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Preface

This book covers the almost 80 years from Turing’s seminal paper of 1936 to the
present and focuses on two developments during that period.'

On the one hand, the development of computability theory and complexity theory
called for generalizations, restrictions, and other modifications of Turing’s original
machine. On the other hand, it became clear that recursion theory cannot serve as
a foundational analysis of the notion of computable function(al), which has to be
accepted as primitive.

In different ways, both of these developments contributed to a unified view of
logic. The first development helped bringing various phenomena together into a

'In her recent book Logic and Philosophy of Mathematics in the Early Husserl (Dordrecht:
Springer 2010), Stefania Centrone has drawn attention to the fact that the first to call for a
theoretical study of computability probably was Husserl. In his Philosophy of Arithmetic of 1891
(Collected Works vol. X, trl. D. Willard, Dordrecht: Springer 2003), he formulated the following
‘general postulate of arithmetic’: ‘the symbolic formations that are different from the systematic
numbers must, wherever they turn up, be reduced to the systematic numbers equivalent to them,
as their normative forms. Accordingly there arises, as the first task of Arithmetic, to separate all
conceivable symbolic modes of formation of numbers into their distinct types, and to discover for
each type the methods that are reliable and as simple as possible for carrying out that reduction’
(p- 277). He considered the arithmetical operations to be but the methods to carry out that reduction
(p. 277), and understood computation, in arithmetic but also more generally, as ‘any rule-governed
mode of derivation of signs from signs within any algorithmic sign-system according to the
“laws”—or better: the conventions—for combination, separation, and transformation peculiar to
that system’ (p. 273). He also raised the question of the computability of numbers that are defined
by a system of equations (pp. 296-298). Husserl did not, however, attempt to develop such a theory
of computability, and his suggestion seems not to have been picked up on by his contemporaries
either. Moreover, it seems that none of those who came to play a role in the development of
computability theory was aware of Husserl’s suggestion. They had, of course, ample independent
motivation. But it would be interesting to know, for example, whether Skolem knew this chapter
by Husserl. Skolem visited Gottingen during the winter of 1915-1916; that was Husserl’s last term
as a professor there, before moving to Freiburg.
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framework in which the original Turing machine turned out to be a special, and
in some contexts ideal(ized), case. The second development dispelled a serious
misunderstanding according to which recursion theory should ideally replace
informal reflection on the notion of computable function. Instead, there is room
and indeed need for both, depending on one’s purpose.?

The two developments are discussed in seven chapters, as follows.

Goran Sundholm’s opening chapter, Constructive Recursive Functions, Church’s
Thesis, and Brouwer’s Theory of the Creating Subject, first discusses recursive ver-
sus constructive functions and, following Heyting, stresses that from a constructive
point the former cannot replace the latter. The second half of the paper treats of the
Kreisel-Myhill theory CS for Brouwer’s Creating Subject, and its relation to BHK
meaning-explanations and Kripke’s Schema. Kripke’s Schema is reformulated as a
principle and shown to be classically valid. Assuming existence of a verification-
object for this principle, a modification of a proof of conservativeness of Van
Dalen’s, is shown to give a relative BHK meaning explanation for the Kreisel-Myhill
connective. The result offers an explanation of why Kripke’s Schema can be used
as a replacement of the Theory of Creating Subject when formulating Brouwerian
counter-examples. It also shows that the Theory of Creating Subject is classically
valid.

The relation between computation and machine is as old as the abacus, but only
with Turing’s pioneering work to this relation became central to computability
theory. Chapter 2, Jean Mosconi’s The Developments of the Concept of Machine
Computability from 1936 to the 1960s, deals with this aspect, which is crucial from
a technological point of view. Mosconi explains how Turing’s ideas were gradually
adopted, developed and modified, leading to something much closer to the actual
computer. The development can be divided into three stages. First, there is a strong
contrast between a quick acceptance of the conceptual analysis of computation and
a scarce use of the technical potentialities of Turing’s contribution: While Godel
quickly saw the philosophical relevance of Turing’s work (it made him overcome
his objections to Church’s Thesis), Post was perhaps the first to see its mathematical
fruitfulness. The Turing Machine enters in a crucial way in Post’s 1947 proof
of the algorithmic unsolvability of Thue’s problem. Then follows the rise of the
theory of Turing Machines in the 1950s. Here the Turing Machine was not used
to solve problems or gain philosophical insights, but was taken as a proper object
of mathematical investigation. The main idea was to include the Turing Machine
in the ‘general and logical theory of automata’ that Von Neumann suggested to
develop in the late 1940s. From this point of view, it became possible to study
a larger class of automata: not only finite ones, as it was initially the case with

2That leaves open the question whether the notions or recursive function and computable function
nevertheless have the same extension. Church’s Thesis asserts that they do; but within the
intuitionistic theory of the creating subject, Kripke has constructed a computable function that
is not recursive. This counterexample is discussed in the papers by Sundholm and Van Atten in the
present volume.
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Shannon or McCulloch’s automata, but also infinite ones. Starting from the general
structure of the original Turing Machine, various restrictions and generalizations
were defined, leading to a hierarchy of automata, and to a better understanding of
what Turing Machines can achieve and how. Finally, the progress of technology
made it necessary to rework Turing’s model so as to establish the link between
computability theory and computer practice. Hao Wang’s machine B (1957), which
uses the notion of instruction instead of the notion of state, was the first attempt to
bridge the gap, but a completely explicit model of a program and register machine
was arrived at only 1963, by Stephenson and Sturgis.

With the development of computer science and the increasing demand for
feasibility, computability theory gave birth to complexity theory. Chapters 3 and 4,
by Serge Grigorieff and Marie Ferbus-Zanda, respectively, are dedicated to Kol-
mogorov complexity, which may be seen as an offspring of computability theory.
Chapter 3, Grigorieff’s Information and randomness, is the more technical one of
the two. Kolmogorov introduced a radically new approach to the measurement of
information. In the combinatorial approach, the information content of an object
x was defined as the length of the shortest binary word which ‘encodes’ x.
Kolmogorov’s idea was to bring in the resources of computability by defining the
information content of x as the length of the shortest program which computes x.
The chapter gives the main concepts and results, together with their proofs; some
related notions of complexity, like Levin monotone complexity or Schnorr process
complexity are also presented. A new step was taken when Kolmogorov, and
independently Chaitin, noticed that the algorithmic theory of information could
also be used to give a definition of randomness, which was still lacking after the
axiomatization of probability theory. The basic idea is that a word is random if it
is incompressible, that is, if there is no shorter way to describe it. Martin-Lof has
shown that the necessary condition was also a sufficient one.

Chapter 4, Application to Classification Theory, takes a more philosophical
stance and shows the relevance of Kolmogorov complexity to computer science,
where it has already found a number of useful applications. With the World Wide
Web and its huge network of machines, the analysis of information processing has
become even more challenging and the need for a classification even more urgent.
Up to now the two main approaches have been classification by compression and
the so-called Google classification. But they still lack a good formalisation. As
they both use complexity, Ferbus-Zanda proposes to take Kolmogorov algorithmic
information theory as the mathematical foundation of information classification
we are looking for. The two main approaches can now be formulated in terms
of two types of definition of mathematical objects, namely iterative definitions,
based on set theoretical union, and inductive or recursive definitions, based on set
theoretical intersection; they can also be seen as bottom-up and top-down versions
of the same underlying theory, of which Ferbus-Zanda gives a short presentation.
Furthermore, she shows how these two dual modes are also found in information
systems, particularly the relational database model introduced by Codd in the 1970s.

Chapter 5, Proof Theoretical Semantics and Feasibility, by Jean Fichot, returns
to constructivity. According to one of the best known justifications of constructive
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reasoning, the meaning of logical constants is given by their introduction rules or,
what amounts to the same, by what counts as a canonical proof of it. But canonical
proofs are idealisations of the ones we normally use; depending on what types
of knowledge one admits, proof theoretical semantics may therefore be liable to
be invalidated by the non-feasibility of the canonical proofs. Fichot’s contribution
reviews two attempts to overcome this difficulty and to go one step further towards
feasible canonical proofs. The first is the new recursion-theoretic characterisation of
polytime functions given in 1997 by Bellantoni and Cook. Besides natural numbers,
they use feasible numbers and succeed in giving a meaningful explanation in the
style of Dummett for those numbers. Unfortunately, there remains a gap between
feasible arithmetic and the feasible theory of proofs we are looking for. The second
attempt is light affine logic, a system introduced by Asperti in 1998 and further
studied by Baillot and Terrui. The main idea comes from light linear logic, where
Girard added a new modal operator, ‘§’, to the of course operator, ‘!’, of linear logic.
Just as ‘I’ allows for contraction, ‘§” allows for weakening. Besides the formulas
that express perennial propositions and can be contracted and reused as often as
wanted, and the formulas that are simply true, we must now admit a third kind of
formulas. But this splitting of ‘!’ into two modal operators gives very useful tools
for controlling the computational complexity of the cut elimination procedure. Jean
Fichot explains how the justification for the logical rules of such a system can be
given.

The sixth chapter, Recursive Functions and Constructive Mathematics, by
Thierry Coquand, addresses one of the most fundamental questions concerning
the relations between constructivity and computability: is the theory of recursive
functions needed for a rigorous development of constructive mathematics? The
answer is negative in both the theoretical and the practical sense. The argument
proceeds in two steps. The first one shows how the success of recursion theory
fostered a lack of sense for constructivity. As was noted early on by Heyting and
Skolem, from a constructive point of view, the theory of recursive functions cannot
give us a formal definition of the intuitive notion of computable function. Kleene’s
definition of p, for instance, uses existential quantification: if R(x, y) is a recursive
relation and if (x) EyR(x, y) holds, then wyR(x, y) is a recursive function of x.
But we are left with a dilemma: if the quantifier is interpreted non-constructively,
the relation between computability and constructivity is lost; if it is interpreted
constructively, then the definition in fact presupposes some notion of a computable
function. The second step in Coquand’s argument begins with Bishop’s Foundations
of Constructive Analysis (1967). The book was a breakthrough: It taught us that it
was not only theoretically possible but also practically more satisfactory to introduce
functions in constructive mathematics without mentioning recursivity. Much current
work in constructive mathematics strongly relies on Bishop’s ideas. It is also
noteworthy that one popular definition of constructive mathematics, according to
which it is mathematics developed using intuitionistic logic, is independent of any
notion of algorithm.

The final chapter, Godel and Intuitionism, by Mark van Atten, starts with a brief
survey of Godel’s personal contacts with Brouwer and Heyting. Some examples
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are discussed where intuitionistic ideas had a direct influence on Godel’s technical
work. Then it is argued that the closest rapprochement of Godel to intuitionism is
seen in the development of the Dialectica Interpretation, during which he came to
accept the notion of computable functional of finite type as primitive. It is shown that
Godel already thought of that possibility in the Princeton lectures on intuitionism
of Spring 1941, and evidence is presented that he adopted it in the same year or
the next, long before the publication of 1958. Draft material for the revision of the
Dialectica paper is discussed in which Godel describes the Dialectica Interpretation
as being based on a new intuitionistic insight obtained by applying phenomenology,
and also notes that relate the new notion of reductive proof to phenomenology. In
an appendix, attention is drawn to notes from the archive according to which Godel
anticipated autonomous transfinite progressions when writing his incompleteness
paper.

This book has grown out of the meeting ‘Computability and Constructivity in
Historical and Philosophical Perspective’, which took place at the Ecole normale
supérieure in Paris, December 17-18, 2006. The organisers were Jacques Dubucs
(IHPST), Michel Bourdeau (IHPST), Jean-Paul Delahaye (Université des Sciences
et Technologies de Lille), and Gerhard Heinzmann (Université de Nancy II). The
meeting was a Joint Session of the two divisions of the International Union of
History and Philosophy of Science (IUHPS): the Division of Logic, Methodology
and Philosophy of Science (DLMPS) and the Division of History of Science and
Technology (DHST).

Paris, France Jacques Dubucs
June 2013 Michel Bourdeau
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Chapter 1

Constructive Recursive Functions,
Church’s Thesis, and Brouwer’s Theory
of the Creating Subject: Afterthoughts
on a Parisian Joint Session

Goran Sundholm

Dedicated to Dirk van Dalen on the occasion of his 80th

birthday.

‘inexorable logic and resolute constructiveness’!

Abstract The first half of the paper discusses recursive versus constructive
functions and, following Heyting, stresses that from a constructive point the former
cannot replace the latter. The second half of the paper treats of the Kreisel-Myhill
theory CS for Brouwer’s Creating Subject, and its relation to BHK meaning-
explanations and Kripke’s Schema. Kripke’s Schema is reformulated as a principle
and shown to be classically valid. Assuming existence of a verification-object for
this principle, a modification of a proof of conservativeness of Van Dalen’s, is shown
to give a relative BHK meaning explanation for the Kreisel-Myhill connective. The
result offers an explanation of why Kripke’s Schema can be used as a replacement
of the Theory of Creating Subject when formulating Brouwerian counter-examples.
It also shows that the Theory of Creating Subject is classically valid.

‘Calculemus!”—the venerable Leibnizian exhortation wants to set us to work at
resolving various bones of human contention and strife. In a strict sense, however,
only that can be calculated which can be calculated upon. Calculate (1570),

IStefan Zweig (1979, p. 191), apropos Calvin’s Institutio.

Originally published at https://www.academia.edu/3528209/Constructive_recursive_functions_
Church_thesis_and_Kripkes_schema.
© 2013 B.G. Sundholm. Reprinted with permission of B.G. Sundholm.
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2 G. Sundholm

compute (1579), reckon (1225) ... the OED treats them virtually synonymously,
but the Germanic word reckon is the oldest. When we reckon we count on
something: fingers, ‘calculi’, that is, abacus stones, numerals, signs, ...

Today one often speaks of a calculable (or computable) function, without
stopping to reflect how strange such language really is, especially from a Platonist
(“classical’) point of view. There a function N — N is a certain set F, at a fairly low
level in the cumulative hierarchy, namely a set of ordered pairs that is unique in the
second component, and where every (and only) finite Von Neumann ordinal occurs
among the first components. What does it mean for such a thing, object, entity, ... to
be calculable? It is hard to say. The set F'—construed as an object in the cumulative
hierarchy—is of course wholly notation-free. There is nothing left to compute on,
so to say. It certainly does not mean

(x%) (e :N)(Vk :N)@m : N)(T (e, k,n)&{k,U(m)) € F)

where we use Kleene’s computation-predicate 7' and his result-extracting
function U.

The claim (%) is true when the function F is (general) recursive, but does not
define what it means for the set F to be a recursive function, nor was recursiveness
the issue here, but calculability. The (classical) truth of (xx*) in the cumulative
hierarchy is not enough to ensure that an agent is able to perform a calculation; this
just ensures that the ontology contains a natural number e with certain properties.
For calculability to be guaranteed the calculating agent has to know that () is true,
and also understand the codings involved in order to reconstruct the algorithm from
the Kleene-code e. Clearly, not just the function graph (extensionally conceived) is
relevant for computability: the way in which the function is actually presented to us
plays a decisive role here.

A numerical expression might be evaluable by means of a series of steps, might
be calculable, to a value, but a function, in today’s set-theoretic sense, never. An
expression standing for a certain value of a function might be calculable, might be
reckoned out, (might be evaluable) to a numerical value, for instance ‘2 + 2’ can be
reckoned out to 4. The Riemann hypothesis function, if indeed a function it is, that is
presented at (#) below, cannot be evaluated today: we have no way of reckoning out
a value for, say, f(14), or indeed for any other argument. The values of a function,
when calculable, can perhaps be calculated by means of a certain uniform program
or procedure. ‘Calculable’ is commonly encountered in the combination ‘effectively
calculable’. Is this use of ‘effective’ not pleonastic? What use would one have for
‘non-effectively calculable’? Would one ever want to say of a function that it is non-
effectively calculable, and, if so, what would one possible mean by it? A calculation
could perhaps be called non-effective in a relative way, when the process or method
of calculation was very slow. (‘It is not very effective, you know ...’.) But this still
would not be a non-effective calculation.?

2T am happy to have Alonzo Church on my side here; see his letter to Yannis Moschovakis that
is printed as an appendix. NB. One must not confuse relative computability (from an oracle) with
computability that is not effective. Moschovakis has treated beautifully of relative computability
and Church’s Thesis in his Heyting lecture at Amsterdam, September 2012.
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A calculable function, then, is one whose values can be calculated. Calculability
is a matter of agency, of ability to carry out calculations. Since we discuss issues
in constructivism our functions are total. That f is a function from o to f means
that one may apply f to any argument in o and get a value. Here the notion of
function application is primitive, and, by the meaning explanation for the judgement
f :a — P, inferences according to the rule

aecau

fla)ep

are valid by stipulation. Accordingly, when I know the judgement f : o — B,
getting to know a € o allows me, by stipulation, to proceed to knowledge also of
f(a) € B.

For simplicity, I confine myself largely to functions from N to N. Hence f :
N — N means that f has a value f(k) € N, for every number k € N. Kleene
(1938) introduced also the notion of a “partial recursive function’ in computability
theory. On one reading, this will be a ‘partial function that is recursive’. However,
strictly speaking, partial function is an oxymoron. The adjective ‘partial’ acts as
a modification that takes us out of functions, rather than as a qualifying property
among functions. A ‘partial function’ is no function, since it is not defined for every
element in the domain. The syntactic form “partial function’ is misleading. Instead,
in recursion theory, one could better speak about recursively enumerable functional
relations, whether total or not. The reading ‘function that is partial recursive’, on the
other hand, would appear to indicate a (total) function that for some reason is not
fully recursive, but only partially so.

So a calculable function is a function f : N — N whose values can be
calculated. Should the explicit presupposition of agency be taken at face value
here? That is, for a function to be calculable, should one be able to perform the
calculations in question? The agency involved has to be possibility in principle,
not practical feasibility. The recursion equations that serve to define Ackermann’s
function ¢, which outgrows all primitive recursive functions, clearly offer a method
of calculation. However, an explicit calculation of the numerical value of, say,
(10, 10, 10) will, under our present physical limitations, be beyond human agency.”

3See Ackermann (1928). My Oxford supervisor Robin Gandy told me that during WWII, at
Bletchley Park, Alan Turing proposed a challenging competition:

What is the largest natural number that can be written on a postcard?

Clearly transfinite hierarchies of fast-growing functions offer a promising way to attack the
problem, and hence constructive notation-systems for large ordinals are called for, so as to be able
to write terms for very large numbers, though I do not know the answer to Turing’s challenge.
In correspondence Andrew Hodges pointed out that John von Neumann’s proposed something
very similar to Stanislaw Ulam already in 1938, in connection with some ‘schemata of Turing’s’.
The matter is dealt with by Hodges (1983, p. 145), and the pertinent letter from Ulam to Hodges
can be found at http://www.turing.org.uk/sources/vonneumann.html.
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Classical and constructivist mathematicians have different priorities here. Both
agree that calculability of a function requires a method of calculation. This method
of calculation is given via an algorithm or programme (or, at a further remove, a code
of such, as in the example (*x*) above), that is, a collection of procedural instructions
according to which calculations are performed. However, a classical—‘Platonist’—
mathematician does not need to have the algorithm at hand, but will be satisfied also
with a classical indirect proof that such an algorithm exiszs in his Platonist ontology.
In particular, as noted above, the algorithm in question can be coded as a number, but
need not be known as an algorithm. The mere existence of the (coded) algorithm as a
mathematical object is enough to satisfy the needs of the Platonist. For the Platonist,
calculability is, as we already said, ‘extensional’, and pertains to the function as a
mathematical object, but in no way as to how, if at all, that object is epistemically
given to mathematical agents.4 A constructivist mathematician, on the other hand,
will insist on the algorithm being known to define a function, and hence, at least
in principle, possible to execute. As so often in conflicts between Platonists and
constructivists we have an instance of Fichte’s (1797) dispute regarding epistemic
priority between ‘Dogmatists’ (that is, Realists or Platonists) and Idealists. The
Platonist realist reduces the rightness of the epistemic act of knowledge to an object
in the ontology, whereas for the constructivist the act is sui generis and yields the
object of knowledge. Here, Platonist calculability, a modal notion, which is a matter
of agency, is reduced to a mathematical property of an object, independently of how
it is presented.

Constructivity, or constructiveness, is the property that matches the adjective
constructive and my title noun construction. What is its range of significance?
Or, in other words, to what can constructive be properly applied?> Mathemati-
cians, positions, treatments, demonstrations, theorems, theories, and so on, are

These ‘schemata of Turing’s’ need not be the rules for building Turing-machines. In the present
context of giving notations for large natural numbers they could equally well, or perhaps even
better, refer to ‘the first rather general scheme for definition of number theoretic functions by
transfinite recursion,” which, according to Robin Gandy, was given by Turing in his dissertation,
cf. Feferman (1988, p. 141, footnote 24). Furthermore, Von Neumann mentioned Turing to Ulam
several times ‘concerning mechanical ways to develop formal mathematical systems.” Since the
works of Godel and Gentzen the addition of schemes for proof by transfinite induction or for
defining functions by means of transfinite recursion are well-known ways for obtaining stronger
mathematical systems.

Robin Gandy was not at Bletchley Park during the war. However, in the early 1950s he was
working on Gentzen’s First Consistency Proof, and would have had occasion to think about ordinal
induction and recursion, cf. Kreisel (1955, footnote 9 at p. 38). His supervisor and friend Turing
owned an offprint of Gentzen’s paper; he might well have told Gandy about the general scheme of
recursion from his Princeton dissertation and of the Bletchley challenge.
4Concerning Platonist extensionality, see, for instance, Rogers (1967, p. 9), or Enderton (2010,
p- 5). The replacement of calculability by (Platonist) existence of a coded algorithm is an instance
of the Platonist strategy of subsuming agency under (Platonist) existence of suitable objects.

31 confine myself to mathematical examples and shall disregard such uses as ‘Neither his position,
nor his conduct in the debate, could be called constructive’, where ‘constructive’ seems to mean
apt or purposeful.
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sometimes called constructive and so are various mathematical objects; even logic
has been called constructive. On the other hand, a mathematician—while doing
his mathematics—would not usually say of the objects of study—for example,
numbers, sets, and functions—that they are constructive. Indeed, one would not
ordinarily call mathematical objects, theorems, or theories constructive. A function
occurring in a constructive treatment would, in that context, just be called a function.
One would single it out as constructive only when making a (meta-theoretical)
contrast or comparison with other treatments, where also non-constructive functions
may occur. Thus, for instance, in constructive and non-constructive mathematical
theories alike, a function + is found that is defined by the usual recursion equations.
However, whether it is the same function occurs in both cases is a moot question.
Michael Dummett, in his famous argument in favour of constructive, or (as he put
it) ‘intuitionistic’, logic presupposes that there is a shared part between classical
and constructive mathematics, and our + function would belong to it.° However, is
it a function in constructive mathematics or in classical mathematics? From what
neutral position could the comparison be carried out? Does the idea of an over-
arching, all-encompassing framework to which constructive and non-constructive
denizens alike belong actually make sense? This is the Fichtean problem once again.
Rather than considering the single function + in two different frameworks (or in
an all-encompassing, but possibly incoherent, framework of constructive and non-
constructive entities alike) it might be better to consider two different functions
+con and —+pss that belong to the respective frameworks. For the Platonist the
~+class function is a set of ordered pairs that is given by (or in?) the ontology of
mathematics, independently of its recursion equations, and that ontology, rather than
definitions and demonstrations, decides matters of right and wrong involving the
~+class function. For our Platonist, it is a mathematical truth, but not a definition, that
the recursion equations hold for +j,ss. Such a Platonist Ontological Descriptivism
is not shared in constructivist mathematics, where the +,, function is introduced,
or defined, by the recursion equations in question.” Prior to its definition being
given, we simply have no 4., function to reason about, even though it would
of course have been (logically) possible to give the definition earlier than it was
actually given. However, as already noted the point is indeed moot whether there is
a neutral framework extending both the classical and the constructive ones and in
which the functions .o, and +jass can be compared. Who would carry out such
a comparison? The classical mathematician? Or the constructive mathematician?
Neither would have access to the object of the other. But then who? Brouwer, who
was an Ontological Descriptivist, but with respect to an idealist ontology, was aware
of similar intricacies already in his inaugural lecture, where he compares classical
and intuitionist readings of Cantor’s diagonal demonstration that we cannot have a

SDummett (1975, especially at p. 231).

"By Ontological Descriptivism I understand the philosophical position that the criteria of rightness
for meaning, truth, and knowledge are ontologically obtained. It is spelled out a bit more in
Sundholm and Van Atten (2008) and Sundholm (2013).
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surjective mapping from the natural numbers N to the set of functions from N — N.
This means that the picture of ‘Bishop constructivism’, which for present purposes
we may take to be given by the meaning-theoretically based CTT, as the ‘neutral
kernel’ of all kinds of constructivism, is not right. In particular, the equation

Intuitionism = Bishop constructivism 4 Choice sequences 4 Continuity

is thoroughly misleading.’
What, then, characterizes the notion of constructive when used in mathematics?
W.W. Tait has put the matter very well:
Let me say straight off that there are two distinct ideas: one is construction and the
other is computation. These have been confused in recent history, but really are distinct.
‘Constructive’ means that the only witnesses of existential propositions one admits are
ones that can be constructed, where of course this implies some background rules of
construction. From the construction of an object, a means of computing it (in cases in which
this idea makes sense) may or may not be found. In the context of arithmetic and analysis,
constructive does imply computable (and this may indeed be the motivation for some to
proceed constructively), but this is a theorem; it is not built into the notion of construction. 10

With regard to formal treatments this should not be understood as a reference
only to existentially quantified propositions of the form (Ix : D)B. As is well
known its proof-objects are of the form (a, b). In Martin-L6f’s Constructive Type
Theory (CTT) Tait’s point is doubly taken care of by the use of existential
quantifications via the (37) rule, that is, the existential quantifier introduction rule,
as well as the form of judgement

o exists

where o is presupposed to be a type. The assertion condition for the judgement
a exists is given by the rules of inference:

acau
oL exists.

Thus existence, ‘instantiation’, of a general concept (‘type’) may be claimed only
when it has been instantiated.

Constructivism in mathematics holds that existence claims have to be supported
by suitable means of instantiation: one is not entitled to assert that something
exist without possession of a procedure that at least in principle produces an

8See Brouwer (1912). Brouwer’s position thus is an epistemic realism based on an Ontological
Descriptivism with respect to an idealist ontology. Bishop Berkeley is another philosopher with
a similar pair of positions. My own meaning theoretical stance is to the contrary an epistemic
idealism, whereas my ontology is thoroughly Platonist; however, I do not found my semantic and
epistemic norms of rightness therein.

Such equations are deployed by Beeson (1981, p. 148).

10Tait (2006, p. 213). The quoted text was italicized in its entirety by Tait.
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example of what is said to exist. It is a rather natural position and with a
venerable pedigree. Ancient precursors might include Proclus and Speusippos, and
modern versions begin with Kronecker, and continue with Brouwer and Bishop.
A constructive function, then, is a function as used in constructive mathematics, that
is, mathematics that establishes existence claims by means of explicit instantiation.
However, a distinction is called for here. First, there is the issue of a concrete
function being constructive. Consider the number-theoretic function ! : N — N,
that is, the ‘factorial’ that is well known to all students having taken an introductory
course in statistics, and defined by the recursion equations

0! =4 1
(n+ D! =gn!xn+1).

It is clearly a calculable function: for every number x there is a number y such
x! = y, and, in the familiar way, the recursion equations yield a procedure for
calculating the value that is said to exist. Similar observations apply to all elements
of function sets in Martin-Lof’s Constructive Type Theory (CTT), that is, sets
A — B, where A and B are sets (predicatively generated from below).!! Such an
element ¢ : A — B is a constructive function, since by the meaning-explanation
for the set-builder —, it will have to be evaluable to canonical form Ax.b, where
b : B, given that x : A, and ap(c, a), that is, the application of ¢ to an argument
a : A, is definitionally equal to ap(Ax.b, a). But by the TT-equality rule—a kind of
‘B-conversion’—ap(Ax.b,a) =4 bla/x] : B.

As already required by Pascal, the notion of definitional equality a =4 b admits
effective replacement of definiendum a by its definiens b, whenever it occurs in
an evaluation context.'> Furthermore, the sets A and B are explained in terms of

'The dependent function-sets are formed with the use of the set-theoretic dependent-product
operator IT, though for the sake of simplicity, I here confine myself to the — case where the
set B does not depend upon the element of x : A. The elements of function-sets are known as
courses-of-value or graphs, and require an application function ap in order to yield their values.

12Pascal gave his canon of definition in the manuscript De I’Esprit géométrique, but it became
known through the Port-Royal Logic, Arnauld and Nicole (1662, Part IV, Ch. III). The notion of
definitional (or criterial) identity a = b : A, with respect to the elements of the set 4, must be
clearly kept apart from the propositional function I(A4,x,y) : prop(x : A,y : A). From the
judgement

a=0b:A,

where the judgements a : A and b : A have to be already known as its presuppositions, we may,
of course infer the judgement

I(A,a,b) true,

but not vice versa. The positions to the left of the judgemental colon are opaque in the terminology
of Quine; there the terms carry ‘conceptual supposition’ (suppositio simplex in the medieval
terminology) and do not stand for their referents. To the right of the judgemental colon the positions
are transparent and the matching supposition is ‘referential’ (suppositio personalis).
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how their ‘canonical elements’ may be put together out of parts. For any set the
precise forms that its canonical elements have to take are known from its meaning
explanation in terms of the constructors for the set in question. The definitional
equalities tell us how to proceed towards the value, and the distinction between
canonical and non-canonical elements allows us to determine when that value has
finally been reached. In the apt terminology of Curry, that value is an ultimate
definiens."?

Martin-L6f’s CTT is the only smooth formal system for dealing constructively
with functions.!* In classical mathematics, where full Comprehension as well as
classical logic are both freely available, functions can be dealt with as functional
relations, and conversely sets and relations can be dealt with using characteris-
tic functions. Thus, there it is largely a matter of convenience and taste what
option to choose. The development in terms of predicates runs smoothly, and is
much more familiar than the corresponding development in terms of functions,
whence there are no substantial investigations to be found of higher-order function-
theoretic logic. On the constructive side, the systems for intuitionistic analysis
offered by Kleene (1965), Howard-Kreisel (1966), Kreisel-Troelstra (1970), and
Scarpellini (1971), are quite cumbersome in comparison to second-order predicate
logic, or to the great elegance of the fast classical development of analysis in
Zermelo-Fraenkel set theory. In particular, apart from CTT, we have no readily
accessible Natural Deduction system for function quantification.'> In view of the
contemporary fame and virtual omnipresence of Natural Deduction this is quite
surprising.

How, and where, would one construct a ‘non-constructive’ function, that is, a
function that could not be admitted in a constructivist framework? One way would
make use of as yet undecided mathematical questions:

1 if the Riemann Hypothesis is true
® Sl =) T YPOTIENE
0 if the Riemann Hypothesis is false

3Curry and Feys (1958, p. 43).

14Together, of course, with other similar systems for typed lambda-calculus with dependent types.
The richness of CTT allows one to distinguish three notions among what are commonly called
functions in informal mathematics, to wit

(i) Frege-Euler functions, that is, dependent objects of lowest type, for instance x + 5 : N
provided that x : N, where substitution takes care of application;
(i) Dedekind mappings, that is independent objects of higher type, for instance (x).x + 5 :
N — N, where application is a primitive notion;
(iii) Graphs, or ‘courses-of-value’, for instance A(N,N, (x).x + 5) : (ITx : N)N, where
application is effected by means of a separate application function ap(x, y) taking a course-
of-value c and a suitable argument a into the value ap(c, a).

5The 1976 Basel dissertation by Robert Haberthiir has remained a singular point here. I am
indebted to Leon Geerdink for help in locating a copy of Haberthiir (1976). See also Haberthiir
(1978).



1 Constructive Recursive Functions 9

and, with full generality, for any proposition A, making use of the type Bool of truth
values:

t if A is true;

(##) k) =
S PR

In the absence of a constructive demonstration for
(A v —A) true

we have no way to compute values of the function f.

Another way would be to introduce certain non-mathematical, haphazard,
empirical, or human aspects in the definition, for instance (I am writing in the year
AD 2013),

1 if k < 2014 or the first child born in the year k is a girl;

g(k) =ar ) . ) )
0 if kK > 2013 and the first child born in the year k is a boy.

These alleged definitions both yield ‘functions’ f and g whose values cannot be
evaluated. For each particular number k, the first one is calculated by resolving the
Riemann Hypothesis, whereas the second one may be calculated by waiting long
enough, in some cases very long indeed. Note, however, that if human fertility were
to fall drastically, the status of g as a function comes under pressure also classically.
The presupposition of the definite description the first child born in the year k is
after all a controversial one: when k£ > 2013, we do not know that a child will be
born in year k.

Furthermore, a constructivist mathematician rejects purported definitions that
proceed via a separation of undecided cases.'® According to him, f is not a function,
since it is not clear that f has values. Accordingly one is not entitled today to make
the judgement

f:N—=>N,
since, according to its meaning explanation, inferences of the kind

k:N

fk):N

16 Already Kronecker insisted that definitions should be, in the words of his pupil Jules (Julius)
Molk (1885, p. 8) ‘algebraic and not merely logical’. Molk also stressed that definitions by
undecided separation of cases are inadmissible in his remarkable anticipation of Brouwer’s 1908
criticism of the Law of Excluded Middle in (1904, ‘§10. Point de vue de Kronecker’, at p. 160).
Molk’s scoop is dealt with at some length in the introduction, written jointly with Mark van Atten,
to our novel translation of Brouwer 1908. Already Largeault (1993, p. 81) noted these little-known
points about Molk, but did not stress their importance.
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might be valid, but we do not know. Indeed, how does one evaluate f(14)? A
classical mathematician, on the other hand, will hold that f is well defined, and
that accordingly g has definite properties; thus, for instance, he will hold that f(14)
is a definite natural number, whence it is either odd or even, on the strength of the
even constructively known theorem that (Vx : N)(x is odd orx is even) is a true
proposition. He will even hold that f is a primitive recursive function, even though
he is not able to compute any of its values.' 1 would say that f has not been properly
defined, whereas the classical mathematician says that according to its ‘definition’
f is either constant 1 or constant 0, whence in either case f is primitive recursive,
and so f is primitive recursive. Let it be clear, furthermore, that not all definitions
by means of a separation of cases are illegitimate from a constructive point of view.
For instance, when one already knows that the proposition A V B is true, it is correct
to define a function from N to N by

1 if A is true;
0 if B is true.

g1(k) =at

Similarly, when (Vx : N)(A(x) v B(x)) is known to be true, the definition

hi(k) if A(k) is true;

g2(k) =ar , .

hy(k) if B(k) is true
is correct, etc.'® The classical mathematician, who gives definitions via undecided
separation of cases, while using locutions such as ‘=g @ when A is true and is
=4t b otherwise’, will of course claim that the required definitional presupposition,

namely that the proposition A vV —A is true, is known as an instance of the classical
Law of Excluded Middle."

17 An example of the kind g was famously used by Hartley Rogers in his canonical textbook on
recursion theory (1967, §1.2, p. 9).

!8In Martin-Lof’s (1984) CTT, this is nothing but an application of the V-elimination rule.

YUndecided separation of cases is sometimes rejected also in other than mathematical contexts.
Thus we do not accept—at least the fiscal authorities do not accept—the following as a definition
of a human taxpayer:

PM = Tony Blair if the Riemann Hypothesis is true;
« Gordon Brown if the Riemann Hypothesis is false.

PM does not pay taxes and is not accepted as an individual. Classical mathematicians, though, are
readily prepared to proceed similarly when defining functions or sets.

When I first visited Holland in 1979, Henk Barendregt told me of the following nice example
from the game of chess. It concerns a famous problem in ‘retrograde analysis’ by Langstaff from
Chess Amateur 1922, White to move and mate in two (found on line here: http://en.wikipedia.org/
wiki/Retrograde_analysis). If Black is not allowed to castle, that is, if either King or Rook has
already moved, then 1. Kf5-e6 allows mate on the next move, but if Black is allowed to castle,
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From a classical point of view, the existence of non-recursive functions is readily
established by means of simple cardinality considerations. Primitive recursive func-
tions are inductively defined by means of certain schemata. Thus, basic functions
are in the class outright, and we have closure under composition as well as primitive
recursion. These definitional schemata are without further presuppositions. One
obtains a definition of the general recursive functions, under the guise of j-recursive
functions, by adding the definitional schema of unbounded minimalization: when
is a binary function, define a unary function ¢ by

O(x) =qr py(y(x,y) = 0).2°

In contradistinction to the schemata for primitive recursive functions, in order
to guarantee the required totality of the function ¢, applications of the unbounded
p-operator, does require a presupposition, namely the truth of (Vx : N)(Jy
N)(y(x, y) = 0), that must be known prior to giving the definition in question.?!

Just as in the primitive recursive case definitions via schemata give rise to an
obvious indexing of the class of recursive functions. The indexing of primitive
recursive functions is even primitive recursive, but, by an obvious diagonalization,
its universal function is not primitive recursive. It can, however, be defined using
unbounded minimalization, whence it is general recursive.?2 As is well known, there
is no recursive universal function for the general recursive functions. In fact, not
even the indexing will be recursive, or even effective, since the presupposition of
totality that is required for applications of minimalization is IT, which takes us

then his last move was not with either King or
Rook, and must accordingly be g7-g5, in which
case 1. h5xgb6 en passant allows mate on the next
move. Tim Krabbé, the Dutch expert of the outré
corners of chess, characterised the situation as
follows (1985, p. 50-51): ‘If White attempts one
solution Black has a defence which shows the other
would have worked. Or to put it differently again:
it is perfectly true g7-g5 and Rh7-h8 cannot both
be Black’s last move, but White (or the solver) has
no way of determining which one was. Whoever
feels giddy should now consult his local syllogism
breaker.” Krabbé is right that something out of the
ordinary is going on in logic here. A constructivist
would classify this as a typical LEM failure and
reject the problem as ill posed.

N Wb OO N 0

—_

20For ease of exposition I display only the simplest form of the schema; each function may, of
course, depend on a vector x, . .., x; of further variables.

2IThe need for the known truth of the presupposition here constitutes another argument against
classical mathematical practice: unless known, mere truth of the totality presupposition does not
entitle one to introduce the minimalization in question as a function.

22Kleene’s indexing of the primitive recursive schemata of definition, and the diagonalization in
question, can be found in his (1958).
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straight out of the recursively decidable. Nevertheless, in view of this, albeit non-
decidable, indexing by means of natural numbers, a classical mathematician will
claim that the (general) recursive functions are countable, whereas the set of (all)
functions from N to N is uncountable, by the original Cantorian diagonalization.

The definition of functions by means of undecided separation of cases is a
major source of non-constructiveness in classical mathematics. Thus, the logical
inferences in the proof of the Bolzano-Weierstrass theorem are constructive, and the
non-constructive character of the result is due to an undecided separation of cases in
the definition of the chain of nested closed intervals, each containing an infinitude of
points from the given closed and bounded infinite set (‘if the left half of the closed
interval I, contains infinitely many points from the set, choose it for /,,4; otherwise
choose the right half”).

Zorn’s Lemma provides another nice example of this phenomenon. Its various
proofs make use of choice functions provided by Zermelo’s Axiom of Choice; at
some stage in the demonstration an undecided question is asked with respect to
the choice function, and this renders the non-constructive character of the theorem
manifest.?’

The technique of using undecided separation of cases readily yields an explicit
classical example of a non-recursive function. We use Kleene’s recursively enumer-
able set K that is defined using his 7'-predicate:

K =g {n : 3yT(n,n,y)is true}.**

It is a fact, also constructively, that the set M =g {n : Vy—=T(n,n,y) is true},
that is, the classical complement of K, is not recursively enumerable. For if M has
recursively enumerable index e, then, forall k € N, k ¢ M & 3JyT(e,k, y), but
alsok e M & Vy—T(k,k,y), by the definition of M. The choice of e for k gives
the contradiction

21 have inspected 32 different presentations of Zorn’s lemma and its demonstration. The fine
details may vary, but basically there are two proofs. The easy one proceeds by ordinal recursion,
using the choice function for as long as it is possible to find larger elements in the set m, to pick
a majorizing element and using it to define an injection from an initial segment of the ordinals
into the set m. Since we deal with a set m, it is not equinumerous with the set-theoretic universe,
whence at some stage it will no longer be possible to find yet another majorizing element in m.
However, the question as to whether a larger element can still be found within the set m is an
undecided separation of cases. The other kind of proof is modelled after Zermelo’s (1908) second,
Dedekind-inspired, ‘algebraic’ demonstration of the well-ordering theorem and also here one finds
definitions by means of undecided separations of cases.

2#Kleene’s T -predicates (for all number of arguments), and other associated functions and
predicates, are primitive recursive (1952, § 57). In fact, they are even Kalmar-elementary. However,
analogously to the above considerations regarding + and its recursion equations, the significance
of their Kalmar-elementary status depends on whether they are taken from a classical or a
constructivist point of view: is it a mere factual property that happens to hold in the ontology
or an essential means of introducing them?
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dyT(e.e,y) & Vy—T(e.e,y).

Now define the characteristic function of K

1 ifkeKk;

X =a o ek g k.

Then (3n : N)x((n) = 0) & k ¢ K. But, if the function Y ¢ is recursive, also the
quantified matrix x x(n) = 0 is recursive, and hence, in that case, K has a recur-
sively enumerable complement, since the above equivalence gives a E(l) form. Hence
the function Y x is not recursive. From a constructive point of view, owing to the
separation of cases, the definition is rejected and y x is not accepted as a function.

Church’s Thesis is a crucial topic in the theory of computable functions and
relates general recursiveness and computability:

Every computable function is general recursive.

The converse direction is considered non-controversial. In fact, it is held to be
more or less trivially correct, since its recursion equations provide an algorithm
for the calculation of a given general recursive function. However, this might be
too quick. When the demonstration that a function is general recursive is itself
non-constructive, it may well be that the function will not be computable. As
already noted above a non-constructive demonstration that an algorithm (or code
of algorithm) exists does not ensure calculability. For instance, the function f
above that is classically defined by means of an undecided question regarding the
Riemann Hypothesis makes this clear: as we already saw the value of f(14) cannot
be calculated, whether by classical or constructive means. Hence, the classically
defined function f, which is considered recursive by the classical mathematician, is
not calculable. The sensitivity of calculability to the kind of demonstration offered
for the existence of the algorithm was noted already by Alonzo Church when he
introduced the Thesis:

The reader may object that this algorithm cannot be held to provide an effective calculation
of the required particular value of F' unless the proof is constructive that the required
equation ... will ultimately be found. But if so this merely means that he should take the
existential quantifier which appears in our definition of a set of recursion equations in a
constructive sense. What the criterion of constructiveness shall be is left to the reader.?’

As noted by Kreisel (1987, p. 509) disagrees at this point; the matter was not left
to the reader, but

originally CT was intended and understood in the sense of ... effectiveness for the ideal
mathematician . ..

2Church (1936, p. 351, footnote 10). That calculability of a recursive function may depend
essentially on the character of the demonstration that it is (primitive) recursive was lucidly stressed
by Arend Heyting in a series of writings, for instance (1954, pp. 81-82), (1958b, p. 106), (1961,
p. 187), (1962, p. 196), and (1969, p. 4).
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Church’s clarifying remark in the letter to Yannis Moschovakis in the appendix
contradicts this:

‘Church’s Thesis’ was originally proposed ... in the context of classical mathematics, with
no thought of relating it to intuitionism or other form of constructivism, either in the sense
of requiring a constructive proof or constructive interpretation of the existence proposition
that was in question, or in the sense of using the thesis as a means of characterizing the
(or a) notion of constructive proof.26

Furthermore, in the letter Church is also explicit on the importance of these issues
for Kleene’s realizability as a constructive interpretation of constructivism:

Kleene later proposed to use the thesis in order to make a classical study of the notion
of intuitionistic proof. This was done without altering the thesis by reconstructing its
existential quantifier intuitionistically; and this led to objections from Heyting, who of
course held that the existential quantifier must be so reconstructed.?’

Against this background it is natural to ask:

Is every function used in constructive mathematics recursive?

Great care is needed when answering this question. Heyting, who thought long and
hard also about this and related questions in the 1950s, observed that the notion
of a general recursive function cannot replace the primitive notion of a function
in constructivism.”® Every use of the minimalization operator to define a novel
function demands that the presupposition be known to obtain. Since what has to
be known is the truth of a Hg V3 proposition, we need its proof-object, but proof-
objects for such propositions essentially involve functions. Hence, defining a general
recursive function by minimalization presupposes the notion of a (constructive)
function. Accordingly, it is only from a classical point of view that the notion of a
(general) recursive function can serve as an explication of constructive functions.
However, as we already saw above, also here one needs to have a primitive
notion of constructive demonstration in order to ensure that recursive functions are
computable.

Since algorithms can be coded arithmetically much of the above can, mutatis
mutandis, be carried out also inside various formal systems for intuitionistic and
constructive mathematics. For instance, one uses an analogue of (x*) above as a
‘formal Church’s Thesis’

(x % %) (Ya:N —=> N)(Te:N)(Vk :N)(Am :N)(T (e, k,n)&U(m) =N ap(a, k)).

26Mendelson (1990, p. 226) stresses the classical origin of Church’s Thesis: ‘Thus, we are adopting
a completely classical, nonintuitionistic stance’.

2"Heyting voices a complaint of the kind alluded to by Church in (1954, pp. 81-82).

28Heyting made also this point on a number of occasions, including the pellucid (1958a). As
observed by Thierry Coquand in his paper at the Joint Session, also Skolem saw that within
constructivism the primitive notion of a function cannot be replaced by that of a general recursive
function. Rézsa Péter (1959) is a third author stressing that the notion of a recursive function cannot
constructively replace the notion of a constructive function.
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In arithmetic, where function variables are lacking, one uses instead
(Vx:N)E@y :N)A(x,y) D (Fe : N)(Vk : N)(@n : N)(T (e, k,n)&A(k, U(n)).

Here the intensional Axiom of Choice (that is a derivable theorem in CTT), when
applied to (***), yields a functional ¥ : (N — N) — N, such that

() (MVa:N—=>N)(Vk:N)En :N)N(T(¥ (), k,n)&U(n) =N ap(a, k))
Accordingly, when I (N, ¥(a), ¥(B)) true, from (e), we also have
(e@) (Vx :N)I(N,ap(a, x),ap(p, x)) true.

This extensional equality, however, does not allow us to infer the conclusion that
I(N — N, a, p) true. However, reasoning within classical set theory, the inference

W(a) =n Y(P) true = (Vx : N)I(N, ap(a, x), ap(B, x)) true
W(a) =N Y(P) true = o =N P true

does hold, whence the functional W is an injection of N — N into N. Classically,
via the Schroeder-Bernstein Theorem, this yields a bijection of N onto N — N, and
we have a contradiction with Cantor’s Diagonal Theorem. So we have yet another
demonstration that (Formal) Church’s Thesis and classical reasoning are incom-
patible.” Kreisel’s mammoth—‘Saaty’—survey article (1965, §2, pp. 119-149)
initiated a sometimes-intense debate on the foundations of intuitionistic analysis.
William Howard and William Tait gave decisive contributions that originated in their
work for the (unpublished) Stanford Report from 1963. At the third international
congress for Logic, Methodology and the Philosophy of Science at Amsterdam,
1967, a rich symposium was devoted to ‘Foundations of Mathematical Theories’,
and intuitionistic analysis figured prominently among these, with Kleene, Kreisel,
Myhill, Tait, and Troelstra among the symposiasts.*® For present purposes, the
controversy regarding the so-called Theory of the Creative Subject, and the related
Kripke’s Schema, with their effects on Church’s Thesis, is especially relevant to my
topic here. In his lecture (1967) at the London 1965 conference on the Philosophy of
Mathematics, Georg Kreisel gave an axiomatic formalization of Brouwer’s view of
the ‘creating’ (a Brouwerian term and preferable to creative), or ‘thinking’, subject.
This formalization was not just put forward for meta-theoretic study, but was also
intended to have foundational content. John Myhill was a tireless explorer of its
possibilities, and it was speedily discovered that Kreisel’s theory (or equivalently
Kripke’s schema) refuted (Formal) Church’s Thesis. The debate culminated at the
Buffalo 1968 meeting on Intuitionism and Proof Theory, with contributions by Hull,
Kreisel, Myhill (1970), Van Rootselaar, Troelstra, and Vesley (1970). Troelstra’s
Buffalo lectures (1969) gave a broad overview, and, building on those, so did

2Beeson (1985, p. 90) presents a nice result of Troelstra’s that Extensionality and Formal Church’s
Thesis are incompatible over type theory.

3See its Proceedings that were edited by Van Rootselaar and Staal (1968, Ch. 2, pp. 121-223).
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Dummett (1977, Ch. 6.3), while Dirk van Dalen returned to the topic and added new
twists.>! Mark van Atten’s (2004, Ch. 5) is probably the deepest and most thorough
philosophical discussion of the Theory of the Creating Subject in print today.

That theory took off when Kreisel (1967) added a novel connective

Yhkn A

to the language of intuitionistic analysis, where m : N and X is the creating (or
‘thinking’) subject, also known as the idealized mathematician. The ¥ does not
serve as a variable here, but can perhaps best be thought of as being part of the
(extended) turnstile ¥ . The intended reading of ‘¥ +,, A’ was: the (thinking)
subject has evidence for asserting A at time m. Troelstra (1969, §16, p. 95) changed
this into ‘the creative subject has evidence for A at stage m ‘. He also suggested a
reading in terms of proofs: ‘the creative subject has a proof of A at stage m.’3>

Three axioms that we owe to Kripke and Kreisel (1967) for ¥ F,, A have since
become standard:

(CS1) For any proposition A, ¥ I, A is a decidable propositional function of A4,
thatis, (Vx : N)(Z F, AV =X F, A);

(CS2) (Vx:N)(Vy :N)(ZFy AD X byy, A);

(CS3) (Ax:N)(ZhF, A) & A.

Various weaker versions of CS3 were also considered, for instance, the contraposi-

tion of the controversial half of CS3, thatis, A D (3x : N)(2 F, A) became known
as the Axiom of Christian Charity:

(CC) —(@Ax:N)(ZhF,A4)D>—-A4F

Kreisel’s informal reading of the 3 - connective appears ill chosen. English alone
uses ‘evidence’ in the familiar Anglo-Saxon legal sense of evidence for something.
However, even in English, at least according to the OED, the first meaning of

31van Dalen (1978, 1982a,b), and Troelstra and Van Dalen (1988, Ch. 4, §9).

32Van Atten (2008) also prefers to work in terms of proofs and uses ‘The ideal mathematician
has at time n obtained a proof of proposition p’. In his book (2004, p. 64) Van Atten, with
an insignificant typographical change, uses ‘the subject has experienced A at m’, presumably
in order to accommodate the Brouwerian view of truth (2004, p. 18): ‘To experience a truth is
to experience that a certain construction has succeeded.” This formulation might not be entirely
felicitous: juxtaposing these passages, there seems to be no difference between experiencing a
proposition and experiencing the truth of a proposition. In his joint paper with Van Dalen (2002,
p- 522) he uses ‘the creating subject experiences A (has full evidence for A) at time m’, which
appears to identify experiencing A with having full evidence for A. (For how to deal with evidence
see further down the main text, around footnote mark 33.) The difference between the ‘evidence’ of
earlier writers and the ‘full evidence’ of Van Dalen and Van Atten is intended to rule out readings
that admit insufficient evidence. Furthermore, the notion of proposition that is at issue here is not
clear to me. It will not be the BHK one. Instead Van Atten’s A would appear to contain assertoric
force and be demonstrated.

33The responsibility for this ‘ethico-theological’ terminology is credited to Kreisel, though to the
best of my knowledge it was first published by Myhill (1967, p. 296).
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evidence is the quality that pertains to what is evident. Anglophone epistemologists
attempt to save themselves by using ‘self-evidence’. However, since everything
that is evident, and not just what is self-evident, has the quality of evidence this
move does not work. The evidence of a judgment made (demonstrated theorem)
can also be discursive and obtained in several steps by means of a chain of
immediate evidences, be they axiomatic or immediate inferences. Hence, evidence
of, and not for, is the main epistemological notion to consider.** In the Anglophone
legalistic sense one may well have evidence (that is, evidence for something) that is
insufficient. In the case of mathematics, though, evidence in this ‘legalistic’ sense is
clearly not enough, but a proper demonstration, or ‘proof’, is called for.

Kreisel (1967, p. 179) raises the issue of interpretation and notes that

very little of the ‘thinking subject’ is used. ... Instead of writing ¥ F, A, I could write

3, b A and read it as: the n-th proof establishes A. ... [T]he essential point would not be
the individual subject, but the idea of proofs arranged in an w-order.

Other readings were canvassed, for instance by Van Rootselaar (1970), who used
P(c,n, A), instead of Kreisel’s ¥ -, A, but now with G as a variable for ‘creating
subjects” and allowing iterated occurrences of P inside the proposition 4.3 Van
Dalen and Van Atten in recent writings prefer to use the ‘modal’ notation OJ,, in
place of Kreisel’s ¥ -, A.

Van Rootselaar cast Kreisel’s CS3 as

(3) 36@m:N)P(o,m, A) & A.

and regards Kreisel’s CC as a formal rendering of ‘a well-known argument
Brouwer’s:

(4)  If the creative subject has evidence that he will never assert A,
then he has evidence to assert = A’

and formalizes this using his P connective:

(cc® P(o,m,(¥n :N)=P(c,n,A)) D P(c,m,—A).°

341 deal with the ambiguities of evidence in my (2011).

3In the review (1967, p. 248), Kreisel allows for the quantification over creating subjects. His
notation is still the same

Xk, A

but now with X as a variable over subjects, and the reading: ‘at time n the subject has evidence
to assert A’. In (1970) he casts this as ‘A has been proved by the nth stage’. In (1971) Kreisel
elaborates on the alternative formulation in terms of an w-ordering of demonstrations (‘proofs’)
and notes that Kreisel (1970, §4) ‘considers the schema KS which is inconsistent with C[hurch’s]
Trlhesis]. (The schema KS was derived by Kripke from Brouwer’s assertions about the thinking
subject, or better from the postulate of an w-ordering of levels of proofs.)’.

36Van Rootselaar (1970, p. 189), with altered fonts and logical symbolism. It does not seem
unlikely that van Rootselaar had seen Kreisel (1967).
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Van Rootselaar’s treatment is an improvement, I think, on the Kreisel-Myhill frame-
work, but neither is convincing. Both connectives—Kreisel’s ¥ -, A as well as Van
Rootselaar’s extended P (o, n, A)—stand in need of proper meaning explanations.
From their use in the various axioms it is clear that both connectives have to be
propositional in character, since otherwise they could not be used with quantifiers
and connectives to form the propositions that occur in these axioms. However,
neither Kreisel, or Van Rootselaar, nor, to the best of my knowledge, anyone else,
has offered a suggestion towards a ‘BHK” account for what canonical proof-objects
might be for propositions built by means of such ‘Creating Subject’ connectives,
and it is by no means obvious how to provide one. Furthermore, the informal
explanations that were offered by Kreisel and others seem too vague to serve as
a basis for an alternative notion of proposition that would serve as a non-standard
interpretation of the constructive logical vocabulary. Accordingly, the Theory of
the Creating Subject suffers from a considerable meaning-explanatory deficit at this
point. Will the standard connectives and quantifiers have to be re-interpreted in order
to accommodate the novel connective in either its Kreisel or Van Rootselaar version,
or can they retain their standard BHK explanations? We simply do not know.

The question is also moot whether the Theory of the Creating Subject does not
beg Geach’s Frege point. Existence of a proof at stage m would not just give the truth
of a proposition(al content), but actually entail knowledge that the proposition is
true.’” For instance, an ordinary natural deduction assumption that A is true (towards
obtaining that B is true on condition that A is true) cannot then be made, since an
assumption that there is a proof of A amounts to an assumption that A is known.
The proofs available to the Creating Subject (‘idealized mathematician’) are too
committing from an epistemic point of view, so to speak.®

Furthermore, with his use of the variable ¢ in the P connective, Van Rootselaar
avails himself of object-level quantification over ‘creative subjects’. In the absence
of further explanation, one must assume that this is the standard constructive
quantification, whence these creating subjects have to form a proper ‘basic domain’
D of quantification in the BHK sense. How, then, in that case, are the canonical
elements of the domain of creating subjects generated from parts? At present
we have no idea of how to answer this, to my mind, rather pressing question.
The ‘axioms’ of the theory CS simply are not made evident by the meaning
explanations.®

37 Geach (1965).

3The same worry might apply also to a Brouwerian use of the implication D. For Brouwer,
truth is truth known, ‘experienced’ truth, and accordingly an assumption that proposition A is
true amounts to an assumption that A is known to be true. Van Atten (2009) contains a promising
attempt at rescuing Brouwer’s position by reading implication A D B as essentially involving only
relations between the proof-conditions, but not the actual existence of proofs, for the component
propositions A and B.

3Here I part company with Van Dalen and Van Atten (2002, p. 522), who claim such evidence.
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Already these meaning-theoretical worries are enough to impugn the theory from
a constructive point of view. Equally worrisome, however, is that the ‘axioms’
proposed for the Creating Subject appear to be, not just non-evident, or lacking
in justification, but incorrect. The controversial direction of CS3 is simply wrong to
my mind. It does not hold as an implication, or equivalently as a consequence, but
at most as a rule of proof, going from a known judgement to a novel judgement that
gets known in this inference. The point is this: when an implicational proposition
A D B is asserted as an axiom, it allows one to pass also from assumptions that A
is true to a conclusion that B is true.*’

However, from an assumption that the proposition A is true we may not conclude
that the Creating Subject, by carrying out, or otherwise obtaining, a suitable
demonstration at a certain stage, gets to know that A is true. When the proposition
A, whose truth is hypothetically assumed (as in natural deduction when one arrives
at the dependent truth of B, under the assumption that the proposition A is true),
is in fact false, of course, at no stage can the Creating Subject come up with a
demonstration that A is true. There are no such demonstrations to be found. An
inference, on the other hand, from knowledge that A is true, to knowledge that,
at some stage, the Creating Subject knows that A is true, is not vitiated by the
same error. Knowledge that A is true has to be based on possession of a proof(-
object) a for A, and the Creating Subject might reflect on when it acquired that
proof. Verification of the truth of an implication, or the holding of a consequence,
be they logical or not, involves the construction of certain function(-object)s that
transform proofs of antecedents into proofs of consequent, irrespective of whether
there actually are any proofs of A; only a relation between the respective proof-
conditions is involved, but not their being actually fulfilled. In the simplest case
when x is assumed to be a proof of A, b is a proof of B, under that same assumption.
Validation of an inference, on the other hand, involves assumptions not just that
propositions are (hypothetically) true, but that judgements are (hypothetically)
known.

The holding of consequence demands the construction of dependent proof-
objects from hypothetical, assumed proof(-object)s. The validation of inferences,
on the other hand, proceeds from hypothetical assumptions of actual proof-objects.

40Similarly it justifies the (open) consequence (‘conditional’)

if A is true, then B is true
that is, as the hypothetical judgement

B is true, on condition (hypothesis, assumption ... ) that A4 is true,
which we may symbolize with a Gentzen sequent arrow

A true = B true.

Constructively an open consequence (hypothetical judgment, Gentzen sequent) is verified by a
hypothetical (‘dependent’) proof-object b : B(x : A).
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When we divest the calculi of content, and consider them purely formally, these
points on implication and consequence may be cast also purely syntactically in terms
of formal derivations. The rule

T A
T F @m : N)(OnA)

which is equivalent to the controversial direction of the CS3 axiom, is not valid.*!
Removing the assumptions I', just as in the case of the rule of Necessitation in
modal logic, leads to a rule that perhaps can be justified:

- A
= @m : N)(OnA).

When the Creating Subject knows that A is true he does so on the basis of a
possessed proof-object, and this proof-object is obtained at a certain stage that can
be determined by introspection.42 However, in an interpreted calculus, with content,
the worries about the propositionality of [J,, of course remain.

Analogous observations can be made on the so-called ‘Fitch’s paradox’, where
the crucial ‘verifiability’ axiom A D KA simply is not valid as a constructive
axiom. First, also here there is the meaning-theoretical issue about the proposition-
ality of K and . In the absence of a BHK account of these notions the Fitchean
anti-anti-realist’s attempted refutation of anti-realism may be safely ignored by
the anti-realist. Again, fulfillability of the proof-condition of A is not needed for
verifying the truth of an implication A D B, but only the establishment of a certain
relation between the proof-conditions of antecedent proposition A and consequent
proposition B. When A is only assumed to be true, why should it then be possible
to know that A is true? For all we know A might actually be false. Yet this is granted
by the Fitchean ‘axiom’ in question. The conditional

Aistrue D itis possible to know that A4 is true

does not hold in general; the assumption of a hypothetical proof-object x

Proof(A) does not warrant the inference that A can be known. In natural-deduction
terms we have here the difference between taking ¢ as an assumption wff towards
deriving W, in order to obtain ¢ D y by means of an DI application that cancels the
assumption ¢, and assuming that we possess a closed derivation of ¢. An assumption

“lIn order to prevent misunderstanding I here prefer to use the Van Dalen-Van Atten ‘modal’
notation for the Creating Subject connective rather than the Kreisel-Myhill-Dummett turnstile
notation.

42Kreisel, Myhill, and others have given a considerable body of derivations using the axiomatic

formulation of CS, conveniently spelled out in Troelstra (1969) and Dummett (1977); I have not
checked which of these derivations still go through using only the corresponding rule of proof.
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that x is a hypothetical proof of A does not guarantee that A true can be known, that
is, that an actual proof-object a of A can be found.
On the other hand, the rule of inference

F Ais true
k- it is possible to know that A is true,

is correct without assumptions to the left of the turnstile, or, in natural deduction
terms, when the premise that A is true is known outright under no assumptions.
Validity of inference does not consist in mere preservation of propositional truth
from antecedent propositions to consequent proposition; rather it is the possibility
to know the conclusion judgement given that the premise judgements are known
that is at issue.

The Theory of Creative Subject was suggested in order to formalize Brouwerian
‘strong counter-examples’. Saul Kripke discovered that its use may be avoided here,
using instead Kripke’s Schema.** The ‘negative’ formulation of Kripke’s Schema I
prefer to use here was,* in essence, introduced by Van Dalen (1982b), but I make
the role of the two truth-values t and f explicit via the type Bool, in order to bring
out the analogy with undecided separation of cases:

(KS) (Ja € N — Bool)[4 < (3x : N)(a(x) FBool )]

where x =pgoo1 ¥ =gt /(Bool, x, y), that is, propositional identity with respect to
the set Bool.

The function that is asserted to exist in (KS) is analogous to the non-constructive
function fy at (##) that tests the proposition A. Van Dalen (1982b) pointed out that
KS is correct from a classical point of view:

Kripke’s Schema looks a bit like a trivial comprehension principle. The Comprehension
Principle postulates a characteristic function that tests whether an element has the property
A(x). Kripke’s Schema postulates a function that tests whether A holds. From a classical
standpoint that is wholly trivial.*’

“3The letter from Moschovakis to Church printed in the appendix makes clear that Kripke’s
reasoning was known in 1968, at the time of the Buffalo conference on Intuitionism and Proof
Theory. The schema is clearly presaged in Kripke (1965).

44By ‘negative’ I understand using #poo f rather than =g, t when formulating the principle.
45Van Dalen (1982b, p. 174, my translation):

Kripkes Schema sieht ein biichen aus wie ein triviales Komprehensionsprinzip. Das
Komprehensionsprinzip postuliert eine charakteristische Funktion, die priift, ob ein Element
die Eigenschaft A(x) hat. Kripkes Schema postuliert eine Funktion, die priift, ob A gilt.
Klassisch ist das natiirlich vollig trivial.

I am indebted to Mark van Atten, who drew my attention to this passage when informed of the
classical derivation of Kripke’s Schema given above. Troelstra and Van Dalen (1988, Ch 4, §9) use
second-level quantification, not just over functions in Bool — N, or in N — N, but also over sets
(‘species’) instead and treat of Kripke’s schema in terms of the quantifier combination
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The classical definition (##) of f,4 is indeed trivial. However, the matching
derivation of Kripke’s Schema, using a proof ?(A) of (A v —A), is a bit more
instructive, whence I give one here.

We define the function o : N — Bool by means of an undecided separation of
cases. For k : N, put

t if A is true;
(*) ak) = ’
®) =ty o i A false.

(1) Assume A true. Then by ()

(2) [0(0) =poo t] true, but

(3) [t # f] true, and so by the rules for =g

(4) [0(0) #gool f] true, and whence by 3-introduction

(5) (El-x : N) [OL(X) #Bool f] true.

For the other direction,

(6) Assume (Ix : N)[a(x) #Boo f] and
(7) Assume x : N such that [a(x) #gea f] true.
(8) Assume A false. Then, by (%)

9) [a(x) =Bool f],

whence we have a contradiction between (7) and (9), so
(10) L true.

But then, using L. on (8) and (10),

(11) A true. By 3-elimination on (6), (7) and (11), discharging (6) we have
(12) A true.

So by <1 on (1) and (5), (6) and (12) we have

(13) [A < (Ix : N)(a(x) #Boa )], and by I-introduction
(14) (3a € N — Bool)[4 < (Ix : N)(a(x) F#poa )], that is KS.

In order to complete the demonstration we must deal with the method of
Definition by undecided separation of cases as applied in ().
Let A, B be given propositions. First we define a function

sep: AV B — Bool

(VX : prop)(Fa: N = N)(Vn : N)

(where I have made quantificational domains explicit). From a constructive point of view this
introduces yet another, and this time superfluous, complication into the Theory of the Creating
Subject, namely that of impredicative quantificational domains, whence I prefer the earlier
treatments in terms of functions, especially in the closed (BKP) form.
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by the equations

sep(i(a)) =t :Bool (a : A)
sep(j (b)) =f:Bool (b : B)

Then put
g(x,z) =sep(z) : Bool (x :N,z: AV B)
Finally, we postulate a non-constructive LEM-proof

A : prop
2(A) : Proof(A v —A).

Putting together all the components we obtain the function for Kripke’s Schema:
aq(x) = g(x,?(A)) : Bool (x : N).

By starting the above demonstration with a propositional variable X instead of a
given proposition, we obtain a closed verification object cg for Kripke’s Schema,
but now formulated as a closed principle (that I think may be appropriately named
after Brouwer and Kripke):

(BKP) (X : prop)Proof((Ja € N — Bool)[X < (Fx : N)(a(x) Fgoa F)])-

This (‘functional’) generality with respect to propositions is not quantificational,
since the domain of propositions does not form a set, whence it is not amenable to
quantification. Thus, the ¢y above is a verification-object, but not a proof-object,
since BKP is not a proposition. The construction of this particular ¢y makes use of
classical logic in the form of the assumed verification-object for LEM

?: (X : prop)Proof(X v —X).

A demonstration of Kripke’s Schema, however, does not need the full power of
classical logic, as given by the function ? that yields a proof-object 7(A4) of AV —A,
when applied to a proposition A. The more modest resources of CS 1-3 will suffice.
The CS1 decidability of ¥ I, A allows us to replace the undecided separation of
cases in (##) by a decidable one: for m : N, define

t if X+, Aistrue;
a(m) =g .
f otherwise,
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where the legitimacy of the definition is guaranteed by CS1, and KS follows
readily.*®

Already in Myhill (1967, pp. 296-297) it was pointed out that KS is incompatible
with (formal) Church’s Thesis, and Troelstra (1969, pp. 98, 100) gives more results
with such a recursion-theoretic flavour. In view of the decidability-axiom CSI
that allows one to use a decidable separation of cases in place of the undecided
separation of cases that is used to give classical characterizing functions, I find
it hardly surprising that KS allows for non-recursive functions. Both Myhill, and
following him Troelstra, note that these results are not really recursion-theoretic
in character. Instead they are analogues to results concerning the impossibility
of enumerations within various quantifier prefixes. Such phenomena are familiar
already from classical predicate logic. Thus, for instance, the logically valid
formula

—3dyVx(R(x,y) & - R(x,x))

embodies reasoning used in various paradoxes, e.g., those of Russell and Grelling.

Saul Kripke gave an actual example of a function, using the Theory of the
Creating Subject for its definition, thereby establishing the incompatibility of CS
with Church’s Thesis in a stronger way.*” Above we saw how to define the
characteristic function of Kleene’s non-recursive but recursively enumerable set K,
using undecided separation of cases. Exactly the same kind of construction is now
used for Kreisel’s connective ¥ F,, A, which by stipulation is decidable, so the
separation of cases is no longer an undecidable one.

1 ifnotX b, ndKkK;

Gomm =, s n ¢ K.
Thenn ¢ K < (Im : N)[G(m,n) = 0].

From right to left, by the definition of G, when G(m,n) = 0, the Creating
Subject has a proof of n ¢ K at stage m, and so n ¢ K. From left to right,
using the Brouwerian conception of truth, n ¢ K has been proved by the idealized
mathematician, and so he has a proof of n ¢ K. But this was obtained at some stage
m and so for some m, ¥ -, n € K, and so (Im : N)[G(m,n) = 0]. If the function
G is recursive, the complement of K is recursively enumerable, and so K will be
recursive, which is a contradiction. Accordingly the function G, which is held to be
computable by the idealized mathematician, is not recursive. In view of my doubts
both as to the meaningfulness and validity of the Kreisel-Kripke axioms, I am not

46 As far as T know the precise proof-theoretic strength of Kripke’s schema is undetermined.

4TKripke, to the best of my knowledge, never published his treatment, and perhaps it was not even
written up. Van Dalen (1978, p. 40, footnote 3) gave a nice exposition that is unfortunately marred
by garbled printing. Van Dalen’s presentation was emended by Van Atten (2008), whose exposition
I follow.
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at all convinced by the interpretation of the Kripke result that makes a computable
function out of G, and instead I prefer to view this result as a version of the classical
theorem that there are non-recursive functions.

As already noted above, from its interaction with the BHK propositional
connectives and quantifiers in the CS axioms it is clear that I, has to be
propositional.** Accordingly one might have expected a BHK account in the early
writings, but none was forthcoming.*’ Can something be done about rendering the
Brouwer-Kreisel connective ¥ F,, A more palatable from a meaning-theoretical
point of view? Dirk van Dalen (1978; 1982a) sketched model theoretic proofs
that KS is conservative with respect to intuitionistic analysis and HA.*" In his
metamathematical constructions infinitely many novel constants B4 are used that
serve as witnessing ‘Kripke functions’ for the existential quantifier in KS—one for
each wif A. These ‘Kripke functions’ cannot be used at a contentful level, since that
would require infinitely many semantic primitives.

At this point the reformulation of KS into BKP proves helpful. The assumption
of a closed verification-object ¢ for BKP allows us to obtain the required Kripke
functions uniformly and contentfully. Let A be a proposition. We define

d =g c(4) 1 (3u € N — Bool)[4 < (3x : N)(ap(a, x) Fpoal )],
whence
ca =4 p(c(A4)) : N — Bool
and

dy =4 q(c(A)) : A & (3x : N)(ap(ca, x) #Bool f).

These witnessing Kripke functions ¢4 are obtained uniformly in the verification-
object ¢ of BKP and the chosen proposition A and make it possible to define the
Kreisel-Myhill connective explicitly as a proposition in Martin-L6f’s CTT. It must
be stressed, though, that the meaningfulness is a relative one: given a verification-
object for Kripke’s Schema it is possible to define the connective. Whether such a
verification-object can be found constructively is still an open question.

48Myhill refers explicitly and at length to BHK in (1967).

“This holds true also for quantification with respect to choice sequences; one would have had
hopes for a uniform BHK account of quantification with respect to all quantificational domains and
then an explanation of the notion of choice sequence such that, for instance, the various continuity
principles can be read off by combining these explanations. Heyting’s brief treatment (1959, §6
pp. 70-71) is the only one by a Founding Father known to me. The issue is noted in my (1983,
pp- 163-164) and (1984, pp. xiii—xiv).

SODummett’s (1977, p. 353, formula (xxi*)) explains Van Dalen’s construction, but also does not
give details.
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A is a proposition m : N

(X, A) prop
(2 Fm A= (3x <m:N)[ap(ca, x) #poa f]) prop.
Here

(i) x <y :prop (x : N,y : N), and the usual arithmetical properties of <
are demonstrable already in HA, but HA is embedded in CTT, so they are
demonstrable also in CTT. In HA we define x < y by (3z : N)(z + x =N ),
but in CTT with one universe we also have other options, for instance, using
primitive recursion to define the propositional function x < y outright.

(i) When the quantifier matrix is decidable, that is, when we have a proof-object

v (Vx :N)(A(x) vV —A4(x)),

also bounded 3 and V quantifiers are decidable. In particular, we can exhibit a
proof

N:@x <m:N)Av-3x <m:N)A>!
(iii) The propositional identity —,, With respect to the Boolean values t and f, that
is, the propositional function
I1(Bool, x, y) (x : Bool, y : Bool)
is decidable in CTT with one universe, since we have a proof-object

T: (Vx : Bool)(Vy : Bool)[x =ggo1 ¥ V =X FBool ¥].>

SIKleene has given meticulous HA treatments of the relevant arithmetical requirements in (1952,
§32, ¥150, p. 191) and Kleene—Vesley (1965, Remark 4.1, p. 15).

3In general, when P is a propositional function of the appropriate type, inferences of the kind

1(A,a,b) true
P(a) <> P(b) true

are valid. Accordingly, we define the function /& : Bool — U, where U is the first universe, by
Bool elimination:

ht)y=T:U
W =L1:U.
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We now demonstrate the axioms CS1-CS3, still under the epistemic assumption
of a closed verification-object for BKS. Without it a definition of ¥ F,, A might not
even be possible.

CS1. The propositional function B(x) = [ap(c4, X) #sool f] (x : N) is decidable
since #pool is decidable by (iii). Hence, by (ii), the Brouwer-Kreisel connective

Yy, A =4 3x <m:N)[ap(ca, X) #Bool f]

is decidable and CS1 is true.
CS2. Assume that ¥ -, A is true. By definition, that is, assume that

(3x < m : N)[ap(c4, x) FBool f] is true.
Since standard properties of < are demonstrable in HA, whence also in CTT,

(Vm :N)(Vn : N)[m < m + n] true

Hence, from the assumption

[t =Bool f] true

we get that their respective values under the function s are propositionally equivalent, whence
(T < 1) true, and so that L true under the assumption. Hence (t #poo f) true. The crucial
Peano axiom

[s(x) #n 0] true

is demonstrated by the same technique, that is, defining a function from N to the first universe U
that is L on 0 and T on the numbers greater than 0.

In order to demonstrate the decidability of =g, assume x : Bool and y : Bool. By the Bool
elimination rule we readily demonstrate

Vz: BOOl(Z =pgool t V Z =Bl f) true.

But then x =pge t V X =g ).

When (Case 1) (x =01 t) true, we have two cases, (1a) (¥ =pool t) true, and (1b) (y =peo1 )
true.

In (Case 1a), (x =poo t) true and (y =geq t) true, whence (x =poo1 ) true by =gqq rules,
and so, by V elimination, (X =gge1 ¥ V X FBool J) true.

In (Case 1b), (x =poe t) true and (y =peo f) true. An assumption that (x =g V) true
by means of the rules for =g yields t =poe f, which gives a contradiction with the already
demonstrated theorem that (t Fpeor f) true. Hence (X Fpoo V) true, and by V elimination,
(X =Bool ¥ V X FBool V) true also in this case.

When (Case 2) (x =g, f) true, there are yet again two cases.

In (Case 2a) (x =poo f) true and (y =peo t) true. As in (Case 1b) we obtain (X Fpeol V)
true and so, by V elimination, (X =goe1 ¥ V X FBool ¥) true. In (Case 2a) (x =gqo f) true and
(¥ =Bool f) true, whence (x =pgqo1 ¥) true. By V elimination we obtain (X =geo1 ¥ V X FBool V)
true and two applications of V introduction with respect to the assumptions x : Bool and y : Bool
establish the required decidability of Fpool-
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is demonstrable. Accordingly we can demonstrate the consequence
x <mtrue = x <m + n true,

whence the truth of CS2 follows immediately.
CS3. By BKS, since 4 is a proposition, we get that

¢(4) : (3o € N — Bool)[4 < (Vx : N)(ap(at, x) Fgool )],
and so
¢4 = p(c(4)) : N - Bool
and
ds =a q(c(A)) : A & (Vx : N)(@p(c4, X) #Bol f).

Now, assume that A is true. Hence (Im : N)(ap(c4,m) #poa f) true and so
(@m : N)(@x < m : N)[ap(ca, X) FBool f], s0 (m : N)(Z -, A) true.

For the other direction of CS3, assume that (Im : N)(X +, A) true, that
is, assume (Im : N)(3x < m : N)[ap(c4,X) FBool f] is true. Then (Vx : N)
[ap(c4, X) FBool f] true, and by BKS, A4 is true.

With this reduction of the meaningfulness and main CS properties of the Kreisel-
Myhill connective ¥ F,, A, a formal demonstration has been given that the
Brouwer-Kripke Principle is ‘sufficient for deriving most of the counterexamples
of Brouwer’: these counter-examples can be given in the CS, and so BKP suffices.>
It will not have escaped the reader’s attention that as a matter of fact a closed
verification-object for BKP was obtained in its classical demonstration from the
assumed closed verification-object ? for the Law of Excluded Middle above.
Accordingly, via the reduction of the theory CS to the Brouwer-Kripke Principle,
the formal Theory of the Creating Subject is classically valid, a somewhat surprising

result since ‘it represents the extreme consequences of intuitionistic subjectivism’.*
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Appendix

Correspondence between Yannis Moschovakis and Alonzo Church in 1968.

Professor Moschovakis reviewed four papers on Church’s thesis for the JSL.
The papers were ‘Quelques Pseudo-Paradoxes de la “Calculabilité Effective™ by
Jean Porte, ‘An Argument Against the Plausibility of Church’s Thesis’ by Laszlo
Kalmar (1959), ‘Rekursivitidt und Konstruktivitidt® by Rézsa Péter and On some
recent criticism of Church’s Thesis by Elliott Mendelson (1963).

The review, which is highly relevant review to our topic, was printed in The
Journal of Symbolic Logic, Vol. 33:3 (Sep., 1968), pp. 471-472. Many of the
topics addressed in Moschovakis’ review and in the ensuing correspondence have
been addressed in the main text of my paper, though I deliberately refrain from
discussing Kalmar’s non-plausibility argument against Church’s Thesis that is
conducted in terms of a purported counter-example. In his brief article Kalmar
discusses or makes use of many themes that have been covered, for instance, the
use of Kleene’s set K, definition of functions by means of undecided separation of
cases, and the nature of assumptions that something is known. He also makes use
of an assumption analogous to Kreisel’s reading of CS in terms of the existence of
an ‘enumeration’ of demonstrations. A proper treatment of the complex dialectical
structure of Kalmar’s reasoning, together with a review of the not inconsiderable
discussion that was provoked by his paper, would double the length of the present
paper. Accordingly, in order not to try the Editorial patience beyond endurance, it
shall be left for another occasion.

I. Holograph letter from Moschovakis to Church, submitting the review of the four
papers.

March 15, 1968

Dear Prof. Church,
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You might be interested in one of the mathematical points that originally caused me some
difficulty in writing this up and which I still have not resolved entirely to my satisfaction.
Kalmar’s argument appears silly on first reading and may very well be silly through and
through. It is rather close, however, to some of the arguments that Brouwer used in his later
years concerning the so-called ‘creating agent’. Kripke has extracted from these arguments
the following principle, whose formal version is sometimes called Kripke’s Schema:

if P is any proposition, then there exists a (constructive) sequence ko, ki, ... of
integers such that P is true if and only if some k; = 0.

Apparently Brouwer’s motivation is that the sequence ko, k;,... can be ‘constructed’
(empirically and not by a mechanical procedure) by the ‘creating agent’ in his effort to
find proofs for P; he sets k,, = 0 if at time n he has found a proof. This is very close to
Kalmar’s argument, except that Kalmar uses classical reasoning to obtain his ‘paradoxical’
conclusion. This is a very big difference, since the entire justification for Kripke’s Schema
(to the extent that it can be justified) lies in the inuitionistic interpretation of absurdity: P
is absurd if no proof for P can be found (by any creative agent, in all time, presumably). In
the end I decided that the explicit use of the classical ideas by Kalmar made his argument
sufficiently different so I left the analogies with these ideas of Brouwer out of the review.
But it is interesting to note that within the kind of intuitionistic mathematics that accepts
Kripke’s Schema, Kalmar’s algorithm is acceptable. (Kripke’s Schema has been used to
violate formal versions of Church’s thesis in systems with variables for ‘constructive’
sequences by Myhill and Kreisel, I believe.) I do not know if Kalméar knew of the Brouwer
ideas and whether he was influenced.

Sincerely yours

Yannis N. Moschovakis.

II. Typed reply by Alonzo Church to the above letter.
April 15, 1968

Dear Professor Moschovakis,

This is just to thank you again for your review of Porte, Kalmadr, et. al., and to make in
partial reply to your letter the following historical remarks.

1. ‘Church’s Thesis’ was originally proposed (Bulletin of the A.M.S. vol. 41(1935),
pp- 332-333) in the context of classical mathematics, with no thought of relating it to
intuitionism or other form of constructivism, either in the sense of requiring a constructive
proof or constructive interpretation of the existence proposition that was in question, or in
the sense of using the thesis as a means of characterizing the (or a) notion of constructive
proof. Indeed in the historical context of the date it might well be said that the notions of
calculability (the adjective ‘effective’ is superfluous) and provability had long existed in a
pre-formal way in classical mathematics. But it can at most very doubtfully be said that a
notion of constructive provability existed in classical mathematics. Kleene later proposed to
use the thesis in order to make a classical study of the notion of intuitionistic proof. This was
done without altering the thesis by reconstructing its existential quantifier intuitionistically;
and this led to objections from Heyting, who of course held that the existential quantifier
must be so reconstructed.

2. Though I have no definite information, I think it unlikely that Kalmar’s argument was
suggested or influenced by the ideas of Brouwer to which you refer. This is simply on the
ground that Kalmar’s mathematical publications have never shown any great concern with
| intuitionism. And certainly his argument in the paper under review, as you report it, is the



1 Constructive Recursive Functions 31

very antithesis of intuitionism. That is, he assumes in effect that, for every x, either there is
a proof of Ax (by some correct means) or there is a proof of the negation of Ax (by some
correct means, in each case). And this is a special case of, and clearly kindred in spirit to,
Hilbert’s principle of the solvability of every mathematical problem, which Brouwer once
so roundly denounced. I am not familiar with the Myhill-Kreisel paper to which you refer,
but I suppose that their proof can hardly proceed in a way that parallels Kalmar’s, or at least
not unless they take Hilbert’s principle or some special case of it as an axiom.

Very sincerely yours

Alonzo Church.

Added Note, April 2014

1. In the paper I follow Van Dalen’s use of the negative formulation of Kripke’s
Schema. However, the ‘positive’ version of the principle

(X :prop)((3a : N — Bool)[X < (Fk : N)(a(k) =goa t)])
is more elegant and, in view of the decidability of =g, Would work as well.
2. The function P : (Bool)prop that allows us to go from a boolean truth-value to

the matching proposition.

P(true) = T : prop

P(false) = L : prop.
It is well known that the Law of Excluded Middle

AV —Atrue (A : prop)

is equivalent to having a (unary) truth-value function §§ : prop — Bool such that

[P(B(A)) < A] true.
Per Martin-Lof (email March 30, 2013) commented that the analysis of the
Theory of the Creating Subject weakens this version of the Law of Excluded
Middle by replacing the demand for the unary function p from prop to Bool to
the demand for a binary function a, from prop and N to Bool, such that

[(3n :N)P(a(A,n)) < Al true

instead. ‘One could say’, so Martin-Lof, ‘that by an exact analysis of the

mathematical content of the theory of the Creating Subject, you unravel it as
a weakened form of the Law of Excluded Middle.’
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3. Mark van Atten (January 2014) drew my attention to the fine analysis of the
theory of the Creating Subject offered by Anne Troelstra (1980) in ‘The interplay
between logic and mathematics: intuitionism’. Troelstra notes (pp. 208—-2099)
that, with given function constants y,, the Kripke equivalences 4 <« 3x
(y4x = 0) can be demonstrated from classical comprehension axioms, and that
Kripke’s Schema does not contradict classical logic. My principal contribution
here is to provide such closed Kripke functions using the classical verification-
object for Kripke’s Principle.
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Chapter 2
The Developments of the Concept of Machine
Computability from 1936 to the 1960s

Jean Mosconi

Abstract From the 1940s to the 1960s, despite the significant work done on
recursive functions (properly) and later on the lambda-calculus, the theory of
calculability was developed more and more as a theory of computation by an
idealized machine, or in the form of a general theory of algorithms. I will only deal
here with the former aspect, a development that stems from the concepts introduced
in 1936 by Turing. I will try to show how Turing’s ideas were gradually adopted,
developed and modified. The Turing machine had an increasingly important role and
was the object of systematic investigation. It was subsequently reworked to such
an extent that a new model of machine was fashioned, the program and register
machine. However, the initial model kept a significant place, and extensions of
Turing’s analysis led, toward the end of the century, to profound reflections about
the notion of a constructive object and the general notion of an algorithm.

2.1 Introduction

Since 1936, several precise and coextensive concepts of computability, or effective
calculability, have been in competition, and depending on the time and period some
concepts have been studied and used more often than others. Robert I. Soare (1996)
points out the following paradox: a large and increasing part of what was usually
named “Recursion Function Theory” dealt in fact with computability by finite
processes, and had as its basic technical notion the concept of computability by an
idealized machine, which Turing had proposed in 1936. According to Soare (1996,
314), computability is, indeed, “the heart of the subject”, which properly must be
called “Computability Theory”.

To a large extent, I agree with Soare’s view of “Computability Theory”, but
my present purpose is neither critical nor normative, only historical. I shall try
to show how, between the 1940s and mid 1960s, Turing’s concept of machine
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computability was adopted, studied, developed and reworked. At first, Turing’s
model of computability was not widely followed, but it progressively gained
importance and was subjected to a systematic investigation and reworking that led
to a model of computation noticeably different from the initial one.

2.2 A Quiet Beginning (1936-1947)

2.2.1 A Philosophically Well Received, but Seldom
Used Concept

The concept of computability by an idealized machine, namely a finite device
operating in a deterministic and absolutely elementary way and storing information
on an infinite tape, was introduced by Turing in 1936 in his paper “On Computable
Numbers, with an Application to the Entscheidungsproblem”. The enthusiastic
philosophical reception of Turing’s approach stands in stark contrast to the
very limited attention given to it in print in the following decade. Among the
various concepts proposed as a precise counterpart of effective calculability, the
Turing machine was the most immediately adequate: as Church remarked in his
review (Church 1937, 43), “it has the advantage of making the identification with
effectiveness in the ordinary (not explicitly defined) sense evident immediately
— i.e. without the necessity of proving preliminary theorems”. It revealed itself
to be the best intuitive support to Church’s Thesis or, more exactly, to Turing’s
Thesis; this was already emphasized by Godel shortly after Turing’s paper was
published (Godel 193?, 168) and also later in the 1964 Postscriptum to his 1934
Lectures: “That this is the correct definition of mechanical computability was
established beyond any doubt by Turing” (Godel 1934, 369). For the concept of a
Turing machine was introduced together with a rigorous analysis of the conditions
imposed on any human operator carrying out a computation according to any
algorithm. Hao Wang (1974), R. Gandy (1980; 1988; 2001) and especially W. Sieg
(1994), Sieg and Byrnes (1996; 1999) gave us very illuminating commentaries on
Turing’s approach of calculability, which they themselves extended or transposed.
Nothing like Turing’s analysis was provided by Post to support his (technically very
similar) concept of “finite combinatory process” (Post 1936).

However, when Post (1947, 2) resorted to “the theory of Turing machines”
(a phrase seemingly not used before), what had been published earlier in the domain
was more or less limited to: (a) Turing’s original 1936 paper and the one that
immediately followed it (Turing 1937), in which equivalence to A-definability was
proved; (b) Turing’s 1939 paper that introduced the notion of an oracle machine
and thus the related notion of relative computability (relative to some possibly non-
recursive set), later investigated by Post in 1944; and (c), in the extended sense of
“Turing machine”, Post’s short note of 1936.
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Nonetheless, as early as 1943, Post considered that Turing machines should play
an important role in the development of computability theory. Kleene (1989, 163)
said that from his 1941 seminar he used a “considerably reworked” form of Turing
machines, that became familiar to us in 1952 through Kleene’s book.

2.2.2 Early Revisions

In his 1947 paper, Post emphasizes the usefulness of a Turing machine in study-
ing Thue’s problem, but he also stresses that, because of its awkwardness and
defectiveness and also because its lack of generality, it cannot be used directly.
Hence Post uses a revised version of it, which nonetheless keeps the original
tape-machine structure of Turing (1936). In a long appendix to his paper, Post
carries out a tight critical examination of Turing’s machine concept. He shows
that some technical details are incorrect and that the definition presents serious
gaps or inconsistencies. For example, it is not explicitly stated that the “infinite
tape” is only semi-infinite to the right and not two-way infinite. Also, according to
Turing’s general definition, a Turing machine starts on an empty tape, but this cannot
be the case for the universal Turing machine. More importantly, Post remarks,
Turing’s convention about alternate squares (F'-squares bearing non-erasable, final
figures, 0’s or 1’s, E-squares bearing other, erasable symbols for scratch work) has
unfortunate consequences, e.g. making some sets (of machine description numbers)
non-recursively enumerable that would be recursively enumerable were it not for
this convention. In a later paper (1950), Turing admits that Post’s objections were
justified on the whole.

In Turing’s definition, the task that was given to the machine was writing a
“computable real number”, i.e. an infinite sequence of 0’s or 1’s separated by the
E-squares. Of course, as Turing showed, we could adapt the machine so that it
computes the value of a function f of natural numbers, but in an awkward way.
Furthermore, since the machine’s task would consist in writing down the infinite
sequence f(0), f(1),... of the values of the function, it could not be used to
compute partial recursive functions (introduced by Kleene in 1938). This is what
brought Kleene to conceive a Turing machine as working in successive stages:
applied to a tape containing the argument, it computes, if possible, the value of
the function, writes it next to the argument and stops; if it cannot compute, it
runs on forever (Kleene 1981a). Godel later emphasized that this notion of partial
computable function is actually more adequate, as a characterization of mechanical
computability, than that of total computable function, because the correct notion
of computation need not presuppose that a computation terminates in every case
(cf. Hao Wang 1974, 1I 3). Moreover, this definition avoids debates about the
classical vs. constructivist interpretation of the existential quantifier involved in the
definition of a total function.
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2.3 The Rise of the ‘Theory of Turing Machines’
During the 1950s

After 1950, the increasing interest in the concept of a Turing machine takes various
forms and is due to the several virtues this concept has.

2.3.1 The Convenience of the Concept of a Turing Machine
Jor Expository Purposes

Turing’s approach is gradually becoming recognized as being “intrinsically con-
vincing” (Kleene 1981b, 49) by a more general audience. For example, in R. Péter’s
Rekursive Funktionen (1951), while the whole of the book deals with recursive
functions (properly), the writer added a chapter on “berechenbare Funktionen”
(i.e. functions computable by Turing machines) to show the adequacy of the con-
cepts she introduced for intuitive calculability. In fact, Péter accepted a limited form
of Turing’s Thesis: functions that are mechanically computable by mathematical
means available today are computable by Turing machines.

Hermes (1961) takes the concept of a Turing machine as its main thread in that it
provides “the most natural and easy access” to the theory of calculability. Kleene’s
Mathematical Logic (1967) is another example. Hartley Rogers in his 1967 book
(Theory of Recursive Functions and Effective Computability) deems it unnecessary
to give any justification for such a choice: “Turing’s characterization will be taken
as basis in this book”. Moreover, it is increasingly apparent that the Turing machine
can provide the most natural and direct link between computability theory and actual
computers.

2.3.2 The Mathematical Fruitfulness of the Concept
of a Turing Machine

2.3.2.1 The Methodological Relevance of Turing’s Unsolvability Proof

In his undecidability proof for first-order logic, Turing starts by constructing
unsolvable problems concerning Turing machines: the halting problem, the problem
of determining whether a given machine will ever print 0. He then shows that one
can construct a first-order formula that describes the behavior of a Turing machine
from a given initial configuration in the following sense: the formula is provable
in first-order logic if and only if the machine eventually prints 0. Hence first-order
provability is not decidable (by means of any Turing machine).

Bernays (1958) stressed that this proof gives a simple example (with a four-
quantifier prefix) of a formula structure for which provability may be undecidable.
Biichi (1962) showed, by exploiting Turing’s methods further, that this proof could
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be simplified as well as the proofs of other important results, e.g. Trakhtenbrot’s
Theorem on the undecidability of the problem of validity in the class of all finite
models.

2.3.2.2 Turing Machines and Word Problems

In his 1947 paper, Post proves the algorithmic unsolvability of Thue’s Problem. This
result (independently established by Markov) is noteworthy, for it seeks to give an
answer to a classical problem that stems from algebra and not from internal issues of
the theory of calculability or logic in general. It belongs indeed to the class of word
problems for a given type of finitely presented algebraic structure (in the present
case, semi-groups). Turing machines provide an essential link in Post’s proof. They
were later employed to establish similar unsolvability results for other structure
types (semi-groups with cancellation in Turing 1950, Boone 1958, groups in Boone
1959). Words (or strings) are finite sequences of symbols from a given finite alpha-
bet . A system of n pairs of replacement rules, named ‘productions’, is considered:

(a;) aA;B — aB;p (bi) aB;if — aA;B (fori =1,...,n)

where o and § are any words over X, and A; and B; are some fixed words over X.

These rules allow the substitution of B; for a fixed occurrence of A; in some
word, or vice versa. Words U, V are said to be equivalent if V' can be obtained
from U by means of a finite sequence of applications of these productions. The
problem, stated in 1914 by Thue (which we formulate here in Post’s terminology),
is the following: find a general method that, given an arbitrary system of the type
just described, will determine, for any two arbitrary words U and V over X, whether
they are equivalent or not, i.e. whether one of them is derivable from the other in this
production system (Thue’s general problem). In other words, Thue’s Problem is the
decision problem for derivability in Thue systems, which are a special sort among
Post’s canonical systems.

We call ‘semi-Thue system’ (STS) a system which only includes the first
production (a;) of each of the n pairs. There are STS with an unsolvable decision
problem. Post’s strategy is then to find such an STS having the property that the
addition of the (b;) productions allows no new assertion to be derived in the system.

Now this property is available when we consider a semi-Thue system obtained
from a certain Turing machine (after a known unsolvable problem has been
expressed in terms of this machine, as the reaching to a fixed state g ). In fact,
the computation of the machine reaching g when applied to a given word can
be represented by a derivation of a fixed word Vj in a system of semi-Thue
productions; these productions are applied to words that represent successive
complete configurations of the machine. Then a STS 7y having an unsolvable
decision problem is set up; its productions are the inverses of the latter ones, and
its axiom is Vj. Thus the productions that have to be added for obtaining a Thue
system 7', are the productions representing the transitions of the machine. As a
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consequence of the deterministic nature of Turing machines, these productions
can transform words derivable from Vj in only one manner, namely, going back
along some derivation already possible in 7Ty. Hence T has the same assertions as
To, and its decision problem is undecidable. Thus in the fixed equivalence system
corresponding to 7', equivalence to the fixed word V}, is undecidable. Solving Thue’s
general problem would therefore yield a solution to an unsolvable problem.

Post had used an unsolvable problem taken from his results on “normal systems”.
Kleene (1952, 382) gave a similar proof worked out from an undecidable predicate,
which he had obtained in recursive function theory. These results illustrate what
M. Davis has called the “unifying virtues” of the Turing machine formalism (Davis
1958, viii), by means of which connections can be established between different
parts of computability theory.

2.3.3 Turing Machines and Automata Theory

The notion of a finite automaton, i.e. a device, whose capacity to store information
consists in only a finite number of possible internal states, was somewhat suggested
by Shannon (1938). Strictly speaking, it was presented in 1943 by McCulloch and
Pitts, in the form of neural nets, but without the name and in a rather muddled
way. J. von Neumann in his 1948 and 1949 suggested developing a “general
and logical theory of automata” which could contribute to handling the problems
of self-reproduction by using ideas particularly inspired by the universal Turing
machine (von Neumann 1952-1953). In the book edited in 1956 by Shannon and
J. McCarthy, Automata Studies, finite automata are clearly contrasted with infinite
automata, namely Turing machines. Kleene, in his fundamental paper on finite
automata (Kleene 1956, published in this book, but written in 1951), explicitly
states that a Turing machine can be considered as a finite automaton supplied with
an external, unbounded memory. Before that, finite automata were studied as finite
systems built out from elementary components, each of which is in some way able
to store elementary information: nets of formal neurons, or sequential circuits using
electromagnetic or electronic components. From the work of Kleene, Moore, Mealy,
and others, an abstract theory of automata began to develop, directly inspired by
Turing’s concept and which, like the latter, was based on the notion of an abstract
state.

A finite automaton thus boils down to a strongly restricted Turing machine.
Turing’s representation of the computing device as a tape machine is adopted, but
the reading head of the automaton can neither write nor erase nor go back. The
word written on the tape is accepted if the sequence that results from scanning all
successive symbols leads to an ‘accepting’ state. The role of the table of the Turing
machine is here restricted to defining the state transition function, which is often
given in the form of a graph (the transition diagram). This approach (where the finite
automaton is usually regarded as a language recognizer) was especially developed
by Rabin and Scott in their very rich paper 1959, the content of which, on a par with
Kleene’s theorem, constitutes the core of finite automata theory.



2 The Developments of the Concept of Machine Computability from 1936 to the 1960s 43

By means of Turing’s model, Rabin and Scott could systematically investigate
various ways of relaxing the initial restrictions, by allowing erasing or going
backwards. They studied deterministic vs. nondeterministic, one-tape vs. two-tape
finite automata. Thus their underlying concept of a machine was even more general
than the usual concept of Turing machine. Finite automata with outputs can compute
eventually periodic functions.

Such variations on the notion of Turing machine inspired the conception of
other types of automata, related to the investigation of natural language grammars,
programming languages and Post’s combinatory systems. This gave rise to a
hierarchy of automata, corresponding to Chomsky’s hierarchy of grammar and
language types, at the top of which Turing machines stand as an organizing concept
for automata theory (Chomsky 1963).

2.3.4 The Study of the ‘Classical’ Turing Machine

Initiated by Turing’s concept of a machine, automata theory pursued its investi-
gations by systematically exploring the possible restrictions or generalizations of
the Turing-Post-Kleene model. These machines have the same general structure
as the original Turing machine, namely, that of a finite control machine operating
sequentially on an infinite tape that can be used for storing information.

2.3.4.1 Quantitative Restrictions on Turing Machines

Submitting the Turing machine to what, on the surface, appear to be very strict quan-
titative or qualitative restrictions need not have devastating effects. For example,
Shannon proved in 1956 that, for any Turing machine, there exists (a) an equivalent
Turing machine using only two symbols, and (b) an equivalent Turing machine
using only two states, provided the number of states (respectively, the number of
symbols) is suitably increased. Even for the universal Turing machine, for example,
no more than four symbols and seven states are needed. Moreover, universality “can
be hidden in the details of operation and not clearly represented in the topology of
the interstate connections” (Minsky 1967, 281).

All this combinatory work on the variants of a Turing machine confirmed its
robustness and versatility. Machine simulation procedures that were studied on this
occasion contributed to a sharper understanding of the inner workings of a Turing
machine.

2.3.4.2 Multi-tape and Nondeterministic Turing Machines

The investigation of multi-tape and multi-head Turing machines did not aim to
invalidate Turing’s Thesis by exhibiting any more powerful machine. Its purpose
was to produce a model of a machine that was closer to actual computers. Yet,
in some cases, motivations were also theoretical ones. An undecidability result
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established by Rabin and Scott about two-tape, two-way finite automata gave rise
to an interest in multi-tape machines: McCarthy conjectured that the source of
this undecidability was a profound similarity between these automata and Turing
machines, which Minsky, in 1961, proved to be the case.

The work by Rabin and Yamada in their studies on “real-time computation”
prepared the way for computational complexity theory, which, since the mid 1960s,
makes ample use of multi-tape Turing machines. For example, Hartmanis and
Stearns showed in 1965 that a computation carried out in n units of time by a
two-tape machine can require up to n? units of time to be carried out on a single-
tape machine. But in complexity theory, usual single-tape Turing machines remain
the convenient standard.

The Turing machine was confirmed in this role by a further generalization:
the nondeterministic Turing machine (NDTM), i.e. a machine for which, given
any configuration (state, scanned symbol), the transition function can take a finite,
bounded number of values (triples consisting of a state, symbol to be printed and
a displacement). A nondeterministic Turing machine, if used to recognize some
language, accepts a word if and only if at least one of the possible computations
available once the word is scanned leads to an accepting state. It is well known
that the distinction between deterministic and nondeterministic algorithms is of
prime importance in complexity theory today. In 1936, Turing had considered the
possibility of nondeterministic machines, but only studied “automatic”, that is to
say, deterministic, machines. Apparently, the NDTM was not itself studied until
1960. Its equivalence to a deterministic Turing machine (disregarding the amount
of time needed for the computation) was regarded as “well known”, but was proved
rigorously only in the late 1960s.

Using multi-tape machines to investigate the effects of restrictions on the
elementary operations of Turing machines yielded a surprising result. In his 1961
proof of the unsolvability of Post’s tag problem, Minsky showed that any Turing
machine can be simulated by a two-tape, non-writing Turing machine. This machine
is supplied with two, one-way infinite tapes whose squares are all empty, except
for the first square of each tape, which bears a distinctive mark. In this machine,
information is carried only by the position of the heads relative to the ends of their
respective tapes, which is expressed by two numbers.

The proof and the very formulation of Minsky’s theorem resort to a complex
numerical coding of inputs and outputs. P. Fischer (1966), followed by Hopcroft
and Ullman (1979), simplified the result by using extra tapes (distinct from the
computation tapes) for inputs and outputs. Their proof rests on some simple lemmas
concerning two types of Turing machines for which information storage on the tape
is subject to strict constraints: the push-down automaton and the counter. The stack
or push-down store is a one-way infinite tape standing up on end, where each symbol
is stored one above the other on some initial stack start symbol, just as one would
successively stack plates on some initial plate. Previously stored information is
“pushed down” and only the last stored symbol can be read and modified or erased.
The stack or push-down is a LIFO (Last In First Out) storing device. A counter is
a rudimentary stack in which the machine can stack up 1’s or remove them one by
one. It can determine whether or not there are 1’s in a stack, that is to say, it can store
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a natural number, increment or decrement it, and tell whether or not it is zero. The
main tapes of Minsky’s machine are counters: they can store and modify a number
by the position of their heads.

Now (1) An arbitrary (single-tape) Turing machine can be simulated by a deter-
ministic two-stack machine: one of the stacks is used to store the content of the part
of the tape left of the head of the simulated machine, and the other for the part to the
right of the head. (2) Two counters are enough to simulate one stack. Symbol manip-
ulation on the stack is simulated by arithmetical operations on the content of one of
the counters; the other is used to keep count of the operation loops to be carried out.
Therefore a four-counter machine can simulate a Turing machine. (3) The content
(a, b, c,d) of four counters can be represented by the numbern = 243b5¢74 which
can be processed by a two-counter machine simulating the four-counter one. Thus
Minsky’s result is obtained. It has important applications for the study of Post’s
‘normal systems’: namely, the unsolvability of the tag problem (which was Minsky’s
initial purpose), and the universality of monogenic normal systems.

It is noteworthy that the tapes of Minsky’s machines, being counters, are nothing
more than numerical registers that are managed by programs made from basic
arithmetical instructions. So the removal of the writing function lead to a very
abstract view of information processing on the tape of a Turing machine, and
gradually suggested a new model of a machine, which also resulted from other
research work done in the 1960s.

2.4 Reworking Turing’s Model

From 1957 onwards, there have been various attempts to revise Turing’s model
of computation in a radical manner. The aim of these attempts was to bring
computability theory and ordinary programming closer together, to get a more
convenient framework to study the effects of various restrictions on the set of
available operations, and to relate the theory of abstract machine computability more
easily to other parts of the domain.

If ‘program’ is taken in a very large sense, a Turing machine table, or its
description coded on the tape of the universal Turing machine, can be seen as a
program. However, as C.Y. Lee remarks (1960), Turing’s theory is essentially a
theory of a special machine, based on the notion of state rather than on the notion of
instruction. It does not provide a conjoint formalization of the notions of machine
and program.

In a Turing machine, memory (the tape) is serial. Furthermore, quintuples which
make up its table are just enumerated in an irrelevant ordering, and jump instructions
are constantly used. On the other hand, the main memory of a computer is random-
access (RAM), and a program is given, as much as possible, a sequential structure,
for the programmer seeks to do away with or minimize breaks in instruction running
(eliminating ‘go to’ instructions).

The transformation of Turing’s model happened in two stages. The first one
concerned control structure: states of special Turing machines are replaced by
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instructions organized in numbered sequences, i.e. programs. The second stage
concerns memory structure: registers constituting RAM replace the tape of the
Turing machine.

2.4.1 Program Machines and Hao Wang’s Machine B

As early as 1936, Turing pointed out that, in his description of computation, it
was possible to replace the “state of mind” of the (human) computer by a “note
of instructions”; but he does not elaborate on the remark, which was probably
only meant to show that his analysis of computation did not rest on doubtful
psychological assumptions. Moreover, although the “sets of directions” in Post 1936
were close to programs, Post did not explicitly formulate any concept of machine
on which these “sets of directions” could be implemented, nor (like Turing) did he
give the constraints the “worker” who carries them out is subject to.

In 1954, H. Hermes proved that every Turing computable function can be com-
puted by an idealized programmable computer. Hermes uses a “slightly modified”
version of the Turing machine, one that is composed of five elementary machines.
His computer is supplied with a finite number of registers that can store arbitrarily
large numbers. Hermes’s objective was to prove the “universality of programmable
computers” rather than to replace the usual Turing machine by another model, but
his approach bears certain similarities to the methods later used by Hao Wang and
Minsky. Shortly afterwards, accounts of Turing machine begin to appear in which
it is presented as the idealized version of a programmable, automatic, calculating
machine: unlimited memory, maximal decomposition of operations, extremely
simplified addressing mode (Trakhtenbrot 1957).

The most accomplished early attempt explicitly to introduce the concept of
program into computability theory is due to Hao Wang (1957a). Wang’s aim was
twofold: on the one hand, to strengthen a classical result by using a new model of
computation to prove that all partial recursive functions can be computed by non-
erasing machines, and in so doing, to improve the tools available for undecidability
proofs; on the other, by means of program machines, to elucidate the links between
computability theory and computer practice.

Wang’s paper is especially centered on the “Basic Machine B”, a mix between
a Turing machine and an idealized computer. From the Turing machine, it keeps
the “serial storage”, i.e. the (two-way infinite) tape, the reading-writing head and a
control element. Furthermore, it also includes a “parallel storage” device, namely an
internal, indefinitely extendable, random-access memory divided into cells, where
any finite set of instructions can be stored: it is a programmable machine. When
supplied with a program, the machine B is comparable to a special Turing machine.
It uses only one symbol (x); as the machine cannot erase, there are only four
basic operations: elementary movements to the right and to the left, print %, and
jump to instruction n. A program is a finite set of instructions (ordered pairs)
(1, 0y), ..., (k, Oy), where each O; is some elementary operation.
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Strictly speaking, the machine B is not a universal Turing machine. The program
it executes is not given to it in a coded form on its tape; the machine is supposed
directly to interpret and execute the sequence of instructions stored in its parallel
memory. This approach avoids all the complications related to the management,
on the tape of the universal Turing machine, of the decoding and simulation of
the imitated machine. On the other hand, as Wang recognizes, the machine B is
highly fictional: “this assumption of an indefinite parallel storage whose units all
are accessible at any moment is even more repulsive than permitting the tape to
expand as needed” (Wang 1957a, 150).

Hao Wang obtains the aimed result. But he (rightly) conjectures that the
distinction, in machine B, between two sorts of squares, which alternate on the
tape, is not dispensable if erasing is not available. He also sketches a methodical
study of systems of elementary instructions.

Wang’s model of computation gives us the opportunity to reflect upon the con-
structive requirements that are appropriate for a theory of computing machines. Of
course, like the Turing machine’s tape, machine B’s tape must never contain more
than a finite number of printed squares (otherwise the machine would be equivalent
to an oracle Turing machine, and could compute a function which is not Turing-
computable). Wang also discusses the objection according to which an unlimited
parallel storage is too fictional an assumption. One could transform the machine
B into a universal Turing machine, which imitates any special Turing machine in a
uniform way: a unique imitation program is stored in a finite, fixed parallel memory,
and the tape is used for storing the program to be imitated in a coded form. If one can
implant in the machine B a program that computes a universal element (i.e. some re-
cursive function that enumerates all partial recursive functions), then this is enough
to make it a ‘functional’ universal machine. A ‘structural’ universal machine, on
the other hand, should imitate the detailed execution of any given program. In a
second paper, Hao Wang wrote the program for such a machine after a painstaking
“exercise in coding” (Wang 1957b). In this (non-erasing) machine, every step of the
computation of the imitated machine is represented on the tape in a coded form.

Oberschelp, who was also inspired by ideas suggested by Hermes, completed
these results in 1958. Asser (1959) and Kaphengst (1959) developed a model of an
abstract computing machine, in which, as in machine B, “information memory” is
separated from “program memory”, with the aim of directly proving the equivalence
between abstract computing machines and Markov’s algorithms.

2.4.2 Diagrams and Registers

2.4.2.1 Three Sources of New Concepts of Computability: Actual
Machines, Constructivism, Theory of (Normal) Algorithms

Wang’s achievements concerned the control structure of the Turing machine. By
reorganizing its memory structure, we were led to the program and register machine.
The now classical version of it, proposed by Shepherdson and Sturgis (1963), was
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foreshadowed by work done especially by R. Péter (1958), Ershov (1958) and
Kaphengst (1959). Péter introduced in 1958 what is usually called ‘Kaluznin-Péter
diagrams’, because they merged when considering issues at the crossroads of Péter’s
constructivist concerns and a problem raised by Kaluznin. Kaluznin had set out to
make precise the notion of flow-chart used in computer programming. He aimed to
use this concept of “computability by diagrams” to establish a hierarchy of recursive
functions according to the complexity of their diagrams. A Kaluznin-Péter (KP)
diagram is a finite, directed graph with an associated set M. Mathematical vertices
represent partial functions M — M ; logical vertices, where various tests can occur,
represent partial functions M — {T, F'}. A diagram represents an operating process
on M. The termination of the process after a finite number of steps determines
a value, thus the diagram defines a partial function M — M. Partial functions
defined in this way can be associated to the mathematical vertices of further
diagrams.

Péter considers a very restricted type of KP diagram, which she names “normal
diagrams” (Normalschemata). The only initial logical functions they admit are
identity tests, which can be applied to arbitrary n-uples of natural numbers; and
the only initial mathematical functions they admit are given by a basis yielding the
zero, successor and projection functions. As later emphasized by Shepherdson and
Sturgis, although this is not wholly explicit in Péter’s paper, these basic functions
(that were directly suggested by recursive function theory) can be regarded as
copying operations on finite sets of number registers (e.g. +1, reset, ... ). Numerical
data are stored on a finite (unbounded) number of registers. Function composition
is ensured by the graphs.

Kaluznin (1959) tried to give a formulation of the concept of algorithm that
avoided some of the practical drawbacks of Markov’s normal algorithms: no
representation of storage, intermediate words too long, complicated composition
of algorithms. When interpreted in terms of word functions, normal KP diagrams
are equivalent to normal algorithms.

Péter’s interest in Kaluznin’s problem is easily explained if we recall her well-
known 1957 paper, “Rekursivitit und Konstruktivitidt” (Péter 1959), in which she
questioned the validity of Church’s Thesis, or rather of its converse. In her opinion,
truly finitely computable functions are only those for which a constructive definition
is available. She readily admits that this is the case for all functions that are defined
by special forms of recursion (even when these are not reducible to primitive
recursion). On the contrary, she considers that the general recursive functions “can
be said to be constructive only with a restriction that cannot be formulated without
a vicious circle”. Now Normalschemata seem to be rudimentary, truly constructive
computing devices. We could conjecture that, by means of such a restricted class
of diagrams, a proper sub class of partial recursive functions could be characterized
which would nevertheless include every sort of special recursive function. But this
attempt fails, as Péter proved in her paper on Graphschemata, because it turns out
that every partial recursive function is computable by a Normalschema.

Ershov developed similar notions about the “schematic notation” of algorithms.
Apparently, Kaphengst was the first, in 1959, explicitly to propose replacing the
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Turing machine with a model of program and register machines. His “programmable
computing machine”, which he proved is universal, is an idealized computer having
an infinite number of registers or “compartments” (Ficher): “computing register”,
instruction counter, cells where arbitrary finite sequences of 1’s can be stored. These
authors no longer distinguish two sorts of memory; they try to integrate the notion
of stored program into their model of computation.

2.4.2.2 Shepherdson and Sturgis’s Register Machines

Shepherdson and Sturgis’s very important paper “Computability of recursive func-
tions” was published in 1963, but the main ideas developed in it were known
since 1960. Their strategy was to develop, in place of the Turing machine, a rich,
realistic and flexible model of computation, without any worries about the economy
of means, in which computing recursive functions could be easily programmed.
Various restrictions on the set of instructions and on the number of registers can
then be gradually imposed. In the course of this inquiry, the authors encounter and
discuss most of the previous, aforementioned work, going back to Hermes’ and
Wang’s papers.

These machines are controlled by programs that are seen as separately stored.
The memory is infinite and is split up into registers; each register can store a
number or word of arbitrary finite size. But there are different levels in the infinitary
idealization.

The Unlimited Register Machine (URM) involves a countable set of number
registers; but in any given program, only a finite number of them can occur
and contain a non-zero number. The set of basic instructions (add 1, subtract 1,
clear, copy, unconditional and conditional jump) is not minimal, but is selected
for its convenience. The notion of a subroutine (with one or several exits) is
carefully defined. It is quite easy to prove that every partial recursive function is
computable by the URM. The set of basic instructions can be reduced to a simpler
one, provided that many more registers are available. The URM can be directly
extended to compute partial functions on words (on any given, finite alphabet)
without resorting to arithmetization. It is thus rather similar to Post’s normal
systems.

The Limited Register Machine (LRM) only has a finite number of registers at any
time, but instructions that add or remove registers are available. The equivalence of
LRM to URM is easily proved.

’It is much more difficult to prove that the computational power of the URM
(or the LRM) can be preserved in machines having a fixed, bounded number of
registers or even a single register (SRM). The storage state of the LRM at any stage
can be coded by a sequence of N numbers or words (namely, the contents of the
N registers), or even by a single word, if an extra ‘separator’ symbol is added to
the alphabet of the machine. But in order to simulate the basic operations of the
LRM, it would be necessary to have other instructions that act on the components
within the word. In order to avoid such complications, one can seek inspiration
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in Post’s normal systems: a subroutine operates in such a way, that the parts to
be modified occur only at the head or at the tail of the word. So every partial
recursive function is computable by a SRM operating on the alphabet {0, 1} (where
numbers are represented as sequences of 1’s and 0 is a separator). Its single register
can be seen as a two-headed, one-way tape: the reading head deletes the head of
the word, and the printing takes place at the tail; it can also be seen as a ‘stack’
made up of 0’s and 1’s, writing being done only at the top, reading and deletion
being done only at the bottom. This result suggests that access to both ends of
the storage stack (which in this case is a FIFO (First In First Out) memory) is
a very strong property. It is clearly related to Post’s normal form theorem, which
states that every system of productions is equivalent to some “normal system” (Post
1943).

The final reduction to a Turing machine is accomplished by writing subroutines
equivalent to the basic instructions of the SRM and composed of the ‘basic instruc-
tions’ of Turing machines. Wang’s results can also be obtained or strengthened.

The reduction to a SRM is possible even without extending the alphabet {1}; but
in this case coding of numbers and basic operations need to be more complex. This
is what Minsky’s aforementioned 1961 results showed, when these are reinterpreted
in terms of registers. In order to use the simpler basic operations mentioned earlier,
we would require only one additional register. As stressed by Minsky (1967, 259),
this latter result is ‘better’ than the former one, for an operation (even multiplication
by 2) that requires an unbounded number of truly elementary actions cannot be
considered a truly elementary one.

The major interest of Shepherdson and Sturgis’ outstanding paper lies more in
their systematic exploration of the connections between various machine models
and their methodical reduction of the URM to the Turing machine than in making the
idea of a program and register machine completely explicit, which was the subject of
much discussion at the time. In 1961, a very similar model was presented in Canada:
the Q-machine (Melzak) or “infinite abacus” (Lambek). It is a useful, intermediate
link in the proof of the Turing- computability of every recursive function (cf. Boolos
and Jeffrey 1974).

As Hartmanis (1981) later pointed out, talking about multi-tape machines, it
would be illusory to believe that there is a unique satisfactory theoretical model
of the computer. In his book (1974) intended for computer scientists, Manna uses,
for various purposes, the classical Turing machine, the two-register (or two-stack)
machine, and “Post’s machine”; the latter can be understood as a tape machine
subject to special constraints or as a machine with a single register arranged as a
FIFO memory.

The style of such accounts reveals the influence of the views formulated by
Dana Scott (1967). Scott requested that the theory clearly distinguish the notion
of program (“a structured set of instructions”) from that of machine. Turing’s
model does not fulfill this condition: in a special Turing machine, program and
machine cannot be distinguished; in the universal Turing machine, the structure of
the program to be executed is hidden under a complicated coding. A machine is
specified by giving the indications needed to enter the data, execute the operations
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and tests, and extract the results. With respects to these demands, a register machine
has the advantage of being much more elementary than a Turing machine.

Minsky’s 1967 book, Computation, markedly popularized program and register
machines. Matiyasevich (1984) shows a striking application of these machines,
which he names ‘Minsky machines’. He uses them (in a new version of his proof
of the unsolvability of Hilbert’s Tenth Problem) to give a new proof of an essential
intermediate result established in 1961 by M. Davis, H. Putnam and J. Robinson,
namely, the unsolvability of Hilbert’s problem in the special case of exponential
Diophantine equations. Here these machines are particularly convenient because
they operate directly on natural numbers. Starting with a normal algorithm that has
an undecidable halting problem, a Minsky machine can be specified which simulates
it and which has an unsolvable halting problem too. A set of equations can then be
given that simulates the operation of the machine. By several rather complicated
transformations, a system of exponential Diophantine equations can be reduced to
a system with a single equation. This equation, with parameters Ay, ..., 4,, admits
a solution in natural numbers relative to the other variables if and only if, when
the registers Ry, ..., R, are initially set to these numbers, the machine eventually
halts. Thus the question is undecidable. By showing that a = b can be expressed in
terms of the existence of solutions for ordinary Diophantine equations, Matiyasevich
completes the proof of unsolvability for the Tenth Problem.

2.5 The Limits of the Present Study

This paper did not attempt to give a complete survey of what could be called Turing’s
legacy in the modeling of computability. However, by duty, I must nonetheless
explain why I neglected certain questions.

2.5.1 The Lack of Cellular Automata

Most of the models of computation considered in this paper are directly derived from
the Turing machine, and were developed in the context of mainstream ‘Automata
Theory’. This work was achieved in the period from 1940 to 1965. On the other
hand, I did not get into cellular automata and parallel computation models. Most of
the investigations of cellular automata were done outside the aforementioned period.
In the years 1948-1954, J. von Neumann had certainly formulated the concept
of a universal constructor and had tried to set out a cellular (“crystalline”, in his
words) model of self-reproduction. But this work wasn’t completed and published
by A. Burks until 1966. Other investigations in this domain hardly took place before
this date. Later, in the 1970s and 1980s, work by Conway, Toffoli and Wolfram gave
a further impetus to the study of cellular automata (that is still going on today).
As for the theory of parallel computing, it was mostly developed after 1970 (by
Shepherdson for example).
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2.5.2 From Turing’s “puzzles” to “K-graphs”

Two noteworthy papers published in the 1950s were not mentioned: Turing 1954
and Kolmogorov and Uspensky 1958. The concept of a machine does not occur in
the former and is seemingly not a central concern in the latter. Furthermore, both
failed to arouse much interest at the time. R. Gandy nevertheless called attention
to Kolmogorov and Uspensky’s work, after which W. Sieg clearly showed the great
theoretical importance of these papers, as both extensions and generalizations of
the analysis of computability proposed by Turing in 1936. Since Sieg has already
published, from 1990 onwards (Sieg 2009), many penetrating studies on the subject,
I will refrain from going into the details and will only recall his main contributions
to these questions.

In his informal 1954 paper, Turing does not deal with machines, but with
‘puzzles’. He shows that applying mechanical procedures to tri-dimensional objects
can be described by production systems in the style of Post. As explained by Sieg,
Turing suggests that computation consists in operating on connected configurations
containing one distinguished element, by substituting new neighborhoods for a
neighborhood of this element. Moreover, the formal tools that allow us to treat
the general question raised by Turing in 1954 can be found in Kolmogorov and
Uspensky’s paper. From these authors, Sieg and Byrnes drew the concept of
K-graph. The 1958 paper develops ideas that Kolmogorov had formulated in the
early 1950s (see Uspensky 1992) in order to formalize the notion of a mechanical
procedure applied to constructive objects — the type of objects an algorithm is
intended to operate on. They are connected graphs on which we operate by sub-
graph substitution.

2.6 Conclusion

It seemed useful to expound Shepherdson and Sturgis’ approach to infinite ma-
chines, because it is an interesting strategy for the investigation of models of
computability: starting with a very liberal and convenient model of computation,
they gradually add restrictions on it in a finitary spirit. Concepts of computation
and concepts of a machine need to be essentially finitary ones, but in order to get
universality some ‘amount of infiniteness’ must be involved. The various models of
machines I mentioned illustrate how many different levels there are in the infinitary
idealization. In that respect, Hao Wang’s remarks about machine B were already
significant. The studies we considered improve our understanding of the role of
infinity in machines, as well as the ways in which they use available means and
can make up for the lack of some means by the use of others. By its rudimentary
character, the Turing machine can seem at first to be at the very bottom of the
(infinite machine) ladder, but some infinite-memory automata (e.g. push-down,
counter) are strictly less powerful than it, because of some restrictions on the access
they have to their infinite store or on the amount of it they are allowed to use to carry
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out a computation. Nevertheless, simply combining two of these devices is enough
to recover all the power of a Turing machine and its universality. Thus, in various
ways, the work of Hao Wang, R. Péter, Minsky, Shepherdson and Sturgis, and also
that of Kolmogorov and Uspensky and later Sieg and Byrnes, has contributed in
giving us a more general and abstract view of what applying mechanical procedures
to “constructive objects” consists in.
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Chapter 3
Kolmogorov Complexity in Perspective
Part I: Information Theory and Randomness

Marie Ferbus-Zanda and Serge Grigorieff

Abstract We survey diverse approaches to the notion of information: from
Shannon entropy to Kolmogorov complexity. Two of the main applications of
Kolmogorov complexity are presented: randomness and classification. The survey
is divided in two parts in the same volume. Part I is dedicated to information
theory and the mathematical formalization of randomness based on Kolmogorov
complexity. This last application goes back to the 1960s and 1970s with the work of
Martin-Lo6f, Schnorr, Chaitin, Levin, and has gained new impetus in the last years.

Note. Following Robert Soare’s recommendations in Soare (1996), which have
now gained large agreement, we write computable and computably enumerable in
place of the old fashioned recursive and recursively enumerable (shorthand c.e.).

Notation. By log x (resp. log, x) we mean the logarithm of x in base 2 (resp. base
s where s > 2). The “floor” and “ceil” of a real number x are denoted by | x| and
[x]: they are respectively the largest integer <x and the smallest integer >x. Recall
that, for s > 2, the length of the base s representation of an integer k is £ > 1 if and
only if s*~! < k < s'. Thus, the length of the base s representation of an integer k
is 1+ [log, k] =1+ |12,

The number of elements of a finite family F is denoted by f{.F.
The length of a word u is denoted by |u]|.

3.1 Three Approaches to a Quantitative Definition
of Information

A title borrowed from the seminal paper (Kolmogorov 1965).
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3.1.1 Which Information?
3.1.1.1 About Anything...

About anything can be seen as conveying information. As usual in mathematical
modelization, we retain only a few features of some real entity or process, and
associate to them some finite or infinite mathematical objects. For instance,

* An integer or a rational number or a word in some alphabet, a finite sequence or
a finite set of such objects, a finite graph, ...

* Areal, a finite or infinite sequence of reals or a set of reals, a function over words
or numbers, ...

This is very much as with probability spaces. For instance, to modelize the
distributions of 6 balls into 3 cells, (cf. Feller 1968, §1.2, I11.5) we forget everything
about the nature of balls and cells and of the distribution process, retaining only two
questions: “how many balls in each cell?”” and “are the balls and cells distinguishable
or not?”. Accordingly, the modelization considers

— Either the 729 = 3% maps from the set of balls into the set of cells in case the balls
are distinguishable and so are the cells (this is what is done in Maxwell-Boltzman
statistics),

— Orthe 28 = (6 + (Z - ) triples of non negative integers with sum' 6 in case

the cells are distinguishable but not the balls (this is what is done in Bose-Einstein
statistics)

— Or the 7 sets of at most 3 integers with sum 6 in case the balls are undistinguish-
able and so are the cells.

3.1.1.2 Especially Words

In information theory, special emphasis is made on information conveyed by words
on finite alphabets. L.e., on sequential information as opposed to the obviously
massively parallel and interactive distribution of information in real entities and pro-
cesses. A drastic reduction which allows for mathematical developments (but also
illustrates the Italian saying “traduttore, traditore!”).

As is largely popularized by computer science, any finite alphabet with more than
two letters can be reduced to one with exactly two letters. For instance, as exempli-
fied by the ASCII code (American Standard Code for Information Interchange), any
symbol used in written English — namely the lowercase and uppercase letters, the
decimal digits, the diverse punctuation marks, the space, apostrophe, quote, left and

IFor an easy proof, identify such a triple with a binary word with six letters 0 for the six balls and
two letters 1 to mark the partition in the three cells.
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right parentheses — together with some simple typographical commands — such as
tabulation, line feed, carriage return or “end of file” — can be coded by binary words
of length 7 (corresponding to the 128 ASCII codes). This leads to a simple way to
code any English text by a binary word (which is 7 times longer).>

Though quite rough, the length of a word is the basic measure of its information
content. Now, a fairness issue faces us: richer the alphabet, shorter the word.
Considering groups of k successive letters as new letters of a super-alphabet, one
trivially divides the length by k. For instance, a length n binary word becomes a
length [ 5z ] word with the usual packing of bits by groups of 8 (called bytes) which
is done in computers. This is why all considerations about the length of words will
always be developed relative to binary alphabets. A choice to be considered as a
normalization of length.

Finally, we come to the basic idea to measure the information content of a
mathematical object x:

length of a shortest binary word

information content of x = D .
which “encodes” x

What do we mean precisely by “encodes” is the crucial question. Following the
trichotomy pointed in Kolmogorov (1965), we survey three approaches.

3.1.2 Combinatorial Approach: Entropy
3.1.2.1 Constant-Length Codes

Let us consider the family A” of length n words in an alphabet A with s letters
ai,...,as. Coding the a;’s by binary words w;’s all of length [log s], to any word
u in A" we can associate the binary word ¢ obtained by substituting the w;’s to the
occurrences of the g;’s in u. Clearly, £ has length n[logs]. Also, the map u +— £
from the set A* of words in alphabet A to the set {0, 1}* of binary words is very
simple. Mathematically, considering on A* and {0, 1}* the algebraic structure of
monoid given by the concatenation product of words, this map u + £ is a morphism
since the image of a concatenation uv is the concatenation of the images of # and v.

3.1.2.2 Variable-Length Prefix Codes

Instead of coding the s letters of A by binary words of length [logs], one can
code the a;’s by binary words w;’s having different lengthes so as to associate short

2For other European languages with a lot of diacritic marks, one has to consider the 256 codes
of Extended ASCII which have length 8. And for non European languages, one has to turn to the
65 536 codes of Unicode which have length 16.
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codes to most frequent letters and long codes to rare ones. This is the basic idea of
compression. Using such codes, the substitution of the w;’s to the occurrences of the
a;’s in a word u gives a binary word &. And the map u — £ is again very simple. It
is still a morphism from the monoid of words on alphabet A to the monoid of binary
words and can also be computed by a finite automaton.

Now, we face a problem: can we recover u from &? i.e., is the map u +— §&
injective? In general the answer is no. However, a simple sufficient condition
to ensure decoding is that the family wy,...,w,; be a so-called prefix-free code
(or prefix code). Which means that if i # j then w; is not a prefix of w.

This condition insures that there is a unique w;, which is a prefix of £. Then, considering
the associated suffix £ of v (i.e., v = w; &) there is a unique w;, which is a prefix of &,
i.e., u is of the form u = w; w;,£,. And so on.

Suppose the numbers of occurrences in u of the letters ay, ..., a; are my, ..., mg, SO
that the length of u isn = m; + ... + m;. Using a prefix-free code wy, . .., wy, the
binary word & associated to u has length m|wi|+. . .+m|ws|. A natural question is,
given my, ..., mg, how to choose the prefix-free code wy, . .., ws so as to minimize
the length of &€ ?

Huffman (1952) found a very efficient algorithm (which has linear time com-
plexity if the frequencies are already ordered). This algorithm (suitably modified to
keep its top efficiency for words containing long runs of the same data) is nowadays
used in nearly every application that involves the compression and transmission of
data: fax machines, modems, networks, . . .

3.1.2.3 Entropy of a Distribution of Frequencies

The intuition of the notion of entropy in information theory is as follows. Given
natural integers my, . . ., mg, consider the family F,, _, oflengthn =m; +...+
my words of the alphabet A in which there are exactly my, ..., m, occurrences of
letters ay, . .., a;. How many binary digits are there in the binary representation of
the number of words in F,, .._», ? It happens (cf. Proposition 3.1.2) that this number
is essentially linear in n, the coefficient of n depending solely on the frequencies
2L, ..., 2 Itis this coefficient which is called the entropy H of the distribution of

the frequencies 2t ..., Zs,
n n

Definition 3.1.1 (Shannon 1948). Let fi,..., f; be a distribution of frequencies,
i.e., a sequence of reals in [0, 1] such that f; + ... + f; = 1. The entropy of
Sfis..., fsis the real

H = _(fl log(fl) + ...+ fs log(ﬁ))

Proposition 3.1.2 (Shannon 1948). Let m, ..., mg be natural integers and n =
my + ... + my. Then, letting H be the entropy of the distribution of frequencies

2L, ..., B, the number §Fy, . m, of words in Fu,..m, satisfies
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log(8Fm,...m;) = nH + O(logn)

where the bound in O(logn) depends solely on s and not on my, . .., ms.

n!
..... XX,

of the factorial functlon (cf. Feller 1968), namely x! = /27 x**2 ¢ —+1 where
0 < 6 < 1,and equality n = m; + ...+ mg, we get

n!
log (m) (Z mz) log(n) — (Z m; log m,)
1 n
+—log (—) —(s—1)log~27 +«
2 mp X ...X mg

where |a| < 5loge. The difference of the first two terms is equal to
n[y_; %tlog(%t)] = nH and the remaining sum is O(logn) since n'= <

n
<
miX..Xmg — n. O

Proof. The set F, . m, contains — ; words. Using Stirling’s approximation

H has a striking significance in terms of information content and compression.
Any word u in F,, . m, is uniquely characterized by its rank in this family (say
relatively to the lexicographic ordering on words in alphabet A). In particular, the
binary representation of this rank “encodes” u. Since this rank is < #§F,, _m,, its
binary representation has length < nH up to an O(logn) term. Thus, nH can
be seen as an upper bound of the information content of u. Otherwise said, the n
letters of u are encoded by n H binary digits. In terms of compression (nowadays so
popular with the zip-like softwares), u can be compressed to n H bits, i.e., the mean
information content (which can be seen as the compression size in bits) of a letter of
wis H.
Let us look at two extreme cases.

o If all frequencies f; are equal to + then the entropy is log(s), so that the mean
information content of a letter of u is log(s), i.e., there is no better (prefix-free)
coding than that described in Sect. 3.1.2.1.

* In case some of the frequencies is 1 (hence all other ones being 0), the
information content of u is reduced to its length n, which, written in binary,
requires log(n) bits. As for the entropy, it is O (with the usual convention
0log0 = 0, justified by the fact that lim,,ox logx = 0). The discrepancy
between n H = 0 and the true information content log n comes from the O (logn)
term in Proposition 3.1.2.

3.1.2.4 Shannon’s Source Coding Theorem for Symbol Codes

The significance of the entropy explained above has been given a remarkable and
precise form by Claude Elwood Shannon (1916-2001) in his celebrated paper
(Shannon 1948). It’s about the length of the binary word £ associated to u via a
prefix-free code. Shannon proved
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— A lower bound of |£]| valid whatever be the prefix-free code wy, ..., wy,

— An upper bound, quite close to the lower bound, valid for particular prefix-free
codes wi, ..., w; (those making & shortest possible, for instance those given by
Huffman’s algorithm).

Theorem 3.1.3 (Shannon 1948). Suppose the numbers of occurrences in u of the
letters ay, ...,as; aremy,...,ms. Letn = my + ...+ my. Let H be the entropy of
the considered distribution of frequencies %, e %

1. For every prefix-free sequence of binary words wy,...,ws (which are to code
the letters ay,...,ay), the binary word & obtained by substituting w; to each
occurrence of a; in u satisfies

nH < |§|
2. There exists a prefix-free sequence of binary words wy, . .., ws such that
nH <& <n(H +1)

Proof. First, we recall two classical results.

Kraft’s inequality. Let £y, . .., {, be a finite sequence of integers. Inequality 2~ +
...+ 27% < 1 holds if and only if there exists a prefix-free sequence of binary
words wy, ..., ws such that £ = |wy|,..., € = |ws|.

Gibbs’ inequality. Let p;, ..., ps and ¢q1,...,qs be two probability distributions,
i.e., the p;’s (resp. ¢;’s) are in [0, 1] and have sum 1. Then — ) p; log(p;) <
— " pilog(q;) with equality if and only if p; = ¢; for all i.

Proof of Point 1 of Theorem 3.1.3. Set p; = =i and q; = % where § =
>, 27l Then

€] =D milwi| =n [Z %(—log(qi) —1ogS)}

i

>n |:— (Z%log(%)) —logS] =n[H —logS] >nH

i

The first inequality is an instance of Gibbs’ inequality. For the last one, observe
that S < 1.

Proof of Point 2 of Theorem 3.1.3. Set {; = [—1log(=)]. Observe that 274 < L
Thus, 274 + ... + 275 < 1. Applying Kraft inequality, we see that there exists
a prefix-free family of words wy, ..., ws with lengthes €1, ..., {;. We consider the
binary word £ obtained via this prefix-free code, i.e., £ is obtained by substituting
w; to each occurrence of @; in u. Observe that —log(%%) < €; < —log(=t) + 1.
Summing, we getn H < |&] < n(H + 1). O

In particular cases, the lower bound n H can be achieved.
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Theorem 3.1.4. In case the frequencies “’s are all negative powers of two (i.e.,

%, %, é, ...) then the optimal & (given by Huffman’s algorithm) satisfies € = nH.

3.1.2.5 Closer to the Entropy

In Sects.3.1.2.3 and 3.1.2.4, we supposed the frequencies to be known and did
not consider the information content of these frequencies. We now deal with that

question.

Let us go back to the encoding mentioned at the start of Sect.3.1.2.3. A word u
in the family F,,, ., (of length n words with exactly m, ..., m, occurrences of
ai,...,das) can be recovered from the following data:

— The values of mq, ..., msy,
— Therank of u in 5, m, (relative to the lexicographic order on words).

We have seen (cf. Proposition 3.1.2) that the rank of « has a binary representation
p of length < nH + O(logn). The integers my,...,m; are encoded by their
binary representations {1, ..., s which all have length < 1 + |[logn|. Now, to
encode my,...,m; and the rank of u, we cannot just concatenate i, ..., s, p:
how would we know where p; stops, where u, starts,..., in the word obtained
by concatenation? Several tricks are possible to overcome the problem, they are
described in Sect.3.1.2.6. Using Proposition 3.1.5, we set § = (i1,..., Us, p)
which has length [§| = |p| + O(ju1| + ... + |us]) = nH + O(logn)
(Proposition 3.1.5 gives a much better bound but this is of no use here). Then u
can be recovered from & which is a binary word of length n H + O(logn). Thus,
asymptotically, we get a better upper bound than n(H + 1), the one given by
Shannon for prefix-free codes (cf. Theorem 3.1.3).

Of course, £ is no more obtained from u via a morphism (i.e., a map which
preserves concatenation of words) between the monoid of words in alphabet A and
that of binary words.

Notice that this also shows that prefix-free codes are not the only way to
efficiently encode into a binary word & a word u from alphabet ay, . . ., a; for which
the numbers m 1, ..., m; of occurrences of the a;’s are known.

3.1.2.6 Coding Finitely Many Words with One Word

How can we code two words u,v with only one word? The simplest way is to
consider u$v where $ is a fresh symbol outside the alphabet of u and v. But what
if we want to stick to binary words? As said above, the concatenation of u and
v does not do the job: how can one recover the prefix u in uv? A simple trick is
to also concatenate the length of |u| in unary and delimitate it by a zero. Indeed,
denoting by 17 the word 1...1 with p occurrences of 1, one can recover # and
v from the word 1“/0uv: the length of the first block of 1’s tells where to stop in
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the suffix uv to get u. In other words, the map (u,v) — 1/ 0uy is injective from
{0,1}* x {0,1}* — {0, 1}*. In this way, the code of the pair (u,v) has length
2|u| + |v| + 1. This can obviously be extended to more arguments using the map
(uy, ..., us,v) — [lutlglel ..8“‘*'8’141 ...ug;vwheree = Oif sisevenand ¢ = 1 if
sisoddand e’ =1 —e.

Proposition 3.1.5. Let s > 1. There exists a map () : ({0,1}*)*t1 — {0, 1}*
which is injective and computable and such that, for all uy, ..., us,v € {0,1}*
[{ur, .. ug,v)| = 2(lum| + ... + [us]) + [v[ + L.

The following technical improvement will be needed in Part IT §2.1.

Proposition 3.1.6. There exists a map { ) : ({0, 1}*)*T! — {0, 1}* which is
injective and computable and such that, for all uy, . .., us,v € {0, 1}

[Qur, .. ous, ) = (ln| + ..+ Jug]) + (log |us| + ... + log |us|)
+2(oglog|ui| + ... + loglog |us|) + |v| + O(1)

Proof. We consider the case s = 1, i.e., we want to code a pair (&, v). Instead of
putting the prefix 110, let us put the binary representation S(|u|) of the number
|u| prefixed by its length. This gives the more complex code: 11#(“DI0B(|u|)uv with
length

lu] + [v| + 2([log|u|] + 1) + 1 < |u| + |v| + 2log |u| + 3

The first block of ones gives the length of B(|u|). Using this length, we can get
B(Ju|) as the factor following this first block of ones. Now, B(|u|) is the binary
representation of |u|, so we get |u| and can now separate u and v in the suffix uv. 0O

3.1.3 Probabilistic Approach: Ergodicity and Lossy Coding

The abstract probabilistic approach allows for considerable extensions of the results
described in Sect. 3.1.2.

First, the restriction to fixed given frequencies can be relaxed. The probability of
writing ¢; may depend on what has already been written. For instance, Shannon’s
source coding theorem has been extended to the so called “ergodic asymptotically
mean stationary source models”.

Second, one can consider a lossy coding: some length n words in alphabet A
are ill-treated or ignored. Let 0 < § < 1 be the probability of this set of words.
Shannon’s theorem extends as follows:

— Whatever close to 0 is §, one can compress u only down to n H bits,
— Whatever close to 1 is §, one can achieve compression of # down to n H bits.
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3.1.4 Algorithmic Approach: Kolmogorov Complexity
3.1.4.1 Berry’s Paradox

So far, we considered two kinds of binary codings for a word u in alphabet
ai,...,as. The simplest one uses variable-length prefix-free codes (Sect.3.1.2.2).
The other one codes the rank of u as a member of some set (Sect. 3.1.2.5). Clearly,
there are plenty of other ways to encode any mathematical object. Why not consider
all of them? And define the information content of a mathematical object x as
the shortest univoque description of x (written as a binary word). Though quite
appealing, this notion is ill defined as stressed by Berry’s paradox:

Let N be the lexicographically least binary word which cannot be univoquely described by
any binary word of length less than 1000.

This description of N contains 106 symbols of written English (including spaces)
and, using ASCII codes, can be written as a binary word of length 106 x 7 = 742.
Assuming such a description to be well defined would lead to a univoque description
of N in 742 bits, hence less than 1,000, a contradiction to the definition of N.

The solution to this inconsistency is clear: the quite vague notion of univoque
description entering Berry’s paradox is used both inside the sentence describing N
and inside the argument to get the contradiction. A clash between two levels:

* The would be formal level carrying the description of N
* And the meta level which carries the inconsistency argument.

Any formalization of the notion of description should drastically reduce its scope
and totally forbid any clash such as the above one.

3.1.4.2 The Turn to Computability

To get around the stumbling block of Berry’s paradox and have a formal notion
of description with wide scope, Andrei Nikolaievitch Kolmogorov (1903—-1987)
made an ingenious move: he turned to computability and replaced description by
computation program. Exploiting the successful formalization of this a priori vague
notion which was achieved in the 1930s.* This approach was first announced in
Kolmogorov (1963) and then developed in Kolmogorov (1965). Similar approaches
were also independently developed in Solomonov (1964a,b) and in Chaitin (1966,
1969).

3 Berry’s paradox is mentioned by Bertrand Russell (1908, p.222 or 150), who credited G.G. Berry,
an Oxford librarian, for the suggestion.

# Through the works of Alonzo Church (via lambda calculus), Alan Mathison Turing (via Turing

machines) and Kurt Godel and Jacques Herbrand (via Herbrand-Godel systems of equations) and
Stephen Cole Kleene (via the recursion and minimization operators).
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3.1.4.3 Digression on Computability Theory

The formalized notion of computable function (also called recursive function) goes
along with that of partial computable function (also called partial recursive function)
which should rather be called partially computable partial function, i.e., the partial
character has to be distributed.’ Thus, there are two theories:

* The theory of computable functions,
* The theory of partial computable functions.

The “right” theory, the one with a cornucopia of spectacular results, is that of
partial computable functions. Let us pick up three fundamental results out of the
cornucopia, which we state in terms of computers and programming languages. Let
7 and O be N or A* where A is some finite or countably infinite alphabet (or, more
generally, 7 and O can be elementary sets, cf. Definition 3.1.9).

Theorem 3.1.7. 1. [Enumeration theorem]. The function which executes programs
on their inputs: (program, input) — output is itself partial computable. This
means that there exists a partial computable function

U:{0,1}*xT—0

such that the family of partial computable function T — O is exactly {U, |
e € {0,1}*} where U,(x) = U(e, x). Such a function U is called universal for
partial computable functions T — O.

2. [Parameter theorem (or s thm)]. One can exchange input and program (this is
von Neumann'’s key idea for computers).

Formally, this means that, letting T = 1, x I, universal maps Uz, xz, and

Uz, are such that there exists a computable total map s : {0,1}* x Z; — {0, 1}*
such that, for all e € {0, 1}*, x; € Z, and x, € I,

Uz x1, (e, (x1,%2)) = Uz, (s(e, x1), x2)

3. [Kleene fixed point theorem]. For any transformation of programs, there is a
program which does the same input — output job as its transformed program.®
Formally, this means that, for every partial computable map f : {0,1}* —
{0, 1}*, there exists e such that

Ve € {0,1}* Vx eI U(f(e),x)=Ul(e,x)

SIn French, Lacombe (1960) used the expression semi-fonction semi-récursive.
%A seed for computer virology, cf. Bonfante et al. (2006).
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3.1.4.4 Kolmogorov Complexity (or Program Size Complexity)

Turning to computability, the basic idea for Kolmogorov complexity’ can be
summed up by the following equation:

description =  program

When we say “program”, we mean a program taken from a family of programs, i.e.,
written in a programming language or describing a Turing machine or a system of
Herbrand-Godel equations or a Post system,. .. Since we are soon going to consider
the length of programs, following what has been said in Sect. 3.1.1.2, we normalize
programs: they will be binary words, i.e., elements of {0, 1}*.

So, we have to fix a function ¢ : {0, 1}* — O and consider that the output of a
program p is ¢(p).

Which ¢ are we to consider? Since we know that there are universal partial
computable functions (i.e., functions able to emulate any other partial computable
function modulo a computable transformation of programs, in other words, a
compiler from one language to another), it is natural to consider universal partial
computable functions. Which agrees with what has been said in Sect. 3.1.4.3.

Let us give the general definition of the Kolmogorov complexity associated to
any function {0, 1}* — O.

Definition 3.1.8. If ¢ : {0, 1}* — O is a partial function, set

K,:O—N , K,(y)=min{|p|:e(p) =y}

with the convention that min @ = +oo0.

Intuition: p is a program (with no input), ¢ executes programs (i.e., ¢ is
altogether a programming language plus a compiler plus a machinery to run
programs) and ¢(p) is the output of the run of program p. Thus, for y € O, K,(y)
is the length of shortest programs p with which ¢ computes y (i.e., ¢(p) = y).

As said above, we shall consider this definition for partial computable functions
{0,1}* — . Of course, this forces to consider a set O endowed with a
computability structure. Hence the choice of sets that we shall call elementary which
do not exhaust all possible ones but will suffice for the results mentioned in this
paper.

Definition 3.1.9. The family of elementary sets is obtained as follows:

— Tt contains N and the A*’s where A is a finite or countable alphabet,
— It is closed under finite (non empty) product, product with any non empty finite
set and the finite sequence operator.

"Delahaye’s books (Delahaye 1999, 2006) present a very attractive survey on Kolmogorov
complexity.
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Note. Closure under the finite sequence operator is used to encode formulas in
Theorem 3.2.2.

3.1.4.5 The Invariance Theorem

The problem with Definition 3.1.8 is that K, strongly depends on ¢. Here comes a
remarkable result, the invariance theorem, which insures that there is a smallest
Ky, up to a constant. It turns out that the proof of this theorem only needs
the enumeration theorem and makes no use of the parameter theorem (usually
omnipresent in computability theory).

Theorem 3.1.10 (Invariance theorem, (Kolmogorov 1965)). Ler O be an elemen-
tary set (cf. Definition 3.1.9). Among the K,’s, where ¢ : {0,1}* — O varies in
the family PC© of partial computable functions, there is a smallest one, up to an
additive constant (= within some bounded interval). I.e.

IV e PC® Vpe PCP 3¢ VyeO Ky(y) <K,(y) +c
Such a V is called optimal. Moreover, any universal partial computable function
{0,1}* — O is optimal.

Proof. Let U : {0,1}* x {0,1}* — O be partial computable and universal for
partial computable functions {0, 1}* — O (cf. point 1 of Theorem 3.1.7). Let ¢ :
{0, 1}*x{0, 1}* — {0, 1}* be a total computable injective map such that |c(e, x)| =
2|e|+|x|+1 (cf. Proposition 3.1.5). Define V : {0, 1}* — O, with domain included
in the range of ¢, as follows:

Ve € {0,1}* Vx € {0,1}* V(c(e,x)) = U(e, x)

where equality means that both sides are simultaneously defined or not. Then, for
every partial computable function ¢ : {0,1}* — O, forevery y € O, if ¢ = U,
(i.e., ¢(x) = U(e, x) for all x, cf. point 1 of Theorem 3.1.7) then
Ky (y) = least |p| such that V(p) = y
< least |c(e, x)| such that V(c(e,x)) =y
(least is relative to x since e is fixed)
= least |c(e, x)| such that U(e,x) = y
= least |x| 4+ 2|e| 4+ 1 such that p(x) = y
since |c(e, x)| = |x| + 2|e] + 1 and ¢(x) = Ul(e, x)
= (least |x| such that p(x) = y) + 2|e| + 1
= K,(y) +2le|+1 O
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Using the invariance theorem, the Kolmogorov complexity K© : @ — N is defined
as Ky where V is any fixed optimal function. The arbitrariness of the choice of V/
does not modify drastically Ky, merely up to a constant.

Definition 3.1.11. Kolmogorov complexity K© : O — Nis Ky, where V is some
fixed optimal partial function {0, 1}* — O. When O is clear from context, we shall
simply write K.

K© is therefore minimum among the K,’s, up to an additive constant.

K© is defined up to an additive constant: if V and V' are both optimal then

de VxeO |Ky(x)—Kpy(x)]<c

3.1.4.6 What Kolmogorov Said About the Constant

So Kolmogorov complexity is an integer defined up to a constant...! But the
constant is uniformly bounded for x € O. Let us quote what Kolmogorov said
about the constant in Kolmogorov (1965):

Of course, one can avoid the indeterminacies associated with the [above] constants, by
considering particular [...functions V], but it is doubtful that this can be done without
explicit arbitrariness.

One must, however, suppose that the different “reasonable” [above optimal functions]
will lead to “complexity estimates” that will converge on hundreds of bits instead of tens of
thousands.

Hence, such quantities as the “complexity” of the text of “War and Peace” can be
assumed to be defined with what amounts to uniqueness.

In fact, this constant witnesses the multitude of models of computation: universal
Turing machines, universal cellular automata, Herbrand-Godel systems of equa-
tions, Post systems, Kleene definitions,...If we feel that one of them is canonical
then we may consider the associated Kolmogorov complexity as the right one
and forget about the constant. This has been developed for Schoenfinkel-Curry
combinators S, K, I by Tromp, cf. Li and Vitanyi (1997), §3.2.2-3.2.6.

However, even if we fix a particular Ky, the importance of the invariance theorem
remains since it tells us that K is less than any K, (up to a constant). A result applied
again and again to develop the theory.

3.1.4.7 Considering Inputs: Conditional Kolmogorov Complexity

Recall that, in computer science, inputs are also considered as environments. In
the enumeration theorem, we considered (program, input) — output functions
(cf. Theorem 3.1.7). Then, in the definition of Kolmogorov complexity, we gave
up the inputs, dealing with program — output functions. Conditional Kolmogorov
complexity deals with the inputs. Instead of measuring the information content of
y € O, we measure it given as free some object z, which may help to compute y.
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A trivial case is when z = y, then the information content of y given y is null. In
fact, there is an obvious program which outputs exactly its input, whatever be the
input.

Let us state the formal definition and the adequate invariance theorem.

Definition 3.1.12. If ¢ : {0, 1}* x Z — O is a partial function, set

Koy([):OxT—>N , Ky(y|z) =min{|p||e(p,z) =y}

Intuition: p is a program (with expects an input z), ¢ executes programs (i.e., ¢
is altogether a programming language plus a compiler plus a machinery to run
programs) and ¢(p, z) is the output of the run of program p on input z. Thus, for
y € O, Ky(y | 2) is the length of shortest programs p for ¢ to compute y on input

z,ie,9(p.2) =y.

Theorem 3.1.13 (Invariance theorem for conditional complexity). Among the
Ky( | )’s, where ¢ varies in the family PCZ(9 of partial computable functions
{0,1}* x T — O, there is a smallest one, up to an additive constant (i.e., within
some bounded interval):

WV e PCY Voe PCP 3c VyeO VzeTI Ky(y|2)<K,(y|z+c
Such a V is called optimal. Moreover, any universal partial computable map
{0,1}* x T — O is optimal.

The proof is similar to that of Theorem 3.1.10.

Definition 3.1.14. KZ7© : O x T — Nis Ky (| ) where V is some fixed optimal
partial function. It is defined up to an additive constant: if V et V' are both optimal
then

I VyeO Vzel |Kv(ylad—Kr(y|al=<c
Again, an integer defined up to a constant...! However, the constant is uniform in
yeQandzel
3.1.4.8 Simple Upper Bounds for Kolmogorov Complexity

Finally, let us mention rather trivial upper bounds:

— The information content of a word is at most its length.
— Conditional complexity is not harder than the non conditional one.
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Proposition 3.1.15. Let f : O — O’ be computable. There exists ¢ such that

Vx €{0,1}* KO (x) < |x|+¢

Vn eN KN(n) < log(n) +c¢
VxeO Vyel KT7%x | y) < K9(x) + ¢
VxeO KO (f(x)) < KO(x) +¢

VxeO VyeZI KT2O9(f(x)]|y) <K% |y)+c

Proof. We only prove the first inequality. Let /d : {0, 1}* — {0, 1}* be the identity
functi(*m. The invariance theorem insures thgt there exists ¢ such that K" <
K}g’l} + c. Now, it is easy to see that K}g’l} = |x|, so that K1} (x) < |x| +c.
Let 0 : {0, 1}* — N be the bijection which associates to a word u = ax_ ... aop the
predecessor of the integer with binary representation lu, i.e.,

Ou) = (2" + ar—i2""' + ...+ 2a1 +ap) - 1

Clearly, Kg (n) = |log(n + 1)]. Use the invariance theorem to get ¢ such that
KNfKON—i-c. Then KN(n) < log(n) +c + 1. O

The following technical property is a variation of an argument already used in
Sect.3.1.2.5: the rank of an element in a set defines this element, and if the set
is computable, so is this process.

Proposition 3.1.16. Let A € N x O be computable such that A, = AN ({n} x O)
is finite for all n. Then, letting §X be the number of elements of X,

de Vxe A, K(x|n)<log(ft(4,)) +c

Proof. Observe that x is determined by its rank in A,,. This rank is an integer < {4,
hence its binary representation has length < |log(f4,)| + 1. O

3.2 Kolmogorov Complexity

3.2.1 Some Facts About K
3.2.1.1 K Is Unbounded

Let K = Ky : O — N where V : {0, 1}* — O is optimal (cf. Theorem 3.1.10).
Since there are finitely many programs of size < n (namely, the 2"*! — 1 binary
words of size < n), there are finitely many elements of O with Kolmogorov
complexity less than n. This shows that K is unbounded.
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3.2.1.2 K Is Not Computable

Berry’s paradox (cf. Sect.3.1.4.1) has a counterpart in terms of Kolmogorov
complexity: it gives a very simple proof that K, which is a total function O — N, is
not computable.

Proof that K is not computable. For simplicity of notations, we consider the case
O = N. Define L : N — O as follows:
L(n) = least k such that K(k) > 2n

So that K(L(n)) > 2n for all n. If K were computable so would be L. Let V:O —
N be optimal, i.e., K = Ky . The invariance theorem insures that there exists ¢ such
that K < K + c. Observe that K; (L(n)) < n by definition of K. Thus,

2n < K(L(n)) < Kp(L(m)+c<n+c

A contradiction forn > c. ]

3.2.1.3 K and the Halting Problem

The non computability of K can be seen as a version of the undecidability of the
halting problem. In fact, there is a simple way to compute K when the halting
problem is used as an oracle. To get the value of K(x), proceed as follows:

— Enumerate the programs in {0, 1}* in lexicographic order,

For each program p, check if V(p) halts (using the oracle),

In case V(p) halts then compute its value,

— Halt and output | p| when some p is obtained such that V(p) = x.

The converse is also true: one can prove that the halting problem is computable with
K as an oracle.

3.2.1.4 K Has No Computable Lower Bound

Though K is bounded from above by a total computable function, cf. Proposi-
tion 3.1.15, the argument for the undecidability of K can be used to prove that
K is not bounded from below.

Theorem 3.2.1 (Kolmogorov). There is no unbounded partial recursive function
Y : O = Nsuch that ¥ (x) < K(x) for all x in domain(yr).
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3.2.1.5 K Is Approximable from Above

Though K is not computable, it can be approximated from above. The idea is simple.
Suppose O = {0, 1}*. Let ¢ be as in point 1 of Proposition 3.1.15. Consider all
programs of length less than |x| 4 ¢ and let them be executed during ¢ steps. If none
of them converges and outputs x then take |x| + ¢ as a ¢-bound. If some of them
converges and outputs x then the bound is the length of the shortest such program.
The limit of this process is K(x), it is obtained at some finite step which we are not
able to bound.

Formally, this means that there is some F' : O x N — N which is computable
and decreasing in its second argument such that

K(x) = lim F(x.0)=min{F(x.0) |1 €N}

3.2.2 K and Godel’s Incompleteness Theorem

A striking version of Godel’s incompleteness theorem has been given in Chaitin
(1971, 1974), in terms of Kolmogorov complexity. Since Godel’s celebrated proof
of the incompleteness theorem, we know that, in the language of arithmetic, one
can formalize computability and logic. In particular, one can formalize Kolmogorov
complexity and statements about it. Chaitin proves a version of the incompleteness
theorem which insures that among true unprovable formulas there are all true
statements K (1) > n for n large enough.

Theorem 3.2.2 (Chaitin 1974). Let T be a computably enumerable set of axioms
in the language of arithmetic. Suppose that all axioms in T are true in the standard
model of arithmetics with base N. Then there exists N such that if T proves
K@) > n (withu € {0,1}* andn € N) thenn < N.

How the constant N depends on 7 has been giving a remarkable analysis by Chaitin.
To that purpose, he extends Kolmogorov complexity to computably enumerable
sets.

Definition 3.2.3 (Chaitin 1974). Let O be an elementary set (cf. Definition 3.1.9)
and C& be the family of computably enumerable (c.e.) subsets of O. If ¢ : {0, 1}* x
N — O is partial computable, let K, : C€ — N be the Kolmogorov complexity
such that, for all c.e. subset T of O,

K, (T) = min{[p[ | T = {p(p.1) | 1 € N}j

(observe that {¢p(p,t) | t € N} is always c.e. and any c.e. subset of O can be
obtained in this way for some ¢).
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The invariance theorem still holds for this notion of Kolmogorov complexity,
leading to the following notion.

Definition 3.2.4 (Chaitin 1974). K¢¢ : C€ — Nis K, where ¢ is some fixed
optimal partial function. It is defined up to an additive constant.

We can now state how the constant N in Theorem 3.2.2 depends on the theory 7.

Theorem 3.2.5 (Chaitin 1974). There exists a constant ¢ such that, for all c.e. sets
T satisfying the hypothesis of Theorem 3.2.2, the associated constant N is such that

N <K(T)+c
Chaitin also reformulates Theorem 3.2.2 as follows:

If 7 consist of true formulas then it cannot prove that a string has Kolmogorov complexity
greater than the Kolmogorov complexity of 7 itself (up to a constant independent of 7).

Remark 3.2.6. The previous statement, and Chaitin’s assertion that the Kolmogorov
complexity of 7 somehow measures the power of T as a theory, has been much
criticized in van Lambalgen (1989), Fallis (1996) and Raatikainen (1998). The main
argument in Raatikainen (1998) against Chaitin’s interpretation is that the constant
in Theorem 3.2.2 strongly depends on the choice of the optimal function V' such
that K = Ky . Indeed, for any fixed theory 7, one can choose such a V' so that the
constant is zero! And also choose V' so that the constant is arbitrarily large. Though
these arguments are perfectly sound, we disagree with the criticisms issued from
them. Let us detail three main rebuttals.

* First, such arguments are based on the use of optimal functions associated to
very unnatural universal functions V' (cf. point 1 of Theorem 3.1.7 and the last
assertion of Theorem 3.1.10). It has since been recognized that universality is
not always sufficient to get smooth results. Universality by prefix adjunction
is sometimes required, (cf., for instance, §2.1 and §6 in Becher et al. 2006).
This means that, for an enumeration (¢, ).e{o.1}+ of partial computable functions,
the optimal function V' is to satisfy equality V(ep) = ¢.(p), for all e, p, where
ep is the concatenation of the strings e and p.

* Second, and more important than the above technical counterargument, observe
that modelization rarely rules out all pathological cases. It is intended to be
used in “reasonable” cases. Of course, this may be misleading, but perfect
modelization is illusory. In our opinion, this is best illustrated by Kolmogorov’s
citation quoted in Sect. 3.1.4.6 to which Raatikainen’s argument could be applied
mutatis mutandis: there are optimal functions for which the complexity of the
text of “War and Peace” is null and other ones for which it is arbitrarily large.
Nevertheless, this does not prevent Kolmogorov to assert (in the founding paper
of the theory): [For] “reasonable” [above optimal functions], such quantities as
the “complexity” of the text of “War and Peace” can be assumed to be defined
with what amounts to uniqueness.

* Third, a final technical answer to such criticisms has been recently provided
in Calude and Jiirgensen (2005). They improve the incompleteness result of
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Theorem 3.2.2, proving that, for a class of formulas in the vein of those in that
theorem, the probability that such a formula of length n is provable tends to
zero when n tends to infinity whereas the probability that it be true has a strictly
positive lower bound.

3.3 Kolmogorov Complexity: Some Variations

Note. The denotations of (plain) Kolmogorov complexity (that of Sect. 3.1.4.5) and
its prefix version (cf. Sect. 3.3.3) may cause some confusion. They long used to be
respectively denoted by K and H in the literature. But in their book (Li and Vitanyi
1997), Li and Vitanyi respectively denoted them by C and K. Due to the large
success of this book, these last denotations are since used in many papers. So that
two incompatible denotations now appear in the literature. In this paper, we stick to
the traditional denotations K and H.

3.3.1 Levin Monotone Complexity

Kolmogorov complexity is non monotone, be it on N with the natural ordering or on
{0, 1}* with the lexicographic ordering. In fact, for every n and c, there are strings
of length n with complexity > n(1 — 27¢) (cf. Proposition 3.4.2). However, since
n + 1" is computable, K(1") < K(n) + O(1) < logn + O(1) (cf. point 3 of
Proposition 3.1.15) is much less than n(1 — 27¢) for n large enough.

Leonid Levin, introduced a monotone version of Kolmogorov complexity (Levin
1973). The idea is to consider possibly infinite computations of Turing machines
which never erase anything on the output tape. Such machines have finite or infinite
outputs and compute total maps {0, 1}* — {0, 1}=¢ where {0, 1}=® = {0,1}* U
{0, 1} is the family of finite or infinite binary strings. These maps can also be
viewed as limit maps p — sup,_, ., ¢(p, ) where ¢ : {0, 1}* x N — {0, 1}* is total
monotone non decreasing in its second argument.

To each such map ¢, Levin associates a monotone non decreasing map K;'*" :
{0, 1}* — N such that

K" (x) = min{|p| | 3 x <prer ¢(p.1)}

Theorem 3.3.1 (Levin 1973).

1. If ¢ is total computable and monotone non decreasing in its second argument
then K" : {0, 1}* — N is monotone non decreasing:

X Zpref Yy = ngn(x) = szn()’)

2. Among the K '°"’s, ¢ total computable monotone non decreasing in its second
argument, there exists a smallest one, up to a constant.
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Considering total ¢’s in the above theorem is a priori surprising since there is no
computable enumeration of total computable functions and the proof of the Invari-
ance Theorem 3.1.10 is based on the enumeration theorem (cf. Theorem 3.1.7). Here
is the trick to overcome that problem.

» Consider all partial computable ¢ : {0,1}* x N — {0, 1}* which are total
monotone non decreasing in their second argument.

* Associate to each such ¢ a total ¢ defined as follows: ¢(p,t) is the largest
@(p,t') such that t' <t and p(p,t’) is defined within ¢ + 1 computation steps if
there is such a ¢’. If there is none then ¢(p, t) is the empty word.

¢ Observe that K" (x) = Kg’””(x).

In Sect.3.5.2.3, we shall see some remarkable property of Levin monotone
complexity K™°" concerning Martin-Lof random reals.

3.3.2 Schnorr Process Complexity

Another variant of Kolmogorov complexity has been introduced by Klaus Peter
Schnorr in Schnorr (1973). It is based on the subclass of partial computable
functions ¢ : {0,1}* — {0, 1}* which are monotone non decreasing relative to
the prefix ordering:

(*) (P fpref q N @(p)v (0((]) are both deﬁned) = </’(P) fpref (0((])

Why such a requirement on ¢? The reason can be explained as follows.

* Consider a sequential composition (i.e., a pipeline) of two processes, formalized
as two functions f, g. The first one takes an input p and outputs f(p), the second
one takes f(p) as input and outputs g(f(p)).

* Each process is supposed to be monotone: the first letter of f(p) appears first,
then the second one, etc. Idem with the digits of g(g) for any input g.

* More efficiency is obtained if one can develop the computation of g on input
f(p) as soon as the letters of f(p) appear. More precisely, suppose the prefix
q of f(p) has already appeared but there is some delay to get the subsequent
letters. Then we can compute g(g). But this is useful only in case the computation
of g(q) is itself a prefix of that of g(f(p)). This last condition is exactly the
requirement ().

An enumeration theorem holds for the ¢’s satisfying (x), allowing to prove an
invariance theorem and to define a so-called process complexity K7"¢ : {0, 1}* —
N. Schnorr process complexity has many properties in common with Levin’s
monotone complexity, cf. Sect. 3.5.2.3.
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3.3.3 Prefix (or Self-Delimited) Complexity

Levin (1974), Gacs (1974) and Chaitin (1975) introduced the most successful
variant of Kolmogorov complexity: the prefix complexity. The idea is to restrict the
family of partial computable functions {0, 1}* — O (recall O denotes an elementary
set in the sense of Definition 3.1.9) to those which have prefix-free domains, i.e. any
two words in the domain are incomparable with respect to the prefix ordering.

An enumeration theorem holds for the ¢’s satisfying (%), allowing to prove an
invariance theorem and to define the so-called prefix complexity H : {0,1}* — N
(not to be confused with the entropy of a family of frequencies, cf. Sect. 3.1.2.3).

Theorem 3.3.2. Among the K,’s, where ¢ : {0,1}* — O varies over partial
computable functions with prefix-free domain, there exists a smallest one, up to a
constant. This smallest one (defined up to a constant), denoted by H, is called the
prefix complexity.

This prefix-free condition on the domain may seem rather technical. A conceptual
meaning of this condition has been given by Chaitin in terms of self-delimitation.

Proposition 3.3.3 (Chaitin 1974). A partial computable function ¢ : {0,1}* — O
has prefix-free domain if and only if it can be computed by a Turing machine M
with the following property:

If x is in domain(p) (i.e., M on input p halts in an accepting state at some step) then the
head of the input tape of M reads entirely the input p but never moves to the cell right to p.

This means that p, interpreted as a program, has no need of external action (as that
of an end-of-file symbol) to know where it ends: as Chaitin says, the program is self-
delimited. A comparison can be made with biological phenomena. For instance, the
hand grows during childhood and then stops growing. No external action prevents
the hand to go on growing. There is something inside the genetic program which
creates a halting signal so that the hand stops growing.

The main reason for the success of the prefix complexity is that, with prefix-free
domains, one can use the Kraft-Chaitin inequality (cf. the proof of Theorem 3.1.3)
and get remarkable properties.

Theorem 3.3.4 (Kraft-Chaitin inequality). A sequence (resp. computable se-
quence) (n;);en of non negative integers is the sequence of lengths of a prefix-free
(resp. computable) family of words (u;)ien if and only if 3", o 27" < 1.

Let us state the most spectacular property of the prefix complexity.

Theorem 3.3.5 (The Coding Theorem (Levin 1974)). Consider the family £ of
sequences of non negative real numbers (ry)xeo such that

Y ieo F'x < +00 (ie., the series is summable),
e {(x,q9) € OxQ|q < ry}is computably enumerable (i.e., the ry’s have c.e. left
cuts in the set of rational numbers Q and this is uniform in x).
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The sequence (271" co is in £$¢ and, up to a multiplicative factor, it is the
largest sequence in £{* . This means that

V(rweo €65 3¢ Yxe O ry<c2719W

In particular, consider a countably infinite alphabet A. Let V : {0,1}* — A be a
partial computable function with prefix-free domain such that H4 = Ky . Consider
the prefix code (p,)qc4 such that, for each lettera € A, p, is a shortest binary string
such that V(p,) = a. Then, for every probability distribution P : A — [0, 1] over
the letters of the alphabet A, which is computably approximable from below (i.e.,
{(a,q) € AxQ| g < P(a)}is computably enumerable), we have

YaeA P(a)=<c 2-HA@

for some ¢ which depends on P butnoton a € A. This inequality is the reason why
the sequence (27 ! @) 4e is also called the universal a priori probability (though,
strictly speaking, it is not a probability since the 27" do not sum up to 1).

3.3.4 Oracular and Sub-oracular Kolmogorov Complexity
3.3.4.1 Oracular Kolmogorov Complexity

As is always the case in computability theory, everything relativizes to any oracle Z.
Relativization modifies the equation given at the start of Sect. 3.1.4.4, which is now

description =  program of a partial Z-computable function

and for each possible oracle Z there exists a Kolmogorov complexity relative to
oracle Z. We shall see in Sect.3.5.5.2 an interesting property involving oracular
Kolmogorov complexity.

Oracles in computability theory can also be considered as second-order ar-
guments of computable or partial computable functionals. The same holds with
oracular Kolmogorov complexity: the oracle Z can be seen as a second-order
condition for a second-order conditional Kolmogorov complexity

K(y|Z) where K(|):OxPZ)—N

Which has the advantage that the unavoidable constant in the “up to a constant”
properties does not depend on the particular oracle. It depends solely on the
considered functional.

Finally, one can mix first-order and second-order conditions, leading to a condi-
tional Kolmogorov complexity with both first-order and second-order conditions

K(y|z,Z) where K(|,):OxZIxPIZ)—N
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3.3.4.2 Sub-oracular Kolmogorov Complexity

Going back to the idea of possibly infinite computations as in Sect.3.3.1, let us
define

K> :{0,1}* - N, K*(x) = min{|p| | U(p) = x}

where U is the map {0, 1}* — {0, 1}=? computed by a universal Turing machine
with possibly infinite computations. This complexity lies between K and K( | ')
(where @’ is a computably enumerable set which encodes the halting problem):

Vx K(x|9) < K®x)+ 0(1) < K(x) + O(1)

This complexity is studied in Becher et al. (2005) and in our paper (Ferbus-Zanda
and Grigorieff 2006).

3.4 Formalization of Randomness: Finite Objects

3.4.1 Sciences of Randomness: Probability and Cryptography
3.4.1.1 Probability Theory

Random objects (words, integers, reals,. .. ) constitute the basic intuition for proba-
bilities . .. but they are not considered per se. No formal definition of random object
is given: there seems to be no need for such a formal concept. The existing formal
notion of random variable has nothing to do with randomness: a random variable is
merely a measurable function which can be as non random as one likes. It sounds
strange that the mathematical theory which deals with randomness removes the
natural basic questions:

* What is a random string?
* What is a random infinite sequence?

When questioned, people in probability theory agree that they skip these
questions but do not feel sorry about it. As it is, the theory deals with laws of
randomness and is so successful that it can do without entering this problem.

This may seem to be analogous to what is the case in geometry. What are
points, lines, planes? No definition is given, only relations between them. Giving
up the quest for an analysis of the nature of geometrical objects in profit of the
axiomatic method has been a considerable scientific step. However, we contest
such an analogy. Random objects are heavily used in many areas of science and
technology: sampling, cryptology,. .. Of course, such objects are in fact “as much as
we can random”. Which means fake randomness. But they refer to an ideal notion
of randomness which cannot be simply disregarded.
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In fact, since Pierre Simon de Laplace (1749-1827), some probabilists never
gave up the idea of formalizing the notion of random object. Let us cite particularly
Richard von Mises (1883-1953) and Kolmogorov. In fact, it is quite impressive that,
having so brilliantly and efficiently axiomatized probability theory via measure the-
ory (Kolmogorov 1933), Kolmogorov was not fully satisfied of such foundations.®
And he kept a keen interest to the quest for a formal notion of randomness initiated
by von Mises in the 1920s.

3.4.1.2 The 100 Heads Paradox in Probability Theory

That probability theory fails to completely account for randomness is strongly
witnessed by the following paradoxical fact. In probability theory, if we toss an
unbiaised coin 100 times then 100 heads are just as probable as any other outcome!
Who really believes that?

The axioms of probability theory, as developped by Kolmogorov, do not solve all mysteries
that they are sometimes supposed to.
(Gécs 1993)

3.4.1.3 Cryptology

Contrarily to probability theory, cryptology heavily uses random objects. Though
again, no formal definition is given, random sequences are produced which are not
fully random, just hard enough so that the mechanism which produces them cannot
be discovered in reasonable time.

Anyone who considers arithmetical methods of producing random reals is, of course, in a
state of sin. For, as has been pointed out several times, there is no such thing as a random
number — there are only methods to produce random numbers, and a strict arithmetical
procedure is of course not such a method.

(Von Neumann 1951)

So, what is “true” randomness? Is there something like a degree of randomness?
Presently, (fake) randomness only means to pass some statistical tests. One can ask
for more.

3.4.2 Kolmogorov’s Proposal: Incompressible Strings

We now assume that O = {0, 1}*, i.e., we restrict to words.

8Kolmogorov is one of the rare probabilists — up to now — not to believe that Kolmogorov’s axioms
for probability theory do constitute the last word about formalizing randomness. . .
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3.4.2.1 Incompressibility with Kolmogorov Complexity

Though much work had been devoted to get a mathematical theory of random
objects, notably by Von Mises (1919, 1939), none was satisfactory up to the 1960s
when Kolmogorov based such a theory on Kolmogorov complexity, hence on
computability theory.

In fact, the theory was independently® developed by Gregory J. Chaitin (b. 1947),
who submitted two papers (Chaitin 1966, 1969) in 1965. The basic idea is as
follows:

* Larger is the Kolmogorov complexity of a text, more random it is,
* Larger is its information content, and more compressed is the text.

Thus, a theory for measuring the information content is also a theory of
randomness.

Recall that there exists ¢ such that for all x € {0,1}*, K(x) < |x] + ¢
(Proposition 3.1.15). The reason being that there is a “stupid” program of length
about |x| which computes the word x by telling what are the successive letters
of x. The intuition of incompressibility is as follows: x is incompressible if there no
shorter way to get x.

Of course, we are not going to define absolute randomness for words. But a
measure of randomness telling how far from |x| is K(x).

Definition 3.4.1 (Measure of incompressibility). A word x is c-incompressible if
K(x) > |x| —c.

It is rather intuitive that most things are random. The next Proposition formalizes
this idea.

Proposition 3.4.2. For any n, the proportion of c-incompressible strings of length

nis>1-27¢

Proof. At most 2"~ — 1 programs of length < n — ¢ and 2" strings of length n. O

3.4.2.2 Incompressibility with Length Conditional Complexity

We observed in Sect.3.1.2.3 that the entropy of a word of the form 000...0 is
null. i.e., entropy did not considered the information conveyed by the length. Here,
with incompressibility based on Kolmogorov complexity, we can also ignore the
information content conveyed by the length by considering incompressibility based
on length conditional Kolmogorov complexity.

Definition 3.4.3 (Measure of length conditional incompressibility). A word x is
length conditional c-incompressible if K(x | |x]) > |x| — c.

The same simple counting argument yields the following Proposition.

°Li and Vitanyi (1997), pp. 89-92, gives a detailed account of when who did what.
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Proposition 3.4.4. For all n, the proportion of length conditional c-incompressible
strings of lengthn is > 1 —27°.

A priori length conditional incompressibility is stronger than mere incompressibil-
ity. However, the two notions of incompressibility are about the same ...up to a
constant.

Proposition 3.4.5. There exists d such that, forallc € N, x € {0, 1}*,

1. x is length conditional c-incompressible = x is (¢ + d)-incompressible
2. x is c-incompressible = x is length conditional (2¢ + d)-incompressible.

Proof. 1 is trivial. For 2, observe that there is d such that, for all x,
(*)  K(x) = K(x | |x]) +2K(]x| — K(x | [x])) +d
In fact, if K = K, and K(|) = Ky|), consider p, g such that

x| = K(x | |x[) = o(p) ¥(q|lx]) =x
K(lx] = K(x [ |x])) = [p]  K(x | [x]) = lq|

With p and ¢, hence with (p, g) (cf. Proposition 3.1.5), one can successively get
x| = K(x [ |x[) thisis ¢(p)

K(x | |x|) this is g
| x| just sum the above quantities
X this is ¥ (q | |x])

Thus, K(x) < [{p,q)| + O(1). Applying Proposition 3.1.5, we get (*).
Using KN < log +¢; and K" (x) > |x| — ¢ (Proposition 3.1.15), (*) yields

x| = K(x [ |x]) = 2log(|x| — K(x | [x])) +2¢c1 + ¢ +d

Finally, observe that z < 2log z + k insures z < max(8, 2k). |

3.4.3 Incompressibility Is Randomness (Martin-Lof)

Now, if incompressibility is clearly a necessary condition for randomness, how do
we argue that it is a sufficient condition? Contraposing the wanted implication, let us
see that if a word fails some statistical test then it is not incompressible. We consider
some spectacular failures of statistical tests.

Example 3.4.6. 1. [Constant half length prefix] For all n large enough, a string 0"u
with |u| = n cannot be c-incompressible.

2. [Palindromes] Large enough palindromes cannot be c-incompressible.

3. [0 and 1 not equidistributed] For all 0 < o < 1, for all n large enough, a string
of length n which has < a5 zeros cannot be c-incompressible.
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Proof. 1. Let ¢’ be such that K(x) < |x|+¢’. Observe that there exists ¢ such that
K(0"u) < K(u) + ¢” hence

1
KO'w)y<n+c +c" < ElO”ul +c 4+

So that K(0"u) > |0"u| — ¢ is impossible for n large enough.
2. Same argument: There exists ¢’ such that, for any palindrome x,

1
K() < 5l| +¢”

3. The proof follows the classical argument to get the law of large numbers (cf.
Feller 1968). Let us do it for o = 3, so that § = 1 . Let A, be the set of strings
of length n with < % zeros. We estimate the number N of elements of A,,.

i=

S (n n n n!
v=x(1)=Gen (3)= ey

=

wix

1

Use inequality 1 < e < 1.1 and Stirling’s formula (1730),
v 2nw (E) eTHT <l < 207 (E) e
e e

Observe that 1.1 (% + 1) < n for n > 2. Therefore,

V2nw ()" 3 3\"

No<n mi :zvﬁ(%)
n\ 3 2n\ 3 b
s (3) o (2)

Using Proposition 3.1.16, for any element of A,,, we have

logn

d
3 +

K(x|n) <log(N)+d <nlog (Si\/é_l) +

3
Slnce < 8, we have 3[ < 2and log(f) < 1.Hence,n—c < nlog (7‘1)
logn + d is impossible for n large enough.
So that x cannot be c-incompressible. O

Let us give a common framework to the three above examples so as to get some
flavor of what can be a statistical test. To do this, we follow the above proofs of
compressibility.
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Example 3.4.7. 1. [Constant left half length prefix]. Let V,, be the set of strings
with m zeros ahead. The sequence Vy, V|, ... is decreasing. The number of
strings of length n in V,,, is 0 if m > n and 2”7 if m < n. Thus, the proportion
w of length n words in V,, is 27

2. [Palindromes]. Putin V,, all strings which have equal length m prefix and suffix.
The sequence Vp, V1, ... is decreasing. The number of strings of length n in V,
is 0if m > 4 and 2"~ if m < %. Thus, the proportion of length n words which
are in V,, is 272",

3. [0 and 1 not equidistributed]. Put in V% = all strings x such that the number
of zeros is < (¢ + (1 — a)Z_m)"—;‘. The sequence Vj, Vi,... is decreasing.
A computation analogous to that done in the proof of the law of large numbers
shows that the proportion of length n words which are in V},, is < 277" for some
y > 0 (independent of m).

Now, what about other statistical tests? But what is a statistical test? A convincing
formalization has been developed by Martin-L6f. The intuition is that illustrated
in Example 3.4.7 augmented of the following feature: each V,, is computably
enumerable and so is the relation {(m, x) | x € V,,}. A feature which is analogous
to the partial computability assumption in the definition of Kolmogorov complexity.

Definition 3.4.8 (Abstract notion of statistical test, Martin-Lof 1966, 1971). A
statistical test is a family of nested critical sets

{0, 13*>2VoVi2WV,2...2V,D...

such that {(m,x) | x € V,} is computably enumerable and the proportion
w of length n words which are in V,,, is < 27",

Intuition. The bound 27 is just a normalization. Any bound b(n) such that
b : N — Q which is computable, decreasing and with limit 0 could replace 27,
The significance of x € V), is that the hypothesis x is random is rejected with
significance level 27",

Remark 3.4.9. Instead of sets V,, one can consider a function § : {0,1}* — N
such that W < 27" and § is computable from below, i.e., {(m, x) |
8(x) > my} is recursively enumerable.

We have just argued on some examples that all statistical tests from practice are
of the form stated by Definition 3.4.8. Now comes Martin-Lof fundamental result
about statistical tests which is in the vein of the invariance theorem.

Theorem 3.4.10 (Martin-Lof 1965). Up to a constant shift, there exists a largest
statistical test (Uy)men, in terms of functions, up to an additive constant, there
exists a largest statistical test A :

YVidmen 3¢ Ym Viyye CU, 3 V83c Vx 6(x) < A(x) +c¢
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Proof. Consider A(x) = |x| — K(x | |x]) — 1.

[A'is a test. | Clearly, {(m,x) | A(x) = m} is ce. A(x) = m means K(x | |x]) <
|x| —m — 1. So no more elements in {x | A(x) > m A |x| = n} than programs of
length <n —m — 1, whichis 2"7" — 1.

x is determined by its rank in the set Vsx) = {z | §(z) = 8(x) A |z| =

|x|}. Since this set has < 2"~*(") elements, the rank of x has a binary representation
of length < |x| — 6(x). Add useless zeros ahead to get a word p with length |x| —
8(x).

With p we get |x| — §(x). With |x| — §(x) and |x| we get §(x) and construct
Vs(x). With p we get the rank of x in this set, hence we get x. Thus, K(x | [x|) <
|x] —8(x) + ¢, ie., 6(x) < A(x) + c. O

A corollary of the previous result is that, for words, incompressibility implies (hence
is equivalent to) randomness.

Corollary 3.4.11 (Martin-Lof 1965). Incompressibility passes all statistical tests.
Le., for all ¢, for all statistical test (V) m, there exists d such that

Vx (x is c-incompressible = x & V.44)

Proof. Let x be length conditional c-incompressible. This means that K(x | |x|) >
|x| — c. Hence A(x) = |x| — K(x | |x]) = 1 < ¢ — 1, which means that x ¢ U.,.
Let now (V,,), be a statistical test. Then there is some d such that V,,4+4 C U,
Therefore x ¢ V.y4. O

Remark 3.4.12. Observe that incompressibility is a bottom-up notion: we look at
the value of K(x) (or that of K(x | |x|)). On the opposite, passing statistical
tests is a fop-down notion. To pass all statistical tests amounts to an inclusion in
an intersection: namely, an inclusion in

M U Ve

Vdm €

3.4.4 Shortest Programs Are Random Finite Strings

Observe that optimal programs to compute any object are examples of random
strings. More precisely, the following result holds.

Proposition 3.4.13. Let O be an elementary set (cf. Definition 3.1.9) and
U:{0,1}* - {0,1}*, V : {0,1}* — O be some fixed optimal functions. There
exists a constant ¢ such that, for all a € O, for all p € {0,1}*, if V(p) = a and
Ky(a) = |p| then Ky(p) > |p| — c. In other words, for any a € O, if p is a
shortest program which outputs a then p is c-random.
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Proof. Consider the function V o U : {0, 1}* — O. Using the invariance theorem,
let ¢ be such that Ky < Kyoy + c¢. Then, for every g € {0, 1}*,

Ulg)=p=VolU(g) =a
= |q| > Kvov(a) > Ky(a) —c = |p| —¢

Which proves that Ky (p) > |p| — c. O

3.4.5 Random Finite Strings and Complexity Lower Bounds

Random finite strings (or rather c-incompressible strings) have been extensively
used to prove lower bounds for computational complexity, cf. the pioneering paper
by Wolfgang Paul (1979) (see also an account of the proof in our survey paper
Ferbus-Zanda and Grigorieff 2004) and the work by Li and Vitanyi (1997). The key
idea is that a random string can be used as a worst possible input.

3.5 Formalization of Randomness: Infinite Objects

We shall stick to infinite sequences of zeros and ones: {0, 1}".

3.5.1 Martin-Lof Top-Down Approach: Effective Topology
3.5.1.1 The Naive Idea Badly Fails

The naive idea of a random element of {0, 1} is that of a sequence a which is in no
set of measure 0. Alas, « is always in the singleton set {&} which has measure 0!

3.5.1.2 Martin-Lof’s Solution: Effectivize

Martin-Lo6f’s solution to the above problem is to extend to infinite sequences what
he did for finite objects (cf. Sect. 3.4.3): effectivize. Now, this means to consider the
sole effective measure zero sets.

Let us develop a series of observations which leads to Martin-L6f’s precise
solution, i.e., what does mean effective for measure O sets.
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To prove a probability law amounts to prove that a certain set X of sequences has
probability one. To do this, one has to prove that the complementset ¥ = {0, 1}"\ X
has probability zero. Now, in order to prove that ¥ C {0, 1}" has probability zero,
basic measure theory tells us that one has to include Y in open sets with arbitrarily
small probability. L.e., for each n € N one must find an open set U, 2 Y which has
probability < 5.

If things were on the real line R we would say that U, is a countable union of
intervals with rational endpoints. Here, in {0, I}N, U, is a countable union of sets of
the form u{0, 1} where u is a finite binary string and {0, 1} is the set of infinite
sequences which extend u.

In order to prove that Y has probability zero, for each n € N one must find a
family (ty m)men such that ¥ C (J,,, un {0, 1} and Proba(lJ,,, un m{0, 1}") < 5
foreachn € N.

Now, Martin-L6f makes a crucial observation: mathematical probability laws
which we consider necessarily have some effective character. And this effectiveness
should reflect in the proof as follows: the doubly indexed sequence (uy m)n men IS
computable. Thus, the set | ,, un »{0, 1}" is a c.e. open set and (), U, tn.m{0, 1}
is a countable intersection of a computably enumerable family of open sets.

Now comes the essential theorem, which is analogous to Theorem 3.4.10.

Definition 3.5.1 (Martin-Lof 1966). A constructively null G set is any set of the
form

(U tnmto. 13"

where Proba(| J,,, un m{0, 1N < % (hence the intersection set has probability zero)

and the sequence u,, ;, is computably enumerable.
Theorem 3.5.2 (Martin-Lof 1966). There exist a largest constructively null Gs
set.

Let us insist that the theorem says /argest, up to nothing, really largest relative to set
inclusion.

Definition 3.5.3 (Martin-Lof 1966). A sequence o € {0,1}" is Martin-Lof
random if it belongs to no constructively null Gs set (i.e., if it does not belongs
to the largest one).

In particular, the family of random sequences, being the complement of a construc-
tively null G set, has probability 1. And the observation above Definition 3.5.1
insures that Martin-Lof random sequences satisfy all usual probabilities laws.
Notice that the last statement can be seen as an improvement of all usual
probabilities laws: not only such laws are true with probability 1 but they are true
for all sequences in the measure 1 set of Martin-Lof random sequences.
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3.5.2 The Bottom-Up Approach
3.5.2.1 The Naive Idea Badly Fails

Another natural naive idea to get randomness for sequences is to extend randomness
from finite objects to infinite ones. The obvious proposal is to consider sequences
a € {0, 1} such that, for some c,

Vn K(xln)>n-—c 3.D
However, Martin-Lof proved that there is no such sequence.

Theorem 3.5.4 (Large oscillations, (Martin-Lof 1971)). If f : N — N is
computableand )", . 2710 = 400 then, for every a € {0, 1}Y, there are infinitely
many k such that K(« [ k) <k — f(k) — O(1).

Proof. Let us do the proof in the case f(n) = logn which is quite limpid (recall
that the harmonic series nl = 27 log” hag infinite sum).

Let k be any integer. The word « |k prefixed with 1 is the binary representation
of an integer n (we put 1 ahead of « | k in order to avoid a first block of non
significative zeros). We claim that « | n can be recovered from « | [k + 1, 1] only.

In fact,

e n—kisthelengthof« | [k + 1,n],
e k=|logn]+1=|log(n—k)|] +1+¢e (wheree € {0, 1}) is known fromn — k
and &,
e n=m—k)+k.
* « Mk is the binary representation of 7.
The above analysis describes a computable map f : {0, 1}* x {0,1} — {0, 1}*
suchthato ['n = f(a MMk + 1,n], €). Applying Proposition 3.1.15, point 3, we get

K n) <K(@!k+1,n)+001)<n—k+ O(1) =n—log(n) + O(1)

3.5.2.2 Miller and Yu’s Theorem

It took about 40 years to get a characterization of randomness via Kolmogorov
complexity which completes Theorem 3.5.4 in a very pleasant and natural way.

Theorem 3.5.5 (Miller and Yu 2008). Let F be the family of total computable
Sfunctions f : N — N satisfying Y, o 27/ < 400. The following conditions are
equivalent:

i. The sequence o € {0, 1} is Martin-Lof random

ii. ¢ Vk K(a Mk)=k— f(k)—cforevery f € F
ii. 3¢ Yk K(alk)=k—H(k)—c
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Moreover, there exists a particular g € F such that one can add a fourth
equivalent condition:

iv. 3¢ Vk K tk)>k—gk)—c

Recently, an elementary proof of this theorem was given by Bienvenu et al. (2008).
Equivalence i < iii is due to Gics (1980).

3.5.2.3 Variants of Kolmogorov Complexity and Randomness

Bottom-up characterization of random sequences have been obtained using
Levin monotone complexity, Schnorr process complexity and prefix complexity
(cf. Sects. 3.3.1-3.3.3).

Theorem 3.5.6. The following conditions are equivalent:

i. The sequence o € {0, 13N is Martin-Lof random
ii. 3¢ Yk |K™"(a lk)—k|<c
iii. 3¢ Yk |S(xtk)—k|<c
ivdc Vk H(alk)=k-—c
Equivalence i < ii is due to Levin (Zvonkin and Levin 1970). Equivalence

i & iii is due to Schnorr (1971a). Equivalence i < iv is due to Schnorr and
Chaitin (1975).

3.5.3 Randomness: A Robust Notion but a Fragile Property
3.5.3.1 Randomness: A Robust Mathematical Notion

Besides the top-down definition of Martin-L6f randomness, we mentioned above
diverse bottom-up characterizations via properties of the initial segments with
respect to variants of Kolmogorov complexity. There are other top-down and
bottom-up characterizations, we mention two of them in this section. This variety
of characterizations shows that Martin-L6f randomness is a robust mathematical
notion.

3.5.3.2 Randomness and Martingales

Recall that a martingale is a function d : {0, 1}* — R such that

d(u0) + d(ul)

Yu du) = 5
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The intuition is that a player tries to predict the bits of a sequence a € {0, 1} and
bets some amount of money on the values of these bits. If his guess is correct he
doubles his stake, else he looses it. Starting with a positive capital d(g) (where ¢ is
the empty word), d(« | k) is his capital after the k first bits of o have been revealed.
The martingale d wins on « € {0, 1}V if the capital of the player tends to +oc.

The martingale d is computably approximable from below if the left cut of d (u)
is computably enumerable, uniformly in u (i.e., {(#,q) € {0,1}* x Q | ¢ < d(u)}
is c.e.).

Theorem 3.5.7 (Schnorr 1971b). A sequence o € {0, 1}V is Martin-Lof random if
and only if no martingale computably approximable from below wins on .

3.5.3.3 Randomness and Compressors

Recently, Bienvenu and Merkle obtained quite remarkable characterizations of
random sequences in the vein of Theorems 3.5.6 and 3.5.5 involving computable
upper bounds of K and H.

Definition 3.5.8. A compressor is any partial computable T : {0, 1}* — {0, 1}*
which is one-to-one and has computable domain. A compressor is said to be prefix-
free if its range is prefix-free.

Proposition 3.5.9. [. For any computable upper bound F of K (resp. H) there
exists a compressor (resp. prefix-free compressor) I' such that

Je Vxe€{0,1}* |[T(x)|<F(x)+c
2. If U is a compressor (resp. prefix-free compressor) then
Je Vxe€{0,1}* K(x) <|T'(x)|+c (resp.H(x) < |T'(x)| +¢)

Now comes the surprising characterizations of randomness in terms of computable
functions.

Theorem 3.5.10 (Bienvenu and Merkle 2007). The following conditions are
equivalent:

i. The sequence o € {0, 1}" is Martin-Lof random
ii. For all prefix-free compressor T : {0, 1}* — {0, 1}*,

3¢ Vk |T(xlk)|=k—-c

iii. Forall compressor', 3c Vk |I'(a k)|>k—H(k)—c
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Morveover, there exists a particular prefix-free compressor I'* and a particular
compressor T'* such that one can add two more equivalent conditions:

iv3c Yk |T*(a k)| =>k—c
v. 3¢ Vk |T*a k)| =k —|T*(a k)| —c

3.5.3.4 Randomness: A Fragile Property

Though the notion of Martin-Lof randomness is robust, with a lot of equivalent
definitions, as a property, it is quite fragile.

In fact, random sequences loose their random character under very simple
computable transformation. For instance, even if apa;a; . . . is random, the sequence
0ap0a;0a50. .. IS NOT random since it fails the following Martin-Lof test:

(V| Vi <na@i+1) =0}

neN

Indeed, {& | Vi < n a(2i + 1) = 0} has probability 27" and is an open subset of
{0, 1},

3.5.4 Randomness Is Not Chaos

In a series of papers (Moschovakis 1993, 1994, 1996), Joan Rand Moschovakis
introduced a very convincing notion of chaotic sequence a € {0, 1}V. It turns out
that the set of such sequences has measure zero and is disjoint from Martin-Lof
random sequences.

This stresses that randomness is not chaos. As mentioned in Sect. 3.5.1.2, random
sequences obey laws, those of probability theory.

3.5.5 Oracular Randomness
3.5.5.1 Relativization

Replacing “computable” by “computable in some oracle”, all the above theory
relativizes in an obvious way, using oracular Kolmogorov complexity and the
oracular variants. In particular, when the oracle is the halting problem, i.e. the
computably enumerable set @', the obtained randomness is called 2-randomness.
When the oracle is the halting problem of partial #’-computable functions, i.e. the
computably enumerable set §”, the obtained randomness is called 3-randomness.
And so on. Of course, 2-randomness implies randomness (also called 1-randomness)
and 3-randomness implies 2-randomness. And so on.
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3.5.5.2 Kolmogorov Randomness and @’

A natural question following Theorem 3.5.4 is to look at the so-called Kolmogorov
random sequences which satisfy K(« k) > k — O(1) for infinitely many k’s. This
question got a very surprising answer involving 2-randomness.

Theorem 3.5.11 (Nies et al. 2005). Let a € {0, 1}. There are infinitely many k
such that, for a fixed c, K(«a ['k) > k —c (i.e., o is Kolmogorov random) if and only
if o is 2-random.

3.5.6 Randomness: A New Foundation for Probability Theory?

Now that there is a sound mathematical notion of randomness, is it possi-
ble/reasonable to use it as a new foundation for probability theory? Kolmogorov
has been ambiguous on this question. In his first paper on the subject, see pp. 35-36
of Kolmogorov (1965), he briefly evoked that possibility:

...to consider the use of the [Algorithmic Information Theory] constructions in providing
a new basis for Probability Theory.

However, later, see pp. 35-36 of Kolmogorov (1983), he separated both topics:

there is no need whatsoever to change the established construction of the mathematical
probability theory on the basis of the general theory of measure. I am not enclined to
attribute the significance of necessary foundations of probability theory to the investigations
[about Kolmogorov complexity] that I am now going to survey. But they are most interesting
in themselves.

though stressing the role of his new theory of random objects for mathematics as a
whole in Kolmogorov (1983), p. 39:

The concepts of information theory as applied to infinite sequences give rise to very
interesting investigations, which, without being indispensable as a basis of probability
theory, can acquire a certain value in the investigation of the algorithmic side of mathematics
as a whole.
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Chapter 4

Kolmogorov Complexity in Perspective
Part II: Classification, Information
Processing and Duality

Marie Ferbus-Zanda

Abstract We survey diverse approaches to the notion of information: from
Shannon entropy to Kolmogorov complexity. Two of the main applications of
Kolmogorov complexity are presented: randomness and classification. The survey
is divided in two parts in the same volume.

Part II is dedicated to the relation between logic and information system,
within the scope of Kolmogorov algorithmic information theory. We present a
recent application of Kolmogorov complexity: classification using compression,
an idea with provocative implementation by authors such as Bennett, Vitdnyi and
Cilibrasi among others. This stresses how Kolmogorov complexity, besides being
a foundation to randomness, is also related to classification. Another approach
to classification is also considered: the so-called “Google classification”. It uses
another original and attractive idea which is connected to the classification using
compression and to Kolmogorov complexity from a conceptual point of view. We
present and unify these different approaches to classification in terms of Bottom-Up
versus Top-Down operational modes, of which we point the fundamental principles
and the underlying duality. We look at the way these two dual modes are used
in different approaches to information system, particularly the relational model
for database introduced by Codd in the 1970s. These operational modes are also
reinterpreted in the context of the comprehension schema of axiomatic set theory ZF.
This leads us to develop how Kolmogorov’s complexity is linked to intensionality,
abstraction, classification and information system.
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Note. All notations and definitions relative to Kolmogorov complexity are intro-
duced in Part I.!

4.1 Algorithmic Information Theory and Classification

Using Andrei Nikolaevich Kolmogorov complexity, striking results have been
obtained on the problem of classification for quite diverse families of objects: let
them be literary texts, music pieces, examination scripts (lax supervised) or, at a
different level, natural languages and natural species (phylogeny).

The authors, mainly Charles Bennett, Paul Vitdnyi, Rudi Cilibrasi® have worked
out refined methods which are along the following lines.

4.1.1 Definition and Representation of the Family of Objects
We Want to Classify

First we have to define a specific family of objects which we want to classify.
For example, a set of Russian literary texts that we want to group by authors.
In this simple case, all texts are written in their original Russian language. Another
instance, music. In that case, a common translation is required, i.e., a normalization
of music pieces (representing or, in other words, interpreting musical partitions)
which we want to group by composer. This common representation (which has to
be tailored for computer programs) is necessary in order to be able to compare
these diverse music pieces. Let us cite Delahaye (2004): Researchers considered 36
music pieces coded as MIDI (Musical Instrumental Digital Interface) files. They
normalized them by producing piano versions and considering them as data files
consisting of long lists of bytes.> Without such a normalization, which is a real
informations extraction, nothing would work [...]. An instance at a different level:
the 52 main European languages. In that case one has to choose a canonical object
(here a text) and its representations (here translations) in each one of the different
languages (i.e. corpus) that we consider. For instance, the Universal Declaration of
Human Rights and its translations in these languages, an example which was a basic

'One can also consult Ferbus-Zanda and Grigorieff (2001), Durand and Zvonkin (2004), Delahaye
(1999), Li and Vitanyi (1997) and the pioneer works Kolmogorov (1965), Chaitin (1966, 1975)
and Solomonoff (1964).

2One can read the surveys (Delahaye 2004, 2006) that give a clear introduction to these works
(let us acknowledge that they were very helpful for us).

3A byte is a sequence of eight binary digits. It can also be seen as a number between 0 and 255.
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test for Vitdnyi’s method. As concerns natural species (another example developed
by Vitdnyi), the canonical object will be a DNA sequence.

What has to be done is to select, define and normalize a family of objects or a
corpus that we want to classify.

Normalization of a family of objects is a complex problem, and it may be also
the case for the definition of such a family. Roughly speaking, one can partition the
types of considered objects in different classes:

* Well defined families of objects to be classified. Normalization of these objects
(rather of their representations) can then be done without loss of information.
This is the case of literary texts.

e The family to be classified can be finite though unknown, possibly without
a priori bound on its size. Such is the case with informations on the Web
(cf. classification using Google, Sect.4.3).

* There are some cases where such a normalization is difficult to work out if not
impossible. It may be the case for painting, drawing, photography, art-house
cinema, etc.

4.1.2 Comparing the Common Information Content

Finally, one gets a family of words in the same alphabet which represent the objects
that we want to compare and measure the common information content* (observe
that we can reduce to a binary alphabet). Our goal is to compare and, if possible, to
measure the common information content. This is done by defining a distance for
the pairs of such (binary) words with the following intuition: The more common
information is shared by two words, the closer they are and the shorter is their
distance. Conversely, the less common information existing between two words,
the more they are independent and non correlated, and greater is their distance. Two
identical words have a null distance. Two totally independent words (for example,
words representing two events as 100 random coin tosses) have a distance of about 1
(for a normalized distance bounded by 1). Observe that the authors, in their approach
of classification of information, follow the ideas pioneered by Claude Shannon and
Kolmogorov to define a quantitative measure of information content of words, i.e. a
measure of their randomness (in exactly the same way as a volume or a surface gets
a numerical measure).

4The notion of information content of an object is detailed in Part I. According to Kolmogorov,
this is, by definition, the algorithmic complexity of that object.
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4.1.3 Classification

We now have to associate a classification to the objects or corpus defined in
Sect.4.1.1 using the numerical measures based on the distances introduced in
Sect.4.1.2. This step is presently the least formally defined. The authors give
representations of the obtained classifications using tables, trees, graphs, etc. This
is indeed more a visualization, i.e. a graphic representation, of the obtained classifi-
cation than a formal classification. Here the authors have no powerful mathematical
framework such as the relational model for databases elaborated by Edgar F. Codd
in the 1970s (Codd 1970) and its (recent) extension to object database with trees.
Codd’s approach is currently one of the sole mathematical formal approaches (if not
the only one) to the notion of information structuralization. In this way, one can say
that structuralization a class of informations or (representations of) objects (from the
“real world” as computer scientists call it) amounts to a relational database which
is itself a perfectly defined mathematical object. Moreover one can question this
database and extract “new” informations via queries which can be written in a for-
mal language (namely Codd’s relational algebra). Also, notice that this extremely
original theoretical approach is the one which is implemented in all database soft-
wares since the 1980s and is used everywhere there is some mention of databases.

Consequently, the question is how are we to interpret in a formal way tables or
trees in classification via compression and more particularly how are we to formally
extract informations from this classification? Though valuable, the classification
obtained by this method (of classification via compression) is rudimentary and non
formal. This is somewhat analogous, for instance, to the classification of words in
a dictionary of synonyms. We face a complex problem on which we shall return in
Sect. 4.4. Nevertheless, Vitdnyi et al. obtained by these methods a classification tree
for the 52 European languages which is the one revealed by linguists, a remarkable
success. They also obtained phylogenetic trees classifying natural species which
are in accordance with those obtained by paleontologists. These trees represent
parenthood relations between natural species and are obtained via DNA sequence
comparisons.

4.1.4 Normalization

An important problem remains when using a distance as in Sect.4.1.3. To obtain
a classification, we have to consider the amount of information contained in the
considered objects. Let us cite Cilibrasi (2003): Large objects (in the sense of long
strings) that differ by a tiny part are intuitively closer than tiny objects that differ by
the same amount. For example, two whole mitochondrial genomes of 18,000 bases
that differ by 9,000 are very different, while two whole nuclear genomes of 3 x 10°
bases that differ by only 9,000 bases are very similar. As we shall see later, this
problem is relatively easy to solve using a normalization of distances. Notice that
this is a different way of normalization that the one proposed in Sect.4.1.1.
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4.1.5 Compression

Finally, all these methods rely on Kolmogorov complexity which is, as we know, a
non computable function (cf. for example Ferbus-Zanda and Grigorieff 2001). The
remarkable idea introduced by Vitdnyi is the following:

* Consider the Kolmogorov complexity of an object as the ultimate, ideal and
optimal value of the compression of the representation of that object.

» Compute approximations of this ideal compression using usual efficient com-
pression algorithms, implemented with compressors such as gzip, bzip2, PPM,
etc. which are of common use with computers.

Observe that the quality and fastness of such compressors is largely due to heavy
use of statistical tools. For example, PPM (Prediction by Partial Matching) uses a
pleasing mix of statistical®> models arranged by trees, suffix trees or suffix arrays.

We remark that the efficiency of these tools is of course due to several dozens of
years of research in data compression. And as time goes on, they improve and better
approximate Kolmogorov complexity. Replacing the “pure” but non computable
Kolmogorov complexity by a banal compression algorithm such as gzip is quite a
daring step taken by Vitanyi.

4.2 Classification via Compression

4.2.1 The Normalized Information Distance (NID)

We now formalize the notions described above. The basic idea is to measure the
information content shared by two binary words representing some objects in a
family we want to classify.

The first such tentative goes back to the 1990s (Bennett et al. 1998): Bennett et al.
define a notion of information distance between two words x, y as the size of the
shortest program which maps x to y and y to x. This notion relies on the idea of
reversible computation. A possible formal definition for such a distance is:

ID'(x,y) = least | p| such that U(p,x) = yand U(p, y) = x
where U : {0, 1}* x {0,1}* — {0, 1}* is optimal for the conditional complexity
K(|) (cf. Part I).

We shall mainly work with the following alternative definition:

ID(x,y) = max{K(x|y), K(y|x)}

SWe come back in Sect. 4.4 below on information processing with statistics.
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The intuition for these definitions is that the shortest program which computes x
from y and y from x takes into account all similarities between x and y. Observe
that the two definitions do not coincide (even up to logarithmic terms) but lead to
similar developments and efficient applications.

Note. In the definition of ID, we can consider K to be plain Kolmogorov
complexity or its prefix version (denoted H below). In fact, this does not matter
for a simple reason: all properties involving this distance will be true up to a
O(log(]x]),log(]y|)) term and the difference between K (z|t) and H(z|t) is bounded
by 21og(|z|). For conceptual simplicity, we stick to plain Kolmogorov complexity.
ID and I D’ satisfy the axioms of a distance up 1o a logarithmic term.

The strict axioms for a distance d are

d(x,x) =0 (identity)
d(x,y) =d(y,x) (symmetry)
d(x,z) <d(x,y)+d(y,z) (triangle inequality)

Theorem. The up to a log term distance axioms which are satisfied by ID and ID’
are as follows:

d(x,x) = 0(1) (1)
d(x,y) =d(y,x) (2)
d(x,z) <d(x,y) +d(y,z) + O(log(d(x,y) +d(y,2)) (3)

Proof. We only treat the case of ID. Let f : {0,1}* x {0,1}* — {0, 1}* be such
that f(p,x) = x for all p,x. The invariance theorem insures that K(x|x) <
K r(x|x) + O(1). Now, taking p to be the empty word, we see that K r(x|x) = 0.
Thus, ID(x,x) = O(1).

Equality /D(x, y) = ID(y, x) is obvious.

Let now p, p’, q,q’ be shortest programs such that U(p, y) = x, U(p’, x) = y,
U(qg,2) = y,U(q’,y) = z. Thus, K(x]y) = |p|, K(y|x) = |p], K(¥Iz) = |ql,
K(z]y) = |q’|. Consider the injective computable function () : {0, 1}* x {0, 1}* —
{0, 1}* (cf. Proposition 1.6 in Part I) which is such that [{r,s)| = |r| + |s| +
O(log|r]). Let ¢ : {0,1}* x {0,1}* — {0,1}* be such that ¢({r,s),x) =
U(s,U(r, x)). Then

o({q.p).2) =U(p.U(q.2)) =U(p,y) =x
e((p'.q").x) = U@ U(p'.x)) =U(q'.y) ==z

so that, applying the invariance theorem, we get

K(x[z) = Ky(x]z) + O(1) = [{¢. p)| + O(1)
= lg| + |pl 4+ O(og(lg])) = K(y|z) + K(x|y) + O(log(K(y2)))
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and, similarly, K(z|x) < K(y|x) + K(z|y) + O(log(K(z|y))). Thus,

max(K (x[z), K(z|x)) < max(K(y|z) + K(x[y) + O(og(K(y[2))).
K(y[x) + K(zly) + O(log(K(z]y))))
< max(K(x|y), K(y|x)) + max(K(y|z), K(z[y))
+ O (log(max(K(y[z). K(z]y))))
Which means /D(x,z) < ID(x,y) + ID(y,2) + O(log(ID(y,z))), a slightly
stronger result than (3). O

It turns out that such approximations of the axioms are enough for the development
of the theory.

To avoid scale distortion, as said in Sect. 4.1.4, distance ID is normalized to NID
(normalized information distance) as follows, Li et al. (2003):

ID(x,y)

NID(x,y) = max(K(x), K(y))

The remaining problem is that this distance is not computable since K is not.
Here comes Vitdnyi’s daring idea: Consider NID as an ideal distance which is
to be approximated by replacing the Kolmogorov function K by computable
approximations obtained via compression algorithms.

4.2.2 The Normalized Compression Distance (NCD)

The approximation of K (x) by I'(x) where I is a compressor,® does not suffice. We
also have to approximate the conditional Kolmogorov complexity K(x|y). Vitanyi
chooses the following approximation:

L(ylx) =T(xy) —T(x)
The authors explain as follows their intuition: To compress the word xy (x
concatenated to y)

* The compressor first compresses x.
* Then it compresses y but skips all information from y which was already in x.

Thus, the output is not a compression of y but a compression of y with all x
information removed, i.e. this output is a conditional compression of y knowing x.

A formal definition of compressors is given in Part I.
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Now, the assumption that in the compression of the word xy the compressor
first compresses x is questionable: how does the compressor recovers x in xy? One
can argue positively in trivial case x and y are random (i.e. incompressible) and in
case x = y. And between these two extreme cases? But it works. The miracle of
modeling? Or something not completely understood?

With this approximation, plus the assumption that I'(xy) = I'(yx) (also ques-
tionable: it depends on the used compressor) we get the following approximation of
NID, called the normalized compression distance, NCD:

max (I'(x[y), I'(y[x))
max (I'(x), T'(y))
max (I'(yx) —T'(y). I'(xy) —T'(x))
max (I'(x), T'(y))
I'(xy) —min (I'(x), T'(y))
max (I'(x), I'(y))

Remark that clustering according to NCD and, more generally, classification via
compression, is a black box’ as noticed by Delahaye (2006): words are grouped
together according to features that are not explicitly known to us, except if we had
already a previous idea. Moreover, there is no reasonable hope that the analysis
of the computation done by the compressor gives some light on the obtained
clusters. For example, what makes a text by Tolstoi so characteristic? What
differentiates the styles of Tolstoi and Dostoievski? But it works, Russian texts
are grouped by authors by a compressor which ignores everything about Russian
literature. ... When dealing with some classification obtained by compression,
one should have some idea about this classification: this is semantics whereas
the compressor is purely syntactical and does not “understand” anything”. Thus
one cannot hope some help in understanding (interpretation) of the obtained
classification (cf. Sect.4.4). This is very much as with machines which, given
some formal deduction system, are able to prove quite complex statements. But
these theorems are proved with no explicit semantical idea, how are we to
interpret them? No hope that the machine gives any hint, at least in the present
context.

NCD(x,y) =

"The notion of black box is a scientific concept introduced by Norbert Wiener (1948). This
concept is one of the fundamental principles of Cybernetics. It is issued from the multidisciplinary
exchanges during the Macy conferences which were held in New-York, 1942-1953. Indeed, the
emergence of cybernetics and information theory owes much to these conferences.
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4.3 The Google Classification

Though stricto sensu, it does not use Kolmogorov complexity, we now present
another recent approach (Cilibrasi and Vitanyi 2007) to classification which leads
to a very performing tool.

4.3.1 The Normalized Google Distance (NGD)

This quite original method is based on the huge data mass, constituted by the
Web and which is accessible with search engines as Google. They allow for basic
queries using a simple keyword or conjunction of keywords. Observe that the Web
(the World Wide Web) is not a formal database: it is merely a crude data bank, in fact
a (gigantic) informal information system since data on the Web are not structured as
data in relational database. It has a rudimentary form of structuralization based on
graphs and graphical user interfaces. Nevertheless, it is endowed with an object-
oriented programming language, namely, Java. What is remarkable is that there
exists a norm for this programming language and, moreover, this language is Turing-
complete (cf. Sect. 4.4.2). This can explain the success (and fashion) of Java and of
the object approach which is also largely due to the success of the Web.

Citing Evangelista and Kjos-Hanssen (2006), the idea of the method is as follows:
When the Google search engine is used to search for the word x, Google displays
the number of hits that word x has. The ratio of this number to the total number of
Web pages indexed by Google represents the probability that word x appears on a
Web page [...] If word y has a higher conditional probability to appear on a Web
page, given that word x also appears on that Web page, than it does by itself, then
it can be concluded that words x and y are related. Let us cite an example Cilibrasi
and Vitdnyi (2005), which we complete with updated figures.® The searches for
the index term “horse”, “rider” and “molecule” respectively return 156, 62.2 and
45.6 million hits. Searches for pairs of words “horse rider” and “horse molecule”
respectively return 2.66 and 1.52 million hits. These figures stress a stronger relation
between the words “horse” and “rider” than between “horse” and “molecule”.

Another example with famous paintings: “Le déjeuner sur I’Herbe”, “Le Moulin
de la Galette” and “La Joconde”. Let refer them by a, b, c. Google searches for a, b,
c respectively give 446,000, 278,000 and 1,310,000 hits. As for the searches for the
conjunctions a+b, a+c and b +c, they respectively give 13,700, 888 and 603 hits.
Clearly, Jean Renoir’s paintings are more often cited together than each one is with
Leonardo da Vinci’s paintings.

In this way, the method regroups paintings by artists, using what is said about
these paintings on the Web. But this does not associate the painters to groups of

8Point 4, Sect. 4.3.2 relativizes the obtained results.
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paintings (we have to add them “by hand”). Formally, one can define the normalized
Google distance as follows (Cilibrasi and Vitanyi 2005, 2007):

max(log A(x),log A(y)) —log A(x, y)
log Y — min(log A(x),log A(y))

NGD(x,y) =

where A(zj,...z,) is the number of hits for the conjunctive query z; A ... A z,
(which is zj ...z, with Google; If n = 1, A(z) is the total number of hits for the
query z). Y is the total number of Web pages that Google indexes.

4.3.2 Discussing the Method

Let us cite some points relative to the use of such a classification method (the list is
not exhaustive):

1. The number of objects in a future classification and that of canonical represen-
tatives of the different corpora is not chosen in advance nor even boundable in
advance and it is constantly moving. This dynamical and uncontrolled feature of
a definition of a family is a totally new experience, at least for a formal approach
of classification.

2. Domains a priori completely rebel to classification such as the pictorial domain
(a priori no normalization of paintings being possible or if it is this is not obvious
in the present context) can now be easily considered. This is also the case (and
for the same reasons) for sculpture, architecture, photography, art-house cinema,
etc. This is so because we are no more dealing with the works themselves but
with a discourse about them (which is the one on the Web). This speech depends
on a “real” language: a natural language or a formal language. Notice that the
notion of “pictorial language” remains a metaphor as long as we consider that
infra verbal communication is not a language in the usual sense. The discourse
which is considered by Google is the one of the keywords and relations between
them, these keywords coming from queries proposed for the NGD and appearing
in the texts of the users of the Web. Notice that here are some works which
can be used for an algorithmic approach (possibly a normalization) of pictural
pieces, art-house films, etc. For instance, the French psychoanalyst Murielle
Gagnebin elaborated a theory of esthetics and creation, based on psychoanalysis
and philosophy. Her meta psychological model is quite efficient to point out the
fundamental psychical mechanisms involved in art pieces. And this is done from
the art pieces themselves, excluding any discursive consideration on these art
pieces or on the artists. Such a model could much probably be implemented as
an expert system.

3. However, there is a big limitation to the method, namely that one which is
called: the closed world assumption. That can be interpreted as follow: the world
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according to Google,” information according to Google, etc. If Google finds
something, how can one check its pertinence. Else, what does it mean? How
can we define (in a general manner) a notion of pertinence for the informations
found by Google? Sole certainty, that of uncertainty! Moreover, we notice that
when failing to get hits with several keywords, we give up the original query
and modify (we change its semantics) it up to the point Google gives some
“pertinent” answers. That sort of failure is similar to the use of negation in
the Prolog programming language (called negation as failure), which is much
weaker than classical negation and which is connected to the closed world
assumption for databases.

When failing to get hits, it is reasonable to give up the query and accordingly
consider the related conjunction as meaningless. However, one should keep in
mind that this is relative to the closed, and relatively small, world of data on the
Web, the sole world accessible to Google. Also one has not to underestimate the
changing aspect of the informations available on the Web. When succeeding with
a query, the risk is to stop on this succeeding query and

* Forget that previous queries have been tried and have failed.

* Omit going on with some other queries which could possibly lead to more
pertinent answers.

* Given a query, the answers obtained from Google are those found at a
given moment in a kind of snapshot of the Web. But such an instantaneous
snapshot betrays what is the essence of the Web: to be a continuously moving
information system. All the updates (insertions, deletions, corrections, etc.)
are done in a massively parallel context since Google uses about 700,000
computers as servers! Thus, Google answers to a query are not at all final
answers nor do they constitute an absolute answer. And this is in contrast
with the perfect determinism we are used when computer programs are run
(in this way, Prolog is considerably more “deterministic” than Google) or with
databases (when they are well written. ..) Also, the diverse answers given by
Google may contradict one another, depending on the sites Google retained.
In particular, one is tempted to stop when a site is found that gives an answer
which seems convenient (indeed, this is what we do in most cases).

4. So we see some difficulties emerging with the theoretical approach to how
Google deals with information from the Web (and the same for any browser). For
such a reflection, we have chosen an idealistic perspective where Google searches
according to scientific criteria or at least with some transparency (in particular, on
how Web pages are indexed, or even how many are really indexed). However let
us mention that there are some controversies about the indexing and consequently
on exactness of the results found by Google, in particular, about the number of
occurrences of a given word of all existing Web pages (even if not dealing with
the content of these pages). Indeed, some queries lead to very surprising results:

°Trving (1978).
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“Googlean logic” is quite strange (when compared with Boolean logic). This is
shown in a very striking (and completely scientific) manner by Jean Véronis in
his blog.'”

A highly important task remains to be done in order to formalize the notion
of information on the Web and the relations ruling the data it contains, as it
has been done by Codd with the relational model for databases in the 1970s.
Previous to Codd’s work, organizing and structuralization data and information
in a computer and their accessibility via the notion of query was underlaid by no
solid mathematical foundation and was resting on technical tricks. This is still the
case for the data on the Web. This remarkable innovative approach via Google
search is still in its infancy.

In the next sections, we consider some formalized notions together with not
yet formalized ideas — such as those pointed out in Sect. 4.1.3 — Ongoing work in
progress and some papers are in preparation (Ferbus-Zanda In preparation-c, In
preparation-d).

4.4 Classification, Bottom-Up Versus Top-Down
Approaches and Duality

4.4.1 Bottom-Up Versus Top-Down Modes

These approaches to classification via compression and Google search (relative
to information appearing on the Web) are incredibly original and present a huge
interest. With the phenomenal expansion of computer science, nets and the Web,
information has a kind of new status. So that these approaches (which are indeed
based on what they are able to make explicit) help us to grasp this entirely new status
of information as it is now with such a world of machines. Whereas classification via
the relational model for databases has a neat formalization, we have stressed above
how difficult it is to formally define the classification obtained by compression or
via Google. Of course, one could base such a formalization on trees and graphs. But
with such structures, the way information is recovered is rather poorly formalized.
This is in fact what happens with the organization of files in an operating system
since none of them uses any database (let it be Unix, Linux, MacOs, Windows and
their variants).

It seems to us that one should reconsider these different approaches to the
notion of classification in terms of two fundamental modes to define mathematical
and computer science objects which are also found in the execution of computer
programs. These two main approaches to define mathematical and computer science
objects are:

10Vgronis (2005).
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e [terative definitions (based on set theoretical union)
* Inductive (or recursive) definitions (based on set theoretical intersection).

For instance, one can define propositional formulas, terms and first-order logic
formulas following any one of these two ways.

Recall that Stephen Kleene’s presentation!! of partial recursive functions is based
on three (meta) operations: composition, primitive recursion and minimization.

e Iterative definitions are connected to minimization (and to the notion of succes-
sor). We can describe these type of definitions as “Botfom-Up” characterizations.

* Inductive definitions are connected to primitive recursion (and to the notion
of predecessor). We can describe these type of definitions as “Top-Down”
characterizations.

Notice that composition is related to both characterizations, the bottom-up and top-
down ones. We gave, in Part I, formalizations of randomness for infinite objects
which follow these two bottom-up and top-down approaches (cf. Part I, Sects. 5.1
and 5.2).

These two modes are also found in the execution of computer programs:

» Execution in the iterative mode is called Bottom-Up.
» Execution in the recursive mode is called Top-Down.

This last mode requires the use of a stack which goes on growing and decreasing
and into which results of intermediate computations are pushed until getting to the
“basic cases”, i.e. the initial steps of the inductive definition of the program which is
executed. To execute an iterative program, all data necessary for its execution are at
disposal without need of any stack. From the computer scientist point of view, these
two execution modes are really far apart. Notice that the execution mode (iterative
or recursive) follows the definition mode (iterative or recursive) of the program to
be executed. Nevertheless, in some cases, recursive programs may be executed in
an iterative way avoiding any stack.'?

In the same way, one observes that there are two modes — let us also call
them Bottom-Up and Top-Down — that are used in the approach to classification
of information and/or objects (of the real world) which are formally represented as

Kleene formally and completely characterizes the notion of recursive function (also called
computable function), by adding the minimization schema (1936) to the composition and recursion
schemas — these two last schemas characterize the primitive recursive functions which constitute
a proper subclass of the class of computable functions: the Ackermann function (1928) is
computable but not primitive recursive. From a programming point of view, the minimization
schema corresponds to the while loop (while F(x) do P where F(x) is a Boolean valued
property and P is a program) (cf. the book by Shoenfield (2001)).

2This is the case for tail-recursion definitions. In some programming languages such as LISP
such tail-recursion programs are generally executed (when the programs executor is well written)
in an iterative way. Tail-recursion programs represent a limit case between iterative programs and
recursive programs.
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words or more generally as texts'® or even as sets of words, in some alphabet (which
can, as usual, be supposed to be binary).

* In the Bottom-Up mode, one enters into information details. Otherwise said, one
accesses the content of texts, i.e. the words representing the diverse informations
and/or objects that one wants to classify (and the meaning of these words
and/or texts). Texts, families of words, etc. are grasped from the inside and their
meaning is essential.

* In the Top-Down mode, one does not access the content of texts in the above way.
Texts are, in fact, handled from the outside, that is “from the top and down”.14
To say things otherwise, one uses a kind of “oracle” to grasp texts and families
of words, i.e. means that are exterior to the understanding of text and the content
of words. Let us illustrate this with an example: the use of keywords to structure
families of texts. One then uses both bottom-up and top-down modes to classify
texts in the following way:

1. It is usual to follow a bottom-up approach in the choice of keywords. Particular
words in texts are chosen in consideration of the content of texts and their
meaning and in order to facilitate future searches. More precisely, some words
will be considered as keywords and will be so declared. This is typically the
case with scientific papers where keywords are chosen by the author, the journal
editor, the librarian, etc. in view of future classification. Of course, this supposes
that the texts have already been read (and understood). Observe that translating
a text into a natural language to another one (as, for example, this paper from
French to English) requires such a reading and (subtle) understanding of the
text.!

One can also choose keywords for a text using totally different criteria. For
instance, rather than reading the text itself, one can read and understand an
outline or the table of contents and this is also a bottom-up mode. One can also
look at an index (if it exists some): a limit case which follows a top-down mode.
Indeed, no understanding of the words is required to select keywords (though,
of course, it does not harm to understand them), one only consider which words
are mentioned in the index and their relative importance (which a good index
makes clear). Without index, one can also count occurrences of words in a text:

3Depending on how much abstraction is wanted (or how much refinement is wanted), a text will
be represented by a binary word (the blank spaces separating words being also encoded as special
characters) or by a sequence of binary strings (each word in the text being represented by a string in
the sequence). In this paper, we mostly consider encodings of texts with binary words (in particular,
for the examples) and not sequences of binary words, and we consider sets of such texts.

141t is one way of seeing things! The one reflected by the Anglo-Saxon terminology “top-down”.
What is essential is that texts are apprehended from the outside, in opposition to apprehension from
the inside.

SWith a purely syntactic automatic translator, such as the one in Google, one can get results like
the following one: “Alonzo Church” translated as “Eglise d’Alonzo” (i.e. church in Alonzo)!



4 Kolmogorov Complexity. Part II: Classification, Information Processing and Duality 109

this is precisely what Google does in its searches. In practice, both bottom-up
and top-down modes are often used together (mix mode).

Whatever method is chosen, the choice of keywords generally assumes
(though it is not always the case) a preliminary knowledge or some general idea
of the wanted classification for which the keywords are chosen. This knowledge
is a very abstract form of semantics,'® which can evolve through time as new
texts are being read. Generally, the person who writes the text is not the one who
has this knowledge, this is rather the person who “manages” the classification.

2. Whatever approach was used, once the keywords have been chosen and stored in
some way, they give a kind of classification for this text considered among the
other ones which have been treated in a similar way. Using given keywords, one
can look for all texts which have been assigned such keywords. Clearly, a notion
of query emerges from the so used keywords. In an extended concept of keyword
— and this is exactly how Google works — one can look for all texts containing
these keywords (i.e. with these keywords in their contents), with no need o define
any keyword for texts.

Observe that searching using keywords — and this is a fundamental point —
is an apprehension of texts, i.e. an approach to their classification which is top-
down. A set of keywords (a “conjunction” of keywords) plays the role of an
oracle to grasp texts from the outside, without reading nor understanding them.
Using such a set of keywords, one can select some texts among a family of texts
which can be really big, even gigantic in the case of the Web. The selected texts
can then possibly be read and be understood (at least better understood). One can
also group them with other texts having some common keywords and thus get a
classification of texts.

3. With the Google approach to classification, things are similar: the choice of
keywords for queries to Google (which are in fact conjunctions of keywords)
can be done in two ways.

* In a bottom-up mode this choice comes from the reading and understanding
of the content of the Web.

16Let us mention that a new concept emerged: that of thesaurus which is somehow an abstract
semantics related to classification. A thesaurus is a particular type of documentary language
(yet a new concept) which, for a given domain, lists along a graph words and their different
relations: synonymy, metaphor, hierarchy, analogy, comparison, etc. Thus, a thesaurus is a kind
of normalized and classified vocabulary for a particular domain. Otherwise said, the words a
thesaurus contains, constitute an hierarchical dictionary of keywords for the considered domain.
One can possibly add definitions of words or consider the classification of words (according to the
future usage of the thesaurus) to be sufficient. It is a remarkable tool. First used for disciplines
around documentation and for large databanks, it is now used almost everywhere. To build a
thesaurus, one follows a bottom-up or a top-down mode or mixes both modes, exactly like in
the case of keywords. More details on the notion of thesaurus in the section devoted to databases
(cf. Sect. 4.4.2).
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* In a top-down mode this choice is based on criteria totally exterior to the
content of the Web though it is hard not to be somewhat influenced by previous
readings from the Web. ..

In general, both bottom-up and top-down modes are mixed for the choice of
keywords.

Whatever approach was used, once the keywords have been chosen, one has at
disposal a kind of oracle to grasp the Web. Otherwise said, the Google query
written with these keywords will select texts from the Web — and also hypertexts
or multimedia data: pages from the Web — with a top-down operational mode. Such
selected texts can then be read, classified, etc.

One can also surf the Web along a bottom-up mode, that is give up query and
go from one page to another one via the links hypertext. Indeed, those links are
the main originality of the Web. From a theoretical point of view, they are very
interesting since they convey a form of semantics. Thus, the notion of keywords
(and more generally of words) appears to be a limit concept between syntax and
semantics. In general surfing is done via both approaches : bottom-up with hypertext
links and top-down with queries. As before, the choice of the keywords submitted
to Google in view of a classification is also a form of semantics. Observe that in
a top-down approach for the choice of keywords, one can however choose them
randomly, then use some counting (with statistical tools) to get classifications of
the selected texts. Such random choices are particularly interesting when there is a
huge quantity of texts, which is the case with the Web. However, it is doubtful that
such an approach to classification — if fundamentally random — can give significant
results. Nevertheless, it can be coupled with a more “deterministic” approach.

If we go back to the title of this section: Bottom-Up versus Top-Down modes.
It is reasonable to question: why are there two possible modes in the definition of
mathematical and computer science objects and in the runs of computer programs?
De Facto, these two modes do exist and they are the fundamental modes which have
emerged from the works of the diverse researchers in computability theory in the
twentieth century. We have seen that these two modes could also be considered in the
approach to classification of information and we gave an example with keywords.
We have also seen how the use of Google to search the Web was relevant to these
approaches. This shows that these bottom-up and top-down modes are not particular
to classification: they concern, in fact, any information processing hence any, more
or less abstract theory of information. This also concerns all disciplines which deal
in some way with the notion of representation or definition, or description, etc. This
includes logic, Kolmogorov complexity and computer science, semiotic and also all
sciences of cognition: as we detail in Ferbus-Zanda (In preparation-d), information
processing by the human brain could fundamentally be structured around these two
operational modes. In any case, this is quite an interesting approach to cognition
which is much enlightened by the evolution of mathematical logic and computer
science.
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In this paper, we shall look at these bottom-up and top-down modes in two
types of situations (concerning classification) which generalize what we said about
keywords. Namely,

* The logical formalization of information systems via databases (Sect. 4.4.2).

» The set theoretical approach to the notion of grouping, based on the Zermelo-
Fraenkel (ZF) axiomatic set theory. We shall particularly look at the comprehen-
sion schema in ZF (Sect. 4.5).

These reflections will help to understand the role played by the Kolmogorov
complexity in information classification and more precisely in the notion of
grouping of informations. We will have to reconsider the notions of intensionality,
abstraction semantics and representation in this context (cf. Sect. 4.6). Also notice
that the existence of two such modes for the definitions of mathematical and
computer science objects, functions and programs and for the execution of these
programs, is quite interesting. The fact that we find these two modes for the
various forms of the information processing and different disciplines, indicates
that this observation is a fascinating scientific project. Clearly these two modes,
so complementary, form a duality relation, a kind of correspondence between
two distinct ways of processing which are somewhat distinct and also similar.!’
More precisely, we have seen that the bottom-up approach (on which are based
the iterative definitions), results from the notion of set theoretical union whereas
the top-down approach (on which are based the inductive definitions), results
from the notion of set theoretical intersection. It is therefore quite natural to
revisit these approaches in the framework of Boolean algebras, a theory where
the notion of duality is typical, so we do in Ferbus-Zanda (In preparation-c).
Other fundamental dualities for logic and computer science are also developed in
those papers. Especially, duality syntax versus semantics and also duality functional
versus relational'® which concerns, among others, the relation between algorithms
and (functional) programming on the one hand and discrete information system
and their formalizations'® on the other hand. Recall that the essential part of
discrete information system is the organization (the structuring) of information,

"The abstract notion of isomorphism in mathematics is a form of duality. Some dualities are not
reduced to isomorphisms. Typically, Boolean algebras with the complement operation (in addition
to additive and multiplicative operations) contain an internal duality and are the basis of deep
dualities such as Stone duality which links the Boolean algebras family and some topological
spaces. The complement operation confronts us to many problems and deep results. . .

18Since Gottlob Frege invention, at the end of the nineteenth century, of the mathematical logic and
the formalization of the mathematical language that results from it, mathematicians have de facto
to deal with two distinct categories of mathematical symbols: the function symbols and relational
symbols (or predicate symbols) in complement of symbols representing objects. To each of these
two large classes of symbols respectively correspond algorithms and information systems.

19The information systems in which we highlight a type of programming that we named relational

programming in a research report: Ferbus-Zanda (1986). We present in this paper the link between
functional programming and relational programming.
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whatever is their nature (admitting a discrete representation), with the objective of
an easily extracting particular informations. Clearly, information system are linked
to classification. Thus, we believe it is interesting to present them in this paper.
We shall articulate this presentation around the bottom-up versus top-down duality,
which is in this way illustrated.

4.4.2 Information System and Database: A Formal Approach

First let us point out that: databases (DB) are to information systems what are
computer programs to the intuitive notion of algorithm: a formal, mathematical
presentation and the ability of an also formal processing. Indeed, algorithms and
information systems are generally expressed in a natural language (in a more or less
clear way) and assume implicit content (which can be important) and also unspoken
comment (which may be quite a problem). Recall that algorithms and information
systems have existed since Ancient Times.?” In both cases, this formal expression is
essentially done in the framework of mathematical logic. Observe that programming
and algorithms are particularly related to lambda calculus whereas databases and
consequently information system are particularly related to set theory.

As concerns programs and algorithms, let us mention the remarkable work
of Yuri Gurevich (Dershowitz and Gurevich 2008). He introduced a notion of
Abstract State Machines (ASM), which is based on model theory (in logic) and
is a mathematical foundation of the notion of algorithm which is as much as
possible refined. Not only does he captures the notion of algorithm, but he also
formalizes their operational mode. More precisely, Gurevich deals with operational
semantics, i.e. the way algorithms and programs are executed, (the outcome is the
programming of an interpreter and/or compiler and of an executor of programs).
This highly constructive operational point of view completes what is called denota-
tional semantics and which deals with what algorithms and programs compute.*!
This is, in fact, the way Gurevich states his thesis: ASMs capture the step by
step of the execution of sequential algorithms. For Gurevich, any given algorithm
(in particular, any computer program) “is” a particular ASM which is going to mimic
his functioning. This allows to consider an algorithm as a formal object (namely,
an ASM). Gurevich’s thesis extends Church-Turing’s thesis (at least for sequential
algorithms): indeed, Gurevich thesis proves it. More precisely, Church-Turing thesis
is about denotational semantics (the diverse computation models which have been

20Some exhaustive descriptions of algorithms about trading and taxes date from Babylonia
(2000 BC to 200 AC). Information systems really emerged with mecanography (end of nineteenth
century) and the development of computer science. However, there are far earlier examples of what
we could now call information systems since they show a neat organization and presentation of data
on a particular subject: for instance, the Roman census.

210bserve that these semantics correspond respectively to Arend Heyting’s semantics and Alfred
Tarski’s semantics.



4 Kolmogorov Complexity. Part II: Classification, Information Processing and Duality 113

imagined are pairwise equivalent: we say they are Turing-complete). Gurevich
extends this thesis to operational semantics: ASM are a computation model which is
algorithmically complete (cf. also Sect. 4.7 and Ferbus-Zanda and Grigorieff 2010).
What is really remarkable with ASMs is how their formalization is simple and
natural, which, in general, is not the case with the other approaches to operational
semantics of computer programs. We come back to ASMs (and their relation with
Kolmogorov complexity and classification) in the conclusion.

As concerns, information system (which is an intuitive notion) and their mod-
eling via database (which is a formal approach), we shall see that, historically and
conceptually, things were not as simple as they were with programming and the
formulation of theoretical models for computability — which, indeed, occurred at a
time when there was no computers. In the case of information systems, it was all the
opposite. Recall that the first formalization of the representation and treatment of
data, (that is what is now called an information system) is Codd’s relational model
for databases (Codd 1970). What was quite original with Codd’s approach is the
idea that there were mathematics which should “manage” information in computers.
Though this may seem quite obvious now, up to the time Codd created his theoretical
model (a time where programs were written on punched cards), that was not the
case: computer files were stored in a great mess.?> One of the most fundamental and
unprecedented feature of Codd’s relational model is the formalization of the notion
of query. He founded this notion on a new calculus: relational algebra which is a
kind of combinatory logic with operators acting on tables** joined together: classical
set theoretic operations (union, intersection, cartesian product and projections) and
also new operations: selection and join. It turns out that the join operator is really a
fundamental one in logic. Codd also develops a normalization theory to handle the
very difficult problem of removing redundancies in information systems.

Surprising as it is, though Codd worked in an IBM research center, he had to
fight very hard?* to impose his views. The first implementation of his model was
not done by IBM but by Oracle, at that time a very small company,? which saw its
exceptional interest and implemented it in 1980. It is only a few years later that IBM

22Multics was the first important operating system to store files as nodes in a tree (in fact a graph).
Created in 1965, it has been progressively replaced since 1980 by Unix. Derived from Multics, it
includes a new feature: multiple users management. Now, all operating systems are based on Unix.
Multics was a turning point in the problem of data storage: until now, one speaks of hierarchical
model and net model. But, in fact, these “models” have been recognized as models only after Codd
introduced the relational model! Finally, observe that the graph structure of the Web also comes
from the organization of files with Multics.

23This combinatory logic has much to do with the programming language Cobol created in 1959.
%4The dedication in his last book (Codd 1990) is as follows: To fellow pilots and aircrew in
the Royal Air Force during War II and the dons at Oxford. These people were the source of
my determination to fight for what I believe was right during the 10 or more years in which
government, industry, and commerce were strongly opposed to the relational approach to database
management.

250Oracle is now a company worthing billions dollars.
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also implemented Codd’s model. Now, all existing DBMS (database management
systems) are based on Codd’s relational model. Let us mention that databases are
still largely underrated though it could be so profitable in many disciplines. But
this is clearly not to last very long due to the dissemination of digital information
(with an incredible speed, no one could have expected a few years ago).

There is another theoretical model for databases: the Entity/Relationship model
due to Peter Pin-Shan S. Chen (1976). This is a formal approach to databases
which essentially relies on Codd’s relational model but is more abstract. In this
model, a database is represented as a graphic which looks like flow charts used in
the 1960s—1970s to modelize computer programs. It is the source of the language
UML,*® which is a system of graphic notations for modeling. In our opinion,
Chen’s theoretical model is very deep and it should still be the source of many
important works. Databases rested on the Entity/Relationship model deserve to
be called conceptual databases. They constitute an abstract logical extension
of relational databases which should have a fundamental role in the future as
concerns information processing, classification and any algorithmic information
theory. Object-Oriented Programming Concepts are also inescapable in information
processing and in the approaches to classification. Let us mention the inheritance
concept in the difficult problem of concurrent access to data, i.e. when the same data
is used by several actors: attributes, processes, systems, users. Another important
concept from Object-Oriented Programming is that of event-driven programming: a
particular value in the execution of a program or particular data in a database trigger
the execution of some (other) program. Lastly, let us mention another theoretical
model for databases: the deductive model (also called deductive database). This
is also a fundamental model. It mixes Codd’s relational model and the predicate
calculus, bringing intensionality (i.e. abstraction) to Codd’s model through the in
extenso adjunction of first-order variables. The query language for deductive
databases is Datalog. It is a pity that the existing implementations of Datalog, which
work quite well, are only used in some research labs. Currently, there is no “real”
deductive DBMS (Database Management System) with the same facilities offered
by relational DBMSs. This is quite surprising as information system, with the Web,
have taken such a huge impact.

One can also question why diverse theoretical models, as fundamental as they
are, can coexist with no serious attempt to mix them. Maybe, this is because database
is a very recent discipline, quite probably, this will happen in the near future. We
are working towards this goal with the notion of conceptual databases,”’ using logic
as a foundational theoretical basis. Consider the general problem of classification
of information. Database, with the diverse theoretical models described above,
constitute a formal approach to that question. Especially with the notion of query

UML (Unified Modelling Language) is a formal language, which is used as a method for
modeling in many topics, in particular, in computer science with databases and Object-Oriented
Conception (OOC) — in fact, this is the source of UML.

27 Ferbus-Zanda (In preparation-a).
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which becomes a mathematical notion (which, moreover, is implemented) far more
sophisticated than keywords. In fact, queries generalize keywords.?® Whichever
theoretical model of database is used, a fundamental primitive notion is that
of attribute (which can be seen as formal keywords) and different kinds of set
groupings of attributes so as to make up the relational schema of a database. This
constitutes the wanted formal classification of the initially unorganized data. The
relational schema of a database is the structural part of a database: its morphology.
So, in the relational model, a database is structured in tables. The names of the
columns of a table are some attributes for the database. A line in a table describes
an entity (from real world): this entity is reduced to the values (for that line) of each
of the attributes of the table (i.e. the names of columns). There are relations between
the tables of a database, kind of pointers, which follow some “diagram” relying on
the chosen relational schema of the database.

The content of the tables constitutes the semantics (otherwise said, the current
content) of the database at some particular time. Each table is structured in columns
and can also be seen as a set of lines (the so-called “tuples”). The number of columns
is fixed but the set of lines varies along time. Each line is a set of values: one value
per attribute (recall columns and attributes are the same thing).?’ This notion of
line corresponds exactly to that of card in physical files, (for instance, those used
to manage libraries in pre-computer days) or to the content of a punched card
(mechanography).

For instance, suppose we have a table about authors of books in a
library which has the following attributes: AuthorSurname, AuthorName,
AuthorCountry, AuthorTimes. The AuthorSurname column will contain
names (such as Duras, Sarraute, Yourcenar, Nothomb, Japp, etc.)

A typical line could be { AuthorSurname.Duras , AuthorName. Mar-
guerite , AuthorCountry.France , AuthorTimes.XX th century }
or also the 4-tuple (Duras , Marguerite, France, XX th century) since
the ordering of values in this tuple makes it possible not to “explicit” the associated
attributes.

Queries allow to access these contents. Note that the contents of the tables
evolves through time due to updates of information: adjunction, removal, modifica-
tion. A database looks like the set of sheets of a spreadsheet (Excel) augmented with
links between them that are managed through queries (which spreadsheets cannot
do, or in a very rudimentary and complex way).

280ne should rather say that keywords — used with web browsers — constitute very elementary
database queries (of course, database queries are much older than the Web which emerged only in
the 1990s).

PLines are usually presented as tuples but, conceptually, this is not correct: in Codd’s relational
model there is no order between the lines nor between the columns. Codd insisted on that point. In
fact, conceptually and in practice, this is quite important: queries should be expressed as conditions
(i.e. formulas) in the relational algebra, using names of attributes and of tables. For example, it
means that queries cannot ask for the first or twentieth line (or column).
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Thesauruses (cf. Note 16) are, in fact, databases. The relational schema of such
a database is the structure of the considered thesaurus, otherwise said, the layout,
the architecture of the thesaurus. The diagram of this database (which is a graphic
representation of its relational schema) formally expresses this architecture. It is
clear that there can be several tables in this database. For instance, in a thesaurus
dedicated to the epistemology of mathematics, there could be specific tables for
mathematical logic, probabilities, algebra, topology, geometry, functional analysis,
differential calculus, integration, etc. and other tables dedicated to mathematicians
(mentioning the concepts they introduced), to philosophers, to historians of mathe-
matics, etc. Of course, the choice of such tables is completely subjective. One could
structure the database very differently, considering synonymy, quasi-synonymy,
connectivity, analogy, comparison, duality, contrast, etc. among the diverse words of
the thesaurus. The internal organization of a given table (the choice of the columns
i.e. of attributes) depends on what one intends to do with the thesaurus and on the
choices already made for the diverse tables. The contents of the tables are then
constituted by all the words put in the thesaurus.

Without definitions, the thesaurus is a kind of hierarchical dictionary of syn-
onyms, associations, etc., i.e., a structure on keywords. To augment it with defini-
tions, we insert them as contents of the tables in specific columns. In any case, let
us stress that the relational schema of the associated databases essentially relies on
the “association” part of the thesaurus (indeed, its graph) and not on its “definition”
part. Also, observe that it is the power of computers and databases which makes
it possible to build and use such complete thesauruses. It would unrealistic to try
a readable paper version of a dictionary which would be at the same time a usual
dictionary and a synonym dictionary and would also give definitions,* but any good
computer graphical user interface makes it possible. Note that what is not explicitly
represented as a table can be recovered via some query. For instance, if we decided a
structure by discipline, one can obtain all synonyms of a given word, whatever be the
table of the thesaurus database in which they have been inserted (according to their
associated discipline). This shows that any particular choice of a structure for the
database leads to no disadvantage as concerns the usage of the database: whatever
grouping of information is wanted, it can be obtained via some appropriate query.
This is “hidden” to most users which have no idea of the internal organization of the
database. In general, one chooses a structure which makes easier the elaboration of
the schema of the database, or an optimized structure to get efficient executions of

30 In fact, any such “complete” dictionary is necessarily circular: a word a is defined using the
word b which is itself defined with other words themselves defined in the dictionary. It requires
some knowledge external to the dictionary to really grasp the “meaning” of words. Note that
this incompleteness is more or less “hidden”. On the other hand, in a synonym dictionary, the
structure essentially relies on circular definitions. This is less apparent with paper dictionaries: for
a given word, there will be only references to its synonyms. However, with digital dictionaries,
this circularity is really striking: links “carry” the reader to the diverse synonyms and can be
implemented with pointers.
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queries (recall there are database tables containing millions of lines). Of course, the
synonymy in question is relative to the closed world of the database formalizing the
thesaurus.

The result of a query in relational databases is a view which is structured as a
table. The only difference between a table and a view is that views are stored in
the RAM (random access memory) of the computer (which is a volatile memory: it
disappears when the computer is turned off) whereas “real” tables of the database
represent persistent data which are stored on non-volatile memory: hard disks,
magnetic tapes, etc. Of course, one can nevertheless save a view.

Observe a very interesting phenomenon with this example: the emergence of the
notion of database. Indeed, following the same approach, one can build a database
dedicated to epistemology of physics, of chemistry, of biology, etc. and group these
databases in a unique database in order to get a thesaurus dedicated to epistemology.
One can also group epistemology with other disciplines. Clearly, one has to fix the
wanted level of abstraction/refinement to build the thesaurus (or, more generally,
a database) and what is the limit to the considered subject. This is one of the most
difficult problems in modeling. Any scientific activity goes along a particular answer
to that problem. This example leads to the following observation: in this paper, the
notion of “object” has not been much considered. It is clear that the hierarchical
character on a thesaurus relies on inheritance (a concept from OOC, cf. above). It
seems therefore necessary to add to Codd’s relational model some concepts of the
object oriented approach,®' which is what we try to do with conceptual databases.>?

If we consider the general case, we observe that the notion of query in databases
is essentially dependent on the structure of the database associated to the relational
schema. Database queries are similar to Google queries with one big difference:
queries in relational database are written in a programming language which is far
more sophisticated than conjunctions of keywords allowed in Google queries. In all
implementations*? of Codd’s relational model for databases, queries are written in
the programming language SQL (Structured Query Language).

As with keywords, the choice of attributes and that of groups of attributes in a
database is completely subjective: this is sernantics and this semantics is formalized
by the relational schema. Once such choices are done and the relational schema is
fixed, the form of possible queries is somewhat constrained but, nevertheless, it is
possible to ask whatever is wanted. This was argued above with the example of the

31Codd was strongly opposed to any addition from the object approach to the relational model.
Indeed, the so-called “First Normal Form” (due to Codd) formally forbids the possibility of an
attribute structured as a list, a tree or a graph (which is exactly what OOC would do). When he
elaborated his model, this was a reasonable choice: the object approach is quite destructuralization
while Codd’s approach was a structuralization one. Let us mention that Codd also opposed Chen’s
Entity/Relationship model (nobody’s perfect)!

32Ibid. Note 27.
33 An implementation of Codd’s relational model for databases is a DBMS (DataBase Management

System). Any DBMS includes an interpreter of the language SQL (such an interpreter is, in fact, an
implementation of Codd’s relational algebra, the fundamental calculus in this theoretical model).
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thesaurus. As for the Web, such a relational schema is absolutely impossible because
the Web is so fundamentally dynamic.

Observe that, at any step, we have with databases a precise idea of the structure
we are working on (it is a mathematical object) and extracting information out of
such a structure is done in a rigorous way, using the formal notion of query.

Let us then notice that the result of a query is exhaustive relative to the database
we consider: we get exactly all objects in the base that satisfy the query, no more no
less. Also notice that the information content of a (correctly formalized) database
is precisely known at any time and the modifications brought to the base (adding,
removing or changing data) is precisely controlled. Of course, this is not the case
when extracting information from the Web with a search engine and this is not
the case either for large data banks (in biology, medicine, cartography, etc.) which
have no solid mathematical foundation as have relational databases neither in the
structuralization of data nor for the queries. Databanks are indeed databases which
are somewhat not well formalized (or somewhat ill). In other words databanks can
be really databases whereas this is intrinsically impossible for the Web.

4.4.3 Database and Bottom-Up Versus Top-Down Duality

Let us now look at the elaboration and use of databases in the perspective of
bottom-up and top-down approaches. It turns out that this is much the same as with
keywords and Google queries.

1. The choice of the relational schema is done using a bottom-up or top-down
operational mode. In general, both modes are used jointly (in fact, alternatively).
In the bottom-up mode, one uses the expected future content of the database to
build its relational schema (which will structure this content). In the top-down
mode one builds the relational schema on considerations which are external to
the future content. At first glance, using the bottom-up operational mode may
seem paradoxical: to use the content in order to structure it. But this is not the
case. In practice, to build a relational schema for a given database, one starts
from some sketchy idea of the schema, represents it as some graphic (top-down
approach), then implements it (this is programming work). A kind of prototype
is thus obtained. This being done, one fills the tables of the database with a few
lines (a “set of data”) to test the pertinence of the relational schema, which may
lead to adjust it (bottom-up approach). And this may be repeated. .. Recall that
the content of a database is precisely what gives the semantics of the database
whereas the construction of the relational schema is morphology (syntax). With
such a mix approach, one can build the morphological (syntactic) part of the
database via some access to a part of the semantics of the database. And vice-
versa. Thus, this approach, so seemingly paradoxical, is not so. In fact, there are
two true difficulties. First, to delimit the scope of the information system which is
to be modeled, and this is done using the given specifications. Second, to choose
the right level of abstraction of each component (attributes, tables, etc.).
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2. The choice and programming of queries comes next. And the approach is bottom-
up, top-down and mix: this is similar to what we said about the elaboration of the
relational schema. However, for quite complex databases, one may have to build
the schema and the queries more or less simultaneously: we saw this with the
thesaurus.

3. Once the relational schema of a database seems adequate and the main queries
have been written down and programmed (some of them testing the coherence
of the base), one can really fill the database and complete its content. Queries
can be added as wanted. But any modification to the relational schema, even a
seemingly minor one, can cause a great damage when the size of the database is
somewhat huge. For instance, breaking an attribute Art i ste into two attributes
Composer and Interpreter in a music database.

4. The content of the database can then be grasped through a completely top-down
mode using queries. This is why relational databases are such a breaktrough.
Huge quantities of data can be accessed from the outside in a completely rigorous
mathematical way. The notion of query can then be seen as a kind of oracle. Of
course, one can also follow a bottom-up approach: browse the content of the
database to find some wanted information. Before Codd’s relational model, this
was, indeed, the sole possible approach (excepted mechanography) with the old
physical “files” such as index cards in large libraries: alphabetical (syntactic)
sorts caused no problem but sorting such files according to themes (semantic)
was a real headache!

4.4.4 Classification and Bottom-Up Versus Top-Down Duality

Let us summarize. Approaches to classification via keywords or via Google queries
(such as Google classification), databases (whatever theoretical model is used) have
the same intrinsic nature. In the diverse phases of the elaboration, especially with
keywords and queries, one can follow a bottom-up operational mode or a top-down
one (and generally, both modes are used alternatively in a mix mode). Queries
obtained in that way then allow to grasp sets of texts in a top-down mode (that
is with no understanding of the meaning of the texts) and classify them. The
approach to classification using compression is entirely relevant to the top-down
mode. Observe that, for the classification using compression, the framework is then
purely syntactical, there is no use of any keyword or query which would convey
some semantics (for instance, that given by the chosen identifiers). Thus, one gets
information relative to texts without turning to their semantics: simply compress and
compute.

At first glance, this approach may seem somewhat “miraculous”: one is able
to classify information contained in texts without getting into their contents and
with no need to understand them. On the contrary, in the previous approaches, one
is lead to use a bottom-up mode (though this is not absolutely needed) to build
interesting queries (and the relational schema in a database). Let us recall what
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we evoked supra: text compression is a highly theoretical science and a simple,
current-use algorithm such as “gzip” is the result of years of research. Of course,
in classification by compression, texts are not chosen randomly! However, for the
next future, one sees no limit to the usage of the above method to all information
which is on the Web. Considering the general problem of classifying information,
observe that statistics constitute a particular case. Usually, the statistical approach
is top-down, computing correlation factors to group objects and/or informations
and get a structure on them. Indeed, Google and compression algorithm heavily use
statistics. Nevertheless, one can also follow a bottom-up mode with statistics or even
mix these two approaches. This will be seen below where we propose a probabilistic
version of the comprehension schema (cf. Sect. 4.5.2).

4.5 Set Theory Interpretation of Bottom-Up Versus
Top-Down Duality

Let us now look the different approaches to classification in the perspective of the
comprehension schema in Zermelo-Fraenkel set theory ZF. A theory which can be
viewed as one of the first formal mathematical attempts to approach the notion of
classification, sets being the most rudimentary way to group elements. As a matter
of fact, Codd’s relational model for databases relies on (naive) set theory, which is
not so surprising in the search of a formal structuralization mode. Thus, the bottom-
up versus top-down duality that we point in classification (cf. Sect.4.4), can be
illustrated by the way the set theoretical comprehension schema “works”. We also
discuss a probabilistic version of the comprehension schema which among others
illustrates the exact versus approximate duality.

4.5.1 The Set Theoretical Comprehension Schema

This is an approach from “pure” mathematics.
It is a global approach, intrinsically deterministic, going along a fundamental
dichotomy:

True/False,
Provable/Inconsistent.

A quest for absoluteness based on certainty. This is reflected in the classical
comprehension schema

Vx3dy y={zex ; P@x}*

3*More formally: Vx 3y Yz (z € y <> (z € x A P(2))).
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where P is a known property fixed in advance. Thus, the set clustering is done from a
well known property which is defined within this dichotomy. To do such a grouping
and build such a set, we again find ourselves in top-down operational mode: this set
is being constructed from the property P.

More precisely, with a constructivist approach:

*  We start with a set x.

*  We choose a property P relative to elements of the set x. This can be done in both
bottom-up and top-down modes exactly as in the choice of keywords for a query
or as in the elaboration of a query in a relational database (cf. Sect. 4.4.3). Note
that the idea of the grouping, i.e. the choice of this grouping (formalized by the
property P) is completely subjective: this is semantics. Nevertheless, we can also
get such a property P in a syntactic way: through a computation (cf. Sect.4.6.1).

» Having this property P, we then pick the elements of the set x which satisty P.

The comprehension schema® allows us to consider such a set construction (in the
ZF axiomatic set theory). If we do not relativize this construction to some fixed set
x (or, equivalently, if we consider a set containing all sets) then we face Russel’s
paradox.*® Observe that the solution to this paradox really makes sense: in this
approach, one should start from something, and it will be from an existing set to
work with such a property! Indeed, the elaboration of the property P is made in a
mix mode (as with queries in a relational database) then we can start with a certain
idea for the property P (related to what is the set x) then “pick” some elements in
the set x to get a better idea of P, and then pick again some elements in x and adjust
P, and so on.

Once this property has been “set up” (maybe getting it in extenso), one is now
able to group all elements of x which satisfy P. Of course, in the mathematical
literature, no one present such successive approximations to get a property: the
obtained property is given directly! Nevertheless, this is how things are being done
in general. Computer scientists are used to such practice: a modular approach is
used to perfect a database or a program. Of course, so do the mathematicians quite
often. It is important to note that the grouping, that is, the definition of the set y or
its constitution (though some would rather consider an explicit construction) can be
done in a top-down operational mode which is an intensional mode. Intensionality,
(one can also say abstraction) is expressed by that property P which plays the role of
an oracle for the set y, and is the exact opposite of an extensional description (which
gives the element, one by one) which is necessarily done in a bottom-up mode.
Knowing in advance the property P is a very particular case which does not happen

330ne can also constraint in different ways this property P. In particular, to avoid circularities such
as the one met when P contains some universal quantification on sets, hence quantifies on the set
it is supposed to define (this was called impredicativity by Henri Poincaré).

36Russel’s paradox insures that the following extension of the comprehension schema is contradic-
tory:dy y={z; P(2) },ie.dy Vz (z € y «<—> P(z)). Indeed, consider the property P such
that P (u) if and only if u ¢ u, then we get y € y if and only if y ¢ y.
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in most “real” situations. Below, we develop this aspect by proposing a “probalistic”
comprehension schema. Then we show in Sect. 4.6, how this probabilistic schema
can be generalized using Kolmogorov’s complexity. This brings us to the relation
between the algorithmic information theory and classification which are the heart of
this work.

4.5.2 The Probabilistic Comprehension Schema

In the probabilistic approach, much more pragmatic than the logical one, uncertainty
is taken into consideration, it is bounded and treated mathematically.37 This can be
related to a probabilistic version of the comprehension schema where the truth of
P(z) for instances of z is replaced by some limitation of the degree of uncertainty of
the truth of P(z). Formally, together with z, we have to consider a new parameter
in P, namely the event @ of some probability space 2 and we have to fix some
confidence interval I of [0, 1] (representing some prediction interval). Denoting by
1 the probability law on 2, the probabilistic comprehension axiom for property P
now states

Vxdy y={zex; u(lweQ ; Pz w)})el}

As was the case with the set theoretical comprehension schema, one gets in a
top-down operational mode to do such a grouping and build such a set from
property P and interval /. This is so even if we allow some degree of uncer-
tainty for the truth or provability of property P(z) (which is then replaced by
w{w e Q ; P(z,w)}) € I) for particular instances of z. Once again, this is a
precise particular case: though its truth has some uncertainty, this property is well
defined and fixed in advance, together with the confidence interval I . However, such
a schema is closer to many situations met in the real world. As in the previous case,
such a property P (and the confidence interval ') allow to define the set y in a top-
down operational mode, that is to get an intensional, abstract description of the set
y. It is natural to consider property P as a kind of oracle with non totally accurate
answers (the interval / limiting the inaccuracy). Observe that, as above, the choice
of P and [ is relevant to semantics. Remark that there are other ways to formulate
a probabilistic comprehension schema.

As concerns groupings of information relevant to a purely top-down mode (the
grouping itself, the elaboration of a property to do it, the definition of sets of
information), we treat it in the next Sect. 4.6 about intensionality and Kolmogorov
complexity. Let us simply recall (cf. Sect. 4.4.4) that classification by compression
and some methods based on statistical inference allow to have such purely top-
down approaches. The particular of Google classification is exactly the same as that

3TWe refer the reader to Feller (1968) and also Kolmogorov (1956, 1983), and Chaitin (1969).
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of set theoretical and probabilistic comprehension schemas (for Google, keywords
play the role of a property P) and that of classification via databases, up to one
significant exception: with Google, everything is moving: answers as well as the
keywords proposed in queries.

4.6 Information, Intensionality, Abstraction and Kolmogorov
Complexity

4.6.1 Classification, Database, Intensionality, Abstraction,
Semantics and Algorithmic Information Theory

We stressed in Sect. 4.4 the importance of the Web expansion and the huge interest
of classification by compression and Google classification. The Web can be seen
as a phenomenal expert system: first, it is a huge information system (this is the
network aspect, software and hardware, between machines and servers), second,
machines are used and programmed by human beings (their brains) with far more
intelligence than what is done in the syntactic world of machines which can only
compute. Classification by compression (and Google classification) will surely be
more and more used with information on the Web. The same is true with statistical
inference methods. In some sense, all these approaches are tightly correlated and,
as any approach to classification (cf. Sects.4.4.4 and 4.5), they lead to top-down
approaches to information. In particular, they can be used to grasp the information
content of a text (and more generally of a set of texts) with no access to it “from
the inside”, i.e. without reading and understanding the text. These methods look for
analogies with other texts, the meaning of which is known, or they compare their
respective information content. Somehow, they are “profilers” which will become
incredibly efficient in the near future when applied to information on the Web.*

However we have also explained how these methods still lack some formal devel-
opment, in particular for the notion of query: for any classification of information,
the first question is to find back information from this classification. It is a fact
that the notion of query to the Web (with Google or any browser) is still not really
formalized.

We have seen that Codd’s relational database model led to a completely
mathematical structure and processing of the information contained in computer
files through the relational schema and the possible queries to the database (the
scope of such queries being tightly dependent of the relational schema). As said
above, before Codd, there was no such information processing with machines. Codd
had to fight to impose his mathematical model and, even today, operating systems do
not really use databases. A reflexion about possible formalizations of classification

38Recall that once an information has been put on the Web, it is almost impossible to remove it. ..
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by compression, Google classification and a notion of query to the Web, is, in
our opinion, quite fundamental. Note that with Google (or any other browser) we
have no idea how to measure the degree of uncertainty of Google’s answers. The
percentage of pertinent answers may be anything between 0 and 100 %. Google
answers are unpredictable and constantly moving. Not an easy situation! However,
it seems reasonable to ignore at first the moving character of Google (and also
its not completely scientific features, cf. Sect.4.3.2, point 4) when looking for a
mathematical modeling of these methods.

Indeed, one starts from a clustering or more generally from a classification,
obtained by way of conjunctions of keywords which are proposed into queries for
Google or from a clustering or a classification obtained by compression or observed
by way of the statistical methods.

In the simple case of a clustering, we infer the existence of a property, of a
“law”, which is a form of regularity. The emergence of such a law coincides with
the existence of a certain degree of intensionality in the clustering we accomplish.
Otherwise said, we make obvious a grouping of objects, the description of which
can be compressed by using this property. This is an intensional description (when
the compression have been performed). This can be seen as an (extended) top-down
version of the set theoretical or probabilistic comprehension schema: the property
used in the set groupings is not known and fixed beforehand.

For more sophisticated classifications, one will have higher order clusterings, i.e.
clusterings of clusterings, etc. Otherwise said, several properties will be involved (in
some cases, even infinitely many properties, in a theoretical point of view). Observe
that, using relational databases one can see that, up to now, quite a few levels
suffices to modelize a lot of discrete information systems (for the “real world)”.
One can expect a similar situation for classifications obtained via the top-down
approaches as evoked above, at least for those relative to the present real world.
Observe that, with a subtle analysis of modelization using relational databases one
can see that, up to now, quite a few levels suffices to modelize a lot of discrete
information systems (for the “real world)”. One can expect a similar situation for
classifications obtained via the top-down approaches as evoked above, at least for
those relative to the present real world. This points out the remarkable pertinence
of Kolmogorov complexity theory which is an avant-garde theory. Especially when
being considered with several points of view, namely by studying the randomness of
a word or its information content or the possibility to compress this word. Somehow,
randomness is the “opposite” of classification, More precisely, there is a duality
randomness versus classification, coming from the fact that Kolmogorov’s theory
of algorithmic information allows to look at these two sides of information (this is
what Kolmogorov explicitly tells in Kolmogorov 1965).

This duality is a quasi-opposition though randomness is not chaos (cf. Part I).
This points out deep relations between Komogorov complexity and relational
databases (which constitute, up to now, as we saw, the sole implemented — and
widely spread — logical approach to information systems). This complexity also
appears unavoidable as soon as one is interested in classification problems. This is
not surprise since Kolmogorov complexity is primarily a theory about information!
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Let us go back to Kolmogorov’s approach, one can observe that it is relevant to
the top-down mode. Indeed, look at the basic definition of Kolmogorov complexity:
The Ilength of the shortest program which outputs a given data (the output being a
binary word which represents a given object).*

Larger is the Kolmogorov complexity of an object, larger are all programs to
produce it, more random it is, larger is its information content, more incompressible
are all programs to produce it, less intensional is any description of it, less
intensional is it itself, less abstract is any property that allows us to describe the
object (when we consider the property in a syntactical perspective).

In this definition one does not enter into the content of the output or into the
details of the object, which is therefore taken as a whole. One solely handles the
object from the outside via some program and/or some property which allows
to describe it. This is indeed a top-down approach as are classification using
compression, classification using Google and a part of statistical inference methods.
And this suggests that these classifications methods are somewhere related and that
Kolmogorov complexity could give an unifying mathematical formal framework. In
other words, thanks to Kolmogorov theory, we are able to measure the complexity
of an object (in the sense of Kolmogorov), i.e. to give a numerical measure of the
degree of intensionality or even of degree of abstraction which is contained in a
computable description of that object. It is remarkable that this can be done with no
prerequisite “knowledge” of the structure of the object and that this is indeed what
allows us to apprehend this structure.

4.6.2 Kolmogorov Complexity and Information
Theories, Semiotics

Let us now compare the diverse ways to approach the notion of information followed
by Shannon (cf. Part I), Kolmogorov, Codd and other researchers.

* For Shannon (1948), an information is a message which is transmitted through
some physical device. In particular, an information is a signal and there can
be losses during the transmission. This design is that of a dynamic information
approach and the physical communication medium is of outmost importance.

So Shannon looks at robustness of information and comes to a quantitative
notion of information content in transmitted messages. To measure variation
of this quantity, he borrows to thermodynamics the concept of entropy and
he bases his theory on it. So he clarifies, on mathematical basis, how to
deal with noisy communication channels. In Shannon’s theory, words represent
information (messages). It is based on coding letters or groups of letters in a

¥K,(y) = min{|p| : ¢(p) = y} where K, : O — N where ¢ : {0,1}* — O is a partial
function (intuitively ¢ executes program p as a LISP interpreter does) and O is a set endowed with
a computability structure. We take the convention that min ¥ = 4-00 (cf. Part I).
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word (cf. Partie 1), i.e. it is a purely syntactic analysis of words (and messages
they represent) which makes no use of any semantics.

Thus Shannon elaborates a mathematical theory of the information content of
messages transmitted with some loss of signal. Its main (and hugely important)
applications are related to telecommunications (no surprise: Shannon worked in
Bell Laboratories).

e The origin of Shannon’s work is Wiener’s cybernetics (cf. Note 7) in the late
1940s. This subject was much discussed in the Macy conferences (New-York,
1942-1953), to which Shannon attended. Before Wiener and these conferences,
there was nothing like an information theory.

Cybernetics is a theory which establishes, among other things, the concept of
auto regulated system, in terms of: global behavior, exchanges, communication
and interactions. Fundamentally, this is a top-down approach to information and
systems. Wiener talks about a science of relations and analogies between (living)
organisms and machines.*’ In particular, he studies random processes and the
“noise” occurring during the exchanges in a system. A fundamental notion
in his theory is that of feedback: An object is controlled by the instantaneous
error margin between its assigned objective. This is clearly a prefiguration of
Shannon’s information theory (Shannon attended Wiener lectures as a student).

Wiener has an avant-garde vision on machines! His works are the origin of
many discoveries, in particular, in sociological, psychological and biological
aspects of communication and interaction and, more generally, in all information
theories. Besides several research themes generated by Wiener’s theory, let us
also mention that Wiener’s theory has a deep influence on a large part of modern
semiotics.*!

* For Kolmogorov (1965) (see also Gregory Chaitin 1966; Ray Solomonoff 1964),
the fundamental aspect of information is the information content of an object,
independently of any consideration on how this information is used (as a message
for instance). This is a static vision of information. What Kolmogorov is inter-
esting in is to give mathematical foundations for the notion of randomness and
to explicit the notion of information content of a given object which is intrinsic
to that object. Thus, what Kolmogorov looks for is a mathematical theory of
information which would be far more abstract than Shannon’s one and would be
based on semantics not only on a “physical” object like a word. His solution
is to consider computer programs (considered as computable descriptions) —
considering things in fact in the context of the calculability theory — which
output an object and look at the length of a smallest one. Thus, considering both
programs and what the program does, the algorithmic information theory created
by Kolmogorov has both syntactic (length of a program) and semantic features
(i.e. what the program does).

“OWiener’s book (1948), raised many controversies (and Wiener exchanged a lot with von
Neumann about it).

41 A subject going back to Charles Sanders Pierce (1839-1914).
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With Kolmogorov complexity, one can capture an “objective” mathematical
measure of the information content of an object. Moreover, this measure is
really inherent to the object — in some way it is an universal specification of
the information content of the object — since it does not depend (up to a constant)
on the considered programming language to get programs: this is the content
of Kolmogorov’s Invariance Theorem. In order to aim an “absolute” mathemat-
ical notion of randomness, Kolmogorov makes a drastic abstraction from any
physical device to carry information. In this way, he elaborates the algorithmic
information theory which allows to “compute”*? Kolmogorov complexity of any
object. Introducing a conditional version of Kolmogorov complexity, he refines
this notion of intrinsic complexity of an object by relativizing it to a context
(which can be seen as an input or an oracle, etc. for the program) carrying some
extra information. This exactly matches the problem pointed by Eco about the
necessity to distinguish signification and information content.

This is how Kolmogorov founds algorithmic information theory, which can be
looked at as much as a mathematical foundation of the notion of randomness than
as a mathematical foundation of information classification and structuralization.

¢ As seen above, for Codd (1970), the fundamental feature of information is its
structuralization — which is formally described — and the fact that one can
get back information from this structuralization in an exhaustive way. Codds
theory essentially relies on mathematical logic. Thus, Codd bases his work on
the static aspect of information Observe that, as Kolmogorov does, Codd also
makes abstraction of the physical device carrying the information. This was
quite a revolution in information treatment at IBM: previously, any information
treatment dealt with the files containing the data: information and files were
considered as a whole.

Observe that the modeling of information systems via relational databases also
takes into consideration the subtle distinction between semantics and information
content: the pertinence of an information with respect to a given information
system is seriously considered. The same distinction is taken into account in the
construction of the relational schema of a database. For instance, in a database
to manage a university, a choice is to be made: is the information about the
students hobbies to be considered or to be ignored? Of course, this choice is
completely subjective, this is semantics. If the attribute StudentHobby is
retained then it will appear in the relational schema of the database, i.e., in the
syntactic counterpart of what is retained as the “constitutional” semantics of the
information system.

42Recall that the very original idea on which Vitanyi based the classification using compression is
to compute an approximate value of this complexity via usual compression algorithms.
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4.6.3 Algorithmic Information Theory, Representation
and Abstraction

A priori, Kolmogorov complexity does not apply directly to the objects we consider,
but only to binary words associated to a chosen representation of objects. However,
for the usual different representations, this has quite a minor incidence (this is the
content of the invariance theorem). Thus, we (abusively) speak of the Kolmogorov
complexity of objects instead of Kolmogorov complexity of representations of
objects. Nevertheless, if higher order representations are considered, this is no
more true. For instance, if we represent integers as cardinals of (finite) recursively
enumerable sets. Indeed, Kolmogorov complexity allows to compare higher order
representations of integers, leading to a proper hierarchy of natural semantics for
integers (Church iterators, cardinals, ordinals, etc.) as we proved in Ferbus-Zanda
and Grigorieff (2006). This hierarchy can be put in parallel with a hierarchy of
Kolmogorov complexities obtained by considering infinite computations and/or
oracles. We show, among other things, that Kolmogorov complexity is also useful to
get a kind of classification of semantics for integers which is rather amazing. We can
also see this classification of different representations of integers as a classification
of the degree of intensionality of these representations, i.e. a sort of classification
of the less or more abstract nature of different definitions of integers, obtained from
the different semantics we consider. We develop this in Ferbus-Zanda and Grigorieff
(2006).%

4.7 Conclusion

The previous considerations show, in particular, that not only Kolmogorov com-
plexity allows a mathematical foundation of the notion of randomness, but this
theory is also intrinsically related to the fundamentals of information: the notions of
information content and compression, that of classification and structure, and more
generally, database and information system (as they currently are). This theory is
also related to the notions of intensionality and abstraction, and also to the notions
de representation, syntax and semantics. An enormous scope! This double aspect
(randomness and classification) — drawn by Kolmogorov since the origin of his
theory (Kolmogorov 1965) — is partly stressed by the denomination algorithmic
information theory commonly used to distinguish Kolmogov complexity theory
and Shannon’s information theory. Many applications can be expected in various
unsuspected domains. And this theory seems to us particularly suited to provide a
unifying theoretical framework for a lot of approaches to information processing.

“3As in the two forthcoming (technical) papers: Ferbus-Zanda, M. & Grigorieff, S. Kolmogorov
complexity and higher order set theoretical representations of integers and Ferbus-Zanda, M. &
Grigorieft, S. Infinite computations, Kolmogorov complexity and base dependency.
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However, it seems to us to be interesting, to look for an extension of Kolmogorov
complexity. As it is now, it is essentially based on the theory of computable
functions hence on algorithms. What we propose is to extend it by considering
sets, information systems and databases. This would put forwards a relational,
non deterministic point of view which would be in contrast with the functional,
essentially deterministic current point of view, first considered by Kolmogorov
himself (this goes along with a new look to ASMs in the relational framework).
It would then be possible to revisit (and to increase) Kolmogorov complexity
and ASMs in terms of the duality functional versus relational (see Sects.4.4.1
and 4.4.2).** This means that we look at Kolmogorov complexity with a more
refined and more structured point of view — in other words with a qualitative point
of view — than that of Kolmogorov. For him a program and an output are binary
words (which can represent sets, graphs, information systems, etc.) and his main
purpose is to get a quantitative definition of the complexity of an object.

Such a qualitative approach was also followed by Codd himself while he
elaborated the relational model for databases. His theory is based on the formal
notion of attribute which is to represent qualitative characteristics of objects (which
are related via diverse links which are also of qualitative nature) and Codd puts such
attributes in a mathematical framework. A database is a formal and mathematical
specification as “scientific” as any algorithm which processes data and computes.
In particular, one can look at the smallest program which outputs some given object
rather than at its sole length or also look at the set of all programs which give
the wanted output. Such an approach enlightens new links between algorithmic
theory of information and Gurevich’s ASMs.* It opens promising perspectives.
As Gurevich told us,* the ideas of Kolmogorov complexity theory are far from
having exhausted all possible applications: it is just the beginning. .. Classification
of information by compression and Google classification witness such new possi-
bilities. It is also in such a structural perspective that Bennet developed the logical
depth complexity (Bennett 1988) which considers the running time of the program
which gives the output. It is also called the organized complexity. Keeping the
same spirit (with such a level of refinement), comes this question: Why consider
the shortest program? What is so particular with it? The answer comes from the
observation of ASMs and the Curry-Howard correspondence: The shortest program
is the most possible abstract. Indeed, Curry-Howard correspondence insures a
correspondence between logic and A-calculus — in that sense, this correspondence is
an isomorphism — hence by extrapolation logic and computer programming. Curry-
Howard correspondence plays a fundamental role in the articulation of proof theory,
typed lambda calculus, theory of categories and also with models of computing

4We study the duality of functional and relational in Ferbus-Zanda (In preparation-c). The relation
between ASMs and Kolmogorov complexity and the reconsideration of these theories with a
relational point of view are developed in a forthcoming paper: Ferbus-Zanda (In preparation-b).

4This is what we started in Ibid. Note 44.

46Personal communication while he was visiting our university in Paris.
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(either theoretical or implemented ones like programming languages). It was known
by Curry for combinatory logic as early as 1934 and for Hilbert proof systems in
1958. It was extended by William Howard in 1969 who published a corner-stone
paper®’ in 1980.4

Let us say briefly that in the Curry-Howard correspondence, one consider that:

* Logical formulas correspond to types in typed A-calculus and to abstract types in
computer science.

+ Cut elimination in a proof*’ corresponds to normalization by diverse rules
in A-calculus, including B-reduction®® relating A-terms and runs of computer
programs.

This enhances the abstract character of programs evoked above. Indeed, the smallest
logical proof (considered in a given context) is in fact the one which contains the
most numerous cuts. We saw (cf. Note 49) that in some cases, a cut is a form of
abstraction. Notice that a proof, of which we have eliminated cuts (which therefore
means in some situations replacing “a general case” by a lot of “particular cases”),
has its size bounded in the absolute by a “tower of exponentiations”. .. The more cuts
a proof contains the more abstract it is. Somehow, we can say that the more abstract
is a proof, the more compressed it is. In the same way, The more redexes there is in
a A-term,’' The more abstract is a A-term, the more compressed it is. And for com-
puter programs, the notion of cut can also be defined for programming languages

4THoward (1980).

“8Joachim Lambeck also published in the 1970s, about this correspondence concerning the
combinatorics of the cartesian closed categories and the intuitionist propositional logic. Note that
Nicolaas Debruijn (Authomath system) and Per Martin-Lof had also a decisive influence upon the
original Curry-Howard isomorphism. Martin-Lof saw the typed lambda calculus, which he was
developing, as a (real) programming language (cf. Martin-Lof 1979). Similarly, Thierry Coquand
elaborated the theory of Construction on which is based the Coq system, initially developed by
Gérard Huet at the INRIA (France) in the 1980s. (See also Note 50.)

“The notion of cut in the Sequent Calculus and the Natural Deduction is a fundamental notion in
proof theory. It was introduced by Gerhard Gentzen in the 1930s — and these two logical calculus
too. In some cases one can see a cut as a form of abstraction where a multiplicity of particular
cases are replaced by a general case. In the sequent calculus, a cut is defined by means of the cut
rule, which is a generalization of the Modus Ponens. The fundamental result of Gentzen is the
Hauptsatz, which states that every proof in the sequent calculus can be transformed in a proof of
the same conclusion without using this cut rule.

30In fact, Church’s original A-calculus can be extended with constants and new reduction rules in
order to extend to classical logic with the notion of continuation, Thimothy Griffin, 1990 — and
possibly classical logic plus axioms such as the axiom of dependent choice — the original Curry-
Howard correspondence between intuitionist logic and usual typed A-calculus. This is the core
of Jean-Louis Krivine’s work who introduced some of those fundamental constants which have a
deep computer science significance (cf. Krivine 2003).

1A redex in a A-term ¢ is a subterm of # on which a one-step reduction can be readily applied, for
instance, with S-reduction, this is a subterm of the form ((Ax.u)v) and it reduces to u[v/x], which
is the term u in which every occurrence of x is replaced by v (some variable capture problems have
to be adequately avoided).



4 Kolmogorov Complexity. Part II: Classification, Information Processing and Duality 131

with their usual primitive instructions. For instance, a program containing: for
i =1 to 1000000 do print (i), is more abstract than the same program
in which this loop is replaced by the sequence of instructions: do print (1)
and do print(2) and ... and print (1000000). Thus, the for loop
allows for cuts. Hence a result similar to those precedents: The more cuts a program
contains, the more compressed it is. Observe that the more a program is compressed
via cuts, the more declarative is this program. Which means that its text contains
less control instructions, i.e. less instructions about the technical way some parts of
the program are to be executed. A fully compressed program is totally declarative.

But what about ASMs in this context?

As we said, ASMs allow to represent- in a very simple way — the step by step of
the execution of any sequential algorithm using models in first-order logic and some
simple primitive instructions. As can be expected, it is interesting to look for a notion
of cut in the ASM framework. In the same vein, deep relations exist between ASMs,
A-calculus and Curry-Howard correspondence. Cf. our paper to appear in honor of
Yuri Gurevich (Ferbus-Zanda and Grigorieff 2010), in which we represent ASMs in
A-calculus, showing that A-calculus is algorithmically complete as are ASMs.

Going back to the information context, we can say: The shortest program
producing a given output is the most abstract one, hence (viewed in A-calculus)
it is the A-term containing most redexes, hence also (viewed in proof theory) the
proof which contains the most cuts.

In any case, this is a form of abstraction. Which is no surprise since we already
noticed that Kolmogorov complexity is fundamentally related to the notion of
abstraction. Thus one can say that: Knowledge is abstract information: abstract,
compressed, with some intensionality content.

And such a knowledge will be, in its turn, compressed, etc. This is exactly
the mode the brain functions with language and mathematics. Observe that some
abstractions are somewhat “accidental”: they occurred at some time and drastically
modify the state of knowledge. Note that it is really what Kolmogorov complexity
shows. Suppose an integer has a long and seemingly lawless binary (or decimal)
representation: it takes space to represent it in this way. But if we get a (good)
constructible property about this integer, then we can obtain a short, abstract,
compressed characterization of it. And this increases our knowledge. In the same
way, the development of integral calculus, some parts of geometry and fractal
geometry, allow for short (effectively computable) sequential descriptions of shapes.
Especially, it appears that Kolmogorov’s complexity can be a very useful theory in
order to address in a mathematical way the approaches of classification, which are
now essentially, to the exception relational database, heuristic methods (not yet fully
formalized as can be expected from a classification method) such as classification
using compression and Google classification. One can also hope for applications in
other domains such as semiology, cognitive science or biology with the genome, as
spectacularly shown by the French biologist Antoine Danchin in his book (Danchin
1998). Indeed, classification by compression is already used by some biologists in
such a perspective.
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Let us conclude by stressing again how much useful are such classification
methods using compression or using Google along the top-down operational mode.
In many cases, we face huge families of objects (when one can define them) for
which there is no obvious structure. So that we really are in a syntactic world and
want to grasp this world with some semantic. This is, for example, the case for DNA
sequences of living organisms and for the multi billion many files on the Web. ..

For that last example, though we are not so much pessimistic, let us cite Edsger
W. Dijkstra’s penetrating analysis in his famous 1972 Turing award reception speech
(Dijkstra 1972)%%:

As long as there were no machines, programming was no problem at all; when we had
a few weak computers, programming became a mild problem, and now that we have
gigantic computers, programming has become an equally gigantic problem. In this sense
the electronic industry has not solved a single problem, it has only created them — it has
created the problem of using its products.

Acknowledgements For Francine Ptakhine, who gave me liberty of thinking and writing.
Thanks to Serge Grigorieff and Chloé Ferbus for listening, fruitful communication and for the
careful proofreading and thanks to Maurice Nivat who welcomed me at the LITP in 1983.
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Chapter 5
Proof-Theoretic Semantics and Feasibility

Jean Fichot

5.1 Introduction

It is well known that classical mathematics have been widely criticised by the
proponents of constructive mathematics on the ground that the former rests on a
realist conception of the realm of mathematical objects. It must be recalled that the
latter is not completely immune to such a reproach inasmuch as some vestige of
realism is still present in its foundations (1). This realism takes the form of two
different idealisations of human abilities: the creative ones and the mechanical ones
(1.1). It can be argued that the first idealisation is avoided by the proof theoretic-
semantics of constructive mathematics but not the second one (1.2). Different
definitions of feasible functions and systems of feasible mathematics have been
proposed that makes possible to avoid the second idealisation too (2). It is of special
interest to see if they allow, at least partially, some proof-theoretical semantics (2.2).

5.2 Idealised Foundations of Mathematics

The fact that constructive mathematics rests on a strong idealisation of the abilities
of flesh and blood mathematicians is well known. Its origin is to be found in Borel
who remarked that there is an analogy between the passage from finite numbers to
huge finite numbers and the passage from natural numbers to infinite ordinals (Borel
1950). Borel’s idea was used by van Dantzig in an argument that was supposed to
shed some doubts on the possibility to draw a sharp distinction between “formalist”
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and “intuitionistic” foundations of mathematics as far as the one between finite
numbers and infinite ones is also gradual (van Dantzig 1956). A number like
1010" may be seen as a finite number but also as a number that has never been
and will never be actually constructed; as such this number might be compared
with a purely “formal” number like ®“”. From the fact that intuitionism does not
distinguish between what can be actually constructed and constructions that we can
only imagine to be performed, van Dantzig concluded that it was at least partially
formal. Of course, most of the proponents of constructive mathematics were quite
aware of the necessity of this idealisation and it is instructive to compare the ways
Brouwer and Bishop viewed it.

5.2.1 Two Different Kinds of Idealisation

Among a mathematician’s abilities a distinction must be made between the cre-
ative ones and the purely mechanical ones. Mechanical abilities depend only on
resources of memory, time, space. For example, the only idealisation involved in
Turing’s analysis is the idealisation of mechanical abilities since no specific creative
abilities are allowed to the (human) computer (Turing 1936-37). And obviously the
concept of creating, or creative, subject, also known as the idealised mathematician,
introduced by Brouwer in (1948), involves an idealisation of both aspects. This
foundation of constructive mathematics on the metaphysical hypothesis of the
creative subject is in fact very problematic because, as it is emphasized by van
Dalen and Troelstra, it entails that there are two different kind of intuitionistic
mathematics: the idealised mathematician’s one and the one that is practised by the
flesh and blood mathematicians with strictly finite cognitive powers (Troelstra and
van Dalen 1988). Mathematical certainty belongs only to the former, not to the later
since it depends on language which is a limited and fallible mean to communicate
and remember mathematical constructions.

[...] it may well be that we have no proper understanding what mathematics according
to Brouwer’s principles really looks like, since the divergence between mathematics
conforming to the theoretical postulate of languageless mental activity and our actual
(intuitionistic) practice is too great. (832)

Now, if we turn to Bishop some idealisation is indeed assumed as a proviso on which
the mere possibility of constructivisation of classical analysis depends (Bishop
1967).

The transcendance of mathematics demands that it should not be confined to computations
that I can perform, or you can perform, or 100 men working 100 years with 100 digital
computers can perform. Any computation that can be performed by a finite intelligence -
any computation that has a finite number of steps - is permissible. (3)

One point must be emphasized: in spite of the mention of “a finite intelligence”
in this quotation, Bishop seems to refer to some intuitive notion of mechanical
computation and the idealisation here is only the one of mechanical abilities, not
of creative abilities. But this is not the main difference with Brouwer’s creative
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subject; Bishop in fact considered the constructivisation of classical mathematics
as a first necessary step in a much more ambitious programme of “efficient”
constructivisation of mathematics.

This does not mean that no value is to be placed on the efficiency of a computation. An
applied mathematician will prize a computation for its efficiency above all else, whereas in
formal mathematics much attention is paid to elegance and little for efficiency. Mathematics
should and must concern itself with efficiency, perhaps to the detriment of elegance, but the
matters will come to the fore only when realism has begun to prevail. Until then our first
concern will be to put as much mathematics on a realistic basis without close attention to
questions of efficiency. (3)

5.2.2 Proof-Theoretic Semantics and Idealisation

It could be argued that the notion of creative subject is not the only possible way to
give a philosophical foundation of constructive mathematics. Another path has been
explored which supposes to give a meaning theoretical account of the language of
constructive mathematics. This idea has a long history that began with Gentzen’s
proof theoretical investigations and the informal explanation of the constructive
meaning of the logical constants as given by Brouwer, Heyting and Kolmogorov,
the BHK interpretation.

I will not enter here into the details of this story; suffices it to say that the main
problem was to give a theoretical analysis of the relation between two notions of
proof: the one that was used in the BHK interpretation and the one of real proofs.
To put it in a nutshell, the problem arises because the former, now known as the
notion of canonical proof, is indeed rather strange — for example a canonical proof
of a disjunction is a proof of one of its members — when compared to the later; who
has ever proved in practice a disjunction this way? As it has often be emphasized,
the concept of proof used in the BHK interpretation is not immediately closed under
modus ponens since (B v C') may be deduced from proofs of A = (B v C) and A
and this does not tell which one of B and C is true.

Heyting’s solution to this problem was given in successive steps culminating
in the idea of proof as function: a proof of A = B should be a function that,
applied to any canonical proof of A yields a canonical proof of B. Since real proofs
are of course non canonical proofs, this was supposed to explain the relationship
between them: a real proof of A must be thought as a potential construction
that, when completely performed, should yield canonical proof of A. Once this
distinction between potential and actual construction was generalised, the problem
that remained was to explain how the process of actualisation can be performed.
Indeed this idea of proof as function, as well accepted as it is nowadays, looked in
fact completely mysterious for quite a long time since it supposes to identify proofs,
even formal ones, with computable functions. But the former seemed to belong to
the word of static, inert, objects and the later rather to the one of dynamic processes
and those two worlds were not easily thought of as overlapping.
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Let us give two examples. The first functional interpretation of Heyting arith-
metic was given by Kleene who later admitted frankly that at that time the BHK
interpretation was of no help for him; the choice made by Kleene to deal only with
recursive functions was a strong obstacle that prevented him to give a satisfactory
analysis of the dual concept of proof-as-function (Kleene 1973). Nearly at the same
time, Godel was led to his own interpretation of Heyting arithmetic by functionals
of finite type, the Dialectica interpretation, because he doubted that proofs in this
formal system were indeed constructive according to the criteria given by the BHK
interpretation. It was only around 1970 that he came to see these computable
functionals of finite type as proofs albeit given in another system (Godel 1958,
1990). At that moment, the link between cut elimination in proofs and formal
computation of terms had already been made by the Curry-Howard correspondence
(Curry and Feys 1958; Howard 1980) on which proof-theoretic semantics, strongly
advocated by Dummett, Prawitz, Martin-L6f and other authors, rests (Dummett
1975; Gentzen 1935; Howard 1980; Martin-Lof 1984, 1985; Prawitz 1965).

Formal proofs are conceived, not only as static objects, but also as dynamical pro-
cesses. According to this analysis, the meaning of a logical or mathematical constant
is given by two kinds of rules: the ones that are used in the proof, introduction and
elimination rules for that constant, and computation rules, reduction and expansion,
that operate on the proofs and justify the former.

e The reduction rules show that the elimination rule is not stronger then the
introduction rule. From a computational point of view, they are indeed the most
important rules. From a meaning theoretical point of view the association of the
introduction/elimination rules and the reduction rules was used as an argument by
Prawitz and Dummett that was supposed to show why classical logic is partially
meaningless since the elimination rule for Vv seems, at least from a constructive
point of view, stronger than its classical introduction rules.

I'x:A+b:B

FFixh:A=>B 'a:d _ F
T'F(xb)a: B T'Fbla/xlb

* The expansion rules have only a very weak computational content; in the case of
implication, read from right to left, the expansion rule yields an n-reduction rule:

Ax (t) x — ¢, if x is not free in 7. From a meaning theoretic point of view, those
rules show that the introduction rule is not stronger than the elimination rule.

: :n;Fl—t:A:>B x:AFx: A
't:A= B x:AF@)x: B
'Ax.t)x: A= B

(=e)

(=1)
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The Bn reduction rules give a mathematical content to the concept of proof-as-
function since they make it possible to see a formal deduction of a formula as an
algorithm—a lambda term—that yields in a finite number of steps a unique value;
a deduction IT of a sequent A;,..., A, = B is an algorithm that yields, for any
deduction Iy, ..., I, of the Ay, ..., A,, a deduction of A. And the latter is a cut-
free deduction that ends with a step of introduction for the main constant of A;
in the case of a logical constant this deduction satisfies the criterion of the BHK
interpretation and may be held as a formal, mathematically defined, version of the
intuitive concept of canonical proof.

BHK interpretation intuitive | Proof theoretic semantics formal
notion definition

Real I
cal proots § Indirect deductions

potential constructions

K Cut-free deductions
actual constructions

Canonical proofs §
As shown in the table above, this is indeed a very satisfactory theoretical account
of the constructive meaning of the logical and mathematical constants as given by
the BHK interpretation. Notice also that the idealisation of creative abilities is not
explicitly used in proof-theoretic semantics. The only problem is that it does not
completely avoid the issue of idealised mechanical abilities; in fact it can help to
give it a precise content.
B-reduction and p-expansion give only a local, and as such partial, justification
of the introduction and elimination rules for a given constant. For example, it is easy
to check the so-called Prawitz’s rules for €

F'EAlt/y]  ThEitefy A}
TFrelyAl" TFAl/y]

are locally justified. But in the system obtained by adding to them the elimination
and introduction rules for implication there is a “proof” of - (v)v : C, where
v = Ax (x) xx and C is an arbitrarily chosen formula. This implies that a system
of rules must be globally justified by a cut elimination theorem and this may involve
a new proof when some constants are added to a given system since the union of
two globally justified systems may not be globally justifiable.'

Since a cut elimination theorem must be given by a (real) indirect proof according
to some rules that cannot be part of the ones it justified, the search for a global

Notice also that this is a very strong argument that can be used against a molecularist conception
of meaning according to which the meaning of a constant is given only by its introduction and
elimination rules: in fact the global justification of these rules may depend on the rules governing
the use of the other constants. For example, the system obtained by adding to Prawitz’s rules for €
the rules for linear implication is globally justified.
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justification is obviously open ended.> Moreover, in the case of, say, Heyting
Arithmetic, this theorem entails its consistency. But for some H(l) formulas VxA
independent of Heyting Arithmetic and provable in some higher order system, the
length of the cut-free proofs of A [n/x] is unbounded, more precisely, for each
m € N, there is a n € N such that the length of the cut-free proof of A [n/x]
in Heyting Arithmetic is greater than m (Buss 1987; Godel 1936). And even for
formulas already provable in intuitionistic logic, it is well known that cut free proofs
may need to be superexponentially larger than proofs that contain cut. According
to a physical bound, like Beckenstein’s one, this implies that canonical proofs are
ideal abstract objects. Indeed, there is something strange in the use of the words
“actual” and “potential” since the former qualifies constructions that will never be
actualized and the latter qualifies real proofs. In fact, canonical proofs in the BHK
interpretation could rather be thought of as a refinement of the notion of truth;
compare “A; V A, is true if and only if A; is true or A, is true” with “(p,i) is
a proof of A, V A if and only if p is a proof of A;”. One may wonder what such
a notion of truth has to do with the much more plausible idea that a proposition is
true if it has been proved by a real proof.

Now here is the main problem we face with Dummett and Prawitz’s philosophical
foundations of mathematics: how can we explain the meaning of their language, as it
is used in actual proofs, which are obviously length-feasible, by means of canonical
proofs, which most of the time are not length-feasible? If we think, metaphorically,
of a proof as a path that leads us to the experience of truth, then it should be clear
that it is not a shortcut climbing up the hill that we take just to avoid the longer path
in the valley that leads to the same destination, because there is no longer path there
that we could take; of course a pedestrian can always imagine that there is some
secret road that could have been taken by some idealised traveller (keep on straight
ahead for 10'°"" miles!) but it would be of little help to him.

There is one possible way to avoid this discrepancy between proof theoretical
meaning explanations and non feasible canonical proofs. It involves some lightening
of the logical and mathematical rules that allow to avoid non feasible proofs; but
then of course the problem we have to face here is to show that those rules can, at
least partially, give some proof-theoretic semantics.

5.3 Feasible Mathematics and Meaning Explanations

There is a strong temptation here to paraphrase and strengthen Bishop’s dictum:
Mathematics belongs to man, not to the creative subject [...] If the creative subject
has mathematics of his own that needs to be done, let him do it himself. If we

2Tt could be argued that this shows that some idealisation of the creative abilities is still present in
proof-theoretic meaning explanations at least if we think that such explanations should be definitely
consistent. But there are good reasons, which can be found in Martin-L6f (1987), to believe that
this hope rests on a confusion between validity and truth.
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give in to this temptation, then we have to face seriously Bishop’s idea that the
constructivisation of classical mathematics is only a first step and that the next one
should be an efficient constructivisation of mathematics. Since nowadays systems
of feasible computations and proofs exist that can give some content to the idea that
even canonical proofs should be feasible, it is of special interest to see if they allow
for some meaning theoretical account in the tradition of Dummett and Prawitz.

Wright, Dubucs, Marion and other authors have emphasized the importance
of the distinction between feasible constructions and the ones that could be
carried out only in principle (Dubucs 1997; Dubucs and Marion 2003; Wright
1982). Different attempts have been made to extend this distinction amongst finite
objects—constructions, proofs, computable functions—between the admissible or
feasible ones and the idealised ones. One point worth mentioning is that, even in
the case of the natural numbers, the main difficulty is to draw a sharp line between
the former and the latter since the fuzzy concept of feasible number involves
a well known sorites paradox. First, it is obvious that the successor operation
X = x 4 1 is computation-feasible since it involves a strictly finite number of steps
of computation depending of course on the chosen formal representation of the
numbers, but not on the length of the representation of x. Second, it must be taken
for granted that most natural numbers are not admissible or feasible. But then we
come to a paradox: starting from an admissible number, we can feasibly compute
x + 1 and 0 is indeed admissible; then what conclusion should we come to? That
all natural numbers are feasible? This is obviously false, but as we shall see, there
is another possible answer which is to hold the distinction between feasible and
non-feasible numbers to be relative.

5.3.1 Two Implicit Definitions of Feasible Functions

The identification of the intuitive notion of feasible function with that of function
computable in number of steps given by a polynomial function of the length of its
inputs is generally admitted on the basis of arguments given by Cobham in (1965).
The first implicit definition of this class of functions rests on a distinction between
the set of feasible numbers and the set of natural numbers which was given by
Bellantoni and Cook in (1997).3 Leivant gave his own definition which can be seen

30f course, a function f : N — N is polytime if there is some Turing machine M that computes
the value of f (n) in P (|n]) steps, for a polynomial function P of the length |n| of . But this is
an explicit definition of polytime functions, not an implicit one. Bellantoni and Cook’s definition
is not the first implicit definition of the class of polytime functions. In Cobham (1965), definitions
such as f(x+ 1,y) = g(x,y, f (x,y)) are admitted as far as for some previously defined
function & we have f (x,y) < h(x,y), for all x, y. An ad hoc primitive function must be given
X,y = bl ]y]
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as typed version of Bellantoni and Cook’s definition, and may help to understand
the latter (Leivant 1993). In both cases, the main idea is that a definition like

F={yeN/3x e Nf (x) = y}

when f (x + 1) = g (f (x)) where g is some previously defined function, involves
some impredicativity since the existence of y’ such that y/ = f(x+1) =
g (f (x)) depends on a recursive call on the unbounded value of f (x) > x + 1.

In order to avoid such definitions, Leivant introduces two sets of natural numbers,
Ny for the feasible numbers and N; for the natural numbers. Despite the fact that
these two sets are isomorphic copies of N, the definition of an element of Ny is not
allowed to depend on the existence of elements of N; which contains all the numbers
that are defined by use of elements of Ny. According to Cook and Bellantoni, the
arguments in a function may appear in normal positions for feasible numbers and
safe ones for natural numbers, those positions being separated by a semicolon. Then
a function f, is such that

normal safe n m

Ft, .o X3 V1, .o Ym),isof type Ny, ..., No, N, ..., N; = N

The class of feasible functions, L BC, contains a stock of primitive functions,
constant functions, successor, projections, predecessor.* During a computation, it
should not be possible to recurse on a safe input, i.e. a non feasible number in Ny,
only on a normal input, i.e. a feasible one in Ny. According to this restriction, the
safe recursion scheme is:

o Ifg: NI N — Nph: NotUNH 5 Ny arein LBC, then f : No TN —
N, defined by

FO.x{5y7) =g (x5 07)
F(x+Lxfyl) =h(xoxs f (xoxfs oy, o)

isin LBC. (x’f =X, X, Y] = yl,...ym).

For example, since recursion is allowed only on Ny, for 2 : No,N; — Ny, f
defined by f (Sx;y) = h (x; f (x,y)) is of type Ny, N; — Nj. Thus, the set F =
{z/3x € Nody € N| f (x;y) = z} is included in N; but not in Ny.

The composition scheme is also modified in such a way that it is impossible for
an argument to cross the semicolon from left to right, i.e. by defining a function
g such that some arguments in a normal position in the definition of a function f

“In order to save space, we use all through this paper a unary representation of natural numbers.
But it should be clear that we should have chosen to deal with binary words built from a constant
for the empty word and two successors.
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already in L BC appear in a safe position in g. For example, if f (x;y) is in BC,

gGx.y) = f (7} Gx,y):7}(;x,y)) which could give g Gx,y) = f (x;y), is
not an admissible equation.

5.3.1.1 Two Theorems

Polytime soundness if f isin LBC, then f is polytime computable.
Polytime completeness if g is polytime computable, then there is a function f in
LBC suchthat [ =,y g.

Three important remarks must be made.

1. The soundness theorem above holds only if the value of f (¢1,...%;uy,...u;)
is computed by call by value, i.e. if the values n;,m; of the terms #;,u; are
computed before the one of f (ny,...ng;my,...my).

2. In the completeness theorem the equality in f =,,, g is extensionnal: f and g
yields the same value for the same arguments but in many cases the algorithm
that computes the values of g is not faithfully translated in the equations system
that defines f.

3. Despite the preceding remarks, the fascinating insight due to Bellantoni’s, Cook’s
and Leivant’s definitions is that the distinction amongst natural numbers between
the feasible ones and the non feasible ones is not absolute but relative to the
computation that is performed.

The definition of L BC has been extended into a typed system that allows for
definition of functions by restricted higher type recursion schemes in Hofmann
(2000). Later on, this system has been used to give a realisability interpretation
of an axiomatisation of feasible arithmetic in Bellantoni and Hofmann (2002).

5.3.2 A Feasible Arithmetic

As given by Bellantoni and Hofmann, feasible arithmetic FA is an axiomatised
system very close to Peano Arithmetic with a modal operator O that allows the
contraction of hypotheses in a derivation. In order to comply with the criteria of
proof-theoretic semantics, we introduce the main rules of this system in a natural
deduction style. Our main inspiration here is to be found in Davies and Pfenning
(2001).

5.3.2.1 Sequent

The left hand side of a sequent is split in two different areas separated by a
double stroke. The left area contains formulas that are implicitly modal and express
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perennially, or eternally, true propositions, the right area contains formulas that
express simply true propositions.

perennial true

Gi,...,Gy || D1,..., Dy = C true

Notation if A; = {A,,...,An}and A; = {By,..., B,} are multisets, then A; ;
denotes the multiset {A, ..., Ay, By,..., By}.

5.3.2.2 Feasible Logic

Axioms

There are two kinds of axioms. The first ones are just identity axioms corresponding

to A D A, but the second ones have a modal content since they correspond to
0A D A and express the fact that an eternally true proposition is true.

axiom axiom

JAFA AR A

Logical Rules

The logical rules are the ones of natural deduction. Notice that only true formulas
are active.

F|A AFB , To|[Ag-AD B T||AF A
—— (D) (De)
T'|AFADB Lo [|Ao1 = B
NjjatHA T||A2 B
(AD)
F1,2 ||A1!2 FAAB
Iy |IA1 FAAB I, ||A2,A,B HC
(ne)
Fial|A EC
1<i<2 1<i<2
I'|AF A4; TollAg F A1 Vv Ay {1 ||A;, A HC
” i (Vl) 0 ” 0 1 2 { i ” i i }(Ve)
A AV A Lotz [|Aoi2 HC
Modal Rules
The rules of introduction and elimination rules for O.
r|.+4 . [yl|AgOA T, AAHC
(@) (Te)

I || o4 F(),l ||A071 =C
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The intuitive justifications of both are to be found in the idea that the formulas on
the right hand side of the double stroke are eternally true propositions. For example,
A in the antecedent of the right premiss of (Oe) is equivalent to OA in the left
premiss. Indeed, with those rules, “A is eternally true” is internalised by “04 is
true” since the rules

TLAJAFC

v T[oA.AFC

T

are derivable.

Structural Rules

The rules of contraction and weakening.

LA A|AEC rjarc
—————— (contr)

2T (weak
TLA|AFC T A|ABEC e

Contraction is allowed only for formulas A eternally true or, equivalently by
internalisation, for formulas OA simply true.

Justification of the Rules
The justification of the introduction and elimination rules for each logical constants

can be given by reduction and expansion rules that operate on proofs. For example,
in the case of O, we have

D
0 Al.FA Dy
Tof.FA . D
— (@) ! Ioll. - A4
Lol .Fod4™ "4 aFC
¢ (Cbll) g D
Torlf Ak € Copll ArEC
: L AllLFA
(0i) ———
_ Tlia F oA All. FoA @e)
rjA+oa " T'|A oA

Two points are worth mentioning. First, as emphasised by Bellantoni and
Hoffmann, feasible logic is strongly reminiscent of the modal logic S4 used by
Shapiro in his system of epistemic arithmetic (Shapiro 1985), and, indeed, when
formulated in a natural deduction style, the rules of feasible logic are nearly the
same as the ones given by Davies and Pfenning for their constructive version of
S4 (Davies and Pfenning 2001); for example - 0A D (A AODA) is probable.
The only difference with the latter is the use of O and O which allows contraction
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A D (AN A)onlyif Ais OB for some formula B. Second, if we replace in those
rules the logical constants D, A,V by —o, ®, @, and the modal operator O by !,
we obtained the rules of intuitionistic linear logic extended with the weakening
rule, known as intuitionist affine logic in the linear logic community. Indeed these
are the notations that are actually used in Hofmann’s realisability interpretation of
feasible arithmetic. The fact that the rules of feasible, or affine linear, logic can be
justified by local expansion and reduction rules, could be taken to be a rather encour-
aging sign that some theoretic semantics of feasible logic could be given. Alas, we
shall see this hope cannot be fulfilled, but we have to postpone this discussion for a
moment.

Natural Numbers and Induction Principle

The axioms for S (successor) are given by introduction rules for a predicate
constant N

__axiom _ I'|A Nt
- FNO =
” [ ||A - NSt

With those rules and the ones for O, the derivations of the introduction rules for the
complex predicate ON are immediate. Contraction is also allowed for N

I'|A,Nt,Nt - C
C'||ANtEC

(contr)

There is no induction axiom schema for N, but only a feasible induction schema
for ON

A[0/x] D [OVy [Ny D (A[y/x] D A[Sy/x])] D Vx (ONx D A4)]

where A does not contain O.
Feasible induction can be formulated equivalently as an elimination rule for N

AlAy/x] = Aly/x] . [[oNy = ONy
Dy Dy D,
Lo Ao = A[0/x]  Ti||[oNy, A[y/x] = A[Sy/x]  Ta|. - oON¢
Lotz || Ao = At/ x]

where A does not contain O.
The proof of the equivalence between the rule and the axiom schema is
straightforward.
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Two Theorems

When a function f is defined by a system of universally closed equations E, Tf is
the formula ‘

0E D Vx, ¥y, (ONx,.Ny,, D Nf(x,.5,,))

1 — 1 —
where x, = x1,...,x,and y, = yi,..., Ym.

Polytime soundness If Tf is derivable in feasible arithmetic then f is polytime
computable.

Polytime completeness If f is defined in LBC, then TfE is derivable in feasible
arithmetic

The relationship between the sets ON = {x/ONx}, N ={x/Nx}, the safe and
normal positions in a function f defined in LBC and Leivant’s ramified, or
stratified, recursion can be summarized in the table

Normal Safe LBC
ON N Feasible arithmetic
Np Ny Ramified recursion

Since there is a proof of ON € N in FA but none of the converse inclusion, it
could be argued that, from a feasible point of view, the set of feasible numbers is a
subset of the natural numbers. But this supposes to identify ON with N and this is
indeed very problematic.

A Problematic Justification of Induction

It is well known that the usual introduction and elimination rules for N can be
justified by local reduction and expansion rules. For example, we have

Ny - Ny
FNO NyFNSy T FN¢
I' - Nt

FFthn

This is impossible in the case of ON since in its elimination rule the inductive
formula must be O free. This is indeed a very important point but its discussion can
be postponed until Sect. 5.3.3 since a very close situation will be encountered there.

A Problematic Feasibility

A proof theoretic justification of the rules of feasible logic at least has been given.
But the problem is that the derivations in this logic are not feasible. As surprising



148 J. Fichot

as it may be, this is an immediate consequence of the existence of a translation of
intuitionnistic logic in the former which is, as remarked above, affine linear logic
(A= B)* =0A% D Bx =!A%x —o Bx.

And of course some normal derivations in the latter can be of superexponential
length.> Despite the fact that the proofs of the polytime soundness and completeness
of feasible arithmetic are given by means of a realisability interpretation of the
derivations in FA into the terms of a typed lambda calculus, it must be stressed
that the existence of a polytime algorithm is not given by the usual computation
rules operating on the terms of this calculus (8 reduction). It is rather another
interpretation of these typed terms in a polytime categorical model that associates
to each typed term a polytime algorithm (Hofmann 2000). In this paper Hofmann
introduces first a set-theoretic interpretation of the terms inductively defined.® As he
emphasises:

The purpose of this set-theoretic semantics is to specify the meaning of the terms. It allows
us to do without any notion of term rewriting or evaluation. Of course, by directing the
defining equations of the recursors one obtains a normalising rewrite system wich computes
the set-theoretic meaning of first-order functions. However, there is no reason why such
rewrite system should terminate in polynomial time. In order to obtain polynomial time
algorithms from terms one must rather study the soundness proof [for the categorical
polytime interpretation] we give and from it extract a compiler wich transforms programs
[terms] of first-order type into polytime algorithms. (123)

5.3.3 Light Affine Arithmetic

Before we introduce a presentation of some of the rules of light affine arithmetic
in the style of Davies and Pfenning (2001), something must be said about the main
inspiration of light logic that could be given as a slogan: prevent diagonalization!
(Baillot and Mazza 2008).

5.3.3.1 Diagonalization and Contraction
Since the first known use of a diagonal argument in du Bois-Reymond (1875),

diagonalization is a tool used to produce new functions from a list of previously
defined functions. Suppose that f,, (n) = n™. Then for eachm € N, f,, is polytime.

3Tt is a routine exercise to give, by use of the formulas JA D A or (DA AOB) D O(A A B),
which are derivable in feasible logic, examples of derivations of length n with cut-free forms of
exponential length n".

“For example, {(Ax : A.t)b}; = {Ax : A.t}, {b}, = {t}11x— tp},)- This is just B reduction in set-
theoretic clothing, hence Hofmann’s remark that rewrite rules could be used to give the meaning of
the terms. The problem is that, when computed with these rules, the proof terms are not polytime
algorithms.
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But it is clear that the function g defined by g (n) = f, (n) is of exponential growth.
From a logical, or structural, point of view, this definition involves the contraction
of two hypotheses.

x:N,y:NFxY:N
z:NFzZ:N

As is well known, diagonalization is also the tool that Russell borrowed from
Cantor and that led him to discover his infamous proof of a contradiction in Frege’s
Logic. When this proof is formalised with Prawitz’s rules of introduction and
elimination for € given above in 1.2, the derivation obtained has exactly the structure
of a non-normalisable proof term (v) v, v = Ax (x) xx. This derivation also involves
the use of the contraction rule.

The point of departure in Girard (1998) is a careful study of the axioms and
rules that could allow the production of “proofs” of contradiction with Prawitz’s
rules. This analysis leads Girard to introduce in the same paper light linear logic.
The main result given there was the proof the existence of a polytime procedure of
cut elimination by use of the technology of proof nets.” This result was obtained
by adding a modal operator § to the “of course” operator ! of linear logic and by
restricting the rules of linear logic. The weakening rule was added to a slightly
simplified version of this logic by Asperti and the resulting logic, affine light logic,
was studied in a joint paper with Roversi where, in the spirit of the Curry Howard
correspondence, a rather complicated system of proof terms was introduced (Asperti
1998; Asperti and Roversi 2002). Terui gave a much simpler system of proof terms,
light affine lambda calculus, in Terui (2001) and Terui (2007). One point must be
stressed. Light affine logic is intrinsically polytime: all cut elimination strategies are
polytime and strongly convergent.?

5.3.3.2 Light Affine Logic

Our formulation of the rules of light affine logic (LAL) owes much to Baillot’s and
Terui’s one in (2004; 2009). Since we want to stay as close as possible to the style of
formulation used for feasible logic in 2.2, the left hand side of a sequent is separated

7We must also mention the introduction of a light set theory that has been investigated by Terui in
(2004).

80ne peculiarity of the rewriting rules of this calculus is that it enjoys a strong and convergent
polytime normalisation procedure. Independently of the strategy of evaluation, the normal form

of each of its terms ¢ can be obtained in O ( |t|2dm+1) number of steps, where |z] is the length of
t and d (¢) is the maximum of the numbers of modal operator enclosing each subterm of 7 in ¢.
This result implies that the cut elimination procedure for light affine logic is also polytime and
convergent independently of the strategy of cut elimination.



150 J. Fichot

in three different areas. The first one on the left contains formulas that express
perennial propositions that can be contracted and reused as many times as wanted;
they may be think as implicitly prefixed by !. The third one on the right contains
formulas that are simply true. The middle one is much more difficult to understand
intuitively. For the moment, all that can be said is that the formulas in this area are
implicitly prefixed with §. Those formulas are stratified and, in a sense, § can be
seen as the result of a split of each of the operators !, O of affine linear, or feasible,
logic in two different operators in light affine logic !, §. Some of the modal laws
that hold in affine, or feasible, logic for ! or O, for example !A®!B —o! (4 ® B),
1A —o A are not derivable anymore in LAL, but they hold for §; for example
§A®§B — §(A® B),!A —o §A are derivable.” Another example is the modal
law ! (A —o B) —o (1A —o!B); it is not derivable in LAL, but instead there is a
derivation of § (A —o B) —o (§4 —o §B).

perennial stratified true

m— —
Sequent Gy,...,Gi|| Di,....,Dp| T1,...,T, F Atrue
Axioms .|.|A F A

5.3.3.3 Structural Rules

Contraction is allowed only for formulas in the perennial area, weakening for all
formulas.

rjA|® FC IMA,A|A|® FC
(weak)

t
TLA[A,B|©.D FC TN

5.3.3.4 Logical Rules

The only active formulas are the true ones in the third area of the antecedent.

[i|A|©FHA T»|A2|0, - B
Ti2)|A12]@12 FA® B

(®i)

F1||A1|®1|—A®B Fz”AzI@z,A,B =C

Re
Fi2|[A12|@1 FC (®e)
1<i<2
A|® F A;

T[A© F A, & 4, (@)

9Notice that those formulas are the ones mentioned in note 4.
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1<i<2

Lo || Ao, | O FA1 @Ay {Ti| Ai|©i, 4 FC}
Toizll Aoiz2] ®o12-C

(®e)

NN ES:
T|A|® F4—B

(—o i)

I|A|©®FA—oB I A O,FHA
Fi2| Ap| ©12F B

(—oe)

5.3.3.5 Modal Rules

In one step of introduction for §, some, or all, of the true formulas can move to the
perennial area and thus become eligible for contraction.

Al A '_A(§i) Uil A O -84 Th Ay, 4|0, HC

- e
CA]. 84 Fi2]A12|@12 FC Be)

In one step of introduction for ! the formula B that moves to the perennial area, may

be absent.

.IB FA ) DA ©HA Ty, AA,|0, FC
B.|. KA " L2 |A12|@12 HC

(‘)

The elimination rules rests on the idea that the formulas in the modal areas are
implicitly prefixed by a modal operator. Indeed, the rules

TLA|A,B|® +C

VT [A]©.14.§B - C

T

are derivable.

5.3.3.6 Justification of the Rules

If a proposition A appears in the perennial (respectively stratified) area in the
antecedent of a sequent, then any proof of this sequent must contain at least one
step of !-introduction (respectively §-introduction) on at least one branch that links
this judgment and an axiom |.|4 F A. The justification of the introduction and
elimination rules for each logical constants can be given by reduction and expansion
rules that operate on proofs. For example, in the cases of the modal connectives we
have
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If we define A — B =!4 —o B as in Baillot and Terui (2004, 2009) we obtain
a new connective that should not be confused with intuitionistic implication = as

shown by the derived elimination rules for —.

I'A||A|® B
Iy oh
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The right premiss of the elimination rule is weaker than the one for =. Nevertheless,

it can be easily checked that the rules for — are justified.

5.3.3.7 Rules for N

Introduction Rules for N

T|A]® kNt
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Elimination Rules for N

Usually, light linear or affine logic are second order-systems and the type of light
natural numbers is defined by N (x) = VX [IVy (Xy —o XSy) — § (X0 — Xx)]
or, equivalently, by N(x) = VX [IVy (Xy —o XSy) —o (§X0 —o §Xx)]. Since
N(x) FIVy (A[y/x] — A[Sy/x]) —o (§A[0/x] —o §A[y/x]), it is straightfor-
ward to extract from this second-order definition a weaker first-order induction
principle formulated as an elimination rule for N.

1ALy /x] = Aly/x]
D
[- | To. Ao = A[0/x]  |.|B,A[y/x] - A[Sy/x] Till Ar|©1F Nz (No)

B, To1| Ao1| ©1F§A4[t/x]

Justification of the Rules for N

The f reduction rules are:
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But, as in the case of feasible induction, there is no expansion rule for N, since
one elimination step for this constant involves a stratification of the induction for-
mula. Indeed this shows that the introduction rules are stronger than the elimination
rules. This should not be a big surprise. Usually, the introduction rules allow to build
the normal form of any natural number S . .. S0, and the elimination rules to prove
Ny — Nt [y/x], for a term ¢. Obviously, for some term ¢ such proofs must be
prohibited if the system is polytime. To put it differently, all numbers as values are
available in light affine arithmetic but for numbers defined as the value of a potential
computation # [r/x] it must be impossible to prove Nt [n/x] if the computation is
not feasible.

The most serious problem is the connective §that can be justified, at least at first
sight, only a pragmatic ground: the rules for §give very useful tools to control the
computational complexity of the cut elimination procedure. But, despite the fact
that the rules that define this operator are justified in the sense of proof-theoretic
semantics, some more convincing arguments should be given that could explain the
meaning of this operator. Let us begin with a modest one that may help to understand
it in the case of the constant N. We must notice that we have a proof of a coercion
principle Vax (N (x) —o § 7% N (x)) for f € {!, §} but no proof of Vox (§*Nx —o Nx),
k > 1. This remind us of the distinction between CIN and N in feasible arithmetic
that reflects the one between normal and safe variables in Bellantoni and Cook
definition. This very informal analogy has been made much more precise in
Murawski and Ong (2004) where a subsystem L BC~ of Bellantoni’s, Cook’s and
Leivant’s L BC is introduced. Then, a compositional translation L BC ™ into second
order light affine logic is defined such that the following theorem holds.

n m

Theorem. If f of type Ny, ...,No,Ny,...,N; — N is defined in LBC ™, then the
compositional translation of the definition of f is a proof in light affine logic of the
sequent

N1 NG ENGD e 8N ) FENS (x) yh)

Thus the table given in Sect. 5.3.2 above can now be completed

ON N Feasible arithmetic
N
0 Ni LBC
Normal Safe
N §N Light affine logic

5.4 Conclusion

A proof-theoretic semantics for feasible logic and first-order light affine logic has
been outlined, even if the first one is not really a feasible logic. In both cases, the
justification of the induction principle by an 7 expansion rule fails. This shows that
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the main restriction that must be made to constructive arithmetic in order to obtain
a feasible arithmetic is the adoption of a weak induction principle. In the case of
light arithmetic this involves the use of a modal connective that creates for each
proposition its stratified counterpart that can be seen as a way to control, if not
to avoid completely, the undesirable consequences of impredicative definitions. In
future work it could be interesting to study with an eye on proof-theoretic semantics
light set theory where a highly impredicative comprehension principle is used
(Girard 1998; Terui 2004). Since it is well known that feasible and light systems
are intensionally very weak even if they are polytime extensionally complete, the
non-size increasing system that allows definition of polytime algorithms that are
forbidden in the former deserve also to be taken in account (Aehlig et al. 2004;
Hofmann 2003).
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Chapter 6
Recursive Functions and Constructive
Mathematics

Thierry Coquand

6.1 Introduction

The goal of this paper is to discuss the following question: is the theory of recursive
functions needed for a rigorous development of constructive mathematics? I will try
to present the point of view of constructive mathematics on this question. The plan
is the following: I first explain the gradual loss of appreciation of constructivity after
1936, clearly observed by Heyting and Skolem, in connection with the development
of recursivity. There is an important change in 1967, publication of Bishop’s
book, and the (re)discovery that the theory of recursive functions is actually not
needed for a rigorous development of constructive mathematics. I then end with
a presentation of the current view of constructive mathematics: mathematics done
using intuitionistic logic, view which, surprisingly, does not rely on any explicit
notion of algorithm.

6.2 Recursive Function Theory

Let us first recall the definition of recursive function, as done in classical math-
ematics. A numerical function is recursive if it can be defined by the usual
schemas defining primitive recursive functions (projections, constant functions,
composition, primitive recursion) and the following clause: if g(ui,...,u,,x)
is a recursive functions such that for all u;,...,u, there exists x such that
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g(uy,...,uy,x) = 0 then the function f which to uy,...,u, associates the least
x such that g(uy, ..., u,, x) = 0is a recursive function.

Classically, this definition is seen as the exact mathematical definition of the
intuitive notion of computable functions.! In this paper, we want to discuss
the opinion that this notion is necessary for a precise discussion of the notion
of functions in constructive mathematics. This opinion is well expressed is the
following citation from Sanin (1958) that states that constructive mathematics
“began to be developed successfully only in the middle of the 1930s after the precise
mathematical concept of arithmetic algorithm (computable arithmetic function) had
been worked out. Only the introduction into mathematics of the precise notion of
arithmetic algorithm created a satisfactory basis for the treatment of the constructive
interpretation of mathematical propositions and fundamental notions of constructive
mathematical analysis.” Thus the opinion is that, in order to develop in a rigorous
way constructive mathematics, one needs to have a mathematically precise notion of
computable function, and that this is provided by the notion of recursive functions.

There are several problems with such claim, that have been clearly discussed
by Heyting and Skolem (and that we shall recall here, since these are seldom
discussed). These problems are connected with the meaning of existence in the last
clause of definitions of recursive functions: “for all uy, ..., u, there exists x such
that g(uy, ..., u,,x) =0"2

6.2.1 Heyting

Heyting (1962) addresses exactly this question of the meaning of the existential
quantifier in the definition of recursive functions. “As soon as the existential
quantifier in the definition is interpreted non constructively, the notion of recursive
function is no longer connected with that of a calculable function. On the other
hand, if the quantifier is interpreted constructively, then the definition presupposes
some notion of a calculable function.” This is a serious objection to the conceptual
importance of the notion of recursive function in constructive mathematics. It shows
that, understood constructively, the clauses for recursive functions cannot be used to
define the notion of computable function, since this notion is required to understand
the meaning of a sentence of the form Vx3y R(x, y).

Heyting (1962) also complains about the problem of not being precise in the
metalogic (intuitionistic or classical) used with this notion of recursive function.
“The good habit of distinguishing between results on recursive functions obtained
by intuitionistic logic and those which for their proof need classical logic is

1 As is well known, there are several different equivalent form of this definition, but the discussion
that follows apply for these variants as well.

2We stress that we limit our discussion to the notion of rotal recursive functions, and do not consider
partial recursive functions, introduced by Kleene. Only total recursive functions are relevant for
an explanation of the notion of functions in constructive mathematics, which are total by definition
Bishop (1967) and Richman (1990).
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abandoned in many recent papers and books. I regret this, because thereby the
connection of the theory with the notion of effective calculability is obscured.”

The problem in the use of classical logic at the metalevel with this definition of
recursive function is clearly shown by the following example. It is direct that all
functions gx(n) = n < k fork = 0,1,... and the constant function g(n) = 1
are recursive. If we define f(n) = 1 iff there is n consecutive 7 in the decimal
development of w and f(n) = 0 otherwise, then, classically, f is either one of these
functions gy or is the constant function g. In both cases, f is a recursive function.
Hence, classically, f is a recursive function. But this does not seem satisfactory
since, intuitively, we have no way to compute f(n) for a general n.?

As noted by Heyting (1958), Kleene himself (1952) remarks that “we should
not claim that a function is effectively calculable on the ground that it has been
shown to be general recursive, unless the demonstration that it is general recursive
is effective”, and Heyting adds that “this means that for the latter demonstration an
intuitive notion of effectiveness is indispensable”. He also points out in a short paper
(Heyting 1957) the relevant comment of Rosza Peter that “any attempt to define
the notion of a constructive theory leads into a vicious circle, because the definition
always contains an existential quantifier, which in its turn must be interpreted
constructively”.

6.2.2 Skolem

Skolem has a similar concern about the previous definition of recursive function
(Skolem 1955). “At any rate one should not use the quantifiers without any closer
explanation of how they are to be interpreted ... If we for instance consider an
arithmetical sentence of the form Vx.3y.R(x,y) we may interpret it as follows:
We know for any x how to find a y such that R(x, y). I had once some difficulty in
reading the important paper of S.C. Kleene (1936) . .. because he, as other authors,
introduces the quantifiers without comments. In his article we have for example the
theorem: Let R(x, y) be a recursive relation and let Vx.3y.R(x, y) be true. Then
1y.R(x,y) is a recursive function of x. Certainly one ought to know here what is
meant by the words: let Vx.3y.R(x, y) be true.”

The concern is also in the meaning of the existence statement: for all x there
exists y such that R(x,y). It cannot be understood in a formal way, that the
statement Yx3y. R(x, y) is provable in a given formal system, like ZF or ZFC
or ZF extended by some large cardinal axiom, since the meaning will then depend
on the formal system. How shall we understand this statement then? “Perhaps it
is conceived in the Platonist way which means it is take for granted that every
proposition has a meaning per se, and it is decided per se, whether it is “true” or
not. I find this view unacceptable from a finitist standpoint.”

3This problem does not appear using a constructive meta-level, since, in this case, we can only
consider f to be a function when we can decide, for each n, whether or not there is n consecutive
7 in the decimal development of 7.
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In conclusion, the definition of recursive functions, which seems to capture in
a precise mathematical way the intuitive notion of computable function, appears
actually to lack conceptual precision. It is even simply irrelevant, when analysed
from a constructive point of view.

6.2.3 Intuitionistic Consistency Proofs: Two Examples

We shall now illustrate the “belief” that recursive function theory is a prerequisite
for having a precise notion of intuitionistically given sequence of objects in
the logical literature. This is expressed in two reviews of papers that establish
consistency proofs using an intuitionistic metalanguage. One is Church’s review
of one of a paper of P.S. Novikoff’s (1943) and the other is H. Wang’s review
of Lorenzen’s paper on the consistency of the ramified theory of types (Lorenzen
1951).

6.2.3.1 Novikoff

Novikoff’s consistency proof relies on the introduction of infinitary formulae. One
introduces then an inductive definition of regularity (similar to cut-free provability)
and one shows that any provable formula is regular. This notion of infinitary
formulae is an example of “generalised” inductive definitions. Besides the usual
inductive clauses: if F and G are formulae, so are F, FG, Fv G and F — G,
there is also an infinitary one which can be stated as: if Fy, F,, F3, ... are formulae
thensoare F1 F> F3...and FVv F>V F3Vv. .. Thisis an early presentation of infinitary
propositional calculus L, .. This inductive definition makes sense constructively
(Bishop uses a similar definition for representing Borel sets Bishop 1967). The
proof is correct intuitionistically and very interesting (see for instance Mints’
survey article Mints 1991). However, Novikoft’s paper can only be understood if
one accepts to take this generalised inductive notion of formulae as primitive and
constructively meaningful.

Church (1946) gave a clear and precise review of this paper. We shall be
interested in the informal evaluation of the paper by Church: “In the reviewer’s
opinion the most serious objection to the author’s formulation is the failure to
specify more precisely the restriction imposed, that an infinite sequence of formulas
used in the construction of a formula ... must be intuitionistically given ... This
observation moreover casts doubt on the author’s claim that his consistency proof is
intuitionistically valid.”

At the end of his paper, Novikoff presents an elegant application: a proof of
closure under Markov’s rule. If each F (i) is either T or L and F(1) vV F(2) Vv ...
is provable then we can find k such that F(k) is T. There also, this argument
can only be understood constructively. Church comments on this that “the author
enters into a discussion which apparently is intended to show some bearing of his
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notion of regularity upon questions of existence and effective existence in recursive
mathematics. But the results actually obtained in this discussion, if the reviewer has
understood them correctly, are trivial or nearly so.”

These comments are a clear indication of the lack of appreciation of constructiv-
ity, which was noticed in the paper of Heyting above (1962). One also can notice
that another review by McKinsey of the same paper qualifies the calculus as “non
constructive”, probably because of its infinitary character. It is tempting to associate
this lack of appreciation of constructivity to the belief that only the (classical) notion
of recursive functions can give a precise meaning to the notion of constructive
objects. For instance, in this view, when introducing infinitary formulae, one would
talk about codes (as natural numbers) of formulae, and only consider a formula
FiF, F5. .. if the sequence Fy, F,, F3, ...isrecursive.

6.2.3.2 Lorenzen’s Paper

Similar remarks can be made about Wang’s review (1951) of Lorenzen’s proof of
consistency of ramified type theory (Lorenzen 1951). Wang fails to acknowledge
explicitely the difference between Lorenzen’s argument, which is constructive, and
another consistency proof which would be by a truth definition (non constructive):
“the reviewer finds it very hard to articulate about the difference between the
two consistency proofs of R.” As he then writes, Lorenzen “himself phrases the
difference by saying that his proof satisfies Hilbert’s requirement of consistency
proofs that only constructive modes of reasoning are available.” What is surprising
is that Wang does not state explicitely that Lorenzen’s proof is done in a constructive
metalanguage. There is an important difference with a proof of consistency via a
truth definition which is not constructively valid (since the truth of an universally
quantified statement is in general not decidable). This difference is furthermore
pointed out by Lorenzen, but Wang finds this distinction between a constructive
argument and a non constructive one “hard to articulate”.

6.3 Foundations of Constructive Analysis

The situation in 1967 (before the publication of Bishop’s book (1967)) seems to
be the following. The complaints of Heyting and Skolem about the lack of concern
for constructive issues, are forgotten. Recursive function theory is usually presented
without any consideration if the results are obtained using intuitionistic logic or
not (see for instance Shoenfield 1967). Even when presented intuitionistically,
the theory of recursive functions is furthermore considered to be a necessary
prerequisite for developing constructive mathematics. Heyting, in the 1962 paper
(Heyting 1962), which is a reflection on 30 years of work in the foundation of
mathematics states that “constructivity is much less appreciated now than it was
30 years ago. Yet effectiveness is a primitive notion, for a proof is only a proof if it
is effectively given”.
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A good example is provided by the book Notes on Constructive Mathematics
by P. Martin-Lof (1970), which was, as stated in the preface, written before the
author got to know about Bishop’s book. This book clearly adopts the view that
a rigorous presentation of constructive mathematics should rely on the notion of
recursive functions. The book is also remarkable in giving a point-free presentation
of some spaces, such as Cantor space. But, typically, an open set of Cantor space is
defined to be a recursively enumerable set of basic open (that are concrete objects),
and not, as we shall do it now in constructive mathematics, as an arbitrary set of
basic open (leaving this notion of “arbitrary set” informal). Similarly, it presents
informally the Borel subsets of Cantor space as infinary propositional formulae on
simple sets (basic open) but feels the need to make precise this definition and define
then Borel subsets of Cantor space as a recursively enumerable set of suitable finite
sequences.* Martin-Lof remarks also that “long before the notion of effectiveness
was handled with great precision by Borel (1908) and Brouwer (1918) who based
many non trivial mathematical arguments on it”. Most of the results in this book
can be directly interpreted as important contribution to constructive mathematics
without relying on the notion of recursive function. Indeed, this work is an important
motivation for the introduction of formal topology (Sambin 1987). Logically, it may
seem unsatisfactory to leave the notion of functions informal as done in Bishop
(1967) and Mines et al. (1988). Type theory (Martin-Lof 1984) provides a precise
formal system in which one can express constructive mathematics (Rathjen 2005).

6.3.1 Bishop

A real conceptual breakthrough was achieved in the work of Bishop Foundations
of Constructive Analysis (Bishop 1967). Bishop (re)discovered that it is not
only possible, but also conceptually more satisfactory, to introduce functions in
constructive mathematics without mentioning recursivity. He uses the notion of
“rules” as primitive in his definition of function The reasons are clearly stated
(Bishop 1967). “This requirement that every sequence of integers must be recursive
is wrong on three fundamental grounds. First, there is no doubt that the naive
concept is basic, and the recursive concept derives whatever importance it has from
some presumption that every algorithm will turn out to be recursive. Second, the
mathematics is complicated rather than simplified by the restriction to recursive
sequences ... Third, no gain in precision is actually gained ... the notion of
a recursive function is at least as imprecise as the notion of a correct proof.”
This conceptual breakthrough is clearly emphasized in Stolzenberg’s review of
Bishop’s book (Stolzenberg 1970). “The undefined concept of construction actually

4 As noticed in Heyting’s paper (1961), and as is also stressed in Kreisel’s review of this paper, such
infinitary notions are naturally and elegantly expressed using generalised inductive definitions in
an intuitionistic metatheory.
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admits a usage no less precise and clear than the undefined concept of an integer.
This remarkable fact can only be obscured by bringing in recursive functions at this
level.”

6.3.2 Whatis Then Constructive Mathematics?

These insights of Bishop, that Turing machines and recursive functions are not
relevant to explain the notion of function in constructive mathematics, are now
taken into account in current work in constructive mathematics (Lombardi, Bridges,
Richman, . ..). For instance, Richman writes that “equivalence of Turing machines,
recursive functions, and Markov algorithms presumably settled once and for all the
precise definition of “computable.” Bishop claimed, to the contrary, that if you had
a constructive proof that a Turing machine halted and produced the desired result,
then you didn’t need the Turing machine in the first place; and in the absence of such
a proof, the Turing machine didn’t establish computability.” This is reminiscent of
the concerns that were made previously by Heyting and Skolem.

An interesting further conceptual discovery in current constructive mathematics
has been the gradual realisation that the best description of constructive mathematics
is mathematics developed using intuitionistic logic (Richman 1990; Bridges 1999).
What is remarkable in this characterisation is that it is independent of any notion of
algorithms. Another connected remarkable fact, discovered by and Heyting (1930),
is that intuitionnistic logic can be captured by a formal system of deduction rules.

6.3.3 Example

Let us give a typical example of a statement of constructive mathematics, here
constructive algebra (Mines et al. 1988; Coquand and Lombardi 2006). One defines
a commutative ring as usual. A local ring will be defined as a ring such that, for
any element x of the ring, we have an inverse of either x or of 1 — x. Given these
definitions, we can now state the following result.

Theorem. If F is an idempotent square matrix over a local ring R then F is similar
to a matrix of the canonical form

I 0

0 0

All this can be read as an ordinary mathematical statement. If we read this
statement constructively, we can see it as the specification of an algorithm. This
algorithm, given a “subprogram” witnessing the fact that given x, we can produce
an inverse of x or of 1 — x, will compute for any projection matrix F an invertible
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matrix P such that the projection matrix PFP~' is in canonical form. The
constructive proof is both the program and its correctness proof. Notice also that this
“subprogram” providing an inverse of x or of 1 —x does not need to be computable:
it can be an “oracle” which produces the required inverse in a non computable way.
Also, the ring operation are implicitly “computable” (since they are constructive
functions), but the ring equality is not assumed to be decidable.

For the proof of this statement to be constructive (see for instance Coquand and
Lombardi 2006), we do not need to mention explicitely the notion of “programs” or
“algorithms”. All we require is that this argument is intuitionistically valid, i.e. does
not rely on the law of Excluded-Middle.

6.4 Conclusion

The world of constructive mathematics is “incomparable” conceptually to the world
of recursive function theory developed in classical mathematics. One can however
establish technical connections. For instance, in a fixed formal system, one can
prove that any well-defined constructive function is a computable function, for
instance using Kleene’s realisability interpretation (Kleene 1952). But it is crucial to
keep the distinction between the two notions. As explained clearly by the citations
of Heyting, Skolem and Bishop above, the notion of function in constructive
mathematics is a primitive notion which cannot be explained in a satisfactory way
in term of recursivity.
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Chapter 7
Godel and Intuitionism

Mark van Atten

Abstract After a brief survey of Godel’s personal contacts with Brouwer and
Heyting, examples are discussed where intuitionistic ideas had a direct influence
on Godel’s technical work. Then it is argued that the closest rapprochement of
Godel to intuitionism is seen in the development of the Dialectica Interpretation,
during which he came to accept the notion of computable functional of finite type as
primitive. It is shown that Godel already thought of that possibility in the Princeton
lectures on intuitionism of Spring 1941, and evidence is presented that he adopted
it in the same year or the next, long before the publication of 1958. Draft material
for the revision of the Dialectica paper is discussed in which Godel describes the
Dialectica Interpretation as being based on a new intuitionistic insight obtained by
applying phenomenology, and also notes that relate the new notion of reductive
proof to phenomenology. In an appendix, attention is drawn to notes from the
archive according to which Godel anticipated autonomous transfinite progressions
when writing his incompleteness paper.

The principal topics are (1) personal contacts Godel had with Brouwer and
Heyting; (2) various influences of intuitionism on Goédel’s work, in particular on the
introduction of computable functional of finite type as a primitive notion; (3) archive
material in which Godel describes the Dialectica Interpretation as based on an
intuitionistic insight obtained by an application of phenomenology; (4) archive
material around the notion of reductive proof and its relation to phenomenology;
and, in an appendix, (5) archive material according to which Godel anticipated
autonomous transfinite progressions when writing his incompleteness paper. A short
companion paper describes archive material documenting the influence of Leibniz
on the revision of the Dialectica paper (van Atten forthcoming).
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7.1 Personal Contacts

7.1.1 Godel and Brouwer

According to Wang (1987, p. 80), ‘it appears certain that Godel must have heard
the two lectures’ that Brouwer gave in Vienna in 1928; and in fact in a letter to
Menger of April 20, 1972, Godel says he thinks it was at a lecture by Brouwer
that he saw Wittgenstein (Godel 2003b, p. 133). But it is not likely that on that
occasion Brouwer and Godel had much, or indeed any, personal contact. In a letter
of January 19, 1967, to George Corner of the American Philosophical Society, who
had solicited a biographical piece on the then recently deceased Brouwer,! Godel
wrote that ‘T have seen Brouwer only on one occasion, in 1953, when he came to
Princeton for a brief visit’2; this is consistent with the above if Godel meant that he
had never actually talked to Brouwer before 1953.

In 1975 or 1976, Godel stated that the first time he studied any of Brouwer’s
works was 1940.3 A letter to his brother Rudolf in Vienna of September 21, 19414
documents an attempt to buy two of Brouwer’s publications, his dissertation Over de
Grondslagen der Wiskunde (On the Foundations of Mathematics) and the collection
of three articles Wiskunde, Waarheid, Werkelijkheid (Mathematics, Truth, Reality).5
The attempt is of some additional interest because of the situation in which it was
written:

Now I have a big favour to ask: could you order the following two books by L.E.J. Brouwer
for me at Antiquarium K.F. Koehler (Leipzig, Taubchenweg 21)? 1. Over de Grondslagen
der Wiskunde Katalog 115 No 487 2. Wiskunde, Waarheid, Werkelijkheid Groningen 1919.
They are small books, which will cost only a few Marks. I am told that German bookstores
ship books to foreign addresses without ado (probably at the risk of the recipient), if they

December 2, 1966.

2Carbon copy in the Kurt Godel Papers, Princeton, box 4c, folder 64, item 021257; more on that
visit below. In the following, references of the form ‘x/y, item n’ are to item n in box x, folder
y of the Kurt Godel Papers. The documents in the microfilm edition of the archive do not always
show an item number.

3See Godel’s draft replies to Grandjean’s questionnaire, Godel (2003a, pp. 447, 449); also Wang
(1987, pp. 17, 19).

“Hence, after his Princeton lecture course on intuitionism of Spring 1941; according to Godel’s
letter to Bernays of February 6, 1957, these were held at the Institute for Advanced Study (i.e., not
in the Mathematics Department) (Godel 2003a, p. 144). IAS Bulletin no. 9, of April 1940, gives
as dates for the Spring Term of the academic year 1940-1941 February 1 to May 1. In the letter
to Bernays, Godel mentions that there exists no transcript of the course. However, his own lecture
notes still exist, and are kept in the archive in 8c/121 (item 040407) and 8c/122 (item 040408).
There are related notes in 8¢/123, item 040409. Also the notes in 6a/54, item 030077, ‘Beweis
d[er] Giiltigkeit d[er] int[uitionistischen] Ax[iomen]” belong with these.

SBrouwer (1907, 1919). The latter is a combined reprint of Brouwer (1908, 1909, 1912). The one
place in Brouwer’s papers between 1919 and 1941 where Brouwer (1907, 1919) are referred to
together is footnote 1 of Brouwer (1922) (and its Dutch version Brouwer 1921).



7 Godel and Intuitionism 171

are ordered and paid for by a resident. On the other hand, from here nothing can be ordered
from Germany through bookstores. Of course I make this order only in case the books are
in stock. To have them searched for would come too expensive.®

The correspondence of the two brothers was then interrupted by the World War.
Were the books sent? They are not in Godel’s personal library (although they
might have disappeared from it). In the letters after the war, Godel did not repeat
the request.” Be that as it may, Godel did at some point before 1952 make a
detailed study of Over de Grondslagen der Wiskunde, as witnessed by the 13
pages of reading notes in his archive (10a/39, item 050135; on the envelope Godel
wrote ‘< 527).

When Brouwer visited Princeton in 1953, Gdédel invited him twice: once for
lunch and once for tea. From Godel’s remarks in a letter to his mother dated
October 31, 1953 (Schimanovich-Galidescu 2002, p. 197), one gathers that Godel
did this because he felt obliged to. Indeed, Kreisel (1987b, p. 146) reports that
‘Godel was utterly bored by Brouwer’, in spite of the latter’s ‘probably genuine
exuberance’. Brouwer, in turn, in a letter to Morse of January 4, 1955 (van Dalen
2011, p. 455), sent his best wishes to several named people at the Institute, but
did not include Godel. A more positive, though less direct, connection between
Brouwer and Godel is that the author of the monumental handbook on English
grammar Poutsma (1914-1929) that Godel considered authoritative (Godel 2003b,
p- 303) was a maternal uncle of Brouwer’s.

7.1.2 Godel and Heyting

Godel began to correspond with Brouwer’s former student and then foremost
follower, Arend Heyting, immediately after the Konigsberg conference in 1930 that
they had both attended. Like Brouwer, Heyting will not have been surprised by
the incompleteness of formal systems for arithmetic, but Heyting acknowledged
more explicitly the work behind it. Plans in the early 1930s for a joint book by
Heyting and Go6del, which was to present an overview of contemporary research

SWienbibliothek im Rathaus, Godel Sammlung, item LQH0236598. Translation MvA. ‘Jetzt habe
ich noch eine grosse Bitte an Dich: Konntest Du die folgenden beiden Biicher von L.E.J. Brouwer
beim Antiquarium K.F. Koehler (Leipzig, Taubchenweg 21) fiir mich bestellen? 1. Over de
Grondslagen der Wiskunde Katalog 115 No 487 2. Wiskunde, Waarheid, Werkelijkheid Groningen
1919. Es sind kleine Biicher, die bloss ein paar Mark kosten werden. Man sagt mir dass Deutsche
Buchhandlungen ohne weiteres Biicher an auslidndische Adressen (wahrscheinlich auf Gefahr des
Empfingers) versenden, wenn Sie von einem Inlinder bestellt u. bezahlt werden. Andrerseits kann
man von hier aus durch Buchhandlungen nichts aus Deutschland bestellen. Natiirlich mache ich die
Bestellung bloss fiir den Fall, dass die Biicher vorritig sind. Sie suchen zu lassen kime zu teuer.’

n a letter of August 3, 1947 (Wienbibliothek im Rathaus, Godel Sammlung, item LQH0237199),

he does ask Rudolf to find out in a bookstore whether anything had been published since 1941 by
or about Leibniz.
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in the foundations of mathematics, never quite materialized. Eventually, Heyting
published his part separately (Heyting 1934), and Godel never completed his.®

In December 1957, Godel and Heyting met again. The occasion was a lecture
tour that Heyting was making from the East to the West coast of the United
States. In Princeton, Heyting gave two lectures at the Institute for Advanced
Study, on Godel’s invitation,” and one at Princeton University. The titles and dates
were ‘Intuitionistic theory of measure and integration’, IAS, December 9; ‘The
interpretation of intuitionistic logic’, IAS, December 10; and ‘On the fundamental
ideas of intuitionism’, Princeton University, December 11.'°

William Howard was at the lecture on measure theory and integration, and
recalls:

I was working at Bell Labs at the time and it was only a short drive to Princeton. Nerode
mentioned that Heyting was going to give a lecture, so we went. Godel sat in the back. Then,
during the question period at the end of the lecture, he got up with his little notebook in hand
and started reading out a series of questions (criticisms). The only one I remember was as
follows: Can a proposition which is neither true nor false today become true tomorrow
(i.e., if someone proves it tomorrow)? Godel really did not like the idea that truth could
vary from one day to the next. He really went after Heyting, who seemed to be rather taken
aback.!!

It is somewhat curious that Godel should have chosen the lecture on measure
theory rather than the one on the interpretation of logic, which of course he knew
would be held the next day, to voice this particular criticism; perhaps Godel wanted
to make his opening shot at the earliest possible occasion.

In that lecture on logic, Heyting restricted himself to discussing what he calls
the ‘originally intended interpretation’, i.e., what has become known as the Proof
Interpretation, but should really be called Proof Explanation'?; in particular, he did
not discuss Godel’s work from the 1930s.

Godel, in his invitation letter, had expressed the hope that Heyting would ‘be
able to stay in Princeton for some days in addition to those when you will be giving
the lectures so that we may discuss foundational questions with you’.'? Because of

8See the Godel-Heyting correspondence, and Charles Parsons’ introduction to it, in Godel (2003b).
Draft notes by Godel for this joint project are in 7a/10, item 040019.

9Godel to Heyting, October 7, 1957, Heyting archive, item V57E-b-6.

10The texts of Heyting’s lectures are held in the Heyting papers at the Rijksarchief Noord-Holland
in Haarlem, items V57 (Dec 11), V57A (Dec 10), and V57B (Dec 9).

personal communication from William Howard, email to MVA, January 25, 2013.

12As Sundholm (1983, p. 159) points out, in logical-mathematical contexts, ‘interpretation® has
come to refer to the interpretation of one formal theory in another. In contrast, the so-called Proof
Interpretation (also known as BHK-Interpretation) is not an interpretation in this mathematical
sense, but a meaning explanation. Godel’s Dialectica Interpretation, on the other hand, indeed is
one. Note that this immediately shows that the Proof Explanation and the Dialectica Interpretation
differ in kind. Of course, a mathematical interpretation may devised because one has a particular
meaning explanation in mind for the formulas it yields; this was Godel’s foundational aim with the
Dialectica Interpretation.

13Godel to Heyting, October 7, 1957, Heyting archive, item V57E-b-6.
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Heyting’s further commitments, he actually had to leave Princeton immediately.
But according to a little diary that he kept of his American tour,'* he did have
an otherwise unspecified discussion with Godel on December 6 or 7, lunch with
Godel on December 8, and a discussion with Godel on impredicative definitions on
December 9.

The latter discussion may well have touched on the clause for implication in
Heyting’s Proof Explanation, but no notes on its actual contents seem to exist.'3
It may also have included Godel’s distinction between ‘predicative intuitionism’ and
‘impredicative intuitionism’, which later led Kreisel, Myhill and others to develop
the latter (Kreisel 1968, section 5; Myhill 1968, p. 175). Perhaps they talked about
their shared conviction that constructive mathematics (understood as a foundational
program) is not contained in classical mathematics, and is an altogether different
subject (see page 187 below). Another possible topic in this conversation may have
been Markov’s Principle. Not long before Heyting’s visit, Godel had shown that if
one can establish completeness of intuitionistic predicate logic relative to a so-called
internal interpretation, this entails the validity of Markov’s Principle.'® Markov’s
Principle is rejected by most, though not all, intuitionists. Godel’s argument, which
also goes through for the notions of validity defined by Beth and Kripke, therefore
seems to show that the intuitionist cannot hope ever to establish completeness of
intuitionistic predicate logic. This result was a motivation for Veldman and de Swart
to develop alternative semantics, relative to which completeness does not entail
Markov’s Principle (de Swart 1976b, 1977; Veldman 1976). They treat negation
not as absence of models but as arriving at a falsehood. In particular, de Swart
(1977) presented a semantics that, within the limits of formalization, seems to mirror
Brouwer’s conception of mathematical activity quite faithfully.

The last contact between Heyting and Godel seems to have been in 1969, when
Heyting inquired if Godel were interested, as was rumoured, in publishing his
collected works. If true, Heyting continued, he would very much like to have them
appear in the series Studies in Logic (North-Holland), of which he was one of
the editors. But Godel replied that he actually had no such interest, and that he
considered such a project not very useful, as his important papers were all readily
available (Godel 2003b, pp. 74-75).

“Heyting archive, item V57E-r.
SWilliam Howard (email to MvA, February 1, 2013) recalls:

Re the issue of impredicativity in BHK: Godel and I did not discuss this issue explicitly,
but it was implicit in some of our discussions of my little theory of constructions (the
formulae-as-types paper [Howard 1980], which then existed in the form of handwritten
document, which I had sent to Godel as part of my application for my sabbatical at the IAS,
1972-1973). Yes, he had obviously read the little paper.

16This result was published by Kreisel (1962, p. 142), who specifies that Godel had obtained it in
1957. See for a discussion of the notion of internal validity Dummett (2000), section 5.6.
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7.2 Philosophical Contacts

Godel recognized the epistemological advantages of constructivism, and looked for
interpretations of formal systems for intuitionistic logic and arithmetic. A character-
istic feature of Godel’s technical results in this area is that none of them is concerned
with the intuitionists’ intended interpretations, except, perhaps, in the negative sense
of avoiding them. To Sue Toledo, he said (at some point in the period 1972—-1975)
that ‘intuitionism involves [an] extra-mathematical element. Namely, the mind of
the mathematician + his ego’, and he described intuitionism to her as ‘essential
a priori psychology’ (van Atten and Kennedy 2009, p. 496). (I will come back to
that characterization below.) This did not keep Godel from studying specifically
Brouwerian topics closely”; moreover, on various occasions Gddel has shown that
he knew how to let (ideological) intuitionism inspire him in his own work. These
will be commented on, or, in the last case, discussed at length, in the following
sections:

The Incompleteness Theorem (Sect. 7.2.1)

Weak Counterexamples (Sect. 7.2.2)

Intuitionistic Logic as a Modal Logic (Sect. 7.2.3)
Continuity Arguments in Set Theory (Sect. 7.2.4)

Around the Dialectica Interpretation (Sect. 7.2.5)

7.2.1 The Incompleteness Theorem

According to an entry in Carnap’s diary for December 23, 1929,'® Godel talked to
him that day
about the inexhaustibility of mathematics (see separate sheet). He was stimulated to this

idea by Brouwer’s Vienna lecture. Mathematics is not completely formalizable. He appears
to be right. (Wang 1987, p. 84)"°

On the ‘separate sheet’, Carnap wrote down what Godel had told him:

We admit as legitimate mathematics certain reflections on the grammar of a language
that concerns the empirical. If one seeks to formalize such a mathematics, then with
each formalization there are problems, which one can understand and express in ordinary

17See the index to his Arbeitshefte (5¢/12, item 030016) and the headings in the Arbeitshefte, both
published in English in Dawson and Dawson (2005, pp. 156-168), as well as the remarks on Godel
and Brouwer’s Bar Theorem further down in the present paper, and footnote 114.

181n line 14 on p. 498 of van Atten and Kennedy (2009), read ‘23’ for ‘12’.

5 3/4-8 1/2 Uhr Godel. Uber Unerschopflichkeit der Mathematik (siehe besonderes
Blatt). Er ist durch Brouwers Wiener Vortrag zu diesen Gedanken angeregt worden. Die
Mathematik ist nicht restlos formalisierbar. Er scheint recht zu haben. (Kohler 2002, p. 92)
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language, but cannot express in the given formalized language. It follows (Brouwer) that
mathematics is inexhaustible: one must always again draw afresh from the ‘fountain of
intuition’. There is, therefore, no characteristica universalis for the whole mathematics,
and no decision procedure for the whole mathematics. In each and every closed language
there are only countably many expressions. The continuum appears only in ‘the whole
of mathematics’ [...] If we have only one language, and can only make ‘elucidations’
about it, then these elucidations are inexhaustible, they always require some new intuition
again. (Wang 1987, p. 50, trl. Wang?, original emphasis)*’

Brouwer’s argument in Vienna had been that no language with countably many
expressions can exhaust the continuum, hence one always needs further appeals to
intuition (Brouwer 1930, pp. 3, 6). Of course, the theorems that Gédel went on to
demonstrate are of a different and much more specific nature.?!

7.2.2 Weak Counterexamples

Also in Brouwer’s Vienna lectures, Godel will have noticed Brouwer’s technique
of the weak counterexamples Brouwer (1929). Godel used this technique shortly
after, and most effectively, when in 1930 he refuted Behmann’s claim that classical
existence proofs (not involving the uncountable infinite) can always be made
constructive.?

7.2.3 Intuitionistic Logic as a Modal Logic

Another case is Godel’s translation of 1933 of intuitionistic propositional logic
into the modal logic S4 (Godel 1933b). Troelstra (Godel 1986, p. 299) has
pointed out that this translation was very likely inspired by Heyting’s talk at

20“Wir lassen als legitime Mathematik gewisse Uberlegungen iiber die Grammatik einer Sprache,
die vom Empirischen spricht, zu. Wenn man eine solche Math. zu formulieren versucht, so gibt es
bei jeder Formalisierung Probleme, die man einsichtig machen und in gewohnlicher Wortsprache
ausdriicken, aber nicht in der betroffenen formalisierten Sprache ausdriicken kann. Daraus folgt
(Brouwer), dass die Math. unerschopflich ist: man muss immer wieder von neuem aus dem “Born
der Anschauung” schopfen. Es gibt daher keine Characteristica universalis fiir die gesamte Math.,
und kein Entscheidungsverfahren fiir die gesamte Math. In irgend einer abgeschlossenen Sprache
gibt es nur abzéhlbar viele Ausdriicke. Das Kontinuum tritt nur in der “gesamten Math.” auf. [...]
Wenn wir nur eine Sprache haben, und iiber sie nur “Erlduterungen” machen konnen, so sind
diese Erlduterungen unausschopfbar, sie bediirfen immer wieder neuer Anschauung.” (Kohler 2002,
p- 110, original emphasis.) Note that Kohler, unlike Wang, does not explicitly identify this as the
‘separate sheet’ mentioned in the diary note; but both give the same date for it.

2lFor Brouwer’s reaction to the incompleteness theorems, the reader is referred to section 3.5 of
the on-line article van Atten (2012).

22See Godel (2003a, p. 17, 2003b, pp. 565-567), and Mancosu (2002).
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the Konigsberg conference, which Godel attended and of which he reviewed the
published version (Godel 1932; Heyting 1931). Heyting introduced a provability
operator, but chose not to develop its logic. As he explained, on the intuitionistic
understanding of mathematical truth, an explicit provability operator is redundant.
Godel’s idea of truth, of course, was different.

7.2.4 Continuity Arguments in Set Theory

A use of intuitionistic ideas that goes beyond the heuristic is found in Godel’s work
in set theory. In conversation with Hao Wang, Godel claimed, ‘In 1942 I already
had the independence of the axiom of choice [in finite type theory]. Some passage
in Brouwer’s work, I don’t remember which, was the initial stimulus’ (Wang 1996,
p. 86).% One can see what idea of Brouwer’s Godel was probably referring to
by consulting Godel’s Arbeitsheft 14 which contains his notes on the proof dated
‘ca. Ende Mirz 1942°. There, Godel uses Brouwer’s continuity principle for choice
sequences to define a notion of ‘intuitionistic truth’ for propositions about infinite
sequences.>* The principle states that if to every choice sequence a natural number
is assigned, then for each sequence this number is already determined by an initial
segment. By 1942, Godel may have seen it in Brouwer’s papers 1918, 1924a, 1924b,
and 1927; in the Godel archive, item 050066 in 9b/13 contains shorthand notes to the
latter two. Unfortunately I have not been able to determine the date of these notes.?’
Godel also described to Wang the method he had used as ‘related’ to Cohen’s (Wang
1996, p. 251). In Cohen’s forcing, too, truth values for propositions about certain
infinite objects (generic sets) are always already determined by information about
a finite part of such an object. This is of course not to suggest that Godel invented
forcing before Cohen: much more than the idea of finite approximations is needed
to arrive at that.?

BGodel did not publish this result; he states his reasons in a letter to Church of September 29,
1966 (Godel 2003a, pp. 372-373) and in a letter to Rautenberg of June 30, 1967 (Godel 2003b,
pp. 182-183).

245¢/26, item 030032. See, e.g., pp. 14-16.

20n the otherwise empty back, Godel wrote ‘Brouwer bar theorem’; that English term was
introduced only in Brouwer (1954). But it is not excluded that Godel made these notes before
or in 1942 and then added that jotting on the back later.

25For a detailed analysis of the analogy between forcing and intuitionistic logic, see Fitting (1969).
In fact, Cohen’s development of forcing after his initial discovery was influenced by this analogy,
when Dana Scott pointed out to him how it could be used to simplify his treatment of negation;
see Scott’s foreword to Bell (1985). Scott there also mentions the anticipation of forcing in Kreisel
(1961).
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7.2.5 Around the Dialectica Interpretation

By far the closest rapprochement of Godel to intuitionism, however, is seen in the
change over the years in Godel’s conception of constructivity. It would probably
be one-sided to consider this change part of intuitionism’s legacy on Godel, yet it
is inextricably intertwined with his ponderings on the Proof Explanation from the
early 1930s onward. Moreover this change was such that, as we will see, it actually
brought Godel closer to the Proof Explanation that he otherwise always criticized.

7.2.5.1 Early Qualms About the Proof Interpretation

Godel’s qualms with Heyting’s Proof Explanation seem to have arisen as soon as it
was devised. The problem, as Godel voices it in his Cambridge lecture in 1933, is
that the clause for negation (more generally, the clause for implication) involves the
notion of arbitrary intuitionistic proof in an essential way, and that this notion is too
indeterminate. It does not comply with a condition that Godel at the time posed on
constructivity:

Heyting’s axioms concerning absurdity and similar notions [...] violate the principle [...]
that the word ‘any’ can be applied only to those totalities for which we have a finite
procedure for generating all their elements [. .. ] The totality of all possible proofs certainly
does not possess this character, and nevertheless the word ‘any’ is applied to this totality
in Heyting’s axioms [...] Totalities whose elements cannot be generated by a well-defined
procedure are in some sense vague and indefinite as to their borders. And this objection
applies particularly to the totality of intuitionistic proof because of the vagueness of the
notion of constructivity. (Godel 1933c, p. 53)

Godel says—at this point— that a general notion of intuitionistic proof would only
be constructively acceptable if it forms a totality that can be generated from below.
An intuitionist might reply that this is the wrong demand to make. What matters to
the intuitionist is that ‘we recognize a proof when we see one’ (Kreisel). The clause
for implication (and hence that for negation) is not to be understood as quantifying
over a totality of intuitionistic proofs—something that for a principled intuitionist
like Brouwer or Heyting does not exist. Rather, the clause should be understood as
expressing that one has a construction that, whenever a proof is produced that one
recognizes as a proof of the antecedent, can be used to transform that proof into
a proof of the consequent. Although an intuitionist believes the notion of proof to
be open-ended, this understanding of implication can be expected to work because
in proofs of implications usually nothing more is assumed about a proof of the
antecedent than that it indeed is one.

The prime example of an intuitionistic theorem that goes beyond that assumption
is Brouwer’s proof of the Bar Theorem (Brouwer 1924a,b, 1927, 1954). This
(classically trivial, but constructively remarkable) theorem basically says that, if a
tree contains a subset of nodes such that every path through the tree meets it (a ‘bar’),
then there is a well-ordered subtree that contains a bar for the whole tree. Brouwer’s
extraction of additional information from the hypothesis that we have obtained a
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proof of the antecedent (i.e., that we have obtained a proof that the tree contains
a bar) is based on his analysis of proofs as mental structures, and of mathematical
objects as mentally constructed objects (a view wholly opposed to Godel’s). These
analyses enable Brouwer to formulate a necessary condition for having a proof
of the antecedent, namely, that it admit of being put into a certain canonical
form (Brouwer 1927, p. 64); on the basis of that canonical form, a proof of the
consequent is obtained. So what enables Brouwer to say something about all proofs
of the antecedent is not the availability of a method that generates exactly these, but
an insight into their mental construction that yields a necessary condition on them.
In effect, Brouwer deals with ‘such vast generalities as “any proof” ’ by presenting
a transcendental argument; for more on this, see Sundholm and van Atten (2008).77

In notes of 1938 for his ‘Lecture at Zilsel’s’, Godel states that ‘Heyting’s system
[for intuitionistic arithmetic] violates all essential requirements on constructiv-
ity’ (Godel 1938b, p. 99). In his Yale lecture of April 15, 1941, ‘In what sense
is intuitionistic logic constructive?’, he phrases his objection to Heyting’s Proof
Explanation by saying that the clause for implication requires that

the notion of derivation or of proof must be taken in its intuitive meaning as something
directly given by intuition, without any further explanation being necessary. This notion of
an intuitionistically correct proof or constructive proof lacks the desirable precision. (Godel
1941, p. 190)

Then Godel goes on to present, in an informal manner, an interpretation of HA
in a system of higher types X, and explains the motivations behind it. This use of
functionals for a consistency proof of arithmetic is the main step forward compared
to the discussion of functionals in the Lecture at Zilsel’s. It seems Godel had
found the heuristic how to do this on January 1, 1941.% In the lecture, Godel

?"In a draft note for the revision of the Dialectica paper (9b/148.5, item 040498.59), Godel wrote:
‘Finally I wish to note that the definition of a proof as an unbroken chain of immediate evidences
should be useful also for Heyting’s interpretation of logic. In particular A O B can then be defined
simpler, namely by requiring that a proof of A D B is a finite sequence P; of propositions ending
with B and such that each P; # A is immediately evident, either by itself, or on the basis of some
of the preceding propositions.” A proof of the Bar Theorem based on that explanation of D has not
yet been found; compare Godel’s footnote d (Godel 1990, p. 272).

285¢/19, Arbeitsheft 7 (item 030025), pp. 12-15 in the backward direction. This note is labeled
‘Gentzen’. In the index to the Arbeitshefte (5¢/12, item 030016), the reference to this note
is the first entry under the heading ‘Interpr.[ation] d.[er] int.[uitionistischen] Logik’, and has
‘(heur.[istisch])’ written after it. It contains, for example, a version of the proof for the validity
of modus ponens interpreted by functionals. This must be the note that Wang describes, without
a specific reference, in note 13 on p. 47 of Wang (1987). The date ‘1./1.1941" is on top of p. 12
(backward direction) of Arbeitsheft 7. On the same page, before the note ‘Gentzen’, there is one
on ‘Rosser Wid[erspruchs]fr [eiheits] Bew[eis]’, with a horizontal line in between; that the date
also holds for the second item on the page is very likely because it is also the date of another note,
headed ‘Jede F[u]nct[ion] d[es] eigentl[ich] intuit[ionistischen] Systems ist berechenbar’. That
note is in the notebook Resultate Grundlagen III (6¢/85, item 030118, pp. 188—191) and states the
date ‘1./1.1941°. It begins with a reference to p. 34 (backward direction) of Arbeitsheft 7, which is
where the formal system X is defined.



7 Godel and Intuitionism 179

proposes schemata for defining the constructive operations used in the definition of
computable function. He admits, however, that ‘a closer examination of the question
in which manner the functions obtained by these two schemes are really calculable
is pretty complicated’ (Godel 1941, p. 195); the formal proof he had depends on
Heyting arithmetic and hence is, foundationally speaking, no progress.

In the Dialectica paper of 1958, Godel decides to take the notion of computable
functional as primitive. Philosophically, this marks a sea change, which is discussed
in the next subsection.

7.2.5.2 The Shift to the Intensional

Kreisel writes that ‘In the first 20 min of our first meeting, in October 1955, [Gddel]
sketched some formal work he had done in the forties, and later incorporated in the
socalled Dialectica interpretation (with a total shift of emphasis)’ (Kreisel 1987b,
p. 104). I take the ‘shift of emphasis’ to be what I here call the sea change. (Note
also that on p. 110, Kreisel says that, when he saw the Dialectica paper in 1958,
‘the principal novelty—both absolutely speaking, and to me personally’ was ‘the
primitive notion of effective rule [...] Godel had never breathed a word to me about
his project of exploiting such a notion’.) I therefore do not agree with Feferman
who comments on Kreisel’s report that ‘Evidently Godel misremembered: there is
really no significant difference in emphasis, though the 1941 lecture mentions a few
applications that are not contained in the 1958 Dialectica article’ (Feferman 1993,
p. 220).

In the Dialectica paper, Godel defends his new approach by pointing to a similar
case:

As is well known, A.M. Turing, using the notion of a computing machine, gave a
definition of the notion of computable function of the first order. But, had this notion not
already been intelligible, the question whether Turing’s definition is adequate would be
meaningless. (Godel 1990, p. 245n. 6)*

Mutatis mutandis, Godel could have written this about his former self. He could
have written: ‘In 1941 I tried to give a definition of the constructive operations used
in the definition of computable functional of finite type. But, had this notion not
already been intelligible, the question whether my definition of 1941 is adequate
would be meaningless.” In Godel’s view, what Turing had done was to define (and
in that sense see sharper) an objective concept that we had been perceiving all along,
albeit less sharply (Wang 1974, pp. 84-85). Similarly, Godel holds in 1958, there
is an objective concept of computable functional of finite type, which we may not

2 AM. Turing hat bekanntlich mit Hilfe des Begriffs einer Rechenmaschine eine Definition

des Begriffs einer berechenbaren Funktion erster Stufe gegeben. Aber wenn dieser Begriff
nicht schon vorher versténdlich gewesen wire, hitte die Frage, ob die Turingsche Definition
addquat ist, keinen Sinn. (Godel 1958, p. 283n. 2).



180 M. van Atten

yet (and possibly never) be able to make completely explicit, but which at the same
time we see enough of to determine some of its properties:

One may doubt whether we have a sufficiently clear idea of the content of this notion [of
computable functional of finite type], but not that the axioms given [in this paper] hold for it.
The same apparently paradoxical situation also obtains for the notion, basic to intuitionistic
logic, of a proof that is informally understood to be correct. (Godel 1990, p. 245n. 5)%0:3!

The point Godel makes in this footnote is reminiscent of paragraph XXIV in
Leibniz’ Discours de Métaphysique (Leibniz 1875-1890, vol. 4, p. 449), where
attention is drawn to the fact that there are situations in which we are able to classify
certain things correctly and perhaps moreover explain the grounds on which we
do this, yet without having at our disposal a complete analysis of the notion of
those things into primitive terms. Whether Godel, who surely knew that passage
at the time,?? also had it in mind when writing his footnote, remains an open
question.*

Godel’s point here goes well with the disappearance in 1958 of his earlier denial
that the Proof Explanation is genuinely constructive. Indeed, Godel’s own earlier
objections to the intuitionistic notion of proof would equally apply to the primitive
notion he substitutes for it in 1958. Since he considers the latter to be constructive
(given his by then widened notion of constructivity), these earlier objections could
no longer be used to support a claim that the Proof Explanation is not at all
constructive; and the 1958 paper proposes no replacements for them. The difference
has become one of degree, not of kind.**

3 Man kann dariiber im Zweifel sein, ob wir eine geniigend deutliche Vorstellung vom Inhalt

dieses Begriffs haben, aber nicht dariiber, ob die weiter unten angegebenen Axiome fiir
ihn gelten. Derselbe scheinbar paradoxe Sachverhalt besteht auch fiir den der intuitionisti-
schen Logik zugrunde liegenden Begriff des inhaltlich richtigen Beweises. (Godel 1958,
p- 283n. 1).

31Compare Godel’s claim, in the Lecture at Zilsel’s from 1938, that the axioms of the subsystem
of Heyting’s logic presented there are, when interpreted intuitionistically, ‘actually plausible’
(‘tatsdchlich plausibel’; Godel 1938b, p. 100/101).

32Notes he wrote to it when reading it in Gerhardt’s edition can be found in folder 10a/35. As
Sundholm reminded me, the same distinctions are explained by Leibniz also in an earlier text of the
same period (published in the same volume of Gerhardt’s edition), the ‘Meditationes de cognitione,
veritate, et ideis’ of 1684 (Leibniz 1875-1890, vol. 4, pp. 422-426). That text actually served as
a basis for the section in the Discours. Leibniz takes up the theme again in the Nouveaux Essais
of 1704 (but published posthumously, in 1765), Book II, chapter XXXI, § 1 (Leibniz 1875-1890,
vol. 5, pp. 247-248).

3There is a direct and documented relation between ideas of Leibniz and the revisions of the
Dialectica Interpretation; see van Atten (forthcoming).

34This is most explicit in the 1972 version, for the more specific interpretation in terms of reductive

proof, which Godel says is ‘constructive and evident in a higher degree than Heyting’s’ (Godel
1972a, p. 276n.h).
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What might have been Godel’s reason for changing his tune on the conditions of
constructivity? And when did he do this? Two as yet unpublished sources that are
relevant here are Godel’s notes for the Princeton lecture course on intuitionism of
Spring 1941 and his philosophical notebook Max IV (May 1941 to April 1942).%
From a letter to his brother Rudolf of March 16, 1941, we know that G6del worked
on the Princeton lecture course and the Yale lecture at the same time:

Now I have again many things to do, because I give a lecture course and in addition have
again’® been invited to give a lecture, where in both cases the topic is my most recent work,
which I haven’t put to paper in exact form yet even for myself.?’

(By the end of the lecture course, there were only three students left*®; it would be
interesting to know who they were.) In his notes for the lecture course, Godel writes,
when he arrives at the concrete question of the computability of the functionals of
his system X

I don’t want to give this proof in more detail because it is of no great value for our purpose
for the following reason. If you analyse this proof it turns out that it makes use of logical
axioms, also for expressions containing quantiffiers] and since [sic] it is exactly these
ax[ioms] that we want to deduce from the system X. [8c/122, item 040408, p. 61; also Godel
(1995, p. 188)]

Then follow two alternative continuations for this passage; here labelled (A) and
(B). (B) is also quoted in volume III of the Collected Works, but (A) is not. (A) is
written immediately below the previous quotation and reads:

(A) So our attitude must be this that the ax[ioms] of X (in part[icular] the schemes of
def[inition]) must be admitted as constructive without proof and it is shown that the
ax[ioms] of int[uitionistic] logics>® can be deduced from them with suitable def[initions].
This so it seems to meis a progress [8¢/122, item 040408, pp. 61-62]

Godel crossed out (A). (B) follows immediately after it, and is not crossed out:

(B) There exists however another proof. Namely it is possible instead of making use of
the log[ical] operators applied to quantified expression[s] to use the calculus of the ordinal
nu[mbers] (to be more exact of the ord[inal] nu[mbers] < €). I shall speak about this proof
later on. [8c/122, item 040408, p. 62; Godel (1995, p. 189)]

35For the archive numbers of the lecture course, see footnote 4 above. The notebook is in 6b/67,
item 030090.

35[On November 15, 1940, Godel had lectured at Brown University on the consistency of the
Continuum Hypothesis.]

37 Wienbibliothek im Rathaus, Godel Sammlung, item LQHO0236556. ‘Ich habe jetzt wi[eder]
eine Menge zu tun, da ich eine Vorlesung halte u[nd] ausserdem wieder zu einem Vortrag
eingeladen bin wobei in beiden Fillen das Thema meine allerletzte Arbeiten sind, die ich
noch nicht einmal fiir mich selbst genau zu Papier gebracht habe.’

3L etter to Rudolf Godel, May 4, 1941 (Wienbibliothek im Rathaus, Godel Sammlung, item
LQHO0236557): ‘Hier ist jetzt das Semester zu Ende u[nd] ich bin froh dass mit meiner Vorlesung
Schluss ist, ich hatte zum Schluss nur mehr 3 Hoérer {ibrig.” As mentioned in footnote 4 above, the
Spring Term had ended on May 1.

3Perhaps Godel uses the plural here because he is thinking of intuitionistic logic as it figures in
different theories.]
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Godel then introduces (pp. 62 and 63) the idea of an ordinal assignment to terms
such that with a reduction of a term comes a decrease of the ordinal. In an alternative
version of (B), on p. 6311, here labelled (C), Godel writes:

(C) However it seems to be possible to give another proof which makes use of transfinite
induct[ion] up to certain ord[inals] (Probably up to [the] first e-nu[mber] would be
sufficient). [8c/122, item 040408, p. 63"; Godel (1995, p. 189)]

It seems that Godel wrote (A) before (B) and (C) and that he preferred the
possible solution described in the latter two. This preference for (B) and (C) however
does not seem to indicate a categorical rejection of (A), for on p. 63", which follows
right after (C), Godel goes on to comment:

(D) Of course if you choose this course then the question arises in which manner to justify
the inductive inference up to the certain ordinal nu[mber] and one may perhaps be of the
opinion that the ax[ioms] of T are simpler as a basis than this transfinite m[ethod], by [...]*
to justify them. But whatever the opinion to this question may be in any case it can be shown
that int[uitionistic] logic if applied to nu[mber] theory (and also if applied in this whole
system ) can be reduced to this system . [8c/122, item 040408, p. 63"V]

(Like (A), this passage is not quoted in the Collected Works.)

On the one hand, as Troelstra remarks on (B) and (C), ‘Since the notes do not
contain any further particulars, it is not likely that Godel had actually carried out
such a proof in detail’ (Godel 1995, p. 189).#! On the other hand, (A), even crossed
out, and the somewhat less emphatic (D), show that Godel already around the time
of the Yale lecture, in which there is no mention of the possibility of accepting the
notion of computable functional as primitive, had considered doing just that.

Godel’s philosophical notebook Max IV, which covers the period from May 1941
to April 1942, that is, the period immediately after the Princeton course and the Yale
lecture, contains the following remark:

Perhaps the reason why no progress is made in mathematics (and there are so many

unsolved problems), is that one confines oneself to ext[ensions]—thence also the feeling

of disappointment in the case of many theories, e.g., propositional logic and formalisation
altogether.*?

40Two or three words that are difficult to read; perhaps ‘which we try’?

41T have not attempted to reconstruct, from the Arbeitshefte, how far Godel got. But he evidently
did not succeed: in conversation with Kreisel in 1955, he mentioned the assignment of ordinals as
an open problem (Kreisel 1987b, p. 106), and, although it was solved for a special (but in a sense
sufficient) case in Howard (1970), he did so again in a telephone conversation with Tait in 1974.
But, as Tait remarks, to exploit such an assignment in a proof of normalization, PRA together
with induction up to € are required, so it could not serve Godel’s foundational aim (Tait 2001,
p- 116 and its n. 39). (See Kanckos (2010) for a version of Howard’s proof in the setting of Natural
Deduction.)

“<Vielleicht kommt man in der Math[ematik] deswegen nicht weiter (und gibt es so viele
ungeloste Probl[eme]), weil man sich auf Ext[ensionen] beschrinkt—daher auch das Gefiihl
der Enttduschung bei manchen Theorien, z.B. dem Aussagenkalkiil und der Formalisierung
tiberhaupt.” 6b/67, item 030090 (Notebook Max IV), p. 198. Transcription Cheryl Dawson and
Robin Rollinger.
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The disappointment in the case of propositional logic that Godel speaks of here
may well be a reference to the fact that the difficulties he ran into when attempting
a (foundationally satisfying) formal reconstruction of intuitionistic logic within
number theory in the system X of the Yale lecture appeared already with the
propositional connectives; his disappointment with formalization (an act that pushes
one to the extensional view) in general may have found additional motivation in his
incompleteness theorems.

This remark from 1941-1942, with its implicit recommendation to shift emphasis
to the intensional, strongly suggests that by then Godel had indeed come to accept
the solution proposed in passage (A) of the Princeton lecture course. In print, this
would become clear of course only in 1958. Perhaps this view on the development
of the Dialectica Interpretation would need some refinement in light of Kreisel’s
report that

Godel made a point of warning me [in 1955] that he had not given any thought to the objects
meant by (his) terms of finite type. The only interpretation he had in mind was formal, as
computation rules obtained when the equations are read from left to right. (Kreisel 1987a,
p. 106).

But in the light of (A) and (D), it seems to me that the claim ascribed to Godel in the
first sentence here cannot be quite correct; unfortunately, we do not have Godel’s
own words. (In the notes for the Princeton lectures, Godel also defined and used
a model in terms of what became known as the hereditarily effective operations
(HEO)*; but unlike the primitive notion of computable functionals and the method
of assigining ordinals, HEO has, because of the logic in its definition, no significance
for the foundational aim that Godel hoped to achieve.)

Before continuing the discussion of the shift to the intensional, it is worth
noting that, as for the purely proof-theoretical applications of the interpretation
described in the Yale lecture, according to Kreisel Godel ‘dropped the project after
he learnt of recursive realizability that Kleene found soon afterwards’ (Kreisel
1987a, p. 104). (Kleene told Godel about realizability in the summer of 1941
(Kleene 1987, pp. 57-58).) In contrast to realizability, the functional interpretation
lends itself to an attempt to make the constructivity of intuitionistic logic (within
arithmetic) more evident, and, as I have tried to show, that was Godel’s purpose for
it already by 1941 or 1942. This raises the question why Godel waited until 1958 to
publish these ideas. In an undated draft letter to Frederick W. Sawyer, III (written
after February 1, 1974, the date of Sawyer’s letter to which it is a reply), Godel says:

It is true that I first presented the content of my Dialectica paper in a course of lectures at
the Institute in Spring and in a talk at Yale in . There were several reasons why
I did not publish it then. One was that my interest shifted to other problems, another that
there was not too much interest in Hilbert’s Program at that time. (Godel 2003b, p. 211;
spaces left open by Godel)*

438¢/123, item 040409, p- 109ft; see also Godel (1995, pp. 187-188).

# At the beginning of the Yale lecture, Godel said that ‘the subject I have chosen is perhaps a little
out of fashion now’ (Godel 1995, p. 189); and he told Wang in April 1977 that at the Yale lecture,
‘nobody was interested” (Wang 1996, p. 86).
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The shift to the intensional had its first effect in print soon, in Godel’s remarks
on analyticity in the Russell paper of 1944 (Godel 1944, pp. 150-153), in particular
in the last sentence of its footnote 47:

It is to be noted that this view about analyticity [i.e., truth owing to the meaning of the
concepts] makes it again possible that every mathematical proposition could perhaps be
reduced to a special case of @ = a, namely if the reduction is effected not in virtue of
the definitions of the terms occurring, but in virtue of their meaning, which can never be
completely expressed in a set of formal rules.

There are a number of later echoes of the remark of 1941 or 1942 in Gddel’s
writings, published and unpublished. I mention three that are directly related to
Godel’s development of the Dialectica intepretation. The first is Kreisel’s report
that, when in October 1955 Godel explained the formal part of the functional
interpretation to him, Gédel added a warning about the ‘Aussichtlosigkeit, that is,
hopelessness of doing anything decisive in foundations by means of mathematical
logic’ (Kreisel 1987a, p. 107; p. 104 for the date). The relation between (existing)
mathematical logic and extensionality that one must see in order to connect the
remark of 1941 and this warning is made explicit in the second echo. It occurs in
Godel’s letter to Bernays of July 14, 1970, concerning the revision of the Dialectica
paper: ‘The mathematicians will probably raise objections against that [i.e., the
decidability of intensional equations between functions], because contemporary
mathematics is thoroughly extensional and hence no clear notions of intensions
have been developed.” (Godel 2003a, p. 283). The third echo also has to do with
that revision, and is a draft for part of note k (the later note h in the Collected
Works (Godel 1990, pp. 275-276), but in the version published there Godel had
decided not to include this):

This note (and also some other parts of this paper) constitutes a piece of ‘meaning analysis’,

a branch of math[ematical] logic which, although it was its very starting point, today is

badly neglected in comparison to the purely math[ematical] branch which has developed

amazingly in the past few decades. (The reason of this phenomenon doubtless is the
antiphil[osophical] attitude of today’s science.) [9b/145]%

Indeed, Kreisel has observed that, compared to the 1930s, ‘later Godel became
supersensitive about differences in meaning’. He illustrated this, appropriately, by
the contrast in attitude between Godel’s remark in 1933 that intuitionistic arithmetic
involves only ‘a somewhat deviant interpretation’ from its classical counterpart
and the caveat in 1958 that ‘further investigation is needed’ to determine to what
extent the Dialectica Interpretation can replace the intuitionistic meanings (see also
footnote 27 above).*¢

4Compare also Godel to Bernays, September 30, 1958: ‘Kreisel told me that in your lectures
in England you discussed the combinatorial concept of set in detail. I very much regret that
nothing about that has appeared in print. Conceptual investigations of that sort are extremely rare
today.” (Godel 2003a, p. 157)

46Godel (1933a), p. 37/ 1986, p. 295; Godel (1958), p. 286/ 1990, p. 251; Kreisel (1987b), pp. 82,
104-105, 159.
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The shift in Godel’s view described here constitutes a remarkable rappro-
chement with intuitionism, which by its very nature takes intensional aspects
to be the fundamental ones in mathematics. On both Godel’s new view and
the intuitionistic one, foundational progress will therefore have to come mainly
from informal analysis of intuitive concepts. To that end, Godel around 1959
made an explicit turn to phenomenology as a method (van Atten and Kennedy
2003; Godel 1961/?),*” and encouraged Kreisel’s developing and advocating the
notion of informal rigour (Kreisel 1967) (at the same time warning him that
mathematicians would not be enamoured of the idea).*® Brouwer did not make
an explicit turn to phenomenology, but his work lends itself to phenomenological
reconstruction (van Atten 2004, 2006, 2010). They of course differed (in effect)
on which phenomenological aspects are relevant to pure mathematics, because they
had different conceptions of what pure mathematics, as a theory, consists in. Both
took it to give an ontological description, but where for Godel the domain described
is a platonist realm, for Brouwer it is that of our mental constructions.*’ A telling
anecdote related to this was related to me by William Howard:

I don’t remember the context, but I started to talk about ‘Brouwer’s bar theorem’, for which
Brouwer gave a sort of justification but certainly not a proof. As soon as I got the words
‘Brouwer’s bar theorem’ out of my mouth, Godel interrupted me, saying,

‘But he did not provide a PROOF!”.%

This was delivered with strong emotion and quite aggressively. I sat there thinking: well,
it’s not my fault. But I replied,

‘Well, yes, I agree,’

and then went on with whatever I had been saying.

[original emphasis]’!

4Tn a letter to Godel of June 17, 1960, written after a visit to him, Sigekatu Kuroda wrote: ‘It was
my great pleasure also that I heard from you that you are studying Husserl and you admired his
philosophy, which was the unique philosophy that I devoted rather long period and effort in my
youth. I hope I have a chance some day to speak with you about Husserl. As you are doing now, I
would like to recollect Husserl’s philosophy after returning to my country.” (01/99, item 011378)
Note that by that time Kuroda had published philosophical and technical work on intuitionistic
logic, notably Kuroda (1951), in which he moreover says (p. 36) that he shares Brouwer’s view that
mathematics is an activity of thought that is independent of logic and based on immediate evidence
that is intuitively clear. Without further sources it is of course impossible to tell whether Godel and
Kuroda discussed phenomenology and intuitionism in relation to one another, but Kuroda’s letter
gives the impression that they had not.

48Ppersonal communication from Georg Kreisel, letter to MvA, January 10, 2005.

“For more on ontological descriptivism, Brouwer’s exploitation of it, and its contrast to
meaning-theoretical approaches to mathematics such as Dummett’s or Martin-Lo6f’s, see section
5 of Sundholm and van Atten (2008).

S0[Note MvA: See also Godel (1972a), p- 272, note d: ‘Unfortunately, however, no satisfactory
constructivistic proof is known for either one of the two principles [i.e., Brouwer’s bar induction
and Spector’s generalization to finite types]’.]

51Story 20, p. 177 of Howard, unpublished. In an email to me of January 25, 2012, Prof. Howard
adds that this was the only occasion during his conversations with Godel (which took place during
Howard’s year at the TAS, 1972-1973) that the topic of the bar theorem and of bar induction
came up.
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The drafts for the revised version of the Dialectica paper (those that so far
have remained unpublished) shed further light on Godel’s views on intuitionism
and relate them to his turn to phenomenology. There are four versions to consider
(together with the notes Godel wrote when working on these); see Table 7.1. As
is to be expected from what for Godel was work in progress, the drafts and notes
D68-D72 are homogeneous in neither form nor content. Although written with an
eye on publication, they can of course not be granted the same status as Godel’s
published work. But various passages in them are coherently related to each other
and to remarks Godel has made elsewhere, and in any case allow one to document
his thinking on these matters. For that reason, I should like to discuss a (necessarily,
limited) selection of these materials, in particular from the new introduction in
D68.52 That new introduction exists in the archive as a set of pages in longhand
numbered 1-26 and 1F-12F (for footnotes).®> As Godel wrote to Bernays on May
16, 1968 that it is ‘essentially finished’, and on December 17, 1968 that ‘in the end
I liked the new one as little as the old” (Godel 2003a, pp. 261, 265), I will give 1968
as the date of these drafts.

Table 7.1 Revised versions of Godel (1958)

D67 —  The translation of Godel (1958) by Leo Boron (in collaboration with William
Howard), revised by Godel but without substantial additions>*

D68 — A version that is essentially D67 with a rewritten, longer philosophical introduction™

D70 — A version that is essentially D67 with an additional series of notes a—m. Circulated

on Godel’s request by Dana Scott. Galley proofs exist>®

D72 — A revised version of D70. Last version available, published in Collected Works as
Godel (1972a)%’

52The material is rich, and should also be studied with other questions in mind, and from other
perspectives. To my mind, in particular D68 would have deserved to be included in the Collected
Works as well.

33539b/141, item 040450.

49b/141, item 040449 and 9b/142, item 040451

55The material for the new introduction is 9b/141, item 040450.

369b/144, item 040454 (I thank Dirk van Dalen for letting me photocopy the purple-ink duplicate
he received from Scott in Oxford); 9b/149 for the galley proofs, items 040456 and 040459.

37See the material for D70 (and the revisions on it), and, for the revisions of notes ¢ and k, 9b/145
items 040560 and 040457, respectively.
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7.2.5.3 The Relation of Constructive Mathematics to Classical
Mathematics

If constructive mathematics is conceived in such a way as to involve reference
to properties of the mathematician’s mental acts, then this explains Godel’s view,
reported by Shen Yuting in a letter to Hao Wang of April 3, 1974, that ‘classical
mathematics does not “include” constructive mathematics’ (3¢/205, item 013133).58
For a classical mathematician holding this view, considerations about, and results
from, constructive mathematics (in the sense described) have mathematical signif-
icance only when they can be ‘projected into the mathematically objective realm’.
The choice of words here is Bernays’, who uses it to define the distinction between
a ‘reserved’ and a ‘far-reaching’ intuitionism in a letter of March 16, 1972 Godel
(2003a, pp. 295). Perhaps Godel had a similar distinction in mind when, in a draft
note for the revision of the Dialectica paper, he sees a need to give a characterization
of finitism the form of a ‘translation’ of its traditional conception, as follows:

Translating the definition of finitism given above into the language of modern mathematics
(which does not consider spacetime intuition to belong to its field) one may say equivalently:
The objects of finitary mathematics are hereditarily finite sets (i.e., sets obtained by iterated
formation of finite sets beginning with a finite number of individuals or the O-set); and
finitary mathematics is what can be made evident about these sets and their properties,
relations, and functions (definable in terms of the €-relation) without stepping outside this
field of objects, and using from logic only propositional connectives, identity, and free
variables for hereditarily finite sets. Clearly on this basis recursive definitions (proceeding
by the “rank” of the sets) are admissibile as evidently defining well-determined functions
without the use of bound variables. [...] [9b/141, item 040450, p. 2F; 1968]

It is, a fortiori, not surprising then that Godel never came to accept in his own
work on constructive mathematics the objects and techniques that are typical for
Brouwer’s ‘far-reaching’ intuitionism, such as choice sequences, Brouwer’s proof
of the Bar Theorem, and creating subject arguments.

7.2.5.4 Effective But Nonrecursive Functions

This distinction between a reserved and a far-reaching intuitionism is also important
for the question whether there exist effective but nonrecursive functions.

This particular question had gained importance for Godel by the time he came
to revise the 1958 paper, as is clear from a comparison of the two versions of his
footnote on Turing. While in 1958 he had written,

38This was also Heyting’s view: ‘T must protest against the assertion that intuitionism starts
from definite, more or less arbitrary assumptions. Its subject, constructive mathematical thought,
determines uniquely its premises and places it beside, not interior to classical mathematics, which
studies another subject, whatever subject that may be’ Heyting (1956, p. 4).
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As is well-known, A.M. Turing, using the notion of a computing machine, gave a
definition of the notion of computable function of the first order. But, had this notion not
already been intelligible, the question whether Turing’s definition is adequate would be
meaningless.>® Godel (1990, p. 245n. 6)%°

in the 1972 version this became

It is well known that A.M. Turing has given an elaborate definition of the concept of a
mechanically computable function of natural numbers. This definition most certainly was
not superfluous. However, if the term ‘mechanically computable’ had not had a clear,
although unanalyzed, meaning before, the question as to whether Turing’s definition is
adequate would be meaningless, while it undoubtedly has an affirmative answer. (Godel
1972a, p. 275n. 5, original emphasis)

In the latter version, the mechanical character of Turing’s notion is made explicit
and is emphasized. It might have been natural then also to ask about constructively
evident but non-mechanical computability. Gddel chose not to do so in D72. He had
in D68:

In my opinion there are no sufficient reasons for expecting computability by thought
procedures to have the same extension [as mechanical computability], in spite of what
Turing says in Proc. Lond. Math. Soc. 42 (1936), p. 250. However, it must be admitted
that, even in classical mathematics, the construction of a welldefined thought procedure
which could actually be caried out and would yield a numbertheoretic function which is not
mechanically computable would require a substantial advance in our understanding of the
basic concepts of logic and mathematics and of our manner of conceiving them. [9b/141,
item 040450, pp. 20-21; 1968]

In 1972, Godel prepared a slightly different version of this remark for publication
outside the Dialectica paper, Godel (1972b), p. 306 (remark 3).°!

However, in ‘far-reaching’ intuitionistic mathematics, Kripke has devised (but
not published) an example of just such a function. The presentation I will follow

Moreover, Godel will have known the observation by Skolem, Heyting, and Péter that in
constructivism, ‘computable function’ cannot be taken to mean ‘recursive function’. See Skolem
(1955, p. 584), a paper to which my attention was drawn by Thierry Coquand’s contribution to
the present volume; Heyting (1958, pp. 340-341), which appeared in the same special issue of
Dialectica as Godel’s paper; Péter (1959). Heyting is the one who emphasizes the alternative
of taking that notion as primitive. Tait (2006, pp. 212-213) holds that the fact that a definition
would be circular shows that there is a problem with the idea of constructive evidence for the
computability of a function. To my mind, that is not correct, but I will not develop this point here.
See also Kreisel’s review (1969) of Tait (1967).

0 AM. Turing hat bekanntlich mit Hilfe des Begriffs einer Rechenmaschine eine Definition

des Begriffs einer berechenbaren Funktion erster Stufe gegeben. Aber wenn dieser Begriff
nicht schon vorher versténdlich gewesen wire, hitte die Frage, ob die Turingsche Definition
adidquat ist, keinen Sinn. (Godel 1958, p. 283n. 2).

61Yet another version was published, with Godel’s approval, in Wang (1974), pp. 325-326
(reprinted in Godel (2003b), p. 576).
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here is that of van Dalen (1978), p. 40n. 3, which owes its elegance to its explicit
use of the so-called Theory of the Creating Subject, CS (Kreisel 1967, pp. 159-
160).52 Write 00, A for “The creating subject has at time 7 a proof of proposition A’.
Let K be a set that is r.e., but not recursive. Define

Fn.m) = O%f Onn € K
lifnotOd,n &€ K

For the creating subject, f is effectively computable, as at any given moment m, it

is able to determine whether [J,,n ¢ K. By the standard principles governing the

creating subject,®> we have n ¢ K <> Imf(n,m) = 0; this means that, if f were

moreover recursive,® then the complement of K would be r.e., which contradicts

the assumption.

According to van Dalen (in conversation), at the Summer Conference on
Intuitionism and Proof Theory, SUNY at Buffalo, 1968, the example was considered
common knowledge. Kreisel learned the example before that conference, perhaps
from Kripke himself when the latter visited Stanford somewhere between 1963 and
1965.9 Kreisel presented the theory CS to Godel in a letter of July 6, 1965 (01/87,
item 011182). I have not yet been able to determine yet whether Godel came to
know Kripke’s function as well. But it seems likely that he did, given his close
contact with Kreisel at the time.

21t is also possible to avoid CS, formally, by using the Brouwer-Kripke Schema BKS instead,
usually formulated as 3o (Ina(n) = 1 <> A) (but the parenthetical qualification in the following
footnote also holds here: BKS should really be formulated as two rules with parameters P and
a = ap). However, from the intuitionistic point of view, the known justification of BKS also
justifies CS. Versions using BKS were given by Gielen (as quoted in de Swart (1976a), p. 35)
and Dragalin (1988), pp. 134-135; Gielen’s construction is closest to van Dalen’s. The (weaker)
point that BKS and Church’s Thesis are incompatible was first made in print by Myhill (1966,
pp. 296-297), and taken up in the influential Troelstra (1969), p. 100.

83E.g., Troelstra and van Dalen (1988), p. 236, in particular: 4 <> 3n(0, A). Intuitionistically, this
is not difficult to justify; see the discussions of the topic in Dummett (2000), section 6.3, and van
Atten (2004), chapter 5. (By the considerations in Sundholm and van Atten (2008), and also in
Sundholm’s contribution to the present volume, the principle cited should in fact be presented
as a pair of (proof, not inference) rules, rather than as a bi-implication as understood in Natural
Deduction. Note that the explanation usually given of the principle as cited is in effect that of the
rules.)

%The equivalence would be best understood as an extensional one, so as to forestall paradoxes that
might appear if one would straightforwardly render the sentential operator [, by a provability
predicate. Alternatively, one could use BKS instead of CS to construct the function, as mentioned
in footnote 62. I thank Albert Visser for raising this issue and for his ‘Répondez!’.

651 etter from Kreisel to MVA, August 19, 2006.
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7.2.5.5 Choice Sequences

While rejecting choice sequences from his own point of view, in his reflections on
finitism in Hilbert’s sense Godel was led to conclude that choice sequences should
be acceptable on that position. In a draft letter to Bernays of July 1969, he wrote:

it now seems to me, after more careful consideration, that choice sequences are something

concretely evident and therefore are finitary in Hilbert’s sense, even if Hilbert himself was
perhaps of another opinion. (Godel 2003a, p. 269)%

and with that draft he included the text of a footnote for the revision of the Dialectica
paper, in which he stated:

Hilbert did not regard choice sequences (or recursive functions of them) as finitary, but
this position may be challenged on the basis of Hilbert’s own point of view. (Godel 2003a,
p. 270)%7

In the letter he actually sent at the end of that month, he did not include the text for
the footnote, and wrote ‘Hilbert, I presume, didn’t want to permit choice sequences?
To me they seem to be quite concrete, but not to extend finitism in an essential
way’ (Godel 2003a, p. 271).%% However, in D70 (which Bernays would still see) and
D72, he chose the slightly weaker formulation ‘a closer approximation to Hilbert’s
finitism [than using the notion of accessibility] can be achieved by using the concept
of free choice sequences’ (Godel 1972a, p. 272, note c).

7.2.5.6 1968: The Dialectica Interpretation as a Phenomenological
Contribution to Intuitionism

Archive material shows that the foundation of the Dialectica Interpretation on a
notion of ‘reductive proof’, well known from the publication of D72 in the Collected
Works, was preceded by an attempt to construe the Dialectica Interpretation as a
specifically intuitionistic result in the sense of Brouwer, and that both attempts were
meant as applications of Husserl’s phenomenology.®’

Documentation of Godel’s phenomenological but not specifically intuitionistic
approach to reductive proof is presented in Sect. 7.2.5.8 (p. 200).

% er scheint mir jetzt, nach reiflicher Uberlegung, dass die Wahlfolgen etwas Anschauliches

u[nd] daher im Hilbertschen Sinn Finites sind, wenn auch Hilbert selbst vielleicht anderer
Meinung war. (Godel 2003a, p. 268)

7This corresponds to item 040498 in 9b/148.
% Hilbert wollte Wahlfolgen wohl nicht zulassen? Mir scheinen sie durchaus anschaulich zu

sein, aber den Finitismus nicht wesentlich zu erweitern. (Godel 2003a, p. 270).

%These phenomenological projects were overlooked in the research for van Atten and Kennedy
(2003), to which this part of the present paper should be considered an addendum.
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The manuscript D68 contains various references to phenomenology. It is referred
to as a possible method for developing a wider, yet no less convincing notion of
constructivism than that of the formalists’ (and, implicitly, of Godel’s former self of
the 1930s). Having stated the intuitionistic conception, he adds this footnote:

This explanation describes the standpoint taken, e.g., in A. Heyting’s development of
intuitionistic logic (see footn. 13).7° Formalists in their consistency proofs are aiming
at a stricter version of constructivism, which however has never been precisely defined.
The most important additional requirement would no doubt be that the use of the term
‘any’ is restricted to totalities for which procedures for constructing all their elements
are given. Also (which should be a consequence of this requirement) the conceptual
selfreflexivities occurring not only in classical, but also in intuitionistic mathematics (e.g.,
that a numbertheoretic proof may contain the concept of numbertheoretic proof) are to be
avoided. The hierarchy mentioned in footn. 6 is an example of this stricter constructivism,
possibly even in case it is extended beyond €y, which can be done by treating as one step any
sequence of steps which has been recognized as permissible (e.g., any € sequence of steps).
The concepts of ‘accessible’, Brouwer’s ordinals, and similarly defined classes would seem
to need further analysis (perhaps in terms of the just mentioned hierarchy) in order to be
strictly constructivistic.

Not even the PFN functions’! (if defined as below on p. are strictly constructivistic
(see p. ). This makes one suspect that the aforementioned requirements of strict
constructivism are too restrictive. Perhaps confining the extensions of concepts to sets that
can somehow be ‘overlooked’ and avoiding selfreflexivities in the primitive terms are not
the only means of reaching completely convincing proofs. Phenomenological clarification
of the basic elements of our thinking should be another very different, and perhaps less
restrictive, possibility. [references left open by Godel; 9b/141, item 040450, p. 9F, 9.1F,
9.2F; 1968]

There is also some hesitation:

As far as obtaining incontrovertible evidence [as the basis of a consistency proof of
classical analysis] is concerned, what is needed would be phenomenological analysis of
mathematical thinking. But that is a rather undeveloped field and there is no telling what
future work in it may bring to light. [9b/141, item 040450, p. 12; 1968]

But later on in the same set of draft pages, in a passage here labelled (I), further-
going claims are made:

(I) On the other hand the interpretation of 7" used in this paper yields a consistency proof
based on a new intuitionistic insight, namely the immediate evidence of the axioms and rules
of inference of 7' for the computable functions defined above. Note that, as our analysis
has shown, this insight is based on psychological (phenomenological) reflection, whose
fruitfulness for the foundations of mathematics is thereby clearly demonstrated. [9b/141,
item 040450, pp. 21-22; 1968]

7O[In his footnote 13, Godel refers to Heyting (1934, p.14).]

n [Primitive recursive functions of finite type over the natural numbers [9b/141, item 040450,

p. 24; 1968]]
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The following four (overlapping) topics evoked by or related to (I) will be
commented on and illustrated by other passages:

I1. Psychological and logical reflection,

12. psychology and intuitionism,

I3. psychology and phenomenology,

I4. the Dialectica Interpretation as an application of phenomenology,
I5. Godel’s ‘analysis’.

I1. Psychological reflection is contrasted with logical reflection:

We comprise both kinds of concepts (i.e., those obtained by logical and those obtained
by psychological reflection under the term ‘abstract’, because the thoughts in question
always contain abstract elements, either as their object or at least as being used. However,
finer distinctions are of course possible. E.g., the concept of idealized finitary intuitions
(see p. above) evidently is formed by psychological reflection. [reference left open by
Godel; 9b/141, 040450, 1968, p. 6.1F]

The contrast is again described in the notes towards D70:

Husserl Note that conc[erning] abstr[act] concepts’> one has to distinguish thoughts &
their content (obtained by psychol[ogical] & log[ical] reflection resp[ectively]) The former
(to which int[uitionists] try to confine themselves’®) are occurrences in the real world &
therefore are in a sense just as concrete as [...]7* of symbols which should make them all
the more acc[eptable] to finitists. [9b/148.5, item 040498.60]

Husserl discusses this distinction in, for example, in sections 41 and 88 of Ideen
I (Husserl 1950), a work that Gédel owned and knew well; these are titled ‘The
really inherent composition of perception and its transcendent object’ and ‘Real and
intentional components of mental processes. The noema’, respectively.” It is the
distinction between (mental) acts as concrete occurrences in time and their intended
objects as such. The distinction applies to all thoughts, but Godel’s concern is with
those that are in some sense abstract:

We comprise both kinds of concepts (i.e. those obtained by logical and those obtained by
psychological reflection) under the term ‘abstract’, because the thoughts in question always
contain abstract elements, either as their object or at least as being used. However, finer
distinctions are of course possible. E.g., the concept of idealized finitary intuition (see
p- above) evidently is formed by psychological reflection. [page reference left open
by Godel. 9b/141, item 040450; 1968]

72[above ‘concepts’, Godel wrote: ‘entities’]

73[Also: ‘speaking (as intuitionists [. . . ] do) of thoughts as occurrences in spacetime reality (instead
of their content) the objectivation (in the statements of the theory) of abstract entities and existential
assertions about them are avoided and, moreover, the content of the thoughts to be admitted,
although itself something abstract, always refers to something concrete, namely other thoughts
or symbols or actions’. 9b/148.5, item between 040498.39 and 040498.43.]

74Unreadable word; ‘comb[inations]’?

75Der reelle Bestand der Wahrnehmung und ihr transzendentes Objekt” and ‘Reelle und intentio-
nale Erlebniskomponenten. Das Noema’. Translations taken from Husserl (1983); the second one
is modified.
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An example of a thought that is not directed at an abstract object but nevertheless
uses an abstract element would be an insight about infinitely many concrete acts.
As an infinity of acts cannot actually be carried out by us, they cannot all be
concretely represented in a thought, and we have to represent them abstractly.
According to Godel, both finitary mathematics and intuitionistic mathematics arise
from psychological reflection; the difference between them is that in the latter, the
abstract elements that can be used in thoughts about the concrete acts themselves
also become objects of the theory.

12. Godel emphasizes that the kind of psychology of which in (I) he considers
intuitionism to be a form is not empirical psychology:

Of course, in order to carry through this interpretation accurately and completely, a much
more careful examination of the situation would be necessary. In particular the question
would have to be answered why intuitionistic mathematics does not become an empirical
science under this point of view. Rougly speaking, the answer is the same as that to a similar
question about metamathematics as the science of handling physical symbols (although the
situation is much more involved in our case). The relevant considerations in both cases
are these: 1. There exist necessary propositions about concrete objects, e.g., that parts of
parts are parts. 2. Mathematical propositions (in particular existential propositions) in this
interpretation may be looked upon as implications whose hypotheses are certain (evidently
possible) general empirical facts. 3. Instead of speaking of the occurrences (in reality) of
mental acts or physical symbols one may speak of their individual forms (which determine
their qualities in every relevant detail). In the special intuitionistic considerations given
in the present paper the psychological interpretation has not been used throughout, e.g.,
we speak of rules (in the sense of procedures decided upon as to be followed) governing
mental activity, not only of mental images of such rules. [9b/141, item 040450, page 9.2;
1968]

Hence he could say to Toledo, as we saw above, that intuitionism is ‘essential a
priori psychology’.

I3. It is clear that Godel, when in (I) he sees intuitionism as ‘psychological
(phenomenological) reflection” which is at the same time ‘a priori’, he is speaking
of what Husserl called ‘phenomenological psychology’. Husserl wrote extensively
about this in two places that Godel knew well: the Encyclopedia Britannica article’®
and in the last part of the Krisis (Husserl 1954), titled ‘The way into phenomeno-
logical transcendental philosophy from psychology’.”” And, as it happened, the
Husserliana volume with Husserl’s 1925 lectures Phdnomenologische Psychologie

76Godel may have read this before 1962, the year the original German manuscript was reprinted in
the Husserliana edition (Husserl 1962); there is a library slip (9¢/22, item 050103) requesting the
relevant volume (17: ‘P to Planting of Trees’) of the 14th edition of the Britannica of 1929. There
are also some reading notes in the same folder. For a different connection between Godel and the
Britannica article, see van Atten and Kennedy (2003), section 6.1.

" Der Weg in die phianomenologische Transzendentalphilosophie von der Psychologie aus.



194 M. van Atten

came out in 1968; but I don’t know whether Godel got to see that when working on
the new introduction to the Dialectica paper in the first months of that year.”®

Phenomenological psychology describes mental phenomena and unlike empir-
ical psychology is not concerned with individual concrete facts but with invariant
forms they instantiate and which delineate the range of possible concrete facts. In
other words, it deals with the essence of our psychology.”®

Note that Godel’s conception of the intuitionistic subject here as a subject in
a psychological and hence mundane sense can be challenged, on grounds that are
no doubt clearer in Brouwer’s writings than in Heyting’s. For an argument that the
intuitionistic subject is better understood as a transcendental subject in Husserl’s
sense, see van Atten (2004, ch.6, 2010, pp. 66-68).

I4. Given the above, the Dialectica Interpretation is in D68 meant to be an
application of phenomenology that moreover belongs to intuitionism, because it is
based on an insight into mathematical procedures understood as acts carried out in
thought over time (noeses), which are then, in acts of reflection, objectified as such
to become objects of the theory.®”

I5. Among the notes Godel made in 1968 in preparation for D68 is the following:

Foundations: it is really incredible, how all important philosophical and psychological
problems are actualized in a rigorous treatment of my system 7, and how many important
distinctions become clear. For example: evocation of the image of a procedure and
application of the procedure; image of a rule and rule (one sees how “flimsy’®! the former
is, and how ‘iron’ the latter); results of the intermediate steps and the operations of the
intermediate steps; operation in the sense of a mental act and of a mathematical object
(briefly: rule, image of a rule, application of a rule, image®” of the application of a rule);

781968 is the copyright year. That is not necessarily the year the book became available.

7The project of a non-empirical (e.g., ‘a priori’, ‘rational’ or ‘transcendental’) psychology has a
long tradition (e.g., Wolff, Kant); for Godel, Husserl’s version will have been attractive because
it is closely related to transcendental phenomenology, to which Husserl considered it to be
propaedeutic.

80<Strictly speaking the construction of intuitive mathematics in itself is an action and not a
science; it only becomes a science . ..1in a mathematics of the second order, which consists of the
mathematical consideration of mathematics or of the language of mathematics’ (Brouwer 1975,
p. 61 n.1). (‘Eigenlijk is het gebouw der intuitieve wiskunde zonder meer een daad, en geen
wetenschap; een wetenschap . .. wordt zij eerst in de wiskunde der tweede orde, die het wiskundig
bekijken van de wiskunde of van de taal der wiskunde is.” (Brouwer 1907, p. 98 n.))

81In English in the original.]

82[T translate “Vorstellung’ as ‘image’ here, because that is the term Godel uses in these manuscripts
when writing in English. Spiegelberg (1965), a work that Godel owned (2nd ed.) and knew
well, translates it as ‘representation’, and a popular alternative is ‘presentation’. (NB Cairns’
recommendation, published in 1973, for the broadest Husserlian sense is ‘(mental) objectivation’
(Cairns 1973, p. 131).) I take it that Godel’s choice of ‘image’ is motivated by a wish to avoid
special terminology as much as possible, so as to avoid making his philosophical remarks seem
more dependent on a particular philosophy than they are. To Wang he said, ‘I am cautious and



7 Godel and Intuitionism 195

definitional procedure to obtain the functions of 7, procedure to compute the individual
functions of T%3-84;

However, although D68 itself does contain what could be considered to be
preliminary remarks to a (phenomenological) analysis, e.g.,

By ‘procedure’ we mean here ‘mental’ or ‘thought’ procedures, i.e., the steps are (intu-
itionistically meaningful) ideas or mental images formed by mental acts on the basis of the
preceding steps according to the rule of the procedure. Also ‘starting with’ or ‘terminating
with’ means: starting or terminating with a mental image of . ... For practical reasons the
writing down and ‘reading’ of symbols (used only for denoting well determined thoughts)
are also to be admitted as steps of the procedures. Of course the rules of the procedures are
supposed to be such that each step is (in a repeatable manner) uniquely determined by the
previous steps. [9b/141, 040450, p. 17]

the body of a detailed analysis, in terms of the concepts and distinctions mentioned
in the previous quotation, is not to be found in it. There is further archive material
around D68 awaiting transcription; but I assume that, if it contained substantial
further analysis, that would have been included in the longhand draft. Without such
an analysis, it is not clear that there will be any advantage in shifting to a specifically
intuitionistic (noetic) perspective (as, in contrast, there is, for Brouwerians, when
demonstrating the bar theorem). This will undoubtedly have played a major role in
Godel’s eventual dissatisfaction with D68.
This ends my discussion of I1-I5.

In spite of the above, perhaps one doubts Gddel’s description in (I) of the
reflection that led to the fundamental insight of the Dialectica Interpretation as
‘phenomenological’, on the ground that he had obtained that insight long before his

only make public the less controversial parts of my philosophy’ (Wang 1996, p. 235). Similary,
Wang remarks that ‘Godel’s desire to shun conflict also affected his published work. He would
make great efforts to present his ideas in such a form that people with different perspectives could
all appreciate them (in different ways).” (Wang 1996, p. 235). (I thank Nuno Jerénimo for locating
these comments.)]

83[Here the list stops, at the bottom of the left half of the page, and the right half of the page begins
with a new remark.]

849b/148, item 040492. Transcription Eva-Maria Engelen; translation MvA. ‘Gr[undlagen]: Es ist
unglaublich, wie samtliche wichtigen ph[ilosophischen] und psych[ologischen] Probleme bei ge-
nauer Behandlung meines Systems T aktualisiert [werden] und wie viele wichtige Distinct[ionen]
klar werden: zum Beispiel: Evokation der Vorstellung eines Verfahrens und Anwendung des
Verfahrens; Vorstellung einer Regel und Regel (man sieht wie ‘flimsy’ die erstere und wie ‘ehern’
die letztere ist); Resultate der Zwischenschritte und Operationen der Zwischenschritte; Operation
im Sinn einer geistigen Handlung und eines mat[hematischen] Objekts (kurz: Regel, Vorstellung
der Regel, Anwendung der Regel, Vorstellung der Anwendung der Regel); Def[initions-]Verfahren,
um die Funktionen von T zu erhalten, Verfahren um die einzelnen Funktionen von 7" zu berechnen;’
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turn to phenomenology around 1959.3% But I don’t think that Godel here is making
an implicit historical claim, but rather is using, on the occasion of a new presentation
of his earlier insight, the framework that by then he had come to see as the best one
for its philosophical reconstruction and explication. Gédel’s philosophical remarks
in the introduction to (both versions of) the Dialectica paper comfortably fit the
description he had given of phenomenology and its use in his earlier text *19617?:

Here clarification of meaning consists in focusing more sharply on the concepts concerned
by directing our attention in a certain way, namely, onto our own acts in the use of these
concepts, onto our powers in carrying out our acts, etc. [...It] is (or in any case should be)
a procedure or technique that should produce in us a new state of consciousness in which
we describe in detail the basic concepts we use in our thought. (Godel 1961/?, p. 383)

However, having written (I), at some point Godel put question marks next to it;
recall his remark to Bernays of December 1968, quoted on p. 186 above, that he
liked the ‘new philosophical introduction’ that he had written ‘as little as the old’.
There are various possibilities as to what type of doubt they express. For example,
Godel may have developed doubts whether this was what he could claim, or whether
he would be able sufficiently to develop this claim in writing so as to be convincing
to others, or whether this claim would be well received given the Zeitgeist as he
perceived it,}” or whether to convince others of his consistency proof it was even
necessary to make and develop this specific claim. Finally, he may have developed
second thoughts about presenting this work as an intuitionistic insight.%®

If this hesitation is indeed a mark of the same discontent that Godel expressed in
his letter to Bernays of December 1968, then it is no surprise that the next year, he
drafted the following (unsent) reply to an inquiry from van Dalen:

My relationship with Intuitionism consists primarily in some theorems I proved about
certain parts of intuitionistic mathematics in particular that published in Dial[ectica] 12.

85 As Feferman points out in his introduction to the Godel-Bernays correspondence, it is noteworthy
that in this philosophically rich exchange, Husserl is never discussed (Godel 2003a, p. 66, n. ax).
(Godel mentions phenomenology once, on August 11, 1961 (Godel 2003a, p. 193).) Bernays
will have known of Godel’s enthusiasm for Husserl early on: Bernays was in Princeton from
November 1959 to April 1960, and came back for shorter visits around Easter 1961, in May
1961, and in the Spring of 1965.%¢ A short text presented in 1963—in the middle of this period
of visits—and published the next year, ‘Begriffe des Phinomenologischen und das Programm der
phidnomenologischen Philosophie’, shows Bernays rather critical of Husserlian phenomenology, in
particular of époché, the possibility to see essences, and its foundational character. In his letters to
Godel, Bernays never mentions this text or the objections formulated in it; one possible explanation
is that they had dealt with the topic in their conversations.

86See letters 26-31; 34-36; 38-39; and 52-53, respectively.

87 That seems to have been the kind of reason why, in the published version of the supplement to
the second edition of his Cantor paper, Godel left out a hopeful reference to phenomenology that
is present in the draft (8c/101, item 040311), while at the same time recommending Husserl to
logicians in conversation. See van Atten and Kennedy (2003), p. 466.

88Elsewhere, T have argued that Godel’s program to employ transcendental phenomenology to
found classical mathematics is misguided (van Atten 2010). But, by the positive argument in the
same paper, his attempt to use it to enrich intuitionism, whether eventually successful or not, makes
perfectly good sense.
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The question as to whether this paper is important for the foundations of Intuitionism I
must leave for Intuitionists to answer. I did not write the paper from this point of view and
some supplementation would be necessary in order to clarify it’s [sic] relevance for the
foundations of Intuitionism. [01/199, item 012891; underlining Godel’s]

This repeats of course Godel’s statement towards the end of the 1958 publication,

Selbstverstandlich wird nicht behauptet, dass die Definitionen 1-6 den Sinn der von
Brouwer und Heyting eingefiihrten logischen Partikel wiedergeben. Wieweit sie diese
ersetzen konnen, bedarf einer nidheren Untersuchung. ((Godel 1958, p. 286); translation
below)

and moreover remains silent about his recently aborted attempt to develop the
Dialectica interpretation as a specifically intuitionistic insight. Naturally, then, in
D70 and D72 Godel left the content of the 1958 statement unaltered:

Of course it is not claimed that Definitions 1-6 express the meaning of the logical particles
introduced by Brouwer and Heyting. The question to what extent they can replace them
requires closer investigation. [D70, 9b/142, item 040451, p. 7; Godel (1990, p. 280)]

Although Godel thus abandoned the effort in D68 to give Dialectica a specifically
intuitionistic content, he did not abandon his phenomenological approach to the
philosophical deepening of that work; see Reductive Proof: Phenomenology and
Demonstrations (p. 200).

7.2.5.7 Demonstrability and Impredicativity

In D70, Godel included in his definition of ‘computable function of type #;’ that it is
‘intuitionistically demonstrable’ that it is always performable; in the publication of
1958, this had been ‘constructively recognizable’®® (Godel 1990, p. 245). Bernays
read the galleys and on July 12, 1970 remarked to Godel about this definition:

Here the reader could well be taken aback, since your procedure is surely intended to avoid
the concept of intuitionistic proof. It seems to me, however, that in fact you do not need that
concept here at all, and that onloy a suitable reformulation is needed in order to make that
clear. (Godel 2003a, p. 281)%°

In later letters, Bernays proposed two alternatives:

1. Replace ‘is intuitionistically demonstrable’ by ‘follows directly from the defini-
tion of the function in question and those of the functions in the k-tuple’ (Godel
2003a, p. 286/287, October 12, 1970)

% Konstruktiv erkennbare (Godel 1958, p. 282).

% Hier konnte wohl der Leser stutzen, da doch Ihr Verfahren bezweckt, den Begriff des
intuitionistischen Beweises zu vermeiden. Es scheint mir jedoch, dass Sie de facto hier
diesen Begriff auch gar nicht brauchen un dass es nur einer geeigneten Umformulierung
bedarf, um dieses zum Ausdruck zu bringen. (Godel 2003a, p. 201)
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2. Add a footnote saying that what is meant here is only that ‘for the determi-
nation in question the methods of proof excluded by intuitionism must not be
used’ (Godel 2003a, pp. 292-295, March 16, 1972)

Curiously, Godel in D68 had foreseen Bernays’ objection, answered it as he
would later do in D72, and then rejected that answer:

For the special application of the concept of computable function to be made in the present
paper it is preferable to replace in its definition the term ‘demonstrable’ by ‘evident on the
basis of the definition of the procedure and previous definitions used in it’.

[..]

It might be objected that the concept of proof is used also in our interpretation, since
‘demonstrability’ occurs explicitly in the definition of CFI function.’! | The answer is that,
in constructing a model of 7, ‘demonstrable’, in the definition of CFI function, may be
replaced by ‘evident without proof on the basis of the structure of the definitions.” [9b/141,
040450, pp. 19 and 23-24.]

But Godel then crossed out the first passage, and wrote ‘Wrong’ next to the
second.’” I do not know what reason for doing so he had in mind; but it was evidently
what motivated him to write ‘intuitionistically demonstrable’ in D70, which Bernays
then got to see—unlike D68. By the time of D72, Godel had dropped whatever
his earlier objection had been, and replaced ‘intuitionistically demonstrable’ by
‘constructively evident’.”® It is not clear to what extent that was under the influence
of Bernays’ remarks.
In D68 Godel already realized that there is an impredicativity in his system 7':

There are functions of lower type which (within 7°) can only be defined by using
functions of much higher types. This ‘impredicativity’ is perfectly legitimate, also from the
constructivist point of view. It was in substance admitted even in Princ[ipia] Math[ematica]
2nd ed. p. . And indeed the fact that the concept of functions of high type is defined
in terms of that of functions of low type in no way precludes an inverse relationship for
individual functions; i.e., the chain of definitions of a PCN function may go up and down in
the system of types. What can be concluded from this state of affairs is only that the PCN
functions (if introduced as above) are not strictly constructivistic in the sense of footn.
[references left open by Godel. 9b/141, item 040450, pp. 25-26; 1968]

Note that Godel here harks back to his Russell paper®*:

In the second edition of Principia, however, it is stated in the Introduction (pages xI and xli)
that ‘in a limited sense’ also functions of a higher order than the predicate itself (therefore
also functions defined in terms of the predicate as, e.g., in p ‘K € ) can appear as arguments
of a predicate of functions; and in Appendix B such things occur constantly. This means that

9I[*CFI’ is Godel’s abbreviation in D68 for ‘computable functional of finite type’ [9b/141, item
040450, pp. 23—24; 1968]]

92¢Falsch’, in shorthand.

91n note k of D72 (Gédel 1990, p. 275, note h), however, he quoted that part of the definition as
‘constructively evident or demonstrable’; I assume this was left in inadvertently.

94Godel studied his Russell paper when working on the Dialectica paper. This is clear from the
remarks on the loose sheet inserted with one of the four offprints that Godel owned, offprint D in
the ‘Textual notes’ in the Collected Works, Godel (1990, p. 315-322); the remarks in question are
on p. 320 and p. 321. NB Correction: The note on the title page of D does not say ‘gelesen bis
p. 135 oben’ (Godel 1990, p. 320), but ‘gelesen bis p. 138 oben’.
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the vicious circle principle for propositional functions is virtually dropped. This change is
connected with the new axiom that functions can occur in propositions only ‘through their
values’, i.e., extensionally, which has the consequence that any propositional function can
take as an argument any function of appropriate type, whose extension is defined (no matter
what order of quantifiers is used in the definition of this extension). There is no doubt that
these things are quite unobjectionable even from the constructive standpoint (see page 136),
provided that quantifiers are always restricted to definite orders. (Godel 1944, p. 134)

The sense in which in D68 the PCN functions are said not to be strictly constructivis-
tic, then, is the sense in which it would be demanded that functions are generated
from below exclusively.

In D70, with the introduction of the notion of reductive proof, it was clear
to Godel that notion would not serve to avoid this impredicativity, and the
corresponding remark is phrased thus:

In particular, there exist functions of lower type which, within 7, can only be defined in
terms of functions of higher types. This is a kind of impredicativity. True, it is only one
of those weak impredicativities that are admitted even in Princ[ipia] Math[ematica] 2nd
ed. p. [XL],” ff. In our proofs of the axioms of T this impredicativity appears in the fact
that the concept of reductive proof may itself occur in reductive proofs (just as in Heyting’s
logic the general concept of proof may occur in a proof).

It is the impredicativity mentioned in the final sentence that Godel refers to as
the ‘unavoidable self reflexivities’®® in his letter to Bernays of December 22,
1970 (Godel 2003a, p. 290/291). From Godel’s letter to Bernays of 2 years later
(December 26, 1972), it is clear that he remained convinced that, all the same,
the notion of reductive proof was an epistemic advance over Heyting’s Proof
Interpretation:

I also thank you very much for your letter about the question whether the general
intuitionistic concept of proof is necessary for the intuitionistic interpretation of my
system 7' (which would make my interpretation of the logical operators epistemologically
worthless). I think that that is not the case, but rather that a much narrower and in principle
decidable concept of proof suffices, which I introduced in note k?7 of the translation of my
Dialectica paper and called ‘reductive provability’. But to carry that through satisfactorily
in detail is not all that easy, mainly on account of the non-eliminable impredicativity also of
this narrower concept of proof, which is closely connected with the impredicativity of the
concept of function that you mentioned. It is doubtful whether carrying it through would be
worth the trouble. Up to now, therefore, I have not been able to make up my mind to do it,
although the further pursuit of that question could perhaps contribute in an essential way to
the clarification of the foundations of intuitionism. (Godel 2003a, p. 301)®

9[The typescript erroneously has ‘XI’, as had the original publication of Gédel’s Russell
paper (Godel 1944, p. 134).]
9% [[die] unvermeidlichen “self reflexivities”.]

97[Presented, in the later version of D72, as note h in Godel (1972a).]

® Ich danke Thnen auch bestens fiir Thren Brief iiber die Frage, ob der allgemeine intuiti-
onlistischen] Beweisbegriff fiir die intuition[istischen] Interpretation meines Systems 7'
notig ist (was meine Interpretationder logischen Operatoren erkenntnistheoretisch wertlos
machen wiirde). Ich glaube, dass das nicht der Fall ist, sondern dass ein viel engerer
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An as yet unpublished assessment by Godel of this situation, dating from 1974,
will be presented in Sect. 7.2.5.9.

7.2.5.8 Reductive Proof: Phenomenology and Demonstrations

Although Godel abandoned the attempt in D68 to construe the Dialectica Interpre-
tation as intuitionistic in the noetic sense, the shift to the notion of reductive proof
employed in D70 and D72 still depended on phenomenology, and still marked a
rapprochement to Brouwerian intuitionism.

That Godel could continue to use the phenomenological method is not surprising:
as a study of consciousness, phenomenology is, at least at a certain level of
generality, compatible with different views as to what mathematics is and how it
is related to consciousness.”” This is clear from the following group of notes'%:

4. In my interpretation there are [...] no such iterations of implications, as little as of
universal propositions, because the premisse always contains Red[uctive].!"!

noema

5. Does in the intentional object of the knowledge of such an imp[lication] [... 1102 >
¢ = g(d) the concept of insight occur? No, because the noema of the cognitional act
contains both of these in a certain relation.

(-]

7. A good example of the distinction between (and transition from) noema to noesis [is]
the int[uitionistic] (Heyt[ingian]) interpretation of imp[lication].

(u[nd] im Prinzip) entscheidbarer Beweisbegriff geniigt, den ik in Note k der Ubersetzung
meiner Dialectica [arbeit] eingefiihrt u[nd] ‘reuktive Beweisbarkeit’ genannt habe. Aber
das im einzelnen befriedigend durchzufiihren, ist nicht ganz leicht, hauptsidchlich wegen
der nicht eliminierbaren Impradikativitidt auch dieses engeren Beweisbegriffes, welch miet
der von Thnen erwihnten Imprédikativitit des Funktionsbegriffes nahe zusammenhingt. Est
ist zweifelhaft, ob die Durchfiihrung die Miihe lohnen wiirde. Ich habe mich daher bis jetzt
nicht dazu entschliessen konnen, obwohl die weitere Verfolgung dieser Fragen vielleicht
wesentlich zur Aufklirung der Grundlagen des Intuitionismus beitragen konnte. (Godel
2003a, p. 300)

91 write ‘at a certain level of generality’, because this compatibility may or may not be preserved
when making one’s conception of phenomenology more specific. In van Atten (2010) I argue
that, in particular, if one’s conception of phenomenology is that of the transcendental Husserl (of,
roughly, the 1920s and 1930s), then intuitionistic mathematics is compatible with, and moreover
part of, phenomenology, whereas classical mathematics is neither.

100Tn the archive, these are not kept with the drafts and galleys for the revised Dialectica paper, but
in a folder named ‘Dialectica interpretation’ in the section ‘Other loose manuscript notes’.

1011 There are notes in which Godel writes antecedents as ‘Red(p)’, for *p is reductively provable’

(which for given p is decidable, or should be once the notion of reductive proof has been
sufficiently clarified).]

102[The antecedent is almost unreadable, but it seems safe to say that Godel here gives an example

of an implication in 7]
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12. Important:
(-]

2. All propositions must be accepted as meaningful objects'?® (= int[entional]

- Obj[ects] = Noemata) and likewise [the] chains of evidences for them,
where the preceding propositions have indeed been seen to be true before,
hence no assumption.

3. The chains of evidences, which appear when expl[icating] Red[uctive]

™ Proof, are of this kind. That is also exactly as for finitary proofs (this is

so for the theorems and inferences in P'%* in general)'®®

193Ground objects and (x) is therefore an operation binding ground variables that leads to objects.
1041 P is the system that was going to be named 7" in D72 (see the manuscript for D70, 9b/142,
item 040452, insertion to note k3. In the circulated typescript, this is the footnote on p. 13).]

1051 1b/6, item 060039. Transcription Eva-Maria Engelen, Robin Rollinger, and MvA. Translation
MvA.

4. In meiner Interpretation gibt es [...] keine solchen Iterationen von Impl[ikationen],
ebensowenig wie die von Allsétzen, weil in der Pramisse immer Red[uctive] steht.

Noema

5. Kommt im intentionalen Objekt der Erkenntnis einer solchen Imp[likation] [...] D
¢ = g(d) der Begriff der Einsicht vor? Nein, | denn der Akt der Erkenntnis hat diese
beide im Noema in einem [be]stimmten Zusammenhang.

7. Ein gutes Beispiel fiir Unterscheidung von (und Ubergang von) Noema zu Noesis
[ist] die int[uitionistische] (Heyt[ingsche]) Interpretation der Imp(likation].

12. Wichtig:
(-]

2. Alle Sitze miissen als sinnvolle Objekte!% (= int[entionale] Obj[ekte] =
™ Noemata) anerkannt werden und ebenso [die] Evidenzketten fiir solche wo
die vorausgehenden Sitze vorher tatsdchlich eingesehen sind, also keine
Annahme.
3. Die Evidenzketten, welche bei der Expl[ikation] von Red[uctive] Proof
" herauskommen, sind von dieser Art. Das ist also ganz genau so wie bei
finiten Beweisen (wie tiberhaupt die Sétze und Schliisse in P)

106Grundobjekte und (x) ist also eine Grundvariablen bindende Operation, welche zu Objekte[n]
fiihrt.
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When working the ideas into a revision of D70’s note k (not included in D72),
this became:

As for item 2. [‘the meaning of the implications of the form “If x, y, ... have certain types,
then ...” occurring implicitly both in the definition of ‘computable of type t’ and in the
axioms and theorems of 7°’] it is first to be noted that implication occurs only in this form:
‘If the procedure A yields the result a, then the procedure B yields the result b’ where it
need not be known whether procedures A or B yield any result at all, even though they
are supposed to be defined with perfect precision.'” For, also the statement ‘(x)d(x) is
reductively provable’ (which is the only way in which quantification occurs in the interior
of formulas) means that a certain procedure of checking the chain of defi|nitions of the
concepts in ¢ yields a certain result. But such implications can be interpreted to mean: ‘If [
(the reasoning mathematician) carried out the procedure A and obtained the result a then, if
I carry out the procedure B, I shall obtain the result b’, where the ‘ifs’ here mean a truthvalue
function, i.e., ‘either the implicans is false or the implicatum true’. This entails that, in the
last analysis, the implication in question means that a certain procedure involving both A
and B yields a certain result, whenever carried out.” [9b/145, item 040458, pp. 2-3]

In this draft towards a publication, the phenomenological terminology used in
Godel’s private notes has disappeared. This seems to me to be intentional; see also
footnote 82 above.

Note how Godel’s explanation of implication (with respect to reductive
proof), is given by demonstration-conditions, that is, conditions in terms of
procedures that, actually or hypothetically, have been carried out; as opposed
to proof-(object-)conditions, which are given in terms of properties of proofs
independently of the actual or hypothetical fact that we know this proof-object
(Sundholm 2007).

In Sundholm and van Atten (2008) arguments are given why demonstration-
conditions, not proof-conditions, are required for a correct reading of Brouwer. On
the one hand, then, the Dialectica Interpretation on the basis of reductive proof is
much closer to Brouwerian intuitionism than to alternative constructive foundations
(see Sect. 7.2.5.9, remark on [A], p. 205). On the other hand, the combined effect of
items 5 and 7 is to distance the notion of reductive proof from that of intuitionistic
proof in the specifically noetic sense of Brouwer and Heyting (see item 14 above,
p- 194). As a consequence, Brouwer’s specific mentalism about mathematics as a
whole makes certain types of argument available to him that Godel cannot use.'%

7.2.5.9 Godel’s Two 1974 Assessments of the Dialectica Interpretation

The Collected Works include a draft letter from Gddel to Frederick Sawyer, already
mentioned on p. 183, which was probably written not long after February 1, 1974.
Godel there claims that (because of the employment of the notion of reductive

prOOﬂ >

1071 The part from ‘where’ to the end is a later insertion: item 040462, k(2) +.]
108Gee Sundholm and van Atten (2008, section 6), and the remark on item [C] on p. 204 below.
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the implicit use of ‘implication’ and ‘demonstrability’ occurring (through the words ‘immer
ausfuehrbare’'” and ‘erkennbare’ in the definition of ‘computable function of finite type’
on p. 282-283'"% does not give rise to any circularity. (Godel 2003b, p. 211, original
emphasis)

However, the archives also contain the following note, dated February 11, 1974,
not long after the day on which Godel must have received Sawyer’s letter (the labels
[A], [B], [C] are mine):

February 11, 1974

[A] My Dialectica paper with the notion of reductive proof does not give an interpretation
that excludes the paradoxes (hence the foundation not essentially better than Heyting,
namely for this reason, that for example the general concept of computable number-
theoretic function occurs and this speaks of a chain of definitions (hence the definition
X € a =~ x € x may occur). The difference is only that the concept of evidence is applied
only to the correctness of a definitions, not to the correctness of a proof. That is to say, they
do not exclude the ‘vastness’ of the domain in question, as the concepts ‘number-theoretic
evidence’, ‘type-theoretical evidence’, ‘evidence with respect to functional of finite type’
etc. do.""" These concepts as primitive concepts are ‘vague’. But perhaps the admissible
propositions can be defined precisely (and these would then be a constructed set like the
natural numbers, Gentzen), but the concept of number-theoretic meaningful proposition
would presuppose the concept of number-theoretic meaningful proof, as it may contain B,
hence [is] circular. What is thus accomplished, is threefold:

[B]

1. ‘correct proof’ replaced by ‘correct Def[inition]’,
2. the proof is mathematically more direct (many ‘convolutions’ are avoided),
3. the problem of being and having for existential propositions is solved.

[C] Some normal form theorem for proofs might follow (from 3.), from which bar induction
might follow?? The impossibility to prove something that is absolutely unprovable might
follow from an idealisation of proofs using certain primitive notions and then one could
define proofs as mathematical proofs by these means and that would suffice for the
consistency proof.

| But all this, to make sense, presupposes that one has resolved the paradox ~ x € x.!12

1097 ¢, if the arguments are computable. [original emphasis]

"0 Wenn die Begriffe “berechenbare Funktion vom Typus #,”, “berechenbare Funktion vom

Typus #”, ..., “berechenbare Funktion vom Typus #;” (wobei k > 1) bereits definiert
sind, so wird eine berechenbare Funktion vom Typus (¢, 1, . . ., t;) definiert als eine immer
ausfithrbare (und als solche konstruktiv erkennbare) Operation, welche jedem k-tupel
berechenbarer Funktionen der Typen ¢y, 1, ..., eine berechenbare Funktion vom Typus
top zuordnet. Dieser Begriff ist als unmittelbar verstindlich zu betrachten, vorausgesetzt
dass man die Begriffe “berechenbare Funktion vom Typus #;” (i = 0,1,...,k) bereits
verstanden hat.

[Because in the first two cases the proofs are generated from below, and in the third case (the

notion used in the main text of Godel 1958, 1972a) the evidence is taken to be immediate.]

11210a/40, item 050136. Transcription Eva-Maria Engelen; translation MvA. The bars and
underlining are Godel’s.
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I wish to make the following comments on the parts of this note, starting with
[B] and [C].

Item 3 in [B] is a reference to Leibniz’ theory of truth, in whom Gédel found
his inspiration for the notion of reductive proof; I refer to van Atten (forthcoming)
for the argument for this claim, with documentation from the archive. Godel’s
adaptation of Leibniz’ idea of reductive analysis is indicative of his commitment
to Leibnizian ideas even at that late stage of his career.''?

In [C], ‘Bar Induction’ is mentioned with an eye on Spector’s consistency
proof of analysis (Spector 1962), which uses a (generalized) form of Brouwer’s
principle.!'* The strategy that Godel proposes here is to find a canonical form for

11.1I. 74

[A] Meine Dial. Arbeit mit dem Begriff des reduktiven Beweis[es] gibt keine die Parad[o-
xien] ausschliefende Interpretation (daher die Fundierung nicht wesentlich besser als
Heyting und zwar deswegen, weil zum Beispiel der allgemeine Begriff der berechenbaren
zahlentheoretischen Funktion vorkommt und dieser von irgendeiner Def[initions]-Kette
spricht (also die Def[inition] x € a = ~ x € x kann vorkommen). Der Unterschied ist
nur, dass der Begriff Evidenz nur auf Richtigkeit einer Def[inition] nicht auf Richtigkeit
eines Beweises angewendet wird. Das heif3it also, sie schlieen nicht die ‘vastness’ des
betracht[eten] Bereichs aus wie das Begriffe ‘zahlentheoretische Evidenz’, ‘typentheore-
tische Evidenz’, ‘Evidenz hinsichtlich Funktion endlichen Typs’ etc. tun. Diese Begriffe
als Grundbegriffe sind ‘vage’. Aber vielleicht kann man prizise die erlaubten Sitze
definieren (und diese wiren dann eine konstruierte Menge wie die natiirlich[en] Zahl[en],
Gentzen), aber der Begriff des zahlentheoretisch sinnvollen Satzes wiirde | den Begriff des
zahlentheoretisch sinnvollen Beweis[es] voraussetzen, da er B enthalten kann, also zirkuldr
[ist]. Was also geleistet wird, ist dreierlei:

[B]

1. ‘richtiger Beweis’ ersetzt durch ‘richtige Def[inition]’,

2. der Beweis ist mat[hematisch] direkter (es werden viele ‘Verschlingungen’ vermie-
den,

3. das Probl[em] von Sein und Haben fiir Ex[istenz]sdtze wird gelost.

[C] Es konnte da irgendein Normalform-Th[eorem] fiir Beweise folgen (aus 3.), aus
welchem der Bar Ind[uktion] folgen konnte ?? Die Unmoglichkeit eine absolute Unbe-
weisbarkeit zu beweisen, konnte folgen aus einer Idealisierung der Beweise mit gewissen
Grundbegriffen und dann konnte man Beweise definieren als mat[hematische] Beweise mit
diesen Mittelnund das wiirde geniigen fiir den Widerspruchsfreiheitsbeweis.

Aber all das, damit es Sinn hat, setzt voraus, dass man der Parad[oxie] ~ x € x
aufgelost hat.

"3Given this influence, it would be interesting also to look at Godel’s notion of reductive proof
in relation to his remarks on analyticity of mathematics and Leibniz at the end of his Russell
paper of 1944 (quoted on p. 184 above), and to the brief exchange on this in the Godel-Bernays
correspondence (Godel (2003a, pp. 194, 200), and also p. 57 of the introduction); but I will not do
this here.

!14As is clear from the subject headings in Godel’s mathematical Arbeitshefte, conveniently listed

in Dawson and Dawson (2005), Godel closely studied Brouwer’s interpretation of analysis. At the
time of writing this, Jan von Plato has announced a talk (at the conference in Aix-en-Provence



7 Godel and Intuitionism 205

proofs of the antecedent in the principle, like Brouwer; but unlike Brouwer, for
Godel this canonical form cannot be defined in noetic terms, as discussed above.

[A] As documented above Sect. 7.2.5.7, Godel knew in D68 that 7 was impred-
icative, and also, in D70, that his new notion of reductive proof could not remove
this. Godel was also well aware of alternative foundations of intuitionistic logic and
arithmetic that had been proposed from the late 1960s on, in which impredicativity
was avoided.

In particular, Godel of course knew the work by Kreisel and by Goodman on the
Theory of Constructions,''> which however never led to a satisfactory development;
Kreisel’s version was inconsistent, and in Goodman’s version a proof of A — B
is no longer a construction that is applicable to any proof of A. One should
also mention here!'® the theory of constructions developed in response to these
problems in Scott’s ‘Constructive validity’ (1970). When it ran into problems over
decidability, Godel and Kreisel insisted that one accept abstract proofs and have a
‘proof predicate’ as a decidable propositional function over the universe of all of
them; see the postscript to Scott’s paper.'!”

By 1974, Godel had also studied Howard’s seminal manuscript of 1969 (later
published as Howard 1980) on what has become known as the Curry-Howard
isomorphism.''® But Godel wanted to accept abstract proofs as objects in the theory,

in July 2013) on these notes in relation to Godel’s thoughts about Gentzen’s work, equally
documented in these notebooks, in particular with an eye on the question to what extent Godel
may have anticipated Spector’s result. I will therefore not attempt to say more about the matter
here.

13There are reading notes on Kreisel (1965) in 11¢/28, item 060369, and on Goodman (1970) in
10a/40, item 050142.

116 A5 Sundholm urged me to do.

7Tt is remarkable that Kreisel in his long paper on Godel and intuitionism (Kreisel 1987b) refers
to neither his own, nor Goodman’s, nor Scott’s work on the theory of constructions.

!18See footnote 15 on p. 173 above. In the same email referred to there, Prof. Howard also recalls
the following conversation with Godel, probably in their first meeting during that sabbatical:

Godel: “You should extend your theory of constructions to transfinite types in such a way
as to get a functional interpretation of set theory (ZFC).’

Me: ‘I made such an attempt a couple of years ago and concluded that, to carry this out, I
would have to learn more set theory.’

Godel: ‘So, do it

Me: ‘Learning a sufficient amount of set theory appears to be a daunting task. There are a
lot of papers.’

Godel: “Very little of a substantial nature has been done. In fact, if you just read my two
papers, that may be sufficient.’

At that point, he got up, walked across the room to a filing cabinet, pulled out reprints of
the two papers (Proc. Nat. Acad. Sciences 1938, 1939) [Godel (1938a, 1939)] and handed
them to me, saying, ‘Here is what you should read. You may keep these.’ [Story 5, p. 83 of
Howard, unpublished]

Prof. Howard comments (in the same email):

Presumably what he had in mind in his first remark was that if my little theory of
constructions is extended to transfinite types, in a natural way, as far into the transfinite



206 M. van Atten

and, as Artemov (2001, p. 4) observes, ‘as proof objects Curry-Howard A-terms
denote nothing but derivations in Int [i.e., formalized intuitionistic propositional
logic] itself and thus yield a circular provability semantics for the latter’.

In the notion of reductive proof, Gédel had found, he believed, the right notion
that is decidable and narrower than the general notion of intuitionistic proof, with
the three advantages listed in [B]. As mentioned above (p. 202), this depends on
understanding ‘proof’ as demonstration (i.e., acts that have been carried out) instead
of (knowable but perhaps unknown) proof-objects. This marks a fundamental
difference with the constructive foundations mentioned above and those inspired
by them (notably Martin-Lo6f’s Constructive Type Theory).

But the formulation of this view evidently did not lead Goédel finally to publish
the revised paper. That is not surprising; already in December 1970 he had written
to Bernays that ‘The time of publication seems to me to be less important than the
improvements to the text’, and he certainly didn’t have the full details this time
either.!'” Also, his bad health at the time may have prevented him from doing
substantial further work in any case.

Acknowledgements This is the revised and much extended text of the talk with the same title
given at the conference ‘Calculability and constructivity: historical and philosophical aspects’ of
the International Union of the History and Philosophy of Science (Joint Session of the Division
of Logic, Methodology and Philosophy of Science and of the Division of the History of Science
and Technology), Paris, November 18, 2006. Much of that talk was derived from a manuscript
that has in the meantime appeared as part of the present author’s contribution to van Atten and
Kennedy (2009) (written in 2005). Other versions of that talk were presented at the plenary
discussion ‘Godel’s Legacy’ at the ASL European Summer Meeting in Nijmegen, August 2, 2006
and at seminars in Nancy (2005), Tokyo (2006), Utrecht (2006), and Aix-en-Provence (2007). I am
grateful to the respective organisers for the invitations, and to the audiences for their questions,
criticisms, and comments.

The quotations from Godel’s notebooks and lecture notes appear courtesy of the Kurt Godel
Papers, The Shelby White and Leon Levy Archives Center, Institute for Advanced Study,
Princeton, NJ, USA, on deposit at Princeton University. I am grateful to Marcia Tucker, Christine
Di Bella, and Erica Mosner of the Historical Studies-Social Science Library at the IAS for their
assistance in finding anwers to various questions around this material. In the study of Godel’s

as possible, the resulting theory would provide an interpretation of a part of ZFC (or
a constructive version of a part of ZFC) which would be significally weaker than ZFC
itself. Hence one would have shown an essential limitation on what could be achieved by
Brouwer’s ideas. In other words, do to Brouwer’s program what Godel had done to Hilbert’s
program. At least, that was my impression at the time. I seem to recall that he actually said
something to that effect, but I don’t have any quotation, in my notes for Amy [as part of the
preparation for the article Shell-Gellasch (2003)], of him saying that to me.

Probably in the Spring of 1973, Godel encouraged Howard to read Girard’s 1972 thesis to get
some ideas towards such an extension to transfinite types. (Details in story 16, p. 110 of Howard,
unpublished.) Aczel’s interpretation of CZF in Martin-Lof’s Constructive Type Theory (Aczel
1978) may be seen as an execution of this project.

"9 Der Zeitpunkt des Erscheinens scheint mir weniger wichtig zu sein als die Textverbesse-

rungen (Godel 2003a, p. 290/291).
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notes in Gabelsberger shorthand, I have been able to consult Cheryl Dawson’s transcriptions,
which she generously made available to me; these were also useful to Robin Rollinger and Eva-
Maria Engelen, to whom I am greatly indebted for additional, speedy help with the shorthand, also
concerning previously untranscribed passages. Access to the microfilm edition of the Kurt Godel
Papers was kindly provided to Rollinger, Engelen and me by Gabriella Crocco. The present paper
is realized as part of her project ‘Kurt Godel philosophe: de la logique a la cosmologie’, funded
by the Agence Nationale de Recherche (project number BLAN-NT09-436673), whose support is
gratefully acknowledged.

Godel’s letters to his brother quoted here are part of a collection of letters that was found
in 2006. I am grateful to Matthias Baaz and Karl Sigmund for bringing this correspondence to
my attention, and for providing me with photocopies. These letters have been deposited at the
Wienbibliothek im Rathaus, Vienna. The quotations appear courtesy of the Kurt Godel Papers,
The Shelby White and Leon Levy Archives Center, Institute for Advanced Study, Princeton, NJ,
USA.

I am grateful to Dirk van Dalen, Georg Kreisel, Albert Visser, and, in particular, William
Howard and Géran Sundholm, for comments, references, criticisms and discussion. An anonymous
referee wrote a helpful report on an earlier version, and Jaime Gaspar helpfully sent a list of typing
errors.

Prof. Howard kindly granted permission to quote from the reminiscences he sent me; some
of these come from the notes he prepared for Amy Shell-Gellasch, who used them for her
article Shell-Gellasch (2003). Those notes are now held at the Archives of American Mathematics,
Dolph Briscoe Center for American History, University of Texas at Austin, as part of the William
Howard Oral History Collection, 1973, 1990-2003. These Archives hold the copyright; quotations
are by permission. I thank its staff member Carol Mead for her help and advice concerning this
material and its use.

Appendix: Finitary Mathematics and Autonomous Transfinite
Progressions

Naturally, the draft notes for the revision of the Dialectica paper also contain
remarks that are not concerned with intuitionism as such, but with finitary math-
ematics.

In support of the admission of abstract objects, note also that it is altogether illusory to try to
eliminate abstractions completely, whatever the science in question may be. Even finitism
in its strictest form does contain them, since every general concept is an abstract entity
(although not necessarily an abstract concept, which term is reserved for concepts referring
to something abstract). The difference between finitism and the envisaged extension of it
only is that in the former abstractions occurring are only used, but are not made objects
of the theory. So the question is not whether abstractions should be admitted, but only
which ones and in what sense. It seems reasonable, at any rate, to admit as object of the
investigation anything which is admitted for use. This leads to something like the hierarchy
described in footn[ote] 7. [9b/148.5, item 040498.31]

The example referred to at the end is that of autonomous transfinite progressions,
which Godel describes in footnote 2 on p. 281 of the 1958 version and footnotes 4
and f of the 1972 version. On both occasions he refers to the formal work that
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appeared in print in Kreisel (1960, 1965); but in D68, he moreover writes that he
had arrived at this idea when writing his incompleteness paper Godel (1931), and
had considered it finitary:

That in Mon[ats]H[efte fiir] Math[ematik und] Phys[ik] 38 (1931), p. 197 I said that finitary
mathematics conceivably may not be contained even in formalized set theory is due to the
fact that, contrary to Hilbert’s conception, I considered systems obtained by reflection on
finitary systems to be themselves finitary. [9b/141, item 040450, p. 4F; 1968]

and, in a different version with the title ‘Kreisel’s hierarchy’,

How far in the series of ordinals this sequence of systems reaches is unknown. Evidently
it is impossible to give a constructive definition and proof for its precise limit, since this
ordinal would then itself be an admissible sequence of steps. When in Mon[ats]H[efte fiir]
Math[ematik und] Phys[ik] 38 (1931) p. 197 I was speaking of ‘conceivably’ very powerful
finitary reasoning, I was really thinking of this hierarchy, overlooking the fact that from
a certain point on (and, in fact, already for rather small ordinals) abstract concepts are
indispensable for showing that the axioms of the system are valid, even though they need
not be introduced in the systems themselves. [9b/146, item 040477]

An evaluation of the reliability and importance of these remarks will have to take
into account that Godel is not writing shorthand notes for himself here, but is
drafting passages in longhand towards a paper meant for publication. Also, the
fact that Godel did not mention the idea of this hierarchy when he addressed the
topic of possible finitary proofs that are not formalizable in Principia in his letter to
Herbrand of July 25, 1931 (Godel 2003b, pp. 22-23), not long after the publication
of the incompleteness paper,'*° could well be explained by a quick discovery of his
own oversight.

In the 1960s Godel was inclined to think that the limit of finitary mathematics is
€o. He saw support for this in arguments proposed by Kreisel, Tait, and Bernays; for
a discussion of this matter, I refer to sections 2.4 and 3.4 of Feferman’s introduction
to the Godel-Bernays correspondence in Godel (2003a) and to Tait (2006). Here 1
add the following element. In D72, Godel says that Kreisel’s ‘arguments would have
to be elaborated further in order to be fully convincing’, and mentions that ‘Kreisel’s
hierarchy can be extended far beyond €y by considering as one step any sequence of
steps that has been shown to be admissible’ (Godel 1990, p. 274n.f). In one of the
draft notes he actually endorses that idea:

Kreisel himself says on p. 177 [of Kreisel (1965)] under 3.621: ‘the only support for taking

€ ...as a bound is empirical’. I was formerly myself leaning towards Kreisel’s conjecture.

But today it seems much more probable to me that the limit of idealized Finitism is quite
large. [9b/145]

Feferman has raised the possibility that ‘G6del wanted it seen as one of the values
of his work in (1958) and (1972a) that the step to the notions and principles of the
system 7" would be just what is needed to go beyond finitary reasoning in order to

1201¢ had appeared in February or March, and by March 25 at the latest (Godel 1995, p. 518).
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capture arithmetic’ (Godel 2003a, p. 74). That suggestion finds corroboration in the
following passage:

I do not wish to say that every math[ematical] concept which is non-finitary must nec[essar-
ily] be called abstract, let alone that it must be abstract in the special sense explained below.
But I don’t think that there is any other ext[ension] of finitism which preserves Hilbert’s
idea of justifying the infinite of the Platonistic elem[ents] of math[ematics] in terms of
what is finite, concretely given & precisely knowable. Note that in contradist[inction]
to Plat[onistic] entities, precise thoughts about things that are or can in principle be
concretely given & precisely known are themselves something concretely given & precisely
knowable.'?! If this ext[ension] of finitism is combined with a training in this kind of
int[uition], something in character very close to finitary evidence but much more powerful
may result. [9b/147, item 040486]

This same passage may also serve to address Tait’s suggestion that Godel, by
extending Hilbert’s finitary position with thought contents or structures, ‘simply
doesn’t see the “finite” in “finitary”’ (Tait 2010, p. 93). Godel emphasizes that
the same criterion that leads Hilbert, who considers only space-time intuition, to a
restriction to configurations of a finite number of objects, allows for further, different
objects when applied to thoughts, given a correspondingly wider notion of intuition.
To hold that everything which is concretely given and precisely knowable is thereby,
in a numerical sense or otherwise, finite, is to follow an old tradition.
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