext (24, 37). Determine the corresponding
plaintext.

Factoring

CHAPTER

We have seen that the security of the RSA system and the Rabin
system is closely connected to the difficulty of factoring a positive
integer into primes. But it is not known whether the integer fac-
toring problem is in fact difficult to solve. On the contrary, over
the years many efficient integer factoring algorithms have been in-
vented, and the number of digits required for secure RSA moduli has
been increased from 512 to 1024 bits.

In this chapter, we describe some important factoring algorithms.
We let n be a positive integer that is known to be composite. This
can be detected with the Fermat test or with the Miller-Rabin test
(see Sections 6.2 and 6.4). However, those tests do not determine a
divisor of n. For a more detailed overview of factoring algorithms,
we refer the reader to [18] and [8]. The algorithms that we describe
here are implemented in the LiDIA library [22].

8.1 Trial Division

To find small prime factors of n, a precomputed table of all prime
numbers below a fixed bound B is computed. This can be done using

171

172 _ 8. Factoring

the sieve of Eratosthenes (see Exercise 1.12.24 and [4]). Then for
each prime number p in this table, the maximum exponent e(p) is
determined such that p® divides n. A typical bound is B = 10°.

Example 8.1.1

We want to factor n = 3%' 4+ 1 = 10460353204. Trial division with all
primes < 50 yields the factors 2%, 72, and 43. If we divide n by those
factors, then we obtain m = 1241143. Since 2™~! = 793958 mod m,
Fermat's little theorem implies the compositeness of m.

8.2 p—1 Method

There are factoring algorithms that work particularly well for com-
posite integers with certain properties. Those integers must be
avoided as RSA or Rabin moduli. As an example of such factoring
algorithms, we describe the p — 1 method of John Pollard.

The (p — 1) method works best for composite integers with a
prime factor p such that p — 1 has only small prime divisors. Then it
is possible to determine a multiple k of p — 1 without knowing p — 1
as the product of powers of small prime numbers. The details are
described below. Then Fermat's little theorem implies

a*=1modp

for all integers a that are not divisible by p. This means that p divides
a* — 1. If a* — 1 is not divisible by n, then gcd(a* — 1, n) is a proper
divisor of n, so a factor of n is found.

As candidates for k, the p — 1 method uses the product of all
prime powers below a given bound B; namely,

k= l_[q.

qeP.g°<B

If the prime powers that divide p — 1 are all less than B, then k is a
multiple of p — 1. The algorithm computes g = ged(a* — 1, n) for an
appropriate basis a. If no divisor of n is found, then a new bound B
is used.

8.3. Quadratic Sieve 173

Example 8.2.1
In Example 8.1.1, the composite number n = 1241143 remained to
be factored. We use B=13. Thenk =8 % 9% 5% 7 % 11 % 13 and

ged(2X — 1,n) = 547.

Hence, p = 547 is a divisor of n. The cofactor is g = 2269. Both 547
and 2269 are prime numbers.

8.3 Quadratic Sieve

One of the most efficient factoring algorithms is the quadratic sieve
(QS), which we describe in this section.

8.3.1 Idea

We try to factor the odd composite positive integer. We describe how
one proper divisor of n is found. This is sufficient for breaking the
RSA system because RSA moduli are the product of two large primes.
In general, a recursive application of QS factors n completely.

The quadratic sieve finds integers x and y such that

x* = y* mod n (8.1)
and
x # +y mod n. (8.2)

Then n is a divisor of x* — y* = (x — y)(x + y), but of neither x — y
nor of x + y. Hence, g = ged(x — y, n) is a proper divisor of n.

Example 8.3.1

Let n = 7429, x = 227,y = 210. Then ¥’ — > = n, x —y = 17,
x +y = 437. Therefore, gcd(x — y, n) = 17. This is a proper divisor
of n.

174 _ 8. Factoring

8.3.2 Determination of x and y

The idea from the previous section is also used in other factoring
algorithms, such as the number field sieve (NFS) (see [20]), but those
algorithms have different ways of finding x and y. We describe how
x and y are found in the quadratic sieve.

Let

m= |Vn]
and
f(X)=(X+m)*—n.
We first explain the procedure in an example.

Example 8.3.2
As in Example 8.3.1, let n = 7429. Then m = 86 and f(X) = (X +
86)* — 7429. We have

f(=3) = 832—-7429 = 540 = —1%2°%3*%5
f(1y = 872—-7429 = 140 = %5 %7
f(2) = 882-7429 = 315 = 32x5x%7.
This implies
832 = —1%22%3%%5 mod 7429
872 = 22%5x7 mod 7429
882 = 3%2%5x7 mod 7429.

If the last two congruences are multiplied, then we obtain
(87 % 88)* = (2% 3% 5% 7)* mod n.
Therefore, we can set
x=87%x88modn=227, y=2%3%5%7 modn = 210.
Those are the values for x and y from Example 8.3.1.

In Example 8.3.2, we have presented numbers s for which the
value f(s) has only small prime factors. Then we use the congruence

(s + m)* = f(s) mod n. (8.3)

From those congruences, we select a subset whose product yields
squares on the left- and the right-hand sides. The left-hand side

8.3. Quadratic Sieve 175

of each congruence is a square anyway. Also, we know the prime
factorization of each right-hand side. The product of a number of
right-hand sides is a square if the exponents of —1 and all prime
factors are even. In the next section, we explain how an appropriate
subset of congruences is chosen.

8.3.3 Choosing appropriate congruences

In Example 8.3.2, it is obvious which congruences must be multi-
plied such that the product of the right-hand sides is a square. If n
is large, many more prime factors and congruences must be con-
sidered. The selection process uses linear algebra. We will illustrate
this in the next example.

Example 8.3.3

We show how we can choose appropriate congruences in Example
8.3.2 by solving a linear system. We can choose from three congru-
ences. The goal is that the product of the right-hand sides of the
chosen congruences be a square. The selection process is controlled
by coefficients A; € {0,1}, 1 <i < 3.IfA; = 1, then congruence i is
chosen; otherwise it is not. The product of the right-hand sides of
the chosen congruences is

(—1%22% 3% %5 # (22 % 5% 7) % (32 % 5% 7)™ =
(—1)M % 222122 33MH2hs y ghithaths o Zhaths

We want this number to be a square. It is a square if and only if the
exponents of —1 and of all prime numbers are even. This leads to
the following linear system:

A1 =0mod 2

2h; + 24 =0 mod 2
3A1 + 223 =0 mod 2
A+ A+ 23 =0mod 2
Az + A3 =0 mod 2.

176 8. Factoring

The coefficients of the A; are reduced mod 2, so we obtain the
simplified system

A =0mod 2
A+ A +A350m0d2
Az —I—A;;EOmod 2

A solution is
;\1:0, }Lz:)kg‘]zl.

The product of the right-hand sides of the second and third
congruences is a square.

We sketch how the quadratic sieve chooses the appropriate con-
gruences in general. We choose a positive integer B. Then we look
for integers s such that f(s) has only prime factors that belong to the
factor base

F(B)={peP:p<BjU{-1).

Such values f(s) are called B-smooth. Table 8.1 gives an impression
of the factor base sizes required. If we have found as many values
for s as the factor base has elements, then we try to solve the corre-
sponding linear system. Because the linear system is a system over
the field Z/2Z, the Gauss algorithm can be used to solve it. How-
ever, for large n more efficient algorithms are used, which are not
described here.

8.3.4 Sieving

It remains to be shown how the values of s are found for which
f(s) is B-smooth. One possibility is to compute the value f(s) for
s = 0,%1,£2,43,..., and to test by trial division whether f(s) is
B-smooth. Unfortunately, those values typically are not B-smooth.
To detect this, trial division by each element of the factor base is
needed. This is very inefficient because the factor base is large for
large n, as Table 8.1 shows. A more efficient method is to use sieving
techniques, which are described as follows.

8.3. Quadratic Sieve 177

TABLE 8.1 Size of factor base and sieving interval.

decimal digits of n 50 60 70 80 90 100 110 120
factor base %1000 3 4 7 15 30 51 120 245
sieving interval in million [02 2 5 6 8 14 16 26

We explain a simplified version that shows the main idea.We fix
a sieving interval

§={-C-C+1,...,0,1,...,C}.

We want to find all s € S such that f(s) is B-smooth. First, we compute
f(s) for all s € S. For each prime number p in the factor base, we
divide the values f(s) by the highest possible power of p. The B-
smooth values f(s) are exactly those for which 1 or —1 remains.

To find out which of the values f(s) = (s + m)* — n is divisible by
a prime number p in the factor base, we first determine all integers
s€{0,1,..., p—1} for which f(s) is divisible by p. By Corollary 2.19.7,
the polynomial f(X) can have at most two zeros modulo p. For small
prime numbers, the zeros can be found by trying all possibilities. If
p is large, then more sophisticated methods must be used(see [4]).

Now suppose that we know the zeros of f(X) modulo a prime
number pin {0,1,...,p — 1} (i.e., the arguments s € {0,1,...,p — 1}
for which f(s) is divisible by p). The other values s for which f(s)
is divisible by p are obtained from the zeros that we already know
by adding integer multiples of p. Starting at the zeros that we know,
we walk in steps of length p in both directions through the sieving
interval. After each step, we divide the corresponding f(s) by p.
This is called sieving with p. No unsuccessful trial divisions by p are
necessary. Prime powers can be treated similarly.

Example 8.3.4

As in Examples 8.3.1 and 8.3.2, let n = 7429, m = 86, and f(X) =
(X+86)*—7429. The factor base is the set {2, 3, 5, 7)U{—1}. As sieving
interval, we use the set {—3, —2, ..., 3}. The sieve is shown in Table
8.2.

The sieve can be made more efficient. This is described in [27].

178 _ 8. Factoring

TABLE 8.2 The sieve.

8 -3 -2 -1 0 1 2 3
(s+ m)z —n | -540 | -373 | -204 | -33 | 140 | 315 | 492
Sieve with 2 | -135 -51 35 123
Sieve with 3 -5 -17 | -11 35 41
Sieve with 5 -1 7 7
Sieve with 7 1 1

8.4 Analysis of the Quadratic Sieve

In this section, we sketch the analysis of the quadratic sieve to give an
impression why the quadratic sieve is more efficient than, for exam-
ple, trial division. Some techniques used in this analysis are beyond
the scope of this book. Therefore, we only mention them briefly. For
a deeper introduction into the subject, we refer the reader to [19].

Let n, u, v be real numbers and let n be greater than the Euler
constant ¢ = 2.718 Then we write

Ln[u, U] — ev(}og ny“(log log n.}i--—n. (84)

This function is used to describe the running time of factoring
algorithms. We first explain its meaning. We have

L0, v] =gtosn Ooslas) — (1og niy* (8.5)

and

L”[], U] - eu{'lug n)! (log log n)" — evlogn_ (8.6)

An algorithm that factors the positive integer n receives as input n.
The binary length of n is [log, n] + 1. If an algorithm has running
time L,[0, v], then it is a polynomial time algorithm. Its complexity
is bounded by a polynomial in the size of the input. The algorithm
is considered efficient, although its real efficiency depends on the
degree v of the polynomial. If the algorithm has running time L,[1, v],
then it is exponential. Its complexity is bounded by an exponential
function in the length of the input. The algorithm is considered
inefficient. If the algorithm has running time L,[u, v]with 0 < u < 1,
then it is subexponential. The algorithm is slower than polynomial

8.4. Analysis of the Quadratic Sieve] 79

but faster than exponential. The fastest integer factoring algorithms
are subexponential. Trial division is an exponential algorithm.

So far, nobody has been able to analyze completely the running
time of the quadratic sieve. Under certain plausible assumptions,
however, it can be shown that this running time is La[1/2,1 4+ 0(1)].
Here o(1) stands for a function that converges to zero as n ap-
proaches infinity. Thus, the complexity of the quadratic sieve can be
considered to be in the middle between polynomial and exponential.

We will now try to give an impression of the analysis of the
quadratic sieve. As we have seen, in the QS we choose bounds B
and C and search for the integers s in the sieving interval § =
{(—=C,—C+1,...,C} for which the value

f(s)=(s+mP —n=s>+2ms+m? —n (8.7)

is B-smooth. The bounds B and C must be chosen such that the
number of successful integers s and the number of elements of the
factor base are approximately equal.

Since m = [/n], it follows that m* — n is very small. Therefore,
(8.7) implies that for small s the value f(s) is of the same magnitude
as /n. Assume that the fraction of B-smooth values f(s), s € Sis the
same as the fraction of B-smooth integers < /n. This assumption
is unproven, but experiments indicate that it is probably correct. It
also makes the analysis of the quadratic sieve possible.

Denote the number of B-smooth integers below a bound x by
¥(x, B). This number is estimated in the following theorem, the proof
of which can be found in [13].

Theorem 8.4.1
Let € be a positive real number. Then for all real numbers x > 10 and
w < (logx)'~*, we have

lb(?" xl»’ur) = Xw—w+f'[x,w}
with a function f that satisfies f(x, w)/w — 0 for w — oo and all x.
Theorem 8.4.1 means that the fraction of x'/*-smooth numbers

< X is approximately w™.
From this theorem, we can deduce the following result.

180 _ 8. Factoring

Corollary 8.4.2
Let a, u, v be positive real numbers. Then for n — 00 we have

Y(n®, Ly[u, v]) = n“Ly[1 — u, —(a/v)(1 — u) + o(1)].

Proof. We have

Ln[u, v] = (e(logn)“'(ioglogn)"“)u - nu((lnglogn]z’logn]“".
n] —

If we set
w = (a/v)((logn)/(loglogn))' ™
and apply Theorem 8.4.1, then we obtain
Y(n®, Lo[u, v]) = nw™*+o0),

Now

w—-w(1+0(1))

s (6(1 —u)(log(a/v)+log log n—log log log n)(—(a/v)((log n)/(log log n))' ~*(140(1)))l —u

In this formula, we use
log(a/v) + loglogn — logloglog n = loglog n(1 + o(1)).
Then we find

o~ w+o(1)
— e(log n)' ~“(log log n)*(—(a/v)(1—u)+o(1))

= La[1 — 4, —(a/v)(1 — u) + o(1)].

This proves the assertion. o

In the quadratic sieve, we generate numbers f(s) which are ap-
proximately n'/2. We assume that with respect to smoothness the
values f(s) behave as random numbers < n'’?. In Corollary 8.4.2,
we therefore set a = 1/2. Then we find that the probability of such a
value f(s) being Ly[u, v]-smooth is L,[1 —u, (—1/(2v))(1 —u)+ o(1)].
This means that on average we must try Lp[1 — u, (1/(2v))(1 —
u) + o(1)] integers s in the factor base before we find one for
which f(s) is L[u, vJ-smooth. The number of elements in the factor
base is approximately Ly[u,v], so we need to find L,[u, v] success-
ful values s in order for the linear system to have a solution.
Therefore, the time for finding the values of s is some multiple of

8.5. Efficiency of Other Factoring Algorithms 181

L[u, V]La[1 = u, (1/(20))(1 — u) + 0(1)]. To make this value as small
as possible, we choose u = 1/2.

For the further computation, we need a few simple rules. If x and
y are real numbers, then

Ln[1/2, X]Ly[1/2,y] = La[1/2, X + y]. (8.8)
Also, if p € Z[X] is a polynomial and if x is a real number, then
p(logn)L,[1/2,x] = Ln[1/2,x + o(1)]. (8.9)

This means that polynomial factors in logn are swallowed by
L,[1/2,).

Now the factor base contains all prime numbers p withp < B =
Ln[172,v]. For each successful s, we need L,[1/2, 1/(4v)] elements in
the sieving interval, as we have just seen. Since we need Lp[1/2,v]
values of s, the sieving interval is of size Ln[1/2,v]L,[1/2,1/(4v)] =
Ln[1/2,v 4 1/(4v)].

The optimal value for v will be found later. First, we collect the
running times for the different steps of the algorithm.

Computing the zeros of f(X) modulo p for a prime number pin
the factor base is possible in polynomial time in log n. Hence, (8.9)
implies that all zeros can be computed in time La[1/2,v + o(1)].

The sieving time for a prime p is O(L,[1/2, v + 1/(4v)+0(1))/p),
since we walk in steps of width p through the sieving interval. It can
be deduced from this formula that the total sieving time, including
the precomputation, is L,[1/2, v + 1/(4v) + o(1)].

The Wiedemann algorithm for solving sparse linear systems
takes time L,[1/2, 2v + o(1)]. This algorithm takes advantage of the
special structure of the system. The value v = 1/2 minimizes the
sieving time. Hence, the total running time is L,[1/2, 1 + o(1)].

8.5 Efficiency of Other Factoring
Algorithms
The analysis that was presented in the previous section raises two

questions. Are there faster algorithms? Are there algorithms for
which the running time can be rigorously proved?

182 8. Factoring

The most efficient algorithm for which the running time can be
rigorously proved uses quadratic forms. It is a probabilistic algorithm
with expected running time L,[1/2, 14 0(1)]. This is the same as the
running time of the quadratic sieve and is proved in [21]. In practice,
however, the quadratic sieve is much more efficient.

The elliptic curve method (ECM) is also a probabilistic algorithm.
It is similar to the p — 1 method and has expected running time
Ly[1/2, M], where p is the smallest prime factor of n. This is a
major difference from the quadratic sieve. While the running time
of QS depends mainly on the size of n, ECM is faster if n has a small
prime factor. Therefore, ECM is used to find prime factors that are
considerably smaller than y/n. For prime factors that are of size \/n,
however, the running time of ECM is Ly[1/2, 1], the same as the
running time of QS, but ECM is less efficient in practice.

Until 1988, the fastest integer factoring algorithms had running
time Ly[1/2,1]. Some people even thought that there were no faster
integer factoring algorithms. But in 1988, John Pollard invented the
number field sieve (NFS). Under appropriate assumptions, it can be
shown that the running time of NFS is L,[1/3, (64/9)"?]. Hence, NFS
is much closer to a polynomial time algorithm than QS. A collection
of papers concerning NFS can be found in [20].

Since the 1980s, there has been dramatic progress in the field
of factoring algorithms. It is therefore very possible that one day a
polynomial time factoring algorithm will be found.

8.6 Exercises

Exercise 8.6.1 (Fermat’s factoring method)

Fermat factored a positive integer n by writing it as n = x* — y* =
(x — Y)(x + y). Factor n = 13199 by this method. Is this a general
factoring algorithm that works for all composite integers? What is
the running time of the algorithm?

Exercise 8.6.2
Factor 831802500 using trial division.

Exercise 8.6.3
Use the p — 1 method to factor n = 138277151.

8.6. Exercises 1 83

Exercise 8.6.4
Use the p — 1 method to factor n = 18533588383.

Exercise 8.6.5
Estimate the running time of the p — 1 method.

Exercise 8.6.6

The random square method of Dixon is similar to the quadratic
sieve factoring method. The major difference is that the relations
are found by factoring x* mod n, where n is a random number in

{1,...,n —1}. Use the random square method to factor n with the
smallest possible factor base.

Exercise 8.6.7
Factor 11111 using the quadratic sieve.

Exercise 8.6.8
Draw the function f(k) = Ly [1/2,1] for k € {1,2,...,2048).

Discrete
- Logarithms

CHAPTER

In this chapter, we discuss the difficulty of the discrete logarithm
problem (DL problem). The security of many public-key cryptosys-
tems is based on the difficulty of this problem. An example is the
ElGamal cryptosystem (see Section 7.5);

First, we describe generic algorithms that work in any cyclic
group. Then we explain special algorithms that work in the group
(Z/pZ)* for a prime number p.

9.1 DL Problem

In this chapter, G is a finite cyclic group of order n, y is a generator
of this group, and 1 is the neutral element in G. We assume that the
group order n is known. Many algorithms for computing discrete
logarithms, however, also work with an upper bound on the group
order. Moreover, we let a be a group element. The goal is to find the
smallest nonnegative integer x with

o=y~ (9.1)

jos

186 9. Discrete Logarithms

It is called the discrete logarithm of « to the base y. When we talk about
the DL problem, we mean the problem of finding this integer x.

There is a more general version of the DL problem. In a group H,
which is not necessarily cyclic, two elements & and y are given. The
problem is to decide whether there is an integer x such that (9.1) is
satisfied, and if such an x exists to find the smallest nonnegative x. In
cryptographic applications, the existence of x is typically guaranteed.
The attacker’s only problem is to find it. Therefore, our version of
the DL problem is sufficient for the cryptographic context.

9.2 Enumeration

The simplest method for computing the discrete logarithm x from
(9.1) is to test whether x = 0,1,2,3,... satisfy (9.1). As soon as
the answer is “yes”, the discrete logarithm is found. This is called
enumeration. Enumeration requires x — 1 multiplications and x com-
parisons in G. Only the elements @,y and y* need to be stored.
Hence, enumeration only requires space for three group elements.

Example 9.2.1

We determine the discrete logarithm of 3 to the base 5 in (Z/2017Z)*.
Enumeration yields x = 1030 using 1029 multiplications modulo
2017.

In cryptographic applications, we have x > 2'%. Therefore, enu-
meration is infeasible because it would require at least 2'®’ — 1 group
operations.

9.3 Shanks Baby-Step Giant-Step
Algorithm

A considerable improvement of the enumeration algorithm is the
baby-step giant-step algorithm of D. Shanks. This algorithm requires

9.3. Shanks Baby-Step Giant-Step Algorithm 187

fewer group operations but more storage. We describe this algorithm
as follows.

We set
m = [v/n]
and write the unknown discrete logarithm x as
x=gm+r, 0<r<m

Hence, r is the remainder and q is the quotient of the division of

x by m. The baby-step giant-step algorithm computes g and r. This
works as follows.
We have

YUt =y =,
This implies
(V") =ay™.
First, we compute the set of baby-steps
B={(ay™",r):0<r < m).

If in this set we find a pair (1, r), thenay™".= 1 (ie., a =y"). Hence,
we can set x = r with the smallest such x. If we do not find such a
pair, we determine

3 =y".

Then we test for g = 1,2, 3,... whether the group element §7 is the
first component of an element in B (i.e., whether there is a pair (87, r)
in B). As soon as this is true, we have

ay = = ™
which implies
o= qu+r_
Therefore, the discrete logarithm is

X=gm-r.

The elements 87, g = 1,2, 3. .. are called giant-steps. We must com-
pare each 87 with all first components of the baby-step set B. To make

188 9. Discrete Logarithms

this comparison efficient, the elements of B are stored in a hash table
where the key is the first element (see [12], Chapter 12).

Example 9.3.1
We determine the discrete logarithm of 3 to the base 5 in (Z/2017Z)*.
We have y = 5+ 2017Z, o = 3 + 2017Z, m = [+/2017] = 45. The

baby-step set is

B ={(3,0), (404, 1), (1291, 2), (1065, 3), (213, 4), (446, 5), (896, 6),
(986, 7), (1004, 8), (1411, 9), (1089, 10), (1428, 11), (689, 12),
(1348, 13), (673, 14), (538, 15), (511, 16), (909, 17), (1392, 18),
(1892,19), (1992, 20), (2012, 21), (2016, 22), (1210, 23), (242, 24),
(1662, 25), (1946, 26), (1196, 27), (1046, 28), (1016, 29), (1010, 30),
(202, 31), (1654, 32), (1541, 33), (1115, 34), (223, 35), (448, 36),
(493, 37), (502, 38), (1714, 39), (1553, 40), (714, 41), 1353, 42),
(674, 43), (1345, 44)}.

Here, the residue classes are represented by their least nonnegative

representatives.
Next,we compute § = Yy = 45 + 2017Z. The giant-steps are

45, 8, 360, 64, 863, 512, 853, 62, 773, 496, 133, 1951,
1064, 1489, 444, 1827, 1535, 497, 178, 1959, 1424, 1553.

We find (1553, 40) in the baby-step set. Therefore, ay™*" = 1553 +
2017Z. Since 1553 has been found as the twenty-second giant-step,
we obtain

22%45 __ —40

Y ay

Hence

22%454-40
yeteTl =g

The solution of the DL problem is x = 22 % 45 + 40 = 1030. To com-
pute the baby-step set, 45 multiplications mod 2017 were necessary.
To compute the giant-steps, 21 multiplications mod 2017 were nec-
essary. Enumeration requires many more multiplications, namely
1029. On the other hand, a baby-step set with 45 elements had to
be stored, whereas enumeration only requires the storage of three
elements.

9.4. Pollard p-Algorithm 189

If we use a hash table, then a constant number of comparisons are
sufficient to check whether a group element computed as a giant-
step is a first component of a baby-step. Therefore, the following
result is easy to verify.

Theorem 9.3.2
The baby-step giant-step algorithm requires O(/]G|) multiplications and
comparisons in G. It needs storage for O({/|G|) elements of G.

Time and space requirements of the baby-step giant-step algo-
rithm are approximately /|G|. If |G| > 2'", then computing discrete
logarithms with the baby-step giant-step algorithm is still infeasible.

9.4 Pollard p-Algorithm

The algorithm of Pollard described in this section has the same run-
ning time as the baby-step giant-step algorithm, namely O({/|G]).
However, it only requires constant storage, while the baby-step
giant-step algorithm needs to store roughly /|G| group elements.

Again, we want to solve the DL problem (9.1). We need three
pairwise disjoint subsets Gy, G,, G3 of G such that G, UG, UGy = G.
Let f : G — G be defined by

vB ifBeG,
f(B)y=1 B* ifBeGy,
af if B e G
We choose a random number x; in the set {1, ..., n} and compute
the group element B, = y*. Then, we compute the sequence (f;)
by the recursion
ﬂr+| - f(ﬁl}

The elements of this sequence can be written as

ﬁl - V\'I‘IHII I 2 0

19() _ 9. Discrete Logarithms

Here, ¥ is the initial random number, y, = 0, and we have

x+1modn ifp e G,

X1 = 4 2x; mod n if Bi € Gg,
X ifﬂ; € G:;,
and
Yi if ; € G,
Yit1 = | 2yi mod n if B € Gy,

Yi+1modn ifB; € Gs.

Since we are working in a finite group, two elements in the
sequence (B;) must be equal (i.e., there is1 > 0 and k > 1 with
Bitr = Bi). This implies

},xr an.h — vtk a,Hl+l

and therefore

yxl —Xitk — a}fl+l‘ i .

Hence, by Corollary 2.9.3, the discrete logarithm x of « to the base
y satisfies

(% — Xitk) = X(Yi+x — Yi) mod n.

We solve this congruence. The solution is unique mod n if y; 4 x — y;
is invertible mod n. If the solution is not unique, then the discrete
logarithm can be found by testing the different possibilities mod n. If
there are too many possibilities, then the algorithm is applied again
with a different initial x,.

We estimate the number of elements f; that must be computed
before a match is found (i.e., a pair (1, i+ k) of indices for which B, =
Bi). For this purpose, we use the birthday paradox (see Section 4.3).
The possible birthdays are the group elements. We assume that the
elements of the sequence (B;)>o are random group elements. This
is obviously not true, but the construction of the sequence makes it
very similar to a random sequence. As we have shown in Section 4.3,
O(,/IG|) sequence elements are sufficient to make the probability for
a match greater than 1/2.

Thus far, our algorithm must store all triplets (B, x;, ;). As we
have seen, the number of elements of the sequence is of the order of

9.4. Pollard p-Algorithm 19]

magnitude /|G, as in Shanks' baby-step giant-step algorithm. But we
will now show that it suffices to store a single triplet. Therefore, the
Pollard p-algorithm is much more space efficient than the baby-step
giant-step algorithm.

Initially, (B, x0, Yo) is stored. Now suppose that at a certain point
in the algorithm (B, x;, y;) is stored. Then (8;, x;, y;) is computed for
J=1+1,14+2,... until either a match is found or j = 2i. In the latter
case, we delete g; and store f,,. Hence, we only store the triplets
(Bi, xi, yi) with 1 = 2", Before we show that in this way a match is
found, we give an example.

Example 9.4.1
With the Pollard p-algorithm, we solve the discrete logarithm
problem

5% = 3 mod 2017,

All residue classes are represented by their smallest nonnegative
representatives. We set

Gy =1{1,...,672}, G, = {673, ...,1344}, Gy = {1345, ..., 2016}.

As our starting value, we use x; = 1023.
Here are the stored triplets and the final triplet, which is a match
and allows us to compute the discrete logarithm.

J B Aj Y
0] 986 | 1023 0
1 2 30 0
2 10 31 0
4| 250 33 0
81366 | 136 1
16 | 1490 | 277 8
32 613 | 447 | 155
64 | 1476 | 1766 | 1000
98 | 1476 | 966 [1128

We see that

5500 =312 mod 2017.

192 9. Discrete Logarithms

Bs = Bs+k —

B FIGURE 9.1 The Pollard
o p-algorithm.

To compute x, we must solve the congruence
128x = 800 mod 2016.

Since ged (128, 2016) = 32 divides 800, this congruence has a solution
that is unique modulo 63. To find x, we solve the congruence

4z = 25 mod 63.

We obtain the solution z = 22. Therefore, the discrete logarithm is
one of the values x = 22+ k* 63, 0 < k < 32. For k = 16, we find
the discrete logarithm x = 1030.

Now we prove that the preceding algorithm will eventually find
a match.

First, we show that the sequence (f;);>¢ is periodic after a match
occurs. Let (s, s+k) be the first match, which is not necessarily found
in the algorithm because the wrong elements are stored. Then k > 0
and Bsir = Bs. Moreover, Bsyis+1 = Bsst for I > 0 since the construc-
tion of the next group element only depends on the previous group
element in the sequence, so the sequence (f;) is in fact periodic.
We can draw it as the Greek letter p (see Figure 9.1). The prepe-
riod is the sequence By, B, ..., Bs—1. It has length s. The period is
Bs, Bs+1, - - -, Bs+x—1 and has length k.

Now we explain how a match is found if only one triplet is stored.
Denote by i the index of the triplet that is currently stored. Ifi = 2/ >

9.5. Pohlig-Hellman Algorithm 1973

s, then B; is in the period. In addition, if 2/ > k, then the sequence

2414 ﬁZ"-kZ vvvvv ﬁ-_g.-ﬂ

is at least as long as the period. One of its elements is equal to B, .
But this is exactly the sequence that is computed after b, has been
stored. All of its elements are compared with ;. Hence, one of these
comparisons will reveal a match. Because the sum of the lengths of
the preperiod and the period is O(4/|G]), it follows that the number of
sequence elements that must be computed before a match is found
is O(y/|G|). Therefore, the algorithm has running time O(/[G]) and
needs space for O(1) triplets. This is much more space efficient than
the baby-step giant-step algorithm.

The algorithm is even more efficient if eight triplets are stored.
This works as follows. Initially, all eight triplets are equal to
(Bo, X0, Yo). Then those triplets are successively replaced. Let i be the
index of the last stored triplet. Initially, we havei = 0. Forj =1, 2, ...
we compute (f;, x;, y;) and do the following:

1. If B; is equal to one of the stored group elements, then a match
is found and the computation of the sequence terminates.

2. 1fj = 31, then the first of the eight triplets is deleted and (B, x;, ;)
is the new last triplet.

This modification does not change the asymptotic time or space
complexity.

9.5 Pohlig-Hellman Algorithm

We now show that the problem of computing the discrete logarithm
in our group G can be reduced to a discrete logarithm problem in a
cyclic group of prime order if we know the factorization

n=|G|= l—[p“r--”}

pin

of the group order n = |G| of our cyclic group.

194 9. Discrete Logarithms

9.5.1 Reduction to prime powers

For each prime divisor p of n, we set

", Np

np — ”/p(fu-’)' yp =R alp = oF,
Then the order of y, is exactly p“?) and
V; = up.

The group element «, belongs to the cyclic group generated by y;.
Therefore, the discrete logarithm x(p) of a,, to the base y,, exists. The
following theorem describes how the discrete logarithm x can be
computed from all the x(p).

Theorem 9.5.1

For a prime divisor p of n, let x(p) be the discrete logarithm of ay, to the
base y,. Moreover, let x € {0,1,...,n — 1} be a solution of the simulta-
neous congruence x = x(p) mod p®¥) for all prime divisors p of n. Then
x is the discrete logarithm of « to the base y.

Proof. We have
(y—.va]n,_. = }'};Xu}}ap =]

for all prime divisors p of n. Therefore, the order of the element y "«
is a divisor of n, for all prime divisors p of n and therefore a divisor
of the ged of all n,. But this ged is 1. Hence, the order is 1 and this
shows that o = y*. O

We have seen that the discrete logarithm x can be computed by
first determining all x(p) and then applying the Chinese remainder
theorem. The baby-step giant-step algorithm takes time O(y/p“®))
for computing x(p). If n has more than one prime divisor, then this
modification is already considerably faster than the application of
the baby-step giant-step algorithm in the full group. The comput-
ing time for the application of the Chinese remainder theorem is
negligible.

Example 9.5.2
As in Example 9.3.1, let G be the multiplicative group of residues
mod 2017. Its order is

2016 = 2° % 3% % 7.

9.5. Pohlig-Hellman Algorithm 195

We compute the discrete logarithm x(2) in a subgroup of order 2° =
32, x(3) in a subgroup of order 9, and x(7) in a subgroup of order
7. For those computations, we could use the baby-step giant-step
algorithm. A more efficient variant is described in the next section.

9.5.2 Reduction to prime orders

In the previous section, we have seen that the computation of
discrete logarithms in the cyclic group G can be reduced to the
computation of discrete logarithms in subgroups of prime power
order. Now we will show that the computation of discrete loga-
rithms in cyclic groups of prime power order can be reduced to the
computation of discrete logarithms in subgroups of prime order.

Let |G| = n = p* for a prime number p and a positive integer e.
We want to solve the congruence (9.1) in this group. We know that
x < p°. By Theorem 1.3.3, we can write

x=xg+xp+...+xp!, 0<x<p 0<i<e-—1. (9.2)
We show that the coefficient x;, 0 <i < e — 1 is a discrete logarithm
in a group of order p.

Raise the equation y* = « to the power p°~'. Then

-

1 1

Y=o, (9.3)

Now we obtain from (9.2)

PFlx=xp" " + (1 +x0p+ .. % p°7N). (9.4)
From Fermat's little theorem (see Theorem 2.11.1), (9.4), and (9.3)
we obtain

Py = (95)

By (9.5), the coefficient x; is a discrete logarithm in a group of order
1 ., - @ %

p because y” is of order p. The other coefficients are determined

recursively. Suppose that xg,x;,...,x; have been determined.

Then

y\-_.,u’+...+.\',_uf" —(xotxipt A g

:Q{y

196 _ 9. Discrete Logarithms

Denote the group element on the right-hand side by «;. If we raise
this equation to the power p“~'~!, then we obtain

Py =", 0<i<e—1. (9.6)

This is a discrete logarithm problem with solution x;. Hence, in order
to compute x(p) we must solve ¢ DL problems in groups of order p.

Example 9.5.3
As in Example 9.3.1, we solve

5% = 3 mod 2017.
The order of the multiplicative group of residues mod 2017 is

n=2016=2%3%%7.

First, we determine x(2) = x mod 2°. We obtain x(2) as a solution of

the congruence
(5¥*y® = 357 mod 2017.
This means that
500"% = 913 mod 2017.
To solve this congruence, we write
X(2) = x0(2) + X1(2) * 2 + x2(2) % 2% 4+ x3(2) % 2° + x4(2) % 2*.
According to (9.6), the coefficient x,(2) is a solution of
2016™ =1 mod 2017.

We obtain xy(2) = 0 and a; = ap = 913 + 2017Z. Hence, x,(2) is the
solution of

2016 = 2016 mod 2017.

We obtain x;(2) = 1 and a; = 1579 + 2017Z. Hence, x,(2) is the
solution of

2016"%) = 2016 mod 2017.

We obtain x3(2) = 1 and a3 = 1 + 2017Z, so x3(2) = x4(2) = 0.
Concluding those computations, we obtain

x(2) = 6.

9.5. Pohlig-Hellman Algorithm 197

Now we compute
X(3) = x0(3) + x1(3) * 3.
We obtain xy(5) as the solution of
294%) = 294 mod 2017,
s0 x9(3) = 1 and a; = 294 + 2017Z. Hence, x,(3) = 1 and
X(3)=4.
Finally, we compute x(7) as the solution of the congruence
1879*7) = 1879 mod 2017,

so x(7) = 1. We obtain x as the solution of the simultaneous
congruence

x=6mod32, x=4mod9, x=1mod?7.

The solution is x = 1030.

9.5.3 Complete algorithm and analysis

We describe the complete Pohlig-Hellman algorithm and analyze it.
First, the group elements y, = y™ and «, = o' are computed for
all prime divisors p of n. Then the coefficients x;(p) are computed
for all prime divisors p of n and 0 < i < ¢(p) — 1 using the Pollard
p-algorithm or Shanks’ baby-step giant-step algorithm. Finally, the
Chinese remainder theorem is used to compute the discrete loga-
rithm. The complexity of the algorithm is estimated in the following
theorem.

Theorem 9.5.4
The Pohlig-Hellman algorithm finds discrete logarithms in the cyclic

group G using O():pucl(e(p)(log |G| + /P))) group operations.

Proof. We use the notation introduced in the previous section. The
computation of the powers y, and «,, for a prime divisor p of n = |G|
requires O(log n) group operations. The computation of each digit in
x(p) for a prime divisor p of n requires O(log n) group operations for
computing the powers and O(,/p) group operations for the baby-step

198 9. Discrete Logarithms

giant-step algorithm. The number of digits is e(p). For the Chinese
remaindering step no group operations are necessary. O

Note that by Theorem 2.15.3 the time for the Chinese remain-
dering step is O((log |G)?).

Theorem 9.5.3 shows that the time for computing discrete log-
arithms with the Pohlig-Hellman algorithm is dominated by the
square root of the largest prime divisor of |G|. If this prime divisor
is small, then it is easy to compute discrete logarithms in G.

Example 9.5.5

The integer p = 2% 3% 5””% 41 is a prime number. Its binary length
is 649. The order of the multiplicative group of residues mod p is
p—1 = 2%3%5"% The computation of discrete logarithms in this
group is very easy because the largest prime divisor of the group
order is 5. Therefore, this prime cannot be used in the ElGamal
cryptosystem.

9.6 Index Calculus

For the multiplicative group of residues modulo prime numbers or,
more generally, for the unit group of a finite field, there are more ef-
ficient DL algorithms, the index calculus algorithms. They are closely
related to integer factoring algorithms such as the quadratic sieve
and the number field sieve. In this section, we describe a simple
index calculus algorithm.

9.6.1 Idea

Let pbe a prime number, g a primitive root mod p, anda € {1,..., p—
1}. We want to solve the discrete logarithm problem

g" =amod p. (9.7)
We choose a bound B and determine the set

F(By={qeP:q < B}.

9.6. Index Calculus 199

This is the factor base. An integer b is called B-smooth if it has only
prime factors in F(B).

Example 9.6.1
Let B = 15. Then F(B) = {(2,3,5,7,11,13}. The number 990 is 15-
smooth. Its prime factorization is 990 = 2 % 3% % 5% 11.

We proceed in two steps. First, we compute the discrete
logarithms of the factor base elements; that is, we solve

g9 =g mod p (9.8)
for all g € F(B). Then we determine an exponenty € {1,2,...,p—1}
such that ag? mod p is B-smooth. We obtain

ag’ = l—[q“? mod p (9.9)
qer(B)

with nonnegative exponents e(q), g € F(B). Equations (9.8) and (9.9)
imply

ag! = n ¢ = l_[gD = gXuerin DD 04 p,

qEF(B) qeF(B)
and hence
a = gEr,ea.w.-ﬂ'rf}rrlff_!-.u mod p.
Therefore,
x= (Z x(q)e(q) —y) mod (p — 1) (9.10)
qer(B)

is the discrete logarithm for which we were looking.

9.6.2 Discrete logarithms of the factor base
elements

To compute the discrete logarithms of the factor base elements, we
choose random numbersz € {1, ..., p—1}and compute g mod p. We

9. Discrete Logarithms

200

check whether those numbers are B-smooth. If they are, we compute
the decomposition

g mod p = I_[q' @2,
GEF(B)

Each exponent vector (f(4, 2))ger(p) is called a relation.

Example 9.6.2
We choose p = 2027, g = 2 and determine relations for the factor
base {2, 3,5,7,11}. We obtain

3% 11 = 33 = 29 mod2027
S*¥7%11 = 385 = 29 110d2027
27 %11 = 1408 = 2% 110d2027
32%x7 = 63 = 2% mod2027
25 % 52 1600 = 2% 1mpd2027.

If we have found as many relations as there are factor base ele-
ments, then we try to find the discrete logarithms by solving a linear
system. Using (9.8), we obtain

gz = I_I qﬂqﬂ?] = I—I g“'f‘”.flmuz) = ngfEi'lFS]“TQH‘(“!":} mod p.
qEF(B) qEF(B)
This implies
z=) X@)f(q,2z) mod (p—1) (9.11)

qeEF(B)

for all z, so each relation yields one linear congruence. We can solve
this linear system by applying the Gauss algorithm modulo each
prime power I° of p — 1. If ¢ = 1, then the standard Gauss algorithm
overa field can be applied. Ife > 1, then the linear algebra is slightly
more complicated. Finally, the x(q) are computed using the Chinese
remainder theorem.

Example 9.6.3
We continue Example 9.6.2. If we write

q=g¢"" mod 2027, ¢=2,3,5,711

v

9.6. Index Calculus

201

and use the relations from Example 9.6.2, then we obtain the linear
system

X(3) 4+ x(11) = 1593 mod 2026

X(5) +x(7) + x(11) = 983 mod 2026

7x(2) + x(11) = 1318 mod 2026

2x(3) 4+ x(7) = 293 mod 2026

6x(2) + 2x(5) = 1918 mod 2026.

(9.12)

Because 2026 = 2x1013 and 1013 is prime, we solve this system mod
2 and mod 1013. We obtain

X(3)+x(11) =1 mod 2

X(5)+x(7)+x(11)=1 mod 2

X(2)4x(11) = 0 mod 2

X(7) =1 mod 2.

(9.13)

We know that x(2) = 1 because the primitive root g = 2 is used, so

we find

X2)=x(5)=x7)=x(11)=1 mod 2, X¥3)=0mod 2. (9.14)

Next, we compute the discrete logarithms of the factor base
elements mod 1013. Again, we have X(2) = 1. From (9.12), we get

X(3) +x(11) = 580 mod 1013

X(5)+X(7)+ x(11) = 983 mod 1013

x(11) = 298 mod 1013

2x(3) + x(7) = 293 mod 1013

2x(5) = 899 mod 1013.

(9.15)

This implies x(11) = 298 mod 1013. To compute x(5), we invert 2
mod 1013. The result is 2507 = 1 mod 1013. He nce, x(5) = 956 mod
1013. From the second congruence, we obtain X(7) = 742 mod 1013,
From the first congruence, we obtain X(3) = 282 mod 1013. Using
(9.14), we finally obtain

X(2) =1,x(3) = 282, x(5) = 1969, x(7) = 1755, x(11) = 1311.

[t is easy to verify that this result is correct.

202 _ 9. Discrete Logarithms

9.6.3 Individual logarithms

When the discrete logarithms of the factor base elements are com-
puted, then the discrete logarithm of a to the base g is determined.
We choose a random y € {1,...,p — 1}. If ag? mod p is B-smooth,
then (9.10) is applied. Otherwise, we choose a new y.

Example 9.6.4
We solve

2" =13 mod 2027.

We choose a random y € {1, ..., 2026} until all prime factors of 13 *
2Y mod 2027 are in the factor base {2, 3, 5,7, 11}. We find

2% 5% 11 = 110 = 13 % 2" mod 2027.
Using (9.10), we obtain x = (14+1969+1311—1397) mod 2026 = 1884.

9.6.4 Analysis

It can be shown that the index calculus algorithm that was described
in the previous sections has subexponential running time L,[1/2, ¢+
0(1)] (see Section 8.4), where the constant ¢ depends on the technical
realization of the algorithm; for example, on the complexity of the
algorithm for solving the linear system. The analysis is similar to the
analysis of the quadratic sieve in Section 8.4. Since all of the generic
algorithms described earlier have exponential running time, index
calculus algorithms are asymptotically much more efficient and also
much faster in practice.

9.7 Other Algorithms

There are more efficient variants of the index calculus algorithm.
Currently, the fastest index calculus algorithm is the number field
sieve (see [31]). It has running time Lp[1/3,(64/9)'"%] and was in-
vented shortly after the discovery of the number field sieve factoring

9.9. Exercises 203

algorithm. Other efficient integer factoring algorithms also have DL
variants. This shows that the integer factoring problem and the DL
problem in finite fields are closely related. Therefore, cryptosystems
based on the discrete logarithm problem in finite fields cannot really
be considered to be an alternative to systems that are based on the
difficulty of factoring integers. Real alternatives are the DL problem
on elliptic curves or in algebraic number fields.

9.8 Generalization of the Index
Calculus Algorithm

Although the baby-step giant-step algorithm and the Pollard p-
algorithm work in any cyclic group, we have explained the index
calculus algorithm only in multiplicative group of residues modulo
a prime number. But in principle, the index calculus algorithm also
works in any group. Some factor base of group elements is fixed.
Relations for this factor base are computed. The discrete logarithms
are computed by linear algebra techniques. However, the factor base
must be chosen such that relations can be found efficiently. Unfortu-
nately, for some groups, such as for elliptic curves over finite fields,
it is not known how to choose the factor base and how to compute
relations. Therefore, the index calculus algorithm is not applicable
in those groups.

9.9 Exercises

Exercise 9.9.1
Solve the DL problem 3" = 693 mod 1823 using the baby-step giant-
step algorithm.

Exercise 9.9.2
Use the baby-step giant-step algorithm to compute the discrete
logarithm of 15 to the base 2 mod 239.

204 9. Discrete Logarithms

Exercise 9.9.3
Solve the DL problem g* = 507 mod 1117 for the smallest primitive
root g mod 1117 with the Pohlig-Hellman algorithm.

Exercise 9.9.4
Use the Pohlig-Hellman algorithm to compute the discrete logarithm
of 2 to the base 3 mod 65537.

Exercise 9.9.5
Jse the Pollard p-algorithm to solve the DL problem g* = 15 mod
3167 for the smallest primitive root g mod 3167.

Exercise 9.9.6

Use the variant of the Pollard p-algorithm that stores eight triplets
(B, x,y) to solve the DL problem g* = 15 mod 3167 for the smallest
primitive root g mod 3167. Compare the efficiency of this computa-
tion with the efficiency of the simple Pollard p-algorithm (Exercise
9.9.5).

Exercise 9.9.7
Use the index calculus algorithm with the factor base {2, 3, 5, 7, 11}
to solve 7* = 13 mod 2039.

Exercise 9.9.8
Determine the smallest factor base that can be used in the index
calculus algorithm to solve 7* = 13 mod 2039.

- Cryptographic
Hash
cnrrren FUNCtIONS

In this chapter, we discuss cryptographic hash functions. They are
used, for example, in digital signatures. Throughout this chapter, we
assume that X is an alphabet.

10.1 Hash Functions and Compression
Functions

By a hash function, we mean a map
h:Z*—> %" neN.

Thus, hash functions map arbitrarily long strings to strings of fixed
length. They are never injective.

Example 10.1.1

The map thatsends byb, ... b in{0,1}*tob, @b, &b, @ ---® by isa
hash function. It maps, for example, 01101 to 1. In general, it sends
a string b to 1 if the number of ones in b is odd and to 0 otherwise.

iy -

10. Cryptographic Hash Functions

206

Hash functions can be generated using compression functions. A
compression function is a map
h: Em — 2”

nmeN, m>n.

It maps strings of fixed length to strings of shorter length.

Example 10.1.2
The map that sends the word b1b, ... b, € (0,1} to by ® b, ® by &
-++ @ by, is a compression function if m > 1.

Hash functions and compression functions are used in many con-
texts (e.g., for making dictionaries). In cryptography, they also play
an important role. Cryptographic hash and compression functions
must have properties that guarantee their security. We now describe
these properties informally. Let h : £* — " be a hash function or
h: ™ — X" a compression function. We denote the set £* or X"
of arguments of h by D. If h is a hash function, then D = Z*. If h is
a compression function, then D = £,

If h is used in cryptography, then h(x) must be easy to compute
for all x € D. We will assume that this is the case.

The function h is called a one-way function if it is infeasible to
invert h; that is, to compute an inverse image x such that h(x) = s
for a given image s. What does “infeasible” mean? It is complicated
to describe this in a precise mathematical way. To do so, we would
need the language of complexity theory (see [6]), which is beyond
the scope of this book. Therefore, we only give an intuitive descrip-
tion. Any algorithm that on input of s € £" tries to compute x with
h(x) = s almost always fails because it uses too much space or time.
It is not known whether one-way functions exist. There are func-
tions, however, that are easy to evaluate but for which no efficient
inversion algorithms are known and that therefore can be used as
one-way functions.

Example 10.1.3

If p is a randomly chosen 1024-bit prime and g is a primitive root
mod p, then the function f : {0,2,...,p— 2} = {1,2,...,p — 1},
x — g*mod p is easy to compute by fast exponentiation, but an
efficient inversion function is not known because it is difficult to

T

10.1. Hash Functions and Compression Functions

207

compute discrete logarithms (see Chapter 9). Therefore, f can be
used as a one-way function.

A collision of h is a pair (x,x') € D? for which x # ¥’ and h(x) =
h(x"). There are collisions of all hash functions and compression
functions because they are not injective.

Example 10.1.4

A collision of the hash function from Example 10.1.1 is a pair of
distinct strings, both of which have an odd number of ones, such as
(111,101).

The function h is called weak collision resistant if it is infeasible to
compute a collision (x, x") for a given x € D. The following example
shows where weak collision resistant functions are necessary.

Example 10.1.5

Alice wants to protect an encryption algorithm x on her hard disk
from unauthorized changes. She uses a hash function h : £* — "
to compute the hash value y = h(x) of the program x, and she stores
this hash value y on her personal smart card. After work, Alice goes
home and takes her smart card with her. On the next morning, Alice
goes to her office. Before she uses the encryption program again,
she checks whether the program is unchanged that is, whether the
hash value of the program is the same as the hash value stored on
her smart card.

This test is only secure if the hash function h is weak collision
resistant. If not, then an adversary can compute another preimage
x" of the hash value h(x) and can change the program x to x’ without
Alice noticing.

Example 10.1.5 shows a typical use of collision resistant hash
functions. They permit reducing the integrity of a document to the
integrity of a much smaller string, which, for example, can be stored
on a smart card.

The function h is called (strong) collision resistant if it is infeasi-
ble to compute any collision (x, x") of h. In some applications, it is
even necessary to use strong collision resistant hash functions (e.g.,
for electronic signatures, which are discussed in the next chapter).
It can be shown that collision resistant hash functions are one-way

208 _10. Cryptographic Hash Functions

functions. The idea is the following. Suppose that there is an inver-
sion algorithm for h. Then one randomly chooses a string x’. Using
the inversion algorithm, an inverse image x of y = h(x") is computed.
Then (x, ") is a collision of h, unless x = x'.

10.2 Birthday Attack

In this section, we describe a simple attack on hash functions
h:z*— %"

called the birthday attack. 1t attacks the strong collision resistance of
h. The attack is based on the birthday paradox.

In the birthday attack, we compute as many hash values as time
and space permit. Those values are stored together with their inverse
images and sorted. Then we look for a collision. Using the birthday
paradox (see Section 4.3), we can analyze this procedure. The hash
values correspond to birthdays. We assume that strings from £* can
be chosen such that the distribution on the corresponding hash val-
ues is the uniform distribution. In Section 4.3, we have shown the
following: If k strings in x € £* are chosen, where

k> (1++/1+(8In2)|Z|")/2,

then the probability of two hash values being equal exceeds 1/2. For
simplicity, we assume that £ = {0, 1}. Then

k=f(n)y=01+ 14 (8In2)2m)/2
is sufficient. The following table shows log,(f(n)) for typical sizes

of n.

n 50 100 150 200
log,(f(n)) 25.24 50.24 75.24 100.24

Hence, if we compute a little more than 2''# hash values, then the
birthday attack finds a collision with probability > 1/2. To prevent
the birthday attack, n has to be chosen such that the computation
of 2% hash values is infeasible. Today, n = 128 or sometimes even
n > 160 is required.

10.4. Hash Functions from Compression Functions ()9

10.3 Compression Functions from
Encryption Functions

It is unknown whether collision resistant hash functions exist. It is
also not known whether secure and efficient encryption schemes
exist. It is, however, possible to construct a hash function from an
encryption function that appears to be collision resistant as long as
the encryption scheme is secure. We will describe this now.

We use a cryptosystem with plaintext space, ciphertext space, and
key space {0, 1}"*. The encryption functions are ¢ : {0, 1} — {0, 1}",
k € {0,1}". The hash values have length n. To prevent the birthday
attack, we chose n > 128. Therefore, DES cannot be used.

The hash function

h:{0,1)" x {0,1}" — {0, 1}"
can be defined as follows:
h(k, x) = ex(x) B x
h(k,x) =ex(x) x Dk
h(k,x) =ex(x D k) D x
h(k,x) =ex(x® k) D x D k.

As long as the cryptosystem is secure, those hash functions appear
to be collision resistant. Unfortunately, no proof for this statement
is known.

10.4 Hash Functions from Compression
Functions

Collision resistant compression functions can be used to construct

collision resistant hash functions. This was shown by R. Merkle, and

we now describe his idea.
Let

g . {0II] }?II iy {U, 1}!!

210 __10. Cryptographic Hash Functions

be a compression function and let
r=m-—n.

Since g is a compression function, we have r > 0. A typical choice
for n and r is n = 128 and r = 512. From g, we want to construct a
hash function

h:{0,1}* = {0,1}".

Let x € {0, 1}*. We explain the computation of h(x) in the case r > 1.
The case r = 1 is left to the reader as an exercise. We append a min-
imum number of zeros to x such that the length of the new string is
divisible by r. To this string we append r zeros. Now we determine
the binary representation of the original string x. We append zeros to
that representation such that its length is divisible by r —1. In front of
the normalized representation string and in front of each (r — 1)jth,
j = 1,2,3,..., symbol of that string we insert a one. The result-
ing representation string is appended to the previously normalized
string. The complete string is written as a sequence

x=xx...%, Xx€{01}, 1<i<t

of words of length r. Note that each word in the part which represents
the length of the original x starts with the symbol 1.

Example 10.4.1

Let r = 4, x = 111011. First, we transform x into 0011 1011. Then we
append 0000 to that string. We obtain 0011 1011 0000. The length of
the original x is 6. The binary expansion of 6 is 110. It is written as
1110. So we finally obtain the string 0011 1011 0000 1110.

The hash value h(x) is computed iteratively. We set
Hp, =0".
This string consists of n zeros. Then we determine
H,=g(Hi—10x), 1<i<t
Finally, we set

h(x} = ‘l'_‘(!‘

10.4. Hash Functions from Compression Functions 211

We show that h is collision resistant if g is collision resistant by
proving that from a collision of h we can determine a collision of g.

Let (x,x") be a collision of h. Moreover, let xi,...,x, e R
be the block sequences for x and x’ as above and let Hy, ..., H,,
H{, ..., H) be the corresponding sequences of hash values. Assume

thatt < ¢’. Then

H!' — hﬂ;

t

since (x, ") is a collision of h. First, we assume that there is an index
i with 0 < i < t such that

Hf—i' = H:’—r
and
Hf_;'_] # H:r__l-_l.
Then
HI—I'-—‘I Oxf—i ?‘—' H:'—l—'l Ox:r_!
and

8(Hi—i—y o X)) = Hi—; = .-"—a' = g(H:’—i—l 9 X:’—:)-
This is a collision of g. Now assume that
H_=H,_, 0<i<t
Below we show that there is an index i with 0 <i <t —1 and
RS 2

This implies

! !
H;_I_] OX;_]E ?e H 1 OX::_

t'—i—

and
8(Hi—i-10%i)=H;—i=H|_; = B(H:’—:—l o x:‘—:)-

Hence, we have found a collision of g.
We show that there is an index i with 0 <i < t such that

X;_,' # x:r_‘,

212 10. Cryptographic Hash Functions

TABLE 10.1 Parameter for special hash functions.

hash function | block length | relative speed
MD4 128 1.00
MD5 128 0.68
RIPEMD-128 128 0.39
SHA-1 160 0.28
RIPEMD-160 160 0.24

If the number of words required to represent the length of x is
smaller than the number of words required to represent the length
of ¥, then there is an index i such that x,_; (the string between x and
the representation of its length) is the zero string but x;,_, is non-zero
since it starts with 1 (because all words in the representation of the
length of " start with 1).

If the number of words required to represent the length of x is
the same as the number of words required to represent the length
of ¥ but the length of x is different from the length of x” then the
representations of the lengths contain a different word with the same
index.

10.5 Efficient Hash Functions

The hash functions that are used in practice are constructed as in
Section 10.4. Modifications of this construction hasten the evalu-
ation. Table 10.1 contains technical data of some practically used
hash functions.

All of the hash functions in the table are very efficient.

The hash function MD4 can no longer be considered as collision
resistant because by computing 2% hash values a collision can be
found. However, the construction principle of MD4 is used in all
other hash functions in this table. Also, MD5 is no longer totally
secure since a collision of its compression function has been found.

10.6. An Arithmetic Compression Function 2173

10.6 An Arithmetic Compression
Function

As we have mentioned earlier, there are no provably collision re-
sistant compression functions. There is, however, a compression
function that can be proven to be collision resistant if computing dis-
crete logarithms in (Z/pZ)* is infeasible. It was invented by Chaum,
van Heijst, and Pfitzmann, and we will explain how it works.

Let p be a prime number, g = (p — 1)/2 also a prime number, a
a primitive root mod p, and b randomly chosen in {1,2,...,p — 1}.
Consider the following map:

h:{0,1,...,9—1 > {1,...,p—1}, (x1,%)+> a"b*? mod p.

(10.1)
This is not a compression function as defined in Section 10.1. How-
ever, since g = (p — 1)/2, it maps bitstrings (x;, x), whose binary
length is approximately twice the binary length of p, to strings whose
binary length is at most that of p. It is not difficult to modify this func-
tion in such a way that it is a compression function in the sense of
Section 10.1.

Example 10.6.1
Letq =11, p = 23, a = 5, b = 4. Then h(5,10) = 5° - 4" mod 23 =
20 -6 mod 23 = 5.

A collision of his a pair (x,¥') € {0, 1,...,g—1}*x{0,1,...,g—1}?
with x # X’ and h(x) = h(x"). We show that being able to find a
collision of h implies the ability of computing the discrete logarithm
of b for base a mod p.

Let (x,%) be a collision of h, x = (x1,x2), X' = (x3,%), Xi €
{0,1,...,g—1},1 <i <4 Then

a*b* = a“b* mod p,
which implies
a® ™™ = p“7" mod p.
Denote by y the discrete logarithm of b for base a modulo p. Then

a-\’|—x.; = a.!!{-‘fq“-‘fxl mod p.

214 _10. Cryptographic Hash Functions

Since a is a primitive root modulo p, this implies the congruence
X1 —x3=Y(xq —x2) mod (p—1) = 2q. (10.2)

This congruence has a solution y, namely the discrete logarithm of
b for base a. This is only possible if d = gcd(xy — x2,p — 1) divides
X1 — x3 (see Exercise 2.22.11). Because of the choice of x, and x4, we
have |x; — x| < g. Since p — 1 = 2g, this implies

de{1,2}.

If d = 1, then (10.2) has a unique solution modulo p — 1. The
discrete logarithm y can be determined as the smallest nonnegative
solution of this congruence. If d = 2, then the congruence has two
different solutions mod p—1 and the discrete logarithm can be found
by trying both.

We have seen that the compression function from (10.1) is col-
lision resistant as long as the computation of discrete logarithms is
difficult. Therefore, collision resistance has been reduced to a well-
studied problem of number theory. Unfortunately, the evaluation
of this compression function is not very efficient, since it requires
modular exponentiations. Therefore, this hash function is only of
theoretical interest.

10.7 Message Authentication Codes

Cryptographic hash functions can be used to check whether a file
has been changed. The hash value of the file is stored separately.
The integrity of the file is checked by computing the hash value of
the actual file and comparing it with the stored hash value. If the
two hash values are the same, then the file is unchanged.

If not only the integrity of a document but also the authenticity
is to be proven, then parameterized hash functions can be used.

Definition 10.7.1
A parameterized hash function is a family {hr : k € K} of hash
functions. Here, K is a set. It is called the key space of h.

10.8. Exercises 215

A parameterized hash function is also called a message authenti-
cation code or MAC.

Example 10.7.2
Consider a hash function

2:{0,1}* — {0, 1}*,
It can be transformed into the MAC
hi - 0,1} = {0,1}}, x> g(x)@k
with key space {0, 1}*.
The following example shows how MACs can be used.

Example 10.7.3

Professor Alice sends a list with the names of all students who have
passed the cryptography class via email to the college office. It is
important that the college office be convinced that this email is au-
thentic. For the proof of authenticity, a MAC {h; : k € K} is used.
Alice and the college office exchange a secret key k € K. Together
with her list x, Alice also sends the hash value y = hy(x) to the
college office. Bob, the secretary, can also compute the hash value

Y' = hi(X)) of the received message x'. He accepts X" if y = y'.

The protocol from Example 10.7.3 only proves the authentic-
ity if without the knowledge of k it is infeasible to compute a pair
(¥, hi(X")) from the pair (x, hi(x)) with x # x'.

A MAC can, for example, be constructed as follows. We use a
block cipher with the CBC mode and throw away all blocks of the
ciphertext except for the last one, which is the hash value. We give
no further details but refer the reader to [24].

10.8 Exercises

Exercise 10.8.1
Construct a one-way function that is secure if factoring integers is
difficult.

216 __10. Cryptographic Hash Functions

Exercise 10.8.2

For a permutation m in 83, let e, be the bit permutation of bitstrings
of length 3. For each & € S3, determine the number of collisions of
the compression function h, : {0,1}* x {0,1}® — {0,1)3, (%, %)
ex(x1) D xy.

Exercise 10.8.3

Consider the hash function h : {0,1}* — {0, 1}*, k — [10000(k(1 +
V/5)/2) mod 1)), where the strings are identified with the integers
they represent and r mod 1 = r — |r] for a nonnegative real number
r.

1. Determine the maximal length of the images.

2. Find a collision for this hash function.

Exercise 10.8.4
We consider the hash function h obtained from the compression

L 2 3 .
3 3 1)asdesf_:lr*lbed

in Section 10.4. Determine h(0101010101011).

function e, from Exercise 10.8.2 with & =

11 ' Digital
-~ Signatures

CHAPTER

11.1 Idea

Digital signatures are used to sign electronic documents. Such sig-
natures have properties similar to handwritten signatures. We will
briefly describe those properties here.

If Alice signs a document with her handwritten signature, then
everybody who sees the document and who knows Alice's signature
can verify that Alice has in fact signed the document. For example,
the signature can be used in a trial as proof that Alice has knowledge
of the document and has agreed to its contents.

In many situations, electronic documents also must be signed.
For example, electronic contracts, electronic bank transactions, and
binding electronic mails must be signed.

In principle, digital signatures work as follows. Suppose that Alice
wants to sign the document m. She uses a secret key d and computes
the signature s(d, m). Using the corresponding public key ¢, Bob can
verify that s(d, m) is in fact the signature of m.

Such a signature scheme is secure if nobody can produce the
signature s(d, m) without the knowledge of the secret d. In the fol-
lowing sections, we describe some of the known signature schemes.
By ¥ we denote an alphabet.

217

218 _11. Digital Signatures

11.2 RSA Signatures

In Section 7.2, we have described the oldest public-key system, the
RSA system. This system can also be used to generate digital sig-
natures. The idea is very simple. Alice signs the document m by
computing the signature s = s(d, m) = m? mod n. Here d is Alice’s
secret exponent and n is the public RSA modulus. Bob verifies the sig-
nature by computing s° mod n = m“ = m mod n. The verification
congruence follows from Theorem 7.2.4.

Why is this a signature? By raising the randomly looking number
s to the power ¢, Bob can recover the document m. Therefore, s can
be considered to be the eth root of the document m, and currently
computing eth roots of an integer m mod n without the knowledge
of d is infeasible. But Alice is the only person who knows d, so Alice
must have computed s and thereby signed m.

11.2.1 Key generation

The key generation for RSA signatures is the same as the key gen-
eration for RSA encryption. Alice chooses independently two large
random primes p and g and an exponente with1 < ¢ < (p—1)(g—1)
and ged(e, (p —1)(g — 1)) = 1. She computes n = pgq and d € Z with
l<d< (p=1)g—1)andde =1 mod (p — 1)(g — 1). Her public
key is (n, ¢) and her secret key is d.

'

“~

e

11.2.2 Signature generation

We explain how Alice signs m € {0,1,...,n — 1}. The integer m can
be a short document or message or the hash value of a long message
(see Section 11.2.6). To sign m, Alice computes

s =m® mod n. (11.1)

The signature is s. This signing method has its problems, as we will
see later. But for the moment, we are only interested in the principle.

11.2. RSA Signatures 219

11.2.3 Verification

Bob wants to verify the signature s. He gets Alice’s public key (n, €)
from some public directory and recovers the signed message by
computing

m = s mod n. (11.2)

This equation follows from Theorem 7.2.4. Which information has
Bob obtained by computing m? He now knows the signed message
m. Since he has computed m from s, he knows that s is the signature
of m. He does not need to know m in advance. But he is sure that
Alice has generated s. Given his present knowledge, s cannot be
computed without d, and d is Alice's secret.

Anyone who knows Alice's public key, for example a judge, can
verify this signature.

Example 11.2.1
Alice chooses p = 11, g = 23, ¢ = 3. She obtains n = 253, d = 147.
Alice’s public key is (253, 3). Her private key is 147.

Alice wants to obtain $ 111 from an automated teller machine.
She signs 111. She computes s = 111'* mod 253 = 89. The cash
dispenser computes m = s* mod 253 = 111. The machine knows
that Alice wants to withdraw $ 111 and it can also prove it to third
parties.

11.2.4 Attacks

If the RSA signature is implemented as described thus far, then there
are a number of possible attacks.

In order to verify a signature from Alice, Bob gets Alice’s public
key. If the attacker, Oscar, is able to replace Alice’s public key with
his own public key without Bob noticing this, then he can sign in
Alice’s name. Therefore, it is important that Bob be able to convince
himself that he has Alice’s authentic public key. This is the reason
for using a trust center (see Chapter 14).

Another attack works as follows. Oscar chooses an integer s €
{0,...,n — 1}. Then he claims that s is an RSA signature of Alice.
Bob wants to verify this signature. He computes m = s* mod n and

22(0 _11. Digital Signatures

believes that Alice has signed m. If m is a meaningful text, then
Oscar was able to fake a signature of Alice. This is called an existential

forgery.

Example 11.2.2

As in Example 11.2.1, Alice chooses p = 11, g = 23, ¢ = 3. She
obtains n = 253, d = 147. Alice’s public key is (253, 3). Her private
key is 147.

Oscar wants to withdraw money from Alice’s account. He sends
the signature s = 123 to the cash dispenser. The cash dispenser
computes m = 123" mod 253 = 117. It believes that Alice wants
to withdraw $ 117, but this is not true. Alice has never signed the $
117. She was the victim of an existential forgery.

Another danger comes from the fact that RSA is multiplicative.
Ifmy, my € {0,...,n =1} and s; = m{ mod n and s, = m¢ mod n
are the signatures of m, and m,, then

s =818, mod n = (mym;)? mod n

is the signature of m = m;m,. From two valid RSA signatures, a third
one can be computed.

In the following section, we explain how the attacks from this
section can be prevented.

11.2.5 Signature with redundancy

Two of the attacks of the previous section are impossible if only
integers m € {0,1,...,n — 1} having a binary expansion of the form
wow with w € {0, 1}* can be signed. Thus, the binary expansion has
two identical halves. The text that is really signed is, of course, w, but
the string wow is technically signed. When verifying a signature, Bob
computes m = s° mod n. He checks whether the binary expansion
of m is of the form w o w. If not, then the signature is rejected.

If only documents of the form w o w are signed, then the exis-
tential forgery of the previous section no longer works. Oscar would
need to come up with a false signature s € {0,1,...,n — 1} such that
the binary expansion of m = s* mod n is of the form w o w. It is not
known how such an s can be constructed without the knowledge of

11.2. RSA Signatures 221

the private key. The multiplicativity of RSA can no longer be used
because it is extremely unlikely that m = m;m; mod n is a binary
expansion of the form w o w if this is true for the two factors.

The function

R:{0,1}* - {0,1}, w > R(w)=wow,

which is used for the generation of the special structure of the doc-
uments that can be signed, is called a redundancy function. Clearly,
other redundancy functions can also be used.

11.2.6 Signature with hash functions

Thus far, we have explained how documents m that are integers
in {0,1,...,n — 1} are signed. By verifying the signature, Bob also
obtains the document that has been signed.

If Alice wants to sign an arbitrarily long document x, then she
uses a publicly known collision resistant hash function

i {011 = {0 i — 1)

Since h is collision resistant, h is also a one-way function (see Section
10.1). In practice, h is constructed using a standard collision resistant
hash function whose values are, for example, 160 bitstrings. They are
expanded by a method that is described in the standard PKCS #1 (see
[24)).

The signature of the document x is
s = h(x)? mod n.

From this signature, only the hash value h(x) but not the document
x can be reconstructed. Therefore, Bob can only verify the signature
of x if he also knows the document x. After Alice computes the
signature s of x, she sends s together with the document x to Bob.
Bob computes m = s* mod n and compares this number with the
hash value of x. Since the hash function is public, Bob can compute
this hash value. If m and h(x) are equal, Bob accepts the signature.
Otherwise, he rejects it.

This procedure makes the existential forgery from Section 11.2.4
impossible. Suppose that Oscar chooses the signature s. Because he

2272 11. Digital Signatures

must send a document x together with s to Bob, he must come up
with x such that h(x) = s mod n. This is exactly what Bob checks
when he tries to verify the signature, so x is an inverse image of
m = s mod n under h. Because the hash function h is one way, Bob
cannot compute such an x.

The multiplicativity attack from Section 11.2.4 can no longer be
applied. Since h is one way, it is impossible to find x such that h(x) =
m = m;m; mod n.

Finally, Oscar cannot replace the document x signed by Alice by
another document x’ since the pair (x, x") is a collision of h and h is
collision resistant.

11.2.7 Choice of p and q

[f Oscar can factor the RSA modulus, then he can determine Alice's
secret key d and can sign documents in Alice’s name. Therefore, p
and g must be chosen such that n cannot be factored. For the RSA
cryptosystem, the choice of p and g has already been described in
Section 7.2.6.

11.3 Signatures from Public-Key
Systems

Consider another public-key cryptosystem. For a pair (¢, d) of public
key and corresponding private key, let E, be the encryption function
and let Dy be the decryption function. Suppose that for any such pair
(e, d) and any plaintext m, we have

m = E(D(m, d), e). (11.3)

Then a signature scheme can be constructed from this public-key
system. The signature of the document x is s = D(h(x), d), where h is
a publicly known collision resistant hash function. This signature is
verified by computing h(x) = E(s,). The verification works because
of (11.3). It is also possible to use a redundancy function instead of

11.4. ElGamal Signature 27273

the hash function. The details are explained in the standard ISO/IEC
9796 [2].
Note that RSA satisfies (11.3) since
(m%)* = (m*)® = m mod n

for any public RSA key (n, €) with corresponding private key d. The
Rabin cryptosystem can also be transformed into a signature scheme
(see Exercise 11.6.3).

11.4 ElGamal Signature

The ElGamal signature scheme is similar to the EIGamal cryptosys-
tem (see Section 7.5), although it is not constructed from it by the
method described in Section 11.3. Its security is based on the dif-
ficulty of computing discrete logarithms in (Z/pZ)*, where p is a
prime number.

11.4.1 Key generation

Key generation is the same as for the ElGamal encryption system
(see Section 7.5.1). Alice generates a large random prime p and a
primitive root g mod p. She also chooses a randomly in the set
{1,2,...,p — 2} and computes A = g“ mod p. Her private key is
a. Her public key is (p, g, A).

11.4.2 Signature generation

Alice signs a document x € {0, 1}*. She uses the publicly known
collision resistant hash function

h:{0,1}* = {1,2,...,p—2}.

Alice also chooses a random number k € {1,2,...,p — 2} which is
prime to p — 1. She computes
r=g"mod p, s=k"'(h(x)—ar)mod (p—1). (11.4)

224 11. Digital Signatures

-1 : . -~
wljere k=" is the inverse of k modulo p — 1. The signature of x is the
pair (7, s). Since a hash function has been used, the verifier cannot

It:?cover the document x from the signature. Alice has to give it to
im.

11.4.3 Verification

Bob, the verifier, uses Alice’s public key (g A). As in the RSA sig-
natu.re scheme, he has to convince himself of the authenticity of this
public key. He verifies that

I<r=<p-1.
If this condition is not satisfied, then he rejects the signature;
otherwise, he checks the congruence |
A" = g"™ mod p. (11.5)

He accepts the signature if this congruence holds; otherwise he
rejects it. |

We show that the verification works. If s is computed according
to (11.4), then

ro.s — _ar kk7Vh(x)—ar h
ATr® = g gt ()) = ¢"™ mod P (11.6)
as asserted. Conversely, if (11.5) is satisfied for a pair (r, s), and if k

is the discrete logarithm of r to the base g then,

ar+ks h{x)

g =g"" mod p.

Since g is a primitive root mod p, Corollary 2.9.3 implies
ar + ks = h(x) mod p — 1.

If k and p — 1 are coprime, this implies (11.4). There is no other way
to construct the signature.

Example 11.4.1

As in Example 7.5.1, Alice chooses p = 23, g = 7, a = 6 and com-
putes A = g“ mod p = 4. Her public key is (p=23,g=7A=4).
Her private key is a = 6.

11.4. ElGamal Signature 2795

Alice wants to sign the document x, which has value h(x) = 7. She
chooses k = 5 and obtains r = 17. The inverse of k mod (p — 1 = 22)
is k! = 9. Therefore, s = k~'(h(x) —ar) mod (p —1) =9 (7 — 6 *
17) mod 22 = 3. The signature is (17, 3).

Bob wants to verify this signature. He computes A'r* mod p =
47 %17% mod 23 = 5. He also computes g"® mod p = 77 mod 23 =
5, so the signature is verified.

11.4.4 Choice of p

If the attacker, Oscar, can compute discrete logarithms mod p, then
he can determine Alice’s secret key and can generate signatures in
Alice’s name. This remains the only known general method of gen-
erating ElGamal signatures. Therefore, p must be chosen such that
computing discrete logarithms mod p is infeasible. Given the dis-
crete logarithm algorithms known today, this means that p should
be at least a 768-bit number. Also, primes of special forms for which
certain DL algorithms such as the Pohlig-Hellman method (see Sec-
tion 9.5) are particularly efficient must be avoided. As explained in
Section 7.2.6, the best strategy is to use random primes.

It is also dangerous if p = 3 mod 4, the primitive root g divides
p—1, and computing discrete logarithms in the subgroup of (Z/pZ)*
of order g is possible. This is discussed in Exercise 11.6.5. There fore,
g should not divide p — 1.

11.4.5 Choice of k

We show that for every new signature a new exponent k must be
chosen. This is guaranteed if k is a random number.

Suppose that the signatures s; and s, of the documents x; and x;
are generated with the same k. Then the number r = 2" mod p is
the same for both signatures. Therefore,

8§ — 8 = k_l{h(xt) - h('\".!]} mod (P - l}

From this congruence, k can be determined if h(x;) — h(x;) is in-
vertible modulo p — 1. From k, s, 1, h(x,), Alice’s secret key a can be

226 _11. Digital Signatures

determined since
s; = k7' (h(x1) —ar) mod (p —1)
and therefore

a=r""(h(x;) —ks;) mod (p—1).

11.4.6 Existential forgery

Ifno hash function is used in the ElGamal signature system, then ex-
istential forgery is possible. Without a hash function, the verification
congruence is

A'r* =g* mod p.

We show how r, s, x can be chosen such that this congruence is sat-
isfied. To mount the existential forgery, Oscar chooses two integers
u, v with ged(v, p — 1) = 1. Then he sets

rngA!J mod P, s=—rv! mod (p—l), X = su mod ®-1).
With those values for r and s, the verification congruence
A =A"g"AY = A'g™A7" =g" mod p

holds.

This procedure also works if a collision resistant hash function is
used. But since the hash function is a one-way function, it is impossi-
ble for Oscar to find a document x such that the signature generated
is the signature of x.

As for the RSA signature scheme, the existential forgery described
can also be prevented by using redundancy in the documents to be
signed.

The condition 1 < r < p — 1 is also crucial. If it is not required,
then it is possible to generate new signatures from old signatures, as
we now explain. Let (7, s) be the ElGamal signature of the document
x. Let X" be another document. To sign ¥, Oscar computes

u = h(x")h(x)"' mod (p —1).

11.4. ElGamal Signature 2797

Here we assume that h(x) is invertible mod p — 1. Oscar also
computes

s =sumod (p—1)
and, using the Chinese remainder theorem, he determines r" with
r=rumod (p—1), ' =rmod p. (11.7)

The signature of ¥’ is (1, s"). The verification of this signature works
because

Ar’(rr)s' = ATUpSH = gu(a:'—i—ks] = gh{,\"] mod p.

We also show that ¥’ > p and therefore the condition 1 < <p —1
is violated. On the one hand, we have

l1<r<p-1, r=r'"modp, (11.8)

and on the other hand

r'=ru#rmod p—1. (11.9)
This follows from u = h(x')h(x)”' # 1 mod p — 1 and from the
fact that h is collision resistant. Now (11.9) implies r # »" and (11.8)
implies r' > p.

11.4.7 Efficiency

The generation of an ElGamal signature requires one applica-
tion of the extended euclidean algorithm for the computation of
k~! mod p — 1 and one modular exponentiation mod p for the com-
putation of r = g" mod p. These are possible precomputations. They
do not depend on the document to be signed. However, the result of
the precomputation must be securely stored. The actual signature
only requires two modular multiplications. It is extremely fast.

The verification of an ElGamal signature requires three modular
exponentiations. This is considerably more expensive than an RSA
signature verification. The verification can be sped up by using the
congruence

g "®A"* =1 mod p.

h

228 _ 11. Digital Signatures

The exponentiation on the left-hand side can be carried out simulta-
neously as explained in Section 2.13. It follows from Theorem 2.13.1
that the verification requires at most 5 + t multiplications and ¢t — 1
squarings mod p, where t is the binary length of p. This is only
slightly more expensive than one modular exponentiation.

11.4.8 Generalization

Like the ElGamal cryptosystem, the ElGamal signature scheme can
also be implemented in any cyclic group whose order is known.
The implementation, including the security considerations, can be
deduced from the implementation in (Z/pZ)*.

11.5 Digital Signature Algorithm (DSA)

The Digital Signature Algorithm (DSA) has been suggested and stan-
dardized by the National Institute of Standards and Technology
(NIST) of the U.S. It is an efficient variant of the ElGamal signature
scheme. The number of modular exponentiations in the verification
is reduced from three to two and, more importantly, the number of
digits in the exponents is 160 while in the EIGamal signature scheme
the exponents have as many bits as the prime p (i.e., at least 768 bits).

11.5.1 Key generation

Alice chooses a prime number g with

2]59 < q < 2150.

Hence, g has binary length 160. Alice chooses a large prime p with
the following properties:
o 251464 oy < 2512464 for some t € {0, 1, ..., 8},

e the prime number g, which was chosen first, divides p — 1.

11.5. Digital Signature Algorithm (DSA) 2720

The binary length of p is between 512 and 1024 and is a multiple
of 64. Therefore, the binary expansion of p is a sequence of 8 to 16
bitstrings of length 64. The condition g | (p — 1) implies that the
group (Z/pZ)* contains elements of order g (see Theorem 2.20.1).
Next, Alice chooses a primitive root x mod p and computes

g = xP" V4 mod p.

Then g+ pZ has order g in (Z/pZ)*. Finally, Alice chooses a random
number a in the set {1,2,...,q — 1} and computes

A =g"“" mod p.

Alice's public key is (p, q,2, A). Her private key is a. Note that the
residue class A + pZ is an element of the subgroup generated by
g+ pZ. The order of this subgroup is approximately 2'%’. Computing
the secret key a from A requires the solution of a discrete loga-
rithm problem in this subgroup. We will discuss the difficulty of this
discrete logarithm problem below.

11.5.2 Signature generation

Alice wants to sign the document x. She uses the publicly known
collision resistant hash function

h:{0,1} - {1,2,...,q— 1}.

She chooses a random number k € (1,2,...,4 — 1}, computes
r = (¢" mod p) mod g, (11.10)
and sets
s = k™' (h(x) + ar) mod q. (11.11)

Here, k™! is the inverse of k modulo g. The signature is (7, s).

11.5.3 Verification

Bob wants to verify the signature (7, s) of the document x. He gets
Alice’s authentic public key (p, g, g, A) and the public hash function.

23() _11. Digital Signatures

Then he verifies that
l<r<g-landl1<s<g-—1. (11.12)

If this condition is violated, then Bob rejects the signature. Other-
wise, Bob verifies that

y = ((g(sﬂh(x}; muqu(r.s‘lJ mod q) mod p) mod q. (11]3)

If the signature is constructed according to (11.10) and (11.11), then
(11.13) holds. In fact, the construction implies

g(s_lh(x)) nmqu(rs_l) mod g Eg.-;“[h[me} _=_gk mod p,

which implies (11.13).

11.5.4 Efficiency

The DSA is very similar to the ElGamal signature scheme. As in the
ElGamal scheme, precomputation makes the signature generation
much faster.

DSA verification is more efficient than ElGamal verification.
On the one hand, only two exponentiations mod p are required,
whereas ElGamal verification requires three exponentiations mod
p. But this is not that important because ElGamal verification can be
hastened if simultaneous exponentiation is used (see Sections 11.4.7
and 2.13). More important is the fact that the exponents in DSA are
160-bit numbers, whereas ElGamal exponents are as large as p (i.e.,
at least 768-bit numbers). This saves more than 600 squarings and
multiplications mod p.

11.5.5 Security

As in the ElGamal signature scheme, it is necessary to choose a
new random exponent k for each new signature (see Section 11.4.5).
Moreover, the use of a hash function and checking condition (11.12)
is mandatory to prevent possible existential forgery (see Section
11.4.6).

11.6. Exercises 231

If Oscar can compute discrete logarithms in the subgroup H of
(Z/pZ)* generated by g + pZ, then he is able to compute Alice’s
secret key a from her public key. He can then sign documents in
Alice’s name. This remains the only known general attack against
DSA. But how difficult is the computation of discrete logarithm in the
subgroup H, which, for efficiency reasons, is chosen much smaller
than the residue class group (Z/pZ)*?

In principle, there are two methods of computing discrete loga-
rithms in H. The first is to apply an index calculus algorithm in Z/pZ
(see Section 9.6). But it is unknown how index calculus algorithms
can take advantage of the fact that a discrete logarithm in a subgroup
of (Z/pZ)* is to be computed. The running time of all known index
calculus algorithms depends on the size of the prime number p, but
p is chosen such that index calculus attacks are infeasible.

The second possibility is to apply a generic method that works
for all cyclic groups. The most efficient generic methods in groups of
prime order are due to Shanks and Pollard (see Sections 9.3 and 9.4).
In a group of order g, they require more than ,/q group operations.
Since g > 2", this is infeasible with current technology.

11.6 Exercises

Exercise 11.6.1

Compute the RSA signature (without hash function) of m = 11111
with the RSA modulus n = 28829 and the smallest possible public
exponent e.

Exercise 11.6.2
Is the low exponent or the common modulus attack on RSA a
problem for RSA signatures?

Exercise 11.6.3
Describe a signature scheme that is based on the Rabin cryptosys-
tem. Discuss its security and its efficiency.

232 1. Digital Signatures

Exercise 11.6.4
Compute the Rabin signature (without hash function) of m = 11111
with the Rabin modulus n = 28829.

Exercise 11.6.5

Let p be a prime number, p = 3 mod 4. Let g be a primitive root mod
pandlet A = g“mod pbe Alice's public key. Let g be a divisor of p—1
(i.e., p—1 = gqwithq € Z) and let z € Z with g% = A9 mod p. Prove
that for each document x the pair (h(m),s = (p — 3)(h(x) — qz)/2) is
a valid ElGamal signature of m. How can this attack be prevented?

Exercise 11.6.6
Let p = 130. Compute a valid private key a and public key (p, g, A)
for the ElGamal signature system.

Exercise 11.6.7

Let p = 2237 and g = 2. Assume that Alice’s secret key is a = 1234.
Let h(x) = 111 be the hash value of the document x. Compute the
ElGamal signature with k = 2323 and verify this signature.

Exercise 11.6.8

Assume that in the ElGamal signature scheme the condition 1 <
r < p—1 is not required. Apply the existential forgery from Section
11.4.6 to construct an ElGamal signature of a document x” with hash
value h(x") = 99 from the signature from Exercise 11.6.7.

Exercise 11.6.9

Use the same notation as in Exercise 11.6.7. Alice applies DSA, where
q is the largest prime divisor of p — 1. She uses k = 25. What is the
corresponding DSA signature? Verify it.

Exercise 11.6.10
Explain the existential forgeries from Section 11.4.6 for DSA.

Exercise 11.6.11
What is the verification congruence if in the ElGamal signature
scheme s is computed as s = (ar + kh(x)) mod (p —1)?

Exercise 11.6.12
Modify the EIGamal signature system such that the verification only
requires two exponentiations mod p.

Other Groups

CHAPTER

As we have described in Sections 7.4.4 and 11.4.8, the ElGamal cryp-
tosystem and signature scheme can be implemented in groups in
which the discrete logarithm problem is hard to solve. In this chap-
ter, we describe a few possible groups. For more details, we refer the
reader to the literature, for example to [17].

12.1 Finite Fields

We show that the ElGamal algorithms can be implemented in the
unit group of any finite field, not only of the prime field Z/pZ for a
prime p.

12.1.1 Construction

The construction of a general finite field is similar to the construc-
tion of the prime field Z/pZ for a prime number p.

Fix a prime number p and a polynomial f with coefficients in
Z/pZ. This polynomial must be irreducible; that is, it is impossible

72373

234 12. Other Groups

to write f = gh, where g and h are polynomials in (Z/pZ)|X] whose
degree is greater than zero. The elements of the finite field that
we construct are the residue classes mod f. Those residue classes
are similar to residue classes in Z. The residue class mod | of the
polynomial g € (Z/pZ)[X] consists of all polynomials h in (Z/pZ)[X]
such that g — h is divisible by f (i.e., g — h is a multiple of f). This
residue class is written as g + f(Z/pZ)[X] since

g +f(Z/PL)X) = {g + If : h € (Z/pL)X]).

By Theorem 2.19.2, each residue class mod f contains a uniquely
determined representative that is either zero or whose degree is less
than the degree of f. This representative can be determined by one
division with remainder. If we want to decide whether the residue
classes mod f of two polynomials are equal, then we compute those
representatives for both classes and compare them.

We discuss operations on residue classes mod f. If g h €
(Z/pZ)|X), then the sum of the residue classes of g and h mod f
is defined as the residue class of g + h mod f. Likewise, the prod-
uct of the residue classes of g and h mod f is the residue class of
the product gh mod f. Together with this addition and multiplica-
tion, the set of all residue classes mod f is a field with zero element
f(Z/pZ)[X] and unit element 1 + f(Z/pZ)[X]. To invert a nonzero
residue class g + f(Z/pZ)[X] we apply an analog of the extended
euclidean algorithm. It finds a polynomial r € (Z/pZ)|X] such that
gr + fs = 1 with some other polynomial s. Then the inverse residue
class is 7 + f(Z/pZ)[X].

If n is the degree of f, then the field that is constructed in this
way has p" elements. The reasons are that the residue classes of all
polynomials whose degree is less than n are pairwise different and
that any residue class contains such a polynomial.

If two fields are constructed in this way with polynomials of the
same degree, then they are isomorphic. The isomorphism can be
computed in polynomial time. Such a field is called the Galois field
of degree n over Z/pZ. It is denoted by GF(p™). In particular, we write
GF(p) = Z/pZ. The prime number p is called the characteristic of the
field. The field GF(p) is called a prime field. For any positive integer
n, the field GF(p") exists because there is an irreducible polynomial
in (Z/pZ)|X] of degree n.

12.1. Finite Fields 235

TABLE 12.1 Addition in GF(4).

+ 0 1 o a+1
0 0 1 o o+ 1
1 1 0 a+1 |
« o a+1 |0 1
a+1 |a+] | «a 1 0

TABLE 12.2 Multiplication in GF(4).

* 1 o a—+1
1 1 o a+1
o o a+1 |1
a+1 |a+1 |1 o

Example 12.1.1

We construct GF(2%) = GF(4). We need an irreducible polynomial
f of degree 2 in Z/2Z|X]. The polynomial f(X) = X> 4+ X 4+ 1 is
irreducible since it has no zero (see Example 2.19.8).

The elements of GF(4) are the residue classes of the polynomials
0,1, X, and X + 1 mod f. Tables 12.1 and 12.2 are the addition and
multiplication tables for GF(4). Let @ = X + f(Z/2Z)[X]. Note that «
is a zero of f(X) in GF(4) (i.e., we have & + @ + 1 = 0).

12.1.2 DL problem

Let p be a prime number and let n be a positive integer. In Theorem
2.20.1, we have shown that the unit group of the finite field GF(p")
is cyclic. Its order is p™ — 1. If this order has only small prime factors,
then the Pohlig-Hellman DL algorithm will efficiently compute dis-
crete logarithms in this group (see Section 9.5). Otherwise, an index
calculus algorithm can be applied (see Section 9.6). For fixed n, the
number field sieve can be applied. For fixed p and growing n, the
function field sieve is used. An overview can be found in [31]. Both al-
gorithms have running time L,[1/3, ¢+0(1)] (see Section 8.4), where

236 _12. Other Groups

¢ is a constant and g = p". If p and g grow simultaneously, then the
best-known algorithm has only running time L,[1/2, ¢ + o(1)].

12.2 Elliptic Curves

Elliptic curves can be defined over any field. In cryptography, elliptic
curves over finite fields are of particular interest. To make things
simple, we only describe elliptic curves over prime fields. For more
details concerning elliptic curve cryptosystems we refer to [16], 23],
and [7].

12.2.1 Definition

Let p be a prime number, p > 3 and let a, b € GF(p). Consider the
equation

Yoz = x> + axz® + b2’ . (12.1)
Its discriminant is
A = —16(4a’ + 27b%). (12.2)

We assume that A is nonzero. If (x,y,z) € GF(p)’ is a solution of
(12.1), then for any ¢ € GF(p) also ¢(x, y, z) is a solution. Two solu-
tions (x,y, z) and (¥, y, 2") are called equivalent if there is a nonzero
¢ € GF(p) with (x,y,2) = ¢(X',y,z"). This defines an equivalence
relation on the set of all solutions of (12.1). The equivalence class
of (x,y,z) is denoted by (x : y : z). The elliptic curve E(p; a, b) is the
set of all equivalence classes of solutions of (12.1). Each element of
this set is called a point on the curve.

We simplify the description of the elliptic curve. If (¥, y',2z') is a
solution of (12.1) and if z’ # 0, then (¥ : y’ : 2") contains exactly one
element (x,y, 1). Here (¥, y) is a solution of the equation

yY=x>+ax+b. (12.3)

Conversely, if (x,y) € GF(p)” is a solution of (12.3), then (x,y,1) is a
solution of (12.1). Moreover, there is exactly one equivalence class

12.2. Elliptic Curves 2737

of solutions of (12.1) which are all of the form (x,y, 0). In fact, if
z = 0, then we also have x = 0, so this equivalence classis (0 : 1 : 0).
Hence, we can write the elliptic curve as

E(pab)={(x:y:1):y¥*=x*+ax+b)U{(0:1:0))}.

We also write (x,y) instead of (x : y : 1) and O instead of (0 : 1 : 0),
so

E(p;a,b) = {(*,y) : ¥* =%’ +ax+ b} U {O).

Example 12.2.1

We work in GF(11). The elements are represented by their small-
est nonnegative representatives. Over this field, we consider the
equation

Yy =x+x+6. (12.4)

We havea = 1and b = 6. The discriminant is A = —16%(4+27%6°) =
4. Hence, (12.4) defines an elliptic curve over GF(11). It is
E(11;1,6) ={0,(2,4),(2,7),(3,5),(3,6),(5,2),(5,9), (7, 2),
(7,9),(8,3),(8,8),(10,2), (10, 9)}.

12.2.2 Group structure

Let p be a prime number, p > 3, a, b € GF(p) and let E(p; a, b) be an
elliptic curve. We define the addition of points on that curve.
For a point P on the curve, we set

P+O0O=0+P=P.

Hence, the point O is a neutral element with respect to this addition.
Let P be a point different from O, P = (x,y). Then —P = (x, —y)
and we set P+ (—P) = O.
Let P, and P; be points on the curve that are different from O
and satisfy P, # +P;. Let P, = (x;,y:), i = 1, 2. Then the sum

Py + Py = (x3,Y3)

238 12. Other Groups

is defined as follows. If
LZ0 for P#Q,

Xa—x, !
A=
3xi+a _
—l—zyl , forP=qQ,
then
3= —x —x, Y3 = A(x1 — x3) — Y.

It can be shown that with this addition E(p; a, b) is an abelian group.

Example 12.2.2

We use the curve from Example 12.2.1 and compute the sum (2, 4)+
(2,7). Since (2,7) = —(2,4), we have (2,4) + (2,7) = O. Next, we
compute (2,4) + (3,5). Weobtain A = land x3 = —4 =7, y; = 2.
Hence, (2,4)+(3,5) = (7, 2). Finally, we have (2, 4)+ (2, 4) = (5, 9),
as the reader can easily verify.

12.2.3 Cryptographically secure curves

Again, let p be a prime number p > 3, a,b € GF(p) and
E(p; a, b) an elliptic curve. In the group E(p; a, b), the Diffie-Hellman
key-exchange system (see Section 7.4) and the ElGamal encryp-
tion and signature schemes (see Sections 7.4.4 and 11.4.8) can be
implemented.

Those implementations are only secure if the discrete logarithm
problem in E(p; a, b) is difficult. Currently, the fastest DL algorithm
on elliptic curves is the Pohlig-Hellman algorithm (see Section 9.5).
This algorithm has exponential complexity. For special curves, the
so-called supersingular and anomalous curves, faster algorithms are
known.

To obtain an elliptic curve cryptosystem or signature scheme that
is as secure as a 1024-bit RSA system, curves are used with approx-
imately 2'%% points. To prevent a Pohlig-Hellman attack, a prime
factor g > 2" of the group order is required. We briefly describe
how such a curve can be found.

The number of points on the curve E(p; a, b) is estimated in the
following theorem.

12.3. Quadratic Forms 230

Theorem 12.2.3 (Hasse)
We have |E(p; a,b)| = p+ 1 — t with |t| < 2,/p.

The theorem of Hasse guarantees that the elliptic curve E(p; a, b)
has approximately p points. To obtain a curve with 2'% points, we
choose p ~ 2'%, If pis fixed, then the coefficients a and b are chosen
at random. Then the order of E(p; a, b) is determined. This is possible
in polynomial time and takes a couple of minutes per curve. If the
curve is supersingular, anomalous, or its order has no prime factor
q > 2'% then a new curve is generated. Otherwise, the curve is
accepted.

There are more efficient ways of generating cryptographically
sSecure curves.

12.2.4 Advantages of EC cryptosystems

There are several reasons to use elliptic curve cryptosystems.

Elliptic curve public-key systems are currently the most impor-
tant alternative to RSA systems. Such alternatives are necessary
since one day RSA may become insecure.

Elliptic curve systems have efficiency advantages over RSA and
finite field systems. While in the latter systems modular arithmetic
with 1024-bit numbers is used, the arithmetic on cryptographically
secure elliptic curves works with 163-bit numbers. This is an effi-
ciency advantage, although group operations on elliptic curves are
more complicated than group operations in prime fields. Also, keys
in elliptic curve systems are much smaller than keys in RSA and
finite field systems.

12.3 Quadratic Forms

Class groups of binary quadratic forms or, more generally, class
groups of algebraic number fields can also be used to implement
cryptographic algorithms (see [9] and [10]). In some respects, class
groups are different from the unit groups of finite fields and point

24(_12. Other Groups

groups of elliptic curves. The order of the unit group of GF(p") is
p" — 1. The order of an elliptic curve can be computed in polyno-
mial time. But no efficient algorithm is known for computing the
order of a class group. The known algorithms for solving this prob-
lem are closely related to DL algorithms in class groups and no more
efficient. Also, class groups may be very small. However, if a class
group is small it is very difficult to decide whether two elements in
the class group are equal. In fact, there are cryptographic protocols
whose security is based on the intractability of deciding equality in
class groups. For more information on class group cryptography see
[25].

12.4 Exercises

Exercise 12.4.1
Construct the finite field GF(9) with its addition and multiplication
tables.

Exercise 12.4.2

1. Construct GF(125) and determine a generating element for the
multiplicative group GF(125)*.

2. Determine a valid secret and public key for the ElGamal
signature system in GF(125)*.

Exercise 12.4.3

Determine the number of points on the elliptic curve y* = x>+ x+1
over GF(7). Is the group of points on that curve cyclic? If it is cyclic,
determine a generator of this curve.

Exercise 12.4.4

Let p be a prime number, p = 3 mod 4, and let E be an elliptic curve
over GF(p). Find a polynomial time algorithm that, given x € GF(p),
computes a point (x, y) on E if it exists. Hint: use Exercise 2.22.21.
Use this algorithm to find a point (2, y) on E(111119; 1, 1).

13 Identification

CHAPTER

In the previous chapters, two important basic mechanisms have
been explained: encryption and digital signatures. In this chapter
we describe a third basic technique: identification.

First, we present two examples for situations in which identifi-
cation is necessary.

Example 13.0.5

Using Internet banking, Alice wants to find out how much money
is left in her account. She must identify herself to the bank in order
to prove that she is entitled to obtain that information.

Example 13.0.6

Bob works in a university where he uses a Unix workstation. When
he comes to work, he identifies himself to his workstation in order to
get access. The computer verifies Bob’s identity and checks whether
Bob is a legal user. If he is, access is granted to Bob. Typically, Bob
proves his identity by presenting a secret password. This method of
identification is not totally secure and will be discussed in Section
13:1.

741

242 13. Identification

Identification is required in many applications. Typically, the
goal of an identification procedure is access control. Methods that
permit identification are called identification protocols.

In an identification protocol, the prover, Bob, proves to the ver-
ifier, Alice, that it is really Bob who is communicating with Alice.
Identification is a real-time problem.

In this chapter, we describe different identification protocols.

13.1 Passwords

Access to Unix or Windows NT is typically controlled by password
systems. Each user picks his individual and secret password w. The
computer stores the image f(w) of the password w under a one-way
function f. If the user wants access to his computer, he enters his
name and password w. The computer determines f(w) and com-
pares the result with the stored value. If they are identical, then
access is granted. Otherwise, the user is rejected.

Passwords are also used to control access to World Wide Web
pages or to files that contain private encryption or signature keys.

The password file does not need to be kept secret since it contains
only the images f(w) of the passwords w and f is a one-way function.
Nevertheless, password identification systems are not very secure.

A user must memorize his or her password. Therefore, many
users choose the first name of their spouse or children as their pass-
word. An attacker can mount a dictionary attack. For all words w
in a dictionary, he computes f(w) and compares the result with the
entries in the password file. If he finds an entry of the password file,
he has determined the corresponding password. It is, therefore, rec-
ommended to use symbols such as § or # in the the passwords. Then
dictionary attacks are impossible, but it is also harder to memorize
the passwords. It is also possible to store the password on a smart
card. Instead of typing in his password, the prover inserts his smart
card into the smart card reader. The verifier reads the password from
the smart card. There is no need for the user to memorize or even
know the password. On the contrary, if the user does not know his
password he cannot give it away.

13.3. Challenge-Response Identification 2473

An attacker can also tap the connection between the prover and
the verifier and can learn the password. This is particularly success-
ful if there is a great distance between the prover and the verifier;
for example, if a password system is used to protect World Wide Web
access. Note that the use of smart cards does not prevent this attack.

Finally, the attacker can also replace an entry f(w) in the pass-
word file with the image f(v) of his own password v. Then, using the
password v, he can get access. Therefore, the password file must be
write protected.

13.2 One-Time Passwords

Using passwords is dangerous because an attacker can learn the pass-
words by tapping the connection between the prover and the verifier.
With one-time passwords, this attack does not work. One-time pass-
words are used for one identification. For the next identification, a
new one-time password is used.

A simple way of implementing one-time passwords is the fol-
lowing. The verifier has a list f(w,), f(w>), ..., f(wy) of images of
passwords w, ..., wy. The prover knows this list of passwords and
uses its elements for the identifications. Since the prover must store
all passwords in advance, an attacker could learn some or all of them.

It is also possible that the prover and the verifier share a secret
one-way function f of an initial string w. Then the one-time pass-
words are w; = f*(w), 1 > 0. The prover can put the current password
w; and the one-way function f on a smart card. He does not need a
large password file.

13.3 Challenge-Response Identification

Password identification protocols have the disadvantage that an at-
tacker can learn passwords long before the actual identification. This
is even true for one-time password systems.

244 _13. Identification

Challenge response identification systems do not have this prob-
lem. Alice wants to identify herself to Bob in a challenge response
system. Bob asks a question, the challenge. Alice computes the re-
sponse using her secret key and sends it to Bob. Bob verifies the
response using the same secret key or the corresponding public key.

13.3.1 Symmetric systems

We describe a simple challenge response identification system
which uses a symmetric cryptosystem. We assume that the encryp-
tion key and the corresponding decryption key are the same. Alice
and Bob share a secret key k. Alice wants to identify herself to Bob.
Bob sends a random number r to Alice. Alice encrypts this random
number by computing ¢ = Ex(r) and sends the ciphertext ¢ to Bob.
Bob decrypts the ciphertext; that is, he computes ¥ = Dy(c) and
compares the result with his chosen random number r. If r = ¥/,
then he accepts the proof of identity; otherwise he rejects it.

This protocol proves that Alice knows the secret key at the time
of the identification. It is not possible for Bob or an attacker to com-
pute or obtain the correct response in advance. But since the verifier,
Bob, also knows Alice’s secret key, this key cannot be used for iden-
tification with another verifier since Bob can then pretend that he
is Alice.

13.3.2 Public-key systems

Challenge response systems can also be based on public-key sig-
nature schemes. If Alice wants to identify herself, she obtains a
random number from Bob and signs this random number with her
private key. Bob verifies the signature, thereby verifying the identity
of Alice.

In this protocol, Bob cannot pretend that he is Alice. He only
knows Alice’s public key. But it is necessary that Bob obtains the au-
thentic public key of Alice. If the attacker, Oscar, can replace Alice’s
public key with his own, then he can convince Bob that he is Alice.

13.3. Challenge-Response Identification 245

13.3.3 Zero-knowledge proofs

In a challenge response protocol, the prover proves that he knows
a secret. If a symmetric cryptosystem is used, then the verifier also
knows the secret. If a public-key signature system is used, then the
verifier does not know the secret.

We now describe a zero-knowledge identification protocol. Again,
the prover proves the knowledge of a secret, which the verifier does
not know. During the protocol, the verifier learns nothing but the fact
that the prover knows the secret. He gets no additional information
about the secret. The protocol has the zero-knowledge property.

The protocol that we describe is the Fiat-Shamir identification pro-
tocol. As in the RSA scheme, the prover, Alice, chooses two large
random primes p and g. Then she chooses a random number s from
{1,...,n—1} and computes v = s* mod n. Bob'’s public key is (v, n).
His secret key is s, a square root of v mod n.

In a zero-knowledge protocol, Alice proves to the verifier, Bob,
that she knows a square root s of v mod n. This protocol works as
follows.

1. Commitment: Alice chooses a random numberr € {1,2,...,n—
1} and computes x = r*> mod n. She sends the result x to the
verifier, Bob.

2. Challenge: Bob chooses a random number ¢ € {0, 1} and sends it
to Alice.

3. Response: Alice sends y = rs® mod n to Bob.

4. Verification: Bob accepts if and only if y* = xv* mod n.

Example 13.3.1

Let n = 391 = 17 x23. Alice’s secret key is s = 123. Her public key is

(271, 391). In the identification protocol, Alice proves that she knows

a square root of v mod n.

1. Commitment: Alice chooses the random number r = 271 and
computes x = r2 mod n = 324. She sends the result x to the
verifier, Bob.

2. Challenge: Bob chooses the random number e = 1 and sends it
to Alice.

3. Response: Alice sends y = rs mod n = 98 to Bob.

4. Verification: Bob accepts since 220 = y* = vx mod n.

246 _13. Identification

13.4. Exercises 247

We analyze the protocol.

If Alice knows the secret, the square root s of v mod n, then
she can answer both possible questions correctly. We say that the
protocol is complete.

If the attacker, Oscar, can compute a square root of v mod n,
then he can also factor n. This was shown in Section 7.3.5. Because
factoring integers is considered to be difficult, Alice’s secret is secure.

But what happens if Oscar tries to impersonate Alice even though
he does not know the secret? Then he cannot answer both possible
questions correctly, as we will now show. Suppose that Oscar knows
r and rs mod n. Then he can compute s = rsr~! mod n, so he knows
Alice’s secret. Because he does not know s, Oscar can only answer
one question correctly. In fact, in order to be able to answer the
challenge correctly for a fixed e, he chooses the commitment x as
x = y’v™° mod n for some y. Then y* = xv* mod n. But, as we have
seen, the knowledge of both answers implies the knowledge of a
square root of v. Hence Oscar is not able to give the correct response
for the other e. Therefore, the verifier notices with probability 1/2
that Oscar is not Alice. After k iterations of the protocol, the verifier
notices the fraud with probability 1 — 1/2F. This probability can be
made arbitrarily close to 1. We say that the protocol is correct.

Finally we show that the Fiat-Shamir protocol has the zero-
knowledge property. This means that the verifier, Bob, learns nothing
from the protocol except that he is convinced that the prover knows
Alice’s secret. More technically, it means that Bob can simulate the
protocol without Alice participating and obtains the same distribu-
tion on the messages as if he ran the real protocol with Alice. Since
Bob gets all his information from the messages, he does not learn
anything new. He can produce the message distributions himself,

Let us analyze the message distributions and then explain how
the simulation works.

The commitment x is the square of a random number in
{1,2,...,n —1}. The challenge ¢ is a random number in {0, 1}. The
response y = rs* mod n is a random number in {1,2,...,n — 1} be-
cause s is prime to n. Bob can simulate the protocol as follows. He
chooses random numbers y € {1,...,n — 1} and e € {0, 1} and sets
x = y*v™° mod n. Then y* = xv* mod n as in the original protocol.
The simulated commitment x is the square of a random number in

{1,2,...,n —1}. The challenge e is a random number in {0,1}. The
response y is a random number in {1,2,...,n— 1}. Hence, the sim-
ulated protocol generates the same distributions on the messages as
the original protocol.

Example 13.3.2 .
We start with the situation from Example 13.3.1. Bob simulates the

identification protocol with Alice. He does not know a square root
of 271 mod 391, so he starts by choosing the response y = 271. Then
he chooses the challenge e = 0 and computes x = y* mod n = 324.
Then the verification works.

For more details concerning zero knowledge, we refer the reader
to [14].

13.4 Exercises

Exercise 13.4.1

Let p be a prime number, g a primitive root modp, a € {0,1,...,p—
2}, and A = g mod p. Describe a zero-knowledge proof for the
knowledge of the discrete logarithm a of A mod p to the base g.

Exercise 13.4.2
In the Fiat-Shamir scheme, letn = 143, v = 82, x = 53, and ¢ = 1.
Determine a valid response that proves the knowledge of a square

root of v mod n.

Exercise 13.4.3 (Feige-Fiat-Shamir protocol) .

The Feige-Fiat-Shamir protocol is a modification of the Fiat-Shan‘nr
protocol. In this protocol, a cheating verifier is discovered with
much higher probability. A simplified version works as follows. Al-
ice uses an RSA modulus n. She chooses random numbers sy, .. ., Sk
in{1,...,n—1}* and computes v; = s? mod n, 1 <i < k. Her public
key is (n,v1, ..., Uk). Her secret key is (s1, ..., k). To convince Bob
of her identity, she chooses a random number r € {1,...,n — 1},
computes the commitment x = r?> mod n, and sends it to Bob. Bob

248 13. Identification

F:hooses a random challenge (e, ..., ex) € {0, 1}* and sends it to Al-
l(:;& Alice Ife,nds the response y = r ﬂ:;l s;' to Bob. Bob verifies that
y* = x[]i_, v/ mod p. Determine the probability of success for a

cheating verifier in one round.

Exercise 13.4.4

Modify the scheme from Exercise 13.4.3 such that its security is
based on computing discrete logarithms.

Exercise 13.4.5 (Signatures from identification)

Find a signature scheme based on the protocol from Exercise 13.4.3.
The idea is to replace the challenge by the hash value h(xom), where
m is the message to be signed and x is the commitment.

1 4 Public-Key
Infrastructures

CHAPTER

Since public keys in asymmetric cryptosystems need not be kept se-
cret, key management in those systems is simpler than in symmetric
schemes. Private keys, however, must be kept secret. Also, public
keys must be protected from falsification and abuse. Therefore, ap-
propriate public-key infrastructures (PKI) must be set up. They are
responsible for key distribution and management. In this chapter,
we describe how such public-key infrastructures work.

14.1 Personal Security Environments

14.1.1 Importance

If Bob wants to generate signatures or decrypt documents using a
public-key system, then he needs a private key. Bob must keep this
key secret because everybody who knows the key can sign messages
in Bob’s name or decrypt secret documents that were sent to Bob.
Therefore, Bob needs a personal security environment (PSE) in which
his private keys are securely stored. Since the private keys should
not leave the PSE, the PSE also does the signing or decrypting.

249

25(0 __14. Public-Key Infrastructures

Frequently, the PSE also generates the private keys. If the private
keys are generated elsewhere, then at least the generating institu-
tion knows Bob's secret keys, which may corrupt the security of
the system. On the other hand, secure key generation may require
resources not present in the PSE. For example, for RSA keys ran-
dom primes of a fixed bit length are required. In particular, the key
generating environment must generate large, cryptographically se-
cure, random numbers. If the random number generator of the PSE
is weak, then the public-key system is insecure. It may therefore
make sense to have the RSA keys generated by a trusted institution.

14.1.2 Implementation

The more sensitive the documents that are signed or encrypted, the
more secure the PSE must be. A simple PSE is a file in Bob’s home
directory that can be accessed only after entering a secret password.
This password may, for example, be used to decrypt the information.
The security of a software PSE relies on the security of the underly-
ing operating system. One may argue that operating systems must be
very secure anyway and that they are therefore able to protect the
PSE. Operating systems, for example, prevent unauthorized users
from becoming administrators. On the other hand, it is well known
that with sufficient effort the security of most operating systems can
be successfully attacked. Therefore, a software PSE is not adequate
for applications that require high security.

It is more secure to put the PSE on a smart card. Bob can carry
his smart card in his wallet. If the card is in the smart card reader,
it only permits very limited access. Manipulating its hardware or
software is very difficult (although successful attacks have been re-
ported). Unfortunately, computations on smart cards are still very
slow. Therefore, it is impossible to decrypt large documents on a
smart card, so public keys encrypt session keys which, in turn, are
used to encrypt the documents. The encrypted session key is ap-
pended to the encrypted document. The smart card only decrypts
the session key. The decryption of the document is then done on a
fast PC or workstation.

14.2. Certification Authorities 251

14.1.3 Representation problem

Even if Alice uses a smart card for signing, there is still a severe
security problem. If Alice wants to sign a document, she starts a
program on her PC, which sends the document or its hash value to
the smart card, where it is signed. With some effort, the attacker,
Oscar, can manipulate the signing program on Alice's PC such that
it sends a document to the smart card that is different from the
one that Alice intended to sign. Because the smart card has no dis-
play, Alice is unable to detect this fraud. It is therefore possible that
Alice could sign documents that she never wanted to sign. This prob-
lem is called the representation problem for signatures. The more
important documents are for which digital signatures are accepted,
the more dramatic the representation problem becomes. The prob-
lem is solved if Alice sees what she signs. For this purpose, Alice’s
PSE needs a display. One possibility is to use a cellular phone as a
PSE. But its display is very small. Hence, the documents that can be
signed securely on it are rather short. It depends on the solution of
the representation problem whether digital signatures can be used
to replace handwritten signatures.

14.2 Certification Authorities

If Alice uses a public-key system, it is not sufficient for her to keep
her own private keys secret. If she uses the public key of Bob, she
must be sure that it is really Bob's key. If the attacker, Oscar, is able
to substitute his own public key for Bob’s public key, then Oscar can
decrypt secret messages to Bob and he can sign documents in Bob's
name.

One solution of this problem is to establish trusted authorities.
Each user is associated with such a certification authority (CA). The
user trusts his CA. With its signature, the CA certifies the correctness
and validity of the public keys of its users. The users know their CA's
public key. Therefore, they can verify the signatures of their CA. We
now explain in more detail what a CA does.

252 _14. Public-Key Infrastructures

14.2.1 Registration

If Bob becomes a new user of the public-key system, then he is regis-
tered by his CA. He tells the CA his name and other relevant personal
data. The CA verifies Bob’s information. Bob can, for example, go to
the CA in person and present some identification. The CA issues a
user name for Bob that is different from the user name of all other
users in the system. Bob will use this name, for example, if he signs
documents. If Bob wants to keep his name secret, then he may use
a pseudonym. Then, only the CA knows Bob's real name.

14.2.2 Key generation

Bob's public and private keys are generated either in his PSE or by
his CA. It is recommended that Bob not know his private keys, be-
cause then he cannot inform others about those keys. The private
keys are stored in Bob’s PSE. The public keys are stored in a direc-
tory of the CA. Clearly, the keys must be protected while they are
communicated between Bob and his CA.

For each purpose (for example, signing, encryption, and identifi-
cation), a separate key pair is required. Otherwise, the system may
become insecure. This is illustrated in the next example.

Example 14.2.1

If Alice uses the same key pair for signatures and challenge response
authentication, then an attack can be mounted as follows. Oscar
pretends that he wants to check Alice’s identity. As a challenge, he
sends the hash value h(m) of a document m. Alice signs this hash
value, assuming that it is a random challenge. But in fact Alice has
signed a document, which was chosen by Oscar, without noticing.

14.2.3 Certification

The CA generates a certificate, which establishes a verifiable connec-
tion between Bob and his public keys. This certificate is a string,
which is signed by the CA and contains at least the following
information:

14.2. Certification Authorities 253

1. the user name or the pseudonym of Bob,

Bob's public keys,

w N

the names of the algorithms in which the public keys are used,

the serial number of the certificate,

1%

the beginning and end of the validity of the certificate,

the name of the CA,

Noae oo

restrictions that apply to the use of the certificate.

The certificate is stored, together with the user name, in a direc-
tory. Only the CA is allowed to write in this directory, but all users
of the CA can read the information in the directory.

14.2.4 Archive

Depending on their use, keys in public-key systems must be stored
even after they expire. Public signature keys must be stored as long
as signatures generated with those keys must be verified. The CA
stores certificates for public signature keys. Private decryption keys
must be stored as long as documents were encrypted using those
keys must be readable. Those keys are stored in the PSEs of the
users. Authentication keys, private signature keys, and public en-
cryption keys need not be put in archives. They must be stored only
as long as they are used for authentication, generating signatures,
or encrypting documents.

14.2.5 Initialization of the PSE

After Bob has been registered and his keys have been generated and
certified, the CA transmits private keys to his CA, if they have been
generated by the CA. The CA may also write its own public key and
Bob's certificate to the PSE.

254 14. Public-Key Infrastructures

14.2.6 Directory service

The CA maintains a directory of all certificates together with the
name of the owner of each certificate. If Alice wants to know Bob's
public keys, she asks her CA whether Bob is one of its users. If Bob is
registered with Alice’s CA, then Alice obtains Bob'’s certificate from
her CA's directory. Using the public key of her CA, Alice verifies
that the certificate was in fact generated by her CA. She obtains the
certified public keys of Bob. If Bob is not a user of Alice’s CA, then
Alice can obtain his public keys from another CA. This is explained
below.

Alice may keep in her PSE certificates that she frequently uses.
However, she must check regularly whether those certificates are
still valid.

If a CA has many users, access to its directory may become very
slow. It is then possible to keep several copies of the directory and
to associate each user with exactly one copy.

Example 14.2.2

An international company wants to introduce a PKI for its 50,000
employees in five countries. The company only wants to maintain
one CA. In order to make access to its directory more efficient, the
CA distributes five copies of its directory to the five countries. Those
copies are updated twice a day.

14.2.7 Key update

All keys in a public-key system have a certain period of validity.
Before a key expires, it must be replaced by a new, valid key. This
new key is exchanged between the CA and the users in such a way
that it does not become insecure even if the old, invalid key becomes
known.

The following key update method is insecure. Shortly before
Bob'’s key pair becomes insecure, Bob’s CA generates a new key pair.
It encrypts the new private key using Bob's old public key and sends
it to Bob. Bob decrypts that key using his old private key and replaces
the old private key with the new one. If the attacker, Oscar, finds the
old private key of Bob, then he can decrypt the message of the CA to

14.2. Certification Authorities 2 5 5

Bob that contains the new private key. Thus, he can find Bob’s new
private key if he knows the old one. The security of the new private
key depends on the security of the old one. This makes no sense.
Instead, variants of the Diffie-Hellman key-exchange protocol can
be used that avoid the man-in-the-middle attack.

14.2.8 Revocation of certificates

Under certain conditions, a certificate must be invalidated although
it is not yet expired.

Example 14.2.3

On a boat trip, Bob has lost his smart card. It contains Bob’s pri-
vate signature key, which he can no longer use for signatures since
this private key is nowhere but on the smart card. Therefore, Bob's
certificate is no longer valid since it contains the corresponding
verification key. The CA must invalidate this certificate.

The CA collects the invalid certificates in the certificate revoca-
tion list (CRL). It is part of the directory of the CA. An entry in the
CRL contains the serial number of the certificate, the date when the
certificate was invalidated, and possibly further information, such
as the reason for the invalidation. This entry is signed by the CA.

14.2.9 Access to expired keys

Expired keys are kept in the CA’s archive and can be provided by the
CA upon request.

Example 14.2.4

The CA changes the signature keys of its users each month. Bob
orders a new car from Alice and signs this order. But three months
later, Bob denies that he ordered the car. Alice wants to prove that
the order was actually signed by Bob. She requests Bob’s old public
verification key from the CA. This key is kept in the archive since it
is out of date.

256 __14. Public-Key Infrastructures

14.3 Certificate Chains

If Bob and Alice do not belong to the same CA, then Alice cannot
obtain the public key of Bob from the directory of her own CA but
can obtain Bob’s public key indirectly.

Example 14.3.1

Alice is registered with a CA in Germany. Bob is registered with a
CA in the U.S. Hence, Alice knows the public key of her German CA
but not the public key of Bob’s CA. Now Alice obtains a certificate
for the public key of Bob’s CA from her own CA. She also obtains
Bob’s certificate either directly from Bob or from his CA. Using the
public key of Bob's CA, which, in turn, is certified by her own CA,
Alice can verify that she obtained a valid certificate for Bob.

As described in Example 14.3.1, Alice can use a certificate chain
to obtain Bob’s authentic public key, even if Bob and Alice belong
to different CAs. Formally, such a chain can be described as follows.
For a certification authority CA and a name U, denote by CA{U} the
certificate that certifies the public key of U. Here, U can either be
the name of a user or the name of another certification authority.
A certificate chain that for Alice certifies the public key of Bob is a
sequence

CA, {CAZ}g CAz{CA_'g}, .o, CA {CAJ\-}, CAk{BOb}

In this sequence, CA, is the CA where Alice is registered. Alice uses
the public key of CA, to verify the public key of CA,, she uses the
public key of CA; to obtain the authentic public key of CA3, and so
on, until she finally uses the public key of CAj to verify the certificate
of Bob.

This method only works if trust is transitive (i.e., if U; trusts U,
and U, trusts Us, then U, trusts Us).

References

[1] RFC 1750. Randomness requirements security. Internet
Request for Comments 1750, December 1994.

[2] ISO/IEC 9796. Information technology - security techniques
- digital signature scheme giving message recovery.
International Organization for Standardization, Geneva,
Switzerland, 1991.

[3] A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysis of
Computer Algorithms. Addison-Wesley, Reading, Massachusetts,
1974.

[4] E. Bach and J. Shallit. Algorithmic number theory. MIT Press,
Cambridge, Massachusetts and London, England, 1996.

(5] F. Bauer. Entzifferte Geheimnisse. This book (2nd Ed.)
is available in English translation (“Decrypted Secrets,’
Springer-Verlag, 2000).

[6] M. Bellare, S. Goldwasser, Lecture Notes on Cryptography,
http://www-cse.usd.edu/users/mihir/pares/gb.ps.gz

[7] LE. Blake, G. Seroussi, and N.P. Smart. Elliptic curves in
cryptography. Cambridge University Press, Cambridge:England,
1999.

257

258 _ References

(8] J. Buchmann. Faktorisierung grofRer Zahlen. Spektrum der
Wissenschaften, 9:80-88, 1996.

[9] J. Buchmann and S. Paulus. A one way function based on ideal
arithmetic in number fields. In B. Kaliski, editor, Advances
in Cryptology - CRYPTO ‘97, volume 1294 of Lecture Notes in
Computer Science, pages 385-394, Berlin, 1997. Springer-Verlag.

[10] J. Buchmann and H. C. Williams. Quadratic fields and
cryptography. In J.H. Loxton, editor, Number Theory and
Cryptography, volume 154 of London Mathematical Society
Lecture Note Series, pages 9-25. Cambridge University Press,
Cambridge, England, 1990.

[11] H. Cohen. A course in computational algebraic number theory.
Springer, Heidelberg, 1995.

[12] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to
Algorithms. MIT Press, Cambridge, Massachudetts, 1990.

[13] N.G. de Bruijn. On the number of integers < x and free of
prime factors > y. Indag. Math., 38:239-247, 1966.

[14] O. Goldreich. Modern Cryptography, Probabilistic Proofs and
Pseudorandomness. Springer-Verlag, New York, 1999.

[15] D.E. Knuth. The art of computer programming. Volume
2: Seminumerical algorithms. Addison-Wesley, Reading,
Massachusetts, 1981.

[16] N. Koblitz. A Course in Number Theory and Cryptography.
Springer-Verlag, 1987.

[17] N. Koblitz. Algebraic Aspects of Cryptography. Springer-Verlag,
1998.

[18] A.K. Lenstra and H.W. Lenstra, Jr. Algorithms in number
theory. In J. van Leeuwen, editor, Handbook of Theoretical
Computer Science, Volume A, Algorithms and Complexity,
chapter 12. Elsevier, Amsterdam, 1990.

[19] A.K. Lenstra and H.W. Lenstra Jr. Algorithms in number
theory. In J. van Leeuwen, editor, Handbook of theoretical
computer science. Volume A. Algorithms and Complexity,
chapter 12, pages 673-715. Elsevier, 1990.

References 2 5 9

[20] A.K. Lenstra and H.W. Lenstra Jr., editors. The Development of
the Number Field Sieve. Lecture Notes in Math. Springer-Verlag,
Berlin, 1993.

[21] H.W. Lenstra, Jr. and C. Pomerance. A rigorous time bound for
factoring integers. Journal of the American Mathematical Society,
5:483-516, 1992.

[22] LiDIA. LiDIA 1.3.1 - a Library for Computational Number
Theory. Technische Universitit Darmstadt, 1999.
Available via anonymous FTP from ftp.informatik.tu-
darmstadt.de:/pub/TI/systems/LiDIA or via WWW from
http://www.informatik.tu-darmstadt.de/TI/LiDIA.

[23] A. Menezes. Elliptic Curve Public Key Cryptosystems. Kluwer
Academic Publishers, Dordrecht, 1993.

[24] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone.
Handbook of Applied Cryptography. CRC Press, Boca Raton,
Florida, 1997.

[25] http://www.informatik.tu-
darmstadt.de/TI/forschung/nfc.html

[26] E. Oeljeklaus and R. Remmert. Lineare Algebra I.
Springer-Verlag, Berlin, 1974.

[27] H. Riesel. Prime Numbers and Computer Methods for
Factorization. Birkhduser, Boston, 1994.

[28] http://csrc.nist.gov/encryption/aes/

[29] J. Rosser and L. Schoenfeld. Approximate formulas for some
functions of prime numbers. Illinois Journal of Mathematics,
6:64-94, 1962.

[30] R.A. Rueppel. Analysis and Design of Stream Ciphers.
Springer-Verlag, Berlin, 1986.

[31] O. Schirokauer, D. Weber, and T. Denny. Discrete logarithms:
the effectiveness of the index calculus method. In H. Cohen,
editor, ANTS II, volume 1122 of Lecture Notes in Computer
Science, Berlin, 1996. Springer-Verlag.

[32] D. Stinson. Cryptography. CRC Press, Boca Raton, Florida,
1995. A new edition is now appearing.

Solutions to the Exercises

Exercise 1.12.1

let z = |a] = max{x € Z : x < a}. Then a — z > 0. Moreover,
a—z < 1,sincea—z > 1impliesa—(z+1) > 0, which contradicts the
maximality of «. Therefore, 0 < @—z < 1 ora—1 < z < «. But there
is only one integer in this interval, so, z is uniquely determined.

Exercise 1.12.3
The divisors of 195 are +1, £3, £5, £13, +£15, £39, £65, +195.

Exercise 1.12.5
1243 mod 45 = 28, —1243 mod 45 = 17.

Exercise 1.12.7

Suppose that m divides the difference b — a. Let a = gum + r, with
0 <7, < mandleth = gym+r, with0 < r, < m. Thenr, = a mod m
and r, = b mod m. Moreover,

b—a=(qy—qa)m~+ (o —7a). (14.1)

261

ﬁ

262 Solutions to the Exercises

Since m divides b—a, it follows from(14.1) that m also divides r;, —r,.
Now, 0 < rp, 1, < m implies

—M < rp—T, < M.

Since m divides r,—r,, we obtain r,—r, = 0 and therefore a mod m =
b mod m.

Conversely, let a mod m = b mod m. We use the same notation
as above and obtain b — a = (g, — q,)m. Hence, m divides b — a.

Exercise 1.12.9

We have 225 = 128464 +32+1 = 27+ 264 2542° Hence, 11100001
is the binary expansion of 225. The hexadecimal expansion is ob-
tained by dividing the binary expansion from the right into blocks of
length four and by interpreting these blocks as hexadecimal digits.
In our example, we obtain 1110 0001 (i.e., 14 * 16 + 1). The hexadec-
imal digits are 0,1, 2, 3,4,5,6,7,8,9,A, B, C, D, E, F. Hence El is the
hexadecimal expansion of 225.

Exercise 1.12.11
We must show that there are positive constants B and C such that
f(n) < cn® for all n > B. We can, for example, choose B = 1 and

E=Y C4lal:

Exercise 1.12.13
1. Each divisor of ay, . .., ax is a divisor of a; and ged(ay, . . ., ax) and
vice versa. This implies the assertion.

2. The assertion is proved by induction on k. For k = 1, the asser-
tion is obviously correct, so let k > 1 and assume that the assertion is
true for all k' < k. Then gcd(ay, ..., a)Z = aZ+ged(ay, ..., ax)Z =
aZ + ayZ + ... + axZ by 1., Theorem 1.7.5, and the induction
hypothesis.

3. and 4. are proved analogously.

5. The assertion is proved by induction using Corollary 1.7.8.

Exercise 1,12.23 263

Exercise 1.12.15
We apply the extended euclidean algorithm and obtain the following
table:

k[0 1 2 3 4
e | 235 124 111 13 7
I 1 1 8 1 1
9
7

Xy 1 0 1 1 10 19
Yk 0 1 1 2 1 19 36

Hence, gcd(235,124) =1 and 19 % 235 — 36 % 124 = 1.

Exercise 1.12.17

We use the notation from the extended euclidean algorithm. We have
Sy = Tpy1 and therefore x,4) = w; and y,+; = uy. Moreover, S, is
the identity matrix. In particular, we have u,, = 1 = r,/ gcd(a, b)
and U4 = 0 = ry41/ ged(a, b). Finally, we have seen in(1.8) that
the sequence (uy) satisfies the same recursion as the sequence (7).
This implies the assertion.

Exercise 1.12.19

If (a, b) is multiplied with a positive integer, then each equation in
the recursion of the euclidean algorithm is multiplied with the same
number. In other words, the residue sequence is multiplied with this
number and the quotients remain the same. If we divide a and b by
a common divisor, the situation is analogous.

Exercise 1.12.21

By Corollary 1.7.7, there exist x, y, u, v withxa4+ym = 1 and ub+vm =
1. Hence, 1 = (xa + ym)(ub + vm) = (xu)ab + m(xav + yub + yvm),
which implies the assertion.

Exercise 1.12.23

If n is composite, then we can write n = ab with a,b > 1. This
implies min{a, b} < /n. Since by Theorem 1.11.2 this minimum has
a prime divisor, the assertion is proved.

264 _ Solutions to the Exercises

Exercise 2.22.1
Simple induction.

Exercise 2.22.3
If e and ¢’ are neutral elements, then ¢ = ¢e = ¢'.

Exercise 2.22.5

If e is a neutral element and ¢ = ba = ac, then b = be = b(ac) =
(ba)e =.¢.

Exercise 2.22.7
We have 4 %6 = 0= 4% 3 mod 12 but 6 # 3 mod 12.

Exercise 2.22.9

Let R be a commutative ring with unit element ¢ and denote by
R* the set of all invertible elements in R. Then e € R*. Let a and
b be invertible in R with inverses a~! and b~!. Then aba~'b~! =
aa”'bb~! = e. Hence, ab € R*. Moreover, by definition the inverse
of each element of R* belongs to R*.

Exercise 2.22.11

Let g = gcd(a, m) be a divisor of b. Set a’ = a/g, ¥’ = b/g, and m’ =
m/g. Then ged(a’, m") = 1. Hence, by Theorem 2.6.2 the congruence
a'x’ = b’ mod m' has a solution m’ which is unique mod m’. If ¥’ is
such a solution, then ax’ = b mod m. This implies a(x' + ym') =
b+ a'ym = bmodm for all y € Z. Therefore, all x = x' + ym/,
Yy € Z are solutions of ax = b mod m. We show that there is no
other solution. Let x be a solution. Then a’x = b’ mod m’. Hence,
x = X' mod m’ by Theorem 2.6.2, and this concludes the proof.

Exercise 2.22.13

The invertible residue classes mod 25 are a + 257 with a €
{1,2,3,4,6,7,8,9,11, 12,13,14,16,17,18,19, 21, 22, 23, 24}.

Exercise 2.22.26 265

Exercise 2.22.15

Induction on the number of elements in X. If X contains one ele-
ment, then Y also contains one element, namely the image of X. if
X has n elements and if the assertion is proved for n — 1, then we
choose an x € X and remove x from X and f(x) from Y. Then we
apply the induction hypothesis.

Exercise 2.22.18

a
ord (a + 15Z)

| B2
S I
E |

8§ 11 13 14
4

Exercise 2.22.20

It follows from Theorem 2.9.5 that for each divisor d of |G| there are
exactly ¢(d) elements in G of order d. In particular, there is a cyclic
subgroup of order d of G. By Theorem 2.9.5 it contains all elements
of orderd in G. Hence, there is exactly one such subgroup. It remains
to be shown that all subgroups of G are cyclic. If H is a subgroup of
G which is not cyclic then the number of elements in H is bounded
by Y 4jm1.a< i 9(d)- But by Theorem 2.8.4 this number is less than
|H]|.

Exercise 2.22.22
By Theorem 2.9.2, the order of g is of the form [], 5 P with 0 <
x(p) < e(p) — f(p) for all p | |G|. By definition of f(p), we even have

x(p) = e(p) — f(p) for all p | |GI.

Exercise 2.22.24

By Corollary 2.9.3, the map is well defined. Clearly, the map is a
homomorphism. Since g generates G, the map is surjective. Finally,
the injectivity follows from Corollary 2.9.3.

Exercise 2.22.26
2, 3,5, 7, 11 are primitive roots mod 3, 5, 7, 11, 13.

266 Solutions to the Exercises

Exercise 3.15.1
The key is 3 and the plaintext is SECRET.

Exercise 3.15.3

The decryption function, restricted to the image of the encryption
function, is the inverse function.

Exercise 3.15.5
Concatenation is obviously associative. The neutral element is the

empty string £. The semigroup is not a group since no element except
for £ has an inverse.

Exercise 3.15.7

1. Not a cryptosystem because the encryption function is not injec-
tive. An example: Let k = 2. The letter A corresponds to 0, which
is mapped to 0 (i.e., A). The letter N corresponds to 13, which is
mapped to 2 * 13 mod 26 = 0 (i.e., to A).

2. A cryptosystem. The plaintext and ciphertext space are £*. The
key space is {1,2,...,26). If k is a key and (0}, 03, .. ., 0,) a plaintext
then (ko; mod 26, ..., ko, mod 26} is the ciphertext. This describes
the encryption function for key k. The decryption function i is the
same, except k is replaced by its inverse mod 26.

Exercise 3.15.9

The number of bit permutations on {0, 1}" is n!. The number of
circular left or right shifts on this set is n.

Exercise 3.15.11

The map that sends 0 to 1 and vice versa is a permutation but not a
bit permutation.

Exercise 4.8.1 267

Exercise 3.15.13
The group properties are easy to verify. We show that S3 is not
commutative. We have

1 2 3 1 2 3\ (1 2 3
32 1)°\1 3 2)7\3 1 2
1 2 3 1 2 3\ (1 2 3
i1 3 2)%3 23 1/T\2 3 1]

Exercise 3.15.15

ECB mode: 011100011100
CBC mode: 011001010000
CFB mode: 100010001000
OFB mode: 101010101010

but

Exercise 3.15.18
If
ajp i dig
A=\ azy az2 az3 |,
az) @Azz 04sz3
then det A = ay1a22833 — Q11423032 — Q2031033 + A1203031 +
1,302,103 — Ay 303203).

Exercise 3.15.20
The inverse is

Ll = =
—_— =D
o B

Exercise 4.8.1

1. The events S and ¥ are mutually exclusive. Therefore, 1 =
Pr(S) = Pr(SU®) = Pr(S)+ Pr(¥) =1+ Pr (). This implies
Pr (#) = 0.

268 Solutions to the Exercises

2.Set C = B\ A. Then the events A and C are mutually exclusive,
so Pr(B) = Pr(AUC) = Pr(A)+ Pr(C).Since Pr(C) > 0, we
have Pr (B) > Pr (A).

Exercise 4.8.3

By K denote heads and by T tails. Then the sample space is
{KK,TT,KT, TK}. The probability of every elementary event is 1/4.
The event “at least one coin comes up heads” is {KK,KZ,ZK}. Its
probability is 3/4.

Exercise 4.8.5

The event ‘both dice come up differently” is A = (12,13, 14,
15,16, 21,23, ..., 65}. Its probability is 5/6. The event “the sum of
the results is even” is B = (11,13, 15, 22, 24, 26, . . ., 66}. Its probabil-
ity is 1/2. The intersection of both events is {13, 15, 24, 26, . . ., 64).
Its probability is 1/3. The probability of A given B is 2/3.

Exercise 4.8.7
We use the birthday paradox. We have n = 10*. Hence, k > 118.3 >
(1 4+ /1 + 8 % 10% % log 2)/2 people are sufficient.

Exercise 4.8.9

By t_l:'l? definition of perfect secrecy we must check whether
‘Pr (plc) = Pr (p) for each ciphertext ¢ and each plaintext p. This is
incorrect. We give a counterexample. Let p = (0,0) and ¢ = (0, 0).
Then Pr (p)=1/4 and Pr (p[c) = 1.

Exercise 5.5.1
The key is

K = 0001001100110100010101110111100110011011101111001101111111110001 .
The plaintext is

P = 0000000100100011010001010110011110001001101010111100110111101111.

Exercise 5.5.1 269

Hence,

Cy = 1111000011001100101010101111

Dy = 0101010101100110011110001111
=1

C; = 1110000110011001010101011111

D; = 1010101011001100111100011110
v=1

C, = 1100001100110010101010111111

D, = 0101010110011001111000111101.

In the first round of the Feistel cipher we have

Lo = 11001100000000001100110011111111
Ry = 11110000101010101111000010101010
k, = 000110110000001011101111111111000111000001110010
E(Rg) = 011110100001010101010101011110100001010101010101
B = 011000010001011110111010100001100110010100100111.

S 1 2 3 4 5 6 7 8
Value 5 12 8 2 11 5 9 7
C 0101 | 1100 | 1000 | 0010 | 1011 | 0101 | 1001 | 0111

fi, (Ro) = 00100011010010101010100110111011
Ly = 11110000101010101111000010101010
R, = 11101111010010100110010101000100.

In the second round of the Feistel cipher, we have

L; = 11110000101010101111000010101010
R, = 11101111010010100110010101000100

k, = 011110011010111011011001110110111100100111100101
E(Ry) = 011101011110101001010100001100001010101000001001
B = 000011000100010010001101111010110110001111101100.

270 _ Solutions to the Exercises

S 1 2 3 4 5 6 7 8
Value 15 8 13 0 3 10 10 14
C 0100 | 1000 | 1101 | 0011 | 0000 | 1010 | 1010 | 1110

fr,(Ry) = 00111100101010111000011110100011
L, = 11101111010010100110010101000100
R, = 11001100000000010111011100001001 .

Exercise 5.5.3

We first prove the assertion for each round. It is easy to verify that
E(R) = E(R), where E is the expansion function of DES and R €
{0,112 If i € {1, 2,...,16} and K;(k) is the ith DES round key for the
DES key k, then K; {k) K.(k) Hence, if k is replaced by k, then all
round keys K are replaced by K. If in a round R is replaced by R and
K by K, then by(5.3) the arguments for the S-boxes are E(R) @ K.

Nowa@b=a@®b for alla,b € {0,1}. Therefore, the arguments for
the S-boxes are E(R) @ K. Since the initial permutation commutes
with the complement function, the assertion is proved.

Exercise 5.5.5

1. Let Ki = (Kio,...,Kis7) be the ith round key, and let C;, =
(Cio)...,Ci27) and D; = (Dyg,...,Di27), 1 < i < 16. We have
Ki = PC2 (G;, Dy). The function PC2 chooses its argument bits ac-
cording to Table 5.5. Denote the corresponding choice function for
the indices by g. Then g(1) = 14, g(2) = 17, etc. The function g is
injective but not surjective, since 9, 18, 22, 25 are not images ofg. De-
note the inverse function on the image of gby g~ !. Leti € {0,...,26}.
We have two cases. In the first case, i+ 1 ¢ {9, 18, 22, 25} (ie,i+1is
not in the image of g). The first assertion of this exercise and K, = K4
imply C,; = Ci41 = Ki6g-1i+1) = Ki,g-1(i+1) = C1i+1. In the second
case, we have i + 1 € {9, 18, 22, 25). Then i is in the image of g and,

as earlier, we have Cisi = Cigit1 = Kigg-(i+1) = Kig-13i+1) = Ciip1
so we have shown that C,p = Cy; = ... = C1g, Cig = ... = Cy 7,
cl,l& = i Cl,ZIr CI,ZZ == C]_gq and 61_25 — S C].Z'?‘ Anal-

ogously, but using K, = Kz, C18 = Cy9, C1,17 = Cu18, Ciz1 = C1 2,

Exercise 7.6.1 27]

and C; 24 = C) 5 are shown. In the same way, the assertion for Dj is
proved.

2. and 3, We can either set all bits of C; to 1 or to 0, and we have
the same choices for D, so there are four possibilities.

Exercise 6.6.1
210 = 1024 mod 1111.

Exercise 6.6.3
The smallest pseudoprime to the base 2 is 341. We have 341 = 11 %31

and 2340 = 1 mod 341 = 1.

Exercise 6.6.5

Let nbe a Carmichael number. By definition, it is not a prime number
and by Theorem 6.3.1 it is square-free, hence not a prime power.
Therefore, n has at least two prime divisors. Let n = pg with prime
factors p,q, p > q. By Theorem 6.6.5,p — 1 is a inisor of n —1 =
pg—1=(p—1)q+q— 1. Therefore, p — 1 is a divisor of g — 1 This
is impossible since 0 < g —1 < p — 1. This proves the assertion.

Exercise 6.6.7 N
We write 340 = 4 % 85. Now 28 = 32 mod 341 and 2'”° = 1 mod 341.

Hence, 341 is composite.

Exercise 6.6.9
The smallest 512-bit prime is 2°'* + 3.

Exercise 7.6.1

If de — 1 is a multiple of p — 1 and g — 1, then it can be shown as in
the proof of Theorem 7.2.4 that m* = m mod p and m* = m mod q
forany m € {0,1,...,n —1}. From the Chinese remainder theorem,

we obtain m® = m mod n.

272 Solutions to the Exercises

Exercise 7.6.3

Set p = 223, q = 233, n = 51959, ¢ = 5. Then d = 10301, m = 27063
¢ = 50042. '

Exercise 7.6.5

We sketch a simple divide-and-conquer algorithm. Let m, = 1, m =
c. We repeat the following computations until m¢ = ¢ or my = m.
Set x = [(m1 — mg)/2]. If x* > ¢, then set m; = x; otherwise, set
my = x. If after the last iteration m{ = ¢, then the eth root of ¢ is
found; otherwise, there is no such root.

Exercise 7.6.7
16 squarings and multiplications are necessary.

Exercise 7.6.9
Compute the representation 1 = xe+yf and then c:c? = m*t = ;.

Exercise 7.6.11

Wehavep=37,q=43,e=5,d:605,yp=7,yq=—6,m,,=9,
m, =8, m = 1341.

Exercise 7.6.13

Since e is coprime to (p—1)(¢—1), we have ¢* = 1 mod (p—1)(g—1),
where k is the order of the residue class e + Z(p — 1)(q — 1). This

ST
implies ¢ = m? = mmodn. As long as k is large, this is no

problem.

Exercise 7.6.15

Yes, since the numbers (x52° +x,2*+x3234+x,2%) mod 253, x; € {0, 1},
2 <1 < 5 are pairwise distinct.

Exercise 7.6.17
Low-exponent attack: If the message m € {0,1,..., n — 1} is en-
crypted with the Rabin scheme using the coprime moduli n; and

Exercise 8.6.5 2773

n,, then we obtain the ciphertexts ¢; = m? mod n;, i = 1, 2. The at-
tacker determines a numberc € {0, ..., mn; — 1} withc = ¢; mod n;,
i = 1,2. Then ¢ = m?* and m can be determined as the square root of
¢. The attack can be prevented by randomizing a few plaintext bits.

Multiplicativity: If Bob knows the ciphertexts ¢; = m? mod n,
i = 1,2, then he can compute the ciphertext ¢;c; modn =
(mym;)* mod n. This attack can be prevented by using only
plaintexts with redundancy.

Exercise 7.6.19

If (B, =g", C = APmy), (B, = g C, = AP2my) are the ciphertexts,
then (B, By, C,C; = A"*Pm;m;) is the ciphertext that encrypts the
plaintext m;m,. This attack can be prevented by using only plaintexts
with redundancy.

Exercise 7.6.21
The plaintext is m = 37.

Exercise 8.6.1

Since 2 > n, it follows that [/n] = 115 is the smallest possible value
for x. For this x, we must check whether z = n — x? is a square. If
not, then we test x + 1. We have (x + I)2 = x%* 4+ 2x + 1. Therefore,
we can compute (x + 1)* by adding x¥* and 2x + 1. Finally, we find
that 13199 = 1322 — 65% = (132 — 65)(132 + 65) = 67 % 197. Not
every composite integer is the difference of two squares. Therefore,
the algorithm does not always work. If it works, it requires o(v/n)

operations in Z.

Exercise 8.6.3
We find the factorization n = 11617 % 11903 since p — 1 = 2° x 3% 11°
and g — 1 = 2% 11 x 541. Therefore, we can set B = 121.

Exercise 8.6.5
By Theorem 6.1.6, the number of primes < B is O(B/ log B). Each
of the prime powers whose product is k is < B. Therefore, k =

274 _ Solutions to the Exercises

O(B¥ 1928y = O(2%). By Theorem 2.12.2, the exponentiation of a
with k mod n requires O(B) multiplications mod n.

Exercise 8.6.7

We have m = 105. With the sieving interval —10,...,10 and the
factor base {—1,2,3,5,7,11, 13}, we obtain f(—4) = —2% 5% 7 % 13,
f)=5%f(2)=2%13% f(4) =2%5%7 %11, f(6) = 2% 5 % 112 and
(106%107%111)? = (252 % 11%13)> mod n. Hence, x = 106%107 %111,
Yy = 25" %11 %13, and therefore gcd(x — y, n) = 41.

Exercise 9.9.1
The DL is x = 1234.

Exercise 9.9.3
The DL is x = 1212.

Exercise 9.9.5

The smallest primitive root mod 3167 is 5, and we have 5'%7 =
15 mod 3167.

Exercise 9.9.7

The smallest primitive root mod p = 2039 is g = 7. We have 7'%% =
2mod p, 7'%® = 3 mod p, 7%* = 5 mod p, 7°5' = 11 mod p, 7°% =
13 mod p.

Exercise 10.8.1

Let n be a 1024-bit Rabin modulus (see Section 7.3). The function
Zy — Ly, x = x*modn is a one-way function if n cannot be
factored. This follows from the results of Section 7.3.5.

Exercise 10.8.3

The maximal value of h(k) is 9999. This implies that the maximal
length of the images is 14. A collision is h(1) = h(10947).

Exercise 12.4.1 7275

Exercise 11.6.1
We have n = 127 % 227, e = 5, d = 22781, s = 7003.

Exercise 11.6.3

The signature is a square root mod n of the hash value of the docu-
ment. The security and efficiency considerations are similar to those
in Section 7.3.

Exercise 11.6.5

We have A'r® = A9(q?~3/2)"("~4_Since gg = —1 mod p, we obtain
g = —g~! mod p. Moreover, g?~1’2 = —1 mod p because g is a prim-
itive root mod p. Therefore, g#?~3'%? = (—g)?~12g = g mod p, so
ATrS = Adghtmg=az = AdghtmA—4 = gh(™) mod p. The attack works
because g divides p — 1 and the DL z of A? to the base g% can be
computed. This must be prevented.

Exercise 11.6.7
We have r = 799, k! = 1979, s = 1339.

Exercise 11.6.9
We have g = 43. The generator of the subgroup of order gis g = 1984.
Also, A =834, r =4, k™! =31, and s = 23.

Exercise 11.6.11
gs — Arrh(.\’}l

Exercise 12.4.1

We need an irreducible polynomial of degree 2 over GF (3). The
polynomial ¥* + 1 is irreducible over GF (3) because it has no zero.
Therefore, residue class ring mod f(X) = X* + 1 is GF (9). Denote
by « the residue class of X mod f(X). Then a*+1 = 0. The elements
of GF (9)are0, 1, 2, o, 2, 1 + @, 1 + 2a, 2+ «, 2 + 2a. The addition
table is obtained using arithmetic in Z/3Z. The multiplication table
also uses a® = —1,

276 Solutions to the Exercises

Exercise 12.4.3
The points are O, (0,1), (0, 6), (2,2), (2,5). Therefore, the group is
of order 5 and hence cyclic. Each point # O is a generator.

Exercise 13.4.1

Alice chooses a random exponent b € {0, 1, ..., p— 2} and computes
B = g” mod p. She sends B to Bob. Bob chooses a random ¢ € {0, 1}
and sends it to Alice. Alice sends y = (b+ea) mod (p—1) to Bob. Bob
verifies g¥ = A°B mod p. The protocol is complete since using her
secret key Alice can successfully identify herself. If Oscar knows
the correct y for r = 0 and r = 1, then he knows the DL a. If he
does not know the secret key, his answer is correct with probability
1/2. Hence, the protocol is correct. The protocol can be simulated
by Bob. He chooses random numbers y € {0,1,...,p — 2}, e € {0,1)
and sets B = gA™* mod p. Then the protocol works and the proba-
bility distributions on the messages are the same as in the original
protocol.

Exercise 13.4.3

A cheater must produce x and y that satisfy the protocol. When he
communicates x, he does not know the random ¢ = (e, ..., e). If
he is able to come up with a correct y after knowing ¢, then he can
compute square roots mod n. But this is not possible. Hence, he can
only choose x such that y is correct for exactly one e € {0, 1}*. He
can survive the identification only with probability 2.

Exercise 13.4.5
The signer chooses r randomly and computes x = r? mod n,
(er,...,&x) =h(xom)andy =r]_[:;1 s;'. The signature is (x, y).

Index

la), 2

abelian, 33, 34

adaptive chosen-plaintext
attack, 72

adjoint, 94

affine cipher, 89

affine linear block cipher, 96

affine linear function, 95

alphabet, 73

anomalous curve, 238

archive, 253

associative, 33

asymmetric cryptosystem, 71

B

baby-step giant-step algorithm,
186

baby-steps, 187

bijective, 43

binary expansion, 5
binary length, 6
birthday attack, 208
bit permutation, 76
block cipher, 77
block length, 77
bounded, 2

C

Caesar cipher, 70
cancellation rules, 34
Carmichael number, 130
CBC mode, 81

certain event, 104

certificate, 252

certificate chain, 256
certificate revocation list, 255
certification, 252
certification authority (CA), 251
CFB mode, 84

278

Index

challenge-response protocols,
243

characteristic, 234

chosen-ciphertext attack, 72

chosen-plaintext attack, 72

cipher feedback mode, 84

cipherblock chaining mode, 81

ciphertext, 69

ciphertext-only attack, 72

circular shifts, 77

coefficient, 57

collision, 207

collision resistant, 207

column, 91

common divisor, 9

common modulus attack, 168

commutative, 33-35

composite, 22

compression function, 206

concatenation, 75

congruence, 29

CRL, 255

cryptosystem, 69

cyclic group, 42

cycling attack, 168

D

decryption, 70

decryption exponent, 142

degree, 57

DES encryption, 115

determinant, 93

Diffie-Hellman key exchange,
158

Ditfie-Hellman problem, 161

Digital Signature Algorithm
(DSA), 228

digital signatures, 217

direct product, 54

directory service, 254

discrete logarithm, 159, 186

discrete logarithm problem,
159, 185

discriminant, 236

divisibility, 2, 36

division with remainder, 3, 59

divisor, 3, 36

DL problem, 185

E

ECB mode, 79

ECM, 181, 182

electronic codebook mode, 79
element order, 41

elementary event, 103
ElGamal encryption, 162
ElGamal signature, 223
elliptic curve, 236

elliptic curve method, 181, 182
empty sequence, 75
encryption, 69, 70

encryption exponent, 142
encryption scheme, 69
enumeration, 186

Euler g-function, 39

event, 104

exclusive or, 81

exhaustive search, 72
existential forgery, 152, 220, 226

F

factor base, 176, 199
Feige-Fiat-Shamir protocol, 247
Feistel cipher, 115

Fermat numbers, 23

Fermat test, 129

Fiat-Shamir identification, 245

Index

279

field, 36
finite field, 233

G

g-adic expansion, 5

Galois field, 234

gcd, 9

generator, 42

giant-steps, 187

greatest common divisor, 9
group, 34

H

hexadecimal expansion, 5
Hill cipher, 97

|

identification, 242
identification protocol, 242
identity matrix, 92
independent events, 105
index calculus, 198

index of a subgroup, 44
induction, 2

initial permutation, 117
initialization vector, 81
injective, 43

integer linear combinations, 10
integers, 1

inverse, 33

invertible, 33, 35
irreducible polynomial, 233

K

key, 69
key space, 214

key generation, 252
known-plaintext attack, 72

L

leading coefficient, 57

least common multiple (lem),
66

linear function, 95

linear recursion, 88

linear shift register, 89

low-exponent attack, 149

M

MAC, 214

man in the middle attack, 161

matrix, 91

message authentication code,
214

message expansion, 164

Miller-Rabin test, 132

monoid, 33

monomial, 57

multiple, 3, 36

multiple encryption, 78

multiplicative group of residues,
39

N

NFS, 182
null event, 104
number field sieve, 181, 182

(0}

Q-notation, 6
O-notation, 6
OFB mode, 86

280

Index

one-time password, 243
one-way function, 206
operation, 32

order of a group, 34

order of an element, 41
output feedback mode, 86

P

P, 22

parameterized hash function,
214

password, 242

perfect secrecy, 108

permutation, 75

permutation cipher, 97

permutation cipher, 78

personal security environment,
249

PKI, 249

plaintext, 69

Pollard p — 1 method, 172

polynomial, 57

polynomial time, 9

power product, 48

power set, 104

primality test, 129

prime divisor, 22

prime factorization, 23

prime field, 234

prime number, 22

primitive root, 63

private key, 140

probability, 104

probability distribution, 104

prover, 242

PSE, 249

pseudoprime, 130

public key, 140

public key cryptosystems, 71

public key infrastructure, 249

Q

quadratic form, 239
quadratic Sieve, 173
quotient, 4, 60

R

Rabin encryption, 153
Rabin signature, 222
randomized encryption, 166
redundancy function, 221
registration, 252

relation, 200

remainder, 4, 60
representation problem, 251
representatives, 30

residue class, 30

residue class ring, 35
residue mod m, 30

ring, 35

row, 91

RSA, 141

RSA signature, 218
RSA-modulus, 142

S

sample space, 103

secret key, 140

semigroup, 33

session key, 140

sieve of Eratosthenes, 26
simultaneous congruence, 51
smooth, 176

smooth integers, 199

square roots mod p, 66
string, 75

Index

281

subexponential, 178
subgroup, 42

substitution cipher, 77
supersingular curve, 238
surjective, 43

symmetric cryptosystem, 71

T

theorem of Lagrange, 44
transposition, 100

trial division, 128, 171
triple encryption, 78

U

uniform distribution, 104
unit, 35

unit element, 35

unit group, 35

unit vector, 97

\Y%

verifier, 242
Vernam one-time pad, 110

W

weak collision resistant, 207
weak DES keys, 125
witness, 133

word, 75

XOR, 81

Z

zero knowledge, 245
zero knowledge proof, 245

Undergraduate Texts in Mathematics

fcontinued from page ii)

Halmos: Finite-Dimensional Vector
Spaces. Second edition.

Halmos: Naive Set Theory.

Héimmerlin/Hoffmann: Numerical
Mathematics.

Readings in Mathematics.

Harris/Hirst/Mossinghoff:
Combinatorics and Graph Theory.

Hartshorne: Geometry: Euclid and
Beyond.

Hijab: Introduction to Calculus and
Classical Analysis.

Hilton/Holton/Pedersen: Mathematical
Reflections: In a Room with Many
Mirrors.

Hilton/Holton/Pedersen: Mathematical
Vistas: From a Room with Many
Windows.

looss/Joseph: Elementary Stability
and Bifurcation Theory. Second
edition.

Isaac: The Pleasures of Probability.
Readings in Mathematics.

James: Topological and Uniform
Spaces.

Jénich: Linear Algebra.

Jiinich: Topology.

Jinich: Vector Analysis.

Kemeny/Snell: Finite Markov Chains.

Kinsey: Topology of Surfaces.

Klambauer: Aspects of Calculus.

Lang: A First Course in Calculus. Fifth
edition.

Lang: Calculus of Several Variables.
Third edition.

Lang: Introduction to Linear Algebra.
Second edition.

Lang: Linear Algebra. Third edition.

Lang: Short Calculus: The Original
Edition of “A First Course in
Calculus.”

Lang: Undergraduate Algebra. Second
edition.

Lang: Undergraduate Analysis.

Lax/Burstein/Lax: Calculus with
Applications and Computing.
Volume 1.

LeCuyer: College Mathematics with
APL.

Lidl/Pilz: Applied Abstract Algebra.
Second edition.

Logan: Applied Partial Differential
Equations.

Macki-Strauss: Introduction to Optimal
Control Theory.

Malitz: Introduction to Mathematical
Logic.

Marsden/Weinstein: Calculus I, I1, III.
Second edition.

Martin: Counting: The Art of
Enumerative Combinatorics.

Martin: The Foundations of Geometry
and the Non-Euclidean Plane.

Martin: Geometric Constructions.

Martin: Transformation Geometry: An
Introduction to Symmetry.

Millman/Parker: Geometry: A Metric
Approach with Models. Second
edition.

Moschovakis: Notes on Set Theory.

Owen: A First Course in the
Mathematical Foundations of
Thermodynamics.

Palka: An Introduction to Complex
Function Theory.

Pedrick: A First Course in Analysis.

Peressini/Sullivan/Uhl: The Mathematics
of Nonlinear Programming.

Prenowitz/Jantosciak: Join Geometries.

Priestley: Calculus: A Liberal Art.
Second edition.

Protter/Morrey: A First Course in Real
Analysis. Second edition.

Protter/Morrey: Intermediate Calculus.
Second edition.

Pugh: Real Mathematical Analysis.

Roman: An Introduction to Coding and
Information Theory.

Undergraduate Texts in Mathematics

Ross: Elementary Analysis: The Theory
of Calculus.

Samuel: Projective Geometry.
Readings in Mathematics.

Saxe: Beginning Functional Analysis

Scharlau/Opolka: From Fermat to
Minkowski.

Schiff: The Laplace Transform: Theory
and Applications.

Sethuraman: Rings, Fields, and Vector
Spaces: An Approach to Geometric
Constructability.

Sigler: Algebra.

Silverman/Tate: Rational Points on
Elliptic Curves.

Simmonds: A Brief on Tensor Analysis.
Second edition.

Singer: Geometry: Plane and Fancy.

Singer/Thorpe: Lecture Notes on
Elementary Topology and
Geometry.

Smith: Linear Algebra. Third edition.

Smith: Primer of Modern Analysis.
Second edition.

Stanton/White: Constructive

Combinatorics.

Stillwell: Elements of Algebra: Geometry,
Numbers, Equations.

Stillwell: Mathematics and Its History.
Second edition.

Stillwell: Numbers and Geometry.
Readings in Mathematics.

Strayer: Linear Programming and Its
Applications.

Toth: Glimpses of Algebra and Geometry.
Second Edition.
Readings in Mathematics.

Troutman: Variational Calculus and
Optimal Control. Second edition.

Valenza: Linear Algebra: An Introduction
to Abstract Mathematics.

Whyburn/Duda: Dynamic Topology.

Wilson: Much Ado About Calculus.

