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Preface

It is never easy to conceive and to realize a vast editorial project. This
volume represents the first successful step in exactly such a broad
editorial project. It presents a faithful English translation of Lazare
Carnot’s Essai sur les machines en général (1786), enriched by a long
and accurate Introduction and by a detailed technical and linguistic
apparatus of End Notes. The Introduction draws a very good picture
of the epoch in which Lazare Carnot lived and worked, including his
engagement both as a scientist and as an important politician. The
authors reconstruct Carnot’s cultural milieu with great care and offer a
translation of Carnot’s Essay on the machines. I congratulate the
authors on their excellent work!

This book and its research programme is to be interpreted as the
natural continuation of the masterly work Lazare and Sadi Carnot. A
Scientific and Filial Relationship (Springer, 2014, 2nd ed.) by
Charles C. Gillispie and Raffaele Pisano.

The ambitious editorial research enterprise I signalled at the
beginning of this Preface, of which the Essai sur les machines en
general is the first volume, consists of the analysis, translation, and
commentary of Lazare Carnot’s three Mechanical works. The other
two essays whose publication is anticipated by Springer are the
Principes fondamentaux de l’équilibre et du mouvement (1803) and
Géométrie de position (1803).
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It is a pleasure to observe and to emphasise that all the possible
difficulties of such an extensive editorial programme have been
overcome in the best possible manner. In particular, the authors have
been able to render the eighteenth-century French in modern English
without any scientific ambiguity and with great precision. The authors
often add—in square brackets—explicative terms, which are useful
for a precise reading of the text. Finally, the End Notes clarify all
aspects of Carnot’s scientific work, in reference to both mechanical
and mathematical issues. It also seems appropriate to me to stress the
high quality of both the scientific and the historical apparatuses of this
book, which helps the reader to follow Lazare Carnot's Mechanics.

I also commend to the reader the new insights it offers regarding
the relations between pure and applied science and the links between
mechanics, mathematics, and engineering. The conceptual, empirical,
and methodological aspects of Carnot’s works are appropriately
underlined by the authors in the Introduction and in the End Notes.

I am confident that this research project, including the other two
forthcoming volumes, can be considered a milestone for the diffusion
and comprehension of Lazare Carnot’s science.

Paolo Bussotti
University of Udine, Italy
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Remarks For the Reader

This book, entitled Essay on Machines in General (Essai sur les
machines en général, 1786), is the first volume of a three-volume set,
a unique and major project on the works of Lazare Carnot, Lazare
Carnot’s Mechanics: Text, Translations and Commentaries (expected
2018–2022). The other two volumes are: Fundamental Principles of
Equilibrium and Motion (Principes fondamentaux de l’équilibre et du
mouvement, 1803) and Geometry of Position (Géométrie de position,
1803), also to be published by Springer.

The research for this major project dates back to the end of the
1990s and was carried out by Raffaele Pisano, then also in collabo-
ration with Charles Coulston Gillispie (1918–2015). This research
project is devoted to history and historical epistemology of science,
integrating history and epistemology of scientific methods and com-
bining epistemological and historical approaches to clearly identify
significant historical hypotheses. Therefore bibliographical refer-
ences, the relationships between physics–mathematics and physics–
geometry, and the role played by science in context are strongly
stressed.

These volumes (this one and the others cited above, prior to pub-
lication) are critical translations, motivated by an important goal: to
valorise and spread the name and works of the scientist, Lazare
Carnot, to an Anglophone audience.
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In this first volume, the translation was mainly carried out by Jennifer
Coopersmith and Murray Peake, and the critical commentaries were
mainly produced by Raffaele Pisano. The edition used for our critical
English translation of the Essai sur les machines en général (1786) is
archived at the Archives et patrimoine historique de l ’Académie des
sciences, Paris, France BNF and displayed by National French
Library (BnF) website Gallica. An official permission was asked and
obtained. The full notice, adapted from BnF (cfr. Gallica website), is:

Title: Essai sur les machines en général . Par M . Carnot,…
Nouvelle édition
Author: Carnot, Lazare (1753–1823).
Publisher: impr. de Defay (Dijon) | Nyon l’aîné (Paris)
Publication date: 1786
Format: 107 p.; in-8
Rights: public domain
Identifier: ark:/12148/bpt6k65435732
Source: Bibliothèque nationale de France, département Sciences
et techniques, 8-V-11886
Relationship: http://catalogue.bnf.fr/ark:/12148/cb30197796
Date of online availability: 2013, 31st July

The aim has been to keep to the character of the original Essai sur les
machines en général (1786) but also to make it easy to understand for
the modern reader.

With regard to the first aim, we do not simplify, modernize, or in
any other way correct the ideas within the Essai sur les machines en
general. With regard to the second aim, language explanation and
critical comments are reported in footnotes and endnotes, respec-
tively. We have sometimes broken up very long sentences into shorter
sentences or changed the word-order. Also, on occasion, extra words
have been added for continuity of phrasing or to add a short in-text
explanation or to give an alternative modern term. These additions are
always in square brackets and in situ. (It should always be clear from
the context whether we have to do with continuity or explanation.)
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We have corrected obvious printers’ errors and indicated this in a
footnote. We also use footnotes to draw attention to corrections
applied from the Errata. We remark that this Errata does not appear
in the BnF edition that we used for our critical translation. On the
contrary, this Errata appears in several digital editions (e.g., see
Google books). It appears that some editions added this Errata. We
also note that Lazare Carnot Mathematical Works (1797) does not
include this Errata. For completeness we decided to use the Errata
from one of these digital editions (Google, public domain). We
warmly thank Google digital books and its cited source as University
of Lausanne (Cfr. Google books website).

The layout is such that the translated pages always keep in step
with the original manuscript, the French always having an odd page
number and the English an even number. In so far as English has a
smaller word-count than French, the translated pages are shorter than
the French original. However, in displaying the mathematical rela-
tions most clearly, sometimes more spacing has been used than in the
original.

The reader should be aware that Lazare Carnot’s Essai sur les
machines en général was written some seventy years before the
physical concept of “energy” had been discovered and therefore
before the term energy had entered the physics lexicon. Other physics
terms such as force, action, percussion, soliciting force, moment of
activity, puissance, and so on, have changed or firmed-up their
meaning or fallen into disuse. These terms are left in place but, where
necessary, the modern term is given in square brackets straight
afterwards, or explained in a footnote or endnote. Two terms deserve
special mention. One is hard, the other is weight. Carnot usually uses
the property hard, of a body, to mean that the body is deformable but
not elastic (like a lump of putty, the body may change its shape but it
does not rebound). The term plastic is used to convey this meaning.
Carnot sometimes uses the term weight to mean, loosely speaking,
some mass or body, and other times to mean the force exerted on a
mass due to gravity. In this case we write force-weight and explain in
an endnote. Further remarks and commentaries on terminology may
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be found in Lazare and Sadi Carnot. A Filial and Scientific
Relationship (Springer, 2014) by Charles Coulston Gillispie and
Raffaele Pisano.

As well as terminology, some symbols have changed their use or
fallen into disuse. According to Florian Cajori (1859–1930) in his A
History of Mathematical Notations (1928–1929), the Lazare Carnot
years were a time of transition during which the integral sign was
used both for integration and for summation. We have continued to
use the integral sign,

R
, except where there is no infinitesimal quantity

(dt, ds, etc.). In these cases, the integral sign,
R
, is replaced by the

summation sign,
P

. One other symbol to note is the
eighteenth-century sign for the French livre tournois, , a French unit
of currency, used by Carnot to mean a pound weight. We have
translated this as lb and added a footnote. There exists one previous
translation into English, the work of 1808, published in instalments
by Alexander Tilloch in The Philosophical Magazine:

Carnot L (1808a) Essai sur les machines en général (Part I) In: Philosophical
Magazine: comprehending the various branches of science, the liberal and fine
arts, agriculture, manufactures, and commerce. Tilloch A (ed). Vol. XXX.
Murray J, London, pp. 8–15; pp. 154–158; pp. 207–221; pp. 310–320. Very
interesting are the avant-titre page of the book where a portrait from the
original of Lazare Carnot is published and a short biography/comment of
Lazare Carnot written by the editor (pp. 370–371).

Carnot L (1808b) Essai sur les machines en général (Part II). In: Philosophical
Magazine: comprehending the various branches of science, the liberal and fine
arts, agriculture, manufactures, and commerce. Tilloch A (ed). Vol. XXXI.
Murray J, London, pp. 28–36; pp. 136–144, pp. 220–228; pp. 295–305.

Carnot L (1808c) Essai sur les machines en général (Part III). In: Philosophical
Magazine: comprehending the various branches of science, the liberal and fine
arts, agriculture, manufactures, and commerce. Tilloch A (ed). Vol. XXXII.
Murray J, London, pp. 124–130.

Our present work is an utterly original translation, more modern in
style, and benefits from more than a hundred years of advance in
science over the earlier translation and remarkable research on the
subject (Gillispie 70s–90s; Drago and Pisano 90s–2000s; Gillispie
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and Pisano 2014; Pisano since 2000s–etc. See also endnotes and
references sections below). It also differs from this earlier translation
in certain particulars: (1) We have used

R
, and

P
, as appropriate, in

place of S, (2) We have translated fils as threads rather than as wires,
(3) We have incorporated Carnot’s own Errata.

This volume has been independently blind-peer refereed.

The Authors
November 2019
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Introduction

Lazare Carnot, l’organisateur de la victoire

This is the first research volume, in translation and with English
commentary, of the Springer French editions of three remarkable
works of Lazare Nicolas Marguérite Carnot: Essai sur les machines en
general (Carnot [1783] 1786). The other two pre-print volumes are:
Principes fondamentaux de l’équilibre et du mouvement (Carnot
1803a) and Géométrie de position (Carnot 1803b). For Lazare
Carnot’s biography, we direct the reader to the main recent authorities’
works (Gillispie and Pisano 2014; Dhombres and Dhombres 1997,
Gillispie 1971; Gillispie and Youschkevitch 1979, 1982; Dupre 1892).
In agreement with Master Charles Coulston Gillispie (1918–2015):

There is no difficulty in understanding why the scientific community should
have ignored Carnot’s Essai sur les machines en général [...] in the 1780s. His
book does not read like the rational mechanics of the eighteenth century. It had
long since become normal to compose treatises of mechanics addressed to a
professional public in the language of mathematical analysis; though Carnot
reasoned no less rigorously than did contemporary mathematical argument, he
conducted the discussion verbally, conceived the mathematical expressions he
did employ in a geometric or trigonometric rather than algebraic spirit, and
usually went on to explain in words what the formulas contained. The genre
was apparently of an altogether lower order than that of d’Alembert and
Lagrange or Euler and the Bernoulli family. Judging by the style alone, prolix
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and naive, a contemporary reader might easily have supposed the book to be
among the many negligible writings that retailed merely elementary mechanics
under one pretext or another. Yet, the essay, despite its title, could never have
served the purpose of a practical manual for designing or employing actual
machinery. (Gillispie and Pisano 2014, pp. 15–16)

The following introductory research presents Lazare Carnot as mili-
tary man, politician and scientist on the one hand, and his mechanics,
particularly his Essai sur les machines en général in context, on the
other.

1.1 Lazare Nicolas Marguérite Carnot (1753–1823)

Lazare Nicolas Marguérite Carnot (Nolay, France, 1753 May 13th—
Magdeburg, Prussia [Germany] 1823 August 2nd) was also called
L’Organisateur de la Victoire and Le Grand Carnot, due to the
services he rendered to politics during the French revolution, in the
army as a general (i.e., the battle of Wattignies La Victoire) and
scientist (physics, mathematics, geometry, fortifications and
mechanical machines). Despite the dominant Newtonian and
Lagrangian mechanics, and taking into account his political back-
ground, Carnot’s works are of great importance to both the history of
physics and the history of mathematics (Chamay 1984–1985;
Gillispie and Pisano 2014).1

Son of Claude Carnot (1719–1797) Notaire Royal/avocat au par-
lement de Bourgogne and Marguerite Pothier (1726–1788), Lazare
Carnot was born in Nolay, a village in the current Côte-d’Or

1Some paragraphs of the second part of this introduction are an adaptation of theoretical advancement
from Gillispie and Pisano 2014, pp. 16–23; pp. 353–356; pp. 376–380. Necessary parts are quoted from
them as a self-citation. We thank Rights and Permissions Springer Nature for its kind authorisation. See
also: A Development of the Principle of Virtual Laws and its Conceptual Framework in Mechanics as
Fundamental Relationship between Physics and Mathematics (Pisano 2017) and Reading Science,
Technology and Education: A Tradition Dating back to Science into the History and Historiography
(Pisano, Anakkar et al. 2017) both published by Transversal (see also Pisano and Capecchi 2015). We
show appreciation and thankful to these notable publishers—journals. As we already remarked in the
Acknowledgments section, we also express gratitude to Gallica–National French Library (BnF), Archives
et patrimoine historique de l’Académie des sciences, Paris (France), Académie François Bourdon, Le
Creusot—Archives Lazare Carnot (France), Collections archives de la bibliothèque de l’École
polytechnique de Palaiseau (Essonne, France). An infinite and particular gratitude is addressed to
Monsieur Gaetan Carnot, member of Carnot’s family, for his kind permission to use the images.
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department in eastern France. He began his studies in humanities and
philosophy at the Collège d’Autun. Then, under the Societas
Presbyterorum a Santo Sulpitio (Society of the Priests of Saint
Sulpice) he focused on theology, logic and mathematics. Thanks to
these scientific studies and the meeting with Duke Louis–Marie–
Victor d’Aumont de Rochebaron (1632–1704), a French Army officer
and Marquis de Nolay, he undertook his military and scientific edu-
cation (Reinhard 1950–1952).

In 1771, Carnot was accepted by École royale du génie de
Mézières and appointed as a second lieutenant (1773) where he
improved his education in mechanics, technical drawing and geog-
raphy. One of his professors was Gaspard Monge (1746–1818;
Monge 1799). Some years before, in 1764, Louis–Alexandre Berthier
(1753–1815) was also accepted at the École royale du génie de
Mézières. By the age of twenty Carnot had graduated from the school
as first lieutenant, after also attending Louis Joseph (1736–1818)
Prince of Condé’s engineer corps. During this period, physics,
mathematics, engineering and military fortifications were his main
interdisciplinary fields within military strategic (geometric) defence.
Typical of Carnot’s designs for fortresses in the tradition of Vauban is
a loop-holed wall, built as the channel of fortification, now called
the Carnot wall.

Parallel to science, politics also absorbed Carnot’s life: he became
one of the first delegates (1791) of the new Assemblée législative
(Legislative Assembly). He was also elected (1791) member of the
Comité de l’Instruction Publique (Committee of Public Instruction). It
was a committee—part of the Legislative Assembly—established to
reorganize the French education system in this period. Carnot sug-
gested interesting reforms to both the teaching and public education
systems that were not implemented. The ferociously combative
environment and social instability were not favorable preconditions
for new, advanced, ideas.

In Salperwick (North of France) on 1791, May 17th Lazare Carnot
married (with a dowry of 30,000 books) Jacqueline Sophie du Pont
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(Dupont) also de Lierdt (1764–1813) from Moringhem (North of
France). They had two sons: Nicolas Léonard Sadi Carnot (1796–
1832), physician/engineer founder of thermodynamics, and Hippolyte
Carnot (1801–1888), an important French political leader. The latter
was born in Saint–Omer (North of France) not far from Lille.

The following Diagram 1 shows ancestry and descendants of
Lazare Carnot from Nolay (France) branch. For our aims it is limited
to 1719–1920:

Diagr. 1 Extract of Lazare Carnot Family from Nolay (France): 1719–
1920. We thank M. Jean Le Bret, member of Carnot’s family who gave us
(RP) copies of Lazare Carnot’s Ascendant (1719–1489) and Descendant

(1753–2020) Genealogies

xx Introduction



Fig. 1 «Le Comte Carnot, membre de l’Institut Royal de France (section
Sciences physique et mathématiques—Mécanique) (s. d.)». Plate from the
original portrait conserved at Académie François Bourdon, Le Creusot—
Archives Lazare Carnot. Very kindly authorized by Monsieur Gaetan

Carnot, member of Carnot’s family

Introduction xxi



At the end of 1770s Carnot was busy completing his Essai sur les
machines en general for his first (lost) edition of 1783 (Fig. 11). At the
beginning of the 1780s he also participated in a competition organised
by the Académie des sciences. He wrote two unpublished memoirs:
Mémoire sur la théorie des machines pour concourir au prix de 1779
proposé par l’Académie royale des sciences de Paris (Carnot 1778[9];
Fig. 9; hereafter 1779) and Mémoire sur la théorie des machines pour
concourir au prix que l’Académie royale des sciences de Paris doit
adjuger en 1781 (Carnot 1780[1]; Fig. 9; hereafter 1780).

This was also a successful period of important appointments in his
military career. He became capitaine au corps royal du génie (1783),
then in rapid succession lieutenant–colonel, colonel, général de bri-
gade and général de division (1784; the same year he wrote his
famous Éloge de M. le Maréchal de Vauban; Cfr. Duthuron 1940).

In 1787 he was an official member of the Académie de Dijon.
In 1792, the Legislative Assembly (1791, 1st October to 1792, 20th

September) concluded its activity. From the 22nd of September 1792
to the 2nd of November 1795 the Convention national (National
Convention) governed France, and Carnot was elected the 43rd
President of the National Convention (1794; see Fig. 3). He
demonstrated his military prowess, for example, participating in a
military mission (1792, Bayonne) to improve the current defensive
systems against Spanish attacks. One year later, a significant political
event was his vote in favour of the death sentence of King Louis XVI
(1754–1793).

In 1793 Carnot was elected member of the Comité de salut public
(Committee of Public Safety) a new committee established by
National Convention. He was also charged as one of the Ministers of
War (Culp 1914). He achieved several military victories through the
implementation of his singular defensive strategies, especially against
the prevailing methods of European armies. Among others, these
included a unique massive army, that is the organization of military
forces capable of fighting a total war, achieving the neutrality of
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Prussia, and interrupting communications with Austria and England.
Essentially, it consisted of a substantial army divided by units, which
rapidly attacked from the flanks rather than head on. Carnot also saw
to—in his capacity of Minister of War—several emergencies, such as
the scarcity of munitions (due to the lack of saltpetre2 and copper) and
other technical needs. He successfully organized the army and ad hoc
strategies, including the Northern front, battle of Wattignies,1793,
15–16 October, and came to be known at this time as the Organizer of
Victory (Fig. 2).

In Arras—North of France, not far from Lille—Lazare Carnot met
Maximilien François Marie Isidore de Robespierre (1758–1794). The
two officers were both members of the Société des Rosati d’Arras, a
literary society established in 1778, 12th June. Carnot enrolled in the
society in 1786, Robespierre in 1787. The society was essentially
inspired by Jean de la Fontaine (1621–1695), Guillaume Amfrye de
Chaulieu (1639–1720) and Jean de la Chapelles’ (1651–1723) writ-
ings. Later on, in the 1790s, especially in the course of Carnot’s roles
at the National Convention, the tension between them became
extreme: anti-Prussian Robespierre and anti-English Carnot; and also
in regard to Jacobin politics. We should remark that Carnot had
shown no opposition to the la Terreur until he, and other of his
colleagues of the National Convention, arrested (1794, 27th July)
Robespierre and his twenty-one associates and condemned them to
capital punishment by beheading (1794, 28th July).

In 1794, Gaspard Monge, Jacques–Elie Lamblardie (1747–1797)
and Lazare Carnot founded the École centrale des travaux publics. In
1795 this institution was renamed the École Polytechnique, as it is
still known.

2Potassium nitrate (KNO3) is a nitrogen-containing compound. The niter (from nitrogen as a source)
exists in nature as a mineral. Generally, it is referred to as saltpeter or saltpetre.
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In 1795 Napoléon Bonaparte (1769–1821) was general in-chief of the
Armée d’Italie (Army of Italy) located on the Italian border. Due to
his political disagreement with Paul–François vicomte de Barras’
(1755–1829) reactionary ideas, in the same year, Carnot left the
Comité de salut public. On 1795, April 11th Lazare Carnot became
(1795–1797) one of the five directors of the Directoire (Directory).
The latter governed France until 1799. He supported Napoléon’s
initiatives; he was the only one of the Directory to do so (Dhombres
and Dhombres 1997; Hicks). The life of this Directory was not easy,
due to the several cultural and political differences between the
members.

In 1796 (April 30th) Carnot was elected president of Directory; on
June 1st, his first son, Nicolas Léonard Sadi, was born (Figs. 4 and 5).
His presidency ended on 1796, 29th July.

Sadi Carnot is the father and “inventeur de la Thermodynamique” as
noted in the History of École polytechnique (Callot 1980, p. 390). In 1824,
one year after Lazare Carnot’s death, Sadi Carnot’s only published work
appeared: Réflexions sur la puissance motrice du feu (Carnot 1824 [1824],
1978; Girard 1824, Gondinet 1833; Challey 1971; Costabel 1976). He
wrote another two (unpublished) manuscripts. The first is Notes sur les
mathématiques, la physique et autres sujets (Carnot 1878b, pp. 89–102;
see also Carnot 1878a; Robelin 1832; Rosenfeld 1941; Rumford 1798).
The manuscript is conserved in the archives of the Académie des science–
Archives et patrimoine historique de l’Académie des sciences, Paris
(Gillispie and Pisano 2014). Sadi Carnot wrote crucial details about early
ideas on the law of conservation (Gillispie and Pisano 2014)3. The second
manuscript is Recherche d’une formule propre à représenter la puissance
motrice de la vapeur d’eau (Carnot 1978, pp. 223–234; Cfr. Clément
1819a, b, 1970). In this work, Sadi Carnot indicated a mathematical
expression for motive power applicable to heat machines en général.

3Recent studies (Pisano’s works; Gillispie and Pisano 2014) remarked on some differences between the 1824 edition
and the 1878 a manuscript given to the Académie des sciences (Carnot 1878a). The manuscripts edited by Gauthier–
Villars (Carnot 1878b) are not always reproduced in their entirety. To consult Sadi Carnot’s complete manuscripts
see Pisano’s works; Gillispie and Pisano 2014; see also Carnot 1978, 1986, masterfully edited by Robert Fox.
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Fig. 2 «Lazare Carnot à Wattignies: portrait à cheval en uniforme de
commissaire aux armées par R. Desvarreux (1909)». Plate from the original
portrait conserved at Académie François Bourdon, Le Creusot—Archives
Lazare Carnot. Very kindly authorized by Monsieur Gaetan Carnot, mem-

ber of Carnot’s family
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Fig. 3 «Lazare Carnot annonce à la tribune de la Convention la prise de
Condé, nouvelle reçue par le télégramme Chape en 1794, gravure (s. d.)».
Plate from the original portrait conserved at Académie François Bourdon,
Le Creusot—Archives Lazare Carnot. Very kindly authorized by Monsieur

Gaetan Carnot, member of Carnot’s family
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This work is very connected to the filial and scientific relationships
between Lazare and Sadi on a common scientific project (Gillispie
and Pisano 2014), concerning the study of the efficiency of
mechanical and heat machines; the project originally belonged to
Lazare (ibidem). The manuscript was found in 1966 (Gabbey and
Herivel 1966). It was presumably written between November 1819
and March 1827 (Gillispie and Pisano 2014): decisive evidence still is
lacking to determine the precise date. Generally speaking, it was
written before Carnot’s publication of 1824 (Gillispie in Gillispie and
Pisano 2014, Chap. 3, ft. 42) and after April 1823 (Fox in Carnot
1986, p. 168).4

In 1797 (September 4th) three members of theDirectory—with military
support from Charles Pierre–François Augereau (1757–1816)—staged a
coup d’état called the Coup of 18 Fructidor—Year V. They were Paul–
François de Barras, Jean–François Rewbell (1747–1807) and Louis–Marie
de la Révellière–Lépeaux (1753–1824). Lazare Carnot was removed and
obliged to seek protection in Switzerland (Geneva). In this period, he
wrote Réflexions sur la métaphysique du calcul infinitésimal (Carnot
1797a), in order to explain and justify the role of the mathematics used in
the previous Essai sur les machines en général (Carnot [1783] 1786).

In 1799 Carnot came back to France and was appointed (1800
April 2nd) by Napoléon as Minister of War. He was in charge until
October 8th, which included the events of the Battle of Marengo
(1800 June 14th). Two years later, he did not support Napoléon’s
Consular powers for life and descent heritage: he voted against this
proposal. This also was the period of Principes fondamentaux de
l’équilibre et du mouvement (Carnot 1803a) and Géométrie de posi-
tion (Carnot 1803b).

Between 1800 and 1806 Lazare Carnot devoted himself to the
geometry inspired by earlier mechanical and mathematical works,

4Charles Gillispie argued (Ibidem) the role played by the concepts of reversibility and incompleteness and
completeness of a cycle. Robert Fox (Carnot 1986, pp. 168–169) argued his “tentative inclination to suppose”
(Carnot 1986, p. 169) suggesting a date between November 1819 (when Clément lectured as a professor at
Conservatoire des arts et métiers in Paris) and 8 March 1827, when the latter acknowledged a “distinguished
mathematician” (Carnot 1986, p. 167) for information which added to his lecture. However, whether the
composition of the unpublished manuscript was elaborated before or after (or during: Pisano) the composition
of Réflexions sur la puissance motrice du feu is still an outstanding question that requires resolution.
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such as those on equilibrium, analysis and geometry. He wrote four
masterpieces (Carnot 1800, 1801, 1803a, 1806).

In 1800 Carnot addressed a remarkable letter to Charles Bossut
(1730–1814) in which new results and intellectual standpoints in
geometry, particularly in trigonometry (Carnot 1800, pp. 401–421;
Cfr. Bossut 1800a, b) were presented.

In 1801 he wrote De la corrélation des figures de géométrie
(Carnot 1801), and his second son, Lazare Hippolyte, was born
(Saint–Omer, April 6th). In this book he presented several of Euclid’s
theorems and various forms of a theorem, later called as Carnot’s
theorem5, or the law of cosines (cfr. Carnot 1801, § 220, pp. 162–
164). This remarkable theorem (Lagrange 1813, p. 406) which
referred to the triangle—such as the generalisation of Menelaus from
Alexandria (ca. 70–140; Chemla 1998, 1990)—was also presented in
the Géométrie de la position (Carnot 1803b, p. 168; p. 291; pp. 436–
437), where it is fully derived and written in the modern forms. As
such, the latter is considered to complement the previous De la
corrélation des figures de géométrie (Carnot 1801). Another impor-
tant work on the subject was Mémoire sur la Relation qui existe entre
les distances respectives de cinq points quelconques pris dans l’es-
pace; suivi d’un essai sur la théorie des transversales (Carnot
1806b).

Lazare second’s son Hippolyte Carnot had an excellent political
career: Député (1839–1849; 1850–1851; 1871–1875), membre du
Corps législatif (1864–1869), Ministre de l’instruction publique
(1848) and Sénateur inamovible (1875–), and wrote several works on
politics and on teaching.

5As an extension of Pythagoras’s theorem for the case of triangles, it concerns the lengths of the sides of
a triangle to the cosine of one of its angles. It is—in some manner—also attributed to al–Biruni (ca. 973–
1048), al–Kash (ca. 1380–1429) and François Viète (1540–1603); Bonaventura Cavalieri also presented
it and its complete proof in Trigonometria plana, et sphaerica, linearis and Logarithmica (Cavalieri
1643; see also 1635). It is also possible to find it in the Euclid’s Elements, Proposition 13, Book II (see
also Proposition 12). The théorème japonais de Carnot is a theorem presented in Géométrie de position
(Carnot 1803a, p. 168) related to the proof of the Japanese theorem for concyclic polygons. Lagrange
appreciated this theorem very much (Lagrange 1813, pp. 406–407). On the contrary, Cauchy was very
critical of the theorem: “In the various treatises of mechanics it is taught that live forces are lost every
time bodies undergo a sudden change in velocity, and that this loss of live force is the sum of the live
forces due to the velocities that are lost. But this proposition, which has been named Carnot’s theorem, is
evidently inexact as is the demonstration on which it purportedly rests.” (Cauchy 1829, p. 116).
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Fig. 4 «Lazare Carnot en uniforme de membre du Directoire exécutif
(s. d)». Plate from the original portrait conserved at Académie François
Bourdon, Le Creusot—Archives Lazare Carnot. Very kindly authorized by

Monsieur Gaetan Carnot, member of Carnot’s family
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Fig. 5 «Sadi en uniforme de polytechnicien en 1813, reproduction d’après
Boilly (s. d)». Plate from the original portrait conserved at Académie
François Bourdon, Le Creusot—Archives Lazare Carnot. Very kindly
authorized by Monsieur Gaetan Carnot, member of Carnot’s family
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Hippolyte was also responsible for the delay in the circulation of
his brother Sadi’s documents and his biography (Gillispie and Pisano
2014, Chaps. 6 and 9). A collection of Sadi Carnot’s manuscripts
were given to the Académie des sciences on December 16th 1878: 46
years after Sadi’s death. One of them was an autograph version of
Réflexions sur la puissance motrice du feu (Carnot 1878a). It is
conserved (4 cahiers, 92 f. r/v) at the Académie des sciences–Institut
de France in Paris (Gillispie and Pisano 2014). One reason for this
delay could be the ambiguity surrounding the cause of Sadi’s death
(1832, 24th August) in Ivry–sur–Seine. A prevailing opinion suggests

Fig. 6 «Lazare Carnot’s letter to his son Sadi Carnot (1814)». Plate from
the original addressed to Sadi Carnot. Dossier Sadi Carnot, VI 2a2 (1812).
Very kindly authorized by the Collections archives de la bibliothèque de

l’École polytechnique de Palaiseau (Essonne, France)
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a death from disease, which appears to be “choléra” (Arago and Gay–
Lussac 1833, LII, p. 211; Henrion 1833, p. 167). But recent research
(Cfr. Pisano’s studies) strongly suggests that he developed mental
illness (Cfr. Birembaut 1974) when the cholera epidemic of 1832 hit
Paris. Some of Sadi’s friends submitted an obituary (Girard 1824,
pp. 411–414; Robelin 1832, pp. 528–530; Gondinet 1833, p. 46).
Given the roles played by Lazare in politics, the revolution and the
army, this mysterious aspect of Lazare Carnot’s family is very
important. Continuing the family’s prestige, Marie François Sadi
Carnot (1837–1894) Hyppolite’s son, become the fourth President
of the Third French Republic (1887).

In 1804, 2nd December Napoléon crowned himself emperor. Lazare
Carnot’s republican attitudes and political ideas impeded further public
roles under the Empire Français (First French Empire), so he retreated
to private life and his studies on military fortifications, especially on the
geometry of bastions systems. In this period, Lazare Carnot wrote De la
Défense des places fortes. The book had three editions in French
(Carnot 1810, 1811, 1812a) and one edition translated into English, and
published in London by a military library (Carnot 1814).

In 1812—and after the fiasco invasion of Russia—Carnot returned
to active military service, in particular he worked for the defence of
Antwerp during the War of the Sixth Coalition (also Guerre de la
libération). The coalition was composed of Austria, Prussia, Russia,
the United Kingdom, Portugal, Sweden, Spain and some German
states. The Count of Artois demanded that Napoléon capitulate. Paris
was captured around the Spring of 1814. Napoléon was obliged to
abdicate in April and exiled to the island of Elba in Italy; but, he
escaped (1815, February) and was restored to power in France once
again. During the war of Hundred Days, Carnot was Minister of the
Interior under Napoléon (Fig. 7).

The decisive Battle of Waterloo was in 1815, June 18th.
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Fig. 7 «Lazare Carnot, portrait dans son bureau en uniforme de Ministre de
l’Intérieur en 1815, (s.d.)». Plate from the original portrait conserved at
Académie François Bourdon, Le Creusot—Archives Lazare Carnot. Very
kindly authorized by Monsieur Gaetan Carnot, member of Carnot’s family
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The British allied army under the command of the Duke of Wellington,
a Prussian army under the command of Generalfeldmarschall (field
Marshal) Gebhard Leberecht von Blücher (1742–1819) brought an end
to Napoléon and occupied Paris (July 7th). Finally, Napoléon was
condemned to exile (1815, December) on the island of Saint–Helena
(Longwood, South Atlantic west coast of Africa). He was fifty-one years
old when he died (1821, May 5th) in exile.

During the Second (Bourbon) Restoration Carnot was accused as
the deliberate killer of a monarc(-hy) and as a regicide during the
Second White Terror—1815–1816 (Louis XVIII).

In 1816, Carnot was exiled6 to Poland. First, he lived in Warsaw,
then in the Kingdom of Prussia (Germany). He was accepted with
honour in both countries. One year before the outstanding publica-
tion, Réflexion sur la puissance motrice du feu of his oldest son Sadi
Carnot (Carnot [1824] 1978, 1986; Pisano 2010; Gillispie and Pisano
2014), Lazare Carnot died in Magdeburg (Fig. 8). He died at seventy
years of age and was buried at the Johanneskirche (Sankt–Johannis
Kirche).

Only in 1889 were Carnot’s remains transferred to the Panthéon on
4th August. He was commemorated by a royal and magnificent cer-
emony when his grandson, Sadi Carnot7 was still President of the
French Republic.

Carnot produced distinguished writing and masterpieces in several
fields such as mechanical machines, mechanics, geometry, mathe-
matics, fortification and military treaties. Therefore, it is interesting to
show the extraordinary trivalent role, political, military, and scientific,
played by Lazare Carnot in the course of his main responsibilities and
works8:

6Napoléon Bonaparte and Lazare Carnot only were exiled.
7Marie François Sadi Carnot—as above cited—was the fourth President of the Third French Republic.
On June 24th, 1894, Sante Geronimo Caserio (1873–1894), an Italian anarchist, assassinated the
President Carnot who died after midnight on 25 June. The Board of Pardons decided against all appeals
for clemency on August 14. Caserio was executed by guillotine in Lyon at 5 am, August 16, 1894.
President Carnot was honoured with an elaborate funeral ceremony in the Panthéon, Paris.
8Cfr. Gillispie 1971; Gillispie and Pisano 2014. Particularly on Lazare Carnot as a politician and military
officer, including documents and archives, see Jean Dhombres and Nicole Dhombres (Dhombres and
Dhombres 1997).
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– 1767. Early humanities studies in Autun, located in the
department of Saône–et–Loire, Department of Bourgogne–
Franche–Comté (Centre-East of France).

– 1768. Séminaire d’Autun (military lyceum).
– 1769. Carnot prepared his application (concours) to enrol

the École du Génie.
– 1770. Carnot was positively evaluated (classified 3rd) for

École royale du Génie de Mézières (North of France).
– 1771. Carnot attended the École royale du génie de

Mézières.
– 1773. Carnot was twenty-years old when he became

Ingénieur Royal.
– 1773. Carnot went to military garrison in Calais (North of

France).
– 1777. Carnot went to military garrison in Cherbourg

(North of France).

• 1778[79]. Mémoire sur la théorie des machines pour concourir au
prix de 1779 proposé par l’Académie royale des sciences de Paris
(Carnot 1778; Fig. 9).

• 1780[81]. Mémoire sur la théorie des machines pour concourir au
prix que l’Académie royale des sciences de Paris doit adjuger en
1781 (Carnot 1780; Fig. 9).

– 1780. Carnot went to military garrison in Béthune (North
of France).

– 1781. Carnot went to military garrison in Arras (North of
France).

• 1783. Essai sur les machines en général. Par un officier du Corps
royal du Génie. Defay. Dijon. It is his masterpiece on mechanical
machines.9

9As we read in the end of the second edition (1786, Fig. 11) a first edition was completed in 1782 and
published one year after: “Depuis la première édition de cet ouvrage [Principes fondamentaux de
l’équilibre et du mouvement] en 1783, sous le nom d’Essai sur les machines en général [...]” (Carnot
[1783] 1786; Fig. 11). In Principes fondamentaux de l’équilibre et du mouvement’s Preface Carnot cited
the Essai of 1783 and its role with respect to the new book in question (Carnot 1803a, Préface, p. v).
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• 1784. Lettre sur les aérostats. This manuscript is lost.10

• 1784. Éloge de M. le maréchal de Vauban (Carnot 1784).
• 1785. Dissertation sur la théorie de l’infini mathématique (Carnot

1785).
• 1786. Essai sur les machines en général. It is the new edition11

(Fig. 11; Carnot [1783] 1786).
• 1786. Observations sur la lettre de M. Choderlos de Laclos à

Messieurs de l’Académie françoise, concernant l’Éloge de
Monsieur le Maréchal de Vauban (Carnot 1786).

– 1786. Carnot enrolled in the Société des Rosati d’Arras.
– 1787. Robespierre enrolled in the Société des Rosati

d’Arras.

• 1787. Lettre de M. Carnot, Capitaine en premier au Corps Royal
du Génie, à M. le Marquis de Montalembert. In: Réponse au
Mémoire sur la fortification perpendiculaire (Carnot 1787a).

• 1787. Le Pouvoir de l’habitude, read12 at the Académie d’Arras,
1787 25th May (Carnot 1787b).

• 1789. Mémoire présenté au Conseil de la Guerre [...] Est-il
avantageux au Roi de France qu’il y ait des Places fortes sur les
frontières de ses États? (Carnot 1789a).

• 1789. Réclamation adressée à l’Assemblée nationale contre le
régime oppressif sous lequel est gouverné le Corps royal du Génie
[...] 28 septembre 1789 (Carnot 1789b).

10On 1784, 17th January Lazare Carnot wrote this Lettre sur les Aérostats inspired by the first human
flight. On 5th June 1783, the brothers Montgolfier–Joseph–Michel (1740–1810) and Jacques–Étienne
(1745-1799) produced their first public official flight of the balloon filled with heated air. The flight was
in Annonay (Ardèche, Region of Auvergne-Rhône-Alpes). Cfr.: Meusnier de la Place (1783), Darboux
(1887–1896) and Gillispie (1983). Cfr: Dhombres and Dhombres 1997; Gillispie and Pisano 2014.
11In this edition, Lazare Carnot is well cited: “M. Carnot, Capitaine au Corps royal du Génie, de
l’Académie des Sciences, Arts, et Belles–Lettres de Dijon, Correspondant du Musée de Paris”. The 1786
edition—as we remarked at the beginning in this volume—had an early English translation, divided into
3 issues (XXX,XXXI, XXXII) by Philosophical Magazine (Carno 1808a, b, c). In part one the reader can
find both a portrait from the original of Lazare Carnot (Carnot 1808a, first pages of the volume XXX) and
a short biography/comment of Lazare Carnot written by the editor (Ibidem,pp. 370–371).
12This edition (Arras, 1971) also includes Maximilien Robespierre’s speeches “Le droit et l’état des
bâtards” read at the Académie d’Arras, 1786, 27th April.
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– 1791. Carnot was finally affecté in Saint–Omer (North of
France).

– 1791. Carnot became Président des Amis de la
Constitution d’Aire

– 1791. Carnot became Député at the Assemblée législative
and member of the Comité de l’Instruction Publique.

– 1791. Carnot became Député du Pas–de–Calais (North of
France).

– 1792. Carnot became Commissaire à l’Armée du Rhin.
– 1792. Carnot proposed a special military strategy to avoid

the conquest of the fortresses.
– 1792. The Convention elected Carnot Député.
– 1792. 10th August. Louis XVI was suspended.
– 1792. 13th August. Louis XVI is officially arrested.
– 1792. 20th September, Battle of Valmy. The first major

victory by the army of France. It was located between
Sainte–Menehould and Valmy (Marne department, N–E
France).

– 1792. 21st September. The Convention abolished the
Absolute Monarchy and declared the First French
Republic.

– 1793. 14th January. The Convention begins to discuss the
terms of the judgment for Louis XVI. Finally, three
motions and four questions were decisive.

– 1793. 15th January. First motion. The Convention pro-
posed to vote two main questions of culpability: conspir-
ation (673 pro, 32 on different claiming, 3 did not answer
and 10 abstaining, absents 31; total 718) and ratification au
people (286 pro, 423 contra, 12 abstaining, absents 28;
total 721). Carnot, respectively, voted pro and contra.

– 1793. 16th–17th January. Second motion. The Convention
proposed to vote the third question of punishment: 387 pro
(whom 26 pro by Mailhe’s amendment), 44 in favour of
mort avec sursis, 290 pro other punishments, 5 abstaining,
absents 23; total 726. Carnot voted death penalty.
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– 1793. 17th January. The Convention sentenced to death
Louis XVI (Louis Capet).

– 1793. 19th January. Third motion. The Convention pro-
posed to vote the fourth question of sursis à l’exécution:
310 pro, 380 contra, 2 attached certain conditions to their
votes, 10 abstaining, absents 47; total 702). Carnot voted
contra.

– 1793. 20th January. The convention officially announced
the verdict to the maison du Temple.

– 1793. 20th January. Louis XVI asked various requests to
the Convention; one of them was a delay of 3 days before
executing. The Convention granted all except the addi-
tional three days.

– 1793. 21st January. Louis XVI at age 38 was executed
(guillotine) on in Paris at the Place de la révolution (since
1795, Place de la Concorde). Charles–Henri Sanson
(1739–1806), public executioner, inflicted it.

– 1792. Carnot became chargé de mission auprès des
armées.

• 1792. Sur les citadelles, Carnot l’aîné, député du département
du Pas-de Calais à ses collègues, 5 janvier, l’an IV de la
Liberté (Carnot 1792).

– 1793. Carnot is member of Comité de Salut Public and
chargé des questions militaires.

– 1793. Carnot became Commissaire de l’Armée du Nord.
– 1793. Carnot became Capitaine du Corps du Génie.

• 1793. Rapport fait à la Convention Nationale par ses com-
missaires Carnot, Garrau et Lamarque, [Convention 1793,
12th January] (Carnot 1793a).

• 1793. Déclaration des droits du citoyen, proposée par L.
Carnot, Député du Pas de–Calais, 10 mars 1793 (Carnot
1793b).

– 1793. Carnot gave a substantial contribution to the victory
of Wattignies.
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– 1794. Carnot became the 43rd President of the National
Convention. [George Couthon (1755–1794), Maximilien–
François–Marie–Isidore de Robespierre (1758–1794) and
Louis–Antoine–Léon de Saint–Just (1767–1794) were
condemned to death].

– 1794. Gaspard Monge, Jacques–Elie Lamblardie (1747–
1797) and Lazare Carnot founded the École centrale des
travaux publics.

• 1794. Rapport et projet de décret sur la suppression du conseil
exécutif provisoire et son remplacement par des commissions
particulières [by Carnot on behalf of Comité de salut public]
(Carnot 1794).

– 1795. École centrale des travaux publics was renamed
École Polytechnique.

– 1795. Carnot became Député au Conseil des Cinq-Cents.
– 1795. Carnot became one of the five directors of the

Directoire.
– 1795. Carnot appointed Napoléon Bonaparte as general in

chief of the Armée d’Italie.

• 1795. [Report13 at the National Convention] Campagne des
Français depuis le 8 septembre 1793 répondant au 22 fructidor
de l’an Ier de la République jusqu’au 15 pluviôse an III (Carnot
1795a).

• 1795. Opinion de Carnot, représentant du peuple, sur l’accu-
sation proposée contre Billaud-Varenne, Collot–d’Herbois,
Barère, et Vadier; par la commission des Vingt et un (Carnot
1785b).

– 1796. Carnot was elected President of the Directoire. He
was in charge for a short term (30th April–29th July).

– 1796. Carnot’s first son, Sadi was born in Paris.

• 1796. Exploits des Français depuis le 22 fructidor an I, jus-
qu’au 15 pluviôse an III (Carnot 1796a).

13In 1797 a second report (tableau de Campagnes) was edited.
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• 1796. Discours prononcé par le Président du Directoire
Exécutif à la fête de la Reconnaissance (Carnot 1796b).

– 1797. Bonaparte took power. The Consulat replaces the
Directoire.

– 1797. Carnot, after Coup d’État de Fructidor (1797 4th
September) went to Geneva (October).

• 1797. Réflexions14 sur la métaphysique du calcul infinitesimal
(Carnot 1797a).

• 1797. Œuvres mathématiques15 du Citoyen Carnot (Carnot
1797b).

• 1797. Épitre au directeur Carnot, suivie de quelques-unes de
ses poésies fugitives, et précédées de notes historiques sur les
sociétés de ROSATI. (Carnot 1797c).

• 1798. Réponse de L.–N.–M. Carnot, citoyen français, l’un des
fondateurs de la République, [...] au rapport fait sur la con-
juration du 18 fructidor au Conseil des Cinq–Cents (Carnot
1798).

– 1800. Carnot became Inspecteur général des armées
(February 7th).

– 1800. Carnot is entitled Ministre de la Guerre (April 2nd).
– 1800. Carnot resigned (October 8th) from his Ministre de

la Guerre. This was historically considered an act of dis-
approval to the appointment of Napoléon as Consul à vie
(October 8th).

14This book had a notable success and very quickly was translated into Portuguese (Lisbon, 1798),
German (Frankfurt, 1800), English (London, 1800, Philosophical magazine, Vol. VIII, pp. 222–240;
335-352. Id. Vol. IX, 1801, pp. 39-56; Holarke, 1801; Peddie, 1914) and Italian (Pavia, 1803). In 1813 a
second edition (Carnot 1813) was published.
15This particular edition includes a portrait of Lazare Carnot and two reprints: Réflexions sur la
métaphysique du calcul infinitésimal (published by Duprat some months before, 1797) and the second
edition of Essai sur les machines en général (Dijon, 1786).
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• 1800. Lettre16 du citoyen Carnot au citoyen Bossut, concernant
quelques vues nouvelles sur la trigonométrie. In Cours de
mathématiques. Tome II. Géométrie et application de l’algèbre à
la géométrie, pp. 401–421 (Carnot 1800 in Bossut 1800).

• 1801. De la corrélation des figures de géométrie (Carnot 1801).

– 1801. Carnot’s second son, Lazare–Hippolyte was born in
Saint–Omer. Later, Lazare–Hippolyte’s son, Sadi Carnot who
will be the President of the Troisième République (1887, 3rd
December–1894, 24th June).

– 1802. Carnot became member of the Tribunat

• 1803. Géométrie de position à l’usage ceux qui se destinent à
mesurer les terrains (Carnot 1803b).

• 1803. Principes fondamentaux de l’équilibre et du mouvement
(Carnot 1803a).

• 1804. Discours prononcé par le Citoyen Carnot, sur la motion
relative au gouvernent héréditaire Séance extraordinaire du 11
floréal an XII (Carnot 1804).

• 1806. Mémoire sur la Relation qui existe entre les distances
respectives de cinq points quelconques pris dans l’espace; suivi
d’un essai sur la théorie des transversales (Carnot 1806).

• 1810. De la Défense des places fortes. (Carnot 1810; see also
Carnot 1858a).

• 1811. De la Défense des places fortes. 2nd edition (Carnot 1811).
• 1812. De la Défense des places fortes. 3rd Edition (Carnot 1812a).
• 1812. Discours préliminaire de la troisième édition du Traité de la

défense des places fortes (Carnot 1812b).
• 1813. Réflexions sur la métaphysique du calcul infinitésimal. 2nd

edition17 (Carnot 1813; see also Carnot 1936).

– 1814. Carnot took part in the battle of Anvers (Antwerp) and
became its governor (January 30th–April 23rd).

16The date of the letter is 30 fructidor an VIII [1800, 22nd September].
17This book had several reeditions (1839, 1860, 1881, 1921, 1970). An early translation (by Browell)
was published in Oxford (Carnot 1832).
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• 1814. A Treatise on the Defence of Fortified Places. Translated
from the French (Carnot 1814a).

• 1814. Mémoire18 adressé au roi, en juillet 1814 par M. Carnot
(Carnot 1814b).

• 1815. Mémoire adressé au roi, en juillet 1814 par M. Carnot. 5th
edition. (Carnot 1815a).

– 1815. Carnot was elected Ministre de l’Intérieur during the
Cent jours.

• 1815. Exposé de la situation de l’Empire (Carnot 1815b).

– 1815–1816. Carnot is banished as regicide by Louis XVIII and
was exiled to Poland.

• 1818. Correspondance inédite de Napoléon avec le général
Carnot pendant les Cents jours (Carnot 1818).

• 1819. Correspondance inédite de Napoléon avec le général
Carnot pendant les Cents jours (Carnot 1819).

• 1820. Opuscules poétiques du général L.N.M. Carnot (Carnot
1820; see also Carnot 1894, 1933).

• 1821. Don Quichotte19 poème héroï–comique en six chants
(Carnot 1821).

– 1823. Carnot exiled to Magdeburg (Prussia, now Germany)
where he died.

• 1823.Mémoire sur la fortification primitive pour servir de suite au
Traité de la défense des places fortes (Carnot 1823; see also
Carnot 1858b).

– 1889. Carnot’s remains were transferred to the Panthéon
(Paris) on 4th August.

18This book had several there main reeditions (Bruxelles, Londres, Paris).
19This book had a reedition in 1891 (Verviers, Paris).
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Fig. 8 «Lazare Carnot en exile en Allemagne, d’après un tableau de
C. Bochme (1823)» Plate from the original portrait conserved at Académie

François Bourdon, Le Creusot—Archives Lazare Carnot. Very kindly
authorized by Monsieur Gaetan Carnot, member of Carnot’s family
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Lazare Carnot’s works were well known and cited by scientists of the
period. For example, Joseph–Louis Lagrange (1736–1813) cited him
in the Mécanique Analytique20. Others citations were by: Jean
Baptiste Joseph Fourier (1772–1837) on the Principle of virtual work
(Fourier 1798, pp. 20–60; see also Id., 1888–1890, pp. 475–521,
1807, 1808, 1822, 1829; see also: Richmann 1750; Riemann [1861]
1868); Claude Louis Marie Henri Navier (1785–1836) on force vive
and Carnot’s theorem (Navier 1841, pp. 350–351); and (Mach [1896]

1778[9] 1780[1]

Fig. 9 Lazare Carnot’s Memoires (1778, 1780)
With kind permission by Archives et patrimoine historique de l’Académie

des sciences, Paris, France

20Lagrange 1788, II, p. 578. Carnot’s quotation of Lagrange’s Théorie des Fonctions Analytiques (Carnot
1813, p. 47; see also Lagrange 1881, pp. 409–410; 1797, 1806, 1793a, b). For Carnot’s theorem included
by Lagrange in his 2nd edition, see Lagrange 1813, pp. 406–407. Recently: Dugas 1955; Scott 1970;
Gillispie 1971; Drago, Manno, and Mauriello 2001; Drago and Manno 1994; Dhombres and Dhombres
1997; Gillispie and Pisano 2014; Chemla 1990, 1998; Nabonnand 2010, 2011; Pisano’s works below.
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1986, p. 211). Notwithstanding this recognition, due to his political
and military activities, Carnot was always in the line of fire, marking
the whole of his life with an unfounded prejudice: expert politician or
outsider scientist? Thus, other contemporary works on mechanics,
(especially Lagrange’s Mécanique) received more credit among sci-
entists and later on in the historiography of science (Cfr. Fraser 1983).
In fact, rather than diminishing Carnot’s importance, the shift in
mechanics, which became more and more applied to other sciences
(Pisano and Capecchi 2013; Pisano 2017; Gillispie and Pisano 2014;
Cardwell 1965, 1967, 1971) was a favorable environment for the
introduction of an advanced mathematics into mechanics, in contrast
to the application of mechanics to mechanical calculation and
geometry problems only. For example, one can see Laplace’s Traité
de mécanique céleste and Exposition du système du monde (Laplace
[1836] 1984; see also 1805; Lavoisier and Laplace [1780] 1784). His
scientific program mainly used central forces and correlated differ-
ential equations in order to explain physical phenomena. On the other
hand was the role played by mathematics with respect to physical
measures, such as in the analytical theory of heat (Pisano and
Capecchi 2009a). The application of these—such as propagation and
velocity applied to heat—and other subjects produced new research
disciplines as shown in the following flow chart (Fig. 10):
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Fig. 10 Applied Mechanics and the birth of new research subjects21

21Gillispie and Pisano 2014; Cfr. Drago, Manno, and Mauriello 2001; Drago and Manno 1994.
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When considering analytical theories, such as those by Fourier22 first,
and later by Gabriel Lamé (1795–1870), in both cases progress was
made through the development of advanced mathematics (differential
calculus by partial derivatives, integral calculus, series) to describe
each field of phenomena. The change of focus from a mechanical
nature (mathematical space and time, velocity, differential calculus) to
mechanical aspects of the nature—applied to other phenomena—
contributed to the birth of new disciplines such as the applied sciences
(Cfr. Bouvier). This was the case also for the Mécanique celeste: from
ancient Astronomy (that is observation, modelling, and trigonometry)
to applied mechanics to the astronomy of the 19th century. This
achievement was underwritten by the fact that astronomy is the most
important scientific system of knowledge, but it is also science’s most
conservative, and difficult, field to approach.

Lazare Carnot’s mechanics/mechanical machines developed, as a
typical mathematical operation (its fundamental equations. Gillispie
and Pisano Chaps. 2–3 and 11), the sum of all the parts that compose
the physical system. That is, by combining a sequence of elements
using addition, the result is their sum. In other words, a sum may be
expressed (under certain conditions) as a definite integral:

X
a

b

f ¼
Z

a

b

fdx

Therefore, Carnot used the ancient mathematical operators, sum and
integral23, with respect to the advanced ones, infinitesimal and dif-
ferential calculus (see below translations and endnotes).

Carnot’s research was a kind of point of convergence amidst
emerging engineering, early theoretical studies on machines, the
classical tradition and new insights from mechanics. His Essai sur les
machines en général (Carnot 1783; 1786) can be considered one
of the most early relevant theoretical treatises on machines alongside

22See also Briot 1869; Chasles 1839, 1852, 1875.
23Thus, the area under the curve is physically recognised as the Work.
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those of Petit, Poisson and Poncelet (Cfr. Arago and Dupin 1827).24

Through the application of mechanics to machines—that is, by
including the role played by machineries—Carnot brought the subject
to a high theoretical level by studying the general properties of
mechanical machines, for example the independence of efficiency
from working substance, to arrive at a theory of machines en général.

He followed—in a certain manner—the school of thought of Jean
Baptiste Le Rond d’Alembert (1717–1783) who was one the last
scholars of vis viva—in the tradition of René Descartes (1596–1650),
Christiaan Huygens (1629–1695) and Gottfried Wilhelm von Leibniz
(1646–1716; Leibniz 1849–1863, 2009). This tradition assisted his
research on bodies in collisions—applied to machines, as well. In
fact, these phenomena were not assumed: neither in Newton’s science
(Newton [1686–1687] 1803, 1687, 1714, 1730, 1803, 1999, Cohen
and Smith; Guicciardini 1999; Bussotti and Pisano 2014) nor, gen-
erally speaking, in the Newtonian deterministic paradigm.

1.2 Notes on the Context before the Essai

In the 15th–16th centuries, so-called men of war accomplished—
without having a certain and structured scientific theoretical back-
ground—a reliable competence in the manufacture of cannons and
other weapons. The impact of this on Science needs to be historio-
graphically25 clarified: “[...] before we appreciate their [the men of

24See also: Poisson 1823a, b, 1829, 1833, Chatzis 2009; Poncelet 1823a; Poncelet 1827–1829, 1829,
1845, 1874.
25On specific criticism/works in history and historiography of science (physics and mathematics) from
Scientia de ponderibus, machines, Mechanics to 19th century, see (selected): Winter 2007; Wallis 1668,
1693; Tartaglia [1554] 1959, 1546, 1565; Pisano and Capecchi 2014; Brown 1967–1968; Capecchi and
Pisano 2007, 2008a, b, 2010a, b, Clagett; Clagett and Moody, Clagett and Murdoch; Crombie 1959,
1963, 1994; Commandino 1565, del Monte [1577] 1581; Huygens 1673; Duhem 1905–1906, 1977;
Galilei [1599] 1634, 1890–1909, 2002; Jouguet 1924; Galluzzi 1979, galluzzi and Torrini 1975–1984;
Jammer 1957, 1961; Kuhn 1955, 1959, 1960, [1961] 1980, 1961, 1962, 1963, 1970, 1974; Liouville
1836; Mach [1883] 1996; Renn 2000; Pisano 2007, 2009a, b, c, d, 2010, 2011, 2012, 2015, 2016, 2017;
Pisano and Gatto, pre-print; Pisano and Bussotti 2012, 2014a, 2015a, b, c, d, 2016a, b, 2017a, b, c,
2020a, b; Pisano and Capecchi 2008a, b, 2012, 2013, 2015; Pisano, Capecchi and Lukešová 2013;
Pisano and Gaudiello 2009; Popper 1962; Prigogine 1980; Singer [1954–1958] 1993; Skolem [1920]
1967; Smith and Wise 1989; Scott 1959, 1971; Taton 1964a, 1951; Tackray 1970; Truesdell 1968a, b,
1970, 1980; Truesdell and Bharatha 1977; Westman 1980.
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war’s] hesitations and grasp the nature of their ignorance and their
failures.” (Gille 1966, p. 240). For, how did the relationship between
science, applied sciences and machineries work?

During the 17th and 18th centuries, remarkable practical and early
theoretical studies of heat engines developed, due to technological
and social industry developed especially in France and in England.
The main subject was the search for a source (working substance) of
unlimited power by means of, for example, the conversion of heat
into work: broadly, a general law of conservation of energy. Heat
machines were the field of applicability of these studies (Cfr.: Parent
[1745] 1706; Gustav 1869; Hirn 1862a, b, 1863, 1864a, b, 1867,
1868, 1887; Payen 1967, 1968).

In 1778 Lazare Carnot produced stimulating studies on machines
and the agent (working substance; Carnot 1778, 1780, §§ 149–160).
This allowed him to systematically approach his more structured
work on mechanical machines in general (Carnot [1783] 1786).

Thanks to James Prescott Joule’s (1818–1889) experiences (Fox
1969; Joule 1844, 1845, 1847, 1965, pp. 277–281, 1847, pp. 173–
176) and successive theoretical studies—mainly by Rudolf Clausius
(1822–1888) and by William Thomson (1824–1907; Thomson 1848–
1849a, b, 1851a, b, 1852, [1890] 1943; see also Clausius 1850, 1865,
1864, 1868–1869)—a mathematical formulation (first principle)
of the conversion of heat into work and consequent conceptualisation
of energy (an integral) was produced. The crucial role was played by
new physical quantities—out of the Mechanical paradigm—such as
(Volume) Heat, Temperature and Work. Finally, after Sadi Carnot’s
work of 1824, thermodynamics consolidated its scientific theoretical
entity by means of two principles, historically inverted: the second
principle of thermodynamics (Carnot 1824) and the first principle
of thermodynamics (Thomson/Clausius from 1848 to 1850s; Pisano’s
works. Cfr.: Reech 1851, 1852, 1853, 1854, 1869; Tait 1868, 1887;
Steward 1866; Callen 1974; Callendar 1910, Hoyer 1974, 1975,
1976; Klein 1969; Mendoza 1959, 1963). In modern terms, generally
speaking, the first principle reads:
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DE ¼ dW � dQ ð1Þ

In addition, Thomson (more analytically than Sadi Carnot) also dealt
with the second principle of thermodynamics (Thomson 1848–1849,
pp. 541–574; 1882–1911, pp. 113–155; 1852, pp. 248–255; see also
Smith and Wise 1989, Chaps. 9–11; Pisano, Anakkar, Pellegrino and
Nagels 2019).

At that time, Lazare Carnot’s mechanics was an attractive alter-
native to Newtonian mechanics (Gillispie and Pisano 2014) both from
the standpoint of content and methodology. Unfortunately, without
limit operators it could not reproduce the same power of calculus
of the Newtonian apparatus. Particularly, a strong relation to
Leibniz’s ideas, theoretical physics must explain facts with facts
made the above cited attraction more evident. For example, one can
understand the studies on colliding bodies in relation to those of
Leibniz in the Dynamica de Potentia et Legibus Naturae Corporeae
(Leibniz 1849–1863, II, sectio III, Propositions 1–18, pp. 488–507);
the same can be said for the early concept of potential energy (Ivi, II,
sectio I, p. 435). Lazare Carnot’s method allowed him to introduce
progress in the concept of potential energy in his theory of motion
applied to machines (Carnot 1803a, pp. 36–38) and limited him to a
necessary mathematics only in order to explain physical phenomena
without the use of absolute space and time, that had been typical of
previous predictive mechanics (Cfr. Koetsier 2007).

Carnot used the same founding method in all his scientific and
military works. Gillispie (Gillispie 1971) in primis noted this unitary
founding method existed in Carnot’s various scientific works.
Recently Carnot’s method has been fully explained (Gillispie and
Pisano 2014). He carried on Leibniz’s work in order to find his
characteristica universalis: a systematic reasoning for all the fields of
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knowledge (Carnot 1803b, p. 1). Leibniz succeeded in part with
infinitesimal analysis and Carnot presented his geometric method as a
Leibnizian one26. From the point of view of geometric calculation,
given a problem on a geometric figure, its elements are made to vary
by insensible degrees, always maintaining the same type of figure, in
order to find the solution formula for each generated. For that, Carnot
uses correlation tables (see also Poncelet’s works in the references
section below).

In 1789, Antoine–Laurent Lavoisier (1793–1794; Traité
élémentaire de Chimie [1789] 1937, 1862–1893) as well as other
chemists of his time, searched in a revolutionary fashion for the basic
principles of this new theory. These new principles were different
from Newtonian Mechanics (Bussotti and Pisano 2014; Pisano and
Bussotti 2016; 2020). Lavoisier’s conceptualization excluded a
chemical system based on only four elements. He addressed new
quantities such as chaleur, calorique and lumière (Lavoisier 1789, I,
pp. 12–17; see also Betancourt 1792, Berthollet 1803, 1809; Combes
1863, 1867). On that, Pierre Simon de Laplace (1749–1827) also
carried out remarkable research in collaboration with Lavoisier
(Lavoisier and Laplace 1784). Therefore, two main paths of research
were produced: a study on the properties of gases (Newtonian kinetic
model of gases) and study on the efficiency of heat machines, later
also called thermodynamics. From 1772, Lavoisier worked on the
foundations of his new forthcoming theory later revealed in his Traité
élémentaire de Chimie of 1789. This is referred to in the historiog-
raphy27 as the chemical revolution (Guerlac 1963), originally based
on the phenomenon of combustion (Dagognet 1969). The second half

26On the Leibnizian background in Lazare Carnot, one can also see the famous correspondence in 1677
(Ivi, VI, pp. 81–106) between Leibniz and Honoratus Fabrius (1607–1688). For a first panoramic view on
Leibniz and his dynamics, see Pierre Costabel’s (1912–1989) works (Costabel 1960). For the most
complete (works and letters) series of Leibniz’s mathematical writings, see Eberhard Knobloch’s VIII
edition for “Berlin–Brandenburgische Akademie der Wissenschaften Leibniz–Edition, Reihe VIII”
(Leibniz 2009), Bussotti 2015. Particularly on Leibniz, in the occasion of his anniversary, see also
Leibniz and the Dialogue between Sciences, Philosophy and Engineering, 1646-2016 (Pisano, Fichant,
Bussotti and Oliveira 2017; Bussotti and Pisano 2017; see also Bussotti 2003, 2015).
27Historical studies often proposed such an emergence between the 16th and the 18th century evoking
Paracelsus (1493–1541, born Philippus Aureolus Theophrastus Bombastus von Hohenheim), Robert
Boyle (1627–1691), Nicolas Lémery (1645–1715), Georg Ernst Stahl (1659–1734) or even Michail

Vasil’evic^ Lomonosov (1711–1765).
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of the 18th century was also marked by chemical studies on air and
gases, which included early results on affinities (Thackray 1970).
Newtonian rational mechanics as calculated physics28 was finally doc-
umented as being Newtonian (Bussotti and Pisano 2014a) by two main
historiographic approaches (Kragh 1987): (1) physical phenomena
should be incorporated into a mathematical apparatus related to the final
law of universal gravitation, (2) by Hypotheses non fingo (Bussotti and
Pisano 2014ab; Pisano, Franckowiak and Anakkar; Pisano and
Franckowiak). But the scholars busy with chemistry were aware that
their science was considered weak because its lack of mathematisation
(i.e., Black 1803). Therefore, they focused their studies on measurements
and not on any pre-determined a priori system. In 1777, Lavoisier tried
to include mathematics in chemistry (Lavoisier 1862; Cfr. Scerri 2013;
Scheele 1781, 1785), by representing chemical reactions as ad hoc
equations. Later he worked using air and water as compounds, gases and
oxygen–acidity (Cfr. Perkins 1820, 1821). Particularly, Lavoisier studied
fifty-five substances that could not be reduced to a final substance and
proposed two new elements: light and caloric. He also defined chaleur,
calorique and lumière (Lavoisier [1789] 1937 pp. 12–17; 1862–1893;
see also Bailyn 1985; Cfr. Landriani 1785). As above cited, he worked
with Laplace and produced an ice-calorimeter apparatus to measure the
specific heat of different bodies.

In 1816–1819, Pierre Louis Dulong (1785–1838) and Alexis
Thérèse Petit (1791–1820) presented cases where the relationship
between the specific heat and temperature is relevant (Dulong and
Petit 1816; Dulong 1829). The laws of gases were an object of
interest and studied by theoretical scholars, too (physicists and che-
mists). In particular, the adiabatic law (Poisson 1823, pp. 5–16;
Laplace 1822) had various formulations. When Siméon Denis
Poisson (1781–1840) expressed the right form of the equation, most
scientists did not consider the question solved.

28“Il est clair que la révolution qui placerait la Chimie dans le rang qu’elle mérite, qui la mettrait au moins à
côté de la Physique calculée ; que cette révolution, dis-je, ne peut être opérée que par un chimiste habile,
enthousiaste, and hardi, qui, se trouvant dans une position favorable, and profitant habilement de quelques
circonstances heureuses, saurait réveiller l’attention des savants, d’abord par une ostentation bruyante, par un
ton décidé and affirmatif, and ensuite par des raisons, si ses premières armes avaient entamé le préjugé” (Venel,
1751–1772 [1753], III pp. 409–410; original author’s italic and capital letters).
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Sadi Carnot wrote two unpublished works (Carnot 1878a, b) and
Réflexions sur la Puissance Motrice du Feu (Carnot 1824, hereafter
Réflexions) and invented thermodynamics and its application to heat
machines (Gillispie and Pisano 2014; Cfr. Callot 1980). In his
unpublished work, Notes sur les mathématiques, la physique et autres
sujets (Carnot s. d.), he used the hypothesis on puissance motrice
of the conversion of heat into work29 (Carnot 1878, pp. 134–135). In
the Recherche d’une formule propre à représenter la puissance
motrice de la vapeur d’eau (between November 1819 and March
1827) he provided a cycle by three phases only. The Réflexions
(Gillispie and Pisano 2014, pp. 176–183) and his Recherche d’une
formule propre à représenter la puissance motrice de la Vapeur
d’Eau (Carnot 1978, pp. 223–225) were a new conceptualisation
of the relationship between physics and mathematics within a new
theory which seemed to echo engineering practices. It was also quite
different from the analytical approach adopted by Jean Baptiste
Joseph Fourier (1768–1830) some years before, e.g., for heat prop-
agation in solids (1807; Cfr. Pisano and Capecchi 2009a).

Several decades after, Gabriel Lamé (Ivi) wrote Leçons sur la
théorie de la chaleur (Lamé 1861b; see also 1861a, 1836, 1852). He
was not interested in thermodynamics as a unique science; he devoted
himself to analytical heat transmission by means of differential
equations and volume integral in order to calculate energy; a new
branch of physics, physics mathematics was thereby defined (Pisano
2013 and other Pisano’s works on the subject below). In this period,
heat engines were studied and produced. In particular, steam engines
were used, that required water to be pumped (Cfr.: Edmunds 1902;
Einstein [1949] 1970; Tredgold 1838). In Réflexions Sadi Carnot
calculated30 efficiency as a quantity independent of any working
substance (Carnot 1824, pp. 73–79, ft. 1; Carnot 1978 p. 38). Sadi
introduced crucial concepts like state of a system, reversible

29In Notes sur les mathématiques, la physique et autre sujets Sadi Carnot introduced his “thèse générale”
on energy: “[...] la puissance motrice est en quantité invariable dans la nature, qu’elle n’est jamais à
proprement parler ni produite, ni détruite” (Carnot 1878a, folio 7r; Picard 1927, p 81, line 14; see also
Robert Fox in Carnot 1986, p. 191; Gillispie and Pisano 2014, Chap. 11).
30This calculus presents some inaccurate passages. A full analysis is available (Gillispie and Pisano 2014,
Chap. 9).
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processes, cycle, phases, impossibility of perpetual motion and a
fundamental theorem showed by an ad absurdum proof, untypically
for physics at that time. The impossibility of perpetual motion
addressed the state of a system, reversible processes and cycle (four
phases). At the École Polytechnique, Benoît Paul Émile Clapeyron
(1799–1864) a friend of Sadi’s, mathematically and analytically
rewrote the Réflexions in his Mémoire sur la puissance motrice de la
chaleur (Clapeyron 1834, pp. 153–190) adding a cycle31 which came
to be incorrectly known as “Carnot’s cycle” (see also Clausius 1850,
pp. 368–397; pp. 500–524; p. 379).

1.3 The Essai sur les machines en général (1786)

In the Essai sur les machines en général (Carnot [1783] 1786)
mechanics refers to mechanical machines. Particularly Lazare Carnot
reasoned independently from working substance bodies and particular
mechanisms. In his words:

[...] this Essai only concerns machines in general; each of them has their own
particular properties […].32

[...] we compare these different efforts regarding the working substances that
produce them, because the nature of the working substances cannot change the
forces they must exert to fulfill the different objects for which the Machines are
intended.33

Carnot is usually considered to be the first author to claim that the
empirical nature of mechanics was both theoretical and mechanical
(Gillispie and Pisano 2014). He expressed his view of mechanics in
the introductory parts of Essai sur les machines en général (Carnot
1786) and Principes fondamentaux de l’équilibre et du mouvement
(Carnot 1803a).

31This PV diagram (also Clapeyron diagram) has no metric (such as, e.g., with respect to Descartes
diagram).
32Carnot 1786, p. x, line 14.
33Carnot 1786, p. 62, line 2.
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A machine was thought of as an intermediary body in order to
communicate/produce movement between two or more principal bodies who do not
act directly on one another. On that, a remarkable criticism of mechanics and
machines was provided by Carnot in his Preface:

Preface. Although the theory here presented is applicable to all issues
concerning the communication of motions, Essay on machines in general
was given as the title of this pamphlet; first of all, because it is mainly the
Machines that are considered as the most important argument of
mechanics; secondly, because no particular machine is dealt with but we
only deal with properties which are common to all of them.
This theory is based upon three main definitions; the first looks at some
motions that I call geometric, because they can be only determined by
the principles of geometry, and are absolutely independent of the rules
of dynamics; I did not think that we would omit without creating
obscurity in the statement of the main proportions, as, in particular, I
let you see in the case of the principle of Descartes. By my second
definition, I try to fix the meaning of the terms impelling forces and

ba

Fig. 11 Lazare Carnot’s Essai sur les machines en général (1786), first
(a) and last page (b) where the manuscript of 1782 is mentioned. With Kind

permission by Gallica–Bibliothèque Nationale de France
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resisting force: it seems to me that without knowing a precise defini-
tion between these two different forces, we cannot clearly compare the
causes and effects of the machines, without a well characterized dis-
tinction between these forces; and upon this distinction it seems to me
that something vague and indeterminate was always left. Finally, my
third definition is that by which I give the name ofmoment of activity34 of
a force referring to a quantity which includes both a real force or an
activity in motion that every instant employed by that force, that is to say,
the time during which it acts. In any case, an agreement should be that
this quantity, under whatever name one wishes to designate, to meet it in
the analysis of Machines in motion is frequent. Using these definitions,
I arrive at very simple propositions; I deduced them using the same
fundamental equation. [...]. This equation is the most simple, generally
extends to every conceivable case of equilibrium and motion, both this
motion suddenly changes, that it change by insensible degrees; it also
applies to all bodies, both hard [plastic35] that they have any degree of
elasticity; [...]. I easily obtain from this equation a general principle of
equilibrium and motion for Machines properly so called; [...]. Everyone
claims [a principle] that, for Machines in motion, what is gained in force
is lost in time or speed; but after reading the best books of mechanics,
where we should find proof and explanation of this principle, can we
capture its importance and its true meaning? Since for most Readers its
generality has irresistible evidence which must characterize mathematical
truths. If Readers should find this guarantee striking, do not they see
themselves as meccanici, educated by these works, [and] immediately
abandon their chimerical projects? Do not they believe or at least sup-
pose, in spite of everything one can tell them, that some magic is present
in the Machines? The counter examples proposed are limited to simple
Machines; they considered them not to be of such great effect; but none
show them that it must be valid in every imaginable case; the case of two
forces is considered only, and, for other cases, an analogy36 seems to be

34In this context, puissance means/is translated by a general term as force. The moment of activity
corresponds to work. For the latter, Lazare Carnot refers to the related quantity time and not to space. In
other cases, like for other scholars in this period, Carnot used the term “force” (in general) to indicate (in
modern terms) inertia, variation of quantity of motion in time, motive or acceleration.
35Lazare Carnot adopted the lost quantity of motion. This part of his mechanics and machines theory
included the irrelevance of the geometrical form of a machine that produced a kind of conceptual
equivalence between hard bodies and plastic bodies (see the endnotes in the anthological part below).
Lazare Carnot’s second fundamental law of hard bodies “corps durs” (Carnot 1786, p. 22; see also
1830a) or perfectly hard “parfaitement durs et sans resort” (see also d’Alembert [1743] 1758, Lemme XI,
pp. 144–145) can also mean bodies without their (natural) elasticity (Carnot 1786, pp. 22–23; see also
Carnot 1803a, pp. 8–10). Carnot considered elastic bodies as a kind of limit case of hard bodies. Thus, he
considered elastic bodies and the composition of infinitely hard bodies, each separated from the next by
elastic springs (Carnot 1786, p. 23; see also “corps solides” in Carnot 1803a, p. 8). Generally speaking,
Carnot tried to create a simplified model of corps durs (see below).
36It should be noted that the analogy did not go any further.
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sufficient enough. [...]. The way to eradicate this error, is without doubt,
[1] to fight its source, showing that, not only in all known Machines, but
in all possible Machines, loss in time or speed is always what is gained in
force; it is an inevitable law; and [2] to explain what this law clearly
means; but in order to do that, one must move towards the greatest
possible level of generality, and not study any Machine in particular, not
adopt any analogy; in the end, it is necessary to propose a general proof,
immediately and geometrically deduced by the first axioms of mechanics:
that is exactly what I tried to do in this Essay.37 X. The Science of
Machines in general is reduced to the following question: By knowing the
virtual motion of any system of bodies (that is to say, that it would take
each of these bodies, if it was free) to find the real motion which will be
the next instant [after the collision], since there is mutual action of bodies,
thus considering them as they are in nature, that is, having inertia
common to all parts of matter.38

The search for a universal working substance (machine en général)
for mechanical machines—that included subsequent studies on
equilibrium and movement (Carnot 1803a, b)—was one of Lazare
Carnot’s major projects from the 1760s. On the subject, he wrote two
Memoires (Carnot 1778, 1780) and then the Essai (1783).

In the following, Lazare Carnot’s main assumptions (in the Essai)
underlying this mechanical project are listed (Gillispie and Pisano 2014
Chap. 11):

The cause of the motion of mechanical machines.39

What is the best way of utilizing the greatest possible effect produced by a
mechanical machine in motion?40

Lacking a complete theory of impelling forces and resisting forces in mechanics.41

Searching for a general theory of machines and principle of equilibrium and
motion.42

37Carnot 1786, pp. iij–ix, line 1. (Author’s italic).
38Carnot 1786 § X, p. 21, line 7. (Author’s italic).
39Carnot 1786, p. vj, pp. 13–14; see also Carnot 1780, § 103; Gillispie 1971, Appendix C, § 103,
pp. 301–302.
40Carnot 1786, pp. ix–x, pp 89–94; see also Carnot 1780, §§ 149–160; Gillispie 1971, Appendix C, §§
149–160, pp. 327–340; Carnot 1803a, p. xxj, p 149, pp. 247–250.
41Carnot 1786, pp. iv–v; Carnot 1780 § 129; Gillispie 1971 § 129, p. 316.
42Carnot 1786, pp. iv–v, pp. 11–12; see also Carnot 1778 §§ 27–79; Carnot 1780, § 102, §§ 133–141;
Gillispie 1971, Appendix C, § 102, pp. 301–303, §§ 133–141, pp. 317–321.
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Communication of motion and work.43

Reducing the problems of mechanics to a practice—calculation and
geometry.44

The machine and its use.45

Absorbed motion and lost motion in a mechanical machine.46

Moment d’activité.47

The advantage.48

Finding the actual (“réel”) motion after interaction among bodies.49

The aim of running and general mechanical machines.50

To obtain the maximum effect produced, no useless motions and interruptions
have occurred.51

The operative conditions to establish the maximum effect produced for a
hydraulic engine.52

Searching for actual (“réelle”) motion in mechanical machines.53

For moving machines, what is lost in time or speed is always what is gained
in force. (Golden rule).54

The impossibility of a perpetual motion.55

43Carnot 1786, p. iij–iv, p. 44; Carnot 1803a, pp. xiij–xvj; see also Carnot 1780, footnote “ * ”, § 148;
Gillispie 1971, Appendix C, footnote “ * ”, § 148, p. 309, pp. 326–327.
44Carnot 1786, p. 12; see also Carnot 1780, § 113 and footnote “ * ”; Gillispie 1971, Appendix C, § 113
and footnote “ * ” , pp. 308–309.
45Carnot 1786, p. 19, pp. 60–62; see also Carnot 1780, § 108; Gillispie 1971, Appendix C, § 108, p. 303.
46Carnot 1786, pp. 19–20; see also Carnot 1780, §§ 108–109; Gillispie 1971, Appendix C, §§ 108–109,
pp. 303–304.
47Carnot 1786, p. 88; see also Carnot 1780, §§ 129–132, § 149; Gillispie 1971, Appendix C, §§ 129–
132, pp. 316–317, § 149, p. 327.
48Carnot 1786, p. 85; see also Carnot L 1780, § 151; Gillispie 1971, Appendix C, § 151, p. 328.
49Carnot 1786 pp. 21–24; see also Carnot S 1878a folio 2r Ia, pp. 34–35; Picard p. 73.
50Carnot 1786, pp. 88–91; see also Carnot 1780, § 102, §§ 152–153; Gillispie 1971, Appendix C, § 102,
pp. 301–303, §§ 152–153, pp. 328–332.
51Carnot 1786, pp. 89–91, pp. 93–99. He searched for the maximum work. He also proposed additional
arguments in his famous Corollary on the equality “Q = q” (Ivi, Corollary V, §XLI, pp. 75–76, pp. 83–
84; see also Carnot 1780, § 149; Gillispie 1971, Appendix C, § 149, pp. 327–328). The work plays an
important role in Lazare Carnot’s mechanics of running machines. On concept of work see Carnot 1786,
pp. 65–66; pp. 83–85; pp. 96–97.
52Carnot 1786, pp. 89–94; see also Carnot 1780, §§ 149–152, §§ 155–157; Gillispie 1971, Appendix C,
§§ 149–152, pp. 327–330, §§ 155–157, pp. 332–334.
53Carnot 1786, pp. 44–46; see also Carnot 1778 §§ 80–85; Carnot 1780, § 106; Gillispie 1971,
Appendix C, § 106, p. 302.
54Carnot 1786, pp. iv–viii; see also Carnot 1780, § 153; Gillispie 1971, Appendix C, § 153, p. 330.
55Carnot 1786, p. ix, pp. 94–96; “[...] le mouvement perpétuel est une chose absolument impossible [...]”
(Ivi, p. 94, line 18); see also Carnot 1780, § 146, § 157; Gillispie 1971, Appendix C, § 146, pp. 323–324,
§ 157, pp. 333–337; Carnot 1803a, p. xxi, pp. 256–257.
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Ad absurdum reasonings and proofs.56

Geometric motions.57

Abstraction to study a machine.58

Science of (mechanical) machines.59

The effect produced is always limited.60

Working substances.61

Considering geometric motion independently of any dynamics rules.62

Reasonings by synthetic method.63

Produced work and consumed work.64

The argument—hydraulic engine.65

The role played by friction.66

Percussions or brusque change. Impact between bodies and loss of
moment-of-activity.67

The calculation of the effect produced for any machine; ……….. the initial
conditions should be restored at the end of the process.68

Lazare Carnot had special consideration for force, space and void. He
assumed a bivalent position on the concept of the void, after Descartes
and d’Alembert. For example, in his consequent book on equilibrium
and movement (1803a), he wrote:

56Carnot 1786, pp. 28–36, p. 107; see also Carnot 1780, §§ 113–114; Gillispie 1971, Appendix C, §§
113–114, pp. 308–310.
57Carnot 1786, pp. 28–34, pp. 41–45; see also Carnot 1780, § 113; Gillispie 1971, Appendix C, § 113,
pp. 308–309.
58Carnot 1786, pp. 19–20, pp. 60–63; see also Carnot 1780, § 108, §§ 116–118; Gillispie 1971,
Appendix C, § 108, p. 303, § 116–118, pp. 312–313; Carnot 1803a, pp. 256–257.
59Carnot 1786, p. 21; see also Carnot 1780, § 107, §§ 109–111; Gillispie 1971, Appendix C, § 107, §§
109–111, pp. 303, pp. 304–306.
60Carnot 1786, pp. vij–ix, pp. 86–87; see also Carnot 1780, §§ 151–152; Gillispie 1971, Appendix C, §§
151–152, pp. 328–329.
61Carnot 1786, pp. 86–87, pp. 89–93; see also Carnot 1780, §§ 155–156; Gillispie 1971, Appendix C, §§
155–156, pp. 332–333. Carnot 1878a, folio 5r, pp. 40–43; Picard pp. 77–78.
62Carnot 1786, p. iii; see also Carnot 1780, footnote “*”; Gillispie 1971, Appendix C, footnote “*”,
p. 309. Cfr. d’Arcy 1752, 1754, 1763.
63Carnot 1786, pp. 33–35; p 85; Carnot 1813, pp. 12–21, p 189, p. 200, pp. 242–243, pp. 217–253.
64Carnot 1786, p. 66, p. 85; see also Carnot 1780, §§ 129–132, §§ 153–154; Gillispie 1971, Appendix C,
§§ 129–132, pp. 316–317, §§ 153–154, pp. 330–332.
65Carnot 1786, pp. ix–x, pp. 88–81. Carnot 1803a, pp. xxi, p. 149, pp. 247–250.
66Carnot 1786, pp. 43–44; pp. 60–63, pp. 94–95; see also Carnot L 1778 §§ 1–26; Carnot 1780, §§ 1–
100, § 160; Gillispie 1971, Appendix C, § 160, pp. 337–340.
67Carnot 1786, pp. (pp. 45–48 and) pp. 91–95; see also Carnot 1780, §§ 146–147, § 152, § 157; Gillispie
1971, Appendix C, §§ 146–147, pp. 323–325, § 152, pp. 328–329, § 157, p. 333. Please also note: “[...]
qu’on appelle force ou puissance, dont la recherche est l’objet de la théorie des Machines proprement
dites” (Carnot 1786, p. 62, line 29).
68Carnot 1803a, pp. 259–261.
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Following this idea [“to avoid metaphysical notion of force” and to use “the
theory of communications of motions”69] we will soon see, as I previously
mentioned, the necessity of turning to the experiment, and that is what I did,
without neglecting to support myself with reasonings that can confirm it in the
most plausible way, using or generalizing the results per induction. At times I
even used the name of the force in the vague sense of which I spoke above
[…].70

[...] Primitive ideas concerning the matter, the space, the time, the rest, the
motion, etc. 7. The first rule to establish in such delicate research on the laws of
nature is to only admit notions so clear that they can comprise the bounds of
our logic. We must therefore reject the definitions of matter, time, space, rest,
and motion as expressions that are impossible to express with more clear terms,
and the ideas that these expressions produce in us primitive ideas outside of
which it is impossible to construct. But once these expressions are admitted, we
will easily see that which is a body, speed, a motive force, etc. 8. The body is a
given part of matter. 9. The apparent space that a body occupies is called its
volume; the actual space that this same body occupies, or its real quantity of
matter, is called its mass. When the body is such that equal parts of its volume
always correspond to equal parts of its mass, we say that it has a uniform
density, or that it is equally dense in all of its parts; and the relationship from
mass to volume, or the quotient of one times the other, is called the density of
this body. But if unequal masses correspond to equal volumes, we say that the
density is variable and for each particle of matter, we call density the volume of
this particle divided by its mass, or rather, the last reason of these two quan-
tities. The empty parts or gaps lodged between the parts of the matter, and that
make the volume or apparent space greater than the actual space are called
pores.71

[On the concept of force in the theory]. [...] in my opinion, no rigorous proof
of the parallelogram of forces is possible: the mere existence of the force in the
announcement of the proposition is able to make this demonstration impossible
for the nature of things in itself. “It is extremely difficult”, as Euler said, “to
reason on primary principles of our knowledge [...]”. This obscurity disappears
in the second way [theory of motion] to conceive the mechanics, but another
inconvenience appears; that is, the fundamental principles that in the first way
[theory of forces where cause produces motion] are established such as axioms
in favor of the metaphysical expression [...] that is to say, [...] force, are, in this
second case [theory of motion], nothing less than self-evident propositions, and
in order to establish them, we need to include the recourse to the experience.72

69Carnot 1803a, p. XVI, line 5.
70Carnot 1803a, p. XVI, line 10.
71Carnot 1803a, pp. 6–7, line 1 (Author’s italic).
72Carnot 1803a, pp. xiij–xiv, line 17.
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Collision theory moves through the conservation of momentum and
energy. In both Essai (1786) and Principes fondamentaux de
l’équilibre et du mouvement (1803) Lazare Carnot laid out his laws of
conservation mainly by means of insensible degrees (Carnot 1803a, §
293, pp. 261–262). They can be considered a sequence of infinites-
imally small percussions.

The Essai adopted a very simple level of mathematics combined
with a simplified geometrical model of machines/mechanics and
advanced studies such as machines in motion. The particular appa-
ratus of machineries within machines (equilibrium and in motion)
were systematically deduced from his Hypothèses (laws) of
mechanics.

Carnot rigorously used geometry and trigonometric (vector calcu-
lus) rather than the advanced mathematics of his contemporaries.
Combining the Geometric motion, Moment of activity–concept of
Work with the moment of quantity of motion, he found the invariants
of the communication of motion and established the maximum effect
produced by mechanical machines, e.g., the continuity in the trans-
mission of power. He was convinced that an innovative general
theory of machines—an applied science of machines—was a crucial
necessity for the economic development of a society. His works came
to be of interest to technicians by the 1780s as well. But the principles
and related theories then in currency were insufficient to perform
motion and equilibrium for all machines. This was one of the main
challenges of his machines en général:

Given the virtual motion of any system of bodies (i.e., that which each of the
bodies would describe if it were free), find the real motion it will assume in the
next instant in consequence of the mutual interaction of the bodies considered
as they exist in nature, i.e., endowed with the inertia that is common to all the
parts of matter. (Carnot [1783] 1786, § X, p. 21).

Since the argument was verbally expressed, the Essai was also beyond
the comprehension of readers without formal education. The Essai
seemed naturally to address its contents to certain trained engineers,
which—Carnot included—represented the forthcoming generation of
engineers. Thus, the latter, a priori, could be very positively sensible to
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the content of the Essai. However, the methodological novelty of Essai
joined with an evident non-advanced use of mathematics created some
difficulties to the readers and to Carnot’s scientific career. In other
words, to fit Carnot’s mechanics/machines in the context of France at
beginning of 19th century, one should consider Carnot such as a real
pioneer in a conventional scientific environment. As cited above, from
the pages of the Essai the readers encounter the dissimilarity between
hard bodies and elastic bodies within an early collision theory with
respect to a theory of elasticity in the 19th century. On that, Gillispie
suggested that

Carnot’s work came into that development somewhat past its midpoint and
inherited as assumptions the positions adopted by Maupertuis [Maupertuis
1746; Scott 1959, pp. 199–210]. Perfectly hard bodies were held to be inde-
formable and perfectly elastic bodies to contain forces capable of restoring their
initial shape and volume after compression or shock of impact. (Gillispie and
Pisano 2014, p. 17).

John Wallis (1616–1703) had already dealt with inelastic bodies in col-
lision (Wallis 1668). In the processes of modelling of other bodies, for
example the passage from liquid to gas and related known mechanical
properties like incompressibility and deformability, Carnot was faced with
a supplementary process of modelling based on the definition of funda-
mental quantities, which finally led him to the physics of Work, Power
and Efficiency. In this period the challenge was to resolve the debate as to
which of two quantities, momentum (mv) and live force (mv2), could be
considered as conserved in interchanges of motion. This was a serious
problem for the development of principle of live force. In fact, the
collision theory at that time conserved its quantity for cases of per-
fectly elastic bodies, while for cases of hard bodies, mv2 was sup-
posed to be conserved only for movements by insensible degrees; it
was not conserved in cases of impact or collision, general speaking.
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In Essai, Carnot’s physical Work could be considered to be the
quantity to calculate the activity of a machine. He was possibly one
of the first to introduce the concept of work73 (moment of activity) in
modern terms as F•ds (Carnot 1786, pp. 65–66; pp. 83–85; pp. 96–
97). By taking into account his geometric motion, it is possible that
Carnot moved his conceptualisation of the Work quantity towards
such a convertibility, within the equivalence in the law of fall of mgh
to 1

2mv
2. This is historically plausible because it is in line with his

engineering outlook: thinking of a) machines as massive bodies in
motion and b) live force conservation and hard body interactions.
The later studies dealt with hydrodynamics (Bernoulli 1738; see also
1733 [1748] 1750. Cfr. Borda 1770a, b; Bossut 1775) a parallel
subject of research where the principle of live force assumed a crucial
role in the solution of engineering problems. The hydraulic applica-
tions crossed (without being special cases) Carnot’s reasoning in
almost all his scientific writings74. In these cases, the mechanical
work produced only depends on the two levels of potential (Fig. 12).
At that time—though not physically correct—it might have plausible
to associate motion (for example of liquids) to the principle of con-
tinuity. In fact, by taking into account the common incompressibility
of liquids and hard bodies, one could realise that the conservation of
live force might be the principle for these types of interactions. In
Essai, Carnot moved beyond the dichotomy between continuous and
discontinuous change of motion in hard-body interaction. He focused
on how the principle of live force might be applied similarly in con-
tinuous–discontinuous interchange of motion, for elastic or inelastic

73In 1830–36s Gaspard–Gustave de Coriolis (1830–1837) named quantity work to one-half the live
force, so that still later kinetic energy became defined as half the product of mass times velocity squared
(Coriolis 1830–1836, 1829, III, V, pp. 33–34; see also 1844). On that, one can also see Navier’s notes on
Bélidor (Navier 1819; see also, 1818; 1826, 1841, 1856; 1864; Navier and Girard 1829) and Prony
(Prony 1796, 1790, 1837; Prony, Girard and Navier 1829; Gillispie and Pisano 2014, Chap. 4; Gillispie
1971, Appendix B, § 27, ft c, pp. 272–273).
74The analogy between a mechanical/heat engine and an hydraulic engine belonged to, respectively, both
of two Carnot, father (e.g., Carnot 1786, pp. ix–x, pp. 88–81; Carnot 1803a, pp. xxi, p. 149, pp. 247–
250) and son (e.g., Carnot 1978, 16–17). Cfr. Gillispie and Pisano 2014, Chap. 11.
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bodies. In this sense, as he often argued, the engineers inaptitude for
metaphysics arises, and their tendency to always and only distinguish
two main approaches to science, the so-called experiential and ra-
tional. The first one concerns description and comprehension of nature
by means of basic magnitudes and notions such as body (mass), time,
distance, power, equilibrium (v ¼ 0). The second approach, at that
time made (for certain scientists) Mechanics purely rational:
hypotheses, modelling and correlated calculated quantities (e.g.,
derivatives etc.) such as velocity, acceleration, generally speaking,
motion (v 6¼ 0). etc. In the 19th century a new discipline physics
mathematics (different from mathematical physics. Cfr. Pisano 2013a,
b) was born. For example, one can see this in analytical theories by
Fourier, Lamé, rather than Maxwell’s electromagnetism. A new
methodological approach arose where some quantities were measured
physically (i.e., distance and time) and others were calculated math-
ematically (i.e., velocity, acceleration, dynamics forces, work,
energy). Thus scientists worked with quantities that were—at the same

Fig. 12 A Simplified Model of a Carnot Hydraulic Machine
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time—physical and mathematical. What about the measurement75? In
effect for these scientific theories, physics mathematics, the measure-
ment was not a priority (Cfr. Lamé 1836, 1861b). One could only
calculate the lim including the instantaneous velocity, because some
quantities in this physics mathematics were only considered mathe-
matically. For example one could only determine the derivative of
velocity in time because the latter was considered as a function of two
variables (distance and time). On contrary, if one lost this mathe-
matical aspect of the theory (i.e., distance and time as variables of the
derivative function) then it was not possible to obtain quantities like
velocity and acceleration. Therefore, in order to calculate the partial
derivatives it was necessary that the velocity was a function of two
mathematical variables, distance (x) and time (t): v ¼ f ðx; tÞ. How did
they proceed?

An idea was to formulate definitions entirely free of ambiguity.
This is exactly what he would not and need not attempt in his Essai
(Carnot 1786, pp. 105–106). It was his reserve with respect to this
early positivist approach that made the Essai difficult to read, even for
skilled scholars of the 18th and 19th century. The problems with both
terminology and these strong heuristic aspects of the theory made the
content of the book ambiguous for his contemporaries, who could
dismiss it as a non-rational scientific book. Considering the political
and scientific roles played by Carnot, his influence was evident. We
can suppose these difficulties were felt at that time, which might
explain the addition of a ad hoc glossary to the Principes de
l’équilibre et du mouvement (Carnot 1803a, § 18, pp. 10–13; see also
xi–xij). It is also important to note Carnot’s own usage with respect to
translations: vitesse as velocity, force (usually) as a quantity of
motion (momentum in moving bodies; Cfr. Galluzzi 1979). He did
not need to stress Newton’s second law. The latter could be

75Cfr. Pisano 2010, 2011, 2012, 2013a ,b ,c, 2016, 2017; Pisano and Bussotti 2015b, c, d, 2016a, b,
2017a, b; Gillispie and Pisano 2014, and Pisano’s works below. On electricity and electromagnetic
theory see Ampère (Ampère 1806, 1822a, b, 1826, 1827; Pisano 2013a).
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understood, alluding to machines at the end of 18th century, as force
motrice (also motive force).

Lazare Carnot suggested two main principles (Carnot 1786, pp. 12,
pp. 14–15):

1. A General law of equilibrium in weight-driven machines the
condition being that the center of gravity of the physical system
be at the lowest point possible (Cfr. Pisano 2017).

2. A so-called by Carnot “fameuse loi d’équilibre de Descartes”76

(Descartes’ famous law of equilibrium). In Carnot’s words:
“The second principle on which we propose to make a few
observations is the famous equilibrium law of Descartes; it
comes to this, two forces in equilibrium are always in the
reciprocal ratio of their velocities, estimated in the direction
of the forces, such that when one supposes that one of the two
[forces] gains infinitesimally on the other, [it is] in a manner
such as to give birth to a tiny motion.” (Carnot 1786, p. 15).

Principle (2) reads that two forces in equilibrium are in inverse ratio
to their vitesses at the instant when one prevailed (in modern terms)
infinitesimally over the other, thus initiating a small motion (petit
movement: Carnot 1786, p. 15)77. In agreement with Gillispie:

Carnot preferred the center of gravity principle. [...]. It was always possible to
reduce the operation of other forces to that of gravity by replacing their agency
in principle with that of a weight acting over a pulley. This imaginary trans-
formation of the system may at first annoy the modern reader as a somewhat
juvenile evasion of the difficulty, but it would be better to see it as the engineers
way of reducing an abstract problem to his own terms. Anyone who has been
to engineering school will have resorted to similar devices, although it would
be more germane to recall for a moment the analytic role of the experience and
manipulation of weight in the mechanics of an Archimedes a Stevin or a
Galileo Even Lagrange was not above it. There was a further, more serious,
objection. (Gillispie and Pisano 2014, pp. 20–21; Cfr. Gillispie 1980).

76In effect it was self-quotation strictly personalised by Carnot. Recently on Descartes: Bussotti and
Pisano 2013; Schuster 2013a, b, 2000; Schuster and Sutton 2000; see also Descartes 1897–1913).
77This scientific aptitude was transferred (also for advancement “[...] for insensible degrees [...]” Carnot
1786, p. 92; see also 1813a, p. 20) to his son Sadi on heat machines (Carnot 1824, p. 18; Carnot 1978,
1872, 1943, 1953; see also 1996, 1921; Desormes and Clément 1819; Despretz 1821, 1823; Jacquier
1867; Jamin 1868, 1886).
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In the history of science (i.e., physics and mathematics), the statement
in accordance with the equilibrium of a physical system related to a
center of gravity, which should be at the lowest possible point, also
involving maxima and minima (Carnot 1786, p. 14) has been the
object of several difficulties78 and formulations from antiquity
(Aristotle, Archimedes to Galileo, Torricelli, Riccati until the end of
19th century). At the beginning, Lazare Carnot applied it to the
machineries (Cfr. Reuleaux 1876; Hachette 1811) of an ideal machine
—not in motion—by an arbitrary geometrical form and characterized
by mass, only. In this configuration, the sum of the resistances of the
fixed supports estimated vertically must equal the weight of the
system. Subsequently, if an infinitesimal motion (petit movement) is
provided, then a portion of the mass should have gone into producing
motion, the other portion is invested in fixed supports.

In the following, a concise reconstruction of Lazare and Sadi
Carnot’s main reasonings in the Essai (Fig. 13) is presented:

78For example, one can see Galileo in his Mecaniche (Galileo 1890–1909, II, pp. 155–191) and in
Discorsi intorno alle cose che stanno in su l’acqua (Galileo 1890–1909, IV, pp. 3–141). The latter
attributed the law of virtual velocity to Aristotle (1936 [1955], 847a 10–15, 847b 10, pp. 329–332; see
also Baldi 1621) also adding that the idea of the principle of virtual work was born thanks to the
observation of the motion of points, which rotate along a circumference. Galileo also dealt with the law
of the virtual displacement (Galileo 1890–1909 II, pp. 240–242, IV, pp. 68–69; VIII, pp. 310–331,
pp. 329–330). We should wait for 1644, when Evangelista Torricelli (1608–1647), in his Opera
geometrica (Torricelli 1644) claimed a rational criterion for equilibrium, playing a fundamental role in
mechanics and in the history of mechanics (Capecchi and Pisano 2007, 2010a, b, Pisano and Capecchi
2013; Pisano, Dhombres, Radelet–de Grave, Bussotti 370th Anniversary of Torricelli’s Opera
Geometrica (1644): Statics, Mathematical and Geometrical Conceptual Streams, forthcoming). It can
surely be considered the origin of the modern statement of the principle of virtual work: “Two heavy
bodies linked together cannot move by themselves unless their common centre of gravity does not
descend” (Torricelli 1644, Liber primus de motu gravium naturaliter descendentium, p. 99). With regard
to Torricelli’s principle, one can also consider John Wallis’s assumptions (Wallis 1693), and Pierre
Varignon’s (1654–1722; Varignon 1725) essential and rigorous formulation as a scientific production
which aimed at founding all statics upon an easily geometric principle: the composition of forces. In this
sense, it is also alternative to the principle of virtual work. Let us remark that in his letter to Johann
Bernoulli (1667–1748), Varignon also dealt with concept of virtual velocities, as components of virtual
infinitesimal displacements towards the direction of the forces (Bernoulli Johann 1742a, b, II, 1727; see
also Bernoulli Jakob 1703; see Radelet–de Grave 1996, 2007, 2009 and her other remarkable works on
Bernoulli family). After Bernoulli, the most significant contribution to the development of the principle
of virtual work is probably thanks to Vincenzo Riccati (1707–1775) who tried to establish it upon simple
principles easily accepted by his contemporaries, introducing Principles of actions in his Dialogo di
Vincenzo Riccati della Compagnia di Gesù dove ne’ congressi di più giornate delle forze vive e
dell’azioni delle forze morte si tien discorso (Riccati 1749) and in De’ principi della meccanica (Riccati
1772). On the subject, see recently Pisano 2017. Below the principle of virtual works in relation to Lazare
Carnot is presented.
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Fig. 13 Lazare Carnot’s Main Reasonings79

Taking into account Lazare Carnot’s reasoning on machines (Fig. 13)
and principle (2) discussed, one can conclude that if the center of
gravity did not descend, then a state of equilibrium should be
provided:

To assure that several weights [masses] applied to whatever Machine should
be in mutual equilibrium, it suffices to prove that if the Machine was left on its
own, the centre of gravity of the system would not descent. (Carnot 1786, II,
p. 14; Author’s italic).

It is historically and epistemologically interesting to observe how
Carnot made progress in his explanations between scientific content
and methodology. As above cited, he remarked to the reader the lack
of ideal principles and mathematical idealisations in his Essai. In
other words, if a proof was mentioned, then the reader might expect a
proof as structured modelling, that is an example of a certain expe-
rience. In effect, his reasoning and above claim “Pour s’assurer [to
assure] [...]” (Ibidem) essentially consisted in the exclusion of ideal-
ized thought experiences because the latter cannot include the real of
objects in equilibrium and/or in motion; that is, they cannot be

79Adapted from Gillispie and Pisano 2014, p. 351; Pisano 2010; Cfr. Drago and Manno 1994.
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scientifically processed as physical and/or mathematical quantities.
This is a heritage of a certain logic (mainly classical or non-classical)
used in science (Gillispie and Pisano 2014, Chaps. 7, 8, 11; Pisano
2010a; Pisano and Gaudiello 2009a, b; Capecchi and Pisano 2007).
The idea was that a statement was correct if its contrary led to
physically absurd situations. In the history of science, we can see
many of these cases. For example, Stevin’s law (Stevin [1605] 1608;
Dijksterhuis 1955) of the inclined plane which excluded a perpetual
motion; Sadi Carnot’s theorem (Carnot 1978, p. 38; Pisano in
Gillispie and Pisano 2014, Chaps. 7 and 10) of the efficiency of an
heat machine proved by an ad absurdum proof80, the system com-
posed of body (mass and its motion) described by infinitesimal
analysis. Particularly, the latter idealizes the system mass–infinitesi-
mal point in order to apply this kind of mathematics to physics;
namely, rational mechanics which later became part of physics–
mathematics of the 19th century (Cfr. Pisano’s works on the subject).

On that, Gillispie noted that:

As for the so-called principle of Descartes, Carnot found in it disqualifying
flaws. It was less general than the center-of-gravity principle thus transformed,
from which it could be deduced by conversion of its forces into weights acting
over pulleys. It applied only to systems in which no more than two forces were
at work. More seriously, it envisaged only the relative amounts of the forces in
equilibrium, whereas in requiring their vertical projections the center-of-gravity
principle specified also the direction of those forces. (It is just in these passages
that one may begin to appreciate how Carnot’s attempts to analyse the manner
in which forces transmitted by shafts, cords, and pulleys would constrain and
move points within systems composed of rigid members, clumsy though these
constructs seem, they nevertheless belong to the pre-history of vector analysis
in exhibiting awareness that the quantity of a force comprises direction as well
as intensity). (Gillispie and Pisano 2014, pp. 21–22).

The statement of the principle of Descartes (Schuster 2013) did not
require opposite forces in direction in order to be in equilibrium
(Bussotti and Pisano 2013). Taking into account the whole content
of the Essai, Carnot specified the geometrical difference—so important
for mechanical machines—between “forces sollicitantes” (impelling
forces) and forces résistantes (resisting forces) (Carnot 1786, pp. iv–v).

80Cfr. Pisano’s works in the references section below.
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This was an argument of intense interest to Carnot that he had already
argued in his Memoires (Carnot 1780, § 129).

Lazare Carnot was possibly one of the first to clarify (physically)
the vector definition of impelling forces and resisting forces. He
avoided using them as metaphysical causes of variation of motion. He
considered the (work) moment of activity “q”, operated by resisting
forces, as the effect produced by impelling forces. Thus, he consid-
ered the (work) moment of activity “Q”, consumed by impelling
forces at a given t—time (Carnot 1786, §§ LII–LIII, pp. 83–84, §§
LXIII–LXIV, pp. 95–99; see also Gillispie and Pisano 2014, Chaps.
2, 3, and 11). In effect, Carnot’s criticism of Descartes’ principle
moved towards the principle of virtual velocities as discussed below
(Cfr. Pisano 2017; Gillispie and Pisano Chaps. 10 and 11;
Coopersmith 2015, 2017); although Carnot did not name it.

The main problem was how and when infinitesimal movements
occurred for one machine in motion; and for two machines in two
states infinitely close to each other. This raised the question: what was
the physical and geometrical configuration of the system? Finally, his
geometric motions would help him to deal with the problem. In fact,
the latter were different from virtual velocities because they were
finite quantities (Cfr. Poinsot 1838, 1975). Considered more closely,
they were possible or actual displacements, and the internal consumed
work of the system was zero. But these considerations were appli-
cable to an equilibrium state only. It is also remarkable to see how
Carnot referred to d’Alembert’s principle (Carnot 1786, pp. 16–26;
see also Carnot 1778, 1780; Carnot 1803a pp. 41–43; pp. 24–26;
Hankins 1972, p. 203) in order to find a manner to justify the
extension of the equilibrium principles to motion; historiographically
speaking, how is possible to pass from statics to kinematics and then
to dynamics? Carnot, in practice, did not use both principles. His
reasoning moved towards the conservation of live force.

In the history of science, an undue use of the term axiomatization/
axiomatic concerning theories is diffused. Usually, in mathematics and
mathematical physics, the term axiomatization of a scientific theory
represents a formulation of a scientific system of statements (e.g.,
axioms/primitive terms) in order to build a consistent, coherent corpus of

lxx Introduction



statements (e.g., propositions) which may be logically and deductively
derived from these statements. The proof of any statement (i.e., theorems)
should be taken into account and traceable back to these axioms. Of
course, the latter is a difficult condition to be universally claimed: i.e., see
the case study of Archimedean’s On the equilibrium of planes (Capecchi
and Pisano 2007, 2010b, Pisano 2009b, Pisano and Capecchi 2008,
2009a, b, 2010a, b), and non-Euclidean geometry. Therefore, the use of
axioms (in the history of science) as self-evident statements in a theory
does not mean that this theory system is axiomatically built (Pisano
2008). In fact, three fundamental properties should be formally respected:
1) an axiomatic system is said to be consistent if it lacks contradiction,
i.e., the ability to derive both a statement and its denial from the system’s
axioms; 2) in an axiomatic system, an axiom is called independent if it is
not a theorem that can be derived from other axioms in the system; a
system will be called independent if each of its underlying axioms is
independent. Although independence is not a necessary requirement for a
system, consistency is; 3) An axiomatic system will be called complete if
for every statement, either itself or its negation is derivable. For example,
Euclid of Alexandria authored the earliest extant axiomatic geometry and
number theory presentation that can be formally considered: an axiomatic
system, a model theory, and mathematical proofs within a formal system.
All of that evidently is lacking in Lazare Carnot. In Carnot the axioms
only mean a tentative step towards ordering a new theory (on machines)
by means of primitive statements and eventually derived proportion; and
also to order a scientific reasoning extrapolated from a previous known
theory (for example Newton’s law or axiom of motion). This aspect
belongs to several periods of the history of science.81 For, an interesting
epistemological aspect of the content of the Essai, generally speaking, is
Carnot’s theoretical conceptualisation of equilibrium—and—motion as
the adaptation of two axiomatic statements of mechanics at that time:

81See below Pisano’s works on the relationship between physics and mathematics into history; see also
Schuster 2013; Bussotti and Pisano 2013.
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1. The first one concerned the physical static situation of equality
in opposite senses of action and reaction (for all bodies), as the
third Axiom or Law of motion by Newton (Newton 1803, p. 19;
Bussotti and Pisano 214a, b; Pisano and Bussotti 2016a, b, c);
even if Carnot did not directly refer to the Newtonian third law.

2. The second one concerned hard bodies only and in motion.
Bodies in their interactions (impact or pressure) had their rela-
tive velocity in the next instant equal to zero.

Following Lazare Carnot’s reasoning, he discussed two more concerns:

That the intensity of the impact or action [that is exerted] between two bodies
that meet does not depend on their absolute motion but only on their relative
motion.
That the force or quantity of motion which each exerts on the other, due to the
impact, is always directed perpendicularly to their common surface at the point
of contact.
XII. Of these two fundamental laws, the first is generally applied to all bodies
in nature, as well as to the two subordinate laws which we are going to see,
while the second is only for hard [plastic] bodies. However, since bodies that
are not hard [plastic] have various degrees of elasticity, one usually falls back
again to the hard [plastic]-body laws and uses these as bodies of comparison. In
other words, one regards elastic bodies as being composed of an infinity of
little hard bodies separated by little compressible rods and attributes to this all
the elastic properties of these bodies. Thus one does not think that, properly
speaking, in nature, bodies are [ever] animated by different motive forces. We
will follow this method, as being the simpler; thus we will reduce the question
to researching the laws observed by hard bodies, and we will then make some
applications to the case where the bodies have different degrees of elasticity.
(Carnot 1786, XI, p. 23; Author’s italic)

Taking into account these principles and their corollaries, Carnot
suggested that in a system of hard bodies in motion, the net result of
mutual internal interactions of the system was zero. For example,
generalizing them to a system of hard bodies, these arguments could
be supposed equivalent to an expression of the conservation of live
force. But, it should be noted that here Carnot met a situation of
non-applicability (en général); it was the case of hard bodies. The
successive introduction of his class of geometric motions helped him
to overcome this problem of generalisation. In fact, he worked with
displacements in geometry in order to avoid using physics
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(dynamics). This is why Carnot did not account for inelastic collisions
where instead a loss of live force (a kind of non-conservative case)
might have occurred. In addition, adopting geometric motions (e.g.,
Ivi, pp. 68–69) he had at his disposal indeterminate arbitrary values
useful to solve particular cases. These arguments consisted of a
derivation of conservation of moment of momentum (i.e., torque)
from conservation of energy (work). In order to discuss a machine en
général Carnot needed to ignore internal vincula and interactions
(bodies forces). Thus, he made use of the moment de la quantité de
mouvement (conservation of moment of momentum as a fundamental
principle in mechanics en général.

XXI. Let us imagine an arbitrary system of bodies in motion [...]
P

muVcosy
will be named the “moment of the quantity of motion of the system” with
respect to the geometric motion that we gave to the system. In this way the
moment of the quantity of motion of a system of bodies, with respect to any
geometric motion whatever, is the sum of the products of the quantities of
motion of the bodies which compose it, each multiplied by the geometric speed
of the bodies, measured in the direction of this quantity of motion. So, using
the same denominations,

P
muWcosx is the moment of the quantity of motion

before the collision; and
P

muVcosY is the moment of the quantity of motion
after the collision; and

P
muUcosz is the moment of the quantity of motion

lost in the collision : (all the moments being related to the same geometric
motion). Thus from the fundamental equation (F) [

P
muUcosz ¼ 0; (Ivi,

p. 40)] one can conclude that in the collision of hard [plastic] bodies, whether
these bodies are all mobile, or whether some are fixed, or—what comes to the
same thing—whether the collision is immediate, or done by means of any
Machine without springs, the moment of the quantity of motion lost by the
general system is equal to zero. (Carnot 1786, XXI, pp. 41–42).

The Principle of Least Action is applied (Cfr. Coopersmith 2017; see
also 2015). It becomes a kind of ad hoc formulation of conservation
of live force devoted to manifest the power of machines rather than a
movement. This is a crucial aspect of his approach to mechanical
science, perhaps mixed with his political and military experiences as a
statesman. Carnot applied his principles of mechanics and geometric
formulation to running machines. It is here that he formulated an early
idea of Work that he called Moment of Activity. It was a manner to
calculate input–output in a running machine.
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XXXII. If a force P moves with speed u, and the angle formed by the directions
of u and P is z, the quantity Pcoszudt in which dt expresses the element of time,
will be named moment of activity consumed by the force P during dt. That is to
say, the moment of activity consumed by a force, P, in an infinitely short time,
is the product of this force (in the direction of the speed) and the distance
undertaken (from the point of application) in this infinitely short time.
I will denominate by moment of activity, consumed by this force, in a given
time, the sum of moments of activity, consumed by it at each instant, such thatP

Pcoszudt [modern terms: force per distance] is the moment of activity,
consumed in some indeterminate time. (Carnot 1786, XXXII, p. 65).

By means of his moment of momentum and for machines in smooth
motions, Carnot expressed a more general rule concerning the
equality between the Work done by the impelling forces and the Work
done by the resisting forces (Cfr. Carnot 1786, pp. 60–61; XXXIII,
p. 66). In his memoire (Carnot 1780) he had already written:

109. The science of machines in general and all mechanics is thus reduced to
the following question. Knowing the virtual motion of a system of bodies that
is the one that it would be taken by each body if it was free to find the real
motion that it will have the next moment because of the interplay of bodies
assuming that each of them is endowed with inertia as common to all the parts
of the matter. And since this problem is simpler if we would find, among the
bodies, some that are deprived of this inertia it is clear that we cannot have a
general theory of machines without having solved this problem in its full scope.
That is what we will try to do.82

The Essai ends with designs for machineries (i.e., hydraulic case
studies; Carnot 1786, VI, p. 80) and a remarkable concluding
Scholium (Carnot 1786, pp. 81–104). It aimed to make clear Carnot’s
scientific aptitude in both mechanics and machines theory. Thus,
specific arguments concerning the mechanical advantages of machi-
nes, experiences and rational approaches to the science of mechanics
(Cfr. Cauchy 1828, 1829) concluded this masterpiece on Machines en
général:

The two fundamental laws from which I started (XI) are therefore purely
experimental truths and I have proposed them as such. A detailed explanation
of these principles did not enter into the plan of this work, and would perhaps
have only served to obscure things. The sciences are like a beautiful river,

82Carnot L 1780, §§ 108–109; see also Gillispie 1971, Appendix C, §§ 108–109, pp. 303–305; see also
Carnot 1786, §§ XXIX–XXX, pp. 60–61.
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whose course is easy to follow once it has acquired a certain regularity. But if
one wants to go back to the source, one cannot find it anywhere, because it is
everywhere; it is spread in some way over the whole surface of the earth.
Similarly, if one wants to go back to the origin of the sciences, one will find
only obscurity, vague ideas, vicious circles; and one is lost in primitive ideas.
(Carnot 1786, p. 107).

His son Sadi followed in his footsteps, part of a filial and scientific
relationship based on opposition to a (Newtonian) rational approach
to science and to perpetual motion (Carnot 1978, pp. 21–22, ft. 1) in
his Réflexions sur la puissance motrice du feu (1824, Pisano’s works;
Gillispie and Pisano 2014, Chaps. 6–11).

Both Lazare and Sadi Carnots’ sciences83 (Gillispie and Pisano
2014) avoided the use of Newtonian’s scientific apparatus for a new
way to approach the science of machines. For mechanical machines,
Lazare considered the production of mechanical work occurs with the
transference of motion from one body to another. For heat machines,
Sadi considered the production of heat work occurred by transmission
of heat between two thermostats by a small difference in temperature.
According to Lazare Carnot, Sadi included the production of the
movement of heat in order to establish a principle en général and to
produce a new physical situation of the conversion of heat to Work.

83A recent historical, epistemological investigation found that Double Negative Sentences (DNSs)
belonged to non-classical logic, the scientific content of which does not correspond (once one deletes the
double negation) to their positive sentences. They were found in Sadi Carnot’s book of 1824 (Gillispie
and Pisano 2014, pp. 412–419). They introduced the scientific–logical style and background of Sadi and
his father’s scientific filiation on mechanical and heat machines en général. For example, if a DNS ( A) is
not equivalent to its corresponding affirmative sentence (A), than (generally speaking) it loses its
scientific argument and follows that it belongs to non-classical logic; i.e., see the law of double negation:
A 6¼ A. In logic “A” reads “non non A”; Gillispie and Pisano 2014, Chap. 7; see also Pisano’s
works; Batens and Meheus; Beth, Bevir; Destouches 1948, 1951, 1959, 1966). This inquiring
was used, e.g., for analysing the analogy between mechanical and heat machines should be
noted. If in thermodynamics Q is analogous to f , since neither are state functions f must be
substituted by potential DV ¼ fDs, while Q must be substituted by entropy, which however has
a different formula DS ¼ DQ=t. (Thomson 1851b, I, pp 175–183; see also Thomson 1851a;
Clausius 1850, pp. 368–397; pp. 500–524). Moreover, it should be also noted that in the second
case, it is not a special physical distance but it is temperature range, Dt 6¼ 0. Sadi Carnot wrote
this at the beginning of the discursive part of Réflexions sur la puissance motrice du feu, fully of
DNSs, and repeats it several times as well as at the end of the demonstration of his celebrated
theorem (Carnot 1978, p. 38): work can be obtained every time there is a difference in
temperature between which heat passes. Thus, it is possible to note a common way of
conceiving work in comparison with special and heat motions (Pisano 2010; Gillispie and
Pisano 2014).
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1.4 Paralleling Essai and Principes, 1786–1803

By following the Newtonian paradigm until Laplace84 (Fox 1974;
Dhombres and Alvarez 2012) one can see a development of an
advanced use of mathematics (i.e., differential equations) to certain
fields of science. This became a kind of alert for Carnot as he declared
in the end of Essai and in successive Principes fondamentaux de
l’équilibre et du mouvement (1803a; here after Principes). Paralleling
these two books (1786 and 1803a), Carnot wrote:

[Essai]. Reflections on the fundamental laws of equilibrium and
motion. Among the Philosophers who occupy themselves with
researching the laws of motion, some are in Mechanics, an
experimental science,851 the others, purely rational. That is to
say, they first compare the phenomena of nature, decompose
them, so to speak, in order to understand what they have in
common and so reduce them to a small number of principal
facts—which then serve to explain the others and to predict
what will happen in any circumstance; the others start from
hypotheses, then reason from their suppositions, succeed in
discovering the laws that the bodies would follow in their
motions if their hypotheses conformed to nature, then, com-
paring their results with phenomena and finding that they agree,
conclude that their hypotheses are accurate; that is to say, the
bodies in effect do follow the laws which they had at first only
assumed. The first of these two classes of Philosophers there-
fore follow in their researches the primitive ideas that nature has
imposed on us and the experiences that she continually offers
us. The others start from definitions and hypotheses: for the
first, [they assign] the names of bodies, forces, equilibrium,
motion, that correspond to primitive ideas; they neither can nor
must define them; the others, on the contrary, having to draw
everything from their own depths, are obliged to define these
terms with precision, and explain clearly all their suppositions.
But if this [second] method appears more elegant, it is also
more difficult than the other one; as there is nothing more
perplexing in most of the rational sciences, and above all in this
one—than to first pose exact definitions in which no ambiguity
remains—it would throw me into metaphysical difficulties, well
beyond my powers, to want to explore all those proposed up till
now. I will content myself with [examining] the first and most
simple [definition]. (Carnot 1786, pp. 104–106; Author’s italic).

[Principes]. Following this
idea [“to avoid metaphysical
notion of force” and to use
“the theory of communica-
tions of motions” (Carnot
1803a, p. XVI, line 5)] we
will soon see, as I previously
mentioned, the necessity of
turning to the experiment, and
that is what I did, without
neglecting to support myself
with reasonings that can con-
firm it in the most plausible
way, using or generalizing the
results per induction. At times
I even used the name of the
force in the vague sense of
which I spoke above […].

(Carnot 1803a, p. XVI, line 10).862

84In the 1816 Laplace pointed out that the speed of sound in air depended on the heat capacity ratio and
corrected Newton’s surprising error (Biot 1858, pp. 1–9, 1802, pp. 173–182; see also 1802, 1816).
85Cfr. Desaguliers 1751, 1734.
86[...] Primitive ideas concerning the matter, the space, the time, the rest, the motion, etc. 7. The first rule
to establish in such delicate research on the laws of nature is to only admit notions so clear that they can
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Lazare Carnot adopted velocity and quantity of motion as the equa-
tions of motion (Gillispie and Pisano 2014, Chaps. 2–4, 11). In this
kind of mechanics, the basic concepts, time and space are finite and
delimited (e.g., in machines); differently from Newtonian tradition,
they are not absolute and infinite. Lazare Carnot’s mechanics was
limited to algebraic and trigonometric equations. In fact, his equations
of the invariants of motion are to be solved by velocities only.

The following Table 1 presents the basic notions both in Essai and
in Principes:

comprise the bounds of our logic and scientific language (Cfr. Condillac 1821). We must therefore reject
the definitions of matter, time, space, rest, and motion as expressions that are impossible to express with
more clear terms, and the ideas that these expressions produce in us primitive ideas outside of which it is
impossible to construct. But once these expressions are admitted, we will easily see that which is a body,
speed, a motive force, etc. 8. The body is a given part of matter. 9. The apparent space that a body
occupies is called its volume; the actual space that this same body occupies, or its real quantity of matter,
is called its mass. When the body is such that equal parts of its volume always correspond to equal parts
of its mass, we say that it has a uniform density, or that it is equally dense in all of its parts; and the
relationship from mass to volume, or the quotient of one times the other, is called the density of this
body. But if unequal masses correspond to equal volumes, we say that the density is variable and for each
particle of matter, we call density the volume of this particle divided by its mass, or rather, the last reason
of these two quantities. The empty parts or gaps lodged between the parts of the matter, and that make the
volume or apparent space greater than the actual space are called pores. (Carnot 1803a, pp. 6–7, line 1.
[Author’s italic]). [On the concept of force in the theory]. [...] in my opinion, no rigorous proof of the
parallelogram of forces is possible: the mere existence of the force in the announcement of the
proposition is able to make this demonstration impossible for the nature of things in itself. “It is
extremely difficult”, as Euler said, “to reason on primary principles of our knowledge [...]”. This
obscurity disappears in the second way [theory of motion] to conceive the mechanics, but another
inconvenience appears; that is, the fundamental principles that in the first way [theory of forces where
cause produces motion] are established such as axioms in favor of the metaphysical expression [...] that is
to say [...] force, are, in this second case [theory of motion], nothing less than self-evident propositions,
and in order to establish them, we need to include the recourse to the experience (Carnot 1803a, pp. xiij–
xiv, line 17; Cfr. Pisano and Gillispie 2014).

Table 1 Carnot’s Physical–Mathematical–Geometrical Approach

Main concepts Lazare Carnot (1786; 1803a; see also 1813)
Space and time No absolute and infinite Newtonian space

and time
Physics–mathematics relationship Only physical
Geometry–physics relationship Independence from position in space
Derivate quantities Velocity, Quantity of motion, Work
Mathematical approach No local and infinitesimal variables
Main mathematical–geometrical
technique

Geometric motion
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In the following, Carnot’s main hypotheses—related to discussion on
Principle of virtual laws—are presented (Table 2).

Carnot declared (Carnot 1786, pp. 104–107) his preferences: both
analytical and empirical ones. In the introduction of Principes he
reaffirmed his empirical ideas (Carnot 1803a, p. 2) also expressing a
particular final conceptualisation of his mechanics as either empirical
or fully rational (Carnot 1803a, pp. 3–5). In other forums, he referred
to his seven hypotheses (Carnot 1803a, pp. 46–47; see also Pisano and
Capecchi 2013) in order to replace the three Newtonian laws.

1.4.1 The Embryonic and Genesis of the Magnitude Work

Both in Essai and Principes Lazare Carnot’s approach of conceptu-
alisation of force as a physical quantity (Carnot 1803a, p. xj) was
quite evident: sometimes following common sense, and at others even
meaning Work. As noted above, the term that he used to indicate
work was moment of activity (Carnot 1786, XXXII, pp. 65–66).

Table 2 Some of Carnot’s hypotheses (Carnot 1803a)

1 Once at rest a body cannot move by itself and once put in motion it cannot
change either its velocity nor its direction by itself (Carnot 1803a, p. 49).

3 When many forces, either passive or active, equilibrate themselves, each of
these forces is always equal and opposite to the resultant of all the others
(Ivi, p. 49).

5 The action that two bodies contiguous bodies exert on each other by impact,
pressure or tension, does not depend in any way on their absolute velocity,
but only by their relative velocity (Ivi, p. 49).

7 When bodies that impact are perfectly hard or perfectly soft, they proceed
always together after the impact; that is according to the straight line of their
mutual action [...] (Ivi, p. 50).
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The total moment of activity, at a finite time, is given (in an integral
form) by the following expression (Carnot 1786, p. 66):

P
Z

udtcosz

For, he formulated his own conservation of work by means of smooth
movements, such as a corollary:

Corollary V. Specific law concerning Machines whose motion changes by
insensible degrees.
XLI. In a Machine whose motion changes by insensible degrees, the moment of
activity, consumed in a given time by the soliciting forces, is equal to the
moment of activity exerted in the same time by the resisting forces (Carnot
1786, pp. 75–76; Author’s italic).

The production of work was produced by mechanical machines
(Pisano and Bussotti 2015a, b). Thus, taking into account fi forces
linked to dsi and displacements of bodies, the production of a
mechanical work was produced by the transferring of motion from
one body to another one. This reasoning is specified both in the Essai
(e.g., Carnot 1786, p. iij, pp. 65–66; see also pp. 96–97) and in
Principes. In the latter Carnot wrote:

[...] we come back specifically to the second way [theory of motion] of looking
at the problem, that is to say, that mechanics are nothing else than the theory
of the laws of the communications of the motions. (Carnot 1803a, p. xiij).
[...] The first method [theory of forces where cause produces motion] offers
much more ease; so it is, as I mentioned here above, almost generally followed.
Nevertheless, I adopted the second [theory of motion] as I already did in the
first edition; because I wanted to avoid the notion of metaphysics of forces, to
leave undistinguished the cause and the effect, in short, to bring everything to
the only theory of communication of motions. (Carnot 1803b, pp. xv–xvj).

According to Carnot, an action of every force (weight) can be
reproduced. Then the communication of motion (Carnot 1803a,
pp. xiij–xvj) and the Work are able to produce a new physical situ-
ation—related to machines en général—based on the impossibility of
a perpetual motion and the independence of efficiency from the
working substance. Below a sequence of Carnot’s main reasoning on
the subject is presented. Table 3 summarizes the development of the
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conceptualisation of the Work—with respect to vincula—in
Carnot’s two mentioned works:

• Everyone says that in Machines in motion, one loses in time
or speed what one gains in force.

• (Carnot 1786, p. vj; see also Ivi, p. viii).
• The reflections that I propose on this law lead me to say a

word about perpetual motion, and I show not only that
every machine left to itself must stop but I even assign the
moment when this must happen. (Carnot 1786, p. ix).

• However, I repeat, the object of this Essay is [the theory of]
Machines in general. Each machine has its own particular
properties but here we are concerned only with those
properties that are common to all. (Carnot 1786, p. x).

• […] and one compares these different efforts without regard
to the agents that produce them as the nature of these agents
can change nothing about the forces which they are obliged
to exert in order to fulfill the various purposes that the
Machines are [designed] for. (Carnot 1786, p. 62).

• LVII. What is then the true purpose of Machines in motion?
We have already said, it is to procure the ability to vary at
will the terms of the quantity Q (the momentum of activity)
that must be exerted by the moving forces. (Carnot 1786,
pp. 88–89; Authors’ italic).

• LXII. One may conclude from what we are coming to say
on the subject of friction and other passive forces, that
perpetual motion is absolutely impossible, as it employs—
for the production of perpetual motion—only bodies that
are not solicited by any motive force, or even by [the
descent of] heavy bodies […]; (Carnot 1786, p. 94).

• It is therefore evident that one must absolutely despair of
producing what one calls perpetual motion, if it is true that
all the motive forces which exist in nature […]. (Carnot
1786, p. 95).
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Particularly, in the following a selection of early Carnot’s reasoning
on the subject:

108. When a body acts on another one it is always directly or through some
intermediary body. This intermediate body is in general what we call a
machine. The motion that is lost at every moment in each of the bodies applied
to this machine is partly absorbed by the machine itself and partly revised by
the other bodies of the system but as it may happen that the subject of the
matter is only to find the interplay of the bodies applied to the intermediate
bodies without the need to know the effect on the intermediate bodies, we have
imagined, in order to simplify the question, to ignore the mass of this body,
however keeping all the other properties of matter. Hence the science of
machines has become a sort of isolated branch of mechanics in which it is to be
considered the mutual interplay of different parts of a system of bodies among
which there are some that, lacking the inertia as common to all the parts of the
matter as it exists in nature, withheld the names of machines. This abstraction
might simplify in special cases where circumstances indicating those bodies for
whom it was proper to neglect the mass to make it easier for the objective, but
we easily know that the theory of machines in general has become much more
complicated than before because then this theory was confined in the theory of
motion of bodies as they are offered to us by nature, but now it is necessary to
consider at the same time two kinds of bodies, one kind as actually existing, the
other partially deprived of its natural properties. Now it is clear that the first
problem is a special case, since it is more complicated than the other so that by
similar hypotheses, we easily find the laws of the equilibrium and of motion in
each particular machine such that the lever, the winch, the screw, resulting in a
blend of knowledge whose binding can be hardly perceived and only by a kind
of analogy; this must necessarily happen as we will resort to the particular
figure of each machine to show the property which is common to it and to all
the others. Since these properties are the ones we have mainly seen in this first
section, it is clear that we will be able to find them only by putting aside the
particular forms. So let us start by simplifying the state of the issue by ceasing
to consider the system bodies of different natures; finally giving back to
machines their inertia it will be easy afterwards to neglect the mass in the

Tab. 3 The way of conceiving vincula and the production of work

Lazare Carnot (1780; 1786)
• The work as a product of a mechanical machine; vincula bodies.
• Mechanical vincula: M�m
• (Principle of virtual work). Systems of bodies, non-infinitesimal points,but
global and with vincula.

• More than one body having infinite mass cannot be a machine: no work from
vincula, only.

• It is impossible to link (in a direct way) different potential systems to produce
work freely (impossibility of perpetual motion).
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result, we will hold the possibility to consider it or not, and therefore the
solution of the problem will be general and easier at the same time. (Carnot
1780, § 108).

1.4.2 From Work to Principle of Virtual Laws

Bodies with infinite mass (the constraints only) were not considered
by Carnot because they do not produce Work (Carnot 1786, pp. 58–
59). In fact, to produce work, other intermediary mechanisms are
necessary. While in the previous sections, the discussion dealt with
Carnot’s engineering/geometrical approach to mechanics–machines,
in the following the reader finds scientific arguments about Carnot’s
physical and mathematical roots devoted to the concept of Work and
Principle of Virtual Laws.
The Principle of virtual laws (also law, works, work, displacement,
displacements, depending on specific cases) in Mechanics throughout
history encountered several intellectual difficulties, both for funda-
mental and applied research. For example, see rational mechanics,
which did not allow indeterminable situations. In the mechanics of
rigid bodies, the application of the principle of virtual law solves
certain problems related to vincula. The latter vincula are related to
constraint reactions, such as auxiliary unknowns, which are then
eliminated by substitution during the solution of the single static
problems; idem by friction constraints (Cfr. Coulomb 1784, 1785,
1799) one can formulate certain constitutive laws. On the contrary, in
continuum mechanics, it is very important.

The principle of virtual works states that the total virtual work
performed by all the forces acting on a system in static equilibrium is
zero for a set of infinitesimal virtual displacements from equilibrium.
The infinitesimal displacements are virtual because they need not be
obtained by a displacement that actually occurs in the physical sys-
tem. The virtual work is the work performed by the virtual dis-
placements, which can be arbitrary, and are consistent with the
constraints of the system.
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Its common mathematical expression is:

dW ¼
X
i

FðaÞ
i dsi ¼ 0

The theory of mechanical machines may be based on the principle of
virtual work, and thought of as a consequence of the principle of the
impossibility of perpetual motion, as applied to machines and constraints:
it is impossible that the reactions of the constraints on the actions of the
bodies, which make up the machine, produce positive work. In other
words, it is impossible for forces of bodies of constraints to produce work:

X
i

Ridsi � 0

The generalization of Lazare Carnot’s Principle of virtual work is
historically very important because it precedes Lagrange’s approach87

on the subject. Carnot began by stating his principles, which he
referred to also as laws, to underline their empirical content. In his
Principes Carnot wrote:

Any motion that, when imparted to a system of bodies, has no effect on the
intensity of the actions that they exert or can exert on each other in the course
of any other motions imparted to them, will be named geometric. (Carnot
1803a, § 136, p. 108).

In this regard Gillispie observed that Lazare Carnot

[…] did achieve a greater clarity, most notably in the passages defining geo-
metric motion [...]. Neither in the 1780 memoir nor in the Essai sur les

87In 1762, in Application de la méthode exposée dans la mémoire précédente à la solution des différents
problèmes de dynamique (Lagrange 1762 ; see also: 1764, 1788, 1870–1873, 1892), Lagrange published the
results of his research on thePrinciple of Least action. He perfected its formulation and substantiated it with
a convincing proof. Nevertheless, previously Lagrange had conceived of a more general principle than that
of least action. In a letter to Euler on 24thNovember 1759, Lagrangewrote about having composed elements
of differential calculus and mechanics and developing the true metaphysics of its principle. Euler’s
Correspondence with Joseph Louis de Lagrange (Opera Omnia. Series IV, Vol I, retrieved via:http://
eulerarchive.maa.org/correspondence/correspondents/Lagrange.html Idem letter was previously edited in
Lagrange 1892, TomeXIV, pp. 170–174; see also: Euler 1738 [1730–1731], 1774 [1773], 1736, 1749, 1751
[1750] 1752, 1757, 1775. Cfr: Pisano 2017; Pisano and Capecchi 2013). Generally speaking, one can see:
Johann Bernoulli, Theoremata selecta pro conservatione virium vivarum demonstranda et esperimenta
confirmanda (Bernoulli Johann 1727), Remarques sur le principe de la conservation des forces vives pris
dans un sens général (Bernoulli D 1750 [1748]). D’Alembert’s Traité de dynamique (D’Alembert 1758
[1743]; see also Hankins 1970; D’Alembert 1751–1780; 1767) and Lagrange’s Recherches sur la libration
de la Lune (Lagrange 1764; see also: Truesdell 1968a, b, 1970, 1976, 1980 ; see also Fossombroni 1794).
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machines en général had Carnot adapted his concept of geometric motions
from the principle of virtual velocities. In the Principes fondamentaux de
l’équilibre et du mouvement, however, he went on to recognize the analogy
between such motions and that principle in the use Lagrange made of the latter.
(Gillispie and Pisano 2014, p. 72).

On the subject, in Essai we read:
First law. The reaction is always equal and opposite to the action.
Second law. When two hard bodies act on each other by collision or pressure—that is to
say, they act on each other in virtue of their impenetrability—their relative speed, imme-
diately after the interaction, is always null. (Carnot 1786, pp. 21–22. Author’s italic)

The first law states that all bodies change their state of rest or motion
always due to the action of another body. All bodies resist this change
of state. Carnot often used the term “force d’inertie”88. On this subtle
concept Carnot distanced himself from Euler’s formulation (Pisano
2012) who considered it to be a theorem (theorem 7; see also theorem
6) by means of activity (force) and passivity (inertia); typically of
applied mechanics. In detail, Euler’s theorem founding principles of
dynamics strictly follow those assumed in Mechanica sive motus
scientia analytice exposita (1736) where he tried to reformulate
Newtonian mechanics in a more systematic form.

PROPOSITION 7. THEOREM. 56. A body remains in a state of absolute rest,
unless it is disturbed to move by some external cause.89

Thus, the Axiom or Law of motion à la Newton is now presented as
theorems. This methodological difference assumed a great importance
for the development of mechanics and successive applied mechanics.
It means that in certain cases, the principle of inertia is not a principle
but a mere theorem; so it can be proved within a certain mathematics.
Euler also assumed that laws of mechanics can be deduced without
any recourse to experiments. On can also see D’Alembert (1743) who
called it “loi” (law) and not a theorem:

II. Law. 6. A body once put in motion by whichever cause, must persevere
uniformly and in straight line, unless a new cause, different from that has
caused the motion, will act on it. (D’Alembert (1743 [1758], p. 4).

88Carnot 1786, pp. 21–22; see also p. 20, p. 60, p. 61, pp. 62–63, pp. 68–69, p. 77, p. 78, p. 81, p. 86,
p. 97.
89Euler 1736, p. 21; see also Euler [1730–1731] 1738; [1773] 1774; 1749; [1750] 1752; 1757; 1775.
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Coming back to Carnot, his inertia force is a result of two combined
motions. In his words:

A body that one forces to change its state of rest or of motion resists (XI) the
agent which produces the change, and it is this resistance which one calls the
force of inertia. To evaluate this force it is necessary then to decompose the
actual motion of the body into two parts, one of which is [the motion] that it
will have the instant afterwards. [because] The other [part of the motion] will
evidently be that which must be destroyed in order to force the body’s change
of state, that is to say, the resistance with which it opposes this change’ or its
force of inertia’, from which it is easy to conclude, that the force of inertia of a
body is the resultant of its actual motion & the motion equal and opposite to
that which it must have the following instant. (Carnot 1786, p. 61).

The second law in Essai concerns hard (or completely soft) bodies.
Carnot thought that the content of this law allowed moving the
attention to the hard bodies only. Thus, elastic bodies can be
re-conducted to hard bodies. But this assumption was clearly a forced
justification. By applying his principles to a system of free hard bodies,
Carnot formulated a first principle of mechanics as in the following:

X
mVUcosZ ¼ 0

It is the “first fundamental equation of mechanics (E)” (Carnot 1786,
p. 27): m is the mass of the corpuscles of the system, V the true
velocity after the impact, U the lost velocity (such that W ¼ V þU is
the velocity the mass would have before the impact) and Z the angle
between V and U. At this point Carnot introduced the concept of
geometric motion.

XVI. […] if a system of bodies moves from a given position, with an arbitrary
motion, but such that it was possible also to make another absolutely equal and
directly opposite motion, then each of these motions will be called a geometric
motion […]. (Carnot 1786, p. 28. Author’s italic. See also Ivi, pp. 29–34,
pp. 41–45).

In Principes the definition was formulated slightly different:

DEFINITIONS. 136. Any motion will be called geometric if, when it is
impressed upon a system of bodies, it has no effect on the intensity of the
actions that they do or can exert on each other when any other motion is
impressed upon them. (Carnot 1803a, p. 108. Author’s italic. See also: Gillispie
1971, p. 43).
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The first one is purely geometric: geometric motions are reversible
and congruent with constraints. The second one, by means of “action”
alluded to force or Work, as well. In Essai, geometric motions could
be also infinitesimal. This moves directly to Principes, too (e.g., see
Carnot 1803a, theorem IX, p. 130). In effect, even if Carnot was not
interested in infinitesimal cases, if finite or infinitesimal nature of
geometrical motion, in the end it made no difference for Carnot’s
formulations. In fact, he used a quantity u associated to a single
geometric motion. He called it geometric velocity, which, in modern
terms is not so far from virtual velocity or virtual displacement.
Geometric motion was one of his main contributions to mechanics:

The theory of geometric motions is very important; it is as I have already noted
like a mean science between ordinary geometry and mechanics […] This
science has never been treated in details, it is completely to create, and deserves
both for its beauty and utility any care by Savan[t]s. (Carnot 1803a, p. 116.
Author’s italic).

By means of geometric motion, he wrote his first fundamental
equation of motion when the true velocity Vafter the impact substi-
tuted the geometric velocity u, as in the following:

X
muUcosz ¼ 0 ðz is the angle between u andUÞ

Carnot called this equation the “second fundamental equation of
mechanics (F)” (Carnot 1786, p. 32); by changing u among all pos-
sible geometric motions, one can obtain all equations needed to find
the lost motions U of all masses implicated. In this way, the following
problem is solved: given the initial velocities V of a system of masses
to find the final velocities W after the impact. Given U, the final
velocities are:

W ¼ UþV :
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By taking into account the discussion on hard bodies as above cited,
this result could be uncorroborated (Cfr. Popper 1959), simply
because hard bodies are ideal bodies, so far from the practical use of
mechanics within machines theory. Carnot tried to solve this corre-
lated problem by moving towards real cases. Instead, to consider the
motion lost in the impact, he used the motion lost by imperceptible
degrees and identifies mU (the lost motion) with a force F. The latter
could be read with the modern meaning, as well. In the following,
Carnot’s reasoning on the subject:

Whether it acts on the Machine in pulling it by a cord or in pushing it by a rod,
the tension of this cord or the pressure of this rod expresses equally the effort
which it exerts on the Machine, and the quantity of motion that it itself loses by
the reaction which it experiences. If therefore one calls this force F then this
quantity F will be the same thing as that which is expressed by mU in our
equations (I). (Carnot 1786, p. 63; author’s capital letters and italic style).

We can then write the second fundamental equation “F” expressed by
the following form:

X
Fucosz ¼ 0

In Essai, Carnot could have alluded to the principle of virtual work
most by means of the application of his geometric motion (i.e., virtual
velocities; Carnot 1786, § XXXIV, pp. 68–70). As above cited,
Carnot’s theory of geometric motions coincided with velocities and
not with displacements. Thus, Carnot avoided a formulation of the
principle of virtual work by infinitesimal displacements. The latter
could have produced some scientific embarrassment with respect to
his projects (Carnot 1813). Furthermore, by applying the principle of
virtual velocity to mechanical machines, the (forces) weights that
balance each other are reciprocal to their virtual velocities.
Incidentally, the two conceptually different approaches/formulations
can be mathematical equivalents. Particularly, Lazare Carnot in
applying the principle of virtual work also discussed the role played
by forces applied to the bodies. In his words:
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Fundamental Theorem
General Principle of equilibrium and of motion in Machines.

XXXIV. Whatever the state of rest or of motion found in any system of forces
applied to a Machine, if we suddenly give it [the system] an arbitrary geo-
metric motion, without changing these forces, [then] the sum of the products of
each force and each [initial] speed [when taken from the point of application,
and in the direction of the force] will be equal to zero.
That is to say, therefore, that in naming by, F, each of these forces (1), u the
velocity at the first point of application, and z the angle between the directions of
F and u, and if one imparts a geometric motion to the Machine, then it must be
proved that for the whole system, ½P�Fucosz ¼ 0. But, this equation is pre-
cisely the equation (AA) ½PFucosZ ¼ 0 (Carnot 1786 p. 63] found (XXX) [Ivi,
pp. 60–63] which is nothing else at root but the same [second] fundamental
equation (F) ½PmuUcosz ¼ 0 (Ivi, p. 32] presented in a different form.
It is easy to perceive that this general principle is only, properly speaking, that
Descartes to which one gives a sufficient generalisation, for it to include not
only all the conditions between two forces, but as well all those of equilibrium
and motion in a system composed of any number of forces. Also, the first
consequence of this theorem will be the principle of Descartes, rendered
complete by the conditions that we have seen were omitted by him (V).
(Carnot 1786, § XXXIV, pp. 68–70 and footnote “(I)”. Author’s italic and
Capital letters).

By working on these subjects, Carnot aimed to obtain a mathematical
expression of its invariant with respect to all possible kinds of
working substances. Consequently, to find invariants with regard to
the efficiency (and reversibility) of a mechanical machine was nec-
essary. In fact, the principle of virtual work establishes the condition
of equilibrium of the forces that act on the bodies to produce work.
On that, as above cited, he added an important corollary:

Corollary II. General principle of equilibrium in weight Machines.
XXXVI. When several weights applied to any Machine are mutually in
equilibrium, and one imparts any geometric motion to this Machine, then the
speed of the centre of gravity of the system, measured in a vertical sense, will
be zero in the first instant. (Carnot 1786, p. 71. Author’s italic; see also Carnot
1803a).

Coming back to his first equation “E” (Carnot 1786, p. 27) and
second one “F” (Ivi, p. 32) and taking into account

P
Fucosz ¼ 0,

one can generalize to multi-body systems and write:
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X
mVUcosð\~U; ~V [ Þ ¼ 0 ðEÞ

X
muUcosð\~U;~u[ Þ ¼ 0 ðFÞ

m = mass of the body
W = velocity before interaction
V = velocity after interaction
U = W–V
u = arbitrariness geometric motion

In short:

• The mass of the parts of a machine.
• Global magnitudes, abstracting from the mass of the

mechanism.
• Kinematics first, then dynamics, and statics is a special case of

dynamics.
• A theory of machines concerns a theory of the communication

of motions.
• A machine is a connected system of (hard) bodies.
• The connections between the bodies constrain the communi-

cation of motion of the bodies.
• The theory of interaction collisions by means of insensible

degrees (e.g., see Carnot 1803a, § 293, pp. 261–262) as the
result of a sequence of infinitesimally small percussions.

Taking into account the paralleling betweenEssai (1786) andPrincipes
(1803a) about the principle of virtual work, we can write down the law
of conservation for hard (plastic) bodies in the following way:

X
i

mi~Ui ¼ 0

mi = mass of i–th body [for isolate system]
Ui = velocity lost (by that body) during the collision
Wi = velocity before interaction
Vi = velocity after interaction
~Ui ¼ ~Wi � ~Vi
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Therefore, using the hypotheses of parfaitement élastiques bodies
(i.e., in Principes, Carnot 1803a, p. 105), we can write:

X
i

mi~Ui~Vi ¼ 0

Vi = velocity after interaction is the same for all of them
Generalization for all bodies using n—elasticity index.

Lazare Carnot proposed a tentative of generalization from plastic
bodies to all bodies both in Essai (e.g., Carnot 1786 pp. 15–22) then
in Principes (Carnot 1803a, pp. 103–106, pp. 131–146). But in these
two books, the generalizations are differently presented. Precisely, the
first has an inverse procedure with respect to second one.

At this stage, the law of conservation of kinetic energy for soft
bodies can be formulated as in the following:

X
i

mi~W
2
i ¼

X
i

miV
2
i ¼ 0

By introducing geometric motions (Carnot 1786) and in regard with
the above law of conservation, we have:

X
i

mi~Ui �~ui ¼ 0

mi = mass of the i-th body
Ui = velocity lost (by that body) during the collision
ui = velocity called “mouvement géométrique”

u is the velocity of any geometric motion. However, mathematically it
is an indeterminate variable. Its specification produces an equation
applicable to the physical system considered. For example, given

~ui ¼ const
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we have an extension of the principle of virtual velocity to the col-
lision of several bodies and we can write:

X
i

mi~Ui �~ui ¼ 0 !~u
X
i

mi~Ui ¼ 0:

Instead, given

u�arbitrariness

then, the equation becomes
X
i

mi~Ui ¼ 0 ðwhere ~Ui ¼ ~Wi � ~ViÞ

Therefore we have the following situation:

• A theory of interacting bodies by means of collisions.
• A collision is a basic phenomenon. Continuously accelerated

motion is a limiting case of a system driven by a series of
pulses.

• Newton’s second law is replaced by Carnot’s second funda-
mental equation (F) for a system of n bodies.

• Due to the arbitrariness of ui, it can be a constant, as well.
Thus, geometric uniform motions applied to all bodies.

• In addition, by considering another an ad hoc geometric
motion

~ui ¼ ~x�~ri

(e.g., the rotation of the system with angular velocity around a fixed
axis) and by using the properties of the triple product and the arbi-
trariness of “~x”, we have the following Laws of conservation as
invariants of motion:P
i
mi~Wi ¼

P
i
mi~Vi Law of conservation of the total quantity of motion.

P
i
mi~ri � ~Wi ¼

P
i
mi~ri � ~Vi Law of conservation of the total angular

momentum.
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Lazare Carnot’s argument on geometric motion (e.g., Carnot 1786,
pp. 28–45) essentially expresses non-mechanical interactions as in-
vertible motions. In other words: a motion assigned to a physical
system of interacting bodies is geometric if the opposite motion is
also possible. The result is a possible motion, but it is not always
invertible (e.g., the motion of a sliding ring on a rotating rod).
Therefore, one should add a hypothesis of invertibility in order to
define a geometric motion (Pisano and Gillispie 2014, pp. 375–392).
A geometric motion (via integral) produces an invertible motion.
Particularly, given vincula independent of time, a geometric dis-
placement is equivalent to a virtual invertible displacement (but not
vice versa). On the contrary, only a possible displacement (invertible)
produces (via derivative) a geometric motion. Therefore, a geometric
motion is a kind of uniform motion when an equivalence of the state
of rest and the state of uniform motion is considered.

1.5 Concluding Remarks

Carnot renewed the physics–mathematics relationship of applied
mechanics in this period. He was a pioneer of both vector calculus
applied to mechanics and of an alternative to Cartesian and
Newtonian space. He solved his equations by using velocity only
(communication of motion) reducing the mathematical problems to
algebraic equations. In fact, he adopted a mathematics without
infinitesimal entities (Carnot 1813). His mechanical theory (me-
chanics applied to machines) can be conceived as a generalisation
from his second fundamental equation to virtual works by means of
his geometric motions. In this sense they could also be considered
similar (but not exactly) equivalent to modern virtual movements
within collision theory (Cfr. Carnot 1786, §§ VIII–IX, §§ XI–XII, §§
XVI–XVII, §§ XXVIII–XXIX, §§ XXXI–XXXII, §§ XLVIII–
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LXIV). Therefore, since collisions cannot be understood through
infinitesimal analysis90 the fundamental equation cannot be no longer
F ¼ ma, but rather a generalisation of Carnot’s second fundamental
equation, that is the principle of virtual work, applied to bodies in
motion and collision (Cfr. Carnot 1803a, p. x).

A new approach to mechanical problems—with respect to
Newtonian one—was invented by l’organisateur de la victoire.

Raffaele Pisano
Lille (France), November 2019

90In fact, the time interval is zero and the forces are discontinuous and unlimited.
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PREFACE.

Although the theory which we are discussing here is applicable to
all questions which concern the transfer of motion, this little work has
been given the title Essay on Machines in General, first, because it is
principally Machines we have seen as being the most important object
of mechanics; & in the second place, because it is not a question of
any particular kind of Machine, but only of the properties which are
common to all.
This theory is founded on three principal definitions; the first regards

certain motions which I call geometric because they can be determined
by the principles of geometry alone, & are absolutely independent of
the laws of Dynamics; I did not believe we could easily do without this
[first definition] without leaving ambiguities in the enunciation of the
principal propositions,

A ij
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as I show especially for the principle of Descartes.
In the second of my definitions, I try to fix the meanings of the terms

soliciting force & resisting force. One cannot, it seems to me, clearly
compare causes and effects [in machines] without a clear distinction
between these different forces [‘soliciting’ and ‘resisting’], & it is
this distinction which it appears to me has always been left vague &
indeterminate.
Finally, my third definition, is that in which I name the moment of

activity of a force, a quantity that consists of a force1 that is really
acting or really in motion, & where one takes account also of each
of the instants employed by the force - that is to say, the time during
which the force acts. Whatever it may be and whatever denomination
one assigns to it, one cannot disagree that this quantity is met with
continually in the analysis of Machines in motion.
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With the aid of these definitions, I arrive at propositions which are
very simple; I deduce them all from one fundamental equation, which,
containing a certain indeterminate quantity to which one can attribute
different arbitrary values,will give successively, in eachparticular case,
all the equations we need for the solution of the problem.
This equation, which is of the greatest simplicity, extends gener-

ally, to all imaginable cases of equilibrium & motion, whether that
motion changes abruptly or varies by insensible degrees. It applies to
all bodies, whether hard*2 or of whatever degree of elasticity, & if I
am not mistaken, it is sufficient, & independent of all other princi-
ples of mechanics, to resolve all the particular cases which may be
encountered.
From this equation I easily derive a general principle of equilibrium

& motion of Machines proper,
A iij

*From now on, by ‘hard’ understand ‘plastic’, that is, deformable but non-elastic.
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& from it, derive naturally other more or less general principles, many
of which are already known & very famous, but which have been until
now (at least for the most part) less exact[ly]*, or vaguely explained,
rather than rigorously demonstrated.
Without departing from general principles, I have, in a scholium,

gathered together & expressed as clearly as I possibly could, all the
remarks most useful in practice, & which, by their importance, have
appeared to me to merit individual development. Everyone says that
in Machines in motion, one loses in time or speed what one gains in
force. But, after reading the best treatises on mechanics, which seems
to be the proper place to find the proof & explanation of this principle,
is the extent & even the true significance of it [‘what one loses in time
or speed one gains in force’] easy to grasp? Does its generality, for the
majority of readers, have that irresistible nature which should charac-
terise mathematical truths? If they [the readers] could only experience
this striking conviction,

*See Errata.
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would we not witness an endless stream of practitioners, instructed
in these works, abandoning their chimerical projects? Would they not
cease to believe, or at least suspect, despite everything said to them, that
there is a magical quality in the Machines? The proofs that one gives
them to the contrary extend only to simpleMachines. Also, do they not
believe these [simple machines] are capable of a great effect [can do
much work3]. But we do not make them see that it [these truths] must
apply in every imaginable case; one speaks only of cases where there
are just two forces in the system, & we are content with an analogy.
This is the reason why these practitioners still have hope that their
sagacity will enable them to discover some unknown resource, some
Machine not already included in the established rules. They believe
they are the more sure to encounter it [some unknown resource] the
further they move away from everything connected with machines-in-
practice - and this is because they imagine that the established theory
may [perhaps] not apply in

A iv
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these apparently unrelated constructions. It is in vain that one says to
them that all Machines [ultimately] reduce to the lever; this assertion
is too vague, too much of a stretch; that one could gain understand-
ing without a deep examination. They [the artisans and mathematical
practitioners4] cannot be persuaded that Machines that appear to have
nothing in common with those denominated ‘simple’, are [neverthe-
less] subject to the same laws. Neither [do they understand] that we can
dismiss as worthless [knowledge deriving from] a secret not shared.
From this arises the outcome that only the most bizarre ideas, the ones
furthest from the simplicity so advantageous to Machines, are the very
ideas that give them the most hope.
The way of rooting out this error is without doubt to attack its com-

mon source by showing that not only in all knownMachines, but again
in all possible Machines, we have the inevitable law: what one loses in
time or speed one gains in force. We must [then] explain clearly what
this law means but, for this, it must be raised to the greatest possible
level of generality, not stopping with a particular Machine,
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and not relying on any analogy.
When it comes down to it, a general demonstration is necessary,

and one that has been deduced geometrically & straight from the first
principles of mechanics. This is what I have tried to do in this Essay.
I have much insisted on this fundamental point, but I do not know
if I have managed to bring it sufficiently to general public attention.
However, in attacking an error one is forced to replace it by the truth.
We have shown what is the true goal of Machines: while [we submit
that] it is not rational to wait for marvels outside of all likelihood,
we will [nevertheless] find that there are enough useful objectives to
exercise the most brilliant minds?
The reflections that I propose on this law lead me to say a word

about perpetual motion, & I show not only that every Machine left to
itself must stop but I even assign the moment when this must happen.
Furthermore, one will find among these reflections one of the most

interesting properties of Machines (one which I believe has not been
remarked upon previously). It is that in order to produce
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the greatest possible ‘effect’ [quantity of work], it is necessary that
there is no percussion, that is to say, the motion must always happen
by insensible degrees. This leads naturally, amongst other things, to
some remarks on hydraulic Machines.
Finally, I finish this work with some reflections on the fundamental

laws of the communication of motion which, even if they are not to
everyone’s taste, are short enough not to tire people.
However, I repeat, the object of this Essay is [the theory of]Machines

in general. Each Machine has its own particular properties but here
we are concerned only with those properties that are common to all.
These properties, although numerous, are in someway included within
one very simple law. It is this law which it is proposed to research,
demonstrate & develop, envisaging Machines always from the most
general & most direct5 point of view.
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ESSAY
ON MACHINES

IN GENERAL.
————————————————-

INTRODUCTION.

I. We are not lacking excellent Treatises on Machines. The properties
of the most commonly-used Machines and, above all, those called
simple6, have been researched & studied in depth and with all possible
sagacity. However, it seems to me that still hardly any attempt has
been made to develop those laws which are common to all Machines
& which, for that reason, are just as suitable for strings as for the lever,
the screw, or any other Machine, simple or composite.
It is not, however, that Geometers have neglected to reach up to such

general principles of equilibrium & of motion. Rather - if I may say so
in passing - they have not spoken of their application to the theory of
Machines
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proper; & perhaps also they have never adjoined their principles to
a rigorous demonstration of enough generality to be sufficient on its
own (independent of all others) to the solution of all the different ques-
tions one could ever pose, either on the equilibrium or the motion of
Machines. That is, [none of these previous Geometers has managed]
to reduce all questions to a matter of [pure] calculation & geometry.
This is the true object of mechanics.
II. Among the principles, of greater or lesser generality, which have

been proposed up until now, we recall only two very famous ones, &
on these we will have some observations7 to make.
The first [example] is that which adduces a general law of equilib-

rium in weight-liftingMachines: that the centre of gravity of the system
is at the lowest possible point8. However, much as this ancient princi-
ple is very simple & very general, it appears to me that it has not been
given all the attention it merits. This is without doubt 1st, because it
is subject to some exceptions, such as all those cases that have to do
with maximum & minimum [principles]; 2nd, because it relates only
to a particular type of force, the weight9; and finally 3rd, because it
appears difficult to give a general & rigorous demonstration10. But
1st, we are going to show that [just] in changing the statement of this
principle a little bit, we are able to generate a proposition that will be
very exact, very geometric & true without exception; 2nd, although the
principle relates only to the weight, one can, however, easily apply it
to all imaginable cases; to achieve this it is only necessary to substitute
a weight in place of each force which is of a diff-
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rent type [i.e., from a force-weight]; this can very easily be done by
means of a thread passing over a return pulley. The only remaining fault
[with the principle] is that it applies indirectly - toweights rather than to
forces of whatever type; 3rd, finally, although we cannot demonstrate
it [our most general law] without reconstructing mechanics from first
principles, it is nevertheless easy to justify the argument by an appeal
to good sense. It is therefore impossible to doubt the veracity of this
sound argument even without other proofs; as we are going to show
later when we try to give an exact demonstration in this Essay.
Let us imagine then a Machine where the only forces applied are

weights - in other regards the form of the Machine is arbitrary - but
to which we have not imparted any motion. That given, whatever the
disposition of bodies in the system, it is clear that if there is to be equi-
librium, the sum of the resistances at fixed points or other constraints,
estimated in a vertical sense against the weight11, will be equal to the
total weight of the system. But if a motion begins, then this will be
at the expense of a certain portion of the weight, & the load at the
fixed points will then be due to the residue. In this case, the sum of the
vertical resistances at the fixed points will be less – in the first instant –
than the total weight of the system. Then these two forces combined
(the weight of the system and the vertical load at the fixed points) will
result in a single force equal to their difference, & will push the system
from high to low as if it were free [from constraints]. Therefore the
centre of gravity of the system will necessarily descend at a speed12

equal to this difference divided by the total mass of the system. So
therefore, if the centre of
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gravity of the system does not descend, it will necessarily be in equi-
librium. Therefore in general,
Toassure that severalweights [masses]applied towhateverMachine

should be in mutual equilibrium13, it suffices to prove that if the
Machine was left on its own, the centre of gravity of the system would
not descend14.

III. The immediate consequence of this principle, true without
exception, is that if the centre of gravity of the system is at the low-
est possible point then it will necessarily be in equilibrium. [This is
self-evident] because (using the very proposition we seek to prove) it
is sufficient to demonstrate that the centre of gravity does not descend.
However, how can it descend since by hypothesis it is already at the
lowest point possible?

IV. To give another application of this principle, let us suppose that
we want to find the general law of equilibrium between two weights,
A & B, applied to an arbitrary Machine. I state that, as a consequence
of the preceding principle, there will be equilibrium between the two
weights, A& B, as follows: suppose that one of the two bodies imparts,
& the Machine receives, a tiny motion. [If there is equilibrum] it will
follow - for vertical displacements only - that when one body rises
while the other descends, then their speeds will be in a reciprocal ratio
to their masses.
In effect, if one supposes that A descends with a vertical speed

V , while the speed of B, also estimated in a vertical direction [but
ascending] is u, then one will have, by hypothesis, A : B :: u : V , or
AV = Bu, and therefore

AV − Bu

A + B
= 0.

This said, since the bodies are supposed to move, one from high to low,
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& the other from low to high, then it is evident that the first term
in this equation is the vertical speed of the centre of gravity of the
system. Therefore the centre of gravity will not descend and thus, by
the preceding proposition, it must be in equilibrium.
V. The second principle on which we propose to make a few obser-

vations is the famous equilibrium law of Descartes; it comes to this,
two forces in equilibrium are always in the reciprocal ratio of their
speeds, estimated in the direction of the forces, such that when one
supposes that one of the two [forces] gains infinitesimally on the other,
[it is] in a manner such as to give birth to a tiny motion.15*

But although this proposition is very beautiful, & one regards this
ordinarily as the fundamental principle of the equilibrium ofMachines,
it is, however, infinitely less general than that which has been stated
in the first place [Carnot’s general Principle], because it [Descartes’s
Principle] applies only in the case where there are just two forces
in the system, &, in any case, this principle [of Descartes] can be
deduced very easily from what is going to be said on the subject of
two weights, A & B, since we manifestly reduce one of these cases
[Descartes’s principle] to the other [our most general principle], by
assuming [the analogy of] return pulleys, and substituting weights for
the forces whose ratio one seeks.
Moreover, it is to be remarked that this principle [ofDescartes] does

not express the condition of equilibrium between two forces as com-
pletely as that which we stated in the first place - and this [lack] is
because it only determines the relative strengths of the forces, whereas
our Principle gives in addition some idea of the ratio of their [magni-
tudes along different] directions. For example, in the case of equilib-
rium

*Carnot’s explanation is not easy to follow: the reader is encouraged to look up an explanation
of the ‘principle of reciprocal velocities’.
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between two weights, the principle of Descartes says only that the
weights must be in the reciprocal ratio of their vertical speeds but
does not indicate - as our Principle does - that one of the bodies must
necessarily rise while the other descends. Thus, [consider a] winch,
for example. From the wheel & drum of the winch are suspended
weights by ropes. In order for [the system] to remain in equilibrium,
it is not enough that the weight applied to the wheel is to the weight
applied to the drum as the radius of the drum is to the radius of the
wheel. It is also necessary that the weights tend to turn the Machine
in the opposite directions to each other - that is to say, they must be
on different sides of the [rotational] axis. Otherwise, the effect [the
work that each weight does] will be additive, and will [therefore] set
the Machine in motion. Therefore it is evident that what makes the
principle of Descartes incomplete is that, while it does determine the
relative force-strengths, it does not determine that these forces must
be in opposite directions, or give any indication of why the forces
must oppose each other. [However,] in order for [the condition of]
equilibrium, it must be that one of the forces resists while the other
one solicits - but this is never going to happen in the example of the
winch. What is it in general which distinguishes soliciting forces from
reaction forces? This, it seems to me, has not been determined before.
We will see, in this Essay, that the characteristic difference in these
forces [the soliciting and reaction forces] consists in the angle which
they make with the direction of their speeds. One kind always makes
an acute angle with its speed, while the other [kind always] makes an
obtuse angle with its speed.

Finally,
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Finally, [there is] a criticism which it seems to me one may level
againstDescartes’s Principle, aswell as against any other principle that
considers systems wherein tiny motions are generated. [The defect is
that] when the equilibrium has been disturbed [which in turn leads
to the birth of tiny motions], [the Principle of Descartes] does not
indicate [how] these tiny motions [their strengths and directions] shall
be determined. If, however, [in order to determine these motions] one
must have recourse to some new principle of mechanics, then this
just goes to show that the starting principle (that ofDescartes) was not
sufficient; &, if one could determine [the tiny, nascentmotions] by pure
geometry, how is this to be done? This is [exactly] what Descartes’s
Principle doesn’t tell us: &, it also does not tell us that its predictions
should always apply, whatever are the characteristics [strengths and
directions] of these tiny motions - so long as they are possible motions,
that is to say, ones that are compatible with the impenetrability of
bodies. Otherwise, this [omission] would be an error; & we shall show
in what follows that these [tiny, nascent] motions are subject to certain
conditions, in consequence of which I believed it was necessary to give
them [a special name,] the name, geometric motions.
One may make the same remark about all principles [where it has

been proposed to] consider a system in two states, infinitesimally close
together. In order to determine what are these two states, that is to say,
what motion the Machine must undergo in order to pass from the
one [state] to the other, it is necessary either to use new principles
of mechanics in addition to those which have already been proposed
(which then renders these [latter principles] insufficient), or the geome-
try [alone] suffices [to determine the states] (& this amounts to a defect
in the principle - not to know the geometric conditions that the motion
is subject to).
VI. The two laws we have just been talking about are both limited

to the case of equilibrium. One may pass easily from this case to the
mo-

B
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vement by means of the dynamic principle of Mr. d’Alembert. How-
ever we have also found several other principles which apply directly
to the case of motion. One such is the principle of the conservation
of live force [kinetic energy] in the collision of two perfectly elastic
bodies. This principle is all the more general in that it extends even to
the case where the motion passes suddenly from one state to the other.
However it appears to me that the huge scope of it [this principle] in
the theory of Machines proper has barely been imagined. It is never-
theless evident that this law must have an analogue in the collision of
hard bodies & as one ordinarily takes these hard-body collisions as test
cases, then the [conservation of live force] principle, applied to hard
bodies with appropriate modifications [(taking into account the special
characteristics of hard-body collisions)], cannot fail to bemore enlight-
ening than the mere fact of conservation. We will show, in effect, that
one can deduce several capital truths with the greatest of ease, & in
particular, the conservation of living force in a system of hard bodies
having its motion change by insensible degrees16 - a principle whose
utility in the theory of Machines is well known. We will see at the
same time an intimate relation between the two live force conservation
principles. We will, likewise, draw out conclusions from the principle
of Descartes, & even from the law of equilibrium science of weight
Machines, discussed above, after it has been generalised. This princi-
ple [the law of equilibrium in weight Machines], after being given the
extensions to which it is susceptible, is, finally, the one that seems to
us to contain all the laws of equilibrium&motion, &we do not believe
we could adopt a better one to serve as the basis of our theory.
VII. This Essay will be divided into two parts;
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in the first, onewill treat the general principles of equilibrium&motion
in Machines; & in the second, one will research the properties of
Machines proper - that is to say, those by which the name Machines
has been especially assumed - but never pausing at one or another
particular Machine.

FIRST PART.

General principles.

VIII. When one body acts on another body, it is always proximately,
or by the interposition of some intermediate bodies. This intermediate
body is, in the most general sense, what one denominates, Machine.
The motion that is lost at each instant by each of the bodies applied
to the Machine, is in part absorbed by the Machine itself, & in part
received by other bodies in the system. But, as it may happen that
the aim of the investigation is [solely] to find the reciprocal action
between applied bodies via some intermediary body, but without need-
ing to know the effect on the intermediate body itself, then, in order
to simplify the investigation, we have abstracted [away] the mass of
such intermediate bodies (while keeping all other properties of the
system unaltered). Following from this [abstraction], the science of
Machines17 has become in some sense an isolated branch of mechan-
ics, inwhich only the reciprocal action of different partswithin a system
of bodies is to be considered. Amongst

B ij
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these [system-of-bodies] one may find some which, when deprived of
the inertia common to all material things such as exist in nature, have
retained the name: Machines.
IX. This abstraction can simplify [the analysis] in certain particular

cases - caseswhere the circumstances are such that it is proper to neglect
the mass of these bodies in order to arrive more easily at the goal.
However we realize that the theory ofMachines in general has in actual
practice become more complicated than in former times. Previously,
this general theory was wrapped up with the consideration of moving
bodies of whatever kind, but always such as are offered up in Nature.
But now onemust consider two kinds of body - those that actually exist
in nature, and those in part strippedof their natural properties.However,
it is clear that the first type of analysis [the one considering only actual
bodies] is a particular case of this more general type of analysis. Thus
this latter type of analysis is more complicated than the earlier one. In
addition, although by similar hypotheses one can easily obtain laws of
equilibrium & motion in any particular Machine - such as the lever,
the winch, the screw - one ends up with an assembly of knowledge,
in which the interconnections are not transparent, & [such links as are
apparent are] only achievable by some kind of analogy. This [flaw]
must necessarily ensue so long as we only consider configurations
particular to this, that or the other specificMachinewhile [nevertheless]
trying to demonstrate a property which is common to all. Since it is
these common properties that we have in view in this Essay, it is clear
that we will find them only by abstracting away the specificities of
particular configurations. Let us start by simplifying the question, by
ceasing to consider, in one system, bodies of
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different natures. Also, let us finally allow Machines their force of
inertia - it will be [equivalent and just as] easy for us to [afterwards]
disregard mass in the result[s]. We will [thereby] make ourselves the
masters of whether we account for [inertia] or not; & in this way, the
solution of the problemwill at one and the same time gain in generality
as it increases in simplicity.

X. The science of Machines in general therefore reduces to the fol-
lowing question18:
Knowing the virtual motion of an arbitrary system of bodies (that
is to say, a system which takes on each [individual] body as if that
body was free), to determine the actual motion which will occur in the
following instant, arising from the interactions between the bodies,
and considering these bodies as they exist in nature, that is to say, as
having the inertia common to all pieces of matter.

XI. Now, this question evidently encompasses the whole of mechan-
ics, and so it must, in order to proceed with clarity, reach back to the
[elemental] first laws that nature observes in transfers of motion. One
may reduce these [elemental laws], in general, to two, as below.

Fundamental laws of equilibrium&motion

First law. The reaction is always equal & opposite to the action19.
This law asserts that any body which changes its state of rest or

uniformmotion in a straight line, never does this except by the influence
or action of some other body to which it imparts at the same time a
quantity of motion equal & directly opposite to that which it receives.
That is to say, the speed

B iij
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which it actually adopts in the following instant, is the resultant* of
the speed imposed on it by the other body, & the speed it would have
had without this imposition. All bodies, therefore, resist a change in
their state, & this resistance, which we call the force of inertia20, is
always equal & directly opposite to the quantity of motion which the
body receives - that is to say, the quantity of motion which, combined
with that which it had immediately before the change, produces the
resultant, actual quantity of motion which it must have immediately
afterwards. This is expressed again in saying that, in the interaction
between bodies, that quantity of motion lost by any one body, is always
gained by the others, at the same time & in the same direction.

Second Law.When two hard21 bodies act on each other by collision
or pressure - that is to say, they act on each other in virtue of their
impenetrability - their relative speed, immediately after the interaction,
is always null.

In effect, one constantly observes that, if two hard [plastic] bodies
collide, then their speeds - immediately after the collision, and esti-
mated perpendicularly to their common surface and the point of contact
- are equal. The same [is true] if they are pulled by inextensible threads,
or pushed by incompressible rods - their speeds calculated along the
line of the thread or rod will necessarily be equal. From this it follows
that their relative speed - that is to say, that by which each approaches
ormoves away from the other - is in all examples null in the first instant.
From these two principles, it is easy to derive the laws of collision

of hard [plastic] bodies, & to deduce

*See Errata.
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as a consequence the two other subordinate principles whose usage is
continual in mechanics. To state them,

1stThat the intensity of the impact or action [that is exerted] between
two bodies thatmeet, does not depend on their absolutemotion but only
on their relative motion.
2nd That the force, or quantity of motion which each exerts on the

other, due to the impact, is always directed perpendicularly to their
common surface at the point of contact.

XII. Of these two fundamental laws, the first is generally applied
to all bodies in nature, as well as to the two subordinate laws which
we are going to see, while the second is only for hard [plastic] bodies.
However, since bodies that are not hard [plastic] have various degrees
of elasticity, one usually falls back again to the hard-[plastic]-body
laws and uses these as a bodies of comparison. In other words, one
regards elastic bodies as being composed of an infinity of little hard
bodies separated by little compressible rods, and attributes to this all
the elastic properties of these bodies. Thus one does not think that,
properly speaking, in nature, bodies are [ever] animated by different
motive forces. We will follow this method, as being the simpler; thus
we will reduce the question to researching the laws observed by hard
bodies, & we will then make some applications to the case where the
bodies have different degrees of elasticity.

XIII. The Essay on Machines not being a Treatise on Mechanics,
my goal is not to explain in detail nor to prove the fundamental laws

B iv
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of which I shall speak. These are truthswhich arewell-known to all, are
generally applicable, & that are manifest, with much evidence, in all
natural phenomena. This is sufficient for my purpose [to be fulfilled],
which is only to draw from these laws a simple & exact method of
finding the state of rest or of motion that occurs in an arbitrary system
of bodies, that is to say, to present these laws in a form that facilitates
application to each [and any] particular case.

XIV. Let us imagine then an arbitrary system of hard [plastic] bod-
ies whose given virtual motions will be changed by their interactions
with another hard [plastic] body, this last body being the subject of
our enquiry; & to grapple with the question in all its generality, let
us suppose that the motion can change suddenly, or vary by insensi-
ble degrees. Finally, as we may encounter fixed points or some other
constraints, let us treat these as they appear by their effects, that is to
say, as if they were ordinary bodies, making up a part of the proposed
system, but [constrained to remain] fixed where they are placed.

XV. In order to arrive at the solution of this problem, let us first
observe that, in taking all parts of the system to be perfectly hard,
that is to say, incompressible & inextensible, then we may evidently -
whatever is the actual case - regard it [(the system)] as composed of
an infinity of hard particles separated from each other either by little
incompressible rods or by little inextensible threads.
This [assumption may be made] because, when two bodies collide,

push against each other, or have a general tendency to approach each
other - but without being able to do so,
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because of their impenetrability, then one may conceive that between
the two bodies there is a small incompressible rod, & that the motion is
transmitted along this rod. Similarly, if two bodies tend to separate, one
may conceive that they are held to each other by a small inextensible
thread along which the motion propagates. With this assumed, let us
consider successively the action of each of these little particles on all
those which are adjacent. That is to say, let us examine them, two
by two, all these little particles separated from each other by a small
incompressible rod or by a small inextensible string, & let us see what
must happen in the general system, the totality of these particles. For
this let us call

m′&m′′ The masses of the adjacent particles.
V ′&V ′′ The speeds which they must have the following instant.
F ′ The action of m′′ on m′, that is to say, the force or quantity

of motion that the first of these particles imparts to the other.
F ′′ The reaction of m′ on m′′

q ′&q ′′ The angles formed by the directions of V ′ & F ′, & by V ′′ &
F ′′.

This posed, the real speed of m′ being V ′, then in the direction of F ′
the speed will be V ′cosq ′. Similarly, the speed of m′′ calculated in the
direction of F ′′ will be V ′′cosq ′′. Then, since by the second funda-
mental law22 the bodies must move together, one will have:

V ′cosq ′ + V ′′cosq ′′ = 0 (A)

and then by the first fundamental law one will have also:

F ′V ′cosq ′ + F ′′V ′′cosq ′′ = 0 (B)

because if m′ & m′′
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are both mobile, it is clear, by this law, that one has F ′ = F ′′. Then due
to equation (A) one will also have equation (B); & if one of the two (m′
for example) is fixed, or made part of an obstacle, then one will have
V ′cosq ′ = 0 . Following from which, and using equation (A), one will
also have V ′′cosq ′′ = 0; so equation (B) still applies. Therefore this
equation (B) is valid for all particles of the system taken two by two23.
Imagining then a similar equation for all the bodies taken in effect two
by two, & adding together all equations or, which comes to the same
thing, integrating equation (B), one will have for the whole system*:

∑
F ′V ′cosq ′ + ∑

F ′′V ′′cosq ′′ = 0.

That is to say, the sum of the products of the quantities of motion
which are imparted reciprocally on the particles separated by each
of the small inextensible threads, or the small incompressible rods ,
of these quantities, I say, multiplied each by the speed of the particle
which is imparted, estimated [hereafter also calculated] in the direction
of this force, is equal to zero.
That posed, abandoning the preceding nomenclature, let us call:
The mass of each of the particles of the system m
Its virtual speed24, that is to say, that
which it would take if it were free W
Its real speed V
The speed which it loses, (so that W is the resultant
of V & this speed) U
The force or quantity of motion imparted to m by

each adjacent particle, & by the intervention of which
it evidently receives all the motion transmitted to
it by different parts of the system F

*The elongated letter
∫
is used by Carnot both for sums and integrals. In cases where there is

no differential and so a true summation occurs we use the
∑

symbol.
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The angle included between the directions of W & V X
The angle included between the directions of W & U Y
The angle included between the directions of V & U Z
The angle included between the directions of V & F q

One will then have for the whole system

∑
FV cosq = 0 or

∑
V Fcosq = 0 (C)

At present it must be observed that the speed of m before the recip-
rocal action being W , this speed calculated in the direction of V
will be WcosX . Thus V − WcosX is the speed gained by M in the
direction of V . Then m(V − WcosX) is the sum of the forces, F ,
which act on m each calculated in the same direction as V . Therefore,
mV (V − WcosX) is the same sum multiplied by V. However, a sim-
ilar sum applies to each molecule, & moreover the total sum of all
the individual sums is obviously for the whole system25,

∑
V f cosq .

Then
∑

mV (V − WcosX) = ∑
V Fcosq . Adding to this equation the

equation (C) , it becomes

∑
mV (V − WcosX) = 0 (D)

However, W being the resultant of V & U , it is clear that one
will have WcosX = V +UcosZ . Substituting this value of WcosX
in equation (D) it reduces to

∑
mVUcosZ = 0 (E)

This is the first fundamental equation26.
XVI. Let us imagine now that the moment when the collision takes

place, the actual motion of the systemwill all of a sudden be destroyed,
& that we will instead make it take on, one after the other, two arbitrary
motions – but nevertheless equal &
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directly opposite to each other–. That is to say, we make it [the system]
depart from its actual position by [taking on] two successive motions
such that each point in the system ends up with a velocity equal &
opposite to that which it would have had from the first of these motions
alone. That posed, it is clear
1st that the configuration of the system being given, [nevertheless] it

can occur in an infinite variety of differentways,& by purely geometric
operations. This is why I will call these motions geometric motions27.
That is to say, if a system of bodies moves from a given position, with
an arbitrary motion, but such that it was possible also to make another
absolutely equal&directly oppositemotion, then each of thesemotions
will be called a geometric motion (I); 2nd I say that,

(1) To distinguish, by a very simple example, between the motions which I call geometric from

those which are not, let us imagine two globes which push against each other, but in all

other respects remain free & unconstrained. Let us impose on these globes equal speeds in the same

direction, along the line joining the [globe-]centres. Such a motion is geometric because the

bodies could evidently be moved in the opposite direction. Let us suppose that one again imposes on

these bodies equalmotions directed along the line of their centres but instead of, as before, approach-

ing, the bodies, on the contrary, tend to move away from each other. These motions, although possi-

ble, are not what I intend by geometric motions because if one wants to give to each of these

moveable bodies a speed equal & opposite to that which it receives in the first motion, one will be

stopped by the impenetrability of the bodies.
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in virtue of this geometric motion, then neighbouring particles that are
imagined as being

Similarly, if two bodies are attached to the ends of an inextensible thread, & we give to the system
an arbitrary motion – but a motion such that the distance of the two bodies is constantly equal to
the length of the thread – then this motion will be geometric because the bodies could have made
an equal motion in the opposite direction. However if these moveable bodies approach each other,
the motion is not geometric, because they could not take on equal & opposite motions without
separating from each other - which is not possible because of the inextensibility of the thread.

In general it is evident that, regardless of the configuration of the system, & the number of
bodies, if one can make a motion such that there results no change in the respective positions of the
bodies, then this motion is geometric. But [note that] it does not follow that there is no other means
of satisfying this condition, as we are going to show by some examples.

Let us imagine awinch, and to thewheel& cylinder of thiswinch are attachedweights suspended
by ropes. If onemakes theMachine turn in such away that the weight attached to thewheel descends
by a height equal to the wheel-circumference, while the weight [or in this case, also mass or body] at
the cylinder rises by a height equal to the cylinder-circumference, then this motion will be geometric
[and this is] because it is equally possible to make the weight [mass] attached to the drum descend
by a height equal to the drum-circumference, while the mass attached to the wheel would rise by a
height equal to the wheel-circumference. But if, while one makes the weight attached to the wheel
descend by a height equal to the wheel-circumference, one makes the weight attached to the drum
rise to a height greater than the drum-circumference, then themotion will not be geometric, because
the equal & opposite motion is obviously impossible.

If several bodies are attached to the ends of different threads, with the other thread-ends all

united together in one knot, & then one gives to the system a motion such that each of these bodies

stays at a constant distance from the knot (& whereby each such fixed distance is equal to the

length
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pushed by a rod, or pulled by a string, will neither approach or recede
from each other in the first instant. In other words, in the first instant
of the geometric motion, the relative speed of these particles will be
zero28. In effect it is clear, firstly, that if m is separated from a neigh-
bouring particle by an incompressible rod, it cannot approach

of the corresponding thread, then this motion will be geometric even though the different bodies
approach each other. But if some of them approach the knot, the motion will not be geometric
because the threads, being supposed inextensible, the equal & opposite motion would obviously be
impossible.

If two bodies are attached to the ends of a string on which is threaded a movable granule, it will
suffice, for the motion to be geometric, that the sum of the distances of the mobile granule from
the two bodies is constantly equal to the length of the string. Thus if the two bodies are fixed, the
mobile granule will be constrained to stay on an elliptic curve.

If a body moves on a curved surface, for example in the concavity of a spherical cap, the motion
will be geometric for as long as the body moves tangentially to the surface. But if it moves away
[from the surface], the motion will cease to be geometric, because the equal & opposite motion is
obviously impossible.

From all this, it is evident that, what with giving a system a geometric motion, the different
bodies of the system may [nevertheless] approach each other. However one notes that neighbouring
particles, considered two by two, tend in the first instant neither to approach or recede, as I prove
through the course of the text. The bodies, therefore, do not exert any action on each other, in virtue
of such a motion. These motions are then absolutely independent of the rules of dynamics, & it is
for this reason that I have called them geometric.
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& if it is separated by an inextensible thread, it cannot move away.
Secondly, I say that if it is separated by an incompressible rod, it cannot
move away either because, if it moved away, it is clear that in virtue of
an equal & opposite motion, which by hypothesis is also possible, it
could get closer - but this cannot happen due to the incompressibility
of the rod. Finally, for the same reason, it is obvious that if it is a
thread which separates m from its neighbouring particle, it cannot get
closer, since then it would be possible to move away by an equal &
opposite motion - but this cannot happen because of the inextensibility
of the thread. [Thus,] regardless of the geometric motion imparted to
the system, the relative speeds of all the neighbouring particles which
act on each other, taken two-by-two, will be zero in the first instant.
That posed29, let us name u as the absolute speed whichm will have in
the first instant in virtue of the geometric motion& z the angle between
the directions of u & U . It is clear that the particles m will not tend to
move closer together or further apart in virtue of the speeds u, [then]*

if one supposes them animated at the same time with the speeds u &
the speedsU . They will not tend to get closer or move away more than
if they were animated with the same speeds U . Thus the reciprocal
action exercised between the different parts of the system will be the
same, either each molecule will be animated by the same speed U ,
or the two speeds u & U . However, if each molecule was animated
only by the speed U , there is obviously equilibrium. Therefore if it is
animated at one and the same time by two speeds,

*See Errata.
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U & u, or by one single speed which would be the resultant, then U
will again be the speed lost by m, &, from this, u will be the actual
speed after reciprocal action. Therefore, for the same reason that one
arrived at the first fundamental equation (E), one will also arrive at

∑
muU cos z = 0 (F);

the second fundamental equation.
It is very easy now to solve the problem that we proposed because

the preceding equation must hold whatever the magnitude & direc-
tion of u, provided that the motion to which it relates is geometric.
It is clear that in successively attributing to this variable [u] different
magnitudes & arbitrary directions, one will obtain all the necessary
equations between the unknown quantities - on which the solution
depends – & the quantities, whether given or chosen at will.
XVII. In order to put this solution in plain view, for all to see, it will

suffice to give an example.
Let us suppose then that the whole system reduces to a group of

bodies joined by inflexible rods, in such a way that all parts of the
system are forced to retain their respective positions – but with no
fixed point or constraint of any kind –. The equation (F) will give us
the solution to this problem, in successively assigning to u different
values & different directions.
1st. As the velocities, u, are not subject to any conditions – except

that the motion of the system, in virtue of which the particles m have
their speeds, should be geometric –, it is evident
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that we can first suppose them [the velocities] all equal & parallel to
the same given line. Then u being constant, or the same for all points of
the system, the equation (F) reduces to

∑
mUcosz = 0. This teaches

us that the sum of the forces lost because of the interaction of bodies,
taken in the arbitrary direction of u, is zero, & that in consequence
what remains is the same as if each body had been free – a well-known
principle30.
2nd. Let us imagine now that one makes the system turn around a

given axis, so that each of the points describes a circumference around
this axis, & in the plane perpendicular to it; this motion is obviously
geometric; then the equation (F) holds. But then, in naming R the dis-
tance of m to the axis, it is clear that we have u = AR, A [angular
speed] being the same for all points. Then the equation (F) reduces
to

∑
mRUcosz = 0; that is to say that the sum of the moments of

forces lost by mutual interactions, relative to any axis, is null: another
well-known principle31.
3rd. We can again assign other values32 to u, but that would serve

no purpose & would lead to equations already contained within the
preceding [equations]. [And anyhow] one knows that these [previous
equations] [already] suffice to resolve the question, or at least to reduce
it to a matter of pure geometry.

Remark I.

XVIII. The goal that we have proposed, in imparting a geometric
motion, is to change the state of the system, without however altering

C
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the mutual interaction of the bodies which compose it, and then to
derive by this means the relations between the applied & unknown
forces, & the arbitrary speeds that the bodies must adopt in virtue of
the different geometric motions. However, it must be said that there is
a case where the geometric motions are not the only ones which can
fulfill this objective, & where some other motions can equally well be
used in order to draw out from the general equation (F) the determined
equations. This case arises when these other motions, without being
absolutely geometric, nevertheless do become so, in removing just a
few of the little threads or rods which we have imagined interposed
between the adjacent particles of the system. Fromwhich I declare that
the threads or rods which we assumed had the effect of transmitting
the motion from one particle to another in fact have no such effect,
[because, that is to say,] when the tension of some of these threads, or
the pressure of some of these rods, is equal to zero, then, in removing
these threads & rods – the ones having zero tension or pressure –
one evidently changes nothing at all in the interaction between these
bodies. However it is [nevertheless] possible that, by this means [the
neglect of some threads & rods], one makes the system susceptible to
certain geometric motions which could not have taken place otherwise.
Nothing prevents us therefore from regarding these threads & rods as
having been annihilated, since they have no influence on the state of the
system. Consequently, we can treat as geometric those motions which,
without actually being so, nevertheless become geometric as a result
of this suppression [of the rods & threads].
Furthermore, when two bodies are contiguous to each other it is

evidently the same thing as removing the little rod that we have
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imagined interposed between the two – to prevent them getting closer
– or to suppose that these bodies are permeable to each other, that
is to say, they can penetrate each other as easily as empty space is
penetrated by all bodies. From this it evidently follows that in general,
in whatever system of bodies that act on each other, either immediately
or by threads & rods – that is to say via some sort of Machine – then
if it is found that some thread, rod, or any other part of the Machine
exerts no action on the bodies which are applied to it – that is to say
[these threads] can be disregarded – [and all this] without resulting
in any change in the mutual interaction of the bodies, then one can
treat as geometric all those motions which, without actually being
geometric, would become so by this annihilation. Similarly, for those
[motions] which would also become so, in taking as freely permeable
those bodies exerting no pressure on each other despite the fact that
they are adjacent. Here now, is the usefulness of this observation.
If, when one undertakes the solution 33 of some problem, one knows

in advance that a certain part of the Machine exerts no action what-
soever on other parts of the system, then one can imagine this certain
part of the Machine to be totally annihilated, & search for the motion
of the system that follows on from this hypothesis, (that is to say, in
treating as geometric all the motions which really become it by this
supposition). Similarly, if one of the given conditions of the problem
is that such adjacent bodies exert no pressure on each other, one will
express this condition by regarding these

C ij
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two bodies as permeable to each other; that is to say, in treating the
motions as if they were geometric, they in effect become geometric by
this very supposition34.
But if it happens that we do not know whether this pressure is real

or null, it is necessary to search for the [appropriate] motion of the
system by freely imagining one or the other case. We will suppose
then, for example, that this pressure is real; then if by assuming this
hypothesis, and in searching the value of this pressure, one finds that
it is real & positive, one will conclude that the hypothesis is correct &
the result exact. If not, one will be assured that the pressure in question
is null, & that one may in consequence treat as geometric the motions
which would in effect become geometric, so long as the two bodies
were freely permeable, each by the other.
Similarly, if there is in the system a Machine – a thread for example

– & one does not know if the tension of this thread is null or real, then
one can carry out the calculation by supposing, first, that there is actual
tension. Then, if one finds from this that the value of the tension is a
real & positive quantity, one will conclude that the supposition was
correct, & the result exact. Otherwise, one must restart the calculation
with the contrary supposition, that is to say, supposing that the tension
of the thread is equal to zero. This would be the case if we supposed
the thread to be annihilated. In other words, we treat the motions as
geometric, which they would be if the thread in question did not exist.
It follows from this that to draw out in each particular case of [apply-

ing] the general equation (F), all the determined equations that it can
give, one
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must, 1st make the system undertake all the geometric motions it is
susceptible to; 2nd treat as such all those motions which will become
so [become geometric]) by removing whatever Machine or parts of a
Machine that have no action on the rest of the system, or by regarding
as inter-permeable all those bodies which, despite being adjacent, exert
no pressure on each other; 3rd finally, if one is in doubt as to whether
[such and such] a thread, rod, or any part of the Machine, has a real
action on the other parts of the system, or whether a real pressure
exists between two adjacent bodies, it is first necessary to resolve this
doubt, by supposing the thing in question (as one has explained above),
& then treating as geometric the motions that these suppositions will
have made it possible to treat as such.
After this remark, it seems, then, appropriate to extend the name of

geometric to all those motions that, without actually being geometric,
become so in the removal of whatever Machine or part of a Machine
that has no influence on the state of the system; & also, by regard-
ing as perfectly inter-permeable all those bodies which are touching
but without exerting any pressure, that is to say, without there being
anything but simple juxtaposition. In this way, we will, from now on,
understand all the motions [as coming] under the common name of
geometric motions, as they are all, in effect, equally determined by
purely geometric operations, & are all employed in the same fashion
for drawing out of the general equation (F) the determined equations,
appreciating the fact that the general &

C iij
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exclusive (I) property of these motions is to change the state of the
system – butwithout altering themutual interaction between the bodies
that make up the system. However, in order to make some distinction
between them, one may call the first – absolute geometric motions, &
the others –motions geometric by supposition. But, when I shall speak
simply of geometric motions, without any other designation, one will
understand [that I refer to] either kind of motion – with no distinction
made between one or the other.
That posed, sincewe have explained howone can determine,without

the help of any mechanical principle, all the geometric motions to
which a given system is susceptible, it follows that the general problem
which we have proposed is found to be completely reduced – by use of
the general equation (F) – to purely geometric & analytic operations. It
must however be observed that it is not enough to assigndifferent values
to the variable u, it is [also] necessary to assign different relations or
directions. This is because, if onewasmerely content to assign different
values,

(I) It is evident that this property belongs exclusively [See the Errata for this correction] to motions

which I call here geometric, & therefore it would be a very false idea if one regarded them simply

as possible motions, that is to say, [motions] compatible with the impenetrability of matter. For, let

us suppose for example, that the whole system reduces to two adjacent globes, each pressing on

the other. It is clear that if one forces the globes to separate, or move way from one another, this

motion will not be impossible but at the same time the bodies cannot adopt it without ceasing to

act upon each other: Such amotion is therefore not qualified to fulfill the proposed goal, which is not

to change the mutual interaction between the bodies.
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without changing either the relations or the directions, one would
obtain different equations, all just as true, but which would evidently
reduce to the [original equations] after multiplying by different con-
stants.

Remark II.

XIX. As, so far, only hard [plastic] bodies have been considered, it
is clear that among the different values that one can attribute to u, the
speed V is itself included, that is to say, the real motion of the system
is itself one of the geometric motions to which it is susceptible. The
first equation (E) is then contained in the indeterminate equation (F) &
by consequence one can reduce to this single equation (F) all the laws
of equilibrium & of motion for hard [plastic] bodies.
Yet, one comes to see that this equation is none other than the first

(E), towhichwe have given a greater range of applicability bymeans of
geometric motions. However, as we will come to see later (XXIV), the
analogy of this equation (E) with the principle of the conservation of
live force in the collision of perfectly elastic bodies becomes striking,
after a small transformation, & we shall see (XXVI), that in effect it is
nothing other than the same principle transferred to hard bodies, with
the modification that is required by the different nature of the bodies. It
is then this principle of the conservation of live force which will serve
us – as we forecast – as the base of all our theory of Machines, either
at rest or in motion.
After these remarks, we are going to briefly recapitulate

Civ
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the solution of the preceding problem, to show at a glance the order of
operations we have indicated.

Problem.

XX. Knowing the virtual motion of any given system of hard bodies
(that is to say, those which would be followed if each of the bodies
were free) to find the real motion which it must have in the following
instant.

Solution. Let us name
Each molecule of the system, m
Its given speed, W
Its real speed to be found, V
The speed which is lost, so that W will be the

resultant of V & this speed, U

Let us now imagine that one gives to the system an arbitrary geo-
metric motion, & that the speed of m will then be, u
The angle between the directions of W & V , X
The angle between the directions of W & U , Y
The angle between the directions of V & U , Z
The angle between the directions of W & u, x
The angle between the directions of V & u, y
The angle between the directions of U & u, z

This assumed, one will arrive at the equation

∑
muUcos z = 0 (F)

by means of which one will find [solutions for] all possible states of
the system, after letting the variable u take on all the dif-



80 1 A Critical Translation



1 A Critical Translation 81

ferent relations & arbitrary directions.

Definitions.

XXI. Let us imagine an arbitrary system of bodies in motion, letting
m be the mass35 of each of these bodies, & V its speed. Let us now
suppose that one gives the system any geometric motion whatever, &
let u be the speed that m will have (& which I will call the geometric
speed) & y the angle between the directions of V & u; this supposed,
the quantity muV cosy will be named the moment of the quantity of
motion mV , with respect to the geometric speed36 u, & the sum of all
these quantities, that is to say,

∑
muV cosy, will be named the ‘moment

of the quantity of motion of the system’ with respect to the geometric
motion that we gave to the system. In this way the moment of the
quantity of motion of a system of bodies, with respect to any geometric
motion whatever, is the sum of the products of the quantities of motion
of the bodies which compose it, each multiplied by the geometric speed
of the bodies, estimated in the direction of this quantity of motion. So,
using the same denominations,

∑
muWcosx is the moment of the

quantity of motion before the collision;
∑

muVcosy is the moment of
the quantity ofmotion after the collision;&

∑
muUcosz is themoment

of the quantity of motion lost in the collision: (all the moments being
related to the same geometric motion). Thus from the fundamental
equation (F) one can conclude that in the collision of hard [plastic]
bodies, whether these bodies are all
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mobile, or whether some are fixed, or - what comes to the same thing -
whether the collision is immediate, or done by means of any Machine
without springs, themoment of the quantity ofmotion lost by thegeneral
system is equal to zero.

W being the resultant of V & U , it is clear that we have Wcosx =
Vcosy +Ucosz,* ormuWcosx = muVcosy + muUcosz , or finally
∑

muWcosx = ∑
muVcosy + ∑

muUcosz. However, we have
found

∑
muUcosz = 0, and therefore

∑
muWcosz = ∑

muVcosy,
that is to say, with regards to any geometric motion, the moment of the
quantity of motion of the system immediately after the collision is equal
to the moment of the quantity of motion immediately before the colli-
sion.
When one decomposes the speed that the body would take if it were

free into two parts, one being the speed which it actually takes, the
other the speed which is lost (& reciprocally, if one decomposes the
speed which it takes into two parts, one of which being that which it
would have taken if it were free, the other the speed which it gains)
then it obviously follows that what is meant by the speed gained by a
body & what is meant by the speed lost are two equal & directly oppo-
site quantities. That posed, the moment of the quantity of motion lost
by m with respect to the geometric speed u is (following the preced-
ing definition) muUcosz. Then the moment of the quantity of motion
gained by the same body will be −muUcosz, as there is no difference
between these two quantities except that the angle between u & the
speed gained is the supplement of that between u & U . So that one of
these angles being

*See Errata.
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acute, the other will be obtuse, & its cosine will be equal to the cosine
of the other, taken negatively.
It follows that the moment of the quantity of motion* lost by the

general system, taken with respect to any geometric motion – which
is null, as we have seen above – is the same thing as the difference
between the moment of the quantity of motion lost by any part of the
bodies which compose it, & the moment of the quantity of motion
gained by the other parts of the same system. In other words, this
difference is equal to zero; so one of these two quantities is equal to
the other, that is to say, the moment of the quantity of motion lost in the
collision of one part of the bodies of the system – with respect to any
geometric motion – is equal to the moment of the quantity of motion
gained by the other bodies of the same system.
Wemay then, from the preceding definition, collect the three propo-

sitions contained in the following theorem.

Theorem.

XXII. In the collision of hard bodies, whether the collision is imme-
diate, or whether it is done by means of any Machine without spring
[compression or stretching], the following are constant with respect to
any geometric motion:
1st The moment of the quantity of motion lost by the whole system

is equal to zero.
2nd The moment of the quantity of motion lost by one part of the

bodies of the system is equal to the moment of the quantity of motion
gained by the other part.

*‘Moment of the quantity of motion’ is, in modern terms, the component of the momentum in
a given direction - for example the direction of a geometric motion.
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3rd. The moment of the actual quantity of motion of a general system,
immediately after the collision, is equal to the moment of the quantity
of motion of the same system, immediately before the collision.
It is clear, by the preceding definition, that these three propositions

are basically identical, & are nothing other than the same fundamental
equation (F) expressed in various ways.
One may also remark that these propositions bear much relation to

those which we draw from consideration of the moments, relative to
different axes; but those are less general & are easily deduced from
those which we have established (XVII).
There is therefore, as we see (by the third proposition of this the-

orem), there is, I say, in all percussion or communication of motion,
whether immediate or by the intervention of a Machine, a quantity
which is not affected by the collision. This quantity is not, as was
thought by Descartes, the sum of the quantities of motion. Neither is
it the sum of the live force, because that is not conserved in the case
where the motion changes by insensible degrees – as we will see below
– & is always diminished when there is percussion, as we prove in the
second corollary.When the system is free, the quantity of motion mea-
sured in any direction is truly the same before & after the percussion.
But this conservation 37 [of themoment of the quantity of motion] is no
longer valid when there are barriers, any more than when it is referred
to different axes. All these quantities
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are then altered by the collision, or at least only conserved in some
specific cases. But there is one other quantity which neither the various
obstacles which obstruct the motion, nor the Machines which transmit
it, nor the intensity of the different percussions, can change. This is
the moment of the quantity of motion of the general system, with
regard to each of the geometric motions to which it is susceptible,
& this principle includes on its own all the laws of equilibrium &
motion for hard bodies. We will even show in Corollary IV that this
law applies equally to other types of body, whatever their nature &
degree of elasticity.
If the collision destroys all motion, we will have V = 0, and then

the equation reduces to
∑

mWucosx = 0, which tells us that this case
can happen. That is to say, all the motions are destroyed reciprocally
by the collision in the case where immediately before the collision the
moment of the quantity of motion of the general system is null relative
to all the geometric motions to which it is susceptible.

Corollary I.

XXIII. Amongst all the motions to which an arbitrary system of
hard bodies interacting with each other is susceptible, whether by an
immediate collision, or by Machines without springs, those of these
motions will actually take place that, the instant afterwards, are geo-
metric motions such that the sum of the products of each of the masses,
by the square of the speed which it will lose, is a minimum, that is to
say, less than
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the sum of the products of each of the bodies, by the square of speed*

which it would have lost, if the system had taken another geometric
motion.
It must be remarked that in giving for the minimum the sum of the

products of each mass by the square of the speed lost, I mean only that
the differential of this sum is null, that is to say, it is the same as if
the system had a geometric motion infinitesimally different to the first.
Therefore this sum may be sometimes a maximum, or even neither a
maximum or aminimum, & I only have to establish that d

∑
mU 2 = 0.

Demonstration. It is evident from the outset that the true motion of
the system after the collision must be geometric, as geometric motions
are those [sorts of motions] that can in no way alter the action [internal
forces] that exist between the bodies of the system, [and thus] it is
clear that of primary importance is the very motion that the system
[as a whole] undertakes. It is a question of knowing which geometric
motions, amongst all possible ones, are the ones which do take place.
Now, let us suppose that it [the system] takes another motion only

infinitesimally different from the one we seek, such that the speed of
each molecule m is V ′. Let us decompose V ′ into two parts: V (that
is to say, the actual speed), & V ′′. That supposed, it is evident that
if the bodies have no other speeds apart from these last speeds (V ′′)
then the motion would again be geometric because V ′′ is obviously the
resultant of V ′ & a speed equal & directly opposite to V . However, by
hypothesis, the molecules taken two by two tend neither by virtue of
V ′, nor by virtue of −V , to approach or depart from each other, since
in these two

*See Errata.
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cases the motion is geometric. Therefore, in supposing that the
molecules, m, have at the same time the speeds V ′ & −V , or their
resultant, V ′′, they tend neither to approach or move apart & thus the
motionwill be geometric. Therefore, if we call z′′ the angle between the
directions V ′′ &U , we will have, by the fundamental equation (F), the
result

∑
mUV

′′
cosz = 0. On the other hand, let us nameU ′ the speed

that would be lost if the effective speed were V ′, so thatW is the resul-
tant of V ′ & of U ′. It is essential that U ′ is composed of U & a speed
equal & directly opposite to V ′′, from which it follows evidently that
U ′ −U or dU = −V ′′cosz′′. Then the equation

∑
mUV

′′
cosz

′′ = 0,
found above, becomes

∑
mUdU = 0 or d

∑
mU 2 = 0.

I suppose, for example, that two globes A & B, come to collide
obliquely. We ask for their motions after the collision.
Let us suppose that the speed of A, calculated along the line of the

centres before the collision is a, & after the collision, V ; that of B, also
calculated along the line of centres, is b before the collision, & after the
collision,u; that ofA, estimatedperpendicularly to the same line, before
the collision is a′, & after the collision, V ′; and finally, that of B, also
estimated perpendicularly to the line joining the centres, is b′ before the
collision, & after the collision, u′. That supposed, by our proposition,
before being geometric, the motion must initially satisfy V = u. Thus
the speed lost by A, along the line of the centres, will be a − u, & that
lost by B, in the same direction, will be b − u. Furthermore, in the
direction perpendicular to the line joining the centres, the speed lost
by A
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will be a′ − V ′, & that lost by B, will be b′ − u′. Then√
(a − u)2 + (a′ − V ′)2 will be the absolute speed lost by A , & that

lost by Bwill be
√
(b − u)2 + (b′ − u′)2. Then, following the proposi-

tion, one must have d(A(a − u)2 + A(a′ − V ′)2 + B(b − u)2 +
B(b′ − u′)2) = 0, or A(a − u)du + A(a′ − V ′)dV ′ + B(b − u)du +
B(b′ − u′)du′ = 0, an equation which must hold generally, that is to
say, whatever may be the values of du, dV ′, & du′. Therefore the
coefficients of each of these differentials must be equal to zero, which
gives V ′ = a′, u′ = b′, & u = Aa+Bb

A+B , which it was necessary to find.
It is clear that this proposition includes all the laws of collision of

hard [plastic] bodies, whether the collision is immediate, or whether
it is done by means of whatever kind of Machine, since it determines
the telltale characteristics by which we recognize - amongst all the
possible motions - the actual one that takes place at each instant. This
principle is very analogous to the one discovered by M. de Mauper-
tuis38 & named the principle of least action39. (Essay on Cosmology).

Corollary II.

XXIV. In the collision of hard [plastic] bodies, whether some are
fixed, or all are mobile (or, which comes to the same), whether the
collision is immediate, or whether it happens by whatever Machine
[so long as it is] without compression or extension, the sum of live
forces before the impact is always equal to the sum of live forces after
the impact; moreover
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the [principle of] the sum of live forces would apply if, for each mobile
body, its remaining speedwas equal to that which it lost in the collision.
That is to say, it is required to prove the following equation

∑
mW 2 =∑

mV 2 + ∑
mU 2. However, this can easily be deduced from the fun-

damental equation (E), because W being the resultant of V & U , it is
clear thatW , V &U are proportional to three sides of a certain triangle.
Then, by trigonometry, we haveW 2 = V 2 +U 2 + 2VUcosZ . There-
fore

∑
mW 2 = ∑

mV 2 + ∑
mU 2 + 2

∑
mVUcosZ . However, by

equation (E) we have
∑

mVUcosZ = 0, so the preceding equation
reduces to

∑
mW 2 = ∑

mV 2 + ∑
mU 2, which it was necessary to

prove.
We see then, as we have said (XIX)*, that by this transformation

the analogy between equation (E) and the conservation of live forces
becomes striking. Also we can easily derive one from the other, as we
will see (XXVI).
The analogy of this same equation with the conservation of live

forces in a system of hard [plastic] bodies whose motion changes by
insensible degrees is evenmore evident since it is then a specific case of
that which we have just examined. It is in effect obviously the specific
case whereU is infinitely small, & thusU 2 is infinitely small to second
order. This reduces the equation to

∑
mW 2 = ∑

mV 2; but this conser-
vationwill be explained further and at length in the following corollary.

Corollary III.

XXV. When any system of hard [plastic]bodies changes its motion
by insensible degrees,

D

*See Errata.
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then if for some instant we call m the mass of each of the bodies, V
its speed, p its motive force, R the angle between the directions of V
& p, u the speed which m would have, and if we imparted whatsoever
geometric motion to the system, [and called] r , the angle formed by u
& p, y, the angle formed by V & u, dt the element of time, [then] we
will have these two equations:

∑
mV pdtcosR −

∑
mVdV = 0,

∑
mupdtcosr −

∑
mud(Vcosy) = 0.

Demonstration. Firstly, pdtcosR is obviously the speed which the
motive force p would have imparted to m in the direction of V if
the body would have been free; moreover, dV is the speed which it
actually receives in the same direction. Then pdtcosR − dV is the
speed lost by m in the direction of V , by virtue of mutual interactions
between the bodies. It is then this quantity which must be substituted
for UcosZ in the fundamental equation (E), which becomes by this
substitution

∫
mV pdtcosR − ∫

mVdV = 0,40 and this is the first of
the two equations we have to prove.
Secondly, pdtcosr is the speed that the motive force p would have

imparted to m in the direction of u if this body had been free. More-
over, Vcosy being the speed ofm in the direction of u, then d(Vcosy)
is the quantity by which this speed increases when calculated in the
same direction. Therefore pdtcosr − d(Vcosy) is the speed lost by
m in the same direction as u, by virtue of mutual interactions between
the bodies. It is then this quantity which must be substituted for
Ucosr in the second equation (F), which becomes by this substitu-
tion

∫
mupdtcosr − ∫

mud(Vcosy) = 0,41 which is the second of the
two equations we have to show.
These equations are then nothing other than the fundamental equa-

tions (E) & (F) applied
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to the case where the motion changes by insensible degrees42, & thus
it includes all the laws of this motion. We can moreover remark that
the first of these two equations is only a specific case of the second,
by the same reasoning that equation (E) (from which it is derived) is
contained in (F) from which the second is derived. However this first
equation,

∑
mV pdtcosR − ∑

mVdV = 0, merits specific attention
because it includes the famous principle of the conservation of live
forces in a system of hard [plastic] bodies whose motion changes by
insensible degrees, as we are going to explain.
Let us name by ds the element of the curve described by particle m

duringdt . That supposed,wewill haveVdt = ds,& thus the preceding
equation takes the form

∑
mpdscosR − ∑

mVdV = 0. Now let us
suppose for the moment that the curve followed by m is an inflexible
line, that m is a movable granule threaded on this curve, that it runs
freely, that is to say, without being hindered by the reactions of other
parts of the system, that it experiences at each point of the curve the
same motive force as that which drove it in the first place, & finally
that in the first case the initial speed ofm being K , while in the second
it will be null in the first instant & V ′ after an indeterminate time t .
[All] this [being] supposed, on integrating the preceding equation in
order to obtain the state of the system at the end of time t , we will
have for the first case,

∫ ∑
mpdscosR − ∫ ∑

mVdV = 0, where
∫

designates the integration sign relative to the duration of the motion,
while

∑
is the integration sign relative to the configuration

D ij
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of the system. However,
∫ ∑

mVdV = ∑ mV 2

2 , and so the equation
can be put in the form

∫∑
mpdscosR − ∑

mV 2 + C = 0, C being
an additive constant to complete the integral. For determining it,wewill
observe that at the first instant we have V = K & then C = ∑ mK 2

2 ;
then 2

∫ ∑
mpdscosR − ∑

mV 2 + ∑
mK 2 = 0. By the same rea-

soning we have for the second case 2
∫ ∑

mpdscosR − ∑
mV

′2 = 0,
without a constant, because we have supposed that V ′ is null at the first
instant. Then, subtracting this equation from the preceding one, col-
lecting & transposing, we have

∑
mV 2 = ∑

mK 2 + ∑
mV

′2. That
is to say, in any system of hard [plastic] bodies, when the motion
changes by insensible degrees, the sum of the live forces at the end
of any time, is equal to the sum of the initial live forces plus the sum
of the live forces which would exist if each mobile body would have
for its speed that which it would acquire in running freely along the
curve that it describes (assuming amongst other things that it is driven
at each point of this curve by the same motive force which it actually
experiences, & that its speed in the first instant is null).
This [is the] proposition which we call the principle of conservation

of live force, & from which we may conclude that,
In a system of hard [plastic] bodies whose motion changes by insen-

sible degrees, & which is not driven by any motive force, the sum of
live forces is a constant quantity, that is, the same for all instants.
Because in this case we have by hypothesis p = 0, which gives

V ′ = 0 & thus
∑

mV 2 =
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∑
mK 2. [This] equation, drawn directly from that found in (XXIV),∑
mV pdtcosR − ∑

mVdV = 0, which, due to p = 0, reduces to
∑
mVdV = 0, whose complete integral* is 1

2

∑
mV 2 − 1

2

∑
m

K 2 = 0. From this we obtain
∑

mV 2 = ∑
mK 2 – which is what had

to be proved.

Corollary IV.

XXVI. I have proved, (XIX), that the indeterminate equation (F)
includes all the laws of equilibrium&motion for hard [plastic] bodies.
I now go further & declare this equation to be equally appropriate for
bodies which are not hard, & that in consequence this law extends
to all naturally–occurring bodies without distinction. In effect, when
several bodies which are not hard [plastic] interact with each other
in any manner whatever, one imagines the motion of each freely–
moving body as being decomposed into two parts – one of which
the body will actually take, the other will be destroyed. From this it
obviously follows that if the bodies had been hard [plastic] & had only
these last motions, then there would be equilibrium. These destroyed
motions are then subject to the same laws, have the same relations
between them, & finally, they can be determined in the same way
as if the bodies were hard [plastic], that is to say, by equation (F).
This equation (F) is therefore not restricted to hard bodies, it applies
equally to all bodies in nature, & contains in consequence all the laws
of equilibrium & of motion, not only for the first case [hard plastic
bodies], D iij

*Although Carnot uses the word ‘integral’ as well as the symbol
∫
, in his calculations he will

have carried out summations rather than integrations. The evidence is that there are no differential
quantities, ‘dt’ or ‘dV ’.
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but even for all the other [cases],whatever the degree of compressibility
[of the bodies]. But the difference consists in that one may, in the case
of hard bodies, suppose u = V , which means that

∑
mVUcosZ = 0

becomes one of the determined equations of the problem, instead of
those [other equations] which are not [determined] when the bodies are
of different natures. It is then this determinate equation, which is the
same as the first fundamental equation (E), it is, I say, this determinate
equation which characterizes hard [plastic] bodies, & in consequence
it is absolutely necessary [for it] to be used, at least implicitly, in
all questions that are concerned with these bodies. When it comes to
[the consideration of] other types of bodies, it must (outside of the
determinate equations, which one can obtain by attributing different
known values to u in the indeterminate equation), it must [I repeat], [be
possible to] draw out as before [a solution] which is the analogue of
equation (E), & which expresses in some way the nature of the bodies,
in the same way that (E) expresses that of hard [plastic] bodies.
However, as this research applies only very indirectly to Machines

proper, we will limit ourselves to examining the case where the degree
of elasticity is the same for all the bodies, that is to say, wewill suppose
that by virtue of their elasticity, the bodies exert pressures on each other
n times as large as if the bodies were hard, n being the same for all the
bodies of the system. We will suppose furthermore that the pressure &
the restitution happen instantaneously, even though rigorously this is
impossible. That posed:
The reciprocal pressures F becoming nF , will have between them

the same relations as if the
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bodies were hard [plastic]. Therefore their resultants, mU , will not
have changed directions but will only have become n times as great
as they would have been if the bodies had been hard [plastic]. That
posed, since W is the resultant of V & U , we have VcosZ =
WcosY −U [cosX]. Thus the equation (E) for which we are searching
for an analoguemay be put in the form

∑
mWUcosY − ∑

mU 2 = 0.
However, following on from what we have said, it is necessary, to
apply this equation to the case here, to put U

n in place of U with-
out any change to Y . Then in the case we are examining, the equa-
tion will be

∑
mW (U/n)cosY − ∑ mU2

n2
= 0, or on multiplying by

n2, it will be n
∑

mWUcosY − ∑
mU 2 = 0, where, because of

WcosY = VcosZ +U , one will have n
1−n

∑
mVUcosZ = ∑

mU 2.
Therefore this equation will be for [such] bodies what equation (E) is
for hard [plastic] bodies, & this same equation applies in the specific
case where one has n = 1; as is evident.
When n = 2, this is the case of perfectly elastic bodies, & the equa-

tion becomes 2
∑

mVUcosZ + ∑
mU 2 = 0. However this equa-

tion, as applied to perfectly elastic bodies, may be expressed in a
well-known & simpler manner, as follows: since W is the resultant
of V & U , one has by trigonometry W 2 = V 2 +U 2 + 2VUcosZ , &
so

∑
mW 2 = ∑

mV 2 + ∑
mU 2 + 2

∑
mVUcosZ . Adding to this

equation that found above,& simplifying, one has
∑

mW 2 = ∑
mV 2,

which is precisely
D iv



110 1 A Critical Translation



1 A Critical Translation 111

the principle of the conservation of live force. In other words, this con-
servation [principle] is for perfectly elastic bodies what equation (E) is
for hard bodies, as we had promised to prove.

Remark I.

XXVII. I will not linger on the specific consequences I could draw
from the solution of the preceding problem; I will only remark that
the speeds W , V , U being always proportional to the three sides of a
triangle, trigonometry can furnish the means of giving a great number
of different forms to the fundamental equations (E) & (F), & I will
be content to indicate one which is remarkable, due to the method
imagined by Geometers, of considering the motions in three mutually
perpendicular planes - which gives much elegance & simplicity to the
solutions.
Let us imagine then three mutually perpendicular axes, & let us

suppose that the speeds W , V , U & u, are decomposed into three
components parallel to these axes. With that assumed, Let us name
Those corresponding to W : W ′, W ′′, W ′′′
Those corresponding to V : V ′, V ′′, V ′′′
Those corresponding to U : U ′, U ′′, U ′′′
Those corresponding to u: u′, u′′, u′′′
Now, for those few who pay attention [to such details], one will

easily see that the first fundamental equation (E) may be put in the
form

∑
mV

′
U

′ + ∑
mV

′′
V

′′ + ∑
mV

′′′
U

′′′ = 0, & the second, (F),
in the form

∑
mu

′
U

′+
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+∑
mu

′′
U

′′ + ∑
mu

′′′
U

′′′ = 0, because in general anyquantitywhich
is the product of two speeds, A & B, with the cosine of the angle
between them, is equal to the sumof the three products A′B ′ + A′′B ′′ +
A′′′B ′′′ (A′, A′′, A′′′ being the speed [components of] A referred to the
three axes, & B ′, B ′′, B ′′′, being the speed [components of] B referred
to the same [three] axes. That is, A′ being the speed [component of]
A, & B ′ the speed [component of] B, estimated parallel to the first of
these axes; A′′ & B ′′ the same speed [components of] A& B estimated
parallel to the second axis; A′′′ & B ′′′ the same speed [components]
estimated parallel to the third axis - all of which is easily proved from
the elements of geometry–.
In the case of equilibrium, the first of these transformed equations

reduces to 0 = 0, & the second (because in this caseW = U ) becomes∑
mu

′
W

′ + ∑
mu

′′
W

′′ + ∑
mu

′′′
W

′′′ = 0 - which expresses all the
conditions of equilibrium.
When the motion changes by insensible degrees, we have found

(XXV) that the fundamental equations become
∑

mV pdtcosR −∑
mVdV = 0, &

∑
mupdtcosr − ∑

mud(Vcosy) = 0. Therefore,
in decomposing p into three other forces parallel to three axes,
if these component-forces are designated by p′, p′′, p′′′, the pre-
ceding equations become: the first,

∑
mV

′
p

′
dt + ∑

mV
′′
p

′′
dt +∑

mV
′′′
p

′′′
dt = ∑

mV
′
dV

′ + mV
′′
dV

′′
mV

′′′
dV

′′′
, & the second∑

mu
′
p

′
dt + ∑

mu
′′
p

′′
dt + ∑

mu
′′′
p

′′′
dt = ∑

mu
′
dV

′+ ∑
mu

′′

dV
′′+ ∑

mu
′′′
dV

′′′
.* Finally, in the case of equilibrium, the first

[equation] vanishes, & the second reduces to
∑

mu
′
p

′ + ∑
mu

′′
p

′′ +
∑

mu
′′′
p

′′′ = 0.

*Typographic error corrected from u
′′
to u

′′′
in the preceding expression.
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Remark II.

XXVIII. Until now I have regarded the threads, rods, levers, &c.
as bodies being themselves part of the system. And this hypothesis
conforms completely to nature. However one thing which it is indis-
pensably necessary to take note of is the fact that, strictly speaki-ng,
there is probably no absolutely fixed point in the universe, and no abso-
lutely immovable obstacle. The fulcrum of a lever does not appear [as
an absolutely fixed point] because it pushes against the Earth which is
itself not fixed, but whose mass is almost infinitely great in comparison
with those one ordinarily considers in Machines acting on each other.
In order to displace the fulcrum of a lever one requires, therefore, to
put in motion as well the [whole] globe [(spherical mass)] of the Earth.
There are, in effect, certain weak forces that act on this Machine [the
lever]; the quantity of motion which they provide is equal to the [reac-
tion at] the fulcrum, and this [quantity of motion] being distributed in
a mass almost infinitely great results in a speed almost infinitely small
in that mass - & that is why this motion is not detectable, & may be
neglected in practice.
It follows from this that what one calls immovable obstacles in

mechanics are nothing else than bodies whose mass is so great, &
consequentially whose speed is so small, that their motion cannot be
observed: it will be closer to nature to consider these obstacles or fixed
points as bodies, mobile like all the others, but of
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infinitely great mass or, what comes to the same thing, as bodies of
infinite density & which differ only in this regard from all the other
bodies in the system. This yields a considerable advantage, which is
that one can give a system which includes such bodies any geometric
motions [one likes]; because as soon as one supposes these mobile
obstacles to have the same properties as all other bodies, they will be
susceptible to take up whatever motions, & [then] the general system
may be considered as an assemblage of perfectly mobile bodies. In
consequence, the quantities of motion absorbed by the obstacles can
be evaluated in the same way as for other parts of the system.
Thus, calling the resistance of a given fixed point R, then this quan-

tity R will be, for the point in question, whatmU is for the bodym. One
will therefore find R by this equation in the same way as we find all the
other forces, mU , which we would not have been able to do in consid-
ering the obstacles as absolutely immobile, without having recourse
to some new principle of mechanics, which must then be used concur-
rently with the general equation (F) to arrive at the complete solution
of each specific problem. Therefore this method of considering fixed
points is not only the most congruent with nature, as we have said
above, but is as well the simplest & the easiest.
As for the threads, rods or whatever other kind of system-parts

whose masses are supposed to be infinitely small, one will be able
to neglect them [the masses], that is to say, to suppose that each of
their molecules’s m equals zero, or what comes to
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the same thing, to regard their density as infinitely small or null. Our
equation (F) will then become independent of these quantities, that is
to say, it is the same as if we had ignored the mass of these bodies.
It is in this way that we will easily find the mathematical theory of
each Machine, that is [by making] the abstractions of which we spoke
[earlier] (VIII).
XXIX. From this remark, there follows the consequence that,

although there is only one type of body in nature, one can [never-
theless] divide them up, for ease of calculation, into three different
classes, which are: 1st, those that one considers as they in fact are
& as nature offers them up to us (that is to say, [those] which have
finite density); 2nd, those to which one attributes an infinitely great
density & which, for this reason, have to be regarded, for all practical
purposes, as fixed & immobile; 3rd, those to which one attributes an
infinitely small or null density & in consequence of which have no
[inertial] resistance to changing their state. In practice, one ordinarily
regards as such: threads, rods, levers, & generally all bodies which (by
virtue of their [relatively miniscule] mass) offer no detectable influ-
ence to changes which occur in the system but which are regarded as
the means of communication between the different agents which com-
pose it.

Remark III.

XXX.After having treated equilibrium&motion in general, asmuch
as my main aim allows me, I am going to pass on to the particular
consideration of what [exactly] is
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commonly understood by [the term] Machine because, although the
theory of any type of equilibrium & of motion always comes back to
the preceding principles, by the first law) only bodies can destroy or
modify the motion of other bodies. However, there are cases where
one neglects the mass of these bodies, and considers only the effort
that they make. For example, when a man pulls a body by a thread,
or pushes it with a rod, one does not include the mass of this man
in the calculation, nor the effort [force] of which he is capable, but
only that which he exerts in fact at the point of application. That is to
say, the tension of the thread (if pulling is taking place), or pressure
(if pushing), & without considering whether [the force arises from] a
man or an animal, a weight, a spring, a resistance occasioned by an
obstacle or by the force of inertia of a movable [body] (I), a rubbing, an
impulse caused by the wind or by a current, &c. One gives in general,
the name puissance to the effort exerted by the agent, that is to say, to
this pressure or tension by which

(I) A body that one forces to change its state of rest or of motion resists (XI) the agent which

produces the change, & it is this resistance which one calls the force of inertia. To evaluate

this force it is necessary then to decompose the actualmotion of the body into two parts, one ofwhich

is [the motion] that it will have the instant afterwards. [because] The other [part of the motion] will

evidently be that which must be destroyed in order to force the body’s change of state, that is to say,

the ‘resistance with which it opposes this change’ or its ‘force of inertia’, from which it is easy to

conclude, that The force of inertia of a body is the resultant of its actual motion& the motion equal

& opposite to that which it must have the following instant.
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it acts on the body towhich it is applied;&one compares these different
efforts without regard to the agents that produce them as the nature of
these agents can change nothing about the forceswhich they are obliged
to exert in order to fulfill the various purposes that the Machines are
[designed] for. The Machine itself, that is to say, the system of fixed
points, barriers, rods, levers&other intermediary bodieswhich serve to
transmit these different efforts fromone agent to another - theMachine,
I say, is of itself considered as a body stripped of inertia. Its real mass,
when it is necessary to consider it, either because of the motion which
it absorbs, or because of the weightiness or other motive forces which
can be active, is regarded as a foreign puissance applied to the system.
In a word, a Machine proper is an assemblage of immaterial barriers
& movable bodies incapable of reaction or deprived of inertia, that is
to say (XXIX), a system of bodies having infinite or zero density. To
this system one imagines that different external agents, among which
one considers the mass of the Machine, are applied & transmit their
reciprocal action by the intervention of this Machine. It is the pressure
or other effort exerted by each agent on this intermediate body that one
calls force or puissance, & it is the relationship between these different
forces the study ofwhich is the object of the theory ofMachines proper.
Well, it is from this point of view, that we are now going to treat
equilibrium & motion; but a force taken in this sense is nonetheless a
quantity of motion lost by the agent
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which exerts it, nomatterwhatever this agentmight be in other respects.
Whether it acts on the Machine in pulling it by a cord or in pushing it
by a rod, the tension of this cord or the pressure of this rod expresses
equally the effort which it exerts on the Machine, & the quantity of
motion that it itself loses by the reaction which it experiences. If there-
fore one calls this force F then this quantity F will be the same thing
as that which is expressed by mU in our equations (I). Therefore if
one calls Z the angle between this force F & the speed u, at what
would be the point where it is supposed to be applied, [then] if one
were to give the system any geometric motion whatever, the general
equation (F) becomes

∑
FucosZ = 0 (AA). It is therefore in this form

that we will employ this equation from now on, by means of which
we can apply what we say to any type of force we can imagine; & the
principles displayed in this first part, will serve us to develop the

(I) It is evident that the quantity of motion lost, mU , is the resultant of the motion which the body

m would have had the instant after if it had been free, & motion equal & directly opposite to that

which it really takes. Now the first of these two motions is itself the resultant of the actual motion

of m & of the absolute motive force. Thus mU is the resultant of three forces which are: its absolute

motive force, its actual quantity of motion, & the quantity of motion equal & directly opposite

to that which it must have the instant after. However, following the preceding note, the resultant of

these last two quantities of motion is the force of inertia; thusmU or F is the resultant of the motive

force of m & of its force of inertia. In other words, the force exerted by any body, at each instant,

is the resultant of its absolute motive force, & of its force of inertia.
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general properties ofMachines proper,which is the object of the second
part.

SECOND PART.

Machines Proper.

DEFINITIONS.

XXXI. Among the forces applied to a Machine in motion, some are
such that they make an acute angle with the speed (at the point where
they are applied), while the others form obtuse angles with theirs. This
posed, I will call the first – moving forces or soliciting forces, & the
others – resisting forces. For example, if a man makes a weight rise by
means of a lever, a pulley, a screw &c., it is clear that the force-weight
& speed of the weights necessarily form an obtuse angle by the fact
that they oppose each other (they are in competition) – were this not
the case, it is obvious that the weight would descend instead of rising
– whereas [in the case of motive force] the motive force & its speed
form an acute angle. Therefore, by our definition, the weight will be
the resisting force & the man will be the soliciting force. It is indeed
obvious that this [(soliciting force)] tends to further the actual motion
of the Machine, while the other [(resisting force)] opposes it.
We will observe that the soliciting forces can be directed in the same

directions as their speeds, (as then the angle formed by their paths is
null & in consequence acute), & that the resisting forces can act in the

sense
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directly opposite to their speeds, – as then the angle formed by their
paths is 180◦& consequently obtuse.
Again, it is to be noticed that a force that is soliciting could become

resisting if the motion changed, and that a force that is resisting at a
certain instant may become soliciting in another instant; & finally, in
order to determine which it is at any instant, it is necessary to consider
the angle which it [the force] makes with the speed (at the point where
it is supposed applied); if this angle is acute, the forcewill be soliciting;
& if it is obtuse, it will be resisting, until the angle in question changes.
One sees from this that if one gives a geometric motion to any system
of forces, each of these will be soliciting or resisting in regard to the
geometric motion, depending on whether the angle formed by this
force, & its geometric speed will be acute or obtuse.
XXXII. If a force P moves with speed u, & the angle formed by the

directions of u & P is z, the quantity Pcoszudt in which dt expresses
the element of time, will be namedmoment of activity 43 consumed by
the force P during dt . That is to say, the moment of activity consumed
by a force, P , in an infinitely short time, is the product of this force (in
the direction of the speed) and the distance undertaken (from the point
of application) in this infinitely short time.
I will denominate by moment of activity, consumed by this force, in

a given time, the sum of moments of activity, consumed by it at each
instant, such that

∑
Pcoszudt is the moment of activity, consumed in

some indeterminate time.44

E
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For example, if P is a weight, the moment of activity, consumed in
some indeterminate time t , will be P

∑
udtcosz. Let us therefore

suppose that after a time t the weight P descends by a quantity H .
Then one evidently has dH = udtcosz, and therefore the moment of
activity consumed during dt will be P

∑
dH = PH .

XXXIII.When a system of forces is applied to aMachine in motion,
I will callmoment of activity consumed by all forces of the system, the
sum ofmoments of activity consumed at the same time by each of these
system-forces. Thus themoment of activity consumed by the soliciting
forces will be the sum of the moments of activity consumed at the
same time by each of them, & the moment of activity consumed by the
resisting forces will be the sum of the moments of activity consumed
by each of these forces:& as each resisting forcemakes an obtuse angle
with the direction of its speed, the cosine of this angle is negative, and
the moment of activity consumed by these resisting forces is therefore
a negative quantity. Thus the moment of activity consumed by all the
forces of the system is the same thing as the difference between the
moments of activity consumed by the soliciting forces & themoment of
activity consumed at the same time by the resisting forces, considered
as a positive quantity.
A force calculated in the direction [directly] opposed to that of its

speed,&multiplied by the path (at the point of application) described in
an infinitely small time, will be called themoment of activity produced
by this force in
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this infinitely short time. So the moments of activity, consumed & the
moment of activity, produced are two equal quantities but with contrary
signs. There is between them a difference analogous to that which one
finds (XXI) between moments of the quantity of motion, gained & lost
by a body - with respect to its geometric motion.
Iwill also give the namemoment of activity, exerted by a force, to that

which I have calledmoment of activity, consumed if it is soliciting, & to
thatwhich I have called itsmoment of activity, produced if it is resisting.
Thus themoment of activity, exerted by any force, in an infinitely short
time, is in general the product of this force and the distance which it
describes in this infinitely short time, & by the cosine of the smaller
of the two angles formed by the directions of this force & its speed -
from which it evidently follows that this moment of activity, exerted,
is always a positive quantity.
Wewillmake, in respect of the quantitieswhichwe have just denom-

inated moments of activity, produced, & moments of activity, exerted,
similar remarks to those which we have made above, on the subject of
the moment of activity, consumed by a force or a system of forces in a
given time.
Admitting these definitions, I pass on to the general principle of

equilibrium & motion in Machines proper, & whose study has been
the principal object of this Essay.

E ij
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FUNDAMENTAL THEOREM.

General Principle of equilibrium & of motion in
Machines.

XXXIV.Whatever the state of rest or of motion found in any system
of forces applied to a Machine, if we suddenly give it [the system] an
arbitrary geometric motion, without changing these forces, [then] the
sum of the products of each force and each [initial] speed [when taken
from the point of application, and in the direction of the force,] will be
equal to zero.45

That is to say, therefore, that in naming by, F , each of these forces
(1), u the speed

(1) It will perhaps not be useless to forestall an objection that may present itself to the mind of those

who have not paid attention to what has been said (XXX) on the true sense that must be attached to

the word force. Let us imagine, for example, say, a winch to the wheel & drum of which weights

are suspended by cords. If there is equilibrium, or the motion is uniform, then the ratio of weights

attached to the wheel & to the cylinder, will be the same as the ratio of cylinder-radius to wheel-

radius - and this is consistent with the proposition. But it is not the same when the Machine has an

accelerated or a retarded motion. It appears then that these forces are [no longer] in the reciprocal

ratio of their speeds (speeds as estimated [calculated] in the direction of these forces), as would

follow from the proposition. The reply to this is that, in the case where the motion is not uniform,

the weights in question are not the only forces exerted in the system, because the motion of each

body, changing continually, opposes at each instant, by its inertia, a resistance to this change of

state. We must
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at the first point of application, & z the angle between the directions
of F & u, and if one imparts a geometric motion to the Machine,
then it must be proved that for the whole system

∑
Fucosz = 0. But,

this equation is precisely equation (AA) found in (XXX), which is
nothing else at root but the same fundamental equation (F), presented
in a different form.
It is easy to perceive that this general principle is only, properly

speaking, that of Descartes to which one gives a sufficient generalisa-
tion, for it to include not only all the conditions between two forces,
but as well all those of equilibrium &motion in a system composed of
any number

therefore also take account of this resistance. We have already said (XXX - see the note), how this

force must be evaluated , & we will see later (XLI), how one must make it enter into the calculation.

Pending this, it suffices to remark that the forces applied to the Machine in question here are not

given by the weights but by the quantities of motion lost by the weights (XXX) - to be estimated by

the tensions of the cords by which they are suspended. However, whether the Machine is at rest or

in motion, and whether the motion is uniform or not, the tension of the cord attached to the wheel is

to that of the cord attached to the cylinder, as the radius of the cylinder is to the radius of the wheel -

that is to say, the tensions are always in reciprocal ratio to the speeds of the weights they support.

This is in accordwith the proposition.But these tensions are not equal to theweights; they are (XXX-

see the note) the resultants of these weights and their forces of inertia, which are themselves the

resultants of the actual motions of the bodies & the equal & directly opposed motions to those

they actually have the instant afterwards.

Eiij
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of forces. Also, the first consequence of this theorem will be the prin-
ciple of Descartes, rendered complete by the conditions that we have
seen were omitted by him (V).

Corollary I.

General principle of equilibrium between two
forces.

XXXV. When any two agents46 are applied to a Machine and are
mutually in equilibrium, then, if one imparts to this Machine an arbi-
trary geometric motion: 1st, the forces exercised by these agents are
in the reciprocal ratio of their speeds as estimated in the direction of
these forces; 2nd, one of these forces will be at an acute angle with the
direction of its speed, & the other, an obtuse angle with its speed.
Because if these forces exerted by the agents are named F & F ′, their

speeds u & u′, the angles formed by these forces & their speeds z &
z′, one will have by the preceding theorem, Fucosz + F ′u′cosz′ = 0.
Therefore F : F ′:: − u′cosz′ : ucosz, which is the proportion stated in
the first part of this corollary, & by which one sees at the same time
that the relationship of cosz to cosz′ is negative; from which it follows
that one of the angles is necessarily acute, & the other obtuse.
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Corollary II.

General principle of equilibrium in
weight Machines.

XXXVI.When several weights applied to anyMachine are mutually
in equilibrium, and one imparts any geometric motion to this Machine,
then the speed of the centre of gravity of the system, estimated in a
vertical sense, will be zero in the first instant.
Because, if one calls M the total mass of the system, m that of

each of the bodies that make it up, u the absolute speed of m, V the
speed of the centre of gravity estimated in a vertical sense, g gravity,
z the angle formed by u & by the direction of gravitational attraction,
one will have (following the theorem),

∑
mgucosz = 0, but by the

geometric properties of the centre of gravity, one has
∑

mudtcosz =
MVdt , or

∑
mgucosz = MV g. Therefore, since the first member of

this equation is equal to zero, the second is also; therefore V = 0which
is what had to be proved.
To satisfy all the conditions for equilibrium in aweightMachine, it is

therefore only necessary to consider successively different geometric
motions of theMachine,& set the vertical speed of the centre of gravity
to zero in each case.

E iv
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Corollary III.

General principle of equilibrium between two
weights.

XXXVII. When two weights are in mutual equilibrium, if one
imparts any geometric motion to the Machine.
1st The speeds of these bodies, taken in the vertical sense, will be in

the reciprocal ratio of their weights.
2ndOneof theweightswill necessarily rise,while the other descends.
This proposition is one manifestly following from the preceding

corollary, & is deduced even more evidently than the first corollary.
One may remark in passing, how very essential it is for the accuracy

of all these propositions, that the motions imparted to the Machine are
geometric & not simply possible; because the merest glance will show
(looking at certain specific examples) that without this condition all
the propositions will be absurd.

Remark.

XXXVIII. One ordinarily understands that for the principle of equi-
librium in weight Machines, the centre of gravity of the system is at
the lowest point possible; but one knows that principle is not generally
true because, besides certain cases where it can be the highest point,
there are an infinity of other [cases] where it is neither the highest point
nor the lowest point.
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For example, if the whole system reduces to a heavy47 body, & this
movable body is placed on a curve which has a point of inflection
whose tangent is horizontal, then it will manifestly stay in equilibrium
if it is placed at the point of inflection, which is not, however, either
the lowest or the highest possible point [for this weight].
We may again take as the principle of equilibrium in a weight-

Machine the proposition which we have already given (II), & that we
are going to state again, in order to prove it rigorously48.
To be sure that several weights applied to anyMachine are in mutual

equilibrium, it is sufficient to prove that if the Machine is left to itself,
the centre of gravity of the system will not descend49.
To prove it, let us name M the total mass of the system, m that of

each of the weights that compose it, g the acceleration due to gravity;
& let us suppose that if the Machine does not stay in equilibrium, as
I claim, then the speed of m after time t , would be V , the height that
the centre of gravity would have descended in the same time H , &
the height through which the bodies descended mh; we will therefore
have, (XXIV)

∑
mgdh − ∑

mVdV = 0, and therefore after integrat-
ing MgH = 1

2

∑
mV 2. Yet by hypothesis H = 0, thus

∑
mV 2 = 0

which cannot hold unless V = 0, that is to say, without there being
equilibrium - which was what needed to be proved.
It follows from this, as we have said (III), that there is necessarily

equilibrium in a system of weights whose centre of gravity is at the



146 1 A Critical Translation



1 A Critical Translation 147

lowest point possible; but we have seen (XXXVIII) that the inverse is
not always true, that is to say, that every time there is equilibrium in a
system of weights, it does not always follow that the centre of gravity
is at the lowest point possible.

Corollary IV.

Specific laws of equilibrium in Machines.

XXXIX. If there is equilibrium between several forces applied to
a Machine &, having decomposed all the forces of the system (those
applied to the Machine, & those exerted by the barriers or fixed points
in the Machine), if we decompose them, I say, each into three other
forces parallel to any three mutually perpendicular axes then;
1st. The sum of the component forces, which are parallel to the same

axis, & directed to the same side, is equal to the sum of those which,
being parallel to the same axis, are directed towards the opposing side:
2nd. The sum of the moments of the component forces, which tend to

turn around the same axis & which act in the same direction, is equal
to the sum of the moments of those which turn about the same axis, but
in the opposite direction.
To prove this proposition, let us start by imagining that in place of

the forces exerted by the resistance of barriers, we substitute an active
force, equal to this
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resistance, & directed in the same direction. This change does not alter
the state of equilibrium,&makes theMachine into a systemof perfectly
free forces, that is to say, with no constraints operating. This assumed,
if we impart to the system any geometric motion, we will have, by the
fundamental theorem,

∑
Fucosz = 0, (denominating the forces F , u

the speed, & z the angle beween F & u; therefore:
1st. If we suppose that u is the same for all points of the system &

it is parallel to one or another axis, then the motion will be geometric,
& the equation will reduce to

∑
Fcosz = 0 due to u being constant

- that is to say, the sum of the forces in the system, estimated in the
direction of the speed u and acting parallel to this axis, will be null.
This evidently amounts to the first part of the proposition.
2nd. If we turn the system around any of these [Cartesian] axes,

without any change to the respective positions of the parts which com-
pose it, then this motion will be geometric; u will be proportional to
the distance of each force to the axis & so can be expressed by AR,
where R expresses this distance & A is a constant. Thus, the equation
reduces to

∑
FRcosz = 0 which, as is easy to see, amounts to the

second part of the proposition.

Corollary V.

Specific law concerningMachines whosemotion changes by insensible
degrees50.
XLI. In a Machine whose motion
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changes by insensible degrees, the moment of activity, consumed in a
given time by the soliciting forces, is equal to the moment of activity
exerted in the same time by the resisting forces.
That is to say, (XXXIII), that the moment of activity consumed by

all the forces of the system during the given time is equal to zero,
which will be clear, (XXXII), if one proves that themoment of activity
consumed at each instant by these forces is null. However, taking F as
expressing each of these forces, V its speed, Z the angle between F &
V , & dt the element of time, then the moment of activity consumed by
all the forces of the system during dt is, (XXXIII),

∑ ∫
FVcosZdt . It

is necessary then to prove
∑∫

FVcosZdt = 0 or
∑

FVcosZ = 0 –
but this is [already] clear from the fundamental theorem (and therefore,
&c.).
The specific law stated here is without doubt the most important law

in thewhole of the theory ofmotion ofMachines proper. Here are some
particuar applications, still awaiting detail, which we will introduce in
the scholium that will follow the succeeding corollary, & which will
end this Essay.
XLII. Let us suppose, for example, that the forces applied to the

Machine are weights. Let us name m the mass of each of the bodies,
M the total mass of the system, g the acceleration due to gravity, V
the actual speed of the bodies, K their initial speed, t the time elapsed
since the start of the motion, H the height that the centre of gravity of
the system descends during time t , & finally, W the speed due to the
height H .
This assumed, it is necessary to consider that there are two sorts of

forces applied to the Machine. These are
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those that come from the weight of the bodies & those which come
from their inertial resistance (which opposes any change of state) (note
3 (XXX))*. Now, (XXXII) the moment of activity consumed during
time t by the first of these forces is, for the whole system, MgH , or
1
2MW 2. Let us nowseewhat is themoment of activity, consumedby the
force of inertia. The speed of m being V , & becoming the instant after
V + dV , it is clear (note b (XXX))that the force of inertia calculated
in the direction of V is mdV or, rather, mdV

dt . Therefore, (XXX), the
moment of activity exerted by this force during dt is mdV

dt V dt or
mVdV . Therefore, the moment of activity consumed by the force of
inertia during time t is

∑
mVdV or, on integrating & completing the

integral, 12mV 2 − 1
2mK 2. Therefore, themoment of activity consumed

at the same timeby the force of inertia of all the bodies of the systemwill
be 1

2

∑
mV 2 − 1

2

∑
mK 2. However, this inertia is a resisting force, as

it is in thisway that bodies resist their change of state:& the [heaviness]
gravity is here a soliciting force, since the centre of gravity is assumed
to descend; therefore, by the proposition of this corollary,wemust have
MW 2 = ∑

mV 2 − ∑
mK 2; or ∑

mV 2 = ∑
mK 2 + MW 2, that is

to say
In a weight Machine whose motion changes by insensible degrees

the sum of the live forces is, after a given time, equal to the sum of the
initial live forces plus the sum of the live forces that would result if all

*See Errata.
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the bodies of the system had a common speed, equal to that which is
due to the fall in height of the centre of gravity of the system.
XLIII. If the motion of the Machine is uniform we will have V = K

continually, & thus W 2 = 0 or H = 0, from which we deduce that:
In a weight Machine, where the motion is uniform, the centre of

gravity of the system remains constantly at the same height.
XLIV. Because (by XXXII) the moment of activity produced by

a weight Mg rising to a height H is given by 1
2MW 2 or MgH , it

evidently follows that:
No matter in what way one raises a certain weight to a given height,

it is necessary that the forces which are used to produce this effect
consume a moment of activity equal to the product of this weight and
the height to which it must be raised.
XLV. Similarly, since ([by] XLII) the moment of activity produced

in a given time by the force of inertia of a body is equal to half the
quantity by which its live force will be increased during this time, we
can also conclude that:
To generate, by insensible degrees, any motion in a system of bodies,

or to change that which it has, it is necessary that the forces that
produce this effect consume a moment of activity equal to half the
quantity by which the live force of the system will be increased by this
change.
XLVI. It evidently follows from the last two propositions that in

order to raise a weight Mg by a height H , & at the same time give it a
speed V , it is necessary, supposing
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this body is at rest in the first instant, that the forces employed to
produce this effect, themselves consume a moment of activity equal to
MgH + 1

2MV 2.
LXVII. We suppose that in everything that has just been said, as

stated in the title of this corollary, the motion changes by insensible
degrees. However, if inmoving on its path, a collision or sudden change
in the system happens, what we have just said will not apply. Let us
suppose, for example, that at the moment the collision happens, the
centre of gravity of the system has descended by a height h and that, at
the same moment, the sum of live forces is X immediately before the
collision, & Y immediately afterwards. Let us name as Q the moment
of activity which will be consumed by the moving forces during the
period of motion, & as q that which has been consumed since the
beginning up to the moment of collision. Let us finally suppose, for
greater simplicity, that the system is at rest in the first instant & at
the last. Then it is clear (by XLVI) that we will have q = Mgh + 1

2X
& that, for the same reason, the moment of activity consumed by the
moving forces after the collision, that is to say, Q − q will beMg(H −
h) − 1

2Y , and so Q = MgH + 1
2X − 1

2Y . However, (by XXIII) it is
clear that X > Y , and thus the moment of activity consumed in raising
M to the height H , in this case, is necessarily greater than if there had
been no collision, since in this case we would simply have Q = MgH
(XLIV).
It follows from this that without consuming a greater moment of

activity the forces can, in avoiding a collision, raise the same weight
to a greater height H because
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wewill thenhave (byXLVI)Q = MgH ′,whereH ′ = Q/Mg,whereas

in the present case we have H = Q− 1
2 (X−Y )
Mg . From all this we see that

X being greater than Y , it is necessary that we also have H ′ > H .

Corollary VI.

Hydraulic Machines

XLXVIII. We can regard a fluid as an assemblage of an infinite
number of solid particles, disconnected from each other. We can then
apply to hydraulic Machines all that we have said of other Machines.
Thus, for example, in the first corollary (XXXV), we can conclude
that if a fluid mass, without weight, were enclosed on all sides in a
vessel, & that, having given this vessel two equal little openings, we
apply pistons, then the forces which act on the fluid mass in pushing
these pistons must be equal if they are in mutual equilibrium. That
is to say, therefore, that in a fluid mass the pressure acts equally in
all directions: this is the fundamental principle of the equilibrium of
fluids, which we ordinarily regard as a purely experimental fact. We
will prove also ([by] XXV) that the conservation of live force holds
in incompressible fluids whose motion changes by insensible degrees.
Finally, in general, everything that we have proved for a system of hard
bodies is equally true for a mass of incompressible fluid. Scholium.
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Scholium.

XLIX.This scholium is intended for the development of the principle
enunciated in corollary V. The proposition encompasses, in effect, the
main part of the theory of Machines in motion, because most of them
[the other propositions] are mute when it comes to agents that can only
exert dead forces or pressure – such as [is the case for] all animals,
springs, weights, &c – that ordinarily make the Machine change its
state by insensible degrees. [However] It happens even more often that
this Machine passes very quickly to [the state of] uniformmotion; here
is the reason:
The agents [working substances] which move this Machine, finding

themselves at the beginning a little greater than the resisting forces, give
rise to a littlemotionwhich subsequently accelerates little by little. But,
whether by a necessary consequence of this acceleration – the soliciting
force diminishes, whether the resistance increases or whether, finally,
some variation in the direction occurs), it almost always happens that
the relation of the two forces [(the resisting force and the soliciting
force)] approaches more and more to that needed to make them mutu-
ally in equilibrium. Therefore these two forces destroy each other &
the Machine does not move except by virtue of the acquired motion –
which, because of the inertia of matter, usually remains uniform.
L. In order to better understand how this must happen, one need only

consider the motion taken up by a ship that has wind at the stern: it is a
type of Machine subject to two contrary forces – the propulsion of the
wind, & the resistance of the fluid on which

F
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it sails. If the first of these forces (the soliciting force), is the greater,
then the motion of the ship will accelerate. But this acceleration nec-
essarily has limits, for two reasons: the more the motion of the ship
accelerates then; 1st, the more it reduces the impulse of the wind, &
2nd, the more the (oppositional) resistance of the water increases. In
consequence, these two forces tend to equality.When they arrive at this
equality, they will mutually cancel out & so the ship will be moving
like a free body, that is to say, [the ship’s] speed will be constant. If
the wind dies, the resistance of the water exceeds the soliciting force
and the motion of the ship slows. But, by a necessary consequence
of this slowing, the wind will act more effectively on the sails, & the
resistance of the water diminishes at the same time. These two forces
will therefore again tend to equality, & theMachine will likewise come
to uniformity of motion.
LI. The same thing happens when the moving forces are men, ani-

mals or other agents of this nature. In the first instants, the driving
force is a little greater than the resistance; from this, a small motion is
born, and this increases little by little, by repeated thrusts of themoving
force. But the agent itself is obliged to speed up its motion in order to
stay attached to the body to which it imparts the motion. This accel-
eration (which it procures from itself) consumes a part of its effort.
As a result of this, the agent acts less effectively on the Machine – the
motion increases less and less, soon ending up by becoming uniform.
For example, a man who exerts a
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certain effort under equilibrium conditions would exert a lot less if
the body to which he applies his effort yields to him, & if he must
follow that body in order to act upon it. It is not that the man’s absolute
capacity to do work is less, but rather that his effort is shared into two
parts - one part employed to put his own mass in motion, & the other
part transmitted to the Machine. But, it is only this last part that is
manifest for our proposed purposes.
I will continue however to consider Machines from the most general

point of view. Thus I will place in this scholium several reflections
applicable to varied motions. I will suppose only that this variation is
made by insensible degrees, & will prove that this must be so if one
wants to employ them in the most advantageous manner possible.
LII. Let us designate by Q the moment of activity consumed by

the soliciting forces in a given time t , & by q the moment of activity
exerted in the same time by the resisting forces. This assumed, then
whatever the motion of the Machine we will always have, by corollary
V, Q = q . Thus, for example, if each F of the soliciting forces is con-
stant, the speed V uniform, & the angle Z formed by the directions of
F & V always null, we will have at the end of time t ,

∑
FV t = q ,

& if all the soliciting forces reduce to a single one, one will have in
consequence51 FV t = q ([by] XXXII & XXXIII).

LIII. We can in general regard the moment of activity q exerted by
the resisting forces as the effect produced by the soliciting forces. For
example, when the question concerns the raising of a weight P to a
given height H , it is very simple

F ij
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to regard the effort produced by the moving force as being due to the
weight & the height by which it has been raised - such that PH is what
one naturally understands by the effect produced [work done]. But,
on the other hand, this quantity PH is precisely what we have called
the moment of activity exerted by the resisting force P . Therefore the
moment of activity (in other words, q) is what one naturally means, in
this case, by the effect produced.
However, in other cases, it is evident that q is always a quantity

analogous to the one at issue. This is why I will often in what follows
call this quantity q , the effect produced or thework done. Thus, bywork
done, I will understand the moment of activity exerted by the resisting
forces. Thus by virtue of the equation Q = q , we can establish as a
general rule that thework done in a given time by any system of moving
forces is equal to the moment of activity consumed at the same time by
all these forces.
LIV.We see by the equation FV t = q , found in the preceding article,

that it is unnecessary to know the specific form of aMachine in order to
know what effect a force applied to it can produce, when one [already]
knows what effect it can produce without theMachine. Let us suppose,
for example, that a man is capable of exerting a continual effort of 25
lb * while he himself is moving at a speed of three feet per second.
That assumed, when one applies to a Machine the moment of activity
Fvt that this man will exert, it will have the value 25lb × 3 ft× t (by
XXXII), that is to say, we will have FV t = 25lb × 3ft × t , where
t expresses the number of seconds. Thus, as FV t = q , we will have
q = 25lb × 3ft × t whatever

*The symbol used in the original is , the French ‘livre tournois’, a unit of currency.
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the Machine. Therefore the effect q is absolutely independent of the
form of this Machine, & can never exceed that which the force is
capable of producing naturally & without the Machine.
Thus, for example, if this man with his effort of 25 lb & his speed

of three feet per second, is capable with a given Machine, or without
the Machine, of raising in a given time a weight p to a height H , we
cannot invent anyMachine by which it is possible, with the same work
(that is to say, the same force & the same speed as in the first case),
of raising in the given time the same weight to a greater height, or a
greater weight to the same height, or finally the same weight to the
same height in a shorter time. This is obvious, as q being equal to PH
([by] XXXII), we have by the preceding article, PH = 25lb× 3ft× t .
LV. The advantage that Machines give is therefore not to produce a

greater effect with smaller means, but to allow us to choose between
different means that one can call equal, and to select the one that is the
most appropriate in the given circumstances. To force a weight P to
climb to a proposed height, a spring to close up by a given quantity,
a body to take by insensible degrees a given motion, or finally any
other agent whatever to produce some given moment of activity, it
is necessary that the proposed moving forces themselves consume a
moment of activity equal to the first. No Machine can avoid this; but
as the moment [of activity] results from several terms or factors, one
can vary them by choice, in diminishing the

F iij
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force at the expense of time, or the speed at the expense of force, or
better, in employing two or several forces in place of one. This gives
an infinity of means for producing the necessary moment of activity;
but whatever is done, it is always necessary that the means are equal,
that is to say, the moment of activity consumed by the soliciting forces
is equal to the effect of moment [(the moment of activity)] exerted at
the same time by the resisting forces.
LVI. These reflections appear sufficient to disabuse those who

believe that employing Machines filled with levers arranged in some
mysterious fashion, one could put an agent, as weak as could be, and
still produce the greatest of efforts. The error arises in persuading one-
self that it is possible to apply to Machines in motion what is true only
for the case of equilibrium, that a small force, for example, can hold
a very great weight in equilibrium (many people even believe that the
weight could be raised as quickly as desired). But this is a very great
error, for to succeed, it would be necessary that the agent gives to itself
a speed above its powers, or at least, would make it lose the greater part
of its effort, which would oblige it to move more quickly. In the first
case, the agent has no other purpose to fulfill than to make an effort
capable of counter-balancing the weight; in the second, it is necessary
that outside of this effort, it [the agent] makes an extra one [effort] in
order to overcome inertia, both [the inertia] of the body to which it
imparts motion, & [the inertia] of its own mass. The total effort, which
in the first case would be employed entirely to overcome the gravita-
tional force on the body, is thus shared into two parts, the first of which
continues to balance the weight, & the other to produce motion. One



172 1 A Critical Translation



1 A Critical Translation 173

can thus only augment one of these efforts at the expense of the other,
& that is why the effect of Machines in motion is always so limited,
that it can never exceed the moment of activity exerted by the agent
which produced it.
It is doubtless by not giving sufficient attention to the different effects

of the same Machine considered sometimes at rest, & sometimes in
motion, that people to whom the sound theory is unknown sometimes
abandon themselves to the most chimerical ideas, while on the other
hand we see simple workers assert, by a kind of instinct, the real prop-
erties of Machines, & judge their effects very well. Archimedes asked
only for a lever & a fixed point to raise the globe of the world. How can
it be, then – one may well ask – that a man as strong as Archimedes52

cannot, even equipped with the most beautiful Machine in the world,
raise aweight of a hundredpounds in anhour of time to somegivenmid-
dling height? It is because the effect [work capabilities] of a Machine
at rest, & that of a Machine in motion, are two very different things
&, in certain respects, having different natures. In the first case, it is a
matter of destroying or impeding the motion; in the second case, the
object is to create & maintain motion. However, it is clear that this
last case requires more consideration than the first; one must know the
real speed of each point of the system. But one will be better able to
perceive the reason for the difference after by the following remark.
The fixed points & barriers are purely passive forces that can absorb

a motion, however large it is, but can never give rise to one, as small
as

F iv
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wewant to imagine, in a body at rest: however, it is improper that, in the
case of equilibrium, one says of a small force that it cancels out a great
one. It is not by the small ‘puissance’ that the larger one is destroyed;
[rather,] it is by the resistance of fixed points. The small force really
cancels only a small part of the large one [force], & the barriers [cancel
out] the remainder. If Archimedes had been given what he asked for
[that is, a lever], it is not he who would have supported the globe of the
earth, it is the fixed point. All his art would have consisted, not in the
redoubling of the effort in the struggle against the mass of the earth,
but (using all the forces at his disposal) and placing in opposition the
two great [categories of] force, one active, the other passive. If, on the
contrary, it had been a question of giving rise to somemotion (a motion
that had the capability of doing work), then Archimedes would have
been obliged to draw it in its entirety out of his own reserves. Also,
these reserves would have been very small, even after several years.
Let us, therefore, not attribute to active forces that which is due only
to the resistive-force of barriers, & the disproportion between cause &
effect will not seemmore extreme inMachines at rest than inMachines
in motion.
LVII. What is then the true purpose of Machines in motion? We

have already said, it is to procure the ability to vary at will the terms of
the quantity Q, or momentum of activity, that must be exerted by the
moving forces. If time is precious, so that the effect must be produced
in a very short time, but one only has a force capable of little speed but
great effort, one can find a Machine to supply the necessary speed by
the force. If, on the contrary, one must raise a very considerable weight
but one has only a weak force capable of great speed,
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one can imagine [deploying] aMachine whereby the [active] agent can
compensate by its speedwhat it lacks in force. Finally, if the ‘puissance’
is capable neither of great effort nor of great speed one can again, with
a suitable Machine, produce the desired effect, but only by employing
lots of time; & it is for this reason that the well-known principle arise
[:] that in Machines in motion, we always lose in time or in speed what
we gain in force.
Machines are thus very useful, not in augmenting the effect of which

the forces are naturally capable, but in modifying this effect. One will
never succeed, it is true, in diminishing the expenditure ormomentum of
activity necessary to produce a proposed effect, but they [(Machines)]
can help to make a repartition of this quantity suitable to the design one
has in view. It is with their help that one succeeds in determining, if not
the absolute motion of each part of the system, at least in establishing
the relations between different specific motions which are more suit-
able. It is finally by them [the relations] that we will [be able to] match
the moving forces to those cases where the situations & directions are
the most convenient, the least tiring, the most proper to employ their
abilities in the most advantageous manner.
LVIII. This naturally leads us to the interesting question: what is

the best way of employing given forces, & of known natural effect,
in applying them to Machines in motion? That is, what is the way for
them to produce the greatest possible effect?
The solution of this problem depends on
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specific circumstances; but we can offer [on this problem] some obser-
vations that are general & applicable in all cases. Here are some of the
more essential.
The effect produced being the same thing (LIII) as the moment of

activity exerted by the resisting forces, the general condition is that
q should be a maximum. However, q not being able exceed Q, it is
necessary: 1st that the quantity Q should itself be the greatest possible;
2nd that all the moment Q should be employed only to produce the
proposed effect.
To maximize Q, it is necessary to consider that it depends on four

things, these are: the quantity of force exerted by the agent that must
produce the effect q , its speed, its direction, & the time during which it
acts. However: 1st, (concerning the direction of the force) it is evident
that this force must, other things being equal, be in the same direction
as the speed because for a force F whose speed is V acting for a
duration dt & the angle between F & V being Z , the moment of
activity ([by] XXXII) is FVdtcosZ . It is clear that this product will
never be greater than when cosZ is equal to the whole sine, that is
to say, when the force & the speed are directed in the same direction;
2nd. As to that which regards the intensity of the exercised force, its
speed,& the time duringwhich it is exerted, we can not determine these
things in an absolute manner but only give them the relationships that
experience has shown us to be most advantageous. For example, we
have recognized, I suppose, that a man hooked up to a crank of a foot
in radius, for eight hours a day,
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canmake a continual effort of 25 lb, inmaking one turn in two seconds,
which makes a speed of roughly three feet per second; but if one forces
the man to go much faster, believing that this will speed up the task,
one will slow it down, because he will not be in a state tomake an effort
of 25 lb, or will not be able to sustain the work for eight hours a day. If,
on the contrary, one would reduce the speed, the force would increase,
but in a lesser relation – & the moment of activity is again diminished.
Thus, in the light of experience, for the moment to be a maximum, it is
necessary to proportion the Machine in such a way as to keep the force
at a speed of three feet per second, & tomake himwork for only around
eight hours per day. One perceives that each type of agent has, having
regard to its nature or physical constitution, a maximum analogous to
that of which we have just spoken, & that thismaximum can in general
be found only by experience.
LIX. This first condition being fulfilled, it will remain only, in

order to make a given Machine produce the greatest effort possible,
to make it so that the whole of the quantity Q may be employed
to produce this effect; because if this is so, one will have q = Q,
& this is all that one can ever lay claim to, as Q can never be less
than q .
Now, to fulfill this condition, I say firstly, that one must avoid all

shock or sudden change; because it is easy to apply to all imaginable
cases the reasoning that has been applied (XLVII) to weight Machines.
From this it follows that any time there is a shock, there is at the same
time a loss of moment
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of activity on the part of the soliciting forces - a loss so noticeable in
reality that the effect is necessarily diminished, as we have shown for
weight Machines in the article cited. It is therefore with reason that
we have advanced (LI), that to make Machines produce the greatest
effect possible, it is necessary that they never change their motion other
than by insensible degrees. We must just make one exception in the
case of those [Machines] which, by their very nature, are subject to
experiencing different percussions - such as most mills - but even in
this case it is clear that one must avoid all sudden changes that are not
essential to the constitution of the Machine.
LX. One may conclude from this, for example, that the means of

producing the greatest possible effect in a hydraulic Machine, moved
by a current of water, is not to adapt a wheel whose blades would
receive the shock of the fluid. As a consequence there are two reasons
that prevent one from producing the greatest effect in this way: the
first is that of which we are going to speak, that is, that it is essential to
avoid any percussion whatever; the second is that, after the shock of the
fluid, there is still a speed which remains as a pure loss, since one could
employ this residual [speed] to produce a new effect which would add
to the first. To make the most perfect hydraulic Machine, that is to say,
capable of producing the greatest effect possible, the true nub of the
difficulty would thus consist of, 1st, to arrange things such that the
fluid loses absolutely all its motion by its action on the Machine, or
that at least only such quantity remains as is precisely what is needed
so that the fluid can escape [exit the Machine] after its action; 2nd, that
it loses all its motion
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by insensible degrees & without any percussion, either on the part of
the fluid, or on the solid parts between them. In other respects, little
of the [exact specification] of the Machine is important as a hydraulic
Machine which fulfills these two conditions will always produce the
greatest effect possible. But this problem is very difficult to solve in
general, not to say impossible. Perhaps, accepting the physical state of
things, & having regard to simplicity, there is [still] nothing better than
the wheels being moved by shock; & in this case, it is impossible to
simultaneously fulfill both desirable conditions (the more one would
wish to make the fluid lose its motion in order to approach the first
condition, the greater will be the shock; & on the contrary, the more
one wishes to moderate the shock to approach the second condition,
the less the fluid will lose its motion). One feels that there is a middle
road to take and by this means one will determine, if not in an absolute
way, at least having regard to the nature of the Machine, that which
will be capable of yielding the greatest effect.
LXI. One other general condition which is not less important – when

one wantsMachines that can produce the greatest possible effect – is to
make it so that the soliciting forces give rise to no motion useless to the
object that is proposed. If my goal, for example, is to raise to a given
height the greatest possible quantity of water, whether with a pump
or otherwise, I must do it so that the water, in arriving at the higher
reservoir, has only precisely that speed which was required [just] in
order to convey it [shift it from one place to another], because anything
beyond that will uselessly consume the effort of the driving force. It is
clear (XLV) that in this
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case the force will consume a useless moment of activity, equal to half
the live force with which the water will arrive in the reservoir.
It is no less evident that in order to make Machines produce the

greatest possible effect, one must (at least as much as possible)
avoid or diminish passive forces, such as that of friction, the stiff-
ness of cords, the resistance of the air, that are always, in whatever
way the Machine moves, among the number of those I have named
resisting (I).
Finally, it is easy to extend these specific remarks; & my object is

not to go into the above in greater detail.
LXII. One may conclude from what we are coming to say on the

subject of friction & other passive forces, that perpetual 53 motion is
absolutely impossible, as it employs – for the production of perpetual
motion – only bodies that are not solicited by any motive force, or even
by [the descent of] heavy bodies; because these passive forces which
we cannot eliminate, being always resisting,

(I) One often speaks of passive forces, but what is a passive force, what is the difference between

it and an active force? I believe that we have not yet answered this question, & even that no one hs

ever done so. But, it seems to me, the distinctive characteristic of passive forces consists in the fact

that they can never become soliciting, whatever is or could be the motion of the Machine, whereas

the active [non-passive] forces can act, sometimes as soliciting forces & sometimes as resisting

forces. On this view, barriers & fixed points are evidently passive forces - as they can act neither

as soliciting forces, nor as resisting forces (XXXI).
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it is evident that the motion must continually be retarded. [&] After
what we have said (XLV), we see that if bodies are not solicited by any
motive force, the sum of the living force will reduce to nothing. That
is to say, the Machine will come to rest when the moment of activity,
produced by friction since the start of the motion, will become equal
to half the sum of the original live force. & If the bodies are heavy, the
motion will stop when the moment produced by the forces of friction
equals half the sum of the initial live force, plus half the live force
which would have applied if all points of the system had a common
speed, this speed being determined by the change in height of the centre
of gravity from its starting height at the first instant of motion, to its
lowest point; this is evident from article (XLII).
It is easy to apply the same reasoning to the case where there are

springs, & in general, to all those cases where, ignoring friction, in
order to move the Machine from one position to another, the soliciting
forcesmust exert amoment of activity as great as thatwhich is produced
by the resisting forces, when the Machine returns from its last position
to its first.
The motion would finish even more quickly if there was some per-

cussion, as the sum of the living forces always diminishes in this case
(XXIII).
It is therefore evident that one must absolutely despair of producing

what one calls perpetual motion, if it is true that all the motive forces
which exist in nature,
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are only attractions,& that [attractive forces have] as a general property,
or so it seems, to be always the same at equal distances between given
bodies, that is to say, to be a function which varies only in the case
where the distance between bodies itself varies.
LXIV. A general observation which results from all that has just

been said, is that this type of quantity, to which we have given the name
moment of activity, plays a very great role in the theory of Machines in
motion - because it is in general this quantity which must be reduced
as much as possible, in order to extract from an agent all the effort of
which it is capable.
If it is a question of raise a weight – water, for example – to a given

height, you will raise all the more in the given time, not by consuming
a greater quantity of force, but by exerting a greater moment of activity
(XLIV).
If it is a question of making the millstone of a mill turn – whether

by the shock of water, wind, or the force of animals – it is not in
maximizing the shock of water, of air, or the effort of the animal that
you have to apply yourself, but to make these agents consume the
greatest moment of activity possible.
If one wants to make any sort of vacuum in the air, however we do

it, it will be necessary in order to achieve this, to consume a moment of
activity as great as that which would be necessary to raise to a height
of thirty-two feet, a volume of water equal to the the vacuum that one
wants to produce.
If this vacuum was in an indefinite mass of water like the sea, it

would be necessary to consume in order to achieve this



192 1 A Critical Translation



1 A Critical Translation 193

same moment of activity as if the sea were a vacuum [&] the vacuum
that one wishes to make [was] a volume of sea water, & then this
volume was raised to sea-level height.
Is it that one wants to produce a vacuum in a vessel of given shape?

One obviously cannot achieve this withoutmaking the centre of gravity
of the total mass of fluid rise by an amount determined by the shape
of the vessel. It will be necessary, therefore, to consume a moment of
activity equal to that needed to raise all the water in the vessel by an
amount equal to that by which the fluid’s centre of gravity must rise.
In a Machine at rest, where there is no other force to overcome

except the inertia of the bodies, do you want to give rise to some sort
of motion by insensible degrees [then] the moment of activity that you
will have to consume will be equal to half the sum of the live forces
that will be generated. & if it is only a question of changing the motion
which it [theMachine] already has, the moment of activity needed will
be only the amount by which this half-sum will be increased [by the
changing motion] (XLV).
Finally, let us suppose that one has any system of bodies, that these

bodies attract each other according to some function of their distances;
let us suppose even, if one wants, that this law will not be the same for
all parts of the system, that is to say, this attraction follows whatever
law one wishes (provided that between two given bodies, it varies only
when the distance of these bodies itself varies), & that it is a question
of making the system pass from one given position to another. This
assumed, whatever the route that one makes each of these bodies take,
in order to fulfill this

G
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object, and whether one puts all the bodies in motion at the same time
or one after the other, or leads them from one place to another by a
rectilinear or curvilinear motion, & varying in whatever way (provided
no shock or suddenmotion happens); finally that one employswhatever
Machines one wants, even with springs – provided in this case that one
returns the springs at the end to the same state of tension they had in
the first instant – [then] the moment of activity that one will have to
consume in order to produce this effect (the exterior agents employed
to move this system always being the same) is such that if the system
is at rest in the first instant of motion then it will be at rest at the last
instant.
And if, besides this, it is a question of giving rise to any motion in

the system, or the system already is in motion at the first instant &
it is a question of modifying or changing this motion, the moment of
activity which the exterior agents will have to consume will be equal
to that consumption necessary solely to change the position of the
system, without imparting motion (that is to say, [when the system is]
considered to be at rest at the first & last instants) and in addition, half
the necessary increase in the sum of the live forces.
It thusmatters very little as to expenditure ormomentum of activity to

be consumed, whether the forces employed are large or small, whether
this or that Machine is employed, whether it acts simultaneously or
not. This moment of activity is always equal to the product of a certain
force, speed, & time, or the sum of several products of this nature; &
this sum must always be the same in whatever
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manner it is taken. The agents never gain anything on one side, that is
not lost on the other.
In conclusion; in general one has any system of moving bodies, with

any motive forces, & several exterior agents, such as men or animals,
employed tomove this system in differentways,whether by themselves
or by Machines. With these assumptions:
Whatever change is occasioned in the system, the moment of activity

consumed during any time whatever by the external forces will always
be equal to half the increase in the sum of live forces during this time in
the system of bodies to which they are applied, less half the increase in
the sum of live forces if each of the bodies followed their described path
freely, assuming that at each point on the curve, a body experiences
equal motive and actual forces - provided, as always, that the motion
changes by insensible degrees, & that if one employs Machines with
springs, one leaves the springs in the same state of tension as when one
took them.
LXV. These remarks on themoment of activity gaveme an idea for a

principle of equilibrium specific to the case where the forces exerted in
the system are attractions. I thought the Reader would not be annoyed
to find it here; this is what it consists in:
Several bodies subject to laws of attraction exerted according to any

function of distance, whether by the same bodies on each other, or by
different fixed points, [or] being applied to

G ij
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any manner of Machine; if one makes this Machine pass from some
given position to that of equilibrium, [then] the moment of activity
consumed in this passage by the attractive forces driving the bodies
throughout this motion, will be a maximum.
That is to say, this moment will always be greater than it otherwise

would have been if, instead of making the system pass to a position of
equilibrium, one had constrained it to take a different path, & pass into
some other situation.
For example, if the force under consideration is gravity which one

may regard as an attraction exerted towards a point infinitely far away,
the attractive forces will be the weights applied to the Machine. The
moment of activity exerted by these forces when the Machine has
changed its state will therefore be equal to the total weight of the
system multiplied by the height through which the centre of gravity
will have risen or descended during the change of position (XXXII).
However, the situation of equilibrium is where the centre of gravity is
at the highest or lowest possible point. Therefore, the height to which
the centre of gravity must climb or descend in order to pass from any
given situation to that of equilibrium, is greater than for passing to all
other situations. Thus, themoment of activity consumed in this passage
by the motive forces is greater in the first case than in all other cases.
If the attraction is always constant – as for ordinary gravity – but is

directed towards a fixed point placed at a finite distance, one will easily
conclude from the preceding principle that, in the case of equilibrium,
the sum of the moments of the system of bodies, relative to this fixed
point,
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is a maximum, that is, the sum of the products of each mass and the
distance to the fixed point, is less when there is equilibrium than if the
system is found in any other situation.
If the attraction towards the fixed point, instead of being constant,

was proportional to the distances of the bodies to this fixed point, one
would draw the same conclusion – that the sum of the products of each
mass by the square of the distance to the fixed point is a maximum.
We know that the sum of the products of each mass and the square

of its distance to any fixed point, is equal to the sum of the products of
each mass and the square of the distance to the centre of gravity, and
moreover, to the product of the total mass and the square of the distance
between the centre of gravity & the fixed point (this is a well-known
proposition of geometry, & one for which it is easy to find the proof).
Thus, in the case of attraction which we are examining, the sum of
these two quantities must, in the case of equilibrium, be a maximum,
that is to say, the differential is equal to zero. Let us therefore suppose,
for example, that all parts of the system are bound to each other, [and]
in such a way that they are [may be treated as] one and the same body,
& that this body is suspended by its centre of gravity, such that this
point is fixed. It is clear that each of these quantities (of which we just
spoke) will be constant, that is, will stay the same, whatever situation
is given to the body, & that the differential of their sum will be, in
consequence, null – therefore, there will be equilibrium. That is to say,
if all the parts of a body are attracted towards a fixed point, [with a
strength] proportional to their distance to this point, & one
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suspends this body by its centre of gravity, it will stay in equilibrium
exactly as in the case of ordinary gravity. One must not conclude from
this, however, that in a Machine to which is applied several bodies
attracted towards a fixed point and by an attraction depending only on
distances, the position of equilibrium would be where the centre of
gravity of the system is at its lowest point, that is to say, the closest
possible to the fixed point, because this only happens in the case where
all parts of the system hold together as one single body. [However] in
the [exceptional] case of natural gravity, for the centre of gravity to be
at the lowest point it is not essential that the parts of the system are
bound to each other.
If the bodies are attracted towards a fixed point [with a strength] in

an inverse ratio to their distances to this point, the principle claimed
above will show that the situation of equilibrium is achieved when the
sum of the products of each mass and the logarithm of its distance to
the fixed point, is a maximum.
In general, if the bodies m of the system are attracted because of a

power n, of their distances x , to this point, the equilibrium ‘situation’
will arise where the quantity

∑
mxn+1 is a maximum, or greater than

in any other situation - that is to say, where the difference between
this quantity and what it would be if the system was in a neighbouring
‘situation’ infinitesimally close by, is equal to zero.
If there are, in the system, several fixed points, towards each ofwhich

the bodies m are attracted by a power depending on their distance to
this point, such that x , y, z &c. are the distances ofm to these different
fixed points, Axn , By p, Czq &c [etc.] are the central forces
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of m towards these different centres, this will be the quantity
A

n+1

∑
mxn+1 + B

p+1

∑
myp+1 + C

q+1

∑
mzq+1+&c.whichwill

be a maximum in the position of equilbrium.

And if besides this, the bodies attract each other, with whatever
given power of the distances, so that if X expresses the distance of
the molecules m to each of the other molecules in the system, FXr

is the attractive motive force towards this other molecule, the situa-
tion of equilibrium will be that where the quantity F

2r+2

∑
mXr+1 +

A
n+1

∑
mxn+1 + B

p+1

∑
myp+1 + C

q+1

∑
mz+1 + &c. is a maximum

- that is to say, greater than in all other situations.*

It will be easy again to extend these consequences to other hypothe-
ses of attraction; but the thing seems to be of no utility. Thus I will
confine myself to remarking that we can, by a general principle anal-
ogous to that which we saw before, establish that:
Whatever kind ofmotive forces are applied to a Machine, if one

makes the Machine move in such a way that it passes through the
position of equilibrium, then the instant when it arrives at this situation
will be that when the moment of activity consumed during the motion,
by the motive forces, will be greatest.
That is to say, themoment of activity that the proposedmotive forces

consume during themotion always increases, right up to stagewhen the
Machine attains the position of equilibrium; after which, this moment
[of activity] will keep on diminishing, [and to an extent dependent on
how far]

*Clearly the exponent in the last term is incorrect. It should read
∑

mzq+1.
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the system moves away from this position, once it has gone beyond
it, whatever route among others that one makes the Machine take, to
bring it to this situation.
Let us suppose, for example, that each of the forces applied to the

Machine have a given size, & that one knows in addition one of the
points of direction that it must have in order for there to be equilibrium.
I declare that the situation of equilibrium is that where the sum of
the products of each of these given forces and the distance from the
supposed point of application to the given fixed point along its [given]
direction, is the least possible (I). This is easily obtained from the
preceding principle.
All these things are so easy to prove after what has been said during

the course of this second part, that it seems pointless to linger here.
I will therefore finish this little work with some reflections on the
fundamental laws fromwhich I started to establish the theory contained
herein.

Reflections on the fundamental laws of
equilibrium & motion.

Among thePhilosopherswhooccupy themselveswith re-

(I) It is to be remarked that in all that has been said on the subject of a Machine considered in

different positions, & its passage from one to the other; there is, I say, [a further need] to remark

that these positions are always supposed such that one passes from one to the other by a motion

that is at each instant what I call geometric; otherwise all these propositions would be subject to

the same flaws that we believe (V) can be found in the principle of Descartes, & in several others.
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searching the laws of motion, some are in Mechanics, an experimental
science, the others, purely rational. That is to say, the first compare the
phenomena of nature, decompose them, so to speak, in order to under-
stand what they have in common & so reduce them to a small number
of principal facts – which then serve to explain the others & to predict
what will happen in any circumstance; the others start from hypothe-
ses, then reason from their suppositions, succeed in discovering the
laws that the bodies would follow in their motions if their hypotheses
conformed to nature, then, comparing their results with phenomena &
finding that they agree, conclude that their hypotheses are accurate,
that is to say that the bodies in effect do follow the laws which they
had at first only assumed.
The first of these two classes of Philosophers therefore follow in

their researches the primitive ideas that nature has imposed on us &
the experiences that she continually offers us. The others start from
definitions&hypotheses: for the first, [they assign] the names of bodies,
forces, equilibrium, motion, that correspond to primitive ideas; they
neither can nor must define them; the others, on the contrary, having
to draw everything from their own depths, are obliged to define these
termswith precision,& explain clearly all their suppositions. But if this
[second] method appears more elegant, it is also more difficult than the
other one; as there is nothing more perplexing in most of the rational
sciences, & above all in this one, than to first pose exact definitions
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in which no ambiguity remains - it would throw me into metaphysical
difficulties, well beyond my powers, to want to explore all those pro-
posed up till now. I will content myself with [examining] the first &
most simple [definition].
What is a body? It is, most say, an extended impenetrable object,

that is to say, it cannot in any manner be reduced to a smaller space:
but this property, is it not common to bodies & to empty space can
a cubic foot of the void occupy less space? It is clear that it cannot.
Let us suppose that a cubic foot of water, for example, is enclosed in
a vessel capable of containing two cubic feet, & closed on all sides;
shake it, or overturn it as long as one wants, there always remains a
cubic foot of water & a cubic foot of void: here are two spaces truly
different, but one as irreducible as the other. Therefore it is not in this
that the characteristic property [of a body] consists. Others say that
this property consists in mobility. Indefinite & empty space, they say,
is immobile, while bodies can be transported from one place in space
to another: but when the body A passes into B, for example, has not
the empty space that was in B passed into A? There is not, it seems to
me, more reason to attribute the motion to the occupied space which
was in A, than to the void that was in B; the motion consists in one of
these spaces replacing the other, & this replacement being reciprocal,
mobility is no more a property of one than the other. Without leaving
our first supposition, when I shake the vessel [that is both]
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half void & half full, is not the void moved just as much as the fluid?
I plunge a hollow metal ball into a bottle; the ball goes to the bottom;
is this not [a demonstration of] a void which moves in an occupied
space, the same as a body moving in a void? The occupied space does
not differ, then, from empty space, either by its mobility, or by its
irreducibility. The impenetrability which distinguishes the first from
the second is then not the same thing as irreducibility: it is an I–know–
not–what that one cannot define because it is a primitive idea.
The two fundamental laws from which I started (XI) are therefore

purely experimental truths & I have proposed them as such. A detailed
explanation of these principles did not enter into the plan of this work,
& would perhaps have only served to obscure things: the sciences
are like a beautiful river, whose course is easy to follow once it has
acquired a certain regularity. But if one wants to go back to the source,
one cannot find it anywhere, because it is everywhere; it is spread in
some way over the whole surface of the earth. Similarly, if one wants
to go back to the origin of the sciences, one will find only obscurity,
vague ideas, vicious circles; & one is lost in primitive ideas.

END.
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I have read by order ofMonseigneur leGarde des Sceaux, aManuscript
entitled Essay on Machines in General. This work, appears to me to
add to the merit of things, the merits of clarity & precision; & I think
that the printing [of it] will be useful to the progress of Mechanics. At
Dijon, this 6th January 1782,

MARET, Royal Censor
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ERRATA.

faults indicated in this Errata, must be corrected before reading the
Work, because they are for the most part essential.
[Page] vj, line 5, in place of exactly read exact.
[Page] 22, lines 1 & 2, in place of is the resultant force, read is the
resultant.
[Page] 31, line 26, in place of one supposes them read therefore if one
supposes.
[Page] 38 line 2 of the note, in place of successively read exclusively.
[Page] 42, line 7 in place of cos y read V cos y.
[Page] 46,line 1 & 2, in place of by the speed, read by the square of
the speed.
[Page] 49, line 16 in place of XXI read XIX.
[Page] 63 line 1 of the note, in place of (1) read (2).
[Page] 77 line 3 in place of note c read note 2.
[Page] 103 line 19 in place of general to that read general analogue to
that.



Chapter 2
End Notes

1. Lazare Carnot uses the terms force and puissance interchangeably
and without additional specification. As proposed above, we will
use the modern term, force.Moment–of–Activity is one of the cru-
cial terms in Carnot’s theory and is nowadays called (mechanical)
work. TheMoment–of–Activity is, at first glance, fundamental for
calculating input against output inmachine processes.We also note
that Carnot’s conceptualisation of Moment–of–Activity is linked
to time rather than to space. For details see Gillispie and Pisano
(2014, Chaps. 2, 7, and 11). See also the Italian translation by
Drago and Manno (1994). Hereafter, Gillispie and Pisano’s book
is the source book for all references for the reader who would like
to read more on the subject.

2. Taking into account alsoLazareCarnot’s lost–quantity–of–motion,
where the geometrical form is abstracted and irrelevant in the
Essay on Machines in General, equivalence between hard bod-
ies and mechanical plastic bodies is reasonable—noting that in
the collision of hard bodies there is no force of restitution gener-
ating recoil. In other parts, for example in Lazare Carnot’s second
fundamental law (see below), the conceptualisation is more for-
mal as in the following: hard bodies (‘corps durs’) or perfectly
hard (‘parfaitement durs & sans ressort’) similar to d’Alembert’s
useage (d’Alembert [1743] 1758, Lemme XI, pp. 144–145). The
definition of bodies depends on their elasticity (Carnot 1786, pp.
22–23; see also 1803a, pp. 8–10). We also remark that Carnot did
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not deal with elastic bodies or those defined as a kind of limit–case
of hard bodies. The elastic bodies were considered as composed of
an infinity of hard bodies linked by elastic springs (i.e., see Carnot
1786, p. 23; see also ‘corps solides’ in Carnot 1803a, p. 8). As
argued persuasively in Gillispie and Pisano (2014), we speculate
that Lazare Carnot adopted a model of hard bodies for reasons of
mathematical simplicity (as plastic bodies are surely not exactly
equivalent to hard bodies). For details, see Gillispie and Pisano
(2014, Chap.11).

3. This is evidence of Carnot’s preoccupation with the efficiency of
machines.

4. Pisano and Capecchi (2015).
5. ‘direct’ means ‘analytically and without ad absurdum proofs’.
6. In Ancient Greece, Archimedes studied threemachines: lever, pul-

ley and screw. Heron of Alexandria (see Mechanica, Heron 1899–
1914, vol. II) extended the classification to five machines: winch,
lever, pulley, wedge, and screw. Guidobaldo del Monte in Mecani-
corum Liber (Del Monte 1577) brought in an advance by consid-
ering the role played by gravity. In this context, he remarked upon
the limits of the ancient approach (i.e., see: Aristotle 1955a, b, pp.
328–414). In Galileo’s Le Mecaniche (Galilei 1599) the inclined
plane was added. The number of simple machines became six. For
details see Pisano andBussotti (2014, 2015b, 2020a, b); Pisano and
Capecchi (2015); Pisano and Gatto, pre-print.

7. Carnot is alluding to the principle of virtual work, see: Pisano
(2017); Pisano and Capecchi (2013); Pisano and Gillispie
(2014a, b, Chaps. 7, 11).

8. A posteriori, we could refer to the Science of Weights, also Scien-
tia de ponderibus. In the early 16th century mechanics was con-
cerned mainly with what is now called statics and was referred
to as the Scientia de ponderibus, generally pursued by two very
different approaches. The first was usually referred to as Aris-
totelian, where the equilibrium of bodies was set as a balance of
opposite tendencies to motion. The second, usually referred to as
Archimedean, identified statics with centrobarica, the theory of
centres of gravity based on symmetry considerations. In between
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the two traditions the Italian scholarNiccoloFontana, better known
as Tartaglia (1500?–1557), wrote the treatise Quesiti et inventioni
diverse (Tartaglia 1546, 1554; Pisano and Capecchi 2015; Pisano
2020).

9. This is to be understood as force-weight.
10. Possibly Carnot is referring to the principle of virtual work outside

of a Newtonian context.
11. For weight understand force-weight, here and in all other instances

on this page.
12. Note that the speed is not constant, in other words, the centre of

gravity accelerates.
13. The equilibrium is both among masses and force-weights.
14. The first use of the principle of virtual work applied to a machine

(see also Carnot 1803a). Torricelli wrote: Praemittimus. Duo
gravia simul coniuncta ex se moveri non-posse, nisi centrum
commune gravitatis ipsorum discenda. (Two heavy bodies linked
together cannot move by themselves unless their common cen-
tre of gravity descends); Torricelli (1644), Liber primus De motu
gravium naturaliter descendentium, 99, line 4. see Pisano (2017)
and related references; Coopersmith (2017), Gillispie and Pisano
(2014).

15. The reader should pay attention to the explanation of this equilib-
rium law (the principle of reciprocal velocities) because of the role
played by infinitesimal–and–infinite in his mathematical descrip-
tion with respect to previous, i.e., physical Descartes’ principle.

16. Note that the conservation law is only true if the motion has been
communicated smoothly—not by impact or collision (Gillispie
and Pisano 2014, Chap.2).

17. We remark how Carnot—in his early days—discusses a Science
of Machines as something distinct from Mechanics (Newtonian
science).

18. We remark on the logical structure ofCarnot’s scientific procedure.
For a detailed enquiry, see Gillispie and Pisano, Chaps. 6–7.

19. The word “action” is far from Newton’s “action of a force”. Here-
after, Carnot uses this word in the context of a lost quantity of
motion. An interesting example is Carnot’s use of “action” in the
collision of bodies (Gillispie and Pisano, Chap.2).
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20. In Carnot, the Newtonian first law of inertia arises from Carnot’s
law of action-reaction (which corresponds to Newton’s Third
Law). See: Pisano and Bussotti (2016a, b, 2017a, b, c).

21. Carnotmeans hard in the sense of being plastic, that is, non-elastic.
22. Following Carnot’s trigonometrical reasoning, the two equations

are strictly linked. In fact, F = −F ′′ so their cosines are opposite
signs from each other. It follows that, for an isolated system, V ′ =
V ′′. In other words the Equation (B) = Equation (A)F ′. This is a
step towards the birth of vector algebra. See Gillispie and Pisano
(2014); Pisano (2017).

23. In summary:Carnot proposes to systematically consider the actions
of bodies on each other, then the action of particles on a single par-
ticle. Carnot’s long speech ends with summing over all particles,
from which his fundamental equation (E), see below, is obtained.
Let us note that the small incompressible rods and small inextensi-
ble strings are conceptualised as local–action. See Pisano (2017).

24. This is speed à la d’Alembert, at the first instant of time.
25. Taking into account our previous remark, in these passages we

used the summation operator instead of the integral operator. We
also note below the redundant (added/deleted) use of

∑
V Fcosq .

26. This equation becomes null for plastic bodies; that is a conserva-
tion of quantity of motion is applicable. This equation also appears
in a calculation in the Principes fondamentaux de l’équilibre et du
mouvement (Carnot 1803a, §§129–131, pp. 103–104) as special
case concerning collision among bodies. It is exactly the inverse
procedure applied to the Essay on machines in general. This intri-
cate reasoning in the two books could be justified due to a research
for conservation energy law. However, we have no historical evi-
dences on that (Pisano 2017; Gillispie and Pisano 2014).

27. Based on Lazare Carnot’s discussions (Carnot 1786, pp. 28–30)
a geometric motion is a non–mechanical interaction. Particularly,
Lazare Carnot also dealt with the principle of virtual work and
then, by means of geometric motions (nowadays called virtual
velocities), canonically formulated the principle of virtual veloci-
ties starting from a fundamental theorem (see below Carnot 1786,
§XXXIV, pp. 68–69). In effect, since in his theory geometric
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motions coincide with velocities and not with displacements, this
allowed Lazare Carnot to avoid, in the formulation of the principle
of virtual work infinitesimal displacements, which could have pro-
duced some scientific embarrassment with respect to his assump-
tions (Carnot 1813). Furthermore, for the principle of virtual veloc-
ity related with any (general) mechanical machine, one can claim
that the weights (strictly speaking, force–weights) that balance
each other are reciprocal to their virtual velocities. Incidentally,
the two conceptually different formulations can be made mathe-
matically equivalent using the concept of virtual motion. Lazare
Carnot also defined these motions as invertible: a motion assigned
to a physical system of interacting bodies is geometric if the oppo-
site motion is also possible. The result is a possible motion, but
it is not always invertible (e.g. the motion of a sliding ring on a
rotating rod). Therefore, one should add the hypothesis of invert-
ibility for obtaining the concept of geometric motion. Conversely,
a geometric motion, when integrated, gives an invertible motion.
At this point, for constraints independent of time, a geometric dis-
placement is equivalent to a virtual invertible displacement (but
not vice versa). On the contrary, a possible displacement, only if it
is invertible, produces, after its derivative, a geometric motion. In
this sense, we note that, initially, the geometric motion is a kind of
uniform motion applied to the whole physical system—noting the
equivalence of the state of rest and the state of uniform motion.
See above the Introduction; Cfr. Gillispie and Pisano, Chap. 11.

28. In other words the geometric motion produces no change in the
system interaction (see real cases suggested by Carnot).

29. Carnot intends to generalise his previous Equation (E). See above.
The objective is to obtain the Equation (F) as below. In order to
do this it is necessary to introduce an arbitrary geometric motion
u. The latter substitutes V in the previous equation and so (F)
equation is determined. But Carnot wrote an inaccurate procedure.
In fact, he concludes (see below) that V is the lost speed along a
supposed interaction.Without doubt, u is the final speed. (Gillispie
and Pisano 2014, Chaps. 2, 11).
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30. In Carnot’s wording “[...] as if each body had been free [...]” means
the casewithout a geometricmotion. Further, thewell-known prin-
ciple refers to the conservation of quantity ofmotion.Carnot is very
clever to pay attention to the particular cases. In fact, in the equa-
tion (F) the (a priori indeterminate) ui , if, adequately specified,
offers ad hoc relationships between causes (i.e., forces) and speeds
produced by these causes. Carnot’s objective is to find the law of
motions for each particular case, provided that an ad hoc geometric
motion is determined. In order to do that, for the case of an isolated
system, Carnot allocates the same values to ui , (but �= 0 ). Thus, he
obtains a geometric motion for a uniform translation of the system.
In detail, we have

∑
miUi · ui = 0 (U and u are vectors) where

mi = mass of the i–th body; Ui = velocity lost (by that body) dur-
ing the collision; ui = velocity called ‘mouvement géométrique’.
This is clearly an extension of the principle of virtual velocities
(Pisano 2017) to the collision of several bodies using ui = const.
We can write:

∑
miUi · ui = 0 and ui · ∑

miUi = 0. Since u is
arbitrary, we have:

∑
miUi = 0 where Ui = Wi − Vi . So, it fol-

lows that (in modern terms):
∑

miWi = ∑
miVi . The latter is

the conservation of quantity of motion for a system of bodies (Ibi-
dem; Gillispie and Pisano 2014; Pisano 2017). In short we can
mainly summarize (Pisano 2017) as in the following: (a) A theory
of interacting bodies by means of collisions; (b) A collision is a
basic phenomenon. In particular, continuously accelerated motion
is obtained as a limiting case of a system driven by a series of
pulses; (c) Newton’s second law is replaced by Lazare Carnot’s
second fundamental equation for a system of n–bodies; (d) Due to
the arbitrariness of ui , it can be assumed constant, that is to say,
the same translation of geometric uniform motions of all bodies
is adopted. This method could be considered an early beginning
of the use of symmetries in the history of theoretical physics (Cfr.
Drago and Manno 1994).

31. By considering another ad hoc geometric motion, ui = ω × ri ,
e.g., the rotation of the system with angular velocity around a
fixed axis, and using the properties of the triple product and the
arbitrariness of ω. He (taking into account our reasoning in the
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previous endnote), he obtained the following (in modern terms)
laws of conservation as invariants of motion:

∑
miWi = ∑

miVi

(Law of conservation of the quantity–of–motion)
∑

miri × Wi =∑
miri × Vi (Law of conservation of the angular–momentum).

Where Wi ,Vi , ω, ri are vectors.
32. In order to obtain idem equations, Carnot wants to generalise his

method assigning other values to u.
33. Here we note that Carnot claims his first lines concerning the

application of synthetic method to his theory. Generally speak-
ing the synthetic method (Carnot 1786, pp. 33–35, p. 85 Carnot
1813, pp. 12–21, 189, 200, 242–243, 217–253;Gillipie andPisano,
Chap.11) and the analytic method have their historical origins in
the ancient period with Pappus from Alexandria (290–350 b.C.;
Pappus 1588), and later assumed different meanings even for a
single author, e.g. Descartes (1897–1913; on Descartes see the
remarkableworks by JohnSchuster).With regard toLazareCarnot,
the syntheticmethod also explains the nature and the frame ofmind
behind his research against the metaphysical conception—which
prevailed at the time—of infinitesimals, as he declares at the begin-
ning of his famous book, Réflexions sur la métaphysique du calcul
infinitésimal. In other books by him: “It is my object to ascertain in
what the true spirit of the Infinitesimal Analysis consists” (Carnot
1832, p. 1. [“Je cherche à savoir en quoi consiste le véritable esprit
de l’Analyse infinitesimal” (see also, 1813, p. 1, line 1). Let us
note that the English translation of the 1832 version is differently
organized in comparison to the original 1813 version. E.g., the
number of paragraphs in the two versions does not correspond
(Cfr. Gillispie and Pisano 2014, Chap. 11).

34. Carnot will not deal with these examples of motions. He only
mentions them as a supposition.

35. Concerning the concept of mass, Carnot—as for other scientists at
that time—yet had no very clear idea of the analytical role played
by this quantity in the theory. For example, Carnot still—seventeen
years after the second edition of the Essay on machines en general
(1786)—demonstrated an ambiguity between the Cartesian and
Newtonian approaches as shown in: “L’espace apparent qu’occupe
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un corps, s’appelle son volume; l’espace effectif qu’occupe ce
même corps ou sa quantité réelle de matière, se nomme sa masse.”
In English: “The visible space which a body occupies is called its
volume; the effective space which this same body occupies or its
real quantity of matter is named its mass” (Carnot 1803a, p. 6; Cfr.
Gillispie and Pisano 2014; Pisano’s works on the subjects).

36. We note that, by means of a dimensional analysis, the names given
byCarnot are not, by today’s standards, accurate (Cfr. Pisano 2010;
Drago and Manno 1994). In fact the dimensions are, for energy,
[M L2T −2], and not those for the quantity of motion, [M LT −1].
At that time, Jean-Baptiste JosephFourier (1768–1830) introduced
physical dimensions as amodus operandi in hisThéorie analytique
de la chaleur (Fourier 1822; see also Pisano and Capecchi 2009a,
b).

37. We note that here Carnot claims his new idea (with respect to
the works of previous scholars) of a physical quantity which is
conserved along collisions (Gillispie and Pisano, Chaps. 2, 11).

38. We note that Descartes,Maupertius and d’Alembert are the unique
mechanicists cited by Lazare Carnot in his Essay on Machines in
General. There are embryonic hints of Maupertius’ principle also
in the previous Corollary I.

39. On the subject see recently: Pisano (2017).
40. Here Lazare Carnot intends summations. Due to editorial obliga-

tions we retain his original wording. But the reader should pay
attention step by step Lazare’s wording and our related comments.

41. Here Lazare Carnot intends summations. Due to editorial obliga-
tions we retain his original wording. But the reader should pay
attention step by step Lazare’s wording and our related comments.

42. Bymeans ofCorollary II, we remark that in the traditionalmechan-
ical theory of hard bodies, Carnot’s principle of virtual work for-
mally defines the condition of equilibriumof forces that act on bod-
ies in order to produce work. Lazare Carnot takes into account, (1)
continuous changes ofmotion (degrés insensibles), (2) the concept
of motrice force (nowadays, acceleration, see below), and (3) the
mathematical formula for the principle of virtual work (Gillispie
and Pisano 2014, Chaps. 10–11; Pisano 2017) and studies the the-
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oretical conditions that translate the practical conditions of equi-
librium and also obtains his invariants with regard to the efficiency
and reversibility of mechanical machines. His first Equation (E)
(Carnot 1786, p. 27) and second equations (F) (Ivi, p. 32) gener-
alized for multi–body discrete systems, too. We also remark his
crucial concept, the lost speeds, in this case, added to the acceler-
ations, p. Since he considers the instantaneous change of motion
(dV ) along the collisions, then the accelerations p gives any con-
nection to the collision. In short, we can summarize as follows:
(a) The mass of the parts of a machine; (b) Global magnitudes,
abstracting from the mass of the mechanism; (c) Kinematics first,
then dynamics, and statics is a special case of dynamics; (d) A
theory of machines concerns a theory of the communication of
motions; (e) A machine is a connected system of (hard) bodies; (f)
The connections between the bodies constrain the communication
of motion of the bodies; (g) The theory of interaction–collisions
by means of insensible degrees (e.g., see also Carnot 1803a, §293,
pp. 261–262; see Introduction above) as the result of a sequence
of infinitesimally small percussions.

43. In agreementwith recent accredited literature (Gillispie and Pisano
2014, Chaps. 2, 11; Pisano 2017) Carnot clarifies the physical vec-
tor definition of impelling forces and resisting forces. Themoment
of activity is—in practice—the modern conceptualisation of work
(Fds). In addition, no metaphysical causes of variation of motion
are suggested. On the contrary, he considered the (work) moment–
of–activity “q”, operated by resisting forces, as the effect produced
by impelling forces. Instead, he considered the (work) moment–
of–activity “Q”, consumed by impelling forces at a given t–time
(Carnot 1786, §§LII–LIII, pp. 83–84, §§LXIII–LXIV, pp. 95–99)
in order to investigate (the efficiency and agency of) machines in a
generalway.His son, Sadi did the same for heatmachines (Gillispie
and Pisano 2014; see also numerous works by Pisano on the sub-
ject). Just to alsomention that by theword “work” (travail) Coriolis
meant mechanical power (puissance mécanique), that is, the quan-
tity of action, also called dynamical effect (Coriolis 1829, p. III;
see also 1844, 1830–1837; Gillipsie and Pisano 2014, Chap. 4).
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44. This quantity,
∑

Pcoszudt , is force x distance—that is, ‘work’ in
modern usage.

45. This theorem is exactly a generalisation of the modern principle
of virtual work (Pisano 2017).

46. Here and hereafter, ‘agents’ means ‘working substance’.
47. On the concept of heavy body, the reader can surf the recent book

on Science of Weights and Tartaglia (Pisano and Capecchi 2015).
48. That is, mathematically and without the use of infinitesimals.
49. On the centre of gravity and its relationship with the principle

of virtual work, see: Capecchi and Pisano (2010a, b, c), Pisano
(2017),Capecchi andPisano (2007, 2010b, b); et al. Pisano’sworks
on the subject).

50. This fifth Corollary can be considered as the basic (and modern)
conceptualization for running machines, taking into account the
relationship between soliciting and resisting forces.

51. Carnot returns to his crucial concept of work. See our previous
endnote above.

52. On the subject of machines, see Pisano and Capecchi (2015),
Pisano andBussotti (2014, 2015a, b),Capecchi andPisano (2010b).

53. On the subject applied to bothLazare andSadiCarnot, seeGillispie
and Pisano (2014).



Chapter 3
Lazare Carnot’s Manuscripts
and Documents*

Lazare Carnot: 3 portraits on paper
(20,5x28) cm; (19,5x27,5) cm; (25,5x34,5)
cm

[Raffaele Pisano : plates from orginal (y.
2010) in .jpeg by Académie des Sciences,
Institut de France, Paris]

Dissertation sur la théorie de l’infini math-
ématique, ouvrage destine it concourir au
prix qu’a propose L’Académie Royale des
Sciences, arts et belles–lettres de Berlin,
pour l’année 1786. Themanuscript is dated
from Arras 8 September 1785. It is con-
served in the Archives of the Deutsche
Akademie der Wissenschaften zu Berlin,
and consists of 100 paragraphs in 90 folios.

[It is reproduced in its entirety in Gillispie
(1971), Appendix A, pp. 171–267, op.
cit.; and microfilm copies of the complete
manuscript are also deposited in the Fire-
stone Library of Princeton University.]

Carnot L (1778)Mémoire sur la théorie des
machines pour concourir au prix de 1779
propose par l’Académie Royale des Sci-
ences de Paris. The manuscript is dated 28
March 1778. It is conserved in theArchives
de l’Académie des sciences, Institut de
France. Ms. (18,5x23,5) cm consists of: 85
sections in 63 folios (31 folios r/v)

[Raffaele Pisano : plates from original
(y. 2010) in .jpeg by Académie des Sci-
ences, Institut de France, Paris] [Sec-
tions 101–160 are reproduced In: Gillispie
(1971), Appendix C, pp. 299–343, op.
cit.; and microfilm copies of the complete
manuscript are also deposited in the Fire-
stone Library of Princeton University]

*Cfr. Pisano’s works; Gillispie and Pisano 2014
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Carnot L (1780) Mémoire sur la théorie
des machines pour concourir au prix que
l’Académie Royale des Sciences de Paris
doit adjuger en 1781. The manuscript is
dated from Béthune 15 July 1780. It is con-
served in the Archives de l’Académie des
sciences, Institut de France. Ms. (20,5x32)
cm consists of 191 sections in 106 folios.
(47 folios r/v + 2 planches de dessins de
même dimensions).

[Raffaele Pisano : plates from original
(y. 2010) in .jpeg by Académie des Sci-
ences, Institut de France, Paris] [Sec-
tions 101–160 are reproduced In: Gillispie
(1971), Appendix C, pp. 299–343, op.
cit.; and microfilm copies of the complete
manuscript are also deposited in the Fire-
stone Library of Princeton University]

Lazare Carnot’s portraits [Raffaele Pisano: many plates from the
original kindly authorized by Monsieur
Gaetan Carnot of Carnot’s family. The
original are conserved at Académie
François Bourdon. Other Lazare and Sadi
Carnot’s primary documents are conserved
at the Archives at the Collections archives
de la bibliothèque de l’Ècole polytechnique
de Palaiseau (Essonne, France)].
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Lazare Carnot

Carnot L (1798) Réponse de L.–N.–M. Carnot, citoyen français,
l’un des fondateurs de la République, et membre constitutionnel
du Directoire exécutif, au rapport fait sur la conjuration du 18
fructidor au Conseil des Cinq-Cents par f.-Ch. Bailleul au nom
d?une commission spéciale, s. 1., 8 floréal an VI.

Carnot H (1861–1863) Mémoires sur Carnot par son fils, 2 vols.
Pagnerre, Paris.

Carnot L ([1783] 1786) Essai sur les machines en général. Defay,
Dijon.

Carnot L (1778) Mémoire sur la théorie des machines pour con-
courir au prix de 1779 propose par l’Académie Royale des Sci-
ences de Paris. The manuscript is conserved in the Archives
de l’Académie des sciences, Institut de France, and consists of
85 sections in 63 folios. Sections 27–60 are reproduced. In:
Gillispie (1971), Appendix B, pp 271–296.

Carnot L (1780) Mémoire sur la théorie des machines pour con-
courir au prix que l’Académie Royale des Sciences de Paris
doit adjuger en 1781. The manuscript is dated from Béthune 15
July 1780. It is conserved in the Archives de l’Académie des
sciences, Institut de France, and consists of 191 sections in 106
folios. Sections 101–160 are reproduced. In: Gillispie (1971),
Appendix C, pp 299–343.

Carnot L (1784) Éloge de M. le maréchal de Vauban, discours qui
a remporté le prix de1’Académie des sciences, arts et belles-
lettres de Dijon en 1784, Dijon.

Carnot L (1784) Lettre sur les aérostats. A manuscript memoir
addressed to the Académie Royale des Sciences on 17 Jan 1784
[document lost]

Carnot L (1785) Dissertation sur la théorie de l’infini mathé-
matique, ouvrage destine it concourir au prix qu’a propose
l’Académie Royale des Sciences, arts et belles–lettres de Berlin,
pour l’année 1786 [The manuscript is dated by Arras 8 Sept
1785].
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Carnot L (1786) Observations sur la lettre de M. Choderlos de Lac-
los à Messieurs de l’Académie françoise, concernant l’Éloge
de Monsieur le Maréchal de Vauban. Arras, Imp. Vve Michel
Nicolas.

Carnot L (1787a) LETTRE de M. Carnot, Capitaine en premier
au Corps Royal du Génie, à M. le Marquis de Montalembert.
In: Réponse au Mémoire sur la fortification perpendiculaire,
Par plusieurs Officiers du Corps Royal du Génie, Présenté à
l’Académie Royale des Sciences, Ouvrage enrichi de plusieurs
grandes Planches, avec une Planche de Supplément relative aux
Affûts ditsAffûts à aiguille. ParM. leMarquis deMontalembert,
Maréchal des Camps & Armées du Roij Lieutenant-Général
des Provinces de Saintonge & Angoumois, de l’Académie
Royale des Sciences & de l’Académie– Impériale de Péters-
bourg. A Paris, Pierres. Chez Didot, Fils aîné, Libraire du Roi
pour l’Artillerie & le Génie, rue Dauphine, N* 116, p. 16;
pp 17–18.

Carnot L (1787b) Maximilien Robespierre Le droit et l’état des
bâtards. Lazare Carnot Le Pouvoir de l’habitude. In: Berthe
L-N et De Langre M (eds). Discours inédits prononcés devant
l’Académie d’Arras les 27Avril 1786 et 25Mai 1787.Académie
des Sciences, Lettres et Arts, Arras.

CarnotL (1789a)Mémoire présenté auConseil de laGuerre,Au sujet
des Places fortes qui doivent être démolies ou abandonnées; ou
examen de cette question : Est-il avantageux au Roi de France
qu’il y ait des Places fortes sur les frontières de ses États? Paris,
Barrois.

Carnot L (1789b) Réclamation adressée à l’Assemblée nationale
contre le régime oppressif sous lequel est gouverné le Corps
royal du Génie, en ce qu’il s’oppose aux prowès de l’art et au
bien qu’l serait possible de faire par M. Carnot, Capitaine dans
cemêmeCorps, 28 septembre 1789, Paris, Imp. vve Delaguette.

Carnot L (1792) Sur les citadelles, Carnot l’aîné, député du départe-
ment du Pas–de–Calais à ses collègues, 5 janvier, l’an IV de la
Liberté, Paris, Imp. nat.
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Carnot L (1793a) Rapport fait à la Convention Nationale par ses
commissares Carnot, Garrau et Lamarque, envoyés par elle aux
frontières des Pyrénées. 12 janvier 1793, Paris, Imp. nat.

Carnot L (1793b) Déclaration des droits du citoyen, proposée par
L. Carnot, Député du Pas de–Calais, 10 mars l793, Paris, lmp.
nat.

Carnot L (1794) Rapport et projet de décret sur la suppression du
conseil exécutif provvisoire et son remplacement par des com-
missions particulières, présenté à la Convetion nationale au nom
du Comité de salut public, par Carnot, Séance du 12 germinal
an 2.

Carnot L (1795a) Campagne des Français depuis le 8 septembre
1793 répondant au 22 fructidor de l’an Ier de la République
Jusqu’au 15 pluviöse an III. Imp. de la République, an III.

Carnot L (1795b) Opinion de Carnot, représentant du peuple, sur
l’accusationproposée contreBillaud-Varenne,Collot-d’Herbois,
Barère, et Vadier; par la commission des Vingt et un, Imp. nat,
an III.

Carnot L (1796a) Exploits des Français depuis le 22 fructidor an
I, jusqu’au 15 pluviöse an III, A Basle, Decker, 1796; mais
jusqu’au 5 floréal an V, Basle, 1797.

Carnot L (1796b) Discours prononcé par le Président du Directoire
Exécutif à la fête de la Reconnaissance, 10 prairial an IV (29
mai), Paris, Imp. du Directoire.

Carnot L (1797a)Réflexions sur lamétaphysique du calcul infinitési-
mal. Duprat, Paris.

Carnot L (1797b) Œuvres mathématiques du Citoyen Carnot. Mem-
bre du Directoire exécutif de la République française et de
l’Institut national, ancien Capitaine au corps royal du génie.
Avec le portrait de l’auteur, et une planche, A Basle, Decker.

Carnot L (1797c) Épitre au directeurCarnot, suivie de quelques-unes
de ses poesies fugitives, et précédées de notes historiques sur
les sociétés de ROSATI. A Paris, Les Marchands de noueautés.
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Carnot L (1800a) Lettre du citoyen Carnot au citoyen Bossut, con-
tenant quelques vues nouvelles sur la trigonométrie. In: Bossut
(1800a), vol II, pp 401–421.

Carnot L (1800b) Betrachtungen über die Theorie der Infinitesi-
malrechnung. Von dem Burger Carnot. Aus dem Französischen
übersetzt und mit Anmerkungen und Zusätzen begleitet von
Johann Karl Friedrich Hauff. Jager, Frankfurt am Main.

Carnot L (1801) De la corrélation des figures de géométrie. Duprat,
Paris.

Carnot L (1803a) Principes fondamentaux de l’équilibre et du mou-
vement. Deterville, Paris.

Carnot L (1803b) Géométrie de position à l’usage ceux qui se des-
tinent à mesurer les terrains. Duprat, Paris.

Carnot L (1804) Discours prononcé par le Citoyen Carnot, sur la
motion relative au gouvernent héréditaire Séance extraordinaire
du 11 floréal an XII, Paris, lmp. nat., an XII.

Carnot L (1806) Mémoire sur la Relation qui existe entre les dis-
tances respectives de cinqpoints quelconques pris dans l’espace;
suivi d’un essai sur la théorie des transversales. Courcier, Paris.

Carnot L (1806a) Digression sur la nature des quantités dites néga-
tives. In: Mémoire sur la Relation qui existe entre les distance
respectives de cinq quelconques pris dans l’espace; suivi d’un
essai sur la théorie des transversales. Courcier, Paris, pp 96–111.

Carnot L (1806b) Mémoire sur la relation qui existe entre les dis-
tances respectives de cinq points quelconques pris dans l’espace,
suivi d’un essai sur la théorie des transversales. Courcier, Paris.

Carnot L (1806c) Rapport sur une nouvelle machine inventée par
MMNiepce, et nommée par eux Pyrélophore; par MMBerthol-
let et Carnot. Lu le 15 décembre 1806, imprimé en 1807, 1er
semestre. In: Charnay JP, Charnay JP (eds) Lazare Carnot ou le
savant–citoyen. La Herne, Paris.
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Carnot L (1808a) Essai sur les machines en général (Part I) In:
Philosophical Magazine: comprehending the various branches
of science, the liberal and fine arts, agriculture, manufactures,
and commerce. Tilloch A (ed). Vol. XXX. Murray J, London,
pp. 8–15; pp. 154–158; pp. 207–221; pp. 310–320. Very inter-
esting are the avant–titre–page of the bookwhere a portrait from
the original of Lazare Carnot is published and a short biogra-
phy/comment of Lazare Carnot written by the editor (pp. 370–
371).

Carnot L (1808b) Essai sur les machines en général (Part II). In:
Philosophical Magazine: comprehending the various branches
of science, the liberal and fine arts, agriculture, manufactures,
and commerce. Tilloch A (ed). Vol. XXXI. Murray J, London,
pp. 28–36; pp. 136–144, pp. 220–228; pp. 295–305.

Carnot L (1808c) Essai sur les machines en général (Part III). In:
Philosophical Magazine: comprehending the various branches
of science, the liberal and fine arts, agriculture, manufactures,
and commerce. Tilloch A (ed). Vol. XXXII. Murray J, London,
pp. 124–130.

CarnotL (1810)De laDéfense des places fortes.Courcier, Paris. [See
also Id. 1810.Geometrie der Stellung oder über dieAnwendung
der Analysis auf Geometrie, 2 vols. Vorrede, Altona].

Carnot L (1811) De la Défense des places fortes, 2nd edition.
Courcier, Paris.

Carnot L (1812a) De la Défense des places fortes, 3rd edition.
Courcier, Paris.

Carnot L (1812b) Discours préliminaire de la troisième édition du
Traité de la défense des places fortes. Paris, Courcier.

Carnot L (1813) Note. In: Carnot L (1813), pp 213–257.
Carnot L (1813) Réflexions sur la métaphysique du calcul infinitési-

mal. [2nd edition of 1797] Courcier, Paris.
Carnot L (1814a) A Treatise on the Defence of Fortified Places.

Translated from the French. Egerton, Military Library, White-
hall.
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Carnot L (1814b) Mémoire adressé au roi, en juillet 1814 par
M. Carnot; Lieutenant–général, Chevalier de l’Ordre royal et
militaire de Saint–Louis, Membre de la Légion d’honneur,
de l’Institut de France, etc. Bientôt ils vous diront que les
plus saintes lois. Maîtresses du vil peuple, obéissent aux Rois.
Racine. Chez tous les libraires, Bruxelles.

Carnot L (1815a) Mémoire adressé au roi, en juillet 1814 par
M. Carnot ; Lieutenant–général, Chevalier de l’Ordre royal et
militaire de Saint–Louis, Membre de la Légion d’honneur, de
l’Institut de France, etc. Seule Édition complète et correcte,
contenant toutes les Notes de l’Auteur; celles du Lynx ; les
Commentaires qui ont circulé secrètement avec le Manuscrit,
et les Pièces justificatives; Suivi du discours qu’il a prononcé
au tribunat, le 11 floréal an 12. Bientôt ils vous diront que les
plus saintes lois. Maîtresses du vil peuple, obéissent aux Rois.
Racine. Cinquième édition. Arnaud, Paris.

Carnot L (1815b) Exposé de la situation de l’Empire, présenté a la
chambre de pairs, dans sa séance du 13 Juin 1815. Par S. Exc.
Le Ministre de l’Intérieure, Imprimerie Impériale, Paris.

CarnotL (1818)Correspondance inédite deNapoléon avec le général
Carnot pendant les Cents jours. Plancher, Paris.

CarnotL (1819)Correspondance inédite deNapoléon avec le général
Carnot pendant les Cents jours. Plancher, Paris.

Carnot L (1820) Opuscules poétiques du général L.N.M. Carnot.
Baudouin, Paris.

Carnot L (1821) Don Quichotte poème héroï-comique en six chants.
Brockhaus, Leipzig.

Carnot L (1823) Mémoire sur la fortification primitive pour servir
de suite au Traité de la défense des places fortes par M. Carnot,
Bachelier, Paris.

Carnot L (1832) Reflexions on the metaphysical principles of the
infinitesimal analysis by M. Carnot. VI. Parker, Oxford.

Carnot L (1858a) De la Défense des places fortes. Edition 1810.
Reedited by Liskenne CF, Sauvan JB. Bibliothèque historique
et militaire. Dédiée à l’armée et a la garde nationale de France.
Tome V, 5th edition. Allard, Paris, pp. 497–694.
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Carnot L (1858b) Mémoire sur la fortification primitive pour servir
de suite au Traité de la défense des places fortes. Edition 1823.
Reedited by Liskenne CF, Sauvan JB. Bibliothèque historique
et militaire. Dédiée à l’armée et a la garde nationale de France.
Tome V. 5th edition Allard, Paris, pp. 695–717, pp. 719–748.

Carnot L (1894) Général Lazare Carnot, Poésies. Boulanger, Paris.
Carnot L (1921) Réflexions sur la métaphysique du calcul infinitési-

mal. In: Les maitres de la pensée scientifique. Publication par
les soins de Maurice Solovine, 2 Fascicules. Gauthier–Villars,
Paris.

Carnot L (1933a) Choix de poésies du général L. N. M. Carnot,
commentaire de G. Rozet. Baudelot, Paris.

Carnot L (1933b) Lazar Karno Razmyshlenia o metafizike ischisle-
nia beskonechno malykh (trans: Soloviev NM, M.–L. Goc).
Texniko teoretiqeskoe izdatel-stvo [MLGosTechnical and The-
oretical Publishing] Moscow [see also: Id (1936) In: Idées
sur le fondement de l’analyse mathématique au XVIII siècle.
Rédaction et Suppléments de Youschkevitch AP, 2nd edition
Leningrad, Moscow].

Carnot L (1936) Razmyshleniia o metafizike ischisleniia
beskonechno malykh [from Réflexions sur la métaphysique du
calcul infinitésimal]. 2nd edition Leningrad, Moscow.

CarnotL (1990)Rapport sur une nouvellemachine inventée parMM.
Niepce, et nommée par eux Pyrélophore; par MM. Berthollet et
Carnot. Lu le 15 décembre 1806, imprimé en 1807, 1er semestre.
In: Charnay JP (ed) Lazare Carnot ou le savant–citoyen, La
Herne, Paris, Presses de L’Université de Paris–Sorbonne, 1990–
Centre d’études et de recherches sur les stratégies et les conflits,
Colloque en Sorbonne, 1988).
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Sadi Carnot

Carnot S ([1824] 1978) Réflexions sur la puissance motrice du feu
sur les machinés propre à développer cette puissance, édition
critique par Fox Robert. Vrin J, Paris. [Ivi, Recherche d’une
formule propre à représenter la puissance motrice de la vapeur
d’eau].

Carnot S (1824) Réflexions sur la puissance motrice du feu sur les
machinés propre à développer cette puissance. Bachelier, Paris.

Carnot S (1872) Réflexions sur la puissance motrice du feu sur les
machinés propre à développer cette puissance. Annales scien-
tifiques de École Normale Supérieure XII(1):393–457.

Carnot S (1878a) Réflexions sur la puissance motrice du feu sur les
machinés propre à développer cette puissance. [Archives of the
Académie des Science–Institut de France, Paris].

Carnot S (1878b) Réflexions sur la puissance motrice du feu sur les
machinés propre à développer cette puissance.Gauthier–Villars,
Paris.

Carnot S (1943) Reflections on the motive power of heat and on
machines fitted to develop this power. In: Thurston RH (ed).
Waverly Press, Inc., Baltimore.

Carnot S (1953) Réflexions sur la puissance motrice du feu et sur
les machines propres a développer cette puissance. Blanchard,
Paris.

Carnot S (1978) Réflexions sur la puissance motrice du feu sur les
machinés propre à développer cette puissance, édition critique
par Fox Robert. Vrin J, Paris.

Carnot S (1986) Reflexions on the motive power of fire: a criti-
cal edition with the surviving scientific manuscripts translated
and edited by Robert Fox. The Manchester University Press,
Manchester.

Carnot S (1996) Riflessioni sulla potenza motrice del fuoco. Cuen,
Napoli.
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Carnot S (s. d.) Notes sur les mathématiques, la physique et autres
sujets. In: Carnot S (1878b), pp 89–102 [The manuscript is con-
served In: Carnot S 1878a].

Carnot S (s. d.) Recherche d’une formule propre à représenter la
puissance motrice de la vapeur d’eau. In: Carnot S (1978), pp
223–234 Carnot S–EP (s. d.) Recherche d’une formule pro-
pre à représenter la puissance motrice de la vapeur d’eau.
c©Collections Archives de la Bibliothèque de l’École polytech-
nique, Paris.

Carnot S (1921) L’œuvre scientifique de Sadi Carnot. Introduction
a l’étude de la thermodynamique. Aries E (ed). Payot, Paris.
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