Raffaele Pisano Jennifer Coopersmith Murray Peake

Essay on Machines in General (1786)

Text, Translations and Commentaries.

Lazare Carnot's Mechanics—Volume 1

Logic, Epistemology, and the Unity of Science

Volume 47

Series Editor

Shahid Rahman, Domaine Universitaire du Pont du Bois, University of Lille, Villeneuve d'Ascq, France

Managing Editor

Nicolas Clerbout, Universidad de Valparaíso, Valparaíso, Chile

Founding Editor

John Symons, Department of Philosophy, The University of Texas at El Paso, El Paso, TX, USA

Editorial Board

Jean Paul van Bendegem, Gent, Belgium

Hourya Benis Sinaceur, Techniques, CNRS, Institut d'Histoire et Philosophie des Sci, Paris, France

Johan van Benthem, Institute for Logic Language & Computation, University of Amsterdam, Amsterdam, Noord-Holland, The Netherlands

Karine Chemla, CNRS, Université Paris Diderot, Paris, France Jacques Dubucs, Dourdan, France

Anne Fagot-Largeault, Philosophy of Life Science, College de France, Paris, France

Bas C Van Fraassen, Department of Philosophy, Princeton University, Princeton, NJ, USA

Dov M. Gabbay, King's College, Interest Group, London, UK Paul McNamara, Philosophy Department, University of New Hampshire, Durham, NH, USA Graham Priest, Department of Philosophy, Graduate Center, City University of New York, New York, NY, USA

Gabriel Sandu, Department of Philosophy, University of Helsinki, Helsinki, Finland

Sonja Smets, Institute of Logic, Language and Computation, University of Amsterdam, Amsterdam, Noord-Holland, The Netherlands

Tony Street, Divinity College, Cambridge, UK

Göran Sundholm, Philosophy, Leiden University, Leiden, Zuid-Holland, The Netherlands

Heinrich Wansing, Department of Philosophy II, Ruhr University Bochum, Bochum, Nordrhein-Westfalen, Germany

Timothy Williamson, Department of Philosophy, University of Oxford, New College, Oxford, UK

Logic, Epistemology, and the Unity of Science aims to reconsider the question of the unity of science in light of recent developments in logic. At present, no single logical, semantical or methodological framework dominates the philosophy of science. However, the editors of this series believe that formal frameworks, for example, constructive type theory, deontic logics, dialogical logics, epistemic logics, modal logics, and proof-theoretical semantics, have the potential to cast new light on basic issues in the discussion of the unity of science.

This series provides a venue where philosophers and logicians can apply specific systematic and historic insights to fundamental philosophical problems. While the series is open to a wide variety of perspectives, including the study and analysis of argumentation and the critical discussion of the relationship between logic and philosophy of science, the aim is to provide an integrated picture of the scientific enterprise in all its diversity.

This book series is indexed in SCOPUS.

For inquiries and submissions of proposals, authors can contact Christi Lue at christi.lue@springer.com

More information about this series at http://www.springer.com/series/6936

Raffaele Pisano .
Jennifer Coopersmith .
Murray Peake

Essay on Machines in General (1786)

Text, Translations and Commentaries. Lazare Carnot's Mechanics—Volume 1

Raffaele Pisano IEMN, Lille University Villeneuve D'Ascq Cedex, France Jennifer Coopersmith Adjunct Lecturer La Trobe University Bendigo, VIC, Australia

Murray Peake Ille-et-Vilaine, France

ISSN 2214-9775 ISSN 2214-9783 (electronic) Logic, Epistemology, and the Unity of Science ISBN 978-3-030-44384-9 ISBN 978-3-030-44385-6 (eBook) https://doi.org/10.1007/978-3-030-44385-6

© Springer Nature Switzerland AG 2021

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG

The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

It is never easy to conceive and to realize a vast editorial project. This volume represents the first successful step in exactly such a broad editorial project. It presents a faithful English translation of Lazare Carnot's *Essai sur les machines en général* (1786), enriched by a long and accurate *Introduction* and by a detailed technical and linguistic apparatus of *End Notes*. The *Introduction* draws a very good picture of the epoch in which Lazare Carnot lived and worked, including his engagement both as a scientist and as an important politician. The authors reconstruct Carnot's cultural milieu with great care and offer a translation of Carnot's *Essay* on the machines. I congratulate the authors on their excellent work!

This book and its research programme is to be interpreted as the natural continuation of the masterly work *Lazare and Sadi Carnot*. *A Scientific and Filial Relationship* (Springer, 2014, 2nd ed.) by Charles C. Gillispie and Raffaele Pisano.

The ambitious editorial research enterprise I signalled at the beginning of this Preface, of which the *Essai sur les machines en general* is the first volume, consists of the analysis, translation, and commentary of Lazare Carnot's three Mechanical works. The other two essays whose publication is anticipated by Springer are the *Principes fondamentaux de l'équilibre et du mouvement* (1803) and *Géométrie de position* (1803).

vi Preface

It is a pleasure to observe and to emphasise that all the possible difficulties of such an extensive editorial programme have been overcome in the best possible manner. In particular, the authors have been able to render the eighteenth-century French in modern English without any scientific ambiguity and with great precision. The authors often add—in square brackets—explicative terms, which are useful for a precise reading of the text. Finally, the *End Notes* clarify all aspects of Carnot's scientific work, in reference to both mechanical and mathematical issues. It also seems appropriate to me to stress the high quality of both the scientific and the historical apparatuses of this book, which helps the reader to follow Lazare Carnot's Mechanics.

I also commend to the reader the new insights it offers regarding the relations between pure and applied science and the links between mechanics, mathematics, and engineering. The conceptual, empirical, and methodological aspects of Carnot's works are appropriately underlined by the authors in the *Introduction* and in the *End Notes*.

I am confident that this research project, including the other two forthcoming volumes, can be considered a milestone for the diffusion and comprehension of Lazare Carnot's science.

Paolo Bussotti University of Udine, Italy

Acknowledgments

We express our gratitude to the directors and staff members of libraries and archives that we met; we express our profound appreciation for their collaboration. Special thanks to distinguished scholar and friend Paolo Bussotti (University of Udine, Italy) for his accurate *Preface* and suggestion.

We are particularly grateful to Monsieur Dr. Gaetan Carnot, member of Carnot's family and Founding Member and Executive Committee Member of Fondation Carnot, who was so generous for again removing (as already done for Lazare and Sadi Carnot, 2014 by Gillispie and Pisano) all restrictions and authorizing us to publish portraits, from the original and special collection of Carnot's family. The images are conserved in France at Académie François Bourdon, Le Creusot-Archives Lazare Carnot. We acknowledge the kind permission and rights to use the images, particularly of the Essai sur les machines en général (1786), Gallica National French Library (BnF), Archives et patrimoine historique de l'Académie des sciences, Paris (France), Académie François Bourdon, Le Creusot—Archives Lazare Carnot (France; in particular M. François-Yves Julien), Collections archives de la bibliothèque de l'École polytechnique de Palaiseau (Essonne, France; in particular M. Olivier Azzola). We warmly acknowledge M. Thierry et Mme Caroline Carnot for the extraordinary opportunity to visit (RP) private documents and manuscripts of Carnot's Family archived at their Château de Presles, South of Paris. We address our gratitude to Mme Sylvie Carnot for all viii Acknowledgments

information concerning her private Lazare Carnot's Nolay Archives. We thank M. Jean Le Bret, member of Carnot's family who gave to one of us (RP) copies of Lazare Carnot's Ascending (1719–1489) and Descendants (1753–2020) Genealogies and Mme Pascale Cordier, another member of Carnot's family to have made accessible her private Lazare and Sadi Carnot's family documents. We are grateful to M. Alain Stouvenel (BDFF—Base de Données de Films Français avec Images) for sending us (RP) a rare documentary film on Lazare Carnot ou Le glaive de la Révolution (Antenne 2 by Jean–Francois Delassus, January 2nd, 1978).

We thank *Springer Nature* for its kind authorisation to allow us to adapt some pages of the *Lazare and Sadi Carnot*. A *Scientific and Filial Relationship* (Gillispie and Pisano 2014). We thank all referees for their valuable remarks, which have been of great help. We express gratitude to Dr. Julie Robarts (Melbourne University, Australia) for her observations of English language; eventual remaining English mistakes are up to us. The English proofreading funding was kindly supported by IEMN, Lille University—UMR CNRS 8520, France. Thank you!

Finally, of great importance, we address our acknowledgments to Shahid Rahman and Christi Jongepier–Lue, respectively, Springer Editor-in-Chief book Series and Springer Associate Editor for their fine work and positive reception of our project on the *Essay on Machines in General (1786) Text, Translation and Commentaries.* Lazare Carnot's Mechanics—Volume 1.

The Authors
November 2019

Remarks For the Reader

This book, entitled *Essay on Machines in General (Essai sur les machines en général*, 1786), is the first volume of a three-volume set, a unique and major project on the works of Lazare Carnot, *Lazare Carnot's Mechanics: Text, Translations and Commentaries* (expected 2018–2022). The other two volumes are: *Fundamental Principles of Equilibrium and Motion (Principes fondamentaux de l'équilibre et du mouvement*, 1803) and *Geometry of Position (Géométrie de position*, 1803), also to be published by Springer.

The research for this major project dates back to the end of the 1990s and was carried out by Raffaele Pisano, then also in collaboration with Charles Coulston Gillispie (1918–2015). This research project is devoted to history and historical epistemology of science, integrating history and epistemology of scientific methods and combining epistemological and historical approaches to clearly identify significant historical hypotheses. Therefore bibliographical references, the relationships between physics—mathematics and physics—geometry, and the role played by science in context are strongly stressed.

These volumes (this one and the others cited above, prior to publication) are critical translations, motivated by an important goal: to valorise and spread the name and works of the scientist, Lazare Carnot, to an Anglophone audience.

x Remarks For the Reader

In this first volume, the translation was mainly carried out by Jennifer Coopersmith and Murray Peake, and the critical commentaries were mainly produced by Raffaele Pisano. The edition used for our critical English translation of the *Essai sur les machines en général* (1786) is archived at the *Archives et patrimoine historique de l'Académie des sciences, Paris, France BNF* and displayed by National French Library (BnF) website Gallica. An official permission was asked and obtained. The full notice, adapted from BnF (cfr. Gallica website), is:

Title: Essai sur les machines en général . Par M . Carnot,...

Nouvelle édition

Author: Carnot, Lazare (1753–1823).

Publisher: impr. de Defay (Dijon) | Nyon l'aîné (Paris)

Publication date: 1786 Format: 107 p.; in-8 Rights: public domain

Identifier: ark:/12148/bpt6k65435732

Source: Bibliothèque nationale de France, département Sciences

et techniques, 8-V-11886

Relationship: http://catalogue.bnf.fr/ark:/12148/cb30197796

Date of online availability: 2013, 31st July

The aim has been to keep to the character of the original *Essai sur les machines en général* (1786) but also to make it easy to understand for the modern reader.

With regard to the first aim, we do not simplify, modernize, or in any other way correct the ideas within the *Essai sur les machines en general*. With regard to the second aim, language explanation and critical comments are reported in footnotes and endnotes, respectively. We have sometimes broken up very long sentences into shorter sentences or changed the word-order. Also, on occasion, extra words have been added for continuity of phrasing or to add a short in-text explanation or to give an alternative modern term. These additions are always in square brackets and in situ. (It should always be clear from the context whether we have to do with continuity or explanation.)

Remarks For the Reader xi

We have corrected obvious printers' errors and indicated this in a footnote. We also use footnotes to draw attention to corrections applied from the *Errata*. We remark that this *Errata* does not appear in the BnF edition that we used for our critical translation. On the contrary, this *Errata* appears in several digital editions (e.g., see Google books). It appears that some editions added this *Errata*. We also note that Lazare Carnot Mathematical Works (1797) does not include this *Errata*. For completeness we decided to use the *Errata* from one of these digital editions (Google, public domain). We warmly thank Google digital books and its cited source as University of Lausanne (Cfr. Google books website).

The layout is such that the translated pages always keep in step with the original manuscript, the French always having an odd page number and the English an even number. In so far as English has a smaller word-count than French, the translated pages are shorter than the French original. However, in displaying the mathematical relations most clearly, sometimes more spacing has been used than in the original.

The reader should be aware that Lazare Carnot's Essai sur les machines en général was written some seventy years before the physical concept of "energy" had been discovered and therefore before the term *energy* had entered the physics lexicon. Other physics terms such as force, action, percussion, soliciting force, moment of activity, puissance, and so on, have changed or firmed-up their meaning or fallen into disuse. These terms are left in place but, where necessary, the modern term is given in square brackets straight afterwards, or explained in a footnote or endnote. Two terms deserve special mention. One is *hard*, the other is *weight*. Carnot usually uses the property hard, of a body, to mean that the body is deformable but not elastic (like a lump of putty, the body may change its shape but it does not rebound). The term *plastic* is used to convey this meaning. Carnot sometimes uses the term weight to mean, loosely speaking, some mass or body, and other times to mean the force exerted on a mass due to gravity. In this case we write force-weight and explain in an endnote. Further remarks and commentaries on terminology may

xii Remarks For the Reader

be found in *Lazare and Sadi Carnot*. A Filial and Scientific Relationship (Springer, 2014) by Charles Coulston Gillispie and Raffaele Pisano.

As well as terminology, some symbols have changed their use or fallen into disuse. According to Florian Cajori (1859–1930) in his *A History of Mathematical Notations* (1928–1929), the Lazare Carnot years were a time of transition during which the integral sign was used both for integration and for summation. We have continued to use the integral sign, \int , except where there is no infinitesimal quantity (dt, ds, etc.). In these cases, the integral sign, \int , is replaced by the summation sign, \sum . One other symbol to note is the eighteenth-century sign for the French *livre tournois*, π , a French unit of currency, used by Carnot to mean a pound weight. We have translated this as lb and added a footnote. There exists one previous translation into English, the work of 1808, published in instalments by Alexander Tilloch in *The Philosophical Magazine*:

Carnot L (1808a) Essai sur les machines en général (Part I) In: Philosophical Magazine: comprehending the various branches of science, the liberal and fine arts, agriculture, manufactures, and commerce. Tilloch A (ed). Vol. XXX. Murray J, London, pp. 8–15; pp. 154–158; pp. 207–221; pp. 310–320. Very interesting are the avant-titre page of the book where a portrait from the original of Lazare Carnot is published and a short biography/comment of Lazare Carnot written by the editor (pp. 370–371).

Carnot L (1808b) Essai sur les machines en général (Part II). In: Philosophical Magazine: comprehending the various branches of science, the liberal and fine arts, agriculture, manufactures, and commerce. Tilloch A (ed). Vol. XXXI. Murray J, London, pp. 28–36; pp. 136–144, pp. 220–228; pp. 295–305.

Carnot L (1808c) Essai sur les machines en général (Part III). In: Philosophical Magazine: comprehending the various branches of science, the liberal and fine arts, agriculture, manufactures, and commerce. Tilloch A (ed). Vol. XXXII. Murray J, London, pp. 124–130.

Our present work is an utterly original translation, more modern in style, and benefits from more than a hundred years of advance in science over the earlier translation and remarkable research on the subject (Gillispie 70s–90s; Drago and Pisano 90s–2000s; Gillispie

Remarks For the Reader xiii

and Pisano 2014; Pisano since 2000s–etc. See also endnotes and references sections below). It also differs from this earlier translation in certain particulars: (1) We have used \int , and \sum , as appropriate, in place of S, (2) We have translated fils as threads rather than as wires, (3) We have incorporated Carnot's own *Errata*.

This volume has been independently blind-peer refereed.

The Authors November 2019

About the Authors

Prof. Dr. Raffaele Pisano HDR (Italy, 1970) is a Physicist and Full Professor at the IEMN CNRS-Lille University, Lille, France. His fields of research | teaching are: History of Physics, History of Physics-Mathematics/Theoretical Physics, History of Applied Sciences and Technology, Historical Epistemology of Science, Comparative and Intellectual History, NoS | History of Science and Teaching. Since 2017, he is elected President of the Inter-Divisional Teaching Commission(DLMPST/IUHPST/DHST).

Dr. Jennifer Coopersmith is a physicist, philosopher, and writer of general physics books. Adjunct Lecturer, University of La Trobe, Bendigo, VIC, Australia.

Murray Peake is a retired Information Technology consultant now living in Brittany.

Introduction

Lazare Carnot, l'organisateur de la victoire

This is the first research volume, in translation and with English commentary, of the Springer French editions of three remarkable works of Lazare Nicolas Marguérite Carnot: *Essai sur les machines en general* (Carnot [1783] 1786). The other two pre-print volumes are: *Principes fondamentaux de l'équilibre et du mouvement* (Carnot 1803a) and *Géométrie de position* (Carnot 1803b). For Lazare Carnot's biography, we direct the reader to the main recent authorities' works (Gillispie and Pisano 2014; Dhombres and Dhombres 1997, Gillispie 1971; Gillispie and Youschkevitch 1979, 1982; Dupre 1892). In agreement with Master Charles Coulston Gillispie (1918–2015):

There is no difficulty in understanding why the scientific community should have ignored Carnot's *Essai sur les machines en général* [...] in the 1780s. His book does not read like the rational mechanics of the eighteenth century. It had long since become normal to compose treatises of mechanics addressed to a professional public in the language of mathematical analysis; though Carnot reasoned no less rigorously than did contemporary mathematical argument, he conducted the discussion verbally, conceived the mathematical expressions he did employ in a geometric or trigonometric rather than algebraic spirit, and usually went on to explain in words what the formulas contained. The genre was apparently of an altogether lower order than that of d'Alembert and Lagrange or Euler and the Bernoulli family. Judging by the style alone, prolix

xviii Introduction

and naive, a contemporary reader might easily have supposed the book to be among the many negligible writings that retailed merely elementary mechanics under one pretext or another. Yet, the essay, despite its title, could never have served the purpose of a practical manual for designing or employing actual machinery. (Gillispie and Pisano 2014, pp. 15–16)

The following introductory research presents Lazare Carnot as military man, politician and scientist on the one hand, and his mechanics, particularly his *Essai sur les machines en général* in context, on the other.

1.1 Lazare Nicolas Marguérite Carnot (1753–1823)

Lazare Nicolas Marguérite Carnot (Nolay, France, 1753 May 13th—Magdeburg, Prussia [Germany] 1823 August 2nd) was also called *L'Organisateur de la Victoire* and *Le Grand Carnot*, due to the services he rendered to politics during the French revolution, in the army as a general (i.e., the battle of *Wattignies La Victoire*) and scientist (physics, mathematics, geometry, fortifications and mechanical machines). Despite the dominant Newtonian and Lagrangian mechanics, and taking into account his political background, Carnot's works are of great importance to both the history of physics and the history of mathematics (Chamay 1984–1985; Gillispie and Pisano 2014).

Son of Claude Carnot (1719–1797) *Notaire Royal/avocat au par-lement de Bourgogne* and Marguerite Pothier (1726–1788), Lazare Carnot was born in Nolay, a village in the current Côte-d'Or

¹Some paragraphs of the second part of this introduction are an adaptation of theoretical advancement from Gillispie and Pisano 2014, pp. 16–23; pp. 353–356; pp. 376–380. Necessary parts are quoted from them as a self-citation. We thank *Rights and Permissions Springer Nature* for its kind authorisation. See also: A Development of the Principle of Virtual Laws and its Conceptual Framework in Mechanics as Fundamental Relationship between Physics and Mathematics (Pisano 2017) and Reading Science, Technology and Education: A Tradition Dating back to Science into the History and Historiography (Pisano, Anakkar et al. 2017) both published by Transversal (see also Pisano and Capecchi 2015). We show appreciation and thankful to these notable publishers—journals. As we already remarked in the Acknowledgments section, we also express gratitude to Gallica–National French Library (BnF), Archives et patrimoine historique de l'Académie des sciences, Paris (France), Académie François Bourdon, Le Creusot—Archives Lazare Carnot (France), Collections archives de la bibliothèque de l'École polytechnique de Palaiseau (Essonne, France). An infinite and particular gratitude is addressed to Monsieur Gaetan Carnot, member of Carnot's family, for his kind permission to use the images.

Introduction xix

department in eastern France. He began his studies in humanities and philosophy at the Collège d'Autun. Then, under the *Societas Presbyterorum a Santo Sulpitio (Society of the Priests of Saint Sulpice)* he focused on theology, logic and mathematics. Thanks to these scientific studies and the meeting with Duke Louis–Marie–Victor d'Aumont de Rochebaron (1632–1704), a French Army officer and Marquis de Nolay, he undertook his military and scientific education (Reinhard 1950–1952).

In 1771, Carnot was accepted by École royale du génie de Mézières and appointed as a second lieutenant (1773) where he improved his education in mechanics, technical drawing and geography. One of his professors was Gaspard Monge (1746–1818; Monge 1799). Some years before, in 1764, Louis–Alexandre Berthier (1753–1815) was also accepted at the École royale du génie de Mézières. By the age of twenty Carnot had graduated from the school as first lieutenant, after also attending Louis Joseph (1736–1818) Prince of Condé's engineer corps. During this period, physics, mathematics, engineering and military fortifications were his main interdisciplinary fields within military strategic (geometric) defence. Typical of Carnot's designs for fortresses in the tradition of Vauban is a loop-holed wall, built as the channel of fortification, now called the Carnot wall.

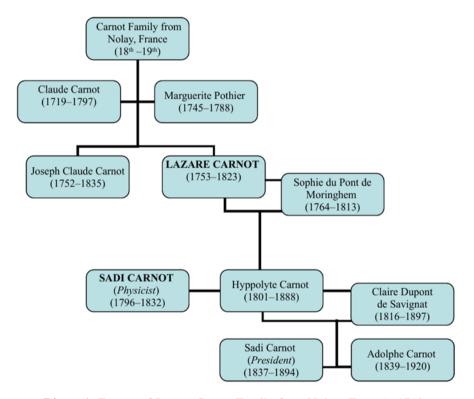
Parallel to science, politics also absorbed Carnot's life: he became one of the first delegates (1791) of the new *Assemblée législative* (*Legislative Assembly*). He was also elected (1791) member of the *Comité de l'Instruction Publique* (*Committee of Public Instruction*). It was a committee—part of the *Legislative Assembly*—established to reorganize the French education system in this period. Carnot suggested interesting reforms to both the teaching and public education systems that were not implemented. The ferociously combative environment and social instability were not favorable preconditions for new, advanced, ideas.

In Salperwick (North of France) on 1791, May 17th Lazare Carnot married (with a dowry of 30,000 books) Jacqueline Sophie du Pont

xx Introduction

(Dupont) also de Lierdt (1764–1813) from Moringhem (North of France). They had two sons: Nicolas Léonard Sadi Carnot (1796–1832), physician/engineer founder of thermodynamics, and Hippolyte Carnot (1801–1888), an important French political leader. The latter was born in Saint–Omer (North of France) not far from Lille.

The following Diagram 1 shows ancestry and descendants of Lazare Carnot from Nolay (France) branch. For our aims it is limited to 1719–1920:



Diagr. 1 Extract of Lazare Carnot Family from Nolay (France): 1719–1920. We thank M. Jean Le Bret, member of Carnot's family who gave us (RP) copies of Lazare Carnot's Ascendant (1719–1489) and Descendant (1753–2020) Genealogies

Introduction xxi

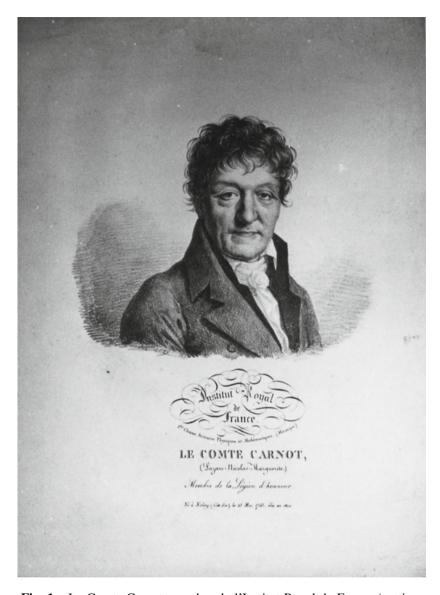


Fig. 1 «Le Comte Carnot, membre de l'Institut Royal de France (section Sciences physique et mathématiques—Mécanique) (s. d.)». Plate from the original portrait conserved at Académie François Bourdon, Le Creusot—Archives Lazare Carnot. Very kindly authorized by Monsieur Gaetan Carnot, member of Carnot's family

xxii Introduction

At the end of 1770s Carnot was busy completing his *Essai sur les machines en general* for his first (lost) edition of 1783 (Fig. 11). At the beginning of the 1780s he also participated in a competition organised by the *Académie des sciences*. He wrote two unpublished memoirs: *Mémoire sur la théorie des machines pour concourir au prix de 1779 proposé par l'Académie royale des sciences de Paris* (Carnot 1778[9]; Fig. 9; hereafter 1779) and *Mémoire sur la théorie des machines pour concourir au prix que l'Académie royale des sciences de Paris doit adjuger en 1781* (Carnot 1780[1]; Fig. 9; hereafter 1780).

This was also a successful period of important appointments in his military career. He became *capitaine au corps royal du génie* (1783), then in rapid succession *lieutenant–colonel, colonel, général de brigade* and *général de division* (1784; the same year he wrote his famous *Éloge de M. le Maréchal de Vauban*; Cfr. Duthuron 1940).

In 1787 he was an official member of the Académie de Dijon.

In 1792, the *Legislative Assembly* (1791, 1st October to 1792, 20th September) concluded its activity. From the 22nd of September 1792 to the 2nd of November 1795 the *Convention national (National Convention)* governed France, and Carnot was elected the *43rd President of the National Convention* (1794; see Fig. 3). He demonstrated his military prowess, for example, participating in a military mission (1792, Bayonne) to improve the current defensive systems against Spanish attacks. One year later, a significant political event was his vote in favour of the death sentence of King Louis XVI (1754–1793).

In 1793 Carnot was elected member of the *Comité de salut public* (*Committee of Public Safety*) a new committee established by *National Convention*. He was also charged as one of the *Ministers of War* (Culp 1914). He achieved several military victories through the implementation of his singular defensive strategies, especially against the prevailing methods of European armies. Among others, these included a unique massive army, that is the organization of military forces capable of fighting a total war, achieving the neutrality of

Introduction xxiii

Prussia, and interrupting communications with Austria and England. Essentially, it consisted of a substantial army divided by units, which rapidly attacked from the flanks rather than head on. Carnot also saw to—in his capacity of *Minister of War*—several emergencies, such as the scarcity of munitions (due to the lack of saltpetre² and copper) and other technical needs. He successfully organized the army and *ad hoc* strategies, including the Northern front, battle of Wattignies,1793, 15–16 October, and came to be known at this time as the Organizer of Victory (Fig. 2).

In Arras—North of France, not far from Lille—Lazare Carnot met Maximilien François Marie Isidore de Robespierre (1758–1794). The two officers were both members of the *Société des Rosati d'Arras*, a literary society established in 1778, 12th June. Carnot enrolled in the society in 1786, Robespierre in 1787. The society was essentially inspired by Jean de la Fontaine (1621–1695), Guillaume Amfrye de Chaulieu (1639–1720) and Jean de la Chapelles' (1651–1723) writings. Later on, in the 1790s, especially in the course of Carnot's roles at the *National Convention*, the tension between them became extreme: anti-Prussian Robespierre and anti-English Carnot; and also in regard to Jacobin politics. We should remark that Carnot had shown no opposition to the *la Terreur* until he, and other of his colleagues of the *National Convention*, arrested (1794, 27th July) Robespierre and his twenty-one associates and condemned them to capital punishment by beheading (1794, 28th July).

In 1794, Gaspard Monge, Jacques–Elie Lamblardie (1747–1797) and Lazare Carnot founded the *École centrale des travaux publics*. In 1795 this institution was renamed the *École Polytechnique*, as it is still known.

²Potassium nitrate (KNO3) is a nitrogen-containing compound. The niter (from nitrogen as a source) exists in nature as a mineral. Generally, it is referred to as saltpeter or saltpetre.

xxiv Introduction

In 1795 Napoléon Bonaparte (1769–1821) was general in-chief of the *Armée d'Italie* (Army of Italy) located on the Italian border. Due to his political disagreement with Paul–François vicomte de Barras' (1755–1829) reactionary ideas, in the same year, Carnot left the *Comité de salut public*. On 1795, April 11th Lazare Carnot became (1795–1797) one of the five directors of the *Directoire (Directory)*. The latter governed France until 1799. He supported Napoléon's initiatives; he was the only one of the *Directory* to do so (Dhombres and Dhombres 1997; Hicks). The life of this *Directory* was not easy, due to the several cultural and political differences between the members.

In 1796 (April 30th) Carnot was elected president of *Directory*; on June 1st, his first son, Nicolas Léonard Sadi, was born (Figs. 4 and 5). His presidency ended on 1796, 29th July.

Sadi Carnot is the father and "inventeur de la Thermodynamique" as noted in the History of *École polytechnique* (Callot 1980, p. 390). In 1824, one year after Lazare Carnot's death, Sadi Carnot's only published work appeared: Réflexions sur la puissance motrice du feu (Carnot 1824 [1824], 1978; Girard 1824, Gondinet 1833; Challey 1971; Costabel 1976). He wrote another two (unpublished) manuscripts. The first is Notes sur les mathématiques, la physique et autres sujets (Carnot 1878b, pp. 89–102; see also Carnot 1878a; Robelin 1832; Rosenfeld 1941; Rumford 1798). The manuscript is conserved in the archives of the Académie des science— Archives et patrimoine historique de l'Académie des sciences, Paris (Gillispie and Pisano 2014). Sadi Carnot wrote crucial details about early ideas on the law of conservation (Gillispie and Pisano 2014)³. The second manuscript is Recherche d'une formule propre à représenter la puissance motrice de la vapeur d'eau (Carnot 1978, pp. 223-234; Cfr. Clément 1819a, b, 1970). In this work, Sadi Carnot indicated a mathematical expression for motive power applicable to heat machines en général.

³Recent studies (Pisano's works; Gillispie and Pisano 2014) remarked on some differences between the 1824 edition and the 1878 a manuscript given to the *Académie des sciences* (Carnot 1878a). The manuscripts edited by Gauthier–Villars (Carnot 1878b) are not always reproduced in their entirety. To consult Sadi Carnot's complete manuscripts see Pisano's works; Gillispie and Pisano 2014; see also Carnot 1978, 1986, masterfully edited by Robert Fox.

Fig. 2 «Lazare Carnot à Wattignies: portrait à cheval en uniforme de commissaire aux armées par R. Desvarreux (1909)». Plate from the original portrait conserved at Académie François Bourdon, Le Creusot—Archives Lazare Carnot. Very kindly authorized by Monsieur Gaetan Carnot, member of Carnot's family

xxvi Introduction

Fig. 3 «Lazare Carnot annonce à la tribune de la Convention la prise de Condé, nouvelle reçue par le télégramme Chape en 1794, gravure (s. d.)». Plate from the original portrait conserved at Académie François Bourdon, Le Creusot—Archives Lazare Carnot. Very kindly authorized by Monsieur Gaetan Carnot, member of Carnot's family

Introduction xxvii

This work is very connected to the filial and scientific relationships between Lazare and Sadi on a common scientific project (Gillispie and Pisano 2014), concerning the study of the efficiency of mechanical and heat machines; the project originally belonged to Lazare (*ibidem*). The manuscript was found in 1966 (Gabbey and Herivel 1966). It was presumably written between November 1819 and March 1827 (Gillispie and Pisano 2014): decisive evidence still is lacking to determine the precise date. Generally speaking, it was written before Carnot's publication of 1824 (Gillispie in Gillispie and Pisano 2014, Chap. 3, ft. 42) and after April 1823 (Fox in Carnot 1986, p. 168).⁴

In 1797 (September 4th) three members of the *Directory*—with military support from Charles Pierre–François Augereau (1757–1816)—staged a *coup d'état* called the *Coup of 18 Fructidor*—Year V. They were Paul–François de Barras, Jean–François Rewbell (1747–1807) and Louis–Marie de la Révellière–Lépeaux (1753–1824). Lazare Carnot was removed and obliged to seek protection in Switzerland (Geneva). In this period, he wrote *Réflexions sur la métaphysique du calcul infinitésimal* (Carnot 1797a), in order to explain and justify the role of the mathematics used in the previous *Essai sur les machines en général* (Carnot [1783] 1786).

In 1799 Carnot came back to France and was appointed (1800 April 2nd) by Napoléon as *Minister of War*. He was in charge until October 8th, which included the events of the *Battle of Marengo* (1800 June 14th). Two years later, he did not support *Napoléon's Consular powers for life and descent heritage*: he voted against this proposal. This also was the period of *Principes fondamentaux de l'équilibre et du mouvement* (Carnot 1803a) and *Géométrie de position* (Carnot 1803b).

Between 1800 and 1806 Lazare Carnot devoted himself to the geometry inspired by earlier mechanical and mathematical works,

⁴Charles Gillispie argued (*Ibidem*) the role played by the concepts of reversibility and incompleteness and completeness of a cycle. Robert Fox (Carnot 1986, pp. 168–169) argued his "tentative inclination to suppose" (Carnot 1986, p. 169) suggesting a date between November 1819 (when Clément lectured as a professor at *Conservatoire des arts et métiers* in Paris) and 8 March 1827, when the latter acknowledged a "distinguished mathematician" (Carnot 1986, p. 167) for information which added to his lecture. However, whether the composition of the unpublished manuscript was elaborated before or after (or during: Pisano) the composition of *Réflexions sur la puissance motrice du feu* is still an outstanding question that requires resolution.

xxviii Introduction

such as those on equilibrium, analysis and geometry. He wrote four masterpieces (Carnot 1800, 1801, 1803a, 1806).

In 1800 Carnot addressed a remarkable letter to Charles Bossut (1730–1814) in which new results and intellectual standpoints in geometry, particularly in trigonometry (Carnot 1800, pp. 401–421; Cfr. Bossut 1800a, b) were presented.

In 1801 he wrote De la corrélation des figures de géométrie (Carnot 1801), and his second son, Lazare Hippolyte, was born (Saint-Omer, April 6th). In this book he presented several of Euclid's theorems and various forms of a theorem, later called as Carnot's theorem⁵, or the law of cosines (cfr. Carnot 1801, § 220, pp. 162– 164). This remarkable theorem (Lagrange 1813, p. 406) which referred to the triangle—such as the generalisation of Menelaus from Alexandria (ca. 70-140; Chemla 1998, 1990)—was also presented in the Géométrie de la position (Carnot 1803b, p. 168; p. 291; pp. 436– 437), where it is fully derived and written in the modern forms. As such, the latter is considered to complement the previous De la corrélation des figures de géométrie (Carnot 1801). Another important work on the subject was Mémoire sur la Relation qui existe entre les distances respectives de cinq points quelconques pris dans l'espace; suivi d'un essai sur la théorie des transversales (Carnot 1806b).

Lazare second's son Hippolyte Carnot had an excellent political career: *Député* (1839–1849; 1850–1851; 1871–1875), *membre du Corps législatif* (1864–1869), *Ministre de l'instruction publique* (1848) and *Sénateur inamovible* (1875–), and wrote several works on politics and on teaching.

⁵As an extension of Pythagoras's theorem for the case of triangles, it concerns the lengths of the sides of a triangle to the cosine of one of its angles. It is—in some manner—also attributed to al–Biruni (ca. 973–1048), al–Kash (ca. 1380–1429) and François Viète (1540–1603); Bonaventura Cavalieri also presented it and its complete proof in *Trigonometria plana, et sphaerica, linearis and Logarithmica* (Cavalieri 1643; see also 1635). It is also possible to find it in the Euclid's *Elements*, Proposition 13, Book II (see also Proposition 12). The *théorème japonais de Carnot* is a theorem presented in *Géométrie de position* (Carnot 1803a, p. 168) related to the proof of the *Japanese theorem for concyclic polygons*. Lagrange appreciated this theorem very much (Lagrange 1813, pp. 406–407). On the contrary, Cauchy was very critical of the theorem: "In the various treatises of mechanics it is taught that live forces are lost every time bodies undergo a sudden change in velocity, and that this loss of live force is the sum of the live forces due to the velocities that are lost. But this proposition, which has been named Carnot's theorem, is evidently inexact as is the demonstration on which it purportedly rests." (Cauchy 1829, p. 116).

Fig. 4 «Lazare Carnot en uniforme de membre du Directoire exécutif (s. d)». Plate from the original portrait conserved at Académie François Bourdon, Le Creusot—Archives Lazare Carnot. Very kindly authorized by Monsieur Gaetan Carnot, member of Carnot's family

xxx Introduction

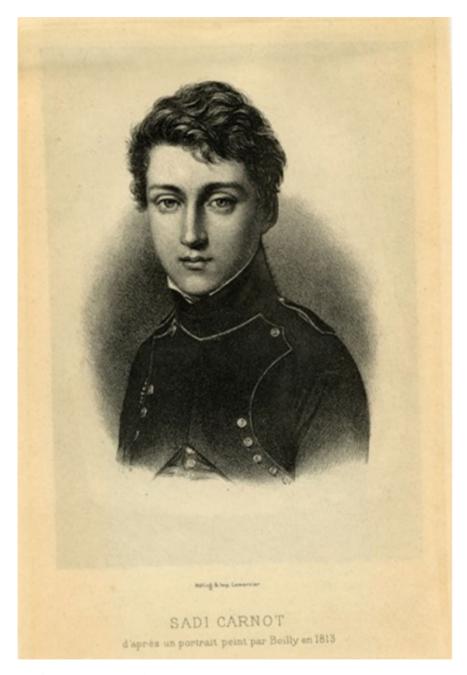


Fig. 5 «Sadi en uniforme de polytechnicien en 1813, reproduction d'après Boilly (s. d)». Plate from the original portrait conserved at Académie François Bourdon, Le Creusot—Archives Lazare Carnot. Very kindly authorized by Monsieur Gaetan Carnot, member of Carnot's family

Introduction xxxi

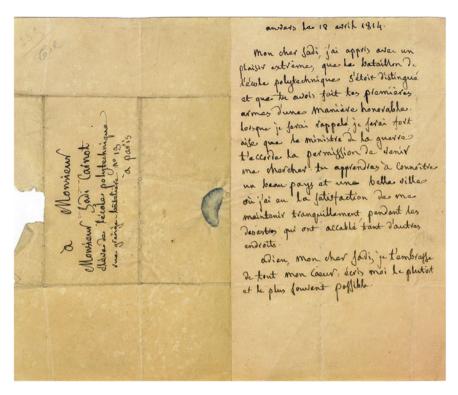


Fig. 6 «Lazare Carnot's letter to his son Sadi Carnot (1814)». *Plate from the original addressed to Sadi Carnot. Dossier Sadi Carnot, VI 2a2 (1812).* Very kindly authorized by the Collections archives de la bibliothèque de l'École polytechnique de Palaiseau (Essonne, France)

Hippolyte was also responsible for the delay in the circulation of his brother Sadi's documents and his biography (Gillispie and Pisano 2014, Chaps. 6 and 9). A collection of Sadi Carnot's manuscripts were given to the *Académie des sciences* on December 16th 1878: 46 years after Sadi's death. One of them was an autograph version of *Réflexions sur la puissance motrice du feu* (Carnot 1878a). It is conserved (4 cahiers, 92 f. r/v) at the *Académie des sciences—Institut de France* in Paris (Gillispie and Pisano 2014). One reason for this delay could be the ambiguity surrounding the cause of Sadi's death (1832, 24th August) in Ivry—sur—Seine. A prevailing opinion suggests

xxxii Introduction

a death from disease, which appears to be "choléra" (Arago and Gay–Lussac 1833, LII, p. 211; Henrion 1833, p. 167). But recent research (Cfr. Pisano's studies) strongly suggests that he developed mental illness (Cfr. Birembaut 1974) when the cholera epidemic of 1832 hit Paris. Some of Sadi's friends submitted an obituary (Girard 1824, pp. 411–414; Robelin 1832, pp. 528–530; Gondinet 1833, p. 46). Given the roles played by Lazare in politics, the revolution and the army, this mysterious aspect of Lazare Carnot's family is very important. Continuing the family's prestige, Marie François Sadi Carnot (1837–1894) Hyppolite's son, become the fourth President of the Third French Republic (1887).

In 1804, 2nd December Napoléon crowned himself emperor. Lazare Carnot's republican attitudes and political ideas impeded further public roles under the *Empire Français* (*First French Empire*), so he retreated to private life and his studies on military fortifications, especially on the geometry of *bastions systems*. In this period, Lazare Carnot wrote *De la Défense des places fortes*. The book had three editions in French (Carnot 1810, 1811, 1812a) and one edition translated into English, and published in London by a military library (Carnot 1814).

In 1812—and after the fiasco invasion of Russia—Carnot returned to active military service, in particular he worked for the defence of Antwerp during the *War of the Sixth Coalition* (also *Guerre de la libération*). The coalition was composed of Austria, Prussia, Russia, the United Kingdom, Portugal, Sweden, Spain and some German states. The Count of Artois demanded that Napoléon capitulate. Paris was captured around the Spring of 1814. Napoléon was obliged to abdicate in April and exiled to the island of Elba in Italy; but, he escaped (1815, February) and was restored to power in France once again. During the war of *Hundred Days*, Carnot was Minister of the Interior under Napoléon (Fig. 7).

The decisive Battle of Waterloo was in 1815, June 18th.

Introduction xxxiii

Fig. 7 «Lazare Carnot, portrait dans son bureau en uniforme de Ministre de l'Intérieur en 1815, (s.d.)». Plate from the original portrait conserved at Académie François Bourdon, Le Creusot—Archives Lazare Carnot. Very kindly authorized by Monsieur Gaetan Carnot, member of Carnot's family

xxxiv Introduction

The British allied army under the command of the Duke of Wellington, a Prussian army under the command of Generalfeldmarschall (field Marshal) Gebhard Leberecht von Blücher (1742–1819) brought an end to Napoléon and occupied Paris (July 7th). Finally, Napoléon was condemned to exile (1815, December) on the island of Saint–Helena (Longwood, South Atlantic west coast of Africa). He was fifty-one years old when he died (1821, May 5th) in exile.

During the Second (Bourbon) Restoration Carnot was accused as the deliberate *killer of a monarc(-hy)* and as a *regicide* during the *Second White Terror*—1815–1816 (Louis XVIII).

In 1816, Carnot was exiled⁶ to Poland. First, he lived in Warsaw, then in the Kingdom of Prussia (Germany). He was accepted with honour in both countries. One year before the outstanding publication, *Réflexion sur la puissance motrice du feu* of his oldest son Sadi Carnot (Carnot [1824] 1978, 1986; Pisano 2010; Gillispie and Pisano 2014), Lazare Carnot died in Magdeburg (Fig. 8). He died at seventy years of age and was buried at the Johanneskirche (Sankt–Johannis Kirche).

Only in 1889 were Carnot's remains transferred to the Panthéon on 4th August. He was commemorated by a royal and magnificent ceremony when his grandson, Sadi Carnot⁷ was still President of the French Republic.

Carnot produced distinguished writing and masterpieces in several fields such as mechanical machines, mechanics, geometry, mathematics, fortification and military treaties. Therefore, it is interesting to show the extraordinary trivalent role, political, military, and scientific, played by Lazare Carnot in the course of his main responsibilities and works⁸:

⁶Napoléon Bonaparte and Lazare Carnot only were exiled.

⁷Marie François Sadi Carnot—as above cited—was the fourth President of the Third French Republic. On June 24th, 1894, Sante Geronimo Caserio (1873–1894), an Italian anarchist, assassinated the President Carnot who died after midnight on 25 June. The Board of Pardons decided against all appeals for clemency on August 14. Caserio was executed by guillotine in Lyon at 5 am, August 16, 1894. President Carnot was honoured with an elaborate funeral ceremony in the Panthéon, Paris.

⁸Cfr. Gillispie 1971; Gillispie and Pisano 2014. Particularly on Lazare Carnot as a politician and military officer, including documents and archives, see Jean Dhombres and Nicole Dhombres (Dhombres and Dhombres 1997).

Introduction xxxv

 1767. Early humanities studies in Autun, located in the department of Saône-et-Loire, Department of Bourgogne-Franche-Comté (Centre-East of France).

- 1768. Séminaire d'Autun (military lyceum).
- 1769. Carnot prepared his application (concours) to enrol the École du Génie.
- 1770. Carnot was positively evaluated (classified 3rd) for École royale du Génie de Mézières (North of France).
- 1771. Carnot attended the École royale du génie de Mézières.
- 1773. Carnot was twenty-years old when he became Ingénieur Royal.
- 1773. Carnot went to military garrison in Calais (North of France).
- 1777. Carnot went to military garrison in Cherbourg (North of France).
- 1778[79]. Mémoire sur la théorie des machines pour concourir au prix de 1779 proposé par l'Académie royale des sciences de Paris (Carnot 1778; Fig. 9).
- 1780[81]. Mémoire sur la théorie des machines pour concourir au prix que l'Académie royale des sciences de Paris doit adjuger en 1781 (Carnot 1780; Fig. 9).
 - 1780. Carnot went to military garrison in Béthune (North of France).
 - 1781. Carnot went to military garrison in Arras (North of France).
- 1783. Essai sur les machines en général. Par un officier du Corps royal du Génie. Defay. Dijon. It is his masterpiece on mechanical machines

⁹As we read in the end of the second edition (1786, Fig. 11) a first edition was completed in 1782 and published one year after: "Depuis la première édition de cet ouvrage [*Principes fondamentaux de l'équilibre et du mouvement*] en 1783, sous le nom d'*Essai sur les machines en général* [...]" (Carnot [1783] 1786; Fig. 11). In *Principes fondamentaux de l'équilibre et du mouvement*'s Preface Carnot cited the *Essai* of 1783 and its role with respect to the new book in question (Carnot 1803a, Préface, p. v).

xxxvi Introduction

• 1784. Lettre sur les aérostats. This manuscript is lost. 10

- 1784. Éloge de M. le maréchal de Vauban (Carnot 1784).
- 1785. Dissertation sur la théorie de l'infini mathématique (Carnot 1785).
- 1786. Essai sur les machines en général. It is the new edition¹¹ (Fig. 11; Carnot [1783] 1786).
- 1786. Observations sur la lettre de M. Choderlos de Laclos à Messieurs de l'Académie françoise, concernant l'Éloge de Monsieur le Maréchal de Vauban (Carnot 1786).
 - 1786. Carnot enrolled in the Société des Rosati d'Arras.
 - 1787. Robespierre enrolled in the Société des Rosati d'Arras.
- 1787. Lettre de M. Carnot, Capitaine en premier au Corps Royal du Génie, à M. le Marquis de Montalembert. In: Réponse au Mémoire sur la fortification perpendiculaire (Carnot 1787a).
- 1787. Le Pouvoir de l'habitude, read¹² at the Académie d'Arras, 1787 25th May (Carnot 1787b).
- 1789. Mémoire présenté au Conseil de la Guerre [...] Est-il avantageux au Roi de France qu'il y ait des Places fortes sur les frontières de ses États? (Carnot 1789a).
- 1789. Réclamation adressée à l'Assemblée nationale contre le régime oppressif sous lequel est gouverné le Corps royal du Génie [...] 28 septembre 1789 (Carnot 1789b).

¹⁰On 1784, 17th January Lazare Carnot wrote this *Lettre sur les Aérostats* inspired by the first human flight. On 5th June 1783, the brothers Montgolfier–Joseph–Michel (1740–1810) and Jacques–Étienne (1745-1799) produced their first public official flight of the balloon filled with heated air. The flight was in Annonay (Ardèche, Region of Auvergne-Rhône-Alpes). Cfr.: Meusnier de la Place (1783), Darboux (1887–1896) and Gillispie (1983). Cfr: Dhombres and Dhombres 1997; Gillispie and Pisano 2014.

¹¹In this edition, Lazare Carnot is well cited: "M. Carnot, Capitaine au Corps royal du Génie, de l'Académie des Sciences, Arts, et Belles-Lettres de Dijon, Correspondant du Musée de Paris". The 1786 edition—as we remarked at the beginning in this volume—had an early English translation, divided into 3 issues (XXX,XXXI, XXXII) by *Philosophical Magazine* (Carno 1808a, b, c). In part one the reader can find both a portrait from the original of Lazare Carnot (Carnot 1808a, first pages of the volume XXX) and a short biography/comment of Lazare Carnot written by the editor (*Ibidem*,pp. 370–371).

¹²This edition (Arras, 1971) also includes Maximilien Robespierre's speeches "Le droit et l'état des bâtards" read at the Académie d'Arras, 1786, 27th April.

Introduction xxxvii

1791. Carnot was finally affecté in Saint-Omer (North of France).

- 1791. Carnot became *Président des Amis de la Constitution d'Aire*
- 1791. Carnot became *Député at the Assemblée législative* and member of the *Comité de l'Instruction Publique*.
- 1791. Carnot became Député du Pas-de-Calais (North of France).
- 1792. Carnot became Commissaire à l'Armée du Rhin.
- 1792. Carnot proposed a special military strategy to avoid the conquest of the fortresses.
- 1792. The Convention elected Carnot Député.
- 1792. 10th August. Louis XVI was suspended.
- 1792. 13th August. Louis XVI is officially arrested.
- 1792. 20th September, *Battle of Valmy*. The first major victory by the army of France. It was located between Sainte–Menehould and Valmy (Marne department, N–E France).
- 1792. 21st September. The Convention abolished the Absolute Monarchy and declared the First French Republic.
- 1793. 14th January. The Convention begins to discuss the terms of the judgment for Louis XVI. Finally, three motions and four questions were decisive.
- 1793. 15th January. First motion. The *Convention* proposed to vote two main questions of culpability: *conspiration* (673 *pro*, 32 on different claiming, 3 did not answer and 10 abstaining, absents 31; total 718) and *ratification au people* (286 *pro*, 423 *contra*, 12 abstaining, absents 28; total 721). Carnot, respectively, voted *pro* and *contra*.
- 1793. 16th–17th January. Second motion. The *Convention* proposed to vote the third question of *punishment*: 387 *pro* (whom 26 *pro* by Mailhe's amendment), 44 in favour of *mort avec sursis*, 290 *pro* other punishments, 5 abstaining, absents 23; total 726. Carnot voted *death penalty*.

xxxviii Introduction

 1793. 17th January. The Convention sentenced to death Louis XVI (Louis Capet).

- 1793. 19th January. Third motion. The *Convention* proposed to vote the fourth question of *sursis à l'exécution*: 310 *pro*, 380 *contra*, 2 attached certain conditions to their votes, 10 abstaining, absents 47; total 702). Carnot voted *contra*.
- 1793. 20th January. The convention officially announced the verdict to the *maison du Temple*.
- 1793. 20th January. Louis XVI asked various requests to the *Convention*; one of them was a delay of 3 days before executing. The Convention granted all except the additional three days.
- 1793. 21st January. Louis XVI at age 38 was executed (guillotine) on in Paris at the *Place de la révolution* (since 1795, *Place de la Concorde*). Charles–Henri Sanson (1739–1806), public executioner, inflicted it.
- 1792. Carnot became *chargé de mission auprès des armées*.
- 1792. Sur les citadelles, Carnot l'aîné, député du département du Pas-de Calais à ses collègues, 5 janvier, l'an IV de la Liberté (Carnot 1792).
 - 1793. Carnot is member of Comité de Salut Public and chargé des questions militaires.
 - 1793. Carnot became Commissaire de l'Armée du Nord.
 - 1793. Carnot became Capitaine du Corps du Génie.
- 1793. Rapport fait à la Convention Nationale par ses commissaires Carnot, Garrau et Lamarque, [Convention 1793, 12th January] (Carnot 1793a).
- 1793. Déclaration des droits du citoyen, proposée par L. Carnot, Député du Pas de-Calais, 10 mars 1793 (Carnot 1793b).
 - 1793. Carnot gave a substantial contribution to the victory of Wattignies.

Introduction xxxix

 1794. Carnot became the 43rd President of the National Convention. [George Couthon (1755–1794), Maximilien– François–Marie–Isidore de Robespierre (1758–1794) and Louis–Antoine–Léon de Saint–Just (1767–1794) were condemned to death].

- 1794. Gaspard Monge, Jacques-Elie Lamblardie (1747–1797) and Lazare Carnot founded the École centrale des travaux publics.
- 1794. Rapport et projet de décret sur la suppression du conseil exécutif provisoire et son remplacement par des commissions particulières [by Carnot on behalf of Comité de salut public] (Carnot 1794).
 - 1795. École centrale des travaux publics was renamed École Polytechnique.
 - 1795. Carnot became Député au Conseil des Cinq-Cents.
 - 1795. Carnot became one of the five directors of the Directoire.
 - 1795. Carnot appointed Napoléon Bonaparte as general in chief of the Armée d'Italie.
- 1795. [Report¹³ at the *National Convention*] Campagne des Français depuis le 8 septembre 1793 répondant au 22 fructidor de l'an Ier de la République jusqu'au 15 pluviôse an III (Carnot 1795a).
- 1795. Opinion de Carnot, représentant du peuple, sur l'accusation proposée contre Billaud-Varenne, Collot–d'Herbois, Barère, et Vadier; par la commission des Vingt et un (Carnot 1785b).
 - 1796. Carnot was elected President of the *Directoire*. He was in charge for a short term (30th April–29th July).
 - 1796. Carnot's first son, Sadi was born in Paris.
- 1796. Exploits des Français depuis le 22 fructidor an I, jusqu'au 15 pluviôse an III (Carnot 1796a).

¹³In 1797 a second report (tableau de Campagnes) was edited.

xl Introduction

• 1796. Discours prononcé par le Président du Directoire Exécutif à la fête de la Reconnaissance (Carnot 1796b).

- 1797. Bonaparte took power. The Consulat replaces the Directoire.
- 1797. Carnot, after Coup d'État de Fructidor (1797 4th September) went to Geneva (October).
- 1797. Réflexions¹⁴ sur la métaphysique du calcul infinitesimal (Carnot 1797a).
- 1797. Œuvres mathématiques¹⁵ du Citoyen Carnot (Carnot 1797b).
- 1797. Épitre au directeur Carnot, suivie de quelques-unes de ses poésies fugitives, et précédées de notes historiques sur les sociétés de ROSATI. (Carnot 1797c).
- 1798. Réponse de L.-N.-M. Carnot, citoyen français, l'un des fondateurs de la République, [...] au rapport fait sur la conjuration du 18 fructidor au Conseil des Cinq-Cents (Carnot 1798).
 - 1800. Carnot became *Inspecteur général des armées* (February 7th).
 - 1800. Carnot is entitled *Ministre de la Guerre* (April 2nd).
 - 1800. Carnot resigned (October 8th) from his *Ministre de la Guerre*. This was historically considered an act of disapproval to the appointment of Napoléon as *Consul à vie* (October 8th).

¹⁴This book had a notable success and very quickly was translated into Portuguese (Lisbon, 1798), German (Frankfurt, 1800), English (London, 1800, Philosophical magazine, Vol. VIII, pp. 222–240; 335-352. Id. Vol. IX, 1801, pp. 39-56; Holarke, 1801; Peddie, 1914) and Italian (Pavia, 1803). In 1813 a second edition (Carnot 1813) was published.

¹⁵This particular edition includes a portrait of Lazare Carnot and two reprints: *Réflexions sur la métaphysique du calcul infinitésimal* (published by Duprat some months before, 1797) and the second edition of *Essai sur les machines en général* (Dijon, 1786).

Introduction xli

• 1800. Lettre¹⁶ du citoyen Carnot au citoyen Bossut, concernant quelques vues nouvelles sur la trigonométrie. In Cours de mathématiques. Tome II. Géométrie et application de l'algèbre à la géométrie, pp. 401–421 (Carnot 1800 in Bossut 1800).

- 1801. De la corrélation des figures de géométrie (Carnot 1801).
 - 1801. Carnot's second son, Lazare-Hippolyte was born in Saint-Omer. Later, Lazare-Hippolyte's son, Sadi Carnot who will be the President of the *Troisième République* (1887, 3rd December-1894, 24th June).
 - 1802. Carnot became member of the *Tribunat*
- 1803. Géométrie de position à l'usage ceux qui se destinent à mesurer les terrains (Carnot 1803b).
- 1803. Principes fondamentaux de l'équilibre et du mouvement (Carnot 1803a).
- 1804. Discours prononcé par le Citoyen Carnot, sur la motion relative au gouvernent héréditaire Séance extraordinaire du 11 floréal an XII (Carnot 1804).
- 1806. Mémoire sur la Relation qui existe entre les distances respectives de cinq points quelconques pris dans l'espace; suivi d'un essai sur la théorie des transversales (Carnot 1806).
- 1810. De la Défense des places fortes. (Carnot 1810; see also Carnot 1858a).
- 1811. De la Défense des places fortes. 2nd edition (Carnot 1811).
- 1812. De la Défense des places fortes. 3rd Edition (Carnot 1812a).
- 1812. Discours préliminaire de la troisième édition du Traité de la défense des places fortes (Carnot 1812b).
- 1813. Réflexions sur la métaphysique du calcul infinitésimal. 2nd edition ¹⁷ (Carnot 1813; see also Carnot 1936).
 - 1814. Carnot took part in the battle of Anvers (Antwerp) and became its governor (January 30th–April 23rd).

¹⁶The date of the letter is 30 fructidor an VIII [1800, 22nd September].

¹⁷This book had several reeditions (1839, 1860, 1881, 1921, 1970). An early translation (by Browell) was published in Oxford (Carnot 1832).

xlii Introduction

• 1814. A Treatise on the Defence of Fortified Places. Translated from the French (Carnot 1814a).

- 1814. Mémoire¹⁸ adressé au roi, en juillet 1814 par M. Carnot (Carnot 1814b).
- 1815. Mémoire adressé au roi, en juillet 1814 par M. Carnot. 5th edition. (Carnot 1815a).
 - 1815. Carnot was elected Ministre de l'Intérieur during the Cent jours.
- 1815. Exposé de la situation de l'Empire (Carnot 1815b).
 - 1815–1816. Carnot is banished as regicide by Louis XVIII and was exiled to Poland.
- 1818. Correspondance inédite de Napoléon avec le général Carnot pendant les Cents jours (Carnot 1818).
- 1819. Correspondance inédite de Napoléon avec le général Carnot pendant les Cents jours (Carnot 1819).
- 1820. Opuscules poétiques du général L.N.M. Carnot (Carnot 1820; see also Carnot 1894, 1933).
- 1821. Don Quichotte¹⁹ poème héroï–comique en six chants (Carnot 1821).
 - 1823. Carnot exiled to Magdeburg (Prussia, now Germany) where he died.
- 1823. Mémoire sur la fortification primitive pour servir de suite au Traité de la défense des places fortes (Carnot 1823; see also Carnot 1858b).
 - 1889. Carnot's remains were transferred to the Panthéon (Paris) on 4th August.

¹⁸This book had several there main reeditions (Bruxelles, Londres, Paris).

¹⁹This book had a reedition in 1891 (Verviers, Paris).

Introduction xliii

Fig. 8 «Lazare Carnot en exile en Allemagne, d'après un tableau de C. Bochme (1823)» Plate from the original portrait conserved at Académie François Bourdon, Le Creusot—Archives Lazare Carnot. Very kindly authorized by Monsieur Gaetan Carnot, member of Carnot's family

xliv Introduction

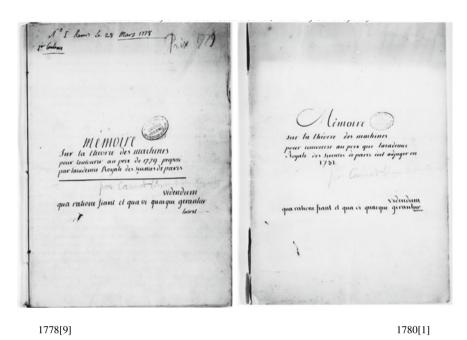


Fig. 9 Lazare Carnot's Memoires (1778, 1780) With kind permission by *Archives et patrimoine historique de l'Académie des sciences*, *Paris*, *France*

Lazare Carnot's works were well known and cited by scientists of the period. For example, Joseph–Louis Lagrange (1736–1813) cited him in the *Mécanique Analytique*²⁰. Others citations were by: Jean Baptiste Joseph Fourier (1772–1837) on the *Principle of virtual work* (Fourier 1798, pp. 20–60; see also *Id.*, 1888–1890, pp. 475–521, 1807, 1808, 1822, 1829; see also: Richmann 1750; Riemann [1861] 1868); Claude Louis Marie Henri Navier (1785–1836) on *force vive* and *Carnot's theorem* (Navier 1841, pp. 350–351); and (Mach [1896]

²⁰Lagrange 1788, II, p. 578. Carnot's quotation of Lagrange's *Théorie des Fonctions Analytiques* (Carnot 1813, p. 47; see also Lagrange 1881, pp. 409–410; 1797, 1806, 1793a, b). For Carnot's theorem included by Lagrange in his 2nd edition, see Lagrange 1813, pp. 406–407. Recently: Dugas 1955; Scott 1970; Gillispie 1971; Drago, Manno, and Mauriello 2001; Drago and Manno 1994; Dhombres and Dhombres 1997; Gillispie and Pisano 2014; Chemla 1990, 1998; Nabonnand 2010, 2011; Pisano's works below.

Introduction xlv

1986, p. 211). Notwithstanding this recognition, due to his political and military activities. Carnot was always in the line of fire, marking the whole of his life with an unfounded prejudice: expert politician or outsider scientist? Thus, other contemporary works on mechanics. (especially Lagrange's Mécanique) received more credit among scientists and later on in the historiography of science (Cfr. Fraser 1983). In fact, rather than diminishing Carnot's importance, the shift in mechanics, which became more and more applied to other sciences (Pisano and Capecchi 2013; Pisano 2017; Gillispie and Pisano 2014; Cardwell 1965, 1967, 1971) was a favorable environment for the introduction of an advanced mathematics into mechanics, in contrast to the application of mechanics to mechanical calculation and geometry problems only. For example, one can see Laplace's Traité de mécanique céleste and Exposition du système du monde (Laplace [1836] 1984; see also 1805; Lavoisier and Laplace [1780] 1784). His scientific program mainly used central forces and correlated differential equations in order to explain physical phenomena. On the other hand was the role played by mathematics with respect to physical measures, such as in the analytical theory of heat (Pisano and Capecchi 2009a). The application of these—such as propagation and velocity applied to heat—and other subjects produced new research disciplines as shown in the following flow chart (Fig. 10):

xlvi Introduction

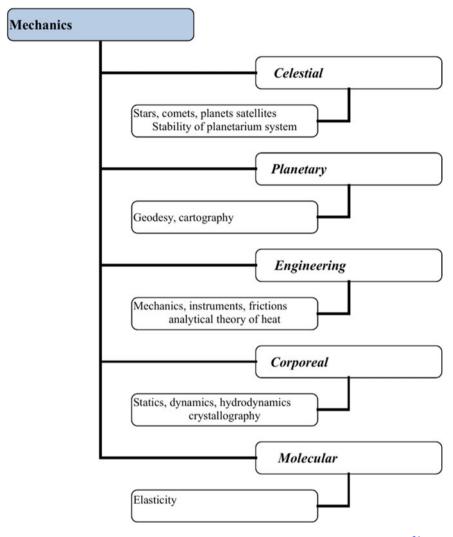


Fig. 10 Applied Mechanics and the birth of new research subjects²¹

²¹Gillispie and Pisano 2014; Cfr. Drago, Manno, and Mauriello 2001; Drago and Manno 1994.

Introduction xlvii

When considering analytical theories, such as those by Fourier²² first, and later by Gabriel Lamé (1795–1870), in both cases progress was made through the development of advanced mathematics (differential calculus by partial derivatives, integral calculus, series) to describe each field of phenomena. The change of focus from a mechanical nature (mathematical space and time, velocity, differential calculus) to mechanical aspects of the nature—applied to other phenomena—contributed to the birth of new disciplines such as the applied sciences (Cfr. Bouvier). This was the case also for the *Mécanique celeste*: from ancient Astronomy (that is observation, modelling, and trigonometry) to applied mechanics to the astronomy of the 19th century. This achievement was underwritten by the fact that astronomy is the most important scientific system of knowledge, but it is also science's most conservative, and difficult, field to approach.

Lazare Carnot's mechanics/mechanical machines developed, as a typical mathematical operation (its fundamental equations. Gillispie and Pisano Chaps. 2–3 and 11), the sum of all the parts that compose the physical system. That is, by combining a sequence of elements using addition, the result is their sum. In other words, a sum may be expressed (under certain conditions) as a definite integral:

$$\sum_{a}^{b} f = \int_{a}^{b} f dx$$

Therefore, Carnot used the ancient mathematical operators, sum and integral²³, with respect to the advanced ones, infinitesimal and differential calculus (see below translations and endnotes).

Carnot's research was a kind of point of convergence amidst emerging engineering, early theoretical studies on machines, the classical tradition and new insights from mechanics. His *Essai sur les machines en général* (Carnot 1783; 1786) can be considered one of the most early relevant theoretical treatises on machines alongside

²²See also Briot 1869; Chasles 1839, 1852, 1875.

²³Thus, the area under the curve is physically recognised as the Work.

xlviii Introduction

those of Petit, Poisson and Poncelet (Cfr. Arago and Dupin 1827).²⁴ Through the application of mechanics to machines—that is, by including the role played by machineries—Carnot brought the subject to a high theoretical level by studying the general properties of mechanical machines, for example the independence of efficiency from working substance, to arrive at a theory of *machines en général*.

He followed—in a certain manner—the school of thought of Jean Baptiste Le Rond d'Alembert (1717–1783) who was one the last scholars of *vis viva*—in the tradition of René Descartes (1596–1650), Christiaan Huygens (1629–1695) and Gottfried Wilhelm von Leibniz (1646–1716; Leibniz 1849–1863, 2009). This tradition assisted his research on bodies in collisions—applied to machines, as well. In fact, these phenomena were not assumed: neither in Newton's science (Newton [1686–1687] 1803, 1687, 1714, 1730, 1803, 1999, Cohen and Smith; Guicciardini 1999; Bussotti and Pisano 2014) nor, generally speaking, in the Newtonian deterministic paradigm.

1.2 Notes on the Context before the Essai

In the 15th–16th centuries, so-called *men of war* accomplished—without having a certain and structured scientific theoretical background—a reliable competence in the manufacture of cannons and other weapons. The impact of this on Science needs to be historiographically²⁵ clarified: "[...] before we appreciate their [the men of

²⁴See also: Poisson 1823a, b, 1829, 1833, Chatzis 2009; Poncelet 1823a; Poncelet 1827–1829, 1829, 1845, 1874.

²⁵On specific criticism/works in history and historiography of science (physics and mathematics) from *Scientia de ponderibus*, machines, Mechanics to 19th century, see (selected): Winter 2007; Wallis 1668, 1693; Tartaglia [1554] 1959, 1546, 1565; Pisano and Capecchi 2014; Brown 1967–1968; Capecchi and Pisano 2007, 2008a, b, 2010a, b, Clagett; Clagett and Moody, Clagett and Murdoch; Crombie 1959, 1963, 1994; Commandino 1565, del Monte [1577] 1581; Huygens 1673; Duhem 1905–1906, 1977; Galilei [1599] 1634, 1890–1909, 2002; Jouguet 1924; Galluzzi 1979, galluzzi and Torrini 1975–1984; Jammer 1957, 1961; Kuhn 1955, 1959, 1960, [1961] 1980, 1961, 1962, 1963, 1970, 1974; Liouville 1836; Mach [1883] 1996; Renn 2000; Pisano 2007, 2009a, b, c, d, 2010, 2011, 2012, 2015, 2016, 2017; Pisano and Gatto, pre-print; Pisano and Bussotti 2012, 2014a, 2015a, b, c, d, 2016a, b, 2017a, b, c, 2020a, b; Pisano and Capecchi 2008a, b, 2012, 2013, 2015; Pisano, Capecchi and Lukešová 2013; Pisano and Gaudiello 2009; Popper 1962; Prigogine 1980; Singer [1954–1958] 1993; Skolem [1920] 1967; Smith and Wise 1989; Scott 1959, 1971; Taton 1964a, 1951; Tackray 1970; Truesdell 1968a, b, 1970, 1980; Truesdell and Bharatha 1977; Westman 1980.

Introduction xlix

war's] hesitations and grasp the nature of their ignorance and their failures." (Gille 1966, p. 240). For, how did the relationship between science, applied sciences and machineries work?

During the 17th and 18th centuries, remarkable practical and early theoretical studies of heat engines developed, due to technological and social industry developed especially in France and in England. The main subject was the search for a source (*working substance*) of unlimited power by means of, for example, the conversion of heat into work: broadly, a general law of conservation of energy. Heat machines were the field of applicability of these studies (Cfr.: Parent [1745] 1706; Gustav 1869; Hirn 1862a, b, 1863, 1864a, b, 1867, 1868, 1887; Payen 1967, 1968).

In 1778 Lazare Carnot produced stimulating studies on machines and the *agent* (*working substance*; Carnot 1778, 1780, §§ 149–160). This allowed him to systematically approach his more structured work on mechanical machines in general (Carnot [1783] 1786).

Thanks to James Prescott Joule's (1818-1889) experiences (Fox 1969; Joule 1844, 1845, 1847, 1965, pp. 277–281, 1847, pp. 173– 176) and successive theoretical studies—mainly by Rudolf Clausius (1822–1888) and by William Thomson (1824–1907; Thomson 1848– 1849a, b, 1851a, b, 1852, [1890] 1943; see also Clausius 1850, 1865, 1864, 1868–1869)—a mathematical formulation (first principle) of the conversion of heat into work and consequent conceptualisation of energy (an integral) was produced. The crucial role was played by new physical quantities—out of the Mechanical paradigm—such as (Volume) Heat, Temperature and Work. Finally, after Sadi Carnot's work of 1824, thermodynamics consolidated its scientific theoretical entity by means of two principles, historically inverted: the second principle of thermodynamics (Carnot 1824) and the first principle of thermodynamics (Thomson/Clausius from 1848 to 1850s; Pisano's works. Cfr.: Reech 1851, 1852, 1853, 1854, 1869; Tait 1868, 1887; Steward 1866; Callen 1974; Callendar 1910, Hoyer 1974, 1975, 1976; Klein 1969; Mendoza 1959, 1963). In modern terms, generally speaking, the first principle reads:

1 Introduction

$$\Delta E = \delta W \pm \delta Q \tag{1}$$

In addition, Thomson (more analytically than Sadi Carnot) also dealt with the second principle of thermodynamics (Thomson 1848–1849, pp. 541–574; 1882–1911, pp. 113–155; 1852, pp. 248–255; see also Smith and Wise 1989, Chaps. 9–11; Pisano, Anakkar, Pellegrino and Nagels 2019).

At that time, Lazare Carnot's mechanics was an attractive alternative to Newtonian mechanics (Gillispie and Pisano 2014) both from the standpoint of content and methodology. Unfortunately, without limit operators it could not reproduce the same power of calculus of the Newtonian apparatus. Particularly, a strong relation to Leibniz's ideas, theoretical physics must explain facts with facts made the above cited attraction more evident. For example, one can understand the studies on colliding bodies in relation to those of Leibniz in the Dynamica de Potentia et Legibus Naturae Corporeae (Leibniz 1849–1863, II, sectio III, Propositions 1–18, pp. 488–507); the same can be said for the early concept of potential energy (Ivi, II, sectio I, p. 435). Lazare Carnot's method allowed him to introduce progress in the concept of potential energy in his theory of motion applied to machines (Carnot 1803a, pp. 36–38) and limited him to a necessary mathematics only in order to explain physical phenomena without the use of absolute space and time, that had been typical of previous predictive mechanics (Cfr. Koetsier 2007).

Carnot used the same founding method in all his scientific and military works. Gillispie (Gillispie 1971) *in primis* noted this unitary founding method existed in Carnot's various scientific works. Recently Carnot's method has been fully explained (Gillispie and Pisano 2014). He carried on Leibniz's work in order to find his *characteristica universalis*: a systematic reasoning for all the fields of

Introduction li

knowledge (Carnot 1803b, p. 1). Leibniz succeeded in part with infinitesimal analysis and Carnot presented his geometric method as a Leibnizian one²⁶. From the point of view of geometric calculation, given a problem on a geometric figure, its elements are made to vary by insensible degrees, always maintaining the same type of figure, in order to find the solution formula for each generated. For that, Carnot uses *correlation tables* (see also Poncelet's works in the references section below).

(1793–1794: In 1789, Antoine–Laurent Lavoisier élémentaire de Chimie [1789] 1937, 1862-1893) as well as other chemists of his time, searched in a revolutionary fashion for the basic principles of this new theory. These new principles were different from Newtonian Mechanics (Bussotti and Pisano 2014; Pisano and Bussotti 2016; 2020). Lavoisier's conceptualization excluded a chemical system based on only four elements. He addressed new quantities such as chaleur, calorique and lumière (Lavoisier 1789, I, pp. 12–17; see also Betancourt 1792, Berthollet 1803, 1809; Combes 1863, 1867). On that, Pierre Simon de Laplace (1749–1827) also carried out remarkable research in collaboration with Lavoisier (Lavoisier and Laplace 1784). Therefore, two main paths of research were produced: a study on the properties of gases (Newtonian kinetic model of gases) and study on the efficiency of heat machines, later also called thermodynamics. From 1772, Lavoisier worked on the foundations of his new forthcoming theory later revealed in his Traité élémentaire de Chimie of 1789. This is referred to in the historiography²⁷ as the *chemical revolution* (Guerlac 1963), originally based on the phenomenon of combustion (Dagognet 1969). The second half

²⁶On the Leibnizian background in Lazare Carnot, one can also see the famous correspondence in 1677 (*Ivi*, VI, pp. 81–106) between Leibniz and Honoratus Fabrius (1607–1688). For a first panoramic view on Leibniz and his dynamics, see Pierre Costabel's (1912–1989) works (Costabel 1960). For the most complete (works and letters) series of Leibniz's mathematical writings, see Eberhard Knobloch's VIII edition for "Berlin–Brandenburgische Akademie der Wissenschaften Leibniz–Edition, Reihe VIII" (Leibniz 2009), Bussotti 2015. Particularly on Leibniz, in the occasion of his anniversary, see also *Leibniz and the Dialogue between Sciences, Philosophy and Engineering*, 1646-2016 (Pisano, Fichant, Bussotti and Oliveira 2017; Bussotti and Pisano 2017; see also Bussotti 2003, 2015).

²⁷Historical studies often proposed such an emergence between the 16th and the 18th century evoking Paracelsus (1493–1541, born Philippus Aureolus Theophrastus Bombastus von Hohenheim), Robert Boyle (1627–1691), Nicolas Lémery (1645–1715), Georg Ernst Stahl (1659–1734) or even Michail Vasil'evič Lomonosov (1711–1765).

lii Introduction

of the 18th century was also marked by chemical studies on air and gases, which included early results on affinities (Thackray 1970). Newtonian rational mechanics as *calculated physics*²⁸ was finally documented as being *Newtonian* (Bussotti and Pisano 2014a) by two main historiographic approaches (Kragh 1987): (1) physical phenomena should be incorporated into a mathematical apparatus related to the final law of universal gravitation, (2) by Hypotheses non fingo (Bussotti and Pisano 2014ab; Pisano, Franckowiak and Anakkar; Pisano and Franckowiak). But the scholars busy with chemistry were aware that their science was considered weak because its lack of mathematisation (i.e., Black 1803). Therefore, they focused their studies on measurements and not on any pre-determined a priori system. In 1777, Lavoisier tried to include mathematics in chemistry (Lavoisier 1862; Cfr. Scerri 2013; Scheele 1781, 1785), by representing chemical reactions as ad hoc equations. Later he worked using air and water as compounds, gases and oxygen-acidity (Cfr. Perkins 1820, 1821). Particularly, Lavoisier studied fifty-five substances that could not be reduced to a final substance and proposed two new elements: light and caloric. He also defined chaleur, calorique and lumière (Lavoisier [1789] 1937 pp. 12–17; 1862–1893; see also Bailyn 1985; Cfr. Landriani 1785). As above cited, he worked with Laplace and produced an ice-calorimeter apparatus to measure the specific heat of different bodies.

In 1816–1819, Pierre Louis Dulong (1785–1838) and Alexis Thérèse Petit (1791–1820) presented cases where the relationship between the specific heat and temperature is relevant (Dulong and Petit 1816; Dulong 1829). The laws of gases were an object of interest and studied by theoretical scholars, too (physicists and chemists). In particular, the adiabatic law (Poisson 1823, pp. 5–16; Laplace 1822) had various formulations. When Siméon Denis Poisson (1781–1840) expressed the right form of the equation, most scientists did not consider the question solved.

²⁸"Il est clair que la révolution qui placerait la *Chimie* dans le rang qu'elle mérite, qui la mettrait au moins à côté de la Physique calculée ; que cette révolution, dis-je, ne peut être opérée que par un chimiste habile, enthousiaste, and hardi, qui, se trouvant dans une position favorable, and profitant habilement de quelques circonstances heureuses, saurait réveiller l'attention des savants, d'abord par une ostentation bruyante, par un ton décidé and affirmatif, and ensuite par des raisons, si ses premières armes avaient entamé le préjugé" (Venel, 1751–1772 [1753], III pp. 409–410; original author's italic and capital letters).

Introduction

Sadi Carnot wrote two unpublished works (Carnot 1878a, b) and Réflexions sur la Puissance Motrice du Feu (Carnot 1824, hereafter Réflexions) and invented thermodynamics and its application to heat machines (Gillispie and Pisano 2014; Cfr. Callot 1980). In his unpublished work, Notes sur les mathématiques, la physique et autres sujets (Carnot s. d.), he used the hypothesis on puissance motrice of the conversion of heat into work²⁹ (Carnot 1878, pp. 134–135). In the Recherche d'une formule propre à représenter la puissance motrice de la vapeur d'eau (between November 1819 and March 1827) he provided a cycle by three phases only. The Réflexions (Gillispie and Pisano 2014, pp. 176–183) and his Recherche d'une formule propre à représenter la puissance motrice de la Vapeur d'Eau (Carnot 1978, pp. 223-225) were a new conceptualisation of the relationship between physics and mathematics within a new theory which seemed to echo engineering practices. It was also quite different from the analytical approach adopted by Jean Baptiste Joseph Fourier (1768–1830) some years before, e.g., for heat propagation in solids (1807; Cfr. Pisano and Capecchi 2009a).

Several decades after, Gabriel Lamé (*Ivi*) wrote *Leçons sur la théorie de la chaleur* (Lamé 1861b; see also 1861a, 1836, 1852). He was not interested in thermodynamics as a unique science; he devoted himself to analytical heat transmission by means of differential equations and volume integral in order to calculate energy; a new branch of physics, *physics mathematics* was thereby defined (Pisano 2013 and other Pisano's works on the subject below). In this period, heat engines were studied and produced. In particular, steam engines were used, that required water to be pumped (Cfr.: Edmunds 1902; Einstein [1949] 1970; Tredgold 1838). In *Réflexions* Sadi Carnot calculated³⁰ efficiency as a quantity independent of any *working substance* (Carnot 1824, pp. 73–79, ft. 1; Carnot 1978 p. 38). Sadi introduced crucial concepts like *state of a system, reversible*

²⁹In *Notes sur les mathématiques, la physique et autre sujets* Sadi Carnot introduced his "thèse générale" on energy: "[...] la puissance motrice est en quantité invariable dans la nature, qu'elle n'est jamais à proprement parler ni produite, ni détruite" (Carnot 1878a, folio 7r; Picard 1927, p 81, line 14; see also Robert Fox in Carnot 1986, p. 191; Gillispie and Pisano 2014, Chap. 11).

³⁰This calculus presents some inaccurate passages. A full analysis is available (Gillispie and Pisano 2014, Chap. 9).

liv Introduction

processes, cycle, phases, impossibility of perpetual motion and a fundamental theorem showed by an *ad absurdum* proof, untypically for physics at that time. The impossibility of perpetual motion addressed the state of a system, reversible processes and cycle (four phases). At the *École Polytechnique*, Benoît Paul Émile Clapeyron (1799–1864) a friend of Sadi's, mathematically and analytically rewrote the *Réflexions* in his *Mémoire sur la puissance motrice de la chaleur* (Clapeyron 1834, pp. 153–190) adding a cycle³¹ which came to be incorrectly known as "Carnot's cycle" (see also Clausius 1850, pp. 368–397; pp. 500–524; p. 379).

1.3 The Essai sur les machines en général (1786)

In the *Essai sur les machines en général* (Carnot [1783] 1786) mechanics refers to mechanical machines. Particularly Lazare Carnot reasoned independently from working substance bodies and particular mechanisms. In his words:

[...] this Essai only concerns machines in general; each of them has their own particular properties [...].³²

[...] we compare these different efforts regarding the working substances that produce them, because the nature of the working substances cannot change the forces they must exert to fulfill the different objects for which the Machines are intended.³³

Carnot is usually considered to be the first author to claim that the empirical nature of mechanics was both theoretical and mechanical (Gillispie and Pisano 2014). He expressed his view of mechanics in the introductory parts of *Essai sur les machines en général* (Carnot 1786) and *Principes fondamentaux de l'équilibre et du mouvement* (Carnot 1803a).

 $^{^{31}}$ This PV diagram (also Clapeyron diagram) has no metric (such as, e.g., with respect to Descartes diagram).

³²Carnot 1786, p. x, line 14.

³³Carnot 1786, p. 62, line 2.

Introduction lv

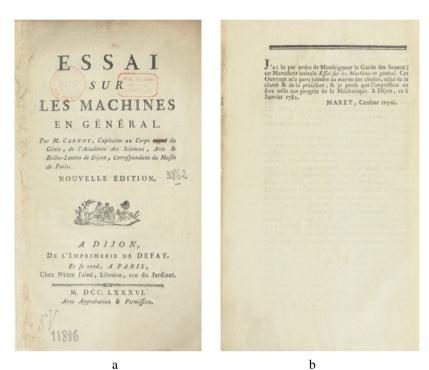


Fig. 11 Lazare Carnot's *Essai sur les machines en général* (1786), first (a) and last page (b) where the manuscript of 1782 is mentioned. With Kind permission by *Gallica–Bibliothèque Nationale de France*

A machine was thought of as an intermediary body in order to communicate/produce movement between two or more principal bodies who do not act directly on one another. On that, a remarkable criticism of mechanics and machines was provided by Carnot in his *Preface*:

Preface. Although the theory here presented is applicable to all issues concerning the communication of motions, *Essay on machines in general* was given as the title of this pamphlet; first of all, because it is mainly the Machines that are considered as the most important argument of mechanics; secondly, because no particular machine is dealt with but we only deal with properties which are common to all of them.

This theory is based upon three main definitions; the first looks at some motions that I call *geometric*, because they can be only determined by the principles of geometry, and are absolutely independent of the rules of dynamics; I did not think that we would omit without creating obscurity in the statement of the main proportions, as, in particular, I let you see in the case of the principle of *Descartes*. By my second definition, I try to fix the meaning of the terms *impelling forces* and

lvi Introduction

resisting force: it seems to me that without knowing a precise definition between these two different forces, we cannot clearly compare the causes and effects of the machines, without a well characterized distinction between these forces; and upon this distinction it seems to me that something vague and indeterminate was always left. Finally, my third definition is that by which I give the name of moment of activity³⁴ of a force referring to a quantity which includes both a real force or an activity in motion that every instant employed by that force, that is to say, the time during which it acts. In any case, an agreement should be that this quantity, under whatever name one wishes to designate, to meet it in the analysis of Machines in motion is frequent. Using these definitions, I arrive at very simple propositions; I deduced them using the same fundamental equation. [...]. This equation is the most simple, generally extends to every conceivable case of equilibrium and motion, both this motion suddenly changes, that it change by insensible degrees; it also applies to all bodies, both hard [plastic³⁵] that they have any degree of elasticity; [...]. I easily obtain from this equation a general principle of equilibrium and motion for Machines properly so called; [...]. Everyone claims [a principle] that, for Machines in motion, what is gained in force is lost in time or speed; but after reading the best books of mechanics, where we should find proof and explanation of this principle, can we capture its importance and its true meaning? Since for most Readers its generality has irresistible evidence which must characterize mathematical truths. If Readers should find this guarantee striking, do not they see themselves as meccanici, educated by these works, [and] immediately abandon their chimerical projects? Do not they believe or at least suppose, in spite of everything one can tell them, that some magic is present in the Machines? The counter examples proposed are limited to simple Machines; they considered them not to be of such great effect; but none show them that it must be valid in every imaginable case; the case of two forces is considered only, and, for other cases, an analogy³⁶ seems to be

³⁴In this context, *puissance* means/is translated by a general term as *force*. The *moment of activity* corresponds to *work*. For the latter, Lazare Carnot refers to the related quantity time and not to space. In other cases, like for other scholars in this period, Carnot used the term "force" (in general) to indicate (in modern terms) *inertia*, variation of quantity of motion in time, motive or acceleration.

³⁵Lazare Carnot adopted the lost quantity of motion. This part of his mechanics and machines theory included the irrelevance of the geometrical form of a machine that produced a kind of conceptual equivalence between *hard bodies* and *plastic bodies* (see the endnotes in the anthological part below). Lazare Carnot's second fundamental law of hard bodies "corps durs" (Carnot 1786, p. 22; see also 1830a) or *perfectly hard* "parfaitement durs et sans resort" (see also d'Alembert [1743] 1758, Lemme XI, pp. 144–145) can also mean bodies without their (natural) elasticity (Carnot 1786, pp. 22–23; see also Carnot 1803a, pp. 8–10). Carnot considered elastic bodies as a kind of limit case of hard bodies. Thus, he considered elastic bodies and the composition of infinitely hard bodies, each separated from the next by elastic springs (Carnot 1786, p. 23; see also "corps *solides*" in Carnot 1803a, p. 8). Generally speaking, Carnot tried to create a simplified model of *corps durs* (see below).

³⁶It should be noted that the analogy did not go any further.

Introduction lvii

sufficient enough. [...]. The way to eradicate this error, is without doubt, [1] to fight its source, showing that, not only in all known Machines, but in all possible Machines, *loss in time or speed is always what is gained in force*; it is an inevitable law; and [2] to explain what this law clearly means; but in order to do that, one must move towards the greatest possible level of generality, and not study any Machine in particular, not adopt any analogy; in the end, it is necessary to propose a general proof, immediately and geometrically deduced by the first axioms of mechanics: that is exactly what I tried to do in this Essay.³⁷ X. The Science of Machines in general is reduced to the following question: By *knowing the virtual motion of any system of bodies (that is to say, that it would take each of these bodies, if it was free) to find the real motion which will be the next instant [after the collision], since there is mutual action of bodies, thus considering them as they are in nature, that is, having inertia common to all parts of matter.³⁸*

The search for a universal working substance (*machine en général*) for mechanical machines—that included subsequent studies on equilibrium and movement (Carnot 1803a, b)—was one of Lazare Carnot's major projects from the 1760s. On the subject, he wrote two *Memoires* (Carnot 1778, 1780) and then the *Essai* (1783).

In the following, Lazare Carnot's main assumptions (in the *Essai*) underlying this mechanical project are listed (Gillispie and Pisano 2014 Chap. 11):

The cause of the motion of mechanical machines.³⁹

What is the best way of utilizing the *greatest possible effect* produced by a mechanical machine in motion?⁴⁰

Lacking a complete theory of *impelling forces* and *resisting forces* in mechanics.⁴¹ Searching for a general theory of machines and principle of equilibrium and motion.⁴²

³⁷Carnot 1786, pp. iij–ix, line 1. (Author's italic).

³⁸Carnot 1786 § X, p. 21, line 7. (Author's italic).

 $^{^{39}} Carnot$ 1786, p. vj, pp. 13–14; see also Carnot 1780, § 103; Gillispie 1971, Appendix C, § 103, pp. 301–302.

⁴⁰Carnot 1786, pp. ix–x, pp 89–94; see also Carnot 1780, §§ 149–160; Gillispie 1971, Appendix C, §§ 149–160, pp. 327–340; Carnot 1803a, p. xxj, p 149, pp. 247–250.

⁴¹Carnot 1786, pp. iv-v; Carnot 1780 § 129; Gillispie 1971 § 129, p. 316.

⁴²Carnot 1786, pp. iv–v, pp. 11–12; see also Carnot 1778 §§ 27–79; Carnot 1780, § 102, §§ 133–141; Gillispie 1971, Appendix C, § 102, pp. 301–303, §§ 133–141, pp. 317–321.

lviii Introduction

Communication of motion and work.⁴³

Reducing the problems of mechanics to a practice—calculation and geometry. 44

The machine and its use.⁴⁵

Absorbed motion and lost motion in a mechanical machine. 46

Moment d'activité.47

The advantage.⁴⁸

Finding the actual ("réel") motion after interaction among bodies. 49

The aim of running and general mechanical machines. 50

To obtain the *maximum effect produced*, no useless motions and interruptions have occurred. ⁵¹

The operative conditions to establish the maximum effect produced for a hydraulic engine.⁵²

Searching for actual ("réelle") motion in mechanical machines.⁵³

For moving machines, what is lost in time or speed is always what is gained in force. (*Golden rule*).⁵⁴

The impossibility of a perpetual motion.⁵⁵

⁴³Carnot 1786, p. iij–iv, p. 44; Carnot 1803a, pp. xiij–xvj; see also Carnot 1780, footnote "*", § 148; Gillispie 1971, Appendix C, footnote "*", § 148, p. 309, pp. 326–327.

 $^{^{44}}Carnot$ 1786, p. 12; see also Carnot 1780, \S 113 and footnote " \ast "; Gillispie 1971, Appendix C, \S 113 and footnote " \ast ", pp. 308–309.

⁴⁵Carnot 1786, p. 19, pp. 60–62; see also Carnot 1780, § 108; Gillispie 1971, Appendix C, § 108, p. 303.

⁴⁶Carnot 1786, pp. 19–20; see also Carnot 1780, §§ 108–109; Gillispie 1971, Appendix C, §§ 108–109, pp. 303–304.

 $^{^{47}}$ Carnot 1786, p. 88; see also Carnot 1780, §§ 129–132, § 149; Gillispie 1971, Appendix C, §§ 129–132, pp. 316–317, § 149, p. 327.

⁴⁸Carnot 1786, p. 85; see also Carnot L 1780, § 151; Gillispie 1971, Appendix C, § 151, p. 328.

⁴⁹Carnot 1786 pp. 21–24; see also Carnot S 1878a folio 2r Ia, pp. 34–35; Picard p. 73.

⁵⁰Carnot 1786, pp. 88–91; see also Carnot 1780, § 102, §§ 152–153; Gillispie 1971, Appendix C, § 102, pp. 301–303, §§ 152–153, pp. 328–332.

⁵¹Carnot 1786, pp. 89–91, pp. 93–99. He searched for the maximum work. He also proposed additional arguments in his famous Corollary on the equality "Q = q" (Ivi, Corollary V, §XLI, pp. 75–76, pp. 83–84; see also Carnot 1780, § 149; Gillispie 1971, Appendix C, § 149, pp. 327–328). The work plays an important role in Lazare Carnot's mechanics of running machines. On concept of work see Carnot 1786, pp. 65–66; pp. 83–85; pp. 96–97.

 $^{^{52}}$ Carnot 1786, pp. 89–94; see also Carnot 1780, \S 149–152, \S 155–157; Gillispie 1971, Appendix C, \S 149–152, pp. 327–330, \S 155–157, pp. 332–334.

 $^{^{53}}$ Carnot 1786, pp. 44–46; see also Carnot 1778 §§ 80–85; Carnot 1780, § 106; Gillispie 1971, Appendix C, § 106, p. 302.

⁵⁴Carnot 1786, pp. iv-viii; see also Carnot 1780, § 153; Gillispie 1971, Appendix C, § 153, p. 330.

⁵⁵Carnot 1786, p. ix, pp. 94–96; "[...] le mouvement perpétuel est une chose absolument impossible [...]" (Ivi, p. 94, line 18); see also Carnot 1780, § 146, § 157; Gillispie 1971, Appendix C, § 146, pp. 323–324, § 157, pp. 333–337; Carnot 1803a, p. xxi, pp. 256–257.

Introduction lix

Ad absurdum reasonings and proofs.⁵⁶

Geometric motions.⁵⁷

Abstraction to study a machine.⁵⁸

Science of (mechanical) machines.⁵⁹

The effect produced is always limited.⁶⁰

Working substances.⁶¹

Considering geometric motion independently of any dynamics rules. 62

Reasonings by synthetic method.⁶³

Produced work and consumed work.⁶⁴

The argument—hydraulic engine.⁶⁵

The role played by friction.⁶⁶

Percussions or brusque change. Impact between bodies and loss of moment-of-activity.⁶⁷

The calculation of the *effect produced* for any machine; the initial conditions should be restored at the end of the process.⁶⁸

Lazare Carnot had special consideration for force, space and *void*. He assumed a bivalent position on the concept of the *void*, after Descartes and d'Alembert. For example, in his consequent book on equilibrium and movement (1803a), he wrote:

⁵⁶Carnot 1786, pp. 28–36, p. 107; see also Carnot 1780, §§ 113–114; Gillispie 1971, Appendix C, §§ 113–114, pp. 308–310.

⁵⁷Carnot 1786, pp. 28–34, pp. 41–45; see also Carnot 1780, § 113; Gillispie 1971, Appendix C, § 113, pp. 308–309.

⁵⁸Carnot 1786, pp. 19–20, pp. 60–63; see also Carnot 1780, § 108, §§ 116–118; Gillispie 1971, Appendix C, § 108, p. 303, § 116–118, pp. 312–313; Carnot 1803a, pp. 256–257.

⁵⁹Carnot 1786, p. 21; see also Carnot 1780, § 107, §§ 109–111; Gillispie 1971, Appendix C, § 107, §§ 109–111, pp. 303, pp. 304–306.

⁶⁰Carnot 1786, pp. vij–ix, pp. 86–87; see also Carnot 1780, §§ 151–152; Gillispie 1971, Appendix C, §§ 151–152, pp. 328–329.

⁶¹Carnot 1786, pp. 86–87, pp. 89–93; see also Carnot 1780, §§ 155–156; Gillispie 1971, Appendix C, §§ 155–156, pp. 332–333. Carnot 1878a, folio 5r, pp. 40–43; Picard pp. 77–78.

⁶²Carnot 1786, p. iii; see also Carnot 1780, footnote "*"; Gillispie 1971, Appendix C, footnote "*", p. 309. Cfr. d'Arcy 1752, 1754, 1763.

⁶³Carnot 1786, pp. 33–35; p 85; Carnot 1813, pp. 12–21, p 189, p. 200, pp. 242–243, pp. 217–253.

⁶⁴Carnot 1786, p. 66, p. 85; see also Carnot 1780, §§ 129–132, §§ 153–154; Gillispie 1971, Appendix C, §§ 129–132, pp. 316–317, §§ 153–154, pp. 330–332.

⁶⁵Carnot 1786, pp. ix–x, pp. 88–81. Carnot 1803a, pp. xxi, p. 149, pp. 247–250.

⁶⁶Carnot 1786, pp. 43–44; pp. 60–63, pp. 94–95; see also Carnot L 1778 §§ 1–26; Carnot 1780, §§ 1–100, § 160; Gillispie 1971, Appendix C, § 160, pp. 337–340.

⁶⁷Carnot 1786, pp. (pp. 45–48 and) pp. 91–95; see also Carnot 1780, §§ 146–147, § 152, § 157; Gillispie 1971, Appendix C, §§ 146–147, pp. 323–325, § 152, pp. 328–329, § 157, p. 333. Please also note: "[...] qu'on appelle force ou puissance, dont la recherche est l'objet de la théorie des Machines proprement dites" (Carnot 1786, p. 62, line 29).

⁶⁸Carnot 1803a, pp. 259–261.

lx Introduction

Following this idea ["to avoid metaphysical notion of force" and to use "the theory of communications of motions" ⁶⁹] we will soon see, as I previously mentioned, the necessity of turning to the experiment, and that is what I did, without neglecting to support myself with reasonings that can confirm it in the most plausible way, using or generalizing the results per induction. At times I even used the name of the force in the vague sense of which I spoke above [...]. ⁷⁰

[...] Primitive ideas concerning the matter, the space, the time, the rest, the motion, etc. 7. The first rule to establish in such delicate research on the laws of nature is to only admit notions so clear that they can comprise the bounds of our logic. We must therefore reject the definitions of matter, time, space, rest, and *motion* as expressions that are impossible to express with more clear terms, and the ideas that these expressions produce in us primitive ideas outside of which it is impossible to construct. But once these expressions are admitted, we will easily see that which is a body, speed, a motive force, etc. 8. The body is a given part of matter. 9. The apparent space that a body occupies is called its volume; the actual space that this same body occupies, or its real quantity of matter, is called its *mass*. When the body is such that equal parts of its volume always correspond to equal parts of its mass, we say that it has a uniform density, or that it is equally dense in all of its parts; and the relationship from mass to volume, or the quotient of one times the other, is called the *density* of this body. But if unequal masses correspond to equal volumes, we say that the density is variable and for each particle of matter, we call density the volume of this particle divided by its mass, or rather, the last reason of these two quantities. The empty parts or gaps lodged between the parts of the matter, and that make the volume or apparent space greater than the actual space are called pores.⁷¹

[On the concept of force in the theory]. [...] in my opinion, no rigorous proof of the parallelogram of forces is possible: the mere existence of the *force* in the announcement of the proposition is able to make this demonstration impossible for the nature of things in itself. "It is extremely difficult", as Euler said, "to reason on primary principles of our knowledge [...]". This obscurity disappears in the second way [theory of motion] to conceive the mechanics, but another inconvenience appears; that is, the fundamental principles that in the first way [theory of forces where cause produces motion] are established such as axioms in favor of the metaphysical expression [...] that is to say, [...] force, are, in this second case [theory of motion], nothing less than self-evident propositions, and in order to establish them, we need to include the recourse to the experience.⁷²

⁶⁹Carnot 1803a, p. XVI, line 5.

⁷⁰Carnot 1803a, p. XVI, line 10.

⁷¹Carnot 1803a, pp. 6–7, line 1 (Author's italic).

⁷²Carnot 1803a, pp. xiij-xiv, line 17.

Introduction lxi

Collision theory moves through the conservation of momentum and energy. In both *Essai* (1786) and *Principes fondamentaux de l'équilibre et du mouvement* (1803) Lazare Carnot laid out his laws of conservation mainly by means of *insensible degrees* (Carnot 1803a, § 293, pp. 261–262). They can be considered a sequence of infinitesimally small percussions.

The *Essai* adopted a very simple level of mathematics combined with a simplified geometrical model of machines/mechanics and advanced studies such as machines in motion. The particular apparatus of machineries within machines (equilibrium and in motion) were systematically deduced from his *Hypothèses* (laws) of mechanics.

Carnot rigorously used geometry and trigonometric (vector calculus) rather than the advanced mathematics of his contemporaries. Combining the *Geometric motion, Moment of activity–concept of Work* with the *moment of quantity of motion*, he found the invariants of the *communication of motion* and established the maximum effect produced by mechanical machines, e.g., the continuity in the transmission of power. He was convinced that an innovative general theory of machines—an applied science of machines—was a crucial necessity for the economic development of a society. His works came to be of interest to technicians by the 1780s as well. But the principles and related theories then in currency were insufficient to perform motion and equilibrium for all machines. This was one of the main challenges of his *machines en général*:

Given the virtual motion of any system of bodies (i.e., that which each of the bodies would describe if it were free), find the real motion it will assume in the next instant in consequence of the mutual interaction of the bodies considered as they exist in nature, i.e., endowed with the inertia that is common to all the parts of matter. (Carnot [1783] 1786, § X, p. 21).

Since the argument was verbally expressed, the *Essai* was also beyond the comprehension of readers without formal education. The *Essai* seemed naturally to address its contents to certain trained engineers, which—Carnot included—represented the forthcoming generation of engineers. Thus, the latter, *a priori*, could be very positively sensible to

lxii Introduction

the content of the *Essai*. However, the methodological novelty of *Essai* joined with an evident non-advanced use of mathematics created some difficulties to the readers and to Carnot's scientific career. In other words, to fit Carnot's mechanics/machines in the context of France at beginning of 19th century, one should consider Carnot such as a real pioneer in a conventional scientific environment. As cited above, from the pages of the *Essai* the readers encounter the dissimilarity between *hard bodies* and *elastic bodies* within an early collision theory with respect to a theory of elasticity in the 19th century. On that, Gillispie suggested that

Carnot's work came into that development somewhat past its midpoint and inherited as assumptions the positions adopted by Maupertuis [Maupertuis 1746; Scott 1959, pp. 199–210]. Perfectly hard bodies were held to be indeformable and perfectly elastic bodies to contain forces capable of restoring their initial shape and volume after compression or shock of impact. (Gillispie and Pisano 2014, p. 17).

John Wallis (1616–1703) had already dealt with inelastic bodies in collision (Wallis 1668). In the processes of modelling of other bodies, for example the passage from liquid to gas and related known mechanical properties like incompressibility and deformability, Carnot was faced with a supplementary process of modelling based on the definition of fundamental quantities, which finally led him to the physics of *Work, Power* and *Efficiency*. In this period the challenge was to resolve the debate as to which of two quantities, *momentum (mv)* and *live force (mv²)*, could be considered as *conserved* in interchanges of motion. This was a serious problem for the development of principle of live force. In fact, the collision theory at that time conserved its quantity for cases of perfectly elastic bodies, while for cases of hard bodies, mv² was supposed to be conserved only for movements by insensible degrees; it was not conserved in cases of impact or collision, general speaking.

Introduction lxiii

In Essai, Carnot's physical Work could be considered to be the quantity to calculate the activity of a machine. He was possibly one of the first to introduce the concept of work⁷³ (moment of activity) in modern terms as F•ds (Carnot 1786, pp. 65-66; pp. 83-85; pp. 96-97). By taking into account his geometric motion, it is possible that Carnot moved his conceptualisation of the Work quantity towards such a convertibility, within the equivalence in the law of fall of mgh to $\frac{1}{2}mv^2$. This is historically plausible because it is in line with his engineering outlook: thinking of a) machines as massive bodies in motion and b) live force conservation and hard body interactions. The later studies dealt with hydrodynamics (Bernoulli 1738; see also 1733 [1748] 1750. Cfr. Borda 1770a, b; Bossut 1775) a parallel subject of research where the principle of live force assumed a crucial role in the solution of engineering problems. The hydraulic applications crossed (without being special cases) Carnot's reasoning in almost all his scientific writings⁷⁴. In these cases, the mechanical work produced only depends on the two levels of potential (Fig. 12). At that time—though not physically correct—it might have plausible to associate motion (for example of liquids) to the principle of continuity. In fact, by taking into account the common incompressibility of liquids and hard bodies, one could realise that the conservation of live force might be the principle for these types of interactions. In Essai, Carnot moved beyond the dichotomy between continuous and discontinuous change of motion in hard-body interaction. He focused on how the principle of live force might be applied similarly in continuous-discontinuous interchange of motion, for elastic or inelastic

⁷³In 1830–36s Gaspard–Gustave de Coriolis (1830–1837) named quantity work to one-half the live force, so that still later kinetic energy became defined as half the product of mass times velocity squared (Coriolis 1830–1836, 1829, III, V, pp. 33–34; see also 1844). On that, one can also see Navier's notes on Bélidor (Navier 1819; see also, 1818; 1826, 1841, 1856; 1864; Navier and Girard 1829) and Prony (Prony 1796, 1790, 1837; Prony, Girard and Navier 1829; Gillispie and Pisano 2014, Chap. 4; Gillispie 1971, Appendix B, § 27, ft c, pp. 272–273).

⁷⁴The analogy between a mechanical/heat engine and an hydraulic engine belonged to, respectively, both of two Carnot, father (e.g., Carnot 1786, pp. ix–x, pp. 88–81; Carnot 1803a, pp. xxi, p. 149, pp. 247–250) and son (e.g., Carnot 1978, 16–17). Cfr. Gillispie and Pisano 2014, Chap. 11.

lxiv Introduction

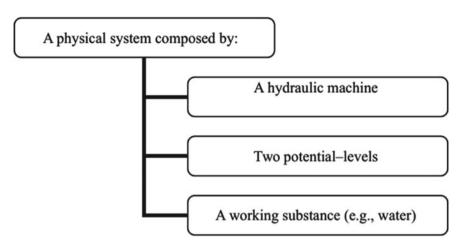


Fig. 12 A Simplified Model of a Carnot Hydraulic Machine

bodies. In this sense, as he often argued, the engineers inaptitude for metaphysics arises, and their tendency to always and only distinguish two main approaches to science, the so-called experiential and rational. The first one concerns description and comprehension of nature by means of basic magnitudes and notions such as body (mass), time, distance, power, equilibrium (v = 0). The second approach, at that time made (for certain scientists) Mechanics purely rational: hypotheses, modelling and correlated calculated quantities (e.g., derivatives etc.) such as velocity, acceleration, generally speaking, motion $(v \neq 0)$, etc. In the 19th century a new discipline physics mathematics (different from mathematical physics. Cfr. Pisano 2013a, b) was born. For example, one can see this in analytical theories by Fourier, Lamé, rather than Maxwell's electromagnetism. A new methodological approach arose where some quantities were measured physically (i.e., distance and time) and others were calculated mathematically (i.e., velocity, acceleration, dynamics forces, work, energy). Thus scientists worked with quantities that were—at the same Introduction

time—physical and mathematical. What about the measurement ⁷⁵? In effect for these scientific theories, *physics mathematics*, the measurement was not a priority (Cfr. Lamé 1836, 1861b). One could only calculate the *lim* including the instantaneous velocity, because some quantities in this *physics mathematics* were only considered mathematically. For example one could only determine the derivative of velocity in time because the latter was considered as a function of two variables (distance and time). On contrary, if one lost this mathematical aspect of the theory (i.e., distance and time as variables of the derivative function) then it was not possible to obtain quantities like velocity and acceleration. Therefore, in order to calculate the partial derivatives it was necessary that the velocity was a function of two mathematical variables, distance (x) and time (x): y = f(x, x). How did they proceed?

An idea was to formulate definitions entirely free of ambiguity. This is exactly what he would not and need not attempt in his Essai (Carnot 1786, pp. 105–106). It was his reserve with respect to this early positivist approach that made the *Essai* difficult to read, even for skilled scholars of the 18th and 19th century. The problems with both terminology and these strong heuristic aspects of the theory made the content of the book ambiguous for his contemporaries, who could dismiss it as a non-rational scientific book. Considering the political and scientific roles played by Carnot, his influence was evident. We can suppose these difficulties were felt at that time, which might explain the addition of a ad hoc glossary to the Principes de l'équilibre et du mouvement (Carnot 1803a, § 18, pp. 10–13; see also xi-xij). It is also important to note Carnot's own usage with respect to translations: vitesse as velocity, force (usually) as a quantity of motion (momentum in moving bodies; Cfr. Galluzzi 1979). He did not need to stress Newton's second law. The latter could be

 $^{^{75}}$ Cfr. Pisano 2010, 2011, 2012, 2013a ,b ,c, 2016, 2017; Pisano and Bussotti 2015b, c, d, 2016a, b, 2017a, b; Gillispie and Pisano 2014, and Pisano's works below. On electricity and electromagnetic theory see Ampère (Ampère 1806, 1822a, b, 1826, 1827; Pisano 2013a).

lxvi Introduction

understood, alluding to machines at the end of 18th century, as *force motrice* (also *motive force*).

Lazare Carnot suggested two main principles (Carnot 1786, pp. 12, pp. 14–15):

- 1. A General law of equilibrium in weight-driven machines the condition being that the center of gravity of the physical system be at the lowest point possible (Cfr. Pisano 2017).
- 2. A so-called by Carnot "fameuse loi d'équilibre de *Descartes*" (*Descartes*" famous law of equilibrium). In Carnot's words: "The second principle on which we propose to make a few observations is the famous equilibrium law of Descartes; it comes to this, two forces in equilibrium are always in the reciprocal ratio of their velocities, estimated in the direction of the forces, such that when one supposes that one of the two [forces] gains infinitesimally on the other, [it is] in a manner such as to give birth to a tiny motion." (Carnot 1786, p. 15).

Principle (2) reads that two forces in equilibrium are in inverse ratio to their *vitesses* at the instant when one prevailed (in modern terms) infinitesimally over the other, thus initiating a *small motion* (*petit movement*: Carnot 1786, p. 15)⁷⁷. In agreement with Gillispie:

Carnot preferred the center of gravity principle. [...]. It was always possible to reduce the operation of other forces to that of gravity by replacing their agency in principle with that of a weight acting over a pulley. This imaginary transformation of the system may at first annoy the modern reader as a somewhat juvenile evasion of the difficulty, but it would be better to see it as the engineers way of reducing an abstract problem to his own terms. Anyone who has been to engineering school will have resorted to similar devices, although it would be more germane to recall for a moment the analytic role of the experience and manipulation of weight in the mechanics of an Archimedes a Stevin or a Galileo Even Lagrange was not above it. There was a further, more serious, objection. (Gillispie and Pisano 2014, pp. 20–21; Cfr. Gillispie 1980).

⁷⁶In effect it was self-quotation strictly personalised by Carnot. Recently on Descartes: Bussotti and Pisano 2013; Schuster 2013a, b, 2000; Schuster and Sutton 2000; see also Descartes 1897–1913).

⁷⁷This scientific aptitude was transferred (also for advancement "[...] for insensible degrees [...]" Carnot 1786, p. 92; see also 1813a, p. 20) to his son Sadi on heat machines (Carnot 1824, p. 18; Carnot 1978, 1872, 1943, 1953; see also 1996, 1921; Desormes and Clément 1819; Despretz 1821, 1823; Jacquier 1867; Jamin 1868, 1886).

Introduction lxvii

In the history of science (i.e., physics and mathematics), the statement in accordance with the equilibrium of a physical system related to a center of gravity, which should be at the lowest possible point, also involving *maxima* and *minima* (Carnot 1786, p. 14) has been the object of several difficulties⁷⁸ and formulations from antiquity (Aristotle, Archimedes to Galileo, Torricelli, Riccati until the end of 19th century). At the beginning, Lazare Carnot applied it to the machineries (Cfr. Reuleaux 1876; Hachette 1811) of an ideal machine—not in motion—by an arbitrary geometrical form and characterized by mass, only. In this configuration, the sum of the resistances of the fixed supports estimated vertically must equal the weight of the system. Subsequently, if an infinitesimal motion (*petit movement*) is provided, then a portion of the mass should have gone into producing motion, the other portion is invested in fixed supports.

In the following, a concise reconstruction of Lazare and Sadi Carnot's main reasonings in the *Essai* (Fig. 13) is presented:

⁷⁸For example, one can see Galileo in his *Mecaniche* (Galileo 1890-1909, II, pp. 155-191) and in Discorsi intorno alle cose che stanno in su l'acqua (Galileo 1890-1909, IV, pp. 3-141). The latter attributed the law of virtual velocity to Aristotle (1936 [1955], 847a 10-15, 847b 10, pp. 329-332; see also Baldi 1621) also adding that the idea of the principle of virtual work was born thanks to the observation of the motion of points, which rotate along a circumference. Galileo also dealt with the law of the virtual displacement (Galileo 1890-1909 II, pp. 240-242, IV, pp. 68-69; VIII, pp. 310-331, pp. 329-330). We should wait for 1644, when Evangelista Torricelli (1608-1647), in his Opera geometrica (Torricelli 1644) claimed a rational criterion for equilibrium, playing a fundamental role in mechanics and in the history of mechanics (Capecchi and Pisano 2007, 2010a, b, Pisano and Capecchi 2013; Pisano, Dhombres, Radelet-de Grave, Bussotti 370th Anniversary of Torricelli's Opera Geometrica (1644): Statics, Mathematical and Geometrical Conceptual Streams, forthcoming). It can surely be considered the origin of the modern statement of the principle of virtual work: "Two heavy bodies linked together cannot move by themselves unless their common centre of gravity does not descend" (Torricelli 1644, Liber primus de motu gravium naturaliter descendentium, p. 99). With regard to Torricelli's principle, one can also consider John Wallis's assumptions (Wallis 1693), and Pierre Varignon's (1654-1722; Varignon 1725) essential and rigorous formulation as a scientific production which aimed at founding all statics upon an easily geometric principle: the composition of forces. In this sense, it is also alternative to the principle of virtual work. Let us remark that in his letter to Johann Bernoulli (1667-1748), Varignon also dealt with concept of virtual velocities, as components of virtual infinitesimal displacements towards the direction of the forces (Bernoulli Johann 1742a, b, II, 1727; see also Bernoulli Jakob 1703; see Radelet-de Grave 1996, 2007, 2009 and her other remarkable works on Bernoulli family). After Bernoulli, the most significant contribution to the development of the principle of virtual work is probably thanks to Vincenzo Riccati (1707–1775) who tried to establish it upon simple principles easily accepted by his contemporaries, introducing Principles of actions in his Dialogo di Vincenzo Riccati della Compagnia di Gesù dove ne' congressi di più giornate delle forze vive e dell'azioni delle forze morte si tien discorso (Riccati 1749) and in De' principi della meccanica (Riccati 1772). On the subject, see recently Pisano 2017. Below the principle of virtual works in relation to Lazare Carnot is presented.

lxviii Introduction

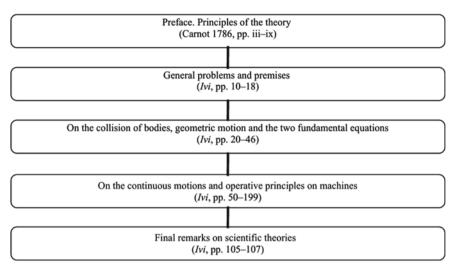


Fig. 13 Lazare Carnot's Main Reasonings⁷⁹

Taking into account Lazare Carnot's reasoning on machines (Fig. 13) and principle (2) discussed, one can conclude that if the center of gravity did not descend, then a state of equilibrium should be provided:

To assure that several weights [masses] applied to whatever Machine should be in mutual equilibrium, it suffices to prove that if the Machine was left on its own, the centre of gravity of the system would not descent. (Carnot 1786, II, p. 14; Author's italic).

It is historically and epistemologically interesting to observe how Carnot made progress in his explanations between scientific content and methodology. As above cited, he remarked to the reader the lack of ideal principles and mathematical idealisations in his *Essai*. In other words, if a proof was mentioned, then the reader might expect a proof as structured modelling, that is an example of a certain experience. In effect, his reasoning and above claim "Pour s'assurer [to assure] [...]" (*Ibidem*) essentially consisted in the exclusion of idealized thought experiences because the latter cannot include the real of objects in equilibrium and/or in motion; that is, they cannot be

⁷⁹Adapted from Gillispie and Pisano 2014, p. 351; Pisano 2010; Cfr. Drago and Manno 1994.

Introduction lxix

scientifically processed as physical and/or mathematical quantities. This is a heritage of a certain logic (mainly classical or non-classical) used in science (Gillispie and Pisano 2014, Chaps. 7, 8, 11; Pisano 2010a; Pisano and Gaudiello 2009a, b; Capecchi and Pisano 2007). The idea was that a statement was correct if its contrary led to physically absurd situations. In the history of science, we can see many of these cases. For example, Stevin's law (Stevin [1605] 1608; Dijksterhuis 1955) of the inclined plane which excluded a perpetual motion; Sadi Carnot's theorem (Carnot 1978, p. 38; Pisano in Gillispie and Pisano 2014, Chaps. 7 and 10) of the efficiency of an heat machine proved by an ad absurdum proof⁸⁰, the system composed of body (mass and its motion) described by infinitesimal analysis. Particularly, the latter idealizes the system mass-infinitesimal point in order to apply this kind of mathematics to physics; namely, rational mechanics which later became part of physicsmathematics of the 19th century (Cfr. Pisano's works on the subject).

On that, Gillispie noted that:

As for the so-called principle of Descartes, Carnot found in it disqualifying flaws. It was less general than the center-of-gravity principle thus transformed, from which it could be deduced by conversion of its forces into weights acting over pulleys. It applied only to systems in which no more than two forces were at work. More seriously, it envisaged only the relative amounts of the forces in equilibrium, whereas in requiring their vertical projections the center-of-gravity principle specified also the direction of those forces. (It is just in these passages that one may begin to appreciate how Carnot's attempts to analyse the manner in which forces transmitted by shafts, cords, and pulleys would constrain and move points within systems composed of rigid members, clumsy though these constructs seem, they nevertheless belong to the pre-history of vector analysis in exhibiting awareness that the quantity of a force comprises direction as well as intensity). (Gillispie and Pisano 2014, pp. 21–22).

The statement of the principle of Descartes (Schuster 2013) did not require opposite forces in direction in order to be in equilibrium (Bussotti and Pisano 2013). Taking into account the whole content of the *Essai*, Carnot specified the geometrical difference—so important for mechanical machines—between "forces sollicitantes" (*impelling forces*) and forces résistantes (*resisting forces*) (Carnot 1786, pp. iv–v).

⁸⁰Cfr. Pisano's works in the references section below.

lxx Introduction

This was an argument of intense interest to Carnot that he had already argued in his *Memoires* (Carnot 1780, § 129).

Lazare Carnot was possibly one of the first to clarify (physically) the vector definition of *impelling forces* and *resisting forces*. He avoided using them as metaphysical causes of variation of motion. He considered the (work) moment of activity "q", operated by *resisting forces*, as the *effect produced* by *impelling forces*. Thus, he considered the (work) moment of activity "Q", consumed by *impelling forces* at a given *t*—time (Carnot 1786, §§ LII–LIII, pp. 83–84, §§ LXIII–LXIV, pp. 95–99; see also Gillispie and Pisano 2014, Chaps. 2, 3, and 11). In effect, Carnot's criticism of Descartes' principle moved towards the *principle of virtual velocities* as discussed below (Cfr. Pisano 2017; Gillispie and Pisano Chaps. 10 and 11; Coopersmith 2015, 2017); although Carnot did not name it.

The main problem was how and when infinitesimal movements occurred for one machine in motion; and for two machines in two states infinitely close to each other. This raised the question: what was the physical and geometrical configuration of the system? Finally, his geometric motions would help him to deal with the problem. In fact, the latter were different from virtual velocities because they were finite quantities (Cfr. Poinsot 1838, 1975). Considered more closely, they were possible or actual displacements, and the internal consumed work of the system was zero. But these considerations were applicable to an equilibrium state only. It is also remarkable to see how Carnot referred to d'Alembert's principle (Carnot 1786, pp. 16–26; see also Carnot 1778, 1780; Carnot 1803a pp. 41-43; pp. 24-26; Hankins 1972, p. 203) in order to find a manner to justify the extension of the equilibrium principles to motion; historiographically speaking, how is possible to pass from statics to kinematics and then to dynamics? Carnot, in practice, did not use both principles. His reasoning moved towards the conservation of live force.

In the history of science, an undue use of the term axiomatization/ axiomatic concerning theories is diffused. Usually, in mathematics and mathematical physics, the term axiomatization of a scientific theory represents a formulation of a scientific system of statements (e.g., axioms/primitive terms) in order to build a consistent, coherent corpus of Introduction lxxi

statements (e.g., propositions) which may be logically and deductively derived from these statements. The proof of any statement (i.e., theorems) should be taken into account and traceable back to these axioms. Of course, the latter is a difficult condition to be universally claimed: i.e., see the case study of Archimedean's On the equilibrium of planes (Capecchi and Pisano 2007, 2010b, Pisano 2009b, Pisano and Capecchi 2008. 2009a, b, 2010a, b), and non-Euclidean geometry. Therefore, the use of axioms (in the history of science) as self-evident statements in a theory does not mean that this theory system is axiomatically built (Pisano 2008). In fact, three fundamental properties should be formally respected: 1) an axiomatic system is said to be consistent if it lacks contradiction, i.e., the ability to derive both a statement and its denial from the system's axioms; 2) in an axiomatic system, an axiom is called independent if it is not a theorem that can be derived from other axioms in the system; a system will be called independent if each of its underlying axioms is independent. Although independence is not a necessary requirement for a system, consistency is; 3) An axiomatic system will be called complete if for every statement, either itself or its negation is derivable. For example, Euclid of Alexandria authored the earliest extant axiomatic geometry and number theory presentation that can be formally considered: an axiomatic system, a model theory, and mathematical proofs within a formal system. All of that evidently is lacking in Lazare Carnot. In Carnot the axioms only mean a tentative step towards ordering a new theory (on machines) by means of primitive statements and eventually derived proportion; and also to order a scientific reasoning extrapolated from a previous known theory (for example Newton's law or axiom of motion). This aspect belongs to several periods of the history of science.⁸¹ For, an interesting epistemological aspect of the content of the Essai, generally speaking, is Carnot's theoretical conceptualisation of equilibrium—and—motion as the adaptation of two axiomatic statements of mechanics at that time:

⁸¹See below Pisano's works on the relationship between physics and mathematics into history; see also Schuster 2013; Bussotti and Pisano 2013.

lxxii Introduction

1. The first one concerned the physical static situation of equality in opposite senses of action and reaction (for all bodies), as the third *Axiom or Law of motion* by Newton (Newton 1803, p. 19; Bussotti and Pisano 214a, b; Pisano and Bussotti 2016a, b, c); even if Carnot did not directly refer to the Newtonian third law.

2. The second one concerned hard bodies only and in motion. Bodies in their interactions (impact or pressure) had their relative velocity in the next instant equal to zero.

Following Lazare Carnot's reasoning, he discussed two more concerns:

That the intensity of the impact or action [that is exerted] between two bodies that meet does not depend on their absolute motion but only on their relative motion.

That the force or quantity of motion which each exerts on the other, due to the impact, is always directed perpendicularly to their common surface at the point of contact.

XII. Of these two fundamental laws, the *first* is generally applied to all bodies in nature, as well as to the two subordinate laws which we are going to see, while the *second* is only for hard [plastic] bodies. However, since bodies that are not hard [plastic] have various degrees of elasticity, one usually falls back again to the hard [plastic]-body laws and uses these as bodies of comparison. In other words, one regards elastic bodies as being composed of an infinity of little hard bodies separated by little compressible rods and attributes to this all the elastic properties of these bodies. Thus one does not think that, properly speaking, in nature, bodies are [ever] animated by different motive forces. We will follow this method, as being the simpler; thus we will reduce the question to researching the laws observed by hard bodies, and we will then make some applications to the case where the bodies have different degrees of elasticity. (Carnot 1786, XI, p. 23; Author's italic)

Taking into account these principles and their corollaries, Carnot suggested that in a system of hard bodies in motion, the net result of mutual internal interactions of the system was zero. For example, generalizing them to a system of hard bodies, these arguments could be supposed equivalent to an expression of the *conservation of live force*. But, it should be noted that here Carnot met a situation of non-applicability (*en général*); it was the case of hard bodies. The successive introduction of his class of geometric motions helped him to overcome this problem of generalisation. In fact, he worked with displacements in geometry in order to avoid using physics

Introduction lxxiii

(dynamics). This is why Carnot did not account for inelastic collisions where instead a loss of live force (a kind of non-conservative case) might have occurred. In addition, adopting *geometric motions* (e.g., *Ivi*, pp. 68–69) he had at his disposal indeterminate arbitrary values useful to solve particular cases. These arguments consisted of a derivation of conservation of moment of momentum (i.e., torque) from conservation of energy (work). In order to discuss a machine *en général* Carnot needed to ignore internal vincula and interactions (bodies forces). Thus, he made use of the *moment de la quantité de mouvement* (conservation of moment of momentum as a fundamental principle in mechanics *en général*.

XXI. Let us imagine an arbitrary system of bodies in motion [...] $\sum muVcosy$ will be named the "moment of the quantity of motion of the system" with respect to the geometric motion that we gave to the system. In this way the moment of the quantity of motion of a system of bodies, with respect to any geometric motion whatever, is the sum of the products of the quantities of motion of the bodies which compose it, each multiplied by the geometric speed of the bodies, measured in the direction of this quantity of motion. So, using the same denominations, $\sum muWcosx$ is the moment of the quantity of motion before the collision; and $\sum muVcosY$ is the moment of the quantity of motion after the collision; and $\sum muUcosz$ is the moment of the quantity of motion lost in the collision: (all the moments being related to the same geometric motion). Thus from the fundamental equation (F) $[\sum muUcosz = 0; (Ivi,$ p. 40)] one can conclude that in the collision of hard [plastic] bodies, whether these bodies are all mobile, or whether some are fixed, or-what comes to the same thing—whether the collision is immediate, or done by means of any Machine without springs, the moment of the quantity of motion lost by the general system is equal to zero. (Carnot 1786, XXI, pp. 41-42).

The *Principle of Least Action* is applied (Cfr. Coopersmith 2017; see also 2015). It becomes a kind of *ad hoc* formulation of *conservation of live force* devoted to manifest the power of machines rather than a movement. This is a crucial aspect of his approach to mechanical science, perhaps mixed with his political and military experiences as a statesman. Carnot applied his principles of mechanics and geometric formulation to running machines. It is here that he formulated an early idea of Work that he called *Moment of Activity*. It was a manner to calculate input—output in a running machine.

lxxiv Introduction

XXXII. If a force P moves with speed u, and the angle formed by the directions of u and P is z, the quantity Pcoszudt in which dt expresses the element of time, will be named moment of activity consumed by the force P during dt. That is to say, the moment of activity consumed by a force, P, in an infinitely short time, is the product of this force (in the direction of the speed) and the distance undertaken (from the point of application) in this infinitely short time. I will denominate by moment of activity, consumed by this force, in a given

I will denominate by *moment of activity*, consumed by this force, in a given time, the sum of moments of activity, consumed by it at each instant, such that $\sum Pcoszudt$ [modern terms: force per distance] is the *moment of activity*, consumed in some indeterminate time. (Carnot 1786, XXXII, p. 65).

By means of his *moment of momentum* and for machines in smooth motions, Carnot expressed a more general rule concerning the equality between the *Work* done by the impelling forces and the *Work* done by the resisting forces (Cfr. Carnot 1786, pp. 60–61; XXXIII, p. 66). In his *memoire* (Carnot 1780) he had already written:

109. The science of machines in general and all mechanics is thus reduced to the following question. Knowing the virtual motion of a system of bodies that is the one that it would be taken by each body if it was free to find the real motion that it will have the next moment because of the interplay of bodies assuming that each of them is endowed with inertia as common to all the parts of the matter. And since this problem is simpler if we would find, among the bodies, some that are deprived of this inertia it is clear that we cannot have a general theory of machines without having solved this problem in its full scope. That is what we will try to do.

The *Essai* ends with designs for machineries (i.e., hydraulic case studies; Carnot 1786, VI, p. 80) and a remarkable concluding *Scholium* (Carnot 1786, pp. 81–104). It aimed to make clear Carnot's scientific aptitude in both mechanics and machines theory. Thus, specific arguments concerning the mechanical advantages of machines, experiences and rational approaches to the science of mechanics (Cfr. Cauchy 1828, 1829) concluded this masterpiece on *Machines en général*:

The two fundamental laws from which I started (XI) are therefore purely experimental truths and I have proposed them as such. A detailed explanation of these principles did not enter into the plan of this work, and would perhaps have only served to obscure things. The sciences are like a beautiful river,

⁸²Carnot L 1780, §§ 108–109; see also Gillispie 1971, Appendix C, §§ 108–109, pp. 303–305; see also Carnot 1786, §§ XXIX–XXX, pp. 60–61.

Introduction lxxv

whose course is easy to follow once it has acquired a certain regularity. But if one wants to go back to the source, one cannot find it anywhere, because it is everywhere; it is spread in some way over the whole surface of the earth. Similarly, if one wants to go back to the origin of the sciences, one will find only obscurity, vague ideas, vicious circles; and one is lost in primitive ideas. (Carnot 1786, p. 107).

His son Sadi followed in his footsteps, part of a filial and scientific relationship based on opposition to a (Newtonian) rational approach to science and to perpetual motion (Carnot 1978, pp. 21–22, ft. 1) in his *Réflexions sur la puissance motrice du feu* (1824, Pisano's works; Gillispie and Pisano 2014, Chaps. 6–11).

Both Lazare and Sadi Carnots' sciences⁸³ (Gillispie and Pisano 2014) avoided the use of Newtonian's scientific apparatus for a new way to approach the science of machines. For mechanical machines, Lazare considered the *production of mechanical work* occurs with the transference of motion from one body to another. For heat machines, Sadi considered the *production of heat work* occurred by transmission of heat between two thermostats by a small difference in temperature. According to Lazare Carnot, Sadi included the *production of the movement of heat* in order to establish a principle *en général* and to produce a new physical situation of the conversion of heat to Work.

⁸³A recent historical, epistemological investigation found that *Double Negative Sentences* (DNSs) belonged to non-classical logic, the scientific content of which does not correspond (once one deletes the double negation) to their positive sentences. They were found in Sadi Carnot's book of 1824 (Gillispie and Pisano 2014, pp. 412-419). They introduced the scientific-logical style and background of Sadi and his father's scientific filiation on mechanical and heat machines en général. For example, if a DNS (A) is not equivalent to its corresponding affirmative sentence (A), than (generally speaking) it loses its scientific argument and follows that it belongs to non-classical logic; i.e., see the law of double negation: $A \neq A$. In logic "A" reads "non non A"; Gillispie and Pisano 2014, Chap. 7; see also Pisano's works; Batens and Meheus; Beth, Bevir; Destouches 1948, 1951, 1959, 1966). This inquiring was used, e.g., for analysing the analogy between mechanical and heat machines should be noted. If in thermodynamics Q is analogous to f, since neither are state functions f must be substituted by potential $\Delta V = f \Delta s$, while Q must be substituted by entropy, which however has a different formula $\Delta S = \Delta Q/t$. (Thomson 1851b, I, pp 175–183; see also Thomson 1851a; Clausius 1850, pp. 368–397; pp. 500–524). Moreover, it should be also noted that in the second case, it is not a special physical distance but it is temperature range, $\Delta t \neq 0$. Sadi Carnot wrote this at the beginning of the discursive part of Réflexions sur la puissance motrice du feu, fully of DNSs, and repeats it several times as well as at the end of the demonstration of his celebrated theorem (Carnot 1978, p. 38): work can be obtained every time there is a difference in temperature between which heat passes. Thus, it is possible to note a common way of conceiving work in comparison with special and heat motions (Pisano 2010; Gillispie and Pisano 2014).

lxxvi Introduction

1.4 Paralleling Essai and Principes, 1786–1803

By following the Newtonian paradigm until Laplace⁸⁴ (Fox 1974; Dhombres and Alvarez 2012) one can see a development of an advanced use of mathematics (i.e., differential equations) to certain fields of science. This became a kind of alert for Carnot as he declared in the end of *Essai* and in successive *Principes fondamentaux de l'équilibre et du mouvement* (1803a; here after Principes). Paralleling these two books (1786 and 1803a), Carnot wrote:

[Essai]. Reflections on the fundamental laws of equilibrium and motion. Among the Philosophers who occupy themselves with researching the laws of motion, some are in Mechanics, an experimental science, 85 the others, purely rational. That is to say, they first compare the phenomena of nature, decompose them, so to speak, in order to understand what they have in common and so reduce them to a small number of principal facts—which then serve to explain the others and to predict what will happen in any circumstance; the others start from hypotheses, then reason from their suppositions, succeed in discovering the laws that the bodies would follow in their motions if their hypotheses conformed to nature, then, comparing their results with phenomena and finding that they agree, conclude that their hypotheses are accurate; that is to say, the bodies in effect do follow the laws which they had at first only assumed. The first of these two classes of Philosophers therefore follow in their researches the primitive ideas that nature has imposed on us and the experiences that she continually offers us. The others start from definitions and hypotheses: for the first, [they assign] the names of bodies, forces, equilibrium, motion, that correspond to primitive ideas; they neither can nor must define them; the others, on the contrary, having to draw everything from their own depths, are obliged to define these terms with precision, and explain clearly all their suppositions. But if this [second] method appears more elegant, it is also more difficult than the other one; as there is nothing more perplexing in most of the rational sciences, and above all in this one—than to first pose exact definitions in which no ambiguity remains—it would throw me into metaphysical difficulties, well beyond my powers, to want to explore all those proposed up till now. I will content myself with [examining] the first and most simple [definition]. (Carnot 1786, pp. 104-106; Author's italic).

[Principes]. Following this idea ["to avoid metaphysical notion of force" and to use "the theory of communications of motions" (Carnot 1803a, p. XVI, line 5)] we will soon see, as I previously mentioned, the necessity of turning to the experiment, and that is what I did, without neglecting to support myself with reasonings that can confirm it in the most plausible way, using or generalizing the results per induction. At times I even used the name of the force in the vague sense of which I spoke above [...].

(Carnot 1803a, p. XVI, line 10).86

⁸⁴In the 1816 Laplace pointed out that the speed of sound in air depended on the heat capacity ratio and corrected Newton's surprising error (Biot 1858, pp. 1–9, 1802, pp. 173–182; see also 1802, 1816).

⁸⁵Cfr. Desaguliers 1751, 1734.

⁸⁶[...] Primitive ideas concerning the matter, the space, the time, the rest, the motion, etc. 7. The first rule to establish in such delicate research on the laws of nature is to only admit notions so clear that they can

Introduction lxxvii

Lazare Carnot adopted *velocity* and *quantity of motion* as the equations of motion (Gillispie and Pisano 2014, Chaps. 2–4, 11). In this kind of mechanics, the basic concepts, time and space are finite and delimited (e.g., in machines); differently from Newtonian tradition, they are not absolute and infinite. Lazare Carnot's mechanics was limited to algebraic and trigonometric equations. In fact, his equations of the invariants of motion are to be solved by velocities only.

The following Table 1 presents the basic notions both in *Essai* and in *Principes*:

 Table 1 Carnot's Physical–Mathematical–Geometrical Approach

Main concepts	Lazare Carnot (1786; 1803a; see also 1813)
Space and time	No absolute and infinite Newtonian space
	and time
Physics-mathematics relationship	Only physical
Geometry-physics relationship	Independence from position in space
Derivate quantities	Velocity, Quantity of motion, Work
Mathematical approach	No local and infinitesimal variables
Main mathematical-geometrical	Geometric motion
technique	

comprise the bounds of our logic and scientific language (Cfr. Condillac 1821). We must therefore reject the definitions of matter, time, space, rest, and motion as expressions that are impossible to express with more clear terms, and the ideas that these expressions produce in us primitive ideas outside of which it is impossible to construct. But once these expressions are admitted, we will easily see that which is a body, speed, a motive force, etc. 8. The body is a given part of matter. 9. The apparent space that a body occupies is called its volume; the actual space that this same body occupies, or its real quantity of matter, is called its mass. When the body is such that equal parts of its volume always correspond to equal parts of its mass, we say that it has a uniform density, or that it is equally dense in all of its parts; and the relationship from mass to volume, or the quotient of one times the other, is called the density of this body. But if unequal masses correspond to equal volumes, we say that the density is variable and for each particle of matter, we call density the volume of this particle divided by its mass, or rather, the last reason of these two quantities. The empty parts or gaps lodged between the parts of the matter, and that make the volume or apparent space greater than the actual space are called pores. (Carnot 1803a, pp. 6–7, line 1. [Author's italic]). [On the concept of force in the theory]. [...] in my opinion, no rigorous proof of the parallelogram of forces is possible: the mere existence of the force in the announcement of the proposition is able to make this demonstration impossible for the nature of things in itself. "It is extremely difficult", as Euler said, "to reason on primary principles of our knowledge [...]". This obscurity disappears in the second way [theory of motion] to conceive the mechanics, but another inconvenience appears; that is, the fundamental principles that in the first way [theory of forces where cause produces motion] are established such as axioms in favor of the metaphysical expression [...] that is to say [...] force, are, in this second case [theory of motion], nothing less than self-evident propositions, and in order to establish them, we need to include the recourse to the experience (Carnot 1803a, pp. xiijxiv, line 17; Cfr. Pisano and Gillispie 2014).

lxxviii Introduction

In the following, Carnot's main hypotheses—related to discussion on *Principle of virtual laws*—are presented (Table 2).

Table 2 Some of Carnot's hypotheses (Carnot 1803a)

- Once at rest a body cannot move by itself and once put in motion it cannot change either its velocity nor its direction by itself (Carnot 1803a, p. 49).
- When many forces, either passive or active, equilibrate themselves, each of these forces is always equal and opposite to the resultant of all the others (*Ivi*, p. 49).
- 5 The action that two bodies contiguous bodies exert on each other by impact, pressure or tension, does not depend in any way on their absolute velocity, but only by their relative velocity (*Ivi*, p. 49).
- When bodies that impact are perfectly hard or perfectly soft, they proceed always together after the impact; that is according to the straight line of their mutual action [...] (*Ivi*, p. 50).

Carnot declared (Carnot 1786, pp. 104–107) his preferences: both analytical and empirical ones. In the introduction of *Principes* he reaffirmed his empirical ideas (Carnot 1803a, p. 2) also expressing a particular final conceptualisation of his mechanics as either empirical or fully rational (Carnot 1803a, pp. 3–5). In other forums, he referred to his *seven hypotheses* (Carnot 1803a, pp. 46–47; see also Pisano and Capecchi 2013) in order to replace the three Newtonian laws.

1.4.1 The Embryonic and Genesis of the Magnitude Work

Both in *Essai* and *Principes* Lazare Carnot's approach of conceptualisation of force as a physical quantity (Carnot 1803a, p. xj) was quite evident: sometimes following common sense, and at others even meaning *Work*. As noted above, the term that he used to indicate work was *moment of activity* (Carnot 1786, XXXII, pp. 65–66).

Introduction lxxix

The total moment of activity, at a finite time, is given (in an integral form) by the following expression (Carnot 1786, p. 66):

$$P \int udt cosz$$

For, he formulated his own conservation of work by means of smooth movements, such as a corollary:

Corollary V. Specific law concerning Machines whose motion changes by insensible degrees.

XLI. In a Machine whose motion changes by insensible degrees, the moment of activity, consumed in a given time by the soliciting forces, is equal to the moment of activity exerted in the same time by the resisting forces (Carnot 1786, pp. 75–76; Author's italic).

The *production of work* was produced by mechanical machines (Pisano and Bussotti 2015a, b). Thus, taking into account f_i forces linked to δs_i and displacements of bodies, *the production of a mechanical work* was produced by the transferring of motion from one body to another one. This reasoning is specified both in the *Essai* (e.g., Carnot 1786, p. iij, pp. 65–66; see also pp. 96–97) and in *Principes*. In the latter Carnot wrote:

[...] we come back specifically to the second way [theory of motion] of looking at the problem, that is to say, that mechanics are nothing else than the theory of the laws of the communications of the motions. (Carnot 1803a, p. xiij). [...] The first method [theory of forces where cause produces motion] offers much more ease; so it is, as I mentioned here above, almost generally followed. Nevertheless, I adopted the second [theory of motion] as I already did in the first edition; because I wanted to avoid the notion of metaphysics of forces, to leave undistinguished the cause and the effect, in short, to bring everything to the only theory of communication of motions. (Carnot 1803b, pp. xv–xvj).

According to Carnot, an action of every force (weight) can be reproduced. Then the *communication of motion* (Carnot 1803a, pp. xiij–xvj) and the *Work* are able to produce a new physical situation—related to machines *en général*—based on the impossibility of a perpetual motion and the independence of *efficiency* from the working substance. Below a sequence of Carnot's main reasoning on the subject is presented. Table 3 summarizes the development of the

lxxx Introduction

conceptualisation of the Work—with respect to vincula—in Carnot's two mentioned works:

- Everyone says that in Machines in motion, one loses in time or speed what one gains in force.
- (Carnot 1786, p. vj; see also *Ivi*, p. viii).
- The reflections that I propose on this law lead me to say a word about perpetual motion, and I show not only that every machine left to itself must stop but I even assign the moment when this must happen. (Carnot 1786, p. ix).
- However, I repeat, the object of this Essay is [the theory of] Machines in general. Each machine has its own particular properties but here we are concerned only with those properties that are common to all. (Carnot 1786, p. x).
- [...] and one compares these different efforts without regard to the agents that produce them as the nature of these agents can change nothing about the forces which they are obliged to exert in order to fulfill the various purposes that the Machines are [designed] for. (Carnot 1786, p. 62).
- LVII. What is then the true purpose of Machines in motion? We have already said, it is to procure the ability to vary at will the terms of the quantity *Q* (the *momentum* of activity) that must be exerted by the moving forces. (Carnot 1786, pp. 88–89; Authors' italic).
- LXII. One may conclude from what we are coming to say on the subject of friction and other passive forces, that perpetual motion is absolutely impossible, as it employs—for the production of perpetual motion—only bodies that are not solicited by any motive force, or even by [the descent of] heavy bodies [...]; (Carnot 1786, p. 94).
- It is therefore evident that one must absolutely despair of producing what one calls perpetual motion, if it is true that all the motive forces which exist in nature [...]. (Carnot 1786, p. 95).

Introduction lxxxi

Tab. 3 The way of conceiving vincula and the production of work

Lazare Carnot (1780; 1786)

- The work as a *product* of a mechanical machine; *vincula* bodies.
- Mechanical vincula: M≫m
- (Principle of virtual work). Systems of bodies, non-infinitesimal points, but global and with *vincula*.
- More than one body having infinite mass cannot be a machine: no work from *vincula*, only.
- It is impossible to link (in a direct way) different potential systems to produce work freely (impossibility of perpetual motion).

Particularly, in the following a selection of early Carnot's reasoning on the subject:

108. When a body acts on another one it is always directly or through some intermediary body. This intermediate body is in general what we call a machine. The motion that is lost at every moment in each of the bodies applied to this machine is partly absorbed by the machine itself and partly revised by the other bodies of the system but as it may happen that the subject of the matter is only to find the interplay of the bodies applied to the intermediate bodies without the need to know the effect on the intermediate bodies, we have imagined, in order to simplify the question, to ignore the mass of this body, however keeping all the other properties of matter. Hence the science of machines has become a sort of isolated branch of mechanics in which it is to be considered the mutual interplay of different parts of a system of bodies among which there are some that, lacking the inertia as common to all the parts of the matter as it exists in nature, withheld the names of machines. This abstraction might simplify in special cases where circumstances indicating those bodies for whom it was proper to neglect the mass to make it easier for the objective, but we easily know that the theory of machines in general has become much more complicated than before because then this theory was confined in the theory of motion of bodies as they are offered to us by nature, but now it is necessary to consider at the same time two kinds of bodies, one kind as actually existing, the other partially deprived of its natural properties. Now it is clear that the first problem is a special case, since it is more complicated than the other so that by similar hypotheses, we easily find the laws of the equilibrium and of motion in each particular machine such that the lever, the winch, the screw, resulting in a blend of knowledge whose binding can be hardly perceived and only by a kind of analogy; this must necessarily happen as we will resort to the particular figure of each machine to show the property which is common to it and to all the others. Since these properties are the ones we have mainly seen in this first section, it is clear that we will be able to find them only by putting aside the particular forms. So let us start by simplifying the state of the issue by ceasing to consider the system bodies of different natures; finally giving back to machines their inertia it will be easy afterwards to neglect the mass in the

lxxxii Introduction

result, we will hold the possibility to consider it or not, and therefore the solution of the problem will be general and easier at the same time. (Carnot 1780, § 108).

1.4.2 From Work to Principle of Virtual Laws

Bodies with infinite mass (the constraints only) were not considered by Carnot because they do not produce *Work* (Carnot 1786, pp. 58–59). In fact, to produce work, other intermediary mechanisms are necessary. While in the previous sections, the discussion dealt with Carnot's engineering/geometrical approach to mechanics—machines, in the following the reader finds scientific arguments about Carnot's physical and mathematical roots devoted to the concept of *Work* and *Principle of Virtual Laws*.

The *Principle of virtual laws* (also *law, works, work, displacement, displacements*, depending on specific cases) in *Mechanics* throughout history encountered several intellectual difficulties, both for fundamental and applied research. For example, see *rational mechanics*, which did not allow indeterminable situations. In the *mechanics of rigid bodies*, the application of the *principle of virtual law* solves certain problems related to *vincula*. The latter *vincula* are related to *constraint reactions*, such as *auxiliary unknowns*, which are then eliminated by substitution during the solution of the single static problems; idem by *friction constraints* (Cfr. Coulomb 1784, 1785, 1799) one can formulate certain *constitutive laws*. On the contrary, in *continuum mechanics*, it is very important.

The *principle of virtual works* states that the *total virtual work* performed by all the forces acting on a system in static equilibrium is zero for a set of infinitesimal *virtual displacements* from equilibrium. The infinitesimal displacements are virtual because they need not be obtained by a displacement that actually occurs in the physical system. The virtual work is the work performed by the virtual displacements, which can be arbitrary, and are consistent with the constraints of the system.

Introduction lxxxiii

Its common mathematical expression is:

$$\delta W = \sum_{i} F_{i}^{(a)} \delta s_{i} = 0$$

The theory of mechanical machines may be based on the *principle of virtual work*, and thought of as a consequence of the principle of the impossibility of perpetual motion, as applied to machines and constraints: *it is impossible that the reactions of the constraints on the actions of the bodies, which make up the machine, produce positive work.* In other words, it is impossible for forces of bodies of constraints to produce work:

$$\sum_{i} R_{i} \delta s_{i} \leq 0$$

The generalization of Lazare Carnot's *Principle of virtual work* is historically very important because it precedes Lagrange's approach⁸⁷ on the subject. Carnot began by stating his principles, which he referred to also as laws, to underline their empirical content. In his *Principes* Carnot wrote:

Any motion that, when imparted to a system of bodies, has no effect on the intensity of the actions that they exert or can exert on each other in the course of any other motions imparted to them, will be named geometric. (Carnot 1803a, § 136, p. 108).

In this regard Gillispie observed that Lazare Carnot

[...] did achieve a greater clarity, most notably in the passages defining geometric motion [...]. Neither in the 1780 memoir nor in the Essai sur les

⁸⁷In 1762, in Application de la méthode exposée dans la mémoire précédente à la solution des différents problèmes de dynamique (Lagrange 1762; see also: 1764, 1788, 1870–1873, 1892), Lagrange published the results of his research on the *Principle of Least action*. He perfected its formulation and substantiated it with a convincing proof. Nevertheless, previously Lagrange had conceived of a more general principle than that of least action. In a letter to Euler on 24th November 1759, Lagrange wrote about having composed elements of differential calculus and mechanics and developing the true metaphysics of its principle. Euler's *Correspondence with Joseph Louis de Lagrange (Opera Omnia*. Series IV, Vol I, retrieved via:http://eulerarchive.maa.org/correspondence/correspondents/Lagrange.html *Idem* letter was previously edited in Lagrange 1892, Tome XIV, pp. 170–174; see also: Euler 1738 [1730–1731], 1774 [1773], 1736, 1749, 1751 [1750] 1752, 1757, 1775. Cfr: Pisano 2017; Pisano and Capecchi 2013). Generally speaking, one can see: Johann Bernoulli, *Theoremata selecta pro conservatione virium vivarum demonstranda et esperimenta confirmanda* (Bernoulli Johann 1727), *Remarques sur le principe de la conservation des forces vives pris dans un sens général* (Bernoulli D 1750 [1748]). D'Alembert's *Traité de dynamique* (D'Alembert 1758 [1743]; see also Hankins 1970; D'Alembert 1751–1780; 1767) and Lagrange's *Recherches sur la libration de la Lune* (Lagrange 1764; see also: Truesdell 1968a, b, 1970, 1976, 1980; see also Fossombroni 1794).

lxxxiv Introduction

machines en général had Carnot adapted his concept of geometric motions from the principle of virtual velocities. In the *Principes fondamentaux de l'équilibre et du mouvement*, however, he went on to recognize the analogy between such motions and that principle in the use Lagrange made of the latter. (Gillispie and Pisano 2014, p. 72).

On the subject, in *Essai* we read:

First law. The reaction is always equal and opposite to the action. Second law. When two hard bodies act on each other by collision or pressure—that is to say, they act on each other in virtue of their impenetrability—their relative speed, immediately after the interaction, is always null. (Carnot 1786, pp. 21–22. Author's italic)

The first law states that all bodies change their state of rest or motion always due to the action of another body. All bodies resist this change of state. Carnot often used the term "force d'inertie". On this subtle concept Carnot distanced himself from Euler's formulation (Pisano 2012) who considered it to be a theorem (theorem 7; see also theorem 6) by means of activity (force) and passivity (inertia); typically of applied mechanics. In detail, Euler's theorem founding principles of dynamics strictly follow those assumed in *Mechanica sive motus scientia analytice exposita* (1736) where he tried to reformulate Newtonian mechanics in a more systematic form.

PROPOSITION 7. THEOREM. 56. A body remains in a state of absolute rest, unless it is disturbed to move by some external cause. ⁸⁹

Thus, the *Axiom or Law of motion à la Newton* is now presented as theorems. This methodological difference assumed a great importance for the development of mechanics and successive applied mechanics. It means that in certain cases, the principle of inertia is not a principle but a mere theorem; so it can be proved within a certain mathematics. Euler also assumed that laws of mechanics can be deduced without any recourse to experiments. On can also see D'Alembert (1743) who called it "loi" (law) and not a theorem:

II. Law. 6. A body once put in motion by whichever cause, must persevere uniformly and in straight line, unless a new cause, different from that has caused the motion, will act on it. (D'Alembert (1743 [1758], p. 4).

⁸⁸Carnot 1786, pp. 21–22; see also p. 20, p. 60, p. 61, pp. 62–63, pp. 68–69, p. 77, p. 78, p. 81, p. 86, p. 97.

⁸⁹Euler 1736, p. 21; see also Euler [1730–1731] 1738; [1773] 1774; 1749; [1750] 1752; 1757; 1775.

Introduction lxxxv

Coming back to Carnot, his inertia force is a result of two combined motions. In his words:

A body that one forces to change its state of rest or of motion resists (XI) the agent which produces the change, and it is this resistance which one calls the force of inertia. To evaluate this force it is necessary then to decompose the actual motion of the body into two parts, one of which is [the motion] that it will have the instant afterwards. [because] The other [part of the motion] will evidently be that which must be destroyed in order to force the body's change of state, that is to say, the resistance with which it opposes this change' or its force of inertia', from which it is easy to conclude, that the force of inertia of a body is the resultant of its actual motion & the motion equal and opposite to that which it must have the following instant. (Carnot 1786, p. 61).

The second law in *Essai* concerns hard (or completely soft) bodies. Carnot thought that the content of this law allowed moving the attention to the hard bodies only. Thus, elastic bodies can be re-conducted to hard bodies. But this assumption was clearly a forced justification. By applying his principles to a system of free hard bodies, Carnot formulated a first principle of mechanics as in the following:

$$\sum mVUcosZ = 0$$

It is the "first fundamental equation of mechanics (E)" (Carnot 1786, p. 27): m is the mass of the corpuscles of the system, V the true velocity after the impact, U the lost velocity (such that W = V + U is the velocity the mass would have before the impact) and U the angle between U and U. At this point Carnot introduced the concept of geometric motion.

XVI. [...] if a system of bodies moves from a given position, with an arbitrary motion, but such that it was possible also to make another absolutely equal and directly opposite motion, then each of these motions will be called a geometric motion [...]. (Carnot 1786, p. 28. Author's italic. See also Ivi, pp. 29–34, pp. 41–45).

In Principes the definition was formulated slightly different:

DEFINITIONS. 136. Any motion will be called geometric if, when it is impressed upon a system of bodies, it has no effect on the intensity of the actions that they do or can exert on each other when any other motion is impressed upon them. (Carnot 1803a, p. 108. Author's italic. See also: Gillispie 1971, p. 43).

lxxxvi Introduction

The first one is purely geometric: *geometric motions* are reversible and congruent with constraints. The second one, by means of "action" alluded to force or Work, as well. In *Essai*, geometric motions could be also infinitesimal. This moves directly to *Principes*, too (e.g., see Carnot 1803a, theorem IX, p. 130). In effect, even if Carnot was not interested in infinitesimal cases, if finite or infinitesimal nature of geometrical motion, in the end it made no difference for Carnot's formulations. In fact, he used a quantity *u* associated to a single geometric motion. He called it *geometric velocity*, which, in modern terms is not so far from *virtual velocity* or *virtual displacement*. Geometric motion was one of his main contributions to mechanics:

The theory of *geometric motions* is very important; it is as I have already noted like a mean science between ordinary geometry and mechanics [...] This science has never been treated in details, it is completely to create, and deserves both for its beauty and utility any care by Savan[t]s. (Carnot 1803a, p. 116. Author's italic).

By means of geometric motion, he wrote his first fundamental equation of motion when the true velocity V after the impact substituted the geometric velocity u, as in the following:

$$\sum muUcosz = 0 \quad (z \text{ is the angle between } u \text{ and } U)$$

Carnot called this equation the "second fundamental equation of mechanics (F)" (Carnot 1786, p. 32); by changing u among all possible geometric motions, one can obtain all equations needed to find the lost motions U of all masses implicated. In this way, the following problem is solved: given the initial velocities V of a system of masses to find the final velocities W after the impact. Given U, the final velocities are:

$$W = U + V$$
.

Introduction lxxxviii

By taking into account the discussion on hard bodies as above cited, this result could be uncorroborated (Cfr. Popper 1959), simply because hard bodies are ideal bodies, so far from the practical use of mechanics within machines theory. Carnot tried to solve this correlated problem by moving towards real cases. Instead, to consider the motion lost in the impact, he used the motion lost by imperceptible degrees and identifies mU (the lost motion) with a force F. The latter could be read with the modern meaning, as well. In the following, Carnot's reasoning on the subject:

Whether it acts on the Machine in pulling it by a cord or in pushing it by a rod, the tension of this cord or the pressure of this rod expresses equally the effort which it exerts on the Machine, and the quantity of motion that it itself loses by the reaction which it experiences. If therefore one calls this force F then this quantity F will be the same thing as that which is expressed by mU in our equations (I). (Carnot 1786, p. 63; author's capital letters and italic style).

We can then write the second fundamental equation "F" expressed by the following form:

$$\sum Fucosz = 0$$

In *Essai*, Carnot could have alluded to the principle of virtual work most by means of the application of his *geometric motion* (i.e., *virtual velocities*; Carnot 1786, § XXXIV, pp. 68–70). As above cited, Carnot's theory of *geometric motions* coincided with velocities and not with displacements. Thus, Carnot avoided a formulation of the *principle of virtual work* by infinitesimal displacements. The latter could have produced some scientific embarrassment with respect to his projects (Carnot 1813). Furthermore, by applying the principle of virtual velocity to mechanical machines, the (forces) weights that balance each other are reciprocal to their virtual velocities. Incidentally, the two conceptually different approaches/formulations can be mathematical equivalents. Particularly, Lazare Carnot in applying the principle of virtual work also discussed the role played by forces applied to the bodies. In his words:

lxxxviii Introduction

Fundamental Theorem

General Principle of equilibrium and of motion in Machines.

XXXIV. Whatever the state of rest or of motion found in any system of forces applied to a Machine, if we suddenly give it [the system] an arbitrary geometric motion, without changing these forces, [then] the sum of the products of each force and each [initial] speed [when taken from the point of application, and in the direction of the force] will be equal to zero.

That is to say, therefore, that in naming by, F, each of these forces (1), u the velocity at the first point of application, and z the angle between the directions of F and u, and if one imparts a geometric motion to the Machine, then it must be proved that for the whole system, $[\sum]Fucosz = 0$. But, this equation is precisely the equation (AA) $[\sum FucosZ = 0$ (Carnot 1786 p. 63] found (XXX) [Ivi, pp. 60–63] which is nothing else at root but the same [second] fundamental equation (F) $[\sum muUcosz = 0 \ (Ivi, p. 32]$ presented in a different form.

It is easy to perceive that this general principle is only, properly speaking, that *Descartes* to which one gives a sufficient generalisation, for it to include not only all the conditions between two forces, but as well all those of equilibrium and motion in a system composed of any number of forces. Also, the first consequence of this theorem will be the principle of *Descartes*, rendered complete by the conditions that we have seen were omitted by him (V).

(Carnot 1786, § XXXIV, pp. 68–70 and footnote "(I)". Author's italic and Capital letters).

By working on these subjects, Carnot aimed to obtain a mathematical expression of its invariant with respect to all possible kinds of working substances. Consequently, to find invariants with regard to the efficiency (and reversibility) of a mechanical machine was necessary. In fact, the *principle of virtual work* establishes the condition of *equilibrium* of the forces that act on the bodies to produce work. On that, as above cited, he added an important corollary:

Corollary II. General principle of equilibrium in weight Machines. XXXVI. When several weights applied to any Machine are mutually in equilibrium, and one imparts any geometric motion to this Machine, then the speed of the centre of gravity of the system, measured in a vertical sense, will be zero in the first instant. (Carnot 1786, p. 71. Author's italic; see also Carnot 1803a).

Coming back to his *first* equation "E" (Carnot 1786, p. 27) and *second* one "F" (Ivi, p. 32) and taking into account $\sum Fucosz = 0$, one can generalize to multi-body systems and write:

Introduction lxxxix

$$\sum mVUcos(<\vec{U},\vec{V}>)=0 \tag{E}$$

$$\sum muUcos(<\vec{U},\vec{u}>)=0 \tag{F}$$

m = mass of the body

W = velocity before interaction V = velocity after interaction

IJ = W-V

u = arbitrariness geometric motion

In short:

- The mass of the parts of a machine.
- Global magnitudes, abstracting from the mass of the mechanism.
- Kinematics first, then dynamics, and statics is a special case of dynamics.
- A theory of machines concerns a theory of the *communication* of motions.
- A machine is a connected system of (hard) bodies.
- The connections between the bodies constrain the *communication* of motion of the bodies.
- The theory of interaction collisions by means of insensible degrees (e.g., see Carnot 1803a, § 293, pp. 261–262) as the result of a sequence of infinitesimally small percussions.

Taking into account the paralleling between *Essai* (1786) and *Principes* (1803a) about the *principle of virtual work*, we can write down the *law of conservation* for *hard* (*plastic*) *bodies* in the following way:

$$\sum_{i} m_i \vec{U}_i = 0$$

 $m_i = \text{mass of i-th body [for isolate system]}$

 U_i = velocity lost (by that body) during the collision

 W_i = velocity before interaction

 V_i = velocity after interaction

 $\vec{U}_i = \vec{W}_i - \vec{V}_i$

xc Introduction

Therefore, using the hypotheses of *parfaitement élastiques* bodies (i.e., in *Principes*, Carnot 1803a, p. 105), we can write:

$$\sum_{i} m_i \vec{U}_i \vec{V}_i = 0$$

 V_i = velocity after interaction is the same for all of them Generalization for all bodies using n—elasticity index.

Lazare Carnot proposed a tentative of generalization from plastic bodies to all bodies both in *Essai* (e.g., Carnot 1786 pp. 15–22) then in *Principes* (Carnot 1803a, pp. 103–106, pp. 131–146). But in these two books, the generalizations are differently presented. Precisely, the first has an inverse procedure with respect to second one.

At this stage, the *law of conservation of kinetic energy* for soft bodies can be formulated as in the following:

$$\sum_{i} m_i \vec{W}_i^2 = \sum_{i} m_i V_i^2 = 0$$

By introducing *geometric motions* (Carnot 1786) and in regard with the above *law of conservation*, we have:

$$\sum_{i} m_{i} \vec{U}_{i} \cdot \vec{u}_{i} = 0$$

 $m_i = \text{mass of the i-th body}$

 U_i = velocity lost (by that body) during the collision

 u_i = velocity called "mouvement géométrique"

u is the velocity of any *geometric motion*. However, mathematically it is an indeterminate variable. Its specification produces an equation applicable to the physical system considered. For example, given

$$\vec{u}_i = const$$

Introduction xci

we have an extension of the *principle of virtual velocity* to the collision of several bodies and we can write:

$$\sum_{i} m_{i} \vec{U}_{i} \cdot \vec{u}_{i} = 0 \rightarrow \vec{u} \sum_{i} m_{i} \vec{U}_{i} = 0.$$

Instead, given

u-arbitrariness

then, the equation becomes

$$\sum_{i} m_{i} \vec{U}_{i} = 0 \; (where \; \vec{U}_{i} = \vec{W}_{i} - \vec{V}_{i})$$

Therefore we have the following situation:

- A theory of interacting bodies by means of collisions.
- A collision is a basic phenomenon. Continuously accelerated motion is a limiting case of a system driven by a series of pulses.
- Newton's second law is replaced by Carnot's second fundamental equation (F) for a system of *n* bodies.
- Due to the arbitrariness of u_i , it can be a constant, as well. Thus, geometric uniform motions applied to all bodies.
- In addition, by considering another an *ad hoc* geometric motion

$$\vec{u}_i = \vec{\omega} \times \vec{r}_i$$

(e.g., the rotation of the system with angular velocity around a fixed axis) and by using the properties of the triple product and the arbitrariness of " $\vec{\omega}$ ", we have the following Laws of conservation as invariants of motion:

$$\sum_{i} m_{i} \vec{W}_{i} = \sum_{i} m_{i} \vec{V}_{i}$$
 Law of conservation of the total quantity of motion.
$$\sum_{i} m_{i} \vec{r}_{i} \times \vec{W}_{i} = \sum_{i} m_{i} \vec{r}_{i} \times \vec{V}_{i}$$
 Law of conservation of the total angular momentum.

xcii Introduction

Lazare Carnot's argument on *geometric motion* (e.g., Carnot 1786, pp. 28–45) essentially expresses non-mechanical interactions as *invertible motions*. In other words: a motion assigned to a physical system of interacting bodies is geometric if the opposite motion is also possible. The result is a *possible motion*, but it is not always *invertible* (e.g., the motion of a sliding ring on a rotating rod). Therefore, one should add a hypothesis of *invertibility* in order to define a *geometric motion* (Pisano and Gillispie 2014, pp. 375–392). A *geometric motion* (via integral) produces an *invertible motion*. Particularly, given *vincula* independent of time, a *geometric displacement* is equivalent to a *virtual invertible displacement* (but not vice versa). On the contrary, only a *possible displacement* (invertible) produces (via derivative) a *geometric motion*. Therefore, a *geometric motion* is a kind of uniform motion when an equivalence of the state of rest and the state of uniform motion is considered.

1.5 Concluding Remarks

 Introduction xciii

LXIV). Therefore, since collisions cannot be understood through infinitesimal analysis 90 the fundamental equation cannot be no longer F = ma, but rather a generalisation of Carnot's second fundamental equation, that is the *principle of virtual work*, applied to bodies in motion and collision (Cfr. Carnot 1803a, p. x).

A new approach to mechanical problems—with respect to Newtonian one—was invented by *l'organisateur de la victoire*.

Raffaele Pisano Lille (France), November 2019

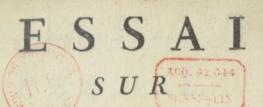
⁹⁰In fact, the time interval is zero and the forces are discontinuous and unlimited.

Contents

1	A Critical Translation	1
2	End Notes	219
3	Lazare Carnot's Manuscripts and Documents	229
References		241
In	ndex	267

Chapter 1 A Critical Translation

1



LES MACHINES

EN GÉNÉRAL.

Par M. CARNOT, Capitaine au Corps du du Génie, de l'Académie des Sciences, Arts & Belles-Lettres de Dijon, Correspondant du Musée de Paris.

NOUVELLE ÉDITION.

A DIJON,

DE L'IMPRIMERIE DE DEFAY.

Et se vend, A PARIS, Chez Nyon l'aîné, Libraire, rue du Jardinet,

M. DCC. LXXXVI.

Avec Approbation & Permission.

8° / 11886

ESSAY

ON

MACHINES

IN GENERAL.

by M. Carnot, Captain of the Corps of Royal Engineers, Academy of Sciences, Arts & Literature of Dijon, Correspondent of the Museum of Paris.

NEW EDITION.

AT DIJON, PRINTING PRESS OF DEFAY.

and sold, in PARIS, at Nyon the Elder, Bookshop, rue du Jardinet.

M. DCC. LXXXVI.

With Approval & Permission.

4

PRÉFACE.

Quotque la théorie dont il s'agit ici, foit applicable à toutes les questions qui concernent la communication des mouvements, on a donné à cet opuscule le titre d'Essai sur les Machines en général; premièrement, parce que ce sont principalement les Machines qu'on y a en vue, comme étant l'objet le plus important de la méchanique; & en second lieu, parce qu'il n'y est question d'aucune Machine particuliere, mais seulement des propriétés qui sont communes à toutes.

Cette théorie est fondée sur trois désinitions principales; la premiere regarde certains mouvements que j'appelle géometriques, parce qu'ils peuvent se déterminer par les seuls principes de la géometrie, & sont absolument indépendants des regles de la Dynamique; je n'ai pas cru qu'on pûtaisément s'en passer, sans laisser du louche dans l'énoncé des principales propositions,

PREFACE.

Although the theory which we are discussing here is applicable to all questions which concern the transfer of motion, this little work has been given the title *Essay on Machines in General*, first, because it is principally Machines we have seen as being the most important object of mechanics; & in the second place, because it is not a question of any particular kind of Machine, but only of the properties which are common to all.

This theory is founded on three principal definitions; the first regards certain motions which I call *geometric* because they can be determined by the principles of geometry alone, & are absolutely independent of the laws of Dynamics; I did not believe we could easily do without this [first definition] without leaving ambiguities in the enunciation of the principal propositions,

A ij

iv

6

comme je le fais voir en particulier pour le principe de Descartes.

Par la seconde de mes définitions, je tâche de fixer la signification des termes force sollicitante & force résistante: on ne peut, ce me semble, comparer clairement les causes avec les essets dans les Machines, sans une distinction bien caractérisée entre ces dissérentes forces; & c'est cette distinction sur laquelle il me paroît qu'on a toujours laissé quelque chose de vague & d'indéterminé.

Enfin, ma troisieme définition, est celle par laquelle je donne le nom de moment d'adivité d'une puissance, à une quantité dans laquelle il s'agit d'une puissance qui est réellement en activité ou en mouvement, & où l'on tient compte aussi de chacun des instants employés par cette force, c'est-à-dire, du temps pendant lequel elle agit. Quoi qu'il en soit, on ne peut disconvenir que cette quantité, sous quelque dénomination qu'on veuille la désigner, ne se rencontre continuellement dans l'analyse des Machines en mouvement.

as I show especially for the principle of *Descartes*.

In the second of my definitions, I try to fix the meanings of the terms *soliciting force & resisting force*. One cannot, it seems to me, clearly compare causes and effects [in machines] without a clear distinction between these different forces ['soliciting' and 'resisting'], & it is this distinction which it appears to me has always been left vague & indeterminate.

Finally, my third definition, is that in which I name the *moment of activity* of a force, a quantity that consists of a force¹ that is really acting or really in motion, & where one takes account also of each of the instants employed by the force - that is to say, the time during which the force acts. Whatever it may be and whatever denomination one assigns to it, one cannot disagree that this quantity is met with continually in the analysis of Machines in motion.

V

A l'aide de ces définitions, je parviens à des propositions qui sont très-simples; je les déduis toutes d'une même équation sondamentale, qui, renfermant une certaine quantité indéterminée à laquelle on peut attribuer différentes valeurs arbitraires, donnera successivement, dans chaque cas parteulier, toutes les équations déterminées dont on a besoin pour la solution du problême.

Cette équation qui est de la plus grande simplicité, s'étend généralement à tous les cas imaginables d'équilibre & de mouvement, soit que ce mouvement change brusquement, ou varie par degrés insensibles; elle s'applique même à tous les corps, soit durs, soit doués d'un degré quelconque d'élasticité; &, si je ne me trompe, elle suffit seule & indépendamment de tout autre principe méchanique, pour résoudre tous les cas particuliers qui peuvent se rencontrer.

Je tire facilement de cette équation un principe général d'équilibre & de mouvement dans les Machines proprement dites,

With the aid of these definitions, I arrive at propositions which are very simple; I deduce them all from one fundamental equation, which, containing a certain indeterminate quantity to which one can attribute different arbitrary values, will give successively, in each particular case, all the equations we need for the solution of the problem.

This equation, which is of the greatest simplicity, extends generally, to all imaginable cases of equilibrium & motion, whether that motion changes abruptly or varies by insensible degrees. It applies to all bodies, whether hard*2 or of whatever degree of elasticity, & if I am not mistaken, it is sufficient, & independent of all other principles of mechanics, to resolve all the particular cases which may be encountered.

From this equation I easily derive a general principle of equilibrium & motion of Machines proper,

A iij

^{*}From now on, by 'hard' understand 'plastic', that is, deformable but non-elastic.

vj

& de celui-ci dérivent naturellement d'autres principes plus ou moins généraux, dont plusieurs sont déjà connus & très-célebres, mais qui ont été jusqu'ici (du moins pour la plupart) ou peu exactement, ou vaguement expliqués, plutôt que rigoureusement démontrés.

Sans fortir des principes généraux, j'ai réuni dans un scholie, & le plus clairement qu'il m'a été possible, les remarques les plus utiles à la pratique, & qui m'ont paru mériter par leur importance un développement particulier; tout le monde répéte que dans les Machines en mouvement on perd toujours en temps ou en vîtesse ce qu'on gagne en force; mais après la lecture des meilleurs éléments de méchanique, qui semblent être la vraie place où doivent fe trouver la preuve & l'explication de ce principe, son étendue & même sa vraie fignification font - elles faciles à faisir? Sa généralité a-t-elle, pour la plupart des Lecteurs, cette évidence irréfiftible qui doit caractériser les vérités mathématiques ? S'ils éprouvoient cette conviction frappante, ne

& from it, derive naturally other more or less general principles, many of which are already known & very famous, but which have been until now (at least for the most part) less exact[ly]*, or vaguely explained, rather than rigorously demonstrated.

Without departing from general principles, I have, in a scholium, gathered together & expressed as clearly as I possibly could, all the remarks most useful in practice, & which, by their importance, have appeared to me to merit individual development. Everyone says that in Machines in motion, one loses in time or speed what one gains in force. But, after reading the best treatises on mechanics, which seems to be the proper place to find the proof & explanation of this principle, is the extent & even the true significance of it ['what one loses in time or speed one gains in force'] easy to grasp? Does its generality, for the majority of readers, have that irresistible nature which should characterise mathematical truths? If they [the readers] could only experience this striking conviction,

^{*}See Errata.

vij

verroit-on pas des Méchaniciens instruits de ces ouvrages, renoncer incessamment à leurs projets chimériques? Ne cesseroientils pas de croire ou de foupçonner du moins, malgré tout ce qu'on leur dit, qu'il y a dans les Machines quelque chose de magique? Les preuves qu'on leur donne du contraire ne s'étendent qu'aux Machines fimples; aussi ne croient-ils pas celles-ci capables d'un grand effet; mais on ne leur fait pas voir qu'il doit en être de même dans tous les cas imaginables; on ne parle que de celui où il y a seulement deux forces dans le système, & l'on se contente d'une analogie : voilà pourquoi ces Méchaniciens esperent toujours que leur fagacité leur fera découvrir quelque ressource inconnue, quelque Machine qui ne foit pas comprise dans les regles ordinaires; ils se croient d'autant plus surs de la rencontrer, qu'ils s'éloignent davantage de tout ce qui paroît avoir de la relation avec les Machines usitées, parce qu'ils s'imaginent que la théorie établie pour celles-ci, ne peut s'étendre à des constructions qui leur sem-

would we not witness an endless stream of practitioners, instructed in these works, abandoning their chimerical projects? Would they not cease to believe, or at least suspect, despite everything said to them, that there is a magical quality in the Machines? The proofs that one gives them to the contrary extend only to simple Machines. Also, do they not believe these [simple machines] are capable of a great effect [can do much work³]. But we do not make them see that it [these truths] must apply in every imaginable case; one speaks only of cases where there are just two forces in the system, & we are content with an analogy. This is the reason why these practitioners still have hope that their sagacity will enable them to discover some unknown resource, some Machine not already included in the established rules. They believe they are the more sure to encounter it [some unknown resource] the further they move away from everything connected with machines-inpractice - and this is because they imagine that the established theory may [perhaps] not apply in

A iv

viij

blent n'y avoir aucun rapport; c'est en vain qu'on leur dit que toute Machine se réduit au levier : cette afsertion est trop vague & trop tirée, pour qu'on s'y rende sans un examen prosond; ils ne peuvent se persuader que des Machines qui paroissent n'avoir rien de commun avec celles qu'on nomme simples, soient sujettes à la même loi, ni qu'on puisse prononcer sur l'inutilité d'un secret dont ils n'ont fait considence à personne : de là vient que les idées les plus bizarres, les plus éloignées de la simplicité si avantageuse aux Machines, sont celles qui leur sournissent le plus d'espoir.

Le moyen de déraciner cette erreur, est sans doute de l'attaquer dans sa source même, en montrant que non-seulement dans toutes les Machines connues, mais encore dans toutes les Machines possibles, c'est une loi inévitable, qu'on perd toujours en temps ou en vîtesse ce qu'on gagne en force; & d'expliquer clairement ce que signifie cette loi; mais il faut, pour cela, s'élever à la plus grande généralité possible, ne s'arrêter à aucune Machine particuliere,

these apparently unrelated constructions. It is in vain that one says to them that all Machines [ultimately] reduce to the lever; this assertion is too vague, too much of a stretch; that one could gain understanding without a deep examination. They [the artisans and mathematical practitioners⁴] cannot be persuaded that Machines that appear to have nothing in common with those denominated 'simple', are [nevertheless] subject to the same laws. Neither [do they understand] that we can dismiss as worthless [knowledge deriving from] a secret not shared. From this arises the outcome that only the most bizarre ideas, the ones furthest from the simplicity so advantageous to Machines, are the very ideas that give them the most hope.

The way of rooting out this error is without doubt to attack its common source by showing that not only in all known Machines, but again in all possible Machines, we have the inevitable law: what one loses in time or speed one gains in force. We must [then] explain clearly what this law means but, for this, it must be raised to the greatest possible level of generality, not stopping with a particular Machine,

16

ix

ne s'appuyer sur aucune analogie; il saut ensin une démonstration générale, déduite immédiatement & géométriquement des premiers axiomes de la méchanique : c'est ce qu'on a tâché de faire dans cet Essai; on a beaucoup insisté sur ce point sondamental, & je ne sais si l'on aura réussi à le mettre dans un assez grand jour; mais en attaquant l'erreur, on s'est essorcé d'y substituer la vérité; on a montré quel est le véritable but des Machines : s'il n'est pas raisonnable d'en attendre des prodiges hors de toute vraisemblance, on verra qu'il leur reste encore assez d'objets d'utilité, pour exercer la plus brillante imagination.

Les réflexions que je propose sur cette loi, me conduisent à dire un mot du mouvement perpétuel, & je fais voir non-seulement que toute Machine abandonnée à elle-même doit s'arrêter, mais j'assigne l'instant même où cela doit arriver.

On trouvera encore parmi ces réflexions une des plus intéressantes propriétés des Machines, qui, je crois, n'a pas encore été remarquée; c'est que pour leur faire pro-

and not relying on any analogy.

When it comes down to it, a general demonstration is necessary, and one that has been deduced geometrically & straight from the first principles of mechanics. This is what I have tried to do in this Essay. I have much insisted on this fundamental point, but I do not know if I have managed to bring it sufficiently to general public attention. However, in attacking an error one is forced to replace it by the truth. We have shown what is the true goal of Machines: while [we submit that] it is not rational to wait for marvels outside of all likelihood, we will [nevertheless] find that there are enough useful objectives to exercise the most brilliant minds?

The reflections that I propose on this law lead me to say a word about perpetual motion, & I show not only that every Machine left to itself must stop but I even assign the moment when this must happen.

Furthermore, one will find among these reflections one of the most interesting properties of Machines (one which I believe has not been remarked upon previously). It is that in order to produce

X

duire le plus grand effet possible, il faut nécessairement qu'il n'arrive aucune percussion, c'est-à-dire que le mouvement doit toujours changer par degrés insensibles; ce qui donne lieu, entre autres choses, à quelques remarques sur les Machines hydrauliques.

Enfin, je termine cet Ecrit par quelques réflexions sur les loix fondamentales de la communication des mouvements, qui, si elles ne sont pas du goût de tout le monde, sont du moins affez courtes pour ne fatiguer personne.

Mais, je le répéte, cet Essai n'a pour objet que les Machines en général; chacune d'elles à ses propriétés particulieres: il ne s'agit ici que de celles qui sont communes à toutes; ces propriétés, quoique assez nombreuses, sont en quelque sorte toutes comprises dans une même loi sort simple: c'est cette loi qu'on s'est proposé de rechercher, de démontrer & de développer, en envisageant toujours les Machines sous le point de vue le plus général & le plus direct.

the greatest possible 'effect' [quantity of work], it is necessary that there is no percussion, that is to say, the motion must always happen by insensible degrees. This leads naturally, amongst other things, to some remarks on hydraulic Machines.

Finally, I finish this work with some reflections on the fundamental laws of the communication of motion which, even if they are not to everyone's taste, are short enough not to tire people.

However, I repeat, the object of this Essay is [the theory of] Machines in general. Each Machine has its own particular properties but here we are concerned only with those properties that are common to all. These properties, although numerous, are in some way included within one very simple law. It is this law which it is proposed to research, demonstrate & develop, envisaging Machines always from the most general & most direct⁵ point of view.

ESSAI

EN GÉNÉRAL.

INTRODUCTION.

I. NOUS ne manquons pas d'excellents Traités sur les Machines; les propriétés particulieres à celles dont l'usage est fréquent, à celles sur-tout qu'on est convenu d'appeller simples, ont été recherchées & approfondies avec toute la sagacité possible; mais il me semble qu'on ne s'est pas encore beaucoup attaché, à développer celles de ces propriétés qui sont communes à toutes les Machines, & qui, par cette raison, ne conviennent pas plus aux cordes qu'au levier, à la vis, ou à toute autre Machine soit simple soit composée.

Ce n'est pas cependant que les Géometres aient négligé de s'élever aux principes généraux d'équilibre & de mouvement; mais ce n'est pour ainsi dire qu'en passant qu'ils ont parlé de leur application à la théorie des Machines pro-

ESSAY

ON MACHINES

IN GENERAL.

INTRODUCTION.

I. We are not lacking excellent Treatises on Machines. The properties of the most commonly-used Machines and, above all, those called simple⁶, have been researched & studied in depth and with all possible sagacity. However, it seems to me that still hardly any attempt has been made to develop those laws which are common to all Machines & which, for that reason, are just as suitable for strings as for the lever, the screw, or any other Machine, simple or composite.

It is not, however, that Geometers have neglected to reach up to such general principles of equilibrium & of motion. Rather - if I may say so in passing - they have not spoken of their application to the theory of Machines

(12)

prement dites, & peut-être aussi n'y a-t-il encore aucun de ces principes qui joigne à une démonstration rigoureuse une assez grande généralité, pour pouvoir sussire seul & indépendamment de tout autre, à la solution des disférentes questions qu'on peut proposer tant sur l'équilibre que sur le mouvement des Machines, c'est-à-dire, pour réduire toutes les questions à une assaire de calcul & de géométrie; ce qui est le véritable objet de la méchanique.

II. Parmi les principes plus ou moins généraux qui ont été jusqu'ici proposés, nous en rappellerons seulement deux très-célébres & sur lesquels nous aurons quelques observations à

faire.

Le premier est celui qui assigne pour loi générale de l'équilibre dans les Machines à poids, que le centre de gravité du système est alors au point le plus bas possible; mais quoique cet ancien principe soit fort simple & fort général, il ne paroît pas qu'on lui ait donné toute l'attention qu'il mérite: c'est sans doute, 1° parce qu'il est fujet à quelques exceptions, comme tous ceux où il s'agit de maximum & de minimum; 2°. parce qu'il n'a rapport qu'à une espece particuliere de force, qui est la pesanteur; 3°. enfin parce qu'il paroît difficile d'en donner une démonstration générale & rigoureuse. Mais, 10. nous allons faire voir qu'en changeant un peu l'énoncé de ce principe, on en peut faire une proposition très-exacte, très-géométrique & vraie fans exception; 2°. quoiqu'il n'ait rapport qu'à la pesanteur, cependant il est facile de l'appliquer à tous les cas imaginables; il n'y a pour cela qu'à substituer un poids à la place de chaeune des puissances qui sont d'un genre diffé-

proper; & perhaps also they have never adjoined their principles to a rigorous demonstration of enough generality to be sufficient on its own (independent of all others) to the solution of all the different questions one could ever pose, either on the equilibrium or the motion of Machines. That is, [none of these previous Geometers has managed] to reduce all questions to a matter of [pure] calculation & geometry. This is the true object of mechanics.

II. Among the principles, of greater or lesser generality, which have been proposed up until now, we recall only two very famous ones, & on these we will have some observations⁷ to make.

The first [example] is that which adduces a general law of equilibrium in weight-lifting Machines that the centre of gravity of the system is at the lowest possible point⁸. However, much as this ancient principle is very simple & very general, it appears to me that it has not been given all the attention it merits. This is without doubt 1st, because it is subject to some exceptions, such as all those cases that have to do with *maximum* & *minimum* [principles]; 2nd, because it relates only to a particular type of force, the weight⁹; and finally 3rd, because it appears difficult to give a general & rigorous demonstration¹⁰. But 1st, we are going to show that [just] in changing the statement of this principle a little bit, we are able to generate a proposition that will be very exact, very geometric & true without exception; 2nd, although the principle relates only to the weight, one can, however, easily apply it to all imaginable cases; to achieve this it is only necessary to substitute a weight in place of each force which is of a diff-

(13)

rent; ce qui est très-sacile, par le moyen d'un fil passant sur une poulie de renvoi; de sorte qu'alors il ne reste plus à ce principe que le désaut d'être indirect; 3°. ensin, quoiqu'on ne puisse le démontrer rigoureusement sans remonter jusqu'aux premiers principes de la méchanique, il est cependant facile d'en rendre assez bien raison, pour qu'il ne sût pas possible d'en douter, quand même on n'en auroit pas d'autres preuves, comme nous allons le faire voir en attendant la démonstration exacte que nous tâcherons d'en donner dans la suite de cet Essai.

Imaginons donc une Machine à laquelle il n'y ait d'autres forces appliquées que des poids, je la suppose d'ailleurs d'une forme arbitraire, mais qu'on ne lui ait imprimé aucun mouvement : cela posé, quelle que soit la disposition des corps du système, il est clair que s'il y a équilibre, la somme des résistances des points fixes ou obstacles quelconques, estimées dans le fens vertical contraire à la pefanteur, fera égale au poids total du système; mais s'il naît un mouvement, une partie de la pesanteur sera employée à le produire, & ce n'est qu'avec le furplus, que les points fixes pourront se trouver chargés; donc dans ce cas la fomme des réfiftances verticales des points fixes, fera moindre au premier instant que le poids total du systême : donc de ces deux forces combinées (la pesanteur du système & la charge verticale des points fixes) il en résultera une seule force égale à leur différence, & qui poussera le système de haut en bas comme s'il étoit libre : donc le centre de gravité descendra nécessairement avec une vîtesse égale à cette disférence divisée par la masse totale du système : donc si le centre de

rent type [i.e., from a force-weight]; this can very easily be done by means of a thread passing over a return pulley. The only remaining fault [with the principle] is that it applies indirectly - to weights rather than to forces of whatever type; 3rd, finally, although we cannot demonstrate it [our most general law] without reconstructing mechanics from first principles, it is nevertheless easy to justify the argument by an appeal to good sense. It is therefore impossible to doubt the veracity of this sound argument even without other proofs; as we are going to show later when we try to give an exact demonstration in this Essay.

Let us imagine then a Machine where the only forces applied are weights - in other regards the form of the Machine is arbitrary - but to which we have not imparted any motion. That given, whatever the disposition of bodies in the system, it is clear that if there is to be equilibrium, the sum of the resistances at fixed points or other constraints, estimated in a vertical sense against the weight¹¹, will be equal to the total weight of the system. But if a motion begins, then this will be at the expense of a certain portion of the weight, & the load at the fixed points will then be due to the residue. In this case, the sum of the vertical resistances at the fixed points will be less – in the first instant – than the total weight of the system. Then these two forces combined (the weight of the system and the vertical load at the fixed points) will result in a single force equal to their difference, & will push the system from high to low as if it were free [from constraints]. Therefore the centre of gravity of the system will necessarily descend at a speed¹² equal to this difference divided by the total mass of the system. So therefore, if the centre of

(14)

gravité du système ne descend pas, il y aura nécessairement équilibre. Donc en général,

Pour s'assurer que plusieurs poids appliqués à une Machine quelconque doivent se faire mutuellement équilibre, il suffit de prouver que si l'on abandonne cette Machine à elle-même, le centre de gravité du

système ne descendra pas.

III. La conséquence immédiate de ce principe vrai sans exception, est que si le centre de gravité du système est au point le plus bas possible, il y aura nécessairement équilibre; car, suivant cette proposition, il sussit, pour le prouver, de faire voir que le centre de gravité ne descendra pas; or, comment descendroit-il, puisque par hypothese il est au point le plus

bas possible?

IV. Pour donner encore une application de ce principe, je suppose qu'il s'agisse de trouver la loi générale d'équilibre entre deux poids A & B appliqués à une Machine quelconque; je dis donc qu'alors, en conséquence du principe précédent, il y aura équilibre entre ces deux poids A & B, fi, en supposant que l'un des deux vienne à l'emporter, & la Machine à prendre un petit mouvement, il arrivoit que l'un de ces corps montât pendant que l'autre defcendroit, & qu'en même temps ces poids fussent en raison réciproque de leurs vîtesses estimées dans le sens vertical : en effet, si l'on suppose qu'alors A descendit avec la vitesse verticale V, tandis que la vîtesse de B, aussi estimée dans le fens vertical, feroit u, on aura, par hypothese, A:B::u:V, on AV=Bu, donc AV - Bu

 $\frac{B}{A + B} = 0$. Cela posé, puisque les corps sont supposés se mouvoir, l'un de haut en bas,

gravity of the system does not descend, it will necessarily be in equilibrium. Therefore in general,

To assure that several weights [masses] applied to whatever Machine should be in mutual equilibrium¹³, it suffices to prove that if the Machine was left on its own, the centre of gravity of the system would not descend¹⁴.

III. The immediate consequence of this principle, true without exception, is that if the centre of gravity of the system is at the lowest possible point then it will necessarily be in equilibrium. [This is self-evident] because (using the very proposition we seek to prove) it is sufficient to demonstrate that the centre of gravity does not descend. However, how can it descend since by hypothesis it is already at the lowest point possible?

IV. To give another application of this principle, let us suppose that we want to find the general law of equilibrium between two weights, A & B, applied to an arbitrary Machine. I state that, as a consequence of the preceding principle, there will be equilibrium between the two weights, A & B, as follows: suppose that one of the two bodies imparts, & the Machine receives, a tiny motion. [If there is equilibrium] it will follow - for vertical displacements only - that when one body rises while the other descends, then their speeds will be in a reciprocal ratio to their masses.

In effect, if one supposes that A descends with a vertical speed V, while the speed of B, also estimated in a vertical direction [but ascending] is u, then one will have, by hypothesis, A:B::u:V, or AV = Bu, and therefore

$$\frac{AV - Bu}{A + B} = 0.$$

This said, since the bodies are supposed to move, one from high to low,

(15)

& l'autre de bas en haut, il est évident que le premier membre de cette équation est la vîtesse verticale du centre de gravité du système; donc ce centre de gravité ne descendra pas; donc, par la proposition précédente, il doit

y avoir équilibre.

V. Le second principe sur lequel nous nous sommes proposés de faire quelques observations, est la fameuse loi d'équilibre de Descartes; elle revient à ce que deux puissances en équilibre sont toujours, en raison réciproque de leur vîtesse, estimées dans le sens de ces forces, lorsqu'on suppose que l'une des deux vient à l'emporter infiniment peu sur l'autre, de maniere qu'il en

naisse un petit mouvement.

Mais quoique cette proposition soit très-belle & qu'on la regarde ordinairement comme le principe sondamental de l'équilibre dans les Machines, elle est cependant infiniment moins générale que celle qui a été citée en premier lieu, car elle s'applique uniquement au cas où il y a seulement deux puissances dans le système, & d'ailleurs elle se déduit très-facilement de ce qui vient d'être dit au sujet des deux poids A & B, puisqu'on ramene visiblement l'un de ces cas à l'autre, en substituant, par des poulies de renvoi, des poids à la place des forces dont on cherche le rapport.

De plus, il est à remarquer que ce principe n'exprime pas les conditions de l'équilibre entre deux puissances, aussi complétement que celui qui a été cité en premier lieu; car il ne donne que le rapport des quantités de force qui se font équilibre, au lieu que celui - ci donne aussi en quelque sorte le rapport de leurs directions; par exemple, dans le cas d'équilibre

& the other from low to high, then it is evident that the first term in this equation is the vertical speed of the centre of gravity of the system. Therefore the centre of gravity will not descend and thus, by the preceding proposition, it must be in equilibrium.

V. The second principle on which we propose to make a few observations is the famous equilibrium law of *Descartes*, it comes to this, two forces in equilibrium are always in the reciprocal ratio of their speeds, estimated in the direction of the forces, such that when one supposes that one of the two [forces] gains infinitesimally on the other, [it is] in a manner such as to give birth to a tiny motion. 15*

But although this proposition is very beautiful, & one regards this ordinarily as the fundamental principle of the equilibrium of Machines, it is, however, infinitely less general than that which has been stated in the first place [Carnot's general Principle], because it [Descartes's Principle] applies only in the case where there are just two forces in the system, &, in any case, this principle [of Descartes] can be deduced very easily from what is going to be said on the subject of two weights, A & B, since we manifestly reduce one of these cases [Descartes's principle] to the other [our most general principle], by assuming [the analogy of] return pulleys, and substituting weights for the forces whose ratio one seeks.

Moreover, it is to be remarked that this principle [of *Descartes*] does not express the condition of equilibrium between two forces as completely as that which we stated in the first place - and this [lack] is because it only determines the relative strengths of the forces, whereas our Principle gives in addition some idea of the ratio of their [magnitudes along different] directions. For example, in the case of equilibrium

^{*}Carnot's explanation is not easy to follow: the reader is encouraged to look up an explanation of the 'principle of reciprocal velocities'.

(16)

entre deux poids, le principe de Descartes apprend seulement que les poids doivent être en raison réciproque de leurs vîtesses verticales ; mais il n'indique pas, comme le premier, que l'un de ces corps doit nécessairement monter pendant que l'autre descendra; pour qu'un treuil, par exemple, à la roue & au cylindre duquel font suspendus des poids par des cordes, demeure en équilibre, il ne fusfit pas que le poids appliqué à la roue soit à celui du cylindre, comme le rayon du cylindre est au rayon de la roue; il faut encore que ces poids tendent à faire tourner la Machine en sens contraire l'un de l'autre, c'est-à-dire qu'ils soient placés de différents côtés, par rapport à l'axe, finon leurs efforts étant conspirants, mettront la Machine en mouvement : il est donc évident que ce qui rend le principe de Descartes incomplet, c'est qu'en déterminant le rapport des puissances, quant à leurs valeurs ou intenfités, il n'exprime pas que ces puissances doivent faire des efforts opposés, ni en quoi confiste cette opposition d'efforts : il est clair en effet que pour l'équilibre il faut que l'une des forces réfiste tandis que l'autre sollicite; or, c'est ce qui n'arrive pas dans le treuil qui vient d'être allégué pour exemple; mais qu'est-ce en général qui distingue les forces sollicitantes des forces résistantes? C'est, ce me semble, ce qui n'a pas encore été déterminé: on verra dans cet Essai que la différence caractéristique de ces forces consiste dans l'angle qu'elles forment avec les directions de leurs vîtesses, de sorte que les unes sont toujours avec leurs vîtesses des angles aigus, tandis que les autres font des angles obtus avec les leurs.

Enfin;

between two weights, the principle of Descartes says only that the weights must be in the reciprocal ratio of their vertical speeds but does not indicate - as our Principle does - that one of the bodies must necessarily rise while the other descends. Thus, [consider a] winch, for example. From the wheel & drum of the winch are suspended weights by ropes. In order for [the system] to remain in equilibrium, it is not enough that the weight applied to the wheel is to the weight applied to the drum as the radius of the drum is to the radius of the wheel. It is also necessary that the weights tend to turn the Machine in the opposite directions to each other - that is to say, they must be on different sides of the [rotational] axis. Otherwise, the effect [the work that each weight does] will be additive, and will [therefore] set the Machine in motion. Therefore it is evident that what makes the principle of *Descartes* incomplete is that, while it does determine the relative force-strengths, it does not determine that these forces must be in opposite directions, or give any indication of why the forces must oppose each other. [However,] in order for [the condition of] equilibrium, it must be that one of the forces resists while the other one solicits - but this is never going to happen in the example of the winch. What is it in general which distinguishes soliciting forces from reaction forces? This, it seems to me, has not been determined before. We will see, in this Essay, that the characteristic difference in these forces [the soliciting and reaction forces] consists in the angle which they make with the direction of their speeds. One kind always makes an acute angle with its speed, while the other [kind always] makes an obtuse angle with its speed.

Finally,

(17)

Enfin, un défaut qu'il me paroît qu'on peut encore reprocher au principe de Descartes, ainsi qu'à tous ceux où il s'agit du petit mouvement qui naîtroit dans le système, si l'équilibre venoit à être troublé, c'est qu'ils n'indiquent pas la maniere de déterminer ce petit mouvement; or. s'il faut pour cela avoir recours à quelque nouveau principe méchanique, le premier n'est donc pas suffisant; & si on peut le déterminer par pure géométrie, quelle en est la maniere? C'est ce que ne dit pas le principe : & qu'on ne dife pas que la proportion indiquée par le principe, a toujours lieu, quel que puisse être le mouvement, pourvu qu'il soit possible, c'est-à-dire compatible avec l'impénétrabilité des corps; car ce feroit une erreur; & nous ferons voir dans la fuite que ces mouvements sont assujettis à certaines conditions, en conséquence desquelles i'ai cru devoir leur donner le nom de mouvements géométriques.

On peut faire la même remarque sur tous les principes où l'on proposeroit de considérer la Machine dans deux états infiniment proches l'un de l'autre; car pour déterminer quels sont ces deux états, c'est-à-dire quel mouvement il faudroit que la Machine prit pour passer de l'un à l'autre, il faut ou employer de nouveaux principes méchaniques conjointement avec celui qu'on propose; ce qui rendroit celui ci insuffisant; ou la géométrie suffit; & dans ce cas c'est un désaut dans le principe, de ne pas faire connoître les conditions géométriques auxquelles

ce mouvement est assujetti.

VI. Les deux loix dont on vient de parler, font bornées l'une & l'autre au cas de l'équilibre; on passe aisément de ce cas à celui du mou-

B

Finally, [there is] a criticism which it seems to me one may level against Descartes's Principle, as well as against any other principle that considers systems wherein tiny motions are generated. [The defect is that] when the equilibrium has been disturbed [which in turn leads to the birth of tiny motions], [the Principle of Descartes] does not indicate [how] these tiny motions [their strengths and directions] shall be determined. If, however, [in order to determine these motions] one must have recourse to some new principle of mechanics, then this just goes to show that the starting principle (that of Descartes) was not sufficient; &, if one could determine [the tiny, nascent motions] by pure geometry, how is this to be done? This is [exactly] what Descartes's Principle doesn't tell us: &, it also does not tell us that its predictions should always apply, whatever are the characteristics [strengths and directions] of these tiny motions - so long as they are possible motions, that is to say, ones that are compatible with the impenetrability of bodies. Otherwise, this [omission] would be an error; & we shall show in what follows that these [tiny, nascent] motions are subject to certain conditions, in consequence of which I believed it was necessary to give them [a special name,] the name, geometric motions.

One may make the same remark about all principles [where it has been proposed to] consider a system in two states, infinitesimally close together. In order to determine what are these two states, that is to say, what motion the Machine must undergo in order to pass from the one [state] to the other, it is necessary either to use new principles of mechanics in addition to those which have already been proposed (which then renders these [latter principles] insufficient), or the geometry [alone] suffices [to determine the states] (& this amounts to a defect in the principle - not to know the geometric conditions that the motion is subject to).

VI. The two laws we have just been talking about are both limited to the case of equilibrium. One may pass easily from this case to the mo-

(18)

vement, par le principe de dynamique dû à Me d'Alembert; mais on en a aussi trouvé plusieurs autres qui s'appliquent immédiatement au cas du mouvement; tel est celui de la conservation des forces vives dans le choc des corps parfaitement élastiques, lequel est d'autant plus général, qu'il s'étend au cas même où le mouvement passe brusquement d'un état à l'autre; mais il paroît qu'on n'a gueres songé à l'usage qu'on en pouvoit faire dans la théorie des Machines proprement dites; il est cependant évident que cette loi doit avoir son analogue dans le choc des corps durs; & comme on prend ordinairement ceux-ci pour servir de terme de comparaison, ce principe transféré aux corps durs avec la modification qu'exige la différence de leur nature, ne peut manquer d'être plus utile que la conservation même dont il s'agit: nous ferons voir en effet qu'on en déduit avec la plus grande facilité plufieurs vérités capitales, & particuliérement la conservation des forces vives dans un système de corps durs dont le mouvement change par degrés infensibles; principe dont l'utilité dans la théorie des Machines est si connue : on verra en même temps par-là une relation intime entre ces deux conservations de forces vives; on en tire également le principe de Descartes, & même, en le généralifant, la loi d'équilibre dans les Machines à poids dont il a été question ci-dessus; ce principe enfin, après lui avoir donné l'extension dont il est susceptible, nous a paru renfermer toutes les loix de l'équilibre & du mouvement, & nous n'avons pas cru pouvoir en adopter un meilleur pour servir de base à notre théorie.

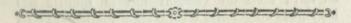
VII. Cet Essai sera divisé en deux parties;

vement by means of the dynamic principle of Mr. d'Alembert. However we have also found several other principles which apply directly to the case of motion. One such is the principle of the conservation of live force [kinetic energy] in the collision of two perfectly elastic bodies. This principle is all the more general in that it extends even to the case where the motion passes suddenly from one state to the other. However it appears to me that the huge scope of it [this principle] in the theory of Machines proper has barely been imagined. It is nevertheless evident that this law must have an analogue in the collision of hard bodies & as one ordinarily takes these hard-body collisions as test cases, then the [conservation of live force] principle, applied to hard bodies with appropriate modifications [(taking into account the special characteristics of hard-body collisions)], cannot fail to be more enlightening than the mere fact of conservation. We will show, in effect, that one can deduce several capital truths with the greatest of ease, & in particular, the conservation of living force in a system of hard bodies having its motion change by insensible degrees 16 - a principle whose utility in the theory of Machines is well known. We will see at the same time an intimate relation between the two live force conservation principles. We will, likewise, draw out conclusions from the principle of Descartes, & even from the law of equilibrium science of weight Machines, discussed above, after it has been generalised. This principle [the law of equilibrium in weight Machines], after being given the extensions to which it is susceptible, is, finally, the one that seems to us to contain all the laws of equilibrium & motion, & we do not believe we could adopt a better one to serve as the basis of our theory.

VII. This Essay will be divided into two parts;

(19)

dans la premiere, on traitera des principes généraux de l'équilibre & du mouvement dans les Machines; & dans la feconde, on recherchera les propriétés des Machines proprement dites, c'est-à-dire, de ce à quoi le nom de Machines a été plus spécialement affecté, sans cependant s'arrêter jamais à aucune Machine particuliere.



PREMIERE PARTIE.

Principes généraux.

VIII. Lorsqu'un corps agit sur un autre, c'est toujours immédiatement, ou par l'entremise de quelque corps intermédiaire; ce corps intermédiaire est en général ce qu'on appelle une Machine; le mouvement que perd à chaque instant chacun des corps appliqués à cette Machine, est en partie absorbé par la Machine même, & en partie reçu par les autres corps du système; mais comme il peut arriver que l'objet de la question soit uniquement de trouver l'action réciproque des corps appliqués aux corps intermédiaires, sans qu'on ait besoin d'en connoître l'effet sur le corps intermédiaire même, on a imaginé, pour simplifier la question, de faire abstraction de la masse même de ce corps, en lui conservant d'ailleurs toutes les autres propriétés de la matiere; dès-lors la science des Machines est devenue en quelque sorte une branche isolée de méchanique, dans laquelle il s'agit de confidérer l'action réciproque des différentes parties d'un système de corps, parmi

in the first, one will treat the general principles of equilibrium & motion in Machines; & in the second, one will research the properties of Machines proper - that is to say, those by which the name Machines has been especially assumed - but never pausing at one or another particular Machine.

FIRST PART.

General principles.

VIII. When one body acts on another body, it is always proximately, or by the interposition of some intermediate bodies. This intermediate body is, in the most general sense, what one denominates, Machine. The motion that is lost at each instant by each of the bodies applied to the Machine, is in part absorbed by the Machine itself, & in part received by other bodies in the system. But, as it may happen that the aim of the investigation is [solely] to find the reciprocal action between applied bodies via some intermediary body, but without needing to know the effect on the intermediate body itself, then, in order to simplify the investigation, we have abstracted [away] the mass of such intermediate bodies (while keeping all other properties of the system unaltered). Following from this [abstraction], the science of Machines¹⁷ has become in some sense an isolated branch of mechanics, in which only the reciprocal action of different parts within a system of bodies is to be considered. Amongst

B ij

(20)

lesquelles il s'en trouve qui, privés de l'inertie commune à toutes parties de la matiere telle qu'elle existe dans la nature, ont retenu le nom de Machines.

IX. Cette abstraction pouvoit simplifier dans certains cas particuliers, où les circonstances indiquoient ceux des corps dont il convenoit de négliger la masse, pour arriver plus facilement au but; mais on conçoit que la théorie des Machines en général est devenue réellement plus compliquée qu'auparavant; car alors cette théorie étoit renfermée dans celle du mouvement des corps tels que la nature nous les offre; mais à présent il faut considérer à la fois deux sortes de corps, les uns tels qu'ils existent réellement, les autres dépouillés en partie de leurs propriétés naturelles; or, il est clair que le premier de ces problèmes est un cas particulier de celui-ci; donc celui ci est plus compliqué que l'autre : aussi, quoiqu'on parvienne aisément par de pareilles hypotheses, à trouver les loix de l'équilibre & du mouvement dans chaque Machine particuliere, telle que le levier, le treuil, la vis, il en réfulte un affemblage de connoiffances dont la liaison s'apperçoit difficilement, & seulement par une espece d'analogie; ce qui doit nécessairement arriver tant qu'on aura recours à la figure particuliere de chaque Machine, pour démontrer une propriété qui lui est commune avec toutes les autres : ces propriétés communes étant celles que nous avons en vue dans cet Essai, il est clair que nous ne parviendrons à les trouver qu'en faisant abstraction des formes particulieres : commençons donc par simplifier l'état de la question, en cessant de confidérer dans un même système des corps de

these [system-of-bodies] one may find some which, when deprived of the inertia common to all material things such as exist in nature, have retained the name: Machines.

IX. This abstraction can simplify [the analysis] in certain particular cases - cases where the circumstances are such that it is proper to neglect the mass of these bodies in order to arrive more easily at the goal. However we realize that the theory of Machines in general has in actual practice become more complicated than in former times. Previously, this general theory was wrapped up with the consideration of moving bodies of whatever kind, but always such as are offered up in Nature. But now one must consider two kinds of body - those that actually exist in nature, and those in part stripped of their natural properties. However, it is clear that the first type of analysis [the one considering only actual bodies] is a particular case of this more general type of analysis. Thus this latter type of analysis is more complicated than the earlier one. In addition, although by similar hypotheses one can easily obtain laws of equilibrium & motion in any particular Machine - such as the lever, the winch, the screw - one ends up with an assembly of knowledge, in which the interconnections are not transparent, & [such links as are apparent are] only achievable by some kind of analogy. This [flaw] must necessarily ensue so long as we only consider configurations particular to this, that or the other specific Machine while [nevertheless] trying to demonstrate a property which is common to all. Since it is these common properties that we have in view in this Essay, it is clear that we will find them only by abstracting away the specificities of particular configurations. Let us start by simplifying the question, by ceasing to consider, in one system, bodies of

(21)

différente nature; rendons enfin aux Machines leur force d'inertie; il nous sera facile, après cela, d'en négliger la masse dans le résultat; nous serons maîtres d'y avoir égard ou non; & partant, la solution du problème sera aussi générale, en même temps quelle sera plus simple.

X. La science des Machines en général se

réduit donc à la question suivante.

Connoissant le mouvement virtuel d'un syssème quelconque de corps, (c'est à-dire celui que prendroit chacun de ces corps, s'il étoit libre) trouver le mouvement réel qui aura lieu l'instant suivant, à cause de l'action réciproque des corps, en les considérant tels qu'ils existent dans la nature, c'est-à-dire comme doués de l'inertie commune à toutes les parties de la matiere.

XI. Or, cette question renfermant évidemment toute la méchanique, il faut, pour procéder avec clarté, remonter jusqu'aux premieres loix que la nature observe dans la communication des mouvements : on peut les réduire

en général à deux, que voici.

Loix fondamentales de l'équilibre & du mouvement.

Premiere loi. La réaction est toujours égale &contraire à l'action.

Cette loi consiste en ce que tout corps qui change son état de repos ou de mouvement uniforme & rectiligne, ne le fait jamais que par l'influence ou action de quelqu'autre corps auquel il imprime en même temps une quantité de mouvement égale & directement opposée à celle qu'il en reçoit; c'est-à-dire que la vîtesse

B iii

different natures. Also, let us finally allow Machines their force of inertia - it will be [equivalent and just as] easy for us to [afterwards] disregard mass in the result[s]. We will [thereby] make ourselves the masters of whether we account for [inertia] or not; & in this way, the solution of the problem will at one and the same time gain in generality as it increases in simplicity.

X. The science of Machines in general therefore reduces to the following question ¹⁸:

Knowing the virtual motion of an arbitrary system of bodies (that is to say, a system which takes on each [individual] body as if that body was free), to determine the actual motion which will occur in the following instant, arising from the interactions between the bodies, and considering these bodies as they exist in nature, that is to say, as having the inertia common to all pieces of matter.

XI. Now, this question evidently encompasses the whole of mechanics, and so it must, in order to proceed with clarity, reach back to the [elemental] first laws that nature observes in transfers of motion. One may reduce these [elemental laws], in general, to two, as below.

Fundamental laws of equilibrium & motion

First law. *The reaction is always equal & opposite to the action*¹⁹. This law asserts that any body which changes its state of rest or uniform motion in a straight line, never does this except by the influence or action of some other body to which it imparts at the same time a quantity of motion equal & directly opposite to that which it receives. That is to say, the speed

(22)

qu'il prend réellement l'instant d'après, est la force résultante de celle que lui imprime cet autre corps, & de celle qu'il auroit eue sans cette derniere force Tout corps résiste donc à son changement d'état, & cette réfistance qu'on nomme force d'inertie, est toujours égale & directement opposée à la quantité de mouvement qu'il reçoit, c'est-à-dire à la quantité de mouvement qui, composée avec celle qu'il avoit immédiatement avant le changement, produit pour réfultante la quantité de mouvement qu'il doit réellement avoir immédiatement après; ce qui s'exprime encore en disant que, dans l'action réciproque des corps, la quantité de mouvement perdue par les uns, est toujours gagnée par les autres, en même temps & dans le même sens.

Seconde loi. Lorsque deux corps durs agissent l'un sur l'autre, par choc ou pression, c'est-à-dire en vertu de leur impénétrabilité, leur vîtesse relative, immédiatement après l'action réciproque, est tou-

jours nulle.

En effet, on observe constamment que, si deux corps durs viennent à se choquer, leurs vîtesses, immédiatement après le choc, estimées perpendiculairement à leur surface commune au point de contingence, sont égales; de même que s'ils se tiroient par des sils inextensibles, ou se poussoient par des verges incompressibles, leurs vîtesses estimées dans le sens de ce fil ou de cette verge, seroient nécessairement égales : d'où il suit que leur vîtesse relative, c'est-à-dire celle par laquelle ils s'approchent ou s'éloignent l'un de l'autre, est dans tous les cas nulle au premier instant.

De ces deux principes, il est aisé de tirer les loix du choc des corps durs, & de conclure

which it actually adopts in the following instant, is the resultant* of the speed imposed on it by the other body, & the speed it would have had without this imposition. All bodies, therefore, resist a change in their state, & this resistance, which we call the force of inertia²⁰, is always equal & directly opposite to the quantity of motion which the body receives - that is to say, the quantity of motion which, combined with that which it had immediately before the change, produces the resultant, actual quantity of motion which it must have immediately afterwards. This is expressed again in saying that, in the interaction between bodies, that quantity of motion lost by any one body, is always gained by the others, at the same time & in the same direction.

Second Law. When two hard²¹ bodies act on each other by collision or pressure - that is to say, they act on each other in virtue of their impenetrability - their relative speed, immediately after the interaction, is always null.

In effect, one constantly observes that, if two hard [plastic] bodies collide, then their speeds - immediately after the collision, and estimated perpendicularly to their common surface and the point of contact - are equal. The same [is true] if they are pulled by inextensible threads, or pushed by incompressible rods - their speeds calculated along the line of the thread or rod will necessarily be equal. From this it follows that their relative speed - that is to say, that by which each approaches or moves away from the other - is in all examples null in the first instant.

From these two principles, it is easy to derive the laws of collision of hard [plastic] bodies, & to deduce

^{*}See Errata.

(23)

par conséquent les deux autres principes secondaires dont l'usage est continuel en mécha-

nique : favoir.

1°. Que l'intensité du choc ou de l'action qui s'exerce entre deux corps qui se renconcrent, ne dépend point de leurs mouvements absolus, mais seulement de leur mouvement relatif. 2°. Que la force ou quantité de mouvement qu'ils exercent l'un sur l'autre, par le choc, est toujours dirigée perpendiculairement à leur surface commune au point

de contingence.

XII. Des deux loix fondamentales, la premiere convient généralement à tous les corps de la nature, ainsi que les deux loix secondaires qu'on vient de voir, & la seconde est seulement pour les corps durs; mais comme ceux qui ne le font pas ont des degrés d'élasticité différents, on ramene ordinairement les loix de leur mouvement à celles des corps durs qu'on prend pour terme de comparaison, c'est-à-dire qu'on regarde les corps élastiques, comme composés d'une infinité de corpuscules durs séparés par de petites verges compressibles, auxquelles on attribue toute la vertu élastique de ces corps; de forte qu'on ne confidere, à proprement parler, dans la nature, que des corps animés de différentes forces motrices : nous suivrons cette méthode, comme la plus simple; ainfi nous réduirons la question à la recherche des loix qu'observent les corps durs, & nous en ferons enfuite quelques applications aux cas où les corps sont doués de différents degrés d'élasticité.

XIII. Cet Essai sur les Machines n'étant point un Traité de méchanique, mon but n'est pus d'expliquer en détail ni de prouver les loix

as a consequence the two other subordinate principles whose usage is continual in mechanics. To state them,

1st That the intensity of the impact or action [that is exerted] between two bodies that meet, does not depend on their absolute motion but only on their relative motion.

2nd That the force, or quantity of motion which each exerts on the other, due to the impact, is always directed perpendicularly to their common surface at the point of contact.

XII. Of these two fundamental laws, the *first* is generally applied to all bodies in nature, as well as to the two subordinate laws which we are going to see, while the *second* is only for hard [plastic] bodies. However, since bodies that are not hard [plastic] have various degrees of elasticity, one usually falls back again to the hard-[plastic]-body laws and uses these as a bodies of comparison. In other words, one regards elastic bodies as being composed of an infinity of little hard bodies separated by little compressible rods, and attributes to this all the elastic properties of these bodies. Thus one does not think that, properly speaking, in nature, bodies are [ever] animated by different motive forces. We will follow this method, as being the simpler; thus we will reduce the question to researching the laws observed by hard bodies, & we will then make some applications to the case where the bodies have different degrees of elasticity.

XIII. The Essay on Machines not being a Treatise on Mechanics, my goal is not to explain in detail nor to prove the fundamental laws

B iv

(24)

fondamentales que je viens de rapporter; ce sont des vérités que tout le monde sent trèsbien, dont on convient généralement, & qui se manisestent avec la plus grande évidence dans tous les phénomenes de la nature; cela me suffit pour remplir mon objet, qui est uniquement de tirer de ces loix, une méthode simple & exaste pour trouver l'état de repos ou de mouvement qui en résulte dans un système quelconque de corps, c'est-à-dire de présenter ces mêmes loix sous une forme qui puisse en faciliter l'application à chaque cas particulier.

XIV. Imaginons donc un système quelconque de corps durs dont le mouvement virtuel donné soit changé par leur action réciproque en un autre qu'il s'agit de trouver; & pour embrasser la question dans toute sa généralité, supposons que le mouvement puisse changer subitement, ou varier par degrés insensibles; ensin, comme il peut se rencontrer des point sixes, ou obstacles quelconques, considérons-les tels qu'ils sont en esset, c'est-à-dire comme des corps ordinaires faisant eux-mêmes partie du système proposé, mais sixément arrêtés dans le lieu où ils sont placés.

X V. Pour parvenir à la folution de ce problême, observons d'abord que toutes les parties du système étant supposées parfaitement dures, c'est-à-dire incompressibles & inextensibles, on peut visiblement, quel qu'il soit, le regarder comme composé d'une infinité de corpuscules durs, séparés les uns des autres, ou par de petites verges incompressibles, ou par de petits fils inextensibles; car, lorsque deux corps se choquent, se poussent, ou tendent en général à se rapprocher l'un de l'autre sans pouvoir le faire,

of which I shall speak. These are truths which are well-known to all, are generally applicable, & that are manifest, with much evidence, in all natural phenomena. This is sufficient for my purpose [to be fulfilled], which is only to draw from these laws a simple & exact method of finding the state of rest or of motion that occurs in an arbitrary system of bodies, that is to say, to present these laws in a form that facilitates application to each [and any] particular case.

XIV. Let us imagine then an arbitrary system of hard [plastic] bodies whose given virtual motions will be changed by their interactions with another hard [plastic] body, this last body being the subject of our enquiry; & to grapple with the question in all its generality, let us suppose that the motion can change suddenly, or vary by insensible degrees. Finally, as we may encounter fixed points or some other constraints, let us treat these as they appear by their effects, that is to say, as if they were ordinary bodies, making up a part of the proposed system, but [constrained to remain] fixed where they are placed.

XV. In order to arrive at the solution of this problem, let us first observe that, in taking all parts of the system to be perfectly hard, that is to say, incompressible & inextensible, then we may evidently whatever is the actual case - regard it [(the system)] as composed of an infinity of hard particles separated from each other either by little incompressible rods or by little inextensible threads.

This [assumption may be made] because, when two bodies collide, push against each other, or have a general tendency to approach each other - but without being able to do so,

(25)

à cause de leur impénétrabilité, on peut concevoir entre les deux une petite verge incompressible, & supposer que le mouvement se transmet de l'un à l'autre suivant cette verge; & de même si deux corps tendent à se séparer, on peut concevoir qu'ils font retenus l'un à l'autre par un petit fil inextenfible, suivant lequel se propage le mouvement : cela posé, confidérons successivement l'action de chacun de ces petits corpufcules fur tous ceux qui lui font adjacents, c'est-à-dire examinons deux à deux tous ces petits corpufcules séparés l'un de l'autre par une petite verge incompressible ou par un petit fil inextenfible, & voyons ce qui en doit résulter dans le système général de tous ces corpufcules : pour cela nommons

m' & m" Les masses des corpuscules adjacents.
V' & V" Les vîtesses qu'ils doivent avoir l'inf-

tant fuivant.

L'action de m" fur m', c'est-à-dire la force ou quantité de mouvement que le premier de ces corpuscules imprime à l'autre.

q' & q'' Les angles formés par les directions de V' & F', & par celles de V'' & F''.

Cela posé, la vîtesse réelle de m' étant V', cette vîtesse estimée dans le sens de F' sera V' cos q', de même la vîtesse de m'' estimée dans le sens de F'' sera V'' cos q''; de même la vîtesse de m'' estimée dans le sens de F'' sera V'' cos q''. Donc, puisque par la seconde loi fondamentale, les corps doivent aller de compagnie, on aura V' cos q' + V'' cos q'' = o (A); donc par la première loi fondamentale on aura aussi F' V' cos q' + F'' V'' cos q'' = o (B); car si m' & m''

because of their impenetrability, then one may conceive that between the two bodies there is a small incompressible rod, & that the motion is transmitted along this rod. Similarly, if two bodies tend to separate, one may conceive that they are held to each other by a small inextensible thread along which the motion propagates. With this assumed, let us consider successively the action of each of these little particles on all those which are adjacent. That is to say, let us examine them, two by two, all these little particles separated from each other by a small incompressible rod or by a small inextensible string, & let us see what must happen in the general system, the totality of these particles. For this let us call

m'&m'' The masses of the adjacent particles.

V'&V'' The speeds which they must have the following instant.

F' The action of m'' on m', that is to say, the force or quantity of motion that the first of these particles imparts to the other.

F'' The reaction of m' on m''

q'&q'' The angles formed by the directions of V'&F', & by V''&F''.

This posed, the real speed of m' being V', then in the direction of F' the speed will be V'cosq'. Similarly, the speed of m'' calculated in the direction of F'' will be V''cosq''. Then, since by the second fundamental law²² the bodies must move together, one will have:

$$V'\cos q' + V''\cos q'' = 0 \tag{A}$$

and then by the first fundamental law one will have also:

$$F'V'cosq' + F''V''cosq'' = 0$$
(B)

because if m' & m''

772

W

D

U

(26)

font mobiles tous les deux, il est clair, par cette loi, qu'on a F' = F'', donc à cause de l'équation (A) on aura aussi l'équation (B); & si l'un des deux, m' par exemple, est fixe ou fait partie d'un obstacle, on aura V' cof q' = 0; donc à cause de l'équation (A) on aura aussi $V'' \operatorname{cof} q'' = 0$; donc l'équation (B) aura encore lieu; donc cette équation (B) est vraie pour tous les corpuscules du système pris deux à deux : imaginant donc une pareille équation pour tous ces corps pris en effet deux à deux. & ajoutant ensemble toutes ces équations, ou ce qui revient au même, intégrant l'équation (B), on aura pour tout le système; $\int F' V' \cos q' + \int F'' V'' \cos q'' = 0$: c'està-dire que la somme des produits des quantités de mouvement que s'impriment réciproquement les corpufcules féparés par chacun des petits fils inextenfibles, ou des petites verges incompressibles, de ces quantités, dis-je, multipliées chacune par la vîtesse du corpuscule auquel elle est imprimée, estimée dans le sens de cette force, est égale à zero.

Cela posé, abandonnant les dénominations

précédentes, nommons

La masse de chacun des corpuscules du système.

Sa vîtesse virtuelle, c'est - à - dire celle qu'il prendroit s'il étoit libre.

Sa vîtesse réelle. La vîtesse qu'il perd, de sorte que W

foit la résultante de V & de cette vîtesse. La force ou quantité de mouvement qu'imprime à m chacun des corpuscules adjacents, & par l'entremise desquels il reçoit évidemment tout le mouvement qui lui est transmis des dissérentes parties du

are both mobile, it is clear, by this law, that one has F' = F''. Then due to equation (A) one will also have equation (B); & if one of the two (m' for example) is fixed, or made part of an obstacle, then one will have V'cosq' = 0. Following from which, and using equation (A), one will also have V''cosq'' = 0; so equation (B) still applies. Therefore this equation (B) is valid for all particles of the system taken two by two²³. Imagining then a similar equation for all the bodies taken in effect two by two, & adding together all equations or, which comes to the same thing, integrating equation (B), one will have for the whole system*:

$$\sum F'V'cosq' + \sum F''V''cosq'' = 0.$$

That is to say, the sum of the products of the quantities of motion which are imparted reciprocally on the particles separated by each of the small inextensible threads, or the small incompressible rods, of these quantities, I say, multiplied each by the speed of the particle which is imparted, estimated [hereafter also calculated] in the direction of this force, is equal to zero.

That posed, abandoning the preceding nomenclature, let us call: The mass of each of the particles of the system m Its virtual speed²⁴, that is to say, that which it would take if it were free WIts real speed VThe speed which it loses, (so that W is the resultant of V & this speed) U The force or quantity of motion imparted to m by each adjacent particle, & by the intervention of which it evidently receives all the motion transmitted to it by different parts of the system \boldsymbol{F}

^{*}The elongated letter \int is used by Carnot both for sums and integrals. In cases where there is no differential and so a true summation occurs we use the \sum symbol.

fystême.

L'angle compris entre les directions de
W & V.

L'angle compris entre les directions de
W & U.

L'angle compris entre les directions de
V & U.

L'angle compris entre les directions de
Z

L'angle compris entre les directions de

On aura donc pour tout le système f F V cof q = 0, ou $\int VF cof q = 0$ (C); à présent il faut observer que la vitesse de m avant l'action réciproque, étant W, cette vîtesse estimée dans le sens de V sera W cos X; donc $V - W \operatorname{cof} X$, est la vîtesse gagnée par M dans le fens de V; donc m ($V - W \operatorname{cof} X$) est la fomme des forces F qui agissent sur m estimées chacune dans le fens de V; donc m V(V -W cof X) est la même somme multipliée par V; or, à chaque molécule répond une pareille fomme, & de plus la fomme totale de toutes ces fommes particulieres est visiblement pour tout le système [V F cof q; donc [m V (V- $W \operatorname{cof} X) = \int V F \operatorname{cof} q$; ajoutant à cette équation l'équation (C), il vient [m V (V- $W \operatorname{cof} X) = o(D)$: mais W étant la réfultante de V & U, il est clair qu'on aura W cos X $= V + U \operatorname{cof} Z$; fubstituant donc cette valeur de W cof X dans l'équation (D), elle se réduira à $\int m V U \operatorname{col} Z = o(E)$; premiere equation fondamentale.

X VI. Imaginons maintenant qu'au moment où le choc va se faire, le mouvement actuel du système soit tout à coup détruit, & qu'on lui fasse prendre à la place successivement deux autres mouvements arbitraires, mais égaux &

The angle included between the directions of $W \& V$	X
The angle included between the directions of $W \& U$	Y
The angle included between the directions of $V \& U$	Z
The angle included between the directions of $V \& F$	q

One will then have for the whole system

$$\sum FV\cos q = 0$$
 or $\sum VF\cos q = 0$ (C)

At present it must be observed that the speed of m before the reciprocal action being W, this speed calculated in the direction of V will be $W\cos X$. Thus $V-W\cos X$ is the speed gained by M in the direction of V. Then $m(V-W\cos X)$ is the sum of the forces, F, which act on m each calculated in the same direction as V. Therefore, $mV(V-W\cos X)$ is the same sum multiplied by V. However, a similar sum applies to each molecule, & moreover the total sum of all the individual sums is obviously for the whole system $V(V-W\cos X) = \sum V F \cos Q$. Adding to this equation the equation $V(V-W\cos X) = \sum V F \cos Q$. Adding to this equation the equation $V(V-W\cos X) = \sum V F \cos Q$.

$$\sum mV(V - W\cos X) = 0 \tag{D}$$

However, W being the resultant of V & U, it is clear that one will have $W\cos X = V + U\cos Z$. Substituting this value of $W\cos X$ in equation (D) it reduces to

$$\sum mVU\cos Z = 0 \tag{E}$$

This is the first fundamental equation 26 .

XVI. Let us imagine now that the moment when the collision takes place, the actual motion of the system will all of a sudden be destroyed, & that we will instead make it take on, one after the other, two arbitrary motions – but nevertheless equal &

(28)

directement opposés l'un à l'autre, c'est-à-dire qu'on le fasse partir successivement de sa pofition actuelle, avec deux mouvements tels qu'en vertu du second, chaque point du systême ait au premier instant une vîtesse égale & directement opposée à celle qu'il auroit eue en vertu du premier de ces mouvements : cela posé, il est clair, 1° que la figure du système étant donnée, cela peut se faire d'une infinité de manieres différentes, & par des opérations purement geométriques; c'est pourquoi j'appellerai ces mouvements mouvements géométriques : c'est-à-dire que si un système de corps part d'une position donnée, avec un mouvement arbitraire, mais tel qu'il ent été possible aussi de lui en faire prendre un autre tout à fait égal & directement opposé; chacun de ces mouvements sera nommé mouvement (1) géométrique; 20, je dis qu'en

⁽¹⁾ Pour distinguer par un exemple très-simple les mouvements que j'appelle géométriques, de ceux qui ne le font pas, imaginons deux globes qui se poussent l'un l'autre, mais du reste libres & dégagés de tout obffacle; imprimons à ces globes des vitesses égales & dirigées dans le même fens suivant la ligne des centres ; ce mouvement est géométrique, parce que les corps pourroient de même être mus en sens contraire avec la même vîtesse, comme il est évident : mais supposons maintenant qu'on imprime à ces corps des mouvements égaux & dirigés dans la ligne des centres, mais qui au lieu d'être, comme précédemment, dirigés dans le même sens, tendent au contraire à les éloigner l'un de l'autre; ces mouvements, quoique possibles, ne sont pas ce que j'entends par mouvements géométriques ; parce que si l'on vouloit faire prendre à chacun de ces mobiles une vîtesse égale & contraire à celle qu'il reçoit dans ce premier mouvement, on en seroit empêché par l'impénétrabilité des corps.

directly opposite to each other—. That is to say, we make it [the system] depart from its actual position by [taking on] two successive motions such that each point in the system ends up with a velocity equal & opposite to that which it would have had from the first of these motions alone. That posed, it is clear

1st that the configuration of the system being given, [nevertheless] it can occur in an infinite variety of different ways, & by purely geometric operations. This is why I will call these motions *geometric motions*²⁷. That is to say, *if a system of bodies moves from a given position, with an arbitrary motion, but such that it was possible also to make another absolutely equal & directly opposite motion, then each of these motions will be called a geometric motion (I); 2nd I say that,*

(1) To distinguish, by a very simple example, between the motions which I call *geometric* from those which are not, let us imagine two globes which push against each other, but in all other respects remain free & unconstrained. Let us impose on these globes equal speeds in the same direction, along the line joining the [globe-]centres. Such a motion is *geometric* because the bodies could evidently be moved in the opposite direction. Let us suppose that one again imposes on these bodies equal motions directed along the line of their centres but instead of, as before, approaching, the bodies, on the contrary, tend to move away from each other. These motions, although possible, are not what I intend by *geometric motions* because if one wants to give to each of these moveable bodies a speed equal & opposite to that which it receives in the first motion, one will be stopped by the impenetrability of the bodies.

(29)

vertu de ce mouvement géométrique, les corpuscules voisins qui peuvent être censés se

De même si deux corps sont attachés aux extrêmités d'un fil inextensible, & qu'on fasse prendre au système un mouvement arbitraire, mais tel que la distance des deux corps soit constamment égale à la longueur du fil, ce mouvement sera géométrique, parce que les corps peuvent prendre un pareil mouvement dans un sens tout contraire; mais si ces mobiles se rapprochent l'un de l'autre, le mouvement n'est point géométrique, parce qu'ils ne pourront prendre un mouvement égal & contraire, sans s'éloigner l'un de l'autre; ce qui est impossible, à cause de l'inextensibilité du fil.

En général il est évident que, quelle que soit la figure du système, & le nombre des corps, si on peut lui faire prendre un mouvement tel qu'il n'en résulte aucun changement dans la position respective des corps, ce mouvement sera géométrique; mais il ne s'ensuit pas de là qu'il n'y ait aucun autre moyen de satisfaire à cette condition, comme nous allons le montrer par

quelques exemples.

Imaginons un treuil à la roue & au cylindre duquel foient attachés des poids suspendus par des cordes; si l'on fait tourner la machine, de maniere que le poids attaché à la roue descende d'une hauteur égale à sa circonférence, tandis que celui du cylindre montera d'une hauteur égale à la sienne, ce mouvement sera géométrique, parce qu'il est également possible de faire descendre le poids attaché au cylindre d'une hauteur égale à sa circonférence, tandis que le poids attaché à la roue monteroit d'une hauteur égale à la sienne; mais si tandis qu'on fera descendre le poids attaché à la roue d'une hauteur égale à sa circonférence, on faisoit monter le poids attaché au cylindre d'une hauteur plus grande que sa circonférence, le mouvement ne seroit pas géométrique, parce que le mouvement égal & contraire seroit visiblement impossible.

Si plusieurs corps sont attachés aux extrêmités de différents fils réunis par les autres extrêmités à un même nœud, & qu'on fasse prendre au système un mouvement tel que chacun des corps reste constamment éloigné du nœud d'une même quantité égale à la lon-

in virtue of this geometric motion, then neighbouring particles that are imagined as being

Similarly, if two bodies are attached to the ends of an inextensible thread, & we give to the system an arbitrary motion – but a motion such that the distance of the two bodies is constantly equal to the length of the thread – then this motion will be *geometric* because the bodies could have made an equal motion in the opposite direction. However if these moveable bodies approach each other, the motion is not *geometric*, because they could not take on equal & opposite motions without separating from each other - which is not possible because of the inextensibility of the thread.

In general it is evident that, regardless of the configuration of the system, & the number of bodies, if one can make a motion such that there results no change in the respective positions of the bodies, then this motion is *geometric*. But [note that] it does not follow that there is no other means of satisfying this condition, as we are going to show by some examples.

Let us imagine a winch, and to the wheel & cylinder of this winch are attached weights suspended by ropes. If one makes the Machine turn in such a way that the weight attached to the wheel descends by a height equal to the wheel-circumference, while the weight [or in this case, also mass or body] at the cylinder rises by a height equal to the cylinder-circumference, then this motion will be *geometric* [and this is] because it is equally possible to make the weight [mass] attached to the drum descend by a height equal to the drum-circumference, while the mass attached to the wheel would rise by a height equal to the wheel-circumference. But if, while one makes the weight attached to the wheel descend by a height equal to the wheel-circumference, one makes the weight attached to the drum rise to a height *greater* than the drum-circumference, then the motion will not be geometric, because the equal & opposite motion is obviously impossible.

If several bodies are attached to the ends of different threads, with the other thread-ends all united together in one knot, & then one gives to the system a motion such that each of these bodies stays at a constant distance from the knot (& whereby each such fixed distance is equal to the length

(30)

pousser par une verge, ou se tirer par un fil, ne se rapprocheront ni ne s'éloigneront l'un de l'autre au premier instant, c'est-à-dire qu'au premier instant de ce mouvement géométrique, la vîtesse relative de ces corpuscules voisins sera nulle; en esset, il est clair, premiérement, que si m est séparé d'un corpuscule voisin par une verge incompressible, il ne pourra s'en rappro-

gueur du fil auquel il est attaché, ce mouvement sera géométrique, quand même les différents corps se rapprocheroient les uns des autres : mais si quelqu'uns d'eux se rapprochoient du nœud, le mouvement ne seroit plus géométrique, parce que les sils étant supposés inextensibles, le mouvement égal & contraire seroit visiblement impossible.

Si deux corps sont attachés aux extrêmités d'un fil dans lequel soit enfilé un grain mobile, il suffira, pour que le mouvement soit géométrique, que la somme des distances du grain mobile à chacun des deux autres corps, soit constamment égale à la longueur du fil; de sorte que si ces deux corps sont fixes, le grain mo-

bile ne fortira pas d'une courbe elliptique.

Si un corps se meut sur une surface courbe, par exemple dans la concavité d'une calotte sphérique, le mouvement sera géométrique, tant que le corps se mouvra tangentiellement à la surface; mais s'il s'en écarte, le mouvement cessera d'être géométrique, parce que le mouvement égal & contraire est visiblement impossible.

D'après tout cela, il est évident, que quoiqu'en faisant prendre à un fystème un mouvement géométrique, les disserents corps de ce système puissent se rapprocher les uns des autres, cependant on peut dire que les corpuscules voisins, considérés deux à deux, ne tendent au premier instant ni à se rapprocher ni à s'éloigner, comme je le prouve au long dans le texte: les corps n'exercent donc aucune action les uns sur les autres, en vertu d'un pareil mouvement; ces mouvements sont donc absolument indépendants des regles de la dynamique; & c'est pour cette raison que je les ai appellés géométriques.

pushed by a rod, or pulled by a string, will neither approach or recede from each other in the first instant. In other words, in the first instant of the geometric motion, the relative speed of these particles will be zero²⁸. In effect it is clear, firstly, that if m is separated from a neighbouring particle by an incompressible rod, it cannot approach

of the corresponding thread, then this motion will be *geometric* even though the different bodies approach each other. But if some of them approach the knot, the motion will not be *geometric* because the threads, being supposed inextensible, the equal & opposite motion would obviously be impossible.

If two bodies are attached to the ends of a string on which is threaded a movable granule, it will suffice, for the motion to be *geometric*, that the sum of the distances of the mobile granule from the two bodies is constantly equal to the length of the string. Thus if the two bodies are fixed, the mobile granule will be constrained to stay on an elliptic curve.

If a body moves on a curved surface, for example in the concavity of a spherical cap, the motion will be *geometric* for as long as the body moves tangentially to the surface. But if it moves away [from the surface], the motion will cease to be *geometric*, because the equal & opposite motion is obviously impossible.

From all this, it is evident that, what with giving a system a *geometric* motion, the different bodies of the system may [nevertheless] approach each other. However one notes that neighbouring particles, considered two by two, tend in the first instant neither to approach or recede, as I prove through the course of the text. The bodies, therefore, do not exert any action on each other, in virtue of such a motion. These motions are then absolutely independent of the rules of dynamics, & it is for this reason that I have called them *geometric*.

(31)

cher; & que s'il en est séparé par un fil inextenfible, il ne pourra s'en éloigner : secondement, je dis que s'il en est séparé par une verge incompressible, il ne pourra non-plus s'en éloigner; car s'il s'en éloignoit, il est clair qu'en vertu du mouvement égal & directement opposé, lequel est aussi possible, par hypothese, il s'en rapprocheroit; ce qui ne se peut à cause de l'incompressibilité de la verge; par la même raison enfin, il est visible que si c'est un fil qui sépare m du corpuscule voisin, il ne pourra s'en rapprocher, puisqu'alors il seroit possible qu'il s'en éloignat par un mouvement égal & directement opposé; or, cela ne se peut, à cause de l'inextenfibilité du fil; donc, quel que foit le mouvement géométrique imprimé au systême, la vitesse relative de tous ces corpuscules voisins qui agissent les uns sur les autres, pris deux à deux, sera nulle au premier instant : cela posé, nommons u la vîtesse absolue qu'aura m dans le premier instant, en vertu de ce mouvement géométrique, & 7 l'angle compris entre les directions de u & U; il est clair que les corpuscules m ne tendront point à se rapprocher ni à s'éloigner les uns des autres, en vertu des vitesses u, si on les suppose animés en même temps de ces vitesses u & des vitesses U; ils ne tendront pas à se rapprocher ou à s'éloigner davantage que s'ils étoient animés des feules vîtesses U; donc l'action réciproque exercée entre les différentes parties du système sera la même. foit que chaque molécule foit animée de la feule vîtesse U, ou des deux vîtesses u & U; mais si chaque molécule étoit animée de la seule vîtesse U, il y auroit visiblement équilibre; donc si elle est animée à la fois des deux vitesses

& if it is separated by an inextensible thread, it cannot move away. Secondly, I say that if it is separated by an incompressible rod, it cannot move away either because, if it moved away, it is clear that in virtue of an equal & opposite motion, which by hypothesis is also possible, it could get closer - but this cannot happen due to the incompressibility of the rod. Finally, for the same reason, it is obvious that if it is a thread which separates m from its neighbouring particle, it cannot get closer, since then it would be possible to move away by an equal & opposite motion - but this cannot happen because of the inextensibility of the thread. [Thus,] regardless of the geometric motion imparted to the system, the relative speeds of all the neighbouring particles which act on each other, taken two-by-two, will be zero in the first instant. That posed²⁹, let us name u as the absolute speed which m will have in the first instant in virtue of the geometric motion & z the angle between the directions of u & U. It is clear that the particles m will not tend to move closer together or further apart in virtue of the speeds u, [then]* if one supposes them animated at the same time with the speeds u &the speeds U. They will not tend to get closer or move away more than if they were animated with the same speeds U. Thus the reciprocal action exercised between the different parts of the system will be the same, either each molecule will be animated by the same speed U, or the two speeds u & U. However, if each molecule was animated only by the speed U, there is obviously equilibrium. Therefore if it is animated at one and the same time by two speeds,

^{*}See Errata.

(32)

U & u, ou d'une vîtesse unique qui en soit la résultante, U sera encore la vîtesse perdue par m; & partant, u sera la vîtesse réelle, après l'action réciproque: donc, par la même raison qu'on a eu la premiere équation fondamentale (E), on aura aussi $\int m u U \cos z = o(F)$; se-

conde équation fondamentale.

Il est bien facile à présent de résoudre le problème que nous nous sommes proposés, car l'équation précédente devant avoir lieu, quelle que soit la valeur de u, & sa direction, pourvu que le mouvement auquel elle se rapporte soit géométrique; il est clair qu'en attribuant successivement à cette indéterminée dissérentes valeurs & directions arbitraires, on obtiendra toutes les équations nécessaires entre les quantités inconnues, d'où dépend la solution du problème, & des quantités ou données ou prises à volonté.

XVII. Pour achever de mettre cette folution dans tout son jour, il suffira d'en donner

un exemple:

Supposons donc que tout le système se réduise à un assemblage de corps liés entre eux par des verges inflexibles, de sorte que toutes les parties du système soient forcées de conferver toujours leurs mêmes positions respectives; mais qu'il n'y ait aucun point fixe ou obstacle quelconque; l'équation (F) va nous donner la solution de ce problème, en attribuant successivement à u dissérentes valeurs & dissérentes directions.

1°. Comme les vîtesses u ne sont assujetties à aucune condition, sinon que le mouvement du système, en vertu duquel les corpuscules m ont ces vîtesses, soit géométrique, il est évident

U & u, or by one single speed which would be the resultant, then U will again be the speed lost by m, &, from this, u will be the actual speed after reciprocal action. Therefore, for the same reason that one arrived at the first fundamental equation (E), one will also arrive at

$$\sum muU\cos z = 0 \tag{F};$$

the second fundamental equation.

It is very easy now to solve the problem that we proposed because the preceding equation must hold whatever the magnitude & direction of u, provided that the motion to which it relates is geometric. It is clear that in successively attributing to this variable [u] different magnitudes & arbitrary directions, one will obtain all the necessary equations between the unknown quantities - on which the solution depends – & the quantities, whether given or chosen at will.

XVII. In order to put this solution in plain view, for all to see, it will suffice to give an example.

Let us suppose then that the whole system reduces to a group of bodies joined by inflexible rods, in such a way that all parts of the system are forced to retain their respective positions – but with no fixed point or constraint of any kind –. The equation (F) will give us the solution to this problem, in successively assigning to u different values & different directions.

1st. As the velocities, u, are not subject to any conditions – except that the motion of the system, in virtue of which the particles m have their speeds, should be geometric –, it is evident

(33)

dent que nous pouvons d'abord les supposer toutes égales & paralleles à une même ligne donnée; alors u étant constante, ou la même pour tous les points du système, l'équation (F) se réduira à $\int mU \cos z = 0$; ce qui nous apprend, que la somme des forces perdues par l'action réciproque des corps, dans le sens arbitraire de u, est nulle, & que par conséquent celle qui reste est la même que si chaque corps

eût été libre : principe très-connu.

2°. Imaginons maintenant qu'on fasse tourner tout le système au tour d'un axe donné, de sorte que chacun des points décrira une circonférence autour de cet axe, & dans un plan qui lui sera perpendiculaire; ce mouvement est visiblement géométrique; donc l'équation (F) a lieu; mais alors, en nommant R la distance de m à l'axe, il est clair qu'on a u = AR, A étant la même pour tous les points; donc l'équation (F) se réduit à $\int m R U \cos z = 0$; c'est-à-dire que la somme des moments des forces perdues par l'action réciproque, relativement à un axe quelconque, est nulle: autre principe très-

3°. Nous pourrions encore attribuer à u d'autres valeurs; mais cela seroit inutile & meneroit à des équations déjà rensermées dans les précédentes; car on sait que celles-ci suffisent pour résoudre la question, ou du moins pour la réduire à une affaire de pure géométrie.

Remarque I.

XVIII. Le but qu'on se propose, en imprimant un mouvement géométrique, est de changer l'état du système, sans cependaut altérer

that we can first suppose them [the velocities] all equal & parallel to the same given line. Then u being constant, or the same for all points of the system, the equation (F) reduces to $\sum mU\cos z = 0$. This teaches us that the sum of the forces lost because of the interaction of bodies, taken in the arbitrary direction of u, is zero, & that in consequence what remains is the same as if each body had been free – a well-known principle³⁰.

2nd. Let us imagine now that one makes the system turn around a given axis, so that each of the points describes a circumference around this axis, & in the plane perpendicular to it; this motion is obviously geometric; then the equation (F) holds. But then, in naming R the distance of m to the axis, it is clear that we have u = AR, A [angular speed] being the same for all points. Then the equation (F) reduces to $\sum mRUcosz = 0$; that is to say that the sum of the moments of forces lost by mutual interactions, relative to any axis, is null: another well-known principle³¹.

3rd. We can again assign other values³² to u, but that would serve no purpose & would lead to equations already contained within the preceding [equations]. [And anyhow] one knows that these [previous equations] [already] suffice to resolve the question, or at least to reduce it to a matter of pure geometry.

Remark I.

XVIII. The goal that we have proposed, in imparting a geometric motion, is to change the state of the system, without however altering

C

(34)

l'action réciproque des corps qui le composent? afin de se procurer par-là des rapports entre ces forces exercées & inconnues, & les vitesses arbitraires que prennent les corps, en vertu de ces différents mouvements géométriques; mais il faut remarquer qu'il y a un cas où les mouvements géométriques ne sont pas les seuls qui puissent remplir le même objet, & où quelques autres mouvements peuvent s'employer de même, pour tirer de l'équation générale (F) des équations déterminées; ce cas arrive lorsque ces autres mouvements, sans être absolument géométriques, le deviennent cependant, en supprimant seulement quelques-uns des petits fils ou verges que nous avons imaginés interpofés entre les particules adjacentes du système, lors dis-je que ces fils ou verges qui étoient supposés transmettre le mouvement d'un corpuscule à l'autre n'en transmettent en effet aucun; c'est-à-dire lorsque la tension de quelques-uns de ces fils, ou la pression de quelques-unes de ces verges, est égale à zero : car alors, en supprimant ces fils & verges, dont les tensions ou pressions font nulles, on ne change évidemment rien du tout à l'action réciproque des corps, & cependant il est possible qu'on rende par-là le système susceptible de quelques mouvements géométriques, qui ne pourroient avoir lieu sans cela : rien n'empêche donc alors qu'on ne regarde comme anéantis ces fils & verges, puisqu'ils n'influent en rien sur l'état du système, & qu'on n'emploie par conséquent comme géométriques, les mouvements qui, sans l'être effectivement, le deviennent cependant par cette suppression.

De plus, lorsque deux corps sont contigus l'un à l'autre, c'est la même chose évidemment de supprimer la petite verge que nous avons

the mutual interaction of the bodies which compose it, and then to derive by this means the relations between the applied & unknown forces, & the arbitrary speeds that the bodies must adopt in virtue of the different geometric motions. However, it must be said that there is a case where the geometric motions are not the only ones which can fulfill this objective, & where some other motions can equally well be used in order to draw out from the general equation (F) the determined equations. This case arises when these other motions, without being absolutely geometric, nevertheless do become so, in removing just a few of the little threads or rods which we have imagined interposed between the adjacent particles of the system. From which I declare that the threads or rods which we assumed had the effect of transmitting the motion from one particle to another in fact have no such effect, [because, that is to say,] when the tension of some of these threads, or the pressure of some of these rods, is equal to zero, then, in removing these threads & rods - the ones having zero tension or pressure one evidently changes nothing at all in the interaction between these bodies. However it is [nevertheless] possible that, by this means [the neglect of some threads & rods], one makes the system susceptible to certain geometric motions which could not have taken place otherwise. Nothing prevents us therefore from regarding these threads & rods as having been annihilated, since they have no influence on the state of the system. Consequently, we can treat as geometric those motions which, without actually being so, nevertheless become geometric as a result of this suppression [of the rods & threads].

Furthermore, when two bodies are contiguous to each other it is evidently the same thing as removing the little rod that we have

(35)

imaginée interpofée entre deux, pour les empêcher de se rapprocher, ou de supposer que ces corps soient perméables l'un à l'autre, c'està-dire qu'ils puissent se pénétrer aussi facilement que l'espace vuide est pénétré par tous les corps; d'où il suit évidemment qu'en général, dans un système quelconque de corps agissant les uns fur les autres, soit immédiatement, soit par des fils & verges, c'est-à-dire par l'entremise d'une Machine quelconque, s'il fe trouve quelque fil, verge ou autre partie quelconque de la Machine quin'exerce aucune action fur les corps qui lui sont appliqués, c'est-à-dire qui puisse être anéantie, fans qu'il en résulte aucun changement dans l'action réciproque de ces corps, on pourra traiter comme géométriques tous les mouvements qui, sans l'être effectivement, le deviendroient par cette suppression, de même que ceux qui le deviendroient aussi, en regardant comme librement perméables l'un à l'autre ceux des corps entre lesquels il ne s'exerce aucune pression, quoiqu'ils soient adjacents. Voici maintenant quelle est l'utilité de cette observation.

Si lorsqu'on entreprend la solution de quelque problème, on sait d'avance que telle partie de la Machine n'exerce aucune action sur les autres parties du système, on pourra supposer que cette partie de Machine est totalement anéantie, & chercher le mouvement du système d'après cette hypothese, c'est-à-dire en traitant comme géométriques tous les mouvements qui le deviendroient réellement par cette supposition; & de même, si l'une des conditions données du problème, est que tels corps adjacents n'exercent l'un sur l'autre aucune pression, on exprimera cette condition, en regardant ces

Cij

imagined interposed between the two – to prevent them getting closer – or to suppose that these bodies are permeable to each other, that is to say, they can penetrate each other as easily as empty space is penetrated by all bodies. From this it evidently follows that in general, in whatever system of bodies that act on each other, either immediately or by threads & rods – that is to say via some sort of Machine – then if it is found that some thread, rod, or any other part of the Machine exerts no action on the bodies which are applied to it – that is to say [these threads] can be disregarded – [and all this] without resulting in any change in the mutual interaction of the bodies, then one can treat as geometric all those motions which, without actually being geometric, would become so by this annihilation. Similarly, for those [motions] which would also become so, in taking as freely permeable those bodies exerting no pressure on each other despite the fact that they are adjacent. Here now, is the usefulness of this observation.

If, when one undertakes the solution ³³ of some problem, one knows in advance that a certain part of the Machine exerts no action whatsoever on other parts of the system, then one can imagine this certain part of the Machine to be totally annihilated, & search for the motion of the system that follows on from this hypothesis, (that is to say, in treating as geometric all the motions which really become it by this supposition). Similarly, if one of the given conditions of the problem is that such adjacent bodies exert no pressure on each other, one will express this condition by regarding these

C ij

(36)

deux corps comme perméables l'un à l'autre; c'est-à-dire en traitant comme géométriques les mouvements qui le deviendroient en esset par

cette supposition.

Mais s'il arrivoit qu'on ignorât si cette pression est réelle ou nulle, il faudroit chercher le mouvement du système, en supposant d'abord à volonté l'un ou l'autre; on supposera donc, par exemple, que cette pression est réelle; alors si en cherchant, d'après cette hypothese, la valeur de cette pression, on la trouve réelle & positive, on conclura que l'hypothese est légitime, & le résultat exact; sinon on seroit assuré que la pression en question est nulle, & qu'on peut par conséquent traiter comme géométriques les mouvements qui le deviendroient en effet, si les deux corps dont il s'agit étoient librement perméables l'un à l'autre.

De même, s'il y avoit dans le système une Machine, un fil par exemple, & qu'on ignorât si la tension de ce fil est nulle ou réelle, on pourroit saire le calcul, en supposant d'abord qu'il y a réellement tension; alors, si l'on trouve pour la valeur de cette tension une quantité réelle & positive, on conclura que la supposition étoit légitime, & que le résultat est exact; sinon il saudra recommencer le calcul, en partant de la supposition contraire, c'est - à - dire en supposant que la tension du fil soit égale à zero; ce qui se fera, en supposant le fil anéanti, c'est-à-dire en traitant comme géométriques les mouvements qui le seroient essectivement, si le

fil en question n'existoit pas.

Il suit delà que pour tirer dans chaque cas particulier de l'équation générale (F), toutes les équations déterminées qu'elle peut donner, il

two bodies as permeable to each other; that is to say, in treating the motions as if they were geometric, they in effect become geometric by this very supposition³⁴.

But if it happens that we do not know whether this pressure is real or null, it is necessary to search for the [appropriate] motion of the system by freely imagining one or the other case. We will suppose then, for example, that this pressure is real; then if by assuming this hypothesis, and in searching the value of this pressure, one finds that it is real & positive, one will conclude that the hypothesis is correct & the result exact. If not, one will be assured that the pressure in question is null, & that one may in consequence treat as geometric the motions which would in effect become geometric, so long as the two bodies were freely permeable, each by the other.

Similarly, if there is in the system a Machine – a thread for example – & one does not know if the tension of this thread is null or real, then one can carry out the calculation by supposing, first, that there is actual tension. Then, if one finds from this that the value of the tension is a real & positive quantity, one will conclude that the supposition was correct, & the result exact. Otherwise, one must restart the calculation with the contrary supposition, that is to say, supposing that the tension of the thread is equal to zero. This would be the case if we supposed the thread to be annihilated. In other words, we treat the motions as geometric, which they would be if the thread in question did not exist.

It follows from this that to draw out in each particular case of [applying] the general equation (F), all the determined equations that it can give, one

(37)

faut . 10. faire prendre au système tous les mouvements géométriques dont il est susceptible; 2º. traiter encore comme tels tous ceux qui le deviendroient, en supprimant quelque Machine ou partie de Machine, dont l'action sur le reste du système soit nulle, ou en regardant comme perméables l'un à l'autre les corps entre lesquels, quoiqu'adjacents, il ne s'exerce aucune pression; 3°. enfin, si l'on est en doute que tel fil, verge ou partie quelconque de Machine ait ou non une action réelle sur les autres parties du système, ou qu'il y ait pression réelle entre deux corps adjacents, il faut éclaircir d'abord ce doute, en supposant la chose en question, comme on l'a expliqué ci-dessus, & traitant comme géométriques les mouvements que ces suppositions auront fait découyrir pouvoir être pris pour tels.

D'après cette remarque, il paroît donc à propos d'étendre le nom de géométriques à tous les mouvements, qui fans l'être effectivement, le deviennent, en supprimant quelque Machine ou partie de Machine qui n'influe en rien fur l'état du système, & en regardant aussi comme parfaitement perméables l'un à l'autre les corps qui se touchent, sans qu'il s'exerce entre eux aucune pression, c'est-à-dire sans qu'il y ait autre chose qu'une simple juxtaposition : ainsi nous comprendrons dorénavant tous ces mouvements, fous le nom commun de mouvements géométriques, puisqu'en effet ils se déterminent également par des opérations purement géométriques, & s'emploient de même pour tirer de l'équation générale (F), des équations déterminées, attendu que la propriété générale &

C 111

must, 1st make the system undertake all the *geometric* motions it is susceptible to; 2nd treat as such all those motions which will become so [become *geometric*]) by removing whatever Machine or parts of a Machine that have no action on the rest of the system, or by regarding as inter-permeable all those bodies which, despite being adjacent, exert no pressure on each other; 3rd finally, if one is in doubt as to whether [such and such] a thread, rod, or any part of the Machine, has a real action on the other parts of the system, or whether a real pressure exists between two adjacent bodies, it is first necessary to resolve this doubt, by supposing the thing in question (as one has explained above), & then treating as *geometric* the motions that these suppositions will have made it possible to treat as such.

After this remark, it seems, then, appropriate to extend the name of *geometric* to all those motions that, without actually being *geometric*, become so in the removal of whatever Machine or part of a Machine that has no influence on the state of the system; & also, by regarding as perfectly inter-permeable all those bodies which are touching but without exerting any pressure, that is to say, without there being anything but simple juxtaposition. In this way, we will, from now on, understand all the motions [as coming] under the common name of *geometric motions*, as they are all, in effect, equally determined by purely geometric operations, & are all employed in the same fashion for drawing out of the general equation (F) the determined equations, appreciating the fact that the general &

C iij

(38)

exclusive (1) de ces mouvements, est de changer l'état du système, sans altérer l'action réciproque des corps qui le composent; cependant, pour laisser entre eux quelque distinction, on peut appeller les premiers, mouvements géométriques absolus, & les autres, mouvements géométriques par supposition; mais lorsque je parlerai simplement de mouvements géométriques, sans les désigner autrement, on entendra indisféremment les uns & les autres.

Cela posé, puisque nous avons expliqué comment on peut déterminer, sans le secours d'aucun principe méchanique, tous les mouvements géométriques dont un système donné est susceptible, il s'ensuit que le problème général que nous nous étions proposé, se trouve entiérement réduit par l'équation générale (F), à des opérations purement géométriques & analytiques; il faut cependant observer qu'il ne sussit pas d'attribuer aux arbitraires u, différentes valeurs, mais qu'il faut aussi leur attribuer différents rapports ou directions; car si l'on se contentoit de leur attribuer différentes valeurs,

⁽¹⁾ Il est évident que cette propriété appartient successivement aux mouvements que j'appelle ici géométriques, & que ce seroit par conséquent en avoir une idée très-fausse, que de les regarder comme des mouvements simplement possibles, c'est-à-dire compatibles avec l'impénétrabiliré de la matière: car, supposons par exemple que tout le système se réduise à deux globes adjacents, & se poussant l'un l'autre; il est clair que si l'on force ces corps à se séparer, ou à se mouvoir en sens contraire l'un de l'autre, ce mouvement ne sera pas impossible, mais qu'en même temps les corps ne peuvent le prendre sans cesser d'agir l'un sur l'autre; ce mouvement n'est donc pas propre à remplir le but qu'on se propose, qui est de ne rien changer à l'action réciproque des corps.

exclusive (I) property of these motions is to change the state of the system – but without altering the mutual interaction between the bodies that make up the system. However, in order to make some distinction between them, one may call the first – *absolute geometric motions*, & the others – *motions geometric by supposition*. But, when I shall speak simply of geometric motions, without any other designation, one will understand [that I refer to] either kind of motion – with no distinction made between one or the other.

That posed, since we have explained how one can determine, without the help of any mechanical principle, all the geometric motions to which a given system is susceptible, it follows that the general problem which we have proposed is found to be completely reduced – by use of the general equation (F) – to purely geometric & analytic operations. It must however be observed that it is not enough to assign different values to the variable u, it is [also] necessary to assign different relations or directions. This is because, if one was merely content to assign different values,

⁽I) It is evident that this property belongs exclusively [See the *Errata* for this correction] to motions which I call here geometric, & therefore it would be a very false idea if one regarded them simply as possible motions, that is to say, [motions] compatible with the impenetrability of matter. For, let us suppose for example, that the whole system reduces to two adjacent globes, each pressing on the other. It is clear that if one forces the globes to separate, or move way from one another, this motion will not be impossible but at the same time the bodies cannot adopt it without ceasing to act upon each other: Such a motion is therefore not qualified to fulfill the proposed goal, which is *not* to change the mutual interaction between the bodies.

(39)

fans rien changer aux rapports ni aux directions, on obtiendroit différentes équations toutes justes à la vérité, mais qui se réduiroient évidemment à la même, en les multipliant par différentes constantes.

Remarque II.

XIX. Comme il n'est encore question jusqu'ici que de corps durs, il est clair que parmit les dissérentes valeurs qu'on peut attribuer à u, la vîtesse V est elle-même comprise, c'est-à-dire que le mouvement réel du système est luimême un des mouvements géométriques dont il est susceptible; la premiere équation (E) est donc contenue dans l'équation indéterminée (F), & par conséquent on peut réduire à cette seule équation (F) toutes les loix de l'équilibre &

du mouvement dans les corps durs.

Or, on vient de voir que cette équation n'est autre chose que la premiere (E), à laquelle on est parvenu à donner plus d'extension, par le moyen des mouvements géométriques; mais, comme on le verra bientôt (XXIV), l'analogie de cette équation (E) avec le principe de la confervation des forces vives dans le choc des corps parfaitement élastiques, devient frappante, par une légere transformation; & nous verrons (XXVI), qu'en effet ce n'est autre chose que ce principe lui-même transféré aux corps durs, avec la modification qu'exige la différente nature de ces corps : c'est donc cette conservation de forces vives, qui servira, comme nous en avions prévenu, de base à toute notre théorie des Machines, soit en repos, soit en mouvement.

D'après ces remarques, on va récapituler brié-

without changing either the relations or the directions, one would obtain different equations, all just as true, but which would evidently reduce to the [original equations] after multiplying by different constants

Remark II.

XIX. As, so far, only hard [plastic] bodies have been considered, it is clear that among the different values that one can attribute to u, the speed V is itself included, that is to say, the real motion of the system is itself one of the geometric motions to which it is susceptible. The first equation (E) is then contained in the indeterminate equation (F) & by consequence one can reduce to this single equation (F) all the laws of equilibrium & of motion for hard [plastic] bodies.

Yet, one comes to see that this equation is none other than the first (E), to which we have given a greater range of applicability by means of geometric motions. However, as we will come to see later (XXIV), the analogy of this equation (E) with the principle of the conservation of live force in the collision of perfectly elastic bodies becomes striking, after a small transformation, & we shall see (XXVI), that in effect it is nothing other than the same principle transferred to hard bodies, with the modification that is required by the different nature of the bodies. It is then this principle of the conservation of live force which will serve us – as we forecast – as the base of all our theory of Machines, either at rest or in motion.

After these remarks, we are going to briefly recapitulate

Civ

(40)

vement la solution du problème précédent, pour faire voir d'un coup d'œil la suite des opérations qu'on vient d'indiquer.

Problème.

XX. Connoissant le mouvement virtuel d'un système queleonque donné de corps durs (c'est-à-dire celui qu'il prendroit, si chacun des corps étoit libre) trouver le mouvement réel qu'il doit avoir l'instant suivant.

L'instant suivant.	
Solution. Nommons	
Chaque molécule du système,	m
Sa vîtesse virtuelle donnée,	W
Sa vîtesse réelle cherchée,	V
La vîtesse qu'elle perd, de sorte que	
W soit la résultante de V & de cette	
vîtesse,	U
Imaginons maintenant qu'on fasse pren-	
dre au système un mouvement géométrique	
arbitraire, & soit la vîtesse qu'aura alors m,	24
L'angle formé par les directions de	
W & V,	X
L'angle formé par les directions de	
W & U,	Y
L'angle formé par les directions de	
V & Ü,	Z
L'angle formé par les directions de	
W & u,	x
L'angle formé par les directions de	
V & u,	y
L'angle formé par les directions de	
U & u,	. 7
Cela posé, on aura l'équation sm u U c	ofz
= o (F), par le moyen de laquelle on tr	ou-
vera dans tous les cas l'état du système, en	at-

tribuant successivement aux indéterminées u, dif-

the solution of the preceding problem, to show at a glance the order of operations we have indicated.

Problem.

XX. Knowing the virtual motion of any given system of hard bodies (that is to say, those which would be followed if each of the bodies were free) to find the real motion which it must have in the following instant.

Solution. Let us name	
Each molecule of the system,	m
Its given speed,	W
Its real speed to be found,	V
The speed which is lost, so that W will be the	
resultant of V & this speed,	U

Let us now imagine that one gives to the system an arbitrary *geometric motion*. & that the speed of *m* will then be.

terrie motion, & that the speed of m will then se,	u
The angle between the directions of $W \& V$,	X
The angle between the directions of $W \& U$,	Y
The angle between the directions of $V \& U$,	Z
The angle between the directions of $W \& u$,	$\boldsymbol{\mathcal{X}}$
The angle between the directions of $V \& u$,	у
The angle between the directions of $U \& u$,	z

This assumed, one will arrive at the equation

$$\sum muU\cos z = 0 \tag{F}$$

by means of which one will find [solutions for] all possible states of the system, after letting the variable *u* take on all the dif-

(41)

férents rapports & directions arbitraires.

Définitions.

XXI. Imaginons un système de corps en mouvement d'une maniere quelconque : soient m la masse de chacun de ces corps, & V sa vîtesse; supposons maintenant qu'on fasse prendre au système un mouvement quelconque géométrique, & soient u la vîtesse qu'aura alors m (& que j'appellerai sa vîtesse géométrique) & y l'angle compris entre les directions de V & u; cela posé, la quantité m u V cos y sera nommée moment de la quantité de mouvement m V, à l'égard de la vîtesse géométrique u, & la somme de toutes ces quantités, c'est-à-dire smu V cos y, sera nommée moment de la quantité de mouvement du système à l'égard du mouvement géométrique, qu'on lui a fait prendre : ainsi le moment de la quantité de mouvement d'un système de corps , à l'égard d'un mouvement quelconque géométrique, est la somme des produits des quantités de mouvement des corps qui le composent, multipliées chacune par la vitesse géométrique de ce corps, estimée dans le sens de cette quantité de mouvement. De forte qu'en conservant les dénominations du problème, smu W cof x est le moment de la quantité de mouvement du système avant le choc; fm u V cof y est le moment de la quantité de mouvement du même système après le choc; & smu U cos z est le moment de la quantité de mouvement perdu dans le choc: (tous ces moments étant rapportés au même mouvement géométrique). Ainsi de l'équation fondamentale (F) on peut conclure que dans le choc des corps durs, soit que ces corps soient tous

ferent relations & arbitrary directions.

Definitions.

XXI. Let us imagine an arbitrary system of bodies in motion, letting m be the mass³⁵ of each of these bodies, & V its speed. Let us now suppose that one gives the system any geometric motion whatever, & let u be the speed that m will have (& which I will call the geometric speed) & v the angle between the directions of V & u; this supposed, the quantity $muV\cos y$ will be named the moment of the quantity of motion mV, with respect to the geometric speed³⁶ u, & the sum of all these quantities, that is to say, $\sum muV\cos y$, will be named the 'moment of the quantity of motion of the system' with respect to the geometric motion that we gave to the system. In this way the moment of the quantity of motion of a system of bodies, with respect to any geometric motion whatever, is the sum of the products of the quantities of motion of the bodies which compose it, each multiplied by the geometric speed of the bodies, estimated in the direction of this quantity of motion. So, using the same denominations, $\sum muWcosx$ is the moment of the quantity of motion before the collision; $\sum muVcosy$ is the moment of the quantity of motion after the collision; & $\sum muUcosz$ is the moment of the quantity of motion lost in the collision (all the moments being related to the same geometric motion). Thus from the fundamental equation (F) one can conclude that in the collision of hard [plastic] bodies, whether these bodies are all

(42)

mobiles, ou qu'il y en ait de fixes, ou ce qui revient au même, soit que ce choc soit immédiat, ou qu'il se fasse par le moyen d'une Machine quelconque sans ressort, le moment de la quantité de mouvement perdue par le système général est égal à zero.

W étant la réfultante de V & U, il est clair qu'on à $W \cos x = \cos y + U \cos z$, ou m u $W \cot x = mu V \cot y + mu U \cot z$, ou enfin $\int m u W \cos x = \int m u V \cos y + \int m u$ U cos; or, nous avons trouvé s mu U cos; = 0; donc $\int m u W \cos x = \int m u V \cos y$, c'est-à-dire qu'à l'égard d'un mouvement quelconque géométrique, le moment de quantité de mouvement du système, immédiatement après le choc, est égal au moment de quantité de mouvement immé-

diatement avant le choc.

Lorsqu'on décompose la vîtesse que prendroit un corps s'il étoit libre, en deux, dont l'une foit la vitesse qu'il prend réellement, l'autre est la vîtesse qu'il perd; & réciproquement si l'on décompose la vîtesse qu'il prend, en deux, dont l'une soit celle qu'il auroit prise s'il eût été libre, l'autre fera la vîtesse qu'il gagne : d'où il suit visiblement que ce qu'on entend par la vîtesse gagnée par un corps, & ce qu'on entend par sa vitesse perdue, sont deux quantités égales & directement opposées: cela posé, le moment de la quantité de mouvement perdue par m, à l'égard de la vîtesse géométrique u, étant, suivant la définition précédente mu U cof z, le moment de la quantité de mouvement gagnée par le même corps sera - m u U cos z; car il n'y a de différence entre ces deux quantités, qu'en ce que l'angle compris entre u & la vitesse gagnée, est le supplément de celui compris entre u & U; de sorte que l'un de ces angles étant

mobile, or whether some are fixed, or - what comes to the same thing - whether the collision is immediate, or done by means of any Machine without springs, the moment of the quantity of motion lost by the general system is equal to zero.

W being the resultant of V & U, it is clear that we have Wcosx = Vcosy + Ucosz,* or muWcosx = muVcosy + muUcosz, or finally $\sum muWcosx = \sum muVcosy + \sum muUcosz$. However, we have found $\sum muUcosz = 0$, and therefore $\sum muWcosz = \sum muVcosy$, that is to say, with regards to any geometric motion, the moment of the quantity of motion of the system immediately after the collision is equal to the moment of the quantity of motion immediately before the collision.

When one decomposes the speed that the body would take if it were free into two parts, one being the speed which it actually takes, the other the speed which is lost (& reciprocally, if one decomposes the speed which it takes into two parts, one of which being that which it would have taken if it were free, the other the speed which it gains) then it obviously follows that what is meant by the speed gained by a body & what is meant by the speed lost are two equal & directly opposite quantities. That posed, the moment of the quantity of motion lost by m with respect to the geometric speed u is (following the preceding definition) muUcosz. Then the moment of the quantity of motion gained by the same body will be -muUcosz, as there is no difference between these two quantities except that the angle between u & the speed gained is the supplement of that between u & u. So that one of these angles being

^{*}See Errata.

(43)

aigu, l'autre sera obtus, & son cosinus égal au

cosinus de l'autre, pris négativement.

Il fuit delà que le moment de la quantité de mouvement perdue par le systême général, à l'égard d'un mouvement quelconque géométrique, (lequel est nul, comme on l'a vu ci-defsus), est la même chose que la disférence entre le moment de quantité de mouvement perdue par une partie quelconque des corps qui le composent, & le moment de la quantité de mouvement gagnée par les autres corps du même fystême; donc cette différence est égale à zero; donc l'une de ces deux quantités est égale à l'autre, c'est-à-dire que le moment de quantité de mouvement perdue dans le choc par une partie quelconque des corps du système, à l'égard d'un mouvement quelconque géométrique, est égal au moment de quantité de mouvement gagnée par les autres corps du même système.

On peut donc, de la définition précédente, recueillir les trois propositions contenues dans le

théorême fuivant.

Théorême.

XXII. Dans le choc des corps durs, soit que ce choc soit immédiat, ou qu'il se fasse par le moyen d'une Machine quelconque sans ressort, il est constant qu'à l'égard d'un mouvement quelconque géométrique:

1'. Le moment de la quantité de mouvement

perdue par-tout le système, est égal à zero.

2°. Le moment de la quantité de mouvement perdue par une partie quelconque des corps du système, est égal au moment de la quantité de mouvement gagnée par l'autre partie.

acute, the other will be obtuse, & its cosine will be equal to the cosine of the other, taken negatively.

It follows that the moment of the quantity of motion* lost by the general system, taken with respect to any geometric motion – which is null, as we have seen above – is the same thing as the difference between the moment of the quantity of motion lost by any part of the bodies which compose it, & the moment of the quantity of motion gained by the other parts of the same system. In other words, this difference is equal to zero; so one of these two quantities is equal to the other, that is to say, the moment of the quantity of motion lost in the collision of one part of the bodies of the system – with respect to any geometric motion – is equal to the moment of the quantity of motion gained by the other bodies of the same system.

We may then, from the preceding definition, collect the three propositions contained in the following theorem.

Theorem.

XXII. In the collision of hard bodies, whether the collision is immediate, or whether it is done by means of any Machine without spring [compression or stretching], the following are constant with respect to any geometric motion:

1st The moment of the quantity of motion lost by the whole system is equal to zero.

2nd The moment of the quantity of motion lost by one part of the bodies of the system is equal to the moment of the quantity of motion gained by the other part.

^{*&#}x27;Moment of the quantity of motion' is, in modern terms, the component of the momentum in a given direction - for example the direction of a geometric motion.

(44)

3°. Le moment de la quantité de mouvement réelle du système général, immédiatement après le choc, est égal au moment de la quantité de mouvement du même système, immédiatement avant le choc.

Il est clair, par la définition précédente, que ces trois propositions sont identiques au sonds, & ne sont autre chose que l'équation même sondamentale (F) exprimée de diverses manières.

On peut remarquer aussi que ces propositions ont beaucoup de rapport à celles que l'on tire de la considération des moments, relativement à différents axes; mais celles-ci sont moins générales, & se tirent aisément de celles qu'on vient d'établir (XVII).

Il y a donc, comme on voit, par la troifieme proposition de ce théorême; il y a, disje, dans toute percussion ou communication de mouvement, soit immédiate, soit faite par l'entremise d'une Machine, une quantité qui n'est point altérée par le choc : cette quantité n'est pas, comme l'avoit pensé Descartes, la somme des quantités de mouvement; ce n'est pas non-plus la somme des forces vives, car celle-ci ne se conferve que dans le cas où le mouvement change par degrés infenfibles, comme on verra plus bas, & elle diminue toujours lorsqu'il y a percussion, comme on le prouvera dans le corollaire fecond : lorsque le système est libre, la quantité de mouvement estimée dans un sens quelconque, est à la vérité la même avant & après la percussion; mais cette conservation n'a plus lieu, s'il y a des obstacles, non-plus que celle des moments de quantité de mouvements rapportés à différents axes : toutes ces quantités

3rd. The moment of the actual quantity of motion of a general system, immediately after the collision, is equal to the moment of the quantity of motion of the same system, immediately before the collision.

It is clear, by the preceding definition, that these three propositions are basically identical, & are nothing other than the same fundamental equation (F) expressed in various ways.

One may also remark that these propositions bear much relation to those which we draw from consideration of the moments, relative to different axes; but those are less general & are easily deduced from those which we have established (XVII).

There is therefore, as we see (by the third proposition of this theorem), there is, I say, in all percussion or communication of motion, whether immediate or by the intervention of a Machine, a quantity which is not affected by the collision. This quantity is not, as was thought by *Descartes*, the sum of the quantities of motion. Neither is it the sum of the live force, because that is not conserved in the case where the motion changes by insensible degrees – as we will see below – & is always diminished when there is percussion, as we prove in the second corollary. When the system is free, the quantity of motion measured in any direction is truly the same before & after the percussion. But this conservation ³⁷ [of the moment of the quantity of motion] is no longer valid when there are barriers, any more than when it is referred to different axes. All these quantities

(45)

font donc altérées par le choc, ou du moins ne se conservent que dans quelques cas particuliers; mais il y a une autre quantité que ni les divers obstacles qui s'opposent au mouvement, ni les Machines qui le transmettent, ni l'intensité des dissérentes percussions ne peuvent changer; c'est le moment de quantité de mouvement du système général, à l'égard de chacun des mouvements géométriques dont il est susceptible, & ce principe renserme en lui seul toutes les loix de l'équilibre & du mouvement dans les corps durs; nous verrons même dans le corollaire IV, que cette loi s'étend également aux autres especes de corps, quelle qu'en soit la nature & le degré d'élassicité.

Si le choc détruisoit tous les mouvements, on auroit V = 0, ainsi l'équation se réduiroit à $\int m W u \cos x = 0$, qui nous apprend que ce cas arrive, c'est-à-dire que tous les mouvements se détruisent réciproquement par le choc, dans le cas où immédiatement avant ce choc, le moment de la quantité de mouvement du système général est nul relativement, à tous les mouvements géométriques dont il est susceptible.

Corollaire I.

XXIII. Parmi tous les mouvements dont est fusceptible un système quelconque de corps durs agisfants les uns sur les autres, soit par un choc immédiat, soit par des Machines quelconques sans ressort, celui de ces mouvements qui aura lieu réellement, l'instant d'après, sera le mouvement géométrique, qui est tel que la somme des produits de chacune des masses, par le carré de la vîtesse qu'elle perdra, est un minimum, c'est-à-dire moindre que

are then altered by the collision, or at least only conserved in some specific cases. But there is one other quantity which neither the various obstacles which obstruct the motion, nor the Machines which transmit it, nor the intensity of the different percussions, can change. This is the moment of the quantity of motion of the general system, with regard to each of the geometric motions to which it is susceptible, & this principle includes on its own all the laws of equilibrium & motion for hard bodies. We will even show in Corollary IV that this law applies equally to other types of body, whatever their nature & degree of elasticity.

If the collision destroys all motion, we will have V = 0, and then the equation reduces to $\sum mWucosx = 0$, which tells us that this case can happen. That is to say, all the motions are destroyed reciprocally by the collision in the case where immediately before the collision the moment of the quantity of motion of the general system is null relative to all the geometric motions to which it is susceptible.

Corollary I.

XXIII. Amongst all the motions to which an arbitrary system of hard bodies interacting with each other is susceptible, whether by an immediate collision, or by Machines without springs, those of these motions will actually take place that, the instant afterwards, are geometric motions such that the sum of the products of each of the masses, by the square of the speed which it will lose, is a minimum, that is to say, less than

(46)

la somme des produits de chacun de ces corps, par la vîtesse qu'il auroit perdue, si le système eût pris un autre mouvement quelconque géométrique.

Sur quoi il faut remarquer qu'en donnant pour minimum la somme des produits de chaque masse, par le carré de sa vitesse perdue, j'entends seu-lement que la dissérentielle de cette somme est nulle, c'est-à-dire que sa dissérence avec ce qu'elle seroit si le système avoit un mouvement géométrique infiniment peu dissérent du premier, est égal à zero: ainsi cette somme peut être quelquesois un maximum, ou même n'être ni un maximum ni un minimum, & j'ai seulement

à établir que $d \int m U^2 = 0$.

Démonstration. Il est d'abord évident que le vrai mouvement du système après le choc doit être géométrique, car les mouvements géométriques étant ceux qui n'alterent point l'action qui s'exerce entre les corps, il est clair que le premier en ordre est le mouvement même que prend le système : il s'agit donc de savoir quel est, parmi tous les mouvements géométriques possibles, celui qui doit avoir lieu: or, suppofons que s'il en prenoit un autre infiniment peu différent de celui qu'on cherche, la vîtesse de chaque molécule m fût alors V'; décomposons V' en deux, dont l'une soit V; c'est-à dire la vîtesse réelle, & l'autre V", cela posé, il est évident que si les corps n'avoient pas d'autres vitesses que ces dernieres V", le mouvement feroit encore géométrique, car V" est visiblement la résultante de V' & d'une vîtesse égale & directement opposée à V; or, par hypothese, les molécules prifes deux à deux ne tendent ni en vertu de V', ni en vertu de - V, à se rapprocher ou à s'éloigner, puisque dans ces deux

the sum of the products of each of the bodies, by the square of speed* which it would have lost, if the system had taken another geometric motion.

It must be remarked that in giving for the *minimum* the sum of the products of each mass by the square of the speed lost, I mean only that the differential of this sum is null, that is to say, it is the same as if the system had a geometric motion infinitesimally different to the first. Therefore this sum may be sometimes a *maximum*, or even neither a *maximum* or a *minimum*, & I only have to establish that $d \sum mU^2 = 0$.

Demonstration. It is evident from the outset that the true motion of the system after the collision must be geometric, as geometric motions are those [sorts of motions] that can in no way alter the action [internal forces] that exist between the bodies of the system, [and thus] it is clear that of primary importance is the very motion that the system [as a whole] undertakes. It is a question of knowing which geometric motions, amongst all possible ones, are the ones which do take place.

Now, let us suppose that it [the system] takes another motion only infinitesimally different from the one we seek, such that the speed of each molecule m is V'. Let us decompose V' into two parts: V (that is to say, the actual speed), & V''. That supposed, it is evident that if the bodies have no other speeds apart from these last speeds (V'') then the motion would again be geometric because V'' is obviously the resultant of V' & a speed equal & directly opposite to V. However, by hypothesis, the molecules taken two by two tend neither by virtue of V', nor by virtue of V', to approach or depart from each other, since in these two

^{*}See Errata.

(47)

cas le mouvement est géométrique; donc, en supposant que les molécules m aient à la fois les vitesses V' & - V, ou leur résultante V'', ils ne tendront non-plus ni à se rapprocher ni à s'éloigner; & partant, le mouvement sera alors géométrique : donc, si l'on appelle 7" l'angle compris entre les directions de V" & U, on aura par l'équation fondamentale (F) [mUV" cof z = o: d'un autre côté, nommons U' la vîtesse que perdroit m si sa vîtesse effective étoit V', de sorte que W soit la résultante de V' & de U', il faudra nécessairement que U' soit composée de U & d'une vîtesse égale & directement opposée à V''; d'où il suit évidemment que U'-U ou $dU = -V'' \cos z''$; donc l'équation $\int m U V''$ $cof_z'' = 0$, trouvée ci-dessus, devient $\int m U dU$ $= 0 \text{ ou } d \int m U^2 = 0.$

Je suppose, par exemple, que deux globes A & B, venant à se choquer obliquement, on demande leurs mouvements après le choc.

Supposons que la vîtesse de A, estimée suivant la ligne des centres, soit avant le choc a, & après le choc V; que celle de B, aussi estimée suivant la ligne des centres, soit avant le choc b, & après le choc u; que celle de A, estimée perpendiculairement à la même ligne, foit avant le choc a', & après le choc V'; qu'enfin celle de B, aussi estimée perpendiculairement à cette ligne des centres, soit avant le chocb, & après le choc u'; cela posé, par notre proposition, le mouvement devant être géométrique, il faut d'abord qu'on ait V = u, ainfi la vîtesse perdue par A, suivant la ligne des centres, sera a-u, & celle perdue par B, dans le même fens, fera b - u; de plus, dans le sens perpendiculaire à la ligne des centres, la vitesse perdue par A

cases the motion is geometric. Therefore, in supposing that the molecules, m, have at the same time the speeds V' & -V, or their resultant, V'', they tend neither to approach or move apart & thus the motion will be geometric. Therefore, if we call z'' the angle between the directions V'' & U, we will have, by the fundamental equation (F), the result $\sum mUV''\cos z = 0$. On the other hand, let us name U' the speed that would be lost if the effective speed were V', so that W is the resultant of V' & of U'. It is essential that U' is composed of U & a speed equal & directly opposite to V'', from which it follows evidently that U' - U or $dU = -V''\cos z''$. Then the equation $\sum mUV''\cos z'' = 0$, found above, becomes $\sum mUdU = 0$ or $d\sum mU^2 = 0$.

I suppose, for example, that two globes A & B, come to collide obliquely. We ask for their motions after the collision.

Let us suppose that the speed of A, calculated along the line of the centres before the collision is a, & after the collision, V; that of B, also calculated along the line of centres, is b before the collision, & after the collision, u; that of A, estimated perpendicularly to the same line, before the collision is a', & after the collision, V'; and finally, that of B, also estimated perpendicularly to the line joining the centres, is b' before the collision, & after the collision, u'. That supposed, by our proposition, before being geometric, the motion must initially satisfy V = u. Thus the speed lost by A, along the line of the centres, will be a - u, & that lost by B, in the same direction, will be b - u. Furthermore, in the direction perpendicular to the line joining the centres, the speed lost by A

(48)

fera a' - V', & celle perdue par B, fera b' - u'; donc $\sqrt{(a-u)^2 + (a'-V')^2}$ fera la vîteffe abfolue perdue par A, & celle perdue par B fera $\sqrt{(b-u)^2 + (b'-u')^2}$; donc, fuivant la proposition, on doit avoir $d(A(a-u)^2 + A(a'-V')^2 + B(b-u)^2 + B(b'-u')^2) = 0$, ou A(a-u)du + A(a'-V')dV' + B(b-u)du + B(b'-u')du' = 0, équation qui doit avoir lieu généralement, c'est-à-dire, quelles que soient les valeurs de du, dV', & du'; il faut donc que le coefficient de chacune de ces différentielles soit égal à zero; ce qui donne V' = a', u' = b', & u = Aa + Bb; ce qu'il falloit trouver.

Il est clair que cette proposition renserme toutes les loix du choc des corps durs, soit que ce choc soit immédiat, ou qu'il se fasse par le moyen d'une Machine quelconque, puisqu'il assigne le caractere auquel on reconnoîtra parmi tous les mouvements qui sont possibles, celui qui doit avoir lieu réellement à chaque instant: ce principe a beaucoup d'analogie avec celui que M. de Maupertuis a trouvé & nommé principe de la moindre action. (Essa de cosmologie).

Corollaire II.

XXIV. Dans le choc des corps durs, soit qu'il y en ait de fixes, ou qu'ils soient tous mobiles (ou ce qui revient au même), soit que ce choc soit immédiat, ou qu'il se sasse par le moyen d'une Machine quelconque sans ressert; la somme des forces vives avant le choc, est toujours égale à la somme des forces vives après le choc, plus la

will be a'-V', & that lost by B, will be b'-u'. Then $\sqrt{(a-u)^2+(a'-V')^2}$ will be the absolute speed lost by A, & that lost by B will be $\sqrt{(b-u)^2+(b'-u')^2}$. Then, following the proposition, one must have $d(A(a-u)^2+A(a'-V')^2+B(b-u)^2+B(b'-u')^2)=0$, or A(a-u)du+A(a'-V')dV'+B(b-u)du+B(b'-u')du'=0, an equation which must hold generally, that is to say, whatever may be the values of du, dV', & du'. Therefore the coefficients of each of these differentials must be equal to zero, which gives V'=a', u'=b', & $u=\frac{Aa+Bb}{A+B}$, which it was necessary to find.

It is clear that this proposition includes all the laws of collision of hard [plastic] bodies, whether the collision is immediate, or whether it is done by means of whatever kind of Machine, since it determines the telltale characteristics by which we recognize - amongst all the possible motions - the actual one that takes place at each instant. This principle is very analogous to the one discovered by *M. de Maupertuis*³⁸ & named the *principle of least action*³⁹. (Essay on Cosmology).

Corollary II.

XXIV. In the collision of hard [plastic] bodies, whether some are fixed, or all are mobile (or, which comes to the same), whether the collision is immediate, or whether it happens by whatever Machine [so long as it is] without compression or extension, the sum of live forces before the impact is always equal to the sum of live forces after the impact; moreover

(49)

la somme des forces vives qui auroit lieu si la vitesse qui reste à chaque mobile, étoit égale à

celle qu'il a perdue dans le choc.

C'est-à-dire qu'il faut prouver l'équation suivante $\int m W^2 = \int m V^2 + \int m U^2$; or, elle se déduit facilement de l'équation fondamentale (E), car W étant résultante de V & U, il est clair que W V & U sont proportionnelles aux trois côtés d'un certain triangle: donc, par la trigonométrie, on a $W^2 = V^2 + U^2 + {}_2VU$ cos Z: donc, $\int m W^2 = \int m V^2 + \int m U^2 + {}_2\int m V U \cos Z$: or, par l'équation (E) on a $\int m V U \cos Z = 0$; donc l'équation précédente se réduit à $\int m W^2 = \int m V^2 + \int m U^2$; ce qu'il falloit prouver.

On voit donc, comme nous l'avons dit (XXI), que par cette transformation l'analogie de l'équation (E) avec la conservation des forces vives, devient frappante; aussi peut-on aisément démontrer l'une par l'autre, comme on verra (XXVI).

L'analogie de cette même équation avec la conservation des forces vives dans un système de corps durs dont le mouvement change par degrés insensibles, est encore plus évidente, puisqu'il s'agit alors d'un cas particulier de celui que nous venons d'examiner; c'est en esset visiblement le cas particulier ou U est infiniment petite, & partant U^2 infiniment petite du second ordre; ce qui réduit l'équation à $\int m W^2 = \int m V^2$; mais cette conservation sera expliquée plus au long dans le corollaire suivant.

Corollaire III.

XXV. Lorsqu'un système quelconque de corps durs change de mouvement par degrés insensibles;

the [principle of] the sum of live forces would apply if, for each mobile body, its remaining speed was equal to that which it lost in the collision.

That is to say, it is required to prove the following equation $\sum mW^2 = \sum mV^2 + \sum mU^2$. However, this can easily be deduced from the fundamental equation (E), because W being the resultant of V & U, it is clear that W, V & U are proportional to three sides of a certain triangle. Then, by trigonometry, we have $W^2 = V^2 + U^2 + 2VU\cos Z$. Therefore $\sum mW^2 = \sum mV^2 + \sum mU^2 + 2\sum mVU\cos Z$. However, by equation (E) we have $\sum mVU\cos Z = 0$, so the preceding equation reduces to $\sum mW^2 = \sum mV^2 + \sum mU^2$, which it was necessary to prove.

We see then, as we have said (XIX)*, that by this transformation the analogy between equation (E) and the conservation of live forces becomes striking. Also we can easily derive one from the other, as we will see (XXVI).

The analogy of this same equation with the conservation of live forces in a system of hard [plastic] bodies whose motion changes by insensible degrees is even more evident since it is then a specific case of that which we have just examined. It is in effect obviously the specific case where U is infinitely small, & thus U^2 is infinitely small to second order. This reduces the equation to $\sum mW^2 = \sum mV^2$; but this conservation will be explained further and at length in the following corollary.

Corollary III.

XXV. When any system of hard [plastic] bodies changes its motion by insensible degrees,

D

^{*}See Errata.

(50)

si pour un instant quelconque on appelle m la masse de chacun des corps, V sa vîtesse, p sa sorce motrice, R l'angle compris entre les directions de V & p, u la vitesse qu'auroit m, se on faisoit prendre au systèmeun mouvement quelconque géométrique, r l'angle formé par u & p, y l'angle formé par V & u, dt l'élément du temps, on aura ces deux équations

 $\int m V p dt co \int R - \int m V dV = 0.$

fmupdt cofr - fmud(V cofy)=0.

Démonstration. Premièrement, p dt cos R est visiblement la vîtesse que la force motrice p auroit imprimée à m dans le sens de V, si ce corps eut été libre; de plus, dV est la vîtesse qu'il reçoit réellement dans le même sens; donc p dt cos R - dV est la vîtesse perdue par m dans le sens de V, en vertu de l'action réciproque des corps : c'est donc cette quantité qu'il faut mettre pour U cos Z dans l'équation fondamentale (E), laquelle devient par cette substitution f m V p dt cos R - f m V dV = 0, qui est la première des deux équations que nous avions à démontrer.

Secondement, p dt cos r est la vitesse que la force motrice p auroit imprimée à m dans le sens de u, si ce corps eût été libre; de plus, $V \cos y$ étant la vitesse de m dans le sens de u, $d(V \cos y)$ est la quantité dont cette vitesse estimée dans le même sens augmente; donc $p dt \cos r - d(V \cos y)$ est la vitesse perdue par m dans le sens de u, en vertu de l'action réciproque des corps: c'est donc cette quantité qu'il faut mettre pour $U \cos z$ dans la seconde équation (F), laquelle devient par cette substitution $f m u p dt \cos r - f m u d(V \cos y) = 0$, qui est la seconde des deux équations que nous avions à démontrer.

Ces équations ne sont donc autre chose que les équations fondamentales (E) & (F) appli-

then if for some instant we call m the mass of each of the bodies, V its speed, p its motive force, R the angle between the directions of V & p, u the speed which m would have, and if we imparted whatsoever geometric motion to the system, [and called] r, the angle formed by u & u, u, u the element of time, [then] we will have these two equations:

$$\sum mVpdtcosR - \sum mVdV = 0,$$

$$\sum mupdtcosr - \sum mud(Vcosy) = 0.$$

Demonstration. Firstly, pdtcosR is obviously the speed which the motive force p would have imparted to m in the direction of V if the body would have been free; moreover, dV is the speed which it actually receives in the same direction. Then pdtcosR - dV is the speed lost by m in the direction of V, by virtue of mutual interactions between the bodies. It is then this quantity which must be substituted for UcosZ in the fundamental equation (E), which becomes by this substitution $\int mVpdtcosR - \int mVdV = 0$, and this is the first of the two equations we have to prove.

Secondly, pdtcosr is the speed that the motive force p would have imparted to m in the direction of u if this body had been free. Moreover, Vcosy being the speed of m in the direction of u, then d(Vcosy) is the quantity by which this speed increases when calculated in the same direction. Therefore pdtcosr - d(Vcosy) is the speed lost by m in the same direction as u, by virtue of mutual interactions between the bodies. It is then this quantity which must be substituted for Ucosr in the second equation (F), which becomes by this substitution $\int mupdtcosr - \int mud(Vcosy) = 0$, which is the second of the two equations we have to show.

These equations are then nothing other than the fundamental equations (E) & (F) applied

(51)

quées au cas où le mouvement change par degrés insensibles; & partant, elles renferment toutes les loix de ce mouvement: on peut remarquer de plus, que la premiere de ces deux équations n'est qu'un cas particulier de la seconde, par la même raison que l'équation (E) d'où elle est tirée, est contenue dans celle (F) d'où est tirée la seconde; mais cette premiere équation $\int m V p dt \cos R - \int m V dV = 0$ mérite une attention particuliere; parce qu'elle renferme le sameux principe de la conservation des forces vives dans un système de corps durs dont le mouvement change par degrés insensibles,

comme on va l'expliquer.

Nommons d'abord d's l'élément de la courbe décrite par le corpuscule m pendant de ; cela posé, nous aurons V d t = d s; & partant, l'équation précédente prend cette forme [mpdscof $R - \int m V dV = 0$: maintenant supposons pour un instant que la courbe décrite par m soit une ligne inflexible, que m foit un grain mobile enfilé dans cette courbe, qu'il la parcourt librement, c'est-à-dire sans être gêné par les réactions des autres parties du système, qu'il éprouve à chaque point de cette courbe la même force motrice que celle dont il étoit animé dans le premier cas, & qu'enfin dans ce premier cas la vitesse initiale de m soit K, tandis que dans le fecond elle sera nulle au premier instant, & V' après un temps indéterminé t; cela posé, en intégrant l'équation précédente pour avoir l'état du système au bout du temps t; nous aurons pour le premier cas s'smpds cof R-s's m V d V = 0, s' défignant le figne d'intégration relatif à la durée du mouvement, tandis que f est le signe d'intégration relatif à la figure

Dij

to the case where the motion changes by insensible degrees⁴², & thus it includes all the laws of this motion. We can moreover remark that the first of these two equations is only a specific case of the second, by the same reasoning that equation (E) (from which it is derived) is contained in (F) from which the second is derived. However this first equation, $\sum mVpdtcosR - \sum mVdV = 0$, merits specific attention because it includes the famous principle of the conservation of live forces in a system of hard [plastic] bodies whose motion changes by insensible degrees, as we are going to explain.

Let us name by ds the element of the curve described by particle m during dt. That supposed, we will have Vdt = ds, & thus the preceding equation takes the form $\sum mpdscosR - \sum mVdV = 0$. Now let us suppose for the moment that the curve followed by m is an inflexible line, that m is a movable granule threaded on this curve, that it runs freely, that is to say, without being hindered by the reactions of other parts of the system, that it experiences at each point of the curve the same motive force as that which drove it in the first place, & finally that in the first case the initial speed of m being K, while in the second it will be null in the first instant & V' after an indeterminate time t. [All] this [being] supposed, on integrating the preceding equation in order to obtain the state of the system at the end of time t, we will have for the first case, $\int \sum mpdscosR - \int \sum mVdV = 0$, where \int designates the integration sign relative to the duration of the motion, while \sum is the integration sign relative to the configuration

D ij

(52)

du système; or, s' sm Vd V= sm V2: donc l'é-

quation peut se mettre sous cette forme $\int \int m p \, ds \cos R - \int m \, V^2 + C = 0$; C étant une constante ajoutée pour compléter l'intégrale, pour la déterminer, on observera qu'au premier instant on a $V = K & \int \int m p \, ds \cos R = 0$; donc $C = \int m \, K^2$; donc $2 \int \int m \, p \, ds \cos R = 0$

 $\int m V^2 + \int m K^2 = 0$; par les mêmes raisons on a pour le second cas 2 s'smpdscol R - $\int m V /^2 = 0$, fans constante, parce qu'on suppose V' nulle au premier instant; ôtant donc cette équation de la précédente, réduisant, & transposant, on a $\int m \tilde{V}^2 = \int m K^2 + \int m V^{1/2}$; c'est-à-dire que dans un système quelconque de corps durs, dont le mouvement change par degrés insenfibles, la somme des forces vives au bout d'un temps quelconque, est égale à la somme des forces vives initiales, plus la somme des forces vives qui auroit lieu, si chaque mobile avoit pour vitesse celle qu'il auroit acquise en parcourant librement la courbe qu'il a décrite, en supposant d'ailleurs qu'il eût été animé à chaque point de cette courbe, de la même force motrice qu'il y éprouve réellement, & que sa vitesse au premier instant ent été nulle.

C'est cette proposition qu'on appelle principe de la conservation des forces vives, & d'où

I'on peut conclure que,

Dans un système de corps durs dont le mouvement change par degrés insensibles, & qui ne sont animés d'aucune force motrice, la somme des forces vives est une quantité constante, c'est-à-dire la même pour tous les instants.

Car dans ce cas on a par hypothese p = 0, ce qui donne V' = 0, & partant $\int m V^2 =$

of the system. However, $\int \sum mV dV = \sum \frac{mV^2}{2}$, and so the equation can be put in the form $\int \sum mpdscosR - \sum mV^2 + C = 0$, C being an additive constant to complete the integral. For determining it, we will observe that at the first instant we have V = K & then $C = \sum \frac{mK^2}{2}$; then $2\int \sum mpdscosR - \sum mV^2 + \sum mK^2 = 0$. By the same reasoning we have for the second case $2\int \sum mpdscosR - \sum mV'^2 = 0$, without a constant, because we have supposed that V' is null at the first instant. Then, subtracting this equation from the preceding one, collecting & transposing, we have $\sum mV^2 = \sum mK^2 + \sum mV'^2$. That is to say, in any system of hard [plastic] bodies, when the motion changes by insensible degrees, the sum of the live forces at the end of any time, is equal to the sum of the initial live forces plus the sum of the live forces which would exist if each mobile body would have for its speed that which it would acquire in running freely along the curve that it describes (assuming amongst other things that it is driven at each point of this curve by the same motive force which it actually experiences, & that its speed in the first instant is null).

This [is the] proposition which we call the principle of conservation of live force, & from which we may conclude that,

In a system of hard [plastic] bodies whose motion changes by insensible degrees, & which is not driven by any motive force, the sum of live forces is a constant quantity, that is, the same for all instants.

Because in this case we have by hypothesis p=0, which gives V'=0 & thus $\sum mV^2=$

(53)

 $\int m K^2$; équation qui se tire d'ailleurs immédiatement de celle $\int m p V dt \cos R - \int m V dV = 0$ o trouvée (XXIV), laquelle à cause de p = 0, se réduit à $\int m V dV = 0$, dont l'intégrale complétée est $\frac{1}{2} \int m V^2 - \frac{1}{2} \int m K^2 = 0$; d'où suit l'équation $\int m V^2 = \int m K^2$: qu'il falloit prouver.

Corollaire IV.

X X VI. J'ai prouvé (XIX), que l'équation indéterminée (F) renferme toutes les loix de l'équilibre & du mouvement dans les corps durs; je vais maintenant plus loin, & je dis que cette équation convient également aux corps qui ne le sont pas, & que par conséquent cette loi générale s'étend indistinctement à tous les corps de la nature : en effet , lorsque plufieurs corps qui ne sont pas durs agissent les uns sur les autres d'une maniere quelconque, si l'on conçoit le mouvement qu'auroit pris chaque mobile s'il eût été libre, décomposé en deux, dont l'un soit celui qu'il prendra réellement, l'autre sera détruit ; d'où il suit visiblement que si les corps eussent été durs & n'eussent eu d'autres mouvements que ce dernier, il y auroit en équilibre : ces mouvements détruits sont donc affujettis aux mêmes loix, ont entre eux les mêmes rapports, & peuvent enfin se déterminer de la même maniere que si les corps étoient durs, c'est-à-dire par l'équation générale (F); cette équation (F) n'est donc point bornée aux corps durs, elle appartient également à tous les corps de la nature, & contient par conséguent toutes les loix de l'équilibre & du mouvement, non-seulement pour les pre-Din

 $\sum mK^2$. [This] equation, drawn directly from that found in (XXIV), $\sum mVpdtcosR - \sum mVdV = 0$, which, due to p = 0, reduces to $\sum mVdV = 0$, whose complete integral* is $\frac{1}{2}\sum mV^2 - \frac{1}{2}\sum mK^2 = 0$. From this we obtain $\sum mV^2 = \sum mK^2$ – which is what had to be proved.

Corollary IV.

XXVI. I have proved, (XIX), that the indeterminate equation (F) includes all the laws of equilibrium & motion for hard [plastic] bodies. I now go further & declare this equation to be equally appropriate for bodies which are not hard, & that in consequence this law extends to all naturally-occurring bodies without distinction. In effect, when several bodies which are not hard [plastic] interact with each other in any manner whatever, one imagines the motion of each freelymoving body as being decomposed into two parts - one of which the body will actually take, the other will be destroyed. From this it obviously follows that if the bodies had been hard [plastic] & had only these last motions, then there would be equilibrium. These destroyed motions are then subject to the same laws, have the same relations between them, & finally, they can be determined in the same way as if the bodies were hard [plastic], that is to say, by equation (F). This equation (F) is therefore not restricted to hard bodies, it applies equally to all bodies in nature, & contains in consequence all the laws of equilibrium & of motion, not only for the first case [hard plastic bodies], D iii

^{*}Although Carnot uses the word 'integral' as well as the symbol \int , in his calculations he will have carried out summations rather than integrations. The evidence is that there are no differential quantities, 'dt' or 'dV'.

(54)

miers, mais même pour tous les autres, quel que puisse être leur degré de compressibilité; mais la différence confiste en ce que l'on peut, dans le cas où il s'agit de corps durs, supposer u = V; de sorte qu'alors / m V U cof Z = 0, devient une des équations déterminées du problème, au lieu que cela n'est pas lorsque les corps sont d'une nature différente : c'est donc cette équation déterminée, laquelle est la même que la premiere équation fondamentale (E), c'est dis je cette équation déterminée qui caractérise les corps durs, & par conséquent il est absolument nécessaire de l'employer au moins implicitement dans toutes les questions qui concernent ces corps; & lorsqu'il s'agit de corps d'une autre espece, il faut, outre les équations déterminées, qu'on peut obtenir en attribuant à u dans l'équation indéterminée, (F) différentes valeurs connues, il faut, dis je en tirer encore une qui foit analogue à l'équation (E), & qui exprime en quelque sorte la nature de ces corps, de même que celle-ci (E) exprime celle des corps durs; mais comme cette recherche n'a qu'un rapport fort indirect aux Machines proprement dites, nous nous bornerons ici à examiner le cas où le degré d'élasticité est le même pour tous les corps, c'està-dire que nous supposerons qu'en vertu de l'élasticité, les corps exercent les uns sur les autres des pressions n fois aussi grandes que si les corps étoient durs, n étant la même pour tous les corps du système; nous supposerons de plus que la pression & la restitution se fassent dans un instant indivisible, quoiqu'en rigueur cela soit impossible. Cela posé:

Les pressions réciproques F devenant n F, auront entre elles les mêmes rapports que si les

but even for all the other [cases], whatever the degree of compressibility [of the bodies]. But the difference consists in that one may, in the case of hard bodies, suppose u = V, which means that $\sum mVU\cos Z = 0$ becomes one of the determined equations of the problem, instead of those [other equations] which are not [determined] when the bodies are of different natures. It is then this determinate equation, which is the same as the first fundamental equation (E), it is, I say, this determinate equation which characterizes hard [plastic] bodies, & in consequence it is absolutely necessary [for it] to be used, at least implicitly, in all questions that are concerned with these bodies. When it comes to [the consideration of] other types of bodies, it must (outside of the determinate equations, which one can obtain by attributing different known values to u in the indeterminate equation), it must [I repeat], [be possible to draw out as before [a solution] which is the analogue of equation (E), & which expresses in some way the nature of the bodies, in the same way that (E) expresses that of hard [plastic] bodies.

However, as this research applies only very indirectly to Machines proper, we will limit ourselves to examining the case where the degree of elasticity is the same for all the bodies, that is to say, we will suppose that by virtue of their elasticity, the bodies exert pressures on each other n times as large as if the bodies were hard, n being the same for all the bodies of the system. We will suppose furthermore that the pressure & the restitution happen instantaneously, even though rigorously this is impossible. That posed:

The reciprocal pressures F becoming nF, will have between them the same relations as if the

(55)

corps étoient durs ; donc leurs résultantes m U n'auront point changé de directions, mais seront seulement devenues n fois aussi grandes qu'elles auroient été fi les corps avoient été durs ; cela posé, puisque W est la résultante de V & U, on a $V \operatorname{cof} Z = \operatorname{W} \operatorname{cof} Y - U$; ainfi l'équation (E) à laquelle nous cherchons une analogue, peut se mettre sous cette forme [mWU] $cof Y - (m U^2 = 0)$; or, fuivant ce qu'on vient de dire, il faut, pour appliquer cette équation au cas dont il s'agit ici, mettre au lieu de U, sans rien changer à Y; donc pour le cas que nous examinons, l'équation fera $\int mW \frac{U}{n} \operatorname{cof} Y - \int \frac{mU^2}{n^2} = 0$: ou en multipliant par n2, n fm W U cof Y - fm U2 = 0, ou à cause de W cos $Y = V \cos Z + U$ on aura $\frac{n}{1-n} \int mV U \operatorname{cof} Z = \int m U^2$; ainfi cette équation sera pour les corps dont il s'agit ce qu'est l'équation (E) pour les corps durs, & celle-ci même en est le cas particulier où l'on a n = 1, comme il est évident

Lorsque n = 2 c'est le cas des corps parfaitement élastiques, & l'équation devient $2 \int m V U \cos Z + \int m U^2 = 0$; mais cette équation relative aux corps parfaitement élastiques, peut s'exprimer d'une maniere connue & plus simple, comme il suit : puisque W est la résultante de $V \otimes U$, on a par la trigonométrie $W^2 = V^2 + U^2 + 2 V U \cos Z$; & partant $\int m W^2 = \int m V^2 + \int m U^2 + 2 \int m V U \cos Z$; ajoutant à cette équation celle trouvée ci-dessus, & réduisant, on a $\int m W^2 = \int m V^2$, qui est préduisant, on a $\int m W^2 = \int m V^2$, qui est préduis

bodies were hard [plastic]. Therefore their resultants, mU, will not have changed directions but will only have become n times as great as they would have been if the bodies had been hard [plastic]. That posed, since W is the resultant of V & U, we have $V\cos Z = W\cos Y - U[\cos X]$. Thus the equation (E) for which we are searching for an analogue may be put in the form $\sum mWU\cos Y - \sum mU^2 = 0$. However, following on from what we have said, it is necessary, to apply this equation to the case here, to put $\frac{U}{n}$ in place of U without any change to Y. Then in the case we are examining, the equation will be $\sum mW(U/n)\cos Y - \sum \frac{mU^2}{n^2} = 0$, or on multiplying by n^2 , it will be $n\sum mWU\cos Y - \sum mU^2 = 0$, where, because of $W\cos Y = V\cos Z + U$, one will have $\frac{n}{1-n}\sum mVU\cos Z = \sum mU^2$. Therefore this equation will be for [such] bodies what equation (E) is for hard [plastic] bodies, & this same equation applies in the specific case where one has n=1; as is evident.

When n=2, this is the case of perfectly elastic bodies, & the equation becomes $2\sum mVU\cos Z + \sum mU^2 = 0$. However this equation, as applied to perfectly elastic bodies, may be expressed in a well-known & simpler manner, as follows: since W is the resultant of V & U, one has by trigonometry $W^2 = V^2 + U^2 + 2VU\cos Z$, & so $\sum mW^2 = \sum mV^2 + \sum mU^2 + 2\sum mVU\cos Z$. Adding to this equation that found above, & simplifying, one has $\sum mW^2 = \sum mV^2$, which is precisely

D iv

(56)

cisément le principe de la conservation des forces vives, c'est-à-dire que cette conservation est pour les corps parfaitement élastiques, ce qu'est l'équation (E) pour les corps durs, comme nous avions promis de le prouver.

Remarque I.

XXVII. Je ne m'arrêterai point aux conséquences particulieres que je pourrois tirer de la solution du problème précédent; je remarquerai seulement que les vîtesses W, V, U, étant toujours proportionnelles aux trois côtés d'un triangle, la trigonométrie peut sournir les moyens de donner un grand nombre de sormes dissérentes aux équations sondamentales (E) & (F), & je me contenterai d'en indiquer une qui est remarquable, à cause de la méthode imaginée par les Géometres, de rapporter les mouvements à trois plans perpendiculaires entre eux; ce qui donne aux solutions beaucoup d'élégance & de simplicité.

Imaginons donc à volonté trois axes perpendiculaires entre eux, & concevons que les vitesses W, V, U & u, soient décomposées chacune en trois autres paralleles à ces axes. Cela

posé. Nommons

Celles qui répondent à W, W', W'', W''', Celles qui répondent à V, V', V'', V''', V'''.

Celles qui répondent à U, U', U'', U'''.

Celles qui répondent à u, u', u'', u'''.

Maintenant, pour peu qu'on y fasse attention, on verra aisément que la premiere équation fondamentale (E) peut se mettre sous cette forme $\int m V' U' + \int m V'' V'' + \int m V''' U'''$ = 0, & la seconde (F) sous celle-ci $\int m u' U'$

the principle of the conservation of live force. In other words, this conservation [principle] is for perfectly elastic bodies what equation (E) is for hard bodies, as we had promised to prove.

Remark I.

XXVII. I will not linger on the specific consequences I could draw from the solution of the preceding problem; I will only remark that the speeds W, V, U being always proportional to the three sides of a triangle, trigonometry can furnish the means of giving a great number of different forms to the fundamental equations (E) & (F), & I will be content to indicate one which is remarkable, due to the method imagined by Geometers, of considering the motions in three mutually perpendicular planes - which gives much elegance & simplicity to the solutions.

Let us imagine then three mutually perpendicular axes, & let us suppose that the speeds W, V, U & u, are decomposed into three components parallel to these axes. With that assumed, Let us name

Those corresponding to W: W', W'', W'''Those corresponding to V: V', V'', V'''Those corresponding to U: U', U'', U'''Those corresponding to u: u', u'', u'''

Now, for those few who pay attention [to such details], one will easily see that the first fundamental equation (E) may be put in the form $\sum mV^{'}U^{'} + \sum mV^{''}V^{''} + \sum mV^{'''}U^{'''} = 0$, & the second, (F), in the form $\sum mu^{'}U^{'} + \sum mU^{'''}U^{'''} = 0$.

(57)

+ fm u" U" + fm u " U" = 0, parce qu'en général toute quantité qui est le produit de deux vîtesses A & B, par le cosinus de l'angle compris entre elles, est égale à la somme de trois autres produits A' B' + A" B" + A" B" + A" B" ; A', A", A", étant la vîtesse A estimée de ces trois axes, & B' B" B" étant la vîtesse B estimée dans le sens de ces mêmes axes; c'est-à-dire A' étant la vîtesse A, & B' la vîtesse B, estimées parallelement au premier de ces axes; A" & B" les mêmes vîtesses A & B estimées parallelement au second axe; A" & B" les mêmes vîtesses parallelement au troisieme axe: ce qui se prouve aisément par les éléments de géométrie.

Dans le cas d'équilibre, la premiere de ces équations transformées se réduit à o = o, & la feconde, à cause que dans ce cas W = U devient $\int m u' W' + \int m u'' W'' = o$, laquelle exprime toutes les conditions de l'équi-

libre.

Lorsque le mouvement change par degrés infenfibles, nous avons trouvé (XXV) que les équations fondamentales deviennent [m V p d t cof $R - \int m V dV = 0$, & $\int m u p dt \cos r - \int m u d$ $(V \operatorname{cof} y) = 0$; donc en décomposant p en trois autres forces paralleles aux trois axes, si ces forces composantes sont désignées par p', p", p'", les équations précédentes deviendront, la premiere, fmV'p'dt+fmV"p"dt+fmV"1 $p'''dt = \int mV'dV' + \int mV''dV'' + \int m$ V III d V III, & la feconde, fmu p'dt+fmu " $p''dt + \int m u''' p''' dt = \int m u' dV' + \int m u''$ dV"+fmu"dV"; enfin, dans le cas d'équilibre, la premiere s'évanouira, & la seconde se réduira à $\int m u' p' + \int m u'' p'' + \int m u'''$ p''' = 0.

 $+\sum mu''U''+\sum mu'''U'''=0$, because in general any quantity which is the product of two speeds, A & B, with the cosine of the angle between them, is equal to the sum of the three products A'B'+A''B''+A'''B''' (A',A'',A''' being the speed [components of] A referred to the three axes, & B',B'',B''', being the speed [components of] B referred to the same [three] axes. That is, A' being the speed [component of] A, & B' the speed [component of] B, estimated parallel to the first of these axes; A'' & B'' the same speed [components of] A & B estimated parallel to the second axis; A''' & B''' the same speed [components] estimated parallel to the third axis - all of which is easily proved from the elements of geometry—.

In the case of equilibrium, the first of these transformed equations reduces to 0=0, & the second (because in this case W=U) becomes $\sum mu'W' + \sum mu''W'' + \sum mu'''W''' = 0$ - which expresses all the conditions of equilibrium.

When the motion changes by insensible degrees, we have found (XXV) that the fundamental equations become $\sum mVpdtcosR - \sum mVdV = 0$, & $\sum mupdtcosr - \sum mud(Vcosy) = 0$. Therefore, in decomposing p into three other forces parallel to three axes, if these component-forces are designated by p', p'', p''', the preceding equations become: the first, $\sum mV'p'dt + \sum mV''p''dt + \sum mV''p''dt + \sum mV''p''dt + \sum mV''p''dt + \sum mU''p''dt + \sum mU'''p''dt + \sum mU''p''dt + \sum mU'''p''dt + \sum mU'''p'''dt + \sum mU'''p'''dt + \sum mU'''p'''dt + \sum mU'''p'''dt + \sum mU''''p'''dt + \sum mU''''p'''dt + \sum mU''''p'''dt +$

^{*}Typographic error corrected from u'' to u''' in the preceding expression.

(58)

Remarque II.

XXVIII. Jusqu'ici j'ai regardé les fils, verges, leviers, &c. comme des corps faisant eux-mêmes partie du système. Et cette hypothese est entiérement conforme à la nature; mais une chose qu'il est indispensablement nécessaire d'observer. c'est qu'a parler strictement, il n'y a probablement dans l'univers aucun point absolument fixe. aucun obstacle absolument immobile; l'hypomochlion d'un levier ne paroît tel, que parce qu'il est appuyé sur la terre qui n'est point fixe ellemême, mais dont la masse est presque infiniment grande en comparaison de celles dont on considere ordinairement dans les Machines l'action & la réaction les unes fur les autres : pour déplacer l'hypomochlion d'un levier, il faut donc aussi mettre en mouvement le globe de la terre; & il y est en effet, quelque foibles que toient les puisfances qui agissent sur la Machine; la quantité de mouvement qu'elles lui procurent, est égale à la réfistence de l'hypomochlion; mais cette quantité finie de mouvement, se distribuant dans une masse presque infiniment grande, il en réfulte à cette masse une vîtesse presque infiniment petite, & voilà pourquoi ce mouvement n'est pas sensible, & peut se négliger dans la pratique.

Il suit de-là que ce qu'on appelle obstacles immobiles en méchanique, ne sont autre chose que des corps dont la masse est si considérable, & par conséquent la vîtesse si petite, que leur mouvement ne peut être observé: ce sera donc se rapprocher de la nature, que de considérer les obstacles ou points sixes, comme des corps mobiles aussi bien que tous les autres, mais d'une

Remark II.

XXVIII. Until now I have regarded the threads, rods, levers, &c. as bodies being themselves part of the system. And this hypothesis conforms completely to nature. However one thing which it is indispensably necessary to take note of is the fact that, strictly speaki-ng, there is probably no absolutely fixed point in the universe, and no absolutely immovable obstacle. The fulcrum of a lever does not appear [as an absolutely fixed point] because it pushes against the Earth which is itself not fixed, but whose mass is almost infinitely great in comparison with those one ordinarily considers in Machines acting on each other. In order to displace the fulcrum of a lever one requires, therefore, to put in motion as well the [whole] globe [(spherical mass)] of the Earth. There are, in effect, certain weak forces that act on this Machine [the lever]; the quantity of motion which they provide is equal to the [reaction at] the fulcrum, and this [quantity of motion] being distributed in a mass almost infinitely great results in a speed almost infinitely small in that mass - & that is why this motion is not detectable, & may be neglected in practice.

It follows from this that what one calls immovable obstacles in mechanics are nothing else than bodies whose mass is so great, & consequentially whose speed is so small, that their motion cannot be observed it will be closer to nature to consider these obstacles or fixed points as bodies, mobile like all the others, but of

(59)

masse infiniment grande, ou ce qui revient au même, comme des corps d'une densité infinie, & qui ne différent qu'en ce point de tous les autres corps du système. Il résultera de-là un avantage confidérable, c'est qu'on pourra faire prendre au système où entreront ces corps, des mouvements quelconques géométriques; car dès qu'on supposera ces obstacles mobiles comme tous les autres corps, ils deviendront susceptibles de prendre des mouvements quelconques; & le fystême général devra être regardé comme un assemblage de corps parfaitement mobiles : en conséquence, les quantités de mouvement, absorbées par les obstacles, pourront s'évaluer comme pour toutes les autres parties du système: de sorte que si l'on appelle R la résistance d'un point fixe donné, cette quantité R fera dans l'équation (F) pour le point en question, ce qu'est m U pour le corps m: on trouvera donc par cette équation cette même quantité R comme toutes les autres forces m U, ce qui n'auroit pu se faire en considérant les obstacles comme absolument immobiles, sans avoir recours à quelque nouveau principe méchanique, qu'il auroit fallu faire concourir avec l'équation générale (F) pour parvenir à la folution complete de chaque problème particulier : ainfi cette maniere de considérer les points fixes, est non-seulement la plus conforme à la nature, comme nous l'avons dit ci-deffus, mais encore la plus simple & la plus facile.

Quant aux fils, verges ou autres portions quelconques du système dont les masses pourront être supposées infiniment petites, on pourra les négliger, c'est-à-dire, supposer chacune de leurs molécules m égale à zéro, ou ce qui revient au

infinitely great mass or, what comes to the same thing, as bodies of infinite density & which differ only in this regard from all the other bodies in the system. This yields a considerable advantage, which is that one can give a system which includes such bodies any geometric motions [one likes]; because as soon as one supposes these mobile obstacles to have the same properties as all other bodies, they will be susceptible to take up whatever motions, & [then] the general system may be considered as an assemblage of perfectly mobile bodies. In consequence, the quantities of motion absorbed by the obstacles can be evaluated in the same way as for other parts of the system.

Thus, calling the resistance of a given fixed point R, then this quantity R will be, for the point in question, what mU is for the body m. One will therefore find R by this equation in the same way as we find all the other forces, mU, which we would not have been able to do in considering the obstacles as absolutely immobile, without having recourse to some new principle of mechanics, which must then be used concurrently with the general equation (F) to arrive at the complete solution of each specific problem. Therefore this method of considering fixed points is not only the most congruent with nature, as we have said above, but is as well the simplest & the easiest.

As for the threads, rods or whatever other kind of system-parts whose masses are supposed to be infinitely small, one will be able to neglect them [the masses], that is to say, to suppose that each of their molecules's m equals zero, or what comes to

(60)

même, regarder leur densité comme infiniment petite ou nulle; notre équation (F) deviendra donc ainsi indépendante de ces quantités, c'està-dire la même que si l'on eût fait abstraction de la masse de ces corps; & c'est ainsi qu'on trouvera aisément la théorie mathématique de chaque Machine, c'est-à-dire en faisant les abs-

tractions dont on a parlé (VIII).

X X I X. De cette remarque, il résulte que quoiqu'il n'y ait qu'une seule espece de corps dans la nature, on les distingue cependant, pour la facilité des calculs, en trois classes disférentes, qui font, 1°. ceux qu'on considere tels qu'ils sont en effet & que la nature nous les offre, c'està-dire qui sont d'une densité finie; 2°. ceux auxquels on attribue une densité infiniment grande, & qui par cette raison, doivent être regardés comme sensiblement fixes & immobiles; 30. ceux auxquels on attribue une denfité infiniment petite ou nulle, & qui par conféquent n'opposent par leur inertie aucune résistance à leur changement d'état : on regarde ordinairement comme tels dans la pratique, les fils, verges, leviers & généralement tous les corps qui n'influent pas sensiblement par leur propre masse, aux changements qui arrivent dans le système, mais qui font seulement regardés comme des moyens de communication entre les différents agents qui le composent.

Remarque III.

XXX. Après avoir traité de l'équilibre & du mouvement en général, autant que mon objet principal pouvoit le permettre, je vais passer à ce qui regarde plus particuliérement ce qu'on

the same thing, to regard their density as infinitely small or null. Our equation (F) will then become independent of these quantities, that is to say, it is the same as if we had ignored the mass of these bodies. It is in this way that we will easily find the mathematical theory of each Machine, that is [by making] the abstractions of which we spoke [earlier] (VIII).

XXIX. From this remark, there follows the consequence that, although there is only one type of body in nature, one can [nevertheless] divide them up, for ease of calculation, into three different classes, which are: 1st, those that one considers as they in fact are & as nature offers them up to us (that is to say, [those] which have finite density); 2nd, those to which one attributes an infinitely great density & which, for this reason, have to be regarded, for all practical purposes, as fixed & immobile; 3rd, those to which one attributes an infinitely small or null density & in consequence of which have no [inertial] resistance to changing their state. In practice, one ordinarily regards as such: threads, rods, levers, & generally all bodies which (by virtue of their [relatively miniscule] mass) offer no detectable influence to changes which occur in the system but which are regarded as the means of communication between the different agents which compose it.

Remark III.

XXX. After having treated equilibrium & motion in general, as much as my main aim allows me, I am going to pass on to the particular consideration of what [exactly] is

(61)

entend communément par Machines; car quoique la théorie de toute espece d'équilibre & de mouvement rentre toujours dans les principes précédents, puisqu'il n'y a, suivant la premiere loi, que des corps qui puissent détruire ou modifier le mouvement des autres corps; cependant il v a des cas où l'on fait abstraction de la masse de ces corps, pour ne considérer que l'effort qu'ils font : par exemple, lorsqu'un homme tire un corps par un fil, ou le pousse par une verge, on n'introduit point dans le calcul la masse de cet homme, ni même l'effort dont il est capable, mais seulement celui qu'il exerce en effet sur le point auquel il est appliqué; c'est-à-dire la tenfion du fil, si c'est en tirant qu'il agit, ou la pression, si c'est en poussant; & sans considérer si c'est un homme ou un animal, un poids, un ressort, une résistance occasionnée par un obstacle ou par la force d'inertie d'un mobile (1), un frottement, une impulsion causée par le vent ou par un courant, &c. On donne en général le nom de puissance à l'effort exercé par l'agent, c'est-à-dire à cette pression ou tension par la-

⁽¹⁾ Un corps qu'on force à changer son état de repos ou de mouvement, résiste (XI) à l'agent qui prodnit le changement; & c'est cette résistance qu'on appelle sorce d'inertie: pour évaluer cette force, il faut donc décomposer le mouvement actuel du corps en deux, dont l'un soit celui qu'il aura l'instant d'après; car l'autre sera évidemment celui qu'il faudra détruire, pour sorcer le cops à son changement d'état; c'est-à-dire la résistance qu'il oppose à ce changement ou sa sorce d'inertie, d'où il est aisé de conclure, que la sorce d'inertie d'un corps, est la résultante de son mouvement actuel, & d'un mouvement égal & directement opposé à celui qu'il doit avoir l'instant suivant.

commonly understood by [the term] Machine because, although the theory of any type of equilibrium & of motion always comes back to the preceding principles, by the first law) only bodies can destroy or modify the motion of other bodies. However, there are cases where one neglects the mass of these bodies, and considers only the effort that they make. For example, when a man pulls a body by a thread, or pushes it with a rod, one does not include the mass of this man in the calculation, nor the effort [force] of which he is capable, but only that which he exerts in fact at the point of application. That is to say, the tension of the thread (if pulling is taking place), or pressure (if pushing), & without considering whether [the force arises from] a man or an animal, a weight, a spring, a resistance occasioned by an obstacle or by the force of inertia of a movable [body] (I), a rubbing, an impulse caused by the wind or by a current, &c. One gives in general, the name puissance to the effort exerted by the agent, that is to say, to this pressure or tension by which

⁽I) A body that one forces to change its state of rest or of motion resists (XI) the agent which produces the change, & it is this resistance which one calls the force of inertia. To evaluate this force it is necessary then to decompose the actual motion of the body into two parts, one of which is [the motion] that it will have the instant afterwards. [because] The other [part of the motion] will evidently be that which must be destroyed in order to force the body's change of state, that is to say, the 'resistance with which it opposes this change' or its 'force of inertia', from which it is easy to conclude, that *The force of inertia of a body is the resultant of its actual motion* & the motion equal & opposite to that which it must have the following instant.

(62)

quelle il agit sur le corps auquel il est lappliqué; & l'on compare ces différents efforts sans égard aux agents qui les produisent, parce que la nature des agents ne peut rien changer aux forces qu'ils font obligés d'exercer pour remplir les différents objets auxquels font destinées les Machines: la Machine elle-même, c'est-à-dire le système des points fixes, obstacles, verges, leviers & autres corps intermédiaires qui fervent à transmettre ces différents efforts d'un agent à l'autre; la Machine, dis-je, elle-même est considérée comme un corps dépouillé d'inertie; sa propre masse, lorsqu'il est nécessaire d'y avoir égard, soit à cause du mouvement qu'elle absorbe, soit à cause de sa pesanteur ou des autres forces motrices dont elle peut être animée, est regardée comme une puissance étrangere appliquée au système, en un mot, une Machine proprement dite, est un assemblage d'obstacles immarériels, & de mobiles incapables de réaction, ou privés d'inertie, c'est-à-dire (XXIX) un système de corps dont les denfités font infinies ou nulles : à ce système, on imagine que différents agents extérieurs, au nombre desquels on comprend la masse même de la Machine, sont appliqués, & se transmettent leur action réciproque par l'entremise de cette Machine: c'est la pression ou autre effort exercé par chaque agent sur ce corps intermédiaire, qu'on appelle force ou puissance, & c'est la relation qui existe entre ces dissérentes forces, dont la recherche est l'objet de la théorie des Machines proprement dites. Or, c'est sous ce point de vue, que nous allons maintenant traiter de l'équilibre & du mouvement; mais une force prise dans ce sens, n'en est pas moins une quantité de mouvement perdue par l'agent

it acts on the body to which it is applied; & one compares these different efforts without regard to the agents that produce them as the nature of these agents can change nothing about the forces which they are obliged to exert in order to fulfill the various purposes that the Machines are [designed] for. The Machine itself, that is to say, the system of fixed points, barriers, rods, levers & other intermediary bodies which serve to transmit these different efforts from one agent to another - the Machine, I say, is of itself considered as a body stripped of inertia. Its real mass, when it is necessary to consider it, either because of the motion which it absorbs, or because of the weightiness or other motive forces which can be active, is regarded as a foreign puissance applied to the system. In a word, a Machine proper is an assemblage of immaterial barriers & movable bodies incapable of reaction or deprived of inertia, that is to say (XXIX), a system of bodies having infinite or zero density. To this system one imagines that different external agents, among which one considers the mass of the Machine, are applied & transmit their reciprocal action by the intervention of this Machine. It is the pressure or other effort exerted by each agent on this intermediate body that one calls force or puissance, & it is the relationship between these different forces the study of which is the object of the theory of Machines proper. Well, it is from this point of view, that we are now going to treat equilibrium & motion; but a force taken in this sense is nonetheless a quantity of motion lost by the agent

(63)

qui l'exerce, quel que puisse être d'ailleurs cet agent; qu'il agisse tur la Machine en la tirant par un cordon, ou en la poussant par une verge, la tension de ce cordon, ou la pression de cette verge, exprime également & l'effort qu'il exerce fur la Machine, & la quantité de mouvement qu'il perd lui-même par la réaction qu'il éprouve : fi donc on appelle F cette force, cette quantité F sera la même chose que celle qui est exprimée par m U dans nos équations (1); donc si l'on appelle aussi Z, l'angle compris entre cette force F & la vîtesse u, qu'auroit le point où on la suppose appliquée, si l'on faisoit prendre au syftême un mouvement quelconque géométrique, l'équation générale (F) deviendra f Fu cof Z = o (AA). C'est donc sous cette forme que nous emploierons déformais cette équation, au moyen de quoi on pourra appliquer ce que nous dirons, à quelle espece de force on voudra imaginer; & les principes exposés dans cette premiere partie, nous serviront à développer les pro-

⁽¹⁾ Il est évident que la quantité de mouvement perdue m U, est la résultante du mouvement qu'auroit eu l'instant d'après le corps m, s'il eût été libre, & du mouvement égal & directement opposé à celui qu'il prendra réellement; or, le premier de ces deux mouvements, est lui-même la résultante du mouvement actuel de m, & de sa force motrice absolue; donc m U est la résultante de trois forces qui sont : sa force motrice abfolue, fa quantité actuelle de mouvement, & la quantité de mouvement égale & directement opposée à celle qu'il doit avoir l'instant d'après; mais suivant la note précédente, ces deux dernieres quantités de mouvement ont pour réfultante la force d'inertie; donc m U ou F est la réfultante de la force motrice de m & de sa force d'inertie; c'est-à-dire que la force exercée par un corps quelconque, à chaque instant est la résultante de sa force motrice absolue, & de sa force d'inertie.

which exerts it, no matter whatever this agent might be in other respects. Whether it acts on the Machine in pulling it by a cord or in pushing it by a rod, the tension of this cord or the pressure of this rod expresses equally the effort which it exerts on the Machine, & the quantity of motion that it itself loses by the reaction which it experiences. If therefore one calls this force F then this quantity F will be the same thing as that which is expressed by mU in our equations (I). Therefore if one calls Z the angle between this force F & the speed u, at what would be the point where it is supposed to be applied, [then] if one were to give the system any geometric motion whatever, the general equation (F) becomes $\sum Fucos Z = 0$ (AA). It is therefore in this form that we will employ this equation from now on, by means of which we can apply what we say to any type of force we can imagine; & the principles displayed in this first part, will serve us to develop the

⁽I) It is evident that the quantity of motion lost, mU, is the resultant of the motion which the body m would have had the instant after if it had been free, & motion equal & directly opposite to that which it really takes. Now the first of these two motions is itself the resultant of the actual motion of m & of the absolute motive force. Thus mU is the resultant of three forces which are its absolute motive force, its actual quantity of motion, & the quantity of motion equal & directly opposite to that which it must have the instant after. However, following the preceding note, the resultant of these last two quantities of motion is the force of inertia; thus mU or F is the resultant of the motive force of m & of its force of inertia. In other words, the force exerted by any body, at each instant, is the resultant of its absolute motive force, & of its force of inertia.

(64)

priétés générales des Machines proprement dites, qui font l'objet de la seconde.



SECONDE PARTIE.

Des Machines proprement dites.

DÉFINITIONS.

XXXI. PARMI les forces appliquées à une Machine en mouvement, les unes sont telles, que chacune d'entr'elles fait un angle aigu avec la vitesse du point où elle est appliquée; tandis que les autres forment des angles obtus avec les leurs : cela posé, j'appellerai les premieres forces mouvantes ou sollicitantes; & les autres, forces resssances: par exemple, si un homme fait monter un poids par le moyen d'un levier, d'une poulie, d'une vis, &c. il est clair que la pesanteur & la vîtesse du poids forment nécessairement, par leur concours, un angle obtus; autrement il est visible que le poids descendroit au lieu de monter; mais la puissance motrice & sa vîtesse forment un angle aigu; ainfi, suivant notre définition, le poids sera la force résistante, & la force de l'homme sera sollicitante : il est visible en effet, que celle-ci tend à favoriser le mouvement actuel de la Machine, tandis que l'autre s'y oppose.

On observera que les forces sollicitantes peuvent être dirigées dans le sens même de leurs vîtesses, puisqu'alors l'angle formé par leurs concours est nul, & par conséquent aigu; & que les forces résistantes peuvent agir dans le sens

general properties of Machines proper, which is the object of the second part.

SECOND PART.

Machines Proper.

DEFINITIONS.

XXXI. Among the forces applied to a Machine in motion, some are such that they make an acute angle with the speed (at the point where they are applied), while the others form obtuse angles with theirs. This posed, I will call the first – *moving forces* or *soliciting forces*, & the others – *resisting forces*. For example, if a man makes a weight rise by means of a lever, a pulley, a screw &c., it is clear that the force-weight & speed of the weights necessarily form an obtuse angle by the fact that they oppose each other (they are in competition) – were this not the case, it is obvious that the weight would descend instead of rising – whereas [in the case of motive force] the motive force & its speed form an acute angle. Therefore, by our definition, the weight will be the *resisting force* & the man will be the *soliciting force*. It is indeed obvious that this [(*soliciting force*)] tends to further the actual motion of the Machine, while the other [(*resisting force*)] opposes it.

We will observe that the soliciting forces can be directed in the same directions as their speeds, (as then the angle formed by their paths is null & in consequence acute), & that the resisting forces can act in the sense

(65)

fens directement opposé à celui de leurs vîtesses puisqu'alors l'angle formé par leurs concours,

est de 180°, & par conséquent obtus.

Il est à remarquer encore, que telle force qui est sollicitante, pourroit devenir résistante, si le mouvement venoit à changer ; que telle force qui est résistante à un certain instant, peut devenir sollicitante à un autre instant, & qu'enfin pour en juger à chaque instant, il faut confidérer l'angle qu'elle fait avec la vitesse du point où on la suppose appliquée; si cet angle est aigu, la force sera follicitante; & s'il est obtus, elle fera réfistante, jusqu'à ce que l'angle en question vienne à changer. On voit par-là, que si on fait prendre un mouvement géométrique à un système quelconque de puissances, chacune d'elles sera sollicitante ou résistante à l'égard de ce mouvement géométrique, suivant que l'angle formé par cette force, & sa vitesse géométrique sera aign on obtus.

XXXII. Si une force P se meut avec la vîtesse u, & que l'angle formé par le concours de u & P soit z, la quantité P cos zudt dans laquelle dt exprime l'élément du temps, sera nommée moment d'activité, consommé par la force P pendant dt; c'est-à-dire que le moment d'activité, consommé par une force P, dans un temps infiniment court, est le produit de cette force estimée dans le sens de sa vîtesse, par le chemin que décrit dans ce temps infiniment court, le

point où elle est appliquée.

J'appellerai moment d'activité, consommé par cette force, dans un temps donné, la somme des moments d'activité, consommés par elle à chaque instant, de sorte que s P cos z u d t est le moment d'activité, consommé dans un temps

directly opposite to their speeds, – as then the angle formed by their paths is 180°& consequently obtuse.

Again, it is to be noticed that a force that is soliciting could become resisting if the motion changed, and that a force that is resisting at a certain instant may become soliciting in another instant; & finally, in order to determine which it is at any instant, it is necessary to consider the angle which it [the force] makes with the speed (at the point where it is supposed applied); if this angle is acute, the force will be soliciting; & if it is obtuse, it will be resisting, until the angle in question changes. One sees from this that if one gives a geometric motion to any system of forces, each of these will be *soliciting* or *resisting* in regard to the geometric motion, depending on whether the angle formed by this force, & its geometric speed will be acute or obtuse.

XXXII. If a force P moves with speed u, & the angle formed by the directions of u & P is z, the quantity Pcoszudt in which dt expresses the element of time, will be named moment of activity 43 consumed by the force P during dt. That is to say, the moment of activity consumed by a force, P, in an infinitely short time, is the product of this force (in the direction of the speed) and the distance undertaken (from the point of application) in this infinitely short time.

I will denominate by *moment of activity*, consumed by this force, in a given time, the sum of moments of activity, consumed by it at each instant, such that $\sum Pcoszudt$ is the *moment of activity*, consumed in some indeterminate time.⁴⁴

Ε

(66)

indéterminé par elle; par exemple, si P est un poids, le moment d'adivité, consommé dans un temps indéterminé t, sera P su dt cos z; supposons donc qu'après le temps t, le poids P foit descendu de la quantité H, on aura évidemment dH = udt cos z; donc le moment d'adivité, consommé pendant dt sera P s dH = PH.

XXXIII. Lorfqu'il s'agira d'un système de forces appliquées à une Machine en mouvement, j'appellerai moment d'activité, consommé par toutes les forces du système, la somme des moments d'activité, consommés en même temps par chacune des forces qui le composent; ainsi le moment d'activité, consommé par les forces sollicitantes, sera la somme des moments d'activité, confommés en même temps par chacune d'elles, & le moment d'activité, consommé par les forces résistantes, sera la somme des moments d'activité, consommés par chacune de ces forces : & comme chaque force réfistante fait un angle obtus avec la direction de sa vîtesse; le cosinus de cet angle est négatif; le moment d'activité, consommé par les forces résistantes, est donc aussi une quantité négative; & partant, le moment d'activité, consommé par toutes les forces du système, est la même chose que la différence entre le moment d'activité, consommé par les forces sollicitantes, & le moment d'activité, consommé en même temps par les forces réfistantes, confidéré comme une quantité positive.

Une force estimée dans un sens directement opposé à celui de sa vîtesse, & multipliée par le chemin que décrit dans un temps infiniment court, le point où elle est appliquée, s'appellera moment d'activité produit par cette force dans

For example, if P is a weight, the *moment of activity*, consumed in some indeterminate time t, will be $P \sum udtcosz$. Let us therefore suppose that after a time t the weight P descends by a quantity H. Then one evidently has dH = udtcosz, and therefore the *moment of activity* consumed during dt will be $P \sum dH = PH$.

XXXIII. When a system of forces is applied to a Machine in motion, I will call *moment of activity* consumed by all forces of the system, the sum of *moments of activity* consumed at the same time by each of these system-forces. Thus the *moment of activity* consumed by the soliciting forces will be the sum of the *moments of activity* consumed at the same time by each of them, & the *moment of activity* consumed by the resisting forces will be the sum of the *moments of activity* consumed by each of these forces: & as each resisting force makes an obtuse angle with the direction of its speed, the cosine of this angle is negative, and the *moment of activity* consumed by these resisting forces is therefore a negative quantity. Thus the *moment of activity* consumed by *all* the forces of the system is the same thing as the difference between the *moments of activity* consumed by the soliciting forces & the *moment of activity* consumed at the same time by the resisting forces, considered as a positive quantity.

A force calculated in the direction [directly] opposed to that of its speed, & multiplied by the path (at the point of application) described in an infinitely small time, will be called the *moment of activity* produced by this force in

(67)

ce temps infiniment court: de sorte que le moment d'activité, consommé, & le moment d'activité, produit, sont deux quantités égales, mais de signes contraires; & qu'il y a entr'elles une différence analogue à celle qu'on trouve (XXI) entre les moments de quantité de mouvement, gagnées & perdues, par un corps, à l'égard d'un mou-

vement géométrique.

Je donnerai aussi le nom de moment d'activité, exercé par une force, à ce que j'ai appellé son moment d'activité, consommé, si elle est sollicitante, & à ce que j'ai appellé son moment d'activité, produit, si elle est résistante; ainsi le moment d'activité, exercé par une force quelconque, dans un temps infiniment court, est en général le produit de cette force, par le chemin qu'elle décrit dans ce temps infiniment court, & par le cosinus du plus petit des deux angles sormés par les directions de cette force & de sa vîtesse; d'où il suit évidemment que ce moment d'activité, exercé, est toujours une quantité positive.

On fera, à l'égard des quantités que nous venons d'appeller moments d'adivité, produits, & moments d'adivité, exercés, les mêmes remarques femblables à celles que nous avons faites cidessus, au sujet du moment d'adivité, consommé par une puissance ou un système de puissances, dans un temps donné.

Ces définitions admifes, je passe au principe général de l'équilibre & du mouvement dans les Machines proprement dites, & dont la recherche

a été le principal objet de cet Esfai.

Here!

this infinitely short time. So the *moments of activity, consumed* & the *moment of activity, produced* are two equal quantities but with contrary signs. There is between them a difference analogous to that which one finds (XXI) between *moments of the quantity of motion, gained* & *lost* by a body - with respect to its geometric motion.

I will also give the name moment of activity, exerted by a force, to that which I have called moment of activity, consumed if it is soliciting, & to that which I have called its moment of activity, produced if it is resisting. Thus the moment of activity, exerted by any force, in an infinitely short time, is in general the product of this force and the distance which it describes in this infinitely short time, & by the cosine of the smaller of the two angles formed by the directions of this force & its speed from which it evidently follows that this moment of activity, exerted, is always a positive quantity.

We will make, in respect of the quantities which we have just denominated moments of activity, produced, & moments of activity, exerted, similar remarks to those which we have made above, on the subject of the moment of activity, consumed by a force or a system of forces in a given time.

Admitting these definitions, I pass on to the general principle of equilibrium & motion in Machines proper, & whose study has been the principal object of this Essay.

E ij

-envelope et al. (68)

THÉORÈME FONDAMENTAL.

Principe général de l'équilibre & du mouvement dans les Machines.

XXXIV. Quel que soit l'état de repos ou de mouvement où se trouve un système quelconque de forces appliquées à une Machine, si on lui fait prendre tout-à-coup un mouvement quelconque géométrique, sans rien changer à ces forces, la somme des produits de chacune d'elles, par la vitesse qu'aura dans le premier instant le point où elle est appliquée, estimée dans le sens de cette force, sera égale à zéro.

C'est-à-dire donc qu'en nommant F chacune de ces forces (1), u la vîtesse qu'aura au pre-

⁽¹⁾ Il ne sera peut-être pas inutile de prévenir une objection qui pourroit se présenter à l'esprit de ceux qui n'auroient pas fait attention à ce qui a été dit (XXX) sur le vrai sens qu'on doit attacher au mot force : imaginons, par exemple, dira-t-on, un treuil à la roue & au cylindre duquel foient suspendus des poids par des cordes; s'il y a équilibre, ou que le mouvement soit uniforme, le poids attaché à la roue, sera à celui du cylindre, comme le rayon du cylindre est au rayon de la roue; ce qui est conforme à la proposition. Mais il n'en est pas de même lorsque la Machine prend un mouvement accéléré ou retarde; il paroît donc qu'alors les forces ne sont pas en raison réciproque de leurs vitesses estimées dans le sens de ces forces, comme il suivroit de la proposition. La réponse à cela, est que dans le cas où ce mouvement n'est pas uniforme, les poids en question ne sont pas les seules forces exercées dans le système, car le mouvement de chaque corps, changeant continuellement, il oppose aussi à chaque instant, par son inertie, une résistance à ce changement d'état; il faut

FUNDAMENTAL THEOREM.

General Principle of equilibrium & of motion in Machines

XXXIV. Whatever the state of rest or of motion found in any system of forces applied to a Machine, if we suddenly give it [the system] an arbitrary geometric motion, without changing these forces, [then] the sum of the products of each force and each [initial] speed [when taken from the point of application, and in the direction of the force,] will be equal to zero. 45

That is to say, therefore, that in naming by, F, each of these forces (1), u the speed

(1) It will perhaps not be useless to forestall an objection that may present itself to the mind of those who have not paid attention to what has been said (XXX) on the true sense that must be attached to the word force. Let us imagine, for example, say, a winch to the wheel & drum of which weights are suspended by cords. If there is equilibrium, or the motion is uniform, then the ratio of weights attached to the wheel & to the cylinder, will be the same as the ratio of cylinder-radius to wheel-radius - and this is consistent with the proposition. But it is not the same when the Machine has an accelerated or a retarded motion. It appears then that these forces are [no longer] in the reciprocal ratio of their speeds (speeds as estimated [calculated] in the direction of these forces), as would follow from the proposition. The reply to this is that, in the case where the motion is not uniform, the weights in question are not the only forces exerted in the system, because the motion of each body, changing continually, opposes at each instant, by its inertia, a resistance to this change of state. We must

(69)

mier instant le point où elle est appliquée, si l'on fait prendre à la Machine un mouvement géométrique, & z l'angle compris entre les directions de F & de u, il faut prouver qu'on aura pour tout le système $\int Fu \cos z = 0$. Or, cette équation est précisément l'équation (AA) trouvée (XXX) laquelle n'est autre chose au fond que l'équation même fondamentale (F), préfentée sous une autre forme.

Il est aisé d'appercevoir que ce principe général n'est, à proprement parler, que celui de Descartes, auquel on donne une extension sussidante, pour qu'il renserme non-seulement toutes les conditions de l'équilibre entre deux forces, mais encore toutes celles de l'équilibre & du mouvement, dans un système composé d'un nombre

donc aussi tenir compte de cette résistance. Nous avons déjà dit (XXX. V. la note), comment cette force doit s'évaluer, & nous verrons plus bas (XLI), comment on doit la faire entrer dans le calcul. En attendant, il suffit de remarquer que les forces appliquées à la Machine dont il est ici question, ne sont pas les poids même, mais les quantités de mouvement perdues par ces poids (XXX), lesquelles doivent s'estimer par les tensions des cordons auxquels ils font suspendus: or, que la Machine soit en repos ou en mouvement, que ce mouvement soit uniforme ou non, la tension du cordon attaché à la roue, est à celle du cordon attaché au cylindre, comme le rayon du cylindre est au rayon de la roue, c'est-à-dire que ces tensions sont toujours en raison réciproque des vitesses des poids qu'ils foutiennent; ce qui est d'accord avec la proposition. Mais ces tensions ne sont pas égales aux poids; elles sont (XXX. V. la note) les résultantes de ces poids & de leurs forces d'inertie, lesquelles sont ellesmême (XXX. V. la note) les réfultantes des mouvements actuels de ces corps, & des mouvements égaux & directement opposes à ceux qu'ils prendront réellement l'inftant d'après.

at the first point of application, & z the angle between the directions of F & u, and if one imparts a geometric motion to the Machine, then it must be proved that for the whole system $\sum Fucosz = 0$. But, this equation is precisely equation (AA) found in (XXX), which is nothing else at root but the same fundamental equation (F), presented in a different form.

It is easy to perceive that this general principle is only, properly speaking, that of Descartes to which one gives a sufficient generalisation, for it to include not only all the conditions between two forces, but as well all those of equilibrium & motion in a system composed of any number

therefore also take account of this resistance. We have already said (XXX - see the note), how this force must be evaluated, & we will see later (XLI), how one must make it enter into the calculation. Pending this, it suffices to remark that the forces applied to the Machine in question here are not given by the weights but by the quantities of motion lost by the weights (XXX) - to be estimated by the tensions of the cords by which they are suspended. However, whether the Machine is at rest or in motion, and whether the motion is uniform or not, the tension of the cord attached to the wheel is to that of the cord attached to the cylinder, as the radius of the cylinder is to the radius of the wheel - that is to say, the tensions are always in reciprocal ratio to the speeds of the weights they support. This is in accord with the proposition. But these tensions are not equal to the weights; they are (XXX-see the note) the resultants of these weights and their forces of inertia, which are themselves the resultants of the actual motions of the bodies & the equal & directly opposed motions to those they actually have the instant afterwards.

Eiij

(70)

quelconque de puissances : aussi la premiere conféquence de ce théorême, sera ce principe de Descartes, rendu complet par les conditions que nous avons vu lui manguer (V).

Corollaire I.

Principe général de l'équilibre entre deux puissances.

XXXV. Lorsque deux agents quelconques, appliqués à une Machine, se font mutuellement équilibre; si on fait prendre à cette Machine un mouvement géométrique, arbitraire; 2°. les forces exercées par les agents, seront en raison réciproque de leurs vitesses estimées dans le sens de ces forces ; 2°. l'une de ces puissances fera un angle aigu avec la direction de sa vitesse, & l'autre, un angle obtus

avec la sienne.

Car fi les forces exercées par les agents, font nommées F & F', leurs vîtesses u & u', les angles formés par ces puissances & leurs vîtesses z & z', on aura par le théorême précédent, Fu $\operatorname{cof} z + F'u' \operatorname{cof} z' = 0$; donc F: F':: u' cof z': u cof z, qui est la proportion énoncée par la premiere partie de ce corollaire, & par laquelle on voit en même temps que le rapport de cof z à cof z', est négatif; d'où il suit que l'un de ces angles est nécessairement aigu, & l'autre obtus.

of forces. Also, the first consequence of this theorem will be the principle of *Descartes*, rendered complete by the conditions that we have seen were omitted by him (V).

Corollary I.

General principle of equilibrium between two forces.

XXXV. When any two agents⁴⁶ are applied to a Machine and are mutually in equilibrium, then, if one imparts to this Machine an arbitrary geometric motion 1st, the forces exercised by these agents are in the reciprocal ratio of their speeds as estimated in the direction of these forces; 2nd, one of these forces will be at an acute angle with the direction of its speed, & the other, an obtuse angle with its speed.

Because if these forces exerted by the agents are named F & F', their speeds u & u', the angles formed by these forces & their speeds z & z', one will have by the preceding theorem, Fucosz + F'u'cosz' = 0. Therefore F : F' :: -u'cosz' : ucosz, which is the proportion stated in the first part of this corollary, & by which one sees at the same time that the relationship of cosz to cosz' is negative; from which it follows that one of the angles is necessarily acute, & the other obtuse.

(71)

Corollaire I I.

Principe général d'équilibre dans les Machines à poids.

XXXVI. Lorsque plusieurs poids appliqués à une Machine quelconque, se sont mutuellement équilibre, si l'on fait prendre à cette Machine un mouvement quelconque géométrique, la vitesse du centre de gravité du système, estimée dans le sens vertical,

sera nulle au premier instant.

Car si l'on appelle M la masse totale du système, m celle de chacun des corps qui le composent, u la vitesse absolue de m, V la vitesse du centre de gravité estimée dans le sens vertical, g la gravité, z l'angle formé par u & par la direction de la pesanteur, on aura, suivant le théorême, f m g u cos z = o, mais par les propriétés géométriques du centre de gravité, on a f m u d t cos z = M V d t, ou f m g u cos z = M V g; donc, puisque le premier membre de cette équation est égal à zéro, le second l'est aussi; donc V = o ce gu'il falloit prouver.

Pour avoir toutes les conditions de l'équilibre dans une Machine à poids, il n'y a donc qu'à faire prendre successivement à la Machine différents mouvements géométriques, & égaler dans chacun de ces cas, la vîtesse verticale du centre

de gravité à zéro.

Corollary II.

General principle of equilibrium in weight Machines.

XXXVI. When several weights applied to any Machine are mutually in equilibrium, and one imparts any geometric motion to this Machine, then the speed of the centre of gravity of the system, estimated in a vertical sense, will be zero in the first instant.

Because, if one calls M the total mass of the system, m that of each of the bodies that make it up, u the absolute speed of m, V the speed of the centre of gravity estimated in a vertical sense, g gravity, z the angle formed by u & by the direction of gravitational attraction, one will have (following the theorem), $\sum mgucosz = 0$, but by the geometric properties of the centre of gravity, one has $\sum mudtcosz = MVdt$, or $\sum mgucosz = MVg$. Therefore, since the first member of this equation is equal to zero, the second is also; therefore V = 0 which is what had to be proved.

To satisfy all the conditions for equilibrium in a weight Machine, it is therefore only necessary to consider successively different geometric motions of the Machine, & set the vertical speed of the centre of gravity to zero in each case.

E iv

(72)

Corollaire III.

Principe général de l'équilibre entre deux poids.

XXXVII. Lorsque deux poids se font mutuellement équilibre, si l'on fait prendre à la Machine un mouvement quelconque géométrique.

1°. Les vîtesses de ces corps, estimées dans le sens vertical, seront en raison réciproque de leurs

poids.

2°. L'un de ces corps montera nécessairement,

tandis que l'autre descendra.

Cette proposition est une suite manifeste du corollaire précédent, & se déduit plus évidem-

ment encore du corollaire premier.

On peut remarquer en passant, combien il est essentiel pour l'exactitude de toutes ces propositions, que les mouvements imprimés à la Machine soient géométriques, & non-pas simplement possibles; car la plus légere attention sera voir par quelque exemple particulier, que sans cette condition, toutes ces propositions seroient absurdes.

Remarque.

XXXVIII. On prend ordinairement pour principe de l'équilibre dans les Machines à poids, qu'alors le centre de gravité du système est au point le plus bas possible; mais on sait que ce principe n'est pas généralement vrai; car outre que ce point pourroit dans certains cas, être au point le plus haut, il y en a une infinité d'autres où il n'est ni au point le plus haut, ni au point

Corollary III.

General principle of equilibrium between two weights.

XXXVII. When two weights are in mutual equilibrium, if one imparts any geometric motion to the Machine.

1st The speeds of these bodies, taken in the vertical sense, will be in the reciprocal ratio of their weights.

2nd *One of the weights will necessarily rise, while the other descends*. This proposition is one manifestly following from the preceding corollary, & is deduced even more evidently than the first corollary.

One may remark in passing, how very essential it is for the accuracy of all these propositions, that the motions imparted to the Machine are geometric & not simply possible; because the merest glance will show (looking at certain specific examples) that without this condition all the propositions will be absurd.

Remark.

XXXVIII. One ordinarily understands that for the principle of equilibrium in weight Machines, the centre of gravity of the system is at the lowest point possible; but one knows that principle is not generally true because, besides certain cases where it can be the highest point, there are an infinity of other [cases] where it is neither the highest point nor the lowest point.

(73)

le plus bas: par exemple, si tout le système se réduit à un corps pesant, & que ce mobile soit placé sur une courbe qui ait un point d'inflexion, dont la tangente soit horisontale; il restera visblement en équilibre, si on le met sur ce point d'inflexion, qui n'est cependant ni le poids le plus bas, ni le point le plus haut possible.

On peut encore prendre pour principe de l'équilibre dans une Machine à poids, la proposition que nous avons déjà donnée (II), & que nous allons rapporter encore, pour en donner la dé-

monstration rigoureuse.

Pour s'assurer que plusieurs poids appliqués à une Machine quelconque, doivent se faire mutuellement équilibre, il sussit de prouver que si l'on abandonne cette Machine à elle-même, le centre de gravité du

système ne descendra pas.

Pour le prouver, nommons M la masse totale du système, m celle de chacun des poids qui le composent, g la gravité; & supposons que si la Machine ne demeuroit pas en équilibre, comme je prétends qu'elle doit le faire, la vitesse de m après le temps t, fût V, la hauteur dont seroit descendu le centre de gravité au bout du même temps H, & celle dont seroit descendu le corps mh; on aura donc, (XXIV) fmgdh - fmVdV = 0; donc en intégrant $MgH = \frac{1}{4} \int m$ V^2 ; or par hypothese H = 0, donc $\int m V^2$ = 0; de plus V² est nécessairement positive comme il est évident; donc l'équation f m V? = o ne peut avoir lieu fans qu'on n'ait V = 0, c'est-à-dire sans qu'il y ait équilibre; ce qu'il falloit prouver.

Il suit de-là, comme nous l'avons dir (III), qu'il y a nécessairement équilibre dans un système de poids dont le centre de gravité est au point

For example, if the whole system reduces to a heavy⁴⁷ body, & this movable body is placed on a curve which has a point of inflection whose tangent is horizontal, then it will manifestly stay in equilibrium if it is placed at the point of inflection, which is not, however, either the lowest or the highest possible point [for this weight].

We may again take as the principle of equilibrium in a weight-Machine the proposition which we have already given (II), & that we are going to state again, in order to prove it rigorously⁴⁸.

To be sure that several weights applied to any Machine are in mutual equilibrium, it is sufficient to prove that if the Machine is left to itself, the centre of gravity of the system will not descend⁴⁹.

To prove it, let us name M the total mass of the system, m that of each of the weights that compose it, g the acceleration due to gravity; & let us suppose that if the Machine does not stay in equilibrium, as I claim, then the speed of m after time t, would be V, the height that the centre of gravity would have descended in the same time H, & the height through which the bodies descended mh; we will therefore have, (XXIV) $\sum mgdh - \sum mVdV = 0$, and therefore after integrating $MgH = \frac{1}{2}\sum mV^2$. Yet by hypothesis H = 0, thus $\sum mV^2 = 0$ which cannot hold unless V = 0, that is to say, without there being equilibrium - which was what needed to be proved.

It follows from this, as we have said (III), that there is necessarily equilibrium in a system of weights whose centre of gravity is at the

(74)

le plus bas possible; mais nous venons de voir (XXXVIII) que l'inverse n'est pas toujours vraie, c'est-à-dire que toutes les sois qu'il y a équilibre dans un système de poids, il ne s'ensuit pas toujours que le centre de gravité soit au point le plus bas possible.

Corollaire IV.

Loix particulieres d'équilibre dans les Machines.

XXXIX. S'il y a équilibre entre plusieurs puissances appliquées à une Machine, & qu'ayant décomposé toutes les forces du système, tant celles qui sont appliquées à la Machine, que celles qui sont exercées par les obstacles mêmes ou points sixes qui en font partie; si on les décompose, dis-je, chacune en trois autres paralleles à trois axes quelconques perpendiculaires entre eux;

1°. La somme des forces composantes, qui sont paralleles à un même axe, & conspirantes vers un même côté, est égale à la somme de celles qui, étant paralleles à ce même axe, conspirent vers le côté

opposé:

2°. La somme des moments des forces composantes, qui tendent à faire tourner autour d'un même axe, & qui conspirent dans un même sens, est égale à la somme des moments de celles qui tendent à faire tourner autour du même axe, mais en sens con-

Pour démontrer cette proposition, commencons par imaginer qu'à la place de chacune des forces exercées par la résistance des obstacles, on substitue une force active, égale à cette ré-

lowest point possible; but we have seen (XXXVIII) that the inverse is not always true, that is to say, that every time there is equilibrium in a system of weights, it does not always follow that the centre of gravity is at the lowest point possible.

Corollary IV.

Specific laws of equilibrium in Machines.

XXXIX. If there is equilibrium between several forces applied to a Machine &, having decomposed all the forces of the system (those applied to the Machine, & those exerted by the barriers or fixed points in the Machine), if we decompose them, I say, each into three other forces parallel to any three mutually perpendicular axes then;

1st. The sum of the component forces, which are parallel to the same axis, & directed to the same side, is equal to the sum of those which, being parallel to the same axis, are directed towards the opposing side

2nd. The sum of the moments of the component forces, which tend to turn around the same axis & which act in the same direction, is equal to the sum of the moments of those which turn about the same axis, but in the opposite direction.

To prove this proposition, let us start by imagining that in place of the forces exerted by the resistance of barriers, we substitute an active force, equal to this

(75)

fistance, & dirigée dans le même sens; ce changement n'altere point l'état d'équilibre, & sait de la Machine un système de puissances parsaitement libre, c'est-à-dire dégagé de tout obstacle: cela posé, si l'on fait prendre à ce système un mouvement quelconque géométrique, on aura par le théorême fondamental $\int F u \cos z = 0$, en nommant F chacune des forces, u sa vîtesse, & z l'angle compris entre F & u; donc,

1°. Si l'on suppose que u soit la même pour tous les points du système & parallele à l'un des axes quelconque, le mouvement sera géométrique, & l'équation à cause de u constante, se réduira à $f F \cos z = 0$: c'est-à-dire que la somme des forces du système, estimées dans le sens de la vitesse u, imprimée parallelement à cet axe, sera nulle; ce qui revient évidemment à

la premiere partie de la proposition.

2°. Si l'on fait tourner tout le système autour de l'un, quelconque, des axes, sans rien changer à la position respective des parties qui le composent, ce mouvement sera encore géométrique; u sera proportionnelle à la distance de chaque puissance à l'axe; & partant, pourra s'exprimer par AR, R exprimant cette distance, & A une constante; donc, l'équation se réduira à f FR cos z = 0; ce qui, comme il est aisé de le voir, revient à la seconde partie de la proposition.

Corollaire V.

Loi particuliere concernant les Machines dont le mouvement change par degrés insensibles.

XLI. Dans une Machine dont le mouvemene

resistance, & directed in the same direction. This change does not alter the state of equilibrium, & makes the Machine into a system of perfectly free forces, that is to say, with no constraints operating. This assumed, if we impart to the system any geometric motion, we will have, by the fundamental theorem, $\sum Fucosz = 0$, (denominating the forces F, u the speed, & z the angle beween F & u; therefore

1st. If we suppose that u is the same for all points of the system & it is parallel to one or another axis, then the motion will be geometric, & the equation will reduce to $\sum F cosz = 0$ due to u being constant - that is to say, the sum of the forces in the system, estimated in the direction of the *speed* u and acting parallel to this axis, will be null. This evidently amounts to the first part of the proposition.

2nd. If we turn the system around any of these [Cartesian] axes, without any change to the respective positions of the parts which compose it, then this motion will be geometric; u will be proportional to the distance of each force to the axis & so can be expressed by AR, where R expresses this distance & A is a constant. Thus, the equation reduces to $\sum FRcosz = 0$ which, as is easy to see, amounts to the second part of the proposition.

Corollary V.

Specific law concerning Machines whose motion changes by insensible $degrees^{50}$.

XLI. In a Machine whose motion

(76)

change par degrés insensibles, le moment d'activité, consommé dans un temps donné par les forces sollicitantes, est égal au moment d'activité, exercé

en même temps par les forces résistantes.

C'est-à-dire (XXXIII), que le moment d'activité, consommé par toutes les forces du système, pendant le temps donné, est égal à zéro; ce qui sera clair (XXXII), si l'on prouve que le moment d'activité, consommé à chaque instant par ces forces, est nul: or, F exprimant chacune de ces forces, V sa vîtesse, Z l'angle compris entre F & V, & d t l'élément du temps, le moment d'activité, consommé par toutes les forces du système pendant d t, est (XXXIII), f F V cos Z d t; il faut donc prouver qu'on a f F V cos Z d t = 0, ou f F V cos Z = 0; or, cela est clair par le théorème fondamental: donc, & c.

La loi particuliere dont il s'agit ici, est certainement la plus importante de toute la théorie du mouvement des Machines proprement dites: en voici quelques applications particulieres, en attendant le détail où nous entrerons à son sujet, dans le scholie qui succédera au corollaire sui-

vant, & qui terminera cet Essai.

XLII. Supposons donc, par exemple, que les puissances appliquées à la Machine, soient des poids; nommons m la masse de chacun de ces corps, M la masse totale du système, g la gravité, V la vîtesse actuelle du corps m, K sa vitesse initiale, t le temps écoulé depuis le commencement du mouvement, H la hauteur dont est descendu le centre de gravité du système pendant le temps t, & ensin, W la vîtesse due à la hauteur H.

Cela posé, il faut considérer qu'il y a deux sortes de sorces appliquées à la Machine; savoir:

changes by insensible degrees, the moment of activity, consumed in a given time by the soliciting forces, is equal to the moment of activity exerted in the same time by the resisting forces.

That is to say, (XXXIII), that the *moment of activity consumed* by all the forces of the system during the given time is equal to zero, which will be clear, (XXXII), if one proves that the *moment of activity consumed* at each instant by these forces is null. However, taking F as expressing each of these forces, V its speed, Z the angle between F & V, & dt the element of time, then the *moment of activity consumed* by all the forces of the system during dt is, (XXXIII), $\sum \int FV\cos Zdt$. It is necessary then to prove $\sum \int FV\cos Zdt = 0$ or $\sum FV\cos Z = 0$ but this is [already] clear from the fundamental theorem (and therefore, &c.).

The specific law stated here is without doubt the most important law in the whole of the theory of motion of Machines proper. Here are some particuar applications, still awaiting detail, which we will introduce in the scholium that will follow the succeeding corollary, & which will end this Essay.

XLII. Let us suppose, for example, that the forces applied to the Machine are weights. Let us name m the mass of each of the bodies, M the total mass of the system, g the acceleration due to gravity, V the actual speed of the bodies, K their initial speed, t the time elapsed since the start of the motion, H the height that the centre of gravity of the system descends during time t, & finally, W the speed due to the height H.

This assumed, it is necessary to consider that there are two sorts of forces applied to the Machine. These are

(77)

celles qui viennent de la pesanteur des corps, & celles qui viennent de leur inertie ou résistance qu'ils opposent à leur changement d'état, (note c (XXX)): or, (XXXII) le moment d'activité, consommé pendant le temps t, par la premiere de ces forces, est pour tout le système M g H, ou 1 M W 2; voyons maintenant quel est le moment d'activité, consommé par la force d'inertie: la vîtesse de m étant V, & devenant l'instant d'après V + d V, il est clair (note b (XXX)), que sa force d'inertie estimée dans le sens de V, est m d V, ou plutôt $m \frac{d V}{d t}$; donc, (XXX), le moment d'activité, exercé par cette force pendant dt, est $m \frac{dV}{dt} V dt$, ou mVdV; donc, le moment d'activité, consommé par cette force d'inertie, pendant le temps t, est fm V dV, ou en intégrant & complétant l'intégrale 1 m V 2 - 1 m K 2; donc le moment d'activité, confommé en même temps par la force d'inertie, de tous les corps du système, sera 1 s m V 2 - 1 s m K2; or, cette inertie est une force résistante, puisque c'est par elle que les corps résistent à leur changement d'état: & la pefanteur est ici une force sollicitante, puisque le centre de gravité est supposé descendre; donc, par la proposition de ce corollaire, on doit avoir MW 2 = [m $V^2 - \int m K^2$, ou $\int m V^2 = \int m K^2 + M$ W 2 : c'est-à-dire que

Dans une Machine à poids, dont le mouvement change par degrés insensibles, la somme des forces vives du système, est après un temps quelconque donné, égale à la somme des forces vives initiales; plus, la somme de force vive qui auroit lieu, si tous

those that come from the weight of the bodies & those which come from their inertial resistance (which opposes any change of state) (note 3 (XXX))*. Now, (XXXII) the moment of activity consumed during time t by the first of these forces is, for the whole system, MqH, or $\frac{1}{2}MW^2$. Let us now see what is the moment of activity, consumed by the Force of inertia. The speed of m being V, & becoming the instant after V + dV, it is clear (note b (XXX))that the force of inertia calculated in the direction of V is mdV or, rather, $m\frac{dV}{dt}$. Therefore, (XXX), the moment of activity exerted by this force during dt is $m\frac{dV}{dt}Vdt$ or mVdV. Therefore, the moment of activity consumed by the force of inertia during time t is $\sum mVdV$ or, on integrating & completing the integral, $\frac{1}{2}mV^2 - \frac{1}{2}mK^2$. Therefore, the moment of activity consumed at the same time by the force of inertia of all the bodies of the system will be $\frac{1}{2} \sum mV^2 - \frac{1}{2} \sum mK^2$. However, this inertia is a resisting force, as it is in this way that bodies resist their change of state: & the [heaviness] gravity is here a soliciting force, since the centre of gravity is assumed to descend; therefore, by the proposition of this corollary, we must have $MW^2 = \sum mV^2 - \sum mK^2$; or $\sum mV^2 = \sum mK^2 + MW^2$, that is to say

In a weight Machine whose motion changes by insensible degrees the sum of the live forces is, after a given time, equal to the sum of the initial live forces plus the sum of the live forces that would result if all

^{*}See Errata.

(78)

les corps du syflème étoient animés d'une vîtesse commune, égale à celle qui est due à la hauteur dont

est descendu le centre de gravité du système.

XLIII. Si le mouvement de la Machine est uniforme, on aura continuellement V = K, & partant $W^2 = 0$, ou H = 0; ce qui nous apprend que

Dans une Machine à poids, dont le mouvement est uniforme, le centre de gravité du système reste

constamment à la même hauteur.

XLIV. Puisque 1 MW 2 ou MgH est (XXXII) le moment d'activité, produit par un poids Mg, qu'on fait monter à la hauteur H, il s'enfuit évi-

demment que

De quelque maniere qu'on s'y prenne pour élever un certain poids à une hauteur donnée, il faut que les forces qui sont employées à produire cet effet, consomment un moment d'activité, égal au produit de ce poids, par la hauteur à laquelle on doit l'élever.

XLV. De même, puisque (XLII) le moment d'activité, produit dans un temps donné par la force d'inertie d'un corps, est égal à la moitié de la quantité dont sa force vive augmente pendant ce temps; on peut conclure austi que

Pour faire naître un certain mouvement quelconque par degrés insensibles dans un système de corps, ou changer celui qu'il a, il faut que les puissances destinées à cet effet, consomment un moment d'activité, égal à la moitié de la quantité dont aura augmenté par ce changement la somme des forces vives du Système.

XLVI. Il suit évidemment de ces deux dernieres propositions, que pour élever un poids M g à une hauteur H, & lui faire prendre en même temps une vitesse V, il faut, en supposant

the bodies of the system had a common speed, equal to that which is due to the fall in height of the centre of gravity of the system.

XLIII. If the motion of the Machine is uniform we will have V = K continually, & thus $W^2 = 0$ or H = 0, from which we deduce that:

In a weight Machine, where the motion is uniform, the centre of gravity of the system remains constantly at the same height.

XLIV. Because (by XXXII) the moment of activity produced by a weight Mg rising to a height H is given by $\frac{1}{2}MW^2$ or MgH, it evidently follows that:

No matter in what way one raises a certain weight to a given height, it is necessary that the forces which are used to produce this effect consume a moment of activity equal to the product of this weight and the height to which it must be raised.

XLV. Similarly, since ([by] XLII) the moment of activity produced in a given time by the force of inertia of a body is equal to half the quantity by which its live force will be increased during this time, we can also conclude that:

To generate, by insensible degrees, any motion in a system of bodies, or to change that which it has, it is necessary that the forces that produce this effect consume a moment of activity equal to half the quantity by which the live force of the system will be increased by this change.

XLVI. It evidently follows from the last two propositions that in order to raise a weight Mg by a height H, & at the same time give it a speed V, it is necessary, supposing

(79)

ce corps en repos au premier instant, que les forces employées à produire cet effet, consomment elles-mêmes un moment d'activité égal à

MgH+ 1 MV2.

LXVII. On suppose dans tout ce qui vient d'être dit, comme l'annonce le titre de ce corollaire, que le mouvement change par degrés insensibles; mais, si chemin faisant, il arrivoit un choc ou changement subit dans le système, ce que nous venons de dire n'auroit plus lieu. Supposons, par exemple, qu'au moment où arrive le choc, le centre de gravité du système soit descendu de la hauteur h : qu'à ce même instant, la somme des forces vives soit X immédiatement avant le choc, & Yimmédiatement après; nommons Q le moment d'activité qu'auront à confommer les forces mouvantes pendant tout le temps du mouvement, & q celui qu'elles auront à confommer depuis le commencement jusqu'à l'époque de la percussion; supposons enfin, pour plus de simplicité, que le système soit en repos au premier instant & au dernier, il est clair (XLVI) qu'on aura $q = M g h + \frac{1}{2} X$, & que par la même raison, le moment d'activité à consommer par les forces mouvantes après le choc, c'est-àdire Q - q fera $M g (H - h) - \frac{1}{2} Y$, donc $Q = M g H + \frac{1}{4} X - \frac{1}{4} Y$; or, (XXIII) il est clair que X > Y, donc, le moment d'activité à consommer pour élever dans ce cas M à la hauteur H, est nécessairement plus grand que s'il n'y avoit point de choc, puisque dans ce cas. on auroit simplement Q = M g H (XLIV).

Il suit de là, que sans consommer un plus grand moment d'activité, les forces mouvantes peuvent, en évitant qu'il y ait choc, élever le même poids à une hauteur plus grande H, car

this body is at rest in the first instant, that the forces employed to produce this effect, themselves consume a moment of activity equal to $MgH + \frac{1}{2}MV^2$.

LXVII. We suppose that in everything that has just been said, as stated in the title of this corollary, the motion changes by insensible degrees. However, if in moving on its path, a collision or sudden change in the system happens, what we have just said will not apply. Let us suppose, for example, that at the moment the collision happens, the centre of gravity of the system has descended by a height h and that, at the same moment, the sum of live forces is X immediately before the collision, & Y immediately afterwards. Let us name as Q the moment of activity which will be consumed by the moving forces during the period of motion, & as q that which has been consumed since the beginning up to the moment of collision. Let us finally suppose, for greater simplicity, that the system is at rest in the first instant & at the last. Then it is clear (by XLVI) that we will have $q = Mgh + \frac{1}{2}X$ & that, for the same reason, the moment of activity consumed by the moving forces after the collision, that is to say, Q - q will be Mq(H - q)h) $-\frac{1}{2}Y$, and so $Q = MgH + \frac{1}{2}X - \frac{1}{2}Y$. However, (by XXIII) it is clear that X > Y, and thus the moment of activity consumed in raising M to the height H, in this case, is necessarily greater than if there had been no collision, since in this case we would simply have Q = MgH(XLIV).

It follows from this that without consuming a greater moment of activity the forces can, in avoiding a collision, raise the same weight to a greater height H because

alors on aura (XLVI) Q = MgH', ou $H' = \frac{Q}{Mg}$, tandis que dans le cas présent, on a $H = \frac{Q - \frac{1}{2}(X - Y)}{Mg}$ d'où l'on voit que Xétant plus

grande que Y, il faut nécessairement qu'on ait aussi H' > H.

Corollaire V I.

Des Machines hydrauliques.

XLXVIII. On peut regarder un fluide comme l'assemblage d'une infinité de corpuscules solides, détachés les uns des autres; on peut donc apliquer aux Machines hydrauliques tout ce que nous avons dit des autres Machines : ainsi, par exemple, du corollaire premier (XXXV), on peut conclure que si une masse fluide, sans pesanteur, étant enfermée de tout côté dans un vase, & qu'ayant fait à ce vase deux petites ouvertures égales, on y applique des pistons; les forces qui agiront sur la masse fluide, en poussant ces pistons, ne peuvent qu'être égales, si elles se font mutuellement équilibre; c'est-à-dire donc que dans une masse fluide, la pression se répand également en tout sens; c'est le principe fondamental de l'équilibre des fluides, qu'on regarde ordinairement comme une vérité purement expérimentale: on prouvera de même (XXV) que la conservation des forces vives a lieu dans les fluides incompressibles, dont le mouvement change par degrés insensibles; & généralement enfin tout ce que nous avons prouvé d'un système de corps durs, est également vrai pour une masse de fluide Scholie. incompressible.

we will then have (by XLVI) Q = MgH', where H' = Q/Mg, whereas in the present case we have $H = \frac{Q - \frac{1}{2}(X - Y)}{Mg}$. From all this we see that X being greater than Y, it is necessary that we also have H' > H.

Corollary VI.

Hydraulic Machines

XLXVIII. We can regard a fluid as an assemblage of an infinite number of solid particles, disconnected from each other. We can then apply to hydraulic Machines all that we have said of other Machines. Thus, for example, in the first corollary (XXXV), we can conclude that if a fluid mass, without weight, were enclosed on all sides in a vessel, & that, having given this vessel two equal little openings, we apply pistons, then the forces which act on the fluid mass in pushing these pistons must be equal if they are in mutual equilibrium. That is to say, therefore, that in a fluid mass the pressure acts equally in all directions: this is the fundamental principle of the equilibrium of fluids, which we ordinarily regard as a purely experimental fact. We will prove also ([by] XXV) that the conservation of live force holds in incompressible fluids whose motion changes by insensible degrees. Finally, in general, everything that we have proved for a system of hard bodies is equally true for a mass of incompressible fluid. Scholium.

(81)

Scholie.

XLIX. Ce scholie est destiné au développe: ment du principe énoncé dans le corollaire V; cette proposition renferme en esfet la principale partie de la théorie des Machines en mouvement, parce que la plupart d'entr'elles font mues par des agents qui ne peuvent exercer que des forces mortes ou de pression; tels sont tous les animaux, les ressorts, les poids, &c. ce qui fait que la Machine change ordinairement d'état par degrés insensibles. Il arrive même le plus souvent que cette Machine passe bien vîte à l'uniformité de

mouvement; en voici la raison:

Les agents qui font mouvoir cette Machine se trouvant d'abord un peu au dessus des forces résistantes, font naître un petit mouvement qui s'accélere ensuite peu-à-peu; mais soit que par une suite nécessaire de cette accélération, la force follicitante diminue, foit que la réfistance augmente, foit enfin qu'il survienne quelque variation dans les directions, il arrive presque toujours que le rapport des deux forces s'approche de plus en plus de celui en vertu duquel elles pourroient se faire mutuellement équilibre : alors ces deux forces se détruisent, & la Machine ne se meut plus qu'en vertu du mouvement acquis, lequel, à cause de l'inertie de la matiere, reste ordinairement uniforme.

L. Pour comprendre encore mieux comment cela doit arriver, il n'y a qu'à faire attention au mouvement que prend un navire qui a le vent en poupe; c'est une espece de Machine animée par deux forces contraires qui font l'impulsion du vent & la réfistance du fluide sur lequel il

Scholium.

XLIX. This scholium is intended for the development of the principle enunciated in corollary V. The proposition encompasses, in effect, the main part of the theory of Machines in motion, because most of them [the other propositions] are mute when it comes to agents that can only exert dead forces or pressure – such as [is the case for] all animals, springs, weights, &c – that ordinarily make the Machine change its state by insensible degrees. [However] It happens even more often that this Machine passes very quickly to [the state of] uniform motion; here is the reason

The agents [working substances] which move this Machine, finding themselves at the beginning a little greater than the resisting forces, give rise to a little motion which subsequently accelerates little by little. But, whether by a necessary consequence of this acceleration – the soliciting force diminishes, whether the resistance increases or whether, finally, some variation in the direction occurs), it almost always happens that the relation of the two forces [(the resisting force and the soliciting force)] approaches more and more to that needed to make them mutually in equilibrium. Therefore these two forces destroy each other & the Machine does not move except by virtue of the acquired motion – which, because of the inertia of matter, usually remains uniform.

L. In order to better understand how this must happen, one need only consider the motion taken up by a ship that has wind at the stern it is a type of Machine subject to two contrary forces – the propulsion of the wind, & the resistance of the fluid on which

F

(82)

vogue: si la premiere de ces deux forces qu'on peut regarder comme sollicitante, est la plus grande, le mouvement du navire s'accélérera : mais cette accélération a nécessairement des bornes, par deux raisons; car, plus le mouvement du navire s'accélere, 1°. plus il est soustrait à l'impulsion du vent; 2°. plus au contraire la réfistance de l'eau augmente : par conséquent, ces deux forces tendent à l'égalité: lorsqu'elles y feront parvenues, elles se détruiront mutuellement; & partant, le navire sera mu comme un corps libre, c'est-à-dire que sa vitesse sera constante. Si le vent venoit à baisser, la résistance de l'eau surpasseroit la force sollicitante; le mouvement du navire se ralentiroit; mais par une suite nécessaire de ce ralentissement, le vent agiroit plus efficacement sur les voiles; & la résistance de l'eau diminueroit en même temps : ces deux forces tendroient donc encore à l'égalité, & la Machine arriveroit de même à l'uniformité de mouvement.

LI. La même chose arrive lorsque les forces mouvantes sont des hommes, des animaux ou autres agents de cette nature: dans les premiers instants, le moteur est un peu au dessus de la résistance; de là naît un petit mouvement qui s'accélere peu à peu, par les coups répétés de la force mouvante; mais l'agent lui même est obligé de prendre un mouvement accéléré, afin de rester attaché au corps auquel il imprime le mouvement. cette accélération qu'il se procure à lui-même, consomme une partie de son esfort; de sorte qu'il agit moins essicacement sur la Machine, & que le mouvement de celle-ci s'accélérant de moins en moins, finit par devenir bientôt unisorme. Par exemple, un homme qui pourroit faire un

it sails. If the first of these forces (the soliciting force), is the greater, then the motion of the ship will accelerate. But this acceleration necessarily has limits, for two reasons: the more the motion of the ship accelerates then; 1st, the more it reduces the impulse of the wind, & 2nd, the more the (oppositional) resistance of the water increases. In consequence, these two forces tend to equality. When they arrive at this equality, they will mutually cancel out & so the ship will be moving like a free body, that is to say, [the ship's] speed will be constant. If the wind dies, the resistance of the water exceeds the soliciting force and the motion of the ship slows. But, by a necessary consequence of this slowing, the wind will act more effectively on the sails, & the resistance of the water diminishes at the same time. These two forces will therefore again tend to equality, & the Machine will likewise come to uniformity of motion.

LI. The same thing happens when the moving forces are men, animals or other agents of this nature. In the first instants, the driving force is a little greater than the resistance; from this, a small motion is born, and this increases little by little, by repeated thrusts of the moving force. But the agent itself is obliged to speed up its motion in order to stay attached to the body to which it imparts the motion. This acceleration (which it procures from itself) consumes a part of its effort. As a result of this, the agent acts less effectively on the Machine – the motion increases less and less, soon ending up by becoming uniform. For example, a man who exerts a

(83)

certain effort dans le cas d'équilibre, en feroit un beaucoup moindre, si le corps auquel il est appliqué lui céde, & qu'il soit obligé de le suivre pour agir sur lui: ce n'est pas que le travail absolu de cet homme soit moindre, mais c'est que son effort est partagé en deux, dont l'un est employé à mettre la masse même de l'homme en mouvement, & l'autre, transmis à la Machine. Or, c'est de ce dernier seul que l'esset se manifeste dans l'objet qu'on s'est proposé.

Je continuerai cependant de considérer les Machines sous un point de vue plus général: ainsi je placerai dans ce scholie plusieurs réslexions applicables au mouvement varié; je supposerai seulement que cette variation se fait par degrés insensibles, & je prouverai que cela doit être en esset, lorsqu'on veut les employer de la maniere

la plus avantageuse possible.

LII. Désignons donc par Q le moment d'activité, consommé par les forces sollicitantes dans un temps donné t, & par q le moment d'activité exercé en même temps par les forces résistantes : cela posé, quel que soit le mouvement de la Machine, nous aurons toujours, par le corollaire V, Q = q; de sorte, par exemple, que si chacune F des forces sollicitantes, est constante, sa vitesse V uniforme, & l'angle V som par les directions de V de souper V soujours nul, on aura au bout du temps V sollicitantes se réduisent à une seule, on aura par conséquent V se V temps V consequent V se V consequent V se V souper V se V se

LIII. On peut en général regarder le moment q d'activité, exercé par les forces résistantes, comme l'esset produit par les forces sollicitantes; par exemple, lorsqu'il s'agit d'élever un poids P à une hauteur donnée H, il est tout simple de

Fij

certain effort under equilibrium conditions would exert a lot less if the body to which he applies his effort yields to him, & if he must follow that body in order to act upon it. It is not that the man's absolute capacity to do work is less, but rather that his effort is shared into two parts - one part employed to put his own mass in motion, & the other part transmitted to the Machine. But, it is only this last part that is manifest for our proposed purposes.

I will continue however to consider Machines from the most general point of view. Thus I will place in this scholium several reflections applicable to varied motions. I will suppose only that this variation is made by insensible degrees, & will prove that this must be so if one wants to employ them in the most advantageous manner possible.

LII. Let us designate by Q the moment of activity consumed by the soliciting forces in a given time t, & by q the moment of activity exerted in the same time by the resisting forces. This assumed, then whatever the motion of the Machine we will always have, by corollary V, Q = q. Thus, for example, if each F of the soliciting forces is constant, the speed V uniform, & the angle Z formed by the directions of F & V always null, we will have at the end of time t, $\sum FVt = q$, & if all the soliciting forces reduce to a single one, one will have in consequence 51 FVt = q ([by] XXXII & XXXIII).

LIII. We can in general regard the moment of activity q exerted by the resisting forces as the effect produced by the soliciting forces. For example, when the question concerns the raising of a weight P to a given height H, it is very simple

(84)

regarder l'effet produit par la force mouvante, comme étant en raison composée du poids & de la hauteur à laquelle il a fallu l'élever; de sorte que PH est ce qu'on entend alors naturellement par l'effet produit. Or, d'un autre côté, cette quantité PH est précisément ce que nous avons appellé moment d'activité, exercé par la force résistante P; donc ce moment d'activité, ou q, est ce qu'on entend naturellement, dans ce cas, par l'effet produit.

Or, dans les autres cas, il est évident que q est toujours une quantité analogue à celle dont il vient d'être question; c'est pourquoi j'appellerai fouvent dans la suite cette quantité, q, esset produit: ainsi, par esset produit, j'entendrai le moment d'activité, exercé par les forces résistantes; de sorte qu'en vertu de l'équation Q = q, on peut établir pour regle générale, que l'esset produit dans un temps donné par un système quelconque de forces mouvantes, est égal au moment d'activité consommé

en même temps par toutes ces forces.

LIV. On voit par l'équation FVt = q, trouvée dans l'article précédent, qu'il est inutile de connoître la figure d'une Machine, pour savoir quel esset peut produire une puissance qui lui est appliquée, lorsqu'on connoît celui qu'elle pourroit produire sans Machine: supposons, par exemple, qu'un homme soit capable d'exercer un essort continuel de 25 \pm , en se mouvant continuellement lui-même avec une vîtesse de trois pieds par seconde; cela posé, lorsqu'on l'appliquera à une Machine, le moment d'activité FVt qu'exercera cet homme, sera (XXXII) 25 \pm 3 pi. t, c'est-à-dire qu'on aura $FVt = 25 \pm 3$ pi. t, t exprimant le nombre des secondes; donc, à cause de FVt = q, on aura $q = 25 \pm 3$ pi. t, quelle que puisse

to regard the effort produced by the moving force as being due to the weight & the height by which it has been raised - such that PH is what one naturally understands by the effect produced [work done]. But, on the other hand, this quantity PH is precisely what we have called the moment of activity exerted by the resisting force P. Therefore the moment of activity (in other words, q) is what one naturally means, in this case, by the effect produced.

However, in other cases, it is evident that q is always a quantity analogous to the one at issue. This is why I will often in what follows call this quantity q, the *effect produced* or the *work done*. Thus, by *work done*, I will understand the moment of activity exerted by the resisting forces. Thus by virtue of the equation Q = q, we can establish as a general rule that the *work done in a given time by any system of moving forces is equal to the moment of activity consumed at the same time by all these forces.*

LIV. We see by the equation FVt = q, found in the preceding article, that it is unnecessary to know the specific form of a Machine in order to know what effect a force applied to it can produce, when one [already] knows what effect it can produce without the Machine. Let us suppose, for example, that a man is capable of exerting a continual effort of 25 lb^* while he himself is moving at a speed of three feet per second. That assumed, when one applies to a Machine the moment of activity Fvt that this man will exert, it will have the value $25lb \times 3$ ft $\times t$ (by XXXII), that is to say, we will have $FVt = 25lb \times 3$ ft $\times t$, where t expresses the number of seconds. Thus, as FVt = q, we will have $t = 25lb \times 3$ ft $t = 15lb \times 3$ ft t = 1

^{*}The symbol used in the original is π , the French 'livre tournois', a unit of currency.

(85)

168

être la Machine; donc, l'effet q est absolument indépendant de la figure de cette Machine, & ne peut jamais surpasser celui que la puissance est en état de produire naturellement & sans Machine.

Ainsi, par exemple, si cet homme avec son effort de 25 th, & sa vîtesse de trois pieds par seconde, est en état avec une Machine donnée, ou sans Machine, d'élever dans un temps donnée, un poids p à une hauteur H, on ne peut inventer aucune Machine par laquelle il soit possible, avec le même travail, (c'est-à-dire la même force & la même vîtesse que dans le premier cas), d'élever dans le temps donné, le même poids à une plus grande hauteur, ou un poids plus grand à la même hauteur, ou enfin le même poids à la même hauteur dans un temps plus court: ce qui est évident, puisqu'alors q étant (XXXII) égal à P H, on a par l'article précédent, P H = 25 th

LV. L'avantage que procurent les Machines, n'est donc pas de produire de grands esfets avec de petits moyens, mais de donner à choisir entre différents moyens qu'on peut appeller égaux, celui qui convient le mieux à la circonstance présente. Pour forcer un poids P à monter à une hauteur proposée, un ressort à se fermer d'une quantité donnée, un corps à prendre par degrés infensibles un mouvement donné, ou enfin tel autre agent que ce foit, à produire un moment quelconque donné d'activité, il faut que les forces mouvantes qui y sont destinées, consomment elles-mêmes un moment d'activité, égal au premier; aucune Machine ne peut en dispenser; mais comme ce moment résulte de plusieurs termes ou facteurs, on peut les faire varier à volonté, en diminuant la

F iij

the Machine. Therefore the effect q is absolutely independent of the form of this Machine, & can never exceed that which the force is capable of producing naturally & without the Machine.

Thus, for example, if this man with his effort of 25 lb & his speed of three feet per second, is capable with a given Machine, or without the Machine, of raising in a given time a weight p to a height H, we cannot invent any Machine by which it is possible, with the same work (that is to say, the same force & the same speed as in the first case), of raising in the given time the same weight to a greater height, or a greater weight to the same height, or finally the same weight to the same height in a shorter time. This is obvious, as q being equal to PH ([by] XXXII), we have by the preceding article, $PH = 25 \text{lb} \times 3 \text{ft} \times t$.

LV. The advantage that Machines give is therefore not to produce a greater effect with smaller means, but to allow us to choose between different means that one can call equal, and to select the one that is the most appropriate in the given circumstances. To force a weight P to climb to a proposed height, a spring to close up by a given quantity, a body to take by insensible degrees a given motion, or finally any other agent whatever to produce some given moment of activity, it is necessary that the proposed moving forces themselves consume a moment of activity equal to the first. No Machine can avoid this; but as the moment [of activity] results from several terms or factors, one can vary them by choice, in diminishing the

F iii

(86)

force aux dépens du temps, ou la vîtesse aux dépens de la force; ou bien, en employant deux ou plusieurs forces au lieu d'une; ce qui donne une infinité de ressources pour produire le moment d'activité nécessaire; mais quoi qu'on fasse, il faut toujours que ces moyens soient égaux, c'est-àdire que le moment d'activité consommé par les forces sollicitantes, soit égal à l'esset ou moment exercé en même temps par les forces résistantes.

LVI. Ces réflexions paroissent suffisantes pour défabuser ceux qui croient qu'avec des Machines chargées de leviers arrangés mystérieusement; on pourroit mettre un agent, si foible qu'il fût, en état de produire les plus grands effets : l'erreur vient de ce qu'on se persuade qu'il est possible d'appliquer aux Machines en mouvement, ce qui n'est vrai que pour le cas d'équilibre; de ce qu'une petite puissance, par exemple, peut tenir en équilibre un très-grand poids, beaucoup de personnes croient qu'elle pourroit de même élever ce poids aussi vite qu'on voudroit; or, c'est une erreur très-grande, parce que, pour y réuffir, il faudroit que l'agent se procurât à lui-même une vîtesse au dessus de ses facultés, ou qui du moins, lui feroit perdre une partie d'autant plus grande de son effort sur la Machine, qu'il seroit obligé de se mouvoir plus vîte. Dans le premier cas, l'agent n'a d'autre objet à remplir, que de faire un effort capable de contrebalancer le poids; dans le second, il faut qu'outre cet effort, il en fasse encore un autre pour vaincre l'inertie, & du corps auguel il imprime le mouvement, & de sa propre masse; l'esfort total qui, dans le premier cas, feroit employé tout entier à vaincre la pesanteur du corps, se partage donc ici en deux, dont le premier continue de faire équilibre au poids, & l'autre produit le mouvement. On

force at the expense of time, or the speed at the expense of force, or better, in employing two or several forces in place of one. This gives an infinity of means for producing the necessary moment of activity; but whatever is done, it is always necessary that the means are equal, that is to say, the moment of activity consumed by the soliciting forces is equal to the effect of moment [(the moment of activity)] exerted at the same time by the resisting forces.

LVI. These reflections appear sufficient to disabuse those who believe that employing Machines filled with levers arranged in some mysterious fashion, one could put an agent, as weak as could be, and still produce the greatest of efforts. The error arises in persuading oneself that it is possible to apply to Machines in motion what is true only for the case of equilibrium, that a small force, for example, can hold a very great weight in equilibrium (many people even believe that the weight could be raised as quickly as desired). But this is a very great error, for to succeed, it would be necessary that the agent gives to itself a speed above its powers, or at least, would make it lose the greater part of its effort, which would oblige it to move more quickly. In the first case, the agent has no other purpose to fulfill than to make an effort capable of counter-balancing the weight; in the second, it is necessary that outside of this effort, it [the agent] makes an extra one [effort] in order to overcome inertia, both [the inertia] of the body to which it imparts motion, & [the inertia] of its own mass. The total effort, which in the first case would be employed entirely to overcome the gravitational force on the body, is thus shared into two parts, the first of which continues to balance the weight, & the other to produce motion. One

(87)

ne peut donc augmenter l'un de ces efforts, qu'aux dépens de l'autre; & voilà pourquoi l'effet des Machines en mouvement, est toujours tellement limité, qu'il ne peut jamais surpasser le moment d'activité exercé par l'agent qui le produit.

C'est sans doute faute de faire une attention suffisante à ces différents effets d'une même Machine considérée tantôt en repos, & tantôt en mouvement, que des personnes auxquelles la saine théorie n'est point inconnue, s'abandonnent quelquefois aux idées les plus chimériques, tandis qu'on voit de simples ouvriers, faire valoir, par une espece d'instinct, les propriétés réelles des Machines, & juger très-bien de leurs effets. Archimede ne demandoit qu'un levier & un point fixe pour soulever le globe de la terre; comment donc se peut-il faire, dit-on, qu'un homme aussi fort qu'Archimede, ne puisse pas, quand même il seroit muni de la plus belle Machine du monde, élever un poids de cent livres, en une heure de temps, à une hauteur médiocre donnée? C'est que l'effet d'une Machine en repos, & celui d'une Machine en mouvement, font deux choses fort différentes, & en quelque chose hétérogenes: dans le premier cas, il s'agit de détruire, d'empêcher le mouvement; dans le second, l'objet est de le faire naître & de l'entretenir; or, il est clair que ce dernier cas exige une confidération de plus que le premier; favoir: la vîtesse réelle de chaque point du système; mais on pourra sentir mieux la raison de cette différence, par la remarque suivante.

Les points fixes & obstacles quelconques, sont des forces purement passives, qui peuvent absorber un mouvement, si grand qu'il soit, mais qui ne peuvent jamais en faire naître un, si petit qu'on

Fiv

can thus only augment one of these efforts at the expense of the other, & that is why the effect of Machines in motion is always so limited, that it can never exceed the moment of activity exerted by the agent which produced it.

It is doubtless by not giving sufficient attention to the different effects of the same Machine considered sometimes at rest, & sometimes in motion, that people to whom the sound theory is unknown sometimes abandon themselves to the most chimerical ideas, while on the other hand we see simple workers assert, by a kind of instinct, the real properties of Machines, & judge their effects very well. Archimedes asked only for a lever & a fixed point to raise the globe of the world. How can it be, then – one may well ask – that a man as strong as Archimedes⁵² cannot, even equipped with the most beautiful Machine in the world, raise a weight of a hundred pounds in an hour of time to some given middling height? It is because the effect [work capabilities] of a Machine at rest, & that of a Machine in motion, are two very different things &, in certain respects, having different natures. In the first case, it is a matter of destroying or impeding the motion; in the second case, the object is to create & maintain motion. However, it is clear that this last case requires more consideration than the first; one must know the real speed of each point of the system. But one will be better able to perceive the reason for the difference after by the following remark.

The fixed points & barriers are purely passive forces that can absorb a motion, however large it is, but can never give rise to one, as small as

F iv

(88)

veuille l'imaginer, dans un corps en repos : or ; c'est improprement que dans le cas d'équilibre, on dit d'une petite puissance, qu'elle en détruit une grande : ce n'est pas par la petite puissance, que la grande est détruite; c'est par la réfistance des points fixes : la petite puissance ne détruit réellement qu'une petire partie de la grande, & les obstacles font le reste. Si Archimede avoit eu ce qu'il demandoit, ce n'est pas lui qui auroit soutenu le globe de la terre, c'est son point fixe; tout son art auroit consisté, non à redoubler d'effort pour luter contre la masse de ce globe, mais à mettre en opposition les deux grandes forces, l'une active, l'autre paffive, qu'il auroit eues à sa disposition : si au contraire il eût été question de faire naître un mouvement effectif, alors Archimede auroit été obligé de le tirer tout entier de son propre fond; aussi n'auroit-il pu être que très-petit, même après plufieurs années: n'attribuons donc point aux forces actives, ce qui n'est dû qu'à la résistance des obstacles, & l'effet ne paroîtra pas plus disproportionné à la cause, dans les Machines en repos, que dans les Machines en mouvement.

LVII. Quel est donc enfin le véritable objet des Machines en mouvement? Nous l'avons déjà dit; c'est de procurer la faculté de faire varier à volonté, les termes de la quantité Q, ou momentum d'activité, qui doit être exercé par les forces mouvantes. Si le temps est précieux, que l'esse doive être produit dans un temps très-court, & qu'on n'ait cependant qu'une force capable de peu de vîtesse, mais d'un grand essort, on pourra trouver une Machine pour suppléer la vîtesse nécessaire par la force: s'il faut au contraire élever un poids très-considérable, & qu'on n'ait qu'une foible puissance, mais capable d'une grande vî-

we want to imagine, in a body at rest: however, it is improper that, in the case of equilibrium, one says of a small force that it cancels out a great one. It is not by the small 'puissance' that the larger one is destroyed; [rather,] it is by the resistance of fixed points. The small force really cancels only a small part of the large one [force], & the barriers [cancel out] the remainder. If Archimedes had been given what he asked for [that is, a lever], it is not he who would have supported the globe of the earth, it is the fixed point. All his art would have consisted, not in the redoubling of the effort in the struggle against the mass of the earth, but (using all the forces at his disposal) and placing in opposition the two great [categories of] force, one active, the other passive. If, on the contrary, it had been a question of giving rise to some motion (a motion that had the capability of doing work), then Archimedes would have been obliged to draw it in its entirety out of his own reserves. Also, these reserves would have been very small, even after several years. Let us, therefore, not attribute to active forces that which is due only to the resistive-force of barriers, & the disproportion between cause & effect will not seem more extreme in Machines at rest than in Machines in motion.

LVII. What is then the true purpose of Machines in motion? We have already said, it is to procure the ability to vary at will the terms of the quantity Q, or *momentum* of activity, that must be exerted by the moving forces. If time is precious, so that the effect must be produced in a very short time, but one only has a force capable of little speed but great effort, one can find a Machine to supply the necessary speed by the force. If, on the contrary, one must raise a very considerable weight but one has only a weak force capable of great speed,

(89)

tesse, on pourra imaginer une Machine avec laquelle l'agent sera en état de compenser par sa vîtesse, la force qui lui manque: ensin, si la puisfance n'est capable ni d'un grand essort, ni d'une grande vîtesse, on pourra encore, avec une Machine convenable, lui faire produire l'esset desiré; mais alors on ne pourra se dispenser d'employer beaucoup de temps; & c'est en cela que consiste ce principe si connu, que dans les Machines en mouvement, on perd toujours en temps ou en vîtesse

ce qu'on gagne en force.

Les Machines sont donc très-utiles, non en augmentant l'effet dont les puissances sont naturellement capables, mais en modifiant cet effet : on ne parviendra jamais par elles, il est vrai, à diminuer la dépense ou momentum d'activité, nécessaire pour produire un effet proposé; mais elles pourront aider à faire de cette quantité une répartition convenable au dessein qu'on a en vue : c'est par leur secours qu'on réussira à déterminer. finon le mouvement absolu de chaque partie du fystême, du moins à établir entre ces différents mouvements particuliers, les rapports qui conviendront le mieux; c'est par elles enfin qu'on donnera aux forces mouvantes, les fituations & directions les plus commodes, les moins fatigantes. les plus propres à employer leurs facultés de la maniere la plus avantageuse.

LVIII. Ceci nous conduit naturellement à cette question intéressante: quelle est la meilleure maniere d'employer des puissances données, & dont l'esset naturel est connu, en les appliquant aux Machines en mouvement? C'est-à-dire, quel est le moyen de leur faire produire le plus grand

effet possible?

La solution de ce problême dépend des cir-

one can imagine [deploying] a Machine whereby the [active] agent can compensate by its speed what it lacks in force. Finally, if the 'puissance' is capable neither of great effort nor of great speed one can again, with a suitable Machine, produce the desired effect, but only by employing lots of time; & it is for this reason that the well-known principle arise [:] that in Machines in motion, we always lose in time or in speed what we gain in force.

Machines are thus very useful, not in augmenting the effect of which the forces are naturally capable, but in modifying this effect. One will never succeed, it is true, in diminishing the expenditure or *momentum* of activity necessary to produce a proposed effect, but they [(Machines)] can help to make a repartition of this quantity suitable to the design one has in view. It is with their help that one succeeds in determining, if not the absolute motion of each part of the system, at least in establishing the relations between different specific motions which are more suitable. It is finally by them [the relations] that we will [be able to] match the moving forces to those cases where the situations & directions are the most convenient, the least tiring, the most proper to employ their abilities in the most advantageous manner.

LVIII. This naturally leads us to the interesting question: what is the best way of employing given forces, & of known natural effect, in applying them to Machines in motion? That is, what is the way for them to produce the greatest possible effect?

The solution of this problem depends on

(90)

constances particulieres; mais on peut saire ladessus des observations générales & applicables à tous les cas: en voici quelques-unes des plus essentielles.

L'effet produit étant la même chose (LIII) que le moment d'activité exercé par les forces résistantes, la condition générale, est que q soit un maximum; or, q ne pouvant jamais surpasser Q, il faut, 1° que la quantité Q soit elle-même la plus grande possible; 2° que tout ce moment Q soit employé uniquement à produire l'effet pro-

posé.

Pour faire que Q soit un maximum, il faut considérer qu'elle dépend de quatre choses, savoir; de la quantité de force exercée par l'agent qui doit produire l'effet q, de sa vitesse, de sa direction, & du temps pendant lequel il agit. Or, 1°. quant à ce qui regarde la direction de la force, il est évident que cette puissance doit être, toutes choses égales d'ailleurs, dirigée dans le même sens que sa vitesse; car le moment d'activité qu'exerce pendant de une puissance F dont la vitesse est V, & l'angle compris entre F & V, Z, étant (XXXII) F V d t cof Z, il est clair que ce produit ne sera jamais plus grand que lorsque cos Z sera égal au finus total, c'est-à-dire lorsque la force & sa vitesse seront dirigées dans le même sens; 2° quant à ce qui regarde l'intensité de la force exercée, sa vitesse, & le temps pendant lequel elle est exercée; on ne ne doit point déterminer ces choies d'une maniere absolue, mais seulement mettre entr'elles les rapports que l'expérience aura fait connoître pour les plus avantageux : par exemple, on a reconnu, je suppose, qu'un homme attaché pendant huit heures par jour à une manivelle d'un pied de

specific circumstances; but we can offer [on this problem] some observations that are general & applicable in all cases. Here are some of the more essential.

The effect produced being the same thing (LIII) as the moment of activity exerted by the resisting forces, the general condition is that q should be a *maximum*. However, q not being able exceed Q, it is necessary. 1st that the quantity Q should itself be the greatest possible, 2nd that all the moment Q should be employed only to produce the proposed effect.

To maximize Q, it is necessary to consider that it depends on four things, these are the quantity of force exerted by the agent that must produce the effect q, its speed, its direction, & the time during which it acts. However 1st, (concerning the direction of the force) it is evident that this force must, other things being equal, be in the same direction as the speed because for a force F whose speed is V acting for a duration dt & the angle between F & V being Z, the moment of activity ([by] XXXII) is FVdtcosZ. It is clear that this product will never be greater than when $\cos Z$ is equal to the whole sine, that is to say, when the force & the speed are directed in the same direction; 2nd. As to that which regards the intensity of the exercised force, its speed, & the time during which it is exerted, we can not determine these things in an absolute manner but only give them the relationships that experience has shown us to be most advantageous. For example, we have recognized, I suppose, that a man hooked up to a crank of a foot in radius, for eight hours a day,

(91)

rayon, peut faire continuellement un effort de 25 th, en faisant un tour en deux secondes, ce qui fait à peu-près la vîtesse de trois pieds par seconde; mais si l'on forçoit cet homme à aller beaucoup plus vîte, croyant par là avancer la besogne, on la retarderoit, parce qu'il ne seroit plus en état de faire un effort de 25 tt, ou ne pourroit plus foutenir un travail de huit heures par jour. Si au contraire, on diminuoit la vîtesse, la force augmenteroit, mais dans un moindre rapport; & le moment d'activité diminueroit encore: ainfi, suivant l'expérience, pour que ce moment soit un maximum, il faut proportionner la Machine, de maniere à conserver à la puissance la vîtesse de trois pieds par seconde, & ne le faire travailler qu'environ huit heures par jour. On fent bien que chaque espece d'agent a, eu égard à sa nature ou constitution physique, un maximum analogue à celui dont on vient de parler. & que ce maximum ne peut en général se trouver que par expérience.

LIX. Cette premiere condition étant remplie, il ne restera donc plus, pour faire produire à une Machine donnée, le plus grand esset possible, qu'à faire ensorte que toute la quantité Q soit employée à produire cet esset; car si cela est ainsi, on aura q = Q; & c'est tout ce qu'on peut prétendre, puisque jamais Q ne peut être moindre

Or, pour remplir cette condition, je dis premiérement, qu'on doit éviter tout choc ou changement brusque quelconque; car il est facile d'appliquer à tous les cas imaginables, le raisonnement qui a été fait (XLVII) sur les Machines à poids; d'où il suit que toutes les sois qu'il y a choc, il y a en même temps perte de moment

can make a continual effort of 25 lb, in making one turn in two seconds, which makes a speed of roughly three feet per second; but if one forces the man to go much faster, believing that this will speed up the task, one will slow it down, because he will not be in a state to make an effort of 25 lb, or will not be able to sustain the work for eight hours a day. If, on the contrary, one would reduce the speed, the force would increase, but in a lesser relation – & the moment of activity is again diminished. Thus, in the light of experience, for the moment to be a *maximum*, it is necessary to proportion the Machine in such a way as to keep the force at a speed of three feet per second, & to make him work for only around eight hours per day. One perceives that each type of agent has, having regard to its nature or physical constitution, a *maximum* analogous to that of which we have just spoken, & that this *maximum* can in general be found only by experience.

LIX. This first condition being fulfilled, it will remain only, in order to make a given Machine produce the greatest effort possible, to make it so that the whole of the quantity Q may be employed to produce this effect, because if this is so, one will have q=Q, & this is all that one can ever lay claim to, as Q can never be less than q.

Now, to fulfill this condition, I say firstly, that one must avoid all shock or sudden change; because it is easy to apply to all imaginable cases the reasoning that has been applied (XLVII) to weight Machines. From this it follows that any time there is a shock, there is at the same time a loss of moment

(92)

d'activité de la part des forces sollicitantes; perte si réelle, que l'effet en est nécessairement diminué, comme nous l'avons sait voir par les Machines à poids, dans l'article qui vient d'être cité: c'est donc avec raison que nous avons avancé (LI), que pour faire produire aux Machines le plus grand esset possible, il faut nécessairement qu'elles ne changent jamais de mouvement, que par degrés insensibles; il en faut seulement excepter celles qui, par leur nature même, sont sujettes à éprouver disserentes percussions, comme sont la plupart des moulins; mais dans ce cas-là même, il est clair qu'on doit éviter tout changement subit, qui ne seroit pas essentiel à la constitution de la Machine

LX. On peut conclure de là, par exemple, que le moyen de faire produire le plus grand effet possible à une Machine hydraulique, mue par un courant d'eau, n'est pas d'y adapter une roue dont les aîles recoivent le choc du fluide. En effet, deux raisons empêchent qu'on ne produise ainsi le plus grand effet : la premiere est celle que nous venons de dire, savoir; qu'il est essentiel d'éviter toute percussion quelconque; la feconde est, qu'après le choc du fluide, il a encore une vîtesse qui lui reste en pure perte, puisqu'on pourroit employer ce reste à produire encore un nouvel effet qui s'ajouteroit au premier. Pour faire la Machine hydraulique la plus parfaite, c'est-àdire capable de produire le plus grand effet possible, le vrai nœud de la difficulté confisteroit donc, 10. à faire ensorte que le sluide perdit absolument tout fon mouvement par fon action fur la Machine, ou que du moins il ne lui en restât précisément que la quantité nécessaire pour s'échapper après fon action; 2°. à ce qu'il perdit tout ce mouve-

of activity on the part of the soliciting forces - a loss so noticeable in reality that the effect is necessarily diminished, as we have shown for weight Machines in the article cited. It is therefore with reason that we have advanced (LI), that to make Machines produce the greatest effect possible, it is necessary that they never change their motion other than by insensible degrees. We must just make one exception in the case of those [Machines] which, by their very nature, are subject to experiencing different percussions - such as most mills - but even in this case it is clear that one must avoid all sudden changes that are not essential to the constitution of the Machine.

LX. One may conclude from this, for example, that the means of producing the greatest possible effect in a hydraulic Machine, moved by a current of water, is not to adapt a wheel whose blades would receive the shock of the fluid. As a consequence there are two reasons that prevent one from producing the greatest effect in this way: the first is that of which we are going to speak, that is, that it is essential to avoid any percussion whatever, the second is that, after the shock of the fluid, there is still a speed which remains as a pure loss, since one could employ this residual [speed] to produce a new effect which would add to the first. To make the most perfect hydraulic Machine, that is to say, capable of producing the greatest effect possible, the true nub of the difficulty would thus consist of, 1st, to arrange things such that the fluid loses absolutely all its motion by its action on the Machine, or that at least only such quantity remains as is precisely what is needed so that the fluid can escape [exit the Machine] after its action, 2nd, that it loses all its motion

(93)

ment par degrés insensibles, & sans qu'il y ent aucune percussion, ni de la part du fluide, ni de la part des parties solides entr'elles : peu importeroit d'ailleurs quelle fût la forme de la Machine, car une Machine hydraulique qui remplira ces deux conditions, produira toujours le plus grand effet possible; mais ce problème est très-difficile à résoudre en général, pour ne pas dire imposfible; peut-être même que dans l'état physique des choses, & eu égard à la simplicité, il n'y a rien de mieux que les roues mues par le choc; & dans ce cas, comme il est impossible de remplir à la fois les deux conditions desirables, que plus on voudra faire perdre au fluide de son mouvement pour approcher de la premiere condition, plus le choc fera fort; que plus au contraire on voudra modérer le choc pour approcher de la feconde, moins le fluide perdra de son mouvement: on fent qu'il y a un milieu à prendre, au moyen duquel on déterminera, finon d'une maniere absolue, au moins eu égard à la nature de la Machine, celle qui sera capable du plus grand effet.

LXI. Une autre condition générale qui n'est pas moins importante, lorsqu'on veut que les Machines produisent le plus grand esset possible, c'est de faire ensorte que les forces sollicitantes ne fassent naître aucun mouvement inutile à l'objet qu'on se propose : si mon but, par exemple, est d'élever à une hauteur donnée la plus grande quantité d'eau possible, soit avec une pompe ou autrement, se dois faire ensorte que l'eau, en arrivant dans le réservoir supérieur, n'ait précisément qu'autant de vîtesse qu'il lui en faut pour s'y rendre, car toute celle qu'elle auroit au delà, consommeroit inutilement l'essort de la puissance motrice. Il est clair en esset (XLV) que dans ce

by insensible degrees & without any percussion, either on the part of the fluid, or on the solid parts between them. In other respects, little of the [exact specification] of the Machine is important as a hydraulic Machine which fulfills these two conditions will always produce the greatest effect possible. But this problem is very difficult to solve in general, not to say impossible. Perhaps, accepting the physical state of things, & having regard to simplicity, there is [still] nothing better than the wheels being moved by shock; & in this case, it is impossible to simultaneously fulfill both desirable conditions (the more one would wish to make the fluid lose its motion in order to approach the first condition, the greater will be the shock; & on the contrary, the more one wishes to moderate the shock to approach the second condition, the less the fluid will lose its motion). One feels that there is a middle road to take and by this means one will determine, if not in an absolute way, at least having regard to the nature of the Machine, that which will be capable of yielding the greatest effect.

LXI. One other general condition which is not less important – when one wants Machines that can produce the greatest possible effect – is to make it so that the soliciting forces give rise to no motion useless to the object that is proposed. If my goal, for example, is to raise to a given height the greatest possible quantity of water, whether with a pump or otherwise, I must do it so that the water, in arriving at the higher reservoir, has only precisely that speed which was required [just] in order to convey it [shift it from one place to another], because anything beyond that will uselessly consume the effort of the driving force. It is clear (XLV) that in this

(94)

eas cette puissance auroit à consommer un moment d'activité inutile, & qui seroit égal à la moitié de la force vive avec laquelle l'eau seroit arrivée dans le réservoir.

Il n'est pas moins évident que pour faire produire aux Machines le plus grand esset possible, on doit éviter ou diminuer, du moins autant que faire se peut, les forces passives, telles que le frottement, la roideur des cordes, la résistance de l'air, lesquelles sont toujours, dans quelque sens que se meuve la Machine, au nombre des forces que j'ai nommées resistantes (1).

Enfin, il est aisé d'étendre ces remarques particulieres; & mon objet n'est pas d'entrer là-dessus

dans un plus grand détail.

LXII. On peut conclure de ce que nous venons de dire au sujet du frottement & autres forces passives, que le mouvement perpétuel est une chose absolument impossible, en n'employant, pour le produire, que des corps qui ne seroient follicités par aucune force motrice, & même des corps pesants; car ces forces passives auxquelles on ne peut se soustraire, étant toujours résistan-

⁽¹⁾ On parle fouvent des forces passives; mais qu'estce qu'une force passive; qu'est-ce qui la différencie d'une
force active? Je crois qu'on n'a pas encore répondu à
cette question, & même qu'on ne se l'est jamais faite.
Or, il me semble que le caractère distinctif des forces
passives, consiste en ce qu'elles ne peuvent jamais devenir sollicitantes, quel que soit ou puisse être le mouvement de la Machine, au lieu que les forces actives peuvent agir, tantôt en qualité de forces sollicitantes, & tantôt en qualité de forces résistantes. Sur ce pied, les obstacles & points sixes sont évidemment des forces passives,
puisqu'ils ne peuvent agir ni comme forces sollicitantes,
ni comme forces résistantes (XXXI).

case the force will consume a useless moment of activity, equal to half the live force with which the water will arrive in the reservoir.

It is no less evident that in order to make Machines produce the greatest possible effect, one must (at least as much as possible) avoid or diminish passive forces, such as that of friction, the stiffness of cords, the resistance of the air, that are always, in whatever way the Machine moves, among the number of those I have named resisting (I).

Finally, it is easy to extend these specific remarks; & my object is not to go into the above in greater detail.

LXII. One may conclude from what we are coming to say on the subject of friction & other passive forces, that perpetual ⁵³ motion is absolutely impossible, as it employs – for the production of perpetual motion – only bodies that are not solicited by any motive force, or even by [the descent of] heavy bodies; because these passive forces which we cannot eliminate, being always resisting,

⁽I) One often speaks of passive forces, but what is a passive force, what is the difference between it and an active force? I believe that we have not yet answered this question, & even that no one hs ever done so. But, it seems to me, the distinctive characteristic of passive forces consists in the fact that they can never become soliciting, whatever is or could be the motion of the Machine, whereas the active [non-passive] forces can act, sometimes as soliciting forces & sometimes as resisting forces. On this view, barriers & fixed points are evidently passive forces - as they can act neither as soliciting forces, nor as resisting forces (XXXI).

(95)

tes, il est évident que le mouvement doit se ralentir continuellement : & d'après ce que nous avons dit (XLV), on voit que si les corps ne font sollicités par aucune force motrice, la somme des forces vives sera réduite à rien; c'est à-dire que la Machine sera réduite au repos, lorsque le moment d'activité, produit par le frottement depuis le commencement du mouvement, sera devenu égal à la demi-somme des forces vives initiales: & fi les corps font pesants, le mouvement finira, lorsque le moment produit par les frottements, sera égal à la demi-somme des forces vives initiales, plus la moitié de la force vive qui auroit lieu, si tous les points du système avoient une vîtesse commune, égale à celle qui est due à la hauteur du point où etoit le centre de gravité dans le premier instant du mouvement. au dessus du point le plus bas où il puisse descendre; ce qui est évident par l'article (XLII).

Il est aisé d'appliquer les mêmes raisonnements au cas où il y a desressorts, & en général, à tous ceux où, abstraction faite du frottement, les forces sollicitantes sont obligées, pour faire passer la Machine d'une position à une autre, d'exercer un moment d'activité aussi grand que celui qui est produit par les forces résistantes, lorsque la Machine revient de cette derniere position à la

premiere.

Le mouvement finiroit bien plus vîte encore, s'il arrivoit quelque percussion, puisque la somme des forces vives, diminue toujours en pareil cas

(XXIII).

Il est donc évident qu'on doit désespérer abfolument de produire ce qu'on appelle un mouvement perpétuel, s'il est vrai que toutes les forces motrices qui existent dans la nature, ne

it is evident that the motion must continually be retarded. [&] After what we have said (XLV), we see that if bodies are not solicited by any motive force, the sum of the living force will reduce to nothing. That is to say, the Machine will come to rest when the moment of activity, produced by friction since the start of the motion, will become equal to half the sum of the original live force. & If the bodies are heavy, the motion will stop when the moment produced by the forces of friction equals half the sum of the initial live force, plus half the live force which would have applied if all points of the system had a common speed, this speed being determined by the change in height of the centre of gravity from its starting height at the first instant of motion, to its lowest point; this is evident from article (XLII).

It is easy to apply the same reasoning to the case where there are springs, & in general, to all those cases where, ignoring friction, in order to move the Machine from one position to another, the soliciting forces must exert a moment of activity as great as that which is produced by the resisting forces, when the Machine returns from its last position to its first.

The motion would finish even more quickly if there was some percussion, as the sum of the living forces always diminishes in this case (XXIII).

It is therefore evident that one must absolutely despair of producing what one calls perpetual motion, if it is true that all the motive forces which exist in nature,

(96)

soient autre chose que des attractions, & que cette force ait pour propriété générale, comme il le paroît, d'être toujours la même à distances egales, entre des corps donnés, c'est-à-dire d'être une fonction qui ne varie que dans le cas où la

distance de ces corps varie elle-même.

LXIV. Une observation générale qui résulte de tout ce qui vient d'être dit, c'est que cette espece de quantité, à laquelle j'ai donné le nom de moment d'activité, joue un très-grand rôle dans la théorie des Machines en mouvement : car c'est en général cette quantité qu'il faut économiser le plus qu'il est possible, pour tirer d'un agent tout l'esset dont il est capable.

S'agit-il d'élever un poids, de l'eau, par exemple, à une hauteur donnée; vous en éleverez d'autant plus dans un temps donné, non que vous aurez consommé une plus grande quantité de force, mais que vous aurez exercé un plus

grand moment d'activité (XLIV).

Qu'il foit question de faire tourner la meule d'un moulin, soit par le chec de l'eau, soit par le vent, soit par la force des animaux, ce n'est pas à faire que le choc de l'eau, de l'air, ou l'essort de l'animal soit le plus grand que vous devez vous attacher, mais à faire consommer à ces agents le plus grand moment d'activité possible.

Veut-on faire un vuide quelconque dans l'air, de quelque maniere qu'on s'y prenne, il faudra, pour y parvenir, consommer un moment d'activité aussi grand que celui qui seroit nécessaire pour élever à trente-deux pieds de hauteur, un volume d'eau égal au vuide qu'on veut occasionner.

Est-ce un vuide dans une masse d'eau indéfinie comme la mer; il faudra consommer pour cela

are only attractions, & that [attractive forces have] as a general property, or so it seems, to be always the same at equal distances between given bodies, that is to say, to be a function which varies only in the case where the distance between bodies itself varies.

LXIV. A general observation which results from all that has just been said, is that this type of quantity, to which we have given the name *moment of activity*, plays a very great role in the theory of Machines in motion - because it is in general *this* quantity which must be reduced as much as possible, in order to extract from an agent all the effort of which it is capable.

If it is a question of raise a weight – water, for example – to a given height, you will raise all the more in the given time, not by consuming a greater quantity of force, but by exerting a greater moment of activity (XLIV).

If it is a question of making the millstone of a mill turn – whether by the shock of water, wind, or the force of animals – it is not in maximizing the shock of water, of air, or the effort of the animal that you have to apply yourself, but to make these agents consume the greatest moment of activity possible.

If one wants to make any sort of vacuum in the air, however we do it, it will be necessary in order to achieve this, to consume a moment of activity as great as that which would be necessary to raise to a height of thirty-two feet, a volume of water equal to the the vacuum that one wants to produce.

If this vacuum was in an indefinite mass of water like the sea, it would be necessary to consume in order to achieve this

(97)

le même moment d'activité que si la mer étoit un vuide, le vuide qu'on veut faire un volume d'eau de mer, & qu'il fallût élever ce volume

à la hauteur du niveau de la mer.

Est-ce dans un vase de figure donnée, qu'il faut produire un vuide? On ne peut visiblement y parvenir, sans faire monter le centre de gravité de la masse totale du fluide d'une quantité déterminée par la figure du vase; il faudra donc consommer un moment d'activité égal à celui qui feroit nécessaire pour élever toute l'eau du vase d'une quantité égale à celle dont il faut que

monte le centre de gravité du fluide.

Dans une Machine en repos, où il n'y a d'autre force à vaincre que l'inertie des corps, voulezvous y faire naître un mouvement quelconque, par degrés insensibles, le moment d'activité que vous aurez à consommer, sera égal à la demisomme des forces vives que vous y ferez naître; & s'il est seulement question de changer le mouvement qu'elle a déjà, le moment d'activité à produire, sera seulement la quantité dont cette demifomme augmentera par le changement (XLV).

Enfin, supposons qu'on ait un système quelconque de corps, que ces corps s'attirent les uns les autres, en raison d'une fonction quelconque de leurs distances; supposons même, si l'on veut, que cette loi ne soit pas la même pour toutes les parties du système, c'est-à-dire que cette attraction suive quelle loi on voudra, (pourvu qu'entre deux corps donnés, elle ne varie que lorsque la distance de ces corps varie elle-même), & qu'il soit question de faire passer le système d'une position quelconque donnée à une autre : cela posé, quelle que soit la route qu'on fera prendre à chacun des corps, pour remplir cet

same *moment of activity* as if the sea were a vacuum [&] the vacuum that one wishes to make [was] a volume of sea water, & then this volume was raised to sea-level height.

Is it that one wants to produce a vacuum in a vessel of given shape? One obviously cannot achieve this without making the centre of gravity of the total mass of fluid rise by an amount determined by the shape of the vessel. It will be necessary, therefore, to consume a *moment of activity* equal to that needed to raise all the water in the vessel by an amount equal to that by which the fluid's centre of gravity must rise.

In a Machine at rest, where there is no other force to overcome except the inertia of the bodies, do you want to give rise to some sort of motion by insensible degrees [then] the *moment of activity* that you will have to consume will be equal to half the sum of the live forces that will be generated. & if it is only a question of changing the motion which it [the Machine] already has, the moment of activity needed will be only the amount by which this half-sum will be increased [by the changing motion] (XLV).

Finally, let us suppose that one has any system of bodies, that these bodies attract each other according to some function of their distances, let us suppose even, if one wants, that this law will not be the same for all parts of the system, that is to say, this attraction follows whatever law one wishes (provided that between two given bodies, it varies only when the distance of these bodies itself varies), & that it is a question of making the system pass from one given position to another. This assumed, whatever the route that one makes each of these bodies take, in order to fulfill this

(98)

objet, qu'on mette tous ces corps en mouvement à la fois, ou les uns après les autres, qu'on les conduise d'une place à l'autre, par un mouvement rectiligne ou curviligne, & varié d'une maniere quelconque, (pourvu qu'il n'arrive aucun choc ni changement brusque); qu'on emploie enfin quelles Machines on voudra, même à ressort, pourvu que dans ce cas, on remette à la fin les ressorts au même état de tension où on les a pris au premier instant; le moment d'activité qu'auront à consommer, pour produire cet esset, les agents extérieurs employés à mouvoir ce système, sera toujours le même, en supposant que le système soit en repos au premier instant du mouvement, & au dernier.

Et si outre cela, il s'agit de faire naître dans le système un mouvement quelconque, ou qu'il soit déjà en mouvement au premier instant, & qu'il s'agisse de modifier ou changer ce mouvement, le moment d'activité qu'auront à consommer les agents extérieurs, sera égal à celui qu'il faudroit consommer, s'il s'agissoit seulement de changer la position du système, sans lui imprimer de mouvement, (c'est-à-dire considéré comme en repos au premier instant & au dernier); plus, la moitié de la quantité dont il faudra augmenter la somme des forces vives.

Il importe donc fort peu, quant à la dépense ou momentum d'activité à consommer, que les forces employées soient grandes ou petites, qu'elles emploient telles ou telles Machines, qu'elles agissent simultanement ou non; ce moment d'activité est toujours égal au produit d'une certaine force, par une vitesse & par un temps, ou la somme de plusieurs produits de cette nature; & cette somme doit être toujours la même, de quelque

object, and whether one puts all the bodies in motion at the same time or one after the other, or leads them from one place to another by a rectilinear or curvilinear motion, & varying in whatever way (provided no shock or sudden motion happens); finally that one employs whatever Machines one wants, even with springs – provided in this case that one returns the springs at the end to the same state of tension they had in the first instant – [then] the *moment of activity* that one will have to consume in order to produce this effect (the exterior agents employed to move this system always being the same) is such that if the system is at rest in the first instant of motion then it will be at rest at the last instant.

And if, besides this, it is a question of giving rise to any motion in the system, or the system already is in motion at the first instant & it is a question of modifying or changing this motion, the *moment of activity* which the exterior agents will have to consume will be equal to that consumption necessary solely to change the position of the system, without imparting motion (that is to say, [when the system is] considered to be at rest at the first & last instants) and in addition, half the necessary increase in the sum of the live forces.

It thus matters very little as to expenditure or *momentum* of activity to be consumed, whether the forces employed are large or small, whether this or that Machine is employed, whether it acts simultaneously or not. This moment of activity is always equal to the product of a certain force, speed, & time, or the sum of several products of this nature; & this sum must always be the same in whatever

(99)

maniere qu'on s'y prenne : les agents ne gagneront donc jamais rien d'un côté, qu'ils ne le perdent de l'autre.

Pour conclusion; qu'en général on ait un fystême quelconque de corps animés, de forces motrices quelconques, & que plusieurs agents extétieurs, comme des hommes ou des animaux, soient employés à mouvoir ce systême en disférentes manieres quelconques, soit par eux-mêmes,

soit par des Machines : cela posé;

Quel que soit le changement occasionné dans le système, le moment d'activité, consommé pendant un temps quelconque par les puissances extérieures, sera toujours égal à la moitié de la quantité dont la somme des forces vives aura augmenté pendant ce temps, dans le syséme des corps auxquels elles sont appliquées : moins la moitié de la quantité dont auroit augmenté cette même somme de forces vives, si chacun des corps s'étoit mu librement sur la courbe qu'il a décrite, en supposant qu'alors il eût éprouvé à chaque point de cette courbe, la même force motrice, que celle qu'il y éprouve réellement : pourvu, toujours, que le mouvement change par degrés infenfibles, & que si l'on emploie des Machines à ressorts, on laisse ces ressorts dans le même état de tension où on les a pris.

LXV. Ces remarques sur le moment d'activité, me sont naître l'idée d'un principe d'équilibre particulier au cas où les forces exercées dans le système, sont des attractions; j'ai cru que le Lecteur ne seroit pas fâché de le trouver ici; voici

en quoi il consiste:

Plusieurs corps soumis aux loix d'une attraction exercée en raison d'une sonction quelconque des distances, soit par ces corps même les uns sur les autres, soit par dissérents points sexes, étant appliqués à une

Gij

manner it is taken. The agents never gain anything on one side, that is not lost on the other.

In conclusion; in general one has any system of moving bodies, with any motive forces, & several exterior agents, such as men or animals, employed to move this system in different ways, whether by themselves or by Machines. With these assumptions:

Whatever change is occasioned in the system, the moment of activity consumed during any time whatever by the external forces will always be equal to half the increase in the sum of live forces during this time in the system of bodies to which they are applied, less half the increase in the sum of live forces if each of the bodies followed their described path freely, assuming that at each point on the curve, a body experiences equal motive and actual forces - provided, as always, that the motion changes by insensible degrees, & that if one employs Machines with springs, one leaves the springs in the same state of tension as when one took them.

LXV. These remarks on the moment of activity gave me an idea for a principle of equilibrium specific to the case where the forces exerted in the system are attractions. I thought the Reader would not be annoyed to find it here; this is what it consists in:

Several bodies subject to laws of attraction exerted according to any function of distance, whether by the same bodies on each other, or by different fixed points, [or] being applied to

G ij

(100)

Machine quelconque; si l'on fait passer cette Machine d'une position quelconque donnée, à celle de l'équilibre, le moment d'activité consommé dans ce passage par les forces attractives dont ces corps seront animés pendant ce mouvement, sera un maximum.

C'est-à-dire que ce moment sera toujours plus grand qu'il ne l'auroit été, si, au lieu de faire passer ce système à la position d'équilibre, on l'eût contraint de prendre une route dissérente, & de passer dans une autre situation quelconque.

Par exemple, s'il s'agit de la gravité, qu'on peut regarder comme une attraction exercée vers un point infiniment éloigné, les forces attractives feront les poids appliqués à la Machine; le moment d'activité qui sera exercé par ces forces, lorsqu'on fera changer de situation à cette Machine, fera donc égal au poids total du système multiplié par la hauteur dont aura monté ou descendu le centre de gravité pendant ce changement de position (XXXII): or, la situation d'équilibre est celle où le centre de gravité est au point le plus haut ou le plus bas possible; donc, la hauteur à laquelle doit monter le centre de gravité, ou dont il doit descendre pour passer d'une situation quelconque donnée à celle de l'équilibre, est plus grande que pour passer à toute autre situation : donc, le moment d'activité consommé dans le passage, par les forces motrices, est aussi plus grand dans le premier cas que dans tout autre.

Si l'attraction étoit toujours constante comme la gravité ordinaire, mais qu'elle fût dirigée vers un point fixe, placé à une distance finie, on concluroit aisément du principe précédent, que dans le cas d'équilibre, la somme des moments des corps du système, relativement à ce point fixe,

any manner of Machine; if one makes this Machine pass from some given position to that of equilibrium, [then] the moment of activity consumed in this passage by the attractive forces driving the bodies throughout this motion, will be a maximum.

That is to say, this moment will always be greater than it otherwise would have been if, instead of making the system pass to a position of equilibrium, one had constrained it to take a different path, & pass into some other situation.

For example, if the force under consideration is gravity which one may regard as an attraction exerted towards a point infinitely far away, the attractive forces will be the weights applied to the Machine. The moment of activity exerted by these forces when the Machine has changed its state will therefore be equal to the total weight of the system multiplied by the height through which the centre of gravity will have risen or descended during the change of position (XXXII). However, the situation of equilibrium is where the centre of gravity is at the highest or lowest possible point. Therefore, the height to which the centre of gravity must climb or descend in order to pass from any given situation to that of equilibrium, is greater than for passing to all other situations. Thus, the moment of activity consumed in this passage by the motive forces is greater in the first case than in all other cases.

If the attraction is always constant – as for ordinary gravity – but is directed towards a fixed point placed at a finite distance, one will easily conclude from the preceding principle that, in the case of equilibrium, the sum of the moments of the system of bodies, relative to this fixed point,

(101)

est un maximum, c'est-à-dire que la somme des produits de chaque masse, par sa distance au point fixe, est moindre lorsqu'il y a équilibre, que si le système se trouvoit dans une autre situation quelconque.

Si l'attraction vers le point fixe, au lieu d'être constante, étoit proportionnelle aux distances de ce corps, à ce point fixe, on concluroit de même que la somme des produits de chaque masse par le quarré de la distance à ce point fixe, est un

maximum.

On fait que la somme des produits de chaque masse, par le quarré de sa distance à un point fixe quelconque, est égale à la somme des produits de chaque masse, par le quarré de sa distance au centre de gravité; plus, au produit de la masse totale, par le quarré de la distance du centre de gravité à ce point fixe : (c'est une proposition de géométrie fort connue, & dont il est facile de trouver la preuve); ainsi dans le cas d'attraction que nous examinons, la fomme de ces deux quantités, doit, dans le cas d'équilibre, être un maximum, c'est-à-dire que sa différentielle est égale à zéro. Supposons donc, par exemple, que toutes les parties du système soient liées entr'elles, de maniere qu'elles ne fassent qu'un même corps, & que ce corps soit suspendu par son centre de gravité, tellement que ce point soit fixe; il est clair que chacune des quantités dont on vient de parler, sera constante, c'est-à-dire restera la même, quelque situation qu'on donne à ce corps, & que la différentielle de leur fomme, fera, par conséquent, nulle; donc, il y aura équilibre : c'est-à-dire que si toutes les parties d'un corps. font attirées vers un point fixe, proportionellement à leurs distances à ce point, & qu'on suf-

is a *maximum*, that is, the sum of the products of each mass and the distance to the fixed point, is less when there is equilibrium than if the system is found in any other situation.

If the attraction towards the fixed point, instead of being constant, was proportional to the distances of the bodies to this fixed point, one would draw the same conclusion – that the sum of the products of each mass by the square of the distance to the fixed point is a *maximum*.

We know that the sum of the products of each mass and the square of its distance to any fixed point, is equal to the sum of the products of each mass and the square of the distance to the centre of gravity, and moreover, to the product of the total mass and the square of the distance between the centre of gravity & the fixed point (this is a well-known proposition of geometry, & one for which it is easy to find the proof). Thus, in the case of attraction which we are examining, the sum of these two quantities must, in the case of equilibrium, be a maximum, that is to say, the differential is equal to zero. Let us therefore suppose, for example, that all parts of the system are bound to each other, [and] in such a way that they are [may be treated as] one and the same body, & that this body is suspended by its centre of gravity, such that this point is fixed. It is clear that each of these quantities (of which we just spoke) will be constant, that is, will stay the same, whatever situation is given to the body, & that the differential of their sum will be, in consequence, null – therefore, there will be equilibrium. That is to say, if all the parts of a body are attracted towards a fixed point, [with a strength] proportional to their distance to this point, & one

(102)

pende ce corps par son centre de gravité, il reftera en équilibre précisément comme dans le cas de la pesanteur ordinaire. Il ne faut cependant pas conclure de là, que dans une Machine à laquelle seroient appliqués plusieurs corps attirés vers un point fixe, en raison des distances, la position d'équilibre fût celle où le centre de gravité du système seroit au point le plus bas, c'està-dire le plus proche possible du point fixe; car cela n'arrive que dans le cas où toutes les parties du système tiennent ensemble & ne font qu'un seul corps; au lieu que dans le cas de la gravité naturelle, il n'est pas nécessaire, pour que le centre de gravité soit au point le plus bas, que les parties du système soient liées les unes aux autres.

Si les corps étoient attirés vers le point fixe, en raison inverse de leurs distances à ce point, le principe allégué ci-dessus feroit voir que la situation d'équilibre est alors celle où la somme des produits de chaque masse, par le logarithme de sa distance au point fixe, est un maximum.

En général, si les corps m du système sont attirés en raison d'une puissance n, de leurs distances x, à ce point, la situation d'équilibre sera celle où la quantité $\int m x^n + 1$ sera un maximum, ou plus grande que dans toute autre situation; c'est à-dire où la différence de cette quantité à ce qu'elle seroit, si le système étoit dans une situation infiniment voisine, est égale à zéro.

S'il y a dans le système plusieurs points fixes, vers chacun desquels les corps m soient attirés en raison d'une puissance donnée de leurs distances à ce point, de sorte que x, y, z, &c. étant les distances de m à ces différents points fixes, Ax", By?, Cz?, &c. soient les forces centrales

suspends this body by its centre of gravity, it will stay in equilibrium exactly as in the case of ordinary gravity. One must not conclude from this, however, that in a Machine to which is applied several bodies attracted towards a fixed point and by an attraction depending only on distances, the position of equilibrium would be where the centre of gravity of the system is at its lowest point, that is to say, the closest possible to the fixed point, because this only happens in the case where all parts of the system hold together as *one* single body. [However] in the [exceptional] case of natural gravity, for the centre of gravity to be at the lowest point it is not essential that the parts of the system are bound to each other.

If the bodies are attracted towards a fixed point [with a strength] in an inverse ratio to their distances to this point, the principle claimed above will show that the situation of equilibrium is achieved when the sum of the products of each mass and the logarithm of its distance to the fixed point, is a *maximum*.

In general, if the bodies m of the system are attracted because of a power n, of their distances x, to this point, the equilibrium 'situation' will arise where the quantity $\sum mx^{n+1}$ is a *maximum*, or greater than in any other situation - that is to say, where the difference between this quantity and what it would be if the system was in a neighbouring 'situation' infinitesimally close by, is equal to zero.

If there are, in the system, several fixed points, towards each of which the bodies m are attracted by a power depending on their distance to this point, such that x, y, z &c. are the distances of m to these different fixed points, Ax^n , By^p , Cz^q &c [etc.] are the central forces

(103)

de m vers ces différents foyers, ce fera la quantité $\frac{A}{n+1} \int m x^n + \frac{B}{p+1} \int m y^p + \frac{C}{q+1} \int m$ $z^{q} + \frac{B}{p+1} + &c.$ qui fera un maximum dans la position de l'équilibre.

Et si outre cela, les corps s'attirent les uns les autres, en raison d'une puissance quelconque donnée des distances, de sorte que X exprimant la distance de la molécule m à chacune des autres molécules du système, FX' soit la force motrice, attractive de m vers cette autre molécule, la situation d'équilibre, sera celle où la quantité

$$\frac{F}{2r+2} \int m \, Xr + \frac{A}{n+1} \int m \, x^n + \frac{B}{p+1} \int m \, x^n + \frac{B}{p+1} \int m \, x^n + \frac{C}{q+1} \int m \, z^n + \frac{C}{q+1} \int m \, z^n$$

c'est-à-dire plus grande que dans toute autre situation.

Il feroit aisé d'étendre encore ces conséquences à d'autres hypotheses d'attraction; mais la chose paroît inutile: ainsi je me bornerai à remarquer qu'on peut, par un principe général à celui qu'on vient de voir, établir que,

Quelle que soit la nature des puissances motrices appliquées à une Machine, si on la fait mouvoir de maniere qu'elle passe par la position d'équilibre, l'instant où elle arrivera dans cette situation, sera celui où le moment d'activité consommé pendant le mouvement, par ces puissances motrices, sera le plus grand.

C'est-à-dire que le moment d'activité que les puissances proposées consomment pendant le mouvement, va toujours en augmentant, jusqu'à ce que la Machine ait atteint la position d'équilibre; après quoi, ce moment va en diminant, à me-

of m towards these different centres, this will be the quantity

$$\frac{A}{n+1}\sum mx^{n+1} + \frac{B}{p+1}\sum my^{p+1} + \frac{C}{q+1}\sum mz^{q+1} + &c.$$
 which will be a *maximum* in the position of equilbrium.

And if besides this, the bodies attract each other, with whatever given power of the distances, so that if X expresses the distance of the molecules m to each of the other molecules in the system, FX^r is the attractive motive force towards this other molecule, the situation of equilibrium will be that where the quantity $\frac{F}{2r+2} \sum mX^{r+1} + \frac{A}{n+1} \sum mx^{n+1} + \frac{B}{p+1} \sum my^{p+1} + \frac{C}{q+1} \sum mz^{+1} + &c.$ is a maximum - that is to say, greater than in all other situations.*

It will be easy again to extend these consequences to other hypotheses of attraction; but the thing seems to be of no utility. Thus I will confine myself to remarking that we can, by a general principle analogous to that which we saw before, establish that:

Whatever kind of motive forces are applied to a Machine, if one makes the Machine move in such a way that it passes through the position of equilibrium, then the instant when it arrives at this situation will be that when the moment of activity consumed during the motion, by the motive forces, will be greatest.

That is to say, the moment of activity that the proposed motive forces consume during the motion always increases, right up to stage when the Machine attains the position of equilibrium; after which, this moment [of activity] will keep on diminishing, [and to an extent dependent on how far]

^{*}Clearly the exponent in the last term is incorrect. It should read $\sum mz^{q+1}$.

(104)

fure que le fystème s'éloigne de cette position; lorsqu'il l'a dépassée; quelle que soit d'ailleurs la route qu'on ait fait prendre àcette Machine, pour l'amener à cette situation.

Supposons, par exemple, que chacune des puissances appliquées à la Machine, soit donnée de grandeur, & qu'on connoisse de plus un des points de la direction qu'elle doit avoir, pour qu'il y ait équilibre; je dis que cette situation d'équilibre est celle où la somme des produits de chacune de ces puissances données par la distance du point de la Machine où on l'a suppose appliquée, au point fixe donné sur sa direction, est la moindre possible (1); ce qui se tire aisément du principe précédent.

Toutes ces choses sont si faciles à prouver, après ce qui a été dit dans le cours de cette seconde partie, qu'il paroît inutile de s'y arrêter. Je finirai donc cet opuscule par quelques réflexions sur les loix sondamentales dont je suis parti pour établir la théorie qu'il contient.

Réflexions sur les loix fondamentales de l'équilibre & du mouvement.

Parmi les Philosophes qui s'occupent de la re-

⁽¹⁾ Il est à remarquer que dans tout ce qui vient d'être dit au sujet d'une Machine considérée dans dissérentes positions, & de son passage de l'une à l'autre; il est, dis-je, à remarquer que ces positions sont toujours supposées telles, qu'on passe de l'une à l'autre par un mouvement qui soit à chaque instant de ceux que j'ai appellés géométriques; autrement toutes ces propositions seroient sujettes aux mêmes désauts que nous avons cru (V) pouvoir reprocher au principe de Descartes, & à plusieurs autres.

the system moves away from this position, once it has gone beyond it, whatever route among others that one makes the Machine take, to bring it to this situation.

Let us suppose, for example, that each of the forces applied to the Machine have a given size, & that one knows in addition one of the points of direction that it must have in order for there to be equilibrium. I declare that the situation of equilibrium is that where the sum of the products of each of these given forces and the distance from the supposed point of application to the given fixed point along its [given] direction, is the least possible (I). This is easily obtained from the preceding principle.

All these things are so easy to prove after what has been said during the course of this second part, that it seems pointless to linger here. I will therefore finish this little work with some reflections on the fundamental laws from which I started to establish the theory contained herein.

Reflections on the fundamental laws of equilibrium & motion.

Among the Philosophers who occupy themselves with re-

(I) It is to be remarked that in all that has been said on the subject of a Machine considered in different positions, & its passage from one to the other; there is, I say, [a further need] to remark that these positions are always supposed such that one passes from one to the other by a motion that is at each instant what I call *geometric*; otherwise all these propositions would be subject to the same flaws that we believe (V) can be found in the principle of *Descartes*, & in several others.

(105)

cherche des loix du mouvement, les uns font de la Méchanique, une science expérimentale, les autres, une science purement rationnelle; c'est-à-dire que les premiers comparant les phénomenes de la nature, les décomposent, pour ainsi dire, pour connoîrre ce qu'ils ont de commun, & les reduire ainsi à un petit nombre de faits principaux, qui servent ensuite à expliquer tous les autres, & à prévoir ce qui doit arriver dans chaque circonstance; les autres commencent par des hypotheses, puis raisonnant conséquemment à leurs suppositions, parviennent à découvrir les loix que suivroient les corps dans leurs mouvements, fi leurs hypotheses étoient conformes à la nature, puis comparant leurs réfultats ave les phénomenes, & trouvant qu'ils s'accordent, en concluent que leur hypothese est exacte, c'est-à-dire que les corps suivent en esset les loix qu'ils n'avoient fait d'abord que supposer.

Les premiers de ces deux classes de Philosophes, partent donc dans leurs recherches, des notions primitives que la nature a imprimées en nous, & des expériences qu'elle nous offre continuellement; les autres partent de définitions & d'hypotheses: pour les premiers, les noms de corps, de puissances, d'équilibre, de mouvement, répondent à des idées premieres; ils ne peuvent ni ne doivent les définir; les autres au contraire ayant tout à tirer de leur propre fond, font obligés de définir ces termes avec exactitude, & d'expliquer clairement toutes leurs suppositions; mais si cette méthode paroît plus élégante, elle est aussi bien plus difficile que l'autre ; car il n'y a rien de si embarrassant dans la plupart des sciences rationnelles, & sur-tout dans celle-ci, que de poser d'abord d'exactes défini-

searching the laws of motion, some are in Mechanics, an experimental science, the others, purely rational. That is to say, the first compare the phenomena of nature, decompose them, so to speak, in order to understand what they have in common & so reduce them to a small number of principal facts – which then serve to explain the others & to predict what will happen in any circumstance; the others start from hypotheses, then reason from their suppositions, succeed in discovering the laws that the bodies would follow in their motions if their hypotheses conformed to nature, then, comparing their results with phenomena & finding that they agree, conclude that their hypotheses are accurate, that is to say that the bodies in effect do follow the laws which they had at first only assumed.

The first of these two classes of Philosophers therefore follow in their researches the primitive ideas that nature has imposed on us & the experiences that she continually offers us. The others start from definitions & hypotheses for the first, [they assign] the names of bodies, forces, equilibrium, motion, that correspond to primitive ideas; they neither can nor must define them; the others, on the contrary, having to draw everything from their own depths, are obliged to define these terms with precision, & explain clearly all their suppositions. But if this [second] method appears more elegant, it is also more difficult than the other one; as there is nothing more perplexing in most of the rational sciences, & above all in this one, than to first pose exact definitions

(1065)

tions sur lesquelles il ne reste aucune ambiguité : ce seroit me jeter dans des discussions métaphysiques, bien au dessus de mes forces, que de vouloir approfondir toutes celles qu'on a proposées jusqu'ici : je me contenterai d'examiner la pre-

miere & la plus simple.

Qu'est-ce qu'un corps? C'est, disent la plupart, une étendue impénétrable, c'est - à - dire qui ne peut en aucune maniere être réduite à un espace moindre: mais cette propriété n'estelle pas commune au corps & à l'espace vuide : un pied cube de vuide peut-il occuper un espace moindre? Il est clair que non. Supposons qu'un pied cube d'eau, par exemple, foit enfermé dans un vase capable de contenir deux pieds cubes, & fermé de tout côté; qu'on agite. qu'on boulverse ce vase tant qu'on voudra, il restera toujours un pied cube d'eau & un pied cube de vuide : voilà deux espaces d'une nature différente, à la vérité, mais tout aussi irréductibles l'un que l'autre : ce n'est donc pas en cela que confiste la propriété caractérisfique des corps. D'autres disent que cette propriété confiste dans la mobilité; l'espace indéfini & vuide, disent-ils, est immobile, tandis que les corps peuvent se transporter d'un lieu de cet espace à un autre : mais lorfque le corps A passe en B, par exemple, l'espace vuide qui étoit en B, n'a-t-il pas passé en A? Il n'y a, ce me semble, pas plus de raison d'attribuer le mouvement au plein qui étoit en A, qu'au vuide qui étoit en B; le mouvement confifte en ce que l'un de ces espaces a remplacé l'autre; & ce remplacement étant réciproque, la mobilité est une propriété qui n'appartient pas blus à l'un qu'à l'autre. Sans fortir de notre premiere supposition, lorsque j'agite le vase moitié

in which no ambiguity remains - it would throw me into metaphysical difficulties, well beyond my powers, to want to explore all those proposed up till now. I will content myself with [examining] the first & most simple [definition].

What is a body? It is, most say, an extended impenetrable object, that is to say, it cannot in any manner be reduced to a smaller space: but this property, is it not common to bodies & to empty space can a cubic foot of the void occupy less space? It is clear that it cannot. Let us suppose that a cubic foot of water, for example, is enclosed in a vessel capable of containing two cubic feet, & closed on all sides, shake it, or overturn it as long as one wants, there always remains a cubic foot of water & a cubic foot of void here are two spaces truly different, but one as irreducible as the other. Therefore it is not in this that the characteristic property [of a body] consists. Others say that this property consists in mobility. Indefinite & empty space, they say, is immobile, while bodies can be transported from one place in space to another: but when the body A passes into B, for example, has not the empty space that was in B passed into A? There is not, it seems to me, more reason to attribute the motion to the occupied space which was in A, than to the void that was in B; the motion consists in one of these spaces replacing the other, & this replacement being reciprocal, mobility is no more a property of one than the other. Without leaving our first supposition, when I shake the vessel [that is both]

(107)

vuide & moitié plein, le vuide n'est-il pas mu tout aussi bien que le sluide? Je plonge une boule de métal, creuse, dans une bouteille; la boule va au sond; ne voilà-t-il pas un vuide qui se meut dans un plein, tout de même que les corps se meuvent dans le vuide? L'espace plein ne dissere donc de l'espace vuide, ni par la mobilité, ni par l'irréductibilité; l'impénétrabilité qui dissingue le premier du second, n'est donc pas la même chose que cette irréductibilité; c'est un je ne sais quoi qu'on ne peut désinir, parce que c'est

une idée premiere.

Les deux loix fondamentales dont je suis parti (XI), sont donc des vérités purement expérimentales; & je les ai proposées comme telles. Une explication détaillée de ces principes n'entroit pas dans le plan de cet ouvrage, & n'auroit peut-être servi qu'à embrouiller les choses: les sciences sont comme un beau sleuve, dont le cours est facile à suivre, sorsqu'il a acquis une certaine régularité; mais si l'on veut remonter à la source, on ne la trouve nulle part, parce qu'elle est par-tout; elle est répandue en quelque sorte sur toute la surface de la terre: de même si l'on veut remonter à l'origine des sciences, on ne trouve qu'obscurité, idées vagues, cercles vicieux; & l'on se perd dans les idées primitives.

IN.

half void & half full, is not the void moved just as much as the fluid? I plunge a hollow metal ball into a bottle; the ball goes to the bottom; is this not [a demonstration of] a void which moves in an occupied space, the same as a body moving in a void? The occupied space does not differ, then, from empty space, either by its mobility, or by its irreducibility. The impenetrability which distinguishes the first from the second is then not the same thing as irreducibility: it is an I–know–not–what that one cannot define because it is a primitive idea.

The two fundamental laws from which I started (XI) are therefore purely experimental truths & I have proposed them as such. A detailed explanation of these principles did not enter into the plan of this work, & would perhaps have only served to obscure things: the sciences are like a beautiful river, whose course is easy to follow once it has acquired a certain regularity. But if one wants to go back to the source, one cannot find it anywhere, because it is everywhere; it is spread in some way over the whole surface of the earth. Similarly, if one wants to go back to the origin of the sciences, one will find only obscurity, vague ideas, vicious circles, & one is lost in primitive ideas.

END.

J'AI lu par ordre de Monseigneur le Garde des Sceaux; un Manuscrit intitulé Essai sur les Machines en général. Cet Ouvrage m'a paru joindre au mérite des choses, celui de la clarté & de la précision; & je pense que l'impression en sera utile aux progrès de la Méchanique. A Dijon, ce 6 Janvier 1782,

MARET, Censeur royal.

I have read by order of Monseigneur le Garde des Sceaux, a Manuscript entitled *Essay on Machines in General*. This work, appears to me to add to the merit of things, the merits of clarity & precision; & I think that the printing [of it] will be useful to the progress of Mechanics. At Dijon, this 6th January 1782,

MARET, Royal Censor

ERRATA.

fautes indiquées dans cet Errata, doivent être corrigées avant lire l'Ouvrage, parce qu'elles sont pour la plupart essentielles.

vi, ligne 5, am liem de exactement, lifez exacts.

12, lignes 1 & 2, au lieu de est la force résultante, lisez est tante.

31, ligne 26, an lien de si on les suppose, lifez donc si on les

38, ligne 2 de la mote, au lieu de successivement, lesez exclu-

42, ligne 7, au lieu de coly, lisex V coly. 16, ligne 1 & 2, au lieu de par la vîtesse, lisex par le carré de

49, ligne 16, au lieu de XXI lisez XIX.

53, ligne I de la note, au lieu de (1), lisez (2).

77, ligne 3, an lien de note c, lifez note 2.

103, ligne 19, an lien de général à celui, lifez général analoclui.

ERRATA.

faults indicated in this Errata, must be corrected before reading the Work, because they are for the most part essential.

[Page] vj, line 5, in place of exactly read exact.

[Page] 22, lines 1 & 2, in place of is the resultant force, read is the resultant.

[Page] 31, line 26, in place of one supposes them read therefore if one supposes.

[Page] 38 line 2 of the note, in place of successively read exclusively.

[Page] 42, line 7 in place of cos y read V cos y.

[Page] 46,line 1 & 2, in place of by the speed, read by the square of the speed.

[Page] 49, line 16 in place of XXI read XIX.

[Page] 63 line 1 of the note, in place of (1) read (2).

[Page] 77 line 3 in place of note c read note 2.

[Page] 103 line 19 in place of general to that read general analogue to that.

Chapter 2 End Notes

- 1. Lazare Carnot uses the terms force and puissance interchangeably and without additional specification. As proposed above, we will use the modern term, force. Moment—of—Activity is one of the crucial terms in Carnot's theory and is nowadays called (mechanical) work. The Moment—of—Activity is, at first glance, fundamental for calculating input against output in machine processes. We also note that Carnot's conceptualisation of Moment—of—Activity is linked to time rather than to space. For details see Gillispie and Pisano (2014, Chaps. 2, 7, and 11). See also the Italian translation by Drago and Manno (1994). Hereafter, Gillispie and Pisano's book is the source book for all references for the reader who would like to read more on the subject.
- 2. Taking into account also Lazare Carnot's lost—quantity—of—motion, where the geometrical form is abstracted and irrelevant in the *Essay on Machines in General*, equivalence between hard bodies and mechanical plastic bodies is reasonable—noting that in the collision of hard bodies there is no force of restitution generating recoil. In other parts, for example in Lazare Carnot's second fundamental law (see below), the conceptualisation is more formal as in the following: hard bodies ('corps durs') or perfectly hard ('parfaitement durs & sans ressort') similar to d'Alembert's useage (d'Alembert [1743] 1758, Lemme XI, pp. 144–145). The definition of bodies depends on their elasticity (Carnot 1786, pp. 22–23; see also 1803a, pp. 8–10). We also remark that Carnot did

220 2 End Notes

not deal with elastic bodies or those defined as a kind of limit—case of hard bodies. The elastic bodies were considered as composed of an infinity of hard bodies linked by elastic springs (i.e., see Carnot 1786, p. 23; see also 'corps solides' in Carnot 1803a, p. 8). As argued persuasively in Gillispie and Pisano (2014), we speculate that Lazare Carnot adopted a model of hard bodies for reasons of mathematical simplicity (as plastic bodies are surely not exactly equivalent to hard bodies). For details, see Gillispie and Pisano (2014, Chap. 11).

- 3. This is evidence of Carnot's preoccupation with the efficiency of machines.
- 4. Pisano and Capecchi (2015).
- 5. 'direct' means 'analytically and without ad absurdum proofs'.
- 6. In Ancient Greece, Archimedes studied three machines: lever, pulley and screw. Heron of Alexandria (see *Mechanica*, Heron 1899–1914, vol. II) extended the classification to five machines: winch, lever, pulley, wedge, and screw. Guidobaldo del Monte in *Mecanicorum Liber* (Del Monte 1577) brought in an advance by considering the role played by gravity. In this context, he remarked upon the limits of the ancient approach (i.e., see: Aristotle 1955a, b, pp. 328–414). In Galileo's Le Mecaniche (Galilei 1599) the inclined plane was added. The number of simple machines became six. For details see Pisano and Bussotti (2014, 2015b, 2020a, b); Pisano and Capecchi (2015); Pisano and Gatto, pre-print.
- 7. Carnot is alluding to the principle of virtual work, see: Pisano (2017); Pisano and Capecchi (2013); Pisano and Gillispie (2014a, b, Chaps. 7, 11).
- 8. A posteriori, we could refer to the Science of Weights, also Scientia de ponderibus. In the early 16th century mechanics was concerned mainly with what is now called statics and was referred to as the Scientia de ponderibus, generally pursued by two very different approaches. The first was usually referred to as Aristotelian, where the equilibrium of bodies was set as a balance of opposite tendencies to motion. The second, usually referred to as Archimedean, identified statics with centrobarica, the theory of centres of gravity based on symmetry considerations. In between

2 End Notes 221

the two traditions the Italian scholar Niccolo Fontana, better known as Tartaglia (1500?–1557), wrote the treatise *Quesiti et inventioni diverse* (Tartaglia 1546, 1554; Pisano and Capecchi 2015; Pisano 2020).

- 9. This is to be understood as force-weight.
- 10. Possibly Carnot is referring to the principle of virtual work outside of a Newtonian context.
- 11. For weight understand force-weight, here and in all other instances on this page.
- 12. Note that the speed is not constant, in other words, the centre of gravity accelerates.
- 13. The equilibrium is both among masses and force-weights.
- 14. The first use of the principle of virtual work applied to a machine (see also Carnot 1803a). Torricelli wrote: Praemittimus. Duo gravia simul coniuncta ex se moveri non-posse, nisi centrum commune gravitatis ipsorum discenda. (Two heavy bodies linked together cannot move by themselves unless their common centre of gravity descends); Torricelli (1644), *Liber primus De motu gravium naturaliter descendentium*, 99, line 4. see Pisano (2017) and related references; Coopersmith (2017), Gillispie and Pisano (2014).
- 15. The reader should pay attention to the explanation of this equilibrium law (the principle of reciprocal velocities) because of the role played by infinitesimal—and—infinite in his mathematical description with respect to previous, i.e., physical *Descartes*' principle.
- 16. Note that the conservation law is only true if the motion has been communicated smoothly—not by impact or collision (Gillispie and Pisano 2014, Chap. 2).
- 17. We remark how Carnot—in his early days—discusses a Science of Machines as something distinct from Mechanics (Newtonian science).
- 18. We remark on the logical structure of Carnot's scientific procedure. For a detailed enquiry, see Gillispie and Pisano, Chaps. 6–7.
- 19. The word "action" is far from Newton's "action of a force". Hereafter, Carnot uses this word in the context of a lost quantity of motion. An interesting example is Carnot's use of "action" in the collision of bodies (Gillispie and Pisano, Chap. 2).

222 2 End Notes

20. In Carnot, the Newtonian first law of inertia arises from Carnot's law of action-reaction (which corresponds to Newton's Third Law). See: Pisano and Bussotti (2016a, b, 2017a, b, c).

- 21. Carnot means hard in the sense of being plastic, that is, non-elastic.
- 22. Following Carnot's trigonometrical reasoning, the two equations are strictly linked. In fact, F = -F'' so their cosines are opposite signs from each other. It follows that, for an isolated system, V' = V''. In other words the Equation (B) = Equation (A)F'. This is a step towards the birth of vector algebra. See Gillispie and Pisano (2014); Pisano (2017).
- 23. In summary: Carnot proposes to systematically consider the actions of bodies on each other, then the action of particles on a single particle. Carnot's long speech ends with summing over all particles, from which his fundamental equation (E), see below, is obtained. Let us note that the small incompressible rods and small inextensible strings are conceptualised as local—action. See Pisano (2017).
- 24. This is speed à la d'Alembert, at the first instant of time.
- 25. Taking into account our previous remark, in these passages we used the summation operator instead of the integral operator. We also note below the redundant (added/deleted) use of $\sum V F \cos q$.
- 26. This equation becomes null for plastic bodies; that is a conservation of quantity of motion is applicable. This equation also appears in a calculation in the *Principes fondamentaux de l'équilibre et du mouvement* (Carnot 1803a, §§129–131, pp. 103–104) as special case concerning collision among bodies. It is exactly the inverse procedure applied to the *Essay on machines in general*. This intricate reasoning in the two books could be justified due to a research for conservation energy law. However, we have no historical evidences on that (Pisano 2017; Gillispie and Pisano 2014).
- 27. Based on Lazare Carnot's discussions (Carnot 1786, pp. 28–30) a geometric motion is a non-mechanical interaction. Particularly, Lazare Carnot also dealt with the principle of virtual work and then, by means of geometric motions (nowadays called virtual velocities), canonically formulated the principle of virtual velocities starting from a fundamental theorem (see below Carnot 1786, §XXXIV, pp. 68–69). In effect, since in his theory geometric

2 End Notes 223

motions coincide with velocities and not with displacements, this allowed Lazare Carnot to avoid, in the formulation of the principle of virtual work infinitesimal displacements, which could have produced some scientific embarrassment with respect to his assumptions (Carnot 1813). Furthermore, for the principle of virtual velocity related with any (general) mechanical machine, one can claim that the weights (strictly speaking, force-weights) that balance each other are reciprocal to their virtual velocities. Incidentally, the two conceptually different formulations can be made mathematically equivalent using the concept of virtual motion. Lazare Carnot also defined these motions as invertible: a motion assigned to a physical system of interacting bodies is geometric if the opposite motion is also possible. The result is a possible motion, but it is not always invertible (e.g. the motion of a sliding ring on a rotating rod). Therefore, one should add the hypothesis of invertibility for obtaining the concept of geometric motion. Conversely, a geometric motion, when integrated, gives an invertible motion. At this point, for constraints independent of time, a geometric displacement is equivalent to a virtual invertible displacement (but not vice versa). On the contrary, a possible displacement, only if it is invertible, produces, after its derivative, a geometric motion. In this sense, we note that, initially, the geometric motion is a kind of uniform motion applied to the whole physical system—noting the equivalence of the state of rest and the state of uniform motion. See above the Introduction; Cfr. Gillispie and Pisano, Chap. 11.

- 28. In other words the geometric motion produces no change in the system interaction (see real cases suggested by Carnot).
- 29. Carnot intends to generalise his previous Equation (E). See above. The objective is to obtain the Equation (F) as below. In order to do this it is necessary to introduce an arbitrary geometric motion *u*. The latter substitutes *V* in the previous equation and so (F) equation is determined. But Carnot wrote an inaccurate procedure. In fact, he concludes (see below) that *V* is the lost speed along a supposed interaction. Without doubt, *u* is the final speed. (Gillispie and Pisano 2014, Chaps. 2, 11).

224 2 End Notes

30. In Carnot's wording "[...] as if each body had been free [...]" means the case without a geometric motion. Further, the well-known principle refers to the conservation of quantity of motion. Carnot is very clever to pay attention to the particular cases. In fact, in the equation (F) the (a priori indeterminate) u_i , if, adequately specified, offers ad hoc relationships between causes (i.e., forces) and speeds produced by these causes. Carnot's objective is to find the law of motions for each particular case, provided that an ad hoc geometric motion is determined. In order to do that, for the case of an isolated system, Carnot allocates the same values to u_i , (but $\neq 0$). Thus, he obtains a geometric motion for a uniform translation of the system. In detail, we have $\sum m_i \mathbf{U}_i \cdot \mathbf{u}_i = 0$ (U and u are vectors) where $m_i = \text{mass of the i--th body}$; $\mathbf{U}_i = \text{velocity lost (by that body) dur--}$ ing the collision; \mathbf{u}_i = velocity called 'mouvement géométrique'. This is clearly an extension of the principle of virtual velocities (Pisano 2017) to the collision of several bodies using $u_i = \text{const.}$ We can write: $\sum m_i \mathbf{U}_i \cdot \mathbf{u}_i = 0$ and $\mathbf{u}_i \cdot \sum m_i \mathbf{U}_i = 0$. Since **u** is arbitrary, we have: $\sum m_i \mathbf{U}_i = 0$ where $\mathbf{U}_i = \mathbf{W}_i - \mathbf{V}_i$. So, it follows that (in modern terms): $\sum m_i \mathbf{W}_i = \sum m_i \mathbf{V}_i$. The latter is the conservation of quantity of motion for a system of bodies (Ibidem; Gillispie and Pisano 2014; Pisano 2017). In short we can mainly summarize (Pisano 2017) as in the following: (a) A theory of interacting bodies by means of collisions; (b) A collision is a basic phenomenon. In particular, continuously accelerated motion is obtained as a limiting case of a system driven by a series of pulses; (c) Newton's second law is replaced by Lazare Carnot's second fundamental equation for a system of n-bodies; (d) Due to the arbitrariness of u_i , it can be assumed constant, that is to say, the same translation of geometric uniform motions of all bodies is adopted. This method could be considered an early beginning of the use of symmetries in the history of theoretical physics (Cfr. Drago and Manno 1994).

31. By considering another ad hoc geometric motion, $\mathbf{u}_i = \omega \times \mathbf{r}_i$, e.g., the rotation of the system with angular velocity around a fixed axis, and using the properties of the triple product and the arbitrariness of ω . He (taking into account our reasoning in the

2 End Notes 225

previous endnote), he obtained the following (in modern terms) laws of conservation as invariants of motion: $\sum m_i \mathbf{W}_i = \sum m_i \mathbf{V}_i$ (Law of conservation of the quantity-of-motion) $\sum m_i \mathbf{r}_i \times \mathbf{W}_i = \sum m_i \mathbf{r}_i \times \mathbf{V}_i$ (Law of conservation of the angular-momentum). Where \mathbf{W}_i , \mathbf{V}_i , ω , \mathbf{r}_i are vectors.

- 32. In order to obtain idem equations, Carnot wants to generalise his method assigning other values to *u*.
- 33. Here we note that Carnot claims his first lines concerning the application of synthetic method to his theory. Generally speaking the synthetic method (Carnot 1786, pp. 33-35, p. 85 Carnot 1813, pp. 12–21, 189, 200, 242–243, 217–253; Gillipie and Pisano, Chap. 11) and the analytic method have their historical origins in the ancient period with Pappus from Alexandria (290–350 b.C.; Pappus 1588), and later assumed different meanings even for a single author, e.g. Descartes (1897–1913; on Descartes see the remarkable works by John Schuster). With regard to Lazare Carnot, the synthetic method also explains the nature and the frame of mind behind his research against the metaphysical conception—which prevailed at the time—of infinitesimals, as he declares at the beginning of his famous book, Réflexions sur la métaphysique du calcul infinitésimal. In other books by him: "It is my object to ascertain in what the true spirit of the Infinitesimal Analysis consists" (Carnot 1832, p. 1. ["Je cherche à savoir en quoi consiste le véritable esprit de l'Analyse infinitesimal" (see also, 1813, p. 1, line 1). Let us note that the English translation of the 1832 version is differently organized in comparison to the original 1813 version. E.g., the number of paragraphs in the two versions does not correspond (Cfr. Gillispie and Pisano 2014, Chap. 11).
- 34. Carnot will not deal with these examples of motions. He only mentions them as a supposition.
- 35. Concerning the concept of mass, Carnot—as for other scientists at that time—yet had no very clear idea of the analytical role played by this quantity in the theory. For example, Carnot still—seventeen years after the second edition of the Essay on machines en general (1786)—demonstrated an ambiguity between the Cartesian and Newtonian approaches as shown in: "L'espace apparent qu'occupe

226 2 End Notes

un corps, s'appelle son volume; l'espace effectif qu'occupe ce même corps ou sa quantité réelle de matière, se nomme sa masse." In English: "The visible space which a body occupies is called its volume; the effective space which this same body occupies or its real quantity of matter is named its mass" (Carnot 1803a, p. 6; Cfr. Gillispie and Pisano 2014; Pisano's works on the subjects).

- 36. We note that, by means of a dimensional analysis, the names given by Carnot are not, by today's standards, accurate (Cfr. Pisano 2010; Drago and Manno 1994). In fact the dimensions are, for energy, $[ML^2T^{-2}]$, and not those for the quantity of motion, $[MLT^{-1}]$. At that time, Jean-Baptiste Joseph Fourier (1768–1830) introduced physical dimensions as a *modus operandi* in his *Théorie analytique de la chaleur* (Fourier 1822; see also Pisano and Capecchi 2009a, b).
- 37. We note that here Carnot claims his new idea (with respect to the works of previous scholars) of a physical quantity which is conserved along collisions (Gillispie and Pisano, Chaps. 2, 11).
- 38. We note that Descartes, Maupertius and d'Alembert are the unique mechanicists cited by Lazare Carnot in his *Essay on Machines in General*. There are embryonic hints of Maupertius' principle also in the previous Corollary I.
- 39. On the subject see recently: Pisano (2017).
- 40. Here Lazare Carnot intends summations. Due to editorial obligations we retain his original wording. But the reader should pay attention step by step Lazare's wording and our related comments.
- 41. Here Lazare Carnot intends summations. Due to editorial obligations we retain his original wording. But the reader should pay attention step by step Lazare's wording and our related comments.
- 42. By means of Corollary II, we remark that in the traditional mechanical theory of hard bodies, Carnot's principle of virtual work formally defines the condition of equilibrium of forces that act on bodies in order to produce work. Lazare Carnot takes into account, (1) continuous changes of motion (degrés insensibles), (2) the concept of motrice force (nowadays, acceleration, see below), and (3) the mathematical formula for the principle of virtual work (Gillispie and Pisano 2014, Chaps. 10–11; Pisano 2017) and studies the the-

2 End Notes 227

oretical conditions that translate the practical conditions of equilibrium and also obtains his invariants with regard to the efficiency and reversibility of mechanical machines. His first Equation (E) (Carnot 1786, p. 27) and second equations (F) (Ivi, p. 32) generalized for multi-body discrete systems, too. We also remark his crucial concept, the lost speeds, in this case, added to the accelerations, p. Since he considers the instantaneous change of motion (dV) along the collisions, then the accelerations p gives any connection to the collision. In short, we can summarize as follows: (a) The mass of the parts of a machine; (b) Global magnitudes, abstracting from the mass of the mechanism; (c) Kinematics first, then dynamics, and statics is a special case of dynamics; (d) A theory of machines concerns a theory of the communication of motions; (e) A machine is a connected system of (hard) bodies; (f) The connections between the bodies constrain the communication of motion of the bodies; (g) The theory of interaction-collisions by means of insensible degrees (e.g., see also Carnot 1803a, §293, pp. 261–262; see Introduction above) as the result of a sequence of infinitesimally small percussions.

43. In agreement with recent accredited literature (Gillispie and Pisano 2014, Chaps. 2, 11; Pisano 2017) Carnot clarifies the physical vector definition of impelling forces and resisting forces. The moment of activity is—in practice—the modern conceptualisation of work (Fds). In addition, no metaphysical causes of variation of motion are suggested. On the contrary, he considered the (work) moment of-activity "q", operated by resisting forces, as the effect produced by impelling forces. Instead, he considered the (work) momentof-activity "Q", consumed by impelling forces at a given t-time (Carnot 1786, §§LII–LIII, pp. 83–84, §§LXIII–LXIV, pp. 95–99) in order to investigate (the efficiency and agency of) machines in a general way. His son, Sadi did the same for heat machines (Gillispie and Pisano 2014; see also numerous works by Pisano on the subject). Just to also mention that by the word "work" (travail) Coriolis meant mechanical power (puissance mécanique), that is, the quantity of action, also called dynamical effect (Coriolis 1829, p. III; see also 1844, 1830–1837; Gillipsie and Pisano 2014, Chap. 4).

228 2 End Notes

44. This quantity, $\sum P coszudt$, is force x distance—that is, 'work' in modern usage.

- 45. This theorem is exactly a generalisation of the modern principle of virtual work (Pisano 2017).
- 46. Here and hereafter, 'agents' means 'working substance'.
- 47. On the concept of heavy body, the reader can surf the recent book on Science of Weights and Tartaglia (Pisano and Capecchi 2015).
- 48. That is, mathematically and without the use of infinitesimals.
- 49. On the centre of gravity and its relationship with the principle of virtual work, see: Capecchi and Pisano (2010a, b, c), Pisano (2017), Capecchi and Pisano (2007, 2010b, b); et al. Pisano's works on the subject).
- 50. This fifth Corollary can be considered as the basic (and modern) conceptualization for running machines, taking into account the relationship between soliciting and resisting forces.
- 51. Carnot returns to his crucial concept of work. See our previous endnote above.
- 52. On the subject of machines, see Pisano and Capecchi (2015), Pisano and Bussotti (2014, 2015a, b), Capecchi and Pisano (2010b).
- 53. On the subject applied to both Lazare and Sadi Carnot, see Gillispie and Pisano (2014).

Chapter 3 Lazare Carnot's Manuscripts and Documents*

Lazare Carnot: 3 portraits on paper (20,5x28) cm; (19,5x27,5) cm; (25,5x34,5) cm

Dissertation sur la théorie de l'infini mathématique, ouvrage destine it concourir au prix qu'a propose L'Académie Royale des Sciences, arts et belles-lettres de Berlin. pour l'année 1786. The manuscript is dated from Arras 8 September 1785. It is conserved in the Archives of the Deutsche Akademie der Wissenschaften zu Berlin, and consists of 100 paragraphs in 90 folios. Carnot L (1778) Mémoire sur la théorie des machines pour concourir au prix de 1779 propose par l'Académie Royale des Sciences de Paris. The manuscript is dated 28 March 1778. It is conserved in the Archives de l'Académie des sciences. Institut de France. Ms. (18,5x23,5) cm consists of: 85 sections in 63 folios (31 folios r/v)

[Raffaele Pisano: plates from orginal (y. 2010) in .jpeg by *Académie des Sciences, Institut de France*, Paris]

[It is reproduced in its entirety in Gillispie (1971), Appendix A, pp. 171–267, *op. cit.*; and microfilm copies of the complete manuscript are also deposited in the Firestone Library of Princeton University.]

[Raffaele Pisano: plates from original (y. 2010) in .jpeg by *Académie des Sciences, Institut de France*, Paris] [Sections 101–160 are reproduced In: Gillispie (1971), Appendix C, pp. 299–343, *op. cit.*; and microfilm copies of the complete manuscript are also deposited in the Firestone Library of Princeton University]

^{*}Cfr. Pisano's works; Gillispie and Pisano 2014

Carnot L (1780) Mémoire sur la théorie des machines pour concourir au prix que l'Académie Royale des Sciences de Paris doit adjuger en 1781. The manuscript is dated from Béthune 15 July 1780. It is conserved in the *Archives de l'Académie des sciences, Institut de France.* Ms. (20,5x32) cm consists of 191 sections in 106 folios. (47 folios r/v + 2 planches de dessins de même dimensions).

Lazare Carnot's portraits

[Raffaele Pisano: plates from original (y. 2010) in .jpeg by *Académie des Sciences, Institut de France*, Paris] [Sections 101–160 are reproduced In: Gillispie (1971), Appendix C, pp. 299–343, *op. cit.*; and microfilm copies of the complete manuscript are also deposited in the Firestone Library of Princeton University]

[Raffaele Pisano: many plates from the original kindly authorized by Monsieur Gaetan Carnot of *Carnot's family*. The original are conserved at *Académie François Bourdon*. Other Lazare and Sadi Carnot's primary documents are conserved at the *Archives at the Collections archives de la bibliothèque de l'Ècole polytechnique de Palaiseau* (Essonne, France)].

Lazare Carnot

- Carnot L (1798) Réponse de L.–N.–M. Carnot, citoyen français, l'un des fondateurs de la République, et membre constitutionnel du Directoire exécutif, au rapport fait sur la conjuration du 18 fructidor au Conseil des Cinq-Cents par f.-Ch. Bailleul au nom d?une commission spéciale, s. 1., 8 floréal an VI.
- Carnot H (1861–1863) Mémoires sur Carnot par son fils, 2 vols. Pagnerre, Paris.
- Carnot L ([1783] 1786) Essai sur les machines en général. Defay, Dijon.
- Carnot L (1778) Mémoire sur la théorie des machines pour concourir au prix de 1779 propose par l'Académie Royale des Sciences de Paris. The manuscript is conserved in the Archives de l'Académie des sciences, Institut de France, and consists of 85 sections in 63 folios. Sections 27–60 are reproduced. In: Gillispie (1971), Appendix B, pp 271–296.
- Carnot L (1780) Mémoire sur la théorie des machines pour concourir au prix que l'Académie Royale des Sciences de Paris doit adjuger en 1781. The manuscript is dated from Béthune 15 July 1780. It is conserved in the Archives de l'Académie des sciences, Institut de France, and consists of 191 sections in 106 folios. Sections 101–160 are reproduced. In: Gillispie (1971), Appendix C, pp 299–343.
- Carnot L (1784) Éloge de M. le maréchal de Vauban, discours qui a remporté le prix de l'Académie des sciences, arts et belles-lettres de Dijon en 1784, Dijon.
- Carnot L (1784) Lettre sur les aérostats. A manuscript memoir addressed to the Académie Royale des Sciences on 17 Jan 1784 [document lost]
- Carnot L (1785) Dissertation sur la théorie de l'infini mathématique, ouvrage destine it concourir au prix qu'a propose l'Académie Royale des Sciences, arts et belles–lettres de Berlin, pour l'année 1786 [The manuscript is dated by Arras 8 Sept 1785].

- Carnot L (1786) Observations sur la lettre de M. Choderlos de Laclos à Messieurs de l'Académie françoise, concernant l'Éloge de Monsieur le Maréchal de Vauban. Arras, Imp. Vve Michel Nicolas.
- Carnot L (1787a) LETTRE de M. Carnot, Capitaine en premier au Corps Royal du Génie, à M. le Marquis de Montalembert. In: Réponse au Mémoire sur la fortification perpendiculaire, Par plusieurs Officiers du Corps Royal du Génie, Présenté à l'Académie Royale des Sciences, Ouvrage enrichi de plusieurs grandes Planches, avec une Planche de Supplément relative aux Affûts dits Affûts à aiguille. Par M. le Marquis de Montalembert, Maréchal des Camps & Armées du Roij Lieutenant-Général des Provinces de Saintonge & Angoumois, de l'Académie Royale des Sciences & de l'Académie– Impériale de Pétersbourg. A Paris, Pierres. Chez Didot, Fils aîné, Libraire du Roi pour l'Artillerie & le Génie, rue Dauphine, N* 116, p. 16; pp 17–18.
- Carnot L (1787b) Maximilien Robespierre Le droit et l'état des bâtards. Lazare Carnot Le Pouvoir de l'habitude. In: Berthe L-N et De Langre M (eds). Discours inédits prononcés devant l'Académie d'Arras les 27 Avril 1786 et 25 Mai 1787. Académie des Sciences, Lettres et Arts, Arras.
- Carnot L (1789a) Mémoire présenté au Conseil de la Guerre, Au sujet des Places fortes qui doivent être démolies ou abandonnées; ou examen de cette question : Est-il avantageux au Roi de France qu'il y ait des Places fortes sur les frontières de ses États? Paris, Barrois.
- Carnot L (1789b) Réclamation adressée à l'Assemblée nationale contre le régime oppressif sous lequel est gouverné le Corps royal du Génie, en ce qu'il s'oppose aux prowès de l'art et au bien qu'l serait possible de faire par M. Carnot, Capitaine dans ce même Corps, 28 septembre 1789, Paris, Imp. vve Delaguette.
- Carnot L (1792) Sur les citadelles, Carnot l'aîné, député du département du Pas-de-Calais à ses collègues, 5 janvier, l'an IV de la Liberté, Paris, Imp. nat.

- Carnot L (1793a) Rapport fait à la Convention Nationale par ses commissares Carnot, Garrau et Lamarque, envoyés par elle aux frontières des Pyrénées. 12 janvier 1793, Paris, Imp. nat.
- Carnot L (1793b) Déclaration des droits du citoyen, proposée par L. Carnot, Député du Pas de-Calais, 10 mars 1793, Paris, lmp. nat.
- Carnot L (1794) Rapport et projet de décret sur la suppression du conseil exécutif provvisoire et son remplacement par des commissions particulières, présenté à la Convetion nationale au nom du Comité de salut public, par Carnot, Séance du 12 germinal an 2.
- Carnot L (1795a) Campagne des Français depuis le 8 septembre 1793 répondant au 22 fructidor de l'an Ier de la République Jusqu'au 15 pluviöse an III. Imp. de la République, an III.
- Carnot L (1795b) Opinion de Carnot, représentant du peuple, sur l'accusation proposée contre Billaud-Varenne, Collot-d'Herbois, Barère, et Vadier; par la commission des Vingt et un, Imp. nat, an III.
- Carnot L (1796a) Exploits des Français depuis le 22 fructidor an I, jusqu'au 15 pluviöse an III, A Basle, Decker, 1796; mais jusqu'au 5 floréal an V, Basle, 1797.
- Carnot L (1796b) Discours prononcé par le Président du Directoire Exécutif à la fête de la Reconnaissance, 10 prairial an IV (29 mai), Paris, Imp. du Directoire.
- Carnot L (1797a) Réflexions sur la métaphysique du calcul infinitésimal. Duprat, Paris.
- Carnot L (1797b) Œuvres mathématiques du Citoyen Carnot. Membre du Directoire exécutif de la République française et de l'Institut national, ancien Capitaine au corps royal du génie. Avec le portrait de l'auteur, et une planche, A Basle, Decker.
- Carnot L (1797c) Épitre au directeur Carnot, suivie de quelques-unes de ses poesies fugitives, et précédées de notes historiques sur les sociétés de ROSATI. A Paris, Les Marchands de noueautés.

- Carnot L (1800a) Lettre du citoyen Carnot au citoyen Bossut, contenant quelques vues nouvelles sur la trigonométrie. In: Bossut (1800a), vol II, pp 401–421.
- Carnot L (1800b) Betrachtungen über die Theorie der Infinitesimalrechnung. Von dem Burger Carnot. Aus dem Französischen übersetzt und mit Anmerkungen und Zusätzen begleitet von Johann Karl Friedrich Hauff. Jager, Frankfurt am Main.
- Carnot L (1801) De la corrélation des figures de géométrie. Duprat, Paris.
- Carnot L (1803a) Principes fondamentaux de l'équilibre et du mouvement. Deterville, Paris.
- Carnot L (1803b) Géométrie de position à l'usage ceux qui se destinent à mesurer les terrains. Duprat, Paris.
- Carnot L (1804) Discours prononcé par le Citoyen Carnot, sur la motion relative au gouvernent héréditaire Séance extraordinaire du 11 floréal an XII, Paris, lmp. nat., an XII.
- Carnot L (1806) Mémoire sur la Relation qui existe entre les distances respectives de cinq points quelconques pris dans l'espace; suivi d'un essai sur la théorie des transversales. Courcier, Paris.
- Carnot L (1806a) Digression sur la nature des quantités dites négatives. In: Mémoire sur la Relation qui existe entre les distance respectives de cinq quelconques pris dans l'espace; suivi d'un essai sur la théorie des transversales. Courcier, Paris, pp 96–111.
- Carnot L (1806b) Mémoire sur la relation qui existe entre les distances respectives de cinq points quelconques pris dans l'espace, suivi d'un essai sur la théorie des transversales. Courcier, Paris.
- Carnot L (1806c) Rapport sur une nouvelle machine inventée par MM Niepce, et nommée par eux Pyrélophore; par MM Berthollet et Carnot. Lu le 15 décembre 1806, imprimé en 1807, 1er semestre. In: Charnay JP, Charnay JP (eds) Lazare Carnot ou le savant–citoyen. La Herne, Paris.

- Carnot L (1808a) Essai sur les machines en général (Part I) In: Philosophical Magazine: comprehending the various branches of science, the liberal and fine arts, agriculture, manufactures, and commerce. Tilloch A (ed). Vol. XXX. Murray J, London, pp. 8–15; pp. 154–158; pp. 207–221; pp. 310–320. Very interesting are the avant–titre–page of the book where a portrait from the original of Lazare Carnot is published and a short biography/comment of Lazare Carnot written by the editor (pp. 370–371).
- Carnot L (1808b) Essai sur les machines en général (Part II). In: Philosophical Magazine: comprehending the various branches of science, the liberal and fine arts, agriculture, manufactures, and commerce. Tilloch A (ed). Vol. XXXI. Murray J, London, pp. 28–36; pp. 136–144, pp. 220–228; pp. 295–305.
- Carnot L (1808c) Essai sur les machines en général (Part III). In: Philosophical Magazine: comprehending the various branches of science, the liberal and fine arts, agriculture, manufactures, and commerce. Tilloch A (ed). Vol. XXXII. Murray J, London, pp. 124–130.
- Carnot L (1810) De la Défense des places fortes. Courcier, Paris. [See also Id. 1810. Geometrie der Stellung oder über die Anwendung der Analysis auf Geometrie, 2 vols. Vorrede, Altona].
- Carnot L (1811) De la Défense des places fortes, 2nd edition. Courcier, Paris.
- Carnot L (1812a) De la Défense des places fortes, 3rd edition. Courcier, Paris.
- Carnot L (1812b) Discours préliminaire de la troisième édition du Traité de la défense des places fortes. Paris, Courcier.
- Carnot L (1813) Note. In: Carnot L (1813), pp 213–257.
- Carnot L (1813) Réflexions sur la métaphysique du calcul infinitésimal. [2nd edition of 1797] Courcier, Paris.
- Carnot L (1814a) A Treatise on the Defence of Fortified Places. Translated from the French. Egerton, Military Library, Whitehall.

- Carnot L (1814b) Mémoire adressé au roi, en juillet 1814 par M. Carnot; Lieutenant-général, Chevalier de l'Ordre royal et militaire de Saint-Louis, Membre de la Légion d'honneur, de l'Institut de France, etc. Bientôt ils vous diront que les plus saintes lois. Maîtresses du vil peuple, obéissent aux Rois. Racine. Chez tous les libraires, Bruxelles.
- Carnot L (1815a) Mémoire adressé au roi, en juillet 1814 par M. Carnot ; Lieutenant-général, Chevalier de l'Ordre royal et militaire de Saint-Louis, Membre de la Légion d'honneur, de l'Institut de France, etc. Seule Édition complète et correcte, contenant toutes les Notes de l'Auteur; celles du Lynx ; les Commentaires qui ont circulé secrètement avec le Manuscrit, et les Pièces justificatives; Suivi du discours qu'il a prononcé au tribunat, le 11 floréal an 12. Bientôt ils vous diront que les plus saintes lois. Maîtresses du vil peuple, obéissent aux Rois. Racine. Cinquième édition. Arnaud, Paris.
- Carnot L (1815b) Exposé de la situation de l'Empire, présenté a la chambre de pairs, dans sa séance du 13 Juin 1815. Par S. Exc. Le Ministre de l'Intérieure, Imprimerie Impériale, Paris.
- Carnot L (1818) Correspondance inédite de Napoléon avec le général Carnot pendant les Cents jours. Plancher, Paris.
- Carnot L (1819) Correspondance inédite de Napoléon avec le général Carnot pendant les Cents jours. Plancher, Paris.
- Carnot L (1820) Opuscules poétiques du général L.N.M. Carnot. Baudouin, Paris.
- Carnot L (1821) Don Quichotte poème héroï-comique en six chants. Brockhaus, Leipzig.
- Carnot L (1823) Mémoire sur la fortification primitive pour servir de suite au Traité de la défense des places fortes par M. Carnot, Bachelier, Paris.
- Carnot L (1832) Reflexions on the metaphysical principles of the infinitesimal analysis by M. Carnot. VI. Parker, Oxford.
- Carnot L (1858a) De la Défense des places fortes. Edition 1810. Reedited by Liskenne CF, Sauvan JB. Bibliothèque historique et militaire. Dédiée à l'armée et a la garde nationale de France. Tome V, 5th edition. Allard, Paris, pp. 497–694.

- Carnot L (1858b) Mémoire sur la fortification primitive pour servir de suite au Traité de la défense des places fortes. Edition 1823. Reedited by Liskenne CF, Sauvan JB. Bibliothèque historique et militaire. Dédiée à l'armée et a la garde nationale de France. Tome V. 5th edition Allard, Paris, pp. 695–717, pp. 719–748.
- Carnot L (1894) Général Lazare Carnot, Poésies. Boulanger, Paris.
- Carnot L (1921) Réflexions sur la métaphysique du calcul infinitésimal. In: Les maitres de la pensée scientifique. Publication par les soins de Maurice Solovine, 2 Fascicules. Gauthier–Villars, Paris.
- Carnot L (1933a) Choix de poésies du général L. N. M. Carnot, commentaire de G. Rozet. Baudelot, Paris.
- Carnot L (1933b) Lazar Karno Razmyshlenia o metafizike ischislenia beskonechno malykh (trans: Soloviev NM, M.–L. Goc). Texniko teoretiqeskoe izdatel-stvo [ML GosTechnical and Theoretical Publishing] Moscow [see also: Id (1936) In: Idées sur le fondement de l'analyse mathématique au XVIII siècle. Rédaction et Suppléments de Youschkevitch AP, 2nd edition Leningrad, Moscow].
 - Carnot L (1936) Razmyshleniia o metafizike ischisleniia beskonechno malykh [from Réflexions sur la métaphysique du calcul infinitésimal]. 2nd edition Leningrad, Moscow.
- Carnot L (1990) Rapport sur une nouvelle machine inventée par MM. Niepce, et nommée par eux Pyrélophore; par MM. Berthollet et Carnot. Lu le 15 décembre 1806, imprimé en 1807, 1er semestre. In: Charnay JP (ed) Lazare Carnot ou le savant–citoyen, La Herne, Paris, Presses de L'Université de Paris–Sorbonne, 1990–Centre d'études et de recherches sur les stratégies et les conflits, Colloque en Sorbonne, 1988).

Sadi Carnot

- Carnot S ([1824] 1978) Réflexions sur la puissance motrice du feu sur les machinés propre à développer cette puissance, édition critique par Fox Robert. Vrin J, Paris. [Ivi, Recherche d'une formule propre à représenter la puissance motrice de la vapeur d'eaul.
- Carnot S (1824) Réflexions sur la puissance motrice du feu sur les machinés propre à développer cette puissance. Bachelier, Paris.
- Carnot S (1872) Réflexions sur la puissance motrice du feu sur les machinés propre à développer cette puissance. Annales scientifiques de École Normale Supérieure XII(1):393–457.
- Carnot S (1878a) Réflexions sur la puissance motrice du feu sur les machinés propre à développer cette puissance. [Archives of the Académie des Science–Institut de France, Paris].
- Carnot S (1878b) Réflexions sur la puissance motrice du feu sur les machinés propre à développer cette puissance. Gauthier–Villars, Paris.
- Carnot S (1943) Reflections on the motive power of heat and on machines fitted to develop this power. In: Thurston RH (ed). Waverly Press, Inc., Baltimore.
- Carnot S (1953) Réflexions sur la puissance motrice du feu et sur les machines propres a développer cette puissance. Blanchard, Paris.
- Carnot S (1978) Réflexions sur la puissance motrice du feu sur les machinés propre à développer cette puissance, édition critique par Fox Robert. Vrin J, Paris.
- Carnot S (1986) Reflexions on the motive power of fire: a critical edition with the surviving scientific manuscripts translated and edited by Robert Fox. The Manchester University Press, Manchester.
- Carnot S (1996) Riflessioni sulla potenza motrice del fuoco. Cuen, Napoli.

- Carnot S (s. d.) Notes sur les mathématiques, la physique et autres sujets. In: Carnot S (1878b), pp 89–102 [The manuscript is conserved In: Carnot S 1878a].
- Carnot S (s. d.) Recherche d'une formule propre à représenter la puissance motrice de la vapeur d'eau. In: Carnot S (1978), pp 223–234 Carnot S–EP (s. d.) Recherche d'une formule propre à représenter la puissance motrice de la vapeur d'eau. ©Collections Archives de la Bibliothèque de l'École polytechnique, Paris.
- Carnot S (1921) L'œuvre scientifique de Sadi Carnot. Introduction a l'étude de la thermodynamique. Aries E (ed). Payot, Paris.

Ampère AM (1806) Démonstration du Principe des vitesses virtuelles, dégagée de toute considération des infiniment petits. Journal de l'École Polytechnique 6/13:247–269

Ampère AM (1822a) Recueil d'observation électrodynamiques. Crochard, Paris Ampère AM (1822b) Extrait d'une lettre d'Ampère au Professeur de la Rive sur des expériences électro-magnétiques et sur la formule qui représente l'action mutuelle de deux portions infiniment petites de courants électriques-12 juin 1822. Bibliothèque universelle des sciences, belles-lettres, et arts XX:185-192

Ampère AM (1826) Théorie des phénomènes électro-dynamiques uniquement déduite de l'expérience. Méquignon-Marvis, Paris

Ampère AM (1827) Théorie mathématiques des phénomènes électrodynamiques uniquement déduite de l'expérience. Chez Firmin Didot, Paris

Arago FJD, Gay-Lussac JL (eds) (1833) Annales de Chimie et de Physique. Tome LII, Crochard, Paris

Arago FJD, Dupin C (1827) Rapport suivant sur un mémoire de M Poncelet intitulé Cours de mécanique appliquée aux machines. In: Institut de France. Académie des sciences. Procès—verbaux des séances de l'Académie. Imprimerie [publication 1918] de l'observatoire d'Abbadia, Hendaye Basses—Pyrénées, 7 Mai, Année 1824–1827, Tome VIII, pp 527–531

Archimedes (2002) On the equilibrium of planes, Books I-II. In: Heath TL (ed). The works of Archimedes. Dover Publications Inc., New York, pp 189–220

Aristotle (1853) On the Definition and Division of Principles. In: Octavius Freire Porphyry Owen (ed). The Organon, Or Logical Treatises, of Aristotle. Bohn H G, London, vol 1, pp 263–266

Aristotle (1949) Aristotle's Prior and Posterior Analytics. A Revised Text with Introduction and Commentary Ross WD (ed). The Oxford University Press, Oxford

- Aristotle (1955a) De Caelo. Translation into English by Stocks JL. The Tech Classics Archive of M.I.T
- Aristotle (1955b) Mechanical problems. In: Hett WS (ed) Aristotle. Minor works. William Heinemann, Cambridge, pp. 328–414
- Aristotle (1984) The complete works of Aristotle, Barnes (ed) The Princeton University Press, Princeton NJ
- Aristotle (1996) The principles of Nature–Physics. vol 1. In: Waterfield R (ed). The Oxford University Press, Oxford
- Aristotle (1999) Physics. Translation by Waterfield R. The Oxford University Press, Oxford
- Aristotle ([1936] 1955a) Mechanical problems. In: Hett WS (ed) Aristotle. Minor works. William Heinemann, Cambridge, pp 328–414
- Aristotle ([1936] 1955b) Minor Works. Transaltion by Hett WS. The Harvard University Press–Heinemann W LTD, Cambridge MA–London
- Bailyn M (1985) Carnot and the universal heat death. The American Journal of Physics 53(11):1092–1099
- Baldi B (1621) In Mechanica Aristotelis Problemata Exercitationes: adiecta succinta narratione de autoris vita et scriptis. Ioannis Albini, Moguntiae
- Batens D, Meheus J (2006) A formal logic for abductive reasoning. Logic Journal of the IGPL 14:221–236
- Bélidor BF (1729; 1830) La science des ingénieurs dans la conduite des travaux de fortification et d'architecture civile. Nouvelle éditions, avec des notes, par Navier de l'académie des sciences. Didot F, Paris
- Bélidor BF (1737–1739) Architecture hydraulique, ou l'Art de conduire, d'élever et de ménager les eaux pour les différents besoins de la vie. 2 vols, Jombert, Paris
- Bélidor BF (1813) La science des ingénieurs dans la conduite des travaux de fortification et d'architecture civile. Nouvelle éditions, avec des notes, par M. Navier, ingénieur ordinaire des Ponts et Chaussées. Didot F, Paris
- Bélidor BF (1819) Architecture hydraulique, ou l'art de conduire, d'élever et de ménager les eaux pour les differens besoins
- Bernoulli D ([1748] 1750) Remarques sur le principe de la conservation des forces vives pris dans un sens général. Mémoire de l'Académie Royale des Sciences et des Lettres de Berlin, vol IV, pp 356–364
- Bernoulli D (1733) Theoremata de oscillationibus corporum filo flexili connexorum et catenae verticaliter suspense. Novi commentarii Academiae Scientiarum Imperialis Petropolitanae (1738) pp 108–123
- Bernoulli D (1738) Hydrodynamica sive de viribus et motibus fluidorum commentarii. Opus academicum, Sumptibus Johannis Reinholdi Dulseckeri, Typis Joh. Henr. Deckeri, Typographi Basiliensis, Strasbourg

Bernoulli Jakob (1703) Démonstration générale du centre de balancement et d'oscillation, tirée de la nature du levier. Mémoire de l'Académie Royale des Sciences Paris, pp. 78–84

- Bernoulli Johann (1727) Theoremata selecta pro conservatione virium vivarum demonstranda et esperimenta confirmanda. Novi commentarii Academiae Scientiarum Imperialis Petropolitanae 2, pp. 200–207
- Bernoulli Johann (1742a) Propositiones variae mechanico-dynamicae. In: Bernoulli 1742b, vol IV, pp. 253–386
- Bernoulli Johann (1742b) Opera omnia, tam antea sparsim edita, quam hactenus inedita ... quibus continentur ea, quae ab A. 1690 usque ad A. 1727 prodierunt. Accedunt Lectiones Mathematicae de Calculo Integralium atque Anedokta, I–IV vols, Lausannae & Genevae, Bousquet [Facsimile 1968. Reprint Curavit Hofman JE. Georg Olms Verlag Hildeshe]
- Betancourt MA (1792) Mémoire sur la force expansive de la vapeur de l'eau, Lu a l'académie royale des sciences par M. Betancourt. Chez Laurent, Paris (des registrer de Académie Royale
- Berthollet CL (1803) Essai de statique chimique, 2 vols. Firmin Didot, Paris
- Berthollet CL (1809) Sur le chaleur produite pour lo choc de compression. Mémoires de physique et de chimie de la Société d'Arcueil II:441–448
- Beth EW (1961) Semantic of physical theories. In: Freudenthal H (ed) The concept and the role of the model. In mathematics and natural and social sciences. Reidel, Dordrecht
- Bevir M (1999) The logic of the history of ideas. The Cambridge University Press, Cambridge
- Biot JB (1802) Sur la théorie du son. Journal de Physique et de Chimie 55:173–182
- Biot JB (1816) Traité de physique expérimentale et mathématique, vols 1–2. Deterville, Paris
- Biot JB (1858) Une anecdote relative à Laplace, lue à l'académie française dans sa séance particulière du 5 février 1850. Mélanges scientifique et littéraires, Michel Lévy Frères, Paris, pp. 1–9
- Birembaut A (1974) A propos des notices biographiques sur Sadi Carnot: Quelques documents inédits. Revue d'histoire des sciences XXVI I(44):355–370
- Black J (1803) Lectures on the elements of chemistry delivered in the University of Edinburgh by the late Joseph Black, M.D, 2 vols. John Robison, Edinburgh
- Borda JC (1770a) Mémoire sur les pompes. In: Histoire de l'Académie Royale des Sciences avec les Mémoires de Mathématique & de Physique, pour la même année 1768. Imprimerie Royale, Paris, pp 418–431
- Borda JC (1770b) Mémoire sur les roues hydrauliques. In: Histoire de l'Académie Royale des Sciences avec les Mémoires de Mathématique & de Physique, pour la même année 1767. Imprimerie Royale, Paris, pp 270–287
- Bossut C (1775) Traité élémentaire de Mécanique et de Dynamique, appliqué principalement aux mouvements des Machines. Jombert, Paris

Bossut C (1800a) Cours de mathématiques. Tome II. Géométrie et application de l'algèbre à la géométrie. nouvelle édition. Didot, Paris

- Bossut C (1800b) Mécanique philosophique. Journal de l'École Polytechnique de Paris III, an. VIII, Cahiers 7 & 8:1–477
- Bouvier AR (1816–1817) Mécanique appliquée. Description d'un projet de machine à vapeur, principalement applicable à faire mouvoir les bateaux. Annales de Mathématiques pures et appliqués 7:129–139
- Briot C (1869) Théorie mécanique de la chaleur. Gauthier-Villars, Paris
- Brown EJ (1967–1968) The Scientia de Ponderibus in the later Middle Ages, Ph.D. Dissertation. Tutor Clagett M. Madison. University of Wisconsin [available via: UMI–Proquest Company]
- Bussotti P (2003) On the Genesis of the Lagrange Multipliers. J Optim Theory Appl 117/3:453–459
- Bussotti P (2015) The Complex Itinerary of Leibniz's Planetary Theory. Springer-Birkhäuser, Basel
- Bussotti P, Pisano R (2013) On the Conceptual Frames in René Descartes' Physical Works. Submitted to Advances in Historical Studies 2/3: 106–125
- Bussotti P, Pisano R (2014a) Newton's Philosophiae Naturalis Principia Mathematica "Jesuit" Edition: The Tenor of a Huge Work. Atti Accademia Nazionale Lincei Rendiconti Lincei Matematica e Applicazioni 25/4:413–444
- Bussotti P, Pisano R (2014b) On the Jesuit Edition of Newton's Principia. Science and Advanced Researches in the Western Civilization. Newton Special Issue (Pisano ed): History and Historical Epistemology of Science. Advances in Historical Studies, 3/1:33–55
- Bussotti P, Pisano R (2017) Historical and Philosophical Details on Leibniz's Planetary Movements as Physical-Structural Model. In: Pisano, Fichant, Oliveira, Bussotti 2017, pp. 49–92
- Callen H (1974) Thermodynamics as a science of symmetry. Foundations of Physics 4:423–440. Callen HB, (1960) Thermodynamics. Wiley, New York
- Callendar HL (1910) Caloric theory of heat and Carnot's principle. Proceedings of the Physical Society–London 23(1):153–189
- Callot JP (1980) Répertoire général des anciens élèves de l'École Polytechnique. 1794–1980. Tome I (A–B–C). Archives de la bibliothèque centrale de l'École polytechnique (Palaiseau). Société Amicale des Anciens élèves de l'Ecole polytechnique (AX), Paris
- Capecchi D, Pisano R (2007) La teoria dei baricentri di Torricelli come fondamento della static. Physis XLIV(1):1–29
- Capecchi D, Pisano R (2008) La meccanica in Italia nei primi anni del Cinquecento. Il contributo di Niccolò Tartaglia. In Proceedings of XXV SISFA Congress. University of Milano, Milano, C17.1–C17.6
- Capecchi D, Pisano R (2010a) On Archimedean Roots in Torricelli mechanics. In: Ceccarelli M, Paipetis S (eds). Proceedings of The Genius of Archimedes. Dordrecht, Springer, pp. 17–28
- Capecchi D, Pisano R (2010b) Reflections On Torricelli's Principle in Mechanics. Organon 42:81–98

Capecchi D, Pisano R (2010c) Scienza e Tecnica nell'Architettura del Rinascimento. Cisu, Roma

- Cardwell DSL (1965) Power technologies and the advance of science 1700–1825. Technology and Culture 6(2):188–207
- Cardwell DSL (1967) Some factors in the early development of the concepts of power, work, and energy. The British Journal for the History of Science 3:209–224
- Cardwell DSL (1971) From Watt to Clausius. The rise of thermodynamics in the early industrial age, Heinemann, London
- Cauchy AL (1828) Mémoire sur un Nouveau principe de mécanique rationnelle. In: Procès— verbaux des séances de l'Académie, 21 Juillet, Institut de France. Académie des Sciences, Imprimerie [publication 1921] de l'observatoire d'Abbadia, Hendaye Basses—Pyrénées, Année 1828—1831, Tome IX, p. 94
- Cauchy AL (1829) Mémoire sur un nouveau principe de mécanique, par M. Aug. Louis Cauchy. In: Sturm et Gaultier de Claurbry (eds) Bulletin universel des sciences mathématiques, physique et chimiques, Tome XII. Firmin A Didot, Paris, pp. 116–122
- Cavalieri B (1635) Geometria Indivisibilius continuo rum nuova quadam ratione promota. Ferrone, Bologna
- Cavalieri B (1643) Trigonometria plana, et sphaerica, linearis & Logarithmica. Bonoiae Typis Haeredis Victorij Benatij
- Challey F (1971) Sadi Carnot. In: Gillispie (1970–1980), vol III, pp 79–84
- Chasles M (1839) Énoncé de deux théorèmes généraux sur l'attraction des corps et la théorie de la chaleur. Comptes rendus de l'Académie des sciences 8:209–211
- Chasles M (1852) Traité de géométrie supérieur. Bachelier, Paris
- Chasles M (1875) Aperçu historique sur l'origine et le développement des méthodes en géométrie, 2nd edn. Gauthier-Villars, Paris
- Chatzis K (2009) Charles Dupin, Jean–Victor Poncelet et leurs mécaniques pour "artistes" et ou-vriers. In: Christen C, Vatin F (eds)
- Charles D (1784–1873): ingénieur, savant, économiste, pédagogue et parlementaire du Premier au Second Empire. PUR, Rennes, pp 99–113
- Chemla K (1990) Remarques sur les recherches géométriques de Lazare Carnot. In: Charnay JP (ed). Proceedings of the Lazare Carnot ou le savant citoyen, Sorbonne Press, Paris, pp 525–541
- Chemla K (1998) Lazare Carnot et la généralité en géométrie. Variations sur le théorème dit de Menelaus. Revue d'histoire des mathématiques 4:163–190
- Clagett M (1959) The science of mechanics in the Middle Ages. The University of Wisconsin press, Madison
- Clagett M, Moody EA ([1952] 1960) The medieval science of weights. Scentia de ponderibus. The University of Wisconsin Press, Madison
- Clagett M, Murdoch J (1958–1959) Medieval mathematics, physics, and philosophy: a revised catalogue of photographic reproductions. Manuscripta 2:131–154, Manuscripta 3:19–37

Clapeyron ÉBP (1834) Mémoire sur la puissance motrice du feu. Journal de l'École Royal Polytechnique XXIIIème/XIV:153–190

- Clausius RJE (1850) Über die bewegende Kraft der Wärme und die Gesetze, welche sich daraus für die Wärmelehre selbst ableiten lassen. Annalen der Physik und Chemie 79:368–397, 500–524. (English trans: Id., On the Motive Power of Heat and on the Laws which can be deduced from it for the theory of heat itself. In: Mendoza (1960), pp 73–74, 109–152)
- Clausius RJE (1864) Die Mechanische Wärmetheorie. Vieweg, Braunschwei-Poggendorff's. Annalen der Physik und. Chemie 125:352–400
- Clausius R (1865) Sur la détermination de la disgregation d'un corp et de la vraie capacité calorifique. Bibliothèque universelle de Genève, Archives des sciences physiques et naturelles XXV:117–124
- Clausius RJE (1868–1869) Théorie Mécanique de la Chaleur, II vols, French édition (trans: Folie). Lacroix éditeur, Paris
- Clément N (1819a) Sur les machines à vapeur. Bulletin de la Société d'Encouragement pour l'Industrie Nationale. Imprimerie de Madame Huzard, Paris, XVII:254–255
- Clément N (1819b) Un mémoire sur les machines a vapeur. In: Procès-verbaux des séances de l'Académie, 23 et 30 Aout, Institut de France. Tome VI. Académie des sciences. Imprimerie de l'observatoire d'Abbadia, Hendaye (Basses Pyrénées), pp. 480–481
- Clément N (1970) Nicolas Clément. In: Gillispie (ed) (1970–1980), III:315–317 Clément–Desormes N (1905) Chimie générale dans ses rapports avec l'industrie Chaire créée par ordonnance du 25 novembre 1819. In: Conservatoire national des arts et métiers. Enseignement des sciences appliquées aux arts et à l'industrie. Programmes des cours publics. Vuibert et Nony Éditeurs, Paris, pp. 109–118
- Cohen IB, Smith GE (2002) (eds) The Cambridge Companion to Newton. The Cambridge University Press, Cambridge
- Combes C (1863) Exposé des principes de la théorie mécanique de la chaleur et ses applications principales, Bulletin de la Société d'Encouragement pour l'Industrie Nationale, Janvier, Paris
- Combes C (1867) Exposé des principes de la théorie mécanique de la chaleur et ses applications principales. Bouchard-Huzard, Paris
- Commandino F (1565) Federici Commandini Vrbinatis Liber de centro gravitatis solido rum. Ex Officina Alexandri Benacii, Bononiae
- Condillac EB (1821) La logique par Condillac. Verdier Quai Des Augustins, Paris
- Coopersmith J (2015) Energy. The Subtle Concept. Oxford University Press, Oxford
- Coopersmith J (2017) The Lazy Universe: An Introduction to the Principle of Least Action. Oxford, Oxford University Press
- Coriolis GG (1829) Du calcul de l'effet des machines ou considérations sur l'emploi des moteurs et sur leur évaluation. Servir d'introduction a l'étude spéciale des machines, Carilian-Goeury, Paris

Coriolis GG (1830–1837) École centrale des arts et manufactures. Cours de M Coriolis. Leçons sur la mécanique, 1830–1831, 1836–1837 (slnd), 2 vols [in pdf, Vols. 14276–14277 via Bibliothèque Nationale de France via: http://www.bnf.fr]

- Coriolis GG (1844) Traité de la mécanique des corps solides et du calcul de l'effet des machines, 2nd ed. Carilian-Goeury et Vor Dalmot, Paris
- Costabel P (1976) L'Œuvre de Sadi Carnot, son contexte, ses suites. In: Taton (1976), pp 122–124. Costabel P (1960) Leibniz et la dynamique: les textes de 1692. Histoire de la pensée–Hermann, Paris [English trans: Herman 1973]
- Coulomb CA (1784) Observations théoriques et expérimentales sur l'effet des moulins à vent, & sur la figure de leurs ailes. In: Histoire de l'Académie Royale des Sciences avec les Mémoires de Mathématique & de Physique, pour la même année 1781. Imprimerie Royale, Paris, pp. 65–81
- Coulomb CA (1785) Théorie des machines simples en ayant égard au frottement de leurs parties et à la roideur du cordage. Mémoire de mathématique et de physique présentes à l'Académie Royal des Sciences par divers savants. Bachelier, Paris
- Coulomb CA (1799) Résultat de plusieurs expériences destinées a déterminer la quantité d'action que les hommes peuvent fournir par leur travail journalier suivant les différentes manières dont ils emploient leurs forces, vol II. Mémoires de l'Institut National des sciences et arts, Paris, pp. 340–428
- Crombie AC (1959) Medieval and early modern science, 2 vols. Doubleday, Garden City
- Crombie AC (1994) Styles of scientific thinking in the European tradition, 3 vols. Duckworth, London
- Crombie AC (ed) (1963) Scientific change: historical studies in the intellectual, social and technical conditions for scientific discovery and technical Invention, from antiquity to the present –Symposium on the history of science, University of Oxford, 9–15 July 1961. Heinemann education books, London
- Culp WM (1914) The work of Lazare–Nicolas–Marguerite Carnot as member of the Committee of Public Safety in France 1793–1794. Thesis submitted in partial satisfaction of the requirement for the degree of master of Art at the University of California. April. Berkeley [retrieved from University of California Digital Library]
- D'Alembert JLR ([1743] 1758) Traité de dynamique. Nouvelle édition, revue et fort augmentée par l'Auteur Chez David Libraire, Paris
- D'Alembert JLR (1751–1780) Encyclopédie ou dictionnaire raisonné des sciences, des arts et des métiers, Diderot & D'Alembert. Briasson–David–Le Breton–Durand, Paris
- D'Alembert JLR (1767) Mélanges de littérature, d'Histoire et de philosophie. Tome V. Chatelain & Fils. Amsterdam, pp. 3–274
- d'Arcy P (1752) Problème de dynamique. Histoire de l'Académie Royale des Science: année 1747, vol II. Imprimerie Royal, Paris, pp. 344–356, with an addendum, Ivi, pp. 356–361

d'Arcy P (1754) Suite d'un mémoire de dynamique. Histoire de l'Académie Royale des Science: année 1750. Imprimerie Royal, Paris, pp. 107–108

- d'Arcy P (1763) Théorèmes de dynamique. Histoire de l'Académie Royale des Science: année I758. Imprimerie Royal, Paris, pp. 1–8
- Darboux G (1887–1896) Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal, 4 vols. Gauthier–Villars, Paris
- del Monte G ([1577] 1581). Le Meccaniche dell'Illustrissimo Sig. Guido Ubaldo de' Marchesi del Monte, tradotto in volgare dal Sig. Filippo Pigafetta. Evangelista Deuchino, Venezia [1577: Mechanicorum Liber]
- Desaguliers JT (1751) Cours de physique expérimentale, Traduit de l'anglais par le RP Pezenas de la Compagnie de Jésus, Professeur Royal d'Hydrographie a Marseille, 2 vols
- Desaguliers JT (1734) A course of experimental philosophy, 2 vols. Innys W–Senex M–Longman T, London
- Descartes R (1897–1913) Œuvres de Descartes. Par Charles Adams et Paul Tannery, Paris, 12 vols; also see Discours de la méthode et Essais, Specimina philosophiae, vol VI; Physico– mathematica, vol X, Le Monde ou Traité de la lumière, vol XI (Id., 1964–1974 by Rochot B, Costabel P, Beaude J et Gabbery A, Paris)
- Desormes CB, Clément N (1819) Mémoire sur la Théorie des machines à feu (Extrait). 1817–1819. Bulletin des Sciences par la Société Philomathique de Paris. Imprimerie de Plassan, Paris, pp 115–118
- Despretz MC (1821) Note extraite d'un Mémoire lu à l'Institut le 29 novembre 1819, par M.C. Despretz. Annales de chimie et de physique XVI:105–109
- Despretz MC (1823) Note extraite d'un Mémoire sur les chaleurs latentes de diverses vapeurs [It was read at Académie des Sciences on 3 October 1818]. Annales de chimie et de physique XXIV:323–331
- Destouches JL (1948) Physico-logical problems. Synthése 411-417
- Destouches JL (1951) Sur la Mécanique Classique et l'Intuitionnisme. Indagations Mathematicae 13:74–79
- Destouches JL (1959) Physico-logical problems. In: Brouwer L (ed) Studies in logic and the foundations of mathematics. The axiomatic method with special references to geometry and physics. North-Holland Publishing Co, Amsterdam, pp 390–405
- Destouches JL (1966) Logique et Théorie Physique. Synthèse 16:66–73
- Dhombres J, Alvarez C (2012) Pierre Simon de Laplace, 1749–1827. Le parcours d'un savant, Hermann, Paris
- Dhombres J, Dhombres N (1997) Lazare Carnot. Fayard, Paris
- Dijksterhuis EJ (1955) The principal works of Simon Stevin-Mechanics, vol I. NV Swets & Zeitlinger, Amsterdam
- Drago A, Manno SD (1994) Saggio sulle machine in generale. Cuen, Napoli
- Drago A, Manno SD, Mauriello A (2001) Una presentazione concettuale della meccanica di Lazare Carnot. Giornale di Fisica 42:131–156
- Dugas R (1955) Histoire de la Mécanique (trans. Maddox JR) (1950) Editions du Griffon, Neuchâtel. Dover, New York

Duhem PM (1905–1906) Les origines de la statique, 2 Tomes. Hermann, Paris Duhem PM (1977) Aim and structure of physical theory. Princeton University Press, Princeton Duhem PM (1906–1913) Études sur Leonard de Vinci. Hermann, Paris

- Dulong PL (1829) Recherches sur la chaleur spécifique des fluides élastiques. Lu à Académie des sciences le 18 mai 1828. Annales de Chimie et de Physique XLI:113–159
- Dulong PL, Petit AT (1816) Recherches sur les lois de la dilatation des solides, des liquides et des fluides élastiques, et sur la mesure exacte des températures. Annales de Chimie et de Physique II:240–263
- Dupre H (1892) Lazare Carnot, Republic Patriot. The Mississippi Valley Press, Oxford
- Duthuron G (1940) Un Éloge de Vauban. Annales historiques de la révolution française, 17 May–June:152–165
- Edmunds CK (1902) The motive power of heat. Popular Science Monthly, pp 117–128
- Einstein A ([1949] 1970) Autobiographical notes. In: Schilpp PA (ed) Albert Einstein: philosopher-scientist, library of living philosophers, vol VII. The Cambridge University Press, London
- Euler L ([1730–1] 1738) De communicatione motus in collision corporum. Commentarii academiae scientiarum Petropolitanae 5:159–168
- Euler L ([1773] 1774) De pressione ponderis in planum in cui incumbit. Novi Commentarii academiae scientiarum Petropolitanae, vol XVIII, pp 289–329
- Euler L (1736) Mechanica sive motus scientia analytice exposita. Auctore Leonhardo Eulero academiae imper. scientiarum membro et matheseos sublimioris professore. Tomus I. Instar supplementi ad commentar. acad. scient. imper. Petropoli. Ex typographia academiae scientarum
- Euler L (1749) Recherches sur les mouvements des corps célestes en général (1747). Mémoire de l'Académie Royale des Sciences et des Lettres de Berlin, v 1, pp 93–143
- Euler L ([1750] 1752) Découverte d'un nouveau principe de Mécanique. Mémoires de l'académie des sciences de Berlin. vol VI, 1752, pp 185–217
- Euler L (1751) De machinis in genere Novi Commentarii Academiae Scientarum Imperialis Petro–Politanae. Petropoli Typis Academiae Scientiarum
- Euler L (1757) Principes généraux du mouvement des fluides. Mémoires de l'Academie des Sciences de Berlin 11:274–315
- Euler L (1775) Nova methodus motum corporum rigidorum determinandi. Novi Commentarii academiae scientiarum
- Fermat P (1891–1912) Œuvres de Fermat publiées par P. Tannery et Ch. Gauthier-Villars, Paris, Henry
- Fossombroni V (1794) Memoria sul princpio delle velocità virtuali. Gaetano Cambiagi, Firenze
- Fourier JBF (1878) Analytical theory of heat. Translated by Freeman A. The Cambridge University Press, London

Fourier JBJ (1798) Mémoire sur la statique, contenant la démonstration du principe de vitesses virtuelles, et la théorie des momens. Journal de l'École Polytechnique 2(5):20–60 [see also In: Fourier (1888–1890), pp 475–521]

- Fourier JBJ (1807) Théorie de la propagation de la chaleur dans les solides. Nouveau Bulletin des Sciences par la Société philomathique de Paris, Tome I(6):112–116. (n. 6, mars 1808), Bernard, Paris
- Fourier JBJ (1808) Théorie de la propagation de la chaleur dans les solides. Nouveau Bulletin des Sciences par la Société philomathique de Paris I(6):112–116
- Fourier JBJ (1822) Théorie analytique de la chaleur. Firmin Didot, Paris
- Fourier JBJ (1829) Mémoire su la théorie analytique de la chaleur dans les solides. Mémoires de l'Académie royale des sciences de l'Institut de France pour l'année 1825. Firmin Didot, Paris VIII:581–622
- Fourier JBJ (1888–1890) Œuvres de Fourier par les soins de M. Gaston Darboux, 2 vols, Gauthier–Villars, Paris
- Fox R (1974) The rise and fall of Laplacian physics. Historical Studies in the Physical Science 4:89–136
- Fox R (1995) Science, Industry and the Social Order in Post–Revolutionary France. Variorum Collected Studies Series 489, Ashgate Variorum
- Fraser CG (1983) J.L. Lagrange's Early Contribution to the Principles and Methods of Mechanics. Archive for History of Exact Sciences 28/3:197–241
- Gabbey AW, Herivel JW (1966) Un manuscrit inédit de Sadi Carnot. Revue d'histoire des sciences et de leurs applications 19(2):151–166
- Galilei G ([1599?] 1634) Le Mecaniche, in A. Favaro (ed.) Edizione Nazionale delle Opere di Galileo Galilei. Vol. II. Barbèra, Firenze, pp 149–191
- Galilei G (1890–1909) Le Opere di Galileo Galilei: Edizione nazionale sotto gli auspici di sua maestà il re d'Italia. Introductions and Notes by Favaro A. Barbèra G, Firenze, 20 vols.
- Galilei G (2002) Galileo Galilei. Le Mecaniche, Introduction and Notes by Gatto R. Olschki. Firenze
- Galluzzi P (1979) Momento Studi Galileiani. Ateneo & Bizzarri, Roma
- Galluzzi P, Torrini M (1975–1984). (eds.) The works of Galileo Galilei's disciples. Correspondence (in Italian), Giunti–Barbera, Firenze, 2 vols.
- Gaukroger S, Schuster J, Sutton J (2000) (eds) Descartes' natural philosophy. Routledge London and New York
- Gillispie CC (1970–1979) Carnot Lazare–Nicolas–Marguerite. In: Gillispie (ed) 1970–1980 III:70–79
- Gillispie CC (1971) Lazare Carnot Savant. A monograph treating Carnot's scientific work, with facsimile reproduction of his unpublished writings on mechanics and on the calculus, and an essay concerning the latter by Youschkevitch AP, Princeton University Press, Princeton, NJ
- Gillispie CC (1976) The scientific work of Lazare Carnot, and its influence on that of his son. In: Taton (ed) (1976), pp 23–33
- Gillispie CC (1980) Science and polity in France at the end of the old regime. Princeton University Press, Princeton

Gillispie CC (1983) The Montgolfier brothers and the invention of aviation. Princeton University Press, Princeton

- Gillispie CC (ed) (1970–1980) Dictionary of Scientific Biography. Charles Scribner's Sons, New York
- Gillispie CC, Pisano R (2014) Lazare and Sadi Carnot, 2nd Edition. A scientific and filial relationship. Springer, Dordrecht
- Gillispie CC, Youschkevitch AP (1979) Lazare Carnot savant et sa contribution à la théorie de l'infini mathématique. Vrin, Paris [Collection des Travaux de l'Académie Internationale d'Histoire des Sciences, 20]
- Gillispie CC, Youschkevitch AP (1982) Lazare Carnot Savant et sa contribution à la théorie de l'infini mathématique. Revue d'histoire des sciences XXXV(1):79–82
- Girard PS (1824) Réflexions sur la puissance motrice du feu sur les machinés propre à developer cette puissance, par S. Carnot, ancien élève de l'école polytechnique [...] prix 3 fr. Revue Encyclopédique XXIII–Juillet:414
- Gondinet AD (1833) Necrologie Sadi Carnot. Association Polytecnique, Compte-Rendu Trimestriel, Janvier. Imprimerie Guiraudet [BNF, V 30915], p 46
- Guicciardini N (1999) Reading the Principia. The debate on Newton's mathematical methods for natural philosophy from 1687 to 1736. The Cambridge University Press, Cambridge
- Gustav Z (1869) Théorie mécanique de la chaleur: avec ses applications aux machines. Gauthier-Villars, Paris
- Hachette JNP (1811) Traité élémentaire des machines. Klostermann fils, Paris/Saint Pétersbourg
- Hankins TL (1970) Jean D'Alembert. Science and the Enlightenment. The Clarendon Press, Oxford
- Henrion MRA (1833) Sadi Carnot. Annuaire biographique année 1830–1834, Tome I/1833. Méquignon P (ed), Paris
- Henry J (2011) Mathematics made no contribution to public weal: why jean Frenel (1497–1558) became a physician. Centaurus 53/3:193–220
- Hicks P (2013) Lazare Carnot, a forgotten piece in the Napoleon Bonaparte Jigsaw. Napoleonica. La Revue 1/16:64–74
- Hirn GA (1862a) Exposition analytique et expérimental de la théorie mécanique de la chaleur. Mallet-Bachelier, Paris
- Hirn GA (1862b) Théorie mécanique de la chaleur. Tramblay, Leiber
- Hirn GA (1864a) Esquisse élémentaire de la théorie mécanique de la chaleur et ses conséquences philosophiques. Colmar, Paris
- Hirn GA (1864b) Théorie mécanique de la chaleur. Exposition analytique et expérimental, Gauthier-Villars, Paris
- Hirn GA (1863) Galilei G (1954) Dialogues concerning two new sciences. Translated by Crew H and de Salvio A and an introduction by Favaro A. Dover Publications INC, Mineola, NY. Tramblay, Leiber
- Hirn GA (1867) Mémoire sur la Thermodynamique. Gauthier-Villars, Paris

Hirn GA (1868) Conséquences philosophiques et métaphysiques de la Thermodynamique. Analyse élémentaire de l'univers, Gauthier-Villars, Paris

- Hirn GA (1887) La thermodynamique et le travail chez les êtres vivants. Revue scientifique 22:673–684 [May, Paris, Bureau des revues]
- Hoyer U (1974) Über den Zusammenhang der Carnotshen Theorie mit der Thermodynamik. The Archive for History of Exact Sciences 13:359–375
- Hoyer U (1975) How did Carnot calculate the mechanical equivalent of heat? Centaurus 19:207–219
- Hoyer U (1976) La théorie de Carnot première et seconde approximations de la thermodynamique
- Huygens C (1673) Christiani Hugenii Zulichemii, Const. F. Horologium Oscillatorium sive De motu pendulorum ad horologia aptato demonstrationes geometricae. Parisiis, apud F. Muguet, regis et illustrissimi archiepiscopi typographum, via Citharae, ad insigne trium Regum
- Jacquier E (1867) Exposé élémentaire de théorie mécanique de la chaleur appliquée aux machines
- Jamin MJ (1868) Cours de Physique à l'École Polytechnique, Tome I–IV. Gauthier-Villars, Paris, pp. I–II
- Jamin MJ (1886) Cours de Physique, Tome I–IV. Gauthier-Villars, Paris, pp. I–II Jammer M (1957) Concepts of force: a study in the foundations of dynamics. The Harvard University Press, Cambridge, MA
- Jammer M (1961) Concepts of mass in classical and modern physics. The Harvard University Press, Cambridge, MA
- Jouguet E (1924), Lectures de mécanique. La mécanique enseignée par les auteurs originaux, 2 vols. Gauthier-Villars, Paris
- Joule JP (1844) On the changes of temperature produced by the rarefaction and condensation of air. Philosophical Magazine, 3rd series, XXVI:369–383
- Joule JP (1845) On the mechanical equivalent of heat. British Association meeting, Cambridge [read before the British Association at Cambridge, June]
- Joule JP (1847) On the mechanical equivalent of heat, as determined by the heat evolved by the friction of fluids. Philosophical Magazine, 3rd series, XXXI(207):173–176
- Joule JP (1965) The scientific papers of James Prescott Joule, vol I. Dawson's, London, pp 277–281
- Klein MJ (1969) Gibbs on Clausius. Historical Studies in the Physical Sciences 1:127–149 Knobloch E (2005) Géométrie pratique. Géométrie savante. Albertiana 8:27–56
- Knobloch E (2005) Géométrie pratique, Géométrie savante. Albertiana 8:27–56 Knobloch E, Vasoli C, Siraisi N (2001) Il Rinascimento. In: Medioevo, Rinascimento. Storia della scienza, Vol IV. Istituto della Enciclopedia Italiana, Roma, pp. 605–1044
- Koetsier T (2007) Lazare Carnot's theory of machines and the background of Ampère's introduction of the word kinematics. In: Ceccarelli M (ed) Proceedings of 13th national conference on mechanisms and machines. Springer, Dordrecht, pp. 29–35

Kragh H (1987) An Introduction to the Historiography of Science. The Cambridge University Press, Cambridge

- Kuhn TS (1955) Carnot's version of cycle. The American Journal of Physics 23:91–94
- Kuhn TS (1959) Energy conservation as example of simultaneous discovery. In: Clagett M (ed) Critical problems in the history of science. Wisconsin University Press, Madison, pp 321–356
- Kuhn TS (1960) Engineering precedent for the work of Sadi Carnot. Archives Internationales d'Histoire des Sciences 13:251–255
- Kuhn TS ([1961] 1980) Engineering precedent for the work of Sadi Carnot. In: Proceedings of IX Congrès international d'Histoire des sciences (Barcelona–Madrid 1959). Asociatió3n para la historia de la ciencia Española, Barcelona/Paris, pp 530–535
- Kuhn TS (1961) Sadi Carnot and the Cagnard Engine. Isis 52(4):567-574
- Kuhn TS (1962) The Structure of Scientific Revolutions. The University of Chicago Press, Chicago
- Kuhn TS (1963) The function of Dogma in Scientific Research. In: Crombie (1963), pp 347–369
- Kuhn TS (1970) Reflections on my Critics. In: Lakatos I, Musgrave A (eds) Criticism and growth of knowledge. Proceedings of international colloquium in the philosophy of science. The Cambridge University Press, Cambridge, pp 231–278
- Kuhn TS (1974) Second thoughts on Paradigms. In: Suppe F (ed) The structure of scientific theories. The Illinois University Press, Urbana, pp 459–482
- Lagrange JL (1762) Application de la méthode exposée dans le mémoire précédente à la solution des différents problèmes de dynamique. In: Lagrange 1870–1873, I, pp. 363–468
- Lagrange JL (1764) Recherches sur la libration de la Lune dans lesquelles on tache de résoudre la question proposes par l'Académie Royale des Sciences, pour le Prix de l'année 1764. Prix de l'académie Royale des Sciences de Paris, IX (1777), pp 1–50. See also In: Lagrange 1870–1873, Tome VI, pp. 5–61
- Lagrange JL (1788) Mécanique Analytique. Desaint, Paris
- Lagrange JL (1797) Théorie des fonctions analytiques contenant les principes du calcul différentiel, dégagés de toute considération d'infiniment petits, de limites et de fluxions, et réduits à l'analyse algébrique des quantités finies. Journal de l'École Polytechnique III(9):91–93
- Lagrange JL (1806) Leçons sur le calcul des fonctions, Nouvelle edn. Courcier, Paris
- Lagrange JL (1813) Théorie des fonctions analytiques. Courcier, Paris
- Lagrange JL (1870–1873) Œuvres de Lagrange. Seconde édition, Courcier (ed), I–XIV vols. (in X) Paris. Gauthier-Villars, Paris
- Lagrange JL (1881) Théorie des fonctions analytiques contenant les principes du calcul différentiel, dégagés de toute considération d'infiniment petits, de limites et de fluxions, et réduits à l'analyse algébrique des quantités finies. In: Serret JA (ed) Œuvres de Lagrange. Cinquième édition, vol IX, Chapter VII. Gauthier-Villars, Paris, pp. 409–410

Lagrange JL (1892) [Lagrange's letter to Euler on November 24th 1759 in:] Œuvres de Lagrange. Tome XIV. In: Darboux G (ed). Gauthier-Villars, Paris, pp 170–174

- Lagrange JL (1973a) Œuvres de Lagrange. Seconde édition, Courcier (ed), I–XIV vols, (in X) Paris. Gauthier-Villars, Paris
- Lagrange JL (1973b) Théorie des fonctions analytiques. In: Lagrange (1973), vol IX
- Lamé G (1836) Cours de physique de l'école polytechnique, vol I. Bachelier, Paris (Id, Cours de physique de l'école polytechnique, 2nd edn. Bruxelles)
- Lamé G (1852) Leçons sur la théorie mathématique de l'élasticité des corps solides. Bachelier, Paris
- Lamé G (1861a) Discours préliminaire. In: Leçons sur la théorie analytique de la chaleur. Mallet-Bachelier, Paris
- Lamé G (1861b) Leçons sur la théorie analytique de la chaleur. Mallet-Bachelier, Paris
- Landriani M (1785) Suite de la dissertation de M Landriani, sur la chaleur latente. Observations sur la physique, sur l'histoire naturelle et sur les arts XXVI:197–207
- Laplace PS (1805) Traité de mécanique céleste. Courcier, Paris
- Laplace PS (1816) Sur la vitesse du son dans l'air et dans l'eau. Annales de chimie et de physique III:238–241
- Laplace PS (1822) Notes sur la vitesse du son. Annales de chimie et de physique XX:266–268 Laplace PS (1816) Sur la vitesse du son dans l'air et dans l'eau. Annales de chimie et de physique III:238–241
- Laplace PS ([1836] 1984) Exposition du système du monde. Fayard, Paris
- Lavoisier AL ([1789] 1937) Traité élémentaire de Chimie. Gauthier-Villars, Paris Lavoisier AL (1862–1893) Œuvres de Lavoisier publiées par le soin de Son Excellence le Ministre de l'instruction publique et des cultes, 6 Vols. Imprimerie Impériale, Paris
- Lavoisier AL, Laplace PS ([1780] 1784) Mémoires sur la Chaleur. Histoire de l'Académie Royale des Sciences. (First reading on 18th June 1783). Imprimerie Royale, Paris, pp. 355–408
- Leibniz GW (1849–1863) G.W. Leibniz Die mathematische Schriften, 7 vols. Gerhardt CI, Berlin–Halle [many reprints by Hildesheim]
- Leibniz GW (2009) Gottfried Wilhelm Leibniz Naturwissenschaftlichmedizinisch-technische Schriften Reihe VIII der Akademieausgabe. Berlin-Brandenburgische Akademie der Wissenschaften, Россијскаја Академија Наук, in Zusammenarbeit mit dem Centre National de la Recherche Scientifique, der Gottfried Wilhelm Leibniz Bibliothek Hannover und der Herzog August Bibliothek Wolffenbüttel. Knobloch E (project leader editor). There is a printed version of the volume(s) and there is an online-version available via: http://leibnizviii.bbaw.de/
- Liouville J (1836) Thèses de mécanique et d'astronomie. Bachelier, Paris

Mach E ([1883] 1996) The science of mechanics-a critical and historical account of its development, 4th edn. Open Court-Merchant Books, La Salle

- Mach E ([1896] 1986) Principles of the Theory of Heat, Historically and Critically Elucidated, McGuinness B (ed), vol 17. Reidel D Publishing Co, Boston [Id., 1896. Die Prinzipien der Wärmelehre. Historisch–kritisch entwickelt. Barth JA, Brockhaus, Leipzig]
- Maupertuis PL (1746) Les loix du mouvement et du repos déduits d'un principe métaphysique. Histoire de l'Académie Royale des Sciences et des Belles Lettres, pp 267–294
- Mendoza E (1959) Contributions to the study of Sadi Carnot and his work. Archive International d'Historie des Sciences XII:377–396
- Mendoza E (1963) Sadi Carnot and the Cagnard engine. Isis 54:262–263
- Mendoza E (ed) (1960) Reflections on the motive power of fire and other papers on the second law of thermodynamics by E Clapeyron and R Clausius. Dover, New York
- Meusnier de la Place J–B –M–CH (1783) Mémoire sur l'équilibre des machines aérostatiques, sur les différents moyens de les faire monter et descendre, et spécialement sur celui d'exécuter ces manoeuvres, sans jeter de lest, et sans perdre d'air inflammable, en ménageant dans le ballon une capacité particulière, destinée à renfermer de l'air atmosphérique, présenté à l'Académie, le 3 décembre 1783, avec une addition contenant une application de cette théorie au cas particulier du ballon que MM. Robert construisent à St–Cloud et dans lequel ce moyen doit être employé pour la première fois. Extrait du Journal de physique, Juliet: 1784
- Monge G (1799) Geometrie descriptive. Leçons données aux écoles normales, L'an 3 de la République ; par Gaspard Monge, de l'Institut national. Baudouin, Imprimeur du Corps législatif et de l'Institut national, an VII, Paris
- Nabonnand P (2010) L'argument de la généralité chez Carnot, Poncelet et Chasles. Via: http://hal.archives-ouvertes.fr/hal-00637385/fr/
- Nabonnand P (2011) Une géométrie sans figure? La Figure et la Lettre, pp. 99–120
- Navier CLMH (1818) Détails historiques sur l'emploi du principe des forces vives dans la théorie des machines, et sur diverses roues hydrauliques. Annales de Chimie et de Physique par Gay-Lussac et Arago (eds), vol 9, pp 146–159 Navier CLMH (1819) Notes. In: de Bélidor (1819), pp 111–113
- Navier CLMH (1821) Notes sur l'action mécanique des combustibles. Annales de chimie et de physique XVII:357–372
- Navier CLMH (1826) Résumé des leçons d'analyse l'École des Ponts et Chaussées, sur l'application de la mécanique a l'établissement des constructions et des machines. Didot F père et fils, Paris (Id., (1833 et 1838), Deuxième édition. Carilian–Goeury, Paris; Id., (1839), Société Belge de Librairie, Bruxelles)
- Navier CLMH (1841) Résumé des leçons de mécanique donnée à l'École Polytechnique. Carilian-Goeury et Vor Dalmot, Paris

Navier CLMH (1856) Résumé des Leçons d'analyse données à l'École Polytechnique, Suivi de notes par M Ernest Liouville. Deuxième édition revue par M Ernest Liouville, 2 vols. Dalmot, Paris

- Navier CLMH (1864) De la résistance des corps solides 3e ed. avec des notes et des appendices par M. Barre de Saint-Venant, Dunod, Paris
- Navier CLMH, de Prony G, Girard S (1829) Du calcul de l'effet des machines, ou Considérations sur l'emploi des moteurs et sur leur évaluation, pour servir d'introduction à l'école spéciale des machines; par M Coriolis, ingénieur des Ponts et Chausses. Rapport fait le 8 Juin 1829 à l'Académie des sciences par une commission composée de MM. De Prony, Girard, et Navier rapporteur. Bulletin des sciences mathématiques, Firmin A Didot, Paris, XII:103–116
- Newton I ([1686–1687] 1803) The Mathematical Principles Of Natural Philosophy, by Sir Isaac Newton. Translated into English by Motte A, Symonds, London, vol I
- Newton I (1687) Philosophiae naturalis Principia mathematica. Londini, jussi Societatus Regiae ac typis Josephi Streater, prostat apud plures bibliopoles [two variant title pages]
- Newton I (1714) Philosophiae Naturalis Principia Mathematica. Reprints of 2nd English edition [1713, Cotes R (ed), Cantabrigiae], Rogerus Cotes Editoris Praefatio, Sumptibus Societatis, Amstaelodami
- Newton I (1730) Queries. In: Opticks, 4th English Edition corrected, Innys W (ed), London
- Newton I (1803) The mathematical principles of natural philosophy, by Sir Isaac Newton (trans: English by Motte A), vol I. Symonds, London
- Newton I (1999) The principia: mathematical principles of natural philosophy. In: Cohen IB, Whitman A (eds). The University of California Press, London
- Pappus from Alexandria (1588) Mathematicae collectiones, by Federico Commandino. Pesaro. See also: Pappus of Alexandria, Matematical collections
- Parent A ([1745)] 1706) Sur la plus grande perfection possible des machines. In: Histoire et Mémoires de l'Académie Royale des Sciences. Année [29 November] MDCCIV. Avec les Mémoires de Mathématique & de Physique, pour la même année. Coignard G JB & Guerin HL, Paris, pp. 323–338
- Payen J (1967) Betancourt et l'introduction en France de la machine à vapeur à double effet (1789). Revue d'histoire des sciences et de leurs applications XX(2):187–198
- Payen J (1968) Une source de la pensée de Sadi Carnot. Archive international d'Historie des Sciences XXI:18–30
- Perkins J (1820) On the compressibility of Water. Read on 29 June 1820. Philosophical Transaction of the Royal Society of London 110:324–330
- Perkins J (1821) Sur la compressibilité de l'eau. Annales de chimie et de physique XVI:321–327 Petit AT (1818) Sur l'emploi du principe des forces-vives dans le calcul de l'effet des machines. Annales de Chimie et de Physique par Gay-Lussac et Arago (eds) 8:287–305
- Picard E (1927) Sadi Carnot, Biographie et Manuscrit. Gauthier-Villars, Paris

Pisano R (2007) Brief history of centre of gravity theory. Epistemological notes. In: Kokowski M (Ed). Proceedings of the 2nd ESHS congress, Krakow, Poland, 934–941

- Pisano R (2009a) Continuity and discontinuity. On method in Leonardo da Vinci' mechanics. Organon 41:165–182
- Pisano R (2009b) Il ruolo della scienza archimedea nei lavori di meccanica di Galilei e di Torricelli. In: Giannetto E, Giannini G, Capecchi D, Pisano R (eds) Da Archimede a Majorana: La fisica nel suo divenire. Proceedings of XXVI SISFA congress. Guaraldi Editore, Rimini, pp 65–74
- Pisano R (2009c) On method in Galileo Galilei–mechanics. In: Hunger H (ed) Proceedings of ESHS 3rd conférence. Austrian Academy of Science, Vienna, pp 147–186
- Pisano R (2009d) Galileo Galileo. Riflessioni epistemologiche sulla resistenza dei corpi. In: Giannetto E, Giannini G, Toscano M (eds). Relatività, Quanti Chaos e altre Rivoluzioni della Fisica. Guaraldi Editore Rimini, 61–72
- Pisano R (2010) On Principles In Sadi Carnot's Theory (1824). Epistemological reflkections. Almagest 2/1:128–179
- Pisano R (2011) Physics-mathematics relationship. Historical and epistemological notes. In: Barbin E, Kronfellner M, Tzanakis C (eds). European summer university history and epistemology in mathematics. Verlag Holzhausen GmbH-Holzhausen Publishing Ltd., Vienna, pp 457–472
- Pisano R (2012) On Lazare and Sadi Carnot. A synthetic view of a historical epistemological research program. In: Mantovani R (ed), Proceedings of the SISFA XXX. Argalia, Urbino, pp 147–153
- Pisano R (2013a) On Lagrangian in Maxwell's electromagnetic theory. Scientiatum VI. História das Ciências e das Técnicas e Epistemologia. The University of Federate University of Rio de Janeiro Press, Brazil, pp 44–59
- Pisano R (2013b) Historical reflections on physics mathematics relationship in electromagnetic theory. In: Barbin E., Pisano R., (eds). The Dialectic Relation between Physics and Mathematics in The XIXth Century. Springer, Dordrecht, pp 31–57
- Pisano R (2013c) Historical Reflections on Newton's First Law and Carnot's Première Hypothèse. In: 5th International Conference of the European Society for the History of Science. HFS Athens, 1–3 Nov 2012, pp. 214–220
- Pisano R (2015) (ed) A Bridge between Conceptual Frameworks, Science, Society and Technology Studies, Springer, Dordrecht
- Pisano R (2016) What kind of mathematics in Leonardo da Vinci and Luca Pacioli? Journal of the British Society for the History of Mathematics 31:104–111
- Pisano R (2017) A Development of the Principle of Virtual Laws and its Framework in Lazare Carnot's Mechanics as Manifest Relationship between Physics and Mathematics. Transversal Historiography of Science 2:166–203
- Pisano R (2020) A Tale of Tartaglia's Libro Sesto & Gionta in Quesiti et Inventioni diverse (1546–1554). Exploring the Historical and Cultural Foundations. Foundations of Science 25/2:477–505

Pisano R, Bussotti P (2020a) Newton's Geneva Edition: the Notes on the Integral Calculus In: Proceedings SISFA 2019. Pavia University Press, pp. 127–134

- Pisano R, Bussotti P (2020b) Historical and Foundational Details on the Method of Infinite Descent: Every Prime Number of the Form 4n + 1 is the Sum of Two Squares. Foundations of Science 25/4:671–702
- Pisano R, Gatto R (2021) Galileo Galilei: Le Mecaniche-Making Scientia de Ponderibus and its Revised Scientific Context English Translation and Critical Commentaries Springer, pre-print
- Pisano R, Agassi J, Drozdova D (2017) (eds) 1964–2014. Homage to Alexandre Koyré. Hypothesis and Perspective within History and Philosophy of Science, Dordrecht, Springer
- Pisano R, Anakkar A, Franckowiak R (2017) Reading Science, Technology and Education: A Tradition Dating back to Science into the History and Historiography Transversal 3:77–97
- Pisano R, Anakkar A, Pellegrino EM, Nagesl M (2019) Thermodynamic Foundations of Physical Chemistry. Reversible Processes and Thermal Equilibrium into History. Foundations of Chemistry 21:297–323
- Pisano R, Bussotti P (2012) Galileo and Kepler. On Theoremata Circa Centrum Gravitates Solidorum And Mysterium Cosmographicum. HR 2/2:110–145
- Pisano R, Bussotti (2014) Historical and Philosophical Reflections on the Culture of Machines Around the Renaissance. How Science and Technique Work? Acta Baltica Historiae et Philosophiae Scientiarum 2/2:20–42
- Pisano R, Bussotti (2015a) Historical and Philosophical Reflections on the Culture of Machines Around the Renaissance: Machines, Machineries and Perpetual Motion. Acta Baltica Historiae et Philosophiae Scientiarum 3/1:69–87
- Pisano R, Bussotti P (2015b) The Emergences of Mechanics and Thermodynamics in the Western Society during 18th-19th Century. In: Pisano R (ed) 2015, pp. 399–436
- Pisano R, Bussotti P (2015c) Fibonacci and the Abacus Schools in Italy. Mathematical Conceptual Streams, Science Education and its Changing Relationship with Society. Almagest 6/2:126–165
- Pisano R, Bussotti P (2015d) Galileo in Padua: architecture, fortifications, mathematics and–practical–science, Lettera Matematica Pristem International–Springer, 209–221
- Pisano R, Bussotti P (2016a) A Newtonian Tale Details on notes and Proofs in Geneva Edition of Newton's Principia. BSHM-Journal of the British Society for the History of Mathematics 31/3:160–178
- Pisano R, Bussotti P (2016b) The Fiction of the Infinitesimals in Newton's Works: A note on the Metaphoric use of Infinitesimals in Newton. Special Issue Isonomia 9:141–160
- Pisano R, Bussotti P (2017a) (eds) Homage to Galileo Galileo 1564-2014. Reading Iuvenilia Galilean Works within History and Historical Epistemology of Science. Philosophiae Scientiae 21(1)

Pisano R, Bussotti P (2017b) On the Conceptualization of Force in Johannes Kepler's Corpus: An Interplay between Physics/Mathematics and Metaphysics. In: Pisano, Agassi, Drozdova 2017, pp. 295–346

- Pisano R, Bussotti P (2017c) Newton's Principia Geneva edition: the action–and–reaction law. Historical and Nature of Science Reflexions. In: Proceedings of SISFA 2016. Pavia, Pavia University Press, pp. 269–276
- Pisano R, Capecchi D (2008a) Leonardo da Vinci. Recenti riflessioni storico-epistemologiche sulla deformabilità dei corpi. In: Proceedings of XLVI AIF congress-LFNS, pp 120–129
- Pisano R, Capecchi D, (2008b) La meccanica in Italia nei primi anni del Cinquecento. Il contributo di Niccolò Tartaglia. In: Proceedings of XXV SISFA Congress, Tucci P (Ed.), pp C17.1–C17.6, Milano (also available in .pdf via: http://www.brera.unimi.it/sisfa/atti/index.html)
- Pisano R, Capecchi D (2009a) La Théorie Analytique de la Chaleur. Notes on Fourier and Lamé. In: Barbin E (ed) Proceedings of Gabriel Lamé, les pérégrinations d'un ingénieur du XIXe siècle. Bulletin de la Sabix 44:83–90
- Pisano R, Capecchi D (2009b) Il ruolo della meccanica ne Le fortificationi di Buonaiuto Lorini. Cuzzolin editore, Napoli 2, 797–808
- Pisano R, Capecchi D (2010a) Galileo Galilei: Notes on Trattato di Fortificazione. In Altamore A., Antonini G. (eds) Galileo and the renaissance scientific discourse. Edizioni nuova cultura Roma, 28–41
- Pisano R, Capecchi D (2010b) On Archimedean roots in Torricelli's mechanics. In: Paipetis SA, Ceccarelli M (eds) The genius of Archimedes. Proceeding of an internal conference, Syracuse (Italy), pp 17–28
- Pisano R, Capecchi D (2012) Historical Reflections On Scale Ratio in Galilean Tratattto di Fortificazione. In: Ceccarelli M (ed) International Symposium on the History of Machines and Mechanisms. Springer, 463–473
- Pisano R, Capecchi D (2013) Conceptual and mathematical structures of mechanical science between 18th and 19th centuries. Almagest 2/4:86–121
- Pisano R, Capecchi D (2015) Tartaglia's science of weights and Mechanics in XVI century. Selections from Quesiti et inventioni diverse, Books VII–VIII. Dordrecht, Springer
- Pisano R, Capecchi D, Lukešová A (eds) (2013) Physics, Astronomy and Engineering. Critical Problems in the History of Science. In: Proceedings of International 32nd Congress for The SISFA–Italian Society of Historians of Physics and Astronomy. The Scientia Socialis UAB & Scientific Methodical Centre Scientia Educologica Press, Šiauliai University, Lithuania
- Pisano R, Dhombres J, Radelet de Grave P, Bussotti P (2020) 370th Anniversary of Torricelli's Opera Geometrica (1644): Statics, Mathematical and Geometrical Conceptual Streams. Max Planck Institute for the History of Science Press, Berlin, *Forthcoming*
- Pisano R, Fichant M, Bussotti P, Oliveira ARE (2017) (eds) Leibniz and the Dialogue Between Sciences, Philosophy and Engineering, 1646–2016. New Historical and Epistemological Insights. The College Publications, London

Pisano R, Franckowiak R (2014) Lavoisier and Sadi Carnot. Chemical–and–Physical Sciences as Dating Back to Two Survived Scientific Revolutions: 1789 and 1824. In: Bilek M (ed) Proceedings of the 9th International Organizing Science Technology Education–IOSTE Symposium for Central and Eastern Europe. Hradec University, IX, Gaudeamus Králové, pp 42–54

- Pisano R, Gaudiello I (2009) Continuity and discontinuity. An epistemological inquiry based on the use of categories in history of science. Organon 41:245–265
- Poinsot L (1806) La Théorie générale de l'équilibre et du mouvement des systèmes. Journal de l'École Polytechnique 6/13:206–241
- Poinsot L (1838) Note sur une certaine démonstration du principe des vitesses virtuelles, qu'on trouve au chapitre III de livre 1er de la "Mécanique céleste". Journal de mathématiques pures et appliquées 1/3:244–248
- Poinsot L (1975) La Théorie générale de l'équilibre et du mouvement. Vrin, Paris
- Poisson SD (1823a) Sur la chaleur de gaz et des vapeurs. Annales de Chimie et de Physique XXXIII:337–352
- Poisson SD (1823b) Sur la vitesse du son. Annales de Chimie et de Physique, XXIII:5–16
- Poisson SD (1829) Mémoire sur l'équilibre et le mouvement des corps élastiques. Mémoires de l'Académie des sciences de l'Institut de France. [Read at Académie, 14 April 828]. Paris, vol 8, pp 357–570
- Poisson SD (1833) Traité de Mécanique. Bachelier, Paris
- Poncelet JV (1827–1829) Cours de mécanique industrielle, professé de 1828 à 1829, par M. Poncelet, 2e partie. Leçons rédigées par M. le capitaine du génie Gosselin. Lithographie de Clouet, Paris, (s.d.)14
- Poncelet JV (1829) Note sur quelques principes de mécanique relatifs à la science des machines; par M. Poncelet, capitaine du Génie. Bulletin des sciences mathématiques, physique et chimiques. 1er section du Bulletin universel des sciences. Sturm et Gaultier de Claurbry (eds), Firmin A Didot, Paris, Tome XII:323–33515
- Poncelet JV (1845) Traité de mécanique appliquée aux machines. Deuxième partie, Leroux, Liège Poncelet JV (s.d.) Notice analytique sur les travaux de M Poncelet. Bibliothèque Nationale de
- Poncelet JV (1874) Cours de mécanique appliquée aux machines. Gauthier-Villars, Paris
- Popper K (1959) The logic of scientific discovery. Hutchinson, London
- Popper K (1962) Conjecture and Refutations: The Growth of Scientific Ideas. Basic Books, London [Id., 1963, Routledge, London]
- Prigogine I (1980) From Being to Becoming: Time and Complexity in the Physical Sciences. WH Freeman, New York
- Prony G (1790) Nouvelle architecture hydraulique. Contenant un traité de mécanique à l'usage de ceux qui se destinent aux constructions de tous les genres, et des Artistes en général. Première Partie. Firmin Didot, Paris

Prony G (1796) Nouvelle architecture hydraulique. Contenant la description détaillée des machines à feu. Seconde Partie. Firmin Didot, Paris

- Prony G (1837) Notice biographique sur M. Navier. Annales des ponts et chaussées Mémoires et documents 7(1):1–19
- Prony G, Girard S, Navier CLMH (1829) Rapport suivant sur le Mémoire de M. Coriolis, intitulé du calcul de l'effet des machines. In: Procès-verbaux des séances de l'Académie, 22 Jun, Institut de France. Académie des sciences. Imprimerie de l'observatoire d'Abbadia, Hendaye Basses Pyrénées, [publication 1921] Année 1828–1831, Tome IX, pp. 266–272
- Radelet–de Grave P (1996) Entries: Stevin, Kepler, Leibniz, Huygens. In: Dictionnaire du patrimoine littéraire européen, Patrimoine Littéraire Européen. vol 8, Avènement de l'Equilibre européen 1616–1720. De Boeck Université, p. 18, pp. 745–755, pp. 1020–1027
- Radelet–de Grave P (2007) Kepler (1571–1630) et Cavalieri (1598–1647) astrologues, ou le logarithme au secours de l'astrologie. In Mélanges offerts à Hossam Elkadem par ses amis et ses élèves, Bruxelles. Archives et Bibliothèques de Belgique, pp. 297–315
- Radelet-de Grave P (2009) The Problem of the Elastica Treated by Jacob Bernoulli and the Further Development of this Study by Leonhard Euler. In: Werner L, Kurrer KE (eds). Proceedings of the Third International Congress on Construction History (Cottbus, May 2009). Brandenburg University of Technology Cottbus, Verlag Service GmbH. Germany, pp. 1209–1219
- Reech F (1851) Notice sur un Mémoir intitulé : Théorie de la force motrice du calorique. Comptes rendus des séances de l'Académie des sciences. Séance du lundi 24 Novembre XXXIII:567–571
- Reech F (1852) Deuxième Note sur la théorie des effets dynamiques de la chaleur. Comptes rendus des séances de l'Académie des sciences XXXIV:21 [see also the first quotation of idem Note at Séance du lundi1er Décembre in: Reech (1851), p 602]
- Reech F (1853) Théorie générale des effets dynamiques de la chaleur. Journal de Mathématiques pures et appliquées XVIII:357–378
- Reech F (1854) Théorie générale des effets dynamiques de la chaleur. Journal de Mathématiques pures et appliquées. Bachelier, Paris
- Reech F (1869) Théorie des machines motrices et des effets mécaniques de la chaleur. Lacroix éditeur, Paris
- Reinhard M (1950-1952) Le grand Carnot, 2 vols. Hachette (ed), Paris
- Renn J (1995) Historical epistemology and interdisciplinary. In: Gavroglu K J.J., Stachel JJ, Wartofsky MW (eds). Physics, Philosophy, and the Scientific Community: Essays in the Philosophy and History of the Natural Sciences and Mathematics in Honor of Robert S. Cohen Kluwer, Doertreth, pp. 241–251
- Renn J (2000) Challenges from the past. Innovative structures for science and the contribution of the history of science. Innovative structures in basic research. In: Ringberg–Symposium Max– Planck–Gesellschaft zur Förderung der Wissenschaften, pp 25–36

Reuleaux F (1876) Kinematics of Machinery. Outlines of Theory of Machines. Mcmillan & Co., London

- Riccati V (1749) Dialogo di Vincenzo Riccati della Compagnia di Gesù dove ne' congressi di più giornate delle forze vive e dell'azioni delle forze morte si tien discorso. Stamperia di Lelio dalla Volpe, Bologna
- Riccati V (1772) De' Principi della Meccanica. Stamperia Coleti, Venezia
- Richmann GW (1750) Formulae pro gradu excessus caloris supra gradum caloris, mixti ex nivee et sale amoniaco. Novi commentarii Academiae Scientiarum Imperialis Petropolitanae I:171–172
- Riemann GF ([1861] 1868) Memoir on the conduction of heat. In: Weber (1892), pp 391–404 Robelin CP (1832) Comment Carnot a calculé l'équivalent mécanique de la Chaleur. Un document Inédit. Revue Encyclopédique 55:528–530
- Robelin CP (1832) Comment Carnot a calculé l'équivalent mécanique de la Chaleur. Un document Inédit. Revue Encyclopédique 55:528–530
- Rosenfeld L (1941) La genèse des principes de la thermodynamique. Bulletin de la Société Royale de Liège 10:197–212
- Rumford B (1798) Recherces sur la sources de la chaleur qu'excite le frottement. Journal de physique, de chimie et d'histoire naturelle et des arts XLVII:24–39 [On the first page of the paper on can read "Benjamin Rumford". In Notes sur les mathématiques, la physique et autres sujets Sadi Carnot cite the author with "Benjamin Thompson" (Ivi, f. 15v; see also Carnot S 1878b; Carnot S 1986).]
- Scerri E (2013) A tale of seven Elements. The Oxford University Press, New York [see Italian Translation: Id. 2017. Un racconto di sette elementi. Traduizione di Raffaele Pisano e Paolo Busitti. Aracne, Roma]
- Scheele CW (1781) Traité chimique de l'air et du feu de M. Scheele. Avec une introduction de Torbern Bergman, Professeur de Chimie & Pharmacie, Écuyer, Membre de plusierus Académies: Ouvrage traduit de l'Allemand, par le Baron de Dieterich. Rue et Hotel Serpente, Paris
- Scheele CW (1785) Supplement au Traité chimique de l'air et du feu de M. Scheele, contenant un Tableau abrégé des nouvelles découvertes sur les diverses espèces d'air, par Jean–Godefroi Léonhardy; Des notes de M. Richard Kirwan, & une lettre du Docteur Priestley à ce chimiste anglois, sur l'Ouvrage de M. Scheele; Traduit et augmenté de Notes & du complement du Tableau abrégé de ce qui a éte publié jusqu'aujourd'hui sur les differentes espéces d'Air: Par M. le Baron de Dietrich. Rue et Hotel Serpente, Paris
- Schuster JA (2000) Descartes opticien: the construction of the law of refraction and the manufacture of its physical rationales, 1618–1629. In: Gaukroger, Schuster and Sutton pp. 258–312
- Schuster JA (2013a) Descartes–Agonistes. Physico–mathematics, Method and Corpuscular–Mechanism 1618–1633. Springer, Dordrecht
- Schuster JA (2013b) Cartesian physics. In: Buchwald J, Fox R (eds). The Oxford Handbook of the History of Physics. The Oxford University Press, Oxford, pp. 56–95

Scott WL (1959) The significance of "hard bodies" in the history of scientific thought. Isis 50:199–210

- Scott WL (1971) The conflict between atomism and conservation laws 1640–1860. Elsevier Publishing Company, New York
- Singer C, ([1954–1958] 1993) A history of technology, 5 vols. The Clarendon Press, Oxford
- Skolem T ([1920] 1967) Logico-combinatorial investigations in the satisfiability or provability of mathematical propositions. In: van Heijenoort J (ed) From Frege to Goumldel: a source book in mathematical logic, 1879–1931. The Harvard University Press, Cambridge MA, pp. 252–263
- Smith C, Wise MN (1989) Energy and Empire: A Biographical Study of Lord Kelvin. The Cambridge University Press, Cambridge
- Stevin S ([1605] 1608) Liber primus Staticae. De staticae elmentis. In: Tomus quartus mathemati-corum hypomnematum de statica, Lugodini Batavoru
- Steward B (1866) An elementary treatise on heat. The Clarendon Press, Oxford Tait PG (1868) A sketch of history of thermodynamics. Edmoston and Douglas, Edinburgh Tartaglia N (1565) Iordani Opvscvlvm de Ponderositate, Nicolai Tartaleae Stvdio Correctvm Novisqve Figvrisavctvm. Cvm Privilegio Traiano Cvrtio, Venetiis, Apvd Curtivm Troianvm. M D Lxv
- Tait PG (1887) Conférences sur quelquesuna des pogrés récent de la physique. Trad. de la 3e éd. angl. par Krouchkoll M, Paris
- Tartaglia N ([1554] 1959) La nuova edizione dell'opera Quesiti et inventioni diverse de Nicolo Tartaglia brisciano Riproduzione in facsimile dell'edizione del 1554. In: Masotti A (ed) Commentari dell'Ateneo di Brescia. Tipografia la Nuova cartografica, Brescia
- Tartaglia N (1546) Quesiti et inventioni diverse de Nicolo Tartalea Brisciano. Stampata in Venetia per Venturino Ruffinelli ad instantia et requisitione, & a proprie spese de Nicolo Tartalea Brisciano Autore. Nel mese di luio L'anno di nostra salute. M.D.XLVI
- Tartaglia N (1565) Iordani Opvscvlvm de Ponderositate, Nicolai Tartaleae Stvdio Correctvm Novisqve Figvrisavctvm. Cvm Privilegio Traiano Cvrtio, Venetiis, Apvd Curtivm Troianvm. MDLxv
- Taton A (ed) (1976) Sadi Carnot et l'essor de la thermodynamique, Table Ronde du Centr National de la Recherche Scientifique. École Polytechnique, 11–13 Juin 1974. Éditions CNRS, Paris
- Taton R (1964a) L'École Rouale du Génie de Mézières In: Taton R (ed) (1964), pp 559–615 Taton R (ed) (1964b) Symposium: Enseignement et diffusion des sciences en France au XVIIIè siècle. Hermann, Paris
- Taton R (ed) (1951) L'œuvre scientifique de Monge. Presses Universitaires de France, Paris Tega W, (1984) Arbor Scientiarum. Il Mulino, Bologna
- Thackray A (1970) Atoms and Powers: An Essay on Newtonian Matter-and the development of Chemistry. Harvard University Press, Cambridge-MA
- Thomson W ([1890] 1943) Carnot's theory of the motive power of heat with numerical results deduced from Regnault's experiments on steam. In: Thurston (1943), pp. 127–204

Thomson W (1848–1849a) An account of Carnot's theory of the motive power of heat with numerical results deduced from Regnault's experiments on steam. Transactions of the Edinburgh Royal Society XVI(5):541–574

- Thomson W (1848–1849b) On an absolute thermometric scale founded on Carnot's theory of the motive power of heat, and calculated from Regnault's observations. Proceedings of The Cambridge Philosophical Society 1/5:66–71
- Thomson W (1851a) On an absolute thermometric scale founded on Carnot's theory of the motive power of heat, and calculated from Regnault's observations. Mathematical and physical papers, vol I. The Cambridge University Press, Cambridge, pp. 100–106
- Thomson W (1851b) On the dynamical theory of heat, with numerical results deduced from Mr Joule's equivalent of a thermal unit, and M. Regnault's observations on steam. Mathematical and physical papers, vol I. The Cambridge University Press, Cambridge, pp. 175–183
- Thomson W (1852) An account of Carnot's theory of the motive power of heat with numerical results deduced from Regnault's experiments on steam. Annales de Chime et de Physique XXXV:248–255
- Thomson W (1882–1911) An account of Carnot's theory of the motive power of heat with numerical results deduced from Regnault's experiments on steam. Mathematical and physical papers by Sir William Thomson, vol I. The Cambridge University Press, Cambridge, pp. 113–155
- Torricelli E (1644) Opera geometrica. Massa-Landi, Firenze
- Tredgold T (1838) The steam engine, its invention and progressive improvements, an investigation of its principles, and its application to navigation, manufactures, and railways, vol 2, A new edition, enlarged by the contributions op eminent scientific men, and extended to the science oprevised and edited by Woolhouse WSB, Weale, London
- Truesdell C (1968a) Essay in the history of mechanics. Springer, New York
- Truesdell CA (1968b) Whence the law of the moment of momentum? (Lecture 202, Whence the law of moment of momentum? Colloquium in Engineering Science, Mechanical Engineering Department, Columbia University, 8 Jan 1963) In: Essays in the history of mechanics. Springer, New York, pp 239–271
- Truesdell CA (1970) The tragicomedy of classical thermodynamics. Springer, Berlin
- Truesdell CA (1980) The tragicomical history of thermodynamics. 1822–1854. Springer, Berlin
- Truesdell CA, Bharatha S (1977) The concepts and logic of classical thermodynamics as a theory of heat engines: rigorously constructed upon the foundation laid by S Carnot and F Reech (Theoretical and mathematical physics). Springer, Berlin/Heidelberg/New York
- Varignon P (1725) La nouvelle Mécanique ou statique. Jobert C, Paris

Venel GF ([1751–1772] 1753) Entry: Chymie ou Chimie. Encyclopédie ou Dictionnaire raisonné des sciences, des arts et des métiers. Par une socité de gens de lettre. Mis en ordre & publié par M. DIDEROT, de l'Académie Royale des Sciences & des Belles. Lettres de Prusse; & quant à la PARTIE MATHÉMATIQUE, par M. D'ALEMBERT de l'Académie Royale des Sciences de Pans, de celle de Prusse & de la Société Royale de Londres. Tome III. Briasson, David, Le Breton, Durand, Paris

- Wallis J (1668) A summary account of the general laws of motion. Philosophical Transactions III(26):864–866
- Wallis J (1693) Geometriae professoris Saviliani, in celeberrima Academia Oxoniensi Opera mathematica by Wallis, John, 1616–1703. Oxoniae. E Theatro Sheldoniano
- Westman RS (1980) The Astronomer's Role in the Sixteenth Century: A Preliminary Study. History of Science 18:105–147
- Winter TN (2007) The Mechanical Problems in the corpus of Aristotle. Digital Commons. The University of Nebraska–Lincoln, pp. 1–43

A	Army of Italy, xxiv
Absolute Monarchy, xxxvii	Arras, xxiii, xxvii, xxxv, xxxvi, 229, 231,
Académie de Dijon, xxii	232
Académie des sciences, vii, x, xviii, xxii,	Assassination, xxxiv
xxiv, xxxi, xxxvi, xliv, 229–232	Assemblée législative, xix, xxxvii
Académie François Bourdon, Le Creusot,	Augereau, xxvii
vii, xviii, xxi, xxv, xxvi, xxix, xxx,	Axiom, lvii, lx, lxx, lxxi, lxxii, lxxvii, lxxxiv
xxxiii, xliii, 230	Axiomatic, lxx, lxxi
Acceleration, lvi, lxiv, lxv, 145, 151, 161,	Axiom or Law of motion, lxxii, lxxxiv
163, 226, 227	Azzola, vii
Ad absurdum, liv, lix, lxix, 220	
Aérostats, xxxvi, 231	
Al-Biruni, xxviii	В
Al–Kash, xxviii	Bachelier, 236, 238
Ampère, A.M., lxv	Bailyn, M., lii
Analogy, lvi, lvii, lxiii, lxxv, lxxxi, lxxxiv,	Baldi, B., lxvii
13, 17, 29, 39, 77, 97	Barbera, 248
Annonay, xxxvi	Barnes, 240
Application de la méthode exposée dans la	Bastions, xxxii
mémoire précédente à la solution des	Batens, D., lxxv
différents problèmes de dy-namique,	Bayonne, xxii
lxxxiii	Bélidor, lxiii
Applied mechanics, xlvi, xlvii, lxxxiv, xcii	Berkeley, 245
Arago, F.J.D., xxxii, xlviii	Bernoulli, xvii, lxiii, lxvii, lxxxiii
Archimedes, lxvi, lxvii, 173, 175, 220	Berthier, xix
Archives et patrimoine historique de	Berthollet, li, 234, 237
l'Académie des sciences, vii, x, xviii,	Betancourt, li
xxiv, xliv	Beth, lxxv
Archives Lazare Carnot, vii, xviii, xxi, xxv,	Béthune, xxxv, 230, 231
xxvi, xxix, xxx, xxxiii, xliii	Bevir, lxxv
Aries, 239	Bibliothèque Nationale de France (BnF), x,
Aristotle, lxvii, 220	lv
Armée d'Italie, xxiv, xxxix	Biot, lxxvi
Army, xviii, xix, xxii, xxiii, xxxii, xxxiv,	Birembaut, xxxii
xxxvii	Black, lii
© Springer Neture Switzerland AC 2021	267

© Springer Nature Switzerland AG 2021

R. Pisano et al., *Essay* on Machines in General (1786), Logic, Epistemology, and the Unity of Science 47, https://doi.org/10.1007/978-3-030-44385-6

Body, xi, xxviii, xlviii, l, lii, liv, lv, lvi, lvii, lviii, lix–lxv, lxvii, lxix, lxxii–xciii, 9, 25, 27, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 55, 57, 59, 63, 65, 67, 69, 71, 73, 75, 77, 81, 83, 85, 89, 91, 95, 97, 99, 101, 103, 105, 107, 109, 115, 117, 119, 121, 123, 125, 133, 135, 143, 145, 153, 155, 157, 163, 165, 169, 171, 175, 187, 191, 193, 197, 199, 201, 203, 205, 209, 211, 213, 220–224, 226–228	Channel of a fortification, xix Chargé de mission auprès des armées,
Bonaparte, xxiv, xxxiv, xxxix, xl	Collège d'Autun, xix
Borda, lxiii	Collision theory, lxi, lxii, xcii
Bossut, xxviii, xli, lxiii, 234	Colonel, xxii
Bourbon, xxxiv	Combes, li
Bouvier, xlvii	Comité de l'Instruction Publique, xix, xxxvii
Boyle, li	Comité de salut public, xxii, xxiv, xxxviii,
Briot, xlvii	xxxix, 233
Brown, xlviii	Commandino, xlviii
Bussotti, li, lii, lxvii, lxxii	Commissaire à l'Armée du Rhin, xxxvii
Bussotti and Pisano, xlviii, li, lii, lxvi, lxix,	Commissaire de l'Armée du Nord, xxxviii
lxxi, lxxii, lxxix, 21, 43, 173, 220,	Committee of Public Instruction, xix
222, 228	Committee of Public Safety, xxii
	Concours, xxxv
	Condé Louis Joseph Prince of, xix
C	Condillac, lxxvii
Calais, xxxv, xxxvii, xxxviii, 232, 233	Conservation, xxiv, xlix, lxi, lxiii, lxxiii,
Calculated physics, lii	lxxix, lxxxiii, lxxxix, xc, xci, 35, 77,
Callen, xlix	87, 97, 101, 103, 111, 159, 121, 222,
Callendar, xlix	224, 225
Callot, xxiv, liii	Conservation of kinetic energy, xc
Calorique, li, lii	Conservation of live force, lxiii, lxx, lxxii,
Campagne des Français, xxxix, 233	lxxiii, 35, 77, 97, 101, 103, 111, 159
Capitaine du Corps du Génie, xxxviii	Conservation of moment-of-momentum,
Cardwell, xlv	lxxiii
Carnot Claude, xviii	Conservatoire des arts et métiers, xxvii
Carnot Gaetan, vii, xviii, xxi, xxv, xxvi, xxix,	Conspiration, xxxvii
xxx, xxxiii, xliii, 230	Consular powers for life and-descent her-
Carnot Hyppolite, xxxii	itage, xxvii
Carnot Lazare, ix, x	Consul à vie, xl
Carnot, Sadi, v, vii, viii, xii, xx, xxiv, xxxi,	Convention national, xxii, xxxviii, 233
xxxii, xxxiv, xli, xlix, l, liii, lxvii, lxix, lxxv, 227, 228	Corollary, Iviii, Ixxix, Ixxxviii, 87, 89, 95,
Carnot Sadi Marie François, xxxii, xxxiv	97, 105, 139, 141, 143, 147, 149, 151,
Carnot's theorem, xxviii, xliv, lxix	153, 157, 159, 161, 165, 226, 228 Corps dure by 210
Carnot wall, xix	Corps durs, lvi, 219 Corps législatif, xxviii
Caserio, xxxiv	Communication of motion, lv, lviii, lxi,
Caserio Sante, xxxiv	lxxix, lxxxix, xcii, 19, 87, 227
Cauchy, xxviii, lxxiv	Coopersmith, Jennifer, x, xv, lxxiii, 27
Cavalieri, xxviii	Coriolis, G.G., lxiii, 227
Chaleur, li, lii, liii, liv, 226	Corps, xix, xxii, xxviii, xxxv, xxxvi, xxxviii,
Challey, xxiv	lvi, 3, 219, 220, 226, 232, 233
•	

Correlation-tables, li	Discorsi intorno alle cose che stanno in su
Correspondance inédite, xlii, 236	l'acqua, lxvii
Correspondence with Joseph Louis de	Dissertation sur la théorie de l'infini mathé-
Lagrange, lxxxiii	matique, xxxvi
Costabel, xxiv, li	DNSs, lxxv
Côte-d'Or, xviii	Don Quichotte, xlii
Coulomb, lxxxii	Double Negative Sentences, lxxv
Coup d'état, xxvii, xl	Dugas, xliv
Coup of 18 Fructidor, xxvii	Duhem, xlviii
Corps solides, lvi, 220	Duke, xix, xxxiv
Cours de mathématiques, xli	
Crombie, xlviii	Dulong and Petit, lii
Cycle, xxvii, liii, liv	Dulong, lii
Cycle, AXVII, III, IIV	Dupin, xlviii
	Dupont, xx
D.	du Pont Dupré Jacqueline Sophie, xix, xx
D	Dupré, xvii
d'Arcy, lix	Duthuron, xxii
D'Alembert, J.L.R., xvii, xlviii, lvi, lix, lxx,	Dynamica de Potentia et Legibus Naturae
lxxxiii, lxxxiv, 35, 219, 222, 226	Corporeae, 1
Darboux, xxxvi	<u>r</u> ,
d'Aumont de Rochebaron, xix	
de Barras, xxiv, xxvii	
de Bélidor, lxiii, 253	E
de Chaulieu, xxiii	École centrale des travaux publics, xxiii,
de la Chapelles, xxiii	xxxix
De la corrélation des figures de géométrie,	École du Génie, xxxv
xxviii, xli	École Polytechnique, vii, xviii, xxiii, xxiv,
De la Défense des places fortes, xxxii, xli,	• • • • • • • • • • • • • • • • • • • •
xlii	xxxi, xxxix, liv
de la Fontaine, xxiii	École royale du génie de Mézières, xix, xxxv
de la Place, xxxvi	Edmunds, liii
de la Révellière–Lépeaux, xxvii	Efficiency, xxvii, xlviii, li, liii, lxii, lxix,
de Saint–Just, xxxix	lxxix, lxxxviii, 220, 227
Death penalty, xxxvii	Einstein, liii
Déclaration des droits du citoyen, xxxviii	Elements, xviii, xxviii, xlvii, li, lii, lxxiv,
de Prony, lxiii, 254	lxxxiii, 99, 101, 113, 129, 151
Député au Conseil des Cinq-Cents, xxxix	Éloge de M. le Maréchal de Vauban, xxii,
Député du Pas-de-Calais, xxxvii	xxxvi
Député, xxviii, xxxviii, xxxviii, xxxix	Empire Français, xxxii
Desaguliers, lxxvii	En général, v, vii, ix, x, xi, xii, xvii, xviii,
•	xxii, xxiv, xxvii, xxxv, xxxvi, xl,
de Salvio, lxiii, 249	xlvii, xlviii, liv, lvii, lxi, lxxii, lxxiii,
Descartes diagram, liv	lxxiv, lxxv, lxxix, lxxxiv, 225
Descartes, R., xlviii, liv, lv, lix, lxvi, lxix,	England, xxiii, xlix
lxx, lxxxviii, 7, 29, 31, 33, 35, 87,	Épitre au directeur Carnot, xl
137, 139, 207, 221, 225, 226	Essai sur les machines en général, v, ix, x,
Desormes and Clément, lxvi	
Desormes, lxvi	xi, xii, xvii, xviii, xxii, xxvii, xxxv,
Despretz, lxvi	xxxvi, xl, xlvii, liv, lv
Destouches, lxxv	Euclid, xxviii, lxxi
Dhombres, xvii, xxiv, xxxvi, xliv, lxvii, lxxvi	Euler, xvii, lx, lxxvii, lxxxiii, lxxxiv
Dijksterhuis, lxix	Exécution, xxxviii
Directoire, xxiv, xxix, xxxix, xl	Exile, xxxii, xxxiv, xlii, xliii
Directory, xxiv, xxvii	Exposition du systéme du monde, xlv

F	lxxxvi, lxxxvii, lxxxviii, lxxxix, xc,
Fabrius, li	xci, xcii, 33, 55, 57, 59, 61, 65, 67,
Favaro, 248, 249	73, 75, 77, 79, 81, 83, 85, 89, 91, 99,
First first fundamental equation of me-	117, 125, 129, 133, 135, 137, 139,
chanics (E), lxxxv	141, 143, 149, 222–224
First French Empire, xxxii	Gille, xlix
First principle of thermodynamics, xlix	Gillispie, vii, viii, ix, xii, xvii, xviii, xxvii,
Fondation Carnot, vii	xxxi, xxxiv, xxxvi, xliv, xlv, xlvi,
Force, xi, xxii, xxviii, xliv, xlv, liv, lv,	xlvii, l, liii, liv, lvii, lviii, lix, lxii,
lvi, lvii, lviii, lix, lxii, lxiii, lxiv,	lxiii, lxv, lxvi, lxviii, lxix, lxx, lxxiv,
lxv, lxvi, lxvii, lxix, lxx, lxxiii, lxxiii,	lxxv, lxxvii, lxxxiii, lxxxiv, lxxxv,
lxxiv, lxxvi, lxxvii, lxxviii, lxxix,	xcii, 219–231
lxxx, lxxxii, lxxxiii, lxxxiv, lxxxv,	Gillispie and Pisano, vii, viii, xvii, xviii,
lxxxvi, lxxxvii, lxxxviii, xciii, 7, 11,	xxiv, xxvii, xxxi, xxxiv, xxxvi, xliv,
13, 15, 23, 25, 29, 31, 41, 43, 45, 49,	xlv, xlvi, xlvii, l, liii, liv, lvii, lxii,
51, 53, 65, 67, 75, 91, 113, 115, 117,	lxiii, lxv, lxvi, lxviii, lxix, lxx, lxxv,
121, 123, 125, 127, 129, 131, 133,	lxxvii, lxxxiv, 27, 219–228
135, 137, 139, 147, 149, 151, 153,	Girard, xxiv, xxxii, lxiii
155, 157, 159, 161, 163, 165, 167,	Gondinet, xxiv, xxxii
169, 171, 173, 175, 177, 179, 181,	Grand Carnot, xviii
183, 185, 187, 189, 191, 193, 195,	Grant, xxxviii
197, 199, 203, 207, 209, 217, 219,	Guerlac, li
221, 223, 224, 226–228	Guerre de la libération, xxxii
Force–motrice, lxvi	Guillotine, xxxiv, xxxviii
Force-weight, xi, 25, 127, 221	
Fortifications, xviii, xix, xxxii	Н
Fossombroni, lxxxiii	Hachette, lxvii
Fourier, J.B.J., xliv, xlvii, liii, lxiv, 226 Fox, xxiv, xxvii, xlix, liii, lxxvi, 238	Hard bodies, lvi, lxii, lxiii, lxxii, lxxxiv,
Fraser, xlv	lxxxv, lxxxvii, lxxxix, 35, 45, 77, 79,
French revolution, xviii	85, 89, 105, 107, 111, 159, 219, 220,
Friction, lix, lxxx, lxxxii, 187, 189	226
Fructidor, xxvii, xxxix, xl, xli, 231, 233	Hard body interactions, lxiii
11404401, 101141, 100101, 111, 111, 111,	Heat, xxvii, xxxvi, xlv, xlix, li, lii, liii, lxiii,
	lxvi, lxix, lxxv, lxxvi, 227, 238
G	Heat machines, xxiv, xxvii, xlix, li, liii, lxvi,
Gabbey, xxvii	lxix, 227
Galilei, G., xlviii, 220	Henrion, xxxii
Galileo, Galilei, lxvii, lxvii, 220	Herivel, xxvii
Gallica, vii, x, xviii, lv	Hett, lxvii
Galluzzi, xlviii, lxv	Hirn, xlix
Gases, li, lii	Hoyer, xlix Hundred Days, xxxii
Gatto, R., xlviii, 220	Huygens, xlviii
Gay-Lussac, xxxii	Hydraulic machine, 19, 159, 183, 185
Général de brigade, xxii	Trydraune machine, 17, 137, 103, 103
Général de division, xxii	
Generalfeldmarschall, xxxiv	I
Geneva, xxvii, xl	Impelling forces, lv, lvii, lxix, lxx, lxxiv, 227
Geometric displacement, xcii, 223	Impossibility of a perpetual motion, liv, lviii,
Géométrie de position, ix, xvii, xxvii, xxviii,	lxxix
234	Inertia, lvi, lvii, lxi, lxxiv, lxxxi, lxxxiv,
Geometric motion, lix, lxi, lxiii, lxx, lxxii,	lxxxv, 39, 41, 43, 121, 123, 125, 135,
lxxiii, lxxvii, lxxxiii, lxxxiv, lxxxv,	137, 153, 155, 161, 171, 193, 222

T (' D)	
Ingénieur Royal, xxxv	Lazare, vii, viii, ix, x, xvii, xviii, xix, xx, xxi,
In Mechanica Aristotelis Problemata, 240	xxiii, xxiv, xxv, xxvi, xxvii, xxviii,
Iordani Opvscvlvm de Ponderositate, 261	xxix, xxx, xxxi, xxxii, xxxiii, xxxiv,
Insensible degrees, li, lvi, lxi, lxii, lxvi, lxxix,	xxxvi, xxxix, xl, xli, xliii, xliv, xlvii,
lxxxix, 9, 19, 35, 47, 87, 97, 101, 103,	xlix, l, li, liv, lv, lvi, lvii, lviii, lix,
113, 149, 151, 153, 155, 157, 159,	lxi, lxvi, lxvii, lxviii, lxx, lxxi, lxxii,
161, 165, 169, 183, 185, 193, 197,	lxxv, lxxvii, lxxviii, lxxxiii, lxxxvii,
227	xc, xcii, 219, 220, 222–226, 228–235,
	237
Inspecteur général des armées, xl	
Institut Royal de France, xxi	Leçons sur la théorie de la chaleur, liii
Inventeur, xxiv	Le Pouvoir de l'habitude, xxxvi, 232
Invertible, xcii, 223	Legislative Assembly, xix, xxii
Invertible motion, xcii, 223	Leibniz, xlviii, l, li
Italian anarchist, xxxiv	Leibniz and the Dialogue between Sciences,
	Philosophy and Engineering, li
	Lémery, li
T	Letter, xxviii, xxxi, xli, li, lii, lxvii, lxxxiii,
J	
Jacquier, lxvi	lxxxvii, lxxxviii, 51
Jamin, lxvi	Lettre, xxxvi, xli, 232, 234
Japanese theorem for concyclic polygons,	Lettre de M. Carnot, Capitaine en pre-mier
xxviii	au Corps Royal du Génie, xxxvi, 232
Johanneskirche, xxxiv	Lettre du citoyen Carnot au citoyen Bossut,
Jouguet, xlviii	234
Joule, xlix	Lettre sur les aérostats, xxxvi, 231
Julien, vii	Library, vii, xviii, xxxii, 229, 230, 235
	Lieutenant-colonel, xxii
	Lille, viii, xxiii, xciii
K	Live force conservation, lxiii, 35
	Live forces, xxviii, lxii, lxiii, lxx, lxxii, lxxiii,
Kelvin, 261	35, 77, 87, 95, 97, 101, 103, 111, 153,
Kepler, 256, 257, 259	
Killer of a monarc(-hy), xxxiv	155, 157, 159, 187, 189, 193, 195,
Kinetic model of gases, li	197
Klein, xlix	Loi d'équilibre de Descartes, lxvi
Knobloch, li	Lomonosov, li
Koetsier, 1	Longwood, xxxiv
Koyré, 256	Louis XVI, xx, xxxvii, xxxviii, xlii
Kragh, lii	Louis XVIII, xxxiv, xlii
Kuhn, xlviii	Lumiére, li, lii
,	
L	M
Lagrange, xvii, xxviii, xliv, xlv, lxvi, lxxxiii,	Mach, xliv, xlviii
lxxxiv	Machines, vii, viii, ix, x, xvii, xviii, xxii,
Lamblardie, xxiii, xxxix	xxiv, xxvii, xxxiv, xxxv, xxxvi, xl,
Lamé, xlvii, liii, lxiv, lxv	
	xlvii, xlviii, xlix, l, li, liii, liv, lv,
Landriani, lii	lvi, lvii, lviii, lix, lxi, lxii, lxiii,
Laplace, xlv, li, lii, lxxvi	lxiv, lxvi, lxvii, lxviii, lxix, lxx,
Lavoisier, xlv, li, lii	lxxi, lxxiii, lxxiv, lxxv, lxxvii, lxxix,
Law of conservation of the total-angular-	lxxx, lxxxii, lxxxiii, lxxxiv, lxxxvii,
momentum, xci, 225	lxxxviii, lxxxix, xcii, 3, 5, 7, 9, 11,
Law of conservation of the total-quantity-	13, 15, 17, 19, 21, 23, 25, 27, 29, 31,
of-motion, xci	33, 35, 37, 39, 41, 45, 57, 69, 71, 73,
Law of cosines, xxviii	77, 83, 85, 87, 89, 95, 107, 115, 119,

121, 123, 125, 127, 131, 133, 135,	Momentum, lxi, lxii, lxv, lxxiii, lxxiv, lxxx,
137, 139, 141, 143, 145, 147, 149,	xci, 85, 175, 177, 195, 225
151, 153, 155, 159, 161, 163, 165,	Monge, xix, xxiii, xxxix
167, 169, 171, 173, 175, 177, 181,	Montgolfier, xxxvi
183, 185, 187, 189, 191, 193, 195,	Moringhem, xx
197, 199, 203, 205, 207, 215, 219–	Mort avec sursis, xxxvii
222, 225–227	Motive-force, lx, lxvi, lxxii, lxxvii, lxxx, 45,
Magdeburg, xviii, xxxiv, xlii	99, 101, 103, 123, 125, 127, 187, 189,
Maison du Temple, xxxviii	197, 199, 205
Manuscript, xi, xxiv, xxvi, xxxi, xxxvi, lv,	Mouvement géométrique, xc, 224
215, 229, 230, 231, 238, 239	Mouvement perpétuel, lviii
Marengo battle, xxvii	
Maximum work, lviii	
Maxwell, lxiv	N
Measurement, lii, lxv	Nagel, l
Mécanique Analytique, xliv	Napoléon, xxiv, xxvii, xxxii, xxxiv, xxxix,
Mécanique celeste, xlv, xlvii	xl, xlii, 236
Mechanical machines, xviii, xxxiv, xxxv,	National Convention, xxii, xxiii, xxxix
xlvii, xlviii, xlix, liv, lvii, lviii, lix,	Navier, xliv, lxiii
lxi, lxix, lxxv, lxxix, lxxxi, lxxxiii,	Newton, xviii, xlviii, l, li, lii, lxv, lxxi, lxxii,
lxxxvii, lxxxviii, 227	lxxv, lxxvi, lxxvii, lxxviii, lxxxiv,
Mechanical Problems, xciii	xci, xcii, xciii, 221, 222, 224, 225
Mémoire, xxii, xxviii, xxxv, xxxvi, xli, xlii,	Newtonian, xviii, xlviii, l, li, lii, lxxii, lxxv,
xliv, liv, lvii, lxx, lxxiv, lxxxiii, 229–	lxxvi, lxxvii, lxxviii, lxxxiv, xcii,
232, 234, 236, 237	xciii, 221, 222, 225
Mémoire présenté au Conseil de la Guerre,	Niter, xxiii
xxxvi, 232	Nolay, xviii, xix, xx
Mémoire sur la fortification, xxxvi, xlii, 232,	Notaire Royal, xviii
236, 237	Notes sur les mathématiques, la phsique et
Mémoire sur la Relation qui existe entre les	autres sujets, xxiv, liii, 239
distances respectives de cinq points	
quelconques pris dans l'espace ; suivi	
d'un essai sur la théorie des transver-	0
sale, xxviii, xli, 234	Observations sur la lettre de M. Choderlos
Mémoire sur la théorie des machines pour	de Laclos á Messieurs de l'Académie
concourir au prix en 1779, xxii, xxxv,	françoise, concernant l'Éloge de
229, 231	Monsieur le Maréchal de Vauban, xxxvi, 232
Mémoire sur la théorie des machines pour	
concourir au prix en 1781, xxii, xxxv,	Œuvres mathématiques, xl, 233 Organisateur de la victoire, xvii, xviii, xciii
230, 231	On the equilibrium of planes, lxxi
Mendoza, xlix	Opera Geometrica, <u>lxvii</u>
Menelaus, xxviii	Organizer of Victory, xxiii
Meusnier de La Place, xxxvi	Organizer or victory, xxiii
Military, xviii, xix, xxii, xxvii, xxxii, xxxiv,	
xxxv, xxxvii, xlv, l, lxxiii, 235	P
Minor Works, 240	Panthéon, xxxiv, xlii
Ministers of War, xxii	Pappus, 225
Ministre de la Guerre, xl	Parent, xlix
Moment d'activité, lviii	Parfaitement durs & sans resort, lvi, 219
Moment de la quantité de mouvement, lxxiii	Parfaitement élastiques, xc
Moment of activity, lxxiii	Paris, x, xviii, xxii, xxvii, xxxii, xxxiv-
Moment-of-momentum, lxxiii, lxxiv	xxxvi, xxxviii, xxxix, xlii, xliv, lxxii,
Moment of quantity of motion, lxi	229–239

Pas-de-Calais, xxxvii, 232	Production of mechanical work, lxxv
Payen, xlix	Production of motion, lxxx, 187
Peake, x	Production of movement, lxxv
Perkins, lii	Prussia, xviii, xxiii, xxxii, xxxiv, xlii
Petit movement, lxvi, lxvii	Punishment, xxiii, xxxvii
Petit, xlviii, lii, lxvi, lxvii	PV, liv
Phases, liii, liv	Pythagoras, xxviii
Physics mathematics, xviii, xix, liii, lxiv, lxv,	
lxxvii, xcii	
Physics, ix, xviii, xix, xlviii, l, lii–liv, lxii,	Q
lxiv, lxv, lxvii, lxix, lxx, lxxi, lxxii,	Quesiti et inventioni diverse de Nicolo
lxxvii, lxxix, lxxxiii, xcii, 224	Tartaglia brisciano, 221
Picard, liii, lviii, lix	
Pisano and Bussotti, xlviii, li, lxv, lxxii,	
1 Isano and Bussotti, Xivin, II, IXV, IXXII, 1xxix, 220, 222, 228	R
Pisano, vii, viii, x, xii, xv, xvii, xviii, xxiv,	Radelet de-Grave, lxvii
xxvii, xxxi, xxxii, xxxiv, xxxvi, xliv-	Rahman, viii
liv, lvii, lxii–lxxii, lxxv, lxxvii–lxxix,	Rapport fait à la Convention Nationale,
lxxxiii, lxxxiv, xcii, xciii, 219–230	xxxviii, 233
Place de la Concorde, xxxviii	Ratification au people, xxxvii
Place de la révolution, xxxviii	Recherche d'une formule propre à représen-
Plastic bodies, lvi, lxxii, lxxiii, lxxxix, xc,	ter la puissance motrice de la vapeur
43, 45, 47, 77, 81, 95, 97, 101, 103,	d'eau, xxiv, liii, 238, 239
105, 107, 109, 219, 220, 222	Recherches sur la libration de la Lune, lxxxiii
Poinsot, lxx	Réclamation adressée à l'Assemblée
Poisson, xlviii, lii	nationale contre le régime oppres-
Poncelet, xlviii, li	sif sous lequel est gouverné le Corps
Popper, xlviii, lxxxvii	royal du Génie, xxxvi, 232
Possible motion, xcii, 75, 95, 223	Reech, xlix
Pothier Marguerite, xviii	Réel, lviii
Président des Amis de la Constitution	Réelle, lviii, 226
d'Aire, xxxvii	Réflexions sur la puissance motrice du feu,
President of the National Convention, xxii,	xxiv, xxvii, xxxi, liii, lxxv, 238
XXXIX	Regicide, xxxiv, xlii
President, xxii, xxiv, xxxii, xxxiv, xxxvii,	Regnault, 261, 262
xxxix–xli, 233	Reinhard, xix
Pressure, lxxii, lxxviii, lxxxiv, lxxxvii, 43,	Relationship, v, viii, x, xviii, xxvii, xlix, lii,
67, 69, 71, 73, 107, 121, 123, 125,	liii, lx, lxxi, lxxv, lxxvii, xcii, 123,
159, 161	139, 179, 224, 228
Principes fondamentaux de l'équilibre et du	Renn, xlviii
mouvement, ix, xvii, xxviii, xxxv, xli,	Resisting force, lvi, lvii, lxix, lxx, lxxiv,
lxi, lxxvi, lxxxiv, 222, 234	lxxix, 7, 127, 131, 151, 153, 161, 165,
Principle of continuity, lxiii	167, 171, 179, 187, 189, 227, 228
Principle of Least Action, lxxiii, lxxxiii, 95	Restoration, xxxiv
Principle of virtual displacements, lxxxii,	Reversible, liii, lxxxvi
lxxxvi, 223	Rewbell, xxvii Riccati, lxvii
Principle of virtual laws, xviii, lxxviii, lxxxii	Richmann, xliv
Principle of virtual work, xliv, lxvii, lxxxi,	Riemann, xliv
lxxxii, lxxxiii, lxxxvii–lxxxix, xciii,	Robarts, viii
220–223, 226, 228	Robelin, xxiv, xxxii
Prior and Posterior Analytics, 240	Robespierre, xxiii, xxxvi, xxxix, 232
Process, liv, lix, lxii, lxix, 219	Rosenfeld, xxiv
Production of heat work, lxxv	Rumford, xxiv
1 10 add thom of mount work, IAAV	rainou, Anti

Running machines, lviii, lxxiii, 228	Traité, xli, xlii, xlv, li, lxxxiii, 235–237 Traité de mécanique céleste, xlv
e	Traité élémentaire de Chimie, li
S	Treatise, xvii, xxviii, xlii, xlvii, 11, 21, 45,
Sadi, v, viii, xii, xx, xxiv, xxvii, xxx, xxx	221, 235
xxxii, xxxiv, xxxix, xli, xlix, l, liii, liv,	Treatise on the Defence of Fortified Places
lxvi, lxvii, lxix, lxxv, 227, 228, 230,	Trigonometry, xlii, 235
238, 239	Trigonometria plana, et sphaerica, linearis &
Saint–Helena, xxxiv	Logarithmica, xxviii
Saint-Omer, xx, xxviii, xxxvii, xli	Truesdell, xlviii, lxxxiii
Salperwick, xix	
Saltpetre, xxiii	*7
Sankt–Johannis Kirche, xxxiv	V
Sanson, xxxviii	Valmy, xxxvii
Scerri, lii	Varignon, lxvii
Scheele, lii	Vauban, xix, xxii, xxxvi, 231, 232
Scholium, lxxiv, 11, 151, 161, 165	Velocity, xxviii, xlv, xlvii, lxiii, lxiv–lxvii,
Scott, xliv, xlviii, lxii	lxx, lxxii, lxxvii, lxxviii, lxxxiv–xcii,
Second fundamental equation of mechanics	29, 55, 63, 65, 221–224
(F), lxxxvi, lxxxvii, lxxxviii, lxxxix,	Venel, lii
xci, xcii, xciii, 63, 224	Viéte, xxviii
Second principle of thermodynamics, xlix, l	Vincula, lxxiii, lxxx-lxxxii, xcii
Second White Terror, xxxiv	Virtual displacements, lxvii, lxxxii, lxxxvi
Sénateur inamovible, xxviii	Virtual invertible displacement, xcii, 223
Small motion, lxvi, 163	Virtual velocity, lxvii, lxx, lxxxiv, lxxxvi,
Societas Presbyterorum a Santo Sulpitio, xix	lxxxvii, xci, 222–224
Société des Rosati d'Arras, xxiii, xxxvi	Vitesse, lxv, lxvi
Society of the Priests of Saint Sulpice, xix	Volume, xvii, xxxvi, xlix, liii, lx, lxii, lxxvii,
Stahl, li	191, 193, 226
State of system, 65, 67, 73, 75, 79, 101	von Blücher, xxxiv
Stevin, lxvi, lxix	
Steward, xlix	
Sur les citadelles, xxxviii, 232	W
Synthetic method, lix, 225	Wallis, xlviii, lxii, lxvii
	War, xxii, xxiii, xxvii, xxxii, xlviii
	War of the Sixth Coalition, xxxii
T	Waterloo, xxxii
Tableau de Campagnes, xxxix	Wattignies battle, xviii, xxiii
Tait, xlix	Wattignies La Victoire, xviii
Tartaglia, xlviii, 221, 228	Wellington, xxxiv
Taton, xlviii	Winter, xlviii
Thackray, lii	Work, v, vi, viii, ix, xii, xv, xvii, xviii, xxiv,
Theoremata selecta pro conservatione vir-	xxvii, xxviii, xxxii, xxxiv, xliv, xlv,
ium vivarum demonstranda et esper-	xlvii–liv, lvi–lxi, lxii–lxv, lxvii, lxix–
imenta confirmanda, lxxxiii	lxxv, lxxvii–lxxxix, xcii, xciii, 5, 13,
Théoréme japonais de Carnot, xxviii	19, 31, 165, 167, 169, 173, 175, 181,
Théorie des Fonctions Analytiques, xliv	207, 213, 215, 217, 219–223, 225–
Thermodynamics, xx, xlix-li, liii, lxxv	229
Thermodynamique, xxiv	Working substance, xlviii, xlix, liii, liv, lvii,
Thése générale, liii	lix, lxxix, lxxxviii, 161, 228
Third French Republic, xxxii, xxxiv	
Thomson, xlix, l, lxxv	
Thurston, 238	Y
Torricelli, lxvii, 221	Youschkevitch, xvii, 237