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Preface

This book is designed as a text for a first course on functional analysis for ad-
vanced undergraduates or for beginning graduate students. It can be used in the
undergraduate curriculum for an honors seminar, or for a “capstone” course. It can
also be used for self-study or independent study. The course prerequisites are few,
but a certain degree of mathematical sophistication is required.

A reader must have had the equivalent of a first real analysis course, as might
be taught using [25] or [109], and a first linear algebra course. Knowledge of the
Lebesgue integral is not a prerequisite. Throughout the book we use elementary
facts about the complex numbers; these are gathered in Appendix A. In one spe-
cific place (Section 5.3) we require a few properties of analytic functions. These
are usually taught in the first half of an undergraduate complex analysis course.
Because we want this book to be accessible to students who have not taken a course
on complex function theory, a complete description of the needed results is given.
However, we do not prove these results.

My primary goal was to write a book for students that would introduce them
to the beautiful field of functional analysis. I wanted to write a succinct book that
gets to interesting results in a minimal amount of time. I also wanted it to have the
following features:

e It can be read by students who have had only first courses in linear algebra and
real analysis, and it ties together material from these two courses. In particular,
it can be used to introduce material to undergraduates normally first seen in
graduate courses.

e Reading the book does nor require familiarity with Lebesgue integration.
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e It contains information about the historical development of the material and

biographical information of key developers of the theories.

e It contains many exercises, of varying difficulty.
e It includes ideas for individual student projects and presentations.

What really makes this book different from many other excellent books on the

subject are:

e The choice of topics.

e The level of the target audience.

e The ideas offered for student projects (as outlined in Chapter 6).
e The inclusion of biographical and historical information.

How to use this book

The organization of the book offers flexibility. I like to have my students present
material in class. The material that they present ranges in difficulty from “short”
exercises, to proofs of standard theorems, to introductions to subjects that lie
outside the scope of the main body of such a course.

e Chapters 1 through 5 serve as the core of the course. The first two chapters

introduce metric spaces, normed spaces, and inner product spaces and their
topology. The third chapter is on Lebesgue integration, motivated by probability
theory. Aside from the material on probability, the Lebesgue theory offered
here is only what is deemed necessary for its use in functional analysis. Fourier
analysis in Hilbert space is the subject of the fourth chapter, which draws
connections between the first two chapters and the third. The final chapter of
this main body of the text introduces the reader to bounded linear operators
acting on Banach spaces, Banach algebras, and spectral theory. It is my opinion
that every course should end with material that truly challenges the students
and leaves them asking more questions than perhaps can be answered. The last
three sections of Chapter 5, as well as several sections of Chapter 6, are written
with this view in mind. I realize the time constraints placed on such a course.
In an effort to abbreviate the course, some material of Chapter 3 can be safely
omitted. A good course can include only an outline of Chapter 3, and enough
proofs and examples to give a flavor for measure theory.

Chapter 6 consists of seven independent sections. Each time that [ have taught
this course, I have had the students select topics that they will study individ-
ually and teach to the rest of the class. These sections serve as resources for
these projects. Each section discusses a topic that is nonstandard in some way.
For example, one section gives a proof of the classical Weierstrass approxima-
tion theorem and then gives a fairly recent (1980s) proof of Marshall Stone’s
generalization of Weierstrass’s theorem. While there are several proofs of the
Stone—Weierstrass theorem, this is the first that does not depend on the classi-
cal result. In another section of this chapter, two arguments are given that no
function can be continuous at each rational number and dixcontinuous at cach
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irrational number. One is the usual Baire category argument; the other is a less
well known and more elementary argument due to Volterra. Another section
discusses the role of Hilbert spaces in quantum mechanics, with a focus on
Heisenberg’s uncertainty principle.

e Appendices A and B are very short. They contain material that most students will
know before they arrive in the course. However, occasionally, a student appears
who has never worked with complex numbers, seen De Morgan’s Laws, etc. I
find it convenient to have this material in the book. I usually spend the first day
or two on this material.

e The biographies are very popular with my students. I assign each student one
of these (or other) “key players” in the development of linear analysis. Then, at
a subject-appropriate time in the course, I have that one student give (orally) a
short biography in class. They really enjoy this aspect of the course, and some

end up reading (completely due to their own enthusiasm) a book like Constance
Reid’s Hilbert [104].
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Introduction: To the Student

Functional analysis was developed in the last years of the nineteenth century and
during the first few decades of the twentieth century. Its development was, in
large part, in response to questions arising in the study of differential and integral
equations. These equations were of great interest at the time because of the vast
effort by many individuals to understand physical phenomena.

The unifying approach of functional analysis is to view functions as points
in some abstract vector (linear) space and to study the differential and integral
equations relating these points in terms of linear transformasions on these spaces.
The term “functional analysis” is most often credited to Paul P. Lévy (1886-1971;
France).! The rise of the field is consistent with a larger move toward generality
and unification in mathematics. Indeed, this move can be viewed as part of a
more general intellectual trend, and it is interesting to compare it to analogous
movements in other fields such as philosophy, music, painting, and psychology.

Maurice Fréchet (1878-1973; France) is usually credited with the first major
effort to develop an abstract theory of spaces of functions. Much of this work
appears in his 1906 doctoral thesis. Many other names are associated with the
birth and development of functional analysis, and you will read about them as
you proceed through this text. The works of Stefan Banach (1892-1945; Austria—
Hungary, now Hungary) and David Hilbert (1862-1943; Prussia, now Russia) have
probably had the greatest influence.

It has been my goal to present the basics of functional analysis in a way that
makes them comprehensible to a student who has completed first courses in linear

'See the biography of Fréchet for more on the origins of this phrase.



2 Introduction: To the Student

algebra and real analysis, and to develop the topics in their historical context. Bits
of pertinent history are scattered throughout the text, including brief biographies
of some of the central players in the development of functional analysis.

In this book you will read about topics that can be gathered together under the
vague heading, “What everyone should know about functional analysis.” (“Every-
one” certainly includes anyone who wants to study further mathematics, but also
includes anyone interested in the mathematical foundations of economics or quan-
tum mechanics.) The first five chapters of the book are devoted to these essential
topics. The sixth chapter consists of seven independent sections. Each section con-
tains a topic for further exploration; some of these develop further a topic found
in the main body of the text, while some introduce a new topic or application.
The topics found in the sixth chapter provide good bases for individual student
projects or presentations. Finally, the book concludes with two appendices that
offer basic information on, respectively, complex numbers and set theory. Most
of the material found in these two sections is not hard, but it is crucial to know
before reading the book. The appendices can be read in advance and can be used
as reference throughout your reading of the text.

There are plenty of exercises. There is much wisdom in the saying that you
must do math in order to learn math. The level of difficulty of the exercises is quite
variable, so expect some of them to be straightforward and others quite challenging.

There are many excellent books on functional analysis and the other topics that
we discuss in this text. The bibliography includes references to classics by the
“founding fathers” ([11], [80], [107], for example); some of the standard texts
currently used for first-year graduate courses ([44], [47], [111], for example),
treatments of historical aspects of our subject ([16], [17], [23], [34], [54], [61],
[73], [76], [104], for example); books on related topics ([1], [22], [27],[77], [121],
[99], for example); undergraduate real analysis texts ([25], [89], [109], [110], for
example); and readable journal articles on topics we discuss ([13], [26], [31], [37],
[64],[91], [96], [117], [119], [125], for example).

The list of references is meant to be used, and I hope that you take the opportunity
to look at many of the referenced books and articles.

Finally, there is a very good history of mathematics web site run at St. Andrews
University:
http://www-groups.dcs.st-and.ac.uk/ history (this address was good
as of April 2001).
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Metric Spaces, Normed Spaces,
Inner Product Spaces

The goal of this chapter is to introduce the abstract theory of the spaces that are
important in functional analysis and to provide examples of such spaces. These
will serve as our examples throughout the rest of the text, and the spaces introduced
in the second section of this chapter will be studied in great detail. The abstract
spaces—metric spaces, normed spaces, and inner product spaces—are all examples
of what are more generally called “topological spaces.” These spaces have been
givenin order of increasing structure. That is, every inner product spaceis a normed
space, and in turn, every normed space is a metric space. It is “easiest,” then, to
be a metric space, but because of the added structure, it is “easiest” to work with
inner product spaces.

Fréchet developed the general concept of the abstract metric space. The other
two types of spaces of interest to us, inner product and normed spaces, are particular
types of linear spaces.! Giuseppe Peano (1858-1932; Italy) gave the first axiomatic
definition of a linear space in 1888 (see [35]). In 1922 Banach wrote down the
axioms for a normed space in [10]. The axioms for inner product spaces were
presented by John von Neumann (1903—-1957; Hungary) [98]. As is most often
the way in mathematics, the origins of these works, including anticipation of the
axiomatic definitions, can be seen in the work of their predecessors. You will read
much more about these sources of motivation throughout the text.

You are probably familiar with the finite-dimensional Euclidean spaces, R". As
you will see, the spaces of functional analysis are typically infinite-dimensional.

'A linear space is the same thing as a veclor space;, we will always use the former
terminology in order to emphasize the linearity that permcates the subject of this book.
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The unification of the ideas of linear spaces of finite and infinite dimensions took
some time. The publication of two major works in the early 1930s, Banach’s
Théorie des Opérations Linéaires [11] and Moderme Algebra by the algebraist
Bartel van der Waerden (1903-1996; Netherlands), helped to solidify this unifica-
tion. At the time that Peano wrote down his axioms for a linear space, differential
equations was already an important branch of study. Connections between the
fields of differential equations and matrix theory already existed. For example, La-
grange used methods that we would now refer to as “eigenvalue methods’ to solve
systems of simultaneous differential equations in several variables. But it would be
a while until the connection was truly recognized and understood. Joseph Fourier
(1768-1830; France) had already been studying countably infinite systems of such
equations (see Chapter 4), but his method involved considering the “subsystems”
of the first n equations and then letting n tend to infinity.

1.1 Basic Definitions and Theorems

The idea of an inner product space is to describe an abstract structure with the
desirable properties of Euclidean space: a distance-measuring device and a way
of determining orthogonality. A “metric” is simply a way of measuring distances
between points of the space. For example, the space R" is a metric space with
menc

d(x,y) = V1 — )2+ (xa — )2 4 - + (Xp — yn)?

forx = (xy, x2,...,xp)andy = (y1, Y2, ..., y») InR". This metric is the standard
Euclidean metric on R".

In general, a metric space (M, d) 1s defined tobe a set M together with afunction
d: M x M — R called a metric satisfying four conditions:

() d(x,y)>0forallx,ye M (nonnegativity),
(i) d(x,y)=0ifandonlyifx =y (nondegeneracy),
(i) d(x,y)=d(y,x)forallx,y e M (symmetry),
(v) d(x,y) <d(x,z)+d(z,y)forallx,y,ze M (triangle inequality).

In addition to R", what are some examples of metric spaces?
EXaMPLE 1. Let M =C, withd(z, w) = |z — w|.

ExaMpLE 2. Let M be any set and define

1 ifx ,
d(x,y) = [o ifxzi).

This is called the discrete metric.

ExaMPLE 3. Fix a positive integer n and let M be the set of all ordered n-tuples
of Os and Is. For x and y in M, define d(x, y) to be the number of places in which
x and y differ. For example, with n = 6,

dOO1011, 101001) = 2.
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Many of the topological notions from R can be extended to the general metric
space setting. For example, a sequence {x,},- ; in a metric space (M, d) is said to
converge to the element x € M if for each € > 0 there exists a positive integer N
such that d(x,, x) < € whenevern > N. As another example, a function f defined
on a metric space (M, dy) and taking values in another metric space (N, dy), is
continuous at xo € M if given any € > 0 there exists a§ > 0 such that

dy (f(x), f(xo)) <€ whenever du(x, xo) < 4.

We shall discuss more “topology” in the next chapter.

Many of the metrics that we will be interested in arise from “norms.” A (real)
normed linear space (V, | - ||) is a (real) linear space V together with a function
|- : V- R called a norm satisfying four conditions:

) |lvl =0forallv eV (nonnegativity),

(ii) lv| =0if and onlyif v =0 (nondegeneracy),
(iii) ||Av]| = |A]-||v|l forallv e Vand A € R (multiplicativity),
i) v+ wl|l < vl + |lw|| for all v, w € V (triangle inequality).

We now give four basic normed linear spaces. More interesting examples will be
given in the next section.

ExaMPLE 1. V = R with ||x| = |x].

EXAMPLE 2. V =R" with | x|| =\/x12 + x22 + -+« + x2 for x = (x1, X2, ..., Xn).
This is the usual, standard, or Euclidean norm on R". It is usually denoted by

I l2.
ExampLE 3. V = C, with [|z]l = |zl
EXAMPLE 4. We can define many norms on R". For example, both
x|y = Ixi] + [x2]
and
1% lloo = max(]x:], |x2])

define norms on R?. These can be extended in the obvious way to R”, and we will
see later, in the exercises, that they are not really all that different. These norms
might seem a bit odd but they are related to the important sequence spaces £! and
£°°, which will be defined in the next section.

Theorem 1.1. Norms always give rise to metrics. Specifically, if (V, || - ||) is a
normed space and d(v, w) is defined by

dv, w) = |lv — w,
then d is a metric on V.

PrROOF. Left as Exercise 1.1.5. a
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Y

> X

FIGURE 1.1. The metric d(x, y) = |x; — y1| + [x2 — ¥2|.

Not all metrics come from norms. For example, the discrete metric cannot come

from a norm. This is because ||Av| = |A| - [|[v]] = oo as |A| — o0. Thus,
d(Av,0) = oo as |A| - oo. But d(Av, 0) = 1 unless v = 0. If we consider the
three norms || - ||1, || - |l2, and || - |l on R?, only the middle one gives rise to the

usual metric on R2. The other two give rise to other metrics. For example, the
metric arising from the first one is

dix,y) = |x1 — yi| + |x2 — yal-

This is the sum of the vertical and horizontal distances between x and y (Figure
1.1). You should pause and think about what the oo-metric on R? is measuring.

Many norms, and hence metrics, arise from an “inner product.” A (real) in-
ner product space (V, (-,-)) is a (real) linear space V together with a function
(,+) : V. x V — R called an inner product satisfying five conditions:

@) (v,v) =>0forallveV (nonnegativity),
(ii) (v,v) =0ifand onlyif v =0 (nondegeneracy),
(iii) (Av, w) = A(v,w) forallv,w € Vand A € R (multiplicativity),
(iv) (v, w) = (w,v) forallv,w e V (symmetry),
v) (v,w+u)= (v, w)+ (v,u)forallu,v,weV (distributivity).

If R is replaced by C everywhere in this definition, and the symmetry property
is replaced by the Hermitian symmetry property

(v, w) = (w, v)

forall v, w € V, where the bar indicates the complex conjugate, we geta (complex)
inner product space. One must be clear about the underlying field.

Our two basic examples of inner product spaces will not surprise you. Others
will be given in the next section.

ExaMpLE 1. The real linear space R"” with standard inner product
(x,y) =xiy1 +x2y2+ -+ + XnYn.
ExAMPLE 2. The complex linear space C" with standard inner product

(zow) =z1w) + hwa + - + 2,0,.
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Theorem 1.2. Inner products always give rise to norms. Specifically, if (V, (-, -))
is an inner product space and ||v|| is defined by

vl = v/ (v, v),
then || - || isanormon V.
PROOF. Left as Exercise 1.1.6. O

Is there an easy way to tell whether a given norm has an inner product associated
with it? It turns out that the answer is yes: The parallelogram equality,

2llull® +2||vl1> = |lu + vl> + Jlu — v|)?,

must hold for every pair ¥ and v in an inner product space. On the other hand,
if a norm satisfies the parallelogram equality, then it must come from an inner
product. Thus, the parallelogram equality characterizes those norms that arise from
an inner product. (See Exercise 1.1.8). This equality generalizes the Pythagorean
equality and says that the sum of the squares of the lengths of the diagonals of a
parallelogram is twice the sum of the squares of the lengths of its sides (Figure
1.2).

Inner products give us a way to talk about a generalized notion of “orthogonality,”
which will be discussed in detail in Chapter 4. They also give the following very
useful theorem. |

Theorem 1.3 (Cauchy-Schwarz (or Cauchy—Bunyakovskii—Schwarz) Inequality?
If (V, (-,)) is an inner product space, then

(v, w)| < (v, V)V {(w, w)

forallv,w e V.

FIGURE 1.2. The parallelogram equality.

?Named for Viktor Bunyakovskii (1804-1889; Ukraine), Augustin Louis Cauchy (1789-
1857; France), and Hermann Schwarz (1843-1921; Poland, now Germany).
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PROOF. We assume that V is a complex inner product space. We assume that
w # 0 and first consider the case that ||w| = 1. Then

0<lv— (v, ww|?= (v - (v, wWw, v— (v, w)w)

= (v, v) — (v, w){v, w) — (v, w) (v, w)

+ (v, w) (v, w){w, w)

= (v, v) — (v, w){v, w) = |[v]I* = [{v, W)I*.

Therefore, |{v, w)|*> < |lv>. Now consider an arbitrary w # 0. Because w # 0,
we have ||w|| # 0. Therefore, if we let u denote ", then ||u|| = 1. By the first
part of the proof, |(v, u)| < ||v||. Since |{v, u)| = '—(l'f;"ﬁu, the result is proved. O

This proof works for real inner product spaces as well. However, a somewhat

simpler and rather attractive proof can be given for the real case. To see how it
goes, we now call the two elements x and y, and so we are trying to prove that

[(x, W) < v (x, X)W, )

in any real inner product space. Note that we may assume that x # 0 and y # 0.
For any real number A we have

0 < (Ax +y,Ax + ¥) = A%(x, x) + 2A(x, y) + (¥, y).

Setting a = (x, x), b = 2(x, y), and ¢ = (y, y) this reads ar? + bx + ¢ > 0 for
every A € R. Since a > 0, this quadratic function has a minimum at :2-5, and this
minimum value is nonnegative. Thus

—b —
a(z)2+b(—2§)+c >0 or c>—.

Since a > 0, this yields immediately the desired result.

1.2 Examples: Sequence Spaces and Function Spaces

It is the goal of this section to introduce some of the linear spaces that are important
to many functional analysts. These will serve as our working examples throughout
much of the text.

We first discuss the “sequence spaces.” These, as you might guess, are linear
spaces whose elements are sequences. The elements can be sequences of real or
complex numbers. Addition and scalar multiplication are defined pointwise. There
are many sequence spaces; we discuss some of them.

The first example is the collection £°° (pronounced “little ell infinity”’) of all
bounded sequences {x, )2 ,. The next example is the collection cp of all sequences
that converge to 0. Noncc that co C €%°. Both of these collections become normed
linear spaces with norm defined by

Ixallloo = sup(lxal [I <n < o0).
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(Recall that the supremum of a set is its least upper bound, and that the infimum of
a set is its greatest lower bound.)

Next, we define the £7-spaces for 1 < p < oc. The space £7 (pronounced “little
ell p”) consists of all sequences {x,}>2 , such that

o0
> lxal? < o0,
n=1

With norm defined by

bl = (3 1al?)
n=1

£P becomes a normed linear space. Notice that £” C ¢ for each p, 1 < p < o0.
The space ¢! is somewhat special. It consists of all absolutely convergent se-
quences. That is, {x,}°2, isin ¢! if and only if the series fo;l |x,| converges.
The space £ is undoubtedly the most important of all the £”-spaces for reasons
discussed in the last paragraph of this section.

The notation €7 is an abbreviation for £7(N). The reason for this notation is that
these spaces are particular examples of the “Lebesgue L7-spaces.” These spaces
are named in honor of Henri Lebesgue (1875-1941; France), and you will read
much about them in Chapter 3. We only mention this relationship here; you are
encouraged to try to understand this relationship after you read Chapter 3.

We now turn to “function spaces.” These are linear spaces consisting of func-
tions. As with sequence spaces, addition and scalar multiplication are defined
pointwise. The scalars, again, can be taken to be either real or complex. After
working with function and sequence spaces for a while you will notice that in
some ways the two classes are very much alike. This is perhaps not so surprising
if we consider that sequences can, and often should, be thought of as functions
defined on N.

Let [a, b] be any closed, bounded interval of R and let

V={f:l[a, b] > R | thereexists B > 0 suchthat | f(x)| < B for all x € [a, b]}
This is a linear space. The collection
{f :la,b] > R | f is continuous}

is a subspace of V. This subspace of all continuous functions on a closed and
bounded interval is a very important space in analysis; it is most often denoted by
(C([a, bD. || - lloo), Or just C([a, b]). With norm defined by

I flloo = sup{| f(x)| |x € [a, b]},

both V and C([a, b]) become normed linear spaces.

For each sequence and function space described above we have given a norm.
According to our results of the previous section, each space is thus a metric space
also. On C([a. b)), for example; the metric is given by

dif. &) = ILf =gl = sup{|.f(x) = g(x)| |x € la. b]).
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FIGURE 1.3. The supremum metric.

This metric measures the largest vertical distance between the graphs of the two
functions (Figure 1.3).

Your next question might be, Which of the norms that we have defined “come
from” inner products? We know that a specific norm comes from an inner product
if and only if it satisfies the parallelogram equality. Of the norms on sequence
spaces discussed above, the £2-norm is the only one that satisfies the parallelogram
equality. Indeed, £2 is an inner product space with inner product

if we are considering real-valued functions, and with inner product

(x, )’) — anyn.

n=1

if we are considering complex-valued functions. The reader should check that the
norm arising from this inner product, via Theorem 1.2, is indeed || - ||;. If we
are considering real-valued functions, the linear space C([a, b]) becomes an inner
product space with inner product

b
(f, &) =/ f(x)g(x)dx.

If we are considering complex-valued functions, C([a, b]) becomes an inner
product space with inner product

b
(f, 8) = f F)gdx.

Using Theorem 1.2, one can check that the norm associated with this inner product
is not the supremum norm. The question remains, Does the supremum norm arise
from some inner product? That is, does it satisfy the parallelogram equality? You
will explore the questions raised in this paragraph in the exercises.
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1.3 A Discussion About Dimension

Euclidean space R” is “finite-dimensional.”” A “basis” for R” is given by the
collection of vectors

61:(1’0,05'-'a0)a
e; =(0,1,0,...,0),
63:":(030, 13-'°a0)’

e, =(0,0,0,...,1).
That these vectors form a basis® for R* means
(i) they are linearly independent; that is, if a1, a2, ..., @, € R and
ae; +azex; + -+ age, =0,

then, necessarily, 0y = a; = - = «a,, = 0;
(ii) they span R"; thatis, every vector in R” can be written as a linear combination
of these basis vectors.

More generally, a linear space is n-dimensional if the largest number of lin-
early independent elements is n. If such an n exists, the space is said to be
finite-dimensional.

Some of the linear spaces that we have discussed are infinite-dimensional. This
means that for each positive integer n there exists a linearly independent subset
containing n elements. Another way of saying this is that there is no finite subset
whose linear combinations span the entire space. In the exercises, you are asked
to show that £!, £%°, and C([a, b)) are infinite-dimensional.

Rene-Maurice Fréchet was born on September ~ found employment as a teacher, but for
10, 1878, in Maligny, France (Figure 1.4). a while, his mother took in boarders to
He was the fourth of six children. At the bring the family some income. Through
time of his birth, his father was the director  the family’s boarders, Fréchet became

of a Protestant orphanage. When he wasa interested in foreign languages and longed
young boy, his family moved to Paris, where  to travel. His love of travel lasted for the
his father became the head of a Protestant  remainder of his very long life.

school. The French government secularized Though Fréchet was not financially
the schools, and this left Fréchet's father  privileged, he was very fortunate in his
without a job. Eventually, his father again  schooling. Between the ages of twelve

3This type of basis is called, more formally, a “Hamel basis.” Another notion of basis,
an “‘orthonormal basis” is defined for a Hilbert space. As indicated, this is a different, but
related, concept, and we will discuss orthonormal bases in Chapter 4. In the Banach space
setting, one c¢an discuss “‘Schauder bases.” We will not go into any detail, but a Schauder
basis is detined in the biographical material on Per Enflo.
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FIGURE 1.4. Maurice Fréchet.

and fifteen, one of his school teachers
was Jacques Hadamard (1865—1963;
France). Hadamard was later to become
a distinguished mathematician himself,
but then he was a young school teacher.
Hadamard recognized Fréchet's talents
and spent a great deal of extra time with
him on mathematics. Hadamard was to
have a strong influence over Fréchet's
professional life, and the two maintained a
close relationship until Hadamard's death.

Fréchet attended Ecole Normale
Superieure from 1900 until 1903, after
completing military service. He studied
both mathematics and physics, eventually
choosing to pursue mathematics. The
University of Paris awarded him a Ph.D. in
1906.

Fréchet published many papers, the
first in 1902, while he was still a stu-

dent. His most significant work is his
doctoral dissertation, and this is a true
masterpiece.* On page 97 of [34] the
author asserts that four fundamental
papers were written that resulted in the
“sudden crystallization of all the ideas
and methods which had been slowly
accumulating during the nineteenth
century.” These four papers were Fred-
holm’s 1900 paper on integral equations,
Lebesgue’s 1902 doctoral dissertation on
integration theory, Hilbert's 1906 paper
on spectral theory, and Fréchet’s 1906
doctoral dissertation on metric spaces.’
This reference is significant because
Fréchet is not thought of as being in the
same class as the other three. Though he
made other contributions, most notably
on linear functionals, best approximation
by trigonometric sums, probability, and
statistics, it is his thesis work that we will
focus on here.

The significance of Fréchet's thesis lies
in the factthat it is the first time we see the
specific aim of a general theory of metric
spaces. The great German mathematician
Karl Weierstrass (1815—1897) gave per-
haps the first definition of the “nearness”
of two functions. This occurred about
1879. Weierstrass's definition was used
by the Italian mathematician Vito Volterra
(1860—1940). Fréchet, through Hadamard,
was influenced by Volterra's work. Fréchet
also took as inspiration the work of two
other Italians, Giulio Ascoli (1843~1896)
and Cesare Arzela (1874-1912). These
two had been working with sets whose
elements are functions and were looking
to extend the ideas of Georg Cantor

4In the Introduction we stated that the phrase “functional analysis” was coined by
L évy. Some authors suggest that the true inspiration for this phrase comes from Fréchet's
thesis. However, Fréchet himself credits Lévy (see page 260 of [123]).

SErik Ivar Fradholm (1866—1927) was a Swedish mathematician. You will read more
about his work in Chapter 5. The others you have aiready encountered.



(1845-1918; Russia) from sets of points to
sets consisting of functions.

Fréchet's thesis consists of an introduc-
tion and two further parts. Part | contains
the rudiments of abstract point set topol-
ogy. In particular, this includes many results
on what Fréchet calls “une class (£).” An
E-class was later named a “metric space”
(in 1914 by the German mathematician
Felix Hausdorff, 1868—1942). Fréchet used
the term “écart” for what we now call
the “metric,” and wrote (x, y) in place
of d(x, y). Also in this first part of his
thesis, the ideas of “compactness” and
“completeness” are formulated. These
notions are fundamental to functional
analysis, and you will meet them in the
next chapter.

In Part Il of his thesis Fréchet gives
examples to illustrate the theory found in
Part |. He uses five examples. The first is
Euclidean space R”, as discussed in the
opening paragraph of Section 1 of this
chapter. His second example is C([a, b))
with écart

d(f, g) = sup{If(x) — g(x)l {x € [a, D]},

as we discussed in Section 2. Fréchet's
next example is new to us. He lets £,
denote the setof all sequences and defines
the écart on this set by

&1 Xk — Ykl
d("'y)—gk_!WHXk—yk'

Exercises for Chapter 1

Sections 1.1 and 1.2
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for two elements x = {x1,%,...},y =
(n.¥...) € E. The fourth example of
a metric space consists of a collection of
differentiable complex-valued functions,
and his last example contains elements
that are certain curves in R3. We will not
describe the last two examples.

Fréchet's thesis made a big impact right
away. It would be premature to discuss
the mathematical details of its impact at
this stage of the book. Let us just say that
subsequent work of Fréchet in functional
analysis was closely related to work of
Lebesgue and F. Riesz. In particular, Fréchet
did much work on the function space (2.
He was particularly interested in finding
necessary and sufficient conditions for
a subset of a given metric space to be
compact, and he was able to give such
conditions for subsets of 2. You will read
much more about the work of Lebesgue
and Riesz in later chapters.

After receiving his Ph.D., Fréchet taught
first in a high school and then, for short
periods, at the Universities of Nantes,
Rennes, and Poitiers. From 1914 to 1919
he served in the army, mostly helping with
language interpretation between English
and French in the battlefields. In 1919 he
returned to academic life, in Strasbourg. In
1928 he made his final move, to Paris. He
died in Paris, at the age of ninety-four, on
June 4, 1973.

1.1.1 (a) Verify that || - [|;, || - |2, and || - ||co define norms on R2.
(b) To see that these norms are in fact different, compute the distance
d((1, 1), (2, 3)) (in each of the three norms) between the points (1, 1)

and (2. 3).
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(¢) To see that norms are different, it helps (if it is possible) to visualize
the “balls” in the space. Let

B.(x)={yeV|lx -yl <r}

This is the open ball of radius r centered at x. Of special interest is the
“unit ball,” B;(0) = B;((0, 0)). In R?, with the three different norms,
sketch B;(0) and B3((2, 2)).

1.1.2 Consider the norms || - |1 and || - ||oo on R”.

(a) Prove that

1 2
il = Flxll + Fixlleo

defines a norm on R”.
(b) Sketch the open unit ball in R? with respect to this norm.

1.1.3 Verify that £! and £ are normed linear spaces.

1.1.4 Verify that C([a, b]), with supremum norm, is a normed linear space.

1.1.5 Prove Theorem 1.1.

1.1.6 Prove Theorem 1.2. (Hint: Use the Cauchy—Schwarz inequality to get the
triangle inequality.)

1.1.7 Prove that in any complex inner product space

(v, Aw) = A, w)

for every v, w € V and each A € C.
1.1.8 Consider a normed linear space (V, | - ||). Recall that some normed linear
spaces are inner product spaces, and some are not.

(a) Prove that the parallelogram equality characterizes the inner product
spaces among the normed linear spaces. That is, show that

vl = v/{v, v)
for some inner product (-, -) if and only if
201l + 211001 = llu + vlI* + llu — v]|?

holds for every pairu and vin V.
(b) Is the parallelogram equality satisfied in £!? In £°?

1.1.9 Use the preceding exercise to show that the supremum norm on C([a, b])
cannot come from an inner product.
1.1.10 (a) In C([O, 1]) with supremum norm, compute d( f, g) for f(x) = 1 and
g(x) = x.
(b) Repeat part (a), with the supremum norm replaced by the norm induced
by the inner product

|
(f.8) = /0 f(x)g(x)dx.
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Section 1.3

1.3.1 The basis for R” givenin the text is called the “standard basis.” It is a basis,
but not the only basis, for R*. Give another basis for R, and show that it
is in fact a basis.

1.3.2 Prove that £! is infinite-dimensional. Explain why your proof also shows
that £ is infinite-dimensional.

1.3.3 Prove that C([O, 1]) is infinite-dimensional.



2
The Topology of Metric Spaces

2.1 Open, Closed, and Compact Sets; the Heine~Borel
and Ascoli—Arzela Theorems

Let (M, d) be a metric space. Recall that the r-ball centered at x is the set
B/(x)={y € M [d(x, y) < r}

for any choice of x € M and r > 0. These sets are most often called open
balls, open disks, or open neighborhoods, and they are denoted by the above or by
B(x,r), D,(x), D(x,r), N.(x), N(x, r), among other notations. A point x € M
is a limit point of a set E C M if every open ball B,(x) contains a point y # x,
y € E.If x € F and x is not a limit point of E, then x is an isolated point of
E. E is closed if every limit point of E is in E. A point x is an interior point of
E if there exists an » > 0 such that B,(x) € E. E is open if every point of E
is an interior point. A collection of sets is called a cover of E if E is contained
in the union of the sets in the collection. If each set in a cover of E is open, the
cover is called an open cover of E. If the union of the sets in a subcollection of
the cover still contains E, the subcollection is referred to as a subcover for E. E
is compact if every open cover of E contains a finite subcover. E is sequentially
compact if every sequence of E contains a convergent subsequence. E is dense in
M if every point of M is a limit point of E. The closure of E, denoted by E, is E
together with its limit points. The interior of E, denoted by E° or int(E), is the
set of interior points of E. E is bounded if for each x € E, there exists r > 0 such
that E € B,(x).



2.1 Open, Closed, and Compact Sets 17

You should watch for differences in the literature concerning these definitions.
Some look different but really aren’t, but some are actually different. In particular,
be careful with the limit point definition. For example, Hoffman and Marsden ([89]
page 145) allow that y can equal x. Thus, their limit point of E can bein E. It can
be an isolated point of E. They use accumulation point to refer to our limit point.

We begin with three basic topological results. Their proofs are left as exercises.

Theorem 2.1. A set E in a metric space (M, d) is open if and only if its
complement, EC = M \ E, is closed.

Theorem 2.2.

(@) For any collection {E,} of open sets, | J, E, is open.

(b) For any collection {F,} of closed sets, (), Fy is closed.

(c) For any finite collection {E;}_, of open sets, ()., E;: is open.
(d) For any finite collection {F;}'_, of closed sets, | Ji_, F: is closed.

Theorem 2.3. If E is a compact subset of a metric space, then E is closed.

Of the types of sets defined above, compact sets are particularly interesting. The
idea of a general notion of compactness is to get at the quality possessed by a
closed and bounded interval of R that forces every continuous function to attain
its maximum and minimum on the interval. The notion of compactness is usually
hard for students to use at first. Showing that a given set is not compact can be
straightforward (see Exercise 2.1.10). On the other hand, using the definition to
show that a given set is compact can be quite tricky, since to do so, one must
consider every open cover of the set. Thus, we are interested in characterizing
the compact subsets of our favorite metric spaces. The easiest characterization is
known as the Heine—Borel theorem (Theorem 2.5) which describes the compact
subsets of R"”. You may be familiar with the proof, in at least the case n = 1. The
Heine—Borel theorem gives a very nice characterization of the compact subsets
of R”. Are there any other metric spaces in which the compact subsets can be
characterized so nicely? The Ascoli—Arzela theorem (Theorem 2.6) describes the
compact subsets of C([a, b]). Recall from Fréchet’s biography that he gave another
such characterization (specifically, of the compact subsets of the metric space L2,
which will be defined in Chapter 3). The proofs of the Heine—Borel theorem and
the Ascoli-Arzela theorem both use the next result, which gives an equivalent, and
very useful, condition for compactness.

Theorem 2.4. A subset of a metric space is compact if and only if it is se quentially
compact.

PROOF. Let M be a metric space and E € M be compact. Assume that there
exists a sequence {x,}°2, of E with no convergent subsequence. Then, among the
x,’s, there are infinitely many distinct points. Call them (y,}22,. Let U; be an
open set containing y; yet containing no other y,. Since the set {y,}., has no
limit points, it is closed, and hence M \ (y,}%, is open. Then the U,’s together

with M \ (v,}2, form an open cover of E (in fact of M). Because E is compact,

n-|
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this cover has a finite subcover, say
Ula sy UN'.- M \ {)’n},c:ii

Then Ui, ..., Uy is a finite subcover of the set {y,}>>,. This contradicts the
construction of the U,’s, and thus we conclude that in fact, E 1s sequentially
compact.

To show the other implication we assume that E is sequentially compact and
that {U,} is an arbitrary open cover of E. We aim to show that {{/,} contains a
finite subcover.

First, suppose that for each positive integer n we can choose a y, € E such
that B:(y,) is not contained in any U,. By hypothesis, {y,}>2; has a convergent
subseq"uence, say z, — z € E. Note that z € U,, for some U,,. Choose € > 0
such that B ¢(z) € Uy,. Choose N large enough so that d(z,,2z) < 5 forn > N,
and =. Then B (z) C U,,, a contradiction. Thus, there exlsts r > 0 such
that for every y € E, 'B +(y) € U, for some U,.

Second, suppose that there exists € > 0 such that E cannot be covered by finitely
many e-balls. Construct a sequence {y,}>°, inductively as follows: Let y; be any
element of E; choose y, € E\ Bc(y1), y3 € E\[Be(y1)UB(y3)], and so on. Then
d(Yn, ym) > € for all n and m. Thus {y,}>° | has no convergent subsequence. This
contradicts that E is sequentially compact. Thus, for each € > 0 we can cover E
with finitely many e-balls.

Finally, let » > O be as above. We know that we can cover E with finitely many

r-balls. Let xi, ..., x, denote their centers. Then each B,(x;) is contained in a
Uy, for some U,,. The collection U, , . . ., U,, 1s the desired finite subcover of the
U,’s. This completes the proof. O

In the above proof we proved that if A € B C M, where M is any metric space,
A is closed, and B is compact, then A is compact. We point this out because this
result is useful on its own.

If a set has the property that for each ¢ > 0 we can cover E with a finite
number of e-balls, then the set is said to be totally bounded. This property appeared
in the proof of Theorem 2.4, and it was shown that any compact (equivalently,
sequentially compact) set is totally bounded. It is straightforward to show that a
totally bounded set is always bounded but that the converse is not so (see Exercise
2.1.12).

The next theorem is named in honor of Emile Borel (1871-1956; France) and
Eduard Heine (1821-1881; Germany).

Theorem 2.5 (The Heine-Borel Theorem). A subset E of R" is compact if and
only if it is closed and bounded.

ProOF. Let E C R" be compact. E is closed by Theorem 2.3, and £ is bounded
by the remarks in the paragraph preceding the statement of this theorem.

To prove the converse, we assume that E is closed and bounded, show that E
is sequentially compact, and apply Theorem 2.4. Let (x; )i, be a sequence in E.
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Each x; is an n-tuple of real numbers, and we can display them in an array:

1 2 3 n
X X1 X X
i 2 3 n
X, X5 X3 x5
1 2 3 n
X3 X3 X3 X3

Since E is bounded, every number appearing in this array is smaller than some
fixed real number. Thus, each column is a bounded sequence of real numbers, and
hence contains a convergent subsequence. In particular, the first column, {x; }2°
contains a convergent subsequence. Denote it by {x,fj }3=1. Then the corresponding

subsequence {x,fj }72, of the second column contains a convergent subsequence.
Continue, producing finally a convergent subsequence of the last column. To sim-
plify notation, denote this subsequence by {xgj}j?‘;l. Then {x,ij }32, converges for
eachl =1, ..., n. Therefore, {x; }32, is a convergent subsequence of {x;}72,.
Since E is assumed closed, its limit point is in E. This completes the proof that E
is sequentially compact, and hence the proof of the theorem. O

Let E C C([a, b]). The set E is equicontinuous at x € [a, b] if for any e > 0
there exists ad > Osuchthaty € [a, b] and |x — y| < § imply | f(x) — f(y)] <€
forall f € E. The set E is equicontinuous if it is equicontinuous at each x € [a, b].

In this definition, C([a, b]) denotes all real-valued continuous functions defined
on the compact interval [a, b]. Let us denote this, temporarily, by C([a, b], R). We
can replace [a, b] by any subset of any arbitrary metric space and R by any normed
linear space. That is, if (M, d) is a metric space, A € M, and (V, | -||) is a normed
space, then C(A; V) is a linear space, and definitions such as “equicontinuous” can
be extended to this setting. Also, theorems, like the Ascoli—-Arzela theorem can
be generalized with due caution (for example, the Ascoli—Arzela theorem requires
A to be compact, as [a, b] was). If the set V needs to be emphasized, we will
continue to write C(A; V). Otherwise, we will write this collection of functions
in abbreviated form C(A). You may wonder why we cannot replace the normed
space V by simply a metric space; we cannot do this because we need to be able
to add the elements of V.

Notice that the definition of “equicontinuous” is similar to that of a set of func-
tions being uniformly continuous: § is chosen independent of x, (as it was in
uniform continuity) and now it is also independent of f.

We are now ready to give acharacterization of the compact subsets of C([a, b]).
This theorem is referred to as the Ascoli—Arzela theorem, the Arzela—Ascoli the-
orem, or Ascoli’s theorem. Giulio Ascoli (1843-1896; Italy) published a proof in
1883. Cesare Arzela (1874-1912; Italy) re-proved the result independently, and
published his proof in 18935, giving credit to Ascoli. There are many generalizations
of this theorem, and these constitute a class of results known as “Ascoli theorems.”
You might also, now, wonder about the naming of the Heine—Borel theorem. The
discovery of this theorem was gradual, and more complicated. We mention that
Heine's proof was given in 1872, the year after Borel was bomn, and recommend
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that you see, for example, page 953 of [76] for a more complete rendering of the
story of the theorem’s development.

Theorem 2.6 (The Ascoli-Arzela Theorem). Let E C C([a, b];R). Then E is
compact if and only if E is closed, bounded, and equicontinuous.

PrROOF. Assume that E is closed, bounded, and equicontinuous. We aim to show
that £ is compact. It suffices to show, by Theorem 2.4, that E is sequentially
compact. To this end, let { f,} be a sequence in E. We aim to find a convergent
subsequence.

For any 6 > 0, the collection of é-balls {Bs(x) : a < x < b} covers [a, b}, and
since this interval is compact (by the Heine—Borel theorem), there exists a finite
subcover, say

Bs(x1), ..., Bs(xp).

LetXs = {x1,...,x,}and X = | J,, X . Sinceeach X is finite, X is countable.
Let X = {y1, y2, - ..} be an enumeration of X.

Consider the sequence of real numbers {f,(y1)}52,. Because E is bounded,
there exists a number M such that | f(x)| < M forall f € E and all x € [a, b].
In particular, the sequence { f,(y1)}o, is in the interval [—M, M]. Since this in-
terval is compact, it is sequentially compact, and hence { f,,(y1)} has a convergent
subsequence. Denote this subsequence by '

), fizin), fis(d, ...

Similarly, { f1.(y2)}>2, has a convergent subsequence, which we will denote by

f21(32), f2202), f302), - ..

Continuing, the sequence { f,,(y3)}o—, has a convergent subsequence, which we
will denote by

F31003), f32(¥3), f33(33), .« - - -

Continue this process. Set g, = f,». We have

S fiz fis
faa fn =
fi1 frz [

where the sequence given in any particular row is a subsequence of the row right
above it. By construction,

lim  fin(Ym)
= 00

exists for each specified value of k and m. Thus, the sequence of functions (g,)
converges at each point of X,



2.1 Open, Closed, and Compact Sets 21

The proof of this direction will be complete when we show that {g,}°°, con-
verges at each point of [a, b] and that this convergence is uniform. To do this,
lete > 0 and let § be as in the definition of equicontinuity. Let X be as before.
Since each of the sequences {gi(x1)};—;> {8k(¥2)}5ey: - - - {8k (xn) )32, converges,
there exist N;’s such that

18n(xj) — gm(xj)] < -;-

whenevern, m > N;. Let N = max{Ni, ..., Ny}. Let x € [a, b] be arbitrary and
x;j € X; be such that [x — x;| < é. By the definition of equicontinuity,

18n(x) — ga(x,)] < -;-

for all n. Therefore,

182 (x) — gm(x)| < |8n(x) — &n(X;) + 180 (x;) — m(xXj)| + |8m(x;) — &m(x)]
€E € €
DERERE I
whenever n,m > N and x € [a, b). This shows that d(g,, g.) < € for all
n, m > N and hence that the sequence {g,}°2 , is uniformly convergent. Since E
was assumed closed, the limit of this sequence also lies in E. This proves that E
is sequentially compact.

For the other direction, assume that E is compact. Then E is closed (by Theorem
2.3) and bounded, and in fact, E is totally bounded (by the remarks preceding the
Heine-Borel theorem). It remains to be shown that £ is equicontinuous. Lete > 0.
Because E is totally bounded, we can cover E with §-balls Be( f1), -, B (fn).
For x € [a,b] choose § > 0 such that |f;(x) — fi(¥)| < € holds for all
y€Bs(x)=(x—68,x+68)andalli = 1,...,n. Lety € Bs(x)and f € E
be arbitrary. Then there exists an i with f € B:(f;) and

fx) = fODI =1 fx) = fiG) + 1 filx) = i+ | fi(y) — fFOD)

€ € €
<3T3T3TE
This shows that E is equicontinuous at x; since x was arbitrary in [a, b}, the proof
is complete. O

We end this section by proving that the closed unit ball of C([O, 1}) is closed
and bounded, but is not compact. We do this by showing that the closed unit ball
is not equicontinuous. It is also possible to prove that it is not compact by showing
that it is not sequentially compact. This altemative proof is left as an exercise
(Exercise 2.1.13(c)). Let D denote the closed unit ball of C ([0, 1]). It is clear that
D is bounded. If fj is a limit point of D, then for each positive integer n there
exists and f, € D withd(f, f,) < 1. Then

n

1
| foll =d(fo,0) < d(fo. fn) +d(fn.0) < -+ 1.

Since this inequality holds for all n, || foll < 1. This shows that D is closed.
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Finally, consider { f,},2, < D, where f,(x) = x" for eachn.If D were compaclt,

then D would be equicontinuous and hence so would be this subsetof D.Lete = 3.
By the definition of equicontinuity there exists a § > 0 such that |[x — y| < é and
x,y € [0, 1] imply that d(x", y") < 3 for every n. In particular, |1 — y"| < 1 for
all n whenever |1 — y| < é. Since y € [0, 1], y* = 0 as n — oo. If we choose n
large enough so that y* < 3, we do not have |1 — y"| < 1. We have thus shown
that D cannot be compact.

In Exercise 2.1.13 you will explore the compactness of unit balls for a few
other spaces. In fact, the compactness of the closed unit ball characterizes finite-
dimensional normed linear spaces. This result was proved by Frigyes Riesz (1880-

1956; Austria-Hungary, now Hungary).!

2.2 Separability

A metric space is separable if it contains a countable dense subset.

ExAaMPLE 1. [, endowed with the Euclidean metric, is separable because QQ is a
countable set and is dense in R. Likewise, R" is separable because " is a countable
set and is dense in R”.

ExampLE 2. C([a, b)) is separable. This follows from the Weierstrass approxi-
mation theorem (Theorem 6.1), which states that

P(la, b]) = {f € C((a, b]) | f is a polynomial with real coefficients}
is dense in C([a, b]). This result is not trivial. Next, let
Q([a, b]) = {f € C([a, b)) | f is a polynomial with rational coefficients}.
One can show that

(i) Q([a, b)) is countable, and
(ii) Q([a, b)) is dense in P([a, b)).

Observations (i) and (ii) together imply that C([a, b]) is separable.

In practical terms, the fact that (Q dense in R means that, for example, we can
approximate m to any desired degree of accuracy. That Q([a, b]) is dense in
C([a, b]) means that we can always use a polynomial with rational coefficients
to approximate, as closely as desired, a given continuous function on [a, b].

ExaMPLE 3. R with the discrete metric is not separable. To see this, suppose
that {xx}?2, is a countable dense subset and that x € R is not an element of this
sequence. Then d(x, xz) = 1 for each &, and so B;(x) cannot contain an element
of the sequence. This contradicts the hypothesis that the sequence is dense.

'Frigyes Riesz's brother Marcel was also a distinguished mathematician.
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In Exercise 1.1.9 you were asked to prove that the supremum norm on C([a, b))
does not come from an inner product. Recall, however, that we can endow this
linear space with an inner product via

b
(f. 8) = f Fx)e(x)dx.

b
1 fllz = \/ f \f ()P,

I flloo = sup{| f(x)| |x € [a, b]}.

The induced norm is then

and not

This might suggest that the supremum norm is, in some sense, less desirable than
the norm || - || on C([a, b]). There are advantages and disadvantages to each
norm. The supremum norm does have the very nice property that it is “complete”
(Theorem 2.7) on C([a, b]), while the norm || - || on C([a, b]) is not complete.

Recall that a sequence {x,}°"; of real numbers is said to be Cauchy if given any
€ > 0 there exists an integer N > 0 such that |x, — x,,| < € whenevern,m > N.
More generally, a sequence {x,}’° , in a metric space is Cauchy if given any € > 0
there exists an integer N > O such that d(x,, x,,) < € whenevern, m > N.

It is easily seen that any convergent sequence is Cauchy: Assume that {x,}5,
converges and let € > 0. There is thus an x € M and a positive integer N such
that d(x,, x) < % for alln > N. Then

d(xp, xXpm) <d(xp, x)+d(x, x,) < % + -62- =€
foralln,m > N.

You may remember that in R the converse of this statement is also true. There
are metric spaces, however, in which this converse does not hold (see Exercise
2.3.6). A subset A of a metric space is called complete if every Cauchy sequence
in A converges to a point of A. If a metic space is complete in itself, the space is
called a complete metric space. A complete normed linear space is called a Banach
space. A complete inner product space is called a Hilbert space.

It is not clear who coined the phrase “Banach space.” Banach himself referred
to these spaces as “espaces-B.” However, shortly after Banach published his mon-
umental book [11] in 1932, the terminology became standard. Banach’s book was
a comprehensive account of all known results at the time on normed linear spaces.
John von Neumann is credited with originating, in the late 1920s, the current us-
age of “Hilbert space.” However, perhaps as early as 1904—1905 Hilbert’s students
called €2 “Hilbert’s space” (see [117]).

Theorem 2.7. C(la, b); R) with the supremum norm is complete.
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Proor. Let { f,}>2, be a Cauchy sequence in C([a, b]; R). This means that given
any € > 0O there exists an integer N > 0 such that || f, — fimlleo < % whenever
n,m > N. That is, given any € > 0 there exists an integer N > 0 such that
| fn(x) = fm(x)| < 5 foralln,m > N and eachx € [a, b]. Then { fi(x)}(2, is a
Cauchy sequence of real numbers for each x € [a, b]. Thus { fi(x)};=, converges
to some real number for each x; we will denote this value by f(x). This defines a
new function f suchthat f, — f pointwise. It remains to be shown that { f,}°2 |
converges uniformly to this f, and that f is continuous. Since the uniform limit
of a sequence of continuous functions is again continuous, it remains to show that
{fn)}2, converges uniformly to f. Let € > 0. Then there exists an N such that
| fm(x) — fa(x)| < 5 for every choice of x € [a, b] andn, m > N.If m > N and
x € [a, b], then

fr) € (fnl6) = =, fn(x)+ 2), forall i = N.

Therefore,

€ €

@) € [0 =2, f@ + 2],

2 2

and hence
€
|f(x) — fm(X)| < 5 <€

Since x € [a, b] was arbitrary, we are done. O

It turns out that [a, b] in the statement of Theorem 2.7 can be replaced by any
compact subset of any topological space, and R can be replaced by any complete
metric space.

Two of the names most commonly associated with the development of function
and sequence spaces are Stefan Banach and David Hilbert. It would be difficult to
overestimate the influence that their work has had in the field.

David Hilhert (Figures 2.1 and 2.2) was born on
January 23, 1862, in Kdnigsberg, Prussia
(now Kaliningrad, Russia). He was from a
family that kept good records, and there is
much known about his ancestry. The book
[104] is highly recommended. Hilbert's
father was a judge at the time of Hilbert's
birth, and his mother is considered to
have had a strong intellectual leaning.
David Hilbert was the first of two children.
Hilbert did not start school until the age of
eight (two years late by standards of the
time). It is not clear why he did not, but

it is probable that he was at first “home

schooled” by his mother. His school career
was good, but there seems to be nothing
outstanding about it.

In 1880 Hilbert enrolled at the Uni-
versity of Konigsberg. He was at once
a devoted and hardworking student of
mathematics. During his university years
he studied mostly at Konigsberg, but
also at Heidelberg, and received his
Ph.D. from Ktnigsberg in 1885. Hilbert's
entire life was marked by stability. This
stability existed in his family life, and
in his professional life. He remained in
K6nigsberg, working at the University until
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FIGURE 2.1. A 1912 portrait of Hilbert,
sold as part of a group of postcards of
Gottingen professors.

1895, when he moved to the University of
Gottingen. He spent the rest of his life in
Gattingen.

Hilbert approached mathematics in
a somewhat unusual way. He would
completely devote himself to one area for
a rather intense period, and then turn,
again with intensity, to another area.
Often, his choice of topics seemed to be
in very different areas of mathematics. He
also spent a period working in physics. He
was avery “public” worker, always sharing
ideas with others and often working on
collaborative efforts. He had sixty-nine
doctoral students.

The first area that Hilbert worked in
was invariant theory. He pursued this area
during, roughly, the period 1885-1893. In
fact, he proved the most important open
problem at the time: Gordan’s problem. His
solution contained a very early example of
an existence, as opposed to a constructive,
proof. At the time, such a proof was viewed
with suspicion and not accepted by many
mathematicians. Ultimately, Hilbert also

FIGURE 2.2. Hilbertin 1937.

provided a constructive proof to Gordan's
problem.

In 1893 he turned his attention to
number theory. He worked in this area
for about five years. During this time
he gave proofs of the transcendence of
st and e; both had earlier been proved
transcendental, but Hilbert's proofs offered
considerable improvements. In 1897 his
Zahlbericht was published. The goal of
this approximately 400 page book was to
summarize the current state of number
theory. Not only did it achieve that goal,
but it contained ideas that would lead to
the development of new mathematics,
including the entire not-yet-born field of
homological algebra. After laying a solid
foundation that others would subsequently
build on, Hilbert turned his attention away
from number theory.

During this same time he became
interested in the so-called Dirichlet
principle. This principle gave, loosely, a
method for solving certain boundary value
problems. It had become well known when
Riemann used it repeatedly in his 1851
doctoral dissertation. The trouble was
that this principle had not been proved to
work in all cases. Weierstrass objected to
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Riemann’s use of this principle because
he suspected that it was not always
applicable. Weierstrass was correctly
skeptical, and he was able to prove that
it does not always work. However, in
1899 Hilbert showed that it does work if
certain conditions are satisfied. Hilbert's
results salvaged Riemann’s work but,
unfortunately, only after Riemann’s death.
Every four years mathematicians
meet at the International Congress of
Mathematicians. This is a huge gathering,
and since 1936 the Fields Medals have
been awarded at it. Hilbert was invited
to give an address at the second Inter-
national Congress of Mathematicians,
held in Paris in the summer of 1900.
The speech that he gave is perhaps the
most famous mathematical speech ever
given.Z Hilbert had a few ideas of what
to speak on. In consultation with his good
friend Hermann Minkowski (1864—1901;
Russia)® he decided to speak on the future
of mathematics. The planned speech
consisted of a list of 23 problems on
which mathematicians should focus their
energies over the next century. As it turned
out, he had planned too much to say
and ended up, after some introductory
remarks, discussing 10 of his problems. A
statement of the problems, and updates
of progress on their solutions, can be
found in various articles and texts (see,
for example, [52]) and web sites (including
through links found at the web site listed
in the Introduction). These problems are
known by their numbers. At the 1900
Congress, Hilbert discussed problems 1,

2,6,7,8,13,16,19, 21, and 22. The first
three of these are about the foundations of
mathematics, the next four about algebraic
topics, and the last three about function
theory. The list includes famous problems
such as the continuum hypothesis (1) and
Riemann'’s hypothesis about the location of
the zeros of the zeta function (8). The first
problem to be solved was the third one,
and its solution appeared already in 1900.
Others have been solved in full, some
partially, and others remain unsolved.
You will read a bit about Hilbert's fifth
problem in Chapter 5, when we discuss
the contemporary mathematician Per Enflo
(born 1944; Sweden).

The 23 problems covered a broad
range of the mathematical topics that
were current at the time. However, there
are omissions. In particular, it seems
odd that there are really no questions
having to do with what was soon to be
called “functional analysis.” At the time
of Hilbert's speech, ideas of functional
analysis had been floating around for about
a decade. Very soon after the Congress,
Hilbert himself was to become deeply
involved in the birth of the field.

It is the years 1902-1912 that are of
most interest to us, for these are the
years that Hilbert devoted to integral
equations. It is out of this work that
functional analysis was born. His interest
in this subject was sparked by a paper by
Fredholm on integral equations. In this
paper, Hilbert recognized a link being made
between integral equations and what
we now call linear algebra. Fredholm’s

“This speech has certainly had an impact on twentieth-century mathematics. An ar-
gument can be made that in addition to its positive impact, it had some negative influence
as well. For a discussion of some of the negative effect it has had, see the recent article

[52].

3The friendship and collaboration between Hilbert and Minkowski is quite interesting,
but we do not have the space to go into it here.
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efforts were related to work on oscillating
systems, work that originated with Fourier.
We will not discuss Fourier’s work at all
here; you will read much more about it
later in the text. Simply put, one can take a
problem of finding solutions to an integral
equation and rephrase it as a problem

of finding “eigenfunctions” for a given
“linear operator.” These “eigenfunctions”
are elements of some Hilbert space. By the
end of this course you should understand
very clearly what is meant by these last
sentences. Let us just say that realizing
this connection was brilliant, and it led
to the opening up of an entire field of
mathematics that has been more fruitful
than could possibly have been imagined at
its birth.

From 1910 to 1922 Hilbert worked on
problems of physics. In particular, he was
working on field equations for a general
theory of relativity. Though his ideas
foresaw some of the famous ideas that
were to come later, to others, the work
of Albert Einstein (1879—-1955; Germany)
ultimately proved more successful than
Hilbert's. See [104] for more on this work,
and the Einstein—Hilbert priority dispute.

Around the end of this period the new
“quantum theory” was also being devel-
oped. Though Hilbert did not directly work
in this field, his earlier work on integral
equations, equations involving infinitely
many variables, and eigenfunctions turned
out to be very useful for this new area. In
Hilbert's own words [104], “I developed
my theory of infinitely many variables
from purely mathematical interests, and
even called it “spectral analysis” without
any presentiment that it would later find
an application to the actual spectrum of
physics.”

During the periods that we have
omitted, Hilbert worked in geometry and
on the foundations of mathematics. He

made significant contributions to these
fields, but we will not discuss them.

During Hilbert's time there, Géttingen
was a world center for mathematics and
mathematical physics. Carl Gauss, Peter
Dirichlet, and Bernhard Riemann had
all worked there. When Hilbert arrived,
much activity was centered around Felix
Klein (1849-1925; Prussia, now Germany).
Klein drew students from all over the
world, particularly from the United States.
The University at Géttingen continued to
flourish, and it is amazing to see the list of
people who spent substantial amounts of
time there during Hilbert's tenure; this list
includes, but is not limited to, Otto Blumen-
thal, Harald Bohr, Max Born, Constantin
Carathéodory, Richard Courant, Werner
Heisenberg, Ernst Hellinger, Edmund Lan-
dau, Hermann Minkowski, Emmy Noether,
Carl Runge, Erhard Schmidt, Otto Toeplitz,
Hermann Weyl, and Ernst Zermelo.

The dispersal of this group is a sad story.
In 1930 Hilbert took mandatory retirement.
During the time that the Gdttingen center
was forming, it was difficult for certain
individuals to get jobs. This included Jews
and women. Hilbert was very open about
these matters, and held no prejudices. He
gathered around him the people that he
wanted to work with independent of their
race, sex, or religious beliefs, in some
cases, fighting vigorously to be allowed
to invite an individual to Géttingen. As
a result, the University of Géttingen
was an obvious target for “cleansing”
by the Nazis. By 1933, Géttingen was
essentially emptied of its mathematicians
and physicists. Many of these individuals
fled to the United States, and it is a story
of great historical irony that American
science benefited so much from the Nazi
program.

David Hilbert died in Gdttingen on
February 14, 1943,
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Stefan Banach was born thirty years after
Hilbert, on March 30, 1892, in Cracow,
Poland (Figure 2.3). In contrast to Hilbert,
there is not much known about Banach’s
parents, nor about his earliest years. It is
known that his father was a civil servant,
and that his mother gave him up on April
3, 1892. Apparently, his early childhood
was spent with his paternal grandmother.
Banach lacked a “traditional” academic
education, attended university irregularly,
eventually passing his half-diploma
exams {equivalent to first and second
year university) in 1914 at the Lvov
Technical University. Without the privilege
afforded by a more traditional education,
Banach did not proceed to an academic
post in the usual fashion. Instead, he
was “discovered” by another famous
Polish mathematician, Hugo Steinhaus.
The story of Steinhaus's discovery of
Banach is amusing, and is told in [73]
and [79)]. Banach’s talents were then
quickly recognized by the larger Polish
mathematical community, and he shortly
thereafter completed his Ph.D. at the Jan
Kazimierz University. In 1922 he became
a professor at the University of Lvov. Due
to the strengths of Banach and Steinhaus,
Lvov became a very important international
center for functional analysis at that time.
Banach was prolific over the next
decade, and he became the world’s leading
authority on functional analysis. Several
important theorems bear his name. We
will study Banach’s contraction mapping
principle and the Banach—Steinhaus and
Hahn—Banach theorems (all in Chapter 6).
Most importantly, he systematized the
theory of functional analysis. His efforts
neatly pulled together isolated results
due, primarily, to Fredholm, Hilbert, and
Volterra on integral equations. Banach's

| FIGURE 2.3. tefan Bnach.

most important and lasting contributions
are his monumental book Théorie des
Opérations Linéaires, published in 1932,
and his founding of the journal Studia
Mathematicain 1929. This internationally
respected journal was started by Banach
and Steinhaus and was, and is, devoted
to publishing articles having to do with
functional analysis. In his book, many of
the notions of modern functional analysis
were introduced, including the axioms for
normed linear spaces and the idea of a
dual space.

Although functional analysis was
Banach’s main area, he also made contri-
butions to other fields. Indeed, the famous
Banach-Tarski paradox is a startling result
about set theory [12)]. Banach was also
very active in the “Scottish Café” group;
recommend reading more about this café,
and the mathematics that went on there.

Although he was born decades after
Hilbert, the end of Banach’s life was also
marked by the terror of the Nazi regime.
Banach's story 1s more tragic Duning
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World War I, Lvov was first occupied by~ time during the German occupation as

the Soviets, and then by the Germans. a lice feeder in an institute producing
The Soviets deported most of the Poles vaccines against typhoid. When the

from Lvov, but Banach was very much Soviets returned to Lvov in 1944, Banach
repected by them, and he managed to returned to mathematics, accepting a chair
stay in Lvov. When the Germans took at the Jagiellonian University in Cracow

control of the city in 1941 matters changed  (one of Europe’s oldest universities,
dramatically for Banach. Most professors ~ founded in 1364, and alma mater to
were arrested and sent to concentration Copernicus). However, Banach’s health
camps. Though Banach survived the Nazi  was by now poor, and he died on August
order to eliminate the elite, he suffered 31, 1945,

greatly during the coming years. He spent

Exercises for Chapter 2

Section 2.1

2.1.1 Prove Theorem 2.1.

2.1.2 Prove Theorem 2.2.

2.1.3 Give examples to show that the word finite cannot be omitted in the last

two parts of Theorem 2.2.

2.1.4 Prove Theorem 2.3. Remember that your proof should be in a general

metric space.

2.1.5 (a) Consider R with the Euclidean metric. Is (0, 1) open, closed, neither,
or both? Explain. (It may surprise you to leam that a set can be neither
open nor closed, or it can be both (a clopen set). In the rest of this
exercise set you will meet examples of such sets.)

(b) Consider R? with the Euclidean metric. Is (0, 1) = {(x, 0) | 0<x < 1}
open, closed, neither, or both? Explain.

2.1.6 Isittruethatint(AUB) = int(A)Uint(B)? Prove or give a counterexample.

What if union is replaced by intersection?
2.1.7 Let M be any set with the discrete metric. What are the open sets?
2.1.8 Consider R with the Euclidean metric.

(a) Find the set of limit points of {1 |n =1,2,3,...}.
(b) Find the set of limit points of Q.

2.1.9 Give an example of a closed and bounded set in a metric space that is not
compact.
2.1.10 Consider R with the Euclidean metric. Give an open cover of (—10, 10]
that has no finite subcover.
2.1.11 This exercise is about the famous set due to Georg Cantor. If you do not
know a definition of the Cantor set, look it up in a real analysis text or ask
your professor for a reference.
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(a) Is the Cantor set compact? Explain.
(b) What is the interior of the Cantor set? Explain.

2.1.12 Prove that a totally bounded set is necessarily bounded. Then, using the
discrete metric on any set of your choice, show that a bounded set need
not be totally bounded.

2.1.13 (a) Show that the closed unit ball in C([0, 1}) is not compact by showing

that it is not sequentially compact. That is, construct a sequence of
functions with norm less than or equal to one that does not have a
convergent subsequence.
(b) Show that the closed unit ball in £! (respectively £°) is not compact.
(c¢) Show that the closed unit ball in any infinite-dimensional space is not
compact.

2.1.14 Show that if M is a metric space, A C M iscompact,and U C M is open,
then A \ U is compact.

'2.1.15 Consider metric spaces M, and M,.

(@) Prove that a function f : M; — M; is continuous if and only if the
inverse image of every open set in M; is open in M.

(b) Assume that A C M is compact and that f : M — R is continuous.
Show that f(A) is a bounded subset of R.

Section 2.2

2.2.1 Complete the proof outlined in Example 2 to show that C([a, b]) is
separable.

2.2.2 Is ¢! separable? Prove your assertion.

2.2.3 Is £%° separable? Prove your assertion.

Section 2.3

2.3.1 Prove that in a metric space every Cauchy sequence is bounded.
2.3.2 Let || - || and || - || denote two norms defined on the same linear space X.
Suppose that there exist constants a > 0 and b > 0 such that

allx|l < llxll < bllxll (2.1)

for each x € X. Show that (X, | - ||) is complete if and only if (X, || - ||) is
complete. If two norms satisfy (2.1) they are called equivalent norms.
2.3.3 (a) OnR", show that the three norms || - ||1, || : [2, and || - || o are equivalent.
(b) Prove thatin a finite-dimensional linear space all norms are equivalent.
You will notice that (a) follows from (b); still, please do (a) first. It is
instructive.
2.3.4 Let M be a set with the discrete metric. Is M complete? Explain.
2.3.5 Define

b
ne [ ool
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on C([a, b]). Show that this does, indeed, define a norm. Does this norm
come from an inner product? Is (C([a, b)), || - |1) a Banach space?

2.3.6 Show that (C([a, b)), || - ||2) is not complete.

2.3.7 Prove that £! is complete.

2.3.8 Prove that £*° is complete.
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Measure and Integration

The foundations of integration theory date to the classical Greek period. The most
notable contribution from that time is the “method of exhaustion” due to Eudoxos
(ca. 408-355 B.C.E.; Asia Minor, now Turkey). Over two thousand years later, Au-
gustin Cauchy stressed the importance of defining an integral as a limit of sums.
One’s first encounter with a theory of the integral is usually with a variation on
Cauchy’s definition given by Georg Friedrich Bemhard Riemann (1826-1866;
Hanover, now Germany). Though the Riemann integral is attractive for many rea-
sons and is an appropriate integral to learn first, it does have deficiencies. For one,
the class of Riemann integrable functions is too small for many purposes. Henri
Lebesgue gave, around 1900, another approach to integration. In addition to the
integrals of Riemann and Lebesgue, there are yet other integrals, and debate is
alive about which one is the best. Arguably, there is no one best integral. Dif-
ferent integrals work for different types of problems. It can be said, however, that
Lebesgue’s ideas have been extremely successful, and that the Lebesgue integrable
functions are the “right” ones for many functional analysts and probabilists. It is
no coincidence that the rapid development of functional analysis coincided with
the emergence of Lebesgue’s work.

As you will discover in this chapter, Lebesgue’s ideas on integration are inter-
twined with his notion of measure. It was this idea — of using measure theory as a
platform for integration — that marked a departure from what had been done pre-
viously. Lebesgue’s measure theory and application to integration theory appear in
his doctoral thesis [80]. This thesis is considered one of the greatest mathematical
achievements of the twentieth century.

The sole reason that this material on measure and integration is included in this
book is because of the important role it plays in functional analysis. Frigyes Riesz
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was familiar with Lebesgue’s work, and also with David Hilbert’s work on integral
equations and Maurice Fréchet’s work on abstract function spaces. He combined
these elements brilliantly, developing theories now considered basic to the field of
functional analysis. Riesz deserves much credit for recognizing the importance of
Lebesgue’s ideas and drawing attention to them. Riesz’s work will be introduced in
the last section of this chapter, and further explored in the next chapter, culminating
with the celebrated Riesz—Fischer theorem.

We start our study of measure by considering some problems from probability.
Probability theory had, in some sense, been in the mathematical world since the
mid-seventeenth century. However, it wasn’t until the 1930s, when Andrei Kol-
mogorov (1903-1987; Russia) laid the foundation for the theory using Lebesgue’s
measure theory, that probability was truly viewed as a branch of pure mathemat-
ics. It is therefore historically inaccurate to use probability to motivate measure
theory. Nonetheless, the applications of measure theory to probability theory are
beautiful, and they provide very good source of inspiration for students about to
embark on their first journey into the rather technical field of measure theory.

3.1 Probability Theory as Motivation

In this section we give an informal introduction to Lebesgue’s theory of measure,
using an example from probability as inspiration. The ideas for the presentation
of this material come from [1]. Consider a sequence of coin tosses of a fair coin.
We represent such a sequence by, for example,

THHTTTHTHTT. ... 3.1
Let
s, = the number of heads in » tosses.

The law oflarge numbers asserts, in some sense or other, that the ratio >* approaches

1 as n gets larger. The goal of this section is to rephrase this law in measure-

theoretic language, thus indicating that measure theory provides a “framework” for
probability. Although measure theory did not arise because of probability theorists
“looking for a language,” one could argue that probability theory helped to ensure
measure theory’s importance as a branch of pure mathematics worthy of research
efforts. We will let this discussion of very basic probability theory serve as a
source of motivation for learning about measure theory, and not for continuing the
discussion about probability theory. A further investigation of probability theory
is a worthy endeavor, but it would take us too far afield to do it here.

The law of large numbers was first stated in the seventeenth century by James
(=Jakob=Jacques) Bernoulli (1654—-170S5; Switzerland). In his honor a sequence,
like (3.1) of independent trials with two possible outcomes is called a Bernoulli se-
yuence. Let B denote the collection of all Bernoulli sequences. This is the so-called

sample space from probability theory, and is often denoted by €2 in that context.
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We note that B is uncountable. This can be shown using a Cantor diagonalization
argument. An alternative, and more useful, proof proceeds by showing that all but
a countable number of the elements of B can be put in to one-to-one correspon-
dence with the interval (0, 1]. Specifically, let By denote the set of Bernoulli trials
that are constantly T after a while. Then By is countable (left as an exercise), and
so B\ Br is still uncountable if B is. The reader is asked to write out the details
of both proofs that B is uncountable in Exercises 3.1.1 and 3.1.2. To a Bernoulli
sequence associate the real number w whose binary expansionis w = .ajazas . . .,
where a; = 1 if the ith toss in the sequence is a head, and q; = 0 if the ith toss
in the sequence is a tail. In the case that w has two binary expansions, exactly one
will be nonterminating, and we use this one. Thus,

o0
a;

w = par
= 2
This allows us to identify subsets E of B (“events”) with subsets Bg of (0, 1].

In the general theory of probability, the sample space €2 can be any set. If
(2 is finite or countably infinite, §2 is called a discrete probability space, and
the probability theory is relatively swraightforward. However, if €2 is uncountably
infinite, as B is, then the sets B can be quite complicated. It is for determining
the “size” of these sets Bg that we require measure theory.

Heuristically, a measure p on a space €2 should be a nonnegative function defined
on certain subsets of 2 (hereafter referred to as measurable sets). For a measurable
set A, 14(A) denotes the measure of A. As a guiding principle of sorts, we require
that

w(Jar) = 3 uan
i=l

i=1

for every finite collection {A;}7_, of measurable sets satisfying A; N A; = @
(i # J).

We will begin our study of abswact measures with a specific example of a
measure: Lebesgue measure, often denoted by p; or m, on certain subsets of
2 = R. We will require that m(/) = b — a if I is any one of the four intervals
(a, b), (a, b}, [a, b), and [a, b]. It follows from this that each finite subset of R
has Lebesgue measure zero. Every countable set will be seen to have Lebesgue
measure zero, and we will see that there are even uncountably infinite sets with
Lebesgue measure zero (the Cantor set is such a set, see Exercise 3.2.10).

We now discuss the connection between probability and measure theory. We
associate subsets E of B with subsets Bz of the interval (0, 1], as before. We
then define the probability that the event E occurs, Prob(E), to be the Lebesgue
measure m(Bg) of the set Bg. Using this, let us look at two very basic examples
and see that the value of m(Bg) agrees with what we would expect Prob(E) to be
from everyday experience.

EXAMPLE |. Let E be the event that a head is thrown on the first toss. We know
that Prob( E) should equal §. Let’s now figure out what the et By is. and then



3.2 Lebesgue Measure on Euclidean Space 35

see whether this set has Lebesgue measure % A number w is in Bg if and only
if w = 0.1azas.... Therefore, w is in Bg if and only if @ > 0.1000... and
w <0.1111.... Thatis, B = [%, 1]. Then m(Bg) = % as desired.

ExAMPLE 2. In the first example we considered the event that the first toss is
prescribed. This time we let E be the event that the first n tosses are prescribed.
Let us say that these first » tosses are a;, a,, as, ..., a,. We know that Prob(E)

should equal (%) . As in the first example, we now try to identify the set Bg, and

figure out its Lebesgue measure. If we let s = 0.a;a3a3 ...a,00000. .., then w is
in Bg ifand only w > s and w < 0.a1a3a3...a,11111.... But
> a; 1

0.1a203...a, 1111, =5+ Y —.:s+(5) |

n

Therefore, B = [s, s + (%)rl], and m(Bg) = (%) , as desired.

We now return to the law of large numbers. We will give two versions of
this result. Since the material of this section is primarily offered to motivate
a study of measure, proofs are not included. First, for € (0, 1], we define
sn(w) =a; + - -+ + a,, where 0.a;a, . . . is the binary representation for w.

Theorem (Weak Law of Large Numbers). Fix € > 0 and define, for each
positive integer n, the set

@ 1 )

B, ={we 1| — -

This subset of (0, 1] corresponds to the event that “after the first n tosses, the
number of heads is not close to %.” The weak law of large numbers states that
m(B,) - 0asn — 0.

Theorem (Strong Law of Large Numbers). Ler

§={we© 1] lim

n—-»oc A 2

sn(@) 1}

The strong law of large numbers states that m((0, 1]\ S) = 0.

We end this section by remarking that the set (0, 1] \ S in the strong law of large
numbers is uncountable. After the Cantor set, this is our second example of an
uncountable set of Lebesgue measure zero.

3.2 Lebesgue Measure on Euclidean Space

Before we give a formal treatment of Lebesgue measure on R”, we give a few
general definitions. A family R of sets is called a ring if A € R and B € R imply
AUBe€eRand A\ B € R (we remark that B need not be a subset of A in order
to define A\ B). Aring R is called a o-ring if Ay € R,k = 1.2,..., implies
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Ure; Ax € R. We consider functions u defined on a ring or o-ring R and taking
values in R U {#00}. Such a function u is additive if

(AU B) = n(A) + n(B)

whenever A N B = @.Ifforeachsequence A, €R, k=1, 2, ..., with| J;.; AreR
we have

P«( CJ Ak) = i p(Ax)
k=1 k=1

whenever Ay N A; = @ (k # j), we say that pu is countably additive. We must
assume that the range of u does not contain both oo and —oo, or else the right
side of (A U B) = n(A) + n(B) might not make sense. A countably additive,
nonnegative function p defined on a ring R is called a measure. The elements of
R are subsets of some set X; X is called the measure space.

In general, measures can (and do) exist on rings consisting of subsets of any set.
We will see examples of such abstract measures in the last section of this chapter.
Until then we restrict ourselves to Euclidean space R”, and develop Lebesgue
measure on a (yet-to-be-specified) ring of subsets of R".

We consider subsets of R” of form

{15005 xp) |ak <xx <bwnk=1,...,n},

where (a1, ..., a,) and (b1, ..., b,) are fixed elements in R” with each ax < bx.
Often we use the notation

[als bl] XX [atb bn]

to denote the set just described. Any or all of the < signs may be replaced by <,
with corresponding changes made in the interval notation. Such subsets of R” are

called the intervals of R". For an interval I, we define the Lebesgue measure m (/)
of I by

n

m(D) = | [t — ap).

k=1

This definition is independent of whether <s or <s appear in the definition of 7.
It should be noted that if » = 1, 2, or 3, then m is the length, area, or volume of
I. We can extend m to £, the collection of all finite unions of disjoint intervals, by
requiring that m be additive. In Exercise 3.2.4 you are asked to show that £ is a
ring. Note that m(A) < oo forany A € €.

Lemma 3.1. If A € £ and € > O, then there exists a closed set F € € and an
openset G € € suchthat F C A C G and

m(F)>m(A)—€ and m(G) < m(A) + €.
PrROOF. Left as Exercise 3.2.5. O

Theorem 3.2. m is a measure on £.
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ProOOF. All that needs to be shown is that m is countably additive. Suppose that
{Ax)32, is adisjoint collection of sets in £ and that A = | J;_, Ak is alsoin &. For

each N, U;:V:l Ar C A, and so (by Exercise 3.2.2(a))

N N
m(A) > m(U Ak) = Zm(Ak).
k=1 k=1

Since this holds for each N,
o0
m(A) = ) m(Ax).
k=1

We now aim to show that the other inequality also holds. Choose a closed set F
corresponding to A as in Lemma 3.1 to satisfy

m(F)>m(A) —e.

Choose an open set G; for each Ay as in Lemma 3.1 satisfying
€
m(Gr) < m(Ag) + Th

Notice that F' is closed and bounded, and thus is compact by the Heine-Borel
theorem. Since {G};2, is an open cover for F, there exists an integer N such that

| FCG,UG,U---UGw.
Then.

m(A)—e <m(F)<m(G,U---UGn) =m(Gy)+---+m(Gn)
<m(A))+---+m(An) +e.

From this,

N 00

m(A) < ) m(AQ) +2¢ < ) m(Ap) + 2¢.
k=1 nk=1

Since € > 0 was arbitrary,

m(A) < ) m(Ax),
k=1

completing the proof. O

We have now constructed Lebesgue measure m on £ consisting of certain subsets
of R”. The reader should verify that £ is a ring, but not a o -ring (Exercise 3.2.4).
We would like to extend m to a much larger (o-)ring of subsets of R”. First, we
point out that for any set X, the collection of all subsets of X is a ring (and is even
a o-ring). This ring is often denoted by 2*. To extend m to a larger ring than &£
we proceed by first extending m to an “outer measure” m* defined on all of the
ring 2R, Unfortunately, m* will not actually be a measure on 2®")(hence the
new name “outer measure’). We will then take a certain collection M such that
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£ € M < 2®), Happily, M will be big enough to be a o-ring, and small enough
so that m* restricted to M will be a measure.

Let A be any subset of R” and consider a countable covering of A with intervals
I, such that A C | J;-, 1. We define the outer measure m*(A) of A by

m*(A) = inf ) m(lr),
k=1

where the infimum is taken over all such coverings of A. We call m* the outer
measure corresponding to m.

Note that m* is defined on all of 2®"). It should be clear to the reader that m*
is nonnegative and monotone (that is, A C B implies m*(A) < m*(B)), and that
m(A) = m*(A) < oo for A € £. Also, the reader should check (and is given the
opportunity in Exercise 3.2.6) that m* is countably subadditive, that is,

o0 o0
m*((J A) = Do mecan,
k=1 k=1
whenever A, A,, ... are subsets of R”.
Fortwo sets A, B in R”, we define their symmetric difference
S(A,B)=(A\B)U(B\ A)

and the distance from A to B by
D(A, B) = m*(S(A, B)).

We let M £ denote the collection of subsets A of R” such that D(Ax, A) — 0 as
k — oo for some sequence of sets A; € £ We let M denote the collection of
subsets of R” that can be written as a countable union of sets in M£. It should be
evident that M C M.

As a precursor to the next lemma, we point out that m* satisfies a sort of conti-
nuity condition. Consider two subsets A, B of R” with at least one of m*(A) and
m*(B) finite; we assume that m*(B) < oo and that m*(B) < m*(A). Then

m*(A) = D(A,¥) < D(B, )+ D(A, B) =m*(B) + D(A, B).
Therefore,
Im*(A) —m*(B)| < D(A, B).
Lemma 3.3. m* is additive on M x.
PROOF. Let A and B be disjoint sets in M x. We aim to prove that
m*(AU B) = m*(A) + m*(B).

We choose sets Ag, By in € such that D(A;, A) — 0 and D(B,,B) — 0 as
k — o0o. From Exercise 3.2.7(e) we have

D(A,UB,.AUB)— 0 asn — 0o,
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Since m* restricted to £ coincides with m, we can make two observations (see
Theorem 3.2):

m*(Ar U By) = m*(Ay) + m*(By)

for each k, and all three terms in this equation are finite. Using these two
observations and the continuity property of m* we have

im*(AU B) — m*(A) — m*(B)|
< |m*(A U B) — m*(Ax U BY)| + Im*(Ay) — m*(A)| + |m*(By) — m*(B)|
< D(Ay U By, AU B) + D(A, A) + D(By, B).
Since all three terms of this sum tend to zero as k — oo, we are done. 0O

Lemma 3.4. My isa ring

PrOOF. Consider A, B in Mg and Ag, By in £ such that D(A;, A) — 0 and
D(By, B) — 0 as k — oo. Then, for each k, Ay U B, € £ by Exercise 3.2.4, and
by Exercise 3.2.7(e),

D(AyUBy,AUB) > 0 as k — oo,

showing that AU B is in Mz. It remains to be seen that A \ B is M. We now do
this; this proof should give an idea of how to do Exercise 3.2.7(d). Again, since £
is aring, Ax \ By is in £. From

S(Ac\ Bi, A\ B) = S(A¢ N B, AN B°)
C S(Ay, A) U S(B, BY)
= S(Ax, A)U S(By, B)

it follows that
D(Ai \ B, A\ B) =m*(S(Ai\ By, A\ B))

< m*(S(Aw, 4)) +m* (S(B, B))

= D(A;, A) + D(B,, B).
This proves that A \ B is M £, as desired. O
Lemma 3.5. Let A € M. Then A € Myx ifand only ifm*(A) < oo.

ProOF. First, assume that A € M z. Then there exists a sequence of sets Ay € £
satisfying D(Ag, A) — 0 as k — oo. We choose N to satisfy D(An, A) < 1.
From Exercise 3.2.7(d) it follows that

D(A,P) < D(A, Anx) + D(Ay, 9),
or
m*(A) < D(A, An) + m*(An) <1 +m*(Ay) < 00.

To prove the converse we assume that A € M and that m*(A) < oo. We aim to
show that A € Mx. Since A € M, we can write A = | J;., Bs, where B, € M
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for each k. Letting A} = By, and Ay = Bi \ (U’;;i Bj) for k > 2, we note that
Ay € M for each k, and we have rewritten A as the union A = U,fil A of
disjoint sets A;, A2, ....

Countable subadditivity of m* (see Exercise 3.2.6) yields

m*(A) < ) m*(Aw).
k=1

We claim that this is actually an equality. To see this, note that for each N,

N
Uaca
k=1

and so, by monotonicity,

. N
m (E;Jl Ak) <m*(A).

Lemma 3.3 asserts that m* is additive when restricted to M . Therefore,

N N
Y m*(A) = m(U Ak).
k=1 k=1

Since now

N
Y " m*(Ar) < m*(A)
k=1

for each N, we have shown that

(o o
Y " m*(Ax) < m*(A).
k=1

We are assuming that m*(A) < oo, and hence the series on the left converges.
Therefore, given € > 0, there exists an N such that } ;- ., m*(A;) < €. Then

D(A, Q Ak) - m*(s(A,kLl:Jl Ak))
=m*(A \QAk)

o ) 00

— ( | Ak)s Y m* (A <e.

k=N +1 k=N +1

Since € was chosen arbitrarily, this proves that A € M. D
Theorem 3.6. M is a o-ring, and m® is countably additive on M.

Proor. First, we prove that M is a o-ring.
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If A, A;,... € M, then their union can be seen to be in M via a standard
diagonalization argument.
Let A, B € M. We can then write

o o
A=UAk, and B=UBk,
k=1 k=1

for some Ay, By € Mg,k =1,2,.... The reader should check that the identity

oo
AcnB=|JanB) k=12...,
j=1

holds. From this it follows that Ay N B € M for each k. Since
m*(Ax N B) < m*(A) < 00,
Lemma 3.5 implies that A, N B € M for each n. Lemma 3.4 then implies that
A\ B=A \(AxrNB)e Mg, k=1,2....

Finally we have our desired result, that
oo
A\B=U(Ak\B) e M.
k=1

Second, we prove that m* is countably additive on M. We consider A= _J;_, Bx,
where B, € M for each k (and so also A € M by the first part of the theorem).

Letting A; = By, and Ay = By \ ( ’;;i Bj) for k > 2, we can rewrite A as the

union A = |J,-., Ax of disjoint sets A;, As, ... .In Exercise 3.2.6 you are asked
to prove thatm* is countably subadditive, and therefore

(o @)
m*(A) < Y _ m*(A).
k=1
On the other hand, for each positive integer N,

N
U Ay C A,
k=1

so the additivity of m* on Mx (Lemma 3.3) and the monotonicity of m* on 2®"
together imply that

N
D _m*(Ax) < m*(A).
k=1

Since this holds for each positive integer N,

(o o]
D _m*(Ax) = m*(A),
k=1

as desired. O
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We now have rings £ € M < 2®" and an outer measure m* defined on
2®")_ Further, m* restricted to the o-ring M is a measure. The elements of M
are called the Lebesgue measurable subsets of R". The restriction of m* to M is
called Lebesgue measure, and is (again) denoted by m. It is important to figure
out which subsets of R” are Lebesgue measurable. Exercises 3.2.9 and 3.2.10
give some answers. After doing that exercise you may well wonder whether there
are any sets in R” that are not Lebesgue measurable, and if there are, just how
bizarre they must be. There are indeed such sets. A discussion of nonmeasurable
sets is deferred to the Section 6.4. Because the Lebesgue measurable sets are hard
to describe, people often choose to work with Lebesgue measure on the smaller
o-ring of all “Borel” sets. The Borel sets are defined, and briefly discussed, in the
second example of Section 6 of this chapter.

Lebesgue can be said to have made
| two huge contributions to mathematics:
He helped to sort out the correct definition
of the term “function,” and he developed
complete, and to date the most successful,
theories of measure and integration.
For historical perspective, [93] is @ good
reference for the former contribution, and
[61] is recommended for the latter. In his
obituary of Lebesgue [29], J.C. Burkill
concludes, “His work lay almost entirely in
one field— the theory of real functions; in
that field he is supreme.”

Between 1899 and 1902 Lebesgue
was teaching at the lycée in Nancy, and
also working on his thesis. During these

FIGURE 3.1. Henri three years he published six papers. The
last five of these were then incorporated

Henri Léon Lebesgue was born on June 28 to form his doctoral thesis. He received
1875, in Beauvais, France (Figure 3.1). His s Ph.D. from the Sorbonne in 1902. His
father was a typographical worker, and his dissertation Is congldered to be one pf
mother was an elementary-school teacher; the best mathematics theses ever written.
both were intellectually motivated people. The first -chapter develops his theory of
In 1897 Lebesgue graduated from the Ecole ~ Me@sure; the second chapter develops

<

Normale Supérieure in Paris and then his integral; the third chapter discusses
worked for two years in their library. During length, area, and certain sur'faces; the
these two years, he published his first fourth chapter is on Plateau’s problem

four mathematical papers. His first paper ~ apout minimal surfaces. Many of the
gave a simpler proof of the Weierstrass  mPortant properties of the Riemann

approximation theorem (discussed in detail integral were generalized by Lebesgue
in Section 6.1). to his integral in the second chapter.
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Probably the most notable exception to
this is that what is now often referred to as
the first version of fundamental theorem

of calculus (that %( X f{t)dt) _ fix)

almost everywhere) does not appear.
Lebesgue was aware that he wanted this
statement and, in fact, was unable to
prove it for his thesis. He was able to
prove it later, and it appeared in print one
year later [81]. Several other unresolved
issues in his thesis were also resolved by
Lebesgue himself during the two years
following his thesis work.

At the end of the nineteenth century,
only continuous functions could be dealt
with in a satisfactory manner, and there
was still much debate over what the
definition of a function should be. By the
end of the first decade of the twentieth
century, the treatment of discontinuous
functions was fully incorporated. This
ten-year revolution, culminating in the
modern theory of real functions, was
led by Lebesgue. Lebesgue’s ideas can
be seen to be very strongly and most
directly influenced by the works of René
Baire, Emile Borel, and Camille Jordan.’
Baire's work gave deep insights into the
behavior of discontinuous functions, while
the work of Borel and Jordan focused on
measuring the size of sets. The ideas of
Baire, Borel, and Jordan had, of course,
interested others as well. In particular, the
works of Giuseppe Vitali (1875-1932; Italy)
and William Henry Young (1863—-1942,
England) should be noted in the context
of the development of the measure and
integral credited to Lebesgue (see [61]).

In 1904 Lebesgue published his
book Legons sur l'intégration et la

recherche des fonctions primitives.
This book reached a large number of
readers, and it did not take long for
Lebesgue’s integral to become the integral
of choice for most practitioners. It was
taught to undergraduates as early as 1914,
at the Rice Institute (now Rice University,
in Texas). The Lebesgue integral has had
remarkable success in applications, and its
staying power is really because of these
applications. Lebesgue himself applied
his integral to problems having to do with
trigonometric series, problems that had
arisen in Fourier's work. As discussed in
the opening paragraphs of Chapter 3, it
is Riesz who deserves much credit for
drawing attention to the importance of
Lebesgue’s ideas by showing their value
for solving problems in the new field of
functional analysis. Indeed, if it were
not for Riesz's applications of Lebesgue’s
ideas, functional analysis would not have
developed as it did and might look very
different today. And as we have seen,
the field of probability would not be the
same without the notion of the Lebesgue
integral.

By 1922, Lebesgue had published
dozens of papers on set theory, integration,
measure, trigonometric series, polynomial
approximation, topology, and geometry.
Over the next twenty years he continued to
write, but the focus of his papers shifted
toward the expository, often treating
historical, philosophical, or pedagogical
topics and reflecting his great interest and
strong views on teaching.

Henri Lebesgue died on July 26, 1941,
in Paris.

'Borel we have already encountered. Jordan was a French mathematician who lived
from 1838 to 1922; the Jordan canonical form in matrix theory and the Jordan curve
theorem in topology are two results named for him. Baire was also French, and lived from
1874 to 1932. One of Baire's results is the subject of Section 6.2.
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3.3 Measurable and Lebesgue Integrable Functions on
Euclidean Space

We will be using Euclidean space R"” as our measure space X, the Lebesgue
measurable sets M as our o-ring R, and Lebesgue measure m as our measure L.
Everything that we say in this and in the next section for the triple (R", M, m)
can be said for the more general measure space (X, R, ). Note that the use of the
phrase “measure space” introduced in the last sentence is different from the prior
usage, when it was used to refer to X alone.

A function f : R" — R U {00} is called measurable if the set

{x | f(x) > a}
is measurable for each a € R.
Theorem 3.7. The following are equivalent statements:

(@) {x {f(x) > a} is measurable for every a € R.
(b) {x |f(x) > a} is measurable for every a € R.
(©) {x |f(x) < a} is measurable for every a € R.
(d) {x |f(x) < a} is measurable for every a € R.

PrROOF. Theorem 3.6 shows that M is a o-ring, and hence A € M if and only if
A° € M. From this, (a) < (d) and (b) < (c) follow immediately.
That (a) implies (b) follows from Theorem 3.6 and the equalities

(x| f(0) 2 a} = ﬂ[ \f(x)>a—-] (U[ \f(x)<a——]).

That (b) implies (a) follows from Theorem 3.6 and the equality

{x |f(x)>a}=O[x \f(x)za+%]. O
k=1

Theorem 3.8. If f is measurable, then | f| is measurable.
PrROOF. Left as an Exercise 3.3.4. O

Theorem 3.9. If f and g are measurable, then so are f + g, fg, f+, and f_. If
{ feli2, is a sequence of measurable functions, then the four functions

(inf £ ) ) = inf(felx) [1 < k < 00},
(sup £ )@ = sup(fu() |1 < k < oo},
(hm inf fk)(x) = sup (mf fk(x))

jzl

(Inm sup fk)(x) = mf (:t:? fk(x))

are each measurable.
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PrROOF. First, we prove that f + g is measurable. Observe that

(f+8)x) <a < f(x) <a-gx)

and that this is true if and only if there exists a rational number r such that

f(x) <r <a-—gx).

Therefore,

(| + o <al = (I |F® <N x s) < a = n).
reQ

Since the right-hand side belongs to M, so does the set on the left.

Next, we next prove that fg is measurable for the special case when f = g. We
then use the first part of the theorem, the special case, and the so-called polarization
identity

1 2 1 2
fe=7(+8)’ - Z(f—g) :
to get the general case. The case f = g is taken care of by noticing that

(x |(ff)(x) > a} = (x |f(x) > Va) U{x | f(x) < —+/a).

We next prove that sup f; is measurable. For each a € R,

(x |(sup f)(x) > a} = | J{x | filx) > a).
k=1

Since each set in the union on the right side of the equation is in M, so is the set
on the left side.

The proof that inf f; is measurable is similar to the argument for the supremum.
Then lim sup f; and lim inf f, are measurable from these (applying the argument
twice in succession). The facts that f_ and f, are measurable follow from the
proof for sup fz, since f, = max{f, 0} = sup{f,0} and f- = max{—f,0} =
sup{—f, 0}. O

This last theorem can be interpreted as saying that the usual ways of combining
functions preserve measurability. One way of combining functions is noticeably
missing: composition. It is not the case that the composition of two measurable
functions is again measurable. See, for example, [1] (page 57) or [70] (page 362) to
see what can be said about the measurability of the composition of two functions.

A real-valued function with only a finite number of elements in its range is called
a simple function. One type of simple function is the characteristic function, g,
of aset E C R”. This is defined by

(x)=ll if x € E,
XE 0 ifx¢E.
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Every simple function can be written as a finite linear combination of characteristic
functions. Specifically, if the range of the simple function s is {c, ..., cx}, then

N
s(x) = ) ckxe(x),
k=1

where E;, = {x : s(x) = c¢;}. The function s is measurable if and only if each set
E; is in M.

What might be more remarkable is that every function defined on R” can be
well approximated by simple functions. This is the thrust of the next theorem.

Theorem 3.10. [f f is a real-valued function defined on R", then there exists a
sequence {si}r-.; of simple functions such that

klim si(x) = f(x), foreveryx e R".

Further;, if f is measurable, then the s;’s may be chosen to be measurable simple
functions. Finally, if f > 0, then {si};e.; may be chosen to satisfy s; <s; < ---.

ProOOF. We first consider the case that f > 0. In the general case, we use that
f = f+ — f- and apply the construction below to each of f, and f_.

Fix f > 0 and a positive integer k; we start by defining the simple function s;.
Define

Fr = {x | f(x) >k},

and sets

J—1 J
Ef:[x| o _<_f(x)<§],
for each integer j, 1 < j < k2*. Then put

k2% .

-1

1) = kxn(®) + ) I xe o).
j=1

It is left as an exercise to show that the sequence {sx}72; has all of the desired
properties. O

Let E € M. For a measurable simple function s(x) = 21{:\;1 CrXE(x), we
define the Lebesgue integral of s over E by

N
f sdm = chm(E N E).
E

k=1

For a measurable, nonnegative function f we define the Lebesgue integral of f
over E by

/fdm -.-.-sup[/sdm |0 <5 < £ s simple}].
E E
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Note that | g fdm may be infinite. Now let f be an arbitrary (not necessarily
nonnegative) measurable function. We say that f is integrable if both

Lf+dm and Lf_dm

Lfdmz/;f+dm—ﬁf_dm.

Integrability is really a statement about absolute integrability, as will be seen in
the exercises (Exercise 3.3.7). This sometimes causes confusion. The integral

[Efdm

is referred to as the integral of f, with respect to the measure m, over E. This
terminology opens the door for integrating with respect to other measures. We will
discuss other measures in the last section of this chapter. We let

LR", m) or LER"

are finite and define

denote the collection of all functions that are integrable with respect to Lebesgue
measure m over R". This collection forms a real linear space. This fact and other
useful properties of the integral are listed in the following theorem.

Theorem 3.11. The Lebesgue integral enjoys several properties.

(@) The integral is linear. That is,

/cfdm:cffdm and /(f+g)dm=ffdm+/gdm
E E E E E

whenever f, g € LR™), c e R, and E € M.
(b) The integral is monotone. That is,

fEfde/Egdm

whenever f, g € L(R"), f(x) < g(x)forall x € E.
(c) Forevery f € L(R"), we have | f| € L(R") and

\fgfdm} stmdm.

(d) Forevery f € L(R™), we have [ g fdm = 0 for every measurable set E of
measure zero. From this it follows that

Lfdm=/;fdm

whenever A and B are measurable sets, B C A, and m(A \ B) =0.

PROOF. A proof of the first part of (a) is straightforward, as is a proof of (b);
(c) follows from (b); (d) is straightforward as well. The second part of (a), which
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certainly should hold if there is any justice in the world, is more subtle than
it appears; we will prove it using Lebesgue’s monotone convergence theorem
(Theorem 3.13). Proofs of the first part of (a), the second part of (a) for simple
functions, (b), (¢), and (d) are asked for in Exercise 3.3.8. O

In general, if a property P holds on a set A except possibly at each point of
some subset of A that can be contained in a measurable set of measure zero, then
we say that the property P holds on A almost everywhere, or for almost all x € A.
In light of (d), the phrase “f(x) < g(x) for all x € E” in (b) can be replaced
by the phrase “f(x) < g(x) for almost all x € E.” From now on in this chapter
expressions such as f < g, f = g, etc., should be interpreted as f(x) < g(x) for
almost all x, f(x) = g(x) for almost all x, etc.

We end this section with a further property of the integral. We will use this result
to prove Lebesgue’s monotone convergence theorem.

Theorem 3.12. Assume that f > 0 is measurable, and that Ay, A,, ... € M are
pairwise disjoint. Then,

fuz‘;m fdm=i([4k fdm).

k=1

PrROOF. We firstconsiderthecasethat f = xg forsome E € M. By the countable
additivity of m, we have

dm =m(ANE)= (A NE)
Lfm m m(’E;J1 k )

_ ziz‘{m(,«akmzp j;(ﬁk fdm).

The next case, that f is simple, follows from this first case by the way that we
define the integral for simple functions.

Finally, we consider an arbitrary measurable f > 0. Let ¢ > 0 and choose a
simple function s such that s < f and

LfE(LS)+e.

The right-hand side of this inequality is equal to

Thus,
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The proof will be complete when we show that also

/;fzg(/;kfdm).

We first consider two disjoint sets A;, A, € M and choose two simple functions
51, s2 suchthat 0 < s; < f and

[s,,dmz(/ fdm)—f, k=1,2.
Ap A 2

Set s = max({s), s2}. Then s is simple and 0 < s < f. Also,

[sdmz( fdm)—f, k=1,2.
Ax Ax 2

Therefore,

/ sdm+f sdm > fdm+ | fdm — €.
A] Az Al A2

Put A = A, U A,. By the first part of the theorem,

[SdmZ[ fdm+[ fdm —e€.
A A Ay

Lfdmz[Asdm,
'/Afdmzj;lfdm+/;2fdm—e.

Since € was arbitrary, we have shown that

By monotonicity,

and so

f fdm > fdm <+ | fdm.
A Ay

Az

We now use induction to show that

/Afdng;( Akfdm), N=1,2,....

Finally, we return to the general case A = | J,-, A«. For any positive integer N,
the preceding inductive argument shows that

[54m [p m = 2] 70m),

Since this holds for each N, we are done. O
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As you are asked to prove in Exercise 3.3.1, continuous functions are always
measurable. Also, many continuous functions are integrable; for example, all con-
tinuous, bounded functions that vanish outside of some finite interval are integrable.
How discontinuous can an element of L(IR") be? We know that we can take any
continuous integrable function, alter its value on a set M of measure zero, and still
have an integrable function. For example, the set M can be taken to be a countable
dense subset of R”. Nonetheless, the continuous functions with “compact support™
are dense in L(IR") (see Exercise 3.6.8 to see precisely what is meant by compact

support).

3.4 The Convergence Theorems

In this section we shall see three theorems abouthow the Lebesgue integral behaves
with respect to limit operations. The properties revealed in these theorems are what
distinguish the Lebesgue integral from competitor integrals.

Theorem 3.13 (Lebesgue’s Monotone Convergence Theorem). Suppose that
A € M and that { f};2, is a sequence of measurable functions such that

0 < fi(x) < fa(x) < --- for almost all x € A.

Let f be defined to be the pointwise limit, f(x) = limy_, o fi(x), of this sequence.
Then f is integrable and

i ([ )= | sim

0< fix) < ax)<--- < f(x) = klirgo fr(x) for almost all x € A.

PrROOF. We have

By monotonicity, we get

Lfldeszde---sﬂfdm.

Thus {f, fidm}{2, is a bounded and nondecreasing sequence of real numbers,
and hence must converge to some real number L. Note that L < [, fdm; we aim
to show that L > f 4 fdm also. To do this we choose a number § € (0, 1) and a
simple function s satisfying 0 < s(x) < f(x) for almost all x € A. Define

Ay = {x € A | fi(x) = 8s(x)}.
Then
AlC A CAC

and
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For each positive integer k, we have

L = lim ([ fkdm) > [ fidm > | fudm > a[ sdm.
k=00 \ J 4 A A Ag

Therefore,
L>4d- lim ([ sdm).
k—»00 Ak

kl—iglo(Lk sdm) = /Asdm.

Given that this equality holds, we obtain

LZS-/sdm.
A

szsdm.
A

Taking the supremum over all such simple functions now yields

Lz/Afdm.

This is what we wanted to prove.
To see (1), put E; = A, and E;, = Ax \ Ax—1. Then

00 k
A= JE, A=]E;,
k=1 j=1

and the E,;’s are pairwise disjoint. Theorem 3.12 then implies that

Lfdng(ﬁkfdm),

which, by definition, is equal to

pim (32 () sam)) = pm (. ram)

]:

L

We claim that

Since é was arbitrary,

51

()

O

Before moving on to the next “convergence theorem” we fulfill our promise
made in the previous section and use Lebesgue’s monotone convergence theorem

to prove the second part of Theorem 3.11(a). Specifically,

/(f+g)dm=/ fdm+fgdm
E | E E

whenever f, g € L(R") and E € M. In Exercise 3.3.8(b) you are asked to prove
the result in the case that f and g are simple functions. Since [, fdm is defined by
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the difference [ fydm— [ f_dm, we may assume that f is nonnegative (almost
everywhere). Likewise for g. We first appeal to Theorem 3.10 to get sequences of
nonnegative, measurable, simple functions {sx}7~, and {tc};-, satisfying

Jim s(x) = f(x), Jim 7,(x) = g(x)

—>00

almost everywhere. Combining the monotone convergence theorem and the result
for simple functions from the exercises, we see that

f(f +g)dm = lim | (sx +ty)dm
E k=00 E

= lim sydm + lim tedm
k—00 E k—00 E

=/Efdm+/Egdm.

The next result was proved by Pierre Fatou (1878-1929; France) in his 1906
doctoral dissertation. Fatou was also an astronomer. He studied twin stars and
proved a conjecture of Gauss’s on planetary orbits.

Theorem 3.14 (Fatou’s Lemma). Assume that A € M. Let {f;}32., be a se-

quence of nonnegative measurable functions and let f = liminf, ., fi on A.
Then

f fdm < 11m 1nf f fkdm

A

PROOF.  For each positive integer j, define a function g; by
g5(x) = inf fi(x),

and a number a; by

aj-"mf ffkdm).
A

k>j
Theorem 3.9 shows that each g; is measurable, and clearly sup;., g; = f. Since
0<gi(x) <gx)<---,

we have that

lim g; =supg; = f.

Since
O0<a(x)<ax)<-..,

we have that

lim a; = supa; = hm lnf(J[ f,,dm).
A

J—e00 J2\
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Observe that g;(x) < fi(x) for each pair of positive integers j, k with k > j.
Thus,

/gjdm < aj,
A

for each positive integer j. The monotone convergence theorem now implies that

‘fdm < lim gidm) < lim q; _hmlnf frdm ). u
Al A

A j—00 j—00 k—o00

The following is one of the best results for telling us when we may conclude
that

lim ( f fkdm) — f (lim fk)dm.

k— 00 A A k—>00
Theorem 3.15 (Lebesgue’s Dominated Convergence Theorem). Assume that
A € M. Let {fi};2, be a sequence of measurable functions, and put f(x) =
limy 500 fi(x). Further, assume that there exists a function g € L(R") such that

| fr(x)| < g(x) for almost all x € A and each positive integer k. Then we may
conclude that

s am) = [ som

PrROOF. Begin by noticing that for each k, (fx)+ < g, and (fi)— < g and thus
each f; is in L(R").
We first want to see that | f| is in L(R"). This follows from Fatou’s lemma:

fA|f|dm=[ llm |fk|)dm_[(hm1nf|fk|)dm

sliminf [ |fk|dm f gdm.

k— 00

Since each f; + g is a nonnegative function, Fatou’s lemma shows that

ffdm+/gdm=f(f+g)dm
A A A
— [A(li’?_l)%gf(fk+g))dm Sli&iﬁ‘f([,(fk +g)dm).

Because the integral and the processes of taking infima and suprema are additive,
the expression on the right becomes

liminf( [ fkdm) + [ gdm.
k— 00 A A
Combining these yields

[fdm <llmmf [f*dm
A
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Since each g — f; 18 a nonnegative function, we can repeat this argument and

get
] fdm > lim sup(/ fkdm).
A k— 00 A
Combining these last two inequalities yields the desired result. O

3.5 Comparison of the Lebesgue Integral with the
Riemann Integral

Lebesgue developed his integral in an effort to perfect the integral of Riemann.
The main goal of this section is to show that the Riemann integrable functions
form a proper subcollection of the Lebesgue integrable functions. In this section
we will give several results without including proofs of them. Proofs can be found
in any of the books on integration mentioned in the bibliography. The discussion
in this section is limited to integration on R.

We begin with a brief review of the definition of the Riemann integral. We
assume that the reader is familiar with the Riemann integral and its properties and
include this material as a reminder and also to establish notation.

We consider a bounded, real-valued function f defined on the closed and
bounded interval [a, b]. A collection of points P = {xq, X1, ..., X,} is called a
partition of [a, b] if

Aa=Xg< Xy <---<Xx,=>b.

The length of the longest subinterval [xx_;, xi] is called the mesh of the partition
P.Set,fork =1,2,...,n,

my = inf{ f(x) ‘x € [xx-1, Xx]} and M, = sup{ f(x) ‘x € [xk—=1> Xx]}-

The lower Riemann sum L(f, P) of f corresponding to the partition P is given by

L(f, P) =) mi(x — xi-1),
k=1

and the upper Riemann sum U( f, P) of f corresponding to the partition P is given
by

U(f, P) = Z My (xx — Xk—-1).
k=1

The lower Riemann integral of f is defined by

L(f) = sup(L(f, P) |P is a partition of [a, b]),
and the upper Riemann integral of f is defined by

U(f) = inf[U(f. P) |P is a pantition of |a. b]].
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Finally, a bounded, real-valued function f defined on [a, b] is called Riemann
integrable if L(f) = U(f). In this case, their common value is denoted by

b
[ f(x)dx.

In the preceding paragraph, that the sets used above to define the lower and
upper integrals do indeed have upper and lower bounds, respectively, is something
one must prove. There is one result about Riemann integrals that we will use in
this section: If { P,}; , is any sequence of partitions of [a, b] such that the meshes
of the P,’s converge to zero as n — 0o, then

n— 00

b
lim L(f, P,) = lim U(f, P,,)=/ fx)dx.

The Riemann and Lebesgue integrals of a nonnegative real-valued function can
be interpreted in terms of area, as you should recall. In a naive way, the difference
between the two integrals (on R) can be visualized by noting that the Riemann
approach subdivides the domain of the integrand, while the Lebesgue approach
subdivides the range.

Recall that Lebesgue was trying, among other things, to increase the number
of integrable functions. Our next theorem shows that each Riemann integrable
function is Lebesgue integrable (showing that Lebesgue’s collection contains
Riemann’s collection). If we consider the characteristic function of the rational
numbers intheinterval [0, 1], we getafunctionwith L(f, P) = Qand U(f, P) =1
for each partition of the unit interval. Thus, we have a function that is not Rie-
mann integrable. However, this function is Lebesgue integrable, as you are asked
to prove in Exercise 3.3.3. This together with Lemma 3.16 shows that Lebesgue’s
collection is, in fact, larger than Riemann’s. Lebesgue was successful in enlarging
the class of integrable functions.

Theorem3.16. If f is Riemann integrable on[a, b}, then f is Lebesgue integrable

on [a, b] and
b
[ fdm=/ f(x)dx.
[a,b] a

(Recall that the integral on the left is the Lebesgue integral, and the integral on
the right is the Riemann integral.)

ProoOF. For each positive integer n, partition [a, b] into 2" subintervals each of
length Z:2. Let P, denote this partition and a = xg < x; < --- < x, = b denote
the points of P,. Define

2" o
8n(x) = Z mg Xka-l.xk)(x) and hn(x) = Z MkX[xk-l,Xt)(x)'
k=I k=I

Then (g,}32 | is an increasing sequence, and {h, )32 | is a decreasing sequence. Put

g(x) = nlinl’ 8n(X) and h(x) = lim h,(x).

n -+
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Then g and A are Lebesgue integrable functions that satisfy

g(x) < f(x) < h(x)

for almost all x in [a, b]. Also,

f gdm = L(f, P,) and f hdm = U(f, Py,).
[a.b]

fa,b}

Now, h,(x) — g,(x) > 0 for almost all x and

Tim (ha(x) = gn(x)) = h(x) = 8(2).

Therefore,

0< / (h — g)dm = lim (f (h, — g,,)dm)
[a,b] n—=00 [a,b]

= lim h,dm — lim gndm
n—»0Q [a,b] n—>»0Q [a,b]
= lim U(f, P,) — lim L(f, P,)=0.

The firstequality follows from Lebesgue’s monotone convergence theorem, and the
last from the result about Riemann integrals referred to in the paragraph preceding
this theorem. It now follows that g = h almost everywhere. Thus f is Lebesgue
integrable, and

b
f fdm = lim gndm = lim L(f, P,) = / f(x)dx. O
[a.b] n—00 a

n—00 Jia,b)

A Riemann integrable function must, by definition, be bounded. Which bounded
functions are Riemann integrable? Different characterizations exist, and perhaps
most notable is Riemann’s own characterization: A bounded function f : [a, b] —
R is Riemann integrable if and only if for every € > 0 there exists a partition P
of [a, b] such that U(f, P) — L(f, P) < €. Lebesgue gave a characterization in
terms of measure. Specifically, a bounded function f : [a, b] — R is Riemann
integrable if and only if it is continuous almost everywhere.

It would be remiss not to mention that a version of the fundamental theorem of
calculus can be given for the Lebesgue integral. In it, modifications are made to
allow for the possibility of bad behavior on a set of measure zero. If f is Lebesgue
integrable on [a, b) and we define F by

F(x) = fdm,
[a,x]
then we cannot conclude that F’'(x) = f(x) for every value of x in [a, b] (nor even
that F is differentiable everywhere), but we can conclude that F is differentiable
almost everywhere and that F'(x) = f(x) for almost every value of x in [a, b].
Finally, let us consider once again the characteristic function of the rationals xg.
This function is not Riemann integrable on the interval [(). 1| but is the pointwise
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limit of the sequence of Riemann integrable functions

fa(x) = [

where ry, r3, ... 1S an enumeration of the rational numbers in the unit interval.
In general, we can conclude that the limit of a sequence of Riemann integrable
functions is again Riemann integrable if the convergence of the sequence is uni-
form (though uniform convergence is not necessary). The convergence theorems
of Lebesgue (given in the previous section) show that the requirement of uniform
convergence may be greatly relaxed to pointwise convergence if other, less restric-
tive, requirements are imposed on the sequence of functions when the Lebesgue
integral is used in place of the Riemann integral. The fact that pointwise limit
and the Lebesgue integral may be interchanged is a key property that makes the
Lebesgue integral more useful than Riemann’s integral.

ifx € {rl, ...,r,,},
O otherwise,

3.6 General Measures and the Lebesgue L?-spaces:
The Importance of Lebesgue’s Ideas in
Functional Analysis

At the beginning of the second section of this chapter, we alluded to arbitrary
measure spaces (X, R, u). We now give a discussion of these. Recall that a measure
space consists of three things:

(i) a nonempty set X;
(ii) a o-ring R of subsets of X;
(iii) a function u defined on R satisfying

(@ 0< u(A) < ooforallA €ER,
(b) u( U A ) Z 1(A,) whenever Ay, A,, ... € R satisfy A,NA,, =
n=1
n ;é m.

In the preceding sections we have constructed and studied Lebesgue measure on
Euclidean space. This is certainly the most important example for our purposes. In
this section we meet a few other examples of measure spaces and then introduce,
for each measure space (X, R, u), the linear space LP(X, ;). As stated at the
beginning of Section 3, all the results of that section and of Section 4 that are
proved for (R", M, m) hold for any general measure space (X, R, n). We will use
these generalizations freely in this section.

We first give a list of some examples of wiples (X, R, ).

ExAMPLE 1. Let X = R", R = M, u = m; this is the example we have been
considering.

ExaAMPLE 2. Let X = R", R = B, u = m. Here, B is defined to be the smallest
a-ring containing all open subsets of R". The elements of B are called the Bore!
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sets of R". Since all open sets are measurable, the Borel sets form a subring of
the measurable sets. However, not all measurable sets are Borel sets, and so the
two collections are different. To construct a measurable set that is not a Borel
set, one can make a “Cantor-like” conswruction (see, for example, [71] page 110).
The following, however, is wue: If A is measurable, then A can be written as
(A\ B)U B for some Borel set B C A satisfying m(A \ B) = 0. The Borel sets are
often favored as the underlying ring because although the ring contains fewer sets,
the elements of it can be described more readily than the Lebesgue measurable
sets can be.

ExaMpLE 3. Let X = R*, R = M. To define the measure, we consider any
nondecreasing, continuous function f : R — R and put

u([a, b)) = f(b) — f(a).

Then i can be extended to all of M in the same way that Lebesgue measure was.
Indeed, this measure u reduces to Lebesgue measure in the case f(x) = x. (The
scope of this example can be increased greatly.)

EXAMPLE 4. Let X be any set, R = 2%, and let u be counting measure:

if A is finite,

_ ] IAl
uiA) = [ oo if A is infinite,

where |A| denotes the number of elements in A. This measure might seem a bit
simplistic. It is, but it plays an important role in the L?-theory.

We generate further examples by restricting the space X:

EXAMPLE 5. X = [0, 1] (the unit interval), R = {S € [0,1} |S € M}, u =
m.

EXAMPLE 6. Let X be any uncountable set,
R = (A € 2¥ |A is countable or X \ A is countable},

and

(A) = O 1if A is countable,
HA)=11 if X\ A is countable.

ExaMPLE 7. Let X be any finite or countable set and R = 2%. Write X =

{x1, x2,...}). Let p; be a positive number corresponding to each x;, and assume
that ) p; = 1. Define u by

wA)= ) pi.

X, €A

Examples 5, 6, and 7 share the property that the measure of the entire space is 1.
Any measure with this property is called a probability measure. Our first example
(Example 5) of such a measure plays a critical role in abstract probability, as
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indicated in the first section of this chapter. Our second example (Example 6)
is rather silly but, nonetheless, provides another example. Example 7 provides a
model for discrete probability theory.

We begin by fixing a measure space (X, R, 1) and a real number 1 < p < oc.
We will consider 0 < p < 11n Exercise 3.6.2 and the important case p = 00 later
in this section. Notice thatif f : X — R U {Z£oc} is a measurable function, then
| f|? is also measurable.

Define, for a measure space (X, R, i) and a real number 1 < p < oo, the
Lebesgue space LP(X, u) (or just LP(w), or even just L? if the measure is clear
from context) to be the collection of all x-measurable functions such that

f | f1Pdu < oo.
X

We define the p-norm of an element f € L”(u) to be the number

11, = ( [ 1117dm)"

The theory of LP-spaces was developed by F. Rieszin 1910 [105]. In that article
he introduced these spaces for Lebesgue measure on measurable subsets of R”,
proved the Holder and Minkowski inequalities (see our Theorems 3.18 and 3.19)
in this setting, and showed that the step functions are dense in these spaces (our
Theorem 3.22). He also showed that these spaces are norm complete (our Theorem
3.21). For p = 2 this had already been shown by E. Fischer [42]. Riesz’s 1910
paper was a remarkable achievement, and remains one of the most important papers
ever published in the field.

We now make two critical remarks regarding these definitions. First, we will
want to prove that || f||, defines a norm, and in particular that || f||, = O if and
only if “f = 0.” The equality in quotation marks where we must be careful. We
know that the integral of a function will be zero as long as the function is equal,
almost everywhere, to zero. In fact, L?(u) really consists of equivalence classes
of functions rather than of functions, where

f ~ g if and only if f(x) = g(x) almost everywhere.

We will rarely mention this distinction, but it is important, and you should do your
best to understand this point. As our second remark about this definition we point
out that we are interested in being able to consider complexvalued functions. Until
now however, integration has been discussed only for real-valued functions. A
function f : X — C is called measurable if both re(f) and im( f) are measurable
real-valued functions. In this case, we define the integral of f by

/;fdu=Lm(f)du+ifim(f)du.

X

We will also use LP () to include complex-valued functions.
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In summary, L?(ut) denotes the set of all equivalence classes of complex-valued
functions f defined on X satisfying

f f1Pdp < oo
X

We write f to stand for the equivalence class of all functions that are equal to f
almost everywhere.

Theorem 3.17. For1 < p < oo, LP(u) is a linear space.

PROOF. This is easy to see. It is trivial to show that Af € LP(u) whenever
f € LP(u) and a € C. To see that f + g € L?(u) whenever both f and g are in
LP(u), we use the inequality

| f +gl? <2°(1 1P + I1glP). O

Notice that for any 1 < p < oo there is a unique number g such that
1 1

—+-=1

P q

If p =1, we define g = oo; if p = 0o, we define ¢ = 1. This number q is
sometimes called the Holder conjugate of p. Note that the Holder conjugate of 2
is itself, and that this is the only number that is its own Hélder conjugate.

Let y be a fixed nonnegative number, and 1 < p < oo. The maximum of the
function f(x) = xy — % occurs at x = yTl—T and thus f(x) < f(yFL—T) for all
nonnegative numbers x. %his inequality can be rearranged to yield

p
xy < Ay L
p q

for all nonnegative numbers x and y (Exercise 3.6.3). We use this to prove our
next result.

Theorem 3.18 (Holder’s Inequality). Assumethatl < p <ooandl < q < o0
are Holder conjugates, and that f € LP and g € L9. Then fg € L! and

I fgllh < N fliplgllg-

ProOOF. If f = Oorg = O(recallthat we meanhere that f = 0 almosteverywhere
or g = 0 almost everywhere), then the resultis trivial. So, we assume that || f||, > O
and ||g|l; > O. The discussion preceding this theorem shows that

F0g@) _ I 18G)I?
I l-ligly = PAIFT-?  qCliglly

Integrating both sides of this yields the desired result. O

The German mathematician Otto Ludwig Holder (1859-1937) worked mostly
in group theory. However, he did work in analysis on the convergence of Fourier
series (see Chapter 4). He proved his inequality in 1884.
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Theorem 3.19. For 1 < p < oo, LP(u) is a normed linear space, with norm
given by

1

I fllp = |f|pdu g

PrROOF. Itis straightforward to see that || f Il > Oforall f € LP(u), that equality
holds if and only if f = 0 almost everywhere, and that |[Af ||, = |Al|l f]|, for
A € C. We concentrate our efforts on verifying the triangle inequality:

If +gllp =1 fllp+llgll,, for f, g € LP(n).

If p = 1, this follows from Theorem 3.11. In the case 1 < p < o0, the result is
nontrivial and is called Minkowski’s inequality. If || f + gl , = O, there is nothing
to prove, so we assume that this is not the case. We first note that

1 +217 g = (17 +&llp-ng) = (15 +2ll,)

(This is left as Exercise 3.6.4.) Holder’s inequality then implies

(||f+g||p)P /'”g'pd“)

/ £ +8l-1f + 2P du)

p-1 p—-1

(”f + 8||p)p

< (||f+8” )p f|f| If +8lP” 1du+f|g| f +glP )
p

1
: p-1 : p—1
< 75 g (Ml 17 + 8177l + gl - 11F + 817"l

1 .
— _ O
o (1112 + lgll )

Let (X, R, u) be a measure space. A measurable function f is said to be essen-
tially bounded if there exists a nonnegative real number M and a measurable set
A of measure zero such that

| f(x)| <M, forall x e X\ A.

Then L*°(X, u) (or L°°(X) or even just L°°)is defined to be the set of all essentially
bounded measurable functions. We define || f || - for these functions by

Il flloo = inf{M},

where the infimum is taken over all M that provide a bound in the definition of f
being essentially bounded.

It is straightforward to verify that L is a linear space, and that || - ||, satis-
fies the properties to make L™ into a normed linear space. The space L™ (for
Lebesgue measure on an interval of R) was introduced by Hugo Steinhaus (1887
1972; Poland) in [116]). We have read a bit about him in Banach’s biography.
Steinhaus made many contributions to probability, functional analysis, and game
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theory. In 1923, Steinhaus published the first truly mathematical treatment of coin
tossing based on measure theory. He is also known for his very popular books
Mathematical Snapshots and One Hundred Problems.

The next lemma is stated here for its use in proving the theorem that follows
it. It is interesting in its own right, since it characterizes completeness in terms
of absolute summability in norm. We use f to denote an arbitrary element of a
normed linear space mostly because we are now focusing our attention on spaces
whose elements are functions. However, it should be noted that the lemma applies
to all normed linear spaces.

Lemma 3.20. A normed linear space (X, | - ||) is complete if and only if Z;’o:l fi
converges (in norm) whenever 3, | f;|l converges.

PROOF. We start by assuming that X is complete, and consider a sequence { f;}72.,

in X suchthat 3 72 | f;[l converges. Lete > 0.Since > i1 I f; 1l converges, there
exists N such that

o0
Y lfill <e.
J=N

Let sy, denl(zlte the nth partial sum of the series 3 37, f;; thatiss, = 3 _°_, f;. For
n>m>N,

I —sal = | 3 £l = 3 0h1< Y Mgl <e

Jj=m+l1 j=m+l1 j=m+1

Since X is complete, {s,} -, converges.
To show the other direction we consider a Cauchy sequence { f; }3?‘;1 in X. For
each k there exists j; such that

Ifi — fill < 51;, i J = Jk
We may assume that ji,, > ji. This implies that {f;};2, is a subsequence of
{fi}52,. Set
g1 = fi, and g = f;, — f, for k > 2.
Observe that

l l l
1
Y gl = lgill + ) I fie — Firarl < lgall + k{; 5ot = gt + 1.

Therefore {Zizl gkl };2, is a bounded, increasing sequence which thus con-
verges. By hypothesis, ;- g, converges. Since }_,_, g = fj,, it follows that
{f;, )52, converges in X. Let f € X denote the limit of the subsequence { f;, },;2,
of { f; ?‘;,. We will be done when we show that { f; )j";, also converges to f. Let

€ > 0. Since { f;]j%,, is Cauchy, there exists N such that

Ifi— f51 < § i,j>N.
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Also, there is a K such that

€
Ifie=fl <5, k=K.
Choose k such that k¥ > K and j, > N. By the triangle inequality we have

\fi—fU=Wfi—Ffill +Wfi—fll<e Jj=N,
completing the proof. O
We now present one of F. Riesz’s most important results.
Theorem 3.21. For 1 < p <00, L?(w) is complete.

PROOF. We first do the case p = oo0; this is the easiest part of the proof. Let
{f;}52, be an arbitrary Cauchy sequence in L>°(u). By Exercise 3.6.7 there exist
measure zero sets A,, , and Bj, j,m,n =1, 2, ..., such that

| fo(x) = fn )| < W fe — finlloo
forall x € A, ,,, and

|f}(x)| < "f”oo

for all x € B;. Define A to be the union of these sets for j, m,n = 1,2, ....Then
A has measure zero (Exercise 3.2.6). Define

0 if X EA,
Fo) = [1im,_,c,o fix) if  x¢A.

Then f is measurable. Also, foreach x ¢ A there exists a positive integer N, such
that

Ifn(x)—f(x)l <1, nZNx:

In particular,

v, ) — f)l <1, x¢gA.

From this it follows that

IOl < T+ =1+ Ifn e, x & A,

and hence that f € L. Since a Cauchy sequence is bounded, there exists M > 0
such that || fjllc < M forevery j = 1,2, .... In particular, || fx_|lcc < M. The
last inequality now shows that f € L*°(u).

Now we want to show that our given Cauchy sequence actually converges to
this element f (in L°°(u); we already know that it converges pointwise almost
everywhere, but this is a weaker assertion than we need). To this end, let ¢ > 0.
There exists a positive integer K such that n, m > K imply

|fn = fmlloo <E€.
Then

| fa(x) = fum(x)| <€
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almost everywhere, and so
Hm [ fa(x) = fu(0)| <€,
for n > K and x € A. This shows that
If = fullo <€,

forn > K, as desired.

We next tackle the other cases, for 1 < p < oco. The proof is not triv-
ial, and the artillery required is somewhat substantial, we will use the lemma
preceding this theorem, Fatou’s lemma, Lebesgue’s dominated convergence theo-
rem, and Minkowski’s inequality. Consider a Cauchy sequence { fz}7>, in LP(u),
1 < p < 00, such that

o0
z | fillp = M < .
k=1

By Lemma 3.20, it suffices to show that ) _ f; converges (in norm), that is, that
there exists a function s € L? such that

“(kz;:fk) —sup—>0, as n — 0o.

We work on determining this s. Define, for each positive integer n,

gn(x) =) _ | filx)l.
k=1

Minkowski’s inequality implies that

Igall, < D il < M.
k=1
Therefore,

/(g,.)”du < M?.
X

For each x € X, {g.(x)};2, is an increasing sequence of numbers in R U {oc},
and so there exists a number g(x) € R U {oo} to which the sequence {g,(x)} 2,
converges. The function g on X defined in this way is measurable, and Fatou’s
lemma asserts that

/ gPdu < lim inf(/(g,,)”du) < M?,
X n—»00 X

In particular, this shows that g(x) < oo almost everywhere. For each x such that
g(x) is finite, the series 3 o, fi(x) is an absolutely convergent series. Let

_]0 if g(x) is infinite,
S =1T2 sy if glx) is finite.
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This function is equal, almost everywhere, to the limit of the partial sums s,(x) =
Y r—1 fr(x), and hence is itself measurable. Since

Isn(x)] < g(x),

we have that

s(x)] < g(x).

Thus, s € L? and

520) = sCI? < (I )] + Is)l)” =27 (8(0)"

We can now apply Lebesgue’s dominated convergence theorem to get

lingO (f (5p — s)Pdu) =0.
n— X

In other words,

_ p
1im (llss —sll,) =0,

and hence
lim ||s, — s|lp =0,
n— 00
which is precisely what we wanted to prove. O

The most important LP-spaces for us will be L?(X, u) where p is either
Lebesgue measure on some (not necessarily proper) subset of R”, or u is counting
measure on X = N. In the case of counting measure, the L”-space is denoted by
¢P(N), or ¢P (read “little ell p”), and is (the reader should come to grips with this
assertion) the space of all sequences {x,}>> , satisfying

o<
Y 1xal? < o0,
n=1

with norm given by

00 1

p

[kl = (D 1al?)”.
n=1

Note that £°° is the set of all bounded sequences, with

1{xn}geilloo = sup{lx,| [n = 1,2,...}.

(Recall the material of Section 1.2.)

Theorem 3.21 shows that all L?-spaces, | < p < oo, are complete. The cases
| < p < ooare deeper than the case p = 00, and it is harder to supply a proof that
applies for all measures. There are, however, some specific measures for which
there are easier proofs. It is instructive to see some of these as well, and for this
reason an alternative proof of the completeness of €7, 1 < p < 00, is now given.
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We consider a Cauchy sequence {x,},2, (a sequence of sequences!) in £7, with
the sequence x, given by

Xp = (din), (lén), .. )

For a fixed k, observe that

oo
() _ (m)
- = (2

i=1

{

a” —a™ ‘p) ;.

This shows that for each fixed k, the sequence {a{”}°, is a Cauchy sequence of
real numbers. Therefore, {a,i")};“;l converges; let

a; = lim a,(c").
n—»0Q

We now show two things:

(i) a = {ax}2, isin €7,
(i) lim |lx, —all, =0.

Exercise 2.3.1 shows that there exists M such that

Ixzllp < M,

foralln =1, 2, ....For any k, we thus have,

k 1
P
(D 1a1P)" < lxall, < M.
i=1

Letting n — oo yields

k 1
(D 1ai1”)” < m.
i=1
Since k is arbitrary, this shows that a = {a;}72, is in £7, and also that
”a"p <M.
To show (i1), let € > 0. Then there exists a positive integer N such that
|x, — Xpmllp <€, n,m=>N.

For any k, we thus have,

k L
(Zlai(") —a,.(m)l”)p <llxpn ~xmll, <€, n,m>N.
i=l1

If we now keep both n and k fixed, and let m — o0, we get

k

1
(Zla,‘"’ —a.-l”)’ <e¢, n=N.

(=]
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Since k is arbitrary, this shows that ||x, —a|, < € forn > N, which is equivalent
to (i1).

Note that the outline for the proof in the special case of counting measure is
exactly the same as for the general measure proof given in Theorem 3.21: Take
a specially designed function (sequence), which is a “pointwise” limit of sorts of
the given Cauchy sequence, and then

(i) prove that this specially designed function (sequence) is in fact an element
of the space;
(ii) prove that the convergence is in fact in norm (and not just ‘“‘pointwise”).

The difficulty encountered in the proof in the general case comes in having to
prove these two properties for arbitrary measures.

We end this chapter with a big theorem, proved (for Lebesgue measure on
Euclidean space) by F. Riesz in the 1910 paper [105]. Recall the definition of a
simple function. A simple function is called a step function if each of the sets E;
has finite measure.

Theorem 3.22. The step functions are dense in LP(u), for each 1 < p < oo.

PrROOF. Let 0 < f € LP. By Theorem 3.10 we can construct a sequence of
simple functions, {s,}°° ,, such that

n=1°
0<s1<s =<:--<f, lim s,(x) = f(x)almost everywhere.
n—>00
Each of these simple functions is, in fact, a step function. Furthermore,

(f—=s)P > (f—s)P >...>0, and l_iérgo((f—s,,)(x))" = 0 almost everywhere.

Lebesgue’s dominated convergence theorem now tells us that

1l
17 =salp = Jim ([ 1£=s5.17)" =0.
n—>00 X

Since every element of L? can be written as the difference of two nonnegative
functions in L?, the proof is done. O

We end this section by remarking that L? is a Hilbert space. What remains to
be seen in this is that the norm comes from an inner product. This is easily seen,
by defining

(f. 8) = [X fEdu

for complex-valued functions. The Hilbert space L? will be discussed in great
detail in the next chapter. One can also show that the norm on L7, for p # 2, does
not come from an inner product. A proof of this is outlined in Exercise 3.6.9.
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Figyes Riesz was born in Gyor, Austria—
Hungary (in what is now Hungary)

on January 22, 1880 (Figure 3.2). His
father was a physician. His younger
brother Marcel was also a distinguished
mathematician.

Frigyes Riesz studied in Budapest
and then went to Gdttingen and Zurich
before returning to Budapest, where
he received his doctorate in 1902. His
dissertation built on ideas of Fréchet, and
made connections between Lebesgue’s
work on measure-theoretic notions and
the work of Hilbert and his student
Erhard Schmidt (1876—1959; Russia, now
Estonia) on integral equations. Hilbert and
Schmidt had been working with integral
equations in which the functions were
assumed continuous. Riesz, in this context,
introduced the Lebesgue square integrable
(L2-) functions. He was also interested in
knowing which sequences of real numbers
could arise as the Fourier coefficients
of some function. He answered this
question, as did Fischer, and the result is
known as the Riesz—Fischer theorem (see
Section 4.2).

Over the next few years, and in an
attempt to generalize the Riesz—Fischer
theorem, Riesz introduced the [P-spaces
for p > 1, and the general theory of
normed linear spaces. One of the most
important results about the [P-spaces is
his Riesz representation theorem. This
theorem completely describes all the con-
tinuous linear functionals (see Section 6.3)
from (P to C. Riesz is often considered to
be the “father” of abstract operator theory.
Hilbert's eigenvalue problem for integral
equations was dealt with quite effectively
by Riesz in this more abstract setting. Riesz
was able to obtain many results about the
spectra of the integral operators

FIGURE 3.2. Frigyes Riesz.

associated with the integral equations of
Hilbert.

As alluded to in the preceding para-
graph, Riesz also introduced the notion of a
norm, but this idea did not come to fruition
until Banach wrote down his axioms for a
normed linear space in [10].

Frigyes Riesz made many important
contributions to functional analysis, as
well as to the mathematics profession as
a whole. His ideas show great originality
of thought, and aesthetic judgment in
mathematical taste. He is one of the
founders of the general theory of normed
linear spaces and the operators acting on
them. His theory of compact operators,
which generalizes work of Fredholm,
set the stage for future work on classes
of operators. While he did so much on
this abstract theory, Riesz was originally
motivated by very concrete problems,
and often returned to them in his work.
Most of Riesz's work on operator theory in
general, and spectral theory in particular,
lies beyond the scope of this book. For
a detailed historical account of Riesz's
contributions. see |34] or 194]
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Riesz was able to communicate about  a classic that continues to serve as an
mathematics superbly. He wrote several excellent introduction to the subject.
books and many articles, and served as Riesz died on February 28, 1956, in
editor of the journal Acta Scientiarum Budapest.

Mathematicarum. His book [107] is

Exercises for Chapter 3

Section 3.1

3.1.1 Write out the details of the proof, using diagonalization, that B is
uncountable.

3.1.2 Prove that Br is countable, and use this result to give an alternative proof
(as outlined in the text) that B is uncountable.

3.1.3 In this exercise you are asked to determine the set Bg for given events E.

(a) Determine the set B if E is the event that in the first three tosses,
exactly two heads are seen. What is the probability of this event occur-
ring? Does your answer to the last question agree with what you think
the Lebesgue measure of B should be?

(b) Determine the set B if E is the event that in the first n tosses, exactly
k heads are seen. What is the probability of this event occurring? Does
your answer to the last question agree with what you think the Lebesgue
measure of Bg should be? Explain.

3.1.4 Prove that (0, 1] \ S is uncountable, where S is the set referred to in the
strong law of large numbers. Hint: Consider the map from (0, 1] toitself that
maps the binary expression w = .a1a; ... to .a111az11aslla, ... . Prove
that this map is one-to-one and its image is contained in (0, 1]\ S.

Section 3.2

3.2.1 Let R be a o-ring. Prove that [ -, A, € R whenever A, € R, n =
1,2, .... Hint: Verify, and use, that [ -, A, = A1 \ (A1 \ Ay).

n=I1

3.2.2 Assume that u is a nonnegative, additive function defined on a ring R.

(a) Prove that 1 is monotone; that is, show that u(A) < u(B) whenever
A,BeRand A C B.
(b) Prove that u is finitely subadditive; that is, show that

whenever A, A;,... € R.



70 3. Measure and Integration

3.2.3 Assume that p is a countably additive function defined on a ring R, that
Ap € R, A € R, that

AyC A,
and that
o0
A= U A,
n=1
Prove that

lim p(A,) = n(A).
n—»00

(Hint: Put By = Aj,and B, = A, \ A, forn =2,3,...)

3.2.4 Prove that £ is aring, but is not a o-ring.

3.2.5 Prove Lemma 3.1. (Hint: Consider the case that A is an interval first, and
then consider finite unions of disjoint intervals.)

3.2.6 Prove that m* is countably subadditive.

3.2.7 This exercise is about the symmetric difference and distance functions S
and D defined on 27,

(@) Let A =1[0,4]x(1,10]and B = (0, 1] x [0, 2] in R2. Draw a picture
of the set S(A, B), and compute D(A, B).

(b) Consider arbitrary subsets A and B of an arbitrary set X. Prove that
D(A, B) = D(B, A).

(c) Consider arbitrary subsets A and B of an arbiwary set X. Does
D(A, B) = 0 necessarily imply that A = B? Either prove that it
does, or give a counterexample to show that it does not.

(d) Consider arbitwrary subsets A, B, C of an arbitrary set X. Prove that

S(A,C) < S(A,B)U S(B, 0),
and deduce that
D(A, C) < D(A, B)+ D(B, C).
(e) Considerarbiwrary subsets A, A2, B;, B, of an arbiwrary set X. Prove
S(A; U Az, By U By) C S(Ay1, B1) U S(A2, By),
and deduce that
D(A; U A, By U By) < D(A1, B1) + D(Ay, By).

3.2.8 If you have studied some abstract algebra, you may know a different use
of the term “ring” (the definition is given, incidentally, at the beginning of
Section 6.6). In this exercise, the term “ring” refers to the algebraic notion.
Prove that 2®") becomes a commutative ring with “multiplication” of two
sets taken to be their intersection, and with “addition” of two sets taken to
be their symmetric difference.

3.2.9 (a) Prove that all open subsets of R* are in M.
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(b) Prove that all closed subsets of R” are in M.
(c) Prove that all countable unions and intersections of open and closed
subsets of R” are in M.
3.2.10 Prove that the Cantor set is in M and that it has Lebesgue measure zero.

Section 3.3

3.3.1 Prove that every continuous function is measurable.

3.3.2 Give an example of a function f such that f is not measurable but | f| is
measurable.

3.3.3 Which characteristic functions are (Lebesgue) integrable on R? Is the char-
acteristic function of the rational numbers integrable on the unit interval?
If so, what is value of this integral?

3.3.4 Prove Theorem 3.8. (Hint: One approach is to notice that

x [|f(X)] >a) ={x | f&x) > a}Ufx |f(x) < —a})

3.3.5 Fill in the details of the proof of Theorem 3.9.

3.3.6 Complete the proof of Theorem 3.10.

3.3.7 Prove that f € L(R") if and only if fg, | fldm < oo.
3.3.8 Supply proofs for the missing parts of Theorem 3.11.

(a) Prove the first part of part (a) of Theorem 3.11.

(b) Prove the second part of part (a) of Theorem 3.11, for simple functions.
(The general case appears after the proof of the monotone convergence
theorem.)

(c¢) Prove part (b) of Theorem 3.11.

(d) Prove part (c) of Theorem 3.11.

(e) Prove part (d) of Theorem 3.11.

3.3.9 You have read about the phrase “almost everywhere” in the text. In partic-
ular, we say that two measurable functions are “equal almost everywhere”
if the set of points where they differ has measure zero.

(a) Provethatthisrelation is an equivalence relation on the set of integrable
functions.
(b) Prove that f and g are equal almost everywhere if and only if

Lfdmz_/Egdm

for every measurable set E.
(c) Provethat f = 0almosteverywhereif [, fdm = Oforevery E € M.

Section 3.4

3.4.1 Give an example to show that strict inequality can hold in Fatou’s lemma.
3.4.2 Give an example to show that without the existence of the function g in the
dominated convergence theorem, the conclusion may fail.
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Section 3.6

3.6.1 Prove that the triples (X, R, w) given in Examples 4 and 6 at the beginning
of Section 6 are, in fact, measure spaces. For the measure in Example 3,
show that

w(UJtan bal) = 3 ullan, bal)
n=1 n=1

whenever n # m implies [a,, b,] N [a,, b,) = 9.

3.6.2 For0 < p < 1, we can define the L?-space and || - || , in the same way that
we did for 1 < p < oo. Prove, by giving a suitable example, that | - ||,
does not satisfy the triangle inequality, and hence is not a norm.

3.6.3 Prove, as outlined in the text, that

p q
xy<—+2,
p q
for x, y > 0 and Holder conjugates p and g with 1 < p < oo.
3.6.4 Prove that

11 + 817l = (17 +8llong) = (1 +81,)"

for f,g € LP(u)and 1 < p < oo. (This equality is used in the proof of
Theorem 3.19.)

3.6.5 Prove that L*°, with norm | - ||, is a normed linear space.

3.6.6 Inthis exercise you will investigate relations between the various L? -spaces.

p—1

(@) Let 1 < p < g < oo. Consider Lebesgue measure on R". Construct
examples to show that neither L? C L9 nor L9 C L? holds.

(b) Next, supposethat ] < p <r < g < oo. Show that LP "N L9 C L’.
(This is for any measure space (X, R, wt).)

(c¢) Now assume that X is a finite measure space, i.e., that X is measurable
and that ;(X) < oo. Provethat L9 C L? forl < p < g < oo, and
give an example to show that this is a proper inclusion. Now prove that

1Al = 0fllp < Ufllg = lflles 1= p <g <00,

whenever u is a probability measure.
(d) Provethat €7 C ¢9for1 < p < g < 00, and give an example to show
that this is a proper inclusion. Now prove that

Ifllo <N fllg =W flp <Nfllh, 1< p<g<oo.

3.6.7 Show that for each f € L™, | f(x)| < || flloo almost everywhere.
3.6.8 Let I be an interval in R.

(a) Assumethat] < p < oo. Prove that C (/) is dense in L?(m) whenever
I is closed and bounded.

(b) Now drop the assumption that 7 is closed and bounded. We certainly
cannot expect C(/) to be dense in LP(m), since it is not even contained
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in it. We define the “continuous functions with compact support” on
X CRtobe

C(X)={f |f € C(X) and {x € X|f(x) # 0} is compact}.

The set {x € X|f(x) # 0} is often called the “support” of f. Again,
assume that 1 < p < oo. Prove that C.(J) is dense in L?(m). (Note
that this result subsumes the result of (a).)

(c¢) Prove that C.(7) is not dense in L°°(m).

(The results of Exercise 8 give an alternative proof of Theorem 4.7, and give
a way to define L?” that is independent of measure theory. See the paragraph
following the proof of Theorem 4.7.)

3.6.9 The point of this exercise is to show that the norm on L?, for p # 2, does
not come from an inner product. We start by considering L?([—1, 1]), with
Lebesgue measure. Set f(x) =1+ x and g(x) =1 — x.

(a) Show that

2p+1

P — — P
Nf15 ST Igll;,
If +gll5 =2°%,

2P+
I f —gllb = :
/=&l p+1

(b) Using part (a), show that the parallelogram equality asserts that

(p+1)7 =3,

Verify that this equality holds for p = 2.
(c) Prove that the parallelogram equality does not hold for values p # 2.

Hint: Show that the function (p + 1)% — 3 is a strictly decreasing
function of p > 1 and thus takes on the value zero for at most one
value of p.

(d) Modify the functions given in part (a) to prove the result for L?([7)
where I is any interval, bounded or unbounded, in R.



4

Fourier Analysis in Hilbert Space

In the last section of Chapter 3 we inwoduced the Lebesgue L?-spaces for general
measures and discussed their most basic properties. The most important L? -space,
by far, is L2. Its importance is its role in applications, especially in Fourier analysis.
The material of this chapter lies at the foundation of the branch of mathematics
called harmonic analysis.

In this chapter we will see that L2 is a Hilbert space (we already really have all the
bits of information we need to see this) and that in some sense the L2-spaces (with
different p’s) are the only Hilbert spaces. We will come to see how the problem
that Fourier examined, about decomposing functions as infinite sums of other —
somehow more basic — functions, is a problem best phrased and understood in the
language of abstract Hilbert spaces. One of the triumphs of functional analysis is
to take a very concrete problem — in this case Fourier decomposition — view it in
an abstract setting, and use theoretical tools to obtain powerful results that can be
translated back to the concrete setting. Fourier’s work certainly holds an important
spot at the roots of functional analysis, and it motivated much early work in the
development of the field.

Further Hilbert space theory appears in Section 5.4.

4.1 Orthonormal Sequences

During the second half of the eighteenth century and first decade of the nineteenth
century, infinite sums of sines and cosines appeared as solutions to physical prob-
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lems then being studied. Daniel Bernoulli (1700-1782; Netherlands)' suggested
that these sums were solutions to the problem of modeling the vibrating string,
and Joseph Fourier (1768-1830; France) proposed them as solutions to the prob-
lem of modeling heat flow. It is not really until the response to Fourier’s work
that we see other mathematicians coming to grips with the challenge that these
infinite sums truly posed: to understand the fundamental notions of convergence
and continuity. Over the decades following the appearance of Fourier’s works on
heat, the field of “real analysis” would be born in large part out of efforts to re-
spond to the challenges that Fourier’s work raised in pure mathematics. Many of
the great mathematicians of the period — perhaps most notably Cauchy, Riemann,
and Weierstrass — did their most important work in the development of this field.
For an excellent historical account of these mathematical developments, see [25].
Fourier begins with an arbitrary function f onthe interval from — to 7 and states
that if we can write

(o @)
aO .
f(x)= 5 + kz=1 ay cos(kx) + by sin(kx),

then it must be the case that the coefficients a; and b, are given by the formulas

1 n
ap = — f(x)cos(kx)dx, k=0,1,2,...,

-
and

1 w
b, = — f(x)sin(kx)dx, k=1,2,....
T

-

The big question is this: When is this decomposition actually possible? Even if
the integrals involved make sense, does the series converge? If it does converge,
what rype of convergence (pointwise, uniform, etc.) do we get? Even i_f the series
converges in some sense, does it converge to f?

The immediate goal is to show you how these questions about Fourier series
can be treated in the abs#ract setting of an inner product space.

Let us now take stock of what we already know by gathering our information
about L2, First, recall that L? = L?(u), for any abstract measure space (X, R, i),
denotes the collection of all measurable functions f : X — C such that the integral

fx | fiPdu

'Daniel Bemoulli is the nephew of James Bemoulli, who was mentioned at the beginning
of Section 3.1. The Bemoulli family produced several distinguished mathematicians and
physicists; at lcast twelve members of the family achieved distinction in at least one of these
tields.
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is finite. These functions are often called the “square integrable” functions on X.

With norm
Ti \/ [X fPdp,

this collection of functions becomes a Banach space. We can define an inner product
on L? via

(f. &) =/Xf§d#-

It is easily seen that this is an inner product, and that the norm does indeed come
from this inner product. That is,

K fll2 =/ (S, f) ==‘/[lel2du.

Theorem 3.21 shows that L? is a Hilbert space.

In the following definitions, the terminology should seem familiar from your
experiences with R”".

Let(V, (-, -)) be aninner product space. We say that v and w in V are orthogonal
if (v, w) = 0. We say that v is normalized if |v| = +/{v, v) = 1. A sequence
{uelie; in V 1is an orthonormal sequence if (vy,v;) = 8, 1 < k, j < 00. The
function &;; is definedtobe 1 if k = j and 0 if k # j.

In Exercise 4.1.1 you are asked to show that the trigonometric system (Figure
4.1)

1 cos(nx)  sin(mx)

r—2n ’ ﬁ ’ ﬁ ’
is an orthonormal sequence in the inner product space L*([—m, ], m). From this,
you should find it plausible that the goal of Fourier analysis in its general setting

is this: Given an orthonormal sequence { f;};>, in an inner product space V and
an f € V, find complex numbers c; such that

f= Z:Ckfk-
k=1

The convergence of this infinite sum is in the norm induced by the inner product.
Further, it would be desirable to be able to do this for all f € V. In general, this
cannot be done. Notice that Fourier was asserting that when { f; }72 | is the trigono-
metric system, the coefficients are of form ( f, f;) (an appropriate indexing of the
trigonometric system has not yet been established) whenever his decomposition
works.

Let { fi }7~, be an orthonormal sequence in V. If it is the case that foreach f € V
we can find constants ¢, (depending on f) such that

f - f:ckfk.

nm=1,,2,...

9
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| cos (nx)
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(a)

sin (mx)

v
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()
FIGUREA4.1. (a) the functions ﬂf/%ﬁ forn = 1, 2, 3. (b) the functions E‘—(\/%ﬁ form =1, 2, 3.

then we say that the sequence { f;}3°, is a complete orthonormal sequencein V.2 A
complete orthonormal sequence is sometimes called an orthonormal basis for V.
The latter terminology can cause confusion since a complete orthonormal system
is not a basis in the finite-dimensional sense discussed in Section 1.3.

The questions posed by Fourier’s work are, to some degree, answered by the fact
that the trigonometric system does indeed form a complete orthonormal sequence
in L2, This important result appears as Theorem 4.6.

The trigonometric system is certainly an important complete orthonormal se-
quence (for the Hilbert space L?([—, ])). But there are others, and we end this
section with a brief description of a few of them ([43] is a good general reference
for this topic). We can use the Gram—-Schmidt process to construct an orthonormal
sequence in any inner product space.

For our first example, the Hilbert space is L2([—1, 1]). If one applies the Gram~

Schmidt process to the functions 1, x, x?, x*, ... , one obtains the complete

ZNote that this is a new usage of the word “‘complete™ we now have at least two ways
we will use this adjective: a complete metric space, a complete orthonormal system.
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FIGURE 4.2. The Legendre polynomials, n = 3, 4.

orthonormal sequence of Legendre polynomials (Figure 4.2),

m+l 1 dn
N 1y =1,2, ...
3 rmiges DL

These polynomials are named for Adrien-Marie Legendre (1752-1833; France).
Next, consider the Hilbert space L2((0, 0o)). If one applies the Gram—Schmidt
process to the the functions x"e ™™, n = 0, 1, ..., one obtains the complete or-
thonormal sequence of Laguerre functions. These appear in quantum mechanics
in the analysis of the hydrogen atom. This family is named for Edmond Laguerre
(1834-1886; France).
For our third example, the Hilbert space is L>(R). If one applies the Gram-—

Schmidt process to the the functions x"e%, n = 0,1, --., one obtains the
complete orthonormal sequence of Hermite functions. These also appear in
quantum mechanics. This family is named for Charles Hermite (1822-1901;
France).

The Legendre, Laguerre, and Hermite functions all show up as eigenfunctions
of certain linear operators (linear operators are the subject of the next chapter)
related to the Sturm-Liouville problem in differential equations.

The final family we discuss is the complete orthonormal sequence of Haar
Junctions. The Hilbert space is L?([0, 1]). This example is fundamentally different
from the previous examples in that the functions in this family are not continuous,
and they are not connected with differential equations. Haar functions appear in
the study of “wavelets.” Wavelet theory and its applications experienced explosive
development in the 1980s. There are several good books, at varying levels, on the
subject. A “brief” investigation of wavelets, their properties and uses, makes a good
student project ([28] gives an excellent overview and introduction to wavelets).
Wavelet series are used in signal and imaging processing and, in some contexts,
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FIGURE 4.3. The Haar functions, H; ;(x).

are replacing the classical Fourier series. We define

Hp,o(x) = 1,

Hn,k(x) = 1

H,,
2— m——
[ O I
1
2 -
H; 4
2- —
N T T P S T I
1
2 |- —
( R | k—4
—22 if = <X < ?1,
n o k=14
27 if5E <x < X,
|0 otherwise ,

forn > 1,1 < k < 2" (Figure 4.3). This family is named for Alfréd Haar

(1885-1933; Hungary).

Jean Baptiste Josaph Fourier was born March 21,
1768, in Auxerre, France (Figure 4.4). His
father had been a tailor, but both of his
parents were dead by the time Fourier was
ten. There seems to be some disagreement
among authors as to exactly how many
siblings Fourier had, but by all accounts he
had many. According to [51], he was the
nineteenth (and not the last) child in the
family.

Fourier was distinguished in two fields:
mathematics and Egyptology. He began
both careers when he attended a military
school run by the Benedictines. He showed

great talent in many areas by the age of
fourteen. He wanted to join the military,
for some reason was rejected, and instead
entered a Benedictine abbey to train for
the priesthood. While there, he was able
to work on mathematics and submitted
his first paper in 1789. He never took
his vows and returned to his school,
teaching math, history, philosophy, and
rhetoric. This was the time of the French
Revolution, and Fourier became quite
involved in revolutionary politics. In 1794
he was imprisoned and sentenced to be
guillotined
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FIGURE 4.4. Joseph Fourier.

In 1795 the Ecole Normale in Paris
opened to train teachers in an effort to
rehabilitate the system of higher education
in France. The students were chosen and
financed by the republic. Fourier was
chosen to attend, and while there, he came
into contact with very good professors:
Lagrange, Laplace, and Gaspard Monge
(1746-18181; France). Unfortunately, the
school closed after a few months. At this
time, Fourier went to teach at the Ecole
Polytechnique, which was designed as a
military academy to train the military elite.
During this period he was, for a second
time, arrested and subsequently freed.

Over the next few years, Fourier taught
(mathematics with military applications)
and worked on mathematical research
(mostly having to do with polynomials:
extending Descartes’s rule of signs, ap-
proximating values of real roots, detecting
existence of complex roots).

In 1798 Fourier was recommended,
by Monge and the chemist Claude Louis
Berthollet (1748-1822; France), to be
Napoleon Bonaparte's scientific advisor
on his expedition to Egypt. Very soon

after their arrival in Egypt, the Institut
d’Egypte opened in Cairo, and Fourier
was appointed secrétaire perpetuel. He
had many duties in this post, including
investigating ancient monuments and
irrigation projects, but he managed to find
time to continue mathematical research.

Napoleon left for France in 1739. Fourier
followed in 1801 and was appointed by
Napoleon to a government position in
Grenoble. He held this post from 1802
until 1814. During this period, he devoted
much time to the writing of a massive
work entitled Description de 'Egypte.
This work was written by the team that
Napoleon brought with him to Egypt
and is very important in the birth of the
modern field of Egyptology; it gave the
most comprehensive account, to date, of
ancient and contemporary Egypt. To put
this accomplishment in perspective, the
Rosetta Stone was discovered by this
team, and it was in 1822 that hieroglyphics
were fully deciphered.

It was also during his time in Grenoble
that Fourier did his work on heat diffusion.
This work, done primarily during the period
1804-1807, culminated in a monograph
that was submitted to the Institut de
France in Paris at the end of 1807. This
paper caused a great deal of controversy.
One complaint was from Lagrange and had
to do with the convergence of his “Fourier
series.” Lagrange’s skepticism was on
target and, indeed, led to the rise of a new
field of mathematics: “real analysis” (see
[25]). The controversy caused Fourier to
revise the paper and resubmit it in 1811,
Eventually, his Théorie analytique de
la chaleur was published in 1822. This
work is Fourier's greatest contribution and
certainly remains one of the masterpieces
of mathematical physics. It is important
not only for the physical explanations that
it gives, but also for the mathematical
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techniques developed in the course of his later years focused on consequences
his attempting to explain the physics of of his earlier work. One of his other
heat flow. For example, he developed important mathematical projects during
techniques to find solutions for many this time was on problems that can now
differential equations that, up until that be viewed as precursors to the field of
point, had not been worked out. linear programming. He also did editorial
In the last fifteen years of his life, work and wrote several biographies of
Fourier continued to work on mathematics  mathematicians during this period.
and on topics related to his work in Fourier died on May 16, 1830, after
Egypt. However, his most substantial being in a state of deteriorating health for

contributions had already been made, and  several years.
much of his mathematical work during

4.2 Bessel’s Inequality, Parseval’s Theorem,
and the Riesz—Fischer Theorem

Let (V, (., -)) be an inner product space, and {f;}°, a specified orthonormal
sequence in V. Suppose we have an f € V that we can decompose as

f=) cife
k=1

What, then, are the c¢;’s to be? We turn to the very simple case of R3, with its
usual inner product, for inspiration. We take as our orthonormal family the three
Euclidean basis vectors e; = (1,0,0), e = (0, 1,0), and e3 = (0, 0, 1). Then
every vector in R3 can be written in form

3
E Cr€.

k=1

Inthiscase we know thatc; = (v, e1),c2 = (v, €;),and c3 = (v, e3). Thisexample
illustrates the next theorem.

Theoremd4.1. Supposethat f = .-, ck fx for anorthonormal sequence { £} ,
in an inner product space V. Then ¢, = (f, fi) for each k.

Before we prove this result, notice that this is, in fact, consistent with Fourier’s
assertion about the trigonometric system.

PROOF. Lets, = ) ;_, ck fi- Our hypothesis is thus that
lim ||s, — fIl =0.
n—00

Fix an m and let n > m. Then

1im (sn. fm) = (S, fu). (4.0
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This is because

(Sn, fM) - (f’ fM) — (Sn - fs' fm)s

and
|($n — f’ fm)| < lisn — f” . “fm" = |lsp — f"
Therefore,
o0 (0. @) o0
(Sns fm) = D _(Ck fier fiu) = Z (fio ) =D kb =€m.  (42)
Combining (4.1) and (4.2) gives the desired result. O

Let {fx}32, be an orthonormal sequence in V, and let f € V. We call
Z:’ll (fs fi) fx the Fourier series of f with respect to {fi}i,, and (f, fx) the
Fourier coefficients of f withrespect to { f;}72,. These objects are defined without
any assumptions or knowledge about convergence of the series.

The next theorem tells us something about the size of these coefficients.

Theorem 4.2 (Bessel’s Inequality®). Suppose that { £}, is an orthonormal
sequence in an inner product space V. For every f € V, the series (of nonnegative
real numbers) Y -, |(f, fi)|? converges and

Y UL FE <A
k=1

PROOF. Consider the partial sum s, of the Fourier series for f. Then

(f = S J&) = ([, Ji) — (Sn, Ji)
= (f, fo = (348 S s )
j=1

= (f, fid — i((f, fi)fi, fk)

j=1

= (f, fid = )_(fs Fi)(Si» f)
j=1

= (f. fo) = D_{F» Fddie
j=1

= (f, fid = ([, i) = 0.
This shows that f — s, is orthogonal to each f;. Further,

(F = Snos) = (£ =5 U S )

kw1

3Due to Friedrich Bessel (1784—1846; Westphalia, now Germany).
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= 3 (F o (£ £
k=1

=Y (£ ff = sn, fio),
k=1

which equals zero by the previous argument. This shows that f — s, is orthogonal
to s,. Then, by Exercise 4.2.1,

If = sall® + lsall®> = £
This shows that
Isal® < I FIP.

Since

Isall* =

i(f, fe) f “2

k=1

which, by the same exercise and induction, is equal to

Y IS Fe fill?,
k=1

we have that

lsall> =Y 1A F P - Lfell® = D IS, fidl.
k=0 k=1

Combining these last two sentences yields

Y U 1R < 1A
k=1

Since this holds for each n,

[, f)12 < IFI1%,

M3

=~
I

1
as desired. 0

It is natural to want to determine conditions on { f¢}72 ; under which equality in
Bessel’s inequality holds.

Theorem 4.3 (Parseval’s Theorem®). As in the preceding theorem, suppose that
{ f)}g2, is an orthonormal sequence in an inner product space V. Then { fi )72, is
a complete orthonormal sequence if and only if for every f € V,

Y WL IR =S
k=1

‘Due to Marc-Antoine Parseval des Chénes (1755-1836; France).
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PrOOF. This is left as Exercise 4.2.1(b). O

We end this section with a sort of converse to Bessel’s inequality. Theorem
4.2 implies, as a special case, that if f € L2, then the sum of squares of the
Fourier coefficients of f, with respect to the trigonometric system {fi}72, is
always finite. The combination of Theorems 4.2, 4.3, 4.4, and 4.6 sets up a “linear
isometry” between L?([—m, 7], m) and £2. Specifically, for f € L?, define Tf =
{({f, fi)}22,, where {f¢}2, denotes the trigonometric system. Then Tf € ¢£2
(Theorem 4.2), T is linear, one-to-one (Theorem 4.6, together with Theorem 4.5
(c)), onto (Theorems 4.4 and 4.6), and || f||;2 = ||ITf ||,z (Theorem 4.3), for all
f € L2, This result, that L? and £> are isometrically isomorphic, is referred to as
the Riesz—Fischer Theorem (Theorem 4.6 sometimes goes by the same name).

Theorem 4.4. Assume that

(@) {dc}72, is a sequence of real numbers such that Z:Z;l d,f converges, and
(b) V is a Hilbert space with complete orthonormal sequence { fi};- -

Then there is an element f € V whose Fourier coefficients with respect to { fi )7,
are the numbers di, and

IfIP =) df.
k=1

PrROOE. Define

Sp = defko
k=1

Form > n,

1S5 — Smll* = i Y didilfy, fd = ) 4.

j=n+1k=n+1 k=n+1

Therefore, {s,}52 , is Cauchy. Because V is a Hilbert space, thereisan f € V such
that

lim ||s, — f|| =0.
n— 00

This is what we mean when we write

00
f=) dfe
k=1
and Theorem 4.1 now says that dy = (f, fi).
The remaining identity now follows from Parseval’s theorem. O

In order for the Riesz—Fischer theorem to be true, we would need to know
that the trigonometric system is, in fact, a complete orthonormal sequence in
L2([—n, ], m). This is the goal of the next section.
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4.3 A Return to Classical Fourier Analysis

We now return to the classical setting, and the orthonormal family

1 cos(nx) sin(mx)

Var JE D JE
in L2([—x, 7], m).

Our first theorem of this section is proved mainly for its use in the proof of
Theorem 4.6 (that is why it appears here and not in the preceding section), but
it 1s interesting in its own right. Parseval’s theorem gives an alternative way to
think about “completeness” of an orthonormal family; this theorem gives a few
more ways. We state it only for orthonormal families in the specific Hilbert space
L?([—m, ], m); the result can be generalized to arbisary Hilbert spaces.

, nm=1,2,...,

Theorem 4.5. For an orthonormal sequence {fi}°, in L*([—m, ), m), the
following are equivalent:

(@) {fi}p2, is a complete orthonormal sequence.
(b) For every f € L? and € > O there is a finite linear combination

g = tdkfk
k=1

suchthat || f — gll2 <e.

(c) If the Fourier coefficients with respect to { fi}72, of a function in L? are all
O, then the function is equal to 0 almost everywhere.

ProOOF. It should be clear from the definition that (a) implies (b).
To prove that (b) implies (c), let f be a square integrable function such that
(f, fx) =O0for all k. Let ¢ > O be given and choose g as in (b). Then

1718 = 1013 = (£, " defe)| = 145 £ — &)
k=1
<Ufllz-f —&llz < el fl2.

This implies that | f |, < €. Since € was arbitrary, f mustbe 0 almost everywhere.
To prove that (c) implies (a), let f € L? and put

n

sn =) _(f, f fe.

k=1

As in the proof of Theorem 4.4, we see that {s,}° , is Cauchy in L 2. And Theorem

3.21 then tells us that there is a function g € L? such that
lim |Is, — gl =0.
n—00

That 1s,

g = }ofju. fo) fe.

km|
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Theorem 4.1 then tells us that the Fourier coefficients of g are the same as the
Fourier coefficients of f with respect to {fi},c,, i.e., (g, fi) = (f, fx). By (b),
f — g must equal 0 almost everywhere. In other words,

=) _(f fdfe
k=1

Since f was arbitrary, { fi};-, is a complete orthonormal sequence. O

Theorem 4.6. The trigonometric system
1 cos(nx) sin(mx)
forms a complete orthonormal sequence in L>([—x, w], m). That is, if f is such

that | f|? is Lebesgue integrable, then its (classical) Fourier series converges to f.
The convergence is convergence in the norm || - |2, i.e.,

lim [ f i [ f(x) - (% n k; ai cos(kx) + k; be sin(kx))]zdx] — 0.

This type of convergence is often called “in mean” convergence.

nm=12,...,

PrROOF. In Exercise 4.1.1 you are asked to prove that the trigonometric system is
orthonormal. We complete the proof of the theorem by verifying that condition (c)
of Theorem 4.5 holds. First consider the case that f is continuous and real-valued,
and that ( f, fx) = O for each f;. If f # 0, we then know that there exists an x
at which | f| achieves a maximum, and we may assume that f(xo) > 0. Let é be
small enough to ensure that f(x) > ﬁ;—") for all x in the interval (xo — 8, xo + 9).
Consider the function

t(x) =1+ cos(xg — x) — cos($).

This function is a finite linear combination of functions in the trigonometric system,;
such functions are called “trigonometric polynomials.” It is straightforward to
verify

() 1 < t(x), forall x in (xg — &, xo + 8), and

(ii) |2(x)| < 1 for all x outside of (xg — 8, xo + 8).
Since f is orthogonal to every member of the trigonometric system, f is
orthogonal to every trigonometric polynomial and, in particular, is orthogonal
to t" for every positive integer n. This will lead us to a contradiction. Notice
that

0= (f, 1" = f F(x)dx

xo—0 xo0+38 n
=/ fO"(x)dx +/ f(xn"(x)dx + flO)t"(x)dx.

- xo—8 Xo+4

By (ii) above, the first and third integrals are bounded in absolute value foreach n by
27 f(x0). The middle integral, however, is greater than or equal to f“" f(xn"(x)dx,
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where [a, b] is any closed interval in (xo — &, xo + &8). Since ¢ is continuous on

[a, b], we know that ¢ achieves a minimum value, m, there. By (i) above, m > 1.
Then

fxo)
7 -m (b a)a

b
/ fx)t"(x)dx >
a
which grows without bound as n — oo. This contradicts the assumption that
0 = (f,t") for all n. Thus, any continuous real-valued function that is orthogonal
to every trigonometric polynomial must be identically O.
If f is continuous but not real-valued, our hypothesis implies that

¥/

f(x)e”"®dx =0, k=0,%1,%2,...,

-

and thus also that

n
e ™dx =0, k=0, +1,+2,....

—n

If we add and subtract these two equations, we see that the real and imaginary
parts of f are orthogonal to each of the members of the trigonometric system. By
the first part of the proof, the real and imaginary parts of f are identically O; hence
f is identically O.

Finally, we no longer assume that f is continuous. Define the continuous
function

F(x) = / f(t)dz.

For now let us assume that fi(x) = %_J’;—"l Our hypothesis implies

Ozf f(x)cos(kx)dx.

Integration by parts yields

f F(x)sin(kx)dx = ;lc- " f(x)cos(kx)dx = 0.

-7 -

Similarly, we can show that

f F(x)cos(kx)dx = 0.

T

We now have shown that F', and hence F — C for every constant C, is orthogonal
to each of the nonconstant members of the trigonometric system. We now take
care of the member 71— Let

n

l n
Co=— f F(x)dx.
2n J_»

Then F — Cy is easily seen to be orthogonal to every member of the trigonometric
system. Since F is continuous, F — C is also continuous, and the first part of the



88 4. Fourier Analysis in Hilbert Space

proof shows that F — C is identically 0. From this it follows that f = F' is O
almost everywhere. O

Is this theorem “good”? Note that || - ||,-convergence does not necessarily imply
either uniform or pointwise convergence (Exercise 4.1.4). With uniform conver-
gence, for example, we know that we cannot get the same result because the
partial sums of the Fourier series of f are always continuous functions, and if
the convergence of the series were uniform, then f would have to be continuous,
too. Since L?([—m, 7], m) contains discontinuous functions, we see that uniform
convergence cannot always be achieved.

Theorem 4.6 has an important corollary, which we state as our next theorem.
See Exercise 3.6.8 for an alternative proof of this same result.

Theorem 4.7. C([—r, 7)) is dense in L2.

ProoF. This is immediate, since the trigonometric polynomials are each con-

tinuous, and Theorem 4.6 shows that the smaller set is dense (see Theorem
4.5(b)). O

This theorem gives us an alternative way to define L. First, it is not hard to see
that the interval [—o, r] can be replaced by any other closed and bounded interval
[a, b]. One can define L?([a, b], m) as the completion of C([a, b]) with respect to
the norm || - ||2. The advantage of this definition is that it gives a way of discussing
the very important Hilbert space L? without ever mentioning general measure and
integration theory. Specifically, we define L2 to be the collection of functions f
defined on the interval [aq, b] such that

im (| f» — fll2=0
n— 00

for some sequence {f,};2, € C([a, b]). Actually, L? must be considered to be
the equivalence classes of such functions, where two functions are equivalent if
and only if they are equal almost everywhere (see the discussion preceding The-
orem 3.17). Therefore, it is not entirely true that this definition avoids discussing
measure. However, we can give this definition with only an understanding of
“measure zero,” and not general measure. (And measure zero can be defined in a

straightforward manner and is much simpler to understand than general measure.)

Exercises for Chapter 4

Section 4.1

4.1.1 Show that the trigonometric system
1 cos(nx)  sin(mx)
Vo' oJm T Jm

is an orthonormal sequence in L3([~n, x]. m).

nnm=1,2,...,
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4.1.2 In this exercise you will actually compute a classical (i.e., with respect
to the orthonormal sequence of Exercise 1) Fourier series, and investigate
its convergence properties. The function given is a basic one; in the next
exercise you are asked to do the same procedure with another very basic
function. You are being asked to do these by hand, and you can no doubt
appreciate that the computations get quite laborious once we depart from
even the most basic functions. There are tricks for doing these computations;
the interested reader can learn more about such techniques in a text devoted
to classical Fourier series.

(a) Let

if —m <x <0,
ifO0<x <.

fx) = {(1,

Show that its Fourier series is
1 1 N (-1 =1
E + ; ; (( )n ) sin(nx).

(b) Explain why this series converges in mean to f.

(c) What can you say about the pointwise and uniform convergence of this
series?

(d) Why are the coefficients of the cosine terms all zero?

4.1.3 In this exercise you will compute another Fourier series and investigate its
convergence properties.

(a) Let f(x) = x?. Show that its classical Fourier series is

% Z (= 1 i cos(nx).

(b) Explain why this series converges in mean to f.

(c) What can you say about the pointwise and uniform convergence of this
series?

(d) Why are the coefficients of the sine terms all zero?

4.1.4 For a sequence {f,}32, in L*([—m, 7], m), we have seen three ways for
{fa}22, to converge:

(I) “pointwise,”
(ii) “uniformly,”
(iii) “in mean.”

The point of this exercise is to understand the relation between these three
types of convergence. For the counterexamples asked for below, use what-
ever finite interval [a, b] you find convenient. Please make an effort to
supply “easy” examples.

(a) Prove that uniform convergence implies pointwise convergence.
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(b) Give an example to show that pointwise convergence does not imply
uniform convergence.

(c) Prove that uniform convergence implies convergence in mean.

(d) Give an example to show that pointwise convergence does not imply
convergence in mean.

(e) Give an example to show that convergence in mean does not im-
ply pointwise convergence. (Note that the same example shows that
convergence in mean does not imply uniform convergence.)

4.1.5 Apply the Gram—Schmidt process to the functions 1, x, x2, x3, . .. to obtain
formulas for the first three Legendre polynomials. Then verify that they are
indeed given by the formula

m+l 1 d
J _1y =123
2 rmae® V. n=123

4.1.6 Prove that the Haar family is an orthonormal family in the Hilbert space
L*([0, 1]).
4.1.7 (a) Show that the sequence

inx
€

\/27r’

is a complete orthonormal sequence in L*([-m, 7]).
(b) Show that the sequence

/2
—cos(nx), n=1,2,3,...,
T

is a complete orthonormal sequence in L2([0, w]). (Observe that

\/g cos(nx) can be replaced by \/g sin(nx).)

n=0,x1x2,...,

Section 4.2

4.2.1 (a) Prove that in any inner product space (V, (-, :)), f and g orthogonal
implies

1A%+ g2 = 1IIf + gll®.
Here,as usual, || - || = /(- -).

(b) Prove Parseval’s theorem.

4.2.2 Assume that { f,,}°, is a sequence in L? and that f, — f in mean. Prove
that {|| f»ll2}72, is a bounded sequence of real numbers.

4.2.3 Assume that f, f2,..., f, is an orthonormal family in an inner product
space. Prove that fi, f2, ..., f, are linearly independent.

4.2.4 For f and g in an inner product space, g # 0, the projection of f on g is
the vector

(S8
11
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Show that the two vectors

(f g)g
Igll?

(f, g)g
Igll?

and f —

are orthogonal.
4.2.5 (a) Show that the classical Fourier series of f(x) = x is

00 1\yntl
2 Z =1 sin(nx).
n=1

n

(b) Use your workin(a), together with Parseval’s identity, to obtain Euler’s
remarkable identity

®. 1 72
P

(Note: The same procedure can be applied to the Fourier series of x*
to obtain

=1
I

=

and so on!)
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An Introduction to Abstract Linear
Operator Theory

In this chapter you will read about the beginning material of operator theory. The
chapter is written with the aim of getting to spectwral theory as quickly as possible.
Matrices are examples of linear operators. They sransform one linear space into
another and do so linearly. “Spectral values’ are the infinite-dimensional analogues
of eigenvalues in the finite-dimensional situation. Specwral values can be used to
decompose operators, in much the same way that eigenvalues can be used to
decompose matrices. You will see an example of this sort of decomposition in
the last section of this chapter, where we prove the spectral theorem for compact
Hermitian operators. One of the most important open problems in operator theory
at the start of the twenty-first century is the “invariant subspace problem.” In the
penultimate section of this chapter we give adescription of this problem and discuss
some partial solutions to it. We also let the invariant subspace problem serve as
our motivation for learning a bit about operators on Hilbert space. The material
found at the end of Section 3 (from Theorem 5.7 onwards) through the last section
(Section 5) of the chapter is not usually covered in an undergraduate course. This
material is sophisticated, and will probably seem more difficult than other topics
We cover.
Further basic linear operator theory can be found in Section 6.3.

5.1 Basic Definitions and Examples

We start by considering two real (or complex) linear spaces, X and Y. A mapping
T from X to Y is called a linear operator if the domain of T, Dy, is a linear
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subspace of X, and if
T(ax +By) =aTx + BTy

for all x, y € D7 and all real (or complex) scalars @ and 8. Notice that any linear
map satisfies 7(0) = 0. In this context it is common to write T x in place of T'(x),
and unless otherwise stated, Dr is taken to be all of X. The first thing we want to
do is establish a reasonable list of examples of linear operators.

EXAMPLE 1. As should be familiar from linear algebra, any real m x n matrix
(a;j) defines a linear operator from R" to R™ via

( al a;n c e din \
X1
ay a» ... Qp n n n
= E alej, E aszj,...,Zaijj
\ "
Anl aGm2 ... Qmn )
EXAMPLE 2. An “infinite matrix” (a;;),i, j = 1,2, ..., can be used to represent

an operator on a sequence space. For example, the infinite matrix

(0 1 0O 0\
0 0 1 O...
0 0 0 1...

o )

represents the linear operator T acting on £2 = £2(N) (or £, etc.) given by

T(xy1, x2,...) = (x2,x3,...).

This is an example of what is called a shift operator. More specifically, it is likely
to be referred to as the “backward unilateral shift,” or “unilateral shift,” or “left
shift.” We will use the last of these names. Another important shift is the “right
shift,” defined by

S(xl, X2, .. ) = (0, X1, X2, .. )

What is the (infinite) matrix representing this shift? There are also “weighted
shifts.” For example, the sequence of 1’s in the matrix of T can be replaced by a
suitable sequence {a;};>, of scalars, and the weighted shift thus constructed sends

(x1, x2,...)to (a1 x2, axxs, ...). The class of shift operators plays an important role
in the theory of operators on Hilbert spaces.

EXAMPLE 3. For our first example of a linear operator on a function space, we
observe that the map

|
Tf = / f(t)d(
0
defines a linear operator T : C((a, b]) = R.
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Integral and differential equations are rich areas of application for operator
theory, and they provided impetus for the early development of functional analysis.
Many important classes of linear operators involve integrals.

EXAMPLE 4. The map

b
(Tf)(s) = f k(s, )£ (1)dt

defines a linear operator T : C({a, b]) = C([a, b]), where k(s, t) is defined for
a <s <b,a <t <band, for each function f € C({a, b)), the function

b
s—>/ k(s,t)f(¢)dt

is continuous on [a, b]. This is called a Fredholm operator of the first kind, named
in honor of Erik Ivar Fredholm (1866-1927; Sweden). These operators are an
infinite-dimensional version of the first example: Imagine that the variables s and
t take on integer values only, and that the function k(s, ¢) is the matrix (k;,).

EXaAMPLES. Letkbe asinExample4. A slight variation on the preceding example
leads us to the linear operator

b
(TF)s) = f(s) — / ks, ) f()dt.

This is called a Fredholm operator of the second kind.

If k(s,t) = O for all t > s (that is, k is “lower triangular’’), the operators
of Examples 4 and 5 are called Volterra-type operators (of the first and second
kind, respectively). Vito Volterra was a powerful mathematician; we have already
encountered some of his many contributions. It is his work on integral equations
that served as impetus for some of the early development of functional analysis.
Already by the age of thirteen, Volterra was working on the three body problem.
Throughout his life he was a sirong promoter of international collaboration among
scientists, and he wraveled extensively to support this cause. He refused to take the
oath of allegiance to the Italy’s Fascist government and so, in 1931, was forced to
leave his position at the University of Rome. He spent most of the rest of his life
in Paris.

The formulas of Examples 4 and S can be used to define integral operators on
different function spaces. For example, if k(s, t) € L?([a, b] x [a, b)), then the
formulas define linear operators from L2([a, b)) to itself. You will get to work with
an operator of this type in Exercise 5.3.12.

ExaMpLE 6. We end with one more example, of a fundamental kind. If H is a
Hilbert space with inner product (-, -) and xq is a designated element of H, then
the map Tx = (x, xo) defines a linear operator T : H — C. These are examples
of what are called “linear functionals” and are much more important than will be
made clear in this book. See Section 6.3 for more on linear functionals.
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When X and Y are normed spaces, as they are in all our examples above, a linear
operator T : X — Y may or may not be continuous. One very nice consequence
of being linear is that continuity need be checked only at a single point. This is
what our first theorem of the chapter says.

Theorem5.1. Let X and Y be normed linear spaces. A linear operator T:X — Y
is continuous at every point if it is continuous at a single point.

PROOF. Suppose that T is continuous at the point x(, and let x be any point in X
and {x,}°° , asequence in X converging to x. Then the sequence {x, — x + x¢}.c ,
converges to xg, and therefore, since T is continuous at xg, {T(x, — x + x0)},~;
converges to Txg. Since T is linear,

T(x, —x+x9) =Tx, — Tx + Txy,

and hence {Tx,}32, converges to Tx. Since x was chosen arbiwarily, T is
continuous on all of X. O

By this theorem, in orderto see that a given linear operator is continuous, it suffices
to check continuity at 0.

5.2 Boundedness and Operator Norms

Let X and Y be normed linear spaces. A linear operator 7 : X — Y is said to be
bounded if there exists an M > 0O such that

ITxlly < Mlix|lx

for all x € X.
We shall now discuss the boundedness of a few of the operators introduced in
the previous section.

EXAMPLE 1. The left shift T : £> — ¢£2 defined by
T(xl, X2y o ) = (X2, X3, .. )

is bounded because

(o o] 0 @]
2 2
1T x2, - e = Y (x> < Y 1wl = 11Gers x2, - )llee.

We may choose M = 1 in this case.

ExXAMPLE 2. Let k(s, t) be a continuous function of two variables defined for all
s. t € [a, b]. The integral operator T : C([a, b]) = C([a, b]) defined by

b
(T f)(s) =/ k(s.t) f(t)dt
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is thus a Fredholm operator of the first kind. It is bounded because

ITf lloo = maxa<s<p

b
[a k(s, £) f(t)dt“

b
[ ke, 1 oar)
b

< maxX,<;< / (maxaftsblk(s, t)l)(maxaftsbl f(t)l)dt]

< MaXg<s<p [

= max,<sep | (maxasizslk(s, ) - 1 /oot — @)
= (max,zcsomaxasisolk(s, 1)) - (5 = @) - £ llo-

We may choose M = (max,<;<pmaX,<;<plk(s, t)|) - (b — a) in this case.

In the first example, any number larger than 1 can also be used for M, but
no number smaller may be used (you can see this by considering, for example,
(x1, x2,...)=1(0,1,0,...)). Inother words, 1 is the smallest number M such that

ITxllez < Mllx|lez

forall x € X. Since this is the case, we say that the left shift operator £2 — £2 has
“operator norm’ 1, and write

I T || gezy = 1.

(The notation B(£%) will be explained very shortly.) In general, the norm of a
bounded operator T : X — Y is defined to be

inf{M |[ITx|ly < Mllxx}.

The collection of all bounded linear operators from X to Y will be denoted by
B(X,Y).If X = Y, we follow the standard practice and write B(X) for B(X, Y).
The norm of T considered as an operator from X to Y is denoted by ||T |g(x,y), or
simply by || T || if the spaces X and Y are clear from context. Beware: The operator
norm depends on the norms on the spaces X and Y. For example, the integral
operator given by the formula

1
(T f)(s) = f ks, 0 f(0)dt,

0

with suitable conditions on the function k(s, ¢), can be considered either as an
element of B(C([0, 1])) or as an element of B(L2([0, 1])). In this case, the operator
norms

| T | 8Bco, 11)) and VT | 8cz2o0, 11)

need not be equal. See also Exercise 5.2.6.
If x = 0 in the inequality

ITxlly < MilxNx.
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then any number M works, so we may assume that x 7 0. We thus see that the
norm of T may also be defined to be

”Tx”Y ]
Il [ x
Further,
i e 20 = (I (FZp)l, 1+ # o)
llx il x x| x
C (1T xlly |lIxllx = 1)
c {ITxlly |Ixllx < 1}.
Put

T x||y ]
— X 0 ’
M, sup[ T |x #

M, = sup{[ITx|ly |llxllx =1},
M; = sup{||Tx|ly |llxllx <1}.

The above set inclusions show that

M, < M, < M,
However, if x # 0, then we have that
NT x|y <M,
Il | x

and hence
ITxlly < Milixlix.
If, further, ||x||x < 1, then
ITx|ly < Millx|lx < M;.
Taking the supremum now over all ||x||x < 1 yields
M; < M,.
Thus, in fact,
My = M, = M.

This gives a few (slightly) different ways of thinking about the norm of an operator.

How does one compute an operator norm? To try to calculate || T || for a specific
operator T, first establish an upper bound for |7 || and try to make it is small as
possible. This is done by thinking of the least value of M that makes

ITxIl < Mlix|

valid for every x in the domain space. Then try to show that this value for M cannot
be improved upon by picking an element x (or sequence {x,)}Jo ) for which this
bound is attained (or is the supremum).
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Theorem 5.2. Let X and Y be normed linear spaces. A linear operatorT : X —
Y is continuous on X if and only if it is bounded on X.

ProoF. First assume that 7 is continuous on X. Then it is continuous at 0 and
thus there exists ad > O suchthat ||x|x < & implies

ITx|ly = ITx — TO|ly < 1.

Let x € X be arbiwary and set xg = -II%ICT; Then

1> ||Txolly = ITx]ly,

111

showing that

ITxlly = <lxlix

for all x € X. In other words, T is bounded, and the norm of T is at most %
For the other direction, it suffices to show that T is continuous at 0. Let {x,}32
be a sequence converging to 0. Then, since T is bounded,

I Txnlly < IT - llxnlix

for all n, and hence | T x,||ly = 0 as n — oo (that is, T is continuous at 0). O

Theorem 5.3. Let X and Y be normed linear spaces. The collection B(X, Y) of
all bounded linear operators T : X — Y, endowed with the operator norm as
discussed above, forms a normed linear space.

Proor. Left as Exercise 5.2.1. 0O

Theorem 5.4. Let X and Y be normed linear spaces. B(X, Y) is a Banach space
whenever Y is a Banach space.

Proor. By Theorem 5.3 all that remains to be shown is that B(X, Y) is complete
whenever Y is complete. Let {7,,};2 , be a Cauchy sequence in B(X, Y). We aim
to show that {7, }° , converges.

Let € > 0. Then there exists an N such that

| T — m"B(X,Y) <€

whenever n, m > N. Also, since any Cauchy sequence is bounded, there exists
M > 0 such that | T, ||gx.yy < M for all n.

Now, {T»}32, Cauchy implies that the sequence {T,x},2, is Cauchy for each
x € X. Since Y is assumed complete, {T,x}>>, converges for each x. Let Tx
denote the limit of the sequence {7,x}°2,. The operator T thus defined is linear,
and

ITxlly < Mllx|lx

for all x € X (thatis, T is a bounded operator). Therefore, T € B(X.Y). T is our
candidate for the limit of the sequence {7,}°%, in B(X.Y).
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Forn >m > N,

\Tn — T llBex,y) <€,

and so
| Thx — Tmx|ly < €llxllx (5.1)
for all x € X. If we hold m fixed, then
ITax — Tx|ly = ITx — Tuxl|ly
as n — oo. Therefore, lettingn — oo in (5.1) yields
ITx — Tuxlly < ellxllx
for all x € X. In other words,

”T I “B(X,Y) <€

for all m > N, and the proof is complete. O

5.3 Banach Algebras and Spectra; Compact Operators

Analgebrais alinear space A together with a definition of multiplication satisfying
four conditions:

(i) a(bc) = (ab)c,

(ii)) a(b+c) = ab + ac,
(iii) (a + b)c = ac + bc,
(iv) A(ab) = (La)b = a(Ab)

for a, b, c € A and scalar A.

The algebra is called real or complex according to whether the scalar field is the
real or complex numbers. For the remainder of the chapter, and unless specifically
mentioned, all scalars will be assumed complex. If there is an element e € A such
that ea = ae = a for all a € A, we have a unital algebra.

Analgebra A that is also a normed linear space whose norm is submultiplicative,
that is, it satisfies

labll < lla|l - |5l

for all a, b € A, is called a normed algebra. If the norm on a normed algebra is
complete, then A is a Banach algebra.

Assume X is a normed linear space and consider B(X) = B(X, X). This, by
Theorems 5.3 and 5.4, is a normed linear space and is a Banach space whenever
X is. Notice, too, that S o T € B(X) whenever §, T € B(X). This property,
together with the fact that B(X) is a linear space, makes B(X) into an algebra. In
addition, note that ||S o T'|| < [IS|| - |IT|| for all §, T € B(X) (you are asked to
do this in Exercise 5.3.1). Thus, B(X) is a Banach algebra whenever X itself is
a Banach space. If we define / € B(X) by /x = x for all x € X, then / serves
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as a multiplicative identity for B(X). Hence B(X) is a unital Banach algebra. We
usually write ST in placeof So T.

An element S of B(X) is called invertible if there exists T € B(X) such that
ST =1 = TS. It is important to realize that S may have a linear space inverse,
T, on X without being invertible in B(X). In this case, T will fail to be a bounded
(continuous) operator. If X is a Banach space, then T must always be bounded
(Exercise 6.3.1). Along these same lines, note that S may have a “left inverse,” yet
not be invertible. Consider, for example, the right shift on 02 = ¢2 given by

S(x1, x2,...) =(0, x1, x2,...).
The left shift

T(x1, x2,...)=1(x2,x3...)

satisfies TS = I and hence serves as a “left inverse” for S. There is, however, no
“right inverse” for S. It is interesting to observe that this behavior cannot happen
for finite matrices. That is, if an n x n matrix A has a right inverse B (AB = I),
then B must also be a left inverse for A. See Exercise 5.1.3.

Sometimes, the inverse of a given operator is obvious. Sometimes, it is equally
obvious that a given operator is not invertible. For example, it may be clear that
the operator is not one-to-one, as is the case with the left shift. Likewise, it may
be clear that the operator is not onto, as is the case with the right shift. it would be
nice to have some “tests” for invertibility. Preferably, a test would be easy to use.
The next theorem gives one such test.

Theorem 5.5. Let X be a Banach space. Suppose that T € B(X) is such that
|T| < 1. Then the operator I — T is invertible in B(X), and its inverse is given

by

I-T)!'= i Tk.

k=0

ProOF. Exercise 5.3.5 tells us that | 7| < ||T|* for each positive integer k.
Therefore,

(0 @] o0
Y UTH <Y Tk,
k=0 k=0

and Lemma 3.20 and Theorem 5.4 together tell us that the series Y o, T* is an
element of B(X). It remains to be shown that § = Z:io T* istheinverse for I — T.
Since I — T 1is continuous, we have

d-T)Sx = — T)( lim Z T")x

n—>00 k=0

- (nlittgo i(l - T)T")x

k=0

Jim, (x ~77*!x)
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= x — lim T""x
n—00
for each x € X. The result of Exercise 5.3.5 implies that lim,_, T"*'x = 0 and
therefore (I — T)Sx = x for each x € X. In a similar fashion, we can show that
S(I — T)x = x foreachx € X,and so (I — T)™' = Y 2, T, as desired. O

As a corollary to this theorem, we get the following result.

Theorem 5.6. Let X be a Banach space. Suppose that S, T € B(X), T is
invertible, and |T — S| < |IT~!||~1. Then S is invertible in B(X).

PROOF. Observe that if A and B are two invertible elements of B(X), then their
productis alsoinvertible and (AB)~! = B~1A~L.If Sand T satisfy the hypotheses
of the theorem, then

(T =T~ < IT =S|I 1T < 1.

The preceding theorem then shows that I —(T —S)T~! = ST~ ! is invertible. By the
observation made at the beginning of this proof, S = (ST~!)T is invertible. O

Let G denote the set of all invertible elements in B(X). An important corollary
of Theorem 5.6 is the fact that G is an open subset of B(X). Theorems 5.5 and 5.6,
as well as the fact that the set of invertible elements is open (and also Theorems 5.7
and 5.8), remain true when B(X) is replaced by an arbitrary unital Banach algebra.

Recall, from linear algebra, that an eigenvalue of an n X n matrix A is a scalar
A such that A] — A is not invertible. Here, I denotes the n x n identity matrix.

The spectrum of an element a in a unital Banach algebra A is defined to be
the set of all complex numbers A such that Ae — a is not invertible in .A. The
spectrum of a in A is denoted by o 4(a), or by o (a) if there is no risk of confusion.
“Spectral theory” is the study of this set. Not surprisingly, the name spectrum has
physical interpretations. For example, in quantum mechanics, any “observable”
has a (Hermitian) operator (on a Hilbert space) associated to it, and the observable
can assume only values that appear in the spectrum of this operator. In Section 6.7
we will discuss the role of operator theory in quantum mechanics. Hilbert himself
coined the phrase “spectral theory” in the context of his study of Fredholm’s inte-
gral operators. However, he did not know that his spectra could have applications
to physics. Indeed, Hilbert claimed, “I developed my theory of infinitely many
variables from purely mathematical interests, and even called it ‘spectral analy-
sis’ without any presentiment that it would later find an application to the actual
spectrum of physics” [104].

Of particular interest to us is the spectrum of an operator T in the Banach algebra
B(X).

For our first examples, we turn to the comforting setting of finite dimensions.
We consider the mabsrices

2 0 0
A=]10 8+2i O
0 ) 0
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4 1 —1-—i
B=| 0 3 7 ;

0 0 3+4i

5 0 O
C=11 1 2 :

1 -1 -1

as elements of B(C?). Then, as you should check,
o(A) = {0, 2, 8+2i}, o(B) = {3, 4i, 3+i}, and o(C)=1{5,1i, —i}.

Given a finite subset of C, how can you construct an operator with that specified
set as its spectrum? What if the given set is countably infinite? Can these tasks
always be achieved? If the set is finite, with n elements, we simply construct the
n X n matrix with the elements of the set down the diagonal. This matrix will be
an operator in B(C") with the desired spectrum.

If the given set {A,}>2, is countably infinite, consider, by analogy, the diagonal
matrix

(A 0 0 )
0 A& O
D =diag(A],Az,...) = 0 0 A.3

\ )

as anoperator on £2 = ¢2(N). We will now explore the possibility that the given set
{An )= 1s actually the spectrum of D. First, we must describe the sequences {A,};? ,
for which the associated operator D = diag(A, A2, .. .) is a bounded operator on
22 If the sequence is bounded, then, as one can readily check, D € B(ZZ). Is this
also a necessary condition? Consider an unbounded sequence {A,}>>,. We may
assume that |A,| > n. Consider the element of £ defined by x, = 11:; the image

of this element is not even in £2. Therefore, D = diag(A;, Az, ...) is in B(£?) if
and only if {A,}° , is a bounded sequence. In this case we can at least consider the
set a(D). Is o (D) equal to {A,}.2 ,? For each n we see that the operator A,1 — D
has nontrivial kernel and hence is not one-to-one and hence is not invertible. This
establishes the containment {A,}72, € o(D). On the other hand, suppose that
A # Ay, for all n. Then the matrix

diag(A — AL (A —A)7 L, .0

serves as an inverse for A/— D as long as it defines a bounded operator, and this hap-
pens if and only if the sequence {(A —A,)~1}%, is bounded. Since {(A — A,)~'}*°

n=1
is bounded if and only if {A,};2 ; does not converge to A, we see that a (D) is not,
in fact, the sequence {A,};2 |, but that it also contains its limit points. Indeed, it

is impossible to construct a bounded linear operator with a spectrum that is not
closed. This is a part of the next theorem (Theorem 5.7).
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The next two theorems are fundamental in the theory of bounded operators. As
mentioned at the beginning of the chapter, the material from this point on in this
chapter becomes more sophisticated. Indeed, proofs of the next two theorems will
not be given in full detail. To do so would take us too far afield into the study
of functions defined on the complex plane. Nonetheless, we think it worthwhile
to introduce this material now. We will give an indication of how the proofs of
the next two theorems go, prove as much as we can, and point the reader in the
direction he or she would need to go to complete the proofs. Before we discuss
these proofs we do need to make a very brief digression into the theory of functions
of a single complex variable. Let U be an open subset of the complex plane. A
function f : U — C is said to be analytic at zp € U if f can be represented by a
power series centered at 7o, that is, if there is a positive number r > 0 and scalars
ai,ap, ... € Csuch that |z — zo| < r implies z € U and

o0

f@ =) anz—z)

n=0

for all |z — zo| < r. This is one of a few equivalent definitions of analyticity. In a
first course on complex functions one studies analytic functions in great detail, and
one encounters a remarkable result about their behavior due to Joseph Liouville
(1809-1882; France). Liouville’s theorem asserts that if f is analytic at every point
in the complex plane, and if there is a number M such that | f(z)] < M for all
z € C, then f must be a constant function. This is astonishing if one thinks of
how untrue this is when the complex numbers are replaced by the real numbers.
Consider, for example, the function sin x. This function satisfies | sin x| < 1 for all
x € R, and we can expand sin x as a Taylor series with real coefficients centered
at any point that we please. Yet, sin x is certainly not a constant function.

We now consider a function f defined on an open subset U of the complex
plane and taking values in a Banach space (X, | - ||). This function is said to be
analytic at zo € U if there is a positive number » > 0 and elements a;, ay, ... in
the Banach space such that |z — zo| < r implies z € U and

f@)=)_awz—z)"

n=0

for all |z — 79| < r. The analogue of Liouville’s theorem holds. Specifically, if f
1 a Banach space valued function that is analytic at every point of C, and if there
is a number M such that || f(z)]| < M forall z € C, then f must be a constant
function. A proof of the Banach space version of Liouville’s theorem can be given
using the Hahn—Banach theorem (see Section 6.3).

Theorem 5.7. Let X be a Banach space. The spectrum of each element T € B(X)
iy a compact and nonempty set, and is contained in the disk {A € C |Il| < |ITI}.

PROOF. We first prove that o(7') is a compact subset of C; this part of the proof
we can do in full. We begin by observing that the set C\ o(7) is open. To see this,
suppose that . € C\ a(T) (so (L] = T) ! exists) and that j¢ is a complex number
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satisfying
A —u| < A =T) 7L

It follows from Theorem 5.6 that w is also in C \ o(T'). Therefore, C \ o(T) is
open, and o (T') is consequently closed.
If [A| > |IT||, then I — ;T is invertible by Theorem 5.5. Therefore,

o(T) S {r e C|IAl < ITII},

showing that o (T') is abounded set. Since o (T) is closed and bounded, it is compact
by the Heine—Borel theorem.

It remains to be shown that a(7") is nonempty. This is the part of the proof that
requires Liouville’s theorem and therefore is not to be considered complete. Define
a function f : C\ o(T) — B(X) by

fo) =W =1T)".

This function is analytic (see, for example, [124], Theorem 2.3). If o (T') is assumed
to be empty, then this function is analytic at each point of the complex plane. If
|A| > ||T|, it follows from Theorem 5.5 that

fR)y=@AI-T)" = -1-(1 2 )“1 i
ANV A Lt pnt
Summing a geometric series, we see that
00 Tn © . Tn 1
Ifl = | >l = Xl = =
This shows that
IfM)I —0 )

as |A\| = oo and hence that || f(1)|| is bounded. Liouville’s theorem now implies
that f must be constant. Since

If @I —0

as |A\| =& oo, f must be identically zero. Since f(A) is defined to be (A — T)~ !,
and it is impossible for an inverse to be zero, the spectrum of 7 must be nonempty,
as desired. O

This proof is striking in that it applies a theorem about functions of a complex
variable (Liouville’s theorem) to prove a result about operators. Recall that to
prove that a matrix actually has an eigenvalue one uses the fundamental theorem
of algebra to assert that the characteristic polynomial of the matrix has a root. The
fundamental theorem of algebra is not as easy to prove as it may appear, and one of
the most elementary proofs uses Liouville’s theorem! So, perhaps, the application
of complex function theory used in the proof of the preceding theorem is not so
surprising after all. Nonetheless, it is a beautiful proof in which analyticity and
operator theory meet.
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We point out that if |A| > ||T||, then A/ — T is invertible, and its inverse is given
by the series

oy antl
This series is called a “Laurent series.” Whatif A — T is invertible but |A| < ||T'||?
Is (\I — T)~! still given by this Laurent series? The answer to this question is yes,
but we arenotin a position to understand a proof of this fact (see, for example, [124],
Theorem 3.3). This same issue, of “extending” the representation of (Al — T)~!
as the Laurent series from the set |A| > | T'|| to the bigger set C \ o (T), is exactly
what prevents us from giving a complete proof of our next theorem (Theorem 5.8).
We define the spectral radius r(T) of an element T € B(X) to be

sup{|A| [ € o (T)}.
One consequence of the preceding result is that
r(T) <||T|

for every bounded operator 7. In the next section we will discover (in Theorem
5.13) alarge class of operators for which this is an equality. Following that theorem
we will give an example of an operator T satisfying r(T) < | T||.

Thenexttheorem is remarkable in that it equates an apparently algebraic quantity
(the spectral radius) with an analytic quantity. The result is often referred to as the
spectral radius formula, and is extremely useful.

Theorem 5.8. Let X be a Banach space and T € B(X). Then
r(T) = lim T"|%.
PrROOF. The idea for this proof is to prove the two inequalities
r(T) < lim inf |77,
and

limsup |T"||* < r(T).
n—» oo ’

For the first of these we can give a complete proof. The second requires, again,
more analytic function theory than we have available. We now prove the parts that
our background allows us to, and point out where more background knowledge of
complex functions is needed.

Consider a complex number A and positive integer n. Assume that A" € o (T"),
so that (A"] — T")~! exists. Notice that

AMI=T" = = T)A" ' T+ A" 2T 4. AT 2 4 T,
and that the factors on the right commute. The operator

A" =T A+ A" T+ AT 4 T
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is seen to be the inverse of Al — T . Therefore, A € o(T'). This shows that A € a(T)
implies A" € o(T") for each positive integer n. Theorem 5.7 now implies that

A" < T
and hence that

Al = T
for each positive integer n. The definition of spectral radius now gives

r(T) < |IT"||*
for each positive integer n, and hence that
r(T) < liminf | T"||7.
n—>00

This proves the first of the two inequalities.
We move on to the proof of

lim sup || T" ||% < r(T).

n—->00

If |]\| > ||T||, then the series

"
)L'H'l

> |

n=(0

converges. This is a series of real numbers with radius of convergence

1 |
— i T"||=.
: im sup || T"||

Al nseo

Since the series converges, it must be the case that

1
— limsup |T"|I* < 1,

I | n—-00

or, equivalently,

lim sup || T"|* < |A]
This holds for any |A| > ||T||; the proof would be completed by showing that this
inequality holds for any |A| > r(T). Since, 7(T') < ||T||, we do have a chance, but
this is where we cannot really go any further without knowing about “uniqueness
of Laurent series” in complex analysis. The extension of the inequality

limsup || T"||= < |A|

n—00

forall |A| > ||T|| to all |A| > r(T') follows immediately from the identity theorem
of complex function theory. O

The last two theorems are really at the edge of what we think we can cover in
this text. They should give you an indication of how ideas from complex function
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theory can be used to prove operator-theoretic results. In spectral theory, much
hinges on the fact the the operator (A\f — T)~! is given by a “geometric series” (as
in Theorem 5.5).

One important class of operators is the class of “compact operators.” Compact
operators are, in some sense, the most natural generalization of finite-dimensional
operators. The notion of a compact operator was first given by Hilbert, and their
theory was greatly expanded by Riesz. Consider normed linear spaces X and Y.
A linear operator T : X — Y is compact if for every bounded sequence {x,} 2 ,
in X, the sequence {Tx,} ., in Y has a convergent subsequence in Y. Compact
operators are always bounded, as you are asked to prove in Exercise 5.3.11. Two
fundamental properties of the collection of compact operators are given in the next
two theorems.

Theorem 5.9. Let X be a Banach space and T € B(X) a compact operator. Then
ST and T S are compact for each S € B(X).

PrOOF. Consider a bounded sequence {x,}°2, in X. Since T is compact, the
sequence {Tx,}°2 | has a convergent subsequence {Ty,} >, converging to y. Then

ISTyn — Syl < IS - ITy. — ¥,

showing that {STy.};2 , converges to Sy. This shows that ST is compact. We note
that the sequence {Sx,} - , is also bounded. Therefore, {T Sx»};2 , has aconvergent
subsequence, proving t.hat T S is compact. 0O

Theorem 5.10. If X is a Banach space, then the set of compact operators from
X to X is closed in B(X).

PROOF. Suppose that T,, € B(X) is compact for each positive integer n, and that
\T, — T| = 0 asn — oo. We aim to show that T is a compact operator.
Consider a bounded sequence {x,},2, in X, with

B = sup{|x,]| |1 < n < oo}

Let e > 0, and choose M large enough to satisfy

€
Ty —T|| < —

| T'as | 3B

Since Ty is compact, there is asubsequence {y,},> , of {x,}°° , such that {Th;y,}>°

is convergent, and hence Cauchy. Choose N large enough so that

€

"TMyn - TM)’m” < 5

whenever n, m > N. We aim to show that {T'y,};2, is Cauchy. Then, since X is
complete, it will follow that {T'y,}3> , converges, as desired. As longasn,m > N,
we have that

UITyYn = TYymll < NTyn — Tryull + 1 Tayn = T Ymll + 1T Ym = T ymll

€
SNT = Tull - llyall + 5 + 170 = T - [lyml
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B £ . B=e
—3B +3+3B ¢

proving that {T'y,}°° , is Cauchy. O

One reason that compact operators are relatively easy to work with, and hence
so attractive, is because of the structure of their spectra. The spectrum of a compact
operator is similar to the spectrum of a finite matrix. This information is gathered
in the next theorem. It is, for the most part, due to F. Riesz, and is a masterpiece.
It belongs to a collection of results commonly referred to as the Riesz theory for

compact operators. We will not prove this result, but you may want to compare it
to Theorem 5.23. See Exercise 5.3.18.

Theorem 5.11. Let X be an infinite-dimensional Banach space and T € B(X)
a compact operator. Then the spectrum of T is either a finite set or is a sequence
converging to 0. The point Q is in the spectrum, and each nonzero value of the
spectrum is an eigenvalue. Further, for A # 0, the eigenspace ker(AI — T) is
finite-dimensional.

We would like to have a practical way of deciding whether a given operator is
compact. Are there relatively easy-to-use tests for deciding compactness? Our first
example shows how Theorem 5.10 can be used to prove that a given operator is
compact.

ExAMPLE 1. The diagonal operator D = diag(A, A2, ...) € B(£?) is compact if
and only if lim,,_, A, = 0.

To see this, let {e,}°> ; denote the standard orthonormal basis of £2, and let

D = diag(A1, A2,...).

From Bessel’s inequality we deduce that {(De,, x) = (e,, Dx) —'0 for every
x € £2. Suppose that |A,| = ||De,||2 does not converge to 0 as n — 0. Then,
there is a subsequence {f,}°2, of {en}°° , such that || Df, |2 > € for some € > O,
and every n. Since the sequence {f,},2, is bounded and D is compact, { f,} 2
contains a subsequence {g,},-, such that {Dg,}>2, converges in 2. Lety denote
the element of £2 satisfying || Dg, — yll2 = 0as n — oo. Then

{Dg, —y, x)| <|IDg, — yl2llx|l2

for every x € £2, and hence (Dg,, x) — (y, x) asn — oo. But (Dg,, x) must
converge to 0 by Bessel’s inequality. Thus, (y, x) = 0 for every x € £2, and hence
y = 0, contradicting | Dg,|2 = € for every n. Therefore, our supposition was
incorrect, so that lim,_,o |A,]| = 0, and hence lim,_,c A, = 0.

Conversely, suppose that lim,.,0 A, = 0. Define the truncated diagonal
operators

AN

Dk = diag(lla )‘2o ‘oo |)‘k¢ Oo Oo .o -j-

We aim to show that each Dy is a compact operator. To this end, fix &, and consndcr
a bounded sequence (x,)3%, in €2. Each x, is itself a sequence, and we let x;
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denote the jth entry of the sequence x,. That is, for each n,

(e 0]
1 .2 .3 i 12
Xp = {x,, X5, %, ...}, le,ﬂ < 00.
j=1
Let B denote a bound for the sequence {x,};?> ,, so that
w -
Y 1% = lIxalle < B
\ 7=
for each x,, € £2. Recall that k is fixed, and note that
Dkx,, = {)\lx,i, lzx,%, A3x3, ooy )ka,'f, 0, 0, .. }
If we arrange the images of Dyx;, Dix2, ... as rows in a matrix, we get

axl Axd Asx;
Axdl Aox? daxld

1 2 3

Each column in this array is a bounded sequence of numbers; the jth column is
bounded by, for example, |A;|B. Recall that bounded sequences always contain
convergent subsequences. Each column, and in particular the first column, thus
has a convergent subsequence, say

1 1 1
{Alxnl, Alxm, Alxm, oo }

The subsequence

2 2 2
{)‘zxm , ).zx,,z, szm, ..

of the second column, in turn, has a convergent subsequence. Continue in this way,
until a convergent subsequence of the kth column has been produced. Abusing
notation, denote this subsequence of the kth column by

ext, Mexf axk, L)
Then, foreach j = 1, ..., k, the subsequence
{ij{, ij{, ij:{, .o }

of the jth column converges. For € > 0, we can thus choose N such that
€

VkLy

forall j=1,...,kandn,m > N, where L, = max{|A;|: 1 < j < k}. Then

k k
, . € 2
”Dkx _Dkx "22 E:Ilj|2‘|x’—x"|25 § :L%( ) <€2.
n mig —j=l n m Py ‘\/ELk

This shows that the sequence {Dix, )= is Cauchy, and hence converges. This
completes the proof that the operator D, is compact.

T
lx] — x]| <
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Next, our hypothesis that lim,_, .o A,, = 0 implies that
IDx — DIl = sup{|Ae+i| i =0,1,2,...} > 0.

Theorem 5.10 now implies that D is compact.

The operators Dy are examples of finite-rank operators: operators with finité-
dimensional range. All finite rank operators are compact. To show that a given
operator is compact, it suffices to see that it is the limit of finite-rank operators,
and this is a standard way of showing that a given operator 1s, in fact, compact.
It is not the case that every compact operator is the limit of finite rank operators.
However, on most “nice” Banach spaces this will be the case (for example, on all
Hilbert spaces). The first counterexample to this so-called approximation problem
was published in 1973 by the Swedish mathematician Per Enflo (born 1944). His
example also gave a negative solution tothe so-called basis problem. Both problems
just mentioned were long-standing important open problems in analysis. There is
a third famous problem that Enflo is responsible for resolving, and it will be the
theme for the next section.

ExampLE 2. The left shift 7 € B(£2) is not compact. The sequence {x,}32, € £2,
where x,, is the £2 element (0, ..., 0,1,0,0, ...) (the 1 appears in the nth place) is
abounded sequence, with ||x, [,z = 1 for each n. However, the sequence {Tx,},>
has no convergent subsequence. If it did, this subsequence would have tobe Cauchy.
This is impossible, since n # m implies ||Tx, — Txp|l,2 = 2.

ExaMPLE 3. The identity operator I on an infinite-dimensional Banach space X
cannot be compact. This follows from Exercise 2.1.13(c).

We conclude this long section with the computation of the specwa of a few
operators. Computing specwa can be a very difficult exercise! Let Eig(T") denote
the set of all eigenvalues of 7. Note that it is always the case that Eig(T") C o (T),
but the larger set might be much larger.

ExaMPLE 4. Let ¢ : [0,1] —> R be continuous and define a multiplication
operator M, on L*([0, 1]) by

M, f(x) = ¢(x)f(x)
for ¢ € [0, 1] and f € L?([0, 1]). In Exercise 5.3.13 you are asked to show that
M, € B(L*(0, 1), R). We claim that

o(My) = f([0, 1]).

If A & f([0, 1]), then (as you are asked to show in the same exercise) the multipli-
cation operator M, _4)-: is a bounded operator and is the inverse of A7 — M. Now

suppose that A € f([0, 1]) and that A] — My has an inverse, T, in B(Lz([O, 1])).

Since A € f([0, 1]), there is an xq € [0, 1] with f(xg) = A. Since f is continuous,

we can pick, for each positive integer n, a number 8, > 0 such that | f(x)— 1| < 1

for each x in the interval (xqg — 921, X0 + é;). Define a function g, on [0, 1] to take

the value 8, J on the interval (xo — ‘-’; X0 + %) and O off of this interval. Note
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that ||g,|| = 1 for each n. Puth, = (AI — My)g,. Then h, — 0 asn — o0, yet
Th, = g, and hence {Th,} cannot converge to 0 as n — oo, showing that T is
not continuous, and hence not bounded.

ExaMPLE 5. Consider the left shift 7 on £2(N) given by the formula
T(xy,x2,...) =(x2,x3,...).
As we have seen in Section 2, ||T'|| = 1. Therefore, by Theorem 5.7,
o(T) S {r e C Al <1}
For0 < |A| < 1, put x,, = A"~". Then {x,}°°, € £*(N) and
T(xy,x2,...) =A% A%, 0) = A(x1, x2, .. ),

showing that A is an eigenvalue for 7. If A = 0, then (1, 0, 0, .. .) is an eigenvector.
Thus o(T) 2 {A € C ||A| < 1}. Since o(T) must be closed, we see that o(T)
must, in fact, be exactly the closed unit disk. “Most” of the specwal values of the
left shift are eigenvalues.

Now consider the right shift S given by

.S'(xl, X2, .. ) = (O, X1, X2, .. )

We know that o (§) is not empty, so there must exist some A € o(S). If this A were
an eigenvalue then

0, x1,x2,...) = 8(x1, X2, ...) = Alx1, X2, ...)

for some nonzero element (x;, x2, ...) € £2. This is impossible. So, while the left
shift has many eigenvalues, the right shift has none.

Since | S|| = 1, we know that o (S) is contained in the closed unit disk. It turms
out that 0(S) = og2))(S) is also the closed unit disk {A € C : |A| < 1}, but this
1S not as easy to prove as it was for 7. See page 45 of [58] for a proof.

EXAMPLE 6. The weighted shift on £2(N), given by the formula

1 |
W(xl’x29 °") = (09 X1y, 5X2,5 7X3, ... )9

2 3
is compact and has no eigenvalues. Why is this the case? This operator has matrix
{ O 0 0 0 ... \
1 0 0 O
1
O - 0 O
2
1
O 0 = 0
3

To see that W is a compact operator, note that W = § D, where § is the usual right
shift and D is the diagonal operator D = diag( 1, § { . ) As in Example |, the
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diagonal operators D, = diag(l,---, %, 0,0, ---) are compact, and

1
\ID—-D,| <———=0
n+1

as n — oo. We thus apply Theorem 5.10 to conclude that D is compact, and now
the compactness of W follows from Theorem 5.9. In Exercise 5.3.14 you are asked
to show that W has no eigenvalues. One could now use Theorem 5.11 to conclude
that the spectrum of W must equal the singleton {0}. This argument is a bit of a
cheat, since we have not proved Theorem 5.11. Alternatively, one can show that
IW"|| < ;1; for each positive integer n (see Exercise 5.3.14). Therefore, we see
that

1\1
||w"||%5(—) -0
n!

as n — oo, and we can now apply Theorem 5.8 (note that we do not
need the full statement of this theorem; we need only the inequality r(W) <

liminf,_, o | W"|| 5). It is also possible to write down, explicitly, the inverse of the
infinite matrix A/ — W for any nonzero A, thus showing that c(W) = {0}. It is
not a bad idea to do this more “elementary” proof. We gave the proof we did to
demonstrate the use of the specwal radius formula.

In this example, the sequence {%-}fj‘;l can be replaced by an arbitrary sequence
of positive numbers that decrease to zero.

An operator T € B(X) is called quasinilpotent if o(T) = {0). By Theo-
rem 5.8, this is equivalent to r(T) = {0). The weighted shift W of Example
3 is quasinilpotent. See Exercise 5.3.12 for another example of a quasinilpotent
operator. -

A compact operator with no eigenvalues must be quasinilpotent (by Theorem
5.11). Compact and quasinilpotent operators will be revisited in the next section.

5.4 An Introduction to the Invariant Subspace Problem

Given a bounded linear operator 7 on a Banach space X, a subspace Y of X is
called an invariant subspace for T if T(Y) C Y. The trivial subspaces {0} and
X are invariant for any 7 € B(X) and any Banach space X. It is still not known
whether there is abounded linear operator on a Hilbert space that has only the trivial
invariant subspaces. This is the invariant subspace problem. There are, however,
examples of operators on Banach spaces with no nontrivial invariant subspace.
The first such example was given by Per Enflo in 1987 [40]. There are now other
examples, including examples due to Charles Read for which the underlying space
X is the well-known sequence space £!. Read’'s examples appeared in papers
published in the mid 1980s. For a good expository account of progress on the
invariant subspace problem through the mid 1980s, read the introduction of [15].
This reference also contains one of Read’s examples, as well as an extensive
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bibliography on the subject. For a most enjoyable inwoduction to the subject,
[101] is highly recommended.

Even though it is known that there are operators with no nontrivial invariant
subspaces, matters are not settled. Interesting positive results have been achieved
by studying certain classes of operators. That is, there are certain Banach spaces
X and certain types of bounded linear operators 7 on X for which it is known that
there will always be a nontrivial invariant subspace. Theorems 5.12,5.21, and 5.22
of this section give examples of these positive results.

We start with a consideration of the invariant subspaces of the right shift on
£2 = £2(N). Let

S(xl,xz, ) = (0, X1, X2, )
and
M, ={(x),x2,..)€L?:x,=0,1 <k <n).

While it is swaightforward to check that M, is an invariant subspace for S, for
each positive integer n, the answer to the question “are there any other invariant
subspaces?”’ is not so obvious. See page 83 of [58] for a characterlzatlon of the
invariant subspaces of the right shift on £2.

Explicit descriptions of the invariant subspaces of an operator are not so easy to
come by, and we are usually happy just to know that invariant subspaces exist.

Theorem 5.12. Let X be a finite-dimensional complex Banach space. Then every
T € B(X) has a nontrivial invariant subspace.

PROOF. Suppose dim(X) = n < oo. Choose any nonzero vector x € X. Then
the set {x, Tx, ..., T"x} is linearly dependent because it contains n 4+ 1 elements.
Therefore, there exist scalars o, o, . .., a,, not all zero, such that

L

O=apx 4+ Tx+---+4a,T"x.
The complex polynomial ¢y + a1z + - - - + @, 2" can be factored as

a(z— A1)+ (2 — Ap),
for some scalars o, Ay, ..., Am. Then

O=oaopx+a1Tx+ - +anT"x =(g+a1 T+ -+, T")x
=a(T = A1) (T — AmDx,

where I isthe n x n identity matrix. It follows that T — A ; I has a nonzero kernel for
at least one value j. The corresponding eigenspace ker(T — A; /) is an invariant
subspace for 7. If T is not a multiple of the identity, ker(T — A;I) is properly
contained in X and the theorem is proved. If T is a multiple of the identity then
cvery subspace is invariant, and again the theorem is proved. O

The proof of Theorem 5.12 is taken from 8], Theorem 2.1. Observe that if
T"™x = 0 for some m < n (as is the case. for exumple, for any upper-triangular
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matrix with zeroes on the diagonal), then the closed subspace spanned by the
vectors {x, Tx, ..., T™ !x} is also a nontrivial invariant subspace for T.

Next, we consider operators on a complex Hilbert space H. Hilbert spaces have
more structure than general normed linear spaces. In fact, they have so much
structure that in many cases problems that are inwactable on general normed linear
spaces become trivial on Hilbert spaces. In the case of the invariant subspace
problem, they have enough structure so that we can prove some interesting positive
results, yet the problem remains unsolved.

An operator T € B(H) is Hermitian if

(Tx,y) =(x,Ty)
for all x, y € H. These operators are named in honor of Charles Hermite. Recall,
by Exercise 5.3.5, that || 7"|| < || T||" for any linear operator (Hermitian or not) and

any positive integer n. If T is now assumed Hermitian, then the Cauchy—Schwarz
inequality and definition of operator norm imply that

ITx|? = (Tx, Tx) = (T?x,x) < |IT?| - x|
For x # 0 this implies that

and taking the supremum over all x of norm 1 yields

ITI? < |72,
Induction can now be used to obtain
ITI* < |77

for each positive integer m. Hence
|7
for each positive integer m. Let 1 < n < 2™, Then
172" = 1T"T*""|
<IT"|- 177"
< I7") - 17>
<ITI*- 17"
=TI,
so that all of these expressions are, in fact, equal. In particular,
177171 = ),

= ||IT|I*

so that
N7 -I1TI™" = 1.

We have now proved that for a Hermitian operator T und a positive integer n,
i7" =TI



5.4 An Introduction to the Invariant Subspace Problem 115

Theorem 5.13. Let H be a Hilbert space. If T € B(H) is Hermitian, then
r(T) =TIl

PrROOF. The proof follows immediately from the equality |7"| = ||7||" and the
speckal radius formula (Theorem 5.8):

. 1 .
r(T) = lim |T*|» = lim |T| = |T]. -

If we consider the operator

S R N I

then r(T) = max{|A;|, |A1|}, where A, A, are the eigenvalues of 7', and thus

r(T) = 1. However, ||T || = \/ %(3 + /5), as you are asked to compute in Exercise
5.2.6. This provides an example with »(T') < || T||.

Our next immediate goal is to prove that each specwal value of a Hermitian
operator is a real number. Compare this to what you know about the eigenvalues
of a Hermitian matrix (see Exercise 5.4.1). In order to show this we make use of
the notion of an “orthogonal complement.”

For a subspace K of a Hilbert space H we define its orthogonal complement
K+ tobe

K+ ={yeH|(x,y)=0foral x € K}.
The next theorem records two basic properties of orthogonal complements.
Theorem 5.14. Suppose that K is a subspace of a Hilbert space H.

(a) Kt is a closed subspace of H.
(b) KL NK = {0},

Proor. To prove (a) assume that the sequence {y,};. ; converges to y in H and
that for each n, y, € K-. Then, for each x € K,

Ky, X)| < Ky = Yn, )|+ KYns X)L < |ly = yull - llx]] + O,

which can be made as small as we wish, and therefore |(y, x)| = 0, as desired.
The proof of (b), as you should check, is completely swraightforward. O

The next theorem is interesting and has, as a consequence, many useful corol-
laries. Included among these corollaries is the important Riesz—Fréchet theorem
characterizing the dual space of a Hilbert space. The definition of the *“dual
space” of any normed linear space can be found in Section 6.3. For a proof of
the Riesz—Fréchet theorem see, for example, [129].

Theorem 5.15. Assume that K is a closed subspace of a Hilbert space H and
that x € H. Then there exists y € K such that

lx — yll = inf{llx —zll |z € K).

Further, the element v is the unique element of K with this property.
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PROOF. As a convenience, let d denote inf {|x — z|| : z € K}. Then there exists

a sequence {y,}>°, in K such that |[x — y,|| > d as n — 0. Observe that

%(}’n + Ym) € K and thus

Yn+ IYm 1 1
< [x 5 _2||x y||+2|Ix Iml
This shows that
Yn + Ym “
— d
“x e

as n, m — oo. In the computation that follows we use the parallelogram equality.
Since

1Ve = Ymll®> = (X = Ym) + (Vn — 2)|I?
= 2([lx = Ym I + llyn — 2117 = 12X — OV + ym)||?

+ 2
=2(lx — ym "2 + llyn _x”2) _ 4”x - 2 > H

and all three normed terms in the last expression converge to d, we see that {y,}°>° ,
is a Cauchy sequence. Since K is closed, it is complete, and so K contains the limit
point, y, of this sequence. Since y € K, it follows that [[x — y|| > d. Since we
assumed that || x —y,|| — d, we could have chosen {y,}3° , to satisfy, for example,
1
lx = yaull =d + e

Letting n — oo then yields ||x — y|| < d, and thus ||x — y| = d, as desired.
The final assertion of the theorem is left as Exercise 5.4.4. O

Theorem 5.16. Assume that K is a closed subspace of a Hilbert space H and
that x € H. Then x can be written as a sum y + z for some y € K andz € K.
Moreover, this decomposition is unique.

PROOF. Let y be the unique point in K that is closest to x. Such a point is
guaranteed by the preceding theorem. Put z = x — y. We will be done when we
show that z € K+. For any w € K, y + w € K, and thus, by definition of y,

Izl = lx =yl = llx =@y +w)l = ll(x — y) —wl.
So we have
lz — wll = [iz]
for each w € K. Then, for A € C, we have Aw € K, and so
Iz —Awl > llzl,  or  llz—Aw|? = Jzl*.
Expanding the left side ?.f this we get

2 2
Iz||“ < ||z — Awl]|

= (z —Aw, Z — Aw)
= (z,2) — Az, w) — Az, w) + Illz(w. w)
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= |lz|2 =2 re[i'(z, w)] + AR Iwl.
This holds for all A € C, and in particular for A = re'® where r > 0 and 0 is
chosen to satisfy e % (z, w) = |(z, w)]. Using this choice of A yields
—2r|(z, w| + r?llwl* = 0,

or

(z, w)| < =rllwl?
2
Since this holds for each r > 0, we have (z, w) = 0. Since this holds for each
w € K, we have that z € K+, as desired.
To see that the decomposition is unique, suppose that x = yq+ zo for yo € K and
zo € K+. We will show that yo = y.Forany w € K, wehave (x —yg, yo—w) = 0,
and so '

Ix —wli? = llx = yo + yo ~ wl® = llx — yol® + llyo — wl*> = lx — yolI*.
Therefore, d = ||x — yo||. By the uniqueness in Theorem 5.15, yo = y. O

From this theorem one can deduce that (K-+)* = K for a closed subspace K of a

Hilbert space H (see Exercise 5.4.3). Observe also that {0}' = H and H+ = {0).
We now return to our study of Hermitian operators.

Theorem 5.17. Let H be a Hilbert space. If T € B(H) is Hermitian, then ker(T)
and range(T') are subspaces of H and satisfy

ker(T)* = range(T) and range(T)" = ker(T).
(ker(T) and range(T) denote, respectively, the kernel and range of the map T).
PrOOF. Left as Exercise 5.4.5. 0

Theorem 5.18. Let H be a Hilbert space. If T € B(H) is Hermitian, then
o(T)C R

ProOOF. Consider A =a +ib € C. Then, foreachx € H,
A = T)x|? = ((u — T)x, A — T)x>

= ((a? = T)x, (al - T)x)+ (ibx, ibx)
= |[(al — T)x||> + b?||x||?
> b2||x|I%.
Therefore,
IAL = T)x|| > |b] - lIx],

and so if b 7 O, then ker(A/ — T) = {0}). The preceding theorem now gives
range(Al — T) = H. So now we have shown that whenever b # 0, the opera-
tor Al - T is one-to-one and onto. Define S on H by Sx = y precisely when
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(Al — T)y = x. We aim to show that S is continuous on H. This S will then be the
inverse for Al — T in B(H), and thus we will have shown that A — T is invertible
whenever b # 0. From this it follows, by definition, that o (7") C R, as desired.

To see that § is continuous it suffices to see that S 1s continuous at O (see the
comments following Theorem 5.1). Consider a sequence {x,},-, converging to 0
in H. Then, since AI — T is onto, there exists a sequence of points {y,};>, in H
satisfying x, = (Al — T)y, for each n. Since (A\] — T)y, — 0 and

I(AL = T)y,ll = 16] - [lynl,

we see that Sx, = y, — 0, completing the proof. . O

Recall that the eigenvalues of a linear operator 7 form a (sometimes empty)
subset of the specwum of T. Observe that Theorem 5.13, the preceding theorem,
and the fact that the spectrum must be a closed set show that at least one of —|| T ||
and ||T'|| is in the spectrum of a Hermitian operator 7. Our next theorem gives
even more precise information about this special specwal value in case T is also
a compact operator. Its proof depends on the observation made in the following
lemma, which is interesting in its own right.

Lemma 5.19. Let H be a Hilbert space. If T € B(H) is Hermitian, then
IT|| = sup{|{Tx, x)| |llx|l = 1}.

Proor. For convenience, let M denote sup{|(Tx, x)| |llx]| = 1}. If |lx]| = 1,
then

(Tx, x)| < ITx|l - llx]l < TN - x)®> = T

Since this holds for every x of norm 1, we see that M < ||T|. To see the other
inequality consider x of norm 1 andsety = " ;i i Using the parallelogram equality
we deduce that

ITx|l = (Tx, y)

1

= 2[(re + .2 +5) - (T = .2 =)
1 -

< ZM lx 4+ ylI* — llx — yllz]
1 -

= S M[Ixl? + 1]

=M.

By definition of the operator norm, ||T|| < M, as desired. 0

Theorem 5.20. Let H be a Hilbert space. If T € B(H) is compact and Hermitian,
then at least one of —|| T‘|.| and |T || is an eigenvalue of T .

ProOF. By the preceding lemma we can find a sequence {x,}2° , in H satisfying
lxall = 1 and [(Txn, x4)| = | T||. Since

(Txn, xn) = (xn, Txn) = u Xn+ Xn).
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we see that each (Tx,, x,) is, in fact, real. Depending on whether
sup{(Tx,x) |lIxl =1}  or inf{(Tx, x) |llx|| =1}

has the larger absolute value, the sequence {(T x,, x,)},. , converges to either || T'||

or —||7||. We assume that {(7T'x,, x,)},>, converges to || T ||. The proof in the other

case is identical. We will show that || 7' || is an eigenvalue of 7'. Since T is compact,
there is a subsequence {y,};>, of {x,}°2, such that {Ty,}72 , converges. Let y
denote the limit of this sequence. Notice that as n — oo,

2

”Tx,, T lxa| = 1T 2l = 20T 1T X, X} + T 121120

<2IT)? = 20T I{Tx, X) — O.
Therefore, as n — 00,
ITlys = (ITya = Tya) + Tyw > 04 y = y.
Applying T to this, we get
17Ty, = T(ITllyn) — Ty.
But we also know that ||T||Ty, — ||T|y, telling us that
Ty=|Tl|y.

As long as y # 0, we have found that ||T|| is an eigenvalue of T'. Can y = 0?
Since

Iyl = lim Tyl = tim |17 llya +T3n = 1T lly,

n—0oo n--=00

> tim (JITlyn] = | 73a = 1T 13n])
n—»00

= lim (IT1 = |Tys = 1T llyn )
n—00

=TIl >0,

y cannot possibly be 0, and the proof is complete. O

We now return to our study of invariant subspaces, and end the section with
two positive results proving existence of invariant subspaces for certain classes of
operators. In terms of trying to get information about invariant subspaces, notice
that ker(A/ — T) is invariant under T for every complex number A.

Theorem 5.21. Every compact Hermitian operator on an infinite-dimensional
Hilbert space has an invariant subspace.

PrOOF. By our work above, such an operator T has an eigenvalue A. The kernel
of Al — T is thus a nonzero subspace. Since H is infinite-dimensional and T is
compact, T cannot equal A/, and 80 this kernel is a proper subspace. Since T
commutes with A/ — T, this subspace is invariant under the action of 7. m|
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What if we drop the hypothesis that 7" is Hermitian? Do we still get an invariant
subspace? In particular, we might be interested in 7" acting on a Banach space (not
necessarily a Hilbert space). Because the kernel of the operator Al — T is always
an invariant subspace, we know that if a compact operator has an eigenvalue, then
this kernel is nonzero and we get an invariant subspace. Theorem 5.11 makes this
look promising. However, not all compact operators have an eigenvalue. As we
saw in Example 6 of the preceding section, the weighted shift

W(xl’ x29 .. ') - (03 wlxli w2x2! .. ’)! wn \1/ 09

on £*(N) is compact and has no eigenvalues. Nonetheless, it is true that every
compact operator has a nontrivial invariant subspace. This result was proved by von
Neumann in the 1930s, but was not published. The first published proof appeared
in 1954 in [5].

In 1973, a theorem was proved that subsumes a proof that every compact op-
erator has a nontrivial invariant subspace. It is due to Victor Lomonosov [84].
Lomonosov’s result is remarkable, and it immediately drew much attention. The
history of the events leading up to Lomonosov’s work, and an account of the reper-
cussions this work has had, are beautifully told in [101]. Interestingly, [101] was
written after Enflo’s famous paper (mentioned in the opening paragraph of this
section) was put into circulation in the mathematical community, but before its
publication in 1987. It offers information on why it took so long to publish Enflo’s
article. It also outlines Enflo’s approach to his solution of the invariant subspace
problem.

Very shortly after Lomonosov’s proof began circulating in the community, Hugh
Hilden gave another proof. We now state a version of Lomonosov’s theorem, and
give Hilden’s proof of it.

Theorem 5.22. Assume that X is an infinite-dimensional (complex) Banach space
and that T € B(X) satisfies TK = KT for some nonzero compact operator
K € B(X). Then T has a nontrivial invariant subspace.

PROOF. Assume that T has no nontrivial invariant subspace. If K has an eigen-
value A, then the kernel of the operator A/ — K is seen to be an invariant subspace
for T. Since K is compact, and X is infinite-dimensional, this kernel is a nontriv-
ial subspace of X. Therefore, K must not have an eigenvalue. By Theorem 5.11,
o(K) = {0}. By the spectral radius formula,

lim |[@K)"|l* =0
n—»0Q

for every complex number a.
We may assume that || K || = 1 (if it does not, use “—ﬁ—- in place of K). Choose an
xo € X such that | K x| % 1. Observe that | xo| must be greater than 1. Consider

the closed ball

B={x¢€X|lx-xl < 1)
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and notice that 0 € B. For any x # 0 in X, the closure of the set
{p(T)x | p is a complex polynomial}

is a closed nonzero invariant subspace for 7. By hypothesis, every closed nonzero
invariant subspace for T is all of X. For a fixed x # 0in X and any open set U in
X, there must thus be a polynomial p such that p(T)x € U.

Define

U, =1{x € X || p(T)x - xoll <1}.

Each U, is open in X, and every nonzero element of X is in at least one of the
U,’s. By Exercise 5.3.2, K(B) has compact closure. Since the U,’s form an open
cover of K(B), there exist polynomials py, ..., py such that

N
KB) < | U,
k=1

In particular, if x € K (B), then there is a polynomial p; for some 1 <k < N such
that p(T)x € B.

Up until this point in the proof, Hilden follows Lomonosov. At this point, their
methods diverge. Lomonosov makes use of the Schauder fixed point theorem. We
now give the rest of Hilden’s proof.

Since Kxyg € K(B), py,(T)Kxo € B for some k;. Then K p;, (T)K xo € K(B),
and so py,(T)K p,(T)K xo € B for some k;. Continue this process; after n steps,
we get

Pk, (T)K - - - pr, (T)K pi,(T)K xg € B,

for some ki, ko, ..., kn. Let

o = max{||pi(T)|| [k =1,..., N}.

Given an € > 0 there is an m such that ||[(¢ K)™ x| < €. Then, since TK = KT,
we have

| Pk (T)K -+ Piey (T)K Py (T)K X0 |l = || pi,, (T) - - - Piy (T ) pie, (T)K ™ x|
=l pr, (T) - -~ @~ piy (M~ pie, (T)@K )" %0 |-
By the construction of a, ||~ pi(T)|| < 1 for all k. Therefore,

| Pk, (T)K - -+ Py (T)K pi, (T)K x0|| < [[(@K)" 0]l < €.

This shows that given an € > 0 there is an element in the closed ball B of norm
less than €. This contradicts that 0 &€ B. O

In a sense that we have hinted at, but will not discuss, compact operators
and quasinilpotent operators are related. After considering compact operators,
it is therefore sensible to consider quasinilpotent operators. Read has recently
constructed a quasinilpotent operator with no nontrivial subspace [103].

There are other constructed counterexamples, and other positive results. This is
a very active area that we are able only to touch on here.
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FIGURE 5.1. PerEnflo (r)receiving a goose
from Stanistaw Mazur in 1972. The prize
was offered by Mazur in 1936 for solving a
problem.

Per Enflo (Figures 5.1 and 5.2) was born
on May 20, 1944, in Stockholm, Sweden.
His father was a surveyor, his mother an
actress. Per Enflo is one of five children
born to his parents. His family has been,
and is, very active in music and other
performing arts, and this involvement has
been a strong influence in his life.

During his school years, the family
moved to various places in Sweden, but
Enflo enjoyed a stable, happy home life and
good schooling. Around the age of eight,
he became interested in both mathematics
and music. These are the two subjects
that he was prodigious in and to which he
remains most devoted. You are reading
about him because of his mathematics,

FIGURE 5.2. A morerecent picture of Per
Enflo.

but in fact, Enflo is almost equally a
musician and a mathematician.

In music, Enflo has studied piano,
composition, and conducting. His first
recital was given at age eleven. In 1956
and 1961 he was the winner of the
Swedish competitions for young pianists.
We shall not say much about his music
but do mention a few recent activities.
He competed in the first annual Van
Cliburn Foundation’s International Piano
Competition for Outstanding Amateurs in
1999. During the spring of 2000, he played
over half a dozen recitals.

Though devoted to both mathematics
and music, it is the former that has
determined where Enflo has lived. All of
his academic degrees have been awarded
by the University of Stockholm. Since
completing his education in 1970, Enflo

'This biographical information was supplied by Per Enflo. via personal correspondence.
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has held positions at the University of
Stockholm, the University of California at
Berkeley, Stanford University, the Ecole
Polytechnique in Paris, the Mittag-Leffler
Institute and Royal Institute of Technology
in Stockholm, and at the Ohio State Univer-
sity. Since 1989 he has held the prestigious
position of “University Professor” at Kent
State University.

Per Enflo is most well known for his so-
lutions, in the 1970s, of the "approximation
problem,” the “basis problem,” and the
“invariant subspace problem.” These were
three fundamental and famous problems
from the early days of functional analysis.
Since the 1930s, many mathematicians
had tried to solve them, but they remained
open for about 40 years. The solutions are
negative in the sense that they are solved
by counterexamples; they are positive
in the sense that the new methods and
concepts have had a great impact on the
further development of functional analysis.

The approximation problem asks
whether or not every compact operator
on every Banach space is the limit of
finite-rank operators. The basis problem
asks whether or not an arbitrary Banach
space must have a Schauder basis; a
sequence {x}°, in a Banach space X
is a Schauder basis if to each x € X
there exists a unique sequence {ax}g- , of
complex numbers such that

n
X = Iim( ax).
Jim (3o

Per Enflo’s solution to the approximation
problem also gives a counterexample to
the basis problem. This work was started
in 1967 and completed in 1972 and is a
long story of progress and failures and
of slowly developing new insights and
techniques for a final success.

Arguably, his most famous mathemat-
ical contribution thus far is his solution
to the invariant subspace problem. He
constructed a Banach space X and a
bounded linear operator 7 : X — X
with no nontrivial invariant subspaces.
The paper containing this example was
published in 1987 [40], but it had existed
in manuscript form for about twelve years
prior to that date. The published paper is
100 pages long, and contains very difficult
mathematics. His work on the invariant
subspace problem was accomplished
during the years 1970-1975, so one can
see that the late 1960s to mid 1970s
was a period of remarkable brilliance for
Enflo. Enflo’s counterexample, though it
gives a complete solution to the invariant
subspace problem, left open many doors
for future research. For example, deter-
mining classes of operators that must
have invariant subspaces (in the spirit of
Lomonosov's result) is an active area. Enflo
continues towork in this area, and, equally,
some of the mathematics developed in his
solution to the invariant subspace problem
have led him to progress in other areas of
operator theory.

The mathematical work discussed in the
last few paragraphs might seem particu-
larly abstract, but parts of the associated
work have genuine applications. For exam-
ple, some of the best available software
algorithms for polynomial factorizations
are based on ideas found in Enflo’s solution
to the invariant subspace problem [41].
Also, there are indications that his Banach
space work may have good applications to
economics.

Enflo’s other important mathematical
contributions include several results on
general Banach space theory, and also his
work on an infinite-dimensional version of
Hilbert’s Sth problem.
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Enflo's early career as a musician is
an important background both for his
originality as a mathematician and for his

strong interest in interdisciplinary science.

He has done work in biology, on the zebra
mussel invasion and phosphorus loading
of Lake Erie (work funded by the Lake

he has worked on human evolution and
has developed a “"dynamic” population
genetics model that lends strong support
for a multiregional theory of human
evolution. He has also published work in
acoustics, on problems related to noise
reduction.

Erie Protection Fund). In anthropology

5.5 The Spectral Theorem for
Compact Hermitian Operators

There are many “spectral theorems.” There is a spectral theorem for linear opera-
tors on finite-dimensional spaces. In fact, you probably know this theorem. It says,
informally, that any Hermitian matrix is diagonalizable. There are spectral theo-
rems for a few different types of bounded linear operators on infinite-dimensional
Hilbert spaces, and there are versions of the theorem for unbounded operators. In
this section we will prove, as the title of the section suggests, the spectral theorem
for compact Hermitian operators on Hilbert spaces.

In a broad sense, any spectral theorem says that the operator in question can
be put in a diagonal form. This special form is represented as an infinite sum
of operators of a more basic type. Further, the basic operators in the sum are
determined by the spectrum of the original operator. Think of how the promised
diagonalization of a Hermitian matrix works: You find the eigenvalues, and then the
matrix can be viewed as a linear combination of matrices where each term in this
representation is an eigenvalue times a diagonal matrix with 1’s and 0’s judiciously
placed on the diagonal. More precisely, assume that 7 is a square matrix that is
diagonalizable and let A, .. ., A; be the distinct eigenvalues of 7. Then there are
square matrices of the same size, Py, ..., Py, that are projections (Pi2 = P;) such
that

I=ZP,-,

i=1

k
T=)Y AP,
i=l

and P;P; = 0 for all i # j. In this, P; is the projection onto the eigenspace
ker(kil — T)

Throughout this section 7 will be a bounded linear operator mapping a Hilbert
space H into itself. Recall that T is a compact operator if for every bounded
sequence {x,}-o ; in H, the sequence {Tx,},-, in H has a convergent subsequence
in H. Also, recall that P is Hermitian if

(Tx,y) =(x.Ty)

forall x, y € H.
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If T is both compact and Hermitian, then Theorem 5.20 gives us a real eigenvalue
A1 of T satisfying

Al =T
Let x; denote a corresponding unit eigenvector. Put H; = H and
Hy={(xe H |(x,x1) = 0}.
Then, for each x € H,,
(Tx, x1) = (x, Tx1) = (x, A1x1) = A1{x, x1) =0,

and thus H; is a T-invariant subspace of H. The restriction T |y, of T to H; is
a compact and Hermitian operator, and if T |y, is not the zero operator, we can
deduce (again from Theorem 5.20) the existence of an eigenvalue and eigenvector,
A2 and x;, such that x, € H,, ||x2|| = 1, and |A2| = ||T |, ||. By this last equality,
it should be clear that

|A2] < A4l
Continue in this way to obtain nonzero eigenvalues
Als A2y vy Ap
with corresponding unit eigenvectors
X1s X2y ovnyXn.
This process produces T -invariant subspaces
Hy D H;, 2--- 2 Hy,
where
Hep={xeH|(x,x;)=0,j=1,2,..., k}
Also,
Akl = 1T | gl
which shows that
(A1l = [A2] = -+ - = [Aal

If T|g,,, =0, then this process stops, and if x € H, then

Tx = Z: Ak (X, Xk)xk-
k=1

To see why this is the case, set

n
n=X= E(x.xa)xa-

— k=]
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Then foreach j = 1,2, ..., n,

(Yn» xj) = (x, x;) —Z(x, Xie) (X, xj) = (x, x;) — (x,x;)(xj, xj) =0.
k=1

Therefore, y, € H,+1, so that Ty, = 0. Consequently,

n

Tx=Ty, + T(Z(x, xk)xk)

k=1

=0+
k

n
— Z }‘k(x9 xk)Xk,
k=1

(x, xi) T xx
I

n

as desired.
If the process above does not stop, then lim;_, |Az| = 0 and

(e/e)
Tx = Z Ak(x, Xk)Xk
k=1

for each x € H. We point out that the A;’s in this sum are not necessarily distinct.
Why should lim;_,,, |Ax| = 0? Suppose that there are infinitely many distinct
Ai’s and that |[A;| > § forsome § > Oand allk = 1, 2, ... . Then the sequence
{A; "x¢}22 , is bounded (by §~!), and so, since T is a compact operator, the sequence

{T(A, : X))}, = {xx}72, has aconvergent subsequence. This sequence is thus also
Cauchy, which contradicts the fact that

lxe — xj 112 = (xp — x5, X6 — Xj) = (X, Xe) — (X}, Xie) — (Xks X5) + (X, Xj) = 2

forall k # j. Hence, lim;_, o |Ax| = 0 whenever there are infinitely many distinct
eigenvalues. In this case; and again with

n

Yn =X — Z(x, Xk)Xk,

k=1
we have that (Exercise 4.2.1)

n
2 2
1y ll* = [lx]I* — Z 1(x, )] < ||x]I2.
k=1

Since yn € Hy+1 and |An11| = [T |4, |, it is the case that

1Tyl < [Aatrl - Nyall < Ansal - (1]l
This shows that lim,_,, ||Ty.|| = 0 and hence that
8

(e, 0]
Tx = Z Av(x, Xa) x4
k=1

foreach x € H.
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So far, we have produced a sequence of nonzero eigenvalues for 7. Could there
be any other nonzero eigenvalues of 7'? Suppose that A is a nonzero eigenvalue
and that x is a corresponding unit eigenvector. Then, foreachk =1, 2, ...,

Ax, xg) = (Ax, xi) = (Tx, xi) = (x, Txp) = (x, Agxg) = Apx, xg).

Since A # Ag, (x, xx) =0foreach k =1, 2,.... Then

0
Ax =Tx = Z Arx, xp)xp =0,
k=1

a contradiction. Therefore, the constructed sequence {A;};2, contains all of the
nonzero eigenvalues of T.

A final useful observation is that the eigenspaces ker(Ai,/ —T), k= 1,2, ..., are
each finite-dimensional. To see this, note that even though there may be infinitely
many nonzero eigenvalues, agiven A; can appear only finitely many times in the list
(this is because lim;_, o |Ax| = 0). Fix an index k and letk = k(1), k(2), ..., k(p)
denote the complete set of indices for which the eigenvalue A, is equal to
Ar. Thus A, appears exactly p times in the list. We know that the eigenvectors

Xk, Xi(2), - - - » Xk(p) are orthonormal. If ker(Ax/ — T) had dimension greater than
p, then there would be some unit vector x € ker(Ax/ — T) such that the vectors
X, Xk, Xk(2), « - - » Xk(p) Were orthonormal. If j # k, k(2), ..., k(p), then(x, x;) =0

by an argument similar to many we have already seen. Thus (x, x;) = 0 for all
values of j, and hence

0
Ax =Tx = Z)\j(x,xj)xj =0,
j=1

which contradicts A; # 0. Therefore, ker(A; I — T ) must have dimension p.
We have now established the following result.

Theorem 5.23 (The Spectral Theorem for Compact Hermitian Operators). Let
T be a nonzero, compact, and Hermitian operator on a Hilbert space H. The
procedure described in the preceding paragraphs gives a sequence of nonzero
real-valued eigenvalues {A;} and a corresponding sequence of orthonormal eigen-
vectors {x; }. If the sequence of eigenvalues contains infinitely many distinct values,
then it tends to zero. Each nonzero eigenvalue of T appears in the sequence {A},
and each eigenspace ker(A,I — T) is finite-dimensional. The dimension of the
eigenspaceker(A, I —T ) is precisely the number of times the eigenvalue Ay appears
in the sequence {A}. Finally, for each x € H, we have

(o]
Tx = Z Ak(x, xp)Xxp.
k=1

Let K be any closed subspace of H. By Theorem 5.16 we know that any x € H
can be written in form x = y + z for some y € K and z € K<'. Since this
decomposition is unique, we can define an operator P : H - H by Px = y.
This operator satisfies || Px|| < ||x|l and hence is bounded, is linear, and satisfies
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P? = P. The operator P is called the projection of H onto K. (See Exercise
5.5.1.) Specifically, we let P, denote the projection of H onto the closed subspace
ker(Al — T) of H. Then the sum

can be rewritten as

Tx = Z Ak Prx,
[Ae]

where the index [A;] indicates that the sum is extended over distinct eigenvalues,
This formula now gives 7 decomposed as a sum of more basic operators, and these
operators are determined by the spectrum (specifically, by the eigenvalues) of T.
We remark that there is something to prove in rearranging the sum in the statement
of the theorem so that all of the terms with the same A; appear consecutively (see,
for example, [124], Theorem I1.6.9).

We remark that the Hilbert space H in the theorem is completely arbitrary.
However, unless it is separable, there is no hope that the sequence of eigenvectors
will be a complete orthonormal sequence for H. We might hope for this since in
the finite-dimensional setting the nicest matrices are those for which there is an
orthonormal basis for H consisting of eigenvectors, and because a complete or-
thonormal sequence replaces the finite-dimensional notion of basis when working
inthe infinite-dimensional setting. If H is separable, then the sequence of orthonor-
mal eigenvectors can always be extended to a complete orthonormal sequence for
H (see, for example, [129], Corollary 8.16).

The adjective “Hermitian” in Theorem 5.23 can be replaced by the adjective
“normal.” We have not defined this term yet (and we will not). For our purposes,
it is enough to know that any compact normal operator can be written as a linear
combination of two commuting compact Hermitian operators. This fact lets one
deduce the spectral theorem for compact normal operators from Theorem 5.23
without too much trouble. This work was essentially done by Hilbert in 1906.
Hilbert and F. Riesz soon afterwards proved their spectral theorem for bounded
Hermitian (and, more generally, normal) operators. Dropping the compactness
hypothesis leads to many more difficulties to overcome. Noncompact operators
may not have eigenvalues, and the spectrum may be uncountable. In this case
the “sum” in the decomposition is replaced by an “integral.” Hilbert and Riesz’s
generalization is thus sjgnificantly more sophisticated, since it requires measure
theory in order to discuss the integral. In the 1920s, Marshall Stone (1903-1989;
U.S.A.) and John von Neumann further generalized the spectral theorem to include
unbounded Hermitian operators. Also, there is a version of the spectral theorem
for compact, but not Hermitian, operators that was obtained by F. Riesz in 1918,
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Exercises for Chapter 5

Section 5.1

S.1.1 Let H be a Hilbert space and xy be a fixed element of H. Prove that the
map taking x to (x, xo) is a linear operator from H to C.
5.1.2 Consider the operator defined by

l k)
Tf(s) =- / f(e)d:e.
S Jo

This is a Fredholm operator and is often referred to as the Cesaro operator.

(a) Determine the kernel k(s, t) of the Cesaro operator.
(b) Prove that the Cesaro operator is linear.

5.1.3 In this section you encountered infinite matrices, perhaps for the first time.
In general, matrix multiplication is not commutative. This is the case for
finite as well as for infinite matrices. But multiplication for infinite matrices
gets even worse. For finite matrices, there are certain situations in which
multiplication is, in fact, commutative. For example, if AB = I for two
square matrices A and B, then A and B commute. This shows that a finite
matrix with a “left inverse” also has a “right inverse” (and they are equal).
For infinite-dimensional matrices, this need not be the case. Give examples
of infinite matrices A and B such that AB = I, yet BA # I. See Exercise
5.3.3 for more on this topic.

Section 5.2

5.2.1 Prove that B(X, Y) is a normed linear space. That is, prove Theorem 5.3.

5.2.2 Show that the identity operator from (C([0, 1]), || - lleo) to (C([O, 1], I - lI1)
is a bounded linear operator, but that the identity map from (C([0, 11), |- ||1)
to (C([0, 1D, || * |leo) is unbounded. This phenomenon cannot happen on a
Banach space; see Exercise 6.3.2.

5.2.3 Fix a continuous function ¢ : [0, 1] — [0, 1] and define the composition
operator Cy : C([0, 1]) — C([0, 1]) by Cys f(x) = f(¢(x)). Prove that C,
is a bounded linear operator with ||Cy || < 1.

5.2.4 For {a,};2, € £*° define

T(x) = £ xn,an, forallx ={x,}%, € £'.

Show that T is a bounded linear operator from ¢' to C, and compute || T||.

5.2.5 Consider an n x n matrix A = (g;,) that satisfies a;; = aj; for all pairs
of indices i and j. Such a matrix is called Hermitian. View A as a linear
operator C" — C”". Assume that C" is endowed with the usual norm. Prove
that |A|l = max{|Axl), wh&m A: are the cigenvalues of A.
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5.2.6 Consider

a b
Az( d)’ a, b, c,deC,

as a linear operator from C? to itself. The aim of this exercise is to show
that the operator norm of A depends on the choice of norm on C2.

(a) Endow C? with the supremum norm, || - ||c. Show that in this case, the
norm of A is given by

max(lal +1bl, le| + |d|).

(b) Endow C? with the 1-norm, || - ||;. Show that in this case, the norm of
A is given by '

max(lal + |cl, |b] + |d|)-

(c) Endow C? with the 2-norm, | - ||;. Consider the matrix

e=(75)

and form the mawix A A*. Show that in this case, the norm of A is
given by

Sl IR ST
al ol

[%(tr(AA*) + Vtr(AAN))? — 4 det(AA*))]%.

Use this to write down a formula for the norm of A as a function
of its entries a, b, ¢, d. Here “tr’” denotes trace, and “det’’ denotes
determinant.

(d) Finally, compute these 3 operator norms of

- (2)

5.2.7 Let C!([0, 1]) denote the collection of all continuous functions with
continuous derivative (including one-sided derivatives at the endpoints).

(a) Show that C!([0, 1]), with the supremum norm, is a subspace of
C([0, 1]) but that it is not closed.
(b) Prove that tﬂhe differential operator

200, 1]) - €0, 1)
dx

is linear but not bounded.
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Section 5.3

5.3.1 Assume that X is a normed linear space, and S, T € B(X).
(a) Prove that
ISTI < ISl - 171
(b) Prove that ST € B(X).

5.3.2 Assume that X and Y are normed linear spaces. Let K be a compact
operator in B(X, Y). Use Theorem 2.4 to prove that K (B) has compact
closure for each closed ball B in X.

5.3.3 The situation discovered in Exercise 5.1.4 is somewhat redeemable. Let
X be a Banach space and T € B(X). Assume that there are U, V € B(X)
satisfying

UT =1=VT.

Prove that U = V. In other words, if T € B(X) is both left and right
invertible, then its left and right inverses must be equal.

5.3.4 In a unital normed algebra with multiplicative identity e, prove that
llell = 1.

5.3.5 In a normed algebra, prove that ||a¥|| < |a|* for each element a in the
algebra and each positive integer k.

5.3.6 Prove that C([0, 1]), with the supremum norm, is a unital Banach algebra.

5.3.7 Assume that X is a Banach space. In Theorem 5.6 we saw that any
S € B(X) that is sufficiently close to an invertible operator T is also

invertible. Given that ||S — T|l < IT7!||"!, prove that S~! satisfies

17

NS =T

5.3.8 Assume that X is a Banach space. Assume that S, T € B(X) and
Ae C\o(ST), A #0.

(@) Verify that

S <
| ”—1—||T

M -TSHYU =1I=UWI —-TS),

where
v="1r4 lT(u — ST)!s.
A A
(b) Deduce that o(ST)U {0} = (T S) U {0}.
(c) Use the shifts T and S as defined in Example 2 of Section 1 to show
that the equality o(ST) = o (T S) need not hold.

5.3.9 Consider the operator on L?((0, 1)) defined by

Tf(s)= f (s =0 f)de.

0
Prove that / — 7 is an invertible operator.
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5.3.10 Let £!(Z) denote the collection of all (doubly ended) sequences {a; }°

i=—00
of complex numbers such that 3> _|a;| < oo. This space is very much

like £! = ¢!(N). With the norm of a = {g;}¢¢___ given by

i=--00

lall= ) lail,

£'(Z) becomes a Banach space. The point of this exercise is to see that
we can define a multiplication to make £!(Z) into a Banach algebra. For
a = {a;}2_. andb = {b;}32___ in £!(Z), define the product a * b by

00
(a xb); = Z ai—jbj.

j=—00

This multiplication is called convolution. Show that £!(Z) is a Banach
algebra.

5.3.11 Prove that every compact operator is a bounded operator.
5.3.12 Consider the Volterra operator defined on L%([0, 1]) by

Tf(s) = /s k(s, t) f(2)dt
0

with |k(s, t)] < C for some constant C and every s and ¢ in [0, 1].

(a) Prove that Tf € L%([0, 1]) whenever f € L2([0, 1]).
(b) Prove that T € B(Lz([O, l])). That is, prove that T is bounded.

(c) Prove that T is quasinilpotent. (As it turns out, 7 is quasinilpotent
even if the hypothesis that |k(s, t)] < C is dropped. However, the
proof is substantially harder. See pages 98—99 of [58] for a proof.)

(d) Now let k(s, t) = 1 for all s and ¢. Show that T is compact.

5.3.13 In this exercise you are asked to fill in the details of Example 4.

(8) Show that My € B(L([0, 11), R), and that || M| = [|]loo-

(b) Showthatif A ¢ f([0, 1]), then (as you are asked to show in the same
exercise) the multiplication operator M, _4)- is a bounded operator
and is the inverse of A — M,,.

(c) We have now established that (M) = f ([0, 1]). Sometimes this set
contains eigenvalues; sometimes it does not. Give examples to show
this. That is, conswruct functions ¢ and ¥ such that (M) contains
at least one eigenvalue and o (M) contains no eigenvalues at all.

5.3.14 Let W be the weighted shift in Example 6.

(a) Show tha? W has no eigenvalues.
(b) Use induction to show that [W"|| < 5, n =1,2,....

5.3.15 Let X be an infinite-dimensional Banach space. (Parts (a) and (b) are
related only in that they are about compact operators.)
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(a) Give an example of a compact operator T such that 72 = 0.
(b) Prove that if there is a positive integer n such that 7" = I, then T
cannot be compact.

5.3.16 Assume that X is a Banach space. Prove that the collection of all compact
operators forms a closed, two-sided ideal in the Banach algebra B(X).
Note: You may know what an “ideal” is from abstract algebra; if you do
not, it is defined in the next chapter.

Waming: We end with two exercises that should not be taken lightly! In
particular, they should not be considered as part of a standard “exercise
set.”

5.3.17 Learn enough about complex function theory to prove the results of this
section,

5.3.18 Find a good reference (like [21] or [124]) and work through the proof of
Theorem 5.11, which describes the spectrum of a compact operator.

Section 5.4

5.4.1 Verify that the Hermitian matrices (as defined in Exercise 5.2.5) are exactly
the Hermitian operators on the finite-dimensional Hilbert space C”.

5.4.2 Describe the Fredholm integral operators of the first kind that are Hermitian.

5.4.3 Let K be a subspace of a Hilbert space H.

(a) Prove that (K+)* = K whenever K is a closed subspace.
(b) Find an example to show that the equality of (a) need not hold if K is
not closed.

5.4.4 Complete the proof of Theorem 5.15 by verifying the uniqueness assertion.
5.4.5 Prove Theorem 5.17.
5.4.6 It follows from Theorem 5.18 that any eigenvalue of a Hermitian operator

is real-valued. Give a more direct proof of this fact.
5.4.7 Let T be the Volterra operator on L2([0, 1]) defined by

Tf(s) = fo f()ds.
ForO0 <a <1 set

M, =(f e L0, 1) |f(H=0,0 <t < ).

(a) Prove that each M, is an invariant subspace for 7.
(b) Describe the orthogonal complement of M, in L?([0, 1]).

Section 5.5

5.5.1 Verify each of the assertions made in the paragraph that follows Theorem
5.23. That is, prove that P is bounded, linear, and satisfies P2 = P.
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5.5.2 In each of the following examples, explain why T is compact and Her-
mitian. Then give the spectral decomposition guaranteed by Theorem
5.23. That is, find the eigenvalues, the corresponding eigenspaces, and
projections.

(a) The operator T € B(C?) given by the matrix

3 -4
—4 -3 )
(b) The operator T € B(£?) given by the formula

raizo- (27,



6
Further Topics

In this chapter we present a smorgasbord of treats. The sections of this chapter
are, for the most part, independent of each other (the exception is that the third
section makes use of the main theorem of the second section). The sections are not
uniform in length or level of difficulty. They may be added as topics for lectures,
or used as sources of student projects.

The first section gives a proof of the important Weierstrass approximation theo-
rem and of its generalization due to Marshall Stone (1903—-1989; USA). We offer
a proof of the latter that is relatively recent [26] and has not appeared, to our
knowledge, in any text. The second section presents a theorem of René Baire and
gives an application to real analysis. This material is standard in a real analysis
text; we include it because we like it and because we use Baire’s theorem in the
third section, where we prove three fundamental results of functional analysis.
In the fourth section we prove the existence of a set of real numbers that is not
Lebesgue measurable. The fifth section investigates contraction mappings and how
these special maps can be used to solve problems in differential equations. In the
penultimate section we study the algebraic structure of the space of continuous
functions. In the last section we give a very brief introduction to how some of the
ideas in the text are used in quantum mechanics. Some of these topics certainly
belong in a functional analysis text; some probably do not. Enjoy!
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6.1 The Classical Weierstrass Approximation Theorem
and the Generalized Stone—Weierstrass Theorem

The classical Weierstrass approximation theorem was first proved by Weierstrass
in 1885. Several different proofs have appeared since Weierstrass’s (see [54], page
266). We present the proof of it due to the analyst and probabalist Sergei Bernstein
(1880-1968; Ukraine) [18].! His proof gives a clever, and perhaps surprising,
application of probability. Marshall Stone’s generalization of Weierstrass’s famous
theorem appeared a quarter of a century later, in [118].

Recall that C([a, b]; R), or C([a, b]), denotes the Banach space of all continuous
real-valued functions with norm || f|leo = sup{|f(x)| |a < x < b}.

Theorem 6.1 (The Weierstrass Approximation Theorem). The polynomials are
dense in C([a, b)). That is, given any f € C([a, b]) and an € > 0 there exists a
polynomial p € C([a, b)) such that || f — Pllc < €.

PrROOF. First we will show that the result is true fora = 0 and b = 1. Thus, we
consider f € C([0, 1]) and proceed to describe a polynomial that is close to f
(with respect to the supremum norm). The polynomial we will use is a so-called
Bernstein polynomial. The nth-degree Bermnstein polynomial associated to f is

defined by
L k
pn =3 (0) () -,

k=0

n\ n!
k) kWn —k)!
is the binomial coefficient.

The idea for this definition comes from probability. Imagine a coin with proba-
bility x of getting heads. In n tosses, the probability of getting exactly k heads is

thus
(:>x"(1 — x)" 7k,

If f (f) dollars are paid when exactly k heads are thrown in n tosses, then the
average dollar amount (after throwing n tosses very many times) paid when n

tosses are made is
L k
3 () f (_) k(1 = xyr*.
k n

k=0

where

This expression is what we called p,(x).

'As an incidental historical remark, Bernstein's Ph.D. dissertation contained the first
solution to Hilbert's 19th problem on elliptic differential equations.
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We now show that given an € > 0 there exists n large enough so that

|Pn — flloo < €.
This should seem plausible: If » is very large, then we expect % to be very close

to x. We thus expect the average dollar amount paid, p,(x), to be very close to

f ().

To prove that || p, — f|loc < € for sufficiently large n, we recall the binomial

theorem:
" [/n
(x+y) = Z (k)xky"'k. (6.1)

k=0

If we differentiate this with respect to x and multiply both sides by x, we get

. (n
nx(x +y) ! = ( )kxk n—k, 6.2
y ; ey (6.2)
If instead, we differentiate twice and multiply both sides by x?2, we get
n(n — Dx’(x + y)y" 2 = (")k(k 1)xkyn—k, 6
g ) ) (6.3)

Equations (6.1)—(6.3), with y = 1 — x, read

Z (:)xk(l —x)" 7, (6.4)

k=0

Xn:"k - 6.5
(k)x( (6.5)

and

n

nin — Dx? = Z (Z)k(k — Dx*(1 = x)**, (6.6)

=0

Therefore,

Z(k —nx)? (n)xk(l —x = Zn: k? (n)x"(l —x)"*
k=0 k k=0 k

-2 anx (Z)xk(l —x)yrk
+ Zn ( )xk(l —x)y"*

k=0
= [nx + n(n — D)x?] — 2nx - nx + n%x
= nx(l — x). (6.7)
Atthis stage, you may not see where the proof is headed. Fear not, and forge ahead!

For our given f, choose M > 0 such that | f(x)| < M for all x € [0, 1]. Since
[ is continuous on [a, b]. it is uniformly continuous, and therefore there exists a

2 2
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6 > 0 such that | f(x) — f(y)| < € whenever |x — y| < & (this € is the € fixed at
the beginning). Then

e f(x)_z £(3) (Pt -

kZ:% (re-1 () ()t - o

2, (r0-r(5) () -or

2 (= (5) ()t o

| 3 (f(x)— (”i)) (k)

3 (s (8)) )ea-er|
)

If |k —nx| < 8n, then |x — sl < Jd,sothat [f(x)— f (f | < €. Then

k n -
,.k-;.<8n (f W=7 (’)) (k)xk“ =
< Tl r()|(0)eta-or
Ik nx|<én
<€ - ( Z (n)xk(l —x)n—k)
lk—nx| <én k
<e- (i‘ (Z)x"(l ~ x)""‘) = €.
k=0

If |k — nx| > én, then

LE, (00 () @)ea-or
]k.é?,)a,,'ﬂx)— (5)1(2) - o
< 2 (el el () ()eta-or-
<om. (z: (5)ea- ))

I

A

xk(1 - x)*~ "
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< (k — nx) ( )x 1-x)* "),
n262 (kz__‘(:

k —
since o > 1 for these terms. By (7) the last expression is equal to
n
2M
) 82nx(1 —X).

And since x(1 — x) < % for each value of x € [0, 1], this is less than or equal to

M
2n82’
We have now shown that | f(x) — p,(x)l| is is less than or equal to

L2, (0-r(3)) ()
+ ‘ |k—§|:28n (f(x) — f (S)) (Z)x"(l — x)""“,

and that this, in turn, is less than

M

€+ 2né?’

If n is now chosen larger than ——, we have
282’

= 2¢€.

- <€+
1f = Palloo 5

We have now proved the Weierstrass approximation theorem for the interval
[0, 1] and are ready to extend this argument to an arbitrary interval [a, b]. The
method employed here to generalize from [0, 1] to [a, b] is useful, and should be
kept in mind. We consider any f € C([a, b]), let € > 0 be arbitrary, and note that
a and b are any two real numbers satisfying a < b. Define

g(x) = f (x(b —a) + a), x € [0, 1].

Note that g € C([0, 1]), g(0) = f(a), and g(1) = f(b). By the preceding argument
there exists a (Bernstein) polynomial p € C([0, 1]) suchthat || p—g|lo < €. Define

q(x)=p(x_a), x € [a, b].

b—a
Note that g is a polynomial in C([a, b)), g(a) = p(0), and q(b) = p(1). Then

X —da X —da
If(x)—q(x)l—‘g( )-p<b—a)"

1/ -4l = sp {10 - go}

1€la.b)

and thus
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sup ”g (x—a) » (x —a) “
x€la,b] b—a b—a

= sup 1lg(x)— p(x)I] = |lg — Pllo < €.
x€[0,1)

This completes the proof. O

Marshall Stone recognized that the interval, [a, b] in the real line that Weierstrass
used could be replaced by a more general subset of a more general metric space.
In fact, he realized that the set [a, b] could be replaced by any compact subset of
any Hausdorff topological space. Since this book does not assume knowledge of
topological spaces, we will give a proof for a compact subset of a metric space
(a metric space is an example of a Hausdorff topological space). The proof goes
over, verbatim, if the set X in the theorem is considered as a subset of a Hausdorff
topological space.

In the theorem, we write C(X; R) to emphasize that the functions are realvalued.
After the proof we will make a comment about the theorem for complex-valued
functions.

Most proofs of the Stone-Weierstrass theorem make use of the Weierstrass
approximation theorem; one attractive feature of the proof presented here is that
the Weierstrass approximation theorem is not used to deduce the more general
result. Hence, the Weierstrass approximation theorem is subsumed by the Stone—
Weierstrass theorem. The proof we give is due to Brosowski and Deutsch [26];
we follow their presentation closely. Following the proof, we will say more about
standard proofs, and also about further generalizations.

The trouble, in a general metric space, is that “polynomials” might not make
sense. We observe that polynomials are exactly the functions that can be obtained
from the two functions 1 and x by multiplication by a scalar, by addition, and/or by
multiplication. This characterization of the polynomials is captured by the three
hypotheses of the theorem.

Theorem 6.2 (The Stone—Weierstrass Theorem). Let X be a compact metric
space, and assume that A C C(X; R) satisfies the following conditions:

@ Aisanalgebra:If f,g € Aanda € R, then f + g, f - g and af are all
in A.

(b) The constant function x — 1 is in A (and hence A contains all constant
functions).

(c¢) A separates points: For x # y € X there exists an f € A such that

f(x) # f(y).
Then A is dense in C(X; R).

PrROOF. Brosowski and Deutsch break their proof into three parts. They prove
two preliminary lemmas, and then prove the Stone-Weierstrass theorem.
The first lemma states:
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Consider any point xo € X and any open set Uy in X containing xo. Then there
exists an open set Vo € Uy containing x such that for each € > 0 there exists
g € A satisfying

A 0<gx)<1l,xeX;
(i) g(x) <€, x € W,
(iii) g(x) > 1—€, x € X\ V.

To prove this lemma we first make use of hypothesis (c) to deduce the existence
of a function g, € A with g,(xo) # g.(x) for each xo € X \ Uy. The function
hy, = g, — gx(xp) is in A and satisfies 0 = h,(xg) # h.(x). The function

Pr = (uhxl ||?,o)hz

is also in A and satisfies py(xg) = 0, px(x) > 0,and 0 < p, < 1.

LetU, = {y € X : p,(y) > 0}. Then U, is an open set and contains x. Since
A\ Uy is compact (by Exercise 2.1.13), it contains a finite collection of points
X1, X2, ..., Xm sSuch that

X\UOQ Uy,

]

s

P—

The function

p= () 2P

is in A and satisfies0 < p < 1, p(xg) = 0,and p > 0 on X \ Up. Since X \ Uy is
compact, there exists 0 < § < 1 such that p > § on X \ Uy (see Exercise 2.1.14).
The set

V0={xe X|p(x)<%l

is an open set. Further, V; contains the point x¢ and is contained in the set Uj.
Let k be the smallest integer greater than % Thenk —1 < %, and so k <
Therefore, 1 < k§ < 2. Define functions

gn(x) = (l - p"(x))kn

forn=1,2,.... Theng, € A,0 < g, <1, and g,(x0) = 1.
If x € Vp, then

2
8 *

kp(x)5k~%<l.

The inequality proved in Exercise 6.1.2 implies that

é

a0z 1-(kpn) 2 1= (k-3)"

The last expression goesto | as n — ©00.
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If x € X \ Uy, then
kp(x) > ké > 1,

and the same inequality from the exercise implies that

00 = (1= P@) P ()
= knpn(x)(l P (x)) (1+knpn(x))
< knpn(x)(l ) (14p°)
k"p x) (1 zn(x))
< G

The last expression goes to 0 as n — oo.

We can therefore choose n large enough so that g, satisfies 0 < g, < 1,
gn(x) < € for each x € X \ Uy, and g,(x) > 1 — € for each x € V. Define
g = 1 —q,. It is left as an exercise (Exercise 6.1.3(a)) to show that g satisfies
(1)—(iii).

The second lemma states:

Consider disjoint closed subsets Y and Z of X. For each 0 < € < 1 there exists
g € A satisfying

() 0<g(x)<LxeX;
(ii) g(x) <e,x €7,
(i) g(x)>1—¢,x€ Z.

To prove this lemma we begin by considering the openset U = X \ Z in X. If
x € Y, then x € U, and the first lemma gives an open set V, of X containing x
with certain properties. Since X is compact, X contains a finite collection of points
X1, X2, ..., Xm sSuch that

m
c | Jva
i=l

Let g; be the function associated to V,. as given in the first lemma satisfying
0<gi<l,gi(x)< - foreachxeV,,and gi(x)>1— i foreachx e X\ U =2Z.
Define g = g,82---gnm. It is left as an exercise (Exercise 6.1.3(b)) to show that
this function satisfies (1)—(iii).

We now return to the proof of the Stone—Weierstwrass theorem. Consider
f € C(X; R). We aim to show that corresponding to any given € > 0 there exists
an element g € A satisfying || f — glloc < €. In fact, we will show that there exists
an element g € A satisfying || f — 8lloc < 2¢.

Replacing f by f + || fllec, We can assume that f > 0. We also assume that
€ < §. Start by choosing an integer n such that (n — 1)¢ > || fllo and define sets
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Xi,Y,', l=0, l,...,n,by

X,-=lxeX|f(x)§(i—-;;)e]

and

Y,-z{xeX|f(x)2(i+-;—)e].

Then we see that

X;NY;, =90,
S XoCS XS X=X,
and
Yo2V,2.---2Y,=0.
From the second lemma we have, corresponding toeachi = 0, 1, ..., n,afunction

g € Asatisfying 0 < g; <1, gi(x) < £ foreachx € X;, and g;(x) > 1 — £ for
each x € ¥;.
Define

n
8 = ngio
i=0

This function is in A. Consider an arbitrary element x € X. From the chain of
subsets  C Xo € X;--- € X,, = X, we see that there is an i > 1 such that
x € X; \ X;_1. For this value of i,

(i — g—)e < f(x) < (i — %)e

and
€ c o
8j(x) < - for every j > i.
Note also that x € Y; for every value of j < i — 2 and thus
€
gi(x)>1- - forevery j <i — 2.

These last two inequalities yield
i—1 n
gx) =€) gix)+e) g;(x)
, €
5i6+€(n—1+1);

< i€ + €2

<(i+ %)c
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and, fori > 2,

i—2
g(x) > €Y gix)
Jj=0

1
e > (i —1)—€

z(i—l)e(l—%)=(i—l)e—

> (i - g)e.

This last equality, g(x) > (i - %)e, is proved for i > 2;fori = 1itis
straightforward. Therefore,

70 =81 < (i +3)e = (i~ 2)e <26

and the Stone—Weierstrass theorem is proved. O

The conditions (a), (b), and (c) are usually rather easy to check if you are given a
subset A of C(X; R). Also, we point out thatif R is replaced by C and the following

condition (d) is added to the hypotheses, then the conclusion of the theorem still
holds:

(d) If f € A then f € A.

Our proof of the Stone—Weierstrass theorem is not found in other texts. In many
texts ([30] or [112], for example), a proof is given that was published in 1961
by Errett Bishop (1928-1983; USA) [19]. Bishop deduces the conclusion of the
Stone—Weierstrass theorem from a powerful result now called “Bishop’s theorem.”

As mentioned in the paragraphs preceding Brosowski and Deutsch’s proof, X
can be replaced by a Hausdorff space. In what follows, we will use this more
general language; if it makes you more comfortable, you may continue to think of
X as a metric space. Consider a compact Hausdorff space X and a closed unital
subalgebra A of C(X; C). A subset S of X is said to be A-symmetric ifevery h € A
that is real-valued on S is actually constant on S. Assume that f € C(X;C) and to
each A-symmetric subset S of X there is a function gg € A suchthat gs(x) = f(x)
forall x € S. Bishop’s theorem asserts that with these hypotheses, f must be in A.
Why is the Stone-Weierstrass theorem a consequence of Bishop’s theorem? With
notation as in the the statement of the Stone—Weierstrass theorem, consider A, a
closed unital subalgebra of C(X;C). Let f € C(X;C) be arbitrary, and let S be
an A-symmetric subset of X. By Exercise 6.1.7, S = {s} for some s € X. Since
A contains all constant functions, A contains the constant function g defined by
g(x) = f(s) for all x € X. Clearly, then, g(x) = f(x) for all x € S. Bishop’s
theorem now implies that f € A. Since f was arbitrary, we conclude that A must
contain all of C(X; C), which is the conclusion of the Stone—Weierstrass theorem.

The next natural question is, How can one prove Bishop’s theorem? The stan-
dard proof of this theorem uses ideas of Louis de Branges [24]. This approach
requires sophisticated machinery (including the Hahn-Banach theorem, which
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will be proved later in this chapter) that we are not in a position to develop here. In
1977, Silvio Machado (1932-1981) offered a more elementary proof of Bishop’s
Theorem [85] (and hence of the Stone—Weierstrass theorem). In 1984, Thomas
Ransford (born 1958; England) incorporated Brosowski and Deutsch’s ideas and
gave a shortened, simplified version of Machado’s proof [102]. The only ingredient
in Ransford’s proof that can be thought of as “nonelementary” is Zorn’s lemma.
We have not yet encountered Zorn’s lemma but we point out that the Hahn—Banach
theorem, and hence de Branges’s approach, also uses this lemma. Zorm’s lemma
will be discussed in Section 3 of this chapter. Reading and presenting Ransford’s
paper would be a nice student project.

We end with a few closing remarks. Subalgebras of C(X; C) that separate the
points of X and contain the constant function 1 (and hence all constant functions)
are called uniform algebras. These algebras need not be closed under complex
conjugation. The theory of uniform algebras is described in [48].

The classical Weierstrass approximation theorem asserts that on certain subsets
of the real line, the polynomials are dense in the continuous functions. Stone’s
generalization aims to capture the essence of the collection of polynomials (in
order to replace R with some more general space on which polynomials may not
make sense). Another interesting way to generalize the classical theorem is as
follows. Replace subsets of R with subsets of C. Then polynomials make sense,
and one can ask to characterize the subsets of C on which the polynomials are
dense in the continuous functions. There are theorems, such as a famous one due to
Carle Runge (1856-1927; Germany), that address this question. Runge’s theorem
is really a theorem of complex analysis; see page 198 of [30] for a proof. In the
present context, it is interesting that the standard proof (as in [30]) can be replaced
by a proof using functional analysis. This functional analytic proof is elegant, but
(again!) requires the rather powerful Hahn—Banach theorem (see Section 3). For
more on the connection between functional analysis and Runge’s theorem, see
Chapters 13 and 20 of [111]. The proof using the Hahn—Banach theorem uses the
observation that the collection of (complex) differentiable functions on a compact
subset of C forms a Banach space. There is a third proof, which uses the observation
that this Banach space is, in fact, a Banach algebra. This is a proof that is more
clementary in the sense that it does not require the Hahn—Banach theorem, and
was first given in a nice article [50] by Sandy Grabiner (born 1939; USA).

Marshall Harvey Stone was born on April at Harvard, was awarded in 1926. He
8. 1903, in New York City (Figure 6.1). spent the majority of the first part of his
His father, Harlan Fiske Stone, was a professional life at Harvard, and then most

distinguished lawyer who served on the of his career at the University of Chicago.
U.S. Supreme Court, including service for  He left Harvard to become the head of
five years as chief justice. the mathematics department at Chicago.
Stone attended public schools in As head, he was largely responsible for
New Jersey and graduated from Harvard ~ turning Chicago’s mathematics department
University in 1922. His Ph.D., also done into what many consider the strongest
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FIGURE 6.1. Marshall Stone in 1982.

mathematics department in the United
States at that time. During World War I,
he was involved in secret work for the
United States government.

Stone’s Ph.D. thesis, Ordinary linear
homogeneous differential equations
of order n and the related expansion
problems, was written under the direction
of George David Birkhoff (1884—1944;
US.A.). Over the next few years he
continued this work, by studying the
eigenfunctions of differential operators.
This then led him to work with Hermitian
operators on Hilbert spaces. Much of his
work in this area was motivated by the
quantum-mechanical theories developing
at the same time. In particular, Stone was
interested in extending Hilbert's spectral
theory from bounded to unbounded
operators. His work, at many times,

paralleled the work of von Neumann. In
1932, he published his classic book Linear
Transformations in Hilbert Space and
their Applications to Analysis, and he
credits von Neumann and Riesz as the
two primary sources of ideas for his work.
It should be noted that this is the same
publication year as Banach's treatise [11];
the two books are quite different in their
aims and styles. Some other particularly
important contributions of Stone’s include
his celebrated extension of Weierstrass's
theorem on polynomial approximation (as
discussed in Section 6.1) and his work on
rings of continuous functions. The latter
can be viewed as early work on commu-
tative Banach algebras. Stone’s work is
characterized by brilliant combined use of
ideas from analysis, algebra, and topology.
Stone had exceptional talent as a writer,
which is demonstrated by his writings
on many different topics. For example,
his paper “The generalized Weierstrass
approximation theorem” [119] and his book
mentioned in the preceding paragraph are
very enjoyable to read. He was interested
in many things, especially in education
and travel, and he wrote about these
things as well as about mathematics. He
authored, for example, a paper on mid
twentieth century mathematics in China
[120], uniting two of his interests. He
traveled to many different countries, and
was even shipwrecked in Antarctica. He
died on January 9, 1989, shortly after
becoming ill, in Madras, India.

6.2 The Baire Category Theorem with an Application to

Real Analysis

After giving necessary definitions, we prove an important theorem of René Baire.
We proceed to deduce from it that it is impossible for a function to be continuous at
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each rational point and discontinuous at each irrational point of the interval (0, 1).
Finally, we give another argument that no such function can exist, an argument due
to Volterra. Volterra gave his proof about twenty years before the first appearance
of Baire’s theorem.

Throughout this section M = (M, d) will denote a metric space.

A subset X in a metric space M is nowhere dense if M \ X is dense in M. Any
subset of M that is a countable union of nowhere dense subsets of M is said to be
of first category (in M). A subset of M that is not of first category is said to be of
second category.

We use the following lemma to prove the Baire category theorem. In fact, the
lemma and Baire’s theorem are equivalent statements.

Lemma 6.3. If (U,}32 , is a sequence of open dense subsets of a complete metric
space M, then (.-, U, is dense in M.

ProoOF. Consider x € M and € > 0. We aim to show that there exists an element
y € (=i Un suchthat y € Bc(x).

Since U; = M, there exists y; € U; N B¢(x). Since U; N B.(x) is open, there
exists an open ball

Be;()’l) cUpnN Be(x)'

Let §; = min{%, 1}.
Since U, = M, there exists y, € Us N By, (y;). Since Us N By, (y1) is open, there
exists an open ball

B.,(y2) € Uz N B;, (y1)-

Let §, = min{%, 1}.

Since Us = M, there exists y3 € U3 N Bs, (y2). Since U3 N Bs,(y,) is open, there
cxists an open ball

B, (yv3) € Us N Bs,(y2).

Let 53 = min{ £, 1}.
Continuing in this way, we create a sequence (y, }o- ; and open balls { B¢, (y»)}5- ;
and {B;, (y4)132, with 8, = min{<, >} satisfying

Ben (.Yn) g Un N Ba,,,.l()’n-l)

forn=1,2,....If m > n, then this implies that y,, € Bs,_,(y,) and thus
l

d(ym' yn) < an S -

n

Hence (ya ), o, is a Caughy sequence. Since M is a complete metric space, there
cxists a y € M such that d(vy, y) = O ax n — . From y,, € Bj; (y,) for all
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m > n, it follows that y € Bs (y,) foralln = 1,2, ... . Therefore,

y € By, Om) S By (%) S B Om) S Un

foralln = 1, 2, .... From this string of inclusions we can conclude both
0
y €\ Us
n=1
and y € B¢, (y1) € Be(x), as desired. O

Theorem 6.4 (The Baire Category Theorem). Any nonempty, complete metric
space is of second category.

PROOF. Let M be a nonempty complete metric space thatis of first category. Then
M can be written as a countable union of nowhere dense subsets, M = ;- ; A,.
Then M = | J°2, A, also, and from De Morgan’s law we have @ = (%%, (M \ A,).
But each set M \ A, is open and dense (the latter from the definition of nowhere
dense), and the lemma thus gives that (oo ,(M \ A,) is dense in M. This is
impossible, and thus M must be of second category. O

There are many applications of Baire’s theorem in analysis. Our main use of it
will appear in the next section, where we use it to establish fundamental results
about linear operators between Banach spaces. We now give one application of it
to the theory of real functions.

The function defined on (0, 1) by

1
— ifx = p in reduced form,

gx)=1% ¢q q
0 if x is irrational,

11 .
2
1
‘é"‘" [ ] [ ]
1
4— [ ] o
-, . . .
S o .
[ ] [ ] ® [ ] ® [ ]
1 | | |
| 11 !
S 4 3 2

FIGURE 6.2. The graph of g(x).
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is a standard example of a function that is continuous at each irrational point
of (0, 1) and discontinuous at each rational point of (0, 1) (Exercise 6.2.5). See
Figure 6.2. Itis natural to wonder whether there is a function defined on (0, 1) that
is continuous at each rational point of (0, 1) and discontinuous at each irrational
point of (0, 1). It may seem somewhat surprising that no such function can exist.
The proof of this usually given makes use of Baire’s theorem, and we now supply
this proof.

We start by defining, for any bounded real-valued function f defined on an open
interval I, the oscillation of f on I by

w (1) = sup{f(x) |x € I} —inf{f(x) |x € I}.
For a € I define the oscillation of f at a by
wr(a) = inf{w r(J) |J C I is an open interval containing a}.

The connection between continuity and oscillation is made precise inthe following
straightforward lemma.

Lemma 6.5. A bounded real-valued function f defined on an open interval I is
continuous at a € I if and only if ws(a) = 0 and the set {x € I |a)f(x) < €}isan
open set for each € > 0.

PrOOF. If f is continuous at a, then given € > 0, there exists § > 0 such that
| f(x) — f(a)| < € whenever |x — a| < §. Therefore,

wr(a) < a)f((a —4d,a +6)) < €.

Since this holds for every € > 0, we have w¢(a) = 0.

Conversely, if w r(a) = 0, then for any given € > 0 there exists an open interval
J C I containing a suchthat w /(J) < €. Since J is open, there existsad > O such
that the interval (a — 8, a + J) is contained in J. Hence [x — a| < & implies that

£() = f@) s or(@=8,a+8) < wrd) < e,

as desired.

To prove the second assertion of the lemma consider € > Q0 and xp € {x € I :
ws(x) < €}. Let J be an open interval containing xo and satisfying w r(J) < €.
Foranyy € J, ws(y) < ws(J) <€,andthus J C {x € I : ws(x) < €}, proving
that {x € I : ws(x) < €} 1s open. O

Theorem 6.6. There is no function defined on (0, 1) that is continuous at each
rational point of (0, 1) and discontinuous at each irrational point of (0, 1).

PROOF. Suppose, to the contrary, that such an f exists. By the lemma, the set
1
U, = lx €0 1): wslx) < ;}

is open for eachn = 1,2, ... . By the first part of the lemma, the set ()=, U, is
cqual toQ N (0. 1). Since the rational numbers are dense in (0, 1), each U, is also
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dense in (0, 1). SetV, =0, D\ U,,n=1,2,.... Then(0,1)\ Q = Uf’:l V.,
and each V, is nowhere dense in (0, 1). If {r;, 72, ...} is an enumeration of the
rational numbers in (0, 1), then

0, DH=ViU{rni}uWV,U{rnlu...,
and so
[0,1]={0}U{1} UV U{nIUVU{rn}U---.

Each set in this union is nowhere dense, and thus [0, 1] is of first category,
contradicting the Baire category theorem and completing our proof. O

As already mentioned, the nonexistence of a function continuous exactly on
the rational numbers is usually deduced as a corollary to Baire’s theorem. Baire’s
theorem appeared in 1899 [9]. Two decades before the appearance of this paper
the Italian mathematician Vito Volterra gave a proof of the nonexistence of such
a function; he gave this proof while he was still a student. Volterra also argues
by contradiction, but he avoids altogether the somewhat sophisticated ideas of
category. We first encountered Volterra’s proof in William Dunham’s wonderful
article [37].

Following Volterra’s proof, we will assume that such an f exists, and let g be
defined by

1

—~ ifx = p in reduced form,
gx) =1 ¢ q

O if x is irrational.

Consider any rational point xg in the open interval (0, 1). By continuity of f at Xp
there exists § > 0 such that (xo — 8, xo + 8) € (0, 1) and |f(x) — f(x0)| < 3
whenever |x — xg| < 8. Choose a; and b; such that [a1, b1] € (xo — 68, xo + 0).
Then

1
|f (X)) = fDI < 1f(x) = f(xo)l +1f (x0) = F () <z+7=1

1
2
for all x, y € [ay, b1]. Next, we choose an irrational point in the open interval
(a1, b1). By the same argument, there exist points a; and b{ such that [a], b]] C
(a1, b1) and |g(x) — g(y)| < 1 forall x, y € [af, bj]. Thus, forall x, y € [a], b{],
we have both | f(x) — f(y)| < 1 and |g(x) — g(¥)| < 1.

Repeat this argument starting with the open interval (a}, b)) in place of (0, 1) to
construct a closed interval [a;, b3] € (af, b)) such that for all x, y € [a}, b;] we

have both | f(x) — f(y)| < ; and |g(x) — g(¥)| < 3.
Keep repeating this argument to construct intervals

/ ’ ’
0. 1) 2 [a). byl 2 May. b1 2. 2al, b)) 2
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and such that for all x, y € [a,, b]] we have both |f(x) — f(¥)| < -21; and
lg(x) —g(y)| < zi,, By the nested interval theorem? there exists exactly one point
contained in all intervals [a,, b,]. It follows that both f and g are continuous at

this point, and hence that this point is simultaneously rational and irrational. Since
this is impossible, we are done.

6.3 Three Classical Theorems from Functional Analysis

In this section we present the open mapping theorem, the Banach—Steinhaus theo-
rem, and the Hahn—Banach theorem. We also discuss their history and applications.
The first was proved by Banach, the second jointly by Banach and Steinhaus, and
the third was proved, independently, by Hans Hahn (1879-1934; German) and
Banach. These three results are fundamental theorems of functional analysis, and
it may be argued that any book purporting to be a functional analysis text must
include them.

The first two can be viewed as consequences of the Baire category theorem.
These two theorems have to do with linear operators between normed linear spaces.
The Hahn-Banach theorem is about “linear functionals”: linear mappings from a
linear space into the underlying field. It is different in flavor from the other two
theorems of the section, but is put in this section because these three theorems
are often thought of as the “bread and butter” theorems of elementary functional
analysis.

Suppose that X is a linear space, « is a scalar, and A € X. We will use the
notation ¢ A to denote the set {ax |x € A}. In particular, we note the equality of
open sets: aBg(x) = Byg(x).

Theorem 6.7 (The Open Mapping Theorem). Consider Banach spaces X and
Y and an element T € B(X, Y). If T is onto, then T(U) is open in Y whenever U
is openin X.

PrROOF.  We split the proof into three steps:

(i) There exists € > 0 such that B.(0) € T (B ! (0)).
(ii) For the € > 0 found in (i), we have B.(0) C T(B;(0)).
(ifi) T(U)is open in Y whenever U is open in X.

To prove (i), we begin by observing that since T is onto,

00
=]

Y = T(X) = T(D Bg(O)) — UT(B;(O)).
n=1 n

The Baire category theorem implies that there is an integer N such that one of
the sets T(B;(O)) is not nowhere dense in Y. By Exercise 6.2.1 the interior of

“This is a standard theorem from a first real analysis course and is an immediate
consequence of the completeness of the real numbers,
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T(B y (0)) is not empty. We can thus find, by the definition of interior, a yp € Y

and anr > O such that B,(yg) C T(B%(O)).
Let € = 5. Note that

%9 +ye T(B%(O))

for each y € B,.(0). Now consider any y € B.(0). Since both % and —% are in
T (B %(O)), we have

= Yo Yo

e+ 3R +2y)

c T(B%(O)) + T(B%(O))

- T(B%(O)).

This proves (1).
To prove (ii) we consider any y € B.(0). By (i) we can choose x; € B 1 (0) such
that 7x; and y are as close to each other as we please; choose x; to satisfy

€
—Tx < —,
|y 1lly 5

That is, y — Tx; € B:<(0) = 3B.(0) S %T(B%(O)) = T(B1(0)). Now we can
choose x; in B 1 (0) such that Tx; and y — Tx; are as close to each other as we
please; choose x; to satisfy

€
Iy —Tx1) —Txz|ly < 7

Continue in this way, creating a sequence

X, € Bz—n(O),
L €
|y =27, <5

It follows from Lemma 3.21 that ) _,- , x, converges in X. Let x denote this infinite
sum. Then

00 o o]
Ixllx < ) lmllx <D 27% =1,
k=1

k=1

showing that x € B;(0). Finally, it follows from the continuity of T that Tx = y.

We now move on to the proof of the third part. Consider an element Tx in
T (U). Since x is in the open set U, thereis a § > 0 such that By(x) € U. We will
be done when we show that By, (Tx) € T(U). To see this, let y € B3 (T x) and
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write y as Tx + y1, for some y; € Bsc(0). Then y; = & is in B.(0) S T(B,(0)).
Write y, = T x;, for some x; € B1(0). Then y = Tx + §Tx; = T(x + §x;,), with
x + dx; € U. This completes the proof. O

The next result, the Banach—Steinhaus theorem, is sometimes referred to as
the uniform boundedness principle. In fact, there are different versions of this
principle, as a perusal of functional analysis texts shows. These principles give
conditions on a collection of operators under which each operator in the collection
is bounded (in norm) by a single (finite) number.

Theorem 6.8 (The Banach—Steinhaus Theorem). Consider a Banach space X
and a normed linear space Y. If A C B(X, Y) is such that

sup{|Txlly |T € A} < o0

for each x € X, then

sup{|| Tl sx.yy |T € A} < oo.
PROOF. Define sets

E,={xe X||Txlly <nforall T in A} = ("|{x € X |ITx|ly <n).
TecA

Each of these sets E,, is closed, and their union | J_ | E, is all of X. Using Exercise
6.2.1 just as in the proof of the open mapping theorem, the Baire category theorem
implies that (E 5)° 5% 0, for some integer N. By definition of interior, there exists
a point xo and a positive number r such that B,(xg) C Ey. Thatis, ||[Tx|ly < N
for each x in B,(xo) and each T € A. We aim to show that there is a number K
suchthat ||Tx|y < K forevery element x € X of norm 1 and each T € A. For an
arbitrary element x in X of norm 1, we consider the element y = 3x + xo. Then
y € B.(xp),and so ||Ty|ly < N. Therefore,

ZITxlly = ITxolly < |5Tx + Txo| = ITylly <N,
and hence
ITxlly < 2 (N 4+ ITxoll ).
Since the number K = 2(N + || Txo|ly) is independent of x, we are done. O

The Banach—Steinhaus theorem is very useful as a theoretical tool in functional
analysis, and for more “concrete” applications in other areas. We will not discuss
these applications.

We now move on to one of the single most important results in functional
analysis: the Hahn—-Banach theorem.

Let X be a linear space over R (respectively C). A linear operator from X into R
(respectively C) is called a linear functional. Assume now that X is anormed linear
space. The collection of all continuous linear functionals® on X is called the dual

‘Recall that in this context the worda continuous and bounded are interchangeable.
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space of X; this space is very important, and we will only touch on its properties.
The notation X* is used to denote the dual space of X, so that X* is shorthand for
B(X, R) (respectively B(X, C)). For example, the next project an interested student
might take on would be to identify the dual spaces of his/her favorite Banach spaces
(this material is standard in most first-year graduate functional analysis texts). The
early work on dual spaces led to the idea of the “adjoint” of a linear operator, an
idea that has proved extremely useful in the theory of operators on Hilbert space.

If M is a proper subspace of X, and A is a linear functional on M taking valuesin
the appropriate field R or C, then a linear functional A on X is called an extension
of A if A(x) = A(x) for each x € M. The Hahn—Banach theorem guarantees the
extension of bounded linear functionals in a norm-preserving fashion, and it is this
latter assertion — about norm preservation — that is the power of the theorem.

There are many versions of the Hahn—Banach theorem. The family of these
existence theorems enjoy many, and varied, applications. For an account of the
history and applications of these theorems, [96] is warmly recommended. As stated
at the beginning of this section, the theorem is credited, independently, to Hahn
and Banach. However, this is one of those situations in mathematics where there
is another person who has not received proper credit. In this case, Eduard Helly
(1884-1943; Austria) should perhaps be recognized as the originator of the theorem
(see [65], [96]). Briefly, Helly proved a version of the Hahn—Banach theorem [62],
roughly fifteen years before the publicationof the proofs of Hahn and Banach. Helly
then enlisted in the army, and was severely injured in World War 1. Eventually,
he returned to Vienna but then was forced to flee in 1938 to avoid persecution by
the Nazis. These many years outside of the academic setting damaged his career
in mathematics, and caused his earlier work to remain obscure. Incidentally, the
Banach—Steinhaus theorem also appeared in Helly’s 1912 paper.

The proof given here of the Hahn-Banach theorem uses the axiom of choice.
The relationship between the Hahn—~Banach theorem and the axiom of choice is
discussed in [96]. The axiom of choice is, as the name suggests, an axiom of set
theory. That is, it is a statement that cannot be deduced from the usual axioms of
set theory. Its history is rich; for a discussion of the axiom of choice see [59], page
59. The axiom of choice is stated in the next section, where we use it to prove the
existence of a nonmeasurable set. As you read, note that both of our applications
of the axiom of choice are assertions of existence of something: an extension of
a linear functional in the Hahn—-Banach theorem and a nonmeasurable set in the
next section.

As it tums out, the axiom of choice has several equivalent formulations, and
it is one of these other forms that we will find most useful in our proof of the
Hahn-Banach theorem. We will use a form known as Zorn’s lemma. To state this
lemma, we need some preliminary language. A partially ordered set is a nonempty
set S together with a relation “<” satisfying two conditions:

(i) x <x foreachx € S;
() If x<yandy <z, thenx < z.
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If for any x and y in a partially ordered set S either x < y or y < x, we say
that S is a totally ordered set. Consider a subset T of a partially ordered set S. An
element x € Sis an upper boundforT if y < x foreachy € T. Anelementx € S
is a maximal element if x < y implies y < x. Zorn’s lemma asserts that every
partially ordered set S in which every totally ordered subset has an upper bound
must contain a maximal element.

We are now ready to prove a version of the Hahn—Banach theorem having to do
with real-valued linear functionals.

Theorem 6.9 (The Hahn—Banach Theorem (Real Case)). Let X be a real normed
linear space and let M be a subspace. If . € M?*, then there exists A € X* such
that A = Aon M and | A| = Al

(It is important to keep norms straight. For example, the two norms appear-
ing in this equality are different; the equality, more precisely written, reads:

IAllBx.R) = IAllBm,R)- We will indulge in the common practice of not writing
these cumbersome subscripts.)

PROOF. We begin by considering the real-valued function
px) = [IAl - [lx]l
defined on all of X. Observe that
px+y)=px)+p(y) and  p(ax) < ap(x)

forall x, y € X and ¢ > 0. Also observe that A(x) < p(x) for all x € M.
Next, consider a fixed z € X \ M. For all x, y € M we have that

Ax) —A(y) = AMx — y)
<plx—y)=pl(x+2)+(—z2—y)) < p(x+2)+p(—z-Y).
Hence,
—p(—z—y) = A(y) < p(x +2) — A(x)
for all x, y € M. Therefore, y € M implies that

s = su]g{—p(ﬂz = ¥)— A} < p(x +2) — A(x),
ye

and hence that
s < inf {p(x + z) — A(x)}.
xeM

For the z specified above, define the subspace M, of X to be the subspace
generated by M and z:

M,=(x+az|x e M. aeR).

Notice that the representation w = x + aZ is unique for w € M.:. Define
A(w) = A(x) + as on M,. Then A is linear, and A(x) = A(x) for each x € M,
We have thus extended A from M to a bigger subspace M. of X. If M. actually



156 6. Further Topics

equals X, we are done (and without using Zorn’s lemma!). Since 2 € M for every
a # 0, we see that

—p(—z—2)=mE) <s<pE +2)=A(>), a#O.
(94 (94 o (94

From this we can deduce that A(w) < p(w) for each w € M, (using the first
inequality if o < 0 and the second if ¢ > 0).

If M, # X, we still have work to do. Recall that we are attempting to extend
A from M to X. We could repeat the process described above, extending A from
M, to a bigger subspace of X, but chances are, we will never reach all of X in this
way. To get around this difficulty we will need to employ Zom’s lemma. Denote
by S the set of all pairs (M’, A") where M’ is a subspace of X containing M, and
A’ is an extension of A from M to M’ satisfying A’ < p on M’. Define a relation
“<” on S by

(MI, )\’/) 5 (M”, )\'II)

if M’ is a proper subspace of M” and A’ = A” on M’. This defines a partial
ordering on S. Let T = {(M,, A,)}qseca be a totally ordered subset of S. The pair
(Uws a4 Ma, ), where Mx) = A (x) for x € M,, is an element of S, and is seen
to be an upper bound for T. Since T was an arbitrary totally ordered subset of
S, Zom’s lemma now implies that S has a maximal element, which we will call
(Mso, Aso). Observe that Ao, is an extension of A from M to M, that satisfies
Aso < p on M. We aim to show that M, is, in fact, all of X. Ifit is not, then we
apply the process of extension used in passing from M to M, to create the element
(Mooz, Aooz) Of S. This element satisfies

(Moo, Aoo) X (Moozs Aooy)-

Since (Mo, Axo) is maximal in S, we must have that Mo, = My, contradicting
the definition of “<”. If we now let A = Ao, we have an extension of A to all of
X satisfying A(x) < p(x) for all x € X. Replacing x by —x gives

|A(x)| < p(x) = ||All - [lxll

for all x € X, showing that |A| < ||A|. The only thing left to do is to show that
this inequality is actually an equality. To do this, for each € > 0 choose x € M
such that ||x|| < 1 and |A(x)] > ||A|]| — €. Then |A(x)| > ||A|| — € also and,
consequently, | A|| > ||A||, completing the proof. m|

We now prove a complex version of the Hahn—-Banach theorem. The proof of
the complex case was first given in 1938 [20]. The proof follows from the real case.
In fact, most of the work is already done in the real case, and it seems surprising
that over a decade passed between the appearance of the proofs of the two cases,
especially in light of the explosive development of functional analysis at the time.
We are now considering a complex linear space X, a subspace M of X, and a
complex-valued bounded linear functional A defined on M. We wish to extend this
functional to one defined on all of X in a way that does not force the norm of the
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functional to grow. To see how this can be done, define real-valued functions A;
and A, by

Mx) = A(x) + ira(x)
for x € M. You should check that A; and A, arereal linear, and note that A; satisfies
A1 CO| < (A < A - Hx]l

for each x € X. If we view X as a linear space over R, the first version of the

Hahn—Banach theorem tells us that there is a real-valued bounded linear functional
A1 on X satisfying A;(x) = A;(x) foreachx € M and ||A1|| < ||A]|. Next, define
A on X by

A(x) = A(x) —iA(@ix).

This is our desired extension, and it will not be hard to show that it has all the
desired properties. First, you should check that it is a complex linear map on X.
Since for x € M,

AM@x) + iA(ix) = A(ix) = iA(x) = —A(x) + iA1(x) "
and A; and A, are real-valued, we have that
—A2(x) = Aq(ix).
Thus,

Ax) = A1(x) + iAz(x)
= A1(x) —ir(ix)
= A1(x) —iA(ix)
= A(x)

for each x € M, showing that A extends A. It should be clear that [|A]| < |A], and
we will be done when we show that this is actually an equality. For x € X write
the complex number A (x) in polar form r e*° with nonnegative r and real . Then

A = e P A(x) = A(e™x),
showing that A(e™* 9x)is real and hence equal to its real part, A (e~ ®x). Therefore,
IA)| = Ar(e™x) < |ALl - le™x Il < A - llxl,

implying that | A|| < ||A||, as desired.

The Hahn—Banach theorem has many applications, both in functional analysis
and in other areas of mathematics. Its applications within functional analysis focus
on separation properties, and the interested reader should follow up by reading any
one of the functional analysis texts in the References. We end this section with a
brief discussion of the theorem’s use in another area of mathematics.

One of the most important problems in an area of mathematics called potential
theory is the so-called Dirichlet problem. Potential theory is a branch of partial
differential equations and has its roots in problems of the 1700s such as the problem
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of determining gravitational forces exerted by bodies of various shapes (it was
already known that the earth is some sort of ellipsoid). See Section 22.4 of [76]
for more of this history.

We consider an open, bounded, connected (that is, it cannot be written as the
disjoint union of two open subsets) set U in R”. The boundary oU of U is the set
UNR\ U). Given a continuous function f defined on dU, the Dirichlet problem
is to find a continuous function u defined on all of U that is a solution to the
Laplacian equation

0%y 02u

=0
dx? +8x,%

(on U) and meets the additional requirement that # take on the same values that
f does on dU. Usually, if such a u exists, it is not too hard to show that it is the
unique solution to the Dirichlet problem (for a specified U and f). Showing that a
solution exists at all is harder (much harder), and various techniques can be used.
One way to show this existence is to use the Hahn—Banach theorem. Further details
can be found on page 155 of [47].

6.4 The Existence of a Nonmeasurable Set

The primary goal of this section is to show that there is a subset of R that is not
Lebesgue measurable. The example can easily be adapted to give a subset of R”
that is not Lebesgue measurable. The example given here is a modification of one
given by Giuseppe Vitali (1875-1932; Italy) [126].

The facts we need about Lebesgue measure are the following:

(i) It is translation invariant. That is, m(E) = m(x + E) for each x € R and
E € M. Here, the set x + E is defined by

x+E={x+y|y€E}.

(i) m([0, 1)) = 1.
(iii) Itis, as is every measure, countably additive.

The second follows from the definition of m; the third is proved in Theorem 3.6.
The first has not yet been mentioned. We point out that a set E C R is measurable
if and only if x 4+ E is measurable, and now (i) follows from the next theorem.

Theorem 6.10. Lebesgue outer measure m* is translation invariant on 2X.

PrOOF. Foraninterval I = (a, b), (a, b), [a, b),or[a, b),m*(I) =m(l) = b—a
by definition, and it should be clear that m*(x + I) = m*(I) for each x € R. Let
E < R be arbitrary and cover E with a countable number of intervals /,,

oo
EQUQ
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Then

0o
x+Ec | Jx+ h),

n=1

and we have
00 00
m*(x+ E) < Zm(x + Ip) = Zm(l,,).
n=1 n=1

Taking the infimum over all such covers of E, we get
m*(x + E) < m*(E).
Then also
m*(E) < m*(—x+ (x + E)) <m*(x+ E). [

We also will use the axiom of choice: Let I be any nonempty set. If {A; :i € I'}is
a nonempty family of pairwise disjoint sets such that A; # @ for eachi € I, then
there exists a set E C | J,; Ai such that E N A; consists of exactly one element
for eachi € I. The axiom of choice is discussed in further detail in the preceding
section. If you have not yet read that section, you should read the discussion on the
axiom of choice (and the equivalent Zorn’s lemma) found there before proceeding.

We now turn our attention to showing that there exists a set £ C R that is not
Lebesgue measurable. We start by defining an equivalence relation ~ on (0, 1) by
x ~ yifx —y € Q. The equivalence classes play the role of the A;’s in the axiom
of choice as stated above. Therefore, we conclude the existence of aset £in (0, 1)
consisting of exactly one element of each equivalence class.

We will show that E cannot be Lebesgue measurable. Assume, to the contrary,
that E is Lebesgue measurable. Let r;, r2, . .. be an enumeration of the rational
numbers in (—1, 1). Define sets

E, = (x +rx |x € E}, n=12,....

Since m is translation invariant, m(E,) = m(E) for each n. Note that each E, is
contained in the interval (—1, 2), and thus

(0 0]
|LJE- c(-1,2).
n=1
Also, notice that

0, 1) < D E,.

n=]

To see that this is the case choose any x € [0, 1) and let y be the unique element
of E that is equivalent to x. Thenx — y € Q N (-1, 1) and thus must be one of
the rationals 7, for some k. In this case, x = y + r, € Ey S .o, En. Finally,

we note that £, N E,, = @ for n 3% m. To see that this is the case, consider an
clement x € E,NE,. Thenx =y+r, = z+r, forsome y,z € E. Then
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y—2=rm—r, €Q, which shows that y ~ z and y # z (since n # m). This is
impossible, since E contains precisely one element from each equivalence class.

Combining the observations of the previous paragraph with (i)-(iii) above, we
get

3= m(-1,2) = m(|J ) = Yo m(En) = 3 m(E).

n=1 n==1 n=1

and therefore m(E) = 0. On the other hand,

1 =m((0, 1)) < m(O En) = S m(En) = Y m(E),
n=1

n=1 n=1

implying that m(E) > 0. Clearly, we cannot have both, and we must thus conclude
that E is not Lebesgue measurable.

This proof uses the axiom of choice. Interestingly, one must use the axiom of
choice to prove the existence of sets that are not Lebesgue measurable. This follows
from results of Robert Solovay [115].

6.5 Contraction Mappings

Fixed point theorems have many applications in mathematics and are also used
in other areas, such as in mathematical economics (see, for example, [22], [92]).
We mentioned the Schauder fixed point theorem in the proof of Theorem 5.22
about invariant subspaces. Most theorems that ensure the existence of solutions of
differential, integral, and operator equations can be reduced to fixed point theorems.
The theory behind these theorems belongs to topology and makes use of ideas such
as continuity and compactness. Two of the most important names associated to this
broad area are Henri Poincaré (1854-1912; France) and Luitzen Brouwer (1881—
1966; Netherlands). In this section we will prove a fixed point theorem known as
Banach’s contraction mapping principle and study applications of it to differential
equations. This type of application is of an aesthetically appealing nature: The
result may be known and may be provable via the methods of “hard analysis,” but
the techniques of functional analysis reveal a beautifully enlightening proof. The
proof of our theorem is a generalization of an analytic technique due to (Charles)
Emile Picard (1856-1941; France).
We begin with a differential equation subject to a boundary condition:

dy
2; - ¢(x’ }’)’
y(x0) = yo.

“Finding a solution” means to construct a (necessarily continuous) function y(x)
that passes through the point (xp, Yo) and has slope ¢(x, y) near xp. This solution,
if it exists, will thus be an element of C([a, b)) for some closed interval [a, b]
containing xo.
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Given the above system, how do we know whether a solution exists at all? If
one exists, can we tell whether it is the only one? Consider the following “easy”
example:

dy . %
dx  °
y(0) =0.
This, as you can easily check, has solutions
1
yitx)=0 and y2(x)= 2—7x3.

Therefore, uniqueness does not always follow from existence. We shall later see
conditions ensuring uniqueness.

In 1820, Cauchy proved the first uniqueness and existence theorems for a system
of type

dy _
21; - ¢(xa }’),
y(xo0) = Yo.

However, he imposed severe restrictions on ¢, and the proof was unnecessarily
complicated. There subsequently followed improvements on Cauchy’s theorem
and proof, including an improvement of the proof due to Picard. The result we
present next is a general fixed point theorem, the proof of which uses Picard’s
iterative method that he employed in his version of Cauchy’s theorem. We will
then rephrase the problem about differential equations into the language of the
fixed point theorem. Rephrasing the differential equations problem in the lan-
guage of functional analysis yields a remarkably simple result with a powerful
conclusion. This rephrasing in a more general setting also greatly increases the
scope of applications.

At this juncture we must remember that a solution to our system is an element
of C(la, b)), and that C([a, b]) endowed with the supremum norm

| flloo = sup{| f(x)| |a < x < b}

IS a complete metric space.

Let X = (X, d) be a metric space. Amap T : X — X is a contraction if there
exists M € [0, 1) such that d(Tx, Ty) < Md(x,y)forallx, y € X.

Here is the main result of this section:

Theorem 6.11 (The Banach Contraction Mapping Principle). Let X be a com-
plete metric space and T a contraction X — X. Then there exists a unique point
x € XwithTx = x.

PrROOF. Choose any xo € X. Put

x1 = T xo.
x3 = Tx|(= Txq).
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X, = T"xp.

We will show that this defines a Cauchy sequence {x,}. Then, since X is complete,
we know that this sequence converges, say to x. We will finish by showing that x
is a fixed point of T and that it is the only fixed point of T'.

Let M be as in the definition above and note that

d(xp+1, Xp) < M"d(xy, x0).

This is left as Exercise 6.5.1.
Then, if m > n,

d(Xm, xp) < dXm, Xm=1) + d(Xm=1, Xm-2) + -+ - + d(xp+1, Xn)
<M™ 14+ M™ 2 4 M™d(x1, Xo)

n

< (1 ilM)d(xl,xo).

Since
Mn
1-M
as n — 00, we see that {x,}°2, is Cauchy. Let x = lim,_,  x,, and notice that
d(TX, x) S d(Txa Txn) + d(Txns x) 5 Md(xa xn) + d(xn-l-la X).

Since both

— 0

L )

dx,x,)—> 0 and d(x,.1,x)—>0

as n — oo, we see that d(Tx, x) = 0. In other words, Tx = x. To complete
the proof it remains to be shown that x is the only fixed point of 7. Suppose that
Ty = y and that x # y. Then d(x, y) > 0, and thus

dx,y)=d(Tx,Ty) < Md(x,y) <d(x,Yy),

a contradiction. Therefore, it must be the case that x = y. This completes the
proof. O

We now return to our differential equation with boundary condition:

dy _
2’; - ¢(x’ y)a
y(x0) = Yo.

As you should verify, this is equivalent to the integral equation

y(x) = yo + f d(t, y(1))dt.

Define a map

T : C(la. b)) = C(la. b))
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by Tf = g, where

g(x) =yo + f o(t, f())dt.

Any solution of the original differential system is a solution to the integral equation,
which in-turn is a fixed point of the map 7. Let us now assume that ¢ satisfies a
“Lipschitz condition” in the second variable.* That is, we assume that there exists
a positive number K such that

|o(x, y) — d(x,2)| < K|y —z|

for all x € [a, b] and all y, z € R. In this case,

(T f)(x) — (Tg)x)| =

f [o(2, (1)) — @z, g(2))]dt
< f |o(e, f(2)) — P(z, g(2))|dt

< f K1£() — g(0)\d

X0

< f " Kd(f, g)dt

X0

< K — a)d({, 8.

Since this holds for all x € [a, b], we have

d(Tf, Tg) < K(b —a)d(f, 8)

for all f, g € C([a, b]). From this, we see that the map T is a contraction as long
as K(b — a) < 1. We thus have the following corollary to Banach’s theorem:

Theorem 6.12. Let notation be as in the preceding discussion. If there exists a
K > Owith K(b — a) < 1, then there exists a unique f € C([a, b)) such that
f(x0) = yo and f'(x) = ¢(x, f(x)) for all other x € [a, b].

In some simple situations, Picard’s method of successive approximation can
actually be used to construct the unique solution to a differential equation with
boundary condition. For example, consider

fl)=x+ f(x),
f(0)=0.

This system is equivalent to the integral equation

f(x)= fo (t + f(2))dt.

‘Named in honor of Rudolf Otto Sigismund Lipschitz (1832-1903; Konigsberg, Prussia,
now Kaliningrad. Russia).

e,
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Thus we put

(TF)x) = yo + [ b(t, F(O)dt,

where yo = 0, xo = 0, and ¢(¢, f(¢)) = t + f(¢). Does ¢ satisfy a Lipschitz
condition? We have

[p(x, y) —d(x, ) =[x +y)—(x+2)| =y — 2|,

whichislessthanorequalto K|y —z|ifweput K = 1. Since weneed K(b—a) < 1
in order to apply our theorem, we just need to restrict attention to an interval [a, b]
of length less than one containing xo = 0. Then our theorem implies the existence

and uniqueness of a solution; what is this solution? Let us choose, quite naively,
fo(x) = 0. Then

* 1
10 = (T fo)(x) = [0 ¢+ fo)dr = 522,

_12 l3

1 , 1 1 "
Ja@@) =327+ '3_!x3+“'+ n+ D "

From this we see that f,(x) - f(x) =e¢* —x— 1, and sure enough, e* — x — 1
solves the original system.

There are problems with using Picard’s iteration scheme. First, it may be the
case that the iterates cannot be solved for with elementary functions. Or even if
they can theoretically be solved for, they may be too hard to calculate. Second,
even if we “have” the iterates, to figure out what they converge to may be very
difficult. The power of this theorem, even though it is a “constructive” proof, is
for ensuring existence and uniqueness. The theorem is also useful when one is
interested in using a computer to get numerical approximations to a solution. The
computational side of this problem is one that we will not go into at all, but is
worthy of the interested reader’s further investigation (see [92]).

6.6 The Function Space C([a, b]) as a Ring, and its
Maximal Ideals

In this short section we show that the maximal ideals of the ring C([a, b]) are
in one-to-one correspondence with the points of [a, b]. We start with definitions
of rings and ideals. The intent of this section is to study the algebraic structure
of function spaces. Though this may be of more interest to students who have
studied abstract algebra, the material found here is self-contained and requires no
background not already found in this text.
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A ring is a nonempty set R together with two binary operations, “+” and *“.”,
such that for all a, b, ¢ in R

a+bisin R;

.a+b=b+a;

@+b+c=a+ b+0o);

There is an element 0 in R such thata +0 =0+ a = a;
There is an element —a in R such thata + (—a) = 0;
a-bisin R;

@-b)-c=a-(b-c)
a-(b+c)=a-b+a-candb+c)-a=b-a+c-a.

I Y S

If, in addition, there is an element 1 in R suchthata-1 = 1 - a = a for each
a € R, R is said to be a ring with identity (or ring with unit). The use of the word
ring in this section is different than the usage in the context of measure theory.
We really have no need for this definition, except to notice that C([a, b]) is a
ring with identity. You are asked to prove this in Exercise 6.6.1.
A nonempty subset 7 of aring R is called an ideal of R if

1. a and b both in J imply a + b also in J;
2. ain J and r in R imply that both ar and ra are in J.

An ideal 7 of a ring R is a proper ideal if J # R, and is a maximal ideal if
J = M for every proper ideal M satisfying J C M. Recall from the Section 5.3
what a Banach algebra is, and that C([a, b]) is one. An ideal in a Banach algebra
is, among other things, a subspace, and it makes sense to ask whether a given ideal
is closed in the algebra.

Theorem 6.13. A maximal ideal in a Banach algebra is always a closed ideal.

PROOF. Let J be a maximal ideal. We first observe that the set of invertible el-
ements in the Banach algebra is open (see the discussion following the proof of
Theorem 5.6). Since .7 must have empty intersection with the set of invertible ele-
‘ments (Exercise 6.6.2), J cannot be dense. Therefore, J is not the entire algebra.
Also, it is straightforward to check that 7 is an ideal. Since 7 is maximal, it must
be the case that 7 = 7, as desired. O

In general, it can be quite a hard problem to identify the closed ideals of a Banach
algebra. However, it is sometimes feasible to characterize the closed ideals that are
maximal ideals. Our next theorem does just that for the Banach algebra C([a, b)).
It must be said that this example is just the tip of a huge iceberg. First, the interval
[a, b] can be replaced by a much more general type of topological space (a compact
Hausdorff space X). The proof in this case depends on a theorem, Urysohn’s
lemma,’ from topology that is outside of the scope of this text. But even this
tesult about C(X) is far from the whole story; one might start by considering, for

Due to Pavel Urysohn (1898-1924; Ukraine).

S
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example, other types of functions in place of the continuous functions considered
here. See [124], Sections VI1.3—VIL.5 for much more on this.
We define, for each x € [a, b], the set

J: = {f € C(la, b)) | f(x) = 0).
We are now ready to prove the main theorem of this section.

Theorem 6.14. Each ideal J, is a maximal ideal of C([a, b]), and moreover,
every maximal ideal of C([a, b)) is of this form. Finally, J, = J, if and only if
X =Y.

PrROOF. Exercise 6.6.4 shows that 7, is a proper ideal of C([a, b]) for each x €
[a, b]. Suppose that there is a proper ideal 7 satisfying 7, € J. For x € [a, b]
define A, : C([a, b]) —> Rby A,(f) = f(x). Since

Ac(f +ag)=(f +ag)x) = f(x)+ag(x) = A:(f) + ar(g)

for all f, g € C([a, b]) and each real number «, it follows that A, is a linear
functional. Since A, is not identically zero, J, = ker A, is a proper subspace of
C([a, b)). Choose any element f € C([a, b)) \ J,. For any g € C({a, b)), the
element

_ A(8)
AW

is in J,. So g is in the subspace generated by J, and f; since g was arbitrary,
the subspace generated by 7, and f is all of C([a, b]). This shows that 7, is a
maximal subspace and hence must be a maximal ideal (any ideal is a subspace,
so if 7, cannot even fit inside a proper subspace, there is no hope that it might fit
inside a proper ideal).

We have now shown that each ideal of the form .7, is a maximal ideal. We aim
to show that in fact, these are the only maximal ideals. Assume that .7 is a proper
ideal. We want to show that there exists x € [a, b] such that 7 C J,. Suppose, to
the contrary, that 7 € J, for every x € [a, b]. Then, for every x € [a, b], there is
a function f, € J with f.(x) # 0. Each of these functions is continuous, and thus
there exist open intervals U, on which f? is a strictly positive function. Notice
that these open intervals form an open cover for the compact set [a, b]. Thus there
exists a finite number of points x, ..., x, in [a, b] such that the function

f

f=fat++1,

is strictly positive on all of [a, b]. By construction, f € J and f is invertible,
contradicting the result of Exercise 6.6.2. Thus, J € J, for some x € [a, b], and
if 7 is maximal, J = J,.

The final assertion of the theorem is left as Exercise 6.6.5. O
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6.7 Hilbert Space Methods in Quantum Mechanics

Quantum mechanics attempts to describe and account for the properties of
molecules and atoms and their constituents. The first attempts, in large part due to
Niels Bohr (1885-1962; Denmark), had limited success and are now known as the
“old quantum theory.” The “new quantum theory” was developed around 1925 by
Wemer Heisenberg (1901-1976; Germany) and Erwin Schrodinger (1887-1961;
Austria), and later was extended by Paul Dirac (1902-1984; England). The story of
the history and development of quantum theory is extremely interesting, for many
different reasons, and includes deep philosophical questioning, personal and po-
litical intrigue, as well as fascinating mathematics and physics. There are many
very good books on the subject that address these different facets, and it would be
difficult to give a short recommended reading list. It is the aim of this section to
give some inkling of how Hilbert space and operator theory can be used in quan-
tum mechanics. Our treatment is not rigorous. Good references that contain more
details on what we introduce here include [39], [43], [113].

For simplicity, we restrict ourselves to a consideration of one-dimensional mo-
tion. That is, we consider a particle (such as an electron) moving along a straight
line, so that there is a function f(x, t) of position x (on that straight line) and time

¢ such that the probability that the particle is in the interval [a, b] at time ¢ is given
by

b
/ | £(x, t)[%dx.

The (complex-valued) function f is called the state function for the particle. It
should be clear that we expect

foo If(x, )|%dx =1,

0 @]

for each fixed value of £. We now consider ¢ to be fixed, and write f(x) in place of
f(x, t). In summary, the state of a quantum particle in one dimension is a function
f in the Hilbert space L2(R) satisfying || fII*> = [ . | f(x)I?dx = 1.

The particle’s position, x, is an example of an observable, that is, a quantity
that can be measured. Other observables useful in quantum mechanics include
the particle’s momentum and energy. We will study position and momentum, and
discuss Heisenberg’s uncertainty principle. Throughout this section we are taking
Planck’s constant, h, to be 1.

The Fourier transform® of any L?(R) function f is another square integrable
function f , given by

fw) = \/Lz; f-z f(He™"'ds.

“The Fourier transform is a very useful object and not beyond the level of this book. A
strong temptation to include more on this topic was resisted. Further investigation of the
Fourier transform's propérties and applications would make a nice project.
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Itis not obvious that this makes sense for all L2(R) functions; we refer the interested
reader to Chapter 7 of [43]. In addition to the fact that the Fourier transform makes
sense, we will use one of its most fundamental properties, without supplying a
proof, that

1712 = 1£l2

for each f. This equation is called the Plancherel identity, named in honor of
Michel Plancherel (1885-1967; Switzerland).

If w denotes the momentum of the particle, then the Fourier transform of the
state function can be used to give the probability that w is in the interval [a, b].
The probability that the momentum of the particle is in [a, b] is given by

b
f | Fw)Pdw.

If x, w denote the average, or mean, values of position x and momentum w,
respectively, then

% = [ T lfoldx,  w= [ " wlf ) Pdw,

o0 —0

and the variance of each is given by
o0 o0 "
o2 = f (x =X fx)2dx, ol = f (w — )% f(w)Pdw.

Figure 6.3 gives some illustration of what the size of the variance tells us.

o2 large

X

2

o ¢ small

I
X

FIGURE 6.3. | f(x)[? will resemble the top graph if a? is big, and the bottom graph if o is
small.
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Heisenberg’s uncertainty principle says in this context that o> and af, cannot be
“small” simultaneously. Specifically,

2 2
O, Oy =

1

g

From Figure 6.3, this means, informally, that position and momentum cannot be
“localized” simultaneously.

We justify this inequality for X = 0 = w (this assumption is not very restrictive).
Define operators M (for “multiplication”) and D (for “differentiation”) on L2(R)
by

Mf(x)=xf(x) and  Df(x)= f'(x).

We point out that these are not defined on all of L?(R), but for our superficial
treatment we will not worry about this and will always take for granted that f is
a member of the “right” domain. It should be clear that

ol = [|Mf]|°.
Also,
op = [ w?| f(w)?dw = f IDf (w)’dw = | Df|?

o -0

(in this, the first equality should be clear; a justification of the second is asked for
in Exercise 6.7.3; the third follows from the Plancherel identity). Since

(xfx) = f(x)+ xf'(x),

we have that
DM f) = f + M(Df),
or, in “operator” form,
DM — MD =1

on the intersection of the subspaces of L?(R) on which M and D are defined. It
is straightforward to see that M is Hermitian, that is, (M f, g) = (f, Mg), for all
f, g8 € LA(R). It is also true, but not as easy to show, that (DM f, f) = —(Mf, Df)
forall f € L%(R). As you can check, this boils down to showing that

[ *(Lf0)Pydx = — [ (0 Rdx,

o0

and you can find a proof of this equality in Section 2.8 of [39]. Then, using the
Cauchy-Schwarz inequality (Theorem 1.3),

1=fI>=(f. f)
= ((DM — MD)f, f)
= (DMJ, f) — (MDf. f)
= —~(M{f. Df) - (Df. Mf)
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< 2/(Mf, Df)|
< 2|Mf] - IDfI
= 20, : Oy,

which yields the desired result that 1 < 40202,

We pointed out above that the operators of quantum mechanics we have dis-
cussed are not defined on all elements of the Hilbert space L2(R). In fact, the
setting of bounded operators on Hilbert space is not appropriate for this context.
That the operators satisfy DM — M D = I is critically important, and this next
result tells us that this could not happen in the B(H ) setting.

Theorem 6.15. There do not exist bounded linear operators S and T on any
Hilbert space that satisfy ST — TS = 1.

PROOF. Suppose, to the contrary, that there is a Hilbert space H and operators
S, T € B(H) that satisfy ST — T S = 1. We will prove, using induction, that

nT" ! =ST" —T"S

for each positive integer n. The case n = 1 is our hypothesis. Assume that it holds
forn > 1. Then

(n+ DT =nT"'T 4+ T"I
=(ST" —T"S)T + T"(ST —TS)
— STt _T"ST + T"ST — T"*'S§
— STn+1 . Tn+IS.
Therefore,

nT" ! = ST" - T"S

holds for each positive integer n. Recalling that the operator norm is submulti-
plicative, an application of the triangle inequality yields

all T < 2080 - T - 17"

for each n. This tells us that either || 77! || = O for some n, or thatn < 2||S|| - || T ||
for all n. Since the latter cannot happen, we have that || 7"~ || = 0 for some value
of n. Therefore, T"~! = 0. Since

nT" % =ST" ' - 175,

we deduce that T"~2 = 0. We repeat this argument »n times and ultimately deduce
that I = 0, a clear contradiction. O

In finite dimensions there is an alternative, and basic, proof for this theorem:
the trace of any matrix of foorm ST — TS is zero, while the trace of the n x n
identity matrix is n. There are, necessarily infinite, matrices that satisfy the equation
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ST — TS = I; for example, take

0 1 0 0...) (0 0 0 0...)\
00 2 0... 1 00 O..
S=100 0 3...|2dT=]|¢9g 1 0 o0..

) i
Notice, though, that S does not define a bounded operator on the sequence space
£2. See [31] for more on the equation ST — TS = I and its role in the matrix
mechanics of Heisenberg, Born, and Jordan, and for more on algebraic structures
in quantum mechanics.

The uncertainty principle has other interpretations. For example, f(z) might
represent the amplitude of a signal (like a sound wave) at time . We have changed
the name of the independent variable from x to # for what we hope is an obvious
reason.

ExAMPLE 1. Fix real numbers € and a, and let

ﬂﬂz{z%d“ if 1 € (—a, a),
0 otherwise.

In Exercise 6.7.2 you are asked to show that [°_|f()|?dt = [°_ | f(¢)l?dt =1
and that
1 sina(w —6)

f(w)=ﬁ —:

(Figure 6.4).

Since [°._ | f(w)|*dw mustbe 1, we observe thatif a is large (that is, if the time
duration of f(z) is big), then the frequencies of f are near to 6. Likewise, if a is
small, then the frequencies are spread out (Figure 6.5).

A 1 TGk
2a

T

FIGURE 6.4. The arca under each curve must be 1.
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a large
a |\
T
> W
a small
i
L
s {
I /\
Prom .- > W
7,

FIGURE 6.5. | f (w)|?, for large and small values of a.

We now retumn to the general case where f(z) represents the amplitude of a
signal at time ¢. Let a and b be positive numbers and set

a’ = fa | £()|*dt
and
b A
B* = fblf(w)lzdw-

Observe that the ordered pair («, B) is in the unit square [0, 1] x [0, 1]. If ¢ = 1 (as
is the case in Example 1), then the signal is “time-limited” (the signal is confined
to the interval [—a, a]); B = 1 means that the signal is “band-limited.” Can the
ordered pair («, B) be anywhere in the unit square? As it turns out, there is a
positive number A; < 1 such that

arccos @ + arccos B > arccos / A;. (6.8)

This assertion is an “uncertainty principle.” It tells us that there are some ordered
pairs (o, B) in the square that are not allowed. For example, since A; < 1,0 = 8 =
1 cannot be achieved (for any values of a and b). This version of the uncertainty
principle was proved during the years 1961-1962 by three mathematicians working
at Bell Labs (see Section 2.9 of [39] for a complete reference to this theorem and
for its proof). Some questions are apparent. What is this number A, (and why the
funny name A,)? As you will read, A, is a function of a and b. For a given pair
a and b, and hence a specified A;, why must o and B satisfy (6.8)? And can we
identify the portion of the unit square that the points («, ) fill in? To begin to
address these questions, consider a and b as fixed positive numbers and consider
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the two closed subspaces M and N of L%(R) defined by
M={feLl*R®R) |f@) =0fort ¢[—a,al)
and
N ={f € L’R) | f(w) =0 for w & [—b, b]).

M is the class of time-limited functions, while N is the class of band-limited
functions. Next, we consider two linear operators T;; and Ty, on L2(R) defined by

if t € [—a,a],
otherwise,

Tus = { 4O

and

1 b :
Tpe f(2) = f—z;fb f(w)e'™ dw.

These operators are the projections from L?(R) onto M and N, respectively. We
are interested in the operator

T = Tbl TIC‘

This operator is given by the formula (Exercise 6.7.4)

TF(@) = / SNt = 5) ¢ )ds.

g (@ —9)

As it turns out, T has a countable number of real eigenvalues. The number A, in
(6.8) is the largest, and these eigenvalues satisfy

I1>A>242>--->0.

The number A, is a function of the values of a and b only (because T;; and T,
are) and, in fact, depends only on the value of the product ab. As this product
gets large, A; approaches 1, as in Figure 6.6. As ab — oo, (6.8) thus implies that
more and more points (a, B) are allowable; this is as one might expect from the
definitions of o and B.

We have now described what A, is. Next, let us think a bit about why (6.8) might
be true. A consequence of (6.8) is that as one of @ or B8 nears 1, the other must get
smaller. Certainly, the restriction

(x2+52§1

FIGURE 6.6. A, as a function of ab.
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Bzh
1

FIGURE 6.7. The curve arccosa + arccos 8 = arccos /A, for various values of ab. As
ab — 0 this curve approaches the diagonal. Points beneath the curve satisfy (6.8).

would keep o and B from being near 1 simultaneously. In Exercise 6.7.5 you are
asked to show that (6.8) is true whenever a? + 52- < 1. Are there any allowable
points («, B) inside the unit square but outside the circle o + 82 = 1? That is, can
one find f € L?(R) that gives (o, B) outside the circle? The answer is yes if and
only if (o, B) satisfies (6.8). The rest of the proof of the Bell Labs result involves
showing that for each given a and b (so that 4; is determined), f € L*(R) implies
that (6.8) holds, and conversely, if  and B satisfy (6.8), then there exists f in
L?*(R) such that

al = f a | f(0)|°dt

b
and  B° =f | f(w)2dw.

—b

Finally, Figure 6.7 shows the curve arccos @ 4+ arccos 8 = arccos+/Aj, for
various values of the product ab.

Of all the individuals profiled in this book,
Johnvon Noumann probably enjoys the greatest
degree of name recognition (Figure 6.8).
In fact, | am fairly confident that he is the
only one for whom an obituary appeared
in Life magazine (February 1957). Also, an
interview with his (second) wife appeared
iIn Good Housekeeping (September
1956).

He was born on December 28, 1903,
in Budapest, Hungary. His father was
a banker in a well-to-do Jewish family.
Von Neumann'’s brilliance was apparent
even at a very young age, and there are
many stories about his precociousness and
the exceptional mental capabilities that

remained with him throughout his life. It is
said that he had a photographic memory.
While this is impressive and interesting,
it is not what he is remembered for.
Throughout his life he could grasp very
difficult concepts extremely quickly. In
addition to being very sharp of mind,
von Neumann worked tirelessly. He
published approximately 60 articles in pure
mathematics and 20 in physics. Altogether
he published over 150 papers, most of
the rest on applications to economics and
computer science.

Trained as a chemist as well as a
mathematician, von Neumann was well
prepared for the scientific career that he
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FIGURE 6.8. John von Neumann.

would ultimately have. He attended good
schools, and was awarded the Ph.D.
from the University of Budapest in 1926.
His thesis was about set theory. He
worked in Germany until 1930, working
mostly on the new quantum-mechanical
theory and operator theory. He extended
Hilbert's spectral theory from bounded to
unbounded operators. This work paral-
leled, in large part, Stone's work at the
time, but the two worked independently.
Von Neumann published his great book
uniting quantum mechanics and operator
theory, Mathematische Grundlagen
‘der Quantenmechanik, in 1932. Notice
that in this same year both Banach's and
Stone’s books also appeared.

In 1930 von Neumann came to the
United States, becoming one of the original
six members of the Institute for Advanced
Study at Princeton. As mentioned already,
his early work focused on set theory,
quantum mechanics, and operator theory.
His famous proof of the “ergodic theorem”
came in the early 1930s. The techniques
that he developed in this context served

FIGURE6.9. Stamp in honor of von Neumann.

him later when he studied rings of
operators, which became his focus later in
the 1930s. “Rings of operators” are now
called “operator algebras”; an important
subclass of these are the “von Neumann
algebras.” In 1933, building on Haar's
work on measures, von Neumann solved
an important special case of the fifth of
Hilbert's 23 problems.’

Around 1940, von Neumann changed
the focus of his work from pure to applied
mathematics. During World War Il he did
much work for a variety of government and
civil agencies. He wrote extensively on
topical subjects, including ballistics, shock
waves, and aerodynamics. In addition to
the over 150 published papers, he wrote
many more that remain unpublished for
security reasons. Von Neumann held
strong political views, and was very much
involved with the controversial scientific
politics of World War Il and the subsequent
Cold War. He was one of the key players
in the creation of the atomic bomb at the
Los Alamos Scientific Laboratory, and later
served on the Atomic Energy Commission
(appointed by President Eisenhower in
1955). We will not go into his politics here;
there exist extensive accounts of this in the
literature. The book by Macrae [87] and its
bibliography make a good starting point.

'These problems are described in the biographical material on Hilbert.

s
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Also post-1940, he worked on math-
ematical economics. He is credited with
the first application of game theory to
economics. His theory of mathematical
economics is based on his minimax theo-
rem, which he had proved much earlier, in
1928 [97). This theory was laid out in The
Theory of Games and Economic Behav-
ior, written jointly with Oskar Morgenstern
(1902—-1977; Germany) and published in
1944. Their book is now a classic.

In the years following World War
I, von Neumann devoted considerable
attention to the development of the

modern computer. He was interested in
every aspect of computing. He made sig-
nificant contributions in several different
areas, including parallel processing and
errors Involved with large computations
(specifically, inverting large matrices and
Monte Carlo methods). He also worked on
questions about weather forecasting, and
his work has had an impact on this field.
In a more philosophical area, he drew an
analogy between the computer and the
human nervous system.

John von Neumann died on February 8,
1957, in Washington, D.C.

Exercises for Chapter 6

Section 6. 1

6.1.1 Describe the Bernstein polynomials for the two functions f(x) = x and
g(x) = x? on [0, 1].

6.1.2 Prove that (1 +x)* > 1 + nx for all x > —1 and each positive integer n.

6.1.3 (a) Complete the proof of the first lemma used in the proof of the Stone—

Weierstrass theorem by showing that the described g satisfies (1)—(iii).

(b) Complete the proof of the second lemma used in the same theorem.

6.1.4 In the Weierstrass approximation theorem, it is crucial that the interval
is compact, as addressed in Stone’s generalization. One of our favorite
noncompact subsets of R is R itself. Show that uniform polynomial ap-
proximation is not always guaranteed on R. Here are two approaches: (i)
Come up with a function in C(R) that cannot be uniformly approximated
by polynomials; (ii) show that the uniform limit of polynomials R — R is
still a polynomial.

6.1.5 Deduce the Weierstrass approximation theorem from the Stone—Weierstrass
theorem (thus showing that the former is indeed a special case of the latter).

6.1.6 Consider the collection P, of all even polynomials.

(a) Use the Stone-Weierstrass theorem to show that P, is dense in
C((0, 1)).

(b) Explain why the Stone-Weierstrass theorem cannot be used to show
that P, isdense in C([—1, 1]).

(c¢) The following question remains: Is P, dense in C([—1, 1])? Answer
this question, and prove your assertion.

6.1.7 Let A be as in the hypotheses of Bishop's theorem.
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(a) Prove that functions of the form f + f, for f € A, are real-valued and
separate the points of X.
(b) Deduce that an A-symmetric subset of X must be a singleton.

Find (in another book) another proof of the Weierstrass approximation the-
orem. Write up your own account of this proof. For example, if you have
read the final section of the chapter, you may want to find the proof that
makes use of the Fourier transform.

Section 6.2

6.2.1

6.2.2

Show that X is nowhere dense in M if and only if its closure has empty
interior, (X)° = 9.

Show that any finite subset of R is nowhere dense in R. Give examples to
show that a countable set can be nowhere dense in R, but that this is not
always the case.

6.2.3 Let f(x) = sin (%) forx # 0, and f(0) = 0. Compute w;(0). How does

this tie in with what you know about the continuity of this function?

6.2.4 First category sets are in some sense ‘“‘small,” while second category sets

6.2.5

6.2.6

are “large.” Another notion of set size that we have discussed is “measure
zero”: “Small” sets are of measure zero, while “large” sets are not. Is there
a connection between these two ways of describing the size of a set? The
answer is no. Please show this by doing two things:

(a) Describe a set that is of first category, but not of measure zero.
(b) Describe a set that is of measure zero, but not of first category.

Prove that the function defined on (0, 1) by

L jifx = 1;— in reduced form,

s =fr FT el
0 if x is irrational,

is continuous at each irrational point of (0, 1) and discontinuous at each

rational point of (0, 1).

The goal of this exercise is to show that “most” continuous functions are

nowhere differentiable. Let E, denote the setof all f € C([0, 1]) for which

there exists an x; € [0, 1] satisfying

| f(x) = f(xp)l < njx — xg|
for every x € [0, 1].

(a) Show that E, is nowhere dense in C([0, 1]). To do this, approximate
f € C([0, 1]) by a piecewise linear function g whose pieces each have
slope £2n. Then, if |h — g||loo is sufficiently small, the function A
cannot be in E,,.

(b) Deduce from (a) that the nowhere differentiable functions are of second
category in C([0, 1)),
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Section 6.3

6.3.1 Let X and Y be Banach spaces. By considering the right shift on £? into
itself defined by S(x;, x2,...) = (0, xy, x2, .. .), we see that the property of
being one-to-one is not enough to guarantee that a bounded linear operator
be invertible (compare what happens in the finite-dimensional case). How-
ever, if a one-to-one bounded linear operator is also onto, then it must be
invertible. Use the open mapping theorem to prove that the inverse is also
bounded.

6.3.2 Let X be a Banach space in the two different norms || - ||; and || - ||».

(a) Show that if there exists a constant M satisfying | x||; < M||x||, for
all x € X, then the two norms are equivalent.

(b) Does the result of (a) contradict the result of Exercise 5.2.2? Explain
your answer to this question.

Section 6.4

6.4.1 Show thatx ~ y if x — y € QQ defines an equivalence relation on the open
interval (0, 1).

Section 6.5

6.5.1 Give an inductive proof of the inequality d(x,+1,x,) < M"d(xy, xq),
n=1,2,...,and thereby complete the proof of the contraction mapping
theorem.

6.5.2 Show that the method of successive approximations applied to the dif-
ferential equation f' = f with f(0) = 1 yields the usual formula for e¢*.

6.5.3 For each of the following sets give an example of a continuous mapping of
the set into itself that has no fixed point:

(a) R.

(b) (0, 1].
(© [-10,-7]U[2,4].

6.5.4 Give an example of a mapping of [0, 1] into itself that is not continuous and
has no fixed points.
6.5.5 Consider the function f : R — R given by

x) = xx+e3& if x >0,
fx) Ie! ifx < 0.

Show that | f(x) — f(y)| < |x — y| forall x and y, yet f has no fixed point.
Does this contradict the contraction mapping principle? Explain.
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Section 6.6
6.6.1 For f and g in C([a, b]) define f + g and f - g by

(f +8)x) = f(x)+ 8(x) and (f - 8)(x) = f(x)-8(x).

Show that C([a, b)) is a ring with identity.

6.6.2 Prove that a proper ideal of a ring with identity contains no invertible
elements.

6.6.3 If 7 is anideal in a Banach algebra, then 7 is also anideal. (In this statement,
“Banach algebra” can be replaced by “normed ring.”)

6.6.4 Prove that 7, is a proper ideal of C([a, b)).

6.6.5 Prove that for x,y € [a, b], J. = J, if and only if x = y. (In proving
this, you may find yourself assuming that x # y and constructing an actual
function f thatis in one of the ideals but is not in the either. It is this step that
requires Urysohn’s lemma when [a, b] is replaced by a compact Hausdorff
space; see the paragraph preceding Theorem 6.14. In fact, in that case f is
not actually constructed but only its existence implied.)

Section 6.7

6.7.1 Fix apositive real numbera and let x[—,,,] denote the characteristic function

1 ift € [—a,al,

_ ) = .
Xi-a.a1(?) 0 otherwise.

Show that the Fourier transform of x(_, 4 is given by

- 2 sin(aw)
X[—a,a](w) = .

6.7.2 As in Example 1, fix real numbers 6 and a, and let
" ift € (~a, a),

1
f@) = { V22 € ,
0 otherwise.

Show that [° | f(t)|*dt = 1 and
1 sina(w —6)

Jra w — 6

Use that ¢’® = cos8 + i sin 8 for every real number 6.
6.7.3 In the section we claimed that

op = f ) w?| f(w)|2dw = f IDf (w)|*dw = || Df 1%

o0 -0

fw) =

The point of this exercise is to verify the middle equality, and hence all
three equalities. Note that

Df(w) = —\/-!5—_:;./ (e " dr.
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Use integration by parts to show that this equals i w f (w), and hence that
the equation holds.
6.7.4 Verify the formula

Tf(t) = f“ sinb(t-s)f(s)ds

—g (@ —135)

for T = Ty¢T,,, as used in the section.
6.7.5 Show that (6.8) (in the text of the section) is true whenever a? + ;32 < 1.



Appendix A

Complex Numbers

In the main body of the text we consider linear spaces over two fields: R and C. The
reader must, therefore, be familiar with the arithmetic properties of the complex
numbers. These properties are discussed in this appendix. The study of functions
of a complex variable is rich, and is the subject for a different course. There are
many excellent introductory texts about functions of a single complex variable.

We assume that the reader is familiar with properties of the real numbers, specif-
ically, that the reader knows what is meant when one says that R is an “ordered
field” and that a ““completeness property’ is satisfied in R.

The set of real numbers is nice because it supplies us with a continuous line of
numbers, but there are still some problems. For example, not all polynomials with
real coefficients have real-number solutions (for example, x2 + 1 = 0). The set
of complex numbers was created in order to resolve this inadequacy of R. If we
consider a quadratic ax? + bx + ¢ = 0 with real coefficients, we know that our
two solutions are

—b+ /b2 — 4dac
X = .
2a

If b2 — 4ac > 0, then we have one or two real solutions. If b2 — 4ac < 0, then we
have solutions

— b2
b \/40(: \/——l

3 =—=

2a 2a
and

b dac — b
= - - v-1.
22 3 P
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These are both of form u 4+ v4/—1 where u and v are real numbers. If we define
i =+-1

we are thus led to consider the set of all numbers of form u + i v, with u and v real.
Numbers of this form are called complex numbers. Since x and y are often used to
denote generic real numbers, z and w are often used to denote arbitrary complex
numbers. If u, v, x, and y are real, then we easily see that

e the sum of two complex numbers is complex:
w+ivy+x+iy)=@+x)+i(v+y)

e there is an additive identity:

(u+iv)+O0+i0)=u+iv;
e there exist additive inverses:

u+iv)+ ((—u)+i(—v)) =0+i0;
e the product of two complex numbers is complex:
( +iv) - (x +iy) = (ux — vy) +i(yu + xv);

e there is a multiplicative identity:

uM+iv)-14+i0)=u+iv.

What about multiplicative inverses? Can we divide two complex numbers? If
we observe that

1 1 u—iv u—iv
u+iv u+iv u—iv  u?+2
U +i —v
= ! ——
we are led to wy
U B )
+ 1

ur+v? ur40?
as the multiplicative inverse w~! of w = u 4+iv % 0+ i0. We thendefine division
by '
2 —1

_=Z-w
w

The complex numbers, as do the real numbers, form a field. However, and in-
terestingly, they cannot be an ordered field (to show this is left as Exercise
A.6).

The complex numbers can be realized geometrically by associating to x + iy the
ordered pair (x, y). This identifies C with R2. Complex numbers are thus added
like vectors, via the parallelogram equality. Multiplication of complex numbers
becomes clear, geometrically, if we use polar coordinates. If

z=rcosf +irsinb, r >0, 0 <6 < 2m,
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and
w=pcos¢ +ipsing, p=>0, 0< ¢ < 2m,
then, as the reader should check,
2w =rpcos(6 + @) + irpsin(6 + ).

If we think of w as fixed, then multiplication by z corresponds to rotating by the
angle 6 and stretching by the factor r. With z = x +iy = rcos6 + irsinf, r is
called the magnitude of z and is denoted by |z|, and 6 is called the argument of
z and is denoted by arg(z). Thus, when multiplying two complex numbers, their
magnitudes multiply, and their arguments add. Note that |z| = /x? + y2, which
is the distance from z to the origin (here we are assuming that r is nonnegative; the
reader should be mindful of the usual “uniqueness-of-representation” problems
associated with polar coordinates). The real part of z is x and will be denoted by
re(2), and the imaginary part of z is y and will be denoted by im(z). The complex
conjugate of z, denoted by z, 1s x — iy. Observe that the solutions z; and z2 of the
quadratic equation given at the beginning of the section are complex conjugates.

Finally, we want to make sense out of e* for complex values of z. This can be
done in a number of equivalent ways. We want the usual rules of exponents to
hold. In particular, we want to demand that

e* Y = %',

———

Since e* is already defined (since x is real), we need define e’ only for real values
of y. We define

e =cosy +isiny.
We now make our definition of the complex exponential. For z = x + iy, let
et = e*e’” = e*(cosy+isiny) = e cosy +ie*siny.

In other words, ¢* is the complex number with real part ¢* cos y and imaginary
part e* sin y.

Exercises for Appendix A

1 i+- i
(b) Show that 7 = —i,
A.2 Prove each statement below for arbitrary complex numbers w and z.

A.1 (a) Rewrite

in the form x + iy.

(©) lz-w| = 2] - |wl.
d |z2P=z- 2.
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) |lzy +z2+ -+ zx| <lzal + |z2|l + - - - + |zx|, n any posikive integer.
(f) max(|x|, |y|) < |zl < +/2-max(|x|,|y|), where z = x + iy. Observe
that this implies that |re(z)| < |z| and |[im(2)| < |z|.

(8) re(z) = &* andim(z) = 2.

A.3 Prove each statement below for arbitrary complex numbers w and z.

(a) ez+w — eZeV.

(b) e? # 0 for each complex number z.

(¢) || = 1 for every real number 6.

(d) (cos@ +isinB)* = cosnb + i sinnb for every real number 6. (In this
exercise the value for n is intentionally left vague. For what values of
n can you prove the statement? n a positive integer? n any integer? n
any real number?)

(e) Does €2 = € imply that z = w? Explain. (Compare this to the real
case.)

V3 +i)S

(1- i)lO )

A.S Is it true that re(z - w) = re(2) - re(w)? Either prove that it is true, or give a
counterexample to show that it does not always hold.

A.6 The complex numbers cannot be ordered to give an ordered field. (This may

require youlooking up the definition of a “field” as well as that of an “ordered
field.”)

A.4 Find the real and imaginary parts of



Appendix B
Basic Set Theory

In this appendix we give several definitions having to do with sets that are used
throughout the main body of the text.

Throughout the text, ¥ denotes the empty set: the set with no members. We write
“x € A” to designate that x is a member, or element, of the set A. Likewise, we
use the symbol “¢” to designate nonmembership.

If A and B are two sets, the union of A and B is the set

AUB={x|x € Aorxe€B),
and the intersection of A and B is the set
ANB={x|x € Aandx € B).

The sets are disjoint if AN B = (. The set A is a subset of B, denoted by A C B
(or A C B to denote proper inclusion), if x € A implies x € B. The complement
of Ain B, B\ A, is the set of all x that are in B but are not in A (note that A need
not be a subset of B for this definition). Often, A€ is used in place of B \ A if the
set B 1s understood. Note that A = A foreach A C R”, that (R”)¢ = @, and that
g =R".

We often want to discuss arbitrary collections of sets. Let Z denote an arbitrary
set such that for each i € T we have a set A;. It is important to recognize that Z can
be finite, countably infinite, or even uncountably infinite. The set I is then called
an index set for the collection of sets {A;};ez. The union of these sets is

UA, = {x |x € A; forsomei € I},
iel
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and the intersection 1s the set

ﬂA,- ={x | x € A; forevery i € I}.
ieT
The collection {A;}icz is a disjoint collection, or pairwise disjoint collection, if
i # jimplies A;, N A; = 0.
The collection of all subsets of a given set A is denoted by 24.
Throughout the text we have made frequent use of the following result.

Theorem (De Morgan’s Laws). For a collection {A;};e1 of subsets of a set A,
the following identities hold:

c c
(Ua) =N4s and (Na) =4
iel iel iel iel

Two sets A and B are said to be equivalent if there exists a one-to-one and onto
function from A to B. As usual, N = {1, 2, 3,...}. If a set A is equivalent to a
subset {1, 2,...,n} of N, then A is said to be finite. If A is not finite, then it is
infinite. Infinite sets are either “countable” or “uncountable.” Countable sets are
sets that are equivalent to N. An infinite set that is not countable is an uncountable
set.

Exercises for Appendix B

B.1 Prove De Morgan’s laws.

B.2 Show that the set of rational numbers Q is countable.

B.3 Prove that the set | J;_; A; is countable whenever each set A; is countable
and the index set Z is countable.

B.4 Prove that R is uncountable. This exercise will probably be difficult if this
material is truly new to you; you may want to ask your professor for advice.
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