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Foreword 

The eighteenth century is a fascinating period, partly because of how different it is 
from the social and intellectual panorama that we are used to. The scientific disci-
plines as we know them did not exist, nor even a clear border between the “sciences” 
and the “letters” or humanities; there were no scientists, but “savants” or “erudites”, 
philosophers who could devote themselves to many topics, including logic, history, 
languages, experiments, etc. Mathematics included questions concerning experi-
mental science or even engineering (astronomy, mechanics, fortification, ballistics) 
and the place for science was not the university, but the Academies or even the 
salons of the aristocracy and haute bourgeoisie. Many of the “scientists” then had 
not enjoyed formal education, but were self-taught—such is the case of Johann Hein-
rich Lambert. These great differences with our specialized present are key to under-
standing the works included in this book, carefully prepared by Eduardo Dorrego 
López and Elías Fuentes Guillén. 

Their author, who was born in Alsace1 and became a member of the Academy in 
Berlin, offers us two entirely different writings—a carefully rigorous mathematical 
treatise in which the irrationality of π and e (and its powers) is proved (and where the 
conjecture that they are transcendental numbers appears for the first time in history); 
and a popular work meant to enlighten those who may feel the temptation to square 
the circle (by fractions). Both works were prepared in 1766 and 1767, although one 
was printed in 1768 in the Mémoires of the Royal Academy of Sciences of Berlin, 
while the other appeared in 1770, in volume II of the book Contributions to the 
Employment of Mathematics and Its Applications. The latter’s popularizing goals 
are clear from the first page, and its ironical spirit is also evident; Lambert was happy 
to offer heuristic arguments and the broad outline of a possible proof of irrationality. 
We find, in these works, science as progress at the frontiers of knowledge, and as 
the enlightenment of the human mind: two fundamental aspects of the open yet deep 
conception that reigned in the eighteenth century.

1 Mulhouse was a city associated with the Helvetic Confederation, a small Calvinist republic, no 
part of France. 
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x Foreword

Johann Heinrich Lambert is known among mathematicians for his work on number 
π , although he is usually regarded as a second-rate figure, little of his work being 
studied with care. In a paper published 40 years ago, Gray and Tilling discussed his 
figure, presenting him as a “little known” author who was “nevertheless interesting” 
and deserved a general overview.2 But in his time he was seen as a first-rate author, 
who influenced people of the stature of Gauss and Kant, and whose work was admired 
for its profundity and breadth of knowledge. There were rumors that Euler himself 
might have abandoned the Berlin Academy because of Lambert (although in fact 
the reason seems to have been problems of management, not intellectual conflicts). 
Such facts alone should suffice to raise interest. 

Let me offer details for two of them. Gauss’s library included many of Lambert’s 
works, which Gauss probably studied with care in his youth; the good knowledge 
he had of quantitative methods in mathematical physics, and of practical methods 
in the calculus (something that in his time was of great importance), are explained 
to a large extent by Lambert’s influence.3 Besides, it is likely that Lambert’s ideas 
concerning non-Euclidean geometry guided the reflections of the young Gauss.4 As 
for Kant, he had a correspondence with Lambert from 1765, when Kant regarded him 
as the “first genius of Germany”, and his ideas were so relevant for the celebrated 
philosopher that he seriously considered dedicating the Critique of Pure Reason to 
him.5 

The difficulty of evaluating Lambert, and the reason why he was somewhat 
forgotten in the nineteenth century, is precisely that he was so much a man of the 
Enlightenment. He was no specialist, but rather the opposite: a philosopher as much as 
a scientist, he contributed to all the sciences of his time; while active in the Academies 
of Munich and Berlin, he contributed to all the different «classes» or areas of work. 
It has been said that, for bad and good, Lambert was the perfect example of the 
eighteenth-century erudite, who wrote about God and the world, about all possible 
topics: mathematics, experimental science, philosophy, languages, history. An auto-
didact, independent, even stubborn in his way of thinking and his scientific choices, 
he was also a great promoter of German as a scientific and philosophical language; 
this had the side effect that some of his ambitious works were little known in other 
countries. We shall see that a fair evaluation of his best work could well require a 
vision so wide as his own. 

Readers will find a lot of biographical material in Chap. 1 of his book, due to 
Eduardo Dorrego, so you can then admire and amuse yourself with the genial feats 
of this sage from Mulhouse. His first interaction with Frederick II of Prussia is

2 See (Gray et al. 1978). 
3 It is said that Lambert’s tables of logarithms were carefully studied by him, and in fact they were 
related to his early interest in the distribution of prime numbers; these kind of tables were, at the time, 
an indispensable instrument for the working mathematician. See the paper “Logarithmentafeln— 
Gauss” “tägliches Arbeitsgeräth” by Karin Reich, p. 44 (in “Wie der Blitz einschlägt, hat sich das 
Räthsel gelöst”. Carl Friedrich Gauss in Göttingen, ed. by Elmar Mittler, Göttingen, Bibliothek, 
2005). 
4 (Abardia et al. 2012). 
5 He abandoned the idea due to Lambert’s early death, in 1777, 4 years before the first edition. 
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astonishing, the impressions that great mathematicians like Lagrange had of him are 
of singular interest. Let us admit that Lambert was a strange character, one whom we 
would today rush to consider an Asperger, which might perhaps help understand some 
of his peculiarities. In his scientific trajectory he was an Einzelgänger, a lone wolf; 
often he preferred topics outside the mainstream, but even so he made important 
contributions. As a person, he was a man of Reason but also a devout protestant 
Christian (coming from a Huguenot family); an essentially independent writer, he 
was a free thinker in scientific and philosophical matters. 

The best available description is perhaps that of John Heilbron, in phrases that 
Dorrego cites on p. 3: 

A self-taught polymath, he took as his main line the application of mathematics to physics 
and even to metaphysics. As a philosopher he worked out an epistemology similar to Kant’s; 
as a physicist he sought effects linked by simple, general, and above all mathematical laws; as 
an experimentalist he advanced the quantitative study of photometry, pyrometry, hygrometry, 
and magnetism. He talked as an equal to Leonhard Euler and to Georg Brander, respectively 
the leading mathematician and the leading instrument maker in Germany. In a word, he was 
the perfect mathematical physicist: the mathematicians considered him an experimentalist 
with a “rare talent for applying calculation to experiments;” the experimentalists thought 
him a mathematician with an unusual understanding of the behavior of instruments. All of 
which (we are told) he accomplished by working from five in the morning to twelve at night, 
with a two-hour break at noon.6 

The surprise of his contemporaries is easy to understand, because in the Enlight-
enment there were almost no mathematical physicists. It was unusual to encounter a 
very sound combination of experimental and mathematical abilities, in the style of a 
Galileo or a Newton—these were exceptions; for such a combination to become 
common, one had to wait until the nineteenth-century innovations in university 
teaching. Lambert, not content with such a prowess, added to all that the abilities of 
a real philosopher. 

It will be worthwhile to mention some of his strictly scientific contributions, to 
show how they stood outside the main themes of his time. He developed photometric 
methods and introduced the notion of albedo, formulating also the Law of the Cosine 
in optics (instead of publishing about electricity, the topic of the day); in astronomy, 
he did important work on the comets (but nothing about rational mechanics). He 
designed a hygrometer, among other instruments, thanks to his great knowledge of 
instrument design; he contributed important works to cartography and the theory of 
maps, including the Lambert conformal projection. The reader probably knows of 
his anticipation of non-Euclidean geometry and his work on π—but he published no 
fundamental advance in the infinitesimal calculus. 

It is relevant to speak a bit about Lambert’s philosophy, which impressed Kant 
just when he was waking up from his dogmatic slumber, i.e., beginning his transition 
to criticism. The truth is that, so far as I can see, Lambert’s philosophical ideas are 
poorly understood and still await a satisfactory interpretation. It is usually said that he 
was a follower of the Leibnizian-Wolffian school, but this kind of labeling helps very 
little with our understanding of even the rough traits of a way of thinking. Lambert

6 (Heilbron 1982, pp. 66–67). 
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himself said that his philosophy joined elements of Wolff and Locke, but is it possible 
to create a coherent synthesis of empiricism and rationalism? Of course it is, in fact 
such a kind of combination seemed inevitable to those who worked in philosophy 
with their sight upon scientific methods. Here is an example of Lambert’s approach: 
when in his Neues Organon, 1764, he studied the “simple concepts” at the basis of 
everything else, his analysis does not start with a priori  ideas (as one expects of a 
rationalist), but rather has a phenomenological basis: experience gives the starting 
point, and by analyzing the contents of experience one finds the simple concepts. 
Lambert was convinced that such contents are not knowable apart from experience, 
but at the same time they have the form they have thanks to a priori  elements imposed 
by the understanding. Little wonder that Kant felt great affinity with his ideas. If we 
are to simplify, considering the matter from a scientific perspective, one could say 
that Lambert’s epistemology made room for a happy combination of Newtonianism 
and Leibnizianism. 

As for mathematics, many were the relevant contributions due to him—infi-
nite series, continuous fractions, work in geometry that prefigures Monge, hyper-
bolic trigonometric functions, conformal mappings, and so on. Consider, e.g., the 
contents of his Contributions to the Employment of Mathematics and Its Applica-
tions (Beyträge, 3 vols.): Vol. I (1765) deals with topics in practical geometry and 
trigonometry, as well as an interesting contribution to the theory of errors (systematic 
analysis of the reliability of observations and experimental results); Vol. II (1770) 
includes contributions to algebra and analysis, including the chapter on pi, but also 
studies of gnomonics and the Lunar tables of Mayer; and Vol. III (1772) discusses 
cartographic problems, the orbits of comets, architecture, and mortality rates. One 
may think, of course, that he was not a world-class mathematician like his colleagues 
Euler or Lagrange, that seems clear. As we saw already, it is interesting to think of 
Lambert as an applied mathematician and a mathematical physicist, more than a pure 
mathematician. 

But it would be a mistake to conclude that he was not interested as well in “pure” 
issues—in fact, logical topics and foundational questions seem to be where his contri-
butions are most original and forward-looking. Here we are interested above all in 
Lambert’s conception of the foundations of arithmetic and of geometry, what might 
be called (in his time) the metaphysics of number and of space. 

Lambert’s colleague and great admirer Johann III Bernoulli—who edited his writ-
ings and was also Secretary of the Royal Academy at Berlin—believed that all of 
his works could be classified as belonging either to the physical-mathematical field, 
or to the area of logic.7 He admired him as a philosopher with an extraordinary 
competence in logical thinking, «the greatest logician» of his century, and so he is 
considered even today.8 How can we understand what Bernoulli says, knowing that

7 Bernoulli’s introduction to J. H. Lambert’s Logische und philosophische Abhandlungen, vol. 1  
(Berlin, 1782), p. X. 
8 In theBritannica online one can read: «The greatest 18th-century logician was undoubtedly Johann 
Heinrich Lambert.» See https://www.britannica.com/topic/history-of-logic/The-18th-and-19th-cen 
turies (article by Hintikka and Spade, seen 18/08/2020). 

https://www.britannica.com/topic/history-of-logic/The-18th-and-19th-centuries
https://www.britannica.com/topic/history-of-logic/The-18th-and-19th-centuries
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his work includes a great amount of empirical work? It is compatible, I think, espe-
cially if we remember that the label “mathematics” was, at the time, wide enough 
to include all of the mathematical “sciences”: photometry, cartography, architecture, 
and so on. Our puristic conception of mathematics is the daughter of the nineteenth 
century, once again, and is far from the vision of the Enlightenment. 

Lambert’s system of Logic was important at the time. Without knowing much of 
Leibniz’s attempts, starting from the basic idea of an algebra of thought, Lambert 
developed a calculus that can be compared with Leibniz’s, obtaining an elegant and 
efficient system of logic. The signs “=” y “+” were used in the manner of Leibniz 
and Boole, + being a union of disjoint or exclusive concepts; yet this calculus was 
not extensional as in Boole, but intensional (terms denoted concepts, not things nor 
classes of individuals).9 To express «All A is B», Lambert writes “a = mb”, i.e., a 
known concept a is identical to the conjunction of b plus an indeterminate concept m 
(the idea is reminiscent of Boole). In this system, he carefully distinguished between 
known concepts, indeterminate concepts, and those that are strictly unknown. Even 
more interesting, he paid attention to relations (such as “the father of”) and how their 
introduction would affect logic; he introduced a way of expressing relational notions 
by means of functions (“i = α :: c” indicates that i is the result of applying the 
unary function α to concept c). It would be interesting to know whether authors like 
Frege or Dedekind had read Lambert, given that the introduction of relations and 
the incorporation of the mathematical idea of function to logical theory were key 
innovations towards the end of the nineteenth century.10 

Be that as it may, Lambert’s logical calculus was not decisive for the next advances 
of mathematical logic, despite his achievements and even though he influenced 
Moritz W. Drobisch (and through him, perhaps also Boole). Let me suggest that 
the best results of Lambert’s extensive dealing with Logic may have been the impact 
it had upon some of his contributions to the foundations of mathematics: his concep-
tion of geometry, axiomatic and innovative, and the unusually rigorous approach of 
his work on π . 

As regards the number π , the reader will find all the details in the study and 
translations featured in this book. Suffice it here to call attention to a few points: 
Lambert conceived a logically rigorous proof of irrationality, with almost no gaps, 
at a time that was not precisely characterized by attention to rigor—this was 60 
years before Cauchy. And he took the step of distinguishing between algebraic and 
transcendental irrationals, a distinction that would mark the future of the topic, but 
which was not adopted by other mathematicians (except for Legendre) until long 
after; starting around 1840, it was taken up by figures like Liouville, Dirichlet, and a 
few others. Today we realize how incomplete was the conception of real numbers that 
was usual around 1800: they were only thinking of quadratic irrationals, numbers

9 Sechs Versuche einer Zeichenkunst in der Vernunftlehre (1777) “Six attempts of a symbolic art in 
logic”. Included in Logische und philosophische Abhandlungen, vol. 1 (Berlin, 1782). 
10 The syllogistics of Aristotle is severely limited because it works only with monadic predicates 
(like “is mortal” or “is a mammal”) and cannot deal with the logic of relations. The notions of 
relation and function are crucial innovations of the eighteenth and nineteenth centuries, see, e.g., 
Ernst Cassirer’s book, Substance and Function (1910). 
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such as
√
2, or

√
2 + 

√
3, or cubic roots 3

√
5, but Lambert took a giant step towards 

a correct conception of the system of real numbers. It was substantial progress to 
realize that there might be a whole class of irrational numbers beyond the algebraic 
ones, Lambert was a pioneer here. As regards the logical rigor of his proof, there are 
indications that it might have influenced other key authors, as might be the case of 
Gauss (think of his rigorous proofs of the fundamental theorem of algebra in 1799, 
and in 1816) or Bolzano (think of his papers of 1816 and 1817, including the famous 
work on the intermediate value theorem). 

Considering geometry, an expert like V. de Risi underscores how Lambert 
pioneered the reintroduction of a strictly axiomatic conception of the subject, after 
two centuries (seventeenth and eighteenth) when it had become standard to think of 
the deductive edifice of geometry as based upon definitions. (The first truths follow 
from definitions, e.g., the circle was defined genetically, as the result of moving a 
segment around one of its extremities, fixed, back to its initial position; from which it 
was “immediately” derived that all of the radii of a circle are equal, and that one can 
describe a circle around any point as center, with radius equal to any given segment 
(Euclid’s postulate).) On the contrary, Lambert insisted in his “Theory of Parallels” 
(written 1766, published by Bernoulli in 1786) upon the idea that the key assump-
tions that determine the content of the discipline are contained in the postulates or 
axioms of geometry, and he went so far as to suggest the idea of a strictly formal 
derivation of the theorems of geometry. This was an anticipation of the famous idea 
of Pasch and Hilbert, by more than a century! Here is the key passage from §. 11 of  
the “Theory of Parallels”: 

In the first part of this question [whether it (the parallel postulate) can be derived in proper 
order from the (other) Euclidean postulates together with his other axioms], one can abstract 
from everything that I earlier called representation of the thing. And since Euclid’s postulata 
and other axioms have been expressed in words, it can and should be demanded that the proof 
never appeal to the thing itself, but that the proof should be carried out purely symbolically— 
when this is possible. In this respect, Euclid’s postulata are as it were like so many algebraic 
equations which one already has in front of oneself and from which one is to compute x, y, z, 
etc. without looking back to the thing itself.11 

Let me end here, for I think we have insisted enough on the stature of the author, 
a scientist and thinker of first rank, and the interest of his works published in this 
book. The reader will find an excellent translation of both of them, with detailed 
and enlightening introductory studies. It is a novelty to find published together the 
popular essay from Beyträge and the erudite one from Mémoires, something that was 
only available in Spanish before. I believe this is a great idea, making possible a dual 
approximation to a fundamental issue in mathematics. 

Incidentally, I would like to add that both works have been confused in the past, 
which caused some incorrect (negative) opinions about the nature of Lambert’s

11 Lambert translated in (Ewald 1996, p. 166). 
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mathematical work on π . The reader of this work will no longer fall into such 
confusions. 

Seville, Spain José Ferreirós 

References 

Abardia, J., Reventós, A., & Rodríguez, C. J. (2012). What did Gauss read in the appendix? Historia 
Mathematica, 39(3), 292–323. 

Ewald, W. (1996). From Kant to Hilbert Volume 1: A source book in the foundations of mathematics. 
Oxford University Press. 

Gray, J. J., & Tilling, L. (1978). Johann Heinrich Lambert. Historia Mathematica, 5, 13–41. 
Heilbron, J. L. (1982). Elements of early modern physics. University of California Press.



Acknowledgements 

Eduardo Dorrego López wants to express his sincere gratitude to the IMUS and 
the Doctoral program in Mathematics at Seville, where he obtained his doctorate in 
History of Mathematics, as well as his supervisor José Ferreirós for his support and 
advice. Likewise, he is very grateful to Dr. Christopher Hollings for having accepted 
him as a visiting student in Oxford, and for his willingness to help whenever he was 
asked for. He would also like to thank the people of the ARITHMOS seminar for 
letting him participate in such interesting meetings and enlightening discussions, and 
to Eliane Michelon from the Archives de Mulhouse, who disinterestedly allowed him 
access to several sources concerning Lambert. More generally to colleagues, collab-
orators, and friends for their advice, especially to Elías Fuentes for his dedication 
to this project, Emilio Suárez Canedo for help with LaTeX, and Ana Isabel López 
Braña for help with French. Finally, to Anita, Modesto, Ana, María, Alejandro, Julia, 
Luisa and the rest of his family for their daily, unconditional and inexhaustible love. 

Elías Fuentes Guillén would like to express his utmost gratitude to Eduardo 
Dorrego López for his invitation to be a part of this project, as well as to José 
Ferreirós for his unfailing support in bringing it to fruition. He also wants to express 
here his deep love and gratitude to Alejandrina Viesca Ramírez, whose husband he 
is honored to be and without whom nothing would be possible. 

Elías Fuentes Guillén’s work on this book was made possible thanks to the support 
of the Institute of Philosophy of the Czech Academy of Sciences, and in particular 
of the Centre for Science, Technology and Society Studies, through the postdoc-
toral project «Bernard Bolzano: philosophical and mathematical problems of the 
continuum» (PPPLZ-L300092052), as well as, for the second edition, through the 
Junior Star grant project “Normalisation and Emergence: Rethinking the Dynamics 
of Mathematics. The case of Prague in the First Half of the 19th Century” (GA ČR 
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Part I 
Eduardo Dorrego López



Chapter 1 
Johann Heinrich Lambert: 
A Biography in Context 

Lambert is an interesting case. A self-taught polymath, he took 
as his main line the application of mathematics to physics and 
even to metaphysics. As a philosopher he worked out an 
epistemology similar to Kant’s; as a physicist he sought effects 
linked by simple, general, and above all mathematical laws; as 
an experimentalist he advanced the quantitative study of 
photometry, pyrometry, hygrometry, and magnetism. He talked 
as an equal to Leonhard Euler and to Georg Brander, 
respectively the leading mathematician and the leading 
instrument maker in Germany. In a word, he was the perfect 
mathematical physicist: the mathematicians considered him an 
experimentalist with a ‘rare talent for applying calculation to 
experiments;’ the experimentalists thought him a mathematician 
with an unusual understanding of the behavior of instruments. 
All of which (we are told) he accomplished by working from five 
in the morning to twelve at night, with a two-hour break at noon. 

—J. L. Heilbron, Elements of Early Modern Physics. 

1.1 Introduction 

The sixteenth century in Europe began with an event that after two centuries would 
lead to a change in the way of conceiving things, and a desire on the part of the people 
to break the shackles of oppressive and impoverishing intolerances. On October 31, 
1517, on the door of the castle church of Wittenberg, Martin Luther nailed, according 
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to tradition, 1 his famous Ninety-five Theses in which he highlighted the need to end 
the corruption of a church entity that used indulgences as a bargaining chip. These 
practices, already denounced before, became notorious at this time in which, for 
example, one could free oneself from purgatory in exchange for participating in the 
construction of St. Peter’s Basilica. 

With the support of the printing press —something that at first did not worry 
Rome— word quickly spread, becoming a problem even for Luther himself, since 
it led to violent revolts that he himself condemned. 2 There was now a split in the 
group of believers who considers a reform to be necessary, thus bringing forth Protes-
tantism. As a reaction to this situation, there was convened a council in Trent that ran 
interruptedly between 1545 and 1562, where possible counter-reforms of the Church 
in the face of this new movement were discussed. The tensions that were more than 
evident led to various conflicts, provoking in this latter year the begining of the Reli-
gious Wars between Catholics and Calvinist Protestants in France. The Protestant 
branch in France had its origin in the ideas of John Calvin, a theologian who followed 
Luther, and were called the Huguenots. The Massacre of St. Bartholomew in 1572 
where thousands of Huguenots were killed marked the height of barbarism in France. 

With the turn of the century, the enormous fragmentation caused by the events 
of the previous century was leading to a resurgence of conflicts throughout the con-
tinent, which in practice led to a harsh persecution of Protestantism. For example, 
the Netherlands, which had been under Spanish rule since the 16th century, largely 
adopted the Calvinist religion after the Reformation. The religious tug-of-war stem-
ming from this difference with their Catholic rulers led to wars and peace treaties 
that brought to light the clear difference between the north and the south of the 
region. While the north, led by William of Orange, continued to claim some inde-
pendence, several southern provinces in present-day Belgium eventually ended up 
being annexed to the Spanish state. This breaking point is known as the Union of 
Arras of 1579 in which, among other things, the Catholic religion was established as 
the one and only religion, and the persecution of Calvinism was put into full effect. 

From this area of the southern Netherlands came the Lamberts, 3 specifically from 
Wallonie (Wallonia), one of the three parts into which present-day Belgium is divided 
and which at that time was part of the Holy Roman Empire. 4 Like many others, 
they ended up escaping Catholic persecution in Lambrecht, a town located about

1 Although it is very likely that this was the case due to the testimonies we have from his collaborator 
Melanchthon and his secretary Georg Rörer, it is something that specialists still do not take for 
granted (see Roper (2017, pp. 11, 451 notes 2 and 3)). 
2 It should be noted that along with the revolt against the church there was also a peasants’ war, 
whom Luther initially supported, although he later retracted from this position cf. Roper (2017, 
Chap. 12). I am grateful to one of the anonymous reviewers for bringing this point to my attention. 
3 The origins of the Lambert family of Mulhouse are studied in Mieg (1939, pp. 27–30) by the 
historian and genealogist Philippe Mieg (if I have been able to consult this article it has been thanks 
to the kindness of Eliane Michelon from the Archives de Mulhouse who disinterestedly allowed me 
access to it); a summary can be found in Jaquel (1977, pp. 133–135). On the other hand, with regard 
to the historical context, I depended entirely on Parker (1997), Bergin (2001) and  Oberle  (1985). 
4 On the Holy Roman Empire see Stollberg-Rilinger (2018). 
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70 km from Heidelberg, the capital of the Calvinist Lower Palatinate and one of the 
main centers of reformed religion in Europe of that time. Apparently in this locality 
there was a colony of French-speaking Calvinists —refugees themselves from the 
Netherlands and Belgium— who had settled in 1568 in the disused buildings of 
the old convent, and it is possible that the Lamberts, who had also arrived in the 
second half of the century, found comfort and support among them. In fact, both 
Lambert’s great-great-grandfather, Jean Colin Lambert, and his great-grandfather 
Jean Nicolas Lambert (called Colin) were born there, although it did not take long 
for the complicated situation in the north to make their time there dangerous. 5

Years later in Bohemia (present-day Czech Republic) —a predominantly Protes-
tant region— the conflict with the ruling Habsburg Catholics culminated on May 23, 
1618 when two ministers of the Emperor Matthias and one of their secretaries were 
thrown out of a window. 6 Anticipating what was coming their way, they asked for 
help from the leader of the Protestant Union, Frederick of the Palatinate, and offered 
him the crown of Bohemia, deposing Ferdinand, who a year later was elected Holy 
Roman Emperor. From the Protestant point of view, control of Bohemia was no 
mere bagatelle; it was in fact vital in order to prevent the end of religious freedom 
in the Empire. However, this vision was also shared by the Catholics, who sent a 
retinue of Spanish troops to the Palatinate in 1620 to thwart an attack from the rear 
and secure their position in the process. 7 The proof of the realness of these visions 
is that afterwards, after the Catholics ended the Bohemian revolt at the Battle of 
the White Mountain in Prague on November 8, 1620, the re-catholicization swept 
the Palatinate, spreading throughout the Empire. Perhaps the capture of Heidelberg, 
once the capital of European Protestantism, by the Catholics in 1622, was the most 
representative symbol of the clear defeat of the Protestants. 

The situation was therefore no longer safe, so the Lamberts packed up their belong-
ings and headed to Mülhausen. It is more than plausible that they had not chosen 
the new destination by chance, since it was a small Calvinist Republic of northern 
Alsace, allied since 1515 with the Helvetic Confederation (Switzerland; in fact, it 
was one of the few parts of Alsace that would not be annexed to France after the 
Thirty Years’ War). Although the Edict of Nantes of 1598, which ended the French 
Religious Wars, had established a certain tolerance towards Protestants,. «it had never 
been applied in Alsace. », 8 so this hostile geographical environment made Mülhausen 
a small, Calvinist paradise. In fact, throughout the seventeenth century it had served 
as a refuge for many Protestants who came from various parts of France, such as 
Lorraine, 9 although the poor economic situation made it difficult to grant the right 
of the bourgeoisie, which allowed the right to exercise trade.

5 The colony itself would be dissolved in 1623 with the arrival of Spanish troops. 
6 The so-called. «Defenestration of Prague. ». 
7 Key step towards the Thirty Years’ War Parker (1997, p. 76). 
8 Oberle (1985, p. 12) who quotes Pfister, L’Alsace et l’Edit de Nantes in Revue historique, 1929 
(pp. 217–240). 
9 It is possible that the tradition of placing the Lamberts as refugees from Lorraine (or more generally 
from France) comes from here, a tradition that Matthias Graf, pastor of Mülhausen and author of a 
reference biography on the Swiss published in 1829 on the occasion of the centenary of his birth 
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Therefore, it could not have been easy for Jean Nicolas Lambert, the great-
grandfather of our savant, to obtain this right. He had come to Mülhausen in 
1624 with his widowed mother Marie Marx and his uncle (and tutor) Jean Nicolas 
de Cornesse —a native of Cornesse in Wallonie who had been burgomaster of Lam-
brecht in the Palatinate— and he did not obtain this right until eleven years later in 
1635. And thus Jean Nicolas, who was a master baker, became an . «échevin. »10 in 
1655, a role that he passed on to his son Jérémie (1660–1733) who would eventually 
become a tailor, a profession that would be inherited by his son and Lambert’s father, 
Lucas Lambert (1699–1747). 11 Poor business decisions made after 1660 forced Jean 
Nicolas to gradually sell most of his assets, which is most likely what motivated the 
Lamberts to leave Mülhausen for the Palatinate in 1671; however, after the death 
of the head of the family and the destruction of Lambrecht by French troops, his 
widow and his son, Jérémie, returned around 1689 to stay permanently. Mülhausen 
remained a good option in a Europe that was still dangerous, despite it having left the 
Thirty Years’ War behind with the signing of the Peace of Westphalia (1648). Even-
tually, in 1685 Louis XIV revoked the Edict of Nantes, giving a renewed vigor to the 
persecution of the Calvinists; 12 a persecution that in reality had already been inter-
nationalized —and increasingly so— with the Edict of Restitution of 1629, which 
basically prohibited all Protestant sects except Lutheranism. 13

All these conflicts together had drawn a landscape in Europe that was, especially 
in Germany, quite bleak. But in the midst of this panorama, there occurred a change 
in the mentality of certain social groups —thanks to discoveries by such figures as 
Galileo, Kepler, Descartes or Newton, and to the impact of works by Locke, Bayle 
or Leibniz— a change whose objectives would be to break from dogmas, use reason 
as a guide,. «the enlightenment of all human beings as a fight against superstition and 
their education to public application and utility. »: 14 the Age of Enlightenment was 
born. 15 It was in this context that Lambert’s life took place. 

(in Huber et al. (1829)), even situated within Lambert’s own family. An example is found in the 
biography of Formey on the occasion of his Eulogy on Lambert Sheynin (2010, p. 137), or in 
the article by Scriba (1973, p. 595) (to whom Sheynin (2010, p. 5) refers as Lambert’s modern 
biographer). Furthermore, the reader studying Lambert’s biography will notice how his family 
origins are usually placed among refugee Huguenots, although they were not really French. Philippe 
Mieg values this bibliographic tradition, finding in it some confirmation of what was already stated 
above to the effect that Lambert’s family had had contact with a Huguenot colony at Lambrecht 
(see Mieg (1939, pp. 26, 29)).
10 In the Larousse dictionary:. «In the Middle Ages and under the old regime, municipal magistrate 
[. «magistrat. », defined as  . «a character invested with important public functions. »] in the cities of 
northern France, who assists the mayor [. «maire. », defined as. «the first of those magistrates. »]. ». 
11 See Sitzmann (1909, p. 92) (based on Mieg (1939) and Jaquel (1973), the author must have been 
wrong in saying that he obtained the bourgeois right in 1645). 
12 It will not be until 1787 that a measure of tolerance for them is restored in France (see Blanning 
(2000, pp. 135, 151)). 
13 Parker (1997, pp. 127, 128). 
14 Hermann (1988, p. 123). 
15 I use this term in a broad sense and without entering into terminological distinctions based on 
what place —France, England, Germany, etc.— one wants to focus on, as well as knowing that 
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1.2 Early Years (1728–1746) 

Johann Heinrich Lambert was born in Mülhausen on August 26, 1728, four years 
after his parents, Lucas Lambert and Elizabeth Schmerber, married. 16 The family’s 
financial situation was difficult; the modest salary of his father, who continued the 
tailoring profession, together with the need to support a large family of ten children, 
three of whom died at a young age, 17 forced a standard of living far from com-
fort. However, his parents did not neglect their children’s need for basic education: 

normally and without a clear consensus, it is framed in three different periods: . «the long. » (1688– 
1815), . «the strict. » (1700–1800) and . «the short. » (1715–1789) . «Enlightenment. » (the main source 
used for the historical period referred to has been Blanning (2000)). 
16 It must be said that the date of birth is not known for sure because at that time in Mülhausen 
there was no registration of birth, only of baptism (Lambert is baptized on August 29) (Jaquel 1973, 
p. 102). Although Jaquel says that the 26th is usually adopted as his date of birth, one finds in 
some biographies of the XVIII other accounts, such as the 29th in Barlow (1814), or the 28th (of 
April!) in Hutton (1815, p. 710). As for Lambert’s origins, in Lambertian historiography there is 
confusion about the nationality of the savant since on many occasions he is presented as French, 
German or Swiss. The Lamberts’ regions of origin were predominantly French-speaking, and they 
seem to have had contact with French communities in Lambrecht; furthermore, much of Alsace was 
dominated by the French (but not Mülhausen), it was completely French between 1798 and 1871 
when it passed into German hands, and it was again from 1918, something frequently used to classify 
Lambert as French. On the other hand, on his father’s side he is of German origin, or at least until 
his great-grandfather arrived in Mülhausen from regions dominated by the Holy Roman Empire of 
the German Nation, and spent the last part of his life (12 years) in Germany, where he found his 
place (also between 1871 and 1918 Mülhausen came under German dominance, which also caused 
some to view Lambert as a German, in addition to the fact that his maternal language was Alsatian, 
a German dialect). The same would apply to the origin of his mother, her great-grandparents having 
been mainly Mulhousians and also Germans. Lastly, approximately the first 15 years of his life were 
spent in his hometown, at that time part of the Confederacy Helvetica (Switzerland). Jaquel (1973) 
analyzes the case in detail and comes to the conclusion that, although Mülhausen’s relationship with 
the Confederation was variable and the simplest and most rigorous at the same time would be to 
consider Lambert as Mulhousian, the most common and natural practice is to consider Mülhausen 
as a Swiss city. In this way, the most natural thing would also be to classify Lambert as Swiss. In 
this same line: Knobloch in Begehr et al. (1998, p. 5) considers Lambert Swiss, since Mülhausen 
in those days belonged to Switzerland until it was annexed to France; Rudolf Wolf (1816–1893) in 
his biography on Lambert translated from German in Sheynin (2010) adds (p. 150) that Lambert: 

invariably considered himself a Swiss and until he earned any scientific title his contem-
poraries called him Mülhusino-Helvetus. I cannot therefore hesitate to describe that great 
thinker as a Swiss scientist. 

Cajori (1927, p. 129 note 5) and Gray (2007, p. 84) present him as Swiss without further details; 
Calinger (2016) refers to him as Swiss-German (p. 643), although he clarifies that his hometown 
was in Switzerland (p. 427). In p. 558 note 22 he is clearer and speaks of him as Swiss.
17 The data in Jaquel (1973, p. 102). In Klemme et al. (2016, p. 451) it is said that Lambert had 
four siblings, but it is also said (as elsewhere) that his family arrived at Mulhouse in 1635 as 
escaped refugees from Lorraine. By the way, and in line with what has just been said in the previous 
note, the title of this work shows the preference of the authors towards the German nationality of 
Lambert, although it would have to be said that considering him a German philosopher is a natural 
historiographic tendency since . «he endeavored to develop a German philosophical language, and 
used only German in his impressive philosophical works. » Jaquel (1973, p. 104). 
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Lambert attended the school in his city —revealing himself a diligent and gifted 
student— where he received elementary training in French, Latin and other subjects. 
But, at the early age of 12 (Fig. 1.1), he had to leave his studies to help his father 
with tailoring. Even in that very short period of time though, he showed signs of a 
strong inclination towards study, something unusual for his age, even more so if one 
takes into account that he did not come from a family of intellectuals. 

Lambert devoted the little free time he had left after helping his parents to reading. 
Even at night while the rest of his family was asleep, he studied by candlelight. His 
mother, possibly worried about his lack of rest, sometimes took them away, but he got 
more by selling small drawings that he made. His strong and surprising dedication, 
together with the references that the teachers gave of him, made his father considers 
the idea of letting his son leave the tailoring business and dedicate himself to what 
clearly appeared to be his passion: study. 

At the time, those who had the means to attend university were first required 
to go through some philosophical studies (i.e. to attend the so-called Faculty of 
Philosophy), which had a foundational role and granted access to the Faculties of 
Theology, Medicine and Law, which were the only studies offered. 18 Formey in his 
Eulogy on Lambert (1780) summarized the intellectual environment in our savant’s 
hometown by noting that: 

It is appropriate to mention that in those times the number of men of letters in Mulhouse 
was restricted to half a dozen theologians since it was thought that there did not at all exist 
any other science except theology or otherwise that only theologians were able to develop 
sciences. 19

Given that Lambert’s family was very religious, it is understandable that they made 
the decision, following the advice of their son’s professors, that he should study 
theology. His father tried to get financial help for his son, but to his despair, he 
was not able to find anything. Finding that their circumstances were not changing, 
Lambert had to continue tiptoeing between tailoring and studying. 

Despite his disappointment, he did not give up, and continued to use the little 
free time he had to study whatever fell into his hands: two books on arithmetic and 
geometry which helped to consolidate his basic mathematical culture (one loaned

18 See Ferreirós (1995). These philosophical studies included history, mathematics, philosophy in 
the strict sense, physics, philology etc., of course, as they were understood at that time. To give just 
one example, in the eighteenth century physics was understood as. «the science that teaches us the rea-
sons and causes of all the effects that Nature produces. » (Rohalt cited in Hankins (1985, pp. 10–11)), 
and so medicine, among others, was understood as part of physics. In fact, in the seventeenth cen-
tury the physicist and the doctor were the same thing, and even today in certain languages such a 
connection can be traced in the designated words for a doctor (in English. «physician. » is defined in 
the Cambridge Dictionary as . «a medical doctor, especially one who has general skill and is not a 
surgeon. »). 
19 Sheynin (2010, p. 138). Texts referenced in Sheynin (2010) are: the  Eulogy on Lambert (1780) 
by Johann Heinrich Samuel Formey (1711–1797), perpetual secretary of the Berlin Academy of 
Sciences among whose duties was to make the obituaries of the deceased members; and an 1860 
biography of Johann Rudolf Wolf (1816–1893), professor of astronomy in Zurich. In what follows, 
and whenever appropriate, it will be made explicit which of the two is being referred to. 
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Fig. 1.1 Lambert in his 
youth (from the web: Johann 
Heinrich Lambert 
(1728–1777) Collected 
Works-Sämtliche Werke 
Online). As for Lambert’s 
portrait, see Appendix A 

by one of his colleagues and the other borrowed from a worker hired by his father 
who was surprised by the dedication to reading shown by the young Lambert). In 
conjunction with his readings, he had a local teacher helping him with French and 
Latin for free, and Heinrich Reber, the city’s scribe, after seeing the quality of his 
calligraphy, hired him in his office as a copyist. Reber was a key figure for Lambert 
in these early years for the support he gave him and for his recommendations. 

After a stint as a copyist, at the age of 15 and on Reber’s recommendation, he went 
to work as an accountant in the steel industry in Seppois in northern Alsace. There 
he perfected his French and, among other things, followed with great attention the 
course of the comet of 1744, which would later motivate his work on these subjects. 20

From now on Lambert would not look back. He was to put aside the family tailoring 
once and for all, and was to dedicate the next decade to training from all angles 
without neglecting any branch of knowledge, which was to make him the polymath 
scientist that he was. 

1.3 Epoch of Learning (1746–1756) 

After returning from Seppois in 1746, the 18-year-old Lambert moved to Basel 
to become, on Reber’s recommendation, secretary to the Swiss philosopher Isaac

20 Listed as a Great Comet, it was especially bright and spectacular, eventually developing a 6-tailed 
fan after reaching perihelion. 
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Iselin, 21 who at that time was editor of a political newspaper. In a letter dated Decem-
ber 6, 1750, Lambert talked about his work in Basel: 

About four years ago I had basically learned Latin and French and then the late city scribe 
Reber recommended me to Dr Iselin in Basel to be helpful to him with his correspondence 
and newspaper articles. 22

Lambert’s personality was far from charming and he had a rather strange character, 
but: 

on the one hand, his extraordinary ability and, on the other, the incorruptible rectitude 
of his spirit, won him reliable allies capable of appreciating his virtues and forgiving his 
temperament. 23

Iselin was one of those who, along with Reber and his former teachers, saw in 
Lambert a burning desire to learn. He came to develop great esteem for him. He 
educated him during the day and allowed him to attend his lessons, but his deeply 
ingrained autodidactic propensity made him prefer to take refuge in his own self-
acquired books before attending his classes. This same letter shed light on his early 
influences: 

In that capacity hardly half a day am I occupied so that I have got myself some books for 
learning the elements of wisdom. I have understood at once that my first efforts should be 
directed at perfecting my knowledge and making myself happy. However, I also understood 
at once that naturally depraved intentions cannot be improved without freeing the mind 
from prejudices and properly enlightening it. That was therefore my first reference point, 
and I find those rules, which are very useful for cognizing the mind itself and its faults and 
for investigating the truth, in the writings of Wolff on the power of the human mind, of 
Mallebranche on the investigation of truth, and of Locke’s thoughts on the human mind. 
All this is above all revealed in the mathematical sciences and especially in algebra and 
mechanics which provided me with clear and thorough examples enabling me to confirm 
the previously learned rules and to transform them, so to say, into my own flesh and blood. 
Until now, I have found no reason to regret my efforts since now I am able all the better to 
learn other sciences easier and more thoroughly and since I ought to teach others, to explain 
everything much better and more skilfully. 

In addition to the importance that he gave to mathematics as a paradigm of the 
philosophical ideas that these books taught him and as a fundamental tool for the 
other sciences, 24 this small extract from the letter verifies that his mind was indeed 
free of prejudices. Although for a person of that time with intellectual leanings, these 
three works, among others, were almost required readings, it is also true that Wolff

21 Born in 1728, he studied law and philosophy at the Universities of Göttingen and Basel (he 
became professor of law at this latter university). A respected man, he was one of the founders of 
the Helvetic Society. He died in 1782 as a permanent member of the Berlin Academy. 
22 Wolf in Sheynin (2010, p. 151). 
23 Juan Arana in Lambert (1765/1767, p. 200). 
24 Here one can already see, as will be seen later, his intertwined vision of the different parts of 
science. 



1.3 Epoch of Learning (1746–1756) 11

Fig. 1.2 Lambert in his maturity stage. Portrait made by illustrator G. Dantzer around 1850 
(availabe at http://ark.bnf.fr/ark:/12148/cb41920778f) 

(together with Malebranche) and Locke represented the two opposite currents of the 
theory of knowledge: rationalism vs empiricism. 25

Despite the affection he had for Lambert, Iselin made his desire to retain him 
dependent on the search for a possibility that would provide a good option for his 
development as a scientist. This is how our Mulhoussian came to travel in 1748 at 
the age of 20 to Chur, the capital of the Canton of Grisons in Switzerland, to become 
the private tutor of three young relatives of Count Peter von Salis (Fig. 1.2). Von 
Salis, who at that time was 80 years old, in addition to being Count of the Holy 
Roman Empire of the German Nation, had been an ambassador in London and one 
of the negotiators of the Peace of Utrecht. He was therefore an important, influential, 
and cultured man —a possessor of a great library that would open the doors for 
Lambert to a broader and deeper study with which he would define his scientific and 
philosophical thought. 

His work in Chur consisted of personally educating the 11-year-old count’s grand-
son Antoine de Salis, his 11-year-old cousin Baptista, and another 7-year-old relative 
named Johann Ulrich von Salis. Over the next decade he would instruct them in lan-
guages, mathematics, geography, history, and catechism (the von Salis family were 
very devout, a quality that Lambert shared and would uphold). The free time avail-
able to him was devoted to studying in the library of his host, and like one who tries

25 He won’t marry either of them, so to speak, but in fact he will marry the two of them together 
(see Gray et al. (1978)). 
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to quench his thirst after a long journey without water, he indiscriminately embraced 
physics, astronomy, mathematics and mechanics, as well as theology, metaphysics, 
and even poetry, making regular astronomical observations and building his own 
instruments for experiments. 

With this background, he began to develop his own reflections, which he wrote 
down every month, starting in 1752, in his Monatsbuch, a scientific diary which he 
would continue writing up until his death. 26 It was also at this time that he came into 
contact with the academic world. Together with the support of his sponsor, his rapid 
progress and the knowledge he had acquired led to him being appointed in 1752 to 
the Chur Literary Society and later to the Swiss Scientific Society based in Basel. At 
the request of this institution, he would make several meteorological observations 
that would be materialized in various publications in Acta Helvetica, the Society’s 
journal. It was in this journal, specifically in volume 2, that he was to publish in 1755 
his first article Tentamen de vi caloris, qua corpora dilatat ejusque dimensione 27

which dealt with heat, one of the main topics of study of physics of the time, along 
with that of light, electricity and magnetism. 

On September 1, 1756, after eight years at the von Salis’ home —a key period 
for Lambert’s training that allowed him to more than make up for the educational 
deficiencies that he had suffered due to lack of resources when he was younger— he 
embarked with Antoine and Baptista, who were already 19 years old, on an academic 
trip through Europe in which he would visit the main intellectual centers of that time, 
opening himself up to the scientific community and making a name for himself at 
the international level. 28

1.4 European Tour (1756–1759) 

As mentioned before, from the middle of the 16th century until the beginning of the 
18th century, a series of religious and political events took place which, combined 
with certain scientific developments, led to a change in mentality. These advances 
came to point out the possibility that man by himself using reason, without resorting

26 Lambert’s scientific diary was first edited by Karl Bopp in his Bopp (1915). Roger Jaquel, one 
of the great experts on Lambert, wrote in 1977 in connection with Lambert’s collected works that 
. «the most urgent and appreciated service would consist of providing a translation, or at least a new 
edition of Lambert’s Monatsbuch. » (Jaquel 1977, p. 95). One of Jaquel’s wishes was already fulfilled 
in a recent publication (Bokhove et al. 2020). It is more than desirable that an English translation 
be done. 
27 Lambert (1755). An exhaustive list of Lambert’s works can be consulted on the website Johann 
Heinrich Lambert (1728–1777) Collected Works—Sämtliche Werke Online written and designed 
by Maarten Bullynck: http://www.kuttaka.org/~JHL/Main.html. Also in the  classic work by Max  
Steck Bibliographia Lambertiana (Steck 1970). 
28 The following section, and more generally the whole chapter, does not cover all of Lambert’s 
journeys. For a more detailed map I forward the interested reader to Jaquel (1979, pp. 52–53). Jaquel 
explains (pp. 50–51), that this map is a corrected version of Max Steck’s Topologische Karte der 
Reisen von J. H. Lambert (Topologic map of J. H. Lambert’s journeys), 1951. 
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to revealed truth, could know how things work. Furthermore, this 180-degree turn 
—reason versus dogma— did not remain in the field of science but was generally 
extended to different aspects of life, changing all human activity. 29

Although initially it may have seemed that this got religious thinking out of the 
way, this latter thinking was in fact a truly remarkable driver of this approach to 
knowledge. As new discoveries appeared, the argument that the order and mechanism 
that governs nature points to the existence of a creator was beginning to replace a 
priori reasoning and even the revelation of the Scriptures as the main proof of God’s 
existence. To search for God, then, was to search in nature, so the implications for 
science were important (Fig. 1.3). 

But this was a search based on observation and experiment, since . «no logical 
argument alone could fathom God’s free choice. », 30 so that the phrase . «use reason. »
has now to be reinterpreted as evoking a way of knowing with a critical spirit and 
an open mind directed towards the natural sciences, and no longer as an a priori 
approach to the truth. A vision that also led to a shift in the field of mathematics 
from geometry to calculus, a tool that had been developed to respond to problems 
related to movement (mechanics). What we find in this century then, in what science 
refers to, is an eagerness to answer the questions posed by nature together with an 
experimental spirit, 31 wherein mathematics —mainly Calculus, a paradigm of reason 
and the correct method to follow—, played a central role. After Newton’s marriage 
of experimentation and mathematics in his work, the debate centered on the proper 
balance between the two. 

In late 1756 Lambert went to Göttingen, whose university was a good example 
of the shift towards the enlightened way of life. Since the Peace of Westphalia in 
1648, the Wars of Religion in the Holy Roman Empire had ended, and the area 
enjoyed a healthy tolerance of religion. Scientific thought was steeped in Wolff’s 
ideas: experimentation was used, but the approach was primarily rationalistic. 

29 It is important to note, however, that this change was not immediate at all. In fact, up until 
mid-century the church was still gaining ground in some areas, and its dominance was strong in 
places such as France, Spain, Portugal and Hungary, making it difficult for innovative ideas to 
enter, whereas in other places they had already been introduced, such as in Great Britain, Holland 
or Prussia. Derek Beales in his chapter . «Religion and culture. » in Blanning (2000, pp. 131–177) 
makes it clear on page 133: 

Among all the titles generally bestowed on the eighteenth century, ‘the Age of Religion’ and 
‘the Christian Century’ are missing. They should not be, because at any rate in the first of 
my periods the churches were in many respects still gaining ground. But this achievement 
has been concealed, because historians have greatly exaggerated the immediate impact on 
religion of two developments of the late seventeenth century, first, the supposed ‘end of 
religious wars’ and, secondly, the ‘scientific revolution’ leading to what Paul Hazard entitled 
‘the crisis of the European consciousness’ and dated to the years 1680 to 1715.

30 Hankins (1985, p. 3). This is typical of voluntarist theology, an important view since the Middle 
Ages (and one opposed to rationalist theology, cf. Leibniz) (I thank J. Ferreirós for the comment). 
31 In fact, Lambert had already built experimental instruments to carry out his own observations, a 
habit that he was to maintain throughout his life. 
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Fig. 1.3 Lambert and the 
. «Colonne Lambert. » erected 
in 1828 in front of both his 
house and the Saint-Etienne 
church in his honour in 
commemoration of the 100th 
anniversary of his birth 
(available at http://ark.bnf.fr/ 
ark:/12148/cb419207773) 

There, Lambert took law classes at the newly founded university and studied 
works by Bernoulli, who had developed Leibniz’s Calculus to address mechanics 
questions —very much in vogue at that time, as for instance the brachistochrone—, 
like those of Euler, which, with the enormous influence that he was giving to Calculus, 
would lead to the formation of an increasingly autonomous discipline. In fact, only 
a year before Lambert’s arrival in Göttingen, his famous Institutiones calculi differ-
entialis 32 had come to light, one of the three treatises that would contain everything 
collected so far on the subject. 33

32 Foundations of differential calculus. 
33 The other two are: the two-volume treatise Introductio in analysin infinitorum (Introduction to 
the Analysis of the Infinite) in 1748, and the three-volume treatise which would arrive in 1768 
Institutiones calculi integralis (Foundations of integral calculus).

http://ark.bnf.fr/ark:/12148/cb419207773
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Furthermore, he also knew two important academics: the astronomer Tobias 
Mayer, 34 who was in charge of the city’s observatory and who years before had 
published the first map with coordinates of the Moon and some excellent lunar 
tables that would earn him an award from the Board of Longitude in London (posthu-
mously); 35 and Abraham Gotthelf Kästner, professor of philosophy and mathematics 
at that university with whom he would correspond until his death. The influence that 
both Kästner and his student Klügel —whom Lambert also knew during his stay in 
Göttingen— exercised on Lambert would lead him to mark out the path that later 
generations followed towards the search for new geometries. 36

It is also probable that Kästner, who shared Lambert’s interest in the study of 
perspective, would have inspired him to delve into it. Both had published works on 
the subject years before, and at this time, and as recorded in his Monatsbuch, Lambert 
made different annotations until the publication of his main work on perspective in 
1759, the one of September 1758 being especially interesting: . «in Marseille I put 
down the foundations of perspective. ». 37

Lambert’s stay in Göttingen, where he was appointed corresponding member of 
the Academy of Sciences, lasted no more than a year. Political disputes in Europe 
due mainly to dynastic problems and territorial conflicts were abundant, and at the 
same time that he visited the city, specifically in the summer of 1757, it was invaded 
by France due to the Seven Years War. With no other option, he took his two pupils 
and made his way to the Netherlands, a neutral ground, and which together with 
Great Britian had been since the beginning of the century an example of religious 
tolerance and relative freedom, something that had promoted the new habits of the 
Enlightenment. 

He spent most of the year during his stay in the Netherlands in Utrecht. It is 
recorded that while there he suffered a spectacular fall that almost costed him his 
life. He was unconscious for a whole day and, in fact, the doctor who treated him 
. «advised him to abstain for a few years from serious reflections. »38 due to the severe

34 Quite a few parallels are to be noted between Mayer’s life and Lambert’s: financial difficulties 
(he grew up in poverty) and the loss of his father in his youth. He was also a self-taught man 
when learning mathematics and physics. One of the first things he excelled at before dedicating 
himself to astronomy was cartography, a field in which later Lambert would also make important 
contributions. 
35 Some lunar tables were of great practical interest as they made it possible to calculate longitude 
offshore, but it was a difficult task since, unlike the planets that are attracted to the sun, the moon 
is attracted also to the earth. This exercised the minds of such great savants of the day as Euler, 
d’Alembert and Clairaut, who faced this. «Three-Body Problem. », one of the three tests that Newton’s 
law of gravitation would have to pass for verification, together with the determination of the shape 
of the earth and the date of the return of Halley’s comet. 
36 Given the fundamental importance of Lambert’s investigations in this field, we will dedicate 
some lines to this issue in Appendix B. 
37 This Lambert’s main work on perspective I have just referred to is Lambert (1759). The quote 
is taken from Andersen (2007, p. 638), who dedicates a chapter to Lambert’s work since his 
contributions. «are so outstanding in the history of perspective that they deserve a separate chapter. »
(in p. 599). 
38 Formey cited in Sheynin (2010, p. 142). 
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blow he had received on the head, althought with no success. From Utrecht, he made 
short trips to the main Dutch cities: Amsterdam first; the Hague later, where in 1758 
he published his first book Les propriétés remarquables de la route de la lumière par 
les airs et en général par plusieurs milieux réfringens, sphériques et concentriques 39

about light paths in different mediums; and finally, Leyden where he met Pieter van 
Musschenbroek. 

At the beginning of the century, Van Musschenbroek together with Willem Jacob’s 
Gravesande and Hermann Boerhaave had published a series of works in which they 
followed Newtons footsteps by conducting experiments, which played a leading role 
(mathematics was necessary but subjugated to the experimentation, unlike what hap-
pened in Germany). Holland, led by the University of Leyden, became the primary 
follower of his method in Europe (along with Great Britain, naturally). Musschen-
broek, who had to his credit, among other things, the discovery, independently, of 
the first type of electric capacitor (the one known as the Leyden bottle) met Lambert 
when he was already an older man. They seem to have had a conversation on differ-
ent topics in which, contrary to his first impression, he was surprised by Lambert’s 
extensive knowledge: . «the roles of the interlocutors switched; Lambert became the 
teacher and Musschenbroek, the student. ». 40

His last stop before returning to Chur was in France, where—despite the difficulties 
encountered by some of its most illustrious citizens such as Voltaire or Diderot— 
the central document of the Enlightenment, L’Encyclopédie, was released. Lambert 
arrived to Paris in the summer of 1758, and there he established a relationship with 
Charles Messier, an astronomer who was beginning to draw up his . «Messier Cata-
logue. » (still known and in use today), in which he classified certain celestial objects 
with the intent of carrying out an easier search for comets, his main objective, appar-
ently motivated by his observation of the comet of 1744. But above all, he established 
contact with a man of already international fame who was part of the forefront of 
mathematics along with Euler and the Bernoullis, and who was to be an important 
agent in the change of mentality that was to occur above all in France from the second 
half of the century onward. 

Lambert met d’Alembert in 1758 when he had left the Encyclopedia project, prob-
ably due to the differences that were beginning to emerge between its two directors. 
Diderot questioned mathematics as a tool, arguing that it alienated the scientist from 
reality, and d’Alembert, although he understood the need for observation, argued 
instead that mathematics should occupy a central position. 41 And it was not just a

39 Lambert (1758). 
40 Formey in Sheynin (2010, p. 142). 
41 Criticisms of mathematics as a useless and obscure discipline were not new. Petrus Ramus had 
already in 1569 published Scholarum Mathematicarum in which he examined the reason for the 
small esteem in which scholars held mathematics. He (like d’Alembert later on) would point to the 
structure and methodology of Euclid’s Elements —the classic text of mathematical instruction of 
the time— as the main problem (for more details see Schubring (2005, pp. 68–69) where the author 
claims this work by Ramus to be . «the first methodological reflection on mathematics in print. »). 
In relation to the dispute over the usefulness of mathematics around the figure of d’Alembert, see 
Richards (2006, pp. 702–704, 706). 
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Fig. 1.4 Lambert’s handwritten studies on Cartography, a discipline in which he would also leave 
his mark (courtesy of the Archives de Mulhouse) 

few who subscribed to this view of mathematics as having little utility. Buffon came 
to call it empty and of little use to real life —products of the human mind and not 
abstractions (as d’Alembert saw them) of real objects that therefore benefit from his 
mathematical study. Diderot, who did not hide his joy when his colleague left the 
L’Encyclopédie —. «the reign of mathematics is over. », 42 he wrote to Voltaire—,. «did 
what he could to undercut the claims of d’Alembert’s “l’esprit géomètre”. ». 43

In any case, his . «Discours Préliminaire. »44 for this same work and the first seven 
volumes of it that would appear between 1751 and 1759 left their mark, earning him 
great prestige. In fact, years before, and on two occasions, he had received offers 
from Frederick the Great to preside over the Berlin Academy of Sciences, proposals 
that he rejected, arguing that it would be audacious to pretend to be above Euler in a 
scientific institution. 45 It seems that unlike with Messier, with whom he would come 
to maintain a friendly relationship, the first impression of this illustrious thinker 
towards Lambert was not good, although after time he would end up recognizing his 
worth. 46

42 Diderot quoted in Richards (2006, p. 706). 
43 Richards (2006, p. 706). 
44 Preliminary Discourse. 
45 Hormigón (1994, p. 27). 
46 These impressions will be discussed more closely later in this chapter.
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This European trip that ended in the last days of 1758 served him both inasmuch 
as it allowed him to get to know in person the main lines of research of the moment 
together with some of the most relevant scholars in Europe, and to publicize his first 
works in the academic world. But now, as his service to the Salis family was reaching 
its end, he was faced with the problem of finding a stable position from which to 
continue his studies. His mind was on Göttingen, as is attested to by a letter of August 
18, 1758 that he wrote while still in Paris and addresses to Albrecht von Haller, who 
had recommended Lambert while he was there, and who, together with Kästner, had 
helped him to disseminate his works (Fig. 1.4). Haller held the Chair of Medicine 
at the University of Göttingen and had been called by George II to inaugurate the 
presidency of the Academy of Sciences founded seven years earlier. After thanking 
him for his help, Lambert asked him to intercede for him: 

My service in the de Salis family will end before October and I ought to regret [the imminent 
loss of] the free time they had been willingly leaving me for working on such subjects. I 
do not know when will I be able to resume working on them 47 [...] I sincerely admit, Sir, 
that I expect to find it again in Göttingen and nothing would have pleased me more than an 
invitation to the chair of philosophy. I understand well enough that when competing for that 
position it is easy to become an instructor waiting for a vacant chair, and I know not less that 
the prime minister von Münchhausen much prefers literature to provide means for those, 
who, armed with a recommendation, ask to teach. I know very well, however, what does it 
mean to give lessons for a living and how much time necessary for working at the furthering 
of sciences is lost thereby. You know it, Sir, and your example vividly proves that the glory 
of a university much less depends on those who are only teaching than on those who in 
addition acquired reputation by their writings. I do not deny that it is that glory to which I 
aspire, and I do not wish anything so much as achieving successful development [in science] 
[...] How satisfied will I be if your recommendations will assure me such a possibility or if 
the actual circumstances at Göttingen University will permit an invitation which can benefit 
me. 48

Despite the fact that Haller had supported Lambert in his time in Göttingen, his 
attempt at getting a position at the university came to nothing. He left Paris to return 
to von Salis’ home in Chur, via Marseille, Nice, Turin and Milan. Finally quitting 
the service of the von Salis family in May 1759, Lambert would lead, for the next 
five years, a restless life oriented towards a safe position from which to continue his 
investigations, and towards finding possible editors for his works. 

1.5 Itinerant Period (1759–1765) 

After a short rest at the home of his former pupils, Lambert departed towards 
Mülhausen with the desire to spend some time with his family. Before going to 
Mülhausen, however, he stoped off in Zürich where he was elected a member of the 
Society of Physics after being enthusiastically received by, among others, Johannes

47 He refers to Lambert (1779) and  Lambert (1760), both of which will be published later (the first 
of them will be published posthumously). 
48 Lambert quoted by Wolf in Sheynin (2010, p. 153). 
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Gessner, physician and botanist with whom he made astronomical observations. In 
the weeks in which he stayed here, he published his Die freye Perspektive, a treatise 
in which he studied how to draw accurately in perspective. Once in Mülhausen, he 
spent three months with his mother (his father had died in 1747), and from there 
he headed towards Augsburg. After this, the mother and son were never to see one 
another again. 

In Augsburg, he met the famous maker of scientific instruments Georg Friedrich 
Brander with whom he was to maintain a twenty-year correspondence, and par-
ticipated as a founding member in 1759 at the creation of the Bavarian Electoral 
Academy of Sciences. 49 The agreement that they came to was that in exchange for 
sending their notes and assisting them in general with their advice, he would receive 
the title of honorary professor and a pension of 800 florins, and the freedom to settle 
beyond the limits of Bavaria, a rare type of flexibility which shows the status and 
reputation that Lambert already had as a scientist. This would allow him to proceed 
with his investigations in a relatively safe and stable manner, fixing his attention on 
definitively finishing the jobs he had described to Haller in his letter. 

The first of these was Photometria sive de mensure et gradibus luminis colorum 
et umbra, 50 a work that he finished in 1760 which dealt with the behavior of light 
when passing through different mediums (for example plaster or paper), indepen-
dently reaching results established years ago by Pierre Bouguer, a true pioneer on the 
subject, and expanding his research. One year later, motivated by his encounter with 
the great comet of 1744, he published a small work, Insigniores orbitae cometarum 
proprietates, 51 in which his famous theorem on elliptical orbits made its first appear-
ance, a theorem that would later be applied by Olbers to calculate the orbits of the 
comets. 52

But what is more interesting, perhaps, is Cosmologische Briefe über die 
Einrichtung des Weltbaues, which he published in the same year, 53 and which shows 
a Lambert who broke with the dominant current of the Enlightenment to advocate 
an idea more typical of Romanticism. This is clearly seen in his organicist vision 
of the universe. Viewing the universe as a whole —similar to the functioning of an 
organism— clashed with the prevailing mechanistic conception. But it is also pos-
sible to grasp his vision by paying attention to how he justified its stability: this is a 
work done by God according to His intentions; creating it so that it would later be 
destroyed would not make sense. Therefore, the end of the universe is the preservation 
of life, hence its stability. The appeal of the theological argument shows another clear

49 The Churfürstliche Akademie der Wissenschaften (Sheynin 2010, p. 149 note 9). 
50 Lambert (1760). This work is usually referred as Photometry. 
51 Lambert (1761a). 
52 Olbers’ method is still used today. 
53 Lambert (1761b). 
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Fig. 1.5 Portrait of J. H. Lambert by Frédéric-Emile Simon circa 1836 (available at http://ark.bnf. 
fr/ark:/12148/cb419202991)
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difference with regard to the mainstream ideas, 54 which demanded that everything 
be explained in terms of movement and not final causes. 55

In this work Lambert tried to provide answers to questions bearing upon the 
nature of the Milky Way —a topic often approached during this century and in which 
the theoretical contributions of Immanuel Kant, Thomas Wright, and Swedenborg 
stand out— and proposed a hierarchical cosmos: a sun with planets forms first-order 
systems; a sun with a few million stars forms second-order systems; and groupings 
of the latter would form third-order systems, which would include the Milky Way (he 
even speculates on the existence of possible fourth-order systems —galaxy clusters— 
forming the universe). Let us mention that the real problem involved in the study of 
the universe that had led Kant to affirm that cosmology could not constitute a science 
in the strict sense was that direct empirical contact was lacking. To be able to answer 
certain questions it was necessary to let speculation and imagination play a role but 
without losing sight of the experience. Lambert was therefore incurring a risk he was 
aware of, although his own words appear to reflect not so much concern: 

I can consider my conclusions as a very daring model, especially because I live in times 
in which the freedom to order nature according to one’s own criteria has been banished 
altogether. And I do not order only isolated parts but all of nature and the entire environment 
of creation according to my criteria. Could I be any more impudent? 56

The impact of his ideas on some of the scientists of the time was enormous, increasing 
his status and further contributing to his reputation as a genius (Fig. 1.5). 57

That same year, after his latest publications, he undertook numerous trips. He 
visited the University of Erlangen and then went to Chur and Zürich —where he was 
elected an honorary member of the Physical Society. «as a person whose penetrating 
mind reveals the truths in the most difficult sciences, discovers new truths and exposes 
secrets. »—, 58 before returning to Chur in the summer of 1762, where he would remain 
until the autumn. From here, he went to Italy, and in December 1763, he arrived in 
Leipzig where he focused on his philosophical work that would finally be published 
in 1764 in two parts under the title Neues Organon. 59

It was also at this time that the economic support that allowed him to act with a 
certain calm started to dry up. As a result of different discrepancies that arose between

54 In any case, although mechanism versus teleology was certainly the general trend (for example, 
in France they were very common ideas), it was not the only possibility. In Germany there was 
enormous influence from the ideas of Wolff, learned by Lambert in his first readings, and through 
this those of Leibniz, who argued that mechanism and teleology were not only not at odds, but that 
the source of mechanics were the final causes. 
55 Hankins (1985). 
56 Martín et al. (2007, p. 303). 
57 In letters reproduced in Sheynin (2010), comments can be found in relation to this work such 
as:. «Lambert is Newton’s interpreter and rival. » (p. 157) or. « Lambert, one of the most astonishing 
geniuses of the 18th century. » (p. 158). It is true, however, that some of those who flatter him have 
no qualms about criticizing him due to the lack of clarity that he shows in his writings (anyway 
there are divergent opinions). 
58 Cited by Wolf in Sheynin (2010, p. 159). 
59 Lambert (1764). Lambert’s philosophical work had an enormous impact, especially in Germany. 
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the Bavarian Academy, which reproached him for not taking sufficient account of 
their interests, and Lambert, who reproached them for having neglected his advice, 
the relations between the two came to an end, cutting off his pension as a member. 
What he wrote to Euler by letter points in this direction: 60

It is also in an unexpected way for me and without making use of my observations about 
Mpt. [?] that they have published the observation of........ ♀ in......... that the academics had made in 
Munich. 61 Of the six observations, they did not publish more than two, those that seem to 
match better, and I have had both to see this work printed in a journal, and that the editors 
had no scruples to treat the conclusions as suspicious. It seems that the Academy believes 
that it sufficed for it to handle this just by itself, since otherwise I would have been more 
included in these processes, and would, needless to say, never have allowed these things to 
occur. 

This put him in a delicate situation that he apparently did not care too much about, 
for he later rejected an offer from the Saint Petersburg Academy. Actually, Lambert’s 
interests were in Prussia, specifically in Berlin and its Academy of Sciences, where 
he hoped to achieve the desired stability with the help of Sulzer and Euler. 

1.6 Stability. Lambert and the Berlin Academy of Science 
(1765–1777) 

Since the beginning of the century, numerous societies and academies had begun 
to emerge in different parts of Europe which, with the support of intellectuals and 
leaders more or less integrated into the enlightened movement, took study and critical 
research as their main objective; several have already been cited in this chapter. 62

The role they played was important, first in terms of science, since universities of 
the time were reluctant to its teaching and research, 63 and secondly, in reference to 
the scientists, since they provided a stability difficult to achieve another way. 

One of these new academies that would end up having the most relevance in 
the 18th century was the Berlin Academy of Science, although its beginning was

60 As of July 12, 1762 Bopp (1924, p. 28). Thiébault II (1806a, p. 291) comes to say that Lambert 
decided to leave due to problems that had gotten him some envious rivals in the Academy. Euler 
seemed to be of the opinion that Lambert’s relation to the institution had worsened due to religious 
differences between the Protestant Swiss and the Jesuits Sheynin (2010, p. 172 note 22). The 
reference in Calinger (2016, p. 563 note 51) —. «A Protestant, he [Lambert] could not work with 
the Bavarian Jesuits. »— seems excessive. 
61 The symbols represent Mercury and the Sun respectively. 
62 They were modelled after the Royal Society of London (1662) and the Académie des Sciences de 
Paris (Parisian Academy of Sciences) (1666). 
63 The first to make room for other types of subjects apart from the classics that were already taught 
in the universities were the Pietists, who in their important educational reforms introduced novelties 
such as the teaching of geometry and mechanics (Blanning 2000, p. 136). 
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fraught with difficulties. 64 The Academy was founded by the first King of Prussia, 
Frederick I of Prussia, and III of Brandenburg (1657–1716), known as. «the Elector. », 
thanks to the advice of Leibniz on July 11, 1700, coinciding with the King’s birthday. 
However, the real (and royal) engine behind the establishment of the Academy was his 
second wife, Princess Sophia Charlotte of the house of Hannover, who had financially 
supported Leibniz in order for him to undertake this project. With difficulties from 
the beginning due to financing problems, it was not inaugurated until 1711. Leibniz, 
who died in 1716, never saw how the institution achieved a prominent place among 
the academies and societies that, at that time, were dominated by those of London, 
Paris, and St. Petersburg. 

At first, the Academy, which had been founded under the name Societas Regia 
Scientiarum, issued periodic publications in its journal Miscellanea Berolinensia, to  
disseminate —in the same way as their European counterparts— the research carried 
out by its members. Research was framed within the four classes that the Academy 
was divided into in its first stage: 

physics, medicine, and chemistry; mathematics, astronomy, and mechanics; German lan-
guage and history; and literature, stressing oriental writings for missionaries spreading the 
Gospel to the east. 65

Within this standard, the first activities of the institution barely had any impact, 
and under the mandate of his son and second King of Prussia, Frederick William 
I of Prussia (1688–1740) known as . «The Soldier-King. » —a man more concerned 
with military duties than with academic matters— the newly created Academy not 
only did not improve, but nearly disappeared. It suffices to show the little respect he 
had towards these matters that . «in 1731 he named the royal jester at court its vice 
president. ». 66 But from 1740, the year in which Frederick. «The Great. » (1712–1786) 
ascended to the throne, things, although slowly, began to take a different turn. 

Before even becoming King around 1736, his correspondence with Voltaire 
showed the future monarch’s concern for the poor state of the old Academy, empha-
sizing his interest in making it a worthy competitor on the European scene. The choice 
of the president to carry out this renovation was of vital importance —of course from 
an academic point of view but also from an advertising point of view— and appar-
ently it was Voltaire who was the first choice of Frederick, but after he refused, all 
efforts were directed towards Maupertuis, a man who in his time. «enjoyed the highest 
celebrity. ». 67 Maupertuis would end up accepting the presidency of the Academy in 
1746, but initially —he arrived in Berlín in 1740— the King’s plans to revitalize the 
neglected institution were relegated to the back burner for his foray into the Silesian 
War.

64 As for the Berlin Academy of Science, the sources consulted are: Thiébault I (1806b), Thiébault 
II (1806a), Cajori (1927), Aarsleff (1989), Begehr et al. (1998) and Calinger (2016) (especially, but 
not only, chapter 6), as well as some correspondence that will be cited in due course. 
65 Calinger (2016, p. 177). 
66 Calinger (2016, p. 177). 
67 Thiébault II (1806a, p. 282). 
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Among those who also demanded the monarch’s prompt attention was Euler, 
who after negotiating the conditions of his contract, had accepted the offer proposed 
by Frederick via his friend and ambassador in St. Petersburg, Ulrich Friedrich von 
Suhm, only fifteen days after his ascent to the throne: 

Do whatever you can to hire Mr. Euler, the grand algebraist, and bring him with you if you 
can. I will pay him a salary of ten or twelve escudos. 68

Euler’s salary which had finally been raised up to 1600 escudos to match what was 
offered in Russia, gives an idea of the importance that he had for the King —compared 
with the average salary of the junior members of the Academy, which was about 300 
thalers 69

Euler, who arrived in Berlin on July 25, 1741, eager to get to work at the new 
Academy, was also facing an uninspiring scenario. The next couple of years the 
King was too busy with the war to focus on other issues, so, with much insisting 
and with the help of French intellectuals from the city and court nobles, Euler gave 
life to the Nouvelle Société littéraire (1743) —a kind of intermediate step between 
the old Societas and what would become the new Academy—, that would meet 
weekly to report on the results obtained by its members. Classified into three classes 
—mathematics, literature, and physics— it would be divided into 20 ordinary mem-
bers and 16 honorary or aristocratic members. Half of them were Huguenots, and the 
official language would be French, which shows the strong presence of French in the 
city around this time, 70 the strong influence of the French Enlightenment, and the 
King’s own Frenchified tastes. 71 The idea was for the Nouvelle Société to become 
the new and definitive Society, but it eventually merged with the old, creating the 
Académie Royale des Sciences et Belles-Lettres de Prusse. The founding statutes 
were approved taking advantage of the 32.nd birthday of the King, January 23, 1744. 

Anyway, it was not until March 3, 1746 that the Academy officially made Mau-
pertuis president, and it was not until June 2.nd of the same year that they even read 
the constitution of the new Academy. At the initiative of the new president was 
mandatory attendance for all members at plenary sessions, which were to be held 
every Thursday regardless of the class to which they belonged, a novelty compared 
to other academies which gave their members a broader knowledge of the main lines 
of research being carried out in other fields of study. In these sessions, in addition to

68 As of June 14, 1740 Preuss (1850, p. 391). 
69 Calinger (2016, p. 170). As can be seen, in some cases French escudos are mentioned —for 
example, in this letter or in another from Lagrange, which will be cited later— and in others, 
the thalers (. «reichsthaler. ») as in the case of Calinger, which is presumably the currency used for 
payment of salaries. Anyway, keep in mind that the equivalence at that time was 1 escudo. = 1 thaler  
Kindleberger (2006, p. 475). 
70 See Calinger (2016, pp. 195, 196). Aarsleff (1989, p. 194) gives the data that around 1740, 20% 
of the population were Huguenots, a high percentage of whom had probably escaped from France 
by reason of religious persecutions —as commented at the beginning of the chapter— and had been 
welcomed by Frederick William I of Brandenburg, . «the Grand Elector. » (1620–1688), himself a 
Calvinist. 
71 His own education had been carried out by Huguenots Aarsleff (1989, p. 194). 
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giving an account of different activities, the members had to read their works, being 
allowed to use either Latin, German or French to do so. In any case, as Maupertius 
wrote: 

French has been substituted for Latin in order to ensure a wider readership for the Mëmoires, 
for the knowledge of Latin is clearly declining while the French language today is almost in 
the same situation as Greek at the time of Cicero; it is taught everywhere and people eagerly 
seek books written in French. 72

And so, since the internationalization of the Academy was the main objective, it was 
decreed that the works included in the Memoires were to be written in the vernacular 
language. 

The Academy was divided into four classes, a slightly different division than that 
of the Nouvelle Société littéraire three years later. Three of them —the first, the 
second, and the fourth— were based on topics also dealt with in other academies, 
but the third class was homegrown and more focused on the initiative of the King. 
In the aforementioned plenary session of June 2, 1746, the division was established 
in the following terms: 73

1. The Experimental Philosophy Class will include Chemistry, Anatomy, Botany and all 
the sciences that are based on experience. 

2. The Mathematics Class will include Geometry, Algebra, Mechanics, Astronomy and 
all the sciences whose object is abstract study, or Numbers. 

3. The Speculative Philosophy Class will be applied to Logic, Metaphysics and Moral. 

4. The Belles Lettres Class will include Antiquities, History and Languages. 

In that same session certain points were specified that Dieudonné Thiébault, himself 
member of the Academy since April 5, 1765, synthesized in Thiébault II (1806a, 
p. 283): 

All theological and political discussion was excluded from the academy. Each class had a 
director, who was chosen from its own body, and being composed of six resident members, 
the number of ordinary academicians extended to twenty-four, besides the perpetual secretary 
and the president. 

In order to defray the expenses incurred by the Academy in the form of accommo-
dation, buildings, or salaries, Thiébault went on to say that: 

the king assigned to his academy, besides the necessary buidings and lands, first, some 
extensive plantations of mulberry tress, from which great expectations were formed, but 
which in the sequel proved of small value; secondly, the exclusive privilege of publishing 
the king’s edicts and the geographical charts, which were scarcely more productive than the 
former; thirdly, the exclusive privilege of composing and publishing almanacks, an article 
which, however insignificant in appearance, is the principal source of the wealth of the 
academy. 74

72 Quoted in Aarsleff (1989, p. 196). 
73 The transcript of this plenary session can be seen on the website of the Archive of the Berlin-
Brandenburg Academy of Sciences and Humanities. 
74 Thiébault II (1806a, pp. 284–285).
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The four classes mentioned above would be a benchmark in Europe at the time. 
Their members would do first-rate research, and its class of speculative philosophy 
—one of a kind in Europa and the pride of the Academy— would bring the Academy 
international recognition. 75 In any case, it should not be forgotten that, despite Freder-
ick’s clear animosity towards mathematics, 76 much of the Academy’s fame and high 
esteem would be thanks to having, among its other members, four of the most out-
standing mathematicians of the time: Euler, head of the mathematics class; Lagrange, 
Euler’s substitute after his move to Russia; Johann Bernoulli III, called by the King 
in 1764 to reorganize the astronomical observatory; and Lambert. 77

Lambert, with his eye on the Berlin Academy, tried to obtain the favor of the 
King through Sulzer and Euler. Sulzer, who served as director of the philosophy 
department, had invited him on numerous occasions to Berlin, so he threw himself 
into it. Despite their achieving no progress at first, 78 when Lambert arrived in Berlin, 
they decided to try again. Sulzer was called to Potsdam where Frederick had his 
summer home, and there he began passionately speaking about the candidate, whom 
he deeply admired, to the people close to the King, with the intention of reaching 
the King’s ear. As a result, Sulzer returned to Berlin to find a letter urging him to 
send Lambert to Potsdam the next day for an interview. Aware of Lambert’s strange 
behavior and fearful that an audience with the King could go wrong, people close 
to Lambert objected, saying that their luggage has not yet arrived. The King simply 
replied that he wanted to meet the man, not his clothes. The last attempt to avoid 
the meeting was to warn the King that Lambert could not present himself properly, 
to which the King replied that they brought Lambert at night and with the light off. 
Finally, the interview occured: 79

75 Aarsleff (1989, p. 198). 
76 In this regard see Cajori (1927). 
77 Begehr et al. (1998, pp. 1, 6). 
78 Calinger (2016, p. 428) writes: 

In April 1761 Euler nominated Lambert to be a regular member of the Royal Academy 
of Sciences in Berlin, and he was unanimously elected. But late during the war Frederick, 
working to reestablish his control over the academy, withheld approval. 

79 This anecdote is reproduced in almost every biography of Lambert, so it would be interesting to 
see if it is possible to know of its authenticity. The closest you can get to proving it is by making 
use of the stories of those who had heard the opinions of the King at dinner that same day, in which 
he complained about Lambert’s mannerisms, or from some other member of the Academy who 
had heard something about the meeting. The version given here is the one reported by Dieudonne 
Thiébault in Thiébault II (1806a, p. 293), who by the way in Thiébault I (1806b, p. vi) says: 

The first law which I prescribed to myself on entering upon this work, and from which I 
have never deviated even in thought, was to write with the strictest fidelity respecting the 
facts it should contain. I solemnly declare, no single word appears in it that has not my 
entire belief. Some readers will perhaps oppose to this assertion, the particular conversations 
which I have put into the mouths of the greater part of the persons who figure in my scene, 
such as Frederick, MariaTheresa, &c. As to this I can affirm that I have not only ascribed to 
my speakers no thoughts which were not really their own; but I can further take upon me to
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F: Good day, Sir. Do me the favour to inform me which of the sciences you have 
particularly studied? 

L: All of them, Sire.  
F: You are, then, a skilful mathematican? 
L: Yes, Sire. 
F: Under what professor have you studied the science of mathematics? 
L: I was my own instructor, Sire. 
F: You are then a second Pascal? 
L: Yes, Sire. 

Although to a naive Lambert the impression left by the meeting was positive, however, 
what mattered was Frederick’s impression. Frederick was unaccustomed to such 
arrogant language, and therefore had been left with a rather bad impression. Sulzer 
then endeavored via letter to make the King’s people see that they should not focus 
so much on the little things, but rather on the enormous knowledge possessed by 
Lambert, and that since he was once again receiving offers from Russia, they ran the 
risk of losing the opportunity to add into their ranks a man of great worth. 80 Frederick 
heeded the wise advise he was given, and, even though . «M. Lambert was no less 
worthy of filling a place in the class of mathematiks or speculative philosophy, than 
in that of natural philosophy; this is proved by his works. », 81 Lambert was finally 
included as part of the Experimental Physics section on January 10, 1765. In any 
case, the King made it clear in a letter to d’Alembert the impression produced by the 
new tenant of the Academy: 

I have practically been forced, so to speak, to take the surliest creature alive in the universe 
and include him in our Academy. His name is Lambert, and although I can verify that he 
does not possess common sense, it is said that he is one of the greatest geometers of Europe. 
But, since this man ignores the tongues of mortals and does not speak more than in equations 
and Algebra, I do not have any intention in the short term to have the honor of conversing 
with him. On the contrary, I am very happy with M. Toussaint, whom I have procured. His 
science is more human than the other’s. Toussaint is an inhabitant of Athens, and Lambert is 
a Caribbean or a savage from the Kaffir’s coast. However, the entire Academy kneels before 
him, even Euler, and thus this animal, totally muddied with the dirtiest pedantry, receives 
these homages much like how Caligula collected from the Romans when trying to pass as 
God. I beg you not to let these little anecdotes from our Academy out of your hands. 82

The image that the members of the Academy had of Lambert as one of the greatest 
geometers of Europe served for Frederick to choose him as a new member, but did 
not sweeten his opinion about him. The answer given by d’Alembert to the King 

declare, that the very turn and way of presenting the thought is genuine and not of my own 
invention. 

In Sheynin (2010, pp. 144, 172 note 30) other versions of the same interview can be read, the first of 
them by Formey in his Eulogy on Lambert —rather abbreviated— and the second by Graf, which 
is practically identical.
80 See Cajori (1927, p. 127). 
81 Thiébault II (1806a, p. 290). 
82 It is not dated but is probably from January 1765 (Lalanne 1882, p. 142 note 1). 
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made it clear that if it had been up to him, Lambert would not have been elected a 
new member: 

I am only acquainted with one work by M. Lambert, which is good, but does not appear to 
me comparable to any of the works of Euler; and, if the latter be on his knees before M. 
Lambert, as your majesty has done me the honour to inform me he is, we must say of M. 
Euler as has been said of La Fontaine, that he was filly enough to believe Aesop and Phaedrus 
had more wit than himfelf. Not that I mean to derogate from the merit of M. Lambert, which 
must be very substantial, since it is so adjudged to be by the whole academy: but there is 
more than one honourable niche in the temple of the sciences; according as there is, if we 
believe the gospel, several mansions in the house of the celestial father. M. Lambert perhaps 
is exceedingly worthy of filling one of those niches. I am beside informed he has written 
several excellent works, which I have never read. I should think him tolerably well provided 
for when he should be, to speak mathematically, in the same ratio to Euler as Descartes and 
Newton are to Bayle, according to your majesty; or as Bayle is to Descartes and Newton, 
according to a mathematician of your acquaintance; or, again, to use a comparison which 
is not subject to contradiction, in the same proportion as Marcus Aurelius and Gustavus 
Adolphus are to a monarch whom I dare not name. 83

It seems clear that the King’s not having asked d’Alembert for advice before incorpo-
rating Lambert into the ranks of the Academy was a stroke of luck for him —contrary 
to the suggestion of Aarsleff (1989, p. 204)—, 84 since his influence on Frederick in 
the hiring of new members was huge, acting (via letter) from Paris almost like a 
president in the shadows, 85 an attitude that some of the academicians disliked. 86

D’Alembert, who in the previous letter corrected the King by exchanging roles 
between the Descartes-Newton duo and Bayle based on their (most authoritative) cri-
teria, would receive in the following years first-hand accounts about the high esteem 
that members of the Academy had for Lambert. In fact in 1769, he asked Lagrange 
—who had replaced Euler as head of the mathematics class after his departure in 
1766 thanks to the advice of d’Alembert— for references about him: 

Regarding your Academy, I always forget to ask what you think of M. Lambert; what I have 
read about him so far does not seem to me the greatest relevance: it is said, however, that 
Euler holds him in high esteem. 87

Note that in 1769, Lambert had already published works of great quality, among 
them being the one that has concerned us in this book. This fact, backed up by highly 
positive opinions expressed by some of his most illustrious contemporaries —Euler’s 
case being rather remarkable— shows that this lack of recognition was probably 
based on a lack of knowledge on his work. 88 Lagrange’s response —another giant 
of the 18th century— in July of that same year, underpins this idea:

83 As of March 1, 1765 (Holcroft 1789a, Vol. 11, pp. 20, 21). 
84. «It was probably also on d’Alembert’s recommendation to the king that Johann Heinrich Lambert 
was nominated. ». 
85 In fact, if he was not president, it was because he did not want to be, since after the death of 
Maupertuis in 1759, the King had offered and asked for him to be, both actively and passively. 
86 Such is the case of Euler who found it unacceptable (Calinger 2016, p. 431). 
87 As of June 16, 1769 (Lalanne 1882, p. 135). 
88 In any case, it must be kept in mind that a large part of Lambert’s works are written in German, 
which most likely diminished its reach and diffusion. 
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M. Lambert, on whom you wish to know my opinion, is undoubtedly one of the best indi-
viduals of our Academy; a hard worker who practically holds up alone our Class of Physics. 
He dominates analysis, but his strength is Physics about which he has provided an esteemed 
Work, entitled Photometria, that is to say on the measure of light; there is above all an 
excellent memoir of him on magnets in Volume 1766. 89

The high esteem in which Lambert was held by his colleagues at the Academy was 
therefore clear, although he was not only known and recognized for his knowledge 
but also for his peculiar behavior. Lagrange, who was not, at the beginning, left 
indifferent by Lambert either, continued by saying: 

For the rest, there is something singular in his bearing and in his conversation that is dis-
pleasing at first, and I am not surprised that the king did not like him, having I myself had a 
hard time adjusting to his manners. He was, or at least found him to be, so proud of himself 
when I arrived here, that I made the decision not to frequent him, but at the same time not to 
miss any opportunity to underrate him; this has made it easier to cope with him, and today 
we are quite good friends. He is not receiving more than 500 escudos from the Academy, 
and, if you have an opportunity to procure him a raise, I assure you that you woud do a good 
deed, for he is certainly one of the members to whom our Academy owes the most. 

In his discourse of reception on January 24, 1765, Discours de réception de 
M. Lambert comme membre de l’académie, 90 Lambert made it clear that his primary 
task was to address the theory of fire and heat in a more complete and systematic way 
than before through his Pyrometrie, . «A vast and complicated occupation as never 
before!. ». 91 But he also dedicated his discourse to defending his vision of science 
as a whole, explaining how in this way, the different branches of knowledge are 
interconnected. From the connections between mathematics and physics —a subject 
of debate, as already noted, throughout the century, and one that he balanced in a 
synthesis between empiricism and rationalism, the basis of his methodology and 
philosophy—, to the relationship between science and poetry, or between physics 
and history. In relation to this discourse, Thiébault related an exquisite anecdote, 
which despite being long, certainly deserves a place in this biography, for it clearly 
shows, as he himself said,. «the simplicity, artlessness and frankness of M. Lambert’s 
character. »: 92

The new academician was now employed in composing his inaugural discourse, and deter-
mined to resolve in it a question of importance respecting the reflection of light. He had still, 
however, to this effect some experiments to verify, for which he stood in need of a large 
looking glass, while his whole stock of furniture afforded only a small pocket-glass barely 
large enough to allow of his adjusting his wig in it. The best remedy he could think of was 
to go into the principal coffee-house of Berlin, situated opposite to the castle. On entering 
one of the rooms on the first floor, he bowed in his accustomed manner, without looking 
at them, and throwing his head diagonally from one side to the other to some officers and 
other persons of the town, who were playing at tarocs, 93 passed on to a large mirror which

89 As of July 15, 1769 (Lalanne 1882, p. 141). 
90 Discourse of reception by Mr. Lambert as a member of the Academy. 
91 Lambert (1765/1767, p. 215). This work will only appear after his death. 
92 Both this quote and the one to come, in Thiébault II (1806a, pp. 294–295). 
93. «A sort of playing cards, but marked differently from the common ones. » (note by Thiébault). 
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happened to be placed in the lightest parto of the room; he then drew his sword, aimed it 
as if against an adversary, drew back, advanced, in short, threw himself into the different 
attitudes of a real encounter, at the same time profoundly meditating on what he saw and did. 
He pursued his experiments for the space of half an hour, without the least consciousness 
that the spectators, who knew neither his person nor what to think of the exhibition they had 
witnessed, had concluded he was a lunatik, and were actually holding themselves ready to 
seize and disarm him should it be necessary. 
When M. Lambert had ended his experiments and his reflections, he put his sword quietly 
into its scabbard, cast a look of indifference on those who surrounded him, bowed to them 
in the same manner as when he entered, and returned home to compose a memoir worthy 
the admiration of the learned. 

The twelve years that he stayed at the Academy were the best of his life, although 
at first —as should have been clear— his peculiar personality complicated his rela-
tionships with his colleagues. Thiébault II (1806a, pp. 296–297) told how, on one 
occasion, he asked Lambert about the list of the most celebrated geometers according 
to his estimation. Lambert placed Euler and d’Alembert in the same rank considering 
them. «as it were but one person. », and argued: 

not because their qualities are similar in every respect, but because each has eminent qualities 
that compensate those deficient in the other. M. Euler has more simplicity and promptitude, 
perhaps even a greater abundance, than M. d’Alembert; M. d’Alembert has more subtlety, 
sagacity, and elegance, than M. Euler. In profoundness of understanding and fertility of 
invention they are equal. It is impossible to give the preference to either. 

Continuing with his ranking, Lambert said: 

M. de la Grange is at present the second: I say at present, because there is every reason to 
believe that he will not long remain inferiour to the first. The third is myself. I can proceed no 
further in this classification, because I know no other geometrician worthy of being named. 

Apparently, a young mathematics teacher who was teaching artillery students not 
only disagreed with him on this last detail, but also positioned himself as third: 

No sooner had he pronounced the words than M. Lambert advanced with a resolute step 
before him, as though he would have barred the way, and then looking him stedfastly in the 
face, he burst into a fit of laughter and turn on his heel. 

It is perhaps because of details like this that Johann Bernoulli III, one of his best 
friends, and, in fact, one of those who knew him best, wrote this about him: 

Lambert casts a shadow on his great merits by unimaginable conceit. Partly he caused us to 
lose Euler, 94 and among his colleagues he is only getting along with me. I do not quarrel

94 Sheynin opens a note here (included in Sheynin (2010, p. 173)) to try to throw a little light 
on this. The idea that can be extracted by reading the literature about it —without pretending to 
be better informed than Bernoulli himself— is that Lambert could have been just one more drop 
in a glass almost filled by a burned-out Euler. No matter how good a mathematician he was, for 
the king, Euler would never measure up to the like of d’Alembert or Voltaire, men with class and 
polished conversation. Furthermore, when Maupertuis began spending long stays outside of Berlin 
near the end of his life, and also since his death, Euler acted as president of the Academy, but he 
was never named as such despite d’Alembert’s recommendations, something that could have been 
felt to be a lack of recognition of their hard, brilliant and voluminous work. The king apparently 
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with him although we had been taking meals together all the time he lived in my place. His 
conversation on all the sciences is instructive. If you do not ask him about anything except 
his own ideas, and do not interrupt or contradict him, he will speak for three hours as though 
reading from a book. 95

In any case, his talent was beyond doubt, and over the years they would end up 
convincing themselves that his behavior was due more to excessive naivety and a 
deficiency in his ability to interact socially with normality than to a bad temperament. 
Thiébault himself, who agreed with what Johann Bernoulli III said about what seems 
to be something quite characteristic of Lambert’s personality, showed signs of this 
admiration: 

When I happened to meet him in company, or in my walks, my first care was to propose to 
him some question that interested me; for when once entered into a discussion, on whatever 
subject it might be, it was not longer possible either to stop or interrupt him. He never failed, 
from the first moment, to take so clear and comprehensive a view of his plan, and adhered 
to it so closely, that to divert his attention was impracticable. The order of his ideas was 
always regular and perfect; if objections were proposed to him, he paused no longer than 
was necessary to hear them to their end; he never, however, answered them, but resumed the 
thread of his argument as though he had not been interrupted, because the objections he had 
heard would, he perceived, occur at a different time and more seasonable order, and that it 
could not but be disadvantageous to the discussion to deviate from the principle he had first 
laid down. I have a hundred times put him to the trial in this respect, and found him always 
the same. He was truly a machine to grind dissertations, but a perfect machine. 96

He even ended up winning the admiration of the King, who, in 1770, would raise 
his salary and put him at the head of the economic commission, to which he already 
belonged. Apparently, Lagrange’s request to d’Alembert to intercede for him worked, 
and in 1769, d’Alembert mentioned that in his last letter to the King . «I have also  
said a few words about M. Lambert, according to how well you spoke about him. », 97

words he addressed to the King that same day: 

The Memoirs from your Academy of Sciences are excellent works and demonstrate that it is 
one of the best composed Societies of scholars in Europe. I am not speaking only of M. de la 
Grange, whose merit is well known to Your Majesty; I speak, among others, of M. Lambert 
and Beguelin, who contribute excellent Memoirs to this Collection and which seem to me 
worthy of the kindness with which Your Majesty has always honored merit. 98

distrusted the Swiss’s administrative skills, and should have blamed him for the high expenses of 
the Academy during war. After he ordered a commission to investigate why revenues had fallen 
so low —a commission led by Euler himself and in which Lambert was among its members— 
the tensions between them got worse. Lambert could have been a drop more, though (as pointed 
out by Sheynin in his note) would have been so without in the least intending to be. Calinger (2016, 
p. 442) says that. «the idea that Lambert worked to drive Euler from Berlin is erroneous. ».
95 As of October 11, 1766. Quoted by Wolf in Sheynin (2010, p. 164). 
96 Thiébault II (1806a, pp. 295, 296). 
97 As of August 7, 1769 (Lalanne 1882, p. 147). 
98 As of August 7, 1769 (Lalanne 1882, p. 147 note 1). 
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Frederick II’s response showed signs of the change in his perception: 

The three individuals you talk to me about are, without a doubt, the best we have in this 
corps. 99

With a frenetic pace of study, Lambert devoted himself completely to his research, 
producing more than 150 works for publication in the most diverse areas. Indeed, 
although he focused mostly on scientific subjects, he continued to write also about 
philosophy and was the only member in the Academy’s history to publish memoirs 
in all four divisions of its research journal. Proof of this versatility and once again 
of the King’s change of perspective and esteem towards Lambert can be seen when 
d’Alembert raised a subject to be adressed in the speculative philosophy course; the 
King immediately thought of him: 

You speak of a question to propose to the academy. Alas! We have recently lost poor Lambert, 
one of our best members. I know not who could treat the subject philosophically. 100

In 1775 a cold that he had recklessly neglected became more severe during the winter. 
Despite the advice of his friends, he refused to take it seriously or get treatment from 
a doctor until a very late stage, applying his own remedies instead, thus worsening the 
situation. 101 His colleagues last saw him . «at the Assembly of 18 September, more 
dead than alive, and he even experienced convulsive symptoms which frightened 
those who noticed them. ». 102 The polymath genius died of tuberculosis on September 
25, 1777, in Berlin at the young age of 49, leaving behind a vast scientific legacy. 
To serve as a conclusion, these sad words by a dejected Lagrange in a letter to 
d’Alembert: 

I am so saddened by the death of my colleague M. Lambert; it is an irreparable loss for our 
Academy and for Germany as a whole; he eminently possessed the rare talent of applying 
calculus to experiments and observations, and of extracting, so to speak, everything that 
could be regular. His Photométrie, a Work little known in France and even in Germany, is 
a true model of this type of research; he was also versed in calculus and was not unaware 
of a single one of the different branches of Analysis and Mechanics. The three Volumes 
of Memoirs that he produced in German, some years ago, contained excellent things, and 
it would be desirable if someone wanted to translate them. There is in all his research a 
great sharpness, and he possessed, above all, the art of achieving the simplest results, even 
in the subjects that seemed most complicated. He allowed himself to die little by little of 

99 As of September 14, 1769 (Lalanne 1882, p. 147 note 1). 
100 As of October 5, 1777 (Holcroft 1789b, Vol. 12, p. 107). The topic he proposed to discuss was 
the question of. «whether it be useful to deceive the people. », of which he said: 

We have never dared to propose this great question to the French Academy, because the 
dissertations, sent for the prize, must, to the misfortune of reason, undergo censorship by 
two doctors of the Sorbonne; and because it would be impossible, with people like these, to 
write any thing rational. But your majesty has neither prejudices nor doctors of the Sorbonne. 
(as of September 22, 1777 (Holcroft 1789b, Vol. 12, p. 104))

101 R. Wolf in Sheynin (2010, p. 168). These and other friends were the people closest to Lambert; 
he did not marry or have children. 
102 Formey in Sheynin (2010, p. 148). 
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tuberculosis, having never wanted, except in the last 15 days, to take any remedy or consult 
any doctor. He had received from nature an admirable character and temperament; always 
satisfied with himself, he never showed the slightest envy or jealousy. He had a very naïve 
way of thinking and acting, which often turned against him people who did not know him 
particularly; but, when it had been possible to know him thoroughly, one could not help but 
conceive for him all the esteem and friendship he deserved; this is what happened to me. If 
I envy his life, I also envy his death, which has been one of the sweetest, and of which he 
did not even suspect. 103
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Part II 
Elías Fuentes Guillén



Chapter 2 
Lambert, the Circle-Squarers and . π: 
Introduction to Lambert’s Vorläufige 
Kenntnisse 

Twenty-two years I have been trying to find the fixed point. [...] 
The same thing happens to me with the quadrature of the circle, 
which I have been so close to finding, that I do not know, nor can 
I conceive, how I do not already have it in my pocket. 

—Miguel de Cervantes, The Dialogue of the Dogs. 

[T]he pursuit of mathematics is a divine madness of the human 
spirit. 

—Alfred North Whitehead, Science and the Modern World. 

The treatise «Preliminary Knowledge for Those Seeking the Quadrature and Recti-
fication of the Circle» («Vorläufige Kenntnisse für die, so die Quadratur und Rectifi-
cation des Circuls suchen») was written in 1766 and published in 1770 as part of the 
second of the three volumes entitled Contributions to the Use of Mathematics and 
Its Application (Beyträge zum Gebrauche der Mathematik und deren Anwendung). 1

According to what Lambert wrote in the preface to this volume, his treatise was 
intended for «searchers for the quadrature of the circle», 2 i.e., those who sought to 
square the circle «with straight edge and compasses» or, ultimately, by means of 
algebraic curves. 3

1 The original version can be consulted at http://www.kuttaka.org/~JHL/L1770a.html. 
2 Lambert (1770, p. [II]). 
3 Klein (1897, pp. 55, 78). 
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Now, unlike the memoir that Lambert presented the following year and in which 
he included the —as far as we know— first rigorous demonstration of the irrationality 
of . π , his treatise of 1766 is a «semipopular and witty exposition» 4 about the impos-
sibility of obtaining a finite decimal representation of . π . Eventually, with the proof 
of the transcendence of . π , the impossibility of constructing —using only compass 
and ruler— a square the area .x2 of which is equal to the area .r2π of a circle, with 
.x = r

√
π , was to be established. 5 But a century before this, in the present work, 

Lambert shows the impossibility of expressing the ratio of the diameter to the cir-
cumference «by means of a rational fraction», which was a key aim of those who 
were known at the time as «circle-squarers». Therefore, while at the time the adjec-
tive «preliminary» was used to describe a text that provided a very first approach on 
a topic, in this case the expression «preliminary knowledge» (for the circle-squarers) 
may already have been indicative of the ironic tone of the text. 

In the late 17th and early 18th centuries there was a burgeoning of attempts to 
solve the classical problem of the commensurability of the ratio of the circumference 
to the diameter of the circle. This was largely due to the spreading of the notion that 
certain states and scientific institutions were awarding prizes for the resolution of 
this geometrical problem because of its presumed relevance to the resolution of the 
problem of determining the «fixed point», or the longitude at sea. As Augustus De 
Morgan pointed out, such was the number of attempts at the time that from the mid-
18th century onwards some institutions, including the French Académie Royale des 
Sciences and the Royal Society of London, decided not to examine any further work 
on the subject. 6

At the time, the importance of determining longitude at sea resided, first and fore-
most, in its economic and political consequences. In the face of overseas expansion 
and the ensuing development of maritime trade, some states, scientific institutions, 
companies and individuals did in fact start to offer prizes for the resolution of this 
problem from the second half of the 16th century on. 7 This led to the develop-
ment of new methods, techniques and instruments, and eventually contributed to 
the more accurate calculation of longitude at sea from lunar distances (with better 
observational and navigational instruments, as well as improved tables of the dis-
tance between the moon and other celestial bodies) and the construction of more 
precise marine timepieces. 8 But this also led many people to associate the problem 
of longitude at sea with that of the quadrature of the circle, since —at best— it was 
assumed that solving the latter would contribute to solving the former, for example by

4 Ferreirós (2015, p. 218). 
5 Arndt et al. (2001, p. 7).  
6 cf. De Morgan (1872/2015, p. 97). For a detailed account of this issue, cf. Jacob (2005). I am 
grateful to one of the anonymous reviewers for bringing the latter work to my attention. Cf. also 
Jacob (2006). 
7 cf. Green (1766, pp. 18–20, 33–37, 66–67), Betts (2018, pp. 5–6, 13–14). 
8 cf. Dunn et al. (2014). 
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Fig. 2.1 Quartier de réduction (1671), engraving by François Jollain (available at https://data.bnf. 
fr/atelier/14952804/francois_jollain/) 

improving the instruments known as «quadrants», such as the quadrant of reduction 
or sinical quadrant (see Fig. 2.1), which were commonly used to tackle the problem 
of longitude at sea. 9

9 cf. Boistel (2016, pp. 66–67, 446). For a guide on how to use the quadrant, see http://www. 
meridienne.org/atelier/instruments/quartier-reduction/utilisation/ (accessed on 26 March 2024).
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The confusion which ensued here was at least partly due to the fact that some ency-
clopaedias and dictionaries spread the idea that some of those states which were 
offering prizes for solutions to the problem of longitude at sea were in fact offering 
these prizes just for solving the problem of the quadrature of the circle. 10 This was 
not the case, even though it is true that some prizes linked to this latter problem were 
indeed offered. Thus, while there were people who offered prizes for the refutation of 
the alleged solutions to this problem, 11 Jean-Baptiste Rouillé de Meslay allocated a 
sum of money for research about it in his will, although the French Académie Royale 
des Sciences ended up re-allocating it to research on navigation. 12

The works mentioned by Lambert in §. 3 precisely form part of the corpus pro-
duced by circle-squarers during the 18th century. Moreover, these works not only 
coincide in their purpose but also in the specific ratio which they proposed for the 
circumference of a circle to its diameter, namely.3844 : 1225, obtained from.

4·352
312 . It  

follows, then, as Lambert notes (§§. 2–3), that Joseph Ignatius Carl von Leistner (in 
1737 and 1740), Johann Christoph Merkel (in 1751) and, following the latter, Johann 
Christoph Bischof (in 1765) all advocated a much less precise approximation of . π
than others well known at the time, starting with that by Archimedes, 13 according to 
whom 

. 3 + 10

71
< π < 3 + 1

7
,

which dates from the third century BCE 14 and is accurate to two decimal places, or 
that by Ludolph van Ceulen 15 for the first 32 decimal places of the lower and upper 
bounds of . π : 

. Lower bound : 3
14159265358979323846264338327950

100000000000000000000000000000000

Upper bound : 3
14159265358979323846264338327951

100000000000000000000000000000000
.

In order to discourage the use of such a popular ratio, Lambert explains a «general 
rule» which might be used to obtain more accurate ratios. First, he says, given. a = 1
as the diameter of the circle and . b as the side of a square with the same area as 
the former, i.e., .π · r2 = π ·a2

4 = b2, one gets .a2 : 4b2 = 1 : π and therefore . a : b =
2 : √

π or .= 200000000000
1.77245385075 . Secondly, he calculates the continued fraction associated

10 cf. De Messanges (1686, pp. 14–15), Chambers (1728, p. 221), Society of Gentlemen (1754, 
p. 593). 
11 cf. De Causans (1754), Hutton (1815, pp. 273–274). 
12 cf. Montucla (1802, p. 384), Boistel (2016, pp. 46–48). 
13 cf. Heath (1897, p. 93). 
14 cf. Knorr (1993, pp. 153–155). 
15 cf. Van Ceulen (1615, p. 163). Because of the accuracy of this approximation,. π was for a long time 
known as the «Ludolphian number» (Ludolphsche Zahl), especially in German-speaking territories, 
and in fact there are still people today who know it by this designation, cf. Arndt et al. (2001, 
p. 183). 
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with the decimal development of this quotient up to the seventh row and from this 
he obtains the sequence of rationals . ba = 7

8 ,
8
9 ,

31
35 ,

39
44 ,

109
123 ,

148
167 ,

3845
4342 , etc., which are 

«more precise according to their order» (§. 4). 
As Lambert points out, such fractions express the side of a square with the same 

area as a circle, the diameter of which is assumed to be .= 1, so that, inverted, they 
express the diameter of a circle the area of which is .= 1 (§. 5), thus providing a 
calculation the margin of error of which is insignificant for certain practical matters: 
for such a circle, the diameter of which is .1.128379..., the fraction .

35
31 approximates 

with a difference of .0.00065..., the fraction . 4439 approximates with a difference of 
.0.00017..., and so on. Finally, he addresses the case of cube numbers, used for the 
comparison of the diameter of a sphere with the side of a cube with the same volume as 
the former, obtaining the sequence of rationals from the continued fraction associated 
to . 3

√
π
6 (§. 6), and explains the procedure which he followed in order to obtain this 

cube root and to verify that it is correct up to the 18th decimal place (§§. 8–9). 
Lambert then goes on to discuss the problem of «whether the ratio of the diameter 

to the circumference can be expressed by means of a rational fraction» (§. 10) and 
presents a sequence of 27 ratios obtained following a method used in his treatise 
«Transformation of Fractions» («Verwandlung der Brüche», also included in the 
second volume of his Contributions). 16 As he explains, each of these ratios «is more 
exact than the preceding one» (§. 10), which means that any rational proposed as 
the exact value for the ratio of the diameter of a circle to its circumference should 
therefore be greater than the last ratio provided by him, namely. 1019514486099146324521540032945 , which, 
without this affecting his argument, is incorrect along with his 26th ratio. Lambert 
himself acknowledges that his ratios correspond to the Ludolphian «numbers» only 
up to the 25th decimal place and gives the continued fraction from which he obtained 
his 27 ratios, noting that in his other treatise he gives a continued fraction «which 
continues to infinity, according to a certain law, and completely removes the hope 
of determining the ratio of the diameter to the circumference by means of whole 
numbers» (§. 10). 

Precisely, after showing that neither . e nor . ex , with . x rational, «can be expressed 
exactly by a rational» (§. 11), Lambert presents in §. 12 the continued fraction for 
the function .tan v: 

. tan v = 1

1 : v − 1

3 : v − 1

5 : v − 1

7 : v − 1

9 : v − etc.

from which, given an integer . n and .v = 1
n , he obtains:

16 The original version can be consulted at http://www.kuttaka.org/~JHL/L1770a_3.pdf (accessed 
on 26 March 2024). 

http://www.kuttaka.org/~JHL/L1770a_3.pdf
http://www.kuttaka.org/~JHL/L1770a_3.pdf
http://www.kuttaka.org/~JHL/L1770a_3.pdf
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http://www.kuttaka.org/~JHL/L1770a_3.pdf
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http://www.kuttaka.org/~JHL/L1770a_3.pdf
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. tan v = 1

n − 1

3n − 1

5n − 1

7n − 1

9n − 1

11n − etc.

As Lambert notes, since this fraction continues to infinity, the tangent of a rational 
circular arc «will necessarily be irrational» (§. 12), a conclusion which he explains 
in detail in the subsequent sections (§§. 12–14). In addition, he notes that from this 
it follows that, «conversely, the arc of every rational tangent is irrational» (§. 15), as 
well as that, in the case of the arc of .45◦, it has «no rational ratio to the radius of the 
circle» (§. 16). Lambert did not explain further the consequences of his results, but 
what was entailed by these latter was that .π4 was irrational and, ultimately, that . π
was irrational as well. In fact, in his treatise «Transformation of Fractions» he had 
already given the continued fraction for the arc of .45◦, which he obtained from the 
series . arctan z = z − z3

3 + z5

5 − z7

7 + z9

9 − etc.17

Finally, Lambert goes on to state the impossibility of the radius, the arc and 
the tangent being all commensurable at the same time, so that if the latter «have a 
rational ratio to each other, then both are incommensurable with the radius» (§. 17), 
and presents to his readers the following «phenomenon» in §. 18: 

if one divides . 1 by .0, 7853981634..., as a fourth part of the Ludolphian numbers, it 
occurs 1 time and subtracts .0, 2146018366... If one further divides by this remainder 
.0, 7853981634..., which was previously the divisor, then it occurs .3 times and sub-
tracts .0, 1415926536... If one places the number 3 in front of this remainder, one gets 
.3, 1415926536..., which are precisely the Ludolphian numbers. 

Lambert does not explain the «cause» of this «phenomenon» and merely warns that 
nothing can be concluded from it regarding the quadrature of the circle, the point here 
being rather just that, given.π = 3 + x , in order to find. x one sets. 1π

4
= 1 + r

π
4
, from  

which.r = 1 − π
4 , and.

π
4
r = 3 + x

r , from which.x = π
4 − 3r , so that. x = π

4 − 3 + 3π
4

and, therefore, .x = π − 3. 18

Over the next hundred years, frequent attempts continued to be made to square 
the circle and to find the rational value of . π . These included the following notori-
ous cases: during the 1770s Alexandre-Henry-Guillaume le Roberger de Vausenville 
made several attempts to have his quadrature of the circle either recognised or refuted 
and even went so far as to sue the French Académie Royale des Sciences and demand 
that the aforementioned prize instituted in honour of de Meslay be awarded to him; 19

in 1836 Joseph LaComme, a peasant artisan who, in trying to determine «the amount

17 Lambert (1765–1766/1770, p. 82), cf. Bauer (2005). 
18 Unger (1829, pp. 326–327). 
19 Schepler (1950a, p. 225), De Vausenville (1778). 
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of stone required to pave the circular bottom of a well», found out about the prob-
lem of the ratio of the diameter of a circle and its circumference, decided to learn 
mathematics on his own and to focus fully on solving this problem, coming to the 
conclusion that the exact ratio was .25 : 8, a result for which he eventually achieved 
some recognition; 20 and from 1859 on James Smith not only published several works 
in which he also asserted that the «true value» of such a ratio was.3.125, but in addition 
to this corresponded with several mathematicians, such as De Morgan and William 
Whewell, who tried, unsuccessfully, to make him see his error, as he himself revealed 
by publishing some of these letters. 21

Moreover, even after Carl Louis Ferdinand von Lindemann’s 1882 proof of the 
transcendence of .π (i.e., that it cannot be the root of a polynomial with rational 
coefficients and therefore it is not possible to square the circle «with straight edge 
and compasses»), there continued to be claims raised about the rationality of. π , such 
as .3 + 13

81 in 1934 and .3.1428 in 1983, 22 and about the possibility of the quadrature 
of the circle. However, whereas in the first case it has been established that this 
is a perennial quest, one equated in Cervantes’ The Dialogue of the Dogs with the 
punishments of Tantalus and Sisyphus, in the second case a number of results obtained 
during the last three decades illustrate how the reformulation of a problem within 
a different framework can lead to new ideas: Tarski’s circle-squaring problem, for 
example, asks if a disc in the plane.R2 is equidecomposable with a square of the same 
area (i.e., if the former can be decomposed into finitely many pieces which can be 
reassembled to obtain a partition of the latter), and Laczkovich (1990), Grabowski 
et al. (2016/2020), Marks et al. (2017) and Máthé et al. (2022) have all  proven in  
different ways that it is possible to do so. For better or for worse, then, a certain 
venturing into endeavours deemed impossible is not only inherent to mathematical 
practice but actually enriches this latter. Lambert’s own work is an example of this. 
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Chapter 3 
An Annotated Translation of Lambert’s 
Vorläufige Kenntnisse (1766/1770) 

As far as I know, it has not yet been elucidated whether the ratio 
of the diameter to the circumference can be expressed by means 
of a rational fraction. [...] Since the matter therefore remains to 
be elucidated, there may still be people who waste their time 
searching for such rational fractions or who bring them up as a 
consequence of erroneous conclusions. 

—J. H. Lambert, Vorläufige Kenntnisse. 

Preliminary Knowledge for Those Seeking 
the Quadrature and Rectification of the Circle. 

§. 1. 

I have some reason to doubt whether the present treatise will be read or even under-
stood by those who should take the most interest in it, I mean by those who spend 
time and effort in seeking to square the circle. There will certainly always be plenty 
of such people, and if those who occupy themselves with this matter in the following 
times were to be judged on the basis of those who have occupied themselves with it 
hitherto, they will mostly be those who barely understand geometry and are incapable 
of assessing their strengths. However, what most of these people lack in knowledge, 
understanding, and correct and coherent conclusions, their lust for fame and money 
replaces with sophismata, which are often neither very subtle nor well hidden. There 
have also been cases in which such people have firmly believed that their supposed 
proofs were being denied acclaim merely out of envy and resentment. There is also a 
legend circulating amongst them that in England and Holland equally big prizes and 
rewards were set for the quadrature of the circle as for the finding of the geographical 
longitude at sea. I certainly do not intend to vouch for whether or not it was believed 
at the beginning of the last century, or even before, that the finding of the longitude 
at sea had such a connection with the quadrature of the circle that whoever found 
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the latter would also have found the former. What is certain is that, at that time, 
people sought for and believed in relations between truths that were even less likely 
to fit together. However, should a prize have indeed been set for the quadrature of 
the circle because of the longitude at sea, I believe that the Parliament of England 
would do well to announce in all the newspapers that no one should reckon with a 
prize being given for the quadrature of the circle, especially since the prizes for the 
longitude at sea have already been allotted. In fact, one should indeed not count on 
it, because nowadays it is known far too well how independent the longitude at sea 
is from the quadrature of the circle. 

§. 2. 

The finding of things which have long been sought in vain is either impossible per 
se or its occurrence is reserved for some future happy coincidence. An example may 
illustrate this. There is no doubt but that the ancient Phoenicians, and after them the 
Greek and Roman mariners, desired a means which would show them the proper 
route of the ship on a cloudy day just as the stars showed it on a clear one. How could 
it have occurred to them that the place to look for such a means was in lodestones? It is 
indisputable that this discovery depended on an absolutely unforeseeable confluence 
of circumstances which could not have been arranged without foreknowledge and 
which therefore had to come to pass on its own. Likewise, it is to be assumed that 
if the quadrature of the circle were possible at all, the means of performing it would 
perhaps occur to a practical geometer 1 from whose mind there lay nothing farther 
than the discovery of such a thing. However, it is just as possible to accidentally 
arrive at erroneous quadratures. The numbers.1225 and.961 provide a good example 
of this. They have a twofold characteristic: on the one hand, they are the square 
numbers of .35 and . 31; on the other hand, they stand almost in the same relation 
to one another as does the square of the diameter to the content of the circle. This 
in turn means that the diameter of the circle is in relation to the side of a square 
spatially equal to the circle almost as .35 is in relation to 31. Thus, if one quadruples 
.961, one obtains 3844, which is also a square number, and the diameter will relate to 
the circumference almost as .1225 does to .3844. But this almost must not be taken 
very strictly, because if one divides .3844 by .1225, one gets .3, 138... And it is easy 
to see that this ratio deviates from .3, 1415926... already in the 3rd decimal place 
and is therefore not nearly as exact as the Archimedean ratio .22 : 7, 2 which gives 
the sequence.3, 1428571..., a sequence which is only.0, 0012645 larger and, for this 
reason, almost three times more exact. 

§. 3. 

Nevertheless, the numbers.1225 and.961, or.1225 and.3844, retain a certain value, as 
they are square numbers. In this century, as far as I know, three authors have arrived

1 The term used by Lambert is . «Meßkünstler. », which was used at the time to refer to . «one who 
understands and practices the art of measurement. » (Campe 1809, p. 275), that is, a. «geometer. » or, 
more precisely in this case, a. «practical geometer. » or mensor (Grimm and Grimm 1885, col. 2137). 
2 Lambert refers to the 3rd proposition of Archimedes’ treatise entitled Measurement of a Circle: 
. «The ratio of the circumference of any circle to its diameter is less than . 3 1

7 but greater than ..3 10
71 » 

(Heath 1897, p. 93). 
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at them. This situation seems to me very strange. Because, since there are several 
more such square numbers, one would rather think that each of these three inventors 
would have arrived at different numbers. The first was Mr von Leistner, Captain of 
the Imperial Cavalry. He found the numbers .1225 and .3844, 3 which were adjudged 
incorrect by the Imperial Court Commission, against which, however, he protested 
in Nodus Gordius &c., a writing published anno 1740. 4 The other was Mr Merkel, a  
preacher in Ravensburg, 5 Schwaben, whose writing did not come to light until anno 
1751. 6 He claims, however, that he found his numbers .1225 and .961 by chance, 
long before Mr von Leistner, but was only persuaded to put them to the test by the 
Nodus Gordius, although what particularly prompted him to bring them to public 
notice by printing them was an article in Utrecht’s newspaper, in which a quadrature 
was announced and the prize supposedly set on it was demanded. This news led 
him to lend more speed to the pen in his hand, because the previous winter he had 
run through his own calculations for a Frenchman who had in fact later travelled to 
the Netherlands, without paying further attention to the paper, and so he had strong 
reasons to suspect that this geometra may already have . «ploughed the land with 
his calf. », 7 etc. What happened afterwards is unknown to me. However, Merkel’s 
writing was reissued anno 1765 by Prof. Bischoff of Alten-Stettin, with annotations 
and several further proofs, 8 and the numbers .1225 and .961 were declared correct. 
Shortly afterwards, at the beginning of 1766, these numbers appeared again in the

3 These numbers can be found, for example, in Joseph Ignatius Carl von Leistner’s Unwiderruf-
flicher, Wohlgegründter und Ohnendlicher Beweiß der Wahren Quadratur des Circuls, oder des 
Durchmessers zu seinem Umcreyß, wie 1225 zu 3844 oder 3844 zu 1225 (Von Leistner 1737). 
4 The full title of von Leistner’s work is Der durch Kunst und Wissenschaft eröfnete Nodvs Gordivs. 
Das ist: Kurtzer und unpartheyischer Bericht, von der ohnlängst herausgekommenen, nunmehro 
zwar vor wahr gehaltenen, jedoch in den letzten Zügen gelegenen, aber jetzo wieder aufs neue 
erstandenen Quadratura Circuli (Von Leistner 1740). 
5 In the original there is a mistake here, as it says. «Rakensburg. » (Lambert 1766/1770, p. 144). 
6 The title of Johann Christoph Merkel’s work is Die Wirklichkeit der Quadratur des Cirkuls, in 
der Proportion des Quadrati Diametri zu dem Innhalt des Cirkuls, wie 1225 zu 961 (Merkel 1751). 
As noted by Ferdinand Rudio, Gotthold Ephraim Lessing refers to Merkel in his epigram . «Auf 
den Herrn M** den Erfinder der Quadratur des Zirkels. », published in 1751 (Lessing 1886, p. 38), 
(Rudio 1892, p. 137). 
7 The expression . «mit eines Andern Kalbe pflügen. » was customary at the time, cf. Campe (1809, 
p. 638). Here the abbreviation for . «et cetera. » was typeset in Fraktur typeface (like the rest of the 
text) using, on the one hand, the glyph for a rounded r (similar to a capital R but without the stem, 
i.e., the main vertical stroke) instead of the glyph for the Tironian et (similar to a 7), and, on the 
other hand, the glyph for a. «c. ». Whereas in this translation, as in the rest of the book, we have tried 
to adhere to the notation used in the originals, here I have opted to replace this abbreviation by 
. «etc.. ». 
8 Lambert refers to Johann Christoph Merckels Evangelischen Predigers zu Ravensburg in 
Schwaben Beweis von der Würcklichkeit der Quadratur des Circkels in der Proportion des Quadrati 
diametri wie 1225 zu 961. Untersuchet und mit Anmerckungen versehen (Bischof 1765), published 
by Johann Christoph Bischof, professor of mathematics and physics at the Royal Gymnasium in 
Alten-Stettin. 
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newspapers, with the solemn announcement that it was no longer necessary to search 
for the quadrature of the circle, since it had already been found, and indeed it had 
already been found for the third time, etc. It would not be a bad thing if many of the 
people who set to work on this matter in the future believed this very strongly, as they 
would thereby be spared the waste of effort, time and strength, which can be regarded 
as having been used in vain, since most of them are hardly capable of contriving and 
solving a simple geometrical problem. But there is little doubt but that Merkel’s 
and Leistner’s numbers will be rehashed at some point in the future. The main 
proof of their inaccuracy is that .3844 divided by .1225 should give the Ludolphian 
numbers. 9 Professor Bischoff also considers these Ludolphian numbers, and even 
Sherwin’s numbers, 10 which are more than twice as far-reaching, although he does 
not consider them as touchstones, but rather says that while they are very close, they 
do not give the content of the circle with complete accuracy, hence other proofs are 
to be considered. Mr Bischoff carries out 8 such proofs and thus makes the matter 
seem plausible. It is indisputable that if one were to divide.3844 by.1225, thus giving 
exactly the Ludolphian numbers, which reach up to 32 decimal places, one could 
on the one hand be very satisfied with this, but on the other hand one would have to 
see whether this division would also give Sherwin’s numbers, which reach up to 72 
decimal places, and then Machin’s numbers, which reach up to 100 decimal places, 11

or finally de Lagny’s numbers, which reach up to 127 decimal places. 12 One could, 
then, be all the more satisfied with the proportion .3844 : 1225. However, as soon as 
the above-mentioned division is carried out, the quotient .3, 138... already starts to 
deviate from the Ludolphian numbers in the third decimal place. And, furthermore, 
the 8 proofs are such that any two square numbers can bear them. However, I will 
not dwell on showing this here, but rather indicate how, according to a general rule, 
such square numbers, which indicate the ratio of the square of the diameter to the 
content of the circle, can be established more accurately the larger they are. This 
may also serve, among other things, to ensure that in the future it will no longer be 
necessary to arrive at such square numbers in a merely random manner and then to 
present them as completely correct quadratures of the circle.

9 What Lambert calls the “Ludolphian numbers” owe their name to Ludolph van Ceulen (1540– 
1610), who calculated the first 32 decimal places of the lower and upper bound of. π and reportedly 
even have calculated the first 35 decimal places, cf. Van Ceulen (1615, p. 163), Arndt et al. (2001, 
p. 183). 
10 Lambert refers here to the 72 decimal places of . π calculated in the Mathematical Tables edited 
by Henry Sherwin, cf. Sherwin (1706, p. 57). 
11 William Jones included the calculation of .π by John Machin (1686–1751) in Jones (1706, 
p. 243). The procedure used by Machin to find the quadrature of the circle is described in 
Maseres (1758, pp. 289–293). 
12 In the original there is a mistake here, as it says. «Lamysche. » (Lambert 1766/1770, p. 146), i.e., 
. «of [de] Lamy. », to refer to Thomas Fantet de Lagny (1660–1734), who in his Mémoire sur la 
Quadrature du Cercle, & sur la mesure de tout Arc, tout Secteur, & tout Segment donné (De Lagny 
1719/1721) calculated the value of. π referred to by Lambert. Here, as in Rudio (1892, p. 138), this 
mistake has been corrected. 



3 An Annotated Translation of Lambert’s Vorläufige Kenntnisse (1766/1770) 51

§. 4. 

Consider two square numbers .aa, .bb, such that if . a is the diameter of the circle and 
therefore.aa is its square, then.bb represents the content of a square spatially equal to 
the circle, and therefore,. b represents the side of the circle. In this way,.aa stands in the 
same relation to.4bb like the diameter with respect to the circumference, or like. 1 with 
respect to . 3, 141592, 653589, 793238, 462643, 383279, 502884, 197169, 399375,
. 105820, 974944, 592307, 816406, 286208, 998628, 034825, 342117, 067982,1480
.86, 513272, 306647, 093844, 6 + · · · = 1 : π . 13 According to this,. aa : 4bb = 1 : π

and from this follows 
. a : b = 2 : √

π.

But .
√

π = 1, 77245385075.... And from this one gets 

. a : b = 2, 00000000000

1, 77245385075
= 1 + 1

7 + 1

1 + 1

3 + 1

1 + 1

2 + 1

1 + 1

26 + etc.

This gives, in order, 

.b : a = .7 : 8 +  · · · and .bb : aa .= . 49 : 64 +  · · ·  
.= .8 : 9 −  · · · .= . 64 : 81 −  · · ·  
.= .31 : 35 +  · · · .= . 961 : 1225 +  · · ·  
.= .39 : 44 −  · · · .= . 1521 : 1936 −  · · ·  
.= .109 : 123 +  · · · .= . 11881 : 15129 +  · · ·  
.= .148 : 167 −  · · · .= . 21904 : 27889 −  · · ·  
.= .3845 : 4342 +  · · ·  etc. .= . 14807104 : 18852964 +  · · ·  etc. 

These fractions are therefore more precise according to their order. Moreover, it can 
be seen from this that Messrs von Leistner, Merkel, Bischoff etc., arrived only 
accidentally at their numbers .961 and .1225. After all, the calculation with . 49 : 64 
or .64 : 81 would have been much easier and shorter, whereas with .1521 : 1936 or 
.11881 : 15129 etc. it would have been more extensive but at the same time more 
exact. 

§. 5. 

It is nevertheless more advisable in general to use only the first of these ratios, namely 
.b : a. For .bb : aa one has other fractions which, without being square numbers, are 

13 In De Lagny (1719/1721) there is a mistake in the 113th decimal digit, which should be 8 instead 
of 7, although this error could be attributable to transcription (Arndt et al. 2001, p. 193). 
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much smaller and much more exact, so that, by proceeding in this way, one arrives at 

. bb : aa = π : 4 = 11 : 14 
= 172 : 219 
= 355 : 452 etc. 

However, the fractions . 7 8 , 
8 
9 , 

31 
35 , 

39 
44 , 

109 
123 , 

148 
167 , 

3848 
4342 etc. express the side of a square 

which is as large as the area of a circle, the diameter of which is assumed to be .= 1. 
And conversely, the same fractions placed upside down, or. 8 7 , 

9 
8 , 

35 
31 , 

44 
39 , 

123 
109 , 

167 
148 , 

4342 
3848 

etc., represent the diameter of a circle, the content of which is.= 1. In this sense, they 
can be used in the measurement of cylinders and in the manufacture of gauging rods. 14 

The fraction. 
167 
148 is particularly useful for this purpose, since it is the most accurate of 

the smaller ones and only begins to deviate from the correct decimals from the seventh 
place onwards. Because, if one calculates it according to the Ludolphian numbers, 
the diameter of the circle, the content of which is .= 1, is found . = 1, 1283790 . . .  
However, . 167 148 is .= 1, 1283784..., so the difference is .= 0, 0000006 . . .  It rarely hap-
pens that in practical cases one needs to know this diameter more precisely. 

§. 6. 

Since it is also possible, when comparing the diameter of a sphere with the side 
of a spatially equal cube, to succumb to the temptation of accepting such cubic 
numbers, on the basis of which one might dream of the quadrature of the circle or the 
cubature of the sphere, it will therefore surely prove to be useful in preventing such 
future incidents to determine these cubic numbers in advance by the same method, 
especially since they can be used advantageously when calculating the spatial content 
of the spheres and when manufacturing the calibre-rods. 15 Thus, let the diameter of 
the sphere be .= a, the side of the spatially equal cube .= b, and the Ludolphian 
numbers .3, 1415926 . . .  = π , so according to the well-known Archimedean rule, 

.b3 : a3 = π : 6 

14 Lambert uses the expression. «cylindrisch[e] Visirstäbe. » (Lambert 1766/1770, p. 149) to refer to 
the cylindrical rods used to measure the volume of casks (Grimm and Grimm 1926, col. 376), cf. 
Büsch (1776, pp. 141–144). I am grateful to one of the anonymous reviewers for her/his helpful 
remarks on this issue. Interestingly, in the second edition of his book, Johann Georg Büsch (1728– 
1800) notes that . «reliable rules. » for the measurement of casks were given by Lambert in . «Die 
Visirkunst, sowohl ganz als nicht ganz angefüllter liegender Fässer, auf ihre einfachsten Gründe 
und Regeln gebracht. » (Büsch 1776, p. 143). This work was included in the first volume of Lambert’s 
Contributions (Lambert 1765, pp. 314–368), the third volume of which includes some. «additions. » 
on the subject (Lambert 1772, pp. 12–34). 
15 The . «calibre-rods. » (. «Caliberstäbe. ») were used to measure bullets: . «Calibre-rod, or artillery 
measuring-rod, is a rod on which the diameters of iron, stone, or leaden balls of different weights 
are marked, so that the calibre or diameter of a gun or cannon being known, one can discover the 
weight of the iron, stone, or leaden ball which it will carry. The weight of the ball also being given, 
it serves to determine the calibre of the piece. » (Beckmann 1817, p. 461). 
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and therefore 

. b : a = 3

/
π 
6 

. 

Hence, it follows that 

. π = 3, 141592, 653589, 793238, 462... 
1 

6 
π = 0, 523598, 775598, 298873, 077... 

And from this one gets the cubit root 

. b : a = 0, 805995, 977008, 234820..., 

which, developed into a continued fraction, gives 

. b : a = 1 

1 + 1 

4 + 1 

6 + 1 

2 + 1 

8 + 1 

6 + 1 

6 + etc. 

From which one gets 

. b : a = 4 : 5 + 
= 25 : 31 − 
= 54 : 67 + 
= 457 : 567 − 
= 2796 : 3469 + 
= 17233 : 21381 − etc. 

Accordingly, if the diameter of a sphere is .= 1, the side of a spatially equal cube is 
expressed with greater precision by each of the fractions . 4 5 , 

25 
31 , 

54 
67 , 

457 
567 , 

2796 
3469 , 

17233 
21381 

etc. the larger they are. If these fractions are raised to the cube, they give the content 
of the sphere. But if one sets the physical content of the sphere .= 1, then these 
same fractions placed upside down, . 5 4 , 

25 
31 , 

67 
54 , 

567 
457 , 

3469 
2796 , 

21381 
17233 etc., 

16 represent the 
diameter of the sphere. In general, one can be satisfied with the fraction . 567 457 , since, 

16 At this point Lambert made a mistake in the second fraction, which should be . 31 25 (Lambert 
1766/1770, p. 151), (Rudio 1892, p. 142). 
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if recalculated, it gives the diameter of the sphere with the same precision as if one 
had arrived at it by means of the logarithmic tables. 

§. 7. 

In this calculation, I have supplied the cubic root of. 1 6 π up to the 18th decimal place. 
Since it would be a tedious and extremely time-consuming task to search for it, as 
hitherto, according to the common rules, it will surely be useful if I add how I found 
this root by means of a single rule de tri and, at the same time, how I made sure that 
it is correct up to the 18th decimal place. 

§. 8. 

According to Newton’s binomial formula, it follows that, in general, 

. x = (a + b)n = an + nan−1 b + n · n − 1 
2 

· an−2 b2 + &c. 

Now multiply this series by .1 + zb : a, and in the product 

. x

(
1 + 

zb 

a

)
= an + nan−1 b + n · n − 1 

2 
an−2 b2 

+ n · n − 1 
2 

· n − 2 
3 

an−3 b3 + etc. 

+ zan−1 b + n · z · an−2 b2 + n · n − 1 
2 

· zan−3 b3 + etc., 

in order to determine . z, set the third term 

. n · n − 1 
2 

· an−2 b2 + n · z · an−2 b2 = 0 

so that 

. z = −n − 1 
2 

. 

If one now places this value of . z in the product, one obtains 17 

. x

(
1 − 

n − 1 
2 

· b 

a

)
= an + 

n + 1 
2 

an−1 b + ∗ −  n 
n − 1 
2 

· n + 1 
6 

an−3 b3 − &c. 

and from this 

.x = (a + b)n =
(
2a + (n + 1)b 

2a − (n − 1)b

)
an + ∗ −  

n · (n − 1) · (n + 1)an−2b3 

6 (2a − (n − 1) · b)
− &c. 

17 In Rudio (1892, p. 143), . «.+ ∗ −» was replaced by. «. −» in this and the next formula. 
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Of this series, the first term is used to determine the root, while the second term is 
used to find out how far one can go with the first one. 

§. 9. 18 

Now, for the cubic root one has .n = 1 3 . If one sets this value, one gets, after the 
relevant reductions, the formula 19 

. x = 3
√

a + b = 
3a + 2b 

3a + 1b 
· 3
√

a + ∗ +  
2b3 · 3

√
a 

81a3 + 27aab 
+ &c. 

I have applied this as follows to extract the cubic root of 

. a + b = 
1 

6 
π = 0, 523598, 775598, 298873, 077... 

First, using the logarithms, I found the first six decimal places of this root. These are 

. 0, 805995 = 3
√

a. 

And, since 
. 805995 = 806000 − 5, 

the cube should then be easy to find from this. I therefore set it as 

. 0, 523596871520449875 = a 

and thereby obtained 

. b = 0, 000001904077848998077107... 

Now, since if one only retains the first term of the series 

. x = 3
√

(a + b) = 
3a + 2b 

3a + b 
· 3
√

a 

this gives by the rule de tri 

. (3a + b) : (3a + 2b) = 3
√

a : x 

or 

18 In the original, this section appears as the 8th, instead of the 9th, as a consequence of 
which the numbering of the subsequent sections is incorrect by one number. Here, as in 
Rudio (1892, pp. 143ff.), this mistake has been corrected. 
19 In Rudio (1892, p. 144), . «.+ ∗ +» was replaced by. «. +» in the next formula. 
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. 

(
a + 

1 

3 
b

)
:
(

a + 
2 

3 
b

)
= 3

√
a : x, 

I only had to set the values of . a and . b in order to obtain the value of 

. x = 3
√

(a + b) = 3

/
π 
6 

= 0, 805995977008234820... 

However, I found that this value is correct up to the 18th decimal place by means of 
the second term of the series 

. 
2b3 · 3

√
a 

81a3 + 27a2b 

thanks to a simple estimation. Because, given that . b is .275000 times smaller than. a, 
I was able to set this term as 

. 
2b3 

81a3 
· 3
√

a. 

Hence 20 

. 3 log  .b : a = 0, 6820508 − 17 

log . 
2 

81 
= 1, 6074550 

and therefore 

. log . 
2b3 

81a3 
= 0, 9145458 − 19. 

Now, since in this case the characteristica is .= −19, and . a is .< 1, it is clear that 

20 Rudio introduced the following amendments: 

Hence 

. 3 log  
b 

a 
= 0, 6820631 − 17 

log 
2 

81 
= 0, 3925450 − 2 

and therefore 

. log 
2b3 

81a3 = 0, 0746081 − 18. 

Furthermore, 

. 
1 

3 
log a = 0, 9063323 − 1, 

therefore 

. 
2b3 

81a3 
3
√

a = 0, 9809404 − 19. 

(Rudio 1892, p. 145). 
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. 
2b3 

81a3 
· 3
√

a 

represents a decimal fraction that starts only at the 19th decimal place. Therefore, 
the decimal sequence found by means of 

. x = 
3a + 2b 

3a + b 
· 3
√

a 

is accurate up to the eighteenth place. 

§. 10. 

As far as I know, it has not yet been elucidated whether the ratio of the diameter 
to the circumference can be expressed by means of a rational fraction. Sturm 21 has 
indeed attempted to answer this question in the negative, but his proof is inadequate, 
since there are infinite series the sum of which is rational even though all the terms 
are irrational. Since the matter therefore remains to be elucidated, there may still 
be people who waste their time searching for such rational fractions or who bring 
them up as a consequence of erroneous conclusions. It is true that in each case the 
proof is quickly provided by means of the Ludolphian numbers. But even if the 
given fraction is thereby rejected, the desire to look for others can always persist. 
This desire may nevertheless become so minimal that one willingly gives up the 
search for such fractions. For even if the ratio of the diameter to the circumference 
could be expressed exactly by means of a rational fraction, it can be proven from 
the de Lagny’s 22 numbers mentioned above (§. 4), or also from the Ludolphian 
numbers, that it must be a very large fraction. These numbers can be transformed 
into fractions, which become larger and at the same time more precise according to 
their order. I have indicated the method and the caution to be exercised in applying 

21 Lambert refers to Johann Christoph Sturm (1635–1703), about whom Rudio wrote the following: 
. «He made himself known by means of excellent books on mathematics and astronomy which are 
still quite noteworthy today. The study mentioned by Lambert is to be found in the extremely 
interesting compendium ‘Joh. Chr. Sturmii Mathesis enucleata’ (Nuremberg, 1689), where on page 
181, Prop. XLIII, the following proposition is stated (probably for the first time in this precise 
form): ‘Area circuli est quadrato diametri incommensurabilis’. Sturm was also the first to translate 
Archimedes’ writings into German, which is also of interest to us here. In 1667 he published 
‘Des unvergleichlichen Archimedis Sandrechnung’ and in 1670 ‘Des unvergleichlichen Archimedis 
Kunstbücher’. Both translations were published in Nuremberg. The latter contains Archimedes’ 
‘Measurement of a Circle’. See the work of J. G. Doppelmayr (pp. 114–122) cited on page 28. » (Rudio 
1892, pp. 145–146). Here Rudio refers to Johann Gabriel Doppelmayr’s Historische Nachricht Von 
den Nürnbergischen Mathematicis und Künstlern (Doppelmayr 1730). 
22 Here, as in Rudio (1892, p. 146), Lambert’s reference to . «Lamysche. » (Lambert 1766/1770, 
p. 156) instead of . «Lagnysche. » has been corrected. 
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it, and explained it by examples, in §. 17 of the treatise on the Transformation of 
Fractions. 23 Using this method, I found the following rational fractions or ratios for 
the ratio of the diameter to the circumference: 24 

. 

1 : 3 
7 : 22 

106 : 333 
113 : 355 

33102 : 103993 
33215 : 104348 
66317 : 208341 
99532 : 312689 
265381 : 833719 
364913 : 1146408 

1360120 : 4272943 
1725033 : 5419351 

25510582 : 80143857 
52746197 : 165707065 
78256779 : 245850922 

131002976 : 411557987 
340262731 : 1068966896 
811528438 : 2549491779 
1963319607 : 6167950454 
4738167652 : 14885392687 
6701487259 : 21053343141 

567663097408 : 1783366216531 
1142027682075 : 3587785776203 
1709690779483 : 5371151992734 
2851718461558 : 8958937768937 

107223273857129 : 336851849443403 
324521540032945 : 1019514486099146 etc. 

Of these ratios, each subsequent one is more exact than the preceding one, and among 
them there is no rational ratio which is more exact than the next larger of those given 
here. Accordingly, even if the ratio of the diameter to the circumference could be 
expressed accurately by whole numbers, these numbers must necessarily be greater 

23 The treatise . «Verwandlung der Brüche. » was also included in the second volume of Lambert’s 
Contributions to the Use of Mathematics and Its Application (Beyträge zum Gebrauche der Math-
ematik und deren Anwendung) and was written between 1765 and 1766, as can be deduced from 
the reference in the present treatise (written in 1766) to it and Lambert’s statement in the preface to 
said volume that all works contained in it were written in or after the year 1765, cf. Lambert (1770, 
p. [II]). 
24 As pointed out by Johann Schultz, the last two ratios are incorrect, as they should be 
.44485467702853 : 139755218526789 and.136308121570117 : 428224593349304 (Schultz 1803, 
pp. 158–159). 
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than the last numbers given here, 

. 324521540032945 : 1019514486099146. 

These two numbers give the Ludolphian numbers up to the 25th decimal place. 
However, even if they were completely accurate, it is easy to see that it would be 
tedious and difficult to calculate with them. Incidentally, all these ratios result from 
the fractio continua 

. 
1 

3 + 1 

7 + 1 

15 + 1 

1 + 1 

292 + 1 

1 + 1 

1 + 1 

1 + 1 

2 + 1 

1 + 1 

3 + 1 

1 + 1 

14 + 1 

2 + a 

where . a is 25 

25 The error in Lambert’s last two ratios for the ratio of the diameter of a circle to its circumference 
is due to the fact that here the 26th quotient is mistakenly assumed to be.= 37 instead of.= 15. The  
simple continued fraction expansion of . π can be consulted at https://oeis.org/A001203 (accessed 
on 26 March 2024). 

https://oeis.org/A001203
https://oeis.org/A001203
https://oeis.org/A001203
https://oeis.org/A001203
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. = 1 

1 + 1 

1 + 1 

2 + 1 

2 + 1 

2 + 1 

2 + 1 

1 + 1 

84 + 1 

2 + 1 

1 + 1 

1 + 1 

37 + 1 

3 + etc. 

I have not pursued the calculation of this fractio continua beyond the Ludolphian 
numbers. So I will not say whether, if the calculation continues, there is any point at 
which it must cease and break off. If this were the case, then the ratio of the diameter to 
the circumference could be expressed by means of whole numbers, though they would 
need to be tremendously large ones. However, in the treatise on the Transformation 
of Fractions mentioned above (§. 23) I have provided another fractio continua, 
which continues to infinity, according to a certain law, and completely removes the 
hope of determining the ratio of the diameter to the circumference by means of whole 
numbers. 

§. 11. 

There are other quantities in mathematics regarding which it would also be worth 
finding out whether they can be expressed by rational fractions or otherwise in some 
more tractable manner than is the case at present with their expression through 
decimal numbers. In particular, the number.2, 718281, 828459, 045235, 36028... can 
be counted among these, the hyperbolic logarithm of which is .= 1. 26 This number 
is with respect to logarithms just what the Ludolphian numbers are with respect to 
the circle, and thus it is of equal relevance with respect to trigonometric and other 
calculations. If, therefore, one wonders why it is only the Ludolphian numbers that 
attract so much attention, then this question can only be answered partly from the 
history of mathematics, and partly by considering the fact that the concepts of circle, 
square and quantity are known to all alike, which cannot be said about the concept 
of hyperbolic logarithms, since this latter concept only became known through 

26 At the time the natural logarithms were also called. «hyperbolic. ». «because of their correspondence 
with the quadrature of the hyperbola. » (Clemm 1768, p. 432). Euler himself points this out in Euler 
(1748, p. 90). 
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infinitesimal calculus and cannot be clarified without learning this calculus. Had not 
most of those who have sought the quadrature of the circle encountered this block and 
barrier to their efforts, then most likely as many vain efforts and failed attempts would 
have come to light with regard to the number . 2, 718281, 828459, 045235, 36028... 
as have come to light with regard to the Ludolphian numbers. However, this number 
cannot be expressed exactly by means of a rational fraction either. Because, if for 
the sake of brevity one sets this number .= e, then one has 

. e = 1 + 2 

1 + 1 

6 + 1 

10 + 1 

14 + 1 

18 + 1 

22 + 1 

26 + etc. 

or 

. 
e − 1 
e + 1 

= 1 

2 + 1 

6 + 1 

10 + 1 

14 + 1 

18 etc. 

or 

. 
ee − 1 
ee + 1 

= 1 

1 + 1 

3 + 1 

5 + 1 

7 + 1 

9 + 1 

11 + etc. 

and, in general, 

. 
ex − 1 
ex + 1 

= 1 

2 : x + 1 

6 : x + 1 

10 : x + 1 

14 : x + etc. 
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Since these fractions go on forever, then neither. e nor.ex can be expressed exactly by 
a rational fraction, when. x is a rational number or a fraction. I discovered, moreover, 
these formulae by using the method I described in the above-mentioned treatise on 
the Transformation of Fractions (§. 19ff.). However, the specific occasion to look 
for these formulae was provided for me by Mr Euler’s Analysis infinitorum, where 
the expression 

. 
e − 1 
2

= 1 

1 + 1 

6 + 1 

10 + 1 

14 + 1 

18 + etc. 

appears in the form of an example, calculated in numerical terms. 

§. 12. 

Seizing this occasion, I went further and, with respect to the arcs of the circle, I found 
the expression 

. tan .v = 1 

1 : v − 1 

3 : v − 1 

5 : v − 1 

7 : v − 1 

9 : v − etc. 

Several consequences can be drawn from this continued fraction with regard to the 
indeterminate quadrature of the circle. If one considers a whole number. n, and makes 
.v = 1 : n, then one obtains 

. tan .v = 1 

n − 1 

3n − 1 

5n − 1 

7n − 1 

9n − 1 

11n − etc. 

Since this fraction goes on forever, it follows that, in every case where a circular arc 
is a pars aliquota of the radius, its tangent will necessarily be irrational. Because, if 
the tangent were rational, then this fraction could not be a continued one but would 
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eventually have to cease. To explain this in more detail, let us consider .v = 1 as an 
example. Since . n also becomes .= 1, then 

. tan .arc. 1 = 1 

1 − 1 

3 − 1 

5 − 1 

7 − 1 

9 − etc. 

and therefore, according to the above-mentioned treatise (§. 10), 27 

+1 +0 
+1 +0 +1
-3 +1 +1 
+5 -3 -2
-7 -14 -9 
+9 +95 +61
-11 +841 +540 

+13 etc. -9156 etc. +5879 etc. 

And so the tangent of the arc equal to the radius is expressed through the ordered 
fractions 

. 
3 

2 
, 
14 

9 
, 
95 

61 
, 
841 

540 
, 
9156 

5879 
etc. 

and expressed indeed, through every fraction in this sequence, with such a degree 
of progressively greater exactness, that the smaller a fraction is the less exact it is. 
Since this sequence of fractions is never interrupted, but continues in such a way that, 
having no common divisors, the denominator and numerator become larger than any 
given number, then the tangent of the arc equal to the radius cannot be expressed by 
any finite or rational fraction. This also applies to the tangents of all arcs that are . 

1 
n 

part of the radius. 

§. 13. 

If the first fractions found here are subtracted from one another, it can be seen how 
quickly they approach the real value. For one has 

27 Due to the error in the numbering of the paragraphs, the original refers here to §. 9, Lambert 
(1766/1770, p. 163). It should also be noted that there is a mistake in the table, where instead of 
.+5879 it should be.−5879 (Lambert 1766/1770, p. 163), cf. Rudio (1892, p. 151). 
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. 
14 

9 
= 

3 

2 
+ 

1 

2 · 9 
95 

61 
= 

3 

2 
+ 

1 

2 · 9 +
1 

9 · 61 
841 

540 
= 

3 

2 
+ 

1 

2 · 9 +
1 

9 · 61 +
1 

61 · 540 
9156 

5879 
= 

3 

2 
+ 

1 

2 · 9 +
1 

9 · 61 +
1 

61 · 540 +
1 

540 · 5879 etc. 

If one proceeds in this way, the tangent of the arc equal to the radius is expressed by 
an infinite series 

. 
3 

2 
+ 

1 

2 · 9 +
1 

9 · 61 +
1 

61 · 540 +
1 

540 · 5879 +
1 

5879 · 76887 + etc., 

which converges more markedly than does any geometric series, and the sum of 
which is known to be irrational. 

§. 14. 

It thus becomes clear that not only the tangents of the arcs . 1 n , but in general those of 
all arcs . m 

n , which have a rational ratio to the radius, are irrational. If, for example, 
.v = 2 3 , then the tangent of this arc is 

. = 1 

3 : 2 − 1 

9 : 2 − 1 

15 : 2 − 1 

21 : 2 − etc., 

according to which 

1 0 
+.3 : 2 0 1 = . 0 : 1 

.− .9 : 2 +1 +.3 : 2 = . 2 : 3 
+.15 : 2 .−9 : 2 .−23 : 4 = . 18 : 23 
.−21 : 2 .−131 : 4 .−333 : 8 = . 262 : 333 
+.27 : 2 +.2715 : 8 +.6901 : 16 = . 5430 : 6901 
etc. etc. etc. 

Thus, the tangent of the arc .v = 2 3 is expressed through each of the fractions 
. 
2 
3 , 

18 
23 , 

262 
333 , 

5430 
6901 etc. and expressed indeed, through every fraction in this sequence, 

with such a degree of progressively greater exactness, that the smaller a fraction is 
the less exact it is. Since this sequence of fractions never ceases, but grows in such a 
way that, having no common divisors, the denominator and numerator become larger 
than any given number, it follows that the tangent of the arc.v = 2 3 is irrational. This 
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also applies to the tangents of all arcs which are .= m 
n or have a rational ratio to the 

radius. If one subtracts the first fractions found here from each other, one obtains for 
the tangent of the arc .v = 2 3 the series 

. 
2 

3 
+ 8 

3 · 23 + 
32 

23 · 333 +
128 

333 · 6901 + etc. 

which also converges more markedly than any geometric series and has an irrational 
sum. 

§. 15. 

Since, therefore, the tangent of every rational arc is irrational, then, conversely, the 
arc of every rational tangent is irrational. For, if one were to assume the arc to be 
rational, then, contrary to the assumption, the tangent would be irrational by virtue 
of what was initially proven. 

§. 16. 

In the trigonometric tables we have a single rational tangent, namely that of 45 deg., 
which is equal to the radius and, therefore, .= 1. For this reason, the arc of 45 deg. is 
irrational and likewise irrational, consequently, are the arcs of 90, 180 and 360 deg., 
or in other words, these arcs have no rational ratio to the radius of the circle. 

§. 17. 

From what has been said so far it is clear that no arc can at the same time have a 
rational ratio to the radius and to its tangent. There are, however, innumerable ways 
in which an arc can have a rational ratio to its tangent. But it can also be shown 
that, in all such cases, both the arc and its tangent are incommensurable with the 
radius. Because in the first place, by virtue of what has already been proven, it is 
not possible for both to have at the same time a rational ratio with respect to the 
radius. Let it therefore be assumed that only the tangent or the arc is rational. In 
the first case, the tangent would have to be commensurable with both the radius and 
the arc. And, thus, the arc would also be commensurable with the radius, since the 
sum or the difference of two rational ratios is also rational. In the other case, the arc 
would be commensurable with the tangent as well as with the radius, and thus the 
tangent would also have a rational ratio to the radius. Now, since, by virtue of what 
has been proven above, the radius, the arc and the tangent are not all at the same time 
commensurable, then both of the above cases are invalidated. Accordingly, if the arc 
and the tangent have a rational ratio to each other, then both are incommensurable 
with the radius. 

§. 18. 

I will end by briefly addressing two cases which present some plausibility with regard 
to the quadrature of the circle. The first is the following proposition: if one describes 
an arbitrary regular or irregular polygon around a circle, so that each side of the 
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former touches the circle, then the perimeter of the polygon will thereby stand in the 
same relation to its content as does the circumference of the circle to its own content. I 
omit the proof, because it is very easy. The other case is a phaenomenon which occurs 
in the following way: if one divides . 1 by .0, 7853981634..., as a fourth part of the 
Ludolphian numbers, it occurs 1 time and subtracts.0, 2146018366.... If one further 
divides .0, 7853981634..., which was previously the divisor, by this remainder, then 
it occurs 3 times and subtracts .0, 1415926536.... If one places the number 3 in front 
of this remainder, one gets .3, 1415926536..., 28 which are precisely the Ludolphian 
numbers. 29 I will say no more about this other than that it is a phaenomenon from 
which nothing can be concluded per se about the quadrature of the circle. Nor is it 
difficult to find the cause of it. 
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Part III 
Eduardo Dorrego López



Chapter 4 
Introductory Remarks About the 
Mémoire (1761/1768) 

Therefore the circumference of the circle is not to the diameter 
as an integer number to an integer number. 

—J. H. Lambert Mémoire. 

4.1 Introduction and Context 

The historical importance of Lambert’s Mémoire turns out evident as soon as one 
realizes the issues tackled by the Swiss. 1 There is little doubt that fame goes to the 
first part of the article, in which Lambert, showing a high level of skill with such 
then-recent analytic tools like continued fractions, demonstrates with unusual rigour 
for the 18th century standards the irrationality of . π . The issue of the nature of this 
constant had taken a new impulse since the herculean efforts by Ludolph van Ceulen 
at the end of the 16th century with the use of new analytic tools and their application 
to some geometric problems. Authors like Gregory, Huygens, Mengoli, Leibniz 
or Wallis faced these issues, and in particular, the circle-squaring problem, in 
which . π played a central role. Lambert takes up the baton of this analytic tradition 
—enriched by Euler with his first systematic study of continued fractions— and 
settles the question of its irrationality. 

In any case, it may be necessary to clarify this last statement, since doubts have 
arisen around Lambert’s proof. Such is the case of Ferdinand Rudio or Felix Klein 

1 I only intend to make some comments without going into details, since all the relevant explanations 
will be included in the part dedicated to the annotated translation. 
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(following the former), who refered to Lambert’s proof as incomplete in contrast to 
authors like Alfred Pringsheim or J. W. L. Glaisher. 2 Pringsheim wrote that Lambert’s 
work is «highly ingenious and flawlessly in essence», 3 whereas Glaisher in his article 
On Lambert’s Proof of the Irrationality of . π , and on the Irrationality of certain other 
Quantities, compared his proof with that by Legendre —a proof that filled in the gaps 
of Lambert’s according to some interpretations— in the following terms: 4

Although Legendre’s method is quite as rigorous as that on which it is founded, still, on the 
whole, the demonstration of Lambert seems to afford a more striking and convincing proof 
of the truth of the proposition. 

And he added up, after his presentation, that: 

That Lambert’s proof is perfectly rigorous and places the fact of the irrationality of. π beyond 
all doubts, is evident to every one who examines it carefully; and considering the small 
attention that had been paid to continued fractions previously to the time at which it was 
written, it cannot but be regarded as a very admirable work. 

As will be seen later, the interpretation given in our analysis of Lambert’s proof will 
show basically one single conflicting point in his demonstration; one step taken by 
Lambert that is not obvious and needs proof, but that would not deserve to be the 
source of criticism considering the epoch in which it was elaborated (1761/1768). 

Although it is difficult to advance this claim with absolute certainty, it could have 
ocurred with Lambert and his proof what allegedly happened to Euler in connection 
with his proof of the irrationality of . e. Some historians consider Euler’s «proof» to 
be the statement included in the last chapter of the first volume of his Introductio. 
There, 5 Euler presented an infinite regular continued fraction for. e−1

2 , which ensures 
its irrationality, but did not provide any justification, limiting himself to comment: 
«This result can be confirmed by infinitesimal calculus». But what really happened 
is that Euler had already published a rigorous proof in a much less known work. 6

Lambert could be in the same situation: on the one hand he published an article 
whose title clearly indicates the topic to be covered, and the content of which is aimed 
at a more general audience —this is part V of his (Lambert 1766/1770), entitled 7

Preliminary knowledge for those who seek to square and rectify the circle—, therefore 
an accessible work in which he made some claims about the nature of . π ; and on the 
other hand we have a more academic work without a direct reference in its title to 
the circle-squaring problem or. π , and directed to a smaller audience —his (Lambert 
1761/1768)— and therefore a much less known work that, on the contrary, does 
include a rigorous proof of the irrationality of . π .

2 See Baltus (2003). 
3 Cantor (1908, p. 447) (translated by José Ferreirós). 
4 Glaisher (1871, p. 12). 
5 Euler (1748, p. 325). 
6 See Petrie (2009, p. 105) —who refers to a study by Ed Sandifer— for a more complete explanation. 
The lesser known work of Euler that I refer to is Euler (1744). 
7 Vorläufige Kenntnisse für die, so die Quadratur und Rektifikation des Cirkuls suchen. 
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An example of this interpretation could be the case of A. L. Crelle, who in his 
translation of Legendre’s work (German 3rd edition, 1837) noted, in reference to 
(Lambert 1766/1770), that Lambert’s proof of the irrationality of . π is less rigorous 
than Legendre’s. 8 In more recent literature, we have an example in (Beckmann, 1971, 
pp. 170, 171), where it is said —also making reference to (Lambert 1766/1770)— 
that: 

Lambert investigated certain continued fractions and proved the following theorem: 

If . x is a rational number other than zero, then .tan x cannot be rational. 

adding that «Legendre, in his Elementes de Géometrie (1794) proved the irrationality 
of .π more rigorously [...]». 9 Exactly in the same vein is Ebbinghaus et al. (1988, 
p. 149), where the authors, making reference to (Lambert 1766/1770), mention that 
«Lambert’s proof is not completely rigorous because it lacks a lemma on the irra-
tionality of certain continued fractions», lemma that would later be proven by Leg-
endre. 

Perhaps, we should say that Lambert is partly to blame for propagating this view, 
since in Lambert (1766/1770, p. 167) he expressed himself in the following terms: 

Since, therefore, the tangent of every rational arc is irrational, then, conversely, the arc of 
every rational tangent is irrational. For, if one were to assume the arc to be rational, then, 
contrary to the assumption, the tangent would be irrational by virtue of what was initially 
proven. 10

In any case, this interpretation may partially account for this type of statements, 
although it should not be taken as a definitive explanation. For instance, we have 
already mentioned the case of Rudio, who in (Rudio 1892) seems to make explicit 
reference to Lambert’s Mémoire when he talks about the fact that there is a gap in 
his proof, and that this gap would be eventually filled in by Legendre in his afore-
mentioned note. Unfortunately, he does not indicate the specific place in Lambert’s 
reasoning where he considers the problem to be at. In any case, Pringsheim in his 
Ueber die ersten Beweise der Irrationalität von . e und . π , comments, referring among 
others to Rudio and Klein, that from his point of view the interpretation according to 
which Legendre completed Lambert’s proof is not well founded, and that Lambert 
proved this (and other facts 11) «with a rigor that is truly exceptional for his time», 
bringing out the fact that Lambert included a proof of convergence whilst Legendre 
did not. 

The general impression is that mathematicians in this period were heavily ori-
ented towards problems and methods of calculation, general formulas and numerical 
approximation, while the orientation taken by Lambert in 1761/1768 was of a clearly 
more theoretical and/or logical tendency. 12 We are dealing in some sense with a pio-

8 I want to thank José Ferreirós for his comments on this respect. 
9 (Beckmann, 1971, pp. 170, 171). 
10 See Chap. 3, §. 15 (words in bold are mine). 
11 The irrationality of.ex with. x a non zero rational. 
12 Concerning the importance of Lambert in the field of logic, see (Hintikka and Spade 2019), where 
he is claimed to have been without doubt «the greatest 18th-century logician». 
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neering result, a little too early for this time, falling more squarely within the general 
orientation of mathematics from approximately 1825 onwards. In this respect, it is 
insightful what A. von Braunmühl writes in Cantor (1908, pp. 447–448) after naming 
some authors and their connection with . π : 

Lambert’s contemporaries however seem either to have missed his work, or to have ignored 
the significance of the step that he made by establishing the knowledge of the nature of 
number. π by means of this exact proof [...] The whole nature of Lambert’s proof procedure, 
with its goal of absolute exactness, remained thus quite outside of the sphere of activity of 
their contemporaries, directed almost exclusively to the formal expansion of mathematics, 
and so it becomes understandable that it could be ignored. 13

Leaving aside the irrationality of . π , it is specially interesting that Lambert in this 
paper makes one of the first modern uses of hyperbolic functions, although the ter-
minology he uses is not that which we currently use (he speaks of «logarithmic 
transcendent quantities»). After noting the similarity between the series representa-
tion of the circular and hyperbolic trigonometric functions, he looks into the reason 
behind that similarity, a reason that he finds in the fact that while the former param-
eterizes the circumference, the latter parameterizes the hyperbola. 

Lastly and near the end of the work, Lambert makes the first modern distinction 
between algebraic and transcendental irrationals. Throughout the paper, it is possible 
to grasp how the modern meaning of the term «transcendent» emerges, going from 
representing non-finitely expressible irrational quantities, that is to say, irrational 
quantities that cannot be finitely expressed by means of usual algebraic operations 
(addition, subtraction, multiplication, division and extraction of roots), to quantities 
that are not roots of algebraic equations. In any case, this use did not become standard 
until new results in the field of algebra and number theory —Abel-Ruffini’s theorem 
and Liouville’s theorem— motivated the change from the old theoretical framework 
(«to be expressible») to the new one («to be root»). The final part of the work 
culminates concretely and notably with the conjecture of the transcendence of. π and 
the impossibility of squaring the circle. 

In general, the Mémoire is not a self-contained work, in the sense that it does 
not allow a gentle and easy reading. It is enough to make this clear by bringing up 
what Legendre says in Note VI of his Elements of Geometry —entitled Where it is 
shown that the ratio of the circumference to the diameter and its square are irrational 
numbers, and in which he gives a new, much shorter and simpler proof of this fact— 
about (only) the part dedicated to the proof of the irrationality of . π : 

We already know one proof of this proposition that has been given by Lambert in the Memoirs 
of Berlin, year 1761; but, as this proof is long and difficult to follow, we have tried to shorten 
and simplify it. 14

13 I thank José Ferreirós for the translation. 
14 Legendre (1794, p. 296). In the second edition the demonstration is included in Note V and from 
the fourth in Note IV (I could not consult the third edition). The comment to Lambert from the 
fourth edition is reduced to a brief footnote: 

This proposition was first demostrated by Lambert, in the Memoirs of Berlin, anno 1761.
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That is why a guide is useful and even necessary for those who want to read and 
understand this important work without falling into the temptation to abandon and 
go directly to simpler demonstrations of irrationality, such as the one by Legendre, 
or the more modern by Ivan Niven; needless to say for those who wants to delve into 
the reading of the entire article. A summary of what one could find —and indeed 
what the author of these lines found— in the search for such a guide would be the 
following. 

To begin with, this is the first definitive English translation to be published. 15 The 
works that are constantly referred to are commentaries or translations of certain parts 
of the Mémoire. What there is is an annotation in French of the complete work in 
its original language; it is (Speiser 1946–1948). This work by Andreas Speiser, who 
edited Lambert’s mathematical work, is the classic work to which historians often 
referred —for example (Serfati, 1992, p. 75)— but the ten footnotes that accompany 
the edition of the Mémoire are far from solving all the obstacles one would face when 
reading it. It has been decided to also include Speiser’s annotations (see Appendix 
C) due to the classic nature of his work, so that in any case the reader will be able 
to judge for himself. 16 What is undeniable is the meticulousness of his analysis, as 
Speiser corrects every single of Lambert’s errors or misprints, even when some of 
them are not easy to locate. Sometimes he includes the correction in a footnote, other 
times he introduces it directly in the main body of the text, including the original in 
a footnote, and some other times he corrects the text without mentioning it. 

Further comments on this work, 17 especially regarding the demonstration of the 
irrationality of . π , can be found in (Struik, 1969, pp. 369–374) and (Berggren, 1997, 
pp. 369–374), although both of them contain the same material: only points 37–51 
of the Mémoire (with no extensive analysis). The first 37 points and points from 51 
to 91 are missing and they are not of little interest as we have already mentioned 
briefly. 

One of the most relevant works that addresses Lambert’s Mémoire is (Serfati, 
1992, pp. 62–83), which, however, does not focus on technical details but offers 
a more global approach to the work, in particular about the points where Lambert 
touches on issues of irrationality and transcendence; in his more recent work ((Serfati, 
2018, pp. 179–184)), one finds basically the same material. On the other hand, for

15 In the course of writing this book, on which we began work in late 2019 and which underwent 
a blind peer review process, an English translation of (Lambert 1761/1768) by Denis Roegel was 
published online at https://hal.archives-ouvertes.fr/hal-02984214. The translation by Roegel, which 
I did not use for the preparation of my own translation, was labelled by him as follows: “this is a 
preliminary draft[;] please check for the final version”. To our knowledge, however, such a final 
version has not yet been published, hence I describe my translation as the first definitive one to be 
published. 
16 Speiser’s annotations will be indicated throught the translation of the Mémoire by means of 
footnotes as follows: «See the note by A.S. in Appendix C». 
17 I have to say that this summary does not show my journey in chronological order, since there 
are, as the reader will know, sources that are faster and easier to consult than others. For example 
the aforementioned work by Adreas Speiser was the last one that I have been able to analyze, long 
after I had almost completely prepared the translation with the annotations. 
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more technical details readers are referred to the important contribution by (Baltus 
2003), who addresses therein the main problematic part of Lambert’s proof. 

On the other hand, Martin Mattmüller and Franz Lemmermeyer in their edition 
of the correspondence between Euler and Goldbach, mention an article by Bruce J. 
Petrie (Petrie 2009) «for a modern exposition of Lambert’s proof». 18 Certainly this 
is a helpful work containing detailed explanations —based in part (Struik 1969)—, 
but for most of Lambert’s proof (points 1–37) Petrie simply refers to (Chrystal, 1906, 
pp. 517–523), who does not follow it literally but makes a modern and very technical 
approach, and to the work by (Brezinski, 1991, 109–111), who only makes a few 
comments on the three pages he devotes to Lambert’s proof. In fact, Brezinski refers 
to (Struik 1969) for an English translation. 

A bit out of the «most typical», and regarding Lambert’s treatment of the hyper-
bolic functions contained in the Mémoire (Lambert is a pioneer in this), there is a 
valuable work —(Barnett 2004)— which analyzes the role played by Lambert in this 
issue, although there are things that the author leaves behind and that Lambert does 
include and use (such as the curious concept of «prime tangent»). Also in (Juhel 
2009) one can find a useful analysis of both this issue and the parts of the Mémoire 
devoted to the irrationality of . π and the conjecture launched by Lambert about the 
transcendence of . π . 

Although this brief summary does not cover all the material on the subject, what 
has been said should help to get an idea of the gaps surrounding this important work 
and justify the suitability of the publication of an annotated translation of Mémoire 
sur quelques propriétés remarquables des quantités transcendentes circulares et 
logarithmiques (1761/1768). 

By the way, this double dating may require an explanation. The years 1761/1768 
probably refer to the delivery period of the different works included in this issue of 
the Memoirs of the Berlin Academy. In the particular case of Lambert’s Mémoire, we  
know that it was written a few months after his (Lambert 1766/1770), something he 
did in 1766. 19 Karl Bopp indicates that Lambert wrote the Mémoire in 1767, and that 
it was published in 1768, as the Academy’s own volume indicates. In fact, Lambert 
made an annotation in his Monatsbuch, dated July 1767, which begins as follows: 

Sur une proprieté remarquable des quantités transcendentes 
circulaires et Logarithmiques. Diss[ertatio] acad[emica]. 

In addition, the minutes reported on the Academy had established the holding of 
weekly plenary sessions every Thursday. They were attended by ordinary members 
and works pending publication were read out. In the plenary session of Thursday, 
September 17, 1767, the reading of Lambert’s Mémoire is registered. 20

18 Lemmermeyer and Mattmuller (2015, p. 55 note 65). 
19 See (Lambert 1766/1770, p. [II]). 
20 The interested reader can consult the aforementioned minutes on the Berlin Academy of Science 
website. The reference to the reading of this work also appears in the lower left corner of the first 
page of the Mémoire: «Read in 1767». Concerning the aforementioned dating of Lambert’s work, 
(Rudio 1892) warns us that, although many people repeat it, the data 1761 as the publication date is
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4.2 Outline 

What follows is a brief outline of the Mémoire. It is just intended to provide a general 
idea of Lambert’s paper. 

• §. 1.–§. 3. (pp. 265–267) 

. ∗Brief historical introduction on . π . 

. ∗ Intuitive explanation of the reasons to expect the irrationality of . π . 

. ∗What is intended to demonstrate: 

.[v ∈ Q =⇒ tan v�∈ Q] (4.1) 

and how to do it: by using Euclid’s Algorithm for the calculation of the greatest 
common divisor. 

• §. 4.–§. 15. (pp. 267–275) 

. ∗Continued fraction expression for the tangent. 

. ∗Proof by induction of said expression. 

. ∗Particular cases in which (4.1) can be proved. 
• §. 16.–§. 30. (pp. 276–286) 

. ∗Search and proof by induction for the general term by recurrence of the 
succession of the convergents .{ pn

qn
} of the continued fraction of .tan v. 

. ∗Search and proof by induction —on the basis on this general term by 
recurrence— of the general term of this very sequence dependent only on . n. 

. ∗Proof that this sequence actually converges to .tan v. 

• §. 31.–§. 51. (pp. 286–297) 

. ∗Series expression for the tangent from the convergents. 

. ∗Proof by Reductio Ad Absurdum of (4.1). 

. ∗As an immediate consequence, ........π �∈ Q since .tan π
4 = 0 ∈ Q. 

• §. 52.–§. 71. (pp. 297–304) 

. ∗Results that motivate the introduction of the concept of «prime tangent». 

. ∗The case of .tan 45◦. 

. ∗Results on prime tangents. 

wrong. The relevant parts of the Monatsbuch in this regard are (Bokhove and Emmel, 2020, pp. 112 
(note 527), 164 (note 733), 169 (note 763), 172 (note 773)). I would like to clarify that I have been 
able to access this work thanks to the kindness of Armin Emmel, who sent me the parts related to 
my investigation in a totally disinterested way. Likewise, I thank José Ferreirés for the translation 
of these parts.
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. ∗The similarity with the cosine (completely analogous to the tangent, we would 
have the concept of prime cosine with similar results) and the difference 
with the sine (not in this case). 

• §. 72.–§. 88. (pp. 304–320) 

. ∗Search for fractions that approximate the continued fraction both by default 
and by excess. Continued fraction expression of the cotangent. 

. ∗Similarity between the infinite series of the «circular transcendent 
quantities» (sine and cosine) and the «logarithmic transcendent 
quantities» (hyperbolic sine and cosine). Continued fraction expression of 
some rational expressions of . ex . New irrationality result: 

. x ∈ Q =⇒ ex �∈ Q

. ∗Link between the «logarithmic transcendent quantities» and the hyperbola 
equilateral, in the same way that this link occurs between the «circular 
transcendent quantities» and the circumference. 

. ∗New irrationality results: hyperbolic tangent and natural logarithms. 

. ∗What appears to be an affirmation of the transcendence —no longer in the 
classical sense of the term, but in its modern sense— of the number . e. 
Irrationality results for hyperbolic logarithms. 

. ∗How the concept of «prime tangent» applies equally to the hyperbolic case. 

. ∗One last look at the analogy between «circular transcendent quantities» and 
«logarithmic transcendent quantities». 

• §. 89.–§. 91. (pp. 320–322) 

. ∗First modern differentiation between irrational in terms of algebraic and 
transcendental. 

. ∗Conjecture of the transcendence of the «logarithmic transcendent 
quantities» and the «circular transcendent quantities». 

. ∗Conjecture of the significance of .π and therefore of the impossibility of 
squaring the circle. 
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Chapter 5 
An Annotated Translation of Lambert’s 
Mémoire (1761/1768) 

The way I have proved this [the irrationality of . π ] can be 
extended to the point that circular and logarithmic quantities 
cannot be roots of rational equations. 

—J. H. Lambert, letter to Holland. 

MEMOIRE 

ON 

SOME REMARKABLE PROPERTIES OF 
CIRCULAR AND LOGARITHMIC TRANSCENDENTAL 

QUANTITIES 1

BY M. LAMBERT. 2

§. I. 

Proving that the diameter of the circle is not to its circumference as an integer 
number to an integer number is something that will hardly surprise geometers. We 
know Ludolph’s numbers, the ratios found by Archimedes, by  Metius etc. as well as 

1 Transcendental in the Eulerian-Leibnizian sense, although it will be precisely in this work where 
this term will adquire its modern meaning (§. 89–§. 91). On the other hand, the term. «logarithmic 
quantities. » refers to the hyperbolic ones given the connection between the hyperbola and the loga-
rithmic function (we will stress on this later in this chapter). 
2 . «Read in 1767. 
Mém. of the Acad. Tom. XVII. ». 
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a large number of infinite series, all of which refer to the quadrature of the circle. 
And if the sum of these series is a rational quantity, we must naturally conclude that 
it will be either an integer number or a very simple fraction. Since, if it were a very 
composed fraction, what reason would there be? Why this one and not any other? 3

It is in this way, for example, that the sum of the series 

. 
2

1 · 3 + 2

3 · 5 + 2

5 · 7 + 2

7 · 9 + &c.

3 Based on this premise and on the fact that some of the approximations found for the area of the 
circle, far from being simple, are increasingly complex (. 1114 and. 355452 ), Lambert concludes at the end 
of this point that this area must be an irrational quantity: what reason would there be for this quantity 
to be rational being it such a composed fraction? Although it seems clear that he is intending to draw 
attention to a certain fact that should lead anyone to trust on its irrationality, certainly this. «proof by 
simplicity. » (I take the term from Serfati (2018, p. 180)) seems too vague to be taken seriously. But, 
more surprisingly, in §. 2, although he comments that a problem of this kind as it is the squaring of 
the circle cannot be left to a reasoning of these characteristics,. «there are nevertheless cases in which 
more is not required. ». The mandatory question is: in which cases could a reasoning like this be 
enough? It seems the opposite of what is demanded for a mathematical justification. What is clear is 
that this kind of reasoning must be a reflection of a more or less generalized way of thinking and not 
an isolated case. In fact, this type of proofs by simplicity can be found in the works of other authors 
of the time. For example, in Bullynck (2009, p. 147) Wolfram is said to have falsely assumed. «that 
every root of an equation can be made rational through exponentiation. », which would mean that 
otherwise we would have a transcendental quantity. This could actually be just a new application of 
this principle by simplicity: if.αn

�∈Q for every.n ∈ N, we would be telling that. α is not the root of 
any of the following equations:.xn + q = 0 (that is, it has all the ballots to be transcendental); if it is 
not the root of this type of equations, using this principle, one could conclude that it is not the root 
of any. Euler (1785, p. 8) clearly uses a very similar principle to that used by Lambert, when, after 
showing that.π /= a

√
2 + b

√
3, he concludes that. π cannot be expressed by radicals as follows:. «I 

will not continue these operations further, since if an exact relation were to be given, without doubt it 
would not be so complicated. ». Furthermore, we can find examples that would sound even stranger, 
in which results are established with the help of certain non-mathematical reasoning. The case of 
Leibniz (see Español et al. (2008, pp. 185–186)), someone who by the way influenced Lambert, 
at least through Wolff, is clear when in a letter to the latter he defends the value . 12 as result of the 
operation.1 − 1 + 1 − 1 + 1 − 1 + · · · since: although if, on the one hand, by truncating that sum 
into an even number of addends it yields. 0, and, on the other hand, into an odd number of addends 
it yields . 1, by continuing the sum to infinity the difference between even and odd is blurred, and 
so these two values appears with the same average, and therefore the resultant value of that sum 
should be. 0+1

2 = 1
2 . According to Leibniz: 

Although this kind of argumentation can be seen as more metaphysical than mathematical, 
it is nevertheless firm: and, on the other hand, the use of the rules of true metaphysics (which 
goes beyond the nomenclature of the terms used) in Mathematics, in Analysis, in Geometry 
itself, is more frequent than people think. 

This type of reasoning was also adopted by several of the Bernoullis and criticized by Laplace as 
late as 1812, which shows that it was known and discussed Español et al. (2008, pp. 186–187), 
Klein (1983, pp. 307–308). The surprise that one can fell when reading things like these, reminds 
us better than anything the almost 300 years that separate us from these mathematicians.
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is equal to unity, 4 which of all rational quantities is the simplest. But, alternatively, 
by omitting the terms 2, 4, 6, 8 &c., the sum of the others 

. 
2

1 · 3 + 2

5 · 7 + 2

9 · 11 + 2

13 · 15 + &c.

gives the area of the circle when the diameter is .= 1. 5 It therefore seems that, if this 
sum were rational, it should also be able to be expressed by a very simple fraction, 
such as . 34 or. 

4
5 &c. Indeed, being the diameter .= 1, the radius .= 1

2 , the square of the 
radius .= 1

4 , it is clear that these expressions, being also simple, do not pose an 
obstacle. 6 And since it is about the entire circle, which makes a kind of unity, & not 
just about some Sector, which due to its nature would require very large fractions, 7 it 
is clear that in this respect we should not expect a very composed fraction either. But 
since, after the fraction.

11
14 found by Archimedes, which gives only an approximation, 

we move on to that of Metius, . 355452 , which is not exact either, & in which the numbers 
are considerably larger, we must conclude that the sum of this series, far from being 
equal to a simple fraction, is an irrational quantity. 

§. 2. As vague as this reasoning is, there are nevertheless cases in which nothing 
more is required. But these are not the cases for squaring the circle. Most of those 
who seek it, do so with an ardor which sometimes leads them to cast doubt on the 
most fundamental & well-established truths of geometry. Could it be believed that 
they would be satisfied by what I just said? Something else is needed. And if the 
issue is to demonstrate that, in fact, the diameter is not to the circumference as an 

4 Since: 

. 
2

1 · 3 + 2

3 · 5 + 2

5 · 7 + 2

7 · 9 + · · · =
(
1 − 1

3

)
+

(
1

3
− 1

5

)
+

(
1

5
− 1

7

)
+ · · · = 1

(Serfati 2018, p. 180 note 32). 
5 Leibniz had found in 1673 —and independently J. Gregory and Nilakantha (see Berggren (1997, 
pp. 92, 93, 97 note 4))— from the infinite series for the arctangent, that the area of the circle of 
radius one can be expressed by the series: 

. AC = π

4
= 1 − 1

3
+ 1

5
− 1

7
+ 1

9
− · · ·

Grouping the terms two by two: 

. AC = π

4
=

(
1 − 1

3

)
+

(
1

5
− 1

7

)
+

(
1

9
− 1

11

)
+ · · ·

= 2

1 · 3 + 2

5 · 7 + 2

9 · 11 + 2

13 · 15 + · · ·

we obtain precisely the expression presented by Lambert.
6 They do not pose any obstacle for the value of the area. 14 · π to be a fraction fort simple, because 
. 
1
4 is itself a fraction fort simple; therefore the problem lies with. π . 
7 If  the area of the  circle  were a fraction,  a sector  of  the circle would be a fraction of the  fraction of  
the area, and therefore a fraction fort grand. 
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integer number to an integer number, this demonstration must be as firm as any 
geometric demonstration. And with all this I say again that geometers will not be 
surprised by it. They must have long been used to expecting nothing else. But here 
is what will deserve more attention, & what will be a good part of this Memoir. The 
issue is to show that every time an arc of a circle is commensurable to the radius, the 
tangent of that arc is incommensurable to it; & that conversely, every commensurable 
tangent is not the tangent of a commensurable arc. 8 Here is what to be a little more 
surprised about. This statement would seem to admit an infinity of exceptions, & 
admits none. It remains to be seen to what extent transcendental circular quantities 
are transcendental, & beyond all commensurability. 9 As the demonstration that I am 
going to give requires all the geometric rigor, & in addition it will be a network 
of other theorems, which will demand to be demonstrated with equal rigor, these 
reasons will excuse me when I do not hurry to reach the end, or when on the way I 
stop with whatever is remarkable. 

§. 3. Let then be given any arc of a circle, but commensurable to the radius: & the  
aim is to discover, will this arc of a circle be at the same time commensurable to its 
tangent or not? Let us imagine for this effect a fraction such that its numerator is equal 
to the arc of the proposed circle, & that its denominator is equal to the tangent of this 
arc. It is clear that, whatever the way in which this arc & tangent are expressed, this 
fraction must be equal to another fraction, in which the numerator & the denominator 
will be integers, provided the proposed arc of the circle be commensurable to the 
tangent. It is also clear that this second fraction must be able to be deduced from the 
first, by the same method that one uses in arithmetic to reduce a fraction to its lowest 
denominator. This method is known since Euclid, who uses it in the 2nd prop. of his 
7th book, 10 I will not stop to prove it again. But it should be noted that, while Euclid 
only applies it to integer & rational numbers, will I have to use another method when 
it comes to applying it to quantities of which it is unknown whether they are rational 
or not? Hence, here is the procedure that will suit the case in question. 

§. 4. Let the radius be.= 1, and any given arc of a circle.= v. And we shall have 
the two well-known infinite series 11

8 What he proposes to demonstrate is therefore that: 

.If v ∈ Q ⇒ tan v �∈ Q

9 As Serfati (2018, p. 181) writes, the term. «transcendent. » here. «has no precise technical meaning 
[...]; it simply means that the quantities involved are irrational in an extraordinary way, beyond any 
standard. ». The author makes the same comment in reference to another expression by Lambert 
elsewhere in the text (specifically in §. 81 concerning . e), although in that case —as will be duly 
explained— a modern meaning of the term seems to be already glimpsed. 
10. «Given two numbers not prime to one another, to find their greatest common measure. » Heath II 
(1908, p. 298). 
11 Lambert does not use the modern notation for the factorial of a number to represent successive 
products, which was introduced later, in 1808, by the also Alsatian Cristian Kramp in his Éléments 
d’arithmétique universelle (Elements of universal arithmetic). This is certainly a good example of 
the simplifying power of some notations. 
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. sin v = v − 1

2 · 3v3 + 1

2 · 3 · 4 · 5v5 − 1

2 · 3 · 4 · 5 · 6 · 7v7 + &c.

cos v = 1 − 1

2
v2 + 1

2 · 3 · 4v4 − 1

2 · 3 · 4 · 5 · 6v6 + &c.

Since in what follows I will give two series for the hyperbola which differ from 
these two only in that all the signs are positive, I will postpone proving the law of 
progression of these series until then, & I will only prove it so as not to omit anything 
that is required by geometric rigor. 12 It is enough then to have warned the Readers 
in advance. 

§. 5. Now since 

. tan v = sin v

cos v
,

we shall have, substituting these two series, the fraction 

. tan v =
v − 1

2 · 3v3 + 1

2 · 3 · 4 · 5v5 − &c.

1 − 1

2
v2 + 1

2 · 3 · 4v4 − &c.

I will put for the sake of brevity 

. tan v = A

B
,

in such a way that 

. A = sin v,

B = cos v.

Here is now the procedure that Euclid prescribes. 

§. 6. Let us divide . B by . A; be the quotient .= Q', the residue .= R'. 
Let us divide . A by . R'; be the quotient .= Q'', the residue .= R''. 
Let us divide .R' by .R''; be the quotient .= Q''', the residue .= R'''. 
Let us divide .R'' by .R'''; be the quotient .= QI V , the residue .= RI V . &c., so that by 
continuing these divisions, we find successively

12 He refers to the series expansion for the hyperbolic sine and cosine obtained in this very work. 
The similarity between both expressions, along with other considerations, leads him to wonder 
about the underlying connection between them, something that, as he himself says (§. 74), had 
previously been noted by Mr. de Foncenex (1759). This connection resides in the fact that in the same 
way that circular trigonometric functions parameterize the circumference, hyperbolic trigonometric 
functions parameterize the equilateral hyperbola. Lambert seeks for the functions that parameterize 
the hyperbola obtaining the hyperbolic cosine and sine (see Barnett (2004) for more details). 
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. the quotients Q', Q'', Q'''. . . . . . . Qn, Qn+1, Qn+2. . . .&c.

the residues R', R'', R'''. . . . . . . Rn, Rn+1, Rn+2. . . .&c.

& it goes without saying that the exponents .n, n + 1, n + 2&c. are only used to 
indicate the quotient or residue with which are indicated. 13 With this as a basis, here 
is what we seek to prove. 

§. 7. First of all, not only that the division can be continued forever, but that the 
quotients will follow a very simple law that yields 

. Q' = +1 : v,

Q'' = −3 : v,

Q''' = +5 : v,

QI V = −7 : v, &c.

& in general 
. Qn = ± (2n − 1) : v,

where the sign + is for the even . n exponent, 14 the sign . − is for the odd . n exponent, 15

& that in this way we will have for the tangent expressed by means of the arc the 
very simple continued fraction 

. tan v = 1

1 : v − 1

3 : v − 1

5 : v − 1

7 : v − 1

9 : v − &c.

13 These divisions will finally lead to a continued fraction expansion for the tangent: 

. 
A

B
= 1

B

A

= 1

Q' + R'

A

= 1

Q' + 1

A

R'

= 1

Q' + 1

Q'' + R''

R'

= 1

Q' + 1

Q'' + 1

R'

R''

= · · ·

Note that the first systematic study of continued fractions was undertaken by Euler in 1737 in Euler 
(1744) (written in 1737 and published in 1744 in the Proceedings of the National Academy of 
St. Perershurg), so the tools that Lambert skillfully uses are very novel.
14 See the note by A.S. in Appendix C. 
15 See the note by A.S. in Appendix C. Let us advance that there is a clear error at this point: the 
sign.+ corresponds to the odd exponent, and the sign.− to the even exponent. 
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§. 8. Second, 16 that the residue.R', R'', R''' &c.will be expressed by the following 
series, where the laws of progression are also very simple: 

. R' = − 2

2 · 3v2 + 4

2 · 3 · 4 · 5v4 − 6

2 · 3 · 4 · 5 · 6 · 7v6 + &c.

R'' = − 2 · 4
2 · 3 · 4 · 5v3 + 4 · 6

2 · 3 · 4 · 5 · 6 · 7v5 − 6 · 8
2 · 3 · 4 · 5 · 6 · 7 · 8 · 9v7 + &c.

R''' = +2 · 4 · 6
2 · · · ·7v4 − 4 · 6 · 8

2 · · · · · ·9v6 + 6 · 8 · 10
2 · · · · · 11v8 − &c.

RI V = +2 · 4 · 6 · 8
2 · · · ·9 v5 − 4 · 6 · 8 · 10

2 · · · · · ·11 v7 + 6 · 8 · 10 · 12
2 · · · · · 13 v9 − &c.

&c.

so that the signs of the first terms will change following the quaternary order . − −
++, &  that in general we shall have 

16 See the note by A.S. in Appendix C. Note the following observation about the general expressions 
for the residues, which Lambert includes at this point. Take for example the expression for.±Rn : 

. ± Rn = − 2n(1 · 2 · · · ·n)

1 · 2 · · · (2n + 1)
vn+1 + 2n+1(1 · 2 · · · ·(n + 1))

1 · 2 · · · · · ·(2n + 3)
vn+3 − &c.

To begin with, one might think, taking into account the . « &c.. », that the successive products that 
appear in the numerators would follow the sequence.n!, (n + 1)!, (n + 2)!, (n + 3)!, . . . , but this 
is not the case. If one analyzes the numerators of the first three addends in the terms.R', R'' y R''': 

. 

First addend Second addend Third addend

R' 2 = 21 · 1! 4 = 21 · 2! 6 = 21 · 3

R'' 2 · 4 = 22 · 2! 4 · 6 = 22 · 3! 6 · 8 = 22 · (3 · 4)

R''' 2 · 4 · 6 = 23 · 3! 4 · 6 · 8 = 23 · 4! 6 · 8 · 10 = 23 · (3 · 4 · 5)

one sees that from the third column onwards the factorials no longer appear, since the multiplicands 
are reduced at each step, something that also happens in the second column where what is removed 
is the factor . 1 and this does not affect multiplicatively (here therefore the . «&c.. » might be a little 
bit misleading); this is also revealed later in the text. It should also be noted that if one gives. n the 
value. 1, the resulting expression,. R', does not match the one given by Lambert. This is because the 
powers of. 2 should not change their exponent when changing the addend; that is, they should be: 

. ± Rn = − 2n(1 · 2 · · · ·n)

1 · 2 · · · (2n + 1)
vn+1 + 2n(1 · 2 · · · ·(n + 1))

1 · 2 · · · · · ·(2n + 3)
vn+3 − &c.

±Rn+1 = −2n+1(1 · 2 · · · (n + 1))

1 · 2 · · · · · (2n + 3)
vn+2 + 2n+1(1 · 2 · ·(n + 2))

1 · 2 · · · · · (2n + 5)
vn+4 − &c.

∓Rn+2 = +2n+2(1 · 2 · · · (n + 2))

1 · 2 · · · · · (2n + 5)
vn+3 − 2n+2(1 · 2 · · · (n + 3))

1 · 2 · · · · · (2n + 7)
vn+5 + &c.
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. ±Rn = − 2n(1 · 2 · · · ·n)

1 · 2 · · · (2n + 1)
vn+1 + 2n+1(1 · 2 · · · ·(n + 1))

1 · 2 · · · · · ·(2n + 3)
vn+3 − &c.

±Rn+1 = −2n+1(1 · 2 · · · (n + 1))

1 · 2 · · · · · (2n + 3)
vn+2 + 2n+2(1 · 2 · ·(n + 2))

1 · 2 · · · · · (2n + 5)
vn+4 − &c.

∓Rn+2 = +2n+1(1 · 2 · · · (n + 2))

1 · 2 · · · · · (2n + 5)
vn+3 2

n+3(1 · 2 · · · (n + 3)

1 · 2 · · · · · (2n + 7)
vn+5 + &c.

§. 9. Now, in order to give all the possible brevity to the demonstration of these 
theorems, 17 let us consider that each residue.Rn+2 is found by dividing the antepenul-
timate .Rn by the residue .Rn+1, which immediately precedes it. This consideration 
makes possible to divide the proof into two parts. In the first we shall see that; if 
two residues .Rn, Rn+1, which follow each other immediately, have the form that I 
have given to them, the residue .Rn+2, which immediately follows, will have the same 
form. Once this has been proven, all that remains is to show, in the second part of the 
proof, that the form of the first two residues is that which they should have. Since, in 
this way, it is evident that the form of all the following is established as by itself. 18

§, 10. Let us then start by dividing the first term of the residue .Rn by the first 
term of the residue .Rn+1, so as to obtain the quotient 19

. Qn+2 = 2n(1 · 2 · 3 · · · ·n)

1 · 2 · 3 · · · (2n + 1)
vn+1 : 2

n+1(1 · 2 · 3 · · · (n + 1))

1 · 2 · 3 · · · · · (2n + 3)
vn+2

= 1 : 2(n + 1)v

(2n + 2) · (2n + 3)
= (2n + 3) : v.

And it is clear that, the residue .Rn+1 being multiplied by this quotient 

. Qn+2 = (2n + 3) : v,

& the product being subtracted from the residue.Rn , the residue.Rn+2 must remain. 20

§. 11. But in order not to have to do this operation for each term separately & 
thereby restrict ourselves to a simple induction, let us take the general term of each 
series that express the residues .Rn, Rn+1, Rn+2, so that by taking the .m-th term of

17 He will give the proof of these theorems in §. 10., §. 11., §. 12. y §. 13. 
18 What he will do, therefore, is to use the induction method, a method that will be very present 
throughout this work (Lambert first verifies the induction step, and then the base case). 
19 Since .Rn and .Rn+1, which is what we start from, are respectively the dividend and divisor in 
the.n-th step, in order to obtain the residue.Rn+2 we must first to find the quotient.Qn+2, which  is  
found, as in any other division between polynomials, by dividing dividend and divisor. What this 
reveals, as Lambert will comment in §. 14, is that the demonstration by induction of the expressions 
for the residues, already provides the demonstration of the expressions for the quotients. 
20 Due to the fact that.Rn+2 = Rn − Rn+1 · Qn+2, as in any division. Lambert will now prove that 
by doing this operation (term by term) we effectively obtain the expected expression for.Rn+2. 
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the residues.Rn, Rn+1,we shall have the.(m − 1)-th term of the residue 21 .Rn+2. This  
having been noted, the terms will be 22

. ± rn = −2n+m−1(m · (m + 1) · (m + 2) · · · ·(n + m − 1)vn+2m−1

1 · 2 · 3 · 4 · · · · · ·(2n + 2m − 1)

±rn+1 = −2n+m · (m · (m + 1)(m + 2) · · · · · (n + m)vn+2m

1 · 2 · 3 · 4 · · · · · (2n + 2m + 1)

±rn+2 = −2n+m · ((m − 1) · m · (m + 1) · · · · · (n + m) · vn+2m−1

1 · 2 · 3 · 4 · · · · · (2n + m + 1)

Now, since it must be 

21 This is because when dividing the first term by the first term —pay attention for example to the 
beginning of the division when dividing.cos v by.sin v searching for the first quotient.Q' and the first 
residue.R'— no residue is generated, but rather the quotient is obtained directly (. 1

v
in this case): 

. B = cos v = 1 − v2

2! + v4

4! − v6

6! + · · · ± vm

m! ∓ · · ·

. A = sin v = v − v3

3! + v5

5! − v7

7! + · · · ± vm+1

(m + 1)! ∓ · · ·

When dividing the second term by the second term, we do obtain a residue which would in fact be 
the beginning of the series.R', that is to say, the first addend or term (let us put.R'

1): 

. R'
1 = −v2

2! − 1

v
· −v3

3! = −2v2

3!
When dividing the third by the third, a residue is also generated, in this case the second addend of 
the series: 

. R'
2 = v4

4! − 1

v
· v5

5! = 4v4

5!
and so on. 
22 See the note by A.S. in Appendix C. In addition to some errors in the omission of parentheses 
and in the last multiplicand of the denominator of the last expression, it should be noted again that 
the exponents should not vary as a function of . m. Bearing that in mind, the expressions should be 
written as follows: 

. ± rn = −2n(m · (m + 1) · (m + 2) · · · ·(n + m − 1))vn+2m−1

1 · 2 · 3 · 4 · · · · · ·(2n + 2m − 1)

±rn+1 = −2n+1 · (m · (m + 1)(m + 2) · · · · · (n + m))vn+2m

1 · 2 · 3 · 4 · · · · · (2n + 2m + 1)

±rn+2 = −2n+2 · ((m − 1) · m · (m + 1) · · · · · (n + m)) · vn+2m−1

1 · 2 · 3 · 4 · · · · · (2n + 2m + 1)
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. rn − rn+1 · (2n + 3) : v = rn+2,

& that in fact it is 23

. rn − rn+1(2n + 3) : v = −2n+m−1 · (m · · · ·(n + m − 1)vn+2m−1

1 · 2 · 3 · · · · · ·(2n + 2m − 1)

+ 2n+m(m · · · ·(n + m)vn+2m

1 · 2 · 3 · · · · · (2n + 2m + 1)
· 2n + 3

v

. = 2n+m−1 · (m · · · (n + m − 1))

1 · 2 · · · ·(2m + 2m − 2)
vn+2m−1 · (−1 + 2 · (n + m) · (2n + 3)

(2n + 2m) · (2n + 2m + 1)

. = −2n+m−1(m · · · (n + m − 1))

1 · 2 · · · ·(2n + 2m − 2)
vn+2m−1 · (2m − 2) · (2n + 2m)

(2n + 2m) · (2n + m + 1)

. = −2n+m · ((m − 1) · m(m + 1) · · · · · (n + m)vn+2m−1

1 · 2 · 3 · · · · · ·(2n + m + 1)
,

23 Again we must take into account the problem in the powers of two, in addition to several misprints. 
Once this has been corrected, the result would be: 

. rn − rn+1 · (2n + 3) = rn+2 = −2n · (m · · · ·(n + m − 1))vn+2m−1

1 · 2 · 3 · · · · · (2n + 2m − 1)

+ 2n+1(m · · · ·(n + m))vn+2m

1 · 2 · 3 · · · · · (2n + 2m + 1)
· 2n + 3

v

. = 2n · (m · · · (n + m − 1))

1 · 2 · · · ·(2n + 2m − 1)
vn+2m−1 · (−1 + 2 · (n + m) · (2n + 3)

(2n + 2m) · (2n + 2m + 1)
)

. = − 2n(m · · · (n + m − 1))

1 · 2 · · · ·(2n + 2m − 1)
vn+2m−1 · (2m − 2) · (2n + 2m)

(2n + 2m) · (2n + 2m + 1)

.= −2n+2 · ((m − 1) · m(m + 1) · · · · · (n + m))vn+2m−1

1 · 2 · 3 · · · · · ·(2n + 2m + 1)
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& hence 

. = ±rn+2.

We see that, having the residues .Rn, Rn+1 the form that I have given to them, the 
residue.Rn+2 will have the same form. Therefore, it will only be a question of ascer-
taining the form of the first two residues.R', R'', so as to establish what this first part 
of our proof had admitted as true in the form of hypothesis. And this is what will be 
the second part of the demonstration. 

§. 12. Let us remember for this purpose that the first residue .R' is the one that 
remains when dividing 

. cos v = 1 − 1

2
v2 + 1

2 · 3 · 4v4 · · · 1

1 · · · m
vm · · · ·&c.

by 

. sin v = v − 1

2 · 3v3 + 1

2 · 3 · 4 · 5v5 · · · 1

1 · ·(m + 1)
vm+1 · · · ·&c.

Now, being the quotient that results from the division of the first term .= 1 : v, we  
see that we shall have 

. R' = cos v − 1

v
· sin v.

Therefore, multiplying the general term of the divisor, 

. ± 1

1 · 2 · · · ·(m + 1)
vm+1,

by .1 : v, & subtracting the product 

. ± 1

1 · 2 · · · ·(m + 1)
· vm,

from the general term of the dividend 

. ± 1

1 · 2 · · · · · m
· vm,

we shall have the general term of the first residue . R'

.r ' = ± m · vm

1 · · · · · (m + 1)
·
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Now, .(m + 1) being always an odd number, .m will be an even number, & the first 
residue will be 24

. R' = − 2

2 · 3v2 + 4

2 · 3 · 4 · 5v4 − 6

2 · · · ·7v6 + &c.

just as we had assumed. 

§. 13. The second residue .R'' results from the division of 

. sin v = v − 1

2 · 3v3 + 1

2 · 3 · 4 · 5v5 − &c. · · · ± 1

1 · 2 · · · (m − 1)
vm−1

by the first residue that we just found 25

. R' = − 2

2 · 3v2 + 4

2 · 3 · 4 · 5v4 − 6

2 · · · ·7v7 + · · · ∓ mvm

1 · · · (m + 1)

Now, being the quotient that results from the division of the first term.= −3 : v, we  
see that we shall have 

. R'' = sin v − 3

v
· R'.

Multiplying therefore the general term of the divisor 

. ∓ mvm

1 · · · · · (m + 1)
,

by .−3 : v, & subtracting the product 

. ± 3mvm−1

1 · · · · · (m + 1)
,

from the general term of the dividend 

24 Note that in the series expansion for .sin v, .(m + 1) takes the values.1, 3, 5 . . . , and so.m would 
take the values.0, 2, 4 . . . That makes the alternation in the signs that Lambert gives to. r ' to coincide 
with the one it actually has (. ∓) because the first addend of.R' is zero: 

. R' = +0 − 2

2 · 3v2 + 4

2 · 3 · 4 · 5v4 − 6

2 · · · ·7v6 + &c.

25 There is an error in the third addend, as the expression should be written as follows: 

.R' = − 2

2 · 3v2 + 4

2 · 3 · 4 · 5v4 − 6

2 · · · ·7v6 + · · · ∓ mvm

1 · · · (m + 1)
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. ± 1

1 · · · · · (m − 1)
vm−1,

the general term of the second residue will be 

. r '' = ± vm−1

1 · · · · · (m − 1)
∓ 3mvm−1

1 · · · ·(m + 1)

= ± (m − 2) · m · vm−1

1 · · · ·(m + 1)
.

Substituting then for .m the even numbers, 26 we shall have the second residue 

. R'' = − 2 · 4
2 · 3 · 4 · 5v3 + 4 · 6

2 · · · 7v5 − 6 · 8
2 · · · 9v7 + &c.

again as we had assumed. Thus, having proved the form of the first two residues, 
it follows, by virtue of the first part of our proof, that the form of all the following 
residues is also proven. 

§. 14. Now it is no longer necessary to prove separately the law of the progression 
of the quotients.Q', Q'', Q'''&c. Because having demonstrated the law of the residues, 
it is by the same demonstration that any quotient will be (§. 10) 

. ± Qn+2 = (2n + 3) : v,

which, by virtue of the theory of continued fractions, gives 

. tan v = 1

1 : v − 1

3 : v − 1

5 : v − 1

7 : v − 1

9 : v − 1

11 : v − 1 &c.

from which we see in turn that whenever the arc . v is equal to an aliquot part of 
the radius, all these quotients will be increasing integer numbers in an arithmetic 
progression. 

And this is what we should note, since in the Euclid’s theorem cited above (§. 3) 
all quotients are assumed to be integer numbers. Thus, up to this point, the method 
prescribed by Euclid will be applicable to all these cases, in which the arc . v is an

26 Pay attention to the series expansion for.R'. 
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aliquot part of the radius. But, even in these cases, there is another circumstance that 
should be stressed. 27

§. 15. The problem proposed by Euclid is to find the greatest common divisor of 
two integer numbers, which are not prime to each other. This problem is solvable as 
long as one of the residues.R', R'', R''' &c. . . . Rn becomes.= 0, the preceding residue 
.Rn−1 not being equal to the unit, which following the 1st Prop. of the same book only 
occurs when the two proposed numbers are prime to each other, well understood that 
all quotients .Q', Q'', Q''' &c. are assumed to be integer numbers. But we have just 
seen that this last supposition holds in the case at hand, provided. 

1
v
is an integer. But, 

as for the residues.R', R'', R''' &c. there is none that becomes.= 0. On the contrary, 
considering the law of progression of the residues that we have just found, it is 
seen that they not only decrease without interruption, but also decrease faster than 
any geometric progression. 28 Although this continues to infinity, we can nevertheless 
apply theEuclid’s proposition to it. Because, by virtue of this proposition, the greatest 
common divisor of .A, B is at the same time the greatest common divisor of all 
residues .R, R', R'' &c. Now since these residues decrease in such a way that they 
ultimately become smaller than any assignable quantity, consequently the greatest 
common divisor of .A, B, is smaller than any assignable quantity; which means that 
there is none, & therefore, .A, B being two incommensurable quantities, the 

. tan v = A

B

will be an irrational quantity every time the arc v is an aliquot part of the radius.

27 In summary, this continued fraction will be within the conditions imposed by Euclid’s algorithm 
as long as these quotients are integer numbers. In the next point, he applies this algorithm to these 
cases: since the residues never become zero, those divisions that aim to find the greatest common 
divisor never bring to an end. Furthermore, since the quotients are integers, we can conclude by 
applying the algorithm that the tangent will be an irrational number. 
28 This comparison with geometric progressions, which he will continue to emphasize, will be 
among Lambert’s main supports to conclude the irrationality of his continued fraction (we will go 
into more detail about this later in this chapter). 
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§. 16. This is therefore, the limited use that can be made of the proposition of 
Euclid. It is now a question of extending it to all the cases in which the arc . v is 
commensurable to the radius. For this purpose, & in order to prove still some other 
theorems, 29 I am going to take up once again the continued fraction 

. tan v = 1

1 : v − 1

3 : v − 1

5 : v − 1

7 : v − 1&c.

& making .1 : v = w, I will transform it into 

. tan v = 1

w − 1

3w − 1

5w − 1

7w − 1&c.

§. 17. Now, retaining the quotients .w, 3w, 5w&c. as much as we wish, we shall 
only have to do the reduction to obtain fractions that will express the tangent of v 

29 Indeed, the next step is to extend the proof to all the values of the arc, but first Lambert demon-
strates the convergence of this continued fraction (§. 17–§. 30), a rigurous approach that, at first 
glance, would fit better in the 19th century, a time when the worry about foundations were by far 
more intense. Nevertheless, it is known that foundational issues also worried to eighteenth-century 
mathematicians. Schubring in Schubring (2005, p. 285) draws attention to this: 

It is a widespread opinion to think of eighteenth-century mathematics as unconcerned with 
the foundations and as interested only in the further development of analysis [...] the math-
ematicians were, in contrast, very anxious to clarify basic concepts. 

Topics such as infinitesimals, negative numbers or infinite series were widely discussed and studied, 
and it is likely that in this case Lambert was influenced by his context. Specifically (see Español 
et al. (2008)), there was a debate around the summability of divergent series in which Leibniz’s 
series played an important role. The value. 12 for this series had been calculated analytically through 
the following formula: 

.
1

1 + x
= 1 − x + x2 − x3 + · · ·
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the more exactly the greater the number of quotients we have retained. 30 It is so e.g. 
that retaining .1, 2, 3, 4 &c. quotients, we find the fractions 

(Footnote 29 continued) 
by putting .x = 1, but there were doubts as to whether the same series could be obtained through 
other finite expressions. Eventually, it was found that it could be obtained through the expression: 

. 
1 + x

1 + x + x2
= 1 − t2 + t3 − t5 + t6 − t8 + · · ·

for.x = 1, which would yield the value. 23 . This would imply that: 

. 
1

2
= 1 − 1 + 1 − 1 + 1 − 1 + · · · = 2

3

Perhaps Lambert was aware of this and wanted to avoid criticism, ensuring that his infinite expression 
—now a continued fraction instead of a series— effectively came from a single expression, namely, 
.
sin v
cos v

. Or maybe, more generally, his intention was to give his proof . «all the geometric rigor. » by 
retracing his steps (synthesis) to make it absolutely clear that the analytical development (analysis) 
was the correct one. (Serfati (1992, pp. 72–75) presents this part by means of such a dichotomy; it 
is interesting in this regard to consult (Mahoney 2000, pp. 739–740)). In any case, there is evidence 
that Lambert did indeed have knowledge about these disputes, and what is more interesting, about 
the case of continued fractions. In a letter sent to Euler on July 12, 1762, he writes (Bopp 1924, 
p. 28): 

For the same reason I did not take any part in a dispute, which the Academicians residing in 
Munich have considered appropriate to start with the Jesuit F[athers]. In this year’s academic 
almanac, where I have given a popular idea of celestial movements, you will find a table of 
longitudes & latitudes of the Bavarian villages, and the calculation of finding approximately 
their distances. Since this calculation requires the extraction of the square root, I thought 
to please most readers by changing this extraction for two rules of three. The formula 

.
√

a2 + b2 = a + bb

2a + bb

2a + bb

2a + &c.

reveals all the mystery, which is not new. However, 

it is precisely about what the dispute resides, since the demonstration is demanded. 

One would expect to find more references to continued fractions in this correspondence, given that 
Euler was one of the first to work on them systematically and that Lambert recognizes in Lambert 
(1766/1770, p. 162) that the motivation for the search for expressions in the form of a continuous 
fraction came precisely from Euler, and more specifically from his Analysis infinitorum, inwhich  the  
expression as continued fraction for. e−1

2 is included as an example Euler (1744, p. 325 Example III). 
However, the rest of the correspondence deals with physics. Be that as it may, it is still remarkable 
that Lambert devoted part of the proof to a convergence problem, something that others did not 
do (e.g., Euler in Euler (1744) or Legendre in Legendre I (1794), as mentioned by Baltus (2003, 
p. 10)). 
30 Proving that said continued fraction converges to.tan v will consist of, given an arc. v, showing that 
the sequence of fractions obtained by truncating this infinite expansion (the so-called convergents: 
.

pn
qn

, n ≥ 1): 

.
1

w
,

1

w − 1

3w

,
1

w − 1

3w − 1

5w

, · · ·



5 An Annotated Translation of Lambert’s Mémoire (1761/1768) 97

. 
1

w
,

3w

3w2 − 1
,

15w2 − 1

15w3 − 6w
,

105w3 − 10w

105w4 − 45w2 + 1
,

§. 18. But, in order to make all these reductions in order, & to demonstrate at 
the same time the law of progression that these fractions obey, we shall put first 

. tan v = 1

w − a
= 1

w − 1

3w − a'

= 1

w − 1

3w − 1

5w − a''

= &c.

expressing by.a, a', a'', a'''....an, an+1, an+2....&c. the quantities that result from the 
quotients that we want to omit, so that in order to omit them we shall only have to 
put .a, a', a'', ....an &c. = 0. 

§. 19. Now I say that making.an+1 = 0, the fraction that results from the reduction 
of the quotients that we retain will have the form 31

. tan v = A − man

B − pan
,

in which .m, n, A, B are not affected by . an . 32 Let us first suppose this form to be 
true, & it will be proved without difficulty that by retaining one more quotient, the 
fraction resulting from the reduction will have the same form. Since 33

converges to .tan v. As an example, Lambert shows the expressions for the first four. On the other 
hand, his strategy will be to look for the law of recurrence for these fractions (§. 18–§. 22), whereupon 
he will find the general term dependent only on . n. This will allow him to calculate the limit 
(§. 23–§. 28). 
31 Note that here, as will become clear later,. A and. B do not represent the sine and cosine, but serve 
as symbols. On the other hand, making an abuse of language, Lambert writes an equality, but it is 
not, since the term on the right represents the.(n + 2)-th convergent: if.a' = 0, the formula expresses 
the .2-th convergent as a function of . a; if  .a'' = 0, the formula expresses the .3-th convergent as a 
function of. a'; in general, if.an+1 = 0, the formula expresses the.(n + 2)-th convergent as a function 
of.an (the first convergent will be obtained by putting.a = 0). 
32 As the reader will have noticed, the former group of four numbers should run as follows: 
.m, p, A, B. 
33 See the note by A.S. in Appendix C. Here again there is a problem with indices: we just have to 
give some values to. n in order to see that .an does not match the expressions shown in the formula 
in section §. 18. In order to get a coincidence, the alluded expressions should be written like this: 

. tan v = 1

w − a' = 1

w − 1

3w − a''

= 1

w − 1

3w − 1

5w − a'''

= &c.

The only change introduced would be that:
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. an = 1

(2n + 1)w − an+1
,

we shall only have to substitute this value in the proposed form, & it will become 34

. tan v = A(2n + 1)w − m − A · an+1

B(2n + 1)w − m − B · an+1
,

Since this form is the same, 35 it will suffice to show that it will be true for the member 
. a', since then it will be true for all the following members .a'', a''', aI V ... ,&c. Now, 
for member .a' we have 

. tan v = 1

w − 1

3w − a'

which by doing the reduction gives 

. tan v = 3w − a'

3w2 − 1 − wa' ,

. If a'' = 0, said formula expresses the 2-th convergent as a function of a'

. If a''' = 0, said formula expresses the 3-th convergent as a function of a''

. · · ·
. If an+1 = 0, said formula expresses the (n+1)-th convergent as a function of an

(the first convergent is obtained by putting.a' = 0). 
34 There is an error in the denominator. The expression should be written as follows: 

. tan v = A(2n + 1)w − m − A · an+1

B(2n + 1)w − p − B · an+1 ,

35 Note that: 

. 
A(2n + 1)w − m − A · an+1

B(2n + 1)w − p − B · an+1 = [A(2n + 1)w − m] − A · an+1

[B(2n + 1)w − p] − B · an+1

≡ A − m · an+1

B − p · an+1

This expression would be the one corresponding to.an+2 = 0.
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the form as we had supposed it. 36

§. 20. Having then found 37

. tan v = A − man

B − pan

. tan v = A(2n + 1)w − m − A · an+1

B(2n + 1)w − m − B · an+1
,

we again substitute .an+1 for its value 

. an+1 = 1

(2n + 3)w − an+2
,

& we shall have 38

. tan v =
[
A(2n + 1)w − m

] · (2n + 3w) − A − [
A(2n + 1)w − m

] · an+2[
B(2n + 1)w − p

] · (2n + 3w) − B − [
B(2n + 1)w − p

] · an+2

§. 21. Therefore, by putting in each of these three values of .tan v, equal to zero 
the members .an, an+1, an+2, we shall have the general form of the fractions that we 
try to find. 39

36 Because: 

. 
3w − a'

3w2 − 1 − wa' = 3w − 1 · a'

(3w2 − 1) − w · a' ≡ A − m · a'

B − p · a'

This expression would be the one corresponding to.a'' = 0. 
37 The same error in the denominator of the second expression. It should be: 

. tan v = A(2n + 1)w − m − A · an+1

B(2n + 1)w − p − B · an+1

38 The expression should be written as follows: 

. tan v =
[
A(2n + 1)w − m

] · (2n + 3)w − A − [
A(2n + 1)w − m

] · an+2[
B(2n + 1)w − p

] · (2n + 3)w − B − [
B(2n + 1)w − p

] · an+2

39 They would correspond respectively to the.(n + 1)-th,.(n + 2)-th and.(n + 3)-th convergent (with 
the small change mentioned above, those fractions would represent respectively the.n-th,.(n + 1)-th 
and.(n + 2)-th convergent). 
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. 

A

B
,

A(2n + 1)w − m

B(2n + 1)w − p
,

[
A(2n + 1)w − m

] · (2n + 3)w − A[
B(2n + 1)w − p

] · (2n + 3)w − B
.

These three fractions resulting from the omission of .an, an+1, an+2 are consecutive, 
& we easily see that the third is found by the two preceding ones, so that its numerator 
& its denominator can be calculated separately. Since the numerator of the second 
fraction must be multiplied by the quotient corresponding to.an+1, & from the product 
it is subtracted the numerator of the first fraction. The remainder will be the numerator 
of the third fraction. Its denominator is found in the same way by the denominators 
of the two preceding fractions. 

§. 22. To now obtain the fractions themselves, 40 we shall only have to write the 
quotients in three columns with the numerators & the denominators of the first two 
fractions (§. 17), & the following numerators & denominators will be found by the 
simple operation that we have just indicated. Here is the model 

Quotientes numerators denominators 
1. · · · · · . w

.5w .3w · · · · . 3w2 − 1

.7w .15w2 − 1 · · · . 15w3 − 6w

.9w .105w3 − 10w · · . 105w4 − 45w2 + 1
.11w .945w4 − 105w2 + 1 . 945w5 − 420w3 + 15w
& c. . 10395w5 − 1260w3 + 21w . 10395w6 − 4725w4 + 210w2 − 1

& c. & c.  

Which gives the fractions 

. 
1

w
,

3w

3w2 − 1
,

15w2 − 1

15w3 − 6w
,

105w3 − 10w

105w4 − 45w2 + 1
&c.

each of which expresses more exactly the tangent of . v than those that precede it. 41

§. 23. Now, despite the fact that by means of the rule that we have just given 
(§. 21), each one of these fractions can be found by the two that immediately precede 
it, it will be convenient, to avoid here again a kind of induction, to provide & prove 
the general expression. Let us begin first of all by noting that the coefficients of each

40 He refers to the non-recurring general expression for the succession, that is to say, that expression 
dependent only on the position of the fraction in the sequence (. n). This is what he will search for 
in §. 22–§. 28. 
41 This is precisely what he will prove. 
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vertical column follow a very simple law in which their factors are in part figurative 
numbers & in part odd numbers. Here they are determined 

Fraction Quotient Denominator 
1.a . w

2.a .5w . 3 · w2 − 1 · 1
3.a .7w . 3 · 5 · w3 − 2 · 3w
4.a .9w . 3 · 5 · 7w4 − 3 · 3 · 5w2 + 1 · 1
5.a .11w . 3 · ·9w5 − 4 · 3 · 5 · 7w3 + 3 · 5w
6.a .13w . 3 · · · 11w6 − 5 · 3 · ·9w4 + 6 · 5 · 7w2 − 1 · 1
7.a .15w . 3 · · · ·13w7 − 6 · 3 · · · 11w5 + 10 · 5 · 7 · 9w3 − 4 · 7w
& c. & c. &c. 

Fraction Quotient Numerator 
1.a . 1
2.a .5w . 3w
3.a .7w . 3 · 5w2 − 1 · 1
4.a .9w . 3 · 5 · 7w3 − 2 · 5w
5.a .11w . 3 · ·9w4 − 3 · 5 · 7w2 + 1 · 1
6.a .13w . 3 · · · 11w5 − 4 · 5 · 7 · 9w3 + 3 · 7w
7.a .15w . 3 · · · ·13w7 − 5 · 5 · ·11w4 + 6 · 7 · 9w2 − 1 · 1
& c. & c. &c. 

§. 24. This observation gives us the means to find the general expression 42 for 
any of these fractions. Consider the .n-th of these fractions, & we shall have its 

42 If we look at the expressions for the denominators (similar reasoning for the numerators), we see 
that: 
1. The first factor of all of them is a product of odd numbers starting with 1, followed by a power 

of. w: 

. 1 · w, 1 · 3 · w2, 1 · 3 · 5 · w3, 1 · 3 · 5 · 7 · w4, . . . [1 · 3 · 5 · 7 · · · · · (2k − 1)] · wk

the general expression of which is (.k = n): 

. [1 · 3 · 5 · 7 · · · · · (2n − 1)] · wn

2. In the second factors what we have is the sequence of natural numbers (with general term: 
.k, k ≥ 1), followed by products of odd numbers starting with 1, and a power of. w: 

. 2 · 1 · 3 · w, 3 · 1 · 3 · 5 · w2, 4 · 1 · 3 · 5 · 7 · w3, . . .

giving rise to: 

. [(k + 1) · 1 · 3 · 5 · 7 · · · · · ·(2k + 1)] · wk = [2(k + 1) · 1 · 3 · 5 · 7 · · · · · ·(2k + 1)] · wk

2

and therefore (.k = n − 2): 

. [(2n − 2) · 1 · 3 · 5 · 7 · · · · · ·(2n − 3)] · wn−2

2

3. In the third factors it appears the sequence (1 does not count multiply).3, 6, 10, . . . (with general 
term.

(k+2)(k+1)
2 , k ≥ 1), followed by products of odd numbers starting with 1 (omiting 3), and 

a power  of. w: 
.3 · 1 · 5 · w, 6 · 1 · 5 · 7 · w2, 10 · 1 · 5 · 7 · 9 · w3, . . .



102 5 An Annotated Translation of Lambert’s Mémoire (1761/1768)

Denominator 

. = wn [1 · 3 · 5 · 7 · · · · · (2n − 1)] − wn−2

2
· [(2n − 2) · 1 · 3 · 5 · 7 · · · · · ·(2n − 3)]

+ wn−4

2 · 3 · 4 · [(2n − 4) · (2n − 6) · 1 · 3 · 5 · · · · · (2n − 5)]

− wn−6

2 · 3 · 4 · 5 · 6 · [(2n − 6) · (2n − 8) · (2n − 10) · 1 · 3 · 5 · · · (2n − 7)]

+ wn−8

2 · 3 · 4 · 5 · 6 · 7 · 8 · [(2n − 8) · (2n − 10)(2n − 12)(2n − 14) · 1 · 3 · 5 · 7 · · · ·(2n − 9)]

− &c.

Numerator 

. = wn−1 · [1 · 3 · 5 · 7 · · · · · (2n − 1)] − wn−3

2 · 3 · [(2n − 4) · 1 · 3 · 5 · 7 · · · · · ·(2n − 3)]

+ wn−5

2 · 3 · 4 · 5 · [(2n − 6)(2n − 8) · 1 · 3 · 5 · 7 · · · · · · · (2n − 5)]

− wn−7

2 · 3 · 4 · 5 · 6 · 7 [(2n − 8) · (2n − 10)(2n − 12) · 1 · 3 · 5 · 7 · · · · · (2n − 7)]

+ wn−9

2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · [(2n − 10) · (2n − 12) · (2n − 14) · (2n − 16) · 1 · 3 · 5 · 7 · · · ·(2n − 9)]

− &c.

The issue therefore is nothing but to demonstrate the universality. 

§. 25. This is what will be achieved by admitting this form for the .n-th fraction, 
from where, substituting 43 .(n − 1), (n − 2) in the place of. n, those for the.(n − 1)-th 

which gives rise to: 

. [(k + 2) · (k + 1) · 1 · 5 · 7 · 9 · · · · · ·(2k + 3)] · wk

2
= [(2k + 4) · (2k + 2) · 1 · 3 · 5 · 7 · · · · · ·(2k + 3)] · wk

2 · 3 · 4
and therefore (.k = n − 4): 

. [(2n − 4) · (2n − 6) · 1 · 3 · 5 · · · · · (2n − 5)] · wn−4

2 · 3 · 4

All this is sufficient to postulate a general term.
43 Just in case Lambert’s language is not sufficiently clear: by using the expression of the .n-th 
denominator, he obtains both the.(n − 1)-th and the.(n − 2)-th denominators by substituting in said 
expression . n for .n − 1 and .n − 2. So, having the three expressions, he applies the rule given in 
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&.(n − 2)-th are deduced. Then we proceed according to the rule §. 21 by deducing 
both the denominator and the numerator of the .n-th fraction from the two preceding 
ones as we have just found them by the first operation. And with that, the form of 
the .n-th fraction must be reproduced, as we have just given it. It is clear that this 
process leads to establishing that if two consecutive fractions have this form, the one 
that follows them will also have it, & that, therefore, the fractions of the preceding 
table, which are the first, having this form, it will follow that all the following will 
also have it. 

§. 26. If therefore, in order to abbreviate this proof, we want to adhere to the gen-
eral term, it will be nonetheless necessary to calculate the numerator & the denomina-
tor separately, for no other reason than to simplify the calculation. Because moreover, 
both will be calculated following the same rule (§. 21). Let us start with the denomi-
nator, & taking the.m-th term of its general expression for the.n-th fraction, we shall 
also have to take the.m-th term for the.(n − 1)-th fraction, but we shall only take the 
.(m − 1)-th term for the.(n − 2)-th fraction. 44 We see that it is necessary to act in this 
way with respect to the dimensions or exponents of the letter . w. 

§. 27, Now the .m-th term of the .n-th fraction for the denominator is 45

. M = wn−2m+2 · [(2n − 2m + 2) · (2n − 2m) · (2n − 2m − 2) · · · · · (2n − 4m + 6)] · [1 · 3 · 5 · · · (2n − 2m + 1)]

1 · 2 · 3 · 4 · 5 · · · · · ·(2m − 2)

from where, by substituting.(n − 1) in the place of. n, the.m-th term of the.(n − 1)-th 
fraction we find 

. M ' = wn−2m+1 · [(2n − 2m) · (2n − 2m − 2) · · · · · ·(2n − 4m + 4)] · [1 · 3 · 5 · · · · · (2n − 2m − 1)]

1 · 2 · 3 · 4 · 5 · · · · · ·(2m − 2)

And by substituting .(n − 2) in the place of . n, &  .(m − 1) in the place of . m, the  
.(m − 1)-th term of the .(n − 2)-th fraction is found 

§. 21 in order to verify that both members coincide, that is: 

. qn = (2n − 1)w · qn−1 − qn−2

44 Lambert will prove, term by term, that the general expressions satisfy the relation given in §. 21, 
that is: 

. q(m)
n = (2n − 1)w · q(m)

n−1 − q(m−1)
n−2

for the denominators (Lambert uses, of course, another notation, namely:.M, M ', M '') and: 

. p(m)
n = (2n − 1)w · p(m)

n−1 − p(m−1)
n−2

for the numerators (in this case he uses.N , N ', N ''). Paying attention to the denominators (the same 
with the numerators) of the table at point §. 22, it is clear that the number of terms to be taken in 
the.(n − 2)-th fraction is one less than in the remaining two, something that, as Lambert mentions 
bellow, is related to the power of. w.
45 It is an easy exercise to arrive at this general term by looking at the expressions of §. 24. 
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. M '' = wn−2m+2 · [(2n − 2m) · (2n − 2m − 2) · · · · · ·(2n − 4m + 6)] · [1 · 3 · 5 · · · · · (2n − 2m − 1)]

1 · 2 · 3 · 4 · 5 · · · · · ·(2m − 4)

Now by the rule §. 21 it must be 

. M = (2n − 1)w · M ' − M ''

which makes it possible for us to free these three expressions from all the factors that 
are common to them, by putting them.= P . Therefore we shall have 46

. +M = P · w · (2n − 2m + 2) · (2n − 2m + 1)

(2m − 2) · (2m − 3)

+M ' = P · (2n − 4m + 4)

(2m − 2) · (2m − 3)

−M '' = P · w.

Or putting 

. 
P

(2m − 2) · (2m − 3)
= Q,

we shall have 47

. +M = Qw · (2n − 2m + 2) · (2n − 2m + 1)

+M ' = Q · (2n − 4m + 2)

−M '' = Qw · (2m − 2) · (2m − 3).

From that, by multiplying, we shall have 48

. (2n − 1)wM ' = Qw · (4n2 − 8mn + 6n + 4m − 4)

−M '' = Qw · (4m2 − 10m + 6) :

from where 

46 Using the factorial notation, that common factor would be: 

. P = wn−2m+1(2n − 2m)(2n − 2m − 2) · · · (2n − 4m + 6) · (2n − 2m − 1)!
(2m − 4)!

The introduction of . P , and in the next step, of . Q, has no other objective than to simplify the 
calculations (the same for the numerator). 
47 There is a typo in the second expression. It should be written as follows: 

.+M ' = Q · (2n − 4m + 4)

48 The colon in the second expression is typographical; it has nothing to do with division. 
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. (2n − 1)wM ' − M '' = Qw(4n2 − 8nm + 6n + 4m2 − 6m + 2).

But also 

. M = Qw · (2n − 2m + 2)(2n − 2m + 1) = Qw(4n2 − 8nm + 6n + 4m2 − 6m + 2).

Therefore, these two values being equal, we see that it is 

. M = (2n − 1)w · M ' − M '',

& that consequently the form which we have given to the general term is such as it 
should be. 

§. 28. Let us now turn to the numerator. The .m-th term of the numerator of the 
.n-th fraction must be 

. + N = wn−2m+1 · [(2n − 2m) · (2n − 2m − 2) · · · · · ·(2n − 4m + 4)] · [1 · 3 · 5 · · · · · (2n − 2m + 1)]

1 · 2 · 3 · 4 · 5 · · · · · · · (2m − 1)

from where, by substituting .(n − 1) in the place of . n, we shall have the same .m-th 
term for the .(n − 1)-th fraction, 

. + N ' = wn−2m · [(2n − 2m − 2) · (2n − 2m − 4) · · · · · (2n − 4m + 2)] · [1 · 3 · 5 · · · · · ·(2n − 2m − 1)]

1 · 2 · 3 · 4 · 5 · · · · · · · (2m − 1)

And by substituting.(n − 2), (m − 1), in the place of .n, m, we shall have the .(m −
1)-th term of the .(n − 2)-th fraction, 

. − N '' = wn−2m+1 · [(2n − 2m − 2) · (2n − 2m − 4) · · · · · (2n − 4m + 4)] · [1 · 3 · 5 · · · · · ·(2n − 2m − 1)]

1 · 2 · 3 · 4 · 5 · · · · · · · (2m − 3)

Therefore, putting the common factors to these three expressions .= P , we shall 
have 49

. + N = Pw · (2n − 2m) · (2n − 2m + 1)

(2m − 1) · (2m − 2)

+N ' = P · (2n − 4m + 2)

(2m − 1) · (2m − 2)

−N '' = Pw,

or doing .P = Q · (2m − 1) · (2m − 2), we shall have 

49 Now.P would be: 

.P = wn−2m(2n − 2m − 2)(2n − 2m − 4) · · · (2n − 4m + 4) · (2n − 2m − 1)!
(2m − 3)!
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. +N = Qw · (2n − 2m) · (2n − 2m + 1)

+N ' = Q · (2n − 4m + 2)

−N '' = Qw · (2m − 1) · (2m − 2).

But it must be  
. N = (2n − 1)w · N ' − N '',

then, by substituting the values found, we shall have 

. (2n − 1)wN ' = Qw · (4nn − 8nm + 2n + 4m − 2)

−N '' = Qw(4m2 − 6m + 2),

from where 

. (2n − 1)wN ' − N '' = Qw(4n2 − 8nm + 2n + 4m2 − 2m).

But the same value results from 

. N = (2n − m) · (2n − 2m + 1) · Qw.

It then follows from this that the form of the general term is such as it should be. 

§. 29. Let us take hence the general expressions that we have given in §. 24 & 
let us divide the denominator by its first term, 50 & we shall have the series 51

50 Having then established the general terms for the numerator and denominator, Lambert’s strategy 
is as follows: 

. 
pn

qn
= pn/q(1)

n

qn/q(1)
n

−−−→
n→∞ tan v

since (§. 29): 

. 
qn

q(1)
n

−−−→
n→∞ cos v

and because (§. 30): 

. 
pn

q(1)
n

−−−→
n→∞ sin v

51 A parenthesis is missing in the third addend: 

.1 − w−2

2
· 2n − 2

2n − 1
+ w−4

2 · 3 · 4 · (2n − 4) · (2n − 6)

(2n − 1) · (2n − 3)
− w−6

2 · 3 · 4 · 5 · 6 · (2n − 6) · (2n − 8)(2n − 10)

(2n − 1)(2n − 3)(2n − 5)

+ w−8

2 · 3 · 4 · 5 · 6 · 7 · 8 · (2n − 8) · (2n − 10) · (2n − 12) · (2n − 14)

(2n − 1) · (2n − 3) · (2n − 5) · (2n − 7)
− &c.
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. 1 − w−2

2
· 2n − 2

2n − 1
+ w−4

2 · 3 · 4 · (2n − 4) · (2n − 6)

(2n − 1) · (2n − 3)
− w−6

2 · 3 · 4 · 5 · 6 · (2n − 6) · (2n − 8)(2n − 10)

(2n − 1)(2n − 3)(2n − 5)

+ w−8

2 · 3 · 4 · 5 · 6 · 7 · 8 · (2n − 8) · (2n − 10) · (2n − 12) · (2n − 14)

(2n − 1) · (2n − 3) · (2n − 5)(2n − 7)
− &c.

which, by substituting .v = w−1, & putting .n = ∞, gives  52

. 1 − v2

2
+ v4

2 · 3 · 4 − v6

2 · 3 · 4 · 5 · 6 + &c.

which is the cosine of . v, & therefore the denominator that we have used (§. 5) in 
order to find the quotients .w, 3w&c. 

§. 30. Let us now divide the general expression of the numerator (§. 24) by the 
same first term of the denominator, & we shall have the series 

. w−1 − w−3

2 · 3 · 2n − 4

2n − 1
+ w−5

2 · 3 · 4 · 5 · (2n − 6) · (2n − 8)

(2n − 1) · (2n − 3)

− w−7

2 · 3 · 4 · 5 · 6 · 7 · (2n − 8) · (2n − 10) · (2n − 12)

(2n − 1) · (2n − 3) · (2n − 5)

+ &c.

Which now for .n = ∞, gives the series 

. v − 1

2 · 3v3 + 1

2 · 3 · 4 · 5v5 − &c.

which is .= sin v, & therefore the numerator which we have used 53 §. 5. 

§. 31. We further see in this way that, no matter how large the first term of the 
two general formulas may be (§. 24), the second term, & even more the following 

ones, will not only be smaller, but smaller than the .
1

2
,

1

2 · 3 ,
1

2 · 3 · 4 &c. part of the 

first term. 54 But by substituting. n successively for.1, 2, 3, 4 &c. to infinity, the first 
term being the product of the odd numbers .1 · 3 · 5 · 7&c. will grow faster than any 
increasing geometric progression; 55 we also see that even if the term .2, 4, 6&c. is 
subtracted, this does not impede the sum of the terms from growing faster than any

52 This is because the coefficients that multiply the successive powers of. w tend to. 1 when.n → ∞. 
Note that the concept of uniform convergence had not yet made its appearance —it would take 
about a century— so this justification is quite rigorous by the canons of its time. 
53 This concludes the second part of the proof. However, before entering the last part —the one 
referring to irrationality— and after certain considerations (§. 31), Lambert looks for the series 
expassion for the tangent from its expression in continued fraction (§. 32–§. 37). 
54 From the first and second formula, alternately. 
55 Note that, if .a /= 0: 



108 5 An Annotated Translation of Lambert’s Mémoire (1761/1768)

increasing geometric progression. 56 And I make this observation here, because I will 
make use of it in the rest of this Memoir. Here is what comes first. 

§. 32. The aim is to determine the law according to which the fractions 

. 
1

w
,

3w

3w2 − 1
,

15w2 − 1

15w3 − 6w
, &c.

approximate the value of the tangent. 57 For this effect, we shall only have to subtract 
each one from the one that follows it, & the residues will be 

. 
1

w · (3w2 − 1)
,

1

(3w2 − 1) · (15w3 − 6w)
, &c.

These residues show how much larger each of the fractions is than the one that 
precedes it. But let us show in general that all the numerators are .= 1, &  that all the 
denominators are the product of those of the two fractions the difference of which is 
indicated by these residues. 

§. 33. To this effect, let us take up again the three general formulas that we have 
given in §. 21 & which are  

. 

A

B
,

A(2n + 1)w − m

B(2n + 1)w − p
,

[
A(2n + 1)w − m

]
(2n + 3)w − A[

B(2n + 1)w − p
]
(2n + 3)w − B

.

Now, subtracting the first from the second, the residue will be 

. = Ap − Bm

B · [B(2n + 1)w − p].

But the numerator of this residue is the same as that resulting from the subtraction 

. 
A

B
− m

p
= Ap − Bm

B · p
.

. 
n!
an

−−−→
n→∞ ∞

(by using Stirling, for example).
56 Precisely because of what has been observed in the first paragraph of this very point. 
57 The sentence ends here with a question mark that has been decided to omit for a better under-
standing of the text. 
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Now.
m

p
being the fraction that precedes the fraction. 

A

B
, we see that the numerator of 

all these residues is the same, & that the denominator is the product of those of the 
fractions the difference of which is indicated by these residues. Therefore, starting 

with any one of the fractions .
m

p
, the residues will be 

. 
1

p · B
,

1

B [B(2n + 1)w − p]
&c.

§. 34. Let us now observe, that all these residues being added to the first fraction 
which is set as a basis, the sum will always express the tangent of . v, so that in general 
it will be 58

. tan v = m

p
+ 1

p · B
+ 1

B · [B(2n + 1)w − p]
+ &c.

& hence 

. tan v = 1

w
+ 1

w(3w2 − 1)
+ 1

(3w2 − 1) · (15w3 − 6w)
+ &c.

tan v = 3w

3w2 − 1
+ 1

(3w2 − 1)(15w3 − 6w)
+ &c.

tan v = 15w2 − 1

15w3 − 6w
+ 1

(15w3 − 6w) · (105w4 − 45w2 + 1)
+ &c.

&c.

We see therefore from what we have said (§. 31.) that all these series are more 
convergent than any decreasing geometric progression. Let e.g. .v = w = 1, & the  
tangent of this arc will be . = 1, 55740772 · · · ·59

58 Actually, this responds to a more general framework. Given a continued fraction: 

. f = 1

a1 + 1

a2 + 1

a3 + 1

a4 + . . .

it can be seen as: 

. f = p1
q1

+
(

p2
q2

− p1
q1

)
+

(
p3
q3

− p2
q2

)
+ · · ·

59 See the note by A.S. in Appendix C. 
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. = 1 + 1

1 · 2 + 1

9 · 61 + 1

61 · 540 + 1

540 · 5879 +

1

5879 · 75587 + 1

75587 · 1147426 + &c.

And for every arc .v < 1, we shall have an even more convergent series. 

§. 35. Let us put now.w = ω : ϕ, v = ϕ : ω, so that.ϕ, ω are any integer numbers 
prime to each other. We shall only have to substitute these values, & we shall have 

. tan
(ϕ

ω

)
= ϕ

ω − ϕϕ

3ω − ϕϕ

5ω − ϕϕ

7ω − ϕϕ

9ω − &c.

§. 36. Then the fractions that approximate 60 the value of the .tan
ϕ

ω
will be 

. 
ϕ

ω
,

3ωϕ

3ω2 − ϕ2
,

15ω2ϕ − ϕ3

15ω3 − 6ϕ2ω
,

105ω3ϕ − 10ωϕ3

105ω4 − 45ω2ϕ2 + ϕ4
, &c.

in such a way that any two of these consecutive fractions being 

. 
m

p
,

. 
A

B
,

the one that follows will be 

. 
A(2n + 1)ω − mϕ2

B(2n + 1)ω − pϕ2
.

§. 37. Finally, the differences of these fractions will be 

. 
ϕ3

ω(3ω2 − ϕ2)
,

ϕ5

(3ω2 − ϕ2) · (15ω3 − 6ωϕ2)
, &c.

& the

60 Lambert writes: fractions approchantes. 
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. tan
ϕ

ω
= ϕ

ω
+ ϕ3

ω(3ω2 − ϕ2)
+ ϕ5

(3ω2 − ϕ2) · (15ω3 − 6ωϕ2)
+ &c.

Now, I say that this tangent will never be commensurable to the radius whatever the 
integer numbers .ω, ϕ may be. 

§. 38. In order to prove this theorem, 61 let us put 

. tan
ϕ

ω
= M

P
,

in such a way that .M, P are quantities expressed in any way, even, if we want, by 
decimal sequences, which can always be done even if .M, P , are integer numbers, 
since we shall only have to multiply one & another by some irrational quantity. 62

We can even suppose, if we wish, .M = sin ϕ

ω
, .P = cos ϕ

ω
, as we have done above 

(§. 5.). And it is clear that, even if the.tan ϕ

ω
were rational, the same would not always 

have to happen with the .sin ϕ

ω
& the .cos ϕ

ω
. 

§. 39. Since the fraction 

.
M

P

61 From this point to §. 51 the text is devoted to the demonstration of irrationality, and for this purpose, 
Lambert draws on the reductio ad absurdum method taking a rational arc.v ∈ Q and assuming that 
its tangent is also rational .tan v ∈ Q. Based on this assumption, he builds a succession of real 
numbers (using our language) .R', R'', R''', . . . , Rn, . . . , such that .Rn = D · rn —.rn being non 
zero integer numbers and .D �∈ Q being a constant—, and such that .Rn −−−→

n→∞ 0. This necessarily 

entails that.D = 0, which contradicts the fact that.D �∈ Q. 
62 This phrase means that we can always suppose that the tangent (and whatever quantity, actually) 
is the quotient of two quantities.M and. N , and regardless of the nature of both —. «even if.M, P , are  
integer numbers. »—, said quotient can always be transformed into a fraction in which the numerator 
and denominator . «are quantities expressed in any way, even if we want, by decimal sequences 
[suites décimales]. » by multiplying both by an irrational quantity. However, if we take a closer look 
at the phrase, it seems to indicate that Lambert thought of irrationals as quantities made up of an 
actual amount of decimal digits, because if those integers were multiplied by decimal quantities 
with a finite number of digits, we would obtain quantities with a finite number of digits that would 
also be immediately transformed into a rational fraction, returning to the case that numerator and 
denominator are integers. In order to not lose generality and avoid this situation, it would be 
necessary to choose an infinite (non-periodic) sequence of decimal digits —irrationals—, which is 
in fact what he does. We have evidence that supports this interpretation in the already mentioned 
Part V of Lambert (1766/1770). In this work, Lambert associates each convergent of the continued 
fraction with a decimal approximation for. π , which he calls. «Ludolphian numbers. » (he also refers 
to them right at the beginning of this Mémoire) —not . π—, which appears to show an awareness 
of .π as formed by an actual amount of decimal digits, the result of not truncating the continued 
fraction in any step, something in itself notorious, and representative of the turning point (1600– 
1800) from considering decimals as mere approximative tools in the study of certain magnitudes 
(900–1600) —with S. Stevin as the later representative—, to think of them as the object of study in 
itself (1750–1950) Ferreirós (2015, pp. 146–149). 
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exactly expresses the tangent of . 
ϕ

ω
, it must give all the quotients . w, 3w, 5w&c.

which in the present case are 

. +ω

ϕ
, −3ω

ϕ
, +5ω

ϕ
, −7ω

ϕ
, + &c.

§. 40. Hence, if the .tan ϕ

ω
is rational, it is clear that .M will be to .P as an integer 

number . μ to an integer number 63 . π , in such a way that, if .μ, π , are primes to one 
another, we shall have 

. M : μ = P : π = D,

&.D will be the greatest common divisor of .M, P . And as it is reciprocally 

. M : D = μ,

P : D = π,

we see that.M, P being supposed irrational quantities, their greatest common divisor 
will also be an irrational quantity, which is the smaller, the larger the quotients 64 . μ, π

are. 

§. 41. Here are therefore the two suppositions whose incompatibility will have 
to be shown. Let us divide first 65 .P by . M , & the quotient must be .= ω : ϕ. But  
since .ω : ϕ is a fractional number, let us divide .ϕP by . M , & the quotient . ω will be 
.ϕ-tuple of .ω : ϕ. It is clear that we can divide it by . ϕ, whenever we want to do so. 

63 It is clear that Lambert is not using here the Greek word .π to represent the ratio between the 
circumference and its diameter, although this symbol had already been used before for this purpose 
(for the first time) by William Jones in 1706. It is not surprising anyway, that an author of the time 
did not use a notation that was just beginning to take form (note that information did not flow as 
it does today, an important detail that we must not ignore), although it is still curious that out of 
all the possible symbols he had chosen precisely that one. Having said that, Lambert in Lambert 
(1766/1770) does use the Greek word. π to represent this ratio (for instance in p. 147). 
64 In summary, what we have is that the tangent being able to be expressed as: 

. tan v = sin v

cos v
= M

P
,

with.M �∈Q and.P �∈Q, and moreover being supposed to be rational.tan v ∈ Q, there will exist two 
numbes. μ and. π such that: 

. tan v = M

P
= μ

π
,

and therefore there will also exist.D �∈ Q, such that.μ · D = M and.π · D = P , and so: 

.
M

D
= μ ∈ Z and

P

D
= π ∈ Z (5.1)

65 Lambert begins, step by step (§. 41, 42), the construction of the succession alluded to before, 
which will end with a proposal for a general term (§. 42, 43) and its proof (§. 44). Since the steps 
taken by Lambert are not entirely clear in the text, they will be followed in parallel in the footnotes. 
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Here it will not be necessary, since it is enough for us that it is an integer. Having 
therefore obtained the quotient. ω by dividing.ϕP by. M , let the residue be.= R'. This  
residue will equally be .ϕ-tuple of what it would have been, & which we shall take 
into account. Now, since .P : D = π is an integer number, .ϕP : D = ϕπ will also 
be an integer number. Finally .R' : D will also be an integer number. Since, because 

. ϕP = ωM + R',

we shall have 

. 
ϕP

D
= ωM

D
+ R'

D
.

But 

. ϕP : D = ϕπ,

ωM : D = ωμ,

hence 

. ϕπ = ωμ + R'

D
,

which gives 

. 
R'

D
= ϕπ − ωμ = integer number,

which we shall put .= r ', so that 

. 
R'

D
= r '.

Therefore the residue of the first division will still have .D as divisor, which is the 
greatest common divisor of 66 .M, P . 

66 First step: 

If.tan
ϕ

ω
= M

P
, 

. tan
ϕ

ω
= M

P
= 1

P

M

= 1

ω

ϕ
+

1R

M

,

where .1R is the residue of the first division (the one that Lambert says that must be taken into 
account). Let us note that the reason why in the previous expression —as well as those that will 
come in the following steps— appears .+ where there should be . −, is that the sign is contained in 
.1R, and therefore in the .R' that will appear below. At the end of this process it will be seen how 
this sign is taken into account. Having said that, now, multiplying by. ϕ in the adequate place: 

.
1

ϕ · P

M

= 1

ω +
1R · ϕ

M

= 1

ω + R'

M

,
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§. 42. Let us pass now to the second division. The residue .R' being .ϕ-tuple 
of what it would be if we had divided . P , instead of .ϕP , by  . M , it will have to be 
taken into account in this second division, by dividing .ϕM , instead of . M , by . R', in  
order to obtain the second quotient, which is .= 3ω : ϕ. But, in order to avoid the 
fractional quotient here again, let us divide .ϕ2M by . R', to obtain the quotient .3ω, 
integer number. Let the residue be .= R'', & it will be 

. ϕ2M = 3ωR' + R'',

hence dividing by . D, 

. 
ϕ2M

D
= 3ωR'

D
+ R''

D
.

But 

. 
ϕ2M

D
= ϕ2m = integer number,

3ωR'

D
= 3ωr ' = integer number,

hence 

. ϕ2m = 3ωr ' + R''

D
,

which gives 

. 
R''

D
= ϕ2m − 3ωr ' = integer number,

which we shall put .= r '', so that 

. 
R''

D
= r ''.

we obtain that.ϕP = ωM + R', and therefore: 

. 

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

R' = ϕP − ωM

R'

D
= r ' ∈ Z

The second equality (the integer character of. R'
D ), is obtained directly from dividing the first equality 

by.D and taking into account (5.1).



5 An Annotated Translation of Lambert’s Mémoire (1761/1768) 115

Therefore the greatest common divisor of .M, P, R', is still of the second residue 67
.R''. 

§. 43. Let the following residues be . · · ·R''', RI V · · · · · · Rn, Rn+1,

Rn+2 · ··, which correspond to the .ϕ-tuples quotients . · · 5ω, 7ω · · · · (2n − 1)ω,

(2n + 1)ω, (2n + 3)ω · ··, & the aim is to prove in general that if any two arbitrary 
residues.Rn, Rn+1, which follow each other immediately, still have.D as divisor, the 
next residue .Rn+2 will have it too, so that if, by doing 

. Rn : D = rn,

Rn+1 : D = rn+1,

.rn, rn+1 are integer numbes, we shall also have 68

. Rn+2 : D = rn+1,

an integer number. Here is the demonstration. 

67 Second step: 
Now, the same thing that has been done with. M

P , will be done with. R'
M , but keep in mind that this is 

not the residue of the continued fraction that defines the tangent, since it is the result of multiplying 

.
1R
M , which is the residue of said continuous fraction, by . ϕ. This is why the denominator .M is 
multiplied by. ϕ: 

. 
R'

M · ϕ
=

1R · ϕ

M · ϕ = 1
M · ϕ

1R · ϕ

= 1

3ω

ϕ
+

2R

R'

,

to go back to the continued fraction. Now,.2R is the residue of the second division, and the process 
followed in the step 1 is repeated by multiplying by. ϕ in the appropriate place: 

. 
1

Mϕ2

R'

= 1
Mϕ · ϕ

1Rϕ

= 1

3ω +
2R · ϕ

R'

= 1

3ω + R''

R'

In this way,.ϕ2M = 3ωR' + R'', obtaining again two equalities: 

. 

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

R'' = ϕ2M − 3ωR'

R''

D
= r '' ∈ Z

Once again, the second equality is deduced directly from the first one by dividing by. D, and taking 
into account that both.

M
D and.

R'
D are integer numbers. 

68 There is an error here, as the expression should be written as follows: 

.Rn+2 : D = rn+2
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§. 44. Dividing.ϕ2Rn by.Rn+1, the quotient will be 69.(2n + 1)ω = integer number, 
& being the residue .= Rn+2, we shall have  

. ϕ2Rn = (2n + 1)ω · Rn+1 + Rn+2,

hence dividing by . D, 

. 
ϕ2 · Rn

D
= (2n + 1)ω · Rn+1

D
+ Rn+2

D

But 

. 
ϕ2Rn

D
= ϕ2rn = integer number,

(2n + 1)ω · Rn+1

D
= (2n + 1)ωrn+1 = integer number,

hence 

. ϕ2rn = (2n + 1)ω · rn+1 + Rn+2

D
,

which gives 

. 
Rn+2

D
= ϕ2 · rn − (2n + 1)ω · rn+1 = integer number = rn+2.

And this is what had to be proven. 

§. 45. Now we have seen that.r ', r '' are integer numbers (§. 41. 42.) therefore also 
.r ''', r I V , · · · · · rn · · · · · &c. to infinity will be integer numbers. Hence, indistinctly, 
all the residues .R', R'', R''' · · · · Rn · · · &c. to infinity will have .D as common 
divisor. Let us now find the value of these residues expressed through .M, P . 

§. 46. For this purpose, each division provides us with an equation, in which 

. R' = ϕP − ωM,

R'' = ϕ2M − 3ω · R',
R''' = ϕ2R' − 5ω · R'',

&c.

But let us observe that, in the existing case, the quotients .ω, 3ω, 5ω&c. are alter-
nately positive & negative, & that the signs of the residues follow each other in the

69 There is a problem with indices since, for example, if.n = 1, we would obtain. ϕ2R' = 3ω · R'' +
R''' instead of the right expression.ϕ2R' = 5ω · R'' + R'''. The general term for the quotient should 
therefore be.(2n + 3)ω (take this into account throughout this point and at §. 46). 
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order .− − ++. Therefore these equations become 70

. R' = ωM − ϕP,

R'' = 3ωR' − ϕ2M,

R''' = 5ωR'' − ϕ2R',
RI V = 7ωR''' − ϕ2R'',

&c.

And in general 
. Rn+2 = (2n − 1)ω · Rn+1 − ϕ2Rn.

From where we see that each residue is obtained, by means of the two preceding ones, 
in the same way as the numerators & denominators of the fractions that approximate 

the value of 71 .tan
ϕ

ω
. (§. 36.) 

§. 47. Doing therefore the substitutions that these equations indicate, in order to 
express all these residues by means of .M, P , we shall have 

. R' = ωM − ϕP,

R'' = (3ω2 − ϕ2)M − 3ωϕ · P,

R''' = (15ω3 − 6ωϕ2)M − (15ω2ϕ − ϕ3)P,

&c.

And these coefficients of.M, P being the numerators & denominators of the fractions 

found above for the .tan
ϕ

ω
, (§. 36.), we also see that we shall have 

70 Here is where the signs are taken into account. 
71 A succession of real numbers.R', R'', R''', . . . , Rn, . . . , is therefore constructed and defined as 
follows: 

. 

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

R' = ωM − ϕP

R'' = 3ωR' − ϕ2M

Rn+2 = (2n + 3)ωRn+1) − ϕ2Rn) , n ≥ 1

Moreover, we also have a succession of non zero integer numbers.r ', r '', r ''', . . . , rn, . . . , connected 
to the former as follows: 

. Rn = D · rn , n ≥ 1,

with.D �∈ Q. The last step is to prove that this succession converges to zero (§. 47–§. 51).
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. 
M

P
− ϕ

ω
= R'

ωP
,

M

P
− 3ωϕ

3ω2 − ϕ2
= R''

(3ω2 − ϕ2) · P
,

M

P
− 15ω2ϕ − ϕ3

15ω3 − 6ωϕ2
= R'''

(15ω3 − 6ωϕ2)P
,

&c.

§. 48. But we have 72

. 
M

P
= tan ϕ.

Hence 73 (§. 37. 34.) 

. 
M

P
− ϕ

ω
= ϕ3

ω(3ω2 − ϕ2)
+ ϕ5

(3ω2 − ϕ2) · (15ω3 − 6ωϕ3)
+ &c.

M

P
− 3ωϕ

3ω2 − ϕ2
= ϕ5

(3ω2 − ϕ2) · (15ω3 − 6ωϕ2)
+ &c.

&c.

Hence 

. 
R'

ωP
= ϕ3

ω(3ω2 − ϕ2)
+ ϕ5

(3ω2 − ϕ2) · (15ω3 − 6ωϕ2)
+ &c.

R''

(3ω2 − ϕ2)P
= ϕ5

(3ω2 − ϕ2) · (15ω3 − 6ωϕ2)
+ &c.

R'''

(15ω3 − 6ωϕ2)P
= ϕ7

(15ω3 − 6ωϕ2) · (105ω4 − 45ω2ϕ2 + ϕ4)
+ &c.

&c.

Thus all the residues will be found by means of the series of differences (§. 37.) 

72 There is an error here. The right side of the equality should be written as follows: 

. 
M

P
= tan

ϕ

ω
.

73 There is an error in the first expression. It should be: 

.
M

P
− 3ωϕ

3ω2 − ϕ2 = ϕ5

(3ω2 − ϕ2) · (15ω3 − 6ωϕ2)
+ &c.
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. tan
ϕ

ω
= ϕ

ω
+ ϕ3

ω(3ω2 − ϕ2)
+ ϕ5

(3ω2 − ϕ2)(15ω3 − 6ωϕ2)

+ ϕ7

(15ω3 − 6ωϕ2)(105ω4 − 45ω2ϕ2 + ϕ4)

+ &c.

by omitting the first terms .1, 2, 3, 4&c., & multiplying the sum of the following 
ones by the first factor of the denominator of the first term that is being retained, & 
by 74 . P . 

§. 49. Now, this series of differences is more convergent than any decreasing geo-
metric progression (§. 34. 35.). Therefore the residues .R', R'', R''' &c. decrease in 
such a way that they finally become smaller than any assignable quantity. 75 And since 
each of these residues, having .D as a common divisor, is a multiple of . D, it follows 

74 In summary, considering that: 

. 
M

P
= S = p0

q0,,,,
S1

+
(

p1
q1

− p0
q0

)

, ,, ,
S2

+
(

p2
q2

− p1
q1

)

, ,, ,
S3

+
(

p3
q3

− p2
q2

)

, ,, ,
S4

+ · · · ,

where.Sn stands for the nth partial sum of the infinite series. S converging to. M
P defined through its 

continued fraction, we have: 

. 
M

P
− pn

qn
= S − Sn,

and so: 

. 
R'

ωP
= S − S1,

R''

(3ω2 − ϕ2)P
= S − S2,

R'''

(15ω3 − 6ωϕ2)P
= S − S3 · · · Rn)

Fn P
= S − Sn · · ·

Therefore.Rn = (S − Sn)P · Fn ,.Fn being the first factor of the denominator of the nth convergent 
of.tan ϕ

ω
, .n ≥ 1. 

75 It is more than likely that the reader is wondering the same question than the author of this work 
asked himself: Why the fact that.S − Sn −−−→

n→∞ 0 faster than any decreasing geometric progression, 

implies that.Rn −−−→
n→∞ 0? In the following equality: 

. Rn = (S − Sn)P · Fn

there is a factor.Fn converging to infinity.Fn −−−→
n→∞ ∞. Is it sufficiently clear that the convergence 

of.S − Sn to zero is fast enough as to overtake.Fn and therefore to conclude that.Rn −−−→
n→∞ 0? One  

seems to be led to try to prove that .(S − Sn) (.An to simplify the writing; .P does not affect since 
it is a constant) effectively converges faster than any decreasing geometric progression and that. Fn
does not, that is to say, that.Fn converges more slowly than an increasing geometric progression, a 
reasoning that seems to be implicit in Lambert’s statement (although this approach would not lead 
us anywhere, as we will see). What is then the situation? In the light of later results on continued 
fractions, Christopher Baltus in Baltus (2003) analyzes the case (I thank Professor Baltus for his
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that this common divisor .D is smaller than any assignable quantity, which makes 
.D = 0, & leads to the consequence that .(M : P) is a quantity incommensurable to 
unity, or irrational. 76

§. 50. Hence every time an arc of a circle.=ϕ

ω
is commensurable to the radius.=1, 

or rational, the tangent of this arc will be a quantity incommensurable to the radius, 
or irrational. And conversely no rational tangent is that of a rational arc. 77

kindness, his reflection on the subject, and for having facilitated to me the work with which I was 
able to better understand this issue). Broadly speaking, he studies how fast the three intervening 
successions converge, and he does it by analyzing the ratios between consecutive terms (term by 
term, since each.An is itself an infinite series, although we will be setting out here the situation in 
global terms). The relationship between these ratios is: 

. 
Rn+1

Rn
= An+1

An
· Fn+1

Fn

from where, as he proves: 

. 
An+1

An
−−−→
n→∞ 0 y

Fn+1

Fn
−−−→
n→∞ ∞,

and where: 

. 
Rn+1

Rn
−−−→
n→∞ 0,

which implies: 
. Rn −−−→

n→∞ 0

What these last four relations are telling to us, is that despite the fact that the succession.Fn converges 
to infinity (and fast, in fact), the succession.Rn converges to zero given the. «supremacy of.An over 
.Fn. », just as Lambert had claimed. Now, going back to what Lambert seems to say, the statement: 

.Rn converges to zero becasue.An −−−→
n→∞ 0 faster than any decreasing geometric progression 

seems to be misleading, since . Fn+1
Fn

−−−→
n→∞ ∞, that is to say, the succession .Fn does not converge 

to infinity slower than an increasing geometric progression; it does faster, since given such a pro-
gression: 

. a, a2, a3, . . . , an, an+1, . . .

with.|a| > 1, a /= 0: 

. 
an+1

an
−−−→
n→∞ a < ∞

It is not clear for us how to interpret Lambert’s words. 
76 That is to say, since: 

. Rn = D · rn

Rn = (S − Sn)P · Fn,

and that, according to what Lambert affirms and that has just been discussed, . Rn = (S − Sn)P ·
Fn −−−→

n→∞ 0, there follows as a necessary consequence that.D = 0 due to the fact that all.rn are non 

zero integer numbers, which is a contradiction because.D �∈ Q.
77 Two points should be made here. The first one is that this result was already announced in 1719 
in Mémoire sur la quadrature du cercle, & sur la mesure de tout Arc, tout Secteur, & tout Segment 
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§. 51. Now, the tangent of .45◦ being rational, equal to the radius, it follows 
that the arc of .45◦ degrees, & therefore also the arc of .90◦, 180◦, 360◦ degrees, is 
incommensurable to the radius. Therefore the circumference of the circle is not to 
the diameter as an integer number to an integer number. So here is this theorem in 
the form of a corollary of another infinitely more universal theorem. 78

§. 52. Indeed, it is precisely this absolute universality that may well surprise us. 
In addition to letting us know to what extent the circular quantities are transcendental, 
it also shows us, that the rational tangents & the rational arcs are not distributed 
throughout the circumference of the circle, as if they were placed at random, but that 
there has to be a certain order, & that this order prevents them from ever meeting. 
This order certainly deserves, sans contredit, to be known in more detail. Hence, let 
us see how far it will be possible to determine the laws. This is what the following 
theorems will lead to. 79

§. 53. First of all, we know that if two tangents are rational, the tangent of the 
sum & that of the difference of their arcs are equally rational. Since 80

. tang (ω + ϕ) = tω + tϕ

1 − tω · tϕ
,

donné by Thomas Fantet de Lagny (De Lagny 1719/1721), although with no proof (Brezinski 1991, 
pp. 95, 96). I do not know if Lambert was aware of this fact, although I would lean towards he 
was not, since Lambert does not seem to have had any problems when citing sources —he quotes 
Foncenex (see §. 74.) and he also acknowledges that Euler drew him into the study of continued 
fractions— and Lagny’s name does not appear. It is true that Lambert in Lambert (1766/1770, 
p. 146) refers to the 127 decimal places of the approximation of. π given by Lagny precisely in this 
work, but it is possible that he was only echoing a fact that, on the other hand, was widely known. 
The second thing to mention is that the inverse of the theorem proved by Lambert does not hold, 
that is: 

. tan v �∈Q ��=⇒ v ∈ Q,

since there are irrational arcs with irrational tangents. In fact, every arc of the form.v = kπ
n �∈Q sat-

isfies that.tan v �∈Q (except for.v = ±π,± π
4 ) (Calcut 2006). 

78 In a nutshell: since.tan π
4 = 1 ∈ Q, then.

π
4 �∈ Q, and so: 

. π �∈ Q

Here we have the first demonstration of the irrationality of. π .
79 Lambert begins to extract —from §. 53 to §.71— a series of properties for the tangent that end 
up justifying the introduction of the concept of prime tangent (§. 60). It seems that he takes these 
steps to somehow show. «...what reduces infinitely the possibility of finding a rational arc, whose 
tangent is equally rational. » (§. 68), that is, to show in a heuristic way, the fact that the tangent of a 
rational arc cannot be rational, which is what he has just been demonstrated in the first part of this 
work. These same properties he extracts for the tangent can be extended to cosine (§. 70) but not to 
sine (§. 71). 
80 Note from now on that Lambert writes. «tang. » or. «t. » interchangeably to refer to the tangent. 
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. tang (ω − ϕ) = tω − tϕ

1 + tω · tϕ
.

§. 54. From this it follows that if a tangent is rational, the tangent of any multiple 
of its arc will be equally rational. 81

§. 55. But conversely, if a tangent is rational, 82 no aliquot part of its arc will 
have a rational tangent. Because being the proposed arc a multiple of each of its 
aliquot parts, it is clear that if the tangent of one of its aliquot parts were rational, the 
tangent would be rational (§. 54.). 

§. 56. If the tangent of each of two commensurable arcs to one another is rational, 
the tangent of the greatest common divisor of these two arcs will be equally rational. 
Let . ω, . ϕ be the two proposed arcs. Now, being commensurable, . ω will be to . ϕ as an 
integer number .m to an integer number . n. Let these numbers . m, . n, be prime to one 
another, & the unit will be their greatest common divisor. Therefore doing 

. ω = mψ,

. ϕ = nψ,

& the arc .ψ will be the greatest common divisor of the arcs . ω, . ϕ. Now I say that the 
.tangψ will be rational. Let .m > n, & subtracting . n from .m as many times as pos-
sible, let the last remainder be .= r , all the 83 . tang (m − n)ψ = t (ω − ϕ), tang (m −
2nψ) = t (ω − 2ϕ), &c. tang rψ , will be rational (§. 53.). Subtract. r from. n as many 
times as possible, let the last residue be .= r '. Now subtract . r ' from. r as many times 
as possible, let the last residue be .r '' &c. And continuing in this way, the numbers 
. m, . n being prime to one another, you will arrive at a residue.= 1 (Euclid. Pr. I. Livr.  
VII.). But by §. 53. all the tangents 84

. t (m − n)ψ, t (m − 2n)ψ · · · · trψ,

. t (n − r)ψ, t (n − 2r)ψ · · · · tr 'ψ,

. t (r − r ')ψ, t (n − 2r ')ψ · · · · tr ''ψ,

. &c.

. · · · · · · · · tψ,

will be rational. Hence &c. 

81 Lambert is thinking of integer multiples (see §. 62). 
82 See the note by A.S. in Appendix C. It is clear, as is easily deduced from the reasoning exposed 
by Lambert in the following lines, that there is an error here: it should be written. «irrational. ». 
83 There is an error here. As can be easily verified, it should be written as follows: 

.tang (m − n)ψ = t (ω − ϕ), tang (m − 2n)ψ = t (ω − 2ϕ), &c. tang rψ

84 There is an error in the second column of the third row. It should be:.t (r − 2r ')ψ . 
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§. 57. It is clear that in this way (§. 53.), given any two rational tangents, all these 
tangents can be known by means of .tangω, .tangϕ, without the arcs being known, 
will we find if their arcs are commensurable with each other? But if the arcs are not, 
the task will never end. 

§. 58. If any two aliquot parts of any arc have rational tangents, I say that the 
tangent of the greatest common divisor of these two aliquot parts will be equally 
rational. This theorem follows immediately from the preceding one (§. 56.). One 
needs only to remember that two arcs . ω, . ϕ, which are aliquot parts of an arc . A, are  
commensurable with each other. 

§. 59. Similarly, if as many aliquot parts of an arc . A as we want have rational 
tangents, the tangent of the arc, which is the greatest common divisor of these aliquot 
parts, will be equally rational. Take two of these aliquot parts. ω,. ϕ, & let their greatest 
common divisor be .= ψ , & the  .tangψ will be rational (§., 56. 58.). But .ψ being 
an aliquot part of the arcs . ω, . ϕ, which are aliquot parts of the arc . A, it is clear that 
.ψ will be an aliquot part of the arc . A, & that in the place of the arcs . ω, . ϕ, we can 
substitute .ψ by comparing.ψ with one of the other aliquot parts proposed of the arc 
. A. We shall continue to find their greatest common divisor, the tangent of which will 
be equally rational. &c. 

§. 60. Let us call prime tangent every rational tangent, which is that of an arc, 
of which no aliquot part has a rational tangent. 

§. 61. Such is for example the tangent of.45◦. Since, let. n be any integer number, 
all .tang (45 : n)◦ will be one of the roots of the equation 

. 0 = 1 − nx − n · n − 1

2
x2 + n · n − 1

2
· n − 2

3
x3 + n · n − 1

2
· n − 2

3
· n − 3

4
· x4

− n · n − 1

2
· n − 2

3
· n − 3

4
· n − 4

5
x5 − &c.

whose coefficients are the same as those of the Newton binomial formula, & whose 
signs change following the order .− − ++. But, for every integer number . n, all  
these coefficients are integer numbers, & every 

. tang

(
45◦

n

)
< 1.

Therefore, if one or more than one of the .tang (45◦ : n) were rational, it would be a 
rational fraction .< 1, & if so, not all the coefficients could be integer numbers. But 
they are. Therefore &c. 85

85 Let us take the formula for the tangent of the multiple angle as reference:
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§. 62. Let any prime tangent be given, only the multiples of its arc have rational 
tangents, excluding all the arcs that are commensurable to it. Let.tangω be prime, & 

. m,. n, being integer prime numbers to one another, let us suppose that the. tang
(m

n
ω

)

could be rational. Now the arc .
(ω

n

)
being the greatest common divisor of the arcs 

. ω, &.

(mω

n

)
, the tangent of.

ω

n
will be rational (§. 56.). But.

ω

n
being an aliquot of. ω, 

the.tangω would not be prime. This being contrary to the hypothesis, we see that no 

.tang
(m

n
ω

)
will be rational. Therefore, only the multiples of. ω remain, the tangents 

of which will be rational (§. 54.). 86 Here is the reason why this type of tangents 
deserve the name of primes. They somehow resemble prime numbers, insomuch as 
only their multiples are integer numbers, &c. 

. tan na =

n−1
2∑

k=0

(−1)k
(

n

2k + 1

)
tan2k+1 a

n
2∑

k=0

(−1)k
(

n

2k

)
tan2k a

=

=
(n
1

)
tan a − (n

3

)
tan3 a + (n

5

)
tan5 a − (n

7

)
tan7 a + · · ·

1 − (n
2

)
tan2 a + (n

4

)
tan4 a − (n

6

)
tan6 a + (n

8

)
tan8 a + · · ·

The reason why the combinatorial numbers of Newton’s binomial appear (as Lambert mentions), 
is that this formula is deduced from Moivre’s formula: 

. (cosα + i sin α)n = cos nα + i sin nα,

expanding the term on the left (by using Newton’s binomial), equating the real and imaginary parts, 
and dividing conveniently (Maor 2013, pp. 154–155). Putting.a = 45

n , we have that.tan na = 1, so  
the numerator and denominator of the expression above must to be equal one another: 

. 

(
n

1

)
tan a −

(
n

3

)
tan3 a +

(
n

5

)
tan5 a − · · · = 1 −

(
n

2

)
tan2 a +

(
n

4

)
tan4 a − · · ·

Passing everything to the first member, we obtain the equation that Lambert writes, without more 
than putting .x = tan a. As for why Lambert concludes that .tan(45 : n) cannot be a root of that 
equation since all the coefficients are integers, it is something that can be concluded from what is 
called the . «rational root theorem. » —actually an elementary result—, which imposes restrictions 
on the rational roots of polynomials with integer coefficients. Let a polynomial be given: 

. an xn + an−1xn−1 + · · · + a0

with integer coefficients: if. pq (with. p and. q being coprime each other) is a root, then. p is divisor of 
the independent term.a0 and. q is divisor of the main term. an . But in the case discussed by Lambert, 
.a0 = an = 1, so that fraction should be equal to . 1, which is not possible since our fraction . p

q is 
nothing else, by hypothesis, than.tan(45 : n)< 1.
86 That is to say: we knew (§. 54) that integer multiples gave rational tangents, and now we know that 
—if the tangent is prime— this does not happen with submultiples (in fact with rational multiples 
in general). This similarity with prime numbers is what leads Lambert to call them prime tangents. 
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§. 63. Let two prime tangents be given, I say that their arcs are incommensurable 
with each other. Since.tangω,.tangϕ are primes, & let us suppose the arcs. ω,. ϕ could 
be commensurable with each other. They will therefore be as an integer number . m
to an integer number . n. Hence 

. ϕ = mω

n
.

Hence (§. 62.) 87 . 
ω

n
, aliquot part of. ω, will have a rational tangent, likewise.

ϕ

m
aliquot 

part of. ϕ. Therefore. tϕ,.tω, will not be primes. This being contrary to the hypothesis, 
it is clear that the arcs . ω, . ϕ cannot be commensurable with each other. 

§. 64. Thus all the arcs of prime tangents are incommensurable with each other. 
Since, by the preceding theorem, they are two by two, combined in any way. 

§. 65. Let any rational tangent that is not prime be given, I say that its arc will 
be a multiple of that of a prime tangent. Since this tangent, as rational as it is, is not 
prime, there has to be aliquot parts of its arc the tangents of which are rational. Let 

these aliquot parts be .
ω

m
, . 
ω

n
, . 
ω

p
, .
ω

q
&c. which are assumed to be finite. Now, since 

we take them all, it is necessary that the one that is the greatest common divisor of 
all the others is also among them, while by §. 59. the tangent is equally rational. Let 

it be . 
ω

r
, I say  .tang

ω

r
is prime. Since, if it were not prime, the tangents of some of 

the aliquot parts of .
(ω

r

)
would be rational. Now, since these aliquot parts of . 

(ω

r

)
are equally aliquot parts of the proposed arc . ω, it is clear that they would already be 

included in the aliquot parts .
ω

m
, . 

ω

n
, .

ω

p
· · · · . ω

r
, & that therefore .

ω

r
would equally 

be its greatest common divisor. Thus .
ω

r
would be measure of its aliquot parts. This 

being absurd, we see that.tang
ω

r
is prime. Now. ω is a multiple of. 

ω

r
. Therefore &c. 

§. 67. 88 Here are therefore all rational tangents ordered in certain classes. Either 
they are themselves prime, or they descend, so to speak, in a straight line from a prime 
tangent, since only the multiples of arcs with prime tangents have rational tangents 
(§. 62.). But, 89 if there were only one prime tangent, all rational tangents would 
follow from it, & all their arcs would be commensurable with each other. But it is far

87 This reference to the point §. 62 alludes, not to the main result, which is the one in italics, but to 

the first part of the reasoning contained therein. Specifically, since the tangents of .
mω

n
(.= ϕ) and  

. ω are rational by hypothesis, that of .
ω

n
is also rational because it is the greatest common divisor 

(§. 56) (analogously for. ϕ). 
88 There is an error in the numbering. It should be. «§. 66.. ». 
89 Lambert then proves that there are infinitely many prime tangents. Lambert says that if there was 
only one (.tanϕ) it would be smaller than any assignable quantity because as he will explain, there 
is always a prime tangent below —in magnitude— than another previously fixed one. This not just 
proves that there is not only one —which is what he starts the following lines with—, but that there 
are infinite (see next footnote). 
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from being the case that there is only one prime tangent. Since it should be smaller 
than any assignable quantity. Let us give it, to prove this, a finite magnitude.= tanϕ. 
It is clear that there will be rational tangents smaller than.tanϕ. If these tangents are 
prime, .tanϕ will not be the only one that is prime. If they are not prime, they will 
derive from one or several prime tangents, inasmuch as their arcs will be multiples of 
those of these prime tangents (§. 65.). Thus there is more than one, more than . 2, . 3, 
. 4, &c. prime tangents. And whenever a finite number is supposed, it will be found in 
the same way that there are more. Here is another way to find an infinite number. 90

§. 67. Let two prime tangents be.tω,. tϕ. Firstly they will be rational, & their arcs 
will be incommensurable with each other (§. 64.). Let . m, . n any numbers prime to 
one another be given, & .(mω + nϕ) will be an arc incommensurable to both . ω and 
. ϕ. Now the tangent will be rational (§. 62. 53.). 91 But the arc .(mω + nϕ) not being 
multiple of either . ω or . ϕ, the  .tang (mω + nϕ) will either be itself prime, or it will 
derive from a prime tangent, necessarily different from .tω, . tϕ. But, by varying the 
numbers. m, . n, in all possible ways, so that they are always prime to one another, we 
shall find as many arcs .(mω + nϕ) incommensurable both among themselves and 
among the arcs . ω, . ϕ, & that consequently are neither multiples of each other, nor 
of . ω, . ϕ. Therefore, their tangents, which are all rational, will derive from as many 
prime tangents, different from each other. 

§. 68. Here is therefore what reduces infinitely the possibility of finding a rational 
arc, whose tangent is equally rational. Since the arcs of all the prime tangents are 
incommensurable with each other, it follows that, when it is possible to find a prime 
tangent whose arc is commensurable to the radius, this will be the only one, since 
the arcs of all the other prime tangents would necessarily be incommensurable to the 
radius. 92 But, from what we have seen above, 93 this only one is also excluded from 
the possibility of having a rational arc.

90 This other way is actually quite old, at least as old as Euclid’s Elements, where the author proves 
by using the same reasoning that . «prime numbers are more than any assigned multitude of primer 
numbers. » (Heath II 1908, p. 412). Euclid is very careful with the language and avoids any reference 
to actual infinity (avoiding affirmations of the style . «there are infinitely many prime numbers. »), 
taboo in the Greek world, but although the format this reasoning takes in the hands of Lambert is the 
same (. «And whenever a finite number is supposed, it will be found in the same way that there are 
more. »), for the Swiss it means. «...another way to find an infinite number. ». It cannot be stated with 
certainty, but it seems to indicate not only Lambert’s acceptance of actual infinity, but also the fact 
that for him a potential infinity already presupposes an actual infinity. Both things are not trivial if 
we take into account the time. Cantor will insist on this idea a century later (see Bermúdez (2009, 
pp. 432, 448, 450, 462, 469)). In addition, it is worth mentioning that in the fourth part of Anlage 
zur Architektonik Lambert devoted an extensive section to the concept of infinity cf. Lambert (1771, 
pp. 547ff.). I am grateful to one of the anonymous reviewers for bringing this point to my attention. 
91 Actually the fact that it is rational is only due to the tangents of .ω and . ϕ being rational, as 
established in §. 53. The reference to §. 62 seems to be superfluous. 
92 This is because otherwise they would be commensurable with each other, which contradicts 
§. 64. 
93 He refers to §. 50. 
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§. 69. The tangent of.45◦ being prime (§. 61.) & being found in the trigonometric 
tables, 94 I will further note as a corollary that this is the only prime tangent, & at the 
same time the only rational tangent found there. The reason is that all the arcs whose 
tangents are indicated in these tables are commensurable with each other, without 
another multiple of.45◦ being found there other than the angle of.90◦, whose tangent 
is infinite. 

§. 70. I shall also observe that, the cosine of any angle .ω being rational, the 
cosine of any multiple is equally rational. 95 This circumstance makes that the same 
reasoning that we have exposed in relation to the tangents, can be applied with a few 
changes to the cosines. Prime cosines will be found as we have found prime tangents, 
& the arcs of the prime cosines will be equally incommensurable with each other; so 
that, when it is possible to find a prime cosine whose arc is rational, this would still 
be the only one that could be found, since, similarly, the arcs of all the other prime 
cosines would be irrational. 

§. 71. This is not the same for the sines 96 since, given any rational.sinω, there are 
in general no more rational sines than .

∫
3ω, .

∫
5ω, .

∫
7ω &c.; but the .sin 2ω, .

∫
4ω, 

.
∫
6ω &c. are not always so, unless .cosω is also rational, thus if one wants to find 

prime sines here as well, one will have to do it in another way from the one we have 
done in relation to the tangents. 

§. 72. 97 But, without dwelling on it, I will return to the continued fraction found 
above 

. tan v = 1

ω − 1

3ω − 1

5ω − 1

7ω − 1

9ω − 1 &c.

We have seen that all the fractions 

.
1

ω
,

3ω

3ω2 − 1
,

15ω2 − 1

15ω3 − 6ω
, &c.

94 Lambert may be referring to his trigonometric tables included in Lambert (1768/1770). 
95 This follows from the multiple angle formula for cosine. The reasoning applied here to the cosine 
cannot be transferred —as explained in the next point (§. 71)— to the sine. Without going into 
details, everything follows from the formulas of the multiple angle, which, by the way, were known 
since Viète Boyer (1968, p. 393). 
96 Lambert interchangeably uses. «sin. » and. «. 

∫
» to represent the sine. 

97 Lambert makes here some remarks on the convergents of the continued fraction for .tan v, and  
obtains the continued fraction for the.cot v. 
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that it provides do not approximate the value of the tangent of . v but by default, 
inasmuch as they are all smaller than this tangent. But, since it must be possible 
to find similar fractions, which, approaching the tangent, do so by excess, I set out 
to investigate it. Here again I will confine myself to giving the continued fraction 
containing alternately & the ones & the others. Here it is 98

. tan v = 1

0 + 1

(ω − 1) + 1

1 + 1

(3ω − 2) + 1

1 + 1

(5ω − 2) + 1

1 + &c.

This fraction continues to infinity, so that the quotients are 

. 0, (ω − 1), 1, (3ω − 2), 1, (5ω − 2), 1, (7ω − 2), 1, (9ω − 2)

. · · · · · 1, ((2n + 1)ω − 2), 1 &c.

And the fractions that approximate the value of the .tang v are 

. 
1

ω − 1
,

1

ω
,

3ω − 1

3ω2 − ω − 1
,

3ω

3ω2 − 1
,

15ω2 − 3ω − 1

15ω3 − 3ω2 − 6ω + 1
,

. 
15ω2 − 1

15ω3 − 6ω
, &c.

The first, .3rd, .5th, .7th &c. ones are bigger than .tang v, & the  .2nd, .4th, .6th &c, ones 
are smaller, & the same as those we found above (§. 22.). I will not stop to give the 
proof, since this continued fraction can be found in the same way that we have found 
the one we have used so far, & which is much simpler. I will only observe, hence, 
that the first quotient here being.= 0, in order to eliminate it we shall do nothing but 
to turn the fraction upside down so that it expresses the cotangent of . v, since 

.cot v = 1

tang v
.

98 See the note by A.S. in Appendix C. 
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Thus we shall have 

. cot v = 1

(ω − 1) + 1

1 + 1

(3ω − 2) + 1

1 + 1

(5ω − 2) + 1

1 + 1

(7ω − 2) + 1

1 + &c.

§. 73. Let us now compare the circular transcendental quantities with the loga-
rithmic quantities that are analogous to them. 99 Let. e be the number whose hyperbolic 
logarithm 100 is .= 1. And we know that if in the two series that we have used above 
(§. 4.) 

. sin v = v − 1

2 · 3v3 + 1

2 · 3 · 4 · 5v5 − 1

2 · 3 · 4 · 5 · 6 · 7v7 + &c.

cos v = 1 − 1

2
v2 + 1

2 · 3 · 4v4 − 1

2 · 3 · 4 · 5 · 6v6 + &c.

99 It is from this moment and up to the point §. 78 that Lambert analyzes the connection between the 
circular and hyperbolic trigonometric functions (although he will continue to show this connection in 
the following points), functions that actually acquire these names in the Opuscula ad res physicas et 
mathematicas pertinentium (1757–1762) by Vincenzo de Riccati (Lambert will use these names for 
the first time in  Observations trigonometriques of 1768). According to Lambert, such relationship 
must exist, not only because of the similarity between their series expansions, which he shows 
at this very point, but also because a simple change of variable, namely, .u = v

√−1, allows us  
passing from one to another (§. 74). . «But here the issue is to show how far this affinity can be 
developed independently of the imaginary quantities. » (§. 75), and such affinity comes from the fact 
that circular trigonometric functions parameterize the circumference and hyperbolic trigonometric 
functions parameterize the equilateral hyperbola (§. 78), an idea he credits to . «Mr. de Foncenex. »
(§. 74). This is demonstrated in §. 78 (for more details I refer to Barnett (2004), who will be quoted 
again in the following points). Furthermore, using the similarity between a certain continued fraction 
obtained at this very point §. 73 with that for .tan v, he concludes by applying some properties of 
continued fractions that he does not make explicit, that. «. x and.ex will never be two rational quantities 
at the same time. » (§. 74), that is: 

. x ∈ Q ⇒ ex
�∈ Q,

generalizing the result that Euler had first obtained in 1737/1744 (.e �∈ Q) Euler  (1744). Lambert 
mentions this again in §. 81. 
100 By hyperbolic logarithm he is referring to what we call natural logarithm. Euler makes this clear 
in Chap. 7 of his Introductio in Analysin Infinitorum: 

When this base is chosen [. e], the logarithms are called natural or hyperbolic. The latter name 
is used since the quadrature of a hyperbola can be expressed through these logarithms. 

(Euler I 1748, p. 97).
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all signs are taken to be positive, they become 

. 
ev − e−v

2
= v + 1

2 · 3v3 + 1

2 · 3 · 4 · 5v5 + 1

2 · 3 · 4 · 5 · 6 · 7v7 + &c.

ev + e−v

2
= 1 + 1

2
v2 + 1

2 · 3 · 4v4 + 1

2 · 3 · 4 · 5 · 6v6 + &c.

Now treating these last two series in the same way that we have treated the first two 
(§. 4. & suiv. 101) the operation will only differ in the signs, which for the present 
case will all be positive. Since we can easily convince ourselves of this, I will not 
get into details. We hence shall have 102

. 
ev − e−v

ev + e−v
= 1

1 : v + 1

3 : v + 1

5 : v + 1

7 : v + 1

9 : v + 1

11 : v + 1

13 : v &c.

§. 74. And since 

. 
ev − e−v

ev + e−v
= e2v − 1

e2v + 1
,

we see that doing .2v = x , we shall have  

. 
ex − 1

ex + 1
= 1

2 : x + 1

6 : x + 1

10 : x + 1

14 : x + 1

18 : x + &c.

from where we draw

101 Abbreviation of. «suivants. » (next, following). 
102 See the note by A.S. in Appendix C. 
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. 
ex + 1

2
= 1

1 − 1

2 : x + 1

6 : x + 1

10 : x + 1

14 : x + &c.

or 103

. 
ex − 1

2
= 1

(2 : x)1 + 1

6 : x + 1

10 : x + 1

14 : x + 1

18 : x + &c.

We see that these expressions offer consequences similar to those that we have 
deduced above from the formula 

. tang v = 1

ω − 1

3ω − 1

5ω − &c.

We shall also found here that . v &. ev , like. x &. ex , will never be rational quantities at 
the same time. Thus I will not stop to reiterate the deduction. The issue is rather to 
interpretate the formulas that we have just exposed. I observe hence that they must 
have, in relation to the equilateral hyperbola, a totally analogous meaning to that of 
the fraction 

. tang v = 1

ω − 1

3ω − &c.

in relation to the circle. Since, in addition to knowing that the expressions 

103 There is an error here. It should be written as follows: 

.
ex − 1

2
= 1

(2 : x)−1 + 1

6 : x + 1

10 : x + 1

14 : x + 1

18 : x + &c.



132 5 An Annotated Translation of Lambert’s Mémoire (1761/1768)

. eu + e−u

. eu − e−u

by doing .u = v
√−1, yield the circular quantities 104

. ev
√−1 + e−v

√−1 = 2 cos v,

ev
√−1 + e−v

√−1 = 2 sin v · √−1.

Mr. de Foncenex has also shown, in a very simple & very direct way, how this affinity 
is found by simultaneously comparing the circle & the equilateral hyperbola which 
have the same center & the same diameter. See Miscell. Society. Taurin. Tom. I.p. 
128. suiv. 105

§. 75. But here the issue is to show how far this affinity can be developed 
independently of the imaginary quantities. 106 Let therefore be C the center, CH the 
axis, CA the semi-diameter of the equilateral hyperbola AMG & of the circle AND, 
CF the asymptote, AB perpendicular to the axis, & at the same time the common 

104 There is an error. It should be written as follows: 

. ev
√−1 + e−v

√−1 = 2 cos v

ev
√−1−e−v

√−1 = 2 sin v · √−1.

105 The referred article is Réflexions sur les quantités imaginaries. 
106 Here begins the proof of the aforementioned analogy. In this regard, it is necessary to make a few 
comments. First of all, Lambert includes a figure on the last page with all the data he deals with in the 
text. Secondly, concerning the notation, when he writes, for example,.cot ϕ2, he is actually referring 
to.(cot ϕ)2. Finally, something that he comments later, almost at the end of the point §. 77 but that it 
would be helpful to take into account from the beginning: the argument of the circular functions, the 
(circular) angle, is defined through the circumference. Whether it is measured in degrees or radians 
(let us think of radians), its value depends on the circumference. What would be the analogous in 
the case of the hyperbola? The idea is to change the argument of the circular trigonometric functions 
and make them depend on the area defined by the angle and the circumference (ANCA in Lambert’s 
drawing) instead of the angle (MCA.= ϕ). If we represent this angle by . v and, as said before, we 
think in radians, the arc of circumference that defines will measure.v · r = v (Lambert thinks of a 
circle with radius 1). This being the case, the area of the circular sector determined by said angle 
will be: 

. ANC A = vr2

2
= v

2
, from where v = 2 · ANC A

In this way, the argument of the c.t.f. is twice the area of the circular sector determined by the points 
on the circumference, and therefore in complete analogy, the argument of the h.t.f. will be twice 
the area of the hyperbolic sector determined by the points on the hyperbola: 

.u = 2 · AMC A
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tangent to the circle & to the hyperbola. Draw from the center C two straight lines 
CM, C. m, infinitely close to each other, & lower the points of intersection M, . m, N,  
. n, on the ordinate axis MP, .mp, NQ, .nq. Finally let the radius be AC.= 1. Let us do 
the angle MCA.= ϕ, & be  107

for the hyperbola for the circle 
the abscissa CP.= ξ · · · .· · · CD. = x
the ordinate PM.= η · · · .· · · QN.= y, 
the segment AMCA.= u : 2 · · . ·· ANCA. = v : 2

& will be 

.tangϕ = η

ξ
· · · .· · tangϕ = y

x
, 

.1 + ηη = ξξ = ηη · cot ϕ2 · .·1 − yy = xx = yy · cot ϕ2, 
.ξξ − 1 = ηη = ξξ · tangϕ2 · .·1 − xx = yy = xx tangϕ2, 

.CM2 = ξ2 + η2 = ξ2(1 + tangϕ2) .·CN2 = x2 + y2 = x2(1 + tϕ2), 

.= 1 + tϕ2

1 − tϕ2
.= 1 + tϕ2

1 + tϕ2
=1. 

Hence 

.+du = dϕ ·
(
1 + tϕ2

1 − tϕ2

)
= dtϕ

1 − tϕ2
.· + dv = dϕ = dtϕ

1 + tϕ2
, 

.+dξ = tϕ · dtϕ

(1 − tϕ2)3:2 · · · .· − dx = tϕ · dtϕ

(1 + tϕ)3:2 , 

.+dη = dtϕ

(1 − tϕ2)3:2 · · · .· + dy = dtϕ

(1 + tϕ)3:2 , 

.ξ = 1√
(1 − tϕ2)

· · · .· · x = 1√
1 + tϕ2

, 

.η = tϕ√
(1 − tϕ2)

· · · .· · y = tϕ√
1 + tϕ2

, 

Hence 
.+dξ : du = η · · · · .· − dx : dv = y, 
.+dη : du = ξ · · · · .· + dy : dv = x , 
.+dξ = dη · tangϕ · · .· − dx : dy = tangϕ. 

§. 76. 108 Since the angle. ϕ is the same for the hyperbola & for the circle, it follows 
from the last two equations that 

. tangϕ = dξ : dη = −dx : dy = η : ξ = y : x .

Thereby the angles M.mp, N.nq, are equal. Which gives 

.Mm : Nn = dξ : −dx = dη : dy.

107 Lambert does not specify any of the calculations included in the table. Some are straightforward 
while others require more elaboration (see Barnett (2004, p. 22) for some example), as well as 
awareness on the part of the modern reader about the use and interpretation of differentials at the 

time. For instance, the expression.
dξ

dη
(see §. 76.) represents for Lambert a quotient, which is what 

the definition of differential actually corresponds to in the Leibnizian calculus (and from where the 
modern notation to denote the derivative arises). 
108 At this point, some similarities between the circle and the hyperbola are noted. 
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And the characteristic triangles M.mμ, N.nν, are similar. 109 Finally, since . Cnq =
Cmp, &.Nnq = Mmp, we shall have.Cnq + Nnq = Cmp + Mmp = 90◦. Hence by 
drawing the normal .mV, we shall have 110 Vmq .+ Mmq.= .90◦, hence Vmq .= Cmq. 
Thus the normal mV prolonged to the axis AC is equal to Cm, just as in the circle 
the normal Cn is equal to Cn. 111 Here is therefore that upon which everything that 
is real in the comparisons that we have made between the circle & the hyperbola is 
based. 112

§. 77. Afterward, if for the hyperbola we want to express. ξ , . η by means of. u, we  
shall easily found that, by using the infinite series, their form must be 113

. ξ = 1 + Au2 + Bu4 + Cu6 + &c.

η = au + bu3 + cu5 + du7 + &c.

Since, by doing .u = 0, we have  .ξ = 1, .η = 0. In addition, by taking . u infinitely 
small, . ξ will increase as much as . u2, &. η will increase as much as . u, since the angle 
at A is right, & the osculating radius of the hyperbola in A is . =AC. Finally, by 
taking . u to be negative, all the values of . ξ will be the same as for . u being positive, 
from which it follows that the abscissa . ξ must be expressed by the even dimensions 
of . u. And by taking . u to be negative, the values of . η will be the same ones, but 
negative. Therefore . η must be expressed by the odd dimensions of . u. Therefore, all 
that remains is to determine the coefficients. This is what the two formulas found 
above will serve us for 

. dξ : du = η,

. dη : du = ξ.

We shall therefore have, by differentiating the first series 

. dξ : du = 2Au + 4Bu3 + 6Cu5 + · · · · · · +μ · Muμ−1

109 Taking into account the previous relationship, the equality between M.mp and N.nq seems to be 
based on the similarity with CMP and CNQ respectively, which share the angle. ϕ. 
110 There is an error here. It should be:. «Vmp .+ Mmp .= 90. ◦, and so Vmp .= Cmp. ». 
111 There is an error here. It should be:. «just like in the circle the normal on n is equal to Cn . ». 
112 He goes on to address the central part of the issue (§. 77. y §. 79.). 
113 Let us think.ξ ≡ ξ(u) and.η ≡ η(u) as functions of. u. Although he does not mention it, Lambert 
is likely to be drawing on Taylor’s expansion around. 0 of both.ξ(u) and.η(u) (. «... taking. u infinitely 
small .... » he says in the following lines, and explains that. «... doing.u = 0, we have.ξ = 1,.η = 0. »). 
The reason why only the even powers appear in the first expression and the odd powers in the 
second one, is that the first function is even and the second odd, since the abscissa does not vary 
if the argument is negative (this means that the area falls below the abscissa axis), but the ordinate 
changes its sign, that is: 

.ξ(−u) = ξ(u) and η(−u) = −η(u)
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that must be .= η, hence 

. dξ : du = au + bu3 + cu5 + · · · · · · +m · uμ−1

Therefore by comparing terms 

. 2A = a,

4B = b,

6C = c,

&c.

μM = m.

But, differentiating . η, it must also be .dη : du = ξ , hence 

. dη : du = a + 3bu2 + 5cu5 + · · · · · · (μ − 1) · muμ−2

= 1 + Au2 + Bu4 + · · · · · · · · ·L · uμ−2

Therefore by comparing terms 

. q = 1,

3b = A,

5c = B,

&c.

(μ − 1)m = L.

By means of these equations we shall have 

.a = 1,

A = 1

2
a = 1

2
,

b = 1

3
A = 1

2 · 3 ,

B = 1

4
b = 1

2 · 3 · 4 ,

c = 1

5
B = 1

2 · 3 · 4 · 5 ,

C = 1

6
c = 1

2 · 3 · 4 · 5 · 6 ,
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&c. 

m = 1 

(μ − 1) 
L = 1 

2 · 3 · 4 · · · ·(μ − 1) 
, 

M = 
1 

μ 
· m = 1 

2 · 3 · 4 · · · · · ·μ 
. 

Thus we shall have 

. ξ = 1 + 1

2
u2 + 1

2 · 3 · 4u4 + 1

2 · 3 · 4 · 5 · 6u6 + &c.

η = u + 1

2 · 3u3 + 1

2 · 3 · 4 · 5u5 + 1

2 · 3 · 4 · 5 · 6 · 7u7 + &c.

Hence here is the abscissa . ξ , & the ordinate . η expressed by the letter . u, which is 
twice the area of the hyperbolic segment AMCA. Now we known that if instead of. u, 
we take. v, which is twice the circular segment ANCA, the abscissa. x , & the ordinate 
. y, both circular, are 114

. x = 1 − 1

2
v2 + 1

2 · 3 · 4v4 − 1

2 · 3 · 4 · 5 · 6v6 + &c.

y = v − 1

2 · 3v3 + 1

2 · 3 · 4 · 5v5 − 1

2 · 3 · 4 · 5 · 6 · 7v6 + &c.

two series which in form do not differ from the two preceding ones except by the 
alternative change of signs. 

§. 78. And since we have (§. 73.) 

. 
eu + e−u

2
= 1 + 1

2
u2 + 1

2 · 3 · 4u4 + &c.

eu − e−u

2
= u + 1

2 · 3u3 + 1

2 · 3 · 4 · 5u5 + &c.

we see we shall have 

. ξ = eu + e−u

2
,

114 There is an error in the second formula. It should be written as follows: 

.x = 1 − 1

2
v2 + 1

2 · 3 · 4v4 − 1

2 · 3 · 4 · 5 · 6v6 + &c.

y = v − 1

2 · 3v3 + 1

2 · 3 · 4 · 5v5 − 1

2 · 3 · 4 · 5 · 6 · 7v7 + &c.
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. η = eu − e−u

2
,

& that consequently these quantities express the abscissa .ξ = CP, & the ordinate 
.η = PM of the hyperbola. 

§. 79. 115 And since .η : ξ = tangϕ, we also see that 

. tangϕ = eu − e−u

eu + e−u
,

therefore by §. 81. 116

. tangϕ = 1

1 : u + 1

3 : u + 1

5 : u + 1

7 : u + 1

9 : u + 1 &c.

And since the same tangent is also 

. tang v = tangϕ = 1

1 : v − 1

3 : v − 1

5 : v − 1

7 : v − 1

9 : v − 1 &c.

we see that this tangent is found by these two continued fractions, which differ in 
form only in their signs: it is only a matter of using.u = 2AMCA when the first one 
is used, instead of using.v = 2ANCA in order to have the same tangent by means of 
the second one. Hence here it is the analogy that had to be found independently of, 
& without incorporating, the imaginary quantities. 

§. 80. Now we can draw in very clear terms the consequence that the area of 
the hyperbolic sector AMCA, as well as that of the corresponding circular sector 
ANCA, will be an irrational or incommensurable quantity to the square of the radius 
AC, as long as the angle . ϕ, which is the one formed by one & the other of the two

115 A new note to this analogy:.tanh u = tan v. 
116 This call to a later point is strange, considering also that it is something that appears in the last 
part of §. 73 (the only difference is the argument of the functions). 
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sectors with the center C, has a rational tangent, & that conversely this tangent will 
be irrational as long as one of the two sectors is a rational quantity. 117

§. 81. There is an absolutely similar consequence to be drawn in relation to the 
continued fraction 118 (§. 74.) 

. 
eu + 1

2
= 1

1 − 1

2 : u + 1

6 : u + 1

10 : u + 1

14 : u + 1

18 : u + &c.

which transforms into 

. 
eu + 1

2
= 1

1 + 1

−2 : u + 1

−6 : u + 1

−10 : u + &c.

& from where we draw for . u negative 

. 
eu + 1

2
= 1

1 + 1

2 : u + 1

6 : u + 1

10 : u + 1

14 : u + &c.

117 New irrationality results based on the fact that .tanh u = tan v. It follows from this, on the one 
hand, that: 

. If tan ϕ ∈ Q ⇒ u, v �∈ Q,

and, on the other hand, that a sufficient condition for the irrationality of the hyperbolic tangent: 

. If u or v ∈ Q ⇒ tan v = tanh u �∈ Q

118 This consequence is —as it is written at the end of this point— a new result of irrationality, in 
this case for natural logarithms: 

.If u ∈ Q ⇒ ln u �∈ Q
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These fractions let us know to what extent the irrationality of the number 
.e = 2, 71828182845904523536028 · · · · is transcendental, inasmuch as none of its 
powers or roots are rational. 119 Since . u & .eu cannot be a rational quantity at the 
same time. Now, since. u is the hyperbolic logarithm of. eu , it follows  that  every ratio-
nal hyperbolic logarithm is that of an irrational number, & that conversely, every 
rational number has an irrational hyperbolic logarithm. 

§. 82. But now let us see what.eu &.e−u mean in the figure. Let us return for this 
effect to §. 78. where we found the two formulas 

. ξ = eu + e−u

2
,

. η = eu − e−u

2
,

hence by taking the sum & the difference, we shall have 

. eu = ξ + η,

. e−u = ξ − η.

But the asymptotes CF, CS, forming a right angle between them, which the axis CH 
cuts into two equal parts, will give 

. ξ = CP = PS = PR,

η = PM,

hence 
. ξ + η = SM,

. ξ − η = MR,

& therefore 
. eu = SM,

.e−u = MR,

119 Again, as he did at the beginning of this Mémoire at point §. 2 (and in fact in more places), 
Lambert again uses an expression of the style. «to what extent the irrationality of a certain quantity 
is transcendental. ». Contrary to the already mentioned cases, he does provide here an idea of what 
this means:. «inasmuch as none of its powers or roots are rational. », which in particular means that 
.en /= q, with . q rational, that is, . e is not the root of a wide variety of algebraic equations. Implicit 
in this sentence —let us apply a. «proof by simplicity. » in the style of the one he himself uses at the 
beginning of this article— we therefore find a transcendence conjecture for. e. 
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from where we see at the same time that we shall have 

. eu · e−u = SM · MR = 1

We see, moreover, that while we have 

. eu = SM,

. e−u = MR,

. AB = 1,

by taking logarithms we shall have 

. u = log
SM

AB
= log

AB

MR
.

And since . u, . eu , could not be rational at the same time, we see the same thing in 
relation to the area of the sector AMCA.= 1

2u, & the ordinates SM, MR. 

§. 83. 120 We also have (§. 75.) the differential 

. du = d tangϕ

1 − tϕ2
,

whose integral turns out to be 121

. 2u = log
1 + tϕ

1 − tϕ
= log .tang.(45◦ + ϕ) = l.tang SCM,

or 

. 2u = − log
1 − tϕ

1 + tϕ
= −l.tang(45◦ − ϕ) = −l.tangRCM.

Let us take the first of these formulas 

. 2u = log

(
1 + tϕ

1 − tϕ

)
,

& it will put us in the situation of finding also in relation to the hyperbolic sectors, 
that which we have seen to be the prime tangent in relation to the circular sectors. 
Here it is how.

120 What he is going to do now (§. 83–§. 87) is to show how the concept of prime tangent applies 
equally to the hyperbolic case. The point §. 87 enunciates all the derived theorems but translated to 
the hyperbolic case, which shows a new connection between the c.t.f. and the h.t.f. 
121 Lambert will be using both. «.log» and. «l.. » to denote the logarithm. 
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§. 84. Let us first consider that the hyperbolic sector AMCA increases with the 
angle.ϕ =MCA, in such a way that it becomes infinite, when.ϕ = 45◦. It is therefore 
clear that given one of these sectors, others can be found which are any multiples 
of it, & any parts of it, or exceed it by any quantity. Now, to each of these sectors 
corresponds an angle MCP by means of which it is formed, & the tangent of this 
angle being .= ϕ, and the sector .= 1

2u, we just saw that 

. 2u = log
1 + tϕ

1 − tϕ
.

§. 85. Let now be three sectors . 12u, 1
2u', 1

2u'', such that the third is the sum of 
the first two. Also let .ϕ, ϕ', ϕ'' be the corresponding angles. And we shall have 

. 2u = log
1 + tϕ

1 − tϕ
,

. 2u' = log
1 + tϕ'

1 − tϕ' ,

. 2u'' = log
1 + tϕ''

1 − tϕ'' .

Therefore it must be 

. 
1

2
u'' = 1

2
u' + 1

2
u,

and equally 

. log
1 + tϕ''

1 − tϕ'' = log
1 + tϕ'

1 − tϕ' + log
1 + tϕ

1 − tϕ
,

which gives 

. 
1 + tϕ''

1 − tϕ'' = 1 + tϕ'

1 − tϕ' · 1 + tϕ

1 − tϕ
,

from where it follows 

. tϕ'' = tϕ + tϕ'

1 + tϕ · tϕ' ,

& reciprocally for the difference 

. tϕ' = tϕ'' − tϕ

1 − tϕ · tϕ'' .

These two formulas do not differ more than in the signs in relation to those that we 
have found for the sectors, or the circular arcs, & allow us equally to conclude that 
if the tangents corresponding to two hyperbolic sectors are rational, the tangents
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corresponding to the sector equal to the sum & the difference of these two sectors 
will be equally rational. 

§. 86. This proposition alone is enough to show that everything we have said 
above (§. 52 ... 71.) in relation to the circle, will apply equally to the hyperbola. We 
only have to use an abbreviated way of speaking, calling tangent of any hyperbolic 
sector ACMA, the tangent of the angle ACM, which is. =AT, the radius being AC.= 1. 
Afterward, it should be noted that all the sectors discussed here must have the AC axis 
as a common origin, as the sectors MCAM,. mCA. m do. Thus, for example, the sector 
. mCM not touching the axis, must be replaced by another one that is equal, & that 
is contiguous to the axis AC, if we want to have the angle . ϕ and the corresponding 
tangent. It is clear that this observation is not necessary when it comes to the circle, 
since any diameter of the circle can be considered as an axis. 

§. 87. It is therefore in this sense that I will say that the hyperbola has an infinity 
of prime tangents, that the sectors of all these prime tangents are incommensurable 
with each other & to unity, that the tangent of a sector being prime, there are no 
more rational tangents than those of the multiples of that sector: That every rational 
tangent is either itself prime, or its sector is a multiple of a sector whose tangent 
is prime. &c. Since the proof of these theorems would be but a repetition of those 
I have given for the circle, I will omit them all the more since I have not reported 
these theorems but to show again at this point the analogy between the circle & the 
equilateral hyperbola. 

§. 88. 122 Let us compare again the circular sector ANCA, & the hyperbolic sector 
AMCA. Mr. de Foncenex, in the Memoire cited above (§. 74.) has shown that by 
using imaginary quantities, these two sectors turn out to be in the ratio 1 to .

√−1, 
which is purely imaginary. Now, what will be the real reason? This is what we shall 
find by expressing one of these sectors through the other. For this purpose we shall 
use the two series 123

122 In Barnett (2004, p. 24) it can be read: 

Foncenex himself went no further in exploring “this affinity” than to conclude that, since 
.
√

x2 − r2 = √−1
√

r2 − x2, “the circular sectors and hyperbolic [sectors] that correspond 
to the same abscissa are always in the ratio of. 1 to.

√−1”. It is this use of an imaginary ratio 
to pass from the circle to the hyperbola Lambert seemed intent on avoiding. 

This is what this point is about. In any case, it is not a petty thing to make a nuance. No doubt Lambert 
lives in a specific historical era, and in this way we must understand this type of elusiveness in the 
use of complex quantities. But as an individual with a concrete personality and thought, and indeed 
with an open mind, Lambert was a person. «without any fear of the imaginary. » (Engel et al. 1895, pp. 
145–146) unlike his contemporaries, as corroborated by his conjecture on the sphere of imaginary 
radius (see the correspondent appendix). An example of such an internal struggle between their 
absurd character —as far as their existence is concerned— and their usefulness, which can be found 
in several authors following the first appearance of imaginary quantities, is reflected in a letter to 
Kant:. «The sign.

√−1 represents a non-entity that is not thinkable, and yet it can very well be used 
to find theorems. » (the reference of F. Engel and the letter to Kant, by José Ferreirós).
123 There is an error here. It should be: 
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. v = tϕ − 1

3
tϕ3 + 1

5
tϕ5 − 1

7
tϕ7 + &c.

tϕ = v − 1

3
u3 + 2

15
u5 − 17

315
u7 + &c.

which are easily found by the differential formulas given above (§. 75.). By substi-
tuting hence the value of the second of these series in the first one, we shall have, 
after reducing, 

. v = u − 2

3
u3 + 2

3
u5 − 244

315
u7 + &c.

& reciprocally 

. u = v + 2

3
v3 + 2

3
v5 + 244

315
v7 + &c.

These two series only differ in relation to signs, having the same coefficients & 
exponents. If in the first of these series we put 

. u = v
√−1,

we obtain 124

. v = √−1 ·
(

v + 2

3
v3 + 2

3
v5 + 244

315
v7 + &c.

)

which means 
. v = u

√−1.

Therefore, by means of an imaginary hyperbolic sector, we obtain an imaginary 
circular sector, & reciprocally. 

§. 89. All that I have just shown about the circular & logarithmic transcendental 
quantities seems to be based on much more universal principles, but which are not 
yet sufficiently developed. However, here is what may serve to give some idea. It 
is not enough to have found that these transcendental quantities are irrational, that 
is, incommensurable to unity. 125 This property is not unique to them. 126 Since, in 
addition to the fact that there are irrational quantities that can be formed at random, & 

.v = tϕ − 1

3
tϕ3 + 1

5
tϕ5 − 1

7
tϕ7 + &c.

tϕ = u − 1

3
u3 + 2

15
u5 − 17

315
u7 + &c.

124 See the note by A.S. in Appendix C. 
125 The first thing to note is that the term. «transcendental. » does not yet have the modern meaning 
here, since it would not be necessary —from the modern point of view— to demonstrate that a 
transcendental quantity is irrational, as it is by definition. 
126 The second key point is to understand appropriately this phrase. What Lambert is saying is that 
there are certain quantities —the . «transcendental. » quantities— which by their special nature are 
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which are thus hardly within the competence of analysis, there are still an infinity of 
others that we call algebraic: 127 & such are all the radical irrational quantities, like 

.
√
2,.

√
3,. 3

√
4 & c..

√(
2 + √

3
)
& c. & all the irrational roots of algebraic equations, 

such as, for example, those of the equations 

. 0 = xx − 4x + 1,

0 = x3 − 5x + 1,

&c.

I will call the ones & the others radical irrational quantities, & here is the theorem 
which I think can be proved. 128

not sufficiently well represented under the label. «irrational. », which leads him to make a distinction 
between irrationals. But: how does he make this distinction? 
127 Here we have how Lambert makes this distinction: 

. quantities «formed at random» vs. algebraic quantities

However, from Lambert’s perspective —as he makes it clear in the following lines—, algebraic 
quantities are no longer those that can be expressed through a finite combination of algebraic 
operations, following the Leibnizian and Eulerian tradition, but quantities that are roots of algebraic 
equations. Therefore, those quantities. «formed at random. »,. «transcendental. » in the classical sense 
of the term —that is to say, non-expressible quantities—, are the quantities that are not roots of 
algebraic equations. Consequently, the term transcendental here acquires its modern meaning and 
therefore Lambert’s distinction between irrationals is the modern one: 

.transcendental quantities vs. algebraic quantities

128 Two comments are worth making here. The first is a call to be cautious, for despite the enthusiasm 
one may feel when witnessing Lambert’s distinction between algebraic and transcendental quantities 
in the modern sense of the terms, everything seems to indicate that although he explicitly identifies 
algebraics with roots, he implicitly continues to identify algebraics with radicals, that is, with the 
classical idea of . «expressible quantities. ». What happens is that he uses as a yardstick to make 
the classification among irrationals the idea of . «being root. » and not that of . «being expressible. », 
since it is simpler and more manageable (this idea is also expressed in Serfati (2018, pp. 182– 
183), although the interpretation I give in this note seems to differ slightly from the one provided 
there). The clearest call for attention in this direction is the change in the name that he gives to 
algebraics:. «I will call the ones & the others radical irrational quantities.... », precisely the name he 
gives to those quantities that are explicitly radicals. Another call for attention is historical, being 
very likely that Lambert was assuming the —for us— old idea that every equation is solvable by 
radicals, a general feeling at the time until the end of the 18th century, and that therefore he was 
identifying . «root. » with . «expressible by radicals. » Sorensen (2010, p. 2) and specifically Sorensen 
(2010, Chap. 4: pp. 66, 29–32) (this is also mentioned in Ayoub (1980, p. 262) where it is said 
that apparently nobody suspected that, in particular, the equation of degree 5 could not be solved. 
Furthermore, he comments on the basis of the (vague) approval of both the Royal Society and 
Cauchy, and Lagrange’s reaction, that the mathematical community was not prepared to accept 
such a result, hence the general non-acceptance of Ruffini’s work Ayoub (1980, pp. 271–272)). The 
second comment is that independently of this, this theorem, . «which I think can be proved. », is a  
clear conjecture of transcendence in the modern sense of the term. 
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§. 90. I hence say that no circular & logarithmic transcendental quantity can 
be expressed through some radical irrational quantity, which is related to the same 
unit, & into which no transcendental quantity enters. 129 This theorem seems to must 
be proved from the fact that transcendental quantities depend on 

. ex ,

where the exponent is variable, while radical quantities suppose constant exponents. 
Thus e.g. 130 an arc of a circle being rational or commensurable to the radius, the 
tangent, which we have seen to be irrational, cannot be a square root of a rational 
quantity. Since if the proposed arc is .= ω, & we  do .tangω = √

a, we shall have 

. tω2 =
∫

ω2

cosω2
= 1 − cos 2ω

1 + cos 2ω
= a,

from where it follows 

. cos 2ω = 1 − a

1 + a
,

but this quantity being rational, it follows that the arc .2ω is irrational, which is 
contrary to the hypothesis, it is clear that by doing .tangω = √

a, the quantity . a
cannot be rational, & that therefore the tangent of any rational arc is not a square 
root of a rational quantity. 

§. 91. Once this theorem is proven in all its universality, it will follow that 
the circumference of the circle cannot be expressed by some radical quantity, nor 
by some rational quantity, there will be no way to determine it by some geometric 
construction. Since everything that can be constructed geometrically corresponds to 
rational & radical quantities; 131 & it is far from being the case that the latter can be 

129 Based on what has been pointed out in the previous notes, this is a conjecture of transcendence 
for the type of quantities that he calls . «circular. » and. «logarithmic. », among which are . e and. π . In  
case more clarification was needed, Lambert writes in a letter to Holland: 

The way I have proved this [the irrationality of. π ] can be extended to the point that circular 
and logarithmic quantities cannot be roots of rational equations 

(quoted in Cantor IV (1908, p. 447, note 6)). 
130 In order to support his conjecture, he proves the following particular case: .tan v /= √

q, with. v

and. q rationals. The conclusion is that.tan v (with. v a rational quantity) is not a quadratic irrational. 
131 Here Lambert connects the (conjectured) transcendence of. π with the impossibility of squaring 
the circle: the circle cannot be squared because it would require that. π be geometrically constructed, 
which is not because it is transcendental. Serfati (2018, p. 183) sums up how correct and pioneering 
this reasoning is: 

The procedure described here is precisely the one that Wantzel, then Hermite, and then 
Lindemann will offer [...] Lambert appears here as an irreproachable visionary.
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indifferently constructed. 132 It is clear that it will be the same for all the arcs of circles 
where the length or the two extreme points are given, either by rational quantities 
or by radical quantities. Since, if the length of the arc is given, we shall have to find 
its two extreme points by using the chord, the sine, the tangent, or any other straight 
line that, in order to be constructed, will always be dependent on or reducible to one 
of the lines that I have just named. But if the length of the arc is given by rational 
or radical quantities, these lines will be transcendental, and thus irreducible to some 
rational or radical quantity. It will be the same if the extreme points of the arc are 
given, by which I mean by rational or radical quantities. Since, in this case, the length 
of the arc will be a transcendental quantity: which means irreducible to some rational 
or radical quantity, & therefore it does not admit any geometric construction. 133

References 

Ayoub, R. (1980). Paolo Ruffini’s contributions to the quintic. Archive for History of Exact Sciences, 
23(3), 253–277. 

Baltus, C. (2003). Continued fractions and the first proofs that pi is irrational. In Communications 
in the Analytic Theory of Continued Fractions (Vol. XI, pp. 5–24). 

Barnett, J. H. (2004). Enter, stage center: The early drama of the hyperbolic functions. Mathematics 
Magazine, 77(1), 15–30. 

Berggren, L., Borwein, J., & Borwein, P. (Eds.). (1997). Pi: A source book. New York: Springer. 
Bermúdez, C. G. (2009). Georg Cantor. Sistemas de números y conjuntos. Universidad de A Coruña. 
Bopp, K. (1924). Leonhard Eulers und Heinrich Lamberts Briefwechsel aus den manuskripten 

herausgegeben. Aus den Abhandlungen der Preussischen Akademie der Wissenschaften, Phys.-
Math. Klasse, Nr. 2, Berlin. 

Boyer, C. (1968). A history of mathematics. New York: Wiley International Edition. 
Brezinski, C. (1991). History of continued fractions and Padé approximants. Berlin: Springer. 
Bullynck, M. (2009). Decimal periods and their tables: A German research topic (1765–1801). 

Historia Mathematica, 36(2), 137–160. 
Calcut, J. S. (2006). Rationality of the tangent function. http://www2.oberlin.edu/faculty/jcalcut/ 
tanpap.pdf. 

Cantor, M. (1908). Vorlesungen über Geschichte der Mathematik, Vierter Band. Leipzig: B. G.  
Teubner. 

De Lagny, T. F. (1719/1721). Sur la Quadrature du Cercle, & sur la mesure de tout Arc, tout 
Secteur, & tout Segment donnè. Histoire de l’Académie Royale des Sciences (pp. 135–145). 
Paris: Imprimerie Royale. 

Engel, F., & Stäckel, P. (1895). Die theorie der parallellinien von Euklid bis auf Gauss: eine 
urkundensammlung zur vorgeschichte der nichteuklidischen geometrie. Leipzig: B. G. Teubner. 

Español, L., & Fernández Moral, E. (2008). Euler, Rey Pastor y la sumabilidad de series. Quaderns 
D’Història De L’Enginyeria (Vol. IX, pp. 183–203).

132 That is, everything that is constructible is algebraic, but not the other way around (Serfati 2018, 
p. 183). 
133 At the very end of this Mémoire, Lambert makes it clear that the term . «transcendental. »
denotes quantities that are not roots of equations, and that being transcendental implies not being 
constructible. 

http://www2.oberlin.edu/faculty/jcalcut/tanpap.pdf
http://www2.oberlin.edu/faculty/jcalcut/tanpap.pdf
http://www2.oberlin.edu/faculty/jcalcut/tanpap.pdf
http://www2.oberlin.edu/faculty/jcalcut/tanpap.pdf
http://www2.oberlin.edu/faculty/jcalcut/tanpap.pdf
http://www2.oberlin.edu/faculty/jcalcut/tanpap.pdf
http://www2.oberlin.edu/faculty/jcalcut/tanpap.pdf
http://www2.oberlin.edu/faculty/jcalcut/tanpap.pdf


References 147

Euler, L. (1744). De fractionibus continuis dissertatio. Commentarii academiae scientiarum 
Petropolitanae (Vol. 9, pp. 98–137). References to the English translation: Wyman, M. F., Wyman, 
B. F. (1985). An Essay on Continued Fractions. Mathematical Systems Theory, No. 18, 295–328. 

Euler, L. (1748). Introductio in analysin infinitorum, Tomus primus. Lausannæ. References to the 
English translation: Euler, L. (1988). Introduction to analysis of the infinite, Book I. John D. 
Blanton (Trans.). Berlin: Springer. 

Euler, L. (1785). De relatione inter ternas pluresve quantitates instituenda.Opuscula Analytica 2 (pp. 
91–101). References to the English translation: Euler, L. (2010). On Establishing a Relationship 
Among Three or More Quantities. Translated into English by Geoff Smith. http://eulerarchive. 
maa.org/. 

Ferreiróss, J. (2015). Mathematical knowledge and the interplay of practices. Princeton University 
Press. 

Heath, T. (1908). The thirteen books of Euclid’s elements, Translated from the text of Heiberg, Vol: 
II, Books III-IX. Cambridge: The University Press. 

Klein, M. (1983). Euler and infinite serie. Mathematics Magazine, 56, 307–314. 
Lambert, J. H. (1766/1770). Vorläufige Kenntnisse fürdie, so die Quadratur und Rectification des 
Circuls suchen. In Beyträge zum Gebrauche der Mathematik und deren Anwendung, Zweyter  
Theil (pp. 140–169). Berlin: Verlag der Buchhandlung der Realschule. 

Lambert, J. H. (1768/1770). Observations trigonométriques. In Mémoires de l’Académie royale des 
sciences de Berlin (pp. 327–354). 

Lambert, J. H. (1771). Anlage zur Architektonik oder Theorie des Einfachen und Ersten in der 
philosophischen und mathematischen Erkenntniß, Band 2. Riga: Johann Friedrich Hartknoch. 

Legendre, A. M. (1794). Éléments de géométrie, avec des notes (1st ed.). F. Didot (Paris). 
Mahoney, M. (2000). The mathematical realm of nature. In D. Garber & M. Ayers (Eds.), The 

Cambridge history of seventeenth-century philosophy. Cambridge: Cambridge University Press. 
Maor, E. (2013). Trigonometric delights. Princeton, N. J.: Princeton University Press. 
Schubring, G. (2005). Conflicts between generalization, rigor, and intuition. Number concepts 

underlying the development of analysis in 17–19th century. France and Germany. New  York:  
Springer. 

Serfati, M. (1992). Quadrature du cercle, fractions continues et autres contes. Sur l’histoire des 
nombres irrationnels et transcendants aux XVIII et XIX siècles. Brochure A.P.M.E.P., No. 86. 

Serfati, M. (2018). Leibniz and the invention of mathematical transcendence. Stuttgart: Franz Steiner 
Verlag. 

Sorensen, H. K. (2010). The mathematics of Niels Henrik Abel: Continuation and new approaches 
in mathematics during the 1820s. RePoSS: Research Publications on Science Studies 11. Aarhus: 
Centre for Science Studies, University of Aarhus.

http://eulerarchive.maa.org/
http://eulerarchive.maa.org/
http://eulerarchive.maa.org/
http://eulerarchive.maa.org/


Appendix A 
About Lambert’s Portrait 

Lambert, a man «with a very particular physiognomy», never wanted to have his 
portrait painted. 1 It seems that Johann III Bernoulli, one of his best friends, published 
a caricature in 1786 «saying it was a good likeness». 2 Said caricature was likely the 
base for the whole-body portrait —left part of the image 3— designed by the German 
painter and director of the Berlin Academy of Arts Daniel Chodowiecki, a portrait that 
would eventually be engraved in Berlin in 1812 by Daniel Berger. The artist Pierre 
Roch Vigneron expanded the upper part to elaborate a design in commemoration of 
the centenary of the birth of Lambert in 1828, a design that would finaly pass to be 
lithographed by the Mulhousien G. Engelmann. 4

1 Jaquel (1969, p. 302). 
2 Gray (2007, p. 84 note 5). 
3 Available at http://ark.bnf.fr/ark:/12148/cb41920300d. 
4 See Jaquel (1969, p. 302) and Jaquel (1967/68) (I want to express again my gratitude to Eliane 
Michelon from Archives de Mulhouse for having facilitated me this last work). 
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This image appeared for the first time in a publication in 1828 in the minutes of 
the ceremony held in Mulhouse on the occassion of the centenary of the birth of 
Lambert. 5 The image also appeared in 1829 in Huber et al. (1829), «a volume that 
will be the authorized work about Lambert throughout the XIX century». 6 It has, since 
that time, been the image generally used to represent Lambert. On the lower part of 
that lithograph, some handwritten lines by Lambert in facsimile edition expressing 
«vigorously, even with elegance, the teleological convictions of the savant» were 
included: 7

Organic bodies, amongst all the others, are the most abundantly and easily originated on our 
earth... Everything for which the means are most abundantly available in the world must be 
considered as part of the purposes of Creation.

5 Gedächtnissfeier von Johann Heinrich Lambert begangen in Mühlhausen den 27ten August 1828, 
Beschrieben durch Franz Christian Joseph, evangelischen Pfarrer zu Mühlhausen und Sekretär des 
Lambert’schen Vereins, 1828 (see Jaquel (1967/68)). 
6 Jaquel (1977, p. 5).  
7 Jaquel (1967/68). 



Appendix B 
Lambert and Non-Euclidean Geometry 

Although mathematics at this time was centered around analysis, certain questions 
had never ceased to worry and intrigue mathematicians. From the beginning they had 
questioned the lack of evidence of the fifth postulate of the Elements in comparison 
with the others, along with the fact that its converse did require explicit demonstration. 
The point, it should be noted, was not whether this statement was true or false; the 
force of intuition indicated the answer. It was rather whether this statement was a 
fundamental truth or not. This issue ended up becoming a thorn in geometry’s side 
for a long time, Lambert marking the path that those who settled the question almost 
a century later would follow. 

The work that marked the turning point in all this was Euclides ab omni naevo 
vindicatus (1733) by Giovanni Girolamo Saccheri. 8 In this work, Saccheri started 
from a quadrilateral with two right angles (.A = B = 90◦) and two equal sides (. AC =
B D), today known as Saccheri’s quadrilateral, 9 and demonstrated based only on the 
first 28 propositions (those that do not use the axiom of parallels) that in this case the 
angles .C and .D must be the same. There are therefore three options: they are right 
angles —which is equivalent to the fifth postulate being satisfied—, acute angles, or 
obtuse angles. This generates three types of geometries, 10 which, as he also showed, 
are mutually exclusive: the right angle geometry (RAG) which is equivalent to the 
Euclidean, the acute angle geometry (AAG) and the obtuse angle geometry (OAG). 
The method followed by Saccheri is his most valuable and profound contribution: 11

adding to the first four postulates the negation of the fifth and trying to establish that 
this necessarily leads to a contradiction; that is to say, demonstrating that the OAG 
and AAG are not possible. 

8 Euclid Vindicated from Every Blemish. For an English annotated translation see Saccheri (1733). 
9 See Fig. B.1. 
10 Each of the previous options, if it is true for a Saccheri’s quadrilateral, it is true for all (which 
he proves), which justifies our speaking of three types of geometries or, following his terminology, 
three different hypotheses (RAH, AAH and OAH). 
11 See Dou (1992, p. 52). 
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Fig. B.1 Saccheri’s 
quadrilateral 

Today we know that such geometries are possible, but with nuances. The OAG 
used by Saccheri and that he correctly refuted, presupposes the infinity of straight 
lines (second postulate). In this respect it does not fully concord with elliptical geom-
etry, in which these lines are of finite length. Furthermore, straight lines in the ellip-
tical plane differ so much from what a straight line apparently is (they are of finite 
length, not uniquely determined by two points), that OAG was discarded as a possible 
geometry. Saccheri commited the error in the case of AAG, the so-called hyperbolic 
geometry: 

Saccheri did not find the supposed contradiction, as it was nowhere to be found, but he 
was unable to convince himself that the new geometry he had erected might in fact be a 
reasonable alternative to Euclid’s Elements rather than a green-eyed monster. 12

Although Saccheri’s work is mentioned in some scientific journals of the epoch as 
Acta Eruditorum, as well as in the first books on the history of mathematics by J. 
C. Heilbronner (Leipzig, 1742) and J. E. Montucla (Paris, 1758), it went almost 
unnoticed for almost two centuries, with the notable exception of German-speaking 
territories, where his study would be particularly intense. 13 In fact, it was here that 
the interest on this topic arose with more intensity. Küstner came to assemble a large 
library on the problem of the parallels, and Klügel wrote a thesis under his direction 
(1763) in which he studied exhaustively the different attempts to demonstrate the 
fifth postulate, in particular Saccheri’s. The conclusion he reached is that although 
these results may contradict experience, they do not contradict the axioms. Klügel 
seems to have been the first to recognize the possibility of the fifth postulate’s being 
independent. 14

12 Saccheri (1733, p. 4).  
13 See Saccheri (1733, pp. 49–58). 
14 See Ewald (1996, p. 155).
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Therefore, Lambert arrived in Güttingen «immersed» in the problem of parallels. 
When Klügel’s thesis reached his hands after a few years, his interest in the subject 
is materialized in the work Theorie der Parallellinien (1766/1786). 15 In the third 
part, which is the one containing the most important contributions, he introduced 
Lambert’s quadrilateral, which differs from Saccheri’s quadrilateral in that it has 
three right angles. 16 The remaining angle gave rise to the same three hypotheses or 
geometries discussed earlier: the RAG equivalent to the Euclidean, the OAG that 
was discarded after arriving at a contradiction with the other postulates, 17 and AAG. 
Continuing in this direction, Lambert realized the difficulties involved in finding a 
contradiction and proved a series of results that, compared with those of the OAG, 
gave rise to fertile observations: 

First, Lambert established two results for triangles that are satisfied in the case of 
AAG, namely: 

. A + B + C < π

. At = k(π − A − B − C),

being completely analogous to those of the OAG: 

. A + B + C > π

. At = k(A + B + C − π),

(. A, . B and . C being the angles, and . k the constant of proportionality). 
After that, he established the connection between a hypothetical geometry (OAG) 

and a «real» geometry (that of the sphere), allowing him to jump into a conjecture 
about the AAG, since in a sphere the sum of the angles of a triangle is greater than 

15 Theory of parallel lines Lambert (1766/1786). Lambert wrote this work in 1766, but it was not 
published until 1786. The reader will find a modern French annotated translation in Papadopoulos 
and Théret (2014b). An outline of this work by Lambert is also summarized by the same authors 
in Papadopoulos and Théret (2014a), and can be also found in Bonola’s book Bonola (1912, pp. 
45–50) (I am grateful to one of the anonymous reviewers for suggesting to include here a reference 
to Bonola’s classic book). As to why Lambert did not publish this work in life, see Dou (1970, 
pp. 400, 401, 411 note 38). 
16 On a possible connection between Lambert and Saccheri, one can read in Saccheri (1733, p. 53) 
that: 

It is unclear whether Lambert had first-hand acquaintance with Saccheri’s book, but this 
hypothesis is not really necessary to explain his achievement, given Lambert’s genius and 
the abundance of details provided by Klügel’s dissertation.

17 He proved that two different straight lines share two different points. This again does not contradict 
the geometry of the sphere where the lines are of finite and constant length and share two points 
(the poles), but does contradict the first four postulates of Euclid and therefore the OAG. 
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. π and its area is also proportional to its excess. Specifically, .R being the radius of 
the sphere, we have that: 

. At = R2(A + B + C − π)

If we now look at the formula for the area of a triangle under the AAH, and that of 
one triangle on the spherical surface, we see that the difference is minimal. In fact, 
if we make a formal substitution in the latter,. R by.Ri , where. i is the imaginary unit, 
then we obtain the first one: 

. At = (Ri)2 (A + B + C − π)

= −R2(A + B + C − π)

= R2(π − A − B − C)

= k(π − A − B − C)

Lambert did not make it explicit, but it is very possible that this was what led him to 
his conjecture: «I am tempted to conclude that the third hypothesis holds for some 
imaginary sphere». 18

These ideas were tremendously fruitful, paving the way for the development of 
hyperbolic geometry, a path that Beltrami would culminate by putting this geometry 
at the same level of consistency as the Euclidean. 19 As for Lambert, he was not 
capable of finding the long-awaited contradiction. In this respect, Papadopoulos and 
Théret (2014a, p. 21) concludes that: 

The text is unfinished, and it is not possible to know for sure whether Lambert was convinced 
whether the parallel postulate is a theorem or not.

18 See Abardia et al. (2012, p. 294 note 6). 
19 For an in-depth study of the impact of Lambert’s work on non-Euclidean geometry, see Una 
revisión de la historia del descubrimiento de las geometrías no euclídeas, a doctoral thesis which 
included Abardia et al. (2012) and Rodríguez (2006). 



Appendix C 
Notes by Andreas Speiser 

In this appendix we provide the translation of the notes that Andrea Speiser included 
in his edition of the Mémoire. Some brief remarks about some of these notes will 
also be included when necessary. 

Notes to §. 7. Speiser (1946–1948, p. 115). 

(1) Original: even. 20 A.S. 
(2) Original: odd. A.S. 

Notes to §. 8. Speiser (1946–1948, p. 116). 

(1) The formulas should be written as follows: 21

. R4n+1 = −24n+1(1 · 2 · · · (4n + 1)

(8n + 3)! v4n+2 + 24n+1(2 · 3 · · · (4n + 2)

(8n + 5)! v4n+4 − etc.

R4n+2 = −24n+2(1 · 2 · · · (4n + 2)

(8n + 5)! v4n+3 + 24n+2(2 · 3 · · · (4n + 3)

(8n + 7)! v4n+5 − etc.

R4n+3 = +24n+3(1 · 2 · · · (4n + 3)

(8n + 7)! v4n+4 − 24n+3(2 · 3 · · · (4n + 4)

(8n + 9)! v4n+6 + etc.

A.S. 

Notes to §. 11. Speiser (1946–1948, p. 117). 

20 Speiser made the correction in the text. In other occassions, he kept the mistake in the text 
including the correction in a footnote. 
21 These expressions are equivalent to those offered in our edition. 
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(1) Based upon the corrections pointed out in the previous note. 22 A.S. 

Notes to §. 19. Speiser (1946–1948, p. 122). 

(1) Original edition here and in the following formulas: 23 .an = 1

(2n + 1)w − an+1
. 

Corrected by A.S. 

Notes to §. 34. Speiser (1946–1948, p. 131). 

(1) Original edition: 24

. 1 + 1

1 · 2 + 1

9 · 61 + 1

61 · 540 + 1

540 · 5879 +

+ 1

5879 · 75587 + 1

75587 · 1147426 + etc.

Corrected by A.S. 

Notes to §. 55. Speiser (1946–1948, p. 139). 

(1) Original edition: rational. Corrected by A.S. 

Notes to §. 72. Speiser (1946–1948, p. 144). 

22 The correction made by Speiser in the text is: 

. ± rn = −2n · m · (m + 1) · (m + 2) · · · ·(n + m − 1)vn+2m−1

1 · 2 · 3 · 4 · · · (2n + 2m − 1)

±rn+1 = −2n+1 · m · (m + 1)(m + 2) · · · (n + m)vn+2m

1 · 2 · 3 · 4 · · · (2n + 2m + 1)

±rn+2 = −2n+2 · (m − 1) · m · (m + 1) · · · (n + m) · vn+2m−1

1 · 2 · 3 · 4 · · · (2n + 2m + 1)

23 The correction made by Speiser is: 

. an = 1

(2n + 3)w − an+1

Note that Speiser slightly changed the expression keeping the upper indexes, while in this edition 
we keep the expression and change the upper indexes. 
24 There is a mistake in the text that had gone unnoticed by me. Speiser with his characteristic 
lucidity managed to pinpoint it: 

.1 + 1

1 · 2+ 1

2 · 9+ 1

9 · 61 + 1

61 · 540 + 1

540 · 5879 +

+ 1

5879 · 75887 + 1

75887 · 1132426 + &c.
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(1) Here, Lambert commits an error. The following fraction is that of the.cot v, while 
the fraction at the end of the paragraph is that of the.tan v. 25 A.S. 

Notes to §. 73. Speiser (1946–1948, p. 146). 

(1) This fraction is found in Euler’s De fractionibus continuis dissertatio, 26 § 30  
See Euler’s Opera Omnia, series I, vol. 14, pg. 210. A.S. 

Notes to §. 88. Speiser (1946–1948, p. 157). 

(1) It is possible to untangle these slightly enigmatic statements: The equation 
between . u and . v is 

. 
eu − e−u

eu + e−u
= 1

i

eiv − e−iv

eiv + e−iv
or tang.hyp u = tang v

Putting .iv in the place of . u and .iu in the place of . v, the equation remains 
unaltered. These two formulas 

. tang.hyp u = tang v y tang.hyp (iv) = tang (iu)

are therefore equivalent. 27 A.S. 

25 The interested reader can easily verify that this is effectively the continued fraction for the tangent 
by just calculating the convergents: 

. 
1

(w − 1) + 1
1

,
1

(w − 1) + 1
1+ 1

(3w−2)+ 1
1

, etc.

Lambert included more convergents because he truncated the continued fraction as follows: 

. 
1

w − 1
,

1

(w − 1) + 1
1

,
1

(w − 1) + 1
1+ 1

(3w−2)

,
1

(w − 1) + 1
1+ 1

(3w−2)+ 1
1

, etc.

On the other hand, due to the fact that: 

. 
1

a1 + 1

a2 + . . .

= a1 + 1

a2 + . . .

it is easy to get convinced how Lambert passed from one to the other since the tangent and the 
cotangent are inverse each other.
26 There is an English translation Euler (1744) (that continued fraction is included in the paragraph 
30). 
27 And if these two formulas are equivalent, Lambert can avoid dealing with imaginary ratios (see 
Barnett (2004, p. 24)). 
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Echegaray’s Disertaciones Matemáticas Sobre la 
Cuadratura Del Círculo 

José Echegaray y Eizaguirre (1832–1916) was an Spanish polimath who developed 
his intelectual life principally in the second part of the 19th century. Although he was 
an engineer by training, he devoted a great part of his time to literature, becoming 
Nobel Prize in Literature (1904), acquiring a high reputation in this time in Spain. He 
also had a rich career in government, being appointed Minister of Education, of Public 
Works and of Finance successively between 1867 and 1874. Knowing all this, it is 
noteworthy that mathematics was, in fact, his greatest interest as he remarked often. 
Santiago Ramón y Cajal, Nobel Prize in Medicine, would say that «he was, without 
question, the finest and most exquisitely organized brain of 19 Century Spain». 28

The Escuela de Ingenieros de Caminos where Echegaray graduated as the first in 
his promotion, was at that time, along with the rest of Spanish’s Special Schools in 
Engineering, the main school responsable for mathematical education as had hap-
pened with France’s Écoles, upon the model of which Spanish’s Schools had taken 
form. This influence is reflected, for instance, in the fact that one of the subjects to 
be passed by students in order to get into the Escuela was «Translate from French», 
influence that will persist in Echegaray, who will rely to great extent on French 
authors or French translations. 29

28 As for Echegaray I rely heavely on (Sánchez Ron 2004) (quote at p. 602). This paper gave rise to 
the book of the same author: José Echegaray (1832–1916) el hombre polifacético. Técnica, ciencia, 
política y teatro en España (2016). Fundación Juanelo Turriano. 
29 And actually this influence depended also on France journals, particularly, on Liouville’s Journal, 
which is on the other hand reasonable due to its enormous impact. Echegaray probably could not 
read German (Sánchez Ron 2004, p. 668), so that Crell’s Journal might have little to do with his 
mathematical formation. 
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As for mathematics, Echegaray wrote around 1913–1915 in his autobiography 
Recuerdos 30 (3 vol., Madrid): 

Mathematics was and is one of my great interests [...] But the cultivation of High Mathematics 
does not give enough to live [...] I have never abandoned, not even in the most agitated parts 
of my life, the science of my predilection: but I have never been devoted myself to it as I had 
wanted. 31

Without having been an original mathematician, Echegray was a key figure in the 
introduction of modern European mathematics into Spain. In this sense he was quite 
connected with the most groundbreaking investigations carried out abroad, studying 
Gauss’ D.A. already in the 1850s, giving lectures about Galois’ theory, and producing 
books on several topics ranging from mathematical physics to pure mathematics, his 
favorite branch. 32

One of these books was Disertaciones matemáticas sobre la cuadratura del cír-
culo 33 with subtitle Wantzel’s method and the division of the circumference into 
equal parts (1887), the first chapter of which —About the impossibility of squaring 
the circle— had been published in 1886. This means that Echegaray was presenting 
a didactical approach to the circle-squaring problem just four years after its solution, 
which additionaly shows the inmediate influence of this problem we commented 
elsewhere, being the first introduction of this topic in Spain. 

Echegaray did not have access to Lindemann’s orignial proof as he himself 
lamented, having heard of Lindemann’s investigation by means of Rouché and 
Comberousse’s Traité de géométrie élémentaire (Vol. 1, 5th edition). Echegaray 
quoted the brief outline to this long-standing problem given by these two authors —in 
which, by the way, they made reference to both Lambert’s proof of the irrational-
ity of .π and Legendre’s proof or the irrationality of .π2— at the end of which he 
stated that he aspired to the same objective, namely, to expose Hermite’s formulae 
and theorems, and Lindemann’s demonstration. The outcome of this aspiration is a 
book divided principally into three main parts, gathering together the most recent 
investigations around this subject: 

• About the impossibility of squaring the circle Echegaray (1887, pp. 1–49), where 
Echegaray upon presenting the needed mathematical scafolding (mainly Hermite’s 
formulae and theorems), closed this part with Lindemann’s theorem and the impos-
sibility of squaring the circle.

30 Remembrances. 
31 Quoted in (Sánchez Ron 2004, p. 613). 
32 See (Sánchez Ron 2004, pp. 604, 610, 614–615). 
33 Mathematical dissertations about the circle-squaring problem. 
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• Wantzel’s method in order to figure out if a problem can be solved by the straight 
line and circle method Echegaray (1887, pp. 50–96), ending with the impossibility 
of both the problem of doubling the cube and trisecting an angle. 

• Division of the circumference into equal parts Echegaray (1887, pp. 97–149), 
following Gauss’ achievements in the celebrated last part of D.A., the one that had 
been immediately admired by mathematicians all over Europe.
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